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CHAPTER I: INTRODUCTION

1.1 Adverse childhood experiences and mental health outcomes

Adverse childhood experiences (ACE), such as sexual, emotional or physical abuse
and/or neglect have been linked to various mental health problems. These traumatic
experiences, occurring during critical developmental periods, can disrupt healthy brain
development, leading to a cascade of negative mental health outcomes (Teicher et al. 2022).
Research linking ACE to mental health problems includes psychiatric disorders such as post-
traumatic stress disorder (PTSD), depression, anxiety, borderline personality disorder,
attention deficit hyperactivity disorder (ADHD) and substance abuse (Herzog and Schmahl
2018; Seitz et al. 2022). The prevalence of ACE is alarmingly high, with global data indicating
that millions of children suffer from maltreatment each year (Hillis et al. 2016; Hughes et al.
2017). For example, in a recent study by Struck et al., 15% of adult participants without
psychiatric disorders reported having experienced moderate-to-severe ACE (Struck et al.
2020). In another study, almost half of a 2531-German sample reported at least one form of
ACE and were prone to psychosocial problems involving life satisfaction, psychopathology,
and interpersonal aggression (Witt et al. 2019). Such prevalence represents a major public
health problem.

Recent studies categorize ACE into two dimensional subtypes (DS): abuse and neglect
(Lippard and Nemeroff 2020; McLaughlin et al. 2019; Sheridan and McLaughlin 2014). Abuse
involves the presence of an unexpected experience that poses a significant threat of harm to
the child, such as physical, sexual or emotional harm. Neglect, which includes physical and
emotional deprivation during childhood, is characterized by a lack of expected environmental
inputs, specifically a lack of expected cognitive and social inputs. These DS of maltreatment
are associated with notable differences in clinical presentation, including earlier onset and
more severe symptoms of psychiatric disorders (Lippard and Nemeroff 2020; Teicher and
Samson 2013), a more pernicious physical sequence (MclLaughlin and Lambert 2017; Zhang et
al. 2021), increased risk of suicide (Jones et al. 2024), diminished quality of life (Bosch et al.
2020; Greger et al. 2016), and more psychiatric comorbidities (Teicher et al. 2022). Early
research on the psychiatric consequences of ACE primarily focused on all forms of adversity
as cumulative risk score, emphasizing on the number of distinct types of adversity a child has

experienced regardless of the frequency or severity of the individual incidents of those
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CHAPTER I: INTRODUCTION

experiences. This approach assumed that different types of ACE are quantitatively similar,
implying that each distinct type would have an equal impact. However, more recent studies
have shifted away from this concept to focus on the DS of ACE. This shift recognizes that the
multiple underlying dimensions of experiences may have distinct associations with cognitive,
emotional, and neurodevelopmental processes that reflect the core features of abuse and
neglect to varying degrees (Sheridan and McLaughlin 2014). For example, physical and sexual
abuse, witnessing domestic violence by either parents or friends, and exposure to violence in
the community at childhood all involve, in varying degrees, direct threats of harm to the child
and are consistently associated with the risk of PTSD, anxiety disorder, panic disorder and
depression at adulthood (Comijs et al. 2013; Cougle et al. 2010). Conversely, neglect, which
involves low levels of social and cognitive stimulation such as institutional rearing and other
forms of parental absence, is associated with higher levels of adult depression symptoms
(Infurna et al. 2016; Spinazzola et al. 2014). A review by Colich et al. (2020), also demonstrated
the distinct developmental consequences of abuse and neglect, highlighting that abuse is
associated with accelerated neurodevelopmental processes while neglect may not be (Colich
et al. 2020). These findings suggest that the DS of ACE are linked to distinct patterns of
accelerated biological aging, contributing to a variety of health problems. This highlights the
significance of the DS categorization and emphasizes the importance of exploring all DS of ACE
in a broad context (Khan et al. 2015; Teicher et al. 2022).

Another perspective highlights the dose-dependent nature of the effects of ACE on child
development (McLaughlin et al. 2019; Morris et al. 2021; Wiens et al. 2020), showing that
severity and chronicity of ACE are associated to the magnitude of their impact ensuing mental
and physical health outcomes (Strathearn et al. 2020). This dose-dependent nature, also
referred to as intensity and frequency, is evident across various domains, including social,
emotional, cognitive, and neurobiological functioning. On a social level, individuals exposed
to more severe and prolonged ACE exhibit more pronounced difficulties in interpersonal
relationships, social skills, and peer interactions (Mao et al. 2021; Mc Elroy and Hevey 2014).
A higher cumulative ACE score is associated with increased risk for social isolation, aggression,
and difficulties in forming intimate relationships (Crawford et al. 2022; Majer et al. 2010) as
well as social interactions (Mc Elroy and Hevey 2014). The intensity and duration of ACE are
directly linked to the severity of emotional dysregulation (Dvir et al. 2014). Individuals with a
higher cumulative ACE score are more likely to experience chronic and severe emotional

difficulties, including heightened anxiety, depression, and difficulty managing anger. On a
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cognitive level, cognitive functioning is significantly impacted by the dose of ACE (Danese and
Widom 2024; Goltermann et al. 2021). Children exposed to more severe and prolonged
adversity exhibit greater deficits in attention, memory, and executive functions (Irigaray et al.
2013; Majer et al. 2010). A higher cumulative ACE score is associated with increased risk for
learning difficulties, academic challenges, and impaired problem-solving skills. The
neurobiological consequences of ACE also demonstrate a dose-dependent pattern (Teicher et
al. 2016). Individuals with a higher cumulative ACE score exhibit more pronounced alterations
in brain structure and function, including reduced gray matter volume in critical regions and
dysregulation of the stress response system (Anda et al. 2006; Ansell et al. 2012). These
neurobiological changes underlie the increased vulnerability to mental health disorders and
behavioral problems. Such a graded relationship underscores the importance of considering
the dose-dependent nature of ACE when assessing individual risk profiles.

The multiplicity of ACE can also significantly exacerbate social, emotional, cognitive, and
neurobiological impairments (Wiens et al. 2020). The multiplicity of ACE refers to the exposure
of a child to multiple types of ACE. This can include a combination of abuse and neglect, or
different forms of the same type of maltreatment. For example, a child might experience both
physical abuse and emotional abuse or neglect. Research indicates that individuals exposed
to multiple forms of abuse and neglect are more likely to experience severe social difficulties,
including challenges in forming and maintaining healthy relationships and increased
tendencies toward isolation and aggression (Evans and Kim 2013). Emotionally, the effect of
multiple ACE amplifies risks for depression, anxiety, and other mood disorders, often leading
to chronic stress and emotional dysregulation (Freier et al. 2022; Gardner et al. 2019).
Cognitively, the likelihood of impairments in memory, attention, and executive functioning
increases with the number of ACE, contributing to difficulties in academic and professional
settings (Hawkins et al. 2021; Iverson et al. 2024). Neurobiologically, multiple ACE can result
in profound structural and functional brain changes such as altered connectivity and volume
reductions in critical areas like the prefrontal cortex and hippocampus, which are crucial for
emotional regulation and cognitive processing (Herzog and Schmahl 2018; Lippard and
Nemeroff 2020; Pang et al. 2022; Samson et al. 2024). These compounded effects underscore
the critical need for considering the long-term impact of multiple ACE on individuals’
development and well-being.

The complex interplay of DS, dose and multiplicity of ACE impacts the child development

and later mental health outcomes (Fleming et al. 2024; Teicher et al. 2022). These three
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factors are not mutually exclusive and can interact in complex ways. Not only does the severity
and duration of adverse experiences matter, but also the number and variety of different
types of ACE a child is exposed too. For example, a child who experiences both physical abuse
and emotional neglect (multiplicity) may also be exposed to severe and frequent instances of
abuse (dose-dependent effects), leading to more severe social, emotional, and cognitive
impairments compared to a child who experiences only one type of neglect. Similarly, a child
exposed to multiple forms of abuse, such as physical, emotional, and sexual abuse, is at
greater risk for long-term mental health problems and developmental challenges.

While the focus thus far has been on the detrimental effects of ACE, it is crucial to
acknowledge the presence of protective factors that can mitigate their impact (Crouch et al.
2019; Kentner et al. 2019; Sege and Harper Browne 2017). Resilience, defined as the ability to
adapt and overcome adversity, plays a pivotal role in determining outcomes for individuals
exposed to ACE (Panagou and MacBeth 2022; Richter et al. 2019). Protective factors can
operate at various levels, including individual, familial, and community factors (Bellis et al.
2018; Bellis et al. 2019). Physical activity also emerges as a significant individual-level
protective factor, contributing to both physical and mental health (Demirakca et al. 2014;
Hadwen et al. 2022; Hird et al. 2024). Supportive and nurturing family environments can
buffer the negative effects of ACE, while strong community connections can provide essential
resources and support (Hughes et al. 2017; Merrick et al. 2020). It is essential to recognize
that the interplay between ACE and protective factors is complex. While some individuals
exhibit remarkable resilience in the face of adversity, others are more vulnerable (Pusch and
Dobson 2017). Given the primary focus of this study is on utilizing neuroimaging methods to
enhance the diagnosis and comprehension of ACE, the discussion will be limited to these

methodologies.

1.2 Neuroimaging studies in ACE

Neuroimaging studies have been pivotal in elucidating the brain's structural and
functional changes associated with ACE. Techniques using magnetic resonance imaging (MRI)
such as functional MRI (fMRI), structural MRI (sMRI), and diffusion weighted MRI (dMRI) have
revealed alterations in brain regions involved in emotion regulation, stress response, and
cognitive processing (Hart and Rubia 2012; Herzog and Schmahl 2018; Samson et al. 2024;

Teicher et al. 2020; Teicher and Samson 2016). These different neuroimaging modalities are
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used because they capture different aspects of brain biology and also provide different
visualization of the brain (Modo and Bulte 2011). The use of only one neuroimaging modality

in a study is termed a unimodal study.

Figure 1. MRI of the brain captured using (A.) sMRI, (B.) dMRI and (C.) fMRI. sMRI utilizes T1 and
T2 weighted MRIs, which are segmented and parcellated to obtain structural properties of the brain
such as brain volume, cortical area, and cortical thickness. dMRI employs diffusion weighted imaging
to construct white matter pathways. Functional MRI utilizes BOLD activity in the brain to inform how
brain regions are activated (volumetric activation) or correlate with each other (functional
connectivity) during the performance of a task (task-based fMRI) or when at rest (resting-state fMRI).

Unimodal studies in ACE

sMRI has been instrumental in mapping the brain structural abnormalities associated
with ACE. Using voxel-based morphometry (VBM), researchers have consistently reported
reduced gray matter volumes in individuals exposed to ACE in the inferior frontal gyrus,
hippocampus and amygdala (Pollok et al. 2022; Yang et al. 2023), dorsolateral prefrontal
cortex and superior parietal cortex (Nkrumah et al. 2024b), as well as the medial prefrontal
cortex (Hart and Rubia 2012; Kelly et al. 2013; McLaughlin et al. 2019). Another sMRI method
is surface-based morphometry (SBM), which is used to explore cortical alterations such as
surface area, cortical gyrification, cortical thickness, and curvature. The advantages of using
both voxel- and surface-based morphometry to study gray matter (GM) have been studied
elsewhere (Goto et al. 2022). A recent meta-analysis that combined both SBM and VBM
studies found ACE to affect cortical thinning in the right medial cingulate and middle frontal

gyrus as well as reduced GM volume in the left supplementary motor area (Yang et al. 2023).
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e Abuse and neglect as dimensional subtypes of ACE: sMRI studies differentiate between
the effects of abuse and neglect on brain structure. Abuse is more closely related to
reductions in amygdala and PFC volume, regions involved in emotional regulation and
threat response (Arnsten et al. 2015; Kelly et al. 2013). Additionally, reduced cortical
thickness in prefrontal and temporal regions has been associated to childhood abuse
(Gold et al. 2016). Neglect, on the other hand, tends to impact areas involved in social
cognition, like the medial PFC and temporal lobes, which are crucial for social
interactions and emotional processing (Mackes et al. 2019; Sheridan et al. 2022) .

e Multiplicity of ACE and its impact: The number and severity of ACE have been shown to
exacerbate these structural changes. Individuals with multiple ACE exhibit more
significant reductions in hippocampal volume, a brain region critical for memory and
stress regulation (Grauduszus et al. 2024; Herzog et al. 2020; Schalinski et al. 2016).
These effects indicate that the brain’s structural response to adversity intensifies with

the increasing duration and intensity of maltreatment (Anda et al. 2006).

dMRI studies have provided valuable insights into the neurodevelopmental
consequences of ACE. Research consistently demonstrates that individuals with a history of
ACE exhibit alterations in white matter microstructure, particularly in regions associated with
emotion regulation, cognitive control, and stress response (Huang et al. 2012; Lim et al. 20193;
Ohashi et al. 2019). Reduced fractional anisotropy (FA) in key white matter tracts, such as the
corpus callosum, uncinate fasciculus, and cingulum bundle, is a common finding (Olson et al.
2020; Puetz et al. 2017) . Voxel-based analysis (VBA) of dMRI, as used in diffusion tensor
imaging (DTI), is a method for studying white matter, providing evidence of altered brain
connectivity by detecting differences at the voxel level. While DTI studies have underscored
the profound impact of early adversity on brain development, they are limited by relatively
small sample sizes and the inability to model complex fibre orientations. Consequently, DTI-
derived metrics are often challenging to interpret, particularly in regions with crossing fibres.
To address these limitations, more advanced dMRI techniques, such as higher-order DWI
models like fixel-based analysis (FBA), are emerging (Raffelt et al. 2015; Raffelt et al. 2017).
These methods enable the estimation of multiple fibre orientations within voxels, offering
greater precision in characterizing white matter microstructure. However, at the time of this
thesis, only one study (Kanel et al. 2024), has employed FBA in previously institutionalized

adolescents. Their findings indicate fixel-based alterations within the cerebellar peduncles,
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inferior longitudinal fasciculi, corticospinal tract, and corpus callosum in institutionalized
adolescents compared to non-institutionalized ones. Although these findings replicate and
extend DTI findings (Sheridan et al. 2022), the application of FBA, particularly in multiple
crossing-fibre regions, demonstrates alterations in micro- and macro-structure in previously
institutionalized adolescents, indicating that neural correlates are still apparent in adolescents
with such experiences.

e Abuse and neglect as dimensional subtypes of ACE: The effects of abuse tend to disrupt
WM tracts associated with the limbic system such as the fornix (Eden et al. 2015) and
tracts connecting the prefrontal cortex to the mid-temporal like the inferior longitudinal
fasciculus (ILF) (Lim et al. 2019a), leading to impaired emotional regulation and
heightened stress reactivity (Ohashi et al. 2017; Olson et al. 2020). In contrast, neglect,
is linked to reduced WM integrity in tracts associated with social and cognitive
processing, such as the inferior and superior longitudinal fasciculus (SLF) (Mackes et al.
2022) and arcuate fasciculus (Hanson et al. 2013).

o Multiplicity of ACE and its impact: dMRI studies have shown that the cumulative number
of ACE correlates with the severity of white matter disruptions (Lim et al. 2020). For
instance, individuals exposed to multiple types of abuse or both abuse and neglect tend
to show more extensive white matter damage. This is particularly observed in tracts
critical for integrating emotional and cognitive functions like the cingulum, SLF (Huang
et al. 2012), corpus callosum, uncinate fasciculus (Buimer et al. 2022; Kanel et al. 2024;
Sheridan et al. 2022), and pathways linking fronto-limbic and occipital visual cortices,

such as anterior thalamic radiation and bilateral fornix (Lim et al. 2020).

fMRI has been pivotal in uncovering functional brain network disruptions in individuals
with ACE. Resting state fMRI (rsfMRI) is used to capture spontaneous brain activity when an
individual is at rest, revealing patterns of connectivity between brain regions. rsfMRI studies
have found aberrant functional connectivity patterns in individuals with a history of ACE (Gerin
et al. 2023a; Rakesh et al. 2023; Schroder et al. 2024; Valencia et al. 2024). For example,
hyperconnectivity within the default mode network (DMN) is consistently reported,
suggesting increased rumination on intrusive memories and persistent negative thoughts
related to past trauma (Daniels et al. 2011; Hoffmann et al. 2018; Valencia et al. 2024).
Concurrently, hyperconnectivity within the salience network (SN) is associated with

heightened emotional reactivity and difficulties in distinguishing between relevant and
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irrelevant stimuli (Thome et al. 2014; Watts et al. 2021). Conversely, hypoconnectivity within

the central executive network (CEN) is linked to distractibility and impaired cognitive control,

affecting daily functioning. Furthermore, a recent meta-analysis study has demonstrated

disrupted communication between brain regions involved in emotion regulation, cognitive

processing, and self-referential processing, commonly observed in individuals with ACE (Ireton

et al. 2024).

Abuse and neglect as dimensional subtypes of ACE: The two subtypes of maltreatment
have been shown to affect distinct networks. Individuals exposed to abuse exhibit
distinct impaired functioning in brain regions responsible for emotional processing,
learning, and self-referential processing, such as the hippocampus, amygdala, and
prefrontal cortex (PFC) of the DMN (Liuzzi et al. 2023). Another study found emotional
abuse to be specifically associated with hyperconnectivity in the DMN, potentially
leading to excessive self-focus and rumination, as seen in disorders like PTSD and
depression (Van Der Werff et al. 2013). In contrast, neglect, has been linked to
hypoconnectivity in networks responsible for cognitive and social functions, such as the
SN (Silveira et al. 2021). Functional alterations in the hippocampus and amygdala have
been observed in individuals who have experienced institutionalization (Rakesh et al.
2021) and poverty-related neglect (Sheridan et al. 2012).

Multiplicity of ACE and its impact: rsfMRI studies also reveal that the severity and
frequency of ACE exposure play a significant role in the extent of functional network
disruptions (Gerin et al. 2023a; Valencia et al. 2024). Greater exposure to multiple ACE
is associated with more pronounced alterations in corticolimbic regions (e.g., the
amygdala, medial prefrontal cortex, and hippocampus) (Gerin et al. 2023a) and the
frontoparietal network regions (such as the inferior frontal gyrus and superior parietal

regions), which reflects impaired executive function and cognitive control (Gard 2021).

Overall, insights from various unimodal studies provide an understanding of how early

trauma can alter brain structure and functioning, potentially contributing to the development

of psychopathology later in life. However, research examining the impact of maltreatment on

brain structure and functioning at adulthood using multimodal methods remains limited.
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Figure 2. Findings from unimodal sMRI and dMRI meta-analytical studies in ACE. Images were
retrieve from (Pollok et al. 2022; Yang et al. 2023)

1.3 Limitations of current approaches

Despite significant information provided by current neuroimaging approaches to
studying ACE, there are several limitations. Many studies rely on single-modality imaging
techniques, which often analyse structural and functional neuroimaging data independently,
potentially overlooking crucial interactions and shared information between these modalities
(Calhoun and Sui 2016; McLaughlin et al. 2019; Samson et al. 2024), which may lead to missing
potential insights and an inability to explore the full complexity of brain alterations associated
with ACE. Sample sizes in these studies are also often limited, restricting the generalizability
of findings. Moreover, the integration of the various neuroimaging data remains challenging,
necessitating the development of sophisticated analytical methods to uncover the intricate

relationships between different brain alterations.

1.4 Aims of this work

To address the limitations of current research, this study aims to investigate the complex
interplay between structural and functional brain alterations in individuals with a history of
ACE. By employing a multimodal neuroimaging approach, we seek to uncover shared and
unique neural correlates associated with ACE-related psychopathology. Specifically, this study

aims to:
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a. Characterize structural and functional brain abnormalities in individuals with ACE using
MRI analyses, such as surface-based morphometry for sMRI data, tract-based spatial
statistics for dMRI data, and functional connectivity analysis for rsfMRI data.

b. Examine the relationship between structural GM and WM brain alterations and ACE
using sMRI and dMRI.

c. Explore the potential relationship between structural and functional brain alterations
and ACE, as well as ACE-related psychopathology, through multimodal analysis.

d. Provide potential insights for future directions of the application of multimodal

neuroimaging in ACE research.

By achieving these objectives, this study will contribute to a deeper understanding of the
neurobiological underpinnings of ACE and related psychopathology, ultimately improving the
diagnosis, prognosis, and treatment of mental health disorders with or without ACE which
aligns with the overarching goal of precision neuropsychiatry (Koutsouleris and Fusar-Poli

2024).

