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Abstract

The inherent chemical and morphological richness and complexity of Organic Semiconductors
make the detailed theoretical description almost impossible. This leads to the necessity of
simulation-based approaches that should be as detailed and computationally efficient as
possible, which turns out to be a far from trivial task. While over the decades, different models
of different levels of detail and computational effort have been proposed, there is still ample
room for improvement. In this thesis a semi-empirical Tight Binding model of organic
semiconductors was developed that is based on user-specified morphologies like Molecular
Dynamics morphologies and is combined with kinetic Monte Carlo simulations to obtain a tool
that captures different correlations and includes partially delocalized charge carriers. In this
thesis, kinetic Monte Carlo simulations are used to describe how anisotropic localization
lengths can lead to increased thermoelectric powerfactors, breaking the usual trade-off
between Seebeck coefficient and conductivity. The developed numerical model is also used to
study the validity of the effective temperature model of the field dependence of the
conductivity that assumes a one-to-one relation between thermal- and field-activated charge
transport. It is found that the effective temperature model is not always self-consistent and
breaks down for inhomogeneous systems. Additionally, other parameters influencing the field
dependence are not correctly incorporated in the effective temperature model. The numerical
model was also used to explain the experimentally observed superlinear increase of
conductivity at high charge carrier concentrations. Delocalization of charges at the Fermi level
is found to explain this observation. Lastly, the tight binding model was used to explain the
renormalization of the Density of States at intermediate doping levels that is necessary to
explain the experimentally observed roll-off in conductivity for intermediate doping in the
conductivity dependence of the Seebeck coefficient which is the relevant regime for optimized

thermoelectric devices.



Zusammenfassung

Die inhdrente chemische und morphologische Vielfalt und Komplexitdt von Organischen
Halbleitern machen deren detaillierte theoretische Beschreibung fast unmaoglich. Dies fuhrt
zur Bendtigung von simulationsbasierten Ansdtzen, die so physikalisch exakt als auch
numerisch effizient wie moglich sein sollten. Dies stellt sich jedoch als eine alles andere als
triviale Aufgabe dar. Uber die Jahrzehnte hinweg wurden unterschiedliche Modelle mit
unterschiedlicher physikalischer Genauigkeit und Effizienz vorgestellt, jedoch existiert nach
wie vor Verbesserungsbedarf. In dieser Thesis wird ein semi-empirisches Tight Binding Modell
entwickelt, das auf benutzerspezifischen Morphologien wie Molekulardynamik Morphologien
basiert und kombiniert mit kinetischen Monte Carlo Simulationen um ein Werkzeug zu
erhalten, das unterschiedliche Korrelationen und teilweise delokalisierte Zustande erfassen
kann. Zundchst werden kinetische Monte Carlo Simulationen benutzt um zu erklaren wie
anisotrope Lokalisierungslangen zu einem erhohten thermoelektrischen Leistungsfaktor
fihren konnen und dabei den Ublichen Zielkonflikt zwischen Seebeck Koeffizienten und
Leitfahigkeit brechen kénnen. Das entwickelte numerische Modell wird aulRerdem dazu
benutzt, um die Gliltigkeit des Modells der effektiven Temperatur fiir die Feldabhangigkeit der
Leitfahigkeit zu studieren. Es zeigt sich, dass dieser Ansatz oft nicht selbstkonsistent ist und
u.A. fur inhomogene Systeme zusammenbricht. Zusatzlich werden andere physikalische
Parameter, die die Feldabhdngigkeit beeinflussen, offenbar nicht richtig in das Modell
inkludiert. Das Modell wurde des Weiteren dazu verwendet um numerisch den experimentell
beobachteten super-linearen Anstieg der Leitfahigkeit bei hohen
Ladungstragerkonzentrationen zu erkldaren. Dies wird erklart durch die zusatzliche
Delokalisierung von Ladungen bei der Fermi Energie. Zuletzt wird das entwickelte Tight Binding
Modell dazu benutzt um die Renormalisierung der Zustandsdichte bei mittleren Doping Levels
zu erklaren, die notig ist um den experimentell beobachteten Abfall der Leitfahigkeit im
mittleren Doping Regime, dem fiir optimierte thermoelektrische Anwendungen relevantesten

Regime, zu beschreiben.
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Introduction

Motivation and State of Research

Organic Electronics is the scientific field of the general electronic properties of (in the chemical
sense) organic materials like organic semiconductors or organic ferroelectrics. Its most
prominent application is the organic light emitting diode (OLED) which the basis of the
arguably currently best screen technology, built into virtually all modern smart phones. The
field is in comparison to the physics of inorganic materials very young and had its beginning
with the discovery of the first semiconducting material violanthrone by Akamatu and Inokuchi
in the year 19502, Unlike for inorganic materials, at this point the charge transport mechanism
was completely unclear. Experiments and the inherently disordered nature of these organic
materials hinted on Hopping-type conduction, which was originally found in amorphous
inorganic materials, but the physically correct formalism was unclear. Around the same time,
hopping theories for amorphous inorganic semiconductors were developed by Mott?3, Miller
and Abrahams* and Marcus>. Only in the 80s and 90s, Béssler® formulated a consistent charge
transport theory specifically for organic semiconductors (OSC) with the Gaussian Disorder
Model (GDM). However, with the development of ever new OSCs the chemical and physical
complexity of the vast material space of possible OSCs became clear. This is due its main
constituent carbon, which can form four covalent bounds and almost arbitrarily big and
complex structures, especially in connection with different hetero-atoms, making it not only
chemically complex, but also from a morphological point of view. Different classifications of
0OSCs emerged, like small molecules or polymer based, crystalline, semicrystalline, and
amorphous OSCs. With that amount of complexity, also the need for more sophisticated
theories and models of charge transport (CT) arose. The very diverse microscopic and
mesoscopic situation, especially the inherent disorder and therefore lack of symmetry in these
materials however make it very hard to yet impossible to treat theoretically in detail, making
the use of numerical simulation methods for their understanding and optimization very
important. On a microscopic scale, the most important quantities to describe the CT are the
electronic couplings between the molecular states like HOMO or LUMO (highest occupied

molecular orbital and lowest unoccupied molecular orbital), the reorganization energy being



the energy needed to form a polaron during charge transfer and the chemical and electrostatic

environment.

In the last two decades there has been great effort in accurately calculating electronic
couplings (or also called transfer integral), reorganization energies and energy levels by
different quantum chemical and semi-empirical calculations like Density Functional Theory
(DFT), Constrained Density Functional Theory (CDFT), Fragment Orbital DFT (FODFT), Density
Functional Tight Binding (DFTB), Generalized Mulliken—Hush (GMH), or Analytic Overlap
Method (AOM) to accurately calculate Marcus hopping rates or Marcus-Levich-Jortner
hopping rates. The rates are used together with Molecular Dynamics (MD) Morphologies or
crystalline Morphologies to perform kinetic Monte Carlo (kMC) Simulations and calculate

electronic Mobilities.

For example, Lukyanov and Andrienko 7 calculate transfer integrals directly with DFT and use
them with the Marcus rate in kMC simulations on a MD generated morphology. Their approach
is though strongly limited in system size because of the expensive direct DFT calculations,
leading to dispersive mobilities. They therefore extrapolate the temperature dependence of

the mobility to achieve non-dispersive mobilities.

Many other authors used similar approaches for their simulation®1°, For this standard

multiscale workflow approach, a widely used toolkit named VOTCA!! was created.

An interesting modulation of VOTCA was implemented from Riihle et al. %12, where transfer
integrals were not calculated between monomers, but between rigid fragments of e.g. the
investigated polymer morphology, which are determined by (not unique) conditions. Similarly,
Mladenovic and Vukmirovic!®* performed multiscale simulations on P3HT using a
fragmentation method they developed called Overlapping Fragments Method (OFM) 14 to

better capture partially delocalized polymer fragments in their simulation.

E.D. Miller et al. 1> use a widely used semi-empirical quantum chemical calculation (ZINDO/S'®)
to calculate orbital energies of P3HT chromophores and approximate the transfer integral by
Marcus-Hush two state approximation, which is the quadratic sum of HOMO and HOMO-1
difference and site energy difference, and use it with the Marcus rate to perform kMC
simulations with snapshot MD generated morphology. They calculate Diffusion mobility with

reasonable values and highlight the importance of tie chains in their morphologies.



Alkan and Yavuz!’ investigate the influence of Alkyl side chains on mobility. They use X-ray
crystal structures as starting configuration for a MD simulation for a disordered morphology.
They then calculate transfer integrals with ZINDO and site energies with the Thole Model as
input for the Marcus Levich Jortner rate to perform kMC simulations and find small side chains
lead to worse mobility in comparison to somewhat larger but not too large ones due to
reduced electrostatic interactions and advantageous packing of the backbones for longer side

chains.

Park et al.® studied grain boundary effects in poly-crystalline organic semiconductors
generating static perfect OSC lattices and randomly reorienting the crystalline grains during
kMC simulations. They extract energies and electronic couplings by DFT based quantum
chemical calculations and use it within the Marcus rate for the kMC Simulations. They
circumvent the computationally limited simulation box and grain size by a grain-size calibration

formula based on AFM images.

For systems with significant dynamical disorder, where snapshot MD morphologies can
underestimate its impact, Ozdemir et al.*® make use of the semi-empirical Density Functional
Tight Binding (DFTB) to sample a large number of molecule pairs for HOMO energy and hole
coupling calculations and consider the time dependence of electronic couplings due to
dynamical disorder via time averaging of electronic properties that are used for the Marcus

rate in kMC.

To overcome the computational limitations of expensive exact transfer integral calculations,
Gajdos et al.2%2! exploited the already older idea from e.g. Extended Hiickel Theory or the
Molecular Orbital Overlap (MOO) method that the transfer integrals are proportional to the
orbital overlap to find a universal linear scaling law over a wide range of distances with a
universal scaling constant for a given donor-acceptor system, reducing the computational
effort to just overlap calculations. One can further speed up calculations by parametrizing the
orbitals analytically to calculate the overlaps (Analytic Overlap Method). For this purpose, only

the constant must be fitted to e.g. results from representative DFT simulations.

With the recent achievements in Machine learning another approach to tackle the limits of
computational power won in popularity. Instead of the explicit expensive calculation of
transfer integrals researches use Machine Learning techniques to predict transfer rates for

larger systems to be able to simulate mesoscopic morphologies. For example, Tan et al.?? use
3



this approach to perform multiscale simulations for organic thin films with grain boundaries

and polymorphs.

Due to the computational difficulties of larger systems, many authors use their different
methods on crystalline or slightly disordered morphologies, but also works exist that use these
methods to try to get insight into more complex mesoscale morphologies like strained TIPS-P
crystals?3, polycrystalline systems!®, semicrystalline P3HT?4, solution and vacuum deposited

OLEDs?*, edge-on P3HT?®, however more or less limited in simulation box size.

Aforementioned previous works mostly focus on low charge carrier concentrations and
investigate the field dependence and temperature dependence of the mobility or zero field
mobilities, mostly with focus on small molecule organic semiconductors. The simulated box
size is dependent on their calculation technique of electronic couplings compromising a bottle
neck. More ab initio calculations can only perform on very small systems, whereas other semi-
empirical approaches can cover larger systems with retaining mostly accurate couplings. Many
of the authors work with snapshot morphologies, while some try to incorporate fluctuation in
couplings due to dynamical disorder which can be relevant in small molecule and crystalline
0OSCs but less in polymeric OSC. However, in virtually all studies the effect of partial
delocalization is not captured since Marcus theory is valid only for charge states localized on
single monomers or single small molecules. Also, electronic couplings can be underestimated
due to commonly used dimer approximation, where electronic couplings are calculated
between HOMO frontier orbitals of two monomers. This fails to capture delocalization effects,
since charge states often spread over multiple monomers, which leads to an artificial cutoff of
the electronic couplings in the dimer approximation. However, this can’t be resolved easily,
since the calculation of electronic couplings in systems of several monomers is computationally
extremely expensive and in addition the degrees of freedom to cover rises exponentially,
making the problem even worse, such one is mostly stuck with the dimer approximation. For
the transition to more delocalized states, other methods have been proposed and improved,
but are still often computationally expensive to use in larger systems and only used in small

systems or low dimensional problems.

One approach to try to bridge the problem of partially delocalized states, is delocalized kMC
(dkMC)?” introduced by Balzer et al.. They couple the electronic Hamiltonian to a thermal bath

and perform a polar transformation to make the second order perturbative approach of

4



Secular Redfield Theory usable. It describes the time evolution of polaron populations with a
rate equation. The specific rate, called Redfield tensor or rate can be seen as the hopping rate
usable in kMC simulations, but requires repeated Hamiltonian diagonalizations and is still
expensive albeit of several simplifications made. This method works in the range of hopping
transport to transient localization, but so far can only utilize static simple or random lattices,

which then again does not capture morphological effects.

A much simpler approach than dkMC by Willson et al.?2 named jumping kMC (jkMC) avoids
the many expensive diagonalizations of Hamiltonians by just multiplying a delocalization
correction term to the Marcus rate, which is determined by fitting a polaron delocalization
radius to an ensemble average of spherical polaron state inverse participation ratios (IPRs).
This method is much less expensive, but also works only on simple lattices and has not been

combined with realistic morphologies.

In another approach e.g. Giannini et al.?° or Spencer et al.3 utilized AOM to develop a surface
hopping method based on Fewest Switching Surfacing Hopping, where they expand the charge
carrier wavefunction in a basis of fragment orbitals (here SOMOs) and propagating the
coefficients using time dependent Schrdodinger equation involving the need for repeated
Hamiltonian matrix element calculations that can be efficiently calculated via AOM. According
to the resulting time-dependent adiabatic electronic states, the decision to switch between
two adiabatic surfaces during the simulation is then made probabilistically. This method
(Fractal Orbital based Surface Hopping, FOB-SH) can capture a broader spectrum between
band-like transport and hopping transport, is however still very computationally expensive for

large or higher-dimensional systems.

Ishii et al.3132 developed yet another quantum dynamical method to simulate the (diffusion)
mobility for partially delocalized states. Their time-dependent wave-packet diffusion (TD-
WPD) method uses a time dependent Tight Binding Hamiltonian for the definition of the
systems density operator, with which then the time-dependent diffusion coefficient as a
velocity correlation function and finally the mobility via Einstein relation is calculated. This
method however also suffers from high computational cost and was applied only for 2D

systems as was FOB-SH.

Despite the great effort for high level mobility calculations made for OSC, multi-scale studies

with focus on thermoelectric Simulations based on realistic Morphologies as done with
5



mobilities are rarer. Specific morphology-related kMC studies focus rather on random or
simple lattice-like morphologies than realistic morphologies by MD, while others use a
Boltzmann-Transport-Equation approach to calculate the Seebeck coefficient and use MD

morphologies only for the thermal conductivity calculations.

For example, Zozoulenko et al.3*34 used a multi-scale approach for PEDOT:ToS morphology
from MD, calculated the transfer integrals using ZINDO and used Miller-Abrahams rate with
the transfer integral as tunneling term for kMC simulations and thereby also simulated the

Seebeck coefficient.

Recently Elsner et al.3*> performed thermoelectric transport simulations in organic molecular
crystals using the FOB-SH method with physically and experimentally reasonable values for
rubrene crystals, considering partial delocalization effects located in the regime of transient
localization. Albeit being quite accurate, the method is as already said before currently
computationally limited to small systems or two-dimensional lattices, making it hard to

investigate polymeric systems or systems with more complex meso-scale morphology.

Goal of this Work

This thesis tries to bridge more sophisticated multi-scale simulations containing complex and
expensive quantum chemical or semi-empirical calculations on MD based morphologies, but
localized hopping, and simulation methods with the possibility of partial charge delocalization
on simple lattice morphologies. | will thereby use modelled or Molecular Dynamics based
morphologies and derive a semi-empirical Tight Binding Model of these morphologies which
then serve together with a modified MA Transfer rate as input for kMC simulations. With this
approach, electric and thermoelectric properties of a variety of morphologies considering
partial delocalization effects can be simulated on a larger scale with comparatively limited

computational cost.

| start by introducing OSCs and their morphologies and a description of them using Tight
Binding theory. From there, energetical and localization properties will be derived and
transferred to modified transfer rate to finally perform kMC simulations and investigate

electrical and thermoelectrical properties of different systems with the prescribed scheme.

The investigated systems will cover anisotropic films, amorphous P3HT and different

aggregated morphologies and also simple doped systems.
6



Theoretical Background and Methods

Organic Semiconductors

(Following®® if not others stated). The class of Organic materials is defined by materials that
mostly consist of bonds between carbon (C) atoms and carbon-hydrogen (C-H) bonds. Being
in the fourth main group of the periodical system, carbon can form up to four covalent bonds.
Allowing bonds with different heteroatoms (atoms that are not C or H), a vast material space
can be constructed, containing highly functionalized molecules with very specific properties

and abilities like proteins in living beings.

One can divide organic materials in many different categories ranging from small molecules
over fullerenes to different kinds of conjugated polymers. The organic materials of concern in
this thesis are medium to high molecular mass organic semiconductors (OSC). A central
property of many OSCs of interest is the bond conjugation between C atoms, which can be
nicely explained by orbital hybridization. Molecular orbitals are usually approximately
described by solutions of the molecule’s Schrédinger equation, obtained by inserting a linear
combination of atomic orbitals (LCAO) as ansatz, in the Born-Oppenheimer approximation,
where the electronic part is decoupled from the nuclidic part due to the inert nuclides in
comparison to the much lighter electrons. The linear combination (therefore called orbital
hybrids) of an s-orbital, px-orbital and an py-orbital (sp? hybridization) gives three planar
covalent o-bonds (bonds along the bond direction) of the C atoms. The fourth C-orbitals are
out-of-plane formed by p; and therefore form m-bonds (bonds perpendicular to the axis of
bond direction). The charges in conjugated polymers are delocalized over the overlapping m-
orbital system of the molecule. LCAO provides for every bonding state an anti-bonding state,
denoted by a star after the bonding type, e.g. ¢ or " due to one symmetric and one
antisymmetric solution. The electron density is for bonding states highest between the atoms,
such that the Coulomb potential by the cores is screened and therefore the energy of the state
is reduced. Anti-bonding states have a minimum between the atoms, are close to the cores,

and have therefore higher energy.

A simple example of a conjugated polymer is an alkene chain of length N. Solving the
corresponding N-m-electron Hamiltonian provides N energy levels that are symmetrically

distributed around some fixed energy. At moderate temperatures the lowest N/2 states get

7



fully occupied in the ground state. The highest occupied state is called the HOMO (Highest
Occupied Molecular Orbital), the i-th state below the HOMO is called HOMO-i. The lowest
unoccupied orbital, being the first anti-bonding state, is called LUMO (Lowest Unoccupied
Molecular Orbital), and i-th state above LUMO is called LUMO-i. The energy difference
between the HOMO and the LUMO is called energy gap.

Due to the intrinsic disorder emerging from disorder in the chemical and energetic vicinity of
individual molecules the HOMOs and LUMOs of the molecules will differ from each other,
leading to not well-defined HOMOs and LUMOs for the bulk material, but rather to
probabilistic distributions around some mean values. This disorder leads to hopping type of

transport rather than band conduction, which will be discussed later.

Molecular Forces

Bonding Types

(See literature like FlieRbach3’, Hunklinger3®) One can categorize chemical bonds in materials
as metallic, ionic and covalent bonds. Metallic bonds, as the name suggests, are found in
metals and occur in atomic lattices of elements that have weakly bound valence electrons that
can delocalize over ideally the whole lattice leading to an energetically lower and stable

configuration.

lonic bounds, often found in salts, occur when one atomic species donates one or more
electrons to a different atom species such that they are found in ionized form as cations and
anions. Those oppositely charged ions are then strongly and closely held together by the
Coulomb interaction and form distinct regular (bravais) lattices. Opposing to metallic bonds,

the electrons or holes are strictly localized on the ions.

However, as already covered in the previous chapter, the relevant intramolecular bonding type
in OSCs is the covalent bonding. Covalent bonds are generally weaker than ionic bonds. For
the bonding state, the electrons are not bound to one atom but shared between them and
screen the coulombic interaction. This leads to a longer bonding length compared to ionic
bonds and therefore more flexible molecular structures allowing for deformation like bending

or torsion to some extent, depending on the geometry and size of the molecule.



Polar and Van der Waals Forces

Whereas the covalent bonds define the molecular structure, they do not form intermolecular
bonds. Intermolecular bonds are formed by hydrogen bridges and dipole-dipole (or multipolar)
interactions of partial charges, induced dipole — dipole interactions and van der Waals bonds

(induced dipole — induced dipole).

A Hydrogen bridge is a directional dipole-dipole interaction between two strongly polar groups
that occurs if hydrogen undergoes a covalent bond with a much more electro negative atom
like oxygen. Due to the high electro negativity of the bonding partner, the bond electron gets
pulled close to it, leaving hydrogen with a significant partial positive charge while the other
gains a negative partial charge creating a strong polar group within the molecule. The hydrogen
positive partial charge then aligns with the partial negative charge of another molecule

forming the so-called hydrogen bridge.

Similarly, a general difference in electro negativity between atoms results in a non-uniform
charge distribution along the bond resulting in dipoles or multipoles of partial charges across
the molecule. The potential ®(r) of a general charge distribution p (1) can be Taylor expanded

into a Multipole expansion (in Gauss units)

o) = [ar 0 =1 ipai% +0(2) =

i=1

P
r3

+0(2) (1)

ﬁIvQ

, where the definition of the dipole moment p; = [ dr' x/p(r) and the total charge q was
used. The first term is just the Coulomb potential of a single charge g, whereas the second
term is the dipole potential ® 4;,,,c. The potential energy of a dipole p; in the electric field
E, of a dipole p, is then given by

Pi:P2 3(py )Py 1) (2)
r3 S

Udip—dip =-p1-E;=p:- ch)dipole =

For the induced dipole — dipole and Van der Waals interaction we need the concept of
polarizability, which is also needed later in this thesis. Consider an otherwise neutral charge
distribution p(r) (e.g. an atom or a molecule) and an external electric Field E. The electric
field can induce a dipole into p(7) by exerting a force onto it and thereby partially separating
charges within p(r). The induced dipole moment is p = aE with the polarizability tensor a.

The potential energy of the induced dipole — dipole system is then

9
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where for the last proportionality a scalar polarizability was assumed (i.e. a is diagonal with
equal entries). It is mentioned that, due to the minus sign, the induced dipole — dipole
interaction is attractive. While the interaction energy (potential energy) of the dipole — dipole
interaction drops off with third power of distance, the induced dipole — dipole interaction is

much shorter ranged due to the sixth power drop off with distance.

Lastly, but most important for OSCs, especially polymeric, one has the Van der Waals
interaction between molecules. It is basically the induced dipole — induced dipole interaction.
Quantum mechanically, the electrons of an atom are not always statically distributed according
to their wavefunction, but can fluctuate such that temporary dipoles can occur that then again
can induce dipoles in another molecule and vice versa. The attractive part of the Van der Waals
interaction is like the one of induced dipole — dipole interaction and scales with @ o< 1/7°.
However, increasing overlap of orbitals due to low distance is counteracted by Paulis exclusion
principle, leading to a repulsive counter force. This can be empirically modeled by adding and
exponential term or another power-law term to the attractive potential, such one arrives at

the Lennard-Jones Potential

A B o\ 12 o\°
o0 =15-%=4(() (7)) )
that has a minimum which depth is determined by € and a zero-crossing determined by o. The
location of the minimum can be interpreted as some kind of Van der Waals bonding length.

For single molecules the Van der Waals interaction is negligible, but it gets stronger for high

contact area like in polymers, where it gets the main intermolecular force.

Dielectric Constant and Polarizability

How strong microscopic electrostatic fields influence the interactions between charges or
molecules within a material can be described by the dielectric constant €, > 1. It describes

the ability of the material to screen charges and reduces Coulomb potentials by

Veoutomp = g - EL. For ideal metals €, is technically infinite since there are no electric fields

T
within a metal because charges would respond to the electric force and redistribute freely until
10



there is no force and therefore field anymore. In organic semiconductors the situation is quite
opposite. Charges are localized and immobile, leading to a very low dielectric constant, usually
in the range of 3 to 4. However, experiments have shown that doped OSCs can have indeed a
higher dielectric constant®®4°, One can make a toy model of molecular doped OSC to
understand this behavior as shown by Comin et al.*'. The following section will summarize

their theoretical approach.

The authors assume a fcc lattice with random gaussian distributed displacements to model the
disordered nature of OSCs. At the lattice sites i induced dipoles u; = a;E; are considered
according to the total microscopic field at site i E; = EY + E’i‘. Here, E} are the external fields
and fields from charged sites and Ei.‘ is the field contribution of other induced dipoles and «;
are the polarizability tensors of the individual sites i. Now the induced dipole relations given
for each individual site i are stacked and summarized into one supervector

0
181 @1 E,
s | = : © u=akE (5)

”N 0 (XN EN

Now the distance vector ﬁ of each pair ij of dipoles is calculated and for each pair the dipole-

field tensor is calculated

— — 2
3, @1, — 1l

Y 4meor (6)

Here @ is the dyadic product such that Ef = D;;u; is the induced dipole field of i at dipole j.
Bringing everything together into one large vector notation, with D being a block matrix

consisting of D;;, one can write E¥ = Du. Now one can solve the following expression for u
@ 'u=E=E°+E*=E°+Du & (@'-D)u=E° (7)
Knowing the induced dipoles from solving above’s equation, one can now calculate the
induced polarization P = % Yimi = €oxE = €,{E®** with the susceptibility y and
susceptibility to an external field, {, and solve for latter. For a uniformly polarized medium it

- A-P I, L
holds for the total macroscopic field E = E®*t — — where A = 3is the depolarization tensor
0

for spherical samples. Finally, one can calculate the susceptibility y and the dielectric tensor

€, via

11



x=0-4-07'¢ and e, =1+x (8)

For simplicity, one can assume a constant polarizability aj,s; for the OSC molecules and
another also constant polarizability a.r for the dopants and depending on the charge
concentration c define an average c-dependent polarizability ag,; = (1 — c)apest + cacr and
do the calculation. The continuous line in Figure 1 corresponds to this case, whereas the

histograms are results from inhomogeneous lattice simulations.
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Figure 1 — Full line: Effective homogeneous medium. Dashed lines: Gaussian fits to inhomogeneous

lattice simulations. Reproduced with permission from [41], © 2021 Wiley-VCH GmbH.

