
DissertaƟon

submiƩed to the

Combined Faculty of MathemaƟcs, Engineering and Natural Sciences

of Heidelberg University, Germany

for the degree of

Doctor of Natural Sciences

Put forward by

Dennis Derewjanko

born in: Simmern/Hunsrück

Oral examinaƟon: 04.12.2025





Morphology- and DelocalizaƟon-Based 

Charge Transport SimulaƟons Combining 

Tight Binding Modelling and KineƟc Monte 

Carlo SimulaƟons

Referees:                                           Prof. Dr. MarƟjn Kemerink

Prof. Dr. Maurits Haverkort





Abstract

The inherent chemical and morphological richness and complexity of Organic Semiconductors 

make the detailed theoreƟcal descripƟon almost impossible. This leads to the necessity of 

simulaƟon-based approaches that should be as detailed and computaƟonally eĸcient as 

possible, which turns out to be a far from trivial task. While over the decades, diīerent models 

of diīerent levels of detail and computaƟonal eīort have been proposed, there is sƟll ample 

room for improvement. In this thesis a semi-empirical Tight Binding model of organic 

semiconductors was developed that is based on user-speciĮed morphologies like Molecular 

Dynamics morphologies and is combined with kineƟc Monte Carlo simulaƟons to obtain a tool 

that captures diīerent correlaƟons and includes parƟally delocalized charge carriers. In this 

thesis, kineƟc Monte Carlo simulaƟons are used to describe how anisotropic localizaƟon 

lengths can lead to increased thermoelectric powerfactors, breaking the usual trade-oī 

between Seebeck coeĸcient and conducƟvity. The developed numerical model is also used to 

study the validity of the eīecƟve temperature model of the Įeld dependence of the 

conducƟvity that assumes a one-to-one relaƟon between thermal- and Įeld-acƟvated charge 

transport. It is found that the eīecƟve temperature model is not always self-consistent and 

breaks down for inhomogeneous systems. AddiƟonally, other parameters inŇuencing the Įeld 

dependence are not correctly incorporated in the eīecƟve temperature model. The numerical 

model was also used to explain the experimentally observed superlinear increase of 

conducƟvity at high charge carrier concentraƟons. DelocalizaƟon of charges at the Fermi level 

is found to explain this observaƟon. Lastly, the Ɵght binding model was used to explain the 

renormalizaƟon of the Density of States at intermediate doping levels that is necessary to 

explain the experimentally observed roll-oī in conducƟvity for intermediate doping in the 

conducƟvity dependence of the Seebeck coeĸcient which is the relevant regime for opƟmized 

thermoelectric devices. 



Zusammenfassung

Die inhärente chemische und morphologische Vielfalt und Komplexität von Organischen 

Halbleitern machen deren detaillierte theoreƟsche Beschreibung fast unmöglich. Dies führt 

zur BenöƟgung von simulaƟonsbasierten Ansätzen, die so physikalisch exakt als auch 

numerisch eĸzient wie möglich sein sollten. Dies stellt sich jedoch als eine alles andere als 

triviale Aufgabe dar. Über die Jahrzehnte hinweg wurden unterschiedliche Modelle mit 

unterschiedlicher physikalischer Genauigkeit und Eĸzienz vorgestellt, jedoch exisƟert nach 

wie vor Verbesserungsbedarf. In dieser Thesis wird ein semi-empirisches Tight Binding Modell 

entwickelt, das auf benutzerspeziĮschen Morphologien wie Molekulardynamik Morphologien 

basiert und kombiniert mit kineƟschen Monte Carlo SimulaƟonen um ein Werkzeug zu 

erhalten, das unterschiedliche KorrelaƟonen und teilweise delokalisierte Zustände erfassen 

kann. Zunächst werden kineƟsche Monte Carlo SimulaƟonen benutzt um zu erklären wie 

anisotrope Lokalisierungslängen zu einem erhöhten thermoelektrischen Leistungsfaktor 

führen können und dabei den üblichen ZielkonŇikt zwischen Seebeck Koeĸzienten und 

Leiƞähigkeit brechen können. Das entwickelte numerische Modell wird außerdem dazu 

benutzt, um die GülƟgkeit des Modells der eīekƟven Temperatur für die Feldabhängigkeit der 

Leiƞähigkeit zu studieren. Es zeigt sich, dass dieser Ansatz oŌ nicht selbstkonsistent ist und 

u.A. für inhomogene Systeme zusammenbricht. Zusätzlich werden andere physikalische 

Parameter, die die Feldabhängigkeit beeinŇussen, oīenbar nicht richƟg in das Modell 

inkludiert. Das Modell wurde des Weiteren dazu verwendet um numerisch den experimentell 

beobachteten super-linearen AnsƟeg der Leiƞähigkeit bei hohen 

LadungsträgerkonzentraƟonen zu erklären. Dies wird erklärt durch die zusätzliche 

Delokalisierung von Ladungen bei der Fermi Energie. Zuletzt wird das entwickelte Tight Binding 

Modell dazu benutzt um die Renormalisierung der Zustandsdichte bei miƩleren Doping Levels 

zu erklären, die nöƟg ist um den experimentell beobachteten Abfall der Leiƞähigkeit im 

miƩleren Doping Regime, dem für opƟmierte thermoelektrische Anwendungen relevantesten 

Regime, zu beschreiben.





EidesstaƩliche Erklärung
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IntroducƟon

MoƟvaƟon and State of Research

Organic Electronics is the scienƟĮc Įeld of the general electronic properƟes of (in the chemical 

sense) organic materials like organic semiconductors or organic ferroelectrics. Its most 

prominent applicaƟon is the organic light emiƫng diode (OLED) which the basis of the 

arguably currently best screen technology, built into virtually all modern smart phones. The 

Įeld is in comparison to the physics of inorganic materials very young and had its beginning 

with the discovery of the Įrst semiconducƟng material violanthrone by Akamatu and Inokuchi 

in the year 19501. Unlike for inorganic materials, at this point the charge transport mechanism 

was completely unclear. Experiments and the inherently disordered nature of these organic 

materials hinted on Hopping-type conducƟon, which was originally found in amorphous 

inorganic materials, but the physically correct formalism was unclear. Around the same Ɵme, 

hopping theories for amorphous inorganic semiconductors were developed by MoƩ2,3, Miller 

and Abrahams4 and Marcus5. Only in the 80s and 90s, Bässler6 formulated a consistent charge 

transport theory speciĮcally for organic semiconductors (OSC) with the Gaussian Disorder 

Model (GDM). However, with the development of ever new OSCs the chemical and physical 

complexity of the vast material space of possible OSCs became clear. This is due its main 

consƟtuent carbon, which can form four covalent bounds and almost arbitrarily big and 

complex structures, especially in connecƟon with diīerent hetero-atoms, making it not only 

chemically complex, but also from a morphological point of view. Diīerent classiĮcaƟons of 

OSCs emerged, like small molecules or polymer based, crystalline, semicrystalline, and 

amorphous OSCs. With that amount of complexity, also the need for more sophisƟcated 

theories and models of charge transport (CT) arose. The very diverse microscopic and 

mesoscopic situaƟon, especially the inherent disorder and therefore lack of symmetry in these 

materials however make it very hard to yet impossible to treat theoreƟcally in detail, making 

the use of numerical simulaƟon methods for their understanding and opƟmizaƟon very 

important. On a microscopic scale, the most important quanƟƟes to describe the CT are the 

electronic couplings between the molecular states like HOMO or LUMO (highest occupied 

molecular orbital and lowest unoccupied molecular orbital), the reorganizaƟon energy being 
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the energy needed to form a polaron during charge transfer and the chemical and electrostaƟc 

environment.

In the last two decades there has been great eīort in accurately calculaƟng electronic 

couplings (or also called transfer integral), reorganizaƟon energies and energy levels by 

diīerent quantum chemical and semi-empirical calculaƟons like Density FuncƟonal Theory 

(DFT), Constrained Density FuncƟonal Theory (CDFT), Fragment Orbital DFT (FODFT), Density 

FuncƟonal Tight Binding (DFTB), Generalized Mulliken–Hush (GMH), or AnalyƟc Overlap 

Method (AOM) to accurately calculate Marcus hopping rates or Marcus-Levich-Jortner 

hopping rates. The rates are used together with Molecular Dynamics (MD) Morphologies or 

crystalline Morphologies to perform kineƟc Monte Carlo (kMC) SimulaƟons and calculate 

electronic MobiliƟes. 

For example, Lukyanov and Andrienko 7 calculate transfer integrals directly with DFT and use 

them with the Marcus rate in kMC simulaƟons on a MD generated morphology. Their approach 

is though strongly limited in system size because of the expensive direct DFT calculaƟons, 

leading to dispersive mobiliƟes. They therefore extrapolate the temperature dependence of 

the mobility to achieve non-dispersive mobiliƟes.

Many other authors used similar approaches for their simulaƟon8–10. For this standard 

mulƟscale workŇow approach, a widely used toolkit named VOTCA11 was created. 

An interesƟng modulaƟon of VOTCA was implemented from Rühle et al. 10,12, where transfer 

integrals were not calculated between monomers, but between rigid fragments of e.g. the 

invesƟgated polymer morphology, which are determined by (not unique) condiƟons. Similarly, 

Mladenovic and Vukmirovic13 performed mulƟscale simulaƟons on P3HT using a 

fragmentaƟon method they developed called Overlapping Fragments Method (OFM) 14 to 

beƩer capture parƟally delocalized polymer fragments in their simulaƟon.

E.D. Miller et al. 15 use a widely used semi-empirical quantum chemical calculaƟon (ZINDO/S16) 

to calculate orbital energies of  P3HT chromophores and approximate the transfer integral by 

Marcus-Hush two state approximaƟon, which is the quadraƟc sum of HOMO and HOMO-1 

diīerence and site energy diīerence, and use it with the Marcus rate to perform kMC 

simulaƟons with snapshot MD generated morphology. They calculate Diīusion mobility with 

reasonable values and highlight the importance of Ɵe chains in their morphologies.
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Alkan and Yavuz17 invesƟgate the inŇuence of Alkyl side chains on mobility. They use X-ray 

crystal structures as starƟng conĮguraƟon for a MD simulaƟon for a disordered morphology. 

They then calculate transfer integrals with ZINDO and site energies with the Thole Model as 

input for the Marcus Levich Jortner rate to perform kMC simulaƟons and Įnd small side chains 

lead to worse mobility in comparison to somewhat larger but not too large ones due to 

reduced electrostaƟc interacƟons and advantageous packing of the backbones for longer side 

chains.

Park et al.18 studied grain boundary eīects in poly-crystalline organic semiconductors 

generaƟng staƟc perfect OSC laƫces and randomly reorienƟng the crystalline grains during 

kMC simulaƟons. They extract energies and electronic couplings by DFT based quantum 

chemical calculaƟons and use it within the Marcus rate for the kMC SimulaƟons. They 

circumvent the computaƟonally limited simulaƟon box and grain size by a grain-size calibraƟon 

formula based on AFM images.

For systems with signiĮcant dynamical disorder, where snapshot MD morphologies can 

underesƟmate its impact, Özdemir et al.19  make use of the semi-empirical Density FuncƟonal 

Tight Binding (DFTB) to sample a large number of molecule pairs for HOMO energy and hole 

coupling calculaƟons and consider the Ɵme dependence of electronic couplings due to 

dynamical disorder via Ɵme averaging of electronic properƟes that are used for the Marcus 

rate in kMC.

To overcome the computaƟonal limitaƟons of expensive exact transfer integral calculaƟons, 

Gajdos et al.20,21 exploited the already older idea from e.g. Extended Hückel Theory or the 

Molecular Orbital Overlap (MOO) method that the transfer integrals are proporƟonal to the 

orbital overlap to Įnd a universal linear scaling law over a wide range of distances with a 

universal scaling constant for a given donor-acceptor system, reducing the computaƟonal 

eīort to just overlap calculaƟons. One can further speed up calculaƟons by parametrizing the 

orbitals analyƟcally to calculate the overlaps (AnalyƟc Overlap Method). For this purpose, only 

the constant must be ĮƩed to e.g. results from representaƟve DFT simulaƟons.

With the recent achievements in Machine learning another approach to tackle the limits of 

computaƟonal power won in popularity. Instead of the explicit expensive calculaƟon of 

transfer integrals researches use Machine Learning techniques to predict transfer rates for 

larger systems to be able to simulate mesoscopic morphologies. For example, Tan et al.22 use 
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this approach to perform mulƟscale simulaƟons for organic thin Įlms with grain boundaries 

and polymorphs.

Due to the computaƟonal diĸculƟes of larger systems, many authors use their diīerent 

methods on crystalline or slightly disordered morphologies, but also works exist that use these 

methods to try to get insight into more complex mesoscale morphologies like strained TIPS-P 

crystals23, polycrystalline systems18, semicrystalline P3HT24, soluƟon and vacuum deposited 

OLEDs25, edge-on P3HT26, however more or less limited in simulaƟon box size. 

AforemenƟoned previous works mostly focus on low charge carrier concentraƟons and 

invesƟgate the Įeld dependence and temperature dependence of the mobility or zero Įeld 

mobiliƟes, mostly with focus on small molecule organic semiconductors. The simulated box 

size is dependent on their calculaƟon technique of electronic couplings compromising a boƩle 

neck. More ab iniƟo calculaƟons can only perform on very small systems, whereas other semi-

empirical approaches can cover larger systems with retaining mostly accurate couplings. Many 

of the authors work with snapshot morphologies, while some try to incorporate ŇuctuaƟon in 

couplings due to dynamical disorder which can be relevant in small molecule and crystalline 

OSCs but less in polymeric OSC. However, in virtually all studies the eīect of parƟal 

delocalizaƟon is not captured since Marcus theory is valid only for charge states localized on 

single monomers or single small molecules. Also, electronic couplings can be underesƟmated 

due to commonly used dimer approximaƟon, where electronic couplings are calculated 

between HOMO fronƟer orbitals of two monomers. This fails to capture delocalizaƟon eīects, 

since charge states oŌen spread over mulƟple monomers, which leads to an arƟĮcial cutoī of 

the electronic couplings in the dimer approximaƟon. However, this can’t be resolved easily, 

since the calculaƟon of electronic couplings in systems of several monomers is computaƟonally 

extremely expensive and in addiƟon the degrees of freedom to cover rises exponenƟally, 

making the problem even worse, such one is mostly stuck with the dimer approximaƟon. For 

the transiƟon to more delocalized states, other methods have been proposed and improved, 

but are sƟll oŌen computaƟonally expensive to use in larger systems and only used in small 

systems or low dimensional problems. 

One approach to try to bridge the problem of parƟally delocalized states, is delocalized kMC 

(dkMC)27 introduced by Balzer et al.. They couple the electronic Hamiltonian to a thermal bath 

and perform a polar transformaƟon to make the second order perturbaƟve approach of 



5

Secular RedĮeld Theory usable. It describes the Ɵme evoluƟon of polaron populaƟons with a 

rate equaƟon. The speciĮc rate, called RedĮeld tensor or rate can be seen as the hopping rate 

usable in kMC simulaƟons, but requires repeated Hamiltonian diagonalizaƟons and is sƟll 

expensive albeit of several simpliĮcaƟons made. This method works in the range of hopping 

transport to transient localizaƟon, but so far can only uƟlize staƟc simple or random laƫces, 

which then again does not capture morphological eīects.

A much simpler approach than dkMC by Willson et al.28 named jumping kMC (jkMC) avoids 

the many expensive diagonalizaƟons of Hamiltonians by just mulƟplying a delocalizaƟon 

correcƟon term to the Marcus rate, which is determined by Įƫng a polaron delocalizaƟon 

radius to an ensemble average of spherical polaron state inverse parƟcipaƟon raƟos (IPRs). 

This method is much less expensive, but also works only on simple laƫces and has not been 

combined with realisƟc morphologies.

In another approach e.g. Giannini et al.29 or Spencer et al.30 uƟlized AOM to develop a surface 

hopping method based on Fewest Switching Surfacing Hopping, where they expand the charge 

carrier wavefuncƟon in a basis of fragment orbitals (here SOMOs) and propagaƟng the 

coeĸcients using Ɵme dependent Schrödinger equaƟon involving the need for repeated 

Hamiltonian matrix element calculaƟons that can be eĸciently calculated via AOM. According 

to the resulƟng Ɵme-dependent adiabaƟc electronic states, the decision to switch between 

two adiabaƟc surfaces during the simulaƟon is then made probabilisƟcally. This method 

(Fractal Orbital based Surface Hopping, FOB-SH) can capture a broader spectrum between 

band-like transport and hopping transport, is however sƟll very computaƟonally expensive for 

large or higher-dimensional systems. 

Ishii et al.31,32 developed yet another quantum dynamical method to simulate the (diīusion) 

mobility for parƟally delocalized states. Their Ɵme-dependent wave-packet diīusion (TD-

WPD) method uses a Ɵme dependent Tight Binding Hamiltonian for the deĮniƟon of the 

systems density operator, with which then the Ɵme-dependent diīusion coeĸcient as a 

velocity correlaƟon funcƟon and Įnally the mobility via Einstein relaƟon is calculated. This 

method however also suīers from high computaƟonal cost and was applied only for 2D 

systems as was FOB-SH.

Despite the great eīort for high level mobility calculaƟons made for OSC, mulƟ-scale studies 

with focus on thermoelectric SimulaƟons based on realisƟc Morphologies as done with 
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mobiliƟes are rarer. SpeciĮc morphology-related kMC studies focus rather on random or 

simple laƫce-like morphologies than realisƟc morphologies by MD, while others use a 

Boltzmann-Transport-EquaƟon approach to calculate the Seebeck coeĸcient and use MD 

morphologies only for the thermal conducƟvity calculaƟons.

For example, Zozoulenko et al.33,34 used a mulƟ-scale approach for PEDOT:ToS morphology 

from MD, calculated the transfer integrals using ZINDO and used Miller-Abrahams rate with 

the transfer integral as tunneling term for kMC simulaƟons and thereby also simulated the 

Seebeck coeĸcient.

Recently Elsner et al.35 performed thermoelectric transport simulaƟons in organic molecular 

crystals using the FOB-SH method with physically and experimentally reasonable values for 

rubrene crystals, considering parƟal delocalizaƟon eīects located in the regime of transient 

localizaƟon. Albeit being quite accurate, the method is as already said before currently 

computaƟonally limited to small systems or two-dimensional laƫces, making it hard to 

invesƟgate polymeric systems or systems with more complex meso-scale morphology.

Goal of this Work

This thesis tries to bridge more sophisƟcated mulƟ-scale simulaƟons containing complex and 

expensive quantum chemical or semi-empirical calculaƟons on MD based morphologies, but 

localized hopping, and simulaƟon methods with the possibility of parƟal charge delocalizaƟon 

on simple laƫce morphologies. I will thereby use modelled or Molecular Dynamics based 

morphologies and derive a semi-empirical Tight Binding Model of these morphologies which 

then serve together with a modiĮed MA Transfer rate as input for kMC simulaƟons. With this 

approach, electric and thermoelectric properƟes of a variety of morphologies considering 

parƟal delocalizaƟon eīects can be simulated on a larger scale with comparaƟvely limited 

computaƟonal cost.

I start by introducing OSCs and their morphologies and a descripƟon of them using Tight 

Binding theory. From there, energeƟcal and localizaƟon properƟes will be derived and 

transferred to modiĮed transfer rate to Įnally perform kMC simulaƟons and invesƟgate 

electrical and thermoelectrical properƟes of diīerent systems with the prescribed scheme.

The invesƟgated systems will cover anisotropic Įlms, amorphous P3HT and diīerent 

aggregated morphologies and also simple doped systems.
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TheoreƟcal Background and Methods

Organic Semiconductors

(Following36 if not others stated). The class of Organic materials is deĮned by materials that 

mostly consist of bonds between carbon (C) atoms and carbon-hydrogen (C-H) bonds. Being 

in the fourth main group of the periodical system, carbon can form up to four covalent bonds. 

Allowing bonds with diīerent heteroatoms (atoms that are not C or H), a vast material space 

can be constructed, containing highly funcƟonalized molecules with very speciĮc properƟes 

and abiliƟes like proteins in living beings. 

One can divide organic materials in many diīerent categories ranging from small molecules 

over fullerenes to diīerent kinds of conjugated polymers. The organic materials of concern in 

this thesis are medium to high molecular mass organic semiconductors (OSC). A central 

property of many OSCs of interest is the bond conjugaƟon between C atoms, which can be 

nicely explained by orbital hybridizaƟon. Molecular orbitals are usually approximately 

described by soluƟons of the molecule’s Schrödinger equaƟon, obtained by inserƟng a linear 

combinaƟon of atomic orbitals (LCAO) as ansatz, in the Born-Oppenheimer approximaƟon, 

where the electronic part is decoupled from the nuclidic part due to the inert nuclides in 

comparison to the much lighter electrons. The linear combinaƟon (therefore called orbital 

hybrids) of an s-orbital, px-orbital and an py-orbital (sp2 hybridizaƟon) gives three planar 

covalent 𝜎-bonds (bonds along the bond direcƟon) of the C atoms. The fourth C-orbitals are 

out-of-plane formed by pz and therefore form ߨ-bonds (bonds perpendicular to the axis of 

bond direcƟon). The charges in conjugated polymers are delocalized over the overlapping ߨ-

orbital system of the molecule. LCAO provides for every bonding state an anƟ-bonding state, 

denoted by a star aŌer the bonding type, e.g. 𝜎* or ߨ* due to one symmetric and one 

anƟsymmetric soluƟon. The electron density is for bonding states highest between the atoms, 

such that the Coulomb potenƟal by the cores is screened and therefore the energy of the state 

is reduced. AnƟ-bonding states have a minimum between the atoms, are close to the cores, 

and have therefore higher energy. 

A simple example of a conjugated polymer is an alkene chain of length N. Solving the 

corresponding N-ߨ-electron Hamiltonian provides N energy levels that are symmetrically 

distributed around some Įxed energy. At moderate temperatures the lowest N/2 states get 
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fully occupied in the ground state. The highest occupied state is called the HOMO (Highest 

Occupied Molecular Orbital), the ݅-th state below the HOMO is called HOMO-݅. The lowest 

unoccupied orbital, being the Įrst anƟ-bonding state, is called LUMO (Lowest Unoccupied 

Molecular Orbital), and ݅-th state above LUMO is called LUMO-݅. The energy diīerence 

between the HOMO and the LUMO is called energy gap. 

Due to the intrinsic disorder emerging from disorder in the chemical and energeƟc vicinity of 

individual molecules the HOMOs and LUMOs of the molecules will diīer from each other, 

leading to not well-deĮned HOMOs and LUMOs for the bulk material, but rather to 

probabilisƟc distribuƟons around some mean values. This disorder leads to hopping type of 

transport rather than band conducƟon, which will be discussed later. 

Molecular Forces

Bonding Types 

(See literature like Fließbach37, Hunklinger38) One can categorize chemical bonds in materials 

as metallic, ionic and covalent bonds. Metallic bonds, as the name suggests, are found in 

metals and occur in atomic laƫces of elements that have weakly bound valence electrons that 

can delocalize over ideally the whole laƫce leading to an energeƟcally lower and stable 

conĮguraƟon. 

Ionic bounds, oŌen found in salts, occur when one atomic species donates one or more 

electrons to a diīerent atom species such that they are found in ionized form as caƟons and 

anions. Those oppositely charged ions are then strongly and closely held together by the 

Coulomb interacƟon and form disƟnct regular (bravais) laƫces. Opposing to metallic bonds, 

the electrons or holes are strictly localized on the ions.

However, as already covered in the previous chapter, the relevant intramolecular bonding type 

in OSCs is the covalent bonding. Covalent bonds are generally weaker than ionic bonds. For 

the bonding state, the electrons are not bound to one atom but shared between them and 

screen the coulombic interacƟon. This leads to a longer bonding length compared to ionic 

bonds and therefore more Ňexible molecular structures allowing for deformaƟon like bending 

or torsion to some extent, depending on the geometry and size of the molecule. 
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Polar and Van der Waals Forces

Whereas the covalent bonds deĮne the molecular structure, they do not form intermolecular 

bonds. Intermolecular bonds are formed by hydrogen bridges and dipole-dipole (or mulƟpolar) 

interacƟons of parƟal charges, induced dipole – dipole interacƟons and van der Waals bonds 

(induced dipole – induced dipole). 

A Hydrogen bridge is a direcƟonal dipole-dipole interacƟon between two strongly polar groups 

that occurs if hydrogen undergoes a covalent bond with a much more electro negaƟve atom 

like oxygen. Due to the high electro negaƟvity of the bonding partner, the bond electron gets 

pulled close to it, leaving hydrogen with a signiĮcant parƟal posiƟve charge while the other 

gains a negaƟve parƟal charge creaƟng a strong polar group within the molecule. The hydrogen 

posiƟve parƟal charge then aligns with the parƟal negaƟve charge of another molecule 

forming the so-called hydrogen bridge. 

Similarly, a general diīerence in electro negaƟvity between atoms results in a non-uniform 

charge distribuƟon along the bond resulƟng in dipoles or mulƟpoles of parƟal charges across 

the molecule. The potenƟal Φ(࢘) of a general charge distribuƟon ߩ(࢘) can be Taylor expanded 

into a MulƟpole expansion (in Gauss units)

Φ(࢘) = ∫݀࢘′ ࢘|(࢘)ߩ − ࢘′| = ݎݍ ௜݌∑− ௜ݔ߲߲ 3 ݎ1
௜=1 + ࣩ(2) = ݎݍ + ࢖ ⋅ 3ݎ࢘ + ࣩ(2) (1)

, where the deĮniƟon of the dipole moment ݌௜ =  and the total charge q was (࢘)ߩ′௜ݔ ′࢘݀∫

used. The Įrst term is just the Coulomb potenƟal of a single charge q, whereas the second 

term is the dipole potenƟal Φௗ௜௣௢௟௘. The potenƟal energy of a dipole 1࢖ in the electric Įeld 2ࡱ of a dipole 2࢖ is then given by

ܷௗ௜௣−ௗ௜௣ = 1࢖− ⋅ 2ࡱ = 1࢖ ⋅ ∇Φௗ௜௣௢௟௘ = 1࢖ ⋅ 3ݎ2࢖ − 1࢖)3 ⋅ 2࢖)(࢘ ⋅ 5ݎ(࢘ (2)

For the induced dipole – dipole and Van der Waals interacƟon we need the concept of 

polarizability, which is also needed later in this thesis. Consider an otherwise neutral charge 

distribuƟon ߩ(࢘) (e.g. an atom or a molecule) and an external electric Field ࡱ. The electric 

Įeld can induce a dipole into ߩ(࢘) by exerƟng a force onto it and thereby parƟally separaƟng 

charges within ߩ(࢘). The induced dipole moment is ࢖ =  .ࢻ with the polarizability tensor ࡱࢻ

The potenƟal energy of the induced dipole – dipole system is then 
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௜ܷ௡ௗ−ௗ௜௣ = ௜௡ௗ࢖− ⋅ ௗ௜௣௢௟௘ࡱ = ௗ௜௣௢௟௘ࡱࢻ− ⋅ ௗ௜௣௢௟௘ࡱ ∝ 6ݎ2࢖ߙ− (3)

where for the last proporƟonality a scalar polarizability was assumed (i.e. ࢻ is diagonal with 

equal entries). It is menƟoned that, due to the minus sign, the induced dipole – dipole 

interacƟon is aƩracƟve. While the interacƟon energy (potenƟal energy) of the dipole – dipole 

interacƟon drops oī with third power of distance, the induced dipole – dipole interacƟon is 

much shorter ranged due to the sixth power drop oī with distance. 

Lastly, but most important for OSCs, especially polymeric, one has the Van der Waals 

interacƟon between molecules. It is basically the induced dipole – induced dipole interacƟon. 

Quantum mechanically, the electrons of an atom are not always staƟcally distributed according 

to their wavefuncƟon, but can Ňuctuate such that temporary dipoles can occur that then again 

can induce dipoles in another molecule and vice versa. The aƩracƟve part of the Van der Waals 

interacƟon is like the one of induced dipole – dipole interacƟon and scales with Φ ∝  .6ݎ/1

However, increasing overlap of orbitals due to low distance is counteracted by Paulis exclusion 

principle, leading to a repulsive counter force. This can be empirically modeled by adding and 

exponenƟal term or another power-law term to the aƩracƟve potenƟal, such one arrives at 

the Lennard-Jones PotenƟal

Φ(ݎ) = 12ݎܣ − 6ݎܤ = 4߳ ((𝜎ݎ)12 − (𝜎ݎ)6) (4)

that has a minimum which depth is determined by ߳ and a zero-crossing determined by 𝜎. The 

locaƟon of the minimum can be interpreted as some kind of Van der Waals bonding length. 

For single molecules the Van der Waals interacƟon is negligible, but it gets stronger for high 

contact area like in polymers, where it gets the main intermolecular force.

Dielectric Constant and Polarizability

How strong microscopic electrostaƟc Įelds inŇuence the interacƟons between charges or 

molecules within a material can be described by the dielectric constant ߳௥ ≥ 1. It describes 

the ability of the material to screen charges and reduces Coulomb potenƟals by 

஼ܸ௢௨௟௢௠௕ = ௤௥ → ௤ఢೝ௥. For ideal metals ߳௥ is technically inĮnite since there are no electric Įelds 

within a metal because charges would respond to the electric force and redistribute freely unƟl 
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there is no force and therefore Įeld anymore. In organic semiconductors the situaƟon is quite 

opposite. Charges are localized and immobile, leading to a very low dielectric constant, usually 

in the range of 3 to 4. However, experiments have shown that doped OSCs can have indeed a 

higher dielectric constant39,40. One can make a toy model of molecular doped OSC to 

understand this behavior as shown by Comin et al.41. The following secƟon will summarize 

their theoreƟcal approach.

The authors assume a fcc laƫce with random gaussian distributed displacements to model the 

disordered nature of OSCs. At the laƫce sites i induced dipoles ࣆ௜ =  ௜ are consideredࡱ௜ࢻ

according to the total microscopic Įeld at site i ࡱ௜ = ௜0ࡱ +  ௜0 are the external Įeldsࡱ ,௜ఓ. Hereࡱ

and Įelds from charged sites and ࡱ௜ఓ is the Įeld contribuƟon of other induced dipoles and ࢻ௜  
are the polarizability tensors of the individual sites i. Now the induced dipole relaƟons given 

for each individual site i are stacked and summarized into one supervector

(ேࣆ⋮1ࣆ) = 1ࢻ) 0⋱0 (ேࡱ⋮1ࡱ)(ேࢻ ⇔ ࣆ = ࡱࢻ̂ (5)

Now the distance vector ݎపఫ⃗⃗  ⃗ of each pair ij of dipoles is calculated and for each pair the dipole-

Įeld tensor is calculated

௜௝ࡰ = పఫ⃗⃗ݎ3  ⃗ ⊗ పఫ⃗⃗ݎ  ⃗ − ௜௝5ݎ0߳ߨ௜௝2ঌ4ݎ (6)

Here ⊗ is the dyadic product such that ࡱ௜ఓ =  .௜ is the induced dipole Įeld of i at dipole jࣆ௜௝ࡰ

Bringing everything together into one large vector notaƟon, with ࡰ being a block matrix 

consisƟng of ࡰ௜௝, one can write ࡱఓ = ࣆ1−ࢻ̂ࣆ Now one can solve the following expression for .ࣆࡰ = ࡱ = 0ࡱ + ఓࡱ = 0ࡱ ⇔ ࣆࡰ+ ૚−ࢻ̂)  ࣆ(ࡰ− = ૙ࡱ (7)

Knowing the induced dipoles from solving above’s equaƟon, one can now calculate the 

induced polarizaƟon ࡼ = 1௏  ∑ ௜ࣆ = ࡱ0࣑߳ = ௘௫௧௜ࡱࣀ0߳  with the suscepƟbility ࣑ and 

suscepƟbility to an external Įeld, ࣀ, and solve for laƩer. For a uniformly polarized medium it 

holds for the total macroscopic Įeld ࡱ = ௘௫௧ࡱ − ௱⋅ࡼఢ0 , where Δ = ঌ3 is the depolarizaƟon tensor 

for spherical samples. Finally, one can calculate the suscepƟbility ࣑ and the dielectric tensor ࣕ௥ via
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࣑ = (ঌ − ߂ ⋅ and  ࣕ௥   ࣀ1−(ࣀ = ঌ + ࣑ (8)

For simplicity, one can assume a constant polarizability ߙℎ௢௦௧ for the OSC molecules and 

another also constant polarizability  ߙ஼் for the dopants and depending on the charge 

concentraƟon c deĮne an average c-dependent polarizability ߙ௔௩௚ = (1 − ℎ௢௦௧ߙ(ܿ +  ஼் andߙܿ

do the calculaƟon. The conƟnuous line in Figure 1 corresponds to this case, whereas the 

histograms are results from inhomogeneous laƫce simulaƟons.

 

Figure 1 – Full line: EīecƟve homogeneous medium. Dashed lines: Gaussian Įts to inhomogeneous 

laƫce simulaƟons. Reproduced with permission from [41], © 2021 Wiley-VCH GmbH.

The plot shows clearly an increase of the dielectric constant with increasing doping. Therefore, 

the enhanced dielectric constant in doped OSCs can be aƩributed to high polarizability of 

dopant molecules that allow for enhanced screening. However, this model is clearly limited, 

since in contrast to their eīecƟve medium approach, for intermediate to higher charge 

concentraƟons, their inhomogeneous laƫce simulaƟons give rise to a dielectric catastrophe, 

which is not observed in OSCs. It is likely that the model enters for higher charge 

concentraƟons a regime that rather describes the dielectric catastrophe of ferroelectric 

materials near the Curie temperature as can be modeled with e.g. Ising models.
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Morphology

ClassiĮcaƟon

As discussed in the last chapter, the main inter-molecular interacƟon of OSCs is the weak Van 

der Waals force and the main intra-molecular interacƟon is the covalent bond. Covalent bonds 

are weak enough that the thermal energy or microscopic mechanical forces can already cause 

torsion or bending of molecular bonds. AddiƟonally, Van der Waals forces are so weak that 

they cannot constraint the degrees of freedom between molecules as can the Coulomb force 

in ionic crystals. Together with the possibly complex and large molecular structure this leads 

to the possibility of an abundance of chemical and geometrical defects implying an intrinsically 

disordered microscopic structure of the bulk material. The microscopic and mesoscopic 

structure of the bulk material is called morphology. Physical and chemical properƟes of OSCs 

are essenƟally inŇuenced by the morphology42–44. Figure 2 shows a rough classiĮcaƟon of 

morphologies in organic materials into four categories.

