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Abstract
Methane (CH4) is the second most important anthropogenic greenhouse gas, contributing
significantly to climate change. Landfills are major anthropogenic sources of methane, but
these emissions are subject to significant uncertainty. Due to their substantial mitigation
potential, accurate and independent detection and quantification of landfill methane
emissions is vital for assessing emission mitigation efforts.

This thesis evaluates the capabilities of ground-based spectral imaging for detecting
and quantifying the methane emissions of the Pinto landfill near Madrid, Spain. The
Pinto landfill is one of the landfills with the largest methane emissions in Europe. Over
the course of two weeks in the summer of 2024, hyperspectral images were collected from
a distance of 2 km to 7 km and with a scanning frequency of approximately one minute.
A matched filter was used to retrieve methane column enhancements from the 2.3-µm
spectral region of these observations. Various matched filters were compared, and the
lognormal matched filter (LMF) was found to perform best. Therefore, it was used for
all retrievals in this thesis.

Diffuse enhanced methane concentrations were detected over the landfill on both days
analyzed, with concentrations decreasing with altitude and increasing throughout the
day. The hot and dry summer climate in Madrid causes a lot of dust in the atmosphere.
Dust clouds shorten the light path and thus appear as negative methane enhancements,
affecting the amount of detected methane in an image. Observing the movement of a
dust cloud enables the calculation of the transport wind velocity. A one-box model was
used to derive emission rates using wind data from a co-deployed wind lidar. There is
a strong correlation between the emission rates and the wind velocity, indicating that
the short-term emission rate variability stems from the wind variability and suggesting
inaccuracies in the model. Temporally averaged emission rates range from 1 t h−1 to
5 t h−1 and are of the same order of magnitude as those found in previous studies and as
those listed in emission registers, although uncertainties remain high.
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Zusammenfassung
Methan (CH4) ist das zweitwichtigste anthropogene Treibhausgas und trägt erheblich
zum Klimawandel bei. Mülldeponien sind bedeutende anthropogene Methanquellen, al-
lerdings sind diese Emissionen mit erheblichen Unsicherheiten behaftet. Aufgrund ihres
beträchtlichen Minderungspotenzials ist eine genaue und unabhängige Erkennung und
Quantifizierung der Methanemissionen von Deponien für die Bewertung von Emissions-
minderungsmaßnahmen von entscheidender Bedeutung.

In dieser Arbeit wird das Potenzial der bodengestützten spektralen Bildgebung zur
Erkennung und Quantifizierung der Methanemissionen der Mülldeponie Pinto bei Ma-
drid in Spanien untersucht. Die Pinto-Deponie zählt zu den Deponien mit den höchsten
Methanemissionen in Europa. Während zweier Wochen im Sommer 2024 wurden aus
einer Entfernung von 2 km bis 7 km Hyperspektralbilder mit einer Scanfrequenz von
etwa einer Minute aufgenommen. Mittels eines Optimalfilters wurden die Methansäulen-
überhöhungen aus dem 2,3-µm-Spektralbereich dieser Aufnahmen ermittelt. Es wurden
verschiedene Optimalfilter verglichen, wobei sich der lognormale Optimalfilter als am
leistungsfähigsten erwies. Daher wurde dieser für alle Auswertungen in dieser Arbeit
verwendet.

An beiden analysierten Tagen wurden über der Deponie diffuse erhöhte Methankon-
zentrationen festgestellt. Dabei nahmen die Konzentrationen mit zunehmender Höhe ab
und im Laufe eines Tages zu. Das heiße und trockene Sommerklima in Madrid verursacht
viel Staub in der Atmosphäre. Staubwolken verkürzen den Lichtweg, erscheinen daher als
negative Methanüberhöhungen und beeinträchtigen so die Gesamtmenge des nachgewiese-
nen Methans in einem Bild. Durch die Beobachtung der Bewegung einer Staubwolke kann
die Transportwindgeschwindigkeit ermittelt werden. Mithilfe eines Ein-Box-Modells und
unter Verwendung von Winddaten eines gleichzeitig stationierten Wind-Lidars wurden
Emissionsraten abgeleitet. Es besteht eine starke Korrelation zwischen den Emissionsraten
und der Windgeschwindigkeit. Dies deutet darauf hin, dass die kurzfristigen Schwankun-
gen der Emissionsraten auf Windschwankungen zurückzuführen sind und das Modell
Ungenauigkeiten aufweist. Die zeitlich gemittelten Emissionsraten reichen von 1 t h−1

bis 5 t h−1 und liegen in der gleichen Größenordnung wie die in früheren Studien er-
mittelten und in Emissionsregistern aufgeführten Emissionsraten. Allerdings sind die
Unsicherheiten weiterhin groß.

ii



Contents
List of Abbreviations v

1 Introduction 1

2 Background 6
2.1 Composition of the Earth’s Atmosphere . . . . . . . . . . . . . . . . . . . 6
2.2 Radiative Transfer in the Earth’s Atmosphere . . . . . . . . . . . . . . . . 6

2.2.1 Radiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.4 Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.5 Radiative Transfer Equation . . . . . . . . . . . . . . . . . . . . . 13
2.2.6 Beer-Lambert Law . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.7 Single Scattering Approximation . . . . . . . . . . . . . . . . . . . 14

2.3 Imaging Spectrometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Grating Spectrometry . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Push-Broom Imaging . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Instrumentation 19
3.1 Hyperspectral Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Field Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Characteristics of the HySpex SWIR-384 . . . . . . . . . . . . . . 19
3.1.3 Raw Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Wind Lidar WindRanger 200 . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Matched Filter 24
4.1 Unit Absorption Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Classic Matched Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Visual Derivation of the Classic Matched Filter . . . . . . . . . . . . . . . 31
4.4 Improvements to the Classic Matched Filter . . . . . . . . . . . . . . . . . 34

4.4.1 Albedo Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.2 Sparsity Prior and Positivity Constraint . . . . . . . . . . . . . . . 35
4.4.3 Background Correction . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 Lognormal Matched Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.6 Iterative Lognormal Matched Filter . . . . . . . . . . . . . . . . . . . . . . 36

iii



Contents

4.7 Differences in Performance Between the Matched Filter Versions . . . . . 37

5 Overview of the 2024 Methane Remote Sensing Campaign at Madrid Landfills 42

6 Methane Emissions at the Pinto Landfill 46
6.1 Exemplary Plots of Methane Enhancement . . . . . . . . . . . . . . . . . 46
6.2 Dust Clouds in the Images . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3 Enhanced Methane Concentrations in the Images . . . . . . . . . . . . . . 54
6.4 Extraction of Wind Velocity From Retrieved Images . . . . . . . . . . . . 55
6.5 Quantification of Methane Emission Rates . . . . . . . . . . . . . . . . . . 58

6.5.1 Identification of Accumulated Methane . . . . . . . . . . . . . . . . 58
6.5.2 One-Box Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.5.3 Emission Rate Time Series . . . . . . . . . . . . . . . . . . . . . . 64

7 Conclusion and Outlook 68
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Bibliography 71

Acknowledgments 77

Statement on the Use of AI-Based Tools 79

Selbstständigkeitserklärung 80

iv



List of Abbreviations

CH4 Methane

CO2 Carbon dioxide

CMF Classic matched filter

FOV Field of view

FWHM Full width at half maximum

ILMF Iterative lognormal matched filter

ILS Instrument line shape

LMF Lognormal matched filter

PRTR-España Spanish Register of Emissions and Pollutant Sources

RAA Relative azimuth angle

RWL1MF Reweighted ℓ1 matched filter

SNR Signal-to-noise ratio

SSD Spectral sampling distance

SWIR Short wave infrared

SZA Solar zenith angle

UAS Unit absorption spectrum

USCB Upper Silesian Coal Basin

VAA Viewing azimuth angle

VEA Viewing elevation angle

VZA Viewing zenith angle

v



1 Introduction

Since the beginning of industrialization, humanity has released immense amounts of
greenhouse gases into the atmosphere. Due to the greenhouse effect, this has caused
a dramatic rise in the Earth’s average temperature, which reached 1.09 °C during the
period 2011–2020 compared to the reference period 1850–1900 (IPCC, 2021). In 2024,
the 1.5 °C threshold established in the “Paris Agreement” (2015) was exceeded for the
first time (Copernicus Climate Change Service, 2025). This temperature increase comes
with many consequences, changing the atmosphere, ocean, cryosphere, and biosphere. It
impacts people’s lives all around the world, for example, by a rise in frequency of extreme
weather events like heatwaves, droughts, and floods, making climate change mitigation a
critical political issue (IPCC, 2021).

The two most important anthropogenic greenhouse gases driving this climate change
are carbon dioxide (CO2) and methane (CH4). In 2023, their concentrations in the atmo-
sphere reached (419.32±0.10) ppm CO2 (Lan et al., 2024a) and (1921.76±0.46) ppb CH4
(Lan et al., 2024b), compared to (278.3 ± 2.9) ppm CO2 and (729.2 ± 9.4) ppb CH4 in the
preindustrial year of 1750 (Gulev et al., 2021). Their contributions to the total global
warming are depicted in Fig. 1.1.

Methane contributes about 23% to the anthropogenic radiative forcing, which is the
change in net radiative flux received by the Earth, quantified, e.g., in W m−2 (Etminan
et al., 2016). While this is a lower absolute contribution to global warming than that of
carbon dioxide, the global warming potential of methane is 81.2 for a 20-year time hori-
zon and 27.9 for a 100-year time horizon, meaning the emission of 1 kg CH4 contributes
to the warming of the Earth as much as the emission of 81.2 kg CO2 or 27.9 kg CO2, re-
spectively1 (Smith et al., 2021). This is why undesired methane release, e.g., in the oil
and gas industry, is often flared, converting the methane into carbon dioxide. If emit-
ted into the atmosphere, most of the methane is broken down by reaction with hydroxyl
radicals, and through a long chain of further reactions most carbon atoms will in the
end be incorporated into a carbon dioxide molecule. The reaction of methane with a hy-
droxyl radical defines its lifetime, which is 11.8 years on average2 (Smith et al., 2021).

1These numbers do not account for the carbon that enters the carbon cycle after the methane is broken
down. Including this fact changes the numbers presented here by a few percent, depending on the
methane source and model assumptions.

2This is the perturbation lifetime, which characterizes the decay of a one-time emission. The overturning
time of a gas in the atmosphere is characterized by the global atmospheric lifetime, which is (9.1±0.9)
years for methane (Prather et al., 2012). The different durations are due to emitted methane adding to
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1 Introduction

Fig. 1.1. (a) Observed average global warming 2010–2019 in relation to 1850–1900. (b)
Different human and non-human contributions to this warming. (c) Contributions
of greenhouse gases, aerosol-inducing chemicals, and other anthropogenic factors
to global warming. Figure taken from IPCC, 2021.

This comparatively short lifetime is also the reason why methane has different global
warming potentials when regarding different timescales.

Due to its relatively short lifetime, reducing methane emissions is an effective way to
contribute to climate change mitigation in the short and medium term (Shindell et al.,
2012). If no carbon dioxide were emitted from now on, the carbon dioxide concentration
in the atmosphere would stay well above preindustrial levels for centuries (Solomon

the atmospheric methane concentration, which depletes the atmosphere in hydroxyl radicals, which, in
turn, reduces the methane depletion rate and results in an increase of background methane (Denman
et al., 2007).

2



1 Introduction

et al., 2009)3, whereas stopping methane emissions would result in a drastic reduction of
atmospheric methane concentration in a matter of a few decades (Saunois et al., 2024),
thus strongly reducing the radiative forcing.

From 2010 to 2019, global direct anthropogenic methane emissions amounted to (358 ±
29) Tg CH4 yr−1, according to (Saunois et al., 2024). Of this, 19% (69+11

−13 Tg CH4 yr−1)
came from the waste sector, which includes managed and non-managed landfills, as
well as wastewater handling. There, methane is produced in the process of biological
decomposition of the organic materials in the waste. Methane emissions from solid waste
ranging from 37 Tg CH4 yr−1 to 42 Tg CH4 yr−1 are reported by the GAINS model and
CEDS and EDGAR inventories for the year 2019. This corresponds to 10.3%–11.7% of
total global direct anthropogenic methane emissions (Saunois et al., 2024).

In the United States, landfills were found to contribute almost 26% to the total direct
anthropogenic methane emissions in 2014 (USEPA, 2016). In the European Union, the
EU Landfill Directive (1999) imposes that no more than 10% of municipal solid waste
may be landfilled by 2035. Additionally, biodegradable waste is directed away from
landfills, and landfills have been required to have a gas collection system since 2009
(Saunois et al., 2024).

There is a wide variety of quantitative techniques for the measurement of landfill
methane emissions, ranging from different variants of single or multiple point gas con-
centration measurements through tracer gas dispersion measurements and differential
absorption lidar to mass balance methods using aerial and satellite measurements (Huang
et al., 2022; Mønster et al., 2019). Recently, satellite spectral imagers like TROPOMI,
GHGSat, EnMAP, and PRISMA have been used to map methane column densities
above and around landfills for emission quantification, providing an emission assessment
independent of pollutant release registers (Maasakkers et al., 2022; Roger et al., 2024b).

For this thesis, measurements were conducted at the Pinto landfill4, situated a few
kilometers south of the city of Madrid, Spain. The landfill receives ∼1800 t of waste daily.
Historically, the waste was deposited in an area called Phase III. The process of closing,
sealing, and equipping this area with a degassing system was completed in February 2024.
Since then, new waste has been deposited in the Phase IV area, located at the northeast
end of the landfill (see Chapter 5 for an aerial view of the landfill). Typically, landfill
gas emissions begin two or three months after waste deposition (Personnel of the Pinto
landfill, personal communication, June 27, 2024). Thus, the methane detected during
our measurements in summer 2024 likely originates predominantly from Phase IV.

3The carbon dioxide concentration after 1000 years would be approximately 40% of the previous peak
concentration enhancement above preindustrial values (Solomon et al., 2009).

4The official name of the Pinto landfill is “Landfill of the Mancomunidad del Sur” (“Vertedero de la
Mancomunidad del Sur”). In this thesis, the landfill will be referred to as “Pinto landfill,” as this is
the term used in the scientific literature because most of the landfill is located in the municipality of
Pinto, and it is more concise than the official name.
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1 Introduction

In the following, some previously assessed emission rates are presented5. The Span-
ish Register of Emissions and Pollutant Sources (PRTR-España) reports emission rates
of 1.55 t CH4 h−1 in 2021, 0.037 t CH4 h−1 in 2022, and 0.66 t CH4 h−1 in 2023, position-
ing the Pinto landfill as the largest Spanish methane emitter in 2021 and the second
largest in 2023. Prior to 2022, these emission rates were calculated using emission factors,
whereas from 2022 onward, they are based on measurements (Ministry for the Ecologi-
cal Transition and the Demographic Challenge (MITECO), 2025). The TNO GHGco v5
dataset lists the Pinto landfill with an emission rate of 1.28 t CH4 h−1 in 2018 (TNO pre-
liminary data, Hugo Denier van der Gon, personal communication, 2025). Using satellite
observations from TROPOMI and IASI acquired between 2018 and 2020, Tu et al. (2022)
found that the three landfills Valdemingómez, Pinto, and Alcalá in the Community of
Madrid, Spain, collectively emit (7.1 ± 0.6) t CH4 h−1, while the PRTR-España lists a to-
tal emission rate of 2.4 t CH4 h−1 for these landfills in 2019. Additionally, Krautwurst
et al. (2024) found an emission rate of ∼5 t CH4 h−1 for the Pinto landfill using aerial pas-
sive imaging (MAMAP2DL) and active lidar (CHARM-F) remote sensing measurements
on August 4, 2022.

The discrepancy between emission inventory values and independent measurement
studies may be attributed to several factors. First, the use of estimated, non-ideal pa-
rameters in the waste decay model for emission calculations (Wang et al., 2024). Second,
the register may only account for emissions from the currently active, open parts of a
landfill, neglecting emissions from covered and mostly, but not completely sealed ar-
eas (Tu et al., 2022). Additionally, a diurnal cycle in landfill emissions, where daytime
emissions are significantly higher than nighttime emissions, could contribute to this dis-
crepancy (Delkash et al., 2022). Remote sensing observations are conducted during
the day, whereas inventory data represents an annual average, encompassing the entire
day-night-cycle. Despite these considerations, the significant discrepancy suggests that
further investigation into the landfill’s methane emissions may be warranted, especially
focusing on emission variability.

However, comparisons between the listed emission rates and our measurements should
be interpreted cautiously, as the transition of the Pinto landfill from Phase III to Phase
IV might have altered the emission rate since early 2024.

This thesis investigates the feasibility of ground-based stationary imaging for detecting
and quantifying landfill methane emissions using a hyperspectral camera in the short
wave infrared (SWIR) spectral range. In this sense, it complements the doctoral thesis
by Knapp (2024), which pioneered the use of this ground-based camera for quantifying
methane emissions from a coal mine ventilation shaft and carbon dioxide emissions from
a coal-fired power plant. While the camera’s specifications are comparable to that of

5For better comparability with our measurement data, these are all given in t CH4 h−1 here, even though
this conversion assumes a constant emission rate throughout the day and year, which might not be
given.
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1 Introduction

satellite and aerial imagers, the ground-based setup allows for prolonged observations of
a single point source, with an imaging rate on the order of one minute.

