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A B S T R A C T

While deep neural networks deliver state-of-the-art performance in
object detection, their inherent tendency toward overconfidence com-
promises their reliability in safety-critical applications, necessitating
robust methods for uncertainty quantification. Although full Bayesian
inference would provide the most principled treatment of uncertainty,
it is computationally impractical or even infeasiblefor modern large-
scale models and real-time detection pipelines. However, the appli-
cation of Bayesian approximation techniques to complex, real-world
object detection scenarios remains significantly underexplored, as ex-
isting literature focuses predominantly on simplified toy problems
and lower-dimensional datasets.

To address this gap, this thesis implements and evaluates Deep En-
sembles and Monte Carlo Dropout within the state-of-the-art YOLOv8

architecture, assessing their ability to capture aleatoric and epistemic
uncertainty across a corruption-augmented COCO dataset.

Various Monte Carlo Dropout configurations with different dropout
locations were explored; however, Deep Ensembles offer superior
robustness and epistemic uncertainty estimation compared to Monte
Carlo Dropout, which requires aggressive dropout in the detection
head to remain effective.
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Z U S A M M E N FA S S U N G

Während tiefe neuronale Netze im Bereich der Objekterkennung eine
leistungsstarke, dem Stand der Technik entsprechende Performance
liefern, beeinträchtigt ihre inhärente Tendenz zur Überkonfidenz ih-
re Zuverlässigkeit in sicherheitskritischen Anwendungen und macht
robuste Methoden zur Unsicherheitsquantifizierung erforderlich. Ob-
wohl eine vollständige Bayes’sche Inferenz die prinzipiell fundierteste
Behandlung von Unsicherheit bieten würde, ist sie für moderne groß-
skalige Modelle und Echtzeit-Detektionspipelines rechnerisch unprak-
tikabel oder sogar unmöglich. Die Anwendung von bayesianischen
Approximationsverfahren auf komplexe Objekterkennungsszenarien
aus der realen Welt ist jedoch bislang nur unzureichend erforscht, da
sich die bestehende Literatur überwiegend auf vereinfachte Probleme
und niedrigdimensionale Datensätze konzentriert.

Um diese Lücke zu schließen, implementiert und bewertet die-
se Arbeit Deep Ensembles und Monte-Carlo-Dropout innerhalb der
modernen YOLOv8-Architektur und untersucht deren Fähigkeit, alea-
torische und epistemische Unsicherheit über ein durch Korruptionen
erweitertes COCO-Dataset hinweg zu erfassen.

Es wurden verschiedene Monte-Carlo-Dropout-Konfigurationen mit
unterschiedlichen Dropout-Positionen untersucht; allerdings bieten
Deep Ensembles eine überlegene Robustheit und epistemische Unsi-
cherheitsschätzung im Vergleich zu Monte-Carlo-Dropout, das einen
aggressiven Dropout im Detection Head erfordert, um effektiv zu
bleiben.
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1 I N T R O D U C T I O N A N D
M OT I VAT I O N

Deep neural networks (DNNs) have emerged as state of the art so-
lutions for a variety of tasks such as Natural Language Processing
[27] [103] [12] and object detection [13] [15] [79]. However, a well-
documented limitation of these models is their tendency to produce
overly confident predictions, making internally calculated confidence
scores unreliable [85] [122]. This overconfidence can lead to uncer-
tainty regarding the reliability of the model’s predictions, as it does
not provide a clear measure of the uncertainty associated with its
outputs.

These issues have driven the development of techniques to quantify
uncertainty in model predictions based on Bayesian statistics and
Bayes’ theorem. Bayesian Neural Networks, derived from Bayesian
methods, provide a framework for combining the capabilities of DNNs
with uncertainty quantification [17].

Bayesian Neural Networks treat model parameters as probability dis-
tributions. However, the process of integrating or sampling from these
distributions, which is necessary to make predictions, can add signifi-
cantly to the computational cost. Furthermore, performing Bayesian
inference to compute these probability distributions can itself be in-
tractable or highly impractical for modern large-scale neural networks
[55].

Various approximation methods have been proposed to address
these challenges. These methods aim to provide more computationally
efficient yet approximate ways of estimating the probability distribu-
tions of model parameters. One such approach is Variational Inference
[6], which seeks to approximate the true posterior distribution. Other
methods, such as Deep Ensembles [65] and Monte Carlo Dropout
[37], have been introduced to approximate Bayesian methods by per-
forming multiple forward passes through deep learning models with
different weight configurations. These techniques allow uncertainty
metrics to be estimated without the need for full Bayesian inference.

Although Bayesian inference with small multilayer perceptrons has
been explored on relatively simple and low-dimensional datasets, such
as MNIST [26] or subsets of ImageNet [25], these studies typically
involve toy problems or less challenging object detection tasks [37]
[65]. In contrast, the application of Bayesian methods to complex, real-
world scenarios, such as object detection on the COCO dataset using
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2 introduction and motivation

state-of-the-art deep learning models, remains largely underexplored
in the literature.

The present work is motivated by the gap between simplified toy
problems commonly found in the literature and the application of
Bayesian approximation methods in complex, real-world object de-
tection scenarios. The objective of this study is to implement and
evaluate Bayesian Neural Network approximation techniques, specif-
ically Deep Ensembles and Monte Carlo Dropout, within a state of
the art object detection model, YOLOv8. The effectiveness of these
methods is assessed through uncertainty metrics in both regression
and classification tasks.

Accordingly, the main contributions of this work are summarized
as follows:

(1) Architectural modification of YOLOv8: The YOLOv8 network is
modified to incorporate support for Deep Ensembles and Monte
Carlo Dropout. In addition, a methodology is developed to com-
pute uncertainty metrics directly from the model’s inference out-
puts.

(2) Assessment of Bayesian approximation techniques: The effective-
ness of Deep Ensembles and Monte Carlo Dropout for uncertainty
quantification is assessed by comparing various uncertainty met-
rics, while also discussing the practical trade-offs and computa-
tional costs associated with each method.

(3) Evaluation on a corruption-augmented dataset: A modified version
of the COCO dataset is employed to more accurately reflect real-
world conditions. The dataset includes typical corruption types
such as weather effects, noise, blur and digital artifacts in different
corruption severities.

This master thesis evaluates Bayesian approximation techniques
under a demanding setting, combining a state-of-the-art model with a
large-scale and complex dataset. By providing a practical benchmark
and implementation guideline, this work aims to facilitate the wider
adoption of these techniques for developing safer and more reliable
AI systems.



2 B A C KG R O U N D

This chapter establishes the theoretical foundations necessary for the
experimental design and analysis presented later in this work. It
begins with an introduction to Bayesian Neural Networks in Section
2.1, followed by a detailed discussion of approximation techniques
in Subsections 2.1.1 through 2.1.4. Subsequently, the fundamental
principles of Object Detection are outlined in Section 2.2, leading into
an explanation of the specific YOLO architecture employed in this
study in Section 2.3.

2.1 bayesian neural networks

In Bayesian Neural Networks (BNNs) the model parameters, typically
the weights and biases ω, are treated as random variables rather than
fixed quantities. This contrasts with the classical approach, where the
weights are considered to have a single optimal but unknown value
and the observed data D are regarded as random.

During training, BNNs aim to infer the posterior distribution p(ω | D)

over the weights, which quantifies the updated belief about the pa-
rameters after observing the data. The computation of this posterior is
governed by Bayes’ theorem:

p(ω | D) =
p(ω) · p(D | ω)∫

p(ω) · p(D | ω) dω
=

p(ω) · p(D | ω)

p(D)
(2.1)

where p(ω) is the prior distribution encoding a belief about the
parameters before seeing any data, p(D | ω) is the likelihood describing
how probable the data is given the parameters and p(D) is the evidence
or marginal likelihood, which acts as a normalizing constant [43].

In a BNN, the forward pass for a given input x involves computing
the output of the model y by integrating over the posterior distribu-
tion of the parameters. The predictive distribution as a result of the
inference is formulated as [123]:

p(y | x,D) =
∫

p(y | x, ω) p(ω | D) dω (2.2)

In practice, the computation of the evidence integral p(D) in equa-
tion 2.1, which is required for obtaining the posterior distribution

3



4 background

p(ω | D), is computationally intractable due to the high dimensional-
ity and non-convexity of the underlying probability distributions [55],
requiring exponential time for computation [6]. To enable practical
applications, various approximation techniques have been developed,
including Markov Chain Monte Carlo, Variational Inference and others
[60]. These methods are discussed in detail in the following Sections
2.1.1 - 2.1.4.

Furthermore, computing the predictive distribution p(y | x,D) as in
equation 2.2 is equally challenging, particularly for non-trivial models,
as it involves integration over a high-dimensional parameter space. A
common strategy is Monte Carlo sampling, where multiple samples s
are drawn from the posterior distribution to estimate the predictive
distribution, as in equation 2.3. [60].

p(y | x,D) ≈ 1
S

S

∑
s=1

p(y | x, ωs) (2.3)

2.1.1 Markov Chain Monte Carlo

While Markov Chain Monte Carlo (MCMC) methods are not directly
employed in this work primarily due to their computational require-
ments in the context of large-scale models such as YOLOv8 they
remain a fundamental baseline tool in Bayesian inference. As such, a
brief overview is given to highlight their theoretical importance and
application scope.

MCMC methods are designed to draw samples from complex, of-
ten high-dimensional probability distributions, particularly when di-
rect computation or integration of the distribution is analytically in-
tractable. MCMC approximates the posterior distribution of the model
parameters given the observed data [105]. The MCMC method con-
struct a Markov chain whose equilibrium distribution corresponds
to the desired posterior, allowing inference via empirical sampling
statistics.

A defining feature of MCMC is the Markov property: each state in
the sequence depends only on its immediate predecessor, not on the
full trajectory of prior samples. Formally, for a sequence of states x(n),
this property is expressed as in equation 2.4:

P(x(n+1) | x(n), x(t) : t ∈ E) = P(x(n+1) | x(n)), (2.4)

where E denotes all preceding successful time steps t [83].

The Monte Carlo aspect refers to the stochastic nature of the method,
which uses random sampling to explore the parameter space. Together,



2.1 bayesian neural networks 5

these elements define a versatile family of algorithms for numerically
approximating probability distributions through iterative, sample-
based procedures [106].

To ensure that the Markov chain correctly represents samples from
the target distribution, it must satisfy the property of ergodicity. Er-
godicity guaranties that it is possible to transition from any state to
any other and that the chain avoids cycles that would prevent con-
vergence. If these conditions are met and as the number of iterations
increases, the distribution over the sampled states converges to a sta-
tionary distribution. In practice, however, this convergence cannot be
proven analytically and is instead assumed to occur after a so-called
burn-in period, during which early samples, potentially biased by
initial conditions, are discarded [17].

A Markov chain is fully characterized by two elements: the initial
distribution over states, p0(x) and the transition kernel Tn(x, x′), which
defines the probability of moving from state x to state x′ at time step
n is given as:

pn+1(x′) = ∑̃
x

pn(x̃)Tn(x̃, x′), (2.5)

where pn(x̃) is the probability of being in state x̃ at time n [83].

Given an initial distribution, this recursion determines the distribution
over states for all future time steps.

Various MCMC algorithms differ primarily in how new states are
proposed. Common variants include Hamiltonian Monte Carlo [11],
Gibbs Sampling [20] or the No-U-Turn Sampler [52].

Once a new sample is proposed, it is either accepted or rejected
according to a transition probability that ensures that the Markov
chain has the correct stationary distribution. This is typically done
using a Metropolis-Hastings acceptance algorithm, which compares
the posterior probability of the proposed state with that of the current
state [97].

2.1.2 Variational Inference

Variational inference approximates the intractable posterior distribu-
tion over model parameters by employing a simpler parameterized
family of distributions. This approach has been proposed to address
the limitations of MCMC methods, in particular their slow conver-
gence and poor scalability [38].