1.5 Introduction to Multimodal Neuroimaging

Multimodal neuroimaging has emerged as a powerful tool in neuroscience, offering
unprecedented insights into the intricate structure and function of the human brain (Calhoun
and Sui 2016). This approach involves acquiring various forms of neuroimaging data from the
same individual using multiple imaging modalities, such as sMRI, fMRI, dMRI, magnetic
resonance spectroscopy (MRS), arterial spin labelling (ASL) MRI, electroencephalography
(EEG), magnetoencephalography (MEG), and positron emission tomography (PET) (Tulay et al.
2019). Each modality brings unique strengths and limitations, depending on its ability to
provide different aspects of structural and functional properties of the brain.

For instance, sMRI provides detailed images of the brain's anatomy, highlighting GM,
white matter (WM), and cerebrospinal fluid (CSF), which can be quantified in terms of volume
or surface area. In contrast, fMRI measures changes in blood oxygenation levels, offering
insights into brain function by detecting activity in specific regions during tasks or at rest.
Similarly, dMRI elucidates white matter architecture, with advanced techniques like NODDI
modelling revealing microstructural anomalies (Kamiya et al. 2020). Additionally, MRS

provides metabolic information about the brain, allowing for the quantification of

10
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neurotransmitters, metabolites, and other molecules such as Glutamate, Gamma-

aminobutyric acid (GABA) and N-acetyl aspartate (NAA) (Soares and Law 2009).

By integrating these complementary neuroimaging modalities, we can explore the

complex interplay between brain structure and function, identify neural correlates of specific

behaviours or disorders, and develop more accurate biomarkers for diagnosis and prognosis.

There are two primary approaches to the analyses of multimodal neuroimaging data—

Complementary and joint analysis.

Complementary multimodal neuroimaging analysis (CoMNA) involves using different
modalities to provide complementary information about the same brain region. This
approach is also thought to be an asymmetric data fusion where one modality is used
to constrain the analysis of another. For instance, sMRI can provide structural
information about a specific brain region, while fMRI can be used to reveal its regional
functional activity in a disease state. COMNA has been used in previous research to
highlight group differences, such as dMRI tractography combined with transcranial
magnetic stimulation (TMS) (Mirchandani et al. 2021), quantitative MRI methods
(Rokickia et al. 2020), and fMRI with dMRI (Harneit et al. 2019). While this approach has
been used to identify modality-specific and complementary modality effects, it has
some limitations. COMNA is known to provide limited information as this analysis does
not fully utilize common as well as distinct information from all available complementary

modalities.

Joint (or fusion) multimodal neuroimaging analyses (JoMNA) aim to overcome the
limitations of COMNA by combining data from multiple modalities into a unified analysis
where all modalities contribute equally. JOMNA provides the ability to take full
advantage of the different data types to uncover significant relationships or variability
that could explain unusual brain patterns (Adali et al. 2015). JoMNA is considered the
gold standard for truly exploiting the combined power of multiple modalities (Calhoun
and Sui 2016). By leveraging the unique strengths of each imaging technique, JoMNA
can uncover complex relationships and patterns that would be missed using unimodal
or complementary approaches (Tulay et al. 2019). An in-depth explanation of JoMNA

will be made in chapter 2 of this thesis.
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CHAPTER I: INTRODUCTION

In all, multimodal neuroimaging offers significant potential to improve our
understanding of brain disorders, including those associated with ACE. By leveraging the
strengths of different imaging techniques, MN allows for unravelling the complex
neurobiological mechanisms underlying the long-term consequences of ACE and its related
psychopathology. This thesis will primarily focus on the cumulative impact of childhood
maltreatment (Bryce 2018; Bryce and Collier 2022), considering the DS (i.e., abuse and
neglect) without examining the dose-dependent effects of individual experiences (Teicher et
al. 2016; Teicher and Samson 2016). As an initial step in exploring the effects of ACE using
multimodal methods, this approach is expected to simplify the focus of the study, providing a
foundation for investigating the complex relationship between ACE, brain development, and

mental health outcomes.

1.6 Research Questions

To effectively employ MN in exploring the neurobiological underpinnings of ACE and
their relationship to psychopathology such as PTSD, this study aims to answer the following

questions.

I.  How can complementary multimodal neuroimaging data analyses be used to investigate
ACE?
II.  What specific brain alterations are associated with PTSD related to ACE, as identified
using JOMNA approach?
. How can multimodal neuroimaging biomarkers enhance our understanding of the
neurobiological underpinnings of ACE and their related mental health outcomes?
IV. What are the potential applications of MN in ACE research for early diagnosis and

prognosis of ACE and its related disorders?

In the following chapters, | provide an overview of COMNA and JoMNA methods and
discuss two published studies that employed these methods to address our four major
research questions. By addressing these questions, this work aims to advance our
understanding of the neural correlates of ACE and PTSD, ultimately contributing to improved

diagnostic approaches and proposing a framework for the clinical translation of MN.

12



CHAPTER II: MULTIMODAL NEUROIMAGING METHODS

2.1 Introduction to CoMNA and JoMNA methods

This section will provide an overview of the primary methodological approaches
employed in multimodal neuroimaging (MN) research. We will delve into the details of
complementary multimodal neuroimaging analysis (CoOMNA) and joint or fusion multimodal
neuroimaging analysis (JOMNA). CoMNA involves using different modalities to provide
complementary information about the same brain region, while JOMNA integrates data from
multiple modalities into a unified analysis. By examining the strengths and limitations of these
methods, we aim to elucidate the optimal approaches for investigating the complex interplay

between brain structure and function in relation to adverse childhood experiences (ACE).

2.2 CoMNA methods

The first stage of COMNA involves independently processing and analysing data from
various imaging modalities followed by a comparative analysis of the results usually in the
same brain regions. This approach aims to identify complementary information provided by
each modality, contributing to a deeper understanding of brain structure and function by
leveraging the strengths of each imaging modality.

Combining sMRI and dMRI is a common example of CoOMNA. sMRI provides detailed
anatomical information about GM, including its volume in cortical and subcortical structures
and other cortical morphological measures such as thickness, curvature, gyrification and area
(Dale et al. 1999; Fischl et al. 1999; Luders et al. 2006; Van Essen et al. 2001). Neuroimaging
tools such as FreeSurfer (Fischl 2012), Computational Anatomy Toolbox (Gaser et al. 2024)
and Mindboggle (Klein et al. 2017) are commonly used to compute these measures. dMRI
offers insights into white matter microstructure, such as fibre tract connectivity and integrity.
dMRI provides quantitative measures such as fractional anisotropy (FA), mean diffusivity
(MD), radial diffusivity (RD) and axial diffusivity (AD) (Tromp 2016), and other advance
measures such as fibre density (FD), fibre cross-section (FC) and fibre density and cross-section
(FDC) (Smith et al. 2022; Tournier et al. 2019). By analysing these modalities separately and
then comparing the results, we can identify potential associations between GM and WM brain
abnormalities associated with a brain state. For instance, sSMRI might reveal reduced gray

matter volume in a specific brain region, while dMRI could demonstrate corresponding
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CHAPTER Il: MULTIMODAL NEUROIMAGING

changes in white matter connectivity in that area. This complementary information can

provide valuable insights into the underlying neuropathology of a particular condition.

Figure 3. Example of CoMNA using T1l-weighted MRI (sMRI) and
diffusion weighted MRI (dMRI).sMRI provides information such as
gray matter volume, cortical thickness, cortical area and subcortical
structures. dMRI provides quantitative measures such as fractional
anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and
axial diffusivity (AD), and other advance measures such as fibre
density (FD), fibre cross-section (FC) and fibre density and cross-
section (FDC). Image was accessed from (Mangeat 2018)

Other common combinations of COMNA

e sMRI and fMRI: Combining structural and functional MRI allows for the investigation of
how brain anatomy relates to brain activity. For example, researchers can examine
whether changes in gray matter volume correlate with altered functional connectivity.

e dMRI and fMRI: This combination helps to elucidate the relationship between white
matter connectivity and functional brain networks. By examining how structural
connections influence information flow, researchers can gain insights into the neural
basis of cognitive processes.

e MRS and DTI: Combining MRS with DTI allows for the simultaneous study of brain
metabolism and white matter microstructure. This combination can provide a more
comprehensive understanding of brain pathology, as both metabolic and structural

abnormalities can contribute to disease progression (Lawrence et al. 2019).

These combinations of CoMNA offer unique perspectives on brain structure and
function and can be applied to various research questions, including the study of ACE and

related mental health disorders.

Although CoMNA is a valuable method compared to individual analyses of neuroimaging
data, it has limitations. First, its analysis provides limited information, as it does not fully utilize
both the common and distinct information from all available neuroimaging modalities. The
abundance of data provided by diverse neuroimaging sources requires aggregation to enable
a more comprehensive understanding of the brain (Calhoun and Sui 2016; Tulay et al. 2019).
Second, recent advancements in the application of machine learning enable the complete

utilization of all neuroimaging data to improve its utility. For example, compared to the
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correlation analysis methods employed by CoMNA, machine learning techniques allow for
multivoxel pattern analyses, which facilitate the examination of the relationship between
disease states and multiple voxels in one or more brain regions simultaneously (Xiao et al.
2021). Additionally, predictive machine learning models could achieve improved
generalizability by using information from multiple neuroimaging modalities to enhance

broader implications (Dwyer et al. 2018; Radua and Koutsouleris 2023).

2.3  JoMNA methods

Most methods applied in JoOMNA are both multivariate and data driven machine learning
approaches which provide more information and flexible data fusion (Sui et al. 2013). These
methods basically either use the full neuroimaging data or extract features from each modality
and search for common variations in terms of structural and functional properties in the
extracted feature space. A feature is a distilled dataset representing an interesting part of
each distinct modality and is used as the input to the fusion analysis for each modality and
each subject (Calhoun and Sui 2016). Common feature extraction methods include extracting
components from principal component analyses (PCA) of the full neuroimaging data. By
investigating variations between or across disease and control groups at the feature level,
rather than the full image level, we can find multimodal associations and alleviate challenges
associated with fusion data type of diverse dimensionality, nature and resolutions
(BieRssmann et al. 2011; Liu et al. 2015). Recent studies have also demonstrated the use of
full neuroimaging data in JoMNA to enhance the precision and depth of neuroimaging
analyses (Koutsouleris et al. 2016; Koutsouleris et al. 2023; Koutsouleris and Fusar-Poli 2024).
Rather than relying solely on feature extraction, these modern approaches leverage entire
datasets, capturing a broader range of variability across structural and functional modalities.

Motivated by blind source separation (BSS), the multivariate data driven analysis of
JOMNA has been possible in recent times due to an improved computation and the existence
of large multimodal datasets (Rasgado-Toledo et al. 2024; Silva et al. 2016). BSS is used to
decompose the JOMNA with few assumptions and without the need of introducing additional
constraints (Adali et al. 2015). The computations of JOMNA using BSS can be categorized into
Independent Component Analysis (ICA) based techniques (e.g. Joint ICA and Parallel ICA),
Canonical Correlation Analysis (CCA) based techniques (e.g. Multimodality CCA), partial least
squares (PLS) based techniques, machine learning classification/ regression (MLC/R) based

techniques (e.g. by using L1-Multiple Kernel Learning), and deep learning (DL) based
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techniques (e.g. by using Deep Belief Networks) (Adall et al. 2015; Calhoun and Sui 2016;

Dwyer et al. 2018; Lottman et al. 2018; Qu et al. 2024; Silva et al. 2016; Wu and Calhoun 2023).

Notably, these are multivariate data driven approaches and hence, they do not require a prior

hypothesis about all specific group data used. This offers a more effective way to handle the

inherent complexity and variability of neuroimaging data, leading to improved accuracy in

diagnosis and prediction, which could be particularly valuable in cases of ACE-related mental

health outcomes (Koutsouleris and Fusar-Poli 2024).

Several algorithms have been developed to perform JoMNA computation. Overall, all

algorithms conform to the following steps: full image and / or feature selection and

normalization, data matrix composition, dimensionality estimation and reduction, application

& optimization of a computational method, and visualization of results. The following is a brief

overview of the processes:

Full image and / or feature selection and normalization: this involves either
preprocessing full image and / or selection of significant features from each data type.
Data matrix composition: extracted full data and / or features are concatenated into
matrix form for easy computation.
Dimensionality estimation and reduction: composed matrices are reduced to avoid
overfitting (e.g. is by performing PCA).
Application & optimization of computation method: algorithm specific computation is
implemented, and the performance of the models computed are estimated through
various cross validation techniques. Here several computations (e.g. JICA, SVM/LR,
Decision Tree, Random Forest and Support Vector Elastic Net) and cross validation
(nested cross validation) methods have been proposed.
Visualization and interpretation of results: only results that pass an algorithm specific
confidence test are displayed. This typically involves using a statistical method to assess
the significance of the findings (Radua and Koutsouleris 2023). Common methods
include:
e False discovery rate (FDR) test: A linear statistical method that controls the
proportion of false positives among significant findings (Bennett et al. 2009; Lv et
al. 2024).
e Permutation test: A non-parametric statistical method that assesses the

significance of results by randomly permuting the data and comparing the
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observed results to the distribution of permuted results (Lv et al. 2024; Winkler et
al. 2014).

e ROC curve: A graphical plot that illustrates the trade-off between sensitivity (true
positive rate) and specificity (true negative rate) of a classification or prediction
model (Zou et al. 2007).

e Area under the curve (AUC): A measure of the performance of a classification
model, often used in conjunction with receiver operating characteristic (ROC)
curves. The AUC represents the probability that a randomly selected positive
instance will be ranked higher than a randomly selected negative instance (Hanley
and McNeil 1982; Huang and Ling 2005). A higher AUC indicates better

performance.

Despite the potential benefits of JOMNA, CoMNA is still more commonly used even with
the growing availability of study specific multimodal datasets, high computing capability and
application of machine learning in neuroimaging analysis. This preference can be attributed in
part to the challenges associated with heterogeneity in neuroimaging data, which
encompasses variability in data types, scales, and formats across modalities. Moreover, the
lack of a perfect data integration and interpretation framework within a cohesive analytical
context has hindered the widespread adoption of JOMNA (Qu et al. 2024). As individual
unimodal analysis and CoMNA have revealed promising structural-functional properties of the
brain, fusion of these heterogeneous neuroimaging data should provide relational as well as
specific findings from each modality prompting the need for multimodal data fusion. Another
reason hindering researchers from using JoMNA is the doubt that COMNA and what is learnt
from unimodal analysis are incomplete. Researchers doubt whether there is any missing link
worth finding as we have been enlightened “enough” with results from unimodal and
complimentary analysis. As suggested by Luque Laguna et al. (2020) and Bzdok and Meyer-
Lindenberg (2018), multimodal and multiparametric analysis of neuroimaging data is essential
for improving reproducibility, reliability, variability, and clinical translation of neuroimaging
research (Bzdok and Meyer-Lindenberg 2018; Luque Laguna et al. 2020; Radua and
Koutsouleris 2023). CoMNA and JoMNA are promising approaches to achieve this goal,
particularly in the context of addressing the challenges posed by heterogeneous data and the

need for a cohesive analytical framework.
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The subsequent sections of this chapter (Sections 2.4 and 2.5) will discuss the specific
aims guiding our application of COMNA and JoMNA in ACE research. Following this, | will
present the two studies — CHAPTER lll: CoMNA Study and CHAPTER IV: JoMNA Study —
detailing the neuroimaging data acquisition, preprocessing techniques, analyses, and
published findings. Finally, in CHAPTER V: DISCUSSION, | will conduct a comparative
discussion of the findings from both studies, exploring how they collectively address our

research questions.

2.4 Application of COMNA in ACE study

The first study employed a CoMNA approach to focus on the cortical morphology
alterations using surface-based morphometry and complementing the findings with those
from dMRI measures. This methodology aimed to leverage the unique strengths of sMRI and
dMRI, providing a comprehensive assessment of structural changes in both gray matter and
white matter associated with ACE. By integrating data from both modalities, the study
overcame the limitations of single-modality analyses, offering a more nuanced understanding
of how ACE impacts brain structure. The scope of the COMNA study was to investigate the
effect of ACE on gray matter and adjacent white matter regions using a sample of 78
participants (see section 3.3 for more information on the demographics and clinical data). For
sMRI data (i.e., Tlw), whole-brain surface-based analysis was performed to explore the
relationship between cortical morphology and the cumulative impact of ACE. We also
explored brain morphometry associated with abuse when controlling for neglect (and vice
versa). For diffusion MRI, we examined the white matter integrity in fibre tracts connecting
key areas where ACE-related cortical volume alterations were observed. Lastly, we
investigated the mediating role of ACE-related cortical volume alterations in the relationship

between ACE and PTSD symptoms (PTSS).

2.5 Application of JOMNA in ACE

The second study employed a connectivity-based multimodal neuroimaging approach,
a form of JoMNA, to investigate brain connectivity disruptions associated with ACE-related
PTSD. This study applied Joint Connectivity Matrix Independent Component Analysis (jICA) to
integrate data from sMRI, dMRI, and resting-state fMRI data. jICA involves equally integrating
and utilizing full data from all modalities, facilitating a more robust exploration of the

relationships between different data types (Wu and Calhoun 2023). The sample used for this
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study included a total of 119 participants with ACE (70 with ACE-related PTSD and 49 ACE-
exposed controls). T1-weighted MRI, diffusion-weighted MRI, and resting-state fMRI data
were acquired to examine structural and functional connectivity between groups. A detailed
description of our methodology and the literature driving this study can be found in Figure 4

and CHAPTER IV: JoMNA Study, respectively.
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Figure 4. This figure shows our multimodal analysis pipeline. (A) Subject-level processing: T1-weighted (T1w)
images were preprocessed, segmented, and parcellated into 83 regions in Lausanne scale 1 space. Diffusion and
resting-state images were also preprocessed, and both structural connectivity (SC) features (i.e., number of fibres
and normalised fibre density between brain regions) and functional connectivity (FC) features (i.e., positive and
negative functional connectivity) were extracted in the T1w parcellation space. (B) This panel shows the jcm-ICA
pipeline All four connectivity matrices were subsequently quality-checked, controlled for covariates, normalised,
and used as features to create a joint feature matrix. The joint feature matrix is then modelled as spatially
independent components with a shared mixing matrix (also called the joint mixing coefficient matrix). Image
assessed from (Nkrumah et al. 2024a).
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Title: Cortical volume alteration in the superior parietal region
mediates the relation between the childhood abuse and PTSD
avoidance symptoms: a complementary multimodal neuroimaging

study.
3.1 Abstract

Background: Adverse childhood experiences (ACE), which can be separated into abuse and
neglect, contribute to the development of post-traumatic stress symptoms (PTSS). However,
which brain structures are mainly affected by ACE as well as the mediating role these brain
structures play in ACE and PTSS relationship are still being investigated. The current study
tested the effect of ACE on brain structure and investigated the latter's mediating role in ACE-
PTSS relationship.

Methods: A total of 78 adults with self-reported ACE were included in this study. Participants
completed the childhood trauma questionnaire (CTQ) and a Posttraumatic Stress Disorder
Checklist for DSM-5 (PCL-5) to ascertain ACE history and PTSS, respectively. T1w images and
diffusion MRI scans were then acquired to assess cortical morphometry and white matter
(WM) integrity in fibre tracts connecting key areas where ACE-related cortical volume
alterations were observed.

Results: The combined effect of ACE was negatively associated with total grey matter volume
and local cortical area in the right superior parietal region (rSP). Childhood abuse was
negatively related to right superior parietal volume after controlling for neglect and overall
psychological burden. The right superior parietal volume significantly mediated the
relationship between childhood abuse and avoidance-related PTSS. Post-hoc analyses showed
that the indirect relation was subsequently moderated by dissociative symptoms. Lastly, a
complementary examination of the WM tracts connected to abuse-associated cortical GM
regions shows that abuse was negatively related to the normalised fibre density of WM tracts
connected to the right superior parietal region.

Conclusion: We provide multimodal structural evidence that ACE in the first years of life is
related to alterations in the right superior brain region, which plays a crucial role in spatial
processing and attentional functioning. Additionally, we highlight that the cortical volume

alteration in this region may play a role in explaining the relationship between childhood

abuse and avoidance symptoms.