Figure 2 – Morphology categories

Completely disordered morphologies are called amorphous. In semicrystalline media, 

crystalline regions are embedded in an amorphous background. Materials consisƟng of 

diīerently oriented crystalline grains are called polycrystalline. If the material is a 

macroscopically ordered (single-) crystal, it is called crystalline. Polycrystalline and crystalline 

morphologies can usually only be obtained with small molecules, while polymeric organic 

materials usually form amorphous or semicrystalline morphologies42. However, there are more 

kinds of speciĮc morphologies than those menƟoned above. Depending on the choice and 

Amorphous Semicrystalline Polycrystalline Crystalline
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combinaƟon of organic materials, soluƟons, substrates, deposiƟon- and post-processing 

techniques, one can achieve speciĮc microscopic structures. For example, the eīecƟve 

dimensionality of the organic material can be modiĮed, like rubbing of PBTTT leads to quasi-

one-dimensional morphology of many parallel chains45. 

Edge-on and Face-on OrientaƟon

Another type of molecular orientaƟon classiĮcaƟon is the classiĮcaƟon into edge-on and face-

on orientaƟon or morphology. Technically, edge-on or face-on morphologies are semi-

crystalline morphologies, with the speciĮcaƟon of how the aggregates are oriented with 

respect to the substrate as illustrated in Figure 3.

Figure 3 – a Top view of edge-on orientated lamellar stacks. b Side view of edge-on orientated (leŌ) 

and face-on orientated stacks (right).

As this thesis contains modeling and simulaƟon of the implicaƟons of edge-on and face-on 

orientaƟon on the thermoelectric power factor of OSC as part of a collaboraƟon, it is useful to 

have a deeper look into the theoreƟcal background here. 

Villalva et al.46 uƟlized Hansen Solubility Parameters (HSPs) to control the crystallinity and 

orientaƟon of diīerent OSC Įlms. HSPs were introduced by Hansen47,48 in 1967 and are an 

aƩempt to quanƟfy solubility of molecular species dependent on diīerent molecular 

interacƟons. For a solvent – solute pair, the energy of dispersive (ܦߜ), polar (ܲߜ) and hydrogen 

bonding (ܪߜ) forces are determined, typically in units of MPa1/2. One can now treat these three 

quanƟƟes as axes in a three-dimensional cartesian coordinate system and solvents can be 

depicted as points in this so-called Hansen space. In this set-up, it is usually found that good 

solvents for a molecule are approximately located within a sphere of some radius ܴ 0 called the 

interacƟon radius. The value of ܴ0 is determined empirically by tesƟng diīerent solvents at a 

a b



15

given temperature and concentraƟon. For a given solvent, one can now calculate the Hansen 

radius ܴ௔ via ܴ௔2 = 1ܦߜ)4 − 2(2ܦߜ + ߜ) 1ܲ − ߜ 2ܲ)2 + 1ܪߜ) − 2(2ܪߜ (9)

For ܴ௔ < ܴ0 the solvent is typically good, whereas for ܴ௔ ≥ ܴ0 the solubility typically gets 

worse. The principle behind that is that molecular species with similar molecular interacƟons 

dissolve good. If ܴ௔ < ܴ0 (good soluƟon), polymer chains are almost fully dissociated, which 

preferably produces face-on orientaƟon. However, if ܴ௔ is in the vicinity of ܴ0, pre-aggregates 

are formed in soluƟon that preferably produce edge-on orientaƟon on the OSC Įlm. 

However, as Villalva et al. point out, ܴ ௔ alone is not a suĸcient as a Įgure of merit to determine 

the orientaƟon of the Įlm (edge-on face-on raƟo (EFR)). They propose a reĮned parameter 

including the boiling point of the solvent (BP) by mulƟplicaƟon ܴ௔ ⋅  For this quanƟty, they .ܲܤ

Įnd an exponenƟal dependence of the EFR from ܴ௔ ⋅ .ܲܤ

Besides solvents, dopants can inŇuence and improve molecular packing. They Įnd that dopant 

– polymer interacƟon can reduce the solubility of the polymer-dopant complex and facilitate 

conjugated polymer nucleaƟon and therefore increase crystalline fracƟon and edge-on porƟon 

of the Įlm.

Molecular Dynamics

In order to predict and calculate morphologies, unfortunately ab iniƟo calculaƟons like DFT are 

computaƟonally too expensive since thousands of atoms need to be included for a signiĮcant 

and physically meaningful box size. However, due to emergence, it is mostly not needed to do 

so. The dynamics of molecules on larger scales does mostly not require quantum mechanically 

exact calculaƟons. Instead, one can perform Newtonian dynamics with opƟmized 

parametrized potenƟals, so-called force Įelds. Given molecular structures in equilibrium, one 

can model diīerent potenƟal terms for diīerent forces between molecules. The force Įeld of 

a speciĮc molecular setup is not unique and needs to be carefully chosen and opƟmized. In a 

corporaƟon contribuƟng to this thesis, P.S. Floris (see also 49) performed Molecular Dynamics 

(MD) for diīerent P3HT oligomers. For this, the following standard OPLS-AA50 force Įeld with 

standard parameters was used
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ܷ = ∑ ݇௕(࢘ − ࢘0)2௕௢௡ௗ௦ + ∑ ݇ఏ(ߠ − +2௔௡௚௟௘௦(0ߠ ∑  ∑ ௡ܸ2 (1 + cos(݊Φ −Φ௡))4
௡=1ௗ௜ℎ௘ௗ௥௔௟௦+∑[ ௜௝ݎ0߳ߨ௝4ݍ௜ݍ + 4߳௜௝ ((𝜎௜௝ݎ௜௝)12 − (𝜎௜௝ݎ௜௝)6)]௜<௝

 

(10)

The Įrst term is the potenƟal for displacing two bonded atoms from its equilibrium posiƟon r0 

in the harmonic approximaƟon with force constant ݇௕. The second term is the potenƟal term 

for bending two bonds from equilibrium angle θ0, again in the harmonic approximaƟon with 

force constant ݇ఏ. The third term is the potenƟal due to torsion of the dihedral angle ߶ 

associated to a rotaƟon around the central bond of a four-atom sequence (i-j-k-l). It is 

expressed by the Fourier coeĸcients ௡ܸ (with the dihedral periodicity n) interpreted as force 

constants and with the phase-shiŌs Φ௡ with typical values of 0 or ߨ. The last term contains 

the Coulomb energy between two parƟal charges ݍ௜ and ݍ௝ located at atom ݅ and ݆ and the 

Lennard-Jones potenƟal of the Van der Waals force. The Lennard-Jones parameters for two 

diīerent atoms ݅ and ݆ are calculated using the Lorentz-Berthelot combining rule via ߳௜௝ =√߳௜௜ ௝߳௝ and 𝜎௜௝ = √𝜎௜௜𝜎௝௝ . For the Van der Waals force, a Lennard-Jones (LJ) cutoī distance of 

1 nm was chosen and for the long range electrostaƟc a parƟcle-parƟcle parƟcle-mesh (PPPM) 

solver was applied with a spacing of 10−4 in Fourier space for the FFT-calculaƟon. The force 

constants and parƟal charges are parametrized from DFT calculaƟons of diīerent molecular 

geometries, vibraƟonal energies and torsional proĮles.

Having a suitable force Įeld, one can solve the Newtonian dynamics equaƟons࢖ప̇ = −∇௜ܷ (11)

and assigns random iniƟal condiƟons for the posiƟons of the molecules and their momenta in 

a box of volume V with periodic boundary condiƟons. The system is then evolved unƟl 

equilibrium is reached. The described procedure gives only morphologies, but for the purpose 

of this thesis we are also interested in the thermal conducƟvity of the system. This is done by 

a form of non-equilibrium MD, with fully atomisƟc approach-to-equilibrium MD (AEMD), 

based on the lumped capacitance approximaƟon, where thermal ŇuctuaƟons within a given 

(sub-) volume are treated negligible. The procedure is as follows. The simulaƟon box is divided 

into two parts of equal volume. Now the Įrst half is heated up to 1ܶ =  and the second ܭ 400
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part to 2ܶ = ௦ݐ via velocity rescaling in 105 steps with Ɵme step ܭ 200 =  This is done .ݏ݂ 0.5

by taking the current conĮguraƟon of each volume and calculaƟng its kineƟc energy ܭ =12∑ ݉௜࢜௜2௜  and scaling the velociƟes in each step with ߙ = √ ௧ܶ௔௥௚௘௧/ ௖ܶ௨௥௥௘௡௧ such that ܭ =3ܰ݇஻ ௧ܶ௔௥௚௘௧/2. Then the system evolves within its force Įeld for Ɵme ݐ௦ and the procedure is 

repeated with the 105 steps unƟl a step like temperature proĮle is reached. Then the system 

is evolved in the NVE ensemble (parƟcle number N, volume V and energy E are constant) unƟl 

thermal equilibrium is reached. The thermal conducƟvity can then be calculated by comparing 

the Ɵme evoluƟon of the average temperature diīerence of the two volumes to the heat 

equaƟon soluƟon51:

Δܶ(ݐ) = ⟨ 1ܶ⟩ − ⟨ 2ܶ⟩ = ௡ܥ∑ exp(−ߙ௡2̅ߢ௜ݐ)∞
௡=1 (12)

with the thermal diīusivity ̅ߢ௜, ߙ௡ = 2గ௡௅೔ , ௡ܥ = 8( 1ܶ − 2ܶ) [cos(ഀ೙ಽ೔2 )−1]2ఈ೙2௅೔2  where ܮ௜  is the box 

length in direcƟon ݅. From there, the laƫce thermal conducƟvity can be calculated with ߢ௜ ௜ܿ௩/ܸ where the heat capacity ܿ௩ߢ̅= = 3ܰ݇஻ from Dulong-PeƟt law and N is the number of 

atoms. 

However, the above NVE ensemble corresponds to a microcanonical ensemble. Experimental 

setups however are rather canonical ensembles coupled to a thermal bath in a speciĮc 

atmospheric pressure, so N, P and temperature T are constant. In order to achieve the so-

called NPT ensemble, one needs to modify the Hamiltonian of the system. This is done with 

the Nose Hoover thermostat and barostat52. The dynamics equaƟons are thereby modiĮed by 

fricƟon terms

௜̇ࢗ = ௜݉௜࢖ , ௜̇࢖   = (ࢗ)௜ࡲ − (߳̇ + ,  ࢏࢖(ߦ ܳߦ̇ ௜2݉௜௜࢖∑= − ݃݇஻ܶ  , ߳̇ = ܸ̇3ܸ ,                                              ߳̈ = (ܲ − ௘ܲ௫௧)ܸ߬2݇஻ܶ
(13)

that emerge when modifying the Hamiltonian as follows

ܪ =∑ ௜22݉௜௜࢖ + ܷ( ܸ࢘13) + 2ܳ 2ߦ + 32 ߳̇2߬2݇஻ܶ + ௘ܲ௫௧ܸ (14)
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Here, ݃ = 3ܰ is the degrees of freedom, ௘ܲ௫௧ is the external pressure, and ܳ is some kind of 

mass of the thermal bath. The term ܳ2/2ߦ is the kineƟc term of the thermal bath, where ܳ 

controls how fast heat with the thermal bath is exchanged. This term acts as thermostat to 

maintain constant temperature. The fourth term is the kineƟc term of the barostat. The 

relaxaƟon Ɵme ߬ determines how fast pressure diīerences are adjusted. The last term 

describes the mechanical work done by the pressure. The idea behind the barostat is that the 

volume of the system is varied to adapt for the pressure, therefore the parƟcle posiƟons are 

scaled with 1/ܸ1/3  to mimic the change in volume. The parameter ߳̇ thereby is a measure of 

the speed or rate of volume change. With this procedure, the system is brought to be in the 

isothermal and isobaric ensemble. Note that without the barostat, the system is in a canonical 

ensemble with NVT Įxed.

With this NPT ensemble, the system is Įnally equilibrated at ܶ =  and 1 atm with Ɵme ܭ 300

step 0.5 fs to achieve the Įnal morphology that we want to obtain. The results for the 

simulated P3HT will be shown in the Results secƟon of this thesis. 

SimpliĮed Annealing Model

To study the eīect of aggregaƟon in OSCs, I did not speciĮcally rely on the previously described 

MD simulaƟons. To simplify the aggregated morphology generaƟon, now the speciĮc 

molecular morphologies and molecules are abstracted. For this, a simple regular laƫce of size ܰ = ௫ܰ × ௬ܰ × ௭ܰ with two site species, the host and the guest. Single molecules are treated 

as sites of the laƫce. To aggregate the guest sites, an annealing procedure is performed as in 

Ref [53]. First, for a random distribuƟon of host and guest sites, the free energy of the system 

is calculated via the sum over all sites and their 6 direct neighbors

ܧ = ெ(௜),ெ(௝)6ܧ∑∑12
௝=1

ே
௜=1 (15)

where M(i) is the material of site ݅ and ܧ஺,஻ are the free energies associated with a molecular 

contact between material A and B. For contact of same sites, ܧ஺,஺ can be calculated from the 

e.g. experimentally extracted (evaporaƟon enthalpy by thermogravimetry) cohesive energy 

per mole ܧ௖௢ℎ = 3 ஺ܰܧ஺,஺ with the Avogadro constant ஺ܰ. For the model it is assumed that the 

cohesive energies are very similar in OSCs such that it is set ܧ஺ =  ஻. AddiƟonally, it is assumedܧ

that 2ܧ஺,஻ = ஺,஺ܧ =  ஻,஻. For a given annealing temperature, the procedure is now toܧ
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repeatedly swap neighboring sites to minimize the free energy, thus minimizing the contact 

area between host and guest sites. The probability, at which the swapping tries to overcome 

free energy barriers Δܧ஺ = ௢௟ௗܧ − (ܶ)ܴ ௡௘௪ is modeled as Boltzmann type rateܧ ∝exp (− ௱ாಲ௞ಳ்). The decision which swap to make in each step is then done in a Monte Carlo 

manner (see later chapter) based on R(T), meaning that swaps with higher reducƟon of free 

energy have higher probability than lower. Higher annealing temperatures provides higher 

thermal energies to overcome high barriers, making aggregaƟon slower and worse. The 

annealing procedure is conƟnued unƟl a maximum number of swaps is reached or a required 

aggregate size is reached. The aggregate radius ݎ஼  is approximated via the volume V occupied 

by the guest sites and their interface area A through the assumpƟon that the aggregates are 

spherical

௦ܸ௣ℎ௘௥௘ܣ௦௣ℎ௘௥௘ = ௖2ݎߨ௖34ݎߨ43   ⇔ ௖ݎ   = ܣ3ܸ (16)

This method can give large aggregates, but lacks more detailed structural informaƟon like site 

connecƟvity and relaƟve orientaƟon. 

3-Phase-Model

An aƩempt to improve this is a group intern implementaƟon of a laƫce-based morphology 

generaƟon simulaƟng polymer growth in a 3-phase-model. 

The 3-Phase-Model divides the gradual drying polymers into dissolved, drying and solid 

phases. The weak interacƟon of the dissolved phase allows to neglect the dissolved phase and 

only the interacƟons of the solid and drying phases need to be considered. The morphology 

generaƟng process starts by iniƟalizaƟon of a simple laƫce. The growing part starts by random 

nucleaƟon of several monomers. The monomers now simultaneously grow unƟl a maximum 

length is reached or they run into dead ends. For growing, new monomers are aƩached to the 

polymer ends in a direcƟon and orientaƟon depending on the nearest neighbor interacƟons. 
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Figure 4 - VisualizaƟon of the 3-phase model and the possible chain conformaƟons and monomer-

monomer orientaƟons. (Image by MarƟjn Kemerink)

For that, three intra-chain interacƟon energies and four inter-chain interacƟon energies are 

set. The intra-chain interacƟons consist of the energy cost for aƩaching the monomer straight, 

twisted, or bended up or down. Inter-chain interacƟons consist of the energy costs of four 

possible relaƟve orientaƟons of the monomer with its neighbor in a simple laƫce, that is face-

face, face-edge, parallel edge-edge or cross edge-edge (see Figure 4). AddiƟonally, other 

possible interacƟons are generalized into alignment Įelds, which reward or penalize monomer 

orientaƟons and direcƟons in x, y and z-direcƟons respecƟvely. For each of the four possible 

orientaƟons of the drying monomer, the inter-chain interacƟon energies with all nearest 

neighbors and the intra-chain energy and the direcƟon and orientaƟon rewards or penalƟes 

are added into the total interacƟon energy ܧ௜௢,ௗof monomer ݅. The orientaƟon and direcƟon 

of the drying monomer is then randomly chosen from all possible conĮguraƟons relaƟve to 

their relaƟve probability that is modeled as being proporƟonal to the Boltzmann factor

௜௢,ௗ݌ ∝ exp(−ܧ௜௢,ௗ݇஻ܶ) (17)

For a more realisƟc growth model, not only one monomer in the drying phase, but a 4-mulƟple 

of monomers is considered, where four is empirical, which avoids running into dead ends. 

However, not only the n nucleaƟon sites from the iniƟalizaƟon grow, but new nucleaƟon sites 

can be generated with either random probability or with probability proporƟonal to the 

maximum length of the chain. For a new nucleaƟon site an empty site is randomly chosen and 
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then diīused unƟl at least one nearest neighbor is occupied, which should mimic the tendency 

of nucleaƟon near previously solidiĮed material. AlternaƟvely, nucleaƟon can take place at 

empty sites that have the most free volume around them to mimic polymers avoiding each 

other due to steric or electrostaƟc eīects.

The maximum chain length can either be set constant for all chains or randomly for all chains 

according to the Flory-Schulz54 distribuƟon to model polydispersity. According to Flory-Schulz, 

the number average length distribuƟon is given by ܰ(ݔ) = (1 − ௫−1݌(݌ (18)

where x is the number of monomer units in a chain and p the growing probability set to 

constant. Then the distribuƟon can be understood as growing x-1 Ɵmes and then not growing 

anymore (factor 1-p). The associated weight-average molecular weight distribuƟon is then

(ݔ)ܹ = ∑(ݔ)ܰݔ ݇ܰ(݇)௞ = 1)ݔ − ௫−1݌2(݌ (19)

The number average molecular weight ܯ௡, the weight average molecular weight ܯ௪ with the 

monomer molecular weight ݉ and the polydispersity PDI are deĮned as

௡ܯ = ݉1 − ௪ܯ       ݌ = ݉(1 + 1(݌ − ݌ ܫܦܲ      = ௡ܯ௪ܯ = 1 + ݌ (20)

AŌer the morphology generaƟon is done, one can analyze the morphology with diīerent 

measures. 

The typical feature size can be calculated similarly to the annealing model. Moreover, the 

typical size of a single polymer can be calculated as

௧௬௣ݎ = ∑ |࢘௜ − ࢘஼ைெ|௜ ݔ (21)

with the center of mass posiƟon of the polymer ࢘஼ைெ and the monomer posiƟon of monomer ݅ in the chain ࢘௜. Depending on the parameter seƫngs, the polymers can grow quasi one-, 

two- or three-dimensional. The eīecƟve dimensionality can be obtained from a double-log 

plot of x vs. ݎ௧௬௣ since ݔ ∝ ௧௬௣ௗݎ  for dimension d. 
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Having obtained a morphology by either of the methods described above, one can now move 

on to deĮne a Hamiltonian for the OSC with its respecƟve morphology. For that, the Tight-

Binding approximaƟon of the OSC system is used and introduced over the next chapter.

Tight Binding Theory

IntroducƟon and HOMO/LUMO Bandwidth

The theoreƟcal secƟon up to Wannier funcƟons is based and adapted from my Master thesis55. 

For metals, the conducƟon electrons are weakly bound to the atomic nuclei so that they can 

delocalize over a long-range up to the whole material. Opposing that, the situaƟon in organic 

molecular materials or ionic crystals is diīerent. There, the electrons usually stay close to the 

nuclei. In this secƟon, it will be Įrst shown how in this seƫng of Ɵghtly bound electrons the 

overlap between neighboring molecules gives rise to a transiƟon from individual and localized 

states to a band formaƟon. AŌer that, the mathemaƟcal framework for the Tight Binding 

formalism will be introduced.

To determine the inŇuence of overlap between molecules on the energeƟcs (following 

Hunklinger38), a periodic laƫce with its periodic potenƟal will be used for simplicity. Isolated 

molecules, as stated in the introducƟon, form discrete energy levels (HOMO-݅ and LUMO+݅). 
For those, the staƟonary Schrödinger equaƟon readsܪ஺߰௜ = ௜߰௜ܧ (22)

With the single-molecule Hamilton operator ܪ஺ and its eigen energies (being HOMO-݅ and 

LUMO+݅) ܧ௜ and the respecƟve eigenfuncƟons ߰௜. The single-electron approximaƟon will be 

imposed, which means that the moƟon of a single electron in the Įeld of all other atoms ܪௌ 

will be studied. Therefore, the perturbing potenƟal is

࢘)ௌܪ − (௠ࡾ = ∑ ஺ܸ(࢘ − ௡)௡≠௠ࡾ (23)

with ࢘ being the electron posiƟon, ࡾ௠ the posiƟon of the laƫce molecule the electron resides 

on in the beginning and ࡾ௡ the posiƟon of the molecule n in the rest of the laƫce (being the 

perturbaƟon). ஺ܸ is the potenƟal of a free molecule. The single electron Hamiltonian reads

ܪ = ஺ܪ + ௌܪ = − ℏ22݉Δ + ஺ܸ(࢘ − (௠ࡾ + ࢘)ௌܪ − (௠ࡾ (24)
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The eigen-energy ܧ௞,௜ for the soluƟon wavefuncƟon Ψ௞,௜ is calculated as usual:

௞,௜ܧ = ∫Ψ௞,௜∗ ∗Ψ௞,௜dܸ∫Ψ௞,௜ܪ Ψ௞,௜dܸ (25)

, but since the exact soluƟon is not known, the wave funcƟon Ψ௞,௜ will be approximated by a 

superposiƟon of the single-molecule eigen funcƟons such that the wave funcƟon respects the 

symmetry of the laƫce and fulĮlls the properƟes of a Bloch funcƟon. This gives the wave 

funcƟon ansatz

Ψ௞,௜ ≈ ߶௞,௜ = 1√ܰ∑߰௜(࢘ − (௠ࡾ exp(݅ࡾ࢑௠)௠ (26)

with N being the total number of molecules in the laƫce. This gets now inserted into Equ. (25). 

Since the overlap between diīerent molecules is assumed to be small compared to other 

terms, they can be neglected, so the normalizaƟon factor will be about unity and the 

numerator splits into three parts:

௞,௜ܧ ≈ ௜ܧ − ௜ߙ −∑exp(݅ࡾ࢑௡) ௜,௡௡ߚ (27)

where the idenƟty ∑ exp(݅ࡾ࢑௠) = √ܰ௠  ௜,௡ was canceled by recognizing that the double sum is N Ɵmes the sum of EquaƟon (27). Theߚ ௞0 was used and the factor N for the sum containingߜ

Įrst part is the eigenenergy part of the individual molecules ܧ௜, the second is the energy shiŌ 

due to the perturbing potenƟalߙ௜ = −∫߰௜∗(࢘ − ࢘)ௌܪ(௠ࡾ − ࢘)௠)߰௜ࡾ − ௠)dܸࡾ (28)

And the third is the transfer integral resulƟng from interacƟon with the perturbing Įeld and 

the molecular overlapߚ௜,௡ == −∫߰௜∗(࢘ − ࢘)ௌܪ(௡ࡾ − ࢘)௠)߰௜ࡾ − ௠)dܸࡾ (29)

where we set ࡾ௠ = 0 without loss of generality (wlog). Only caring about nearest neighbors 

in for example a cubic laƫce, ܧ௞,௜ is for a laƫce constant ܽ evaluated asܧ௞,௜ ≈ ௜ܧ − ௜ߙ − ௜[cos(݇௫ܽ)ߚ2 + cos(݇௬ܽ) + cos(݇௭ܽ)] (30)

The interacƟon caused by the perturbing Įeld of the overlapping molecules results in a 

formaƟon of a narrow band (in this case of width 12ߚ௜) out of the earlier discrete molecular 
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energy levels, i.e. HOMO and LUMO. The bandwidth gets larger with decreasing molecular 

separaƟon, and also at some point interacƟons between HOMO-݅ and HOMO-݆ further 

increase the bandwidth, but for realisƟc separaƟons and transfer integrals, this is usually not 

the case. AddiƟonally, bandlike transport is only obtained, if the disorder 𝜎஽ைௌ (see next 

secƟons) is less than the bandwidth, which is for organics usually not the case36. Nevertheless, 

for semi-crystalline morphologies, that is crystallized regions between amorphous and 

disordered regions, locally a band can form, and if the transfer integral between crystallized 

regions is large enough, band like behavior could maybe even be observed macroscopically. 

But usually hopping between localized states as in the MoƩ theory is the limiƟng and therefore 

dominaƟng charge transport process although more delocalized states can substanƟally 

improve the conducƟvity as will be studied in this thesis.

Second QuanƟzaƟon 

(Following Altland and Simons56). The Įrst fundament of the Ɵght binding theory is the 

formalism of second quanƟzaƟon, which is a way of rewriƟng the Hamiltonian into a diīerent 

form, using abstract, but physically intuiƟve operators named creaƟon and annihilaƟon 

operators. In the occupaƟon number representaƟon of a quantum mechanical state |݊1, ݊2, … ⟩ , also called a Fock state, which shows the number of parƟcles in each state ݅, the 

creaƟon operator acts as

ܽ௜†|݊1, … , ݊௜ , … ⟩ ≔ (݊௜ + ,௦೔|݊1ߞ 12(1 … , ݊௜ + 1,… ⟩ (31)

With ݏ௜ = ∑ ௝݊௜−1௝=1 , ߞ = 1 for bosons and ߞ = −1 for fermions. For fermions, the occupaƟon 

numbers have to be taken mod 2. This means, the operator ܽ௜† raises the occupaƟon number 

of state ݅. It is therefore called creaƟon operator. It follows that the Fock basis states can be 

obtained by repeated applicaƟon of creaƟon operators on the vacuum state |0⟩
|݊1, ݊2, … ⟩ =∏ 1√݊௜! (ܽ†݅)݊݅|0⟩௜ (32)

Due to the unitarity of Hamiltonians, one also has to determine the acƟon of the HermiƟan 

adjoint operator of the creaƟon operator, (ܽ௜†)† = ܽ௜. One Įnds the acƟon of ܽ௜ on a Fock 

state to be 

ܽ௜|݊1, … , ݊௜, … ⟩ =  ݊௜12ߞ௦೔|݊1, … , ݊௜ − 1,… ⟩ (33)
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This means that the operator ܽ௜ reduces the number of parƟcles in state ݅, and is therefore 

called annihilaƟon operator. If the state ݅ is a vacuum state, the annihilaƟon operator just 

destroys the state itself, i.e. ܽ|0⟩ = 0.

RepresentaƟon of operators 

One important operator is the occupaƟon number operator, which is deĮned as:݊̂ఒ = ܽఒ†ܽߣ (34)

The applicaƟon of this operator on a Fock state gives݊̂ఒೕ|݊ఒ1 , ݊ఒ2 , … ⟩ = ݊ఒೕ|݊ఒ1 , ݊ఒ2 , … ⟩ (35)

with ݊ఒೕ  being the occupaƟon number of the state ߣ௝, jusƟfying the name of the operator. 

Since any state in Fock space can be generated by the applicaƟon of creaƟon and annihilaƟon 

operators, any operator must have a representaƟon in terms of creaƟon and annihilaƟon 

operators. In a diagonal basis, the representaƟon of a single parƟcle operator ࣩ̂1 in the 

creaƟon/annihilaƟon operator formalism is

ࣩ̂1 ఒ೔݊̂ఒ೔௜݋∑= (36)

Which is just the sum of the occupaƟons of every state weighted by its eigenvalue. In a general 

basis, one Įnds

ࣩ̂1 ఓఔߥܽ†ఓܽ⟨ߥ|1ࣩ̂|ߤ⟩∑= (37)

which intuiƟvely removes a parƟcle in state ߥ and creates one in state ߤ with its respecƟve 

transiƟon amplitude. This implies a matrix representaƟon of the operator in the {ߤ} basis with 

matrix elements ܪఓఔ =  This result can be generalized to many-body operators. A .⟨ߥ|1ࣩ̂|ߤ⟩

two-parƟcle operator describes the interacƟon between two parƟcles and can be represented 

as

ࣩ̂2 = ∑ ,ߤ⟩ ,ߣ|2ࣩ̂|′ߤ †′ఓ†ܽఓܽ⟨′ߣ ′ఒఒ′ఓఓ′ߣܽߣܽ (38)
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An example of a two body-operator would be the electron-electron interacƟon due to 

Coulomb interacƟon.

Tight-Binding ApproximaƟon on Periodic Laƫces

(Following57) We will start the discussion of the Tight-binding model on a periodic laƫce and 

generalize aŌerwards. At the beginning of this chapter, where Ɵghtly bound electrons in a 

periodic laƫce were studied to see the emergence of bands, already a simpliĮcaƟon was used, 

which will now be studied in more detail. As in EquaƟon (26), the starƟng point is Bloch’s 

theorem. If the exact Bloch wavefuncƟon, which is the exact soluƟon to the problem, is not 

known, the periodic funcƟon in it can be constructed by superposiƟon of some convenient or 

appropriate localized funcƟons ߱ఛ(࢘), where ߬ is some quantum number:

߶݇, ߬ = 1√ܸ∑ ߬߱(࢘ − (ࡾ exp(݅ࡾ࢑)ࡾ (39)

which is a generalizaƟon of EquaƟon (26) and therefore fulĮlls the Bloch wave condiƟons. As 

already said and used before, ߱ఛ can be some atomic orbital funcƟon or a molecular orbit 

funcƟon. 

Now the Hamiltonian matrix elements are calculated in this Bloch wave basis. Bloch waves 

imply that only electron interacƟons with the same crystal momentum (momenta that only 

diīer by some reciprocal laƫce vector) are possible such that only the Hamiltonian matrix 

elements between diīerent states ߬ will be considered.(࢑)߬′߬ܪ = ⟨߶௞,ఛ′|ܪ|߶௞,ఛ⟩                 = ∑ 1ܸ exp(݅ࡾ)࢑ − ((′ࡾ ⟨߱ఛ′(࢘ − ࢘)ఛ߱|ܪ|(′ࡾ − =                ′ࡾ,ࡾ⟨(′ࡾ ∑exp(−݅ࡾ߂࢑) ⟨߱ఛ′(࢘ − Δܪ|(ࡾ|߱ఛ(࢘)⟩Δࡾ
(40)

where in the last step r was shiŌed such that Δࡾ = ′ࡾ −  and then sum over R was ࡾ

performed giving ∑ 1௏ࡾ = 1. DeĮning the hopping amplitude

ఛ,ఛ′Δோݐ = ⟨߱ఛ′(࢘ − Δܪ|(ࡾ|߱ఛ(࢘)⟩ (41) 
The second quanƟzed form of the Hamiltonian reads
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ܪ ఛ,ఛ′Δோݐ∑∑= exp(−݅ࡾ߂࢑)ܽ࢑,߬′† ܽ࢑,ఛ௞ఛ,ఛ′Δ܀ =∑߳࢑,ఛఛ′ܽ࢑,߬′† ܽ࢑,ఛ࢑ఛ,ఛ′ (42)

with ߳࢑,ఛఛ′ = ∑ ఛ,ఛ′Δோݐ exp(−݅ࡾ߂࢑)Δࡾ . A Fourier transformaƟon to real space of this expression 

yields 

ܪ = ∑ ఛ,ఛ′Δோݐ †′߬,ࡾΔ+ࡾܽ ′ఛ,ఛࡾઢ,ࡾఛ,ࡾܽ (43)

Mostly not all ߬ are considered. Usually, only the outermost orbitals of molecules parƟcipate 

in charge transport such that all other orbitals can be neglected and the Hamiltonian is 

simpliĮed.

Wannier funcƟons 

(Following57) The problem about taking just some localized funcƟon ߱ఛ as atomic orbitals is 

that those states are not orthogonal and can be an overcomplete basis set, which can 

someƟmes lead to problems in calculaƟons. Now, instead of imposing some localized funcƟons 

to obtain a Bloch wave, for a given Bloch state ߶௞,ఛ the localized funcƟons ߱ఛ are searched. 

The Įrst thing to noƟce about this is that the localized funcƟons are not unique. In fact, any 

unitary transformaƟon for a given set of localized funcƟons is again a suitable localized 

funcƟon that recovers the Bloch wave exactly. AddiƟonally, any eigenstate, as the Bloch wave 

is, is deĮned up to some phase. For generality, the Bloch wave is therefore mulƟplied by a 

phase exp(݅(࢑)ߠ). Now the localized funcƟon that exactly recovers the given Bloch wave, 

named the Wannier funcƟon, is obtained by a Fourier transformaƟon:

߱ఛ(࢘ − (ࡾ = √1ܸ∑exp(݅(࢑)ߠ) exp(−݅ࡾ࢑)߶௞,ఛ(࢘)࢑ (44)

The freedom of the phase that was introduced can now be used to tune the properƟes of the 

Wannier funcƟons. One can for example choose the funcƟon (࢑)ߠ such that the expectaƟon 

value of ࢘2, ⟨߱ఛ|࢘2|߱ఛ⟩ is minimized, meaning that a maximally localized Wannier funcƟon is 

searched.