A technique for approximating a target probability distribution
is to minimize the Kullback–Leibler divergence (KL), which quantifies
the difference between two probability distributions [59]. The KL
divergence is based on the Shannon entropy, a fundamental measure



6 background

of uncertainty in information theory [101]. Shannon entropy is defined
as:

H(P) = − ∑
x∈X

P(x) log P(x) (2.6)

Building on this, the KL divergence between two probability distri-
butions P and Q is given by [38].:

DKL(P ∥ Q) = Ex∼P(X)

[
log

p(x)
q(x)

]
(2.7)

In the framework of Bayesian inference, the KL divergence can be
expressed in terms of the approximate distribution q(ω) and the target
posterior p(ω | D) as follows [6]:

DKL(q(ω) ∥ p(ω | D)) = E[log q(ω)]− E[log p(ω | D)] (2.8)

By applying Bayes’ theorem, the posterior distribution can be rewrit-
ten as [6]:

p(ω | D) =
p(ω,D)

p(D)
(2.9)

Substituting this into the KL divergence yields [6]:

DKL(q(ω) ∥ p(ω | D)) = E[log q(ω)]−E[log p(ω,D)] + log p(D)

(2.10)

To find the distribution q(ω) that best approximates the target pos-
terior p(ω | D), a optimization problem is formulated that minimizes
the KL divergence:

q∗(ω) = arg min
q(ω)∈Q

DKL(q(ω) ∥ p(ω | D)) (2.11)

However, as can be seen in equation 2.10 and because evaluating
the KL divergence in equation 2.11 requires computing the marginal
likelihood log p(D), which is generally intractable as noted above,
the Evidence Lower Bound (ELBO) was introduced [38]. By rearranging
Equation 2.10 the ELBO is defined as:

ELBO(q) = E[log p(ω,D)] − Eq(ω)[log q(ω)]

which is equivalent to the negative KL divergence plus the constant
log p(D) [38].
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This formulation removes the dependence on the intractable term
log p(D) by treating it as a constant, thereby yielding a tractable
objective for variational optimization [6].

Equivalently, the ELBO can be expressed in terms of the expected
log-likelihood and a regularization term as

ELBO(q) = E[log p(D | ω)] − DKL
(
q(ω) ∥ p(ω)

)
where the first term measures how well the model explains the ob-
served data and the second term penalizes deviation of the variational
distribution from the prior [6].

Moreover, the ELBO lower-bounds the log evidence,

log p(D) = ELBO(q) + DKL
(
q(ω) ∥ p(ω | D)

)
and since DKL(·) ≥ 0, it implies that log p(D) ≥ ELBO(q) [59]. Thus,
maximizing the ELBO is exactly equivalent to minimizing the KL
divergence to the target posterior [6].

To optimize the variational distribution, the goal is to maximize
the ELBO, requiring an estimator for the gradient of the ELBO with
respect to the variational parameters λ. In variational inference the
gradient of the ELBO can be expressed as an expectation with respect
to the parameters of the variational distribution λ, i.e. the mean and
variance [90]:

The prior distribution q(ω) provides the initial guess for the hid-
den variables in the model. These hidden variables, denoted ω, are
typically assumed to belong to a mean-field variational family q(ω|λ).
The values of these parameters are iteratively adjusted during the
optimization process to approximate the true posterior distribution of
the hidden variables as shown in equation 2.12 [51].

∇λL = Eq [∇λ log q(ω|λ) (log p(ω,D)− log q(ω|λ))] (2.12)

where the expectation is taken with respect to the variational dis-
tribution q(ω|λ). However, evaluating this gradient directly can be
computationally expensive, especially for complex models or large
datasets.

Stochastic Variational Inference (SVI) addresses the limitation of
traditional VI, which requires passing through the entire dataset to per-
form a single gradient calculation and therefore a single optimization
iteration. This becomes problematic, especially with large datasets,
due to memory constraints and increasing computational cost per
iteration, leading to poor scalability. To overcome this issue, SVI intro-
duces a noisy gradient-based method to update the parameters of the
variational distribution [51].

Specifically, it employs Monte Carlo sampling to approximate the
gradient: by drawing S samples from the variational distribution, a
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noisy but unbiased estimate of the gradient is obtained, as defined in
equation 2.13 [51, 90].

∇λL ≈ 1
S

S

∑
s=1

∇λ log q(ωs|λ) (log p(ωs,D)− log q(ωs|λ)) (2.13)

in which each sample ωs is drawn from the variational distribution
q(ω|λ). This sample-based gradient for a effiencient calculation of the
gradient of the ELBO, even for large datasets. The noisy gradients
derived from this process can then be used to iteratively update the
variational parameters λ improving the approximation of the target
distribution. The update rule for λ is typically governed by a learning
rate schedule and the process continues until convergence [51].

2.1.3 Deep Ensembles

Ensemble methods combine multiple models to create a more robust
and capable model, improving predictive performance [28]. Further-
more, Lakshminarayanan et al. [65] demonstrated that Deep Ensembles
are effective in modeling predictive uncertainty. Although diversity
among individual model parameters is crucial, traditional methods
such as bagging, which trains models on different data subsets, are
not strictly necessary. Research shows that other sources of stochastic-
ity, including random weight initialization and mini-batch selection,
introduce sufficient diversity [40] [68]. This allows ensemble members
to be trained on the full dataset, thereby maximizing accuracy.

Furthermore, adversarial training examples have been used to in-
crease model robustness and Out-Of-Domain detection[44]. After
training, inference is performed by combining the predictions of all
ensemble members.

The combined prediction is given by equation 2.14:

p(y|x) = 1
M

M

∑
m=1

pθm(y|x, θm) (2.14)

For classification tasks, the mean value of the output distribution is
computed, such as the output of a softmax activation. In the case of re-
gression, the value of each bounding box coordinate is averaged. If the
model is extended with an additional head to predict variance, these
variance estimates are also averaged, forming a Gaussian distribution
for the regression problem [65].

When comparing Deep Ensembles with other popular methods,
it was found that Deep Ensembles were easier to implement than
methods based on Bayes’ theorem. Nevertheless, they can achieve per-
formance on a par with Bayesian neural networks, even with relatively
small ensemble sizes, such as M = 5 models [65].
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Repulsive Ensembles extend the Deep Ensemble approach by intro-
ducing a repulsive term to the model parameters. This repulsive term
encourages functional diversity among the ensemble members and
prevents early saturation when adding more models to the ensemble.
It has been shown that the training dynamics of repulsive ensembles
correspond to a Wasserstein gradient flow that minimizes the KL
divergence to the Bayesian posterior [21] [77] [76] [31].

Repulsive ensembles address the issue that deep neural networks are
often overparameterized. In such models, different sets of parameters
can describe the same function, leading to a false sense of diversity [21].
Therefore, it is necessary to introduce a repulsive term in two spaces:
the parameter space and the function space. In the parameter space, the
repulsive term pushes the model weights apart, promoting diversity.
In the function space, it mitigates the effects of overparameterization
by ensuring that the outputs of the models remain distinct.

The parameter space update is formulated in equation 2.15 [65].
In this expression, the first term represents the classic optimization
objective, while the second term applies the repulsive force to ensure
diversity:

ϕ(wt
i) = ∇wt

i
log p(wt

i |D)−R
({

∇wt
i
k(wt

i , wt
j)
}n

j=1

)
(2.15)

Equation 2.16 specifies the repulsive kernel gradient, where the
interaction between model weights is scaled by their distance and
modulated by a kernel function to maintain a well-spread approxima-
tion of the posterior [65]:

∇wt
i
k(wt

i , wt
j) =

2
h
(wt

j − wt
i) k(wt

i , wt
j) (2.16)

For the function space, the weight update is formulated by first
computing gradients in the function space and then projecting them

back into the parameter space using the Jacobian ∂ f t
i

∂wt
i
, aligning the

update of the weights with the functional posterior. The repulsive term
operates on projected functions πB( f t

i ), evaluated over a subset B of
the input space and encourages diversity among the models outputs
by penalizing similarity in function space rather than in weight space
[21].

The function space update is given by equation 2.17:

ϕ(wt
i) =

[
∂ f t

i
∂wt

i

]⊤ (
∇ f t

i
log p( f t

i |D)−R
({

∇ f t
i
k
(
πB( f t

i ), πB( f t
j )
)}n

j=1

))
(2.17)

Since training each ensemble member with its respective repulsive
term introduces increased complexity and computational cost, an



10 background

alternative approach is to use a shared backbone with a lightweight
repulsive ensemble head. Such strategy promotes functional diversity
at lower computational cost, improves uncertainty estimation and
enables efficient integration with pre-trained models [107] [102].

2.1.4 Monte Carlo Dropout

Monte Carlo Dropout (MCDO) is a another proposed method to ap-
proximate Bayesian Inference in neural networks by enabling dropout
at both training and test time.

From a Bayesian perspective, MCDO can be seen as an approxi-
mation to a deep Gaussian Process [37] [22]. A Gaussian Process is
a stochastic process where any finite set of function values follows
a joint Gaussian distribution making it a natural Bayesian prior over
functions that dropout networks can approximate [32].

Although MCDO uses a single trained network with stochastic for-
ward passes, in practice it behaves similarly to an ensemble method.
Each dropout sample corresponds to a different subnetwork. There-
fore the technique can be interpreted as sampling from an implicit
ensemble of models [65].

Let f (·) denote the predictive function of the neural network. At
test time, multiple stochastic forward passes are performed through
the network, each time with a different dropout mask applied to the
neurons. This produces a set of stochastic predictions { f (t)(x)}T

t=1 for
the input x, where each f (t)(x) corresponds to a different sample from
the approximate posterior.

When modeling uncertainty, these sets of predictions are used to
estimate both the predictive mean and variance of the model’s out-
put. Specifically, the predictive mean is approximated by averaging
the outputs of the T stochastic forward passes, while the predictive
variance captures both the model’s inherent noise and the variation
across these predictions. Formally, the predictive mean is given by
equation 2.18 and the predictive variance is estimated as the sample
variance of the predictions [37].

Eq(y|x)(y∗) ≈ 1
T ∑ t = 1T f (t)(x) (2.18)

MCDO can also be interpreted as performing variational inference
by approximating the intractable posterior distribution p(ω|X, Y) with
a variational distribution q(ω). This approximation is constructed by
applying Bernoulli-distributed dropout masks to the network weights.
For each layer i, the variational distribution over weights is defined as
[37]:

Wi = Mi · diag([zi,j]
Ki−1
j=1 ) (2.19)
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where zi,j ∼ Bernoulli(pi) for i = 1, ..., L and j = 1, ..., Ki−1. Here,
Mi are variational parameters to be optimized and pi represents the
dropout probability for neurons in layer i. The binary variable zi,j = 0
corresponds to unit j in layer i − 1 being dropped out as an input to
layer i.

This variational approximation leads to the standard loss function
with L2 regularization [37]:

Ldropout =
1
N

N

∑
i=1

E(yi, ŷi) + λ
L

∑
i=1

∥Wi∥2
2 + ∥bi∥2

2 (2.20)

where E(yi, ŷi) is a task-specific loss function (such as softmax loss
or Euclidean loss), N is the number of data points and λ is the weight
decay parameter controlling regularization strength.

This dropout objective corresponds to minimizing the KL divergence
between the variational distribution q(ω) and the true posterior of a
deep Gaussian process which MCDO approximates. The connection
to the previously mentioned ELBO is given by equation 2.21:

Ldropout ∝ −ELBO(q) = −E[log p(D|ω)] + DKL(q(ω)∥p(ω)) (2.21)

The task-specific loss term acts as an approximation of the negative
log-likelihood, representing how well the model explains the observed
data. Simultaneously, the L2 regularization term applied to the net-
work weights approximates the KL divergence between the variational
posterior distribution and the prior. Consequently, minimizing this
dropout loss function is equivalent to maximizing the ELBO [37].

2.2 object detection in machine learning

Computer vision is an umbrella term that describes a range of tasks
designed to interpret visual data. These tasks can be as simple as
image classification or as complex as object detection and semantic
segmentation, which are shown in Figure 2.1. The granularity of the
analysis is what primarily differentiates these tasks, ranging from
entire image categorization to pixel-level understanding and spatial
localization of entities.

2.2.1 Problem Definition

Object detection is a composite task that addresses both where objects
are located and what category they belong to. The objective is to
estimate the locations and categories of all instances within a single
image, regardless of the total number of objects present [109].
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Figure 2.1: Comparison of computer vision tasks showing the progression
from single-label Classification and Localization to multi-object
Detection and Semantic Segmentation. Images are from the
COCO dataset [74].

Formally, the output of a object detection model is a set of pre-
dictions where each detected instance is usually represented by a
bounding box, a class label and a confidence score. The bounding box
is usually expressed as a vector b = (x, y, w, h), where (x, y) denotes
the coordinates of the box center and w and h represent the width and
height relative to the image dimensions. Alongside localization, the
model predicts a class label c from a set of predefined categories and
a confidence score P(Object), reflecting the probability that the region
contains an object of interest. In modern regression based frameworks,
this confidence often accounts for the probability of the object’s exis-
tence and the Intersection over Union fit between the predicted box
and the ground truth [128].

Several variations in visual data complicate achieving robust detec-
tion. Detection algorithms must address significant intra-class vari-
ations, such as diverse structural features and appearances within
the same category [75]. Another challenge is occlusion, in which ob-
jects are only partially visible or overlap, requiring the model to infer
the entire object with missing information. Additionally, objects in
natural scenes exhibit size variations and detecting small objects is
particularly challenging due to the coarse nature of feature maps in
deep convolutional networks, which can result in a loss of semantic
information for small instances [72]. Finally, the detector must be
invariant to viewpoint changes and maintain accurate localization and
classification despite alterations in object pose, rotation and lighting
conditions [128] [75].