The plot shows clearly an increase of the dielectric constant with increasing doping. Therefore,
the enhanced dielectric constant in doped OSCs can be attributed to high polarizability of
dopant molecules that allow for enhanced screening. However, this model is clearly limited,
since in contrast to their effective medium approach, for intermediate to higher charge
concentrations, their inhomogeneous lattice simulations give rise to a dielectric catastrophe,
which is not observed in OSCs. It is likely that the model enters for higher charge
concentrations a regime that rather describes the dielectric catastrophe of ferroelectric

materials near the Curie temperature as can be modeled with e.g. Ising models.
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Morphology

Classification

As discussed in the last chapter, the main inter-molecular interaction of OSCs is the weak Van
der Waals force and the main intra-molecular interaction is the covalent bond. Covalent bonds
are weak enough that the thermal energy or microscopic mechanical forces can already cause
torsion or bending of molecular bonds. Additionally, Van der Waals forces are so weak that
they cannot constraint the degrees of freedom between molecules as can the Coulomb force
in ionic crystals. Together with the possibly complex and large molecular structure this leads
to the possibility of an abundance of chemical and geometrical defects implying an intrinsically
disordered microscopic structure of the bulk material. The microscopic and mesoscopic
structure of the bulk material is called morphology. Physical and chemical properties of OSCs
are essentially influenced by the morphology*>~*4. Figure 2 shows a rough classification of

morphologies in organic materials into four categories.

Amorphous Semicrystalline Polycrystalline Crystalline

Figure 2 — Morphology categories

Completely disordered morphologies are called amorphous. In semicrystalline media,
crystalline regions are embedded in an amorphous background. Materials consisting of
differently oriented crystalline grains are called polycrystalline. If the material is a
macroscopically ordered (single-) crystal, it is called crystalline. Polycrystalline and crystalline
morphologies can usually only be obtained with small molecules, while polymeric organic
materials usually form amorphous or semicrystalline morphologies*?. However, there are more

kinds of specific morphologies than those mentioned above. Depending on the choice and

13



combination of organic materials, solutions, substrates, deposition- and post-processing
techniques, one can achieve specific microscopic structures. For example, the effective
dimensionality of the organic material can be modified, like rubbing of PBTTT leads to quasi-

one-dimensional morphology of many parallel chains®.

Edge-on and Face-on Orientation

Another type of molecular orientation classification is the classification into edge-on and face-
on orientation or morphology. Technically, edge-on or face-on morphologies are semi-
crystalline morphologies, with the specification of how the aggregates are oriented with

respect to the substrate as illustrated in Figure 3.

4, \\\
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Figure 3 — a Top view of edge-on orientated lamellar stacks. b Side view of edge-on orientated (left)

and face-on orientated stacks (right).

As this thesis contains modeling and simulation of the implications of edge-on and face-on
orientation on the thermoelectric power factor of OSC as part of a collaboration, it is useful to

have a deeper look into the theoretical background here.

Villalva et al.*® utilized Hansen Solubility Parameters (HSPs) to control the crystallinity and
orientation of different OSC films. HSPs were introduced by Hansen*”#® in 1967 and are an
attempt to quantify solubility of molecular species dependent on different molecular
interactions. For a solvent — solute pair, the energy of dispersive (6D), polar (§P) and hydrogen
bonding (§H) forces are determined, typically in units of MPa'/2. One can now treat these three
guantities as axes in a three-dimensional cartesian coordinate system and solvents can be
depicted as points in this so-called Hansen space. In this set-up, it is usually found that good
solvents for a molecule are approximately located within a sphere of some radius R, called the

interaction radius. The value of R, is determined empirically by testing different solvents at a
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given temperature and concentration. For a given solvent, one can now calculate the Hansen

radius R, via
Ré = 4(6D1 - 6D2)2 + (6P1 - 6P2)2 + (6[‘11 - 6H2)2 (9)

For R, < R, the solvent is typically good, whereas for R, = R, the solubility typically gets
worse. The principle behind that is that molecular species with similar molecular interactions
dissolve good. If R, < R, (good solution), polymer chains are almost fully dissociated, which
preferably produces face-on orientation. However, if R, is in the vicinity of R, pre-aggregates

are formed in solution that preferably produce edge-on orientation on the OSC film.

However, as Villalva et al. point out, R, alone is not a sufficient as a figure of merit to determine
the orientation of the film (edge-on face-on ratio (EFR)). They propose a refined parameter
including the boiling point of the solvent (BP) by multiplication R, - BP. For this quantity, they

find an exponential dependence of the EFR from R, - BP.

Besides solvents, dopants can influence and improve molecular packing. They find that dopant
— polymer interaction can reduce the solubility of the polymer-dopant complex and facilitate
conjugated polymer nucleation and therefore increase crystalline fraction and edge-on portion

of the film.

Molecular Dynamics

In order to predict and calculate morphologies, unfortunately ab initio calculations like DFT are
computationally too expensive since thousands of atoms need to be included for a significant
and physically meaningful box size. However, due to emergence, it is mostly not needed to do
so. The dynamics of molecules on larger scales does mostly not require quantum mechanically
exact calculations. Instead, one can perform Newtonian dynamics with optimized
parametrized potentials, so-called force fields. Given molecular structures in equilibrium, one
can model different potential terms for different forces between molecules. The force field of
a specific molecular setup is not unique and needs to be carefully chosen and optimized. In a
corporation contributing to this thesis, P.S. Floris (see also %°) performed Molecular Dynamics
(MD) for different P3HT oligomers. For this, the following standard OPLS-AA®C force field with

standard parameters was used
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The first term is the potential for displacing two bonded atoms from its equilibrium position ro
in the harmonic approximation with force constant k;. The second term is the potential term
for bending two bonds from equilibrium angle 6, again in the harmonic approximation with
force constant ky. The third term is the potential due to torsion of the dihedral angle ¢
associated to a rotation around the central bond of a four-atom sequence (i-j-k-1). It is
expressed by the Fourier coefficients V,, (with the dihedral periodicity n) interpreted as force
constants and with the phase-shifts ®,, with typical values of 0 or . The last term contains
the Coulomb energy between two partial charges q; and g; located at atom i and j and the
Lennard-Jones potential of the Van der Waals force. The Lennard-Jones parameters for two
different atoms i and j are calculated using the Lorentz-Berthelot combining rule via €;; =
\/eu—eﬂ and o;; = \/TGJ'J" For the Van der Waals force, a Lennard-Jones (LJ) cutoff distance of
1 nm was chosen and for the long range electrostatic a particle-particle particle-mesh (PPPM)
solver was applied with a spacing of 10~* in Fourier space for the FFT-calculation. The force
constants and partial charges are parametrized from DFT calculations of different molecular

geometries, vibrational energies and torsional profiles.
Having a suitable force field, one can solve the Newtonian dynamics equations
p,=-VU (11)

and assigns random initial conditions for the positions of the molecules and their momenta in
a box of volume V with periodic boundary conditions. The system is then evolved until
equilibrium is reached. The described procedure gives only morphologies, but for the purpose
of this thesis we are also interested in the thermal conductivity of the system. This is done by
a form of non-equilibrium MD, with fully atomistic approach-to-equilibrium MD (AEMD),
based on the lumped capacitance approximation, where thermal fluctuations within a given
(sub-) volume are treated negligible. The procedure is as follows. The simulation box is divided

into two parts of equal volume. Now the first half is heated up to T; = 400 K and the second
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part to T, = 200 K via velocity rescaling in 10° steps with time step t; = 0.5 f's. This is done

by taking the current configuration of each volume and calculating its kinetic energy K =

%Zimivf and scaling the velocities in each step with a = \/Ttarget/Tcurrent such that K =

3NkgTiarget/2. Then the system evolves within its force field for time tg and the procedure is
repeated with the 10° steps until a step like temperature profile is reached. Then the system
is evolved in the NVE ensemble (particle number N, volume V and energy E are constant) until
thermal equilibrium is reached. The thermal conductivity can then be calculated by comparing
the time evolution of the average temperature difference of the two volumes to the heat

equation solution®®:

AT(6) = (Ty) = (Ty) = )" Cyexp(—adiit) (12
n=1

_ 2n [cos(anLi)—l]z
with the thermal diffusivity ;, a, = =—,C, = 8(Ty = Ty) — 35—
i n-i

2

where L; is the box

length in direction i. From there, the lattice thermal conductivity can be calculated with k; =
K;c,/V where the heat capacity ¢, = 3Nkg from Dulong-Petit law and N is the number of

atoms.

However, the above NVE ensemble corresponds to a microcanonical ensemble. Experimental
setups however are rather canonical ensembles coupled to a thermal bath in a specific
atmospheric pressure, so N, P and temperature T are constant. In order to achieve the so-
called NPT ensemble, one needs to modify the Hamiltonian of the system. This is done with
the Nose Hoover thermostat and barostat®2. The dynamics equations are thereby modified by

friction terms

Gi=25 b= Fi@) — (4 i 0= Y B gy o=
bomgt TR t _m; BY = T3y (13)
L
..:(P_Pext)v
T2kgT

that emerge when modifying the Hamiltonian as follows

2

2

pi r\ @ 3.

H= ++U<F>+E€2+—ezr2kBT+PextV (14)
3
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Here, g = 3N is the degrees of freedom, P,,, is the external pressure, and Q is some kind of
mass of the thermal bath. The term Q&2 /2 is the kinetic term of the thermal bath, where Q
controls how fast heat with the thermal bath is exchanged. This term acts as thermostat to
maintain constant temperature. The fourth term is the kinetic term of the barostat. The
relaxation time t determines how fast pressure differences are adjusted. The last term
describes the mechanical work done by the pressure. The idea behind the barostat is that the
volume of the system is varied to adapt for the pressure, therefore the particle positions are
scaled with 1/V1/3 to mimic the change in volume. The parameter € thereby is a measure of
the speed or rate of volume change. With this procedure, the system is brought to be in the
isothermal and isobaric ensemble. Note that without the barostat, the system is in a canonical

ensemble with NVT fixed.

With this NPT ensemble, the system is finally equilibrated at T = 300 K and 1 atm with time
step 0.5 fs to achieve the final morphology that we want to obtain. The results for the

simulated P3HT will be shown in the Results section of this thesis.

Simplified Annealing Model

To study the effect of aggregation in OSCs, | did not specifically rely on the previously described
MD simulations. To simplify the aggregated morphology generation, now the specific
molecular morphologies and molecules are abstracted. For this, a simple regular lattice of size
N = N, X N,, X N, with two site species, the host and the guest. Single molecules are treated
as sites of the lattice. To aggregate the guest sites, an annealing procedure is performed as in
Ref [53]. First, for a random distribution of host and guest sites, the free energy of the system

is calculated via the sum over all sites and their 6 direct neighbors

N
1
E=2> Ewomo (1s)

i=1 j=1

where M(i) is the material of site i and E, p are the free energies associated with a molecular
contact between material A and B. For contact of same sites, E, 4 can be calculated from the
e.g. experimentally extracted (evaporation enthalpy by thermogravimetry) cohesive energy
per mole E ., = 3N4E, 4 with the Avogadro constant N4. For the model it is assumed that the
cohesive energies are very similar in OSCs such that it is set E, = E. Additionally, it is assumed
that 2E,p5 = E4 4 = Egp. For a given annealing temperature, the procedure is now to
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repeatedly swap neighboring sites to minimize the free energy, thus minimizing the contact
area between host and guest sites. The probability, at which the swapping tries to overcome

free energy barriers AE, = E,;q — E, 0w, is modeled as Boltzmann type rate R(T) «
exp (— %) The decision which swap to make in each step is then done in a Monte Carlo
B

manner (see later chapter) based on R(T), meaning that swaps with higher reduction of free
energy have higher probability than lower. Higher annealing temperatures provides higher
thermal energies to overcome high barriers, making aggregation slower and worse. The
annealing procedure is continued until a maximum number of swaps is reached or a required
aggregate size is reached. The aggregate radius 7 is approximated via the volume V occupied
by the guest sites and their interface area A through the assumption that the aggregates are
spherical

17.[,’,.3 3
[/ h 3 c [/
sphere . (]6)

- 2
Asphere 4mryg

This method can give large aggregates, but lacks more detailed structural information like site

connectivity and relative orientation.

3-Phase-Model

An attempt to improve this is a group intern implementation of a lattice-based morphology

generation simulating polymer growth in a 3-phase-model.

The 3-Phase-Model divides the gradual drying polymers into dissolved, drying and solid
phases. The weak interaction of the dissolved phase allows to neglect the dissolved phase and
only the interactions of the solid and drying phases need to be considered. The morphology
generating process starts by initialization of a simple lattice. The growing part starts by random
nucleation of several monomers. The monomers now simultaneously grow until a maximum
length is reached or they run into dead ends. For growing, new monomers are attached to the

polymer ends in a direction and orientation depending on the nearest neighbor interactions.
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3-phase model

phases: chain conformations: monomer orientations:
= solid 1 —straight a —face-face
= = == —drying 2 —twist b — face-edge
eenee —dissolved 3 - bend c¢— edge-edge (parallel)

d — edge-edge (cross)
Figure 4 - Visualization of the 3-phase model and the possible chain conformations and monomer-

monomer orientations. (Image by Martijn Kemerink)

For that, three intra-chain interaction energies and four inter-chain interaction energies are
set. The intra-chain interactions consist of the energy cost for attaching the monomer straight,
twisted, or bended up or down. Inter-chain interactions consist of the energy costs of four
possible relative orientations of the monomer with its neighbor in a simple lattice, that is face-
face, face-edge, parallel edge-edge or cross edge-edge (see Figure 4). Additionally, other
possible interactions are generalized into alignment fields, which reward or penalize monomer
orientations and directions in x, y and z-directions respectively. For each of the four possible
orientations of the drying monomer, the inter-chain interaction energies with all nearest
neighbors and the intra-chain energy and the direction and orientation rewards or penalties
are added into the total interaction energy Eio’dof monomer i. The orientation and direction
of the drying monomer is then randomly chosen from all possible configurations relative to

their relative probability that is modeled as being proportional to the Boltzmann factor

o,d Eio’d
P &P\ 7T (17)

For a more realistic growth model, not only one monomer in the drying phase, but a 4-multiple
of monomers is considered, where four is empirical, which avoids running into dead ends.
However, not only the n nucleation sites from the initialization grow, but new nucleation sites
can be generated with either random probability or with probability proportional to the

maximum length of the chain. For a new nucleation site an empty site is randomly chosen and
20



then diffused until at least one nearest neighbor is occupied, which should mimic the tendency
of nucleation near previously solidified material. Alternatively, nucleation can take place at
empty sites that have the most free volume around them to mimic polymers avoiding each

other due to steric or electrostatic effects.

The maximum chain length can either be set constant for all chains or randomly for all chains
according to the Flory-Schulz>* distribution to model polydispersity. According to Flory-Schulz,

the number average length distribution is given by

NG) =1 -pp* ! (18)
where x is the number of monomer units in a chain and p the growing probability set to
constant. Then the distribution can be understood as growing x-1 times and then not growing
anymore (factor 1-p). The associated weight-average molecular weight distribution is then

xN (x)
W) ==——-<=x(1—-p)*p*?
The number average molecular weight M,,, the weight average molecular weight M,, with the
monomer molecular weight m and the polydispersity PDI are defined as

m(1 + p) M,,
Mn_l—p Mw—ﬁ PDI—M—n—1+p (20)

After the morphology generation is done, one can analyze the morphology with different

measures.

The typical feature size can be calculated similarly to the annealing model. Moreover, the
typical size of a single polymer can be calculated as

Xilri —rcoml (21)

Teyp = "

with the center of mass position of the polymer r ) and the monomer position of monomer
[ in the chain r;. Depending on the parameter settings, the polymers can grow quasi one-,
two- or three-dimensional. The effective dimensionality can be obtained from a double-log

. d . .
plot of x vs. 11y, since x 17, for dimension d.
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Having obtained a morphology by either of the methods described above, one can now move
on to define a Hamiltonian for the OSC with its respective morphology. For that, the Tight-

Binding approximation of the OSC system is used and introduced over the next chapter.
Tight Binding Theory

Introduction and HOMO/LUMO Bandwidth

The theoretical section up to Wannier functions is based and adapted from my Master thesis>>.
For metals, the conduction electrons are weakly bound to the atomic nuclei so that they can
delocalize over a long-range up to the whole material. Opposing that, the situation in organic
molecular materials or ionic crystals is different. There, the electrons usually stay close to the
nuclei. In this section, it will be first shown how in this setting of tightly bound electrons the
overlap between neighboring molecules gives rise to a transition from individual and localized
states to a band formation. After that, the mathematical framework for the Tight Binding

formalism will be introduced.

To determine the influence of overlap between molecules on the energetics (following
Hunklinger3?), a periodic lattice with its periodic potential will be used for simplicity. Isolated
molecules, as stated in the introduction, form discrete energy levels (HOMO-i and LUMO+i).

For those, the stationary Schrodinger equation reads

Hayp; = Ey; (22)

With the single-molecule Hamilton operator H, and its eigen energies (being HOMO-i and
LUMO+i) E; and the respective eigenfunctions ;. The single-electron approximation will be
imposed, which means that the motion of a single electron in the field of all other atoms Hg

will be studied. Therefore, the perturbing potential is

HS(r - Rm) = Z VA(T — Rn) (23)

nm

with 7 being the electron position, R,,, the position of the lattice molecule the electron resides
on in the beginning and R,, the position of the molecule n in the rest of the lattice (being the

perturbation). V, is the potential of a free molecule. The single electron Hamiltonian reads

2
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The eigen-energy E}, ; for the solution wavefunction Wy ; is calculated as usual:

W HY AV

Eji = =l
L J W WdV (25)

, but since the exact solution is not known, the wave function ¥} ; will be approximated by a
superposition of the single-molecule eigen functions such that the wave function respects the
symmetry of the lattice and fulfills the properties of a Bloch function. This gives the wave

function ansatz

1
Wei = @y = \/_Nz Y;(r — R,;) exp(ikR,,) (26)

with N being the total number of molecules in the lattice. This gets now inserted into Equ. (25).
Since the overlap between different molecules is assumed to be small compared to other

terms, they can be neglected, so the normalization factor will be about unity and the

numerator splits into three parts:

Eyi~E —a;— Z exp(ikRy,) fBin

n

(27)

where the identity Y, exp(ikR,,) = VN 8, was used and the factor N for the sum containing
P; » was canceled by recognizing that the double sum is N times the sum of Equation (27). The
first part is the eigenenergy part of the individual molecules E;, the second is the energy shift

due to the perturbing potential

a; = —[ ;(r — Rp)Hs(r — Ry)y;(r — Ry)dV (28)

And the third is the transfer integral resulting from interaction with the perturbing field and

the molecular overlap

,Bi,n == _f l/)f(r - Rn)HS(r - Rm)lpi(r - Rm)dV (29)
where we set R,,, = 0 without loss of generality (wlog). Only caring about nearest neighbors
in for example a cubic lattice, E} ; is for a lattice constant a evaluated as

E.i=E —a;—2B; [cos(kxa) + cos(kya) + cos(kza)] (30)

The interaction caused by the perturbing field of the overlapping molecules results in a

formation of a narrow band (in this case of width 12(;) out of the earlier discrete molecular
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energy levels, i.e. HOMO and LUMO. The bandwidth gets larger with decreasing molecular
separation, and also at some point interactions between HOMO-i and HOMO-j further
increase the bandwidth, but for realistic separations and transfer integrals, this is usually not
the case. Additionally, bandlike transport is only obtained, if the disorder op0s (see next
sections) is less than the bandwidth, which is for organics usually not the case®. Nevertheless,
for semi-crystalline morphologies, that is crystallized regions between amorphous and
disordered regions, locally a band can form, and if the transfer integral between crystallized
regions is large enough, band like behavior could maybe even be observed macroscopically.
But usually hopping between localized states as in the Mott theory is the limiting and therefore
dominating charge transport process although more delocalized states can substantially

improve the conductivity as will be studied in this thesis.

Second Quantization

(Following Altland and Simons>®). The first fundament of the tight binding theory is the
formalism of second quantization, which is a way of rewriting the Hamiltonian into a different
form, using abstract, but physically intuitive operators named creation and annihilation
operators. In the occupation number representation of a quantum mechanical state
|nq,n,, ...), also called a Fock state, which shows the number of particles in each state i, the

creation operator acts as

1
alT|n1, v Ny ) =y + D2 ing, n + 1, 000) (31)

With s; = ;;11 n;,¢{ = 1 for bosons and { = —1 for fermions. For fermions, the occupation

numbers have to be taken mod 2. This means, the operator a:r raises the occupation number
of state i. It is therefore called creation operator. It follows that the Fock basis states can be

obtained by repeated application of creation operators on the vacuum state |0)

|n1,n2,...>=nﬁ a)"10) )

Due to the unitarity of Hamiltonians, one also has to determine the action of the Hermitian

- . t . )
adjoint operator of the creation operator, (azr) = @;. One finds the action of a; on a Fock

state to be

1
2 s; (33)
ai|ny, .y, ) = n20%Ng, L, = 1, 00)
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This means that the operator a; reduces the number of particles in state i, and is therefore
called annihilation operator. If the state i is a vacuum state, the annihilation operator just

destroys the state itself, i.e. a|0) = 0.
Representation of operators
One important operator is the occupation number operator, which is defined as:
iy = ala, (34)
The application of this operator on a Fock state gives
ﬁlj|n;tl,n12, )= n1j|n11,n,12, ) (35)

with ny, being the occupation number of the state A;, justifying the name of the operator.
Since any state in Fock space can be generated by the application of creation and annihilation
operators, any operator must have a representation in terms of creation and annihilation

operators. In a diagonal basis, the representation of a single particle operator (51 in the

creation/annihilation operator formalism is
~ ~ 36
01 = Z olinli ( )
i
Which is just the sum of the occupations of every state weighted by its eigenvalue. In a general

basis, one finds

0, = ) (u]6:]v)ala, (37)

uv
which intuitively removes a particle in state v and creates one in state u with its respective
transition amplitude. This implies a matrix representation of the operator in the {u} basis with
matrix elements H,, = (,u|(51|v). This result can be generalized to many-body operators. A

two-particle operator describes the interaction between two particles and can be represented

as

0,= ) (ww|0,]2,7)afa! a0, (38)

A up!
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An example of a two body-operator would be the electron-electron interaction due to

Coulomb interaction.

Tight-Binding Approximation on Periodic Lattices

(Following®’) We will start the discussion of the Tight-binding model on a periodic lattice and
generalize afterwards. At the beginning of this chapter, where tightly bound electrons in a
periodic lattice were studied to see the emergence of bands, already a simplification was used,
which will now be studied in more detail. As in Equation (26), the starting point is Bloch’s
theorem. If the exact Bloch wavefunction, which is the exact solution to the problem, is not
known, the periodic function in it can be constructed by superposition of some convenient or

appropriate localized functions w.(r), where 7 is some quantum number:

Pk, = iz w,(r — R) exp(ikR) (39)
Vv
R
which is a generalization of Equation (26) and therefore fulfills the Bloch wave conditions. As
already said and used before, w; can be some atomic orbital function or a molecular orbit

function.

Now the Hamiltonian matrix elements are calculated in this Bloch wave basis. Bloch waves
imply that only electron interactions with the same crystal momentum (momenta that only
differ by some reciprocal lattice vector) are possible such that only the Hamiltonian matrix

elements between different states 7 will be considered.

Hrlr(k) = <¢k,‘r’|H|¢k,r>
1
= z Vexp(ik(R —R")){wy(r — R)|H|w.(r — R"))

R.R'

- Z exp(—ikAR) (w, (r — AR)|H|w, (1))
AR

(40)

where in the last step r was shifted such that AR = R’ — R and then sum over R was

performed giving ZR% = 1. Defining the hopping amplitude

toR = ((1).[/ (r— AR)'H'(A)T(,.)) (41)

7! T

The second quantized form of the Hamiltonian reads
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AR k
1,7’

_ AR : T — t
H = Z Z by exp(—lkAR)ak’T, A = Zk: Ekre Ay Ve (42)
7,7’

with € ;.7 = Yar tTAf, exp(—ikAR). A Fourier transformation to real space of this expression

yields
H = tAR/ClT raR
: : T "R+AR,T T
RAR (43)
7,7’

Mostly not all T are considered. Usually, only the outermost orbitals of molecules participate
in charge transport such that all other orbitals can be neglected and the Hamiltonian is

simplified.
Wannier functions

(Following®’) The problem about taking just some localized function w, as atomic orbitals is
that those states are not orthogonal and can be an overcomplete basis set, which can
sometimes lead to problems in calculations. Now, instead of imposing some localized functions
to obtain a Bloch wave, for a given Bloch state ¢, , the localized functions w, are searched.
The first thing to notice about this is that the localized functions are not unique. In fact, any
unitary transformation for a given set of localized functions is again a suitable localized
function that recovers the Bloch wave exactly. Additionally, any eigenstate, as the Bloch wave
is, is defined up to some phase. For generality, the Bloch wave is therefore multiplied by a
phase exp(iH(k)). Now the localized function that exactly recovers the given Bloch wave,

named the Wannier function, is obtained by a Fourier transformation:

w,(r—R) = \/gz exp(i6 (k)) exp(—ikR) ¢y (1) (44)
3

The freedom of the phase that was introduced can now be used to tune the properties of the
Wannier functions. One can for example choose the function (k) such that the expectation
value of 72, (w,|r?|w,) is minimized, meaning that a maximally localized Wannier function is

searched.

