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CHAPTER I:  INTRODUCTION  

1.1 Adverse childhood experiences and mental health outcomes 

Adverse childhood experiences (ACE), such as sexual, emotional or physical abuse 

and/or neglect have been linked to various mental health problems. These traumatic 

experiences, occurring during critical developmental periods, can disrupt healthy brain 

development, leading to a cascade of negative mental health outcomes (Teicher et al. 2022). 

Research linking ACE to mental health problems includes psychiatric disorders such as post-

traumatic stress disorder (PTSD), depression, anxiety, borderline personality disorder, 

attention deficit hyperactivity disorder (ADHD) and substance abuse (Herzog and Schmahl 

2018; Seitz et al. 2022). The prevalence of ACE is alarmingly high, with global data indicating 

that millions of children suffer from maltreatment each year (Hillis et al. 2016; Hughes et al. 

2017). For example, in a recent study by Struck et al., 15% of adult participants without 

psychiatric disorders reported having experienced moderate-to-severe ACE (Struck et al. 

2020). In another study, almost half of a 2531-German sample reported at least one form of 

ACE and were prone to psychosocial problems involving life satisfaction, psychopathology, 

and interpersonal aggression (Witt et al. 2019). Such prevalence represents a major public 

health problem.  

Recent studies categorize ACE into two dimensional subtypes (DS): abuse and neglect 

(Lippard and Nemeroff 2020; McLaughlin et al. 2019; Sheridan and McLaughlin 2014). Abuse 

involves the presence of an unexpected experience that poses a significant threat of harm to 

the child, such as physical, sexual or emotional harm. Neglect, which includes physical and 

emotional deprivation during childhood, is characterized by a lack of expected environmental 

inputs, specifically a lack of expected cognitive and social inputs. These DS of maltreatment 

are associated with notable differences in clinical presentation, including earlier onset and 

more severe symptoms of psychiatric disorders (Lippard and Nemeroff 2020; Teicher and 

Samson 2013), a more pernicious physical sequence (McLaughlin and Lambert 2017; Zhang et 

al. 2021), increased risk of suicide (Jones et al. 2024), diminished quality of life (Bosch et al. 

2020; Greger et al. 2016), and more psychiatric comorbidities (Teicher et al. 2022). Early 

research on the psychiatric consequences of ACE primarily focused on all forms of adversity 

as cumulative risk score, emphasizing on the number of distinct types of adversity a child has 

experienced regardless of the frequency or severity of the individual incidents of those 
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experiences. This approach assumed that different types of ACE are quantitatively similar, 

implying that each distinct type would have an equal impact. However, more recent studies 

have shifted away from this concept to focus on the DS of ACE. This shift recognizes that the 

multiple underlying dimensions of experiences may have distinct associations with cognitive, 

emotional, and neurodevelopmental processes that reflect the core features of abuse and 

neglect to varying degrees (Sheridan and McLaughlin 2014). For example, physical and sexual 

abuse, witnessing domestic violence by either parents or friends, and exposure to violence in 

the community at childhood all involve, in varying degrees, direct threats of harm to the child 

and are consistently associated with the risk of PTSD, anxiety disorder, panic disorder and 

depression at adulthood (Comijs et al. 2013; Cougle et al. 2010). Conversely, neglect, which 

involves low levels of social and cognitive stimulation such as institutional rearing and other 

forms of parental absence, is associated with higher levels of adult depression symptoms 

(Infurna et al. 2016; Spinazzola et al. 2014). A review by Colich et al. (2020), also demonstrated 

the distinct developmental consequences of abuse and neglect, highlighting that abuse is 

associated with accelerated neurodevelopmental processes while neglect may not be (Colich 

et al. 2020). These findings suggest that the DS of ACE are linked to distinct patterns of 

accelerated biological aging, contributing to a variety of health problems. This highlights the 

significance of the DS categorization and emphasizes the importance of exploring all DS of ACE 

in a broad context (Khan et al. 2015; Teicher et al. 2022).  

Another perspective highlights the dose-dependent nature of the effects of ACE on child 

development (McLaughlin et al. 2019; Morris et al. 2021; Wiens et al. 2020), showing that 

severity and chronicity of ACE are associated to the magnitude of their impact ensuing mental 

and physical health outcomes (Strathearn et al. 2020). This dose-dependent nature, also 

referred to as intensity and frequency, is evident across various domains, including social, 

emotional, cognitive, and neurobiological functioning. On a social level, individuals exposed 

to more severe and prolonged ACE exhibit more pronounced difficulties in interpersonal 

relationships, social skills, and peer interactions (Mao et al. 2021; Mc Elroy and Hevey 2014). 

A higher cumulative ACE score is associated with increased risk for social isolation, aggression, 

and difficulties in forming intimate relationships (Crawford et al. 2022; Majer et al. 2010) as 

well as social interactions (Mc Elroy and Hevey 2014). The intensity and duration of ACE are 

directly linked to the severity of emotional dysregulation (Dvir et al. 2014). Individuals with a 

higher cumulative ACE score are more likely to experience chronic and severe emotional 

difficulties, including heightened anxiety, depression, and difficulty managing anger. On a 
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cognitive level, cognitive functioning is significantly impacted by the dose of ACE (Danese and 

Widom 2024; Goltermann et al. 2021). Children exposed to more severe and prolonged 

adversity exhibit greater deficits in attention, memory, and executive functions (Irigaray et al. 

2013; Majer et al. 2010). A higher cumulative ACE score is associated with increased risk for 

learning difficulties, academic challenges, and impaired problem-solving skills. The 

neurobiological consequences of ACE also demonstrate a dose-dependent pattern (Teicher et 

al. 2016). Individuals with a higher cumulative ACE score exhibit more pronounced alterations 

in brain structure and function, including reduced gray matter volume in critical regions and 

dysregulation of the stress response system (Anda et al. 2006; Ansell et al. 2012). These 

neurobiological changes underlie the increased vulnerability to mental health disorders and 

behavioral problems. Such a graded relationship underscores the importance of considering 

the dose-dependent nature of ACE when assessing individual risk profiles. 

The multiplicity of ACE can also significantly exacerbate social, emotional, cognitive, and 

neurobiological impairments (Wiens et al. 2020). The multiplicity of ACE refers to the exposure 

of a child to multiple types of ACE. This can include a combination of abuse and neglect, or 

different forms of the same type of maltreatment. For example, a child might experience both 

physical abuse and emotional abuse or neglect. Research indicates that individuals exposed 

to multiple forms of abuse and neglect are more likely to experience severe social difficulties, 

including challenges in forming and maintaining healthy relationships and increased 

tendencies toward isolation and aggression (Evans and Kim 2013). Emotionally, the effect of 

multiple ACE amplifies risks for depression, anxiety, and other mood disorders, often leading 

to chronic stress and emotional dysregulation (Freier et al. 2022; Gardner et al. 2019). 

Cognitively, the likelihood of impairments in memory, attention, and executive functioning 

increases with the number of ACE, contributing to difficulties in academic and professional 

settings (Hawkins et al. 2021; Iverson et al. 2024). Neurobiologically, multiple ACE can result 

in profound structural and functional brain changes such as altered connectivity and volume 

reductions in critical areas like the prefrontal cortex and hippocampus, which are crucial for 

emotional regulation and cognitive processing (Herzog and Schmahl 2018; Lippard and 

Nemeroff 2020; Pang et al. 2022; Samson et al. 2024). These compounded effects underscore 

the critical need for considering the long-term impact of multiple ACE on individuals’ 

development and well-being. 

The complex interplay of DS, dose and multiplicity of ACE impacts the child development 

and later mental health outcomes (Fleming et al. 2024; Teicher et al. 2022). These three 
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factors are not mutually exclusive and can interact in complex ways. Not only does the severity 

and duration of adverse experiences matter, but also the number and variety of different 

types of ACE a child is exposed too. For example, a child who experiences both physical abuse 

and emotional neglect (multiplicity) may also be exposed to severe and frequent instances of 

abuse (dose-dependent effects), leading to more severe social, emotional, and cognitive 

impairments compared to a child who experiences only one type of neglect. Similarly, a child 

exposed to multiple forms of abuse, such as physical, emotional, and sexual abuse, is at 

greater risk for long-term mental health problems and developmental challenges.  

While the focus thus far has been on the detrimental effects of ACE, it is crucial to 

acknowledge the presence of protective factors that can mitigate their impact (Crouch et al. 

2019; Kentner et al. 2019; Sege and Harper Browne 2017). Resilience, defined as the ability to 

adapt and overcome adversity, plays a pivotal role in determining outcomes for individuals 

exposed to ACE (Panagou and MacBeth 2022; Richter et al. 2019). Protective factors can 

operate at various levels, including individual, familial, and community factors (Bellis et al. 

2018; Bellis et al. 2019). Physical activity also emerges as a significant individual-level 

protective factor, contributing to both physical and mental health (Demirakca et al. 2014; 

Hadwen et al. 2022; Hird et al. 2024). Supportive and nurturing family environments can 

buffer the negative effects of ACE, while strong community connections can provide essential 

resources and support (Hughes et al. 2017; Merrick et al. 2020). It is essential to recognize 

that the interplay between ACE and protective factors is complex. While some individuals 

exhibit remarkable resilience in the face of adversity, others are more vulnerable (Pusch and 

Dobson 2017). Given the primary focus of this study is on utilizing neuroimaging methods to 

enhance the diagnosis and comprehension of ACE, the discussion will be limited to these 

methodologies. 

 

1.2 Neuroimaging studies in ACE 

Neuroimaging studies have been pivotal in elucidating the brain's structural and 

functional changes associated with ACE. Techniques using magnetic resonance imaging (MRI) 

such as functional MRI (fMRI), structural MRI (sMRI), and diffusion weighted MRI (dMRI) have 

revealed alterations in brain regions involved in emotion regulation, stress response, and 

cognitive processing (Hart and Rubia 2012; Herzog and Schmahl 2018; Samson et al. 2024; 

Teicher et al. 2020; Teicher and Samson 2016). These different neuroimaging modalities are 
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used because they capture different aspects of brain biology and also provide different 

visualization of the brain (Modo and Bulte 2011). The use of only one neuroimaging modality 

in a study is termed a unimodal study. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. MRI of the brain captured using (A.) sMRI, (B.) dMRI and (C.) fMRI. sMRI utilizes T1 and 
T2 weighted MRIs, which are segmented and parcellated to obtain structural properties of the brain 
such as brain volume, cortical area, and cortical thickness. dMRI employs diffusion weighted imaging 
to construct white matter pathways. Functional MRI utilizes BOLD activity in the brain to inform how 
brain regions are activated (volumetric activation) or correlate with each other (functional 

connectivity) during the performance of a task (task-based fMRI) or when at rest (resting-state fMRI).   

 

Unimodal studies in ACE 

sMRI has been instrumental in mapping the brain structural abnormalities associated 

with ACE. Using voxel-based morphometry (VBM), researchers have consistently reported 

reduced gray matter volumes in individuals exposed to ACE in the inferior frontal gyrus, 

hippocampus and amygdala (Pollok et al. 2022; Yang et al. 2023), dorsolateral prefrontal 

cortex and superior parietal cortex (Nkrumah et al. 2024b), as well as the medial prefrontal 

cortex (Hart and Rubia 2012; Kelly et al. 2013; McLaughlin et al. 2019). Another sMRI method 

is surface-based morphometry (SBM), which is used to explore cortical alterations such as 

surface area, cortical gyrification, cortical thickness, and curvature. The advantages of using 

both voxel- and surface-based morphometry to study gray matter (GM) have been studied 

elsewhere (Goto et al. 2022). A recent meta-analysis that combined both SBM and VBM 

studies found ACE to affect cortical thinning in the right medial cingulate and middle frontal 

gyrus as well as reduced GM volume in the left supplementary motor area (Yang et al. 2023). 

B 

A C 
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 Abuse and neglect as dimensional subtypes of ACE: sMRI studies differentiate between 

the effects of abuse and neglect on brain structure. Abuse is more closely related to 

reductions in amygdala and PFC volume, regions involved in emotional regulation and 

threat response (Arnsten et al. 2015; Kelly et al. 2013). Additionally, reduced cortical 

thickness in prefrontal and temporal regions has been associated to childhood abuse 

(Gold et al. 2016). Neglect, on the other hand, tends to impact areas involved in social 

cognition, like the medial PFC and temporal lobes, which are crucial for social 

interactions and emotional processing (Mackes et al. 2019; Sheridan et al. 2022) . 

 Multiplicity of ACE and its impact: The number and severity of ACE have been shown to 

exacerbate these structural changes. Individuals with multiple ACE exhibit more 

significant reductions in hippocampal volume, a brain region critical for memory and 

stress regulation (Grauduszus et al. 2024; Herzog et al. 2020; Schalinski et al. 2016). 

These effects indicate that the brain’s structural response to adversity intensifies with 

the increasing duration and intensity of maltreatment (Anda et al. 2006). 

dMRI studies have provided valuable insights into the neurodevelopmental 

consequences of ACE. Research consistently demonstrates that individuals with a history of 

ACE exhibit alterations in white matter microstructure, particularly in regions associated with 

emotion regulation, cognitive control, and stress response (Huang et al. 2012; Lim et al. 2019a; 

Ohashi et al. 2019). Reduced fractional anisotropy (FA) in key white matter tracts, such as the 

corpus callosum, uncinate fasciculus, and cingulum bundle, is a common finding (Olson et al. 

2020; Puetz et al. 2017) . Voxel-based analysis (VBA) of dMRI, as used in diffusion tensor 

imaging (DTI), is a method for studying white matter, providing evidence of altered brain 

connectivity by detecting differences at the voxel level. While DTI studies have underscored 

the profound impact of early adversity on brain development, they are limited by relatively 

small sample sizes and the inability to model complex fibre orientations. Consequently, DTI-

derived metrics are often challenging to interpret, particularly in regions with crossing fibres. 

To address these limitations, more advanced dMRI techniques, such as higher-order DWI 

models like fixel-based analysis (FBA), are emerging (Raffelt et al. 2015; Raffelt et al. 2017). 

These methods enable the estimation of multiple fibre orientations within voxels, offering 

greater precision in characterizing white matter microstructure. However, at the time of this 

thesis, only one study (Kanel et al. 2024), has employed FBA in previously institutionalized 

adolescents. Their findings indicate fixel-based alterations within the cerebellar peduncles, 
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inferior longitudinal fasciculi, corticospinal tract, and corpus callosum in institutionalized 

adolescents compared to non-institutionalized ones. Although these findings replicate and 

extend DTI findings (Sheridan et al. 2022), the application of FBA, particularly in multiple 

crossing-fibre regions, demonstrates alterations in micro- and macro-structure in previously 

institutionalized adolescents, indicating that neural correlates are still apparent in adolescents 

with such experiences. 

 Abuse and neglect as dimensional subtypes of ACE: The effects of abuse tend to disrupt 

WM tracts associated with the limbic system such as the fornix (Eden et al. 2015) and 

tracts connecting the prefrontal cortex to the mid-temporal like the inferior longitudinal 

fasciculus (ILF) (Lim et al. 2019a), leading to impaired emotional regulation and 

heightened stress reactivity (Ohashi et al. 2017; Olson et al. 2020). In contrast, neglect, 

is linked to reduced WM integrity in tracts associated with social and cognitive 

processing, such as the inferior and superior longitudinal fasciculus (SLF) (Mackes et al. 

2022) and arcuate fasciculus (Hanson et al. 2013). 

 Multiplicity of ACE and its impact: dMRI studies have shown that the cumulative number 

of ACE  correlates with the severity of white matter disruptions (Lim et al. 2020). For 

instance, individuals exposed to multiple types of abuse or both abuse and neglect tend 

to show more extensive white matter damage. This is particularly observed in tracts 

critical for integrating emotional and cognitive functions like the cingulum, SLF (Huang 

et al. 2012), corpus callosum, uncinate fasciculus (Buimer et al. 2022; Kanel et al. 2024; 

Sheridan et al. 2022), and pathways linking fronto-limbic and occipital visual cortices, 

such as anterior thalamic radiation and bilateral fornix (Lim et al. 2020). 

fMRI has been pivotal in uncovering functional brain network disruptions in individuals 

with ACE. Resting state fMRI (rsfMRI) is used to capture spontaneous brain activity when an 

individual is at rest, revealing patterns of connectivity between brain regions. rsfMRI studies 

have found aberrant functional connectivity patterns in individuals with a history of ACE (Gerin 

et al. 2023a; Rakesh et al. 2023; Schröder et al. 2024; Valencia et al. 2024). For example, 

hyperconnectivity within the default mode network (DMN) is consistently reported, 

suggesting increased rumination on intrusive memories and persistent negative thoughts 

related to past trauma (Daniels et al. 2011; Hoffmann et al. 2018; Valencia et al. 2024). 

Concurrently, hyperconnectivity within the salience network (SN) is associated with 

heightened emotional reactivity and difficulties in distinguishing between relevant and 
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irrelevant stimuli (Thome et al. 2014; Watts et al. 2021). Conversely, hypoconnectivity within 

the central executive network (CEN) is linked to distractibility and impaired cognitive control, 

affecting daily functioning. Furthermore, a recent meta-analysis study has demonstrated 

disrupted communication between brain regions involved in emotion regulation, cognitive 

processing, and self-referential processing, commonly observed in individuals with ACE (Ireton 

et al. 2024). 

 Abuse and neglect as dimensional subtypes of ACE: The two subtypes of maltreatment 

have been shown to affect distinct networks. Individuals exposed to abuse exhibit 

distinct impaired functioning in brain regions responsible for emotional processing, 

learning, and self-referential processing, such as the hippocampus, amygdala, and 

prefrontal cortex (PFC) of the DMN (Liuzzi et al. 2023). Another study found emotional 

abuse to be specifically associated with hyperconnectivity in the DMN, potentially 

leading to excessive self-focus and rumination, as seen in disorders like PTSD and 

depression (Van Der Werff et al. 2013). In contrast, neglect, has been linked to 

hypoconnectivity in networks responsible for cognitive and social functions, such as the 

SN (Silveira et al. 2021). Functional alterations in the hippocampus and amygdala have 

been observed in individuals who have experienced institutionalization (Rakesh et al. 

2021) and poverty-related neglect (Sheridan et al. 2012). 

 Multiplicity of ACE and its impact: rsfMRI studies also reveal that the severity and 

frequency of ACE exposure play a significant role in the extent of functional network 

disruptions (Gerin et al. 2023a; Valencia et al. 2024). Greater exposure to multiple ACE 

is associated with more pronounced alterations in corticolimbic regions (e.g., the 

amygdala, medial prefrontal cortex, and hippocampus) (Gerin et al. 2023a) and the 

frontoparietal network regions (such as the inferior frontal gyrus and superior parietal 

regions), which reflects impaired executive function and cognitive control (Gard 2021). 

Overall, insights from various unimodal studies provide an understanding of how early 

trauma can alter brain structure and functioning, potentially contributing to the development 

of psychopathology later in life. However, research examining the impact of maltreatment on 

brain structure and functioning at adulthood using multimodal methods remains limited. 
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Figure 2. Findings from unimodal sMRI and dMRI meta-analytical studies in ACE. Images were 
retrieve from (Pollok et al. 2022; Yang et al. 2023) 

 

1.3 Limitations of current approaches 

Despite significant information provided by current neuroimaging approaches to 

studying ACE, there are several limitations. Many studies rely on single-modality imaging 

techniques, which often analyse structural and functional neuroimaging data independently, 

potentially overlooking crucial interactions and shared information between these modalities 

(Calhoun and Sui 2016; McLaughlin et al. 2019; Samson et al. 2024), which may lead to missing 

potential insights and an inability to explore the full complexity of brain alterations associated 

with ACE. Sample sizes in these studies are also often limited, restricting the generalizability 

of findings. Moreover, the integration of the various neuroimaging data remains challenging, 

necessitating the development of sophisticated analytical methods to uncover the intricate 

relationships between different brain alterations. 

1.4 Aims of this work 

To address the limitations of current research, this study aims to investigate the complex 

interplay between structural and functional brain alterations in individuals with a history of 

ACE. By employing a multimodal neuroimaging approach, we seek to uncover shared and 

unique neural correlates associated with ACE-related psychopathology. Specifically, this study 

aims to: 



CHAPTER I:   INTRODUCTION 

10 

a. Characterize structural and functional brain abnormalities in individuals with ACE using 

MRI analyses, such as surface-based morphometry for sMRI data, tract-based spatial 

statistics for dMRI data, and functional connectivity analysis for rsfMRI data. 

b. Examine the relationship between structural GM and WM brain alterations and ACE 

using sMRI and dMRI. 

c. Explore the potential relationship between structural and functional brain alterations 

and ACE, as well as ACE-related psychopathology, through multimodal analysis. 

d. Provide potential insights for future directions of the application of multimodal 

neuroimaging in ACE research. 

By achieving these objectives, this study will contribute to a deeper understanding of the 

neurobiological underpinnings of ACE and related psychopathology, ultimately improving the 

diagnosis, prognosis, and treatment of mental health disorders with or without ACE which 

aligns with the overarching goal of precision neuropsychiatry (Koutsouleris and Fusar-Poli 

2024). 

1.5 Introduction to Multimodal Neuroimaging 

Multimodal neuroimaging has emerged as a powerful tool in neuroscience, offering 

unprecedented insights into the intricate structure and function of the human brain (Calhoun 

and Sui 2016). This approach involves acquiring various forms of neuroimaging data from the 

same individual using multiple imaging modalities, such as sMRI, fMRI, dMRI, magnetic 

resonance spectroscopy (MRS), arterial spin labelling (ASL) MRI, electroencephalography 

(EEG), magnetoencephalography (MEG), and positron emission tomography (PET) (Tulay et al. 