2.2.2 Network Architectures

Modern object detection frameworks typically consist of three distinct
functional components: a backbone network, responsible for extracting
semantic feature representations from the input image, a neck, which
aggregates and refines these features and a head, which performs the
final localization and classification [33]. Understanding current detec-
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tion methods requires examining the fundamental building blocks
of these backbone and neck structures and the approaches used to
design the detection heads.

2.2.2.1 Building Blocks of Neural Networks

The foundational unit of deep learning is the Perceptron [99]. When
connected in multiple layers, these units form the simplest neural net-
work architecture, known as the Multilayer Perceptron (MLP). While
MLPs are universal function approximators, they lack the spatial in-
ductive biases required for efficient computer vision. Because every
input pixel connects to every neuron in the subsequent layer, MLPs
ignore the local spatial structure inherent in visual scenes. Conse-
quently, they suffer from a prohibitive explosion of parameters when
processing high-dimensional image data [67].

Convolutional Neural Networks (CNNs) addressed these limitations
and became the standard for visual feature extraction. Unlike MLPs,
CNNs employ learnable filters called kernels that slide over the input.
This architecture enables the network to capture local patterns such as
edges and textures in earlier layers and progressively more complex
structures in deeper layers [66]. To reduce the amount of trainable
parameters, modern backbones such as the ResNet family [47] utilize
pooling layers and strided convolutions to downsample the spatial
resolution while increasing the depth of the feature channels.

Attention modules have recently emerged as a powerful alternative
or complement to convolutions. Originating in natural language pro-
cessing with the Transformer architecture [117], attention mechanisms
calculate the relevance of one part of the input sequence to another,
regardless of their positional distance [4] [63]. In computer vision, this
allows the model to capture global context and dependencies that
localized convolution operators might miss. Both Vision Transformers
[29] and detection specific Transformers [13] treat image patches as
sequences. They use attention mechanisms to model relationships
between different areas of an image, which improves the detector’s
ability to understand object interactions and occlusions.

2.2.2.2 Detection Heads

Once features are extracted by the backbone and refined by the neck,
the detection head determines how these features are translated into fi-
nal predictions. This process is generally categorized into two primary
methods: Two Stage and single stage detectors.

Two-Stage Detectors, popularized by the R-CNN family, operate
on a proposal driven paradigm. The detection process begins with a
Region Proposal Network, which generates a set of candidate regions
that are likely to contain objects, filtering out the vast majority of the
background. In the second stage, these proposed regions are pooled
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into feature maps of the same size and then passed to a classifier
and regressor to refine the coordinates and predict the class label
[42]. Because the detection head only processes regions associated
with high probability, two-stage detectors typically achieve higher
localization accuracy and are more robust to small objects. However,
this accuracy comes at the cost of computational efficiency, as the
sequential nature of the two steps creates a bottleneck that increases
latency and the number of parameters [104].

Single stage Detectors, such as the YOLO series [92] and SSD [79],
prioritize speed by framing detection as a single regression problem.
Instead of generating proposals, these models predict bounding boxes
and class probabilities directly from the feature maps in a single for-
ward pass. However, this architectural efficiency historically required
a trade-off between inference speed and detection accuracy. Early sin-
gle stage models often struggled with difficult examples, particularly
manifesting as poor performance on small objects [104]. Consequently,
much of the subsequent innovation in single stage detection has fo-
cused on bridging the accuracy gap to handle difficult tasks without
sacrificing real-time performance. Prominent examples include the in-
troduction of Focal Loss [73] to mitigate foreground-background class
imbalance and the development of multi-scale architectures that fuse
feature maps of varying resolutions to enhance small object detection
[72].

2.2.3 Evaluation Metrics

To assess the performance of object detection models, standardized
metrics are required to measure both the localization accuracy and the
classification correctness. The evaluation pipeline relies on comparing
the predicted bounding boxes against the ground truth annotations
using geometric overlap, which subsequently allows for computation
of other metrics like precision and recall.

Intersection over Union:
The most commonly used metric for measuring the geometric accu-

racy of a predicted bounding box is the Intersection over Union (IoU).
IoU measures the degree of overlap between the predicted box Bp and
the ground truth box Bgt. It is calculated as the ratio of the area of
their intersection to the area of their union:

IoU =
Area(Bp ∩ Bgt)

Area(Bp ∪ Bgt)
(2.22)

This metric produces a value between 0 and 1, where 0 indicates no
overlap and 1 indicates a perfect match. In evaluation pipelines, the
IoU serves as a threshold to define correctness. If the IoU exceeds a
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pre-defined threshold α, the prediction is classified as a True Positive
(TP), otherwise, it is considered a False Positive (FP) [96].

Precision and Recall:
Based on the classifications into TP and FP derived from the IoU

threshold, the model’s performance is further decomposed into Pre-
cision and Recall. Precision quantifies the reliability of the model’s
positive predictions, measuring the percentage of detected objects that
are actual ground truth instances. Conversely, Recall measures the
coverage of the model, evaluating the percentage of all ground truth
objects that were successfully detected. These are formally defined as:

Precision =
TP

TP + FP
Recall =

TP
TP + FN

(2.23)

where FN (False Negative) represents ground truth objects that the
model failed to detect. A detector seeks to maximize both metrics,
though there is typically a trade-off: lowering the detection confidence
threshold increases Recall but often decreases Precision by introducing
more False Positives [89].

Mean Average Precision:
To provide a single scalar metric that summarizes performance,

Average Precision is utilized. AP is defined as the area under the
Precision-Recall curve, which is generated by plotting precision against
recall as the prediction confidence threshold is varied. Mathematically,
the Average Precision for a specific class corresponds to the integral
of the precision p(r) as a function of recall r:

AP =
∫ 1

0
p(r)dr (2.24)

In discrete implementations, this integral is approximated using in-
terpolation methods [34]. The Mean Average Precision is subsequently
derived by calculating the mean of the AP scores across all N object
categories in the dataset.

mAP =
1
N

N

∑
i=1

APi (2.25)

Additional metrics, including the F1 score and deployment con-
straints such as processing speed and energy efficiency, are acknowl-
edged but remain beyond the scope of this analysis.

2.3 you only look once

YOLO (You Only Look Once) models belong to the class of convo-
lutional neural networks and are specifically designed for real-time
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object detection. These models typically follow the modular archi-
tecture consisting of three main components: backbone, neck and
detection head as discussed in Chapter 2.2.2 [33]. The YOLO model
series has undergone extensive development over the years by differ-
ent people, groups and companies, with the aim of improving both
detection accuracy and computational efficiency.

YOLOv8 [58], published in 2023, was chosen as the model for this
work due to its recent development and its practical advantages. Al-
though its successor, YOLOv11, has been introduced lately, it remains
poorly documented and is not yet widely adopted. Furthermore, other
members of the institute’s research group have been working with
YOLOv8, enabling more consistent comparisons and insights across ex-
periments. Notably, similar to YOLOv5, YOLOv8 was released without
an accompanying official publication.

2.3.1 Advances in YOLO Architecture

The series of YOLO models originated from the work of Joseph Red-
mon, who introduced the first YOLOv1 model in 2015 with the paper
You Only Look Once: Unified, Real-Time Object Detection [92]. The key
feature of YOLOv1 was the unification of bounding box regression
and object classification in a single neural network, allowing object
detection in a single forward pass, categorizing it as a single stage
object detector. This eliminated the need for separate region proposal
stages, which were common in SOTA methods at the time.

YOLOv1 divides the input image into an S × S grid. Each grid cell
predicts B bounding boxes, where each box encodes its coordinates
(x, y, w, h), along with a confidence score. This confidence score reflects
both the probability that the box contains an object and the accuracy
of the bounding box prediction. Additionally, each grid cell outputs
a set of class probability scores, conditioned on the presence of an
object. During inference, the class probabilities are multiplied by the
bounding box confidence scores to yield class-specific confidence
values for a given bounding box. A non-maximum suppression step
is then applied to remove duplicate detections [92].

The original YOLO architecture employed 24 convolutional layers
followed by 2 fully connected layers as the head for final prediction.
With this design, real-time inference is possible while maintaining
competitive accuracy compared to other SOTA approaches such as
R-CNN [42], Fast R-CNN [41], Faster R-CNN [95] and DPMs [35].

Subsequent versions of YOLO introduced substantial architectural
modifications while retaining the single stage detection principle [113]:

YOLOv2 [93] introduced batch normalization [54], which stabilizes
and accelerates training by normalizing the inputs of each layer. It
also adopted anchor boxes for bounding box predictions, allowing
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the network to better predict objects with varying aspect ratios and
transitioned to the Darknet-19 backbone.

YOLOv3 [94] replaced the softmax classifier with a binary cross-
entropy loss to support multilabel classification within a single bound-
ing box. It introduced the Darknet-53 backbone with residual connec-
tions to improve gradient flow in deep networks. Additionally, Feature
Pyramid Networks (FPNs) were used to improve multi-scale detection
by combining low-resolution, semantically strong features with high-
resolution, detailed features. This is done through a top-down process,
where the features from deeper layers, which contain strong semantic
information but are lower in resolution, are upsampled and merged
with the higher resolution features from earlier convolutional layers
[72].

YOLOv4 [7] retained the Darknet-53 backbone but modified it using
Cross-Stage Partial Networks (CSPNet) [119], which splits the input
feature map, processes one part through additional layers and then
concatenates it with the other part. The FPN used in YOLOv3 has been
replaced by a Path Aggregation Network (PANet) [78]. Building upon
the standard FPN structure, PANet refines and merges multi-scale
feature maps starting from the lowest resolution upward to higher
stages using a series of convolutional building blocks. At each stage,
higher-resolution feature maps are combined with coarser ones via
lateral connections, followed by convolutional operations that unify
and propagate information, thereby improving the localization of
objects across scales.

Starting with YOLOv5, development was transferred to the com-
pany Ultralytics [115], which maintains and releases updates without
accompanying academic papers. Analysis of open source code, docu-
mentation and independent studies are necessary to understand these
models.

YOLOv5 introduced several practical improvements, including half-
precision (float16-based) inference for speed, data augmentation tech-
niques such as mosaic augmentation and deployment in PyTorch [87]
instead of Darknet [91]. The model has been released in multiple sizes
(e.g. YOLOv5n to YOLOv5x) to accommodate different performance
and resource constraints [62].

Other models such as YOLOv6 [70], YOLOv7 [118], YOLOR [120],
YOLOX [39] and DAMO-YOLO [125] have been developed by other
groups and are not discussed further here. This work focuses ex-
clusively on YOLOv8, developed by Ultralytics, as it is the direct
successor to YOLOv5.

2.3.2 YOLOv8

The YOLOv8 architecture, illustrated in Figure 2.2, employs a custom
CSPDarknet53 backbone, maintaining conceptual similarities with
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YOLOv5. However, the CSP layers have been replaced by C2f blocks
(Cross-Stage Partial bottleneck with two convolutions).

Figure 2.2: Overview of the YOLOv8 architecture comprising a CSPDarknet-
based Backbone, a hybrid FPN and PAN Neck and three parallel
detection heads for multi-scale object detection. The architecture
utilizes C2F modules for efficient feature extraction and aggrega-
tion and includes SPPF to support input images of varying sizes
and aspect ratios [126]

.

These are shown in detail in Figure 2.3 together with layer-level
visualization of the different blocks used in the network.1 The C2f
block processes its input through an initial 1x1 convolutional layer,
after which the feature map is split into two separate paths. One
path is processed through a bottleneck module involving additional
convolutions, while the other bypasses this operation. The outputs of
both paths are concatenated and processed by a final 1x1 convolutional
layer. The C2f block structure helps preserve low-level spatial detail
that is often lost after successive convolutional operations, while still
allowing deeper feature extraction through the bottleneck path.

The final component of the backbone is the Spatial Pyramid Pooling
Fast (SPPF) module. This block enables the extraction of a fixed-length
feature representation regardless of input image size. It does so by
pooling feature maps at multiple spatial scales and concatenating
them, as described by He et al [46].

1 https://github.com/ultralytics/ultralytics/issues/189#issue-1527158137

https://github.com/ultralytics/ultralytics/issues/189#issue-1527158137
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The neck structure integrates a hybrid approach combining elements
of the FPN top-down and PANet down-up processes [127]. The FPN
and PANet implementations have been adapted to also use C2f blocks.

