
INAUGURAL-DISSERTATION

submitted to the

Combined Faculty of Mathematics, Engineering and Natural Sciences

of the

Ruprecht–Karls–University
Heidelberg

for the degree of

Doctor of Natural Sciences

put forward by

Bernhard Klein, M.Sc.

born in
Böblingen, Baden-Württemberg

Date of oral exam: 16.12.2025

Resource-Efficient and Robust
Inference of Deep and Bayesian
Neural Networks on Embedded

and Analog Computing
Platforms

A Study of Compression, Robustness, and
Bayesian Inference from Embedded Processors

to Analog Photonic Accelerators

Advisor: Prof. Dr. Holger Fröning

Heidelberg, 2025

To my family and friends,
and especially to my loving parents and sister,
for their unwavering support and belief in me.

Abstract

While modern machine learning has transformed numerous application domains,
its growing computational demands increasingly constrain scalability and efficien-
cy, particularly on embedded and resource-constrained platforms. In practical
deployments, neural networks must not only operate efficiently but also provide
reliable predictions when faced with distributional changes or previously unseen
data. Bayesian neural networks offer a principled framework for quantifying
uncertainty, but their higher computational demands further compound these
challenges.

This work advances resource-efficient and robust inference for both conven-
tional and Bayesian neural networks through the joint pursuit of algorithmic
and hardware efficiency. The former reduces computational cost through model
compression and approximate Bayesian inference, while the latter optimizes
mapping to digital accelerators and explores novel analog hardware platforms,
bridging algorithmic optimization and physical realization.

The first contribution introduces the Galen framework, which performs auto-
matic, layer-specific compression guided by sensitivity analysis and hardware-
in-the-loop feedback, jointly optimizing quantization and pruning to balance
accuracy and efficiency on embedded devices. As analog accelerators offer ad-
ditional efficiency gains at the cost of noise, their modeling exposes device
imperfections, while a layer-wise analysis reveals how networks learn to tolerate
such effects during training. This work extends noisy training to nonstationary
conditions, thereby enhancing robustness and stability in analog hardware.

A complementary line of work advances probabilistic inference. Building on
insights into Bayesian-neural-network design and training, this work develops
analytic and ensemble-based approximations that replace costly sampling, inte-
grates them into a compiler stack, and optimizes them for probabilistic inference
on embedded hardware. Finally, probabilistic photonic computing introduces a
novel paradigm in which controlled analog noise serves as an intrinsic entropy
source, enabling ultrafast and energy-efficient probabilistic inference directly in
hardware.

Together, these studies demonstrate how efficiency and reliability can be
advanced jointly through the co-design of algorithms, compilers, and hardware,
laying the foundation for the next generation of trustworthy and energy-efficient
machine-learning systems.

Zusammenfassung

Moderne Verfahren des maschinellen Lernens haben zahlreiche Anwendungsfel-
der grundlegend verändert. Mit dem stetig wachsenden Rechenbedarf stoßen
sie jedoch zunehmend an Grenzen hinsichtlich Skalierbarkeit und Effizienz –
insbesondere auf eingebetteten und ressourcenbeschränkten Plattformen. Bei
der Anwendung in realen Systemen müssen neuronale Netze nicht nur effizi-
ent arbeiten, sondern auch unter sich verändernden Datenverteilungen oder bei
bislang unbekannten Datenpunkten verlässliche Vorhersagen liefern. Bayessche
neuronale Netze bieten hierfür einen konsistenten theoretischen Rahmen zur
Quantifizierung von Unsicherheiten, ihr zusätzlicher Rechenaufwand verstärkt
diese Herausforderungen jedoch weiter.

Diese Arbeit verfolgt das Ziel einer ressourceneffizienten und robusten Infe-
renz sowohl für konventionelle als auch für bayessche neuronale Netze durch die
gemeinsame Optimierung von Algorithmen und Hardware. Die algorithmische
Effizienz wird durch Modellkompression und approximative bayessche Verfahren
verbessert, während die Hardwareeffizienz sowohl die Abbildung auf digitale Be-
schleuniger als auch die Erforschung neuartiger analoger Plattformen umfasst und
damit eine Brücke zwischen algorithmischer Optimierung und hardwareseitiger
Realisierung schlägt.

Den ersten Beitrag stellt das Galen-Framework dar, das eine automati-
sche, feinaufgelöste Kompression auf Grundlage von Sensitivitätsanalysen und
Hardware-in-the-Loop-Rückkopplung durchführt. Quantisierung und Pruning
werden dabei gemeinsam optimiert, um Genauigkeit und Effizienz auf eingebet-
teten Systemen in Einklang zu bringen. Da analoge Beschleuniger zusätzliche
Effizienzgewinne auf Kosten von Rechenrauschen bieten, werden ihre Nichtidea-
litäten modelliert. Eine Analyse auf Ebene der Netzwerkschichten zeigt, wie
neuronale Netze lernen, solche Störungen während des Trainings zu tolerieren.
Darauf aufbauend erweitert diese Arbeit das Training mit Rauschinjektion auf
nichtstationäre Bedingungen, wodurch Robustheit und Stabilität in analogen
Beschleunigern gesteigert werden.

Ein weiterer Schwerpunkt liegt auf der probabilistischen Inferenz. Aufbau-
end auf Erkenntnissen zum Entwurf und Training bayesscher neuronaler Netze
werden effiziente analytische und ensemblebasierte Approximationen entwickelt,
die aufwändiges Sampling ersetzen und in einer Compiler-Infrastruktur mit opti-
mierten probabilistischen Operatoren für eingebettete Hardware umgesetzt sind.
Schließlich wird mit dem probabilistischen photonischen Rechnen ein neuartiges

Paradigma eingeführt, bei dem kontrolliertes analoges Rauschen als intrinsische
Entropiequelle dient und ultraschnelle, energieeffiziente probabilistische Inferenz
direkt in photonischer Hardware ermöglicht.

Zusammenfassend zeigt diese Arbeit, dass Effizienz und Zuverlässigkeit ge-
meinsam gesteigert werden können, wenn Algorithmen, Compiler und Hardware
als integriertes System konzipiert werden. Damit wird das Fundament für die
nächste Generation vertrauenswürdiger und energieeffizienter Systeme des ma-
schinellen Lernens gelegt.

Contents

1 Introduction 1

2 Background 13
2.1 Deep Neural Networks . 13
2.2 ML Frameworks and Compilers 15
2.3 Hardware Platforms for Neural Networks 17

I Accelerating Deep Neural Networks 21

3 Foundations of Resource-Efficient Inference of NN for Embedded
Systems 23
3.1 Foundations of Efficiency . 24
3.2 Quantization . 26
3.3 Pruning . 31
3.4 Neural Architecture Search . 33
3.5 Hardware Platforms under Compression 35
3.6 Evaluation on Embedded Hardware 36

4 Galen: Automatic Model Compression 41
4.1 Automatic Model Compression 42
4.2 Galen Methodology . 44
4.3 Experimental Evaluation and Discussion 48

5 Modeling Analog Hardware Accelerators 55
5.1 Analog Computing . 56
5.2 BrainScaleS-2 . 58

5.3 White-Box Model of BSS-2 . 60
5.4 Transformer-Set Model and Non-Associativity 65

6 Robustness Against Noisy Computations 71
6.1 Robustness Against Hardware Noise 72
6.2 Walking Noise . 74
6.3 Hardening Methods . 81
6.4 Variance-aware Noisy Training 84

II Accelerating Bayesian Neural Networks 91

7 Bayesian Neural Networks 93
7.1 Quantifying Uncertainty . 95
7.2 Bayesian Neural Networks: Foundations 97
7.3 Bayesian Inference . 99
7.4 Evaluation Datasets . 105
7.5 Empirical Insights into BNN Inference 112

8 Compiling Probabilistic Forward Pass BNNs for Embedded
Systems 129
8.1 Efficient Inference of BNNs . 131
8.2 Probabilistic Forward Pass . 132
8.3 PFP Training and Uncertainty Estimation 136
8.4 PFP Operator Library with TVM 139
8.5 Optimizing for Performance . 143

9 Ensemble Methods for Practical Bayesian Neural Networks 149
9.1 Ensemble Methods . 150
9.2 Comparative Evaluation . 156
9.3 Hardware Evaluation with TVM 158

10 Probabilistic Photonic Computing for Bayesian Neural Networks163
10.1 Photonic Neural Network Inference 165
10.2 Hardware Design Principles . 166
10.3 Making Noise Controllable . 167
10.4 Adapting BNNs to Photonic Hardware 171

10.5 Experimental Demonstration . 174

11 Conclusion and Outlook 179
11.1 Discussion of Key Insights . 181
11.2 Limitations . 185
11.3 Outlook . 187

Acronyms 197

References 201

1
Introduction

The extraordinary progress of machine learning (ML) over the past decade has
been driven by increasingly large models, massive datasets, and powerful compute
infrastructures. While these advances have led to remarkable performance across
domains such as computer vision [214], speech recognition [205], and natural
language processing [85], they come at the cost of substantial computational
and energy demands. The growing size and complexity of modern deep neural
networks (DNNs) [34], [195], together with the end of Dennard scaling—the
breakdown of power efficiency gains from transistor miniaturization [218]—have
made throughput and energy efficiency critical bottlenecks for both large-scale
training [47] and on-device inference [150], [178]. These efficiency constraints
have intensified the need for methods that preserve predictive performance under
limited computational and energy budgets, driving progress in both algorithmic
optimization and hardware specialization.

At the same time, DNNs, despite their empirical success, fundamentally
lack a principled mechanism to quantify uncertainty. In classification tasks, for
example, the softmax function is typically used to transform output logits into
normalized scores that are often interpreted as probabilities. However, these

1

Introduction

softmax-derived values do not represent true probabilities in a Bayesian sense;
rather, they are uncalibrated confidence scores without a theoretical grounding
in probability theory [148]. This shortcoming becomes particularly evident when
models are confronted with inputs that differ from their training distribution,
commonly referred to as out-of-distribution (OOD) data [96]. In such cases,
neural networks often produce highly confident yet incorrect predictions, lacking
any mechanism to signal elevated uncertainty or to acknowledge that an input
lies outside their domain of competence.

A theoretical framework to equip neural architectures with this capability is of-
fered by Bayesian statistics, giving rise to Bayesian neural networks (BNNs) [28],
[189]. By treating model parameters as probability distributions rather than
fixed values, BNNs yield predictive distributions that quantify the uncertainty
associated with each prediction, providing a principled measure of model con-
fidence. Such uncertainty estimates enable more informed decision-making,
improve robustness under distributional shift, and are essential for deploying
neural networks in safety-critical applications. However, BNNs are considerably
more computationally demanding than conventional neural networks, since both
the estimation of parameter distributions during training and the computation of
predictive uncertainty during inference require multiple stochastic forward passes.
This repeated sampling makes their use on embedded and energy-constrained
systems particularly challenging.

Consequently, the central question motivating this work is how to realize
resource-efficient and reliable neural network inference that combines high com-
putational efficiency with trustworthy predictive behavior, encompassing both
deterministic and probabilistic models.

This work approaches the goal of resource-efficient inference from two com-
plementary directions. The first focuses on reducing the computational work-
load through algorithmic simplification, achieving comparable performance with
fewer operations through techniques such as model compression and probabilis-
tic approximation. The second addresses the efficient realization of computa-
tions by improving execution efficiency on existing hardware through optimized
mapping of computations to hardware resources and by employing specialized
architectures—such as analog matrix–multiply accelerators—that execute fun-
damental operations with much higher energy efficiency. These two directions

2

are closely connected: algorithmic simplifications can ease hardware demands,
while hardware characteristics in turn influence algorithm design and the need
for robustness. This work therefore applies this combined perspective first to
deterministic neural networks, developing methods for automatic compression on
embedded processors and, in parallel, analyzing the execution characteristics of
analog matrix–multiply accelerators. It then extends this approach to Bayesian
neural networks, where Bayesian approximations, efficient operator–to–hardware
mappings, and photonic computing architectures are explored to realize scalable
and uncertainty-aware inference. Together, these studies support a unified view
of neural network design in which algorithms, compilers, and hardware are co-
optimized as elements of a single integrated system. Building on this integrated
perspective, the following discussion examines how efficiency and reliability can
be advanced in practice.

A well-established approach to enhancing efficiency is the simplification of neu-
ral networks through compression techniques. Methods such as quantization [120],
[141], pruning [193], [239], [244], and knowledge distillation [194]—discussed in
more detail in Chapter 3—are widely used to reduce model size, latency, and
power consumption in embedded systems. In practice, it is often unclear how
much compression an individual layer can tolerate and how these choices translate
into measurable performance gains on the target hardware; consequently, conven-
tional compression pipelines typically apply uniform compression policies across
layers, leaving a large degree of layer-specific flexibility unused. Building on this
groundwork, Galen [21] introduces an automatic, hardware-aware compression
framework that combines layer-wise sensitivity analysis with measured latencies
on embedded processors. By adapting compression strength per layer and per
hardware architecture, Galen leverages this flexibility to generate heterogeneous
pruning and quantization strategies optimized jointly for accuracy preservation
and inference speed.

Beyond reducing the computational cost of neural network inference, further
efficiency gains can be achieved through alternative computing paradigms. Analog
accelerators promise substantial improvements in performance per watt, as
they perform the fundamental multiply–accumulate (MAC) operation of neural
networks at orders of magnitude lower energy than digital implementations [46].
This advantage arises from executing computation directly in the physics of
the device rather than through digital abstraction—for example, by charge

3

Introduction

accumulation in electrical CMOS-based systems [49] or by optical interference
in photonic circuits [163]. However, analog computation is inherently affected
by circuit-level imperfections such as nonlinearities, saturation effects, leakage,
crosstalk, and various sources of noise. Moreover, these characteristics vary
across devices due to manufacturing variations and evolve over time under the
influence of environmental factors such as temperature changes. Unlike digital
processors, analog hardware does not abstract away these imperfections, and
their effects accumulate during computation, requiring algorithms that can
tolerate or adapt to them. To achieve such adaptation, neural networks are
often trained directly on the hardware in a process known as hardware-in-the-
loop training, where forward passes are executed on the physical device to
expose the model to real analog imperfections. While this approach effectively
compensates for device-specific distortions, its practicality is often limited by the
throughput and availability of the hardware. To better understand these effects
and to accelerate this process, this work develops a white-box model of analog
neural accelerators [44], exemplified by the BrainScaleS-2 (BSS-2) [49] platform,
which serves as a representative analog matrix–multiply accelerator. During
this modeling process, it was observed that arithmetic operations implemented
in analog hardware do not generally preserve associativity [4], a fundamental
property assumed in mathematics and relied upon across all domains of computer
science—discussed in more detail in Chapter 5.

Building on these models, this work systematically investigates the robustness
of neural networks to analog nonidealities through controlled noise injection. The
resulting Walking Noise framework [9] provides a methodology to map layer-wise
sensitivity to additive and multiplicative noise, enabling the identification of
particularly robust or vulnerable layers and offering insight into how neural
networks learn to tolerate such disturbances through noisy training. In a com-
parative study of hardening strategies [7], various approaches were evaluated to
improve the robustness of neural networks against noisy computations. Among
them, noisy training proved to be the most effective technique, but only when
the noise characteristics during training were consistent with those encountered
during inference—a condition that is difficult to maintain in systems subject
to dynamically changing factors such as temperature-induced drift. To address
this challenge and further improve resilience under realistic operating conditions,
Variance-Aware Noisy Training (VANT) [8] introduces adaptive noise scaling

4

that enables stable performance under environmental fluctuations. Together,
these results demonstrate that robustness to analog imperfections requires incor-
porating hardware characteristics and noise behavior directly into the training
process rather than compensating for them after deployment.

While these approaches focus on efficient and reliable execution of determin-
istic models, many applications also require principled uncertainty estimation
to quantify the reliability of predictions. Bayesian neural networks address
this by representing network weights as probability distributions, producing
predictive posteriors whose variance decomposes into epistemic and aleatoric
uncertainty [12], [28]. However, exact Bayesian inference is computationally pro-
hibitive: sampling-based methods such as Markov chain Monte Carlo (MCMC)
scale poorly, and even variational approaches like stochastic variational inference
(SVI) require repeated stochastic forward passes.

This work therefore investigates Bayesian approximation methods and their
hardware-efficient implementation to enable BNN inference on resource-constrained
embedded systems. First, the training of BNNs using MCMC and SVI methods is
examined, highlighting that the choice of activation function strongly influences
convergence, predictive accuracy, and uncertainty estimation.

Second, the Probabilistic Forward Pass (PFP) [186] is employed as a closed-
form approximation of SVI in BNNs. By assuming both weights and activations
to follow Gaussian distributions, it enables analytic propagation of means and
variances through all layers of the network, including nonlinearities handled
via moment-matching. This removes the need for repeated sampling, replacing
multiple stochastic forward passes with a single analytic forward computation.
To enable practical deployment, a dedicated operator library implementing these
Gaussian-propagating operations is integrated into the Tensor Virtual Machine
(TVM) [115] compiler framework and optimized for embedded ARM processors,
achieving speedups of several orders of magnitude over naive SVI-based BNN
inference [3].

Complementary to this analytically grounded approach, ensemble-based meth-
ods offer a more practical route to uncertainty estimation by approximating
Bayesian diversity through multiple deterministic predictors. Finally, ensemble-
based methods for uncertainty estimation are compared, including Monte Carlo
Dropout (MCDO) and Deep Ensembles (DEs), alongside the recently introduced
Repulsive Last-Layer Ensembles (RLLEs) [13]. RLLEs share a common deter-

5

Introduction

ministic backbone and replace the final layer with an ensemble of prediction
heads, greatly reducing the number of trainable parameters while maintaining
prediction diversity. A function-space repulsion term promotes diversity between
ensemble heads, enabling efficient fine-tuning on pretrained networks and pro-
ducing calibrated uncertainty estimates at minimal additional computational
cost. Implemented and evaluated using the TVM compiler stack, RLLEs achieve
the fastest inference among all evaluated approaches. Together, these studies
demonstrate how algorithmic approximations and hardware-aware mapping can
jointly reduce the computational cost of BNN inference while maintaining reliable
uncertainty estimation.

Similar to the investigation of deterministic neural networks, this work ex-
tends the exploration beyond algorithmic approximations and optimizations of
established architectures toward emerging analog hardware technologies. In pho-
tonic accelerators, intrinsic fluctuations—such as photon shot noise and chaotic
light dynamics—introduce stochasticity that is typically regarded as a limitation
to precision. Here, this physical noise is leveraged as a controllable source of
randomness for probabilistic inference, allowing stochastic sampling to emerge
directly from the hardware. In the presented photonic experiments [1], [10], a
probabilistic model of the photonic hardware is integrated into Bayesian training
and inference loops, enabling the constructive use of stochastic fluctuations char-
acteristic of chaotic light for probabilistic computation. To make this possible, a
controllable noise encoding scheme was developed that maps desired activation
variances onto optical intensity distributions following Bose–Einstein statistics.
The BNN architecture was co-designed with the photonic prototype to account
for its physical constraints enabling stable training and reliable uncertainty
estimation under real hardware conditions. This approach extends the algo-
rithmic–hardware co-design principle beyond robustness toward the deliberate
utilization of analog noise as a foundation for efficient probabilistic computation.

6

Contributions

This thesis makes the following primary contributions:

• Compressing DNNs for efficient inference on embedded systems:
This contribution advances resource-efficient deterministic inference through
both analytical insight and automated optimization. A comprehensive
study of compression methods [12]—including quantization, pruning, and
knowledge distillation—demonstrates that reductions in parameters or
FLOPs do not reliably predict runtime efficiency, emphasizing the need
for empirical, hardware-specific evaluation. Building on this foundation,
the Galen framework [21] performs automatic, reinforcement-learning-
based compression that adapts pruning and quantization per layer and
per compute architecture, guided by sensitivity analysis and hardware-
in-the-loop latency measurements, achieving superior accuracy–efficiency
trade-offs.

• Modeling and mitigating analog nonidealities in neural accel-
erators: This work addresses the challenges of analog imperfections in
neural hardware through complementary advances in modeling and ro-
bustness. Detailed white-box and data-driven models of the BSS-2 analog
accelerator [4], [44] capture device-specific nonlinearities, saturation effects,
noise, and ordering dependencies, revealing the non-associativity of ana-
log accumulation and enabling efficient, hardware-aware training without
continuous device access. Building on this foundation, the Walking Noise
framework [9] introduces a methodology to quantify layer-wise robustness
to additive and multiplicative disturbances, while a systematic compari-
son of hardening strategies [7] reveals noisy training as the most effective
approach to improve robustness against noisy analog computations. To
further sustain resilience under dynamically varying conditions, such as
temperature-induced drift, VANT [8] extends this approach through adap-
tive noise scaling, demonstrating that robust analog computation requires
integrating hardware characteristics directly into the training process.

7

Introduction

• Efficient BNN inference on embedded systems: This work addresses
the computational challenges of Bayesian neural networks by developing
scalable approximation and implementation techniques that enable effi-
cient inference on embedded hardware. It begins by analyzing BNNs and
their core inference methods, MCMC and SVI, evaluating their scalability
and uncertainty estimation quality, and revealing how activation func-
tions critically affect convergence and predictive behavior. Building on
these insights, the Probabilistic Forward Pass [186] is implemented as a
closed-form approximation to variational inference, analytically propagat-
ing Gaussian means and variances through neural layers. A dedicated
operator library integrated into the TVM compiler enables optimized exe-
cution on embedded ARM processors, achieving substantial speedups over
sampling-based approaches [3]. In addition to these analytic methods,
ensemble-based Bayesian approximations are explored, including Repulsive
Last-Layer Ensembles [13], which promote diversity between prediction
heads via a function-space repulsion term while sharing a common de-
terministic backbone. Complementing the analytic acceleration achieved
by the Probabilistic Forward Pass, the TVM-based implementation of
RLLEs attains further substantial speedups—particularly at larger batch
sizes—while maintaining high-quality uncertainty estimation, establishing
RLLEs as an efficient and scalable method for embedded BNN inference.

• Harnessing photonic noise for probabilistic inference: This work
explores photonic accelerators as a hardware platform for efficient Bayesian
neural network inference, leveraging intrinsic optical noise as a controllable
source of stochasticity. Through modeling and hardware–algorithm co-
design of chaotic-light photonic systems [1], [10], the inherent randomness
of light interference is transformed from a limiting factor into a functional
entropy source for probabilistic computation. A dedicated noise-encoding
scheme and co-adapted BNN architecture enable stable training and accu-
rate uncertainty estimation under real hardware constraints, transforming
analog noise from a source of error into an active computational resource.

8

Publications

The work builds upon and extends the following publications:

Journal Articles

• Wolfgang Roth*, Günther Schindler*, Bernhard Klein*, Robert Peharz, Sebastian
Tschiatschek, Holger Fröning, Franz Pernkopf, and Zoubin Ghahramani, “Resource-
Efficient Neural Networks for Embedded Systems,” Journal of Machine Learning
Research (JMLR), 2024. [JMLR] [arXiv]

• Frank Brückerhoff-Plückelmann, Hendrik Borras, Bernhard Klein, Akhil Varri, Mar-
lon Becker, Jelle Dijkstra, Martin Brückerhoff, C. David Wright, Martin Salinga,
Harish Bhaskaran, Benjamin Risse, Holger Fröning, and Wolfram Pernice, “Proba-
bilistic Photonic Computing with Chaotic Light,” Nature Communications, 2024.
[DOI]

• Frank Brückerhoff-Plückelmann, Anna P. Ovvyan, Akhil Varri, Hendrik Borras,
Bernhard Klein, Lennart Meyer, C. David Wright, Harish Bhaskaran, Ghazi Sarwat
Syed, Abu Sebastian, Holger Fröning, and Wolfram Pernice, “Probabilistic Photonic
Computing for AI,” Nature Computational Science, May 2025. [DOI]

Conference Papers

• Hendrik Borras*, Bernhard Klein*, and Holger Fröning, “Walking Noise: On Layer-
Specific Robustness of Neural Architectures Against Noisy Computations and
Associated Characteristic Learning Dynamics,” in European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-
PKDD), 2024. [DOI] [arXiv]

• Xiao Wang, Hendrik Borras, Bernhard Klein, and Holger Fröning, “Variance-Aware
Noisy Training: Hardening DNNs Against Unstable Analog Computations,” in
European Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML-PKDD), 2025. [DOI] [arXiv]

Workshop Papers

• Torben Krieger*, Bernhard Klein*, and Holger Fröning, “Towards Hardware-Specific
Automatic Compression of Neural Networks,” AAAI Workshop on Practical Deep
Learning in the Wild, 2023. Best Paper Award. [DOI]

9

https://jmlr.org/papers/volume25/18-566/18-566.pdf
https://arxiv.org/abs/2001.03048
https://doi.org/10.1038/s41467-024-54931-6
https://doi.org/10.1038/s43588-025-00800-1
https://doi.org/10.1007/978-3-031-70359-1_3
https://arxiv.org/abs/2212.10430
https://doi.org/10.1007/978-3-032-06109-6_9
https://arxiv.org/abs/2503.16183
https://doi.org/10.48550/arXiv.2212.07818

Introduction

• Lisa Kuhn*, Bernhard Klein*, and Holger Fröning, “On the Non-Associativity of
Analog Computations,” in European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECML-PKDD) Workshops
(ITEM), 2025. [DOI] [arXiv]

• Sophie Steger, Christian Knoll, Bernhard Klein, Holger Fröning, and Franz Pernkopf,
“Function-Space Diversity for Uncertainty Prediction via Repulsive Last-Layer
Ensembles,” ICML Workshop on Structured Probabilistic Inference & Generative
Modeling, 2024. [Link] [arXiv]

• Hendrik Borras*, Bernhard Klein*, and Holger Fröning, “Walking Noise: Under-
standing Implications of Noisy Computations on Classification Tasks,” HiPEAC
Workshop on Accelerated Machine Learning (AccML), 2023. (Earlier version of the
ECML-PKDD 2024 paper.) [Link]

• Xiao Wang, Hendrik Borras, Bernhard Klein, and Holger Fröning, “On Hardening
DNNs Against Noisy Computations,” HiPEAC Workshop on Accelerated Machine
Learning (AccML), 2025. [arXiv] [Link]

• Bernhard Klein, Christoph Gratl, Manfred Mücke, and Holger Fröning, “Understand-
ing Cache Boundness of ML Operators on ARM Processors,” HiPEAC Workshop
on Accelerated Machine Learning (AccML), 2021. [arXiv]

• Bernhard Klein, Lisa Kuhn, Johannes Weis, Arne Emmel, Yannik Stradmann,
Johannes Schemmel, and Holger Fröning, “Towards Addressing Noise and Static
Variations of Analog Computations Using Efficient Retraining,” in European Con-
ference on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases (ECML-PKDD) Workshops (ITEM), 2021. [DOI]

Submitted for Review

• Bernhard Klein, Falk Selker, Hendrik Borras, Sophie Steger, Franz Pernkopf, and
Holger Fröning, “Accelerated Execution of Bayesian Neural Networks Using a
Single Probabilistic Forward Pass and Code Generation,” under review at ACM
Transactions on Architecture and Code Optimization (TACO), 2025.

* Shared first authorship.

10

https://doi.org/10.1007/978-3-031-74643-7_15
https://arxiv.org/abs/2309.14292
https://openreview.net/forum?id=FbMN9HjgHI
https://arxiv.org/abs/2412.15758
https://accml.dcs.gla.ac.uk/papers/2023/5th_AccML_paper_2.pdf
https://arxiv.org/abs/2501.14531
https://accml.dcs.gla.ac.uk/papers/2025/7th_AccML_paper_1.pdf
https://arxiv.org/abs/2102.00932
https://doi.org/10.1007/978-3-030-93736-2_32

Thesis Structure

The remainder of this thesis is organized into two parts that together advance
the goal of resource-efficient and reliable neural network inference.

Part I focuses on deterministic models and explores both algorithmic and
hardware-oriented strategies for efficient execution. Chapter 3 surveys established
compression techniques and analyzes their effectiveness across embedded com-
puting platforms. Building on these foundations, Chapter 4 presents the Galen
framework for automatic, hardware-aware compression that jointly optimizes
pruning and quantization for accuracy and latency. Chapters 5 and 6 jointly
address analog neural accelerators. Chapter 5 develops hardware models that
capture device imperfections of analog accelerators, providing a foundation for
efficient hardware-aware training. Building on these models, Chapter 6 investi-
gates the resilience of neural networks to such noisy computations, introducing
the Walking Noise framework for layer-wise robustness analysis and VANT to
harden DNNs for dynamic noise conditions.

Part II extends these principles to probabilistic machine learning, empha-
sizing scalable Bayesian inference and uncertainty estimation. Chapter 7 in-
troduces Bayesian neural networks and compares inference methods such as
MCMC and SVI, highlighting how activation functions influence uncertainty
and convergence. Chapter 8 implements the Probabilistic Forward Pass as a
compiler-integrated operator library for embedded inference, while Chapter 9
investigates ensemble-based approximations, including the Repulsive Last-Layer

Digital Hardware · Deterministic

Analog Hardware · Deterministic

Digital Hardware · Probabilistic

Analog Hardware · Probabilistic

Chapter 3: Resource-Efficient Inference
Chapter 4: Automatic Model Compression

Chapter 5: Modeling Analog Hardware
Chapter 6: Robustness Against Noisy

Computations

Chapter 7: Bayesian Neural Networks
Chapter 8: Compiling PFP-based BNNs
Chapter 9: Ensemble-based BNNs

Chapter 10: Probabilistic Photonic
Computing for BNNs

Figure 1.1 Thesis contributions organized along hardware technologies (vertical:
digital vs. analog) and modeling paradigms (horizontal: deterministic vs. proba-
bilistic).

11

Introduction

Ensembles, demonstrating their efficiency and calibration trade-offs. Finally,
Chapter 10 explores photonic accelerators as a hardware platform for probabilis-
tic computation, showing how intrinsic optical noise can serve as a controllable
stochastic resource for BNN inference.

Chapter 11 concludes the thesis by summarizing the overarching findings,
synthesizing deterministic and probabilistic efficiency concepts, and outlining
future research directions in integrated algorithm–hardware co-design for energy-
efficient machine learning.

The overall organization of this work is summarized in Figure 1.1. The
diagram arranges the chapters along two axes—hardware domain (digital to
analog) and modeling paradigm (deterministic to probabilistic)—mirroring the
transition from Part I to Part II. Together, they illustrate how the thesis progresses
from digital model compression and analog robustness toward probabilistic and
photonic computation as complementary routes to efficient and reliable neural
inference.

12

2
Background

2.1 Deep Neural Networks

Deep neural networks have become the predominant model class in modern
machine learning [176], [198]. They consist of multiple layers of parameterized
transformations, combined with nonlinear activation functions, that together
approximate highly complex mappings from inputs to outputs. The learnable
parameters, often referred to as weights, are adjusted during training such that
the network minimizes a given loss function on available data.

Layer Types. At their core, DNNs alternate between linear operations and
nonlinear activation functions. Common choices for the activation function σ(·)
include the Rectified Linear Unit (ReLU), sigmoid, or hyperbolic tangent, each
shaping the representational capacity of the network differently. The simplest
linear operation is the dense (fully-connected) layer, which maps an input vector
x ∈ Rd to an output vector y ∈ Rm:

y = σ(Wx +b), (2.1)

13

Background

where W ∈ Rm×d and b ∈ Rm are learnable parameters. Convolutional layers
generalize this operation to exploit the spatial structure of input data while
reducing the number of parameters. Let I denote the input feature map with C

channels, and let W denote a set of filter kernels with spatial dimensions R ×S

and U output channels. For an input position (x,y), input channel z and output
channel u, the output feature map O is computed as

O[z][u][x][y] =
C−1∑︂
k=0

R−1∑︂
i=0

S−1∑︂
j=0

I[z][k][sx+ i][sy + j] ·W [u][k][i][j]+B[u], (2.2)

where B[u] denotes the bias term for output channel u and s is the stride
parameter controlling the step size. The resulting output dimensions are

E = H −R + s

s
, (2.3)

F = W −S + s

s
, (2.4)

for an input feature map of height H and width W . This formulation reflects
the convolution operation as implemented in modern deep learning frameworks,
including multi-channel inputs, multiple filters, stride, and biases.

Training and Inference. Neural networks are trained by gradient-based
optimization methods, most prominently stochastic gradient descent and its vari-
ants [197], [252]. Gradients are computed efficiently using backpropagation [246],
which recursively applies the chain rule across the layered structure. Once trained,
inference corresponds to applying the learned transformations to unseen inputs,
requiring only the forward pass. This distinction is particularly important in
practice: training is usually carried out on large-scale compute clusters, while
inference is also often executed on embedded, mobile or specialized hardware
where resources are constrained.

Impact and Limitations. The scalability and expressiveness of DNNs have
driven breakthroughs across domains such as computer vision, natural language
processing, and speech recognition [168], [215]. At the same time, the growing
depth and parameter counts of state-of-the-art models result in high computa-
tional demand and memory consumption. Balancing prediction quality with
computational and energy efficiency is therefore a central challenge, motivating

14

2.2 ML Frameworks and Compilers

the resource-aware, robust, and probabilistic inference approaches that form the
core contributions of this work.

2.2 ML Frameworks and Compilers

2.2.1 Training Frameworks

Modern deep learning practice is dominated by frameworks such as PyTorch [97],
TensorFlow [173], and JAX [112]. They provide user-friendly abstractions to
define models, automatic differentiation to compute gradients, and efficient
utilization of hardware accelerators. These frameworks have become the standard
entry point for designing and training deep neural networks, offering both
flexibility for research and scalability for large-scale production.

2.2.2 Probabilistic Programming Frameworks

Classical machine learning frameworks are extended by Probabilistic Program-
ming Languages (PPLs) to model random variables directly. They provide
support for sampling, probability distributions, and a range of Bayesian inference
algorithms, including variational inference and Markov chain Monte Carlo (see
Chapter 7 for a detailed introduction to Bayesian inference methods). Prominent
PPLs include Pyro [82], NumPyro [98], and TensorFlow Probability [146].

Pyro is built on top of PyTorch and emphasizes scalable variational inference,
making it a natural choice for amortized inference and stochastic variational
inference (SVI). NumPyro, by contrast, builds on JAX and leverages just-in-time
(JIT) compilation to achieve high performance. It places a stronger emphasis on
MCMC methods, providing highly optimized implementations of Hamiltonian
Monte Carlo and the No-U-Turn Sampler [206]. In practice, NumPyro is often
considered faster for large-scale MCMC-based Bayesian inference due to its
compilation-based workflow, while Pyro is regarded as more flexible and easier
to customize, making it well suited for prototyping new probabilistic models and
inference algorithms. TensorFlow Probability extends TensorFlow with a large
collection of probabilistic building blocks, covering both inference methods and
probabilistic layers.

15

Background

These frameworks are a necessary component of the modern probabilistic
deep learning ecosystem, providing the modeling tools required to train Bayesian
neural networks with uncertainty-awareness while remaining compatible with
standard deep learning workflows.

2.2.3 Deep Learning Compilers

Training frameworks excel at model specification and optimization, but efficient
deployment on heterogeneous targets often requires compiler support. Hand-
tuned vendor libraries deliver strong performance for common operators on
popular hardware architectures, yet they are difficult to retarget and cannot
cover all combinations of hardware, data layouts, and custom operators. Machine
learning compilers address this gap by lowering high-level models to hardware-
aware implementations while applying graph- and kernel-level optimizations that
improve latency and energy efficiency across diverse backends.

MLIR and XLA. The Multi-Level Intermediate Representation (MLIR)
project provides a modular, multi-level intermediate representation with ex-
tensible dialects for tensors, linear algebra, and device backends [45]. Progressive
lowering enables reuse of transformations across ecosystems: models can start
from framework-level intermediate representations (IRs), pass through domain-
specific dialects, and end as target Instruction Set Architecture (ISA) or runtime
code. This design eases support for non-standard data types, dynamic shapes,
and emerging accelerators without invasive changes to front-ends. XLA [165] is
a domain-specific compiler stack developed for TensorFlow and JAX, providing
graph fusion, buffer reuse, and code generation. It remains the primary compiler
for Google’s TPUs and increasingly relies on MLIR as its underlying compiler
infrastructure. Together, MLIR and XLA illustrate how compiler infrastructures
can unify optimization passes across frameworks and backends while enabling
efficient execution on specialized hardware.

TVM. The Tensor Virtual Machine (TVM) stack is an end-to-end optimizing
compiler for deep neural networks that targets CPUs, GPUs, FPGAs, and custom
accelerators [115]. Its IR family (TE/TensorIR/Relax) separates what to compute
from how to schedule it. Crucially, TVM is designed to support custom operators
and novel hardware where vendor libraries are unavailable or insufficient, making

16

2.3 Hardware Platforms for Neural Networks

it suitable for research settings and embedded deployments alike. In this work,
TVM plays a central role across several chapters, serving as the common path
from high-level models to hardware-optimized binaries.

Auto-tuning. To illustrate the scheduling challenge, consider the example of
a 2D convolution kernel. Its performance depends strongly on how the nested
loops over output channels, spatial positions, and kernel indices are ordered, tiled,
vectorized, and parallelized. Unfavorable choices—such as iterating over strided
dimensions or very small kernels like 3×3 in the innermost loop—can prevent
effective vectorization and waste memory bandwidth, while good schedules expose
cache locality, SIMD efficiency, and balanced parallel work. Since the optimal
decisions vary across tensor shapes and hardware, manual scheduling is tedious
and hardware-specific. To address this challenge, TVM integrates auto-tuning
frameworks—first Ansor [79] and later the Meta-Scheduler [32]—that automati-
cally explore the scheduling space by generating candidates, benchmarking them
on the target device, and learning from results. This process often discovers
implementations that rival or surpass expert-crafted kernels, and in this work
proved particularly effective for compressed and probabilistic operators where no
vendor libraries exist.

Summary. Training frameworks, probabilistic programming environments,
and deep learning compilers together form the toolchain that spans the full
workflow. Within this ecosystem, TVM offers end-to-end code generation and
powerful auto-tuning to achieve high performance for standard and non-standard
operators on heterogeneous targets. These capabilities are central whenever
hand-tuned kernels are unavailable or suboptimal, enabling efficient deployment
for neural network compression (Chapter 4), probabilistic inference (Chapter 8),
and ensembles (Chapter 9) on resource-constrained embedded hardware.

2.3 Hardware Platforms for Neural Networks

Advances in hardware have been a key driver of modern deep learning. Both
training and inference impose high computational demands, and the choice of
hardware platform often determines whether an application is feasible. This
section provides a short overview of the most relevant processor classes for

17

Background

deep neural networks, highlighting their strengths and limitations for inference.
All platforms appear in a wide range of scales, from mobile to data-center
deployments.

CPUs. Central Processing Units (CPUs) maximize general-purpose programma-
bility and single-thread performance. Modern designs rely on multithreading and
vectorization to achieve throughput, which makes them flexible and particularly
suitable for handling irregular workloads. Support for low-precision arithmetic
(e.g., 8-bit integer instructions) further improves efficiency in typical inference
pipelines.

GPUs. Graphics Processing Units (GPUs) contain large numbers of lightweight
cores with high memory bandwidth, offering massive throughput for dense
tensor operations. They follow a block-parallel execution paradigm, where many
threads are grouped into warps and thread blocks, enabling massive fine-grained
parallelism [226]. This design makes GPUs highly efficient for regular, highly
parallel computations but less effective on irregular workloads. Their native
support for reduced-precision arithmetic, such as 16-bit floating point and 8-bit
integer, has been central to the deployment of modern deep learning, and recent
architectures even extend this support to 4-bit formats for further efficiency gains.
Efficient hardware support for dense matrix multiplications has made GPUs the
main driver of modern deep neural networks during both training and inference.

FPGAs. Field-Programmable Gate Arrays (FPGAs) consist of configurable
logic blocks that can be programmed into custom compute units. They operate
at lower frequency and with limited on-chip memory compared to CPUs and
GPUs, but allow arbitrary data formats and fine-grained parallelism. Their
flexibility makes them attractive for latency-critical deployments with strict real-
time constraints, where extreme low inference latencies are required. Moreover,
FPGAs are often employed as prototyping platforms for Application-Specific
Integrated Circuits (ASICs), offering a balance between programmability and
the ability to evaluate custom hardware designs.

Domain-Specific Accelerators. Dedicated accelerators such as Google’s
TPU [20] implement systolic arrays optimized for dense linear algebra. They

18

2.3 Hardware Platforms for Neural Networks

achieve high utilization on structured workloads with limited programmability.
Support is typically restricted to standard low-precision formats such as 16-bit
floating point or 8-bit integer, but their throughput and energy efficiency make
them attractive for large-scale deployments.

Analog Accelerators. Beyond digital processors, analog computing devices
have gained attention as promising alternatives for neural network inference.
Examples include resistive memory arrays [129], electronic CMOS-based sys-
tems [46], [49], and optical or photonic processors [1], [123], [163]. By carrying
out matrix multiplications directly in the analog domain, these devices promise
orders-of-magnitude improvements in energy efficiency compared to digital hard-
ware. However, analog computations are inherently noisy due to device variability,
nonlinearities, and stochastic physical processes [4], [44]. This variability poses
challenges for maintaining accuracy, but also creates opportunities for algorithmic
co-design. In this work, analog noise and variability are analyzed through analog
hardware models (Chapter 5), addressed with robustness-enhancing training
methods (Chapter 6), and eventually exploited as a source of stochasticity for
probabilistic inference on photonic accelerators (Chapter 10).

19

Part I

Accelerating Deep Neural
Networks

21

3
Foundations of Resource-Efficient

Inference of NN for Embedded Systems

Any intelligent fool can make things bigger and more complex...
It takes a touch of genius—and a lot of courage—

to move in the opposite direction.

— E. F. Schumacher, Small is Beautiful (1973)

Modern machine learning has advanced in parallel with the increasing availability
of large-scale computational resources. Training and tuning contemporary DNNs
is both computationally intensive and methodologically challenging, often requir-
ing massive parallelism and sophisticated systems engineering. State-of-the-art
models are typically trained in data centers equipped with abundant GPUs or
specialized neural processors (NPUs, TPUs), where energy consumption and
latency are secondary considerations. Deployment scenarios, however, present
a fundamentally different reality. Embedded systems such as smartphones, au-
tonomous robots, or sensor nodes in the Internet of Things operate under strict
resource budgets: available memory is limited, energy is constrained by batteries,

23

Foundations of Resource-Efficient Inference of NN for Embedded
Systems

and latency must remain within tight bounds to ensure real-time responsiveness.
This discrepancy creates a persistent tension: how can models that are devel-

oped and trained in nearly unconstrained laboratory environments be deployed
on hardware with orders of magnitude fewer resources? Naïve model reduction
often leads to unacceptable drops in prediction quality. Instead, resource-efficient
inference requires systematic approaches that balance representational and com-
putational demands against accuracy in a controlled fashion.

Among the wide variety of proposed strategies, three broad categories have
proven particularly effective for DNNs compression and acceleration: quantization,
pruning, and structural efficiency. These techniques reduce the memory footprint
and inference cost while preserving competitive predictive performance. They
are relevant across embedded hardware platforms ranging from general-purpose
CPUs and GPUs to domain-specific accelerators and FPGAs. At the same time,
they differ markedly in terms of hardware friendliness, achievable compression
ratios, and their impact on prediction quality. As we will see throughout this
chapter, the effectiveness of compression techniques is highly hardware-dependent,
underscoring the need for co-design of algorithms and deployment platforms.

This chapter builds on our work Roth, Schindler, Klein, Peharz, Tschiatschek,
Fröning, Pernkopf, and Ghahramani – Resource-Efficient Neural Networks for
Embedded Systems [12], which provides a comprehensive survey of embedded
hardware platforms and efficiency-enhancing methods. For details beyond the
scope of this chapter we refer the reader to the original work, while here we focus
on the concepts and techniques most relevant for the subsequent chapters.

By consolidating these foundations, this chapter prepares the ground for the
Galen framework introduced in the following chapter, which employs hardware-
in-the-loop optimization to automate compression strategies.

3.1 Foundations of Efficiency

Resource-efficient inference of DNNs is naturally a multi-objective optimization
problem. On the one hand, the model must fit into the tight resource budgets
of embedded systems. On the other hand, it must deliver sufficient prediction
quality for the target application. As proposed by Roth, Schindler, Klein,
Peharz, Tschiatschek, Fröning, Pernkopf, and Ghahramani [12] and illustrated in

24

3.1 Foundations of Efficiency

Figure 3.1 Systematic perspective on resource-efficient machine learning. Repre-
sentational efficiency, computational efficiency, and prediction quality form the
triad that structures the discussion in this chapter. Reproduced with permission
from [12].

Figure 3.1, efficiency can be structured into three complementary dimensions:
representational efficiency, computational efficiency, and prediction quality.

Representational efficiency captures how compactly parameters and ac-
tivations are stored, measured by memory footprint and storage format. It is
determined by the number of parameters, their sparsity, and the chosen numerical
precision, for example floating-point versus quantized integer representations.
Techniques such as quantization and pruning directly target this dimension.

Computational efficiency refers to the time, throughput, and energy
required to execute the model on the target hardware. It accounts not only for
arithmetic operations but also, critically, for the movement of data through the
memory hierarchy. Simple theoretical metrics such as FLOPs provide a rough
indication of computational cost, but they do not reliably capture actual latency
or energy consumption. This underlines the importance of evaluating efficiency
directly on the deployed device.

Prediction quality captures the predictive performance of the compressed
model. While classical machine learning focuses almost exclusively on accuracy,
in embedded deployment prediction quality must be considered jointly with
efficiency demands to ensure that gains in efficiency do not come at the expense
of essential predictive performance.

Taken together, these three dimensions provide a systematic lens for analyzing
and comparing efficiency techniques. Throughout the remainder of this chapter
we will use them as a recurring reference point to evaluate quantization, pruning,

25

Foundations of Resource-Efficient Inference of NN for Embedded
Systems

and structural efficiency.

3.2 Quantization

Quantization reduces the bit-width used to represent weights and activations in
DNNs, shrinking model size and activation memory while, on suitable hardware,
also accelerating inference and lowering energy cost. At the extreme, binary
weights w ∈ {−1,1} and activations x ∈ {−1,1} turn multiplications into efficient
XNOR and bitcount operations, effectively reducing a network to a logical circuit.

Training such discrete-valued networks is difficult because quantization is
non-differentiable. The central challenge is to lower precision as much as possible
without sacrificing the accuracy of a full-precision baseline. Over the past
three decades, a wide range of techniques have been developed to address this
challenge. The following sections review these approaches, beginning with early
attempts at reduced-precision training and moving toward modern quantization-
aware training and large-scale applications. Early works such as Höhfeld and
Fahlman [240], [241] introduced stochastic rounding to prevent training stalls at
low precision, a principle later shown effective on modern architectures [192].

Lin et al. [200] eliminated most multiplications during training by quantizing
weights stochastically to binary or ternary values in the forward pass and quan-
tizing activations to powers of two in the backward pass, reducing multiplications
to bit shifts. This yields significant training speedups, although inference still
depends on full-precision weights.

Subsequent work broadened the scope. Courbariaux et al. [190] systematically
compared floating-, fixed-, and dynamic fixed-point formats across bit-widths.
Lin et al. [181] cast layer-wise bit allocation as a convex optimization problem
that minimizes storage under a signal-to-quantization-noise constraint, yielding
closed-form solutions for optimal bit-widths.

3.2.1 Quantization-aware Training

Quantization functions are piecewise constant with zero or undefined deriva-
tives, which breaks standard backpropagation. The straight-through estima-
tor (STE) [211], illustrated in Figure 3.2, has therefore become the default
workaround: weights are stored in full precision, quantized in the forward pass,

26

3.2 Quantization

xl conv al+1 xl+1

Wl
q

QWl

id

Forward path

Backward path

Figure 3.2 Schematic illustration of quantization with the standard deviation.
The forward pass applies quantization to weights and activations, while the
backward pass approximates the gradient as the identity function. Reproduced
with permission from [12].

and updated in the backward pass as if the quantizer were the identity. At test
time, only the quantized weights are kept, and the same principle applies to
activations.

Early quantization-aware training (QAT) methods applied this scheme to
binary networks. Courbariaux et al. [190] trained binary-weight models using
either deterministic sign rounding or stochastic rounding via a hard–sigmoid, and
Hubara et al. [180] extended the approach to activations, reducing multiplications
and additions to efficient XNOR and bitcount operations. Li et al. [30] advanced
to ternary weights w ∈ {−a,0,a} with thresholds chosen to minimize quantization
error, while Zhu et al. [171] generalized to asymmetric ternary w ∈ {−a,0, b} with
trainable parameters and per-layer thresholds, often outperforming symmetric
schemes.

Filter quantization soon followed. Rastegari et al. [185] approximated convo-
lutional filters as W = αB, replacing most multiplications with additions and
requiring only one multiplication per channel, with input quantization further
enabling XNOR and bitcount convolutions. Lin et al. [157] improved accuracy
by expressing filters as linear combinations of multiple binary bases.

Other approaches tailored quantizers to data distributions. Cai et al. [145]
introduced half-wave Gaussian quantization to better match ReLU activations.
Miyashita et al. [184] quantized to powers of two, eliminating multiplications and
improving robustness, while Zhou et al. [170] proposed incremental quantization,
alternately quantizing subsets of weights to {0}∪{2k} and retraining until all
layers were quantized.

27

Foundations of Resource-Efficient Inference of NN for Embedded
Systems

Deployment-oriented schemes also emerged. Jacob et al. [121] introduced
integer-only inference, emulating quantization during training and deploying
8-bit weights for inference, thereby reducing the model size by a factor of four.
Liu et al. [126] presented Bi-Real Net, a ResNet variant with binary convolutions
in the residual path and real-valued shortcuts to preserve expressiveness.

More flexible quantizers were later learned end-to-end. Zhang et al. [141]
proposed LQ-Net, where quantization codebooks are optimized during training,
with layer-wise activation quantizers and channel-wise weight quantizers improv-
ing flexibility and efficiency. Louizos et al. [95] introduced Relaxed Quantization,
a differentiable soft-rounding scheme that injects noise before rounding and
employs Gumbel–softmax [152] to approximate discrete levels, with a hard STE
variant for exact quantization.

These methods illustrate the spectrum from binary to low-bit quantization and
highlight the trade-off between efficiency and accuracy. As shown in Figure 3.3,
accuracy decreases nonlinearly with lower bit-widths: weight-only quantization
impacts performance, but activation quantization leads to larger errors, and
combining both amplifies the effect.

Mixed-precision quantization further refined these ideas. Dong et al. [86]
ranked network blocks by Hessian eigenvalues to assign bit-widths and defined
an order for sequential quantization and fine-tuning with QAT.

In most practical implementations, quantization follows a linear scheme, in
which the continuous value range is uniformly partitioned into discrete levels.
Such linear quantizers are characterized by the quantization step size Qd, the
dynamic range Qmax, and the bit-width Qb, which are related by

Qmax = (2Qb−1 −1)Qd. (3.1)

Esser et al. [60] proposed to make the step sizes Ql
d trainable and learn them with

the STE, in contrast to fixed statistics as in XNOR-Net [185]. Uhlich et al. [74]
extended this to mixed precision and compared alternative parameterizations of
Eq. (3.1), finding that optimizing (Ql

d,Ql
max) by backpropagation yields stable

training and implicitly determines the effective bit-widths Ql
b.

Quantization during backpropagation. Several methods also quantize
gradients to further reduce training cost. Zhou et al. [142] proposed flexible

28

3.2 Quantization

1 2 3
Bits

22

24

26

28

30

32

34

Te
st

 e
rro

r [
%

]

Lq-Net

Lq-Net
Lq-Net

Lq-Net

Lq-Net Lq-Net

Lq-Net

Lq-Net

Lq-Net

BWN

BNN

DoReFa

DoReFa

TTQ

Baseline
Activations
Weights
Weights+Activations

Figure 3.3 Comparison of several popular quantization methods using the
DenseNet-BC-100 architecture on the CIFAR-100 dataset. Test error is shown
as a function of bit-width for weight and activation quantization. As expected,
lower bit-widths lead to larger errors: weight-only quantization degrades accuracy
moderately, activation quantization incurs larger losses, and quantizing both
amplifies the effect. Reproduced with permission from [12].

bit-width schemes for weights, activations, and backpropagation, highlighting
the importance of stochastic quantization. Wu et al. [139] extended this idea
with customized quantizers for weights, activations, and their gradients, enabling
integer arithmetic throughout training and inference and accumulating updates
directly in low precision.

Theory and large-model results. Beyond empirical studies, theoretical
work has analyzed convergence and approximation in quantized training [111],
[155]. Shekhovtsov and Yanush [70] further showed that the STE can be derived
from linearization approximations in stochastic binary networks. Quantization is
also increasingly applied to large language models [25], [54], [71], where QAT is
often impractical. Frantar et al. [18] addressed this with an efficient one-shot
post-training quantization method for transformers, while Lin et al. [11] proposed
activation-aware weight quantization that preserves salient weights via activation
magnitudes and per-channel scaling.

Most research on quantization emphasizes algorithmic methods and accuracy
trade-offs, but hardware studies reveal additional critical factors. In our previous
work [43], we showed that matrix multiplication and convolution on embedded
ARM CPUs are typically cache-bound: performance is limited by L1 bandwidth
rather than arithmetic throughput. Quantization can mitigate this by reducing

29

Foundations of Resource-Efficient Inference of NN for Embedded
Systems

memory traffic, but the gains depend heavily on data layout and packing overhead,
with bit-serial approaches particularly sensitive to bit-width. This analysis
highlights that quantization must be co-designed with memory hierarchies and
software stacks to achieve real speedups on embedded platforms.

3.2.2 Bayesian Approaches for Quantization

Several quantization methods connect naturally to Bayesian and variational
inference. Achterhold et al. [110] extended the variational-dropout pruning
approach of Louizos et al. [160] with mixtures of log-uniform priors centered at
quantization levels, concentrating the posterior on discrete values and enabling
quantization without fine-tuning.

Other works model discrete weight distributions directly. Soudry et al. [210]
approximated the posterior with expectation propagation, while Shayer et al. [134]
optimized distributions over binary or ternary weights via the local reparameter-
ization trick [196]. Peters and Welling [130] adapted this to sign activations, and
Roth and Pernkopf [100] extended it to more than three discrete values.

Van Baalen et al. [52] introduced Bayesian mixed-precision quantization
for power-of-two bit-widths, using recursive quantization with gates trained by
variational inference; a zero-bit gate simultaneously enabled pruning.

Havasi et al. [89] proposed a Bayesian compression scheme that learns a
mean-field variational posterior and encodes samples via importance-sampled
atomic approximations, allowing efficient coding and recovery with a shared
random seed.

Summary. Quantization is one of the most effective and versatile compression
techniques for DNNs. It spans a spectrum from simple 8-bit integer quantization
to advanced mixed-precision and Bayesian formulations. Recent progress in
learned quantizers, Hessian-aware policies, and Bayesian perspectives has im-
proved robustness and flexibility. At scale, quantization is essential for deploying
large models efficiently on both data-center accelerators and resource-constrained
embedded systems. Overall, it provides a principled trade-off between efficiency
and accuracy and remains a cornerstone of hardware-aware inference across
model types and computing platforms.