Published as: Nkrumah, R. O., von Schréder, C., Demirakca, T., Schmahl, C., & Ende, G. (2024). Cortical volume
alteration in the superior parietal region mediates the relationship between childhood abuse and PTSD avoidance
symptoms: A complementary multimodal neuroimaging study. Neurobiology of Stress, 28 (October 2023),
100586. https://doi.org/10.1016/j.ynstr.2023.100586.
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3.2 Introduction

Adverse childhood experiences (ACE) are associated with higher rates of psychiatric disorders
later in life (Hailes et al. 2019), and include sexual, physical or emotional abuse and/or neglect
experiences. Recent conceptualizations of ACE comprise two dimensional subtypes (DS) :
abuse and neglect (McLaughlin et al. 2019; Sheridan and McLaughlin 2014). Abuse involves
the presence of an unexpected experience that poses a significant threat of harm to the child,
such as sexual, physical, or emotional harm. Neglect, which includes physical and emotional
deprivation during childhood, is characterised by a lack of expected environmental inputs,
specifically a lack of expected cognitive and social inputs. The frequency and consequences of
abuse and neglect were investigated in a 2531-person German sample. Almost half of the
sample reported at least one form of abuse and/or neglect and were prone to psychosocial
problems involving life satisfaction, psychopathology, and interpersonal aggression (Witt et
al. 2019). Consequences of ACE include major depressive disorder, post-traumatic stress
disorder (PTSD), borderline personality disorder, attention deficit hyperactivity disorder
(ADHD), bipolar disorder and elevated symptom levels of depression, anxiety and dissociative
symptoms (Herzog and Schmahl 2018; Seitz et al. 2022). The general consensus is that
childhood abuse and neglect can result in severe developmental problems that are
interpersonal, enduring, co-occurring, and linked to high rates of PTSD symptoms (De Bellis
and Zisk 2014).

Evidence shows that ACE influences neural development, leading to changes in brain structure
and consequently its function. Several neuroimaging studies on the effects of ACE show that
the orbitofrontal cortex (OFC), amygdala, hippocampus and thalamic regions, which are part
of the limbic system and play a role in survival behaviour such as feeding and reproduction,
and emotional responses, as well as parietal regions including the superior parietal lobe (SPL),
are altered in individuals with ACE (McQuaid et al. 2019b; Pollok et al. 2022). The SPL forms
part of the frontal parietal network (FPN) and also receives input from the thalamus through
the medial route of the dorsal visual stream. Therefore, the corollary that both limbic and SPL
regions are affected by ACE provides useful information that could be further investigated in
future research (Gamberini et al. 2021; McLaughlin et al. 2019). Recent meta-analyses also
found ACE to affect cortical thinning in the right medial cingulate cortex and gm volume
reduction in the left supplementary motor area (Yang et al. 2023). Following the consistent
account of the combined effect of ACE on brain structure, the ds of childhood adversity—

abuse and neglect—appear to affect brain structure differently. There is strong evidence that
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abuse alters the structure of regions that underlie attentional functioning, emotional
memories, and inhibitory control, including the hippocampus and regions in the anterior part
of the FPN such as the dorsolateral prefrontal cortex(Hart and Rubia 2012). Neglect, on the
other hand, has been shown to alter parts of the orbitofrontal, superior temporal and
rostalmiddle frontal gyri, which are involved in the anticipation and receiving of rewards, as
well as regions in the posterior part of the FPN such as the SPL (Lim et al. 2014; Mackes et al.
2020). For anatomical and functional details of FPN, please see (Budisavljevic et al. 2017;
Marek and Dosenbach 2018; Parlatini et al. 2017; Thomas Yeo et al. 2011). Some alterations
in the amygdala and hippocampus, for example, have been associated with both abuse and
neglect. There are, however, some limitations as to how ACE and its subtypes have previously
been investigated. Importantly, comorbid mental disorders have not been adequately
controlled, which makes it difficult to disentangle which of the effects are due to abuse and/or
neglect, or the associated mental conditions, or a combination or interaction of all.

PTSD is a mental health condition that can develop after a person experiences a traumatic
event (or a sequence of reoccurring events) such as ACE. Post-traumatic stress symptoms
(PTSS) include persistent re-experiencing of the trauma, avoidance of trauma-related
circumstances, hyperarousal, and negative alterations in mood and cognition lasting more
than a month after experiencing a traumatic event that threatens one’s life or bodily integrity.
The persistence of PTSS following ACE and its effects on the brain have been documented
elsewhere (Siehl et al. 2022; Wang et al. 2021; Xie et al. 2022). For example, cortical alterations
in the SPL have previously been negatively associated with PTSS and childhood neglect
(Edmiston 2011; McLaughlin et al. 2014; McLaughlin et al. 2019; Tan et al. 2013). Additionally,
correlations between subcortical brain volumes such as the hippocampus and thalamus with
ACE and PTSS have previously been reported (Xie et al. 2018; Xie et al. 2022). The findings
suggest ACE is negatively associated with thalamic volume post-trauma, which, in turn, is
inversely associated with PTSS. Despite this insightful evidence, no study has tested the effects
of ACE on cortical morphology while exploring their indirect effect on PTSS, notwithstanding
recent ACE-thalamic-PTSS findings and the effect of both ACE and PTSS on some cortical
regions such as the SPL.

Extant literature supports the relationship between ACE and white matter alterations
measured by diffusion MRI. Over the years, voxel-averaged diffusion quantitative measures
like fractional anisotropy (fa), mean diffusivity (md) and axial diffusivity (ad) have been related

to ACE using tract-based spatial statistics (TBSS) (Lim et al. 2019a). Despite these findings,

22



CHAPTER Il1l: COMNA STUDY

guantitative measures based on averaging voxels are not fibre-specific and may have limited
interpretability because most WM voxels contain contributions from multiple fibre
populations (commonly referred to as crossing fibres) (Raffelt et al. 2017). Recent advanced
3D DTI fibre tractography provides fibre measures that can be used as the basis for
guantitatively assessing the microstructure of specific white matter tracts in mental health
studies. For example, the number of fibres indicates the total number of axons in the specific
white matter region, while fibre density provides more precise information on the
microstructural integrity of a WM tract. These measures are probably more sensitive to
certain pathologies, are more directly interpretable, and provide a basis for investigating
macroscopic intra-axonal WM volume of biological significance (Riffert et al. 2014). Since
certain gm regions are also altered by ACE, it is crucial to consider the structure of the WM
regions connected to disease-associated cortical gm regions in order to understand the
structural brain alterations associated with mental disorders. This is what we term here
"complementary multimodal neuroimaging” i.e., where one neuroimaging modality
complements the other, thereby allowing us to shed more light on a wide range of structural
brain alterations related to a mental trait.

The scope of the current work was to investigate the effect of ACE on grey matter and
adjoining white matter connections. We used a comprehensive approach to first examine the
relationship between ACE and total grey matter volume (TGV). Then we tested whether any
changes persisted after covarying for potential confounders such as sex, age, estimated total
intracranial volume (eTIV), and overall psychological burden. The links between ACE and
localised alterations in cortical volume, surface area, and thickness were then explored. We
hypothesised that ACE would be negatively related to TGV and that local cortical alterations
in several limbic and FPN regions, as mentioned above, would show a negative relationship
with ACE after controlling for overall psychological burden. We also aimed to identify brain
morphometry associated with abuse when controlling for neglect (and vice versa) and overall
psychological burden. Based on previous literature (Morey et al. 2016), we hypothesised that
abuse would be negatively associated with cortical alterations in the FPN, including the SPL.
Similarly, we hypothesised that neglect would be negatively associated with alterations in the
superior temporal and rostral middle frontal gyri. In addition, we investigated the mediating
role of ACE-related cortical volume alterations in the relationship between ACE and PTSS.
More specifically, given that previous literature supports the mediating role of subcortical

regions such as the thalamus volume in the ACE-PTSD relationship, we sought to confirm if
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ACE-related cortical volume alterations in our sample mediate the relationship between ACE
and PTSS. We hypothesised that ACE-related cortical volume alterations would be an
important aspect of any explanation of how ACE lead to adult PTSS. Lastly, an exploratory
complementary analysis using the number of fibres, normalised fibre density, average fibre
length, and mean fa of WM tracts connected to local cortical ACE-related volumetric
alterations would help shed more light on the diverse structural brain alterations related to

ACE.

3.3 Methods

Participants

Eighty participants with self-reported ACE and living in Germany were recruited for the current
study. Inclusion criteria for the study were any type of abuse (physical, emotional, and sexual)
and/or neglect (emotional and physical) experienced before the age of eighteen. Exclusion
criteria included any kind of metal implant, pregnancy, traumatic brain injury, claustrophobia,
psychosis, or any form of neuropsychological disorder. Two female participants were excluded
at the analysis stage, one due to abnormal brain structure and the other due to an acquisition
error in diffusion MRI data, leaving a total of N=78. A summary of the demographics and
psychological measures at the time of assessment is shown in Table 1. The study was approved
by the Ethics board of the Medical Faculty Mannheim at Heidelberg University, Germany, and
was conducted in accordance with the Helsinki Declaration at the Central Institute of Mental

Health in Mannheim. All participants gave written informed consent.

Procedure
See method section of the Supplementary Information for details on the study procedure.

Measures
ACE severity was quantified using the sum of individual sub-types of ACE from the Childhood

Trauma Questionnaire (CTQ). A detailed report on the CTQ has been reported in prior
literature (Thombs et al. 2007). The CTQ consists of five questions for each type of exposure,
and each question prompts participants to rate a particular event on a scale ranging from
"Never True" to "Very Often True". Here, we calculated the abuse severity score as the sum
of all abuse subtypes of the CTQ (i.e., sexual, physical, and emotional abuse), the neglect

severity score consisted of the sum of all neglect subtypes of the CTQ (i.e., emotional &
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physical neglect) and the combined ACE (CTQ total) was calculated as the sum of abuse and
neglect scores.

Overall psychological burden was accessed using the self-report Brief Symptom Inventory (BSI)
to identify relevant psychosocial symptoms in our sample. The BSl includes 53 items that cover
nine symptom dimensions: depression, anxiety, phobic anxiety, somatization, paranoid
ideation, interpersonal sensitivity, obsession-compulsion, psychoticism, and hostility. ltems
are scored on a 5-point Likert scale ranging from 0 (not at all) to 4 (extremely). The Global
Severity Index was calculated by adding the sums of the nine symptom dimensions plus the
four additional items that were not included in any of the dimensional scores and dividing by
the total number of items to which the individual responded, this score was used to assess
current or past symptomatology (BSI total).

The PTSD symptom severity was assessed using the Posttraumatic Stress Disorder Checklist
for DSM-5 (PCL-5), which is a self-report measure that corresponds to each of the 20 core
DSM-5 PTSD symptoms and asks respondents to rate how much each symptom has bothered
them in the past month, scoring responses on a Likert scale ranging from 0 (not at all) to 4
(extremely) (Blevins et al. 2015). Symptoms are classified into four domains in accordance
with the DSM-5 criteria for PTSD: re-experiencing, avoidance, negative changes in cognition
and mood, and hyperarousal, with total PTSS severity score ranging from 0 to 80 indicating
more severe symptoms. The PCL-5 is regarded as the "benchmark" self-report measure of
PTSD symptom severity, with strong test-retest reliability (r=0.84) as well as convergent and
discriminant validity (Bovin et al. 2016; Harper et al. 2022; Keane et al. 2014).

The German version of the Dissociative Experience Scale (FDS) was used to assess dissociation
symptoms in our study (Spitzer et al. 1998). The FDS is a 44-item self-administered
guestionnaire which measures the frequency of dissociation symptoms such as absorption,
amnesia, and identity disturbances. Items are scored on a scale from 0 (never) to 100 (always).
In the FDS, the mean of 44-items is calculated and used as overall dissociative symptoms, and
this has been shown to have good reliability and validity based on the DSM definition of

dissociation (Spitzer et al. 1998).
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Table 1. Descriptive statistics for demographics and psychopathology variables.

Variable Mean (SD) Range
AGE 31.628 (10.790) 18 -59
SEX (female) 65 (83%)
ACE (CTQ total) 62.538 (19.944) 32.00-117.00
Abuse (CTQ abuse) 26.628 (8.590) 10.00 - 46.00
Neglect (CTQ neglect) 35.910 (13.167) 17.00-71.00
Psychological burden (BSI total) 0.913 (0.617) 0.06 — 2.55
Dissociation symptoms 14.158 (12.338) 0.23-55.91
(German version of the Dissociative Experience Scale
(FDS))
PCL-5 28.090 (17.390) 0.00 -69.00
PTSS (PCL- sub scales)
e Reexperiencing 6.256 (4.453) 0.00-19.00
e Avoidance 3.731(2.597) 0.00-8.00
e Negative alterations in cognition and mood 10.77 (7.058) 0.00-28.00
e Hyper arousal 8.026 (5.871) 0.00 - 21.00

Note: N= 78; CTQ total = total score of Childhood Trauma Questionnaire; CTQ abuse = sum score of all abuse
subtypes of CTQ; CTQ neglect = sum score of all neglect subtypes of CTQ; BSI total = Global Severity Index of
Brief Symptom Inventory (BSI); PCL-5 = Posttraumatic Stress Disorder Checklist for DSM-5.

Data acquisition
Both T1l-weighted (T1w) and diffusion images were acquired using a Siemens Prisma-fit

Scanner (Siemens Medical Solutions, Erlangen, Germany) with a 64-channel head coil. A 3-D
magnetisation-prepared rapid-acquisition gradient echo (MPRAGE; T1-weighted contrast,
Echo Time (TE): 2.01 ms; Repetition Time (TR): 2000 ms; Inversion time (TI): 900ms; FA = 9°;
FOV: 256 x 256 mm; number of slices 192, voxel size 1x1x1 mm3) and a double spin-echo echo-
planar imaging (EPI) sequence (82 volumes, 3 at b=0 and 79 at b=1000 s/mm?, TR=8400 ms,
TE=86 ms, matrix = 128 x 128 ; number of slices 64, and voxel size=2x2x2 mm?3) scans were

acquired for each participant.

Data processing
Preprocessing for both T1w and diffusion images was performed using Connectome Mapper

3 (CMP; an open-source Phython3 neuroimaging processing pipeline software developed by
the Connectomics Lab, University Hospital of Lausanne (CHUV)). CMP uses a combination of
well-known neuroimaging software packages to implement full anatomical and diffusion
processing pipelines from raw images (Tourbier et al. 2022). All images were controlled for
quality (see supplementary method for details). The preprocessing steps that were used in
this study can be seen below.

T1-weighted images were preprocessed, parcellated, and segmented into cortical thickness,
surface area, and volume using the FreeSurfer version 6.0.1 recon-all program. An in-depth

explanation of the steps wused by FreeSurfer's recon-all has previously been
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described elsewhere (Dale et al. 1999; Fischl et al. 2004). In brief, the white matter and pial
surface were identified after motion correction, non-uniform intensity normalization and
normalization, by creating a mesh around the white matter and pial voxels. Surface-based
maps of each individual scan were created using spatial intensity gradients across tissue
classes (Desikan et al. 2006). Cortical thickness, surface area, and volume maps were extracted
and smoothed with a 10-mm kernel at full width at half maximum (FWHM). FreeSurfer
morphometric procedures have been demonstrated to show good test-retest reliability across
scanner manufacturers and across field strengths (Reuter et al. 2012). Visual inspection was
done to inspect the anatomical accuracy of FreeSurfer's automated parcellations and
segmentations.

Denoising and subsequent correction for bias field, eddy currents, and motion correction were
performed on all diffusion data using state-of-the-art methods implemented in the MRtrix3
toolbox (Tournier et al. 2019). Anatomy-constrained probabilistic tractography was
performed using the five-tissue-type (5TT) segmented Tlw image and a second-order
integration over fibre orientation distributions algorithm on the preprocessed diffusion image
to produce an initial tractogram with 10 million streamlines (Tournier and , F. Calamante
2010). The tractogram was filtered using SIFT2 approach: an approach to improve the
quantitative nature of whole-brain streamlines reconstructions (Smith et al. 2015). Diffusion
measures (i.e., number of fibres, average fibre length, normalised fibre density, and mean FA)
touching/emerging from the segmented regions were then extracted for subsequent

statistical analyses.

Statistical analysis

ACE relation to Total GM volume.

To test the first hypothesis, we extracted the total GM volume from the output of recon-all
processing to do a preliminary comprehensive regression analysis and to first examine
whether ACE (i.e., CTQ total) is associated to total GM volume as hypothesised. We also tested
whether the relation persisted after covarying for potential confounders such as age, sex,

estimated Total Intracranial Volume (eTIV), and overall psychological burden (i.e., BSI).

Regional cortical alterations following ACE.
Whole-brain surface-based analyses were performed using FreeSurfer's gimfit. The general
linear model was used to locate all regional cortical alterations in thickness, surface area, and

volume that were related to CTQ total for the first hypothesis. This resulted in three models,
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one for each cortical measure. For the second hypothesis, the effect of subtypes of ACE (i.e.,
abuse and neglect), regional cortical alterations in relation to ACE subtypes was investigated.
First, a simple linear regression was used with either abuse or neglect as variables of interest
and age, sex BSI total and neglect or abuse as control variables (6 models in total; 2 variables
of interest x 3 cortical measures). Then, a t-test was used to investigate the differences
between abuse and neglect in the direction of abuse > neglect, because CTQ total has higher
correlation to abuse (rpartiai=0.929, p<0.001), compared to neglect (rpartia=0.844, p<0.001), and
controlling for age, sex, and BSI total (one model). All cortical volume analyses were controlled
for eTIV, and all results presented here were corrected for multiple comparisons using Monte
Carlo simulation with vertexwise threshold P<0.005 and clusterwise threshold P<0.05 and in

both brain hemispheres. Significant clusters were labelled using Desikan-Killiany atlas.

Mediating role of ACE-related cortical volume alteration in ACE- PTSS relationship.

To tackle our third hypothesis, values of significant ACE-related clusters identified in cortical
analyses as sensitive to ACE and its sub types were extracted to find out if the significant
effects mediate the relationship between ACE and PTSS. The average cortical volume per
vertex of each cluster for every participant was multiplied by the number of vertices in the
respective clusters to get the total volume per cluster (TVC) for all subjects. This was then used
as mediators in the relationship between ACE and PTSS. The bias-corrected Cls and SEs for the
mediation effect are reported here using 5000 bootstraps. All mediation analyses were
performed using JASP (JASP Team, 2023). As all mediation models were just identified, no
model fit indices were computed as previously reported here (Mackes et al. 2020). Lastly, since
PCI-5 does not link PTSS to a specific type of trauma, our aim here is to examine the association
between ACE and PTSS regardless of whether the cause of the PTSS is due to ACE alone or also

due to additional trauma events.

Diffusion measures in WM complements local cortical ACE-related GM volume alterations

To complement the local cortical ACE-related volumetric alterations in GM regions identified
in the previous analyses, diffusion measures (i.e., number of fibres, average fibre length,
normalised fibre density, and mean FA) in WM pathways that connect to ACE-related GM
volume regions were extracted to verify their relation to ACE. Hence, we could further explore
the local WM integrity connected to GM regions relation to ACE using regression models. We
extracted the diffusion measures touching/emerging from the segmented GM regions in

Desikan-Killiany atlas space and correlated diffusion WM measures with TVC from the
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abuse/neglect subtype analyses. Each model was corrected for multiple comparisons using
the false discovery rate q = 0.05. The effect sizes were bootstrapped using 5000 iterations and

bias-corrected Cls and SEs were reported.

3.4 Results

Associations between ACE and total GM volume. We observed a negative association
between total CTQ score and total GM volume: B=-768.825, t (76) =-2.515 and p= 0.014. This
result remained significant after controlling for sex and BSI total (B=-725.517, t (74) =-2.426
and p= 0.018), suggesting that the effects were not simply a reflection of other psychological
disorders or sex. Although previous reviews show that BSI captures some form of
psychological distress that commonly occurs in the chronic posttraumatic phase (Auxéméry
2018; Recklitis et al. 2017), the check for multicollinearity shows that the presence of the BSI
total variable does not affect our regression analysis (i.e., the VIF of 1.112; also see S1). We
noticed that including age in the model diminishes the effect, i.e., the relationship between
total GM volume and CTQ total becomes statistically non-significant (B= -256.252, t (73) =-
0.430 and p=0.379). Also, CTQ total showed no significant relationship with total GM volume
when estimated total intracranial volume (eTIV) was controlled for (Supplementary Table 2).
Despite these findings, we did control for age in all cortical analyses and additionally for eTIV
in cortical volume analysis based on previous literature (Pollok et al. 2022; Voevodskaya et al.
2014). Lastly, since CTQ total and total GM volume were negatively related, all subsequent

cortical regional analyses focused on this negative relationship.