2019). Each modality brings unique strengths and limitations, depending on its ability to 

provide different aspects of structural and functional properties of the brain. 

For instance, sMRI provides detailed images of the brain's anatomy, highlighting GM, 

white matter (WM), and cerebrospinal fluid (CSF), which can be quantified in terms of volume 

or surface area. In contrast, fMRI measures changes in blood oxygenation levels, offering 

insights into brain function by detecting activity in specific regions during tasks or at rest. 

Similarly, dMRI elucidates white matter architecture, with advanced techniques like NODDI 

modelling revealing microstructural anomalies (Kamiya et al. 2020). Additionally, MRS 

provides metabolic information about the brain, allowing for the quantification of 
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neurotransmitters, metabolites, and other molecules such as Glutamate, Gamma-

aminobutyric acid (GABA) and N-acetyl aspartate (NAA) (Soares and Law 2009). 

By integrating these complementary neuroimaging modalities, we can explore the 

complex interplay between brain structure and function, identify neural correlates of specific 

behaviours or disorders, and develop more accurate biomarkers for diagnosis and prognosis. 

There are two primary approaches to the analyses of multimodal neuroimaging data— 

Complementary and joint analysis.  

 Complementary multimodal neuroimaging analysis (CoMNA) involves using different 

modalities to provide complementary information about the same brain region. This 

approach is also thought to be an asymmetric data fusion where one modality is used 

to constrain the analysis of another. For instance, sMRI can provide structural 

information about a specific brain region, while fMRI can be used to reveal its regional 

functional activity in a disease state. CoMNA has been used in previous research to 

highlight group differences, such as dMRI tractography combined with transcranial 

magnetic stimulation (TMS) (Mirchandani et al. 2021), quantitative MRI methods 

(Rokickia et al. 2020), and fMRI with dMRI (Harneit et al. 2019). While this approach has 

been used to identify modality-specific and complementary modality effects, it has 

some limitations. CoMNA is known to provide limited information as this analysis does 

not fully utilize common as well as distinct information from all available complementary 

modalities. 

 Joint (or fusion) multimodal neuroimaging analyses (JoMNA) aim to overcome the 

limitations of CoMNA by combining data from multiple modalities into a unified analysis 

where all modalities contribute equally. JoMNA provides the ability to take full 

advantage of the different data types to uncover significant relationships or variability 

that could explain unusual brain patterns (Adali et al. 2015). JoMNA is considered the 

gold standard for truly exploiting the combined power of multiple modalities (Calhoun 

and Sui 2016). By leveraging the unique strengths of each imaging technique, JoMNA 

can uncover complex relationships and patterns that would be missed using unimodal 

or complementary approaches (Tulay et al. 2019). An in-depth explanation of JoMNA 

will be made in chapter 2 of this thesis.  
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In all, multimodal neuroimaging offers significant potential to improve our 

understanding of brain disorders, including those associated with ACE. By leveraging the 

strengths of different imaging techniques, MN allows for unravelling the complex 

neurobiological mechanisms underlying the long-term consequences of ACE and its related 

psychopathology. This thesis will primarily focus on the cumulative impact of childhood 

maltreatment (Bryce 2018; Bryce and Collier 2022), considering the DS (i.e., abuse and 

neglect) without examining the dose-dependent effects of individual experiences (Teicher et 

al. 2016; Teicher and Samson 2016). As an initial step in exploring the effects of ACE using 

multimodal methods, this approach is expected to simplify the focus of the study, providing a 

foundation for investigating the complex relationship between ACE, brain development, and 

mental health outcomes. 

1.6 Research Questions 

To effectively employ MN in exploring the neurobiological underpinnings of ACE and 

their relationship to psychopathology such as PTSD, this study aims to answer the following 

questions. 

 

I. How can complementary multimodal neuroimaging data analyses be used to investigate 

ACE?  

II. What specific brain alterations are associated with PTSD related to ACE, as identified 

using JoMNA approach? 

III. How can multimodal neuroimaging biomarkers enhance our understanding of the 

neurobiological underpinnings of ACE and their related mental health outcomes?  

IV. What are the potential applications of MN in ACE research for early diagnosis and 

prognosis of ACE and its related disorders? 

In the following chapters, I provide an overview of CoMNA and JoMNA methods and 

discuss two published studies that employed these methods to address our four major 

research questions. By addressing these questions, this work aims to advance our 

understanding of the neural correlates of ACE and PTSD, ultimately contributing to improved 

diagnostic approaches and proposing a framework for the clinical translation of MN.  
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CHAPTER II:  MULTIMODAL NEUROIMAGING METHODS 

2.1 Introduction to CoMNA and JoMNA methods 

This section will provide an overview of the primary methodological approaches 

employed in multimodal neuroimaging (MN) research. We will delve into the details of 

complementary multimodal neuroimaging analysis (CoMNA) and joint or fusion multimodal 

neuroimaging analysis (JoMNA). CoMNA involves using different modalities to provide 

complementary information about the same brain region, while JoMNA integrates data from 

multiple modalities into a unified analysis. By examining the strengths and limitations of these 

methods, we aim to elucidate the optimal approaches for investigating the complex interplay 

between brain structure and function in relation to adverse childhood experiences (ACE).  

2.2 CoMNA methods 

The first stage of CoMNA involves independently processing and analysing data from 

various imaging modalities followed by a comparative analysis of the results usually in the 

same brain regions. This approach aims to identify complementary information provided by 

each modality, contributing to a deeper understanding of brain structure and function by 

leveraging the strengths of each imaging modality. 

Combining sMRI and dMRI is a common example of CoMNA. sMRI provides detailed 

anatomical information about GM, including its volume in cortical and subcortical structures 

and other cortical morphological measures such as thickness, curvature, gyrification and area 

(Dale et al. 1999; Fischl et al. 1999; Luders et al. 2006; Van Essen et al. 2001). Neuroimaging 

tools such as FreeSurfer (Fischl 2012), Computational Anatomy Toolbox (Gaser et al. 2024) 

and Mindboggle (Klein et al. 2017) are commonly used to compute these measures. dMRI 

offers insights into white matter microstructure, such as fibre tract connectivity and integrity. 

dMRI provides quantitative measures such as fractional anisotropy (FA), mean diffusivity 

(MD), radial diffusivity (RD) and axial diffusivity (AD) (Tromp 2016), and other advance 

measures such as fibre density (FD), fibre cross-section (FC) and fibre density and cross-section 

(FDC) (Smith et al. 2022; Tournier et al. 2019). By analysing these modalities separately and 

then comparing the results, we can identify potential associations between GM and WM brain 

abnormalities associated with a brain state. For instance, sMRI might reveal reduced gray 

matter volume in a specific brain region, while dMRI could demonstrate corresponding 
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changes in white matter connectivity in that area. This complementary information can 

provide valuable insights into the underlying neuropathology of a particular condition. 

 

 

 

 

 

 

 

Other common combinations of CoMNA 

 sMRI and fMRI: Combining structural and functional MRI allows for the investigation of 

how brain anatomy relates to brain activity. For example, researchers can examine 

whether changes in gray matter volume correlate with altered functional connectivity.  

 dMRI and fMRI: This combination helps to elucidate the relationship between white 

matter connectivity and functional brain networks. By examining how structural 

connections influence information flow, researchers can gain insights into the neural 

basis of cognitive processes. 

 MRS and DTI: Combining MRS with DTI allows for the simultaneous study of brain 

metabolism and white matter microstructure. This combination can provide a more 

comprehensive understanding of brain pathology, as both metabolic and structural 

abnormalities can contribute to disease progression (Lawrence et al. 2019). 

 

These combinations of CoMNA offer unique perspectives on brain structure and 

function and can be applied to various research questions, including the study of ACE and 

related mental health disorders. 

 

Although CoMNA is a valuable method compared to individual analyses of neuroimaging 

data, it has limitations. First, its analysis provides limited information, as it does not fully utilize 

both the common and distinct information from all available neuroimaging modalities. The 

abundance of data provided by diverse neuroimaging sources requires aggregation to enable 

a more comprehensive understanding of the brain (Calhoun and Sui 2016; Tulay et al. 2019). 

Second, recent advancements in the application of machine learning enable the complete 

utilization of all neuroimaging data to improve its utility. For example, compared to the 

Figure 3. Example of CoMNA using T1-weighted MRI (sMRI) and 
diffusion weighted MRI (dMRI).sMRI provides information such as 
gray matter volume, cortical thickness, cortical area and subcortical 
structures. dMRI provides quantitative measures such as fractional 
anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and 
axial diffusivity (AD), and other advance measures  such as fibre 
density (FD), fibre cross-section (FC) and fibre density and cross-
section (FDC). Image was accessed from (Mangeat 2018) 
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correlation analysis methods employed by CoMNA, machine learning techniques allow for 

multivoxel pattern analyses, which facilitate the examination of the relationship between 

disease states and multiple voxels in one or more brain regions simultaneously (Xiao et al. 

2021). Additionally, predictive machine learning models could achieve improved 

generalizability by using information from multiple neuroimaging modalities to enhance 

broader implications (Dwyer et al. 2018; Radua and Koutsouleris 2023).  

2.3 JoMNA methods 

Most methods applied in JoMNA are both multivariate and data driven machine learning 

approaches which provide more information and flexible data fusion (Sui et al. 2013). These 

methods basically either use the full neuroimaging data or extract features from each modality 

and search for common variations in terms of structural and functional properties in the 

extracted feature space. A feature is a distilled dataset representing an interesting part of 

each distinct modality and is used as the input to the fusion analysis for each modality and 

each subject (Calhoun and Sui 2016). Common feature extraction methods include extracting 

components from principal component analyses (PCA) of the full neuroimaging data. By 

investigating variations between or across disease and control groups at the feature level, 

rather than the full image level, we can find multimodal associations and alleviate challenges 

associated with fusion data type of diverse dimensionality, nature and resolutions 

(Bießssmann et al. 2011; Liu et al. 2015). Recent studies have also demonstrated the use of 

full neuroimaging data in JoMNA to enhance the precision and depth of neuroimaging 

analyses (Koutsouleris et al. 2016; Koutsouleris et al. 2023; Koutsouleris and Fusar-Poli 2024). 

Rather than relying solely on feature extraction, these modern approaches leverage entire 

datasets, capturing a broader range of variability across structural and functional modalities. 

Motivated by blind source separation (BSS), the multivariate data driven analysis of 

JoMNA has been possible in recent times due to an improved computation and the existence 

of large multimodal datasets (Rasgado-Toledo et al. 2024; Silva et al. 2016). BSS is used to 

decompose the JoMNA with few assumptions and without the need of introducing additional 

constraints (Adali et al. 2015). The computations of JoMNA using BSS can be categorized into 

Independent Component Analysis (ICA) based techniques (e.g. Joint ICA and Parallel ICA), 

Canonical Correlation Analysis (CCA) based techniques (e.g. Multimodality CCA), partial least 

squares (PLS) based techniques, machine learning classification/ regression (MLC/R) based 

techniques (e.g. by using L1-Multiple Kernel Learning), and deep learning (DL) based 
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techniques (e.g. by using Deep Belief Networks) (AdalI et al. 2015; Calhoun and Sui 2016; 

Dwyer et al. 2018; Lottman et al. 2018; Qu et al. 2024; Silva et al. 2016; Wu and Calhoun 2023). 

Notably, these are multivariate data driven approaches and hence, they do not require a prior 

hypothesis about all specific group data used. This offers a more effective way to handle the 

inherent complexity and variability of neuroimaging data, leading to improved accuracy in 

diagnosis and prediction, which could be particularly valuable in cases of ACE-related mental 

health outcomes (Koutsouleris and Fusar-Poli 2024). 

Several algorithms have been developed to perform JoMNA computation. Overall, all 

algorithms conform to the following steps: full image and / or feature selection and 

normalization, data matrix composition, dimensionality estimation and reduction, application 

& optimization of a computational method, and visualization of results. The following is a brief 

overview of the processes: 

 Full image and / or feature selection and normalization: this involves either 

preprocessing full image and / or selection of significant features from each data type.  

 Data matrix composition: extracted full data and / or features are concatenated into 

matrix form for easy computation. 

 Dimensionality estimation and reduction: composed matrices are reduced to avoid 

overfitting (e.g. is by performing PCA).  

 Application & optimization of computation method: algorithm specific computation is 

implemented, and the performance of the models computed are estimated through 

various cross validation techniques. Here several computations (e.g. JICA, SVM/LR, 

Decision Tree, Random Forest and Support Vector Elastic Net) and cross validation 

(nested cross validation) methods have been proposed.  

 Visualization and interpretation of results: only results that pass an algorithm specific 

confidence test are displayed. This typically involves using a statistical method to assess 

the significance of the findings (Radua and Koutsouleris 2023). Common methods 

include: 

• False discovery rate (FDR) test: A linear statistical method that controls the 

proportion of false positives among significant findings (Bennett et al. 2009; Lv et 

al. 2024). 

• Permutation test: A non-parametric statistical method that assesses the 

significance of results by randomly permuting the data and comparing the 
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observed results to the distribution of permuted results (Lv et al. 2024; Winkler et 

al. 2014). 

• ROC curve: A graphical plot that illustrates the trade-off between sensitivity (true 

positive rate) and specificity (true negative rate) of a classification or prediction 

model (Zou et al. 2007). 

• Area under the curve (AUC): A measure of the performance of a classification 

model, often used in conjunction with receiver operating characteristic (ROC) 

curves. The AUC represents the probability that a randomly selected positive 

instance will be ranked higher than a randomly selected negative instance (Hanley 

and McNeil 1982; Huang and Ling 2005). A higher AUC indicates better 

performance. 

Despite the potential benefits of JoMNA, CoMNA is still more commonly used even with 

the growing availability of study specific multimodal datasets, high computing capability and 

application of machine learning in neuroimaging analysis. This preference can be attributed in 

part to the challenges associated with heterogeneity in neuroimaging data, which 

encompasses variability in data types, scales, and formats across modalities. Moreover, the 

lack of a perfect data integration and interpretation framework within a cohesive analytical 

context has hindered the widespread adoption of JoMNA (Qu et al. 2024). As individual 

unimodal analysis and CoMNA have revealed promising structural-functional properties of the 

brain, fusion of these heterogeneous neuroimaging data should provide relational as well as 

specific findings from each modality prompting the need for multimodal data fusion. Another 

reason hindering researchers from using JoMNA is the doubt that CoMNA and what is learnt 

from unimodal analysis are incomplete. Researchers doubt whether there is any missing link 

worth finding as we have been enlightened “enough” with results from unimodal and 

complimentary analysis. As suggested by Luque Laguna et al. (2020) and Bzdok and Meyer-

Lindenberg (2018), multimodal and multiparametric analysis of neuroimaging data is essential 

for improving reproducibility, reliability, variability, and clinical translation of neuroimaging 

research (Bzdok and Meyer-Lindenberg 2018; Luque Laguna et al. 2020; Radua and 

Koutsouleris 2023). CoMNA and JoMNA are promising approaches to achieve this goal, 

particularly in the context of addressing the challenges posed by heterogeneous data and the 

need for a cohesive analytical framework.   
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The subsequent sections of this chapter (Sections 2.4 and 2.5) will discuss the specific 

aims guiding our application of CoMNA and JoMNA in ACE research. Following this, I will 

present the two studies – CHAPTER III:  CoMNA Study and CHAPTER IV:  JoMNA Study – 

detailing the neuroimaging data acquisition, preprocessing techniques, analyses, and 

published findings. Finally, in CHAPTER V:  DISCUSSION, I will conduct a comparative 

discussion of the findings from both studies, exploring how they collectively address our 

research questions. 

2.4 Application of CoMNA in ACE study 

The first study employed a CoMNA approach to focus on the cortical morphology 

alterations using surface-based morphometry and complementing the findings with those 

from dMRI measures. This methodology aimed to leverage the unique strengths of sMRI and 

dMRI, providing a comprehensive assessment of structural changes in both gray matter and 

white matter associated with ACE. By integrating data from both modalities, the study 

overcame the limitations of single-modality analyses, offering a more nuanced understanding 

of how ACE impacts brain structure. The scope of the CoMNA study was to investigate the 

effect of ACE on gray matter and adjacent white matter regions using a sample of 78 

participants (see section 3.3 for more information on the demographics and clinical data). For 

sMRI data (i.e., T1w), whole-brain surface-based analysis was performed to explore the 

relationship between cortical morphology and the cumulative impact of ACE. We also 

explored brain morphometry associated with abuse when controlling for neglect (and vice 

versa). For diffusion MRI, we examined the white matter integrity in fibre tracts connecting 

key areas where ACE-related cortical volume alterations were observed. Lastly, we 

investigated the mediating role of ACE-related cortical volume alterations in the relationship 

between ACE and PTSD symptoms (PTSS). 

2.5 Application of JoMNA in ACE 

The second study employed a connectivity-based multimodal neuroimaging approach, 

a form of JoMNA, to investigate brain connectivity disruptions associated with ACE-related 

PTSD. This study applied Joint Connectivity Matrix Independent Component Analysis (jICA) to 

integrate data from sMRI, dMRI, and resting-state fMRI data. jICA involves equally integrating 

and utilizing full data from all modalities, facilitating a more robust exploration of the 

relationships between different data types (Wu and Calhoun 2023). The sample used for this 
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study included a total of 119 participants with ACE (70 with ACE-related PTSD and 49 ACE-

exposed controls). T1-weighted MRI, diffusion-weighted MRI, and resting-state fMRI data 

were acquired to examine structural and functional connectivity between groups. A detailed 

description of our methodology and the literature driving this study can be found in Figure 4 

and CHAPTER IV:  JoMNA Study, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. This figure shows our multimodal analysis pipeline. (A) Subject-level processing: T1-weighted (T1w) 
images were preprocessed, segmented, and parcellated into 83 regions in Lausanne scale 1 space. Diffusion and 
resting-state images were also preprocessed, and both structural connectivity (SC) features (i.e., number of fibres 
and normalised fibre density between brain regions) and functional connectivity (FC) features (i.e., positive and 
negative functional connectivity) were extracted in the T1w parcellation space. (B) This panel shows the jcm-ICA 
pipeline All four connectivity matrices were subsequently quality-checked, controlled for covariates, normalised, 
and used as features to create a joint feature matrix. The joint feature matrix is then modelled as spatially 
independent components with a shared mixing matrix (also called the joint mixing coefficient matrix). Image 
assessed from (Nkrumah et al. 2024a).
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CHAPTER III:  COMNA STUDY  

Title: Cortical volume alteration in the superior parietal region 

mediates the relation between the childhood abuse and PTSD 

avoidance symptoms: a complementary multimodal neuroimaging 

study. 

3.1 Abstract 

Background: Adverse childhood experiences (ACE), which can be separated into abuse and 

neglect, contribute to the development of post-traumatic stress symptoms (PTSS). However, 

which brain structures are mainly affected by ACE as well as the mediating role these brain 

structures play in ACE and PTSS relationship are still being investigated. The current study 

tested the effect of ACE on brain structure and investigated the latter`s mediating role in ACE-

PTSS relationship. 

Methods: A total of 78 adults with self-reported ACE were included in this study. Participants 

completed the childhood trauma questionnaire (CTQ) and a Posttraumatic Stress Disorder 

Checklist for DSM-5 (PCL-5) to ascertain ACE history and PTSS, respectively. T1w images and 

diffusion MRI scans were then acquired to assess cortical morphometry and white matter 

(WM) integrity in fibre tracts connecting key areas where ACE-related cortical volume 

alterations were observed.  

Results: The combined effect of ACE was negatively associated with total grey matter volume 

and local cortical area in the right superior parietal region (rSP). Childhood abuse was 

negatively related to right superior parietal volume after controlling for neglect and overall 

psychological burden. The right superior parietal volume significantly mediated the 

relationship between childhood abuse and avoidance-related PTSS. Post-hoc analyses showed 

that the indirect relation was subsequently moderated by dissociative symptoms. Lastly, a 

complementary examination of the WM tracts connected to abuse-associated cortical GM 

regions shows that abuse was negatively related to the normalised fibre density of WM tracts 

connected to the right superior parietal region. 

Conclusion: We provide multimodal structural evidence that ACE in the first years of life is 

related to alterations in the right superior brain region, which plays a crucial role in spatial 

processing and attentional functioning. Additionally, we highlight that the cortical volume 

alteration in this region may play a role in explaining the relationship between childhood 

abuse and avoidance symptoms. 

   
Published as: Nkrumah, R. O., von Schröder, C., Demirakca, T., Schmahl, C., & Ende, G. (2024). Cortical volume 
alteration in the superior parietal region mediates the relationship between childhood abuse and PTSD avoidance 
symptoms: A complementary multimodal neuroimaging study. Neurobiology of Stress, 28 (October 2023), 
100586. https://doi.org/10.1016/j.ynstr.2023.100586. 
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3.2 Introduction 

Adverse childhood experiences (ACE) are associated with higher rates of psychiatric disorders 

later in life (Hailes et al. 2019), and include sexual, physical or emotional abuse and/or neglect 

experiences. Recent conceptualizations of ACE comprise two dimensional subtypes (DS) : 

abuse and neglect (McLaughlin et al. 2019; Sheridan and McLaughlin 2014). Abuse involves 

the presence of an unexpected experience that poses a significant threat of harm to the child, 

such as sexual, physical, or emotional harm. Neglect, which includes physical and emotional 

deprivation during childhood, is characterised by a lack of expected environmental inputs, 

specifically a lack of expected cognitive and social inputs. The frequency and consequences of 

abuse and neglect were investigated in a 2531-person German sample. Almost half of the 

sample reported at least one form of abuse and/or neglect and were prone to psychosocial 

problems involving life satisfaction, psychopathology, and interpersonal aggression (Witt et 

al. 2019). Consequences of ACE include major depressive disorder, post-traumatic stress 

disorder (PTSD), borderline personality disorder, attention deficit hyperactivity disorder 

(ADHD), bipolar disorder and elevated symptom levels of depression, anxiety and dissociative 

symptoms (Herzog and Schmahl 2018; Seitz et al. 2022). The general consensus is that 

childhood abuse and neglect can result in severe developmental problems that are 

interpersonal, enduring, co-occurring, and linked to high rates of PTSD symptoms (De Bellis 

and Zisk 2014).  