Chapter 2 provides the physical background necessary for atmospheric remote sensing
in the SWIR spectral range using a push-broom imager. Chapter 3 details the camera’s
properties and describes the wind lidar used for wind measurements. Chapter 4 explains
the matched filter data analysis employed to retrieve methane slant column enhancements
from the observed spectra. Chapter 5 briefly summarizes the measurement campaign at
the Pinto and Valdemingómez landfills in June and July 2024. Chapter 6 presents the
findings, including data analysis challenges, characterization of methane distribution, and
concludes with time series of methane emission rates for two days in July 2024. Finally,
Chapter 7 summarizes this work and offers ideas for future investigations.
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2 Background

This thesis uses a hyperspectral camera to capture sky-scattered sunlight in the SWIR
spectral range. The following chapter provides the theoretical foundation for this ap-
plication. Section 2.1 offers a concise overview of the Earth’s atmospheric composition.
Section 2.2 delves into the physics of atmospheric radiative transfer, focusing on the emis-
sion, absorption, and scattering of light by molecules and aerosols. This culminates in
the radiative transfer equation, with two solutions from simplified versions presented at
the end. Section 2.3 explains the basics of grating spectrometry and the functionality of
a push-broom imager, the type of spectral imager used in this study.

This chapter aims to provide essential background information for understanding the
thesis and does not aim to cover every detail or phenomenon, focusing only on relevant
aspects within the scope of this research.

2.1 Composition of the Earth’s Atmosphere
Petty (2006) provides an overview of the Earth’s atmosphere, which will be summarized
here, focusing on key facts relevant to our application.

The Earth’s atmosphere comprises different layers, of which only the troposphere as
the lowest layer is truly relevant for our measurements. The troposphere starts at ground
level and extends up to approximately 15 km in height, depending on latitude and season.
It is well-mixed due to convection, as it is heated at the ground.

Dry air in the troposphere primarily consists of 78.1% molecular nitrogen (N2), 20.9%
molecular oxygen (O2), and 0.93% argon (Ar). Amongst the remaining 0.07% trace gases
are carbon dioxide (CO2) and methane (CH4), whose concentrations have been rising con-
tinuously due to human activities. They have reached levels of (419.32 ± 0.10) ppm CO2
(Lan et al., 2024a) and (1921.76 ± 0.46) ppb CH4 (Lan et al., 2024b) in 2023, respectively.
These two gases are also the most important greenhouse gases, along with water va-
por (H2O), whose tropospheric concentration varies significantly by location and time,
influenced mainly by temperature rather than direct human impact.

2.2 Radiative Transfer in the Earth’s Atmosphere
Molecules and particles in the atmosphere interact with electromagnetic radiation at
specific wavelengths through the processes of emission, absorption, and scattering. These

6



2 Background

interactions are detailed further in the following. Focusing on the radiative processes
relevant to this thesis, this section will omit negligible effects and irrelevant topics.

This section is based on Petty (2006), which provides an introduction to radiative
transfer processes in the atmosphere, and Demtröder (2018), which delves into the
fundamentals of interactions between electromagnetic radiation and molecules.

2.2.1 Radiance
Before diving into the radiative transfer processes in the atmosphere, the physical quan-
tity radiance shall be introduced. Radiance describes electromagnetic radiation in terms
of its magnitude, direction, and wavelength. When radiative power 𝑃 in the wavelength
interval [𝜆, 𝜆 + d𝜆] originates from a solid angle d𝛺 and crosses an area d𝐴 at an angle
𝜃, the corresponding radiance 𝐼 is defined as

𝐼(𝜆, 𝛺) = d3𝑃
d𝐴 cos 𝜃d𝛺 d𝜆

. (2.1)

Radiance is typically measured in units of W m−2 sr−1 nm−1. Note that in some literature,
the quantity termed radiance here may also be referred to as spectral radiance, spectral
intensity, radiant intensity, or simply intensity.

2.2.2 Emission
Thermal radiation is emitted by any object with a temperature 𝑇 . In the ideal case of a
black body, a perfect emitter, the emitted radiance 𝐵𝜆(𝜆, 𝑇 ) per wavelength 𝜆 is given
by Planck’s law

𝐵𝜆(𝜆, 𝑇 ) = 2ℎ𝑐2

𝜆5
1

exp ( ℎ𝑐
𝑘B𝜆𝑇 ) − 1

, (2.2)

where ℎ is the Planck constant, 𝑐 is the speed of light, and 𝑘B is the Boltzmann constant.
For other objects, this black body radiation sets the upper limit of possible emission and
is often used as a reasonable approximation.

When comparing the Sun’s radiance in the Earth’s atmosphere to the thermal radiance
of molecules in the atmosphere, it becomes clear that thermal emission is completely
negligible in the SWIR range around a wavelength of 2000 nm.

2.2.3 Absorption
Electromagnetic radiation of wavelength 𝜆 or frequency 𝜈 is quantized into photons of
energy 𝐸 = ℎ𝑐/𝜆 = ℎ𝜈. A molecule can absorb a photon if the photon’s energy equals
the energy difference between the molecule’s current and an energetically higher quantum

7



2 Background

state, and if this transition is allowed by the selection rules1. Molecular quantum states
can be divided into electronic, vibrational, and rotational states. As transitions between
electronic states usually require an energy corresponding to photons in the visible or
ultraviolet spectral range, these are not treated here.

Vibrational states A molecule can vibrate, meaning its atomic nuclei exhibit a peri-
odic movement relative to one another. For a diatomic molecule, the only possible
vibrational mode is a movement of the two nuclei along their imaginary connec-
tion line, like they were mounted at the two ends of a spring. This vibration can
occur in quantized strengths, corresponding to equidistant energy levels. For a
non-linear molecule consisting of 𝑁 atoms, 3𝑁 − 6 vibrational normal modes exist2,
which results in a much more complicated structure of the vibrational energy lev-
els. The vibrational states have energy differences on the order of 10−1 eV, which
corresponds to wavelengths on the order of 10 µm and smaller.

Rotational states A molecule can rotate, and these rotational energy levels are quantized
as well. Diatomic and all other linear molecules can only rotate around the axis
through their center of mass and perpendicular to the molecular axis, but for any
other molecule, any rotational axis through the center of mass is possible, again
resulting in a much more complicated structure of the rotational energy levels,
compared to linear molecules. The rotational states have energy differences on the
order of 10−4 eV, which corresponds to wavelengths on the order of 10 mm and
smaller.

In addition to transitions between vibrational or rotational states, combined transitions
are possible as well. In these, a molecule changes both its vibrational and rotational
state. These transitions are frequently called ro-vibrational transitions.

As energy needs to be conserved, absorption is only possible if the molecule can transi-
tion into an energetically higher state such that the energy difference between the current
and the higher molecular state equals the energy of the photon to be absorbed3. This ab-
sorption produces an absorption line in a transmission spectrum. Each molecular species
exhibits characteristic absorption lines 𝑖, each of which is described by a line’s absorption
cross-section

𝜎a,𝑖(𝜈) = 𝑆𝑖 ⋅ 𝑓(𝜈 − 𝜈𝑖) , (2.3)
1Selection rules are a complex topic in itself and will not be covered here.
2Depending on molecular symmetries, some of these normal modes may have equal energies. For exam-

ple, this is the case for methane, which has only four normal modes of distinct energies. Therefore,
some sources state it has only four normal modes, some of which are then called degenerate (e.g.,
Kefala et al., 2024).

3To follow conservation of momentum, the molecule will also change its velocity when absorbing a
photon. At atmospheric temperatures, molecules move at a few hundred meters per second, whereas
the change in velocity for absorption of a photon in the SWIR spectral range is on the order of
centimeters per second.
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2 Background

with the center frequency4 𝜈𝑖, the strength 𝑆𝑖, and the shape function 𝑓(𝜈 − 𝜈𝑖). The
absorption line’s center frequency 𝜈𝑖 is determined by the energy of the corresponding
molecular transition5. The line shape 𝑓(𝜈 − 𝜈𝑖) is the distribution of the absorption
around the center frequency 𝜈𝑖 and is normalized to 1. The strength 𝑆𝑖 is the integral
over the line’s absorption cross-section 𝜎a,𝑖. Summing over the absorption cross-sections
𝜎a,𝑖 of all lines 𝑖 yields the total absorption cross-section

𝜎a(𝜈) = ∑
𝑖

𝜎a,𝑖(𝜈) . (2.4)

This absorption cross-section 𝜎a(𝜈) characterizes the number of photons d𝑁𝜈 of fre-
quency 𝜈 absorbed along the path d𝑠 in a gas with molecular density 𝑛 and 𝑁𝜈 the
number of incident photons:

d𝑁𝜈
d𝑠

= −𝑁𝜈 ⋅ 𝜎a(𝜈) ⋅ 𝑛 . (2.5)

The product of absorption cross-section 𝜎a(𝜈) and molecular density 𝑛 defines the ab-
sorption coefficient

𝛽a(𝜈) = 𝜎a(𝜈) ⋅ 𝑛 . (2.6)

A line’s strength 𝑆𝑖 is determined by the fraction of molecules in the required initial
state for the transition, and the intrinsic probability of a photon with the correct wave-
length hitting a molecule actually producing this transition. In the atmosphere, thermal
equilibrium prevails up to a height of about 120 km, meaning the population density of
the molecular states is given by a Boltzmann distribution and defined by the local tem-
perature. The intrinsic probability of a transition happening depends on the Einstein 𝐵
coefficient of that transition, which can be derived in the framework of quantum electro-
dynamics, but this would exceed the scope of this thesis. Furthermore, an absorption
line can be degenerate, meaning there are multiple transitions that have the exact same
energy difference.

There are different effects that determine a line’s shape and width, which are described
in the following.

Natural broadening Natural broadening describes the natural width of an absorption
line, which is due to Heisenberg’s uncertainty principle and independent of exter-
nal variables like gas temperature or pressure. In the atmosphere, this natural
broadening is negligible in comparison to the two following broadening effects.

4In the following description, all expressions are in terms of frequency, as these can be derived from
first principles. The conversion of, e.g, a line width from frequency to wavelength can be achieved
through different ways, resulting in slightly different expressions, even though the numerical difference
between these different wavelength expressions is tiny (Lovett & Parsons, 1977).

5Different effects, which will not be described here, can lead to a slight shift of the center frequency of
an absorption line.
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Doppler broadening A second broadening effect originates from the temperature 𝑇 of
the gas. This temperature is associated with a velocity distribution of the molecules,
which is a Maxwell-Boltzmann distribution if thermal equilibrium prevails. If a
molecule moves toward a photon it is about to absorb, the photon has a smaller
wavelength and thus an increased energy due to the Doppler effect in the molecule’s
frame of reference. The opposite is true for a molecule moving in the same direction
as the photon. Through this effect, photons with a higher or lower energy are
absorbed, if their Doppler shift accounts for the energy difference to the molecular
transition energy. This results in a Gaussian line shape

𝑓D(𝜈 − 𝜈0) = 1
𝛾D

√
π

exp (−(𝜈 − 𝜈0)2

𝛾2
D

) (2.7)

with the full width at half maximum (FWHM) 𝛾D
√

ln 2 ∝ 𝑇 1/2 𝑚−1/2 and the
molecular mass 𝑚. The higher the temperature of the gas, the broader the velocity
distribution of the molecules, and thus the stronger the line broadening. Doppler
broadening is the dominant broadening effect in the upper atmosphere.

Pressure broadening A third broadening effect depends on the pressure 𝑝 of the gas.
Transitions between quantum states can be affected by simultaneous collisions with
other molecules, which are more likely at higher pressure. The theory behind pres-
sure broadening is quite complicated, so here we settle for the result that pressure
broadening usually can be sufficiently well described by a Lorentzian line shape

𝑓𝑝(𝜈 − 𝜈0) =
𝛾𝑝/π

(𝜈 − 𝜈0)2 + 𝛾2
𝑝

(2.8)

with the FWHM 2𝛾𝑝, which is roughly proportional to the molecular collision rate.
To first order, this implies 𝛾𝑝 ∝ 𝑝 𝑇 −1/2. Pressure broadening is the dominant
broadening effect in the lower atmosphere.

Further effects like speed dependence of pressure broadening, line mixing, and Dicke
narrowing affect the spectral line shape, but these corrections were neglected when gener-
ating the unit absorption spectrum (UAS) (see Section 4.1) used for data analysis. After
all, the camera used for this thesis has a spectral resolution of a few nanometers, so these
effects can be neglected at this spectral resolution.

Unless either Doppler broadening or pressure broadening clearly dominate, the Gaussian
and the Lorentzian line shape have to be convoluted to the Voigt line shape

𝑓𝑉 (𝜈 − 𝜈0) = (𝑓D ∗ 𝑓𝑝)(𝜈 − 𝜈0) = ∫
∞

0
𝑓D(𝜈′ − 𝜈0) ⋅ 𝑓𝑝(𝜈 − 𝜈′) d𝜈′ . (2.9)

Close to its center, the Voigt line shape is similar to the Gaussian line shape, whereas

10



2 Background

the tails on either side resemble the Lorentzian line shape.
Taking all these effects together, one can derive the wavelength dependent atmospheric

transmission for different molecular species. Figure 2.1 shows atmospheric transmis-
sion spectra for H2O, CO2, and CH4 in the SWIR spectral range between 1000 nm and
2500 nm. The CH4 absorption band at around 2300 nm is used for CH4 retrievals in this
thesis6.
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Fig. 2.1. Transmission spectrum of atmospheric H2O in green, CO2 in blue, and CH4 in
red, derived from MODTRAN (Berk et al., 2014) and resampled to 2 nm spectral
resolution. Figure taken from Roger et al. (2024a).

2.2.4 Scattering
When a photon collides with a molecule or another small particle, it can be scattered,
changing its direction. In our application, elastic scattering dominates over inelastic
scattering, meaning the photon’s wavelength remains unchanged. There are different
theories to describe an elastic scattering event which are applicable for different size
relations of photon wavelength 𝜆 and particle radius 𝑟. This is expressed by the size
parameter

𝑥 = 2π𝑟
𝜆

. (2.10)

The radiative transfer effect of scattering is described by two quantities, depending on
refractive index, size, and shape of the scattering particle. The scattering cross-section
𝜎s characterizes the total scattering probability, analogously to the absorption cross-
section 𝜎a characterizing the probability of absorption. The scattering phase function 𝑝(𝜃)

6Methane’s shortwave (1000 nm to 5000 nm) bands contribute about 15% to methane’s total radiative
forcing. This is not obvious, as, e.g., the shortwave bands of CO2 actually decrease the total radiative
forcing of CO2 through stratospheric absorption of solar radiation (Etminan et al., 2016).
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describes the relative probability distribution of scattering angles 𝜃, and is normalized to
4π.

The processes relevant to this thesis are scattering of photons in the SWIR range
on molecules and on aerosols. For molecules, the size parameter 𝑥 is on the order of
some 10−4, leading to very weak scattering that is likely negligible compared to aerosol
scattering. Still, molecular scattering is included in the computation of the UAS. This
scattering is described by Rayleigh theory, which characterizes the dipole interaction
of spherical molecules with plane electromagnetic waves, where the wavelength 𝜆 is sig-
nificantly larger than the molecule’s radius 𝑟 (𝑥 < 0.2). The scattering cross-section is
characterized by

𝜎s,Rayl. ∝ 𝑟6

𝜆4 . (2.11)

The scattering phase function is

𝑝Rayl.(𝜃) = 3
4

(1 + cos2 𝜃) , (2.12)

meaning that forward and backward scattering (𝜃 close to 0 or close to π) are more
probable than scattering in a perpendicular angle (𝜃 close to π/2).

Scattering on aerosols is described by Mie theory (0.2 < 𝑥 < 2000). In most situations,
it dominates over Rayleigh scattering in the SWIR range, and the dependence of the
scattering cross-section 𝜎s,Mie on particle size and wavelength is much more complicated
than Eq. (2.11). For spherical particles with uniform radius, it starts at 0 for 𝑥 = 0,
and oscillates around 2π𝑟2 with an ever smaller amplitude for larger 𝑥. In reality, with
differently sized particles, only a small wavelength dependence remains. The scattering
phase function for aerosols can be approximated by the Henyey-Greenstein phase function

𝑝HG(𝜃) = 1 − 𝑔2

(1 + 𝑔2 − 2𝑔 cos 𝜃)3/2 . (2.13)

𝑔 is called asymmetry parameter, and is a measure for the asymmetry of the phase
function. For 𝑔 = 0, scattering is isotropic, for 𝑔 → ±1, the preferred scattering direction
is forward/backward.

Analogously to the absorption coefficient 𝛽a, one can define a scattering coefficient 𝛽s
as the product of scattering cross-section 𝜎s and particle density 𝑛

𝛽s(𝜆) = 𝜎s(𝜆) ⋅ 𝑛 . (2.14)

Integrating this scattering coefficient vertically over the whole atmosphere yields the
aerosol optical depth

𝜏(𝜆) = ∫
∞

0
𝛽s(𝜆, 𝑧′) d𝑧′ , (2.15)
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which is a measure for the strength of (out-of-beam) scattering happening in the atmo-
sphere. The dependence of 𝜏 on the wavelength 𝜆 is roughly given by

𝜏(𝜆)
𝜏(𝜆0)

= ( 𝜆
𝜆0

)
−𝛼

, (2.16)

with the Ångström exponent 𝛼 (Ångström, 1929). This allows the calculation of the
aerosol optical depth 𝜏(𝜆) from a given 𝜏(𝜆0) and 𝛼.