By construcƟon, Wannier funcƟons also remove the problem of non-orthonormality that was 

encountered before:
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⟨′ఛ,′ࡾ߱|ఛ,ࡾ߱⟩ = 1ܸ  ∑exp(݅(ࡾ′࢑′ − ((ࡾ࢑ ⟨߶௞′,ఛ′|߶௞,ఛ⟩௞,௞′                         = 1ܸ  ∑exp(݅ࡾ)࢑′ − ((ࡾ ఛ,ఛ′௞ߜ = ′ఛ,ఛߜ′ࡾ,ࡾߜ (45)

GeneralizaƟon to Non-Orthogonal Bases and Arbitrary Laƫces

The above consideraƟons of the Tight Binding model are already quite powerful, however for 

the purpose of this thesis the concept has to be generalized. Following mainly e.g. Ref [58], let 

us consider for a general case the staƟonary Schrödinger equaƟon with its full Hamiltonian Hܪ|Ψ⟩ = ⟨Ψ|ܧ (46)

The full Hilbert space of H is generally inĮnite dimensional, which can be unpracƟcal for 

applicaƟons. There are even more complicaƟons. First, the full basis of the Hilbert space is 

oŌen not even known due to the complexity of general systems. Also, the previous 

consideraƟons are only applicable for periodic systems. However, general systems, especially 

organic materials are not periodic at all, so the Bloch wave ansatz is not applicable. And lastly, 

what was already problemaƟc before, the basis of even a subspace can be non-orthogonal.

To approach this scenario, Įrst assume a ĮcƟonal non-orthogonal full basis of the Hilbert space {|߶ఈ⟩}. We can deĮne a reciprocal basis {|߶ఈ⟩} through the relaƟon ⟨߶ఈ|߶ఉ⟩ =  ఈఉ. With theߜ

full basis, the unity operator can be deĮned as 

ܫ =∑|߶ఈ⟩⟨߶ఈ|ఈ (47)

The basis elements deĮne the overlap matrix Sܵఈఉ = ⟨߶ఈ|߶ఉ⟩    ܵఈఉ = ⟨߶ఈ|߶ఉ⟩ = (ܵ−1)ఈఉ (48)

In terms of the overlap matrix, the original and the reciprocal basis can be related as

|߶ఈ⟩ = ∑ܵఉఈ|߶ఉ⟩ఉ       |߶ఈ⟩ =∑ ఉܵఈ|߶ఉ⟩ఉ (49)

One can now formally split the Hilbert space into two complementary subspaces ࣪ and ࣫ ܫ= − ࣪. The overlap matrix can then be wriƩen in a block matrix form
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ܵ = (ܵ௉௉ ܵ௉ொܵொ௉ ܵொொ) (50)

where (ܵ௉௉)௣௣′ = ⟨߶௣|߶௣′⟩ with |߶௣⟩, |߶௣′⟩ ∈ ࣪, (ܵ௉ொ)௣௤ = ⟨߶௣|߶௤⟩ with |߶௣⟩ ∈ ࣪, |߶௤⟩ ∈࣫ and so on. With the projecƟon operator P deĮned as

ܲ = ∑|߶௣⟩⟨߶௣|௣∈࣪ (51)

one can then project the state |Ψ⟩ onto the subspace ࣪  and calculate the Schrödinger equaƟon 

in the projected space ࣪ ⟨Ψ|ܲܪ = ⟨Ψ|ܲܧ (52)

AŌer some calculaƟon one can represent the projected Schrödinger equaƟon with an eīecƟve 

Hamiltonian that depends on the eigenvalue Eܪ௘௙௙(ܧ)ࢉ௉ = (ܧ)௘௙௙ܪ     ௉ࢉܧ = ܵ௉௉−1 ௉௉ܪ) + ௉ொܵܧ) − ொொܵܧ)(௉ொܪ − ொ௉ܵܧ)ொொ)−1ܪ − ((ொ௉ܪ (53)

where (ܪ௉௉)௣௣′ = ⟨߶௣|ܪ|߶௣′⟩ with |߶௣⟩, |߶௣′⟩ ∈ ࣪ and analogously ܪ௉ொ and ܪொ௉. The 

projected eigen vector components are deĮned via (ࢉ௉)௣ = ⟨߶௣|Ψ⟩. The restricted 

Schrödinger equaƟon above can alternaƟvely be wriƩen as ܪ௅௘௙௙(ܧ)ࢉ௉ = ௉ࢉ௉௉ܵܧ (54)

referring to ܪ௅௘௙௙(ܧ) = ௉௉ܪ + ௉ொܵܧ) − ொொܵܧ)(௉ொܪ − ொ௉ܵܧ)ொொ)−1ܪ −  ொ௉) as the Löwdinܪ

Hamiltonian. Since the cP are not orthogonal, one can now perform a Löwdin transformaƟon

′((ܧ)௅௘௙௙ܪ) = ܵ௉௉−12ܪ௅௘௙௙(ܧ)ܵ௉௉−12       ࢉ௉′ = ܵ௉௉1/2ࢉ௉ (55)

to obtain the orthogonalized eigenvalue problem

′((ܧ)௅௘௙௙ܪ) ′௉ࢉ = ′௉ࢉܧ (56)

The Löwdin transformaƟon gives the closest orthogonal representaƟon to the localized non-

orthogonal basis {|߶௣⟩}. Of course, the implicit dependency of the Löwdin Hamiltonian on the 

energy is computaƟonally restricƟve. However, if one chooses E to be around the region of 
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interest, like the center of DOS at 0ܧ, one gets a good approximaƟon of the eigenvalue 

spectrum around 0ܧ by

′((0ܧ)௅௘௙௙ܪ) ′௉ࢉ = ′௉ࢉܧ (57)

So far, the problem was basically only rewriƩen and we sƟll have the problem of the lacking 

knowledge of the basis states of ࣫. The idea is now to truncate the Hilbert space towards only 

the subspace ࣪, meaning that all ࣫ dependent terms are ignored and just keep ܪ௅௘௙௙(0ܧ)  ௉௉. This is the Ɵght binding approximaƟon. But since we possibly ignore important featuresܪ→

hidden in ࣫, the accuracy of the Ɵght binding approximaƟon is crucially dependent on the 

proper choice of the subspace ࣪. Usually, the choice of ࣪ are the basis states that are believed 

to be most relevant for the physics of interest, in OSCs this could be the HOMOs or LUMOs.   

Before going into the actual calculaƟon of the Ɵght binding parameters, Įrst the general OSC 

model Hamiltonian is introduced.

General Model Hamiltonian of Organic Semiconductors

In this secƟon (mainly following36, also reproduced from my Master thesis55), organic 

semiconductors will be studied from a quite general model Hamiltonian which captures the 

most relevant properƟes and it is the starƟng point for many theoreƟcal and numerical studies. 

The proposed Hamiltonian36,59,60 is divided into several terms:ܪ = ௘0ܪ + ௣ℎ0ܪ + ௘௧௥ܪ + ௘−௣ℎ௟௢௖ܪ + ௘−௣ℎ௡௢௡ܪ + ௘௦௧௔௧ܪ (58)

The Įrst term describes the electron energy ܧ௡0 of N electrons in a perfectly ordered laƫce 

without any interacƟons

௘0ܪ ௡0ܽ†݊ܽ௡ேܧ∑=
௡ (59)

The second term describes free phonons (bosonic quasiparƟcles emerging from quanƟzaƟon 

of laƫce distorƟons)

௣ℎ0ܪ =∑ℏ߱ࢗ,௝ †௝,ܾࢗ) ௝,ܾࢗ + ௝,ࢗ(12 (60)
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where ℏ߱ࢗ,௝ is the energy of the phonon mode on branch ݆ with wavevector q. The ܾࢗ,௝† ,  ௝,ܾࢗ
are the phonon creaƟon and annihilaƟon operators. 

So far, no interacƟons and no transport is introduced. Electronic transfer from molecule m to 

molecule n by the transfer integral ܬ௠௡ = ⟨߰௡(࢘ − ࢘)௘௧௥|߰௠ܪ|(௡ࡾ − ௠)⟩ is given byࡾ

௘௧௥ܪ = ∑ ௠௡ܽ†݊ܽ௠ேܬ
௠≠௡ (61)

The next two terms describe the local and non-local electron-phonon interacƟons in Įrst order. 

Local means that the interacƟon does not lead to scaƩering onto a diīerent molecule 

(intramolecular interacƟon), whereas non-local is, therefore, an electron-phonon scaƩering by 

intermolecular interacƟons involving the scaƩering of electrons onto a diīerent molecule. The 

local term is

௘−௣ℎ௟௢௖ܪ = 1√ܰ ∑∑ℏ߱ࢗ,௝(݃௠(ࢗ, ௝,ܾࢗ(݆ + ݃௠∗ ,ࢗ) †௝,ࢗ−ܾ(݆ )ܽ†݉ ܽ௠ே
௠ࢗ,௝ (62)

And the non-local term is

௘−௣ℎ௡௢௡ܪ = 1√ܰ ∑∑ ℏ߱ࢗ,௝(݃௡௠(ࢗ, ௝,ܾࢗ(݆ + ݃௡௠∗ ,ࢗ) †௝,ࢗ−ܾ(݆ )ܽ†݊ܽ௠ே
௠,௡௠≠௡ࢗ,௝ (63)

The ݃௠ and ݃௠௡ are the local and non-local electron-phonon couplings respecƟvely. EquaƟon 

(62) is known as diagonal dynamic disorder, whereas EquaƟon (63) is the oī-diagonal dynamic 

disorder. Dynamical disorder is also called thermal disorder since the dynamic laƫce 

distorƟons are due to thermal movement of the molecules. The eīect of the electron-phonon 

interacƟon is that there are no pure electronic eigenstates. Electrons are always accompanied 

by phonons, which are laƫce distorƟons. From this coupling, quasi parƟcles emerge, which 

are called polarons, that is, a charge surrounded by a phonon cloud. The eīect gets larger the 

stronger the coupling becomes. Typically, for organic semiconductors, the coupling is quite 

high, which in addiƟon to the low dielectric constant of about ߳௥ ≈ 3 61–63 for low doping, 

which is a measure of the ability of the medium to screen charges (߳௥ > 10 in inorganic 

semiconductors), leads to a polarizaƟon of the molecule where the charge resides36. The 

charges energy is then reduced by the polarizaƟon energy it created, which for low transfer 
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integral compared to the coupling is given59 by ܧ௣௢௟௟௢௖ = − 1ே  ∑ ℏ߱ࢗ,௝|݃௡௠(ࢗ, ࢐,ࢗ2|(݆ , and traps 

itself, leading to a localized polaron, the small polaron. If the interacƟon is long-range 

(untypical for organics), the resulƟng polaron is more delocalized, forming a large polaron. If 

the transfer integrals ܬ௠௡ are large compared to the electron-phonon couplings, the charge 

transport in the medium gets band-like, whereas when its small, hopping between localized 

states is the main charge transport mechanism. 

So far, the laƫce is perfectly periodic, which of course is not the usual case in organic 

semiconductors. In realisƟc scenarios, the molecules or polymer chains are quite disordered. 

Therefore, one introduces another term into the Hamiltonian, the so-called staƟc disorder, 

which describes the variaƟon of on-site energy, ܧߜ௡, due to the variaƟons in the chemical 

vicinity of the respecƟve molecule and variaƟons in laƫce potenƟal due to the mainly staƟc 

distorƟons in the ‘laƫce’. Since the transfer integral is mainly determined by the fronƟer 

orbital distances and their orientaƟon, the random distorƟons in the molecular ‘laƫce’ also 

introduce variaƟons in the transfer integrals, ܬߜ௠௡. The laƩer is the oī-diagonal disorder, 

whereas the former is called diagonal disorder. The term reads

௘௦௧௔௧ܪ ௡ܽ†݊ܽ௡ேܧߜ∑=
௡ + ∑ ௠௡ܽ†݊ܽ௠ேܬߜ

௠,௡௠≠௡ (64)

In disordered polymer-based materials, the staƟc disorder is much more important than the 

dynamical disorder due to their high molecular mass (therefore slow thermal moƟon). 

Dynamic disorder becomes important though, if the conjugated polymers are highly ordered, 

and also, again due to their small molecular mass, it is important in small molecules13. 

Most studies however don’t uƟlize the whole general Hamiltonian. Especially for large 

molecular mass OSCs like conjugated polymers, one can neglect the dynamic disorder since 

thermal moƟons become very slow in comparison to electronic Ɵme scales and use only the 

electronic Hamiltonian ܪ = ௘0ܪ + ௘௦௧௔௧ܪ + ௘௧௥ܪ (65)

for charge transport simulaƟons and calculaƟons, as also done in this thesis. The next session 

discusses the parametrizaƟon of this Ɵght binding model.
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Tight Binding ParametrizaƟon and Transfer Integrals

To parametrize the Ɵght binding model, one needs to Įnd a suitable basis and calculate the 

transfer integrals of the whole system. A physically intuiƟve basis for Ɵght binding models of 

OSCs are the localized fronƟer orbitals of the molecules that are mainly responsible for charge 

transport, i.e. HOMO or LUMO orbitals. In principle, one could perform exact DFT calculaƟons 

of a whole system with its Kohn-Sham-Fock-Operator or Kohn-Sham Hamiltonian H, calculate 

the HOMO or LUMO orbitals of localized fragments of the system forming the localized basis 

of the system and calculate the transfer integrals ܬ஺஻ = ⟨߶஺|ܪ|߶஻⟩ between localized 

fragments A and B. However, the calculaƟon of large systems using DFT is computaƟonally 

prohibiƟve. One could make a Įrst approximaƟon by just considering the Hamiltonian of the 

dimer system A and B and calculaƟng the fronƟer orbitals of A and B to calculate the transfer 

integral ܬ஺஻ = ⟨߶஺|ܪௗ௜௠|߶஻⟩. This so-called dimer approximaƟon is widely used for mulƟ-

scale simulaƟons. It is however sƟll computaƟonally very expensive, since for large systems a 

very large number of molecular dimer conĮguraƟons that the invesƟgated system splits into, 

has to be calculated via DFT, so this approach is sƟll limited to small systems. If one also wants 

to include thermal or dynamic disorder, it gets even more complicated. Some approaches 

uƟlizing DFT for transfer integral calculaƟons were given in the introducƟon. One can further 

reduce the computaƟonal eīort of transfer integral calculaƟons with the ZINDO16 

approximaƟon, which is deduced by approximaƟons of the unrestricted Hartree-Fock 

equaƟons. The Hartree-Fock equaƟons are deduced by variaƟon of the full Hamiltonian of the 

mulƟ-electron system and translate the complex Schrödinger equaƟon to a system of eīecƟve 

one-electron equaƟons. Hereby, the Hamiltonian is replaced by the Fock-operator ܨఈ and one 

obtains a system of equaƟons for one-electron wavefuncƟons or molecular orbitals ߶௜ఈ =∑ ܿ௜ఓఈ ߯ఓఓ  in the localized atomic orbital basis {߯ఓ} which are the columns of the matrix ܥఈ for 

spin ߙ respecƟvely ܨఈܥఈ = ఈܨ        ఈ߳ఈܥ = ℎ ௝ܬ)∑+ − ௝ఈ)௝ܭ (66)

such that the Fock operator consists of a single parƟcle Hamilton operator ℎ containing the 

kineƟc energy and electron-core potenƟal, the Coulomb interacƟons ܬ௝ and the exchange 

terms ܭ௝ఈ. ZINDO makes approximaƟons to the Fock-operator F to reduce the high 
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computaƟonal eīort required for the full Fock operator. It neglects certain overlap integrals 

and two-electron integrals or replaces them by empirically deduced constants or parameters. 

For the calculaƟon of the transfer integral between the fronƟer orbitals (e.g. HOMOs) of 

molecules A and B one needs to calculate ܬ஺஻ = ⟨߶ுைெை஺ ுைெை஻߶|ܨ| ⟩ = ∑ ܽఓ∗ܾఔ⟨ߥ|ܨ|ߤ⟩ఓఔ  for ߤ ∈ ,ܣ ߥ ∈ ఓఔܨ and therefore the Fock matrix elements ܤ =  in the basis {߯ఓ}. In the ⟨ߥ|ܨ|ߤ⟩

ZINDO approximaƟon, these elements are given as

ఓఔܨ = ఓܵఔ ஺ߚ + ஻2ߚ + ఓܲఔ ஺஻2ߛ (67)

where ఓܵఔ =  ஺ the ionizaƟon potenƟal of molecule A andߚ ,are the atomic overlaps ⟨ߥ|ߤ⟩

ఓܲఔ = ∑ ఔ௔݊௔௔ܥఓ௔ܥ  are the elements of the density matrix (occupaƟon number ݊ ௔). The ߛ஺஻ ∝1ோಲಳ+ఋ  is the two-electron Coulomb integral in the Mataga-Nishimoto formalism with the 

empirical parameter ߜ and molecular distance ܴ஺஻. As Kirkpatrick et al.64 argue, for symmetric 

molecules A and B, like if A and B are the same molecule, the density matrix elements ఓܲఔ can 

approximately be neglected since |ߤ⟩, ఓఔܨ are localized on diīerent molecules. It follows that ⟨ߥ| ∝ ఓܵఔ and therefore the transfer integral ܬ஺஻ ∝ ஺ܵ஻ is approximately proporƟonal to the 

molecular overlap between A and B. This approximaƟon is called Molecular Orbital Overlap 

(MOO) and can dramaƟcally reduce the computaƟonal eīort of transfer matrix calculaƟons. 

One can even further simplify this approach by the AnalyƟc Overlap Method65 (AOM) by 

projecƟng the molecular orbitals onto a minimal Slater type basis set and analyƟcally calculate 

the overlaps. They Įnd over a wide range of distances a proporƟonality between the molecular 

overlap and the transfer integral calculated by high level ab iniƟo reference calculaƟons.
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Tight Binding Model of this Thesis

These Įndings moƟvate the following Ɵght binding model parametrizaƟon that is used 

throughout this thesis

ܪ =∑߳௡ܽ†݊ܽ௡௡ − ∑ ௡݂௠ ⋅ ℏ0ߥ⟨߶௡|߶௠⟩ܽ†݊ܽ௠⟨௡,௠⟩ +∑⟨߶௡|ܸ|߶௡⟩ܽ†݊ܽ௡௡+ ∑ ⟨߶௡|ܸ|߶௠⟩ܽ†݊ܽ௠⟨௡,௠⟩
(68)

Here, ߳௡ is the diagonal disorder or on-site energy. SomeƟmes, ߳௡ is directly approximated 

from the force Įeld if MD is used for morphology generaƟon. However, due to the macroscopic 

randomness of the diagonal disorder, here it is assumed that they are gaussian distributed, i.e. ߳௡~ࣨ(ߤ, 𝜎) with mean ߤ = 0 and disorder 𝜎. The transfer integral ܬ௡௠ = (−) ௡݂௠ ⋅ℏ0ߥ⟨߶௡|߶௠⟩ is proporƟonal to the molecular overlap with scaling factor ℏ0ߥ and ௡݂௠ is 

another scaling factor for special relaƟons between molecular pairs n and m like intra-chain 

connecƟon. The sum is over neighbors ⟨݊,݉⟩ with distance ≤ ܴ௖௨௧.
Both on-site energies and transfer integrals are corrected in the presence of dopant ions that 

add the Coulomb interacƟon terms ⟨߶௡|ܸ|߶௡⟩ and ⟨߶௡|ܸ|߶௠⟩, which get treated explicitly 

here. Since periodic boundary condiƟons are applied, for the calculaƟon of the Coulomb 

potenƟal ௦ܰℎ௘௟௟ = 5 periodic shells of the simulaƟon box are considered. At a point r within 

the simulaƟon box, all Coulomb potenƟals of each counter-ion within the with ௦ܰℎ௘௟௟ periodic 

shells extended simulaƟon box are added. To maintain charge neutrality, the potenƟal of an 

oppositely charged homogeneous and spherical charge distribuƟon is subtracted, treaƟng the 

charge-charge interacƟon as single-parƟcle interacƟon with an eīecƟve mean background. 

DenoƟng  ௦ܸℎ௘௟௟௦ as the extended simulaƟon box and Q the total counter-ion charge within 

௦ܸℎ௘௟௟, the radius of the homogeneously charged sphere is 

3ߨ4 ܴ௘௤3 = ௦ܸℎ௘௟௟   ⇔    ܴ௘௤ = (3 ௦ܸℎ௘௟௟4ߨ )13 (69)

The charge density of the sphere is 0ߩ = −ܳ/ ௦ܸℎ௘௟௟. The potenƟal at a point r within the 

sphere is calculated via

௕ܸ௚(࢘) = ∫0߳௥߳ߨ14 ܚ|0ߩ − |′ܚ  d࢘′ = 06߳0߳௥ߩ (3ܴ௘௤2 − (2ݎ (70)
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The eīecƟve Coulomb potenƟal, the charge e is interacƟng with, is now calculated as

ܸ(࢘) = ∑ 0߳௥߳ߨூ௢௡4ݍ݁ 1min(|࢘ூ௢௡ − ࢘|, ௠௜௡) ࢘಺೚೙∈௏ೞℎ೐೗೗ݎ + ݁ ௕ܸ௚(࢘) (71)

Here, a cutoī distance ݎ௠௜௡ = 2ܽ௧௬௣ of the Coulomb potenƟal of the counter-ions was 

introduced to mimic the Įnite potenƟal depth of a charged dopant, with ܽ௧௬௣ being the laƫce 

constant for laƫce-based morphologies. 

As non-orthogonal basis, HOMO or LUMO orbitals ߶௡ of monomer units are used. For 

simplicity, in this thesis these are approximated as exponenƟally decaying ellipsoids

߶௡(࢘) = ⟨࢘|߶௡⟩ = ௫݈௬݈௭݈ߨ√1 exp(−√(݈ݔ௫)2 + 2(௬ݕ݈) + (2(௭ݖ݈) (72)

with the orbital decay lengths ݈௫,௬,௭ in the x- ,y- and z-direcƟons. However, above orbital is 

centered at zero and oriented along the cartesian axes. Therefore, the monomer center 

coordinates and the orbital orientaƟons need to be adjusted. 

From the MD morphology output, for every monomer-core, i.e. neglecƟng side chains, the 

geometrical center of mass of all consƟtuent atoms is taken as the monomer center 

coordinates ࢘ ௜ = ∑ ࢘௡௡∈௖௢௥௘ /∑ 1௡∈௖௢௥௘ . AddiƟonally, a plane containing the monomer center ࢘௜ can be ĮƩed to the atoms consƟtuƟng the monomer-core. The normal vectors ̂࢔௜ of these 

planes are one orientaƟon vector the monomer units. By projecƟng the coordinates ࢘ௌ of a 

speciĮc atom of a monomer unit onto the monomers plane, like the S atom of thiophene, the 

normalized vector poinƟng from the monomer center to the projected point is the second 

orientaƟon vector ࢙̂௜ of a monomer unit, ࢙̂௜ ⋅ |iܛ| = Sܚ) − ࢘௜) − [(࢘ௌ − ࢘௜) ⋅ [௜̂࢔ ⋅  .௜̂࢔
The orientaƟon is completed by a third orientaƟon vector deĮned by the cross product ̂࢔௜ × ࢙̂௜. 
These three unit vectors deĮne a rotaƟon matrix ܴ௜ = [࢙̂௜, ௜̂࢔ × ࢙̂௜ , [௜̂࢔ (73)

The reoriented and translated orbital is then calculated via the transformaƟon ߶௜(ܴ௜ ⋅ ࢘ + ࢘௜).
For intra-chain coupling between neighboring monomers n and m, the scaling factor ௡݂௠ is 

applied if the angle between the monomers is less than a criƟcal angle 0ߠ < 40°. Above this 

empirical criƟcal angle here it is assumed that the conjugaƟon of the polymer breaks (defect).
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For a morphology generated by the 3-phase model, the same procedure is applied. However, 

no center of mass needs to be calculated, since the morphology is laƫce based, with each 

laƫce site corresponding to a monomer unit such that the laƫce site coordinates are taken as 

the monomer center coordinates. In the 3-phase model morphologies, reduced diagonal 

disorder in aggregated regions in contrast to amorphous regions can be modeled. The 

interacƟon energy landscape of the monomers deĮne regions of lower and higher energies. 

Aggregated regions will have lower energy, therefore a monomer is taken to be located within 

an aggregate if its interacƟon energy is below some threshold (e.g. ܧ௜௡௧ < 0.3 on a normalized 

energy scale). To mimic the lower diagonal disorder, the on-site energy of monomers within 

aggregates can be drawn from a gaussian distribuƟon with diīerent disorder 𝜎௔௚௚ < 𝜎௔௠. 

Since within real aggregates the molecular packing is beƩer, the electronic coupling is 

enhanced there. However, since the model is laƫce based and the laƫce constant is constant, 

there are two possible workarounds to mimic enhanced electronic coupling. Either for 

neighboring sites that are both within an aggregate, a factor ௡݂௠ can be applied, or one 

enhances the ݈௭ orbital parameter to model beƩer coupling through ߨ −  stacking. This will ߨ

on average enhance the coupling within aggregates, but also induces higher average coupling 

in the amorphous phase, albeit less than in the aggregated phase. For the laƫce-based model, 

it is also possible to add posiƟonal disorder in the amorphous phase by adding small distorƟons 

in random direcƟons to each site within the amorphous phase.

Lastly, for the annealed morphology model the situaƟon is diīerent. It gives only coordinates 

of guest sites and host sites. The guest sites are considered sites within aggregates, whereas 

host sites are part of the amorphous phase, but there is no orientaƟon given. To work around 

that, orientaƟons are aƩributed arƟĮcially. Guest sites are all oriented in the same direcƟon. 

Host sites however get aƩributed a random direcƟon. With site orientaƟons aƩributed in this 

way, the rest is the same as with the 3-phase model, with the only diīerence that there is no 

informaƟon about a site belonging to a polymer chain.
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Density of States

AŌer seƫng up the Ɵght binding Hamiltonian H, the Hamiltonian is diagonalized. Since the TB 

model is built on a non-orthogonal basis, instead of the classical eigenvalue problem, the 

generalized eigenvalue problem needs to be solvedܥܪ = ܥܵܧ (74)

with the overlap matrix S. The matrix C contains the eigenvectors in the non-orthogonal basis 

in the columns. This is equivalent of solving the orthogonalized eigenvalue problem via the 

Löwdin transformaƟon ܪ = ′ܥ and 1/2−ܵܪ1/2−ܵ =  as discussed previously. The result ,ܥ1/2ܵ

is the eigenvalues E of the wavefuncƟons of the TB Hamiltonian and their respecƟve 

wavefuncƟons, either in the orthogonalized basis or the non-orthogonal basis. The eigenvalue 

spectrum is called the Density of states (DOS). It will be studied in the results for diīerent 

scenarios. 

One can also look at the DOS from an analyƟcal perspecƟve, which will be done in the 

following.

Figure 5 - LeŌ: DOS and DOOS of gaussian disorder. Right: Comparison between exponenƟal and 

gaussian DOS.
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The simplest and mostly used eīecƟve model for the energy distribuƟon in OSCs assumes 

gaussian distributed energies and is therefore referred to as the Gaussian Disorder Model 

(GDM). The intrinsic disorder is therefore described by36

݃ீ஽ெ(ܧ) = 𝜎ீ஽ெ2ߨ2√ܰ exp(− ܧ) − 22𝜎ீ஽ெ2(0ܧ ) (75)

and is illustrated in blue in Figure 5. Hereby, 0ܧ is the mean, which is usually the mean HOMO 

or LUMO energy of the OSC and 𝜎ܯܦܩ is the energy variance called the disorder energy. The 

disorder takes values around 𝜎ீ஽ெ ≈ 75 ܸ݉݁ 59,66, a value that also can be as much as double 

of this value in the case of very disordered OSCs. For experimentally relevant charge densiƟes 

however, only the energeƟc tail states are relevant. The physical occupaƟon of the states is 

described by density of occupied states (DOOS), (ܧ)ܱܱܵܦ = ,ܧ)݂(ܧ)݃ ிܧ , ܶ), with the Fermi-

Dirac distribuƟon as funcƟon of the Fermi energy ܧி and temperature ܶ
,ܧ)݂ ிܧ , ܶ) = 11 + exp ܧ) − ி݇஻ܶܧ ) (76)

and is also shown in Figure 5. The Fermi energy and the thermal energy ݇஻ܶ set two 

characterisƟc energy scales in the system. Another characterisƟc energy of a system is given 

by the energy expectaƟon value for the energy w.r.t. the DOOS

⟨ܧ⟩ = ∫ ∫∞−∞ܧd(ܧ)݂(ܧ)݃ܧ ∞−∞ܧd(ܧ)݂(ܧ)݃ = −𝜎ீ஽ெ2݇
஻ܶ (77)

where the last equaƟon is for 0ܧ = 0 and for low charge concentraƟons. 

For low to intermediate charge concentraƟons, especially in doped systems, the relevant tail 

of the DOS can be modeled to be exponenƟal36 

(ܧ)݃ = ܰ݇஻ܶ exp (− ஻݇ܧ 0ܶ) (78)

with the characterisƟc trap temperature 0ܶ, for ܧ ≥ 0 and p-type doping. For n-type doping, 

the sign of E is Ňipped. In this model, the energy expectaƟon value is determined to be ⟨ܧ⟩ =݇஻ 0ܶ/(1 + 0ܶ/ܶ). The exponenƟal DOS is however not a good model for undoped systems, 

since it yields a dispersive (Ɵme-dependent) mobility for dilute systems, or systems with very 

low charge density, which is experimentally not observed67.
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To see how an exponenƟal tail can emerge in doped systems from an intrinsic gaussian 

distribuƟon, Arkhipov68 developed a model that modiĮes the GDM tail due to the introducƟon 

of Coulomb-traps from doping counter ions, which got later reĮned to include diīerences in 

HOMO/LUMO levels of the semiconductor and the dopant69. The model assumes low dopant 

concentraƟons such that one can assume that only one dopant ion inŇuences the considered 

charge near the ion, but can be used for a wider range of dopant concentraƟons. The following 

summary of the derivaƟon was already formulated in my Master thesis55 and therefore 

adopted here.

Arkhipov describes the broadening of the DOS due to doping. The probability density of having 

a dopant ion in distance r to the considered intrinsic energy site is given by a Poisson 

distribuƟon (ݎ)ݓ = 2ݎߨ4 ௗܰexp (−4ߨ ௗܰ3/3ݎ)  with dopant density ௗܰ. Now the distribuƟon 

of localized sites at ܧ௖ = is ݎ0߳௥߳ߨ2/4݁−

݃௖(ܧ௖) = ((௖ܧ)ݎ)ݓ | |௖ܧ݀ݎ݀ (79)

The modiĮed DOS is then given by integraƟng the product of the intrinsic DOS and ݃௖ with the 

energy condiƟon ܧ= ௜ܧ + ௖ܧ
(ܧ)݃ = ∫ ݃௖(ܧ௖)dܧ௖0

−∞ ∫ ݃௜(ܧ௜)ܧ)ߜ − ௜ܧ − ∞௜ܧ௖)dܧ
−∞           = ∫ܣ dܧ௖ܧ௖4 exp ( ܧ)௖3)݃௜ܧ3ܣ − ௖)0ܧ

−∞
(80)

with ܣ = 6݁ߨ4 ௗܰ/(40߳߳ߨ௥)3. The reĮned model makes two assumpƟons: 1) Although a 

counter ion induces a long-range potenƟal, giving a local spaƟal dependence of energy levels, 

the whole vicinity of the counter ion is eīecƟvely treated as one deep trap state. 2) The new 

energy level of the trap state is given by the sum of the intrinsic energy level and the potenƟal 

formed by the Coulomb potenƟal of the nearest counter ion and an externally applied Įeld, ܧ = ௜ܧ + ,߂ ߂ = 0߳௥߳ߨ/ܨ3݁√) −  0߳௥ܽ), where ܽ is the distance of the nearest߳ߨ2/4݁

counter ion to the intrinsic energy site. The expression in the square root comes from inserƟng 

the radius that maximizes the sum of potenƟal drop due to the external electric Įeld and the 

Coulomb potenƟal of the counter ion. Now, to accommodate for the energy diīerence        ܧ߂ = ௗܧ − ௜ of HOMO/LUMO of dopant and intrinsic semiconductor, in a radius of          ܽேேܧ = ௜ܰ−1/3 around the dopant ion, corresponding to a Coulomb energy 1ܧ =  ௖(ܽேே), theܧ
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intrinsic semiconductor is replaced by the dopant energy level ܧௗ and the ion potenƟal. 

Otherwise, the uncorrected broadened DOS EquaƟon (80) is used. For vanishing electrical 

Įeld, this gives rise to the expression69,70

(ܧ)݃ = (1 − ߨ4 ௗܰ3 ௜ܰ ) ∫(ܧ)1݃ ∞−0ܧd(ܧ)1݃ + ߨ4 ௗܰ௜ܰ ∫(ܧ)2݃ ∞−0ܧd(ܧ)2݃  (81)

With the intrinsic charge density ௜ܰ and

(ܧ)1݃ = ∫ܣ dܧ௖ܧ௖4 exp( ܧ)௖3)݃௜ܧ3ܣ − ௖)0ܧ
ா1 (82)

and

(ܧ)2݃ = ∫ܣ dܧ௖ܧ௖4 exp ( ܧ)௖3)݃௜ܧ3ܣ − Δܧ − ∞−௖)ா1ܧ (83)

The result is shown in Figure 6 for the GDM. EssenƟally, for higher doping concentraƟon, the 

Coulomb potenƟal of the dopant ions induces an exponenƟal tail at the intrinsic Gaussian 

curve. As from this interpretaƟon is expected and invesƟgated in70 a higher dielectric constant ߳௥, meaning larger screening, makes the exponenƟal tail vanish.

