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Zusammenfassung

Die Herausforderungen in realen Anwendungen, etwa beim Betrieb von Systemen mit
Lastschwankungen sowie bei Anfahr- und Abschaltvorgängen, stellen komplexe mathema-
tische Problemstellungen dar. Diese Komplexität resultiert aus ausgeprägten Nichtlinear-
itäten (insbesondere in transienten Phasen), gemischt-ganzzahligen Entscheidungsvariablen
und Stellgrößen (z. B. zur Kopplung einzelner Komponenten), zustandsabhängigen Diskon-
tinuitäten (hervorgerufen durch Phasenübergänge oder Regler) sowie einer hohen Systemdi-
mension. Während in der Industrie häufig auf Entkopplungsstrategien und rezeptbasierte
Regelungen zurückgegriffen wird, erweisen sich diese Ansätze für derart komplexe und eng
gekoppelte Systeme als unzureichend, was den Bedarf an innovativen nichtlinearen Opti-
mierungsmethoden deutlich macht. Für Prozesse unter Unsicherheit sind statische Open-
Loop-Stellstrategien nicht geeignet; bevorzugt werden optimale rückgekoppelte Stellgesetze,
die auf geschätzten Zuständen basieren. Der derzeit meistverwendete Ansatz für allgemeine
nichtlineare optimale Regelungsprobleme mit Zustands- und Stellgrößenbeschränkungen ist
die Nichtlineare Modellprädiktive Regelung (NMPC). Das Grundprinzip besteht darin, den
aktuellen Zustand aus Messdaten über einen endlichen „bewegten“ Zeithorizont der Vergan-
genheit zu schätzen und die Stellgrößen über einen „bewegten“ Zeithorizont im Open-Loop zu
optimieren. Der erste Steuerimpuls wird anschließend über ein Abtastintervall angewandt,
während bereits die nächste Reoptimierung durchgeführt wird.

Diese Dissertation entwickelt numerische Methoden zur Berechnung von Open-Loop- und
Feedback-Reglern in bestimmten Klassen gemischt-ganzzahliger optimaler Steuerungsprob-
leme mit geschalteten gewöhnlichen Differentialgleichungen (SwOCP). Diese Probleme finden
wichtige Anwendung in der Charakterisierung der komplexen Eigenschaften von Trockenrei-
bungsproblemen. Wir folgen der Filippov-Regel, nach der das SwOCP in ein optimales
Steuerungsproblem mit gemischt-ganzzahligen Steuerfunktionen und speziellen gemischten
Steuer-Zustands-Beschränkungen umformuliert wird. Wir untersuchen die relaxierte For-
mulierung dieses optimalen Steuerungsproblems und leiten notwendige Optimalitätsbedin-
gungen aus dem Pontryagin-Maximumprinzip (PMP) ab, wobei die Regularitätseigenschaft
der gemischten Beschränkungen sorgfältig berücksichtigt wird. Numerische Methoden für
das relaxierte Problem, basierend auf dem Multiple-Shooting-Ansatz und einem geeigneten
„Rundungsschema“ zur Behandlung impliziter Schaltvorgänge, werden untersucht. Um op-
timale Feedback-Regelgesetze zu berechnen, verallgemeinern wir den „NMPC“-Ansatz auf
die allgemeine SwOCP-Klasse. Wir entwickeln einen direkten Ansatz zur Ableitung von
Feedback-Regelgesetzen. Es basiert auf dem PMP-Ansatz zur Berechnung von „Nachbar-
Feedback“-Reglern, um die explizite Umschaltung von ganzzahligen Reglern zu ermitteln. Die
numerischen Methoden werden anhand von Benchmark-Problemen mithilfe der MUSCOD-
II-Tool-Software mit PGPLOT oder MATLAB veranschaulicht.



Abstract

The challenges in real-life applications, like e.g., managing systems with load fluctua-
tions, start-up, and shut-down, represent complex mathematical problems. This complexity
stems from strong nonlinearities (especially in transients), mixed-integer decision variables
and controls (e.g., for coupling components), state-dependent discontinuities (from phase
transitions or controllers), and the large system dimension. While industry often relies on
decoupling and recipe-based controls, these prove insufficient for such intricate, coupled sys-
tems, highlighting a need for innovative nonlinear optimization methods. For processes under
uncertainty, static open-loop controls are inadequate; optimal feedback control laws, depen-
dent on estimated states, are preferred. The presently most popular approach for general
nonlinear optimal control problems with state and control constraints is Nonlinear Model
Predictive Control (NMPC). The main idea is to estimate the present state from measured
data on a finite “moving” time horizon of the past and to optimize the control on a “moving”
time horizon in an open-loop. The first instant of the control is then applied during a sam-
pling time interval, during which the next re-optimization is computed.

This dissertation develops numerical methods for computing open-loop and feedback controls
in certain classes of mixed-integer optimal control problems with switched ODEs (SwOCP),
which exhibit important applications to characterize the complex properties of dry friction
problems. We follow Filippov’s rule, according to which the SwOCP is reformulated to an
optimal control problem with mixed integer controls and special mixed control-state con-
straints. We investigate the relaxed formulation of this optimal control problem and derive
necessary optimality conditions from the Pontryagin maximum principle (PMP), where the
regularity property of the mixed constraints is carefully considered. Numerical methods for
the relaxed problem based on the multiple shooting approach and an appropriate “rounding
scheme” to handle implicit switching are investigated. In order to compute optimal feed-
back control laws, we generalize the “NMPC” approach to the general SwOCP class above.
We develop a direct approach to derive feedback control laws. It is based on the PMP ap-
proach to computing “neighbouring feedback” controls to find out the explicit switching of
integer controls. The numerical methods are illustrated with benchmark problems via the
MUSCOD-II tool software with PGPLOT or MATLAB.
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Chapter 1

Introduction

Many phenomena occurring in industrial productions and plants can be described using
mathematical expressions, such as differential equations. With the advances in computer
technology and the invention of numerical methods, it became possible to accurately predict
the efficiency of a new production and plant design or the effect of new control strategies.
This offers a potent instrument to process engineers, who may want to evaluate the usability
and benefits of their ideas in a theoretical way before realizing them. As a consequence,
process engineering has become a very important discipline within chemical engineering over
the past forty years, avoiding the necessity of expensive pilot plants and yielding profit
increases by improving existing processes.

Complex switched systems are one of the most challenging topics in optimal controls with
mixed state-control constraints. One particular class of these OCPs is Switched Optimal
Control Problem (SwOCP), which are consisting of a switching law specifying binary or
integer control variables at each time instant, i.e., controls that can only take values from
a finite admissible set. There is plenty of the number of researches on this topic, which
include both theoretical and computational numerical results. Recently, there has been a
huge number of research to solve this problem, both direct and indirect methods.

1.1 Contributions

Several approaches to solving SwOCP have been investigated. Some instances of mechan-
ical problems are used to illustrate our ideas. The main results and contributions of this
dissertation are described as follows.

First Approach: LMP, Filippov’s Rule with CQ

The Local Maximum Principle (LMP) is used as an indirect method for SwOCP in the
extended version (relaxed-convexified) of Optimal Control Problem (OCP) with mixed state-
control constraints. Some reformulations are used as start-of-the-art techniques to deduce
the optimality conditions, where Filippov’s rule is applied carefully, and the regularity of
the mixed constraints is discussed.

1



Chapter 1. Introduction

Second Approach: Filippov’s Rule and Feedback Algorithm

After reformulating SwOCP by Filippov’s Rule and the relaxation, and analyzing the con-
densing block structure, a feedback algorithm is proposed to track switches. That results
are confirmed by comparing with the exploiting of the active set method for vanishing con-
straints. In order to reduce the complication of the quadratic terms in the mixed state-control
constraint, a new efficient reformulation for SwOCP is proposed to linearized these vanishing
constraints.

Third Approach: Switching Point Algorithm

To treat the switches on each interval after multiple shooting method is applied, a Switching
Point Algorithm is proposed by handling the discontinuities in ODE of SwOCP.

Numerical Studies

We show several numerical examples to perform effective approaches to solving SwOCP.
The first example concerns the New York Subway problem.
The second example considers the Flat Hybrid Automaton with DC electrical network.
The third and the fourth examples, respectively, deal with OCP with dry friction prob-

lems: material points on a straight line, and a mass point on a rough plane.

1.2 Dissertation Outline
This dissertation contributes four major parts, which consider the indirect approach for
SwOCP, the direct approaches for SwOCP, determination of switches in SwOCP, and
SwOCP with dry friction. The dissertation’s structure is organized as follows.

The introduction is followed by Chapter 2, where we recall some needed elements of
mathematical background and the states of the art to investigate SwOCP.

The first part deals to the indirect approach for SwOCP. In Chapter 3, to solve SwOCP
effectively, a new reformulation for SwOCP with the irregular mixed constraints will be
proposed, then they are treated by LMP. The optimality conditions here can be exploited
to treat the integer controls in SwOCP, which similar to the concept of the Competing
Hamiltonian algorithm. Furthermore, the convexification of the velocity set will be studied
by using Filippov’s rule.

The second part of the dissertation considers direct methods for solving SwOCP. In
Chapter 4, we present a solution approach for SwOCP based on Filippov’s rule reformu-
lation, together with an expansion of the rounding scheme, which deals with a neighboring
feedback law. Subsequently, a feedback algorithm is proposed after using the condensing
procedure to explore the block structure of the QP subproblem. On the other hand, we
consider the active set method for vanishing constraints to obtain the optimality conditions
for comparing with the previous one.

The third part is Chapter 5 to determine switches, including a switching point algorithm.
Therein, the derivative generation with variational differential equations is calculated.

In the fourth part of the dissertation, we consider some problems of SwOCP with dry
friction in Chapter 6. The general framework with both indirect and direct approaches is
to study the OCP with dry friction of a system of material points in a straight line and to
investigate the optimal control of a point mass on a rough plane.

2



Chapter 1. Introduction

In this end, we conclude the dissertation with a summary and an outlook in Chapter 7.
In Appendix A, we collect all auxiliary results, which include the Competing Hamiltonian

algorithm, the sliding regime for OCP, the LP in Maximum Principle, and some examples
with numerical results.

Finally, Appendix B gathers some open problems regarding the Gröbner basis approach,
and an idea about over-under estimating.

1.3 Computational Environment
All computational results and times presented in this dissertation have been obtained on a
64-bit Ubuntu 22.04.1 LTS system powered by an Intel Core i7-8700 CPU @ 3.2GHz×12,
with 32 GB main memory available; and all source code is written in MATLAB R2021b and
C++.
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Chapter 2

State of the Art

This chapter presents the nomenclature and terminology used throughout this dissertation
by providing and mathematical background knowledge. Various aspects of the analysis, the
implicit function theorem, and nonlinear optimization are mentioned. The most important
parts here are the state of the art for SwOCP including Filippov’s theory, the outer refor-
mulations, disjunctive programming, rounding schemes. For OCPs with LMP, the discussion
includes feedback control, solution approaches via indirect methods as well as direct shooting
methods with control discretization and sensitivity generation.

2.1 Mathematical Background
The section begins with some basic function definitions that needed to define SwOCP, and
the concepts of positively-linearly independence and special ordered set are introduced. Sub-
sequently, the Gaussian elimination algorithm is considered to prepare the direct approach for
SwOCP, the implicit function theorem and the definition of functions of bounded variation
are stated for the later work with the indirect approach for SwOCP.

2.1.1 Some Elements of Analysis
Definition 1. [130, Def. 4.13] Consider a map f : D(f) ⊆ X × Y → Z by (x, y) 7→ f(x, y),
where X,Y and Z are Banach spaces.
Let y be fixed and set g(x) = f(x, y). If g has an derivative at x, then we define the partial
derivative of f at (x, y) with respect to the variable x to be fx(x, y) = g′(x).
The derivative fy(x, y) is defined similarly.

Lemma 1 (Basic Theorems of Differential Calculus - Partial Derivatives). Let
f : X × Y → Z is differentiable at (x∗, y∗), then the partial derivatives f ′x(x

∗, y∗) and
f ′y(x

∗, y∗) exist at (x∗, y∗). Furthermore, it holds for all x ∈ X and y ∈ Y that

f ′(x∗, y∗)(x, y) = f ′x(x
∗, y∗)(x) + f ′y(x

∗, y∗)(y).

Proof. See [130, Prop. 4.14].

Definition 2 (Monotone Function). Let f : R→ R be a function. We call f a monotone
increasing function if f(t1) ≤ f(t2) for any t1 < t2. The function f is called a monotone
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decreasing function if f(t1) ≥ f(t2) for any t1 < t2. We call f a monotone function if it is
either monotone increasing or monotone decreasing.

Theorem 1 (Properties of Monotone Function). Let f : R → R be a monotone func-
tion. Then f(t+) and f(t−) exist and are finite for all t ∈ R. Moreover, for all t ∈ R, it
holds that

(i) f(t−) ≤ f(t) ≤ f(t+) if f is monotone increasing,

(ii) f(t−) ≥ f(t) ≥ f(t+) if f is monotone decreasing.

The limits f(∞−) and f((−∞)+) also exist, but are not necessarily finite.

Proof. See [31].

Corollary 1. Let f : R→ R be a monotone function. Then

(i) f(a+) ≤ f(b−) if f is monotone increasing and a, b ∈ R̄ with a < b.

(ii) f(a+) ≥ f(b−) if f is monotone decreasing and a, b ∈ R̄ with a < b.

Proof. See [31].

The following result is about reveals differentiability properties of monotone function.

Theorem 2 (Lebesgue). A monotone function f : [a, b]→ R has a finite derivative almost
everywhere on [a, b].

Proof. See [80, Thm. 6].

According to Theorem 1 the values f(t−), f(t), f(t+) all exist for any t, if f is a mono-
tone function. Hence, the only discontinuities that a monotone function can have are jump
discontinuities.

Definition 3 (Jump Discontinuity). A function f : R → R is said to have a jump
discontinuity at t if the following conditions hold

(i) the value f(t−), f(t) and f(t+) all exist and are finite,

(ii) f(t−), f(t) and f(t+) are not all equal.

Theorem 3. Let f : R → R be a monotone function. The set of points at which f is
discontinuous is either empty, finite, or countably infinite.

Proof. See [31].

Definition 4 (Jump of a Function). Let f : R → R be a monotone function. The jump
of function f at t ∈ R is defined as

∆f (t) := f(t+)− f(t−).

Definition 5 (Càdlàg function). [118, def. 2.10] A function f : [t0, tf ]→ Rd is said to be
Càdlàg if it is right-continuous with left limits, i.e., for each t ∈ [t0, tf ] the limits

lim
s→t,s<t

f(s) and lim
s→t,s>t

f(s) (2.1)

exist and f(t) = lims→t,s>t f(s).
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2.1.2 Positively-Linearly Independence and Special Ordered Set
In this subsection, two properties are defined: positively-linearly independence, and special
ordered set of type one and two.

Definition 6. A system consisting of two tuples of vectors p1, . . . , pm and q1, . . . , qk in the
space Rnr is said to be positively-linearly independent if there does not exist a nontrivial
tuple of multipliers a1, . . . , am, b1, . . . , bk with all ai ≥ 0, i = 1, . . . ,m, such that

m∑
i=1

aipi +

k∑
j=1

bjqj = 0.

Remark 1. The content “positively-linearly independent” holds an important role when
applying to the regular characteristic of the mixed state-control constraints, see the work of
Dubovitskii and Milyutin [48], or later by Dmitruk and Osmolovskii [45].

Definition 7. We say that the variables (ω1, . . . , ω2) fulfill the special ordered set type one
property (SOS-1) if they satisfy

n∑
i=1

ωi = 1, ωi ∈ {0, 1}, 1 ≤ i ≤ n.

If they fulfill

n∑
i=1

ωi = 1, ωi ∈ [0, 1], 1 ≤ i ≤ n,

and at most two of the ωi are nonzero and if so, they are consecutive, then (ω1, . . . , ω2) is
said to have the SOS type two property (SOS-2).

Remark 2. SOS-1 restrictions will occur automatically after the convexifications. When
nonlinear functions are approximated by piecewise linear functions, SOS-2 restrictions will
typically occur.

2.1.3 Block Gaussian Elimination
Consider a system Az = b where the matrix A is of dimension m×m with m = pn and the
vectors b and z are of dimension m, with m,n, p ∈ N. The matrix and the vectors can be
partitioned into:

A =


A1,1 A1,2 . . . A1,n

A2,1 A2,2 . . . A2,n

...
...

...
An,1 An,2 . . . An,n

 , b =


b1
b2
...
bn


where the block Ai,j are matrices of dimension p× p and bi are vectors of dimension p. The
block version of Gaussian elimination, cf. [66, 67], is written as below.

Algorithm 1 (Gaussian Elimination).

6
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1. Forward Elimination:
Loop on k from k = 1, . . . , n− 1

• if Ak,k is singular, set singularity indicator, exit and calculate X = A−1
k,k

• Loop on i from k + 1, . . . , n

i. T := Ai,kX

ii. Loop on j from k + 1, . . . , n
Ai,j := Ai,j − T ∗Ak,j

iii. End Loop on j

iv. bi := bi − T ∗ bk
• End Loop on i

End Loop on k

2. Back substitution:
Loop on i from n, . . . , 1

• xi := bi

• Loop on j from i+ 1, . . . , n
zi := zi −Ai,j ∗ zj

• End Loop on j

• zi := Ai,i − Izi

End Loop on i

2.1.4 The Implicit Function Theorem
The implicit function theorem has various important roles in local convergence theory of
optimization algorithms. In [97, Thm. A.1], Nocedal and Wright present an version of
one with Lipschitz continuously, while in this dissertation, we follow the work of Zeidler,
cf. [130, Sec. 4.7].
We want to solve the equation

F (x, y) = 0, (2.2)

which has a given point solution, F (x0, y0) = 0, for y in a neighborhood of (x0, y0), i.e., we
want to find a mapping x 7→ y(x) such that y(x0) = y0 and F (x, y(x) = 0 (See [130, Fig.
4.2]). The determinative condition for the existence of a unique solution is the following:

The inverse operator, Fy(x0, y0)
−1 : Z → Y, exists as a continuous linear operator. (2.3)

Since Y and Z are Banach spaces, this condition is equivalent to the following

The partial derivative Fy(x0, y0) : Y → Z is bijective. (2.4)

The underlying concept is to rewrite equation (2.2) in the equivalent form

y − y0 = (y − y0)− Fy(x0, y0)
−1F (x, y). (2.5)

7
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If we write F as a classical power series, we obtain the form

F (x, y) = F (x0, y0) + a(x− x0) + b(y − y0) + higher-order terms,

now note that F (x0, y0) = 0 and Fy(x0, y0) = b. Thus, the initial equation F (x, y) = 0 for
x, y ∈ R is equivalent to

y − y0 = −b−1a(x− x0) + higher-order terms.

This corresponds exactly to Eq. (2.5). The key condition (2.3) guarantees the existence of
the inverse b−1. This makes it clear that the right hand side of (2.5) is of first order with
respect to the small parameter (x− x0), and of second order with respect to (y − y0).

Theorem 4 (Implicit Function Theorem of Hildebrant and Graves (1927)). [130,
Thm. 4.B] Suppose that:

(i) the mapping F : U(x0, y0) ⊆ X×Y → Z is defined on an open neighborhood U(x0, y0),
and F (x0, y0) = 0, where X,Y and Z are Banach spaces over R or C,

(ii) Fy exists as a partial derivative on U(x0, y0) and condition (2.4) holds,

(iii) F and Fy are continuous at (x0, y0).

Then the following are true:

(a) Existence and uniqueness. There exist positive numbers r0 and r such that for every x ∈
X satisfying ∥x− x0∥ ≤ r0, there exists exactly one y(x) ∈ Y for which ∥y(x)− y0∥ ≤ r
and F (x, y) = 0.

(b) Construction of the solution. The sequence (yn(x)) of successive approximations, de-
fined by y0(x) ≡ y0, and

yn+1(x) = yn(x)− Fy(x0, y0)
−1F (x, yn(x)),

converges to the solution y(x), as n→∞, for all points x ∈ X satisfying ∥x− x0∥ ≤ r0.

(c) Continuity. If F is continuous in a neighborhood of (x0, y0), then y(·) is continuous in
a neighborhood of x0.

(d) Continuous differentiability. If F is a Cm-map, 1 ≤ m ≤ ∞, on a neighborhood of
(x0, y0), then y(·) is also a Cm-map on a neighborhood of x0.

Proof. See [130, Thm. 4.B, pp. 152].

Remark 3. In particular,

y′(x) = Fy(x, y(x))
−1Fx(x, y(x)) (2.6)

for all x in a suitable open neighborhood of x0.
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2.1.5 Functions of Bounded Variation and Measure
Denote by BV ([t0, tf ],Rn) the space of functions λ : [t0, tf ] → Rn of bounded variation
which have also values λ(t0−) and λ(tf+), independent of the values on segment [t0, tf ], cf.
[47, sec. 3].
The jump of f at a point t ∈ [t0, tf ] is defined by the vector [λ](t) := λ(t+) − λ(t−). In
particular,

[λ](t0) := λ(t0+)− λ(t0−), [λ](tf ) := λ(tf+)− λ(tf−).

Any function λ ∈ BV determines a Lebesgue-Stieltjes measure dλ which satisfies: for any
[t1, t2] ⊂ [t0, tf ],∫

[t1,t2]

dλ(t) = λ(t2+)− λ(t1−). (2.7)

In particular,
∫
[t0,tf ]

dλ(t) = λ(tf+)− λ(t0−).
Let distinguish measures dλ ∈ C∗ from the functions of bounded variation λ ∈ BV that
define them. As is well known,

∥dλ∥C∗ =

∫
[t0,tf ]

|dλ(t)|, and ∥λ∥BV = |λ(t0−) + ∥dλ∥C∗ .

Furthermore, ∥λ∥∞ = max{ess sup
[t0,tf ]

|λ(t)|, |λ(t0−)|, |λ(tf+)|} ≤ ∥λ∥BV , where “ess sup”

stands for essential supremum (sometimes denoted by “vrai max”),

ess sup
[t0,tf ]

|λ| = inf
c∈R

c, such that µ({t : |λ(t)| > c}) = 0 (measure zero).

If a function λ ∈ BV is absolutely continuous (hence λ(t0−) = λ(t0) and λ(tf+) = λ(tf )),
then the measure dλ is also called absolutely continuous. In this case, there exists λ̇ ∈
L1[t0, tf ] such that

dλ(t) = λ̇(t)dt, and ∥λ∥BV = |p(t0)|+
∫ tf

t0

|λ̇(t)|dt.

2.2 Nonlinear Optimization
This section introduces a nonlinear program in general form and discusses some constraint
qualifications (CQs). The first and second order optimality conditions are also introduced.

Definition 8 (NLP). An optimization problem of the general form

min
x∈Rn

f(x)

s.t. g(x) = 0,
h(x) ≥ 0.

(2.8)

with the objective function f : Rn → R, equality constraints g : Rn → Rng , and inequality
constraints h : Rn → Rnh is called a Nonlinear Program (therein f, g, h ∈ C2 w.r.t. x).

9
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The feasible set of NLP (2.8) is defined as follows

F def
= {x ∈ Rn | g(x) = 0, h(x) ≥ 0} ⊆ Rn.

In optimization, the points of concern are the feasible points that minimize the objective
function.

Definition 9 (Global minimum). A point x∗ ∈ Rn is a global minimizer if and only if
x∗ ∈ F and ∀x ∈ F : f(x) ≥ f(x∗). The value f(x∗) is called the global minimum.

However, finding the global minimum is usually difficult, and most algorithms only allow
us to obtain local minimizers and verify optimality locally.

Definition 10 (Local minimum). x∗ ∈ Rn is a local minimizer if and only if x∗ ∈ F and
there exists a neighborhood U of x∗ so that ∀x ∈ F ∩ U : f(x) ≥ f(x∗). The value f(x∗) is
called a local minimum.

To check if a candidate x∗ is a local minimizer or not, we need to consider about the
optimality conditions to describe the feasible set in the neighborhood of x∗. It means that
not all inequality constraints need to be considered locally, but only the active ones.

Definition 11 (Active constraint, active set). Let x̄ ∈ Rn be a feasible point of problem
(2.8). An inequality constraint hi(x) ≥ 0, i ∈ {1, . . . , n} ⊂ N , is called active at x̄ if hi(x̄) = 0
holds. It is called inactive otherwise. Set of indices of all active constraints

A(x̄) def
= {i | hi(x̄) = 0} ⊆ {1, . . . , nh} ⊂ N. (2.9)

is called the active set associated with x̄.

Remark 4. We often required that the set of active constraints to be linear independent.

Definition 12. The restriction of the inequality constraint function h onto the active in-
equality constraints is denoted by

hA : Rn → R|A|

x→ hA(x).

Definition 13. Let x̄ ∈ Rn be a feasible point of NLP (2.8). We state the definition of the
tangent cone T (x̄,F) of F in the point x̄ as

T (x̄,F) def
=

{
d ∈ Rn | ∃{xk} ⊆ F , {tk} → 0+ : xk → x̄,

1

tk
(xk − x̄)→ d

}
,

and the linearized cone L(x̄) of problem (2.8) in x̄ as

L(x̄) def
=
{
d ∈ Rn | ∇G(x̄)T d = 0,∇hA (x̄)

T
d ≥ 0

}
,

where hA : Rn → R|A| is defined in Def. 12.

Now we consider some constraint qualifications for problem (2.8) in x̄. In general, a con-
straint qualification is a property of the feasible set represented by the constraint functions,
which guarantees that the KKT conditions are in fact necessary optimality conditions. Three
of the most common ones are considered, see Def. 14, Def. 15 and Def. 16, as follows.
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Definition 14. (Linear Independence Constraint Qualification, Regular Point)
We say that Linear Independence Constraint Qualification (LICQ) holds for (2.8) in x̄ ∈ Rn

if it holds that

rank
(
∇g(x̄) ∇hA(x̄)

)T
= ng + nhA . (2.10)

And, x̄ is referred to as a regular point of (2.8).

Denoting g̃(x) :=
(
g(x) hA(x)

)T . Now we can see further meaning to the LICQ condi-
tion, i.e., LICQ is equivalent to full row rank of the Jacobian matrix ∇g̃(x̄).

Remark 5. LICQ holds at x̄ ⇔ g(x̄) = 0, h(x̄) = 0. It means that x̄ lies on the bor-
der/boundary of the feasible set F .

Definition 15. (Mangasarian-Fromovitz Constraint Qualification)
Mangasarian-Fromovitz Constraint Qualification (MFCQ) holds in x̄ if the Jacobian gx(x̄)
has full rank and there exists d ∈ Rn such that

∇g(x̄)T d = 0, and ∇hA(x̄)T d > 0. (2.11)

Definition 16. (Abadie Constraint Qualification)
Abadie Constraint Qualification (ACQ) holds in x̄ if

T (x̄,F) = L(x̄), (2.12)

where the definitions of the Bouligand tangent cone T (x̄,F) of the set F in the point x̄ and
the linearized cone L(x̄) of problem (2.8) in x̄ can be seen in Def. 13.

Remark 6. LICQ ⇒ MFCQ ⇒ ACQ, whereas the converse never holds, where counterex-
amples, e.g., can be found in [104, Appx. C]. Furthermore, readers can see in [69], where the
MFCQ is not satisfied, but the ACQ holds under some assumptions.

2.2.1 Quadratic Optimization

The quadratic expansion of NLP (2.8) as the SQP reads

min
∆x∈Rn

1
2∆x

T ∂2L(x,λ,µ)
∂x2 ∆x+∇f(x)∆x

s.t. g(x) +∇g(x)∆x = 0,
h(x) +∇h(x)∆x ≥ 0.

(2.13)

where L(x, λ, µ) = f(x) + λT g(x) + µTh(x).

2.2.2 First Order Optimality Conditions

An important question is if a feasible point x∗ ∈ F satisfies necessary first order optimality
conditions. If it satisfies these conditions, x∗ is a candidate for a local minimizer. It it does
not satisfy these condition, it cannot be a local minimizer. The first order condition, i.e., the
KKT conditions, can only be formulated if a “constraint qualification” is satisfied.
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Theorem 5 (KKT conditions, [74, 85]). If x∗ is a local minimizer of the NLP (2.8) and
LICQ holds at x∗ then there exist so called multiplier vectors λ∗ ∈ Rng and µ∗ ∈ Rnh with

∇f(x∗) +∇g(x∗)λ∗ +∇h(x∗)µ∗ = 0 (2.14a)
g(x∗) = 0 (2.14b)
h(x∗) ≥ 0 (2.14c)

µ∗ ≥ 0 (2.14d)
µ∗
i hi(x

∗) = 0, i = 1, . . . , nh. (2.14e)

Proof. See [97, Sec. 12.4].

In the case of convex problems, the KKT conditions are not only necessary for a local
minimizer, but also sufficient for a global minimizer. The Lagrangian function and the
complementarity are considered as follows.

Definition 17 (Lagrangian Function). We define the so called “Lagrangian function” to
be

L(x, λ, µ) = f(x) + λT g(x) + µTh(x).

Here, λ ∈ Rng and µ ∈ Rnh are the so called “Lagrange multipliers” (or “dual vari-
ables”). Since the KKT conditions and the definition of the Lagrangian, we have (2.14a)⇔
∂L(x∗,λ∗,µ∗)

∂x = 0.

Remark 7 (Complementarity). The last three KKT condition (2.14c)-(2.14e) are called
the complementarity conditions.
For each index i, if hi(x∗) = 0 and µ∗

i = 0 then this is called a weakly active constraint. On
the other hand, an active constraint with µ∗

i > 0 is called strictly active.

Definition 18. Consider a KKT point (x∗, λ∗, µ∗). We say that strict complementarity
holds at this KKT point if and only if all active constraints are strictly active.

2.2.3 Second Order Optimality Conditions
Theorem 6 (Second Order Optimality Conditions). Let us regard a point x∗ at which
LICQ holds together with multipliers λ∗, µ∗ so that the LICQ conditions (2.14a)-(2.14e) are
satisfied and let strict complementarity hold. Regard a basis matrix Z ∈ Rn×(n−ng̃) of the
null space of ∇g̃(x∗) ∈ Rng̃×n, i.e., Z has full column rank and ∇g̃(x∗) ∈ Rng̃×nZ = 0.
Then the following two statements hold:

(a) If x∗ is a local minimizer, then ZT ∂2L(x∗,λ∗,µ∗)
∂x2 Z ⪰ 0.

(Second Order Necessary Condition)

(b) If ZT ∂2L(x∗,λ∗,µ∗)
∂x2 Z ≻ 0, then x∗ is a local minimizer.

This minimizer is unique in its neighborhood, i.e., a strict local minimizer, and stable
against small differentiable perturbations of the problem data.
(Second Order Sufficient Condition)

Proof. See [97] on pages 332 and 333 for statements (a) and (b), respectively.

The matrix ∂2L(x∗,λ∗,µ∗)
∂x2 is called the Hessian of the Lagrangian, while its projection on

the null space of the Jacobian, ZT ∂2L(x∗,λ∗,µ∗)
∂x2 Z, is called the reduced Hessian.
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2.3 Basic Theory of Optimal Control Problems

In this section, the basic results in optimal control that needed for solving SwOCP will be
derived in the general nonlinear setting. We start by considering nonlinear control systems
in continuous time

ẋ(t) = f(x(t), u(t)), (2.15)

where control function u(t) with values in U ⊂ Rm, function f : Rn × U → Rn. Existence
and uniqueness is then delivered by the well-known Theorem of Carathéodory as follows.

Theorem 7 (Theorem of Carathéodory,[116]). Consider a control system with the fol-
lowing properties:

(i) The space of control functions is given by

U := {u : R→ U | u is measureable and bounded} .

(ii) The vector field f : Rn × U → Rn is continuous.

(iii) For any R > 0 there exists a constant LR > 0 such that the condition

∥f(x1, u)− f(x2, u)∥ ≤ LR∥x1 − x2∥

holds for all x1, x2 ∈ Rn and all u ∈ U with ∥x1∥, ∥x2∥, ∥u∥ ≤ R.

Then for any initial value x0 ∈ Rn, any initial time t0 ∈ R, and any control function u ∈ U,
there exists a maximal open interval I with t0 ∈ I and a unique absolutely continuous function
x(t), which solves the following integral equation

x(t) = x0 +

∫ t

t0

f(x(τ), u(τ))dτ

for all t ∈ I.

Proof. The proof of Theorem 7 can be found in the book [116, Appendix C].

Definition 19. Denote the unique function x(t) from Theorem 7 with xu(t; t0, x0) and call
it the solution of (2.15) with initial value x0 ∈ Rn and control function u ∈ U .

Remark 8. In case t0 = 0, we briefly write xu(t, x0) = xu(t; 0, x0). Since xu(t, x0) is
absolutely continuous, it is differentiable w.r.t. t for almost all t ∈ I. In particular, Theorem
7 and the fundamental theorem of calculus imply that xu(t, x0) satisfies (2.15) for almost all
t ∈ I, i.e.,

ẋ(t, x0, u) = f(x(t, x0, u), u(t))

holds for almost all t ∈ I.

Now the OCP is defined in the following subsection.
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2.3.1 Formulation of OCP
In the following definitions, we state the cost function φ(·, ·) in Bolza type, which includes
the Meyer term m(·) and the Lagrange term

∫ tf
t0
l(·, ·)dt. The ODE and the constraints

are also introduced.

Definition 20. For continuous cost function l : Rn × Rn → R and m : Rn → R, we define
the cost functional

φ(x, u) := m(x(tf )) +

∫ tf

t0

l(x(t), u(t))dt. (2.16)

Then the OCP is given by the optimization problem

minimize φ(x, u) with respect to u ∈ U for each x ∈ Rn.

The function

V (x) := inf
u∈U

φ(x, u)

is called the optimal value function of this OCP. A pair (x∗, u∗) ∈ Rn ×U with φ(x∗, u∗) =
V (x∗) is called optimal solution, or rarely optimal pair.

Definition 21. The ordinary differential equation (ODE) with initial value of x(·) is defined

ẋ(t) = f(x(t), u(t)), x(t0) = x0. (2.17)

Definition 22. The point constraints are introduced as

r(x(t0), x(tf )) ≥ 0. (2.18)

For the path constraints, see in Section 2.4.

2.3.2 The Existence of Solution of OCP
We consider the optimal control problem (OCP) where the control functions belong to the
class of bounded measurable functions. In the 1960s, Filippov [55, Sec. I] or Roxin [110]
proved that there exists a solution of this kind of OCP in Subsection 2.3.1. More foundational
investigations on the conditions of the control functions, i.e., piecewise smoothness control
or continuous control, and also the general formulation of the OCP, are early discussed in
[55, Sec. II,III,IV].

2.3.3 Solution Approaches
To solve an OCP, the function space approach, which considers to solve the OCP as an infinite
dimensional optimization problem. The function space is also well-known as the classical
indirect approach, or as first optimize, then discretize approach. For more investigations,
readers can find in Chapter 3.
While on other side, a suitable discretization scheme can be applied to transform the OCP
into a finite dimensional optimization problem. This discretization approach is also known
as the so-called direct approach, which is based on the first-discrete-then-optimize paradigm.
Detailed researches for the direct approach are done in Chapter 4 and Chapter 5.
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Indirect methods

In indirect methods, the necessary or first-order optimality conditions are exploited to a non-
linear multipoint boundary value problem (BVP) that has to be tackled by a minimizer. The
BVP is solved by using multiple shooting, cf. [15]. Exploitation of the maximum principle
is usually not accomplished automatically by an algorithm and must be specified by user.
The challenged tasks are to deal with the constraints, usually mixed state-control constraints
which consist discontinuous state, discontinuous control, and may be jumps in the adjoint
variables, cf. [14], and furthermore the constraints can be active or inactive. Especially
mixed state-control constraints are commonly provided the transition from one stage to an-
other stage, or from one arc type to another model of the right hand side function in the ODE.
This transition is considered by the so-called switching conditions σ(x(tsw), u(tsw)) = 0 where
tsw is a switching time.
The maximum principle is formulated in the weak minimum conditions in Chapter 3. The
regularity of the constraint qualification is discussed, and then the local maximum princi-
ple is stated, respectively. Moreover, a general scheme for using Filippov’s rule (or using
the second time of convexification), cf. Subsection 3.1.3, and a neighboring feedback law to
investigate the feedback control, cf. Subsection 2.6.8, are proposed.

Direct methods

Instead of formulating optimality conditions like the indirect methods, the direct approaches
transcribe the original (finite or infinite dimensional) optimization problem into a finite di-
mensional NLP and then the resulting problem is solved effectively by the numerical methods
such as interior point methods or SQP algorithm, cf. Section 4.1.4.
In Chapter 4, the resulting QP Subproblem comes out after Filippov’s reformulation, relax-
ation and direct multiple shooting method, will be solved with SQP algorithm. Furthermore,
to reduce the rambling behavior of the rounded control, the switching aware rounding algo-
rithm is presented, cf. Section 4.2, and also the CIA is considered to track the average of
a relaxed solution over a given rounding grid by a piecewise constant integer control and to
minimize the integrity error.
While later, Chapter 5 will deals with the switching point algorithm for the resulted dis-
cretized multiple shooting QP Subproblem.

2.3.4 Maximum Principle
This subsection follows the work of Pontryagin et al., cf. [25, 106] to formulate the Maxi-
mum Principle for the OCP, where the ODE is defined in Eq.(2.17). For more general OCP,
which includes path and point constraints, readers can see in the survey paper [63].

Definition 23. The control theory Hamiltonian is the function

H(x(t), λ(t), u(t)) := λ(t)T f(x(t), u(t)) + l(x(t), u(t)), x, λ ∈ Rn, u ∈ U . (2.19)

Theorem 8 (Pontryagin Maximum Principle). [25, 106] Assume (x∗(·), u∗(·)) is
optimal for OCP with ODE (2.17), cost function (2.16). Then there exists a function
λ∗ : [t0, tf ]→ Rn such that

ẋ∗(t) =
∂H(x∗(t), λ∗(t), u∗(t))

∂λ
, (2.20)
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λ̇∗(t) = −∂H(x∗(t), λ∗(t), u∗(t))

∂x
, (2.21)

and

H(x∗(t), λ∗(t), u∗(t)) = max
u∈U

H(x∗(t), λ∗(t), u), t0 ≤ t ≤ tf . (2.22)

Also,

H(x∗(t), λ∗(t), u∗(t)) ≡ 0, t0 ≤ t ≤ tf .

Remark 9. Note that in the above theorem, Theorem 8, the end time point tf is fixed. In
the case that tf is free, the terminal condition is added

λ∗(tf ) = ∇m(x∗(tf )), (2.23)

and the mapping t 7→ H(x∗(t), λ∗(t), u∗(t)) is constant.

One calls x∗(·) the state trajectory of the optimality controlled system and λ∗(·) the
costate. The identities (2.21) are the adjoint equations and (2.22) the maximization principle.
Notice that (2.20) and (2.21) resemble the structure of Hamilton’s equation. For a proof
of the maximum principle and more references, see, e.g. [25, 106]. Ones also call (2.23) the
transversality condition and will consider its significance later, see Section 2.6.

2.3.5 Local Maximum Principle
This subsection mostly follows the papers of Dmitruk [43], Dmitruk et. al. [46, 47].
Consider the OCP on a fixed interval of time [t0, tf ]:

min φ (x(t), u(t)) (2.24a)

s.t. ẋ(t) = f(x(t), u(t)), t ∈ [t0, tf ], (2.24b)
gi(x(t), u(t)) = 0, i = 1, . . . , d(g), t ∈ [t0, tf ], (2.24c)
Gj(x(t), u(t)) ≤ 0, j = 1, . . . , d(G), t ∈ [t0, tf ], , (2.24d)
r(x(t0), x(tf )) ≤ 0, t ∈ [t0, tf ], (2.24e)

where the functions φ : Rnx+nu → R, φ(x, u) := m(x(tf ))+
∫ tf
t0
l(x(t), u(t))dt, f : Rnx+nu →

Rn, gi : Rnx+nu → R, i = 1, . . . , d(g), and Gj : Rnx+nu → R, j = 1, . . . , d(G), are continu-
ously differentiable.
Conditions (2.24c), (2.24d) are called mixed state-control constraints or shortly mixed con-
straints. According to Dubovitskii and Milyutin, mixed constraints (2.24c-2.24d) are
regular if for any point (x, u) satisfying these constraints, the gradients in control u

∂gi(x(t), u(t))

∂u
, i = 1, . . . , d(g),

∂Gj(x(t), u(t))

∂u
, j ∈ I(x(t), u(t)),

are positive-linear independent (see Def. 6), where I(x(t), u(t)) := {j | Gj(x(t), u(t)) = 0} is
the set of active indices for inequality mixed constraints G ≤ 0 at the given point.
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Remark 10. Note that here the state constraint (e.g., Φ(x(t)) ≤ 0, cf. [43]) cannot be
considered as a special case of the mixed constraints due to regularity assumption.

Definition 24. [43, Def. 2] A pair (x, u) ∈ Rnx+xu is called a phase point (of the mixed
constraint) if there exists a ∈ Rd(G), a ≥ 0, and b ∈ Rd(g) such that

∑
aj = 1, and

aT
∂G(x, u)

∂u
+ bT

∂g(x, u)

∂u
= 0, aTG(x, u) = 0,

i.e., the positive-linear independence fails to hold.
The corresponding vector s = aT ∂G(x,u)

∂x + bT ∂g(x,u)
∂x is called a phase jump.

Remark 11. Note that the set of all phase points is determined only by the mixed state-
control constraints and does not depend on the control system nor the endpoint of the OCP.

To state maximum principle, we start by denoting

y := (x, u), n̄ := nx + nu,

and Rn∗ the space of row vectors of the dimension n. Then we introduce the simplex

∆ = {γ ∈ Rd(G)∗ : γ ≥ 0, |γ| = 1},

where |γ| :=
∑d(G)

i=1 |γi| is the norm of an element γ in the space Rd(G)∗, and d(G) is dimension
of the mixed constraints G.
We also need the definition of weak minimum.

Definition 25. [45, Def] An admissible process (x∗(t), u∗(t)), t ∈ [t0, tf ] is a week minimum
for (2.24) if there exists an ϵ > 0 such that for any admissible process (x(t), u(t)), t ∈ [t0, tf ],
satisfying the conditions

|x(t)− x∗(t)| ≤ ϵ, |u(t)− u∗(t)| ≤ ϵ, t ∈ [t0, tf ],

the following inequality holds: φ(x, u) ≥ φ(x∗, u∗).

For any y ∈ Rn̄ satisfying the mixed constraints, i.e. G(y) ≤ 0, we define the set

Λ(y) =

{
γ ∈ ∆ : γG(y) = 0, γ

∂G(y)

∂u
+ b

∂g(y)

∂u
= 0

}
, b ∈ Rd(g),

and the set of phase points of the mixed constraints

N (G) =
{
y ∈ Rn̄ : Λ(y) ̸= ∅

}
,

Clearly, N (G) is closed. We assume that N (G) is nonempty, otherwise the mixed constraints
are regular.
Define the following set-valued mapping y ∈ Rnr ⇒ S(y) ∈ Rn∗:

(i) if y ∈ N (G) then S(y) =
{
s = γ ∂G(y)

∂x + b∂g(y)∂x : γ ∈ Λ(y)
}
,

(ii) if y /∈ N (G) then S(y) = ∅.
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For any nonempty set M ⊂ Rn̄ we define S(M) =
⋃

y∈M

S(y).

Let ŷ = (x̂, û) be a given admissible process in problem (2.24) investigated for optimality.
Denote for short x̂ini = (x̂(t0), x̂(tf )). Now we will formulate the conditions of the local
minimum principle (LMP) for the process ŷ.
Recall that for the function û we introduced the set-valued mapping

clm (û)(t) = {u ∈ Rnu : (t, u) ∈ clm (û)},

where clm (û) is the closure in measure of û, and recall also that (x̂(t), clm (û)(t)) = clm (ŷ)(t)
for all t ∈ [t0, tf ].
Define a set

D := {t ∈ [t0, tf ] : clm (ŷ)(t) ∩N (G) ̸= ∅} . (2.25)

We see that D is a closed (possibly empty) subset in [t0, tf ], since the set clm (ŷ) is compact,
and the set N (G) is closed. Let χD be its characteristic function.

Lemma 2. The case D = ∅ means that the mixed state-control constraints are regular.

Proof. It is easy to see that the case D = ∅ means that the process ŷ does not pass “closely”
to the set of phase points N (G), i.e. ∃ε > 0 such that dist (ŷ(t),N (G)) ≥ const > 0 a.e. on
[t0, tf ]. In fact, the mixed constraints are regular.

For any t ∈ D, consider the set conv S(clm (ŷ)(t)), where “conv” stands for the convex
hull.
Now, let us define the Pontryagin function and the endpoint Lagrange function

H(λ, x, u) = λTF (x, u) + δT l(x(t), u(t)), L(ν, x̂ini) = νT r(x(t0), x(tf )), (2.26)

where λ ∈ Rn∗ is a adjoint (costate) row-vector, δ ∈ Rn∗ and ν ∈ R(1+nr)∗ are Lagrange
multipliers.
Then we introduce the so-called augmented Pontryagin function

H̄(λ, µ, x, u) = H(λ, x, u) + (µG)TG(x, u) + (µg)T g(x, u),

where µ ∈ Rd(G)∗, µg ∈ Rd(g)∗.
The conditions of LMP at the point ŷ are as follows: there exist multipliers

ν̂ ∈ R(1+nr)∗, λ̂ ∈ BV ([t0, tf ]Rn∗) , (2.27)

µ̂G ∈ L1
(
[t0, tf ],Rd(G)∗

)
, µ̂g ∈ L1

(
[t0, tf ],Rd(g)∗

)
, dη̂ ∈ (C([t0, tf ],R))∗ , (2.28)

such that

ν̂ ≥ 0, ν̂r(x̂ini) = 0,

µ̂G ≥ 0, µ̂GG(ŷ) = 0, dη̂ ≥ 0, dη̂ χD = dη̂,

|ν̂|+
∥∥µ̂G

∥∥
1
+

∫
[t0,tf ]

dη̂ > 0,
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and a dη̂-measurable essentially bounded function ŝ : [t0, tf ]→ Rn∗ such that

ŝ(t) ∈ conv S(clm (ŷ)(t)) for almost all t in dη̂–measure, (2.29)

there hold the following adjoint equation in terms of measures

−dλ̂ =
∂Ĥ(λ̂, µ̂, ŷ)

∂x
dt+ ŝdη̂, (2.30)

=
∂H(λ̂, ŷ)

∂x
dt+ µ̂G ∂G(ŷ)

∂x
dt+ µ̂g ∂g(ŷ)

∂x
dt+ ŝdη̂,

the tranversality conditions:

λ̂(t0−) = −Lx0
(ν̂, x̂ini), λ̂(tf−) = −Lxf

(ν̂, x̂ini), x0 = x(t0), xf = x(tf ),

and finally, the stationary condition w.r.t. the control:

∂H̄(λ̂(t), µ̂(t), ŷ(t))
∂u

= 0 a.e. in [t0, tf ], (2.31)

where “a.e.” means “almost everywhere with respect to the Lebesgue measure”.
Note that the condition (2.30) can be understood in the following integral form: for almost
all t

λ̂(t) = λ̂(t0 − 0) +

∫ t

t0

∂H̄(λ̂, µ̂, ŷ)
∂x

dτ +

∫
[t0,t]

ŝ(τ)dη̂(τ).

Theorem 9. [47, Thm. 3] If ŷ = (x̂, û) is a weak local minimum in problem (2.24), then it
satisfies the local minimum principle (2.27)-(2.31).

Proof. See [47, Section. 6].

Remark 12. We consider the significance and application of LMP later, see Chapter 3 and
Chapter 6. For more details on the general OCP with nonregular mixed constraints, see [47].

2.4 Direct Approach
In the recent decades, various approaches are investigated to address OCPs with discrete
control variables, often known as Mixed-Integer Optimal Control Problems (MIOCPs). Di-
rect approaches are widely employed to solve MIOCPs, see, for instance [22,58].
In this section, the OCP is considered in the following formulation

min
x(·),u(·)

m(x(tf )) +
∫ tf
t0
l(x(t), u(t))dt

s.t. ẋ(t) = f(x(t), u(t)),
0nr
≤ r(x(t0), x(tf )),

0nc
≤ c(x(t), u(t)),

t ∈ T def
= [t0, tf ]. (2.32)

in which we minimize a Bolza type objective function of a dynamic process x(·) defined on
the horizon T ⊂ R in terms of an ODE system with right hand side function f(x(·), u(·)).
The precess is controlled by a control trajectory u(·) subject to minimization. The inequality
point constraints r(·) and inequality path constraints c(·) must be satisfied. Moreover, all
functions in (2.32) are assumed to be twice continuously differentiable.
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2.4.1 Control Discretization

In this section, we introduce how to approximate the space of feasible control functions u(·)
by a finite dimensional subspace. We begin by partitioning the control horizon T into N
intervals

t0 < t1 < . . . < tN = tf (2.33)

such that the {tn} is called shooting grid. On each interval [tn, tn+1], 0 ≤ n ≤ N − 1,
we choose a vector of base functions θn(t, qn) =

[
θn,1(t, q

1
n), . . . , θn,nu

(t, qnu
n )
]

where qn
def
=[

qTn,1, . . . , q
T
n,nu

]T and θn,i : [tn, tn+1]× Rnni
q → R for each i, 1 ≤ i ≤ nu, of the control u(·).

Some popular choices for base functions w.r.t. the value of nniq are as follows

• nniq = 1, piecewise constant controls: θi,n = qin.

• nniq = 2, piecewise linear controls: θi,n = tn+1−t
tn+1−tn

qin,1 +
t−tn

tn+1−tn
qin,2.

• nniq = 4, piecewise cubic spline controls: θi,n =
∑4

j=1 q
i
n,jµj

(
t−tn

tn+1−tn

)j−1

, with the
appropriate spline function coefficients µj , j = 1, 2, 3, 4.

Various discretization types can be used for each of the nu control trajectory components.
Certain control discretization choices, such as piecewise linear controls, may need the dis-
cretized control trajectory to be continuous over the complete control horizon. To achieve
this for the control trajectory component ui(·), additional control continuity conditions can
be added

θn,i(tn+1, q
i
n)− θn+1,i(tn+1, q

i
n+1) = 0,

for all points of the control discretization grid {tn}, n ∈ {1, . . . , N − 1}.
This dissertation deals with direct single and direct multiple shooting methods, that is

why we present both of them as follows.