2.2.5 Radiative Transfer Equation
The radiative transfer processes described up to here can be summed up into the radia-
tive transfer equation. It quantifies the change d𝐼(𝜆, 𝜴, 𝑠) of radiance 𝐼(𝜆, 𝜴, 𝑠) in the
direction 𝜴 along the path d𝑠 as

d𝐼
d𝑠

= −𝛽a𝐼 − 𝛽s𝐼 + 𝛽a𝐵𝜆(𝑇 ) + 𝛽s
4π

∫
4π

𝑝(𝜴′, 𝜴)𝐼(𝜴′) d𝜴′ . (2.17)

Here, 𝛽a(𝜆, 𝑠) is the absorption coefficient as given in Eq. (2.6), 𝛽s(𝜆, 𝑠) is the scattering
coefficient as given in Eq. (2.14), 𝐵𝜆(𝜆, 𝑇 (𝑠)) is the Planck function as given in Eq. (2.2),
and 𝑝(𝜴′, 𝜴, 𝑠) is the scattering phase function. All quantities in Eq. (2.17) are func-
tions of 𝑠, and except for the path d𝑠 and the scattering phase function 𝑝(𝜴′, 𝜴, 𝑠), all
quantities are functions of the wavelength 𝜆, which is omitted in this equation and also
in the following for the sake of readability. The terms on the right-hand side of Eq. (2.17)
are—in this order—(molecular) absorption, out-of-beam scattering (by molecules and
aerosols), thermal radiation, and into-beam scattering (by molecules and aerosols).

In the form of Eq. (2.17), the radiative transfer equation has no analytical solution due
to the into-beam scattering term. One can either choose to numerically solve this differ-
ential equation, or introduce simplifications which allow for an analytical solution. This
thesis makes use of the second approach, and two such solutions of simplified versions of
the radiative transfer equation are presented in the following.

2.2.6 Beer-Lambert Law
The analysis of the hyperspectral camera data with a matched filter (see Chapter 4) as
done in this thesis relies on the identification of absorption due to methane in the light
path. The change of a spectrum due to absorption and scattering with respect to the
amount of a gas or aerosol in the light path is described by the Beer-Lambert law, which
is derived in the following. For the detection of methane as just described, only molecular
absorption is relevant; nevertheless, this derivation includes out-of-beam scattering as
well as absorption, and a version only including absorption can easily be found as an
even simpler special case.
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Looking at absorption and out-of-beam scattering, and neglecting thermal emission
and into-beam scattering, Eq. (2.17) simplifies to

d𝐼(𝑠)
d𝑠

= −𝛽a(𝑠)𝐼(𝑠) − 𝛽s(𝑠)𝐼(𝑠) = −𝛽e(𝑠)𝐼(𝑠) , (2.18)

with the extinction coefficient 𝛽e(𝜆, 𝑠) = 𝛽a + 𝛽s. This differential equation can easily be
solved to

𝐼(𝑠) = 𝐼(0) ⋅ e− ̂𝜏e(𝑠) , (2.19)

with the extinction optical path ̂𝜏e(𝜆, 𝑠) defined as

̂𝜏e(𝜆, 𝑠) = ∫
𝑠

0
𝛽e(𝑠′) d𝑠′ . (2.20)

Equation (2.19) describes the extinction along the light path 𝑠, and is called Beer-Lambert
law.

When absorption dominates over scattering, 𝛽e ≈ 𝛽a. Then

̂𝜏e(𝑠) ≈ ̂𝜏a(𝑠) = ∫
𝑠

0
𝛽a(𝑠′) d𝑠′ = 𝜎a ⋅ ∫

𝑠

0
𝑛(𝑠′) d𝑠′ , (2.21)

where 𝜎a is the absorption cross-section and 𝑛(𝑠′) is the molecular density at position
𝑠′. Here, we used the definition of 𝛽a in Eq. (2.6) and assumed a constant absorption
cross-section 𝜎a along the light path 𝑠′.

Thus, absorption is dependent on the molecular density integrated along the light path.
This integrated molecular density is called column density, and is the observable quantity
in absorption spectroscopy. In this thesis, it is mainly expressed in ppm m, which can be
converted into molec m−2 using the ideal gas law as

𝛼molec m−2 = 𝛼ppm m ⋅ 𝑝
𝑘B𝑇

⋅ 10−6

ppm
, (2.22)

where 𝛼molec m−2 is the enhancement in molec m−2, 𝛼ppm m is the enhancement in ppm m,
𝑝 is the pressure, 𝑇 is the temperature, and 𝑘B is the Boltzmann constant. A further
conversion to kg m−2 can be achieved by multiplying with the molar mass 𝑀 .

2.2.7 Single Scattering Approximation
In this thesis, the hyperspectral camera data is analyzed using a matched filter. The
matched filter needs a UAS as external input, which is calculated from simulated camera
observations. We use the single scattering solution of the radiative transfer equation
(2.17) to simulate such observations. For a cloudless sky, this solution is a reasonably
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good approximation.
As the name suggests, this approximation only considers photons that were scattered

into the beam by exactly one scattering event, i.e., all observed photons originate at the
Sun, are scattered once in the atmosphere, and then reach the observer. This simplifies
the calculation a lot, as the intensity 𝐼(𝜴′) in the integral in Eq. (2.17) then is a Dirac
delta function of the Sun’s direction 𝜴S:

𝐼(𝜴′) = 𝐹S 𝛿(𝜴′ − 𝜴S) e− 𝜏
𝜇S . (2.23)

Here, 𝐹S(𝜆) is the spectral irradiance of the Sun, 𝜏 is the extinction optical depth (defined
below in Eq. (2.24)), and 𝜇S = cos(SZA) > 0 is the cosine of the solar zenith angle (SZA),
which is the angle between zenith and Sun.

In addition, the solution presented here also neglects thermal emission, which is
reasonable for the SWIR spectral range.

To solve the radiative transfer equation (2.17), we parametrize the slant path 𝑠 using
the vertical coordinate 𝑧 = 𝜇𝑠. Here, 𝜇 = cos(VZA) is the cosine of the viewing zenith
angle (VZA), which is the angle between zenith and photon propagation direction after
the scattering event. For our upward-viewing geometry VZA > 90° and thus 𝜇 < 0
because photons are propagating downward. As the next step we reparametrize the
equation, now using the extinction optical depth

𝜏(𝜆, 𝑧) = ∫
∞

𝑧
𝛽e(𝑧′) d𝑧′ (2.24)

as a vertical coordinate, with the extinction coefficient 𝛽e = 𝛽a + 𝛽s.
Simplifying Eq. (2.17) like this yields

𝜇 d𝐼
d𝜏

= 𝐼 − 𝐹S𝜔(𝜏)
4π

𝑝(𝜃, 𝜏) e− 𝜏
𝜇S (2.25)

d
d𝜏

(𝐼e− 𝜏
𝜇 ) = −𝐹S𝜔(𝜏)

4π𝜇
𝑝(𝜃, 𝜏) e−𝜏( 1

𝜇S
+ 1

𝜇 ) . (2.26)

The ratio of scattering to extinction efficiency is the single scattering albedo 𝜔(𝜆, 𝜏) =
𝛽s/𝛽e. 𝜃 is the scattering angle given by the Sun’s position and the observation direction.

In the solution presented here, the atmosphere is assumed to comprise 𝑁 homogeneous,
parallel layers (index 𝑛), neglecting the Earth’s curvature for now. Each layer has a
constant single scattering albedo 𝜔𝑛 and scattering phase function 𝑝𝑛(𝜃). Integrating
Eq. (2.26) layer by layer yields the following solution for downwelling diffuse radiance at
the Earth’s surface:

𝐼 = 𝐹S𝜇S
4π(|𝜇| − 𝜇S)

e− 𝜏𝑁
|𝜇|

𝑁
∑
𝑛=1

e−𝜏𝑛( 1
𝜇S

− 1
|𝜇| )𝜔𝑛𝑝𝑛(𝜃) (1 − e−𝛥𝜏𝑛( 1

𝜇S
− 1

|𝜇| )) (2.27)
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(Haveresch, 2023). Here, 𝜏𝑁 = 𝜏(𝑧 = 0) is the total extinction optical depth, 𝜏𝑛 is the
extinction optical depth from the top of the atmosphere down to atmospheric layer 𝑛,
and 𝛥𝜏𝑛 = 𝜏𝑛 − 𝜏𝑛−1 is the extinction optical depth of layer 𝑛.

The plane-parallel approximation neglects Earth’s curvature, which is a good approx-
imation for many sky-scattered sunlight observations. The observations in this thesis
have a VZA close to 90°, i.e., the camera points just above the horizon. In this case, the
plane-parallel approximation is not valid anymore, but this deviation can be corrected
empirically. The correction by Kasten and Young (1989), which was used in this thesis,
reads

|𝜇| = | cos(VZA)| + 0.505 72 ⋅ (6.079 95° + VZA − 90°)−1.6364 . (2.28)

2.3 Imaging Spectrometry
Imaging spectrometry is an umbrella term for all techniques that allow for a pixel-wise
observation of spectra, resulting in an image with two spatial and one spectral dimension.
While the measurement technique is different and more complex than that of an ordinary
camera, the resulting structure of measurement data is comparable, except for the cru-
cial difference that an ordinary color camera records intensities for red, green, and blue
light in each spatial pixel, while an imaging spectrometer (also termed spectral or hyper-
spectral camera) records intensities for tens or hundreds of different wavelengths in each
spatial pixel. Furthermore, these wavelengths may not lie in the visible spectral range
and are therefore invisible to the human eye, as is the case for the camera employed in
this thesis.

Section 2.3.1 treats the basics of grating spectrometry, and is based on Demtröder
(2019). Section 2.3 then gets into the details of the imaging spectrometry technique
of push-broom imaging, based on information from Shaw and Burke (2003) and Norsk
Elektro Optikk AS (2014).

2.3.1 Grating Spectrometry
When light encounters an obstacle, it experiences diffraction. Diffraction cannot be
explained by geometric optics alone; instead, the explanation is based on the Huygens
principle. According to this principle, any point of a light ray acts as a source of spherical
wave fronts. This explains light being diffracted around obstacles.

An optical grating consists of many parallel slits of distance 𝑑 and width 𝑏, through
which light can pass. As the light passes through these slits, it is diffracted, meaning
all slits act as sources of spherical wave fronts. These wave fronts interfere with each
other: At each point behind the grating, the light waves from all slits, carrying different
phases due to differences in optical path length, combine to a single intensity value. This
interference can result in a large intensity, but it can also happen that all the waves add
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up to zero, and no intensity is left. Maximum intensity occurs when the path difference
𝛥𝑠 = 𝑑 ⋅ sin 𝜃 between light waves passing two neighboring slits satisfies

𝛥𝑠 = 𝑑 ⋅ sin 𝜃 = 𝑚 ⋅ 𝜆 , (2.29)

where 𝜃 is the diffraction angle, 𝜆 is the wavelength, and 𝑚 is an integer. Therefore, the
angle 𝜃 of maximum intensity depends on the wavelength 𝜆, effectively splitting the light
into its spectral components.

A grating spectrometer is a spectrometer that makes use of a grating as its central op-
tical component to split the incoming light into its different wavelengths. The diffraction
pattern then falls onto a detector, where the signal is converted into digital units. A grat-
ing spectrometer furthermore consists of different optical components such as apertures,
lenses, and/or mirrors.

2.3.2 Push-Broom Imaging
A push-broom imager (also push-broom scanner or along-track scanner) is an imaging
spectrometer with a grating as its central optical component. Its working principle is
depicted in Fig. 2.2.

Light entering the push-broom imager is focused onto a slit such that only light orig-
inating from a narrow strip of the scene passes. The light is then collimated onto a
grating that diffracts the incoming light into its wavelength components. The light is
then focused onto a two-dimensional array of detector pixels, where one dimension cor-
responds to the spatial coordinate called line here, and the other corresponds to the
spectral coordinate called channel here. After one such strip, which is called frame here,
is captured, the camera is either rotated by a certain angle (e.g., like in our case, when
deployed on the ground), or is moved by a certain distance (e.g., when deployed on an
aircraft), or a combination of both (e.g., on a satellite). This is what characterizes the
push-broom imager in contrast to, e.g., a whisk-broom imager: The push-broom imager
scans across the scene and captures the image frame by frame and the detector consists of
a two-dimensional pixel array resolving spatial lines and spectral channels simultaneously.

Recording an image like this results in a three-dimensional data cube where two di-
mensions are the spatial x- and y-coordinates frame and line, and the third dimension is
the spectral coordinate channel. One such data cube is called image or observation in
this thesis. To avoid confusion about the term pixel, the term spatial pixel is used to re-
fer to a certain frame and line, i.e., a spatial position in the field of view (FOV), while
the term detector pixel is used to refer to a physical pixel on the detector, representing a
certain line and channel.

A push-broom imager may be characterized by the following properties:

FOV The solid angle that an image covers.
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FOV per pixel The solid angle that one spatial pixel covers.

Spectral range The detectable wavelength interval.

Instrument line shape (ILS) The response function to a single wavelength signal, usually
assumed to be a Gaussian function and characterized by its FWHM.

Spectral sampling distance (SSD) The difference in wavelength between two adjacent
spectral channels.

Point spread function The response function to a point source of light, usually assumed
to be a Gaussian function and characterized by its FWHM.

In Tab. 3.1, the numerical values of these quantities are listed for the camera used for
this thesis.
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Fig. 2.2. The working principle of a push-broom imager. Light enters the camera from the
left, is focused onto an entrance slit, collimated onto the dispersing element, and
then focused onto the detector. Over time, different strips of the field of view
(FOV) are observed, such that a two-dimensional image with an additional spectral
dimension emerges. In our viewing geometry, the observed strips extend vertically.
Figure adapted from Knapp (2024), Baumgartner (2022), and Shaw and Burke
(2003).
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This section describes the instruments that were used during the summer 2024 field
campaign near Madrid, Spain (see Chapter 5). Section 3.1 describes the setup of the
hyperspectral cameras used for observations, lists the specifications of the camera whose
data was used for this thesis, and also details how the camera raw data is converted into
a quantity proportional to radiance for further evaluations. Section 3.2 describes the
properties of the wind lidar that was co-deployed during the campaign and also outlines
its operating principle.

3.1 Hyperspectral Cameras
3.1.1 Field Setup
A hyperspectral camera is a camera that—instead of capturing intensities for red, green,
and blue like a conventional camera—captures a discrete spectrum with tens or hundreds
of wavelengths for each spatial pixel (see Section 2.3). The hyperspectral camera used
for this thesis is the model HySpex SWIR-384 by Norsk Elektro Optikk AS (NEO).
Additionally, a HySpex Mjolnir S-620 camera was deployed during the summer 2024
field campaign near Madrid, Spain. Just like the HySpex SWIR-384, it measures in the
SWIR spectral range, but its data was not used in this thesis. Furthermore, a HySpex
VNIR-1800 camera was mounted beside the HySpex SWIR-384 due to operating software
constraints. This camera captures light in the visible and near-infrared range and thus is
not suited for detection of methane. All cameras are push-broom imagers, whose basic
working principle is detailed in Section 2.3.2.

The cameras are mounted on two tripods and are rotated around the vertical axis
during operations using two rotation stages. Two laptops are used to control the cameras.
All devices are powered by two battery packs and a solar panel. To prevent overheating,
all the equipment except for the solar panel is set up in the shade of a pavilion. This
setup is illustrated in Fig. 3.1, which depicts the arrangement during measurements at
the Pinto landfill.

3.1.2 Characteristics of the HySpex SWIR-384
The characteristics of the HySpex SWIR-384 camera are listed in Tab. 3.1.
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Fig. 3.1. The measurement setup on July 4, 2024, at the Pinto landfill. The black camera
on the left tripod is the HySpex Mjolnir S-620. The blue camera on the right
tripod is the HySpex VNIR-1800 and the red camera on the right tripod is the
HySpex SWIR-384. The cameras and rotation stages are controlled by two laptops,
and all devices are powered by two battery packs and a solar panel.

3.1.3 Raw Data Preprocessing
An image captured by the HySpex SWIR-384 camera is output as a three-dimensional
array of digital numbers DN𝑓𝑙𝑐, which are 16-bit unsigned integers. The indices 𝑓 , 𝑙, and
𝑐 indicate the coordinates frame (horizontal spatial), line (vertical spatial) and channel
(spectral) of the image, which consists of 𝐹 frames, 𝐿 = 384 lines, and 𝐶 = 288 channels
in total. The detector inside the camera is a two-dimensional pixel array resolving lines
and channels. Such a physical pixel is referred to as detector pixel in the following. The
frame coordinate arises from the camera rotating from left to right around its vertical
axis and capturing one frame after another. A certain spatial position in the image, i.e.,
a certain frame and line, is referred to as spatial pixel.
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Tab. 3.1. Characteristics of the HySpex SWIR-384 camera, which are explained in Sec-
tion 2.3.2. Values taken from (A) Moritz Sindram (personal communication), (B)
Norsk Elektro Optikk AS (n.d.), (C) data acquired with the camera, (D) Norsk
Elektro Optikk AS (2021), and (E) the camera software.

Characteristic Value Source (see caption)

Vertical FOV 16.06° A
Number of vertical lines 𝐿 384 B
Vertical angular resolution 0.66 mrad to 0.81 mrad A
Horizontal angular resolution 0.73 mrad B
Spectral range 953 nm to 2515 nm C
Number of spectral channels 𝐶 288 B
ILS FWHM 7 nm D
SSD 5.44 nm C
Detector operating temperature 147 K E

The digital numbers DN𝑓𝑙𝑐 can be converted into a photon count (per average detector
line vertical opening angle) 𝑁𝑓𝑙𝑐 according to

𝑁𝑓𝑙𝑐 =
DN𝑓𝑙𝑐 − BG𝑓𝑙𝑐

QE𝑐 ⋅ RE𝑙𝑐 ⋅ SF
. (3.1)

Here, the background BG𝑓𝑙𝑐 is the sum of an offset introduced by the analog-to-digital con-
verter in the camera and the dark current, which comprises photoelectrons produced by
thermal fluctuations. QE𝑐 is the quantum efficiency, which is the wavelength-dependent
ratio of photoelectrons to incident photons of the total system consisting of optics and
detector. RE𝑙𝑐 is the relative responsivity matrix, which accounts for differences in sen-
sitivity of detector pixels due to detector imperfections and properties of the optical
components in the camera. It furthermore accounts for the relative differences in vertical
angle that the detector lines cover. RE𝑙𝑐 is relative in the sense that the average over all
lines is 1 for each channel. Lastly, SF is an artificial scaling factor between photoelectrons
and digital numbers.