Local Alterations in Cortical Structure following ACE: using the whole brain surface-based
analysis approach, we identified a cortical area reduction in the right superior parietal area to

be related to CTQ total after controlling for overall psychological burden, age, and sex.
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Table 2. Cluster showing significant negative relation between CTQ total and
cortical surface area.

Cortical H Brain Size MNI coordinate  Clusterwise Effect

Measure region (mm?) [x vy 2] p size

Area RH  Superior 694.21 189 -60.4 54.4 0.0443 -4.0089
Figure 5. Negative effect of ACE on parietal

cortical surface area in right superior
parietal region after controlling for
overall psychological burden, age, and
Sex.

Monte Carlo correction for multiple comparisons was applied (clusterwise threshold
P < 0.05, vertex-wise threshold P<0.005). Effect sizes (regression coefficients) were
taken from whole brain vertexwise effect size brain maps. H, hemisphere; RH, right
hemisphere; LH, left hemisphere.

Effect of abuse and neglect on cortical brain measures: we used a simple linear regression
with Abuse/Neglect variables of interest and sex, BSI total, age, eTIV and abuse/neglect as
control variables. For the differences between abuse and neglect on cortical measures, a t-
test was used in the direction of Abuse > Neglect, and controlling for overall psychological
burden, age, sex and eTIV (for volume). Abuse was significantly negatively related to cortical
volume in the right superior parietal region after controlling for neglect, sex, age, eTlV, and
overall psychological burden. No other significant associations were observed between
neglect and all cortical measures. Additionally, the t-test of abuse > neglect on all cortical

measures also showed no significant association.

Table 3. Cluster showing a significant negative relation between
childhood abuse and cortical volume alteration.

Cortical H Brain Size MNI coordinate  Clusterwise Effect

Measure region (mm?) x vy 2] p size

Volume RH Superior 369.99 21.6 -62.6 37.6 0.0412 -3.5479
parietal

Figure 6. Significant effects of abuse on
local cortical volume in the right superior
parietal region after controlling for the

Monte Carlo correction for multiple comparisons was applied (clusterwise
threshold P < 0.05, vertex-wise threshold P<0.005). Effect sizes (regression
coefficients) were taken from whole brain vertexwise effect size brain maps. H,

effects of neglect severity, overall hemisphere; RH, right hemisphere; LH, left hemisphere.

psvcholoaical burden. aae. eTIV and sex

Does abuse-related cortical volume alteration in the right superior parietal lobe (rSPV)
mediate the relation between abuse severity and PTSS severity scores? To address this, we
used rSPV as a mediator, abuse (assessed with the total CTQ abuse severity score) as a
predictor, and all four PTSS severities (assessed with PCL) as outcome variables (giving a total
of four mediation models). Each model was deemed significant if the p-value of the total effect
was less than the Bonferroni corrected p-value (i.e., p < 0.05/4 = 0.0125). All four models were
significant after Bonferroni correction (see supplementary table S4). The direct relationship

between childhood abuse and each PTSS dimension was significant (see Table 4). rSPV
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significantly mediated the relationship between abuse and avoidance PTSS (n =78, B =0.021,
SE = 0.010, Z=2.130, 95% Cl = [0.004, 0.042], R? = 0.217, p=0.033). The path plot showing
effects is depicted in figure 7 below. No other significant rSPV mediation in the other three
models was found, even though the total effects of all models were significant (see
supplementary tables S3 and S4). Lastly, the path between abuse and rSPV (B = -4.989,
p<0.001), and rSPV and negative changes in cognition and mood PTSS (B = -0.011, p=0.045)
were both significant, but their total indirect effect was insignificant in the abuse-rSPV-

PTSSnegative changes in cognition and mood model (B = 0.008, p=0.059) (See Supplementary table 53).

Table 4. Direct relation of abuse and all PTSD symptoms

95% Confidence
Interval
Estimate Std. Error  z-value p Lower Upper
Abuse - INTRU 0.138 0.046 3.000 0.004 0.042 0.224
Abuse - AVOID 0.061 0.023 2.636 0.008 0.016 0.109
Abuse - COMO 0.236 0.062 3.829 <.001 0.124 0.365
Abuse - HYPE 0.198 0.051 3.865 <.001 0.100 0.303

Note. INRU= intrusive PTSS, AVOID= avoidance PTSS, COMO-= negative changes in cognition and mood PTSS,
HYPE = hyperarousal PTSS. Bias-corrected percentile bootstrap confidence intervals. Estimator= Maximum
likelihood, Optimization method=NLMINB.

Right superior

Childhood abuse } p=0.081 P{ Avoidance PTSS

Figure 7. Significant mediation role of abuse-related volume reduction in the right superior

parietal lobe in the relationship between the severity of childhood abuse (assessed with the

total CTQ abuse severity score) and PTSD avoidance symptoms (Avoidance PTSS; assessed

with the PCL avoidance symptomatology). Asterisks indicate the statistical significance of the

bootstrapped standardised regression coefficients (***p < .001; **p < .01; *p < .05).
Post-hoc Analyses: Does the indirect effect in the abuse-rSPV-avoidancePTSS relationship
depend on dissociation symptoms? Several factors, including enhanced memory suppression,
developing safety behaviours, and heightened dissociation, contribute to the association
between childhood abuse and PTSD symptomatology. Specifically, dissociation is believed to
be a coping mechanism for severe trauma experienced during childhood (Kratzer et al., 2018).
As post-hoc analyses, we explored whether the significant indirect effect in the abuse -rSPV-

avoidance PTSS relationship (mediation analysis in Figure 7) depends on dissociation in our

sample. First, we checked whether dissociation mediates the relationship between the
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severity of childhood abuse and avoidance PTSS. We found no significant mediation of
dissociation in the abuse and avoidance relationship (B =0.014, SE = 0.008, Z=1.848, p=0.065,
95% ClI = [0.001 0.030], R?>=0.212) even though the path between abuse and dissociation (B
=0.327, p=0.003), and the total effect (f =0.082, SE = 0.020, p<0.001, 95% CI = [0.082 0.418])
were significant. Then we explored whether dissociation symptoms interact with one or both
indirect paths in our main mediation model from Figure 7. Prior to the analysis and to improve
interpretation, we dichotomised the dissociation symptom measure (i.e., FDS score using cut-
off 13;Rodewald, Gast, & Emrich, 2006) in Table 1. The moderated mediation analysis was also
performed using lavaan-SEM and is similar to what is implemented in Hayes model 58 (Hayes
2012) (see Figure 8 below). Both indirect paths were significant; hence, we subsequently

explored the Cls and SEs using bootstrapping (see also Table 5 below).

Right superior
parietal lobe volume &, rSPV x Diss.

Abuse x Diss.

B=0.054"*

Childhood abuse

>[ Avoidance PTSS ]

B=-0409" B=-7.059*

Dissociation

Figure 8. Model diagram showing moderation role of dissociation in the indirect effect of abuse-rSPV-
avoidance PTSS relationship. Asterisks indicate statistical significance of the bootstrapped standardized
regression coefficients (***p < .001; **p < .01; *p < .05)

Table 5.Table showing whether dissociative symptoms interact with one or both paths in the mediation model in Figure 7.

Path Estimate  Std.Err 95% ClI R? p
L H
SPL volume 0.280
v'  al-Abuse -0.013 0.003  -0.020  -0.007 <0.001 *
V' a2-Dissociation -0.409 0.175  -0.744  -0.065 0.020 *
v a3- Abuse * Dissociation 0.009 0.004 0.001 0.018 0.036 *
PTSD AVOID 0.346
v’ bl-rSPV -3.638 1.084 -5.735 -1.401 0.001 *
v’ b2-Dissociation -7.059 2,786  -12.988  -2.050 0.011 *
v’ b3-rSPV * Dissociation 5.090 1.737 1.894 8.813 0.003 *

Abuse=childhood abuse, rSPV = right superior lobe volume. Bootstrapping is based on 5000 replicates and the coefficient
estimate is based on the percentile of the bootstrap distribution, Std.Err is the standard error, Cl is the confidence interval,
and p is the p-value. Significant paths are highlighted with * in the p-value column.
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Diffusion measures in WM tracts touching the right superior parietal lobe complement the
abuse-related effects in the brain: Following CTQ abuse-related changes in the right superior
parietal volume, the diffusion measures (number of fibres, average fibre length, normalised
fibre density and mean FA) within WM tracts touching the right superior parietal region were
extracted for all subjects and put into regression models to explore their relationship with
abuse severity using Pearson’s correlation. The average vertexwise volume in the abuse
related rSPL cortical volume alteration was significantly correlated to almost all our diffusion

measures (see Table 6).

Table 6. Complementary correlation analysis of the diffusion measures in WM tracts touching the right superior parietal
lobe with abuse-related cortical volume alterations.

Diffusion Measures Person’sr 95% ClI p
Lower Upper

Number of fibres 0.330 0.146 0.499 0.003**

Average length of fibres 0.298 0.105 0.481 0.008**

Normalised fibre density -0.241 -0.473 -0.010 0.033*

Mean FA 0.266 0.083 0.464 0.019*

Pearson’s correlations (r) and Cl is the confidence interval based on 5000 replicates and p is the p-value. Since the average
vertexwise volume was used (i.e., residuals from cortical analyses) we did not include any control variable at this level.
Significant relation was heighted as ***p <.001; **p <.01; *p <.05.

3.5 Discussion

This study provides evidence for the combined ACE severity and abuse subtype effects on
brain structure. In a multiple regression analysis, ACE was negatively associated with the total
GM volume after controlling for the overall psychological burden and sex. Whole brain
analyses showed local cortical area reduction in the right superior parietal region to be
associated with ACE. No further significant relationships between the combined ACE severity
score and whole brain cortical measures were evident in our sample. As opposed to the
cumulative account of childhood adversity, the two dimensional subtypes of adversity (i.e.,
abuse and neglect) may reflect different underlying dimensions of environmental experience
that may have distinct associations with neurodevelopmental processes and also influence
emotional, cognitive and neural development (MclLaughlin et al. 2019). We found cortical
volume alterations in the right superior parietal lobe (rSPL) to be associated with abuse while
controlling for neglect, age, sex and eTIV. No further significant relationships were present in

the ACE subtype analyses after controlling for overall psychological burden, which is crucial to
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elucidate the effects of abuse/neglect independently from those associated with mental
comorbidities (Pollok et al. 2022). The rSPL forms part of the posterior-FPN and has previously
been reported to play a key role in the “top-down” or goal-driven allocation of attention.
Cytoarchitectonic research shows that the SPL has a complex, heterogeneous architecture
with more than seven sub-regions. The receptor distribution patterns and regional
cytoarchitectonic features found three sub-regions in Brodmann (BA) 5 and four in BA 7
(Scheperjans et al. 2005; Scheperjans et al. 2008). Functions of these regions were explored
in a resting-state functional MRI study in healthy participants, and the results showed that
each of the seven sub-regions was connected to several resting-state networks, with the most
consistent connectivity observed with the visual and attention networks (Alahmadi 2021).
Although abnormalities in rSPL has been associated with PTSD, PTSS and maternal stress
(McQuaid et al. 2019a; Wang et al. 2021), no study that examined the superior parietal cortex
structure found childhood trauma-related differences (McLaughlin et al. 2019). Based on
these results, it seems likely that our sample gives new insights into the possibility that ACE
may, at least in part, be related to cortical alterations in rSPL, whose function is related to

visual and attention tasks.

The test of our third hypothesis revealed a significant indirect path in the abuse-rSPL-
avoidance PTSS relationship. In our four mediation models and as expected, the direct paths
between childhood abuse and all the different PTSS measured by PCL were significantly
positive-related. This is an indication that persons with ACE may indeed be more prone to
developing PTSS (Kratzer et al. 2018). The only indirect path that remained significant was the
abuse-rSPL-avoidance PTSS relationship (see Figure 8 and also S2). Therefore, the right
superior parietal volume significantly mediated the relationship between childhood abuse and
avoidance PTSS. Comparing the standardised beta estimates of the indirect path (Bab =0.021)
to the direct path (Bc’= 0.061) describes the reduced effect, implying that rSPL volume may
explain part of the impact of childhood abuse in producing avoidance PTSS. Since a previous
mega-analysis in a large sample found smaller volumes in the rSPL to be related to PTSD, we
are adding to this finding that the rSPL may play a role in the development of avoidance

symptoms in individuals with a history of severe childhood abuse.

A moderated mediation analysis is used to measure how much a mediated effect changes with
different degrees of a moderator. As opposed to a mediation analysis, the evidence for a

moderated mediation can be used to support the evidence for a mediation under less
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stringent confounding condition analyses (Loeys et al. 2016). Our post-hoc analyses gave
insights into possible conditional indirect findings in the mediation. Dissociative symptoms,
including amnesia, depersonalization, and identity fragmentation, often serve as coping
mechanisms for severe trauma experienced during childhood (Brand and Frewen 2017). Since
there is a close relation to attention, the involvement of the rSPL here is of interest. Many
authors have emphasised the importance of dissociation in PTSD. Some authors agree that
dissociation serves as a dysfunctional coping mechanism that serves to prevent biographical
memories from integrating traumatic memories and hence perpetuates avoidance PTSD
symptoms (Dalenberg and Carlson 2012; Kratzer et al. 2018). Starting from the left side of the
path plot in figure 9, both abuse severity and dissociation were negatively associated to rSPV.
Their interaction, however, was positively related to rSPV, which in turn was positively related
(i.e., through rSPV and Dissociation interaction; right hand side of figure 9) to avoidance PTSS.
This is interesting because this relationship could help to explain why persons with both
childhood abuse and dissociative symptoms (and high abuse related-rSPL volume alterations)
exhibit higher avoidance PTSS as a result of dissociation (Kratzer et al. 2018). Since dissociation
can serve as a way to cope with the distressing memories and emotions associated with the
childhood abuse, leading to higher levels of avoidance behaviours as a means of managing the
traumatic experiences indirectly, our findings support this view via the increase in abuse-
related cortical volume in the right superior parietal lobe. This view is additionally supported
by closely comparing the beta estimates of the interaction in both indirect paths of the
moderated mediation model (i.e., abuse-diss. = 0.009 and rSPV-diss. = 5.090), which show the
increase in the conditional effect is mostly explained by alterations in the rSPL in the presence

of dissociation.

In our exploratory complementary analysis of WM tracts connected to the GM volume
regions, we focused on abuse-related cortical alterations in rSPL volume. We made this choice
due to the dimension of the cortical volume measure which makes it biologically comparable
to 3D DTI fibre tractography measures. The total volume per cluster from the abuse subtype
analyses was correlated to almost all the WM measures (i.e., number of fibres, normalised
fibre density, average-fibre length, and mean FA) connecting to abuse-related volume
alterations. An increase in abuse-related effect on rSPL volume also increases the number of
fibres, average fibre length, and mean FA of the WM tracts connected to rSPL, whereas an
increase in abuse-related effect on rSPL volume led to a reduced normalised fibre density of

WM tracts connected to rSPL. The former relationship was unexpected because the more the
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abuse-related effect in rSPL volume increased, we expected all the WM measures to be
reduced, to show that childhood abuse to some extent also negatively affects WM tracts
connected to rSPL. This might be explained by the fact that these quantitative measures do
not account for individual brain size, in contrast to normalised fibre density, which accounts
for brain sizes. The normalised fibre density measure is an upgrade of the fibre density
measure proposed by Hagmann et al., (2008) to account for individual brain sizes by
normalizing the number of fibres connecting two regions by the total number of fibres in the
tractogram and additionally, normalizing the surface per volume of the two regions by the
total surface per volume of all regions (Daducci et al. 2012; Hagmann et al. 2008; Tourbier et
al. 2022). Our findings provide further insight into the structural integrity of the WM tracts
connected to the rSPL and affected by childhood abuse. It is noteworthy that not only was the
cortical volume negatively associated with abuse, but the abuse-related volume in rSPL was
negatively related to the normalised fibre density measure, which accounts for individual
brain sizes.

There are some limitations to our study. First, we collected data about ACE using self-reported
guestionnaires. Thus, there might be a recall bias, as a meta-analysis reported low agreement
between prospective and retrospective measures of ACE (Baldwin et al. 2019). However, self-
report measures are mostly used in ACE research because they provide a unique window into
the subjective experiences of individuals with ACE and allow them to express their feelings,
thoughts, and perceptions of the experience. Interestingly, subjective experience of ACE were
stronger associated with emotional disorders in adulthood than objective prospective
measures (Danese and Widom 2023), and therefore potentially also to brain alterations.
Hence, using self-reported measures in our study is justified as it provides first-hand
information about the experience and a contextual understanding of its effects. Second, it is
still unclear to what extent pubertal development, malnutrition, prenatal drug exposure, and
resilience to co-factors from childhood to adulthood may have influenced our findings since
we didn’t collect data on this. Hence, not controlling for these factors could be a limitation.
Third, despite the positive insights provided by this study's design, mediation and moderated
mediation analyses do not infer causality in cross-sectional studies like ours and hence should
be cautiously interpreted. Thus, we reiterate that these analyses are exploratory. Despite this
limitation, we have tried to ensure the statistical robustness of our findings by implementing
bootstrapped confidence intervals as recommended by Edwards & Konold (2020). Fourth, we

acknowledge that in a subset of individuals, the PTSS could be due to other traumatic
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experiences unrelated to ACE such as adult trauma exposure. Because higher ACE was
associated with higher PTSS (which takes into account the experience of traumatic events
throughout life, i.e., in both childhood and adulthood), our model examines the association
between abuse and PTSS regardless of whether the cause of the PTSS is due to ACE alone or
also due to additional trauma events. Finally, since the majority of the participants were
female (83%), the findings may not generalize well to men. We recommend that future studies
should use longitudinal designs to assess changes in adversity over time (i.e., to include adult
trauma exposure) and also balance male and female participants in a large sample size to help

generalise the results to different samples.

3.6 Conclusion

Our study provides novel perspectives about the association between ACE and brain structure
and the mediating role of the right superior parietal volume in the relationship of childhood
abuse and PTSD avoidance symptoms. These findings contribute to our understanding of the
neural mechanisms underlying the development and maintenance of PTSD symptoms,
specifically avoidance symptoms, in individuals with a history of childhood abuse. By
examining the role of the superior parietal region, our study provides valuable insights that
may inform future research and interventions aimed at treating and preventing PTSD in an
ACE population. Furthermore, our findings elucidate the complex interplay between this
relationship and dissociative experiences as the later moderated the indirect effect in the
abuse-rSPV-avoidance PTSS relationship. These findings underscore the potential long-term
impact of childhood trauma on the brain, the role of dissociative symptoms, and the
development of avoidance PTSD symptoms. Lastly, the normalised density of the WM tracts
connected to the right superior parietal region provides improved information on structural

brain alterations in persons with ACE.
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3.7 Supplementary Information

Method

Procedure

This study is part of a larger, ongoing study that is investigating the effects of ACE on brain
structure  and  function  (https://grk2350.de/research-projects/ace-characteristics/).
Participants were recruited through distributed flyers, advertisements, and online platforms.
It is important to note that psychiatric conditions did not factor into our recruitment criteria.
Instead, our study was designed to investigate brain alterations following ACE, not specific to
any psychiatric condition. The study protocol consisted of online questionnaires, a diagnostic
interview, and MRI scanning sessions. The online questionnaires included the Childhood
Trauma Questionnaire (CTQ; Thombs et al. 2007), the Brief Symptom Inventory (BSI; Derogatis
1975), dissociative symptoms (i.e., German version of the Dissociative Experience Scale,
Spitzer et al. 1998) and the diagnostic session included the Clinical version of the Structured
Clinical Interview for DSM-5 (SCID-II; First et al. 2016). The diagnostic interview sessions were
conducted by doctoral students who have received SCID-II training. The diagnoses that were
assessed included affective disorders, anxiety disorders, obsessive-compulsive disorder
(OCD), post-traumatic stress disorder (PTSD), attention deficit hyperactivity disorder (ADHD),
and substance use disorder (SUD). Past and current disorders were diagnosed based on the
presence of DSM-5 criteria for each disorder. Psychotic disorders were an exclusion criterion.

Table S1 summarises the diagnostics.

Table S1. Number of participants with SCID diagnostics.