Evidence shows that ACE influences neural development, leading to changes in brain structure 

and consequently its function. Several neuroimaging studies on the effects of ACE show that 

the orbitofrontal cortex (OFC), amygdala, hippocampus and thalamic regions, which are part 

of the limbic system and play a role in survival behaviour such as feeding and reproduction, 

and emotional responses, as well as parietal regions including the superior parietal lobe (SPL), 

are altered in individuals with ACE (McQuaid et al. 2019b; Pollok et al. 2022). The SPL forms 

part of the frontal parietal network (FPN) and also receives input from the thalamus through 

the medial route of the dorsal visual stream. Therefore, the corollary that both limbic and SPL 

regions are affected by ACE provides useful information that could be further investigated in 

future research (Gamberini et al. 2021; McLaughlin et al. 2019). Recent meta-analyses also 

found ACE to affect cortical thinning in the right medial cingulate cortex  and gm volume 

reduction in the left supplementary motor area (Yang et al. 2023). Following the consistent 

account of the combined effect of ACE on brain structure, the ds of childhood adversity—

abuse and neglect—appear to affect brain structure differently. There is strong evidence that 
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abuse alters the structure of regions that underlie attentional functioning, emotional 

memories, and inhibitory control, including the hippocampus and regions in the anterior part 

of the FPN such as the dorsolateral prefrontal cortex(Hart and Rubia 2012). Neglect, on the 

other hand, has been shown to alter parts of the orbitofrontal, superior temporal and 

rostalmiddle frontal gyri, which are involved in the anticipation and receiving of rewards, as 

well as regions in the posterior part of the FPN such as the SPL (Lim et al. 2014; Mackes et al. 

2020). For anatomical and functional details of FPN, please see (Budisavljevic et al. 2017; 

Marek and Dosenbach 2018; Parlatini et al. 2017; Thomas Yeo et al. 2011). Some alterations 

in the amygdala and hippocampus, for example, have been associated with both abuse and 

neglect. There are, however, some limitations as to how ACE and its subtypes have previously 

been investigated. Importantly, comorbid mental disorders have not been adequately 

controlled, which makes it difficult to disentangle which of the effects are due to abuse and/or 

neglect, or the associated mental conditions, or a combination or interaction of all. 

PTSD is a mental health condition that can develop after a person experiences a traumatic 

event (or a sequence of reoccurring events) such as ACE. Post-traumatic stress symptoms 

(PTSS) include persistent re-experiencing of the trauma, avoidance of trauma-related 

circumstances, hyperarousal, and negative alterations in mood and cognition lasting more 

than a month after experiencing a traumatic event that threatens one’s life or bodily integrity. 

The persistence of PTSS following ACE and its effects on the brain have been documented 

elsewhere (Siehl et al. 2022; Wang et al. 2021; Xie et al. 2022). For example, cortical alterations 

in the SPL have previously been negatively associated with PTSS and childhood neglect 

(Edmiston 2011; McLaughlin et al. 2014; McLaughlin et al. 2019; Tan et al. 2013). Additionally, 

correlations between subcortical brain volumes such as  the hippocampus and thalamus with 

ACE and PTSS have previously been reported (Xie et al. 2018; Xie et al. 2022). The findings 

suggest ACE is negatively associated with thalamic volume post-trauma, which, in turn, is 

inversely associated with PTSS. Despite this insightful evidence, no study has tested the effects 

of ACE on cortical morphology while exploring their indirect effect on PTSS, notwithstanding 

recent ACE-thalamic-PTSS findings and the effect of both ACE and PTSS on some cortical 

regions such as the SPL.   

Extant literature supports the relationship between ACE and white matter alterations 

measured by diffusion MRI. Over the years, voxel-averaged diffusion quantitative measures 

like fractional anisotropy (fa), mean diffusivity (md) and axial diffusivity (ad) have been related 

to ACE using tract-based spatial statistics (TBSS) (Lim et al. 2019a). Despite these findings, 
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quantitative measures based on averaging voxels are not fibre-specific and may have limited 

interpretability because most WM voxels contain contributions from multiple fibre 

populations (commonly referred to as crossing fibres) (Raffelt et al. 2017). Recent advanced 

3D DTI fibre tractography provides fibre measures that can be used as the basis for 

quantitatively assessing the microstructure of specific white matter tracts in mental health 

studies. For example, the number of fibres indicates the total number of axons in the specific 

white matter region, while fibre density provides more precise information on the 

microstructural integrity of a WM tract. These measures are probably more sensitive to 

certain pathologies, are more directly interpretable, and provide a basis for investigating 

macroscopic intra-axonal WM volume of biological significance (Riffert et al. 2014). Since 

certain gm regions are also altered by ACE, it is crucial to consider the structure of the WM 

regions connected to disease-associated cortical gm regions in order to understand the 

structural brain alterations associated with mental disorders. This is what we term here 

"complementary multimodal neuroimaging” i.e., where one neuroimaging modality 

complements the other, thereby allowing us to shed more light on a wide range of structural 

brain alterations related to a mental trait.  

The scope of the current work was to investigate the effect of ACE on grey matter and 

adjoining white matter connections. We used a comprehensive approach to first examine the 

relationship between ACE and total grey matter volume (TGV). Then we tested whether any 

changes persisted after covarying for potential confounders such as sex, age, estimated total 

intracranial volume (eTIV), and overall psychological burden. The links between ACE and 

localised alterations in cortical volume, surface area, and thickness were then explored. We 

hypothesised that ACE would be negatively related to TGV and that local cortical alterations 

in several limbic and FPN regions, as mentioned above, would show a negative relationship 

with ACE after controlling for overall psychological burden. We also aimed to identify brain 

morphometry associated with abuse when controlling for neglect (and vice versa) and overall 

psychological burden. Based on previous literature (Morey et al. 2016), we hypothesised that 

abuse would be negatively associated with cortical alterations in the FPN, including the SPL. 

Similarly, we hypothesised that neglect would be negatively associated with alterations in the 

superior temporal and rostral middle frontal gyri. In addition, we investigated the mediating 

role of ACE-related cortical volume alterations in the relationship between ACE and PTSS. 

More specifically, given that previous literature supports the mediating role of subcortical 

regions such as the thalamus volume in the ACE-PTSD relationship, we sought to confirm if 
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ACE-related cortical volume alterations in our sample mediate the relationship between ACE 

and PTSS. We hypothesised that ACE-related cortical volume alterations would be an 

important aspect of any explanation of how ACE lead to adult PTSS. Lastly, an exploratory 

complementary analysis using the number of fibres, normalised fibre density, average fibre 

length, and mean fa of WM tracts connected to local cortical ACE-related volumetric 

alterations would help shed more light on the diverse structural brain alterations related to 

ACE. 

 

3.3 Methods 

Participants 

Eighty participants with self-reported ACE and living in Germany were recruited for the current 

study. Inclusion criteria for the study were any type of abuse (physical, emotional, and sexual) 

and/or neglect (emotional and physical) experienced before the age of eighteen. Exclusion 

criteria included any kind of metal implant, pregnancy, traumatic brain injury, claustrophobia, 

psychosis, or any form of neuropsychological disorder. Two female participants were excluded 

at the analysis stage, one due to abnormal brain structure and the other due to an acquisition 

error in diffusion MRI data, leaving a total of N=78. A summary of the demographics and 

psychological measures at the time of assessment is shown in Table 1. The study was approved 

by the Ethics board of the Medical Faculty Mannheim at Heidelberg University, Germany, and 

was conducted in accordance with the Helsinki Declaration at the Central Institute of Mental 

Health in Mannheim. All participants gave written informed consent. 

Procedure 
See method section of the Supplementary Information for details on the study procedure.  

Measures 
ACE severity was quantified using the sum of individual sub-types of ACE from the Childhood 

Trauma Questionnaire (CTQ). A detailed report on the CTQ has been reported in prior 

literature (Thombs et al. 2007). The CTQ consists of five questions for each type of exposure, 

and each question prompts participants to rate a particular event on a scale ranging from 

"Never True" to "Very Often True". Here, we calculated the abuse severity score as the sum 

of all abuse subtypes of the CTQ (i.e., sexual, physical, and emotional abuse), the neglect 

severity score consisted of the sum of all neglect subtypes of the CTQ (i.e., emotional & 
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physical neglect) and the combined ACE (CTQ total) was calculated as the sum of abuse and 

neglect scores. 

Overall psychological burden was accessed using the self-report Brief Symptom Inventory (BSI) 

to identify relevant psychosocial symptoms in our sample. The BSI includes 53 items that cover 

nine symptom dimensions: depression, anxiety, phobic anxiety, somatization, paranoid 

ideation, interpersonal sensitivity, obsession-compulsion, psychoticism, and hostility. Items 

are scored on a 5-point Likert scale ranging from 0 (not at all) to 4 (extremely). The Global 

Severity Index was calculated by adding the sums of the nine symptom dimensions plus the 

four additional items that were not included in any of the dimensional scores and dividing by 

the total number of items to which the individual responded, this score was used to assess 

current or past symptomatology (BSI total). 

The PTSD symptom severity was assessed using the Posttraumatic Stress Disorder Checklist 

for DSM-5 (PCL-5), which is a self-report measure that corresponds to each of the 20 core 

DSM-5 PTSD symptoms and asks respondents to rate how much each symptom has bothered 

them in the past month, scoring responses on a Likert scale ranging from 0 (not at all) to 4 

(extremely) (Blevins et al. 2015). Symptoms are classified into four domains in accordance 

with the DSM-5 criteria for PTSD: re-experiencing, avoidance, negative changes in cognition 

and mood, and hyperarousal, with total PTSS severity score ranging from 0 to 80 indicating 

more severe symptoms. The PCL-5 is regarded as the "benchmark" self-report measure of 

PTSD symptom severity, with strong test-retest reliability (r=0.84) as well as convergent and 

discriminant validity (Bovin et al. 2016; Harper et al. 2022; Keane et al. 2014). 

The German version of the Dissociative Experience Scale (FDS) was used to assess dissociation 

symptoms in our study (Spitzer et al. 1998). The FDS is a 44-item self-administered 

questionnaire which measures the frequency of dissociation symptoms such as absorption, 

amnesia, and identity disturbances. Items are scored on a scale from 0 (never) to 100 (always). 

In the FDS, the mean of 44-items is calculated and used as overall dissociative symptoms, and 

this has been shown to have good reliability and validity based on the DSM definition of 

dissociation (Spitzer et al. 1998).  
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Variable Mean (SD) Range 

AGE 31.628 (10.790) 18 – 59 
SEX (female) 65 (83%)  
ACE (CTQ total) 62.538 (19.944) 32.00 – 117.00 
Abuse (CTQ abuse)   26.628 (8.590) 10.00 – 46.00 
Neglect (CTQ neglect)  35.910 (13.167) 17.00 – 71.00 
Psychological burden (BSI total) 0.913 (0.617)     0.06 – 2.55 
Dissociation symptoms 
(German version of the Dissociative Experience Scale 
(FDS)) 

14.158 (12.338)  0.23 – 55.91 

PCL-5 
PTSS (PCL- sub scales) 

 Reexperiencing 

 Avoidance 

 Negative alterations in cognition and mood 

 Hyper arousal 

   28.090 (17.390) 
 

     6.256 (4.453) 
3.731 (2.597) 
10.77 (7.058) 

  8.026 (5.871) 

0.00 – 69.00 
 

0.00 – 19.00 
0.00 – 8.00 

  0.00 – 28.00 
  0.00 – 21.00 

Note: N= 78; CTQ total = total score of Childhood Trauma Questionnaire; CTQ abuse = sum score of all abuse 
subtypes of CTQ; CTQ neglect = sum score of all neglect subtypes of CTQ; BSI total = Global Severity Index of 

Brief Symptom Inventory (BSI); PCL-5 = Posttraumatic Stress Disorder Checklist for DSM-5. 

 

Data acquisition 
Both T1-weighted (T1w) and diffusion images were acquired using a Siemens Prisma-fit 

Scanner (Siemens Medical Solutions, Erlangen, Germany) with a 64-channel head coil. A 3-D 

magnetisation-prepared rapid-acquisition gradient echo (MPRAGE; T1-weighted contrast, 

Echo Time (TE): 2.01 ms; Repetition Time (TR): 2000 ms; Inversion time (TI): 900ms; FA = 9°; 

FOV: 256 x 256 mm; number of slices 192, voxel size 1x1x1 mm³) and a double spin-echo echo-

planar imaging (EPI) sequence (82 volumes, 3 at b=0 and 79 at b=1000 s/mm2, TR=8400 ms, 

TE=86 ms, matrix = 128 x 128 ; number of slices 64, and voxel size=2×2×2 mm3) scans were 

acquired for each participant. 

Data processing  
Preprocessing for both T1w and diffusion images was performed using Connectome Mapper 

3 (CMP; an open-source Phython3 neuroimaging processing pipeline software developed by 

the Connectomics Lab, University Hospital of Lausanne (CHUV)). CMP uses a combination of 

well-known neuroimaging software packages to implement full anatomical and diffusion 

processing pipelines from raw images (Tourbier et al. 2022). All images were controlled for 

quality (see supplementary method for details). The preprocessing steps that were used in 

this study can be seen below. 

T1-weighted images were preprocessed, parcellated, and segmented into cortical thickness, 

surface area, and volume using the FreeSurfer version 6.0.1 recon-all program. An in-depth 

explanation of the steps used by FreeSurfer's recon-all has previously been 

Table 1. Descriptive statistics for demographics and psychopathology variables. 
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described elsewhere (Dale et al. 1999; Fischl et al. 2004). In brief, the white matter and pial 

surface were identified after motion correction, non-uniform intensity normalization and 

normalization, by creating a mesh around the white matter and pial voxels. Surface-based 

maps of each individual scan were created using spatial intensity gradients across tissue 

classes (Desikan et al. 2006). Cortical thickness, surface area, and volume maps were extracted 

and smoothed with a 10-mm kernel at full width at half maximum (FWHM). FreeSurfer 

morphometric procedures have been demonstrated to show good test-retest reliability across 

scanner manufacturers and across field strengths (Reuter et al. 2012). Visual inspection was 

done to inspect the anatomical accuracy of FreeSurfer's automated parcellations and 

segmentations. 

Denoising and subsequent correction for bias field, eddy currents, and motion correction were 

performed on all diffusion data using state-of-the-art methods implemented in the MRtrix3 

toolbox (Tournier et al. 2019). Anatomy-constrained probabilistic tractography was 

performed using the five-tissue-type (5TT) segmented T1w image and a second-order 

integration over fibre orientation distributions algorithm on the preprocessed diffusion image 

to produce an initial tractogram with 10 million streamlines (Tournier and , F. Calamante 

2010). The tractogram was filtered using SIFT2 approach: an approach to improve the 

quantitative nature of whole-brain streamlines reconstructions (Smith et al. 2015). Diffusion 

measures (i.e., number of fibres, average fibre length, normalised fibre density, and mean FA) 

touching/emerging from the segmented regions were then extracted for subsequent 

statistical analyses. 

Statistical analysis 

ACE relation to Total GM volume. 

To test the first hypothesis, we extracted the total GM volume from the output of recon-all 

processing to do a preliminary comprehensive regression analysis and to first examine 

whether ACE (i.e., CTQ total) is associated to total GM volume as hypothesised. We also tested 

whether the relation persisted after covarying for potential confounders such as age, sex, 

estimated Total Intracranial Volume (eTIV), and overall psychological burden (i.e., BSI). 

Regional cortical alterations following ACE. 

Whole-brain surface-based analyses were performed using FreeSurfer's glmfit. The general 

linear model was used to locate all regional cortical alterations in thickness, surface area, and 

volume that were related to CTQ total for the first hypothesis. This resulted in three models, 
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one for each cortical measure. For the second hypothesis, the effect of subtypes of ACE (i.e., 

abuse and neglect), regional cortical alterations in relation to ACE subtypes was investigated. 

First, a simple linear regression was used with either abuse or neglect as variables of interest 

and age, sex BSI total and neglect or abuse as control variables (6 models in total; 2 variables 

of interest x 3 cortical measures). Then, a t-test was used to investigate the differences 

between abuse and neglect in the direction of abuse > neglect, because CTQ total has higher 

correlation to abuse (rpartial=0.929, p<0.001), compared to neglect (rpartial=0.844, p<0.001), and 

controlling for age, sex, and BSI total (one model). All cortical volume analyses were controlled 

for eTIV, and all results presented here were corrected for multiple comparisons using Monte 

Carlo simulation with vertexwise threshold P<0.005 and clusterwise threshold P<0.05 and in 

both brain hemispheres. Significant clusters were labelled using Desikan-Killiany atlas. 

Mediating role of ACE-related cortical volume alteration in ACE– PTSS relationship. 

To tackle our third hypothesis, values of significant ACE-related clusters identified in cortical 

analyses as sensitive to ACE and its sub types were extracted to find out if the significant 

effects mediate the relationship between ACE and PTSS. The average cortical volume per 

vertex of each cluster for every participant was multiplied by the number of vertices in the 

respective clusters to get the total volume per cluster (TVC) for all subjects. This was then used 

as mediators in the relationship between ACE and PTSS. The bias-corrected CIs and SEs for the 

mediation effect are reported here using 5000 bootstraps. All mediation analyses were 

performed using JASP (JASP Team, 2023). As all mediation models were just identified, no 

model fit indices were computed as previously reported here (Mackes et al. 2020). Lastly, since 

PCl-5 does not link PTSS to a specific type of trauma, our aim here is to examine the association 

between ACE and PTSS regardless of whether the cause of the PTSS is due to ACE alone or also 

due to additional trauma events. 

Diffusion measures in WM complements local cortical ACE-related GM volume alterations 

To complement the local cortical ACE-related volumetric alterations in GM regions identified 

in the previous analyses, diffusion measures (i.e., number of fibres, average fibre length, 

normalised fibre density, and mean FA) in WM pathways that connect to ACE-related GM 

volume regions were extracted to verify their relation to ACE. Hence, we could further explore 

the local WM integrity connected to GM regions relation to ACE using regression models. We 

extracted the diffusion measures touching/emerging from the segmented GM regions in 

Desikan-Killiany atlas space and correlated diffusion WM measures with TVC from the 
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abuse/neglect subtype analyses. Each model was corrected for multiple comparisons using 

the false discovery rate q = 0.05. The effect sizes were bootstrapped using 5000 iterations and 

bias-corrected CIs and SEs were reported. 

 

3.4 Results  

Associations between ACE and total GM volume. We observed a negative association 

between total CTQ score and total GM volume: β=-768.825, t (76) =-2.515 and p= 0.014. This 

result remained significant after controlling for sex and BSI total (β= -725.517, t (74) =-2.426 

and p= 0.018), suggesting that the effects were not simply a reflection of other psychological 

disorders or sex. Although previous reviews show that BSI captures some form of 

psychological distress that commonly occurs in the chronic posttraumatic phase (Auxéméry 

2018; Recklitis et al. 2017), the check for multicollinearity shows that the presence of the BSI 

total variable does not affect our regression analysis (i.e., the VIF of 1.112; also see S1). We 

noticed that including age in the model diminishes the effect, i.e., the relationship between 

total GM volume and CTQ total becomes statistically non-significant (β= -256.252, t (73) =-

0.430 and p= 0.379). Also, CTQ total showed no significant relationship with total GM volume 

when estimated total intracranial volume (eTIV) was controlled for (Supplementary Table 2). 

Despite these findings, we did control for age in all cortical analyses and additionally  for eTIV 

in cortical volume analysis based on previous literature (Pollok et al. 2022; Voevodskaya et al. 

2014). Lastly, since CTQ total and total GM volume were negatively related, all subsequent 

cortical regional analyses focused on this negative relationship. 

Local Alterations in Cortical Structure following ACE: using the whole brain surface-based 

analysis approach, we identified a cortical area reduction in the right superior parietal area to 

be related to CTQ total after controlling for overall psychological burden, age, and sex. 
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Effect of abuse and neglect on cortical brain measures: we used a simple linear regression 

with Abuse/Neglect variables of interest and sex, BSI total, age, eTIV and abuse/neglect as 

control variables. For the differences between abuse and neglect on cortical measures, a t-

test was used in the direction of Abuse > Neglect, and controlling for overall psychological 

burden, age, sex and eTIV (for volume). Abuse was significantly negatively related to cortical 

volume in the right superior parietal region after controlling for neglect, sex, age, eTIV, and 

overall psychological burden. No other significant associations were observed between 

neglect and all cortical measures. Additionally, the t-test of abuse > neglect on all cortical 

measures also showed no significant association. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Does abuse-related cortical volume alteration in the right superior parietal lobe (rSPV) 

mediate the relation between abuse severity and PTSS severity scores? To address this, we 

used rSPV as a mediator, abuse (assessed with the total CTQ abuse severity score) as a 

predictor, and all four PTSS severities (assessed with PCL) as outcome variables (giving a total 

of four mediation models). Each model was deemed significant if the p-value of the total effect 

was less than the Bonferroni corrected p-value (i.e., p < 0.05/4 = 0.0125). All four models were 

significant after Bonferroni correction (see supplementary table S4). The direct relationship 

between childhood abuse and each PTSS dimension was significant (see Table 4). rSPV 

Table 2. Cluster showing significant negative relation between CTQ total and 
cortical surface area. 