30

3.3 Pruning

3.3 Pruning

Pruning reduces the size and cost of DNNs by enforcing parameter sparsity:
weights judged unimportant are set to zero, and the resulting sparsity is leveraged
for efficiency. Two main paradigms are distinguished. Unstructured pruning
removes individual weights irrespective of their tensor location, typically preserv-
ing accuracy but requiring extreme sparsity and specialized structures to yield
speedups. Structured pruning, in contrast, eliminates entire neurons, channels,
or filters, directly reducing tensor dimensions and remaining compatible with
standard dense operations.

The following sections review both unstructured and structured approaches,
discuss Bayesian formulations, and conclude with methods that adapt pruning
dynamically at inference time.

3.3.1 Unstructured Pruning

Early work on pruning already explored sophisticated techniques beyond simple
magnitude thresholds. LeCun et al. [244] introduced optimal brain damage, which
uses a second-order Taylor expansion with a diagonal Hessian to estimate the
loss increase from pruning individual weights. Weights with minimal estimated
impact are removed, alternating with retraining to recover performance. Hassibi
and Stork [239] refined this idea with optimal brain surgeon, which approximates
the full covariance matrix to prune low-impact weights while simultaneously
adapting the remaining parameters. Although effective on small networks, these
methods do not scale to modern architectures with millions of parameters, as
computing and inverting the Hessian introduces prohibitive computational and
memory costs.

As a result, most later approaches returned to simpler magnitude-based
pruning. Han et al. [193] demonstrated that iteratively removing small weights
and retraining can shrink networks substantially with little loss in accuracy. Their
follow-up, Deep Compression [178], extended this idea by combining pruning
with quantization, weight sharing, and Huffman coding, achieving reductions of
up to 49× in memory footprint and 3–5× in energy use.

Guo et al. [177] argued that pruning should be reversible. They introduced
binary masks to track pruned weights and updated them with the STE, allowing

31

Foundations of Resource-Efficient Inference of NN for Embedded
Systems

previously removed connections to reappear when beneficial.
More recent work has also explored random sparsity. Gadhikar et al. [19]

showed that fixed random pruning patterns can induce effective sparsity at very
low cost, making them attractive as initialization masks even if they are not
optimal in isolation.

3.3.2 Structured Pruning

Structured pruning removes entire groups of weights—such as neurons, channels,
or filters—so that the resulting models remain compatible with dense tensor
operations and yield hardware-level efficiency. Mariet and Sra [183] used deter-
minantal point processes to identify diverse, non-redundant neurons, pruning
the rest and adjusting outgoing weights to minimize changes in the next layer.
Wen et al. [187] incorporated group lasso regularization into training to induce
sparsity at the level of filters, channels, or even whole layers. Liu et al. [159]
exploited batch normalization, pruning channels by thresholding learned scaling
factors, while Huang and Wang [119] introduced trainable scaling coefficients
with ℓ1 regularization, driving entire structures to zero.

Other methods adopt more data-driven criteria. ThiNet [161] pruned channels
that minimally affected the output of the subsequent layer, followed by least-
squares reconstruction of the remaining activations.

Bayesian perspectives have also influenced structured pruning. Louizos et
al. [127] attached stochastic binary gates with trainable probabilities to weights or
structures, encouraging sparsity with an ℓ0 regularizer and enabling differentiable
training via Gumbel–softmax relaxations [152]. Li et al. [91] refined this approach
using an unbiased gradient estimator [107].

Finally, Liu et al. [94] argued that retraining pruned dense models is not always
necessary: training sparse architectures from scratch can achieve comparable or
better accuracy, suggesting that pruning is closely related to neural architecture
search.

Bayesian Pruning. Bayesian approaches cast pruning as posterior infer-
ence over sparse weights. Graves [219] and Blundell et al. [189] applied mean-
field variational inference with Gaussian posteriors and pruned weights with
low signal-to-noise ratios. Variational dropout [196] provided another route:

32

3.4 Neural Architecture Search

Molchanov et al. [162] optimized dropout rates per weight, removing those with
high rates. Louizos et al. [160] extended this idea to structured groups using
sparsity-promoting priors, linking pruning decisions to bit-width allocation via
the minimum description length principle [227].

Summary. Pruning reduces network size and computational cost by eliminating
weights or structures with little impact on predictive accuracy. Unstructured
methods can achieve very high sparsity but often fail to deliver speedups in
practice, while structured pruning removes whole units such as neurons or
channels, aligning with dense operations and yielding tangible efficiency gains.
Together, these results highlight the heavy over-parameterization of modern
networks and establish sparsity as a key mechanism for resource-efficient inference.

3.4 Neural Architecture Search

Neural architecture search (NAS) automates the search for effective DNN archi-
tectures. Rather than relying on manual design, NAS explores a search space
of candidate architectures and seeks models that optimize validation accuracy
while increasingly incorporating resource efficiency objectives. This makes NAS
particularly relevant for embedded deployment, where efficiency is as important
as accuracy.

The main difficulty lies in the high cost of evaluating candidate architectures,
since each requires training and only yields noisy performance estimates, combined
with the exponential growth of the search space. Zoph et al. [172] cast NAS as a
reinforcement learning task, where a controller RNN generated architectures and
received validation accuracy as reward. While effective, this approach required
thousands of full training runs, making it impractical at larger scale. Follow-up
work reduced cost through proxy tasks, parameter sharing, or differentiable
relaxations [143].

Several approaches incorporated hardware-awareness directly into the objec-
tive. MnasNet [102] extended reinforcement learning NAS with latency mea-
surements on mobile devices, producing models that respect device-specific
runtime constraints. ProxylessNAS [83] avoided proxy tasks by training over-
parameterized networks in which each layer contained multiple candidate blocks;
block-selection probabilities were optimized by gradient descent with the STE,

33

Foundations of Resource-Efficient Inference of NN for Embedded
Systems

and predicted device latencies were included as a differentiable regularizer. Single-
pass NAS [101] further simplified this by consolidating all operations into a shared
superblock, enabling efficient gradient-based training of both architecture and
weights.

EfficientNet [73] represents a widely adopted outcome of NAS. The method
first searches for a small, resource-efficient baseline model and then enlarges it
systematically using compound scaling of depth, width, and resolution, achieving
state-of-the-art performance on ImageNet with comparatively modest model
sizes.

Beyond architecture design, NAS principles have also been applied to compres-
sion. Wang et al. [104] used reinforcement learning to assign layer-wise bit widths
for mixed-precision quantization, incorporating hardware-specific latency and
energy constraints estimated from device-specific lookup tables. Similarly, Wu
et al. [138] optimized layer-wise quantization gates via differentiable stochastic
optimization. These approaches demonstrate how search-based methods can
jointly reason about architecture and compression to produce hardware-aware
models.

As discussed previously, pruning can also be interpreted as a form of implicit
NAS. Liu et al. [94] showed that training sparse networks directly from scratch
often matches or surpasses iterative prune–retrain pipelines, suggesting that
pruning primarily identifies effective architectures rather than merely compressing
weights.

Building on the ideas of quantization, pruning, and NAS, the proposed Galen
framework [21] extends automatic compression by jointly searching over quanti-
zation levels and pruning ratios. The search is driven by reinforcement learning,
while hardware-in-the-loop latency measurements and sensitivity analyses pro-
vide guidance on efficiency and accuracy. In this way, Galen unifies multiple
compression strategies within a single, hardware-aware optimization framework.
A detailed discussion of this contribution follows in the next chapter.

For a broader overview of NAS, including search spaces, optimization strate-
gies, and performance estimation techniques, see Elsken et al. [87]. Together,
these works highlight NAS as a flexible paradigm that can target not only
accuracy but also resource efficiency and compression.

34

3.5 Hardware Platforms under Compression

3.5 Hardware Platforms under Compression

The efficiency of compression methods such as quantization and pruning strongly
depends on the hardware platform on which the model is deployed. While the
general characteristics of CPUs, GPUs, FPGAs, and domain-specific accelerators
were introduced in Chapter 2.3, we here highlight how compression interacts
with these platforms in practice. The discussion is guided by the results of [12],
which compare throughput–accuracy trade-offs across multiple hardware targets.

CPUs. Central Processing Units are highly flexible platforms that can, in
principle, support low-bit-width quantization in software as well as unstructured
sparsity. In practice, however, performance gains are most pronounced when using
datatypes directly supported by the hardware, such as 8-bit integers, together
with structured pruning that aligns with SIMD vector units and cache hierarchies.
This makes CPUs particularly effective at exploiting structured sparsity, while
unstructured pruning or very low-bit quantization typically require extreme
compression ratios to compensate for the overhead of irregular memory access
and instruction scheduling.

GPUs. Graphics Processing Units benefit from both quantization and struc-
tured pruning. Tensor cores and SIMD units efficiently accelerate dense matrix
operations and support low-precision arithmetic (e.g., FP16, INT8, and in recent
architectures even INT4). Structured pruning can also improve throughput,
provided sparsity patterns align with the block-parallel execution paradigm,
while unstructured pruning is largely ineffective due to irregular memory access.
In practice, both structured pruning and quantization are employed on GPUs,
with the relative advantage depending on the specific architecture, workload
characteristics, and precision requirements.

FPGAs. Field-Programmable Gate Arrays excel at extreme quantization, as
arbitrary data formats and customized compute pipelines can be implemented
directly. This makes them particularly suitable for binary or ternary neural
networks. Pruning is also supported, but benefits are limited by on-chip memory
and routing overhead. In practice, FPGAs are most effective when paired with
aggressively quantized models that meet strict real-time constraints.

35

Foundations of Resource-Efficient Inference of NN for Embedded
Systems

0 50 100 150 200 250
Throughput [fps]

88

90

92

94

96

Te
st

 A
cc

ur
ac

y
[%

]

Float32
Pruned
W1A1
W1A2
W1A3
W2A1
W2A2
W2A3

(a) ARM CPU

2000 4000 6000 8000 10000 12000
Throughput [fps]

83

84

85

86

87

88

89

Te
st

 A
cc

ur
ac

y
[%

]

1W-1A

1W-2A

1W-3A
1W-4A

2W-2A

2W-3A

2W-4A

3W-2A

3W-3A

(b) FPGA

0 500 1000 1500 2000 2500
Throughput [fps]

82

84

86

88

90

92

94

96

Te
st

 A
cc

ur
ac

y
[%

]

WRN: Channel
WRN: Kernel
WRN: Group
WRN: G=64 Channel
Dense: Channel

(c) Embedded GPU

Figure 3.4 Throughput–accuracy trade-offs of compressed models on CIFAR-10
across embedded hardware platforms: (a) quantized and pruned WRN [188]
models on an ARM CPU, (b) quantized VGG [202] models on an FPGA data-flow
architecture using FINN [167], and (c) different pruning methods on an embedded
GPU. Reproduced with permission from [12].

Domain-Specific Accelerators. Dedicated accelerators such as Google’s
TPU are optimized for dense linear algebra, often implemented as systolic arrays.
They achieve high utilization on structured workloads and natively support
accelerator-specific low-precision datatypes such as 16-bit floating point or 8-
bit integer, which enable speedups for accordingly quantized models by design.
However, these platforms provide little flexibility for arbitrary precisions or fine-
grained sparsity, so pruning is generally less effective unless explicitly supported
by hardware extensions.

3.6 Evaluation on Embedded Hardware

To complement the survey of compression techniques, we briefly review empirical
results of executing compressed models on embedded processors. We compare
quantization and pruning across representative embedded devices: an ARM
CPU, a reconfigurable FPGA, and an embedded GPU. All devices operate in a
comparable power envelope of about 5 W, which enables a fair comparison of
efficiency–accuracy trade-offs.

Embedded ARM CPU Figure 3.4 (a) shows throughput–accuracy trade-offs
of pruned and quantized WRN [188] models on an ARM Cortex-A53. Both
quantization and pruning improve throughput over the baseline, but strong
compression in either form reduces accuracy. Structured channel pruning achieves

36

3.6 Evaluation on Embedded Hardware

the highest throughput while maintaining competitive accuracy, reflecting that
CPUs exploit sparsity more effectively than low-bit arithmetic.

FPGA On reconfigurable hardware, quantization is essential to fit models into
limited on-chip resources. Figure 3.4 (b) shows quantized VGG [202] models
on a XILINX Ultra96 FPGA using the FINN framework [167]. Throughput
rises sharply at very low bit-widths, but accuracy falls as precision decreases.
The Pareto front is reached with extremely low-precision weights (1–2 bits) and
moderately higher-precision activations (3–4 bits), confirming that activation
quantization dominates predictive accuracy on FPGAs.

Embedded GPU Figure 3.4 (c) reports results for pruned WRN [188] and
DenseNet [151] models on a Jetson Nano GPU. All pruning methods improve
throughput, but excessive compression reduces accuracy. Channel pruning strikes
the best balance of accuracy and efficiency, while group and kernel pruning
cut FLOPs without speeding up inference, underscoring that FLOPs are a
poor runtime proxy on GPUs. Here, efficiency is more closely tied to reducing
activation memory and aligning with the accelerator’s software stack.

Cross-Platform Comparison Figure 3.5 summarizes throughput–accuracy
trade-offs across CPU, FPGA, and GPU platforms. CPUs offer high flexibility
and support fine-grained sparsity, but in this comparison their general-purpose
design yields lower throughput than the more parallel accelerator architectures
when used together with structured compression. GPUs dominate the high-
accuracy, high-throughput regime, benefiting from massive parallelism and large
memory. FPGAs achieve outstanding throughput at low precision, but limited
on-chip resources often necessitate aggressive quantization that reduces accuracy.

These results highlight that the effectiveness of compression is highly hardware-
dependent. While quantization is mandatory on FPGAs, pruning aligns better
with CPUs, and GPUs require compression strategies that optimize memory and
software support rather than raw FLOPs.

37

Foundations of Resource-Efficient Inference of NN for Embedded
Systems

0 1000 2000 3000 4000 5000 6000 7000
Throughput [fps]

86

88

90

92

94

96

Te
st

 A
cc

ur
ac

y
[%

]

CPU (ARM Cortex-A57)
GPU (NVIDIA Nano)
FPGA (Xilinx Ultra96)

Figure 3.5 Throughput–accuracy trade-offs of compressed models on the CIFAR-
10 task across different processor architectures (CPU, FPGA, GPU). GPUs
dominate the high-accuracy, high-throughput regime, being well suited for dense
and batched matrix multiplications. FPGAs can deliver very high throughputs,
but their limited on-chip resources often necessitate aggressive quantization,
which reduces predictive accuracy. CPUs offer high flexibility and support fine-
grained sparsity, but in this comparison their general-purpose design yields lower
throughput than the more parallel accelerator architectures when used together
with structured compression. Reproduced with permission from [12].

Summary

This chapter introduced the foundations of resource-efficient inference of deep
neural networks on embedded systems. We reviewed three main approaches:
quantization, pruning, and neural architecture search, and discussed how their
benefits depend critically on the target hardware.

From the survey and experiments, several lessons emerge:

• Quantization reduces memory traffic and enables low-precision execution.
In image classification, accuracy is particularly sensitive to activation bit-
width, while weight quantization is often more benign. The actual benefits,
however, depend strongly on memory hierarchies and data layouts.

• Pruning exploits over-parameterization to remove redundant weights or
structures. Structured pruning yields practical speedups on dense hardware,
whereas MAC reductions alone often fail to translate into latency gains.

• Neural architecture search provides a framework to automate design

38

3.6 Evaluation on Embedded Hardware

under accuracy–efficiency trade-offs, and recent work has extended these
ideas to compression-aware settings.

Hardware evaluations reinforced that compression is not universally effective:
CPUs can leverage fine-grained sparsity, FPGAs excel with low-precision quanti-
zation, and GPUs demand memory-efficient dense mappings. Crucially, FLOP
counts and parameter numbers are poor predictors of real performance; hardware
co-design and direct measurements are essential to identify viable efficiency gains.

Together, these observations highlight both the promise and the complexity
of resource-efficient inference. While individual techniques succeed under specific
conditions, practical deployment requires balancing multiple strategies and align-
ing them with device characteristics. The next chapter introduces Galen [21], a
framework that addresses this challenge by automating the search over pruning
and quantization parameters with reinforcement learning and hardware-in-the-
loop feedback. Galen builds directly on the lessons of this chapter: rather
than applying quantization and pruning in isolation, it integrates them into an
automated framework that searches for compression strategies tailored to the
constraints of a given hardware platform.

39

4
Galen: Automatic Model Compression

Perfection is achieved not when there is nothing more to add,
but when there is nothing left to take away.

— Antoine de Saint-Exupéry, Wind, Sand and Stars (1939)

In practice, compression is often applied with global settings—uniform bit widths
and a single sparsity target across all layers—because selecting safe per-layer
quantization and pruning levels requires expertise in DNN design and compression,
as well as in the efficient implementation on the specific hardware architecture.
Per-layer compression, by contrast, allocates precision and sparsity at the layer
granularity to exploit heterogeneity in hardware payoff. Yet without automation
and reliable hardware feedback, this flexibility remains largely unused in deployed
systems.

Building on the previous chapter’s background on pruning and quantization,
we now address the question of how to automate per-layer compression decisions
for a concrete deployment device. Proxy objectives such as FLOPs, MACs, or
BOPs provide only weak guidance for end-to-end latency on real systems, where
compiler optimizations, memory hierarchies, parallel execution, and vectorization

41

Galen: Automatic Model Compression

dominate runtime.
Galen targets this gap with a hardware-in-the-loop formulation that learns

device-specific, layer-wise compression policies [21]. The key idea is to align the
objective with actual execution by coupling policy learning to two grounded
signals: (i) measured on-device latency obtained by compiling candidates with
TVM [115] and benchmarking on the target platform, and (ii) per-layer sensitivity
that quantifies how tolerant each layer is to pruning and quantization. Optimizing
against these signals enables the search to prefer policies that are robust in
accuracy while improving real latency on the final hardware.

Conceptually, Galen extends the promise of combining compression meth-
ods—shown effective in Deep Compression [178]—to an automatic, hardware-
aware setting. In contrast to prior automatic approaches that optimize a single
dimension under proxy cost models (e.g., pruning in AMC [118] or quantization
in HAQ [104]), Galen jointly learns per-layer policies guided by measured latency
and sensitivity cues. This design systematically exploits per-layer heterogene-
ity and closes the loop between compression decisions and measured on-device
latency.

4.1 Automatic Model Compression

A large body of research has sought to automate model compression by framing it
as an optimization problem. NetAdapt [140] introduced a platform-aware greedy
procedure that iteratively prunes channels and validates the effect on device
latency, thereby integrating hardware measurements into the compression loop.
Other methods replaced this heuristic search by more sophisticated optimization
strategies, such as simulated annealing in AutoCompress [67] or evolutionary
algorithms in Automatic Structure Search [66]. While differing in their algorithms,
these approaches are similar in that they largely optimize proxy metrics such as
FLOPs, MACs, or parameter counts, which only approximate the behavior of
the underlying hardware.

In parallel, mixed-precision quantization has been explored as a way to further
reduce the cost of inference. Approaches in this line of work differ primarily in
how they determine layer-wise bit widths. Some rely on sensitivity analysis to
estimate the robustness of layers, with Hessian-aware methods such as HAWQ and
HAWQ-V2 being prominent examples [57], [86]. Others instead formulate policy

42

4.1 Automatic Model Compression

generation as a learning problem, training reinforcement learning agents that
predict quantization strategies, as in AutoQ and ReLeQ [59], [69]. Despite the
difference in methodology, these frameworks share a reliance on proxy estimates
of latency—derived from look-up tables or analytic surrogates—rather than direct
measurements of the target device.

The effectiveness of combining pruning and quantization was first demon-
strated by Deep Compression [178], which showed that high compression ratios
can be achieved without compromising accuracy when multiple techniques are
applied in sequence. Building on this insight, later work explored joint opti-
mization formulations, for instance in CLIP-Q [136], differentiable joint prun-
ing–quantization objectives [76], and joint architecture–compression searches
such as APQ [75]. These contributions underscore the value of multi-dimensional
compression, yet they typically continue to optimize with respect to abstract
metrics such as FLOPs or bit operations (BOPs) [35] rather than actual device
behavior.

A related but distinct line of research lies in hardware-aware NAS, which
aims to design new architectures under hardware constraints. Here, approaches
diverge in the way device cost is incorporated. Some works continue to use
simple analytic metrics such as FLOPs or parameter counts as a stand-in for
latency. Others, such as FBNet, train cost models to predict latency from sampled
measurements, thereby providing a differentiable surrogate objective [106]. More
recent frameworks, including MnasNet [102] and Once-for-All [55], take a step
further by relying on direct measurements on the target device. This progression
from abstract metrics to cost models and finally to measured performance mirrors
the developments observed in compression research, highlighting the importance
of grounding optimization in real device characteristics.

Among these many directions, AMC [118] and HAQ [104] are most closely
related to our work. Both adopt a reinforcement learning formulation to derive
layer-wise compression policies, where a policy network sequentially decides prun-
ing or quantization actions. While these frameworks demonstrated the feasibility
of automated compression, they remain limited to a single dimension—pruning
for AMC and quantization for HAQ—and rely on proxy metrics to enforce effi-
ciency, namely FLOPs or parameter counts in AMC, and look-up-table latency
estimates in HAQ. In contrast, Galen [21] jointly reasons about pruning and
quantization, incorporates layer sensitivity into the optimization, and bases its

43

Galen: Automatic Model Compression

Pe

e = 0

Predict Policy

MPe

Compress with Pe

Ve
Validate MPe

Optimize using Ve

M

Acc.

Latency BOPs

MACs

Figure 4.1 Episode overview in Galen: (1) predict a compression policy; (2) apply
it to obtain the compressed model; (3) evaluate on-device (compile, benchmark,
and validate accuracy); (4) update the agent via the reward. Reproduced with
permission from [21].

decisions on on-the-fly hardware measurements, thereby closing the gap between
proxy objectives and actual device performance.

4.2 Galen Methodology

The goal of Galen is to automatically derive hardware-aware compression policies
that balance model accuracy and inference latency. To this end, Galen frames
compression as a reinforcement learning problem, where an agent incrementally
decides how much to prune or quantize each layer of a network. After applying
a complete policy, the resulting model is compiled and benchmarked on the
target device, and the measured accuracy–latency trade-off serves as feedback
for learning. This section describes the algorithmic concept, the formulation
of pruning and quantization policies, the design of Galen’s agents, and the
integration of sensitivity analysis and hardware latency measurements.

4.2.1 Algorithmic Concept

At the center of Galen is the notion of a compression policy P , which specifies
how each layer of a model M is transformed. Applying P yields the compressed

44

4.2 Galen Methodology

Predict PolicyCompression with
Pe,t-1

Feature Extraction for
MPe,t-1MPe,t

Pe,t

Agent Prediction
using xt

Xt
Metrics Sensitivity

Pe,t-1 = Pr

t = 0

Layer tLayer t-1 Layer t+1

s: 0.4,

a: 0.6,

w: 0.4

s: 0.5,

a: 0.7,

w: 0.2

s: 0.0,

a: 0.0,

w: 0.0

......

Layer t+1
Layer t-1

Layer t

......

Layer tLayer t-1 Layer t+1

MACs,
Sens. P.,

Sens Q.,

MACs,
Sens. P.,

Sens Q.,

MACs,
Sens. P.,

Sens Q.,

......

Pe = Pe,t

t = L

Figure 4.2 Intra-episode policy prediction cycle: at each step the agent proposes
pruning/quantization parameters for one layer and appends them to the policy
before proceeding. Reproduced with permission from [21].

model MP . A policy consists of normalized compression method parameters
(CMPs), where each parameter lies in the interval [0,1]:

P ∈ {r ∈ RK | ri ∈ [0,1]}L×M , (4.1)

with L the number of layers, M the number of supported methods, and K the
dimensionality of parameters per method. Although pruning and quantization
are discrete in nature (channels, datatypes, bit widths), CMPs are expressed
as continuous variables to provide a uniform representation across layers. A
mapping step later converts these normalized values into discrete hardware-
specific configurations. This design reduces the complexity of the search space:
the reinforcement agent always operates on normalized CMPs, without first
having to learn layer-specific channel counts or quantization ranges.

The search problem is formulated as a constrained optimization task:

P̂ = argmax
P

acc(MP (θ;x),y) s.t. cost(MP) ≤ c · cost(M), (4.2)

where acc(·) is the accuracy of MP on data (x,y), θ the model parameters,
and c the target cost ratio. Unlike prior works that approximate cost with

45

Galen: Automatic Model Compression

FLOPs, parameter counts, or BOPs [35], [72], [103], Galen instead uses measured
inference latency on the target device as the actual optimization constraint [21].

4.2.2 Algorithmic Schema

As shown in Figures 4.1 and 4.2, an episode corresponds to compressing a model
once. At each step t, the agent observes the current layer features st (layer
type, index, number of parameters, sensitivity score) and predicts continuous
actions at, which encode pruning and quantization policies. The sequence of
decisions across all layers forms a complete compression policy Pe. The model
MPe is compiled with Apache TVM [115], executed on the target hardware, and
evaluated for accuracy. Leveraging TVM enables Galen to target a wide range of
CPU and GPU architectures. Retraining of compressed models for 1–5 epochs is
included in each episode to recover accuracy. This step is particularly important
for pruning, where performance initially drops substantially but typically recovers
after only a few epochs. The measured latency and accuracy together define the
reward R(Pe) used to update the agent.

4.2.3 Compression Methods

Structured pruning Galen performs structured pruning by removing output
channels from convolutional or linear layers, following an ℓ1-norm criterion [149],
[156]. Skip connections and other structural constraints are respected by the
pruning procedure.

Quantization Galen supports three quantization schemes: mixed precision
with independent bit widths between 1 and 8 (MIX), fixed-point 8-bit integer
quantization (INT8), and no quantization (FP32). Mixed-precision support is
hardware-dependent and not available for all hardware backends.

For each layer, the agent predicts continuous policy values qW
t , qA

t ∈ [0,1] for
weights and activations. These are first mapped to one of the three datatypes by
a threshold rule:

d(q) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

FP32, q ≤ τfp,

INT8, τfp < q ≤ τint,

MIX, q > τint.

(4.3)

46

4.2 Galen Methodology

If a layer is assigned FP32 or INT8, its tensors are kept in full precision
or quantized to 8 bits, respectively. If the layer is assigned MIX, a bit-serial
operator is used, and the agent’s policy additionally determines the bit width
b ∈ {1, . . . ,8} for weights and activations. In this case, a real-valued input r is
mapped to its quantized form as

Q(r) = max(−n, min(n, ⌊s · r − z⌋)) , (4.4)

with
n = 2b −1, s = n

xmax −xmin
, z = ⌊s ·xmin⌋+2b−1. (4.5)

where xmin and xmax denote the calibrated tensor range. Quantization uses
uniform asymmetric quantization with dynamic range calibration. During search,
we employ fake quantization to simulate reduced precision in training.

4.2.4 Sensitivity Analysis

To guide compression, Galen augments the agent state with per-layer sensitivity
scores. These scores quantify how strongly a layer reacts to compression. For
each candidate layer l, only that layer is compressed at a chosen strength,
while all others remain uncompressed. The output distribution of the modified
network is then compared with the baseline network using the Kullback–Leibler
divergence [251], following the ZeroQ methodology [56]:

S(l) = 1
N

N∑︂
j=1

DKL
(︂
f(xj)∥f (l,q)(xj)

)︂
, (4.6)

where f is the original network, f (l,q) the network with only layer l compressed
at strength q, and xj calibration inputs. Low S(l) indicates tolerance, high S(l)
indicates fragility. These scores are included in the state representation st,
steering the agent toward hardware–robust trade-offs.

4.2.5 Direct Hardware Latency Benchmarks

Proxy cost models such as FLOPs, MACs, or BOPs do not capture real device
behavior [72], [103]. Galen therefore benchmarks each compressed model directly
on the target hardware. Compiled with TVM [115], each candidate MP is
executed to measure T MP , which is used as part of the reward.

47

Galen: Automatic Model Compression

4.2.6 Reward Function

The reward function follows the absolute formulation of Bender et al. [53],
balancing accuracy and latency:

r(P) = acc(MP)+β ·

⃓⃓⃓⃓
⃓⃓ T MP

c ·T M
−1

⃓⃓⃓⃓
⃓⃓ , (4.7)

where acc(MP) is the accuracy of the compressed model, T MP and T M

are the measured latencies of compressed and original model, c is the target
compression ratio, and the negativ cost exponent β < 0 penalizes exceeding the
latency budget. Exponential reward functions [102] were also evaluated but were
less stable in practice.

4.2.7 Compression Agents

All Galen agents build on the Deep Deterministic Policy Gradient (DDPG)
algorithm [199], which supports continuous actions. DDPG combines an ac-
tor–critic architecture with experience replay. Actor outputs are perturbed
by Ornstein–Uhlenbeck noise [254] for exploration. Both actor and critic are
implemented as fully connected networks with two hidden layers (400 and 300
neurons, ReLU). Target networks use soft updates with τ = 10−3, and the replay
buffer stores 106 transitions.

Three agent types were trained: (i) a pruning agent predicting pt; (ii) a
quantization agent predicting (qW

t , qA
t); and (iii) a joint agent predicting both.

While sharing the same backbone and training setup, the agents differ in state
encoding and action dimensionality.

4.3 Experimental Evaluation and Discussion

We evaluate Galen on ResNet-18 [179] trained on CIFAR-10 [224], deployed on
a Raspberry Pi 4B with an ARM Cortex-A72 CPU. Models are compiled with
Apache TVM [115], and candidate configurations are executed on the device to
obtain measured inference latencies. During the search, each candidate model
is briefly retrained for 1-5 epochs before validation, while the final compressed
models are retrained for 30 epochs.

48

4.3 Experimental Evaluation and Discussion

Table 4.1 Compressed model performance per agent with target compression
ratio c. Reproduced with permission from [21].

Method c MACs BOPs Latency Accuracy
Uncompressed 4.75 ·1010 4.86 ·1013 330 ms 93.0 %
Pruning Agent

0.3
1.42 ·1010 1.45 ·1013 98 ms 93.0 %

Quantization A. 4.75 ·1010 8.23 ·1011 98 ms 92.5 %
Joint Agent 4.35 ·1010 9.42 ·1011 99 ms 93.2 %
Pruning Agent

0.2
9.24 ·109 9.45 ·1012 66 ms 92.4 %

Quantization A. 4.75 ·1010 4.01 ·1011 57 ms 45.0 %
Joint Agent 2.82 ·1010 6.74 ·1011 64 ms 92.8 %

The quantization agent is trained for 310 episodes, while pruning and joint
agents are trained for 410 episodes each, including 10 warm-up episodes. The
reward function follows the absolute penalty form with a negativ cost exponent of
β = −3.0, ensuring that policies converge close to the target compression budget.

General Performance Table 4.1 summarizes the quantitative results. At
a moderate compression target (c=0.3), all agents achieve latency reduction
close to the target and maintain accuracy near the baseline. At more aggressive
compression (c=0.2), however, the quantization-only agent collapses to 45%
accuracy because it is forced into extremely low bit widths. The pruning and
joint agents, in contrast, remain accurate. As expected, pruning minimizes
MACs, quantization reduces BOPs most efficiently, and the joint agent balances
both—yielding the best accuracy–latency trade-off even though it is not maximal
in either MAC or BOP reduction.

Figure 4.3 depicts the accuracy–latency trade-offs as the target compression
ratio c varies. As expected, the pruning agent consistently achieves the largest
reductions in MACs and only influences BOPs indirectly via structural changes,
whereas the quantization agent is most effective at reducing BOPs. The joint
agent consistently lands closer to the Pareto front: it is not the extreme winner
on MACs or BOPs alone, yet achieves the best latency–accuracy trade-off for a
given target latency by effectively balancing pruning and quantization.

Policy Analysis Figure 4.4 illustrates the layer-wise policies for c=0.3. The
pruning agent spreads sparsity across most layers, with a tendency to prune
later layers more strongly. The quantization agent varies bit widths across layers,
typically quantizing weights more aggressively than activations—an observation

49

Galen: Automatic Model Compression

0% 10% 20% 30% 40% 50% 60% 70% 80%
Relative Latency

40%

50%

60%

70%

80%

90%

100%

Ac
cu

ra
cy

c=0.1

c=0.2

c=0.3
c=0.4

c=0.5
c=0.6

c=0.7

Joint Search
Quantization
Pruning

Figure 4.3 Accuracy–latency trade-offs across target compression ratios c: all three
agents perform well for moderate c; under aggressive targets the quantization
agent suffers accuracy loss from very low bit widths, while pruning and the joint
agent remain competitive, with the joint agent slightly superior at the extreme.
Reproduced with permission from [21].

in line with expert knowledge for image classification models. As in common
practice, the first and last layers are quantized less aggressively. The joint
agent combines both methods in a balanced manner, moderating pruning and
quantization simultaneously to preserve accuracy while meeting latency.

Sequential versus Joint Search To test the importance of joint optimiza-
tion, we also evaluate sequential application of pruning and quantization. As
Figure 4.5 shows, sequential pipelines tend to overuse the second stage, producing
harsher compression and more accuracy loss. Joint search instead balances both
simultaneously, yielding smoother policies and higher accuracy. This confirms
that joint optimization is essential for Galen’s effectiveness.

Role of Sensitivity Information Finally, we test whether Galen benefits from
sensitivity features. Figure 4.6 shows that sensitivity varies across layers: later
layers are especially fragile to quantization, while pruning sensitivity exhibits
distinct heterogeneity probably relating to the skip connections of residual
architectures. Table 4.2 and Figure 4.7 compare policies with and without
sensitivity input. Without sensitivity, the agent produces almost uniform policies
with nearly no heterogeneous structure. With sensitivity enabled, policies adapt
to layer robustness, compressing tolerant layers more aggressively and protecting

50

4.3 Experimental Evaluation and Discussion

C1 C2 C3 C4 C5 C6 C7 C8 C9 C1
0

C1
1

C1
2

C1
3

C1
4

C1
5

C1
6

C1
7

C1
8

C1
9

C2
0 L1

ResNet18 Layers

0.0

0.2

0.4

0.6

0.8

1.0

Pr
un

in
g

Ra
te

43
 /

64

35
 /

64 43
 /

64

33
 /

64 43
 /

64

70
 /

12
8

66
 /

12
8

12
8

/ 1
28

77
 /

12
8

66
 /

12
8

15
1

/ 2
56

12
6

/ 2
56

25
6

/ 2
56

14
1

/ 2
56

12
6

/ 2
56

28
6

/ 5
12

23
5

/ 5
12

51
2

/ 5
12

23
3

/ 5
12

23
5

/ 5
12

10
 /

10

P - Rate
P - Dep. Rate

(a) Pruning agent

C1 C2 C3 C4 C5 C6 C7 C8 C9 C1
0

C1
1

C1
2

C1
3

C1
4

C1
5

C1
6

C1
7

C1
8

C1
9

C2
0 L1

ResNet18 Layers

0

2

4

6

8

Qu
an

tiz
at

io
n

Bi
ts IN

T8

a:
 6

w
: 2

a:
 6

w
: 3

a:
 6

w
: 3

a:
 6

w
: 3

a:
 6

w
: 3

a:
 6

w
: 3

a:
 6

w
: 3

a:
 6

w
: 3

a:
 6

w
: 3

a:
 6

w
: 4

a:
 6

w
: 4

a:
 6

w
: 3

a:
 6

w
: 4

a:
 6

w
: 4

a:
 6

w
: 3

a:
 6

w
: 3

a:
 6

w
: 3

a:
 6

w
: 2

a:
 6

w
: 2

IN
T8

Q-INT8
Q-MIX - activation
Q-MIX - weight

(b) Quantization agent

C1 C2 C3 C4 C5 C6 C7 C8 C9 C1
0

C1
1

C1
2

C1
3

C1
4

C1
5

C1
6

C1
7

C1
8

C1
9

C2
0 L1

ResNet18 Layers

0.0

0.2

0.4

0.6

0.8

1.0

Pr
un

in
g

Ra
te

64
 /

64

64
 /

64

64
 /

64

64
 /

64

64
 /

64

96
 /

12
8

96
 /

12
8

96
 /

12
8

96
 /

12
8

96
 /

12
8

19
2

/ 2
56

19
2

/ 2
56

25
6

/ 2
56

16
0

/ 2
56 19

2
/ 2

56

38
4

/ 5
12

38
4

/ 5
12

51
2

/ 5
12

38
4

/ 5
12

38
4

/ 5
12

10
 /

10

0

1

2

3

4

5

6

7

8

Qu
an

tiz
at

io
n

Bi
ts

IN
T8

a:
 5

w
: 6

a:
 5

w
: 6

a:
 5

w
: 6

a:
 5

w
: 6

a:
 5

w
: 6

a:
 5

w
: 6

a:
 5

w
: 4

a:
 5

w
: 6 a:
 6

w
: 5

a:
 6

w
: 6 a:
 6

w
: 6 a:
 6

w
: 4

a:
 6

w
: 6 a:
 6

w
: 5

a:
 6

w
: 6 a:
 6

w
: 6 a:
 6

w
: 4

a:
 5

w
: 5

a:
 6

w
: 4

IN
T8

P - Rate
P - Dep. Rate
Q-INT8
Q-MIX - activation
Q-MIX - weight

(c) Joint agent

Figure 4.4 Predicted per-layer policies at c = 0.3 for pruning, quantization, and
joint agents; bars show remaining channels (pruning) and activation/weight bit
widths (quantization). Reproduced with permission from [21].

51

Galen: Automatic Model Compression

C1 C2 C3 C4 C5 C6 C7 C8 C9 C1
0

C1
1

C1
2

C1
3

C1
4

C1
5

C1
6

C1
7

C1
8

C1
9

C2
0 L1

ResNet18 Layers

0.0

0.2

0.4

0.6

0.8

1.0

Pr
un

in
g

Ra
te

64
 /

64

64
 /

64

64
 /

64

64
 /

64

64
 /

64

96
 /

12
8

96
 /

12
8

96
 /

12
8

96
 /

12
8

96
 /

12
8

16
0

/ 2
56

22
4

/ 2
56 25

6
/ 2

56

16
0

/ 2
56

22
4

/ 2
56

28
8

/ 5
12

32
0

/ 5
12

51
2

/ 5
12

28
8

/ 5
12

32
0

/ 5
12

10
 /

10

0

1

2

3

4

5

6

7

8

Qu
an

tiz
at

io
n

Bi
ts

IN
T8

a:
 6

w
: 2

a:
 6

w
: 3

a:
 6

w
: 3

a:
 6

w
: 3

a:
 6

w
: 3

a:
 6

w
: 4

a:
 6

w
: 3

a:
 6

w
: 4

a:
 6

w
: 4

a:
 6

w
: 3

a:
 6

w
: 3

a:
 6

w
: 3

a:
 6

w
: 4

a:
 6

w
: 4

a:
 6

w
: 3

a:
 6

w
: 3

a:
 6

w
: 3

a:
 6

w
: 3

a:
 6

w
: 3

IN
T8

P - Rate
P - Dep. Rate
Q-INT8
Q-MIX - activation
Q-MIX - weight

(a) Pruning → quantization

C1 C2 C3 C4 C5 C6 C7 C8 C9 C1
0

C1
1

C1
2

C1
3

C1
4

C1
5

C1
6

C1
7

C1
8

C1
9

C2
0 L1

ResNet18 Layers

0.0

0.2

0.4

0.6

0.8

1.0

Pr
un

in
g

Ra
te

32
 /

64

64
 /

64

32
 /

64

64
 /

64

32
 /

64

96
 /

12
8

64
 /

12
8

12
8

/ 1
28

96
 /

12
8

64
 /

12
8

12
8

/ 2
56 16

0
/ 2

56

25
6

/ 2
56

96
 /

25
6

16
0

/ 2
56

22
4

/ 5
12

22
4

/ 5
12

51
2

/ 5
12

12
8

/ 5
12

22
4

/ 5
12

10
 /

10

0

1

2

3

4

5

6

7

8

Qu
an

tiz
at

io
n

Bi
ts

IN
T8

IN
T8

IN
T8

IN
T8

IN
T8

IN
T8

IN
T8

IN
T8

IN
T8

IN
T8

IN
T8

IN
T8

IN
T8

IN
T8

IN
T8

IN
T8

IN
T8

IN
T8

IN
T8

IN
T8

IN
T8

P - Rate
P - Dep. Rate
Q-INT8

(b) Quantization → pruning

C1 C2 C3 C4 C5 C6 C7 C8 C9 C1
0

C1
1

C1
2

C1
3

C1
4

C1
5

C1
6

C1
7

C1
8

C1
9

C2
0 L1

ResNet18 Layers

0.0

0.2

0.4

0.6

0.8

1.0

Pr
un

in
g

Ra
te

64
 /

64

64
 /

64

64
 /

64

64
 /

64

64
 /

64

96
 /

12
8

96
 /

12
8

96
 /

12
8

96
 /

12
8

96
 /

12
8

16
0

/ 2
56

16
0

/ 2
56

25
6

/ 2
56

16
0

/ 2
56

16
0

/ 2
56

28
8

/ 5
12

28
8

/ 5
12

51
2

/ 5
12

28
8

/ 5
12

28
8

/ 5
12

10
 /

10

0

1

2

3

4

5

6

7

8

Qu
an

tiz
at

io
n

Bi
ts

IN
T8

a:
 5

w
: 4

a:
 5

w
: 4

a:
 5

w
: 4

a:
 5

w
: 4

a:
 5

w
: 4

a:
 5

w
: 4

a:
 5

w
: 3

a:
 6

w
: 4

a:
 5

w
: 4

a:
 6

w
: 4

a:
 6

w
: 4

a:
 5

w
: 3

a:
 6

w
: 4

a:
 5

w
: 4

a:
 5

w
: 4

a:
 5

w
: 4

a:
 5

w
: 3

a:
 5

w
: 4

a:
 5

w
: 3

IN
T8

P - Rate
P - Dep. Rate
Q-INT8
Q-MIX - activation
Q-MIX - weight

(c) Joint search

Figure 4.5 Sequential vs. joint search at c = 0.2: sequential pipelines overuse the
second stage (harsher compression), whereas joint search balances pruning and
quantization across layers. Reproduced with permission from [21].

52

4.3 Experimental Evaluation and Discussion

C1 C2 C3 C4 C5 C6 C7 C8 C9 C1
0

C1
1

C1
2

C1
3

C1
4

C1
5

C1
6

C1
7

C1
8

C1
9

C2
0 L1

ResNet18 Layers

10 5

10 4

10 3

10 2

10 1

Se
ns

iti
vi

ty
 a = 7-bits

a = 5-bits
a = 2-bits
a = 1-bit

(a) Activation sensitivity

C1 C2 C3 C4 C5 C6 C7 C8 C9 C1
0

C1
1

C1
2

C1
3

C1
4

C1
5

C1
6

C1
7

C1
8

C1
9

C2
0 L1

ResNet18 Layers

10 5

10 4

10 3

10 2

10 1

Se
ns

iti
vi

ty
 w = 7-bits

w = 5-bits
w = 2-bits
w = 1-bit

(b) Weight sensitivity

C1 C2 C3 C4 C5 C6 C7 C8 C9 C1
0

C1
1

C1
2

C1
3

C1
4

C1
5

C1
6

C1
7

C1
8

C1
9

C2
0 L1

ResNet18 Layers

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

s = 0.1
s = 0.5
s = 0.9

(c) Pruning sensitivity

Figure 4.6 Per-layer sensitivity to activation quantization, weight quantization,
and pruning. Reproduced with permission from [21].

Table 4.2 Quantitative results of joint search with sensitivity enabled vs. disabled
at c = 0.2. Reproduced with permission from [21].

MACs BOPs Rel. Lat. Accuracy
Reference 4.75 ·1010 4.86 ·1013 100.0 % 93.04 %
Disabled 1.68 ·1010 8.10 ·1011 20.0 % 92.66 %
Enabled 2.82 ·1010 6.75 ·1011 19.4 % 92.77 %

fragile ones. This demonstrates that sensitivity information is essential for Galen
to exploit per-layer heterogeneity effectively.

Summary

In this chapter, we introduced Galen, a framework for automatic, hardware-aware
model compression. Galen learns per-layer compression policies directly on the de-
ployment device, aligning the optimization objective with real execution behavior
and bridging the gap between algorithmic design and hardware realization.

A central component of the framework is its hardware-in-the-loop approach,
in which candidate models are compiled and benchmarked on the target system.
This ensures that optimization is guided by measured latency rather than by
analytical proxies, capturing real compiler, memory, and parallelization effects.
Through joint compression, a single agent coordinates structural and precision
reductions, yielding consistently favorable accuracy–latency trade-offs. Incor-
porating layer-wise sensitivity information further allows the agent to adapt
compression strength to architectural heterogeneity, avoiding uniform and sub-
optimal policies. Finally, Galen demonstrates expert-consistent behavior : it
rediscovers established heuristics such as conservative treatment of early and

53

Galen: Automatic Model Compression

C1 C2 C3 C4 C5 C6 C7 C8 C9 C1
0

C1
1

C1
2

C1
3

C1
4

C1
5

C1
6

C1
7

C1
8

C1
9

C2
0 L1

ResNet18 Layers

0.0

0.2

0.4

0.6

0.8

1.0

Pr
un

in
g

Ra
te

64
 /

64

32
 /

64

64
 /

64

32
 /

64

64
 /

64

96
 /

12
8

64
 /

12
8

64
 /

12
8

64
 /

12
8

64
 /

12
8

16
0

/ 2
56

12
8

/ 2
56

25
6

/ 2
56

12
8

/ 2
56

12
8

/ 2
56

25
6

/ 5
12

25
6

/ 5
12

51
2

/ 5
12

25
6

/ 5
12

25
6

/ 5
12

10
 /

10

0

1

2

3

4

5

6

7

8

Qu
an

tiz
at

io
n

Bi
ts

IN
T8

a:
 6

w
: 6

IN
T8

a:
 6

w
: 6

IN
T8

a:
 6

w
: 6 a:
 6

w
: 6

IN
T8

a:
 6

w
: 6

IN
T8

IN
T8

a:
 6

w
: 6

IN
T8

a:
 6

w
: 6 a:
 6

w
: 6 a:
 6

w
: 6 a:
 6

w
: 6 a:
 6

w
: 6 a:
 6

w
: 6 a:
 6

w
: 6

IN
T8

P - Rate
P - Dep. Rate
Q-INT8
Q-MIX - activation
Q-MIX - weight

(a) Without sensitivity

C1 C2 C3 C4 C5 C6 C7 C8 C9 C1
0

C1
1

C1
2

C1
3

C1
4

C1
5

C1
6

C1
7

C1
8

C1
9

C2
0 L1

ResNet18 Layers

0.0

0.2

0.4

0.6

0.8

1.0

Pr
un

in
g

Ra
te

64
 /

64

64
 /

64

64
 /

64

64
 /

64

64
 /

64

96
 /

12
8

96
 /

12
8

96
 /

12
8

96
 /

12
8

96
 /

12
8

16
0

/ 2
56

16
0

/ 2
56

25
6

/ 2
56

16
0

/ 2
56

16
0

/ 2
56

28
8

/ 5
12

28
8

/ 5
12

51
2

/ 5
12

28
8

/ 5
12

28
8

/ 5
12

10
 /

10

0

1

2

3

4

5

6

7

8

Qu
an

tiz
at

io
n

Bi
ts

IN
T8

a:
 5

w
: 4

a:
 5

w
: 4

a:
 5

w
: 4

a:
 5

w
: 4

a:
 5

w
: 4

a:
 5

w
: 4

a:
 5

w
: 3

a:
 6

w
: 4

a:
 5

w
: 4

a:
 6

w
: 4

a:
 6

w
: 4

a:
 5

w
: 3

a:
 6

w
: 4

a:
 5

w
: 4

a:
 5

w
: 4

a:
 5

w
: 4

a:
 5

w
: 3

a:
 5

w
: 4

a:
 5

w
: 3

IN
T8

P - Rate
P - Dep. Rate
Q-INT8
Q-MIX - activation
Q-MIX - weight

(b) With sensitivity

Figure 4.7 Joint policies at c = 0.2 without (a) and with (b) sensitivity features;
sensitivity enables exploitation of per-layer heterogeneity. Reproduced with
permission from [21].

late layers, stronger pruning in deeper stages, and higher tolerance of weights to
quantization. This alignment between learned and human-designed strategies
highlights both the interpretability and the robustness of the method, underscor-
ing Galen’s role as a step toward automated, trustworthy, and hardware-grounded
model compression.

54

5
Modeling Analog Hardware Accelerators

Analog is more beautiful than digital, really,
but we go for comfort.

— Anton Corbijn

The previous chapter demonstrated how model compression can markedly reduce
the computational footprint of neural networks by pruning redundant parameters
and lowering numerical precision, while simultaneously accounting for hardware-
specific constraints. Compression addresses one side of the efficiency spectrum:
reducing the model’s size and computational demand to facilitate execution on
digital processors.

An orthogonal route to efficiency is to reduce the cost of computation itself by
changing the underlying computing paradigm and performing inference directly in
the physical domain, for example using analog or mixed-signal hardware accelera-
tors. Rather than compressing the model, this approach makes the computations
themselves cheaper by exploiting physical quantities such as currents, voltages,
or charges to represent and manipulate numerical values. Such devices promise
orders-of-magnitude gains in energy efficiency and compute density [46], [49],

55

Modeling Analog Hardware Accelerators

yet they introduce new challenges arising from device mismatch, nonlinearities,
saturation effects, and intrinsic noise [4], [44], [80], [99].

In the following chapter, we therefore turn from digital compression to
analog hardware modelling, building on our publications [4], [44] and recounting
how progressively refined models helped us both accelerate training for the
BrainScaleS-2 (BSS-2) [49] system and uncover unexpected properties such as
the non-associativity of analog dot products.

5.1 Analog Computing

Analog computing lacks the “safety net” of discretization and is therefore di-
rectly exposed to imperfections that can fundamentally alter the outcome of
computations. Among the most critical are nonlinearities, saturation effects,
dynamic phenomena such as leakage or crosstalk between circuit components,
and various sources of noise, all of which can interact in complex ways and
degrade accuracy [44], [49]. Analog accelerators are further affected by static
device mismatch and variability across hardware instances due to manufacturing
tolerances, as well as increased sensitivity to environmental conditions such as
supply fluctuations and temperature [46], [135].

Naïve deployment of digitally trained models onto such accelerators can
severely degrade predictive quality, in some cases reducing performance to the
level of random guessing and thereby destroying all practical utility [44].

Nevertheless, artificial neural networks exhibit a remarkable tolerance to
computational uncertainties when training explicitly accounts for them. This
is well established in the context of digital quantization and pruning, both
of which can be viewed as unsafe optimizations that introduce noise into the
computation, yet typically retain accuracy after retraining [94], [190]. Building
on this principle, several methods have been proposed to enhance robustness
for analog accelerators, for example through knowledge distillation [80], explicit
noise-injection during training [131], [236], or quantization-aware training [99].
These results demonstrate that, given appropriate training strategies, neural
networks can adapt to significant levels of hardware-induced imprecision.

The most accurate way to expose a model to the full set of imperfections
of a concrete analog chip instance is to include the hardware directly in the
training loop. Such hardware-in-the-loop (HIL) training lets learning absorb

56

5.1 Analog Computing

device-specific variations and dynamic effects, and has been shown to be highly
effective on the BSS-2 neuromorphic system [36], [49].

Yet hardware-in-the-loop training suffers from practical limitations: depen-
dence on physical device access, retraining overhead for each hardware instance,
and limited throughput on some accelerators such as BSS-2, which slows down
training compared to the scalability of digital simulation on conventional com-
pute clusters. This motivates software models of analog accelerators that can be
inserted into the training loop [44].

In this chapter we recount our path on BSS-2: we first built a white-box model
that encodes measured nonidealities via simple, parallelizable components and
demonstrated substantial training speedups and accuracy gains over simplistic
baselines [44]. Persisting discrepancies led us to suspect temporal and ordering
effects. We therefore tried an intentionally over-dimensioned transformer-set
model to test whether sequence dependence mattered. That experiment revealed
an unexpected and fundamental property: effective non-associativity of analog
dot products on BSS-2 [4]. Both models extract the hardware behavior from
measured data, using these measurements to characterize and encode the specific
inaccuracies of the concrete device instance [4], [44]. Taken together, these
models illustrate a central principle of our work: the value of hardware modelling
lies not only in reducing the cost of training, but also in revealing which device
characteristics fundamentally shape computation.

5.1.1 Related Work

The robustness of neural networks to imprecise computation has long been
investigated in the context of quantization and pruning [94], [190]. Noise injection
and knowledge distillation have been proposed to further enhance robustness
against analog-style perturbations [80], [99], [166], [236]. For analog accelerators in
particular, early modeling approaches often approximate imperfections as additive
Gaussian noise or uniform quantization. While such abstractions facilitate
hardware-in-the-loop training, they overlook device heterogeneity and structured
nonlinear effects.

In summary, prior work has demonstrated the promise of analog accelerators
[46], [49], [64], [124], [164] and has explored robustness through quantization,
noise injection, and distillation [80], [99], [166], [190], [236]. Yet most models

57

Modeling Analog Hardware Accelerators

remain either too simplistic—ignoring heterogeneity and dynamic nonlinearities—
or too domain-general to capture device-specific effects. Our contribution is
twofold: (i) a compact white-box model that leverages device-characterized
data to encode static variations and stochastic noise, thereby bridging much
of the gap between digital pretraining and hardware-in-the-loop retraining [44];
and (ii) a transformer-set model that revealed effective non-associativity of dot
products in analog accelerators [4]. Together, these models highlight a guiding
principle: software models of analog hardware are most valuable when they
not only replicate hardware behavior but also reveal which imperfections are
consequential for training and deployment.

5.2 BrainScaleS-2

BSS-2 is a mixed-signal neuromorphic SoC manufactured in 65 nm CMOS tech-
nology, designed to support both the accelerated emulation of spiking neural
networks and the efficient execution of analog matrix–vector products within its
analog core [36], [49].

As illustrated in Figure 5.1(a), the core implements a crossbar array compris-
ing 512 columns—corresponding to neuron circuits—and 128 rows that represent
the input activations. To support signed weights, each logical column is realized
by a pair of physical columns (256 virtual neurons in total), and each column
is equipped with a dedicated per-column analog-to-digital converter (ADC) for
digitized readout.

During a matrix–vector multiplication, each input activation ai is encoded as
a pulse length ∆ti (5 bit precision), while the synaptic weight wi,j is implemented
as a current amplitude Ii,j . Each synapse thereby generates a current pulse with
charge Qi,j = Ii,j∆ti, which is accumulated on the column capacitor of its target
neuron via operational transconductance amplifier (OTA) circuits. The resulting
membrane potential is then digitized by the column’s 8 bit ADC. This integration
of current pulses is illustrated in Figure 5.1(b).