Variable current past
PTSD 22 39
Affective Disorders 22 51
Anxiety and Obsessive Compulsive Disorders 27 36
Somatic symptom and related disorders 5 7
Eating Disorders 2 17
Substance Use Disorders 3 14
ADHD 2 3

PTSD = posttraumatic stress disorder; ADHD = attention deficit hyperactivity disorder. Current = current diagnostics based on DSM-
5 criteria; past = past diagnostics based on DSM-5 criteria. Participants with missing SCID data = 2.
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For the current study, only the lifetime PTSD diagnostics (i.e., current and/or past = 39) were
used to correlate with the total PCL score (i.e., PCL-5 from Table 1 in the main text). From the
point-biserial correlation, lifetime PTSD and total PCL score were found to be moderately

positively correlated, rpp(74) =.47, p <.001.

Results:
Comprehensive regression analysis between total GM volume and total CTQ score

We examined the potential role of confounders by testing whether they account for the
relationship between ACE and GM volume. Statistically taking account of these confounding
factors is especially important in order to control for their potential effect in our sample. These
variables include age, sex, eTIV, and BSI total, which is the Global Severity Index of the Brief

Symptom Inventory (BSI).

Table S2. Comprehensive regression analysis between total GM volume and total CTQ score.

Models
(1) (2) (3)
total GM volume (mm3) total GM volume (mm3) total GM volume (mm3)
Age - - -1990.694***
(276.577)
Sex - 59407.766 *** 7988.567"
(15,829.877) (8829.914)
eTIV - - 0.325%**
(0.024)
Psychological burden (BSI - 6058.081 s 1071.723 ns
total) (10113.341) (4934.821)
ACE (CTQ total) -768.825* -725.517 * 57.771ns
(305.702) (299.019) (158.689)
Intercept 720,615.568 702,473.549 249662.170
(20054.910) (19537) (38758.965)
R2 0.077 0.227 0.822
RMSE 55318 49618.814 24145.284
p-value 0.014 <0.001 <0.001
Collinearity Statistics BSl total =0.899/1.112 Age =0.859/1.164
(Tolerance / VIF) BSI total =0.881/1.135

eTIV =0.949 / 1.054

Note: N=78; CTQ total = total score of Childhood Trauma Questionnaire; eTIV = estimated Total Intracranial Volume; BSI total = overall Psychological
burden; RMSE= Root Mean Square Error; VIF= Variance inflation factor. The values in the column of each model represent the unstandardized beta
coefficients with their standard error in brackets. Asterisks indicate the statistical significance of the bootstrapped unstandardized regression
coefficients (***p <.001; **p < .01; *p < .05; ns=not significant).

Supplementary results for the mediation models

Supplementary results for the mediating role of abuse-related cortical volume alteration in the abuse-

PTSS relationship. Abuse-related cortical volume alteration in the right superior parietal lobe (rSPV)
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significantly mediated the relationship between abuse and avoidance PTSS. Tables S3 and S4 show the

indirect and direct paths of all four mediation models respectively.

Table S3. Indirect relation in abuse, rSPV and all PTSD symptoms.

95% Confidence Interval

Estimate Std. Error  z-value p Lower Upper
Abuse > rSPV. > AVOID  0.008 0.004 2.291 0.022 0.0010 0.0150
Abuse > rSPV. - > INTRU 0.006 0.004 1.357 0.175 -0.0030 0.0140
Abuse > rSPV. > COMO  0.008 0.004 1.892 0.059 -0.0003 0.0160
Abuse - rSPV -> HYPE 0.006 0.004 1.537 0.124 -0.0020 0.0140

Note. INRU= intrusive PTSS, AVOID= avoidance PTSS, COMO= negative changes in cognition and mood PTSS, HYPE = hyperarousal PTSS. Bias-
corrected percentile bootstrap confidence intervals. Estimator= Maximum likelihood, Optimization method=NLMINB

Table S4. Total effects of all 4 mediation models.

95% Confidence Interval

Estimate Std. Error z-value p Lower Upper
Abuse > AVOID 0.032 0.007 4.255 <.001 0.017 0.046
Abuse -> INTRU 0.037 0.008 4.425 <.001 0.021 0.053
Abuse = COMO 0.041 0.008 5.388 <.001 0.026 0.056
Abuse -> HYPE 0.040 0.008 5.134 <.001 0.025 0.055

Note. INRU= intrusive PTSS, AVOID= avoidance PTSS, COMO= negative changes in cognition and mood PTSS, HYPE = hyperarousal PTSS. Bias-
corrected percentile bootstrap confidence intervals. Estimator= Maximum likelihood, Optimization method=NLMINB
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Title: Brain connectivity disruptions in PTSD related to early

adversity: a multimodal neuroimaging study.
4.1 Abstract

Background: Post-traumatic stress disorder (PTSD) is increasingly prevalent in individuals with
adverse childhood experiences (ACE). However, the underlying neurobiology of ACE-related
PTSD remains unclear.

Objective: The present study investigated the brain connectivity in ACE-related PTSD using
multimodal neuroimaging data.

Methods: Using a total of 119 participants with ACE (70 with ACE-related PTSD and 49 ACE-
exposed controls), this study acquired T1-weighted MRI, diffusion-weighted MRI, and resting-
state fMRI data to examine structural and functional connectivity between groups. Joint
connectivity matrix independent component analysis (Jcm-ICA) was employed to allow shared
information from all modalities to be examined and assess structural and functional
connectivity differences between groups.

Results: Jcm-ICA revealed distinct connectivity alterations in key brain regions involved in
cognitive control, self-referential processing, and social behaviour. Compared to controls, the
PTSD group exhibited functional hyperconnectivity of the right medial prefrontal cortex (PFC)
of the default mode network and right inferior temporal cortex, and functional
hypoconnectivity in the lateral-PFC of the central executive network and structural
hypoconnectivity in white matter pathways including the right orbitofrontal region (OFC)
linked to social behaviour. Post-hoc analyses using the joint brain-based information revealed
that the severity of ACE, the number of traumas, and PTSD symptoms later in life significantly
predicted the effects of ACE-related PTSD on the brain. Notably, no direct association between
brain connectivity alterations and PTSD symptoms or the number of traumas within the PTSD
group was observed.

Conclusion: This study offers novel insights into the neurobiology of ACE-related PTSD using
multimodal data fusion. We identified alterations in key brain networks (DMN, CEN) and OFC,
suggesting potential deficits in cognitive control and social behaviour alongside heightened
emotional processing in individuals with PTSD. Furthermore, our findings highlight the
combined influence of ACE exposure, number of traumas experienced, and PTSD severity on

brain connectivity disruptions, potentially informing future interventions.

Published as: Nkrumah, R. O.*, Demirakca, T., von Schroder, C., Zehirlioglu, L., Valencia, N., Grauduszus, Y.,
Vollstaedt-Klein, S., Schmahl, C., & Ende, G. (accepted on 9" November 2024 at the European journal of
psychotrauma). Brain connectivity disruptions in PTSD related to early adversity: a multimodal neuroimaging
study
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4.2 Highlights

In the present study individuals with a history of childhood adversity and PTSD
reported distinct alterations in functional and structural connectivity patterns in key
brain networks involved in cognitive control, self-referential processing, and social

behaviour.

Additionally, evidence of brain deficits in the right medial prefrontal cortex, right
inferior temporal cortex, lateral PFC and right orbitofrontal cortex in ACE-related PTSD

was derived from multimodal brain features.

Furthermore, the study demonstrated a potential link between the severity of ACE, the
number of traumas, and PTSD symptoms with the observed brain connectivity

disruptions.

Notably, no direct association between brain connectivity alterations and PTSD
symptoms or the number of traumas within the PTSD group was found, suggesting that
trauma severity, rather than number of traumas, may play a crucial role in shaping

brain structure and function in individuals with PTSD.
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4.3 Introduction

Post-traumatic stress disorder (PTSD) is a mental health condition triggered by experiencing
or witnessing a traumatic event and has significant prevalence rates of 3.9% in the general
population (Koenen et al. 2017). Adverse Childhood Experiences (ACE), particularly childhood
abuse and neglect, are potentially traumatic events that are strongly associated with an
increased risk of developing PTSD later in life (Messman-Moore and Bhuptani 2017; Nooner
et al. 2012). A well-known thought about this relationship is that ACE impairs the ability to
form social connections (Barnes 2016; Herzog and Schmahl 2018) which serve as an important
protective factor in the resilience to stress (Baekkelund et al. 2021; Cisler and Herringa 2021).
Among adolescents, the prevalence of ACE-related PTSD is reported to be 57%, compared to
10% for PTSD from natural disasters (Nooner et al. 2012), with symptoms manifesting at least
two months post-ACE (Kilpatrick et al. 2013).

MRI studies from different modalities have shown widespread abnormalities in brain structure
and function in persons with ACE and PTSD. These include regions known to play significant
roles in spatial processing, such as the superior parietal lobe (Nkrumah et al. 2024b; Wang et
al. 2021), and emotional processing, including the medial prefrontal cortex, amygdala,
anterior cingulate cortex, and insula (Hosseini-Kamkar et al. 2023; Pollok et al. 2022; Sherin
and Nemeroff 2011; Wang et al. 2016), as well as key regions like the hippocampus, crucial for
memory formation and retrieval (Cisler and Herringa 2021; Morey et al. 2016; Teicher et al.
2018).

In functional connectivity (FC) based research, the concept of the triple network system
highlights how systemic regions of the brain relate to each other, including regions involved
in internally directed thoughts (DMN; default mode network), externally focused attention
(CEN; central executive network or FPN; fronto-parietal network), and salience processing (SN;
salience network) (Menon 2011). Individuals with ACE and PTSD often show functional
hyperconnectivity in the DMN due to rumination on intrusive memories and persistent
negative thoughts associated with trauma, compared to those without such experiences
(Daniels et al. 2011; Hoffmann et al. 2018; Lebois et al. 2022). Conversely, functional
hypoconnectivity in the DMN may impair self-referential processing and contribute to
dissociative symptoms commonly observed in PTSD (Lanius et al. 2020). However, Lebois et
al., (2022) found hyperconnectivity in females with PTSD dissociative subtype. Notably, the
literature on DMN abnormalities in PTSD is heterogeneous, with both hyper- and

hypoconnectivity findings reported. This variability may be influenced by factors such as

43



CHAPTER IV: JOMNA STUDY

trauma type, severity, chronicity, and study methodology(Lanius et al. 2020; Wang et al.
2016). Similarly in the SN, individuals with ACE and PTSD often demonstrate functional
hyperconnectivity as a potential correlate of heightened sensitivity to stressors (Thome et al.
2014), increased emotional reactivity, and difficulties in discerning between relevant and
irrelevant stimuli, thereby perpetuating the cycle of trauma-related symptoms (Akiki et al.
2017). In contrast, within the CEN, individuals with ACE and PTSD typically show functional
hypoconnectivity potentially resulting from distractibility, and difficulties disengaging from
trauma-related cues which often impair daily functioning and exacerbate symptoms of PTSD
(Kavanaugh and Holler 2014; Olson et al. 2019). Structural connectivity (SC) based research,
persistently reports reduced SC measures at the whole brain level in ACE and PTSD samples
compared to healthy participants (Kavanaugh and Holler 2014; Lim et al. 2019b). These SC
results suggest impaired neural communication, potentially reflecting neurodevelopmental
disruptions associated with ACE and PTSD (Dennis et al. 2021; McLaughlin et al. 2019). While
these studies demonstrate significant findings using diverse samples and unimodal MRI
methods, understanding the intricate relationships within brain networks such as the triple
network system in ACE related PTSD sample and fusing both SC and FC could offer a holistic
perspective on the neural mechanisms involved in ACE related PTSD.

Despite advancements in neuroimaging research, there remains a need for further exploration
of the neural correlates of ACE-related PTSD. Fusing structural (e.g. diffusion-weighted MRI)
and functional (e.g. Resting state fMRI) data has gained interest in recent times and holds
promises to enhance our understanding of the brain (Calhoun and Sui 2016; Hirjak et al. 2020;
Khalilullah et al. 2023; Ooi et al. 2022). Specifically, data-driven joint connectivity matrix
independent component analysis (jcm-ICA) has recently been explored in a healthy subject
sample and shows promise for connectivity-based multimodal neuroimaging data fusion at
the whole-brain level (Wu and Calhoun 2023). Jcm-ICA enables the analysis of SC and FC data,
allowing for the identification of shared and distinct brain patterns and potentially providing
novel insights into brain organization and function in both healthy and diseased brain.

In this study, we performed jcm-ICA in an ACE-related PTSD sample compared to an ACE-
exposed control group while controlling for the influence of other lifetime traumatic
experiences associated with PTSD. Our aim was to fuse SC and FC features to investigate both
features at the whole brain level as well as the triple network systems that would help
categorize ACE-related PTSD vs. ACE-exposed control (noPTSD). We hypothesized that

individuals with ACE-related PTSD will exhibit different patterns of connectivity compared to
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noPTSD, particularly within the DMN, SN, and CEN. Specifically, we anticipated functional
hyperconnectivity in the DMN and SN, along with functional hypoconnectivity in the CEN in
the PTSD group compared to the noPTSD group. We also hypothesized an overall decreased
structural connectivity on whole-brain level in the PTSD group compared to noPTSD group. By
examining both SC and FC features, we aimed to enhance our understanding of the neural

correlates underlying ACE-related PTSD.

4.4 Methods

Participants
This study forms part of an ongoing study investigating the effects of ACE on brain structure

and function (https://doi.org/10.17605/0SF.I0/S5YDB). For the current study, a total of 148

participants (85.14% females; Meanage = 31.02, SDage = 10.05) with any form of ACE were
recruited through distributed flyers, advertisements, and online platforms. The inclusion
criteria for the study were persons exposed to any form of ACE and with or without lifetime
PTSD diagnostics. Exclusion criteria included any kind of metal implant, pregnancy, traumatic
brain injury, claustrophobia, psychosis, or any form of neuropsychological disorder. 29
participants were excluded from the final analysis: 15 had incomplete data and / or exhibited
anomalies in their Magnetic Resonance (MR) images, likely due to movement artefacts during
data acquisition and a low Signal-to-Noise Ratio (SNR) in the acquired image. 14 participants
were excluded due to comprehension difficulties of several crucial questions during diagnostic
interviews and incomplete clinical data. Consequently, the final data set used in our analyses
consisted of 119 participants (84.87% females; Meanage = 30.66, SDage = 10.07, Rangeage = 18

— 59 years).

Procedure

Kindly see supplementary material below.

Measures

For the current study, we assessed lifetime PTSD diagnoses, ACE severity (computed using the
total Childhood Trauma Questionnaire (CTQ) severity score), trauma load (computed using
any other non-CTQ related possible events associated with PTSD in the Life Event Checklist
(LEC) for PTSD; see Supplementary), PTSD symptom severity (PTSS; computed from the total
PCL-5 score), and ACE-related trauma count (the sum of the number of multiple ACE-related

PTSD traumatic experiences). Kindly see supplementary 1.2 for additional information on
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measures. Table 7 below shows demographics, symptoms, diagnostics and comparison
between groups. Sex, ACE severity, overall trauma load were statistically significantly different
between groups hence controlled for in all subsequent analyses. Age was additionally

controlled for based on literature (Giedd and Rapoport 2010; Herzog et al. 2020; Herzog and

Schmahl 2018; Siehl et al. 2018).

Table 7. Demographics, symptoms and lifetime PTSD diagnostics of noPTSD and PTSD.

noPTSD PTSD Difference P value
N (%) 49 (41.18 %) 70 (58.82 %)
Age 29.22 +9.48 31.67 £1041 T=-1.309 (df=117) 0.193
Sex 37F 64 F X2= 5.891 (df = 1) <0.001 *
ACE severity (CTQ 51.80 +11.60 72.59 +18.94 T=-6.834 (df=117) <0.001 *
total)
e Emotional abuse 14.06 +4.99 17.93 £5.07 T=-4.121 (df=117) <0.001 *
® Physical abuse 8.18 +3.53 10.84 +5.29 T=-3.070 (df=117) 0.003 *
o Sexual abuse 6.65 £3.21 13.64 +6.63 T=-6.833 (df=117) <0.001 *
e Emotional neglect 15.12 +5.04 18.57 +4.99 T=-3.695 (df=117) <0.001 *
« Physical neglect 7.78 £2.29 11.60 +4.39 T=-5.589 (df=117) <0.001 *
PTSD severity 19.06 £ 13.46 35.46 +17.09 T=-5.605 (df=117) <0.001 *
(PCL total)
® Reexperiencing 412 £3.78 8.13 +4.83 T=-4.856 (df=117) <0.001 *
e Avoidance 2.69 £2.34 4.39 +2.49 T=-3.738 (df=117) <0.001 *
o Negative 6.88 +5.80 12.84 +6.79 T=-5.001 (df=117) <0.001 *
alterations in
cognition and
mood
e Hyper arousal 5.37 £4.76 10.10 £5.65 T=-4.792 (df=117) <0.001 *
Overall trauma 2.04+1.53 2.33+1.80 T=-1.309 (df=117) <0.001 *
load
Number of ACE- 0.71+0.71 1.41+0.55 T=-6.061 (df=117) <0.001 *

related trauma

Data are reported as mean t standard deviation. Age range for the total sample is 18-59 years. df degree of
freedom. *: Significant at P < 0.05 level.

Imaging data acquisition

All MR data, i.e., T1-weighted (T1w), diffusion and resting state images were acquired using a
Siemens Prisma-fit Scanner (Siemens Medical Solutions, Erlangen, Germany) with a 64-
channel head coil. The MR protocol for each participant included: A 3-D magnetization-
prepared rapid-acquisition gradient echo (MPRAGE; T1-weighted contrast, Echo Time (TE) =
2.01 ms, Repetition Time (TR)=2000 ms, Inversion time (TI) = 900ms, Flip angle (FA) = 9¢, FOV
=256 x 256 mm, number of slices 192, voxel size 1 x 1 x 1 mm?3), a diffusion image with double
spin-echo echo-planar imaging (EPI) sequence for diffusion (82 volumes, 3 at b =0 and 79 at
b = 1000 s/mm?, TR = 8400 ms, TE = 86 ms, matrix = 128 x 128, number of slices = 64, voxel

size = 2 x 2 x 2 mm?3, in-plane acceleration factor of 3) and resting state (400 BOLD fMRI
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volumes, 36 slices in interleaved ascending order, TR = 1020 ms, TE = 30 ms, FA = 63°, FOV =
192x192 mm, matrix size = 64x64, voxel size = 3x3x3.75 mm3, MB factor of 2, in-plane

acceleration factor of 2).

Data preprocessing

T1-weighted images were preprocessed, parcellated, and segmented into 83 cortical and
subcortical nodes of the Lausanne atlas using Connectome Mapper 3 (CMP3; an open-source
python neuroimaging processing pipeline software developed by the Connectomics Lab,
University Hospital of Lausanne (CHUV)). Diffusion and resting-state fMRI data were also
preprocessed using CMP3 (Tourbier et al. 2022). See supplementary material, for in-depth
description of data preprocessing. Two structural connectivity measures (i.e. the number of
fibres between nodes and normalized density of fibres between nodes) and two functional
connectivity measures (i.e. positive and negative functional correlation between nodes) were

retrieved from the output of CMP3 and used as features for the jcm-ICA (kindly see Figure 4A).

Quality control and data preprocessing of connectivity matrices

The SC and FC features were visually inspected. Each individual connectivity matrix (with the
dimension of 83x83) was controlled for age, sex, ACE severity, and trauma load, and
subsequently normalized by rescaling the data range to an interval of [0, 1]. This preprocessing
step aims to ensure that the features for jcm-ICA are standardized and comparable across
subjects, enhancing the robustness and interpretability of the subsequent analysis and

ensuring equal contribution from both SC and FC data in the next steps.

Jcm-ICA for multimodal analyses

Data-driven jcm-ICA was performed using a joint feature matrix obtained by fusing individual
subjects' SC and FC data matrices (Figure 4B, LHS) using the Fusion ICA Toolbox

(http://mialab.mrn.org/software/fit).

First, principal component analysis (PCA) was performed as a dimension reduction step on the
subject-level matrix to reduce it to a component level. The noPTSD group was used as a

reference in the PCA step to decompose the data into 40 ICs (10 for each feature).

Secondly, we performed 10 ICAs on the component level reduced matrix and averaged the

results from the 10 runs to ensure component stability. The Infomax algorithm was used to
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compute ICA, which produced a subject-level shared mixing matrix and connectivity-based

whole brain independent sources for both FC and SC features (Figure 4B, RHS).