Cortical 

Measure 

H Brain 
region 

Size 
(mm2) 

MNI coordinate 
[x   y   z] 

Clusterwise 
P 

Effect 
size 

Area RH Superior 
parietal 

694.21 18.9  -60.4  54.4 0.0443 -4.0089  

Table 3. Cluster showing a significant negative relation between 
childhood abuse and cortical volume alteration. 

Cortical 

Measure 

H Brain 
region 

Size 
(mm2) 

MNI coordinate 
[x   y   z] 

Clusterwise 
P 

Effect 
size 

Volume RH Superior 
parietal 

369.99 21.6  -62.6  37.6 0.0412 -3.5479  

Monte Carlo correction for multiple comparisons was applied (clusterwise threshold 

P < 0.05, vertex-wise threshold P<0.005). Effect sizes (regression coefficients) were 

taken from whole brain vertexwise effect size brain maps. H, hemisphere; RH, right 

hemisphere; LH, left hemisphere. 

Figure 6. Significant effects of abuse on 
local cortical volume in the right superior 
parietal region after controlling for the 
effects of neglect severity, overall 
psychological burden, age, eTIV and sex 

Figure 5. Negative effect of ACE on 
cortical surface area in right superior 
parietal region after controlling for 
overall psychological burden, age, and 
sex. 

Monte Carlo correction for multiple comparisons was applied (clusterwise 

threshold P < 0.05, vertex-wise threshold P<0.005). Effect sizes (regression 

coefficients) were taken from whole brain vertexwise effect size brain maps. H, 

hemisphere; RH, right hemisphere; LH, left hemisphere. 
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significantly mediated the relationship between abuse and avoidance PTSS (n = 78, β = 0.021, 

SE = 0.010, Z=2.130, 95% CI = [0.004, 0.042], R2 = 0.217, p=0.033). The path plot showing 

effects is depicted in figure 7 below. No other significant rSPV mediation in the other three 

models was found, even though the total effects of all models were significant (see 

supplementary tables S3 and S4). Lastly, the path between abuse and rSPV (β = -4.989, 

p<0.001), and rSPV and negative changes in cognition and mood PTSS (β = -0.011, p=0.045) 

were both significant, but their total indirect effect was insignificant in the abuse-rSPV-

PTSSnegative changes in cognition and mood model (β = 0.008, p=0.059) (see supplementary table S3).  

 

 

 

 

 

 

 

 

 

 

Post-hoc Analyses: Does the indirect effect in the abuse-rSPV-avoidancePTSS relationship 

depend on dissociation symptoms? Several factors, including enhanced memory suppression, 

developing safety behaviours, and heightened dissociation, contribute to the association 

between childhood abuse and PTSD symptomatology. Specifically, dissociation is believed to 

be a coping mechanism for severe trauma experienced during childhood (Kratzer et al., 2018). 

As post-hoc analyses, we explored whether the significant indirect effect in the abuse -rSPV-

avoidance PTSS relationship (mediation analysis in Figure 7) depends on dissociation in our 

sample. First, we checked whether dissociation mediates the relationship between the 

Table 4. Direct relation of abuse and all PTSD symptoms 

 95% Confidence 
Interval 

      Estimate Std. Error z-value p Lower Upper 

Abuse → INTRU 0.138 0.046 3.000 0.004 0.042 0.224 

Abuse → AVOID 0.061 0.023 2.636 0.008 0.016 0.109 

Abuse → COMO 0.236 0.062 3.829 < .001 0.124 0.365 

Abuse → HYPE 0.198 0.051 3.865 < .001 0.100 0.303 

Note. INRU= intrusive PTSS, AVOID= avoidance PTSS, COMO= negative changes in cognition and mood PTSS, 
HYPE = hyperarousal PTSS. Bias-corrected percentile bootstrap confidence intervals. Estimator= Maximum 
likelihood, Optimization method=NLMINB. 

Figure 7. Significant mediation role of abuse-related volume reduction in the right superior 
parietal lobe in the relationship between the severity of childhood abuse (assessed with the 
total CTQ abuse severity score) and PTSD avoidance symptoms (Avoidance PTSS; assessed 
with the PCL avoidance symptomatology). Asterisks indicate the statistical significance of the 

bootstrapped standardised regression coefficients (***p < .001; **p < .01; *p < .05). 
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severity of childhood abuse and avoidance PTSS. We found no significant mediation of 

dissociation in the abuse and avoidance relationship (β =0.014, SE = 0.008, Z=1.848, p=0.065, 

95% CI = [0.001  0.030], R2=0.212) even though the path between abuse and dissociation (β 

=0.327, p=0.003), and the total effect (β =0.082, SE = 0.020, p<0.001, 95% CI = [0.082 0.418]) 

were significant. Then we explored whether dissociation symptoms interact with one or both 

indirect paths in our main mediation model from Figure 7. Prior to the analysis and to improve 

interpretation, we dichotomised the dissociation symptom measure (i.e., FDS score using cut-

off 13;Rodewald, Gast, & Emrich, 2006) in Table 1. The moderated mediation analysis was also 

performed using lavaan-SEM and is similar to what is implemented in Hayes model 58 (Hayes 

2012) (see Figure 8 below). Both indirect paths were significant; hence, we subsequently 

explored the CIs and SEs using bootstrapping (see also Table 5 below).   

 

 

 

 

 

 

 

 
 
 
 

 
Path  Estimate   Std.Err 95% CI 

L              H 

R2 p 

SPL volume  
 a1- Abuse 
 a2-Dissociation 
 a3- Abuse * Dissociation 

 
-0.013 
-0.409 
0.009 

 
0.003 
0.175 
0.004 

 
  -0.020        -0.007 
  -0.744        -0.065 
   0.001          0.018 

0.280  
< 0.001 * 
   0.020 * 
   0.036 * 

PTSD AVOID 
 b1- rSPV  
 b2-Dissociation 
 b3- rSPV * Dissociation 

 

-3.638 
-7.059 
5.090 

 

  1.084 
2.786 
1.737 

 

  -5.735         -1.401 
 -12.988        -2.050 
   1.894           8.813 

0.346  

   0.001 * 
   0.011 * 
   0.003 * 

Abuse=childhood abuse, rSPV = right superior lobe volume. Bootstrapping is based on 5000 replicates and the coefficient 
estimate is based on the percentile of the bootstrap distribution, Std.Err is the standard error, CI is the confidence interval, 
and p is the p-value. Significant paths are highlighted with * in the p-value column. 

Table 5.Table showing whether dissociative symptoms interact with one or both paths in the mediation model in Figure 7. 

Figure 8. Model diagram showing moderation role of dissociation in the indirect effect of abuse-rSPV- 
avoidance PTSS relationship. Asterisks indicate statistical significance of the bootstrapped standardized 
regression coefficients (***p < .001; **p < .01; *p < .05) 
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Diffusion measures in WM tracts touching the right superior parietal lobe complement the 

abuse-related effects in the brain: Following CTQ abuse-related changes in the right superior 

parietal volume, the diffusion measures (number of fibres, average fibre length, normalised 

fibre density and mean FA) within WM tracts touching the right superior parietal region were 

extracted for all subjects and put into regression models to explore their relationship with 

abuse severity using Pearson’s correlation. The average vertexwise volume in the abuse 

related rSPL cortical volume alteration was significantly correlated to almost all our diffusion 

measures (see Table 6).  

Diffusion Measures Person’s r 95% CI 
Lower     Upper 

p 

Number of fibres 0.330 0.146      0.499 0.003** 

Average length of fibres 0.298 0.105      0.481 0.008** 

Normalised fibre density -0.241 -0.473     -0.010  0.033* 

Mean FA 0.266 0.083      0.464 0.019* 

Pearson’s correlations (r) and CI is the confidence interval based on 5000 replicates and p is the p-value. Since the average 
vertexwise volume was used (i.e., residuals from cortical analyses) we did not include any control variable at this level. 
Significant relation was heighted as ***p < .001; **p < .01; *p < .05. 

 

3.5 Discussion  

This study provides evidence for the combined ACE severity and abuse subtype effects on 

brain structure. In a multiple regression analysis, ACE was negatively associated with the total 

GM volume after controlling for the overall psychological burden and sex. Whole brain 

analyses showed local cortical area reduction in the right superior parietal region to be 

associated with ACE. No further significant relationships between the combined ACE severity 

score and whole brain cortical measures were evident in our sample. As opposed to the 

cumulative account of childhood adversity, the two dimensional subtypes of adversity (i.e., 

abuse and neglect) may reflect different underlying dimensions of environmental experience 

that may have distinct associations with neurodevelopmental processes and also influence 

emotional, cognitive and neural development (McLaughlin et al. 2019). We found cortical 

volume alterations in the right superior parietal lobe (rSPL) to be associated with abuse while 

controlling for neglect, age, sex and eTIV. No further significant relationships were present in 

the ACE subtype analyses after controlling for overall psychological burden, which is crucial to 

Table 6. Complementary correlation analysis of the diffusion measures in WM tracts touching the right superior parietal 
lobe with abuse-related cortical volume alterations. 
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elucidate the effects of abuse/neglect independently from those associated with mental 

comorbidities (Pollok et al. 2022). The rSPL forms part of the posterior-FPN and has previously 

been reported to play a key role in the “top-down” or goal-driven allocation of attention. 

Cytoarchitectonic research shows that the SPL has a complex, heterogeneous architecture 

with more than seven sub-regions. The receptor distribution patterns and regional 

cytoarchitectonic features found three sub-regions in Brodmann (BA) 5 and four in BA 7 

(Scheperjans et al. 2005; Scheperjans et al. 2008). Functions of these regions were explored 

in a resting-state functional MRI study in healthy participants, and the results showed that 

each of the seven sub-regions was connected to several resting-state networks, with the most 

consistent connectivity observed with the visual and attention networks (Alahmadi 2021). 

Although abnormalities in rSPL has been associated with PTSD, PTSS and maternal stress 

(McQuaid et al. 2019a; Wang et al. 2021), no study that examined the superior parietal cortex 

structure found childhood trauma-related differences (McLaughlin et al. 2019). Based on 

these results, it seems likely that our sample gives new insights into the possibility that ACE 

may, at least in part, be related to cortical alterations in rSPL, whose function is related to 

visual and attention tasks.  

The test of our third hypothesis revealed a significant indirect path in the abuse-rSPL-

avoidance PTSS relationship. In our four mediation models and as expected, the direct paths 

between childhood abuse and all the different PTSS measured by PCL were significantly 

positive-related. This is an indication that persons with ACE may indeed be more prone to 

developing PTSS (Kratzer et al. 2018). The only indirect path that remained significant was the 

abuse-rSPL-avoidance PTSS relationship (see Figure 8 and also S2). Therefore, the right 

superior parietal volume significantly mediated the relationship between childhood abuse and 

avoidance PTSS. Comparing the standardised beta estimates of the indirect path (βab =0.021) 

to the direct path (βc’= 0.061) describes the reduced effect, implying that rSPL volume may 

explain part of the impact of childhood abuse in producing avoidance PTSS. Since a previous 

mega-analysis in a large sample found smaller volumes in the rSPL to be related to PTSD, we 

are adding to this finding that the rSPL may play a role in the development of avoidance 

symptoms in individuals with a history of severe childhood abuse.  

A moderated mediation analysis is used to measure how much a mediated effect changes with 

different degrees of a moderator. As opposed to a mediation analysis, the evidence for a 

moderated mediation can be used to support the evidence for a mediation under less 
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stringent confounding condition analyses (Loeys et al. 2016). Our post-hoc analyses gave 

insights into possible conditional indirect findings in the mediation. Dissociative symptoms, 

including amnesia, depersonalization, and identity fragmentation, often serve as coping 

mechanisms for severe trauma experienced during childhood (Brand and Frewen 2017). Since 

there is a close relation to attention, the involvement of the rSPL here is of interest. Many 

authors have emphasised the importance of dissociation in PTSD. Some authors agree that 

dissociation serves as a dysfunctional coping mechanism that serves to prevent biographical 

memories from integrating traumatic memories and hence perpetuates avoidance PTSD 

symptoms (Dalenberg and Carlson 2012; Kratzer et al. 2018). Starting from the left side of the 

path plot in figure 9, both abuse severity and dissociation were negatively associated to rSPV. 

Their interaction, however, was positively related to rSPV, which in turn was positively related 

(i.e., through rSPV and Dissociation interaction; right hand side of figure 9) to avoidance PTSS. 

This is interesting because this relationship could help to explain why persons with both 

childhood abuse and dissociative symptoms (and high abuse related-rSPL volume alterations) 

exhibit higher avoidance PTSS as a result of dissociation (Kratzer et al. 2018). Since dissociation 

can serve as a way to cope with the distressing memories and emotions associated with the 

childhood abuse, leading to higher levels of avoidance behaviours as a means of managing the 

traumatic experiences indirectly, our findings support this view via the increase in abuse-

related cortical volume in the right superior parietal lobe. This view is additionally supported 

by closely comparing the beta estimates of the interaction in both indirect paths of the 

moderated mediation model (i.e., abuse-diss. = 0.009 and rSPV-diss. = 5.090), which show the 

increase in the conditional effect is mostly explained by alterations in the rSPL in the presence 

of dissociation.  

In our exploratory complementary analysis of WM tracts connected to the GM volume 

regions, we focused on abuse-related cortical alterations in rSPL volume. We made this choice 

due to the dimension of the cortical volume measure which makes it biologically comparable 

to 3D DTI fibre tractography measures. The total volume per cluster from the abuse subtype 

analyses was correlated to almost all the WM measures (i.e., number of fibres, normalised 

fibre density, average-fibre length, and mean FA) connecting to abuse-related volume 

alterations. An increase in abuse-related effect on rSPL volume also increases the number of 

fibres, average fibre length, and mean FA of the WM tracts connected to rSPL, whereas an 

increase in abuse-related effect on rSPL volume led to a reduced normalised fibre density of 

WM tracts connected to rSPL. The former relationship was unexpected because the more the 
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abuse-related effect in rSPL volume increased, we expected all the WM measures to be 

reduced, to show that childhood abuse to some extent also negatively affects WM tracts 

connected to rSPL. This might be explained by the fact that these quantitative measures do 

not account for individual brain size, in contrast to normalised fibre density, which accounts 

for brain sizes. The normalised fibre density measure is an upgrade of the fibre density 

measure proposed by Hagmann et al., (2008) to account for individual brain sizes by 

normalizing the number of fibres connecting two regions by the total number of fibres in the 

tractogram and additionally, normalizing the surface per volume of the two regions by the 

total surface per volume of all regions (Daducci et al. 2012; Hagmann et al. 2008; Tourbier et 

al. 2022). Our findings provide further insight into the structural integrity of the WM tracts 

connected to the rSPL and affected by childhood abuse. It is noteworthy that not only was the 

cortical volume negatively associated with abuse, but the abuse-related volume in rSPL was 

negatively related to the normalised fibre density measure, which accounts for individual 

brain sizes. 

There are some limitations to our study. First, we collected data about ACE using self-reported 

questionnaires. Thus, there might be a recall bias, as a meta-analysis reported low agreement 

between prospective and retrospective measures of ACE (Baldwin et al. 2019). However, self-

report measures are mostly used in ACE research because they provide a unique window into 

the subjective experiences of individuals with ACE and allow them to express their feelings, 

thoughts, and perceptions of the experience. Interestingly, subjective experience of ACE were 

stronger associated with emotional disorders in adulthood than objective prospective 

measures (Danese and Widom 2023), and therefore potentially also to brain alterations. 

Hence, using self-reported measures in our study is justified as it provides first-hand 

information about the experience and a contextual understanding of its effects. Second, it is 

still unclear to what extent pubertal development, malnutrition, prenatal drug exposure, and 

resilience to co-factors from childhood to adulthood may have influenced our findings since 

we didn’t collect data on this. Hence, not controlling for these factors could be a limitation. 

Third, despite the positive insights provided by this study's design, mediation and moderated 

mediation analyses do not infer causality in cross-sectional studies like ours and hence should 

be cautiously interpreted. Thus, we reiterate that these analyses are exploratory. Despite this 

limitation, we have tried to ensure the statistical robustness of our findings by implementing 

bootstrapped confidence intervals as recommended by Edwards & Konold (2020). Fourth, we 

acknowledge that in a subset of individuals, the PTSS could be due to other traumatic 
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experiences unrelated to ACE such as adult trauma exposure. Because higher ACE was 

associated with higher PTSS (which takes into account the experience of traumatic events 

throughout life, i.e., in both childhood and adulthood), our model examines the association 

between abuse and PTSS regardless of whether the cause of the PTSS is due to ACE alone or 

also due to additional trauma events. Finally, since the majority of the participants were 

female (83%), the findings may not generalize well to men. We recommend that future studies 

should use longitudinal designs to assess changes in adversity over time (i.e., to include adult 

trauma exposure) and also balance male and female participants in a large sample size to help 

generalise the results to different samples. 

 

3.6 Conclusion  

Our study provides novel perspectives about the association between ACE and brain structure 

and the mediating role of the right superior parietal volume in the relationship of childhood 

abuse and PTSD avoidance symptoms. These findings contribute to our understanding of the 

neural mechanisms underlying the development and maintenance of PTSD symptoms, 

specifically avoidance symptoms, in individuals with a history of childhood abuse. By 

examining the role of the superior parietal region, our study provides valuable insights that 

may inform future research and interventions aimed at treating and preventing PTSD in an 

ACE population. Furthermore, our findings elucidate the complex interplay between this 

relationship and dissociative experiences as the later moderated the indirect effect in the 

abuse-rSPV-avoidance PTSS relationship. These findings underscore the potential long-term 

impact of childhood trauma on the brain, the role of dissociative symptoms, and the 

development of avoidance PTSD symptoms. Lastly, the normalised density of the WM tracts 

connected to the right superior parietal region provides improved information on structural 

brain alterations in persons with ACE.  
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3.7 Supplementary Information 

Method 

Procedure 

This study is part of a larger, ongoing study that is investigating the effects of ACE on brain 

structure and function (https://grk2350.de/research-projects/ace-characteristics/). 

Participants were recruited through distributed flyers, advertisements, and online platforms. 

It is important to note that psychiatric conditions did not factor into our recruitment criteria. 

Instead, our study was designed to investigate brain alterations following ACE, not specific to 

any psychiatric condition. The study protocol consisted of online questionnaires, a diagnostic 

interview, and MRI scanning sessions. The online questionnaires included the Childhood 

Trauma Questionnaire (CTQ; Thombs et al. 2007), the Brief Symptom Inventory (BSI; Derogatis 

1975), dissociative symptoms (i.e., German version of the Dissociative Experience Scale, 

Spitzer et al. 1998) and the diagnostic session included the Clinical version of the Structured 

Clinical Interview for DSM-5 (SCID-II; First et al. 2016). The diagnostic interview sessions were 

conducted by doctoral students who have received SCID-II training. The diagnoses that were 

assessed included affective disorders, anxiety disorders, obsessive-compulsive disorder 

(OCD), post-traumatic stress disorder (PTSD), attention deficit hyperactivity disorder (ADHD), 

and substance use disorder (SUD). Past and current disorders were diagnosed based on the 

presence of DSM-5 criteria for each disorder. Psychotic disorders were an exclusion criterion. 

Table S1 summarises the diagnostics. 

 

Table S1. Number of participants with SCID diagnostics. 

Variable current past 

PTSD 22 39 

Affective Disorders  22 51 

Anxiety and Obsessive Compulsive Disorders 27 36 

Somatic symptom and related disorders 5 7 

Eating Disorders 2 17 

Substance Use Disorders 3 14 

ADHD 2 3 

PTSD = posttraumatic stress disorder; ADHD = attention deficit hyperactivity disorder. Current = current diagnostics based on DSM-
5 criteria; past = past diagnostics based on DSM-5 criteria. Participants with missing SCID data = 2. 
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For the current study, only the lifetime PTSD diagnostics (i.e., current and/or past = 39) were 

used to correlate with the total PCL score (i.e., PCL-5 from Table 1 in the main text). From the 

point-biserial correlation, lifetime PTSD and total PCL score were found to be moderately 

positively correlated, rpb(74) =.47, p <.001. 

Results: 

Comprehensive regression analysis between total GM volume and total CTQ score  

We examined the potential role of confounders by testing whether they account for the 

relationship between ACE and GM volume. Statistically taking account of these confounding 

factors is especially important in order to control for their potential effect in our sample. These 

variables include age, sex, eTIV, and BSI total, which is the Global Severity Index of the Brief 

Symptom Inventory (BSI). 

Table S2. Comprehensive regression analysis between total GM volume and total CTQ score. 