By construction, Wannier functions also remove the problem of non-orthonormality that was

encountered before:
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1
((‘)R,T|wR’,‘r’) = V Z exp(i(k’R’ - kR)) (¢k',‘r' |¢k,‘[)

kK’

1 (45)
= % Z eXp(ik(R’ - R)) 6r0 = Opprboy
k

Generalization to Non-Orthogonal Bases and Arbitrary Lattices

The above considerations of the Tight Binding model are already quite powerful, however for
the purpose of this thesis the concept has to be generalized. Following mainly e.g. Ref [58], let
us consider for a general case the stationary Schrodinger equation with its full Hamiltonian H

H|Y) = E|¥) (46)

The full Hilbert space of H is generally infinite dimensional, which can be unpractical for
applications. There are even more complications. First, the full basis of the Hilbert space is
often not even known due to the complexity of general systems. Also, the previous
considerations are only applicable for periodic systems. However, general systems, especially
organic materials are not periodic at all, so the Bloch wave ansatz is not applicable. And lastly,

what was already problematic before, the basis of even a subspace can be non-orthogonal.

To approach this scenario, first assume a fictional non-orthogonal full basis of the Hilbert space
{l4)}. We can define a reciprocal basis {|¢$ %)} through the relation (¢“|¢)ﬁ) = 84p. With the

full basis, the unity operator can be defined as
1= 16971 @7
a

The basis elements define the overlap matrix S

Sap = (Pa|dp) S = (d%|PF) = (S Dap (48)

In terms of the overlap matrix, the original and the reciprocal basis can be related as

16 = D 5P\gg)  Ibad = ) Spald?) (49)
B B

One can now formally split the Hilbert space into two complementary subspaces P and Q =

I — P. The overlap matrix can then be written in a block matrix form
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S=<Spp Spq> (50)
Sop  Sqq

where (Spp)pp = (pldy) With |p), (@) € P, (Spo),, = (Ppldg) With |$,) € P, |¢bg) €

Q@ and so on. With the projection operator P defined as

P = 1¢7)®,] 1

pPEP

one can then project the state |¥) onto the subspace P and calculate the Schrédinger equation

in the projected space P
HP|¥Y) = EP|¥Y) (52)

After some calculation one can represent the projected Schrédinger equation with an effective

Hamiltonian that depends on the eigenvalue E

HéT(E)cp = Ecp (53)
HEIT(E) = Spp (HPP + (ESpq — Hro)(ESgq — Hoo) ™ (ESqr = HQP))

where (Hpp)pp: = (¢p|H|P,r) with |¢p),|¢p/) € P and analogously Hpy and Hpp. The
projected eigen vector components are defined via (cp), = (¢P|¥). The restricted

Schrédinger equation above can alternatively be written as
Hfff(E)CP == ESPPCP (54)

referring to HY//(E) = Hpp + (ESpq — Hpo ) (ESqe — Hog) ™ (ESqp — Hyp) as the Lowdin

Hamiltonian. Since the cp are not orthogonal, one can now perform a Léwdin transformation

1 1
(H,‘ff f (E)) = S,ZHT(E)S, 2 cp = SHPep
to obtain the orthogonalized eigenvalue problem

The Léwdin transformation gives the closest orthogonal representation to the localized non-
orthogonal basis {|¢,)}. Of course, the implicit dependency of the Léwdin Hamiltonian on the

energy is computationally restrictive. However, if one chooses E to be around the region of
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interest, like the center of DOS at E,, one gets a good approximation of the eigenvalue

spectrum around E, by
(H" E0) ¢ = Ec 7

So far, the problem was basically only rewritten and we still have the problem of the lacking

knowledge of the basis states of Q. The idea is now to truncate the Hilbert space towards only

the subspace P, meaning that all Q@ dependent terms are ignored and just keep Hfff(EO) -
Hpp. This is the tight binding approximation. But since we possibly ignore important features
hidden in Q, the accuracy of the tight binding approximation is crucially dependent on the
proper choice of the subspace P. Usually, the choice of P are the basis states that are believed

to be most relevant for the physics of interest, in OSCs this could be the HOMOs or LUMOs.

Before going into the actual calculation of the tight binding parameters, first the general OSC

model Hamiltonian is introduced.

General Model Hamiltonian of Organic Semiconductors

In this section (mainly following3®, also reproduced from my Master thesis®®), organic
semiconductors will be studied from a quite general model Hamiltonian which captures the
most relevant properties and it is the starting point for many theoretical and numerical studies.
The proposed Hamiltonian36°9% s divided into several terms:
— o 0 t l tat
H = HQ + Hpy + H" + H,, + H}p, + HE™ (58)

p

The first term describes the electron energy E of N electrons in a perfectly ordered lattice

without any interactions

N
HY =) Elaha, (59)
n

The second term describes free phonons (bosonic quasiparticles emerging from quantization

of lattice distortions)

HY = ) h bl .b 1
ph = Wq,j\Dq,jPq,j + E (60)
q‘j
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1_

where hwg ; is the energy of the phonon mode on branch j with wavevector g. The bq,j, bg,j

are the phonon creation and annihilation operators.

So far, no interactions and no transport is introduced. Electronic transfer from molecule m to

molecule n by the transfer integral J,,,, = (W, (r — R |HE Y., (r — R,,)) is given by

N
Hetr = Z ]mnajlam (61)

m+n

The next two terms describe the local and non-local electron-phonon interactions in first order.
Local means that the interaction does not lead to scattering onto a different molecule
(intramolecular interaction), whereas non-local is, therefore, an electron-phonon scattering by
intermolecular interactions involving the scattering of electrons onto a different molecule. The

local term is

N
1 . . .
HeZipn = VN ZE , hwq,;(Gm (@ )Dbqj + gn(@ Db, akan (62)
qj m

And the non-local term is

N
1
;l—ogh = \/_N Z z hwq,j(gnm(q'j)bq,j + g?lm(q'j)biq_j)ajlam (63)

q,j mn
m#n

The g,,, and gy, are the local and non-local electron-phonon couplings respectively. Equation
(62) is known as diagonal dynamic disorder, whereas Equation (63) is the off-diagonal dynamic
disorder. Dynamical disorder is also called thermal disorder since the dynamic lattice
distortions are due to thermal movement of the molecules. The effect of the electron-phonon
interaction is that there are no pure electronic eigenstates. Electrons are always accompanied
by phonons, which are lattice distortions. From this coupling, quasi particles emerge, which
are called polarons, that is, a charge surrounded by a phonon cloud. The effect gets larger the
stronger the coupling becomes. Typically, for organic semiconductors, the coupling is quite
high, which in addition to the low dielectric constant of about €, ~ 3 613 for low doping,
which is a measure of the ability of the medium to screen charges (€, > 10 in inorganic
semiconductors), leads to a polarization of the molecule where the charge resides3®. The

charges energy is then reduced by the polarization energy it created, which for low transfer
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integral compared to the coupling is given>® by E;,‘(’,Cl = —% Ya,j hwq,jlgnm(q,j)lz, and traps

itself, leading to a localized polaron, the small polaron. If the interaction is long-range
(untypical for organics), the resulting polaron is more delocalized, forming a large polaron. If
the transfer integrals J,,,,, are large compared to the electron-phonon couplings, the charge
transport in the medium gets band-like, whereas when its small, hopping between localized

states is the main charge transport mechanism.

So far, the lattice is perfectly periodic, which of course is not the usual case in organic
semiconductors. In realistic scenarios, the molecules or polymer chains are quite disordered.
Therefore, one introduces another term into the Hamiltonian, the so-called static disorder,
which describes the variation of on-site energy, 6 E,, due to the variations in the chemical
vicinity of the respective molecule and variations in lattice potential due to the mainly static
distortions in the ‘lattice’. Since the transfer integral is mainly determined by the frontier
orbital distances and their orientation, the random distortions in the molecular ‘lattice’ also
introduce variations in the transfer integrals, 6J,,,. The latter is the off-diagonal disorder,

whereas the former is called diagonal disorder. The term reads

N N
He™ = Z SEntnan + Z A (64)
n mn

m#n

In disordered polymer-based materials, the static disorder is much more important than the
dynamical disorder due to their high molecular mass (therefore slow thermal motion).
Dynamic disorder becomes important though, if the conjugated polymers are highly ordered,

and also, again due to their small molecular mass, it is important in small molecules?3.

Most studies however don’t utilize the whole general Hamiltonian. Especially for large
molecular mass OSCs like conjugated polymers, one can neglect the dynamic disorder since
thermal motions become very slow in comparison to electronic time scales and use only the

electronic Hamiltonian
H = HQ + H3tat + HET (65)

for charge transport simulations and calculations, as also done in this thesis. The next session

discusses the parametrization of this tight binding model.
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Tight Binding Parametrization and Transfer Integrals

To parametrize the tight binding model, one needs to find a suitable basis and calculate the
transfer integrals of the whole system. A physically intuitive basis for tight binding models of
OSCs are the localized frontier orbitals of the molecules that are mainly responsible for charge
transport, i.e. HOMO or LUMO orbitals. In principle, one could perform exact DFT calculations
of a whole system with its Kohn-Sham-Fock-Operator or Kohn-Sham Hamiltonian H, calculate
the HOMO or LUMO orbitals of localized fragments of the system forming the localized basis
of the system and calculate the transfer integrals J 5 = (p4|H|pZ) between localized
fragments A and B. However, the calculation of large systems using DFT is computationally
prohibitive. One could make a first approximation by just considering the Hamiltonian of the
dimer system A and B and calculating the frontier orbitals of A and B to calculate the transfer
integral J,5 = (¢p“|H*™|p®). This so-called dimer approximation is widely used for multi-
scale simulations. It is however still computationally very expensive, since for large systems a
very large number of molecular dimer configurations that the investigated system splits into,
has to be calculated via DFT, so this approach is still limited to small systems. If one also wants
to include thermal or dynamic disorder, it gets even more complicated. Some approaches
utilizing DFT for transfer integral calculations were given in the introduction. One can further
reduce the computational effort of transfer integral calculations with the ZINDO®®
approximation, which is deduced by approximations of the unrestricted Hartree-Fock
equations. The Hartree-Fock equations are deduced by variation of the full Hamiltonian of the
multi-electron system and translate the complex Schrédinger equation to a system of effective
one-electron equations. Hereby, the Hamiltonian is replaced by the Fock-operator F* and one
obtains a system of equations for one-electron wavefunctions or molecular orbitals ¢f* =
Xu ci"l‘l)(# in the localized atomic orbital basis {)(#} which are the columns of the matrix C* for

spin a respectively

FAC® = C%e®
Fe=h+ ) (J; - KF) (66)
J

such that the Fock operator consists of a single particle Hamilton operator h containing the
kinetic energy and electron-core potential, the Coulomb interactions J; and the exchange

terms Kj“. ZINDO makes approximations to the Fock-operator F to reduce the high
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computational effort required for the full Fock operator. It neglects certain overlap integrals
and two-electron integrals or replaces them by empirically deduced constants or parameters.
For the calculation of the transfer integral between the frontier orbitals (e.g. HOMOs) of
molecules A and B one needs to calculate [,z = (bfomo | FldEomo) = Y 4 by (u|F|v) for
1 € A,v € B and therefore the Fock matrix elements F,,, = (u|F|v) in the basis {)(#}. In the

ZINDO approximation, these elements are given as

_g BatBs  , Var (67)

i w2 i

uv

where S, = (u|v) are the atomic overlaps, 8, the ionization potential of molecule A and

P,y = Xa CuaCyang are the elements of the density matrix (occupation number n,). The y,p o

PR is the two-electron Coulomb integral in the Mataga-Nishimoto formalism with the
AB

empirical parameter § and molecular distance R,p. As Kirkpatrick et al.®* argue, for symmetric
molecules A and B, like if A and B are the same molecule, the density matrix elements By can
approximately be neglected since |u), |v) are localized on different molecules. It follows that
E. o S,y and therefore the transfer integral /45 « S5 is approximately proportional to the
molecular overlap between A and B. This approximation is called Molecular Orbital Overlap

(MOO) and can dramatically reduce the computational effort of transfer matrix calculations.

One can even further simplify this approach by the Analytic Overlap Method® (AOM) by
projecting the molecular orbitals onto a minimal Slater type basis set and analytically calculate
the overlaps. They find over a wide range of distances a proportionality between the molecular

overlap and the transfer integral calculated by high level ab initio reference calculations.
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Tight Binding Model of this Thesis

These findings motivate the following tight binding model parametrization that is used

throughout this thesis

H=) eahan= ) fun- hvoldnlbm)@han + ) (GalVIn)ahan,

(n,m) n

(68)

+ ) GalVigmatan
(n,m)
Here, €, is the diagonal disorder or on-site energy. Sometimes, €,, is directly approximated
from the force field if MD is used for morphology generation. However, due to the macroscopic
randomness of the diagonal disorder, here it is assumed that they are gaussian distributed, i.e.
€n~N(u,0) with mean u =0 and disorder a. The transfer integral J,m = (=) fun -
hvy(pn|Pm) is proportional to the molecular overlap with scaling factor Avy and fp,, is
another scaling factor for special relations between molecular pairs n and m like intra-chain

connection. The sum is over neighbors (n, m) with distance < R;.

Both on-site energies and transfer integrals are corrected in the presence of dopant ions that
add the Coulomb interaction terms (¢, |V|®,) and {¢p,|V|p,,), which get treated explicitly
here. Since periodic boundary conditions are applied, for the calculation of the Coulomb
potential Ngp,.;; = 5 periodic shells of the simulation box are considered. At a point r within
the simulation box, all Coulomb potentials of each counter-ion within the with Ng,;; periodic
shells extended simulation box are added. To maintain charge neutrality, the potential of an
oppositely charged homogeneous and spherical charge distribution is subtracted, treating the
charge-charge interaction as single-particle interaction with an effective mean background.
Denoting Vgnens as the extended simulation box and Q the total counter-ion charge within

Vsnew, the radius of the homogeneously charged sphere is

1
4 3

?qu = Vshen © Req = (

3Vshell)

s (69)

The charge density of the sphere is py = —Q/Vgpen- The potential at a point r within the

sphere is calculated via

Po , _ Po
4dmeqge, ) Ir — 1’| 6€,€,

V(1) = (3RZ, —1?) (70)
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The effective Coulomb potential, the charge e is interacting with, is now calculated as

€qion 1
V(r) = E - + eV, (r
) 4mey€, mln(lrlon -, rmin) bg( )
T1on€Vshell

(71)

Here, a cutoff distance 7y, = 2a.y, of the Coulomb potential of the counter-ions was
introduced to mimic the finite potential depth of a charged dopant, with a;,,, being the lattice

constant for lattice-based morphologies.

As non-orthogonal basis, HOMO or LUMO orbitals ¢, of monomer units are used. For

simplicity, in this thesis these are approximated as exponentially decaying ellipsoids

¢n(r>=<r|¢n>=ﬁexp - (%)2+<%)2+(£)2 72)

with the orbital decay lengths [, ,, , in the x- ,y- and z-directions. However, above orbital is
centered at zero and oriented along the cartesian axes. Therefore, the monomer center

coordinates and the orbital orientations need to be adjusted.

From the MD morphology output, for every monomer-core, i.e. neglecting side chains, the
geometrical center of mass of all constituent atoms is taken as the monomer center
coordinates 1; = Y pecore T'n / Lnecore 1. Additionally, a plane containing the monomer center
1; can be fitted to the atoms constituting the monomer-core. The normal vectors n; of these
planes are one orientation vector the monomer units. By projecting the coordinates rg of a
specific atom of a monomer unit onto the monomers plane, like the S atom of thiophene, the
normalized vector pointing from the monomer center to the projected point is the second

orientation vector §; of a monomer unit, §; - [s;| = (rg —1;) — [(rs — 1;) - 1] - N;.

The orientation is completed by a third orientation vector defined by the cross product 1; X §;.

These three unit vectors define a rotation matrix
R; = [8;,7; X 5;, 7] (73)
The reoriented and translated orbital is then calculated via the transformation ¢;(R; - r + 7).

For intra-chain coupling between neighboring monomers n and m, the scaling factor f,,,,, is
applied if the angle between the monomers is less than a critical angle 8, < 40°. Above this

empirical critical angle here it is assumed that the conjugation of the polymer breaks (defect).
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For a morphology generated by the 3-phase model, the same procedure is applied. However,
no center of mass needs to be calculated, since the morphology is lattice based, with each
lattice site corresponding to a monomer unit such that the lattice site coordinates are taken as
the monomer center coordinates. In the 3-phase model morphologies, reduced diagonal
disorder in aggregated regions in contrast to amorphous regions can be modeled. The
interaction energy landscape of the monomers define regions of lower and higher energies.
Aggregated regions will have lower energy, therefore a monomer is taken to be located within
an aggregate if its interaction energy is below some threshold (e.g. E;,;+ < 0.3 on a normalized
energy scale). To mimic the lower diagonal disorder, the on-site energy of monomers within
aggregates can be drawn from a gaussian distribution with different disorder 0,44 < Ogm-
Since within real aggregates the molecular packing is better, the electronic coupling is
enhanced there. However, since the model is lattice based and the lattice constant is constant,
there are two possible workarounds to mimic enhanced electronic coupling. Either for
neighboring sites that are both within an aggregate, a factor f,,, can be applied, or one
enhances the [, orbital parameter to model better coupling through m — 7 stacking. This will
on average enhance the coupling within aggregates, but also induces higher average coupling
in the amorphous phase, albeit less than in the aggregated phase. For the lattice-based model,
itis also possible to add positional disorder in the amorphous phase by adding small distortions

in random directions to each site within the amorphous phase.

Lastly, for the annealed morphology model the situation is different. It gives only coordinates
of guest sites and host sites. The guest sites are considered sites within aggregates, whereas
host sites are part of the amorphous phase, but there is no orientation given. To work around
that, orientations are attributed artificially. Guest sites are all oriented in the same direction.
Host sites however get attributed a random direction. With site orientations attributed in this
way, the rest is the same as with the 3-phase model, with the only difference that there is no

information about a site belonging to a polymer chain.
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Density of States

After setting up the tight binding Hamiltonian H, the Hamiltonian is diagonalized. Since the TB
model is built on a non-orthogonal basis, instead of the classical eigenvalue problem, the

generalized eigenvalue problem needs to be solved
HC = ESC (74)

with the overlap matrix S. The matrix C contains the eigenvectors in the non-orthogonal basis
in the columns. This is equivalent of solving the orthogonalized eigenvalue problem via the
Lowdin transformation H = S™Y2HS~1/2 and €’ = S'/2C, as discussed previously. The result
is the eigenvalues E of the wavefunctions of the TB Hamiltonian and their respective
wavefunctions, either in the orthogonalized basis or the non-orthogonal basis. The eigenvalue
spectrum is called the Density of states (DOS). It will be studied in the results for different

scenarios.

One can also look at the DOS from an analytical perspective, which will be done in the

following.

—DOS
—=DOO0S
> >
2 >
() ()
c c
L LLl
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Gaussian DOS
exponential DOS
DOS, DOOS DOS

Figure 5 - Left: DOS and DOOS of gaussian disorder. Right: Comparison between exponential and

gaussian DOS.
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The simplest and mostly used effective model for the energy distribution in OSCs assumes
gaussian distributed energies and is therefore referred to as the Gaussian Disorder Model

(GDM). The intrinsic disorder is therefore described by3®

(E — Eo)*
—> (75)

Jopm(E) = Lexp (‘ 2

V2ot 296
and is illustrated in blue in Figure 5. Hereby, Eo¢ is the mean, which is usually the mean HOMO
or LUMO energy of the OSC and ag¢pum is the energy variance called the disorder energy. The
disorder takes values around g;py, = 75 meV %€, avalue that also can be as much as double
of this value in the case of very disordered OSCs. For experimentally relevant charge densities
however, only the energetic tail states are relevant. The physical occupation of the states is
described by density of occupied states (DOOS), DOOS(E) = g(E)f (E, Er, T), with the Fermi-

Dirac distribution as function of the Fermi energy Er and temperature T

1

1+ exp (Ek;fF) (76)

f(E'EFJT) =

and is also shown in Figure 5. The Fermi energy and the thermal energy kzT set two
characteristic energy scales in the system. Another characteristic energy of a system is given

by the energy expectation value for the energy w.r.t. the DOQOS

[ EI(BF(BYE  oZy
2 g(E)f(E)dE  ksT (77)

(E)

where the last equation is for E, = 0 and for low charge concentrations.

For low to intermediate charge concentrations, especially in doped systems, the relevant tail

of the DOS can be modeled to be exponential3®

E ) (78)

N
E) = ——exp(—
9(E) kBTeXp( kaTo

with the characteristic trap temperature Ty, for E = 0 and p-type doping. For n-type doping,
the sign of E is flipped. In this model, the energy expectation value is determined to be (E) =
kgTo/(1+ Ty/T). The exponential DOS is however not a good model for undoped systems,
since it yields a dispersive (time-dependent) mobility for dilute systems, or systems with very

low charge density, which is experimentally not observed®”.
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To see how an exponential tail can emerge in doped systems from an intrinsic gaussian
distribution, Arkhipov®® developed a model that modifies the GDM tail due to the introduction
of Coulomb-traps from doping counter ions, which got later refined to include differences in
HOMO/LUMO levels of the semiconductor and the dopant®. The model assumes low dopant
concentrations such that one can assume that only one dopant ion influences the considered
charge near the ion, but can be used for a wider range of dopant concentrations. The following
summary of the derivation was already formulated in my Master thesis®>> and therefore

adopted here.

Arkhipov describes the broadening of the DOS due to doping. The probability density of having
a dopant ion in distance r to the considered intrinsic energy site is given by a Poisson
distribution w(r) = 4mr2N,exp (—4mN,r3/3) with dopant density N;. Now the distribution
of localized sites at E, = —e?/4mey€, 7 is

dr
dE,

9e(E) = w(r (E) | 79)

The modified DOS is then given by integrating the product of the intrinsic DOS and g, with the
energy condition E= E; + E,

[0e]

0
g(E) = j gc(Ec)dECJ 9i(E)S(E — E; — E.)dE; (80)

— 00

° dE, A
=AjooEé" exp 363 9:(E —E.)

with A = 4me®N,;/(4mey€,)3. The refined model makes two assumptions: 1) Although a
counter ion induces a long-range potential, giving a local spatial dependence of energy levels,
the whole vicinity of the counter ion is effectively treated as one deep trap state. 2) The new
energy level of the trap state is given by the sum of the intrinsic energy level and the potential
formed by the Coulomb potential of the nearest counter ion and an externally applied field,
E=E+A4, A= (\/m — e?/4meye,a), where a is the distance of the nearest
counter ion to the intrinsic energy site. The expression in the square root comes from inserting
the radius that maximizes the sum of potential drop due to the external electric field and the
Coulomb potential of the counter ion. Now, to accommodate for the energy difference

AE = E; — E; of HOMO/LUMO of dopant and intrinsic semiconductor, in a radius of

ayy = Ni_l/3 around the dopant ion, corresponding to a Coulomb energy E; = E.(ayy), the

40



intrinsic semiconductor is replaced by the dopant energy level E; and the ion potential.
Otherwise, the uncorrected broadened DOS Equation (80) is used. For vanishing electrical

field, this gives rise to the expression®7°

4Ny 91(E) AnNg  g2(E)
E)y=11-
9 < 3N; >f_00091(E)dE ’ N; f_ooogz(E)dE (81)

With the intrinsic charge density N; and

=4 [ e oxp(sar) auE ~
91 = . E% exp 3E3 9i c (82)
and
o (PrdE. A
92(E) = Af_oo g7 P\ 353 |9i(E —AE —Eo) (83)

The result is shown in Figure 6 for the GDM. Essentially, for higher doping concentration, the
Coulomb potential of the dopant ions induces an exponential tail at the intrinsic Gaussian
curve. As from this interpretation is expected and investigated in’° a higher dielectric constant

€,, meaning larger screening, makes the exponential tail vanish.

a 28 b -
=t Increasing iminsie x10% I ; Intrinsic
: 0.2 %, C =1 ncreasing ¢
& doping il 2+ ! & 1
r
. 1.5 2%, Csf‘l
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i 14 2%, c3=3 r'? :‘
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(]

N =20 %, C =1

Figure 6 — a Formation of an exponential tail upon doping an initially gaussian DOS. b Vanishing of an
exponential tail upon increasing the dielectric constant €, due to screening. Adapted from’®. Licensed

under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

In the results section, the DOS of doped DOS will be elaborated further and it will be shown
that the TB model will also show another possible phenomenon in the DOS that occurs at

higher doping concentration.
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Localization

Localization Measures

Having obtained the energy of the states from the TB model describing the OSC system of
interest, yet another extremely important property of OSCs needs to be investigated, namely
wavefunction or Anderson localization. From the diagonalization of the TB Hamiltonian we
obtain the wavefunctions in the orthogonalized basis C' and the non-orthogonal basis C. The
localization of a wavefunction can be measured with the concept of the Inverse Participation

Ratio (IPR). It is defined as’?

IPR(E,) = (84)

¥ eial’

where E; is the eigen energy of the i-th eigenstate with components c;, in the orthogonalized
basis. To understand the expression, one can look at two extreme cases. In the first case the
wavefunction is localized on one site such that c;,, = &,;. Here the IPR takes on the value 1.
The other extreme case is a completely delocalized wavefunction over all N sites such that
c}, = 1/v/N . Here, the IPR takes on the value N. This shows that the IPR is a measure of over
how many sites the wavefunction is effectively delocalized. From that, a localization length

can be extracted via
a(E) = JIPR(E)) - aryp (85)

1/3
with ag,,, = (%) being the typical (average) inter-site distance of N sites in the volume V.