Finally, a t-test was performed on the shared mixing matrix (also called the joint mixing
coefficient matrix) data to identify the corresponding independent components/sources that
best categorize neurobiological differences between groups. As previously demonstrated
(Hirjak et al. 2020; Liu et al. 2019; Sui et al. 2009; Wu and Calhoun 2023), exploring the joint
mixing coefficients obtained using information from all features in the joint feature matrix

offers a comprehensive approach by incorporating information from both FC and SC features.

Conversely, whole brain connectivity-based independent components and intra and inter
network connectivity of the triple network (i.e. DMN, SN and CEN) of the significant

components which showed differences between noPTSD vs. PTSD were then explored.

Figure 1 of this paper has been pasted as Figure 4 of the thesis.

Relation between joint mixing coefficient and clinical data

In an exploratory post hoc analysis, we evaluated the joint mixing coefficients for the
identified significant components to determine if any relationship exists between these
coefficients and clinical data. Our aim was to verify if the identified significant component
were indeed best predictor of PTSD diagnosis, hence we focused on the PTSD group. We
explored whether the number of multiple ACE-related PTSD traumas (listed in Table 7 as ACE-
related trauma count), PTSD symptoms (using PCL total) and ACE severity could relate to PTSD-
related brain information. This analysis aimed to examine the potential impact of multiple
ACE-related traumatic experiences, PTSD severity, and overall ACE severity on the joint PTSD-

related brain information obtained from both structural and functional data.

4.5 Results

Group Differences (noPTSD > PTSD) on joint mixing coefficient.

Figure 9A shows the two-sample t-test results on the 10 joint mixing coefficients of the 10
estimated components. After correcting for multiple comparisons using the Bonferroni
method, the joint mixing coefficient (MC) for component 9 was significantly different between
groups (p = 0.004, Figure 9A). Figure 9B shows the t-test results for MC of independent
component (IC) 9. Compared to the PTSD group, the higher mixing coefficients in the noPTSD

group indicate that IC 9 (which includes both SC and FC features) is expressed more in the
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noPTSD group.

9A. T-test results for joint mixing coefficients of all components: noPTSD > PTSD
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9B. T-test results for joint mixing coefficient for IC 9: noPTSD > PTSD
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Figure 9. A two-sample t-test was computed on the joint mixing coefficients between the noPTSD and
PTSD groups. 9A shows a bar graph of the T-values from the t-test computed on the mixing coefficients
of all 10 components. (*) indicates components with significant p-values after Bonferroni correction. 9B
shows a plot of the T-test results for the joint mixing coefficient of component 9 between the noPTSD
and PTSD aroups.

Cortical representation of the independent component 9 differentiating between PTSD and

noPTSD groups.

As identified in the analysis of the MC above, IC 9 best categorizes neurobiological differences
between groups. Hence, we explored the respective features of this component. For
visualization purposes, all features of IC 9 were plotted on the cortical surface, transformed
into Z scores, and thresholded at z > 2 (hyperconnectivity in red) and z < -2 (hypoconnectivity
in blue), indicating increases and decreases in FC and SC measures, respectively. After
thresholding, no significant results were found for the number of fibres and negative
functional connectivity features. Compared to the noPTSD group, the PTSD group exhibited

functional hypoconnectivity (i.e. decrease in the positive FC measure and indicative of colour
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blue in Figure 10A) in the left and right lateral prefrontal cortex (IPFC) and functional
hyperconnectivity (i.e. an increase in the positive FC measure and indicative of the colour red
in Figure 10A) in the right medial prefrontal cortex (rmPFC) and right inferior temporal gyrus.
Additionally, individuals with PTSD showed reduced (i.e. hypoconnectivity) of the NFD

measure in the right orbitofrontal cortex (rOFC) compared to controls.

10 A. Functional connectivity features for IC 9: PTSD > noPTSD
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10 B. Structural connectivity features for IC 9: PTSD > noPTSD
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Figure 10. Back-reconstructed cortical functional and structural connectivity features for independent
component 9, which differed between the PTSD and noPTSD groups. All features were transformed
into Z scores and thresholded at z > 2 (hyperconnectivity in red) and z < -2 (hypoconnectivity in blue)
for visualization purposes. (A) Positive functional connectivity features for IC 9. (B) Normalised fibre
density features for IC 9. InfTemp = inferior temporal gyrus, mPFC = medial prefrontal cortex, IPFC =
lateral prefrontal cortex, OFC = orbitofrontal cortex. r- and I- represent the right and left hemispheres,
respectively.
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Relation between joint mixing coefficient (MC) and clinical data.

Here, our focus was to check whether the MC from both structural and functional features were indeed
best predictor of PTSD diagnostics hence, we focused on the PTSD group. First, we conducted
correlational analyses between the MC and clinical measures, including PCL-5 and CTQ subscale scores.
The results of these analyses are presented in Supplementary Table S6. We found that within the PTSD
group, MC of IC9 was negatively correlated to ACE severity (total CTQ score; r =-.275, p =.021) but not
the number of ACE-related traumatic events (r =.048, p = .695) and PTSD symptomatology (total PCL-
5 score; r = -.174, p = .149). Further moderation analysis revealed that the number of ACE-related
traumatic events significantly moderated the relationship between ACE severity and MC of 1C9
(interaction term: t-value = -3.03, B = -.0004, SE = .0001, p = .0035, R?=.1967). Specifically, at higher
levels of ACE-related traumatic events (i.e. 2 and 3), the negative relationship between ACE severity
and MC of IC9 was stronger (simple slope analysis in Figure 11A). Although PTSD symptoms did not
individually moderate the relationship between ACE severity and MC of IC9 (interaction term: t-value
= -1.44, B = -.00000962, SE = .00000667, p = 0.1543), using Hayes' Model 2, with ACE severity as
dependent variable, the number of ACE-related traumatic events and PTSD symptoms as moderators
and MC of IC9 as dependent variable was significant (both interactions: Figure 11B: F(2, 64) =5.29, p =
0.0075, R?=0.2165). This indicates that the combined presence of multiple ACE-related PTSD traumas
and higher levels of PTSD symptoms further strengthens the negative relationship between ACE
severity and MC of IC9. To address potential multicollinearity, assess model improvement, and
provide a comprehensive understanding of our results in the PTSD group, we report the VIF
values, detailed model fit statistics, and correlations between clinical variables in the
supplementary material. Briefly, only ACE severity and PTSD symptoms were significantly

correlated (r =.516, p <.001). However, the VIF values for all variables in the model used were

below 1.5, indicating no concerns regarding multicollinearity (O’brien 2007).
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A. Relationship between ACE severity and joint mixing coefficient of IC9 as
moderated by number of multiple ACE-related Trauma of the PTSD group.
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Figure 11 shows the relation between ACE severity and joint mixing coefficient of IC9 as moderated by (A) number
of ACE-related trauma events and (B) number of ACE-related traumas events and PTSD symptoms severity.
PTSD symptom severity grouping is shown as +1 standard deviation around the mean PCL symptoms severity
score in the PTSD group (representing low=18.37, moderate=35.46, and severe=52.54 severity, respectively).
Asterisks indicate the statistical significance of the boot-strapped unstandardized regression coefficients (***p <
0.001; **p < 0.01; *p < 0.05; n.s - not significant).
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4.6 Discussion

Using a Jcm-ICA, we identified neuronal networks to be different between ACE-exposed
individuals with PTSD compared to ACE-exposed controls. These alterations in FC include
regions in the DMN and the CEN, as well as the right inferior temporal gyrus responsible for
facial processing. SC features also showed differences in rOFC, a region critical for social
behaviour.

First in Jcm-ICA, we estimated 10 ICs from both structural and functional brain connectivity
features, derived from an average of 10 independent component analysis (ICA) runs. A t-test
of the MC for each of the 10 component revealed that IC 9 showed significant differences
between the noPTSD and PTSD groups (p = 0.004, Figure 9). As reported in previous studies
(Lottman et al. 2018; Sui et al. 2009; Sui et al. 2011), exploring the MC provides a
comprehensive comparison between groups, potentially highlighting distinct neural
signatures associated with PTSD. The resulting connections of the independent sources reveal
whole brain hyperconnectivity (increase of SC or FC measures) or hypoconnectivity (decrease
of SC or FC measures) between nodes in the PTSD group compared to the noPTSD group.
After plotting our findings from IC 9 on the cortex, distinct patterns of connectivity in several
key brain regions involved in self-referential processing (Lanius et al. 2020), cognitive control
(Fenster et al. 2018), and social behaviour (Hinojosa et al. 2024) were revealed, shedding light
on the neurobiological mechanisms underlying ACE-related PTSD. For functional connectivity
features, notable alterations were observed in the positive functional connectivity feature,
which indicates a positive functional correlation between nodes. Specifically, the PTSD group
exhibited hypoconnectivity (i.e. decrease in positive FC measure and indicative of colour blue
in Figure 10A) in the left and right IPFC, a component of the central executive network,
responsible for cognitive control and executive functioning (Marek and Dosenbach 2018;
Olson et al. 2019). As hypothesized and supported by existing literature (Akiki et al. 2017,
Johnson et al. 2021; McLaughlin et al. 2017), hypoconnectivity in the IPFC suggests potential
deficits in cognitive flexibility and decision-making, which is compatible with the
symptomatology of individuals with ACE and PTSD. These alterations further underscore the
impact of ACE on the neural substrates supporting higher-order cognitive processes, offering
insights into the cognitive dysregulation commonly observed in individuals with PTSD (Pankey
et al. 2022).

Conversely, functional hyperconnectivity in the rmPFC and right inferior temporal gyrus was

found in the PTSD group compared to noPTSD group. This finding aligns with our initial
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assumptions, as rmPFC forms part of the DMN and is involved in self-referential processing,
and memory consolidation(Lanius et al. 2020; Sokotowski et al. 2022), which occur more
frequently in individuals with PTSD, especially those with a history of ACE due to persistent re-
experiencing of traumatic memories characteristic of PTSD (Pankey et al. 2022; Thomaes et
al. 2012). Increased FC in the rmPFC could reflect an enhanced focus on internal experiences,
such as rumination and intrusive thoughts related to past trauma, potentially exacerbating
symptoms (Fitzgerald et al. 2018). Additionally, alterations in the rmPFC could influence social
cognition and interpersonal functioning (Fitzgerald et al. 2018), contributing to difficulties in
social interactions and forming secure attachments, which are often affected in persons with
PTSD. Furthermore, a longitudinal study by Du and colleagues supports the DMN findings;
alterations in the DMN persisted at the two-year follow-up post traumatic experience in PTSD
groups (Du et al. 2014). This persistence highlights the DMN's central role in PTSD's long-term
neurological effects (Hinojosa et al. 2024; Ireton et al. 2024). In addition to the rmPFC findings,
functional hyperconnectivity in the right inferior temporal gyrus, known for its involvement in
face perception (Shahbazi et al. 2024) and recognition (Faghel-Soubeyrand et al. 2024), was
observed in individuals with ACE-related PTSD compared to controls (Holz et al. 2023). This
suggests heightened neural responsiveness to visual stimuli, particularly emotional faces, in
the context of trauma exposure (Harnett et al. 2021; Hinojosa et al. 2024). Such heightened
reactivity to emotional cues may contribute to the re-experiencing of traumatic memories and
difficulties in emotional regulation commonly observed in PTSD (Harnett et al. 2021;
Kavanaugh and Holler 2014).

In examining the structural connectivity features, encompassing both the number of fibres
(NOF) and normalized fibre density (NFD) of white matter pathways between cortical nodes,
our analysis revealed a significant difference between groups solely in the NFD feature. Unlike
the NOF measure, the NFD accounts for differences in brain size by incorporating the cortical
volume of individual regions in its computation (Nkrumah et al. 2024b). Specifically,
individuals with PTSD exhibited hypoconnectivity (i.e. decrease) of the NFD measure in the
rOFC compared to controls. The rOFC is known to play a role in social behaviour and closely
connected to the ventrolateral prefrontal cortex, which is involved in the integration of
emotional processes and decision making (Kida and Hoshi 2016). The observed alteration in
the rOFC aligns with previous research highlighting the role of this brain region in modulating
emotional responses (Eden et al. 2015) and integrating sensory information to guide adaptive

behaviour (Rolls and Grabenhorst 2008).
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Our post hoc analysis which aimed to determine whether the MC derived from both structural
and functional data could serve as a reliable predictor of PTSD diagnosis, revealed significant
relations between the MC of IC9 and clinical data. We found a significant negative correlation
between the MC of IC9 and the severity of ACE within the PTSD group. This relationship
appears to be driven by childhood abuse, more specifically physical abuse (see supplementary
Table S6). This aligns with previous research demonstrating the detrimental impact of
childhood trauma on brain structure and function in individuals with PTSD (McLaughlin et al.
2017; Teicher and Samson 2016). We did not observe a significant correlation between the
MC of IC9 and the number of ACE-related traumatic events or PTSD symptomatology.
However, our complementary checks for the post-hoc analyses revealed a significant
correlation between ACE severity and PTSD symptom severity but not with the number of
traumatic events within the PTSD group (see supplementary Table S7). This suggests a
complex relationship between ACE severity, PTSD symptoms, and the number of traumas.
Hence, our findings may indicate that the severity of traumatic experiences has a greater
influence on the brain connectivity patterns observed in individuals with PTSD than the
guantity of traumatic experiences (Bellis et al. 2019). Further analysis in our sample revealed
a significant moderation effect of the number of multiple ACE-related traumatic events on the
relationship between ACE severity and the MC of 1C9. Specifically, higher levels of multiple
ACE-related traumas strengthened the negative association between ACE severity and MC of
IC9. This interaction underscores the cumulative impact of trauma exposure on brain
connectivity alterations, potentially reflecting a heightened vulnerability to maladaptive
neurobiological changes in individuals with a history of repeated traumatic experiences (Gerin
et al. 2023b; Herringa et al. 2013; Teicher et al. 2022). Moreover, while PTSD symptoms alone
did not moderate the relationship between ACE severity and the MC of IC9, considering the
effects of multiple ACE-related traumas and PTSD symptoms as moderators in the relationship
between MC of IC9 and ACE severity was significant. This suggests that the presence of both
higher levels of traumatic exposures and severe PTSD symptoms amplifies the association
between ACE severity and MC of IC9 (Figure 11B), indicating a synergistic effect of cumulative
trauma burden and symptom severity on brain connectivity disruptions.

The use of jcm-ICA in this study represents a novel approach to investigating brain connectivity
in ACE-related PTSD. This method allowed us to assess shared information from structural and
functional connectivity, providing novel insights into the neural mechanisms underlying PTSD

related to childhood trauma. Collectively, our findings underscore the multifaceted nature of
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neural adaptations following exposure to ACE, offering valuable insights into the
neurobiological mechanisms underlying PTSD pathology and highlighting potential neural
targets for therapeutic interventions for ACE-related PTSD (Karatzias et al. 2020; McLaughlin
et al. 2019). The observed disruptions in connectivity measures within the DMN, CEN and
inferior temporal brain regions suggest potential biomarkers or neural signatures associated
with the disorder, offering avenues for the development of targeted interventions and
treatment strategies (Akiki et al. 2017; Steil et al. 2023). Moreover, structural connectivity
findings in the right OFC shed more light on the effects of ACE-related PTSD on the brain.
Lastly, our post-hoc analyses reveal the synergistic effects of ACE, cumulative trauma burden,
and PTSD symptom severity on brain connectivity disruptions in individuals with ACE-related
PTSD.

One potential limitation of the study is the risk of contribution bias in the data reduction step,
particularly when using the control group as a reference for principal component analysis
outputs from the joint feature matrix. This approach may introduce biases in the derived
components, as they could be influenced by the characteristics of the control group rather
than solely reflecting intrinsic features of individuals with ACE-related PTSD. Additionally, the
gender distribution within our sample was not balanced, potentially affecting the robustness
of our results. Furthermore, the use of cross-sectional data limits our ability to establish causal
relationships, as the moderation effects observed in this study may be influenced by
unmeasured time-varying confounders (Fairchild and MacKinnon 2009). Future research with
larger and more diverse samples, employing longitudinal designs, is warranted to validate and

extend our findings.

4.7 Conclusion

The current study utilized the fusion of multimodal neuroimaging data to identified networks
reported in literature to be different between ACE-exposed PTSD compared to ACE-exposed
controls. Our functional connectivity findings in the DMN, CEN and inferior temporal region
and structural connectivity findings in the right OFC extend the literature on the effect of PTSD
on the brain, especially in regions involved in self-referential processing, social behaviour and
cognitive control. Finally, our findings suggest that specific brain networks implicated in ACE-
related PTSD may be predicted by the combined presence of higher ACE severity, multiple

number of ACE-related PTSD traumas, and PTSD symptoms severity later in life.
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4.8 Supplementary Information

Method

Study Procedure

The study protocol consisted of the administration of online questionnaires, a diagnostic
interview, and MRI scanning sessions. The online questionnaires incorporated the Childhood
Trauma Questionnaire (CTQ (Thombs et al. 2007)), the Brief Symptom Inventory (BSI
(Derogatis 1975)), dissociative symptoms (specifically, the German version of the Dissociative
Experience Scale (Spitzer et al. 1998)) and the Life Event Checklist (LEC) for PTSD (Bovin et al.
2016). The diagnostic session included the clinical version of the Structured Clinical Interview
for DSM-5 (SCID-5 (First et al. 2016)). The diagnoses that were assessed included past, current
and lifetime affective disorders, anxiety disorders, obsessive compulsive disorder (OCD), post-
traumatic stress disorder (PTSD), attention deficit hyperconnectivity disorder (ADHD), and

substance use disorder (SUD). Additionally, we diagnosed ACE-related PTSD in all participants.
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We first asked participants to identify their three most traumatic childhood experiences, and

the SCID PTSD module was then administered based on these specific traumatic events.

Measures

ACE severity was quantified using the sum of individual sub-types of ACE from the Childhood
Trauma Questionnaire (CTQ). A detailed report on the CTQ has been reported in prior
literature (Thombs et al. 2007). The CTQ consists of five questions for each type of exposure,
and each question prompts participants to rate a particular event on a scale ranging from
"Never True" to "Very Often True". Here, we calculated the abuse severity score as the sum
of all abuse subtypes of the CTQ (i.e., sexual, physical and emotional abuse), the neglect
severity score consisted of the sum of all neglect subtypes of the CTQ (i.e., emotional &
physical neglect) and the overall ACE (CTQ total) was calculated as the sum of abuse and

neglect scores.

The PTSD symptom severity (PTSS) was assessed using the Posttraumatic Stress Disorder
Checklist for DSM-5 (PCL-5), which is a self-report measure that corresponds to each of the 20
core DSM-5 PTSD symptoms and asks respondents to rate how much each symptom has
bothered them in the past month, scoring responses on a Likert scale ranging from 0 (not at
all) to 4 (extremely) (Blevins et al. 2015). Symptoms are classified into four domains in
accordance with the DSM-5 criteria for PTSD: re-experiencing, avoidance, negative changes in
cognition and mood, and hyperarousal, with total PTSS score ranging from 0 to 80 and higher
scores indicating more severe symptoms. The PCL-5 is regarded as the "benchmark" self-
report measure of PTSD symptom severity, with strong test-retest reliability (r=0.84) as well
as convergent and discriminant validity (Bovin et al. 2016; Harper et al. 2022; Keane et al.

2014).

The Life Events Checklist for DSM-5 (LEC-5) was used to assess participants' exposure to
potentially traumatic events. The LEC-5 is a self-report measure comprising 17 items, each
representing a different type of potentially traumatic event, such as natural disasters,
accidents, and physical assault. Participants indicated whether each event happened to them
personally, witnessed it, learned about it happening to a close family member or friend, was
part of their job, or if they were unsure if it applied. The trauma load was calculated based on
LEC-5 items that were not related to the CTQ and were associated with PTSD. Items 8 and 9,
which pertain to sexual assault and other unwanted sexual activity, were excluded from the

trauma load calculation due to their high correlations with the corresponding CTQ sexual
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abuse items, suggesting significant overlap in assessing sexual trauma (CTQ sexual abuse &
LEC-5 item 8; r=0.569, p<.001; CTQ sexual abuse & LEC-5 item 9; r=0.517, p< .001). The

remaining 15 items were used to compute the trauma load (kindly see Table S5 below).