The detection head consists of three separate detection modules,
each operating on different feature map resolutions from the neck.
These outputs are then combined to produce the final detection pre-
dictions. Unlike previous versions of YOLO, YOLOv8 employs an
anchor-free detection approach, allowing the model greater flexibility
in detecting objects of different scales and aspect ratios [50].

Figure 2.3: Layer-wise representation of key architectural blocks utilized
in YOLOv8 including C2f and Bottleneck Modules, Cov Layers,
SPPF and Detection Head

The YOLOv8 model is available in five different sizes - YOLOv8n,
YOLOv8s, YOLOv8m, YOLOv8l and YOLOv8x - offering a choice
between inference speed and detection accuracy. In addition, YOLOv8

supports five task-specific modes, each with a distinct model: object
detection, image segmentation, image classification, pose estimation
and oriented bounding box detection. For the object detection task,
Table 2.12 summarizes the performance metrics of each model variant.

Table 2.1: Performance Comparison of YOLOv8 Models

Model Size [px] mAP50:95
val [%] CPU ONNX [ms] A100 TensorRT [ms] Params [M] FLOPs [B]

YOLOv8n 640 37.3 80.4 0.99 3.2 8.7

YOLOv8s 640 44.9 128.4 1.20 11.2 28.6

YOLOv8m 640 50.2 234.7 1.83 25.9 78.9

YOLOv8l 640 52.9 375.2 2.39 43.7 165.2

YOLOv8x 640 53.9 479.1 3.53 68.2 257.8

Due to the relatively small model size of a few megabytes size with
3.2 million parameters, the nano version of YoloV8 was chosen for
this work, as it allows scalability with faster training and inference,

2 https://docs.ultralytics.com/de/models/yolov8/#overview

https://docs.ultralytics.com/de/models/yolov8/#overview
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while still achieving competitive accuracy on the Common Objects in
Context [74] dataset.



3 S TAT E O F T H E A R T A N D
R E L AT E D W O R K S

This chapter provides an overview of recent advances and the state
of the art in object detection and uncertainty estimation. In particular,
Section 3.1 discusses the state of the art of object detection models,
while Section 3.2 reviews methods and related work for incorporating
uncertainty estimation techniques into object detection models.

3.1 object detection

Object detection is a computer vision task that involves both identi-
fying and localizing instances of predefined object categories within
an image [128]. This task can be divided into 2D and 3D object detec-
tion: 2D detectors predict the height and width of an object, while 3D
detectors additionally estimate its depth. Object detection has been
widely applied in various fields, including medical imaging [98] [121],
robotics [69] [100] as well as autonomous driving [5] [18].

CNNs are extensively used for feature extraction in object detecion,
employing convolutional layers that apply learnable kernels to recog-
nize spatial hierarchies in the input data. These filters capture local
patterns such as edges and textures, allowing deeper layers of the
network to identify increasingly complex structures [86]. For many
years, CNN-based models such as R-CNN [42] and YOLO [92] have
been dominant in the field, consistently achieving leading benchmark
results.

However, transformer-based networks have recently surpassed CNNs
in performance and have taken the lead in the object detection rank-
ing.1 Their success can be attributed to the fact that transformers do
not have the receptive field limitations imposed by kernel size [4]
[63]. Notable transformer-based object detection models include Vi-
sion Transformers [29], Swin Transformers [80], DINO [15] and DETR
[13]. Unlike CNNs, which focus on local patterns, transformers use
attention mechanisms, capturing global relationships and allowing
the model to better understand the context and structure of the whole
image [13].

The field has also advanced towards unified, promptable founda-
tion models that extend beyond the category constraints of traditional

1 https://leaderboard.roboflow.com/
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CNN and transformer-based detectors, which require that objects to be
detected be part of the training dataset. A prime example at the time
of writing this thesis is the release of SAM 3, which introduces Prompt-
able Concept Segmentation to detect, segment, and track objects using
text prompts or image examples. Unlike standard architectures that
couple recognition and localization within specific class heads, SAM
3 utilizes a shared vision encoder backbone that feeds into both a
DETR-based detector and a memory-based video tracker [14].

Despite the emergence of other methods, CNNs are still widely used
in practice. This is mainly due to their lower data requirements for
training and faster inference speed [81] [24]. Prominent architectures
in CNN-based object detection include the YOLO [92] and Region-
based CNN families [41], alongside other influential models such as
RetinaNet [71] and EfficientDet [110]

3.2 uncertainty estimation in object detec-
tion

Uncertainty estimation in object detection has gained increasing at-
tention as a means to improve the accountability and reliability of AI
systems. While traditional object detectors provide point estimates for
bounding boxes and class scores, uncertainty-aware approaches aim
to complement these predictions with measures of uncertainty [61].

Techniques for estimating these uncertainties can be broadly divided
into two paradigms: sampling-based methods, which rely on multiple
forward passes to approximate the posterior distribution, offering
high-quality estimates at the cost of computational latency and single-
pass methods, which are real-time capable and predict uncertainty
directly, though often with limitations in capturing full epistemic un-
certainty. Alternatively, these techniques can be categorized by their
theoretical foundations, distinguishing between principled methods
that incorporate a Bayesian prior and those that do not.

Sampling-based Methods
Sampling-based approaches approximate Bayesian inference by

treating network parameters or inputs as stochastic, requiring multiple
forward passes during inference to estimate the posterior distribution
[84] [36].

A prominent technique is Monte Carlo Dropout, which approxi-
mates Bayesian inference by performing multiple stochastic forward
passes with dropout enabled at test time [37]. This method has been
adapted for object detection, for instance, Kraus [64] applied MCDO
to YOLOv3 to spatially visualize uncertainty, while Peng [88] utilized
MCDO estimates to calibrate confidence scores. To effectively aggre-
gate these stochastic predictions. BayesOD introduces a framework
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for uncertainty estimation in object detection by replacing standard
Non-Maximum Suppression with Bayesian inference. It treats multiple
redundant anchor outputs as evidence to fuse rather than discard,
thereby updating probability distributions for both object locations
and categories to produce more reliable confidence estimates [45].

Deep Ensembles represent another robust sampling strategy, where
multiple independently initialized neural networks are trained and
their predictions combined. Ensembles have been shown to effectively
capture epistemic uncertainty and are often considered the standard
for uncertainty quality [65]. To prevent ensemble members from con-
verging to similar solutions, Repulsive Ensembles encourage function
space diversity, further improving performance [21] [107].

Additionally, Test-Time Data Augmentation generates multiple aug-
mented versions of the input image at inference time. Methods such as
those by Ayhan and Berens [2] and Wu et al. [124] estimate uncertainty
by analyzing the variability of predictions across these augmented
views.

Single-pass Methods
Single-pass methods aim to quantify uncertainty within a single

forward pass, making them suitable for real-time applications. These
methods typically modify the network architecture or loss function to
predict distributional parameters directly.

A common approach to capture aleatoric uncertainty is to model
the bounding box regression as a probability distribution rather than
a deterministic value. He et al. [48] proposed Bounding Box Regres-
sion with Uncertainty, utilizing a KL-Divergence loss to learn the
variance of bounding box coordinates. Similarly, Choi et al. [19] intro-
duced Gaussian YOLOv3, which modifies the YOLO detection head
to predict coordinate uncertainty as Gaussian distributions.

Li et al. [71] introduced Generalized Focal Loss, which models the
location of bounding box edges as general probability distributions
rather than deterministic points. This is achieved by dividing the
prediction into discrete bins describing distances from the anchor,
where the network predicts the probability of the edge falling into
each bin.

Beyond regression uncertainty, other deterministic methods focus
on Out-of-Distribution detection. Zolfi et al. [129] proposed YOLOOD,
which leverages internal feature activations from YOLO’s detection
modules to compute an OOD score. Van Amersfoort et al. [1] intro-
duced Deterministic Uncertainty Quantification, a method that detects
OOD samples in a single forward pass by utilizing a Radial Basis
Function to measure the distance between input features and learned
class centroids.

Despite the growing number of methods, existing studies use dif-
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ferent models, datasets, approximation techniques, and evaluation
metrics, making a comprehensive comparison challenging. This work
addresses this gap by systematically evaluating two popular sample-
based uncertainty estimation techniques on a single stage object de-
tection model and guide future research in uncertainty-aware object
detection.
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The experimental framework designed to quantify and evaluate uncer-
tainty metrics for object detection is detailed in this chapter. It begins
by highlighting the methodologies selected to capture distinct uncer-
tainty metrics. Subsequently, the necessary modifications made to the
standard YOLOv8 model are described to facilitate these uncertainty
estimation techniques. The primary objective of this experimental de-
sign is to conduct a relative performance analysis of these methods.
This approach is necessitated by the computational infeasibility of
establishing a definitive ground truth for model uncertainty using
conventional techniques like Markov Chain Monte Carlo, which are
not scalable to deep neural networks of this magnitude.

4.1 uncertainty metrics

In order to quantify uncertainty in object detection, it is first essential
to establish a clear definition of the subject. This section categorizes
uncertainty along two primary axes: the nature of the prediction task,
regression versus classification and the fundamental source of the
uncertainty itself. It then describes how to capture the metrics for
these uncertainties.

4.1.1 Regression and Classification Uncertainty

In object detection, a distinction can be made between two primary
types of predictive tasks: regression and classification.

The task of determining the corner coordinates of each bounding
box is a regression problem. The objective is to predict continuous
numerical values based on input data. The simplest form of this is
linear regression. However, in deep learning, this continues value is
predicted by the neural network.

Conversely, the classification task involves assigning a predefined
label to each detected object. There are different approaches for finaliz-
ing the model’s classification output. One common method is to apply
the softmax function to the model’s internal logit values, transforming
them into a probability distribution over the class labels. The softmax
function is defined in equation 4.1 as:

25
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Qj(x) =
eVj(x)

∑k eVk(x)
(4.1)

This function preserves the relative order of the input scores and pro-
vides a differentiable approximation of the winner-take-all mechanism
by amplifying the most likely class prediction [10].

While the winner-take-all approach is suitable for many applications,
it can be limiting in cases where multiple overlapping or hierarchically
related labels are present (e.g., both dog and golden retriever). In such
cases, it is necessary to employ multi-label classification. By default,
YOLOv8 utilizes a multi-label classification framework and replaces
the softmax function with the sigmoid activation function, as shown
in equation 4.2.1

Sigmoid(x) =
1

1 + e−x (4.2)

The sigmoid function independently maps each logit to a value in
the range (0, 1), allowing for multiple classes to be simultaneously
active without enforcing a mutual exclusivity constraint. Final label
assignments are then determined by applying a predefined threshold
to these values [30].

This distinction introduces a challenge: object detection involves
two different types of prediction tasks each requiring distinct metrics
for uncertainty assessment. While regression uncertainty is concerned
with continuous error margins, classification uncertainty is inherently
discrete, whether a prediction is true or false and therefore requires
different modeling strategies.

4.1.2 Aleatoric and Epistemic Uncertainty

The overall predictive uncertainty of a prediction as described in
section 2.1 can be decomposed into two primary sources: aleatoric
uncertainty, also known as data uncertainty and epistemic uncertainty,
or model uncertainty [116].

In the context of Bayesian inference, aleatoric uncertainty is asso-
ciated with the likelihood term p(D | ω), as it captures the intrinsic
noise present in the observed data. This type of uncertainty is consid-
ered irreducible because it originates from inherent stochasticity or
measurement errors, which are independent of the model parameters
[53]. Aleatoric uncertainty can be further classified into two types: ho-
moscedastic uncertainty, which remains constant across different input

1 https://github.com/ultralytics/ultralytics/blob/

440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/nn/modules/head.

py#L26-L212

https://github.com/ultralytics/ultralytics/blob/440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/nn/modules/head.py#L26-L212
https://github.com/ultralytics/ultralytics/blob/440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/nn/modules/head.py#L26-L212
https://github.com/ultralytics/ultralytics/blob/440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/nn/modules/head.py#L26-L212


4.1 uncertainty metrics 27

conditions and heteroscedastic uncertainty, which varies with the input
and may depend on specific data features [61].

Epistemic uncertainty instead reflects a lack of knowledge regarding
the model parameters and is reducible through the acquisition of
additional data. It is encoded in the posterior distribution p(ω |
D) [53]. From a Bayesian perspective, this uncertainty quantifies the
distribution of beliefs over the parameter space, conditioned on the
observed data. Epistemic uncertainty is typically high in regions of the
input space that are poorly represented or entirely Out-Of-Domain
compared to the training dataset and diminishes as the model is
exposed to more diverse and representative data [60].

Therefore, four distinct types of uncertainty metrics need to be
captured: aleatoric and epistemic uncertainty for both regression and
classification tasks.

4.1.3 Capturing Uncertainties

Having established the theoretical distinctions between the different
forms of uncertainty, this section outlines the specific methodologies
employed to derive quantitative scores for each.