While QE𝑐, RE𝑙𝑐 and SF are known beforehand from calibration measurements, BG𝑓𝑙𝑐
is calculated for each image individually. For this, 200 readouts are performed with a
closed shutter, using the same integration time as for the actual observation. These
readouts are taken before capturing the first and after capturing the last frame of an
image. The readouts are then averaged to BG0𝑙𝑐 and BG(𝐹−1)𝑙𝑐 and interpolated linearly
for all frames in between (Norsk Elektro Optikk AS, 2014).

For the data analysis, a conversion from the photon count in Eq. (3.1) to a quantity
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proportional to radiance 𝐿𝑓𝑙𝑐 is necessary. The latter is given by

𝐿𝑓𝑙𝑐 =
𝑁𝑓𝑙𝑐 ⋅ ℎ ⋅ 𝑐

𝑡 ⋅ 𝐴 ⋅ 𝛺 ⋅ 𝛥𝜆 ⋅ 𝜆𝑐
. (3.2)

Here, ℎ is the Planck constant, 𝑐 is the speed of light, 𝑡 is the integration time per frame,
𝐴 is the area of the entrance aperture, 𝛺 is the average solid angle covered by a spatial
pixel (relative differences are already accounted for in the relative responsivity matrix
RE𝑙𝑐), 𝛥𝜆 is the SSD (constant for our camera), and 𝜆𝑐 is the center wavelength of a
channel.

As the matched filter analysis of an image only requires a quantity proportional to
radiance, all quantities that are constant throughout the image can be ignored, resulting
in the conversion

𝐿𝑓𝑙𝑐 ∝
DN𝑓𝑙𝑐 − BG𝑓𝑙𝑐

QE𝑐 ⋅ RE𝑙𝑐 ⋅ 𝜆𝑐
. (3.3)

As a last step, defective detector pixels, which fail to sense incoming photons correctly,
have to be eliminated from the image. This is achieved by linewise linear interpolation
over all such pixels listed in the bad pixel map BP𝑙𝑐, which excludes pixels with excep-
tionally high, low, or variable response to incoming radiation. Knapp (2024) describes
the bad pixel map in detail.

3.2 Wind Lidar WindRanger 200
To measure wind conditions in the field, a WindRanger 200 wind lidar1 (light detection
and ranging) by METEK Meteorologische Messtechnik GmbH was used. It was config-
ured to measure three-dimensional wind velocities at heights of 10 m, 20 m, 50 m, 100 m,
150 m, and 200 m approximately every 8 s. During the Madrid field campaign, the lidar
was powered by a solar panel in conjunction with a battery pack. High towers and other
characteristic landmarks served as reference points for azimuth directions to align the li-
dar. This alignment set 0° as the direction of the landmark. Afterward, the positions of
these landmarks were used to calculate absolute wind directions, where 0° corresponds
to north. For vertical alignment, a built-in spirit level was used.

The WindRanger 200 is a frequency-modulated continuous-wave (FMCW) lidar. This
means it continuously emits a laser signal, which is modulated in frequency (as a triangu-
lar waveform). Furthermore, the laser is tilted at an angle of 10° relative to the vertical
and rotates around the vertical axis once per second. The laser light sent out into the sky
is backscattered by aerosols, and the lidar optics are focused at a specific height where
wind velocity is to be measured, ensuring that the received signal is primarily composed

1The word lidar exists in many different casings (Lidar, LiDAR, LIDAR, LiDaR, ...), but lower case
seems to have become the most prominent variant (Deering & Stoker, 2014).
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of backscattered light from that focal height level. When the signal is backscattered by
moving air/moving aerosols, its frequency undergoes a Doppler shift. Mixing the incom-
ing, backscattered and the outgoing signal allows for measurement of the beat frequency.
Assuming constant wind, this beat frequency oscillates at the rotation frequency of the
laser, i.e., once per second. To retrieve data, two sine functions are fitted to the beat
frequency of the increasing and decreasing branches of the frequency sweeps/triangu-
lar wave separately. From the fit parameters, the horizontal wind direction, horizontal
wind speed, vertical wind velocity, and measurement height can be calculated. The lat-
ter serves as a quality indicator, as it should not deviate significantly from the desired
measurement height (METEK Meteorologische Messtechnik GmbH, 2023).
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4 Matched Filter

A matched filter is a statistical method to detect a signal in noisy data (Manolakis et al.,
2014). In this thesis, spectra of skylight captured with a hyperspectral camera (see
Section 2.3) are examined with a matched filter to detect a spectral absorption signal of
a target gas like methane. This results in a two-dimensional image showing the signal
strength, i.e., the amount of target gas in each pixel.

An alternative to such a matched filter would be a physical retrieval, where a physics-
based inversion routine is applied to all pixels sequentially, and multiple species like
different gases and aerosol content can be retrieved simultaneously (e.g., Butz et al., 2010,
2011). This is advantageous for heterogeneous scenes, but has much higher computational
costs.

The matched filter only requires the observed spectra of all pixels in an image and a
predefined unit absorption spectrum (UAS) as input. This UAS is the spectral absorption
signal to be detected in the observed spectra. It specifies the relative change of an
observed spectrum in dependence of the amount of target gas in the light path. The UAS
is artificially generated from a modeled atmosphere and a simulated camera observation.

The matched filter correlates each of the observed spectra with the UAS (or rather,
target signature), and outputs a single value per spectrum or pixel which quantifies this
correlation. This value is the light path–integrated gas enhancement in the pixel, or
simply enhancement for short. It is the amount of target gas that exceeds the atmospheric
background concentration. The resulting image shows the spatial distribution of the
target gas enhancement, and can be used, e.g., to locate the source of the gas, or to
quantify emission rates using additional environmental information like wind velocity.

Section 4.1 explains the generation of the UAS in detail. In Section 4.2, the classic
matched filter (CMF) as the simplest version of a suitable matched filter is derived from
statistical considerations, followed by a possibly more illustrative and visual derivation
of the CMF in Section 4.3. Section 4.4 then lists and describes different improvements to
the CMF that enhance its signal detection and quantification capabilities. Section 4.5
derives the lognormal matched filter (LMF); a matched filter differing from the CMF in
the underlying assumption of the statistical distribution of the observed spectra. This is
followed by an iterative version of the LMF in Section 4.6. Lastly, Section 4.7 discusses
performance differences between all these matched filter versions.
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4.1 Unit Absorption Spectrum
The unit absorption spectrum (UAS) is the only external input the matched filter needs,
apart from the observed spectra themselves. It is the signal that the matched filter tries
to find in the observed spectra; it quantifies the relative change of an observed spectrum
in dependence of the amount of target gas in the light path. Therefore, the strength of the
detected signal in an observed spectrum corresponds to the light path–integrated target
gas enhancement—the amount of target gas in the light path exceeding the background
concentration.

The UAS needs to be simulated specifically for each instrument. Solving the radiative
transfer equation for two atmospheric states—one with and one without a target gas
enhancement in the light path—provides two observations of an ideal instrument. For
any real instrument, they need to be converted using the ILS and the camera’s spectral
sampling. The UAS then follows from the ratio of these instrument-specific spectra.

Once generated, a UAS can be used for the analysis of all data that was captured
under the same or similar environmental conditions of surface pressure and atmospheric
aerosol content, and with the same instrument.

In theory, the UAS 𝒔 is defined as the change of the logarithmized observed spectrum
𝑳(𝛼) per gas enhancement 𝛼1

𝒔(𝛼) = ∂
∂𝛼

ln 𝑳(𝛼) . (4.1)

Here, the boldface font denotes a spectrum/spectral vector.
This definition of the UAS depends on the gas enhancement 𝛼, which is the intended

result of the matched filter. While an iterative approach could account for this complexity,
it is generally avoided by approximating Eq. (4.1) with the difference quotient

𝒔 = ln 𝑳(𝛼) − ln 𝑳(0)
𝛼

, (4.2)

for a given enhancement 𝛼, which was chosen as 20 000 ppm m, a typical magnitude above
a localized methane source like a landfill or a coal mine ventilation shaft. This approxima-
tion holds because the at-sensor radiance decreases exponentially with 𝛼 according to the
Beer-Lambert law (2.19) (and Eq. (4.3)). Consequently, 𝒔(𝛼) remains nearly constant.
The slight variation in 𝒔(𝛼) arises from the fact that the UAS quantifies the relative
change in observed radiance, which includes the instrument’s spectral influence (i.e., con-
volution and binning, see further down). These instrument effects do not commute with
atmospheric attenuation affecting the at-sensor radiance. This makes the UAS, in the-
ory, dependent on both the atmospheric background concentration and the enhancement.

1In our case, this is per 1 ppm m, so the UAS has units of (ppm m)−1. One could equivalently express
the UAS in units of m2 molec−1 = (molec m−2)−1 (see Eq. (2.22)).
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However, it is reasonable to calculate a constant UAS from an enhancement over a real-
istic atmospheric background. The entries of the UAS 𝒔 are all negative as all entries
of the observation with target gas enhancement 𝑳(𝛼) are smaller than the correspond-
ing entries of the observation without target gas enhancement 𝑳(0) (or equal in spectral
regions without absorption).

The radiative transfer model used for the generation of the UAS is the same as in
Knapp (2024). It is the single-scattering solution (see Section 2.2.7) of the radiative
transfer equation (see Section 2.2.5), modeled for an atmosphere consisting of 100 layers
of 400 m thickness each, and with a spectral resolution of 0.001 nm. Only the three
most important atmospheric absorbers water, methane, and CO2 are incorporated in the
simulation, and their absorption cross-sections are taken from the HITRAN database
(Gordon et al., 2022; Kochanov et al., 2016). Atmospheric standard profiles are taken
from G. P. Anderson et al. (1986), with the background concentrations of methane and
CO2 scaled to 1850 ppb and 420 ppm, respectively. Furthermore, the scattering effect of
aerosols is included via the aerosol optical depth 𝜏 and the asymmetry factor 𝑔 of the
Henyey-Greenstein phase function.

For the Madrid Methane Remote Sensing Campaign 2024, these two aerosol parameters
were taken as the median of data collected by the AERONET station (Holben et al.,
1998) of Madrid in the months of June and July 20242. The asymmetry factor 𝑔 is taken
for 1020 nm, and the aerosol optical depth 𝜏(𝜆) is scaled to the retrieval wavelength using
Eq. (2.16) with 𝜏(1020 nm) and the Ångström exponent 𝛼. This results in 𝑔 = 0.636
and 𝜏 = 0.0160 for the CH4 retrievals and 𝜏 = 0.0156 for the CO2 retrievals presented
in this thesis. The surface pressure was taken as 940 hPa, which is the average surface
pressure measured during the Madrid measurement campaign. For observations of coal
mine ventilation shafts in the Upper Silesian Coal Basin (USCB) (Fig. 4.5), the same
UAS as used by Knapp (2024) was employed, which is based on data taken from the
AERONET station at Racibórz3.

The at-sensor radiance without target gas enhancement is directly obtained from the
radiative transfer model, while the at-sensor radiance with target gas enhancement is
calculated by subsequently applying the Beer-Lambert law (2.19). Since the absorption
due to target gas enhancement occurs close to the camera and over a small fraction of
the total light path, we can assume that this additional absorption happens after all
other radiative transfer effects have taken place. These two at-sensor radiances are then
converted into artificial observation spectra by convolving with the camera’s ILS and
binning onto the separate detector channels, yielding 𝑳(𝛼) and 𝑳(0), from which the UAS
is then calculated using Eq. (4.2). The ILS is assumed to be a Gaussian function with a
FWHM equal to that of the camera’s ILS (see Tab. 3.1). The manufacturer’s calibration
provides the channel wavelengths up to an empirical wavelength shift of 0.75 nm for the

2Data of processing level 1.5 from the station located at 40.45190° N, 3.72395° W, 680 m.
3Station located at 50.08310° N, 18.19170° E, 230 m.
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2300 nm methane absorption band and 2.25 nm for the 2050 nm CO2 absorption band
(Knapp, 2024; Siegel, 2023).

Unless otherwise noted, the CH4 retrievals use a spectral window from 2190 nm to
2396 nm and the CO2 retrievals use a spectral window from 1967 nm to 2260 nm, so the
UAS is generated only in the respective spectral range.

As methane and CO2 have significant atmospheric background concentrations, the
length of the light path changes the observed slant column density of the gas significantly
(see also Section 6.2), and thus also influences the UAS: the longer the light path, the
smaller the influence of an additional gas enhancement, hence the smaller the modulus
of the UAS (Foote et al., 2021). The light path depends on the viewing geometry, which
is why this whole calculation of the UAS is done for viewing elevation angles (VEAs) of
1°, 4°, 7°, 10°, 13°, 16°, 19°, and 22°, for solar zenith angles (SZAs) of 10°, 30°, 50°, 70°,
and 80°, and for relative azimuth angles (RAAs) between the observation direction and
the Sun of 0°, 45°, 90°, 135°, and 180°. As can be seen in Fig. 4.1, the absolute UAS
decreases with decreasing VEA and increasing SZA as the light path lengthens. The
influence of the RAA on the UAS is only in the per mill range as it does not change the
light path length, but only scattering efficiency.

This results in a look-up table, which is ready to be used for matched filter retrievals.
It is specific to a measurement campaign due to the location-dependent surface pressure
and aerosols parameters, and specific to a camera due to the ILS and the wavelength
calibration. At the same time, this look-up table can be used for analysis of measurement
data from different dates and day times.

Before applying the matched filter to an image, the UAS look-up table is interpolated
onto the image pixels, such that each pixel has its own, geometry-dependent UAS. For
this, the position of the Sun is calculated from the date, time, and location of the obser-
vation using pvlib python (K. S. Anderson et al., 2023). The viewing direction of each
pixel is calculated from the geographic position of the camera, the geographic position of
a landmark in the image, and the pixel position of this landmark in the image in terms
of frame and line. This calculation incorporates the results of a geometric characteriza-
tion of the camera provided by Moritz Sindram (personal communication). The process
of this characterization is detailed in Sindram (2021) for a similar camera.
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Fig. 4.1. The UAS that was used for retrieving methane enhancements from the Madrid
campaign data. The gray envelope shows the variation of the UAS for SZAs
between 10° and 80°, VEAs between 1° and 22°, and RAAs between 0° and 180°.
Each panel shows the change of the UAS with one angle varied, while the other
two angles are fixed to VEA = 6°, SZA = 50°, and RAA = 90°. The change of the
UAS in dependence of the RAA is only in the per mill range and thus not visible
here.
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4.2 Classic Matched Filter
A hyperspectral image consists of 𝑃 spatial pixels each containing a value in 𝐶 different
spectral channels. It can thus be represented by the vector 𝑳⃗ = (𝑳1, 𝑳2, … , 𝑳𝑃 ), where
𝑳𝑝 is the spectrum of the 𝑝th pixel containing radiances in 𝐶 different spectral channels.

In analogy to the Beer-Lambert law (2.19), a pixel’s spectrum 𝑳𝑝 can be modeled as

𝑳𝑝 ≈ 𝑳𝑝,0 ⊙ exp(𝛼𝑝 ⋅ 𝒔𝑝) , (4.3)

where 𝑳𝑝,0 would be the observed spectrum without any gas enhancement in the light
path, 𝛼𝑝 is the light path–integrated gas enhancement (e.g., in ppm m), 𝒔𝑝 is the UAS
for this pixel (which has only negative entries), ⊙ denotes componentwise multiplication,

Tab. 4.1. Symbols used in the following derivations of the different versions of the matched
filter. Boldface denotes a spectral vector (dimension 𝐶), a vector arrow denotes
a spatial vector (dimension 𝑃 ), and a double-struck letter denotes a spectral
matrix (dimension 𝐶 × 𝐶). A variable can also be a spectral and spatial vector
at the same time (dimension 𝐶 × 𝑃 ). The entries in the table are sorted by their
dimensions.

Symbol Type/Dimension Name/Meaning

𝑃 Fixed scalar Number of spatial pixels (number of lines times number
of frames minus pixels that are masked out)

𝐶 Fixed scalar Number of spectral channels

𝑝 Index Index specifying the spatial pixel
𝑐 Index Index specifying the spectral channel

𝑳⃗ 𝐶 × 𝑃 Observed spectra in an image
⃗𝒔 𝐶 × 𝑃 Unit absorption spectra
⃗𝒕 𝐶 × 𝑃 𝝁 ⊙ ⃗𝒔; target signatures

𝝁 𝐶 Mean spectrum
𝝂 𝐶 Mean logarithmized spectrum
𝟏 𝐶 Spectral vector of ones

ℂ 𝐶 × 𝐶 Spectral covariance matrix

⃗𝛼 𝑃 Gas enhancements
⃗𝑟 𝑃 Albedo factors

𝜎⃗ 𝑃 Noise-equivalent enhancements

⊙ Operator componentwise multiplication of spectral vectors; con-
serves the vectors’ dimensions
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and exp(�) is applied componentwise as well. This approximation ignores the noise in
the measurement as well as the fact that, in reality, the absorption and scattering of
photons due to the gas enhancement happen before the light passes the detector optics
and these two processes are treated here as if they were commutable.