Table Sb5. Lists the specific LEC-5 items included in the trauma load computation.

noPTSD PTSD Difference P value
LEC_01 Natural Disaster 1.22+1.28 1.04+127 T = 0.766 0.445
(df=117)
LEC_02 Fire or Explosion 1.27+1.13 110123 T = 0.745 0.458
(df=117)
LEC_03 Road Accident (Car, Ship, Train, Plane) 2.41+1.55 243+158 T = -0.070 0.945
(df=117)
LEC_04 Serious Accident At Work, At Home Or During A Leisure  1.57 £1.49 123+125 T = 1360 0.176
Activity (df=117)
LEC_05 Being Exposed To A Pollutant 0.55 +0.96 049+0.85 T = 0.392 0.696
(df=117)
LEC_06 Violent Attack 2.57+1.58 2.60+1.69 T = -0.093 0.926
(df=117)
LEC_07 Attack With A Weapon 1.00+1.12 1.33+1.41 T = -1.358 0.177
(df=117)
LEC_08 Sexual Assault 1.37+1.44 3.09+144 T = -6.403 <.001 *
(df=117)
LEC_09 Other Unwanted Or Uncomfortable Sexual Activity 225+1.74  316+147 T = -3.088 0.003 *
(df=117)
LEC_10 Engaged In Combat Or Being In A War Zone 0.67£0.77 056+0.69 T = 0.858 0.393
(df=117)
LEC_11 Captivity 0.59+0.71 0.67 £1.02 T = -0.474 0.637
(df=117)
LEC_12 Life-Threatening lliness Or Injury 1.63+1.42 196+142 T = -1.226 0.223
(df=117)
LEC_13 Severe Human Suffering 1.22+1.37 197+154 T = -2.719 0.008 *
(df=117)
LEC_14 Sudden Violent Death (Murder, Suicide) 1.10+1.09 141116 T = -1.483 0.141
(df=117)
LEC_15 Sudden Accidental Death 0.90 +£0.94 0.76 £0.89 T = 0.829 0.409
(df=117)
LEC_16 Serious Injury, Damage Or Death Caused By You To 0.51+0.82 064+1.02 T = -0.754 0.452
Someone Else (df=117)
LEC_17 Any Other Highly Distressing Event Or Experience 139+1.74 123+168 T = 0.500 0.618
(df=117)
Overall trauma load (All items in LEC excluding items 8 and9)  2.04+1.53 233+180 T = -1.309 <0.001*
(df=117)

Note: Data are reported as mean + standard deviation. df degree of freedom. *: Significant at P < 0.05 level.

The diagnostic interview sessions were conducted by research assistants and doctoral
students who have received SCID-Il training. The diagnoses that were assessed included
affective disorders, anxiety disorders, obsessive-compulsive disorder (OCD), post-traumatic
stress disorder (PTSD), attention deficit hyperactivity disorder (ADHD), and substance use
disorder (SUD). Past and current disorders were diagnosed based on the presence of DSM-5
criteria for each disorder. Psychotic disorders were an exclusion criterion. For the current

study, only the lifetime PTSD diagnostics (i.e., current and/or past) was used.

Termed here as the number of ACE-related traumas, we diagnosed participants with ACE-
related PTSD. Participants were first asked to identify their three most ACE-related traumatic

childhood experiences. Based on these specific traumatic events, the SCID-5 PTSD module was
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then administered. By focusing on the identified childhood traumas, the SCID-5 PTSD module
provided a comprehensive assessment of the participants' PTSD diagnosed directly related to
their adverse childhood experiences. This approach ensured that the diagnosis was specifically
linked to early life traumas, allowing for an accurate evaluation of number of ACE directly

contributing to PTSD.

Imaging data preprocessing

Preprocessing for both T1-weighted (T1lw), diffusion and resting-state fMRI images was
performed using Connectome Mapper 3 (CMP-v3.1.0; an open-source Phython3
neuroimaging processing pipeline software developed by the Connectomics Lab, University
Hospital of Lausanne (CHUV)). CMP-v3.1.0 uses a combination of well-known neuroimaging
software packages to implement full anatomical and diffusion processing pipelines from raw
images (Tourbier et al. 2022). All images were controlled for quality. The preprocessing steps

that were used in this study can be seen below.

T1 weighted MRI: Tlw images were preprocessed, parcellated, and segmented into 83 ROI
based on the first scale of Lausanne 2008 parcellation (Cammoun et al. 2012) using the
FreeSurfer version 6.0.1 recon-all program. An in-depth explanation of the steps used by
FreeSurfer's recon-all has previously been described elsewhere (Dale et al. 1999; Fischl et al.
2004). In brief, the white matter and pial surfaces were identified after motion
correction, non-uniform intensity normalization and normalization, by creating a mesh
around the white matter and pial voxels. Surface-based maps of each individual scan were
created using spatial intensity gradients across tissue classes (Desikan et al. 2006). FreeSurfer
morphometric procedures have been demonstrated to show good test-retest reliability across
scanner manufacturers and across field strengths (Reuter et al. 2012). Visual inspection was
done to inspect the anatomical accuracy of FreeSurfer's automated parcellations and
segmentations. The Lausanne scale-1 atlas used in this study has 83 regions similarly to

FreeSurfer’s Desikan-Killiany Atlas (Cammoun et al. 2012; Hagmann et al. 2008).

Diffusion weighted MRI: Preprocessing of diffusion data included denoising, bias field
correction, and corrections for eddy currents and motion, using advanced techniques
available in the MRtrix toolbox (Tournier et al. 2019). Anatomy-constrained probabilistic
tractography was performed using the five-tissue-type (5TT) segmented Tlw image and a
second-order integration over fibre orientation distributions algorithm on the preprocessed

diffusion image to produce an initial tractogram with 10 million streamlines (Tournier and , F.
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Calamante 2010). The tractogram was filtered using SIFT2 method to enhance the quantitative
accuracy of whole-brain streamlines reconstructions (Smith et al. 2015). Structural
connectivity measures i.e., number of fibres and normalized density of fibres between the 83

brain regions were subsequently retrieved.

Resting-state functional MRI: The resting-state fMRI data preprocessing followed a structured
pipeline. After discarding the first 5 volumes for signal stabilization, we performed despiking
using AFNI 3dDespike implemented in nipype (Gorgolewski et al. 2011) to remove noise and
outliers. Slice timing correction was applied using FSL’s slicetimer, followed by motion
correction using FSL’s MCFLIRT (Jenkinson et al. 2002). Linear registration from T1 to mean
BOLD was achieved using FSL’s flirt (Jenkinson et al. 2002). We detrended the BOLD signal to
remove linear trends. Nuisance regression included CSF, WM, and motion parameters. Band-
pass filtering was performed with a frequency window of 0.008 to 0.09 Hz, and ROl-averaged
time-series were computed for positive and negative correlational connectivity for the 83

brain regions in Lausanne scale-1 as in dMRI pipeline.

Results

2.1 | Correlation between joint mixing coefficient (MC) and clinical data.

To provide additional context, we conducted Pearson correlation analyses between the joint
mixing coefficient of IC9 and all clinical data, including PCL-5 and CTQ subscales. Bootstrapped
corrected correlation coefficients with 5000 replicates were calculated. A supplementary

table showing these correlation coefficients is presented below.

Table S6. Pearson's correlations between IC9 and all subscales of CTQ and PCL.

Pearson's p 95% Confidence Interval Effect size SE Effect size
' Lower Upper (Fisher's 2)
IC9 - CTQ total -0.275 * 0.021 -0.486 -0.021 -0.282 0.122
IC9 - CTQ_abuse -0.319 ** 0.007 -0.529 -0.068 -0.330 0.122
IC9 - CTQ_neglect -0.146 0.227 -0.336 0.084 -0.147 0.122
IC9-CTQ_EA -0.177 0.142 -0.399 0.083 -0.179 0.122
IC9 - CTQ_PA -0.292 * 0.014 -0.458 -0.104 -0.301 0.122
IC9-CTQ_SA -0.228 0.057 -0.445 0.023 -0.232 0.122
IC9-CTQ_EN -0.085 0.483 -0.293 0.152 -0.086 0.122
IC9-CTQ_PN -0.185 0.124 -0.355 0.026 -0.188 0.122
IC9 - PCL_SUM -0.174 0.149 -0.380 0.056 -0.176 0.122
IC9 - PCL_INTRU -0.105 0.389 -0.290 0.108 -0.105 0.122

61



CHAPTER IV: JOMNA STUDY

IC9 - PCL_AVOID
IC9 - PCL_COMO
IC9 - PCL_HYPE

IC9 - ACErelatedtrauma

-0.220
-0.150
-0.160

0.048

0.068
0.216
0.185

0.695

-0.434
-0.385
-0.350

-0.268

0.014
0.110
0.066

0.334

-0.223

-0.151

-0.162

0.047

0.122
0.122
0.122

0.122

Note. n (prsp group) = 70; CTQ total= total score of Childhood Trauma Questionnaire, CTQ_abuse= sum score of all abuse subtypes,
CTQ_neglect= sum score of all neglect subtypes, CTQ_EA= emotional abuse, CTQ_PA= physical abuse, CTQ_SA= sexual abuse,
CTQ_EN= emotional neglect, CTQ_PN= physical neglect, PCL_SUM-= total PTSS, PCL_INRU= intrusive PTSS, PCL_AVOID= avoidance
PTSS, PCL_COMO-= negative changes in cognition and mood PTSS, PCL_HYPE= hyperarousal PTSS. number of ACE-related traumatic
events Confidence intervals based on 5000 bootstrap replicates. * p <.05, ** p <.01, *** p <.001.

2.2 | Complementary checks for post-hoc analyses.

To confirm that the observed interaction effect is not a tautology or due to high between-

variable correlation, we conducted thorough checks of correlation between clinical data, the

Variance Inflation Factor (VIF) for all variables and analysed the change in R-squared between

the models (see Models 1 to 4 in the Table S7 below). Only ACE severity (CTQ total) and PTSD

symptoms severity score (PCL_sum) were significantly correlated (see Table S6). However, the

VIF values for all variables in the model were below 1.5, indicating no concerns regarding

multicollinearity (O’brien 2007). Additionally, the R-squared value increased from 7.5% in the

linear model to 22% in the moderation model. This indicates that the interaction terms

explained an additional 14.5% of the variation in the outcome variable, demonstrating a

significant improvement in the predictive power of our model.

Table S7. Pearson's correlations between all clinical variables included in moderation analysis.

Pearson's p 95% Confidence Effect size SE
r Interval Effect size
(Fisher's z)
Lower Upper

CTQ total — 0.516 *** <0.001 0.362 0.657 0.571 0.122
PCL_SUM

CTQ total — 0.181 0.133  -0.024 0.379 0.183 0.122
ACErelatedtrauma

PCL_SUM - 0.122 0.313  -0.093 0.338 0.123 0.122

ACErelatedtrauma

Note. n (prso group) = 70; CTQ total= total score of Childhood Trauma Questionnaire, PCL_SUM= total PTSS, PCL_INRU= intrusive PTSS,
PCL_AVOID= avoidance PTSS, PCL_COMO= negative changes in cognition and mood PTSS, PCL_HYPE= hyperarousal PTSS, number
of ACE-related traumatic events Confidence intervals based on 5000 bootstrap replicates. * p <.05, ** p <.01, *** p <.001.
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Table S8. The relationship between ACE severity and joint mixing coefficient of IC9 as moderated by

number of multiple ACE-related Trauma of the PTSD group

@ @)

joint mixing
coefficient of IC9

joint mixing
coefficient of IC9

Models

©) (4)

joint mixing
coefficient of IC9

joint mixing
coefficient of IC9

ACE severity -.0002 * .0003 s .0001 s -.0006*
(CTQ total) (-.0001) (.0002) (.0002) (.0003)
TC - .0291 ** - .0280 **
(.0092) (.0093)
Interaction 1: - -.0004 ** - -.0003 **
CTQ total X TC (.0001) (.0001)
PTSS - - .0007 s .0006 "s
(.0005) (.0005)
Interaction 2. - - .00001"s .0000"s
PTSS X TC (.000007) (.0000)
Intercept -.006 -.0332 -.0122 -.0496
(.002) (.0152) (.0166) (.0202)
R? .075 .1967 .1050 .2165
R? change - 1115 .0282 .1296
p-value .027 .0022 .0609 .0075
Collinearity CTQtotal=1 CTQ total =1.034 CTQ total =1.363 CTQ total =1.390
Statistics TC =1.034 PTSS=1.363 TC =1.035
(VIF) PTSS= 1.365

Note: n (prsp group)=70; CTQ total = total score of Childhood Trauma Questionnaire; PTSS = PTSD symptomatology; TC = number of ACE-related
traumatic event; VIF= Variance inflation factor. The values in the column of each model represent the unstandardized beta coefficients with
their standard error in brackets. Asterisks indicate the statistical significance of the bootstrapped unstandardized regression coefficients

(***p <.001; **p < .01; *p <.05; ns=not significant).
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This study employed multimodal neuroimaging techniques to explore the effects of ACE
and related PTSD using sMRI, dMRI, and resting-state fMRI in a large clinical sample. While
multimodal neuroimaging offers significant potential, its application in ACE research has been
limited due to data heterogeneity, complexity, and a lack of established cohesive analytical
framework.

We showed potential multimodal biomarkers, including structural alterations in the
right superior parietal lobe (rSPL) in individuals with ACE using complementary analysis of
sMRI and dMRI. Additionally, we identified functional alterations in the default mode network
(DMN), central executive network (CEN), and the inferior temporal brain regions, as well as
structural alterations in the orbital frontal region, in individuals with ACE-related PTSD using

the joint analysis of sMRI, dMRI and resting state fMRI data.

Subsequent sections of this chapter will focus on elaborating on the research questions

of this empirical work and how findings from both publications addressed them.

5.1 What are the structural brain abnormalities in individuals with ACE as revealed by
complementary analyses of sMRI and dMRI data?

The first study employed a complementary multimodal neuroimaging approach,
combining T1-weighted MRI (sMRI) to assess cortical morphometry and dMRI to examine
white matter microstructure. This approach enabled an encompassing investigation of how
ACE impacts GM regions and white matter tracts. By combining these modalities, the study
was able to reveal brain alterations in response to ACE, particularly the relationship between
cortical volume changes in the rSPL and WM tracts connected to rSPL and childhood abuse.

In our whole brain analyses, we found that the cumulative effect of ACE was associated
with reduced local cortical area in the rSPL. Childhood abuse was negatively related to local
cortical volume in the rSPL when controlled for childhood neglect. However, no significant
result was found for neglect when abuse was controlled for. These findings imply that the
effects of ACE were more pronounced for abuse than neglect in our sample particularly in
terms of cortical volume of the rSPL. The rSPL forms part of the posterior-FPN and plays a key
role in the “top-down” or goal-driven allocation of attention. Cytoarchitectonic research has
demonstrated the heterogeneous nature of the SPL, with at least seven distinct subregions.

The receptor distribution patterns and regional cytoarchitectonic features found three sub-
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regions in Brodmann (BA) 5 and four in BA 7 (Scheperjans et al. 2005; Scheperjans et al. 2008).
Functions of these regions were explored in a resting-state functional MRI study in healthy
participants, and the results showed that each of the seven sub-regions was connected to
several resting-state networks, with the most consistent connectivity observed with the visual
and attention networks (Alahmadi 2021). While abnormalities in the rSPL have been
associated with PTSD, PTSS and maternal stress (McQuaid et al. 2019a; Wang et al. 2021), the
findings of this study suggest that ACE may specifically target cortical alterations in the rSPL,
potentially impacting visual and attentional functions (Nkrumah et al. 2024b). Further
exploratory analyses demonstrate that the rSPL serves as a key mediator in the relationship
between childhood abuse and avoidance-related PTSD symptoms. This suggests that the rSPL
plays a pivotal role in the development of avoidance behaviours in individuals with ACE.
Consistent with a previous large-scale meta-analysis linking reduced rSPL volumes to PTSD
(Wang et al. 2021), our results provide additional evidence that the rSPL may be a critical
factor in the emergence of avoidance symptoms in individuals with a history of severe
childhood abuse (Auxéméry 2018; Nkrumah et al. 2024b; Tan et al. 2013).

Additional analyses of WM tracts connected to the rSPL revealed a positive correlation
between the extent of abuse-related cortical alterations in rSPL volume and the number,
average length, and mean fractional anisotropy (FA) of these WM tracts (see Table 6). These
findings suggest that as the impact of childhood abuse on rSPL volume increases, so does the
negative effect on the microstructure of WM tracts connected to this region. This further
highlights the structural abnormalities in both GM and WM within the rSPL, which are likely
consequences of childhood abuse.

Overall, our findings from the CoMNA study contribute to a growing body of literature
on the neurobiological consequences of ACE and emphasize the importance of considering
the subtypes of maltreatment when investigating brain abnormalities (Grauduszus et al. 2024;
Herzog and Schmahl 2018; Schalinski et al. 2016). By targeting the rSPL, future research and
clinical interventions could potentially address the development of avoidance symptoms in
individuals with ACE (Teicher et al. 2022). For example, interventions that focus on enhancing
the connectivity between the rSPL and other brain regions involved in attention and emotional
regulation, such as the dorsolateral prefrontal cortex (DLPFC) and limbic regions, may be
particularly beneficial in addressing the cognitive and emotional challenges faced by

individuals with ACE (Samson et al. 2024).
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5.2  Structural and functional brain connectivity disruptions in ACE-related PTSD as
revealed by the joint analyses of sMRI, dMRI and rs-fMRI.

The second study conducted a joint connectivity matrix independent component
analysis (jcm-ICA) of sMRI, dMRI, and rs-fMRI at the connectivity level to identify distinct
patterns of connectivity in individuals with PTSD as a result of ACE (Nkrumah et al. 2024a).
This advanced technique enabled the simultaneous analysis of multiple neuroimaging
modalities, revealing shared and distinct patterns of brain connectivity associated with ACE-
related PTSD. Several key brain regions involved in self-referential processing, cognitive
control, and social behaviour demonstrated significant neurobiological differences between
individuals with ACE-related PTSD and ACE-exposed controls.

In terms of functional connectivity, individuals with PTSD exhibited hypoconnectivity in
the lateral prefrontal cortex (IPFC), a region associated with cognitive flexibility and decision-
making (Cole et al. 2014), compared to ACE-exposed controls. Consistent with other studies
(Cisler and Herringa 2021; Olson et al. 2019; Zhu et al. 2023), this may explain why individuals
with PTSD struggle to adapt their thoughts and behaviours in response to changing situations.
Contrariwise, hyperconnectivity was observed in the right medial prefrontal cortex (rmPFC),
involved in self-referential processing (Horn et al. 2014), and the right inferior temporal gyrus,
involved in face perception and recognition (Tromans et al. 2012). Increased connectivity in
the rmPFC may reflect an enhanced focus on internal experiences, such as rumination and
intrusive thoughts related to past trauma (Harnett et al. 2021; Olson et al. 2019; Valencia et
al. 2024). Hyperconnectivity in the right inferior temporal gyrus may suggests heightened
neural responsiveness to visual stimuli, particularly emotional faces, which may contribute to
the re-experiencing of traumatic memories (Cisler and Herringa 2021; Spielberg et al. 2015;
Wang et al. 2016).

Additionally, the JoMNA study examined structural connectivity, focusing on the
number of fibres and the normalized fibre density (NFD) of white matter pathways connecting
brain regions. Individuals with PTSD showed reduced NFD in the right orbitofrontal cortex
(rOFC), a region implicated in social behaviour and emotional regulation (Eluvathingal 2006).
This suggests alterations in the microstructure of WM tracts connecting the rOFC may impact
the ability of individuals with ACE-related PTSD to regulate emotions and interact effectively
with others (Choi et al. 2019; Eising et al. 2021; Samson et al. 2024; Watts et al. 2021).

Overall, these findings provide insights into the neurobiological consequences of ACE-

related PTSD and highlight the potential for targeting these brain regions in future
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interventions (Cisler and Herringa 2021; Wang et al. 2016). By understanding the specific brain
alterations associated with ACE and PTSD, clinicians can develop more effective treatments to
address the cognitive, emotional, and social challenges faced by individuals with these

conditions.

5.3 Potential multimodal neuroimaging biomarkers in understanding the neurobiological
underpinnings of ACE and related PTSD.

Multimodal neuroimaging techniques, such as COMNA and JoMNA, are essential for
advancing our understanding of the neurobiological underpinnings of ACE and related mental
health outcomes such as PTSD. By providing a more comprehensive examination of brain
changes associated with ACE, these methods can help us to develop more targeted and
effective interventions to prevent and treat PTSD resulting from childhood trauma.