This architecture, together with its characteristic nonidealities, makes BSS-2
a representative example for studying both the benefits and the limitations of
analog matrix–multiply accelerators.

58

5.2 BrainScaleS-2

Columnar ADC

SIMD Processor

signed
synapse

Columnar ADC

SIMD Processor

signed
synapse

(a) Block diagram of the BSS-2 analog core, showing synapse drivers (triangles),
synapses (small circles in the matrix), and neurons (large circles at the column
ends). Reproduced with permission from [36].

(b) Detailed view of a single BSS-2 column in non-spiking mode, illustrating
how synaptic pulses are integrated onto the neuron membrane. Reproduced with
permission from [49].

Figure 5.1 Architecture of the BSS-2 analog neuromorphic system. Panel (a)
shows the overall crossbar structure of the analog core, while panel (b) highlights
the electrical details of a single column.

59

Modeling Analog Hardware Accelerators

Experimental Setup

Dataset. All experiments in this chapter are based on the Google Speech
Commands (GSC) dataset [137], a widely adopted benchmark for keyword
spotting. It consists of one-second audio snippets of spoken keywords drawn
from a vocabulary of 35 classes. We followed the standard split into training,
validation, and test sets as provided in the dataset release.

Preprocessing. Input waveforms were converted into log-Mel spectrogram
features. This representation is well suited for keyword spotting and, importantly,
produces non-negative values only. The latter property aligns with the constraints
of the BSS-2 hardware, which supports only positive activations.

Model architecture. The same network architecture was used for all ex-
periments with both the white-box and transformer-set models (Fig. 5.2). It
is designed to balance task performance with hardware interpretability: large
enough to solve the keyword spotting task, yet compact enough to make hardware
effects transparent. The first layer is considerably wider than subsequent layers
and therefore cannot be mapped onto the hardware in a single call; instead it
is split across multiple sequential calls. All following layers fit directly on the
hardware without partitioning. This design respects hardware constraints while
keeping the analysis of imperfections tractable.

5.3 White-Box Model of BSS-2

Hardware-in-the-loop retraining is the most accurate way to adapt neural net-
works to analog accelerators, since it directly exposes the model to the device’s
imperfections. However, it is time-consuming and scales poorly when device
throughput and access are limited. As an alternative, we investigated whether a
compact and interpretable software model of hardware nonidealities can replace
most hardware-in-the-loop training epochs without compromising accuracy. In
the following, we present the design of this white-box model and summarize its
key findings; a more detailed treatment can be found in [44].

60

5.3 White-Box Model of BSS-2

Input

Dense (1024)

ReLU

Dense (128)

ReLU

Dense (12)

Output (12)

Din

1024

1024

128

128

12

Figure 5.2 Neural network architecture used for keyword spotting on the Google
Speech Commands [137] dataset. A 3-layer MLP with hidden sizes 1024 and
128 and a 12-way output; activation dimensions are annotated on the arrows.
The first (wide) layer is mapped to hardware in multiple sequential calls, while
subsequent layers map directly. Reproduced with permission from [44].

5.3.1 Model Description

The white-box model explicitly encodes the main sources of imperfections ob-
served on BSS-2. Specifically, it combines lookup tables for per-synapse nonlin-
earities, spline functions that capture column-specific saturation effects of the
membrane integrators, and Gaussian noise terms modeling stochastic fluctuations.
Figure 5.3 illustrates this schematically, highlighting their components and their
relation to the underlying hardware components. Each component was parame-
terized from direct hardware measurements. Together, these components provide
a structured yet lightweight representation of the device’s non-ideal behavior.

Lookup table for synaptic multipliers. To capture static local nonidealities
at the level of individual synapses, the model uses lookup tables (LUTs) that
encode their nonlinear characteristics. Each hardware synapse is intended to
realize a multiplication between an activation ai (encoded as a pulse length
∆ti) and a weight wi,j (encoded as a current amplitude Ii,j). In practice,
unavoidable manufacturing variations give rise to device mismatch, which in turn

61

Modeling Analog Hardware Accelerators

weights

ac
tiv

ati
on

s

multiplier

multiplier

multiplier

multiplier

multiplier

multiplier

multiplier

multiplier

multiplier

multiplier

multiplier

multiplier

multiplier

multiplier

multiplier

multiplier

multiplier

multiplier

multiplier

multiplier

integrator integrator integrator integrator

lo
ok

up
 ta

bl
e

s
p

li
n

e

Figure 5.3 Schematic overview of the white-box representation: lookup table for
the static variations of the multiplier array, splines for the column and integrator
specific variations, and additive Gaussian noise that models the electrical noise,
among others. Reproduced with permission from [44].

causes deviations from the ideal behavior, resulting in nonlinear and synapse-
specific responses. We characterized these effects by measuring row-wise transfer
functions, activating one synapse at a time with controlled inputs so that column
saturation did not interfere with the measurement. The resulting input–output
curves were stored as lookup tables elookup[r,c,a,w], which constitute the first
stage of the white-box model and provide a calibrated mapping from operand
values to synaptic contributions.

Column-wise splines for saturation effects. When multiple synapses in a
column are active, their contributions interact nonlinearly due to line saturation
and OTA limitations. To model this, the summed LUT outputs of a column are
passed through a column-specific spline,

ỹc = fc

(︄∑︂
r

elookup[r,c,arc,wrc]
)︄

. (5.1)

These splines were fitted to measurements taken under full-range excitations
(activating many synapses at once), capturing the column’s characteristic satu-
ration curve. The spline stage thus models column-specific interaction effects
beyond isolated multipliers.

Gaussian noise with per-neuron variance. Electrical noise further perturbs
outputs and is not constant across neurons and varies with the input vector

62

5.3 White-Box Model of BSS-2

Figure 5.4 Electrical noise measured as the standard deviation of repeated
calculations with identical inputs. With larger input vectors the average noise
increases (vertical gradient), since more noisy values are accumulated. At the
same time, variances between columns are significant, as shown by the vertical
spread. Reproduced with permission from [44].

lengths. We estimated noise variances by repeatedly measuring identical inputs
and recording output variability. This yielded a variance profile σ2(col,N)
depending on the column index and the number of active inputs N , as illustrated
in Figure 5.4. At runtime, we add this calibrated zero-mean Gaussian noise to
each neuron output, reproducing the measured stochastic behavior,

yc = ỹc +N (0,σ2
c). (5.2)

Incremental noise training. A further improvement was achieved through
incremental noise training. Here, the Gaussian noise level was gradually increased
from 0% to 100% of the measured variance over the course of training, following
a curriculum strategy. This gradual exposure improved robustness by allowing
the network to adapt progressively to hardware imperfections, and its effect is
clearly visible in Table 5.1.

5.3.2 White-box Model Results

Figure 5.5 illustrates the progressive effect of the white-box corrections. On
the left, raw hardware results deviate strongly from the ground-truth matrix
multiplication. Applying the lookup table corrections (middle) compensates for
much of this error, accounting for synapse-specific nonlinearities. Adding the

63

Modeling Analog Hardware Accelerators

Figure 5.5 Mismatch between the ideal matrix multiplication result xcorrect
and the measured hardware output xhardware for a random column (left). A
large fraction of this error can be compensated by applying the lookup table
sums scol (middle) together with a spline interpolation that captures column-
specific saturation effects (right). An ideal representation would follow the
identity relation, broadened only by electrical noise. Reproduced with permission
from [44].

spline corrections (right), which represent column-level saturation effects, brings
the response close to the ideal identity relation. The resulting curve is very
close to the ideal identity relation; the remaining deviations are attributable to
residual effects not captured by the model, and ultimately to stochastic noise.

To quantify how closely different representations approximate hardware
behavior, we compared the error of several modeling approaches across input
sizes (Fig. 5.6). A simple linear regression model performs worst, as it cannot
capture either local nonlinearities or saturation. Columnar approximations
improve on this by accounting for average saturation behavior, but remain
limited. Our proposed white-box model consistently performs best, closely
tracking the hardware outputs across input sizes. Nonetheless, a residual gap to
the hardware remains, indicating that not all effects are captured by the white-box
model. At this stage we could only speculate that additional phenomena—such
as temporal or ordering effects—might play a role. This hypothesis motivated
the development of a more expressive transformer-set model (Sec. 5.4).

As summarized in Table 5.1, these corrections translate into substantial accu-
racy gains in end-to-end training. The white-box model consistently outperformed
the quantization baseline and narrowed the gap to full hardware-in-the-loop train-
ing. When combined with a small number of final hardware-in-the-loop epochs,
it even surpassed prolonged pure-hardware-in-the-loop training while reducing
retraining time from more than 10 h to under 2 h. This demonstrates that

64

5.4 Transformer-Set Model and Non-Associativity

Figure 5.6 Model performance measured as the deviation from hardware results
on random inputs. An ideal model would align with the electrical noise (gray)
observed on hardware. The proposed hardware representation outperforms linear-
regression and spline-based models. Both noise and model imperfections increase
with input vector size due to more involved components and saturation effects.
Reproduced with permission from [44].

device-characterized models can both accelerate training and improve accuracy
compared to simplistic approximations.

The white-box model highlights that explicitly encoding static nonlinearities
and noise structure is crucial for analog accelerator training. Its main advantages
are efficiency, parallelizability, and interpretability: each component maps directly
to a physical imperfection. However, residual discrepancies remained, especially
under temporally clustered high inputs. Because the LUT + spline + noise
model is fundamentally static, it cannot capture ordering- or time-dependent
effects. This limitation motivated our next step: testing a more expressive
transformer-set model, which ultimately revealed the phenomenon of effective
non-associativity.

5.4 Transformer-Set Model and Non-Associativity

5.4.1 Hypothesis: Could Ordering Matter?

Despite the progress of the white-box model, a residual gap to the hardware
remained (Sec. 5.3), which could not be explained by static nonlinearities, satu-
ration, or stochastic noise alone. At this stage we speculated that the order in
which synaptic pulses arrive might influence the computation. If true, this would

65

Modeling Analog Hardware Accelerators

Table 5.1 Comparison of retraining strategies. Reproduced with permission
from [44].

Method Retraining Accuracy

Name Description Epochs Time SW BSS-2[min]
Plain Full-precision baseline 0 0.0 80.8 % 12.3 %
Quantized INT6 weights, UINT5 activations 300 13.1 79.6 % 25.8 %
Noise only Baseline with Gaussian noise 300 10.4 80.5 % 18.4 %
Rep. no noise Static variances, no noise 300 83.4 76.5 % 26.4 %
Rep. with noise Hardware representation with noise 300 83.4 73.5 % 35.1 %
Rep. incr. noise Hardware representation, incr. noise 300 83.6 76.0 % 41.0 %
HIL (300) Full hardware-in-the-loop 300 652.3 66.8 %
HIL (350) Full hardware-in-the-loop 350 769.5 66.7 %
Comb. quant. (5) Quantization (300) + HIL (5) 305 13.1 + 11.5 62.1 %
Comb. quant. (50) Quantization (300) + HIL (50) 350 13.1 + 117.5 67.3 %
Comb. rep. (1) Representation (300) + HIL (1) 301 83.6 + 2.2 64.9 %
Comb. rep. (5) Representation (300) + HIL (5) 305 83.6 + 11.5 67.4 %
Comb. rep. (10) Representation (300) + HIL (10) 310 83.6 + 23.5 69.7 %
Comb. rep. (50) Representation (300) + HIL (50) 350 83.6 + 117.5 70.1 %

violate the assumption of associativity: mathematically, addition is associative
and commutative, (x+y)+ z = x+(y + z) and x+y = y +x, and therefore the
dot product ∑︁i aiwi should be order-independent.

However, we hypothesized that analog dynamics such as line saturation or
leakage could lead to order dependence. To test this hypothesis, we designed a
deliberately expressive model with sufficient capacity to learn ordering effects if
they exist.

5.4.2 Testing the Hypothesis with a Transformer Set

We constructed a set of Transformers [168], one independent Transformer per
column (256 in total), trained to map input sequences (ai,wi) to the corresponding
analog output (Fig. 5.7). Transformers were chosen because of their ability to
capture sequence dependencies and thus provide an upper bound on what could
be learned from ordering information. To isolate the role of order, we prepared
two datasets:

• Ordered: operands presented in the true sequence as processed by the
hardware.

• Non-ordered: operands permuted randomly but consistently across all
rows, thereby preserving the multiset of inputs but destroying ordering
information.

Both datasets were based on the same hardware-characterized measurements
and included per-column Gaussian noise consistent with Sec. 5.3.

66

5.4 Transformer-Set Model and Non-Associativity

Figure 5.7 Transformer-set model: a deliberately expressive black-box model to
probe for ordering effects. Reproduced with permission from [4].

5.4.3 Findings: The Emergence of Non-Associativity

Figure 5.8 illustrates an example of non-associativity: identical operands yield
different results depending on their input order. Table 5.2 quantifies this effect:
Google Speech Commands models trained with the ordered transformer-set
representation fit the hardware significantly better (lower MSE) and achieved
higher test accuracy after deployment on BSS-2 than models trained with either
the non-ordered transformer set or the white-box model. The improvement,

Table 5.2 Comparison of hardware models. MSE to BSS-2 measurements and
Google Speech Commands test accuracy when retrained with each model and
deployed on hardware. The ordered transformer set performs clearly better,
showing that operand order is a decisive factor. Reproduced with permission
from [4].

Method MSE GSC Test Acc.
to

BSS-2
SW BSS-2

Ordered Transformer Set 0.5 76.6% 53.4%
Non-ordered Transformer Set 0.9 77.8% 44.5%

White-box Model - 76.9% 41.2%

67

Modeling Analog Hardware Accelerators

Figure 5.8 Example of non-associativity: identical operands produce different
results depending on their order of arrival. Reproduced with permission from [4].

amounting to gains of up to 9–12% on keyword spotting, demonstrates that
ordering is not a nuisance factor but a first-order effect of analog computation.
Nonetheless, a smaller residual gap to pure hardware-in-the-loop retraining
remained, indicating that additional time-dependent effects beyond operand
ordering are also present.

Finally, we compared how the models behave when combined with a subse-
quent hardware-in-the-loop retraining phase (Table 5.3). Here, the transformer-
set and the white-box model reached comparable accuracy, both reducing the
required number of hardware-in-the-loop epochs by an order of magnitude com-
pared to training without any hardware model. This highlights the complemen-
tary role of such models: they accelerate training and reveal which device effects
matter, even if ultimate performance still requires direct hardware adaptation.

Summary

The two hardware models were developed for distinct purposes, yet together they
have shaped how we train and reason about analog accelerators within this work.
The white-box model was designed for interpretability and efficiency: it encodes
static heterogeneity and stochastic noise in a compact form, runs efficiently on

68

5.4 Transformer-Set Model and Non-Associativity

Table 5.3 Google Speech Commands test accuracy after hardware-in-the-loop
retraining. Using either the transformer set or the white-box model reduces the
number of required HIL epochs dramatically compared to training without any
model. Reproduced with permission from [4].

Method HW Model BSS-2 Accuracy on
Epochs Epochs BSS-2

Without HW Model - 350 69.6%
Ordered Transformer Set 300 50 71.8%

Non-ordered Transformer Set 300 50 71.6%
White-box Model 300 50 71.9%

GPUs, and substantially reduces the need for hardware-in-the-loop retraining.
The transformer-set model, by contrast, was deliberately over-expressive and
served as a diagnostic tool. It revealed the surprising phenomenon of non-
associativity due to ordering-dependent saturation—a property invisible to static
models but essential for understanding analog computation.

From these insights a pragmatic recipe emerges: start with a conventionally
trained digital model, apply quantization-aware training to obtain a suitable
quantized baseline [94], [190], continue with white-box training (including incre-
mental noise curricula) to capture device-specific variations, and conclude with a
short hardware-in-the-loop fine-tuning. Where order effects are suspected to be
significant, a targeted transformer probe can quantify their impact and guide
both algorithmic and hardware-side mitigations.

Looking ahead, more detailed circuit-level models that explicitly represent
hardware components and integrate their dynamics over time may be required to
fully capture complex effects beyond ordering. Such physically faithful models
can provide valuable insights, but their computational cost makes them imprac-
tical for use in the training loop of large-scale networks. Instead, lightweight
representations such as the white-box model strike a balance between fidelity
and usability. More broadly, hardware models serve a dual purpose: they inform
circuit design and calibration strategies on the hardware side, while guiding
neural architecture and training design on the algorithmic side. The guiding
principle that has emerged from our work is clear: models should not aim to
perfectly emulate hardware, but to provide understanding and enable the training
of networks that are robust to its peculiarities.

69

6
Robustness Against Noisy Computations

What does not kill me makes me stronger.

— Friedrich Nietzsche, Twilight of the Idols (1888)

The preceding chapter addressed analog hardware accelerators from a device-
centric perspective, focusing on how their nonidealities—such as nonlinearities,
saturation, noise, and even ordering effects—can be captured in faithful models.
These models serve as powerful tools for understanding the behavior of specific
hardware instances and for enabling hardware-in-the-loop training. Yet, their
strength lies precisely in their detail, and this level of fidelity also makes them
less practical as a basis for generic robustness strategies on the algorithmic side.

This chapter therefore shifts the focus from modeling hardware to harden-
ing neural networks against noisy computations. Rather than reproducing the
peculiarities of one device instance, we take a broader perspective: How can
robustness be measured, understood, and systematically improved such that
neural networks remain reliable when deployed on analog accelerators? The
emphasis thus moves to the machine learning side of the co-design problem.

To structure this discussion, we follow a trajectory across three works that

71

Robustness Against Noisy Computations

form the backbone of this chapter. We begin with Walking Noise [9], which
extends our earlier workshop paper [16] and introduces a methodology to measure
robustness at the granularity of individual layers, uncovering characteristic
learning dynamics such as weight scaling and self-binarization. Building on these
diagnostic insights, we then turn to hardening methods [7], where quantization-
aware training and noisy training are systematically compared. This establishes
noisy training as the baseline countermeasure, while clarifying the complementary
role of quantization. Finally, we extend noisy training to Variance-Aware Noisy
Training (VANT) [8], which addresses the fundamental limitation of static noise
assumptions by introducing time-varying noise schedules, thereby improving
robustness to practical effects such as drift and environmental variability.

Together, these contributions trace a coherent narrative: from measuring ro-
bustness, to establishing effective countermeasures, to sustaining robustness under
dynamic and realistic conditions. This progression highlights how robustness is
not a singular property but a layered challenge that requires both diagnostic
tools and adaptive training methods.

This chapter builds on three of our publications—Walking Noise [9], Harden-
ing [7], and VANT [8]—and focuses on their overarching narrative and distilled
insights. Detailed methodologies, experimental setups, and quantitative results
are provided in the respective original works.

6.1 Robustness Against Hardware Noise

The robustness of neural networks against noise has been studied from multiple
perspectives, spanning generalization in machine learning, adversarial robustness,
and hardware-induced uncertainty. A classical line of research established noise
injection as a form of regularization to improve generalization, with early works
comparing it to weight decay and early stopping [225], [233]. With the advent of
adversarial attacks, noise injection was also investigated as a defense strategy,
often in combination with adversarial training [191]. Variants include additive
Gaussian perturbations to the inputs [235], ensembles with layer-wise noise
injection [125], and differentiating diffusion- versus jump-term randomness in
continuous-time neural stochastic differential equations [68].

A second line of work focuses on noisy hardware, where perturbations do not
only affect the inputs but arise intrinsically from the computations themselves,

72

6.1 Robustness Against Hardware Noise

e.g., during weight readout or multiply-accumulate operations. Training with
additive Gaussian noise has been shown to mitigate such hardware-induced
degradation [84], [109], with further extensions such as Bayesian fine-tuning in
BayesFT [78]. In resistive memories, perturbation models have captured effects
such as drift in resistive random-access memory (RRAM), and training with
injected noise has been shown to mitigate performance degradation [58].

To counteract accuracy degradation due to noisy computations, noisy training
has also been successfully applied: while some works injected additive zero-
mean Gaussian noise with varying variances during training [84], [109], Noisy
Machines [80] extended this approach with knowledge distillation from a digitally
trained teacher to a noisy student. Beyond proposing distillation, it also provided
insights into the higher sensitivity of deeper architectures compared to wider
ones, explained through a mutual information analysis of information loss across
layers. This line of work established noisy training, in combination with auxiliary
mechanisms such as distillation, as a fundamental tool for enhancing robustness
on noisy analog accelerators.

Beyond Gaussian injection, perturbation-based methods have been studied to
improve both generalization and robustness. Perturbing weights can guide SGD
into flatter regions of the loss landscape, as formalized by Sharpness-Aware Mini-
mization (SAM) [39]. By penalizing sharp minima, SAM improves generalization
and offers a degree of robustness against input perturbations. Related studies
investigated perturbations of both weights and inputs to strengthen adversarial
robustness [63].

Quantization provides a complementary perspective. Originally motivated
by efficiency on digital accelerators, quantization implicitly injects structured
noise by reducing numerical precision. Its effect on robustness has been studied
extensively: some works report non-monotonic behavior of adversarial robust-
ness across bit-widths [62], while others show that moderate quantization can
increase resilience with little accuracy loss [117]. Defensive quantization methods
explicitly control the Lipschitz constant to prevent error amplification [92], and
further studies found that complex DNNs can absorb severe quantization through
retraining, whereas smaller networks degrade more substantially [203]. From
the analog accelerator perspective, quantization is often indispensable due to
limited DAC/ADC precision, motivating the use of quantization-aware training
to preserve robustness under such constraints [122].

73

Robustness Against Noisy Computations

In summary, prior research established noise injection as a versatile tool
for generalization and robustness. For analog accelerators, noisy training and
quantization emerged as common countermeasures. Building on these insights,
the following sections first examine per-layer robustness through Walking Noise,
highlighting how neural networks adapt to tolerate noise when trained with
noise injection. We then compare hardening strategies such as quantization and
noisy training, quantifying their effectiveness for analog computations. Finally,
motivated by observations on real analog hardware, noisy training is extended to
account for dynamic variations in noise—such as those caused by temperature
fluctuations—through VANT.

6.2 Walking Noise

Robustness of neural networks is usually quantified at the network level, for
example as overall accuracy degradation under noise. Such aggregate measures,
however, conceal that sensitivity to perturbations is highly heterogeneous across
layers: early layers may amplify noise, intermediate layers can compensate
through redundancy, while later layers often remain fragile. For analog accelera-
tors this distinction is particularly relevant, as noise may arise at different points
in the computation chain and its impact depends on where in the architecture it
occurs.

Walking Noise [9] addresses this by probing robustness at the level of individual
layers. By injecting noise sequentially layer by layer, it enables the identification
of weak spots and provides insights into how networks adapt to tolerate noise.
This fine-grained view complements global robustness measures and serves as a
diagnostic basis for developing hardening methods.

6.2.1 Methodology

The key idea of Walking Noise [9] is to inject noise selectively at one layer at a
time, while keeping the rest of the network unaffected. By “walking” the noise
across layers, robustness can be probed in a fine-grained manner. Three types of
perturbations are considered: additive Gaussian noise, multiplicative Gaussian
noise, and combinations thereof.

74

6.2 Walking Noise

Figure 6.1 Midpoint noise level µ for the example of LeNet-5/CIFAR-10/BN and
globally injected additive noise. Reproduced with permission from [9].

Depending on the accelerator, noise may arise at different stages of a matrix
multiplication: (1) during weight readout, (2) in the multiply–accumulate itself,
or (3) when forwarding activations. We focus on the last case, as it captures
accumulated effects from both weight and computation noise.

To quantify robustness, the midpoint noise level µ is introduced. When
increasing the globally injected noise, model accuracy typically follows a charac-
teristic curve: it remains stable for low noise levels, then drops once a critical
region is reached (Fig. 6.1). This behavior is well captured by fitting a logistic
function to the accuracy–noise relation,

F (σ;µ,s,δa,amin) = 2
1+ e(σ−µ)/s

· δa+amin (6.1)

where δa = (amax −amin)/2 denotes half of its maximum accuracy, σ the varying
injected noise level, s the slope of the curve. The parameter µ of this fit denotes
the standard deviation at which accuracy falls to the midpoint between its clean
performance and random guessing. It thus provides a natural and comparable
measure of robustness: the higher µ, the more noise the network or individual
layer can tolerate before collapsing. Experiments cover standard convolutional
networks on image classification benchmarks, trained both with and without
noise injection, with details provided in [9].

75

Robustness Against Noisy Computations

6.2.2 Findings

Applying the Walking Noise methodology reveals distinct robustness mechanisms
depending on the type of perturbation and highlights strong heterogeneity across
layers.

Additive noise. Under additive Gaussian perturbations, networks develop a
compensatory mechanism by increasing the magnitude of their weights. This
self-organized adaptation enhances the effective signal-to-noise ratio, allowing
activations to remain separable despite the presence of noise. This behavior
is clearly reflected in the characteristic accuracy–noise curves, which degrade
smoothly with increasing perturbation strength before eventually collapsing to
random guessing. The resulting robustness metric µ, derived from these curves,
enables systematic comparison across datasets and architectures.

Batch normalization (BN) interacts strongly with this mechanism. Since
BN normalizes activation scales after each layer, it counteracts weight growth
and therefore suppresses the network’s ability to exploit weight magnitude as a
compensation strategy. As a result, models with BN often show lower robustness
to additive noise than their non-BN counterparts (Fig. 6.2).

Multiplicative noise. In contrast to the additive case, multiplicative noise
revealed an unexpected and remarkably strong form of robustness. When injecting
multiplicative Gaussian perturbations during inference, we observed that some
layers maintained high accuracy even for extremely large noise levels (up to
σ = 1010), without collapsing to random prediction accuracy. This behavior was
particularly surprising, as no model could withstand such noise levels under
additive injection or global perturbations.

Closer inspection of the activation distributions showed that networks learn
to self-binarize: activations split into two distinct peaks, one near zero and one
near the noise standard deviation (Fig. 6.3). Information can then be encoded
simply in the presence or absence of an activation peak, making the network
insensitive to the precise values randomized within each cluster. The emergent
binary representation explains the remarkable tolerance to multiplicative noise.
This was evidenced by the fact that explicit threshold-based quantization without

76

6.2 Walking Noise

0:
 In

pu
t

1:
 F

C6
4

2:
 B

N

3:
 R

eL
U

4:
 F

C6
4

5:
 B

N

6:
 R

eL
U

7:
 F

C6
4

8:
 B

N

9:
 R

eL
U

10
: F

C

Layer number and name

100

101

102

103

104

105

106

M
id

po
in

t n
oi

se
 le

ve
l

(a)

0:
 In

pu
t

1:
 F

C6
4

2:
 R

eL
U

3:
 F

C6
4

4:
 R

eL
U

5:
 F

C6
4

6:
 R

eL
U

7:
 F

C

Layer number and name

(b)

Noisy inference only Noisy training & inference
Weights not clamped

Noisy training & inference
Weights clamped

(a) MLP on MNIST.

0:
 In

pu
t

1:
 C

on
v

2:
 B

N

3:
 R

eL
U

4:
 M

ax
Po

ol

5:
 C

on
v

6:
 B

N

7:
 R

eL
U

8:
 M

ax
Po

ol

9:
 F

C1
20

10
: B

N

11
: R

eL
U

12
: F

C8
4

13
: B

N

14
: R

eL
U

15
: F

C

Layer number and name

101

103

105

107

M
id

po
in

t n
oi

se
 le

ve
l

(a)

0:
 In

pu
t

1:
 C

on
v

2:
 R

eL
U

3:
 M

ax
Po

ol

4:
 C

on
v

5:
 R

eL
U

6:
 M

ax
Po

ol

7:
 F

C1
20

8:
 R

eL
U

9:
 F

C8
4

10
: R

eL
U

11
: F

C

Layer number and name
(b)

Noisy inference only Noisy training & inference
Weights not clamped

Noisy training & inference
Weights clamped

(b) LeNet-5 on MNIST.

0:
 In

pu
t

1:
 F

C6
4

2:
 B

N

3:
 R

eL
U

4:
 F

C6
4

5:
 B

N

6:
 R

eL
U

7:
 F

C6
4

8:
 B

N

9:
 R

eL
U

10
: F

C

Layer number and name

100

101

102

103

104

M
id

po
in

t n
oi

se
 le

ve
l

(a)

0:
 In

pu
t

1:
 F

C6
4

2:
 R

eL
U

3:
 F

C6
4

4:
 R

eL
U

5:
 F

C6
4

6:
 R

eL
U

7:
 F

C

Layer number and name

(b)

Noisy inference only Noisy training & inference
Weights not clamped

Noisy training & inference
Weights clamped

(c) MLP on CIFAR-10.

Figure 6.2 Midpoint noise level for various model architectures and image classi-
fication datasets based on Walking Noise. The x axis shows layer number and
name. Figures to the left are with BN, Figures to the right are without BN.
Reproduced with permission from [9].

77

Robustness Against Noisy Computations

Figure 6.3 Visualization of self-binarization in an MLP trained on MNIST under
multiplicative Walking Noise. The histograms on the left show the distribution
of activation values with noise (orange) and without noise (blue) after layer
execution, using both logarithmic and linear x-axis scales to emphasize differences
between the two networks. On the right, the distribution of activation values
is shown together with the resulting accuracy when applying simple threshold-
based quantization without retraining to the respective layer. Reproduced with
permission from [9].

78

6.2 Walking Noise

0:
 In

pu
t

1:
 F

C6
4

2:
 B

N

3:
 R

eL
U

4:
 F

C6
4

5:
 B

N

6:
 R

eL
U

7:
 F

C6
4

8:
 B

N

9:
 R

eL
U

10
: F

C

Layer number and name

0

20

40

60

80

100

Pr
es

er
ve

d
re

la
tiv

e
ac

cu
ra

cy
 [%

]
MNIST
FashionMNIST
SVHN
CIFAR-10
GSC2

Figure 6.4 Accuracy preservation for MLP with BN and various datasets, noise
injected multiplicatively. Reproduced with permission from [9].

retraining caused only a marginal accuracy drop, demonstrating that the network
had already learned an internal binary representation.

Here, batch normalization is essential. By stabilizing the scale of activations,
BN enables the formation and propagation of these bimodal distributions, and
thus the self-binarization mechanism itself. Without BN, networks largely lose
this ability, and accuracy drops quickly when multiplicative noise is injected. The
effect generalizes across architectures and datasets (Figs. 6.4), though sensitivity
again varies by layer, with later layers eventually failing to decode the binarized
representation.

Mixed noise. Since the self-learned robustness strategies for additive and mul-
tiplicative perturbations differ fundamentally, their interaction in a mixed setting
is of particular interest. Real-world analog matrix–multiply accelerators are
subject to multiple sources of noise, and depending on the hardware, additive or
multiplicative components may dominate and occur earlier in the computational
chain. We therefore evaluate both injection orders:

multiplicative-first: y(x) =
(︂
x ·N (1,σ2

mul)
)︂

+N (0,σ2
add)

additive-first: y(x) =
(︂
x+N (0,σ2

add)
)︂

·N (1,σ2
mul).

(6.2)

Here, x denotes the clean input, while N (µ,σ2) represents Gaussian noise with
mean µ and variance σ2. The parameters σmul and σadd control the standard
deviations of the multiplicative and additive components, respectively.

Figure 6.5 illustrates the resulting accuracy surfaces under both injection

79

Robustness Against Noisy Computations

10 4 10 1 102 105 108 1011

Multiplicatively injected noise

10 4

10 2

100

102

104

106

108

1010

1012

Ad
di

tiv
el

y
in

je
ct

ed
 n

oi
se

(a): Multiplicative noise applied first

10 4 10 1 102 105 108 1011

Multiplicatively injected noise
(b): Additive noise applied first

8
16
24
32
40
48
56
64
72
80

Ac
hi

ev
ed

 a
cc

ur
ac

y
[%

]

Figure 6.5 Accuracy for training with multiplicative and additive noise at layer
5 (Conv) of LeNet-5 trained on CIFAR-10. The black dots indicate points of
measurement. Reproduced with permission from [9].

orders. A notable observation is that networks can still learn to self-binarize
if multiplicative noise is applied first, thereby maintaining extreme robustness.
This effect persists even when substantial additive noise is injected afterwards, in
some cases up to one order of magnitude stronger. From a hardware perspective,
this suggests a rather counterintuitive but powerful implication: in principle,
even an accelerator dominated by strong additive noise could remain workable
if its computation pipeline introduced multiplicative noise first. For practical
accelerator design this means that hardware-in-the-loop trained networks may
tolerate significant additive disturbances, provided these occur after multiplicative
ones.

Layer-specific sensitivity. Walking Noise consistently demonstrates that
robustness is highly heterogeneous across layers. By scanning noise layer by layer,
weak spots of a network can be identified, often located in the first or last layers
depending on the type of perturbation. This information can be exploited to
guide targeted countermeasures. For example, selectively re-executing only the
most sensitive layers yields significantly higher accuracy compared to uniformly
repeating all layers (Table 6.1), thereby improving efficiency.

Summary. Overall, Walking Noise uncovers characteristic mechanisms of
robustness in neural networks. For additive perturbations, robustness is achieved

80

6.3 Hardening Methods

Table 6.1 Walking Noise guiding multi-execution to improve accuracy. Repro-
duced with permission from [9].

Executions per layer Accuracy
Dataset Model BN Uniform Guided Uniform Guided
MNIST MLP with {2,2,2,...} {6,1,3,3,2,1,2,1,1,1,1} 71.4 ± 0.7 % 80.6 ± 0.5 %
MNIST MLP wo {2,2,2,...} {8,1,2,1,1,1,1,1} 68.2 ± 1.3 % 87.1 ± 0.7 %

CIFAR-10 MLP with {2,2,2,...} {1,1,3,4,2,2,3,2,1,2,1} 41.7 ± 0.5 % 43.7 ± 0.5 %
CIFAR-10 MLP wo {2,2,2,...} {4,1,1,1,1,1,2,5} 38.9 ± 0.6 % 43.4 ± 0.7 %
CIFAR-10 LeNet-5 with {2,2,2,...} {3,2,3,3,3,1,3,4,2,1,1,2,1,1,1,1} 58.5 ± 1.4 % 61.1 ± 1.0 %
CIFAR-10 LeNet-5 wo {2,2,2,...} {4,3,4,3,1,3,1,1,1,1,1,1} 57.2 ± 1.8 % 62.4 ± 1.3 %

by increasing weight magnitudes, a strategy that is suppressed when batch
normalization is applied, since batch normalization removes activation scale. For
multiplicative perturbations, networks develop a self-binarization of activations,
a mechanism that crucially depends on batch normalization to stabilize and
propagate the bimodal distributions. Finally, under mixed noise conditions, the
order of perturbation determines whether robustness can be preserved, with
multiplicative-first injection enabling tolerance even in the presence of strong
additive noise. Together, these findings establish robustness as a heterogeneous,
layer-dependent property, and provide actionable insights for architecture design,
compression strategies, and selective hardening.

Having established how robustness emerges at the layer level, we next investi-
gate systematic strategies to harden neural networks against noise, comparing
the effectiveness of quantization-aware training and noisy training.

6.3 Hardening Methods

The insights from Walking Noise highlight that robustness is not a uniform
property, but instead emerges from heterogeneous layer-wise mechanisms. While
this diagnostic perspective reveals how networks adapt to tolerate perturbations
and helps to design more robust neural architectures, it leaves open the practical
question of how to systematically improve robustness during training.

Two prominent methods are commonly considered. quantization-aware train-
ing (QAT) has long been used to prepare models for low-precision deployment,
and implicitly introduces structured perturbations that may also enhance robust-
ness. In contrast, noisy training directly injects stochastic perturbations during
training, explicitly mimicking the conditions of noisy inference. Both approaches
are widely applied, yet their relative effectiveness for analog computations—where

81

Robustness Against Noisy Computations

noise is unavoidable—had not been systematically compared.
This motivates the following study: to evaluate QAT and noisy training side

by side across different architectures, and quantify their robustness using the
midpoint noise level µ.

6.3.1 Methodology

To compare hardening strategies, we evaluate QAT and noisy training across
several neural architectures, including LeNet-5, VGG-11, and ResNet-18, trained
on the CIFAR-10 dataset. QAT is implemented using uniform quantization
of weights and activations, with both constant and dynamic scaling factors
considered. Constant scaling applies a fixed factor across activations, whereas
dynamic scaling recomputes scaling factors adaptively during inference.

Noisy training, in contrast, directly injects additive Gaussian noise into
activations during training, with the same distribution applied during infer-
ence. This exposes the model to realistic perturbations and compels it to learn
representations that remain robust under noisy computations.

To quantify robustness, we use the midpoint noise level µ, defined as the
noise standard deviation at which accuracy falls to the midpoint between its
clean baseline and random guessing (cf. Sec. 6.1). This metric provides a stable
measure of tolerance against noise and allows direct comparison across models
and training strategies.

The evaluation is performed by measuring accuracy under globally injected
noise during inference, fitting the accuracy–noise curve, and extracting µ. This
enables a systematic comparison of robustness for different bit-widths, scaling
strategies, and training methods.

6.3.2 Findings

The comparison between QAT and noisy training reveals several characteristic
patterns.

Quantization-aware training. Quantization alone provides a modest degree
of robustness, but the effect strongly depends on bit-width and the scaling strategy.
For LeNet-5 on CIFAR-10, 8-bit quantization achieves higher robustness than
4-bit (Fig. 6.6), since larger dynamic ranges reduce clipping effects. Constant

82

6.3 Hardening Methods

Table 6.2 Robustness of VGG-11 and ResNet-18 on CIFAR-10 under different bit
widths and scaling factors using QAT. Constant scaling yields higher robustness
than dynamic scaling, and increasing the scaling factor improves tolerance up to
a point where the network collapses completely. Reproduced with permission
from [7].

Model Bitwidths Scaling factors Peak accuracy (%) Midpoint noise level µ
fp32 - 87.7 0.154 (±0.5%)
8-bit dynamic 87.2 0.024 (±0.1%)

0.5 84.3 0.145 (±0.2%)
1 82.2 0.2 (±0.2%)
2 76.8 0.222 (±0.3%)

VGG-11 3 10.0 0.013 (±0.0%)
4-bit dynamic 86.5 0.031 (±0.1%)

0.5 84.5 0.12 (±0.2%)
1 82.6 0.177 (±0.2%)
2 78.3 0.23 (±0.3%)
3 10 0.010 (±0.1%)

fp32 - 87.0 0.495 (±0.2%)
8-bit dynamic 87.3 0.452 (±0.3%)

0.5 87.1 0.526 (±0.3%)
1 87.0 0. 557 (±0.3%)
4 86.5 0.577 (±0.3%)
8 85.7 0.625 (±0.4%)

ResNet-18 10 10 0.05 (±2.5%)
4-bit dynamic 86.8 0.281 (±0.3%)

0.5 86.5 0.492 (±0.4%)
1 86.7 0.605 (±0.3%)
4 86.5 0.657 (±0.5%)
8 86.5 0.665 (±0.3%)
10 10 0.005 (±1.3%)

scaling factors can significantly increase the midpoint noise level µ, but at the
cost of lower clean accuracy, leading to a trade-off between robustness and peak
performance. Dynamic scaling preserves clean accuracy, but generally results in
lower robustness. The Pareto trade-off between peak accuracy and robustness is
highlighted in Fig. 6.6(c), and extends to deeper architectures such as VGG-11
and ResNet-18 (Table 6.2). Overall, QAT improves tolerance to noise but does
not fundamentally change the fragility of deeper models.

Noisy training. In contrast, noisy training proves highly effective across
all architectures. By exposing the network to Gaussian perturbations during
training, the learned representations become resilient to noise injected during
inference. As shown in Fig. 6.6, noisy training consistently raises robustness
far beyond that of quantization, while maintaining competitive clean accuracy.
Table 6.3 summarizes this effect across LeNet-5, VGG-11, and ResNet-18: the
midpoint noise level µ improves substantially when noisy training is applied,
largely independent of model scale or parameter count.

83

Robustness Against Noisy Computations

Table 6.3 Overall comparison of architectures on CIFAR-10. ResNet-18 exhibits
higher robustness than LeNet-5 and VGG-11, owing to its skip connections, which
compensate for the increased depth that otherwise amplifies noise sensitivity.
Across all models, noisy training effectively hardens networks against noise.
Reproduced with permission from [7].

Property LeNet-5 VGG-11 ResNet-18
FLOPS (M) 0.66 276.56 37.53
Param (M) 0.06 132.86 11.69
Noisy layers 12 27 33
Peak accuracy (%) 75 87.7 86.9
Robustness µ w/o Noisy Training 0.286 0.154 0.494
Robustness µ with Noisy Training 2.59 2.957 3.023

Combining methods. When quantization is combined with noisy training,
robustness remains dominated by the effect of noisy training (Fig. 6.6). Quantiza-
tion does not further increase robustness, but it does enable more compact models
without losing the benefits of noise-aware training. This makes noisy training
with quantization a practical approach for robust deployment on accelerators
with limited precision.

Summary. In summary, QAT and noisy training both contribute to robustness,
but in different ways. QAT shifts the trade-off between accuracy and tolerance
by controlling scaling, whereas noisy training fundamentally reshapes network
representations to withstand noisy inference. The combination yields compact
and robust models, but noisy training emerges as the more decisive hardening
method.

6.4 Variance-aware Noisy Training

The previous section showed that noisy training is the most effective strategy to
harden neural networks against noisy computations. However, it also assumes that
the noise distribution observed during training is identical to the one encountered
at inference time. This assumption rarely holds for analog accelerators: noise
levels drift with temperature, voltage, device aging, and even between individual
chips. As a result, models trained with noisy training at a fixed noise level often
fail when the actual operating conditions deviate.

To address this limitation, we introduce Variance-Aware Noisy Training

84

6.4 Variance-aware Noisy Training

10 2 10 1 100 101 102

Standard deviation of injected noise

10

20

30

40

50

60

70

Va
lid

at
io

n
ac

cu
ra

cy
 [%

]

s=512 (µ=1.736)
s=64 (µ=1.514)
s=8 (µ=1.057)
s=2 (µ=0.535)
s=0.5 (µ=0.357)
dynamic (µ=0.242)
fp32 (µ=0.286)

(a) LeNet-5, 8-bit

10 2 10 1 100 101 102

Standard deviation of injected noise

10

20

30

40

50

60

70
Va

lid
at

io
n

ac
cu

ra
cy

 [%
]

s=512 (µ=1.709)
s=64 (µ=1.431)
s=8 (µ=0.948)
s=2 (µ=0.557)
s=0.5 (µ=0.268)
dynamic (µ=0.233)
fp32 (µ=0.286)

(b) LeNet-5, 4-bit

100 101 102

Scale factor s

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

M
id

po
in

t n
oi

se
 le

ve
l

 of baseline
 of 8-bit
 of 4-bit

Accuracy of baseline
Accuracy of 8-bit
Accuracy of 4-bit

55

60

65

70

75

Pe
ak

 a
cc

ur
ac

y
[%

]

(c) Accuracy–µ trade-off

10 2 10 1 100 101 102

Standard deviation of injected noise

10

20

30

40

50

60

70

Va
lid

at
io

n
ac

cu
ra

cy
 [%

]

8-bit,s=0.5, no noisy training, (µ=0.357)
8-bit,s=0.5, noisy training, (µ=2.340)
fp32, no noisy training, (µ=0.286)
fp32, noisy training, (µ=2.590)

(d) LeNet-5 + noisy training

10 2 10 1 100 101 102

Standard deviation of injected noise

10

20

30

40

50

60

70

80

90

Va
lid

at
io

n
ac

cu
ra

cy
 [%

]

4-bit,s=4, no noisy training, (µ=0.649)
4-bit,s=4, noisy training, (µ=2.768)
Baseline, no noisy training, (µ=0.495)
Baseline, noisy training, (µ=3.023)

(e) ResNet-18 + noisy train.

0.5 1.0 1.5 2.0 2.5
Midpoint noise level

55

60

65

70

75
Pe

ak
 a

cc
ur

ac
y

[%
]

Baseline
QAT with 4-bit
QAT with 8-bit
Noisy training

(f) Pareto frontier

Figure 6.6 Robustness of LeNet-5 and ResNet-18 on CIFAR-10 under quantization
and noisy training. Top row: quantization alone, showing the effect of bit width,
scaling factors, and the trade-off between accuracy and midpoint noise level µ.
Bottom row: quantization combined with noisy training, demonstrating the
substantial robustness gains across architectures and the resulting Pareto frontier.
The dramatic improvement in robustness of quantized models with noisy training
is clearly visible. All x-axes are logarithmic. Reproduced with permission
from [7].

85

Robustness Against Noisy Computations

(VANT). The key idea is to extend noisy training by injecting noise with varying
strength, sampled from a distribution rather than fixed at a single level. In
this way, models are explicitly exposed to the variability characteristic of real
hardware, and can learn representations that remain robust even under fluctuating
noise conditions.

6.4.1 Methodology

Previous results (Figs. 6.7a, 6.7b) show that noisy training substantially out-
performs both QAT and perturbation-based methods such as Sharpness-Aware
Minimization (SAM) [39], which improves generalization by guiding gradient
descent towards flatter minima. They also reveal a critical limitation: robustness
is only achieved when the noise level at inference closely matches the fixed noise
level used during training. As soon as the two deviate, accuracy collapses rapidly
(Fig. 6.7c). This motivates VANT, which explicitly accounts for variability in
noise strength over time and across devices.

Standard noisy training injects Gaussian noise with a fixed standard deviation,
thereby assuming that the accelerator’s noise is constant across devices and stable
over time. In practice, however, analog accelerators exhibit fluctuations due to
temperature, voltage, and device drift, such that fixed-noise training does not
match inference conditions.

To address this, VANT samples the injected noise level itself from a distribu-
tion:

x ∼ N (0,σvar) ,

σvar ∼ N (α ·σtrain, θ) ,
(6.3)

where σtrain is the nominal noise level of the target hardware, α calibrates the
sampled distribution to σtrain, and θ controls its variability. During training, σvar

is sampled per input, and noise x is injected additively into activations in the
forward pass, exposing the network to a range of perturbation levels that mimic
real hardware conditions.

Robustness is quantified using the relative area under the accuracy–noise
curve (rAUC). Let A(σ) denote the accuracy under noise level σ. We compute

rAUC =
∫︁

A(σ)dσ∫︁
Aideal(σ)dσ

, (6.4)

86

6.4 Variance-aware Noisy Training

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Standard deviation of injected noise

10

20

30

40

50

60

70
Va

lid
at

io
n

ac
cu

ra
cy

 [%
]

Estimated Upper Bound (rAUC=100%)
Naïve Training (rAUC=33.0%)
NT = 1.0 (rAUC=87.0%)
QAT 4-bit (rAUC=53.0%)
SAM (rAUC=43.8%)

(a) LeNet-5

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Standard deviation of injected noise

10

20

30

40

50

60

70

80

90

Va
lid

at
io

n
ac

cu
ra

cy
 [

%
]

Estimated Upper Bound
Baseline (rAUC=32.4%)
SAM (rAUC=32.5%)
Quant_4b4s (rAUC=39.6%)

= 1.0 (rAUC=72.3%)

(b) ResNet

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Standard deviation of injected noise

10

20

30

40

50

60

70

80

90

Va
lid

at
io

n
ac

cu
ra

cy
 [%

]

Estimated Upper Bound (rAUC=100%)
Naïve Training (rAUC=32.43%)
NT = 0.5 (rAUC=58.6%)
NT = 0.9 (rAUC=70.98%)
NT = 1.3 (rAUC=79.26%)
NT = 1.7 (rAUC=84.16%)
NT = 2.1 (rAUC=83.64%)

(c) Noisy training with different training
noise.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Standard deviation of injected noise

20

30

40

50

60

70

80

90

Va
lid

at
io

n
ac

cu
ra

cy
 [%

]

VANT = 1.5 (rAUC=96.8%)
VANT = 1.25 (rAUC=97.1%)
VANT = 1.0 (rAUC=97.5%)
VANT = 0.75 (rAUC=97.3%)
VANT = 0.5 (rAUC=96.2%)
VANT = 0.25 (rAUC=88.0%)
NT = 1.0 (rAUC=72.3%)
Estimated Upper Bound (rAUC=100%)

(d) VANT with varying θ vs. noisy training

Figure 6.7 Comparison of hardening methods on CIFAR-10. (a) LeNet-5 and
(b) ResNet show that noisy training substantially outperforms quantization and
SAM. However, this robustness strongly depends on training and inference noise
levels matching. (c) ResNet under varying inference noise: each noisy training
curve peaks where training and inference noise coincide, while the dashed line
marks the upper bound with perfectly matched noise. (d) VANT with different
variability levels θ, demonstrating higher robustness across broader noise ranges
compared to standard noisy training. Adapted from [8].

where the denominator represents the ideal case of perfectly matched training
and inference noise. The rAUC is normalized between 0 and 1 and measures how
closely a method approaches this upper bound of robustness.

6.4.2 Findings

The comparison of hardening methods in Figs. 6.7a and 6.7b confirms that noisy
training substantially outperforms both QAT and SAM in terms of robustness.
However, Fig. 6.7c illustrates a key limitation: each noisy training curve peaks
precisely at the noise level used during training, and robustness collapses as

87

Robustness Against Noisy Computations

=0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1
NT

=0.0
5

0.1
5

0.2
5

0.3
5

0.4
5

0.5
5

0.6
5

0.7
5

0.8
5

0.9
5

1.0
5

1.1
5

1.2
5

1.3
5

1.4
5

1.5
5

37.9 48.1 58.6 65.0 71.0 75.9 79.3 82.0 84.2 84.7 83.7

43.2 51.8 55.4 59.7 62.2 63.5 65.3 69.5 73.2 74.9 75.7

63.5 69.6 74.0 78.7 81.7 82.3 85.0 86.9 89.5 89.0 91.0

80.3 85.1 86.5 87.4 89.4 91.7 91.9 94.1 94.2 94.7 95.4

88.5 90.4 91.8 93.4 94.1 94.9 95.1 95.9 96.2 96.3 96.3

93.1 94.2 95.0 95.7 96.0 96.0 96.7 96.3 97.0 96.8 96.8

95.0 95.4 95.9 96.5 96.7 96.8 97.0 96.8 97.1 97.2 97.0

96.2 96.9 96.7 97.1 97.1 97.5 97.6 97.5 97.5 97.3 96.9

96.9 97.0 97.2 97.0 97.6 97.3 97.2 97.1 97.3 97.1 97.0

96.7 97.7 97.5 97.6 97.4 97.1 97.3 97.4 97.1 96.9 97.0

97.2 97.9 97.3 97.4 97.3 97.1 97.4 97.4 97.4 96.8 96.4

97.3 97.5 97.9 97.4 97.5 97.2 96.9 96.6 96.7 96.3 96.5

97.1 97.6 97.5 97.1 97.2 97.0 96.9 96.7 96.7 96.2 96.2

97.1 97.3 97.3 97.3 96.9 96.9 97.1 96.5 95.8 95.8 96.1

96.8 97.2 97.3 96.8 97.0 96.6 96.5 96.4 96.2 95.7 95.4

97.3 96.5 96.6 96.8 96.6 96.5 96.3 96.5 95.7 95.5 95.1

96.7 96.3 96.1 96.8 96.3 95.9 96.3 96.0 95.4 95.5 95.1

(a) Robustness (rAUC %)

=0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1
NT

=0.0
5

0.1
5

0.2
5

0.3
5

0.4
5

0.5
5

0.6
5

0.7
5

0.8
5

0.9
5

1.0
5

1.1
5

1.2
5

1.3
5

1.4
5

1.5
5

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.2 0.2 -1.3 -4.1 -8.7 -13.4 -18.8 -22.6 -23.3 -27.1 -27.8

-1.3 -0.3 0.2 -0.2 0.0 -0.9 -2.3 -3.1 -4.9 -6.3 -6.4

-1.6 -0.6 -0.0 -0.3 0.2 -0.0 -0.4 -0.8 -2.4 -2.5 -1.8

-2.4 -1.4 -1.1 -0.4 0.9 -0.4 -0.2 -0.5 -1.4 -1.4 -1.1

-2.6 -2.5 -0.7 -0.4 -0.5 -0.1 -0.3 0.2 -0.5 0.5 0.2

-3.2 -2.8 -1.6 -0.8 -0.8 -0.3 -0.4 -0.4 -0.9 -0.5 0.5

-4.0 -2.8 -1.8 -1.8 -1.0 -0.5 -0.1 -0.0 -0.5 -0.4 0.6

-4.2 -3.5 -2.6 -2.6 -0.7 -1.0 -0.7 -0.3 -1.1 0.3 1.0

-4.8 -3.2 -2.5 -1.7 -0.9 -1.4 -1.3 -0.9 -1.1 0.0 1.0

-5.4 -4.2 -3.0 -2.8 -1.4 -0.8 -1.0 0.0 -0.1 -0.8 -0.2

-5.4 -4.2 -3.1 -2.5 -1.1 -2.0 -1.3 -0.7 -1.1 -0.8 0.7

-5.7 -4.4 -3.1 -2.7 -2.1 -1.5 -1.5 -1.2 -1.3 -0.9 0.0

-6.0 -4.8 -3.4 -3.1 -2.2 -1.7 -1.2 -1.0 -1.6 -1.4 0.0

-6.2 -5.4 -3.9 -3.4 -1.9 -2.3 -2.4 -1.4 -1.6 -1.7 -0.6

-6.5 -5.6 -4.4 -3.5 -3.0 -2.6 -3.0 -1.0 -1.9 -1.6 0.5

-6.8 -6.4 -5.0 -3.6 -3.1 -2.4 -2.4 -1.8 -2.2 -1.7 -0.5

(b) Preserved Accuracy

Figure 6.8 Heatmaps illustrating how the variability parameter θ influences
robustness and accuracy of VANT on CIFAR-10 with ResNet-18. (a) Robustness
measured as rAUC increases with higher θ. (b) Preserved accuracy compared
to standard noisy training decreases if variability becomes too large. Together,
these plots show how robustness and accuracy trade off under different noise
environments and provide guidance for selecting suitable hyperparameters. Re-
produced with permission from [8].

soon as inference noise deviates. The dashed line shows the theoretical upper
bound, corresponding to perfectly matched training and inference noise. This
demonstrates that while noisy training is highly effective, it is also brittle under
realistic conditions where noise is not static.

VANT directly addresses this limitation. By sampling the training noise level
from a distribution, the network is exposed to a range of perturbation strengths
and learns representations that remain stable under variation. Figure 6.8 il-
lustrates how robustness depends on the choice of the variability parameter θ

and the baseline hardware noise level σtrain. While larger values of θ generally
increase robustness (rAUC), too much variability reduces preserved accuracy. An
approximately linear relation θ ≈ 0.4 ·σtrain was found to balance these effects,
yielding robust yet accurate models. Figure 6.7d illustrates that while VANT
remains sensitive to the variability parameter, it is significantly more robust
across a broader range of noise levels than plain noisy training.