Assuming only a small portion of pixels exhibits a significant gas enhancement, 𝑳0
can be approximated by the mean spectrum over all pixels

𝝁 = 1
𝑃

𝑃
∑
𝑝=1

𝑳𝑝 , (4.4)

such that

𝑳𝑝 ≈ 𝝁 ⊙ exp(𝛼𝑝 ⋅ 𝒔𝑝) (4.5)
≈ 𝝁 ⊙ (𝟏 + 𝛼𝑝 ⋅ 𝒔𝑝) (4.6)
= 𝝁 + 𝛼𝑝 ⋅ 𝒕𝑝 , (4.7)

defining the target signature
𝒕𝑝 = 𝝁 ⊙ 𝒔𝑝 (4.8)

as a shorthand for further calculations.
Assuming the observed spectra follow a multivariate normal distribution

𝑳𝑝 ∼ 𝒩(𝝁, ℂ) (4.9)

with the mean spectrum 𝝁 and the covariance matrix4

ℂ = 1
𝑃 − 1

𝑃
∑
𝑝=1

(𝑳𝑝 − 𝝁)(𝑳𝑝 − 𝝁)⊤ , (4.10)

where �⊤ denotes the transposed of a vector, the likelihood ℒ of an observation 𝑳⃗ given
the pixel’s enhancements ⃗𝛼 is

ℒ(𝑳⃗| ⃗𝛼) = ((2π)𝐶 det ℂ)−𝑃/2 exp (−1
2

𝑃
∑
𝑝=1

(𝑳𝑝 − (𝝁 + 𝛼𝑝𝒕𝑝))⊤ℂ−1(𝑳𝑝 − (𝝁 + 𝛼𝑝𝒕𝑝))) .

(4.11)

This likelihood is maximized by the classic matched filter (CMF)

𝛼𝑝 =
(𝑳𝑝 − 𝝁)⊤ℂ−1𝒕𝑝

𝒕⊤
𝑝 ℂ−1𝒕𝑝

, (4.12)

4In some papers ℂ is normalized by 𝑃 instead of 𝑃 − 1, but this distinction is negligible in our case,
where 𝑃 is on the order of 105.
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giving the gas enhancement 𝛼𝑝 of pixel 𝑝 in ppm m. For a mathematical derivation of
this maximum likelihood, see, e.g., the appendix of Knapp (2024).

4.3 Visual Derivation of the Classic Matched Filter
In the following, the CMF will be derived in a more visual way, analogously to the
derivation of the normalized matched filter in Manolakis et al. (2014).

Figure 4.2 schematically shows the observed spectra of an image. For simplicity, only
the values in two different spectral channels are shown in the plot, but the following
derivation works for an arbitrary number of spectral channels 𝐶. The two axes represent
the measured intensity in two channels, and each gray point represents one pixel. Each
point’s position is thus defined by the observed intensities in the two channels.

The blue point labeled 𝝁 is the mean spectrum, placed at the mean position of all gray
points. The green point labeled 𝑳𝑝 is the spectrum of one exemplary pixel 𝑝. We can
put the uncertainty of Eq. (4.7) into a new variable 𝜺𝑝, making it an exact equality

𝑳𝑝 = 𝝁 + 𝛼𝑝 ⋅ 𝒕𝑝 + 𝜺𝑝 , (4.13)

and subtract the mean spectrum 𝝁

𝑳𝑝 − 𝝁 = 𝛼𝑝 ⋅ 𝒕𝑝 + 𝜺𝑝 . (4.14)

The left-hand side of the equation, 𝑳𝑝 − 𝝁, is drawn into Fig. 4.2 as a green vector,
pointing from 𝝁 to 𝑳𝑝. The right-hand side of Eq. (4.14) is drawn into the figure as well:
𝛼𝑝 ⋅ 𝒕𝑝 in purple and 𝜺𝑝 in brown. 𝒕𝑝 = 𝝁 ⊙ 𝒔𝑝 is predefined as 𝝁 is defined by the mean
of all pixel’s spectra and 𝒔𝑝 is external input and does not depend on the measurement
itself. According to Eq. (4.14), 𝒕𝑝 has a scalar prefactor 𝛼𝑝, so the direction of the vector
𝛼𝑝 ⋅ 𝒕𝑝 is fixed, as shown by the dashed purple line in Fig. 4.2. 𝛼𝑝 can scale the length
of the purple vector, and the brown vector 𝜺𝑝 representing the error must then point
from the tip of the purple vector to the point 𝑳𝑝. The question is now, how 𝛼𝑝 shall be
chosen, and a logical choice is such that the norm of the error ‖𝜺𝑝‖ is minimized. This is
exactly the case when 𝜺𝑝 is orthogonal to 𝛼𝑝 ⋅ 𝒕𝑝. An equivalent condition is that 𝛼𝑝 ⋅ 𝒕𝑝
is the projection of 𝑳𝑝 − 𝝁 onto 𝛼𝑝 ⋅ 𝒕𝑝 or 𝒕𝑝 or the normalized vector 𝒆𝒕𝑝

= 𝒕𝑝/‖𝒕𝑝‖. This
can be used to calculate 𝛼𝑝 and express it in terms of 𝑳𝑝, 𝝁 and 𝒕𝑝:

𝛼𝑝𝒕𝑝 = proj𝒕𝑝
(𝑳𝑝 − 𝝁) (4.15)

= ((𝑳𝑝 − 𝝁)⊤𝒆𝒕𝑝
) 𝒆𝒕𝑝

(4.16)

= ((𝑳𝑝 − 𝝁)⊤ 𝒕𝑝

‖𝒕𝑝‖
)

𝒕𝑝

‖𝒕𝑝‖
(4.17)
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Fig. 4.2. Visual illustration of the working principle of the CMF, which models the difference
between a pixel’s spectrum 𝑳𝑝 and the mean spectrum 𝝁 as the sum of enhance-
ment 𝛼𝑝 times target signature 𝒕𝑝 and the measurement error 𝜺𝑝, and chooses the
enhancement 𝛼𝑝 such that ‖𝜺𝑝‖ is minimized. Figure inspired by Manolakis et al.
(2014).

=
(𝑳𝑝 − 𝝁)⊤𝒕𝑝

‖𝒕𝑝‖2 𝒕𝑝 . (4.18)

Thus follows

𝛼𝑝 =
(𝑳𝑝 − 𝝁)⊤𝒕𝑝

‖𝒕𝑝‖2 (4.19)
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=
(𝑳𝑝 − 𝝁)⊤𝒕𝑝

𝒕⊤
𝑝 𝒕𝑝

. (4.20)

This expression is already very similar to the CMF in Eq. (4.12). What is missing
is the covariance matrix ℂ, whose entry into the CMF is explained and derived in the
following.

If a pixel 𝑝 is brighter than average (e.g., ‖𝑳𝑝‖ > ‖𝝁‖), probably most its channels will
be brighter than average, and the equivalent is true for a pixel being darker, meaning
there will be a strong correlation between all the channels’ intensities over the whole
image. This correlation needs to be removed in order to assure the matched filter only
detects an enhancement when there is actually an enhanced target gas concentration in
the light path, and not when a pixel is just unusually dark. To remove this correlation,
we perform the whitening transformation

𝑳̃𝑝 = ℂ−1/2𝑳𝑝 , 𝝁̃ = ℂ−1/2𝝁 , ̃𝒕𝑝 = ℂ−1/2𝒕𝑝 , ̃𝜺𝑝 = ℂ−1/2𝜺𝑝 , (4.21)

transforming into a vector space where the covariance between any two distinct chan-
nels is zero, i.e., channels are not correlated anymore. The square-root decomposition
ℂ = ℂ1/2 ⋅ ℂ1/2 is possible as any covariance matrix ℂ is positive semi-definite and the
decomposition is invertible if ℂ and thus ℂ1/2 is positive definite.

For these transformed variables, the same derivation as in Eqs. (4.15) to (4.18), mini-
mizing ‖ ̃𝜺𝑝‖ instead of ‖𝜺𝑝‖, yields

𝛼𝑝 ̃𝒕𝑝 = proj ̃𝒕𝑝
(𝑳̃𝑝 − 𝝁̃) (4.22)

= ((𝑳̃𝑝 − 𝝁̃)⊤𝒆 ̃𝒕𝑝
) 𝒆 ̃𝒕𝑝

(4.23)

= ((𝑳̃𝑝 − 𝝁̃)⊤
̃𝒕𝑝

‖ ̃𝒕𝑝‖
)

̃𝒕𝑝

‖ ̃𝒕𝑝‖
(4.24)

=
(𝑳̃𝑝 − 𝝁̃)⊤ ̃𝒕𝑝

‖ ̃𝒕𝑝‖2
̃𝒕𝑝 , (4.25)

and for 𝛼𝑝 follows the CMF

𝛼𝑝 =
(𝑳̃𝑝 − 𝝁̃)⊤ ̃𝒕𝑝

‖ ̃𝒕𝑝‖2
(4.26)

=
(𝑳𝑝 − 𝝁)⊤ℂ−1𝒕𝑝

𝒕⊤
𝑝 ℂ−1𝒕𝑝

. (4.27)
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4.4 Improvements to the Classic Matched Filter
Foote et al. (2020) propose different improvements to this CMF that target different
shortcomings of the original algorithm. These are an albedo correction, a sparsity prior,
a positivity constraint, and a background correction.

Apart from these, another way to drastically improve the retrieval, especially reducing
line artifacts, is a line-wise differential matched filter, where the mean spectrum 𝝁 and
covariance matrix ℂ are calculated for each line individually. If a target gas enhancement
might spread over a large portion of a line, such a matched filter needs a clearly defined
“background region” where no methane is present, so that 𝝁 and ℂ can be calculated
from the spectra in this region. Usually, this would be a region upwind of the target
gas source, and to compensate for the impaired statistics of only having very few pixels
to calculate 𝝁 and ℂ, in the case of our ground-based camera, the calculation can be
performed for multiple images captured shortly after another at once. As the methane in
the images from the Pinto landfill is usually spread horizontally over the whole image,
there is no background region, and such a line-wise differential matched filter cannot be
applied. For more details on this matched filter, see Knapp (2024).

In the following, the refinements by Foote et al. (2020) are presented.

4.4.1 Albedo Correction
In Eq. (4.5) the absorption due to a gas enhancement is modeled as a relative change of a
pixel’s spectrum, which is independent of the observed total radiance in that pixel. But
the Taylor expansion in Eq. (4.7) alters this to the absorption being an absolute change
of the pixel’s spectrum, which is directly proportional to the pixel’s total radiance. To
compensate for this shift, the target spectrum needs to be scaled by the pixel’s albedo
factor

𝑟𝑝 =
𝑳⊤

𝑝 𝝁
𝝁⊤𝝁

, (4.28)

which relates a pixel’s total radiance to the mean radiance. By this definition, the average
albedo factor over the whole image is one.

The albedo-corrected CMF then reads

𝛼𝑝 =
(𝑳𝑝 − 𝝁)⊤ℂ−1𝒕𝑝

𝑟𝑝𝒕⊤
𝑝 ℂ−1𝒕𝑝

. (4.29)

The spectral range that is used to calculate this albedo factor should contain more
than just the wavelengths of methane absorption to ensure the albedo factor actually
represents a true change in pixel brightness instead of strong methane absorption. This
avoids that a small albedo factor is assigned to a pixel which only features strong methane
absorption, but is not truly darker than average.
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4.4.2 Sparsity Prior and Positivity Constraint
Assuming only a small fraction of the pixels in an image are truly enhanced, a reweighted
ℓ1 minimization scheme can be used to artificially force pixels which exhibit a small or
negative enhancement to an enhancement of zero. This is done by iteratively calculating
the enhancement

𝛼𝑘
𝑝 = max (

(𝑳𝑝 − 𝝁)⊤(ℂ)−1𝒕𝑝 − 𝑤𝑘
𝑝

𝑟𝑝𝒕⊤
𝑝 (ℂ)−1𝒕𝑝

, 0) (4.30)

with
𝑤𝑘

𝑝 = 1
𝛼𝑘−1

𝑝 + 𝜀
, (4.31)

where 𝜀 > 0 is a small scalar for numerical stability. Foote et al. (2020) propose 30 such
iterations.

4.4.3 Background Correction
Calculating the mean spectrum 𝝁 and the covariance matrix ℂ from the whole image is
reasonable if only few pixels show a significant enhancement; still, correcting for these
enhancements improves the matched filter. This is highly beneficial since including en-
hanced pixels lowers the mean spectrum intensities and increases the spectral variability
specifically in the channels associated with strong target gas absorption. Foote et al.
(2020) propose to run the matched filter iteratively and subtract the enhancement 𝛼𝑘−1

𝑝
calculated in the previous iteration from each pixel’s spectrum before recalculating 𝝁𝑘

and ℂ𝑘:

𝝁𝑘 = 1
𝑃

𝑃
∑
𝑝=1

(𝑳𝑝 − 𝑟𝑝𝛼𝑘−1
𝑝 𝒕𝑘−1

𝑝 ) (4.32)

𝒕𝑘
𝑝 = 𝝁𝑘 ⊙ 𝒔𝑝 (4.33)

ℂ𝑘 = 1
𝑃 − 1

𝑃
∑
𝑝=1

(𝑳𝑝 − 𝑟𝑝𝛼𝑘−1
𝑝 𝒕𝑘

𝑝 − 𝝁𝑘)(𝑳𝑝 − 𝑟𝑝𝛼𝑘−1
𝑝 𝒕𝑘

𝑝 − 𝝁𝑘)⊤ . (4.34)

Alternatively, one could also just remove the pixels that show a significant enhance-
ment above a certain threshold or exhibit a signal-to-noise ratio (SNR) above a certain
threshold from the calculation of 𝝁 and ℂ altogether. This is the approach that Pei et al.
(2023) chose for their iterative lognormal matched filter (ILMF) (see Section 4.6).

Together with the sparsity prior, positivity constraint, and albedo correction, this
results in the iterative matched filter

𝛼𝑘
𝑝 = max (

(𝑳𝑝 − 𝝁𝑘)⊤(ℂ𝑘)−1𝒕𝑘
𝑝 − 𝑤𝑘

𝑝

𝑟𝑝𝒕𝑘⊤
𝑝 (ℂ𝑘)−1𝒕𝑘

𝑝
, 0) (4.35)
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𝑤𝑘
𝑝 = 1

𝛼𝑘−1
𝑝 + 𝜀

. (4.36)

4.5 Lognormal Matched Filter
The lognormal matched filter (LMF)—proposed by Schaum (2021) and first implemented
by Pei et al. (2023)—differs from the CMF in that the exponential function in Eq. (4.5)
is not linearized in first order, but the componentwise natural logarithm is taken. This
results in

ln 𝑳𝑝 ≈ 𝝂 + 𝛼𝑝 ⋅ 𝒔𝑝 , (4.37)

where 𝝂 is the mean of the logarithmized spectra ln 𝑳𝑝

𝝂 = 1
𝑃

𝑃
∑
𝑝=1

ln 𝑳𝑝 . (4.38)

Schaum (2021) argues that assuming a lognormal distribution of 𝑳𝑝 or a normal distri-
bution of ln 𝑳𝑝 is more reasonable than the previous assumption of a normal distribution
of 𝑳𝑝 since the two distributions only differ significantly in regimes where the normal
distribution allows unphysical negative radiance values. Deriving the likelihood function
analogously to the CMF results in

ℒ(𝑳⃗| ⃗𝛼) = ((2π)𝐶 det ℂ)−𝑃/2

⋅ exp (−1
2

𝑃
∑
𝑝=1

(ln 𝑳𝑝 − (𝝂 + 𝛼𝑝𝒔𝑝))⊤ℂ−1(ln 𝑳𝑝 − (𝝂 + 𝛼𝑝𝒔𝑝))) (4.39)

where

ℂ = 1
𝑃 − 1

𝑃
∑
𝑝=1

(ln 𝑳𝑝 − 𝝂)(ln 𝑳𝑝 − 𝝂)⊤ . (4.40)

This likelihood is maximized by the LMF

𝛼𝑝 =
(ln 𝑳𝑝 − 𝝂)⊤ℂ−1𝒔𝑝

𝒔⊤
𝑝 ℂ−1𝒔𝑝

. (4.41)

This LMF was used for the analysis of the data presented in this thesis. The reason
for this can be found in Section 4.7, where the different matched filters are compared.

4.6 Iterative Lognormal Matched Filter
Pei et al. (2023) furthermore use an iterative version of the LMF, where the enhancements
are calculated five times, and each time pixels of the previous iteration that exhibit an
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SNR greater than 2 are excluded from the new calculation of the mean logarithmized
spectrum 𝝂 and the covariance matrix ℂ.

With a pixel’s noise-equivalent enhancement of the LMF defined as

𝜎𝑝 = 1

√𝒔⊤
𝑝 ℂ−1𝒔𝑝

, (4.42)

the SNR is

SNR𝑝 =
𝛼𝑝

𝜎𝑝
=

(ln 𝑳𝑝 − 𝝂)⊤ℂ−1𝒔𝑝

√𝒔⊤
𝑝 ℂ−1𝒔𝑝

. (4.43)

4.7 Differences in Performance Between the Matched Filter
Versions

This section compares retrievals using the CMF, CMF with sparsity prior, positivity
constraint and background correction (henceforth called reweighted ℓ1 matched filter
(RWL1MF) just like in Foote et al., 2020)5, LMF, and ILMF.

In a first step, we investigate which of these matched filters have an albedo bias and
therefore require an albedo correction. For this, an image of blue sky 𝑳⃗0 was artificially
imprinted with an absorption signature of a random methane enhancement 𝛼𝑝 between
0 ppm m and 20 000 ppm m in randomly selected 2% of its pixels as

𝑳𝑝,𝛼 = 𝑳𝑝,0 ⊙ exp(𝛼𝑝 ⋅ 𝒔𝑝) . (4.44)

This image was then retrieved using the four previously listed matched filters, each once
with and once without an albedo correction, which was calculated according to Eq. (4.28)
and Eq. (4.29) (or the equivalent albedo corrected version of other matched filters, where
the albedo is a factor in the denominator). This, of course, is a very simplified method of
assessing a matched filter’s performance, but it is sufficient to test for an albedo bias as
we see in the following.