In this thesis a modification is introduced. The minimal value the IPR takes on is one, but
physically the minimal value is the frontier orbital localization denoted as A. Therefore, it is

corrected via

a(E) = (VIPR(E) — 1) - aryyy + 4 (86)

One problem with this definition of a localization length is that it is best defined for a regular
lattice geometry. For unregular lattices, there can be deviations through this definition, since

all sites are attributed the same volume, which is depicted in Figure 7.
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Figure 7 - Wavefunction localization in a random lattice of two wavefunctions 1 (blue) and ,(red).
The second lattice differs from the first (black) by shifting one site. The c; are the components of the

wavefunctions.

Assuming two wavefunction ¥; and 1, in two random lattices, from which one differs from
the other by shifting one site away. If the two wavefunctions are solely localized on the sites
1-5, i.e. components ¢; # 0 and both have the same components c;(y;) = c;(1,), one can
have the situation that with the classical definition both wavefunctions would give the same
IPR, albeit wavefunction 1), covers a larger volume than ;. A workaround can be the division
of the lattice into distinct volumes that are attributed to each site. This can be done by the

Voronoi tessellation (Figure 8).

Figure 8 — Voronoi Tessellation of a random lattice in 2D.
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The Voronoi tessellation is basically the same as the construction of a Wigner-Seitz cell. For
every pair of neighboring sites, a hyperplane that is orthogonal to the connection line between
two neighboring sites and crosses its mid-point is drawn. In that way, each site is contained in
a polytope that is defined by the crossing hyperplanes. These polytopes are the Voronoi cells.
Denoting V; as the volume of the Voronoi cell of site i, one can construct a generalized IPR that

weights each site with its Voronoi cell volume

4 -1
_ |c: ]
IPRvoronoi - V. (87)
- i

L

For regular lattices, all V; become the same and the standard expression of the IPR is
recovered. However, in the analyses of this thesis the definition Eq. (86) is used for consistency

with a previous paper. In the SI, the two models are compared to each other.

For some applications, it can also be useful to study the anisotropy of wavefunctions.
Therefore, here a possibility to do that is introduced. The aim is, to fit an ellipsoid to the
wavefunction as an approximation of its spatial distribution in the lattice. A method to

accomplish this is by using Principal Component Analysis (PCA). The procedure is as follows.

For a wavefunction 1 with components ¢; on site i at position r;, the center of mass is

calculated

YTl (88)

el
Now each point r; is shifted by the center of mass, r; = r; — u. Then each point is weighted

by its wavefunction component and all sites are put into one matrix

t
LR o
X = el
=" (89)
t
Ty eyl

Then the covariance matrix (3x3) is defined as Cov = %(XtX). Finally, the covariance matrix
is diagonalized and the eigenvalues A; and the eigenvectors v; are extracted. Geometrically,

the square roots of the eigenvalues, a = \/4;, b = /1, and ¢ = /A3, are the lengths of the

fitted ellipsoid main axes and the eigenvectors are the corresponding axes directions, i.e. the
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ellipsoid orientation. Finally, one needs to rescale the axes lengths such that the ellipsoid

volume equals the IPR

1
AT ibc - s? = IPR (3 IPR >§ (90)
—_ . e = = .
3ac 5 S 4mabc
a—>a-s, b-o>b-s, c>c-s

The following section deals with the physical reason of the wavefunction localization as was

investigated in the literature.

.
A [l

Figure 9 — Up: Blochwave in periodic potential. Down: Anderson localization in disordered potential.

Anderson Localization

(As already summarized in my Master thesis>) In 1958, PW. Anderson published the work
Absence of Diffusion in Certain Random Lattices’?, where he studied the wave function of a
particle in a disordered lattice and found that, for a certain degree of disorder, wave functions

become localized.

Anderson ultimately found out that the electronic wavefunction will decay exponentially with

r

distance from its center of mass (initial site) 1 (r) « exp (— E)’ where the decay-parameter a

is the localization length if the disorder is larger than some threshold: % < (K) , Where V
crit

is the potential and W the disorder (see Figure 9). Besides that, the critical disorder is

dependent on the eigenstate energy. This localization can be understood in terms of the
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wavefunction being reflected at the lattice at a certain magnitude of the disorder so much that

the probability amplitude of the wave function stays localized.

The transition from localization to delocalization can be studied by using Scaling Theory. As
stated in’3, the conductance is studied at different length scales. They state that the
conductance at a changed scale is a function of the previous scale and the scale itself. Assuming
a box with side length L, the conductance is studied at scales bL. Mathematically speaking, the

conductance g at scale bL has the form

g(bL) = f(b,g(L)) (91)

Now a scaling parameter f(g) = dIn(g) /d In (L) is introduced to study the scaling behavior
of the conductance. For large g — o0 Ohm’s law is attained, from which the resistivity scales

as

L L . 92
R=pZ=’DLd—1=pL2d 2

where p is the specific resistivity and d is the dimension of the considered box. The

conductance is therefore G = % = ¢L% 2 and from there § = d — 2.

For low conductance g — 0, that is for sufficient disorder, from Anderson Localization it is
known that the conductance will decay exponentially with distance, g « exp (—L/a), and
therefore f =1n (g) = —L/a < 0. From these rather simple considerations, one sees that
B < 0ifd < 2, which means for dimensions smaller or equal to two, at macroscopic length
scales L — oo, the macroscopic conductance will vanish even for very small disorder. For three
dimensions, there is a turning point at g, where 8(g.) = 0 and positive above so that above
this critical behavior there is a transition to a well-conducting medium. This phenomenon is

called Anderson metal-insulator transition.

As discussed in'3, localization in different morphologies can emerge in different ways. In
polymers, the energy needed to rotate monomers around a bond is comparable with the
thermal energy at room temperature such that rotations are a usual source of static disorder,
breaking the symmetry of the otherwise straight polymer chain. The rotations disturb the
periodic structure and potential of the polymer, causing potential variations in the vicinity of
monomers. Rotations do not only change the angle between monomers within a polymer

chain, they also change the angle to orbitals of neighboring polymer chains, which are
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responsible for charge transfer. For example, the transfer integral in -1t stacking of polymers,
that is the overlap of p, orbitals, is dependent on the angle and the separation between each

other.

One proposed model for conjugated polymers is the so-called conjugation break model *3. It
states that charges are delocalized over planar parts of the conjugated molecular backbone,
where the transfer integrals are large enough. If now due to thermal energy a rotation of a
monomer around a bond exceeds a critical angle such that the transfer integral becomes much
weaker, it causes the charge to localize. This model would imply that closer to the band edge,
which is defined by an infinitely large polymer chain, the charges are more delocalized since
the chain is longer. However, simulations of Mladenovic and Vukmirovic!® suggest the opposite
behavior that charges are more localized near the band edge and more delocalized further
away. It was found that the variation of on-site energies plays a dominant role for localization.
The on-site energy was found to be reduced with alkyl side chains since due to the separation
of monomers/polymers the variations in potential are less pronounced. Thereby, since the
wavefunction is mainly localized on the molecular backbone, disorder in the alkyl side chains
does play a minor role in the on-site energy disorder and localization. It was also suggested
that polymers with strong built-in dipole moments within their monomers enhance the on-
site disorder since, due to their larger dipole strength, variations are felt much more by

neighboring monomers/polymers.

Polaronic effects could possibly also localize the wavefunctions, although this is controversial
and may be material-dependent. On the one hand, the polarization energy that emerges due
to the polarization of the molecules containing the charge traps the charge by lowering the
energy, forming small polarons, but on the other hand, e.g. DFT calculations on straight

polythiophene chains find negligible polaron binding energies of only a few meV 747>,

Besides that, the polymer molecular weight influences the morphology, giving rise to
semicrystalline-like structures containing crystalline regions, where the charge should be
completely delocalized over, and connecting amorphous regions that rather localize the

charge®3.

In small molecule polycrystals, grain boundaries are a localizing boundary of the electronic

wavefunction. The grain boundaries provide trap states, where the charges localize. Again,
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simulations?3 also found that the charges can also delocalize beyond the grain boundaries, but

mostly just into one side of the grain boundary.

Summarizing, in both all considered cases, localization is a rather complicated and versatile
phenomenon, and therefore a factor whose role should be considered in more detail in charge

transport models.

Hopping Rates

With the state energies and the calculated localization lengths extracted from the TB model,
all ingredients are given to construct the transfer rates or hopping rates for the later kinetic
Monte Carlo simulations. In the following section, the two most used hopping rates, namely

the Marcus rate and the Miller-Abrahams rate, will be discussed.

Miller Abrahams Rate

(Adopted and modified from the text about rates from my Master thesis>>) The disordered
nature of amorphous materials gives rise to strong scattering effects of the charge carriers such
that for not too high thermal energies, the charge carriers reside in localized states. A similar
situation was described by A. Miller and E. Abrahams in 1960 in their paper Impurity
Conduction at Low Concentrations®. They studied the conductivity of n-type semiconductors
at low np and low temperature. At low np, the concentration of impurities is too low for them
to form in some kind of band, called impurity band, because the overlap between the states is
too small. Additionally, the thermal energy at sufficiently low temperatures is not high enough
to sufficiently delocalize the charge carriers to form a band. The conduction that still takes
place is described by (phonon-assisted) hopping between localized states, which in their work
were the impurities, i.e. donors and acceptors. Utilizing Fermi’s golden rule, they arrived at an
expression for the transition rate between two states at energies E; and E; separated by R;;

like

max(0, E; — E; — eAx;;F)

2R;; — J ! H E.>E:

Pij = Vo €Xp (— _au) exp ( kgT > J : (93)
1 E; < E;
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where v, is the so-called attempt-to-hop-frequency and « is the localization length of the
states. For amorphous materials the factor v, is in the order of 10 THz and a typical phonon
mode frequency. Therefore, it can be physically interpreted that on average after every time

T = 1/v, a possible hopping event assisted by a phonon can take place. The first term
exp (— %) can be interpreted as a tunneling probability, by which a charge can tunnel

between the states E; and E;. The second factor is for E; > E; + eAx;;F just the Boltzmann
factor describing thermal excitation from the lower state to the higher state. The term eAx;; F
is the energy that a charge gains or loses hopping over a distance Ax;; between the states

i and j in the direction or against the field F, similar to a voltage drop.

Marcus Rate

The Miller Abrahams expression is in that sense not quite correct for many organic materials
since it neglects chemical details about the hopping process. Indeed, hopping in organics often
involves non-negligible molecular reorganization, which lowers the energy by the
reorganization energy Ar.org- An elaborative approach via Fermi’s Golden rule gives the

Marcus hopping rate>3® as

2
ko = ]_2 <L>1/2 exp | — (llreorg + AGO) 00
B h Areorg kBT 4/1reorg kBT

The transfer integral | is often taken to be the transfer integral of a dimer system
(Pn|Hgim|Pm) as discussed in the tight binding section. It can alternatively be modeled as in
the case of the tunneling term in the Miller Abrahams rate. AG is the change in the free energy
between the metastable bound state between ionized donor and acceptor and the dissociated
states. The Marcus hopping rate can in some cases predict qualitatively different results than
the Miller Abrahams expressions, but often the consideration of the Miller-Abrahams hopping
rate is sufficient, as a more complicated ansatz through the Marcus rate will often ultimately

give similar results.
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Generalized Transfer Rate

The models that were considered so far have one thing in common: They all assume a small
and constant localization length parameter a, describing hopping between strongly localized
states. In the recent past years, researchers indicated experimental discrepancies which could
not be explained by the present models. One of these problems are unphysically high attempt-
to-hop frequencies, e.g. of vy =~ 6.3 x 102°s~1 for a localization length of 2 A, using the Miller-
Abrahams expression for the hopping rate 3 for pristine P3HT. In fact, such high frequencies
are much higher than expected from even the highest phonon mode, as which v, is sometimes
interpreted as. Detailed computational analyses of conjugated polymers as P3HT, as studied in
Ref.[13], used the theoretically full hopping rate IW;; at the scale of the carriers wavefunction

to study the electronic transport, given by

2
Wi = nz |MZ:| [(Ng + 1)8(E; — E; — hwy) + Ng6(E; — E; + hwy)] (95)
q
with the phonon-mode q, the corresponding phonon-mode frequency w, and electron-
phonon coupling M;; , between two atoms i and j. N, are the number of phonons (given by
the Bose-Einstein distribution) and &§(E) is the Dirac delta functional. This expression is
essentially Fermi’s Golden Rule. Thereby, the Miller-Abrahams rate is recovered, if the
electron-phonon coupling is said to be proportional to the wavefunction overlap and that the
overlap decays exponentially with distance, which is in fact only a good approximation for
spherically symmetric wavefunctions, and additionally if the energy dependence of the
phonon DOS is completely neglected. The most crucial factor in this simplification turned out

to be the details of the overlap, and secondary the effect of the phonon DOS.

Further, these detailed computational analyses of conjugated polymers such as P3HT have
shown 31427 that the assumption of strongly localized states has to be rethought. It is found
that charge carriers can delocalize over multiple molecules or polymer chains, which is in
strong contrast to the assumed strong localization. In fact, the first stated problem of
unphysically high vy vanished upon considering both localized and more delocalized states in
the electronic transport?’. Therefore, a physically correct and more realistic model of charge

transport should include the effect of partially delocalized states.
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In this thesis, the consideration of partially delocalized states is done by modifying the Miller-

Abrahams rate as

1 1 max(0, E; — E; — eAx;;F) (96)
pij = Vo exp| —R;;j +a_ exp| — Kyl

a; 'j

Hereby, the localization lengths of state i and j are a; and a; respectively, calculated from the
TB model as discussed before. The energies E; and E; are the corresponding eigen-energies of
the states i and j calculated from the TB model. This expression converges to the classical
Miller-Abrahams expression for @; — a; and allows for different wavefunction localizations of
the states i and j. With this expression it is possible to model the local energetical and

localization correlations of the considered morphology in a more realistic way.

The hopping rate is an essential ingredient for the kinetic Monte Carlo simulations that will be

studied in detail in the following section.

Kinetic Monte Carlo Simulations

Detailed analytic calculations of charge transport in OSCs is beyond effective theories not
possible, since the inherently disordered morphology of OSCs can be very diverse and there
are no symmetries to reduce the complexity of the problem as for example in crystalline
media. However, the fundamental charge transport mechanism in OSCs is hopping between
localized states. This can be utilized to build a stochastic charge transport model for OSCs (see

e.g. Ref.[76]).

The probability density to find a system in a state s at time t is given by p(s,t). Let now
{sn}n>1 and {t,},,>1 be sequences of system states s,, at corresponding times t,, with the initial
configuration (s;,t;). The joint probability density of {s,},>; at times {t,},s1 can be
expanded using the chain rule of probability into a product of conditional probabilities

P(Sns tns Sne1) bt -5 S1, t1)

= p(Sn talSn—1, tno1; 5 S1, LDP(Spe1, bt 5 S1, t1)

= p(Sp, tnlSn—1, tne1; oo s SLEDP(Sn—1, tn_1lSn—2, th—2; .5 51, t1) .. D(S1, £1) (97)
= p(sn' tnlsn—lr tn—l)p(sn—lf tn—l ISn—Z' tn—z) p(Sl, tl)

where in the last equation the Markov property p(s,, tnlSn—1,tn—1;-;S1,t1) =
P(Sn, tnlSn—1, tn—1) was used. This assumption is valid since we are dealing with uncorrelated

hopping events in the charge transport, meaning that the state of a system is only determined
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by its previous state. Differently speaking, the location of a charge after a hop is only
determined by where it was sitting before, so it is “memoryless”. These kinds of processes are
called Markov chains. The probability to find the system in any state (s;, t + 7) after being in

a state (s;, t) after some time 7 > 0 is clearly unity
1= Zp(si,t+1'|$j, t) (98)
i

The same holds for T = 0, however at an instant time the probability density to find a state

(Sj, t) in a different state (s;, t) must be zero, p(sl, t|s], t) 611' so it holds

1= ZP(SU S]'t) p(sj,t|sj,t) + Zp(sl,t|sj,t) p(sj,t|sj,t) (99)

i i+j

Subtracting Equ. (98) and Equ. (99) and dividing by 7, one arrives at

_ p(sj,t +t|s;, t) —p(s; t|s;, t) N Z p(sit +t|s;, t) — p(si ts; t)
T T

100
(S],t+‘r|s],t) Zp(sl,t+‘r|s],t) (100
i#j
With the definition of the transition rate
k= 1 p(si, t+ ‘L'lSj, t) — p(si,t|sj, t)
ji = i . (101)

The last line of Equ. (100) can be written as

i#j i#j
This result will be used in the next step.

Starting from time t, the probability density to find the system in a state s; at time ¢ + 7 is

given by the Chapman-Kolmogorov equation

p(sj, t+ T) = Z p(sj, t+ TlSi, t)p(si, t) (103)
i
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which describes the sum over configurations (s;, t) to find the system in state (s;, t + 7) given

that it was in state (s;,t) before. Now, p(sj,t + T) will be Taylor-expanded to first order

aroundt =0

d
p(sjt) +7- ap(sj, t) = z p(sj, t + t|s;, t)p(s;, ©)
7

{—1
ip(sj, ) = Z p(sj,t +t|s;, t)p(si, ©) N p(spt+ls, p(spt)  p(spt)
dt -~ T T T

i#j
(=1
d p(s;, t+tls;,t)—1 p(s;, t +tls;, t
LI I3 DT B L CIAL T W

T - T
i#j
(=1
d
ap(sj’ t) = kj; - p(s;t) + Z kij-p(sit)
i+j

{—1
d
7P(sit) = Z (kij - (s 6) = kyi - p(s3,)) (104)

1#]

where in the second last line the definition of the transition rate was used and in the last line
the result of Equ. (102). The equation in the last line is the so-called Master equation. This
system of differential equations describes the change of probability distribution of state s; in
time due to the difference of the hopping-flow out of state s; into states s; with rate k;; and

the hopping-flow from all possible states s; into state s; with rate k;;.

The transition rate can be anything physically senseful, like the Marcus rate, Miller-Abrahams

rate Equ. (93) or, as it is used here, the modified Miller-Abrahams rate Equ. (96).

In its analytical form, in the general case the Master equation is still very hard to solve. Here
the idea of kinetic Monte Carlo (kMC) simulations comes in. kMC is the approach to solve the
Master equation stochastically by stochastically simulating hopping paths and averaging over
them. To see how that works, assume the system in an initial state s; at time t, meaning that

p(s;, t) = 0 Vi # j. For small At then the Master equation simplifies to

d

i#j
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The probability that the system is still in the state s; after time At is then given by integrating

this equation

t+At
Pstayed(sj' At) == eXp <_ f ktot(sj' T)dT) = eXp(_ktot(sj) * At) (106)
t

where the total rate is ktot(sj, ‘L') = Y.i=j kj; and it was assumed that the total rate is not time
dependent, which is the case for the possible rates that are used within this thesis. This means

that the hopping is a Poissonian process and the jumping times At are Poisson-distributed.

The kMC simulation process then works as follows. First, a simulation lattice is defined, which
we get in our case from the TB model and MD simulations or other morphology generating
schemes. If all charges would be solely localized on one monomer of the system, a good choice
of lattice sites would be the monomer positions ;. However, from the TB model we get
wavefunctions as states, that are mostly not solely localized on a single monomer and there is
no mapping towards a unique monomer for each wavefunction. To solve this issue, a close
lying solution would be to define the center of mass of each wavefunction as lattice site.
Therefore, from the eigenfunctions of the TB Hamiltonian, a new lattice is defined as
r = Zn|Ci,n|rn
anci,nl (107)

To simulate bulk, periodic boundary conditions are applied. Now for each site j the transition
rate with its N,, neighboring sites is calculated via the modified Miller-Abrahams rate with the
new lattice coordinates, the localization lengths, and eigen-energies from the TB model as
input. Then a fraction of ¢ of all N sites are randomly occupied by charges, whereas no double

occupation is allowed to account for the large on-site Coulomb repulsion.

First, a hopping charge needs to be selected. Site j has the total rate to jump towards any of
its neighbors ktot(sj). Therefore, the probability that an occupied site j jumps is given by p; =
ktot(sj)/ Yoccupied j ktot(sj), so the total rate of site j normalized by the sum of total rates of

all occupied sites. Now a site j is chosen randomly according to their relative probabilities.

Next, a hopping event needs to be chosen. Similarly to the particle selection scheme, the

probability that the charge at site j jumps to a neighboring (unoccupied) site i is given by p;; =

54



kji/ktot(sj). Again, the site i to which the charge jumps is determined randomly according to

each sites’ probability.

Lastly, the time At for the charge to hop, or equivalently how long the charge stayed at its
location before jumping, needs to be calculated. Since the hopping times are Poisson
distributed, we solve Equ. (106) for At

Af = — In (Pstayed(sjrAt)) = _ ln(Z) (108)

ktot(sj) ktot(sj)

To determine a hopping time from this, we chose a random number Z € (0,1] for this event

and calculate At according to the equation above. With this procedure it is ensured that At
follows the Poisson distribution of Equ. (106). This kMC step is repeated until a stopping

criterium is fulfilled, in this case, when the calculated current density becomes stationary.

To calculate transport properties from the kMC simulation, the particle movements around

the lattice, their hopping times and the energies of the visited sites are stored.

For our purposes, not the whole charge trajectories need to be stored, it is sufficient to store
the effective charge movement. This means that starting from an effective movement of
Ax.rr = 0, for each jumping event of any charge going from a site i to site j with hopping
distance vector Ax;;, the effective movement is updated Ax.rs — AX.rr + Ax;;. At the same
time, the simulation time is updated t — t + At. Storing every hopping event would be space
demanding, since millions of hops are simulated. Therefore, one divides the simulation time
interval [tmin, tmax] Of @ minimum simulation time t,,,;;, to @ maximum simulation time t,,,4
into N; time bins with logarithmic scaling. Now the effective movement Ax, ¢ and simulation

time t is only stored once the end of a time bin is reached.

The energy of the hops is stored in a similar way. Starting from E, = 0, the average energy of

each hop weighted by its hopping distance is added up in each cartesian direction x;

E, +E,
hops

At the end of each time bin, the accumulated energies of the hops are normalized by the

effective movement and stored
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E,+E
_ Zhops% : (Axnm)i

E, = (110)
i Zhops(Axnm)i

Additionally, the DOOS is tracked as a histogram by adding a count to the corresponding energy
bin of the current DOOS (denoted as DOOS)) at each hopping event with final energy state E;
and removing a count in the corresponding energy bin of the initial site energy E;. The DOOS;
histogram for each hop is then weighted with the hopping time At and added up. At the end
of each time bin, it is then normalized by the sum over all At since the beginning of the time
bin.

Zhops=i DOOSi (E) ' Ati

DOOS(tyin, E) = I (111)

From the section about DOS, it is known that the DOOS and the DOS are connected via the
Fermi distribution f (E, Er, T) asDOOS(E) = DOS(E)f (E, Eg, T). With this relation the Fermi
energy (and the effective temperature Tz, see later section) can be calculated by minimizing

the following expression with the sum over least squares over the energy E

DOS(E)

E - EF
1+ exp (—kBTeff)

— logyo(DOOS(E)) (112)

logo

Having obtained the tracked simulation time, effective movement, hopping energy, the Fermi

energy and DOOS one can then calculate all charge transport properties of interest.

Conductivity

The first thing we are interested in is the conductivity. It is defined as o = enu with the
elementary charge e, the charge density n and the mobility u. The mobility is defined over the
relation v = uF with the drift velocity of the charges v and the electric field F or alternatively

over the current density j via u = j/enF.

From the effective movement one defines in each direction x;

T () = 7 (Bxeps () (113)

i
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with the simulation box volume V. For a time interval in which the current density converged,
it is fitted a first order polynomial to j,(t). The gradient of the first order polynomial is then

the current density

_° (114)

Jx; (115)

Many analytical theories have been developed to model the mobility or conductivity of OSC,
which differ in the level of detail, the charge carrier concentration, the DOS and others, but it
is not in the scope of this thesis to discuss them here in detail. For completeness however, one

example is given here anyways, namely the Mott-Martens model.

The Mott-Martens model””78 uses the concept of transport energy and also percolation
theory. The conductivity is found by optimization of the hopping rate, and a percolation
criterion is used to determine a critical hopping length at the transport energy that emerges

from the optimization as the relevant energy for transport.

From Miller Abrahams, one assumes the conductivity to take the form

( 2R* E* — EF) (116)
o = O-O eXp - -

a kgT
The conduction is assumed to take place mostly by activation from the Fermi level to some yet
to determine the energy E* with some usual distance R*. This distance now gets extracted

from a percolation criterion

E* 4T E* (117)
B, = fdrf de g(€) = —R" f de g(e)
Er 3 Ep
Now the conductivity is solely determined by E* which is calculated by
do _ (118)
dE* Etr -
From which follows
o= o exp| — ZR*(Etr) + Ey — Er (119)
0 &XP a kgT
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The above expression is not a closed analytical form, it is implicitly formulated by the condition
of Equ. (117), since depending on the DOS it cannot be written out analytically. Of special
interest is also the temperature dependence of the conductivity (or mobility). For low to

intermediate charge concentrations many models’” predict the following form (for GDM)
1
In (ﬁ) X —— (120)

opos

2
P’ T) ) with a numerical prefactor ¢ =
B

One example is the often used relation u o« exp (—c (

0.69 79, For high charge densities, the temperature dependence changes to the Arrhenius law
1
In (ﬁ) X —— (121)

This result is to be considered with care since the models above might not be appropriate at
high charge densities anymore. Comparing this to Mott’s law, where In (ﬂi) (¢ —1/T1/4 this is
0

a striking difference. This discrepancy is resulting from the different DOS underlying the
models. Indeed, Mott’s law is derived for a uniform DOS, whereas more appropriate models
like the ones mentioned above consider the GDM, where the DOS is non-negligibly increasing
towards higher energies from the Fermi energy, increasing the mobility due to an increase in
available states by thermal activation into higher energies. If one applies a uniform DOS on the

models above, indeed Mott’s law is recovered.