The benefits of VANT generalize across datasets and architectures. As shown
in Fig. 6.9, it enhances robustness on more complex datasets such as CINIC-10

88

6.4 Variance-aware Noisy Training

0.2 0.4 0.6 0.8 1.0 1.2
Standard deviation of injected noise

20

40

60

80

100
rA

UC
 [%

]

ResNet-18 on Tiny ImageNet
ResNet-50 on Tiny ImageNet
ResNet-18 on CINIC10

(a) Robustness (rAUC)

0.2 0.4 0.6 0.8 1.0 1.2
Standard deviation of injected noise

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Pr
es

er
ve

d
ac

cu
ra

cy
 [%

]

ResNet-18 on Tiny ImageNet
ResNet-50 on Tiny ImageNet
ResNet-18 on CINIC10

(b) Preserved Accuracy

Figure 6.9 Generalization of VANT to more complex datasets and deeper archi-
tectures. (a) Robustness (rAUC) improves consistently across CINIC-10 and
Tiny ImageNet for both ResNet-18 and ResNet-50. (b) Preserved accuracy
remains close to standard noisy training, with only minor deviations. These
results demonstrate that VANT reliably increases robustness across tasks and
model scales, while incurring little accuracy cost. Reproduced with permission
from [8].

and Tiny ImageNet, and scales effectively to deeper architectures like ResNet-50.
Crucially, VANT sustains high robustness even under strong and varying noise
levels, where standard noisy training rapidly deteriorates.

In conclusion, VANT overcomes the brittleness of standard noisy training
by explicitly modeling noise variability. It provides stable robustness across
datasets, architectures, and operating conditions, marking an important step
toward sustainable deployment of analog accelerators. While already highly
effective, further refinements may extend its applicability even more broadly.

Summary

This chapter developed a progressive view on robustness in neural networks for
analog accelerators, moving from diagnosis to hardening, and finally to methods
that address real-world variability.

First, Walking Noise showed that robustness is not a uniform property but
emerges through heterogeneous, layer-specific mechanisms such as weight scaling
under additive perturbations and self-binarization under multiplicative noise.
This diagnostic perspective highlighted the opportunity of targeted countermea-
sures rather than uniform approaches.

89

Robustness Against Noisy Computations

Second, we compared systematic hardening strategies against noisy computa-
tions. While QAT can trade accuracy for tolerance, noisy training proved to be
the most effective method for achieving robustness under static noise conditions,
outperforming both QAT and perturbation-based baselines such as SAM.

Finally, we introduced VANT, a training strategy that extends noisy training
by explicitly modeling variability in noise levels. Instead of assuming a fixed
noise distribution, it samples noise strengths during training, exposing the
network to the fluctuations characteristic of analog hardware. This variance-aware
formulation makes robustness an inherent property of the learned representations,
rather than a brittle consequence of matched training and inference conditions.

Taken together, these contributions trace a coherent trajectory: robustness
can be understood at the layer level, strengthened with effective hardening, and
sustained by accounting for the variability inherent to analog hardware. This
progression lays the foundation for practical deployment of neural networks
on analog accelerators, and points toward future refinements such as adapting
methods to further device imperfections and extending beyond simple Gaussian
noise to richer distributions and multiple injection points along the computational
chain. At the same time, the results highlight that even simple noise models can
be remarkably effective, suggesting that tailored yet computationally inexpensive
hardening strategies remain a promising direction.

90

Part II

Accelerating Bayesian Neural
Networks

91

7
Bayesian Neural Networks

Uncertainty is the only certainty there is, and knowing how to
live with insecurity is the only security.

— John Allen Paulos

Uncertainty lies at the heart of real-world machine learning. Sensors produce
noisy signals, environments evolve unpredictably, and training data can never
fully capture the diversity of the world. When neural networks are deployed
in safety-critical domains such as autonomous driving, medical diagnostics, or
embedded control, it is therefore not sufficient to provide single deterministic
outputs. Instead, models must also provide a measure of confidence in their
outputs, enabling downstream systems to react appropriately: they may defer
to a human operator, trigger a safe fallback mechanism, or request additional
information when predictions are unreliable.

Conventional deep neural networks, despite their outstanding predictive
accuracy, are poorly equipped to serve this role. Outputs are typically interpreted
through the softmax function, which is often miscalibrated and tends to produce
overconfident predictions even on inputs far outside the training distribution [148].

93

Bayesian Neural Networks

This structural inability to quantify uncertainty has become a central obstacle
to the trustworthy deployment of deep learning [40]. A common failure mode is
that networks issue highly confident but wrong predictions on out-of-distribution
inputs. In such cases, models lack the ability to express I do not know, a capability
that is crucial for robust decision-making.

A principled approach to modeling uncertainty is provided by Bayesian neural
networks (BNNs). By replacing deterministic weights with probability distribu-
tions, BNNs extend classical neural networks into a probabilistic framework [234],
[242]. Predictions thus become distributions rather than fixed values, capturing
both data variability and model uncertainty. This perspective was consolidated
by Jospin, Laga, Boussaid, Buntine, and Bennamoun [28], who provide a com-
prehensive overview of Bayesian inference strategies and a unified workflow for
BNNs.

The theoretical foundation of BNNs is mathematically rigorous, but exact
Bayesian inference over high-dimensional weight distributions is intractable.
Approximate approaches such as sampling-based or variational inference methods
require multiple posterior samples and forward passes, resulting in high runtime
and memory demands [23], [234]. Consequently, while BNNs provide the most
principled approach to uncertainty estimation, they are also among the most
resource-intensive models to train and deploy.

Within the structure of this work, this chapter marks the transition from
deterministic computation to probabilistic machine learning. It introduces the
foundations of uncertainty quantification, surveys the main Bayesian inference
strategies for BNNs, and discusses their computational challenges. The overarch-
ing message is clear: reliable uncertainty estimation is not an auxiliary feature but
a fundamental capability, and BNNs provide the mathematical basis upon which
this capability can be built. Later chapters build on these foundations: first by
deploying the Probabilistic Forward Pass on embedded systems to demonstrate
how closed-form propagation of an extreme SVI approximation can replace costly
sampling in BNN inference, then by introducing ensemble-based methods as
practical Bayesian approximations, and finally by exploring photonic accelerators
where hardware noise itself becomes a controllable source of stochasticity.

94

7.1 Quantifying Uncertainty

7.1 Quantifying Uncertainty

Uncertainty quantification provides the foundation for probabilistic modeling.
It captures not only how confident a model is in its predictions, but also why
predictions may be uncertain. In practice, two principal forms of uncertainty are
distinguished [23], [28], [153], [223].

Aleatoric uncertainty. Aleatoric uncertainty refers to the inherent random-
ness of the data-generating process. It arises from sources such as sensor noise,
ambiguous labels, or intrinsic variability of physical systems. Since it is tied to
the data itself, it cannot be reduced by collecting additional observations.

Epistemic uncertainty. Epistemic uncertainty corresponds to modeling er-
ror: it reflects incomplete knowledge about the data-generating process. This
includes insufficient or unrepresentative training data, structural misspecification
of the model class, or imperfections in the training procedure. Formally, it is
represented by the posterior distribution p(θ | D), which quantifies the range of
plausible parameter values given the data. Unlike aleatoric uncertainty, epis-
temic uncertainty can be reduced by collecting more representative data or by
improving the model. It is particularly pronounced for inputs that lie outside
the training distribution, making it crucial for out-of-distribution detection and
active learning.

Metrics. In BNNs for regression tasks, aleatoric uncertainty is often modeled
explicitly using an aleatoric head. Following Kendall and Gal [153], each regression
target is represented by two outputs in the final layer: one predicts the mean
µ(x) and the other the variance σ2(x), which models input-dependent Gaussian
noise. This heteroscedastic Gaussian formulation jointly learns predictive means
and variances, enabling the model to capture heterogeneous noise levels across
the input domain. For numerical stability, it is common to predict logσ2(x)
instead of σ2(x) directly. Such aleatoric heads are specific to regression, since
classification outputs are categorical and their uncertainty is naturally expressed
through the distribution over class probabilities rather than explicit variance
terms.

95

Bayesian Neural Networks

In classification, uncertainty is commonly quantified using information-theoretic
metrics. Let x denote an input with label y ∈ {1, . . . ,C}, and let the predictive
distribution be defined by marginalizing over the posterior,

p(y | x,D) =
∫︂

p(y | x,θ)p(θ | D)dθ. (7.1)

The total predictive uncertainty is measured by the Shannon entropy of this
distribution [253],

H[y | x,D] = −
C∑︂

c=1
p(y = c | x,D) logp(y = c | x,D). (7.2)

This quantity can be decomposed into contributions from aleatoric and epistemic
sources [41], [116]. The expected data uncertainty, also known as softmax entropy
(SME), isolates the aleatoric part,

Ep(θ|D)

[︃
H[y | x,θ]

]︃
= − 1

N

N∑︂
n=1

C∑︂
c=1

p(y = c | x,θn) logp(y = c | x,θn), (7.3)

while the mutual information (MI) between predictions and parameters captures
the epistemic part,

I[y,θ | x,D] = H[y | x,D]−Ep(θ|D)

[︃
H[y | x,θ]

]︃
. (7.4)

It should be noted, however, that this decomposition is approximation-dependent
and its exact interpretation remains debated in the community [2], [41].

Beyond accuracy and uncertainty decomposition, the calibration of predictive
probabilities is a key indicator of reliability. A well-calibrated model outputs
confidence values that correspond to the true likelihood of correctness, ensuring
trustworthy uncertainty estimates. To quantify calibration, two metrics are
widely used.

The negative log-likelihood (NLL) evaluates how well predicted probabilities
align with observed labels,

NLL = − 1
N

N∑︂
n=1

logp(yn | xn,D), (7.5)

with lower values indicating better calibration. The expected calibration error

96

7.2 Bayesian Neural Networks: Foundations

(ECE) measures the gap between predicted confidence and empirical accuracy
by binning predictions [148],

ECE =
M∑︂

m=1

|Bm|
N

⃓⃓⃓
acc(Bm)− conf(Bm)

⃓⃓⃓
, (7.6)

where Bm is the set of samples in bin m, acc(Bm) is their accuracy, and conf(Bm)
their average confidence.

The area under the receiver operating characteristic curve (AUROC) is used to
quantify separation between in-domain and out-of-distribution data. It integrates
the true positive rate (TPR) over the false positive rate (FPR) across thresholds,

AUROC =
∫︂ 1

0
TPR(FPR−1(x))dx.

An AUROC of 1.0 indicates perfect separation, while 0.5 corresponds to random
guessing [228].

Together, these metrics provide a principled way to assess both the decom-
position of predictive uncertainty and the reliability of probability estimates.
They also illustrate why probabilistic approaches are attractive: they offer a
unified way to model uncertainty, distinguish its sources, and evaluate prediction
quality. To realize these metrics in the context of neural networks, BNNs provide
the natural mathematical framework, as they extend deterministic models into
a probabilistic setting where both aleatoric and epistemic uncertainty can be
quantified in a principled manner.

7.2 Bayesian Neural Networks: Foundations

Bayesian neural networks extend classical neural networks by placing probability
distributions over their parameters. Instead of learning a single point estimate θ∗

for the weights, a BNN treats weights as random variables and infers a posterior
distribution given observed data D [234]. By Bayes’ rule [23], the posterior is
expressed as

p(θ | D) = p(D | θ)p(θ)
p(D) , (7.7)

97

Bayesian Neural Networks

where p(θ) is a prior distribution, p(D | θ) the likelihood, and p(D) the marginal
likelihood or evidence.1 The prior reflects assumptions or domain knowledge
about the weights, while the posterior captures updated beliefs after observing
data [28], [216]. The evidence p(D) serves as a normalizing constant but is
intractable to compute for neural networks, since it requires integrating over all
possible parameter configurations.

Predictions for a new input x are obtained by marginalizing over the posterior,

p(y | x,D) =
∫︂

p(y | x,θ)p(θ | D)dθ, (7.8)

which defines the posterior predictive distribution. This connects directly to
the uncertainty measures introduced in the previous section: predictive entropy
reflects total uncertainty, while its decomposition into aleatoric and epistemic
parts depends on the likelihood and posterior, respectively.

The Bayesian perspective contrasts with the frequentist view. In frequentist
inference, parameters θ are fixed but unknown, and learning corresponds to
estimating them via maximum likelihood or related criteria. Bayesian inference
instead treats parameters as random variables with a prior distribution, and
learning corresponds to updating this belief in light of data. This perspective
yields predictive distributions that naturally quantify both aleatoric and epistemic
uncertainty [23], [28].

The posterior p(θ | D) involves high-dimensional integrals that lack closed
form and are costly to approximate reliably, necessitating the use of approximate
inference methods in practical BNNs. Sampling-based approaches, such as
Markov chain Monte Carlo, provide asymptotically exact posterior draws but
scale poorly with model size. Optimization-based approaches, such as variational
inference, trade statistical fidelity for computational scalability, typically relying
on tractable Gaussian approximations. More expressive variational families or
advanced samplers can improve posterior fidelity but at substantially higher
computational cost.

The overall process of BNN training and inference is illustrated in Figure 7.1,
following the perspective of Jospin, Laga, Boussaid, Buntine, and Bennamoun [28].
It consists of three stages:

1The rule is named after Reverend Thomas Bayes, whose posthumous essay [255] first
described the principle.

98

7.3 Bayesian Inference

Figure 7.1 Workflow of a BNN. Design specifies both the architecture and prior
distributions. Training applies Bayesian inference to approximate the posterior.
Prediction marginalizes the posterior to form the predictive distribution, from
which point estimates and uncertainty metrics can be derived. Adjusted from [28].

(i) Design: the neural architecture and prior distributions are specified.

(ii) Training: Bayesian inference techniques approximate the posterior distri-
bution.

(iii) Prediction: the posterior is marginalized to form the posterior predictive
distribution p(y | x,D).

To obtain uncertainty estimates, multiple forward passes are performed by
sampling from the posterior, yielding a distribution of predictions from which
metrics such as variance, SME, MI, or predictive Shannon entropy can be derived.

BNNs thus provide a principled probabilistic extension of neural networks
by treating parameters as random variables. They yield posterior predictive
distributions that naturally capture both aleatoric and epistemic uncertainty.
While conceptually elegant, their exact inference is computationally infeasible
for modern architectures, motivating the approximate methods discussed in the
next section.

7.3 Bayesian Inference

7.3.1 Markov chain Monte Carlo (MCMC)

Markov chain Monte Carlo methods provide the classical foundation of Bayesian
inference and remain the gold standard for drawing asymptotically exact samples

99

Bayesian Neural Networks

from complex posteriors [217]. They construct a Markov chain whose stationary
distribution is the posterior p(θ | D) and generate samples {θn}N

n=1 from this
chain, from which posterior expectations can be approximated by averaging.
This makes MCMC a conceptually simple yet broadly applicable tool, albeit one
whose computational cost typically increases rapidly with dimensionality.

The most widely known instance is the Metropolis algorithm [250] and its
generalization by Hastings [248]. The key idea of Metropolis–Hastings is to
construct a proposal distribution q(θ′ | θ) for candidate moves and to accept a
proposal with probability

α(θ,θ′) = min
(︄

1,
p(θ′ | D)q(θ | θ′)
p(θ | D)q(θ′ | θ)

)︄
. (7.9)

This accept–reject step, together with the Hastings correction for asymmetric
proposals, enforces detailed balance and guarantees that the posterior p(θ | D) is
the stationary distribution of the chain. The defining property of Metropolis–
Hastings is that it only requires ratios of posterior densities, which ensures that
the intractable evidence p(D) cancels out. An acceptance rate strictly below
one prevents the chain from collapsing onto the maximum a posteriori mode
and ensures that the full posterior distribution, rather than only its peak, is
represented.

Running MCMC in practice requires careful handling of initialization and
convergence. The initial part of each chain, known as the burn-in or warm-up
phase, is discarded because early samples are still influenced by the arbitrary
starting point rather than the stationary distribution [212]. During warm-up,
proposal distributions or other tuning parameters are often adapted to improve
efficiency, after which sampling proceeds with fixed settings to ensure validity.
Convergence and sample quality are then assessed using standard diagnostics:
autocorrelation functions and the effective sample size (ESS) quantify the amount
of independent information contained in a chain [238], while the potential scale
reduction statistic R̂ compares within-chain to between-chain variance to detect
lack of convergence [50], [237].

Despite its generality, classical Metropolis–Hastings suffers from poor mixing
in high-dimensional parameter spaces. For models such as BNNs, naive proposals
lead to low acceptance rates and highly correlated samples, which results in
prohibitively slow convergence. To address this limitation, gradient-informed

100

7.3 Bayesian Inference

methods exploit local geometry. Hamiltonian Monte Carlo (HMC), originally
introduced as Hybrid Monte Carlo [245] and popularized in machine learning by
Neal [220], is inspired by classical physics and augments the parameter space
θ with auxiliary momentum variables r. It defines a Hamiltonian consisting of
potential and kinetic energy,

H(θ,r) = U(θ)+K(r) = − logp(θ | D)+ 1
2r⊤M−1r , (7.10)

where U(θ) is the potential energy given by the negative log posterior and K(r)
is the kinetic energy with mass matrix M . In this Bayesian interpretation, the
posterior landscape acts as the potential energy surface, and by sampling random
momenta r, the algorithm follows approximate Hamiltonian trajectories that
traverse this landscape. Proposals are generated by simulating these dynamics
with the leapfrog method using step size ε and trajectory length L. Since
integration is approximate, a Metropolis accept–reject step at the end of each
trajectory corrects for numerical error and ensures that the posterior remains
the stationary distribution. This accept–reject step is essential for validity and is
what distinguishes HMC from mere gradient-based optimization dynamics. The
resulting proposals are long and directed, suppress random-walk behavior, and
substantially improve mixing in continuous, high-dimensional spaces.

The No-U-Turn Sampler (NUTS) addresses the need to set the trajectory
length L by dynamically expanding paths until a U-turn criterion is met and
simultaneously adapting the step size ε during warm-up using dual averaging [206].
This removes the need for manual tuning and makes NUTS the default choice in
many modern probabilistic programming frameworks.

Practical advice. In the context of BNNs, manual tuning of HMC parameters
is particularly challenging. Selecting a suitable trajectory length L and step size
ε is often infeasible in practice: inappropriate choices can either trap the chain
in highly correlated states or cause excessive rejections, and the sensitivity grows
with network size. NUTS has proven to be a real game changer in this setting.
By adapting path lengths and step sizes automatically during warm-up, it makes
HMC one of the easiest inference methods to apply reliably, despite its high
computational cost. In practice, we found that NUTS consistently yields stable
results for BNNs without the extensive parameter tuning otherwise required.

101

Bayesian Neural Networks

Limitations. Nevertheless, MCMC remains challenging for large, modern
neural network architectures. Each proposal in MCMC requires at least one
evaluation of the model likelihood or its gradient with respect to all network
parameters. For HMC, this cost scales with the trajectory length L, since each
trajectory requires L gradient evaluations. NUTS can be even more expensive,
as it explores trajectories by recursively building a binary tree until a U-turn
condition is met, leading to up to 2L− 1 gradient evaluations per iteration [206].
Multiple chains, warm-up, and the need for many effectively independent samples
further amplify both compute and memory demands. As a result, MCMC is
mainly applicable to small-scale models, where it serves both as a practical tool
and as a rigorous reference for evaluating approximate inference methods. Its
prohibitive computational and memory cost in modern architectures contrasts
with the more scalable approximations discussed next.

7.3.2 Variational Inference (VI)

While MCMC provides asymptotically exact posterior samples, its computational
demands scale poorly with model size. Variational inference offers a scalable
alternative by recasting Bayesian inference as an optimization problem. The
idea is to introduce a family of tractable distributions qϕ(θ), parameterized by
variational parameters ϕ, to approximate the intractable posterior p(θ | D) [144],
[176], [231]. A seminal application to neural networks is Bayes by Backprop [189],
which demonstrated variational learning of Gaussian weight distributions and
laid the foundation for scalable approximate Bayesian deep learning. Instead of
drawing samples directly from the posterior, the goal is to find the member of
this family that is closest to the true posterior according to a divergence measure.

The most common choice is the Kullback–Leibler divergence (KL), which for
two distributions q(θ) and p(θ) is defined as [176], [251]

KL(q(θ) ∥ p(θ)) = Eq(θ)

[︄
log q(θ)

p(θ)

]︄
=
∫︂

q(θ) log q(θ)
p(θ) dθ. (7.11)

Although asymmetric, the KL divergence is non-negative and equals zero if and
only if q(θ) = p(θ) almost everywhere.

Directly minimizing KL
(︂
qϕ(θ)∥p(θ | D)

)︂
is infeasible, since the true posterior

p(θ | D) contains the intractable evidence term p(D). Instead, the problem is

102

7.3 Bayesian Inference

reformulated in terms of the evidence lower bound (ELBO), which is a tractable
lower bound on the marginal log-likelihood logp(D). Maximizing the ELBO is
equivalent to minimizing the KL divergence, but avoids the need to compute
p(D) explicitly [144], [176], [231]:

L(ϕ) = Eqϕ(θ)
[︂
logp(D | θ)

]︂
−KL

(︂
qϕ(θ)∥p(θ)

)︂
. (7.12)

The first term encourages data fit, while the second term regularizes the approxi-
mation towards the prior.

Optimization of the ELBO can be carried out with stochastic gradient meth-
ods. In this setting, stochastic variational inference (SVI) employs mini-batches
of data and stochastic gradient estimates to scale variational inference to large
datasets [213]. The reparameterization trick [29], [209], first applied to Bayesian
neural networks in Bayes by Backprop [189], enables low-variance gradient es-
timates by rewriting stochastic sampling as a deterministic transformation of
parameters and auxiliary noise. For instance, if qϕ(θ) = N (θ | µ,σ2), then sam-
pling can be expressed as

θ = µ+σ ϵ, ϵ ∼ N (0,1), (7.13)

which disentangles the randomness ϵ from the variational parameters (µ,σ)
and allows gradients to propagate through them efficiently. Intuitively, this
transformation lets gradients bypass the stochastic sampling step and flow into
the variational parameters, making optimization with backpropagation feasible.

The expressiveness of the variational family qϕ(θ) critically determines the
quality of the approximation. Mean-field Gaussians, which assume independence
across parameters, offer an attractive compromise: they are simple, scale effi-
ciently to large models, and often yield sufficiently good uncertainty estimates in
practice [144], [176]. Despite their tendency to underestimate posterior uncer-
tainty, they remain widely used due to their efficiency and ease of implementation.

More expressive families can be employed when higher fidelity is required.
Matrix-variate Gaussians, for example, introduce correlations across rows and
columns of weight matrices, which is particularly natural for convolutional filters
where nearby weights tend to co-vary. Normalizing flows instead transform
simple base distributions through sequences of invertible mappings, allowing the
capture of multimodal or skewed posteriors [23], [201]. These richer families

103

Bayesian Neural Networks

yield more faithful approximations, but at the cost of additional parameters and
computational overhead, since each transformation must be optimized alongside
the base network.

Practical advice. SVI-trained BNNs are highly sensitive to hyperparameter
choices, and poor configurations often lead to degenerate solutions. If the posterior
variance is initialized too high, the network quickly learns that predicting “I
do not know” is a valid strategy and may never recover to produce meaningful
outputs. Several strategies have proven effective in practice to mitigate this issue:

• Warm-starting the means. Initializing the posterior means from a pre-
trained deterministic model provides a strong starting point for predictions.

• Underestimating the prior variance. Explicitly initializing prior vari-
ances significantly smaller than the means biases the model toward confident
predictions in early epochs, preventing collapse into trivial uncertainty.

• Balancing KL and data fit. In practice, the KL term in the ELBO
must be down-weighted relative to the likelihood. Too much weight causes
posterior collapse into high uncertainty, while too little leads to overfitting
and ignoring the prior. Finding this balance is among the most sensitive
hyperparameters in SVI.

• KL annealing. Replacing the fixed balance with a dynamic schedule,
where the KL weight is gradually increased during training, has proven
particularly effective. Linear annealing is a common choice. While this
approach reduces sensitivity to initialization, the final balance between KL
and likelihood terms still requires hyperparameter tuning.

Together, these strategies stabilize optimization and substantially improve the
reliability of SVI-trained BNNs, though at the cost of increased hyperparameter
search.

Compared to sampling-based methods, VI trades asymptotic exactness for
computational scalability. It enables deterministic optimization procedures
with fast convergence and amortized inference. Its scalability on GPUs and
compatibility with modern deep learning toolchains explain why SVI has become
the standard variational approach for training large-scale BNNs.

104

7.4 Evaluation Datasets

Beyond Classical Bayesian Inference

The discussion so far has focused on the two principal methods for Bayesian
inference: MCMC, with HMC and NUTS as its most effective variants for high-
dimensional BNNs, and VI, with SVI as the key scalable instantiation. These
approaches represent the classical Bayesian route to training BNNs: asymptoti-
cally exact sampling on the one hand, and optimization-based approximations
on the other.

Beyond these methods, more pragmatic approximations have become popular
in deep learning. Monte Carlo Dropout (MCDO) [175] and Deep Ensembles
(DEs) [154] trade theoretical rigor for ease of use and empirical effectiveness. They
will be revisited in Chapter 9, which broadens the perspective to ensemble-based
methods. For a comprehensive overview of approximate Bayesian inference in
BNNs, we refer to Jospin, Laga, Boussaid, Buntine, and Bennamoun [28].

7.4 Evaluation Datasets

Before evaluating the practical behavior of different inference methods, it is
essential to clarify what constitutes a meaningful assessment of uncertainty
estimation. In deterministic models, performance can often be summarized by a
single accuracy or loss value, whereas for BNNs, evaluation must capture not
only predictive quality but also how well epistemic and aleatoric uncertainty are
represented. This places specific requirements on the datasets used for analysis.
Ideally, they should provide clear distinctions between in- and out-of-distribution
samples, expose ground-truth aleatoric variability, and remain low-dimensional
enough to allow direct visualization of predicted uncertainties. At the same time,
suitable quantitative metrics are needed to compare uncertainty quality across
methods in a consistent and interpretable manner.

While low-dimensional datasets are invaluable for interpreting model behavior
and visualizing uncertainty, they do not reflect the full complexity of realistic
machine learning tasks. A comprehensive evaluation of BNNs therefore requires
benchmarks that jointly address interpretability, scalability, and diversity in
task type. To this end, we employ three complementary datasets that together
span these requirements. The Noisy Sine benchmark provides a one-dimensional
regression task with explicit ground-truth uncertainty, enabling direct comparison

105

Bayesian Neural Networks

20 15 10 5 0 5 10 15 20

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Low Aleatoric, Low Epistemic Uncertainty
High Aleatoric, Low Epistemic Uncertainty
Low Aleatoric, High Epistemic Uncertainty

Ground Truth function
Data points

Figure 7.2 Schematic of the Noisy Sine dataset showing the generative function
f(x), data-bearing regimes with different Gaussian noise levels (aleatoric), and
data-free gaps that induce epistemic uncertainty. Evaluation points are placed
at regime midpoints and gap midpoints. Reproduced with permission from [6].

between predicted and true aleatoric variance. The Two Half Moons dataset
introduces a low-dimensional classification problem that remains simple enough
for visualization but exposes the challenge of epistemic uncertainty both near
decision boundaries and with increasing distance from the training data. Finally,
the Dirty-MNIST benchmark extends the analysis to high-dimensional image
classification, allowing us to assess whether findings from the simpler settings
generalize to more realistic and complex data domains.

7.4.1 Noisy Sine

The Noisy Sine benchmark is a one-dimensional regression task designed to probe
both aleatoric and epistemic uncertainty in a controlled setting. The generative
function is

y = sin(x)+0.05x+ ϵ, ϵ ∼ N (0,σ2(x)), (7.14)

where ϵ represents aleatoric uncertainty in the form of heteroscedastic Gaussian
noise. The input domain is partitioned into multiple regimes, as illustrated in
Figure 7.2. Some regimes contain training points and use distinct Gaussian noise
levels, inducing different levels of aleatoric uncertainty. Other regimes contain
no training points at all, which elicit high epistemic uncertainty. To establish

106

7.4 Evaluation Datasets

20 10 0 10 20
3

2

1

0

1

2

3

4
Train Data
Generative Function
Mean of Predictions
STD of Predictions
Aleatoric Head
MSEpred = 0.0018
MSEalea = 0.0030
EUCepi = 0.4697
AUROC = 0.9823

20 10 0 10 20
0

1

2

St
an

da
rd

 D
ev

.

Total Unc.
Aleatoric Unc.
Aleatoric Ground Truth

20 10 0 10 20
0

1

2

St
an

da
rd

 D
ev

.

Sigmoid

4

6

8

10

Da
ta

 S
pa

rs
ityTotal Unc.

Epistemic Unc.
Sparsity (log KDE)

Figure 7.3 Visualization convention for the Noisy Sine benchmark. Each panel
is divided into three rows: Top: predictive mean with a band for the total
predictive standard deviation, overlaid with training samples. Middle: aleatoric
uncertainty—predicted by the aleatoric head and compared against the ground-
truth noise profile. Bottom: epistemic uncertainty together with the negative
log KDE of the training data (dashed line), illustrating its correlation with data
sparsity.

ground-truth uncertainty patterns, three regime types alternate along the input
axis: (i) dense regions with low Gaussian noise σ(x)=0.05, (ii) mid-density
regions with half as many samples and higher noise σ(x)=0.25, and (iii) data-free
gaps that express purely epistemic uncertainty. This structure creates alternating
segments where uncertainty is dominated by aleatoric effects within the data
regimes and by epistemic effects in the gaps and beyond the training range.

Figure 7.3 illustrates the visualization layout used throughout this work. Each
plot consists of three rows: (top) predictive mean with total uncertainty, (middle)
predicted aleatoric variance alongside the ground-truth noise profile, and (bottom)
epistemic uncertainty together with the reference sparsity of training data.

Prediction quality. Since the ground-truth is known, predictive accuracy can
be measured by the mean squared error (MSE) between the predicted mean
µ(x) and the noiseless ground-truth target f(x) = sin(x)+0.05x. Evaluation is
restricted to data-bearing regimes, as extrapolation outside these regions is not
meaningful for assessing fit.

107

Bayesian Neural Networks

Aleatoric evaluation. Since the ground-truth noise standard deviation σ(x)
is defined within each data regime, aleatoric uncertainty can be evaluated directly.
We compute the MSE between the predicted STD σ̂(x) (from the aleatoric head)
and the true injected STD σ(x). Lower values indicate more accurate estimation
of the heteroscedastic noise profile.

Epistemic evaluation. Assessing epistemic uncertainty is more difficult be-
cause no explicit ground truth exists. We therefore adopt the Epistemic Uncer-
tainty Coefficient (EUC) proposed by Simonides [6]. The EUC is defined as the
Pearson correlation between predicted epistemic uncertainty and the sparsity of
training data, estimated by a Kernel Density Estimation (KDE). Given training
samples {xi}N

i=1, the KDE at a point x with bandwidth h is

f(x) = 1
Nh

N∑︂
i=1

K
(︃

x−xi

h

)︃
, (7.15)

where K is typically chosen as a Gaussian kernel,

K(x) = 1√
2π

exp
(︂
−1

2x2
)︂

. (7.16)

Since well-covered regions correspond to high density and sparse regions to
low density, epistemic uncertainty is expected to correlate with the negative
log density. The EUC therefore measures whether the "shape" of the predicted
epistemic uncertainty aligns with data coverage.

While intuitive, EUC has an important limitation: it does not capture absolute
calibration. It is possible for a model to systematically underestimate uncertainty
and still achieve a high EUC, as long as the spatial correlation with data density
is preserved. For instance, we observed cases such as a BNN with a Tanhshrink
activation where EUC reached the highest value among all experiments, yet
visual inspection revealed clear underestimation of uncertainty (Figure 7.4).

Practical alternative. From a practitioner’s perspective, the more relevant
question is whether uncertainty estimates can reliably flag predictions outside the
training domain. We therefore complement EUC with an area under the receiver
operating characteristic curve (AUROC)-based evaluation of out-of-distribution
detection. By labeling samples inside data regimes as in-distribution (ID) and

108

7.4 Evaluation Datasets

20 10 0 10 20
3

2

1

0

1

2

3

4
Train Data
Generative Function
Mean of Predictions
STD of Predictions
Aleatoric Head
MSEpred = 0.0032
MSEalea = 0.0029
EUCepi = 0.9689
AUROC = 0.9135

20 10 0 10 20
0

1

2

St
an

da
rd

 D
ev

.

Total Unc.
Aleatoric Unc.
Aleatoric Ground Truth

20 10 0 10 20
0

1

2

St
an

da
rd

 D
ev

.
Tanhshrink

4

6

8

10

Da
ta

 S
pa

rs
ityTotal Unc.

Epistemic Unc.
Sparsity (log KDE)

(a) Tanhshrink (EUC = 0.9689)

20 10 0 10 20
3

2

1

0

1

2

3

4
Train Data
Generative Function
Mean of Predictions
STD of Predictions
Aleatoric Head
MSEpred = 0.0018
MSEalea = 0.0030
EUCepi = 0.4697
AUROC = 0.9823

20 10 0 10 20
0

1

2

St
an

da
rd

 D
ev

.

Total Unc.
Aleatoric Unc.
Aleatoric Ground Truth

20 10 0 10 20
0

1

2

St
an

da
rd

 D
ev

.

Sigmoid

4

6

8

10

Da
ta

 S
pa

rs
ityTotal Unc.

Epistemic Unc.
Sparsity (log KDE)

(b) Sigmoid (EUC = 0.4697)

Figure 7.4 Illustration of the limitations of the Epistemic Uncertainty Coefficient.
Panel (a) shows a model with Tanhshrink activation function, which achieved
the highest EUC across experiments, yet clearly underestimates uncertainty in
data-free regions. Panel (b) shows a model with Sigmoid activation function,
which yielded a lower EUC but produced more realistic epistemic uncertainty.
This highlights that EUC captures correlation with data sparsity but not absolute
calibration, motivating the use of AUROC as a complementary metric.

those in gaps as out-of-distribution (OOD), we compute the AUROC to quantify
how well epistemic uncertainty predictions separates the two cases. Unlike EUC,
this metric evaluates the discriminative power of uncertainty for decision-making:
a high AUROC indicates that the model provides a trustworthy signal of when
its predictions should not be relied upon.

7.4.2 Two Half Moons

Following the one-dimensional regression task, the Two Half Moons dataset
introduces a low-dimensional classification problem that remains simple enough
for visualization while capturing key aspects of epistemic uncertainty. It is
a two-dimensional binary classification benchmark with a non-linear decision
boundary, frequently used to analyze how different methods capture uncertainty in
classification settings. While aleatoric effects appear near the decision boundary,
the different inference methods behave similarly in this region. Our evaluation
therefore focuses on epistemic effects and explicit OOD detection relative to ID
regions, where the methods diverge more clearly.

ID/OOD labeling. In contrast to the Noisy Sine benchmark, the Two Half
Moons dataset does not provide ground-truth ID/OOD regions. We therefore
construct reference labels via Kernel Density Estimation, similar to its use in the
calculation of EUC, but here applied in the two-dimensional input space. Given

109

Bayesian Neural Networks

Mean Class Prediction (ACC = 89.7%) Mutual Information (AUROC = 0.855)

ReLU

Figure 7.5 Visualization of the Two Half Moons dataset. Training samples are
shown as small circles: blue for one class and red for the other. Left: mean class
predictions with the non-linear decision boundary overlaid. Right: epistemic
uncertainty quantified by mutual information, where higher values (see colorbar)
indicate higher uncertainty. The dashed contour marks the OOD region obtained
via KDE-based density thresholding. This setup enables evaluation of OOD
detection quality via AUROC.

training samples {xi}N
i=1 ⊂ R2, the density at a test point x is estimated as

f̂(x) = 1
Nh2

N∑︂
i=1

K
(︃

x−xi

h

)︃
, (7.17)

with Gaussian kernel K(u) = 1
2π exp

(︂
− 1

2∥u∥2
)︂

and bandwidth h. The bandwidth
is determined automatically using Scott’s rule [243], a widely used heuristic that
adapts to dataset size and dimensionality and provides stable density estimates
without manual tuning. Binary ID/OOD labels are then obtained by thresholding
this density at a chosen quantile: points above the threshold are treated as ID,
while points below are labeled as OOD.

We quantify OOD detection by ranking test points with predicted epistemic
uncertainty via mutual information and comparing against these ID/OOD la-
bels using the AUROC. Figure 7.5 illustrates this setup: the left panel shows
mean predictions and decision boundary, while the right panel shows epistemic
uncertainty with the KDE-derived OOD contour.

110

7.4 Evaluation Datasets

Figure 7.6 Schematic illustration of the Dirty-MNIST benchmark. From left
to right: clean MNIST digits (ID), Ambiguous-MNIST samples generated by
variational autoencoder interpolation (aleatoric uncertainty), and Fashion-MNIST
images used as explicit OOD inputs (epistemic uncertainty). Figure adapted
from [31].

7.4.3 Dirty-MNIST

The Dirty-MNIST benchmark extends the evaluation to high-dimensional image
classification, providing a more realistic testbed for uncertainty estimation. It
builds upon the classical MNIST dataset [232] and is specifically designed to
probe both aleatoric and epistemic uncertainty in a controlled yet complex
setting [31]. It combines three complementary subsets, which we collectively
refer to as Dirty-MNIST in the following:

• MNIST: clean in-distribution digit images, serving as the reference domain
where predictive uncertainty should remain low.

• Ambiguous-MNIST: digits generated by interpolating between latent
codes of two MNIST digits using a variational autoencoder [208]. These
samples are inherently ambiguous, making them a source of strong aleatoric
uncertainty.

• Fashion-MNIST: an auxiliary dataset of clothing images [169], unseen
during training and used as explicit OOD data. Predictions on these
samples should exhibit high epistemic uncertainty.

Together, these subsets form a compact yet comprehensive benchmark. Fol-
lowing the setup of Mukhoti, Kirsch, Amersfoort, Torr, and Gal [31], models
are trained jointly on MNIST and Ambiguous-MNIST, treating both clean and
ambiguous digits as in-distribution data. MNIST provides the clean baseline,
Ambiguous-MNIST emphasizes aleatoric effects, and Fashion-MNIST serves as
the out-of-distribution probe for epistemic uncertainty. Figure 7.6 illustrates the
three components side by side.

111

Bayesian Neural Networks

7.5 Empirical Insights into BNN Inference

The practical behavior of BNNs cannot be judged by theory alone. Even methods
with solid theoretical foundations may succeed or fail depending on architectural
choices and dataset characteristics. This sensitivity implies that a deterministic
architecture cannot simply be made “Bayesian” by placing distributions on its
weights; instead, small architectural adjustments must be considered to obtain
reliable uncertainty estimates.

In the following, we analyze this effect on the Noisy Sine and Two Half
Moons benchmarks. Together, these results highlight systematic patterns in how
activation functions influence uncertainty quality, independent of raw predictive
performance.

7.5.1 Impact of Activation Functions

One of the most striking observations across our experiments is that BNNs are
highly sensitive to the choice of activation function. While predictive accuracy
varies little across activation functions, uncertainty estimates differ substantially.

Experimental setup. All activation function experiments were conducted
with an MLP of two hidden layers and 50 neurons each. We use HMC with
NUTS, an asymptotically exact sampler whose adaptive warm-up reduces manual
tuning and which serves as the de facto reference baseline for BNN inference
quality. On the Noisy Sine dataset, we drew 1000 posterior samples after 1000
warm-up iterations, while for the Two Half Moons dataset we used 2000 samples
with 2000 warm-up iterations to account for its higher complexity.

Noisy Sine. On the one-dimensional Noisy Sine task, BNNs with different
activation functions generally fit the data regimes well and capture the injected
heteroscedastic noise through the aleatoric head. Overall, however, the data fit is
strong, as reflected in low MSE for most functions, with only a few clear outliers
in both predictive means and aleatoric variance (Table 7.1).

The key differences arise in the epistemic component. Some activation
functions, such as Sigmoid, produce smooth and moderate uncertainty growth
with distance from the training data, whereas others, like Hardswish, exhibit
erratic predictions and markedly inflated uncertainty bands.

112

7.5 Empirical Insights into BNN Inference

20 10 0 10 20
3

2

1

0

1

2

3

4
Train Data
Generative Function
Mean of Predictions
STD of Predictions
Aleatoric Head
MSEpred = 0.0132
MSEalea = 0.0052
EUCepi = 0.7196
AUROC = 0.9977

20 10 0 10 20
0

1

2

St
an

da
rd

 D
ev

.

Total Unc.
Aleatoric Unc.
Aleatoric Ground Truth

20 10 0 10 20
0

1

2

St
an

da
rd

 D
ev

.
Sine

4

6

8

10

Da
ta

 S
pa

rs
ityTotal Unc.

Epistemic Unc.
Sparsity (log KDE)

Sine

20 10 0 10 20
3

2

1

0

1

2

3

4
Train Data
Generative Function
Mean of Predictions
STD of Predictions
Aleatoric Head
MSEpred = 0.0051
MSEalea = 0.0028
EUCepi = 0.8724
AUROC = 0.9962

20 10 0 10 20
0

1

2

St
an

da
rd

 D
ev

.

Total Unc.
Aleatoric Unc.
Aleatoric Ground Truth

20 10 0 10 20
0

1

2

St
an

da
rd

 D
ev

.

Softshrink

4

6

8

10

Da
ta

 S
pa

rs
ityTotal Unc.

Epistemic Unc.
Sparsity (log KDE)

Softshrink

20 10 0 10 20
3

2

1

0

1

2

3

4
Train Data
Generative Function
Mean of Predictions
STD of Predictions
Aleatoric Head
MSEpred = 0.0034
MSEalea = 0.0026
EUCepi = 0.2070
AUROC = 0.9934

20 10 0 10 20
0

1

2

St
an

da
rd

 D
ev

.

Total Unc.
Aleatoric Unc.
Aleatoric Ground Truth

20 10 0 10 20
0

1

2

St
an

da
rd

 D
ev

.

Tanh

4

6

8

10

Da
ta

 S
pa

rs
ityTotal Unc.

Epistemic Unc.
Sparsity (log KDE)

Tanh

20 10 0 10 20
3

2

1

0

1

2

3

4
Train Data
Generative Function
Mean of Predictions
STD of Predictions
Aleatoric Head
MSEpred = 0.0054
MSEalea = 0.0024
EUCepi = 0.0583
AUROC = 0.9913

20 10 0 10 20
0

1

2

St
an

da
rd

 D
ev

.

Total Unc.
Aleatoric Unc.
Aleatoric Ground Truth

20 10 0 10 20
0

1

2
St

an
da

rd
 D

ev
.

Hardswish

4

6

8

10

Da
ta

 S
pa

rs
ityTotal Unc.

Epistemic Unc.
Sparsity (log KDE)

Hardswish

20 10 0 10 20
3

2

1

0

1

2

3

4
Train Data
Generative Function
Mean of Predictions
STD of Predictions
Aleatoric Head
MSEpred = 0.0051
MSEalea = 0.0026
EUCepi = 0.4470
AUROC = 0.9832

20 10 0 10 20
0

1

2

St
an

da
rd

 D
ev

.

Total Unc.
Aleatoric Unc.
Aleatoric Ground Truth

20 10 0 10 20
0

1

2

St
an

da
rd

 D
ev

.

LeakyReLU0.5

4

6

8

10

Da
ta

 S
pa

rs
ityTotal Unc.

Epistemic Unc.
Sparsity (log KDE)

LeakyReLU0.5

20 10 0 10 20
3

2

1

0

1

2

3

4
Train Data
Generative Function
Mean of Predictions
STD of Predictions
Aleatoric Head
MSEpred = 0.0044
MSEalea = 0.0027
EUCepi = 0.3516
AUROC = 0.9827

20 10 0 10 20
0

1

2

St
an

da
rd

 D
ev

.

Total Unc.
Aleatoric Unc.
Aleatoric Ground Truth

20 10 0 10 20
0

1

2

St
an

da
rd

 D
ev

.

ReLU

4

6

8

10

Da
ta

 S
pa

rs
ityTotal Unc.

Epistemic Unc.
Sparsity (log KDE)

ReLU

20 10 0 10 20
3

2

1

0

1

2

3

4
Train Data
Generative Function
Mean of Predictions
STD of Predictions
Aleatoric Head
MSEpred = 0.0018
MSEalea = 0.0030
EUCepi = 0.4697
AUROC = 0.9823

20 10 0 10 20
0

1

2

St
an

da
rd

 D
ev

.

Total Unc.
Aleatoric Unc.
Aleatoric Ground Truth

20 10 0 10 20
0

1

2

St
an

da
rd

 D
ev

.

Sigmoid

4

6

8

10

Da
ta

 S
pa

rs
ityTotal Unc.

Epistemic Unc.
Sparsity (log KDE)

Sigmoid

20 10 0 10 20
3

2

1

0

1

2

3

4
Train Data
Generative Function
Mean of Predictions
STD of Predictions
Aleatoric Head
MSEpred = 0.0028
MSEalea = 0.0026
EUCepi = 0.8258
AUROC = 0.9799

20 10 0 10 20
0

1

2

St
an

da
rd

 D
ev

.

Total Unc.
Aleatoric Unc.
Aleatoric Ground Truth

20 10 0 10 20
0

1

2

St
an

da
rd

 D
ev

.

Softplus

4

6

8

10

Da
ta

 S
pa

rs
ityTotal Unc.

Epistemic Unc.
Sparsity (log KDE)

Softplus

20 10 0 10 20
3

2

1

0

1

2

3

4
Train Data
Generative Function
Mean of Predictions
STD of Predictions
Aleatoric Head
MSEpred = 0.0028
MSEalea = 0.0027
EUCepi = 0.3141
AUROC = 0.9704

20 10 0 10 20
0

1

2

St
an

da
rd

 D
ev

.

Total Unc.
Aleatoric Unc.
Aleatoric Ground Truth

20 10 0 10 20
0

1

2

St
an

da
rd

 D
ev

.

SiLU

4

6

8

10

Da
ta

 S
pa

rs
ityTotal Unc.

Epistemic Unc.
Sparsity (log KDE)

SiLU

20 10 0 10 20
3

2

1

0

1

2

3

4
Train Data
Generative Function
Mean of Predictions
STD of Predictions
Aleatoric Head
MSEpred = 0.0032
MSEalea = 0.0029
EUCepi = 0.9689
AUROC = 0.9135

20 10 0 10 20
0

1

2

St
an

da
rd

 D
ev

.

Total Unc.
Aleatoric Unc.
Aleatoric Ground Truth

20 10 0 10 20
0

1

2

St
an

da
rd

 D
ev

.

Tanhshrink

4

6

8

10

Da
ta

 S
pa

rs
ityTotal Unc.

Epistemic Unc.
Sparsity (log KDE)

Tanhshrink

Figure 7.7 Comparison of activation functions on the Noisy Sine task, using
MCMC-based BNNs. Uncertainty behavior differs markedly in OOD regions
despite similar predictive fits, ranging from oscillatory and unstable to smooth
but overconfident. Panels are ordered by decreasing AUROC.

113

Bayesian Neural Networks

Table 7.1 Activation functions on the Noisy Sine dataset, using MCMC-based
BNNs. Metrics cover predictive accuracy, aleatoric variance estimation, and
OOD detection quality.

Activation MSE (Pred.) ↓ MSE (Aleatoric) ↓ EUC ↑ AUROC ↑
Cosine 0.0137 0.0057 0.6988 0.9985
Sine 0.0132 0.0052 0.7196 0.9977
Softshrink 0.0051 0.0028 0.8724 0.9962
Hardtanh 0.0066 0.0025 0.0978 0.9948
PReLU 0.0049 0.0028 0.4673 0.9935
Tanh 0.0034 0.0026 0.2070 0.9934
Hardswish 0.0054 0.0024 0.0583 0.9913
Hardsigmoid 0.0037 0.0035 0.7305 0.9906
Softsign 0.0042 0.0029 0.4661 0.9900
LeakyReLU 0.0050 0.0026 0.4801 0.9894
Mish 0.0050 0.0029 0.4195 0.9886
SELU 0.0053 0.0024 0.6794 0.9868
GELU 0.0029 0.0027 0.0443 0.9854
LogSigmoid 0.0024 0.0031 0.9264 0.9840
LeakyReLU0.5 0.0051 0.0026 0.4470 0.9832
ReLU 0.0044 0.0027 0.3516 0.9827
Sigmoid 0.0018 0.0030 0.4697 0.9823
Softplus 0.0028 0.0026 0.8258 0.9799
ELU 0.0040 0.0028 0.3459 0.9761
CELU 0.0040 0.0028 0.3459 0.9761
SiLU 0.0028 0.0027 0.3141 0.9704
RReLU 0.0351 0.0205 0.9284 0.9497
LogSoftmax 1.2008 0.5332 0.4433 0.9212
Tanhshrink 0.0032 0.0029 0.9689 0.9135
Softmin 0.2612 0.1641 0.1442 0.7065
Softmax 0.3499 0.2152 0.1170 0.6440
Hardshrink 0.2690 0.3039 0.0339 0.4760

114

7.5 Empirical Insights into BNN Inference

Periodic activation functions (Sine, Cosine) form a special case: they yield
consistently high uncertainties already a short distance away from the training
data and therefore achieve the best AUROC values for OOD detection. This
behavior can be attributed to their oscillatory structure, which tends to am-
plify epistemic uncertainty in regions beyond the training data. This benefit,
however, comes at a slight cost to predictive MSE, reflecting the influence of
their high-frequency components. The visualizations in Figure 7.7 also highlight
the limitations of scalar metrics: for example, the Tanhshrink activation attains
the highest EUC, yet clearly underestimates uncertainty in data-free regions.
Nearly all activation functions ultimately succeed in distinguishing ID from OOD
regions, but they differ markedly in how they express epistemic uncertainty once
outside the data regimes.

Two Half Moons. In the two-dimensional classification task, BNNs with
different activation functions consistently capture the nonlinear decision boundary.
However, they systematically misattribute the resulting ambiguity to epistemic
rather than aleatoric uncertainty, which in theory should dominate in overlapping
class regions. The crucial differences emerge in the outer OOD regions. Here,
performance diverges sharply: periodic activation functions such as Sine and
Cosine achieve excellent AUROC scores, displaying a sharp rise in uncertainty
immediately beyond the data boundary, while some standard activation functions
like Sigmoid remain overconfident even far outside the training support (Table 7.2,
Figure 7.8). Across activation functions, we observe a characteristic ordering of
OOD behavior:

(i) Periodic activation functions (Sine, Cosine) yield the strongest OOD
discrimination, characterized by a sharp rise in uncertainty immediately
outside the data regions.

(ii) Smooth, positively sloped activation functions on both sides of the
origin (e.g., LeakyReLU0.5, SiLU, Hardswish) follow, typically increasing
uncertainty with distance at a moderate rate.

(iii) One-sided or flatter activation functions (e.g., ReLU, Softplus) tend to
delay uncertainty growth, remaining confident deeper into OOD regions.

(iv) Functions with shrinking response near the origin (e.g., Softshrink,
Tanhshrink) extend this behavior further.

115

Bayesian Neural Networks

Mean Class Prediction (ACC = 86.1%) Mutual Information (AUROC = 0.966)

Sine

Sine

Mean Class Prediction (ACC = 90.1%) Mutual Information (AUROC = 0.867)

LeakyReLU0.5

LeakyReLU0.5
Mean Class Prediction (ACC = 90.0%) Mutual Information (AUROC = 0.865)

SiLU

SiLU

Mean Class Prediction (ACC = 90.0%) Mutual Information (AUROC = 0.863)

Hardswish

Hardswish
Mean Class Prediction (ACC = 89.7%) Mutual Information (AUROC = 0.855)

ReLU

ReLU

Mean Class Prediction (ACC = 90.1%) Mutual Information (AUROC = 0.836)

Softplus

Softplus
Mean Class Prediction (ACC = 89.9%) Mutual Information (AUROC = 0.770)

Softshrink

Softshrink

Mean Class Prediction (ACC = 89.9%) Mutual Information (AUROC = 0.761)

Tanhshrink

Tanhshrink
Mean Class Prediction (ACC = 90.2%) Mutual Information (AUROC = 0.750)

Tanh

Tanh

Mean Class Prediction (ACC = 90.5%) Mutual Information (AUROC = 0.476)

Sigmoid

Sigmoid

Figure 7.8 Representative uncertainty visualizations for different activation func-
tions on the Two Half Moons dataset, using HMC-NUTS-based BNNs. Each
panel shows mean predictions (left) with decision boundary and mutual infor-
mation (right) as a proxy for epistemic uncertainty. While all predictions are
uncertain at the decision boundary, the uncertainty increase with distance to the
training data varies. Plots are ordered by decreasing AUROC.116

7.5 Empirical Insights into BNN Inference

(v) Saturating sigmoidal functions (e.g., Sigmoid, Tanh) are the most per-
sistently overconfident.

Importantly, this ordering is dataset-specific: while it holds for Two Half Moons,
it does not replicate on the Noisy Sine benchmark. This underlines that the
relevance of a particular activation trait must be assessed in the context of the
task rather than assumed to generalize universally.

A recent study by Tempczyk, Smoczyński, Smolenski-Jensen, and Cygan [33]
highlighted the strong sensitivity of BNNs to activation choice in the context of
mean-field variational inference. They argued that ReLU activation functions
induce highly non-Gaussian posterior landscapes, which are poorly captured
by Gaussian variational families, and showed that replacing ReLU with an
optimized LeakyReLU substantially improves uncertainty calibration without
compromising accuracy. Although our experiments rely on HMC with NUTS
rather than variational inference, and are not limited to mean-field Gaussian
distributions, the broader message carries over: activation functions exert a
pronounced influence on uncertainty quality. To connect to this line of work, we
evaluated their proposed best-performing variant—LeakyReLU with slope 0.5 in
the negative region, denoted LeakyReLU0.5 in our experiments. On the Noisy
Sine task, its performance was nearly indistinguishable from standard ReLU
and outperformed by the default LeakyReLU, indicating little advantage in this
setting. In contrast, on the Two Half Moons dataset, LeakyReLU0.5 clearly
outperformed both baselines and ranked among the strongest activation functions
overall, surpassed only by the periodic functions. These results reinforce the view
that carefully designed activation functions can mitigate uncertainty failures,
while also confirming that their benefits remain highly task-dependent.

Insights and Takeaway. Across both benchmarks, several clear lessons emerge.
First, predictive quality alone is not a reliable guide for architecture design:
although most activation functions perform similarly within the data regime,
their ability to capture uncertainty differs substantially. Second, it seems there is
no universally best activation function. Functions that work well in one setting
may fail in another, as exemplified by Sigmoid, which produces smooth and
realistic uncertainty on Noisy Sine but remains overconfident in Two Moons.
Third, certain patterns emerge: for example periodic activation functions often

117

Bayesian Neural Networks

excel at OOD detection in low-dimensional tasks. However, these tendencies are
not universal and do not necessarily transfer between datasets.