Figures 4.3 and 4.4 show scatter plots with the imprinted enhancements on the x-axis
and the retrieved enhancements on the y-axis where each pixel’s albedo is represented
by color. Figure 4.3 depicts the retrievals without albedo correction, and Fig. 4.4 with
albedo correction.

It is clearly visible in Fig. 4.3 that the CMF and RWL1MF exhibit an albedo bias,
which is eliminated by the albedo correction in Fig. 4.4. The LMF and ILMF do not
show an albedo bias in Fig. 4.3, so an albedo correction actually introduces an albedo
bias, as can be seen in Fig. 4.4.

5This matched filter is called Matched filter with Albedo correction and reweiGhted L1 sparsity Code
(MAG1C) in Knapp (2024).
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Fig. 4.3. Scatter plots of data with artificially imprinted enhancements retrieved using four
different matched filters, all without albedo correction. The color bar encodes
each pixel’s albedo. A no-intercept linear regression was performed to indicate the
general matched filter performance, even though this has to be interpreted with
caution.
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Fig. 4.4. The same as Fig. 4.3, but this time with albedo correction.
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The reason for this outcome shall be illustrated in the following. In general, an
unusually bright observed spectrum can be modeled as

𝑳𝑝 ≈ 𝐴𝑝 ⋅ 𝝁 ⊙ exp(𝛼𝑝 ⋅ 𝒔𝑝) , (4.45)

where 𝐴𝑝 > 1 is a factor scaling the whole spectrum to account for its brightness, compa-
rable to the albedo factor 𝑟𝑝 in Section 4.4.1. This means that seen in absolute terms,
the absorption signature is stronger, because according to the Beer-Lambert law (2.19),
the absorption strength is relative to the initial radiance, which is larger here. In the
case of CMF and RWL1MF, this stronger absorption signal stays as is, and has to be
corrected for using the albedo factor. On the other hand, in the case of LMF and ILMF,
the logarithm of the spectrum is taken, which converts the albedo factor into an albedo
addend:

ln 𝑳𝑝 ≈ 𝟏 ln 𝐴𝑝 + 𝝂 + 𝛼𝑝 ⋅ 𝒔𝑝 . (4.46)

The pixel’s albedo 𝐴𝑝 then barely plays a role in the LMF and ILMF. Oddly, Pei et al.
(2023) claim to have found that an albedo correction is also needed for the LMF and
ILMF, but they do not describe how they perform this albedo correction.

Based on these retrievals of simulated data, one might anticipate that the albedo-
corrected CMF and RWL1MF would also perform equally well with real data, slightly
outperforming the LMF. The ILMF, furthermore, tends to overestimate enhancements by
approximately 10% on average. This is likely due to the exclusion of strongly enhanced
pixels in the calculation of the background statistics. Occasionally, pixels with a high
SNR might be excluded, even if the high SNR is merely a random fluctuation rather
than a true enhancement. This skews the background statistics, leading to overestimated
enhancements.

When examining real data, it becomes evident that the albedo-corrected CMF and
RWL1MF do not perform equally well as suggested by the artificial data retrievals. Fig-
ure 4.5 presents a zoomed-in image of a methane plume from a coal mine ventilation
shaft in the USCB. These data were collected during a measurement campaign in the
USCB in 2022 (Knapp et al., 2023), and the matched filter retrieval used a UAS ranging
from 2053 nm to 2396 nm (as in Knapp et al., 2023; Knapp, 2024).

Figure 4.5 shows an example of how the CMF consistently retrieves the smallest en-
hancements, while the enhancements in the plume for both RWL1MF and LMF are
quite similar. Moreover, the ILMF exhibits much stronger enhancements, likely due to
skewed background statistics, as previously discussed. Therefore, the LMF was chosen
for all subsequent data retrievals. It was favored over the RWL1MF, despite their similar
performance, because of its more reasonable physical background assumptions (i.e., the
lognormal distribution of observed spectra), its lower computational demands, and its
inherent simplicity.
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Fig. 4.5. Zoom on an image captured during the USCB measurement campaign in 2022
retrieved with the CMF with albedo correction, RWL1MF with albedo correction,
LMF without albedo correction, and ILMF without albedo correction.
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5 Overview of the 2024 Methane Remote
Sensing Campaign at Madrid Landfills

Most of the data presented in this thesis was collected during a measurement campaign
conducted near Madrid, Spain, from June 27 to July 9, 2024. Each day, hyperspectral im-
ages in the SWIR range were captured using one or both of the SWIR-observing HySpex
cameras (see Section 3.1). The campaign primarily focused on the Pinto landfill1, with
the last two days dedicated to observing the Valdemingómez landfill2. The cameras were
positioned at five different locations around the Pinto landfill (H13, J1, K1, Monastery,
and Mirador) and two locations around the Valdemingómez landfill (L1 and L2), all
marked in Figs. 5.1 and 5.2.

The HySpex SWIR-384 typically had a scanning rate on the order of 75 s. The HySpex
Mjolnir typically had a scanning rate of 3 min to 5 min. Until June 30, tests with different
gain and frame averaging modes were performed with the Mjolnir. Therefore, July 1 is
the first day on which a long, consistent time series of Mjolnir observations exists. On
July 5, the SWIR-384 camera stopped functioning, so all subsequent measurements were
conducted using only the Mjolnir camera.

During all the measurements, wind data was recorded using a wind lidar (see Sec-
tion 3.2). From July 3 to July 7, the lidar was permanently positioned at the administra-
tive facilities of the Pinto landfill (indicated by the green marker in Fig. 5.1). On the
other days, the lidar was positioned at a maximum distance of 150 m from the camera(s).

Below are remarks on the different measurement positions:

H1 On our first day scouting the fields around the Pinto landfill, we found this hill,
which is relatively close to the landfill, requiring a large horizontal scanning angle.
Due to difficult car access, we did not return to this spot after the first day. On this
first day of measurement, a significant amount of Saharan dust in the atmosphere
made the sky very hazy and consequently very bright in the SWIR range.

J1 This was the preferred spot for days when the wind was directed north, northwest,
south, or southeast.

1PRTR-España coordinates: 40.257118° N, 3.637550° W
2PRTR-España coordinates: 40.336427° N, 3.590375° W. Technically, there are several landfills with

different names located inside “Valdemingómez Technology Park” (“Parque tecnológico de Valde-
mingómez”), which also includes a wastewater treatment plant, biomethanation plant, and waste
incineration plant. For simplicity, the term “Valdemingómez landfill” is used in the following.

3There is no deeper meaning behind these labels, which came about for historical reasons.
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5 Overview of the 2024 Methane Remote Sensing Campaign at Madrid Landfills

Fig. 5.1. The Pinto landfill outlined in pink, with the active Phase IV area at the northeast
end outlined in purple. The five observation positions are shown with red markers,
and the position of the lidar between July 3 and July 7, 2024, with a green marker.
Base image by Airbus/Google Earth, with an inset photograph of the Pinto landfill
captured at the time of the campaign by the German Aerospace Center (DLR).
Additional annotations added by the author.
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5 Overview of the 2024 Methane Remote Sensing Campaign at Madrid Landfills

Fig. 5.2. The approximate outlines of the whole Valdemingómez Technology Park complex
(pink) and the probably active landfill area (purple) are taken from Krautwurst
et al. (2024). The two observation positions are shown with red markers. Base
image by Airbus/Google Earth and additional annotations added by the author.

K1 This hill’s elevation provides a downward view onto the Pinto landfill. In the back-
ground, the city of Madrid is visible, requiring a few pixels above the landfill to be
masked out. A more problematic issue is the distant Sierra de Guadarrama moun-
tain range, which is faintly visible to the naked eye but much clearer in the SWIR
range. This affects the retrieval algorithm as the light path deviates significantly
from the single scattering approximation. Additionally, an overhead electricity wire
near the camera setup restricted the viewing angle or interfered with the FOV on
one side of the image. This spot is ideal when the wind is blowing from the west or
east.

Monastery Located over 6 km from the landfill, this spot is relatively distant. This was
the preferred position for days with northeast or southwest wind.
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5 Overview of the 2024 Methane Remote Sensing Campaign at Madrid Landfills

Mirador Similar to K1, this elevated spot offers a downward view onto the landfill. A for-
est in the background of the images influences the light path significantly, similarly
to the Sierra de Guadarrama.

L1 This was the first suitable position found when approaching the Valdemingómez
landfill. The active part of the landfill is not directly visible, hidden behind a hill.

L2 After thoroughly scouting the area around the Valdemingómez landfill, this spot
appeared to be the best for observation, because the active part of the landfill is
directly visible.

Figure 5.3 depicts a timeline of all measurements, including satellite observations by
EnMAP and GHGSat. Viewing azimuth directions are indicated by blue arrows, and
pictograms depict the “average” weather condition for each day.
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Fig. 5.3. Timeline of all data collected with the HySpex SWIR-384 and HySpex Mjolnir
during the campaign, as well as satellite observations by EnMAP (blue hexagon)
and GHGSat (black diamond) in the months of June and July. Blue arrows in-
dicate the viewing azimuth direction. Pictograms show the “average” weather
condition for each day. Figure adapted from Lukas Häffner (personal communi-
cation). Pictograms by meteoblue (https://content.meteoblue.com/en/research-
education/specifications/standards/symbols-and-pictograms).
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6 Methane Emissions at the Pinto Landfill
This chapter presents the key findings from the data collected at the Pinto landfill.
Section 6.1 introduces the typical appearance of a retrieved image showing methane en-
hancement and explains what can be observed in these images. Section 6.2 discusses the
dust clouds visible in many images, their origins, and how they affect the matched filter
retrieval. Section 6.3 examines the observed methane over the landfill, aiming to charac-
terize its spatial and temporal distribution. Section 6.4 is a small excursion that presents
a method to extract the wind velocity perpendicular to the camera’s line of sight from
movement of dust clouds in the images. Finally, Section 6.5 estimates methane emission
rates using a simple one-box model.

This chapter focuses on data interpretation and obstacles that had to be overcome
during data analysis. Given these difficulties, the goal is to demonstrate what information
can and cannot be extracted from the data. For this purpose, only data collected by the
HySpex SWIR-384 camera on July 2 and July 4, 2024, is presented, as these were the
days with the best measurement conditions (see Fig. 5.3). All data showcased here was
retrieved using the LMF.

6.1 Exemplary Plots of Methane Enhancement
Figure 6.1 shows an exemplary methane image from the Pinto landfill retrieved using the
LMF. Non-sky areas (i.e., ground and vegetation) are plotted as the observed intensity in
the first channel of the retrieval window on a color scale ranging from blue to yellow to
provide a sense of the scenery. For all sky pixels, the plot shows the retrieved methane
enhancement in ppm m using the color scale on the right side of the plot. The width
and height given on the x- and y-axis correspond to the plane of expected emissions, i.e.,
the landfill. These coordinates are derived from the viewing geometry but are subject
to uncertainty, as the distance between camera and the observed methane enhancement
can only be estimated (see Section 6.5.2 for an approximate uncertainty estimate). The
origin (0, 0) is the position that was used as a reference point to calculate the VEA and
viewing azimuth angle (VAA), but has no further significance.

In the foreground of the image agricultural fields are visible. A forest is observable on
the left in dark blue, and individual trees and bushes are scattered across the fields as
dark blue spots. The bright yellow area in the center is the closed area of the landfill,
which is covered with gravel. Figure 6.2 depicts the same scene as a normal RGB image
captured at a different time.
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Fig. 6.1. Methane enhancement above the Pinto landfill on July 2, 2024, at 12:23 UTC,
retrieved using the LMF in the wavelength range from 2190 nm to 2396 nm

Fig. 6.2. RGB image of the view from position J1, which was used for observations on July
2, 2024, with the approximate FOV of the measurement shown in Fig. 6.1 framed
red
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6 Methane Emissions at the Pinto Landfill

The dark blue thin line at the horizon in Fig. 6.1 consists of sky pixels but was masked
out from the retrieval data. This precaution ensures that no ground pixels are included
in the retrieval, as this would result in inaccurate enhancements for these pixels since the
light path for ground pixels differs significantly from that of sky pixels, requiring a very
different UAS. It would also influence the average spectrum (𝝁 or 𝝂) and the covariance
matrix (ℂ) used in the matched filter. However, this effect would be minimal, as sky
pixels would vastly outnumber any mistakenly included ground pixels.

In Fig. 6.1, methane enhancement is visible close to the ground, horizontally sepa-
rated by two areas of negative enhancement (shown in blue) in the middle and at the
far right, which are dust clouds. By shortening the light path they reduce the total ob-
served methane column and thus appear as negative enhancements. Additionally, dark
spots are visible in and above the right dust cloud, which are likely storks flying over the
landfill (Vicente-Hernández et al., 2023), also shortening the light path. Higher up in
the sky, there are areas of both predominantly positive and negative methane enhance-
ments, but these are not as pronounced as the enhancements close to the ground. These
areas are characterized by higher noise, meaning even in areas of predominantly positive
enhancement, there are pixels with negative enhancement and vice versa. This higher
noise is due to the sky darkening with increasing VEA, and the structure is likely caused
by heterogeneous aerosol concentrations in the sky, a result of the hot and dry summer
climate.

The image also exhibits a few one pixel thin horizontal stripes, mostly at heights be-
tween 270 m and 300 m. These stripes are caused by bad detector pixels which sometimes
function properly and sometimes do not and which were not masked out by the bad
pixel map, appearing as stripes due to the camera’s scanning operation. The incorrect
radiance values reported by these defective pixels affect the matched filter, resulting in
improper enhancements. However, these stripes do not significantly impact the overall re-
sults in the retrieved image for two reasons. First, they only occur high up in the image
and do not affect areas of enhanced methane concentration close to the ground. Second,
only very few pixels are affected in total, so they do not significantly influence the mean
spectrum (𝝁 or 𝝂) and covariance matrix (ℂ).

Figure 6.3 shows another image from the same day, also retrieved using the LMF. At
a height of ∼100 m, clouds are visible on the right. These clouds are captured as very
negative enhancement by the matched filter because they significantly shorten the light
path, much like dust clouds, but in this case to a more drastic extent. This reduces the
observed total methane column substantially. The retrieval of methane enhancement in
front of clouds could be improved by using a version of the differential matched filter with
clustering (Knapp, 2024). A dust cloud is visible in the center of the image. The presence
of this dust cloud is confirmed by the unusually high radiance in the respective pixels,
which can be seen in the ground pixels at a height of ∼0 m and below, just beneath the
dust cloud shown in blue in the sky. The artifact in the bottom right corner of the image
is a tractor that was driving through the FOV right in front of the camera.
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Fig. 6.3. Methane enhancement above the Pinto landfill on July 2, 2024, at 14:54 UTC,
retrieved using the LMF in the wavelength range from 2190 nm to 2396 nm

Figure 6.4 shows another interesting phenomenon. It was captured in the morning of
July 2, 2024, at 8:31 UTC. It uses the same color scale as the previous figures, but the
noise high up in the sky is much stronger. This increased noise can be explained by the
lower radiance from the sky at this time of day, resulting in less bright observed spectra
and a smaller signal-to-noise ratio. Interestingly, on July 4, 2024, the sky became darker
over time, which could be due to a reduction in atmospheric aerosols. Consequently,
the noise in the images increases slightly over time. The same behavior is visible in
retrievals of CO2 in the same observations, supporting the idea that these variations are
due to changes in sky brightness or light path effects, rather than changes in methane
concentration.

Of all the effects influencing a retrieved image, dust clouds are most important in our
case. As the majority of our images contain at least one dust clouds, this topic is treated
in more detail in the following.
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Fig. 6.4. Methane enhancement above the Pinto landfill on July 2, 2024, at 8:31 UTC,
retrieved using the LMF in the wavelength range from 2190 nm to 2396 nm

6.2 Dust Clouds in the Images
The summer climate in and around Madrid is very hot and dry, causing a lot of dust in
the air, which is captured in our images. These dust clouds were also recorded by the
GoPro camera that was set up to document the weather conditions during measurements.
In the data presented so far, most images contain at least one area which is clearly
affected by dust. This section explains how different dust clouds appear in a retrieved
image of methane enhancement, and how they can influence the retrieval of methane
enhancements in general.

The dust clouds captured in our imagery have different causes. Sometimes, a dust
cloud is formed by a wind gust dragging up particles from the ground. These dust clouds
can have various shapes and sizes, ranging from a few to a few hundred meters. We see
that they often start small just above the ground and over time increase in size as they
move further up into the air and get diluted by turbulence. Similarly, dust clouds can
form through human activity, which is mostly vehicles that drive on dusty ground and
drag up particles behind them. In our case, these are cars that drive on the covered
part of the landfill, which has gravel roads on top, or tractors or harvesters that drive
on the agricultural fields in front of the landfill. A harvester also creates a lot of dust
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by throwing the separated and chopped straw back onto the field. A further source of
dust clouds are dust devils—small, short-lived whirlwinds that form from pockets of
hot air spontaneously rising from the ground and starting to circulate, thereby creating
an updraft sucking in new hot air at the ground. A retrieved image of a dust devil is
depicted in Fig. 6.5. The different dust clouds also differ in their composition: dust from
gravel on the covered part of the landfill, dust from soil on the agricultural fields, and
dust from straw produced by a harvester.