Regression Uncertainty

For the regression task of bounding box prediction, aleatoric uncer-
tainty is captured by augmenting the model’s architecture with an
additional prediction head. This aleatoric head is trained to directly
output a metric associated with data uncertainty during a single for-
ward pass, a technique also used in [57] and [49]. The greater the
value predicted by this head, the higher the model’s estimation of the
inherent noise or stochasticity present in the input data. The specific
implementation details of this architectural modification are discussed
in Section 4.2.1.

An alternative approach exists within the native YOLOv8 architec-
ture. The model internally employs a Distribution Focal Loss module
for predicting the coordinates of the bounding box, as proposed in
[71]. This module assigns probability scores to discrete bins that repre-
sent offsets from an anchor point. The logits from this module could,
in principle, be utilized to derive a measure of aleatoric uncertainty.
However, the dedicated aleatoric head approach was selected for this
work due to its greater transferability to a wider range of architectures.

Epistemic uncertainty for regression is quantified by measuring the
variance across multiple bounding box predictions for the same object,
where each prediction is generated from a different model configura-
tion. Given a set of T predicted bounding boxes, B = {b(1), . . . , b(T)},
where each box b(t) = (x(t)1 , y(t)1 , x(t)2 , y(t)2 ) represents the corner coor-
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dinates, the epistemic uncertainty Uepist,reg is calculated as the mean
variance across the four coordinates, as shown in equation 4.3:

Uepist,reg =
1
4

4

∑
j=1

(
1
T

T

∑
t=1

(b(t)j − b̄j)
2

)
(4.3)

Here, b̄j is the mean value for the j-th coordinate across all T predic-
tions. This metric captures the disagreement among the ensemble of
predictions, reflecting the model’s uncertainty about its own parame-
ters.

Classification Uncertainty

To quantify classification uncertainty, the total predictive uncertainty
is first calculated. This is achieved by computing the entropy of the
averaged predictive distribution, which is obtained by averaging the
softmax classification probabilities over multiple stochastic forward
passes for each detection [16] [36]. The predictive uncertainty is given
by:

Upred = −∑
c

p̄c log( p̄c) (4.4)

where p̄c represents the mean probability for class c across the T
forward passes.

To decompose the total predictive uncertainty from Equation 4.4
into its aleatoric and epistemic components, two additional metrics are
calculated. Aleatoric uncertainty is captured by the expected entropy
of the predictions. This is estimated by averaging the entropy of each
individual softmax output across the multiple forward passes, as
described in [82] and [16]. This metric, denoted here as Hsoftmax, is
calculated as follows:

Hsoftmax = − 1
T

T

∑
t=1

∑
c

p(t)c log(p(t)c ) (4.5)

where p(t)c is the probability of class c in the t-th forward pass.
Since total predictive uncertainty is the sum of its aleatoric and

epistemic components, the epistemic uncertainty can be isolated. This
is equivalent to the mutual information (MI) between the predictions
and the model parameters. It is calculated as the difference between
the total predictive uncertainty and the aleatoric uncertainty [16]:

MI = Upred − Hsoftmax (4.6)

Through these distinct methodologies, quantitative scores for all
four required uncertainty types are obtained for subsequent analysis.
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4.2 yolo model modifications

To support the methodologies described, the YOLOv8 architecture had
to be modified to deliver the required output, particularly additional
outputs from the aleatoric head or the reformatting of existing outputs
to match the format expected by the equations. Furthermore, the
training process was adapted to support the Deep Ensembles and
MCDO concepts.

Initially, general modifications to the networks framework were
necessary for both the Deep Ensembles and MCDO techniques, while
specific adjustments for each technique were also implemented [58].

Capturing the raw logits from the classification branch of the de-
tection head2 was the first step. With this modification, these logits
can be manually converted into the softmax format, which is required
for calculating metrics such as predictive uncertainty and softmax
entropy. This logit output is returned additionally, ensuring that the
model can still be trained using its default pipeline, which employs
a final sigmoid activation. To accommodate these new outputs, the
results.boxes class3 was modified to support the return of additional
parameters, including the detection logits before sigmoid activation
and the aleatoric head predictions. Consequently, the Non-Maximum
Suppression4 (NMS) function also required alteration to correctly han-
dle the additional parameters within the modified results.boxes class.
The NMS function was further adjusted to retain all per-class probabil-
ities, deviating from its standard behavior of discarding values below
a set threshold. This specific modification was based on a solution
identified in a GitHub issue.5

4.2.1 Aleatoric Head

An aleatoric head was added to the network to directly predict the
aleatoric uncertainty associated with the bounding box coordinates.
This head predicts the log-variances (log σ2) for each of the four bound-
ing box parameters (x, y, w, h). The corresponding mean values for the
bounding box regression are taken directly from the model’s existing
regression branch, while the new aleatoric head is trained specifically
to predict the variances.

2 https://github.com/ultralytics/ultralytics/blob/

440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/nn/modules/head.

py#L26-L212

3 https://github.com/ultralytics/ultralytics/blob/

440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/engine/results.py#

L177-L813

4 https://github.com/ultralytics/ultralytics/blob/

440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/utils/nms.py#

L13-L166

5 https://github.com/ultralytics/ultralytics/issues/2863#

issuecomment-2259399447

https://github.com/ultralytics/ultralytics/blob/440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/nn/modules/head.py#L26-L212
https://github.com/ultralytics/ultralytics/blob/440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/nn/modules/head.py#L26-L212
https://github.com/ultralytics/ultralytics/blob/440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/nn/modules/head.py#L26-L212
https://github.com/ultralytics/ultralytics/blob/440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/engine/results.py#L177-L813
https://github.com/ultralytics/ultralytics/blob/440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/engine/results.py#L177-L813
https://github.com/ultralytics/ultralytics/blob/440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/engine/results.py#L177-L813
https://github.com/ultralytics/ultralytics/blob/440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/utils/nms.py#L13-L166
https://github.com/ultralytics/ultralytics/blob/440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/utils/nms.py#L13-L166
https://github.com/ultralytics/ultralytics/blob/440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/utils/nms.py#L13-L166
https://github.com/ultralytics/ultralytics/issues/2863#issuecomment-2259399447
https://github.com/ultralytics/ultralytics/issues/2863#issuecomment-2259399447


30 experimental design

Optimization of the aleatoric head is performed using a dedicated
gradient based on the heteroscedastic loss, as defined in Equation
4.7. This gradient calculation is detached from the other prediction
head branches, ensuring that the original classification and regression
branches can still be trained unaffected by the new loss component.
The heteroscedastic loss function is based on the work of Alex Kendall
and Yarin Gal[61] and is defined as:

LHSL = 0.5 × exp(−si)× (yi − ŷi)
2 + 0.5 × si (4.7)

Here, yi is the target value and ŷi is the model’s mean prediction.
The model is trained to predict the log variance, si := log σ̂2

i . This loss
function consists of two primary components: a residual regression
term weighted by the predicted uncertainty and an uncertainty reg-
ularization term. The model learns the variance σ̂2

i implicitly from
the regression task without requiring explicit uncertainty labels. The
second term, 0.5 × si, acts as a regularizer, preventing the network
from predicting infinite uncertainty and therefore zero loss for all
data points. Predicting the log variance si rather than the variance
σ2

i directly provides greater numerical stability, as the loss calcula-
tion avoids potential division by zero. Furthermore, the exponential
mapping exp(si) ensures the predicted variance is always positive
[61].

Integrating this new loss component introduces additional parame-
ters, which slows down the training convergence. The optimal magni-
tude of the heteroscedastic loss was therefore investigated. Using the
default magnitude (a factor of 1.0) forces the model to heavily optimize
for the aleatoric head parameters, as this new loss component strongly
dominates the other losses used in the model. Consequently, different
scaling factors for LHSL were tested and the results are presented in
Figure 4.1. In principle, a lower magnitude for the heteroscedastic loss
results in faster model convergence and a higher final mAP. When
inspecting the individual loss components, it becomes visible that
choosing a factor greater than 0.1 causes the heteroscedastic loss to
dominate the overall loss associated with bounding box regression.
By logging the default bounding box loss from the mean prediction
branch and the variance loss from the aleatoric head, a scaling factor
of 0.1 was found to satisfy a condition where each loss component has
a similar influence on the total loss. An alternative approach could
involve increasing the influence of the heteroscedastic loss during
training using an annealing schedule, similar to KL annealing [9]. This
would allow the model to first learn the primary regression and classi-
fication tasks before slowly incorporating the variance predictions.

In the final implementation, the four predicted variances (for x, y,
w, h) from the aleatoric head are averaged to produce a single scalar
variance value for each detected bounding box.
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Figure 4.1: mAP scores and loss components during training of the
YOLOv8n model with different magnitudes for the heteroscedas-
tic loss for the aleatoric head. A higher magnitude for the het-
eroscedastic loss correlates with a lower mAP.

4.2.2 Deep Ensembles

To train multiple YOLO models for the Deep Ensemble method, the
guidelines from the original proposing paper were followed [65]. This
approach builds on the assumption that small differences in weight
initialization, combined with random shuffling of the training data
for each model, are sufficient to create models that are diverse in
their respective weight spaces. This diversity is further encouraged by
the stochastic nature of neural network training, which arises from
the optimization algorithm itself and non-deterministic operations on
modern hardware like GPUs [8].

For weight initialization, the default PyTorch implementation was
utilized, along with setting an individual random seed for each en-
semble member. Another implementation detail was to avoid loading
a pretrained model, which the Ultralytics library does by default. In-
stead, a model configuration .yaml file, which only defines the model’s
architecture, was used. This forced the weights for each model to be
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initialized randomly. The specific .yaml file for the YOLOv8 model
architecture is available within the Ultralytics library6.

Regarding the shuffling of training batches, the dataloader function
found within the Ultralytics data/build.py script7 required adjustment.
The original library implementation contained a hardcoded seed for
the shuffling mechanism, which prevented the intended randomness
of the training batches across different ensemble models.

In general, the implementation of the Deep Ensemble training strat-
egy was relatively straightforward, requiring only these minor adjust-
ments to the standard training pipeline.

4.2.3 Monte Carlo Dropout

To modify the YOLOv8 model to support MCDO, several modifica-
tions were implemented. The model’s configuration .yaml file was
altered to accept an additional parameter for specified layers, namely
the dropout probability. In accordance with the original MCDO paper,
dropout layers were placed after the activation function of a given
layer [37].

Within the Ultralytics library, the classes corresponding to the con-
volutional layer8, the C2F modules9 and the bottleneck layers10 were
modified to accept this new dropout parameter. The dropout func-
tionality was implemented using the standard PyTorch nn.Dropout
function [111]. While nn.Dropout2D exists to drop entire channels for
regularization in convolutional networks, the nn.Dropout method was
chosen [112]. This decision was based on the premise that dropping
individual neurons, rather than entire channels, more closely aligns
with the concept of sampling from a distribution over the network’s
weights. A key requirement for MCDO is that the dropout layers must
be active during inference. Therefore, all affected layers are explicitly
set to training mode before each forward pass during inference.

In existing literature, there is no definitive consensus on the op-
timal placement of dropout layers within the network architecture
for MCDO. Previous experiments on MCDO in CNNs have placed

6 https://github.com/ultralytics/ultralytics/blob/

440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/cfg/models/v8/

yolov8.yaml#L1-L49

7 https://github.com/ultralytics/ultralytics/blob/

440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/data/build.py#L325

8 https://github.com/ultralytics/ultralytics/blob/

440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/nn/modules/conv.

py#L39-L89

9 https://github.com/ultralytics/ultralytics/blob/

440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/nn/modules/block.

py#L283-L314

10 https://github.com/ultralytics/ultralytics/blob/

440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/nn/modules/block.

py#L452-L476

https://github.com/ultralytics/ultralytics/blob/440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/cfg/models/v8/yolov8.yaml#L1-L49
https://github.com/ultralytics/ultralytics/blob/440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/cfg/models/v8/yolov8.yaml#L1-L49
https://github.com/ultralytics/ultralytics/blob/440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/cfg/models/v8/yolov8.yaml#L1-L49
https://github.com/ultralytics/ultralytics/blob/440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/data/build.py#L325
https://github.com/ultralytics/ultralytics/blob/440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/data/build.py#L325
https://github.com/ultralytics/ultralytics/blob/440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/nn/modules/conv.py#L39-L89
https://github.com/ultralytics/ultralytics/blob/440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/nn/modules/conv.py#L39-L89
https://github.com/ultralytics/ultralytics/blob/440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/nn/modules/conv.py#L39-L89
https://github.com/ultralytics/ultralytics/blob/440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/nn/modules/block.py#L283-L314
https://github.com/ultralytics/ultralytics/blob/440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/nn/modules/block.py#L283-L314
https://github.com/ultralytics/ultralytics/blob/440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/nn/modules/block.py#L283-L314
https://github.com/ultralytics/ultralytics/blob/440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/nn/modules/block.py#L452-L476
https://github.com/ultralytics/ultralytics/blob/440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/nn/modules/block.py#L452-L476
https://github.com/ultralytics/ultralytics/blob/440ff0d975d3a0fad5ad1d76e98250e611b3a896/ultralytics/nn/modules/block.py#L452-L476
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dropout for example immediately before the last fully connected layer
[37], right before the detection module [23], or inside the detection
head itself [3].