The overarching message is that activation function choice is a critical design
aspect in BNNs. Unlike in deterministic models, where activation functions
can often be swapped without major impact, uncertainty-aware models are
highly sensitive to this decision. Small-scale architecture searches are therefore
essential to identify suitable functions for a given dataset and model. Periodic
activation functions appear particularly promising for robust OOD detection,
but no universal best option exists, and careful tuning remains indispensable.

Looking ahead, more adaptive strategies may further improve activation
design for BNNs. In preliminary work, we explored Kolmogorov–Arnold Networks
(KANs) [5] to learn task-specific activation functions directly from data. These
methods showed encouraging potential to discover novel activation functions
that outperform the standard set in terms of uncertainty quality for BNNs.
Although this line of research is not yet mature enough to be included in the
present work, it suggests that the future of BNN design may involve learning
activation functions tailored to uncertainty quantification rather than relying on
fixed, hand-crafted functions.

Other Architectural Effects. Beyond activation functions, other architec-
tural choices also have a pronounced impact on uncertainty estimation in BNNs.
Even within the same inference method, network depth and width strongly
influence how uncertainty propagates. For MLP-based models, shallow or nar-
row networks tend to be overconfident, whereas overly large ones often become
unstable and degrade in uncertainty quality. This reflects a practical trade-off:
increasing capacity improves expressiveness but complicates training. Effective
BNN design therefore requires balancing model capacity against the fidelity of
uncertainty estimation.

A similar pattern appears across architectural families. Figure 7.9 compares
a fully connected MLP (one hidden layer, 100 neurons) and a convolutional
LeNet-5 on the Dirty-MNIST benchmark, both trained with mean-field SVI
for 2000 epochs using KL annealing. Although predictive accuracy on MNIST
is comparable (96.6% for the MLP, 97.9% for LeNet-5), the LeNet-5 achieves
much stronger OOD detection (AUROC 0.93 vs. 0.75) and clearer uncertainty
separation across the MNIST, Ambiguous-MNIST, and Fashion-MNIST subsets.

118

7.5 Empirical Insights into BNN Inference

0.0 0.5 1.0 1.5 2.0
Softmax Entropy

0.0

0.5

1.0

1.5

2.0
M

ut
ua

l I
nf

or
m

at
io

n

MLP

0.0 0.5 1.0 1.5 2.0
Softmax Entropy

LeNet-5
MNIST
AmbiguousMNIST
FashionMNIST
AUROCMLP = 0.7494
AUROCLeNet-5 = 0.9320

Figure 7.9 Comparison of two SVI-trained BNNs on the Dirty-MNIST bench-
mark: a one-hidden-layer MLP (100 units) and a LeNet-5 convolutional network.
Uncertainty separation is illustrated in the space of softmax entropy (aleatoric un-
certainty) and mutual information (epistemic uncertainty). The LeNet-5 achieves
stronger OOD separation and better uncertainty calibration across MNIST (ID),
Ambiguous-MNIST (aleatoric), and Fashion-MNIST (OOD) subsets, highlighting
the impact of architectural expressiveness.

This highlights that greater architectural expressiveness—here through convo-
lutional feature extraction—can substantially improve uncertainty estimation
under identical inference settings. Hence, model architecture is a decisive factor
in the calibration quality of BNNs.

7.5.2 Comparison of MCMC and SVI

To compare the practical behavior of different Bayesian inference methods, we
evaluate sampling-based inference using HMC with NUTS—referred to as MCMC
in the following—against SVI on the Two Half Moons dataset. This setup enables
a direct comparison between the posterior sampling approach and its variational
alternative.

Comparison of Figure 7.10 with Figure 7.8 illustrates qualitative differences
in the resulting uncertainty maps, while Table 7.2 summarizes their quantitative
performance. As expected, MCMC generally achieves higher AUROC values for
out-of-distribution detection and produces more stable uncertainty patterns across
activation functions. Only in two cases does SVI reach superior AUROC, and in

119

Bayesian Neural Networks

Mean Class Prediction (ACC = 87.7%) Mutual Information (AUROC = 0.743)

Sine

Sine

Mean Class Prediction (ACC = 87.8%) Mutual Information (AUROC = 0.520)

LeakyReLU0.5

LeakyReLU0.5
Mean Class Prediction (ACC = 88.8%) Mutual Information (AUROC = 0.771)

SiLU

SiLU

Mean Class Prediction (ACC = 89.7%) Mutual Information (AUROC = 0.760)

Hardswish

Hardswish
Mean Class Prediction (ACC = 88.3%) Mutual Information (AUROC = 0.720)

ReLU

ReLU

Mean Class Prediction (ACC = 88.3%) Mutual Information (AUROC = 0.868)

Softplus

Softplus
Mean Class Prediction (ACC = 89.9%) Mutual Information (AUROC = 0.576)

Softshrink

Softshrink

Mean Class Prediction (ACC = 90.0%) Mutual Information (AUROC = 0.551)

Tanhshrink

Tanhshrink
Mean Class Prediction (ACC = 88.9%) Mutual Information (AUROC = 0.460)

Tanh

Tanh

Mean Class Prediction (ACC = 89.4%) Mutual Information (AUROC = 0.495)

Sigmoid

Sigmoid

Figure 7.10 SVI-BNNs results on the Two Half Moons dataset with various
activation functions. Trained with linear KL–annealing for 500 epochs after
deterministic pretraining.

120

7.5 Empirical Insights into BNN Inference

Table 7.2 Impact of activation functions on BNNs trained with SVI and MCMC
on the Two Half Moons dataset. Accuracy (%) and AUROC are reported, with
the better value per activation highlighted in bold.

Activation Accuracy [%] ↑ AUROC ↑
SVI MCMC SVI MCMC

Sine 87.73 86.13 0.7427 0.9663
LeakyReLU0.5 87.80 90.07 0.5198 0.8666
SiLU 88.80 90.00 0.7706 0.8646
Hardswish 89.67 90.00 0.7602 0.8631
ReLU 88.27 89.67 0.7205 0.8551
Softplus 88.27 90.07 0.8680 0.8361
Softshrink 89.93 89.87 0.5763 0.7698
Tanhshrink 90.00 89.93 0.5514 0.7606
Tanh 88.93 90.20 0.4605 0.7498
Sigmoid 89.40 90.47 0.4953 0.4757

merely three cases it slightly exceeds the predictive accuracy of MCMC. This
confirms the expected advantage of sampling-based inference in both robustness
and calibration.

Beyond average performance, the visual comparison reveals qualitative dis-
tinctions that highlight the greater sensitivity of SVI models to architectural
choices—particularly the activation function. While the hyperparameter sensitiv-
ity of SVI is well known in the community, its dependence on activation functions
has received far less attention. As discussed earlier in Section 7.5.1 and shown by
Tempczyk, Smoczyński, Smolenski-Jensen, and Cygan [33], activation choice can
substantially affect uncertainty calibration in BNNs. Their study, however, was
limited to ReLU variants within mean-field SVI BNNs, whereas our experiments
demonstrate that this sensitivity generalizes across a broader spectrum of activa-
tion functions and inference methods. The proposed LeakyReLU0.5 [33] variant
exhibited qualitatively distinct behavior but did not outperform the standard
ReLU, underscoring that such effects are strongly task-dependent.

More broadly, our findings confirm that this phenomenon extends well beyond
the ReLU family. Across activation functions, SVI outcomes vary considerably
more than under MCMC, often leading to inconsistent or unstable uncertainty
patterns. Similar activation shapes tend to induce similar artifacts: for instance,
LeakyReLU0.5 produces a pronounced asymmetry, leaving one region of the
input space with persistently low uncertainty, while periodic activation functions
such as Sine retain large-scale oscillatory patterns but lack the sharp ID/OOD

121

Bayesian Neural Networks

transition observed in the MCMC baseline. Interestingly, Softplus emerges as
the best-performing activation under SVI, achieving AUROC values on par with
the strongest MCMC models. This highlights a central observation: the optimal
activation function for a given task and architecture is not invariant to the
inference method. In practice, the most effective activation functions for SVI
may differ from those for MCMC, complicating BNN research and the transfer
of architectures between inference paradigms.

From a practitioner’s perspective, these results have two main implications.
First, SVI can, in principle, match the uncertainty quality of MCMC—but
only under carefully tuned configurations. In this study, the Softplus–SVI
combination reached comparable OOD detection quality, whereas most other
activation functions underperformed the sampling-based models. Second, this
tuning sensitivity emphasizes that SVI-based BNNs require substantially more
effort in hyperparameter optimization and architecture adaptation to achieve
reliable results. The stochastic optimization process and mean-field assumptions
of SVI appear to amplify such sensitivities, in contrast to the more stable but
computationally demanding MCMC approach.

For the higher-dimensional Dirty-MNIST benchmark [31], this trade-off be-
comes particularly evident. Figure 7.11 compares predictions from MCMC-
and SVI-trained BNNs using a compact MLP with one hidden layer of 100
neurons. While both models achieve comparable accuracy, they struggle to dis-
entangle epistemic from aleatoric uncertainty. Both assign high softmax entropy
to Fashion-MNIST samples, but only the MCMC model simultaneously reports
high mutual information, correctly identifying these samples as OOD. The SVI
model, in contrast, misattributes many of them as aleatoric, resulting in weaker
OOD discrimination.

A complementary experiment, shown in Figure 7.9, demonstrates that in-
creased architectural expressiveness can mitigate these effects. Replacing the
simple MLP with a convolutional LeNet-5—trained via SVI—leads to markedly
improved uncertainty separation and OOD detection performance. Despite re-
lying on approximate inference, the LeNet-5 achieves near-perfect separation
between MNIST, Ambiguous-MNIST, and Fashion-MNIST subsets while main-
taining high predictive accuracy. However, this architecture already lies in a
regime where training with MCMC becomes prohibitively time-consuming.

Together, these results highlight a clear trade-off: MCMC remains the most

122

7.5 Empirical Insights into BNN Inference

0.0 0.5 1.0 1.5 2.0
Softmax Entropy

0.0

0.5

1.0

1.5

2.0
M

ut
ua

l I
nf

or
m

at
io

n

MCMC

0.0 0.5 1.0 1.5 2.0
Softmax Entropy

SVI
MNIST
AmbiguousMNIST
FashionMNIST
AUROCMCMC = 0.9929
AUROCSVI = 0.7494

Figure 7.11 Comparison of MCMC- and SVI-trained BNNs on the Dirty-MNIST
dataset using a MLP (one hidden layer, 100 neurons). Both models assign high
softmax entropy to Fashion-MNIST samples—an incorrect attribution, since
these should be characterized by high mutual information. The MCMC model
however, also attributes high mutual information, correctly marking them as
OOD, whereas SVI does in many cases not. Despite similar accuracy (95.8%
MCMC vs. 96.6% SVI), MCMC delivers far superior OOD detection (AUROC
MCMC = 0.99 vs. 0.75 for SVI).

reliable approach for uncertainty calibration but is computationally infeasible
for more complex architectures, whereas SVI offers superior scalability and can
leverage expressive models to compensate for its approximate nature.

Taken together, the three benchmarks reveal that the practical success of
mean-field SVI for BNNs is highly dataset and architecture dependent. On simple,
low-dimensional tasks such as Noisy Sine and Two Half Moons, the method
often struggles to reproduce the well-calibrated uncertainty structure obtained
with sampling-based inference, showing strong sensitivity to both architectural
and hyperparameter choices. In contrast, on higher-dimensional datasets like
Dirty-MNIST, where full MCMC becomes computationally infeasible, carefully
tuned SVI models can achieve robust uncertainty separation and scale efficiently
to larger networks. Overall, these results indicate that mean-field SVI remains a
practical and scalable approximation, but its reliability—and the degree of tuning
required—depend critically on the dataset characteristics and model architecture.

123

Bayesian Neural Networks

101 102 103

Number of MCMC Samples

10 MFLOPs

1 GFLOPs

100 GFLOPs

10 TFLOPs

1 PFLOPs

FL
OP

s

MCMC (NumPyro)
MCMC (Pyro)
MCMC (TFP)

(a) MCMC Samples

102 103 104 105

Number of Parameters

MCMC (NumPyro)
MCMC (Pyro)
MCMC (TFP)
SVI (Pyro, bs=100)

(b) Model Size

103 104 105

Training Dataset Size

MCMC (NumPyro)
MCMC (Pyro)
MCMC (TFP)
SVI (Pyro, bs=100)

(c) Dataset Size

Figure 7.12 Scaling of FLOPs for MCMC and SVI training of BNNs. FLOP
counts increase linearly with both model and dataset size across all probabilistic
programming frameworks (Pyro, NumPyro, TensorFlow Probability). While the
overall trends are similar, SVI requires roughly two orders of magnitude fewer
FLOPs, highlighting its superior computational efficiency.

7.5.3 Computational Scaling of Bayesian Inference

While previous sections have qualitatively noted that MCMC tends to be com-
putationally more demanding than variational approaches, we now quantify this
difference empirically. Specifically, we evaluate the computational scaling of
HMC–NUTS and mean-field SVI across varying model and dataset sizes, as well
as across three probabilistic programming frameworks: Pyro [82], NumPyro [98],
and TensorFlow Probability [146]. The goal of these experiments is not to opti-
mize predictive performance, but to characterize how computational cost grows
with problem complexity. Here, we specifically measure the computational cost
of Bayesian inference for training BNNs—that is, approximating the posterior
distribution over network weights—rather than the subsequent predictive in-
ference phase used for evaluating new inputs. This distinction, illustrated in
Figure 7.1, is essential for understanding the trade-off between training and
inference costs for BNNs: Approaches such as HMC are dominated by expensive
posterior sampling during training, whereas other techniques may instead shift
the computational burden toward a larger number of required samples—and thus
forward passes—at inference time.

The scalability experiments in this subsection were conducted as part of a

124

7.5 Empirical Insights into BNN Inference

102 103 104 105

Number of Parameters

10 2

10 1

100

101

102

103
Ti

m
e

pe
r S

am
pl

e/
Ep

oc
h

[s
]

MCMC (NumPyro)
MCMC (Pyro)
MCMC (TFP)
SVI (Pyro, bs=100)

(a) Model Size

103 104 105

Training Dataset Size

10 2

10 1

100

101

102

103

Ti
m

e
pe

r S
am

pl
e/

Ep
oc

h
[s

]

MCMC (NumPyro)
MCMC (Pyro)
MCMC (TFP)
SVI (Pyro, bs=100)

(b) Dataset Size

Figure 7.13 Average latency per sample (for MCMC) and per epoch (for SVI)
across model and dataset size. While both methods scale with model size, SVI
remains significantly faster, whereas MCMC incurs higher latency due to adaptive
sampling steps.

master’s thesis project.2 All experiments were executed on an AMD EPYC 7302P
16-core processor, with hardware-level metrics collected using the likwid per-
formance monitoring framework [221]. Unless otherwise stated, the evaluated
networks were MLPs with three hidden layers of 50 neurons each. Model size was
systematically varied by adjusting both the network depth (from one to five hid-
den layers) and layer width (from 25 to 200 neurons), while dataset size was scaled
on the Noisy Sine benchmark by increasing the number of training samples. For
MCMC, we employed HMC with the NUTS sampler and collected 50 posterior
samples following 100 warm-up iterations. For SVI, models were trained for 150
epochs to ensure comparable computational budgets across settings. While these
configurations are insufficient to achieve fully converged predictive quality, they
provide a consistent and representative basis for measuring computational cost
and scaling trends. All Pyro experiments were executed with JIT compilation
enabled to mitigate Python interpreter overhead.

Across frameworks, the FLOP count increases approximately linearly with
both model and dataset size (Figure 7.12). The differences between frameworks
are negligible, indicating that they perform essentially the same amount of

2At Heidelberg University and carried out by Jonathan Bernhard.

125

Bayesian Neural Networks

arithmetic work for comparable models. Overall, SVI requires about two orders
of magnitude fewer operations than MCMC, consistent with the additional
gradient-based sampling steps in HMC.

Figure 7.13 illustrates the measured latency per iteration—defined as time
per MCMC sample or per SVI training epoch—as a function of model and
dataset size. With increasing model size, the computational gap between the
two inference schemes widens markedly: while SVI exhibits a gradual, near-
linear growth in runtime, MCMC slows down disproportionately as the number
of parameters increases. This trend is most evident for the NumPyro and
TensorFlow Probability implementations, where time per sample rises steeply
with model complexity. For Pyro, the effect is somewhat masked by interpreter
overhead, which dominates total latency at smaller scales. Overall, the results
highlight that MCMC scales considerably worse with parameter count than
SVI, reinforcing the computational advantage of optimization-based variational
inference.

We attribute the poorer scaling of MCMC—more precisely, HMC with the
NUTS sampler—relative to SVI mainly to its reliance on repeated gradient
evaluations for each posterior sample. Each trajectory in HMC involves simulat-
ing the system dynamics over many leapfrog steps, effectively multiplying the
number of full forward and backward passes through the network. As model
dimensionality increases, the posterior landscape becomes increasingly complex,
demanding longer trajectories and smaller integration step sizes to maintain
numerical stability. In contrast, SVI performs amortized inference by directly
optimizing a variational objective, requiring only a single gradient update per
mini-batch and scaling with only a modest increase in cost as model size grows.
Empirically, this effect appears as a significantly steeper growth in computation
time for larger architectures under MCMC.

A more detailed view of computational efficiency is provided by the roofline
analysis in Figure 7.14. Across all configurations, MCMC sampling operates
in a regime of low operational intensity, confirming that Bayesian sampling on
modern CPUs is predominantly memory-bound rather than compute-bound.
Most measurements fall between the effective DRAM and L3-cache bandwidths,
indicating that limited data reuse and frequent memory transfers dominate
runtime. Increasing either model or dataset size raises the operational intensity,
as larger workloads improve cache locality and arithmetic-to-memory ratios. In

126

7.5 Empirical Insights into BNN Inference

10 4 10 3 10 2 10 1 100

Operational Intensity [FLOPs/Byte]

101

102

103

104

105

106
Pe

rfo
rm

an
ce

 [M
FL

OP
s/

s]
L1
L2
L3
DRAM
MCMC (NumPyro)
MCMC (TFP)
MCMC (Pyro)
SVI (Pyro)

102

103

104

105

M
od

el
 P

ar
am

et
er

s

(a) Model Size

10 3 10 2 10 1 100

Operational Intensity [FLOPs/Byte]

102

103

104

105

106

Pe
rfo

rm
an

ce
 [M

FL
OP

s/
s]

L1
L2
L3
DRAM
MCMC (NumPyro)
MCMC (TFP)
MCMC (Pyro)
SVI (Pyro)

103

104

105

Da
ta

se
t S

ize

(b) Dataset Size

Figure 7.14 Roofline analysis of MCMC and SVI training for BNNs. All config-
urations operate in the memory-bound regime between DRAM and L3-cache
bandwidth, with larger models and datasets increasing operational intensity and
improving hardware utilization.

particular, scaling the dataset shifts the computation closer to the L3-bandwidth
limit, suggesting more efficient processor utilization for larger data regimes. From
an efficiency standpoint, both larger models and datasets make better use of the
available hardware, though at the cost of substantially higher absolute compute
demand.

For SVI, the picture differs due to mini-batch training: all dataset-size
configurations cluster around a similar operational intensity, as memory access
patterns are dominated by fixed-size batches rather than the total dataset. When
scaling model size, operational intensity increases proportionally with the number
of parameters, yet remains below that of MCMC, reflecting the lower arithmetic
density of its gradient-based optimization. Among the evaluated frameworks,
NumPyro and TensorFlow Probability achieve the highest effective hardware
utilization, while Pyro remains most constrained by interpreter and runtime
overhead.

In summary, the scaling analysis highlights a clear computational trade-off.
SVI consistently achieves lower runtime and scales more efficiently with both
model and dataset size, whereas MCMC with NUTS incurs substantially higher
cost but remains more robust in terms of convergence and calibration. All
implementations operate in a memory-bound regime, indicating that future
efficiency gains will primarily depend on improving data movement and cache
utilization rather than on increasing raw compute throughput.

127

Bayesian Neural Networks

Summary

This chapter provided an empirical examination of Bayesian neural networks,
analyzing how inference methods, architectural choices, and implementation fac-
tors shape uncertainty quality and computational efficiency. Across experiments,
activation functions emerged as a major determinant of epistemic behavior: while
predictive accuracy remained similar, uncertainty calibration varied drastically.
Comparisons of MCMC and SVI showed that sampling-based inference yields
the most reliable uncertainty estimates, whereas mean-field SVI is more sensitive
to architecture and activation choice yet scales to larger models. Architectural
expressiveness also plays a critical role, exemplified by the transition from a
simple MLP to a slightly larger CNN, markedly improved uncertainty separation.
Finally, computational scaling analyses revealed that SVI is orders of magni-
tude faster and scales better with model size than MCMC, though both are
predominantly memory-bound.

Overall, reliable BNN inference depends as much on the network architecture
and activation functions as on the chosen Bayesian inference method. MCMC
remains the reference standard for small, precision-critical models, while SVI
enables scalable Bayesian deep learning when coupled with well-chosen architec-
tures.

While this chapter established the principles of designing and training
Bayesian neural networks, deploying them on embedded hardware raises new
challenges, where limited computation and memory dominate design trade-offs.
The next chapters therefore move from training to deployment, exploring efficient
BNN inference methods that sustain reliable uncertainty estimation under the
tight constraints of real-world systems.

128

8
Compiling Probabilistic Forward Pass

BNNs for Embedded Systems

In theory, there is no difference between theory and practice,
while, in practice, there is.

— Benjamin Brewster

As discussed in the previous chapter, BNNs provide a principled way to quan-
tify uncertainty, distinguishing between aleatoric and epistemic sources. How-
ever, nearly all established Bayesian inference methods, such as Markov chain
Monte Carlo, stochastic variational inference, and even modern approximation
techniques like Monte Carlo Dropout [175] or Deep Ensembles [154], remain
computationally costly. In practice, reliable uncertainty estimation typically
requires drawing many posterior samples and executing multiple forward passes
per input, which prevents deployment on embedded and resource-constrained
platforms. This chapter is based on our work “Accelerated Execution of Bayesian
Neural Networks using a Single Probabilistic Forward Pass and Code Genera-
tion”, currently under review at the ACM Transactions on Architecture and Code

129

Compiling Probabilistic Forward Pass BNNs for Embedded Systems

Optimization [3].
This chapter focuses on the Probabilistic Forward Pass (PFP) [48], [186],

which can be regarded as an extreme form of SVI. While SVI models weights as
Gaussian-distributed parameters under a mean-field assumption, PFP extends
this approximation to activations as well. This assumption enables distributions
to be propagated in closed form, allowing both predictions and uncertainties to
be computed within a single forward pass. By eliminating repeated stochastic
evaluations, PFP directly addresses the central computational bottleneck of BNNs.
Although the Gaussian restriction reduces the ability to capture non-Gaussian
activation distributions, it provides a tractable and efficient approximation
particularly suited for inference on resource-constrained systems.

So far, PFP has remained largely theoretical, as its Gaussian-propagating
operators are absent from standard ML frameworks. Without this support, no
practical path to deployment was available. In this chapter, we close this gap by
presenting the first end-to-end realization of PFP. We demonstrate how the deep
learning compiler TVM [115], can be extended with custom operators to support
PFP. These compilers provide a generic implementation pathway transferable
across hardware backends while maintaining seamless integration with common
ML workflows. As a result, models trained with SVI can be exported, optimized,
and deployed with minimal effort—enabling a capability that was previously out
of reach.

The chapter begins by establishing a training pipeline based on SVI and
shows that PFP achieves comparable uncertainty estimation and out-of-domain
detection to sampling-based baselines on the Dirty-MNIST dataset [31]. We
then extend TVM with a library of custom operators for MLPs and CNNs,
and apply both manual and automatic optimizations to improve the efficiency
of computationally demanding operators. Finally, we benchmark the resulting
implementation on embedded ARM processors, demonstrating speedups of up to
four orders of magnitude compared to SVI-based baselines.

Altogether, this chapter demonstrates how deep learning compilers, opera-
tor optimizations, and algorithmic approximations together make BNN infer-
ence—and thus uncertainty quantification—feasible even on resource-constrained
embedded systems.

130

8.1 Efficient Inference of BNNs

8.1 Efficient Inference of BNNs

Achieving efficiency is a central challenge for both standard neural networks
and BNNs. This section reviews related efforts, beginning with compiler and
compression techniques for deterministic models on embedded hardware, and then
focusing on methods that aim to make BNNs feasible under similar constraints.

Resource-Efficient Deployment on Mobile Devices. Deploying machine
learning models on mobile hardware requires strict control of computational
and memory budgets. To this end, deep learning compilers have emerged as
a key abstraction layer that bridges high-level machine learning frameworks
and heterogeneous hardware backends. They automate optimizations such as
operator fusion, memory scheduling, and parallelization, and increasingly support
automated tuning of implementation schedules. Prominent examples include Ten-
sor Virtual Machine (TVM) [115] and Multi-Level Intermediate Representation
(MLIR) [45], which provide extensible infrastructures for graph- and operator-
level optimizations across CPUs, GPUs, and reconfigurable hardware such as
FPGAs. TVM in particular combines these optimizations with learning-based
auto-tuning, enabling efficient code generation across diverse backends. We
build on this abstraction in the present chapter by extending TVM with custom
operators to support the non-standard operators of the Probabilistic Forward
Pass.

Model compression techniques such as pruning and quantization reduce the
computational and memory footprint of neural networks, enabling deployment
on embedded hardware [120], [133], [178]. More advanced approaches use rein-
forcement learning or neural architecture search to automatically adapt sparsity
and precision across layers [21], [90]. An introduction to compression methods
and their hardware implications has already been provided in Chapter 3, while
Galen (Chapter 4) extends these ideas with automatic compression guided by
sensitivity analysis and hardware measurements. For a broader survey of efficient
neural network (NN) inference, we refer to Roth [12].

From a Bayesian perspective, Louizos, Ullrich, and Welling proposed com-
pression techniques that embed priors into pruning and use posterior uncertainty
to assign precision [160]. These methods, however, are designed for deterministic
networks and do not address efficiency in BNNs.

131

Compiling Probabilistic Forward Pass BNNs for Embedded Systems

Figure 8.1 Moment matching in PFP, shown for the ReLU activation. A Gaussian
input distribution truncated by the non-linearity (solid) is approximated by a
Gaussian (dashed) with matching first and second moment.

Bayesian Neural Networks on Resource-Constrained Devices. Lightweight
BNN approximations such as Monte Carlo Dropout (MCDO) [175] and Deep
Ensembles [154] are widely used in practice. They reduce training cost compared
to full Bayesian inference, but sacrifice theoretical rigor and, at inference time,
still require multiple forward passes. Although significantly more efficient than
sampling-based BNNs, SVI remains too costly for embedded systems, where
latency and energy budgets are highly constrained.

Efforts that more directly target BNNs on constrained hardware remain
limited. Banerjee, Kalbarczyk, and Iyer, for example, introduced AcMC2, a
compiler that maps probabilistic models to optimized MCMC-based accelerators,
implemented either as ASICs or on FPGAs [81]. However, the focus is on general
probabilistic models rather than BNNs. Other dedicated accelerators, including
ShiftBNN [51], B2N2 [14], and VIBNN [113], use FPGAs or ASICs together
with large-scale Gaussian random number generators to accelerate BNNs.

While methods like MCDO and ensembles provide practical workarounds,
their reliance on repeated forward passes limits applicability on embedded devices.
No existing work demonstrates efficient deployment of SVI-based BNNs on such
platforms.

8.2 Probabilistic Forward Pass

The concept of the Probabilistic Forward Pass was first introduced by Roth [48],
[186] as an extreme approximation of SVI-based BNNs. By extending the Gaus-
sian assumption from weights to activations, Roth showed that distributions

132

8.2 Probabilistic Forward Pass

can be propagated in closed form throughout the network, replacing repeated
sampling with deterministic transformations. A key idea is moment matching:
whenever a non-Gaussian distribution arises within the network, it is mapped
back to a Gaussian by matching the first two moments. This ensures that propa-
gation remains tractable while still capturing predictive uncertainty. Figure 8.1
illustrates this principle for the widely used ReLU activation, where a Gaussian
activation is truncated by the non-linearity and then transformed back into
Gaussian form.

Consider a fully connected layer with Gaussian inputs characterized by mean
and variance (µin,σ2

in) and Gaussian weights with parameters (µw,σ2
w). The

output distribution is obtained by propagating expectations and variances through
the linear transformation. The mean is computed by propagating expectations,
while the variance reflects uncertainty from both weights and inputs. PFP
assumes independence between activations—a mean-field approximation that
makes variance propagation tractable. Equations 8.1 and 8.2 show the scalar
form for the mean and variance of neuron i in layer l:

µal
i
=

dl−1∑︂
j=1

µwl
ij

·µ
xl−1

j
(8.1)

σ2
al

i
=

dl−1∑︂
j=1

σ2
wl

ij
·E
[︃(︂

xl−1
j

)︂2]︃
+µ2

wl
ij

·
(︃
E
[︃(︂

xl−1
j

)︂2]︃
−µ2

xl−1
j

)︃
. (8.2)

Here the second raw moment E(x2) = µ2 +σ2 is applied. The variable dl−1

denotes the width of the previous layer, i.e., the input dimension to layer l. This
can also be written in vectorized form using mean and variance directly:

σ2
a = σ2

w ·E[x2]+µ2
w ·
(︂
E[x2]−µ2

x

)︂
(8.3)

= σ2
w ·µ2

x +µ2
w ·σ2

x +σ2
w ·σ2

x (8.4)

Later implementations support both formulations and select the computa-
tionally cheaper one. To avoid costly conversions, the outputs of one layer and
inputs of the next are kept in a consistent form, either as mean–variance pairs or
as mean–second-raw-moment pairs.

A key challenge arises in non-linear activation functions, where Gaussianity

133

Compiling Probabilistic Forward Pass BNNs for Embedded Systems

is not preserved. For the widely used ReLU, PFP therefore applies the moment-
matching procedure already introduced above (cf. Figure 8.1). The truncated
Gaussian produced by the non-linearity is projected back into Gaussian form by
matching its first and second moments, keeping propagation in closed form. The
resulting expressions for mean and second raw moment are:

µxl
i
= E[xl

i] =
µal

i

2

⎛⎜⎜⎝1+erf

⎛⎜⎜⎝ µal
i√︃

2σ2
al

i

⎞⎟⎟⎠
⎞⎟⎟⎠+

⌜⃓⃓⎷σ2
al

i

2π
exp

⎛⎝−
µ2

al
i

2σ2
al

i

⎞⎠ (8.5)

E
[︂
(xl

i)2
]︂

=
σ2

al
i
+µ2

al
i

2

⎛⎜⎜⎝1+erf

⎛⎜⎜⎝ µal
i√︃

2σ2
al

i

⎞⎟⎟⎠
⎞⎟⎟⎠+µal

i

⌜⃓⃓⎷σ2
al

i

2π
exp

⎛⎝−
µ2

al
i

2σ2
al

i

⎞⎠ . (8.6)

Here erf(u) = 2√
π

∫︁ u
0 e−z2

dz denotes the error function [48]. Propagating
distributions through successive layers in this way yields the final predictive
distribution at the network output. During inference, predictions require only
a single pass, directly producing expected outputs and uncertainties without
ensembles or repeated runs. By reformulating the computation to operate in
closed form on distributions, PFP provides a scalable and efficient pathway to
deploy BNNs in practice.

To illustrate the effect of predictive sampling and the advantages of PFP,
Figure 8.2 compares uncertainty estimation in an SVI-based BNN and in PFP.
Panel a shows predictions on three example images from MNIST [232], Ambiguous-
MNIST [31], and Fashion-MNIST [169], the latter serving as an out-of-distribution
example.

Recall that softmax entropy (SME) quantifies aleatoric uncertainty as the
average class entropy across predictive samples. It reflects variability already
present within individual predictions, but is aggregated by averaging over all
samples. In contrast, mutual information (MI) measures epistemic uncertainty as
the disagreement between predictive samples, and therefore requires variability
across samples to become visible. Panel b illustrates this for SVI: while SME
stabilizes quickly, reliable MI estimates—critical for OOD detection—converge
only after many samples, making SVI computationally demanding.

PFP, by contrast, propagates means and variances jointly in closed form.
This eliminates the need for repeated sampling and produces both uncertainty

134

8.2 Probabilistic Forward Pass

Sa
m

pl
e

1 VI-BNN
SME = 2.23E+00
MI = 0.00E+00

 VI-BNN
SME = 2.30E + 00
MI = 1.09E-03

 VI-BNN
SME = 2.23E+00
MI = 4.96E 02

Sa
m

pl
e

2
Sa

m
pl

e
3

Ga
us

sia
n

0 1 2 3 4 5 6 7 8 9
Class Labels

PF
P

 PFP-BNN
SME = 7.20E-14
MI = 1.08E-15

0 1 2 3 4 5 6 7 8 9
Class Labels
 PFP-BNN
SME = 1.84E + 00
MI = 2.60E-01

0 1 2 3 4 5 6 7 8 9
Class Labels
 PFP-BNN
SME = 7.92E-02
MI = 1.87E + 00

(a) Illustration of BNN Predictions

0.0

0.5

1.0

1.5

To
ta

l P
re

d.
 U

nc
er

ta
in

ty

0.0

0.2

0.4

0.6

0.8

So
ftm

ax
 E

nt
ro

py
2 4 8 16 32 64 12

8
25

6
51

2
10

24
20

48
40

96
81

96

Number of Samples

0.0

0.5

1.0

1.5

M
ut

ua
l I

nf
or

m
at

io
n

MNIST AmbiguousMNIST FashionMNIST

(b) Effect of Number of Samples in
SVI-BNNs

Figure 8.2 Comparison of uncertainty estimation in SVI-based BNNs and PFP.
(a) Exemplary predictions on MNIST [232], Ambiguous-MNIST [31], and Fashion-
MNIST [169] as OOD sample. For each dataset, predictions are shown for an
SVI-based BNN (blue samples), its Gaussian approximation, and PFP. Vari-
ability across class probabilities captures aleatoric uncertainty (SME), while
disagreement between samples indicates epistemic uncertainty (MI). (b) Influ-
ence of the number of SVI predictive samples on uncertainty metrics, showing
that reliable mutual information estimates require many samples, whereas PFP
obtains them in a single pass.

measures in a single forward pass. While this comes at the cost of a less sharp
separation between aleatoric and epistemic components, it drastically reduces
computational overhead compared to sampling-based inference.

8.2.1 Conceptual Limitations

The efficiency of PFP comes at the price of assuming Gaussian-distributed logits.
This structural simplification ensures closed-form propagation, but it limits the
ability to represent non-Gaussian predictive distributions.

As a result, total predictive uncertainty—quantified by Shannon Entropy—is

135

Compiling Probabilistic Forward Pass BNNs for Embedded Systems

Table 8.1 Influence of Gaussian approximation on uncertainty metrics. While
total uncertainty remains consistent, the separation of aleatoric and epistemic
components may degrade under strong epistemic uncertainty.

Unc. Regime Total Softmax Entropy Mutual Information
True Gauss True Gauss True Gauss

Low 1.5008 1.5007 1.5007 1.5007 0.0 0.0
Aleatoric high 1.6094 1.6094 1.6094 1.6094 0.0 0.0
Epistemic high 1.6094 1.6094 1.5002 1.5484 0.1092 0.0610

largely preserved, but the decomposition into SME (aleatoric) and MI (epistemic)
can become biased. Table 8.1 illustrates this effect using artificial regimes
with low, high-aleatoric, and high-epistemic uncertainty. While the Gaussian
approximation faithfully reproduces total uncertainty in all cases, errors arise
under high epistemic uncertainty, where mutual information is underestimated
by about 44%.

In practice, this means that PFP preserves overall uncertainty levels, but
may compromise the disentanglement of aleatoric and epistemic components
whenever predictive distributions deviate substantially from Gaussianity.

8.3 PFP Training and Uncertainty Estimation

A central advantage of the Probabilistic Forward Pass is its compatibility with
pretrained SVI models. It benefits from the relatively fast training of SVI while
leveraging established tools for constructing SVI-based BNNs. Probabilistic
programming languages such as Pyro [82], Stan,1 and TensorFlow Probability2

provide flexible frameworks for designing, training, and evaluating probabilistic
models. Here, BNNs are trained with Pyro SVI and then exported for use with
PFP.

Two neural architectures are considered in the experiments. First, a simple
MLP with a single hidden layer of 100 neurons. Second, the LeNet-5 [232]
architecture. In both cases, all weights are treated probabilistically with Gaussian
priors. The mean-field assumption [61] is applied to simplify training by neglecting
correlations between Gaussian weight distributions.

1https://mc-stan.org/
2https://github.com/tensorflow/probability

136

https://mc-stan.org/
https://github.com/tensorflow/probability

8.3 PFP Training and Uncertainty Estimation

Training with SVI resembles standard neural network optimization but in-
troduces additional loss terms and hyperparameter sensitivities. Due to the
multi-objective nature of the evidence lower bound, training is slower and requires
careful initialization. In our setup, SVI-BNNs are trained for 1000 epochs using
the Adam optimizer [207] with a fixed learning rate of 0.001. Variational posterior
weights are initialized with µ = 0.08 and σ = 0.0001, and a mini-batch size of
100 is used for training.

Balancing the expected log-likelihood with the KL divergence term in the
ELBO is non-trivial. Instead of a fixed scaling factor, we employ KL anneal-
ing [108], [204]. Here, the KL term weight A(e) is gradually increased from 0 to
αmax = 0.25 over the training epochs e,

ELBO(q,e) = E[logp(D|w)]−A(e) ·KL(q(w)||p(w|D)). (8.7)

This strategy improves robustness to initialization and avoids the need for non-
probabilistic pretraining.

The trained means and variances of the weights can be directly consumed by
PFP. A conversion from logarithmic to normal parameterization is performed,
followed by an uncertainty calibration step. This calibration applies a global
scaling to the variances and is referred to as the calibration factor.

We hypothesize that the need for calibration arises because moment-based
propagation only tracks the first two moments of the distributions and ignores
higher-order terms. At every non-linear transformation, the resulting non-
Gaussian distribution is projected back to Gaussian form, which introduces
systematic mismatches compared to full sampling. We assume that the main
contribution to this miscalibration stems from such moment-matching errors,
where higher-order moments beyond the mean and variance are neglected. In
addition, approximations in the original derivation of PFP, such as the use of
first-order Taylor expansions for nonlinearities [186], may further contribute
to the discrepancy. These effects accumulate across network components, and
the calibration factor provides a pragmatic global correction that aligns the
propagated variances with the uncertainties observed under sampling-based
inference.

To evaluate the ability of BNNs to capture both aleatoric and epistemic
uncertainty, we use the Dirty-MNIST dataset introduced by Mukhoti, Kirsch,

137

Compiling Probabilistic Forward Pass BNNs for Embedded Systems

0

1

2

3

Pr
ob

ab
ilit

y
De

ns
ity

Va
ria

tio
na

l I
nf

er
en

ce
10

0
Sa

m
pl

es

0.0 0.5 1.0 1.5 2.0
0

1

2

3

Pr
ob

ab
ilit

y
De

ns
ity

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

Pr
ob

ab
ilis

tic
 F

or
wa

rd
 P

as
s

13
14
15

Total Predictive Uncertainty Softmax Entropy Mutual Information

13
14
15

MNIST AmbiguousMNIST FashionMNIST

Figure 8.3 Comparison of uncertainty predictions obtained with SVI and PFP.
On MNIST [232], both approaches yield low uncertainty, as expected for in-
domain data. Ambiguous-MNIST [31] exhibits higher aleatoric uncertainty,
quantified by softmax entropy. Fashion-MNIST [169], used here as an out-of-
distribution dataset, shows increased epistemic uncertainty, reflected in higher
mutual information. Overall, both methods correctly assign most samples to
their expected domains.

Amersfoort, Torr, and Gal [31] as presented in Chapter 7.4.

8.3.1 Qualitative Performance

To assess the approximation quality of PFP, we compare its predictions to
sampling-based SVI across the Dirty-MNIST dataset. Figure 8.2a shows example
predictions, while Figure 8.3 reports the aggregated metrics Shannon Entropy,
softmax entropy, and mutual information. As illustrated in Figure 8.2b, the
number of samples strongly influences Shannon Entropy and, consequently,
mutual information. Unlike SVI, PFP does not provide an explicit sampling
dimension. To ensure comparability, we introduce an artificial sampling procedure
based on the PFP-predicted logit means µPFP and variances σ2

PFP. Synthetic
samples lPFP are generated as

lPFP ∼ N (µPFP,σ2
PFP). (8.8)

138

8.4 PFP Operator Library with TVM

Table 8.2 Comparison of SVI and PFP-based BNNs on Dirty-MNIST [31].

Metric Method MLP LeNet-5
Calibration Factor PFP 0.3 0.4

Accuracy SVI 96.3% 98.7%
PFP 96.3% 98.9%

AUROC SVI 0.812 0.986
PFP 0.858 0.966

This logit sampling is computationally lightweight, avoiding repeated forward
passes. It enables the calculation of uncertainty metrics used in sampling-based
methods. In highly constrained applications, the raw PFP-predicted variances
can be directly employed for decision making.

Figure 8.3 shows that both SVI and PFP report elevated uncertainty for
Ambiguous-MNIST and Fashion-MNIST, compared to MNIST. Both methods
capture the expected patterns: increased softmax entropy for ambiguous inputs
and increased mutual information for OOD inputs. Overall, the predictions are
consistent with theoretical expectations.

A more detailed analysis is presented in Figure 8.4, which plots softmax
entropy against mutual information across all samples. Here, SVI achieves
cleaner separation of aleatoric and epistemic uncertainty. Nevertheless, PFP
provides a practically sufficient distinction in most cases. In rare edge cases both
measures take high values, reducing separability.

Table 8.2 compares the two methods on Dirty-MNIST. Both achieve similar
predictive accuracy and AUROC, with PFP requiring only a single forward
pass. The influence of network architecture is visible, as the convolutional model
achieves better accuracy and separation than the MLP. In summary, PFP delivers
uncertainty estimates close to SVI while offering significantly improved efficiency.

8.4 PFP Operator Library with TVM

TVM provides multiple internal languages and intermediate representations,
including TensorIR [17], tensor expression (TE), TVMScript, and Relax [22].
These abstractions are essential for implementing custom operators. tensor
expressions define computation rules in a compact way, while TensorIR organizes
computations as modular blocks, enabling fine-grained scheduling and optimiza-
tions. Relax [22], the successor of Relay [132], serves as a high-level intermediate

139

Compiling Probabilistic Forward Pass BNNs for Embedded Systems

0.0 0.5 1.0 1.5 2.0
Softmax Entropy

0.0

0.5

1.0

1.5

2.0

M
ut

ua
l I

nf
or

m
at

io
n

Variational Inference

0.0 0.5 1.0 1.5 2.0
Softmax Entropy

Probabilistic Forward Pass

MNIST AmbiguousMNIST FashionMNIST

Figure 8.4 Comparison of aleatoric and epistemic uncertainty estimates obtained
with SVI and PFP for a LeNet-5 BNN. The scatter plot displays softmax entropy
(aleatoric uncertainty) versus mutual information (epistemic uncertainty). While
SVI provides a clearer disentanglement of the two uncertainty types, PFP has
some overlap, but still achieves a practically useful degree of separation.

representation, supporting dynamic shapes, control flow, and integration with
TensorIR.3 TVMScript, a Python-based frontend, allows direct definition and
modification of TensorIR and Relax programs.

To implement a custom operator, developers specify the computation in TE
and generate IRModules via the BlockBuilder API. BlockBuilder creates primitive
functions from TE expressions, which are then connected through Relax and
optimized with TensorIR scheduling.4 This workflow enables efficient execution
of specialized operators across diverse hardware platforms while minimizing
implementation complexity.

Operating on Tuples

Neural network operators frequently take multiple input tensors, but operators
producing multiple outputs are relatively uncommon. PFP introduces a particular
requirement, as both mean and variance must be propagated through the network.
TVM follows the principle of one operator = one compute rule, meaning each

3https://tvm.apache.org/docs/deep_dive/relax/learning.html
4https://mlc.ai/docs/get_started/tutorials/quick_start.html

140

https://tvm.apache.org/docs/deep_dive/relax/learning.html
https://mlc.ai/docs/get_started/tutorials/quick_start.html

8.4 PFP Operator Library with TVM

operator executes a single sequential computation without divergence. As a
result, PFP operations may be split into separate operators, e.g., one for the
mean and one for the variance. However, this design increases interconnection
overhead, complicates network construction, and prevents reuse of shared sub-
terms between the mean and variance paths. A joint formulation, in which
both quantities are computed together, allows reuse of intermediate results and
avoids redundant computations. Figure 8.5 shows that such joint operators
consistently outperform separate implementations by improving data reuse and
memory locality.

Variance and Second Raw Moment

The original formulation of PFP operators is based on mean and variance inputs
and outputs. However, reformulating Equation 8.2 in terms of second raw
moments improves reuse and reduces conversions. In this form, the variance of
activations in a dense layer becomes

σ2
al

i
=

dl−1∑︂
j=1

E
[︃(︂

wl
ij

)︂2]︃
·E
[︃(︂

xl−1
j

)︂2]︃
−
(︃

µwl
ij

·µ
xl−1

j

)︃2
, (8.9)

where the pre-computed second raw moments of the weights and activations
can be directly reused. This eliminates conversions from activation outputs,
which already produce second raw moments by design. The resulting tuple-
based operator is more cache-efficient and reduces overall runtime. Figure 8.5
illustrates the performance benefits of the second raw moment formulation and
joint operators.

When consecutive layers differ in their representation of variances and second
raw moments, conversion is straightforward using E(x2) = µ2 + σ2. However,
performing repeated conversions across layers is wasteful. To address this, the
operator implementation provides a configurable conversion function, while
ensuring consistency between layers remains the responsibility of the model
designer. Weights must also follow this convention, being stored either as means
and variances (see Equation 8.4) or as means and second raw moments (see
Equation 8.2).

By default, compute layers such as dense and convolutional layers expect
second raw moments as inputs and produce variances as outputs. Conversely,

141

Compiling Probabilistic Forward Pass BNNs for Embedded Systems

24 25 26 27 28 29 210

Squared Matrix Size

0

5

10

15

20

25

30

Pe
rfo

rm
an

ce
 [G

FL
OP

S]

Separate Operators
Separate Ops. with Revised Eq. (12)
Joint Operator
Joint Op. with Revised Eq. (12)

Figure 8.5 Comparison of operator implementations on an ARM Cortex-A72.
The results demonstrate the performance gains from reformulating Equation 8.2
into Equation 8.9, and from employing joint operators that combine mean and
variance paths instead of implementing them separately.

activation functions take variances as inputs and produce second raw moments.
This convention ensures compatibility between compute and activation functions
operators. Additional layers, such as Max Pooling, which consume and produce
variances, require explicit conversion at their interfaces.

A special case occurs in the first network layer, where no input variance is
available. In this case, the forward propagation simplifies to

µal
i
=

dl−1∑︂
j=1

µwl
ij

·µ
xl−1

j
, (8.10)

σ2
al

i
=

dl−1∑︂
j=1

σ2
wl

ij
·µ2

xl−1
j

. (8.11)

Here, weight variances are required explicitly. For subsequent layers, storing
weights as second raw moments avoids additional conversions. Furthermore,
compute layers support three bias configurations: no bias, deterministic bias,
and probabilistic bias with variances.

In summary, integrating custom PFP operators into TVM requires specific
design considerations. Our analysis shows that combining joint operator im-
plementations with second raw moment formulations yields the best efficiency
across tested architectures.

142

8.5 Optimizing for Performance

77.5%

7.4%

15.1%

Dense Layers

ReLU

Overhead

(a) MLP

25.7%

23.2%

39.7%

11.1%
0.3%

Convolutions

ReLU

Max Pool
Dense Layers

Overhead

(b) LeNet-5

Figure 8.6 Distribution of execution time across operator types for PFP-based
BNNs, measured on a Cortex-A72 with a mini-batch size of 10. For the MLP,
dense layers dominate runtime. For LeNet-5, latency is more evenly distributed,
and operators considered simple in deterministic settings, such as ReLU and
Max Pooling, contribute significant overhead

8.5 Optimizing for Performance

The PFP implementation introduced in the previous Section already enables
functional BNNs with uncertainty estimation at a fraction of the cost of sampling-
based methods. Nevertheless, further performance can be gained through
implementation-level and hardware-aware optimizations. We first profile op-
erator costs to identify performance bottlenecks. Based on these insights, we
apply manual optimizations tailored to dense and pooling operators. Subse-
quently, we evaluate the effectiveness of automatic tuning frameworks provided
by the TVM compiler. Finally, we benchmark the tuned implementations across
different CPUs and compare them against SVI-based BNNs.

8.5.1 Profiling Operators

Optimizing for performance requires identifying operators that dominate execu-
tion time. TVM provides three execution modes for compiled binaries: standard
execution, benchmarking with averaging for high precision, and profiling, which
reports latency on a per-operator basis. These profiling capabilities enable both
quantitative evaluation of optimization strategies and visualization of operator
cost distribution.

Figure 8.6 shows the runtime share of different operator types. For the MLP,
dense layers are the dominant cost. For LeNet-5, latency is more balanced,
with ReLU and Max Pool operators accounting for a substantial portion of

143

Compiling Probabilistic Forward Pass BNNs for Embedded Systems

Table 8.3 Evaluation of manual optimization techniques for the PFP dense
operator. Measurements were performed on a Cortex-A72 using a 3-layer MLP
with mini-batch size 10.

Optimizations Latency Speedup
Name Other Opt. without Opt. with Opt.

Baseline (no tuning) OFF 3.760 ms - -
Baseline (min. tuning) OFF 3.681 ms - -

Tiling1 OFF 3.672 ms 0.747 ms 4.91×
Loop Reordering OFF 3.681 ms 1.940 ms 1.90×

Vectorization OFF 3.681 ms 8.837 ms 0.42×
Parallelization OFF 3.681 ms 0.729 ms 5.05×
Loop Unrolling OFF 3.681 ms 1.967 ms 1.87×

Tiling1 ON 0.754 ms 4.237 ms 0.18×
Loop Reordering ON2 0.750 ms 0.743 ms 1.01×

Vectorization ON2 0.759 ms 0.743 ms 1.02×
Parallelization ON2 1.953 ms 0.743 ms 2.63×
Loop Unrolling ON2 3.042 ms 0.743 ms 4.09×

All Optimizations ON2 3.760 ms 0.743 ms 5.06×
1 Without stochastic tuning.
2 All optimizations in use except tiling.

total runtime. This highlights that seemingly simple operators can become
computationally expensive when propagating distributions rather than scalars.

8.5.2 Manual Optimizations

The profiling results indicate that dense layers are the primary bottleneck in
the MLP. We therefore target the dense operator with optimization techniques
commonly used for matrix-matrix multiplication. These include tiling, loop
reordering, loop unrolling, vectorization, and parallelization.

Table 8.3 shows the effect of individual and combined optimizations. Some
techniques, such as vectorization, degrade performance when used in isolation,
as they require loop structures to be reordered first. Loop unrolling and paral-
lelization are the most effective optimizations for the PFP dense operator. When
combined, they yield a speedup of more than 5×.

Tiling requires separate evaluation. Applied independently with hand-tuned
tile sizes, it yields strong performance gains. However, tiling is the only opti-
mization that does not support stochastic tuning. Since the other optimizations
benefit considerably from stochastic tuning, enabling tiling disables this option.
Consequently, applying all optimizations including tiling but without stochas-

144

8.5 Optimizing for Performance

Table 8.4 Evaluation of Max Pool implementations for LeNet-5 on a Cortex-
A72 with mini-batch size 10. The specialized vectorized operator outperforms
the generic reduction-based implementation, while automatic schedules fail to
improve performance.

Arch. Implementation Auto-tuning Latency
Max Pools Entire NN

LeNet-5 Generic Max Pool No 12.09 ms 29.13 ms
LeNet-5 Generic Max Pool All operators 5.04 ms 10.74 ms
LeNet-5 Generic Max Pool All except Max Pool 11.92 ms 17.82 ms
LeNet-5 Vect. Max Pool No 3.54 ms 21.10 ms
LeNet-5 Vect. Max Pool All operators 27.28 ms 33.42 ms
LeNet-5 Vect. Max Pool All except Max Pool 3.69 ms 9.79 ms

tic tuning performs worse than tiling alone. The best results are obtained by
combining all other optimizations with stochastic tuning while excluding tiling.

Max Pool Operator For LeNet-5, the generic Max Pooling operator intro-
duced by [48], implemented as a reduction, proved inefficient. To address this,
we implemented a specialized vectorized variant with fixed kernel size k = 2.
As shown in Table 8.4, automatic schedules fail to improve this operator and
in some cases even degrade performance. Consequently, the custom Max Pool
implementation is excluded from automatic tuning.

8.5.3 Automatic Optimizations

Beyond manual schedules, TVM provides advanced automatic tuning frame-
works [26], [32], [79], [115]. The Meta Scheduler [32] automatically explores large
optimization spaces by generating and benchmarking candidate schedules. This
approach is slower than expert-crafted tuning but typically achieves comparable
performance and requires no manual effort. Applying Meta Scheduler to the
PFP dense operator achieves latencies nearly identical to hand-tuned schedules
(0.742 ms versus 0.743 ms). We therefore rely on it in subsequent experiments.

Table 8.5 summarizes profiling results for the MLP and LeNet-5 before and
after tuning. Dense and convolution layers benefit substantially from optimization,
delivering the largest performance improvements.

145

Compiling Probabilistic Forward Pass BNNs for Embedded Systems

Table 8.5 Profiling of PFP-based neural architectures on a Cortex-A72 with
mini-batch size 10. The largest performance gains after tuning are achieved in
dense and convolution layers.

Arch. Layer Baseline Tuned Impl. Speedup
Latency Fraction Latency Fraction

MLP

Dense 1 2.931 ms 62.8 % 0.642 ms 33.7 % 4.6×
Dense 2 0.570 ms 12.2 % 0.125 ms 6.6 % 4.6×
ReLU1 0.195 ms 4.2 % 0.185 ms 9.7 % 1.1×

Dense 3 0.063 ms 1.3 % 0.036 ms 1.9 % 1.8×
Sum 3.846 ms 82.4 % 1.078 ms 56.5 % 3.6×

Entire Model 4.668 ms 100.0 % 1.908 ms 100.0 % 2.4×

LeNet-5

Conv2d 2 7.207 ms 30.4 % 1.509 ms 12.4 % 4.8×
ReLU 1 4.133 ms 17.4 % 2.153 ms 17.7 % 1.9×
Dense 1 2.791 ms 11.8 % 0.516 ms 4.2 % 5.4×

Max Pool 11,2 2.780 ms 11.7 % 2.807 ms 23.1 % 1.0×
ReLU 2 1.541 ms 6.5 % 0.980 ms 8.1 % 1.6×

Conv2d 1 0.949 ms 4.0 % 0.552 ms 4.5 % 1.7×
Max Pool 22 0.854 ms 3.6 % 0.902 ms 7.4 % 0.9×

Dense 2 0.589 ms 2.5 % 0.111 ms 0.9 % 5.3×
ReLU 3 0.168 ms 0.7 % 0.071 ms 0.6 % 2.4×
ReLU 4 0.107 ms 0.5 % 0.051 ms 0.4 % 2.1×
Dense 3 0.057 ms 0.2 % 0.027 ms 0.2 % 2.1×

Sum 21.751 ms 91.8 % 10.226 ms 84.1 % 2.1×
Entire Model 23.698 ms 100.0 % 12.166 ms 100.0 % 1.9×

1 Layers present multiple times in network
2 Layers excluded from tuning

Table 8.6 Latency and speedup comparison of deterministic, SVI, and PFP-based
networks on three different embedded ARM processors, using vectorized Max Pool.
While PFP incurs some overhead compared to deterministic inference, it achieves
orders-of-magnitude speedups over sampling-based SVI, making uncertainty-
aware inference practical on embedded devices.