Figure 6 – a FormaƟon of an exponenƟal tail upon doping an iniƟally gaussian DOS. b Vanishing of an 

exponenƟal tail upon increasing the dielectric constant ߳௥ due to screening. Adapted from70. Licensed 

under CC BY 4.0 (hƩps://creaƟvecommons.org/licenses/by/4.0/).

In the results secƟon, the DOS of doped DOS will be elaborated further and it will be shown 

that the TB model will also show another possible phenomenon in the DOS that occurs at 

higher doping concentraƟon.
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LocalizaƟon

LocalizaƟon Measures

Having obtained the energy of the states from the TB model describing the OSC system of 

interest, yet another extremely important property of OSCs needs to be invesƟgated, namely 

wavefuncƟon or Anderson localizaƟon. From the diagonalizaƟon of the TB Hamiltonian we 

obtain the wavefuncƟons in the orthogonalized basis ܥ′ and the non-orthogonal basis ܥ. The 

localizaƟon of a wavefuncƟon can be measured with the concept of the Inverse ParƟcipaƟon 

RaƟo (IPR). It is deĮned as71

(௜ܧ)ܴܲܫ = 1∑ |ܿ௜௡′ |4ே௡ (84)

where ܧ௜ is the eigen energy of the ݅-th eigenstate with components ܿ௜௡′  in the orthogonalized 

basis. To understand the expression, one can look at two extreme cases. In the Įrst case the 

wavefuncƟon is localized on one site such that ܿ௜௡′ =  .௡௜. Here the IPR takes on the value 1ߜ

The other extreme case is a completely delocalized wavefuncƟon over all N sites such that ܿ௜௡′ = 1/√ܰ . Here, the IPR takes on the value N. This shows that the IPR is a measure of over 

how many sites the wavefuncƟon is eīecƟvely delocalized. From that, a localizaƟon length ߙ 

can be extracted via ߙ(ܧ௜) = 3(௜ܧ)ܴܲܫ√ ⋅ ܽ௧௬௣ (85)

with ܽ௧௬௣ = (௏ே)1/3 being the typical (average) inter-site distance of N sites in the volume V. 

In this thesis a modiĮcaƟon is introduced. The minimal value the IPR takes on is one, but 

physically the minimal value is the fronƟer orbital localizaƟon denoted as ߣ. Therefore, it is 

corrected via 

(௜ܧ)ߙ = 3(௜ܧ)ܴܲܫ√) − 1) ⋅ ܽ௧௬௣ + ߣ (86)

One problem with this deĮniƟon of a localizaƟon length is that it is best deĮned for a regular 

laƫce geometry. For unregular laƫces, there can be deviaƟons through this deĮniƟon, since 

all sites are aƩributed the same volume, which is depicted in Figure 7.
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Figure 7 - WavefuncƟon localizaƟon in a random laƫce of two wavefuncƟons ߰1(blue) and ߰2(red). 

The second laƫce diīers from the Įrst (black) by shiŌing one site. The ܿ௜ are the components of the 

wavefuncƟons.

Assuming two wavefuncƟon ߰1 and ߰2 in two random laƫces, from which one diīers from 

the other by shiŌing one site away. If the two wavefuncƟons are solely localized on the sites 

1-5, i.e. components ܿ௜ ≠ 0 and both have the same components ܿ௜(߰1) = ܿ௜(߰2), one can 

have the situaƟon that with the classical deĮniƟon both wavefuncƟons would give the same 

IPR, albeit wavefuncƟon ߰2 covers a larger volume than ߰1. A workaround can be the division 

of the laƫce into disƟnct volumes that are aƩributed to each site. This can be done by the 

Voronoi tessellaƟon (Figure 8).

                                                                                                                                                                                                                   

Figure 8 – Voronoi  TessellaƟon of a random laƫce in 2D.

ܿ1 
ܿ2 ܿ3ܿ4 ܿ5

ܿ4
߰1
߰2
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The Voronoi tessellaƟon is basically the same as the construcƟon of a Wigner-Seitz cell. For 

every pair of neighboring sites, a hyperplane that is orthogonal to the connecƟon line between 

two neighboring sites and crosses its mid-point is drawn. In that way, each site is contained in 

a polytope that is deĮned by the crossing hyperplanes. These polytopes are the Voronoi cells. 

DenoƟng ௜ܸ as the volume of the Voronoi cell of site ݅, one can construct a generalized IPR that 

weights each site with its Voronoi cell volume

௩௢௥௢௡௢௜ܴܲܫ = (∑|ܿ௜|4௜ܸ௜ )−1 (87)

For regular laƫces, all ௜ܸ become the same and the standard expression of the IPR is 

recovered. However, in the analyses of this thesis the deĮniƟon Eq. (86) is used for consistency 

with a previous paper. In the SI, the two models are compared to each other.

For some applicaƟons, it can also be useful to study the anisotropy of wavefuncƟons. 

Therefore, here a possibility to do that is introduced. The aim is, to Įt an ellipsoid to the 

wavefuncƟon as an approximaƟon of its spaƟal distribuƟon in the laƫce. A method to 

accomplish this is by using Principal Component Analysis (PCA). The procedure is as follows.

For a wavefuncƟon ߰ with components ܿ௜ on site ݅ at posiƟon ࢘௜, the center of mass is 

calculated

ࣆ = ∑ ࢘௜|ܿ௜|ே௜∑ |ܿ௜|ே௜ (88)

Now each point ࢘௜ is shiŌed by the center of mass, ࢘௜′ = ࢘௜ −  Then each point is weighted .ࣆ

by its wavefuncƟon component and all sites are put into one matrix

ܺ = ( 
 ࢘1′ ௧ ⋅ |ܿ1|࢘2′ ௧ ⋅ |ܿ2|⋮࢘ே′ ௧ ⋅ |ܿே|) 

 
(89)

Then the covariance matrix (3x3) is deĮned as ݒ݋ܥ = 1ே (ܺ௧ܺ). Finally, the covariance matrix 

is diagonalized and the eigenvalues ߣ௜ and the eigenvectors ࢜௜ are extracted. Geometrically, 

the square roots of the eigenvalues, ܽ = ܾ ,1ߣ√ = ܿ and 2ߣ√ =  are the lengths of the ,3ߣ√

ĮƩed ellipsoid main axes and the eigenvectors are the corresponding axes direcƟons, i.e. the 
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ellipsoid orientaƟon. Finally, one needs to rescale the axes lengths such that the ellipsoid 

volume equals the IPR

3ߨ4 ܾܽܿ ⋅ 3ݏ = ⇒  ܴܲܫ ݏ    = (3 ⋅ ܽ        13(ܾܿܽߨ4ܴܲܫ → ܽ ⋅ ܾ   ,ݏ → ܾ ⋅ ܿ   ,ݏ → ܿ ⋅ ݏ (90)

The following secƟon deals with the physical reason of the wavefuncƟon localizaƟon as was 

invesƟgated in the literature.

Figure 9 – Up: Blochwave in periodic potenƟal. Down: Anderson localizaƟon in disordered potenƟal.

Anderson LocalizaƟon

(As already summarized in my Master thesis55) In 1958, P.W. Anderson published the work 

Absence of Diīusion in Certain Random Laƫces72, where he studied the wave funcƟon of a 

parƟcle in a disordered laƫce and found that, for a certain degree of disorder, wave funcƟons 

become localized.

Anderson ulƟmately found out that the electronic wavefuncƟon will decay exponenƟally with 

distance from its center of mass (iniƟal site) ߰(ݎ) ∝ exp (− ௥ఈ), where the decay-parameter ߙ 

is the localizaƟon length if the disorder is larger than some threshold: ௏ௐ < (௏ௐ)௖௥௜௧, where ܸ 

is the potenƟal and ܹ the disorder (see Figure 9). Besides that, the criƟcal disorder is 

dependent on the eigenstate energy. This localizaƟon can be understood in terms of the 
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wavefuncƟon being reŇected at the laƫce at a certain magnitude of the disorder so much that 

the probability amplitude of the wave funcƟon stays localized. 

The transiƟon from localizaƟon to delocalizaƟon can be studied by using Scaling Theory. As 

stated in73, the conductance is studied at diīerent length scales. They state that the 

conductance at a changed scale is a funcƟon of the previous scale and the scale itself. Assuming 

a box with side length L, the conductance is studied at scales ܾܮ. MathemaƟcally speaking, the 

conductance g at scale bL has the form݃(ܾܮ) = ݂(ܾ, ((ܮ)݃ (91)

Now a scaling parameter ߚ(݃) = d ln(݃) /d ln (ܮ)  is introduced to study the scaling behavior 

of the conductance. For large ݃ → ∞ Ohm’s law is aƩained, from which the resisƟvity scales 

as

ܴ = ߩ ܣܮ = ߩ ௗ−1ܮܮ = ௗ−2ܮߩ (92)

where ߩ is the speciĮc resisƟvity and d is the dimension of the considered box. The 

conductance is therefore ܩ = 1ோ = 𝜎ܮௗ−2 and from there ߚ = ݀ − 2.

For low conductance ݃ → 0, that is for suĸcient disorder, from Anderson LocalizaƟon it is 

known that the conductance will decay exponenƟally with distance, ݃ ∝ exp (−ߙ/ܮ), and 

therefore ߚ = ln (݃) = ߙ/ܮ− < 0. From these rather simple consideraƟons, one sees that ߚ ≤ 0 if ݀ ≤  2, which means for dimensions smaller or equal to two, at macroscopic length 

scales ܮ → ∞ , the macroscopic conductance will vanish even for very small disorder. For three 

dimensions, there is a turning point at ݃௖ where ߚ(݃௖) = 0 and posiƟve above so that above 

this criƟcal behavior there is a transiƟon to a well-conducƟng medium. This phenomenon is 

called Anderson metal-insulator transiƟon.

As discussed in13, localizaƟon in diīerent morphologies can emerge in diīerent ways. In 

polymers, the energy needed to rotate monomers around a bond is comparable with the 

thermal energy at room temperature such that rotaƟons are a usual source of staƟc disorder, 

breaking the symmetry of the otherwise straight polymer chain. The rotaƟons disturb the 

periodic structure and potenƟal of the polymer, causing potenƟal variaƟons in the vicinity of 

monomers. RotaƟons do not only change the angle between monomers within a polymer 

chain, they also change the angle to orbitals of neighboring polymer chains, which are 
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responsible for charge transfer. For example, the transfer integral in ߨ-ߨ stacking of polymers, 

that is the overlap of ݌௭ orbitals, is dependent on the angle and the separaƟon between each 

other. 

One proposed model for conjugated polymers is the so-called conjugaƟon break model 13. It 

states that charges are delocalized over planar parts of the conjugated molecular backbone, 

where the transfer integrals are large enough. If now due to thermal energy a rotaƟon of a 

monomer around a bond exceeds a criƟcal angle such that the transfer integral becomes much 

weaker, it causes the charge to localize. This model would imply that closer to the band edge, 

which is deĮned by an inĮnitely large polymer chain, the charges are more delocalized since 

the chain is longer. However, simulaƟons of Mladenovic and Vukmirovic13 suggest the opposite 

behavior that charges are more localized near the band edge and more delocalized further 

away. It was found that the variaƟon of on-site energies plays a dominant role for localizaƟon. 

The on-site energy was found to be reduced with alkyl side chains since due to the separaƟon 

of monomers/polymers the variaƟons in potenƟal are less pronounced. Thereby, since the 

wavefuncƟon is mainly localized on the molecular backbone, disorder in the alkyl side chains 

does play a minor role in the on-site energy disorder and localizaƟon. It was also suggested 

that polymers with strong built-in dipole moments within their monomers enhance the on-

site disorder since, due to their larger dipole strength, variaƟons are felt much more by 

neighboring monomers/polymers.

Polaronic eīects could possibly also localize the wavefuncƟons, although this is controversial 

and may be material-dependent. On the one hand, the polarizaƟon energy that emerges due 

to the polarizaƟon of the molecules containing the charge traps the charge by lowering the 

energy, forming small polarons, but on the other hand, e.g. DFT calculaƟons on straight 

polythiophene chains Įnd negligible polaron binding energies of only a few meV 74,75. 

Besides that, the polymer molecular weight inŇuences the morphology, giving rise to 

semicrystalline-like structures containing crystalline regions, where the charge should be 

completely delocalized over, and connecƟng amorphous regions that rather localize the 

charge13. 

In small molecule polycrystals, grain boundaries are a localizing boundary of the electronic 

wavefuncƟon. The grain boundaries provide trap states, where the charges localize. Again, 
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simulaƟons13 also found that the charges can also delocalize beyond the grain boundaries, but 

mostly just into one side of the grain boundary. 

Summarizing, in both all considered cases, localizaƟon is a rather complicated and versaƟle 

phenomenon, and therefore a factor whose role should be considered in more detail in charge 

transport models.

Hopping Rates

With the state energies and the calculated localizaƟon lengths extracted from the TB model, 

all ingredients are given to construct the transfer rates or hopping rates for the later kineƟc 

Monte Carlo simulaƟons. In the following secƟon, the two most used hopping rates, namely 

the Marcus rate and the Miller-Abrahams rate, will be discussed.

Miller Abrahams Rate

(Adopted and modiĮed from the text about rates from my Master thesis55) The disordered 

nature of amorphous materials gives rise to strong scaƩering eīects of the charge carriers such 

that for not too high thermal energies, the charge carriers reside in localized states. A similar 

situaƟon was described by A. Miller and E. Abrahams in 1960 in their paper Impurity 

ConducƟon at Low ConcentraƟons4. They studied the conducƟvity of n-type semiconductors 

at low ݊஽ and low temperature. At low ݊஽, the concentraƟon of impuriƟes is too low for them 

to form in some kind of band, called impurity band, because the overlap between the states is 

too small. AddiƟonally, the thermal energy at suĸciently low temperatures is not high enough 

to suĸciently delocalize the charge carriers to form a band. The conducƟon that sƟll takes 

place is described by (phonon-assisted) hopping between localized states, which in their work 

were the impuriƟes, i.e. donors and acceptors. UƟlizing Fermi’s golden rule, they arrived at an 

expression for the transiƟon rate between two states at energies ܧ௝ and ܧ௜ separated by ܴ௜௝ 
like

௜௝݌ = 0ߥ exp (−2ܴ௜௝ߙ ){exp(−max(0, ௝ܧ − ௜ܧ − ஻ܶ݇(ࡲ௜௝࢞߂݁ ௝ܧ  ( > ௝ܧ                                                               ௜1ܧ < ௜ܧ (93)
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where 0ߥ is the so-called aƩempt-to-hop-frequency and ߙ is the localizaƟon length of the 

states. For amorphous materials the factor 0ߥ is in the order of 10 THz and a typical phonon 

mode frequency. Therefore, it can be physically interpreted that on average aŌer every Ɵme ߬ = a possible hopping event assisted by a phonon can take place. The Įrst term exp 0ߥ/1 (− 2ோఈ ) can be interpreted as a tunneling probability, by which a charge can tunnel 

between the states ܧ௝ and ܧ௜. The second factor is for ܧ௝ > ௜ܧ + ݁Δ࢞௜௝ࡲ just the Boltzmann 

factor describing thermal excitaƟon from the lower state to the higher state. The term ݁Δ࢞௜௝ࡲ 

is the energy that a charge gains or loses hopping over a distance Δ࢞௜௝ between the states ݅ and ݆ in the direcƟon or against the Įeld ࡲ, similar to a voltage drop.

Marcus Rate

The Miller Abrahams expression is in that sense not quite correct for many organic materials 

since it neglects chemical details about the hopping process. Indeed, hopping in organics oŌen 

involves non-negligible molecular reorganizaƟon, which lowers the energy by the 

reorganizaƟon energy ߣ௥௘௢௥௚. An elaboraƟve approach via Fermi’s Golden rule gives the 

Marcus hopping rate5,36  as

݇ா் = 2ℏܬ ( ௥௘௢௥௚݇஻ܶ)1/2ߣߨ exp(− ௥௘௢௥௚ߣ) + ௥௘௢௥௚݇஻ܶߣ24(0ܩ߂ ) (94)

The transfer integral ܬ is oŌen taken to be the transfer integral of a dimer system ⟨߶௡|ܪௗ௜௠|߶௠⟩ as discussed in the Ɵght binding secƟon. It can alternaƟvely be modeled as in 

the case of the tunneling term in the Miller Abrahams rate. 0ܩ߂ is the change in the free energy 

between the metastable bound state between ionized donor and acceptor and the dissociated 

states. The Marcus hopping rate can in some cases predict qualitaƟvely diīerent results than 

the Miller Abrahams expressions, but oŌen the consideraƟon of the Miller-Abrahams hopping 

rate is suĸcient, as a more complicated ansatz through the Marcus rate will oŌen ulƟmately 

give similar results.
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Generalized Transfer Rate

The models that were considered so far have one thing in common: They all assume a small 

and constant localizaƟon length parameter ߙ, describing hopping between strongly localized 

states. In the recent past years, researchers indicated experimental discrepancies which could 

not be explained by the present models. One of these problems are unphysically high aƩempt-

to-hop frequencies, e.g. of 0ߥ ≈ 6.3 × -for a localizaƟon length of 2 Å, using the Miller 1−ݏ1020

Abrahams expression for the hopping rate 13 for prisƟne P3HT. In fact, such high frequencies 

are much higher than expected from even the highest phonon mode, as which 0ߥ is someƟmes 

interpreted as. Detailed computaƟonal analyses of conjugated polymers as P3HT, as studied in 

Ref.[13], used the theoreƟcally full hopping rate ௜ܹ௝ at the scale of the carriers wavefuncƟon 

to study the electronic transport, given by

௜ܹ௝ = ௜௝,௤|2߱௤ܯ|∑ߨ [( ௤ܰ + ௜ܧ)ߜ(1 − ௝ܧ − ℏ߱௤) + ௤ܰܧ)ߜ௜ − ௝ܧ + ℏ߱௤)]௤ (95)

with the phonon-mode q, the corresponding phonon-mode frequency ߱ఈ and electron-

phonon coupling ܯ௜௝,௤ between two atoms ݅ and ݆. ௤ܰ are the number of phonons (given by 

the Bose-Einstein distribuƟon) and (ܧ)ߜ is the Dirac delta funcƟonal. This expression is 

essenƟally Fermi’s Golden Rule. Thereby, the Miller-Abrahams rate is recovered, if the 

electron-phonon coupling is said to be proporƟonal to the wavefuncƟon overlap and that the 

overlap decays exponenƟally with distance, which is in fact only a good approximaƟon for 

spherically symmetric wavefuncƟons, and addiƟonally if the energy dependence of the 

phonon DOS is completely neglected. The most crucial factor in this simpliĮcaƟon turned out 

to be the details of the overlap, and secondary the eīect of the phonon DOS.

Further, these detailed computaƟonal analyses of conjugated polymers such as P3HT have 

shown 13,14,27 that the assumpƟon of strongly localized states has to be rethought. It is found 

that charge carriers can delocalize over mulƟple molecules or polymer chains, which is in 

strong contrast to the assumed strong localizaƟon. In fact, the Įrst stated problem of 

unphysically high 0ߥ vanished upon considering both localized and more delocalized states in 

the electronic transport27. Therefore, a physically correct and more realisƟc model of charge 

transport should include the eīect of parƟally delocalized states. 
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In this thesis, the consideraƟon of parƟally delocalized states is done by modifying the Miller-

Abrahams rate as

௜௝݌ = 0ߥ exp(−ܴ௜௝ ( ௜ߙ1 + ((௝ߙ1 exp(−max(0, ௝ܧ − ௜ܧ − ஻ܶ݇(ࡲ௜௝࢞߂݁ ) (96)

Hereby, the localizaƟon lengths of state ݅ and ݆ are ߙ௜ and ߙ௝ respecƟvely, calculated from the 

TB model as discussed before. The energies ܧ௜ and ܧ௝ are the corresponding eigen-energies of 

the states ݅ and ݆ calculated from the TB model. This expression converges to the classical 

Miller-Abrahams expression for ߙ௜ →  ௝ and allows for diīerent wavefuncƟon localizaƟons ofߙ

the states ݅ and ݆. With this expression it is possible to model the local energeƟcal and 

localizaƟon correlaƟons of the considered morphology in a more realisƟc way. 

The hopping rate is an essenƟal ingredient for the kineƟc Monte Carlo simulaƟons that will be 

studied in detail in the following secƟon.

KineƟc Monte Carlo SimulaƟons

Detailed analyƟc calculaƟons of charge transport in OSCs is beyond eīecƟve theories not 

possible, since the inherently disordered morphology of OSCs can be very diverse and there 

are no symmetries to reduce the complexity of the problem as for example in crystalline 

media. However, the fundamental charge transport mechanism in OSCs is hopping between 

localized states. This can be uƟlized to build a stochasƟc charge transport model for OSCs (see 

e.g. Ref.[76]).

The probability density to Įnd a system in a state ݏ at Ɵme ݐ is given by ݏ)݌,  ௡ with the iniƟalݐ ௡ at corresponding Ɵmesݏ ௡≥1 be sequences of system states{௡ݐ} ௡≥1 and{௡ݏ} Let now .(ݐ

conĮguraƟon (1ݏ,  ௡≥1 can be{௡ݐ} ௡≥1 at Ɵmes{௡ݏ} The joint probability density of .(1ݐ

expanded using the chain rule of probability into a product of condiƟonal probabiliƟesݏ)݌௡, ;௡ݐ ,௡−1ݏ ;௡−1ݐ … ; ,1ݏ =(1ݐ ,௡ݏ)݌ ,௡−1ݏ|௡ݐ ;௡−1ݐ … ; ,1ݏ ,௡−1ݏ)݌(1ݐ ;௡−1ݐ … ; ,1ݏ =(1ݐ ,௡ݏ)݌ ,௡−1ݏ|௡ݐ ;௡−1ݐ … ; ,1ݏ ,௡−1ݏ)݌(1ݐ ,௡−2ݏ|௡−1ݐ ;௡−2ݐ … ; ,1ݏ ,1ݏ)݌…(1ݐ =(1ݐ ,௡ݏ)݌ ,௡−1ݏ|௡ݐ ,௡−1ݏ)݌(௡−1ݐ ,௡−2ݏ|௡−1ݐ (௡−2ݐ ,1ݏ)݌… (1ݐ (97)

where in the last equaƟon the Markov property ݏ)݌௡, ,௡−1ݏ|௡ݐ ;௡−1ݐ … ; ,1ݏ (1ݐ ,௡ݏ)݌= ,௡−1ݏ|௡ݐ  ௡−1) was used. This assumpƟon is valid since we are dealing with uncorrelatedݐ

hopping events in the charge transport, meaning that the state of a system is only determined 
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by its previous state. Diīerently speaking, the locaƟon of a charge aŌer a hop is only 

determined by where it was siƫng before, so it is “memoryless”. These kinds of processes are 

called Markov chains. The probability to Įnd the system in any state (ݏ௜, ݐ + ߬) aŌer being in 

a state (ݏ௝, ߬ aŌer some Ɵme (ݐ > 0 is clearly unity 

1 ,௜ݏ)݌∑= ݐ + ௝ݏ|߬ , ௜(ݐ (98)

The same holds for ߬ = 0, however at an instant Ɵme the probability density to Įnd a state (ݏ௝, ,௜ݏ) in a diīerent state (ݐ ,௜ݏ)݌ ,must be zero (ݐ ௝ݏ|ݐ , (ݐ = ௜௝, so it holdsߜ

1 ,௜ݏ)݌∑= ௝ݏ|ݐ , ௜(ݐ = ௝ݏ)݌ , ௝ݏ|ݐ , (ݐ ,௜ݏ)݌∑+ ௝ݏ|ݐ , ௜≠௝(ݐ = ௝ݏ)݌ , ,௝ݏ|ݐ (ݐ (99)

SubtracƟng Equ. (98) and Equ. (99) and dividing by ߬, one arrives at

0 = ௝ݏ)݌ , ݐ + ௝ݏ|߬ , (ݐ − ௝ݏ)݌ , ௝ݏ|ݐ , ߬(ݐ ,௜ݏ)݌∑+ ݐ + ௝ݏ|߬ , (ݐ − ,௜ݏ)݌ ௝ݏ|ݐ , =௜≠௝߬(ݐ ,௝ݏ)݌ ݐ + ௝ݏ|߬ , (ݐ − 1߬ ,௜ݏ)݌∑+ ݐ + ௝ݏ|߬ , ௜≠௝߬(ݐ
(100)

With the deĮniƟon of the transiƟon rate

௝݇௜ = limఛ→0 ,௜ݏ)݌ ݐ + ,௝ݏ|߬ (ݐ − ,௜ݏ)݌ ௝ݏ|ݐ , ߬(ݐ (101)

The last line of Equ. (100) can be wriƩen as

0 = ௝݇௝ +∑ ௝݇௜௜≠௝   ⇔    ௝݇௝ = −∑ ௝݇௜௜≠௝  
(102)

This result will be used in the next step.

StarƟng from Ɵme ݐ, the probability density to Įnd the system in a state ݏ௝ at Ɵme ݐ + ߬ is 

given by the Chapman-Kolmogorov equaƟon

௝ݏ)݌ , ݐ + ߬) ௝ݏ)݌∑= , ݐ + ,௜ݏ|߬ ,௜ݏ)݌(ݐ ௜(ݐ (103)
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which describes the sum over conĮguraƟons (ݏ௜, ௝ݏ) to Įnd the system in state (ݐ , ݐ + ߬) given 

that it was in state (ݏ௜, ௝ݏ)݌ ,before. Now (ݐ , ݐ + ߬) will be Taylor-expanded to Įrst order 

around ߬ = 0
,௝ݏ)݌ (ݐ + ߬ ⋅ ddݐ ௝ݏ)݌ , (ݐ ௝ݏ)݌∑= , ݐ + ,௜ݏ|߬ ,௜ݏ)݌(ݐ ݐ௜⇔dd(ݐ ,௝ݏ)݌ (ݐ ௝ݏ)݌∑= , ݐ + ,௜ݏ|߬ ,௜ݏ)݌(ݐ ௜≠௝߬(ݐ + ௝ݏ)݌ , ݐ + ௝ݏ|߬ , ௝ݏ)݌(ݐ , ߬(ݐ − ,௝ݏ)݌ ݐdd⇔߬(ݐ ,௝ݏ)݌ (ݐ = ௝ݏ)݌ , ݐ + ௝ݏ|߬ , (ݐ − 1߬ ௝ݏ)݌ , (ݐ ,௝ݏ)݌∑+ ݐ + ௜ݏ|߬ , ߬(ݐ ,௜ݏ)݌ ݐ௜≠௝⇔dd(ݐ ,௝ݏ)݌ (ݐ = ௝݇௝ ⋅ ௝ݏ)݌ , (ݐ +∑݇௜௝ ⋅ ,௜ݏ)݌ ݐ௜≠௝⇔dd(ݐ ,௝ݏ)݌ (ݐ =∑(݇௜௝ ⋅ ,௜ݏ)݌ (ݐ − ௝݇௜ ⋅ ,௝ݏ)݌ ௜≠௝((ݐ (104)

where in the second last line the deĮniƟon of the transiƟon rate was used and in the last line 

the result of Equ. (102). The equaƟon in the last line is the so-called Master equaƟon. This 

system of diīerenƟal equaƟons describes the change of probability distribuƟon of state ݏ௝ in 

Ɵme due to the diīerence of the hopping-Ňow out of state ݏ௝ into states ݏ௜ with rate ௝݇௜  and 

the hopping-Ňow from all possible states ݏ௜ into state ݏ௝ with rate ݇௜௝. 
The transiƟon rate can be anything physically senseful, like the Marcus rate, Miller-Abrahams 

rate Equ. (93) or, as it is used here, the modiĮed Miller-Abrahams rate Equ. (96).

In its analyƟcal form, in the general case the Master equaƟon is sƟll very hard to solve. Here 

the idea of kineƟc Monte Carlo (kMC) simulaƟons comes in. kMC is the approach to solve the 

Master equaƟon stochasƟcally by stochasƟcally simulaƟng hopping paths and averaging over 

them. To see how that works, assume the system in an iniƟal state ݏ௝ at Ɵme ݐ, meaning that ݏ)݌௜, (ݐ = 0 ∀݅ ≠ ݆. For small Δݐ then the Master equaƟon simpliĮes toddݐ ௝ݏ)݌ , ݐ + Δݐ) = −∑ ௝݇௜ ⋅ ௝ݏ)݌ , ௜≠௝(ݐ (105)
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The probability that the system is sƟll in the state ݏ௝  aŌer Ɵme Δݐ is then given by integraƟng 

this equaƟon

௦ܲ௧௔௬௘ௗ(ݏ௝ , Δݐ) = exp(−∫ ݇௧௢௧(ݏ௝ , ߬)݀߬௧+௱௧
௧ ) = exp(−݇௧௢௧(ݏ௝) ⋅ (ݐ߂ (106)

where the total rate is ݇௧௢௧(ݏ௝, ߬) = ∑ ௝݇௜௜≠௝  and it was assumed that the total rate is not Ɵme 

dependent, which is the case for the possible rates that are used within this thesis. This means 

that the hopping is a Poissonian process and the jumping Ɵmes Δݐ are Poisson-distributed. 

The kMC simulaƟon process then works as follows. First, a simulaƟon laƫce is deĮned, which 

we get in our case from the TB model and MD simulaƟons or other morphology generaƟng 

schemes. If all charges would be solely localized on one monomer of the system, a good choice 

of laƫce sites would be the monomer posiƟons ࢘௜. However, from the TB model we get 

wavefuncƟons as states, that are mostly not solely localized on a single monomer and there is 

no mapping towards a unique monomer for each wavefuncƟon. To solve this issue, a close 

lying soluƟon would be to deĮne the center of mass of each wavefuncƟon as laƫce site. 

Therefore, from the eigenfuncƟons of the TB Hamiltonian, a new laƫce is deĮned as

࢘௜′ = ∑ |ܿ௜,௡|࢘௡௡∑ |ܿ௜,௡|௡ (107)

To simulate bulk, periodic boundary condiƟons are applied. Now for each site ݆ the transiƟon 

rate with its ௡ܰ neighboring sites is calculated via the modiĮed Miller-Abrahams rate with the 

new laƫce coordinates, the localizaƟon lengths, and eigen-energies from the TB model as 

input. Then a fracƟon of ܿ of all ܰ sites are randomly occupied by charges, whereas no double 

occupaƟon is allowed to account for the large on-site Coulomb repulsion. 

First, a hopping charge needs to be selected. Site ݆ has the total rate to jump towards any of 

its neighbors ݇ ௧௢௧(ݏ௝). Therefore, the probability that an occupied site ݆  jumps is given by ݌௝ =݇௧௢௧(ݏ௝)/∑ ݇௧௢௧(ݏ௝)௢௖௖௨௣௜௘ௗ ௝ , so the total rate of site ݆ normalized by the sum of total rates of 

all occupied sites. Now a site ݆ is chosen randomly according to their relaƟve probabiliƟes. 

Next, a hopping event needs to be chosen. Similarly to the parƟcle selecƟon scheme, the 

probability that the charge at site ݆ jumps to a neighboring (unoccupied) site ݅ is given by ݌௝௜ =
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௝݇௜/݇௧௢௧(ݏ௝). Again, the site ݅ to which the charge jumps is determined randomly according to 

each sites’ probability. 

Lastly, the Ɵme Δݐ for the charge to hop, or equivalently how long the charge stayed at its 

locaƟon before jumping, needs to be calculated. Since the hopping Ɵmes are Poisson 

distributed, we solve Equ. (106) for Δݐ
Δݐ = − ln ( ௦ܲ௧௔௬௘ௗ(ݏ௝ , (௝ݏ)௧௢௧݇((ݐ߂ ≡ − ln(ܼ)݇௧௢௧(ݏ௝) (108)

To determine a hopping Ɵme from this, we chose a random number ܼ ∈ (0,1] for this event 

and calculate Δݐ according to the equaƟon above. With this procedure it is ensured that Δݐ 
follows the Poisson distribuƟon of Equ. (106). This kMC step is repeated unƟl a stopping 

criterium is fulĮlled, in this case, when the calculated current density becomes staƟonary. 

To calculate transport properƟes from the kMC simulaƟon, the parƟcle movements around 

the laƫce, their hopping Ɵmes and the energies of the visited sites are stored.

For our purposes, not the whole charge trajectories need to be stored, it is suĸcient to store 

the eīecƟve charge movement. This means that starƟng from an eīecƟve movement of Δ࢞௘௙௙ = 0, for each jumping event of any charge going from a site ݅ to site ݆ with hopping 

distance vector Δܠ௜௝, the eīecƟve movement is updated Δ࢞௘௙௙ → Δ࢞௘௙௙ + Δ࢞௜௝. At the same 

Ɵme, the simulaƟon Ɵme is updated ݐ → ݐ + Δݐ. Storing every hopping event would be space 

demanding, since millions of hops are simulated. Therefore, one divides the simulaƟon Ɵme 

interval [ݐ௠௜௡,  ௠௔௫ݐ ௠௜௡ to a maximum simulaƟon Ɵmeݐ ௠௔௫] of a minimum simulaƟon Ɵmeݐ

into ௧ܰ Ɵme bins with logarithmic scaling. Now the eīecƟve movement Δ࢞௘௙௙ and simulaƟon 

Ɵme ݐ is only stored once the end of a Ɵme bin is reached. 