Thermoelectrics

The next property of interest is the Seebeck coefficient. Before discussing how to extract that

from the kMC simulation, the basic theory of thermoelectrics is introduced.

(Modified and extended version of text in my Master thesis> up to effective temperature
section) If two different conducting materials are brought into contact forming an electric
circuit, as in Figure 10, and there is a temperature difference between the contacts, a potential
difference (voltage) between the contacts forms. This effect of the occurrence of a voltage

upon providing a temperature difference between the contacts is called Seebeck effect.
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Cooling Cooling

Figure 10 — Seebeck effect circuit.

The reverse effect, where a temperature difference forms upon applying a voltage, is called
Peltier effect. The voltage drop in the Seebeck effect is proportional to the temperature
difference, and the proportionality factor is a difference between material constants called

Seebeck coefficients S. They are therefore defined as

|4 (122)

with the voltage drop V. The Seebeck coefficient can also be derived by the solutions of the
Boltzmann transport equation. There, the electrical current density j and the thermal current

density j? are phenomenologically connected by the equations
j = L116 + le(_VT) (123)

where € = F + Vug/e is the sum of the electric field F and the gradient of the chemical
potential ur. These equations generalize the equations for electrical current, thermal current
and diffusion laws, etc. where the individual currents are defined to be proportional to some
scalar field gradient. Onsager found a useful reciprocal relation between the off-diagonal
Boltzmann transport coefficients, L,; = TL4,. In the relaxation time approximation, the

coefficients L;; can be calculated from the Boltzmann transport equation as follows®
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Ly, = £©

(125)
Lyy = TLyy = ——£®
21 12 o (126)
1 (127)
L., =—— @)
22 ezT[’
where
d
£@ = [ 4 (~ L) (& - 7o (e) 28l
with the so-called conductivity distribution function
o(E) = e*1(E)[ dks(E — E (k))v(k)? (129)

Here, T(E) is the relaxation time for a charge with energy E and f is the Fermi Dirac
distribution as usual. The conductivity distribution function is not straightforwardly
determined, it depends on the model details and on the used model. The conductivity and the
Seebeck coefficient S (or reciprocally, the Peltier coefficient I1) are connected to the Boltzmann

transport coefficients by

_ le _ il B 1 o O'I(E)
S‘L_n‘___ﬁj_w dE(E — Er)— (131)

Y j(E)
_—ﬁj_w dE(E — Ep) ;

where in the last line was used j(E) = o(E)F. The Seebeck coefficient is basically a sum over
the transported energy per temperature weighted with the portion to which the energy

contributes to charge transport.

By defining the transport energy

I Ej(E)dE (132)
- J
the Seebeck coefficient can be expressed as

Ey — Ep (133)
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Equation (133) gives rise to the calculation of the Seebeck coefficient in the kMC simulation.
In steady state, both the nominator and denominator are constant so we can integrate both

to yield the equivalent expression of the transport energy

~ [y de [7 Ej(E)dE
C [de % (E)E

(134)

tr

The nominator is in discretized form equivalent to%dEx from Equ. (109) and the denominator

is equivalent to J,(t) from Equ. (113) and hence the transport energy equals the average
hopping energy Equ. (110). Therefore, from kMC we can calculate the Seebeck coefficient in

each cartesian direction x; as

e
1 (7 dEy, 1
= —— 4 : - EF = _E(Exi - EF) (135)

Sy,
i eT ]xi

If the Seebeck coefficients are plotted against the respective conductivities for different charge

concentrations, sometimes a universal curve of the form

. kg (a>‘1/4 (136)
e \g,

is observed, as first noticed by Glaudell et al.?%, i.e. the Seebeck coefficient decreases for

increasing conductivity.

For thermoelectric applications often a figure of merit zT is defined to benchmark the

performance of thermoelectric materials:

oS? PF (137)
zT = T = T
Kel + Kiat Kel + Kiat

where K, is the electronic contribution of the thermal conductivity and k;,; is the respective
lattice contribution. PF is called the power factor. The maximum efficiency of a thermoelectric

material is a function of the figure of merit and given by

o T VIiFzT -1 (138)
TE —
T \VT¥ 2T +4¢
h

where T, and T}, are the temperatures of the cold and hot sides respectively.
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As last two points, the field dependence of the conductivity in OSCs and the concept of

effective temperature will be discussed.

Field Dependence in Organic Semiconductors

(Following &%) The Poole-Frenkel law was originally derived for inorganic semiconductors at
high fields. For a charge in a localized Coulomb trap, the potential barrier is simply e?/4me,r
with distance r from the trap center. If an electric field is applied, the potential on one side
reduces by

e? (139)

TELT

AU = eFry +

where 1, is the distance of the local maximum from the trap center. By setting the

differentiation after r, to zero, one arrives at ry, = /e/4me, F , resulting in

e3F

TE,

AU = (140)
The probability of escaping the trap is then simply the Boltzmann factor exp(—AU) =

exp(—y\/f) for some constant y which then yields a field dependence of the conductivity

o o« exp(—yVF) (141)

The Poole-Frenkel behavior is for organic semiconductors only found in a limited range at high
fields, where the range was argued to be widened by consideration of a spatially correlated
potential for charge carriers®. In fact, Pasveer’s model can predict in a limited range for high
fields a Poole-Frenkel behavior, since for rising fields the mobility saturates. In a larger field
range, the field dependence of the logarithmic mobility on the field is rather as predicted
quadratic or linear®*. Pasveer developed a model describing the field dependence from low to
intermediate field, optimized for low charge densities n by a mere empirical fit to numerical

data

u(T,n,F) =~ u(T,n)f(T, F) (142)

3 (143)
2 F 2
_ﬂﬂF)zem)OA4(qwﬁ2—22 1+a8(ea>—4
kgT Opos
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The numerical data is found from cubic grid simulations with lattice constant a. For low fields,
the logarithmic mobility is found to scale quadratically with the field, i.e. In (u/ug) < F2, up
to some transition field strength F=g/ea after which it scales linearly, i.e. In (u/uy) < F.
Nenashev et al.8> argued that Equation (143) cannot hold, since it misses a decisive factor, and
showed by own simulations that the decisive length scale for the field dependence is not the
lattice spacing a, but rather the localization length a, especially in the more realistic case of a
random lattice and corrected upon that. More on that will be discussed in the section about

effective temperature.

Effective Temperature

In 1992 S. Marianer and B.l. Shklovskii®® investigated the effect of the electric field on the
carrier energy distribution function in an amorphous semiconductor with localized states of
localization length a via master equation approach. They found that at various temperatures
and fields the carrier distribution function (which is the Fermi-Dirac distribution at zero field)
is a Fermi-Dirac distribution with some effective temperature that is not the temperature itself
at non-zero fields. They realized that strong electric fields, the electric field has a similar role
to temperature. From a phenomenological point of view, this is very plausible, as illustrated in

Figure 11.

/\v_‘_ } eFx

_>F

A 4

X

Figure 11 — Reduction of the energy barrier of a hop due to the electric field.

Considering two energy levels separated by a distance x and energy difference AE with an
electric field F applied in direction of x. If a charge sitting on the energy site E; would hop to
E,, it would feel a voltage drop over the distance x, which effectively lowers the final hopping

site by the energy eFx. This is equivalent to a charge being thermally activated from E; to a
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site of some effective energy E, — eFx such that it is plausible that the electric field plays a
similar role as temperature. The charges gain energy from the electric field upon hopping,

which causes the charge carriers to be effectively hotter than the lattice.

For example, at zero temperature, the Miller-Abrahams rate is given by v = v, exp(—2x/a)

which can be rewritten to be v = exp (— ) with € = eFx and Tsf = eFa/2kg. For

-
kpTers(F)
non-zero temperatures, the situation is not so clear. If one would make the ansatz to combine
field and temperature into an effective temperature as a simple sum, ie. T =T +
vy eFa/kg, this would fail®’: Supposing the dc conductivity g;. would only depend on
Tes5 (T, F) given by the simple sum, the derivative of g, with respect to the field should vanish
in the Ohmic regime. However, calculating

d d dT d
Oqc _ Ogqc Uleff _ Ogc Yea 50 (F - 0) (144)
dr dTeff dF dTeff kg

such that a simple sum cannot be the right answer. Rather than a direct sum, one takes the

phenomenological term

eFa\P e
Togr = (16 + (r55) (145)
B

which gives f = 1.54 + 0.2 and y= 0.64 + 0.2 depending on the transport parameters. Also
often, this expression is just taken with f = 2. Unfortunately, there is no further analytical
theory behind this expression that would derive this exact expression for the effective
temperature. What has been proven though, for example in Ref.25, is that the length parameter
a in the effective temperature expression is indeed not the average lattice spacing, which is a
function of the site density. Nenashev et al.®> showed that by deriving a master equation
including finite temperature and field, the solution of the equation, the carrier energy
distribution function, cannot be a function of the site density and therefore the lattice spacing,
concluding that the only relevant length to include in the effective temperature is indeed the

localization length.

Another way to think of the effective temperature with a more physical motivated formula is
by heating of the charge carrier distribution with applied field®’. The heat flux towards the

charge distribution due to Joule heating is given by
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Qy = 0 - F? = qnuF? (146)
with the conductivity o and the mobility 4. On the other hand, the charge distribution cools
down via heat exchange to the lattice. The heat flux to the lattice can be approximated by the
time derivative of the Boltzmann energy

. . nkg(Terr — Tiate) (147)
Qc = nkBTeff ~ i <

T

with the charge density n and relaxation time 7. Equating the two heat fluxes to obtain heat

balance equation

ke (Terr = Tiare) 0 (148)
— ¥C

)., = quF? =
Qu = qu 7

From equating the diffusion coefficients from the Einstein-Smoluchowski relation with the
average quadratic charge displacement &2 and the classical Einstein relation for the heated

charges one obtains

6T kg
(=14
1_ 6kpTerrit (150)
T §%q

Inserting this into the heat balance and solving the quadratic equation for T, ¢, one arrives at

Tigee + Tl%ztt + (Vk_

_ (151)
Terr = >

This expression is similar to the former one, but just slightly modified and will be further
considered as effective temperature model 2, whereas the classical expression as model 1. In
this case however, £ is not directly the localization length as argued for the former expression.

The details and validity range of the effective temperature remains an open question.

Nevertheless, the field dependence of the mobility has for a wide range of parameters like

carrier concentration, temperature and field strength been verified®® to be the low field
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mobility with the temperature being exchanged for the effective temperature, which is

remarkable.
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Results

Power Factor Optimization for Anisotropic Localization Properties

This section summarizes the theoretical findings that were performed by me for the

collaboration with Diego Rosas Villalva et al. in Ref.%.

The experimental collaborators used Hansen Solubility Parameters (see introduction) to
control the orientation of aggregates on thin films. Here for, they studied 2DPP-2CNTVT thin
films doped with three different n-type dopants, namely TBAF, TAM and N-DMBI, each with
different doping levels and different solvents. For those systems, they performed structural
analyses to extract the crystallinity and orientation of the films using GIWAXS and AFM and
performed in-plane measurements of the Seebeck coefficient and conductivity of the thin
films. With the help of HSP and the Solubility sphere they could choose a proper solvent for
the doped n-type 2DPP-2CNTVT:N-DMBI system to obtain a system with a high edge-on to
face-on ratio (EFR). For this system they found an exceptionally high power factor and break
the limitation of the conductivity dependence of the Seebeck coefficient S~o~/# that is

usually universally observed for OSCs.

To understand the observed deviation of the N-DMBI doped polymer from the usually

~1/% ]aw we have to look at the implications of the data about crystallinity and

expected S~o
polymer orientation on the electronic wave functions. Higher crystallinity should imply a
higher delocalization of the charge carriers, especially along the m — m stacking direction of
the crystalline grains. That alone would simply increase the effective localization length in
every direction if the crystalline regions were randomly orientated. This changes if one
introduces a preferred orientation of the crystalline regions. For example, if one manages to
increase the edge-on oriented portion of crystalline regions, the in-plane delocalization gets

enhanced whereas the out-of-plane delocalization gets reduced. This is schematically shown

in Figure 12.
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Figure 12 — a For EFR = 1 the wavefunction is spherical. b For EFR > 1 the wavefunction gets

anisotropic.

Delocalization mostly takes place along the polymer backbone and in T — m-stacking direction,
since lamellar stacking is not advantageous for delocalization due to the separating and usually
not conductive side chains. Similar to the edge-on case, for face-on orientation the localization
length would be enhanced in the out-of-plane direction and reduced in the in-plane directions.
Effectively this implies that the introduction of a preferred orientation of crystalline regions
introduces an anisotropy in the localization of electronic states, which means a non-spherical
effective volume, in which the spatial electronic wavefunction is confined, which is
represented as flattened spheres or ellipsoids in Figure 12. It is worth to note that in the edge-
on orientated case the effective localization length gets enhanced in the whole plane of the
substrate due to the in-plane randomly orientated crystalline grains, which is different from
the situation after e.g. rubbing or tensile drawing, where one has a one specific direction of

orientation.

We now use this conclusion about the anisotropy of the localization length to investigate the
implications of an anisotropic localization length with regular kinetic Monte Carlo (kMC)

simulations.

For that, we implement a regular lattice of box size 203 with periodic boundary conditions,
inter-site-distance ayy = 1.8 nm and gaussian energetic disorder with a disorder width of
O0pos = 75 meV. The charge transport is modelled as nearest neighbor Hopping (nnH) with

Abraham-Miller hopping rates from site i to site j

68



( ) (Ax)z s <Ay>2 s (Az)z ( Ej - Ei) fE>E
exp| -2 [|— — —) Jexp(-— if E; > E;
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pij:V0X<

The first exponential factor resembles the tunneling term where Ax; is the hopping distance
in x; direction (x, ¥, z) and a,, is the corresponding localization length. The second exponential
term for upwards-hops with site energies E; > E; is just the Boltzmann factor for temperature

T. Lastly, v, is attempt-to-hop-frequency and chosen to be v, = 10! 1/s for every simulation.

For the simulation, five cases are considered. First, the case with an isotropic localization
length vector of a;5, = (ax Ay az) = 0.5 X (1 1 1) nm was simulated to compare the results
to. Then, the edge-on and face-on cases were simulated by setting the respective localization
length triplets to a., = 0.5 X (22 1) nm and af, = 0.5 X (1 1 2) nm, where in-plane is set
to be the x-y-plane of the system. Since these localization length triplets would lead to an
increased effective localization length, another two simulations were performed where the
length of the respective localization length vectors are normalized to the length of the isotropic
case to decouple the effect of the anisotropy from effects that are due to increase of the total

effective localization length. In this case, the localization length triplets were set to @ep norm =

laisol _

laisol _ —
|etgol

1 .
Ay X ol = 2—\/5(2 21)nm in the edge-on case and @fonorm = Aro X

1 . . . . . .
2—\/5(1 1 2) nm in the face-on case. Physically, the normalization means that in comparison to

the isotropic case, the localization length still gets enhanced in the directions of anisotropy
main axes but reduced in the other dimensions, e.g. in the edge-on case the localization length

is enhanced in-plane and reduced out-of-plane.

For each case of localization lengths, the calculation was performed with a charge carrier

concentration of ¢ = 1% and ¢; = 10%. The results are summarized in Figure 13.

To further support the claim of the connection of anisotropic localization length and edge-on
morphology, we incorporated a polymer morphology generating subprogram into our kMC

model.

For the actual kMC with the generated morphology, it is assumed that the intra-chain transport

along the backbone of a defect (twist, bend) free polymer is enhanced. This is accounted for
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by a factor f;., that reduces the inverse localization length a™? as al' = a1/ ficn. Inter-
chain transport along the face-face (pi-stacking) direction is assumed to be enhanced with
respect to the other directions. Here, a normalized change f, in the (vectorial) inverse
localization length for each monomer is used, which conserves the volume of the
corresponding ellipsoid. Thatis, ™" = a~1/f, in the +-face direction and ¢~ = a‘l/\/ﬁ

in the other (edge) directions.
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Results and Discussion
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Figure 13 Comparison of the in-plane Seebeck coefficients and conductivities for free charge carrier
concentrations of ¢r = 1% and 10% for each isotropic, edge-on, face-on and their normed cases.
Isotropic refers to a localization length vector of a;;, = 0.5 X (1 1 1) nmm, edge-on refers to a,, =
0.5X (22 1) nm and face-on to ay, = 0.5 X (112) nm. Normed a refers to Qepnorm = |@iso| X
Qeo/|eo| in the edge-on case and @y norm = |Qiso| X Aro/|af0| in the face-on case such that the

effective localization length stays the same as in the isotropic case.

The upper two diagrams in Figure 13 show the results for ¢, = 1%. The left one shows the un-
normalized case. One can see that specifically in the edge-on case one has a significant
increase in conductivity and a Seebeck coefficient that is barely affected. In the face-on case
one also sees a slight increase in conductivity and a small drop in S. This is somewhat different
to the right diagram, where the localization length is normalized. Here, for the edge-on case

the conductivity is still increased, albeit not that much as in the un-normalized case, but also
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the Seebeck coefficient is a little bit increased. In the face-on case the trend is different; here,
the conductivity decreases significantly and the Seebeck coefficient is still a bit decreased in
comparison to the isotropic case. The results of the ¢, = 10% in the lower half of Figure 13

are qualitatively the same as for the ¢ = 1% case.

The simulations therefore show that an anisotropy in the localization length, specifically the
edge-on orientation, can induce a higher conductivity without the usually expected trade-off
in the Seebeck coefficient. This results in an overall increase of the Power factor PF = S%0, as

summarized in Figure 14.
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Figure 14 Comparison of the simulated Power factors for free charge carrier concentration of ¢f =
1% (cyan bars) and 10% (blue bars) for each isotropic, edge-on, face-on and their normed cases.
Isotropic refers to a localization length vector of a;5, = 0.5 X (1 1 1) nm, edge-on refers to a,, =
0.5X (22 1) nm and face-on to ay, = 0.5 X (112) nm. Normed a refers to @epnorm = |@iso| X
Qeo/leo| in the edge-on case and Afo norm = |@iso| X &0 /|Qf0| in the face-on case such that the

effective localization length stays the same as in the isotropic case.

Figure 14 also shows that the anisotropy with higher in-plane (edge-on) localization length
with a larger effective localization length, i.e. not normalized localization length, is more

effective than just the anisotropy. The practically important question is, whether normalized
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or unnormalized localization lengths are more realistic from a physical point of view. On the
one hand, the reorientation of randomly orientated crystalline grains into the edge-on
orientation should in first order be closer to the normalized case. This is, because for the out-
of-plane contributions of an inherently 3D percolation path, the possibility of high hopping
rates due to m — i orbital overlap along that direction gets reduced, which introduces a
bottleneck that counteracts the positive effects of the improved average m — m stacking along
the in-plane direction. This resembles rather a redistribution or deformation of the localization
volume. On the other hand, if a preferential orientation is accompanied by an overall increase
in crystallinity, the total average delocalization can be expected to increase, which would
correspond to a larger localization volume. The previous reasoning is additionally supported
by the comparison of the results of the lattice kMC simulation with anisotropic localization

length with the kMC simulation with a generated edge-on morphology.

Figure 15 shows an example morphology for the edge-on case for a just a few polymer chains
for visual representation. The unitless inter-chain energies are given by (-4,3,-2,2) in the order
face-face orientation, face-edge, edge-edge cross and parallel. The intra-chain energies are (0
2 2) for straight, twisted and bended direction. The color red means a monomer face
orientation into x-direction, green is in y-direction and blue is in z-direction. To impose a certain
preferred alignment orientation and direction, dummy homogeneous alignment fields into z
direction were switched on during polymer growth. Positive energies always mean a penalty,
whereas negative energies are energetically favorable. As can be seen, the given settings lead

to a preferred edge-on orientation in-plane (x-y plane).
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Figure 15 Visualization of a grown polymer morphology leading to edge- on orientated aggregates of
polymer chains. Red means monomer-face orientation into x-direction, green into y-direction and blue

into z-direction.

With the parameters given above, but much denser polymer morphology, kMC simulations
with first no enhanced delocalization within a defect free chain segment (f;.,) and no
delocalization enhancement for ™ — 7 stacking (f,) were performed, followed by simulations

with f;.n, = 1.5 and/or f;;, = 1.25. The results are summarized in the following Table 1.

Table 1 -In-plane Seebeck coefficient and conductivity for generated edge-on morphology for different

combinations of delocalization enhancement factors of defect free chain segment f;., and of T — 1

stacking f,.
ficnfa =1 fo =125 fa=1 fo = 1.25
S [uV /K] 697 + 4 704 + 5 715+ 3 734 + 3
o [mS/m] | 14.7+0.1 19.0 + 0.1 22.74+0.1 29.3 4+ 0.3
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Noting that physically indeed delocalization is enhanced for m — 7 stacking and within a defect
free chain segment (fy, fich > 1), these results confirm the previous results of the connection
of an anisotropic localization length and edge-on morphology, leading both to an enhanced

power factor in the in-plane direction.

Anisotropic path, (l’y=2(l'x Isotropic path

01

0.05 4

-0.05

| 1-]
0.1 |
-0.15 4 v y
30
15
10 @

y-Direction ' x-Direction y-Direction = x-Direction

Energy

o

Figure 16 Difference between hopping paths of same system with for anisotropic (left) and isotropic
localization (right), simulated by a 2D kMC model. Field is applied in y-direction. To highlight the energy
of each site they are additionally color-coded with red colors indicating high energies and blue colors
indicating lower energies. While in the isotropic case a larger path-network is explored, in the
anisotropic case the path is more direct at the expense of occasionally higher energy barriers but

therefore reduced tunneling action in y-direction, enhancing the transported energy on average.

To explain the simultaneous increase in o and S, and concomitantly of the power factor in the
edge-on orientation, it is instructive to visualize the hopping path of a charge in the anisotropic
case in comparison to the isotropic case, which is done in Figure 16. Here, a 2D kMC simulation
was performed to visualize the hopping path also in energy space. The localization length is
set to be enhanced in the y-direction, where also the field is applied. It is directly visible that
the hopping path in the anisotropic case is more linear and direct, whereas in the isotropic
case the charge is exploring a more random path. This is, because for the same energy
difference E; — E; between two hopping sites /i and j, the probability to hop into the direction
of the larger localization length given by the tunneling term in the Miller-Abraham rate p;; is

higher. This also means that the charge can overcome a larger energy difference in the
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direction of larger delocalization than in the direction of smaller delocalization for the same
overall hopping rate, which translates into a higher transport energy for pathway that contain
more hops in the easy direction. As such, the more direct path translates not only into a higher
velocity in the direction of larger delocalization and therefore into a higher conductivity, but
into a less optimized path from a pure energy perspective. This means that the trade-off for
the geometrically more direct path are occasionally higher jumps in energy, which translate
into a higher transport energy, which then in turn leads to a slightly increased Seebeck

coefficient.

Field Dependence Simulations

For the Field Dependence of the conductivity of organic semiconductors several theoretical
approaches have been proposed in the past decades (see Theoretical Background). The
approaches reach from simple considerations leading to Poole-Frenkel behavior over rather
empirical parametrizations like Pasveer’s model up to the Effective Temperature approach,
assuming the electrical field acts equivalent to a heating of the charge carrier distribution.
Assuming the validity of the Effective Temperature approach, it would in principle be possible
to extract a characteristic length-scale of the hopping conductivity in OSC interpreted as the
localization length. Experimentally, this can be done by measuring the temperature
dependence of the ohmic conductivity and the field dependence of the conductivity up to high

fields to extract a localization length from an effective temperature Teff(F) obtained via the
mapping donm (Teff(F)) = o(F,T), as proposed in literature®>?’. The same experimental

approach has been followed in our group. For three example systems, namely rrP3HT:FATCNQ
with 0.2 mg/ml and 0.8 mg/ml and SuperYellow:F4TCNQ with 5mg/ml sequential doping, the
experimentally obtained field dependencies and effective temperatures are shown in Figure

17 (M. Shokrani, unpublished data).
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Figure 17 — Left: Experimentally obtained conductance as function of applied electrical field for two
doping concentrations of the system P3HT:FATCNQ and SuperYellow:FATCNQ. Right: Experimentally
obtained Effective Temperatures. The dotted lines are fits with the effective temperature model 1. (M.

Shokrani, unpublished data)

While Super-Yellow only shows a significant field dependence at higher fields, the conductance
of the P3HT systems show a significant field dependence already at relatively low fields.
Analyzing the effective temperatures obtained experimentally via the approach described
above, one finds that the characteristic length scales (interpreted as localization length) of the
systems are in the order of 4 nm for low doped P3HT and 22 nm for higher doped P3HT or
even two to three times larger values considering only the low field part. Besides the poor fit
to the effective temperature model for the P3HT systems, these values are however much
larger (about one to two order of magnitudes) than one would expect from disordered
hopping systems, raising the question of the meaning of the obtained length scale. A possible
working hypothesis could be that the length scale could represent the size of aggregates in the
systems, as the doped P3HT is considered to be, leading to wavefunctions that could possibly

be delocalized over those aggregates and hopping between aggregates takes place.

In this chapter the field dependence of the mobility or conductivity of different simple to
aggregated morphologies is studied and compared to each other. First, the generation and
parameters of each morphology are described, followed by the results from the tight binding
model. Then the field dependence results are shown and discussed in the context of each
morphological specifications, including other possible physical parameters that could

influence the field dependence. The field dependencies are then analyzed with the effective
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temperature approach to test the validity of the commonly used effective temperature models

of the field dependence of OSC.