                                         Models  
                                                   (1)                                                  (2)                                                   (3) 

 total GM volume (mm3) total GM volume (mm3) total GM volume (mm3) 

Age - - -1990.694*** 
(276.577) 

Sex - 
 

59407.766 *** 
(15,829.877)                   

7988.567ns 
(8829.914) 

eTIV - - 0.325*** 
                   (0.024) 

Psychological burden (BSI 
total) 

- 6058.081 ns 
(10113.341) 

1071.723 ns 
(4934.821) 

ACE (CTQ total) -768.825* 
(305.702) 

-725.517 * 
(299.019) 

57.771ns 
(158.689) 

Intercept 720,615.568 
(20054.910) 

702,473.549 
(19537) 

249662.170 
(38758.965) 

R2 
RMSE 
p-value 

0.077 
55318 
0.014 

0.227 
49618.814 

< 0.001 

0.822 
24145.284 

< 0.001 

Collinearity Statistics 
(Tolerance / VIF) 

 BSI total = 0.899 / 1.112 Age = 0.859 / 1.164 
BSI total  = 0.881 / 1.135 

eTIV = 0.949 / 1.054 

Note: N= 78; CTQ total = total score of Childhood Trauma Questionnaire; eTIV = estimated Total Intracranial Volume; BSI total = overall Psychological 
burden; RMSE= Root Mean Square Error; VIF= Variance inflation factor. The values in the column of each model represent the unstandardized beta 
coefficients with their standard error in brackets. Asterisks indicate the statistical significance of the bootstrapped unstandardized regression 
coefficients (***p < .001; **p < .01; *p < .05; ns=not significant). 
 
 

Supplementary results for the mediation models 

Supplementary results for the mediating role of abuse-related cortical volume alteration in the abuse-

PTSS relationship. Abuse-related cortical volume alteration in the right superior parietal lobe (rSPV) 
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significantly mediated the relationship between abuse and avoidance PTSS. Tables S3 and S4 show the 

indirect and direct paths of all four mediation models respectively. 

Table S3. Indirect relation in abuse, rSPV and all PTSD symptoms. 

 95% Confidence Interval 

          Estimate Std. Error z-value p Lower Upper 

Abuse →  rSPV →  AVOID 0.008  0.004  2.291  0.022  0.0010  0.0150  

Abuse →  rSPV →  INTRU 0.006  0.004  1.357  0.175  -0.0030  0.0140  

Abuse →  rSPV →  COMO 0.008  0.004  1.892  0.059  -0.0003   0.0160  

Abuse →  rSPV →  HYPE 0.006  0.004  1.537  0.124  -0.0020  0.0140  

Note. INRU= intrusive PTSS, AVOID= avoidance PTSS, COMO= negative changes in cognition and mood PTSS, HYPE = hyperarousal PTSS. Bias-
corrected percentile bootstrap confidence intervals. Estimator= Maximum likelihood, Optimization method=NLMINB 

 
 
 

Table S4. Total effects of all 4 mediation models. 

 95% Confidence Interval 

      Estimate Std. Error z-value p Lower Upper 

Abuse → AVOID 0.032 0.007 4.255 < .001 0.017 0.046 

Abuse → INTRU 0.037 0.008 4.425 < .001 0.021 0.053 

Abuse → COMO 0.041 0.008 5.388 < .001 0.026 0.056 

Abuse → HYPE 0.040 0.008 5.134 < .001 0.025 0.055 

Note. INRU= intrusive PTSS, AVOID= avoidance PTSS, COMO= negative changes in cognition and mood PTSS, HYPE = hyperarousal PTSS. Bias-
corrected percentile bootstrap confidence intervals. Estimator= Maximum likelihood, Optimization method=NLMINB 
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CHAPTER IV:  JOMNA STUDY  

Title: Brain connectivity disruptions in PTSD related to early 

adversity: a multimodal neuroimaging study. 
4.1 Abstract 

Background: Post-traumatic stress disorder (PTSD) is increasingly prevalent in individuals with 

adverse childhood experiences (ACE). However, the underlying neurobiology of ACE-related 

PTSD remains unclear.  

Objective: The present study investigated the brain connectivity in ACE-related PTSD using 

multimodal neuroimaging data. 

Methods: Using a total of 119 participants with ACE (70 with ACE-related PTSD and 49 ACE-

exposed controls), this study acquired T1-weighted MRI, diffusion-weighted MRI, and resting-

state fMRI data to examine structural and functional connectivity between groups. Joint 

connectivity matrix independent component analysis (Jcm-ICA) was employed to allow shared 

information from all modalities to be examined and assess structural and functional 

connectivity differences between groups. 

Results: Jcm-ICA revealed distinct connectivity alterations in key brain regions involved in 

cognitive control, self-referential processing, and social behaviour. Compared to controls, the 

PTSD group exhibited functional hyperconnectivity of the right medial prefrontal cortex (PFC) 

of the default mode network and right inferior temporal cortex, and functional 

hypoconnectivity in the lateral-PFC of the central executive network and structural 

hypoconnectivity in white matter pathways including the right orbitofrontal region (OFC) 

linked to social behaviour. Post-hoc analyses using the joint brain-based information revealed 

that the severity of ACE, the number of traumas, and PTSD symptoms later in life significantly 

predicted the effects of ACE-related PTSD on the brain. Notably, no direct association between 

brain connectivity alterations and PTSD symptoms or the number of traumas within the PTSD 

group was observed. 

Conclusion: This study offers novel insights into the neurobiology of ACE-related PTSD using 

multimodal data fusion. We identified alterations in key brain networks (DMN, CEN) and OFC, 

suggesting potential deficits in cognitive control and social behaviour alongside heightened 

emotional processing in individuals with PTSD. Furthermore, our findings highlight the 

combined influence of ACE exposure, number of traumas experienced, and PTSD severity on 

brain connectivity disruptions, potentially informing future interventions.  

Published as: Nkrumah, R. O.*, Demirakca, T., von Schröder, C., Zehirlioglu, L., Valencia, N., Grauduszus, Y., 
Vollstaedt-Klein, S., Schmahl, C., & Ende, G. (accepted on 9th November 2024 at the European journal of 
psychotrauma). Brain connectivity disruptions in PTSD related to early adversity: a multimodal neuroimaging 
study 
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4.2 Highlights 

 In the present study individuals with a history of childhood adversity and PTSD 

reported distinct alterations in functional and structural connectivity patterns in key 

brain networks involved in cognitive control, self-referential processing, and social 

behaviour. 

 Additionally, evidence of brain deficits in the right medial prefrontal cortex, right 

inferior temporal cortex, lateral PFC and right orbitofrontal cortex in ACE-related PTSD 

was derived from multimodal brain features. 

 Furthermore, the study demonstrated a potential link between the severity of ACE, the 

number of traumas, and PTSD symptoms with the observed brain connectivity 

disruptions. 

 Notably, no direct association between brain connectivity alterations and PTSD 

symptoms or the number of traumas within the PTSD group was found, suggesting that 

trauma severity, rather than number of traumas, may play a crucial role in shaping 

brain structure and function in individuals with PTSD. 
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4.3 Introduction  

Post-traumatic stress disorder (PTSD) is a mental health condition triggered by experiencing 

or witnessing a traumatic event and has significant prevalence rates of 3.9% in the general 

population (Koenen et al. 2017). Adverse Childhood Experiences (ACE), particularly childhood 

abuse and neglect, are potentially traumatic events that are strongly associated with an 

increased risk of developing PTSD later in life (Messman-Moore and Bhuptani 2017; Nooner 

et al. 2012). A well-known thought about this relationship is that ACE impairs the ability to 

form social connections (Barnes 2016; Herzog and Schmahl 2018) which serve as an important 

protective factor in the resilience to stress (Bækkelund et al. 2021; Cisler and Herringa 2021). 

Among adolescents, the prevalence of ACE-related PTSD is reported to be 57%, compared to 

10% for PTSD from natural disasters (Nooner et al. 2012), with symptoms manifesting at least 

two months post-ACE (Kilpatrick et al. 2013).  

MRI studies from different modalities have shown widespread abnormalities in brain structure 

and function in persons with ACE and PTSD. These include regions known to play significant 

roles in spatial processing, such as the superior parietal lobe (Nkrumah et al. 2024b; Wang et 

al. 2021), and emotional processing, including the medial prefrontal cortex, amygdala, 

anterior cingulate cortex, and insula (Hosseini-Kamkar et al. 2023; Pollok et al. 2022; Sherin 

and Nemeroff 2011; Wang et al. 2016), as well as key regions like the hippocampus, crucial for 

memory formation and retrieval (Cisler and Herringa 2021; Morey et al. 2016; Teicher et al. 

2018).  

In functional connectivity (FC) based research, the concept of the triple network system 

highlights how systemic regions of the brain relate to each other, including regions involved 

in internally directed thoughts (DMN; default mode network), externally focused attention 

(CEN; central executive network or FPN; fronto-parietal network), and salience processing (SN; 

salience network) (Menon 2011). Individuals with ACE and PTSD often show functional 

hyperconnectivity in the DMN due to rumination on intrusive memories and persistent 

negative thoughts associated with trauma, compared to those without such experiences 

(Daniels et al. 2011; Hoffmann et al. 2018; Lebois et al. 2022). Conversely, functional 

hypoconnectivity in the DMN may impair self-referential processing and contribute to 

dissociative symptoms commonly observed in PTSD (Lanius et al. 2020). However, Lebois et 

al., (2022) found hyperconnectivity in females with PTSD dissociative subtype. Notably, the 

literature on DMN abnormalities in PTSD is heterogeneous, with both hyper- and 

hypoconnectivity findings reported. This variability may be influenced by factors such as 
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trauma type, severity, chronicity, and study methodology(Lanius et al. 2020; Wang et al. 

2016). Similarly in the SN, individuals with ACE and PTSD often demonstrate functional 

hyperconnectivity as a potential correlate of heightened sensitivity to stressors (Thome et al. 

2014), increased emotional reactivity, and difficulties in discerning between relevant and 

irrelevant stimuli, thereby perpetuating the cycle of trauma-related symptoms (Akiki et al. 

2017). In contrast, within the CEN, individuals with ACE and PTSD typically show functional 

hypoconnectivity potentially resulting from distractibility, and difficulties disengaging from 

trauma-related cues which often impair daily functioning and exacerbate symptoms of PTSD 

(Kavanaugh and Holler 2014; Olson et al. 2019). Structural connectivity (SC) based research, 

persistently reports reduced SC measures at the whole brain level in ACE and PTSD samples 

compared to healthy participants (Kavanaugh and Holler 2014; Lim et al. 2019b). These SC 

results suggest impaired neural communication, potentially reflecting neurodevelopmental 

disruptions associated with ACE and PTSD (Dennis et al. 2021; McLaughlin et al. 2019). While 

these studies demonstrate significant findings using diverse samples and unimodal MRI 

methods, understanding the intricate relationships within brain networks such as the triple 

network system in ACE related PTSD sample and fusing both SC and FC could offer a holistic 

perspective on the neural mechanisms involved in ACE related PTSD. 

Despite advancements in neuroimaging research, there remains a need for further exploration 

of the neural correlates of ACE-related PTSD. Fusing structural (e.g. diffusion-weighted MRI) 

and functional (e.g. Resting state fMRI) data has gained interest in recent times and holds 

promises to enhance our understanding of the brain (Calhoun and Sui 2016; Hirjak et al. 2020; 

Khalilullah et al. 2023; Ooi et al. 2022). Specifically, data-driven joint connectivity matrix 

independent component analysis (jcm-ICA) has recently been explored in a healthy subject 

sample and shows promise for connectivity-based multimodal neuroimaging data fusion at 

the whole-brain level (Wu and Calhoun 2023). Jcm-ICA enables the analysis of SC and FC data, 

allowing for the identification of shared and distinct brain patterns and potentially providing 

novel insights into brain organization and function in both healthy and diseased brain. 

In this study, we performed jcm-ICA in an ACE-related PTSD sample compared to an ACE-

exposed control group while controlling for the influence of other lifetime traumatic 

experiences associated with PTSD. Our aim was to fuse SC and FC features to investigate both 

features at the whole brain level as well as the triple network systems that would help 

categorize ACE-related PTSD vs. ACE-exposed control (noPTSD). We hypothesized that 

individuals with ACE-related PTSD will exhibit different patterns of connectivity compared to 
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noPTSD, particularly within the DMN, SN, and CEN. Specifically, we anticipated functional 

hyperconnectivity in the DMN and SN, along with functional hypoconnectivity in the CEN in 

the PTSD group compared to the noPTSD group. We also hypothesized an overall decreased 

structural connectivity on whole-brain level in the PTSD group compared to noPTSD group. By 

examining both SC and FC features, we aimed to enhance our understanding of the neural 

correlates underlying ACE-related PTSD.  

4.4 Methods 

Participants 

This study forms part of an ongoing study investigating the effects of ACE on brain structure 

and function (https://doi.org/10.17605/OSF.IO/S5YDB). For the current study, a total of 148 

participants (85.14% females; Meanage = 31.02, SDage = 10.05) with any form of ACE were 

recruited through distributed flyers, advertisements, and online platforms. The inclusion 

criteria for the study were persons exposed to any form of ACE and with or without lifetime 

PTSD diagnostics. Exclusion criteria included any kind of metal implant, pregnancy, traumatic 

brain injury, claustrophobia, psychosis, or any form of neuropsychological disorder. 29 

participants were excluded from the final analysis: 15 had incomplete data and / or exhibited 

anomalies in their Magnetic Resonance (MR) images, likely due to movement artefacts during 

data acquisition and a low Signal-to-Noise Ratio (SNR) in the acquired image. 14 participants 

were excluded due to comprehension difficulties of several crucial questions during diagnostic 

interviews and incomplete clinical data. Consequently, the final data set used in our analyses 

consisted of 119 participants (84.87% females; Meanage = 30.66, SDage = 10.07, Rangeage = 18 

– 59 years).  

Procedure 

Kindly see supplementary material below. 

Measures 

For the current study, we assessed lifetime PTSD diagnoses, ACE severity (computed using the 

total Childhood Trauma Questionnaire (CTQ) severity score), trauma load (computed using 

any other non-CTQ related possible events associated with PTSD in the Life Event Checklist 

(LEC) for PTSD; see Supplementary), PTSD symptom severity (PTSS; computed from the total 

PCL-5 score), and ACE-related trauma count (the sum of the number of multiple ACE-related 

PTSD traumatic experiences). Kindly see supplementary 1.2 for additional information on 

https://doi.org/10.17605/OSF.IO/S5YDB
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measures. Table 7 below shows demographics, symptoms, diagnostics and comparison 

between groups. Sex, ACE severity, overall trauma load were statistically significantly different 

between groups hence controlled for in all subsequent analyses. Age was additionally 

controlled for based on literature (Giedd and Rapoport 2010; Herzog et al. 2020; Herzog and 

Schmahl 2018; Siehl et al. 2018). 

 
 

noPTSD  PTSD  Difference  P value 

N (%) 49 (41.18 %) 70 (58.82 %)   

Age 29.22  ± 9.48 31.67  ± 10.41 T= -1.309 (df= 117) 0.193 

Sex 37 F 64 F X2= 5.891 (df = 1) < 0.001 * 

ACE severity  (CTQ 
total) 

 Emotional abuse 

 Physical abuse 

 Sexual abuse 

 Emotional neglect 

 Physical neglect 

51.80  ± 11.60 
 

14.06  ± 4.99 
8.18  ± 3.53 
6.65  ± 3.21 

15.12  ± 5.04 
7.78  ± 2.29 

72.59  ± 18.94 
 

17.93  ± 5.07 
10.84  ± 5.29 
13.64  ± 6.63 
18.57  ± 4.99 
11.60  ± 4.39 

T= - 6.834 (df= 117) 
 

T= -4.121  (df= 117) 
T= -3.070  (df= 117) 
T= -6.833  (df= 117) 
T= -3.695  (df= 117) 
T= -5.589  (df= 117) 

< 0.001 * 
 

< 0.001 * 
 0.003   * 
< 0.001 * 
 < 0.001 * 
< 0.001 * 

PTSD severity 
(PCL total) 

 Reexperiencing 

 Avoidance 

 Negative 
alterations in 
cognition and 
mood  

 Hyper arousal 

19.06 ± 13.46 
 

4.12  ± 3.78 
2.69  ± 2.34 
6.88  ± 5.80 

 
 

 
5.37  ± 4.76 

35.46 ± 17.09 
 

8.13  ± 4.83 
4.39  ± 2.49 

12.84  ± 6.79 
 
 
 

10.10  ± 5.65 

T= -5.605 (df= 117) 
 

T= -4.856  (df= 117) 
T= -3.738  (df= 117) 
T= -5.001  (df= 117) 

 
 
 

T= -4.792  (df= 117) 

< 0.001 * 
 

< 0.001 * 
< 0.001 * 
< 0.001 * 

 
 
 

< 0.001 * 

Overall trauma 
load 

2.04 ± 1.53 2.33 ± 1.80 T= -1.309 (df= 117) < 0.001 * 

Number of ACE-
related trauma 

0.71 ± 0.71 1.41 ± 0.55 T= -6.061 (df= 117) < 0.001 * 

Data are reported as mean ± standard deviation. Age range for the total sample is 18-59 years. df degree of 
freedom. *: Significant at P < 0.05 level. 

Imaging data acquisition  

All MR data, i.e., T1-weighted (T1w), diffusion and resting state images were acquired using a 

Siemens Prisma-fit Scanner (Siemens Medical Solutions, Erlangen, Germany) with a 64-

channel head coil. The MR protocol for each participant included: A 3-D magnetization-

prepared rapid-acquisition gradient echo (MPRAGE; T1-weighted contrast, Echo Time (TE) = 

2.01 ms, Repetition Time (TR)=2000 ms, Inversion time (TI) = 900ms, Flip angle (FA) = 9◦, FOV 

= 256 × 256 mm, number of slices 192, voxel size 1 × 1 × 1 mm3), a diffusion image with double 

spin-echo echo-planar imaging (EPI) sequence for diffusion (82 volumes, 3 at b = 0 and 79 at 

b = 1000 s/mm2, TR = 8400 ms, TE = 86 ms, matrix = 128 × 128, number of slices = 64, voxel 

size = 2 × 2 × 2 mm3, in-plane acceleration factor of 3) and resting state (400 BOLD fMRI 

Table 7. Demographics, symptoms and lifetime PTSD diagnostics of noPTSD and PTSD. 
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volumes, 36 slices in interleaved ascending order, TR = 1020 ms, TE = 30 ms, FA = 63°, FOV = 

192x192 mm, matrix size = 64x64, voxel size = 3x3x3.75 mm3, MB factor of 2, in-plane 

acceleration factor of 2). 

Data preprocessing 

T1-weighted images were preprocessed, parcellated, and segmented into 83 cortical and 

subcortical nodes of the Lausanne atlas using Connectome Mapper 3 (CMP3; an open-source 

python neuroimaging processing pipeline software developed by the Connectomics Lab, 

University Hospital of Lausanne (CHUV)). Diffusion and resting-state fMRI data were also 

preprocessed using CMP3 (Tourbier et al. 2022). See supplementary material, for in-depth 

description of data preprocessing. Two structural connectivity measures (i.e. the number of 

fibres between nodes and normalized density of fibres between nodes) and two functional 

connectivity measures (i.e. positive and negative functional correlation between nodes) were 

retrieved from the output of CMP3 and used as features for the jcm-ICA (kindly see Figure 4A).  

Quality control and data preprocessing of connectivity matrices 

The SC and FC features were visually inspected. Each individual connectivity matrix (with the 

dimension of 83x83) was controlled for age, sex, ACE severity, and trauma load, and 

subsequently normalized by rescaling the data range to an interval of [0, 1]. This preprocessing 

step aims to ensure that the features for jcm-ICA are standardized and comparable across 

subjects, enhancing the robustness and interpretability of the subsequent analysis and 

ensuring equal contribution from both SC and FC data in the next steps. 

Jcm-ICA for multimodal analyses 

Data-driven jcm-ICA was performed using a joint feature matrix obtained by fusing individual 

subjects' SC and FC data matrices (Figure 4B, LHS) using the Fusion ICA Toolbox 

(http://mialab.mrn.org/software/fit).  

First, principal component analysis (PCA) was performed as a dimension reduction step on the 

subject-level matrix to reduce it to a component level. The noPTSD group was used as a 

reference in the PCA step to decompose the data into 40 ICs (10 for each feature).  

Secondly, we performed 10 ICAs on the component level reduced matrix and averaged the 

results from the 10 runs to ensure component stability. The Infomax algorithm was used to 

http://mialab.mrn.org/software/fit
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compute ICA, which produced a subject-level shared mixing matrix and connectivity-based 

whole brain independent sources for both FC and SC features (Figure 4B, RHS).  

Finally, a t-test was performed on the shared mixing matrix (also called the joint mixing 

coefficient matrix) data to identify the corresponding independent components/sources that 

best categorize neurobiological differences between groups. As previously demonstrated 

(Hirjak et al. 2020; Liu et al. 2019; Sui et al. 2009; Wu and Calhoun 2023), exploring the joint 

mixing coefficients obtained using information from all features in the joint feature matrix 

offers a comprehensive approach by incorporating information from both FC and SC features.  

Conversely, whole brain connectivity-based independent components and intra and inter 

network connectivity of the triple network (i.e. DMN, SN and CEN) of the significant 

components which showed differences between noPTSD vs. PTSD were then explored. 

Figure 1 of this paper has been pasted as Figure 4 of the thesis.  

Relation between joint mixing coefficient and clinical data 

In an exploratory post hoc analysis, we evaluated the joint mixing coefficients for the 

identified significant components to determine if any relationship exists between these 

coefficients and clinical data. Our aim was to verify if the identified significant component 

were indeed best predictor of PTSD diagnosis, hence we focused on the PTSD group. We 

explored whether the number of multiple ACE-related PTSD traumas (listed in Table 7 as ACE-

related trauma count), PTSD symptoms (using PCL total) and ACE severity could relate to PTSD-

related brain information. This analysis aimed to examine the potential impact of multiple 

ACE-related traumatic experiences, PTSD severity, and overall ACE severity on the joint PTSD-

related brain information obtained from both structural and functional data.  