Arch. BS Processor Deterministic NN SVI PFP Speedup
not tuned tuned not tuned tuned

MLP 10
Cortex-A53 14.02 ms 0.933 ms - 15.26 ms 4.989 ms
Cortex-A72 4.59 ms 0.186 ms 734.74 ms 3.75 ms 0.742 ms 990.2×
Cortex-A76 1.64 ms 0.071 ms 307.52 ms 1.89 ms 0.341 ms 901.8×

MLP 100
Cortex-A53 137.80 ms 6.565 ms - 147.61 ms 15.358 ms
Cortex-A72 45.81 ms 1.134 ms 775.32 ms 36.33 ms 5.182 ms 149.6×
Cortex-A76 16.30 ms 0.230 ms 306.89 ms 18.60 ms 1.200 ms 255.7×

LeNet-5 10
Cortex-A53 21.14 ms 4.726 ms - 76.09 ms 35.159 ms
Cortex-A72 6.89 ms 0.754 ms 1196.42 ms 21.23 ms 10.022 ms 119.4×
Cortex-A76 3.16 ms 0.347 ms 801.40 ms 9.63 ms 3.897 ms 205.6×

LeNet-5 100
Cortex-A53 209.28 ms 41.697 ms - 801.33 ms 383.680 ms
Cortex-A72 70.08 ms 9.524 ms 2708.16 ms 240.94 ms 116.330 ms 23.3×
Cortex-A76 31.51 ms 3.131 ms 2488.73 ms 119.76 ms 45.039 ms 55.3×

146

8.5 Optimizing for Performance

0.00

0.25

0.50

0.75
La

te
nc

y
pe

r I
m

ag
e

[s
]

Variational Inference

1 2 4 8 16 32 64 128 256
Mini Batch Size

0.0000

0.0005

0.0010

La
te

nc
y

pe
r I

m
ag

e
[s

]

Probabilistic Forward Pass

(a) Latency per image

1 2 4 8 16 32 64 128 256
Mini Batch Size

10

100

1,000

20

50

200

500

2,000

5,000

Sp
ee

du
p

(lo
g

sc
al

e)

Arm Cortex A72 - MLP
Arm Cortex A76 - MLP
Arm Cortex A72 - LeNet-5
Arm Cortex A76 - LeNet-5

(b) Relative speedup of PFP over SVI

Figure 8.7 Latency and speedup in relation to mini-batch size. SVI-based BNNs,
evaluated with 30 samples, show high per-image latency and poor scalability at
small batch sizes. In contrast, PFP maintains stable latency across all sizes due
to targeted tuning. As a result, speedups range from tens to over four thousand,
with the strongest gains appearing for batch size 1, which is a common case for
real-time embedded applications.

8.5.4 Evaluation and Performance Gain

Table 8.6 and Figure 8.7 highlight the central result of this chapter: PFP,
combined with compiler-based optimizations, reduces inference cost by several
orders of magnitude compared to sampling-based SVI. Across ARM processors,
speedups reach on average 574× for the MLP and 101× for LeNet-5, despite PFP
requiring more complex operators and doubling both parameters and activations
relative to deterministic inference.

The importance of these gains becomes most evident under conditions typical
for embedded systems, where real-time operation often requires small mini-
batch sizes. In this regime, SVI-based BNNs, implemented in Pyro with 30
samples—already a minimal configuration for meaningful uncertainty estimation
(see also Figure 8.2b)—still incur substantial latency. Figure 8.7a shows that their
runtime scales poorly as batch sizes decrease. By contrast, PFP benefits directly
from compiler support: it is recompiled and optimized for each mini-batch size
individually, allowing it to maintain stable latency across configurations. Only
minor fluctuations remain, which can be attributed to cache effects or SIMD
alignment. The resulting speedups, shown in Figure 8.7b, range from 13× to
112× at batch size 256, and increase dramatically to between 550× and 4200×
for batch size 1—a common real-time scenario.

Altogether, these experiments demonstrate that the combination of prob-

147

Compiling Probabilistic Forward Pass BNNs for Embedded Systems

abilistic approximation and compiler-based code generation makes efficient,
uncertainty-aware inference feasible on resource-constrained embedded CPUs—a
capability that was previously out of reach for SVI-based BNNs.

Summary

Although Bayesian neural networks offer a principled framework for uncertainty
estimation, their deployment on embedded systems remains constrained by the
computational demands of sampling-based inference. This chapter demonstrated
how combining algorithmic approximation with compiler-level optimization can
overcome these limitations. By replacing repeated stochastic evaluations with a
single closed-form forward pass, the Probabilistic Forward Pass enables efficient
execution of SVI-trained networks on embedded ARM CPUs. While the Gaussian
assumption limits expressiveness, it yields substantial speedups whenever the
approximation remains adequate.

To realize this approach in practice, we extended the deep learning compiler
TVM with specialized probabilistic operators and applied both targeted schedul-
ing and automatic tuning. The resulting implementation achieved speedups of up
to 4200× on ARM processors while preserving accuracy and reliable uncertainty
estimation under tight resource constraints. Together, these contributions estab-
lish a practical pathway from Bayesian approximation to deployment, making
probabilistic inference feasible on embedded hardware.

While PFP provides an analytic route to efficient uncertainty estimation, the
next chapter explores a complementary strategy based on ensemble methods.
These approaches trade analytical simplicity for representational flexibility, cap-
turing multiple modes of the predictive distribution with high parallel efficiency.

148

9
Ensemble Methods for Practical Bayesian

Neural Networks

The best way to have a good idea is to have a lot of ideas.

— Linus Pauling

Classical Bayesian neural network inference techniques such as MCMC or SVI
provide high quality posterior approximations and are mathematically grounded,
but their computational cost scales poorly with model size [23]. As shown in
Chapter 7, the high dimensionality of modern neural networks renders exact
or near-exact Bayesian inference methods impractical for most real-world tasks.
This computational bottleneck is especially pronounced in resource-constrained
environments such as embedded devices, where memory and energy budgets are
tightly limited [12].

A practical alternative is to approximate the posterior through ensembles of
predictors rather than through explicit weight distributions. In this paradigm,
multiple predictors are trained or sampled, and their collective variability is used
as a proxy for epistemic uncertainty. Aleatoric uncertainty remains captured

149

Ensemble Methods for Practical Bayesian Neural Networks

within each individual model through its likelihood formulation, while epistemic
uncertainty is quantified by the disagreement across ensemble members [28].
This principle underlies a family of approaches that we refer to as ensemble-style
Bayesian approximations.

Ensemble-style methods are attractive for two reasons. First, they are fully
compatible with standard deep learning frameworks, requiring little to no modi-
fication of the training pipeline. Second, they substantially reduce the computa-
tional overhead compared to MCMC or SVI, while often providing competitive
uncertainty estimates. They therefore represent a pragmatic approach inspired by
theoretically rigorous but practically intractable Bayesian inference for large-scale
neural architectures.

In this chapter, we focus on three representative methods: Monte Carlo
Dropout (MCDO), Deep Ensembles (DEs), and Repulsive Last-Layer Ensembles
(RLLEs). Monte Carlo Dropout and Deep Ensembles are well-established in the
literature and serve as state-of-the-art reference points for scalable uncertainty
estimation. By contrast, RLLEs are a more recent development [13], to which
we have contributed, and we therefore provide a more detailed account of its
formulation while referring to the original publication for further technical details.
Together, these methods illustrate how ensemble-style approximations can address
the computational bottlenecks of Bayesian neural networks.

9.1 Ensemble Methods

9.1.1 Monte Carlo Dropout (MCDO)

Among the earliest and most widely used ensemble-style approximations is Monte
Carlo Dropout [175], which has become a standard baseline in uncertainty-aware
deep learning due to its simplicity and minimal additional training overhead.
It builds on the well-known regularization technique of dropout, where units
are randomly set to zero during training to prevent overfitting, and extends it
by applying dropout also at inference time. Gal and Ghahramani [174], [175]
showed that dropout can also be interpreted as approximate variational inference,
providing a Bayesian view of neural networks without modifying the underlying
training procedure. Equivalently, each stochastic forward pass can be seen as
evaluating one member of an implicit ensemble of subnetworks, where randomness

150

9.1 Ensemble Methods

in the dropout masks induces predictor diversity [28]. By performing multiple
such passes, one obtains a set of predictions that approximate samples from the
posterior predictive distribution.

A key strength of MCDO is its practicality. It requires no changes to
the training pipeline and incurs only minimal additional cost compared to a
deterministic neural network. The method can even be retrofitted to pretrained
models simply by enabling dropout at inference. Uncertainty estimates derived
from the variability of the stochastic predictions have proven useful in applications
such as out-of-distribution detection and active learning [147].

Despite these advantages, MCDO has important limitations. The variational
family defined by dropout masks is relatively crude, which often leads to an under-
estimation of epistemic uncertainty and a weaker separation between epistemic
and aleatoric components compared to more principled approaches such as SVI
or MCMC. Its uncertainty estimates are further sensitive to the chosen dropout
rate and network architecture. Moreover, while training remains inexpensive,
inference typically requires a large number of stochastic forward passes to obtain
sufficiently diverse samples. In practice, this number often exceeds that required
by more sophisticated inference schemes, which, although more costly during
training, represent the posterior diversity more efficiently and achieve comparable
uncertainty quality with fewer samples.

In summary, MCDO provides a practical and lightweight approach to proba-
bilistic deep learning, but its posterior approximation remains coarse, and its
inference-time overhead can still be significant.

9.1.2 Deep Ensembles (DEs)

Deep Ensembles [154] represent another canonical baseline, widely regarded as
the empirical state of the art for uncertainty estimation in deep learning, owing to
their strong predictive performance and ease of use. The approach is conceptually
simple: multiple networks are trained independently with different random
initializations, and their predictions are aggregated to approximate Bayesian
model averaging. Lakshminarayanan, Pritzel, and Blundell [154] formalized
this idea under the name Deep Ensembles, showing that independently trained
models with different random initializations can approximate sampling from
diverse regions of the weight space. Aggregating their predictions yields an

151

Ensemble Methods for Practical Bayesian Neural Networks

implicit approximation to Bayesian model averaging.
Given an ensemble of M networks with parameters {θm}M

m=1, the predictive
distribution for a new input x is estimated as

p(y | x,D) ≈ 1
M

M∑︂
m=1

p(y | x,θm). (9.1)

The resulting set of ensemble predictions constitutes approximate posterior
samples, which can be analyzed with the same information-theoretic metrics
introduced earlier to quantify total, epistemic, and aleatoric uncertainty.

Deep Ensembles have several appealing properties. They can be trained with
standard pipelines and do not require specialized loss functions or hyperparameter
tuning beyond what is used for a single deterministic network. In practice, they
often achieve strong accuracy and well-calibrated uncertainty estimates across a
wide range of tasks [88], [96], [154].

These benefits come at the cost of increased computation and storage. Train-
ing scales linearly with the number of ensemble members M , making ensembles
M times more expensive than training a single deterministic model or using
MCDO. Nevertheless, this is typically still cheaper than MCMC or SVI, where
gradient-based sampling or optimization must be repeated for many posterior
draws. At inference, ensembles require multiple forward passes, placing them
on par with other approximate Bayesian methods in predictive cost. For pre-
diction, ensembles also require storing M complete sets of network parameters,
which scales memory linearly with ensemble size. This overhead is similar to
MCMC, where multiple parameter samples from the chain must be maintained,
but contrasts with MCDO and Gaussian SVI, which only need a single set of
parameters (plus variance terms in the case of SVI).

While ensembles lack theoretical guarantees on covering the posterior, par-
ticularly in the high-dimensional parameter spaces of BNNs, their uninformed
diversity often works surprisingly well in practice. Deep Ensembles are widely
regarded as the empirical state of the art for large models where MCMC and
SVI are not feasible. In fact, they can outperform variational methods when
simple approximations such as mean-field Gaussians fail to capture multimodal
posteriors, whereas independently trained ensemble members may collectively
represent multiple modes [42], [77].

Overall, Deep Ensembles provide robust uncertainty estimates and remain

152

9.1 Ensemble Methods

Figure 9.1 Illustration of a Repulsive Last-Layer Ensemble with N particles,
where each output head corresponds to one particle (colored dots). Repulsion is
enforced in function space using unlabeled samples from a different distribution,
serving as repulsion samples. epistemic uncertainty (EU) is low when particles
agree and increases with their spread, whereas aleatoric uncertainty (AU) arises
from inherent label ambiguity, leading to predictions centered in uncertain
probability regions. Reproduced with permission from [13].

the empirical state of the art in large-scale settings, albeit at significant training
and storage cost. This motivates lighter alternatives that can retain ensemble
diversity at a fraction of the overhead, such as Repulsive Last-Layer Ensembles,
which we discuss next.

9.1.3 Repulsive Last-Layer Ensembles (RLLEs)

From Deep Ensembles to Repulsive Deep Ensembles. While Deep
Ensembles provide strong empirical uncertainty estimates, their diversity is
incidental, arising only from random initialization, stochastic optimization, or
random shuffling of the training inputs. D’Angelo and Fortuin formalized this
diversity by introducing Repulsive Deep Ensembles (RDEs) [37], which explicitly
encourage ensemble members to remain diverse during training. Their method

153

Ensemble Methods for Practical Bayesian Neural Networks

augments the training loss with a repulsion term between predictive functions,
grounded in Particle-Optimization Variational Inference (POVI) [93], [105], [114],
[158], [182]. This ensures that ensemble members (the particles) do not collapse
onto similar solutions, but instead spread out to approximate multiple modes of
the posterior.

The key insight of RDEs is that diversity in weight space is not sufficient, since
different parameter configurations can realize nearly identical functions. RDEs
therefore emphasize function-space diversity, applying the repulsion term directly
on the predictive distributions of each network. Empirical results demonstrated
that such functional repulsion improves the estimation of epistemic uncertainty
and out-of-distribution detection compared to standard DEs [37]. However,
RDEs inherit the computational burden of classical ensembles: each network
must still be trained and stored independently, making them costly for large-scale
or resource-constrained applications.

Repulsive Last-Layer Ensembles. To address these computational limi-
tations, Steger et al. proposed Repulsive Last-Layer Ensembles (RLLEs) [13].
Building directly on the principle of function-space repulsion from RDEs, RLLEs
restrict diversity to the final prediction layer. Instead of training multiple in-
dependent networks, a single shared backbone is equipped with several output
heads, each representing one ensemble member. Function-space repulsion is then
applied only to these heads, ensuring predictive diversity at minimal additional
cost. This architectural simplification drastically reduces training and storage
overhead and integrates seamlessly with pretrained backbones, while retaining
the theoretical motivation of RDEs.

Architecture and objective. Let fbase(x;θbase) denote a shared feature ex-
tractor and {f

(i)
head(·;θ(i)

head)}n
i=1 denote n last-layer heads. Each particle function

is f (i)(x) = f
(i)
head(fbase(x)). Training minimizes the standard predictive loss

plus a repulsive term that penalizes functional similarity across heads on a set
of repulsion samples, thereby approximating function-space POVI with attrac-
tion–repulsion dynamics [13], [37]. This multi-head design avoids duplicating the
backbone and reduces both training and memory cost compared to DEs [96],
[154]. Figure 9.1 illustrates the concept.

154

9.1 Ensemble Methods

Attraction–repulsion field in function space. Following POVI, the update
field for the i-th particle (head) acts on the last-layer parameters θ

(i)
l and combines

a data-driven attraction term with a kernel-based repulsion in function space [13],
[37], [182]. We write

v
(︃

θ
(i)
l

)︃
= ∇

θ
(i)
l

logp
(︃

θ
(i)
l | D

)︃
⏞ ⏟⏟ ⏞

attraction

− γrepulsion

∑︁n
j=1 ∇

f
(︂

θ
(i)
l

)︂ k
(︃

f
(︃

θ
(i)
l

)︃
, f
(︃

θ
(j)
l

)︃)︃
∑︁n

j=1 k
(︃

f
(︃

θ
(i)
l

)︃
, f
(︃

θ
(j)
l

)︃)︃
⏞ ⏟⏟ ⏞

repulsion in function space

,

(9.2)
where f(θ(i)

l) denotes the predictive function of head i evaluated on a batch of
repulsion samples, γrepulsion is the controllable repulsion strength, and k is a
positive-definite kernel that measures functional similarity. A common choice is
the RBF kernel applied to vector predictions on repulsion samples χ,

k
(︂
f (i)(χ), f (j)(χ)

)︂
= exp

⎛⎜⎝−
⃦⃦⃦
f (i)(χ)−f (j)(χ)

⃦⃦⃦
p

ν

⎞⎟⎠ , (9.3)

which yields a normalized repulsion term and directly encourages predictive
diversity at the heads, while the backbone remains shared [13].

Choice of repulsion samples. A critical design choice is where to enforce
functional repulsion. Applying it directly on the training data artificially inflates
epistemic uncertainty in regions where the model should be confident and thus
harms accuracy. Instead, RLLEs evaluate the repulsion term on unlabeled OOD
data or on label-destroying augmentations, which probe regions that genuinely
reveal epistemic uncertainty and thereby improve calibration and OOD detection.
In high-dimensional settings, such auxiliary OOD or augmented samples serve as
an effective approximation to full function-space coverage [13], [105].

Compatibility with pretrained backbones. Because diversity is confined
to the last layer, RLLEs can be naturally applied to pretrained networks: freeze
(or lightly fine-tune) the backbone, replace the classifier with n heads, and
train with the function-space repulsion objective. This decouples representation
learning from uncertainty-aware fine-tuning and is particularly effective when the

155

Ensemble Methods for Practical Bayesian Neural Networks

backbone is regularized to avoid feature collapse, e.g., via spectral normalization
or related constraints [27], [128].

Context within related work. Repulsive ensembles can be instantiated
in different spaces—weights, features, input gradients, or functions. RLLEs
adopt the function-space variant while avoiding the cost of fully independent
networks [37]. Compared to last-layer Bayesian baselines such as LL-Laplace
or partially stochastic last layers, RLLEs employ explicit functional repulsion
among multiple heads rather than a single probabilistic classifier [13], [38].

Limitations. Despite their advantages, RLLEs are not without caveats. Per-
formance hinges on the calibration of repulsion strength and the quality and
coverage of repulsion samples; poor choices can degrade accuracy or fail to elicit
meaningful diversity [13]. Furthermore, because diversity is restricted to the last
layer, expressiveness is more constrained than in fully independent DEs, especially
when the shared backbone provides limited feature diversity. Nevertheless, the
combination of function-space grounding, empirical competitiveness, and low
computational footprint makes RLLEs compelling for scalable and embedded
uncertainty estimation [13].

9.2 Comparative Evaluation

We first analyze the behavior of MCDO, DEs, and RLLEs on the Noisy Sine
regression task, as studied in Simonides’ master’s thesis [6]. This controlled
benchmark is particularly suited to assess the decomposition of epistemic and
aleatoric uncertainty, since the ground-truth aleatoric variance is known and
out-of-distribution regions are clearly identifiable.

Overall, all three methods exhibit a marked sensitivity to the choice of
activation function. MCDO performs worst: it fails to raise epistemic uncertainty
in out-of-distribution regions, except for a single peak with the SiLU activation,
and even then only in the central region rather than across the full support.
DEs are considerably more robust, working reliably with several activations,
and require only modest ensemble sizes (M ≈10) to stabilize their predictions.
RLLEs outperform MCDO but are more fragile than DEs: they require selecting a
suitable activation (SeLU being most effective) and carefully calibrating their two

156

9.2 Comparative Evaluation

(a) MCDO (b) Deep Ensembles

(c) RLLEs

Figure 9.2 Comparison on the Noisy Sine regression task with each method con-
figured to its best-performing activation function and hyperparameters. MCDO:
SiLU activation, dropout rate 0.15; DEs: M=10 members, SiLU activation;
RLLEs: SELU activation with λvar = 0.25 and γrepulsion = 1000. MCDO sys-
tematically underestimates epistemic uncertainty, DEs provide stable and well-
calibrated estimates with moderate ensemble size, and RLLEs achieve competitive
performance when both activation and repulsion/variance parameters are care-
fully calibrated. Adjusted from [6].

hyperparameters, variance regularization and repulsion strength. This flexibility
allows balancing aleatoric and epistemic contributions, but it also demands more
tuning effort.

RLLEs demonstrated competitive overall performance, though their calibra-
tion proved more sensitive to hyperparameter settings than for Deep Ensembles.
They also required substantially less training and storage cost than Deep En-
sembles, while being only marginally more expensive than MCDO. Figure 9.2
illustrates these qualitative differences, showing the characteristic uncertainty
profiles of all three methods in their best-performing configurations.

While the Noisy Sine task highlights qualitative differences in uncertainty
behavior under controlled conditions, Dirty-MNIST provides a more realistic
image-classification benchmark to illustrate these trade-offs at scale.

For illustration we reproduce results on the Dirty-MNIST benchmark (Ta-

157

Ensemble Methods for Practical Bayesian Neural Networks

Table 9.1 Comparison of uncertainty decomposition on Dirty-MNIST. Aleatoric
and epistemic uncertainty are evaluated for detecting ambiguous and OOD
samples. Best results are in bold, second best are underlined. RLLEs variants
outperform Deep Ensembles (DE-5) clearly in OOD detection. Reproduced with
permission from [13].

Method Acc. ↑ [%] NLL ↓ [%] ECE ↓ [%] OOD Auroc ↑ [%]
MNIST vs ambig. (AU) MNIST vs. OOD (EU) ambig. vs OOD (EU)

MAP 79.97±0.77 58.12±1.77 2.82±0.65 93.83±0.7 97.71±0.65 76.11±4.75

DDU 79.97±0.77 58.12±1.77 2.82±0.65 93.83±0.7 99.78±0.02 99.96±0.01
SNGP 83.49±0.11 49.78±0.13 3.98±0.09 88.76±0.39 94.68±1.68 73.88±4.49
LL-Laplace 80.73±1.30 55.90±2.78 2.03±0.57 94.3±1.6 98.41±0.46 93.15±2.64

LL-POVI (ours) 83.53±0.16 48.32±0.24 1.00±0.14 96.82±0.34 99.41±0.22 96.16±1.53
RLL-POVI (ours) 83.53±0.16 48.32±0.24 1.00±0.14 96.82±0.34 99.41±0.22 96.16±1.53
fLL-POVI (ours)

+ dirtyMNIST 83.24±0.20 49.21±0.29 1.18±0.12 96.38±0.34 99.29±0.43 95.36±2.82
+ eMNIST 83.52±0.20 48.91±0.24 1.18±0.20 95.27±2.07 99.3±0.3 99.52±0.23
+ Patches-16 83.51±0.16 48.35±0.24 1.03±0.13 96.74±2.14 99.52±0.26 97.69±1.38
+ Patches-8 83.52±0.15 48.40±0.24 1.02±0.15 96.63±1.81 99.4±0.25 98.59±0.61
+ Patches-4 83.50±0.18 48.59±0.23 1.05±0.17 96.44±2.0 99.45±0.21 99.09±0.38

DE-5 83.31±0.15 50.26±0.40 5.01±0.67 96.23±0.15 98.96±0.2 93.88±1.57

ble 9.1), whereas the original publication [13] reports a comprehensive evaluation
across multiple datasets and baselines.

Across the broader set of experiments, the repulsive variant (RLL-POVI)
emerged as the strongest among last-layer POVI methods, consistently outper-
forming plain and functional variants. Performance was particularly boosted
by using auxiliary repulsion samples such as image patches, underlining that
repulsion sample choice is critical for eliciting meaningful epistemic diversity.
Overall, RLLEs matched or exceeded the uncertainty quality of DEs at a fraction
of the computational and storage cost, and their compatibility with pretrained
backbones makes them attractive for practical deployment.

9.3 Hardware Evaluation with TVM

The final step in our evaluation is to assess how well Repulsive Last-Layer Ensem-
bles can be deployed on embedded hardware and what performance they achieve
in practice. Because uncertainty-aware methods are only useful in constrained
environments if they remain computationally efficient, we benchmark RLLEs
on ARM Cortex-A series processors and compare them against deterministic
baselines and Deep Ensembles.

One advantage of RLLEs is their compatibility with existing compiler toolchains.
Unlike the Probabilistic Forward Pass, which required custom operators to be

158

9.3 Hardware Evaluation with TVM

Table 9.2 Benchmark RLLEs vs. DEs performance on embedded ARM CPUs.

Method Dataset Arch. n CPU MACs [M] Latency [ms]
naive tuned

Det. NN Noisy Sine MLP - A72 2.6 9.14 0.99
RLLE Noisy Sine MLP 10 A72 7.8 25.93 2.93
DE-10 Noisy Sine MLP 10 A72 26.0 91.43 9.92
Det. NN Noisy Sine MLP - A76 2.6 4.05 0.46
RLLE Noisy Sine MLP 10 A76 7.8 11.31 1.22
DE-10 Noisy Sine MLP 10 A76 26.0 40.53 4.58
Det. NN Dirty-MNIST LeNet-5 - A72 36.0 59.43 8.17
RLLE Dirty-MNIST LeNet-5 10 A72 37.0 62.41 7.94
DE-10 Dirty-MNIST LeNet-5 10 A72 360.5 594.31 81.69
Det. NN Dirty-MNIST LeNet-5 - A76 36.0 26.50 2.55
RLLE Dirty-MNIST LeNet-5 10 A76 37.0 27.88 2.96
DE-10 Dirty-MNIST LeNet-5 10 A76 360.5 265.04 25.49

integrated into the TVM stack, RLLEs rely exclusively on standard deep learning
components. This makes the compilation process straightforward: models can
be imported into TVM without modification, and performance tuning can be
carried out using standard auto-scheduling methods. In our experiments we
employed the Meta Scheduler [32] from the TVM compiler stack [26], [79], [115]
to automatically optimize operator schedules for the specific ARM architectures,
which proved essential for achieving efficient execution. Untuned schedules left
substantial performance untapped, whereas auto-scheduling consistently reduced
latency and produced efficient execution across all tested configurations.

Table 9.2 summarizes MAC counts and inference latencies for both tasks.
For the Noisy Sine task, evaluated with a mini-batch size of 1000, we used a
two-layer MLP with 50 hidden neurons per layer, while the more demanding
Dirty-MNIST task, evaluated with a mini-batch size of 128, was based on LeNet-5.
The complexity of the backbone architecture determines the relative overhead
of the ensemble heads. In the small MLP, ten heads dominate the network,
increasing the total size by roughly a factor of three in terms of MACs. In
contrast, for LeNet-5 the additional heads introduce only a 2.7% overhead. This
highlights a central advantage of RLLEs: their cost does not scale with the
backbone architecture, making them suitable even for very large models.

Repulsive Last-Layer Ensembles reduce training and storage requirements
compared to Deep Ensembles, while retaining competitive predictive performance.
On hardware, they achieved 3.4× faster inference on the Noisy Sine task and 8.1×

159

Ensemble Methods for Practical Bayesian Neural Networks

Table 9.3 Performance PFP vs. RLLEs.

Dataset Arch. CPU Batch Latency [ms]
Size PFP RLLE

Dirty-MNIST LeNet-5

A72

1 1.23 0.51
8 7.77 0.91
16 15.58 1.32
32 32.91 2.71
64 70.82 4.89
128 150.72 8.00

A76

1 0.50 0.27
8 3.03 0.41
16 6.33 0.46
32 13.60 0.63
64 27.46 1.11
128 61.92 2.93

faster on Dirty-MNIST. Compiler-level optimizations such as Meta Scheduler
tuning further improved latency, but the core efficiency arises from the method
itself: by sharing a backbone and introducing diversity only in the last layer,
RLLEs provide uncertainty estimation at a fraction of the computational cost.
This makes them a practical and scalable choice for deploying uncertainty-aware
models on embedded systems.

9.3.1 Comparison of PFP and RLLEs

Finally, we compare PFP and RLLEs, the two BNN approximation methods
examined in detail throughout this work. Both were benchmarked on the Dirty-
MNIST dataset with a LeNet-5 backbone to directly assess uncertainty quality
and computational performance.

In terms of uncertainty estimation, both methods perform strongly. For
out-of-distribution detection, PFP reached an AUROC of 0.966, while RLLEs
achieved 0.995, highlighting that both approximate Bayesian inference and
ensemble-based approaches yield consistent uncertainty calibration across in- and
out-of-distribution regimes.

The computational comparison, summarized in Table 9.3, highlights the
distinct performance characteristics of the two approaches. All reported mea-
surements were obtained from TVM builds tuned with the Meta Scheduler [32],
which substantially reduced latency compared to untuned execution for both
methods. RLLEs consistently outperform PFP, and the performance gap widens

160

9.3 Hardware Evaluation with TVM

with increasing batch size. For small mini-batches, both methods achieve low
latency, with RLLEs already showing a modest advantage that becomes increas-
ingly pronounced as batch size grows. This difference arises from the underlying
computational structure of the two methods. RLLEs rely on standard dense oper-
ations, dominated by matrix multiplications that are natively supported by highly
optimized hardware kernels and thus scale effectively with batch size through
vectorization and parallelization. Their multi-head design further exposes an
additional degree of parallelism: the output heads can be processed largely
independently on separate processor cores, as they share the same backbone
features but have distinct final layers. This enables partial parallel execution
without inter-head communication, improving utilization on multi-core embedded
platforms while maintaining a small memory footprint. In contrast, PFP propa-
gates both means and variances through each layer, which increases the number
of intermediate tensors and memory accesses. While parts of the computation
can be expressed as matrix multiplications, the frequent reading and writing of
mean–variance pairs limits cache locality. Moreover, the inherently sequential
propagation of stochastic moments offers fewer opportunities for parallel execu-
tion than the independent output heads of RLLEs. As a result, PFP achieves
lower throughput at larger batch sizes, despite its efficient formulation at the
algorithmic level.

Conceptually, the two methods occupy complementary positions in the land-
scape of efficient Bayesian inference. PFP remains within the variational frame-
work and offers a principled, calibration-stable approximation that eliminates
stochastic sampling entirely through closed-form propagation. RLLEs, on the
other hand, embrace an ensemble-based view, retaining the multi-modality of
Deep Ensembles while remaining compatible with standard toolchains and hard-
ware accelerators. This design yields remarkable speed and flexibility, though at
the expense of increased sensitivity to calibration choices such as the repulsion
strength and the selection of repulsive samples.

Taken together, the results underline that neither approach dominates uni-
versally. The Probabilistic Forward Pass offers theoretical rigor and intrinsic
stability, whereas RLLEs achieve greater empirical efficiency and scalability. Both
methods therefore represent viable and complementary pathways for enabling
uncertainty-aware inference on embedded systems.

161

Ensemble Methods for Practical Bayesian Neural Networks

Summary

This chapter has examined ensemble-based approximations for Bayesian neural
networks, focusing on MCDO, DEs, and RLLEs. Our controlled experiments on
the Noisy Sine task confirmed the known weaknesses of MCDO, the robustness
and empirical strength of DEs, and the potential of RLLEs to achieve competitive
uncertainty estimates at a fraction of the training and storage cost. While RLLEs
demand careful calibration of activation functions, hyperparameters and well
chosen repulsive samples, their design provides explicit flexibility to balance
epistemic and aleatoric uncertainty.

On the hardware side, we showed that RLLEs integrate seamlessly with
standard compiler toolchains. Thanks to their reliance on standard operators,
they can be compiled and tuned with TVM directly, turning their theoretical
efficiency into practical speedups on embedded CPUs. Because the additional
heads add only marginal overhead compared to larger backbones, RLLEs scale
favorably to larger architectures and remain well suited for deployment under
tight resource constraints.

In summary, RLLEs strike a pragmatic balance between theoretical grounding
and practical deployability. They retain much of the uncertainty quality of full
ensembles while reducing computational cost to levels compatible with embedded
devices.

The following chapter extends this perspective on probabilistic inference
beyond digital accelerators, investigating photonic hardware where inherent
device noise is harnessed directly as a stochastic source for probabilistic inference.

162

10
Probabilistic Photonic Computing for

Bayesian Neural Networks

Information is not a disembodied abstract entity;
it is always tied to a physical representation.

— Rolf Landauer, The Physical Nature of Information (1996)

In the preceding chapters we investigated two complementary strategies to reduce
the cost of deploying neural networks on resource-constrained devices. From
the algorithmic side, we developed methods to reduce the number of costly
computations, while from the hardware side, we considered approaches that lower
the cost of the operations themselves. For deterministic deep neural networks,
this two-pronged perspective was reflected by Galen as an automatic compression
method on the algorithmic level [21], and by analog accelerators as a means to
perform the underlying matrix multiplications more efficiently [4], [7]–[9], [44].

In this chapter we extend this perspective to Bayesian neural networks.
Algorithmic approximations such as partial BNNs [24], [65], RLLEs [13] and the
PFP [3], [186] reduce the computational burden of probabilistic inference. At the

163

Probabilistic Photonic Computing for Bayesian Neural Networks

hardware level, analog computing platforms promise to accelerate BNN inference
in a complementary way, by embedding probabilistic operations directly into
physical processes.

This perspective is particularly appealing because BNNs require stochasticity
at their core. On digital processors, randomness must be simulated by pseudo-
random number generators and integrated into multiple forward passes, which
adds substantial computational overhead. Analog hardware, by contrast, is
inherently noisy. While this noise is typically seen as a liability for deterministic
inference, for probabilistic inference it can serve as a natural entropy source. If
the noise can be shaped and controlled, the probabilistic sampling step of BNNs
can be executed directly in hardware, making uncertainty estimation both faster
and more energy efficient.

Photonic computing offers a compelling platform for this idea. Light not
only enables extremely high bandwidth and parallelism—for example through
wavelength-division multiplexing—but also provides accessible entropy sources
in the form of intensity fluctuations, phase noise, or quantum effects [1]. These
processes can be leveraged to realize the stochastic sampling required by Bayesian
inference, aligning the algorithmic demands of probabilistic models with the
physical properties of the hardware.

This chapter builds on two recent joint works that we conducted in collabo-
ration with researchers specializing in photonic hardware. The position paper
Probabilistic Photonic Computing for AI [1] and the proof-of-concept demon-
stration Probabilistic Photonic Computing with Chaotic Light [10] emerged from
this collaboration. The projects were carried out in a co-design effort, combining
our expertise in probabilistic modeling and Bayesian neural networks with our
partners’ expertise in photonic device design and experimental realization. Ac-
cordingly, this chapter emphasizes the proof of concept as a hardware-accelerated
BNN inference engine and highlights the algorithmic adaptations required to
map Bayesian neural networks onto photonic hardware. For detailed discussions
of the photonic design choices and device physics, we refer the reader to the
original publications.

164

10.1 Photonic Neural Network Inference

10.1 Photonic Neural Network Inference

BNNs provide a principled framework for predictive uncertainty but incur high
inference cost due to repeated sampling and multiple forward passes. On digital
processors, pseudo-random number generation and sample-wise evaluation add
latency and energy overhead. Algorithmic approaches reduce or sidestep repeated
sampling, thereby lowering the computational burden, yet they rarely eliminate
the fundamental need for stochasticity in probabilistic inference.

Analog computing platforms, including electrical accelerators [4], [44], memris-
tive crossbars [84], [109], and photonic processors [124], [164], promise substantial
energy efficiency compared to digital hardware. However, they are inherently
subject to imperfections such as nonlinearities, device variations, and computa-
tional noise [7]–[9]. For deterministic inference, such noise degrades accuracy and
requires countermeasures like noisy or hardware-in-the-loop training. For proba-
bilistic inference, by contrast, noise is not necessarily a limitation: it can serve as
an entropy source and thus as the very building block of Bayesian computation.
This shift in perspective, from mitigating noise to exploiting it, motivates the
exploration of analog hardware for accelerating probabilistic inference.

Photonic computing offers properties that are particularly attractive for
this idea. Light propagates at extremely high speed and enables massively
parallel signal processing through wavelength-division multiplexing (WDM). The
available optical bandwidth in the telecom band alone exceeds several THz, far
surpassing electronic bandwidths [1]. Moreover, photonic systems inherently
exhibit entropy sources, including phase noise, intensity fluctuations in chaotic
light, and quantum fluctuations at the single-photon level [229], [230], [247],
[249]. These noise processes can be harnessed as true random number generators,
avoiding the overhead of digital pseudo-random generators and directly linking
stochasticity to the physical information carrier.

A wide range of photonic neural architectures has been proposed over the past
decade. Coherent nanophotonic meshes based on Mach–Zehnder interferometers
(MZIs) enable programmable optical linear algebra [164], while diffractive optical
networks perform passive all-optical inference [124]. Microring weight banks
and crossbar arrays based on phase-change materials (PCMs), in particular
germanium–antimony–telluride (GST), allow compact in-memory optical multi-

165

Probabilistic Photonic Computing for Bayesian Neural Networks

plication [64], [129]. These works primarily target deterministic inference, but
they establish the device toolkit that can also support probabilistic computing.

Entropy sources are a central ingredient of probabilistic computing. Classi-
cal statistical optics established the photon statistics of coherent and chaotic
fields [230], [247], [249], while later studies investigated amplified spontaneous
emission (ASE) statistics in dense wavelength-division multiplexing regimes rele-
vant to telecom applications [229]. Building on these foundations, chaotic light
has been identified as a particularly practical entropy source, since it can be
generated in the telecom band by erbium-doped fibers or waveguides. Unlike
digital pseudo-random generators, chaotic-light entropy is broadband, spans
multiple THz, and is directly compatible with optical processors [10].

In parallel, analog non-volatile memories such as electronic memristors have
been proposed as hardware substrates for probabilistic neural inference. Ran-
domness in switching processes and conductance drift can be interpreted as
tunable stochastic weights, and recent work has demonstrated Bayesian inference
with memristor-based neural networks [15]. These works exploit stochasticity in
electronic devices, reinforcing the broader trend of turning hardware noise from
a liability into a computational resource.

Our recent works on probabilistic photonic computing for AI [1] and on
a prototype implementation using chaotic light [10] extended this concept to
photonic systems. We introduced chaotic light as a controllable entropy source
and demonstrated its integration with GST-based photonic crossbars, thereby
establishing photonic processors as a viable platform for probabilistic inference.

10.2 Hardware Design Principles

Photonic systems expose multiple noise sources that can be harnessed for prob-
abilistic computing [1]. Among the most relevant are phase noise in coherent
lasers, intensity noise in chaotic light sources, and quantum fluctuations at the
single-photon level. All three provide access to physical entropy, but they differ
in ease of integration with large-scale photonic processors.

Phase noise can be exploited through interferometric readout schemes and
has been used for photonic random number generation. However, interferometers
impose strict stability requirements, and integrating phase-sensitive components
at scale remains challenging. Quantum fluctuations, such as those exploited in

166

10.3 Making Noise Controllable

true photon-number–resolving detectors, provide intrinsic randomness but require
cryogenic operation and highly sensitive components, making them impractical for
near-term integrated photonic processors. In contrast, chaotic light generated by
amplified spontaneous emission (ASE) is broadband, robust, and easily available
in the telecom band. Its intensity fluctuations follow Bose–Einstein statistics
and can be directly measured with standard photodetectors. For these reasons,
chaotic light was chosen as the entropy source in the prototype of [10].

To enable matrix multiplication, the processor employs a photonic crossbar
array. Weights are stored in the non-volatile phase-change material germa-
nium–antimony–telluride, which provides multiple stable transmission levels.
Multiplication is realized by attenuating the optical carrier according to the pro-
grammed transmission state (Fig. 10.1a), and addition is performed by summing
overlapping optical fields in a waveguide. A photograph of the fabricated chip is
shown in Fig. 10.1b, while the full crossbar structure is depicted in Fig. 10.1c.

Parallelism is achieved by wavelength-division multiplexing. The broadband
spectrum of chaotic light spans several THz, which can be demultiplexed into
distinct wavelength channels. Each channel carries an independent realization
of the chaotic fluctuations, enabling multiple uncorrelated random samples to
be processed simultaneously. This property directly accelerates probabilistic
inference, where many stochastic samples are typically required.

Finally, several practical constraints shape the design. The independence
of random numbers is limited by the correlation time of chaotic fluctuations
and the electrical bandwidth of the detectors. Residual correlations between
wavelength channels can occur due to imperfect demultiplexing. Moreover,
photonic components such as waveguides and detectors remain larger than
electronic counterparts, imposing constraints on integration density [1].

In summary, chaotic light was selected as a pragmatic entropy source due to
its controllability and ease of integration with GST-based photonic crossbars.
Combined with WDM for parallelization, these design choices establish a physical
platform for accelerating probabilistic inference on photonic hardware (Fig. 10.1).

10.3 Making Noise Controllable

A central challenge in harnessing physical noise for probabilistic computing lies
not only in accessing it but in making it controllable. The measured signal at

167

Probabilistic Photonic Computing for Bayesian Neural Networks

(a) Multiplication and Addition

(b) Chip Photograph

(c) Crossbar Structure

Figure 10.1 Photonic crossbar with GST weights. Subfigure a illustrates how
multiplication is realized by attenuating the optical carrier according to the
programmed GST state, while addition is implemented by overlapping multiple
optical fields in a waveguide, consistent with the statistical behavior of chaotic
light distributions reported in [10]. Subfigure b shows a microscope photograph of
the fabricated photonic chip. Subfigure c provides a three-dimensional overview
of the full crossbar structure, where chaotic light from an ASE source is split
and delayed to form multiple uncorrelated optical carriers. Input distributions
are encoded as waveforms on these carriers, processed through the GST-based
crossbar, and demultiplexed by WDM into independent sampling channels.
Reproduced with permission from [10].

168

10.3 Making Noise Controllable

(a) Measured PDFs at different mean intensities (b) Variance–mean coupling

(c) Variance control by encoding scheme

Figure 10.2 Statistical properties of chaotic-light noise. Subfigures a and b
confirm Bose–Einstein statistics and the quadratic dependence of the variance
on the mean intensity. Subfigure c illustrates controllable-noise encoding, where
the same total intensity yields distributions with different variances. Reproduced
with permission from [10].

the photodetector combines two contributions: electronic noise from the readout
circuit and intensity fluctuations of the chaotic-light carrier. At small optical
intensities, the measured distribution is dominated by electronic noise, which is
approximately Gaussian and independent of the mean intensity. With increasing
intensity, photonic fluctuations dominate and the distributions evolve towards
the Bose–Einstein form expected from chaotic light [10], [230], [247], [249].

The beating of frequency components in amplified spontaneous emission
leads to photon-number fluctuations described by an M -fold Bose–Einstein
distribution [10]. Its variance grows quadratically with the mean intensity,

Var(n) = nmean + n2
mean
M

, (10.1)

where nmean is the average photon number detected within the measurement

169

Probabilistic Photonic Computing for Bayesian Neural Networks

(a) Mean (b) Standard Deviation

Figure 10.3 Experimental validation of addition with noisy signals. Subfigure a
shows that the means add linearly, as expected. In contrast, Subfigure b shows
that the standard deviations scale nonlinearly due to the constant electronic
ground noise contribution. Reproduced with permission from [10].

interval and directly corresponds to the optical intensity, and M is the degeneracy
factor, approximated by the ratio of the measurement time T to the coherence
time τc of the source [10]. In the presented setup M ≈ 10.64.

As a consequence of this quadratic relation, mean and variance cannot be
tuned independently. This intrinsic coupling poses a challenge when mapping
probabilistic operations onto hardware, since BNNs require distributions with
independently adjustable parameters.

This behavior is confirmed experimentally (Fig. 10.2): at low means the
distributions are narrow and Gaussian-like, while at higher means they broaden
and follow Bose–Einstein statistics (Fig. 10.2a, Fig. 10.2b). Detector saturation
further limits the width at large means (Fig. 10.2b). Another property becomes
evident when input distributions are accumulated (Fig. 10.3). The means add
linearly (Fig. 10.3a), whereas the standard deviations follow a nonlinear curve
due to the mean-invariant electronic noise contribution (Fig. 10.3b) [10].

Building on this principle, we propose a scheme to control the variance
independently of the mean. Where not only the number of active slots but also
their amplitudes are adjusted. The same total intensity can either be represented
by a few strong impulses, introducing proportionally more noise, or by many
smaller impulses, where the noise averages out and becomes sub-proportional. As
a result, the same intensity can yield output distributions with different variances
(Fig. 10.2c). This controllable-noise encoding enables a decoupling of mean and
variance, within the bounds set by the physical noise sources, and thus renders
chaotic-light noise tunable.

170

10.4 Adapting BNNs to Photonic Hardware

10.4 Adapting BNNs to Photonic Hardware

The feasibility of photonic probabilistic inference depends not only on the avail-
ability of tunable noise but also on adapting Bayesian neural network operators
to the constraints of the hardware. Rather than assuming a generic architecture,
the Bayesian neural network must be co-designed with the photonic device to
exploit its strengths while compensating for its limitations.

The first design choice is to realize stochasticity through probabilistic ac-
tivations rather than probabilistic weights. Conventional BNNs often assign
distributions to weights, but this strategy is infeasible in our setting for two
reasons. The prototype crossbar provides only a limited number of programmable
weight cells, and although phase-change material devices based on GST are well
suited for compact in-memory multiplication, their transmittance can only be
reprogrammed slowly compared to photonic processes. Rapidly varying weights
for sampling is therefore not a viable option. In contrast, the chaotic-light
carrier produces intrinsic intensity fluctuations that are directly detected at the
photodiode readout. These fluctuations supply random samples at high rate,
and their variance can be controlled by the proposed encoding scheme. It is thus
more efficient to keep the weights deterministic and implement randomness at
the activation level.

A second design choice concerns numerical precision. The optical crossbar
supports only a limited number of transmission levels, and the electrical readout
is quantized. To maintain robustness under these conditions, quantization-aware
training (QAT) [120], [122] is required so that the BNN representation matches
the effective bit-width of the hardware. Quantization for BNNs remains largely
unexplored, but our evaluation shows that the behavior is similar to conventional
deep neural networks: once the bit-width falls below a critical threshold, accuracy
and uncertainty estimation collapse together. This threshold depends on both
the architecture and the dataset. Nevertheless, provided the bit-width remains
above this limit, QAT enables reliable inference under reduced precision.

A third design choice addresses the noise characteristics of the system. The
chaotic-light fluctuations are tunable only within a fixed range, and on top of
this comes a constant base noise floor mainly from the electronic components.
As a result, the BNN can adjust activation variances only within these bounds,
while the residual base noise must be learned to tolerate during hardware-model

171

Probabilistic Photonic Computing for Bayesian Neural Networks

training.
A fourth design choice arises from the strictly positive nature of the optical

signals. In this setup, light can only be added but not subtracted, so the
hardware enforces a positive-only domain. As a consequence, negative weights
and activations are excluded and must be compensated for at the algorithmic
level.

Finally, the limited chip area of the prototype constrains the number of
weight cells. This rules out large-scale dense or convolutional layers. Instead,
we developed a probabilistic average-pooling operator that requires only a few
weights but exposes a large number of stochastic degrees of freedom by allowing
noise parameters to be tuned on a per-activation level.

Figures 10.4 and 10.5 illustrate the probabilistic photonic average-pooling
operator in its two complementary forms: a training model and a physical simula-
tion model, both implemented in Pyro. The coexistence of both implementations
reflects the need to reconcile efficient gradient-based optimization in software
with a faithful representation of the stochastic behavior observed on photonic
hardware.

The training model employs a Gaussian approximation of the Bose–Einstein
distribution to avoid an additional sampling step and to accelerate training,
while remaining sufficiently close to the physical statistics. This abstraction
enables hardware-aware SVI-based training with realistic noise characteristics
at a manageable computational cost. In contrast, the physical model samples
directly from the exact Bose–Einstein PDF, includes stochastic quantization, and
explicitly accounts for photonic imperfections and limited precision. Together,
these two operator variants ensure consistency between training and hardware-
level simulation, allowing the BNN to be optimized efficiently in software and
evaluated accurately on the photonic prototype.

In summary, adapting Bayesian neural networks to photonic hardware re-
quires several key design choices, as exemplified by our prototype implementation:
stochasticity is implemented in the activations rather than the weights, repre-
sentations are trained with reduced precision in mind, activation variances are
adjusted only within constrained bounds, the positive-only nature of optical
signals is considered, and operators are tailored to the limited number of available
weights. Together, these adaptations enable a proof-of-concept demonstration of
probabilistic inference on a photonic accelerator.

172

10.4 Adapting BNNs to Photonic Hardware

Input

QuantReLU

Avg. Pool 2×2 Compute σmin, σmax

σ = Lσmax +(1−L)σmin

Gaussian Sampler
N (0,σ)

+

noise L (learnable)

Figure 10.4 Photonic probabilistic average-pooling operator (training model).
Deterministic blocks (gray) compute activations via QuantReLU and average
pooling. This model is used during training with Pyro; the Gaussian approx-
imation of the Bose–Einstein distribution avoids an additional sampling step
and significantly accelerates training while preserving the learned distributional
characteristics. Reproduced with permission from [10].

173

Probabilistic Photonic Computing for Bayesian Neural Networks

Input

QuantReLU

Pattern Generation Adjustable Noise

Stochastic Quantization

Average Pool 2×2

PDF Sampling

Summation of Samples

Figure 10.5 Photonic probabilistic average-pooling operator (physical simulation
model). Deterministic preprocessing (gray) is followed by probabilistic operations
(blue), where randomness is injected from the chaotic-light noise source. The
layer performs stochastic quantization, average pooling, and PDF-based sam-
pling using the exact Bose–Einstein distribution, with cached PDFs reused to
reduce computational overhead. This version models the hardware-level behavior
including photonic imperfections and quantization effects. Reproduced with
permission from [10].

10.5 Experimental Demonstration

To demonstrate the feasibility of probabilistic inference on photonic hardware,
we performed a simple OOD detection experiment on a modified MNIST dataset.
Figure 10.6 illustrates the setup: digits 0–8 were used for training and in-
distribution testing, while digit 9 was held out as the OOD class. This task
highlights both classification accuracy and the ability of the network to signal
uncertainty when facing unseen inputs.

The experiment was carried out with a compact BNN tailored to the photonic
prototype. Figure 10.7 shows the network architecture, which is based on a
modified LeNet-5. Deterministic layers (gray) are combined with probabilistic
average-pooling layers (orange) as introduced in the previous section. This design

174

10.5 Experimental Demonstration

Figure 10.6 Illustration of the 9-class MNIST OOD detection task. Digits 0–8
are used for training and ID testing, while digit 9 is held out as the OOD class.
Reproduced with permission from [10].

Figure 10.7 BNN architecture for the MNIST OOD experiment. Deterministic
layers (gray) are combined with probabilistic average-pooling layers (orange),
implemented using the probabilistic max-pool operator. Reproduced with per-
mission from [10].

allows stochasticity to be injected into the activations through chaotic-light
sampling while keeping the number of photonic weights small.

Training dynamics further illustrate how the network learns both classification
and uncertainty separation. As shown in Fig. 10.8, accuracy on in-domain
digits rises quickly, while the separation in mutual information between ID and
OOD inputs develops more gradually. This growing gap in mutual information
demonstrates that the photonic BNN learns not only to classify seen digits but
also to identify unseen ones through uncertainty estimates.

To illustrate this effect qualitatively, Fig. 10.9 shows predictive distributions
for a representative in-distribution digit (4) and an out-of-distribution digit
(9). The in-distribution prediction is sharply peaked at the correct class, while
the OOD prediction is broad and uncertain, consistent with the role of mutual
information as an OOD indicator.

The separation becomes most apparent when analyzing the full test set.
Figure 10.10 demonstrates that ID and OOD examples form two clearly separated
peaks in terms of mutual information, enabling reliable OOD detection based on

175

Probabilistic Photonic Computing for Bayesian Neural Networks

Figure 10.8 Training and test dynamics of the MNIST OOD experiment. Left:
accuracy on training and ID test data. Right: separation between ID and OOD
data in terms of mutual information. Reproduced with permission from [10].

Figure 10.9 Predictive distributions for an ID (left) and an OOD (right) sample.
In-domain predictions are sharply peaked, while OOD predictions are spread
out, reflecting uncertainty. Reproduced with permission from [10].

uncertainty.
Together, these results confirm that probabilistic inference with photonic

hardware is feasible. Even with the limitations of the prototype, the network
achieves high accuracy on in-distribution data and successfully identifies out-of-
distribution samples via uncertainty estimates. The experiment demonstrates
that chaotic-light-based activations provide a reliable entropy source for Bayesian
neural networks and that photonic accelerators can deliver uncertainty-aware
inference.

Summary

Building on the algorithmic foundations of probabilistic inference and the model-
ing of analog noise in previous chapters, this chapter has explored the feasibility

176

10.5 Experimental Demonstration

Figure 10.10 Mutual information histogram for ID and OOD test samples. The
clear separation between the two distributions demonstrates the ability of the
photonic BNN to detect unseen data. Reproduced with permission from [10].

of implementing Bayesian neural networks on photonic hardware. The motivation
arises from reinterpreting the existing tension between the high computational
cost of probabilistic computing in digital inference and the intrinsic, yet typically
suppressed, noise present in analog accelerators.

The core idea developed here is to invert this perspective and exploit the
intrinsic stochasticity of photonic systems as a computational resource. In
particular, chaotic-light intensity fluctuations, when made controllable, provide
a natural entropy source for probabilistic inference. Coupled with a PCM-based
crossbar for in-memory multiplication enables a form of photonic probabilistic
computing that directly supports BNNs.

The specific challenges we faced were twofold. First, the noise needed to
be statistically controllable; otherwise, the stochasticity of chaotic light would
remain an unusable disturbance. We addressed this by exploiting the intrin-
sic mean–variance relationship of Bose–Einstein statistics and developing a
controllable-noise encoding scheme, which allowed the variance of activations to
be tuned within defined bounds. Second, the BNN had to be adapted to the
restrictions of the hardware, including limited precision, a constant base noise
floor, strictly positive signals, and the small number of available weight cells.
Prior to this work, it was unclear whether such a constrained BNN would be
feasible at all.

We addressed these challenges through a series of design choices, which were

177

Probabilistic Photonic Computing for Bayesian Neural Networks

consolidated in a probabilistic average-pooling operator implemented in Pyro.
This operator realizes randomness at the level of activations rather than weights,
incorporates QAT to align the network representation with the effective bit-width
of the hardware, and uses a Gaussian approximation to the Bose–Einstein PDFs
for efficient digital training. As a result, the developed operator captures the
essential characteristics of the photonic prototype in a compact and trainable
form, making it the central enabler to train BNNs for uncertainty-aware inference
on photonic hardware.