2.4.2 Direct Single Shooting Method

In the first consideration of the direct single shooting method, cf. [65], the first parametrizes
of the control function u(·) with techniques presented in Subsection 2.4.1. Therein θ(·, q)
stand for the control parametrization, where q denotes the parameter that will be deter-
mined by optimization.
We introduce the single shooting method for the easiest choice, i.e., piecewise constant con-
trols. For the grid t0 < t1 < . . . < tN = tf we set parameters qn ∈ Rnu , n ∈ {1, . . . , N}.
Then the control parametrization is defined as follows

θ(t, q)
def
= qn, for t ∈ [tn, tn+1), 0 ≤ n ≤ N − 1. (2.34)

Therefore, the dimension of the parameter vector q is N · nu, where q def
= [qT1 , . . . , q

T
N ]T . For

completeness, at the final time, the control is defined as θ(tf , q)
def
= qN

def
= qN−1.

In direct single shooting the states are obtained by a forward integration of the IVP, i.e.,
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the states x(·) are considered as dependent variables of the controls u(·) respectively their
parametrization θ(·, q) together with the initial state s0, as follows

ẋ(t) = f(x(t), θ(t, q)), t ∈ T , (2.35)
x(t0) = s0. (2.36)

The objective function, the control and path constraints are usually discretized and enforce
only on the control discretization grid {tn}.
This approach allows us to obtain a NLP with the unknowns [sT0 , q

T
0 , . . . , q

T
N−1]

T , which can
be solved by SQP algorithm, cf. [95, Sec. 3.6].
Instead of there are some advantages over other methods, such as the initialization of the
NLP variables is restricted to the initial state s0 and the control parameters q, the direct
single shooting method still has some disadvantages: the potential infeasible of the numerical
integration might break down during the integration process due to a very unstable set of
differential equations or due to a singularity in time. It is prone to numerical instability
especially for long time horizons, and it also struggles when applied to chaotic dynamics and
stiff ODEs.

2.4.3 Direct Multiple Shooting Method

The direct multiple shooting method was developed by Bock and Plitt [22]. Then the
direct multiple shooting code is implemented in details in MUSCOD-II by Leineweber [88].
In a direct multiple shooting method, the horizon interval T is split into N subintervals. The
single shooting method is then applied to each subinterval independently. To guarantee state
trajectory continuity, additional continuity constraints are included in the resulting NLP.

Control discretization

The discretized control together with the base functions are defined as the same way in
Subsection 2.4.1 on the N subintervals.

State parameterization

A parameterization of the state trajectory x(·) is introduced on the shooting grid {tn} that
implies N IVPs with initial values si ∈ Rnx on the intervals [tn, tn+1] of the horizon T ,

ẋn(t) = f(xn(t), θn(t, qn)) ∀t ∈ [tn, tn+1], 0 ≤ n ≤ N − 1, (2.37a)
xn(t) = sn. (2.37b)

To guarantee continuity of the resulted trajectory x(·) on the whole of the horizon T , N − 1
additional matching conditions are given as follows

xn(tn+1; tn, sn, qn)− sn+1 = 0, 0 ≤ n ≤ N − 1, (2.38)

where xn(tn+1; tn, sn, qn) stands for the final solution value x(tn+1) obtained from the IVP
(2.37) on [tn, tn+1] when starting in the initial value x(tn) = sn and applying the control
trajectory u(t) = θn(t, qn) on [tn, tn+1]. Thus the evaluation of the residual of constraint
(2.38) needs the solution of an IVP by an appropriate numerical method, cf. [2, 49,76].

21



Chapter 2. State of the Art

Constraints discretization

The point constraint can be simply rewritten as r(s0, sN ) ≥ 0nr
. The path constraint c(·) is

discretized as follows

cn(sn, θn(tn, qn)) ≥ 0nc , 0 ≤ n ≤ N. (2.39)

This discretization increases the feasible set of the discretized OCP when comparing to the
continuous one, and impacting the obtained optimal solution. In most real world problems,
an optimal trajectory (x∗(·), u∗(·) implied as a solution to the discretized problem exhibits
only small violations of the path constraints c(·) in the interior of the shooting intervals
if they are enforced on the shooting nodes. If large violations occur or strict feasibility
on T is important, remaining violations can sometimes be successfully treated by choosing
an adapted, perhaps tighter shooting grid tn. An alternatively semi-infinite programming
algorithm, in the interior of shooting intervals, for tracking of constraint violations is proposed
in [107].

The nonlinear problem

By writing the Meyer term m(tN , sN ) as final term lN (tN , sN , qN ) of the objective function,
the discretized OCP resulting from applying the direct multiple shooting method to problem
(2.32) casts

min
s,q

∑N
n=0 ln(sn, qn)

s.t. 0 = xn(tn+1; tn, sn, qn)− sn+1, 0 ≤ n ≤ N − 1,
0nr ≤ r(s0, sN ),
0nc ≤ c(sn, θ(tn, qn)), 0 ≤ n ≤ N.

(2.40)

The SQP method for solving problem (2.40) are presented in details, cf. [95, Sec. 3.6] and
[76, Chap. 3].

2.4.4 Derivative Generation
To analyze the sensitivity of derivative generation in forward mode, some needed definitions
are presented during this section.

Implicitly defined discontinuities

Definition 26 (Parameter-dependent IVP with switches). Let f : [t0, tf ] × Rnx ×
Rnp×{−1, 0, 1}nσ → Rnx , p ∈ Rnp , and nx, np, nσ ∈ N. The parameter-dependent IVP with
switches is defined as

ẋ(t) = f(t, x(t), p, sgn(σ(t, x(t), p))), t ∈ [t0, tf ], (2.41)
x(t0) = x0,

for x ∈ Rnx , p ∈ Rnp and the switching function σ : [t0, tf ] × Rnx × Rnp → Rnσ with the
components

σj : [t0, tf ]× Rnx × Rnp → R
(t, x(t), p)→ σj(t, x(t), p)
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where j = 1, . . . , nσ.

For the following definition we assume a problem with only one switching time tsw.

Definition 27. 1. The left and right limits of the state vector at the switching time tsw
are defined as follows,

x− := x−(tsw; t0, x0, p) = lim
ε→0

x(tsw − ε), (2.42)

x+ := x+(tsw; t0, x0, p) = lim
ε→0

x(tsw + ε), (2.43)

respectively, with ε > 0.

2. f− and f+ are the right hand side of f in (tsw, y−, p) and (tsw, y+, p), respectively, i.e.,

f− := f−(tsw, x−, p) = lim
ε→0

f(tsw − ε, x−, p), (2.44)

f+ := f+(tsw, x+, p) = lim
ε→0

f(tsw + ε, x+, p), (2.45)

where ε > 0.

3. The jump vector δ of the right hand side f is defined as follows

δ := δ(tsw, y−, p) = f+(t0, x+, p)− f−(t0, x−, p) (2.46)

Sensitivity analysis

Consider the IVP

ẋ(t) = f(t, x(t), p), t ∈ [t0, tf ], (2.47)
x(t0) = x0,

where f : [t0, tf ]× Rnx × Rnp → Rnx , p ∈ Rnp and nx, np ∈ N.

Definition 28 (Sensitivities). The matrix Gx(t; t0, x0, p) ∈ Rnx×nx denotes the sensi-
tivity of the solution x at time point t w.r.t. the initial value x0 ∈ Rnx and the matrix
Gp(t; t0, x0, p) ∈ Rnx×np analogously denotes the sensitivity of the solution x at time point
t w.r.t. the parameter p ∈ Rnp ,

Gx(t; t0, x0, p) :=
∂x

∂x0
(t; t0, x0, p), (2.48)

Gp(t; t0, x0, p) :=
∂y

∂p
(t; t0, x0, p). (2.49)

To calculate sensitivities, we use the approximation by external numerical differentiation
(END), and the variational differential equations (VDE).
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External numerical differentiation

For the sensitivities w.r.t. x0 that means calculating

∂x

∂x0,i
(t; t0, x0, p) ≈

x(t; t0, x0 + hx,i · ei, p)− x(t; t0, x0 − hx,i · ei, p)
2hx

, i = 1, . . . , nx, (2.50)

where hx ∈ Rnx is the vector of step sizes for the finite differences (FD) w.r.t. the initial
values and ei is the i-th unit vector of the dimension nx. In the similar way, the sensitivities
w.r.t. p are calculated by perturbing each parameter, i.e.,

∂x

∂pi
(t; t0, x0, p) ≈

x(t; t0, x0, p+ hp,i · ei)− x(t; t0, x0, p− hp,i · ei)
2hp

, i = 1, . . . , np, (2.51)

therein, hp ∈ Rnp is the vector of step sizes for the FD w.r.t. the initial values and ei is the
i-th unit vector of the dimension np.

Variational differential equations

Another possibility for calculating sensitivities is solving the VDE. To deduce the sensitivity
matrix Gx(t; t0, x0, p) the following system needs to be solved

∂Gx

∂t
(t; t0, x0, p) =

∂f

∂x
(t, x, p) ·Gx(t; t0, x0, p), (2.52)

Gx(t0; t0, x0, p) = Inx
,

where Inx
∈ Rnx×nx is the identity matrix.

Analogously one obtains the sensitivity matrix Gp(t; t0, x0, p) as the solution of the system
as follows

∂Gp

∂t
(t; t0, x0, p) =

∂f

∂x
(t, x, p) ·Gp(t; t0, x0, p) +

∂f

∂p
(t, x, p), (2.53)

Gp(t0; t0, x0, p) =
∂x0
∂p

(p) = 0.

2.5 Feedback Control
Optimization techniques play a fundamental role in real world processes and especially in the
current industrial practice. In many applications, an OCP is solved off-line with full time
horizon, or in an open-loop, i.e., the process operation is no longer tracked anymore and the
obtained solution is applied without further feedback from the actual process. This leads
open-loop controls to invalidate the previously optimal solution and are of limited applica-
bility.
In practical applications, the actual system behavior is considered and the controller is con-
stantly updated with the system state. Hence, there is a great interest in the so-called
optimization-based feedback control or closed-loop approaches, where OCP is solved on-line.

This section introduces a powerful state-of-the-art feedback control approach via the
principle of Model Predictive Control (MPC), cf. [41, 76] and [115, Chap. 4], which can be
summarized as follows: one repeatedly off-line solves OCPs on a finite prediction horizon. At
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sampling times tsj , where j stands for the sample index, we retrieve the current real process
state xsj . Using xsj as initial state, we solve an OCP on a prediction horizon [tsj , t

s
j + ∆h],

and obtain an optimal control u∗j (·). The initial state conditions are chosen to generate a
coupling of the real state and the state prediction. We only apply u∗j (·) for the sampling
time period ∆t. At the subsequent sampling time tsj+1 = tsj + ∆t, we solve a new OCP
with the updated initial state xsk+1 on the horizon [tsj+1, k

s
j+1 +∆h], and apply the obtained

optimal control u∗j+1(·). Applied to OCP (2.32), at each sampling time tsj , the MPC feedback
approach solves the following OCP

min
x(·),u(·)

m(x(tsj +∆h)) +
∫ tsj+∆h

tsj
l(x(τ), u(τ))dτ

s.t. ẋ(t) = f(x(t), u(t)), t ∈ T ,
0nr
≤ r(x(tsj), x(tsj +∆h)),

0nc
≤ c(x(t), u(t)), t ∈ T .

(2.54)

MPC subject to OCPs with quadratic objective function and linear dynamic equations and
inequality constraints are referred to as Linear Model Predictive Control. If the objective
function is nonlinear but not quadratic, or nonlinear dynamic equations or inequality con-
straints, one calls it Nonlinear Model Predictive Control (NMPC).

2.6 Switched Optimal Control Problems

Switched Optimal Control Problems (SwOCPs) are a particular class of hybrid dynamic
systems. There has been numerous research over the last few decades, and significant progress
has been made in this topic, both theoretically and computationally, cf. [3, 60,132].
Hybrid systems are dynamic systems that combine continuous and discrete event models,
where the system switches between different models. Hybrid systems have applications in
a variety of disciplines, including industrial process management, gas traffic control, power
systems, gas and water networks. For a detailed survey on this field, readers can see in
[132]. To discuss the necessary conditions for trajectories for hybrid systems, the existence
of optimal control law is obtained based on dynamic programming, cf. [30], or by using
the maximum principle, cf. [105, 117]. Then convex dynamic programming is employed to
approximate the hybrid optimal control laws as well as the objective value’s bounds, cf. [64].
In [18], switched systems are OCPs with state-dependent discontinuities with no jumps in
the states, i.e., switched systems are represented by an indexed set of differential equations

ẋ(t) = Fi(t)(x(t), u(t)), x(t0) = x0, T def
= [t0, tf ], i : T → {1, . . . ,M}, (2.55)

where the unified framework for SwOCP is presented with both implicit switches (internally
forced switches(IFS)) and explicit switches (externally forced switches (EFS)).
Numerous literature dealing with IFS problems concentrates on piecewise affine (PWA), cf.
[10, 71,109]. A PWA system, cf. [18],

x(t+ 1) = Aix(t) +Biu(t) + fi, if
[
x(t) u(t)

]T ∈ Xi,

where Xi
def
=
{[
x(t) u(t)

]T | Gix+Hiu ≤ Ki

}
, divides the state space into polyhedral re-

gions and assigns with each region its own linear difference equation. It can be expanded by
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the following mode independent constraints

Ix(t) + Ju(t) ≤ L.

For solving PWA constrained optimization problems, there are two types of solution ap-
proaches are proposed. First method is the mixed logical dynamic, cf [11], while the remain
one is the dynamic programming strategies in combination with multi-parametric program
solver are applied, cf. [28].
Plenty of algorithms for solving EFS are proposed, such as bi-level hierarchical algorithm,
cf. [90, 92], direct single shooting method, cf. [9], or gradient projection and constrained
Newton’s method, cf. [132].

2.6.1 Filippov’s Theory
Reminder that an optimal control may not exist if the right hand side function f(·) in the
ODE of OCPs is not convex. For the counter example, readers can see in [55, Problem
(14), Sec. V]. In the case of the general form of SwOCP, sliding regimes arise from the
nonconvexity of f(·). The theory of Filippov gives a generalized definition of the solution
of switched systems in the sense that the definition holds for a larger class of differential
equations, cf. [56]. Filippov’s rule describes three basic forms of dynamics that would
occur on the switching manifold: sewing (sticking to a surface), sliding (motion constrained
along the manifold), and escaping (leaving the surface abruptly). Solution in the Filippov’s
rule is continuous in time, where jump conditions are not considered.
We consider Filippov theory for the general case, therein a natural idea to extend the classic
solution concept is to replace the right hand side f(·) with a set-valued function F (·) such
that f(·) and F (·) are identical at points where f(·) is continuous in x. There is a suitable
choice for F (·) required at points for which f(·) is discontinuous in x. Then the differential
equation is replaced by the differential inclusion

ẋ(t) ∈ F (t, x(t)).

At points of discontinuity, F (·) is defined by means of the generalized differential, cf. [36].
The generalized derivative of a function x : R → Rnx at t is defined as any value ẋα(t), cf.
[37], which can be implies by means of a convex combination of its left and right derivatives
as follows

ẋα(t) = α · ẋ+(t) + (1− α) · ẋ−(t), 0 ≤ α ≤ 1.

The values ẋ+(t) and ẋ−(t) are respective determined as f+(t, x(t)) and f−(t, x(t)). Denote
∂x(t) the set of all the generalized differential of x(·) at t, i.e., it is the convex hull of the
derivative extremes

∂x(t) = conv{ẋ+(t), ẋ−(t)}
= {ẋα(t) ∈ Rn : ẋα(t) = α · ẋ+(t) + (1− α) · ẋ−(t), α ∈ [0, 1]}, (2.56)

where convA stands for the smallest closed convex set containing A. The set-valued sign
function is then defined as the generalized differential of |x|

sgn(x)
def
= ∂|x| =


{−1}, if x < 0,

[−1, 1], if x = 0,

{1}, if x > 0.
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The idea of replacing a switched ODE with a differential inclusion is transferred from one
dimension to dimension n. The space Rn is split into two subspaces S+ and S− by a hyper-
surface S such that Rn = S− ∪ S ∪ S+, where the hyper-surface S is implicitly defined by
the switching function σ : Rn → R as

S def
= {x ∈ Rn : σ(x) = 0}, (2.57)

and the subspaces S+ and S− as

S+
def
= {x ∈ Rn : σ(x) > 0}, S−

def
= {x ∈ Rn : σ(x) < 0}.

Consider the nonlinear system with discontinuous right hand side

ẋ(t) = f(t, x(t))
def
=

{
f+(t, x(t)), if x(t) ∈ S+,
f−(t, x(t)), if x(t) ∈ S−,

t ∈ T \ S, x(tsw) = xsw. (2.58)

We assume that f(·) fulfills all assumptions from [120, Thm. 2.2] in Rn \ S such that the
solution x(·) within S+ and S− exists and unique. Furthermore, we assume that the smooth
functions f+ and f− are extended uniquely to smooth functions on S+ ∪ S and S− ∪ S,
respectively.
Recall problem (2.58) where f(·) is not defined for t with x(t) ∈ S. This allows for some
freedom in extending the vector field on S. To accomplish this, we study the set-valued
extension F : T × Rnx → Rn of f(·) for xσ ∈ S, represented as

F (t, xσ)
def
= conv{y ∈ Rn : y = lim

x→xσ

f(t, x), x ∈ R \ S}. (2.59)

Note that all the limits exist due to the assumptions on f(·). The convexification of the
switched IVP (2.58) into the convex differential inclusion

ẋ(t) ∈ F (t, x(t)) def
=


f+(t, x(t)), if x(t) ∈ S+,
conv{f+(t, x(t)), f−(t, x(t))}, if x(t) ∈ S,
f−(t, x(t)), if x(t) ∈ S−,

x(tsw) = xsw, (2.60)

where the convex set from (2.59) can be expressed on S by combinations of f+ and f− and

conv{f+, f−} = {f ∈ Rn : f = α · f+ + (1− α) · f−, α ∈ [0, 1]} (2.61)

is well-known as Filippov’s convex method. To understand the IVP (2.58) as a mathematical
model of a physical system, it’s important to consider a solution notion that guarantees the
existence of solutions. Thus, the choice of the set valued extension F (·) of f(·) should
be appropriate in the sense that the existence of a solution is guaranteed. The notion of
upper semi-continuity of set-valued functions, cf. [95, Def. 1.17], ensures the existence
of solutions of a differential inclusion. Combining this condition with Cathathéodory
solutions, the existence of differential inclusion trajectories, that are absolutely continuous,
which is guaranteed by the following results.

Theorem 10 (Existence of Differential Inclusion Solution). [95, Thm. 1.18] Let F (·)
be a set valued function. Assuming F (·) to be a upper semi-continuous and F (t, x) to be
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closed, convex, and bounded for all t ∈ R and x ∈ R, then for each xsw ∈ Rn there exists a
τ > 0 and an absolutely continuous function x(·) defined on [tsw, tsw+τ ], which is a solution
of the IVP

ẋ(t) ∈ F (t, x(t)), x(tsw) = xsw.

Proof. See [7].

A Filippov’s rule solution for an implicitly switched system of type (2.58) can be defined
by combining of Filippov’s convex method and the result from Theorem 10.

Definition 29 (Solution in the Filippov’s rule). [95, Def. 1.19] An absolute continuous
function x : [tsw, tsw + τ ] → Rn is called a solution of IVP (2.58) in the Filippov’s rule if
for almost all t ∈ [tsw, tsw + τ ] it holds that

ẋ(t) ∈ F (t, x(t)),

where F (t, x(t)) is defined as in (2.60).

Definition 30 (Another sense of Filippov’s solution). [49, Def. 5.1] The function
x(t), t ∈ [t0, tf ] is called the solution of the differential equation ẋ = f(x(t)), if the following
conditions are met:

• x is absolutely continuous,

• for almost all t ∈ [t0, tf ] and any δ > 0, the vector ẋ = dx
dt belongs to the smallest

closed convex set that contains all values f(·) in a δ-neighborhood of x(t):

ẋ(t) ∈
⋂
δ>0

⋂
µ(N)=0

conv (f(U(x(t), δ) \N, ·)) .

Here, µ denotes the Lebesgue measure.

Remark 13. In the domain where x(·) is smooth, i.e., x(t) ∈ S+ ∪ S−, the equality
f(t, x(t)) = F (t, x(t)) holds true. If x(·) slides along a switching boundary, i.e., x(t) ∈ S,
then ẋ(t) ∈ F (t, x(t)). However, when the solution x(·) leaves from the switching manifold
S or enters to S, the state derivative ẋ(tσ) is not defined, at time instances tσ. Therein, a
solution trajectory x(·) leaves or enters S if for any ε > 0 there exists a t∗ ∈ tσ +Uε(0) \ {0}
such that x(t∗) /∈ S and x(tσ) ∈ S.

Remark 14. Theorem 10 ensures the existence of a solution on [tsw, tsw + τ ] with τ > 0.
To obtain existence over the whole horizon, one needs further assumptions: let f(t, x) be
linearly bounded for x /∈ S, i.e., there exists positive constants c0 and c1 such that for all
t ∈ [0,∞) and x ∈ S+ ∪ S− it holds

∥f(t, x)∥ ≤ c0 ∥x∥+ c1.

Additionally, if F (·) is bounded at (t, x) for which F is set-valued, then a solution of IVP
(2.60) exists on [tsw,∞), cf. [37].
However, these assumptions are not sufficient to guarantee the uniqueness of a solution.
Readers may refer to [95, Sec. 1.4], where the uniqueness of solutions is examined in several
scenarios, such as transversal intersection mode, sliding mode, and higher order conditions.
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2.6.2 Problem and Constraints Formulation of SwOCP

We start this subsection with a problem formulation of a general SwOCP involving a dynamic
system with switches.

Definition 31. A SwOCP is a constrained optimization problem of the form

min
x(·),u(·),w(·)

φ(x(t), u(t))

s.t. ẋ(t) = f(x(t), u(t), w(t), sgn(σ(x(t)))),
0nr ≤ r(x(t0), x(tf )),
0nc
≤ c(x(t), u(t), w(t)),

w(t) ∈ Ω ⊂ Rnw ,

t ∈ T , (2.62)

where a dynamic process x : T → Rnx on the time horizon T def
= [t0, tf ] ⊂ R is determined. A

solution x(·) is described by a system of ODEs, where f : T ×Rnx×Rnu×Rnw×{−1, 0, 1}nσ →
Rnx is the right hand side function. This system is affected by a continuous-valued control
function u : T → Rnu as well as another discrete-valued control function w : T → Ω,
which includes only values from a finite set Ω

def
= {w1, w2, . . . , wnω

} ⊆ Rnw with cardinality
|Ω| < ∞. Furthermore, the system is affected by an implicit switch determined by the sign
structure of a switching function σ : Rnx → Rnσ . The objective function φ : Rnx ×Rnu → R
is minimized. Moreover, mixed state-control (path) constraints c(x(t), u(t), w(t)) ≥ 0nc with
c : Rnx×Rnu×Rnw → Rnc and point constraints r(x(t0), x(tf )) ≥ 0nr

where r : Rnx×Rnx →
Rnr must be satisfied.

Note that w(·) has the special character when compared to u(·), and due to its special
status, we will introduce a new term of this type of control functions in Chapter 3.

2.6.3 Consistent Switches

Main contributions of this dissertation are belonging to this type of switches, where the
transversality assumption is hold true.

The sign structure of σ in the right hand side function f of the dynamic system in (2.62)
leads to non-differentiability in the dynamics. This coincides with the concept of a switched
system (2.55). The switch is an explicit switch, i.e., EFS, if σ is independent of x, otherwise
it is an implicit switch, i.e., IFS. At a switching point tsw ∈ T , the left and right hand side
limits of x are defined as

x+(tsw)
def
= lim

t↘tsw
x(t), x−(tsw)

def
= lim

t↗tsw
x(t).

Then the one-sides derivatives of σ(·) at tsw ∈ T are defined as, cf. [18],

Dσ+(tsw)
def
=

dσ

dt
(tsw, x+(tsw), Dσ−(tsw)

def
=

dσ

dt
(tsw, x−(tsw).

The transversality assumption holds true for a large class of switched dynamic systems, which
allow solutions that cross the zero manifold S, see Eq. (2.57), in either direction. As a result,
a finite number of isolated switching events occurs on a finite time horizon. These solutions
are typically referred to as “classical”, and the switching behavior is often called “consistent”.
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Assumption 2.6.1 (Transversality). [18, Assumption 2.1] Problem (2.62) satisfies the
transversality assumption if Dσ−(tsw) · Dσ+(tsw) > 0 for all tsw ∈ T with σ(tsw) = 0.

If the transversality assumption holds, only a finite number of isolated points of the zero
manifold S are part of a solution trajectory x.

2.6.4 Inconsistent Switches and Filippov Solutions

If the transversality assumption is violated, which means that Dσ−(tsw) · Dσ+(tsw) ≤ 0,
we have to consider the additionally Filippov case of sliding on the zero manifold, i.e., a
continuation on the manifold S in the Filippov’s rule [56] can be found by replacing f in
(2.62) by an appropriate combination

fα(x(t), u(t)) := α(t)f(x(t), u(t),+1) + (1− α(t))f(x(t), u(t),−1), α(t) ∈ (0, 1),

that satisfies σ(x(t)) = 0 for all t ∈ [tsw, t
+], where t+ > tsw is a later time point with

switching function derivatives that allow leaving the manifold. If one of derivatives Dσ− or
Dσ+ vanishes, the state trajectory tangentially leaves or enters the zero manifold S. Since
Dσ− and Dσ+ are first order derivatives, higher-order derivatives of σ can be analyzed to
study the type of continuation is open as a future research question.
In connection with switching functions, the phenomenon that the manifold cannot be pierced
is called inconsistent switching. The switching is inconsistent in the type that changing the
right hand side does not change the sign of the switching function. Section 5.1.3 will discuss
more about directional fields and three-valued switching logic for the inconsistent switches
with its general formulation of SwOCP.

2.6.5 Partial Outer Convexification and Relationship between SwOCP
with Relaxed Problem

The idea of convexification and relaxation is similar to the concept of generalized curves,
which was proposed by Young [127] to investigate existence questions in the domain of
calculus of variations. The partial outer convexification (POC) approach has been studied
in the context of OCPs by Sager [111], Sager et al., cf. [112, 113]. The term “partial”
is due to the exclusive convexification of the only integer controls, not to the rest of OCP.
To describe the POC approach the integer controls w(·) are lifted into a higher dimensional
space by introducing binary controls ωi : T → {0, 1}, i ∈ {1, . . . , nω}. The value ωi(t) = 1
indicates mode i is active, otherwise not active (ωi(t) = 0) at instant time t ∈ T . For better
realization of the POC, we consider a SwOCP where ODE is considered without the sign
function and the objective function is simply in Mayer type, as follows

min
x(·),u(·),w(·)

m(x(tf ))

s.t. ẋ(t) = f(x(t), u(t), w(t)),
0nr ≤ r(x(t0), x(tf )),
0nc
≤ c(x(t), u(t), w(t)),

w(t) ∈ Ω ⊂ Rnw ,

t ∈ T , (2.63)
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while later, the general SwOCP (2.62) will be reformulated in Chapter 3. The ODE in (2.63)
then reads as

ẋ(t) =

nω∑
i=1

ωi · f(x(t), u(t), wi).

To guarantee that exactly one mode is active at any t ∈ T , one additionally imposes the
SOS-1 constraint

∑nω

i=1 ωi(t) = 1.
Similarly, the path constraints of (2.63) is rewritten as follows

nω∑
i=1

ωi(t) · c(x(t), u(t), wi) ≥ 0nc
, (2.64)

together with the additional constraint
∑nω

i=1 ωi(t) = 1, ωi(t) ∈ {0, 1}.
Then (2.63) reads as the following form after POC reformulation

min
x(·),u(·),ω(·)

m(x(tf ))

s.t. ẋ(t) =
∑nω

i=1 ωi · f(x(t), u(t), wi),
0nr
≤ r(x(t0), x(tf )),

0nc
≤
∑nω

i=1 ωi(t) · c(x(t), u(t), wi),
1 =

∑nω

i=1 ωi(t), ω(t) ∈ {0, 1}nω ,

t ∈ T , (2.65)

where ω(·) def
= [ω1(·), . . . , ωnω

(·)]T . Problem (2.65) can be relaxed by construction as follows

min
x(·),u(·),α(·)

m(x(tf ))

s.t. ẋ(t) =
∑nω

i=1 αi · f(x(t), u(t), wi),
0nr
≤ r(x(t0), x(tf )),

0nc ≤
∑nω

i=1 αi(t) · c(x(t), u(t), wi),
1 =

∑nω

i=1 αi(t), α(t) ∈ [0, 1]nω ,

t ∈ T , (2.66)

where analogously to ω(·), the components of α(·) are denoted by αi(·), i ∈ {1, . . . , nω}. The
binary convexified OCP (2.65) is equivalent to OCP (2.62) in the type as follows:

Proposition 1. The binary convexified OCP (2.65) has a solution if and only if the ex-
plicit switched OCP (2.63) has a solution. Let (x∗C , u

∗
C , ω

∗
C) be a solution of (2.65). Then

(x∗, u∗, w∗), with x∗ = x∗C , u∗ = u∗C , and w∗(t) =
∑nω

i=1 ωi(t)wi, is a solution of (2.63).

Proof. See [89, Proposition 6.6].

Moreover, considering the relation between SwOCP and its relaxed problem, the following
theorem has shown that: for a feasible point of the relaxed convexified OCP (2.66) there is
an essentially feasible point of the binary convexified OCP (2.65) which has essentially the
same objective function value.

Theorem 11. Let (x̄, u, ᾱ) be feasible for OCP (2.66) and suppose that t 7→ f(x̄(t), u(t), wi),
i ∈ {1, . . . , nω}, are functions of type W 1,∞(T ,Rnx). Let ε > 0.
Then there are functions xε ∈W 1,∞(T ,Rnx) and ωε ∈ L∞(T , {0, 1}nω ) such that

|m(xε(tf ))−m(x̄(tf ))| < ε
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and

ẋε(t) =
∑nω

i=1 ωi · f(xε(t), u(t), wi), t ∈ T ,
0nr
≤ r(xε(t0), xε(tf )),

0nc ≤ ωε
i (t) · c(xε(t), u(t), wi), 1 ≤ i ≤ nω, t ∈ T ,

1 =
∑nω

i=1 ω
ε
i (t), t ∈ T .

Proof. See [89, Theorem 6.7].

2.6.6 Generalized Disjunctive Programming
Disjunctive Programming (DP) is an approach for solving the OCPs, which includes both
continuous and discrete controls, cf. [8]. DP models consist of logic disjunctions, algebraic
constraints and logic propositions. A particular case of disjunctive programming is so-called
General Disjunctive Programming (GDP), cf. [108]. A GDP problem is reached as follows

min
x∈Rn,ωik∈{0,1}

ψ(x) +
∑

k∈K ck,

s.t. r(x) ≤ 0,⊕
i∈Dk

 ωik = 1
gik(x) ≤ 0
ck = γik

 , k ∈ K def
= {1, . . . ,K}, Dk

def
= {1, . . . , Dk},

Ω(ω) = 1, x ∈ [xl, xu],

where the continuous variables x ∈ Rn in the bounds [xl, xu] and binary variables ω def
=

{ωik}i,k, ωik ∈ {0, 1}. The function ψ : Rn → R in the objective function and the global
constraint function g : Rn → Rm are assumed to be sufficiently smooth, and r(x) is the
inequality sign include the case of equalities. K logical expressions must hold, and each
of these expressions is composed of Dk terms which are connected by the EX-OR operator
⊕, indicating that exactly one of the boolean variables ωik must be defined to one. In the
particular case for variable ωik, the associated constraint gik(x) ≤ 0 and the objective weight
ck are enforced. The constraint Ω(ω) = 1 summarizes further constraints on the boolean
variables ωik. All ωik = 0 are ignored.
The GDP was recently used to reformulate the SwOCP by Meyer et al. [18], where they
deal with explicit and implicit switches of OCPs.

2.6.7 Rounding Schemes
In this section, all available rounding schemes, which are used to return the integer value
of control from the relaxed one, are shortly summarized. For the convergence of rounding
schemes, i.e., solution quality, readers can see in [12, Prop. 3.1], [73, Prop. 4.8].
Suppose that the optimal solution of the relaxed convexified of the switched optimal control
problem (RC.SwP) is (x∗, u∗, α∗). Hence the corresponding optimal solution of SwOCP with
switched DAEs/ODEs is (x∗, u∗, w∗). Now we just take care for the term α∗, and looking
for the relation between α∗ and w∗.

i. If α∗
j (t) = 0 or α∗

j (t) = 1, then it is also the optimal solution of SwOCP.

ii. Otherwise, α∗
j (t) ∈ (0, 1), we must apply rounding strategies to imply the solution

of SwOCP. Denote α∗(t) = q̃i, and w∗(t) = qi, where t ∈ [ti, ti+1] ⊂ [t0, tf ], i =
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0, . . . , n− 1. Then we could apply one of the suitable rounding strategies, cf. [111], as
follows:

• Rounding strategy SR (standard rounding)

qj,i =

{
1 if q̃j,i ≥ 0.5,

0 else.

• Rounding strategy SUR (sum-up rounding)

qj,i =

 1 if
i∑

k=0

q̃j,k −
i−1∑
k=0

qj,k ≥ 1,

0 else.
(2.67)

• Rounding strategy SUR-0.5 (sum-up rounding with a different threshold)

qj,i =

1 if
i∑

k=0

q̃j,k −
i−1∑
k=0

qj,k ≥ 0.5,

0 else.

If the control function has to fulfill the (SOS-1) restriction (as it arises from a convex-
ification, see its definition in Def. 7), the above SUR strategies are not enough. For
these problems with the (SOS-1) property, we use one of the following strategies

• Rounding strategy SR-SOS-1 (standard)

qj,i =

{
1 if q̃j,i ≥ q̃k,i,∀k ̸= j, and j < k, ∀k : q̃j,i = q̃k,i,
0 else.

• Rounding strategy SUR-SOS-1 (sum-up rounding)

qj,i =

{
1 if q̂j,i ≥ q̂k,i,∀k ̸= j, and j < k, ∀k : q̂j,i = q̂k,i,
0 else.

where q̂j,i =
i∑

k=0

q̃j,k −
i−1∑
k=0

qj,k.

• Direct SOS-1 Rounding (Definition 2.15, [76])

qj,i =


1 if (∀k :

∫ ti+1

ti
q̃jidt ≥

∫ ti+1

ti
q̃kidt)

∧ (∀k :
∫ ti+1

ti
q̃jidt =

∫ ti+1

ti
q̃kidt : j < k),

0 otherwise.
1 ≤ j ≤ nw.

• SOS-1 - SUR Rounding

qj,i =

{
1 if (∀k : q̂j,i ≥ q̂k,j) ∧ (∀k, q̂j,i = q̂k,j : j < k)
0 else 1 ≤ j ≤ nw,

therein, control q̂j,i for the j step of sum-up rounding be defined as

q̂j,i :=

∫ ti

t0

β∗
j (t)dt−

i−1∑
k=0

qj,k.
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• Vanishing Constraint SOS-Sum-Up Rounding (VC-SOS-SUR)

qj,i =

j = arg max
k∈[|V |]∫ ti+1

ti
βk(t)dt>0

∫ ti+1

t0

β∗
k(t)dt−

∫ ti

t0

qV C
k (t)dt


where V := {v1, . . . , v|V |}, [|V |] := {1, . . . , |V |} ⊂ N, qV C |(ti, ti+1) := (qj,i)j∈[|V |].

• Next force rounding strategy for SOS-1-coupled controls, see [73, Alg. 4.1].

• A developed rounding scheme for computing integer feedback solutions: the neigh-
boring feedback law for the switching aware rounding (see Subsection 4.2.2).

In conclusion, we could obtain that

w∗(t) =

{
α∗(t) if α∗(t) ∈ {0, 1},
RS(α∗(t)) if α∗(t) ∈ (0, 1).

with RS denote for rounding strategies.

2.6.8 Neighboring Feedback Control
The neighboring feedback control was developed by Kramer-Eis, Bock, et. al., cf. [83,84].
In this approach, ones use the fact that the optimal controls (u(t), w(t)) maximize the Hamil-
tonianH(x(t), λ(t), u, w) pointwise a.e., from which leading to the relations (u∗(x, λ), w∗(x, λ))

(u∗(x, λ), w∗(x, λ)) = arg max
u∈U,w∈W

H(x(t), λ(t), u, w).

Exploiting the implicitly function theorem, see Section 2.1.4, on the MPBVP derived from
the maximum principle along its solution, ones can express λ(t̂) as a function of the initial
value x(t̂), from which the derivative Λ(t̂) := ∂λ(t̂)

∂x(t̂)
can be computed from the Jacobian of

the MPBVP. Consequently, one obtains a neighboring feedback law of the following type

(u∗∗(x, λ), w∗∗(x, λ)) = arg max
u∈U,w∈W

H(x̂, λ(t̂) + Λ(t̂)(x̂− x(t̂)), u, w),

where x̂ is the estimated perturbed value of the state x(t).
For more details and the application of this feedback control, readers can see in Section 4.2.2.

34



Chapter 3

Indirect Approach for Switched
Optimal Control Problem:
Maximum Principle

The classical indirect approach is based on the necessary conditions of optimality called
Pontryagin’s maximum principle of the 1960s, which had an enormous impact on solving
engineering problems. Depending on the given optimal control problem, the optimality
conditions lead to multi-point BVP. It consists of differential equations for the state and
adjoint variables, an algebraic equation for the control, and boundary conditions for the
states, the adjoint variables, and time.
For the Maximum Principle, one can read on the paper of Pesch & Bulirsch, see [103],
about the historical creation and development. For a survey of OCP in the various forms
of Pontryagin’s maximum principle, the readers can see [63, 124]. Nowadays, the theory
has been extended in many ways, for instance, see [17], [19], [43–48], and Kostina et.
al., cf. [82]. The necessary optimality conditions for problems with mixed constraints,
where the regularity assumption had been observed can been found in the work of, e.g.,
[4, 13, 38, 42, 44]. The GDP reformulation and LMP are exploited to obtain the optimality
condition for SwOCP, cf. [121]. Then in [122], the mixed state-control constraints in regular
and nonregular (or irregular) are carefully studied.

In this chapter, the Local Maximum Principle is first considered in Section 3.1 and Section
3.2 to derive the necessary optimality conditions when the mixed state-control constraints
become nonregular (irregular). Therein, in Subsection 3.1.3 we consider Filippov’s rule,
which is employed as an innovative reformulation, and discuss how this reformulation affects
the solution. The convexification of the velocity set is also investigated. Finally, numerical
results with New York subway problem is mentioned in Section 3.3.

3.1 Maximum Principle for SOCP
This section deals with a simple SwOCP (SOCP), therein the controls are considered without
integer control w. SOCP is reformulated by Filippov’s rule, then the optimality condition
is obtained by exploiting local maximum principle.
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3.1.1 Reformulation for SOCP with Filippov’s Solution
We start by considering a SOCP as follows

min φ (x(tf ))

s.t. ẋ(t) =

{
f+ (x(t)) + b(x)u(t), if σ(x(t)) > 0,

f− (x(t)) + b(x)u(t), if σ(x(t)) < 0,

u(t) ∈ U0
def
= [−1, 1], x(t0) = x0, r(x(tf )) ≤ 0,

t ∈ [t0, tf ], (3.1)

where the process x : T → X is determined by a discontinuous dynamical system, affected
by (piecewise) continuously-valued control function u : T → U0 ∈ R on a time horizon
T := [t0, tf ] ⊂ R, such that an objective function φ : X → R is minimized. The right hand
side function is determined by the sign structure of the switching function σ : X → R. Point
constraints r(x(tf )) ≤ 0 with r : X → Rnr must be satisfied.
The discontinuity in (3.1) may lead to the situation, where classical solution does not exist
for σ(x(t)) = 0. Hence, we redefine solution of problem (3.1) according to the Filippov’s
rule, as follows

ẋ(t) =


f+ (x(t)) + b(x)u(t) =: rs+(x, u), if σ(x(t)) > 0,

f− (x(t)) + b(x)u(t) =: rs−(x, u), if σ(x(t)) < 0,

α(t)rs+(x, u) + (1− α(t)) rs−(x, u), if σ(x(t)) = 0,

t ∈ T , (3.2)

where α(t) ∈ [0, 1]. The “if” formulation in (3.2) is written not in analytical form, so we
propose to reformulate problem (3.1) with the redefinition (3.2) and additional mixed state-
control constraints as a following problem

min φ (x(tf )) (3.3a)

s.t. ẋ(t) = F (x(t), u(t), α(t)), t ∈ T , (3.3b)
u(t) ∈ U0, t ∈ T , x(t0) = x0, r(x(tf )) ≤ 0, (3.3c)
α(t)σ(x(t)) ≥ 0, (1− α(t))σ(x(t)) ≤ 0, t ∈ T , (3.3d)
α(t) ∈ [0, 1], t ∈ T , (3.3e)

where F (x, u, α) := α(t)rs+(x, u) + (1− α(t)) rs−(x, u), t ∈ T .
Let us discuss the additional constraints (3.3d).
If σ(x(t)) > 0, then we obtain α(t) ≥ 1, so a unique possible candidate is α(t) = 1.
On the other hand, if σ(x(t)) < 0, then one implies α(t) ≤ 0, thus a unique possible candidate
is α(t) = 0.
For the remain case, i.e., σ(x(t)) = 0, the constraints (3.3d) hold true for all α(t) ∈ [0, 1].
These constraints become the vanishing constraints, leading to difficulties in formulating
their optimality conditions.

We have some discussions about the regularity of mixed constraints (3.3d) (see Subsection
2.3.5). For convenience, denote G1(α, x) := −α(t)σ(x(t)), and G2(α, x) := (1− α(t))σ(x(t)).
If σ(x(t)) ̸= 0 then mixed constraints are regular (see Subsection 2.3.5). Indeed, if α(t) = 0
then G1 = 0, G2 = σ(x(t)) ̸= 0, and ∂G1

∂(u,α) =
(
0 −σ(x(t))

)
̸= 0; otherwise if α(t) = 1 then

G1 = σ(x(t)) ̸= 0, G2 = 0, and ∂G2

∂(u,α) =
(
0 −σ(x(t))

)
̸= 0.

If σ(x(t)) = 0 then the constraints are nonregular, since G1 = G1 = 0, ∂G2

∂(u,α) =
∂G2

∂(u,α) = 0.
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Lemma 3. For SOCP (3.3), the set of phase points of the mixed state-control constraints is
determined by

N (G) = {(t, x, u, α) | α(t) ∈ [0, 1], u(t) ∈ U0, t ∈ T : σ(x(t)) = 0}.

Proof. For problem (3.3) we have d(G) = 2, G =
(
G1 G2

)T , y = (α, x), and

∂G(y)
∂(u, α)

=

(
0 −σ
0 −σ

)
= 0, if σ(x(t)) = 0.

To determine the phase points we will find a ∈ ∆ (see Subsection 2.3.5), a = (a1, a2) ∈ R2,
a ≥ 0 such that a1 + a2 = 1, and aTG(y) = 0, aT ∂G(y)

∂(u,α) = 0, i.e.,{
−a1ασ + a2(1− α)σ = 0

−a1σ − a2σ = 0.
(3.4)

If σ = 0 then (3.4) is satisfied for all a ≥ 0, |a1|+ |a2| = 1.
If σ ̸= 0 then the second equation of (3.4) is equivalent to a1 + a2 = 0, which contradict to
a ≥ 0, |a1|+ |a2| = 1. This means that for σ ̸= 0, mixed constraints are regular.
Therefore, for σ = 0 mixed constraints are irregular and phase points are

N (G) = {(t, x, u, α) | α(t) ∈ [0, 1], u(t) ∈ U0, t ∈ T : σ(x(t)) = 0} .

In the case σ(x(t)) = 0, the phase jump (see Def. 24) is defined as

s(t) = aT

(
−α(t)∂σ(x(t))∂x

(1− α(t))∂σ(x(t))∂x

)
, a = (a1, a2) ∈ R2, a ≥ 0, a1 + a2 = 1, t ∈ T , (3.5)

resulting in s(t) = (a2 − α)∂σ∂x , 0 ≤ a2 ≤ 1, 0 ≤ α ≤ 1, t ∈ T .

Remark 15. Let us discuss the phase jump (3.5) w.r.t. the values of α.
If α = 0 then the phase jump is assumed to be s = ∂σ

∂x .
If α = 1 then the phase jump is s = −∂σ

∂x .
If 0 < α < 1 then the phase jump is assumed to be s = bs

∂σ
∂x , where −1 ≤ bs ≤ 1.

To formulate the maximum principle, we exploit LMP (see Theorem 9) for the SOCP
(3.3). We assume that the controls u(t) and α(t) are piecewise continuous and we introduce
the necessary notation as follows. Denote

V(x) := {α ∈ [0, 1] : ασ ≥ 0, (1− α)σ ≤ 0} , (3.6)
V (x) := {(u, α) : u ∈ U0, α ∈ V(x)} . (3.7)

3.1.2 Discussion on Optimality Conditions

Let
◦
λ is a measure of function λ(t), given the relations

◦
λ ([t1, t2]) = λ(t2)− λ(t1), t2 > t1,
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where function λ(t) is assumed to be a left-continuous function of bounded variation.
The maximum principle (see Subsection 2.3.5) can be formulated as follows. Let x∗(·),
u∗(·), α∗(t) be optimal trajectory and (piecewise continuous) controls. Then there exist

• a vector v ≥ 0 and a number v0,

• a function of bounded variation λ(t), t ∈ T = [t0, tf ],

• a function ϑ(·) ∈ L1, ϑ(t) ≥ 0 if t ∈ {T∗ : α(t) = 0}, ϑ(t) ≤ 0 if t ∈ {T∗ : α(t) = 1},
and ϑ(t) = 0 with t ∈ T \ T∗, where T∗ := {t ∈ T | σ(x∗(t)) = 0},

• the measure µ, dµ ≥ 0, focused on the set T∗, function λ(·), ϑ(·) and measure µ are
related by the relations:

◦
λ
T

(dt) =


−λT (t)

(
α∗(t)∂f+(x∗(t))

∂x + (1− α∗(t))∂f−(x∗(t))
∂x + ∂b(x∗(t))

∂x u∗(t)
)
dt+Σdµ

dt , t ∈ T∗
−λT (t)

(
∂f−(x∗(t))

∂x + ∂b(x∗(t))
∂x u∗(t)

)
, t ∈ T−,

−λT (t)
(

∂f+(x∗(t))
∂x + ∂b(x∗(t))

∂x u∗(t)
)
, t ∈ T+,

(3.8)

where Σdµ
dt := ϑ(t)∂σ(x

∗(t))
∂x dt + s(t)dµ, T+ := {t ∈ T | σ(x∗(t)) > 0}, T− := {t ∈ T |

σ(x∗(t)) < 0}, and

λ(tf − 0) = −vT ∂r(x
∗(tf ))

∂x
− v0

∂φ(x∗(tf ))

∂x
− µ(tf )s(tf ), (3.9)

at each point t ∈ [t0, tf ) of the discontinuity of µ we have

λ(t+ 0)− λ(t− 0) = µ(t)s(t), (3.10)

normalization conditions are fulfilled

v0 + ∥v∥+ ∥µ∥+
∫
T
ϑ(t)dt = 1. (3.11)

Here, the maximum condition is satisfied

H(x∗(t), u∗(t), α∗(t), λ(t)) = max
(u,α)∈V (x∗(t))

H(x∗(t), u(t), α(t), λ(t)), a.e. t ∈ T , (3.12)

whereH(x, u, α, λ) = λTF (x, u, α) = λ(t)T (α(t)f+(x(t)) + (1− α(t))f−(x(t)) + b(x(t))u(t)).
The measure µ is involved in the formulation of this maximum principle. In general the mea-
sure µ decomposes into a sum:

µ = µa + µs + µδ,

where

• µa is an absolutely continuous component (in measure dt),

• µs is a singular component (in measure dt),
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• µδ is an atomic (jump) component (in measure dt).

Let us analyze the maximum conditions (3.12). Consider the set V (x∗(t)) (see Eq. (3.7)),
conditions (3.12) take the form:

H(x∗, u∗, α∗, λ(t)) = max
(u,α)∈V (x∗)

λT (t) (αf+(x
∗) + (1− α)f−(x∗) + b(x∗)u) , a.e. in T ,

s.t. |u(t)| ≤ 1, (3.13)
α(t)σ(x∗(t)) ≥ 0, (1− α(t))σ(x∗(t)) ≤ 0, 0 ≤ α(t) ≤ 1,

Let us analyze the last conditions in more details as follows.
A. If σ(x∗(t)) > 0, then it follows that α = 1. Therefore, the conditions of the maximum
principle (3.13) take the form

H(x∗, u∗, α∗, λ(t)) = λT (t)f+(x
∗(t)) + max

u(t)∈[−1,1]
{λT (t)b(x∗)u(t)}, t ∈ T+.

B. If σ(x∗(t)) < 0 then α = 0. Similarly, the conditions of the maximum principle (3.13) get
the form

H(x∗, u∗, α∗, λ(t)) = λT (t)f−(x
∗(t)) + max

u(t)∈[−1,1]
{λT (t)b(x∗)u(t)}, t ∈ T−.

C. If σ(x∗(t)) = 0 then the maximum conditions (3.13) take the form

H(x∗, u∗, α∗, λ(t)) = max
α(t)∈[0,1]

λT (t)(α(t)f+(x
∗)+(1−α(t))f−(x∗))+ max

u(t)∈[−1,1]
λT (t)b(x∗)u(t), t ∈ T∗.

Let us summarize optimal conditions. We can rewrite relations (3.8),(3.10) in an equiv-
alent form as the following conditions. As a results, ones obtain the following theorem.