Given this disagreement in the literature, this thesis investigates
and compares different dropout locations to evaluate their impact on
uncertainty estimation. Suitable locations within the YOLOv8 network
include the convolutional layers in the model’s backbone, in the neck
and in the detection head. In the neck and the head, the convolutional
layers are part of the C2F modules, which themselves consist of convo-
lutional layers and bottleneck layers, which are also constructed from
convolutional layers.

For the uncertainty evaluation, three distinct configurations are
tested. Dropout is applied to the convolutional layers within: (1) the
backbone, (2) the textitneck, specifically right before the detect module,
or (3) the detection textithead of the model’s architecture.

4.3 clustering algorithm

The uncertainty estimation metrics described in Section 4.1.3 expect
a set of predictions corresponding to the same object instance. As an
image may contain multiple objects and each ensemble member or
MCDO forward pass generates its own set of detections, it is necessary
to group these disparate predictions. A clustering algorithm was
implemented for this purpose, where each resulting cluster collects all
predictions referring to the same unique object within the image. The
flowchart describing the algorithm is shown in detail in Figure ??. The
Flowchart was created with Mermaid [108].

The algorithm functions by comparing all predictions against each
other using the Intersection over Union metric. If the IoU between two
bounding boxes is greater than or equal to a specified threshold, they
are assigned to the same cluster. This process is implemented using
a union-find approach, which makes the algorithm order-invariant,
where the final clusters are not dependent on the order of the predic-
tions being processed. The IoU threshold itself is a tunable hyperpa-
rameter and its influence on uncertainty estimation is investigated.
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Figure 4.2: The clustering algorithm flowchart. Input images undergo mul-
tiple inference passes to create a pool of predictions. These are
iteratively compared via IoU metrics and merged into raw clus-
ters using disjoint set logic to ensure order-invariance. Finally,
clusters meeting the consensus size threshold are retained for
uncertainty quantification in classification and regression tasks.
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Furthermore a consensus value ranging from 0.0 to 1.0 is introduced.
This value defines the minimum fraction of ensemble members or
MCDO based forward passes that must agree on an object’s presence
for a cluster to be considered valid. This acts as a filter to remove
edge detections that are not consistently identified. This consensus
threshold is also treated as a tunable parameter for investigation.

4.4 corrupted coco dataset

The Microsoft Common Objects in Context (COCO) dataset is a large-
scale annotated collection of images designed to support object de-
tection, segmentation and captioning tasks. It consists of over 330,000

images, more than 200,000 of which are labeled, containing a total of
1.5 million object instances. The dataset covers 80 object categories,
including common items such as people, vehicles, household objects,
animals and food. Images in COCO are typically complex and depict
everyday scenes with multiple objects, varying context and substantial
occlusion, making the dataset particularly challenging and representa-
tive of real-world settings [74].

For experimental analysis, the COCO validation dataset images were
corrupted in a controlled manner using a custom Python script [56].
The script introduces multiple types of corruptions such as Gaussian
noise, shot noise, impulse noise, defocus blur, motion blur, zoom blur,
snow, fog, contrast adjustment, elastic transformations, pixelation,
JPEG compression, speckle noise and spatter across five severity levels.
The different corruption types at severity 2 for a COCO example image
is visualized in Figure 4.3.

The corrupted COCO dataset is used for evaluation of model per-
formance under degraded visual conditions and is used here to inves-
tigate how uncertainty metrics from different uncertainty estimation
methods vary in response to different corruption types and severities.

Given the computational expense and data volume associated with
evaluating all corruption types across five severity levels, a more
focused analytical approach was adopted. Therefore, the corruption
types were first categorized into four distinct groups based on the
nature of the visual degradation they introduce. From each group,
a single representative corruption was selected for the uncertainty
analysis.

The four corruption groups are defined as follows:

1. Noise: Corruptions that introduce random, pixel-level variations.
This group includes Gaussian Noise, Shot Noise, Impulse Noise
and Speckle Noise.

2. Blur: Corruptions that reduce high-frequency spatial details,
simulating optical or motion-related distortions. This category
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Figure 4.3: The various corruption types at severity level 2 from the Cor-
rupted COCO dataset.

comprises Gaussian Blur, Defocus Blur, Motion Blur, Zoom Blur
and Glass Blur.

3. Weather: Corruptions that simulate environmental conditions.
This group contains Fog, Frost, Snow, Spatter, Brightness, Con-
trast and Saturate.

4. Others: Corruptions that introduce artifacts from digital process-
ing or spatial distortions. This group includes Pixelate, JPEG
Compression and Elastic Transformation.

For the evaluation, one corruption type was selected from each
group. The selection was guided by the objective of maximizing the
diversity of corruptions, ensuring that the chosen subset represents
fundamentally different types of visual degradation. The selected
corruptions are:

1. Gaussian Noise from the Noise group

2. Motion Blur from the Blur group

3. Brightness from the Weather group

4. Pixelate from the Others group

With the methodology implemented and the model adjustments
finalized, the results were collected, which are presented in the subse-
quent chapter.
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4.5 uncertainty evaluation pipeline

The uncertainty metrics were computed using a two-stage procedure.
First, a producer script performed inference on the corrupted valida-
tion dataset for a selected corruption. The outputs from each inference
run, whether from an ensemble member or an MCDO forward pass,
were serialized into JSON files containing image IDs, bounding box
coordinates, class confidences, and variance predictions. Next, the clus-
tering algorithm described in Section 4.3 grouped these predictions to
identify unique objects. Finally, a consumer script calculated the four
aleatoric and epistemic uncertainty metrics for each object, averaging
the results across the full dataset. Key experimental variables analyzed
included the corruption type, ensemble size/ number of forward passes,
clustering thresholds (IoU and consensus), and the specific MCDO pa-
rameters dropout probability and dropout location.





5 R E S U LT S

This chapter presents the results obtained from the experimental
design for capturing uncertainty metrics using Deep Ensembles and
Monte Carlo Dropout. Subsequently, a comparison between the two
approaches is drawn.

Inference was performed across the four corruption types selected
in Section 4.4 using a custom YOLOv8n model, modified to include
an aleatoric head as detailed in Section 4.2. To ensure consistency,
the model was trained for 100 epochs, matching the default training
settings used for the Deep Ensemble and MCDO models. For each
corruption type and severity the average detections per image (Avg)
and average bounding box diameter (Diam) were recorded these results
are summarized in Table 5.1.

Table 5.1: Mean detection counts (Avg) and average bounding box diameter
(Diam) of the benchmark model across selected image corruptions
and severity levels. Brightness and Gaussian noise are highlighted.

Severity 0 Severity 1 Severity 2 Severity 3 Severity 4 Severity 5

Corruption Avg Diam Avg Diam Avg Diam Avg Diam Avg Diam Avg Diam

Brightness 4.88 213.51 4.52 217.83 4.27 222.05 4.03 226.13 3.72 232.00 3.38 237.89

Gaussian Noise 4.88 213.51 2.90 236.04 1.99 249.24 1.08 272.09 0.45 305.41 0.08 406.02

Motion Blur 4.88 213.51 3.62 251.51 2.65 291.40 1.69 362.15 1.04 448.89 0.73 506.04

Pixelate 4.88 213.51 4.22 224.26 4.12 225.71 2.76 235.31 1.19 250.60 0.77 234.47

The data indicates that for default validation images without corrup-
tion, the model performs consistently, identifying an average of 4.88

detections per image. However, as corruption severity increases, the
model’s behavior diverges based on the corruption type. The model
detection capabilities displays relatively strong robustness against
brightness corruption, capturing an average of 3.38 objects per image
even at the highest severity, which equals approximately 70% of the
original objects.

Conversely, performance degrades significantly under motion blur
and pixelate corruptions, capturing only 0.73 to 0.77 objects per image
at Severity 5. This corresponds to a recognition rate of approximately
15%. Within this pairing, pixelate corruption appears more stable at
moderate severities, though detection counts drop sharply at higher
levels. Finally, gaussian noise exerts the most severe influence. At the
highest severity, the model averages just 0.08 detections per image,
representing a retention rate of only 1.6%.

39
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Furthermore, it is observed that the average bounding box diameter
increases with corruption severity. For brightness and pixelate cor-
ruptions, this increase is marginal (approximately 10%). However, the
impact of Gaussian noise and motion blur is more severe, resulting
in average detected diameters up to twice the size of the uncorrupted
baseline.

Based on these findings, the subsequent analysis of uncertainty
metrics focuses on two distinct cases: the corruption with the highest
detection count (brightness) and the corruption with the lowest detec-
tion count (gaussian noise), which have been highlighted in the table.
This selection enables a comparison between a stable scenario, where
survivorship bias is as minimal as possible, and a high degradation
scenario, where survivorship bias is expected to be severe.

Model training was performed on a dedicated compute cluster
equipped with NVIDIA RTX 2080 Ti and A30 GPUs. All experiments
were implemented using the Ultralytics library version 8.3.49. 1

5.1 deep ensembles

The results collected using the Deep Ensemble method are detailed
in this section. First, the training details for the models are presented.
Next, the characteristic metrics and plots for uncertainty evaluation
are demonstrated and explained.

Deep Ensembles are a straightforward approach to approximating
Bayesian inference. The resulting metrics and trends from this method
are therefore treated as a reference point against which the MCDO
approach, which is more sensitive to factors such as the placement of
the dropout layers or the applied dropout rate, is compared.

5.1.1 Functional Verification

Following the experimental design outlined in Chapter 4, an ensemble
comprising 20 members was trained for 100 epochs. The ensemble size
was selected to maximize diversity within the available computational
constraints. All YOLOv8n models were trained from scratch using
random weight initialization and the previously described modified
dataloader shuffling. Default training augmentations were employed,
as hyperparameter optimization fell outside the scope of this work.
Accordingly, the training configuration utilized the default automatic
optimizer, an adaptive learning rate, and a weight decay of 0.005 for
regularization. Figure 5.1 depicts the training progression as measured
by the mAP score. As anticipated, all ensemble members exhibited sim-
ilar convergence trajectories. Notably, the integration of the aleatoric

1 https://pypi.org/project/ultralytics/8.3.49/

https://pypi.org/project/ultralytics/8.3.49/
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head resulted in a lower mAP score compared to the standard Ultra-
lytics reference baseline [114].

Figure 5.1: Training progression of mAP scores for the YOLOv8n ensemble
members. The official Ultralytics benchmark is included as a
reference baseline.

The Deep Ensemble method aims to promote diversity in the weight
space between models. Figure 5.2 illustrates this by plotting the Kernel
Density Estimation of the standard deviations calculated for each
individual weight parameter across the ensemble. For representation
purposes, this analysis focuses on the first convolutional layer of the
main bounding box prediction head branch.
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Figure 5.2: Kernel Density Estimation (KDE) of the per-parameter standard
deviations for the first convolutional layer of the main bounding
box prediction head branch. The distribution aggregates the
standard deviation of each individual weight calculated across
the entire ensemble of YOLO models.

The visualization highlights the diversity of the learned representa-
tions. If all models had converged to the same parameters, we would
see a concentration near zero. Instead, there is a clear spread. Given a
maximum weight magnitude of 0.33, the ensemble members vary by
about 10% of the parameter’s total range.

5.1.2 Evaluation of Parameter Tuning

To allow for a concise comparison between the Deep Ensemble method
and the MCDO method, the dimensionality of the hyperparameter
space must be reduced. Specifically, representative plots for uncer-
tainty metrics require the independent variables to be narrowed down
to a set of fixed parameters that can be verified and subsequently ap-
plied to the MCDO evaluation. Three primary variables influence the
final uncertainty metrics: the ensemble size and the two hyperparam-
eters governing the clustering algorithm, IoU threshold and consensus
threshold.

5.1.2.1 Ensemble Size

To quantify the influence of ensemble size on the uncertainty metrics,
the four metrics were analyzed under baseline conditions with no data
corruption across varying ensemble sizes. During this analysis, the IoU
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and consensus thresholds were iterated to observe their interaction
with the ensemble size.