Field Dependence of the Simplified Model Morphologies

The first two morphologies studied are regular simple cubic (sc) lattices with box size of
20 X 20 x 20 and lattice constant ayy = 0.5 nm. The orbital parameters for the ellipsoidal
orbital approximation Equ. (72) are (I, L, 1,) = (0.1,0.1,0.1) nm, meaning a spherical s-type
orbital. The transfer integral scaling factor was taken to be vy = 10143. Here, no ions are
considered, soV = 0. The diagonal disorder for the first morphology was g4;; = 100 meVl and
for the second a,4;; = 80 meV. Figure 18 shows the projection of a slice or tile of the center
of mass lattice. The circles are the centers of masses of each localized eigenstate and their

radius is proportional to their localization length. The colors indicate the eigen-energies of the

states.

sc 100 meV Péﬁction onto Plane at X = 84.02 sc 80 meV Projection onto Plane at X = 59.65

o
(%]
Normalized Energy

Figure 18 — Left: Projected slice of sc morphology with 100 meV disorder. Right: Projected slice of sc

Morphology with 80 meV.

It is directly obvious from Figure 18 that the states are not distributed as a simple lattice
anymore. This reflects the energetic and spatial correlations introduced by the random on-site

energies through the tight binding model. The local energetic environment of the lattice and
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the coupling through the transfer integral causes more or less localized states with eigenstates
not being solely localized on one lattice site. Therefore, the center of mass of the eigenstates
gets distorted from a simple lattice and reflect the energetic disorder of the system. One can
hereby already observe some degree of clustering of eigenstates. This can be explained by the
nature of randomness, which causes some degree of clustering since a uniform spatial
distribution has lower entropy than a little bit clustering. This random clustering can even be

enhanced through the interaction via the transfer integrals.

Figure 19 shows the DOS obtained from the TB calculations together with the localization
length distribution for on-site disorders of 100 meV and 80 meV. The calculated DOS is fitted
with a single gaussian (orange curve). The fitted disorders match the on-site disorder well with
Opos =83 X 3meV for sc lattice with 80 meV on-site energy disorder and
Opos = 104 + 3 meV for sc lattice with 100 meV on-site energy disorder. For the localization
length distributions, each circle corresponds to the localization length «; of eigenstate with
eigenenergy E;. The distributions follow a distribution that is similar to the DOS, but very
scattered, meaning that for a given eigenenergy the localization length is not well defined but
scattered around some mean value. The mean value of the localization length in a small energy

interval is indicated as a continuous black line within the localization length distributions.
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Figure 19 — Density of states and localization length distributions for simple lattice morphologies with
80 meV and 100 meV on-site energy disorder. The black line corresponds to the mean value of the

localization length within a small interval around each energy.

The comparison of the localization length distributions reveals the expected behavior that
higher DOS disorder causes a higher degree of localization, as can be seen by both the mean
localization length curve and the peak of the distributions being both lower in the 100 meV
case than in the 80meV case. The small dip at around —2.5 kgzT is probably a numerical
artefact of using the numerically less stable generalized eigenvalue problem and the symmetric

sc morphology, but should have a negligible influence on the further simulations.

Next, the morphology generated by the 3-phase-model is introduced. Here, again a
20 X 20 x 20 box is used for the morphology generation, together with an inter-site distance
of ayy = 0.5nm. The aim is to obtain a morphology that is as aggregated as possible.
Therefore, the following program parameters were chosen. First, long chains are considered

by setting the number averaged number of repeat units per chain (In.pol_Mn) to 200, with a
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weight ratio of 1 (In.pol_nr). At time t = 0, 10% of all chains are nucleated (In.pol_nCh0=-0.1).
For growing the polymers, the energetic penalties/gains for intrachain conformation are
chosen to be (Estml-ght, Erwist Ebend) = (0,4, 1) so that twisting is penalized much with the
aim of enhanced ™ — m —stacking and bends are penalized a bit so that bending does not
happen too often. The interchain conformation energies are chosen as
(Eface—faces Eface-eages Eeage-edage,i» Eeage-edge,1) = (—8,8,—3,0). Again, this is motivated
by wanting to reward m — m —stacking, penalizing face-edge orientation and rewarding
lamellar stacking. The monomer faces should be aligned in z-direction by an alignment field of
In.pol_F_al(1,1:3)=(0,0,2) and the monomer directions are set with an alignment field into the
x and y-direction by In.pol_F_al(2:,1:3)=(2,2,0). The probability of the nucleation of new chains
should be length-weighted and an over-filling factor of 7 was taken to avoid larger voids within

the final morphology.

With these settings, two morphologies are generated. For the first morphology, the aggregated
phase gets attributed on-site energies drawn from gaussian distribution with 80 meV disorder
while the amorphous phase has 100 meV on-site energy disorder. The cutoff energy for being

within an aggregate is set at the value 1/3 for the normalized interaction energy of the
monomers in the morphology (Egmm < %) The second morphology has 45 meV on-site
energy disorder in the aggregated phase and 80 meV in the amorphous phase. The transfer

. . 1 . .
integral scaling factor was chosen v, = 104 > with an intrachain factor of f;., = 1.3 for

couplings within a chain. The orbital parameters of the monomer sites are (lx, Ly, lz) =
(0.87,0.87,1.3) - 0.1 nm such that [, -1, -1, is the same as for the sc case. Since the
morphology is lattice-based with constant lattice spacing but m — m —stacking is usually
enhanced by closer packing, this is mimicked here by enhancing the orbital length in the
monomer face direction. Lastly, the Coulomb potential is set to zero again since no ions are
considered here. Figure 20 shows again a projected slab of the morphology. Inspired by the
name of the program module “MakeSnake”, the two morphologies are from here on called
MakeSnake 80meV/100meV (or MS 80/100) and MakeSnake 45meV/80meV (or MS 45/80).
Here, in contrast to the sc morphologies, the background contains the direct morphology
created by MakeSnake as squares and the colors represent the normalized interaction energy

of each monomer/site, making the aggregated phases visible as more blueish.
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Figure 20 — Left: Projected slab of MakeSnake 80meV/100meV. Left: Projected slab of MakeSnake
45meV/80meV.

From Figure 20 one can see that the center of mass lattice approximately follows the
aggregates of the MakeSnake morphologies. Within the aggregates, the state density is
enhanced as well as the localization length, as one would expect. However, the achieved
aggregation is not very large. The morphology rather consists out of smaller, but more

interconnected aggregates.

To achieve larger aggregates, the subprogram for morphology generation via annealing is used.

The fraction of guest (aggregated) sites was set to 0.4. The cohesive energy of both the host
and guest being the evaporation enthalpy of the host or guest is set to E.,, = 176 % The

ratio of the free energy of the host-guest interface with respect to the host-host interface is
set to the factor 4. And finally, the annealing temperature is set to Ty,,, = 4kgT. With these
parameters the annealing process simulation is continued until either 10° steps are reached

or the correlation radius of guest clusters (aggregates) reaches the value 15 - ayy.

For the tight binding parameters, as in the previous cases, the transfer integral scaling factor
was chosen vy = 1014§ and the orbital parameters of the monomer sites are (lx, Ly, lz) =

(0.87,0.87,1.3) - 0.1 nm again. As no chain information is available, no additional factor is

introduced. Again, no ions are considered, so V = 0. Two annealed morphologies are
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considered, once with on-site energy disorder of 45 meV in the aggregates and 80 meV in the
amorphous phase (denoted as Annealed 45meV/80meV) and relative positional disorder of
the amorphous phase of 0.2 - ayy, and secondly with 25 meV in the aggregated phase and 80
meV in the amorphous phase (denoted as Annealed 25meV/80meV) with no additional
positional disorder of the amorphous phase. The results of the morphology are shown in

Figure 21.
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Figure 21 — Left: Projection of slab of Annealed 25meV/80meV morphology. Right: Projection of slab of

Annealed 45meV/80meV morphology.

The background squares again show the generated morphology with blue being aggregates
and red being the amorphous phase. The aggregates are clearly larger here, but also separated
by larger regions of amorphous phases. At the same time (not seen in the projection) there
may be direct contact areas between different aggregates because of their size here. As in the
MakeSnake morphologies, the state density and the localization length in the aggregated

phase is again larger than in the amorphous phase, as to be expected.

The results for the DOS and localization length distributions for both MakeSnake and Annealed

morphologies are summarized in Figure 22. The DOS was fitted with a double gaussian

E — py)? E — u)?
DOS(E) = A, exp (— %) + A, exp (_ %) (153)
1
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Figure 22 — Left column: DOS of Aggregated (MakeSnake) and Annealed morphologies. Orange lines
are double gaussian fits. Right columns: Corresponding localization length distributions. The black line

is the average curve.

Table 2 — Double gaussian fit parameters for different morphologies (T = 300 K).

Morphology Ay p1/kgT 01/kgT A; 79 o>
/kl_;T /kl_;T

MakeSnake 80meV/100meV 275 —-1.1 1.9+ 0.2 425 0.7 4.6
+ 40 + 0.2 + 40 + 0.2 +0.2

MakeSnake 45meV/80meV 336 —-09 1.2+ 0.2 427 0.7 3.2
+ 40 + 0.1 + 30 + 0.2 + 0,2

Annealed 45meV/80meV 290 —-1+01 1.2+4+0.2 468 0.4 3.2
+ 30 + 20 + 0.1 +0.2

Annealed 25meV/80meV 358 —-0.7 0.7+0.1 570 0.3 2.6
+ 30 + 0.1 + 30 +0.1 +0.1
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All DOS fit very well to double gaussians which are shifted in energy. The gaussians with the
smaller disorders correspond to the more ordered aggregated phases, which are therefore also
lower in energy than the amorphous phase which is the gaussian part with the larger disorder
respectively. The disorders of the amorphous and aggregated phases approximately match the
on-site energy disorders from the tight binding model input. However, the shift of the obtained
means of the aggregated and amorphous phase has only a value of about 25-50 meV while
experiments show higher values of 0.2-0.3 eV8%, This is probably explained by the too simple
modeling of the aggregated morphologies. As outlined before, it was tried to model the
difference between aggregated and amorphous phase by enhancing the orbital parameter [,
in m —stacking direction to compensate the effect of closer packing in the aggregated phase.
However, this has also an effect on the transfer integral of the amorphous phase, which is not
desired. The shift of the means would be higher if the transfer integral would be solely
enhanced in the aggregated phase. Additionally, including positional disorder in the
amorphous phase could also enhance the shift, what can also be seen from the Annealed
morphologies, from which Annealed 45meV/80meV has some positional disorder and

Annealed 25meV/80meV not, while former has a larger shift than latter.

The MakeSnake 80meV/100meV has expectedly the lowest localization length compared to
the other morphologies. The peak localization lengths are similar to the ones of the sc 80meV
morphology, as one would expect from the aggregated phase. However, the width matches

more the sc 100 meV distribution which comes from the amorphous phase.

From the almost identical DOS of MakeSnake 45meV/80meV and Annealed 45meV/80meV
one might expect a very similar localization length distribution. However, the peak localization
lengths of MakeSnake 45meV/80meV exceed the ones of Annealed 45meV/80meV
significantly. This has three reasons: First, MakeSnake contains chain information, for which an
intra-chain factor for the transfer integrals was introduced, enhancing the electronic coupling
and therefore the localization length. Secondly, in Annealed 45meV/80meV, an additional
source of (spatial) disorder in the amorphous phase was introduced, which will have a negative
effect on the localization length. And lastly, the better interconnectivity of the smaller
aggregates in the MakeSnake morphologies could enhance the localization length further

compared to the Annealed one.
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However, the localization lengths of the Annealed 25meV/80meV morphology are still
expectedly the highest, since the aggregated phase has a very small disorder in the order of

the thermal energy and no positional disorder in the amorphous phase is present.

With all these morphologies then kMC simulations as described in the theoretical background

and methods section were performed for different electric fields applied in the z-direction. The
attempt-to-hop frequency for all morphologies was set to f, = 10142 and the temperature

was room temperature T = 300K. All field simulations were performed at a low free charge
carrier concentration of ¢ = 0.5%. The results of the field-dependence of the conductivity

are shown in Figure 23.
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Figure 23 - Left: Field dependence of conductivity for different morphologies. Right: Field dependence

of conductivity normalized to the value at lowest field.

The order of the morphologies in absolute value of the conductivity is easy to explain. The
higher the (effective) disorder, the lower the conductivity. Also, the lower the mean localization
length, the lower the conductivity. Latter explains why Annealed 45meV/80meV has a lower
conductivity than MakeSnake 45meV/80meV albeit having almost the same DOS, since
MakeSnake 45meV/80meV has the higher localization length due to the reasons explained

above

However, looking at the field dependence, i.e. the slope of the conductivity curves, or by which
factor the conductivity gets enhanced at the highest field compared to the lowest field
simulated, the situation gets more complicated in detail. A coarse rule seen from the right plot
in Figure 23 is basically the opposite trend of the order of the absolute values of conductivities.
This means, the higher the effective disorder, the stronger the field dependence. However, this
rule alone would not explain why MakeSnake 80meV/100meV morphology has basically the
same field dependence as sc 100meV and why MakeSnake 45meV/80meV has a stronger field
dependence than Annealed 45meV/80meV. This could be explained by the concept of the
effective temperature. Here, a higher localization length leads to a higher field dependence.
MakeSnake 80meV/100meV has a mean localization length of 0.56 nm, while sc 100 meV has
a mean localization length of 0.43 nm. This difference could already suffice to enhance the

field dependence of MakeSnake 80meV/100meV to compensate the effect of the lower field
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dependence that the aggregates with lower disorder would imply. Hereby should also be noted
that MakeSnake 80meV/100meV has even a higher mean localization length than sc 80meV.
This is probably, again, due to the facts that MakeSnake has an intrachain enhancement factor
not present in the sc morphologies and that the MakeSnake morphology has interconnected
aggregates. The DOS fit to the DOS of MakeSnake 80meV/100meV also gives a gaussian part
attributed to the aggregate of only about 50 meV disorder, enhancing the effect of
delocalization in the aggregates compared to the sc 80meV case. The higher mean localization
length of the MakeSnake 45meV/80meV (0.86 nm) compared to the Annealed 45meV/80meV
(0.61 nm) could then also be the reason why former has a higher field dependence than the

latter, despite the very similar DOS.

From here, one could ask the question, what parameter has the larger influence on the field
dependence. The general trend derived from the first rule about the disorder seems to suggest
here that the disorder has a higher impact on the field dependence than slight changes in the

localization length.

This result should now be compared to the predictions of the classical effective temperature

models. For example, Baranovskii used the temperature dependence from the GDM model

2
o(T) x exp <—C (Z‘?) > (154)

together with the effective temperature T, instead of temperature T, in the following named
Bassler’s model. To be numerically consistent, also the actual temperature dependencies of
each morphology are simulated and fitted to the expression In (¢/0,) < —1/T# (Figure 25),
followed by substituting the temperature by the effective temperature. These two models will
now be fitted to the numerically obtained field dependencies. From these fits, the localization
length will be extracted as fit parameter. Also, the localization length from the direct fit of the
effective temperature models to the effective temperatures from the simulations obtained
from the DOOS are extracted and compared. The visual results are shown in Figure 24 together

with the obtained fit parameters in Tables 3 and 4.
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Figure 24 - Left: Fits to the field dependence of the different morphologies with the two different

conductivity models. Fits were performed with effective temperature model 2. Right: Fits to the

effective temperature obtained from fitting the DOOS using both effective temperature models.
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Table 3 — Localization lengths from fits of o (Teff (F)) to the simulated data for different morphologies
(Figure 24, left). The last column gives the mean localization length from the a(E) distributions
obtained from the tight binding calculations for comparison. Te(?])c is the effective temperature model

two respectively.

Morphol M | (2)

orphology ode a from o (Teff) Amean
sc 100 Bassler 0.43 nm, C=0.23
sc 100 o(T) Fit 0.40 nm 0.43 nm
MS 80/100 Bassler 0.35 nm, C=0.3
MS 80/100 o(T) Fit 0.42 nm 0.56 nm
sc 80 Bassler 0.33 nm, C=0.42
sc 80 o(T) Fit 0.41 nm 0.52 nm
MS 45/80 Bassler 0.22 nm, C=0.88
MS 45/80 o(T) Fit 0.35nm 0.86 nm
AN 45/80 Bassler 0.2 nm, C=0.85
AN 45/80 o(T) Fit 0.31 nm 0.61 nm
AN 25/80 Bassler 0.17 nm, C=1.24
AN 25/80 o(T) Fit 0.26 nm 0.94 nm

Table 4 — Localization length from fits of the effective temperature models 1 and 2 onto the effective
temperatures obtained directly from the simulations (Figure 24, right). Mean localization length,
localization length at transport energy and Fermi level from the localization length distributions from
tight binding calculations for comparison in the last columns. Errors for fitting approximately Aa =

0.05 nm.

Morphology a from TS’)f a from Tg,)f Xmean a(Ey) a(Er)
sc 100 0.3 nm 0.43 nm 0.43 nm 0.3 nm 0.25 nm
MS 80/100 0.33 nm 0.5 nm 0.56 nm 0.5 nm 0.25 nm
sc 80 0.3 nm 0.44 nm 0.52 nm 0.3 nm 0.25 nm
MS 45/80 0.3 nm 0.45 nm 0.86 nm 1.1 nm 0.25 nm
AN 45/80 0.33 nm 0.49 nm 0.61 nm 0.9 nm 0.25 nm
AN 25/80 0.36 nm 0.54 nm 0.94 nm 1.5 nm 0.25 nm
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From Figure 24 (right) one sees decent fits to the effective temperature data despite the
partially noisy T.sr data from the simulations, which come from fitting the temperature and
the Fermi energy in the DOOS at the same time, both being slightly correlated via the
temperature dependence of the Fermi energy. The localization lengths extracted from the fits
of the models to the data are shown and compared to the mean localization length in Table 4.
The values of the second effective temperature model are more consistent in their trend and
closer to the input value than the first model. Thereby, focusing on the second model, the
localization lengths follow approximately the same trend as the mean localization lengths from
the input. The high value of a of MakeSnake 80meV/100meV in comparison to the other
morphologies for example can probably been explained by a fitting error overestimating the
effective temperature data point at highest field, which also causes a dip down of the Fermi
energy (Figure 27). Considering fitting errors, the trend is consistent. However, with decreasing
effective energetic disorder, the relative deviations to the mean localization length increase
significantly and cannot be explained by just the fitting error. One possible reason is that not
the mean localization length is the effective localization length (if such one is even defined in
this framework) but something like the mean localization length between Fermi energy and
transport energy. Another possible reason is that the numerical y —factor in the formula for
the effective temperature is taken the same for every morphology (y = 0.63), but might
actually be different for each morphology. It is however not possible to elaborate this further

with these simulations.

In Figure 24 (left) one can also see good fits of both conductivity models. Both fits were
performed with effective temperature model 2. The reason for the good fits for both models

is the small effective temperature range of maximum 100 K and the similar functional form of
the fit-functions In (#io) x —1/Tﬁ. Deviations can only be better distinguished for a larger
effective temperature range.

Nevertheless, the extracted localization lengths from both fits to the o(F) data give a
consistent trend. Expectedly, larger field dependencies of the conductivity give rise to larger

fitted localization lengths, contrary to the actual localization lengths from the kMC input

obtained from the tight binding calculations, which actually show the opposite trend. This is
ultimately because by construction the models o (Teff(F)) for the field dependence of the

mobility or conductivity attribute the strength of the field dependence solely to the localization
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length. This is in strong contrast to the simulation results, which suggest that the disorder
and/or other factors like the morphology play a dominant role for the field dependence.
Therefore, all effects of the energetic disorder, morphology and other possible contributions
to the field dependence get reflected in the localization length. In Bassler’s model, the
energetic disorder is considered as ops/kgTe sy in the exponential function. The derivative of

Equ. (154) with respect to the field, reflecting the field dependence gives a term

0505 €XP <—c (kf;z;fy)' from which one would expect a decreasing field dependence with
higher disorder. However, the kMC simulations performed here, and also in literature like in
Ref.?! implicitly show higher field dependence with increasing disorder. It seems that the
temperature dependence models derived for vanishing field are not applicable directly just by
substituting the temperature by the effective temperature, albeit always finding fit parameters
that are able to describe the data. Also, the empirical model of Pasveer predicts a higher field
dependence for higher disorder®*. One can therefore conclude that the role of disorder and

factors like morphology in the effective temperature model of the field dependence of

conductivity is very much underestimated and not properly included.

One can also abstract the idea of the field dependence being determined by a field-dependent
effective temperature away from certain functional forms through a determination of the
effective temperature by the following ‘experimental’ procedure®’. At a certain temperature
T, the field dependence of the conductivity is measured (or here simulated). Then the ohmic

conductivity is measured/simulated over a wide temperature range containing T,. The
effective temperature can then be determined by o (F,T,) = ¢ (F = 0, Teff(F)). If the field

dependence is solely determined by the effective temperature in a functional form like the
two effective temperature models, the localization length obtained from the corresponding fit
of the effective temperature should give the same or similar localization length as the input
localization lengths. The results for the temperature dependence of the ohmic conductivities

are shown in Figure 25.
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The temperature range of the simulations was from T'= 290 K to 390 K or T = 300 K to
400 K. The temperature dependence was plotted as log(c) over T~2. There are deviations
from a straight line for most morphologies, showing therefore deviations from the log(o) o«
—T~2 law derived for lower temperatures like in Béssler’s model. Now for each field, the

effective temperature is extracted as described. The results are shown in Figure 26 and Table

5.
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Figure 26 — Extracted effective temperature from the experimental procedure and from the DOOS from

the simulations for different morphologies. All datasets are fitted with effective temperature model 2.
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Table 5 — Comparison of localization lengths extracted from a fit to the field dependence of the
conductivity, a direct fit to effective temperature of the simulation output and from the ‘experimental’

procedure (Fig. 26). The mean localization length of the input distribution is also given for comparison.

agi from ay;; from fit to ngf)f ay;; from fit to ngf)f from Xmean
Morphology a(Tfj()f) o(F,T) = a(p ~ 0, Teff)
sc 100 0.40 nm 0.43 nm 0.42 nm 0.43 nm
MS 80/100 0.42 nm 0.50 nm 0.41 nm 0.56 nm
sc 80 0.41 nm 0.44 nm 0.39 nm 0.52 nm
MS 45/80 0.35nm 0.45 nm 0.33 nm 0.86 nm
AN 45/80 0.31 nm 0.49 nm 0.28 nm 0.61 nm
AN 25/80 0.26 nm 0.54 nm 0.23 nm 0.94 nm

While all values for the localization length in the case of sc 100meV and sc 80meV are similar
for each approach, the situation is different for the other morphologies. Just like the fit with
Bassler’s model or the numerically fitted temperature model, the experimental approach
predicts a decreasing localization length with decreasing field dependence, while the mean
localization lengths from the inputs double from first to last morphology in Table 5. However,
compared to Bassler’s model (cf. Table 3), the fitted localization length of the experimental
approach is significantly higher, while the values from the numerically fitted temperature
model (1%t column in Table 5) remain close to the experimental approach (3™ column). This
first shows that the functional dependence from the effective temperature here is different
from Bassler’s model, which is supported by the deviations from a straight line in the plot of
the temperature dependence of the conductivity. Secondly, even with the numerically correct
temperature dependence being comparable to the experimental approach, a significant
contribution to the field dependence besides the heating of the charge carrier distribution is

missed.

From Figure 26 it is also evident that while for the homogeneous systems sc 100meV and sc
80meV the effective temperatures obtained experimentally and by fitting the DOQOS from the
simulation are very close, the deviations get significantly larger for increasing aggregate size.
For these inhomogeneous, aggregated systems, the experimental approach produces
systematically smaller effective temperatures than the fit to the DOOS from the simulation. It
therefore predicts a smaller localization length than the effective temperatures obtained from
the DOOS. Inversely, if one would take the actual heating of the charge carrier distribution
from the effective temperature obtained from the fit of the DOOS and reverse engineer the
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field dependence via o(F,T,) = O'(TEff(F, To)), one would obtain a significantly stronger

field dependence. Also, the strength of the field dependence cannot solely be explained by
the morphology, since otherwise the effective temperature curve of e.g. Annealed 25/80
would lie above the curve of Annealed 45/80, which is not the case. Therefore, the
inhomogeneity and also the decreasing disorder counteract the heating effect. This once more
indicates that indeed the effective temperature alone cannot be the determining quantity for
the field dependence of organic semiconductors. At least both disorder and morphology

significantly impact the field dependence.

Another contribution to the field dependence might also lie in the (position of the) transport

energy, which however is also connected to the disorder and the morphology.

This can be seen from the Mott-Martens model, where the (zero field) conductivity is

Etr—EF

P ) The transport energy and Fermi energy are shown in
B

determined as g X exp (—

Figure 27.

Fer?Oi Energy and Transport Energy vs. Field for sc and aggregated-sc Morphologies
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Figure 27 — Transport energies (upper curves) and Fermi energies (lower curves) for different

morphologies.
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The Fermi energy is less sensitive to the field (Figure 27) and the observed deviations form a
constant value are more due to fitting errors in the DOOS fitting procedure. One can therefore
approximately treat it as constant with field. The transport energy however is field dependent,
which can be explained by the heating of the charge carriers through the field. This effect is
more pronounced with higher disorder. From that alone, one would expect a decreasing
conductivity, but the heating of charge carriers through the field counteracts that. The net
effect could therefore be small, as can be seen in the field dependencies of the morphologies
with higher disorder, which are enhanced and not reduced. However, with increasing transport
energy, thus moving towards the center of the DOS, the charge carriers get more delocalized
since the localization length distribution gets more delocalized towards the center. This would

then lead to an enhanced field dependence.