Theorem 12 (Optimality conditions for SOCP (3.3)). Let u∗(t), α∗(t) and x∗(t), t ∈ T be
the optimal control and trajectory of problem (3.3), where assuming control u∗(t) is piecewise

continuous. Then there exist λ(t), bounded variation, such that the measure
◦
λ is absolutely

continuous w.r.t. the measure dµ + dt; there exists a vector v, a number v0, a function
ϑ ∈ L1, and a measure µ such that condition (3.11) is fulfilled, and the adjoint system has
the form

dλ(t)

dt

dt
=


−λT (t)∂(f+(x∗)+b(x∗)u∗)

∂x , t ∈ T+,
−λT (t)∂(f−(x∗)+b(x∗)u∗)

∂x , t ∈ T−,
−λT (t)∂F (x∗,u∗,α∗)

∂x +
(
ϑ(t)± dµa

dt

)
∂σ(x∗(t))

∂x dt, t ∈ T∗,
(3.14)

dλ

dµs

dµs
= ±∂σ(x

∗(t))

∂x
, t ∈ T∗, (3.15)

λ(t+ 0) = λ(t− 0) + (µ(t− 0) + µ(t+ 0))
∂σ(x∗(t))

∂x
, t ∈ D ∩ T∗, (3.16)
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where ϑ(t) is a Lebesgue absolutely integrable function, with ϑ(t) = 0 if t ∈ T \ T∗, D is the
set of jumps of measure µδ,

dt
= means equality holds a.e. in the measure dt, and

λ(tf − 0) = −vT ∂r(x
∗(tf )

∂x
− v0

∂φ(x∗(tf )

∂x
− µ(tf )s(tf ),

and the optimal conditions take the following forms

ϑ(t) ≥ 0, if α∗(t) = 0, ϑ(t) ≤ 0, if α∗(t) = 1, t ∈ T∗, (3.17)
µ(t) ≥ 0, if α∗(t) = 0, µ(t) ≤ 0, if α∗(t) = 1, t ∈ T∗, (3.18)

λT (t)b(x∗(t))u∗(t) = max
u∈U0

{λT (t)b(x∗(t))u}, t ∈ T , (3.19)

λT (t) (f+(x
∗(t))− f−(x∗(t)))


= 0, if 0 < α∗(t) < 1,

≤ 0, if α∗(t) = 0,

≥ 0, if α∗(t) = 1,

t ∈ T∗, (3.20)

Furthermore, ones have

λT (τi − 0)F (x∗(τi − 0), u∗(τi − 0), α∗(τi − 0))

= λT (τi + 0)F (x∗(τi + 0), u∗(τi + 0), α∗(τi + 0)), i = 1, . . . , p, (3.21)

where τi, i = 1, . . . , p, be the minimum number of points such that:

0 = τ0 < τ1 < τ2 < . . . < τp < τp+1 = t∗,

int T∗ =
⋃

i∈N∗

(τi, τi+1), int T+ =
⋃

i∈N+

(τi, τi+1), int T− =
⋃

i∈N−

(τi, τi+1), (3.22)

N∗ ∪N− ∪N+ = {0, 1, . . . , p}.

Remark 16. There are no examples in literatures, see [133–135], where µ contains the
singular component. In case µ does not contain the singular component, (3.15) disappears.

Example 3.1. [81, Example 1 (c = 0)] Consider the optimal control problem

min
x,u

φ(x(2))

s.t. ẋ(t) =

{
f+(x(t)) + bu(t), if σ > 0,

f−(x(t)) + bu(t), if σ < 0,

|u(t)| ≤ 1, t ∈ [−0.5, 2],
x(−0.5) = x0, r(x(2)) = 0, xT0 = (19/32,−37/16,−3/4),

(3.23)

where φ(x(t)) := x1(t)− 2.5x2(t), r(x(t)) := x3(t)− 1, switching function σ(x(t)) = −x3(t),
t ∈ [−0.5, 2], and f+(·) =

(
x2 x3 + 5 0.5

)T , f−(·) =
(
x2 x3 0

)T , b =
(
0 0 1

)T .
Reformulate problem (3.23) by using Filippov’s rule and relaxation, one obtains

min
x,u,α

x1(2)− 2.5x2(2)

s.t. ẋ(t) = F (x(t), u(t), α(t)), t ∈ [−0.5, 2],
|u(t)| ≤ 1, 0 ≤ α(t) ≤ 1, t ∈ [−0.5, 2],
Gj(α, x) ≤ 0, j = 1, 2,
x(−0.5) = x0, x3(2) = 1, xT0 = (19/32,−37/16,−3/4),

(3.24)
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where G1(·) = α(t)x3(t), G2(·) = (α(t)− 1)x3(t), t ∈ [−0.5, 2], and

F (·) = αf+(·) + (1− α)f−(·) + bu =
(
x2 x3 + 5α u+ 0.5α

)T
.

It is easy to check that the mixed constraints Gj(·), j = 1, 2, are irregular when σ = 0. Then
the set of phase points of these mixed constraints is determined as

N (G) =
{
(x, u, α) ∈ R5 : x3 = 0

}
.

Consider the control u∗(·), α∗(·):

u∗(t) =


1, if t ∈ [−0.5, 0],
−0.5, if t ∈ [0, 1],

1, if t ∈ [1, 2],

α∗(t) =


1, if t ∈ [−0.5, 0],
1, if t ∈ [0, 1],

0, if t ∈ [1, 2].

(3.25)

The corresponding trajectory is denoted by x∗(t) = (x∗1(t), x
∗
2(t), x

∗
3(t)), t ∈ [−0.5, 2]. Then,

using the initial conditions, we have

ẋ3(t) = u+ 0.5α =


1.5, if t ∈ [−0.5, 0],
0, if t ∈ [0, 1],

1, if t ∈ [1, 2],

⇔ x∗3(t) =


1.5t, if t ∈ [−0.5, 0],
0, if t ∈ [0, 1],

t− 1, if t ∈ [1, 2],

here, D = [0, 1] is a switching interval of x3, see Fig 3.1.

Figure 3.1: Trajectory x∗3 (red) switches at t = 0, t = 1; control α∗ (blue) jumps at t = 1.

Let us show that the process (x∗, u∗, α∗) satisfies LMP in problem (3.23).
1. Consider the segment t ∈ [1, 2]. Boundary condition for solution to the adjoint system
(see (3.9)) has the form

λ(2) = −v0
∂φ(x∗(2))

∂x
− v ∂r(x

∗(2))

∂x
= (−v0, 2.5v0,−v)T , v0 ≥ 0, (3.26)

here s(2) = 0, i.e., there are no phase jumps at t = 2.
With v0 = 1, we have λ(2) = (−1, 2.5,−v)T . For t ∈ [1, 2], the adjoint system takes the form
λ̇T (t) = −(0, λ1(t), λ2(t))T . The adjoint solution with the boundary condition (3.26) is

λ1(t) = −1, λ2(t) = t+ 0.5, λ3(t) = −0.5(2− t)2 + 2.5(2− t)− v, t ∈ [1, 2],

λ(1 + 0) = (−1, 1.5, 2− v)T , λ(1− 0) = λ(1 + 0) + µs(1) = (−1, 1.5, 2− v + µ1)T .
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The optimality condition (see Theorem 12) and inequalities |u∗(t)| < 1, imply λ3(t) = 0,
t ∈ [0, 1]. Hence, λ3(1 − 0) = 0 holds true. Exploiting this equality and the equality
λT (1 − 0)ẋ(1 − 0) = λT (1 + 0)ẋ(1 + 0) (see [81, Eq.(20)]), ones get µ1 = v − 2, v = −5.5.
Here there is a jump in λ.
2. Consider the segment t ∈ [0, 1]. The adjoint system takes the form

λ̇(t) = (0,−λ1(t), 0)T , λ(1− 0) = (−1, 1.5, 0)T ,

so, it has the solution

λ1(t) = −1, λ2(t) = t+ 0.5, λ3(t) = 0, t ∈ [0, 1].

Consequently,

λ(0 + 0) = (−1, 0.5, 0)T , λ(0− 0) = λ(0 + 0) + µs(0) = (−1, 0.5, µ1)T .

The condition (see [81, Eq.(20)]) λT (0− 0)ẋ(0− 0) = λT (0 + 0)ẋ(0 + 0) implies µ1 = 0.
3. Consider the segment t ∈ [−0.5, 0]. Here the adjoint system takes the form λ̇T (t) =
−(0, λ1(t), λ2(t))T with boundary condition λ(0 − 0) = (−1, 0.5, 0)T , and hence it has the
solution

λ1(t) = −1, λ2(t) = t+ 0.5, λ3(t) = −t2/2− t/2, t ∈ [−0.5, 0].

Now let us check the optimality conditions of Theorem 12. Here we have

T∗ = {t ∈ [−0.5, 2] | σ(x∗(t)) = 0} = {t ∈ [−0.5, 2] | −x∗3(t) = 0} = [0, 1].

The normalization condition implies∫ 2

−0.5

ϑ(t)dt = 1− v0 − ∥v∥∥µ∥ = −5.5∥µ∥ = 0, t ∈ T∗,

so ϑ(t) ≤ 0 for all t ∈ T∗, i.e., condition (3.17) holds true.
Since µ1(t) = 0 ≤ 0, for all t ∈ T∗, hence condition (3.18) also holds true.
The left hand side and right hand side of condition (3.19) are respectively equal to

lhs = λTF (x∗, u∗, α∗) = (−1, t+ 0.5, λ3)
T (x∗2, x

∗
3 + 5α∗, u∗ + 0.5α∗)

= (−x∗2 + x∗3(t+ 0.5)) + 5α∗(t+ 0.5) + λ3(u
∗ + 0.5α∗), (3.27)

rhs = λT f−(x
∗) + max

α∈[0,1]
{λT (α(f+(x∗)− f−(x∗)))}+ max

u∈[−1,1]
{λT bu},

= (−x∗2 + x∗3(t+ 0.5)) + max
α∈[0,1]

{α(5(t+ 0.5) + 0.5λ3)}+ max
u∈[−1,1]

{λ3u}. (3.28)

By comparing (3.27) with (3.28), the optimality condition (3.19) holds true.
Moreover, condition (3.20) holds true, since

λ∗(t)T (f+(x
∗(t))− f−(x∗(t))) = (−1, t+ 0.5, 0)T (0, 5, 0.5) = 5(t+ 0.5) ≥ 0,∀t ∈ T∗.

Summing up, the local optimal control (3.25) satisfies the optimality conditions formulated
in Theorem 12.
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3.1.3 Discussion on Filippov’s Rule
This subsection deals with SOCP’s reformulation by using convexification, i.e., we apply
Filippov’s rule correctly. We consider the following OCP with discontinuous dynamics of
nonlinear form on the right hand side of the ODE constraint

min φ (x(tf ))

s.t. ẋ(t) =

{
f+ (x(t)) + b+(x(t))u(t), if σ(x(t)) > 0

f− (x(t)) + b−(x(t))u(t), if σ(x(t)) < 0

u(t) ∈ U def
= [ul, uu], t ∈ [t0, tf ], x(t0) = x0, r(x(tf )) ≥ 0.

(3.29)

Due to discontinuity, a classical solution of the ODE model may not exist. Then problem
(3.29) must be reformulated according to Filippov’s rule,

min φ (x(tf ))

s.t. ẋ(t) =


f+ (x(t)) + b+(x(t))u(t) =: rhs+, if σ(x(t)) > 0

f− (x(t)) + b−(x(t))u(t) =: rhs−, if σ(x(t)) < 0

α(t)rhs+ + (1− α(t)) rhs−, if σ(x(t)) = 0

u(t) ∈ U , t ∈ [t0, tf ], x(t0) = x0, r(x(tf )) ≥ 0,
α(t) ∈ [0, 1], t ∈ [t0, tf ].

(3.30)

In problem (3.30) the velocity set

U(x) := {v ∈ Rn : v = α (f+(·) + b+(·)u)+(1−α) (f−(·) + b−(·)u) , α ∈ [0, 1], u ∈ U}. (3.31)

Remind that Filippov’s rule works in the previous problem (3.1), but in problem (3.29)
it does not work correctly since ones can show that problem 3.30 does not have solution,
see Appendix A.1 for a numerical example with clear details and explanations. What is
the reason? Is Filippov’s rule incorrect? The answer is in the incorrect application of
Filippov’s rule due to the non-convexity of the set U(x) − (3.31). Hence, correct applying
Filippov’s rule is necessary. In particular, we replace the set U(x) by its “convex hull”
conv(U(x)).

Lemma 4. Let the set U(x) be defined by (3.31). Then conv(U(x)) = U∗(x), where

U∗(x) = {v ∈ Rn : v = αf++(1−α)f−+β1b++β2b−, α ∈ [0, 1], β1 ∈ T1, β2 ∈ T2}, (3.32)

where T1 := [αul, αuu], T2 := [(1− α)ul, (1− α)uu].

Proof. Let us first show that the set U∗(x) is convex. Indeed, let v̄ ∈ U∗(x) and ṽ ∈ U∗(x):

v̄ = ᾱf+(x) + (1− ᾱ)f−(x) + β̄1b+ + β̄2b−,

ṽ = α̃f+(x) + (1− α̃)f−(x) + β̃1b+ + β̃2b−,

where ᾱ ∈ [0, 1], ᾱul ≤ β̄1 ≤ ᾱuu, (1−ᾱ)ul ≤ β̄2 ≤ (1−ᾱ)uu, and α̃ ∈ [0, 1], α̃ul ≤ β̃1 ≤ α̃uu,
(1− α̃)ul ≤ β̃2 ≤ (1− α̃)uu. For µ ∈ [0, 1] consider the vector

v(µ) = µv̄ + (1− µ)ṽ
= (µᾱ+ (1− µ)α̃)f+(x) + (µ(1− ᾱ) + (1− µ)(1− α̃))f−(x)

+ (µβ̄1 + (1− µ)β̃1)b+ + (µβ̄2 + (1− µ)β̃2)b−. (3.33)
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Define α(µ) := µᾱ+ (1− µ)α̃, βj(µ) := µβ̄j + (1− µ)β̃j , j = 1, 2. Obviously, α(µ) ∈ [0, 1],

α(µ)ul = µᾱul + (1− µ)α̃ul ≤ β1(µ) ≤ µᾱuu + (1− µ)α̃uu = α(µ)uu,

µ(1− ᾱ)ul + (1− µ)(1− α̃)ul ≤ β2(µ) ≤ µ(1− ᾱ)uu + (1− µ)(1− α̃)uu.

These relations together with (3.33) imply

v(µ) = α(µ)f+(x) + (1− α(µ))f−(x) + β1(µ)b+ + β2(µ)b− ∈ U∗(x).

Hence, U∗(x) is convex.
Next, let us show that

U(x) ⊂ U∗(x). (3.34)

Consider v̄ ∈ U(x). Then for some ᾱ ∈ [0, 1] and ū ∈ [ul, uu] we have

v̄ = ᾱ(f+(x) + b+ū) + (1− ᾱ)(f−(x) + b−ū).

Denote α := ᾱ, β1 := ᾱū, β2 := (1− ᾱ)ū. By construction ones have

α ∈ [0, 1], αul ≤ β1 ≤ αuu, (1− α)ul ≤ β2 ≤ (1− α)uu,
v̄ = ᾱ(f+(x) + b+ū) + (1− ᾱ)(f−(x) + b−ū) = αf+(x) + (1− α)f−(x) + β1b+ + β2b−.

Therefore, v̄ ∈ U∗(x) and U(x) ⊂ U∗(x).
Now we will prove that

U∗(x) ⊂ conv(U(x)). (3.35)

Denote v(1)(x) := f+(x) + b+(x)ul, v(2)(x) := f+(x) + b+(x)uu, v(3)(x) := f−(x) + b−(x)ul,
v(4)(x) := f−(x) + b−(x)uu. Obviously, v(j)(x) ∈ U(x), j = 1, . . . , 4. Hence, the inclusion

Ū∗(x) := {v ∈ Rn : v =

4∑
j=1

µjv(j)(x), µj ≥ 0, j = 1, . . . , 4,

4∑
j=1

µj = 1} ⊂ conv(U(x))

holds true. We may rewrite the set Ū∗(x) as

Ū∗(x) := {v ∈ Rn : v = (µ1+µ2)f−(x)+(µ3+µ4)f+(x)+(µ1ul+µ2uu)b++(µ3ul+µ4uu)b−}.
(3.36)

Let ṽ ∈ U∗(x), i.e., there exists numbers α̃, β̃1, β̃2, such that

α̃ ∈ [0, 1], α̃ulβ1 ≤ α̃uu, (1− α̃)ulβ2 ≤ (1− α̃)uu, (3.37)

ṽ = α̃f+(x) + (1− α̃)f−(x) + β̃1b+ + β̃2b−. (3.38)

Define the numbers µ̃j , j = 1, . . . , 4, as a solution of the following system

µ̃1 + µ̃2 = α̃, µ̃3 + µ̃4 = 1− α̃, µ̃1ul + µ̃2uu = β̃1, µ̃3ul + µ̃4uu = β̃2. (3.39)

The system (3.39) has a solution

µ̃1 =
α̃uu − β̃1
uu − ul

, µ̃2 =
β̃1 − α̃ul
uu − ul

, µ̃3 =
(1− α̃)uu − β̃2

uu − ul
, µ̃4 =

β̃2 − (1− α̃)ul
uu − ul

. (3.40)
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Taking into account (3.37) it is easy to show that this solution (3.40) satisfies the relations

µ̃j ≥ 0, j = 1, . . . , 4,

4∑
j=1

µ̃j = 1. (3.41)

Combining (3.36), (3.38)-(3.41), one obtains

ṽ = α̃f+(x) + (1− α̃)f−(x) + β̃1b+ + β̃2b−

= (µ̃1 + µ̃2)f−(x) + (µ̃3 + µ̃4)f+(x) + (µ̃1ul + µ̃2uu)b+ + (µ̃3ul + µ̃4uu)b−,

hence ṽ ∈ conv(U(x)), i.e., the inclusion (3.35) holds true. The convexity of U∗(x) and the
inclusion (3.34) imply that conv(U(x)) = U∗(x).

Figure 3.2: For U = [−1, 1], b+ =
(
−1 0

)T , b− =
(
0 1

)T , f+ = f− = 0, the left figure
describes the set U(x), see Eq. (3.31), while the right one illustrates the correct application
of Filippov’s rule, where the polygon (both blue & red) is the set conv(U(x)), see Eq. (3.32).

By applying Filippov’s rule correctly for problem (3.30), we obtain the following problem

min φ (x(tf ))
s.t. ẋ(t) = F (x(t), α(t), β1(t), β2(t)),

x(t0) = x0, r(x(tf )) ≥ 0,
α(t)σ(x(t)) ≥ 0, (1− α(t))σ(x(t)) ≤ 0,
α(t)ul ≤ β1(t) ≤ α(t)uu, (1− α(t))ul ≤ β2(t) ≤ (1− α(t))uu,
α(t) ∈ [0, 1],

t ∈ [t0, tf ], (3.42)

therein we use the notation, where t ∈ [t0, tf ],

F (·) := α(t)f+(x(t)) + (1− α(t))f−(x(t)) + β1(t)b+(x(t)) + β2(t)b−(x(t)). (3.43)

Remark 17. In general, the discontinuity of the right hand side function may lead to the
non-existence of the solution of the ODE, so we must carefully apply Filippov’s rule, see
the problem formulation in the sense of (3.44) with further relaxed reformulation.
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3.1.4 Optimality Conditions for SOCP
Here we consider a more general SOCP as follows

min
x(·),u(·)

φ[x(·), u(·)]

s.t. ẋ(t) = f (x(t), u(t), sgn (σ(x(t)))) ,
0 ≤ r (x(tf )) ,
t ∈ T def

= [t0, tf ] .

(3.44)

therein, the dynamic process x : T → X is determined by a dynamical system with right hand
side function f : X ×U ×{−1, 0, 1} → Rnx , affected by continuously-valued bounded control
function u : T → U := [ul, uu]

nu on a time horizon T ⊂ R, such that an objective function
φ = m(x(tf )), is minimized. The right hand side function f is determined by the sign
structure of the scalar switching function σ : X → R. Point constraints r (x(t0), x(tf )) ≥ 0
with r : X × X → Rnr must be satisfied.
Exploiting the definition of the sign of σ(·), we can rewrite (3.44) as follows:

min
x(·),u(·)

m(x(tf ))

s.t. ẋ(t) =

{
f+ (x(t), u(t)) , if σ(x(t)) ≥ 0,

f− (x(t), u(t)) , if σ(x(t)) ≤ 0,

0 ≤ r (x(tf )) ,

t ∈ T . (3.45)

Note that the case σ(t̂, x(t̂)) = 0, t̂ ∈ T , is in principle contradictory. If t̂ is an isolated zero
of σ(x(t)), right-hand side is chosen to be either f+ or f−. If σ(x(t)) vanishes on an interval,
the right-hand side has yet to be determined appropriately. How to use Filippov’s rule in
this problem?
By reformulating (3.45) with Filippov’s rule, we obtain the equivalent problem

min
x(·),u(·),α(·)

m(x(tf ))

s.t. ẋ(t) = f̄(x(t), u(t), α(t)),
0 ≤ r (x(tf )) ,
0 ≤ α(t)σ(x(t)), (1− α(t))σ(x(t)) ≤ 0,
α(t) ∈ [0, 1],

t ∈ T , (3.46)

where f̄(·) := α(t)f+ (x(t), u(t)) + (1− α(t))f−(x(t), u(t)).
The velocity field in (3.46)

U(x) := {v ∈ Rnx : v = f̄(x, u, α), α ∈ [0, 1], u ∈ U} (3.47)

may be nonconvex, see Subsection 3.1.3. In order to to get an idea how to exploit Filippov’s
rule correctly, let use consider an instance as follows.

Example 3.2. Consider the following problem

min
x,u

φ (x(tf ))

s.t. ẋ(t) =

{
b+u(t), if σ(x(t)) > 0,

b−u(t), if σ(x(t)) < 0,

u(t) ∈ U = [ul, uu], x(t0) = x0, r(x(tf )) ≥ 0,

t ∈ T := [t0, tf ]. (3.48)
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Let uj ∈ conv(U), j = 1, 2, we have

αb+u1 + (1− α)b−u2 = αb+(γul + (1− γ)uu) + (1− α)b−(γul + (1− γ)uu)
= γ1b+ul + γ2b+uu + γ3b−ul + γ4b−uu,

where α ∈ [0, 1], γ ∈ [0, 1], and γ1 := αγ, γ2 := α(1−γ), γ3 := (1−α)γ, γ4 := (1−α)(1−γ).
Thus (αb+u1 + (1− α)b−u2) ∈ conv(U) since

∑4
j=1 γj = 1, γj ≥ 0.

The velocity field U(x) = {αb+u + (1 − α)b− | α ∈ [0, 1], u ∈ [ul, uu]} may be non-convex,
see also Fig. 3.2, resulting that problem (3.48) does not have solution (see Appendix A.1 for
an example). Hence, we relax the ODE in problem (3.48) as the following formulation

ẋ(t) =

{
b+(γ1ul + (1− γ1)uu), if σ(x(t)) > 0,

b−(γ2ul + (1− γ2)uu), if σ(x(t)) < 0,
t ∈ T , (3.49)

where γj ∈ [0, 1], j = 1, 2, are new controls, and apply Filippov’s rule to this ODE leads to

ẋ = αγ1b+ul + α(1− γ1)b+uu + (1− α)γ2b−ul + (1− α)(1− γ2)b−uu.

That is why, instead of (3.47), we use further relaxation, i.e., we replace U(x) by its
convex hull

Ũ(x) := {v ∈ Rnx : v =

ñ∑
j=1

(αγ+j f+(x, uj) + (1− α)γ−j f−(x, uj)), γ
+
j ≥ 0,

ñ∑
j=1

γ+j = 1, γ−j ≥ 0,

ñ∑
j=1

γ−j = 1, α ∈ [0, 1], uj ∈ U}. (3.50)

We here assume that we know such presentation uj/ñ, ñ < ∞, however it is difficult to
construct it. As a result, problem (3.46) is rewritten in the formulation as follows

min
x(·),u(·),α(·),γ(·)

m(x(tf ))

s.t. ẋ(t) = F (x(t), u(t), α(t), γ(t)),
0 ≤ r (x(tf )) ,
0 ≤ α(t)σ(x(t)), (1− α(t))σ(x(t)) ≤ 0,
uj(t) ∈ U , j = 1, 2, . . . , ñ,∑ñ

j=1 γj(t)
+ = 1, γ+j (t) ≥ 0, j = 1, 2, . . . , ñ,∑ñ

j=1 γ
−
j (t) = 1, γ−j (t) ≥ 0, j = 1, 2, . . . , ñ,

t ∈ T . (3.51)

where F (·) :=
∑ñ

j=1(α(t)γ
+
j (t)f+(x(t), uj(t)) + (1− α(t))γ−j (t)f−(x(t), uj(t))).

To state the optimality condition for problem (3.51), we consider the following:
Denote ũ+j := αγ+j ∈ R, ũ−j := (1 − α)γ−j ∈ R, j = 1, . . . , ñ. The velocity field of ODE in
problem (3.51) is convex. Analyze the maximum condition (3.13), which are now equivalent
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to the following LP problem

max
α,ũ+

j ,ũ−
j

{
ñ∑
j

ũ+j a
+
j +

ñ∑
j

ũ−j a
−
j }

s.t. 0 ≤ α ≤ 1, 0 ≤ ũ+j ≤ α, 0 ≤ ũ
−
j ≤ 1− α, j = 1, . . . , ñ, (3.52)

ñ∑
j=1

ũ+j = α,

ñ∑
j=1

ũ−j = 1− α,

where a+j := λT (t)f+(x, uj), a−j := λT (t)f−(x, uj), j = 1, . . . , ñ.
For the case α = 1, the maximum condition (3.52) implies ũ−j = 0, j = 1, . . . , ñ, and

ũ+k1
= α, ũ+j = 0, j ̸= k1, j, k1 ∈ {1, . . . , ñ}, where k1 := argmax

j
{λT (t)f+(x, uj)}. (3.53)

For α = 0, from the maximum condition (3.52) one gets ũ+j = 0, j = 1, . . . , ñ, and

ũ−k2
= 1−α, ũ−j = 0, j ̸= k2, j, k2 ∈ {1, . . . , ñ},where k2 := argmax

j
{λT (t)f−(x, uj)}. (3.54)

For the remain case 0 < α < 1, the maximum condition (3.52) implies

ũ+k1
= α, ũ+j = 0, j ̸= k1, j, k1 ∈ {1, . . . , ñ},

ũ−k2
= 1− α, ũ−j = 0, j ̸= k2, j, k2 ∈ {1, . . . , ñ}, (3.55)

where k1 and k2 are given in (3.53) and (3.54), respectively.

Remark 18. From the optimality conditions of problem (3.51), we get the following rule
component for control γ:

γ+k1
= 1, γ+j = 0, j ̸= k1, j, k1 ∈ {1, . . . , ñ}, if 0 < α(t) ≤ 1,

γ+j = 0, j ∈ {1, . . . , ñ}, if α(t) = 0, (3.56)

γ−k2
= 1, γ−j = 0, j ̸= k2, j, k2 ∈ {1, . . . , ñ}, if 0 ≤ α(t) < 1,

γ−j = 0, j ∈ {1, . . . , ñ}, if α(t) = 1, (3.57)

where k1, k2 are respectively determined by (3.53), (3.54).

Lemma 5. Let ({u∗j}ñj=1, α
∗, γ∗) be a control solution of problem (3.51), then the correspond-

ing control of problem (3.46) is determined by (u0, α∗), where u0 =
∑ñ

j=1(γ
+
j

∗
+ γ−j

∗
)u∗j .

Proof. Similar to the proof of Proposition 1.

Lemma 6. For any absolutely continuous solution x∗(t), t ∈ T , of problem (3.46), there
exists a sequence of absolutely continuous solutions xk(t), t ∈ T , of problem (3.51), k =
1, 2, . . ., such that limk→∞ maxt∈T ∥x∗(t)− xk(t)∥ = 0.
The optimal trajectory x0(t), t ∈ T , of the original problem (3.44) satisfies ODE of problem
(3.51), and ones have,

lim
k→∞

max
t∈T
∥x0(t)− xk(t)∥ = 0.

48



Chapter 3. Indirect Approach for SwOCP: Maximum Principle

Proof. The proof is done by exploiting the construction in [82, Section 3].

Remark 19. Ũ(x) is generally have no closed form, even numerically very difficult to com-
pute. However if control enters linearly in right hand side, and U is convex polytope, then
Ũ(x) can be described explicitly. Assume

f+(x, u) = A+(x) + b+(x)u, f−(x, u) = A+(x) + b−(x)u, (3.58)

and U = [ul, uu]
nu . Then uj , j = 1, . . . , ñ, are vertices of U , and

conv(αf+ + (1− α)f−) =
ñ∑

j=1

(αγ+j f+(x, uj) + (1− α)γ−j f−(x, uj))

=

ñ∑
j=1

(αγ+j (A+(x) + b+(x)uj) + (1− α)γ−j (A−(x) + b−(x)uj))

= α(A+(x)−A−(x)) + (b+(x)a+ + b−(x)a−) ,

with controls α ∈ [0, 1], a+ := α
∑ñ

j=1 γ
+
j uj ∈ αU , and a− := (1−α)

∑ñ
j=1 γ

−
j uj ∈ (1−α)U .

Furthermore, from the optimality conditions for problem (3.52), one gets

λT (A+ −A−) + max
u∈U
{λT b+u} −max

u∈U
{λT b−u}


≥ 0, if α = 1,

≤ 0, if α = 0,

= 0, if α ∈ (0, 1).

(3.59)

3.2 Optimality conditions for SwOCP

In this section, we propose a solution approach for SwOCP (with integer controls) exploiting
Filippov’s rule reformulation, relaxation and LMP.

3.2.1 Reformulation

Consider a general SwOCP as follows

min
x(·),u(·),w(·)

φ[x(·), u(·), w(·)]

s.t. ẋ(t) = f (x(t), u(t), w(t), sgn (σ(x(t)))) ,
0 ≤ r (x(t0), x(tf )) ,
w(t) ∈ W def

= {w1, . . . , wnw} , t ∈ T
def
= [t0, tf ] .

(3.60)

therein, the dynamic process x : T → X is determined by a dynamical system with right hand
side function f : X × U ×W × {−1, 0, 1} → Rnx , affected by continuously-valued bounded
control function u : T → U (which is assumed entering linearly into the right hand side of
the ODE of (3.60)) and a discretely-valued control function w : T → W on a time horizon
T ⊂ R, such that an objective function φ = m(x(tf )) +

∫ tf
t0
l(x(t), u(t))dt, is minimized.

The right hand side function f is determined by the sign structure of the scalar switching
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function σ : X → R. Point constraints r : X × X → Rnr must be satisfied.
Since the definition of the sign of σ(·), we can rewrite (3.60) as follows:

min
x(·),u(·),w(·)

m(x(tf )) +
∫ tf
t0
l(x(t), u(t))dt

s.t. ẋ(t) =

{
f+ (x(t), u(t), w(t)) , if σ(x(t)) ≥ 0,

f− (x(t), u(t), w(t)) , if σ(x(t)) ≤ 0,

0 ≤ r (x(t0), x(tf )) ,
w(t) ∈ W,

t ∈ T . (3.61)

Remind that in the case σ(t̂, x(t̂)) = 0, t̂ ∈ T , if t̂ is an isolated zero of σ(x(t)), right-hand
side is chosen to be either f+ or f−, and if σ(x(t)) vanishes on an interval, the right-hand
side has yet to be determined appropriately.
By exploiting the POC, the ODE of problem (3.61) is rewritten as follows

ẋ(t) =

{∑
w∈W βw(t)f+ (x(t), u(t), w) , if σ(x(t)) ≥ 0,∑
w∈W βw(t)f− (x(t), u(t), w) , if σ(x(t)) ≤ 0,

, t ∈ T , (3.62)

where
∑

w∈W βw(t) = 1, βw(t) ∈ {0, 1}.
We exploit further relaxations for (3.62), i.e. we use Filippov’s rule correctly, where the
integer controls βw, w ∈ W, are treated by the following relaxed formulation

ẋ(t) =
∑
w∈W

αw(t)

ñ∑
j=1

(ασ(t)α
+
j (t)f+ (x(t), uj(t), w) + (1− ασ(t))α

−
j (t)f− (x(t), uj(t), w)),

ñ∑
j=1

α+
j (t) = 1,

ñ∑
j=1

α−
j (t) = 1, α+

j (t) ≥ 0, α−
j (t) ≥ 0, j = 1, 2, . . . , ñ,

∑
w∈W

αw(t) = 1, αw : T → [0, 1], w ∈ W, uj(t) ∈ U , j = 1, 2, . . . , ñ,

where ñ <∞. Then, SwOCP (3.61) is reformulated as follows

min
x(·),u(·),α(·)

m (x(tf )) +
∫ tf
t0
l(x(t), u(t))dt

s.t. ẋ(t) = F (x(t), u(t), α(t)),
0 ≤ r (x(t0), x(tf )) ,
0 ≤ ασ(t)σ(x(t)), (1− ασ(t))σ(x(t)) ≤ 0,
0 ≤ ασ(t) ≤ 1,

∑
w∈W αw(t) = 1, 0 ≤ αw(t) ≤ 1, w ∈ W,∑ñ

j=1 α
l
j(t) = 1, αl

j(t) ≥ 0, l = + ∨ −, j = 1, 2, . . . , ñ,

t ∈ T , (3.63)

where uj(t) ∈ U , j = 1, 2, . . . , ñ, and

F (·) :=
∑
w∈W

αw(t)

ñ∑
j=1

(ασ(t)α
+
j (t)f+(x(t), uj(t), w)+(1−ασ(t))α

−
j (t)f−(x(t), uj(t), w)).

(3.64)
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Remark 20. • Note that the convexity of velocity field of (3.63) is guaranteed similarly
to the previous sections, see Subsection 3.1.3 and Subsection 3.1.4.

• Here we distinguish the simple case with a scalar switching function σ. Ones can
generate the general cases by re-noting σ1 =: σ, so σj = 0 for j = 2, . . . , n, where n is
the number of switching functions. Readers can find more details about this issue in
Chapter 5 (see Section 5.1) and Chapter 6 (see Section 6.2 and Section 6.3).

3.2.2 Local Maximum Principle
Denote

V̄(x) := {α ∈ [0, 1]2ñ+nw+1 : ασσ ≥ 0, (1− ασ)σ ≤ 0,
∑
w∈W

αw = 1,

ñ∑
j=1

αl
j = 1}, (3.65)

V̄ (x) :=
{
(u, α) : u ∈ U , α ∈ V̄(x)

}
, (3.66)

where l = + ∨ −, and ñ < ∞. Analyzing similarly as in Subsection 3.1.2, ones can write
down the LMP for problem (3.63) as follows.

Theorem 13 (Optimality conditions for SwOCP (3.63)). Let u∗(t), α∗(t) and x∗(t), t ∈ T
be the optimal control and trajectory of problem (3.63), where assuming control u∗(t) is
piecewise continuous and F is given by (3.64). Then there exists a vector δ, vectors vtf , vt0 ,
a number v0, a function ϑ ∈ L1, and a measure µ such that normalization conditions

v0 + ∥vt0∥+
∥∥vtf∥∥+ ∥δ∥+ ∥µ∥+ ∫

T
ϑ(t)dt = 1,

are fulfilled, and the adjoint system has the form

dλ(t)

dt

dt
=


−λT (t)

∑
w∈W

α∗
w

ñ∑
j=1

α+
j

∗ ∂f+(x∗,u∗
j ,w

∗)

∂x + δT
ñ∑

j=1

α+
j

∗ ∂l(x∗,u∗
j )

∂x , t ∈ T+,

−λT (t)
∑

w∈W
α∗
w

ñ∑
j=1

α−
j

∗ ∂f−(x∗,u∗
j ,w

∗)

∂x + δT
ñ∑

j=1

α−
j

∗ ∂l(x∗,u∗
j )

∂x , t ∈ T−,

−λT (t)∂F (x∗,u∗,α∗)
∂x + δT ∂l(x∗,u∗)

∂x +
(
ϑ(t)± dµa

dt

)
∂σ(x∗(t))

∂x dt, t ∈ T∗,

dλ

dµs

dµs
= ±∂σ(x

∗(t))

∂x
, t ∈ T∗, (3.67)

λ(t+ 0) = λ(t− 0) + (µ(t− 0) + µ(t+ 0))
∂σ(x∗(t))

∂x
, t ∈ D ∩ T∗,

where T+ := {t ∈ T | σ(x∗(t)) > 0}, T− := {t ∈ T | σ(x∗(t)) < 0}, T∗ := {t ∈ T | σ(x∗(t)) =
0}, ϑ(t) is a Lebesgue absolutely integrable function, D is the set of jumps of measure µδ,

dt
=

means equality holds a.e. in the measure dt, and

λ(tf − 0) = −vTtf
∂r(·, x∗(tf ))

∂x
− v0

∂m(x∗(tf ))

∂x
− µ(tf )

∂σ(x∗(tf ))

∂x
,

λ(t0 + 0) = −vTt0
∂r(x∗(t0), ·)

∂x
− µ(t0)

∂σ(x∗(t0))

∂x
,
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and the optimal conditions take the following forms

ϑ(t) ≥ 0, if α∗
σ(t) = 0, ϑ(t) ≤ 0, if α∗

σ(t) = 1, t ∈ T∗, j = 1, . . . , ñ, (3.68)
µ(t) ≥ 0, if α∗

σ(t) = 0, µ(t) ≤ 0, if α∗
σ(t) = 1, t ∈ T∗, j = 1, . . . , ñ, (3.69)

λT (t)
∑
w∈W

α∗
w

ñ∑
j=1

(α∗
σα

+
j

∗
f+
(
x∗, u∗j (t), w

∗)+ (1− α∗
σ)α

−
j

∗
f−
(
x∗, u∗j (t), w

∗)) (3.70)

= max
(u,α)∈V̄

{λT (t)
∑
w∈W

αw

ñ∑
j=1

(ασα
+
j f+ (x∗, uj , w

∗) + (1− ασ)α
−
j f− (x∗, uj , w

∗))}, t ∈ T ,

α+∗
k1

= 1, α+∗
j = 0, j ̸= k1, j, k1 ∈ {1, . . . , ñ}, if 0 < ασ(t) ≤ 1,

α+∗
j = 0, j ∈ {1, . . . , ñ}, if ασ(t) = 0,

α−∗
k2

= 1, α−∗
= 0, j ̸= k2, j, k2 ∈ {1, . . . , ñ}, if 0 ≤ ασ(t) < 1, (3.71)

α−∗
j = 0, j ∈ {1, . . . , ñ}, if ασ(t) = 1,

λT (t)

ñ∑
j=1

(α+
j

∗
(t)f+(∗j)− α−

j

∗
(t)f−(∗j))


= 0, if 0 < α∗

σ(t) < 1,

≤ 0, if α∗
σ(t) = 0,

≥ 0, if α∗
σ(t) = 1,

t ∈ T∗, (3.72)

where k1 = argmax
j
{λT (t)f+(x, uj , w)}, k2 = argmax

j
{λT (t)f−(x, uj , w)}, and f+(∗j) :=

f+(x
∗(t), u∗j (t), w

∗), f−(∗j) := f−(x
∗(t), u∗j (t), w

∗).
Furthermore, ones have

λT (τi − 0)F (x∗(τi − 0), u∗(τi − 0), α∗(τi − 0))

= λT (τi + 0)F (x∗(τi + 0), u∗(τi + 0), α∗(τi + 0)), i = 1, . . . , p,

where τi, i = 1, . . . , p, be the minimum number of points satisfy condition (3.22).

Remark 21. Note that we can rewrite the right hand side of the optimality condition (3.70)
as follows

max
αw

{
∑
w∈W

αw( max
ασ,α

+
j ,α−

j

λT (t)

ñ∑
j=1

(ασα
+
j f+ (x∗, uj , w

∗) + (1− ασ)α
−
j f− (x∗, uj , w

∗)))}

which returns the maximum value of the augmented Hamiltonian H̃ for each w. This is
similar to the idea of Competing Hamiltonian Approach, see Appendix A.3.

3.3 Numerical Examples with LMP for Subway Problem

We consider a problem about Subway Optimization which goes back to work of [17, 19–21]
for the city of New York. The aim is to minimize the energy used for a subway ride from one
station to another, taking into account boundary conditions and a restriction on the time.
The following contribution is based on our conference paper [121].
One can formulate this problem as constrained optimal control problem of the following form
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min
x,w,T

∫ T

0

L(x(t), w(t))dt (3.73)

subject to an ODE system

ẋ(t) = f(x(t), w(t)), t ∈ [t0, T ] (3.74)

path constraints

0 ≤ g(x(t)), t ∈ [t0, T ] (3.75)

interior point constraints

0 ≤ rieq(x(t0), x(t1), . . . , x(T ), T ), ti ∈ [t0, T ], req(x(t0), x(t1), . . . , x(T ), T ) = 0, (3.76)

and binary admissibility of w(·)

w(t) ∈ {1, 2, 3, 4}. (3.77)

The terminal time T denotes the time of arrival of a subway train in the next station.
The states x0(·) and x1(·) describe distance from starting point and velocity of the train,
respectively. The train can be operated in one of four different models

w(t) =


1 Series
2 Parallel
3 Coasting
4 Braking.

(3.78)

that influences the acceleration and the deceleration of the train and therewith the energy
consumption, which is to be minimized and given by the Lagrange term

L(x(t), 1) =


ep1 for x1(t) ≤ v1
ep2 for v1 < x1(t) ≤ v2
e
∑5

i=0 ci(1)
(

1
10γ x1(t)

)−i for x1(t) > v2

(3.79a)

L(x(t), 2) =


0 for x1(t) ≤ v2
ep2 for v2 < x1(t) ≤ v3
e
∑5

i=0 ci(2)
(

1
10γ x1(t)

)−i for x1(t) > v3

(3.79b)

L(x(t), 3) = 0, (3.79c)
L(x(t), 4) = 0. (3.79d)

In the considered problem, the right hand side function f(·) is dependent on the model w(·)
and on the state variable velocity x1(·), but not on distance. For all t ∈ [0, T ], we have

ẋ0(t) = x1(t) (3.80)
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For operation in series mode, w(t) = 1, we have

ẋ1(t) = f1(x, 1) =


f1A1 (x) for x1(t) ≤ v1
f1B1 (x) for v1 < x1(t) ≤ v2
f1C1 (x) for x1(t) > v2

(3.81)

where f1A1 = gea1

Weff
, f1B1 = gea2

Weff
, f1C1 = g(eT (x1(t),1)−R(x1(t)))

Weff
.

By using Filippov’s rule, we can rewrite (3.81) as follows

ẋ1(t) =
∑
j

β1j(t)f
1j
1 (x(t)) ,

∑
j

β2j(t) = 1, β2j(t) ∈ [0, 1], j = A,B,C, (3.82)

with the additional mixed state-control constraints

β1AG1A ≤ 0, β1BG1A ≥ −ε, β1BG1B ≤ 0, β1CG1B ≥ −ε, (3.83)

where G1A(t, x(t)) := x1(t)− v1, G1B(t, x(t)) := x1(t)− v2, and ε > 0 sufficient small, which
is needed to ensure the regularity of the mixed constraints.
For operation in parallel, w(t) = 2, we have

ẋ1(t) = f1(x, 2) =


f2A1 (x) for x1(t) ≤ v2
f2B1 (x) for v2 < x1(t) ≤ v3
f2C1 (x) for x1(t) > v3

(3.84)

where f2A1 = 0, f2B1 = gea3

Weff
, f2C1 = g(eT (x1(t),2)−R(x1(t)))

Weff
.

By using Filippov’s rule, and since f2A1 = 0, we can similarly rewrite (3.84) as follows

ẋ1(t) =
∑
j

β2j(t)f
2j
1 (x(t)) ,

∑
j

β2j(t) = 1, β2j(t) ∈ [0, 1], j = B,C, (3.85)

with the additional mixed constraints

β2BG2B ≥ −ε, β2BG1B ≤ 0, β2CG2B ≥ −ε, (3.86)

where G2B(t, x(t)) := x1(t)− v3, and ε > 0 sufficient small.
For coasting, w(t) = 3, we have

ẋ1(t) = f1(x, 3) = −
gR(x1(t))

Weff
− C,

and for braking, w(t) = 4, we have

ẋ1(t) = f1(x, 4) = −u(t), u(t) ∈ [umin, umax].

The braking deceleration u(t) can be varied between some given natural force umin as present
in coasting and a given limit umax representing a maximum braking consistent with passenger
comfort. It can be shown easily that for the problem at hand only maximal braking can be
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optimal, thus, without loss of generality, we fix u(t) to umax.
The occurring forces are given by

R(x1(t)) = c(nwag)aγ
2x1(t)

2 +
bW

2000
γx1(t) +

1.3

2000
W + 116,

T (x1(t), 1) =

5∑
i=0

bi(1)

(
1

10
γx1(t)− 0.3

)−i

,

T (x1(t), 2) =

5∑
i=0

bi(2)

(
1

10
γx1(t)− 1

)−i

.

Path constraints for subway trains typically are velocity limits

x1(t) ≤ vmax, t ∈ [tca, tce]

where the time interval may be implicitly characterized to cover a certain section of the track.
The interior point equality constraints req(·) are the initial and terminal constraints on the
state trajectory and constraints to characterize intermediate stops at stations of a line

x(0) = (0, 0)T , x(ti) = (Si, 0)
T ti ∈ [0, T ], x(T ) = (S, 0).

The interior point inequality constraints rieq(·) include a maximal driving time Tmax to get
from x(0) = (0, 0)T to x(T ) = (S, 0)T ,

T ≤ Tmax. (3.87)

In the equations above the parameters e (percentage of working motors – a peculiarity
of the New York subway), p1, p2, p3, bi(w), ci(w), γ, g, a1, a2, a3, Weff , C, c, nwag, b,W ,
umax, T

max, v1, v2, and v3 are fixed. Values for these parameters are given in the appendix of
[111, Appendix C] and in the following description of the applications treated in this section.

The previous approach, see [17, 19–21] and [111] was used to treat several station-to-
station rides for different station spacings, weight, travel time, etc. We use their ideas, but
with different formula of the solution approach. Here we show results for a subway problem
with 10 wagons (nwag = 10), a medium loaded train (W = 78000 lbs), for a local run
(S = 2112 ft), a transit time Tmax = 65 s that is about 20% longer than the fastest possible
and with all engines working (e = 1.0).

By reformulating the problem with Filippov’s rule, we obtain the equivalent one

min
x,w,α

∫ T

0
L(x(t), w)dt

s.t. ẋ0(t) = x1(t), ẋ1(t) =
4∑

i=1

αi(t)f1(x(t), i), t ∈ [0, T ],∑4
i=1 αi(t) = 1, α(t) ∈ [0, 1]4, t ∈ [0, T ], x(0) = (0, 0)T , x(T ) = (S, 0)T ,

(3.88)

where w ∈ W = {1, 2, 3, 4}, S = 2112 ft, and T ≤ Tmax = 65, and

L(x(t), w) := α1(t)L(x(t), 1) + α2(t)L(x(t), 2), (3.89)

where L(x(t), 1) = β1Aep1 + β1Bep2 + β1Ce
∑5

i=0 ci(1)(
1
10γx1(t))

−i, L(x(t), 2) = β2Bep2 +

β2Ce
∑5

i=0 ci(1)(
1
10γx1(t))

−i.
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Exploiting the reformulation of f1(x,w) from (3.82) to (3.85), we finally can rewrite (3.88)
in more details, which includes mixed state-control constraints, as follows

min
x,w,α,β

∫ T

0
L(x(t), w)dt

s.t. ẋ0(t) = x1(t),

ẋ1(t) = α1(t)
∑

j β1j(t)f
1j
1 (x(t), umax, 1)− α3(t)

(
gR(x1(t))

Weff
+ C

)
+α2(t)

∑
k β2k(t)f

2k
1 (x(t), umax, 2)− α4(t)umax,

β1AG1A ≤ 0, β1BG1A ≥ −ε, β1BG1B ≤ 0, β1CG1B ≥ −ε,
β2BG2B ≥ −ε, β2BG1B ≤ 0, β2CG2B ≥ −ε,
x(0) = (0, 0)T , x(T ) = (S, 0)T ,

α ∈ [0, 1]4,
∑4

i=1 αi(t) = 1, ∀t ∈ [0, T ],∑
j β1j(t) = 1, β1j(t) ∈ [0, 1], j = A,B,C,∑
k β2k(t) = 1, β2k(t) ∈ [0, 1], k = B,C,

(3.90)

where G1A(t, x(t)) = x1(t) − v1, G1B(t, x(t)) = x1(t) − v2, G2B(t, x(t)) = x1(t) − v3, and
L(x(t), w) is given by (3.89).
We will solve (3.90) by using Theorem 9. We start by assuming that (x∗(t), w∗(t), α∗(t), β∗(t))
is a weak minimum of (3.90) and denote

c1 := β1AG1A = β1A (x1 − v1) ≤ 0, c2 := β1BG1B = β1B (x1 − v2) ≤ 0,

c3 := β2BG1B = β2B (x1 − v2) ≤ 0, c4 := −β1BG1A − ε ≤ 0,

c5 := −β1CG1B − ε ≤ 0, c6 := −β2BG2B − ε ≤ 0,

c7 = −β2CG2B − ε = −β2C(x1 − v3)− ε ≤ 0.

Since the set of phase points

N = {(x,w, α, β) | x1 − vj = 0,∀j = 1, 2, 3} = ∅,

the mixed constraints are regular, i.e., the assumption [45, RMC] is satisfied.
We define some needed functions as below.

(i) Augmented Pontryagin function (extended Pontryagin function)

H̄(x,w, α, β) = λ(t)TF0(x(t), α(t), β(t)) + δL(x(t), w) +

7∑
j=1

µjcj ,

where µj ≥ 0, j = 1, . . . , 7, and F0(x, α, β) is the right-hand-side of ODE of (3.90).