The energy of the hops is stored in a similar way. StarƟng from ࢞ܧ = 0, the average energy of 

each hop weighted by its hopping distance is added up in each cartesian direcƟon ݔ௜
௫೔ܧ݀ = ∑ ௡ܧ + ௠2ܧ ⋅ (Δ࢞௡௠)௜ℎ௢௣௦ (109)

At the end of each Ɵme bin, the accumulated energies of the hops are normalized by the 

eīecƟve movement and stored
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௫೔ܧ = ∑ ௡ܧ + ௠2ܧ ⋅ (Δ࢞௡௠)௜ℎ௢௣௦∑ (Δ࢞௡௠)௜ℎ௢௣௦ (110)

AddiƟonally, the DOOS is tracked as a histogram by adding a count to the corresponding energy 

bin of the current DOOS (denoted as DOOSi) at each hopping event with Įnal energy state ܧ௝ 
and removing a count in the corresponding energy bin of the iniƟal site energy ܧ௜. The DOOSi 

histogram for each hop is then weighted with the hopping Ɵme Δݐ and added up. At the end 

of each Ɵme bin, it is then normalized by the sum over all Δݐ since the beginning of the Ɵme 

bin.

,௕௜௡ݐ)ܱܱܵܦ (ܧ = ∑ ܱܱܦ ௜ܵ(ܧ) ⋅ Δݐ௜ℎ௢௣௦=௜∑ Δݐ௜ℎ௢௣௦=௜ (111)

From the secƟon about DOS, it is known that the DOOS and the DOS are connected via the 

Fermi distribuƟon ݂ ,ܧ) ிܧ , ܶ) as (ܧ)ܱܱܵܦ = ,ܧ)݂(ܧ)ܱܵܦ ிܧ , ܶ). With this relaƟon the Fermi 

energy (and the eīecƟve temperature ௘ܶ௙௙, see later secƟon) can be calculated by minimizing 

the following expression with the sum over least squares over the energy ܧ
log10( 1(ܧ)ܱܵܦ + exp ܧ) − ி݇஻ܧ ௘ܶ௙௙)) − log10((ܧ)ܱܱܵܦ) (112)

Having obtained the tracked simulaƟon Ɵme, eīecƟve movement, hopping energy, the Fermi 

energy and DOOS one can then calculate all charge transport properƟes of interest. 

ConducƟvity

The Įrst thing we are interested in is the conducƟvity. It is deĮned as 𝜎 =  with the ߤ݊݁

elementary charge ݁, the charge density ݊ and the mobility ߤ. The mobility is deĮned over the 

relaƟon ݒ =  or alternaƟvely ܨ and the electric Įeld ݒ with the driŌ velocity of the charges ܨߤ

over the current density ݆ via ߤ =  .ܨ݊݁/݆

From the eīecƟve movement one deĮnes in each direcƟon ݔ௜ଔ௫̅೔(ݐ) = ܸ݁ (Δ࢞௘௙௙(ݐ))௜ (113)
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with the simulaƟon box volume V. For a Ɵme interval in which the current density converged, 

it is ĮƩed a Įrst order polynomial to ଔ௫̅೔(ݐ). The gradient of the Įrst order polynomial is then 

the current density

݆௫೔ = ܸ݁ ௜ݒ (114)

From there then the mobility and the conducƟvity is calculated in each direcƟon

௫೔ߤ = ݆௫೔݁݊ܨ௫೔   ⇒    𝜎௫೔ = ௫೔ߤ݊݁ (115)

Many analyƟcal theories have been developed to model the mobility or conducƟvity of OSC, 

which diīer in the level of detail, the charge carrier concentraƟon, the DOS and others, but it 

is not in the scope of this thesis to discuss them here in detail. For completeness however, one 

example is given here anyways, namely the MoƩ-Martens model.

The MoƩ-Martens model77,78 uses the concept of transport energy and also percolaƟon 

theory. The conducƟvity is found by opƟmizaƟon of the hopping rate, and a percolaƟon 

criterion is used to determine a criƟcal hopping length at the transport energy that emerges 

from the opƟmizaƟon as the relevant energy for transport. 

From Miller Abrahams, one assumes the conducƟvity to take the form

𝜎 = 𝜎0 exp ߙ∗2ܴ−) − ∗ܧ − ி݇஻ܶܧ ) (116)

The conducƟon is assumed to take place mostly by acƟvaƟon from the Fermi level to some yet 

to determine the energy ܧ∗ with some usual distance ܴ∗. This distance now gets extracted 

from a percolaƟon criterion

௖ܤ = ∫d࢘∫ d߳ ݃(߳)ா∗
ாಷ = 3ߨ4 ܴ∗3∫ d߳ ݃(߳)ா∗

ாಷ (117)

Now the conducƟvity is solely determined by ܧ∗ which is calculated by

 d𝜎dܧ∗|ா೟ೝ = 0 (118)

From which follows

𝜎 = 𝜎0 exp(−2ܴ∗(ܧ௧௥)ߙ + ௧௥ܧ − ி݇஻ܶܧ ) (119)
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The above expression is not a closed analyƟcal form, it is implicitly formulated by the condiƟon 

of Equ. (117), since depending on the DOS it cannot be wriƩen out analyƟcally. Of special 

interest is also the temperature dependence of the conducƟvity (or mobility). For low to 

intermediate charge concentraƟons many models77 predict the following form (for GDM)

ln ( (0ߤߤ ∝ − 1ܶ2 (120)

One example is the oŌen used relaƟon  ߤ ∝ exp (−ܿ (ఙವೀೄ௞ಳ் )2) with a numerical prefactor ܿ ≈0.69 79. For high charge densiƟes, the temperature dependence changes to the Arrhenius law

ln ( (0ߤߤ ∝ − 1ܶ (121)

This result is to be considered with care since the models above might not be appropriate at 

high charge densiƟes anymore. Comparing this to MoƩ’s law, where ln ( ఓఓ0) ∝ −1/ܶ1/4 this is 

a striking diīerence. This discrepancy is resulƟng from the diīerent DOS underlying the 

models. Indeed, MoƩ’s law is derived for a uniform DOS, whereas more appropriate models 

like the ones menƟoned above consider the GDM, where the DOS is non-negligibly increasing 

towards higher energies from the Fermi energy, increasing the mobility due to an increase in 

available states by thermal acƟvaƟon into higher energies. If one applies a uniform DOS on the 

models above, indeed MoƩ’s law is recovered.

Thermoelectrics

The next property of interest is the Seebeck coeĸcient. Before discussing how to extract that 

from the kMC simulaƟon, the basic theory of thermoelectrics is introduced. 

 (ModiĮed and extended version of text in my Master thesis55 up to eīecƟve temperature 

secƟon) If two diīerent conducƟng materials are brought into contact forming an electric 

circuit, as in Figure 10, and there is a temperature diīerence between the contacts, a potenƟal 

diīerence (voltage) between the contacts forms. This eīect of the occurrence of a voltage 

upon providing a temperature diīerence between the contacts is called Seebeck eīect.
-
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Figure 10 – Seebeck eīect circuit.

The reverse eīect, where a temperature diīerence forms upon applying a voltage, is called 

PelƟer eīect. The voltage drop in the Seebeck eīect is proporƟonal to the temperature 

diīerence, and the proporƟonality factor is a diīerence between material constants called 

Seebeck coeĸcients ܵ. They are therefore deĮned as

ܵ = Δܸܶ (122)

with the voltage drop ܸ. The Seebeck coeĸcient can also be derived by the soluƟons of the 

Boltzmann transport equaƟon. There, the electrical current density ࢐ and the thermal current 

density ࢐௤ are phenomenologically connected by the equaƟons  ࢐ = 11߳ܮ + (ܶ∇−)12ܮ (123)࢐௤ = 21߳ܮ + (ܶ∇−)22ܮ (124)

where ߳ = ࡲ +  and the gradient of the chemical ࡲ ி/݁ is the sum of the electric Įeldߤ∇

potenƟal ߤி. These equaƟons generalize the equaƟons for electrical current, thermal current 

and diīusion laws, etc. where the individual currents are deĮned to be proporƟonal to some 

scalar Įeld gradient. Onsager found a useful reciprocal relaƟon between the oī-diagonal 

Boltzmann transport coeĸcients, 21ܮ =  In the relaxaƟon Ɵme approximaƟon, the .12ܮܶ

coeĸcients ܮ௜௝ can be calculated from the Boltzmann transport equaƟon as follows80  

+-

Cooling

HeaƟng

Cooling

p-typen-type+ -

- +

V

+-
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11ܮ = ℒ (0)
21ܮ                       (125) = 12ܮܶ = − 1݁ ℒ (1) (126)

22ܮ          = 1݁2ܶ ℒ (2) (127)

where 

ℒ (ఈ) = ∫ dܧ (− (ܧ߲݂߲ ܧ) − (ܧ)ி)ఈ𝜎ܧ (128)

with the so-called conducƟvity distribuƟon funcƟon𝜎(ܧ) = ∫(ܧ)2߬݁ dܧ)ߜ࢑ − 2(࢑)࢜((࢑)ܧ (129)

Here, ߬(ܧ) is the relaxaƟon Ɵme for a charge with energy ܧ and ݂ is the Fermi Dirac 

distribuƟon as usual. The conducƟvity distribuƟon funcƟon is not straighƞorwardly 

determined, it depends on the model details and on the used model. The conducƟvity and the 

Seebeck coeĸcient ܵ  (or reciprocally, the PelƟer coeĸcient Π) are connected to the Boltzmann 

transport coeĸcients by

    𝜎 = 11ܮ = ∫ dܧ𝜎(ܧ) (− (ܧ߲݂߲ = ∫ dܧ𝜎′(ܧ)∞
−∞

∞
−∞ (130)

ܵ = 11ܮ12ܮ = Πܶ = − 1݁ܶ ∫  dܧ)ܧ − (ிܧ 𝜎′(ܧ)𝜎  ∞
−∞                         = − 1݁ܶ ∫  dܧ)ܧ − (ிܧ ݆(ܧ)݆  ∞
−∞

(131)

where in the last line was used ݆(ܧ) = 𝜎(ܧ)ܨ. The Seebeck coeĸcient is basically a sum over 

the transported energy per temperature weighted with the porƟon to which the energy 

contributes to charge transport.

By deĮning the transport energy 

௧௥ܧ = ∫ ∞−∞ܧd(ܧ)݆ܧ ݆ (132)

the Seebeck coeĸcient can be expressed as

ܵ = ௧௥ܧ− − ி݁ܶܧ (133)
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EquaƟon (133) gives rise to the calculaƟon of the Seebeck coeĸcient in the kMC simulaƟon. 

In steady state, both the nominator and denominator are constant so we can integrate both 

to yield the equivalent expression of the transport energy 

௧௥ܧ = ∫ d߬ ∫ ∫௧0∞−∞ܧd(ܧ)݆ܧ d߬ ∫ ௧0∞−∞ܧd(ܧ)݆ (134)

The nominator is in discreƟzed form equivalent to ௘௏  from Equ. (109) and the denominator ࢞ܧ݀

is equivalent to ଔ̅࢞  from Equ. (113) and hence the transport energy equals the average (ݐ)

hopping energy Equ. (110). Therefore, from kMC we can calculate the Seebeck coeĸcient in 

each cartesian direcƟon ݔ௜  as 

ܵ௫೔ = − 1݁ܶ (ܸ݁ ௫೔ଔ௫̅೔ܧ݀ − (ிܧ = − 1݁ܶ ௫೔ܧ) − (ிܧ (135)

If the Seebeck coeĸcients are ploƩed against the respecƟve conducƟviƟes for diīerent charge 

concentraƟons, someƟmes a universal curve of the form

ܵ = ݇஻݁ ( 𝜎𝜎0)−1/4 (136)

is observed, as Įrst noƟced by Glaudell et al.81, i.e. the Seebeck coeĸcient decreases for 

increasing conducƟvity.

For thermoelectric applicaƟons oŌen a Įgure of merit ܶݖ is deĮned to benchmark the 

performance of thermoelectric materials:

ܶݖ = 𝜎ܵ2ߢ௘௟ + ௟௔௧ߢ ܶ = ௘௟ߢܨܲ + ௟௔௧ߢ ܶ (137)

where ߢ௘௟ is the electronic contribuƟon of the thermal conducƟvity and ߢ௟௔௧ is the respecƟve 

laƫce contribuƟon. ܲܨ is called the power factor. The maximum eĸciency of a thermoelectric 

material is a funcƟon of the Įgure of merit and given by

ா்ߟ = ℎܶ − ௖ܶℎܶ ( √1 + ܶݖ − 1√1 + ܶݖ + ௖ܶܶℎ) (138)

where ௖ܶ and ℎܶ are the temperatures of the cold and hot sides respecƟvely.
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As last two points, the Įeld dependence of the conducƟvity in OSCs and the concept of 

eīecƟve temperature will be discussed.

Field Dependence in Organic Semiconductors

(Following 82) The Poole-Frenkel law was originally derived for inorganic semiconductors at 

high Įelds. For a charge in a localized Coulomb trap, the potenƟal barrier is simply ݁2/4߳ߨ௥ݎ 

with distance ݎ from the trap center. If an electric Įeld is applied, the potenƟal on one side 

reduces by

Δܷ = 0ݎܨ݁ + 0ݎ௥߳ߨ24݁ (139)

where 0ݎ is the distance of the local maximum from the trap center. By seƫng the 

diīerenƟaƟon aŌer 0ݎ to zero, one arrives at 0ݎ = resulƟng in , ܨ௥߳ߨ4/݁√

Δܷ = ௥߳ߨܨ3݁√ (140)

The probability of escaping the trap is then simply the Boltzmann factor exp(−Δܷ) =exp(−ܨ√ߛ) for some constant ߛ which then yields a Įeld dependence of the conducƟvity𝜎 ∝ exp(−ܨ√ߛ) (141)

The Poole-Frenkel behavior is for organic semiconductors only found in a limited range at high 

Įelds, where the range was argued to be widened by consideraƟon of a spaƟally correlated 

potenƟal for charge carriers83. In fact, Pasveer’s model can predict in a limited range for high 

Įelds a Poole-Frenkel behavior, since for rising Įelds the mobility saturates. In a larger Įeld 

range, the Įeld dependence of the logarithmic mobility on the Įeld is rather as predicted 

quadraƟc or linear84. Pasveer developed a model describing the Įeld dependence from low to 

intermediate Įeld, opƟmized for low charge densiƟes ݊ by a mere empirical Įt to numerical 

data ,ܶ)ߤ ݊, (ܨ ≈ ,ܶ)ߤ ݊)݂(ܶ, (ܨ (142)

݂(ܶ, (ܨ = exp(0.44((𝜎஽ைௌ݇஻ܶ)32 − 2.2) [√1 + 0.8 2(𝜎஽ைௌܽ݁ܨ) − 1]) (143)
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The numerical data is found from cubic grid simulaƟons with laƫce constant ܽ. For low Įelds, 

the logarithmic mobility is found to scale quadraƟcally with the Įeld, i.e. ln (0ߤ/ߤ) ∝  up ,2ܨ

to some transiƟon Įeld strength ܨ≈𝜎/݁ܽ aŌer which it scales linearly, i.e. ln (0ߤ/ߤ) ∝  .ܨ

Nenashev et al.85 argued that EquaƟon (143) cannot hold, since it misses a decisive factor, and 

showed by own simulaƟons that the decisive length scale for the Įeld dependence is not the 

laƫce spacing ܽ, but rather the localizaƟon length ߙ, especially in the more realisƟc case of a 

random laƫce and corrected upon that. More on that will be discussed in the secƟon about 

eīecƟve temperature.

EīecƟve Temperature 

In 1992 S. Marianer and B.I. Shklovskii86 invesƟgated the eīect of the electric Įeld on the 

carrier energy distribuƟon funcƟon in an amorphous semiconductor with localized states of 

localizaƟon length ߙ via master equaƟon approach. They found that at various temperatures 

and Įelds the carrier distribuƟon funcƟon (which is the Fermi-Dirac distribuƟon at zero Įeld) 

is a Fermi-Dirac distribuƟon with some eīecƟve temperature that is not the temperature itself 

at non-zero Įelds. They realized that strong electric Įelds, the electric Įeld has a similar role 

to temperature. From a phenomenological point of view, this is very plausible, as illustrated in 

Figure 11.

Figure 11 – ReducƟon of the energy barrier of a hop due to the electric Įeld.

Considering two energy levels separated by a distance ݔ and energy diīerence ܧ߂ with an 

electric Įeld ܨ applied in direcƟon of ݔ. If a charge siƫng on the energy site 1ܧ would hop to 2ܧ, it would feel a voltage drop over the distance ݔ, which eīecƟvely lowers the Įnal hopping 

site by the energy ݁ݔܨ. This is equivalent to a charge being thermally acƟvated from 1ܧ to a 
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site of some eīecƟve energy 2ܧ −  such that it is plausible that the electric Įeld plays a ݔܨ݁

similar role as temperature. The charges gain energy from the electric Įeld upon hopping, 

which causes the charge carriers to be eīecƟvely hoƩer than the laƫce.

For example, at zero temperature, the Miller-Abrahams rate is given by ߥ = 0ߥ exp(−2ߙ/ݔ) 
which can be rewriƩen to be ߥ = exp (− ఢ௞ಳ்೐೑೑(ி)) with ߳ = and ௘ܶ௙௙ ݔܨ݁ =  2݇஻. For/ߙܨ݁

non-zero temperatures, the situaƟon is not so clear. If one would make the ansatz to combine 

Įeld and temperature into an eīecƟve temperature as a simple sum, i.e. ௘ܶ௙௙ = ܶ ஻, this would fail67: Supposing the dc conducƟvity 𝜎ௗ௖݇/ߙܨ݁ ߛ+  would only depend on 

௘ܶ௙௙(ܶ, given by the simple sum, the derivaƟve of 𝜎ௗ௖ (ܨ  with respect to the Įeld should vanish 

in the Ohmic regime. However, calculaƟngd𝜎ௗ௖dܨ = d𝜎ௗ௖d ௘ܶ௙௙ d ௘ܶ௙௙dܨ = d𝜎ௗ௖d ௘ܶ௙௙ ஻݇ߙ݁ߛ  ↛ ܨ) 0 → 0) (144)

such that a simple sum cannot be the right answer. Rather than a direct sum, one takes the 

phenomenological term

௘ܶ௙௙ = (ܶఉ + ߛ) ஻݇ߙܨ݁ )ఉ)1/ఉ (145)

which gives ߚ = 1.54 ± 0.2 and ߛ= 0.64 ± 0.2 depending on the transport parameters. Also 

oŌen, this expression is just taken with ߚ = 2. Unfortunately, there is no further analyƟcal 

theory behind this expression that would derive this exact expression for the eīecƟve 

temperature. What has been proven though, for example in Ref.85, is that the length parameter ߙ in the eīecƟve temperature expression is indeed not the average laƫce spacing, which is a 

funcƟon of the site density. Nenashev et al.85 showed that by deriving a master equaƟon 

including Įnite temperature and Įeld, the soluƟon of the equaƟon, the carrier energy 

distribuƟon funcƟon, cannot be a funcƟon of the site density and therefore the laƫce spacing, 

concluding that the only relevant length to include in the eīecƟve temperature is indeed the 

localizaƟon length. 

Another way to think of the eīecƟve temperature with a more physical moƟvated formula is 

by heaƟng of the charge carrier distribuƟon with applied Įeld87. The heat Ňux towards the 

charge distribuƟon due to Joule heaƟng is given by
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ܳ̇ு = 𝜎 ⋅ 2ܨ = 2ܨߤ݊ݍ (146)

with the conducƟvity 𝜎 and the mobility ߤ. On the other hand, the charge distribuƟon cools 

down via heat exchange to the laƫce. The heat Ňux to the laƫce can be approximated by the 

Ɵme derivaƟve of the Boltzmann energy 

ܳ̇஼ = ݊݇஻ܶ̇௘௙௙ ≈ ݊݇஻( ௘ܶ௙௙ − ௟ܶ௔௧௧)߬ (147)

with the charge density ݊ and relaxaƟon Ɵme ߬. EquaƟng the two heat Ňuxes to obtain heat 

balance equaƟon

ܳ̇ு = 2ܨߤݍ = ݇஻( ௘ܶ௙௙ − ௟ܶ௔௧௧)߬ = ܳ̇஼ (148)

From equaƟng the diīusion coeĸcients from the Einstein-Smoluchowski relaƟon with the 

average quadraƟc charge displacement 2ߦ and the classical Einstein relaƟon for the heated 

charges one obtains

ܦ = 26߬ߦ = ݇஻ ௘ܶ௙௙݇ߤ஻ (149)

             ⇔1߬ = 6݇஻ ௘ܶ௙௙ݍ2ߦߤ (150)

InserƟng this into the heat balance and solving the quadraƟc equaƟon for ௘ܶ௙௙, one arrives at

௘ܶ௙௙ = ௟ܶ௔௧௧ +√ ௟ܶ௔௧௧2 + ߛ) ஻݇ܨߦݍ )22 (151)

This expression is similar to the former one, but just slightly modiĮed and will be further 

considered as eīecƟve temperature model 2, whereas the classical expression as model 1. In 

this case however, ߦ is not directly the localizaƟon length as argued for the former expression. 

The details and validity range of the eīecƟve temperature remains an open quesƟon.

Nevertheless, the Įeld dependence of the mobility has for a wide range of parameters like 

carrier concentraƟon, temperature and Įeld strength been veriĮed88 to be the low Įeld 
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mobility with the temperature being exchanged for the eīecƟve temperature, which is 

remarkable.
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Results

Power Factor OpƟmizaƟon for Anisotropic LocalizaƟon ProperƟes

This secƟon summarizes the theoreƟcal Įndings that were performed by me for the 

collaboraƟon with Diego Rosas Villalva et al. in Ref.46.

The experimental collaborators used Hansen Solubility Parameters (see introducƟon) to 

control the orientaƟon of aggregates on thin Įlms. Here for, they studied 2DPP-2CNTVT thin 

Įlms doped with three diīerent n-type dopants, namely TBAF, TAM and N-DMBI, each with 

diīerent doping levels and diīerent solvents. For those systems, they performed structural 

analyses to extract the crystallinity and orientaƟon of the Įlms using GIWAXS and AFM and 

performed in-plane measurements of the Seebeck coeĸcient and conducƟvity of the thin 

Įlms. With the help of HSP and the Solubility sphere they could choose a proper solvent for 

the doped n-type 2DPP-2CNTVT:N-DMBI system to obtain a system with a high edge-on to 

face-on raƟo (EFR). For this system they found an excepƟonally high power factor and break 

the limitaƟon of the conducƟvity dependence of the Seebeck coeĸcient ܵ~𝜎−1/4 that is 

usually universally observed for OSCs.

To understand the observed deviaƟon of the N-DMBI doped polymer from the usually 

expected ܵ~𝜎−1/4 law we have to look at the implicaƟons of the data about crystallinity and 

polymer orientaƟon on the electronic wave funcƟons. Higher crystallinity should imply a 

higher delocalizaƟon of the charge carriers, especially along the ߨ −  stacking direcƟon of ߨ

the crystalline grains. That alone would simply increase the eīecƟve localizaƟon length in 

every direcƟon if the crystalline regions were randomly orientated. This changes if one 

introduces a preferred orientaƟon of the crystalline regions. For example, if one manages to 

increase the edge-on oriented porƟon of crystalline regions, the in-plane delocalizaƟon gets 

enhanced whereas the out-of-plane delocalizaƟon gets reduced. This is schemaƟcally shown 

in Figure 12. 
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Figure 12 – a  For ܴܨܧ ≈ 1 the wavefuncƟon is spherical.  b  For ܴܨܧ ≫ 1 the wavefuncƟon gets 

anisotropic.

DelocalizaƟon mostly takes place along the polymer backbone and in ߨ −  ,stacking direcƟon-ߨ

since lamellar stacking is not advantageous for delocalizaƟon due to the separaƟng and usually 

not conducƟve side chains. Similar to the edge-on case, for face-on orientaƟon the localizaƟon 

length would be enhanced in the out-of-plane direcƟon and reduced in the in-plane direcƟons. 

EīecƟvely this implies that the introducƟon of a preferred orientaƟon of crystalline regions 

introduces an anisotropy in the localizaƟon of electronic states, which means a non-spherical 

eīecƟve volume, in which the spaƟal electronic wavefuncƟon is conĮned, which is 

represented as ŇaƩened spheres or ellipsoids in Figure 12. It is worth to note that in the edge-

on orientated case the eīecƟve localizaƟon length gets enhanced in the whole plane of the 

substrate due to the in-plane randomly orientated crystalline grains, which is diīerent from 

the situaƟon aŌer e.g. rubbing or tensile drawing, where one has a one speciĮc direcƟon of 

orientaƟon. 

We now use this conclusion about the anisotropy of the localizaƟon length to invesƟgate the 

implicaƟons of an anisotropic localizaƟon length with regular kineƟc Monte Carlo (kMC) 

simulaƟons.

For that, we implement a regular laƫce of box size 203 with periodic boundary condiƟons, 

inter-site-distance ܽேே = 1.8 ݊݉ and gaussian energeƟc disorder with a disorder width of 𝜎஽ைௌ = 75 ܸ݉݁. The charge transport is modelled as nearest neighbor Hopping (nnH) with 

Abraham-Miller hopping rates from site i to site j

a b
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௜௝݌ = 0ߥ ×
{   
   exp(−2√(ߙݔ߂௫)2 + 2(௬ߙݕ߂) + 2)exp(௭ߙݖ߂) ௝ܧ−) − ௜݇஻ܶܧ ) ௝ܧ ݂݅      > ௜ܧ
exp(−2√(ߙݔ߂௫)2 + 2(௬ߙݕ߂) + (2(௭ߙݖ߂) ௝ܧ ݂݅                                     < ௜ܧ

(152)

The Įrst exponenƟal factor resembles the tunneling term where Δݔ௜ is the hopping distance 

in ݔ௜  direcƟon (ݔ, ,ݕ ௫೔ߙ and (ݖ  is the corresponding localizaƟon length. The second exponenƟal 

term for upwards-hops with site energies ܧ௝ > ௜ܧ  is just the Boltzmann factor for temperature 

T. Lastly, 0ߥ is aƩempt-to-hop-frequency and chosen to be 0ߥ = .for every simulaƟon ݏ/1 1011

For the simulaƟon, Įve cases are considered. First, the case with an isotropic localizaƟon 

length vector of ߙ௜௦௢ = (௭ߙ ௬ߙ ௫ߙ) = 0.5 × (1 1 1) ݊݉ was simulated to compare the results 

to. Then, the edge-on and face-on cases were simulated by seƫng the respecƟve localizaƟon 

length triplets to ߙ௘௢ = 0.5 × (2 2 1) ݊݉ and ߙ௙௢ = 0.5 × (1 1 2) ݊݉, where in-plane is set 

to be the x-y-plane of the system. Since these localizaƟon length triplets would lead to an 

increased eīecƟve localizaƟon length, another two simulaƟons were performed where the 

length of the respecƟve localizaƟon length vectors are normalized to the length of the isotropic 

case to decouple the eīect of the anisotropy from eīects that are due to increase of the total 

eīecƟve localizaƟon length. In this case, the localizaƟon length triplets were set to ߙ௘௢,௡௢௥௠ ௘௢ߙ= × |ఈ೔ೞ೚||ఈ೐೚| = 12√3 (2 2 1) ݊݉ in the edge-on case and ߙ௙௢,௡௢௥௠ = ௙௢ߙ × |ఈ೔ೞ೚||ఈ೑೚| =12√2 (1 1 2) ݊݉ in the face-on case. Physically, the normalizaƟon means that in comparison to 

the isotropic case, the localizaƟon length sƟll gets enhanced in the direcƟons of anisotropy 

main axes but reduced in the other dimensions, e.g. in the edge-on case the localizaƟon length 

is enhanced in-plane and reduced out-of-plane. 

For each case of localizaƟon lengths, the calculaƟon was performed with a charge carrier 

concentraƟon of ௙ܿ = 1% and ௙ܿ = 10%. The results are summarized in Figure 13.

To further support the claim of the connecƟon of anisotropic localizaƟon length and edge-on 

morphology, we incorporated a polymer morphology generaƟng subprogram into our kMC 

model. 

For the actual kMC with the generated morphology, it is assumed that the intra-chain transport 

along the backbone of a defect (twist, bend) free polymer is enhanced. This is accounted for 
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by a factor ௜݂௖ℎ that reduces the inverse localizaƟon length 1−ߙ as 1′−ߙ = 1−ߙ ௜݂௖ℎ⁄ . Inter-

chain transport along the face-face (pi-stacking) direcƟon is assumed to be enhanced with 

respect to the other direcƟons. Here, a normalized change ఈ݂ in the (vectorial) inverse 

localizaƟon length for each monomer is used, which conserves the volume of the 

corresponding ellipsoid. That is, 1′−ߙ = 1−ߙ ఈ݂⁄  in the ±-face direcƟon and 1′−ߙ = 1−ߙ √ ఈ݂⁄  

in the other (edge) direcƟons.
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Results and Discussion

Figure 13   Comparison of the in-plane Seebeck coeĸcients and conducƟviƟes for free charge carrier 

concentraƟons of ௙ܿ = 1% and 10% for each isotropic, edge-on, face-on and their normed cases. 

Isotropic refers to a localizaƟon length vector of ߙ௜௦௢ = 0.5 × (1 1 1) ݊݉, edge-on refers to ߙ௘௢ =0.5 × (2 2 1) ݊݉ and face-on to ߙ௙௢ = 0.5 × (1 1 2) ݊݉. Normed ߙ refers to ߙ௘௢,௡௢௥௠ = |௜௦௢ߙ| ௙௢,௡௢௥௠ߙ ௘௢| in the edge-on case andߙ|/௘௢ߙ× = |௜௦௢ߙ| ×  ௙௢| in the face-on case such that theߙ|/௙௢ߙ

eīecƟve localizaƟon length stays the same as in the isotropic case.

The upper two diagrams in Figure 13 show the results for ௙ܿ = 1%. The leŌ one shows the un-

normalized case. One can see that speciĮcally in the edge-on case one has a signiĮcant 

increase in conducƟvity and a Seebeck coeĸcient that is barely aīected. In the face-on case 

one also sees a slight increase in conducƟvity and a small drop in S. This is somewhat diīerent 

to the right diagram, where the localizaƟon length is normalized. Here, for the edge-on case 

the conducƟvity is sƟll increased, albeit not that much as in the un-normalized case, but also 
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the Seebeck coeĸcient is a liƩle bit increased. In the face-on case the trend is diīerent; here, 

the conducƟvity decreases signiĮcantly and the Seebeck coeĸcient is sƟll a bit decreased in 

comparison to the isotropic case. The results of the ௙ܿ = 10%  in the lower half of Figure 13 

are qualitaƟvely the same as for the ௙ܿ = 1% case. 

The simulaƟons therefore show that an anisotropy in the localizaƟon length, speciĮcally the 

edge-on orientaƟon, can induce a higher conducƟvity without the usually expected trade-oī 

in the Seebeck coeĸcient. This results in an overall increase of the Power factor ܲܨ = ܵ2𝜎, as 

summarized in Figure 14. 

Figure 14   Comparison of the simulated Power factors for free charge carrier concentraƟon of  ௙ܿ =1% (cyan bars) and 10% (blue bars) for each isotropic, edge-on, face-on and their normed cases. 

Isotropic refers to a localizaƟon length vector of ߙ௜௦௢ = 0.5 × (1 1 1) ݊݉, edge-on refers to ߙ௘௢ =0.5 × (2 2 1) ݊݉ and face-on to ߙ௙௢ = 0.5 × (1 1 2) ݊݉. Normed ߙ refers to ߙ௘௢,௡௢௥௠ = |௜௦௢ߙ| ௙௢,௡௢௥௠ߙ ௘௢|  in the edge-on case andߙ|/௘௢ߙ× = |௜௦௢ߙ| ×  ௙௢| in the face-on case such that theߙ|/௙௢ߙ

eīecƟve localizaƟon length stays the same as in the isotropic case.

Figure 14 also shows that the anisotropy with higher in-plane (edge-on) localizaƟon length 

with a larger eīecƟve localizaƟon length, i.e. not normalized localizaƟon length, is more 

eīecƟve than just the anisotropy. The pracƟcally important quesƟon is, whether normalized 
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or unnormalized localizaƟon lengths are more realisƟc from a physical point of view. On the 

one hand, the reorientaƟon of randomly orientated crystalline grains into the edge-on 

orientaƟon should in Įrst order be closer to the normalized case. This is, because for the out-

of-plane contribuƟons of an inherently 3D percolaƟon path, the possibility of high hopping 

rates due to ߨ −  orbital overlap along that direcƟon gets reduced, which introduces a ߨ

boƩleneck that counteracts the posiƟve eīects of the improved average ߨ −  stacking along ߨ

the in-plane direcƟon. This resembles rather a redistribuƟon or deformaƟon of the localizaƟon 

volume. On the other hand, if a preferenƟal orientaƟon is accompanied by an overall increase 

in crystallinity, the total average delocalizaƟon can be expected to increase, which would 

correspond to a larger localizaƟon volume. The previous reasoning is addiƟonally supported 

by the comparison of the results of the laƫce kMC simulaƟon with anisotropic localizaƟon 

length with the kMC simulaƟon with a generated edge-on morphology.

Figure 15 shows an example morphology for the edge-on case for a just a few polymer chains 

for visual representaƟon. The unitless inter-chain energies are given by (-4,3,-2,2) in the order 

face-face orientaƟon, face-edge, edge-edge cross and parallel. The intra-chain energies are (0 

2 2) for straight, twisted and bended direcƟon. The color red means a monomer face 

orientaƟon into x-direcƟon, green is in y-direcƟon and blue is in z-direcƟon. To impose a certain 

preferred alignment orientaƟon and direcƟon, dummy homogeneous alignment Įelds into z 

direcƟon were switched on during polymer growth. PosiƟve energies always mean a penalty, 

whereas negaƟve energies are energeƟcally favorable. As can be seen, the given seƫngs lead 

to a preferred edge-on orientaƟon in-plane (x-y plane). 
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Figure 15    VisualizaƟon of a grown polymer morphology leading to edge- on orientated aggregates of 

polymer chains. Red means monomer-face orientaƟon into x-direcƟon, green into y-direcƟon and blue 

into z-direcƟon. 