In Figs. 6.1, 6.3 and 6.5, that were presented so far, dust is always present as nega-
tive enhancement as it shortens the light path. In theory, this is not necessarily always
the case. On the one hand, it is thinkable that a dust cloud lengthens the light path,
e.g., if the dust cloud is farther away than the average viewing distance (even though
this is not the case for all the causes of dust clouds listed above), or if the light path
within the dust cloud is very long. On the other hand, the spectrum of the dust cloud
can mess with the matched filter retrieval itself. Not only do dust clouds exhibit high ra-
diances and change the effective light path, they can also exhibit a spectral structure.
Even when this is not a narrow absorption structure as, e.g., the absorption of methane,
a broad band structure can also affect the matched filter result. This is especially the
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Fig. 6.5. A dust devil clearly visible as negative methane enhancement, captured on July 2,
2024, at 13:29 UTC

51



6 Methane Emissions at the Pinto Landfill

case when using a wider retrieval window in the matched filter. Knapp et al. (2023)
and Knapp (2024) used a methane retrieval window from 2053 nm to 2396 nm. While
from 2053 nm to 2190 nm there is nearly no methane absorption (see Fig. 2.1), this wave-
length range was still included in the retrieval window to get a more informed estimate
of each pixel’s albedo factor (see Section 4.4.1), which was used to correct for an albedo
bias in the enhancements1 (Foote et al., 2020). Using this same retrieval window for the
retrieval of observations from the Pinto landfill results in mineral dust clouds over the
landfill hill itself (e.g., the dust devil in Fig. 6.5) to show as very high methane enhance-
ments. Dust clouds from dirt or straw, produced by harvesters or other machines on the
agricultural fields, remain very negative enhancements, as should be the case due to light
path shortening. This difference can be explained by the different composition of the
dust clouds, and their different broad band spectral features. Because of this, in this
thesis methane was retrieved in the spectral window ranging from 2190 nm to 2396 nm.
This range encompasses all significant methane absorption structures, but is less suscep-
tible to broadband aerosol effects due to its narrower scope. Using this spectral window
for retrieval consistently results in dust clouds appearing as very negative enhancements,
which is expected due to the shortening of the light path. However, the influence of
aerosol spectral structures in this retrieval window cannot be entirely dismissed. Since
the LMF was used, no albedo correction is necessary (see Section 4.7).

Apart from spectral features of dust clouds possibly affecting the matched filter re-
trieval, in our case, a dust cloud in an image generally has two effects. Pixels with dust
have a shortened light path compared to the average pixel light path, and thus the en-
hancement in that pixel comes out very negative, even though there might actually be a
significant amount of methane in that pixel, behind or in front of the dust cloud. But
also, all pixels’ spectra go into the mean spectrum 𝝁 or 𝝂 and the covariance matrix ℂ,
which in turn are used to calculate the enhancements in all pixels. Thus, a dust cloud,
which exhibits a spectrum systematically different from non-obstructed pixels, influences
these variables. Still, this influence is only minor as the number of pixels with dust in
them is only a small fraction of the total number of pixels in an image.

This effect of a dust cloud on the enhancements of the pixels not containing any dust
can be seen in Fig. 6.6. For an exemplary image with an especially strong dust cloud,
the LMF retrieval was once run normally (visible in Fig. 6.5), and once after masking
out the area compromised by dust. The quotient of the two images shown in Fig. 6.6
scatters around 1, and there are certain areas where it is predominantly greater than 1

1One might also use two different spectral windows for the matched filter retrieval and for the albedo
factor calculation, but the author is not aware of any publication that uses such an approach. This
would have two effects. On the one hand, it would eliminate the need for a relatively broad retrieval
window, which is otherwise used so that the albedo factor is not too strongly influenced by methane
absorption. On the other hand, the selection of the albedo factor spectral window needs to be done
cautiously as a pixel’s albedo factor might then not be representative for the retrieval window spectrum
if it is spectrally too far away.
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Fig. 6.6. The quotient of the methane enhancement retrieved with an especially strong
dust cloud in the image (Fig. 6.5) and retrieved with the dust cloud masked out
beforehand

or predominantly smaller than 1. Most importantly, in the area just above the horizon,
where true methane enhancements are detected (see Fig. 6.5), the enhancement retrieved
with the dust cloud in the image is larger than without the dust cloud. This is expected,
because with the dust cloud in the image, the mean spectrum exhibits slightly weaker
methane absorption features, making methane absorption in pixels with true enhance-
ment stronger in relation. Yet the difference in this area of high methane enhancements
rarely exceeds 5%, and lies mostly around 2% or 3%. This disparity is negligible in com-
parison to the effect that, e.g., the choice of matched filter has on the enhancement (see
Section 4.7). Furthermore, it is also negligible in comparison to the uncertainties intro-
duced by converting the slant column enhancement into absolute amounts of methane or
by deducing an emission rate (see Section 6.5.2). Because of this, the effect dust clouds
have onto the enhancement in the rest of the image can be accepted like this.
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6.3 Enhanced Methane Concentrations in the Images
All the retrieved images show some methane enhancement close to the ground. Except for
some images from the morning of July 2, 2024 (e.g., Fig. 6.4), the enhanced area extends
horizontally across the entire image, interrupted only by dust clouds that inhibit the de-
tection of methane. The vertical extent of the detected methane accumulation is initially
small in the morning but increases over time, reaching approximately 50 m to 70 m on
July 2, 2024, and approximately 200 m to 250 m on July 4, 2024. The detected methane
concentration exhibits a vertical gradient, with the strongest enhancements occurring
near the ground, just above the landfill, and decreasing with height.

Given that this gradient extends to the horizon and typically lacks distinct structures
unless dust clouds are present, it seems plausible that the observed phenomenon is at-
tributable to a light path effect rather than elevated methane concentrations above the
landfill. This light path effect could stem from an incorrect geometric calibration of the
camera and its FOV, meaning the presumed viewing geometry (i.e., VEA and VAA)
might be inaccurate. As a result, the light path just above the horizon might be longer
than anticipated, leading to an apparent methane enhancement due to the extended light
path, rather than an increase in methane concentrations above the landfill.

To test this hypothesis, CO2 was retrieved from the same observation within the spec-
tral range of 1967 nm to 2260 nm. The result of the same observation as shown in Fig. 6.5
is depicted in Fig. 6.7. The dust devil in the image also appears as a strongly negative
enhancement due to a shortened light path, and the right side of the image generally
shows stronger enhancements than the left, similar to the methane image, suggesting
aerosol effects. However, the CO2 image does not show enhancements just above the
horizon. This indicates that the enhancements above the horizon in the methane image
are due to increased methane concentrations above the landfill and not caused by any
light path effects, which would also appear in the CO2 image.

The increase of methane concentrations over the course of the day might be a diurnal
flux pattern. Delkash et al. (2022) find a positive correlation of methane flux with ambi-
ent temperature that is strongest under unstable atmospheric conditions. This would fit
the observations presented here, as clear, sunny days make an especially unstable atmo-
sphere, and temperature was continuously rising from morning to afternoon. Still, this
interpretation is to be taken with caution, as we have no further evidence supporting
this theory.
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Fig. 6.7. CO2 enhancement retrieved using the LMF in the wavelength range of 1967 nm to
2260 nm for the same scene as depicted in Fig. 6.5

6.4 Extraction of Wind Velocity From Retrieved Images
Due to the high temporal resolution of our images on the order of one minute, it is pos-
sible to see dust clouds moving, i.e., one and the same dust cloud shows at different
positions in two or three consecutive images. An example for this is shown in Fig. 6.8.
Using the horizontal positions of the dust cloud and the corresponding times of obser-
vation a calculation of the wind velocity perpendicular to the camera’s line of sight is
possible. A demonstration of this is presented in the following.

The extraction of the wind velocity perpendicular to the line of sight consists of five
steps:

1. Determine the horizontal center positions of a dust cloud in two consecutive images
in terms of frame numbers 𝑓0, 𝑓1.

2. Calculate the azimuth angle between them as 𝜃 = (𝑓1−𝑓0)⋅𝜃𝑓 , where 𝜃𝑓 = 0.73 mrad
is the opening angle of one frame.

3. Calculate the distance between the positions as 𝑤 = 𝑑 ⋅ tan 𝜃, where 𝑑 is the
estimated distance between camera and dust cloud.
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Fig. 6.8. Top: Image from July 4, 2024, at 12:54:22 UTC. Bottom: The subsequent image
from 12:55:33 UTC. During ∼1 min the dust cloud moves ∼200 m to the left.
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4. Calculate the time stamp 𝑇𝑖 for each dust cloud 𝑖 as 𝑇𝑖 = 𝑡𝑖0 + (𝑡𝑖(𝐹−1) − 𝑡𝑖0) ⋅ 𝑓𝑖/𝐹 ,
where 𝑡𝑖0 is the time stamp of the first frame of the image, 𝑡𝑖(𝐹−1) is the time stamp
of the last frame of the image, and 𝐹 is the total number of frames per image.

5. Calculate the wind velocity perpendicular to the line of sight as 𝑣⟂ = 𝑤/(𝑇1 − 𝑇0).

While, of course, all input variables are associated with an uncertainty, the uncertain-
ties of 𝑓0 and 𝑓1 as well as 𝑑 dominate. The uncertainties of 𝑓0 and 𝑓1 are estimated
manually depending on the shape of the dust cloud, and the uncertainty of 𝑑 is esti-
mated to be 𝛥𝑑 = 0.1 ⋅ 𝑑 for July 4, 2024. Using Gaussian error propagation, the squared
uncertainty of 𝑤 then is

(𝛥𝑤)2 = (𝛥𝑑 ⋅ tan 𝜃)2 + ( 𝑑
cos2 𝜃

⋅ 𝜃𝑓)
2

⋅ ((𝛥𝑓0)2 + (𝛥𝑓1)2) , (6.1)

where 𝛥𝑑, 𝛥𝑓0, and 𝛥𝑓1 are the uncertainties of 𝑑, 𝑓0, and 𝑓1. The uncertainty of 𝑇𝑖 is

𝛥𝑇𝑖 =
𝑡𝑖(𝐹−1) − 𝑡𝑖0

𝐹
𝛥𝑓𝑖 . (6.2)

The squared uncertainty of 𝑣⟂ then is

(𝛥𝑣⟂)2 = (𝛥𝑤)2

(𝑇1 − 𝑇0)2 + 𝑤2

(𝑇1 − 𝑇0)4 ((𝛥𝑇0)2 + (𝛥𝑇1)2) . (6.3)

Figure 6.9 shows the wind velocity perpendicular to the line of sight that was extracted
from the dust cloud shown in Fig. 6.8. For comparison, it furthermore shows the wind
velocity perpendicular to the line of sight measured by the wind lidar, which on that
day was positioned at the Pinto landfill facilities, meaning it was probably only a few
hundred meters away from the estimated positions of the dust cloud. The dots in Fig. 6.9
are single data points, and the lines are rolling averages over ∼1.18 min, which is the
time difference between two consecutive observations. The horizontal error bar extents
from the time of the first to the second observation of the dust cloud, and the vertical
error bar is calculated from Eq. (6.3).

The wind velocities measured with the wind lidar compare well to the wind velocity
extracted from the images. Of course, this is not least due to the wind velocity fluctuating
significantly from one lidar measurement point to the next, resulting in a big spread.

This demonstrates that in theory, it might be possible to extract a methane emission
rate solely from two hyperspectral images if they exhibit a dust cloud or similar that
allows for a wind velocity estimate. Certainly, if auxiliary wind information is available,
this will be the better choice. In the next section, such emission rates are estimated using
the lidar wind data as transport velocity.

57



6 Methane Emissions at the Pinto Landfill

12:52 12:54 12:56 12:58 13:00

Time / UTC

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

v
 /

 m
s−

1

10 m

20 m

50 m

100 m

150 m

200 m

1.18 min rolling mean (for each height)

Dust cloud

Fig. 6.9. The wind velocity perpendicular to the line of sight of the camera at different
height levels on July 4, 2024. Dots are single measurement points by the lidar,
which was stationed at the Pinto landfill facilities, and lines are rolling means over
the time difference between two subsequent camera observations. The black point
is the wind velocity extracted from the dust cloud moving in the two images in
Fig. 6.8. The horizontal error bar extends from the time of the first observation of
the dust cloud to the second. The vertical error bar was calculated using Eq. (6.3).

6.5 Quantification of Methane Emission Rates
Since in our viewing geometry, we do not see a well-defined methane plume above the
landfill similar to the observations of, e.g., methane emissions from a coal mine ventilation
shaft (cf. Knapp et al., 2023), an alternative approach for quantification is required. The
method proposed here is a one-box model, which equates the landfill methane emission
rate to the advective transport of the methane enhancement detected in the images.

6.5.1 Identification of Accumulated Methane
To apply such a one-box model, an automatic identification of enhanced methane con-
centrations in the images is useful. This process separates the high-enhancement pixels
of methane at the ground from the noise elsewhere in the image. Additionally, it en-
sures that dust cloud areas are not included in the emission calculation, as their negative
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enhancement would significantly lower the estimated emission rate. The identification
algorithm leverages the fact that methane enhancement near the ground covers many
contiguous pixels, while pixels randomly enhanced due to noise are surrounded by many
pixels without such enhancement. The algorithm is detailed below:

1. Select all pixels which exhibit an enhancement greater than a threshold of 𝛼t =
1000 ppm m.

2. From this selection, remove all pixels which have 𝑁neighbor ≥ 1 neighboring pixels
(straight or diagonal, 8 neighbors per pixel in total) which are not included in the
selection.

3. Sort the contiguous patches of selected pixels by size, i.e., number of pixels in it.

4. From the selection, eliminate all patches that do not have an overlap in height with
the largest patch, and all patches that contain less than 𝑝min = 11 pixels.

5. Dilate the selection with a circular mask of radius 𝑟, but do not include any ground
pixels.

Except for single images captured during the morning of July 2, 2024, which show very
little methane enhancement directly above the ground, this algorithm reliably selects
all areas with a significant amount of methane close to the ground. The values of the
variables 𝛼t, 𝑁neighbor, 𝑝min, and 𝑟 used in this algorithm are based on empirical testing,
such that the algorithm’s identification of pixels resembles an intuitive manual identifica-
tion as closely as possible. The optimal values may also depend on the observed methane
enhancement distribution. Like this, for July 2, 2024, a dilation radius of 𝑟 = 10 pixels
was used, and for July 4, 2024, 𝑟 = 5 pixels, because on that day the camera was farther
away from the landfill. In reality, the choice of the radius 𝑟 is always a tradeoff between
including areas which are still systematically enhanced even though quite some pixels fall
below the threshold of 𝛼t, and including pixels that belong to a dust cloud and exhibit
strongly negative enhancements.

Figures 6.10 and 6.11 show examples of images where this identification algorithm
was applied. In both, some dust cloud pixels are included, while some areas above the
selection still look like they show a systematic enhancement, but overall, the prominent
enhancement areas are well identified.

6.5.2 One-Box Model
Basically, the one-box model equates the landfill methane emission rate with the ad-
vective transport of methane in the image to the left or right. This approach assumes
a steady state of methane emissions from the landfill. The methane slant column en-
hancements, identified by the algorithm outlined in the previous section, are integrated
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Fig. 6.10. Image from July 2, 2024, at 13:35 UTC. The methane enhancement identified
algorithmically is enclosed in black.

vertically and averaged over all frames in an image. These values are then multiplied by
a 10-min averaged wind velocity perpendicular to the camera’s line of sight. This cal-
culation yields an emission rate in dimensions of molecules per time or mass per time.
Below are the details of the one-box model, followed by a discussion of its uncertainties
and shortcomings.

Once the pixels of true methane enhancement are identified, the following procedure is
applied to derive an emission rate:

1. Convert the slant column enhancements from ppm m to kg m−2 using Eq. (2.22).
Here, the same pressure as for the generation of the UAS was used, and the temper-
ature was estimated as the average of the time series from the temperature logger,
excluding periods when the logger was exposed to direct sunlight.

2. Integrate the enhancements vertically: 𝛼𝑓,int = ∑𝐿−1
𝑙=0 𝑠𝑙𝑓 ⋅ 𝛼𝑙𝑓 ⋅ ℎ𝑙, where 𝐿 is the

number of lines in the image, 𝑠𝑙𝑓 is 1 if the pixel at line 𝑙 and frame 𝑓 is among the
selected pixels and 0 otherwise, and ℎ𝑙 is the height of line 𝑙 in m. 𝛼𝑓,int has units
of kg m−1.

3. Average over all frames 𝑓 ∈ 𝐺 where 𝐺 = {𝑓 | 𝛼𝑓,int > 0} is the set of all frames
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Fig. 6.11. Image from July 4, 2024, at 11:31 UTC. The methane enhancement identified
algorithmically is enclosed in black.

with 𝛼𝑓,int > 0. This yields 𝛼int,avg, which is still in units of kg m−1. Averaging
in this manner assumes that all frames where 𝛼𝑓,int ≤ 0 do not show enhanced
methane concentrations either because they are obscured by dust clouds or because
they are located upwind of the methane source. The latter is only the case on July
2, 2024, before 9:00 UTC for the data presented in this thesis (e.g., Fig. 6.4). In
both cases, averaging like this ensures frames with 𝛼𝑓,int ≤ 0 are excluded from the
emission rate calculation.

4. Multiply with the wind velocity perpendicular to the line of sight 𝑣⟂ averaged over
±5 min around the time stamp of the image. Do this for all different height levels
of the wind lidar data. This results in six time series of methane emission rates in
units of t h−1.

5. For each emission rate and corresponding perpendicular wind velocity, calculate
the Pearson correlation coefficient 𝑟.