(ii) Endpoint Lagrange function

LL(x0, xT ) = νT
(
x0(0) x0(T )− S
x1(0) x1(T )

)
Subsequently, from the Theorem (9), there exists a tuple of multipliers (λ,δ,µ,ν) satisfying
the properties λ : [t0, tf ] → IRn is a Lipschitz continuous function, µj : [t0, tf ] → R+,
j = 1, . . . , 7, are measurable bounded functions, δ > 0, and ν > 0 is a vector; and such that
the conditions of the local minimum principle (9) hold true.
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(a) the non-negativity conditions: ν ≥ 0, δ ≥ 0, µj ≥ 0, j = 1, . . . , 7,

(b) the nontrivial condition: |ν|+ |δ|+
∑7

j=1

∫ tf
t0
µj(t)dt > 0,

(c) the complementary slackness conditions: νT
(
x0(0) x0(T )− S
x1(0) x1(T )

)
= 0,

(d) the point-wise complementary slackness conditions: µi(t)ci(x
∗(t), β∗(·)) = 0 a.e. on

[0, T ], i = 1, . . . , 7,

(e) the adjoint equation λ̇(t) = −∂H̄
∂x (x

∗(t), w∗(t), α∗(t), β∗(t)),

(f) the transversality conditions: λ(0) = −∂LL

∂x0
(x∗(0), x∗(T )), λ(T ) = ∂LL

∂xT
(x∗(0), x∗(T )),

(g) the stationarity condition of the extended Pontryagin function w.r.t. the control

∂H̄
∂w

(x∗, w∗, α∗, β∗) = 0,
∂H̄
∂α

(x∗, w∗, α∗, β∗) = 0,
∂H̄
∂β

(x∗, w∗, α∗, β∗) = 0 a.e. on [0, T ].

Before using the above (a) - (g) conditions, we calculate some needed derivatives.

∂L(x(t), k)

∂x1
=

{
0 x1 ≤ vk+1

e
∑5

i=1
−iγ
10 ci(k)

(
1
10γx1(t)

)−i−1
x1 > vk+1

, k = 1, 2, (3.91)

∂T (x1(t), 1)

∂x1
=

5∑
i=1

−iγ
10

bi(1)

(
1

10
γx1(t)− 0.3

)−i−1

, (3.92)

∂T (x1(t), 2)

∂x1
=

5∑
i=1

−iγ
10

bi(2)

(
1

10
γx1(t)− 1

)−i−1

, (3.93)

∂R(x1(t))

∂x1
= 2c(nwag)aγ

2x1(t) +
bW

2000
γ, (3.94)

and

∂H̄
∂α

=


λ1(t)

∑
j β1j(t)f

1j
1 + µg

1(w − 1)

λ1(t)
∑

k β1k(t)f
1k
1 + µg

2(w − 2)

−λ1(t)
(

gR(x1(t))
Weff

+ C
)
+ µg

3(w − 3)

−λ1(t)umax + µg
4(w − 4)

 ,
∂H̄
∂β

=


λ1(t)α1(t)f

1A
1 + µ1 (x1 − v1)

λ1(t)α1(t)f
1B
1 + µ2 (x1 − v2)

λ1(t)α1(t)f
1C
1

λ1(t)α2(t)f
2B
1 + µ3 (x1 − v2)

λ1(t)α2(t)f
2C
1


∂H̄
∂x

=

(
0

λ0 + λ1

(
α1β1C

∂f1C
1

∂x1
+ α2β2C

∂f2C
1

∂x1
− α3

g
Weff

∂R(x1)
∂x1

)
+ δ ∂L(x,w)

∂x1

)
where ∂R(x1(t))

∂x1
is calculated in (3.94), and

∂f1C1
∂x1

=
g

Weff

(
eγ

10

5∑
i=0

−ibi(1)
( γ
10
x1 − 0.3

)−i−1

− 2c(nwag)aγ
2x1 −

bWγ

2000

)
,

∂f2C1
∂x1

=
g

Weff

(
eγ

10

5∑
i=1

−ibi(2)
( γ
10
x1 − 1

)−i−1

− 2c(nwag)aγ
2x1 −

bWγ

2000

)
,
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∂L(x(t), k)

∂x1
= βkC

eγ

10

5∑
i=1

−ici(k)
( γ
10
x1(t)

)−i−1

, k = 1, 2.

The adjoint equation helps us imply

λ0(t) = constant, (3.95)

λ̇1(t) = −λ1(t)
∑

(λ, ·)− δ ∂L(x(t), k)
∂x1

− λ0(t), (3.96)

where
∑

(λ, ·) := α1(t)β1C
∂f1C

1

∂x1
+ α2(t)β2C

∂f2C
1

∂x1
− α3(t)

g
Weff

∂R(x1(t))
∂x1

.
Denote H̄ := H̄(x(t), w(t), α(t), β(t)), the maximality condition gets

H̄ = min
0≤α,β≤1

{λ(t)TF0(x(t), α, β)+ δL(x,w)+

4∑
j=1

µg
jgj(α,w)+

7∑
j=1

µjcj(x1(t), β)}. (3.97)

The minimum value of (3.97) is directly dependent on the ranges which the value of x1(·) is
belonged. We obtain several cases as follows.
i. If x1(t) ≤ v1 then β1A = β2B = 1, since f1A1 < f1B1 . Hence we have β1B = β1C = β2C = 0.
Together with 0 < f1A1 < f2B1 , we imply α1 = 1, and α2 = 0. Therefore, we lastly obtain
α3 = α4 = 0.
In conclusion, one has α =

(
1 0 0 0

)T , and β1 =
(
1 0 0

)T , β2 =
(
1 0

)
, where

x1(t) ≤ v1.
ii. If v1 < x1(t) ≤ v2 then β1A = 0, and β1B = β2B = 1. Hence β1C = β2C = 0. Together
with 0 < f1B1 < f2B1 , again, we obtain α1 = 1, and α2 = 0. Therefore, α3 = α4 = 0.
In conclusion, α =

(
1 0 0 0

)T , β1 =
(
0 1 0

)T , β2 =
(
1 0

)T , where v1 < x1(t) ≤ v2.
iii. If x1 > v2 then β1A = β1B = β2B = 0. Hence β1 =

(
0 0 1

)T , and β2 =
(
0 1

)T . By
comparing T (x1(t), 1) with T (x1(t), 2), i.e., f1C1 with f2C1 , we can imply 5 following cases by
using four “switch points” of f1C1 , f2C1 .

1. If v2 < x1 ≤ 8.6572 then 0 < f1C1 < f2C1 . Hence α1 = 1, α2 = 0, then α3 = α4 = 0.
Therefore α =

(
1 0 0 0

)T , where v2 < x1 ≤ 8.6572.

2. If 8.6572 < x1 ≤ 25.6452 then f1C1 > 0, f2C1 < 0. Hence α1 = 0, α2 = 1, so
α3 = α4 = 0. Thus α =

(
0 1 0 0

)T , where 8.6572 < x1 ≤ 25.6452.

3. If 25.6452 < x1 ≤ 26.8579 then f1C1 < 0, and f2C1 > 0. Hence, α1 = 1, and α2 = 0, so
α3 = α4 = 0. Therefore α =

(
1 0 0 0

)T , where 25.6452 < x1 ≤ 26.8579.

4. If 26.8579 > x1 ≥ 23.5201 then f1C1 > 0, f2C1 > 0. Hence α1 = α2 = 0. Since
umax >

gR(x1(t))
Weff

, where x1 ∈ [23.5201, 26.8579), we obtain α3 = 1, and α4 = 0.

Therefore α =
(
0 0 1 0

)T , where 26.8579 > x1 ≥ 23.5201.

5. If 23.5201 > x1 then f1C1 > 0, f2C1 > 0. Hence α1 = α2 = 0. Since umax <
gR(x1(t))

Weff
,

where x1 ∈ (0, 23.5201), we imply α3 = 0, and α4 = 1.
Therefore α =

(
0 0 0 1

)T , where 23.5201 > x1.

Finally, we obtain the optimal controls with the switched points, see Tab. 3.1, which are
confirmed by solving this problem by our direct approach, see Subsection 4.4.1.
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Table 3.1: Summary of result of controls corresponding to the velocity x1(t).

x1(t) [mph] α w β1 β2
0.0 (1, 0, 0, 0) 1 (1, 0, 0) (1, 0)

v1 = 0.979474 (1, 0, 0, 0) 1 (1, 0, 0) (1, 0)
v2 = 6.73211 (1, 0, 0, 0) 1 (0, 1, 0) (1, 0)

8.6572 (1, 0, 0, 0) 1 (0, 0, 1) (0, 1)
25.6452 (0, 1, 0, 0) 2 (0, 0, 1) (0, 1)
26.8579 (1, 0, 0, 0) 1 (0, 0, 1) (0, 1)
23.5201 (0, 0, 1, 0) 3 (0, 0, 1) (0, 1)
0.0 (0, 0, 0, 1) 4 (0, 0, 1) (0, 1)
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Chapter 4

Direct Approaches for Switched
Optimal Control Problem:
Reformulations and Rounding
Solutions

There exists plenty of direct methods for SwOCP. Approaches deal with implicit switched
systems can use direct multiple shooting method (see [22, 75]), and switching time instant
with variational formulations (see [126]). Some algorithms consider systems with explicit
switches based on problem-specific continuous reformulations of discrete valued controls (see
[59]), rounding heuristics (see [119]), direct collocation (see [95]).

This chapter investigates several direct approaches for solving Switched Optimal Control
Problems (SwOCP). Section 4.1 introduces a novel solution approach for SwOCP, drawing
upon a state of the art technique from Filippov’s rule. Subsection 4.1.1 provides a detailed
examination of this proposed solution. Subsequently, Subsection 4.1.5 explores the condens-
ing procedure for the block structure of the quadratic programming subproblem. This leads
to the development of a feedback algorithm for tracking integer control, proposed in Sub-
section 4.1.6. For comparison purposes, the active set method is leveraged in Subsection
4.1.7. Subsection 4.2 presents a switching-aware rounding algorithm, with Subsection 4.2.2
further expanding this scheme by proposing to exploit a neighboring feedback law. Subsec-
tion 4.3 outlines another algorithmic approach for SwOCP, termed Combinatorial Integral
Approximation (CIA). The chapter concludes with applications of the proposed approaches
to real-world problems: the New York subway problem in Subsection 4.4.1 and the Flat
Hybrid Automaton (FHA) problem in Subsection 4.4.2.
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4.1 Reformulation

4.1.1 Reformulation
By exploiting Filippov’s rule reformulation and relaxation, see Subsection 3.2.1, SwOCP
(3.60) is reached as the following formulation

min
x(·),u(·),α(·)

m (x(tf )) +
∫ tf
t0
l(x(t), u(t)) = φ[·]

s.t. ẋ(t) = F (x(t), u(t), ασ(t), αw(t)),
0 ≤ r (x(t0), x(tf )) ,
0 ≤ ασ(t)σ(x(t)), (1− ασ(t))σ(x(t)) ≤ 0,
0 ≤ ασ(t) ≤ 1,

∑
w∈W αw(t) = 1, 0 ≤ αw(t) ≤ 1,

w ∈ W, t ∈ T = [t0, tf ],

(4.1)

therein, we assume that the velocity field of F (·) is convex (otherwise one has to use further
relaxation, see Subsection 3.2.1), where

F (x(t), u(t), α(t)) =
∑
w∈W

αw(t) (ασ(t)f+ (x(t), u(t), w) + (1− ασ(t))f− (x(t), u(t), w)) .

In this section, the general direct approach for solving SwOCP (4.1) will be presented by
employing the direct multiple shooting method, where the original continuous optimal control
problem is reformulated as a NLP which is then solved by an iterative solution procedure, a
specially tailored sequential quadratic programming (SQP) algorithm.

4.1.2 Direct Multiple Shooting Method
Controls discretization

We introduce a discretization of the control trajectories u(·) and α(·) by defining a shooting
grid

t0 < t1 < . . . < tm−1 < tm = tf , m ∈ N,m ≥ 1.

On each interval [ti, ti+1], i = 0, . . . ,m− 1, of the shooting grid we introduce control param-
eters qui , qασ

i and qαw
i together with associated control base functions θui : T ×Rnqu

i → Rnu
i ,

θασ
i : T × [0, 1]→ [0, 1], and θαw

i : T × [0, 1]n
qαw

i → [0, 1]n
αw
i ,

u(t) := θi,l(t, q
u
i,l), 1 ≤ l ≤ n

qu

i ,

ασ(t) := θi(t, q
ασ
i ),

αw(t) := θi,l(t, q
αw

i,l ), 1 ≤ l ≤ n
qαw

i ,

t ∈ [ti, ti+1] ⊆ T , 0 ≤ i ≤ m− 1. (4.2)

In conclusion, we could denote

θi,l(t, qi,l) := [θi,l(t, q
u
i,l) θi(t, q

ασ
i ) θi,l(t, q

αw

i,l )]. (4.3)

If for instance piecewise constant approximations are used for all control functions, we simply
have θi,l(t, qi,l) =

(
qui,l, q

ασ
i , qαw

i,l

)
for t ∈ [ti, ti+1]. Since α(t) ∈ [0, 1]nw+1, and remember

that here αT =
(
ασ, α

T
w

)
, we obtain a bounded range

0 ≤ qασ
i ≤ 1,

∑
w∈W

qαw

i,l = 1, 0 ≤ qαw

i,l ≤ 1, 1 ≤ l ≤ nq
αw

i . (4.4)
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State discretization

In addition to the control parameters, we introduce state vectors si ∈ Rnx in all shooting
nodes serving as initial values for m IVPs

ẋi(t) = F (xi(t), qi), t ∈ [ti, ti+1] ⊆ T , 0 ≤ i ≤ m− 1, (4.5a)
xi(t) = si, 0 ≤ i ≤ m− 1. (4.5b)

where F (·) is the right hand side of ODE in (4.1), and

qi = (qui , q
ασ
i , qαw

i ) . (4.6)

Continuity of the solution is ensured by introduction of additional matching conditions

si+1 = xi(ti+1; ti, si, qi), 0 ≤ i ≤ m− 1, (4.7)

where xi(ti+1; ti, si, qi) denotes the evaluation of xi(·) at the final time ti+1 of shooting
interval i, and depending on the start time ti, initial value si, and control parameters qi on
that interval.

Constraint discretization

The point constraints can be rewritten as follows

0 ≤ r(s0, sm),

while the additional constraints are reached as belows

0 ≤ qασ
i σ(si), (1− qασ

i )σ(si) ≤ 0, 0 ≤ i ≤ m− 1. (4.8)

Objective

By rewriting the Mayer term m(sm) as the final term lm(sm, qm), a formulation of the
objective function with respect to the shooting grid structure is found

φ =

m∑
i=0

li(si, qi). (4.9)

Multiple shooting discretized for SwOCP

In conclusion, the discretized multiple shooting of SwOCP can be cast as a nonlinear problem

min
y

∑m
i=0 li(si, qi)

s.t. 0 = xi(ti+1; ti, yi)− si+1, 0 ≤ i ≤ m− 1,
0 ≤ r (s0, sm) ,
0 ≤ qασ

i σ(si), 0 ≤ i ≤ m− 1,
0 ≤ (qασ

i − 1)σ(si), 0 ≤ i ≤ m− 1,
0 ≤ qασ

i ≤ 1, 0 ≤ i ≤ m− 1,
0 ≤ qαw

i ≤ 1,
∑

w∈W qαw
i = 1, 0 ≤ i ≤ m− 1, w ∈ W.

(4.10)
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The constraints 0 ≤ qασ
i σ(si), (1 − qασ

i )σ(si) ≤ 0 (in (4.10)) are vanishing constraints and
may create the problems with numerical methods. To overcome this trouble, we suggest
to reformulate these constraints as follows, where the function σ(si) is bounded on interval
[ti, ti+1], i.e., lσ(ti) ≤ σ(si) ≤ uσ(ti), in short we write lσ ≤ σ(si) ≤ uσ. Later we investigate
these constraints directly in Subsection 4.1.7.
We start by introducing a new variable qzi := qασ

i σ(si), i = 0, . . . ,m− 1. Add the following
constraints

qzi ≤ uσq
ασ
i , qzi ≥ lσq

ασ
i , i = 0, . . . ,m− 1, (4.11)

qzi ≤ σ(si)− lσ(1− q
ασ
i ), qzi ≥ σ(si)− uσ(1− q

ασ
i ), i = 0, . . . ,m− 1. (4.12)

Consider the case qασ
i = 0. Then qzi = 0. Inequalities (4.11) force qzi = 0, while inequalities

(4.12) say σ(si)− uσ ≤ qzi ≤ σ(si)− lσ, and qzi = 0 satisfies those inequalities.
The case qασ

i ∈ (0, 1) implies 0 < qzi < σ(si), and those constraints (4.11-4.12) are satisfied.
For the remain case qασ

i = 1, we have qzi = σ(si). Inequalities (4.11) imply lσ ≤ qzi ≤ uσ,
which is satisfied by qzi = σ(si). Moreover, inequalities (4.12) force qzi = σ(si) as desired.

By adding the above variable qzi , (4.10) is rewritten as the following nonlinear problem

min
y

∑m
i=0 li(si, qi)

s.t. 0 = xi(ti+1; ti, yi)− si+1, 0 ≤ i ≤ m− 1,
0 ≤ r (s0, sm) ,
0 ≤ qzi , 0 ≤ i ≤ m− 1,
0 ≤ qzi − σ(si), 0 ≤ i ≤ m− 1,
0 ≤ qασ

i ≤ 1, 0 ≤ i ≤ m− 1,
0 ≤ qαw

i ≤ 1,
∑

w∈W qαw
i = 1, 0 ≤ i ≤ m− 1, w ∈ W,

lσq
ασ
i ≤ qzi ≤ uσq

ασ
i , 0 ≤ i ≤ m− 1,

uσ(q
ασ
i − 1) ≤ qzi − σ(si) ≤ lσ(q

ασ
i − 1), 0 ≤ i ≤ m− 1,

(4.13)

where

y := (s0, q0, . . . , sm−1, qm−1, sm), yi := (si, qi), 0 ≤ i ≤ m− 1, ym := sm, (4.14)

lσ ≤ σ(si) ≤ uσ, and note that qi is given by (4.6), i = 0, . . . ,m− 1.
For i = 1, . . . ,m− 1, we investigate some following instances:

1st case: σ(si) > 0. Then the additional constraints of (4.13) imply qασ
i = 1, and so qzi =

σ(si) .
2nd case: σ(si) < 0. Then again, the additional constraints of (4.13) imply qασ

i = 0, and
hence qzi = 0.
3rd case: σ(si) = 0. Then the additional constraints of (4.13) are true for all qασ

i satisfy

0 ≤ qασ
i ≤ 1,

the additional constraints become the vanishing constraints. Therefore we propose a relaxed
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technique to problem (4.13). As a result, one obtains the relaxed problem as follows

min
y

∑m
i=0 li(si, qi)

s.t. 0 = xi(ti+1; ti, yi)− si+1, 0 ≤ i ≤ m− 1,
0 ≤ r (s0, sm) ,
0 ≤ qzi , 0 ≤ i ≤ m− 1,
0 ≤ qzi − σ(si), 0 ≤ i ≤ m− 1,
0 ≤ qασ

i ≤ 1, 0 ≤ i ≤ m− 1,
0 ≤ qαw

i ≤ 1,
∑

w∈W qαw
i = 1, 0 ≤ i ≤ m− 1, w ∈ W,

lσq
ασ
i ≤ qzi ≤ uσq

ασ
i , 0 ≤ i ≤ m− 1,

uσ(q
ασ
i − 1) ≤ qzi − σ(si) ≤ lσ(q

ασ
i − 1), 0 ≤ i ≤ m− 1,

(4.15)

where y, yi, 0 ≤ i ≤ m−1, are satisfied (4.14), and lσ ≤ σ(si) ≤ uσ, and qi = (qui , q
ασ
i , qαw

i , qzi ),
i = 0, . . . ,m− 1.

4.1.3 Constraint Qualification
Lemma 7. Consider NLP (4.15) with conditions (4.14). Then LICQ and MFCQ are not
satisfied if ∂σ(si)

∂si
= 0 for some i = 0, . . . ,m− 1.

Proof. First, we can rewrite (4.13) as the Nonlinear Programming as follows

min
y(.)

φ (y)

s.t. G(y) = 0,
H(y) ≥ 0,

(4.16)

where φ(y) =
∑m

i=0 li(si, qi), G(y) = 0 casts for all equality constraints from the matching
conditions in (4.13), H(y) ≥ 0 means all inequality constraints of (4.13).
The set of all feasible points of NLP (4.16) is denoted by

F def
= {y = (s0, q0, . . . , sm−1, qm−1, sm) | G(y) = 0, H(y) ≥ 0} ,

where si ∈ Rnx
i , qi = (qui , q

ασ
i , qαw

i , qzi ), qui ∈ Rnu
i , qασ

i ∈ [0, 1], qαw
i ∈ [0, 1]n

αw
i , −1 ≤ qzi ≤

1, for i = 0, . . . ,m− 1.
Let ȳ be a feasible point of NLP (4.16). For i = 0, . . . ,m−1, with x = x(ti+1; ti, yi), consider
some cases as follows:
For σ(si) > 0, i.e., qασ

i = 1 and qzi = σ(si), then only these constraints qzi − σ(si) ≥ 0,
uσ(q

ασ
i − 1) ≤ qzi − σ(si) ≤ lσ(q

ασ
i − 1) are active, the remain constraints are inactive, and

the Jacobian matrix of (4.16) includes rows−
∂σ(si)
∂si

0 0 0 1
∂σ(si)
∂si

0 lσ 0 −1
−∂σ(si)

∂si
0 −uσ 0 1

 . (4.17)

For σ(si) < 0, i.e., qασ
i = 0 and qzi = 0, then similarly, the Jacobian matrix of (4.16) includes

rows 0 0 0 0 1
0 0 uσ 0 −1
0 0 −lσ 0 1

 . (4.18)
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For remain case σ(si) = 0, ones have 0 ≤ qασ
i ≤ 1 and qzi = 0, the Jacobian matrix of (4.16)

includes rows(
0 0 0 0 1

−∂σ(si)
∂si

0 0 0 1

)
. (4.19)

From (4.17-4.19), we can conclude that this Jacobian matrix has the full rank, if ∂σ(si)
∂si

̸= 0,
i = 0, . . . ,m− 1. But if ∂σ(si)

∂si
= 0 for some i = 0, . . . ,m− 1, which will lead to two rows of

vector are dependent, then the Jacobian matrix does not have the full rank.
Thus LICQ is satisfied if ∂σ(si)

∂si
̸= 0, i = 0, . . . ,m− 1.

Moreover, suppose that there exits a vector d such that{
Gy(ȳ)

T d = 0

(HA)y (ȳ)
T d > 0

(4.20)

then it will lead to d = (0 . . . 0)T where ∂σ(si)
∂si

̸= 0 for i = 0, . . . ,m− 1. But if ∂σ(si)
∂si

= 0 for
some i = 0, . . . ,m− 1, then which will lead to the constraints qzi ≥ 0 and qzi − σ(si) ≥ 0 are
active at the same time, i.e., no vector d satisfy (4.20). Thus we can conclude that MFCQ
is not satisfied if ∂σ(si)

∂si
= 0 for some i = 0, . . . ,m− 1.

Remark 22. From the results of Lem. 7 and Remark 6, we conclude that ACQ is satisfied
if ∂σ(si)

∂si
̸= 0, for i = 0, . . . ,m− 1.

Lemma 8. Consider NLP (4.15) with conditions (4.14) must be satisfied. Then ACQ is
satisfied for all σ(si), i = 0, . . . ,m− 1.

Proof. Since the result of of Remark 22, we only need to check ACQ for the case ∂σ(si)
∂si

= 0,
i = 0, . . . ,m − 1. Let ȳ be a feasible point of (4.16). We first require the definition of the
tangent cone T (ȳ,F) of F in the point ȳ and the linearized cone L(ȳ) of problem (4.16) in
ȳ, see Def. 13, where HA : Rn → R|A| is the restriction of the inequality constraint function
H onto the active inequality constraints.
Since ∂σ(si)

∂si
= 0 for i = 0, . . . ,m−1, then the constraints qzi ≥ 0 and qzi −σ(si) ≥ 0 are active

at the same time, i.e., there are not exist any vector d satisfy (4.20), which leads to L(ȳ) = ∅.
Note that the inclusion T (ȳ,F) ⊆ L(ȳ) always holds and that T (ȳ,F) is always closed, while
L(ȳ) is polyhedral and thus closed and convex. Therefore we have T (ȳ,F) = L(ȳ) = ∅, i.e.,
the ACQ is satisfied.

Remark 23. In numerical applications (see Sections 4.4, 6.2 and 6.3), one way to overcome
the situation, in which LICQ is not satisfy where ∂σ(si)

∂si
= 0, i = 0, . . . ,m− 1, is to relax the

constraints 0 ≤ qzi , 0 ≤ qzi − σ(si), 0 ≤ i ≤ m− 1, as follows

− ε ≤ qzi , 0 ≤ i ≤ m− 1, (4.21)
− ε ≤ qzi − σ(si), 0 ≤ i ≤ m− 1, (4.22)

with ε > 0 small enough. Then for NLP (4.15) with updated constraints (4.21-4.22), LICQ
is satisfy for all σ(si), i = 0, . . . ,m − 1. Similarly to Lemma 7, one can easily check that
active constraints satisfy LICQ.
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4.1.4 Quadratic Programming Subproblem and SQP Algorithm
The SQP algorithm deals with the NLP problem where all functions are explicitly or implic-
itly defined as functions of the multiple shooting variables only. The numerical ODE solution
on the multiple shooting intervals is performed in an underlying evaluation module and has
to be carried out with sufficiently high integration tolerance.
Starting with an initial guess y0 provided by the user, the SQP algorithm iterates

yk+1 = yk + δk∆yk,

with step directions ∆yk (and relaxation factors δk ∈ (0, 1]), until a pre-specified convergence
criterion is satisfied.
At the k-th SQP iteration with multiple shooting variables yk, the algorithm evaluates the
NLP functions and their derivatives with respect to y. In this way, linearizations of the orig-
inally nonlinear NLP functions are obtained that are used to build a quadratic programming
QP subproblem. Moreover, an approximation Hk of the Hessian matrix of the Lagrangian
function is calculated. The QP subproblem solved at the k-th SQP iteration can be written
as:

min
∆y

∇y

(∑m
i=0 li(s

k
i , q

k
i )
)T

∆y + 1
2∆y

THk∆y

s.t. 0 = xki − ski+1 +
(
∇yi

xki −∇yi
ski+1

)T
∆yi,

0 ≤ r(sk0 , skm) +∇yr(s
k
0 , s

k
m)T∆y,

0 ≤ (qzi )
k − σ(ski ) +

(
∇yi

(
(qzi )

k − σ(ski )
))T

∆yi,

0 ≤ uσ(qασ
i )k − (qzi )

k +
(
∇yi

(
uσ(q

ασ
i )k − (qzi )

k
))T

∆yi, 0 ≤ i ≤ m− 1,

0 ≤ (qzi )
k − lσ(qασ

i )k +
(
∇yi

(
(qzi )

k − lσ(qασ
i )k

))T
∆yi,

0 ≤ σ(ski ) + lσ(q
ασ
i )k − (qzi )

k − lσ +
(
∇yi

(
σ(ski ) + lσ(q

ασ
i )k − (qzi )

k
))T

∆yi,

0 ≤ (qzi )
k − σ(ski )− uσ(q

ασ
i )k + uσ +

(
∇yi

(
(qzi )

k − σ(ski )− uσ(q
ασ
i )k

))T
∆yi,

(4.23)

where the bounds are satisfied −qασ
i ≤ ∆qασ

i ≤ 1 − qασ
i , −qαw

i ≤ ∆qαw
i ≤ 1 − qαw

i for
i = 0, . . . ,m − 1, and

∑
w∈W ∆qαw

i = 0, i = 0, . . . ,m − 1, while ∆ym = ∆sm; therein
lσ ≤ σ(si) ≤ uσ, 0 ≤ qασ

i ≤ 1, 0 ≤ qαw
i ≤ 1 for i = 0, . . . ,m − 1, and

∑
w∈W qαw

i = 1
for i = 0, . . . ,m − 1, and qzi ≥ 0, i = 0, . . . ,m − 1; with xi = xi(ti+1; ti, yi), ∆yi :=
(∆si,∆q

u
i ,∆q

ασ
i ,∆qαw

i ,∆qzi ), i = 0, . . . ,m− 1, and

∆y = (∆s0,∆q0 . . . ,∆sm−1,∆qm−1,∆sm),

where ∆qi = (∆qui ,∆q
ασ
i ,∆qαw

i ,∆qzi ), i = 0, . . . ,m − 1, and Ω is Rn or a suitably chosen
box in Rn (that contains ∆yk = 0).
The QP subproblem is then solved and results in a direction ∆yk that helps to determine
the next iterate yk+1 = yk + δk∆yk. Different line search strategies are implemented that
determine the relaxation factor δk.
For the new values of the multiple shooting variables all NLP functions and derivatives are
again evaluated, a new Hessian matrix approximation Hk+1 is provided and a new QP sub-
problem is solved for the next SQP iteration.
The iteration stops when the solution reaches accuracy, and is measured by the KKT-
tolerance. It indicates how many digits the objective value is expected to be correct.
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4.1.5 Condensing: Block Structure of QP Subproblem

We start with vectors hi denoting the matching conditions residuals

hi(yi, si+1) := xi(ti+1; ti, yi)− si+1.

The matricesHi denote the Hessians (or a suitable approximations) of the NLP’s Lagrangian,
and the vectors gi denotes the gradients of the NLP’s objective function. Matrices Xi, Ri,
Ci and Di denote linearizations of the constraint functions and the additional constraint
functions obtained in yi,

Hi :≈
∂2L(yi, ηi)

∂y2i
, gi :=

∂li(si, qi)

∂yi
, Xi :=

∂xi(ti+1; ti, yi)

∂yi
, Ri :=

∂r(s0, sm)

∂si
,

Ci :=
∂σ(si)

∂yi
, Di :=

∂qασ
i

∂yi
, Ei :=

∂qzi
∂yi

,

where ηTi = (ηT1,i, η
T
2 , η3,i, . . . , η12,i, η13,i), and

L(yi, ηi) := φ(yi)− ηT1,ihi(yi, si+1)− η3,iqzi − η4,i (qzi − σ(si))
− η5,i (uσqασ

i − q
z
i )− η6,i (qzi − lσq

ασ
i )− η7,i (σ(si) + lσq

ασ
i − q

z
i − lσ)

− η8,i (qzi − σ(si)− uσq
ασ
i + uσ)− η9,i (1− qασ

i )− η10,iqασ
i

− η11,i (1− qαw
i )− η12,iqαw

i − η13,i (qαw
i − 1) , i = 0, . . . ,m− 1,

(4.24)

therein, L(ym, ηm) = φ(ym)− ηT2 r(s0, sm), with ηm = η2.
Then, with the abbreviations (4.27-4.28), we can rewrite (4.23) as follows

min
∆y

∑m
i=0

(
gTi ∆yi +

1
2∆y

T
i Hi∆yi

)
s.t. 0 = hi(yi, si+1) +Xi∆yi −∆si+1,

0 ≤ qzi − σ(si)− Cs
i ∆si + Eqz

i ∆qzi ,

0 ≤ uσqασ
i − qzi + uσD

qασ

i ∆qασ
i − E

qz

i ∆qzi ,

0 ≤ qzi − lσq
ασ
i + Eqz

i ∆qzi − lσD
qασ

i ∆qασ
i , 0 ≤ i ≤ m− 1,

0 ≤ σ(si) + lσq
ασ
i − qzi − lσ + Cs

i ∆si + lσD
qασ

i ∆qασ
i − E

qz

i ∆qzi ,

0 ≤ uσ − σ(si)− uσqασ
i + qzi − Cs

i ∆si − uσD
qασ

i ∆qασ
i + Eqz

i ∆qzi ,
0 ≤ r(s0, sm) +RT

0 ∆s0 +RT
m∆sm,

0 ≤ qzi +∆qzi ,
−qασ

i ≤ ∆qασ
i ≤ 1− qασ

i ,
−qαw

i ≤ ∆qαw
i ≤ 1− qαw

i ,
∑

w∈W ∆qαw
i = 0,

(4.25)

where ∆ym = ∆sm. Remember that lσ ≤ σ(si) ≤ uσ, 0 ≤ qασ
i ≤ 1, 0 ≤ qαw

i ≤ 1 and∑
w∈W qαw

i = 1, and qzi ≥ 0, qzi − σ(si) ≥ 0 for i = 0, . . . ,m− 1.
To exploited the “block structure” in QP (4.25), we start with the linearized matching con-
ditions

∆si+1 = Xs
i ∆si +Xqu

i ∆qui +Xqασ

i ∆qασ
i +Xqαw

i ∆qαw
i +Xqz

i ∆qzi + hi, (4.26)
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with the abbreviations, for i = 0, . . . ,m− 1,

Xs
i =

∂xi(ti+1; ti, yi)

∂si
=
∂xi(ti+1; ti, si, q

u
i , q

ασ
i , qαw

i , qzi )

∂si
, (4.27a)

Xqu

i =
∂xi(ti+1; ti, si, yi)

∂qui
, Xqασ

i =
∂xi(ti+1; ti, si, yi)

∂qασ
i

, (4.27b)

Xqαw

i =
∂xi(ti+1; ti, si, yi)

∂qαw
i

, Xqz

i =
∂xi(ti+1; ti, si, yi)

∂zi
, (4.27c)

R0 =
∂r(s0, sm)

∂s0
, hi = hi(yi, si+1), (4.27d)

Cs
i =

∂σ(si)

∂si
, Dqασ

i =
∂qασ

i

∂qασ
i

= 1, Eqz

i =
∂qzi
∂zi

= 1. (4.27e)

where yi = (si, q
u
i , q

ασ
i , qαw

i , qzi ), and for i = m (cf. [22, Eq. (28)]),

Rm =
∂r(s0, sm)

∂sm
. (4.28)

The block structure in QP (4.25) is exploited in a condensing step that transforms the QP
into a related, considerably smaller, and densely populated one. Here we briefly review this
condensing algorithm due to [22] and great detail in [86], and we adapt this algorithm to our
problem. Therein, we also use the Block Gaussian Elimination algorithm, e.g. see Alg. 1.
We start by reordering the constraint matrix of (4.25) from the single shooting values ∆u =
(∆s0,∆q

u
0 ,∆q

ασ
0 ,∆qαw

0 ,∆qz0 . . .∆q
u
m−1,∆q

ασ
m−1,∆q

αw
m−1,∆q

z
m−1) to separate the additionally

introduced values ∆v = (∆s1, . . . ,∆sm), as dense matrix in page 69, where the blanks are
mentioned zero-blocks.

Since the matching condition (4.26), we use the negative identity matrix blocks as pivots
to eliminate the multiple shooting values (∆s1, . . . ,∆sm) from this system by the usual
Gaussian method for triangular matrices.

The dense constraint matrix
(
X̄ −I
R̄ 0

)
is obtained from the elimination procedure, see in

page 70.
Then we deduce the transformed QP in terms of ∆v and ∆u as belows

min
∆v,∆u

gT
(
∆u
∆v

)
+ 1

2

(
∆u
∆v

)T
H
(
∆u
∆v

)
s.t. 0 = h̄+ X̄∆u− I∆v

0 ≤ r̄ + R̄∆u

(4.29)

with appropriate right hand side vectors h̄ and r̄ obtained by applying the Gaussian elimi-
nation steps to h and r, respectively, and therein

H =

(
H̄11 H̄12

H̄T
12 H̄22

)
, g =

(
ḡ1
ḡ2

)
.
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Xs
0 Xqu

0 Xqασ

0 Xqαw

0 Xqz

0 −I
Xqu

1 Xqασ

1 Xqαw

1 Xqz

1 Xs
1 −I

. . . . . . . . . . . . . . . . . .
Xqu

m−1 Xqασ

m−1 Xqαw

m−1 Xqz

m−1 Xs
m−1 −I

−Cs
0 Eqz

0

Eqz

1 −Cs
1

. . . . . .
Eqz

m−1 −Cs
m−1

uσD
qασ

0 −Eqz

0

uσD
qασ

1 −Eqz

1

. . . . . .
uσD

qασ

m−1 −Eqz

m−1

−lσDqασ

0 Eqz

0

−lσDqασ

1 Eqz

1

. . . . . .
−lσDqασ

m−1 Eqz

m−1

Cs
0 lσD

qασ

0 −Eqz

0

lσD
qασ

1 −Eqz

1 Cs
1

. . . . . .
lσD

qασ

m−1 −Eqz

m−1 Cs
m−1

−Cs
0 −uσDqασ

0 Eqz

0

−uσDqασ

1 Eqz

1 −Cs
1

. . . . . .
−uσDqασ

m−1 Eqz

m−1 −Cs
m−1

R0 Rm


By eliminating ∆v, since ∆v = h̄+ X̄∆u, system (4.29) is rewritten as a final condensed QP

min
∆u

ĝT∆u+ 1
2∆u

T Ĥ∆u

s.t. 0 ≤ r̄ + R̄∆u
(4.30)

with the following dense Hessian matrix and gradient obtained from substitution of ∆v in
the objective of (4.29)

Ĥ = H̄11 + H̄12X̄ + X̄T H̄T
12 + X̄T H̄22X̄,

ĝ = ḡ1 + X̄T ḡ2 + H̄T
12h̄+ X̄T H̄22h̄. (4.31)

After the solution to the QP subproblem is obtained, an appropriate rounding procedure
will be employed to return the “integer” controls. We are interested in the feedback controls,
that’s why we will investigate a “Feedback Algorithm” in the following subsection.
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4.1.6 Feedback Algorithm: Block Structure of QP Subproblem

We consider a simple (special) case that the QP subproblem (4.23) is considered using only
one interval Ii = [ti, ti+1], and the objective function is just in Mayer type, i.e., φ(y) =
φ(si+1). We also assume that lσ < uσ, where σ(si) ∈ [lσ, uσ]. Then we can rewrite (4.25) as

min
∆y

∇yφ(si+1)
T∆y + 1

2∆y
T∇2

yL(yi, η)∆y

s.t. 0 = hi(yi) +Xi∆yi −∆si+1,

0 ≤ qzi − σ(si)− Cs
i ∆si + Eqz

i ∆qzi ,

0 ≤ uσqασ
i − qzi + uσD

qασ

i ∆qασ
i − E

qz

i ∆qzi ,

0 ≤ qzi − lσq
ασ
i − lσD

qασ

i ∆qασ
i + Eqz

i ∆qzi ,

0 ≤ σ(si) + lσq
ασ
i − qzi − lσ + Cs

i ∆si + lσD
qασ

i ∆qασ
i − E

qz

i ∆qzi ,

0 ≤ uσ − σ(si)− uσqασ
i + qzi − Cs

i ∆si − uσD
qασ

i ∆qασ
i + Eqz

i ∆qzi ,
0 ≤ r(si, si+1) +RT

i ∆si +RT
i+1∆si+1,

0 ≤ qzi +∆qzi ,
−qασ

i ≤ ∆qασ
i ≤ 1− qασ

i ,
−qαw

i ≤ ∆qαw
i ≤ 1− qαw

i ,
∑

w∈W ∆qαw
i = 0,

(4.32)

where lσ ≤ σ(si) ≤ uσ, 0 ≤ qασ
i ≤ 1, 0 ≤ qαw

i ≤ 1,
∑

w∈W qαw
i = 1, and qzi ≥ 0, qzi−σ(si) ≥ 0,

and

∆y = (∆si,∆q
u
i ,∆q

ασ
i ,∆qαw

i ,∆qzi ,∆si+1).

Hereafter, ∆u = (∆si,∆q
u
i ,∆q

ασ
i ,∆qαw

i ,∆qzi ), ∆v = ∆si+1, Ri, Ri+1 and other derivatives
are denoted as in (4.27), the dense constraint matrix in pp. 70 is

Xs
i Xqu

i Xqασ

i Xqαw

i Xqz

i −I
−Cs

i Eqz

i

uσD
qασ

i −Eqz

i

−lσDqασ

i Eqz

i

Cs
i lσD

qασ

i −Eqz

i

−Cs
i −uσDqασ

i Eqz

i

Ri +Ri+1X
s
i Ri+1X

qu

i Ri+1X
qασ

i Ri+1X
qαw

i Ri+1X
qz

i


where the blanks mean zero blocks. The QP (4.32) reads

min
∆y

gTi ∆y +
1
2∆y

THi∆y

s.t. − r̃ ≤ R̃∆y,
(4.33)

therein,

gTi =
(
0 0 0 0 0 ∂φ(si+1)

∂si+1

)
, (4.34)
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Hi =
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∂qασ

i ∂si
ηT1,i

∂xi(·)
∂qui ∂q

ασ
i

0 ηT1,i
∂xi(·)

∂qασ
i ∂qαw

i

0 0

ηT1,i
∂xi(·)
∂qαw

i ∂si
ηT1,i

∂xi(·)
∂qui ∂q

αw
ηT1,i

∂xi(·)
∂qαw

i ∂qασ
i

ηT1,i
∂xi(·)
(∂qαw

i )
2 0 0

0 0 0 0 0 0

0 0 0 0 0
∂2L(yi, η)

∂s2i+1


(4.35)

with xi(·) := xi(ti+1; ti, yi),
∂2L(yi,η)

∂s2i+1
= ∂2φ(si+1)

∂s2i+1
+ηT2

∂2r(si,si+1)
∂s2i+1

, ∂2L(yi,η)
∂s2i

= ∂2xi(·)
∂s2i

+(η4,i−

η7,i + η8,i)
∂2σ(si)

∂s2i
, and

R̃∆y =



−Cs
i ∆si + Eqz

i ∆qzi
uσD

qασ

i ∆qασ
i − E

qz

i ∆qz0
−lσDqασ

i ∆qασ
i + Eqz

i ∆qzi
Cs

i ∆si + lσD
qασ

i ∆qασ
i − E

qz

i ∆qzi
−Cs

i ∆si − uσD
qασ

i ∆qασ
i + Eqz

i ∆qzi(
R̃∆y

)
6


, r̃ =


qzi − σ(si)
uσq

ασ
i − qzi

−lσqασ
i + qzi

σ(si) + lσq
ασ
i − qzi − lσ

uσ − σ(si)− uσqασ
i + qzi

r(si, si+1)


where

(
R̃∆y

)
6
:= Ri + Ri+1X

s
i ∆si + Ri+1X

qu

i ∆qui + Ri+1X
qασ

i ∆qασ
i + Ri+1X

qαw

i ∆qαw
i +

Ri+1X
qz

i ∆qzi .
To imply the solution of (4.33), we employ the KKT conditions. The necessary conditions
read:
N1. Stationarity:

∇∆y

[(
gTi ∆y +

1

2
∆yTHi∆y

)
− µT

(
R̃∆y + r̃

)]
= 0

⇔ Hi∆y = R̃Tµ− gi, (4.36)

where µ denotes the Lagrange multipliers in QP (4.33).
N2. Primal feasibility:

R̃∆y + r̃ ≥ 0. (4.37)

N3. Dual feasibility:

µ ≥ 0. (4.38)

N4. Complementary:

µT (R̃∆y + r̃) = 0. (4.39)
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Since Lemma 7, we only consider the case that ∂σ(si)
∂si

̸= 0, i.e., Cs
i ̸= 0. Then, from

the conditions (N1-N4) and remember that Dqασ

i = Eqz

i = 1, one obtains the following
constraints

− Cs
i ∆si +∆qzi ≥ −qzi + σ(si), (4.40)

uσ∆q
ασ
i −∆qzi ≥ −uσq

ασ
i + qzi , (4.41)

lσ∆q
ασ
i −∆qzi ≥ −lσq

ασ
i + qzi , (4.42)

Cs
i ∆si + lσ∆q

ασ
i −∆qzi ≥ lσ − σ(si)− lσq

ασ
i + qzi , (4.43)

− Cs
i ∆si − uσ∆q

ασ
i +∆qzi ≥ σ(si) + uσq

ασ
i − q

z
i − uσ, (4.44)

Ri+1∆si+1 ≥ r(si, si+1)−Ri∆si, (4.45)

∆si+1 = Xs
i ∆si +Xqu

i ∆qui +Xqασ

i ∆qασ
i +Xqαw

i ∆qαw
i +Xqz

i ∆qzi , (4.46)
∆qzi ≥ −qzi . (4.47)

Remark 24. At each ti, i ∈ {0, . . . ,m − 1}, one can directly study the derivative of the
switched function w.r.t the discretized state via the increment of the initial shooting state
and the switched function’s value, i.e.,

∂σ(si)

∂si
∆si ≤ −σ(si), if σ(si) ≤ 0, (4.48)

∂σ(si)

∂si
∆si > −σ(si), if σ(si) > 0. (4.49)

Lemma 9. Consider NLP (4.15) and corresponding QP (4.32) using one interval [ti, ti+1].
The following equalities are hold true:

qασ
i = 1, qzi = σ(si), ∆q

ασ
i = 0, ∆qzi =

∂σ(si)

∂si
∆si, if σ(si) > 0, (4.50)

∆qασ
i = gq(∆si,∆si+1), q

z
i = ∆qzi = 0, if σ(si) = 0, (4.51)

qασ
i = 0, qzi = 0, ∆qασ

i = ∆qzi = 0, if σ(si) < 0. (4.52)

Proof. For σ(si) > 0, one has qασ
i = 1, qzi = σ(si), and constraints qzi − σ(si) ≥ 0, uσ(qασ

i −
1) ≤ qzi − σ(si) ≤ lσ(q

ασ
i − 1) of the NLP are active, the remain constraints are inactive.

By linearizing these active constraints, one obtains ∆qασ
i = 0 and ∆qzi = qαi

∂σ(si)
∂si

∆si =
∂σ(si)
∂si

∆si. Proving equalities (4.50) is done.
Similarly, proving equalities (4.52) is completed by considering the case σ(si) < 0, therein
∆qzi = qαi

∂σ(si)
∂si

∆si = 0.
For the case σ(si) = 0, one has qzi = 0, only constraints qzi ≥ 0 and qzi −σ(si) ≥ 0 are active.
Linearization these active constraints yields ∆qzi = 0 and ∂σ(si)

∂si
∆si = −σ(si) = 0. The the

necessary conditions (N1-N4) take form as follows

Hi∆y − R̃activeµactive = gi,

∆si+1 = Xs
i ∆si +Xqu

i ∆qui +Xqασ

i ∆qασ
i +Xqαw

i ∆qαw
i +Xqz

i ∆qzi + hi,

Riactive∆si +Ri+1active∆si+1 = r(si, si+1)active,

∂σ(si)

∂si
∆si = 0.

(4.53)
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Solving (4.53) one can obtain qασ
i and ∆qασ

i , i.e., ∆qασ
i = gq(∆si,∆si+1). Proving the

equalities (4.51) is done.

Remark 25. The results in Lemma 9 show that there are no round-off procedures are
necessary to recover integer-valued control when σ(si) ̸= 0. On the other hand, sliding mode
for control α is happened when σ(si) = 0.

Remark 26. The reformulations in Chapter 3, see Subsection 3.1.4 and 3.2.1, return poor
numerical results due to the quadratic terms in the mixed constraints when applying for our
direct approach. Therefore, we have suggested the linearized reformulation (4.11-4.12).

4.1.7 An Active Set Method for SwOCP

Constraint Qualifications

We consider a discretized SwOCP with vanishing constraints in the following form

min
si,qi

φ(·)
s.t. 0 = xi(ti+1; ti, si, qi)− si+1, i = 0, . . . ,m− 1,

0 ≤ r(s0, sm),
σ(si)qi ≥ 0, i = 0, . . . ,m− 1,
σ(si)(qi − 1) ≥ 0, i = 0, . . . ,m− 1,
0 ≤ qi ≤ 1, i = 0, . . . ,m− 1,

(4.54)

where σ(·) is the switching function. We then analyze the vanishing constraints by dropping
matching conditions and terminal condition from problem (4.54), i.e., we consider a simple
discretized problem with vanishing constraints as follows,

min
si,qi

φ(·)
s.t. σ(si)qi ≥ 0, i = 0, . . . ,m− 1,

σ(si)(qi − 1) ≥ 0, i = 0, . . . ,m− 1,
0 ≤ qi ≤ 1, i = 0, . . . ,m− 1.

(4.55)

For a feasible point (s̄j , q̄j) ∈ Rnx × [0, 1], j ∈ {0, . . . ,m− 1} =: J , we define the active sets

A1(s̄, q̄) := {j ∈ J | σ(s̄j)q̄j = 0}, (4.56)
A2(s̄, q̄) := {j ∈ J | σ(s̄j)(q̄j − 1) = 0}, (4.57)

We then introduce the index sets

I+1 := I+1(s̄, q̄) = {j ∈ J | σ(s̄j) > 0, q̄j = 1},
I01 := I01(s̄, q̄) = {j ∈ J | σ(s̄j) = 0, q̄j = 1},
I00 := I00(s̄, q̄) = {j ∈ J | σ(s̄j) = 0, q̄j = 0}, (4.58)
I−0 := I−0(s̄, q̄) = {j ∈ J | σ(s̄j) < 0, q̄j = 0},
I0+ := I0+(s̄, q̄) = {j ∈ J | σ(s̄j) = 0, 0 < q̄j < 1},
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which partition the set of active constraints according to signs of σ(·, s̄j) and q̄j ,

A1(s̄, q̄) = I01 ∪ I00 ∪ I−0 ∪ I0+, (4.59)

AC
1 (s̄, q̄) := J \ A1(s̄, q̄) = I+1, (4.60)

A2(s̄, q̄) = I+1 ∪ I01 ∪ I00 ∪ I0+, (4.61)

AC
2 (s̄, q̄) := J \ A2(s̄, q̄) = I−0. (4.62)

Remark 27. If I00 = ∅, I01 = ∅ or I0+ = ∅ then in the neighborhood of (s̄, q̄) problem
(4.54) is a standard NLP including those constraints σ(sj) ≤ 0 for j ∈ AC

2 = I−0, σ(sj) ≥ 0
for j ∈ AC

1 = I+1, or σ(sj) = 0 for j ∈ I0+ respectively. This condition refers to Lower Level
Strict Complementarity Condition(LLSCC).
Otherwise, if I00∪I01∪I0+ ̸= ∅, i.e., LLSCC does not hold, then in a neighborhood of (s̄, q̄)
the feasible set has combinatorial structure. Both LICQ and MFCQ are violated, which
causes significant difficulties to KKT based descent methods.