4.5 Results 

Group Differences (noPTSD > PTSD) on joint mixing coefficient. 

Figure 9A shows the two-sample t-test results on the 10 joint mixing coefficients of the 10 

estimated components. After correcting for multiple comparisons using the Bonferroni 

method, the joint mixing coefficient (MC) for component 9 was significantly different between 

groups (p = 0.004, Figure 9A). Figure 9B shows the t-test results for MC of independent 

component (IC) 9. Compared to the PTSD group, the higher mixing coefficients in the noPTSD 

group indicate that IC 9 (which includes both SC and FC features) is expressed more in the  
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noPTSD group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cortical representation of the independent component 9 differentiating between PTSD and 

noPTSD groups. 

As identified in the analysis of the MC above, IC 9 best categorizes neurobiological differences 

between groups. Hence, we explored the respective features of this component. For 

visualization purposes, all features of IC 9 were plotted on the cortical surface, transformed 

into Z scores, and thresholded at z > 2 (hyperconnectivity in red) and z < -2 (hypoconnectivity 

in blue), indicating increases and decreases in FC and SC measures, respectively. After 

thresholding, no significant results were found for the number of fibres and negative 

functional connectivity features. Compared to the noPTSD group, the PTSD group exhibited 

functional hypoconnectivity (i.e. decrease in the positive FC measure and indicative of colour 

Figure 9. A two-sample t-test was computed on the joint mixing coefficients between the noPTSD and 
PTSD groups. 9A shows a bar graph of the T-values from the t-test computed on the mixing coefficients 
of all 10 components. (*) indicates components with significant p-values after Bonferroni correction. 9B 
shows a plot of the T-test results for the joint mixing coefficient of component 9 between the noPTSD 

and PTSD groups. 

9B. T-test results for joint mixing coefficient for IC 9: noPTSD > PTSD 

9A. T-test results for joint mixing coefficients of all components: noPTSD > PTSD 

* 
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blue in Figure 10A) in the left and right lateral prefrontal cortex (lPFC) and functional 

hyperconnectivity (i.e. an increase in the positive FC measure and indicative of the colour red 

in Figure 10A) in the right medial prefrontal cortex (rmPFC) and right inferior temporal gyrus. 

Additionally, individuals with PTSD showed reduced (i.e. hypoconnectivity) of the NFD 

measure in the right orbitofrontal cortex (rOFC) compared to controls. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

10 B. Structural connectivity features for IC 9: PTSD > noPTSD 
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10 A. Functional connectivity features for IC 9: PTSD > noPTSD 

r-lPFC 

r-InfTemp 

l-lPFC 

r-InfTemp r-mPFC 

Z-value 

 4 

 

 2 

  

 0 

 

-2 

 

-4 

Positive functional connectivity  

Figure 10. Back-reconstructed cortical functional and structural connectivity features for independent 
component 9, which differed between the PTSD and noPTSD groups. All features were transformed 
into Z scores and thresholded at z > 2 (hyperconnectivity in red) and z < -2 (hypoconnectivity in blue) 
for visualization purposes. (A) Positive functional connectivity features for IC 9. (B) Normalised fibre 
density features for IC 9. InfTemp = inferior temporal gyrus, mPFC = medial prefrontal cortex, lPFC = 
lateral prefrontal cortex, OFC = orbitofrontal cortex. r- and l- represent the right and left hemispheres, 
respectively. 
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Relation between joint mixing coefficient (MC) and clinical data.  

Here, our focus was to check whether the MC from both structural and functional features were indeed 

best predictor of PTSD diagnostics hence, we focused on the PTSD group. First, we conducted 

correlational analyses between the MC and clinical measures, including PCL-5 and CTQ subscale scores. 

The results of these analyses are presented in Supplementary Table S6. We found that within the PTSD 

group, MC of IC9 was negatively correlated to ACE severity (total CTQ score; r = -.275, p = .021) but not 

the number of ACE-related traumatic events (r = .048, p = .695) and PTSD symptomatology (total PCL-

5 score; r = -.174, p = .149). Further moderation analysis revealed that the number of ACE-related 

traumatic events significantly moderated the relationship between ACE severity and MC of IC9 

(interaction term: t-value = -3.03, β = -.0004, SE = .0001, p = .0035, R2 = .1967). Specifically, at higher 

levels of ACE-related traumatic events (i.e. 2 and 3), the negative relationship between ACE severity 

and MC of IC9 was stronger (simple slope analysis in Figure 11A). Although PTSD symptoms did not 

individually moderate the relationship between ACE severity and MC of IC9 (interaction term: t-value 

= -1.44, β = -.00000962, SE = .00000667, p = 0.1543), using Hayes' Model 2, with ACE severity as 

dependent variable, the number of ACE-related traumatic events and PTSD symptoms as moderators 

and MC of IC9 as dependent variable was significant (both interactions: Figure 11B: F(2, 64) = 5.29, p = 

0.0075, R2=0.2165). This indicates that the combined presence of multiple ACE-related PTSD traumas 

and higher levels of PTSD symptoms further strengthens the negative relationship between ACE 

severity and MC of IC9. To address potential multicollinearity, assess model improvement, and 

provide a comprehensive understanding of our results in the PTSD group, we report the VIF 

values, detailed model fit statistics, and correlations between clinical variables in the 

supplementary material. Briefly, only ACE severity and PTSD symptoms were significantly 

correlated (r =.516, p < .001). However, the VIF values for all variables in the model used were 

below 1.5, indicating no concerns regarding multicollinearity (O’brien 2007). 
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Figure 11 shows the relation between ACE severity and joint mixing coefficient of IC9 as moderated by (A) number 
of ACE-related trauma events and (B) number of ACE-related traumas events and PTSD symptoms severity. 
PTSD symptom severity grouping is shown as ±1 standard deviation around the mean PCL symptoms severity 
score in the PTSD group (representing low=18.37, moderate=35.46, and severe=52.54 severity, respectively). 
Asterisks indicate the statistical significance of the boot-strapped unstandardized regression coefficients (***p < 

0.001; **p < 0.01; *p < 0.05; n.s - not significant). 

B. Relationship between ACE severity and joint mixing coefficient of IC9 as jointly moderated 
by multiple ACE-related traumas and PTSD symptoms in the PTSD group. 

β =  .0002 n.s 

β =  .0000 n.s 

β = - .0001 n.s 

β = - .0001 n.s 

β = - .0003 * 

β = - .0004 * 

β = - .0005 * 

β = - .0006 ** 

β = - .0007 ** 

A. Relationship between ACE severity and joint mixing coefficient of IC9 as 
moderated by number of multiple ACE-related Trauma of the PTSD group. 
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β = - .0003 ** 

β = - .0006 *** 
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β = - .0003 ** 
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4.6 Discussion 

Using a Jcm-ICA, we identified neuronal networks to be different between ACE-exposed 

individuals with PTSD compared to ACE-exposed controls. These alterations in FC include 

regions in the DMN and the CEN, as well as the right inferior temporal gyrus responsible for 

facial processing. SC features also showed differences in rOFC, a region critical for social 

behaviour. 

First in Jcm-ICA, we estimated 10 ICs from both structural and functional brain connectivity 

features, derived from an average of 10 independent component analysis (ICA) runs. A t-test 

of the MC for each of the 10 component revealed that IC 9 showed significant differences 

between the noPTSD and PTSD groups (p = 0.004, Figure 9). As reported in previous studies 

(Lottman et al. 2018; Sui et al. 2009; Sui et al. 2011), exploring the MC provides a 

comprehensive comparison between groups, potentially highlighting distinct neural 

signatures associated with PTSD. The resulting connections of the independent sources reveal 

whole brain hyperconnectivity (increase of SC or FC measures) or hypoconnectivity (decrease 

of SC or FC measures) between nodes in the PTSD group compared to the noPTSD group.  

After plotting our findings from IC 9 on the cortex, distinct patterns of connectivity in several 

key brain regions involved in self-referential processing (Lanius et al. 2020), cognitive control 

(Fenster et al. 2018), and social behaviour (Hinojosa et al. 2024) were revealed, shedding light 

on the neurobiological mechanisms underlying ACE-related PTSD. For functional connectivity 

features, notable alterations were observed in the positive functional connectivity feature, 

which indicates a positive functional correlation between nodes. Specifically, the PTSD group 

exhibited hypoconnectivity (i.e. decrease in positive FC measure and indicative of colour blue 

in Figure 10A) in the left and right lPFC, a component of the central executive network, 

responsible for cognitive control and executive functioning (Marek and Dosenbach 2018; 

Olson et al. 2019). As hypothesized and supported by existing literature (Akiki et al. 2017; 

Johnson et al. 2021; McLaughlin et al. 2017), hypoconnectivity in the lPFC suggests potential 

deficits in cognitive flexibility and decision-making, which is compatible with the 

symptomatology of individuals with ACE and PTSD. These alterations further underscore the 

impact of ACE on the neural substrates supporting higher-order cognitive processes, offering 

insights into the cognitive dysregulation commonly observed in individuals with PTSD (Pankey 

et al. 2022). 

Conversely, functional hyperconnectivity in the rmPFC and right inferior temporal gyrus was 

found in the PTSD group compared to noPTSD group. This finding aligns with our initial 
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assumptions, as rmPFC forms part of the DMN and is involved in self-referential processing, 

and memory consolidation(Lanius et al. 2020; Sokołowski et al. 2022), which occur more 

frequently in individuals with PTSD, especially those with a history of ACE due to persistent re-

experiencing of traumatic memories characteristic of PTSD (Pankey et al. 2022; Thomaes et 

al. 2012). Increased FC in the rmPFC could reflect an enhanced focus on internal experiences, 

such as rumination and intrusive thoughts related to past trauma, potentially exacerbating 

symptoms (Fitzgerald et al. 2018). Additionally, alterations in the rmPFC could influence social 

cognition and interpersonal functioning (Fitzgerald et al. 2018), contributing to difficulties in 

social interactions and forming secure attachments, which are often affected in persons with 

PTSD. Furthermore, a longitudinal study by Du and colleagues supports the DMN findings; 

alterations in the DMN persisted at the two-year follow-up post traumatic experience in PTSD 

groups (Du et al. 2014). This persistence highlights the DMN's central role in PTSD's long-term 

neurological effects (Hinojosa et al. 2024; Ireton et al. 2024). In addition to the rmPFC findings, 

functional hyperconnectivity in the right inferior temporal gyrus, known for its involvement in 

face perception (Shahbazi et al. 2024) and recognition (Faghel-Soubeyrand et al. 2024), was 

observed in individuals with ACE-related PTSD compared to controls (Holz et al. 2023). This 

suggests heightened neural responsiveness to visual stimuli, particularly emotional faces, in 

the context of trauma exposure (Harnett et al. 2021; Hinojosa et al. 2024). Such heightened 

reactivity to emotional cues may contribute to the re-experiencing of traumatic memories and 

difficulties in emotional regulation commonly observed in PTSD (Harnett et al. 2021; 

Kavanaugh and Holler 2014).  

In examining the structural connectivity features, encompassing both the number of fibres 

(NOF) and normalized fibre density (NFD) of white matter pathways between cortical nodes, 

our analysis revealed a significant difference between groups solely in the NFD feature. Unlike 

the NOF measure, the NFD accounts for differences in brain size by incorporating the cortical 

volume of individual regions in its computation (Nkrumah et al. 2024b). Specifically, 

individuals with PTSD exhibited hypoconnectivity (i.e. decrease) of the NFD measure in the 

rOFC compared to controls. The rOFC is known to play a role in social behaviour and closely 

connected to the ventrolateral prefrontal cortex, which is involved in the integration of 

emotional processes and decision making (Kida and Hoshi 2016). The observed alteration in 

the rOFC aligns with previous research highlighting the role of this brain region in modulating 

emotional responses (Eden et al. 2015) and integrating sensory information to guide adaptive 

behaviour (Rolls and Grabenhorst 2008).  
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Our post hoc analysis which aimed to determine whether the MC derived from both structural 

and functional data could serve as a reliable predictor of PTSD diagnosis, revealed significant 

relations between the MC of IC9 and clinical data. We found a significant negative correlation 

between the MC of IC9 and the severity of ACE within the PTSD group. This relationship 

appears to be driven by childhood abuse, more specifically physical abuse (see supplementary 

Table S6). This aligns with previous research demonstrating the detrimental impact of 

childhood trauma on brain structure and function in individuals with PTSD (McLaughlin et al. 

2017; Teicher and Samson 2016). We did not observe a significant correlation between the 

MC of IC9 and the number of ACE-related traumatic events or PTSD symptomatology. 

However, our complementary checks for the post-hoc analyses revealed a significant 

correlation between ACE severity and PTSD symptom severity but not with the number of 

traumatic events within the PTSD group (see supplementary Table S7). This suggests a 

complex relationship between ACE severity, PTSD symptoms, and the number of traumas. 

Hence, our findings may indicate that the severity of traumatic experiences has a greater 

influence on the brain connectivity patterns observed in individuals with PTSD than the 

quantity of traumatic experiences (Bellis et al. 2019). Further analysis in our sample revealed 

a significant moderation effect of the number of multiple ACE-related traumatic events on the 

relationship between ACE severity and the MC of IC9. Specifically, higher levels of multiple 

ACE-related traumas strengthened the negative association between ACE severity and MC of 

IC9. This interaction underscores the cumulative impact of trauma exposure on brain 

connectivity alterations, potentially reflecting a heightened vulnerability to maladaptive 

neurobiological changes in individuals with a history of repeated traumatic experiences (Gerin 

et al. 2023b; Herringa et al. 2013; Teicher et al. 2022). Moreover, while PTSD symptoms alone 

did not moderate the relationship between ACE severity and the MC of IC9, considering the 

effects of multiple ACE-related traumas and PTSD symptoms as moderators in the relationship 

between MC of IC9 and ACE severity was significant. This suggests that the presence of both 

higher levels of traumatic exposures and severe PTSD symptoms amplifies the association 

between ACE severity and MC of IC9 (Figure 11B), indicating a synergistic effect of cumulative 

trauma burden and symptom severity on brain connectivity disruptions.  

The use of jcm-ICA in this study represents a novel approach to investigating brain connectivity 

in ACE-related PTSD. This method allowed us to assess shared information from structural and 

functional connectivity, providing novel insights into the neural mechanisms underlying PTSD 

related to childhood trauma. Collectively, our findings underscore the multifaceted nature of 
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neural adaptations following exposure to ACE, offering valuable insights into the 

neurobiological mechanisms underlying PTSD pathology and highlighting potential neural 

targets for therapeutic interventions for ACE-related PTSD (Karatzias et al. 2020; McLaughlin 

et al. 2019). The observed disruptions in connectivity measures within the DMN, CEN and 

inferior temporal brain regions suggest potential biomarkers or neural signatures associated 

with the disorder, offering avenues for the development of targeted interventions and 

treatment strategies (Akiki et al. 2017; Steil et al. 2023). Moreover, structural connectivity 

findings in the right OFC shed more light on the effects of ACE-related PTSD on the brain. 

Lastly, our post-hoc analyses reveal the synergistic effects of ACE, cumulative trauma burden, 

and PTSD symptom severity on brain connectivity disruptions in individuals with ACE-related 

PTSD. 

One potential limitation of the study is the risk of contribution bias in the data reduction step, 

particularly when using the control group as a reference for principal component analysis 

outputs from the joint feature matrix. This approach may introduce biases in the derived 

components, as they could be influenced by the characteristics of the control group rather 

than solely reflecting intrinsic features of individuals with ACE-related PTSD. Additionally, the 

gender distribution within our sample was not balanced, potentially affecting the robustness 

of our results. Furthermore, the use of cross-sectional data limits our ability to establish causal 

relationships, as the moderation effects observed in this study may be influenced by 

unmeasured time-varying confounders (Fairchild and MacKinnon 2009). Future research with 

larger and more diverse samples, employing longitudinal designs, is warranted to validate and 

extend our findings. 

4.7 Conclusion 

The current study utilized the fusion of multimodal neuroimaging data to identified networks 

reported in literature to be different between ACE-exposed PTSD compared to ACE-exposed 

controls. Our functional connectivity findings in the DMN, CEN and inferior temporal region 

and structural connectivity findings in the right OFC extend the literature on the effect of PTSD 

on the brain, especially in regions involved in self-referential processing, social behaviour and 

cognitive control. Finally, our findings suggest that specific brain networks implicated in ACE-

related PTSD may be predicted by the combined presence of higher ACE severity, multiple 

number of ACE-related PTSD traumas, and PTSD symptoms severity later in life. 
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4.8 Supplementary Information 

Method 

Study Procedure 

The study protocol consisted of the administration of online questionnaires, a diagnostic 

interview, and MRI scanning sessions. The online questionnaires incorporated the Childhood 

Trauma Questionnaire (CTQ (Thombs et al. 2007)), the Brief Symptom Inventory (BSI 

(Derogatis 1975)), dissociative symptoms (specifically, the German version of the Dissociative 

Experience Scale (Spitzer et al. 1998)) and the Life Event Checklist (LEC) for PTSD (Bovin et al. 

2016). The diagnostic session included the clinical version of the Structured Clinical Interview 

for DSM-5 (SCID-5 (First et al. 2016)). The diagnoses that were assessed included past, current 

and lifetime affective disorders, anxiety disorders, obsessive compulsive disorder (OCD), post-

traumatic stress disorder (PTSD), attention deficit hyperconnectivity disorder (ADHD), and 

substance use disorder (SUD). Additionally, we diagnosed ACE-related PTSD in all participants. 
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We first asked participants to identify their three most traumatic childhood experiences, and 

the SCID PTSD module was then administered based on these specific traumatic events. 

Measures 

ACE severity was quantified using the sum of individual sub-types of ACE from the Childhood 

Trauma Questionnaire (CTQ). A detailed report on the CTQ has been reported in prior 

literature (Thombs et al. 2007). The CTQ consists of five questions for each type of exposure, 

and each question prompts participants to rate a particular event on a scale ranging from 

"Never True" to "Very Often True". Here, we calculated the abuse severity score as the sum 

of all abuse subtypes of the CTQ (i.e., sexual, physical and emotional abuse), the neglect 

severity score consisted of the sum of all neglect subtypes of the CTQ (i.e., emotional & 

physical neglect) and the overall ACE (CTQ total) was calculated as the sum of abuse and 

neglect scores. 

The PTSD symptom severity (PTSS) was assessed using the Posttraumatic Stress Disorder 

Checklist for DSM-5 (PCL-5), which is a self-report measure that corresponds to each of the 20 

core DSM-5 PTSD symptoms and asks respondents to rate how much each symptom has 

bothered them in the past month, scoring responses on a Likert scale ranging from 0 (not at 

all) to 4 (extremely) (Blevins et al. 2015). Symptoms are classified into four domains in 

accordance with the DSM-5 criteria for PTSD: re-experiencing, avoidance, negative changes in 

cognition and mood, and hyperarousal, with total PTSS score ranging from 0 to 80 and higher 

scores indicating more severe symptoms. The PCL-5 is regarded as the "benchmark" self-

report measure of PTSD symptom severity, with strong test-retest reliability (r=0.84) as well 

as convergent and discriminant validity (Bovin et al. 2016; Harper et al. 2022; Keane et al. 

2014). 

The Life Events Checklist for DSM-5 (LEC-5) was used to assess participants' exposure to 

potentially traumatic events. The LEC-5 is a self-report measure comprising 17 items, each 

representing a different type of potentially traumatic event, such as natural disasters, 

accidents, and physical assault. Participants indicated whether each event happened to them 

personally, witnessed it, learned about it happening to a close family member or friend, was 

part of their job, or if they were unsure if it applied. The trauma load was calculated based on 

LEC-5 items that were not related to the CTQ and were associated with PTSD. Items 8 and 9, 

which pertain to sexual assault and other unwanted sexual activity, were excluded from the 

trauma load calculation due to their high correlations with the corresponding CTQ sexual 
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abuse items, suggesting significant overlap in assessing sexual trauma (CTQ sexual abuse & 

LEC-5 item 8; r=0.569, p<.001; CTQ sexual abuse & LEC-5 item 9; r=0.517, p< .001). The 

remaining 15 items were used to compute the trauma load (kindly see Table S5 below). 