6. Choose the wind height level that yields the smallest such correlation. A high
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correlation means the variability in the emission rate time series stems from the
variability in wind velocity, whereas a small correlation means the variability is
true variability in emission. Therefore, the wind velocity from the wind height level
with the smallest correlation is most representative of the real transport velocity of
methane.

7. Take the absolute value of the emission rate to prevent unphysical negative emission
rates, which can emerge if the wind changes direction. It is important to only take
the absolute value after the correlation calculations are made, or the correlation
is meaningless, as, e.g., a correlation coefficient of 0 may result if the correlation
between emission rate and wind velocity is perfect, but the wind changes direction
halfway through the time series.

Steps 2, 3, 4, and 7 can be summed up as

𝛼𝑓,int =
𝐿−1
∑
𝑙=0

𝑠𝑙𝑓 ⋅ 𝛼𝑙𝑓 ⋅ ℎ𝑙 (6.4)

𝐸 = |𝑣⟂|
|𝐺|

∑
𝑓∈𝐺

𝛼𝑓,int , (6.5)

where |𝐺| is the cardinality of 𝐺, i.e., the number of frames in 𝐺, and 𝐸 is the resulting
emission rate.

The uncertainties of the different variables and data processing steps are discussed
following the same numbering scheme as previously:

0. The methane enhancements that the matched filter returns are afflicted with uncer-
tainty, and the methane identification algorithm also introduces uncertainty. The
sum of these two is assumed to be 20% of the enhancement, which represents the
current best estimate of this error. A future laboratory study, e.g., retrieving a
know methane column in a cell, could be conducted to consolidate this uncertainty
estimate.

1. The uncertainty of temperature and pressure needed for the conversion of en-
hancements from ppm m to kg m−2 are on the order of a few percent, and thus
neglected.

2. The uncertainty 𝛥ℎ𝑙 of the line heights ℎ𝑙, which are needed for the vertical inte-
gration of enhancements, is directly proportional to the uncertainty of the distance
from camera to enhanced methane concentrations. For July 2, 2024, this is esti-
mated to be 𝛥ℎ𝑙/ℎ𝑙 = 50%, and for July 4, 2024, 𝛥ℎ𝑙/ℎ𝑙 = 30%. This uncertainty
depends on the viewing geometry; the larger the distance between camera and land-
fill (where the enhanced methane concentrations are assumed to be), the lower the
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relative uncertainty. Additionally, it depends on the viewing direction, as the Pinto
landfill has an oblong shape extending from northeast to southwest. Since the un-
certainty of the distance results in equal relative uncertainties for ℎ𝑙 across all lines
𝑙, we assume that all 𝛥ℎ𝑙 are perfectly correlated (even though the distance and
its uncertainty might slightly vary for different lines 𝑙).

3. The uncertainty of enhancements introduced by dust clouds is estimated to be
10%. With the initial enhancement uncertainty of 20%, this is roughly combined
to a relative uncertainty of 𝛥𝛼𝑙𝑓/𝛼𝑙𝑓 = 30%. For these uncertainties 𝛥𝛼𝑙𝑓 , we also
assume perfect correlation across all lines 𝑙 and all frames 𝑓 . This assumption is
based on the premise that any over- or underestimation of enhancements by the
matched filter is likely systematic.

4. The uncertainty of the wind velocity perpendicular to the line of sight is determined
by calculating the standard deviation 𝛥𝑣⟂ over the same 10-minute period used
for averaging. This uncertainty of the wind velocity is the primary contributor to
the overall uncertainty in the emission rate.

The resulting uncertainty of the emission rate 𝐸 is estimated using Gaussian prop-
agation of uncertainty. Due to the correlation between all 𝛥𝛼𝑙𝑓 and all 𝛥ℎ𝑙, these
uncertainties are summed linearly. These sums are then squared before adding the
squared wind uncertainty 𝛥𝑣2

⟂. The resulting squared uncertainty of the emission rate 𝐸
is then

(𝛥𝐸)2 = ( 𝜕𝐸
𝜕𝑣⟂

)
2

(𝛥𝑣⟂)2 + (
𝐿−1
∑
𝑙=0

𝜕𝐸
𝜕ℎ𝑙

𝛥ℎ𝑙)
2

+ (∑
𝑓∈𝐺

𝐿−1
∑
𝑙=0

𝜕𝐸
𝜕𝛼𝑙𝑓

𝛥𝛼𝑙𝑓)
2

(6.6)

= 𝐸2

𝑣2
⟂

(𝛥𝑣⟂)2 + 𝑣2
⟂

|𝐺|2
⎛⎜
⎝

(∑
𝑓∈𝐺

𝐿−1
∑
𝑙=0

𝑠𝑙𝑓𝛼𝑙𝑓𝛥ℎ𝑙)
2

+ (∑
𝑓∈𝐺

𝐿−1
∑
𝑙=0

𝑠𝑙𝑓ℎ𝑙𝛥𝛼𝑙𝑓)
2

⎞⎟
⎠

.

(6.7)

This simplistic one-box model has additional shortcomings which cannot be directly
quantified, and which are discussed in the following.

The model’s most significant issue is likely the unstable wind conditions. Since methane
accumulates just above the ground, the wind that transports it is slow and frequently
changes direction. When the wind direction shifts, e.g., from blowing right to blowing left,
the same methane molecules contribute to the emission rate twice: once when moving to
the right and again when transported back to the left. The only alternative to this would
be not to take the absolute value of the emission rate. However, this would allow for
unphysical negative emission rates, which could and would occur over extended periods.

Furthermore, the model only considers methane transport to the left or right, ne-
glecting movement toward or away from the observer, as well as upward motion. When
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methane is transported along the observer’s line of sight, it remains within the FOV, but
turbulent diffusion reduces its concentration, possibly making detection by the matched
filter more difficult, and also changing its distance to the observer, which is needed for
the emission rate estimate. Similarly, while upward methane movement is still captured
in the image, the dilution caused by turbulence appears as a vertical gradient in the
images, and upward motion of methane is not captured in the model.

Instead of using wind data from a single height level, another approach would be to in-
terpolate all wind height levels to create a vertical wind profile, which could then be used
as height-dependent methane transport velocity in the one-box model. However, this
approach was not implemented for several reasons. First, the emission rates inherently
come with significant uncertainty. Using all wind heights separately for different emis-
sion rate estimates provides a clearer understanding of the spread, uncertainty, and wind
velocity dependence of the emission rates. Second, the exact position of an enhanced
methane concentration along the line of sight is unknown, making it difficult to deter-
mine its precise height above ground and thus unclear which wind height level is most
appropriate. Topographical features also greatly affect wind patterns, further compli-
cating the determination of an accurate wind height. Lastly, creating a wind profile by
interpolating all wind height levels significantly increases the model’s complexity without
reducing the uncertainty in emission rate estimates. Therefore, focusing on a single wind
height level that minimizes the correlation between wind velocity perpendicular to the
line of sight and emission rate is a more practical and reliable approach for estimating
methane emissions from the landfill.

6.5.3 Emission Rate Time Series
Figure 6.12 shows an emission rate time series from July 2, 2024, which was obtained
by the algorithm lined out above. It furthermore shows the wind velocity perpendicular
to the line of sight at a height of 50 m, which was averaged over 10 min. This wind
height level yielded the smallest Pearson correlation coefficient between wind velocity
and emission rate, which was 𝑟50 m = 0.90. The figure also shows the methane mass in
the image, which was obtained by integrating the enhancements of all selected pixels
vertically and horizontally.

Figure 6.13 shows the same for July 4, 2024, with a wind height of 10 m, which yielded
the lowest correlation of 𝑟10 m = 0.90 for that time series. For comparison, Fig. 6.14
shows an emission rate time series for a wind height of 150 m, which has a correlation
of 𝑟150 m = 0.93. Tab. 6.1 shows the average emission rates and Pearson correlation
coefficients for all wind height levels on both July 2 and July 4, 2024.

While the uncertainty of the emission rates is very big, and the temporal fluctuations
are very strong, the emission rates are of the same order of magnitude as listed in the
PRTR-España (0.66 t h−1 in 2023, Ministry for the Ecological Transition and the Demo-
graphic Challenge (MITECO), 2025), in the TNO GHGco v5 dataset (1.28 t h−1 in 2018,
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Fig. 6.12. Emission rate on July 2, 2024, in red, and uncertainty as light red shaded area.
10 min-averaged wind velocity perpendicular to the line of sight from the wind
lidar at a height of 50 m in blue. Total methane mass in each image in green.
The data gap at around 10:15 UTC is due to technical problems with the camera.

TNO preliminary data, Hugo Denier van der Gon, personal communication, 2025), and
as found by Tu et al. (2022) ((7.1 ± 0.6) t h−1 for the landfills Pinto, Valdemingómez,
and Alcalá together between 2018 and 2020) and Krautwurst et al. (2024) (∼5 t h−1 in
2022). As already mentioned in Chapter 1, a comparison between our measurements and
these numbers from other sources is difficult as the active part of the landfill changed in
February 2024 (Personnel of the Pinto landfill, personal communication, June 27, 2024).
Furthermore, the difference between the emission rates on July 2 and July 4, 2024, also
indicates a large uncertainty.

The high correlation of emission rate and perpendicular wind velocity is clearly visible
in all three figures. The correlation of emission rate and methane mass in the images
is only weak, but can be seen at certain points in time, e.g., at ∼ 7:45 UTC on July 2,
2024, in Fig. 6.12.

Ideally, we would expect the total methane mass per image to increase whenever the
perpendicular wind speed decreases and vice versa, because decreasing wind speed means
less advective transport of methane, which should result in a methane accumulation. This
behavior would suppress the short-term variations that we see in all emission time series,
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Fig. 6.13. Emission rate on July 4, 2024, in red, and uncertainty as light red shaded area.
10 min-averaged wind velocity perpendicular to the line of sight from the wind
lidar at a height of 10 m in blue. Total methane mass in each image in green.

Tab. 6.1. Average emission rate and Pearson correlation coefficient between emission rate
and wind velocity perpendicular to the line of sight for the different wind heights
on both July 2 and July 4, 2024

Date Wind height / m Pearson correlation Average emission rate / t h−1

Ju
ly

2,
20

24

10 0.95 0.49
20 0.92 0.85
50 0.90 1.16

100 0.91 1.21
150 0.94 1.35
200 0.94 1.46

Ju
ly

4,
20

24

10 0.90 3.55
20 0.92 4.70
50 0.93 5.22

100 0.94 5.62
150 0.93 5.78
200 0.93 5.95
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Fig. 6.14. Emission rate on July 4, 2024, in red, and uncertainty as light red shaded area.
10 min-averaged wind velocity perpendicular to the line of sight from the wind
lidar at a height of 150 m in blue. Total methane mass in each image in green.

and it would reduce or remove the correlation between emission rate and wind velocity.
The fact that we do not observe this behavior indicates inaccurate model assumptions,
e.g., significant vertical transport and turbulent dilution of methane.

The strong correlation between emission rate and perpendicular wind velocity further-
more indicates that the short-term emission rate variability is not a real variability of
landfill methane emissions. The emission rate slowly increasing over time, though, could
be a real signal, not least because this increase is present on both days analyzed, inde-
pendent of the observation position. Both times, this emission rate increase is due to the
increasing amount of methane in the image, which was already discussed in Section 6.3.
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7.1 Conclusion
This thesis evaluates the capabilities of ground-based spectral imaging for detecting
and quantifying methane emissions from a landfill. Data was collected at the Pinto
landfill near Madrid, Spain, over two weeks in the summer of 2024 (Chapter 5). The
hyperspectral camera HySpex SWIR-384 allows for a scanning rate on the order of a
minute, and a wind lidar was co-deployed to record wind velocities at various altitudes.
On July 2 and July 4, 2024, weather conditions were best, which is why those two days
were selected to be evaluated for this thesis. The hyperspectral images were analyzed
using the lognormal matched filter (LMF), which was found to outperform the classic
matched filter (CMF) and its variants. As the retrieved images show a diffuse distribution
of enhanced methane concentrations above the landfill, a one-box model was employed
to estimate emission rates using the wind data from the lidar.

To compare different matched filters, enhancements were retrieved from an image of
sky-scattered sunlight with artificially imprinted methane absorption signatures in 2% of
its pixels. The results reveal that the CMF and its variant, the reweighted ℓ1 matched
filter (RWL1MF), exhibit an albedo bias, necessitating an albedo correction. In con-
trast, the LMF and its iterative version were found not to require such a correction.
Furthermore, real data from a coal mine ventilation shaft in the Upper Silesian Coal
Basin (USCB), Poland, showed that, while all matched filters retrieve similar enhance-
ments, there are systematic differences. The CMF retrieves the smallest enhancements,
while the iterative lognormal matched filter (ILMF) retrieves the largest enhancements.
The RWL1MF and LMF yield similar enhancements that fall between these extremes
(Section 4.7). Given that the exceptionally high enhancements from the ILMF are likely
due to skewed background statistics, the LMF was selected for retrieving all enhance-
ment data presented in this thesis. It was preferred over the RWL1MF due to its more
reasonable physical background assumptions, its lower computational demands, and its
inherent simplicity.

Retrieved images of the Pinto landfill show that enhanced methane concentrations are
spread across a broad area above the landfill. These enhanced concentrations are mainly
observed near the ground, with a vertical gradient of decreasing concentrations with
increasing altitude. During the course of a day, the observed concentrations of methane
increase (Section 6.3). Dust clouds obstruct enhanced methane concentrations and appear
as very negative enhancement due to a shortened light path, but they do not significantly
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impact the retrieval of methane columns in other parts of an image (Section 6.2). By
analyzing images of moving dust clouds present in two or more consecutive images, it
was demonstrated that one can infer the wind velocity perpendicular to the line of sight.
An example calculation of this yielded a wind velocity consistent with measurements
taken with the wind lidar (Section 6.4).

Using the wind lidar data as a proxy for methane transport velocity, emission rates can
be inferred from the images of methane enhancements. For this, an automated selection
of areas of enhanced methane concentrations was implemented, ensuring that regions
affected by dust clouds are excluded (Section 6.5.1). The emission rates derived through
this one-box model (Section 6.5.2) show a high correlation with wind velocity, indicating
weaknesses of the model. This correlation suggests that short-term variability in emission
rates is due to wind variability rather than changes in source emissions. Furthermore, the
emission rates exhibit considerable uncertainty. Still, the temporally averaged emission
rates on the order of 1 t h−1 to 5 t h−1 are of the same order of magnitude as the emission
rates listed in emission registers such as the Spanish Register of Emissions and Pollutant
Sources (PRTR-España) and the TNO GHGco v5 dataset, and as recently found in other
studies (Krautwurst et al., 2024; Tu et al., 2022). Additionally, the observed increase in
emission rates from morning to afternoon might be true landfill emission rate changes
linked to a diurnal cycle, as suggested by Delkash et al. (2022) (Section 6.5.3).

Overall, the findings demonstrate the potential of ground-based spectral imaging for
monitoring and quantifying methane emissions of the Pinto landfill, which was specifically
chosen for this proof of concept due to its very high methane emission rate. Methane
enhancements are clearly visible in the resulting images, and emission rates can be in-
ferred from the collected data. However, these emission rates come with a high degree of
uncertainty. Our measurement technique is well-suited to resolve temporal variations
of methane concentrations, and remote sensing allows measurements without needing
physical access to the landfill premises. Other techniques, such as in-situ measure-
ments, however, are not restricted to daytime and good weather conditions and are not
affected by aerosols. Given the diffuse shape of enhanced methane concentrations, alter-
native remote sensing viewing geometries, such as airborne or satellite measurements,
can potentially observe the full plume, where the ground-based geometry has its lim-
its. Complementary measurements using other instruments and techniques, such as
in-situ measurements, also have the potential to quantify landfill methane emission rates
accurately.

7.2 Outlook
A lot of data from the measurement campaign has not been analyzed yet. Although the
data presented in this thesis was collected on days with optimal weather conditions, data
from other days may still reveal interesting features or support the trends observed so

69



7 Conclusion and Outlook

far, such as the increasing emission rates over the course of a day.
Furthermore, data from the HySpex Mjolnir S-620 camera, which was also deployed

during the campaign, remains unanalyzed. Given that this camera has different optical
properties compared to the HySpex SWIR-384, it could be insightful to compare the
methane enhancements retrieved from both cameras’ spectra. Such a comparison could
provide valuable insights into the effects of varying camera characteristics on the retrieved
enhancements.

Data collected at the Valdemingómez landfill in Madrid, Spain, also has not yet been
analyzed. Likewise, it would be interesting to see if these observations show the same
trends as found at the Pinto landfill and whether they yield emission rates similar to
those found in previous studies.

Additionally, conducting camera observations of a controlled release experiment would
be valuable for validating the methane column enhancements retrieved by a matched fil-
ter1. This could also be used to compare the different matched filters and help implement
improvements. For the ILMF, this could be a more sophisticated selection of enhanced
pixels or areas to be excluded from the calculation of mean spectrum and covariance.

During and around the time of the campaign, observations of the Pinto and Valde-
mingómez landfills were also conducted by GHGSat satellites, by the EnMAP satellite,
and by TROPOMI onboard the Sentinel-5 Precursor satellite, as well as from an aircraft.
Comparing these data with the HySpex measurements might provide valuable insights
into the accuracy of methane column enhancements and emission rates inferred from
the HySpex data. This comparison could be particularly interesting because previous
measurements at the Pinto landfill were conducted while Phase III was still operational.
The Phase III area was sealed and equipped with a degassing system in February 2024
(Personnel of the Pinto landfill, personal communication, June 27, 2024), which means
that our measurements and previous studies need to be compared with caution. Ideally,
measurements with the same instrument are performed before and after such emission
reduction measures are taken so their effectiveness can be assessed using the collected
data.

1This was initially planned for 2024 but was not carried out due to practical constraints.
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