Modified Stationarity Concept

In view of the practical difficulties (such as unbounded dual variables, ill-conditioned con-
straint Jacobian, cycling and stalling of active set methods, suboptimal and infeasible steps),
a modified concept of optimality under a possibly weaker constraint qualification is desirable.
This CQ should ensure that stationarity points of (4.54) are indeed KKT points to hold the
concept of iterating towards KKT based optimality.
A Regularity Assumption To achieve this goal, we introduce the regularity assumption of
MPVC-LICQ, cf. [1].

Definition 32. We say that MPVC-LICQ holds for a feasible point (s̄j , q̄j) ∈ Rnx × [0, 1],
j ∈ J , if(

∂σ(s̄j)
∂sj

1
)T

, j ∈ I0+, (4.63)(
∂σ(s̄j)
∂sj

1
)T

,
(
0 1

)T
, j ∈ I01 ∪ I00,

are linearly independent, i.e., the MPVC-LICQ holds if ∂σ(s̄j)
∂sj

̸= 0, j ∈ I01 ∪ I00 ∪ I0+.

Strong Stationarity Conditions Under MPVC-LICQ, a KKT-like necessary condition for
local optimality of a candidate point (s̄j , q̄j), j ∈ J , of problem (4.54) can be given. It is
based on the so-called MPVC-Lagrangian L(s, q, λ, µ1, µ2, µr) of problem (4.54),

L(sj , qj , λ, µ1, µ2, µr) := φ(·)−λT (xi− si+1)−µT
1 σ(sj)qj −µT

2 σ(sj)(qj −1)−µrr, (4.64)

where j ∈ J , and λ, µ1, µ2 ∈ Rnx+1, µr ∈ Rnr are referred to as MPVC multipliers. The
notion of strong stationarity for MPVC has been defined in [68] as follows:

Definition 33. A feasible point (s̄j , q̄j) ∈ Rnx × [0, 1], j ∈ J , is called MPVC strongly
stationary if there exist MPVC multiplier λ, µ1, µ2 ∈ Rnx+1, µr ∈ Rnr such as that it holds
that

Lsj (s̄j , q̄j , λ, µ1, µ2, µr) = 0, Lqj (s̄j , q̄j , λ, µ1, µ2, µr) = 0, µr ≥ 0,

µ1,j ≥ 0, j ∈ I01 ∪ I00 ∪ I−0 ∪ I0+, µ1,j = 0, j ∈ I+1, (4.65)
µ2,j ≥ 0, j ∈ I+1 ∪ I01 ∪ I00 ∪ I0+, µ2,j = 0, j ∈ I−0.
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In [1] it has been shown that under MPVC-LICQ strong stationarity (4.65) for MPVC is
equivalent to KKT stationarity for problem (4.54). The following stronger result is due to
[69] and can be found in [72,77].

Theorem 14. [77, thm 1] Let (s̄j , q̄j) ∈ Rnx × [0, 1], j ∈ J , satisfy MPVC-LICQ. If (s̄, q̄)
is a locally optimal point of problem (4.54) then (s̄, q̄) is an MPVC strongly stationary point.
The associated MPVC multipliers (λ̄, µ̄1, µ̄2, µ̄r) are unique.

Convex Quadratic Programs with Vanishing Constraints

In the proposed SQP framework for vanishing constraint problems, the subproblems resulting
from a local quadratic model of the MPVC-Lagrangian are convex quadratic programs with
affine linear vanishing constraints, see [77, Eq. (12a-b)], as follows,(

∂σ(sj)

∂sj
∆sj + σ(sj)

)
(qj +∆qj) ≥ 0, j ∈ J , (4.66)(

∂σ(sj)

∂sj
∆sj + σ(sj)

)
(qj +∆qj − 1) ≥ 0, j ∈ J ,

Problem (4.54) is then leading in the following QPVC

min
∆s,∆q

1
2 (∆η)

TH∆η +∆ηT b

s.t. ∂xj

∂sj
∆sj +

∂xj

∂qj
∆qj + xj(tj+1; tj , sj , qj)− sj+1 = 0, j ∈ J ,

∂r
∂s0

∆s0 + r(s0, sm) ≥ 0, ∂r
∂sm

∆sm + r(s0, sm) ≥ 0,(
∂σ(sj)
∂sj

∆sj + σ(sj)
)
(qj +∆qj) ≥ 0, j ∈ J ,(

∂σ(sj)
∂sj

∆sj + σ(sj)
)
(qj +∆qj − 1) ≥ 0, j ∈ J ,

0 ≤ qj +∆qj ≤ 1, j ∈ J ,

(4.67)

where ∆η :=
(
∆s ∆q

)T .

Convex Quadratic Programs on Subsets with Partitioning QPVC Subproblems

In the neighborhood of a feasible point ∆η̄j = (∆s̄j ,∆q̄j) ∈ Rnx× [0, 1], j ∈ J , of the QPVC
(4.67) we consider the following convex QP with smaller but convex feasible set

min
∆s,∆q

1
2 (∆η)

TH∆η + (∆η)T b

s.t. ∂σ(sj)
∂sj

∆sj ≥ −σ(sj), j ∈ I01 ∪ I+1,

−∂σ(sj)
∂sj

∆sj ≥ σ(sj), j ∈ I00 ∪ I−0,
∂σ(sj)
∂sj

∆sj = −σ(sj), j ∈ I0+,
0 ≤ qj +∆qj ≤ 1, j ∈ J ,
∆qj = 0, j ∈ I01 ∪ I+1 ∪ I00 ∪ I−0,

(4.68)

where we assume problem (4.68) has a positive definite Hessian ∂2φ
∂η2 =: H ∈ R(nx+1)×(nx+1)

of the MPVC Lagrangian, ∂φ
∂η =: b ∈ Rnx+1 denotes the gradient vector.

Based on KKT optimality for every solution ∆η∗ = (∆s∗,∆q∗) of problem (4.68) there exists
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a unique vector of MPVC multipliers λ0, λ1, µs
0, µ

s
1, µ ∈ Rnx+1 such that the following system

of optimality conditions for subproblem (4.68) is satisfied,

0 = H

(
∆s∗

∆q∗

)
+

(
∂φ
∂sj
∂φ
∂qj

)
+

(
((λ∗1)

T + (µ∗)T )
(

∂2σ
∂s2j

∆sj +
∂σ
∂sj

)
µs∗

0 − µs∗

1

)
, j ∈ J \ I0+,

0 ≤ ∂σ(sj)

∂sj
∆s∗j + σ(sj), j ∈ I01 ∪ I+1,

0 ≤ −∂σ(sj)
∂sj

∆s∗j − σ(sj), j ∈ I00 ∪ I−0,

0 = ∆q∗j , j ∈ J \ I0+, (4.69)

0 =

(
∂σ(sj)

∂sj
∆s∗j + σ(sj)

)
µ∗
j , µ∗

j ≥ 0, j ∈ J \ I0+,

0 = (q∗j +∆q∗j )µ
s∗

0,j , µs∗

0,j ≥ 0, j ∈ J ,

0 = (1− q∗j −∆q∗j )µ
s∗

1,j , µs∗

1,j ≥ 0, j ∈ J ,

where the Lagrangian function of problem (4.68) is Lj :=
1
2 (∆η)

TH∆η+(∆η)T b+λT0 ∆qj +

λT1

(
∂σ(sj)
∂sj

∆sj + σ(sj)
)
+ µT

(
∂σ(sj)
∂sj

∆sj + σ(sj)
)
+ (µs

0)
T (qj +∆qj) + (µs

1)
T (1− qj −∆qj).

If we let µj = 0 for j ∈ I0+ then those vanishing constraints that have vanished in problem
(4.68). Since H is positive definite the solution η∗ = (s∗, q∗) is unique and it is a global
solution of (4.68). We obtain similar result as in [77, thm 4] as follows,

Theorem 15. [77, thm 4] Let (s∗, q∗, λ∗0, λ∗1, µs∗

0 , µ
s∗

1 , µ
∗) be a KKT point of the subset QP

associated with I0+. Then this is MPVC strongly stationary if and only if µ∗
j = 0 for all

j ∈ I00 ∪ I01.

Proof. Similar to the proof of [77, thm 4] by replacing appropriate index sets.

Remark 28. Similar optimality conditions are obtained by the active set method (see Equa-
tions (4.69)) and the feedback algorithm (see Lemma 9 and Remark 24).

4.2 A Switching Aware Rounding Algorithm
We consider OCP (3.61) as follows

min
x(·),u(·),w(·)

m(x(tf )) +
∫ tf
t0
l(x(t), u(t))dt

s.t. ẋ(t) =

{
f+ (x(t), u(t), w(t)) , if σ(x(t)) ≥ 0,

f− (x(t), u(t), w(t)) , if σ(x(t)) ≤ 0,

0 ≤ r (x(t0), x(tf )) ,
w(t) ∈ W,

t ∈ T .

This problem can be solved by alternative approach as follows:

1. Reformulate the problem by uses the partial outer convexification.

2. Solve a continuous relaxation of the MIOCPs.
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3. Compute a rounding on some discretization grid to obtain a discrete-valued control
trajectory from the continuously-valued one.

The first and second steps allow us to reformulate the switched problems as problem (4.1) and
solve them effectively. Then, one can use an appropriate rounding scheme (see Subsection
2.6.7), or the family of CIA algorithm (see [114]), to return the integer values. For the last
step, inspired by [12, Alg. III], we will develop a rounding scheme, namely Switching Aware
Rounding (SAR).

4.2.1 Switching Aware Rounding

We start with the following proposition.

Proposition 2. [12, Prop. 2.1] Let M := {−1, 0,+1} and fi : R→ R be Lipschitz continuous
for all i ∈ M . Let α ∈ L∞((t0, tf ),RM ) be given and (β(h))h ⊂ L∞((t0, tf ),RM ) satisfy the
convergence property

sup
t∈(t0,tf )

∥∥∥∥∫ t

t0

(α(s)− β(h)(s))ds

∥∥∥∥
∞
→ 0, (4.70)

for h→ 0. Then,

(x, u)(h) → (x, u),

if (x, u) denotes the solution of the IVP in (4.1) and the (x, u)(h) denote the solutions of the
IVPs in (3.61) with ODE (3.62).

Definition 34. [12, Def. 2.3] Let α satisfy the last two constraints of (4.1). Let t0 < . . . < tN
be a grid discretization (t0, tf ) with 0 < tk − tk−1 ≤ h for all k ∈ {1, . . . , N}. Then, the
binary-valued step function

β : [t0, tf ]→ {0, 1}M

βi(t) :=

{
1, if i = i∗(k),

0, else,
for all t ∈ [tk−1, tk).

is constructed iteratively for 1 ≤ k ≤ N by the following rule to determine the rounding
index i∗(k) for the interval [tk−1, tk):

i∗(k) := argmax
i∈M
{γk,i, },

γk,i :=

∫ tk

t0

αi(t)dt−
∫ tk−1

t0

βi(t)dt. (4.71)

Algorithm (4.71) satisfies (4.70), which is stated in [12, Prop. 2.4].
Instead of minimizing the left side of (4.70), we can rewrite the left hand side as a

constraint into an optimization problem.
A. Preparations

Let t0 < . . . < tN = tf be a grid discretization (t0, tf ) with maximum grid coarseness

78



Chapter 4. Direct Approaches for SwOCP

h := max1≤k≤N (tk − tk−1) and let α satisfy the two mixed constraints of problem (4.1). We
introduce the following variables and quantities

αk :=
1

hk

∫ tk

tk−1

α(t)dt ∈ [0, 1]M , hk := tk − tk−1,

βk ∈ {0, 1}M , ϵk ∈ {0, 1}M , ξk ∈ {0, 1}M ,

for k ∈ {1, . . . , N}. Here, αk denotes the value of α averaged over the k-th interval, βk is
desired output of the rounding indicate which realization i, i ∈M , of the derivative states is
switched on in which interval, ϵk,i will indicate a switch on of the i-th derivative state from
interval k − 1 to k and ξk switch off of the i-th derivative state. Then, we can reconstruct
the function β from the βk as β =

∑
k∈M χ[tk−1,tk)βk, where χA denotes the characteristic

function for the set A.
B. The ILP for rounding

Now, we can state the switch aware rounding heuristic in the ILP Switching Aware Rounding
Problem (4.72) as follow,

min
βk,i,ϵk,i,ξk,i

∑
i∈M ciβ1,i +

∑
i∈M diβN,i

s.t.
∑+1

i=−1 βk,i = 1,∀k ∈ {1, . . . , N}
−Kh ≤

∑h
l=1 hl(αl,i − βl,i) ≤ Kh, ∀k ∈ {1, . . . , N}, i ∈M,

βk+1,i − βk,i ≤ ϵk,i,∀k ∈ {1, . . . , N − 1}, i ∈M,
βk,i − βk+1,i ≤ ξk,i,∀k ∈ {1, . . . , N − 1}, i ∈M,
βk,i, ϵk,i, ξk,i ∈ {0, 1},∀i, k, M = {−1, 0,+1}.

(4.72)

The following proposition guarantees that the convergence of the corresponding state vector
sequences with the above-summarized theory.

Proposition 3. [12, Prop. 3.1] Let K ≥ 1. Let α ∈ L∞((t0, tf ),RM ) satisfy the last
two constraints of (4.1). Let t0 < . . . < tN = tf be a grid discretization (t0, tf ) with
h := max1≤k≤N (tk − tk−1). Then, (4.72) has a solution. Consider the function β(h) :=∑

k∈M χ[tk−1,tk)β
(h)
k with the β(h)

k,i solving (4.72). Then,

sup
t∈(t0,tf )

∥∥∥∥∫ t

t0

(α(s)− β(s))ds
∥∥∥∥
∞
≤ Kh.

In particular, (4.70) holds true.

C. Interpretation of (SARP)
Usually, the maximal frequency for switching is subject to some physical constraints, which
will determine h. Thus, from the setup of (4.72), it is clear that the parameter governing the
trade-off is K.
Note that for high values of K and N , we expect (4.72) to become prohibitively hard to
compute as we assume it can be reduced to a weakly NP-hard problem.

Remark 29. After the rounding procedure, we get the integer controls, which help us to
track exactly when the switches occur.
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4.2.2 An Expansion of Rounding Scheme: Neighboring Feedback
Law for the Switching Aware Rounding

In this subsection, the neighboring feedback law will be combined with the switch aware
rounding heuristic to propose a new effective rounding scheme.
We start by exploiting Theorem 13, we obtain the following system

ẋ(t) = α(t)f+(x(t), u(t)) + (1− α(t))f−(x(t), u(t)),

λ̇T (t) = −λT (t)
(
α(t)

∂f+(x, u)

∂x
+ (1− α(t))∂f−(x, u)

∂x

)
+ θ(t)

∂g(x)

∂x
, t ∈ T∗,

(4.73)

with initial and end constraints

λ(tf ) = −vTtf
∂r(·, x(tf ))

∂x
− v0

∂m(x(tf ))

∂x
, λ(t0) = −vTt0

∂r(x(t0), ·)
∂x

,

r(x(t0), x(tf )) ≥ 0,
(4.74)

and jump conditions

λ(t+ 0) = λ(t− 0) + ϑ(t)
∂σ(x∗(t))

∂x
, t ∈ T∗, (4.75)

therein we assume that there are no measure included in system (4.73), where T∗ = {t ∈
[t0, tf ] | σ(x(t)) = 0}, and θ(t)∂g(x)∂x = δT ∂l(x,u)

∂x + ϑ(t)∂σ(x)∂x . Then LMP gives us

H(x̂, û, α̂, λ) = max
α∈[0,1],u∈U

{αλT (f+(x, u)− f−(x, u)) + λT f−(x, u)}, (4.76)

which yields

(û(t), α̂(t)) = arg max
u∈U,α∈[0,1]

H(x̂, u, α, λ̂) = (û(x̂, λ̂), α̂(x̂, λ̂)), (4.77)

where H(·) = λT (αf+(x, u) + (1 − α)f−(x, u)). The transition points t̂i are determined by
switching functions, cf. [83],

σi(x(t), λ(t)) = 0. (4.78)

The differential equations (4.73) together with switching condition (4.78) for the right hand
side, initial and end conditions (4.74) for the state variable (x, λ), and jump conditions (4.75)
yeild a MPBVP as follows

ż(t) = F(z(t), sgn σi(z(t))),

R(z(t0), . . . , z(tf )) = 0,
(4.79)

where F := (∂/∂x,−∂/∂λ)H, and z := (x, λ).
Let t0 = t̂0 < . . . < t̂m = tf be a grid discretization, where 0 < α(t) < 1, t ∈ (t̂0, t̂n), and
on each subinterval (t̂i, t̂i+1), i = 0, . . . ,m − 1, MPBVP (4.79) are solved by the multiple
shooting technique to obtain the trajectory z(t̂i). Denote

si = (sxi , s
λ
i ) = (x(t̂i), λ(t̂i)), S := (s0, . . . , sm), (4.80)
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and the typical multiple shooting equation

M(S) :=

(
R(s0, z(t̂1;S), . . . , z(t̂f ;S))
z(t̂i;S)− si (i = 1, . . . ,m)

)
=

(
h0
hi

)
= 0. (4.81)

At each iteration the following subproblem has to be solved

Rs
0 Rs

1 . . . . . . Rs
m−1 Rs

m

G0 −I
G1 −I

. . . . . .
. . . . . .

Gm−1 −I




∆s0
·
·
·
·

∆sm

 = −


h0
·
·
·
·
hm

 (4.82)

where the blanks mean zero blocks, and

Rs
i =

∂R
∂si

, Gi =
∂z(t̂i+1;S)

∂si
, i = 0, . . . ,m− 1. (4.83)

Block-Gaussian elimination (4.82) is reduced to the condensed system, cf. [83, Eq. (1.20)],

Z0∆s0 =:

(
I 0
Z0
x Z0

λ

)
∆s0 = −(u0, α0),

∆si+1 = Gi∆si + hi+1, i = 0, . . . ,m− 1,

(4.84)

where Z0, (u0, α0) are recursively determined by

Zm := Rm, Zi =:

(
0 0
Zi
x Zi

λ

)
= Ri + Zi+1Gi,

(um, αm) := h0, (ui, αi) = (ui+1, αi+1) + Zi+1hi+1,

i = m− 1, . . . , 0. (4.85)

As a result of the iteration, a nominal trajectory x̂(t), λ̂(t), and thus a nominal control
(û(t), α̂(t)) = (ũ(x̂(t), λ̂(t)), α̃(x̂(t), λ̂(t))) is obtained.
From [83, Section 2], we can suppose that û and α̂ can be embedded into piecewise C1
feedback controls u∗∗ and α∗∗, respectively, which exists in the neighborhood of the nominal
solution

û(t) = u∗∗(x̂(t), λ̂(t)), α̂(t) = α∗∗(x̂(t), λ̂(t)). (4.86)

Expanding the Hamiltonian of (4.76) with respect to states, controls, and adjoint variables,
and maximizing this expansion implies an feedback control law, as follows

(u∗∗, α∗∗) = arg min
u∈U,α∈[0,1]

H(x̂+ δx, u, α, λ̂+ Λδx) (4.87)

therein, δx := x− x̂, and Λ is the feedback matrix, which includes matrices at node t̂i,

Λ(t̂i) = −(Zi
λ)

−1Zi
x, i = 0, . . . ,m,

where Zi
λ and Zi

x, i = 0, . . . ,m, are given by Eq. (4.85).
Now, by incorporating with the previous Section 4.2, we use the feedback control (4.87)

instead of the control α during the procedure of the (SAR) heuristic.
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Definition 35. Let α∗∗ satisfy the above explanation, i.e., (4.87). Let t̂0 < . . . < t̂n be a
grid discretization (t̂0, t̂f ) with 0 < t̂k − t̂k−1 ≤ h for all k ∈ {1, . . . , n}.
Then, the binary-valued step function

β∗∗ : [t̂0, t̂f ]→ {0, 1}M

β∗∗
i (t̂) :=

{
1, if i = i∗∗(k)

0, else
for all t̂ ∈ [t̂k−1, t̂k)

is constructed iteratively for 1 ≤ k ≤ n by the following rule to determine the rounding index
i∗∗(k) for the interval [t̂k−1, t̂k):

i∗∗(k) := argmax
i∈M
{γk,i, }

γk,i :=

∫ t̂k

t̂0

α∗∗
i (t̂)dt̂−

∫ t̂k−1

t̂0

β∗∗
i (t̂)dt̂. (SUR-SAR)

A. Preparations
Let t̂0 < . . . < t̂n = t̂f be a grid discretization (t̂0, t̂f ) with maximum grid coarseness
ĥ := max1≤k≤n(t̂k − t̂k−1) and let α∗∗ be the neighboring feedback controls. We introduce
the following variables and quantities

α∗∗
k :=

1

ĥk

∫ t̂k

t̂k−1

α∗∗(t̂)dt̂ ∈ [0, 1]M , β∗∗
k ∈ {0, 1}M ,

ĥk := t̂k − t̂k−1, ϵ∗∗k ∈ {0, 1}M , ξ∗∗k ∈ {0, 1}M ,

for k ∈ {1, . . . , n}. Therein, α∗∗
k denotes the value of α∗∗ averaged over the k-th interval,

β∗∗
k is desired output of the rounding indicate which realization i, i ∈ M , of the derivative

states is switched on in which interval, ϵ∗∗k,i will indicate a switch on of the i-th derivative
state from interval k − 1 to k and ξ∗∗k switch off of the i-th derivative state. Then, we can
reconstruct the function β∗∗ from the β∗∗

k as β∗∗ =
∑

k∈M χ[t̂k−1,t̂k)
β∗∗
k .

B. The ILP for rounding
Now, we can state the switch aware rounding heuristic for the neighboring feedback controls
in the ILP Switching Aware Rounding Problem (N-SARP) as follow,

min
β∗∗
k,i,ϵ

∗∗
k,i,ξ

∗∗
k,i

∑
i∈M ciβ

∗∗
1,i +

∑
i∈M diβ

∗∗
n,i

s.t.
∑+1

i=−1 βk,i = 1,∀k ∈ {1, . . . , n},
−Kh ≤

∑h
l=1 hl(α

∗∗
l,i − β∗∗

l,i ) ≤ Kh, ∀k ∈ {1, . . . , n}, i ∈M,

β∗∗
k+1,i − β∗∗

k,i ≤ ϵ∗∗k,i,∀k ∈ {1, . . . , n− 1}, i ∈M,

β∗∗
k,i − β∗∗

k+1,i ≤ ξ∗∗k,i,∀k ∈ {1, . . . , n− 1}, i ∈M,

β∗∗
k,i, ϵ

∗∗
k,i, ξ

∗∗
k,i ∈ {0, 1},∀i, k, M = {−1, 0,+1}.

(4.88)

Finally, we obtain

β∗∗(h) =
∑
k∈M

χ[t̂k−1,t̂k)
β
∗∗(h)
k ,

with the β∗∗(h)
k,i solving (4.88), and the Prop. 3 and the convergence property (4.70) hold

true, w.r.t. β∗∗ and α∗∗.
In conclusion, we can summarize the main steps as the following algorithm.
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Algorithm 2. NFL-SAR
Input: Controls α, u, state x, adjoint λ.

for each (t̂i, t̂i+1), i = 0, . . . ,m− 1, do

1. (NFL). Compute feedback control (u∗∗, α∗∗) by using Eq. (4.87).

2. (SAR heuristic). Return β
∗∗(h)
k from solving N-SAR problem (4.88) by exploiting

{α∗∗}mi=1 in the preparation step.

Output: Switching aware neighboring feedback controls β∗∗(h) =
∑

k∈M χ[t̂k−1,t̂k)
β
∗∗(h)
k .

For more details in the application, readers can see in Subsection 4.4.1.

4.3 An Advanced Algorithm Approach for SwOCP
Instead of the direct method for the reformulation of SwOCP by using GDP, relaxation and
the rounding scheme, we consider another approach that is based on a decomposition of
MINLP into a NLP and MILP, namely Combinatorial Integral Approximation (CIA). See
[114] for the general idea and [131] for the latest extension and its application.
Recall, we can rewrite SwOCP by GDP and relaxation as follows:

min
x(·),u(·),α(·)

m (x(tf )) +
∫ tf
t0
l(x(t), u(t)) =: φ(·)

s.t. ẋ(t) = F (x(t), u(t), ασ(t), αw(t)), w ∈ W,
0 ≤ r (x(t0), x(tf )) ,
0 ≤ ασ(t)σ(x(t)) + ε, (1− ασ(t))σ(x(t))− ε ≤ 0,
ασ(t) ∈ [0, 1],

∑
w∈W αw(t) = 1, αw(t) ∈ [0, 1] ,

t ∈ T = [t0, tf ], (4.89)

where F (·) is given in problem (4.1) and ε > 0. To approximate control functions by
working with MILPs, we map between function space and [0, 1]2

nw×M using a time grid
G := {t0 < . . . < tM = tf} with ∆j = tj+1 − tj for j = 0 . . .M − 1.
The mappings are defined as follows:

θαw
: [0, 1]2

nw×M → L∞(T , [0, 1]2
nw

), αw = θαw
(b),

θασ
: [0, 1]1×M → L∞(T , [0, 1]), ασ = θασ

(a),

using piecewise constant functions, respectively,

αw,i(t) := bi,j i ∈ 1, . . . , 2nw , t ∈ [tj , tj+1) , j = 0 . . .M − 1, tj ∈ G,

ασ,i(t) := ai,j i ∈ 1, 2, t ∈ [tj , tj+1) , j = 0 . . .M − 1, tj ∈ G,
The mappings in reverse direction, respectively,

θ−1
αw

: L∞(T , [0, 1]2
nw

)→ [0, 1]2
nw×M , b = θ−1

αw
(αw),

θ−1
ασ

: L∞(T , [0, 1])→ [0, 1]1×M , a = θ−1
ασ

(ασ),

are defined by extracting integrals on the grid G, respectively,

bi,j :=
1

∆j

∫ tj+1

tj

αw,i(τ)dτ, i ∈ 1, . . . , 2nw , j = 0 . . .M − 1, tj ∈ G,
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ai,j :=
1

∆j

∫ tj+1

tj

ασ,i(τ)dτ, i ∈ 1, 2, j = 0 . . .M − 1, tj ∈ G.

In the following algorithm, RC.SwOCP denotes for the relaxed convexified reformulation of
SwOCP, and C.SwOCP denotes for the convexified reformulation of SwOCP.

Algorithm 3. [114, Alg. 1] Decomposition of (RC.SwOCP)-(MIOCP)
Input: (MIOCP) instance, grid G, algorithmic choices in sets SCIA and SREC .

1. Solve (RC.SwOCP) → φrel, x, u, αw, ασ, a = θ−1
ασ

(ασ), b = θ−1
αw

(αw)

2. for milp ∈ SCIA do

2a. Solve milp for data a, b with MILP solver → wmilp

2b. Evaluate (C.SwOCP) with fixed ωmilp := θαw
(wmilp)→ φmilp, x, u

2c. end

3. for rec ∈ SREC do

3a. Create wrec using wmilp, φmilp from all milp∈ SCIA

3b. Evaluate (C.SwOCP) with fixed ωrec := θαw
(wrec)→ φrec, x, u

3c. end

4. Set φ∗ = min

{
min

milp∈SCIA
φmilp, min

rec∈SREC
φrec

}
.

Output: φ∗, x∗, u∗, w∗, and lower bound φrel.

We use Algorithm Decomposition of (RC.SwOCP)-(MIOCP) to approximate the solution
of (SwOCP) with a priori bounds. The state and relaxed control trajectories are obtained in
Line 1. We approximate the relaxed control with binary ones by solving different MILPs in
Line 2, and Line 2a. Their corresponding state trajectories, continuous control, and objective
values are evaluated in Line 2b. In Line 3, and Line 3a, the binary controls (in several recom-
bination heuristics) are used to create new candidate binary controls, which are computed
in Line 3b. Finally, the solution is selected in Line 4.
The MILP formulations of combinatorial integral approximation type for SCIA and recombi-
nation heuristics SREC are appropriately selected from their definition sets. See more details
in Section 3 and Section 4 in [131].

4.4 Applications

This section deals with two numerical instances, namely the New York subway problem, and
the Flat Hybrid Automaton.
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4.4.1 New York Subway Problem
We consider a problem about Subway Optimization goes back to work of [17] and [19] for
the city of New York, which is already described in section 3.3, with details from Eq. (3.73)
till Eq. (3.87). Our approach was used to treat several station-to-station rides for different
station spacings, weight, travel time, etc. Here we show results for a subway problem with
10 wagons (nwag = 10), a medium loaded train (W = 78000 lbs), for a local run (S = 2112
ft), a transit time Tmax = 65 s that is about 20% longer than the fastest possible and with
all engines working (e = 1.0).

We transform the problem with the discrete-valued function w(·) to a convexified one
with a four-dimensional control function α ∈ [0, 1]4 and

∑4
i=1 αi(t) = 1 for all t ∈ [0, T ].

Therefore we can write the right hand side function f̃ and and the Lagrange term L̃ as

f̃1(x, α) =
4∑

i=1

αi(t)f1(x, i),

and respectively as

L̃(x, α) =

4∑
i=1

αi(t)L(x, i),

Now we can reformulate the problem as problem (3.88), as following

min
x(·),α(·)

∫ T

0
L̃(x, α)dt

s.t. ẋ0(t) = x1(t),

ẋ1(t) = f̃1(x, α),
x(0) = (0, 0)T , x(T ) = (S, 0)T ,

α ∈ [0, 1]4,
∑4

i=1 αi(t) = 1 ∀t ∈ [0, T ],

(4.90)

with S = 2112 ft and T ≤ Tmax = 65 s.

Table 4.1: Optimal solution, where S, P, C, and B are denoted for Series, Parallel, Coasting
and Braking, respectively. The column α is presented the relaxed controls (which are obtained
by MUSCOD-II), and the column α̂ is described the resulting integer ones from the rounding
scheme, while the last column is resulted the neighboring feedback controls α∗∗.

Time t Mode f1 x0(t) [ft] x1(t) [mph]/[ft/s] α α̂ α∗∗

0.0 S f1A1 0.0 0.0 (1, 0, 0, 0) (1, 0, 0, 0) (1, 0, 0, 0)
0.6317 S f1B1 0.4537 0.979474/1.43656 (1, 0, 0, 0) (1, 0, 0, 0) (1, 0, 0, 0)
2.8522 S f1C1 11.6480 6.73211/9.87375 (1, 0, 0, 0) (1, 0, 0, 0) (1, 0, 0, 0)
3.6434 P f2B1 24.4836 8.6572/12.6972 (0, 1, 0, 0) (0, 1, 0, 0) (0, 1, 0, 0)
5.5999 P f2C1 52.1713 17.0273/24.9734 (0, 1, 0, 0) (0, 1, 0, 0) (0, 1, 0, 0)
12.607 S f1C1 277.711 25.6452/37.6129 (0.5, 0.5, 0, 0) (1, 0, 0, 0) (1, 0, 0, 0)
45.7827 C f1(3) 1556.5 26.8579/39.3915 (0.8, 0, 0.2, 0) (0, 0, 1, 0) (0, 0, 1, 0)
46.8938 C f1(3) 1600 26.5306/38.9115 (0, 0, 1, 0) (0, 0, 1, 0) (0, 0, 1, 0)
57.16 B f1(4) 1976.78 23.5201/34.4961 (0, 0, 0.65, 0.35) (0, 0, 0, 1) (0, 0, 0, 1)
65 - – 2112 0.0/0.0 (0, 0, 0, 1) (0, 0, 0, 1) (0, 0, 0, 1)
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Figure 4.1: Optimal states (position · · · and velocity —).

We first operate in series until t̂1 = 3.6434, then we operate in parallel model until
t̂2 = 12.607, then again in series until t̂3 = 45.7827; at t̂4 = 57.16 we stop coasting and brake
until Tmax = 65, see Fig. 4.1 and Fig. 4.2. All numerical results are summarized as in Table
4.1. In other words, we finally determine the switches.

Figure 4.2: The upper solution is optimal for the relaxed problem, while the lowest row
shows the optimal integer controls.
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Using “the neighboring feedback law” for SAR via the implicit function theorem, see
Subsection 4.2.2, we get the neighboring feedback law at time point t̂0 for control α∗∗ by
exploiting Eq. (4.87). By the similar way, we also obtain the neighboring feedback controls
at time points t̂j , where j = 2, . . . , 10.
A neighboring feedback control, see Tab. 4.1, is then given by

{α∗∗(x̂j)}10j=1 .

4.4.2 The Flat Hybrid Automaton
This approach can be applied to a new model class of hybrid system, which have been in-
troduced by Kleinert and Hagenmeyer in 2019, namely, Flat Hybrid Automaton (FHA),
see [79]. This subsection reports on some results obtained by using Filippov’s rule and re-
laxation to solve FHA with computational results in special cases of a DC electrical network
example.

Algorithm Approach for The Dynamic Optimization Problem of FHA

Consider a Flat Hybrid Automata FHA = {Afl, Cfl} and two states (d0, z0), (dtf , ztf ),
we want to find a path P = {eς1, eς2, . . . , eςn} defined through the sequence of flat output
Z∗ = {z∗dξ1

(t), z∗dξ2
(t), . . . , z∗dξn+1

(t)} ∈ Zdξi
and the discrete inputs v∗(t) that yields

min
{zdξi (t)},v(t)

J(.) =
n∑

i=1

α(eςi, zdξi
(t), v(t))

s.t. α(eςi, zdξi
(t), v(t)) =

ti+1∫
ti

Li(Φdξi
(zdξi

(τ)),Ψdξi
(zdξi

(τ)))dτ + β(eςi) + γ(v(t)),

ti ∈ t∗,∀i ∈ [2, n− 1],
0 ≤ ti < ti+1, t1 = t0,
(d(t1), z(t1)) = (d0, z0),
(d(tn), z(tn)) = (d(tf ), z(tf )),
0 ≤ c(Φdξi

(zdξi
(τ)),Ψdξi

(zdξi
(τ))), i ∈ [1, . . . , n],

(4.91)

where t∗ = t′, t′′, . . . state switching times. We refer [128] for more details.
The goal is to solve (4.91) by exploiting Filippov’s rule to rewrite this problem to relaxed
convexified one, together with the arising of the additional mixed state-control constraints,
then the resulted problem can be solved by using an appropriate numerical method.
Since the input v(t) ∈ {0, 1}nv of flat discrete subsystem Afl, and the discrete-state transition
eςi : dςi → d′ςi, by reformulating (4.91) with Filippov’s rule, POC and relaxation, we obtain
the equivalent problem

min
{zdξi (t)},θ

v(t),θeςi (t)
J(.) =

n∑
i=1

α(eςi, zdξi
(t), v(t))

s.t. α(eςi, zdξi
(t), v(t)) =

∑2ndςi

j=1 θ̄eςij (t)
∑2nv

k=1 hl(·)θ̄vk(t), l ∈ {++,+0, 0+, 00},
ti ∈ t∗,∀i ∈ [2, n− 1],
0 ≤ ti < ti+1, t1 = t0,
(d(t1), z(t1)) = (d0, z0), (d(tn), z(tn)) = (d(tf ), z(tf )),
0 ≤ c(Φdξi

(zdξi
(τ)),Ψdξi

(zdξi
(τ))), i ∈ [1, . . . , n],∑2ndςi

j=1 θ̄eςij (t) = 1, θ̄eςi(t) ∈ [0, 1]ndςi ,
∑2nv

k=1 θ̄
v
k(t) = 1, θ̄v(t) ∈ [0, 1]nv,

(4.92)
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where

h++(·) :=
ti+1∫
ti

Li(Φdξi
(zdξi

(τ)),Ψdξi
(zdξi

(τ)))dτ + β(1) + γ(1),

h+0(·) :=
ti+1∫
ti

Li(Φdξi
(zdξi

(τ)),Ψdξi
(zdξi

(τ)))dτ + β(1) + γ(0),

h0+(·) :=
ti+1∫
ti

Li(Φdξi
(zdξi

(τ)),Ψdξi
(zdξi

(τ)))dτ + β(0) + γ(1),

h00(·) :=
ti+1∫
ti

Li(Φdξi
(zdξi

(τ)),Ψdξi
(zdξi

(τ)))dτ + β(0) + γ(0),

with the additional mixed constraints:

(θ̄eςij (t)− 1)(v(t)− 1) = 0, and, (θ̄vk(t)− 1)(eςi − 1) = 0,

(θ̄eςij (t)− 1)(v(t)− 1) = 0, and, θ̄vk(t)eςi = 0,

θ̄eςij (t)v(t) = 0, and, (θ̄vk(t)− 1)(eςi − 1) = 0,

θ̄eςij (t)v(t) = 0, and, θ̄vk(t)eςi = 0,

i = 1, n,

j = 1, 2ndςi ,
k = 1, 2nv.

Problem (4.92) is the relaxed convexified formulation of the dynamic optimization problem
of FHA (4.91). We can solve (4.92) by direct multiple shooting methods.
Suppose that the optimal solution of (4.92) is ({z∗dξi

}, {θ̄v}∗, {θ̄eςi}∗). Hence the correspond-
ing optimal solution of (4.91) is ({z∗dξi

}, v∗). We are interested in the relation between {θ̄v}∗
and v∗. Applying an appropriate rounding strategy (denoted by RS, see Section 2.6.7), we
obtain

v∗(t) =

{
θ̄v∗(t) if θ̄v∗(t) ∈ {0, 1},
RS(θ̄v∗(t)) if θ̄v∗(t) ∈ (0, 1).

Remark 30. In comparison with [128, Alg. 1], instead of the computation of all possible
paths Pj through the FHA connecting d0 and df without visiting any node twice, our ap-
proach has just need to use the convexified combination of the choices of POC to find the
optimal path with the minimal cost function value.

DC Electrical Network Example

We refer to [128, Sec. 5] and use their model and parameters for testing our approach on
FHA. The following parameters are used in the calculation:

R = 5, C = 0.8, L = 7, RL1 = 2, RL2 = 3, v0 = 6, i0 = 2.5

We choose the initial and the final states

vL1(t0) = 0.5, vL1(tf ) = 12, iL2(t0) = 0.1, iL2(tf ) = 4, dt0 = d1, dtf = d4.
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Figure 4.3: Optimal flat inputs u and outputs z. Blue lines u1, u2, red lines z1, z2, vertical
black dashed lines show switching times.
Remark 31. Table 4.2 and Fig. 4.3, which are obtained by solving the DC Electrical
Network in FHA, show that our approach could has wide applications to solve complex
problems.

Table 4.2: Results on Electrical DC Network.

Optimal outputs (12, 4)
Optimal path {e1, e6}
Optimal discrete state {d1, d2, d4}
Convergence achieved
Number of switches 2
Transition cost 30
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Chapter 5

Determination of Switches in
SwOCP

In order to handle the optimal control in hybrid systems, switched systems have been in-
vestigated by simplifying the details of the discrete behavior to switching patterns from a
certain class with discontinuity in vector fields, cf. [126, 132]. The main tasks here are de-
termining switches in SwOCP, where the switches come from the discontinuous of the right
hand side of the ODE and the integer values of the controls. These challenged topics have
been considered in the work of [18, 95] and [121–123], where the detailed methods are fully
discussed in Chapter 3 and Chapter 4.

In applications, mechanical systems frequently have a large number of discontinuous
transitions. Examples include force curves derived from discontinuous approximations of
characteristic curves, hysteresis, friction, impacts, and controllers, cf. [87, 93, 96]. Further-
more, discontinuities can occur when working with implicit systems since the non-singularity
of certain matrices, which is required to define the index, is not provided at individual points.
Any change in the degrees of freedom of a system causes a discontinuity. In [40], an intro-
ductory tutorial on discontinuous dynamical systems with the notions of their solution as
well as available tools to study their gradient information are presented. Since a certain
minimum order of differentiability is required for consistency and convergence claims and
the order and step size control of numerical integration methods, these points cannot simply
intersect. In addition, an accuracy-controlled calculation of sensitivity matrices is required
to use the integration methods in an optimization environment. This is only possible by
explicitly considering the discontinuities in OCP.

This chapter is presented as follows. A general description of SwOCP with discontinuous
differential equations as differential equations with switching conditions is given in Subsection
5.1.1. Subsequently, in Subsection 5.1.2, SwOCP is treated with a switching point algorithm.
Next, a generalized three-valued switching logic is also considered in Subsection 5.1.3 with
the general problem of inconsistent switching stated. The sensitivities are calculated and
analyzed in the forward mode in Section 5.2. The chapter ends with Section 5.3, where brief
comments on other approaches for tracking switches are considered.
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5.1 A Discontinuous Dynamics-Based Approach to Han-
dle Switches to SwOCP

The main idea of this section is inspired from [49, Chapter 5].

5.1.1 SwOCP with Switching Conditions in ODEs
The states si, i = 0, . . . ,m− 1 appearing on the right-hand side of the differential equation
can exhibit discontinuous or non-differentiable behavior. In the following, we consider the
OCP of the form of (4.13), which results after multiple shooting discretized taken,

min
y(·)

∑m
i=1 li(si, qi)

s.t. 0 = xi(ti+1; ti, yi)− si+1, i = 0, 1, . . . ,m− 1,
0 ≤ r(s0, sm).

(5.1)

with piecewise smooth right hand side xi of ODE, and yi := (si, qi).

Figure 5.1: Switch occurs in the interval [ti, ti+1].

The conditions for transitions between the regions where the functions are smooth are i.a.
known and can be described as zeros of switching functions σ. Let σ be a vector-valued,
state-dependent function

σ = σ(y(t)) = (σ1, . . . , σnsw)
T ,

where nsw is “number of switches”. For example, there is a switch in [ti, ti+1], see Fig. 5.1.
Then, problem (5.1) can then be written as a SwOCP

min
y(·)

∑m
i=1 li(si, qi)

s.t. 0 = xi(ti+1; ti, yi, sgn(σ(yi)))− si+1, i = 0, 1, . . . ,m− 1
0 ≤ r(s0, sm).

(5.2)

The expression sgnσ is to be understood component-wise, i.e., xi depends on a combination
of the signs of the components of σ, where i = 0, 1, . . . ,m − 1. For a fixed sgnσ then be
sufficiently smooth:

x : Rn+1 × Ω→ Rn, x ∈ Cl(Rn+1 × Ω), Ω = {−1, 0,+1}nsw,

where l is sufficiently large. Discontinuities only occur at zero points of a switching function.
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In addition, the solution variables themselves may show jumps, for example, velocities in
impact processes are discontinuous. The time when such a discontinuity occurs is implicitly
provided as the zero of a switching function

σ(yi(t̂−)) = 0, i = 0, 1, . . . ,m− 1.

The right-hand limit yi(t̂+) is a function of the left-hand limit yi(t̂−)

yi(t̂+) = s(t̂, yi(t̂−)), i = 0, 1, . . . ,m− 1.

Difficulties in Discontinuous System Numerical Integration

In practice, discontinuous systems are frequently handled without the use of switch point
search. This frequently causes in integrator failure, which manifests as method order col-
lapse, step size control failure, and incorrect results:
Conventional integration methods with automatic step sizes and order control estimate the
local error after each integration step and, by comparing it with a given error limit, determine
whether it is accepted or rejected and with which step size and order the integration should
be continued. If there is a point of discontinuity within an integration step, this usually leads
to a large local error and thus to a drastic step size reduction. As a result, the step size often
becomes very small. Then several steps with an increasing step size are usually carried out
until there is a renewed attempt at the transition via the point of discontinuity. This can be
repeated several times so that the effort is immense.
A second problem lies in the way the local error is estimated. The estimated local error (as
well as the process coefficients for linear multi-step processes) are calculated using formulas
that assume the continuity of trajectory and its derivatives. The error estimate is invalid
if this requirement is not met. As a result, no remark is made about whether the solution
remains inside the set tolerance limit after a step. This also applies to k consecutive steps
in a k-step procedure.
If one also wishes to apply integration methods in conjunction with modern optimization
methods, which require the efficient and accurate generation of sensitivity matrices, then
localization of impact points by applying impact functions is unavoidable.
The challenges associated with directly integrating differential equations with discontinuous
right-hand sides can often be avoided by using integrators with fixed step sizes or low order.
The disadvantage of the first approach is that it does not allow for error checking. For a
given accuracy, both methods have the disadvantage of requiring a great deal of effort.
The equally frequently used smoothing approaches make the system artificially stiff and often
lead to very large discontinuous higher derivatives.
Alternatively, methods have been developed that control the point of discontinuity as the
point of discontinuity increases significantly. In [57] a transition increment is then deter-
mined that keeps the local error below the required tolerance.
However, all approaches that do not or not explicitly localize discontinuities remain unsat-
isfactory and require a large number of heuristics. For this reason, a different approach is
chosen here, the explicit localization of discontinuities as the zero point of switching functions.

5.1.2 A Switching Point Algorithm for Handling The Discontinu-
ities in ODE

Switching point algorithm basically consist of the following main steps:
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1. Determine a discontinuity by checking the sign of the switching functions

2. Localization of the discontinuity as the zero point of a switching function: switching
point search

3. Integrated process of “continuous” system

4. Switch to the “new” right side

5. Discretization adjustment.

Based on the above core steps, we can propose a numerical algorithm approach for solving
SwOCP with discontinuities.
Inputs: Objective function, ODE system, point constraints, and path constraints.

Algorithm 4 (Switching Point Algorithm).
1. Initialize the problem by setting up the objective function, the ODE system, and the

starting and ending point constraints.
2. Set up a tolerance level for detecting switches in the system.
3. Use a numerical method (e.g. forward integration method (ode45 Matlab), and/or

backward differential formula (BDF) with Secant method) to integrate the system until a
switch is detected.

4. Use a switching function to locate the exact point of the switch.
5. Integrate the system again from the switch point until the next switch is detected.
6. Repeat steps 4-5 until the final time is reached.
7. Adjust the discretization of the solution to ensure accuracy.
8. Output the solution with the exact time of the switches, and the objective’s value.

Outputs: Solution with the exact time of the switches, and objective function value.
These main steps are described in more details as follows, where we assume that there

are multiple switches in a shooting interval [ti, ti+1].

Determining a Discontinuity

For each shooting interval [ti, ti+1], multiple switches occur if σ(x(t), qi) = 0 at τj , τj+1, . . .,
τj+nsw

. We denote the initial mode ki in [ti, ti+1] by ki := sgn(σ(si, qi)), and the subsequent
modes are determined by the sign of σ after each switch. For each switch

σ(x(τl), qi) = 0, l = j, j + 1, . . . , j + nsw,

with a sign change indicating a mode transition, e.g., from fkl
to fkl+1

.

Remark 32. Multiple zeros of σ require repeated detection within the same interval, which
can be numerically challenging due to the sensitivity of σ and the adaptive steps of ode45.
To overcome this situation, we use a numerical event detection mechanism (via ode45) to
determine each zero of σ and ensure the switching function is smooth enough for reliable
detection.
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Searching Switching Points

We start by solving the ODE in each [ti, ti+1]:

ẋ(t) = fki(t, x(t), qi), x(ti) = si,

where ki = sgn(σ(si, qi)), and monitor σ(x(t), qi). When a switching point is detected at τj

σ(x(τj), qi) = 0.

the integration pauses, the mode updates, and integrated process resumes. For multiple
switches, this process repeats for each τl, l = j, . . . , j + nsw,

1. Integrate from ti to τj with mode ki.

2. At τj , compute x(τj), update mode to ki+1 = sgn(σ(x(τ+j ), qi))), and continue integra-
tion from τj to τj+1.

3. Repeat for τj+1, . . . , τj+nsw
, until reach ti+1.

The state at ti+1 is x(ti+1) = xi(ti+1; ti, si, qi, sgn(σ(si, qi))) obtained by piecewise integra-
tion over subsegments [ti, τj ], [τj , τj+1], . . . , [τj+nsw

, ti+1].

Remark 33. Since ode45 may miss closely spaced switches if time step is too large or if σ
change rapidly, we can set tight tolerances in ode45 (e.g., 10−8 and define a robust function
σ(x(t), qi) = 0 with termination at each zero crossing. If switches are very close, we consider
a finer shooting grid by increasing number of shooting nodes or a post-processing step to
refine switch detection.

Remark 34 (Other methods for switching point search). In [49, sec 5.3.2], BDF with
Secant method (or inverse interpolation) is used to search the switching points in dealing
with Safeguard techniques.
In [33, 91] a Newton method is used to search for the switching point, in which a suitable
start value for the iteration is also determined as the zero of a Hermite polynomial. Similar
approaches can be found in [34, 35, 52, 62]. All of these methods require a large number of
right-hand side evaluations because they do not have a continuous solution representation.
In [23, 50] a continuous solution representation is used for the first time. In [23] an Adams
method is used for this purpose, in [50] a continuous solution representation is determined
with the help of a 3rd-order Hermite polynomial, and the discretization is a 3rd/4th Runge-
Kutta pair order. Enright et al. [51] use a p-th order Runge-Kutta method and corre-
sponding local interpolation for localization. The switching point search is carried out with
the help of a halving strategy until a termination criterion is met.
In [32, 33], a continuous representation of the switching functions themselves is obtained
by setting up additional differential equations for the switching functions and using an in-
tegration method with a continuous solution representation. However, this procedure is
impractical for many switching functions, since the differential equation system is very large
and the additional effort is immense. Here the continuous solution representation of σ pro-
posed above, which is obtained by substituting the continuous solution representation of y
into σ, offers considerable advantages since it is more computationally essentially without
additional effort.

94



Chapter 5. An Approach for SwOCP: An Idea from Discontinuous Dynamics

Integration of Continuous System

Within each [τl−1, τl], the system is continuous under mode fkl
:

x(t) = x(τl−1) +

∫ t

τl−1

fkl
(s, x(s), qi)ds, t ∈ [τl−1, τl].

The state at ti+1 is computed as follows

xi(ti+1) = x(τj+nsw) +

∫ ti+1

τj+nsw

fki(s, x(s), qi)ds,

where x(τj+nsw
) is obtained recursively through

x(τl) = x(τl−1) +

∫ τl

τl−1

fkl
(s, x(s), qi)ds, l = j, j + 1, . . . , j + nsw.

The continuity at the shooting node is ensured by the matching condition

xi(ti+1; ti, si, qi, sgn(σ(si, qi))) = si+1. (5.3)

Remark 35. Multiple switches rise computational complexity, as each subsegment requires
separate integration. Hence ones should exploit ode45’s event detection to pause and resume
integration at each switching point τl, storing intermediate states x(τl).