Table S5. Lists the specific LEC-5 items included in the trauma load computation. 

 
noPTSD  PTSD  Difference P value 

LEC_01 Natural Disaster 1.22 ± 1.28 1.04 ± 1.27 T = 0.766 
(df= 117) 

0.445 

LEC_02 Fire or Explosion 1.27 ± 1.13 1.10 ± 1.23 T = 0.745 
(df= 117) 

0.458 

LEC_03 Road Accident (Car, Ship, Train, Plane) 2.41 ± 1.55 2.43 ± 1.58 T = -0.070 
(df= 117) 

0.945 

LEC_04 Serious Accident At Work, At Home Or During A Leisure 
Activity 

1.57 ± 1.49 1.23 ± 1.25 T = 1.360 
(df= 117) 

0.176 

LEC_05 Being Exposed To A Pollutant 0.55 ± 0.96 0.49 ± 0.85 T = 0.392 
(df= 117) 

0.696 

LEC_06 Violent Attack 2.57 ± 1.58 2.60 ± 1.69 T = -0.093 
(df= 117) 

0.926 

LEC_07 Attack With A Weapon 1.00 ± 1.12 1.33 ± 1.41 T = -1.358 
(df= 117) 

0.177 

LEC_08 Sexual Assault 1.37 ± 1.44 3.09 ± 1.44 T = -6.403 
(df= 117) 

< .001 * 

LEC_09 Other Unwanted Or Uncomfortable Sexual Activity 2.25 ± 1.74 3.16 ± 1.47 T = -3.088 
(df= 117) 

0.003 * 

LEC_10 Engaged In Combat Or Being In A War Zone 0.67 ± 0.77 0.56 ± 0.69 T = 0.858 
(df= 117) 

0.393 

LEC_11 Captivity 0.59 ± 0.71 0.67 ± 1.02 T = -0.474 
(df= 117) 

0.637 

LEC_12 Life-Threatening Illness Or Injury 1.63 ± 1.42 1.96 ± 1.42 T = -1.226 
(df= 117) 

0.223 

LEC_13 Severe Human Suffering 1.22 ± 1.37 1.97 ± 1.54 T = -2.719 
(df= 117) 

 0.008 * 

LEC_14 Sudden Violent Death (Murder, Suicide) 1.10 ± 1.09 1.41 ± 1.16 T = -1.483 
(df= 117) 

0.141 

LEC_15 Sudden Accidental Death 0.90 ± 0.94 0.76 ± 0.89 T = 0.829 
(df= 117) 

0.409 

LEC_16 Serious Injury, Damage Or Death Caused By You To 
Someone Else 

0.51 ± 0.82 0.64 ± 1.02 T = -0.754 
(df= 117) 

0.452 

LEC_17 Any Other Highly Distressing Event Or Experience 1.39 ± 1.74 1.23 ± 1.68 T = 0.500 
(df= 117) 

0.618 

Overall trauma load (All items in LEC excluding items 8 and 9 ) 2.04 ± 1.53 2.33 ± 1.80 T = -1.309 
(df= 117) 

< 0.001 * 

Note: Data are reported as mean ± standard deviation. df degree of freedom. *: Significant at P < 0.05 level. 

The diagnostic interview sessions were conducted by research assistants and doctoral 

students who have received SCID-II training. The diagnoses that were assessed included 

affective disorders, anxiety disorders, obsessive-compulsive disorder (OCD), post-traumatic 

stress disorder (PTSD), attention deficit hyperactivity disorder (ADHD), and substance use 

disorder (SUD). Past and current disorders were diagnosed based on the presence of DSM-5 

criteria for each disorder. Psychotic disorders were an exclusion criterion. For the current 

study, only the lifetime PTSD diagnostics (i.e., current and/or past) was used.  

Termed here as the number of ACE-related traumas, we diagnosed participants with ACE-

related PTSD. Participants were first asked to identify their three most ACE-related traumatic 

childhood experiences. Based on these specific traumatic events, the SCID-5 PTSD module was 
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then administered. By focusing on the identified childhood traumas, the SCID-5 PTSD module 

provided a comprehensive assessment of the participants' PTSD diagnosed directly related to 

their adverse childhood experiences. This approach ensured that the diagnosis was specifically 

linked to early life traumas, allowing for an accurate evaluation of number of ACE directly 

contributing to PTSD. 

Imaging data preprocessing 

Preprocessing for both T1-weighted (T1w), diffusion and resting-state fMRI images was 

performed using Connectome Mapper 3 (CMP-v3.1.0; an open-source Phython3 

neuroimaging processing pipeline software developed by the Connectomics Lab, University 

Hospital of Lausanne (CHUV)). CMP-v3.1.0 uses a combination of well-known neuroimaging 

software packages to implement full anatomical and diffusion processing pipelines from raw 

images (Tourbier et al. 2022). All images were controlled for quality. The preprocessing steps 

that were used in this study can be seen below. 

T1 weighted MRI: T1w images were preprocessed, parcellated, and segmented into 83 ROI 

based on the first scale of Lausanne 2008 parcellation (Cammoun et al. 2012) using the 

FreeSurfer version 6.0.1 recon-all program. An in-depth explanation of the steps used by 

FreeSurfer's recon-all has previously been described elsewhere (Dale et al. 1999; Fischl et al. 

2004). In brief, the white matter and pial surfaces were identified after motion 

correction, non-uniform intensity normalization and normalization, by creating a mesh 

around the white matter and pial voxels. Surface-based maps of each individual scan were 

created using spatial intensity gradients across tissue classes (Desikan et al. 2006). FreeSurfer 

morphometric procedures have been demonstrated to show good test-retest reliability across 

scanner manufacturers and across field strengths (Reuter et al. 2012). Visual inspection was 

done to inspect the anatomical accuracy of FreeSurfer's automated parcellations and 

segmentations. The Lausanne scale-1 atlas used in this study has 83 regions similarly to 

FreeSurfer’s Desikan-Killiany Atlas (Cammoun et al. 2012; Hagmann et al. 2008). 

Diffusion weighted MRI: Preprocessing of diffusion data included denoising, bias field 

correction, and corrections for eddy currents and motion, using advanced techniques 

available in the MRtrix toolbox (Tournier et al. 2019). Anatomy-constrained probabilistic 

tractography was performed using the five-tissue-type (5TT) segmented T1w image and a 

second-order integration over fibre orientation distributions algorithm on the preprocessed 

diffusion image to produce an initial tractogram with 10 million streamlines (Tournier and , F. 
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Calamante 2010). The tractogram was filtered using SIFT2 method to enhance the quantitative 

accuracy of whole-brain streamlines reconstructions (Smith et al. 2015). Structural 

connectivity measures i.e., number of fibres and normalized density of fibres between the 83 

brain regions were subsequently retrieved.  

Resting-state functional MRI: The resting-state fMRI data preprocessing followed a structured 

pipeline. After discarding the first 5 volumes for signal stabilization, we performed despiking 

using AFNI 3dDespike implemented in nipype (Gorgolewski et al. 2011) to remove noise and 

outliers. Slice timing correction was applied using FSL’s slicetimer, followed by motion 

correction using FSL’s MCFLIRT (Jenkinson et al. 2002). Linear registration from T1 to mean 

BOLD was achieved using FSL’s flirt (Jenkinson et al. 2002). We detrended the BOLD signal to 

remove linear trends. Nuisance regression included CSF, WM, and motion parameters. Band-

pass filtering was performed with a frequency window of 0.008 to 0.09 Hz, and ROI-averaged 

time-series were computed for positive and negative correlational connectivity for the 83 

brain regions in Lausanne scale-1 as in dMRI pipeline. 

Results 

2.1 | Correlation between joint mixing coefficient (MC) and clinical data. 

To provide additional context, we conducted Pearson correlation analyses between the joint 

mixing coefficient of IC9 and all clinical data, including PCL-5 and CTQ subscales. Bootstrapped 

corrected correlation coefficients with 5000 replicates were calculated. A supplementary 

table showing these correlation coefficients is presented below.  

 Pearson's 

r 

p 95% Confidence Interval 

Lower             Upper 

Effect size 

(Fisher's z) 

SE Effect size 

IC9 - CTQ total -0.275 * 0.021 -0.486 -0.021 -0.282 0.122 

IC9 - CTQ_abuse -0.319 ** 0.007 -0.529 -0.068 -0.330 0.122 

IC9 - CTQ_neglect -0.146 0.227 -0.336 0.084 -0.147 0.122 

IC9 - CTQ_EA -0.177 0.142 -0.399 0.083 -0.179 0.122 

IC9 - CTQ_PA -0.292 * 0.014 -0.458 -0.104 -0.301 0.122 

IC9 - CTQ_SA -0.228 0.057 -0.445 0.023 -0.232 0.122 

IC9 - CTQ_EN  -0.085 0.483 -0.293 0.152 -0.086 0.122 

IC9 - CTQ_PN -0.185 0.124 -0.355 0.026 -0.188 0.122 

IC9 - PCL_SUM -0.174 0.149 -0.380 0.056 -0.176 0.122 

IC9 - PCL_INTRU -0.105 0.389 -0.290 0.108 -0.105 0.122 

Table S6. Pearson's correlations between IC9 and all subscales of CTQ and PCL. 



CHAPTER IV:  JOMNA STUDY 

62 

IC9 - PCL_AVOID -0.220 0.068 -0.434 0.014 -0.223 0.122 

IC9 - PCL_COMO -0.150 0.216 -0.385 0.110 -0.151 0.122 

IC9 - PCL_HYPE -0.160 0.185 -0.350 0.066 -0.162 0.122 

IC9 - ACErelatedtrauma   0.048 0.695 -0.268 0.334  0.047 0.122 

Note. n (PTSD group) = 70; CTQ total= total score of Childhood Trauma Questionnaire, CTQ_abuse= sum score of all abuse subtypes, 

CTQ_neglect= sum score of all neglect subtypes, CTQ_EA= emotional abuse, CTQ_PA= physical abuse, CTQ_SA= sexual abuse, 

CTQ_EN= emotional neglect, CTQ_PN= physical neglect, PCL_SUM= total PTSS, PCL_INRU= intrusive PTSS, PCL_AVOID= avoidance 

PTSS, PCL_COMO= negative changes in cognition and mood PTSS, PCL_HYPE= hyperarousal PTSS. number of ACE-related traumatic 

events Confidence intervals based on 5000 bootstrap replicates. * p < .05, ** p < .01, *** p < .001.  

 

2.2 | Complementary checks for post-hoc analyses. 

To confirm that the observed interaction effect is not a tautology or due to high between-

variable correlation, we conducted thorough checks of correlation between clinical data, the 

Variance Inflation Factor (VIF) for all variables and analysed the change in R-squared between 

the models (see Models 1 to 4 in the Table S7 below). Only ACE severity (CTQ total) and PTSD 

symptoms severity score (PCL_sum) were significantly correlated (see Table S6). However, the 

VIF values for all variables in the model were below 1.5, indicating no concerns regarding 

multicollinearity (O’brien 2007). Additionally, the R-squared value increased from 7.5% in the 

linear model to 22% in the moderation model. This indicates that the interaction terms 

explained an additional 14.5% of the variation in the outcome variable, demonstrating a 

significant improvement in the predictive power of our model. 

 

 Pearson's 

r 

p 95% Confidence 

Interval 

Lower             Upper 

Effect size 

(Fisher's z) 

SE      

Effect size 

CTQ total –                                  

PCL_SUM 

0.516 *** < 0.001 0.362 0.657 0.571 0.122 

CTQ total –                 

ACErelatedtrauma 

0.181 0.133 -0.024 0.379 0.183 0.122 

PCL_SUM –            

ACErelatedtrauma 

0.122 0.313 -0.093 0.338 0.123 0.122 

Note. n (PTSD group) = 70; CTQ total= total score of Childhood Trauma Questionnaire, PCL_SUM= total PTSS, PCL_INRU= intrusive PTSS, 

PCL_AVOID= avoidance PTSS, PCL_COMO= negative changes in cognition and mood PTSS, PCL_HYPE= hyperarousal PTSS, number 

of ACE-related traumatic events Confidence intervals based on 5000 bootstrap replicates. * p < .05, ** p < .01, *** p < .001.  

 

 

Table S7. Pearson's correlations between all clinical variables included in moderation analysis. 
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                                                                   Models  
                                                    

(1)                                                   (2)                                                    (3) (4) 

joint mixing 
coefficient of IC9 

joint mixing 
coefficient of IC9 

joint mixing 
coefficient of IC9 

joint mixing 
coefficient of IC9 

ACE severity                 
(CTQ total) 

- .0002 * 
(-.0001) 

.0003 ns 

(.0002) 
.0001 ns 
(.0002) 

-.0006* 
(.0003) 

TC - 
 

.0291 ** 
(.0092) 

- .0280 ** 
(.0093) 

Interaction 1:                    
CTQ total X TC 

- -.0004 ** 
(.0001) 

- -.0003 ** 
(.0001) 

PTSS - - .0007 ns 
(.0005) 

.0006 ns 
(.0005) 

Interaction 2:                  
PTSS X TC 

- - .00001 ns 
(.000007) 

.0000 ns 

(.0000) 

Intercept -.006 
(.002) 

-.0332 
(.0152) 

-.0122 
(.0166) 

-.0496 
(.0202) 

R2 
R2 change 
p-value 

.075 
- 

.027 

.1967 

.1115 

.0022 

.1050 

.0282 

.0609 

.2165 

.1296 

.0075 

Collinearity 
Statistics 
(VIF) 

CTQ total = 1 CTQ total = 1.034 
TC = 1.034 

 

CTQ total = 1.363 
PTSS= 1.363 

CTQ total = 1.390 
TC = 1.035 

PTSS= 1.365 

Note: n (PTSD group)=70; CTQ total = total score of Childhood Trauma Questionnaire; PTSS = PTSD symptomatology; TC = number of ACE-related 
traumatic event; VIF= Variance inflation factor. The values in the column of each model represent the unstandardized beta coefficients with 
their standard error in brackets. Asterisks indicate the statistical significance of the bootstrapped unstandardized regression coefficients 
(***p < .001; **p < .01; *p < .05; ns=not significant). 

Table S8. The relationship between ACE severity and joint mixing coefficient of IC9 as moderated by 

number of multiple ACE-related Trauma of the PTSD group 
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CHAPTER V:  DISCUSSION 

This study employed multimodal neuroimaging techniques to explore the effects of ACE 

and related PTSD using sMRI, dMRI, and resting-state fMRI in a large clinical sample. While 

multimodal neuroimaging offers significant potential, its application in ACE research has been 

limited due to data heterogeneity, complexity, and a lack of established cohesive analytical 

framework. 

We showed potential multimodal biomarkers, including structural alterations in the 

right superior parietal lobe (rSPL) in individuals with ACE using complementary analysis of 

sMRI and dMRI. Additionally, we identified functional alterations in the default mode network 

(DMN), central executive network (CEN), and the inferior temporal brain regions, as well as 

structural alterations in the orbital frontal region, in individuals with ACE-related PTSD using 

the joint analysis of sMRI, dMRI and resting state fMRI data. 

Subsequent sections of this chapter will focus on elaborating on the research questions 

of this empirical work and how findings from both publications addressed them. 

5.1 What are the structural brain abnormalities in individuals with ACE as revealed by 
complementary analyses of sMRI and dMRI data? 

The first study employed a complementary multimodal neuroimaging approach, 

combining T1-weighted MRI (sMRI) to assess cortical morphometry and dMRI to examine 

white matter microstructure. This approach enabled an encompassing investigation of how 

ACE impacts GM regions and white matter tracts. By combining these modalities, the study 

was able to reveal brain alterations in response to ACE, particularly the relationship between 

cortical volume changes in the rSPL and WM tracts connected to rSPL and childhood abuse.  

In our whole brain analyses, we found that the cumulative effect of ACE was associated 

with reduced local cortical area in the rSPL. Childhood abuse was negatively related to local 

cortical volume in the rSPL when controlled for childhood neglect. However, no significant 

result was found for neglect when abuse was controlled for. These findings imply that the 

effects of ACE were more pronounced for abuse than neglect in our sample particularly in 

terms of cortical volume of the rSPL. The rSPL forms part of the posterior-FPN and plays a key 

role in the “top-down” or goal-driven allocation of attention. Cytoarchitectonic research has 

demonstrated the heterogeneous nature of the SPL, with at least seven distinct subregions. 

The receptor distribution patterns and regional cytoarchitectonic features found three sub-
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regions in Brodmann (BA) 5 and four in BA 7 (Scheperjans et al. 2005; Scheperjans et al. 2008). 

Functions of these regions were explored in a resting-state functional MRI study in healthy 

participants, and the results showed that each of the seven sub-regions was connected to 

several resting-state networks, with the most consistent connectivity observed with the visual 

and attention networks (Alahmadi 2021). While abnormalities in the rSPL have been 

associated with PTSD, PTSS and maternal stress (McQuaid et al. 2019a; Wang et al. 2021), the 

findings of this study suggest that ACE may specifically target cortical alterations in the rSPL, 

potentially impacting visual and attentional functions (Nkrumah et al. 2024b). Further 

exploratory analyses demonstrate that the rSPL serves as a key mediator in the relationship 

between childhood abuse and avoidance-related PTSD symptoms. This suggests that the rSPL 

plays a pivotal role in the development of avoidance behaviours in individuals with ACE. 

Consistent with a previous large-scale meta-analysis linking reduced rSPL volumes to PTSD 

(Wang et al. 2021), our results provide additional evidence that the rSPL may be a critical 

factor in the emergence of avoidance symptoms in individuals with a history of severe 

childhood abuse (Auxéméry 2018; Nkrumah et al. 2024b; Tan et al. 2013). 

Additional analyses of WM tracts connected to the rSPL revealed a positive correlation 

between the extent of abuse-related cortical alterations in rSPL volume and the number, 

average length, and mean fractional anisotropy (FA) of these WM tracts (see Table 6). These 

findings suggest that as the impact of childhood abuse on rSPL volume increases, so does the 

negative effect on the microstructure of WM tracts connected to this region. This further 

highlights the structural abnormalities in both GM and WM within the rSPL, which are likely 

consequences of childhood abuse.  

Overall, our findings from the CoMNA study contribute to a growing body of literature 

on the neurobiological consequences of ACE and emphasize the importance of considering 

the subtypes of maltreatment when investigating brain abnormalities (Grauduszus et al. 2024; 

Herzog and Schmahl 2018; Schalinski et al. 2016). By targeting the rSPL, future research and 

clinical interventions could potentially address the development of avoidance symptoms in 

individuals with ACE (Teicher et al. 2022). For example, interventions that focus on enhancing 

the connectivity between the rSPL and other brain regions involved in attention and emotional 

regulation, such as the dorsolateral prefrontal cortex (DLPFC) and limbic regions, may be 

particularly beneficial in addressing the cognitive and emotional challenges faced by 

individuals with ACE (Samson et al. 2024). 
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5.2 Structural and functional brain connectivity disruptions in ACE-related PTSD as 
revealed by the joint analyses of sMRI, dMRI and rs-fMRI. 

The second study conducted a joint connectivity matrix independent component 

analysis (jcm-ICA) of sMRI, dMRI, and rs-fMRI at the connectivity level to identify distinct 

patterns of connectivity in individuals with PTSD as a result of ACE (Nkrumah et al. 2024a). 

This advanced technique enabled the simultaneous analysis of multiple neuroimaging 

modalities, revealing shared and distinct patterns of brain connectivity associated with ACE-

related PTSD. Several key brain regions involved in self-referential processing, cognitive 

control, and social behaviour demonstrated significant neurobiological differences between 

individuals with ACE-related PTSD and ACE-exposed controls.   

In terms of functional connectivity, individuals with PTSD exhibited hypoconnectivity in 

the lateral prefrontal cortex (lPFC), a region associated with cognitive flexibility and decision-

making (Cole et al. 2014), compared to ACE-exposed controls. Consistent with other studies 

(Cisler and Herringa 2021; Olson et al. 2019; Zhu et al. 2023), this may explain why individuals 

with PTSD struggle to adapt their thoughts and behaviours in response to changing situations. 

Contrariwise, hyperconnectivity was observed in the right medial prefrontal cortex (rmPFC), 

involved in self-referential processing (Horn et al. 2014), and the right inferior temporal gyrus, 

involved in face perception and recognition (Tromans et al. 2012). Increased connectivity in 

the rmPFC may reflect an enhanced focus on internal experiences, such as rumination and 

intrusive thoughts related to past trauma (Harnett et al. 2021; Olson et al. 2019; Valencia et 

al. 2024). Hyperconnectivity in the right inferior temporal gyrus may suggests heightened 

neural responsiveness to visual stimuli, particularly emotional faces, which may contribute to 

the re-experiencing of traumatic memories (Cisler and Herringa 2021; Spielberg et al. 2015; 

Wang et al. 2016). 

Additionally, the JoMNA study examined structural connectivity, focusing on the 

number of fibres and the normalized fibre density (NFD) of white matter pathways connecting 

brain regions. Individuals with PTSD showed reduced NFD in the right orbitofrontal cortex 

(rOFC), a region implicated in social behaviour and emotional regulation (Eluvathingal 2006). 

This suggests alterations in the microstructure of WM tracts connecting the rOFC may impact 

the ability of individuals with ACE-related PTSD to regulate emotions and interact effectively 

with others (Choi et al. 2019; Eising et al. 2021; Samson et al. 2024; Watts et al. 2021). 

Overall, these findings provide insights into the neurobiological consequences of ACE-

related PTSD and highlight the potential for targeting these brain regions in future 
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interventions (Cisler and Herringa 2021; Wang et al. 2016). By understanding the specific brain 

alterations associated with ACE and PTSD, clinicians can develop more effective treatments to 

address the cognitive, emotional, and social challenges faced by individuals with these 

conditions. 

5.3 Potential multimodal neuroimaging biomarkers in understanding the neurobiological 
underpinnings of ACE and related PTSD. 

Multimodal neuroimaging techniques, such as CoMNA and JoMNA, are essential for 

advancing our understanding of the neurobiological underpinnings of ACE and related mental 

health outcomes such as PTSD. By providing a more comprehensive examination of brain 

changes associated with ACE, these methods can help us to develop more targeted and 

effective interventions to prevent and treat PTSD resulting from childhood trauma. 

Both CoMNA and JoMNA studies employed in this work underscore the importance of 

multimodal neuroimaging (MN) in revealing potential brain biomarkers that enhance our 

understanding of the neurobiological underpinnings of ACE and related mental health 

outcomes. By combining multiple imaging modalities, these approaches provide a more 

comprehensive representation of brain structure and function in individuals exposed to ACE 

and PTSD. 