The objective was to fix the ensemble size at a value where the met-
rics demonstrate convergence. Figure 5.3 illustrates the relationship
between ensemble size and the IoU hyperparameter. The consensus
threshold was disabled for this experiment. It can be observed that
the majority of metrics begin to stabilize at an ensemble size of ap-
proximately 15 members. Although absolute convergence is not fully
achieved, the variance diminishes significantly by 20 members.

Figure 5.3: Convergence of the four uncertainty metrics as a function of
ensemble size plotted against different IoU threshold values.

A similar trend is evident in Figure 5.4, where uncertainty metrics
are plotted against ensemble size while varying the consensus thresh-
old. The IoU threshold was set to 50 % for this evaluation. Here, the
convergence behavior is more discrete. As the ensemble size increases,
the clustering algorithm crosses critical thresholds like permitting
valid clusters despite a lack of unanimous agreement among members,
causing significant step-changes in the calculated metrics. While these
metrics largely stabilize after an ensemble size of 11, the data confirms
that larger ensemble sizes approximate the point of convergence more
closely.

Based on these observations, a final ensemble size of 20 was selected.

5.1.2.2 IoU and Consensus Thresholds

Following the determination of the ensemble size, the two remaining
hyperparameters of the clustering algorithm, IoU threshold and con-
sensus threshold, must be collapsed to fixed values. With the ensemble
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Figure 5.4: Convergence of the four uncertainty metrics as a function of en-
semble size plotted against different consensus threshold values.

size fixed at 20, the objective of this phase is to monitor the stability
of uncertainty metrics under specific image corruptions and severi-
ties. The goal is to identify parameter values that yield representative
results while minimizing outliers.

To evaluate these parameters, uncertainty metrics were analyzed
relative to corruption severity. The brightness corruption was selected
as the primary variable for this tuning process, as it demonstrated the
highest stability and detection retention rates, even at high severity
levels. The effect of the IoU parameter is visualized in Figure 5.5. The
corresponding analysis for gaussian noise corruption is provided in
Appendix a.2.1.
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Figure 5.5: Impact of varying IoU thresholds on uncertainty metrics across
increasing brightness corruption severities (Ensemble Size = 20,
Consensus = 0.0).

The results indicate that the IoU threshold has a marginal impact
on aleatoric uncertainty. This behavior is expected, as aleatoric uncer-
tainty is computed per individual prediction, meaning the clustering
algorithm only influences this metric indirectly by determining the
number of accepted predictions. Conversely, epistemic uncertainty,
which is derived from the divergence of predictions between different
models, exhibits greater sensitivity to IoU variations. To mitigate out-
liers, an IoU threshold of 0.5 was selected. This value follows the trends
observed in the 0.3 and 0.7 thresholds while avoiding extreme offsets.
For this evaluation, the consensus parameter was again disabled.

Finally, the consensus hyperparameter was analyzed. Figure 5.6 il-
lustrates the metrics as a function of corruption severity and consensus
values. The observed deviations here are notably smaller than those
seen when varying the IoU parameter, suggesting a lower sensitivity.
A consensus value of 0.5 was selected for further evaluation, as it
exhibiting the lowest variance relative to neighboring plots.
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Figure 5.6: Impact of varying consensus thresholds on uncertainty metrics
across increasing brightness corruption severities (Ensemble Size
= 20, IoU = 0.5).

With the parameter tuning concluded, the final configuration for
the evaluation is established as follows:

• Ensemble Size: 20

• IoU Threshold: 0.5

• Consensus Threshold: 0.5

5.1.3 Deep Ensemble Evaluation

The final evaluation of the Deep Ensemble method is conducted using
the configuration established in the previous section. The following
analysis examines the evolution of uncertainty metrics as a function
of increasing corruption severity, focusing specifically on brightness
and gaussian noise corruptions.

Figure 5.7 illustrates the trends of the uncertainty metrics under the
brightness and gaussian noise corruption. For the brightness corrup-
tion the metrics follow the expected behavior: as corruption severity
increases, the uncertainty metrics rise overall by approximately 7% to
10% depending on the metric. It is important to note that the brightness
corruption represents a high-stability scenario even at the maximum
severity level, the majority of objects are successfully detected by the
model.
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Figure 5.7: Comparative analysis of uncertainty metrics under increasing
corruption severity for brightness and gaussian noise corruption
for deep ensembles (Ensemble Size = 20, IoU = 0.5, Consensus =
0.5)

In contrast, the gaussian noise corruption, shown shows a different
behavioral pattern. The aleatoric uncertainty for both regression and
classification exhibits a sharp increase of approximately 45%. However,
the epistemic uncertainty diverges: while the classification metric
follows a similar upward trajectory of a ≈ 45% increase, the epistemic
regression uncertainty peaks at severity level 3 before declining.

This anomaly is likely attributable to survivorship bias. At severity
level 4, the object detection rate drops to only 10%. Furthermore, it was
observed that the average bounding box diameter of the remaining
detected objects increases with corruption severity. This suggests that
at high noise levels, the model fails to detect smaller, more difficult
objects. This distributional shift and its implications are discussed
chapter 6.

Representative plots for the additional corruption types motion blur
and pixelate, are provided in Appendix a.2.2.

5.2 monte carlo dropout

Following the evaluation of the Deep Ensemble method, this section
details the implementation and results of the MCDO approach. The
structure mirrors the previous analysis: first, the detection capabili-
ties are verified to ensure the selected corruption types remain valid.
Second, the training performance is validated. Finally, the hyperpa-
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rameter reduction is verified to ensure the parameters selected for
Deep Ensembles, specifically if the number of forward passes and
clustering thresholds remain applicable to the MCDO.

Unlike Deep Ensembles, the MCDO implementation introduces
architectural variations. The evaluation covers three distinct dropout
injection points: the backbone, the neck, and the detection head. Each
configuration is assessed using three dropout probabilities: 0.1, 0.3,
and 0.5.

To justify the focus on brightness and gaussian noise corruption
for the uncertainty analysis, the average detection counts must first
be verified for the MCDO models. Figure 5.8 displays the average
detection count across corruption severities for the three dropout
locations. For clarity, only the medium dropout rate (p = 0.3) is
visualized here, as the trends remain consistent across other rates (see
Appendix a.3.1 for full data).

Figure 5.8: Average detection count per image across four corruption types
for MCDO models with a dropout rate of 0.3. Comparison dis-
tinguishes between dropout applied to the backbone, neck and
head.

The data indicates that MCDO models exhibit detection behaviors
similar to the baseline. A hierarchy in performance is observable: mod-
els with dropout in the detection head capture the highest number of
objects, followed by the neck, with the backbone dropout yielding the
lowest detection counts. Generally, an increased dropout magnitude
correlates with a slight reduction in detections.

However, a notable exception occurs with head dropout under
brightness corruption. At the highest corruption severity, the head
dropout model with a rate of 0.5 captures significantly more objects
(+15%) compared to the rate of 0.1. Furthermore, with an average of
4.17 detections per image, this configuration outperforms the baseline
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model with 3.38 detections, suggesting that aggressive dropout in the
detection head acts as an effective regularizer, improving robustness
against intense corruptions. Based on these results, the selection of
brightness and gaussian noise as the bounding cases for stability and
degradation remains valid.

5.2.1 Functional Verification

The training of individual MCDO models followed the guidelines
introduced in Section 4.2. Similar to the Deep Ensemble members,
models were trained from scratch with random weight initialization,
incorporating dropout layers at the specified architectural locations.
The training hyperparameters remained consistent with the previous
experiments to ensure comparability.

Performance validation on the uncorrupted dataset highlights dis-
tinct trends regarding dropout placement and magnitude. As illus-
trated in Figure 5.9, the head dropout configuration yields the best
performance, while backbone dropout results in the lowest mAP scores.
Additionally, a clear inverse relationship is observed where higher
dropout rates lead to decreased mAP metrics as models converge
slower.
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Figure 5.9: Comparison of mAP scores during training across different
dropout locations and probabilities on the validation dataset.

5.2.2 Evaluation of Parameter Tuning

To facilitate a direct comparison between Deep Ensembles and MCDO,
it is preferable to maintain consistent values for the ensemble size (in
this case the number of forward passes), IoU threshold, and consensus
threshold. Therefore, this section validates that the values derived in
the Deep Ensemble analysis remain robust for the MCDO method.
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Given the size of the possible configuration space, the following
validation utilizes the best-performing architectural configuration:
Head Dropout with a medium rate of 0.3, evaluated under brightness
corruption. Plots illustrating other dropout rates and Gaussian noise
corruption are provided in the appendix and will be mentioned.

5.2.2.1 Number of Forward Passes

The assumption that 20 forward passes provide a stable approximation
of the uncertainty metrics is tested in Figure 5.10. This plot illustrates
the change of uncertainty metrics as the number of forward passes
increases, plotted against varying IoU thresholds.

Figure 5.10: Convergence of uncertainty metrics as a function of the number
of forward passes, plotted against different IoU threshold values
(Head Dropout, p = 0.3, Consenus = 0.0).

The metrics exhibit convergence behavior similar to that of Deep
Ensembles. When analyzing the interaction with the consensus thresh-
old in Figure 5.11, the convergence appears slightly slower than in the
Deep Ensemble case. However, as the metrics approach stability and
the variance decreases significantly, the limit of 20 forward passes is
choosen as an upper bound for this study.

Additional validation plots regarding the number of forward passes
for gaussian noise and different dropout rates can be found in Ap-
pendix a.3.2. The overarching conclusion remains that maximizing the
amount of passes yields the most stable results, as convergence is not
fully reached.
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Figure 5.11: Convergence of uncertainty metrics as a function of the number
of forward passes, plotted against different Consensus threshold
values (Head Dropout, p = 0.3, IoU = 0.5).

5.2.2.2 IoU and Consensus Thresholds

With the number of forward passes fixed at 20, the impact of the
clustering hyperparameters is validated by analyzing the uncertainty
metrics relative to corruption severity. Figure 5.12 demonstrates the
effect of the IoU threshold.

The data confirms that the previously selected IoU threshold of 0.5
represents a stable middle ground, balancing the behaviors observed
at 0.3 and 0.7 without introducing extreme outliers like 0.1. Similarly,
Figure 5.13 plots the metrics against the consensus threshold. The
value of 0.5 is again validated as a fitting choice, minimizing variance
while maintaining sensitivity to the corruption levels.
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Figure 5.12: Impact of varying IoU thresholds on uncertainty metrics across
increasing brightness corruption severities (Forward Passes =
20, Consensus = 0.0).

Figure 5.13: Impact of varying Consensus thresholds on uncertainty met-
rics across increasing brightness corruption severities (Forward
Passes = 20, IoU = 0.5).

Plots for other configurations are available in Appendix a.3.3. In
conclusion, the assumptions made regarding the three primary vari-
ables hold true for the MCDO approach. To ensure a fair comparison
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between the two uncertainty estimation methods, the following con-
figuration is retained:

• Number of Forward Passes: 20

• IoU Threshold: 0.5

• Consensus Threshold: 0.5

5.2.3 Monte Carlo Dropout Evaluation

To conduct a comparative analysis of the various MCDO configura-
tions, we evaluate the changes in uncertainty metrics across three
dropout locations (Backbone, Neck, Head) and three dropout proba-
bilities (p ∈ {0.1, 0.3, 0.5}).

The impact of brightness corruption is depicted in Figure 5.14. For
this corruption the object detection recall remained robust, with the
majority of objects successfully detected even at the highest severity
levels.

Figure 5.14: Comparative analysis of uncertainty metrics under brightness
corruption across different MCDO locations and dropout rates
(Forward passes = 20, IoU = 0.5, Consensus = 0.5).

Several key trends can be observed. Overall, all configurations ex-
hibit similar behaviors relative to severity, though they are offset in
absolute magnitude. Generally, a higher dropout rate correlates with
higher absolute uncertainty values. The relative increase in uncertainty
between severity levels 0 and 5 is modest, ranging from approximately
5% to 10% across metrics.

Notably, applying dropout to the detection head with a probability
of p = 0.5 yields the most expected behavior, producing consistently
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increasing uncertainty scores across all metrics as corruption severity
rises. Conversely, backbone dropout appears ineffective at capturing
the rising uncertainty associated with the regression task, although
it successfully captures the increase in classification uncertainty for
all dropout rates. Finally, the neck dropout configuration presents
mixed results: while aleatoric uncertainties are calculated as expected,
epistemic uncertainties remain stagnant. This suggests that applying
dropout at the neck location may be insufficient to generate the model
diversity required to capture epistemic uncertainty effectively.

The evaluation moves to Gaussian noise corruption in Figure 5.15.
In contrast to brightness, this corruption causes severe degradation in
detection performance. At the highest severity, only approximately 1%
of objects are detected. Consequently, the uncertainty metrics exhibit
erratic instability beyond severity level 4.