Switching to the “New” Right Side

At each τl, the mode is updated as

kl = sgn(σ(x(τ+l ), qi)),

and continue integration

ẋ(t) = fkl
(t, x(t), qi), x(τ+l ) = x(τ−l ),

For nsw + 1 switches, the sequence of modes is kl, kl+1, . . . , kl+nsw+1, with state continuity
at each τl.

Remark 36. Since rapid mode changes may cause numerical instability in ode45, ones
must ensure the dynamics fkl

are continuous and use high-precision detection to accurately
determine each τl.

Discretization Adjustment

Multiple switches within [ti, ti+1] amplify discretization errors due to ode45’s adaptive steps.
To this end, we adjust by:

• Solve σ(x(τj), qi) = 0 with high precision (e.g., tight tolerances in ode45).

• Verify state continuity: x(τ−j ) = x(τ+j ) at each switch.

• Refine the solution near τj by integrating over [τj − ε, τj + ε] with a finer appropriate
grid, where ε > 0.
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• If many switches occur, adjust the shooting node ti to include τl as nodes, splitting
[ti, ti+1] into subintervals [ti, τj ], [τj , τj+1], . . . , [τj+nsw , ti+1] with modified constraints.

• Increase the number of shooting interval or adaptively redistribute nodes to concentrate
around regions with frequent switches, ensuring the matching condition (5.3).

5.1.3 Inconsistent Switching with Switching Logic
When treating differential equations with shifting conditions where the right-hand side f
shows real jumps, e.g. when modeling with the help of Coulomb friction, the shifting process
can become inconsistent. Beyond these discontinuities, there is no solution to the differential
equation in the classical sense (e.g. [16,56]). Treatment with the usual two-valued switching
logic is impossible.
A solution in the classical sense is understood here as “the solution satisfies the differential
equation almost everywhere”. This corresponds to the approach in the last sections, in which
the differential equation was only not fulfilled in the switching points. If the differential
equation is discontinuous along a manifold σ = 0; it only has a solution in the classical sense
if the solution allows for the manifold, i.e., breaking through is not possible, a solution in the
classical sense is no longer defined. A generalized solution concept according to Filippov,
see Section 2.6, provides a remedy here.
In the following, the problem of inconsistent switching is analyzed and a continuation of
the solution is constructed based on a generalized solution according to Filippov [56]. The
automatic handling using a generalized three-valued switching logic is described.
In mechanics, inconsistent switching often occurs when modeling Coulomb friction phenom-
ena, which is described in Section 6.1.

Directional Fields with Inconsistent Switching

In the following, the problem with inconsistent switching is in the form of ordinary differential
equations

min
y(·)

φ (y(t))

s.t. ẏ = f(t, y, sgnσ) =

{
f(t, y,+1) = f+(t, y) for σ > 0

f(t, y,−1) = f−(t, y) for σ < 0

y(t0) = y0,

t ∈ T , (5.4)

explained with the switching function σ : Rn+1 → R.
The domain of definition of f can be divided into three areas:

S+ = {(t, y) | σ(t, y) > 0}, S− = {(t, y) | σ(t, y) < 0}, S = {(t, y) | σ(t, y) = 0},

where S denotes the discontinuity surface.
Dσ+, Dσ− denote the auxiliary switches:

Dσ+ :=
∂σ

∂y
f+ +

∂σ

∂t

Dσ− :=
∂σ

∂y
f− +

∂σ

∂t
.
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Dσ+, Dσ− can be interpreted as directional derivatives of the switching function in the
direction f+ or f−: For a given y(t) we define σy(t) := σ(t, y(t)), and hence

dσy

dt
=
∂σ

∂y
ẏ +

∂σ

∂t
.

If ones insert ẏ = f(t, y,+1) or ẏ = f(t, y,−1), ones get Dσ+ or Dσ−.
Now the question is whether the switch can be pierced. Let σy(t̂) = 0. The signs of Dσ+ and
Dσ− are decisive for answering this question (combinations with Dσ = 0 are not considered,
in this case further differentiations are necessary): In cases 1 and 2, the solution can be

Table 5.1: Four cases of directional fields.

Case Dσ+ Dσ− Exit switch
1 > 0 > 0 possible after σ > 0 (consistent)
2 < 0 < 0 possible after σ < 0 (consistent)
3 > 0 < 0 in both directions (bifurcation)
4 < 0 > 0 not possible (inconsistent)

continued in the classical sense and the numerical treatment with classical switching logic is
possible, see Tab. 5.1 and Fig. 5.2.

Figure 5.2: Four cases of different directional fields.

In case 4, inconsistent switching occurs. A change of sign on the right-hand side does not
mean that the switching function σ can change its sign: “the solution gets stuck in the
manifold”, see Fig. 5.2, the differential equation has no solution in the classical sense.
Numerical treatment with a classic two-valued switching logic leads to oscillations around
the switch: any attempt to change the right side results in a sign change of the switching
function.
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Example 5.1. Consider a switched problem

min
y(·)

y(T )

s.t. ẏ = 1− 2 sgn(y),
y(0) = y0 > 0,
t ∈ [0, T ].

It holds σ = y: The solution of this ODE system for t < y0 is y(t) = y0 − t. At time t = y0,
y(t) = 0 holds. Since the directional field points to the manifold S = {y | y = 0} from both
sides, the solution cannot leave the manifold again, so for t ≥ y0 we have y(t) = 0. However,
the differential equation no longer fulfills this function.
In conclusion, we have the solution for the given switched problem

y(T ) =

{
y0 − t, if t < y0,

0, otherwise,

and the optimal objective value is min{0, y0 − T}, where y0 > 0.

To deal with these phenomena, Filippov [56] had extended the solution concept for
ordinary differential equations by allowing set-valued right sides. This allows the solution to
continue beyond such critical points.

Definition 36. [49, Def. 5.1] The function y(t), t ∈ [t0, tf ] is called the solution of the
differential equation ẏ(t) = f(t, y(t)), if the following conditions are met:

• y is absolutely continuous,

• for almost all t ∈ [t0, tf ] and any δ > 0, the vector ẏ = dy
dt belongs to the smallest

closed convex set that contains all values f(·) in a δ-neighborhood of y(t):

ẏ(t) ∈
⋂
δ>0

⋂
µ(N)=0

conv (f(U(y(t), δ) \N, ·)) = f̃(t, y).

Here, µ denotes the Lebesgue measure.

Remark 37. For continuous functions f the set f̃ consists only of the point f(t, y(t)) and
this notion of solution agrees with the classical one.
The requirement “absolutely continuous” corresponds to the requirement for the existence
of a generalized derivative: every absolutely continuous function x can be written as an
indefinite integral over a summable function ϕ:

x(t) = x(a) +

∫ t

a

ϕ(s)ds.

On the basis of this solution concept, Filippov [56] was able to show the existence, continuity,
uniqueness, and continuous dependency of the solution from initial values and the right-hand
side under some additional assumptions.

98



Chapter 5. An Approach for SwOCP: An Idea from Discontinuous Dynamics

We explain this solution concept as follows. Let σ(y) = 0, σ(y) ∈ R, and

f+(t, y) := f(t, y,+1), f−(t, y) := f(t, y,−1),

Then the set f̃(t, y) consists of the vectors whose endpoint lies on the line connecting f+ and
f−:

f̃(t, y) = {αf+ + (1− α)f−, α ∈ [0, 1]}

so

ẏ = αf+ + (1− α)f−. (5.5)

Now the question of choosing a suitable element from the convex hull arises, i.e., the ques-
tion of choosing α. The parameter α is chosen randomly in the numerical implementation,
convergence of the Euler method can then be shown. The method given in [16] makes more
sense in the type that it uses the fact that the solution cannot leave the manifold for the
choice of α. This procedure is described below.
Since the directional field of the differential equation is directed in such a way that the
solution cannot leave the switch

σ(t, y(t)) = 0 (5.6)

and thus it follows by differentiation

σy ẏ + σt = 0. (5.7)

If we insert (5.5) into (5.7), we can obtain α = − Dσ−
Dσ+−Dσ−

. From this one gets

ẏ =
Dσ+f− −Dσ−f+
Dσ+ −Dσ−

(5.8)

as a differential equation as long as the consistency conditions

Dσ+ < 0 and Dσ− > 0 (5.9)

are fulfilled.
The solution can leave the S manifold again if α = 0 or α = 1. This corresponds to a sign
change of one of the auxiliary switching functions Dσ+ or Dσ− (see case 4 in Fig. 5.2).

Treatment of Inconsistent Switching by Three-Value Switching Logic

The treatment of inconsistent switching makes it necessary to expand the classic two-value
switching logic (s < 0, s > 0) to three-value logic (s < 0, s > 0, s = 0). Here s stands for the
sign of σ: s = sgnσ, and s = 0 is assumed if Dσ+ < 0, Dσ− > 0 applies. This results in the
switching logic shown in Fig. 5.3.

5.2 Sensitivity Analysis of Derivative Generation in For-
ward Mode

In this section we generate the derivative calculation by using the variational differential
equations in forward mode. For the practical packages with the implementation in Matlab,
readers can see on the work of Sömmer et al., cf. [70]. On the other hand, for the backward
differentiation formulas, readers can see in [2].
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σ(t̂) = 0

Dσ+(t̂) < 0 ∧Dσ−(t̂) > 0

s = +1 ∨ s = −1

ẏ = f(t, y, s)

s = +1← Dσ+(t̂) = 0

s = −1← Dσ−(t̂) = 0

s = 0

ẏ = Dσ+f−−Dσ−f+
Dσ+−Dσ−

Figure 5.3: The treatment of inconsistent switching by a three-value switching logic.

5.2.1 Sensitivity Updates
By using END, the sensitivities of a switched IVP, where the right hand side has implicit
discontinuities, can be obtained. However, in general, solving the VDEs (2.52) and (2.53)
leads to wrong results, cf. [75, pp. 43]. One can overcome this problem by employing
updates, whenever a switch occurs.
For the rest of this section, we assume that there is only one switch tsw ∈ (t0, tf ).

Definition 37. Consider the IVP (2.41) with a single switch at tsw. With ε > 0, at tsw we
define

G−
x (tsw; t0, x0, p) := lim

ε→0
Gx(tsw − ε; t0, x0, p), (5.10)

G−
p (tsw; t0, x0, p) := lim

ε→0
Gp(tsw − ε; t0, x0, p), (5.11)

and analogously

G+
x (tsw; t0, x0, p) := lim

ε→0
Gx(tsw + ε; t0, x0, p), (5.12)

G+
p (tsw; t0, x0, p) := lim

ε→0
Gp(tsw + ε; t0, x0, p), (5.13)

We consider the case with discontinuity only in the right hand side, i.e., there are switches,
but no jumps. Then, cf. [75, sec. 4.4.3], one can derive the formulas for the sensitivities
calculation using updates and for t ∈ [t0, tf ] it holds

Gx(t; t0, x0, p) = Gx(t; tsw, x+, p)UxG
−
x (tsw; t0, x0, p), (5.14)

Gp(t; t0, x0, p) = Gx(t; tsw, x+, p)
(
UxG

−
p (tsw; t0, x0, p) + Up

)
+Gp(t; tsw, x+, p) (5.15)
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therein G−
x (tsw; t0, x0, p) and G−

p (tsw; t0, x0, p) are defined according to (5.10) and (5.11),
respectively, while x+ is defined in (2.43).
Ux and Up are the update matrices and can be calculated as follows

Ux = Inx + δ

∂σj

∂x−
dσj

dts

, (5.16)

Up = δ

∂σj

∂p

dσj

dts

, (5.17)

therein Inx
∈ Rnx×nx is the identity matrix, δ and x− are defined as in (2.46) and in (2.42),

respectively. σj is the component of the switching function which zero-crossing caused the
switch at tsw, ∂σj

∂x−
and dσj

dts
denote the derivatives of σj w.r.t. x and w.r.t. t evaluated at x−

and tsw, respectively, while ∂σj

∂p denotes the derivatives of σj w.r.t. p.
Since a switching point is a source of discontinuity, care must be taken when determining the
sensitivities at t = tsw. A possibility to define the sensitivities at the switching point is by
using the updates. For more details, the following lemma will describe the relations between
G+

x and G−
x , G+

p and G−
p at tsw with initial values t0, x0.

Lemma 10. The following equalities are hold true:

G+
x (t; t0, x0, p) = UxG

−
x (tsw; t0, x0, p), (5.18)

G+
p (t; t0, x0, p) = UxG

−
p (tsw; t0, x0, p) + Up. (5.19)

Proof. Using the definition 5 to x at the switching time t = tsw, one getsG+
x (tsw; tsw, x+, p) =

Inx
and G+

p (tsw; tsw, x+, p) = 0nx×np
. The proof is done by substituting t by tsw into (5.14-

5.15).

5.2.2 Extension to Finitely Many Switches

Assumed there are nsw switches on [t0, tf ] that occur at the time points t(i)sw ∈ (t0, tf ),
i = 1, . . . , nsw. Moreover, we set t(0)sw := t0, and t

(nsw+1)
sw := tf . For the sensitivities at

t ∈ (t
(i)
sw, t

(i+1)
sw ), i = 0, 1, . . . , nsw or t = tf the following formulas hold:

Gx(t; t0, x0, p) = Gx(t; t
(i)
sw, x

(i)
+ , p)

i∏
j=1

U (j)
x G−

x (t
(j)
sw ; t

(j−1)
sw , x

(j−1)
+ , p) (5.20)

and

Gp(t; t0, x0, p) = Gx(t; t
(i)
sw, x

(i)
+ , p)

(
U (i)
x G−

p (t
(i)
sw; t0, x0, p) + U (i)

p

)
+Gp(t; t

(i)
sw, x

(i)
+ , p). (5.21)

The matrix G−
p (t

(i)
sw; t0, x0, p) in (5.21) is determined by using the formula (5.21) again for

t = t
(i)
sw with the starting matrix G−

p (t
(1)
sw ; t0, x0, p) is calculated according to the VDE (2.53).

That means the following equation holds for i = 2, . . . , ns,

G−
p (t

(i)
sw; t0, x0, p) = G−

x (t
(i)
sw; t

(i−1)
sw , x

(i−1)
+ , p)

(
U (i−1)
x G−

p (t
(i−1)
sw ; t0, x0, p) + U (i)

p

)
+G−

p (t
(i)
sw; t

(i−1)
sw , x

(i−1)
+ , p). (5.22)
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The update matrices U (i)
x and U (i)

p are calculated for each switch t(i)sw from (5.14) and (5.15),
respectively, and x(i)+ is defined the same as y+ in (2.43) for every i with tsw = t

(i)
sw.

To calculate the sensitivities at the time point of a switch, i.e., for t = t
(i)
sw, the formulas

(5.20) and (5.21) can be generalized as follows

G+
x (t; t0, x0, p) =

i∏
j=1

U (j)
x G−

x (t
(j)
sw ; t

(j−1)
sw , x

(j−1)
+ , p), i = 0, 1, . . . , nsw, (5.23)

G+
p (t; t0, x0, p) = U (i)

x G−
p (t

(i)
sw; t0, x0, p) + U (i)

p , i = 0, 1, . . . , nsw, (5.24)

where G−
p (t

(i)
sw; t0, x0, p), i = 2, 3, . . . , nsw, are calculated as in (5.22).

5.3 Other Approaches for Treating Switches
Other approaches to handling switches in SwOCP are shortly considered as follows. Gröbner
basis approach to return switching strategy (0 to 1 or 1 to 0; 1 to −1 or −1 to 1). See more
details in Appendix B.2 with general heuristic approach and some illustrated examples.
Moreover, switches in cost functions, cf. [12], and jumps, see [78].
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Chapter 6

Switched Optimal Control
Problems with Dry Friction

Over the past decades, the dry (Coulomb) friction has been considered a mechanical testing
problem for discontinuous dynamical systems or SwOCPs. Previously, in the 1970s, Carver
[32] studied a simple friction example of the discontinuity motion of a sliding object with
mass and frictional resistance, where the externally applied switches. Next, in the 1990s, the
suspension with Coulomb friction was numerically studied in the discontinuous dynamical
systems, cf. [49, Chap. 6]. Later, dry friction was considered on the optimal control system
of material points in a straight line, cf. [54]. Nowadays, many mathematicians investigate
switched OCPs with friction, e.g. see [18] and [95, Chap. 15] for three different friction
models.
This chapter deals with the applicability of our approaches to SwOCP on the benchmark
problem with friction, where the results are presented both analytically with LMP and
numerically with MUSCOD-II. Section 6.1 considers the dry friction, therein an idea from
discontinuous dynamics is employed. Subsequently, in Section 6.2, the optimal control of
a point mass on a rough plane will be considered. Last, Section 6.3 considers the general
framework to solve the OCP with dry friction of a system of material points in a straight line,
therein our solution approach is presented based on the correct application of Filippov’s
rule and LMP.

6.1 Dry Friction with Filippov’s Rule

Friction is a complex phenomenon that significantly impacts mechanical systems. While
much is known about friction in specific situations, a universal understanding remains elusive,
making it challenging to anticipate and manage. It’s rarely absent in natural or business
processes, and its presence often limits performance. To mitigate its negative effects, model-
based friction compensation is widely used, which requires an accurate friction model to
apply counteracting forces. This need has led to the development of numerous mathematical
models to describe friction’s influence on machine behavior, as it’s an unavoidable force in
the feedback control of moving systems, cf. [6].

We will focus on a specific group of frictional phenomena: dry friction between material
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points in a straight line, and dry friction acts between the rough plane and the mass point.
Dry friction (Coulomb friction) systems, as well as general differential equations with

switches or jumps on the right side, can lead to locations where a classical solution does not
exist. Filippov’s generalized solution notion for differential equations provides a solution
in this case. Filippov’s concept of solution provides a physically relevant answer for the
special situation of dry friction.

6.1.1 A General Framework: Discontinuous Dynamics’s Idea
Dry friction always opposes the relative motion and is proportional to the normal force of
contact, regardless of the area of impact. Dry friction, see Fig. 6.1, is a type of friction that
is only affected by the direction of the velocity and not by the magnitude of the velocity. It
is modeled as a static map between velocity and friction force that depends on the sign of
the velocity,

F = Fµ sgn(v).

The frictional force between two bodies is assumed to be proportional to the normal force
N on the area between the bodies at the point of contact. The proportionality factor is the
material- and speed-dependent coefficient of friction µ, which was assumed to be constant in
the original model:

|Fµ| = |µ||N |.

For zero velocities the above dry friction depends upon the sign function definition.

Figure 6.1: Dry friction.

The frictional force is tangential to the friction surface and is opposed to the direction of
movement of the body:

Fµ = −µ|N |c sgn(cT ṗ),

where c is a unit vector orthogonal to the friction surface, cT ṗ describes the tangential
velocity along the sliding surface, the coefficient of friction µ is continuous, µ > 0 applies. If
the slip surface is modeled by the equation g̃(p) = 0, then N = G̃Tλ, G̃ = ∂g̃

∂p applies, since
G̃Tλ is even describes the coercive force. This gives you the equation of motion

Mp̈ = f +GTλ− µ|N |c sgn(cT ṗ),
g(p) = 0,
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where M is the mass. Here, inconsistent switching for the switching function σ = cT ṗ occurs
because of

Dσ+ = cTM−1(f +GTλ− µ|N |c), (6.1a)

Dσ− = cTM−1(f +GTλ+ µ|N |c), (6.1b)

when the forces in the direction of c are smaller than the frictional force

Dσ+ ·Dσ− < 0⇔ cTM−1(f +GTλ) < µ|N |cTM−1c,

where Dσ+, Dσ− are directional derivatives of the switching function in the direction f+,f−,
respectively, see Subsection 5.1.3. Filippov’s generalized solution concept leads to

ẏ = αf+(t, y) + (1− α)f−(t, y), (6.2a)
0 = σ(t, y), (6.2b)

on the system

Mp̈ = f +GTλ+ (1− 2α)µ|N |c, α ∈ [0, 1], (6.3a)
g(p) = 0, (6.3b)

cT ṗ = 0. (6.3c)

From the claim σ̇ = cT p̈, the system is obtained for the sticking phase

Mp̈ = f +GTλ− cTM−1(f +GTλ)

cTM−1c
c, (6.4a)

g(p) = 0. (6.4b)

Because of σ = cT ṗ = 0, there is no motion in the direction of c, i.e., the body is stuck.
Alternatively, the system equations during the sticking phase can also be obtained by adding
the equation σ = cT ṗ = 0 and with an additional Lagrange multiplier λR:

Mp̈ = f +GTλ+ cλR, (6.5a)
g(p) = 0, (6.5b)

cT ṗ = 0. (6.5c)

Differentiation of (6.5c) yields λR = − cTM−1(f+GTλ)
cTM−1c

, so after elimination of λR, one gets
(6.4) again. This equivalence is summarized in the following lemma.

Lemma 11. For systems of form

Mp̈ = f +GTλ− µ|N |c sgn(cT ṗ)
g(p) = 0,

the treatment with Filippov’s solution concept and the additional condition cT ṗ = 0 as well
as the treatment by inserting additional Lagrange multipliers lead to the same result.

105



Chapter 6. Switched Optimal Control Problems with Dry Friction

Two-mass oscillator

To illustrate this idea, consider a two-mass oscillator with dry friction between the bodies:

m1p̈x = f1 − µ sgn(ṗx − ṗy),
m2p̈y = f2 + µ sgn(ṗx − ṗy).

The switching function is σ = ṗx − ṗy. Here c =
(
1 −1

)T applies. The shifting process is
inconsistent when the external forces are not large enough to overcome the stiction:

Dσ+ ·Dσ− < 0⇔
∣∣∣∣ f1m1

− f2
m2

∣∣∣∣ < µ

(
1

m1
+

1

m2

)
.

The differential equation for the sticking phase is obtained from system (6.4)

(m1 +m2)p̈x = f1 + f2,

(m1 +m2)p̈y = f1 + f2,

i.e., both bodies move together under the influence of the total force.

Remark 38 (Extension to the nonlinear case). In the general case where the right-hand side
of the differential equation depends non-linearly on sgn(σ), Lemma 11 no longer applies. In
this case, the treatment with Filippov’s concept of solution and with the help of additional
Lagrange multipliers yield different results. They also differ from the treatment method
proposed in [91]. This is shown below.
The system

ẏ = f(y, sgnσ(y)) =

{
f+(y) for σ > 0

f−(y) for σ < 0
, f+ ̸= f−,

be considered in the inconsistent case.
Case 1: Treatment with Filippov’s concept of solution

ẏ = αf+ + (1− α)f− =: fα, α ∈ [0, 1],

0 = σ(y).

With that one gets

ẏ =
Dσ+f− −Dσ−f+
Dσ+ −Dσ−

.

σ

f+

f−

fα
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Case 2: Convexification within f

In [91] values from [−1, 1] are allowed for the
sign s = sgn(σ(y)), in contrast to Filippov
the convexification is carried out within f :

ẏ = f(y, s)

0 = σ(y).

If σ ̸= 0, then σ̇ = σ(y, s) = 0 can be resolved
to s. (Conditions for s ∈ [−1, 1] can be found
in [91].)

σ

f+

f−

Case 3: Treatment with additional Lagrangian multipliers
The new right-hand side is thus the projection of f onto σ = 0. Note that in the figure,

The treatment with additional Lagrangian multipliers µ
gives nonsensical, ambiguous results here: Solve the system

ẏ = f(y, sgn(σ)) +
∂σ

∂y

T

µ

0 = σ(y),

after µ = −(∂σ∂y (
∂σ
∂y )

T )−1 ∂σ
∂y f , this results after insertion

ẏ =

I − (∂σ
∂y

)T
(
∂σ

∂y

(
∂σ

∂y

)T
)−1

∂σ

∂y

 f.

σ

f+

f−

Pf− Pf+

Pf+ and Pf− denote for the respectively projection of f+ and f− onto σ = 0.

6.2 Optimal Control of a Point Mass on a Rough Plane
In this section, we consider solution approaches for optimal control of a point mass on a
rough plane, both analytically and numerically. The model in this section (see Subsection
6.2.1) is proposed by Prof. N. Bolotnik in our private communication, see [24].

6.2.1 Mathematical Model of a Mechanical System

Consider a mass point that moves in a rigid inclined plane Π under the action of a control
force F, applied to this point. Coulomb’s dry friction acts between the plane and the mass
point. The contact between the mass point and the plane is represented by a unilateral
constraint that prevents the mass point from passing through the plane but does not prevent
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from separating from it. This fact is reflected in that the normal reaction force can be
directed only to one side with respect to the plane. Introduce two right-handed rectangular
coordinate systems: OXY Z and Oxyz. The point O lies in the plane Π, the X-axis is
horizontal, the Z axis points vertically upward, the x-axis coincides with the X-axis, and the
coordinate plane xy lies in the plane Π. In this case, the angle γ is formed by the axes Y
and y in the inclination angle of the plane. We assume that γ ∈ [0, π/2) and that the point
mass can physically move in the half-space z ≥ 0.
Derive the equations of motion of the mass point in the plane Π. Let m denote the mass
of the mass point; x and y the coordinates of this point in the plane Π; fx, fy, and fz the
components of the control force F in the coordinate system Oxyz; k the coefficient of the
dry friction between the plane Π and the mass point; g the magnitude of the acceleration
due to gravity.
Coulomb’s friction force R acted on the mass point by the plane Π is defined as follows:

R =


−kN v

∥v∥ , v ̸= 0,

−Φ, v = 0, ∥Φ∥ ≤ kN,
−kN Φ

∥Φ∥ , v = 0, ∥Φ∥ > kN,

(6.6)

where v is the velocity of the motion of the mass point in the plane Π, N the magnitude
of the normal reaction of the plane on the mass point, Φ the projection onto the plane Π
of the resultant of the impressed forces applied to the mass point. By impressed forces, we
understand all forces applied to the mass point, apart from the forces of interaction of this
point with the plane, i.e., apart from the friction force and the normal reaction force. If Φa

is the resultant of the impressed forces applied to the point mass, then the force Φ is given
by

Φ = Φa − (Φa, ez)ez, (6.7)

where ez is the unit vector of the z-axis of the coordinate system Oxyz.
In the case under consideration, the impressed forces are the control force F and the gravity
force mg, where g is the vector of the acceleration due to gravity. In the coordinate system
Oxyz, we have

Φa = F+mg =
[
fx fy fz

]T
+
[
0 −mg sin γ −mg cos γ

]T
, (6.8)

Φ =
[
fx fy −mg sin γ 0

]T
. (6.9)

The components of the friction force in the plane Π are defined as follows:

Rx =


−kN vx

∥v∥ , if ∥v∥ ≠ 0,

−fx, if ∥v∥ = 0, ∥Φ∥ ≤ kN,
−kN fx

∥Φ∥ , if ∥v∥ = 0, ∥Φ∥ > kN,

(6.10)

Ry =


−kN vy

∥v∥ , if ∥v∥ ≠ 0,

−fy +mg sin γ, if ∥v∥ = 0, ∥Φ∥ ≤ kN,
−kN fy−mg sin γ

∥Φ∥ , if ∥v∥ = 0, ∥Φ∥ > kN,

(6.11)
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where

∥Φ∥ =
√
f2x + (fy −mg sin γ)2, ∥v∥ =

√
v2x + v2y =

√
ẋ2 + ẏ2. (6.12)

In the vector form, the equations of motion of the mechanical system under consideration
are given by

ṙ = v, mv̇ = F+mg +N+R, (6.13)

where r is the position vector of the point mass relative to the point O and N is the vector
of the normal reaction of the plane. In the coordinate system Oxyz, these vectors are
represented as follows:

r =
[
x y z

]T
, N =

[
0 0 N

]T
. (6.14)

In the coordinate form, the equations of (6.13) become

mẍ = fx +Rx,

mÿ = fy −mg sin γ +Ry, (6.15)
0 = fz −mg cos γ +N.

The last equation takes into account the fact that the mass point is constrained to move in
the plane Π and, therefore, z ≡ 0.
Solve the last equation of (6.15) for N to obtain

N = −fz +mg cos γ. (6.16)

Since the mass point is kept in the half-space z ≥ 0 and the constraint is unilateral, the
normal reaction force cannot be oriented in the negative direction of the z-axis; hence, we
have

N ≥ 0, (6.17)

Inequality (6.17) and expression (6.16) imply the upper bound for the z-component of the
control force:

fz ≤ mg cos γ. (6.18)

If this inequality violates, the mass point will separate from the plane Π, which is not allowed.

6.2.2 Optimal Control Problem
For the system

mẍ = fx +Rx,

mÿ = fy −mg sin γ +Ry,
(6.19)

where Rx and Ry are defined by expression (6.10) and (6.11) for N = mg cos γ − fz, find a
control force F with the components fx, fy, and fz that satisfies the constraints

f2x + f2y + f2z ≤ U2, (6.20)

fz ≤ mg cos γ, (6.21)
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and transfers the system in a minimal time T from a given initial state

x(0) = x0, y(0) = y0, ẋ(0) = ẋ0, ẏ(0) = ẏ0 (6.22)

to a given terminal state

x(T ) = xT , y(T ) = yT , ẋ(T ) = ẋT , ẏ(T ) = ẏT . (6.23)

Inequality (6.20) constrains the control force in the absolute value. Inequality (6.21) requires
that the z-component of this force does not exceed the magnitude of the projection of the
gravity force onto the normal to the underlying plane; otherwise, it is impossible to provide
a non-negative value for the normal reaction N .

Now, we can rewrite the system (6.19-6.23) as the following OCP

min
r(·),v(·),F(·)

T

s.t. ẋ = vx, ẏ = vy,
mv̇x = fx +Rx, mv̇y = fy −mg sin γ +Ry,
f2x + f2y + f2z ≤ U2, fz ≤ mg cos γ,
x(0) = x0, y(0) = y0, vx(0) = vx0 , vy(0) = vy0 ,
x(T ) = xT , y(T ) = yT , vx(T ) = vxT

, vy(T ) = vyT
,

(6.24)

where r, Rx and Ry are defined by expression (6.14), (6.10) and (6.11), respectively, for
N = mg cos γ−fz, the control force F =

[
fx fy fz

]T , and the velocity v =
[
vx vy 0

]T .

6.2.3 Reformulation
We will solve (6.24) by using Filippov’s rule and the local minimum principle. We can
rewrite ODEs in problem (6.24), i.e., mv̇x = fx + Rx, and mv̇y = fy − mg sin γ + Ry, as
follows

v̇(t) =


h+(·), if σ1 > 0,

h0 (·) , if σ1 = 0, σ2 ≤ 0,

h− (·) , if σ1 = 0, σ2 > 0,

(6.25)

where switching functions σ1 := ∥v∥ ≥ 0 (since (6.12)), σ2 := ∥Φ∥ − kN ; and

h+(·) =
1

m

 fx − kN vx
∥v∥

fy −mg sin γ − kN vy
∥v∥

fz −mg cos γ +N

 =
1

m

 fx − kN vx
∥v∥

fy −mg sin γ − kN vy
∥v∥

0

 ,
h0(·) =

1

m

[
0 0 fz −mg cos γ +N

]T
=
[
0 0 0

]T
,

h−(·) =
1

m

 fx − kN fx
∥Φ∥

fy −mg sin γ − kN fy−mg sin γ
∥Φ∥

0

 ,
First, (6.25) is rewritten by Filippov’s rule in the following relaxed reformulation

v̇(t) =
∑
j∈J

αj(t)hj (v(t),F(t)) ,
∑
j∈J

αj(t) = 1, αj(t) ∈ [0, 1], j ∈ J ,
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together with additional mixed constraints G(α,v,F) ≤ 0, g(α,v) = 0, where

G1(·) := −α+(t)σ1,

g1(·) := α0(t)σ1, G2(·) := α0(t)σ2, (6.26)
g2(·) := α−(t)σ1, G3(·) := −α−(t)σ2.

Some following cases are considered:
1st case: σ1 > 0 (i.e., ∥v∥ > 0) . Then the relaxed-additional constraints imply α0(t) =
α−(t) = 0, so a unique possible solution is α−(t) = α0(t) = 0, and α+(t) = 1. Here G2 and
G3 are active constraints, G1 is inactive one.
2nd case: σ1 = 0, σ2 ≤ 0 (i.e., ∥v∥ = 0, ∥Φ∥ − kN ≤ 0). Then, from the relaxed-additional
constraints, one obtains α−(t) = 0, and these constraints are satisfied for α0(t) ∈ [0, 1],
α+(t) ∈ [0, 1] such that α0(t) +α+(t) = 1. Here Gj , j = 1, 3, are active constraints, while G2
is inactive constraint if ∥Φ∥ − kN ̸= 0 and α0 ̸= 0.
3rd case: σ1 = 0, σ2 > 0 (i.e., ∥v∥ = 0, ∥Φ∥ − kN > 0). Then, these constraints imply
α0(t) = 0, and these constraints are satisfied for α+(t) ∈ [0, 1], α−(t) ∈ [0, 1] such that
α+(t) + α−(t) = 1. Here Gj , j = 1, 2, are active constraints, and G3 is inactive one if
∥Φ∥ − kN ̸= 0 and α− ̸= 0.
The phase points set is determined by

N (G) = {(r,v,F, α) | σ1 = 0, σ2 = 0} = {(r,v,F, α) : ∥v∥ = 0, ∥Φ∥ = kN} ≠ ∅.

(For e.g., vx = vy = 0, fx = 0, fy = fz, cos γ = sin γ and k = 1)
The corresponding phase jump is then determined by

s(t) = −a1α+(t)
∂σ1
∂(r,v)

+ (b1α0(t) + b2α−(t))
∂σ1
∂(r,v)

, a1 ≥ 0, b1, b2 ∈ R,

where σ1 = ∥v∥ =
√
v2x + v2y =

√
ẋ2 + ẏ2, r =

[
x y 0

]T , and v =
[
vx vy 0

]T .
Therefore, problem (6.24) is reformulated as follows

min
r(·),v(·),F(·),α(·)

T

s.t. ṙ(t) = v(t), v̇(t) = h(v,F),
Gj(α,v,F) ≤ 0, j = 1, 2, 3, gi(α,v) = 0, i = 1, 2,

Gfj (F) ≤ 0, j = 1, 2,

x(0) = x0, y(0) = y0, x(0) = vx0 , vy(0) = vy0 ,
x(T ) = xT , y(T ) = yT , vx(T ) = vxT

, vy(T ) = vyT
,∑

j∈J αj(t) = 1, αj(t) ∈ [0, 1], j ∈ J ,

(6.27)

where Gf1 (F) := f2x + f2y + f2z − U2, Gf2 (F) := fz −mg cos γ, and h(·) is defined by

h(v,F) :=
∑
j∈J

αj(t)hj(v,F). (6.28)

with Gj , j ∈ {1, 2, 3}, are active constraints, depending on ∥v∥.
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6.2.4 A Solution Approach with LMP
Let us define the augmented Pontryagin function and the endpoint Lagrange function for
problem (6.27),

H̄ = H+

3∑
j=1

µj(t)Gj(α,v,F) +
2∑

j=1

µf
j (t)G

f
j (F) +

2∑
i=1

µg
i gi(α,v),

L(ν, ini) = νTm(ini),

where adjoint λ(t) ∈ R6∗, integrable functions 0 ≤ µ(t) ∈ R3∗, µg(t) ∈ R2∗, Lagrange
multipliers ν ∈ R3∗ , H := λT (t)

(
v(t) h(v,F)

)T , mixed constrains G, g are given by (6.26),
ini := (x0, y0, vx0

, vy0
, xT , yT , vxT

, vyT
), and

m(ini) :=


x(0) y(0) 0
x(T ) y(T ) 0
vx(0) vy(0) 0
vx(T ) vy(T ) 0


T

.

Supposed that (r̂, v̂, F̂, α̂) is a weak local minimum in problem (6.27), then it satisfies
the LMP in Theorem 9, i.e., there exists multipliers: ν̂ ∈ R3∗, λ̂ ∈ BV

(
[0, T ],R6∗),

µ̂ ∈ L1
(
[0, T ],R3∗), µ̂f ∈ L1

(
[0, T ],R2∗), µ̂g ∈ L1

(
[0, T ],R2∗), dη̂ ∈ (C([0, T ],R))∗, such

that

ν̂ ≥ 0, ν̂Tm(rini) = 0,

µ̂ ≥ 0, µ̂G(α̂, v̂, F̂) = 0, dη̂ ≥ 0, dη̂ χD = dη̂,

|ν̂|+ ∥µ̂∥1 +
∫
[0,T ]

dη̂ > 0,

where D :=
{
t ∈ [0, T ] : clm (r̂, v̂, F̂, α̂)(t) ∩N (G) ̸= ∅

}
, and a dη̂-measurable essentially

bounded function ŝ : [0, T ]→ R6∗ such that

ŝ(t) ∈ conv S(clm ((r̂, v̂), (α̂, F̂))(t)) for almost all t in dη̂–measure,

there hold the following adjoint equation in terms of measure

−dλ̂ = λ̂T
∂H

∂(r,v)
dt+ µ̂T ∂G

∂(r,v)
dt+ (µ̂g)T

∂g

∂(r,v)
dt+ ŝdη̂, (6.29)

the tranversality conditions:

λ̂(0−) = −∂L(ν̂, ini)
∂(r0,v0)

, λ̂(T−) = −∂L(ν̂, ini)
∂(rT ,vT )

, (6.30)

where r0 = (x(0), y(0)), rT = (x(T ), y(T )), v0 = (vx(0), vy(0)), vT = (vx(T ), vy(T )),
and the stationary condition w.r.t. the control:

H(v̂, F̂, α̂, λ) = max
∥F∥≤U,0≤α≤1

H(v̂,F, α, λ) (6.31)
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To simplify the problem, consider the particular case where the particle is constrained to
move on a line of maximum inclination and the control force acts in the vertical plane that
passes through the line of motion of the particle, where the initial and terminal positions of
the particle lie on a common line of maximum inclination and if, in addition, the initial and
terminal velocities are parallel to this line, i.e., one has γ → π

2 , so

sin γ = 1, cos γ = 0, f̂z = 0. (6.32)

Subsequent, the stationary condition (6.31) implies

H(v̂, F̂, α̂, λ) = λ1vx + λ2vy + max
∥F∥≤U,0≤α≤1

{λ4(α+ + α−)
fx
m

+ λ5(α+ + α−)
fy −mg

m
}

= λ1vx + λ2vy + max
∥F∥≤U,0≤α≤1

{fx
λ4(1− α0)

m
+ fy

λ5(1− α0)

m
}+ max

0≤α≤1
{λ5g(1− α0)}.

Here we obtain

max
0≤α≤1

{λ5g(1− α0)} =

{
λ5g, if λ5 > 0,

0, if λ5 ≤ 0,
, where α̂0 =

{
0, if λ5 > 0,

1, if λ5 ≤ 0,
(6.33)

max
∥F∥≤U,0≤α≤1

{fx
λ4(1− α0)

m
+ fy

λ5(1− α0)

m
} =

{
0, if λ4 = λ5 = 0,

|U |(λ24 + λ25)
1/2, otherwise,

therein,

f̂x = |U | |λ4|
(λ24 + λ25)

1/2
, f̂y = |U | |λ4|

(λ24 + λ25)
1/2

, α̂0 = 0, if λ24 + λ25 > 0. (6.34)

Consider the case σ1 = 0, σ2 ≤ 0 (i.e., ∥v̂∥ = 0, ∥Φ∥− kN ≤ 0). Here ones have α− = 0, Gj ,
j = 1, 2, 3, are active constraints with the phase points set N (G) ̸= ∅, and the corresponding
phase jump is

ŝ(t) = (b1α̂0 − a1α̂+)
∂σ1
∂(r,v)

= Σ̂
(

∂∥v̂∥
∂x

∂∥v̂∥
∂y 0 ∂∥v̂∥

∂vx

∂∥v̂∥
∂vy

0
)T

, b1 ∈ R,

where α0 + α+ = 1, a1 ≥ 0, and Σ̂ := b1α̂0 − a1α̂+. The adjoint equation (6.29) implies

− dλ̂1 = λ̂1
∂v̂x
∂x

dt+ (µ̂g
1α̂0 − µ̂1α̂+)

∂∥v̂∥
∂x

dt+ Σ̂
∂∥v̂∥
∂x

dη̂,

− dλ̂2 = λ̂2
∂v̂y
∂x

dt+ (µ̂g
1α̂0 − µ̂1α̂+)

∂∥v̂∥
∂y

dt+ Σ̂
∂∥v̂∥
∂y

dη̂,

− dλ̂3 = 0,

− dλ̂4 = λ̂1dt+ (µ̂g
1α̂0 − µ̂1α̂+)

∂∥v̂∥
∂vx

dt+ Σ̂
∂∥v̂∥
∂vx

dη̂, (6.35)

− dλ̂5 = λ̂2dt+ (µ̂g
1α̂0 − µ̂1α̂+)

∂∥v̂∥
∂vy

dt+ Σ̂
∂∥v̂∥
∂vx

dη̂,

− dλ̂6 = 0.
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The tranversality conditions (6.30) lead to λ̂(0−) = 0, and λ̂(T−) = 0. Thus, exploiting the
3rd and the 6th equation of (6.35), i.e., −dλ̂3 = 0, and −dλ̂6 = 0, ones get λ̂3(t) = 0, and
λ̂6(t) = 0, respectively. The remain equations of (6.35) get

λ̂1(t) =

∫ t

0

(µ̂g
1α̂0 − µ̂1α̂+)

∂∥v̂∥
∂x

dt+ (b1α̂0 − a1α̂+)

∫
[0,t]

∂∥v̂∥
∂x

(τ)dη̂(τ), (6.36)

λ̂2(t) =

∫ t

0

(µ̂g
1α̂0 − µ̂1α̂+)

∂∥v̂∥
∂y

dt+ (b1α̂0 − a1α̂+)

∫
[0,t]

∂∥v̂∥
∂y

(τ)dη̂(τ), (6.37)

λ̂4(t) =

∫ t

0

(λ̂1 + (µ̂g
1α̂0 − µ̂1α̂+)

∂∥v̂∥
∂vx

)dt+ (b1α̂0 − a1α̂+)

∫
[0,t]

∂∥v̂∥
∂vx

(τ)dη̂(τ), (6.38)

λ̂5(t) =

∫ t

0

(λ̂2 + (µ̂g
1α̂0 − µ̂1α̂+)

∂∥v̂∥
∂vy

)dt+ (b1α̂0 − a1α̂+)

∫
[0,t]

∂∥v̂∥
∂vx

(τ)dη̂(τ). (6.39)

Now we consider the case σ1 > 0 (i.e., ∥v̂∥ > 0); the remain case, i.e., σ1 = 0, σ2 > 0, can be
similarly analyzed. In this case, ones have α̂ = (1, 0, 0)T , G1 = −σ1, Gj = 0, j = 2, 3, gi = 0,
i = 1, 2, and N (G) = ∅, hence there are no phase point and the phase jump.
Since G1 is inactive constraint and the condition µ̂G(·) = 0, we obtain µ̂1 = 0.
The adjoint equation (6.29) implies

−dλ̂1 = λ̂1
∂v̂x
∂x

dt, −dλ̂2 = λ̂2
∂v̂y
∂x

dt, dλ̂3 = dλ̂6 = 0, −dλ̂4 = λ̂1dt, −dλ̂5 = λ̂2dt. (6.40)

Similar to the previous case, exploiting the 3rd equation of (6.40), i.e., −dλ̂3 = 0, and
−dλ̂6 = 0, we obtain λ̂3(t) = 0, and λ̂6(t) = 0, respectively. The remain equations of (6.40)
imply

ln(λ̂1) =

∫ t

0

∂v̂x
∂x

dt, ln(λ̂2) =

∫ t

0

∂v̂y
∂x

dt, λ̂4 =

∫ t

0

λ̂1dt, λ̂5 =

∫ t

0

λ̂2dt. (6.41)

6.2.5 Numerical Solution

Table 6.1: Parameters of the mechanical model with dry friction: A Mass Point on A Rough
Plane, therein “–” means no unit, and i = 1, n.

Physical quantity Identifier Value Unit
Number of points n 3 –
Free fall acceleration g 9.8 m/s/s
Identical point’s mass m 1 kg
Friction coefficient k 0.5 –
Friction/control force Fi/fi N (1 kg·m/s2)
Angle ∠yOY (see 6.2.1) γ π/3, π/2 rad
Upper force U 10 N

For the system (6.19) with parameters are setting in Tab. 6.1, where Rx and Ry are
defined by (6.10) and (6.11) (more details acan be seen in the previous subsections 6.2.1 and
6.2.2) for N = mg cos γ − fz, by solving the corresponding SwOCP (6.27) numerically, we
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obtain a control force F̂ (see Fig. 6.2 and Fig. 6.3) which satisfies the constraints (6.20-6.21),
and transfers the system (6.19) in a minimal time T̂ (s) from a given initial state

x(0) = x0 = 10, y(0) = y0 = 1, ẋ(0) = ẋ0 = 10, ẏ(0) = ẏ0 = 5, (6.42)

to a given terminal state

x(T ) = xT = 90, y(T ) = yT = 9, ẋ(T ) = ẋT = 0, ẏ(T ) = ẏT = 0, (6.43)

Note that here we exploit the mixed constraints (6.26) in the relaxed formula as Gj(·, ε) ≤ 0,
j = 1, . . . , 7, i.e.,

G1(·)→ G1(·, ε) := −α+(t)σ1 − ε,
G2(·)→ G2(·) := α0(t)σ2,

G3(·)→ G3(·) := −α−(t)σ2 − ε, (6.44)
g1(·)→ G4(·, ε) := α0(t)σ1 − ε and G5(·, ε) := −α0(t)σ1 − ε,
g2(·)→ G6(·) := α−(t)σ1 − ε and G7(·) := −α−(t)σ1 − ε.

where ε > 0 small enough.
For more details, readers can see at https://github.com/DuyTranHD/OCPswitched.

6.3 Optimal Control of Material Points System in a Straight
Line with Dry Friction

This section discusses analytical and numerical solution approaches for optimal control of
a system of material points in a straight line with dry friction, which are based on our
conference paper [121].

6.3.1 Optimal Control Problem

We consider a optimal control of system of material points in a straight line with dry friction,
see [54], which consists n ≥ 3 material points. The masses of these points are taken to be
identical (mi = m, i = 1, n) between the straight line and the points the dry Coulomb
friction force acts. The forces that interact between neighboring points are assumed to
control variables. Assume that xi is the coordinate of the i-th point along the line, vi and
fi are algebraic projections of the velocity of the i-point and the control force (acting on the
(i+1)-th point from the i-th point) on the straight line, and Fi is an algebraic projection of
the friction force acting on the i-th point, see Fig. 6.4.
The system of points’ motion equations take the form

ẋi = vi,

mv̇i = fi−1 − fi + Fi,
i = 1, n. (6.45)

Hereafter we use the extension of the definition

f0 = fn = 0. (6.46)

115



Chapter 6. Switched Optimal Control Problems with Dry Friction

Figure 6.2: For the special case γ = π/2: control force F̂ (f̂x-top left, f̂y top right) drives
trajectories positions x (middle left), y(middle right), with velocity vx (bottom left), vy
(bottom right) in minimal time T̂ = 2.02745(s), where control α̂ = (1, 0, 0).

The friction forces are determined by the relations

Fi =


−kmg sgn(vi), if vi ̸= 0,

−fi−1 + fi, if vi = 0 & |fi−1 − fi| ≤ kmg,
−kmg sgn(fi−1 − fi), if vi = 0 & |fi−1 − fi| > kmg,

(6.47)

where k is the coefficient of the friction between the points of the system and the plane; and
g is the free fall acceleration.
Assume that at initial instant all points of the system are at rest and are located at one point
of the straight line, without losing generality, we assume that this point is the coordinate
axis’s origin point.

xi(0) = 0, vi(0) = 0, i = 1, n. (6.48)
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Figure 6.3: For the case γ = π/3: control force F̂ (f̂x-top left, f̂y-top middle, f̂z top right)
drives trajectories positions x (middle left), y (middle right), with velocity vx(bottom left),
vy (bottom right) in minimal time T̂ = 8.26367(s), where control α̂ = (1, 0, 0).

Figure 6.4: System of material points in a straight line with dry friction.

Let us fix the time of the system’s motion (t ∈ [0, T ]). We consider motions of the system
that bring all of its points at the final instant T to the same position in the straight line with
the zero velocity

xi(T ) = x1(T ), i = 2, n, vi(T ) = 0, i = 1, n. (6.49)
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Denote by x and v the coordinate of center of system’s mass and the velocity of this center:

x =
1

n

n∑
i=1

xi, v =
1

n

n∑
i=1

vi. (6.50)

The goal is to find the motion of a system of point that moves the system from state (6.48) to
state (6.49), where the motion is controlled by relations (6.45) and (6.47) under unbounded
control forces fi, and maximizes the displacement of the system

x(T )→ max . (6.51)

We can rewrite the above problem as in the below formulation of the optimal control problem

max
x(·),v(·),f(·)

x (T )

s.t. ẋi(t) = vi(t), i = 1, n,

v̇i(t) =


fi−1−fi

m − kg sgn(vi), if vi ̸= 0,

0, if vi = 0 & |fi−1 − fi| ≤ kmg,
fi−1−fi

m − kg sgn(fi−1 − fi), if vi = 0 & |fi−1 − fi| > kmg,

i = 1, n,

xi(0) = 0, vi(0) = 0, i = 1, n,
xi(T ) = x1(T ), i = 2, n, vi(T ) = 0, i = 1, n,

(6.52)

where (6.46) and (6.50) are satisfied.