With the parameters given above, but much denser polymer morphology, kMC simulaƟons 

with Įrst no enhanced delocalizaƟon within a defect free chain segment ( ௜݂௖ℎ) and no 

delocalizaƟon enhancement for ߨ − ) stacking ߨ ఈ݂) were performed, followed by simulaƟons 

with ௜݂௖ℎ = 1.5 and/or ௜݂௖ℎ = 1.25. The results are summarized in the following Table 1.

Table 1 – In-plane Seebeck coeĸcient and conducƟvity for generated edge-on morphology for diīerent 

combinaƟons of delocalizaƟon enhancement factors of defect free chain segment ௜݂௖ℎ and of ߨ −  ߨ

stacking ఈ݂. 

௜݂௖ℎ, ఈ݂ = 1 ఈ݂ = 1.25 ௜݂௖ℎ = 1 ఈ݂ = 1 ௜݂௖ℎ = 1.5 ఈ݂ = 1.25 ௜݂௖ℎ = ܭ/ܸߤ1.5 697 ± 4 704 ± 5 715 ± 3 734 ± 3𝜎 [݉ܵ/݉] 14.7 ± 0.1 19.0 ± 0.1 22.7 ± 0.1 29.3 ± 0.3
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NoƟng that physically indeed delocalizaƟon is enhanced for ߨ −  stacking and within a defect ߨ

free chain segment ( ఈ݂ , ௜݂௖ℎ > 1), these results conĮrm the previous results of the connecƟon 

of an anisotropic localizaƟon length and edge-on morphology, leading both to an enhanced 

power factor in the in-plane direcƟon.

Figure 16 Diīerence between hopping paths of same system with for anisotropic (leŌ) and isotropic 

localizaƟon (right), simulated by a 2D kMC model. Field is applied in y-direcƟon. To highlight the energy 

of each site they are addiƟonally color-coded with red colors indicaƟng high energies and blue colors 

indicaƟng lower energies. While in the isotropic case a larger path-network is explored, in the 

anisotropic case the path is more direct at the expense of occasionally higher energy barriers but 

therefore reduced tunneling acƟon in y-direcƟon, enhancing the transported energy on average.

To explain the simultaneous increase in 𝜎 and ܵ, and concomitantly of the power factor in the 

edge-on orientaƟon, it is instrucƟve to visualize the hopping path of a charge in the anisotropic 

case in comparison to the isotropic case, which is done in Figure 16. Here, a 2D kMC simulaƟon 

was performed to visualize the hopping path also in energy space. The localizaƟon length is 

set to be enhanced in the y-direcƟon, where also the Įeld is applied. It is directly visible that 

the hopping path in the anisotropic case is more linear and direct, whereas in the isotropic 

case the charge is exploring a more random path. This is, because for the same energy 

diīerence ܧ௝ −  ௜ between two hopping sites i and j, the probability to hop into the direcƟonܧ

of the larger localizaƟon length given by the tunneling term in the Miller-Abraham rate ݌௜௝ is 

higher. This also means that the charge can overcome a larger energy diīerence in the 
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direcƟon of larger delocalizaƟon than in the direcƟon of smaller delocalizaƟon for the same 

overall hopping rate, which translates into a higher transport energy for pathway that contain 

more hops in the easy direcƟon. As such, the more direct path translates not only into a higher 

velocity in the direcƟon of larger delocalizaƟon and therefore into a higher conducƟvity, but 

into a less opƟmized path from a pure energy perspecƟve. This means that the trade-oī for 

the geometrically more direct path are occasionally higher jumps in energy, which translate 

into a higher transport energy, which then in turn leads to a slightly increased Seebeck 

coeĸcient.

Field Dependence SimulaƟons

For the Field Dependence of the conducƟvity of organic semiconductors several theoreƟcal 

approaches have been proposed in the past decades (see TheoreƟcal Background). The 

approaches reach from simple consideraƟons leading to Poole-Frenkel behavior over rather 

empirical parametrizaƟons like Pasveer’s model up to the EīecƟve Temperature approach, 

assuming the electrical Įeld acts equivalent to a heaƟng of the charge carrier distribuƟon. 

Assuming the validity of the EīecƟve Temperature approach, it would in principle be possible 

to extract a characterisƟc length-scale of the hopping conducƟvity in OSC interpreted as the 

localizaƟon length. Experimentally, this can be done by measuring the temperature 

dependence of the ohmic conducƟvity and the Įeld dependence of the conducƟvity up to high 

Įelds to extract a localizaƟon length from an eīecƟve temperature ௘ܶ௙௙(ܨ) obtained via the 

mapping 𝜎ைℎ௠ ( ௘ܶ௙௙(ܨ)) = 𝜎(ܨ, ܶ), as proposed in literature85,87. The same experimental 

approach has been followed in our group. For three example systems, namely rrP3HT:F4TCNQ 

with 0.2 mg/ml and 0.8 mg/ml and SuperYellow:F4TCNQ with 5mg/ml sequenƟal doping, the 

experimentally obtained Įeld dependencies and eīecƟve temperatures are shown in Figure 

17 (M. Shokrani, unpublished data).
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Figure 17 – LeŌ: Experimentally obtained conductance as funcƟon of applied electrical Įeld for two 

doping concentraƟons of the system P3HT:F4TCNQ and SuperYellow:F4TCNQ. Right: Experimentally 

obtained EīecƟve Temperatures. The doƩed lines are Įts with the eīecƟve temperature model 1. (M. 

Shokrani, unpublished data)

While Super-Yellow only shows a signiĮcant Įeld dependence at higher Įelds, the conductance 

of the P3HT systems show a signiĮcant Įeld dependence already at relaƟvely low Įelds. 

Analyzing the eīecƟve temperatures obtained experimentally via the approach described 

above, one Įnds that the characterisƟc length scales (interpreted as localizaƟon length) of the 

systems are in the order of 4 ݊݉ for low doped P3HT and 22 ݊݉ for higher doped P3HT or 

even two to three Ɵmes larger values considering only the low Įeld part. Besides the poor Įt 

to the eīecƟve temperature model for the P3HT systems, these values are however much 

larger (about one to two order of magnitudes) than one would expect from disordered 

hopping systems, raising the quesƟon of the meaning of the obtained length scale. A possible 

working hypothesis could be that the length scale could represent the size of aggregates in the 

systems, as the doped P3HT is considered to be, leading to wavefuncƟons that could possibly 

be delocalized over those aggregates and hopping between aggregates takes place.

In this chapter the Įeld dependence of the mobility or conducƟvity of diīerent simple to 

aggregated morphologies is studied and compared to each other. First, the generaƟon and 

parameters of each morphology are described, followed by the results from the Ɵght binding 

model. Then the Įeld dependence results are shown and discussed in the context of each 

morphological speciĮcaƟons, including other possible physical parameters that could 

inŇuence the Įeld dependence. The Įeld dependencies are then analyzed with the eīecƟve 
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temperature approach to test the validity of the commonly used eīecƟve temperature models 

of the Įeld dependence of OSC. 

Field Dependence of the SimpliĮed Model Morphologies

The Įrst two morphologies studied are regular simple cubic (sc) laƫces with box size of 20 × 20 × 20 and laƫce constant ܽேே = 0.5 ݊݉. The orbital parameters for the ellipsoidal 

orbital approximaƟon Equ. (72) are (݈௫, ݈௬, ݈௭) = (0.1, 0.1, 0.1) ݊݉, meaning a spherical s-type 

orbital. The transfer integral scaling factor was taken to be 0ߥ = 1014 1௦ . Here, no ions are 

considered, so ܸ = 0. The diagonal disorder for the Įrst morphology was 𝜎ௗ௜௦ = 100 ܸ݉݁ and 

for the second 𝜎ௗ௜௦ = 80 ܸ݉݁. Figure 18 shows the projecƟon of a slice or Ɵle of the center 

of mass laƫce. The circles are the centers of masses of each localized eigenstate and their 

radius is proporƟonal to their localizaƟon length. The colors indicate the eigen-energies of the 

states.

Figure 18 – LeŌ: Projected slice of sc morphology with 100 meV disorder. Right: Projected slice of sc 

Morphology with 80 meV.

It is directly obvious from Figure 18 that the states are not distributed as a simple laƫce 

anymore. This reŇects the energeƟc and spaƟal correlaƟons introduced by the random on-site 

energies through the Ɵght binding model. The local energeƟc environment of the laƫce and 
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the coupling through the transfer integral causes more or less localized states with eigenstates 

not being solely localized on one laƫce site. Therefore, the center of mass of the eigenstates 

gets distorted from a simple laƫce and reŇect the energeƟc disorder of the system. One can 

hereby already observe some degree of clustering of eigenstates. This can be explained by the 

nature of randomness, which causes some degree of clustering since a uniform spaƟal 

distribuƟon has lower entropy than a liƩle bit clustering. This random clustering can even be 

enhanced through the interacƟon via the transfer integrals. 

Figure 19 shows the DOS obtained from the TB calculaƟons together with the localizaƟon 

length distribuƟon for on-site disorders of 100 meV and 80 meV. The calculated DOS is ĮƩed 

with a single gaussian (orange curve). The ĮƩed disorders match the on-site disorder well with 𝜎஽ைௌ = 83 ± 3 ܸ݉݁ for sc laƫce with 80 meV on-site energy disorder and                                𝜎஽ைௌ = 104 ± 3 ܸ݉݁ for sc laƫce with 100 meV on-site energy disorder. For the localizaƟon 

length distribuƟons, each circle corresponds to the localizaƟon length ߙ௜ of eigenstate with 

eigenenergy ܧ௜. The distribuƟons follow a distribuƟon that is similar to the DOS, but very 

scaƩered, meaning that for a given eigenenergy the localizaƟon length is not well deĮned but 

scaƩered around some mean value. The mean value of the localizaƟon length in a small energy 

interval is indicated as a conƟnuous black line within the localizaƟon length distribuƟons.
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Figure 19 – Density of states and localizaƟon length distribuƟons for simple laƫce morphologies with 

80 meV and 100 meV on-site energy disorder. The black line corresponds to the mean value of the 

localizaƟon length within a small interval around each energy. 

The comparison of the localizaƟon length distribuƟons reveals the expected behavior that 

higher DOS disorder causes a higher degree of localizaƟon, as can be seen by both the mean 

localizaƟon length curve and the peak of the distribuƟons being both lower in the 100 meV 

case than in the 80meV case. The small dip at around −2.5 ݇஻ܶ is probably a numerical 

artefact of using the numerically less stable generalized eigenvalue problem and the symmetric 

sc morphology, but should have a negligible inŇuence on the further simulaƟons.

Next, the morphology generated by the 3-phase-model is introduced. Here, again a 20 × 20 × 20 box is used for the morphology generaƟon, together with an inter-site distance 

of ܽேே = 0.5 ݊݉. The aim is to obtain a morphology that is as aggregated as possible. 

Therefore, the following program parameters were chosen. First, long chains are considered 

by seƫng the number averaged number of repeat units per chain (In.pol_Mn) to 200, with a 
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weight raƟo of 1 (In.pol_nr). At Ɵme ݐ = 0, 10% of all chains are nucleated (In.pol_nCh0=-0.1). 

For growing the polymers, the energeƟc penalƟes/gains for intrachain conformaƟon are 

chosen to be (ܧ௦௧௥௔௜௚ℎ௧, ,௧௪௜௦௧ܧ (௕௘௡ௗܧ = (0, 4, 1) so that twisƟng is penalized much with the 

aim of enhanced ߨ − ߨ −stacking and bends are penalized a bit so that bending does not 

happen too oŌen. The interchain conformaƟon energies are chosen as (ܧ௙௔௖௘−௙௔௖௘ , ௙௔௖௘−௘ௗ௚௘ܧ , ,∥,௘ௗ௚௘−௘ௗ௚௘ܧ (⊥,௘ௗ௚௘−௘ௗ௚௘ܧ = (−8, 8, −3, 0). Again, this is moƟvated 

by wanƟng to reward ߨ − ߨ −stacking, penalizing face-edge orientaƟon and rewarding 

lamellar stacking. The monomer faces should be aligned in z-direcƟon by an alignment Įeld of 

In.pol_F_al(1,1:3)=(0,0,2) and the monomer direcƟons are set with an alignment Įeld into the 

x and y-direcƟon by In.pol_F_al(2:,1:3)=(2,2,0). The probability of the nucleaƟon of new chains 

should be length-weighted and an over-Įlling factor of 7 was taken to avoid larger voids within 

the Įnal morphology. 

With these seƫngs, two morphologies are generated. For the Įrst morphology, the aggregated 

phase gets aƩributed on-site energies drawn from gaussian distribuƟon with 80 meV disorder 

while the amorphous phase has 100 meV on-site energy disorder. The cutoī energy for being 

within an aggregate is set at the value 1/3 for the normalized interacƟon energy of the 

monomers in the morphology (ܧ௚௥௔௜௡ ≤ 13). The second morphology has 45 meV on-site 

energy disorder in the aggregated phase and 80 meV in the amorphous phase. The transfer 

integral scaling factor was chosen 0ߥ = 1014 1௦, with an intrachain factor of ௜݂௖ℎ = 1.3 for 

couplings within a chain. The orbital parameters of the monomer sites are (݈௫, ݈௬, ݈௭) =(0.87,0.87,1.3) ⋅ 0.1 ݊݉ such that ݈௫ ⋅ ݈௬ ⋅ ݈௭ is the same as for the sc case. Since the 

morphology is laƫce-based with constant laƫce spacing but ߨ − ߨ −stacking is usually 

enhanced by closer packing, this is mimicked here by enhancing the orbital length in the 

monomer face direcƟon. Lastly, the Coulomb potenƟal is set to zero again since no ions are 

considered here. Figure 20 shows again a projected slab of the morphology. Inspired by the 

name of the program module “MakeSnake”, the two morphologies are from here on called 

MakeSnake 80meV/100meV (or MS 80/100) and MakeSnake 45meV/80meV (or MS 45/80). 

Here, in contrast to the sc morphologies, the background contains the direct morphology 

created by MakeSnake as squares and the colors represent the normalized interacƟon energy 

of each monomer/site, making the aggregated phases visible as more blueish.
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Figure 20 – LeŌ: Projected slab of MakeSnake 80meV/100meV. LeŌ: Projected slab of MakeSnake 

45meV/80meV. 

From Figure 20 one can see that the center of mass laƫce approximately follows the 

aggregates of the MakeSnake morphologies. Within the aggregates, the state density is 

enhanced as well as the localizaƟon length, as one would expect. However, the achieved 

aggregaƟon is not very large. The morphology rather consists out of smaller, but more 

interconnected aggregates.

To achieve larger aggregates, the subprogram for morphology generaƟon via annealing is used. 

The fracƟon of guest (aggregated) sites was set to 0.4. The cohesive energy of both the host 

and guest being the evaporaƟon enthalpy of the host or guest is set to ܧ௖௢ℎ = 176 ௞௃௠௢௟. The 

raƟo of the free energy of the host-guest interface with respect to the host-host interface is 

set to the factor 4. And Įnally, the annealing temperature is set to ௔ܶ௡௡ = 4݇஻ܶ. With these 

parameters the annealing process simulaƟon is conƟnued unƟl either 105 steps are reached 

or the correlaƟon radius of guest clusters (aggregates) reaches the value 15 ⋅ ܽேே. 
For the Ɵght binding parameters, as in the previous cases, the transfer integral scaling factor 

was chosen 0ߥ = 1014 1௦ and the orbital parameters of the monomer sites are (݈௫, ݈௬, ݈௭) =(0.87,0.87,1.3) ⋅ 0.1 ݊݉ again. As no chain informaƟon is available, no addiƟonal factor is 

introduced. Again, no ions are considered, so ܸ = 0. Two annealed morphologies are 
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considered, once with on-site energy disorder of 45 meV in the aggregates and 80 meV in the 

amorphous phase (denoted as Annealed 45meV/80meV) and relaƟve posiƟonal disorder of 

the amorphous phase of 0.2 ⋅ ܽேே, and secondly with 25 meV in the aggregated phase and 80 

meV in the amorphous phase (denoted as Annealed 25meV/80meV) with no addiƟonal 

posiƟonal disorder of the amorphous phase. The results of the morphology are shown in 

Figure 21.

Figure 21 – LeŌ: ProjecƟon of slab of Annealed 25meV/80meV morphology. Right: ProjecƟon of slab of 

Annealed 45meV/80meV morphology.

The background squares again show the generated morphology with blue being aggregates 

and red being the amorphous phase. The aggregates are clearly larger here, but also separated 

by larger regions of amorphous phases. At the same Ɵme (not seen in the projecƟon) there 

may be direct contact areas between diīerent aggregates because of their size here. As in the 

MakeSnake morphologies, the state density and the localizaƟon length in the aggregated 

phase is again larger than in the amorphous phase, as to be expected. 

The results for the DOS and localizaƟon length distribuƟons for both MakeSnake and Annealed 

morphologies are summarized in Figure 22. The DOS was ĮƩed with a double gaussian

(ܧ)ܱܵܦ = 1ܣ exp(− ܧ) − 22𝜎12(1ߤ ) + 2ܣ exp(− ܧ) − 22𝜎2(2ߤ ) (153)
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Figure 22 – LeŌ column: DOS of Aggregated (MakeSnake) and Annealed morphologies. Orange lines 

are double gaussian Įts. Right columns: Corresponding localizaƟon length distribuƟons. The black line 

is the average curve.

Table 2 – Double gaussian Įt parameters for diīerent morphologies (ܶ = ૚࡭.(ܭ 300 ࢀ࡮࢑/૚ࣆ ࣌૚/ࢀ࡮࢑ ૛࡭ ࢀ࡮࢑/૛ࣆ ࣌૛/275ࢀ࡮࢑± 40 −1.1± 0.2 1.9 ± 0.2 425± 40 0.7± 0.2 4.6± 0.2336± 40 −0.9± 0.1 1.2 ± 0.2 427± 30 0.7± 0.2 3.2± 0,2290± 30 −1 ± 0.1 1.2 ± 0.2 468± 20 0.4± 0.1 3.2± 0.2358± 30 −0.7± 0.1 0.7 ± 0.1 570± 30 0.3± 0.1 2.6± 0.1
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All DOS Įt very well to double gaussians which are shiŌed in energy. The gaussians with the 

smaller disorders correspond to the more ordered aggregated phases, which are therefore also 

lower in energy than the amorphous phase which is the gaussian part with the larger disorder 

respecƟvely. The disorders of the amorphous and aggregated phases approximately match the 

on-site energy disorders from the Ɵght binding model input. However, the shiŌ of the obtained 

means of the aggregated and amorphous phase has only a value of about 25-50  meV while 

experiments show higher values of 0.2-0.3 eV89,90. This is probably explained by the too simple 

modeling of the aggregated morphologies. As outlined before, it was tried to model the 

diīerence between aggregated and amorphous phase by enhancing the orbital parameter ݈௭ 

in ߨ −stacking direcƟon to compensate the eīect of closer packing in the aggregated phase. 

However, this has also an eīect on the transfer integral of the amorphous phase, which is not 

desired. The shiŌ of the means would be higher if the transfer integral would be solely 

enhanced in the aggregated phase. AddiƟonally, including posiƟonal disorder in the 

amorphous phase could also enhance the shiŌ, what can also be seen from the Annealed 

morphologies, from which Annealed 45meV/80meV has some posiƟonal disorder and 

Annealed 25meV/80meV not, while former has a larger shiŌ than laƩer.

The MakeSnake 80meV/100meV has expectedly the lowest localizaƟon length compared to 

the other morphologies. The peak localizaƟon lengths are similar to the ones of the sc 80meV 

morphology, as one would expect from the aggregated phase. However, the width matches 

more the sc 100 meV distribuƟon which comes from the amorphous phase. 

From the almost idenƟcal DOS of MakeSnake 45meV/80meV and Annealed 45meV/80meV 

one might expect a very similar localizaƟon length distribuƟon. However, the peak localizaƟon 

lengths of MakeSnake 45meV/80meV exceed the ones of Annealed 45meV/80meV 

signiĮcantly. This has three reasons: First, MakeSnake contains chain informaƟon, for which an 

intra-chain factor for the transfer integrals was introduced, enhancing the electronic coupling 

and therefore the localizaƟon length. Secondly, in Annealed 45meV/80meV, an addiƟonal 

source of (spaƟal) disorder in the amorphous phase was introduced, which will have a negaƟve 

eīect on the localizaƟon length. And lastly, the beƩer interconnecƟvity of the smaller 

aggregates in the MakeSnake morphologies could enhance the localizaƟon length further 

compared to the Annealed one.
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However, the localizaƟon lengths of the Annealed 25meV/80meV morphology are sƟll 

expectedly the highest, since the aggregated phase has a very small disorder in the order of 

the thermal energy and no posiƟonal disorder in the amorphous phase is present. 

With all these morphologies then kMC simulaƟons as described in the theoreƟcal background 

and methods secƟon were performed for diīerent electric Įelds applied in the z-direcƟon. The 

aƩempt-to-hop frequency for all morphologies was set to 0݂ = 1014 1௦ and the temperature 

was room temperature ܶ =  All Įeld simulaƟons were performed at a low free charge .ܭ300

carrier concentraƟon of ௙ܿ = 0.5%. The results of the Įeld-dependence of the conducƟvity 

are shown in Figure 23.



87

Figure 23 – LeŌ: Field dependence of conducƟvity for diīerent morphologies. Right: Field dependence 

of conducƟvity normalized to the value at lowest Įeld. 

The order of the morphologies in absolute value of the conducƟvity is easy to explain. The 

higher the (eīecƟve) disorder, the lower the conducƟvity. Also, the lower the mean localizaƟon 

length, the lower the conducƟvity. LaƩer explains why Annealed 45meV/80meV has a lower 

conducƟvity than MakeSnake 45meV/80meV albeit having almost the same DOS, since 

MakeSnake 45meV/80meV has the higher localizaƟon length due to the reasons explained 

above 

However, looking at the Įeld dependence, i.e. the slope of the conducƟvity curves, or by which 

factor the conducƟvity gets enhanced at the highest Įeld compared to the lowest Įeld 

simulated, the situaƟon gets more complicated in detail. A coarse rule seen from the right plot 

in Figure 23 is basically the opposite trend of the order of the absolute values of conducƟviƟes. 

This means, the higher the eīecƟve disorder, the stronger the Įeld dependence. However, this 

rule alone would not explain why MakeSnake 80meV/100meV morphology has basically the 

same Įeld dependence as sc 100meV and why MakeSnake 45meV/80meV has a stronger Įeld 

dependence than Annealed 45meV/80meV. This could be explained by the concept of the 

eīecƟve temperature. Here, a higher localizaƟon length leads to a higher Įeld dependence. 

MakeSnake 80meV/100meV has a mean localizaƟon length of 0.56 nm, while sc 100 meV has 

a mean localizaƟon length of 0.43 nm. This diīerence could already suĸce to enhance the 

Įeld dependence of MakeSnake 80meV/100meV to compensate the eīect of the lower Įeld 
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dependence that the aggregates with lower disorder would imply. Hereby should also be noted 

that MakeSnake 80meV/100meV has even a higher mean localizaƟon length than sc 80meV. 

This is probably, again, due to the facts that MakeSnake has an intrachain enhancement factor 

not present in the sc morphologies and that the MakeSnake morphology has interconnected 

aggregates. The DOS Įt to the DOS of MakeSnake 80meV/100meV also gives a gaussian part 

aƩributed to the aggregate of only about 50 meV disorder, enhancing the eīect of 

delocalizaƟon in the aggregates compared to the sc 80meV case. The higher mean localizaƟon 

length of the MakeSnake 45meV/80meV (0.86 nm) compared to the Annealed 45meV/80meV 

(0.61 nm) could then also be the reason why former has a higher Įeld dependence than the 

laƩer, despite the very similar DOS. 

From here, one could ask the quesƟon, what parameter has the larger inŇuence on the Įeld 

dependence. The general trend derived from the Įrst rule about the disorder seems to suggest 

here that the disorder has a higher impact on the Įeld dependence than slight changes in the 

localizaƟon length. 

This result should now be compared to the predicƟons of the classical eīecƟve temperature 

models. For example, Baranovskii used the temperature dependence from the GDM model

𝜎(ܶ) ∝ exp (−ܿ (𝜎஽ைௌ݇஻ܶ)2) (154)

together with the eīecƟve temperature ܶ ௘௙௙ instead of temperature ܶ , in the following named 

Bässler’s model. To be numerically consistent, also the actual temperature dependencies of 

each morphology are simulated and ĮƩed to the expression ln (𝜎/𝜎0) ∝ −1/ܶఉ (Figure 25), 

followed by subsƟtuƟng the temperature by the eīecƟve temperature. These two models will 

now be ĮƩed to the numerically obtained Įeld dependencies. From these Įts, the localizaƟon 

length will be extracted as Įt parameter. Also, the localizaƟon length from the direct Įt of the 

eīecƟve temperature models to the eīecƟve temperatures from the simulaƟons obtained 

from the DOOS are extracted and compared. The visual results are shown in Figure 24 together 

with the obtained Įt parameters in Tables 3 and 4.
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Figure 24 – LeŌ: Fits to the Įeld dependence of the diīerent morphologies with the two diīerent 

conducƟvity models. Fits were performed with eīecƟve temperature model 2. Right: Fits to the 

eīecƟve temperature obtained from Įƫng the DOOS using both eīecƟve temperature models.
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Table 3 – LocalizaƟon lengths from Įts of 𝜎 ( ௘ܶ௙௙(ܨ)) to the simulated data for diīerent morphologies 

(Figure 24, leŌ). The last column gives the mean localizaƟon length from the (ܧ)ߙ distribuƟons 

obtained from the Ɵght binding calculaƟons for comparison. ௘ܶ௙௙(2)  is the eīecƟve temperature model 

two respecƟvely.

ࢻ (૛)ࢌࢌࢋࢀ)࣌ ) ࢔ࢇࢋ࢓ࢻ
𝜎(ܶ)
𝜎(ܶ)
𝜎(ܶ)
𝜎(ܶ)
𝜎(ܶ)
𝜎(ܶ)

Table 4 – LocalizaƟon length from Įts of the eīecƟve temperature models 1 and 2 onto the eīecƟve 

temperatures obtained directly from the simulaƟons (Figure 24, right). Mean localizaƟon length, 

localizaƟon length at transport energy and Fermi level from the localizaƟon length distribuƟons from 

Ɵght binding calculaƟons for comparison in the last columns. Errors for Įƫng approximately Δߙ ≈0.05 ݊݉.
ࢻ (૚)ࢌࢌࢋࢀ ࢻ (૛)ࢌࢌࢋࢀ ࢔ࢇࢋ࢓ࢻ (࢚࢘ࡱ)ࢻ (ࡲࡱ)ࢻ
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From Figure 24 (right) one sees decent Įts to the eīecƟve temperature data despite the 

parƟally noisy ௘ܶ௙௙ data from the simulaƟons, which come from Įƫng the temperature and 

the Fermi energy in the DOOS at the same Ɵme, both being slightly correlated via the 

temperature dependence of the Fermi energy. The localizaƟon lengths extracted from the Įts 

of the models to the data are shown and compared to the mean localizaƟon length in Table 4. 

The values of the second eīecƟve temperature model are more consistent in their trend and 

closer to the input value than the Įrst model. Thereby, focusing on the second model, the 

localizaƟon lengths follow approximately the same trend as the mean localizaƟon lengths from 

the input. The high value of ߙ of MakeSnake 80meV/100meV in comparison to the other 

morphologies for example can probably been explained by a Įƫng error overesƟmaƟng the 

eīecƟve temperature data point at highest Įeld, which also causes a dip down of the Fermi 

energy (Figure 27). Considering Įƫng errors, the trend is consistent. However, with decreasing 

eīecƟve energeƟc disorder, the relaƟve deviaƟons to the mean localizaƟon length increase 

signiĮcantly and cannot be explained by just the Įƫng error. One possible reason is that not 

the mean localizaƟon length is the eīecƟve localizaƟon length (if such one is even deĮned in 

this framework) but something like the mean localizaƟon length between Fermi energy and 

transport energy. Another possible reason is that the numerical ߛ −factor in the formula for 

the eīecƟve temperature is taken the same for every morphology (ߛ = 0.63), but might 

actually be diīerent for each morphology. It is however not possible to elaborate this further 

with these simulaƟons.

In Figure 24 (leŌ) one can also see good Įts of both conducƟvity models. Both Įts were 

performed with eīecƟve temperature model 2. The reason for the good Įts for both models 

is the small eīecƟve temperature range of maximum 100 K and the similar funcƟonal form of 

the Įt-funcƟons ln ( ఓఓ0) ∝ −1/ܶఉ. DeviaƟons can only be beƩer disƟnguished for a larger 

eīecƟve temperature range. 

Nevertheless, the extracted localizaƟon lengths from both Įts to the 𝜎(ܨ) data give a 

consistent trend. Expectedly, larger Įeld dependencies of the conducƟvity give rise to larger 

ĮƩed localizaƟon lengths, contrary to the actual localizaƟon lengths from the kMC input 

obtained from the Ɵght binding calculaƟons, which actually show the opposite trend. This is 

ulƟmately because by construcƟon the models 𝜎 ( ௘ܶ௙௙(ܨ)) for the Įeld dependence of the 

mobility or conducƟvity aƩribute the strength of the Įeld dependence solely to the localizaƟon 
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length. This is in strong contrast to the simulaƟon results, which suggest that the disorder 

and/or other factors like the morphology play a dominant role for the Įeld dependence. 

Therefore, all eīects of the energeƟc disorder, morphology and other possible contribuƟons 

to the Įeld dependence get reŇected in the localizaƟon length. In Bässler’s model, the 

energeƟc disorder is considered as 𝜎஽ைௌ/݇஻ ௘ܶ௙௙ in the exponenƟal funcƟon. The derivaƟve of 

Equ. (154) with respect to the Įeld, reŇecƟng the Įeld dependence gives a term 𝜎஽ைௌ2 exp(−ܿ ( ఙವೀೄ௞ಳ்೐೑೑)2), from which one would expect a decreasing Įeld dependence with 

higher disorder. However, the kMC simulaƟons performed here, and also in literature like in 

Ref.91 implicitly show higher Įeld dependence with increasing disorder. It seems that the 

temperature dependence models derived for vanishing Įeld are not applicable directly just by 

subsƟtuƟng the temperature by the eīecƟve temperature, albeit always Įnding Įt parameters 

that are able to describe the data. Also, the empirical model of Pasveer predicts a higher Įeld 

dependence for higher disorder84. One can therefore conclude that the role of disorder and 

factors like morphology in the eīecƟve temperature model of the Įeld dependence of 

conducƟvity is very much underesƟmated and not properly included.

One can also abstract the idea of the Įeld dependence being determined by a Įeld-dependent 

eīecƟve temperature away from certain funcƟonal forms through a determinaƟon of the 

eīecƟve temperature by the following ‘experimental’ procedure87. At a certain temperature 

0ܶ the Įeld dependence of the conducƟvity is measured (or here simulated). Then the ohmic 

conducƟvity is measured/simulated over a wide temperature range containing 0ܶ. The 

eīecƟve temperature can then be determined by 𝜎(ܨ, 0ܶ) = 𝜎 ܨ) ≈ 0, ௘ܶ௙௙(ܨ)). If the Įeld 

dependence is solely determined by the eīecƟve temperature in a funcƟonal form like the 

two eīecƟve temperature models, the localizaƟon length obtained from the corresponding Įt 

of the eīecƟve temperature should give the same or similar localizaƟon length as the input 

localizaƟon lengths. The results for the temperature dependence of the ohmic conducƟviƟes 

are shown in Figure 25. 
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Figure 25 – Temperature dependence of diīerent morphologies. ConducƟvity is logarithmic and 

ploƩed over ܶ−2. Lines are Įts to ln (𝜎/𝜎0) ∝ −1/ܶఉ. Fit parameters are given in SI.

The temperature range of the simulaƟons was from ܶ = ܶ or ܭ to 390 ܭ 290 =  The temperature dependence was ploƩed as log(𝜎) over ܶ−2. There are deviaƟons .ܭ to 400 ܭ 300

from a straight line for most morphologies, showing therefore deviaƟons from the log(𝜎) ∝−ܶ−2 law derived for lower temperatures like in Bässler’s model. Now for each Įeld, the 

eīecƟve temperature is extracted as described. The results are shown in Figure 26 and Table 

5.
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Figure 26 – Extracted eīecƟve temperature from the experimental procedure and from the DOOS from 

the simulaƟons for diīerent morphologies. All datasets are ĮƩed with eīecƟve temperature model 2. 
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Table 5 – Comparison of localizaƟon lengths extracted from a Įt to the Įeld dependence of the 

conducƟvity, a direct Įt to eīecƟve temperature of the simulaƟon output and from the ‘experimental’ 

procedure (Fig. 26). The mean localizaƟon length of the input distribuƟon is also given for comparison.ࢌࢌࢋࢀ)࢚࣌࢏ࢌࢻ(૛) ) ࢚࢏ࢌࢻ (૛)ࢌࢌࢋࢀ ࢚࢏ࢌࢻ ,ࡲ)࣌(૛)ࢌࢌࢋࢀ (ࢀ = ࡲ)࣌ ≈ ૙, (ࢌࢌࢋࢀ ࢔ࢇࢋ࢓ࢻ

While all values for the localizaƟon length in the case of sc 100meV and sc 80meV are similar 

for each approach, the situaƟon is diīerent for the other morphologies. Just like the Įt with 

Bässler’s model or the numerically ĮƩed temperature model, the experimental approach 

predicts a decreasing localizaƟon length with decreasing Įeld dependence, while the mean 

localizaƟon lengths from the inputs double from Įrst to last morphology in Table 5. However, 

compared to Bässler’s model (cf. Table 3), the ĮƩed localizaƟon length of the experimental 

approach is signiĮcantly higher, while the values from the numerically ĮƩed temperature 

model (1st column in Table 5) remain close to the experimental approach (3rd column). This 

Įrst shows that the funcƟonal dependence from the eīecƟve temperature here is diīerent 

from Bässler’s model, which is supported by the deviaƟons from a straight line in the plot of 

the temperature dependence of the conducƟvity. Secondly, even with the numerically correct 

temperature dependence being comparable to the experimental approach, a signiĮcant 

contribuƟon to the Įeld dependence besides the heaƟng of the charge carrier distribuƟon is 

missed. 