Figure 5.15: Comparative analysis of uncertainty metrics under Gaussian
noise corruption (Forward passes = 20, IoU = 0.5, Consensus =
0.5).

Prior to this collapse in detection, the head dropout with higher
probabilities (p = 0.3, 0.5) demonstrates the comparatively best perfor-
mance, showing a increase in uncertainty across all metrics, but does
not rise steadily and has bumps. Similar to the brightness experiment,
the neck dropout fails to capture epistemic uncertainty. The backbone
dropout maintains relatively stable performance across metrics.

Additionally the results for motion blur corruption are presented
in Figure 5.16. This corruption represents an intermediate scenario re-
garding detection volume: detections decline at a steady rate, retaining
approximately ten times the count of the gaussian noise corruption,
though fewer than when applying the brightness corruption.
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Figure 5.16: Comparative analysis of uncertainty metrics under motion blur
corruption (Forward passes = 20, IoU = 0.5, Consensus = 0.5).

Under these conditions, all MCDO configurations perform largely
as expected. Furthermore, the rate of increase in uncertainty metrics is
significantly more pronounced compared to the previous corruptions.

For completeness, the comparative analysis for pixelate corruption
is detailed in Appendix a.3.4.

5.3 comparison

To conclude the experimental evaluation, a direct comparison is drawn
between the Deep Ensemble method (established as the reference
standard) and the various MMCDO configurations. For this analysis,
the metrics obtained from the Deep Ensemble evaluation are added
onto the MCDO results. The structure of the plots mirrors the previous
section, displaying the three dropout locations and three dropout
probabilities alongside the Deep Ensemble baseline.

The comparison under brightness corruption is illustrated in Figure
5.17.

In terms of aleatoric uncertainty, a distinct divergence is observed.
The MCDO models generally predict higher aleatoric uncertainty
compared to the Deep Ensembles. This suggests that the continuous
injection of noise during MCDO training prevents the model from con-
verging as fast as the ensemble members, resulting in higher predicted
data noise. The exception is the backbone dropout with the lowest
rate (p = 0.1). Its performance aligns closely with the ensemble, im-
plying that low-magnitude dropout in the backbone creates minimal
interference during training. Furthermore, for aleatoric classification
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uncertainty, both neck and backbone dropout exhibit elevated baseline
values even at zero severity. This indicates that these models struggle
with class discrimination compared to the Deep Ensemble and head
dropout models.

Regarding epistemic uncertainty, the MCDO configuration that most
closely approximates the Deep Ensemble baseline is the head dropout
with a rate of p = 0.3. Notably, only the head dropout configurations
(p = 0.3 and p = 0.5) demonstrate the capacity to capture epistemic
uncertainty magnitudes comparable to the ensemble method. The neck
and backbone configurations consistently underestimate this metric.

Figure 5.17: Comparative analysis of uncertainty metrics under brightness
corruption, contrasting Deep Ensembles against various MCDO
configurations (Ensemble Size / Forward Passes = 20, IoU = 0.5,
Consensus = 0.5).

The analysis of Gaussian noise corruption, shown in Figure 5.18

highlights model behavior under severe detection degradation. As
previously noted, uncertainty metrics exhibit significant instability
at high severities due to the collapse in detection counts. In contrast,
the Deep Ensemble metrics appear less sensitive to these outliers,
maintaining smoother trends even as performance degrades.

For aleatoric uncertainty, the Deep Ensemble method yields again
consistently lower absolute values compared to MCDO. Conversely,
for epistemic uncertainty, the ensemble reports higher values than the
majority of MCDO configurations. While the instability of the plots
at high severity makes precise interpretation difficult, the head and
backbone dropout configurations with higher probabilities appear to
track the Deep Ensemble trends most effectively before the detection
collapse occurs.
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Figure 5.18: Comparative analysis of uncertainty metrics under Gaussian
noise corruption, contrasting Deep Ensembles against various
MCDO configurations (Ensemble Size / Forward Passes = 20,
IoU = 0.5, Consensus = 0.5).

Finally, the motion blur corruption (Figure 5.19) provides a view of
an intermediate degradation scenario.

Consistent with previous observations, Deep Ensembles exhibit
lower aleatoric uncertainty, indicating predictions with lower variance
compared to MCDO. Regarding epistemic uncertainty, the ensemble
method again outperforms most MCDO configurations in terms of
capturing model diversity. The exception is the head dropout configu-
ration, which not only approaches but, at higher dropout rates, exceeds
the epistemic uncertainty levels recorded by the Deep Ensembles.
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Figure 5.19: Comparative analysis of uncertainty metrics under motion blur
corruption, contrasting Deep Ensembles against various MCDO
configurations (Ensemble Size / Forward Passes = 20, IoU = 0.5,
Consensus = 0.5).

The comparative plots for pixelate corruption follow similar trends
and are included in Appendix a.3.5.

conclusion

The experimental results show distinct behavioral differences between
Deep Ensembles and MCDO for uncertainty estimation in object
detection.

A consistent trend across all corruption types is that MCDO yields
higher aleatoric uncertainty values than Deep Ensembles. This can be
attributed to the regularization effect of dropout. Introducing stochas-
ticity during training slows convergence, preventing the model from
predicting with the same precision as the ensemble members. The
only exception is low-rate backbone dropout, where the interference
is insufficient to significantly alter the training dynamics. This results
in metrics similar to the ensemble baseline.

Conversely, Deep Ensembles generally exhibit higher epistemic
uncertainty because they are trained as independent models with
random initializations, which allows the ensemble to explore a more
diverse range of weights. MCDO, which relies on perturbing a single
model, often struggles to generate comparable diversity. Only the
head dropout configuration with a high probability (p ≥ 0.3) succeeds
in generating epistemic uncertainty estimates comparable to the en-
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semble, suggesting that aggressive perturbation in the final layers is
necessary to approximate true model diversity.

Regarding architectural placement, head dropout emerges as the
best configuration for MCDO in this study. It most closely tracks Deep
Ensemble metrics and robustly responds to increasing corruption.
Backbone Dropout, while stable, fails to generate sufficient diversity
and consistently underestimates epistemic uncertainty. Neck Dropout
was the least effective configuration, exhibiting high baseline variance
and poor sensitivity to epistemic changes.

Finally, the stability of the metrics depends heavily on the nature of
the corruption. Deep Ensembles demonstrated superior robustness in
high-degradation scenarios, whereas MCDO metrics became chaotic
once detection counts dropped.





6 D I S C U S S I O N A N D O U T LO O K

The primary aim of this thesis was to evaluate and compare Deep
Ensembles and Monte Carlo Dropout as Bayesian approximation tech-
niques for the YOLOv8 object detector. The evaluation relied on a
corrupted version of the COCO2017 dataset to test model robustness.
To facilitate this, an experimental framework was designed to capture
both aleatoric and epistemic uncertainty in regression and classifica-
tion tasks. Key modifications included the addition of an aleatoric
head to the YOLO architecture and the implementation of a clustering
algorithm to aggregate predictions from stochastic forward passes. A
parameter search successfully identified transferable hyperparameters
for ensemble size and clustering, ensuring a fair and direct comparison
between the two methods.

The experimental results demonstrate that the reliability of uncer-
tainty metrics is intrinsically linked to the stability of the underlying
object detector. Under moderate corruption such as brightness changes
or motion blur detection counts decreased gradually and uncertainty
metrics exhibited stable, interpretable trends. However, under severe
degradation scenarios, such as intense Gaussian noise or pixelation,
the detector suffered a sharp decline in recall, causing uncertainty
metrics to behave unpredictably. These findings suggest that Bayesian
approximations in object detection are effective only as long as the
detector maintains a baseline of representational capability.

Regarding the configuration of MCDO, this study highlights the
critical importance of dropout placement and magnitude. The analysis
revealed that applying dropout to the detection head with a high proba-
bility (p = 0.5) yielded the most robust results, closely mirroring the
trends observed in Deep Ensembles in most cases. Conversely, apply-
ing dropout to the backbone or neck resulted mainly in low, stagnant
estimates of epistemic uncertainty. This indicates that stochasticity
introduced in early layers is often suppressed by subsequent layers,
failing to generate the output diversity necessary to approximate
model uncertainty. Therefore, to achieve uncertainty estimates compa-
rable to an ensemble, aggressive perturbation in the final layers of the
network is required.

When directly comparing the two methods, Deep Ensembles proved
more robust and more successful in capturing epistemic uncertainty.
MCDO based models generally predicts higher aleatoric uncertainty,

61
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likely because the added regularization during training prevented the
model from converging as quickly as the individual ensemble mem-
bers. Furthermore, with the exception of the high-rate head dropout
configuration, MCDO underestimated epistemic uncertainty, reflecting
lower total diversity among the models.

However, these results must be considered in the context of survivor-
ship bias. As corruption severity increased, the average bounding
box diameter of detected objects also increased. This implies that the
detector preferentially fails on smaller, difficult objects, continuing to
track only the larger, easier instances. Consequently, metrics calculated
at high corruption levels represent a biased subset of the data rather
than the complete dataset. This bias particularly affects regression
uncertainty, whereas classification uncertainty remains arguably more
robust to object size. Additionally, the drop in detection counts at
high severities reduces the sample size available for the clustering
algorithm. This mimics the effect of reducing the number of ensem-
ble members, thereby introducing instability into the metrics that is
independent of actual image uncertainty.

A significant challenge identified in this study was the non-normalized
nature of the applied corruptions. Because different corruptions im-
pact recall at vastly different rates, direct comparison was difficult.
For instance, high-severity brightness corruption retained significantly
more detections than high-severity Gaussian noise. Furthermore, the
implementation of the aleatoric head introduced additional complexity
to the model and the new optimization objective slowed convergence
and resulted in a decrease in mAP compared to the standard YOLOv8n
baseline. Future implementations could employ KL annealing to miti-
gate this, allowing the model to train standard weights before tuning
the aleatoric head in later epochs.

From a practical deployment perspective, the choice between Deep
Ensembles and MCDO represents a trade-off between implementation
complexity, computational resources, and performance.

Deep Ensembles offer straightforward implementation but require
a linear increase in training time and memory proportional to the
ensemble size, making them prohibitive for resource-constrained envi-
ronments.

MCDO requires only a single trained model, offering advantages
in storage and latency. However, finding the optimal configuration is
non-trivial. Even in this work it cannot be ensured, that the optimal
dropout configuration was found. As shown, a suboptimal configura-
tion can fail to capture epistemic uncertainty entirely.

Future research should aim to decouple uncertainty metrics from
the survivorship bias inherent in detection tasks. Experiments using
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datasets such as DirtyMNIST potentially restricted to single-object
instances or synthesized for uniform object sizes could isolate uncer-
tainty metrics from the effects of bounding box regression difficulties.
Additionally, creating a corruption dataset normalized by detection
count rather than visual intensity would allow for a more rigorous
comparison across degradation types. Further investigation into the
detector’s confidence threshold is also advised. Lowering this thresh-
old to force predictions on out-of-distribution data could provide
deeper insights into behavior in high-uncertainty regimes. Finally,
expanding the scope to include methods such as Repulsive Ensembles
or Last-Layer Variational Inference could provide a more complete
view of the reliability of deep learning models in object detection.
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a.2.2 Deep Ensemble Evaluation for Motion Blur and Pixelate
Corruption
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a.3 monte carlo dropout

a.3.1 Detection Counts Monte Carlo Dropout
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a.3.2 Number of Forward Passes Tuning

a.3.2.1 Brightness Corruption

Figure a.1: Dropout Rate: 0.1
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Figure a.2: Dropout Rate: 0.1

Figure a.3: Dropout Rate: 0.5
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Figure a.4: Dropout Rate: 0.5

a.3.2.2 Gaussian Noise Corruption

Figure a.5: Dropout Rate: 0.1
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Figure a.6: Dropout Rate: 0.1

Figure a.7: Dropout Rate: 0.5
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Figure a.8: Dropout Rate: 0.5

a.3.3 IoU and Consensus Tuning

a.3.3.1 IoU and Consensus Tuning for Brightness Corruption

Figure a.9: Dropout Rate: 0.1
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Figure a.10: Dropout Rate: 0.1

Figure a.11: Dropout Rate: 0.5
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Figure a.12: Dropout Rate: 0.5

a.3.3.2 IoU and Consensus Tuning for Gaussian Noise Corruption

Figure a.13: Dropout Rate: 0.1
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Figure a.14: Dropout Rate: 0.1

Figure a.15: Dropout Rate: 0.3
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Figure a.16: Dropout Rate: 0.3

Figure a.17: Dropout Rate: 0.5
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Figure a.18: Dropout Rate: 0.5

a.3.4 Monte Carlo Evaluation for Pixelate Corruption
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a.3.5 Comparison between Deep Ensembles and MCDO
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