6.3.2 Reformulation
We will solve (6.52) by exploiting Filippov’s rule to rewrite this problem to a relaxed
convexified one, together with the arising of the additional mixed state-control constraints,
and the LMP is employed to obtain the solution.
By reformulating ODEs of problem (6.52) in Filippov’s rule, we obtain the equivalent ones

v̇i(t) =
∑
j∈J

αj,i(t)hj (fi(t), fi−1(t), vi(t), i) ,
∑
j∈J

αj,i(t) = 1, αj,i(t) ∈ [0, 1], j ∈ J , i = 1, n,

with additional mixed constraints gi(v, α) = 0, i = 1, 2, 3, Gj(v, α, f) ≤ 0, j = 1, . . . , 6,

G1 := −α1,i(t)vi(t),

G2 := α2,i(t)vi(t),

g1 := α3,i(t)vi(t), G3 := α3,i(t) (fi−1 − fi − kmg) , G4 := −α3,i(t) (fi−1 − fi + kmg) ,

g2 := α4,i(t)vi(t), G5 := −α4,i(t) (fi−1 − fi − kmg) ,
g3 := α5,i(t)vi(t), G6 := α5,i(t) (fi−1 − fi + kmg) ,

i = 1, n,

where switching functions σ1,i := vi, σ2,i := fi−1−fi−kmg, σ3,i := fi−1−fi+kmg, i = 1, n;
and

h1(·, i) =
fi−1 − fi

m
− kg, h2(·, i) =

fi−1 − fi
m

+ kg, h3(·, i) = 0, i = 1, n,
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h4(·, i) =
fi−1 − fi

m
− kg, h5(·, i) =

fi−1 − fi
m

+ kg, i = 1, n.

Denoting ui := (fi−1 fi α
T ) = (fi−1 fi α1,i α2,i α3,i α4,i α5,i), i = 1, n, and

h(f, v, i) :=
∑
j∈J

αj,i(t)hj (fi(t), fi−1(t), vi(t), i) , i = 1, n, (6.53)

For i = 1, . . . , n, the phase points set is determined by

N (G) = {(x, v, f, α) | σj,i = 0, j = 1, 2, 3}
= {(x, v, f, α) | vi = 0, fi−1 − fi − kmg = 0, fi−1 − fi + kmg = 0}
= ∅,

which means that the mixed constraints are regular constraints.
For i = 1, . . . , n, it is not difficult to show that the assumption [45, RMC] is satisfied. Some
following cases are considered.
If vi < 0 then α1,i = α3,i = α4,i = α5,i = 0, thus α2,i = 1, the active set I = {1, 3, 4, 5}.
If vi = 0 then 0 ≤ αj,i ≤ 1, j ∈ J , and I ⊇ {1, 2}. If α1,i = 1 or α2,i = 1 then I = J .
If vi > 0 then α2,i = α3,i = α4,i = α5,i = 0, thus α1,i = 1 and I = {2, 3, 4, 5}.
Thus, problem (6.52) is reformulated as the following relaxed one

min
x(·),v(·),f(·),α(·)

− x(T )

s.t. ẋi(t) = vi(t),
v̇i(t) = h(f, v, i),
Gj(·, i) ≤ 0, j = 1, . . . , 6, gl(·, i) = 0, l = 1, 2, 3,
xi(0) = 0, vi(0) = 0,
xi(T ) = x1(T ), i = 2, n, vi(T ) = 0,∑

j∈J αj,i(t) = 1, αj,i(t) ∈ [0, 1], j ∈ J , i

i = 1, n, (6.54)

therein h(·) is defined as in (6.53), and equations (6.46-6.50) are required, with Gj(·, i) is an
active constraint, j ∈ I, where the index set I depend on the value of vi, i = 1, n.

6.3.3 A Solution Approach with LMP

We then can study (6.52) by solving (6.54), and the equivalent optimal solution can be
implied. By using LMP, we can derive the necessary condition of problem (6.54).
We define some needed functions as follows.

(i) Augmented Pontryagin function

H̄(x, v, f, α) = λ(t)TH0(x(t), v(t), f(t), α(t))+

6∑
j=1

µjGj(α, f, v, i)+
3∑

l=1

µg
l g(α, v, i),

where µj(t) ≥ 0, j = 1, . . . , 6, µg
l (t) ∈ R, l = 1, 2, 3, and

H0(·) =
(
v1(t) . . . vn(t) h(f, v, 1) . . . h(f, v, n)

)T
.
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(iii) Endpoint Lagrange function

LL(x0, v0, xT , vT ) = νT
(
x1(0) . . . xn(0) 0 . . . xn(T )− x1(T )
v1(0) . . . vn(0) v1(T ) . . . vn(T )

)T

Then, from the Theorem “local minimum principle”, [45, Thm. 1], there exists a tuple of
multipliers (λ, µ1, . . ., µ6, ν) satisfying the below properties: λ : [0, T ]→ IR2n is a Lipschitz
continuous function, µj : [0, T ] → IR+, j = 1, . . . , 6, µg

l : [0, T ] → IR, j = 1, 2, 3, are
measurable bounded functions, ν > 0 is a vector; and such that the conditions (a) - (g) of
LMP hold true.

(a) the nonnegativity conditions

ν ≥ 0, µi ≥ 0, i = 1, . . . , 6, (6.55)

(b) the non-triviality condition

|ν|+
∫ T

0

6∑
j=1

µj(t)dt > 0, (6.56)

(c) the complementary slackness conditions: LL(x0, v0, xT , vT ) = 0,

(d) the pointwise complementary slackness conditions

µj(t)Gj(·) = 0 a.e. on [0, T ], j = 1, . . . , 6, (6.57)

(e) the adjoint equation

−λ̇(t) =
(

∂H̄
∂x (x

∗(t), v∗(t), f∗(t), α∗(t)) ∂H̄
∂v (x

∗(t), v∗(t), f∗(t), α∗(t))
)T

(6.58)

(f) the transversality conditions

λ(0) = −
(

∂LL

∂x0
(x∗(0), x∗(T )) ∂LL

∂v0
(x∗(0), x∗(T ))

)T
(6.59)

λ(T ) =
(

∂LL

∂xT
(x∗(0), x∗(T )) ∂LL

∂vT
(x∗(0), x∗(T ))

)T
(6.60)

(g) the stationarity condition of the extended Pontryagin function w.r.t. the control

∂H̄
∂α

(x∗(t), v∗(t), f∗(t), α∗(t)) = 0 a.e. on [0, T ], (6.61)

∂H̄
∂f

(x∗(t), v∗(t), f∗(t), α∗(t)) = 0 a.e. on [0, T ]. (6.62)
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With i = 1, 2, . . . , n, we have

∂H̄
∂α1,i

= λn+i

(
fi−1 − fi

m
− kg

)
− µ1vi, (6.63a)

∂H̄
∂α2,i

= λn+i

(
fi−1 − fi

m
+ kg

)
+ µ2vi, (6.63b)

∂H̄
∂α3,i

= µg
1vi − µ3(fi−1 − fi − kmg) + µ4(fi−1 − fi + kmg), (6.63c)

∂H̄
∂α4,i

= λn+i

(
fi−1 − fi

m
− kg

)
+ µg

2vi − µ
g
2vi − µ5(fi−1 − fi − kmg), (6.63d)

∂H̄
∂α5,i

= λn+i

(
fi−1 − fi

m
+ kg

)
+ µg

3vi + µ6(fi−1 − fi + kmg), (6.63e)

∂H̄
∂fi

= λn+i
α3,i − 1

m
+ µ3α3,i − µ4α3,i + µ5α4,i − µ6α5,i, (6.63f)

∂H̄
∂fi−1

= λn+i
1− α3,i

m
− µ3α3,i + µ4α3,i − µ5α4,i + µ6α5,i = −

∂H̄
∂fi

. (6.63g)

Then, using the stationarity conditions (6.61-6.62), we obtain

µ1vi = λn+i

(
fi−1 − fi

m
− kg

)
, (6.64a)

µ2vi = −λn+i

(
fi−1 − fi

m
+ kg

)
= −µ1vi − 2λn+ikg, (6.64b)

0 = µg
1vi − µ3(fi−1 − fi − kmg) + µ4(fi−1 − fi + kmg), (6.64c)

0 = − (fi−1 − fi − kmg)
(
λn+i

m
− µ5

)
, (6.64d)

0 = − (fi−1 − fi + kmg)

(
λn+i

m
+ µ6

)
, (6.64e)

0 = λn+i
1− α3,i

m
− µ3α3,i + µ4α3,i − µ5α4,i + µ6α5,i. (6.64f)

From the pointwise complementary conditions (6.57) and the fact that Gj(·) is an inactive
constraint, j /∈ I, one obtains µj(t) = 0, j /∈ I. Note that here f0 = fn = 0, and n ≥ 3.
Case: vi = 0, i = 1, n, i.e., I = {1, 2, 3, 5}, αi = (0, 0, 0, 1, 0), where we choose α4,i = 1.
The conditions (6.64c-6.64e) help us obtain

|fi−1 − fi| = kmg, (6.65)

therein we assume that µ3 ̸= 0 and λn+i ̸= 0, for i = 1, . . . , n. Then we obtain

v̇i(t) = 0⇔ vi(t) = 0, t ∈ [0, tn] \ [ti−1, ti]. (6.66)
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Case: vi ̸= 0, i = 1, 2, . . . , n. We consider the cases vi > 0 and vi < 0. From (6.64a-6.64b),
and remember that vi(T ) = 0, i = 1, n, we can imply

v̇i(t) =
fi−1 − fi

m
− kg sgn(vi(t)) =

{
−kg if vi > 0,

(n− 2)kg if vi < 0

⇔ vi(t) =

{
kg(T − t) if t ∈ [tn, T ],

(n− 2)kgt if t ∈ [ti−1, ti],
(6.67)

where the stopping time of the ith point is determined by ti =
√
it1, i = 1, n, and then the

time of the speed-up of center of mass can be used to obtain

ti =

√
ni

2(n− 1)
T, i = 0, n. (6.68)

Finally, from (6.66), and (6.67), we deduce that the motion the system of points is determined
by the following relations

vi(t) =


(n− 2)kgt, if t ∈ [ti−1, ti],

0, if t ∈ [0, tn] \ [ti−1, ti], i = 1, n,

kg(T − t), if t ∈ [tn, T ].

(6.69)

where ti, i = 0, n, is defined by (6.68).

Remark 39. We obtain the same result by comparing with [54, Eq. 2.16] for n ≥ 3.

6.3.4 Numerical Solution
We consider a system consisting of n = 3 material points which lie along a horizontal straight
line. More descriptions in details can see in the previous subsections of Section 6.3. In this
section, we use the following parameters, see Tab. 6.2, in order to find the motion of a system
of point to maximizes the displacement of the system (6.51), in the case where this motion is
governed by (6.45) and (6.47), takes the system from state (6.48) to (6.49) with T = 10(s),
and xi(T ) = x1(T ) = 10(m), i = 2, 3, and a staring control forces f1 = 2(N), f2 = 4(N).
We solve problem (6.54) with above parameters and remembering that f0 = f3 = 0(N).

Table 6.2: Parameters of the mechanical model with dry friction, therein “–” means no unit,
and i = 1, n.

Physical quantity Identifier Value Unit
Number of points n 3 –
Free fall acceleration g 9.8 m/s/s
Identical point’s mass m 1 kg
Friction coefficient k 0.5 –
Friction/control force Fi/fi N

We obtain the maximal displacement is 94.514(m) by MUSCOD-II, see Figure 6.5. For more
details, readers can see at https://github.com/DuyTranHD/OCPswitched. Note that here
we also use further relaxed ε for mixed constraints of problem (6.54), similarly to Subsection
6.2.5.
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Figure 6.5: Positions of three points: x1 (top left), x2 (top middle), and x3(top right).
Velocity of three points: v1 (bottom left), v2 (bottom middle), and v3(bottom right).
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Chapter 7

Overview and Outlook

7.1 Overview

SwOCP

Convexified
SwOCP

qRC.SwOCP
(quadratic terms in VCs)

lRC.SwOCP
(linear terms in VCs)

Optimal controls

ruleFilippov’s

relaxationconvex hull

reformulation
direct
multiple shooting

regularity

neighboring feedback
LMP

CQs
reformulation
linearized

switching point alg./SAR-NFL
feedback alg./active set method

Figure 7.1: Dissertation overview diagram.

The general framework to solve SwOCPs is presented, as well as such problems that
appear in real-life applications, like e.g., the subway problem, the flat hybrid automation with
a DC electrical network, and dry friction problems. Through specially tailored Filippov’s
rule and relaxation, SwOCP is reformulated, and the resulting problem is then solved in two
approaches.

As an indirect approach, the Maximum Principle takes the role of solving the SwOCP
efficiently. From the local maximum principle, the optimality conditions are obtained by
exploiting relaxed reformulations; therein, Filippov’s rule is exploited carefully with further
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convex hull relaxation, which allows us to treat the switches (i.e., the integer controls) exactly
without using the rounding schemes. Numerical applications are considered in the subway
problem and some instances of dry friction: a system of material points in a straight line
with dry friction, and a point mass on a rough plane.

The direct approach with the direct multiple shooting method is proposed as the sec-
ond approach that gives rise to Nonlinear Programming reformulations solved through a
specially tailored SQP algorithm, wherein the regularity of the constraint qualifications is
checked carefully. By employing the block structure of the quadratic programming subprob-
lem in some special cases, one shows that the switches can be treated from the derivative
with respect to the discretized state trajectory, which is confirmed by the active set method
for vanishing constraints. Furthermore, a neighboring feedback law is proposed to obtain
feedback controls. Subsequently, the CIA is considered as another approach to reformulating
the SwOCP. As a state-of-the-art direct approach to treating switching points effectively,
a switching point algorithm is proposed, which comes from discontinuous dynamics. Some
applications are considered to illustrate the efficiency of the approach and include the sub-
way problem, the flat hybrid automaton with a DC electrical network, and the dry friction
problems.

Some auxiliary results, and open problems, such as the Gröbner basis approach, a concept
about over-under estimating, and the Competing Hamiltonian algorithm, are considered in
the Appendices.

7.2 Outlook
In future work for the feedback algorithm and condensing procedure with block structure
for the QP subproblem, OCPs with vanishing constraints will be investigated for the general
case. Furthermore, by considering the general case (not just the scalar function) of the
switching function, and the path constraints will be taken in SwOCP, the general results will
be established. Therefore, one can treat the switches directly to the derivatives of the point
constraints and path constraints.

The case when the control u enters nonlinearly into the right hand side function of ODE of
SwOCP (or SOCP), remains an open question for further investigation. Thus, future research
will cover this problem by considering the reformulation and relaxation of Filippov’s rule
in some special structures of SwOCP (or SOCP).

The new reformulation for the mixed state-control constraints of SwOCP may be pro-
posed, which is based on the analytical regular property of these constraints. One can apply
it for other types of OCP, and some respective numerical tests for dry friction problems will
also be considered.

Instead of using FD to generate derivatives, automatic differentiation (AD) can be used
to improve the approximation. Moreover, internal numerical differentiation (IND) can help
to freeze adaptive components. In future studies, we may apply this concept to numerical
examples and compare the findings to those in this dissertation to demonstrate that the
quality of our approach will be slightly better with AD.

Some open problems to work on are considered in Appendix B, including the Gröbner
Basis Approach for solving SwOCP, and an idea about over-under estimating switches. This
general heuristic approach will be developed to be more efficient and widely adopted.
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Appendix A

Auxiliary Results

This appendix collects all auxiliary theories, and auxiliary numerical results.

A.1 An Example of Incorrect OCP

We start with an example as follows

min ∥x(tf )∥22

s.t. ẋ(t) =

{
b+u(t), if dTx(t) > 0;

b−u(t), if dTx(t) < 0;

|u(t)| ≤ 1, t ∈ [0, tf ], x(0) = x0,

(A.1)

where tf = 3, d =
(
1 −1

)T , b+ =
(
−1 0

)T , b− =
(
0 1

)T , x0 =
(
2 1

)T , x ∈ R2.
Problem (A.1) with a discontinuous right hand side under the solution of the ODE, we hence
will consider the solution according to Filippov. Then we get a corresponding problem

min ∥x(tf )∥22

s.t. ẋ(t) =


b+u(t), if dTx(t) > 0;

b−u(t), if dTx(t) < 0;

(α(t)b− + (1− α(t))b+)u(t), if dTx(t) = 0; α(t) ∈ [0, 1],

|u(t)| ≤ 1, x(0) = x0,
t ∈ [0, tf ].

(A.2)

Problem (A.2) can be rewritten in the equivalent form

min ∥x(tf )∥22
s.t. ẋ(t) = (α(t)b− + (1− α(t))b+)u(t), t ∈ [0, tf ], x(0) = x0,

|u(t)| ≤ 1, α(t) ∈ [0, 1], α(t)dTx(t) ≤ 0, (1− α(t))dTx(t) ≥ 0, t ∈ [0, tf ].
(A.3)

Note that in problem (A.3), it is easy to show that the set of admissible velocity

U := {v ∈ R2 : v = (αb− + (1− α)b+)u, α ∈ [0, 1], |u| ≤ 1} (A.4)
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is non-convex. Therefore, problem (A.3) may not have a solution or be incorrect which we
will show now. Together with the problem (A.3) we consider the following problem, where
the set U is replaced by its convex hull conv(U):

min ∥x(tf )∥22
s.t. ẋ(t) = γ1(t)(b− + b+) + γ2(t)(b− − b+)− b−, x(0) = x0,

γj(t) ∈ [0, 1], j = 1, 2,
(γ1(t) + γ2(t)− 1)2dTx(t) ≤ 0, (γ2(t)− γ1(t))2dTx(t) ≥ 0,

t ∈ [0, tf ]. (A.5)

In the problem (A.5) the control

γ01(t) = 1, γ02(t) = 0, t ∈ [0, 1]; γ01(t) = 0.5, γ02(t) = 0, t ∈ [1, 3],

together with the corresponding trajectory x0(t), t ∈ [0, 3],

x01(t) = 2− t, x02(t) = 1, t ∈ [0, 1]; x01(t) = 1− (t− 1)/2, x02(t) = 1− (t− 1)/2, t ∈ [1, 3],

satisfy the relations

dTx0(t) = 1− t ≥ 0, t ∈ [0, 1]; dTx0(t) = 0, t ∈ [1, 3]; x0(tf ) = 0.

Hence the control γ0(t), t ∈ [0, 3], is feasible and optimal in the problem (A.5).
Let us come back to the problem (A.3). It is easy to show that the cost functional value

in the problem (A.3) and consequently in the problem (A.2) is greater than zero for each
feasible control. For example, the control

u∗(t) = 1, t ∈ [0, 1], u∗(t) = 0, t ∈ [1, 3], α∗(t) = 0, t ∈ [0, 3],

is feasible, its cost functional has value zero, hence it is optimal in the problem (A.3).
To show that the problem (A.3) is incorrect, we construct a control

u(ε)(t), α(ε)(t), t ∈ [0, 3]

such that for any ε > 0 it satisfies the following constraints

|u(ε)(t)| ≤ 1, α(ε)(t) ∈ [0, 1], t ∈ [0, 3]

the corresponding trajectory x(ε)(t), t ∈ [0, 3], satisfies the mixed constraints in the problem
(A.3) with the accuracy ε and the cost functional is equal to zero. For this purpose, we
choose an integer parameter M > 0 and define time points at the interval [0, 3] as follows:

τj = 1 + jh = 1 + j/M, j = 0, 1, . . . , 2M, h = 1/M.

The controls αM (t), uM (t), t ∈ [0, 3], are constructed by the following rule

αM (t) = 0, uM (t) = 1, t ∈ [0, 1],

αM (t) = 1, uM (t) = −1, t ∈ [τ2j , τ2j+1),

αM (t) = 0, uM (t) = 1, t ∈ [τ2j+1, τ2(j+1)), j = 0, 1, . . . ,M − 1.
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The corresponding trajectory xM (t), t ∈ [0, 3], in the problem (A.3) is

xM1 (t) = 2− t, xM2 (t) = 1, t ∈ [0, 1],

xM1 (t) = xM1 (τ2j), x
M
2 (t) = xM1 (τ2j)− (t− τ2j), t ∈ [τ2j , τ2j+1),

xM1 (t) = xM1 (τ2j)− (t− τ2j+1), x
M
2 (t) = xM2 (τ2j+1), t ∈ [τ2j+1, τ2(j+1)), j = 0, 1, . . . ,M − 1.

Hence the following equalities hold true

xM1 (τ2j) = xM2 (τ2j), j = 0, 1, . . . ,M,

dTxM (t) = xM1 (t)− xM2 (t) = 1− t, t ∈ [0, 1],

dTxM (t) = xM1 (t)− xM2 (t) = t− τ2j , t ∈ [τ2j , τ2j+1),

dTxM (t) = xM1 (t)− xM2 (t) = h− (t− τ2j+1), t ∈ [τ2j+1, τ2(j+1)), j = 0, 1, . . . ,M − 1,

which means that

0 ≤ dTxM (t), t ∈ [0, 1]; 0 ≤ dTxM (t) ≤ h = 1/M, t ∈ [1, 3].

Thus the control αM (t), uM (t), t ∈ [0, 3], and the corresponding xM (t), t ∈ [0, 3], in the
problem (A.3) satisfy mixed constraints with the accuracy h = 1/M and the cost functional
is equal to zero. For M → ∞ the trajectory xM (t), t ∈ [0, 3], converges to the optimal
trajectory x0(t), t ∈ [0, 3], of the problem (A.5), however the control αM (t), uM (t), t ∈ [0, 3],
does not have a “resonable” limit. This shows that the problem (A.3) is incorrect.

A.2 Numerical Example with Filippov’s Solution
This section will continue to discuss problem (A.1). As a result, we get the problem

min ∥x(tf )∥22
s.t. ẋ(t) = (β2(t)b− + β1(t)b+)u(t), t ∈ [0, tf ],

x(0) = x0,
α(t) ∈ [0, 1], α(t)dTx(t) ≤ 0, (1− α(t))dTx(t) ≥ 0, t ∈ [0, tf ],
|β1(t)| ≤ α(t), |β2(t)| ≤ (1− α(t)), t ∈ [0, tf ].

(A.6)

We will solve (A.3) and (A.6) numerically by using MUSCOD-II. We start by writing them in
numerical-details form

min ∥x(3)∥22
s.t. ẋ(t) =

(
1− α(t) α(t)

)T
u(t), t ∈ [0, 3],

x(0) = x0 =
(
2 1

)T
, |u(t)| ≤ 1, α(t) ∈ [0, 1], t ∈ [0, 3],

α(t)(x1(t)− x2(t)) ≤ 0, (1− α(t))(x1(t)− x2(t)) ≥ 0, t ∈ [0, 3],

(A.7)

min ∥x(3)∥22
s.t. ẋ(t) =

(
−β1(t) β2(t)

)T
u(t), t ∈ [0, 3],

x(0) = x0 =
(
2 1

)T
, |u(t)| ≤ 1, α(t) ∈ [0, 1], t ∈ [0, 3],

α(t)(x1(t)− x2(t)) ≤ 0, (1− α(t))(x1(t)− x2(t)) ≥ 0, t ∈ [0, 3],
|β1(t)| ≤ α(t), |β2(t)| ≤ (1− α(t)), t ∈ [0, 3].

(A.8)
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Code, data, and result files (see https://github.com/DuyTranHD/OCPswitched) are saved
under names: simple-test and simple-test-2, which are corresponding with (A.7) and (A.8),
respectively. Then one obtains the optimal solution, see Tab. A.1, which shows that it has
the strong significant (in the computation time and the number of SQP iterations) when
dealing with multiple shooting.

Table A.1: Comparison between incorrect and correct application of Filippov’s rule.
Therein, control (u, α, β1, β2), state trajectory (x1, x2), and computing time is counted in
second, and # means infeasible solution. In the multiple shooting method, 50 shooting in-
tervals are hired.

Content One time of convexification Two times of convexification
Multiple shooting 29 SQP iterations 6 SQP iterations
Objective 8.027E + 00 1.678E − 11
Control # (−9.523E − 13, 3.686E − 17, 1.037E − 08,−8.620E − 10)
State trajectory # (−2.514E − 06, 3.235E − 06)
Convergence error convergence achieved
Computing time 5.286 0.436

A.3 Competing Hamiltonian Approach
In this section, we consider the OCP with integer controls in the formulation as follows

min
x(·),u(·),α(·)

m (x(tf )) +
∫ tf
t0
l(x(t), u(t))

s.t. ẋ(t) = F (x(t), u(t), αw(t)),
0 ≤ r (x(t0), x(tf )) ,∑

w∈W αw(t) = 1, 0 ≤ αw(t) ≤ 1,
u ∈ U , w ∈ W, t ∈ T = [t0, tf ],

(A.9)

where F (x(t), u(t), α(t)) :=
∑

w∈W αw(t) (f+ (x(t), u(t), w) + f− (x(t), u(t), w)).
We firstly would like to write down the maximum principle for problem (A.9).
The Hamilton function (augmented-extended Pontryagin function) of SwOCP (A.9) is

H̄(x, u, α, λ) = λTF (x, u, α) + δT l(x, u),

Ψ(tf , x, ρ) = m(x(tf ))− ρ r(x(t0), x(tf )),

where α = [ασ αw]. As the principal approach, the LMP reads

ẋ(t) = F (x(t), u(t), α(t)),

λ̇(t) = −∂H̄
T

∂x
= −∂F

T (x(t), u, α)

∂x
λ(t)− δ ∂l

T (x(t), u)

∂x
,

x(t0) = x0,

with the terminal condition of the costates

λ(tf ) = −
∂ΨT (tf , x(t), ρ)

∂x
= −∂m

T (x(tf ))

∂x
+ ρ

∂r(x(t0), x(tf ))

∂x
,
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if tf is free, we have in addition

H̄|t=tf =
∂Ψ(tf , x(tf ), ρ)

∂tf
=
∂m(x(tf ))

∂tf
− ρ∂r(x(t0), x(tf ))

∂tf
.

The controls u and α must be determined as u∗(x(t), λ(t)) and α∗(x(t), λ(t)) such that the
Hamiltonian is maximized everywhere

{u∗, α∗} = arg max
u∈U,α∈[0,1]2

nw
{H̄(x(t), u, α, λ(t))} a.e. on [t0, tf ]

This means that for every t ∈ [t0, tf ] a finite optimal control problem must be solved.
To track the integer controls w, we use the so-called Competing Hamiltonians approach,

which has to our knowledge first been successfully applied to the optimization of operation
of subway trains with discrete acceleration stages in New York by Bock and Longman,
see [20, 21]. We recall that the discrete controls w ∈ W = {w1, . . . , wnw}, and consider
continuous controls u ∈ U , α ∈ [0, 1]2

nw , and F = F (x, u, α, w). We will treat the controls
by introducing W = {w1, . . . , wnw

}.
The Competing Hamiltonians algorithm is described as follows.

1. For all w ∈ W determine

{u∗, α∗} = arg max
u∈U,α∈[0,1]2

nw
{H̄(x(t), u, α, λ(t))}

and solve the problem for the continuous controls. Then setting

hw := H̄(x, u∗, α∗
w, λ), w = w1, . . . , wnw

,

therein, hw are the Competing Hamiltonians.

2. Solve the Maximum Principle for the discrete control w

w∗(x, λ) = arg max
w∈W
{hw(x, λ,w)}.

Then the switches can be treated by the difference between the function with maximum
values and the function with values closest to the maximum function, so-called switching
functions

• define Qj := hŵ − hj ≥ 0, with ŵ is the current optimal value of w, and j ∈
W, j ̸= ŵ.

• monitor if one Qĵ has a zero, determine “switching point”, change from ŵ to ĵ,
and redefine the Qj .

Roots of this switching function indicate switched points from one optimal mode to the next.
To illustrate some how a switch is treated, we explain as follows.

1. Suppose that w1 is the current optimal value for w. We define switching functions
Qj := hw1

− hj , where j ̸= w1, j ∈ W. See Fig. A.1 for j = w2.

2. Check, if an equality Qj = 0 is hold, then one determines a switching point j, and
redefine Qj with j is the current optimal value for w. For instance, we start with
j = w2, see Fig. A.2. If no, one moves to next step.
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Figure A.1: Step 1 of the explanation.

Figure A.2: Step 2 of the explanation, where j = w2 is a switching point.

Figure A.3: Step 3 of the explanation.

3. One checks the switching condition for other point. For instance, we consider w3 and
check Qw3 = hw1 − hw3 , see Fig. A.3.

4. Keep doing this until there are no more points left.
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We obtain the following boundary value problem with switching function from the first
order necessary conditions of optimality (the Maximum Principle)

ẋ(t) = F (x(t), u(t), αw),

λ̇(t) = −∂H̄
T

∂x
= −∂F

T (x(t), u, α)

∂x
λ(t)− δ ∂l

T (x(t), u)

∂x
,

x(t0) = x0,

λ(tf ) = −
∂mT (x(tf ))

∂x
+ ρ

∂r(x(t0), x(tf ))

∂x
, (A.10)

{u∗, α∗} = arg max
u∈U,α∈[0,1]2

nw
{H̄(x(t), u, α, λ(t))} a.e. on [t0, tf ]

w∗(x, λ) = arg max
w∈W
{hw(x, λ,w)},

Qj = hŵ − hj = 0.

System (A.10) is solved with an advanced Multiple Shooting method, which is capable of
treating such multi-point boundary value problems. The controls are indirectly determined
by pointwise optimization of the Hamiltonian as functions of states and adjoints.

A.4 A Second-Order Sufficient Condition
This section covers a second-order sufficient condition for a Weak Local Minimum in an
OCP with mixed state-control constraints. Main proposed result and the proof of the main
theorem are considered in details.
Sufficient second-order conditions in optimal control are earlier investigated, see, for example,
[26, 27, 94, 129]. The most general results on sufficient conditions of the second order in
optimal control were published by Osmolovskii, see [98,99].
Now we will formulate sufficient conditions of the second order for a weak local minimum.
For more general, we consider OCP as follows:

min
x(·),u(·),α(·)

J(x, u, α) := m(x(0), x(T ))

s.t. ẋ(t) = F (x(t), u(t), α(t)) for a.a. t ∈ [0, T ],
G(x(t), α(t), ε) ≤ 0 for a.a. t ∈ [0, T ],
r(x(0), x(T )) ≤ 0.

(A.11)

where the mixed state-control constraints G(x(t), α(t)) is defined by

G(x(t), α(t), ε) =
(
−α(t)σ(x(t))− ε

(1− α(t))σ(x(t))− ε

)
with ε > 0 small enough. Denoting

q = (x(0), x(T )) = (x0, xT ), y = (x, u, α), Y = X × U × [0, 1].

The local minimum here is a weak local minimum.
Let ŷ = (x̂, û, α̂) ∈ Y is an admissible of (A.11). Set q̂ = (x̂(0), x̂(T )).
We recall the Hamiltonian and the augmented Hamiltonian of (A.11)

H(y, λ) = λF (x, u, α) = λF (y), H̄(y, λ, µ) = λF (y) + µG(x, α, ε).
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Set M0 = {t ∈ [0, T ] : G(x̂(t), α̂(t)) = 0}. Define the critical cone K as follows:

K = { y ∈ Y : ẋ(t) = ∇F (ŷ(t))y(t), ∂H
∂u

(ŷ(t), λ̂(t))u(t) = 0,
∂H
∂α

(ŷ(t), λ̂(t))α(t) = 0,

for a.a. t ∈ [0, T ];
∂G
∂α

(x̂(t), α̂(t), ε)α(t) ≤ 0 for a.a. t ∈M0

}
. (A.12)

Since the classical definition of a critical cone, we see that K can be defined in the following
equivalent way

K = { y ∈ Y : ∇m(q̂)q ≤ 0, ẋ(t) = ∇F (ŷ(t))y(t), a.e. on [0, T ],

∂G
∂α

(x̂(t), α̂(t), ε)α(t) ≤ 0 a.e. on M0

}
.

Note that the condition K = {0} is not sufficient for local minimality of ŷ. The counter
example can be seen in [100, Example 2.1]. Now let us formulate the assumptions for (A.11).

Assumption A.4.1 (on the regularity of mixed constraints). [45, Assumption RMC]
The mixed constraints G(x(t), α(t), ε) ≤ 0 are regular in the following sense: at any point
(x, α) satisfying relations G ≤ 0, the system of vectors ∂G

∂α (x, α, ε) is positively-linearly inde-
pendent.

Assumption A.4.2. The first order necessary optimality condition for a weak local mini-
mum for ŷ = (x̂, û, α̂) is fulfilled: there exist p̂ and λ̂ such that

(−p̂(0), p̂(1)) = ∇m(q̂), (A.13)

− λ̂(t) = ∂H
∂x

(ŷ(t), λ̂(t)) = λ̂(t)
∂F

∂x
(ŷ(t)) for a.a. t ∈ [0, T ], (A.14)

∂H̄
∂u

(ŷ(t), λ̂(t), µ̂(t)) = λ̂(t)
∂F

∂u
(ŷ(t)) = 0 for a.a. t ∈ [0, T ], (A.15)

∂H̄
∂α

(ŷ(t), λ̂(t), µ̂(t)) = λ̂(t)
∂F

∂α
(ŷ(t)) + µ̂(t)

∂G
∂α

(x̂(t), α̂(t), ε) = 0 for a.a. t ∈ [0, T ],

(A.16)

µ̂(t) ≥ 0 for a.a. t ∈ [0, T ], (A.17)
µ̂(t)G(x̂(t), α̂(t), ε) = 0 for a.a. t ∈ [0, T ]. (A.18)

Assumption A.4.3. There exist C > 0 and ϵ > 0 such that for a.a. t ∈ sm(ϵ) we have

H(x̂(t), û(t), α, λ̂(t))−H(x̂(t), û(t), α̂(t), λ̂(t)) ≥ C|α− α̂(t)|2

H(x̂(t), u, α̂(t), λ̂(t))−H(x̂(t), û(t), α̂(t), λ̂(t)) ≥ C|u− û(t)|2

whenever |α− α̂(t)| < ϵ, |u− û(t)| < ϵ, G(x, α, ε) ≤ 0. (A.19)

Therein this set of a small measure has the form

sm(ϵ) = {t ∈ [0, 1] : 0 < |∂H
∂α

(x̂(t), û(t), α̂(t), λ̂(t))| < ϵ, 0 < |∂H
∂u

(x̂(t), û(t), α̂(t), λ̂(t))| < ϵ},

(A.20)
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where ϵ > 0 is arbitrarily small.
We introduce the quadratic form:

Ω(y) := qT∇2m(q̂)q +

∫ T

0

y(t)T H̄(ŷ(t), λ̂(t), µ(t))y(t)dt, (A.21)

where q = (x(0), x(T )).

Assumption A.4.4. There exists c0 > 0 such that

Ω(y) ≥ c0
(
∥x∥2∞ + ∥u∥22 + |α|

2
)
∀y ∈ K. (A.22)

Proposition 4. Assumption A.4.4 is equivalent to the following one: there exists c0 > 0
such that

ω(y) +

∫ T

0

(
∂H
∂u

(ŷ(t), λ̂(t))v(u, t) +
∂H
∂α

(ŷ(t), λ̂(t))v(α, t)

)
dt ≥ c0(∥x∥2∞ + ∥u∥22 + |α|

2)

(A.23)

for all y = (x, u, α) ∈ K and for all v(·) ∈ L∞ such that v(u, t) ∈ T b(2)
U (û(t), u(t)), v(α, t) ∈

T
b(2)
A (α̂(t), α(t)) a.e. on M0, where

ω(y) =
1

2
qT∇2m(q̂)q +

1

2

∫ T

0

y(t)T
∂2H
∂y2

(ŷ(t), λ̂(t))y(t)dt,

and

T
b(2)
A (α̂(t), α(t)) = {v ∈ Rn :

∂G
∂α

(·, α̂, ε)v + 1

2
αT ∂

2H
∂α2

(·, α̂)α ≤ 0}

is the second-order tangent to the set A for the pair (α̂, α) ∈ R2n, see, for instance, [39].

A proof of the above proposition can be found in [100, pp. 156].
The main result of this subsection, the following theorem holds.

Theorem 16 (Sufficient second order condition). Let Assumption A.4.1 - A.4.4 be fulfilled.
Then there exist δ > 0 and c > 0 such that

J(y)− J(ŷ) ≥ c
(
∥x− x̂∥2 + ∥u− û∥2 + |α− α̂|

)
(A.24)

for all admissible y = (x, u, α) ∈ Y such that ∥y − ŷ∥ < δ.

Proof. The majority of the following proof is based on and modified from the proof in [100,
Sec. 3]. We omit the dependence on t for x, u, α, x̂, û, α̂, etc.
Step 1 For y = (x, u, α) ∈ Y we set ∆y = y − ŷ and γ(∆y) = ∥∆x∥2∞ + ∥∆u∥22 + |∆α|2.
Assume that condition (A.24) does not hold. Then, there is a sequence of admissible points
yn ̸= ŷ such that ∥yn − ŷ∥ → 0 and

∆nJ := J(yn)− J(ŷ) ≤ o(γn), (A.25)
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where γn = γ(∆yn) > 0, and ∆yn = (∆xn,∆un,∆αn) = yn − ŷ. Set ∆nF := F (yn)− F (ŷ).
Since ∆ẋn = ∆nF , we imply ∆nJ = ∆nJ +

∫ T

0
λ̂(∆nF −∆ẋn)dt.

Moreover,
∫ T

0
λ̂∆ẋndt = λ̂∆xn |T0 −

∫ T

0
λ̂∆xndt = ∇m(λ̂)∆qn +

∫ T

0
λ̂∂F

∂x (ŷ)∆xndt.
Therefore,

∆nJ = ∆nm−∇m(λ̂)∆qn +

∫ T

0

(λ̂∆nF − λ̂
∂F

∂x
(ŷ)∆xn)dt

= ∆nm−∇m(λ̂)∆qn +

∫ T

0

(∆nH−
∂H
∂x

(ŷ, λ̂)∆xn)dt, (A.26)

where ∆nH = H(yn, λ̂)−H(ŷ, λ̂).
Step 2 We have

∆nH := H(x̂+∆xn, û+∆un, α̂+∆αn, λ̂)−H(x̂, û, α̂, λ̂)

= H(x̂+∆xn, û+∆un, α̂+∆αn, λ̂)−H(x̂, û+∆un, α̂+∆αn, λ̂)−H(x̂, û, α̂, λ̂)

+H(x̂, û+∆un, α̂+∆αn, λ̂)−H(x̂, û, α̂+∆αn, λ̂) +H(x̂, û, α̂+∆αn, λ̂)

=
∂H
∂x

(x̂, û+∆un, α̂+∆αn, λ̂)∆xn +∆unH+∆αnH+ rn,

where ∥rn∥∞ = O(γn), ∆unH := H(x̂, û + ∆un, α̂ + ∆αn, λ̂) − H(x̂, û, α̂ + ∆αn, λ̂), and
∆αnH := H(x̂, û, α̂+∆αn, λ̂)−H(x̂, û, α̂, λ̂). Let ϵn ↘ 0. Set

sm(ϵn) = {t ∈ [0, 1] : 0 <

∣∣∣∣∂H∂α (x̂, û, α̂, λ̂)

∣∣∣∣ < ϵn, 0 <

∣∣∣∣∂H∂u (x̂, û, α̂, λ̂)

∣∣∣∣ < ϵ}.

Clearly, sm(ϵn) ⊂ M0 and meas sm(ϵn) → 0 as n → ∞. Since G(·, αn) ≤ 0 for all n, then,
from Assumption A.4.3, we have ∆αnH ≥ C|αn|2, and ∆unH ≥ C|un|2 for all sufficiently
large n. Therefore,∫

sm(ϵn)

∆αnH dt ≥ C
∫
sm(ϵn)

|αn|2dt,
∫
sm(ϵn)

∆unH dt ≥ C
∫
sm(ϵn)

|un|2dt.

Consequently,∫
sm(ϵn)

(
∆nH−

∂H
∂x

(x̂, û, α̂, λ̂)∆xn

)
dt ≥

∫
sm(ϵn)

∂H
∂x

(x̂, û+∆un, α̂+∆αn, λ̂)∆xndt

−
∫
sm(ϵn)

∂H
∂x

(x̂, û, α̂, λ̂)∆xndt+ C

∫
sm(ϵn)

(
|αn|2 + |un|2

)
dt+ o(γn).

Since ∫
sm(ϵn)

|∆αn| · |∆xn|dt ≤ ∥∆xn∥∞
√

meas sm(ϵn) |∆αn| = o(γn),∫
sm(ϵn)

|∆un| · |∆xn|dt ≤ ∥∆xn∥∞
√

meas sm(ϵn) ∥∆un∥2 = o(γn),
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we imply
∫
sm(ϵn)

(
∂H
∂x (x̂, û+∆un, α̂+∆αn, λ̂)− ∂H

∂x (x̂, û, α̂, λ̂)
)
∆xn = o(γn). Therefore,∫

sm(ϵn)

(
∆nH−

∂H
∂x

(x̂, û, α̂, λ̂)∆xn

)
dt ≥ C

∫
sm(ϵn)

(
|αn|2 + |un|2

)
dt+ o(γn). (A.27)

Step 3 Conditions (A.25)-(A.27) imply

o(γn) ≥ ∆nm−∇m(λ̂)∆qn +

∫ T

0

(∆nH−
∂H
∂x

(ŷ, λ̂)∆xn)dt

≥ 1

2
∆qTn∇2m(λ̂)∆qn + o(|∆qn|2) +

∫
[0,T ]\sm(ϵn)

(∆nH−
∂H
∂x

(ŷ, λ̂)∆xn)dt

+ C

∫
sm(ϵn)

(
|αn|2 + |un|2

)
dt+ o(γn). (A.28)

We set u′n := ∆unχsm(ϵn), ∆u
0
n := ∆un − u′n, ∆y0n := (∆xn,∆u

0
n,∆α

0
n), α′

n := ∆αχsm(ϵn),
∆α0 := ∆α − α′

n, γ0n := γ(∆y0n), and γ′n :=
∫ T

0
(|u′n|+ |α′

n|) dt =
∫
sm(ϵn)

(
|αn|2 + |un|2

)
dt.

Then we have γn = γ0n + γ′n. Further, set ∆0
nH := H(ŷ +∆y0n, λ̂)−H(ŷ, λ̂). Then∫

[0,T ]\sm(ϵn)

(∆nH−
∂H
∂x

(ŷ, λ̂)∆xn)dt =

∫
[0,T ]\sm(ϵn)

(∆0
nH−

∂H
∂x

(ŷ, λ̂)∆xn)dt

=

∫ T

0

(∆0
nH−

∂H
∂x

(ŷ, λ̂)∆xn)dt−
∫
sm(ϵn)

(∆0
nH−

∂H
∂x

(ŷ, λ̂)∆xn)dt.

Obviously, we have
∫
sm(ϵn)

(∆0
nH− ∂H

∂x (ŷ, λ̂)∆xn)dt = o(γn). Hence, we get∫
[0,T ]\sm(ϵn)

(∆nH−
∂H
∂x

(ŷ, λ̂)∆xn)dt =

∫ T

0

(∆0
nH−

∂H
∂x

(ŷ, λ̂)∆xn)dt+ o(γn). (A.29)

Note that ∂H
∂y (ŷ, λ̂)∆y

0
n = ∂H

∂x (ŷ, λ̂)∆xn + ∂H
∂u (ŷ, λ̂)∆u

0
n + ∂H

∂α (ŷ, λ̂)∆α0
n. Therefore, relations

(A.28) and (A.29) imply

o(γn) ≥
1

2
∆qTn∇2m(λ̂)∆qn +

∫ T

0

(∆0
nH−

∂H
∂x

(ŷ, λ̂)∆xn)dt+ Cγ′n

=
1

2
∆qTn∇2m(λ̂)∆qn +

∫ T

0

(∆0
nH−

∂H
∂x

(ŷ, λ̂)∆xn)dt

+

∫ T

0

(
∂H
∂u

(ŷ, λ̂)∆u0n +
∂H
∂α

(ŷ, λ̂)∆α0
n

)
dt+ Cγ′n.

Since ∆0
nH− ∂H

∂y (ŷ, λ̂)∆y
0
n = 1

2

(
∆y0n

)T ∂2H
∂y2 (ŷ, λ̂)∆y

0
n + o(|∆y0n|2), we obtain from here that

o(γn) ≥
1

2
∆qTn∇2m(λ̂)∆qn +

∫ T

0

(
∆y0n

)T ∂2H
∂y2

(ŷ, λ̂)∆y0ndt

+

∫ T

0

(
∂H
∂u

(ŷ, λ̂)∆u0n +
∂H
∂α

(ŷ, λ̂)∆α0
n

)
dt+ Cγ′n,

136



or, equivalently,

ω(∆y0n) +

∫ T

0

(
∂H
∂u

(ŷ, λ̂)∆u0n +
∂H
∂α

(ŷ, λ̂)∆α0
n

)
dt+ Cγ′n ≤ o(γn), (A.30)

where ω(y) = 1
2q

T∇2m(q̂)q + 1
2

∫ T

0
y(t)T ∂2H

∂y2 (ŷ(t), λ̂(t))y(t)dt.
Step 4 Since ω(∆y0n) ≤ O(γ0n) ≤ O(γn), relation (A.30) implies∫ T

0

(
∂H
∂u

(ŷ, λ̂)∆u0n +
∂H
∂α

(ŷ, λ̂)∆α0
n

)
dt ≤ O(γn). (A.31)

Further, condition G(·, α̂+∆α0
n) ≤ 0 yields ∆0

αnH ≥ C|∆αn|2, ∆0
unH ≥ C|∆un|2, and then

∂H
∂α

(ŷ, λ̂)∆α0
n ≥ O(|∆α0

n|2),
∂H
∂u

(ŷ, λ̂)∆u0n ≥ O(|∆u0n|2), a.e. on M0.

It follows that(
∂H
∂α

(ŷ, λ̂)∆α0

)−

≤ O(|∆α0
n|2),

(
∂H
∂u

(ŷ, λ̂)∆u0n

)−

≤ O(|∆u0n|2) a.e. on M0, (A.32)

where a− = max{−a, 0}, a+ = max{a, 0}, a = a+ − a− for a ∈ R.
Let us analysis conditions (A.31) and (A.32). We rewrite (A.31) in the following form∫ T

0

[(
∂H
∂u

(ŷ, λ̂)∆u0n

)+

+

(
∂H
∂α

(ŷ, λ̂)∆α0
n

)+
]
dt

−
∫ T

0

[(
∂H
∂u

(ŷ, λ̂)∆u0n

)−

+

(
∂H
∂α

(ŷ, λ̂)∆α0
n

)−
]
dt ≤ O(γn). (A.33)

Since, combine with (A.32), we imply
∫ T

0

[(
∂H
∂u (ŷ, λ̂)∆u

0
n

)+
+
(

∂H
∂α (ŷ, λ̂)∆α0

n

)+]
dt ≤ O(γn).

Consequently,∫ T

0

(∣∣∣∣∂H∂u (ŷ, λ̂)∆u0n

∣∣∣∣+ ∣∣∣∣∂H∂α (ŷ, λ̂)∆α0
n

∣∣∣∣) dt ≤ O(γn). (A.34)

Step 5 Condition G(·, α̂+∆α0
n) ≤ 0 yields

∂G
∂α

(·, α̂, ε)∆α0
n +

1

2
(∆α0

n)
T ∂

2G
∂α2

(·, α̂, ε)∆α0
n ≤ o(|∆α0

n|2) a.e. on M0, (A.35)

By multiplying this equality with λ̂ ≥ 0 and by taking into account µ̂∂G
∂α (·, α̂) = −

∂H
∂α (ŷ, p̂),

we obtain

−∂H
∂α

(ŷ, λ̂)∆α0
n +

1

2
λ̂(∆α0

n)
T ∂

2G
∂α2

(·, α̂, ε)∆α0
n ≤ o(|∆α0

n|2) a.e. on M0, (A.36)

with −
∫ T

0
∂H
∂α (ŷ, λ̂)∆α0

ndt+
∫ T

0
µ̂
2 (∆α

0
n)

T ∂2G
∂α2 (·, α̂, ε)∆α0

ndt ≤ o(γn).
Upon putting this inequality to (A.30) and using H̄(y, λ, µ) = λF (y) + µG(x, α, ε), we get

Ω(∆α0
n) + Cγ′n ≤ o(γn). (A.37)
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In the following G(·, α) := G(x, α, ε). Now, with γn > 0 for all n, we consider two possible
cases:

(i) lim inf
γ0n
γn

= 0, (ii) lim inf
γ0n
γn

> 0.

Step 6 In case (i), there is a subsequence such that γ0n/γn → 0 in this subsequence. As-
sume that the sequence itself satisfies this condition. Then, γ0n = o(γn). Since, obviously,
|Ω(∆y0n)| ≤ O(γ0n), condition (A.37) implies

Cγ′n ≤ o(γn) +O(γ0n) = o1(γn),

i.e., γ′n = o(γn). The latter contradicts the conditions γ0n = o(γn) and γ0n + γ′n = γn > 0.
Step 7 Case (ii) is the main case, where γn = O(γ0n). Let us rewrite (A.30) in the form

γ0n
γn
·
ω(∆y0n) +

∫ T

0

(
∂H
∂u (ŷ, λ̂)∆u

0
n + ∂H

∂α (ŷ, λ̂)∆α0
n

)
dt

γ0n
+
γ′n
γn
· C ≤ o(1).