From Figure 26 it is also evident that while for the homogeneous systems sc 100meV and sc 

80meV the eīecƟve temperatures obtained experimentally and by Įƫng the DOOS from the 

simulaƟon are very close, the deviaƟons get signiĮcantly larger for increasing aggregate size. 

For these inhomogeneous, aggregated systems, the experimental approach produces 

systemaƟcally smaller eīecƟve temperatures than the Įt to the DOOS from the simulaƟon. It 

therefore predicts a smaller localizaƟon length than the eīecƟve temperatures obtained from 

the DOOS. Inversely, if one would take the actual heaƟng of the charge carrier distribuƟon 

from the eīecƟve temperature obtained from the Įt of the DOOS and reverse engineer the 
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Įeld dependence via 𝜎(ܨ, 0ܶ) = 𝜎 ( ாܶ௙௙(ܨ, 0ܶ)), one would obtain a signiĮcantly stronger 

Įeld dependence. Also, the strength of the Įeld dependence cannot solely be explained by 

the morphology, since otherwise the eīecƟve temperature curve of e.g. Annealed 25/80 

would lie above the curve of Annealed 45/80, which is not the case. Therefore, the 

inhomogeneity and also the decreasing disorder counteract the heaƟng eīect. This once more 

indicates that indeed the eīecƟve temperature alone cannot be the determining quanƟty for 

the Įeld dependence of organic semiconductors. At least both disorder and morphology 

signiĮcantly impact the Įeld dependence.

Another contribuƟon to the Įeld dependence might also lie in the (posiƟon of the) transport 

energy, which however is also connected to the disorder and the morphology. 

This can be seen from the MoƩ-Martens model, where the (zero Įeld) conducƟvity is 

determined as 𝜎 ∝ exp (− ா೟ೝ−ாಷ௞ಳ் ). The transport energy and Fermi energy are shown in 

Figure 27.

Figure 27 – Transport energies (upper curves) and Fermi energies (lower curves) for diīerent 

morphologies.
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The Fermi energy is less sensiƟve to the Įeld (Figure 27) and the observed deviaƟons form a 

constant value are more due to Įƫng errors in the DOOS Įƫng procedure. One can therefore 

approximately treat it as constant with Įeld. The transport energy however is Įeld dependent, 

which can be explained by the heaƟng of the charge carriers through the Įeld. This eīect is 

more pronounced with higher disorder. From that alone, one would expect a decreasing 

conducƟvity, but the heaƟng of charge carriers through the Įeld counteracts that. The net 

eīect could therefore be small, as can be seen in the Įeld dependencies of the morphologies 

with higher disorder, which are enhanced and not reduced. However, with increasing transport 

energy, thus moving towards the center of the DOS, the charge carriers get more delocalized 

since the localizaƟon length distribuƟon gets more delocalized towards the center. This would 

then lead to an enhanced Įeld dependence.

Lastly, there are addiƟonal points to menƟon concerning the morphology or geometry of the 

OSC itself. First, most theories, just like the eīecƟve temperature model together with 

Bässler’s model assume Įeld-independent conducƟon/percolaƟon paths. This is however not 

true. With increasing electric Įeld, previously hard hops can be acƟvated and produce 

shortcuts in the percolaƟon route of charge carriers. This purely geometric eīect leads to an 

increasing Įeld dependence and is strongly morphology dependent. Also, most theories work 

in homogeneous or eīecƟve medium approaches to be able to treat the generally complicated 

problem analyƟcally. This however can underesƟmate the morphology eīects drasƟcally, 

especially in highly energeƟcally and spaƟally correlated systems, as it is the case here through 

the modelling of the OSC with a Ɵght binding model. As last point to menƟon concerning the 

eīecƟve temperature approach is that intuiƟvely, the Įeld dependence cannot be solely 

explained by an isotropic eīect which the Įeld induced heaƟng of charge carriers is, since an 

electric Įeld is per deĮniƟon anisotropic. One should therefore usually not expect, that an 

anisotropic eīect can be solely explained by an isotropic modiĮcaƟon.
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Field Dependence of the conducƟvity from Molecular Dynamics Morphologies

In this secƟon the same analysis is performed for the Molecular Dynamics morphologies of 

P3HT with chain lengths of 4, 8, 16 and 32 (called 4mer, 8mer, 16mer and 32mer) provided by 

P.S. Floris. Details on the MD simulaƟons are given in the Theory and Methods secƟon. 

For the Ɵght binding model, the transfer integral scaling factor was taken to be 0ߥ =1.5 × 1014 1௦ . Again, no ions are considered, so ܸ = 0. The diagonal disorder is throughout 

taken to be 75 ܸ݉݁. The criƟcal angle between monomers within the same chain for a 

conjugaƟon break was taken as 40°. The orbital parameters of the monomer sites are (݈௫, ݈௬, ݈௭) = (1.2,1.2,0.8) ⋅ 0.1 ݊݉, i.e. ŇaƩened spheres. For the diīerent oligomers, two 

cases of intra-chain enhancement factors were considered, one moderate ௜݂௖ℎ = 1.3 and one 

larger ௜݂௖ℎ = 10. Figure 28 shows a fracƟon of the chains of each MD morphology. 

Figure 28 – VisualizaƟon of fracƟons of diīerent P3HT oligomer morphologies generated by Molecular 

Dynamics.
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The 4mer morphology consists out of homogeneously distributed chains, which are mostly 

very straight because of the rigidity of the backbone and the small chain length. The 8mer 

morphology is similar, the chain length is sƟll short enough to have mostly straight chains due 

to the rigidity. The situaƟon starts to change in the 16mer case, where the chains are long 

enough to bend creaƟng U or S shaped chains mostly. In the 32mer case the rigidity is not 

suĸcient anymore for the length of chains and steric eīects cause signiĮcant spaƟal disorder 

and clumping of chains with more conjugaƟon breaks.

The 2D projecƟons of slices of the COM laƫce for each oligomer morphology in the case of 

smaller intra-chain coupling are shown in Figure 29. 

Figure 29 – ProjecƟons of slices of the COM laƫces for diīerent oligomers of P3HT for ௜݂௖ℎ = 1.3.
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The COM laƫces basically show the same behavior as seen and described for the original MD 

morphologies, namely homogeneously distributed and randomly orientated chains. 

The same holds for the high intra-chain coupling in Figure 30, except for the larger 

delocalizaƟon along the chains. It’s noted here, that for the case of ௜݂௖ℎ = 10 the 32mer 

morphology was not considered since some unresolved error in the data occurred.

Figure 30 – ProjecƟons of slices of the COM laƫces for diīerent oligomers of P3HT for ௜݂௖ℎ = 10.

Performing the Ɵght binding diagonalizaƟon, the results of the therefrom obtained DOS and 

localizaƟon length distribuƟons are shown in Figure 31 for ௜݂௖ℎ = 1.3 and ௜݂௖ℎ = 10 in Figure 

32. For the ௜݂௖ℎ = 1.3 case, the DOS give gaussian distribuƟons, all with a disorder of 𝜎஽ைௌ =80 ± 3 ܸ݉݁. It should be noted here, again, that for the 32mer conĮguraƟon some numerical 

artefacts occurred producing far outliers in energy. Therefore, these energies got assigned a 
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cutoī value of ܧ௠௜௡/௠௔௫ = ∓15݇஻ܶ. The localizaƟon length distribuƟons all look very similar. 

The mean localizaƟons of all conĮguraƟons are shown in Table 6.

Figure 31 – LeŌ column: DOS of the diīerent oligomer morphologies for ௜݂௖ℎ = 1.3. The orange curves 

are single gaussian Įts. Right column: Corresponding localizaƟon length distribuƟons with the mean 

localizaƟon curve in black.
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Table 6 – Mean localizaƟon lengths of the oligomer conĮguraƟons for ௜݂௖ℎ = 1.3.

ࡿࡻࡰ࣌࢔ࢇࢋ࢓ࢻ
The relaƟvely small intra-chain enhancement factor of ௜݂௖ℎ = 1.3 causes only a slight increase 

in localizaƟon length with increasing chain length. Eventually, the spaƟal disorder especially in 

the 32mer case causes a higher localizaƟon than for the other oligomers. The situaƟon changes 

a liƩle bit for the higher intra-chain coupling enhancement factor of ௜݂௖ℎ = 10 (Figure 32).

Figure 32 – LeŌ column: DOS of the diīerent oligomer morphologies for ௜݂௖ℎ = 10. The orange curves 

are single gaussian Įts. Right column: Corresponding localizaƟon length distribuƟons with the mean 

localizaƟon curve in black.
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Table 7 – Disorder and mean localizaƟon lengths of the oligomer conĮguraƟon with ௜݂௖ℎ = 10.

࢔ࢇࢋ࢓ࢻࡿࡻࡰ࣌
For higher intra-chain coupling, the energeƟc disorder is expectedly enhanced and a small 

high-energy tail forms, which however is not very relevant for charge transport. The disorders 

increase a liƩle bit for larger chain lengths. At the same Ɵme, the mean localizaƟon length is 

enhanced for longer chain lengths, explained by the higher chain length over which the 

wavefuncƟon can delocalize with higher intrachain coupling, see Table 7. The high intrachain 

coupling also explains the higher delocalizaƟon of lower energy states compared to the smaller 

intrachain coupling case. 

In the following, the Įeld dependence results are presented. All simulaƟons were performed 

at a charge carrier density of ௙ܿ = 0.5%. Figure 33 shows the results for the ௜݂௖ℎ = 1.3 case.

Figure 33 – LeŌ: ConducƟvity Įeld dependence of diīerent oligomer morphologies. Right: Normalized 

conducƟvity Įeld dependence. 

While in this case, the DOS have almost the same disorder, the localizaƟon length increases 

slightly unƟl a chain length of 16mer. Also, for longer chains there are for conducƟon more 

eĸcient intra-chain hops as long as the chains are not too deformed. From that, it is evident 

that also the conducƟvity gets larger unƟl the 16mer. The smaller localizaƟon length and the 

spaƟal disorder of the 32mer case however leads to a decrease in conducƟvity. This is also due 
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to the arƟĮcially low traps that are induced through the energeƟc cutoī as menƟoned above. 

For the Įeld dependence one can see that it is quite similar, but increases slightly with chain 

length. This has again two causes. On the one hand, slightly more delocalizaƟon leads to 

slightly stronger Įeld dependence with increasing chain length. In the 32mer case, there is 

more spaƟal disorder compared to the other cases, which enhances the Įeld dependence in 

this case, also probably together with the arƟĮcial deep traps. This addiƟonal disorder 

overcompensates the eīect of the slightly reduced localizaƟon length on the Įeld 

dependence. This again shows that disorder, both energeƟc and spaƟal, has a higher eīect on 

the Įeld dependence than slight changes in localizaƟon length.

Figure 34 shows the Įeld dependence for the ௜݂௖ℎ = 10 case. 

Figure 34 – LeŌ: ConducƟvity Įeld dependence of diīerent oligomer morphologies for the ௜݂௖ℎ =10 case. Right: Normalized conducƟvity Įeld dependence. 

For this case, the situaƟon seems unexpected. While the total conducƟvity is sƟll expectedly 

increasing due to the increasing delocalizaƟon length with chain length, the Įeld dependence 

is much diīerent. From just disorder and localizaƟon length one would, from the two main 

rules considered so far, expect the 16mer case to have the highest Įeld dependence; it 

however has the weakest, or basically the same as the 4mer case. I aƩribute this to two 

possible reasons. One is that the transport energy (see Figure 35) of the 16mer case for ௜݂௖ℎ =10 is deeper and more Įeld dependent than for the other two cases. This behavior is absent 

in the case of ௜݂௖ℎ = 1.3, where the diīerences of the diīerent oligomers are negligible and 
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therefore have no inŇuence. As discussed in the previous secƟon, this has a negaƟve eīect on 

the Įeld dependence, which here might not be fully compensated by heaƟng to the eīecƟve 

temperature. It should be noted that the apparent Įeld dependence of the Fermi energy in 

this case is, as before, an artefact of the Įƫng procedure, since the calculated Fermi energies 

are deeper than the lowest states of the DOS due to the high disorder. 

Another possible reason might be reverse Įeld hopping92,93. In the 16mer case, the chains are 

not as sƟī anymore and are bend. The high intra-chain coupling can make hopping in the 

electric Įeld direcƟon less eĸcient in the chain region where the chain bends back against the 

Įeld, which can have a negaƟve eīect on the Įeld dependence. 

Figure 35 – LeŌ: Transport energy (upper curves) and Fermi energy (lower curves) for diīerent oligomer 

morphologies in the case of ݂ ௜௖ℎ = 1.3. Right: Transport energy (upper curves) and Fermi energy (lower 

curves) for diīerent oligomer morphologies in the case of ௜݂௖ℎ = 10. 

In the following Figure 36 and Tables 8 and 9, the Įeld dependencies are ĮƩed to the Įeld 

dependence models from eīecƟve temperature (leŌ) and the eīecƟve temperatures from the 

DOOS Įts from the simulaƟon are ĮƩed to the two eīecƟve temperature models (right), as 

done in the past secƟon. 
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Figure 36 – LeŌ column: Fits to the Įeld dependence models using eīecƟve temperature model 2 on 

the diīerent oligomer morphologies for ௜݂௖ℎ = 1.3. Right column: Fits to the eīecƟve temperature 

from the DOOS Įts in the simulaƟon with both eīecƟve temperature models. 
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Table 8 – LocalizaƟon lengths from Įts of 𝜎 ( ௘ܶ௙௙(ܨ)) to the simulated data for diīerent oligomer 

morphologies ( ௜݂௖ℎ = 1.3) (Figure 36, leŌ). The last column gives the mean localizaƟon length from 

the (ܧ)ߙ distribuƟons obtained from the Ɵght binding calculaƟons for comparison. ܶ ௘௙௙(2)  is the eīecƟve 

temperature model 2.

ࢻ (૛)ࢌࢌࢋࢀ)࣌ ) ࢔ࢇࢋ࢓ࢻ
𝜎(ܶ)
𝜎(ܶ)
𝜎(ܶ)
𝜎(ܶ)

Table 9 – LocalizaƟon length from Įts of the eīecƟve temperature models 1 and 2 onto the eīecƟve 

temperatures obtained from the simulaƟons (Figure 36, right). Mean localizaƟon length, localizaƟon 

length at transport energy and Fermi level from the localizaƟon length distribuƟons from Tight Binding 

calculaƟons for comparison in the last columns. Errors for Įƫng approximately Δߙ ≈ 0.05 ݊݉.
ࢻ (૚)ࢌࢌࢋࢀ ࢻ (૛)ࢌࢌࢋࢀ ࢔ࢇࢋ࢓ࢻ (࢚࢘ࡱ)ࢻ (ࡲࡱ)ࢻ

Considering the errors in the eīecƟve temperatures from Įƫng the DOOS in the simulaƟon, 

the values of the localizaƟon length from the Įƫng with model 2 agree reasonably well with 

the mean localizaƟon length or equally the localizaƟon length at the transport energy (Table 

9). Only the 32mer has a higher deviaƟon, which might be explained by higher spaƟal disorder 

and inhomogeneity, as discussed before. As encountered before, the Įrst eīecƟve 

temperature model gives lower values for the localizaƟon length. The localizaƟon length 

obtained by Įƫng Bässler’s model however gives poor results with more spread (Table 8). The 



108

results again correlate with a varying ܿ parameter. Higher ܿ Įƫng values lead to a lower ĮƩed 

localizaƟon length. The model with the numerical Įts to the temperature dependence (see 

Figure 38 for the simulated temperature dependencies) however give beƩer results with 

values closer to the input localizaƟon lengths.

The Įƫng results for the ௜݂௖ℎ = 10 case are shown in Figure 37 and Tables 10 and 11.

Figure 37 – LeŌ column: Fits to the Įeld dependence models using eīecƟve temperature model 2 on 

the diīerent oligomer morphologies for ݂ ௜௖ℎ = 10. Right column: Fits to the eīecƟve temperature from 

the DOOS Įts in the simulaƟon with both eīecƟve temperature models. 
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Table 10 – LocalizaƟon lengths from Įts of 𝜎 ( ௘ܶ௙௙(ܨ)) to the simulated data for diīerent oligomer 

morphologies ( ௜݂௖ℎ = 10) (Figure 37, leŌ). The last column gives the mean localizaƟon length from the (ܧ)ߙ distribuƟons obtained from the Ɵght binding calculaƟons for comparison. ௘ܶ௙௙(2)  is the eīecƟve 

temperature model 2.

ࢻ (૛)ࢌࢌࢋࢀ)࣌ ) ࢔ࢇࢋ࢓ࢻ
𝜎(ܶ)
𝜎(ܶ)
𝜎(ܶ)

Table 11 – LocalizaƟon length from Įts of the eīecƟve temperature models 1 and 2 onto the eīecƟve 

temperatures obtained from the simulaƟons (Figure 37, right). Mean localizaƟon length, localizaƟon 

length at transport energy from the localizaƟon length distribuƟons from Ɵght binding calculaƟons for 

comparison in the last columns. Errors for Įƫng approximately Δߙ ≈ 0.05 ݊݉.
ࢻ (૚)ࢌࢌࢋࢀ ࢻ (૛)ࢌࢌࢋࢀ ࢔ࢇࢋ࢓ࢻ (࢚࢘ࡱ)ࢻ

Again, the Įt parameters obtained from Bässler’s model are very poor. On the one hand, the 

localizaƟon length is signiĮcantly overesƟmated. Secondly, also the ܿ parameter is one order 

of magnitude lower than usually considered values and what has been obtained for all other 

morphologies considered here. Therefore, this model is not suitable for these morphologies. 

In this case however, also the values obtained for ߙ with the model using the numerical Įt to 

the temperature dependence (see Figure 38 for the simulated temperature dependencies for 

௜݂௖ℎ = 10) are overesƟmated compared to the input values. The high intra-chain coupling 

seems to have a signiĮcant impact on the details of the Įeld dependence. On the other hand, 

the Įt values of the localizaƟon length from Įƫng eīecƟve temperature model 2 to the 

simulaƟon data of the eīecƟve temperature match perfectly with the mean localizaƟon length 
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of the distribuƟons. Next, the results from the experimental approach are compared in the 

following Figures 39 and 40 and Tables 12 and 13.

Figure 38 – Temperature dependence of diīerent oligomers for ௜݂௖ℎ = 1.3 and  ௜݂௖ℎ = 10.
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Figure 39 – Extracted eīecƟve temperature from the experimental procedure and from the DOOS from 

the simulaƟons for diīerent oligomers in the case ௜݂௖ℎ = 1.3. All datasets are ĮƩed with eīecƟve 

temperature model 2, respecƟvely. 

Table 12 – Comparison localizaƟon lengths extracted from Įt to Įeld dependence, by direct Įt to 

eīecƟve temperature of the simulaƟon output and the experimental procedure in the case ௜݂௖ℎ = 1.3 

(Figure 39). The mean localizaƟon length of the input distribuƟon is also given for comparison.ࢌࢌࢋࢀ)࢚࣌࢏ࢌࢻ(૛) ) ࢚࢏ࢌࢻ (૛)ࢌࢌࢋࢀ ࢚࢏ࢌࢻ ,ࡲ)࣌(૛)ࢌࢌࢋࢀ (ࢀ = ࡲ)࣌ ≈ ૙, (ࢌࢌࢋࢀ ࢔ࢇࢋ࢓ࢻ
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Figure 40 – Extracted eīecƟve temperature from the experimental procedure and from the DOOS from 

the simulaƟons for diīerent oligomers in the case ௜݂௖ℎ = 10. All datasets are ĮƩed with eīecƟve 

temperature model two, respecƟvely.

Table 13 – Comparison localizaƟon lengths extracted from Įt to Įeld dependence, by direct Įt to 

eīecƟve temperature of the simulaƟon output and the experimental procedure in the case ௜݂௖ℎ = 10 

(Figure 40). The mean localizaƟon length of the input distribuƟon is also given for comparison.ࢌࢌࢋࢀ)࢚࣌࢏ࢌࢻ(૛) ) ࢚࢏ࢌࢻ (૛)ࢌࢌࢋࢀ ࢚࢏ࢌࢻ ,ࡲ)࣌(૛)ࢌࢌࢋࢀ (ࢀ = ࡲ)࣌ ≈ ૙, (ࢌࢌࢋࢀ ࢔ࢇࢋ࢓ࢻ

The discussion is started with the case of ௜݂௖ℎ = 1.3 (Figure 39 and Table 12). Both the 

localizaƟon lengths of the model with the numerically ĮƩed temperature dependence and the 

experimental approach give consistently the same result. However, compared to the eīecƟve 

temperature obtained from the DOOS Įƫng in the simulaƟon, the curves lie slightly lower. 

This might parƟally be due to higher errors from the DOOS Įt, but hints also towards 

underesƟmaƟon of other factors determining the Įeld dependence as discussed before. The 

polymerical structure can act as an inhomogeneity, leading to a slightly reduced Įeld 

dependence. However, the addiƟonal intra-chain coupling is small, therefore the eīect is 
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rather small, the curves and especially the points on which they are ĮƩed are close and the 

obtained values of the localizaƟon length are comparable to the input. This case is therefore 

more comparable to the homogeneous systems sc 80meV and sc 100 meV in the last secƟon. 

If now the inhomogeneity of the morphology is enhanced by considering a high intra-chain 

coupling, one should expect deviaƟons. Indeed, looking at the obtained results for ௜݂௖ℎ = 10 

in Figure 40 and Table 13, the diīerences are much more signiĮcant. While again, the model 

with numerically ĮƩed temperature dependence and the experimental approach give very 

similar results within the error bounds, the deviaƟons from the eīecƟve temperature obtained 

by Įƫng the DOOS is signiĮcant. InteresƟngly, in this case the obtained eīecƟve temperatures 

and therefore localizaƟon lengths are signiĮcantly higher than from the DOOS case and the 

input localizaƟon lengths, where laƩer two give the same localizaƟon length. The highest 

eīecƟve temperature curve is obtained for the 8mer case, consistently with the highest Įeld 

dependence. This behavior is opposite to the behavior that was obtained for the more 

aggregated morphologies from the last chapter, where the eīecƟve temperature curves and 

therefore localizaƟon lengths lie under the eīecƟve temperature curve obtained from DOOS. 

An explanaƟon might be the diīerent morphological structure here. While previously 

considered cases are homogeneous or aggregated, here the morphology might resemble more 

some kind of Įlamental structure where inter-chain hopping is minimized while intra-chain 

hopping is maximized. However, in this model the delocalizaƟon is treated isotropically, but 

enhanced delocalizaƟon along a chain would give more anisotropic localizaƟon lengths. This 

could lead to slight deviaƟons in this case, but probably not change the qualitaƟve result. Also, 

the considerably higher energeƟc disorder in this case could again play a decisive role. In any 

case, the Įeld dependence is here much more enhanced than expected by heaƟng of the 

charge carrier distribuƟon. 

To sum up this chapter, the eīecƟve temperature approach fails to explain the Įeld 

dependence of OSCs consistently with the given physical parameters like the localizaƟon 

length in simulaƟon. Both the obtained localizaƟon lengths from the Įt to the Įeld 

dependence of the conducƟvity and the experimental approach deviate from the input values.  

Especially systems containing any kind of inhomogeneity like aggregaƟon or strongly Įlamental 

morphologies can lead to signiĮcant discrepancies. In the former case, aggregaƟon leads to a 

reverse trend of localizaƟon lengths with respect to the input values, while Įlamental 

structures as obtained from the MD morphologies with high intra-chain coupling give higher 
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localizaƟon lengths than the input values. Hereby, the inŇuence of anisotropic delocalizaƟon 

for the Įlamental morphology should not change the qualitaƟve result, but can be studied in 

future work. AddiƟonally, the eīect of disorder seems not to be properly captured by the 

simple eīecƟve temperature approach and also other inŇuences on the Įeld dependence 

apart from the eīecƟve temperature cannot be excluded. Therefore, the validity of the usage 

of the eīecƟve temperature approach can a priori not be guaranteed for all systems and can 

possibly lead to misinterpretaƟons of obtained lengths scales in an experimental approach.

However, the apparent experimentally observed strong Įeld dependence for aggregated 

systems at already lower Įelds could not be reproduced with the current model and 

morphologies. It is possible that the considered morphologies do not capture important 

morphological details besides the aggregaƟon that lead to the observed behavior. First, the 

too low shiŌ of means of the aggregated and amorphous phase in the DOS should have a 

signiĮcant inŇuence on the charge transport. A more careful treatment of enhanced transfer 

integrals within the aggregated phase compared to the amorphous phase could parƟally 

resolve the issue. Secondly, the considered aggregated morphologies do not give rise to 

hopping between large delocalized aggregates.  Here, the aggregated morphologies consist 

either of more dense small aggregates or larger aggregates separated by an also larger 

amorphous phase. For inter aggregate hopping, the total rate of a delocalized state within an 

aggregate ݆ into other delocalized aggregates Γ௔௚௚,௝→௔௚௚ = ∑ ௔௚௚,௝→௔௚௚,௜௜∈௔௚௚݌  must be much 

larger than the total rate into the amorphous phase Γ௔௚௚,௝→௔௠ = ∑ ௔௚௚,௝→௔௠,௜௜∈௔௠݌ . Since the 

number of localized states in the amorphous phase is larger than the number of neighboring 

aggregates, and the aggregates wavefuncƟon quickly localizes within the amorphous phase 

with decay length ߦ, the amorphous phase should be relaƟvely thin in terms of the 

wavefuncƟon decay length, ߦ ≈  ௔௠ being the average distance betweenܮ ௔௠, withܮ

aggregates. This condiƟon is not fulĮlled for the considered aggregated morphologies. As 

argued in an upcoming paper (cf. list of publicaƟons, M. Shokrani et al.) to which this work 

contributes, hopping between delocalized aggregates could lead to an apparent eīecƟve 

localizaƟon length that scales the actual localizaƟon length up by a factor like ~݀/ܮ௔௠ with 

the aggregate size ݀. This eīecƟve behavior could lead to an enhanced Įeld dependence at 

lower Įelds. To prove this claim numerically however, addiƟonal simulaƟons are needed that 

include the discussed and possibly also other modiĮcaƟons.
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Charge Carrier ConcentraƟon Dependence

This chapter invesƟgates the conducƟvity and Seebeck coeĸcient up to high charge carrier 

concentraƟons for the same morphologies that were studied in the chapter about Įeld 

dependence. In a previous paper94 experimental results have shown a previously unexplained 

power law dependence of the conducƟvity of p-type doped OSC as funcƟon of charge density 

at high charge densiƟes, 𝜎 ∝ ݊௦ with ݏ ≥ 2. In a semi-analyƟcal MoƩ-Martens-like approach, 

it has been shown that this phenomenon can emerge due to parƟal delocalizaƟon of charge 

carriers. In a more rigorous approach, this result is recovered here with the simulaƟon 

approach that was developed in this thesis. 

All simulaƟon parameters are the same as in the Įeld dependence chapter but with a Įxed 

electric Įeld of ܨ = 107 ௏௠ and a charge carrier concentraƟon range of ௙ܿ = 0.1% − 40%. 

SimpliĮed Model Morphologies

The discussion starts with the simpliĮed model morphologies again. Figure 41 shows the 

charge carrier concentraƟon dependence of the mobility and conducƟvity of these 

morphologies.
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Figure 41 – LeŌ: Mobility as funcƟon of charge carrier concentraƟon of diīerent morphologies in a 

double-log plot. Right: The same for conducƟvity.

The order of the morphologies of highest to lowest conducƟvity was already discussed in the 

previous chapter. The conducƟvity and mobility get larger with less disorder and higher 

localizaƟon length. The usual approximate relaƟon 𝜎 ∝ ݊ for low charge carrier concentraƟons 

is recovered here, the mobility gets increasingly Ňat for the lowest charge carrier 

concentraƟons. It would get even more Ňat for lower charge carrier concentraƟons, however, 

due to the limited simulaƟon box size the lowest senseful charge carrier concentraƟon is 

around ௙ܿ = 0.1% to have enough simulated charges for reasonable staƟsƟcs. From Figure 41 

it can be seen that the slope of the mobility, and therefore the slope of the conducƟvity gets 

increasingly higher towards higher concentraƟons. This eīect is more pronounced for lowest 

conducƟviƟes, i.e. highest disorders. This leads to an approximate power law of 𝜎 ∝ ݊3 for the 

lowest conducƟng morphology sc 100meV and to a power law of 𝜎 ∝ ݊2 for the highest 

conducƟng morphology Annealed 25meV/80meV. To understand this behavior, one needs to 

look at the Fermi- and transport energies, which are shown in Figure 42 and look at the 

localizaƟon lengths at the corresponding posiƟons in energy in the localizaƟon length 

distribuƟons Figure 19 and 22.
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Figure 42 – Transport energies (upper curves) and Fermi energies (lower curves) as funcƟon of charge 

carrier concentraƟon for diīerent morphologies.

From the localizaƟon length distribuƟons, one sees the onset of delocalizaƟon of charge 

carriers around above −50 ܸ݉݁ to −75 ܸ݉݁. The Fermi energies start to enter this region at 

around ௙ܿ = 20%. For the highest disorders, the transport energy lies at the onset of 

delocalizaƟon. There, the localizaƟon length starts increasing already at around ௙ܿ = 1%. The 

conducƟvity in the semi-analyƟcal MoƩ-Martens model is proporƟonal to the criƟcal transfer 

rate between states at the Fermi energy and the transport energy

(௧௥ܧ)݌ = exp (௧௥ܧ)1−ߙ)∗ܴ−) + ((ிܧ)1−ߙ − ௧௥ܧ − ி݇஻ܶܧ ) (155)

While the dependence on the charge carrier concentraƟon usually mainly comes from the 

Fermi energy being approximately logarithmic in ௙ܿ in the classical MoƩ-Martens Model, in 

the model for energy dependent localizaƟon length one gets another contribuƟon to the 

charge carrier concentraƟon dependence from the change of eīecƟve localizaƟon length 2(1−ߙ(ܧ௧௥) + in ln(𝜎) ݏ 1. Therefore, the slope−((ிܧ)1−ߙ = ܣ + ݏ ⋅ ln( ௙ܿ) increases if either 

of both localizaƟon lengths ߙ(ܧ௧௥) or ߙ(ܧி) starts to increase with ௙ܿ. IntuiƟvely it is clear that 

a rising localizaƟon length leads to rising conducƟvity. Comparing the charge carrier 

concentraƟons where either of both localizaƟon lengths starts to increase to Figure 41, one 

sees that these are also approximately the charge carrier concentraƟons where the slope ݏ 
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starts to increase. Since for the highest disorders the localizaƟon length already starts to rise 

at the transport energy, the slope gets higher earlier. At higher ௙ܿ one then gets an addiƟonal 

contribuƟon from the rising localizaƟon length at the Fermi energy. Generally, the slope is 

dependent on the slope of the localizaƟon length distribuƟon and the slope of the transport- 

and Fermi energy, i.e. how fast in energy the localizaƟon length distribuƟon slope is climbed, 

and the availability of sites (DOS) at these energies. AddiƟonally, the slope gets lower for 

higher total localizaƟon lengths and conducƟviƟes, since there is less gain in conducƟvity to 

get from even higher delocalizaƟon, i.e. a saturaƟon eīect. On the other hand, lower 

conducƟviƟes have a higher slope due to a catch-up eīect. All this together explains the eīect 

of power law dependence of the conducƟvity with charge carrier concentraƟon of the diīerent 

morphologies observed in Figure 41. An explanatory picture of this eīect is schemaƟcally 

shown in Figure 43. 

However, in the simulaƟons the slope is a liƩle bit lower than calculated in the semi-analyƟcal 

case. The reason for that is the not well-deĮned localizaƟon length curve in this case. Instead 

of staƟng that every localizaƟon length at a given energy is equal as in the semi-analyƟcal 

model, here we have a scaƩered distribuƟon of localizaƟon lengths, such that there are also 

well-localized states at all energies, which lowers the slope. 
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Figure 43 – IllustraƟon of the reason for the change of slopes in the 𝜎(݊) double-log plots Figure 41. 

Panel (a) shows the dependence of the localizaƟon length vs. site energy, which, using the charge 

density dependence of the Fermi and transport energies in panel (b) can be converted to the 

conducƟvity vs density relaƟon in panel (d). Panel (c) illustrates the hopping process between two sites 

with diīerent energies and localizaƟon lengths, indicated by diīerent lengths of lines and the 

schemaƟc (colored) wave funcƟons. Red and blue color gradients indicate the change of Fermi level 

and transport energy with charge density n (red arrow). The indicated regions I-III in panel (d) divide 

the graph into the respecƟve regimes of linear, power-law, and saturaƟon behavior of the conducƟvity. 

Adapted from my paper94. Licensed under CC BY 4.0 (hƩps://creaƟvecommons.org/licenses/by/4.0/).

https://creativecommons.org/licenses/by/4.0/
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In the next secƟon, the Seebeck coeĸcient is studied. Figure 44 shows the dependence of the 

Seebeck coeĸcient on the charge carrier concentraƟon and on the conducƟvity.

Figure 44 – LeŌ: Seebeck coeĸcient as funcƟon of conducƟvity for diīerent morphologies. The doƩed 

lines are guides to the eye for the frequently observed inverse relaƟon between Seebeck coeĸcient 

and conducƟvity. Right: Seebeck coeĸcient as funcƟon of charge carrier concentraƟon for diīerent 

morphologies.