The findings from the first study suggest that alterations in cortical volume and white 

matter integrity in the rSPL may serve as potential biomarkers for PTSD avoidance symptoms 

following childhood abuse. This narrows the focus of prior research perspective which 

highlighted the diversity in therapeutic responses among individuals with histories of 

childhood maltreatment and a range of psychopathologies, including mood disorders, anxiety, 

depression, and PTSD (Nanni et al. 2012; Thomas et al. 2019). For instance, it is well-

documented that depressed individuals with a history of ACE frequently exhibit poor 

responses to treatment and are at significantly higher risk for developing recurrent and 

persistent depressive episodes (Nanni et al. 2012). From this perspective, Frodl et al. (2010), 

suggested that trauma-related structural changes in the prefrontal cortex (PFC) and 

hippocampus could mediate the development of depressive and anxiety-related disorders in 

individuals with a history of childhood trauma (Frodl et al. 2010). The CoMNA study's findings 

add specificity to this body of work, emphasizing the role of the rSPL in PTSD avoidance 

symptoms rather than in broader psychopathology. This refinement enhances our 

understanding of symptom-specific neural alterations related to ACE and associated mental 

health outcomes. Given the growing evidence that individuals with ACE often show distinct 
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clinical trajectories (Teicher et al. 2022; Teicher and Samson 2013), the CoMNA findings 

underscore the critical need for identifying neurobiological markers, such as those in the rSPL, 

to better inform personalized treatment strategies. Such biomarkers have the potential to 

tailor interventions according to the unique neurodevelopmental impacts of childhood 

maltreatment and the development of PTSD later in life. 

The second study further identifies potential MN connectivity disruptions in key brain 

networks associated with cognitive functioning, emotional processing, and social behaviour in 

individuals with ACE-related PTSD. The involvement of these brain networks is particularly 

relevant given their established roles in trauma-related psychopathology (Aruldass and 

Daskalakis 2023; Harnett et al. 2021; Lanius et al. 2015). For instance, previous studies such 

as those by Harnett et al., (2021) found that altered resting-state functional connectivity in 

the PFC at two weeks post-trauma was negatively related to PTSD symptoms at three months, 

leading to difficulties in cognitive functioning and exacerbating PTSD symptoms. Similarly, the 

same study reported significant alterations of FC between the right inferior temporal gyrus 

and DMN. The JoMNA findings regarding hyperconnectivity in the mPFC aligns with this, 

suggesting that trauma-exposed individuals may experience overactivation in this region, 

leading to persistent intrusive thoughts and hypervigilance. In addition to our observed 

functional dysconnectivity in the lPFC, the structural connectivity findings in OFC could 

highlight potential MN biomarkers that could inform neuroscientifically driven interventions 

aimed at addressing abnormalities in prefrontal brain regions in individuals with PTSD and 

ACE. For example, individuals showing specific connectivity disruptions in the mPFC or lPFC 

may benefit from interventions targeting emotional regulation and cognitive control, while 

those with more pronounced white matter damage in the OFC may require therapies focused 

on enhancing neuroplasticity in the frontal brain regions (Ireton et al. 2024; Samson et al. 

2024; Teicher et al. 2022). The integration of MN biomarkers into clinical practice could pave 

the way for highly individualized interventions, improving treatment efficacy and potentially 

reducing the long-term burden of mental health disorders stemming from childhood 

maltreatment. 

In conclusion, the findings from these two studies offer compelling evidence of the long-

lasting effects of ACE on brain structure and function. By examining both structural and 

functional changes, the studies provide a more comprehensive understanding of the 

neurobiological consequences of early adversity and PTSD. Importantly, these results have 

significant implications for developing targeted interventions to address the mental health 
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challenges associated with ACE, particularly in brain networks such as the DMN, CEN, SN, and 

regions like the inferior temporal cortex, SPL and orbitofrontal cortex (Lanius et al. 2015). 

Addressing these neurobiological disruptions may enhance therapeutic precision and efficacy 

for individuals impacted by childhood trauma.  

5.4 Prospective applications and future direction of multimodal neuroimaging in ACE 
research. 

MN offers significant potential for advancing our understanding of the neurobiological 

underpinnings of ACE and related mental health disorders. By combining multiple imaging 

modalities—such as structural MRI, functional MRI, diffusion MRI, and others—MN can 

provide a more comprehensive view of the brain's structural and functional changes 

associated with ACE. This comprehensive approach opens numerous potential applications, 

from early diagnosis to prognosis, and personalized treatment strategies aimed at mitigating 

the long-term effects of ACE. 

Looking at the rich information provided by a few longitudinal studies and several cross-

sectional unimodal studies which tend to focus on either structural or functional changes in 

isolation (Teicher et al. 2020; Teicher et al. 2022; Teicher and Samson 2016), it may be 

beneficial to implement larger, multisite, and multimodal studies (Spisak et al. 2023). These 

large-scale studies could significantly enhance the richness of available data by gathering 

information from diverse populations across multiple research sites (Koutsouleris and Fusar-

Poli 2024), improving both the power and reliability of findings from MN research (Spisak et 

al. 2023). This diversity in MN data would also allow researchers to examine variations in the 

prevalence and severity of ACE, as well as how different types of childhood maltreatment 

influence neurodevelopment at several scales and mental health outcomes. Furthermore, 

larger, multisite and MN studies in ACE would provide stronger statistical power and greater 

generalizability, ensuring that findings are more robust and applicable across different 

demographic groups and environments (Dwyer et al. 2018; Koutsouleris et al. 2016; Nichols 

et al. 2017; Pomponio et al. 2020; Spisak et al. 2023). With access to data from various imaging 

modalities, such studies could better investigate the complex neurobiological pathways 

involved in ACE, ultimately offering more comprehensive insights into more specific, 

personalized treatment strategies aimed at mitigating the long-term effects of ACE. 

Another key advantage and potential application of MN in ACE research is the rich 

information provided by the individual modalities and the ability to extract multimodal 

biomarkers from MN data. This could be done using data-driven methods. Unlike the model-
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driven approaches mostly applied in several neuroimaging research (including that on ACE), 

which rely heavily on predefined hypotheses about brain region interactions (e.g., general 

linear models, dynamic causal modelling, or structural equation modelling), data-driven 

methods offer a more exploratory approach (Calhoun and Sui 2016). Another important factor 

is that model-driven methods may overlook important relationships not included in the initial 

hypotheses. Using data-driven methods, such as machine learning and multivariate methods, 

we could identify structural, functional, and connectivity features from multiple modalities. 

This could be done using techniques such as independent component analysis (ICA) and 

principal component analysis (PCA), which enable us to explore the entire dataset across all 

voxels, providing a broader, more comprehensive view of the brain's structural, functional, 

and connectivity features. For example, in our second study, we used PCA and jICA to identify 

features across multiple modalities, demonstrating the ability of data-driven approaches to 

detect neurobiological changes. In a large population or multisite and multimodal samples, 

these features could serve as MN biomarkers because they offer optimal information about 

the population without requiring prior knowledge. 

 These MN biomarkers could be complemented by utilizing full images to build a joint 

dataset that includes both extracted features and the full imaging data, providing a more 

comprehensive view (kindly see Figure 12A below). The combined dataset can then be used 

to build predictive models with robust cross-validation techniques, which have great potential 

to distinguish between individuals at higher or lower risk for mental health disorders following 

childhood maltreatment. These predictive models would integrate a wide range of factors, 

from brain volume and white matter microstructure to functional connectivity patterns and 

epigenetic, and psychometric data such as overall psychosocial burden, allowing for a more 

holistic view of mental health. By incorporating these biomarkers into predictive models, 

researchers can develop tools that accurately identify individuals who are most likely to 

develop psychopathology, such as PTSD, depression, or anxiety, in response to ACE (Teicher 

et al. 2022). This approach is also geared towards advancing precision psychiatry, enabling the 

tailoring of treatment approaches based on an individual's specific neural profile, ultimately 

improving intervention outcomes and reducing the long-term burden of ACE-related mental 

health disorders (Kéri et al. 2024; Koutsouleris and Fusar-Poli 2024; Spisak et al. 2023). The 

proposed framework for potential future application of MN in mega, multi-site and ACE 

studies can be found in the Figure 12 below. Applications at the clinical level can be done 

either using individual fully-processed image or multimodal data (see Figure 12C below). 
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In conclusion, MN represents a transformative tool in ACE research, offering 

comprehensive insights into the neurobiological pathways affected by early trauma. By 

combining data from multiple imaging modalities, MN enables a more nuanced understanding 

of how ACE alters brain structure and function, as well as how these changes relate to mental 

health outcomes. The potential clinical applications of MN are vast, ranging from using MN 

data to build predictive models for early diagnosis and prognosis to applying these models in 

personalized treatment strategies, all aimed at mitigating the long-term effects of ACE. 

Furthermore, an improved understanding of the neurobiological development and 

progression of mental health disorders through MN findings can guide public health 

interventions. This knowledge can support early screening initiatives for at-risk individuals and 

inform community-based prevention programs to help reduce mental health risks associated 

with ACE. As the field advances, larger, multisite, and multimodal studies will be critical for 

shaping the future of ACE research, ultimately improving mental health outcomes for those 

affected by childhood maltreatment. 
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Risk for mental health 
disorders following 
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Figure 12. Proposed framework for multimodal brain data-based prediction: from research to clinic. Data 
driven methods to extract multimodal biomarkers: PCA (Principal Component Analysis), ICA (Independent 
Component Analysis) and CCA (Canonical Correlation Analysis). Machine Learning Algorithms for building 
predictive models: SVM (Support Vector Machine) using SVM-lin: Linear kernel or SVM-rbf: Radial Basis 
Function kernel and GB (Gradient Boosting). The best-performing model or an average of a set of models 

from (B) would be selected as the optimal model. 

B 

 Preprocess:  regress out nuisance covariates, standardize data, scale data  

 Model training and optimization to predict individual psychopathology or 
symptomology or both :  
• Cross-validation: nested cross-validation framework 

• Training and Learning algorithm: unsupervised and supervised (e.g. SVM-lin/rbf, GB) 
• Access accuracy of prediction / Model prediction performance 

 Initial model application 

Building predictive models 

 Structural – WM connectivity features 
Structural – GM features 

Brain volume 

Cortical thickness 

Functional connectivity features 

MN Biomarkers extracted 
using data driven 

methods (e.g. PCA, ICA, 
CCA) 

A 

Genetic and psychometric 

data 

Extraction of multimodal biomarkers 



CHAPTER V:  DISCUSSION 

73 

5.5 Limitations  

Despite the strengths of this work, several limitations should be acknowledged. While 

specific limitations have been discussed in individual chapters, there are also some general 

limitations that highlight opportunities for future research. 

Sample Size:  

The relatively small sample size, particularly in Study 1 (n=78), may limit the 

generalizability of our findings. While Study 2 (n=119) offers a larger sample size, even larger 

samples, as proposed in section 5.4, would further improve the statistical power of our 

analyses and the accuracy of our predictions. This would allow for a more comprehensive 

analysis across diverse populations and enhancing the generalizability of our findings. Such 

improvements are important for characterizing individual differences and refining multimodal 

biomarkers, ultimately contributing to more precise models better suited for potential clinical 

applications. A recent publication by Bhaumik et al. (2023), conducted a simulation study 

covering the whole brain with 87 regions to determine the power associated with commonly 

used sample sizes in neuroimaging studies. Their findings suggest that a sample size of 60 is 

adequate to achieve a power of 0.80. Although both of our studies exceed this threshold, 

increasing the sample size through a multicentre, multimodal approach would further 

strengthen our results and allow for a more robust investigation of individual differences and 

the development of more precise biomarkers. 

Causality 

The cross-sectional design of both studies precludes causal inferences regarding the 

relationship between ACE, brain abnormalities, and PTSD. Additionally, both cross-sectional 

studies rely on retrospective reports of childhood adversity, and while they assume that ACE 

has a causal effect on later outcomes, this assumption cannot be rigorously tested within the 

constraints of our current study design. Despite this limitation, self-report measures are 

widely used in ACE research as they offer valuable insights into individuals’ subjective 

experiences (Danese and Widom 2023; Danese and Widom 2024; Kendall-Tackett 2024). For 

example, subjective reports of ACE have been shown to have a stronger association with 

emotional disorders in adulthood than objective assessments (Danese and Widom 2023). This 

suggests that self-reported adversity may also be more closely linked to brain alterations, as 

it captures personal context and perceived impact of early-life trauma. While our cross-

sectional studies provide a valuable insight, further longitudinal studies are necessary to 
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establish the temporal dynamics of these changes and determine whether brain alterations 

precede or follow the development of PTSD. 

Neurobiological Mechanisms  

Multimodal neuroimaging provides valuable insights into brain structure and function, 

but it does not fully capture the complexities of the mechanisms underlying ACE and PTSD. 

Neuroimaging alone lacks the capacity to account for the interplay of genetic and epigenetic 

factors alongside the cumulative impact of environmental influences, all of which collectively 

shape neurodevelopmental pathways and affect susceptibility to mental health conditions like 

PTSD following childhood maltreatment (Teicher and Samson 2016). Genetic factors, such as 

variations in genes related to the hypothalamic-pituitary-adrenal (HPA) axis, have been linked 

to altered stress responses and emotional regulation, potentially increasing PTSD risk in 

certain individuals (Aliev et al. 2020; Naninck et al. 2015). Additionally, epigenetic 

modifications—such as DNA methylation changes in response to environmental stressors—

add further complexity to this relationship, as these modifications dynamically influence gene 

expression and may contribute to the neural adaptations observed in ACE survivors (Colich et 

al. 2020; Vasquez and Renault 2015; Weder et al. 2014). Moreover, environmental factors, 

including socioeconomic status, quality of social support, and cumulative lifetime stress, also 

interact with genetic and epigenetic variables, creating a complex framework of 

neurobiological responses to ACE. As proposed in Figure 12, integrating genetic, epigenetic, 

and environmental data with multimodal neuroimaging may offer a more comprehensive 

understanding of how these factors collectively influence brain structure and function in 

individuals with ACE. Such an integrative approach holds promise for developing more 

accurate predictive models, enhancing the translation of research findings into effective 

intervention and treatment strategies. 

Methodological Considerations 

While multimodal neuroimaging offers a comprehensive approach to understanding 

brain function and structure, it is not without limitations. For example, the different imaging 

modalities often have varying spatial and temporal resolutions and produce data in different 

scales and formats, which complicates data integration and interpretation. Recent 

developments in MN data registration (Lange et al. 2024), data processing (Tourbier et al. 

2022) and cohesive analytical frameworks (Koutsouleris et al. 2023; Qu et al. 2024) have led 

to significant progress in addressing these challenges, enabling the effective integration and 



CHAPTER V:  DISCUSSION 

75 

interpretation of diverse multimodal neuroimaging datasets. However, further advancements 

in computational methods are still needed to fully harness the potential of multimodal 

neuroimaging and extract meaningful insights. 

By addressing these limitations and exploring new avenues of research, future studies 

can contribute to a more comprehensive understanding of the neurobiological underpinnings 

of ACE and PTSD and inform the development of more effective prevention and treatment 

strategies. 

5.6 Clinical Applications  

Building upon the proposed framework highlighted in section 5.4 above, the application 

of MN and predictive models has the potential to transform the management of mental health 

outcomes in individuals with a history of ACE (Chopra et al. 2024a; Lee et al. 2024; O’Halloran 

et al. 2016; Tejavibulya et al. 2022). These models, in addition to multimodal neuroimaging 

data, can incorporate clinical and demographic information to identify individuals at high risk 

of developing mental health disorders following childhood maltreatment. By identifying 

individuals at risk early on, targeted interventions could be implemented to prevent or 

mitigate the development of psychopathology such as PTSD. In addition to risk assessment, 

predictive models can serve several critical functions in clinical practice: 

Tailor treatment approaches 

Predictive models could link specific neurobiological markers to distinct 

psychopathologies, enabling the design of personalized treatment plans (Bzdok and Meyer-

Lindenberg 2018; Chopra et al. 2024b). This precision approach ensures that therapeutic 

interventions align with the unique neurobiological and psychological needs of each 

individual, enhancing treatment efficacy. 

Monitor treatment response 

By leveraging longitudinal MN data, predictive models can track changes in brain 

structure and function over the course of treatment (Jin et al. 2021). This capability could 

allow clinicians to evaluate the effectiveness of interventions, refine therapeutic strategies, 

and make data-driven adjustments to optimize patient outcomes. For example, treatment-

response models using linear time-invariant dynamical systems can be used effectively 

represent continuously varying treatment doses and their effects on outcomes over time 

(Soleimani et al. 2017). 
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Identify early signs of relapse 

By monitoring for changes in neurobiological markers, predictive models could help 

identify individuals who may be at risk for relapse, allowing for early intervention to prevent 

symptoms recurrence. For example, recent research has explored biological factors that may 

enhance relapse prediction, including endocrine measures like cortisol levels and 

neurobiological markers such as brain atrophy in medial frontal regions (Ansell et al. 2012; 

Moeller et al. 2016; Sinha 2011). Integrating these biological markers with traditional 

symptom monitoring could potentially improve the accuracy of relapse prediction. 

Integrating MN and predictive modelling into clinical practice could transform 

personalized psychiatry and improve outcomes for those with ACE. 
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CHAPTER VI:  SUMMARY 

This work focuses on the application of multimodal neuroimaging (MN) to investigate 

the neurobiological underpinnings of ACE and related PTSD. By combining multiple 

neuroimaging modalities, the research provides a more comprehensive understanding of the 

brain changes associated with childhood maltreatment and the development of PTSD. 

Key findings include: 

 Identification of potential neurobiological markers: The studies have identified 

alterations in specific brain regions, such as the right superior parietal lobule that may 

serve as potential biomarkers for PTSD avoidance symptoms following child abuse. 

 Disruption of brain networks: Disruptions in key brain networks involved in cognitive 

control, emotional processing, and social behaviour have been observed in individuals 

with ACE-related PTSD. 

 Development of predictive models: The research has laid the groundwork for building 

predictive models that could be used to identify individuals at risk for psychopathology 

and tailor treatment approaches. 

Based on these findings, a framework for future research applications is proposed, including: 

 Larger, multisite, and multimodal studies: To enhance the generalizability and statistical 

power of the findings. 

 Predictive modelling: To develop tools for identifying individuals at risk and tailoring 

treatment approaches. 

 Clinical applications: To improve intervention outcomes and reduce the long-term 

burden of ACE-related mental health disorders. 

Overall, this work contributes to a growing body of evidence on the neurobiological 

consequences of ACE and highlights the potential of MN to inform the development of more 

effective prevention and treatment strategies. MN has the potential to enhance the way we 

understand and treat ACE-related mental health disorders. By providing a more 

comprehensive and nuanced picture of brain changes associated with ACE, MN can help us to 

identify individuals at risk, predict symptom severity, and tailor interventions to the specific 

needs of each individual. 
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Die vorliegende Arbeit konzentriert sich auf die Anwendung multimodaler 

Neuroimaging (MN) Methoden und Analysen, zur Untersuchung der neurobiologischen 

Grundlagen von aversiven Kindheitserfahrungen (Adverse Childhood Experiences, ACE) und 

der damit verbundenen Posttraumatische Belastungsstörung (PTSD). Durch die Kombination 

mehrerer Bildgebungsmodalitäten liefert diese Methode ein umfassenderes Verständnis der 

Veränderungen im Gehirn mit Kindesmisshandlung und der Entwicklung von PTSD 

verbundenen sind.  

Zu den wichtigsten Erkenntnissen gehören: 

 Identifizierung potenzieller neurobiologischer Marker: Die Analysen haben 

Veränderungen in bestimmten Gehirnregionen identifiziert, wie beispielsweise den 

rechten superioren Parietallappen, die als potenzielle Biomarker für 

Vermeidungssymptome von PTSD nach Kindesmissbrauch dienen könnten. 

 Veränderung von Gehirnnetzwerken: Störungen in wichtigen Netzwerken des Gehirns, 

die an kognitiver Kontrolle, emotionaler Verarbeitung und sozialem Verhalten beteiligt 

sind, wurden bei Personen mit ACE-bezogener PTSD beobachtet. 

 Entwicklung von Vorhersagemodellen: Diese Untersuchung hat den Grundstein für den 

Aufbau von Vorhersagemodellen gelegt, die zur Identifizierung von Personen mit hohem 

Risiko für Psychopathologie und zur Anpassung von Behandlungsansätzen eingesetzt 

werden könnten. 

Basierend auf diesen Erkenntnissen wird ein Rahmen für zukünftige Forschungsanwendungen 

vorgeschlagen, einschließlich: 

 Größere, multizentrische und multimodale Studien: Um die Generalisierbarkeit und 

statistische Aussagekraft der Ergebnisse zu erhöhen. 

 Vorhersagemodellierung: Um Tools zur Identifizierung von Risikopersonen und zur 

Anpassung von Behandlungsansätzen zu entwickeln. 

 Klinische Anwendungen: Um die Behandlungsergebnisse zu verbessern und die 

langfristige Belastung durch ACE-bedingte psychische Störungen zu reduzieren. 
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Insgesamt trägt diese Arbeit zu einem wachsenden Wissensstand über die 

neurobiologischen Folgen von ACE bei und unterstreicht das Potenzial von MN für die 

Entwicklung effektiverer Präventions- und Behandlungsstrategien. MN hat das Potenzial, die 

Art und Weise, wie wir ACE-bedingte psychische Störungen verstehen und behandeln, zu 

verbessern. Durch ein umfassenderes und differenzierteres Bild der mit ACE verbundenen 

Gehirnveränderungen kann MN dazu beitragen, Risikopersonen zu identifizieren, die Schwere 

von Symptomen vorherzusagen und Interventionen auf die spezifischen Bedürfnisse jedes 

Einzelnen abzustimmen.   
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