Lastly, there are additional points to mention concerning the morphology or geometry of the
OSC itself. First, most theories, just like the effective temperature model together with
Bassler’s model assume field-independent conduction/percolation paths. This is however not
true. With increasing electric field, previously hard hops can be activated and produce
shortcuts in the percolation route of charge carriers. This purely geometric effect leads to an
increasing field dependence and is strongly morphology dependent. Also, most theories work
in homogeneous or effective medium approaches to be able to treat the generally complicated
problem analytically. This however can underestimate the morphology effects drastically,
especially in highly energetically and spatially correlated systems, as it is the case here through
the modelling of the OSC with a tight binding model. As last point to mention concerning the
effective temperature approach is that intuitively, the field dependence cannot be solely
explained by an isotropic effect which the field induced heating of charge carriers is, since an
electric field is per definition anisotropic. One should therefore usually not expect, that an

anisotropic effect can be solely explained by an isotropic modification.
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Field Dependence of the conductivity from Molecular Dynamics Morphologies

In this section the same analysis is performed for the Molecular Dynamics morphologies of
P3HT with chain lengths of 4, 8, 16 and 32 (called 4mer, 8mer, 16mer and 32mer) provided by

P.S. Floris. Details on the MD simulations are given in the Theory and Methods section.

For the tight binding model, the transfer integral scaling factor was taken to be v, =
1.5 X 10145. Again, no ions are considered, so V = 0. The diagonal disorder is throughout
taken to be 75 meV. The critical angle between monomers within the same chain for a
conjugation break was taken as 40°. The orbital parameters of the monomer sites are
(lx, ly, lz) = (1.2,1.2,0.8) - 0.1 nm, i.e. flattened spheres. For the different oligomers, two

cases of intra-chain enhancement factors were considered, one moderate f;.;, = 1.3 and one

larger f;.n, = 10. Figure 28 shows a fraction of the chains of each MD morphology.

Figure 28 — Visualization of fractions of different P3HT oligomer morphologies generated by Molecular

Dynamics.
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The 4mer morphology consists out of homogeneously distributed chains, which are mostly
very straight because of the rigidity of the backbone and the small chain length. The 8mer
morphology is similar, the chain length is still short enough to have mostly straight chains due
to the rigidity. The situation starts to change in the 16mer case, where the chains are long
enough to bend creating U or S shaped chains mostly. In the 32mer case the rigidity is not
sufficient anymore for the length of chains and steric effects cause significant spatial disorder

and clumping of chains with more conjugation breaks.

The 2D projections of slices of the COM lattice for each oligomer morphology in the case of

smaller intra-chain coupling are shown in Figure 29.
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Figure 29 — Projections of slices of the COM lattices for different oligomers of P3HT for f;., = 1.3.
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The COM lattices basically show the same behavior as seen and described for the original MD

morphologies, namely homogeneously distributed and randomly orientated chains.

The same holds for the high intra-chain coupling in Figure 30, except for the larger
delocalization along the chains. It’s noted here, that for the case of f;.;, = 10 the 32mer

morphology was not considered since some unresolved error in the data occurred.
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Figure 30 — Projections of slices of the COM lattices for different oligomers of P3HT for f;.;, = 10.

Performing the tight binding diagonalization, the results of the therefrom obtained DOS and
localization length distributions are shown in Figure 31 for f;.;, = 1.3 and f;.;, = 10 in Figure
32. For the f;., = 1.3 case, the DOS give gaussian distributions, all with a disorder of oo =
80 + 3 meV. It should be noted here, again, that for the 32mer configuration some numerical

artefacts occurred producing far outliers in energy. Therefore, these energies got assigned a
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cutoff value of Eryin/max = +15kpT. The localization length distributions all look very similar.

The mean localizations of all configurations are shown in Table 6.

DOS 4mer € Localization Length Distribution 4mer
<)
£
2 )
5
(@] c
Ke]
©
N
©
o
o
-10 -5 0 5 10 15 =
DOS 8mer €
- : - £
<)
£
£
(2]
c
<
c
o
©
N
©
[
o
-10 5 0 5 10 15
DOS 16mer € Localization Length Distribution 16mer
. £ : 5 : :
S o°
£ Q
£
(o2}
c
@
c
k]
©
N
g
o 0
-10 -5 0 5 10 15 = -10 -5 0 5 10 15
DOS 32mer =
T c
S
£
£
(2}
c
@
c
i)
©
N
©
o
o
-10 5 0 5 10 15 -
Enerergy in kB T Energy in kB T

Figure 31 — Left column: DOS of the different oligomer morphologies for f;., = 1.3. The orange curves
are single gaussian fits. Right column: Corresponding localization length distributions with the mean

localization curve in black.
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Table 6 — Mean localization lengths of the oligomer configurations for f;., = 1.3.

Morphology 4mer 8mer 16mer 32mer
Xnean 0.34 nm 0.35 nm 0.35 nm 0.3 nm
Opos 80 meV 80 meV 80 meV 80 meV

The relatively small intra-chain enhancement factor of f;.;, = 1.3 causes only a slight increase
in localization length with increasing chain length. Eventually, the spatial disorder especially in
the 32mer case causes a higher localization than for the other oligomers. The situation changes

a little bit for the higher intra-chain coupling enhancement factor of f;.;, = 10 (Figure 32).
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are single gaussian fits. Right column: Corresponding localization length distributions with the mean

localization curve in black.
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Table 7 — Disorder and mean localization lengths of the oligomer configuration with f;., = 10.

Morphology 4dmer 8mer 16mer
Opos 137 meV 142 meV 150 meV
Anean 0.42 nm 0.47 nm 0.5 nm

For higher intra-chain coupling, the energetic disorder is expectedly enhanced and a small
high-energy tail forms, which however is not very relevant for charge transport. The disorders
increase a little bit for larger chain lengths. At the same time, the mean localization length is
enhanced for longer chain lengths, explained by the higher chain length over which the
wavefunction can delocalize with higher intrachain coupling, see Table 7. The high intrachain
coupling also explains the higher delocalization of lower energy states compared to the smaller

intrachain coupling case.

In the following, the field dependence results are presented. All simulations were performed

at a charge carrier density of ¢, = 0.5%. Figure 33 shows the results for the f;;, = 1.3 case.
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Figure 33 — Left: Conductivity field dependence of different oligomer morphologies. Right: Normalized

conductivity field dependence.

While in this case, the DOS have almost the same disorder, the localization length increases
slightly until a chain length of 16mer. Also, for longer chains there are for conduction more
efficient intra-chain hops as long as the chains are not too deformed. From that, it is evident
that also the conductivity gets larger until the 16mer. The smaller localization length and the

spatial disorder of the 32mer case however leads to a decrease in conductivity. This is also due
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to the artificially low traps that are induced through the energetic cutoff as mentioned above.
For the field dependence one can see that it is quite similar, but increases slightly with chain
length. This has again two causes. On the one hand, slightly more delocalization leads to
slightly stronger field dependence with increasing chain length. In the 32mer case, there is
more spatial disorder compared to the other cases, which enhances the field dependence in
this case, also probably together with the artificial deep traps. This additional disorder
overcompensates the effect of the slightly reduced localization length on the field
dependence. This again shows that disorder, both energetic and spatial, has a higher effect on

the field dependence than slight changes in localization length.

Figure 34 shows the field dependence for the f;.;, = 10 case.
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Figure 34 — Left: Conductivity field dependence of different oligomer morphologies for the f;.;, =

10 case. Right: Normalized conductivity field dependence.

For this case, the situation seems unexpected. While the total conductivity is still expectedly
increasing due to the increasing delocalization length with chain length, the field dependence
is much different. From just disorder and localization length one would, from the two main
rules considered so far, expect the 16mer case to have the highest field dependence; it
however has the weakest, or basically the same as the 4mer case. | attribute this to two
possible reasons. One is that the transport energy (see Figure 35) of the 16mer case for f;.;, =
10 is deeper and more field dependent than for the other two cases. This behavior is absent

in the case of f;.;, = 1.3, where the differences of the different oligomers are negligible and
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therefore have no influence. As discussed in the previous section, this has a negative effect on
the field dependence, which here might not be fully compensated by heating to the effective
temperature. It should be noted that the apparent field dependence of the Fermi energy in
this case is, as before, an artefact of the fitting procedure, since the calculated Fermi energies

are deeper than the lowest states of the DOS due to the high disorder.

Another possible reason might be reverse field hopping®%%3. In the 16mer case, the chains are
not as stiff anymore and are bend. The high intra-chain coupling can make hopping in the
electric field direction less efficient in the chain region where the chain bends back against the

field, which can have a negative effect on the field dependence.
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Figure 35 — Left: Transport energy (upper curves) and Fermi energy (lower curves) for different oligomer
morphologies in the case of f;.;, = 1.3. Right: Transport energy (upper curves) and Fermi energy (lower

curves) for different oligomer morphologies in the case of f;.;, = 10.

In the following Figure 36 and Tables 8 and 9, the field dependencies are fitted to the field
dependence models from effective temperature (left) and the effective temperatures from the
DOOS fits from the simulation are fitted to the two effective temperature models (right), as

done in the past section.
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Figure 36 — Left column: Fits to the field dependence models using effective temperature model 2 on
the different oligomer morphologies for f;.;, = 1.3. Right column: Fits to the effective temperature

from the DOOS fits in the simulation with both effective temperature models.
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Table 8 — Localization lengths from fits of o (Teff(F)) to the simulated data for different oligomer
morphologies (f;.n, = 1.3) (Figure 36, left). The last column gives the mean localization length from
the a(E) distributions obtained from the tight binding calculations for comparison. Te(;} is the effective

temperature model 2.

Morphol Model ¢))

orphology ode o from o (Teff) Amean
4mer Bassler 0.17 nm, C=0.6
4mer o(T) Fit 0.28 nm 0.34 nm
8mer Bassler 0.22 nm, C=0.42
8mer o(T) Fit 0.29 nm 0.35nm
16mer Bassler 0.19 nm, C=0.62
16mer o(T) Fit 0.30 nm 0.35nm
32mer Bassler 0.3 nm, C=0.33
32mer o(T) Fit 0.35nm 0.3 nm

Table 9 — Localization length from fits of the effective temperature models 1 and 2 onto the effective
temperatures obtained from the simulations (Figure 36, right). Mean localization length, localization
length at transport energy and Fermi level from the localization length distributions from Tight Binding

calculations for comparison in the last columns. Errors for fitting approximately Aa = 0.05 nm.

Morphology a from Tg)f a from Tg)f Qmean a(E,) a(Ef)
4dmer 0.24 nm 0.36 nm 0.34 nm 0.35 nm 0.25 nm
8mer 0.27 nm 0.39 nm 0.35nm 0.35nm 0.25 nm
16mer 0.23 nm 0.34 nm 0.35 nm 0.35 nm 0.25 nm
32mer 0.28 nm 0.42 nm 0.3 nm 0.3 nm 0.25 nm

Considering the errors in the effective temperatures from fitting the DOOS in the simulation,
the values of the localization length from the fitting with model 2 agree reasonably well with
the mean localization length or equally the localization length at the transport energy (Table
9). Only the 32mer has a higher deviation, which might be explained by higher spatial disorder
and inhomogeneity, as discussed before. As encountered before, the first effective
temperature model gives lower values for the localization length. The localization length

obtained by fitting Bassler’s model however gives poor results with more spread (Table 8). The
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results again correlate with a varying ¢ parameter. Higher c fitting values lead to a lower fitted
localization length. The model with the numerical fits to the temperature dependence (see
Figure 38 for the simulated temperature dependencies) however give better results with

values closer to the input localization lengths.

The fitting results for the f;., = 10 case are shown in Figure 37 and Tables 10 and 11.
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Figure 37 — Left column: Fits to the field dependence models using effective temperature model 2 on
the different oligomer morphologies for f;.;, = 10. Right column: Fits to the effective temperature from

the DOOS fits in the simulation with both effective temperature models.
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Table 10 — Localization lengths from fits of o (Teff(F)) to the simulated data for different oligomer
morphologies (fi.n = 10) (Figure 37, left). The last column gives the mean localization length from the
a(E) distributions obtained from the tight binding calculations for comparison. Te(?} is the effective

temperature model 2.

Morphol Model ¢))

orphology ode o from o (Teff) Amean
4mer Bassler 0.97 nm, C=0.04
4mer o(T) Fit 0.64 nm 0.42 nm
8mer Bassler 1.05 nm, C=0.04
8mer o(T) Fit 0.83 nm 0.47 nm
16mer Bassler 0.92 nm, C=0.03
16mer o(T) Fit 0.66 nm 0.5 nm

Table 11 - Localization length from fits of the effective temperature models 1 and 2 onto the effective
temperatures obtained from the simulations (Figure 37, right). Mean localization length, localization
length at transport energy from the localization length distributions from tight binding calculations for

comparison in the last columns. Errors for fitting approximately Aa = 0.05 nm.

Morphology afromT S} a from TS%r Xmean a(Ey)
4dmer 0.28 nm 0.41 nm 0.42 nm 0.5 nm
8mer 0.31 nm 0.46 nm 0.47 nm 0.6 nm
16mer 0.33 nm 0.5 nm 0.5 nm 0.7 nm

Again, the fit parameters obtained from Bassler’s model are very poor. On the one hand, the
localization length is significantly overestimated. Secondly, also the ¢ parameter is one order
of magnitude lower than usually considered values and what has been obtained for all other
morphologies considered here. Therefore, this model is not suitable for these morphologies.
In this case however, also the values obtained for a with the model using the numerical fit to
the temperature dependence (see Figure 38 for the simulated temperature dependencies for
ficn = 10) are overestimated compared to the input values. The high intra-chain coupling
seems to have a significant impact on the details of the field dependence. On the other hand,
the fit values of the localization length from fitting effective temperature model 2 to the

simulation data of the effective temperature match perfectly with the mean localization length
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of the distributions. Next, the results from the experimental approach are compared in the

following Figures 39 and 40 and Tables 12 and 13.
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Figure 39 — Extracted effective temperature from the experimental procedure and from the DOOS from

the simulations for different oligomers in the case f;.;, = 1.3. All datasets are fitted with effective

temperature model 2, respectively.

Table 12 — Comparison localization lengths extracted from fit to field dependence, by direct fit to

effective temperature of the simulation output and the experimental procedure in the case f;., = 1.3

(Figure 39). The mean localization length of the input distribution is also given for comparison.

ay;e from agi; from fit to Tgr)f agy; from fit to TS,)f from  @mean
Morphology o(Tf;)f) o(F,T) = a(p ~ 0, Teff)
4mer 0.28 nm 0.36 nm 0.27 nm 0.34 nm
8mer 0.29 nm 0.39 nm 0.29 nm 0.35 nm
16mer 0.30 nm 0.34 nm 0.30 nm 0.35 nm
32mer 0.35nm 0.42 nm 0.35 nm 0.30 nm
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Figure 40 — Extracted effective temperature from the experimental procedure and from the DOOS from
the simulations for different oligomers in the case f;.;; = 10. All datasets are fitted with effective

temperature model two, respectively.

Table 13 — Comparison localization lengths extracted from fit to field dependence, by direct fit to
effective temperature of the simulation output and the experimental procedure in the case f;., = 10

(Figure 40). The mean localization length of the input distribution is also given for comparison.

Arit g‘)’m ayi; fromfitto T ‘(jr)f gy from fit to Tfjr)f from
Morphology  ¢(T /) 6(F,T) = 6(F~ 0,T,;;)  “mean
4dmer 0.64 nm 0.41 nm 0.71 nm 0.42 nm
8mer 0.83 nm 0.46 nm 0.89 nm 0.47 nm
16mer 0.66 nm 0.50 nm 0.70 nm 0.50 nm

The discussion is started with the case of f;.;, = 1.3 (Figure 39 and Table 12). Both the
localization lengths of the model with the numerically fitted temperature dependence and the
experimental approach give consistently the same result. However, compared to the effective
temperature obtained from the DOOS fitting in the simulation, the curves lie slightly lower.
This might partially be due to higher errors from the DOOS fit, but hints also towards
underestimation of other factors determining the field dependence as discussed before. The
polymerical structure can act as an inhomogeneity, leading to a slightly reduced field
dependence. However, the additional intra-chain coupling is small, therefore the effect is

112



rather small, the curves and especially the points on which they are fitted are close and the
obtained values of the localization length are comparable to the input. This case is therefore
more comparable to the homogeneous systems sc 80meV and sc 100 meV in the last section.
If now the inhomogeneity of the morphology is enhanced by considering a high intra-chain
coupling, one should expect deviations. Indeed, looking at the obtained results for f;.;, = 10
in Figure 40 and Table 13, the differences are much more significant. While again, the model
with numerically fitted temperature dependence and the experimental approach give very
similar results within the error bounds, the deviations from the effective temperature obtained
by fitting the DOOS is significant. Interestingly, in this case the obtained effective temperatures
and therefore localization lengths are significantly higher than from the DOOS case and the
input localization lengths, where latter two give the same localization length. The highest
effective temperature curve is obtained for the 8mer case, consistently with the highest field
dependence. This behavior is opposite to the behavior that was obtained for the more
aggregated morphologies from the last chapter, where the effective temperature curves and
therefore localization lengths lie under the effective temperature curve obtained from DOOS.
An explanation might be the different morphological structure here. While previously
considered cases are homogeneous or aggregated, here the morphology might resemble more
some kind of filamental structure where inter-chain hopping is minimized while intra-chain
hopping is maximized. However, in this model the delocalization is treated isotropically, but
enhanced delocalization along a chain would give more anisotropic localization lengths. This
could lead to slight deviations in this case, but probably not change the qualitative result. Also,
the considerably higher energetic disorder in this case could again play a decisive role. In any
case, the field dependence is here much more enhanced than expected by heating of the

charge carrier distribution.

To sum up this chapter, the effective temperature approach fails to explain the field
dependence of OSCs consistently with the given physical parameters like the localization
length in simulation. Both the obtained localization lengths from the fit to the field
dependence of the conductivity and the experimental approach deviate from the input values.
Especially systems containing any kind of inhomogeneity like aggregation or strongly filamental
morphologies can lead to significant discrepancies. In the former case, aggregation leads to a
reverse trend of localization lengths with respect to the input values, while filamental

structures as obtained from the MD morphologies with high intra-chain coupling give higher
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localization lengths than the input values. Hereby, the influence of anisotropic delocalization
for the filamental morphology should not change the qualitative result, but can be studied in
future work. Additionally, the effect of disorder seems not to be properly captured by the
simple effective temperature approach and also other influences on the field dependence
apart from the effective temperature cannot be excluded. Therefore, the validity of the usage
of the effective temperature approach can a priori not be guaranteed for all systems and can

possibly lead to misinterpretations of obtained lengths scales in an experimental approach.

However, the apparent experimentally observed strong field dependence for aggregated
systems at already lower fields could not be reproduced with the current model and
morphologies. It is possible that the considered morphologies do not capture important
morphological details besides the aggregation that lead to the observed behavior. First, the
too low shift of means of the aggregated and amorphous phase in the DOS should have a
significant influence on the charge transport. A more careful treatment of enhanced transfer
integrals within the aggregated phase compared to the amorphous phase could partially
resolve the issue. Secondly, the considered aggregated morphologies do not give rise to
hopping between large delocalized aggregates. Here, the aggregated morphologies consist
either of more dense small aggregates or larger aggregates separated by an also larger
amorphous phase. For inter aggregate hopping, the total rate of a delocalized state within an
aggregate j into other delocalized aggregates 154 j~agg = Xicagg Pagg,j—agg,i Must be much
larger than the total rate into the amorphous phase I'; 5 jam = Xicam Pagg,j—am,i- Since the
number of localized states in the amorphous phase is larger than the number of neighboring
aggregates, and the aggregates wavefunction quickly localizes within the amorphous phase
with decay length &, the amorphous phase should be relatively thin in terms of the
wavefunction decay length, & = L,,,,, with L, being the average distance between
aggregates. This condition is not fulfilled for the considered aggregated morphologies. As
argued in an upcoming paper (cf. list of publications, M. Shokrani et al.) to which this work
contributes, hopping between delocalized aggregates could lead to an apparent effective
localization length that scales the actual localization length up by a factor like ~d /L, with
the aggregate size d. This effective behavior could lead to an enhanced field dependence at
lower fields. To prove this claim numerically however, additional simulations are needed that

include the discussed and possibly also other modifications.
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Charge Carrier Concentration Dependence

This chapter investigates the conductivity and Seebeck coefficient up to high charge carrier
concentrations for the same morphologies that were studied in the chapter about field
dependence. In a previous paper®* experimental results have shown a previously unexplained
power law dependence of the conductivity of p-type doped OSC as function of charge density
at high charge densities, 0 « n® with s > 2. In a semi-analytical Mott-Martens-like approach,
it has been shown that this phenomenon can emerge due to partial delocalization of charge
carriers. In a more rigorous approach, this result is recovered here with the simulation

approach that was developed in this thesis.

All simulation parameters are the same as in the field dependence chapter but with a fixed

electric field of F = 107 % and a charge carrier concentration range of ¢, = 0.1% — 40%.

Simplified Model Morphologies

The discussion starts with the simplified model morphologies again. Figure 41 shows the
charge carrier concentration dependence of the mobility and conductivity of these

morphologies.
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Figure 41 — Left: Mobility as function of charge carrier concentration of different morphologies in a

double-log plot. Right: The same for conductivity.

The order of the morphologies of highest to lowest conductivity was already discussed in the
previous chapter. The conductivity and mobility get larger with less disorder and higher
localization length. The usual approximate relation o « n for low charge carrier concentrations
is recovered here, the mobility gets increasingly flat for the lowest charge carrier
concentrations. It would get even more flat for lower charge carrier concentrations, however,
due to the limited simulation box size the lowest senseful charge carrier concentration is
around ¢y = 0.1% to have enough simulated charges for reasonable statistics. From Figure 41
it can be seen that the slope of the mobility, and therefore the slope of the conductivity gets
increasingly higher towards higher concentrations. This effect is more pronounced for lowest
conductivities, i.e. highest disorders. This leads to an approximate power law of o « n? for the
lowest conducting morphology sc 100meV and to a power law of ¢ o n? for the highest
conducting morphology Annealed 25meV/80meV. To understand this behavior, one needs to
look at the Fermi- and transport energies, which are shown in Figure 42 and look at the
localization lengths at the corresponding positions in energy in the localization length

distributions Figure 19 and 22.
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Figure 42 — Transport energies (upper curves) and Fermi energies (lower curves) as function of charge

carrier concentration for different morphologies.

From the localization length distributions, one sees the onset of delocalization of charge
carriers around above —50 meV to —75 meV. The Fermi energies start to enter this region at
around c¢; = 20%. For the highest disorders, the transport energy lies at the onset of
delocalization. There, the localization length starts increasing already at around ¢y = 1%. The
conductivity in the semi-analytical Mott-Martens model is proportional to the critical transfer
rate between states at the Fermi energy and the transport energy

Etr - EF)

p(Eer) = exp (_R*(“_I(Etr) + a_l(EF)) — kB—T

(155)

While the dependence on the charge carrier concentration usually mainly comes from the
Fermi energy being approximately logarithmic in ¢ in the classical Mott-Martens Model, in
the model for energy dependent localization length one gets another contribution to the

charge carrier concentration dependence from the change of effective localization length

Z(a‘l(Etr) + a‘l(EF))_l. Therefore, the slopesinln(c) = A+ s - ln(cf) increases if either
of both localization lengths a(Ey,-) or a(EF) starts to increase with c;. Intuitively it is clear that
a rising localization length leads to rising conductivity. Comparing the charge carrier
concentrations where either of both localization lengths starts to increase to Figure 41, one

sees that these are also approximately the charge carrier concentrations where the slope s
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starts to increase. Since for the highest disorders the localization length already starts to rise
at the transport energy, the slope gets higher earlier. At higher c¢; one then gets an additional
contribution from the rising localization length at the Fermi energy. Generally, the slope is
dependent on the slope of the localization length distribution and the slope of the transport-
and Fermi energy, i.e. how fast in energy the localization length distribution slope is climbed,
and the availability of sites (DOS) at these energies. Additionally, the slope gets lower for
higher total localization lengths and conductivities, since there is less gain in conductivity to
get from even higher delocalization, i.e. a saturation effect. On the other hand, lower
conductivities have a higher slope due to a catch-up effect. All this together explains the effect
of power law dependence of the conductivity with charge carrier concentration of the different
morphologies observed in Figure 41. An explanatory picture of this effect is schematically

shown in Figure 43.

However, in the simulations the slope is a little bit lower than calculated in the semi-analytical
case. The reason for that is the not well-defined localization length curve in this case. Instead
of stating that every localization length at a given energy is equal as in the semi-analytical
model, here we have a scattered distribution of localization lengths, such that there are also

well-localized states at all energies, which lowers the slope.
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Figure 43 — lllustration of the reason for the change of slopes in the a(n) double-log plots Figure 41.
Panel (a) shows the dependence of the localization length vs. site energy, which, using the charge
density dependence of the Fermi and transport energies in panel (b) can be converted to the
conductivity vs density relation in panel (d). Panel (c) illustrates the hopping process between two sites
with different energies and localization lengths, indicated by different lengths of lines and the
schematic (colored) wave functions. Red and blue color gradients indicate the change of Fermi level
and transport energy with charge density n (red arrow). The indicated regions I-lll in panel (d) divide
the graph into the respective regimes of linear, power-law, and saturation behavior of the conductivity.

Adapted from my paper®*. Licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).
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In the next section, the Seebeck coefficient is studied. Figure 44 shows the dependence of the

Seebeck coefficient on the charge carrier concentration and on the conductivity.

Seebeck Coefficient vs. Conductivity for different Aggregations and Disorders Sﬁ%%%‘;k Coefficient vs. Charge concentration for different Aggregations and Disorders
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Figure 44 — Left: Seebeck coefficient as function of conductivity for different morphologies. The dotted
lines are guides to the eye for the frequently observed inverse relation between Seebeck coefficient
and conductivity. Right: Seebeck coefficient as function of charge carrier concentration for different

morphologies.

The slope b of In(S/Sy) = b-In(c) for lower charge carrier concentrations of all
morphologies is similar, but with a different value of —1/8 than the experimentally often
observed slope of —1/4. The reason for that is attributed to the form of the DOS, being a
combination of gaussians. The slope of —1/4 is rather obtained from exponential tails in the
DOS®® that emerge due to doping in real systems. For the present simulations, no doping is

considered though. This phenomenon has been observed in literature before®.