From this prototype, several key findings emerged. Chaotic light can be
made into a tunable and practically useful entropy source. Photonic BNNs
achieved both high in-domain accuracy and clear separation of in-domain and
out-of-domain data on a 9-class MNIST task, demonstrating reliable uncertainty
estimation. Most importantly, the study shows that careful algorithm–hardware
co-design enables probabilistic inference even under the unconventional con-
straints of photonic devices.

Looking ahead, this proof-of-concept suggests several promising directions for
scaling photonic probabilistic computing. Larger crossbars and more complex
operators, such as convolutions or attention mechanisms, could extend the
scope beyond simple pooling layers. Closer integration of photonic and electronic
domains may help to reduce interface bottlenecks and enable more comprehensive
accelerator designs. More broadly, the results indicate that noise—long regarded
as a limitation of analog computing—can be reframed as a computational resource,
opening the possibility of future accelerators that combine speed, energy efficiency,
and uncertainty awareness.

178

11
Conclusion and Outlook

This work addresses two central challenges in modern machine learning: (i) how
to enable resource-efficient inference of neural networks on resource-constrained
or emerging hardware platforms, and (ii) how to extend classical models towards
trustworthy predictions by incorporating uncertainty estimation.

To this end, we study both deterministic and probabilistic neural networks:
classical deep neural networks, where efficiency is the primary goal, and their
probabilistic counterpart, Bayesian neural networks, which explicitly incorporate
uncertainty quantification. For both paradigms, we pursue two strategies to
improve efficiency. On the one hand, we reduce computational costs through
algorithmic optimizations and code generation targeting digital processors. On
the other hand, we explore analog accelerator prototypes, where operations can
be realized more cheaply at the physical level, but robustness against nonidealities
and tight hardware–algorithm co-design are essential.

On digital processors for deterministic DNNs, we advanced automatic model
compression by combining latency measurements with sensitivity analysis to
guide per-layer quantization and pruning. This work culminated in the Galen
framework, which establishes how guided policies can unify algorithmic compres-

179

Conclusion and Outlook

sion and hardware-aware deployment, thereby making DNN inference practical
even on resource-constrained embedded devices.

For analog accelerators executing deterministic neural networks, we investi-
gated how nonidealities such as device-level noise affect inference. We developed
simplified hardware models that were validated on BSS-2 prototypes and re-
vealed partially surprising imperfections, such as non-associativity in dot products.
These models enabled targeted training adaptations and also supported the devel-
opment of diagnostic tools: in particular, Walking Noise proved highly effective
at exposing layer-specific sensitivity. Building on these insights, we proposed
hardening techniques to sustain accuracy under perturbations. In particular,
Variance-Aware Noisy Training emerged as a simple yet impactful method, show-
ing that neural networks can tolerate a wide range of hardware imperfections if
these are explicitly incorporated during training.

Turning to probabilistic models aimed at capturing uncertainty, namely BNNs
on digital processors, we addressed the high computational cost of Bayesian
inference. This work developed scalable approximation and implementation
techniques that enable efficient BNN inference on embedded hardware. We
began by analyzing BNNs and their core inference methods, MCMC and SVI,
evaluating their scalability and uncertainty estimation quality, and revealing how
activation functions critically affect convergence and predictive behavior. Building
on these insights, we introduced the Probabilistic Forward Pass, an extreme
approximation of stochastic variational inference that propagates distributions in
closed form, thereby avoiding sampling and repeated forward passes. Within this
work, we extended PFP with compiler-based operator support and demonstrated
its practical deployment on embedded processors. In addition, we investigated
ensemble-based approaches such as Monte Carlo Dropout, Deep Ensembles,
and Repulsive Last-Layer Ensembles, which integrate naturally with existing
machine learning frameworks. Together, these methods illustrate how algorithmic
approximations and compiler-based deployment can make uncertainty-aware
inference feasible on embedded systems.

Finally, for BNNs on analog accelerators, we combined probabilistic modeling
with emerging photonic hardware. Here, we demonstrated how chaotic light can
act as a physical entropy source, enabling ultrafast probabilistic computation
and uncertainty estimation. This contribution establishes photonic processors
as promising candidates for native BNN inference, where hardware noise is

180

11.1 Discussion of Key Insights

harnessed as a computational resource rather than treated as an obstacle.
Taken together, these contributions establish a unified perspective: resource-

efficiency and trustworthiness can be advanced hand-in-hand across deterministic
and probabilistic paradigms, by aligning algorithmic methods, compiler technol-
ogy, and hardware-aware training for both digital and analog accelerators.

11.1 Discussion of Key Insights

The following discussion distills the key insights that emerged across the presented
studies. Rather than reiterating individual contributions, it focuses on the
overarching principles and trade-offs that shape the design space of resource-
efficient inference.

A first overarching insight is that efficiency cannot be achieved by algorithms
in isolation. While compression techniques such as pruning and quantization
provide the levers, their impact depends critically on the way networks are
mapped to hardware. Latency measurements and sensitivity analysis proved far
more reliable than simple cost metrics, underscoring that the operating point
of compressed models must be determined by actual hardware behavior. The
broader lesson is that efficiency emerges from aligning algorithmic strategies with
hardware mapping, while balancing the inevitable trade-off between accuracy
and efficiency that bounds how far compression can be pushed.

On analog accelerators, the central challenge is not computational cost but
robustness against nonidealities. The key insight from modeling analog hardware
is that neural networks can tolerate substantial imperfections—noise, drift or
nonlinearities—if these effects are systematically embedded into the training
process. Diagnostic tools such as Walking Noise proved effective in revealing
sensitivity patterns, guiding adaptations, and, most importantly, in clarifying
how DNNs learn to tolerate noise. A recurring theme was that robustness is
best achieved through training with increasing complexity, gradually exposing
models to more realistic noise levels or hardware representations—an idea closely
related to curriculum learning [222], where tasks are structured from simple
to complex to facilitate stable and effective learning. VANT exemplifies this
principle: although simple in form, it provided a general and effective strategy
for improving robustness in noisy settings. Taken together, these findings suggest

181

Conclusion and Outlook

that robustness on analog hardware depends less on eliminating imperfections
and more on embracing them as part of the training process.

For probabilistic models, the central challenge lies in reconciling uncertainty
estimation with computational feasibility on digital processors. Sampling-based
inference remains the quality benchmark, but its cost renders it impractical at
scale, and even scalable variational methods, while viable with KL annealing,
continue to exhibit strong sensitivity to hyperparameters. The broader lesson is
that Bayesian neural networks, unlike their deterministic counterparts, remain
bounded not only by efficiency constraints but also by the stability of their
training dynamics.

Beyond cost, however, two further insights proved critical for uncertainty
quality itself. First, the choice of activation function has a surprisingly strong
impact: our experiments showed that different nonlinearities can dramatically
alter both the calibration and the out-of-distribution detection quality of BNNs,
and that the optimal choice is often task dependent.

Second, while single-mode variational inference remains among the most
scalable approaches to Bayesian inference, its mean-field formulation imposes
inherent limitations when confronted with the complex structure of real posterior
distributions. Empirical and theoretical studies have shown that the true posteri-
ors of BNNs are typically multi-modal, heavy-tailed, and strongly correlated [42],
[77], causing mean-field approximations to underestimate uncertainty or to miss
multiple plausible explanations of the data—an effect that may also contribute to
their pronounced sensitivity to hyperparameters and architectural design choices.
Nevertheless, as demonstrated in Chapter 7, scalability can also provide a distinct
advantage: by enabling the training of more expressive and deeper architectures,
SVI allows representational power to partly offset the simplifying assumptions
inherent to the inference scheme. Hence, although SVI may not fully capture
the multi-modality of complex posteriors, suitably designed architectures can
alleviate these shortcomings and still yield uncertainty estimates of high practical
relevance at comparatively low computational cost.

Taken together, these observations illustrate that the practical value of
SVI extends beyond its theoretical limitations. While mean-field inference
restricts posterior expressiveness, its efficiency renders it particularly suitable
for deployment on energy- and memory-constrained platforms. However, when
moving from general-purpose accelerators to embedded systems, even relatively

182

11.1 Discussion of Key Insights

lightweight SVI variants become computationally demanding. To address this,
two complementary yet fundamentally distinct strategies are examined: the
Probabilistic Forward Pass as a minimalist variational approximation, and RLLEs
as ensemble-based alternatives offering comparable uncertainty quality at minimal
computational cost.

The Probabilistic Forward Pass remains within the variational framework
and, by design, is single-modal. It provides a principled, calibration-efficient
approximation but cannot capture the full expressiveness of multi-modal pos-
teriors, and its specialized operations are not natively supported by current
compiler stacks or hardware backends, which necessitated the implementation of
a dedicated operator library within TVM. By contrast, RLLEs explicitly aim
to preserve the multi-modality characteristic of Deep Ensembles through their
repulsive multi-head formulation. They leverage dense operators that are already
highly optimized in modern toolchains, enabling excellent speed and scalability,
albeit at the expense of increased calibration sensitivity. Empirical comparisons
reinforced this contrast: while RLLEs consistently achieved lower latency and
stronger out-of-distribution detection performance, they required careful tuning
of repulsive samples, whereas PFP remained more stable but fundamentally
limited in posterior expressiveness and more challenging to deploy efficiently.

The broader principle is that uncertainty-aware inference on digital plat-
forms is governed by a multi-dimensional trade-off: efficiency, calibration effort,
posterior expressiveness, and theoretical grounding rarely align within a single
method. PFP and RLLEs thus occupy complementary positions in this design
space, exemplifying the spectrum of viable pathways for embedding uncertainty
estimation into resource-constrained systems.

A further insight concerns the asymmetry between training and inference costs
across Bayesian methods. At one extreme, Monte Carlo Dropout requires almost
no additional probabilistic overhead during training, but typically demands many
forward passes at inference, in practice exceeding the cost of MCMC or SVI-
based BNNs. At the other extreme, HMC entails substantial training cost, yet
inference can be reduced to evaluating a small, carefully chosen subsample of the
chain. This can be interpreted as a theoretically grounded, well-selected ensemble.
The comparison highlights that training and inference costs are not necessarily
aligned. A method considered simple at training time, such as MCDO, can
become unexpectedly costly during inference, while a computationally expensive

183

Conclusion and Outlook

training method, such as HMC, can yield relatively cheap predictions once samples
are available. Which approach is preferable therefore depends on the specific
constraints—whether efficiency during training or efficiency during deployment is
the dominant bottleneck—underscoring that Bayesian methods must be evaluated
across the entire pipeline rather than in a single phase.

When combining probabilistic models with analog accelerators, a striking
insight emerges: hardware noise, traditionally seen as a limitation, can be
harnessed as a useful source of stochasticity. In particular, photonic accelerators
based on chaotic light demonstrate that entropy can be generated at extremely
high speed directly in hardware, enabling native probabilistic computation driven
by intrinsically rapid and low-cost photonic sampling rather than pseudo-random
number generation. This shifts the narrative from noise mitigation to noise
exploitation, and highlights that in the analog domain, imperfections are not only
unavoidable but can be productively integrated into the computational model.

The broader lesson here is the necessity of hardware–algorithm co-design.
The ability to use chaotic light as a physical entropy source did not arise from
hardware in isolation, but from jointly adapting probabilistic models, training
procedures, and experimental protocols to the specific statistical properties of
the photonic device. Without such integration, leveraging noise for uncertainty
estimation would not have been feasible.

Taken together, these findings point to a clear principle. Analog photonic de-
vices illustrate that probabilistic inference need not be an add-on implemented in
software but can emerge directly from the physics of computation. This suggests
that future hardware platforms may move beyond deterministic acceleration of
neural networks and instead provide native support for uncertainty estimation,
blurring the boundary between algorithm and hardware.

Taken together, these findings reveal two unifying themes that extend across
deterministic and probabilistic models as well as digital and analog hardware.
First, efficiency and robustness are consistently enabled by training with increas-
ing complexity: gradually introducing noise, hardware realism, or regularization
such as KL annealing proved essential for stability and generalization. Sec-
ond, genuine progress requires algorithm–hardware co-design, where compression
strategies, probabilistic approximations, and robustness techniques are explicitly
matched to the constraints and opportunities of the target platform. These
principles illustrate that resource-efficiency and uncertainty-awareness cannot

184

11.2 Limitations

be addressed by isolated algorithmic innovation alone, but must emerge from a
joint optimization of models, training schemes, and hardware execution.

11.2 Limitations

While the results of this work demonstrate the feasibility and potential of resource-
efficient and uncertainty-aware inference across digital and analog platforms,
several limitations must be acknowledged.

First, the scope of the models and datasets is deliberately restricted. Most
experiments rely on relatively small networks and controlled benchmarks. The use
of small models is motivated by both methodological and hardware constraints:
for Bayesian studies, compact architectures are required to make baselines
such as HMC with NUTS and SVI computationally feasible, while for analog
hardware, small networks are necessary to make underlying effects observable
and to reflect the limitations of current prototypes. Although this enables careful
experimentation and clear attribution of effects, it also limits the direct transfer
of results to modern large-scale architectures, such as deep convolutional neural
networks and transformers.

Second, the conclusions regarding automatic model compression remain tied
to specific hardware architectures. The experimental results presented here focus
on embedded ARM CPUs, and the measured performance gains therefore reflect
this class of processors in particular. While the absolute trade-offs observed
are hardware-specific, the underlying approach is generic: built on the TVM
compiler stack, Galen generalizes across the many architectures supported by
TVM and thus applies to a wide variety of accelerators beyond those explicitly
studied in this work.

Third, the robustness studies on analog accelerators relied on simplified
hardware models to keep training efficient. This represents a trade-off: highly
accurate models can capture device behavior more closely, but their complexity
makes them too slow to be included in training loops, whereas simplified models
strike a balance between realism and efficiency. These models, validated against
BSS-2 prototypes, proved sufficient to reveal important nonidealities such as
non-associativity in dot products and enabled targeted training adaptations.

Complementing this, Walking Noise provided a powerful diagnostic that deep-
ened our understanding of how noisy training affects learning and robustness. Its

185

Conclusion and Outlook

computational expense, however, prevents scaling to modern large architectures,
highlighting the need for cheaper yet informative sensitivity metrics in future
work.

Fourth, while Bayesian inference methods were advanced in this work, their
limitations must be carefully delineated. The Probabilistic Forward Pass is
deployable in practice, as we provided a compiler-integrated library for embedded
platforms, but its expressiveness remains bounded by the assumptions of SVI,
in particular its single-mode nature. RLLEs provide a pragmatic and highly
efficient approximation, yet their reliance on calibration with repulsive samples—
which are essentially artificial out-of-distribution data points—introduces certain
limitations. The quality of the resulting uncertainty estimates depends critically
on the expressiveness of these repulsive samples and on how well they resemble
true OOD settings. This sensitivity highlights both the promise and the fragility
of repulsion-based approximations in practical scenarios.

More broadly, two general limitations of current Bayesian neural networks
became apparent. First, their uncertainty quality is highly sensitive to the choice
of activation function, with different nonlinearities yielding substantially different
calibration and OOD detection behavior. Second, approximating inherently multi-
modal posteriors with single-mode methods, as in most variational inference
approaches, remains fundamentally limited and highlights the need for richer yet
efficient inference techniques.

Finally, the photonic experiments represent proof-of-concept demonstrations.
While chaotic light was successfully harnessed as a physical entropy source,
scaling these approaches to larger networks and establishing true probabilistic
weight representations remain open challenges–—but also areas of rapid progress
as photonic devices continue to advance in scale and integration.

Recognizing these limitations is essential for contextualizing the contributions
of this work. They also provide a natural entry point into the outlook for future
research, where the lessons learned here may be extended to larger models, more
diverse hardware platforms, and more mature uncertainty estimation techniques.
Especially transformer architectures and large language models would be highly
interesting to investigate from a principled point of view, yet they also pose a
substantial challenge for the probabilistic machine learning community.

186

11.3 Outlook

11.3 Outlook

Acknowledging these challenges, a key direction for future work is to extend
the evaluated methods—and Bayesian neural networks more broadly—to large-
scale architectures such as transformers, large language models, and modern
diffusion-based generative models. The experiments in this work were deliberately
restricted to smaller networks to allow controlled evaluation and comparison
with high-quality baselines, but scalability remains a central open question in the
Bayesian research community. Partial Bayesianization [24], [65] offers one promis-
ing path: rather than modeling all parameters probabilistically, only selected
layers or subsets of weights carry uncertainty, thereby balancing tractability with
uncertainty quality. This idea was explored to through RLLEs, which retain
the efficiency of deterministic backbones while enriching the output distribution
with repulsive multi-head structures. Still, fundamental questions remain: which
components should be Bayesian, what fraction of parameters is sufficient, and
how can such structures be identified automatically? For large language models,
these challenges are compounded by their sequential autoregressive inference,
where uncertainty must be propagated token by token and efficiency is dominated
by long-context predictions. Tackling these questions would make probabilistic
methods more tractable at scale and move them closer to practical deployment
in the architectures that define modern deep learning.

The role of activation functions provides another promising avenue. Our
results showed that uncertainty quality in Bayesian neural networks depends
strongly on the chosen nonlinearity, with performance varying substantially across
tasks. Rather than selecting from a fixed set of functions, future work could focus
on learning activation functions directly, for instance with approaches inspired
by Kolmogorov–Arnold Networks [5]. Such methods could produce activation
functions adapted to both model and task, and in the longer term may open the
door to Bayesian architecture search, offering new insight into what architectural
properties make networks naturally suited for probabilistic inference.

At the algorithmic level, opportunities arise to overcome the single-mode
limitations of variational inference. The Probabilistic Forward Pass provides
an efficient route to closed-form propagation, but its expressiveness remains
constrained. A promising extension is to combine it with ensemble methods,
enriching their multi-modal character with local variational information. Similarly,

187

Conclusion and Outlook

Repulsive Last-Layer Ensembles demonstrated high efficiency, but their reliance
on repulsive sample calibration remains a central limitation. A way to train these
ensembles without artificial out-of-distribution data would be highly desirable, yet
the appropriate approach remains an open question. Maybe alternative strategies,
such as independently training ensemble heads or designing more natural forms
of repulsion, could help to reduce calibration sensitivity and improve robustness.

On the model compression side, the Galen framework illustrates how auto-
matic compression policies can be aligned with measured hardware performance,
but also suggests natural extensions. Incorporating per-layer latency measure-
ments and low-level hardware information would provide even more detailed
feedback to guide compression decisions. Beyond embedded CPUs and GPUs,
extending the framework to platforms such as FPGAs or ASICs will require im-
proved cost models, since direct hardware-in-the-loop profiling becomes infeasible
at scale. Such developments would broaden the reach of automatic compression
and further integrate algorithmic techniques with architectural considerations.

In the area of robustness, diagnostics such as Walking Noise provided unique
insight into layer-wise sensitivity and helped to understand how noisy training
improves robustness. Its computational cost, however, makes it unsuitable
for large architectures. What is needed in general is a cheap but informative
sensitivity metric. Two promising directions emerge: the first seeks to conserve
the overall noise budget and learn its optimal distribution across layers, thereby
capturing relative sensitivity within a single training run rather than through
repeated evaluations. The second applies KL-divergence-based perturbations,
analogous to the sensitivity analysis employed in Galen, where the divergence
between perturbed and baseline predictions serves as an efficient proxy for
layer-wise robustness. Developing such metrics would combine interpretability
with scalability, making robustness analysis more practical for modern neural
networks.

For analog accelerators, the statistical properties of device noise align naturally
with stochastic variational inference, since many noise processes follow Gaussian
or other well-characterized parametric distributions. This makes variational
methods a well-matched candidate for probabilistic inference on analog hardware.
At the same time, enriching SVI with ensemble ideas could help to overcome its
single-mode limitations, enabling richer multi-modal posteriors while retaining
the efficiency advantages that make SVI attractive in this setting.

188

11.3 Outlook

More broadly, progress in Bayesian inference may depend on building bridges
between methods. High-quality MCMC posteriors can serve as a reference or
teacher model to regularize or initialize SVI, while priors learned by SVI can
accelerate MCMC by providing informed starting points. First results suggest
that knowledge distillation can be effective in transferring information from
MCMC to SVI BNNs. Exploring such transfers opens a wider design space in
which different inference methods complement each other, combining the quality
of MCMC with the scalability of SVI.

Finally, photonic accelerators represent one of the most promising frontiers
for probabilistic machine learning. The demonstrations in this work established
that chaotic light can serve as a physical entropy source, providing a fast and
high-quality basis for native probabilistic computation. Future generations of
photonic hardware are expected to offer greater scale, finer controllability, and
tighter integration with mainstream machine learning frameworks. At the same
time, they will raise new challenges, including the tolerance of accumulating
base noise in deeper architectures and the development of training methods that
can adapt to device-specific noise processes. Sustained progress in this area
will depend on close hardware–algorithm co-design, ensuring that advances in
photonic devices and probabilistic modeling reinforce each other as the technology
matures.

Concluding Remarks

The questions that motivated this work lie at the core of modern machine learning:
how to make neural networks more resource-efficient, and how to make their
predictions more trustworthy. These challenges are far from solved and will
continue to occupy the field for years to come. Yet, the studies presented here
provide concrete steps toward these goals, demonstrating how efficiency and
robustness can be advanced together when hardware, compilers, and algorithms
are considered as parts of a unified system.

A recurring theme throughout this work is that the most effective strategies
tend to embrace, rather than avoid, complexity and imperfection. Training
with increasing realism—through progressive noise schedules, hardware-model
refinement, or KL annealing—consistently enabled models to adapt and generalize
under challenging conditions. Similarly, hardware–algorithm co-design proved

189

Conclusion and Outlook

essential: performance improvements arose not merely from better models, but
from aligning those models with the computational structure and operational
constraints of the hardware that realizes them. These insights suggest a broader
view of neural network design in which computation, approximation, and physical
realization are treated as a single, integrated system.

Looking forward, the principles established here provide a foundation for the
next generation of machine learning systems—systems that are both efficient
and trustworthy, and that blur the boundary between software and hardware.
Whether applied to large-scale models or to emerging analog accelerators, the
same guiding ideas hold: leverage the structure of the hardware, expose im-
perfections during training, and design algorithms that learn to thrive within
their physical constraints. By following these principles, the field moves closer to
neural networks that not only compute efficiently, but also reason with confidence
about what they do not know.

190

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisor,
Professor Dr. Holger Fröning. I have been very fortunate to benefit from his
guidance over the past years and from the opportunity to work on several novel
and exciting research topics. At every stage, Holger provided excellent advice,
generous support, and sincere as well as constructive feedback. I am deeply
indebted to him for his continuous encouragement and for the many opportunities
he offered throughout my doctoral studies.

I would also like to thank my co-advisor, Professor Dr. Franz Pernkopf, for his
professional expertise and invaluable advice. Franz enabled me to collaborate with
his group members Dr. Wolfgang Roth and Sophie Steger, whose outstanding
research and insightful discussions greatly enriched this work and deepened my
understanding of probabilistic machine learning.

It has been a true pleasure to work within the HAWAII research group.
I am sincerely grateful to Dr. Günther Schindler and Dr. Lorenz Braun for
their mentorship, their openness to share expertise, and for the many insightful
discussions that shaped the early stages of my research. I would also like to
thank Andrea Seeger, Dr. Felix Zahn, Dr. Vahdaneh Kiani, and Dr. Jonas
Dann for their valuable feedback, friendly collaboration, and for creating an
inspiring and supportive research atmosphere during this time. Over the years,
our group evolved, and I feel genuinely fortunate to now work side by side with
my current colleagues—Hendrik Borras, Xiao Wang, Daniel Barley, Dr. Kazem
Shekofteh, Aleksandra Poreba, Alexandra Stehle, and Robin Janssen. The close
collaboration, open exchange of ideas, and the joyful daily interactions within
this team have made my recent years both deeply rewarding and truly enjoyable.
I am especially thankful to Hendrik for his reliability and inspiring spirit in our
joint projects.

Throughout my time at the institute, I had the pleasure of collaborating
with several excellent students—Lisa Kuhn, Torben Krieger, Falk Selker, Chris-
tian Simonides, and Jonathan Bernhard—whose master’s theses contributed
significantly to this dissertation. Their enthusiasm and commitment made these
collaborations both inspiring and enjoyable.

I gratefully acknowledge the financial support provided under the scope
of the COMET program within the K2 Center “Integrated Computational
Material, Process and Product Engineering (IC-MPPE)” (Project No. 886385).
This program is funded by the Austrian Federal Ministries for Climate Action,
Environment, Energy, Mobility, Innovation and Technology (BMK) and for
Labour and Economy (BMAW), represented by the Austrian Research Promotion
Agency (FFG), as well as by the federal states of Styria, Upper Austria, and
Tyrol.

Finally, I would like to express my heartfelt gratitude to my family and
friends for their unwavering support, patience, and belief in me throughout this
demanding and exciting journey. Your encouragement has been a constant source
of motivation.

194

Declaration of AI Usage

This declaration is made in accordance with Heidelberg University’s guidelines
on the responsible and transparent use of generative artificial intelligence in
academic writing.

In the preparation of this dissertation, large language model (LLM)–based
generative AI tools—specifically ChatGPT-5 (OpenAI, San Francisco, CA, USA)—
were employed solely to support linguistic refinement and the enhancement of
readability, as well as to assist in the formulation and structuring of the text.
All AI-assisted passages have been critically reviewed, revised, and approved by
the author.

All scholarly and scientific contributions—including the conception of ideas,
development of methodology, design and execution of experiments, data analyses,
and formulation of conclusions—are entirely the author’s own work, unless
explicitly stated otherwise.

Bernhard Klein
October 2025

Acronyms

ADC analog-to-digital converter.
AMC AutoML for Model Compression.
ARM Advanced RISC Machines.
ASE amplified spontaneous emission.
ASIC Application-Specific Integrated Circuit.
AU aleatoric uncertainty.
AUROC area under the receiver operating characteristic

curve.
BN batch normalization.
BNN Bayesian neural network.
BOPs bit operations.
BS batch size.
BSS-2 BrainScaleS-2.
CMOS complementary metal–oxide–semiconductor.
CNN convolutional neural network.
CPU Central Processing Unit.
DDPG Deep Deterministic Policy Gradient.
DE Deep Ensemble.
DNN deep neural network.
ECE expected calibration error.
ELBO evidence lower bound.
ESS effective sample size.
EU epistemic uncertainty.
EUC Epistemic Uncertainty Coefficient.

197

fLL-POVI Function-Space Last-Layer Particle-
Optimization Variational Inference.

FLOPs floating-point operations.
FPGA Field-Programmable Gate Array.
FPR false positive rate.
GPU Graphics Processing Unit.
GSC Google Speech Commands.
GST germanium–antimony–telluride.
HAQ Hardware-Aware Quantization.
HIL hardware-in-the-loop.
HMC Hamiltonian Monte Carlo.
ID in-distribution.
IoT Internet of Things.
IR intermediate representation.
ISA Instruction Set Architecture.
JIT just-in-time.
KAN Kolmogorov–Arnold Network.
KDE Kernel Density Estimation.
KL Kullback–Leibler divergence.
LL-POVI Last-Layer Particle-Optimization Variational

Inference.
LLM large language model.
LUT lookup table.
MAC multiply–accumulate.
MCDO Monte Carlo Dropout.
MCMC Markov chain Monte Carlo.
MI mutual information.
ML machine learning.
MLIR Multi-Level Intermediate Representation.
MLP multi-layer perceptron.
MSE mean squared error.
MZI Mach–Zehnder interferometer.
NAS neural architecture search.
NLL negative log-likelihood.
NLP natural language processing.

198

NN neural network.
NPU Neural Processing Unit.
NUTS No-U-Turn Sampler.
OOD out-of-distribution.
OTA operational transconductance amplifier.
PCM phase-change material.
PDF probability density function.
PFP Probabilistic Forward Pass.
POVI Particle-Optimization Variational Inference.
PPL Probabilistic Programming Language.
QAT quantization-aware training.
rAUC relative area under the accuracy–noise curve.
RDE Repulsive Deep Ensemble.
ReLU Rectified Linear Unit.
RLL-POVI Repulsive Last-Layer Particle-Optimization

Variational Inference.
RLLE Repulsive Last-Layer Ensemble.
RNN recurrent neural network.
RRAM resistive random-access memory.
SAM Sharpness-Aware Minimization.
SDE stochastic differential equation.
SGD stochastic gradient descent.
SIMD Single Instruction Multiple Data.
SME softmax entropy.
SoC System-on-Chip.
STD standard deviation.
STE straight-through estimator.
SVI stochastic variational inference.
TE tensor expression.
THz terahertz.
TPR true positive rate.
TPU Tensor Processing Unit.
TVM Tensor Virtual Machine.
VANT Variance-Aware Noisy Training.
VGG Visual Geometry Group.

199

VI variational inference.
WDM wavelength-division multiplexing.
WRN Wide Residual Network.
XLA Accelerated Linear Algebra.

200

References

[1] F. Brückerhoff-Plückelmann, A. P. Ovvyan, A. Varri, H. Borras, B. Klein,
L. Meyer, C. D. Wright, H. Bhaskaran, G. S. Syed, A. Sebastian, H.
Fröning, and W. Pernice, “Probabilistic photonic computing for ai”, Nature
Computational Science, May 2025, doi: 10.1038/s43588-025-00800-1.

[2] S. Jiménez, M. Jürgens, and W. Waegeman, Why machine learning models
fail to fully capture epistemic uncertainty, 2025, arXiv: 2505.23506.

[3] B. Klein, F. Selker, H. Borras, S. Steger, F. Pernkopf, and H. Fröning, “Ac-
celerated execution of bayesian neural networks using a single probabilistic
forward pass and code generation”, under review at ACM Transactions
on Architecture and Code Optimization, 2025.

[4] L. Kuhn, B. Klein, and H. Fröning, “On the Non-Associativity of Analog
Computations”, in Machine Learning and Principles and Practice of
Knowledge Discovery in Databases, R. Meo and F. Silvestri, Eds., Springer
Nature Switzerland, Sep. 2025, pp. 183–195, doi: https://doi.org/10.
1007/978-3-031-74643-7_15, arXiv: 2309.14292.

[5] Z. Liu, Y. Wang, S. Vaidya, F. Ruehle, J. Halverson, M. Soljacic, T. Y.
Hou, and M. Tegmark, “KAN: Kolmogorov-arnold networks”, in Inter-
national Conference on Learning Representations (ICLR), 2025, https:
//openreview.net/forum?id=Ozo7qJ5vZi.

[6] C. Simonides, “Efficient ensemble-based bayesian neural networks for
depth regression”, M.S. thesis, Heidelberg University, 2025, doi: 10 .
11588/heidok.00037231.

[7] X. Wang, H. Borras, B. Klein, and H. Fröning, “On hardening dnns against
noisy computations”, in HiPEAC, Workshop on Accelerated Machine
Learning (AccML), 2025, arXiv: 2501.14531, https://accml.dcs.gla.ac.uk/
papers/2025/7th_AccML_paper_1.pdf.

[8] X. Wang, H. Borras, B. Klein, and H. Fröning, “Variance-aware noisy train-
ing: Hardening dnns against unstable analog computations”, in European
Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML-PKDD), 2025, arXiv: 2503.16183.

201

https://doi.org/10.1038/s43588-025-00800-1
https://arxiv.org/abs/2505.23506
https://doi.org/https://doi.org/10.1007/978-3-031-74643-7_15
https://doi.org/https://doi.org/10.1007/978-3-031-74643-7_15
https://arxiv.org/abs/2309.14292
https://openreview.net/forum?id=Ozo7qJ5vZi
https://openreview.net/forum?id=Ozo7qJ5vZi
https://doi.org/10.11588/heidok.00037231
https://doi.org/10.11588/heidok.00037231
https://arxiv.org/abs/2501.14531
https://accml.dcs.gla.ac.uk/papers/2025/7th_AccML_paper_1.pdf
https://accml.dcs.gla.ac.uk/papers/2025/7th_AccML_paper_1.pdf
https://arxiv.org/abs/2503.16183

[9] H. Borras, B. Klein, and H. Fröning, “Walking noise: On layer-specific ro-
bustness of neural architectures against noisy computations and associated
characteristic learning dynamics”, in European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML-PKKD), 2024, arXiv: 2212.10430, https://doi.org/10.1007/978-3-
031-70359-1_3.

[10] F. Brückerhoff-Plückelmann, H. Borras, B. Klein, A. Varri, M. Becker,
J. Dijkstra, M. Brückerhoff, C. D. Wright, M. Salinga, H. Bhaskaran,
B. Risse, H. Fröning, and W. Pernice, “Probabilistic photonic computing
with chaotic light”, Nature Communications, vol. 15, no. 1, p. 10 445, Dec.
2024, https://doi.org/10.1038/s41467-024-54931-6.

[11] J. Lin, J. Tang, H. Tang, S. Yang, W.-M. Chen, W.-C. Wang, G. Xiao,
X. Dang, C. Gan, and S. Han, Awq: Activation-aware weight quantization
for llm compression and acceleration, 2024, arXiv: 2306.00978, https :
//arxiv.org/abs/2306.00978.

[12] W. Roth, G. Schindler, B. Klein, R. Peharz, S. Tschiatschek, H. Fröning,
F. Pernkopf, and Z. Ghahramani, “Resource-Efficient Neural Networks
for Embedded Systems”, Journal of Machine Learning Research (JMLR),
vol. 25, no. 50, pp. 1–51, 2024, arXiv: 2001.03048, http://jmlr.org/papers/
v25/18-566.html.

[13] S. Steger, C. Knoll, B. Klein, H. Fröning, and F. Pernkopf, “Function space
diversity for uncertainty prediction via repulsive last-layer ensembles”, in
ICML 2024 Workshop on Structured Probabilistic Inference & Generative
Modeling, 2024, https://openreview.net/forum?id=FbMN9HjgHI.

[14] H. Awano and M. Hashimoto, “B2n2: Resource efficient bayesian neural
network accelerator using bernoulli sampler on fpga”, Integration, vol. 89,
pp. 1–8, 2023, doi: https://doi.org/10.1016/j.vlsi.2022.11.005.

[15] D. Bonnet, T. Hirtzlin, A. Majumdar, T. Dalgaty, E. Esmanhotto, V.
Meli, N. Castellani, S. Martin, J.-F. Nodin, G. Bourgeois, J.-M. Portal,
D. Querlioz, and E. Vianello, “Bringing uncertainty quantification to the
extreme-edge with memristor-based bayesian neural networks”, Nature
Communications, vol. 14, no. 1, p. 7530, Nov. 2023, doi: 10.1038/s41467-
023-43317-9.

[16] H. Borras, B. Klein, and H. Fröning, “Walking Noise: Understanding
Implications of Noisy Computations on Classification Tasks”, in HiPEAC
Conference, Workshop on Accelerated Machine Learning (AccML), Jan.
2023, arXiv: 2212.10430, https://accml.dcs.gla.ac.uk/papers/2023/5th_
AccML_paper_2.pdf.

[17] S. Feng, B. Hou, H. Jin, W. Lin, J. Shao, R. Lai, Z. Ye, L. Zheng, C. H. Yu,
Y. Yu, and T. Chen, “Tensorir: An abstraction for automatic tensorized
program optimization”, in International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ser. ASPLOS,

202

https://arxiv.org/abs/2212.10430
https://doi.org/10.1007/978-3-031-70359-1_3
https://doi.org/10.1007/978-3-031-70359-1_3
https://doi.org/10.1038/s41467-024-54931-6
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2001.03048
http://jmlr.org/papers/v25/18-566.html
http://jmlr.org/papers/v25/18-566.html
https://openreview.net/forum?id=FbMN9HjgHI
https://doi.org/https://doi.org/10.1016/j.vlsi.2022.11.005
https://doi.org/10.1038/s41467-023-43317-9
https://doi.org/10.1038/s41467-023-43317-9
https://arxiv.org/abs/2212.10430
https://accml.dcs.gla.ac.uk/papers/2023/5th_AccML_paper_2.pdf
https://accml.dcs.gla.ac.uk/papers/2023/5th_AccML_paper_2.pdf

Vancouver, BC, Canada: Association for Computing Machinery, 2023,
pp. 804–817, doi: 10.1145/3575693.3576933.

[18] E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh, “OPTQ: Accurate
quantization for generative pre-trained transformers”, in International
Conference on Learning Representations (ICLR), 2023, arXiv: 2210.17323.

[19] A. H. Gadhikar, S. Mukherjee, and R. Burkholz, “Why random pruning is
all we need to start sparse”, in Proceedings of Machine Learning Research
(PMLR), vol. 202, 2023, https://proceedings.mlr.press/v202/gadhikar23a.
html.

[20] N. P. Jouppi, G. Kurian, S. Li, P. Ma, R. Nagarajan, L. Nai, N. Patil,
S. Subramanian, A. Swing, B. Towles, C. Young, X. Zhou, Z. Zhou, and
D. Patterson, “Tpu v4: An optically reconfigurable supercomputer for
machine learning with hardware support for embeddings”, Proceedings
of international symposium on computer architecture, 2023, doi: https:
//doi.org/10.1145/3579371.3589350.

[21] T. Krieger, B. Klein, and H. Fröning, “Towards Hardware-Specific Auto-
matic Compression of Neural Networks”, AAAI Conference on Artificial
Intelligence, International Workshop on Practical Deep Learning in the
Wild, Feb. 2023, Best Paper Award, doi: 10.48550/arXiv.2212.07818,
arXiv: 2212.07818.

[22] R. Lai et al., “Relax: Composable abstractions for end-to-end dynamic
machine learning”, 2023, arXiv: 2311.02103.

[23] K. P. Murphy, Probabilistic Machine Learning: Advanced Topics. MIT
Press, 2023, http://probml.github.io/book2.

[24] M. Sharma, S. Farquhar, E. Nalisnick, and T. Rainforth, “Do bayesian
neural networks need to be fully stochastic?”, in International Conference
on Artificial Intelligence and Statistics, F. Ruiz, J. Dy, and J.-W. van de
Meent, Eds., vol. 206, PMLR, 25–27 Apr 2023, pp. 7694–7722, https:
//proceedings.mlr.press/v206/sharma23a.html.

[25] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix,
B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin,
E. Grave, and G. Lample, Llama: Open and efficient foundation language
models, 2023, arXiv: 2302.13971, https://arxiv.org/abs/2302.13971.

[26] X. Wu, P. Paramasivam, and V. Taylor, “Autotuning apache tvm-based
scientific applications using bayesian optimization”, in SC Workshops of
The International Conference on High Performance Computing, Network,
Storage, and Analysis, Association for Computing Machinery, 2023, pp. 29–
35, doi: 10.1145/3624062.3626079.

[27] J. van Amersfoort, L. Smith, A. Jesson, O. Key, and Y. Gal, “On feature
collapse and deep kernel learning for single forward pass uncertainty”,
2022, arXiv: 2102.11409.

203

https://doi.org/10.1145/3575693.3576933
https://arxiv.org/abs/2210.17323
https://proceedings.mlr.press/v202/gadhikar23a.html
https://proceedings.mlr.press/v202/gadhikar23a.html
https://doi.org/https://doi.org/10.1145/3579371.3589350
https://doi.org/https://doi.org/10.1145/3579371.3589350
https://doi.org/10.48550/arXiv.2212.07818
https://arxiv.org/abs/2212.07818
https://arxiv.org/abs/2311.02103
http://probml.github.io/book2
https://proceedings.mlr.press/v206/sharma23a.html
https://proceedings.mlr.press/v206/sharma23a.html
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://doi.org/10.1145/3624062.3626079
https://arxiv.org/abs/2102.11409

[28] L. V. Jospin, H. Laga, F. Boussaid, W. Buntine, and M. Bennamoun,
“Hands-on bayesian neural networks—a tutorial for deep learning users”,
IEEE Computational Intelligence Magazine, vol. 17, no. 2, pp. 29–48,
2022, doi: 10.1109/MCI.2022.3155327.

[29] D. P. Kingma and M. Welling, Auto-encoding variational bayes, 2022,
arXiv: 1312.6114, https://arxiv.org/abs/1312.6114.

[30] F. Li, B. Liu, X. Wang, B. Zhang, and J. Yan, Ternary weight networks,
2022, arXiv: 1605.04711, https://arxiv.org/abs/1605.04711.

[31] J. Mukhoti, A. Kirsch, J. van Amersfoort, P. H. S. Torr, and Y. Gal,
“Deep Deterministic Uncertainty: A Simple Baseline”, Tech. Rep., Jan.
2022, arXiv: 2102.11582.

[32] J. Shao, X. Zhou, S. Feng, B. Hou, R. Lai, H. Jin, W. Lin, M. Masuda,
C. H. Yu, and T. Chen, “Tensor program optimization with probabilis-
tic programs”, in Advances in Neural Information Processing Systems
(NeurIPS), S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho,
and A. Oh, Eds., vol. 35, Curran Associates, Inc., 2022, pp. 35 783–35 796,
arXiv: 2205.13603.

[33] P. Tempczyk, K. Smoczyński, P. Smolenski-Jensen, and M. Cygan, One
simple trick to fix your bayesian neural network, 2022, arXiv: 2207.13167,
https://arxiv.org/abs/2207.13167.

[34] P. Villalobos, J. Sevilla, T. Besiroglu, L. Heim, A. Ho, and M. Hobb-
hahn, Machine learning model sizes and the parameter gap, 2022, arXiv:
2207.02852, https://arxiv.org/abs/2207.02852.

[35] C. Baskin, N. Liss, E. Schwartz, E. Zheltonozhskii, R. Giryes, A. M.
Bronstein, and A. Mendelson, “Uniq: Uniform noise injection for non-
uniform quantization of neural networks”, in Proceedings of the Interna-
tional Conference on Machine Learning (ICML), 2021, pp. 684–693, doi:
10.1145/3444943.

[36] B. Cramer, S. Billaudelle, S. Kanya, A. Leibfried, A. Grübl, V. Karasenko,
C. Pehle, K. Schreiber, Y. Stradmann, J. Weis, J. Schemmel, and F.
Zenke, Surrogate gradients for analog neuromorphic computing, 2021,
arXiv: 2006.07239, https://arxiv.org/abs/2006.07239.

[37] F. D’Angelo and V. Fortuin, “Repulsive deep ensembles are bayesian”,
in Advances in Neural Information Processing Systems (NeurIPS), M.
Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, Eds.,
vol. 34, Curran Associates, Inc., 2021, pp. 3451–3465, https://proceedings.
neurips.cc/paper_files/paper/2021/file/1c63926ebcabda26b5cdb31b5cc91efb-
Paper.pdf.

204

https://doi.org/10.1109/MCI.2022.3155327
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1605.04711
https://arxiv.org/abs/1605.04711
https://arxiv.org/abs/2102.11582
https://arxiv.org/abs/2205.13603
https://arxiv.org/abs/2207.13167
https://arxiv.org/abs/2207.13167
https://arxiv.org/abs/2207.02852
https://arxiv.org/abs/2207.02852
https://doi.org/10.1145/3444943
https://arxiv.org/abs/2006.07239
https://arxiv.org/abs/2006.07239
https://proceedings.neurips.cc/paper_files/paper/2021/file/1c63926ebcabda26b5cdb31b5cc91efb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/1c63926ebcabda26b5cdb31b5cc91efb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/1c63926ebcabda26b5cdb31b5cc91efb-Paper.pdf

[38] E. Daxberger, A. Kristiadi, A. Immer, R. Eschenhagen, M. Bauer, and
P. Hennig, “Laplace redux-effortless Bayesian deep learning”, Advances
in Neural Information Processing Systems (NeurIPS), vol. 34, pp. 20 089–
20 103, 2021, https : / / proceedings . neurips . cc / paper / 2021 / hash /
a7c9585703d275249f30a088cebba0ad-Abstract.html.

[39] P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur, “Sharpness-aware
minimization for efficiently improving generalization”, in International
Conference on Learning Representations (ICLR), 2021, arXiv: 2010.01412.

[40] J. Gawlikowski, C. R. Tassi, M. Ali, J. Lee, M. Humt, J. Feng, A. Kruspe,
R. Triebel, P. Jung, R. Roscher, et al., “A survey of uncertainty in deep
neural networks”, Artificial Intelligence Review, vol. 56, no. 1, pp. 151–243,
2021, doi: https://doi.org/10.1007/s10462-023-10562-9.

[41] E. Hüllermeier and W. Waegeman, “Aleatoric and epistemic uncertainty
in machine learning: An introduction to concepts and methods”, Machine
Learning, vol. 110, no. 3, pp. 457–506, 2021, doi: 10.1007/s10994-021-
05946-3.

[42] P. Izmailov, S. Vikram, M. D. Hoffman, and A. G. Wilson, “What are
bayesian neural network posteriors really like?”, in Proceedings of the
International Conference on Machine Learning (ICML), ser. Proceedings
of Machine Learning Research, vol. 139, PMLR, 2021, pp. 4629–4640,
https://proceedings.mlr.press/v139/izmailov21a.html.

[43] B. Klein, C. Gratl, M. Mücke, and H. Fröning, “Understanding cache
boundness of ml operators on arm processors”, in HiPEAC, Workshop
on Accelerated Machine Learning (AccML), Jan. 2021, arXiv: 2102.00932,
https://arxiv.org/abs/2102.00932.

[44] B. Klein, L. Kuhn, J. Weis, A. Emmel, Y. Stradmann, J. Schemmel, and H.
Fröning, “Towards addressing noise and static variations of analog compu-
tations using efficient retraining”, in Machine Learning and Principles and
Practice of Knowledge Discovery in Databases - International Workshops
of ECML PKDD 2021, Proceedings Part I, M. Kamp et al., Eds., ser. Com-
munications in Computer and Information Science, vol. 1524, Springer,
2021, pp. 409–420, doi: https://doi.org/10.1007/978-3-030-93736-2_32.

[45] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar,
R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “Mlir: Scaling
compiler infrastructure for domain specific computation”, in IEEE/ACM
International Symposium on Code Generation and Optimization (CGO),
2021, pp. 2–14, doi: 10.1109/CGO51591.2021.9370308.

[46] B. Murmann, “Mixed-signal computing for deep neural network inference”,
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 29, no. 1, pp. 3–13, 2021, doi: https://10.1109/TVLSI.2020.3020286.

205

https://proceedings.neurips.cc/paper/2021/hash/a7c9585703d275249f30a088cebba0ad-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/a7c9585703d275249f30a088cebba0ad-Abstract.html
https://arxiv.org/abs/2010.01412
https://doi.org/https://doi.org/10.1007/s10462-023-10562-9
https://doi.org/10.1007/s10994-021-05946-3
https://doi.org/10.1007/s10994-021-05946-3
https://proceedings.mlr.press/v139/izmailov21a.html
https://arxiv.org/abs/2102.00932
https://arxiv.org/abs/2102.00932
https://doi.org/https://doi.org/10.1007/978-3-030-93736-2_32
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/https://10.1109/TVLSI.2020.3020286

[47] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary, V. Ko-
rthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro, A.
Phanishayee, and M. Zaharia, “Efficient large-scale language model train-
ing on gpu clusters using megatron-lm”, in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC), IEEE, 2021, doi: 10.1145/3458817.3476204.

[48] W. Roth, “Probabilistic methods for resource efficiency in machine learn-
ing”, Ph.D. dissertation, Graz University of Technology Austria, 2021,
https://download.spsc.tugraz.at/thesis/thesis-wroth.pdf.

[49] J. Schemmel, S. Billaudelle, P. Dauer, and J. Weis, “Accelerated analog
neuromorphic computing”, Advances in Analog Circuit Design, pp. 83–102,
2021, doi: https://doi.org/10.1007/978-3-030-91741-8_6.

[50] A. Vehtari, A. Gelman, D. Simpson, B. Carpenter, and P.-C. Bürkner,
“Rank-normalization, folding, and localization: An improved R̂ for assessing
convergence of MCMC”, Bayesian Analysis, vol. 16, no. 2, pp. 667–718,
2021, doi: 10.1214/20-BA1221.

[51] Q. Wan, H. Xia, X. Zhang, L. Wang, S. L. Song, and X. Fu, “Shift-BNN:
Highly-efficient probabilistic bayesian neural network training via memory-
friendly pattern retrieving”, in IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO, New York, NY, USA: Association for
Computing Machinery, 2021, pp. 885–897, doi: 10.1145/3466752.3480120.

[52] M. van Baalen, C. Louizos, M. Nagel, R. A. Amjad, Y. Wang, T. Blankevoort,
and M. Welling, “Bayesian bits: Unifying quantization and pruning”, in
Advances in Neural Information Processing Systems (NeurIPS), 2020,
pp. 5741–5752, https://proceedings.neurips.cc/paper_files/paper/2020/
hash/3f13cf4ddf6fc50c0d39a1d5aeb57dd8-Abstract.html.

[53] G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan, and Q. V. Le,
“Can weight sharing outperform random architecture search? an inves-
tigation with tunas”, in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Jun. 2020, https:
//openaccess.thecvf.com/content_CVPR_2020/html/Bender_Can_
Weight_Sharing_Outperform_Random_Architecture_Search_An_
Investigation_With_CVPR_2020_paper.html.

[54] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language models
are few-shot learners”, Advances in neural information processing systems
(NeurIPS), vol. 33, pp. 1877–1901, 2020, https://proceedings.neurips.
cc/paper_files/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-
Abstract.html.

[55] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Train one
network and specialize it for efficient deployment”, in International Con-
ference on Learning Representations (ICLR), 2020, https://openreview.
net/forum?id=HylxE1HKwS.

206

https://doi.org/10.1145/3458817.3476204
https://download.spsc.tugraz.at/thesis/thesis-wroth.pdf
https://doi.org/https://doi.org/10.1007/978-3-030-91741-8_6
https://doi.org/10.1214/20-BA1221
https://doi.org/10.1145/3466752.3480120
https://proceedings.neurips.cc/paper_files/paper/2020/hash/3f13cf4ddf6fc50c0d39a1d5aeb57dd8-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/3f13cf4ddf6fc50c0d39a1d5aeb57dd8-Abstract.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Bender_Can_Weight_Sharing_Outperform_Random_Architecture_Search_An_Investigation_With_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Bender_Can_Weight_Sharing_Outperform_Random_Architecture_Search_An_Investigation_With_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Bender_Can_Weight_Sharing_Outperform_Random_Architecture_Search_An_Investigation_With_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Bender_Can_Weight_Sharing_Outperform_Random_Architecture_Search_An_Investigation_With_CVPR_2020_paper.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://openreview.net/forum?id=HylxE1HKwS
https://openreview.net/forum?id=HylxE1HKwS

[56] Y. Cai, Z. Yao, Z. Dong, A. Gholami, M. Mahoney, and K. Keutzer,
“Zeroq: A novel zero shot quantization framework”, in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020, pp. 13 166–13 175, doi: 10.1109/CVPR42600.2020.01318.

[57] Z. Dong, Z. Yao, Y. Cai, D. Arfeen, A. Gholami, M. W. Mahoney, and
K. Keutzer, “Hawq-v2: Hessian aware trace-weighted quantization of
neural networks”, in Advances in Neural Information Processing Systems
(NeurIPS), 2020, https://proceedings.neurips.cc/paper/2020/hash/
d77c703536718b95308130ff2e5cf9ee-Abstract.html.

[58] Y. Du, L. Jing, Y. Li, Z. Ji, H. He, Y. Shen, Q. Tang, S. Wen, and L. Bao,
“Exploring the impact of random telegraph noise-induced accuracy loss on
resistive ram-based deep neural network”, IEEE Transactions on Electron
Devices, 2020, doi: 10.1109/TED.2020.3002736.

[59] A. T. Elthakeb, P. Pilligundla, F. S. Mireshghallah, A. Yazdanbakhsh, and
H. Esmaeilzadeh, “A reinforcement learning approach for automatic deep
quantization of neural networks”, IEEE Micro, vol. 40, no. 5, pp. 37–45,
2020, doi: 10.1109/MM.2020.3009475.

[60] S. K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy, and D. S.
Modha, “Learned step size quantization”, in International Conference on
Learning Representations (ICLR), 2020, arXiv: 1902.08153.

[61] S. Farquhar, L. Smith, and Y. Gal, “Try depth instead of weight correla-
tions: Mean-field is a less restrictive assumption for variational inference
in deep networks”, in Bayesian Deep Learning Workshop At NeurIPS,
2020, https://bayesiandeeplearning.org/2019/papers/45.pdf.

[62] M. Giacobbe, T. A. Henzinger, and M. Lechner, “How many bits does it
take to quantize your neural network?”, in Verification, Model Checking,
and Abstract Interpretation (VMCAI), Shows non-monotonic robustness vs.
bit-width, Springer, 2020, https://link.springer.com/chapter/10.1007/978-
3-030-45237-7_5.

[63] S. Gowal, K. Dvijotham, R. Stanforth, R. Bunel, C. Qin, J. Uesato, R.
Arandjelović, T. Mann, and P. Kohli, “Uncovering the limits of adversarial
training against norm-bounded adversarial examples”, in Advances in Neu-
ral Information Processing Systems (NeurIPS), 2020, arXiv: 2010.03593.

[64] V. Joshi, T. Gokmen, et al., “Accurate deep neural network inference
using computational phase-change memory”, Nature Communications,
vol. 11, no. 1, p. 2473, 2020, doi: 10.1038/s41467-020-16108-9.

[65] A. Kristiadi, M. Hein, and P. Hennig, “Being bayesian, even just a bit,
fixes overconfidence in ReLU networks”, in International Conference on
Machine Learning (ICML), H. Daumé and A. Singh, Eds., ser. Proceedings
of Machine Learning Research, vol. 119, PMLR, 13–18 Jul 2020, pp. 5436–
5446, https://proceedings.mlr.press/v119/kristiadi20a.html.

207

https://doi.org/10.1109/CVPR42600.2020.01318
https://proceedings.neurips.cc/paper/2020/hash/d77c703536718b95308130ff2e5cf9ee-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d77c703536718b95308130ff2e5cf9ee-Abstract.html
https://doi.org/10.1109/TED.2020.3002736
https://doi.org/10.1109/MM.2020.3009475
https://arxiv.org/abs/1902.08153
https://bayesiandeeplearning.org/2019/papers/45.pdf
https://link.springer.com/chapter/10.1007/978-3-030-45237-7_5
https://link.springer.com/chapter/10.1007/978-3-030-45237-7_5
https://arxiv.org/abs/2010.03593
https://doi.org/10.1038/s41467-020-16108-9
https://proceedings.mlr.press/v119/kristiadi20a.html

[66] M. Lin, R. Ji, Y. Zhang, B. Zhang, Y. Wu, and Y. Tian, “Channel pruning
via automatic structure search”, in Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), 2020, pp. 673–679, arXiv:
2001.08565.

[67] N. Liu, X. Ma, Z. Xu, Y. Wang, J. Tang, and J. Ye, “Autocompress: An
automatic dnn structured pruning framework for ultra-high compression
rates”, in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, 2020, pp. 4876–4883, doi: https://doi.org/10.1609/aaai.v34i04.
5924.