Both CoOMNA and JoMNA studies employed in this work underscore the importance of
multimodal neuroimaging (MN) in revealing potential brain biomarkers that enhance our
understanding of the neurobiological underpinnings of ACE and related mental health
outcomes. By combining multiple imaging modalities, these approaches provide a more
comprehensive representation of brain structure and function in individuals exposed to ACE
and PTSD.

The findings from the first study suggest that alterations in cortical volume and white
matter integrity in the rSPL may serve as potential biomarkers for PTSD avoidance symptoms
following childhood abuse. This narrows the focus of prior research perspective which
highlighted the diversity in therapeutic responses among individuals with histories of
childhood maltreatment and a range of psychopathologies, including mood disorders, anxiety,
depression, and PTSD (Nanni et al. 2012; Thomas et al. 2019). For instance, it is well-
documented that depressed individuals with a history of ACE frequently exhibit poor
responses to treatment and are at significantly higher risk for developing recurrent and
persistent depressive episodes (Nanni et al. 2012). From this perspective, Frodl et al. (2010),
suggested that trauma-related structural changes in the prefrontal cortex (PFC) and
hippocampus could mediate the development of depressive and anxiety-related disorders in
individuals with a history of childhood trauma (Frodl et al. 2010). The COMNA study's findings
add specificity to this body of work, emphasizing the role of the rSPL in PTSD avoidance
symptoms rather than in broader psychopathology. This refinement enhances our
understanding of symptom-specific neural alterations related to ACE and associated mental

health outcomes. Given the growing evidence that individuals with ACE often show distinct
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clinical trajectories (Teicher et al. 2022; Teicher and Samson 2013), the CoMNA findings
underscore the critical need for identifying neurobiological markers, such as those in the rSPL,
to better inform personalized treatment strategies. Such biomarkers have the potential to
tailor interventions according to the unique neurodevelopmental impacts of childhood
maltreatment and the development of PTSD later in life.

The second study further identifies potential MN connectivity disruptions in key brain
networks associated with cognitive functioning, emotional processing, and social behaviour in
individuals with ACE-related PTSD. The involvement of these brain networks is particularly
relevant given their established roles in trauma-related psychopathology (Aruldass and
Daskalakis 2023; Harnett et al. 2021; Lanius et al. 2015). For instance, previous studies such
as those by Harnett et al., (2021) found that altered resting-state functional connectivity in
the PFC at two weeks post-trauma was negatively related to PTSD symptoms at three months,
leading to difficulties in cognitive functioning and exacerbating PTSD symptoms. Similarly, the
same study reported significant alterations of FC between the right inferior temporal gyrus
and DMN. The JoMNA findings regarding hyperconnectivity in the mPFC aligns with this,
suggesting that trauma-exposed individuals may experience overactivation in this region,
leading to persistent intrusive thoughts and hypervigilance. In addition to our observed
functional dysconnectivity in the IPFC, the structural connectivity findings in OFC could
highlight potential MN biomarkers that could inform neuroscientifically driven interventions
aimed at addressing abnormalities in prefrontal brain regions in individuals with PTSD and
ACE. For example, individuals showing specific connectivity disruptions in the mPFC or IPFC
may benefit from interventions targeting emotional regulation and cognitive control, while
those with more pronounced white matter damage in the OFC may require therapies focused
on enhancing neuroplasticity in the frontal brain regions (Ireton et al. 2024; Samson et al.
2024; Teicher et al. 2022). The integration of MN biomarkers into clinical practice could pave
the way for highly individualized interventions, improving treatment efficacy and potentially
reducing the long-term burden of mental health disorders stemming from childhood
maltreatment.

In conclusion, the findings from these two studies offer compelling evidence of the long-
lasting effects of ACE on brain structure and function. By examining both structural and
functional changes, the studies provide a more comprehensive understanding of the
neurobiological consequences of early adversity and PTSD. Importantly, these results have

significant implications for developing targeted interventions to address the mental health
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challenges associated with ACE, particularly in brain networks such as the DMN, CEN, SN, and
regions like the inferior temporal cortex, SPL and orbitofrontal cortex (Lanius et al. 2015).
Addressing these neurobiological disruptions may enhance therapeutic precision and efficacy

for individuals impacted by childhood trauma.

5.4 Prospective applications and future direction of multimodal neuroimaging in ACE
research.

MN offers significant potential for advancing our understanding of the neurobiological
underpinnings of ACE and related mental health disorders. By combining multiple imaging
modalities—such as structural MRI, functional MRI, diffusion MRI, and others—MN can
provide a more comprehensive view of the brain's structural and functional changes
associated with ACE. This comprehensive approach opens numerous potential applications,
from early diagnosis to prognosis, and personalized treatment strategies aimed at mitigating
the long-term effects of ACE.

Looking at the rich information provided by a few longitudinal studies and several cross-
sectional unimodal studies which tend to focus on either structural or functional changes in
isolation (Teicher et al. 2020; Teicher et al. 2022; Teicher and Samson 2016), it may be
beneficial to implement larger, multisite, and multimodal studies (Spisak et al. 2023). These
large-scale studies could significantly enhance the richness of available data by gathering
information from diverse populations across multiple research sites (Koutsouleris and Fusar-
Poli 2024), improving both the power and reliability of findings from MN research (Spisak et
al. 2023). This diversity in MN data would also allow researchers to examine variations in the
prevalence and severity of ACE, as well as how different types of childhood maltreatment
influence neurodevelopment at several scales and mental health outcomes. Furthermore,
larger, multisite and MN studies in ACE would provide stronger statistical power and greater
generalizability, ensuring that findings are more robust and applicable across different
demographic groups and environments (Dwyer et al. 2018; Koutsouleris et al. 2016; Nichols
et al. 2017; Pomponio et al. 2020; Spisak et al. 2023). With access to data from various imaging
modalities, such studies could better investigate the complex neurobiological pathways
involved in ACE, ultimately offering more comprehensive insights into more specific,
personalized treatment strategies aimed at mitigating the long-term effects of ACE.

Another key advantage and potential application of MN in ACE research is the rich
information provided by the individual modalities and the ability to extract multimodal

biomarkers from MN data. This could be done using data-driven methods. Unlike the model-
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driven approaches mostly applied in several neuroimaging research (including that on ACE),
which rely heavily on predefined hypotheses about brain region interactions (e.g., general
linear models, dynamic causal modelling, or structural equation modelling), data-driven
methods offer a more exploratory approach (Calhoun and Sui 2016). Another important factor
is that model-driven methods may overlook important relationships not included in the initial
hypotheses. Using data-driven methods, such as machine learning and multivariate methods,
we could identify structural, functional, and connectivity features from multiple modalities.
This could be done using techniques such as independent component analysis (ICA) and
principal component analysis (PCA), which enable us to explore the entire dataset across all
voxels, providing a broader, more comprehensive view of the brain's structural, functional,
and connectivity features. For example, in our second study, we used PCA and jICA to identify
features across multiple modalities, demonstrating the ability of data-driven approaches to
detect neurobiological changes. In a large population or multisite and multimodal samples,
these features could serve as MN biomarkers because they offer optimal information about
the population without requiring prior knowledge.

These MN biomarkers could be complemented by utilizing full images to build a joint
dataset that includes both extracted features and the full imaging data, providing a more
comprehensive view (kindly see Figure 12A below). The combined dataset can then be used
to build predictive models with robust cross-validation techniques, which have great potential
to distinguish between individuals at higher or lower risk for mental health disorders following
childhood maltreatment. These predictive models would integrate a wide range of factors,
from brain volume and white matter microstructure to functional connectivity patterns and
epigenetic, and psychometric data such as overall psychosocial burden, allowing for a more
holistic view of mental health. By incorporating these biomarkers into predictive models,
researchers can develop tools that accurately identify individuals who are most likely to
develop psychopathology, such as PTSD, depression, or anxiety, in response to ACE (Teicher
et al. 2022). This approach is also geared towards advancing precision psychiatry, enabling the
tailoring of treatment approaches based on an individual's specific neural profile, ultimately
improving intervention outcomes and reducing the long-term burden of ACE-related mental
health disorders (Kéri et al. 2024; Koutsouleris and Fusar-Poli 2024; Spisak et al. 2023). The
proposed framework for potential future application of MN in mega, multi-site and ACE
studies can be found in the Figure 12 below. Applications at the clinical level can be done

either using individual fully-processed image or multimodal data (see Figure 12C below).
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In conclusion, MN represents a transformative tool in ACE research, offering
comprehensive insights into the neurobiological pathways affected by early trauma. By
combining data from multiple imaging modalities, MN enables a more nuanced understanding
of how ACE alters brain structure and function, as well as how these changes relate to mental
health outcomes. The potential clinical applications of MN are vast, ranging from using MN
data to build predictive models for early diagnosis and prognosis to applying these models in
personalized treatment strategies, all aimed at mitigating the long-term effects of ACE.
Furthermore, an improved understanding of the neurobiological development and
progression of mental health disorders through MN findings can guide public health
interventions. This knowledge can support early screening initiatives for at-risk individuals and
inform community-based prevention programs to help reduce mental health risks associated
with ACE. As the field advances, larger, multisite, and multimodal studies will be critical for
shaping the future of ACE research, ultimately improving mental health outcomes for those

affected by childhood maltreatment.
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Figure 12. Proposed framework for multimodal brain data-based prediction: from research to clinic. Data
driven methods to extract multimodal biomarkers: PCA (Principal Component Analysis), ICA (Independent
Component Analysis) and CCA (Canonical Correlation Analysis). Machine Learning Algorithms for building
predictive models: SVM (Support Vector Machine) using SVM-lin: Linear kernel or SVM-rbf: Radial Basis
Function kernel and GB (Gradient Boosting). The best-performing model or an average of a set of models
from (B) would be selected as the optimal model.
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5.5 Limitations

Despite the strengths of this work, several limitations should be acknowledged. While
specific limitations have been discussed in individual chapters, there are also some general

limitations that highlight opportunities for future research.

Sample Size:

The relatively small sample size, particularly in Study 1 (n=78), may limit the
generalizability of our findings. While Study 2 (n=119) offers a larger sample size, even larger
samples, as proposed in section 5.4, would further improve the statistical power of our
analyses and the accuracy of our predictions. This would allow for a more comprehensive
analysis across diverse populations and enhancing the generalizability of our findings. Such
improvements are important for characterizing individual differences and refining multimodal
biomarkers, ultimately contributing to more precise models better suited for potential clinical
applications. A recent publication by Bhaumik et al. (2023), conducted a simulation study
covering the whole brain with 87 regions to determine the power associated with commonly
used sample sizes in neuroimaging studies. Their findings suggest that a sample size of 60 is
adequate to achieve a power of 0.80. Although both of our studies exceed this threshold,
increasing the sample size through a multicentre, multimodal approach would further
strengthen our results and allow for a more robust investigation of individual differences and

the development of more precise biomarkers.

Causality

The cross-sectional design of both studies precludes causal inferences regarding the
relationship between ACE, brain abnormalities, and PTSD. Additionally, both cross-sectional
studies rely on retrospective reports of childhood adversity, and while they assume that ACE
has a causal effect on later outcomes, this assumption cannot be rigorously tested within the
constraints of our current study design. Despite this limitation, self-report measures are
widely used in ACE research as they offer valuable insights into individuals’ subjective
experiences (Danese and Widom 2023; Danese and Widom 2024; Kendall-Tackett 2024). For
example, subjective reports of ACE have been shown to have a stronger association with
emotional disorders in adulthood than objective assessments (Danese and Widom 2023). This
suggests that self-reported adversity may also be more closely linked to brain alterations, as
it captures personal context and perceived impact of early-life trauma. While our cross-

sectional studies provide a valuable insight, further longitudinal studies are necessary to
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establish the temporal dynamics of these changes and determine whether brain alterations

precede or follow the development of PTSD.

Neurobiological Mechanisms

Multimodal neuroimaging provides valuable insights into brain structure and function,
but it does not fully capture the complexities of the mechanisms underlying ACE and PTSD.
Neuroimaging alone lacks the capacity to account for the interplay of genetic and epigenetic
factors alongside the cumulative impact of environmental influences, all of which collectively
shape neurodevelopmental pathways and affect susceptibility to mental health conditions like
PTSD following childhood maltreatment (Teicher and Samson 2016). Genetic factors, such as
variations in genes related to the hypothalamic-pituitary-adrenal (HPA) axis, have been linked
to altered stress responses and emotional regulation, potentially increasing PTSD risk in
certain individuals (Aliev et al. 2020; Naninck et al. 2015). Additionally, epigenetic
modifications—such as DNA methylation changes in response to environmental stressors—
add further complexity to this relationship, as these modifications dynamically influence gene
expression and may contribute to the neural adaptations observed in ACE survivors (Colich et
al. 2020; Vasquez and Renault 2015; Weder et al. 2014). Moreover, environmental factors,
including socioeconomic status, quality of social support, and cumulative lifetime stress, also
interact with genetic and epigenetic variables, creating a complex framework of
neurobiological responses to ACE. As proposed in Figure 12, integrating genetic, epigenetic,
and environmental data with multimodal neuroimaging may offer a more comprehensive
understanding of how these factors collectively influence brain structure and function in
individuals with ACE. Such an integrative approach holds promise for developing more
accurate predictive models, enhancing the translation of research findings into effective

intervention and treatment strategies.

Methodological Considerations

While multimodal neuroimaging offers a comprehensive approach to understanding
brain function and structure, it is not without limitations. For example, the different imaging
modalities often have varying spatial and temporal resolutions and produce data in different
scales and formats, which complicates data integration and interpretation. Recent
developments in MN data registration (Lange et al. 2024), data processing (Tourbier et al.
2022) and cohesive analytical frameworks (Koutsouleris et al. 2023; Qu et al. 2024) have led

to significant progress in addressing these challenges, enabling the effective integration and
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interpretation of diverse multimodal neuroimaging datasets. However, further advancements
in computational methods are still needed to fully harness the potential of multimodal

neuroimaging and extract meaningful insights.

By addressing these limitations and exploring new avenues of research, future studies
can contribute to a more comprehensive understanding of the neurobiological underpinnings
of ACE and PTSD and inform the development of more effective prevention and treatment

strategies.

5.6 Clinical Applications

Building upon the proposed framework highlighted in section 5.4 above, the application
of MN and predictive models has the potential to transform the management of mental health
outcomes in individuals with a history of ACE (Chopra et al. 2024a; Lee et al. 2024; O’Halloran
et al. 2016; Tejavibulya et al. 2022). These models, in addition to multimodal neuroimaging
data, can incorporate clinical and demographic information to identify individuals at high risk
of developing mental health disorders following childhood maltreatment. By identifying
individuals at risk early on, targeted interventions could be implemented to prevent or
mitigate the development of psychopathology such as PTSD. In addition to risk assessment,

predictive models can serve several critical functions in clinical practice:

Tailor treatment approaches

Predictive models could link specific neurobiological markers to distinct
psychopathologies, enabling the design of personalized treatment plans (Bzdok and Meyer-
Lindenberg 2018; Chopra et al. 2024b). This precision approach ensures that therapeutic
interventions align with the unique neurobiological and psychological needs of each

individual, enhancing treatment efficacy.

Monitor treatment response

By leveraging longitudinal MN data, predictive models can track changes in brain
structure and function over the course of treatment (Jin et al. 2021). This capability could
allow clinicians to evaluate the effectiveness of interventions, refine therapeutic strategies,
and make data-driven adjustments to optimize patient outcomes. For example, treatment-
response models using linear time-invariant dynamical systems can be used effectively
represent continuously varying treatment doses and their effects on outcomes over time

(Soleimani et al. 2017).
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Identify early signs of relapse

By monitoring for changes in neurobiological markers, predictive models could help
identify individuals who may be at risk for relapse, allowing for early intervention to prevent
symptoms recurrence. For example, recent research has explored biological factors that may
enhance relapse prediction, including endocrine measures like cortisol levels and
neurobiological markers such as brain atrophy in medial frontal regions (Ansell et al. 2012;
Moeller et al. 2016; Sinha 2011). Integrating these biological markers with traditional

symptom monitoring could potentially improve the accuracy of relapse prediction.

Integrating MN and predictive modelling into clinical practice could transform

personalized psychiatry and improve outcomes for those with ACE.
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This work focuses on the application of multimodal neuroimaging (MN) to investigate
the neurobiological underpinnings of ACE and related PTSD. By combining multiple
neuroimaging modalities, the research provides a more comprehensive understanding of the

brain changes associated with childhood maltreatment and the development of PTSD.

Key findings include:

e |dentification of potential neurobiological markers: The studies have identified
alterations in specific brain regions, such as the right superior parietal lobule that may
serve as potential biomarkers for PTSD avoidance symptoms following child abuse.

e Disruption of brain networks: Disruptions in key brain networks involved in cognitive
control, emotional processing, and social behaviour have been observed in individuals
with ACE-related PTSD.

e Development of predictive models: The research has laid the groundwork for building
predictive models that could be used to identify individuals at risk for psychopathology

and tailor treatment approaches.

Based on these findings, a framework for future research applications is proposed, including:
e Larger, multisite, and multimodal studies: To enhance the generalizability and statistical
power of the findings.
e Predictive modelling: To develop tools for identifying individuals at risk and tailoring
treatment approaches.
e C(linical applications: To improve intervention outcomes and reduce the long-term

burden of ACE-related mental health disorders.

Overall, this work contributes to a growing body of evidence on the neurobiological
consequences of ACE and highlights the potential of MN to inform the development of more
effective prevention and treatment strategies. MN has the potential to enhance the way we
understand and treat ACE-related mental health disorders. By providing a more
comprehensive and nuanced picture of brain changes associated with ACE, MN can help us to
identify individuals at risk, predict symptom severity, and tailor interventions to the specific

needs of each individual.
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Die vorliegende Arbeit konzentriert sich auf die Anwendung multimodaler

Neuroimaging (MN) Methoden und Analysen, zur Untersuchung der neurobiologischen

Grundlagen von aversiven Kindheitserfahrungen (Adverse Childhood Experiences, ACE) und

der damit verbundenen Posttraumatische Belastungsstérung (PTSD). Durch die Kombination

mehrerer Bildgebungsmodalitaten liefert diese Methode ein umfassenderes Verstandnis der

Veranderungen im Gehirn mit Kindesmisshandlung und der Entwicklung von PTSD

verbundenen sind.

Zu den wichtigsten Erkenntnissen gehdren:

Identifizierung potenzieller neurobiologischer Marker: Die Analysen haben
Veranderungen in bestimmten Gehirnregionen identifiziert, wie beispielsweise den
rechten superioren Parietallappen, die als potenzielle Biomarker fir

Vermeidungssymptome von PTSD nach Kindesmissbrauch dienen kdénnten.

Veranderung von Gehirnnetzwerken: Stérungen in wichtigen Netzwerken des Gehirns,
die an kognitiver Kontrolle, emotionaler Verarbeitung und sozialem Verhalten beteiligt

sind, wurden bei Personen mit ACE-bezogener PTSD beobachtet.

Entwicklung von Vorhersagemodellen: Diese Untersuchung hat den Grundstein fiir den
Aufbau von Vorhersagemodellen gelegt, die zur Identifizierung von Personen mit hohem
Risiko fur Psychopathologie und zur Anpassung von Behandlungsansdtzen eingesetzt

werden konnten.

Basierend auf diesen Erkenntnissen wird ein Rahmen fiir zukiinftige Forschungsanwendungen

vorgeschlagen, einschlielRlich:

GroRere, multizentrische und multimodale Studien: Um die Generalisierbarkeit und

statistische Aussagekraft der Ergebnisse zu erhéhen.

Vorhersagemodellierung: Um Tools zur ldentifizierung von Risikopersonen und zur

Anpassung von Behandlungsansatzen zu entwickeln.

Klinische Anwendungen: Um die Behandlungsergebnisse zu verbessern und die

langfristige Belastung durch ACE-bedingte psychische Stérungen zu reduzieren.
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Insgesamt trdgt diese Arbeit zu einem wachsenden Wissensstand (iber die
neurobiologischen Folgen von ACE bei und unterstreicht das Potenzial von MN fir die
Entwicklung effektiverer Praventions- und Behandlungsstrategien. MN hat das Potenzial, die
Art und Weise, wie wir ACE-bedingte psychische Stérungen verstehen und behandeln, zu
verbessern. Durch ein umfassenderes und differenzierteres Bild der mit ACE verbundenen
Gehirnveranderungen kann MN dazu beitragen, Risikopersonen zu identifizieren, die Schwere
von Symptomen vorherzusagen und Interventionen auf die spezifischen Bedirfnisse jedes

Einzelnen abzustimmen.
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