All curves seem to be only shifted to each other according to their conductivity. From the right
graph of Figure 44, one can also see that despite the significant differences in conductivity of
the different morphologies, the Seebeck coefficient seems to be rather untouched. The
differences between the curves of Seebeck coefficient plotted against the charge carrier
concentration are only between 50uV/K and 100 uV /K. Previous studies like from
Upadhyaya et al.’® confirm this result. For an increasing localization length, the Seebeck
coefficient therefore seems nearly untouched. The same holds for introduction of positional
disorder or spatial or energetical correlations in the system. The largest but still limited effect,
as can also be observed here, is the disorder of the system, where low disorders decrease the

Seebeck coefficient a little bit. Thereby, the introduction of an energy dependent localization
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lengths together with all the spatial and energetical correlations that are considered in the
simulations of this thesis are not expected to have a large influence either. One reason for that
is that the Fermi energy and transport energy are mostly influenced by the DOS and therefore
by the disorder. The Seebeck coefficient is proportional to the difference of these energies. As
can be seen in Figure 42, these energies move in accordance to each other for all morphologies
such that their difference is largely constant, which means that the modulation of conductivity
for different morphologies is to some extent decoupled from the corresponding Seebeck
coefficient. This result links to the result of the first chapter, where an anisotropic localization
length achieved by an increased edge-on face-on ratio could significantly increase the
conductivity while letting the Seebeck coefficient considerably less affected by the

morphological modification.

In the following section the corresponding results for the MD morphologies are presented.

Molecular Dynamics Morphologies

Figure 45 shows the charge carrier concentration dependence of the conductivity for the case

of fin = 1.3.
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Figure 45 - Left: Mobility as function of charge carrier concentration of different oligomer

morphologies in a double-log plot. Right: The same for conductivity.
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The similarity of the curves for the different chain lengths and the deviation of 32mer was
already addressed in the chapter about field-dependence. It should be noted that here the
data point of 32mer for ¢ = 0.1% is a numerical artefact and therefore be neglected. Again,
a linear dependency of the charge carrier concentration at low concentrations is observed. At
higher c¢, the curves are approximately quadratic with c¢. The flatter localization length
distributions compared to the simplified model morphologies prevent an even higher slope in
this case. The conductivities compare to experimentally observed values most realistically for
¢ = 0.1% to lightly to medium doped P3HT, where values reach from 107> S/cm to
1072 S/cm °7. However, albeit the morphologies are obtained from MD simulations of P3HT,
direct comparisons need to be treated with care, since the MD simulations are done for
pristine, monodisperse and low molecular weight of only around M,, = 3 kDa, i.e. small chain
length rrP3HT. Compared to such low molecular weights, the obtained mobility is probably too
high®® such that e.g. the attempt-to-hop frequency and/or the transfer integral scaling factor
needs to be chosen lower. Realistic P3HT is polydisperse with higher molecular weight®?, i.e.
longer chain lengths and even the cleanest badges of rrP3HT contain a small fraction of regio-
randomness. Besides that, both doping and deposition techniques have influence on the
morphology, which in turn can have a significant influence on the conductivity. Also, the
simulation approach here has tunable parameters like the scaling factor of the transfer
integrals, the orbital parameters and the attempt-to-hop frequency in the kMC simulation.
However, it would be possible to obtain a more material specific parametrization of those with

ab-initio calculations as DFT.

From experiments'® one would expect a difference in conductivity for different chain lengths
of P3HT, what is however not significantly observed in Figure 45. This is mainly due to the
comparatively low intra-chain coupling factor of f;.;, = 1.3. Therefore, also simulations with
an enhanced intra-chain coupling factor of f;., = 10 were performed. The results are shown

in Figure 46.
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Figure 46 - Left: Mobility as function of charge carrier concentration of different oligomer

morphologies for f;.;, = 10 in a double-log plot. Right: The same for conductivity.

In this scenario the difference can be seen. Especially for charge carrier concentrations of ¢, >
1%, the mobility curves get steeper with increasing chain length. For lower charge carrier
concentrations, the relative differences of the conductivity to the next higher chain length are
> 30% with an increasing difference for higher charge carrier concentration. The slope of the
conductivity curve at higher charge carrier concentrations however is reduced in comparison
to the cases considered before. This is due to the more uniform localization length distribution
of these morphologies obtained by the tight binding calculations. The overall magnitude of the
conductivities increases approximately one order of magnitude compared to the f;., = 1.3

case, highlighting the importance of intra-chain coupling for the conductivity.

In the following the Seebeck coefficient is investigated and compared to all other considered
morphology cases. Figure 47 shows the curves of Seebeck coefficient over the conductivity

and the charge carrier concentration for the both cases of f;., = 1.3 and 10.
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Figure 47 — Upper graphs: Seebeck coefficient as function of conductivity for the case f;., = 1.3 (left)
and f;., = 10 (right). Lower graphs: Dependence of Seebeck coefficient on charge carrier

concentration for f;., = 1.3 (left) and f;., = 10 (right).

For the case of f;., = 1.3, the discussion is the same as for the model morphologies in the last
section. One gets a relation of rather S < ¢~/8 than « o~/ due to the gaussian DOS and a
fall-off at around 300 uV /K. Interestingly, the fall-off is much less pronounced for the case of
fiecn = 10, which may be due to the deep transport energy that did not saturate yet. Also, as
expected from the conductivity as well, the dependency of the Seebeck coefficient on the
charge carrier concentration is the same. However, in comparison to the simplified
morphologies in the last section, the Seebeck coefficient for f;.;, = 1.3 is around 100 uV /K
lower, especially the sc 80meV morphology with the same energetic disorder and DOS form.

In the case of f;.;;, = 10 the effect is even higher, here the Seebeck coefficient reduces
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drastically to only around 550 uV /K. From the higher disorder (= 140 meV) one would
rather expect a higher Seebeck coefficient. For the interested reader, the resulting influence
on the powerfactors is shown in the SI. Also, the mean localization length is not considerably
different from all the other cases. The only difference is the more delocalized lower energy
states in the case of f;.;, = 10. Looking at the transport energy of the oligomer morphologies,
they interestingly lie significantly deeper than for comparable simplified morphological cases
(around —40 meV for the oligomer morphologies with f;.;, = 1.3 (cf. Figure 48) compared to
around 0 meV for the latter). This might be due to efficient/enhanced and lower energetic
intra-chain transport for the MD morphologies compared to the other. This effect would be
even more enhanced for the energetically high disordered case with an even stronger intra-
chain coupling of f;.;, = 10, possibly explaining the further decrease in Seebeck coefficient
and would also explain the increase of conductivity over one order of magnitude despite the
disorder. This is supported by the very deep transport energy in the case of f;., = 10 in Figure
48.
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Figure 48 — Left: Transport energies (upper curves) and Fermi energies (lower curves) as function of

charge carrier concentration for the case f;.; = 1.3. Right: The same for f;., = 10.

To conclude this section, the superlinear increase in conductivity for high charge carrier
concentrations could be reproduced. Different morphologies can have a huge impact in
conductivity, while the Seebeck coefficient is often rather unaffected. However, a low-lying
transport energy, like through efficient and highly coupled intra-chain transport in low energy
states or generally a low energetic percolation/conduction path can significantly reduce the
Seebeck coefficient. From a practical point of view, the effect on the powerfactor is however

still dominated by the conductivity.
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Density of States Renormalization for High Doping Concentrations

This chapter covers my contribution to the paper!®! about modelling of the DOS at low to
intermediate doping concentrations. The following introduction summarizes the key aspects

of the coworker’s argumentation.

For designing thermoelectric devices, the aim is always to maximize the figure of merit

PF S%0 .
ZT = = and therefore also the powerfactor PF. This is however a far from
KeltKiat KeltKiat

trivial task. As already outlined in the Theoretical Background, the well-known?! trade-off

~1/% for single-material and low

between the Seebeck coefficient and the conductivity S < o
to intermediate doping concentrations prohibits the simultaneous increase of both
parameters. This inverse relationship between Seebeck coefficient and conductivity is known
to be explained and obtained by an ion-induced exponential tail in the DOS®. If this
relationship would persist up to high doping, the powerfactor would scale as
PF o g'/2, which would suggest as a clear design rule to maximize the conductivity. However,
experimentally the inverse relationship only holds up to intermediate doping. Further increase
of the doping concentration is observed to cause a roll-off in conductivity, which cannot be
obtained with ion-induced exponential tails in the DOS. While one would in any case expect a
maximum in conductivity at sufficiently high doping concentrations such that the Fermi level
would reach the maximum of the DOS, experimentally one observes the roll-off of conductivity
already at intermediate doping levels. Due to this roll-off, the Powerfactor already reaches its
maximum at intermediate doping regimes, which lies around a doping level of c; = 10% and
found to define a soft upper limit of the Seebeck coefficient of around 200 uV /K, which is not
obtained by the ion-induced exponential tail and no model is able to consistently cover the
relevant doping regime where the Powerfactor is maximized. Using KMC simulations, the roll-

off at these intermediate doping levels can only be explained when considering a gaussian DOS

and free charge carriers, i.e. only carrier-carrier interaction.

To explain this, | performed TB calculations including the Coulomb potentials of counter ions.
For the underlying lattice of these simulations a simple cubic lattice of size 20 X 20 X 20 with
a lattice spacing of ayy = 0.5 nm and periodic boundary conditions was used. The orbital

parameters of the site orbitals were chosen to be (lx, Ly, lZ) = (1,1,1) - 0.1 nm and the scaling

. 1 .
factor of the transfer integrals was chosen to be v, = 1014; such that the next neighbor
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transfer integrals are in the order of 10 meV. The on-site energies were drawn from a gaussian
distribution of 50 meV disorder. The cutoff distance for the Coulomb potentials of each ion
were taken to be 2 - ayy to mimic a finite Coulomb potential depth of the ions. For each
doping concentration ¢y, on a fraction of |N - ¢4] of all N lattice sites a single ion was placed,
where the ion positions were randomly chosen from the available lattice sites. The calculations
were then performed for five different doping concentrations. First, the dielectric constant was
chosen to be €, = 3.6 for all doping concentrations. The corresponding results for the

resulting DOS and localization length distributions is shown in Figure 49 and 50.
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From both Figures 49 and 50 one can see that for lower doping concentrations of c; = 0.1%
and 1%, the well-established exponential is recovered. Further increasing the doping level to
intermediate and higher doping levels of c; = 5% — 20%, indeed the DOS renormalizes into
a gaussian DOS again. In passing, it should be noted here that the x-scales of Figure 49 and 50
are different, which was necessary for visibility. This renormalization of the DOS can be
explained by increasingly overlapping Coulomb potentials already from intermediate doping
levels on, which leads to a flattening of the potential landscape formed by the overlapping
Coulomb potentials of the ions. This is supported by the resulting localization length
distributions. While for low doping levels, the Coulomb potentials act as traps, which
introduces the low energy exponential tail, the charges get increasingly localized as seen from
cq = 0.1% and 1%. However, when the DOS renormalizes and the Coulomb potentials start

to overlap and therefore flatten the potential landscape, the charges can become increasingly
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delocalized as seen from the localization length distributions c; = 5% — 20%. This further

supports the claim of using free charge carrier at intermediate doping levels for kMC.

However, for constant dielectric constant of the host lattice of €, = 3.6, the DOS get
significantly broadened. The missing part here is that the enhanced polarizability of the lattice
due to the introduction of counter ions was neglected. As outlined in the Theoretical
Background, the introduction of counter ions into the lattice leads to an enhanced effective
polarizability of the lattice, which in turn leads to increased screening and therefore an
increased dielectric constant. To include this effect, a dynamic dielectric constant was
introduced in the simulations. The chosen values of the dielectric constants for each doping
level were approximated from the curve in Figure 1 in the Theoretical Background. The
corresponding results of the thereby obtained DOS and localization length distributions are

shown in Figure 51 and 52.
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Indeed, the introduction of an increasing dielectric constant reduces the width of the DOS
significantly. The introduction of increasing dielectric disorder also does not alter the
qualitative behavior of the DOS, with exponential tails at low doping concentrations and
renormalization of the DOS from intermediate doping concentrations on. Additionally, the

increasing screening delocalizes the charges even further compared to the case of €,, = 3.6.

A comparison of the gaussian width of all considered cases is given in Table 14.

Table 14 - Fitted disorders in units of thermal energy (300 K) for constant and dynamic €,..

Cqg = 0.1% Cqg = 1% Cqg = 5% Cqg = 10% Cq = 20%
€, = 3.6 €, = 3.6 €, = 3.6 €, = 3.6 €, = 3.6
opos/kgT | 3.8 12 31 36 54
Cqg = 0.1% Cqg = 1% Cqa = 5% Cqg = 10% Cqg = 20%
€ = € = e =10 e, =13 €, = 25
opos/kgT | 3.8 5.9 11 10 9
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While the unscreened disorders get unphysically high, the disorders for increasing screening
for increasing doping level remain limited around 10kzT for the considered screenings at
higher doping levels. This is however still broad, but is consistent with literature®1°2 that

reports significant DOS broadening with increasing doping level.

To conclude this chapter, it should be noted that the DOS renormalization can only happen in
regions in which the ions are distributed homogeneously as done here by introducing a sc
lattice with one dopant per site only to ensure a spatially uniform overlapping of the Coulomb
potentials with increasing doping level. If the ions are in any matter clustered or otherwise
inhomogeneously distributed, the exponential tail should remain even up to high doping
concentrations. It should also be mentioned that at even higher concentrations the introduced
model loses validity since carrier-carrier interactions become more and more important but

are not properly treated here for this high doping regime.

However, the here introduced model can both reproduce the necessary exponential tail in the
DOS for low doping levels that lead to the power-law S « ¢~/4 and explain the experimentally
observed roll-off of the conductivity already at the relevant intermediate doping regime by the
renormalization of the DOS into a gaussian distribution that is needed to describe the S(o)

dependency in the relevant wide range of conductivity with kMC simulations.
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Summary

In this dissertation | developed a semi-empirical tight binding model that uses model
morphologies and morphologies obtained by Molecular Dynamics simulations as underlying
lattice to perform kMC simulations with more realistic morphologies under the inclusion of
both spatial and energetical correlations and partially delocalized charge carrier wavefunctions

obtained from the tight binding calculations.

The developed model was used in combination or separately to answer different questions

that were covered in the different chapters.

In the first chapter a physical explanation was given to the experimentally found significant
increase in the in-plane powerfactor of thin films with a high edge-on to face-on ratio that
breaks the usually observed inverse relationship between the Seebeck coefficient and the

conductivity.

It was found that an increased edge-on to face-on ratio can lead to an effective delocalization
of the charge carrier wavefunctions in the in-plane direction due to m — m —stacking of
polymer faces. This in turn leads to an anisotropic effective localization length, which leads to
an increased conductivity in the in-plane direction due to enhanced tunneling rates and due
to the resulting conduction path being more direct than in the isotropic case. This however
does not alter the Seebeck coefficient significantly. In fact, it is even slightly increased. This
was explained by occasionally higher jumps in the energy landscape induced from the more
direct conduction path, while in the isotropic case the conduction path is more optimized in
the energy landscape. Therefore, in the anisotropic case the transport energy is slightly
increased compared to the isotropic case, which in turn leads to an increased Seebeck

coefficient.

The second chapter investigates the validity of the effective temperature approach for the field
dependence of the conductivity of OSCs. The question was motivated by measurements that
show an increased field dependence of the conductivity already at lower fields, which would

lead to an untypically high localization length using the effective temperature approach.

Hereby, different morphologies were considered reaching from homogeneous systems up to
increasingly aggregated systems and filament like morphologies for polymers obtained from

Molecular Dynamics simulations. For all morphologies, the actual heating of the charge carrier
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distribution obtained from the DOOS and the effective temperature models that replace the
temperature dependence of the ohmic conductivity with the effective temperature were
compared to an experimental approach to obtain the effective temperature and thereby the
localization length from temperature dependence measurements of the ohmic conductivity
and field dependence measurements of the conductivity. It was found that with increasing
inhomogeneities of the morphology the deviations between the models and the input
localization length distributions also increase. But not only the morphology seems to have an
impact on the field-dependence beyond the effective temperature effect, also disorder and
possibly other parameters like delocalization of charge carriers due to the field dependence of
the transport energy could have an influence on the field-dependence that is not captured in
the effective temperature model. These discrepancies can lead to a misinterpretation of
experimentally obtained localization lengths since all the hidden influences on the field
dependence get reflected in unphysical changes in the localization length. However, to what
extent what physical parameters influence the field dependence additionally could not safely
be explained due to the intercorrelations of different parameters in this model that prohibit
the investigation of independent changes of single parameters in the model and therefore

remain an open question for future research.

In the next chapter, the experimentally observed superlinear increase of conductivity with
charge carrier concentration at high charge carrier concentrations was numerically explained

and recovered for different morphological set ups.

The introduction of energy dependent localization lengths from the tight binding model leads
to a peaked distribution of localization lengths that is similar to the DOS. While the transport
energy remains close to the DOS center, the Fermi energy rises with increasing charge carrier
concentration until it reaches an energetic level at which the charges start to partially
delocalize. This increase in delocalization for increasing Fermi energies lead to an additional
contribution in the rising of the conductivity curve and can therefore explain the super-linear

increase in conductivity.

As last point it was discussed why the experimentally observed roll-off in conductivity in the
typically observed S(o) curves for OSCs can only be explained in a kMC model if one assumes
a gaussian DOS and free charge carriers at intermediate doping levels, which is the relevant

regime for optimized thermoelectric devices, while for lower doping levels ion-induced
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exponential tails in the DOS are formed that are responsible for the typical inverse power-law
dependence of the Seebeck coefficient and the conductivity. To answer this question, the tight
binding model developed in this thesis was used including Coulomb interaction between
charge carriers and ions for different doping concentrations. For low doping levels the well-
established exponential tail in the DOS was reproduced. However, further increasing doping
levels up to intermediate doping levels was found to renormalize the DOS back to a gaussian
DOS for uniformly distributed ions. This was explained by an increasing overlap of the Coulomb
potentials of the dopant ions that increasingly flatten the energetic landscape already at
intermediate doping levels. This is supported by an onset of delocalization accompanied by
the DOS renormalization, while for lower concentrations rather a localization due to the deep

traps induced by the exponential tails takes place.

Outlook

While the developed model can give a nice bridge between computationally very expensive
ab-initio calculations and simple and fast kMC models, the tight binding parametrization can
still be improved under the inclusion of ab-initio calculations like DFT. While the model
explicitly allows for more material specific parametrization like explicit HOMO or LUMO
orbitals of monomers, here | was limited to approximations. Additionally, the localized
character of OSCs allows for faster and computationally faster diagonalization for even larger
systems by diagonalizing overlapping subspaces as sometimes proposed in literature. Also, the
localization length obtained from the tight binding model and the IPR gives rise to only
isotropic delocalization. An interesting add-on would be the treatment of anisotropic
localization lengths from the model, which was technically already largely implemented by

myself, but not applied in the set-up of this thesis.

From a physical point of view, especially the field dependence of OSCs remains an open
guestion. Future research could try to disentangle the influences of parameters that could only
be discussed qualitatively here to obtain a deeper understanding on the still in detail illusive

field dependence of OSCs.
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Field Dependent Localization

Besides Anderson localization, there can be another localizing effect, namely Stark localization,
which is a localization effect induced by an electric field. One can intuitively understand this as
follows. In a regular lattice without disorder one can think of Blochwaves at zero field.
Introducing an electric field induces a phase shift of the sites wavefunction proportional to its
lattice position in field direction. This leads to destructive interference and therefore

localization.

| therefore also tried to incorporate the electric field into the tight binding model by

introducing a diagonal correction term Hy, = (¢;|eF - r|¢;). However, for unresolved reasons

this led to different problems. To see the problem, the simulation results for MakeSnake
45/80meV (see main text) morphology with vy =2 - 1014% without periodic boundary

conditions for a 20 X 20 X 40 lattice are shown in Figure S1 and S2.
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Figure S1 — Localization length distributions for different fields obtained once from the normal

Eigenvalue problem (upper graphs) and once from the generalized (lower graphs).
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Figure S2 — Mean localization lengths within tiles in direction of the electric field for three different

fields.

The first problem is that with increasing field the localization lengths form a spatial gradient in
the field direction (Figure S2). This is unexpected and unphysical, since the constant field
should act the same everywhere and the material is homogeneous in the sense that there is
no spatial gradient. From this behavior one should take the localization length distributions

with care, since this artefact can influence the distribution.

Secondly, from Figure S1 one sees that for the localization length obtained via solving the
generalized Eigenvalue problem HV = ESV for the Hamiltonian H, the eigenfunctions V and
the overlap matrix S, the localization length does increase instead of decrease. At the same
time, solving the Hamiltonian via the normal Eigenvalue problem HV = EV, one indeed gets
a limited decrease of about 10% from zero field to F = 107 V/m. While the generalized
Eigenvalue problem should be the correct way to solve the problem it gives the opposite effect
than expected from Stark localization. Unfortunately, the time was not sufficient to explore

this problem further and therefore this remains an open question for future research.

Besides this problematic, one could also ask the question whether the electric field would
change the wavefunction form. For this purpose, the wavefunctions of the aforementioned
morphology were analyzed by fitting ellipsoids to them using PCA as described in the

Theoretical Background. The anisotropy of an ellipsoid with main axes n;,n,,n; and
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corresponding axis lengths A,,4,, 45 can be described as a scalar from zero to one with zero

meaning completely isotropic and one completely anisotropic with the following formula93104

3o 1 (S1)
~2 X252 2

Arranging the results for all wavefunctions in histograms for different fields, one obtains Figure
$3. From this, no significant influence of the electric field on the wavefunction anisotropy can
be observed. Therefore, one can conclude that the Stark localization acts isotropic on the
wavefunctions. A similar approach can be taken to obtain the global anisotropy of the material.

Hereby, one needs calculate the gyration tensorl®3194 of all axes of all wavefunctions and

diagonalize it
3

N
:3%2211 -n: (S2)

i=1j=1

If the eigenvalues of Q are A4, 1,, A3, then the global anisotropy can again be calculated via
Equ. (S1). Evaluating this quantity here for different fields, one also does not obtain any

changes and the global anisotropy is in every case basically zero.
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Figure S3 — Histograms of wavefunction anisotropies for different fields. The x-value zero means

isotropic, the value one means completely anisotropic.
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Comparison of Localization Measures

In the Theoretical Background the idea of a generalized IPR was presented that uses Voronoi
tessellation. Here shortly, the two different models (the one used in this thesis and the
proposed generalization) are compared for the 8mer morphology. The result is shown in Figure

S4.
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Figure S4 — Comparison of Localization length distributions using the IPR with the Voronoi modification

(left) and the model used in this thesis (right).

One can see that apart from a shift upwards, the modification has a similar form of distribution
as the localization length distribution obtained via the model used in this thesis. The
modification therefore seems to predict higher localization lengths, but one should bear in
mind that in this modification no shift was performed to model the physically lowest

localization length as the orbital localization instead of some inter-site distance.
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Powerfactors

The powerfactors PF = S?o for each considered morphology is shown in the following Figure

SS.
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Figure S5 — Powerfactors of the different considered morphologies. Upper left: MD morphologies for

ficn = 1.3. Upper right: MD morphologies for f;., = 10. Lower: Powerfactors for the different

simplified morphologies.

Generally, it can be seen that the saturation of the powerfactor sets in for a little bit higher
charge carrier concentration than at the sometimes obtained ¢, = 10%. The picture hereis a
little bit more differentiated. Higher disorder leads to a saturation at higher charge carrier
concentrations. As outlined in the main text, this is due to the low-lying transport energy that

reaches saturation only at higher charge carrier concentrations. However, it should also be
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noted that in these simulations no Coulomb interactions due to counter-ions were considered.
Comparing the MD morphologies, the increased intra-chain coupling leads to lower Seebeck
coefficient but has a higher influence on the conductivity such that the effect gets
overcompensated for the resulting powerfactor. Hence, the powerfactor is increased for
enhanced intra-chain coupling for the same morphology. Experimentally this could be
achieved by enhanced delocalization of the polymer backbone, e.g. by high aromaticity.
However, chemical modifications can lead to substantial morphological and other
modifications of physical parameters, so this design-rule should be taken with care. Comparing
the simplified and partially aggregated morphologies, the differences in the powerfactor arise
almost solely from the differences in conductivity, since the Seebeck coefficient is only

marginally affected due to the reasons outlined in the main text.
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Temperature Dependence Fit Parameters

To

B
For the fit of the temperature curves, the fit function o = g, - exp (— (F) ) was used. The

following Table S1 gives the obtained essential fit parameters, the characteristic temperature

T, and the temperature exponent (.

Table S1 — Fit parameters of the temperature dependence of the conductivity.

Morphology T, in K B

16mer f;., = 10 645 + 4550 099 + 1.5
8mer f., = 10 750 + 5418 0.94 + 1.3
amer ficp = 10 (5.5+14.2)-105 0.22+ 1.0
32mer fiop = 1.3 1394+ 11586 097 +1.5
16mer fi, = 1.3 772 + 2372 1.35+ 0.9
8mer fi, = 1.3 846 + 2043 127+ 0.5
amer fip = 1.3 663 + 1357 1.5+ 0.5
Annealed 45/80 707 + 813 1.52 + 0.2
MakeSnake 80/100 2123 + 6783 0.97 + 0.7
Annealed 25/80 576 + 702 1.8+ 0.2
sc 80 1406 £+ 1812 1.1+ 0.3
sc 100 14549 + 22534 0.6+0.3
MakeSnake 45/80 811 + 555 1.4+ 0.1

While the fitted lines fit reasonable, the errors on the fit parameters are significant. This is due
to the small temperature range and the flexibility of the fit function. However, the temperature
exponent lies within a reasonable range considering the fitting errors and the exact functional

form is not crucial for the analyses in the main text.
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