[68] X. Liu, T. Xiao, S. Si, and C.-J. Hsieh, “How does noise help robustness? ex-
planation and exploration under the neural sde framework”, in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2020, pp. 282–290, https://openaccess.thecvf.com/content_
CVPR _ 2020 / html / Liu _ How _ Does _ Noise _ Help _ Robustness _
Explanation_and_Exploration_under_the_CVPR_2020_paper.html.

[69] Q. Lou, F. Guo, L. Liu, M. Kim, and L. Jiang, “Autoq: Automated
kernel-wise neural network quantization”, in International Conference on
Learning Representations (ICLR), 2020, https://openreview.net/forum?
id=Hke_0RNKPr.

[70] A. Shekhovtsov, V. Yanush, and B. Flach, “Path sample-analytic gradient
estimators for stochastic binary networks”, in Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2020, pp. 12 884–12 894, https://
proceedings.neurips.cc/paper/2020/hash/96fca94df72984fc97ee5095410d4dec-
Abstract.html.

[71] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, Megatron-lm: Training multi-billion parameter language models using
model parallelism, 2020, arXiv: 1909.08053, https://arxiv.org/abs/1909.
08053.

[72] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “How to evaluate deep neural
network processors: TOPS/W (alone) considered harmful”, IEEE Solid-
State Circuits Magazine, vol. 12, no. 3, pp. 28–41, 2020, doi: 10.1109/
MSSC.2020.3002142.

[73] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolu-
tional neural networks”, 2020, arXiv: 1905.11946, https://arxiv.org/abs/
1905.11946.

[74] S. Uhlich, L. Mauch, F. Cardinaux, K. Yoshiyama, J. A. García, S.
Tiedemann, T. Kemp, and A. Nakamura, “Mixed precision DNNs: All you
need is a good parametrization”, in International Conference on Learning
Representations (ICLR), 2020, arXiv: 1905.11452.

[75] T. Wang, K. Wang, H. Cai, J. Lin, Z. Liu, H. Wang, Y. Lin, and S. Han,
“Apq: Joint search for network architecture, pruning and quantization
policy”, in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020, doi: 10.1109/CVPR42600.2020.00215.

208

https://arxiv.org/abs/2001.08565
https://doi.org/https://doi.org/10.1609/aaai.v34i04.5924
https://doi.org/https://doi.org/10.1609/aaai.v34i04.5924
https://openaccess.thecvf.com/content_CVPR_2020/html/Liu_How_Does_Noise_Help_Robustness_Explanation_and_Exploration_under_the_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Liu_How_Does_Noise_Help_Robustness_Explanation_and_Exploration_under_the_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Liu_How_Does_Noise_Help_Robustness_Explanation_and_Exploration_under_the_CVPR_2020_paper.html
https://openreview.net/forum?id=Hke_0RNKPr
https://openreview.net/forum?id=Hke_0RNKPr
https://proceedings.neurips.cc/paper/2020/hash/96fca94df72984fc97ee5095410d4dec-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/96fca94df72984fc97ee5095410d4dec-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/96fca94df72984fc97ee5095410d4dec-Abstract.html
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
https://doi.org/10.1109/MSSC.2020.3002142
https://doi.org/10.1109/MSSC.2020.3002142
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1905.11452
https://doi.org/10.1109/CVPR42600.2020.00215

[76] Y. Wang, Y. Lu, and T. Blankevoort, “Differentiable joint pruning and
quantization for hardware efficiency”, in European Conference on Com-
puter Vision (ECCV), 2020, doi: 10.1007/978-3-030-58526-6_16.

[77] A. G. Wilson and P. Izmailov, “Bayesian deep learning and a probabilistic
perspective of generalization”, in Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2020, https://proceedings.neurips.cc/paper/
2020/hash/f5c1b9e6f3ada9a3b02d00e8f4b3f4ab-Abstract.html.

[78] Y. Yang, E. Frantar, and D. Alistarh, “Bayesft: Bayesian fine-tuning of
quantized neural networks”, in Advances in Neural Information Processing
Systems (NeurIPS), 2020, https://arxiv.org/abs/2010.10496.

[79] L. Zheng, C. Jia, M. Sun, Z. Wu, C. H. Yu, A. Haj-Ali, Y. Wang, J.
Yang, D. Zhuo, K. Sen, J. E. Gonzalez, and I. Stoica, “Ansor: Generat-
ing High-Performance tensor programs for deep learning”, in USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
USENIX Association, Nov. 2020, pp. 863–879, https://www.usenix.org/
conference/osdi20/presentation/%20zheng.

[80] C. Zhou, P. Kadambi, M. Mattina, and P. N. Whatmough, Noisy machines:
Understanding noisy neural networks and enhancing robustness to analog
hardware errors using distillation, 2020, arXiv: 2001.04974, https://arxiv.
org/abs/2001.04974.

[81] S. S. Banerjee, Z. T. Kalbarczyk, and R. K. Iyer, “AcMC2: Acceler-
ating markov chain monte carlo algorithms for probabilistic models”,
in International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’19, New York, NY,
USA: Association for Computing Machinery, 2019, pp. 515–528, doi:
10.1145/3297858.3304019.

[82] E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan, T.
Karaletsos, R. Singh, P. Szerlip, P. Horsfall, and N. D. Goodman, “Pyro:
Deep universal probabilistic programming”, Journal of Machine Learning
Research, vol. 20, no. 28, pp. 1–6, 2019, http://jmlr.org/papers/v20/18-
403.html.

[83] H. Cai, L. Zhu, and S. Han, “ProxylessNAS: Direct neural architecture
search on target task and hardware”, in International Conference on
Learning Representations (ICLR), 2019, arXiv: 1812.00332.

[84] V. Camus, A. Valentian, S. Anghel, E. Ismail, and E. Beigne, “A com-
prehensive crossbar model benchmarking-based evaluation methodology
for memristive CNN accelerators”, in Proceedings of the Asia and South
Pacific Design Automation Conference (ASP-DAC), 2019, pp. 331–336,
doi: 10.1145/3287624.3287705.

209

https://doi.org/10.1007/978-3-030-58526-6_16
https://proceedings.neurips.cc/paper/2020/hash/f5c1b9e6f3ada9a3b02d00e8f4b3f4ab-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f5c1b9e6f3ada9a3b02d00e8f4b3f4ab-Abstract.html
https://arxiv.org/abs/2010.10496
https://www.usenix.org/conference/osdi20/presentation/%20zheng
https://www.usenix.org/conference/osdi20/presentation/%20zheng
https://arxiv.org/abs/2001.04974
https://arxiv.org/abs/2001.04974
https://arxiv.org/abs/2001.04974
https://doi.org/10.1145/3297858.3304019
http://jmlr.org/papers/v20/18-403.html
http://jmlr.org/papers/v20/18-403.html
https://arxiv.org/abs/1812.00332
https://doi.org/10.1145/3287624.3287705

[85] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding”, in Pro-
ceedings of the Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies,
Association for Computational Linguistics, 2019, pp. 4171–4186, https:
//aclanthology.org/N19-1423.

[86] Z. Dong, Z. Yao, A. Gholami, M. W. Mahoney, and K. Keutzer, “HAWQ:
Hessian aware quantization of neural networks with mixed-precision”, in
International Conference on Computer Vision (ICCV), 2019, pp. 293–302,
https://openaccess.thecvf.com/content_ICCV_2019/html/Dong_
HAWQ_Hessian_AWare_Quantization_of_Neural_Networks_With_
Mixed-Precision_ICCV_2019_paper.html.

[87] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey”, The Journal of Machine Learning Research (JMLR), vol. 20, no. 1,
pp. 1997–2017, 2019, https://www.jmlr.org/papers/v20/18-598.html.

[88] S. Fort, H. Hu, and B. Lakshminarayanan, “Deep ensembles: A loss
landscape perspective”, in Advances in Neural Information Processing
Systems (NeurIPS), vol. 32, 2019, https://proceedings.neurips.cc/paper/
2019/hash/67e3d64f95417a1e10a2f709b76d61d4-Abstract.html.

[89] M. Havasi, R. Peharz, and J. M. Hernández-Lobato, “Minimal random
code learning: Getting bits back from compressed model parameters”,
in International Conference on Learning Representations (ICLR), 2019,
arXiv: 1810.00440.

[90] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “AMC: AutoML
for Model Compression and Acceleration on Mobile Devices”, Jan. 2019,
https://openaccess.thecvf.com/content_ECCV_2018/html/Yihui_He_
AMC_Automated_Model_ECCV_2018_paper.html.

[91] Y. Li and S. Ji, “L0-ARM: Network sparsification via stochastic binary
optimization”, in European Conference on Machine Learning and Princi-
ples and Practice of Knowledge Discovery in Databases (ECML PKDD),
2019, https://link.springer.com/chapter/10.1007/978-3-030-46147-8_26.

[92] J. Lin, C. Gan, and S. Han, “Defensive quantization: When efficiency meets
robustness”, in International Conference on Learning Representations
(ICLR), Workshop track, 2019, arXiv: 1904.08444.

[93] C. Liu, J. Zhuo, P. Cheng, R. Zhang, and J. Zhu, “Understanding and
accelerating particle-based variational inference”, PMLR, 2019, pp. 4082–
4092, https://proceedings.mlr.press/v97/liu19i.

[94] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the value
of network pruning”, in International Conference on Learning Represen-
tations (ICLR), 2019, arXiv: 1810.05270.

210

https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://openaccess.thecvf.com/content_ICCV_2019/html/Dong_HAWQ_Hessian_AWare_Quantization_of_Neural_Networks_With_Mixed-Precision_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Dong_HAWQ_Hessian_AWare_Quantization_of_Neural_Networks_With_Mixed-Precision_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Dong_HAWQ_Hessian_AWare_Quantization_of_Neural_Networks_With_Mixed-Precision_ICCV_2019_paper.html
https://www.jmlr.org/papers/v20/18-598.html
https://proceedings.neurips.cc/paper/2019/hash/67e3d64f95417a1e10a2f709b76d61d4-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/67e3d64f95417a1e10a2f709b76d61d4-Abstract.html
https://arxiv.org/abs/1810.00440
https://openaccess.thecvf.com/content_ECCV_2018/html/Yihui_He_AMC_Automated_Model_ECCV_2018_paper.html
https://openaccess.thecvf.com/content_ECCV_2018/html/Yihui_He_AMC_Automated_Model_ECCV_2018_paper.html
https://link.springer.com/chapter/10.1007/978-3-030-46147-8_26
https://arxiv.org/abs/1904.08444
https://proceedings.mlr.press/v97/liu19i
https://arxiv.org/abs/1810.05270

[95] C. Louizos, M. Reisser, T. Blankevoort, E. Gavves, and M. Welling,
“Relaxed quantization for discretized neural networks”, in International
Conference on Learning Representations (ICLR), 2019, arXiv: 1810.01875.

[96] Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley, S. Nowozin, J. Dillon,
B. Lakshminarayanan, and J. Snoek, “Can you trust your model’s uncer-
tainty? evaluating predictive uncertainty under dataset shift”, in Advances
in Neural Information Processing Systems (NeurIPS), vol. 32, 2019, https:
//proceedings.neurips.cc/paper/2019/hash/8558cb408c1d76621371888657d2eb1d-
Abstract.html.

[97] A. Paszke et al., “Pytorch: An imperative style, high-performance deep
learning library”, in Advances in Neural Information Processing Systems
(NeurIPS), vol. 32, 2019, https://arxiv.org/abs/1912.01703.

[98] D. Phan, N. Pradhan, and M. Jankowiak, “Composable effects for flexible
and accelerated probabilistic programming in numpyro”, arXiv preprint
arXiv:1912.11554, 2019, https://arxiv.org/abs/1912.11554.

[99] A. S. Rekhi et al., “Analog/mixed-signal hardware error modeling for
deep learning inference”, in 56th Annual Design Automation Conference,
ser. DAC, Association for Computing Machinery, 2019, doi: 10.1145/
3316781.3317770.

[100] W. Roth, G. Schindler, H. Fröning, and F. Pernkopf, “Training discrete-
valued neural networks with sign activations using weight distributions”,
in European Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases (ECML PKDD), 2019, https://link.
springer.com/chapter/10.1007/978-3-030-46147-8_23.

[101] D. Stamoulis, R. Ding, D. Wang, D. Lymberopoulos, B. Priyantha, J.
Liu, and D. Marculescu, “Single-path NAS: Designing hardware-efficient
convnets in less than 4 hours”, in European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML PKDD), 2019, https://link.springer.com/chapter/10.1007/978-3-
030-46147-8_29.

[102] M. Tan, B. Chen, R. Pang, V. Vasudevan, and Q. V. Le, “Mnasnet:
Platform-aware neural architecture search for mobile”, in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 2820–2828, doi: https://10.1109/CVPR.2019.00293.

[103] Y. Umuroglu, D. Conficconi, L. Rasnayake, T. B. Preusser, and M. Sjä-
lander, “Optimizing bit-serial matrix multiplication for reconfigurable
computing”, ACM Transactions on Reconfigurable Technology and Sys-
tems, vol. 12, no. 3, pp. 1–23, 2019, doi: 10.1145/3369384.

211

https://arxiv.org/abs/1810.01875
https://proceedings.neurips.cc/paper/2019/hash/8558cb408c1d76621371888657d2eb1d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/8558cb408c1d76621371888657d2eb1d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/8558cb408c1d76621371888657d2eb1d-Abstract.html
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.11554
https://doi.org/10.1145/3316781.3317770
https://doi.org/10.1145/3316781.3317770
https://link.springer.com/chapter/10.1007/978-3-030-46147-8_23
https://link.springer.com/chapter/10.1007/978-3-030-46147-8_23
https://link.springer.com/chapter/10.1007/978-3-030-46147-8_29
https://link.springer.com/chapter/10.1007/978-3-030-46147-8_29
https://doi.org/https://10.1109/CVPR.2019.00293
https://doi.org/10.1145/3369384

[104] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ: Hardware-aware
automated quantization with mixed precision”, in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2019, pp. 8612–8620,
https://openaccess.thecvf.com/content_CVPR_2019/html/Wang_
HAQ_Hardware- Aware_Automated_Quantization_With_Mixed_
Precision_CVPR_2019_paper.html.

[105] Z. Wang, T. Ren, J. Zhu, and B. Zhang, “Function space particle opti-
mization for Bayesian neural networks”, 2019, arXiv: 1902.09754.

[106] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y.
Jia, and K. Keutzer, “Fbnet: Hardware-aware efficient convnet design via
differentiable neural architecture search”, in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2019,
pp. 10 734–10 742, doi: 10.1109/CVPR.2019.01098.

[107] M. Yin and M. Zhou, “ARM: augment-REINFORCE-merge gradient for
stochastic binary networks”, in International Conference on Learning
Representations (ICLR), 2019, arXiv: 1807.11143.

[108] C. Zhang, J. Bütepage, H. Kjellström, and S. Mandt, “Advances in varia-
tional inference”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 41, no. 8, pp. 2008–2026, 2019, doi: 10.1109/TPAMI.
2018.2889774.

[109] Y. Zhang, R. Cai, A. Li, Y. Lin, Y. Chen, and H. H. Li, “Precision-
aware training for deep neural networks on resistive crossbar systems”, in
Proceedings of the Annual Design Automation Conference (DAC), 2019,
pp. 1–6, doi: 10.1145/3316781.3317924.

[110] J. Achterhold, J. M. Köhler, A. Schmeink, and T. Genewein, “Variational
network quantization”, in International Conference on Learning Repre-
sentations (ICLR), 2018, https://openreview.net/forum?id=ry-TW-
WAb&trk=public_post_comment-text.

[111] A. G. Anderson and C. P. Berg, “The high-dimensional geometry of binary
neural networks”, in International Conference on Learning Representations
(ICLR), 2018, arXiv: 1705.07199.

[112] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclau-
rin, and S. Wanderman-Milne, “Jax: Composable transformations of
python+numpy programs”, GitHub repository, 2018, http://github.com/
google/jax.

[113] R. Cai, A. Ren, N. Liu, C. Ding, L. Wang, X. Qian, M. Pedram, and
Y. Wang, “Vibnn: Hardware acceleration of bayesian neural networks”,
SIGPLAN Not., vol. 53, no. 2, pp. 476–488, Mar. 2018, doi: 10.1145/
3296957.3173212.

[114] C. Chen, R. Zhang, W. Wang, B. Li, and L. Chen, A unified particle-
optimization framework for scalable bayesian sampling, 2018, arXiv: 1805.11659.

212

https://openaccess.thecvf.com/content_CVPR_2019/html/Wang_HAQ_Hardware-Aware_Automated_Quantization_With_Mixed_Precision_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Wang_HAQ_Hardware-Aware_Automated_Quantization_With_Mixed_Precision_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Wang_HAQ_Hardware-Aware_Automated_Quantization_With_Mixed_Precision_CVPR_2019_paper.html
https://arxiv.org/abs/1902.09754
https://doi.org/10.1109/CVPR.2019.01098
https://arxiv.org/abs/1807.11143
https://doi.org/10.1109/TPAMI.2018.2889774
https://doi.org/10.1109/TPAMI.2018.2889774
https://doi.org/10.1145/3316781.3317924
https://openreview.net/forum?id=ry-TW-WAb&trk=public_post_comment-text
https://openreview.net/forum?id=ry-TW-WAb&trk=public_post_comment-text
https://arxiv.org/abs/1705.07199
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.1145/3296957.3173212
https://doi.org/10.1145/3296957.3173212
https://arxiv.org/abs/1805.11659

[115] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, “TVM:
An automated end-to-end optimizing compiler for deep learning”, in
USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI, USA: USENIX Association, 2018, pp. 579–594, https://dada.
cs.washington.edu/research/tr/2017/12/UW-CSE-17-12-01.pdf.

[116] S. Depeweg, J.-M. Hernandez-Lobato, F. Doshi-Velez, and S. Udluft,
“Decomposition of Uncertainty in Bayesian Deep Learning for Efficient
and Risk-sensitive Learning”, en, in International Conference on Machine
Learning, PMLR, Jul. 2018, pp. 1184–1193, https://proceedings.mlr.press/
v80/depeweg18a.html.

[117] D. Duncan, A. Ó. hÉigeartaigh, and C. Ó. hÉigeartaigh, “On the effect
of quantization on adversarial robustness”, arXiv preprint, 2018, arXiv:
1809.07370.

[118] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “Amc: Automl for
model compression and acceleration on mobile devices”, in Proceedings
of the European Conference on Computer Vision (ECCV), Sep. 2018,
https://openaccess.thecvf.com/content_ECCV_2018/html/Yihui_He_
AMC_Automated_Model_ECCV_2018_paper.html.

[119] Z. Huang and N. Wang, “Data-driven sparse structure selection for deep
neural networks”, in European Conference on Computer Vision (ECCV),
2018, pp. 317–334, https://openaccess.thecvf.com/content_ECCV_2018/
html/Zehao_Huang_Data-Driven_Sparse_Structure_ECCV_2018_
paper.html.

[120] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks
for efficient integer-arithmetic-only inference”, in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Jun. 2018, https://
openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_
and_Training_CVPR_2018_paper.html.

[121] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. G. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference”, in Conference on Computer
Vision and Pattern Recognition (CVPR), 2018, pp. 2704–2713, https://
openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_
and_Training_CVPR_2018_paper.html.

[122] R. Krishnamoorthi, “Quantizing deep convolutional networks for efficient
inference: A whitepaper”, arXiv preprint, 2018, arXiv: 1806.08342.

[123] X. Lin et al., “All-optical machine learning using diffractive deep neural
networks”, Science, vol. 361, no. 6406, pp. 1004–1008, 2018, doi: 10.1126/
science.aat8084.

213

https://dada.cs.washington.edu/research/tr/2017/12/UW-CSE-17-12-01.pdf
https://dada.cs.washington.edu/research/tr/2017/12/UW-CSE-17-12-01.pdf
https://proceedings.mlr.press/v80/depeweg18a.html
https://proceedings.mlr.press/v80/depeweg18a.html
https://arxiv.org/abs/1809.07370
https://openaccess.thecvf.com/content_ECCV_2018/html/Yihui_He_AMC_Automated_Model_ECCV_2018_paper.html
https://openaccess.thecvf.com/content_ECCV_2018/html/Yihui_He_AMC_Automated_Model_ECCV_2018_paper.html
https://openaccess.thecvf.com/content_ECCV_2018/html/Zehao_Huang_Data-Driven_Sparse_Structure_ECCV_2018_paper.html
https://openaccess.thecvf.com/content_ECCV_2018/html/Zehao_Huang_Data-Driven_Sparse_Structure_ECCV_2018_paper.html
https://openaccess.thecvf.com/content_ECCV_2018/html/Zehao_Huang_Data-Driven_Sparse_Structure_ECCV_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
https://arxiv.org/abs/1806.08342
https://doi.org/10.1126/science.aat8084
https://doi.org/10.1126/science.aat8084

[124] X. Lin et al., “All-optical machine learning using diffractive deep neural
networks”, Science, vol. 361, no. 6406, pp. 1004–1008, 2018, doi: 10.1126/
science.aat8084.

[125] X. Liu, Y. Ye, J. Tang, and X. Hu, “Robust neural network training via
noise injection”, in Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), 2018, pp. 2596–2602, doi: 10.24963/ijcai.
2018/360.

[126] Z. Liu, B. Wu, W. Luo, X. Yang, W. Liu, and K. Cheng, “Bi-Real net:
Enhancing the performance of 1-bit cnns with improved representational
capability and advanced training algorithm”, in European Conference on
Computer Vision (ECCV), 2018, pp. 747–763, doi: 10.1007/978-3-030-
01267-0_44.

[127] C. Louizos, M. Welling, and D. P. Kingma, “Learning sparse neural
networks through L0 regularization”, in International Conference on
Learning Representations (ICLR), 2018, arXiv: 1712.01312.

[128] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normal-
ization for generative adversarial networks”, 2018, arXiv: 1802.05957,
https://arxiv.org/abs/1802.05957.

[129] S. R. Nandakumar, M. Le Gallo, I. Boybat, B. Rajendran, A. Sebastian,
and E. Eleftheriou, “A phase-change memory model for neuromorphic
computing”, Journal of Applied Physics, vol. 124, no. 15, p. 152 135, 2018,
doi: 10.1063/1.5042408.

[130] J. W. T. Peters and M. Welling, Probabilistic binary neural networks,
2018, arXiv: 1809.03368, https://arxiv.org/abs/1809.03368.

[131] M. Qin and D. Vucinic, Noisy computations during inference: Harmful or
helpful?, 2018, arXiv: 1811.10649, https://arxiv.org/abs/1811.10649.

[132] J. Roesch, S. Lyubomirsky, L. Weber, J. Pollock, M. Kirisame, T. Chen,
and Z. Tatlock, “Relay: A new ir for machine learning frameworks”, in SIG-
PLAN International Workshop on Machine Learning and Programming
Languages, ser. MAPL, New York, NY, USA: Association for Computing
Machinery, 2018, pp. 58–68, doi: 10.1145/3211346.3211348.

[133] G. Schindler, M. Zöhrer, F. Pernkopf, and H. Fröning, “Towards effi-
cient forward propagation on resource-constrained systems”, in Euro-
pean Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML PKDD), M. Berlingerio, F.
Bonchi, T. Gärtner, N. Hurley, and G. Ifrim, Eds., ser. Lecture Notes
in Computer Science, vol. 11051, Springer, 2018, pp. 426–442, https :
//link.springer.com/chapter/10.1007/978-3-030-10925-7_26.

[134] O. Shayer, D. Levi, and E. Fetaya, “Learning discrete weights using the
local reparameterization trick”, in International Conference on Learning
Representations (ICLR), 2018, arXiv: 1710.07739.

214

https://doi.org/10.1126/science.aat8084
https://doi.org/10.1126/science.aat8084
https://doi.org/10.24963/ijcai.2018/360
https://doi.org/10.24963/ijcai.2018/360
https://doi.org/10.1007/978-3-030-01267-0_44
https://doi.org/10.1007/978-3-030-01267-0_44
https://arxiv.org/abs/1712.01312
https://arxiv.org/abs/1802.05957
https://arxiv.org/abs/1802.05957
https://doi.org/10.1063/1.5042408
https://arxiv.org/abs/1809.03368
https://arxiv.org/abs/1809.03368
https://arxiv.org/abs/1811.10649
https://arxiv.org/abs/1811.10649
https://doi.org/10.1145/3211346.3211348
https://link.springer.com/chapter/10.1007/978-3-030-10925-7_26
https://link.springer.com/chapter/10.1007/978-3-030-10925-7_26
https://arxiv.org/abs/1710.07739

[135] Y. Tsividis, “Not your father’s analog computer”, IEEE Spectrum, vol. 55,
no. 2, pp. 38–43, 2018, doi: 10.1109/MSPEC.2018.8278135.

[136] F. Tung and G. Mori, “Clip-q: Deep network compression learning by
in-parallel pruning–quantization”, in IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2018, https://openaccess.thecvf.
com/content_ cvpr_ 2018/html/Tung_ CLIP- Q_ Deep_ Network_
CVPR_2018_paper.html.

[137] P. Warden, Speech commands: A dataset for limited-vocabulary speech
recognition, 2018, arXiv: 1804.03209, https://arxiv.org/abs/1804.03209.

[138] B. Wu, Y. Wang, P. Zhang, Y. Tian, P. Vajda, and K. Keutzer, “Mixed
precision quantization of convnets via differentiable neural architecture
search”, 2018, arXiv: 1812.00090, https://arxiv.org/abs/1812.00090.

[139] S. Wu, G. Li, F. Chen, and L. Shi, “Training and inference with inte-
gers in deep neural networks”, in International Conference on Learning
Representations (ICLR), 2018.

[140] T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, M. Sandler, V. Sze,
and H. Adam, “Netadapt: Platform-aware neural network adaptation
for mobile applications”, in European Conference on Computer Vision
(ECCV), Springer, 2018, pp. 285–300, doi: 10.1007/978-3-030-01258-
8_18.

[141] D. Zhang, J. Yang, D. Ye, and G. Hua, “LQ-Nets: Learned quantization
for highly accurate and compact deep neural networks”, in European
Conference on Computer Vision (ECCV), 2018, pp. 373–390, https://
openaccess.thecvf.com/content_ECCV_2018/html/Dongqing_Zhang_
LQ-Nets_Learned_Quantization_ECCV_2018_paper.html.

[142] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, Dorefa-net: Training
low bitwidth convolutional neural networks with low bitwidth gradients,
2018, arXiv: 1606.06160, https://arxiv.org/abs/1606.06160.

[143] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition”, in Conference on Computer
Vision and Pattern Recognition (CVPR), 2018, pp. 8697–8710.

[144] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference: A
review for statisticians”, Journal of the American Statistical Association,
vol. 112, no. 518, pp. 859–877, 2017, doi: https://doi .org/10.1080/
01621459.2017.1285773.

[145] Z. Cai, X. He, J. Sun, and N. Vasconcelos, “Deep learning with low
precision by half-wave Gaussian quantization”, in Conference on Computer
Vision and Pattern Recognition (CVPR), 2017, pp. 5406–5414.

[146] J. V. Dillon, I. Langmore, D. Tran, E. Brevdo, S. Vasudevan, D. Moore,
B. Patton, A. Alemi, M. Hoffman, and R. A. Saurous, “Tensorflow distri-
butions”, in Proceedings of the International Conference on Learning Rep-
resentations (ICLR) Workshop, 2017, https://arxiv.org/abs/1711.10604.

215

https://doi.org/10.1109/MSPEC.2018.8278135
https://openaccess.thecvf.com/content_cvpr_2018/html/Tung_CLIP-Q_Deep_Network_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Tung_CLIP-Q_Deep_Network_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Tung_CLIP-Q_Deep_Network_CVPR_2018_paper.html
https://arxiv.org/abs/1804.03209
https://arxiv.org/abs/1804.03209
https://arxiv.org/abs/1812.00090
https://arxiv.org/abs/1812.00090
https://doi.org/10.1007/978-3-030-01258-8_18
https://doi.org/10.1007/978-3-030-01258-8_18
https://openaccess.thecvf.com/content_ECCV_2018/html/Dongqing_Zhang_LQ-Nets_Learned_Quantization_ECCV_2018_paper.html
https://openaccess.thecvf.com/content_ECCV_2018/html/Dongqing_Zhang_LQ-Nets_Learned_Quantization_ECCV_2018_paper.html
https://openaccess.thecvf.com/content_ECCV_2018/html/Dongqing_Zhang_LQ-Nets_Learned_Quantization_ECCV_2018_paper.html
https://arxiv.org/abs/1606.06160
https://arxiv.org/abs/1606.06160
https://doi.org/https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/https://doi.org/10.1080/01621459.2017.1285773
https://arxiv.org/abs/1711.10604

[147] Y. Gal, R. Islam, and Z. Ghahramani, “Deep bayesian active learning
with image data”, in Proceedings of the International Conference on
Machine Learning (ICML), ser. PMLR, vol. 70, 2017, pp. 1183–1192,
https://proceedings.mlr.press/v70/gal17a.html.

[148] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of
modern neural networks”, in Proceedings of the International Conference
on Machine Learning (ICML), 2017, pp. 1321–1330.

[149] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep
neural networks”, in IEEE/CVF International Conference on Computer
Vision (ICCV), 2017, pp. 1389–1397, doi: 10.1109/ICCV.2017.154.

[150] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications”, arXiv preprint arXiv:1704.04861,
2017, https://arxiv.org/abs/1704.04861.

[151] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks”, in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Jul. 2017.

[152] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax”, in International Conference on Learning Representa-
tions (ICLR), 2017.

[153] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian
deep learning for computer vision?”, in Advances in Neural Information
Processing Systems (NeurIPS), vol. 30, 2017, https://proceedings.neurips.
cc/paper/2017/hash/2650d6089a6d640c5e85b2b88265dc2b- Abstract .
html.

[154] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles”, Advances in
Neural Information Processing Systems (NeurIPS), vol. 30, pp. 6405–6416,
2017, https://proceedings.neurips.cc/paper_files/paper/2017/file/
9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf.

[155] H. Li, S. De, Z. Xu, C. Studer, H. Samet, and T. Goldstein, “Training quan-
tized nets: A deeper understanding”, in Advances in Neural Information
Processing Systems (NeurIPS), 2017, pp. 5811–5821.

[156] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets”, in International Conference on Learning
Representations (ICLR), 2017, https : / / openreview . net / forum ? id =
SJGCiw5gl.

[157] X. Lin, C. Zhao, and W. Pan, “Towards accurate binary convolutional
neural network”, in Neural Information Processing Systems (NeurIPS),
2017, pp. 345–353.

[158] Q. Liu, “Stein variational gradient descent as gradient flow”, Advances in
Neural Information Processing Systems (NeurIPS), vol. 30, 2017.

216

https://proceedings.mlr.press/v70/gal17a.html
https://doi.org/10.1109/ICCV.2017.154
https://arxiv.org/abs/1704.04861
https://proceedings.neurips.cc/paper/2017/hash/2650d6089a6d640c5e85b2b88265dc2b-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/2650d6089a6d640c5e85b2b88265dc2b-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/2650d6089a6d640c5e85b2b88265dc2b-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
https://openreview.net/forum?id=SJGCiw5gl
https://openreview.net/forum?id=SJGCiw5gl

[159] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning effi-
cient convolutional networks through network slimming”, in International
Conference on Computer Vision (ICCV), 2017, pp. 2755–2763.

[160] C. Louizos, K. Ullrich, and M. Welling, “Bayesian compression for deep
learning”, in Advances in Neural Information Processing Systems (NeurIPS),
ser. NeurIPS, vol. 30, Curran Associates Inc., 2017, pp. 3290–3300, arXiv:
1705.08665.

[161] J. Luo, J. Wu, and W. Lin, “ThiNet: A filter level pruning method for deep
neural network compression”, in International Conference on Computer
Vision (ICCV), 2017, pp. 5068–5076.

[162] D. Molchanov, A. Ashukha, and D. P. Vetrov, “Variational dropout
sparsifies deep neural networks”, in International Conference on Machine
Learning (ICML), 2017, pp. 2498–2507.

[163] Y. Shen et al., “Deep learning with coherent nanophotonic circuits”,
Nature Photonics, vol. 11, no. 7, pp. 441–446, Jul. 2017, doi: 10.1038/
nphoton.2017.93.

[164] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg,
X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep
learning with coherent nanophotonic circuits”, Nature Photonics, vol. 11,
no. 7, pp. 441–446, 2017, doi: 10.1038/nphoton.2017.93.

[165] TensorFlow Team, Xla: Optimizing compiler for machine learning, https:
//www.tensorflow.org/xla, Accessed 2025-09-26, 2017.

[166] C. Torres-Huitzil and B. Girau, “Fault and error tolerance in neural
networks: A review”, IEEE Access, vol. 5, pp. 17 322–17 341, 2017, doi:
10.1109/ACCESS.2017.2742698.

[167] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. H. W. Leong, M.
Jahre, and K. A. Vissers, “FINN: A framework for fast, scalable binarized
neural network inference”, in ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (ISFPGA), 2017, pp. 65–74.

[168] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need”, in Advances in
Neural Information Processing Systems (NeurIPS), vol. 30, 2017, https:
//arxiv.org/abs/1706.03762.

[169] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: A novel image dataset
for benchmarking machine learning algorithms”, 2017, arXiv: 1708.07747,
https://arxiv.org/abs/1708.07747.

[170] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network
quantization: Towards lossless CNNs with low-precision weights”, in In-
ternational Conference on Learning Representations (ICLR), 2017, arXiv:
1702.03044.

217

https://arxiv.org/abs/1705.08665
https://doi.org/10.1038/nphoton.2017.93
https://doi.org/10.1038/nphoton.2017.93
https://doi.org/10.1038/nphoton.2017.93
https://www.tensorflow.org/xla
https://www.tensorflow.org/xla
https://doi.org/10.1109/ACCESS.2017.2742698
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1708.07747
https://arxiv.org/abs/1708.07747
https://arxiv.org/abs/1702.03044

[171] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantization”,
in International Conference on Learning Representations (ICLR), 2017,
arXiv: 1612.01064.

[172] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning”, in International Conference on Learning Representations (ICLR),
2017, arXiv: 1611.01578.

[173] M. Abadi et al., “Tensorflow: A system for large-scale machine learning”,
in 12th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI), 2016, pp. 265–283, https://www.usenix.org/conference/
osdi16/technical-sessions/presentation/abadi.

[174] Y. Gal and Z. Ghahramani, Bayesian convolutional neural networks with
bernoulli approximate variational inference, 2016, arXiv: 1506.02158.

[175] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Repre-
senting model uncertainty in deep learning”, in International Conference
on International Conference on Machine Learning, ser. ICML, PMLR,
2016, pp. 1050–1059, https://proceedings.mlr.press/v48/gal16.html.

[176] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA: MIT Press, 2016, http://www.deeplearningbook.org.

[177] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient
DNNs”, in Advances in Neural Information Processing Systems (NeurIPS),
2016, pp. 1379–1387.

[178] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing
Deep Neural Network with Pruning, Trained Quantization and Huffman
Coding”, in International Conference on Learning Representations ICLR,
Y. Bengio and Y. LeCun, Eds., 2016, arXiv: 1510.00149.

[179] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition”, in Conference on Computer Vision and Pattern Recognition
(CVPR), 2016, pp. 770–778.

[180] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks”, in Advances in Neural Information Processing
Systems (NeurIPS), 2016, pp. 4107–4115.

[181] D. D. Lin, S. S. Talathi, and V. S. Annapureddy, “Fixed point quantization
of deep convolutional networks”, in International Conference on Machine
Learning (ICML), 2016, pp. 2849–2858.

[182] Q. Liu and D. Wang, “Stein variational gradient descent: A general
purpose Bayesian inference algorithm”, Advances in Neural Information
Processing Systems (NeurIPS), vol. 29, 2016.

[183] Z. Mariet and S. Sra, “Diversity networks: Neural network compression
using determinantal point processes”, in International Conference on
Learning Representations (ICLR), 2016.

218

https://arxiv.org/abs/1612.01064
https://arxiv.org/abs/1611.01578
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://arxiv.org/abs/1506.02158
https://proceedings.mlr.press/v48/gal16.html
http://www.deeplearningbook.org
https://arxiv.org/abs/1510.00149

[184] D. Miyashita, E. H. Lee, and B. Murmann, Convolutional neural networks
using logarithmic data representation, 2016, arXiv: 1603.01025, https:
//arxiv.org/abs/1603.01025.

[185] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet classification using binary convolutional neural networks”, in
European Conference on Computer Vision (ECCV), 2016, pp. 525–542.

[186] W. Roth and F. Pernkopf, “Variational inference in neural networks
using an approximate closed-form objective”, in NeurIPS Workshop on
Bayesian Deep Learning, 2016, http://bayesiandeeplearning.org/2016/
papers/BDL_13.pdf.

[187] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks”, in Advances in Neural Information
Processing Systems (NeurIPS), 2016, pp. 2074–2082.

[188] S. Zagoruyko and N. Komodakis, “Wide residual networks”, in Proceedings
of the British Machine Vision Conference (BMVC), 2016.

[189] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural networks”, in International Conference on Machine
Learning (ICML), 2015, pp. 1613–1622, https://proceedings.mlr.press/
v37/blundell15.html.

[190] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Train-
ing deep neural networks with binary weights during propagations”, in
Advances in Neural Information Processing Systems (NeurIPS), vol. 28,
Curran Associates, Inc., 2015, https://dl.acm.org/doi/10.5555/2969442.
2969588.

[191] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples”, in International Conference on Learning Represen-
tations (ICLR), arXiv:1412.6572, 2015, https://arxiv.org/abs/1412.6572.

[192] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision”, in International Conference
on Machine Learning (ICML), 2015, pp. 1737–1746.

[193] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and con-
nections for efficient neural networks”, in Advances in Neural Information
Processing Systems (NeurIPS), 2015, pp. 1135–1143.

[194] G. Hinton, O. Vinyals, and J. Dean, Distilling the knowledge in a neural
network, 2015, arXiv: 1503.02531, https://arxiv.org/abs/1503.02531.

[195] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives,
and prospects”, Science, vol. 349, no. 6245, pp. 255–260, 2015.

[196] D. P. Kingma, T. Salimans, and M. Welling, “Variational dropout and
the local reparameterization trick”, in Advances in Neural Information
Processing Systems (NeurIPS), 2015, pp. 2575–2583.

219

https://arxiv.org/abs/1603.01025
https://arxiv.org/abs/1603.01025
https://arxiv.org/abs/1603.01025
http://bayesiandeeplearning.org/2016/papers/BDL_13.pdf
http://bayesiandeeplearning.org/2016/papers/BDL_13.pdf
https://proceedings.mlr.press/v37/blundell15.html
https://proceedings.mlr.press/v37/blundell15.html
https://dl.acm.org/doi/10.5555/2969442.2969588
https://dl.acm.org/doi/10.5555/2969442.2969588
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1503.02531

[197] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization”,
International Conference on Learning Representations (ICLR), 2015, https:
//arxiv.org/abs/1412.6980.

[198] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning”, Nature, vol. 521,
no. 7553, pp. 436–444, 2015, doi: 10.1038/nature14539.

[199] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning”,
arXiv preprint arXiv:1509.02971, 2015, https://arxiv.org/abs/1509.02971.

[200] Z. Lin, M. Courbariaux, R. Memisevic, and Y. Bengio, “Neural networks
with few multiplications”, in International Conference on Learning Rep-
resentations (ICLR), 2015.

[201] D. J. Rezende and S. Mohamed, “Variational inference with normalizing
flows”, in Proceedings of the International Conference on Machine Learning
(ICML), ser. PMLR, vol. 37, 2015, pp. 1530–1538, https://proceedings.
mlr.press/v37/rezende15.html.

[202] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition”, in International Conference on Learning
Representations (ICLR), 2015.

[203] W. Sung, S. Shin, and K. Hwang, “Resiliency of deep neural networks
under quantization”, in IEEE Workshop on Signal Processing Systems
(SiPS), 2015, pp. 1–6, doi: 10.1109/SiPS.2015.7345012.

[204] F. Abrol, S. Mandt, R. Ranganath, and D. Blei, “Deterministic annealing
for stochastic variational inference”, stat, vol. 1050, p. 7, 2014, https:
/ / citeseerx . ist . psu . edu / document ? repid = rep1 & type = pdf & doi =
5cee21ae4605a330d9977164523be4b865df6ebd.

[205] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R.
Prenger, S. Satheesh, S. Sengupta, A. Coates, and A. Y. Ng, “Deep speech:
Scaling up end-to-end speech recognition”, arXiv preprint arXiv:1412.5567,
2014, https://arxiv.org/abs/1412.5567.

[206] M. D. Hoffman, A. Gelman, et al., “The no-u-turn sampler: Adaptively
setting path lengths in hamiltonian monte carlo.”, Journal of Machine
Learning Research, vol. 15, no. 1, pp. 1593–1623, 2014, https://www.jmlr.
org/papers/volume15/hoffman14a/hoffman14a.pdf.

[207] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization”,
2014, arXiv: 1412.6980.

[208] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes”, in
International Conference on Learning Representations (ICLR), arXiv:
1312.6114, 2014.

220

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1038/nature14539
https://arxiv.org/abs/1509.02971
https://proceedings.mlr.press/v37/rezende15.html
https://proceedings.mlr.press/v37/rezende15.html
https://doi.org/10.1109/SiPS.2015.7345012
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5cee21ae4605a330d9977164523be4b865df6ebd
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5cee21ae4605a330d9977164523be4b865df6ebd
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5cee21ae4605a330d9977164523be4b865df6ebd
https://arxiv.org/abs/1412.5567
https://www.jmlr.org/papers/volume15/hoffman14a/hoffman14a.pdf
https://www.jmlr.org/papers/volume15/hoffman14a/hoffman14a.pdf
https://arxiv.org/abs/1412.6980

[209] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation
and approximate inference in deep generative models”, in Proceedings of
the International Conference on Machine Learning (ICML), ser. PMLR,
vol. 32, 2014, pp. 1278–1286, https://proceedings.mlr.press/v32/rezende14.
html.

[210] D. Soudry, I. Hubara, and R. Meir, “Expectation backpropagation: Parameter-
free training of multilayer neural networks with continuous or discrete
weights”, in Advances in Neural Information Processing Systems (NeurIPS),
2014, pp. 963–971.

[211] Y. Bengio, N. Léonard, and A. Courville, Estimating or propagating
gradients through stochastic neurons for conditional computation, 2013,
arXiv: 1308.3432, https://arxiv.org/abs/1308.3432.

[212] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and
D. B. Rubin, Bayesian Data Analysis, 3rd. Boca Raton, FL: Chapman &
Hall / CRC, 2013.

[213] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley, “Stochastic varia-
tional inference”, Journal of Machine Learning Research, vol. 14, no. 1,
pp. 1303–1347, May 2013, http://jmlr.org/papers/v14/hoffman13a.html.

[214] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks”, in Advances in Neural Informa-
tion Processing Systems (NeurIPS), vol. 25, 2012, pp. 1097–1105, https://
proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-
Abstract.html.

[215] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks”, in Advances in Neural Infor-
mation Processing Systems (NeurIPS), vol. 25, 2012.

[216] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press,
2012, https://dl.acm.org/doi/abs/10.5555/2380985.

[217] S. Brooks, A. Gelman, G. L. Jones, and X.-L. Meng, Handbook of Markov
Chain Monte Carlo. CRC Press, 2011, doi: https://doi.org/10.1201/
b10905.

[218] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D.
Burger, “Dark silicon and the end of multicore scaling”, in Proceedings of
the International Symposium on Computer Architecture (ISCA), ACM,
2011, pp. 365–376.

[219] A. Graves, “Practical variational inference for neural networks”, in Ad-
vances in Neural Information Processing Systems (NeurIPS), 2011, pp. 2348–
2356.

[220] R. M. Neal, “Mcmc using hamiltonian dynamics”, Handbook of Markov
Chain Monte Carlo, vol. 2, no. 11, pp. 2–11, 2011, https://www.dam.
brown.edu/people/geman/Homepage/CV/HandbookChapter5.pdf.

221

https://proceedings.mlr.press/v32/rezende14.html
https://proceedings.mlr.press/v32/rezende14.html
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
http://jmlr.org/papers/v14/hoffman13a.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://dl.acm.org/doi/abs/10.5555/2380985
https://doi.org/https://doi.org/10.1201/b10905
https://doi.org/https://doi.org/10.1201/b10905
https://www.dam.brown.edu/people/geman/Homepage/CV/HandbookChapter5.pdf
https://www.dam.brown.edu/people/geman/Homepage/CV/HandbookChapter5.pdf

[221] J. Treibig, G. Hager, and G. Wellein, “LIKWID: Lightweight Performance
Tools”, in 2010 39th International Conference on Parallel Processing
Workshops (ICPPW), IEEE, 2010, pp. 207–216, doi: 10.1109/ICPPW.
2010.38.

[222] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning”, in Proceedings of the International Conference on Machine
Learning (ICML), ACM, 2009, pp. 41–48, doi: 10.1145/1553374.1553380.

[223] A. D. Kiureghian and O. Ditlevsen, “Aleatory or epistemic? does it mat-
ter?”, Structural Safety, vol. 31, no. 2, pp. 105–112, 2009, Risk Acceptance
and Risk Communication, doi: https://doi.org/10.1016/j.strusafe.2008.
06.020.

[224] A. Krizhevsky, “Learning multiple layers of features from tiny images”,
University of Toronto, Tech. Rep., 2009.

[225] R. M. Zur, Y. Jiang, L. L. Pesce, and K. Drukker, “Noise injection for
training artificial neural networks: A comparison with weight decay and
early stopping”, Medical Physics, vol. 36, no. 10, pp. 4810–4818, 2009,
doi: 10.1118/1.3213517.

[226] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with cuda”, ACM Queue, vol. 6, no. 2, pp. 40–53, 2008, doi:
10.1145/1365490.1365500.

[227] P. D. Grünwald, The minimum description length principle. MIT press,
2007.

[228] T. Fawcett, “An introduction to roc analysis”, Pattern recognition letters,
vol. 27, no. 8, pp. 861–874, 2006, doi: https://doi.org/10.1016/j.patrec.
2005.10.010.

[229] S. M. Pietralunga, L. Marazzi, and M. Martinelli, “Photon statistics
of amplified spontaneous emission in dense wdm transmission systems”,
IEEE Journal of Quantum Electronics, vol. 39, no. 3, pp. 352–359, 2003,
doi: 10.1109/JQE.2003.809182.

[230] J. W. Goodman, Statistical Optics. Wiley, 2000.
[231] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, “An intro-

duction to variational methods for graphical models”, Machine Learning,
vol. 37, no. 2, pp. 183–233, 1999, doi: 10.1023/A:1007665907178.

[232] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition”, Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998, doi: 10.1109/5.726791.

[233] Y. Grandvalet and S. Canu, “Noise injection: Theoretical prospects”,
Neural Computation, vol. 9, no. 5, pp. 1093–1108, 1997, doi: 10.1162/
neco.1997.9.5.1093.

[234] R. M. Neal, Bayesian Learning for Neural Networks. Springer Science &
Business Media, 1996, vol. 118, https://citeseerx.ist.psu.edu/document?
repid=rep1&type=pdf&doi=db869fa192a3222ae4f2d766674a378e47013b1b.

222

https://doi.org/10.1109/ICPPW.2010.38
https://doi.org/10.1109/ICPPW.2010.38
https://doi.org/10.1145/1553374.1553380
https://doi.org/https://doi.org/10.1016/j.strusafe.2008.06.020
https://doi.org/https://doi.org/10.1016/j.strusafe.2008.06.020
https://doi.org/10.1118/1.3213517
https://doi.org/10.1145/1365490.1365500
https://doi.org/https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1109/JQE.2003.809182
https://doi.org/10.1023/A:1007665907178
https://doi.org/10.1109/5.726791
https://doi.org/10.1162/neco.1997.9.5.1093
https://doi.org/10.1162/neco.1997.9.5.1093
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=db869fa192a3222ae4f2d766674a378e47013b1b
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=db869fa192a3222ae4f2d766674a378e47013b1b

[235] C. M. Bishop, “Training with noise is equivalent to tikhonov regular-
ization”, Neural Computation, vol. 7, no. 1, pp. 108–116, 1995, doi:
10.1162/neco.1995.7.1.108.

[236] A. Murray and P. Edwards, “Enhanced MLP performance and fault
tolerance resulting from synaptic weight noise during training”, IEEE
Transactions on Neural Networks, vol. 5, no. 5, pp. 792–802, 1994, doi:
10.1109/72.317730.

[237] A. Gelman and D. B. Rubin, “Inference from iterative simulation using
multiple sequences”, Statistical Science, vol. 7, no. 4, pp. 457–472, 1992,
doi: 10.1214/ss/1177011136.

[238] C. J. Geyer, “Practical markov chain monte carlo”, in Statistical Science,
vol. 7, Institute of Mathematical Statistics, 1992, pp. 473–483, doi: 10.
1214/ss/1177011136.

[239] B. Hassibi and D. G. Stork, “Second order derivatives for network pruning:
Optimal brain surgeon”, in Advances in Neural Information Processing
Systems (NeurIPS), 1992, pp. 164–171.

[240] M. Höhfeld and S. E. Fahlman, “Learning with limited numerical precision
using the cascade-correlation algorithm”, IEEE Transactions on Neural
Networks, vol. 3, no. 4, pp. 602–611, 1992.

[241] M. Höhfeld and S. E. Fahlman, “Probabilistic rounding in neural network
learning with limited precision”, Neurocomputing, vol. 4, no. 6, pp. 291–
299, 1992.

[242] D. J. MacKay, “A practical Bayesian framework for backpropagation
networks”, Neural computation, vol. 4, no. 3, pp. 448–472, 1992.

[243] D. W. Scott, Multivariate Density Estimation: Theory, Practice, and
Visualization. Wiley, 1992.

[244] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage”, in
Advances in Neural Information Processing Systems (NeurIPS), 1989,
pp. 598–605.

[245] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, “Hybrid
monte carlo”, Physics Letters B, vol. 195, no. 2, pp. 216–222, 1987, doi:
10.1016/0370-2693(87)91197-X.

[246] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning represen-
tations by back-propagating errors”, Nature, vol. 323, pp. 533–536, 1986,
doi: 10.1038/323533a0.

[247] G. Vannucci and M. C. Teich, “Computer simulation of superposed co-
herent and chaotic radiation”, Applied Optics, vol. 19, no. 4, pp. 548–553,
1980, doi: 10.1364/AO.19.000548.

[248] W. K. Hastings, “Monte carlo sampling methods using markov chains
and their applications”, Biometrika, vol. 57, no. 1, pp. 97–109, 1970, doi:
10.1093/biomet/57.1.97.

223

https://doi.org/10.1162/neco.1995.7.1.108
https://doi.org/10.1109/72.317730
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1016/0370-2693(87)91197-X
https://doi.org/10.1038/323533a0
https://doi.org/10.1364/AO.19.000548
https://doi.org/10.1093/biomet/57.1.97

[249] K. Shimoda, H. Takahasi, and C. H. Townes, “Fluctuations in amplification
of quanta with application to maser amplifiers”, Journal of the Physical
Society of Japan, vol. 12, no. 6, pp. 686–700, 1957, doi: 10.1143/JPSJ.12.
686.

[250] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, “Equation of state calculations by fast computing machines”,
The Journal of Chemical Physics, vol. 21, no. 6, pp. 1087–1092, 1953, doi:
10.1063/1.1699114.

[251] S. Kullback and R. A. Leibler, “On information and sufficiency”, Annals
of Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951, doi: 10.1214/
aoms/1177729694.

[252] H. Robbins and S. Monro, “A stochastic approximation method”, The
Annals of Mathematical Statistics, vol. 22, no. 3, pp. 400–407, 1951, doi:
10.1214/aoms/1177729586.

[253] C. E. Shannon, “A mathematical theory of communication”, The Bell
system technical journal, vol. 27, no. 3, pp. 379–423, 1948, doi: 10.1002/j.
1538-7305.1948.tb01338.x.

[254] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the brownian
motion”, Physical Review, vol. 36, no. 5, pp. 823–841, 1930, doi: 10.1103/
PhysRev.36.823.

[255] T. Bayes, “An essay towards solving a problem in the doctrine of chances”,
Philosophical Transactions of the Royal Society of London, vol. 53, pp. 370–
418, 1763, doi: 10.1098/rstl.1763.0053.

224

https://doi.org/10.1143/JPSJ.12.686
https://doi.org/10.1143/JPSJ.12.686
https://doi.org/10.1063/1.1699114
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1103/PhysRev.36.823
https://doi.org/10.1103/PhysRev.36.823
https://doi.org/10.1098/rstl.1763.0053

	Contents
	1 Introduction
	2 Background
	2.1 Deep Neural Networks
	2.2 ML Frameworks and Compilers
	2.3 Hardware Platforms for Neural Networks

	I Accelerating Deep Neural Networks
	3 Foundations of Resource-Efficient Inference of nn for Embedded Systems
	3.1 Foundations of Efficiency
	3.2 Quantization
	3.3 Pruning
	3.4 Neural Architecture Search
	3.5 Hardware Platforms under Compression
	3.6 Evaluation on Embedded Hardware

	4 Galen: Automatic Model Compression
	4.1 Automatic Model Compression
	4.2 Galen Methodology
	4.3 Experimental Evaluation and Discussion

	5 Modeling Analog Hardware Accelerators
	5.1 Analog Computing
	5.2 bss2
	5.3 White-Box Model of bss2
	5.4 Transformer-Set Model and Non-Associativity

	6 Robustness Against Noisy Computations
	6.1 Robustness Against Hardware Noise
	6.2 Walking Noise
	6.3 Hardening Methods
	6.4 Variance-aware Noisy Training

	II Accelerating Bayesian Neural Networks
	7 Bayesian Neural Networks
	7.1 Quantifying Uncertainty
	7.2 Bayesian Neural Networks: Foundations
	7.3 Bayesian Inference
	7.4 Evaluation Datasets
	7.5 Empirical Insights into BNN Inference

	8 Compiling Probabilistic Forward Pass BNNs for Embedded Systems
	8.1 Efficient Inference of bnn
	8.2 Probabilistic Forward Pass
	8.3 PFP Training and Uncertainty Estimation
	8.4 pfp Operator Library with tvm
	8.5 Optimizing for Performance

	9 Ensemble Methods for Practical Bayesian Neural Networks
	9.1 Ensemble Methods
	9.2 Comparative Evaluation
	9.3 Hardware Evaluation with tvm

	10 Probabilistic Photonic Computing for Bayesian Neural Networks
	10.1 Photonic Neural Network Inference
	10.2 Hardware Design Principles
	10.3 Making Noise Controllable
	10.4 Adapting bnn to Photonic Hardware
	10.5 Experimental Demonstration

	11 Conclusion and Outlook
	11.1 Discussion of Key Insights
	11.2 Limitations
	11.3 Outlook

	Acronyms
	References