The slope ܾ of ln(ܵ/ܵ0) = ܾ ⋅ ln(𝜎) for lower charge carrier concentraƟons of all 

morphologies is similar, but with a diīerent value of −1/8 than the experimentally oŌen 

observed slope of −1/4. The reason for that is aƩributed to the form of the DOS, being a 

combinaƟon of gaussians. The slope of −1/4 is rather obtained from exponenƟal tails in the 

DOS95 that emerge due to doping in real systems. For the present simulaƟons, no doping is 

considered though. This phenomenon has been observed in literature before45. 

All curves seem to be only shiŌed to each other according to their conducƟvity. From the right 

graph of Figure 44, one can also see that despite the signiĮcant diīerences in conducƟvity of 

the diīerent morphologies, the Seebeck coeĸcient seems to be rather untouched. The 

diīerences between the curves of Seebeck coeĸcient ploƩed against the charge carrier 

concentraƟon are only between 50 ܭ/ܸߤ and 100 ܭ/ܸߤ. Previous studies like from 

Upadhyaya et al.96 conĮrm this result. For an increasing localizaƟon length, the Seebeck 

coeĸcient therefore seems nearly untouched. The same holds for introducƟon of posiƟonal 

disorder or spaƟal or energeƟcal correlaƟons in the system. The largest but sƟll limited eīect, 

as can also be observed here, is the disorder of the system, where low disorders decrease the 

Seebeck coeĸcient a liƩle bit. Thereby, the introducƟon of an energy dependent localizaƟon 
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lengths together with all the spaƟal and energeƟcal correlaƟons that are considered in the 

simulaƟons of this thesis are not expected to have a large inŇuence either. One reason for that 

is that the Fermi energy and transport energy are mostly inŇuenced by the DOS and therefore 

by the disorder. The Seebeck coeĸcient is proporƟonal to the diīerence of these energies. As 

can be seen in Figure 42, these energies move in accordance to each other for all morphologies 

such that their diīerence is largely constant, which means that the modulaƟon of conducƟvity 

for diīerent morphologies is to some extent decoupled from the corresponding Seebeck 

coeĸcient. This result links to the result of the Įrst chapter, where an anisotropic localizaƟon 

length achieved by an increased edge-on face-on raƟo could signiĮcantly increase the 

conducƟvity while leƫng the Seebeck coeĸcient considerably less aīected by the 

morphological modiĮcaƟon. 

In the following secƟon the corresponding results for the MD morphologies are presented.

Molecular Dynamics Morphologies

Figure 45 shows the charge carrier concentraƟon dependence of the conducƟvity for the case 

of ௜݂௖ℎ = 1.3. 

Figure 45 – LeŌ: Mobility as funcƟon of charge carrier concentraƟon of diīerent oligomer 

morphologies in a double-log plot. Right: The same for conducƟvity.
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The similarity of the curves for the diīerent chain lengths and the deviaƟon of 32mer was 

already addressed in the chapter about Įeld-dependence. It should be noted that here the 

data point of 32mer for ௙ܿ = 0.1% is a numerical artefact and therefore be neglected. Again, 

a linear dependency of the charge carrier concentraƟon at low concentraƟons is observed. At 

higher ௙ܿ , the curves are approximately quadraƟc with ௙ܿ. The ŇaƩer localizaƟon length 

distribuƟons compared to the simpliĮed model morphologies prevent an even higher slope in 

this case. The conducƟviƟes compare to experimentally observed values most realisƟcally for 

௙ܿ = 0.1% to lightly to medium doped P3HT, where values reach from 10−5 ܵ/ܿ݉ to 10−2 ܵ/ܿ݉ 97. However, albeit the morphologies are obtained from MD simulaƟons of P3HT, 

direct comparisons need to be treated with care, since the MD simulaƟons are done for 

prisƟne, monodisperse and low molecular weight of only around ܯ௪ =  i.e. small chain ,ܽܦ݇ 3

length rrP3HT. Compared to such low molecular weights, the obtained mobility is probably too 

high98 such that e.g. the aƩempt-to-hop frequency and/or the transfer integral scaling factor 

needs to be chosen lower. RealisƟc P3HT is polydisperse with higher molecular weight99, i.e. 

longer chain lengths and even the cleanest badges of rrP3HT contain a small fracƟon of regio-

randomness. Besides that, both doping and deposiƟon techniques have inŇuence on the 

morphology, which in turn can have a signiĮcant inŇuence on the conducƟvity. Also, the 

simulaƟon approach here has tunable parameters like the scaling factor of the transfer 

integrals, the orbital parameters and the aƩempt-to-hop frequency in the kMC simulaƟon. 

However, it would be possible to obtain a more material speciĮc parametrizaƟon of those with 

ab-iniƟo calculaƟons as DFT. 

From experiments100 one would expect a diīerence in conducƟvity for diīerent chain lengths 

of P3HT, what is however not signiĮcantly observed in Figure 45. This is mainly due to the 

comparaƟvely low intra-chain coupling factor of ௜݂௖ℎ = 1.3. Therefore, also simulaƟons with 

an enhanced intra-chain coupling factor of ௜݂௖ℎ = 10 were performed. The results are shown 

in Figure 46.
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Figure 46 – LeŌ: Mobility as funcƟon of charge carrier concentraƟon of diīerent oligomer 

morphologies for ௜݂௖ℎ = 10 in a double-log plot. Right: The same for conducƟvity.

In this scenario the diīerence can be seen. Especially for charge carrier concentraƟons of ܿ ௙ >1%, the mobility curves get steeper with increasing chain length. For lower charge carrier 

concentraƟons, the relaƟve diīerences of the conducƟvity to the next higher chain length are > 30% with an increasing diīerence for higher charge carrier concentraƟon. The slope of the 

conducƟvity curve at higher charge carrier concentraƟons however is reduced in comparison 

to the cases considered before. This is due to the more uniform localizaƟon length distribuƟon 

of these morphologies obtained by the Ɵght binding calculaƟons. The overall magnitude of the 

conducƟviƟes increases approximately one order of magnitude compared to the ௜݂௖ℎ = 1.3 

case, highlighƟng the importance of intra-chain coupling for the conducƟvity. 

In the following the Seebeck coeĸcient is invesƟgated and compared to all other considered 

morphology cases. Figure 47 shows the curves of Seebeck coeĸcient over the conducƟvity 

and the charge carrier concentraƟon for the both cases of ௜݂௖ℎ = 1.3 and 10. 
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Figure 47 – Upper graphs: Seebeck coeĸcient as funcƟon of conducƟvity for the case ௜݂௖ℎ = 1.3 (leŌ) 

and ௜݂௖ℎ = 10 (right). Lower graphs: Dependence of Seebeck coeĸcient on charge carrier 

concentraƟon for ௜݂௖ℎ = 1.3 (leŌ) and ௜݂௖ℎ = 10 (right).

For the case of ௜݂௖ℎ = 1.3, the discussion is the same as for the model morphologies in the last 

secƟon. One gets a relaƟon of rather ܵ ∝ 𝜎−1/8 than ∝ 𝜎−1/4 due to the gaussian DOS and a 

fall-oī at around 300 ܭ/ܸߤ. InteresƟngly, the fall-oī is much less pronounced for the case of 

௜݂௖ℎ = 10, which may be due to the deep transport energy that did not saturate yet. Also, as 

expected from the conducƟvity as well, the dependency of the Seebeck coeĸcient on the 

charge carrier concentraƟon is the same. However, in comparison to the simpliĮed 

morphologies in the last secƟon, the Seebeck coeĸcient for ௜݂௖ℎ = 1.3 is around 100 ܭ/ܸߤ 

lower, especially the sc 80meV morphology with the same energeƟc disorder and DOS form. 

In the case of ௜݂௖ℎ = 10 the eīect is even higher, here the Seebeck coeĸcient reduces 



125

drasƟcally to only around 550 ܭ/ܸߤ. From the higher disorder (≈ 140 ܸ݉݁) one would 

rather expect a higher Seebeck coeĸcient. For the interested reader, the resulƟng inŇuence 

on the powerfactors is shown in the SI. Also, the mean localizaƟon length is not considerably 

diīerent from all the other cases. The only diīerence is the more delocalized lower energy 

states in the case of ௜݂௖ℎ = 10. Looking at the transport energy of the oligomer morphologies, 

they interesƟngly lie signiĮcantly deeper than for comparable simpliĮed morphological cases 

(around −40 ܸ݉݁ for the oligomer morphologies with ௜݂௖ℎ = 1.3 (cf. Figure 48) compared to 

around 0 ܸ݉݁ for the laƩer). This might be due to eĸcient/enhanced and lower energeƟc 

intra-chain transport for the MD morphologies compared to the other. This eīect would be 

even more enhanced for the energeƟcally high disordered case with an even stronger intra-

chain coupling of ௜݂௖ℎ = 10, possibly explaining the further decrease in Seebeck coeĸcient 

and would also explain the increase of conducƟvity over one order of magnitude despite the 

disorder. This is supported by the very deep transport energy in the case of ௜݂௖ℎ = 10 in Figure 

48.

Figure 48 – LeŌ: Transport energies (upper curves) and Fermi energies (lower curves) as funcƟon of 

charge carrier concentraƟon for the case ௜݂௖ℎ = 1.3. Right: The same for ௜݂௖ℎ = 10.
To conclude this secƟon, the superlinear increase in conducƟvity for high charge carrier 

concentraƟons could be reproduced. Diīerent morphologies can have a huge impact in 

conducƟvity, while the Seebeck coeĸcient is oŌen rather unaīected. However, a low-lying 

transport energy, like through eĸcient and highly coupled intra-chain transport in low energy 

states or generally a low energeƟc percolaƟon/conducƟon path can signiĮcantly reduce the 

Seebeck coeĸcient. From a pracƟcal point of view, the eīect on the powerfactor is however 

sƟll dominated by the conducƟvity.
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Density of States RenormalizaƟon for High Doping ConcentraƟons

This chapter covers my contribuƟon to the paper101 about modelling of the DOS at low to 

intermediate doping concentraƟons. The following introducƟon summarizes the key aspects 

of the coworker’s argumentaƟon. 

For designing thermoelectric devices, the aim is always to maximize the Įgure of merit        ܼܶ = ௉ி఑೐೗+఑೗ೌ೟ = ௌ2ఙ఑೐೗+఑೗ೌ೟  and therefore also the powerfactor ܲܨ. This is however a far from 

trivial task. As already outlined in the TheoreƟcal Background, the well-known81 trade-oī 

between the Seebeck coeĸcient and the conducƟvity ܵ ∝ 𝜎−1/4 for single-material and low 

to intermediate doping concentraƟons prohibits the simultaneous increase of both 

parameters. This inverse relaƟonship between Seebeck coeĸcient and conducƟvity is known 

to be explained and obtained by an ion-induced exponenƟal tail in the DOS95. If this 

relaƟonship would persist up to high doping, the powerfactor would scale as                               ܲܨ ∝ 𝜎1/2, which would suggest as a clear design rule to maximize the conducƟvity. However, 

experimentally the inverse relaƟonship only holds up to intermediate doping. Further increase 

of the doping concentraƟon is observed to cause a roll-oī in conducƟvity, which cannot be 

obtained with ion-induced exponenƟal tails in the DOS. While one would in any case expect a 

maximum in conducƟvity at suĸciently high doping concentraƟons such that the Fermi level 

would reach the maximum of the DOS, experimentally one observes the roll-oī of conducƟvity 

already at intermediate doping levels. Due to this roll-oī, the Powerfactor already reaches its 

maximum at intermediate doping regimes, which lies around a doping level of ܿௗ = 10% and 

found to deĮne a soŌ upper limit of the Seebeck coeĸcient of around 200 ܭ/ܸߤ, which is not 

obtained by the ion-induced exponenƟal tail and no model is able to consistently cover the 

relevant doping regime where the Powerfactor is maximized. Using KMC simulaƟons, the roll-

oī at these intermediate doping levels can only be explained when considering a gaussian DOS 

and free charge carriers, i.e. only carrier-carrier interacƟon. 

To explain this, I performed TB calculaƟons including the Coulomb potenƟals of counter ions. 

For the underlying laƫce of these simulaƟons a simple cubic laƫce of size 20 × 20 × 20 with 

a laƫce spacing of ܽேே = 0.5 ݊݉ and periodic boundary condiƟons was used. The orbital 

parameters of the site orbitals were chosen to be (݈௫ , ݈௬, ݈௭) = (1,1,1) ⋅ 0.1 ݊݉ and the scaling 

factor of the transfer integrals was chosen to be 0ߥ = 1014 1௦ such that the next neighbor 
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transfer integrals are in the order of 10 ܸ݉݁. The on-site energies were drawn from a gaussian 

distribuƟon of 50 ܸ݉݁ disorder. The cutoī distance for the Coulomb potenƟals of each ion 

were taken to be 2 ⋅ ܽேே to mimic a Įnite Coulomb potenƟal depth of the ions. For each 

doping concentraƟon ܿௗ, on a fracƟon of ⌊ܰ ⋅ ܿௗ⌋ of all ܰ laƫce sites a single ion was placed, 

where the ion posiƟons were randomly chosen from the available laƫce sites. The calculaƟons 

were then performed for Įve diīerent doping concentraƟons. First, the dielectric constant was 

chosen to be ߳௥ = 3.6 for all doping concentraƟons. The corresponding results for the 

resulƟng DOS and localizaƟon length distribuƟons is shown in Figure 49 and 50.

Figure 49 – Up: DOS for ܿௗ = 0.1% and 1%. The red curves are Įts to the gaussian part; the green 

curves are Įts to the exponenƟal part. Down: Corresponding localizaƟon length distribuƟons.
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Figure 50 - Up: DOS for ܿௗ = 5%, 10% and 20%. The red curves are Įts to the gaussian part. Down: 

Corresponding localizaƟon length distribuƟons.

From both Figures 49 and 50 one can see that for lower doping concentraƟons of ܿௗ = 0.1% 

and 1%, the well-established exponenƟal is recovered. Further increasing the doping level to 

intermediate and higher doping levels of ܿௗ = 5%− 20%, indeed the DOS renormalizes into 

a gaussian DOS again. In passing, it should be noted here that the x-scales of Figure 49 and 50 

are diīerent, which was necessary for visibility. This renormalizaƟon of the DOS can be 

explained by increasingly overlapping Coulomb potenƟals already from intermediate doping 

levels on, which leads to a ŇaƩening of the potenƟal landscape formed by the overlapping 

Coulomb potenƟals of the ions. This is supported by the resulƟng localizaƟon length 

distribuƟons. While for low doping levels, the Coulomb potenƟals act as traps, which 

introduces the low energy exponenƟal tail, the charges get increasingly localized as seen from ܿௗ = 0.1% and 1%. However, when the DOS renormalizes and the Coulomb potenƟals start 

to overlap and therefore ŇaƩen the potenƟal landscape, the charges can become increasingly 
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delocalized as seen from the localizaƟon length distribuƟons ܿௗ = 5% − 20%. This further 

supports the claim of using free charge carrier at intermediate doping levels for kMC. 

However, for constant dielectric constant of the host laƫce of ߳௥ = 3.6, the DOS get 

signiĮcantly broadened. The missing part here is that the enhanced polarizability of the laƫce 

due to the introducƟon of counter ions was neglected. As outlined in the TheoreƟcal 

Background, the introducƟon of counter ions into the laƫce leads to an enhanced eīecƟve 

polarizability of the laƫce, which in turn leads to increased screening and therefore an 

increased dielectric constant. To include this eīect, a dynamic dielectric constant was 

introduced in the simulaƟons. The chosen values of the dielectric constants for each doping 

level were approximated from the curve in Figure 1 in the TheoreƟcal Background. The 

corresponding results of the thereby obtained DOS and localizaƟon length distribuƟons are 

shown in Figure 51 and 52.

Figure 51 – Up: DOS for ܿௗ = 0.1% and 1% for diīerent dielectric constants. The red curves are Įts to 

the gaussian part; the green curves are Įts to the exponenƟal part. Down: Corresponding localizaƟon 

length distribuƟons.
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Figure 52 - Up: DOS for ܿௗ = 5%, 10% and 20% for diīerent dielectric constants. The red curves are 

Įts to the gaussian part. Down: Corresponding localizaƟon length distribuƟons.

Indeed, the introducƟon of an increasing dielectric constant reduces the width of the DOS 

signiĮcantly. The introducƟon of increasing dielectric disorder also does not alter the 

qualitaƟve behavior of the DOS, with exponenƟal tails at low doping concentraƟons and 

renormalizaƟon of the DOS from intermediate doping concentraƟons on. AddiƟonally, the 

increasing screening delocalizes the charges even further compared to the case of ߳௥ = 3.6.

A comparison of the gaussian width of all considered cases is given in Table 14.

Table 14 – FiƩed disorders in units of thermal energy (300 K) for constant and dynamic ߳௥.ܿௗ = 0.1% ߳௥ = 3.6 ܿௗ = 1% ߳௥ = 3.6 ܿௗ = 5% ߳௥ = 3.6 ܿௗ = 10% ߳௥ = 3.6 ܿௗ = 20% ߳௥ = 3.6𝜎஽ைௌ/݇஻ܶ
ܿௗ = 0.1% ߳௥ = 4 ܿௗ = 1% ߳௥ = 8 ܿௗ = 5% ߳௥ = 10 ܿௗ = 10% ߳௥ = 13 ܿௗ = 20% ߳௥ = 25𝜎஽ைௌ/݇஻ܶ
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While the unscreened disorders get unphysically high, the disorders for increasing screening 

for increasing doping level remain limited around 10݇஻ܶ for the considered screenings at 

higher doping levels. This is however sƟll broad, but is consistent with literature69,102 that 

reports signiĮcant DOS broadening with increasing doping level.

To conclude this chapter, it should be noted that the DOS renormalizaƟon can only happen in 

regions in which the ions are distributed homogeneously as done here by introducing a sc 

laƫce with one dopant per site only to ensure a spaƟally uniform overlapping of the Coulomb 

potenƟals with increasing doping level. If the ions are in any maƩer clustered or otherwise 

inhomogeneously distributed, the exponenƟal tail should remain even up to high doping 

concentraƟons. It should also be menƟoned that at even higher concentraƟons the introduced 

model loses validity since carrier-carrier interacƟons become more and more important but 

are not properly treated here for this high doping regime.

However, the here introduced model can both reproduce the necessary exponenƟal tail in the 

DOS for low doping levels that lead to the power-law ܵ ∝ 𝜎−1/4 and explain the experimentally 

observed roll-oī of the conducƟvity already at the relevant intermediate doping regime by the 

renormalizaƟon of the DOS into a gaussian distribuƟon that is needed to describe the ܵ(𝜎) 
dependency in the relevant wide range  of conducƟvity with kMC simulaƟons. 
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Summary

In this dissertaƟon I developed a semi-empirical Ɵght binding model that uses model 

morphologies and morphologies obtained by Molecular Dynamics simulaƟons as underlying 

laƫce to perform kMC simulaƟons with more realisƟc morphologies under the inclusion of 

both spaƟal and energeƟcal correlaƟons and parƟally delocalized charge carrier wavefuncƟons 

obtained from the Ɵght binding calculaƟons. 

The developed model was used in combinaƟon or separately to answer diīerent quesƟons 

that were covered in the diīerent chapters.

In the Įrst chapter a physical explanaƟon was given to the experimentally found signiĮcant 

increase in the in-plane powerfactor of thin Įlms with a high edge-on to face-on raƟo that 

breaks the usually observed inverse relaƟonship between the Seebeck coeĸcient and the 

conducƟvity. 

It was found that an increased edge-on to face-on raƟo can lead to an eīecƟve delocalizaƟon 

of the charge carrier wavefuncƟons in the in-plane direcƟon due to ߨ − ߨ −stacking of 

polymer faces. This in turn leads to an anisotropic eīecƟve localizaƟon length, which leads to 

an increased conducƟvity in the in-plane direcƟon due to enhanced tunneling rates and due 

to the resulƟng conducƟon path being more direct than in the isotropic case. This however 

does not alter the Seebeck coeĸcient signiĮcantly. In fact, it is even slightly increased. This 

was explained by occasionally higher jumps in the energy landscape induced from the more 

direct conducƟon path, while in the isotropic case the conducƟon path is more opƟmized in 

the energy landscape. Therefore, in the anisotropic case the transport energy is slightly 

increased compared to the isotropic case, which in turn leads to an increased Seebeck 

coeĸcient.

The second chapter invesƟgates the validity of the eīecƟve temperature approach for the Įeld 

dependence of the conducƟvity of OSCs. The quesƟon was moƟvated by measurements that 

show an increased Įeld dependence of the conducƟvity already at lower Įelds, which would 

lead to an untypically high localizaƟon length using the eīecƟve temperature approach. 

Hereby, diīerent morphologies were considered reaching from homogeneous systems up to 

increasingly aggregated systems and Įlament like morphologies for polymers obtained from 

Molecular Dynamics simulaƟons. For all morphologies, the actual heaƟng of the charge carrier 
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distribuƟon obtained from the DOOS and the eīecƟve temperature models that replace the 

temperature dependence of the ohmic conducƟvity with the eīecƟve temperature were 

compared to an experimental approach to obtain the eīecƟve temperature and thereby the 

localizaƟon length from temperature dependence measurements of the ohmic conducƟvity 

and Įeld dependence measurements of the conducƟvity. It was found that with increasing 

inhomogeneiƟes of the morphology the deviaƟons between the models and the input 

localizaƟon length distribuƟons also increase. But not only the morphology seems to have an 

impact on the Įeld-dependence beyond the eīecƟve temperature eīect, also disorder and 

possibly other parameters like delocalizaƟon of charge carriers due to the Įeld dependence of 

the transport energy could have an inŇuence on the Įeld-dependence that is not captured in 

the eīecƟve temperature model. These discrepancies can lead to a misinterpretaƟon of 

experimentally obtained localizaƟon lengths since all the hidden inŇuences on the Įeld 

dependence get reŇected in unphysical changes in the localizaƟon length. However, to what 

extent what physical parameters inŇuence the Įeld dependence addiƟonally could not safely 

be explained due to the intercorrelaƟons of diīerent parameters in this model that prohibit 

the invesƟgaƟon of independent changes of single parameters in the model and therefore 

remain an open quesƟon for future research. 

In the next chapter, the experimentally observed superlinear increase of conducƟvity with 

charge carrier concentraƟon at high charge carrier concentraƟons was numerically explained 

and recovered for diīerent morphological set ups. 

The introducƟon of energy dependent localizaƟon lengths from the Ɵght binding model leads 

to a peaked distribuƟon of localizaƟon lengths that is similar to the DOS. While the transport 

energy remains close to the DOS center, the Fermi energy rises with increasing charge carrier 

concentraƟon unƟl it reaches an energeƟc level at which the charges start to parƟally 

delocalize. This increase in delocalizaƟon for increasing Fermi energies lead to an addiƟonal 

contribuƟon in the rising of the conducƟvity curve and can therefore explain the super-linear 

increase in conducƟvity.

As last point it was discussed why the experimentally observed roll-oī in conducƟvity in the 

typically observed ܵ(𝜎) curves for OSCs can only be explained in a kMC model if one assumes 

a gaussian DOS and free charge carriers at intermediate doping levels, which is the relevant 

regime for opƟmized thermoelectric devices, while for lower doping levels ion-induced 
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exponenƟal tails in the DOS are formed that are responsible for the typical inverse power-law 

dependence of the Seebeck coeĸcient and the conducƟvity. To answer this quesƟon, the Ɵght 

binding model developed in this thesis was used including Coulomb interacƟon between 

charge carriers and ions for diīerent doping concentraƟons. For low doping levels the well-

established exponenƟal tail in the DOS was reproduced. However, further increasing doping 

levels up to intermediate doping levels was found to renormalize the DOS back to a gaussian 

DOS for uniformly distributed ions. This was explained by an increasing overlap of the Coulomb 

potenƟals of the dopant ions that increasingly ŇaƩen the energeƟc landscape already at 

intermediate doping levels. This is supported by an onset of delocalizaƟon accompanied by 

the DOS renormalizaƟon, while for lower concentraƟons rather a localizaƟon due to the deep 

traps induced by the exponenƟal tails takes place. 

Outlook

While the developed model can give a nice bridge between computaƟonally very expensive 

ab-iniƟo calculaƟons and simple and fast kMC models, the Ɵght binding parametrizaƟon can 

sƟll be improved under the inclusion of ab-iniƟo calculaƟons like DFT. While the model 

explicitly allows for more material speciĮc parametrizaƟon like explicit HOMO or LUMO 

orbitals of monomers, here I was limited to approximaƟons. AddiƟonally, the localized 

character of OSCs allows for faster and computaƟonally faster diagonalizaƟon for even larger 

systems by diagonalizing overlapping subspaces as someƟmes proposed in literature. Also, the 

localizaƟon length obtained from the Ɵght binding model and the IPR gives rise to only 

isotropic delocalizaƟon. An interesƟng add-on would be the treatment of anisotropic 

localizaƟon lengths from the model, which was technically already largely implemented by 

myself, but not applied in the set-up of this thesis. 

From a physical point of view, especially the Įeld dependence of OSCs remains an open 

quesƟon. Future research could try to disentangle the inŇuences of parameters that could only 

be discussed qualitaƟvely here to obtain a deeper understanding on the sƟll in detail illusive 

Įeld dependence of OSCs. 
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SupporƟng InformaƟon

Field Dependent LocalizaƟon

Besides Anderson localizaƟon, there can be another localizing eīect, namely Stark localizaƟon, 

which is a localizaƟon eīect induced by an electric Įeld. One can intuiƟvely understand this as 

follows. In a regular laƫce without disorder one can think of Blochwaves at zero Įeld. 

Introducing an electric Įeld induces a phase shiŌ of the sites wavefuncƟon proporƟonal to its 

laƫce posiƟon in Įeld direcƟon. This leads to destrucƟve interference and therefore 

localizaƟon.

I therefore also tried to incorporate the electric Įeld into the Ɵght binding model by 

introducing a diagonal correcƟon term ܪி௜ = ⟨߶௜|݁ࡲ ⋅ ࢘|߶௜⟩. However, for unresolved reasons 

this led to diīerent problems. To see the problem, the simulaƟon results for MakeSnake 

45/80meV (see main text) morphology with 0ߥ = 2 ⋅ 1014 1௦ without periodic boundary 

condiƟons for a 20 × 20 × 40 laƫce are shown in Figure S1 and S2.

Figure S1 – LocalizaƟon length distribuƟons for diīerent Įelds obtained once from the normal 

Eigenvalue problem (upper graphs) and once from the generalized (lower graphs).



148

Figure S2 – Mean localizaƟon lengths within Ɵles in direcƟon of the electric Įeld for three diīerent 

Įelds.

The Įrst problem is that with increasing Įeld the localizaƟon lengths form a spaƟal gradient in 

the Įeld direcƟon (Figure S2). This is unexpected and unphysical, since the constant Įeld 

should act the same everywhere and the material is homogeneous in the sense that there is 

no spaƟal gradient. From this behavior one should take the localizaƟon length distribuƟons 

with care, since this artefact can inŇuence the distribuƟon. 

Secondly, from Figure S1 one sees that for the localizaƟon length obtained via solving the 

generalized Eigenvalue problem ܸܪ =  the eigenfuncƟons ܸ and ,ܪ for the Hamiltonian ܸܵܧ

the overlap matrix  ܵ, the localizaƟon length does increase instead of decrease. At the same 

Ɵme, solving the Hamiltonian via the normal Eigenvalue problem ܸܪ =  one indeed gets ,ܸܧ

a limited decrease of about 10% from zero Įeld to ܨ = 107 ܸ/݉. While the generalized 

Eigenvalue problem should be the correct way to solve the problem it gives the opposite eīect 

than expected from Stark localizaƟon. Unfortunately, the Ɵme was not suĸcient to explore 

this problem further and therefore this remains an open quesƟon for future research.

Besides this problemaƟc, one could also ask the quesƟon whether the electric Įeld would 

change the wavefuncƟon form. For this purpose, the wavefuncƟons of the aforemenƟoned 

morphology were analyzed by Įƫng ellipsoids to them using PCA as described in the 

TheoreƟcal Background. The anisotropy of an ellipsoid with main axes 1࢔, ,2࢔  and 3࢔
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corresponding axis lengths 1ߣ, ,2ߣ  can be described as a scalar from zero to one with zero 3ߣ

meaning completely isotropic and one completely anisotropic with the following formula103,104

ݏ = 32 ⋅ ∑ ∑)௜4௜ߣ ௜2௜ߣ )2 − 12 (S1)

Arranging the results for all wavefuncƟons in histograms for diīerent Įelds, one obtains Figure 

S3. From this, no signiĮcant inŇuence of the electric Įeld on the wavefuncƟon anisotropy can 

be observed. Therefore, one can conclude that the Stark localizaƟon acts isotropic on the 

wavefuncƟons. A similar approach can be taken to obtain the global anisotropy of the material. 

Hereby, one needs calculate the gyraƟon tensor103,104 of all axes of all wavefuncƟons and 

diagonalize it

ܳ = ࢏࢐࢔∑∑13ܰ ⋅ 3ࢀ࢏࢐࢔
௝=1

ே
௜=1 (S2)

If the eigenvalues of ܳ are 1ߣ, ,2ߣ  then the global anisotropy can again be calculated via ,3ߣ

Equ. (S1). EvaluaƟng this quanƟty here for diīerent Įelds, one also does not obtain any 

changes and the global anisotropy is in every case basically zero.

Figure S3 – Histograms of wavefuncƟon anisotropies for diīerent Įelds. The x-value zero means 

isotropic, the value one means completely anisotropic.
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Comparison of LocalizaƟon Measures

In the TheoreƟcal Background the idea of a generalized IPR was presented that uses Voronoi 

tessellaƟon. Here shortly, the two diīerent models (the one used in this thesis and the 

proposed generalizaƟon) are compared for the 8mer morphology. The result is shown in Figure 

S4.

Figure S4 – Comparison of LocalizaƟon length distribuƟons using the IPR with the Voronoi modiĮcaƟon 

(leŌ) and the model used in this thesis (right).

One can see that apart from a shiŌ upwards, the modiĮcaƟon has a similar form of distribuƟon 

as the localizaƟon length distribuƟon obtained via the model used in this thesis. The 

modiĮcaƟon therefore seems to predict higher localizaƟon lengths, but one should bear in 

mind that in this modiĮcaƟon no shiŌ was performed to model the physically lowest 

localizaƟon length as the orbital localizaƟon instead of some inter-site distance.
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Powerfactors

The powerfactors ܲܨ = ܵ2𝜎 for each considered morphology is shown in the following Figure 

S5.

Figure S5 – Powerfactors of the diīerent considered morphologies. Upper leŌ: MD morphologies for 

௜݂௖ℎ = 1.3. Upper right: MD morphologies for ௜݂௖ℎ = 10. Lower: Powerfactors for the diīerent 

simpliĮed morphologies.

Generally, it can be seen that the saturaƟon of the powerfactor sets in for a liƩle bit higher 

charge carrier concentraƟon than at the someƟmes obtained ௙ܿ = 10%. The picture here is a 

liƩle bit more diīerenƟated. Higher disorder leads to a saturaƟon at higher charge carrier 

concentraƟons. As outlined in the main text, this is due to the low-lying transport energy that 

reaches saturaƟon only at higher charge carrier concentraƟons. However, it should also be 
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noted that in these simulaƟons no Coulomb interacƟons due to counter-ions were considered. 

Comparing the MD morphologies, the increased intra-chain coupling leads to lower Seebeck 

coeĸcient but has a higher inŇuence on the conducƟvity such that the eīect gets 

overcompensated for the resulƟng powerfactor. Hence, the powerfactor is increased for 

enhanced intra-chain coupling for the same morphology. Experimentally this could be 

achieved by enhanced delocalizaƟon of the polymer backbone, e.g. by high aromaƟcity. 

However, chemical modiĮcaƟons can lead to substanƟal morphological and other 

modiĮcaƟons of physical parameters, so this design-rule should be taken with care. Comparing 

the simpliĮed and parƟally aggregated morphologies, the diīerences in the powerfactor arise 

almost solely from the diīerences in conducƟvity, since the Seebeck coeĸcient is only 

marginally aīected due to the reasons outlined in the main text. 
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Temperature Dependence Fit Parameters

For the Įt of the temperature curves, the Įt funcƟon 𝜎 = 𝜎0 ⋅ exp (−( 0்்)ఉ) was used. The 

following Table S1 gives the obtained essenƟal Įt parameters, the characterisƟc temperature  

0ܶ and the temperature exponent ߚ.

Table S1 – Fit parameters of the temperature dependence of the conducƟvity.ࢀ૙ ܑࡷ ܖ ࢎࢉ࢏ࢌࢼ = ૚૙ 645 ± 4550 0.99 ± ࢎࢉ࢏ࢌ1.5 = ૚૙ 750 ± 5418 0.94 ± ࢎࢉ࢏ࢌ1.3 = ૚૙ (5.5 ± 14.2) ⋅ 106 0.22 ± ࢎࢉ࢏ࢌ1.0 = ૚. ૜ 1394 ± 11586 0.97 ± ࢎࢉ࢏ࢌ1.5 = ૚. ૜ 772 ± 2372 1.35 ± ࢎࢉ࢏ࢌ0.9 = ૚. ૜ 846 ± 2043 1.27 ± ࢎࢉ࢏ࢌ0.5 = ૚. ૜ 663 ± 1357 1.5 ± 0.5707 ± 813 1.52 ± 0.22123 ± 6783 0.97 ± 0.7576 ± 702 1.8 ± 0.21406 ± 1812 1.1 ± 0.314549 ± 22534 0.6 ± 0.3811 ± 555 1.4 ± 0.1
While the ĮƩed lines Įt reasonable, the errors on the Įt parameters are signiĮcant. This is due 

to the small temperature range and the Ňexibility of the Įt funcƟon. However, the temperature 

exponent lies within a reasonable range considering the Įƫng errors and the exact funcƟonal 

form is not crucial for the analyses in the main text. 
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