Thus, it follows

min

ω(∆y
0
n) +

∫ T

0

(
∂H
∂u (ŷ, λ̂)∆u

0
n + ∂H

∂α (ŷ, λ̂)∆α0
n

)
dt

γ0n
, C

 ≤ o(1).
Since C > 0, we obtain

ω(∆y0n) +
∫ T

0

(
∂H
∂u (ŷ, λ̂)∆u

0
n + ∂H

∂α (ŷ, λ̂)∆α0
n

)
dt

γ0n
≤ o(1),

or, equivalently,

ω(∆y0n) +

∫ T

0

(
∂H
∂u

(ŷ, λ̂)∆u0n +
∂H
∂α

(ŷ, λ̂)∆α0
n

)
dt ≤ o(γ0n). (A.38)

Note that in general, ∆y0n does not belong to the critical cone K. We find a sequence
δyn ∈ K, which is "close" in some sense to ∆y0n, and then we use condition (A.38) to analyze
this condition by using Assumption (A.4.4).
Step 8 Set

M+

(
∂H
∂u

)
:= {t ∈ [0, T ] :

∣∣∣∣∂H∂u (x̂, û, α̂, λ̂)

∣∣∣∣ > 0},

M+

(
∂H
∂α

)
:= {t ∈ [0, T ] :

∣∣∣∣∂H∂α (x̂, û, α̂, λ̂)

∣∣∣∣ > 0},

M+

(
∂H
∂u

, ϵn

)
:= {t ∈ [0, T ] :

∣∣∣∣∂H∂u (x̂, û, α̂, λ̂)

∣∣∣∣ ≥ ϵn},
M+

(
∂H
∂α

, ϵn

)
:= {t ∈ [0, T ] :

∣∣∣∣∂H∂α (x̂, û, α̂, λ̂)

∣∣∣∣ ≥ ϵn},
M0

(
∂H
∂u

)
:= {t ∈M0 :

∂H
∂u

(x̂, û, α̂, λ̂) = 0},

M0

(
∂H
∂α

)
:= {t ∈M0 :

∂H
∂α

(x̂, û, α̂, λ̂) = 0}.
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Then

M0 =M0

(
∂H
∂u

)
∪M+

(
∂H
∂u

)
∪M0

(
∂H
∂α

)
∪M+

(
∂H
∂α

)
=M0

(
∂H
∂u

)
∪M+

(
∂H
∂u

, ϵn

)
∪ sm(ϵn) ∪M0

(
∂H
∂α

)
∪M+

(
∂H
∂α

, ϵn

)
. (A.39)

In view of (A.35), there exists α̃1n and ũ1n such that

α̃1nχM0(
∂H
∂α ) = α̃1n,

∂G
∂α

(·, α̂, ε)(∆α0
n + α̃1n)χM0(

∂H
∂α ) ≤ 0, (A.40)

ũ1nχM0(
∂H
∂u ) = ũ1n, |α̃1n| ≤ O(|∆α0

n|2), |ũ1n| ≤ O(|∆u0n|2). (A.41)

hereinafter χM stands for the characteristic function of M , and therefore,

|α̃1n| ≤ O(γn), |α̃1n| ≤ O(|∆αn|2) = o(1), (A.42)

∥ũ1n∥1 ≤ O(γn), ∥ũ1n∥∞ ≤ O(∥∆un∥2∞) = o(1).

Moreover, one sets

∂H
∂u

0

=
∂H
∂u (ŷ, λ̂)∣∣∣∂H∂u (ŷ, λ̂)∣∣∣ , t ∈M+

(
∂H
∂u

)
,

∂H
∂α

0

=
∂H
∂α (ŷ, λ̂)∣∣∣∂H∂α (ŷ, λ̂)

∣∣∣ , t ∈M+

(
∂H
∂α

)
.

There exists α̃2n and ũ2n such that

α̃2nχM+( ∂H
∂α ,ϵn)

= α̃2n, H(ŷ, λ̂)
(
∆α0

n + α̃2n

)
χM+( ∂H

∂α ,ϵn)
, (A.43)

ũ2nχM+( ∂H
∂u ,ϵn)

= ũ2n, H(ŷ, λ̂)
(
∆u0n + ũ2n

)
χM+( ∂H

∂u ,ϵn)
,

|α̃2n| ≤ O
(∣∣∣∣∂H∂α 0

(ŷ, λ̂)∆α0
n

∣∣∣∣)χM+( ∂H
∂α ,ϵn)

≤ 1

ϵn
O

(∣∣∣∣∂H∂α 0

(ŷ, λ̂)∆α0
n

∣∣∣∣)χM+( ∂H
∂α ,ϵn)

,

|ũ2n| ≤ O
(∣∣∣∣∂H∂u 0

(ŷ, λ̂)∆u0n

∣∣∣∣)χM+( ∂H
∂u ,ϵn)

≤ 1

ϵn
O

(∣∣∣∣∂H∂u 0

(ŷ, λ̂)∆u0n

∣∣∣∣)χM+( ∂H
∂u ,ϵn)

.

Consequently, |α̃2n| ≤ O(|∆αn|) = o(1), and ∥ũ2n∥∞ ≤ O(∥∆un∥∞) = o(1).
Taking into account the estimation (A.34), we imply

|α̃2n| ≤
1

ϵn
O(γn), ∥ũ2n∥1 ≤

1

ϵn
O(γn). (A.44)

Choose ϵn > 0 such that

∥∆yn∥∞
ϵn

→ 0. (A.45)

Then, one implies 1
ϵn
O(γn) = o(

√
γn). Consequently,

|α̃2n| = o(
√
γn), ∥ũ2n∥1 = o(

√
γn). (A.46)
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Set α̃n = α̃1n + α̃2n, and ũn = ũ1n + ũ2n. Then |α̃n| ≤ O(|∆αn|) = o(1), ∥ũn∥∞ ≤
O(∥∆un∥∞) = o(1), and

|α̃n| = o(
√
γn), |α̃n|2 ≤ |α̃n| |α̃n| ≤

|α̃n|
ϵn

O(γn) = o(γn), (A.47)

∥ũn∥1 = o(
√
un), ∥ũn∥22 ≤ ∥ũn∥∞ ∥ũn∥1 ≤

∥ũn∥∞
ϵn

O(γn) = o(γn).

Moreover, since (A.39), (A.40), and (A.43), we have

∂G
∂α

(·, α̂)(∆α0
n + α̃n) ≤ 0,

∂G
∂u

(·, α̂)(∆u0n + ũn) ≤ 0 a.e. on M0, (A.48)

∂H
∂α

(ŷ, λ̂)(∆α0
n + α̃n) = 0,

∂H
∂u

(ŷ, λ̂)(∆u0n + ũn) = 0. (A.49)

Set ᾱn = −α′
n + α̃n, δαn = ∆αn + ᾱn = ∆α0

n + α̃n, and ūn = −α′
n + ũn, δun = ∆un + ūn =

∆u0n + ũn. Then

∂G
∂α

(·, α̂)δαn ≤ 0,
∂G
∂u

(·)δun ≤ 0 a.e. on M0,
∂H
∂α

(ŷ, λ̂)δαn = 0,
∂H
∂u

(ŷ, λ̂)δun = 0. (A.50)

Note that |α′
n| ≤

√
meas sm(ϵn) |α′

n| = o(|α′
n|) = o(

√
γ′n) = o(

√
γn), and

∥u′n∥1 ≤
√
meas sm(ϵn) ∥u′n∥2 = o(∥u′n∥2) = o(

√
γ′n) = o(

√
γn). Therefore,

|ᾱn| = o(
√
γn), ∥ūn∥1 = o(

√
γn). (A.51)

Step 9 The equation ∆ẋn = ∆nF implies

∆ẋn =
∂F

∂x
(ŷ)∆xn +

∂F

∂u
(ŷ)∆un +

∂F

∂α
(ŷ)∆αn +O(|∆yn|2). (A.52)

There exists δxn such that

δẋn =
∂F

∂x
(ŷ)∆xn +

∂F

∂u
(ŷ)∆un +

∂F

∂α
(ŷ)∆αn, δxn(0) = ∆xn(0). (A.53)

Then, it follows from Eq. (A.52) and Eq. (A.53) that δxn = ∆xn + x̄n, where x̄n satisfies

˙̄x =
∂F

∂x
(ŷ)∆xn +

∂F

∂u
(ŷ)∆un +

∂F

∂α
(ŷ)∆αn −O(|∆yn|2), x̄n(0) = 0.

This implies the following estimation

∥x̄n∥∞ ≤ O(∥ūn∥1) +O(|ᾱn|) +O(|∆yn|22) = o(
√
γn). (A.54)

Set ȳn = (x̄n, ūn, ᾱn), and δyn = (δxn, δun, δαn) := ∆y0n + ȳn. Then, according to (A.50)
and (A.53), we see that

δyn ∈ K. (A.55)

Step 10 Let us compare ω(δyn) with ω(∆y0n). We have

(δyn)
T ∂2H
∂y2

(ŷ, λ̂)δyn =
(
∆y0n + ȳn

)T ∂2H
∂y2

(ŷ, λ̂)
(
∆y0n + ȳn

)
=
(
∆y0n

)T ∂2H
∂y2

(ŷ, λ̂)δy0n + 2ȳn
∂2H
∂y2

(ŷ, λ̂)∆y0n + (ȳn)
T ∂2H
∂y2

(ŷ, λ̂)ȳn.
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Similarly,

(δqn)
T ∇2m(q̂)δqn = (∆qn + q̄n)

T ∇2m(q̂) (∆qn + q̄n)

= (∆qn)
T ∇2m(q̂)δqn + 2q̄n∇2m(q̂)∆qn + (q̄n)

T ∇2m(q̂)q̄n,

where δqn = (δxn(0), δxn(T )), ∆qn = (∆xn(0),∆xn(T )), q̄n = (x̄n(0), x̄n(T )). Therefore,

ω(δyn) = ω(∆y0n) + rω(n),

where

rω(n) = 2(q̄n)
T∇2m(q̂)∆qn+ q̄

T
n∇2m(q̂)q̄n+

∫ T

0

(2(ȳn)
T ∂

2H
∂y2

(ŷ, λ̂)∆y0n+ ȳ
T
n

∂2H
∂y2

(ŷ, λ̂)ȳn)dt.

We will show that

|rω(n)| = o(γn). (A.56)

First, we have

ȳn
∂2H
∂y2

(ŷ, λ̂)∆y0n = x̄n
∂2H
∂x2

(ŷ, λ̂)∆xn + x̄n
∂2H
∂x∂u

(ŷ, λ̂)∆u0n + x̄n
∂2H
∂x∂α

(ŷ, λ̂)∆α0
n

+ ũn
∂2H
∂u2

(ŷ, λ̂)∆u0n + ũn
∂2H
∂u∂x

(ŷ, λ̂)∆xn + ũn
∂2H
∂u∂α

(ŷ, λ̂)∆α0
n

+ α̃n
∂2H
∂α2

(ŷ, λ̂)∆α0
n + α̃n

∂2H
∂α∂x

(ŷ, λ̂)∆xn + α̃n
∂2H
∂α∂u

(ŷ, λ̂)∆u0n.

According to (A.54) and the first two estimations in (A.47) we get

(∥∆xn∥∞ + ∥∆un∥1 + |∆αn|) ∥x̄n∥∞ + (∥∆xn∥∞ + |∆αn|) ∥ũn∥1
+ |α̃n| (|∆αn|+ ∥∆xn∥∞ + ∥ũn∥1) = o(γn).

Let us estimate
∥∥∣∣∆u0n∣∣ · |ũn|∥∥1. Using the equality in (A.42), (A.44) and condition (A.45),

we obtain∫ T

0

∣∣∆u0n∣∣ · |ũn| dt = ∫ T

0

∣∣∆u0n∣∣ · |ũ1n + ũ2n| dt ≤
∥∥∆u0n∥∥∞ |ũ1n|1 + ∥∥∆u0n∥∥∞ |ũ2n|1

≤
∥∥∆u0n∥∥∞O(γn) +

∥∥∆u0n∥∥∞ 1

ϵn
O(γn) = o(γn). (A.57)

Therefore,
∥∥∥(ȳn)T ∂2H

∂y2 (ŷ, λ̂)∆y
0
n

∥∥∥ = o(γn).
Secondly, similarly way by using (A.54) and (A.47) we get∥∥∥∥(ȳn)T ∂2H

∂y2
(ŷ, λ̂)ȳn

∥∥∥∥
1

= o(γn).

Consequently,
∣∣∣∫ T

0

(
2(ȳn)

T ∂2H
∂y2 (ŷ, λ̂)∆y

0
n + (ȳn)

T ∂2H
∂y2 (ŷ, λ̂)ȳn

)
dt
∣∣∣ = o(γn).

In addition,∣∣∣2(q̄n)T∇2m(q̂)∆qn + (q̄n)
T ∇2m(q̂)q̄n

∣∣∣ ≤ c (∥∆xn∥∞ ∥x̄n∥∞) + ∥x̄n∥2∞ = o(γn),
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with some c > 0. This yields the estimation (A.56). Consequently,

ω(δyn) = ω(∆y0n) + o(γn). (A.58)

Step 11 Now let us compare γ(δyn) with γn = γ(∆yn). Similarly to Step 10, we obtain

γ(δyn) = γn + o(γn). (A.59)

Step 12 Finally, we consider the term
∫ T

0

(
∂H
∂u (ŷ, λ̂)∆u

0
n + ∂H

∂α (ŷ, λ̂)∆α0
n

)
dt in the inequality

(A.38). Let us use (A.35). Since

(δαn)
T ∂

2G
∂α2

(·, α̂)δαn = (∆α0
n + α̃n)

T ∂
2G
∂α2

(·, α̂)(∆α0
n + α̃n)

= (∆α0
n)

T ∂
2G
∂α2

(·, α̂)∆α0
n + rG(α)(n),

where

rG(α)(n) = 2(α̃n)
T ∂

2G
∂α2

(·, α̂)∆α0
n + (α̃n)

T ∂
2G
∂α2

(·, α̂)α̃n and
∥∥rG(α)(n)∥∥1 = o(γn),

we obtain from (A.35) that

∂G
∂α

(·, α̂)∆α0
n +

1

2
(δαn)

T ∂
2G
∂α2

(·, α̂)δαn ≤ o(|∆α0
n|2) + rG(α)(n) a.e. on M0.

Due to Assumption A.4.1 there is a sequence {α̃Gn ũGn} such that

∂G
∂α

(·, α̂)(∆α0
n + α̃Gn) +

1

2
(δαn)

T ∂
2G
∂α2

(·, α̂)δαn ≤ 0, |α̃Gn| ≤ o(
∣∣∆α0

n

∣∣2) + c
∣∣rG(α)(n)∣∣ ,

∂G
∂u

(·, û)(∆u0n + ũGn) +
1

2
(δun)

T ∂
2G
∂u2

(·, û)δun ≤ 0, |ũGn| ≤ o(
∣∣∆u0n∣∣2) + c

∣∣rG(u)(n)∣∣ ,
with some c > 0. Set δvn(α) = ∆α0

n + α̃Gn, and δvn(u) = ∆u0n + ũGn. Then

∂G
∂α

(·, α̂)δvn(α) +
1

2
(δαn)

T ∂
2G
∂α2

(·, α̂)δαn ≤ 0, |α̃Gn| = o(γn),

∂G
∂α

(·, û)δvn(u) +
1

2
(δun)

T ∂
2G
∂α2

(·, û)δun ≤ 0, ∥ũGn∥1 = o(γn), ∥ũGn∥∞ = o(1).

Consequently,∫ T

0

∂H
∂α

(ŷ, λ̂)δvn(α)dt =

∫ T

0

∂H
∂α

(ŷ, λ̂)∆α0
ndt+ o(γn), (A.60)∫ T

0

∂H
∂u

(ŷ, λ̂)δvn(u)dt =

∫ T

0

∂H
∂u

(ŷ, λ̂)∆u0ndt+ o(γn).

Step 13 Conditions (A.38), (A.58), (A.59), and (A.60) imply

ω(δyn) +

∫ T

0

(
∂H
∂u

(ŷ, λ̂)δvn(u) +
∂H
∂α

(ŷ, λ̂)δvn(α)

)
dt ≤ o(γ(δyn)). (A.61)

Since δyn ∈ K, and δvn(u) ∈ T b(2)
U (û, δun), δvn(α) ∈ T b(2)

A (α̂, δα), condition (A.61) contra-
dicts Assumption A.4.4 in the form (A.23). The proof is finished.
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A.5 Sliding Regime for OCP

An Approximation for Sliding Regimes to Switches

This subsection proposes an idea of “How to construct an approximation for ‘sliding regimes’
to ‘switches’ in general?”
We discretize the non-integer control values, i.e., the controls on the interval (t∗l , t

∗
u) with

appropriate time’s gird, then we approximate these discretized values by an appropriate
rounding scheme (see Subsection 2.6.7) to construct the output integer control.
We start with a discretization of the controls α∗

1 and α∗
2 on the interval (t∗l , t

∗
u) by defining

a shooting grid

t∗l = t0 < t1 < . . . < ts−1 < ts = t∗u.

On each interval [ti, ti+1], i = 0, 1, 2, . . . , s− 1, of the shooting grid we make known control
parameters q̃α1

i , qα1
i and q̃α2

i , qα2
i , where α∗

j,i = q̃
αj

i , j = 1, 2, and the switched controls
w∗

j,i = q
αj

i , j = 1, 2. We then take into account the rounding strategy SUR (see Eq. (2.67)),
with j = 1, 2,

q
αj

i =

 1 if
i∑

k=0

q̃
αj

k −
i−1∑
k=0

q
αj

k ≥ 1,

0 else.

Finally, we end the construction for “sliding regimes” to “switches” by collecting the values
of the rounding ones

w∗
1 = {qα1

i }
s−1
i=0 , w∗

2 = {qα2
i }

s−1
i=0 .

Sliding Regime for OCP

We consider OCP under basic form as (A.62) without the integer-values control function,
i.e.,

min
x(·),u(·)

φ (x(t), u(t))

s.t. ẋ(t) = f (x(t), u(t)))
0 ≤ r (x(t0), x(tf ))
u(t) ∈ U ,

t ∈ T . (A.62)

The optimal sliding regime is characterized by the non-uniqueness of the maximum with
respect to u(t) of the Hamilton function

H(x, ψ, u) = ψT f(x, u),

where ψ are adjoint variables. Under these conditions (in (A.62)), on the section [τs, τs+1] ∈
[t0, tf ], with s = 0, 1, . . . , k, of the (k + 1)-slide (k > 1) with the maxima u0, . . . , uk, (A.62)
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splits and takes the form

min
x(·),u(·)

k∑
s=0

αsφ (x(t), us(t))

s.t. ẋ(t) =
k∑

s=0
αsf(x, us),

0 ≤ r (x(t0), x(tf )) ,
t ∈ [τs, τs+1] ∈ T , s = 0, 1, . . . , k,

us(t) ∈ Um
def
= {u0, . . . , uk}, s = 0, 1, . . . , k,

k∑
s=0

αs = 1, αs ≥ 0, s = 0, 1, . . . , k.

(A.63)

The Hamilton function for (A.63) as follows:

H(x, ψ, α, u) = ψT

(
k∑

s=0

αsf(x(t), us)

)
,

after excluding α0 and regrouping the terms, the above function can be reduced to the form

H(x, ψ, α, u) = ψT
k∑

s=1

[f(x, u0)− f(x, us)]αs

=

k∑
s=1

(H(x, ψ, u0)−H(x, ψ, us))αs.

Since H(x, ψ, us) = max
u∈Um

H, for s = 0, 1, . . . , k, on the section [τ0, τs] the optimal sliding

regime with (k + 1) maximum the coefficients at the (k + 1) independent linear controls
α0, α1, . . . , αk of the Hamilton function of the split problem (A.62) are equal to zero. An
optimal sliding regime with a "slide" through (k + 1) maxima is an optimal singular regime
with (k+1) components for the split problem (A.63). The maximum possible value of (k+1)
advisable to take when researching sliding regimes is defined by the convexity’s condition
of the set values of the right hand side vector and the convexity from below of the greatest
lower bound of the set values of the integrand of the split system obtained when the control
vector (αs, us), s = 0, . . . , k, runs through the whole admissible domain of values.
Here, we give a definition of ψ, which are determined by an adjoint system of equations as
follows:

ψ = −
k∑

s=0

αs
∂f(x, us)

∂x
.

Example A.1.

min
x,u

∫ 3

0

(
x2 − u2

)
dt (A.64)

s.t. ẋ(t) = u(t), (A.65)
x(0) = 1, x(3) = 1, (A.66)
|u(t)| ≤ 1. (A.67)
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To obtain a minimum of objective function (A.64), it is desirable for every t to have |x(t)|
as small as possible, and |u(t)| as large as possible. From (A.65-A.67), an “ideal” trajectory
is found

x(t) =


1− t, 0 ≤ t ≤ 1,

0, 1 < t < 2,

t− 2, 2 ≤ t ≤ 3.

(A.68)

Here, the boundary values of a control

u(t) = +1 or u(t) = −1, (A.69)

can obtain the absolute minimum of (A.64).
But, if 1 ≤ t ≤ 2 then u(t) ≡ 0, (A.68) can not be created for any control function u(t), which
satisfies (A.69). However, it is possible to using control functions un(t), where 1 < t < 2 and
n→∞, which realize more frequent switchings from 1 to −1 and vice versa

un(t) =


−1, 0 ≤ t ≤ 1,

+1, 1 + k
n < t ≤ 1 + 2k+1

2n , k = 0, . . . , n− 1,

−1, 1 + 2k+1
2n < t ≤ 1 + k+1

n k = 0, . . . , n− 1,

+1, 2 < t ≤ 3

(A.70)

where n = 1, 2, . . ., to create a minimizing sequence of controls {un(t)} which satisfies (A.69)
and a minimizing sequence of trajectories {xn(t)} converging towards the (A.68).
Each trajectory xn(t) differs from (A.68) only on the interval (1, 2) on which, instead of
being a precise path along the x-axis, it makes a “saw-toothed” path with n identical “teeth”,
positioned above the x-axis. The “teeth of the saw” become ever finer when n→∞, such that
limn→∞ xn(t) = 0, 1 < t < 2. In this way, the minimizing sequence of trajectories {xn(t)}
converges towards (A.68), but the minimizing sequence of control {un(t)}, when n→∞ and
1 < t < 2, which realizes ever more frequent switchings from 1 to −1 and vice versa, does
not have a limit in the class of measurable functions. This means that on (1, 2), an optimal
sliding regime occurs.
Using heuristic reasoning, it is possible to describe the obtained optimal sliding regime in
the following way: An optimal control at each point of the interval (1, 2) “slide”, i.e., skips
from the value +1 to −1 and back, such that, for any interval of time, nevertheless small, the
measure of the set of points t in which u = +1 is equal to the measure of the set of points t
in which u = −1, which, by virtue of (A.65), ensures a precise motion along the x-axis. The
description given above of the character of change of an optimal control on part of a sliding
regime is non-rigorous, for it does not satisfy the ordinary definition of a function.

It is possible to give a rigorous definition of an optimal sliding regime if, along with the
initial problem (A.64-A.67), an auxiliary “split”problem is introduced: To find a minimum
of the functional

J(x, α, u) =

∫ 3

0

(
x2 − α0u

2
0 − α1u

2
1

)
dt, (A.71)
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with the constraints

ẋ = α0u0 + α1u1, (A.72)
x(0) = 1, x(3) = 1, (A.73)
|u0| ≤ 1, |u1| ≤ 1, α0 + α1 = 1, α0, α1 ≥ 0. (A.74)

The split problem (A.71-A.74) differs from the initial one, i.e., (A.64-A.67), in that, instead
of one control function u(t), two independent control functions u0(t) and u1(t) are employed;
the integrand and the function of the right-hand side of (A.65) of the initial problem are
replaced by a linear convex combination of corresponding functions, taken with different
controls u0(t) and u1(t) and with coefficients α0(t), α1(t), which are also considered as
control functions.
Hence, in problem (A.71-A.74) there are four controls u0, u1, α0, α1. Insofar as α0 and α1 are
related by the equality-type condition α0 + α1 = 1, it is possible to drop one of the controls
α0 or α1 by expressing it through the other. However, for the convenience of subsequent
analysis, it is better to leave both controls in an explicit form.
Unlike the initial problem, an optimal control for the split problem (A.71-A.74) exists. On
a section of the optimal sliding regime of the initial problem, the optimal control of the split
problem takes the form

α0(t) = α1(t) =
1

2
, u0(t) = −1, u1(t) = +1, 1 < t < 2,

while on the sections of entry and exit:

α0(t) = 1, u0(t) = −1, α1(t) = 0, u1(t) arbitrary, 0 ≤ t ≤ 1,

α1(t) = 1, u1(t) = +1, α0(t) = 0, u0(t) arbitrary, 2 ≤ t ≤ 3.

On the section of an optimal sliding regime, the controls α0 and α1, going linearly into the
right-hand side, and the integrand accept values within the admissible domain. This means
that the optimal sliding regime of the initial problem (A.64-A.67) is an optimal singular
regime, or optimal singular control, for the auxiliary split problem (A.71-A.74).

A.6 Linear Program in Maximum Principle
In the Maximum Principle (see Section 3.1.4), one needs to solve the linear program with
variable bounds (or box constraints) as belows

min
α,ũ+

j ,ũ−
j

{−
∑ñ

j ũ
+
j a

+
j −

∑ñ
j ũ

−
j a

−
j }

s.t. 0 ≤ α ≤ 1, 0 ≤ ũ+j , 0 ≤ ũ
−
j , j = 1, . . . , ñ,∑ñ

j=1 ũ
+
j = α,

∑ñ
j=1 ũ

−
j = 1− α,

(A.75)

where a+j = λT (t)f+(x, uj), a−j = λT (t)f−(x, uj), j = 1, . . . , ñ, see problem (3.52).
The Lagrangian function of LP (A.75) is

L = −a+T
ũ+−a−T

ũ−+λ+(

ñ∑
j=1

ũ+j −α)+λ
−(

ñ∑
j=1

ũ−j +α−1)+µ1α+µ2(1−α)+µT
3 ũ

++µT
4 ũ

−.

The optimal solution of (A.75) are obtained by the following conditions
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(i)
∑ñ

j=1 ũ
+
j = α,

∑ñ
j=1 ũ

−
j = 1− α, α ∈ [0, 1], ũ+j ∈ [0, α], ũ−j ∈ [0, 1− α], j = 1, . . . , ñ,

(ii) µ1, µ2, µ3,j , µ4,j ≥ 0, j = 1, . . . , ñ,

(iii) −λ+ + λ− + µ1 − µ2 = 0,
−a+j + λ+ + µ3,j = 0, −a−j + λ− + µ4,j = 0, j = 1, . . . , ñ,

(iv) µ1α = 0, µ2(1− α) = 0,
µ3,j ũ

+
j = 0, µ4,j ũ

−
j = 0, j = 1, . . . , ñ.

Conditions (iii)-(iv) help us obtain

λ+ − λ− = µ1 − µ2


≤ 0 if α = 1, µ1 = 0,

≥ 0 if α = 0, µ2 = 0,

= 0 if α ∈ (0, 1), µ1 = µ2 = 0,

(A.76)

λ+ = a+j − µ3,j ≤ a+j ,∀j = 1, . . . , ñ, (A.77)

λ− = a−j − µ4,j ≤ a−j ,∀j = 1, . . . , ñ. (A.78)

If ũ+j > 0 then from conditions (iv) one implies µ3,j = 0, ∀j = 1, . . . , ñ, hence from (A.77)
one gets

λ+ = a+j = λT f+(x, uj), ∀j = 1, . . . , ñ.

If ũ+j = 0 then from conditions (iv) one obtains µ3,j ≥ 0, ∀j = 1, . . . , ñ, hence from (A.77)
one implies

λ+ = min
j∈{1,...,ñ}

{a+j } = min
j∈{1,...,ñ}

{λT f+(x, uj)}.

Analyzing similar for ũ−j , one gets

λ− =

λ
T f−(x, uj) if ũ−j > 0, ∀j = 1, . . . , ñ,

min
j∈{1,...,ñ}

{λT f−(x, uj)} if ũ−j = 0, ∀j = 1, . . . , ñ.

A.7 Example
Example A.2. [82, Eq. (4.1)] Consider a problem

min
x,u

F0(x(T ))

s.t. ẋ(t) =


F+(x(t), u(t)) if r(x(t)) > 0,

F−(x(t), u(t)) if r(x(t)) < 0,

F+(x(t), u(t)) ∨ F+(x(t), u(t)) if r(x(t)) = 0,

u(t) ∈ [−1, 1], t ∈ T = [0, T ], x(0) = x0, h(x(T )) = 0,

(A.79)

with the following data:

x ∈ R3, F±(x, u) = Ax+ b±u, h(x) = x1 − x2 + 1, x(0) = (2, 1, 0), T = 4,

d =

 1
−1
0

 , b+ =

−10
0

 , b− =

0
1
0

 , A =

0 0 0
0 0 0
1 1 0

 . (A.80)
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We can write problem (A.79) in the following form

min
x,u

x3(4)

s.t. ẋ(t) =


(−u, 0, x1 + x2) if x1(t)− x2(t) > 0,

(0, u, x1 + x2) if x1(t)− x2(t) < 0,

(−u, 0, x1 + x2) ∨ (0, u, x1 + x2) if x1(t)− x2(t) = 0,

u(t) ∈ [−1, 1], t ∈ [0, 4], x(0) = (2, 1, 0), x1(4)− x2(4) = −1.

(A.81)

By using the Filippov’s rule, in terms of differential inclusions, (A.81) is stated as follows:

min
x

x3(4)

s.t. ẋ(t) ∈ U(x(t)), t ∈ [0, 4],
x(0) = (2, 1, 0), x1(4)− x2(4) = −1.

(A.82)

where the mapping U(x), x ∈ R3, is defined by the relations

U(x) := {v ∈ R3 : v = (−u, 0, x1 + x2), u ∈ [−1, 1]} if x1(t)− x2(t) > 0,

U(x) := {v ∈ R3 : v = (0, u, x1 + x2), u ∈ [−1, 1]} if x1(t)− x2(t) < 0, (A.83)

U(x) := {v ∈ R3 : v = α(−u, 0, x1 + x2) + (1− α)(0, u, x1 + x2), u ∈ [−1, 1]}
if x1(t)− x2(t) = 0.

Next, since the function r(x) is linear and U(x) is defined as in (A.83), we can deduce that

conv U(x) = {v ∈ R3 : v = f(x, α, u+, u−), α ∈ [0, 1], |u+| ≤ α, |u−| ≤ 1− α},

where

f(x, α, u+, u−) := αa+(x) + (1− α)a−(x) + u+b
+(x) + u−b

−(x)

= ∆a(x)α+ a−(x)−
(
u+ 0 0

)T
+
(
0 u− 0

)T
, (A.84)

with ∆a(x) := a+(x)− a−(x).
The weakened problem is

min
α,u+,u−

x3(4)

s.t. ẋ(t) =

 −u+(t)
u−(t)

x1(t) + x2(t)

 ,

x(0) = (2, 1, 0), x1(4)− x2(4) = −1,
|u+(t)| ≤ α(t), |u−(t)| ≤ 1− α(t), α(t) ∈ [0, 1],
α(t) (x1(t)− x2(t)) ≥ 0, (1− α(t)) (x1(t)− x2(t)) ≤ 0,

t ∈ [0, 4]. (A.85)

By using the necessary nondegenerate optimality conditions stated in [82, Thm. 2] with the
following data:

y0 = 1, y = 2, γ1 = 2, γ1 = 0, S0(t) = A, t ∈ [0, 4],

ψ(t) = (t− 4, t− 4,−1), t ∈ [0, 3], ψ(t) = (t− 4− y, t− 4 + y,−1), t ∈ [3, 4],
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one can obtain the optimal control and the trajectory in the form

α0(t) = 1, u0+(t) = 1, u0−(t) = 0, t ∈ [0, 1),

α0(t) = 0.5, u0+(t) = 0.5, u0−(t) = −0.5, t ∈ [1, 3),

α0(t) = 0, u0+(t) = 0, u0−(t) = 1, t ∈ [3, 4],

x01(t) = −t+ 2, x02(t) = 1, t ∈ [0, 1], (A.86)

x01(t) = −t/2 + 1.5, x02(t) = −t/2 + 1.5, t ∈ [1, 3]

x01(t) = 0, x02(t) = t− 3, t ∈ [3, 4],

x03(t) =

∫ t

0

(x01(τ) + x02(τ))dτ, τ ∈ [0, 4],

and the optimal value of the objective function is F0(x
0(4)) = x03(4) = 5.

Now we will use the above optimal solution to construct a control in the original problem.
By construction, |u0+| ≤ 1, u0− = 0 if t ∈ T̄1 = {t ∈ T : α0(t) = 1} = [0, 1), u0+ = 0,
|u0−| ≤ 1 if t ∈ T̄0 = {t ∈ T : α0(t) = 0} = [3, 4], and |u0+| ≤ α0(t), |u0−| ≤ 1 − α0(t) if
t ∈ T̄∗ = T \ (T̄0 ∪ T̄1) = [1, 3). We set

u1(t) = u0+(t) = 1, u2(t) = 0, t ∈ T̄1 = [0, 1),

u1(t) = 0, u2(t) = u0−(t) = 1, t ∈ T̄0 = [3, 4],

u1(t) =
u0+(t)

α0(t)
= 1, u2(t) =

u0−(t)

1− α0(t)
= −1, t ∈ T̄∗ = [1, 3).

We get optimal control in relaxed problem. However this is not feasible in the original
one. Exploiting the procedure as in Section 3.1.4 (cf. [82, Section 3]), one can construct an
approximate solution to problem (A.79).
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Appendix B

Some Open Problems

This appendix reprints some ideas and solution approaches for tracking switches in OCP.

B.1 An Idea about Over-Under Estimating
In this section we propose a concept about over-under estimating, in order to have a better
approximation for switches.
Consider an appropriate time grid

Gm := {t0 < t1 . . . < tm},

and suppose that the controls can only switch in the discretization points ti, i = 0, 1, . . . ,m.
The basic control functions on this grid would be

b0j :=

{
1, if t ∈ [tj , tj+1)

0, else
0 ≤ j ≤ m− 1,

with the binary controls then being ωi :=
∑m−1

j=0 b0j (t)qi,j , 1 ≤ i ≤ nω, where q is the solution
of RC.SwP.
A switch in control ωi at time step tj is captured by the term

σi,j := |qi,j − qi,j−1|, (B.1)

and the total number of switches could be limited by σmax as σmax ≥ 1
2

∑nω

i=1

∑m
j=1 σi,j .

Based on the definition of the absolute value, from (B.1) we could use the tightest underes-
timating hyperplanes

σi,j ≥ qi,j − qi,j−1,

σi,j ≥ qi,j−1 − qi,j . (B.2)

The biggest disadvantage of (B.2) is that it yields lots of switches when qi,j ≃ qi,j−1. There-
fore, Kirches [76] proposed to use the tightest overestimating hyperplanes

σi,j = qi,j + qi,j−1,

σi,j = 2− qi,j − qi,j−1, (B.3)
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which are based on the inequalities

|qi,j − qi,j−1| ≤ |qi,j + qi,j−1| ,
|qi,j − qi,j−1| = 2max{qi,j , qi,j−1} − |qi,j + qi,j−1| ≤ 2− (qi,j + qi,j−1).

Instead of using (B.2) or (B.3), we propose over-under estimating as follows

σi,j =
√
q2i,j + q2i,j−1,

σi,j =
(qi,j − qi,j−1)

2√
q2i,j + q2i,j−1

, (B.4)

which are based on the inequalities |A−B|2√
|A−B|2+C

≤ |A−B| ≤
√
|A−B|2 + C, for the choices

A = qi,j , B = qi,j−1, and C = 2qi,jqi,j−1.
Here it has to requires the switching variable to be equal to a convex combination of those

σi,j :=

{
0, if q2i,j + q2i,j−1 = 0,

σD
i,j , else,

therein, σD
i,j = αi,j

√
q2i,j + q2i,j−1 + (1− αi,j)

(qi,j−qi,j−1)
2

√
q2i,j+q2i,j−1

, whereas,

αi,j =

{
1, if q2i,j + q2i,j−1 ≤ 1,

0, else.

The following table, Tab. B.1, shows a brief comparison of these three above estimations.

Table B.1: Comparison for the three over-under estimating.

Estimating switch σi,j
qi,j qi,j−1 (B.1-B.2) (B.3) (B.4)
0 0 0, 0 0, 2 0, error
1/4 0 1/4,−1/4 1/4, 7/4 1/4, 1/4

1/4 1/4 0, 0 1/2, 3/2
√
2/4, 0

1/2 0 1/2,−1/2 1/2, 3/2 1/2, 1/2

1/2 1/4 1/4,−1/4 3/4, 5/4
√
5/4, 1/4

√
5

1/2 1/2 0, 0 1, 1 1/
√
2, 0

3/4 1/2 1/4,−1/4 5/4, 3/4
√
13/4, 1/4

√
13

1 0 1,−1 1, 1 1, 1

1 1 0, 0 2, 0
√
2, 0

0 1 −1, 1 1, 1 1, 1

Remark 40. The results in Tab. B.1 show that, except the case where qi,j and qi,j−1 are
both equal to zero, our “over-under” (B.4) is the better estimator when compared with other
ones, i.e., (B.1-B.2) and (B.3). Therefore, the best choice here is to deal with (B.3) for the
zero case, while the remaining cases are applied with (B.4).
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B.2 Gröbner Basic Approach

In this section, we will investigate another approach in optimal control, namely Gröbner basis,
which is algebraic in nature. This approach was use to determine the switching surfaces, e.g.
see [125], or to synthesize a feedback control based switching law that nearly produces time-
optimal switching, see [101,102]. Recently, the Gröbner basis is also employed to detect the
biological switches, cf. [5].
The main idea of Gröbner basis approach is to test directly if a particular switching strategy
is feasible. We will go through this heuristic via two following instances in Subsection B.2.2,
while the general heuristic approach is proposed in Subsection B.2.1.

B.2.1 General Heuristic Approach

This section describes the core concept of the Gröbner basis approach through the input, the
general heuristic approach, and the output.
Input: A OCP in the following form

min
x(.),u(.)

x(tf )

s.t. ẋ(t) = f(x(t), u(t)), t ∈ [t0, tf ] =: T ,
r(x(t0), x(tf )) ≤ 0,
|u(t)| ≤ 1, t ∈ T .

(B.5)

General Heuristic Approach

(i) Using PMP to obtain optimal control u∗(t) = u∗(λ(t)), optimal state trajectory x∗(t),
and optimal co-state λ∗(t).

(ii) Determining a maximum number of switches, assumed as d, which is directly depended
on the degree of λ∗(t).

(iii) Designing t1, . . . , td the length of the successive intervals where u∗(t) stays constant.
The particular choice (among the only two possible ones)

u∗(t) =


−1, for t0 ≤ t < t1,

+1, for t1 ≤ t < t1 + t2,
...
(−1)d, for t1 + . . .+ td−1 ≤ t < t1 + . . .+ td−1 + td =: tf .

(while the remain is +1,−1,+1, . . .)

(iv) Calculating x∗(tf ) = (x∗1(tf ), . . . , x
∗
n(tf )) w.r.t. u∗(t), which is described in step (iii).

(v) Computing suitable Gröbner bases (one possibility is using Sturm sequences)

(v.i) Setting

z1 := t1, z2 := t2, . . . zd := td,

a1 := x1(tf ), a2 := x2(tf ), . . . , an := xn(tf ).

152



(v.ii) Solving the complex version of the switching problem

aj = xj(z1, . . . , zd), for j = 1, . . . , n. (B.6)

by using the Macaulay symbolic program [61]. The system (B.6) has a complex
solutions, or real solutions.

(v.iii) Considering the special case there (B.6) has real nonnegative solutions. Using
Sturm sequences to compute suitable Gröbner bases together with the following
algorithm
Input of Alg. 5: Current state (a1, . . . , an).

Algorithm 5. The Switching Algorithm(with Gröbner basis)
Case 1 (Check whether z1 = 0) Testing the consistency of the system (B.6) within
z1 = 0. If consistent solve it, if zj ≥ 0, j = 2, . . . , d set u = −1, otherwise set
u = 1. If the system (B.6, z1 = 0) is not consistent, go to the next case.
Case 2 (Check whether zd = 0) Testing the consistency of the system (B.6) within
zd = 0. If consistent solve it, if zj ≥ 0, j = 1, . . . , d− 1 set u = −1, otherwise set
u = 1. If the system (B.6, zd = 0) is not consistent, go to the next case.
Case 3 cd(a1, . . . , an) = 0 (Check whether zj = 0, j = 2, . . . , d − 1) If an < 0 let
u = −1, otherwise let u = +1.
Case 4 cd(a1, . . . , an) ̸= 0 Computing the Sturm sequences, and obtain the number
of solutions. Depending on this number, set u = 1 or u = −1.

where cd(·) is the condition comes from system (B.6) with some special cases of
zj , j = 1, . . . , d.
Output of Alg. 5: Value of u, either 1 or −1.

Output: Switching strategy, +1,−1,+1, . . ., or −1,+1,−1, . . ..

Remark 41. An example to visualize the General Heuristic Approach can be seen in Exam-
ple B.1. On the other hand, in Example B.2, we can apply this heuristic to obtain switching
strategy between 0 and 1, when the control 0 ≤ u(t) ≤ 1 instead of −1 ≤ u(t) ≤ 1.

B.2.2 Numerical Examples

This subsection consists two following instances to illustrating the general heuristic approach
in Section B.2.1.

Example B.1. Consider the classical time-optimal control problem for a system consisting
of a chain of integrators, cf. [125], where the linear system with saturated control input, and
the objective drives the system from an initial condition x(0) to a target x(tf ) in minimum
time tf

min
x(·),u(·)

∫ tf
0

1dt

s.t. ẋ1(t) = x2(t),
ẋ2(t) = x3(t),
ẋ3(t) = u(t), |u(t)| ≤ 1.

(B.7)
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We drop the superscript * to simplify the notation. The Hamilton function of (B.7) is

H(x, λ, u) = 1 + λ1x2 + λ2x3 + λ3u.

The maximality condition gets

H(x(t), λ(t), u(t)) = min
−1≤u≤1

{1 + λ1(t)x2(t) + λ2(t)x3(t) + λ3(t)u}

= 1 + λ1(t)x2(t) + λ2(t)x3(t)− λ3(t) sgn(λ3(t))

while the optimal control is given by

u(t) = − sgn(λ3(t)) =

{
1 if λ3(t) < 0

−1 if λ3(t) > 0.

Hence the optimal state trajectories are

x1(t) =

{
t3

6 + x3(0)t
2

2 + x2(0)t+ x1(0) if λ3(t) < 0

− t3

6 + x3(0)t
2

2 + x2(0)t+ x1(0) if λ3(t) > 0,

x2(t) =

{
t2

2 + x3(0)t+ x2(0) if λ3(t) < 0

− t2

2 + x3(0)t+ x2(0) if λ3(t) > 0,

x3(t) =

{
t+ x3(0) if λ3(t) < 0

−t+ x3(0) if λ3(t) > 0.

The adjoint equations are

λ̇1(t) = 0, λ̇2(t) = −λ1(t), λ̇3(t) = −λ2(t)

which together with the terminal condition λ(tf ) = 0 imply the optimal co-states

λ1(t) = t− tf , λ2(t) = −
t2

2
+ tf t−

t2f
2
, λ3(t) =

t3

6
− tf

t2

2
+ t2f

t

2
−
t3f
6
. (B.8)

We consider a Gröbner basis approach. In this example, there are only two possible strate-
gies where the input alternates between −1 and +1, taking the values −1,+1,−1, . . ., or
+1,−1,+1, . . ., respectively. In each case, taking into account the maximal number of switch-
ing, one can easily derive an expression for the final value of the state, x(tf ), as a function
of the switching times.
From (B.8), it is well known that there are no singular intervals and that the control input
switches at most three times. Designate by t1, t2 and t3 the length of the successive intervals
where u(t) stays constant. Any set of initial and final conditions can be translated to having
x(0) = 0 and a given value for x(tf ), and this is the setting from here on. The particular
choice (among the only two possible ones)

u(t) =


−1, for 0 ≤ t < t1

+1, for t1 ≤ t < t1 + t2

−1, for t1 + t2 ≤ t < t1 + t2 + t3 =: tf
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drives the chain of integrators for the origin to the final point x(tf ) given by

x3(tf ) = −t1 + t2 − t3

x2(tf ) = −
t21
2
− t1t2 +

t22
2
+ t2t3 −

t23
2
− t3t1

x1(tf ) = −
t31
6
+
t32
6
− t33

6
− t21

2
t2 −

t21
2
t3 −

t22
2
t1 +

t22
2
t3 −

t23
2
t1 +

t23
2
t2 − t1t2t3. (B.9)

It turns out that the selection between alternating values −1,+1,−1, . . ., or +1,−1,+1, . . .
for the optimal input u(t) depends on whether the equations in (B.9) have a solution for
a specified final condition x(tf ) = (x1, x2, x3)

T . We refer to the computational algebraic
geometry and Gröbner bases, cf. [125, Sec. III], for the following calculation. We set

x := t1, y := t2, z := t3, a := x3(tf ), b := x2(tf ), c := x1(tf ).

Then we solve the complex version of the switching problem, namely, the following.
Problem 1: Given is the system of equations

a = y − x− z

b =
y2

2
+ yz − x2

2
− xy − z2

2
− zx (B.10)

c =
y3

6
+
y2z

2
+
z2y

2
− x3

6
− z3

6
− x2y

2
− x2z

2
− y2x

2
− z2x

2
.

We use the Macaulay symbolic program to compute the complex solutions x, y, z of the above
system. By a similar way as in [125, Subsec. A. Complex Solutions], we conclude that

i. the system does always have a complex solution;

ii. if a2 = −2b, a3 = 6c and a, b, c ∈ R, the system has real solutions;

iii. if a2 = −2b, a3 = 6c and 0 ≤ a, b, c ∈ R, the system has real nonnegative solutions.

We are interested in the case iii. Thus, as a second step, we will investigate the following.
Problem 2: Given are a, b, c ∈ R. Does there exist a nonnegative solution vector (x, y, z)

for the system (B.10) in the sense that x ≥ 0, y ≥ 0, z ≥ 0? If there is a positive solution
x, y, z, then the value of the optimal control u assumes the values −1,+1,−1 successively,
and in particular, the present value for the optimal control is u(0) = −1. If no positive
solution exists then the present value of the optimal control is u(0) = +1.
We will use Sturm sequences to compute suitable Gröbner bases together with an algorithm
from real algebraic geometry. Sturm sequences are associated to polynomials as follows.
Suppose f(x) is a single variable polynomial with real coefficients. We define p0(x) = f(x),
p1(x) = f ′(x), and then recursively pi by pi = qi−1pi−1 − pi−2 for i > 1, where qi−1

represents the quotient and pi−2 the respective remainder each time. Therein, we demand
that deg(pi) < deg(pi−1). So, pi is up to sign the remainder of Euclidean division of pi−2 by
pi−1.
As a first step, we compute a Gröbner basis for the three polynomials in (B.10) under an
elimination order with x > y > z > c > b > a. Note that switch of the variables y and z in
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the ordering. One gets

0 = y4 − 4y2b− 2y2a2 + 4yc+ 4yba+ 4/3ya3 − b2 − ba2 − 1/4a4 (B.11a)

0 = zb+ 1/2za2 − 1/2y3 + 3/2yb+ 3/4ya2 − 2c− ba− 1/6a3 (B.11b)

0 = zy − 1/2y2 + ya− 1/2b− 1/4a2 (B.11c)
0 = x+ z − y + a. (B.11d)

We next solve (B.11b) or (B.11c) for z

z =
1/2y3 − 3/2yb− 3/4ya2 + 2c+ ba+ 1/6a3

b+ 1/2a2
(B.12a)

z =
y2/2− ya+ 1/2b+ 1/4a2

y
(B.12b)

respectively. Herein, of course, assuming that b+ a2/2 and y are not zero.
One sees that y = 0 implies 2b+ a2 = 6c− a3 = 0. These relations simplify the system to

0 = b+ 1/2a2, 0 = c− 1/6a3, 0 = y3,

0 = zy − 1/2y2 + ya, 0 = y + z − y + a. (B.13)

This has the solutions y = 0, z arbitrary, x = −a− z. Since y = 0 is actually equivalent to
a3 − 6c = a2 + b = 0, testing the latter conditions is sufficient to find out whether y = 0. In
that case, nonnegative solutions will exist precisely when a is negative. This covers the case
y = 0.
If x = 0, the system takes the form

0 = c2 + 2cba+ 2/3ca3 − b3 − 1/2b2a2 − 1/12ba4 − 1/72a6s

0 = yb+ 1/2ya2 − c− ba− 1/3a3

0 = yc− 1/6ya3 + ca− b2 + 1/12a4

0 = y2 − b− 1/2a2

0 = z − y + a. (B.14)

Since a, b, c are known, it is not so difficult to check the consistency of this system, by solving
each of three middle equations for y and testing the vanishing of the first. If consistency fails,
we are not in the case x = 0. If the system is consistent, one needs to check whether the
obtained solutions for y, z are nonnegative. If that is so, set u = −1 and otherwise u = +1,
finishing the case x = 0.
In a similar fashion, one does get the case z = 0. If z = 0, one gets

0 = c2 − 2cba+ 2/3ca3 + b3 − 1/2b2a2 + 1/12ba4 − 1/72a6

0 = yb− 1/12ya2 − c+ 1/6a3

0 = yc− 1/6ya3 − 2ca+ b2 + 1/12a4

0 = y2 − 2ya+ b+ 1/2a2

0 = x− y + a (B.15)
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which is quite similar to the case x = 0. One first check whether the first relation between
the parameters holds. Then one solves the next three equations for y and then solves the last
relation for x. If the system is consistent we have z = 0. If x, y turn out to be nonnegative,
set u = −1 and otherwise u = +1.
This rules out all cases of vanishing variables. In order to predict when strictly positive
solution exist, we are reduced to the cases (a2/2 = −b, a3/6 ̸= c) and (a2/2 ̸= −b).
We consider the first case (a2/2 = −b, a3/6 ̸= c). Then, we have a Gröbner basis

−b− 1/2a2y3 + 4c− 2/3a3z − y2 − ax+ z − y + a.

It becomes obvious that in order to have a nonnegative solution, we need

y3 = 4(a3/6− c) ≥ 0, z = (4(a3/6− c)1/3)/2 + a ≥ 0, x = (4(a3/6− c)1/3)/2 ≥ 0,

which simplifies to the two conditions a3/6 − c ≥ 0, (4(a3/6 − c)1/3)/2 + a ≥ 0. These
conditions that can easily be checked for given a, b, c and determine existence of a nonnegative
solution (x, y, z) of the system (B.10).
Now, let us move to the most general situation a2/2 + b ̸= 0. In particular, y ̸= 0 then.
[125, Theorem 2] asserts that the Sturm sequence {pi(y)} corresponding to

f(y) = y4 − 4y2(b+ a2/2) + 4y(ba+ c+ 1/3a3)− b2 − ba2 − a4/4

counts the zeros of this quartic. In particular, there will be positive solutions for just y if and
only if v(0)− v(∞) > 0 since zero is not a root of the quartic [note that −b2 − ba2 − a4/4 =
−(b+ a2/2)2].
Now, from (B.11c)

z =
y2/2− ya+ 1/2b+ 1/4a2

y
.

This means that for positive y, z is positive as long as y2/2 − ya + 1/2b + 1/4a2 > 0. This
parabola has roots in r1,2 = a ±

√
a2/2− b where r1 ≤ r2. Since the parabola has positive

leading coefficient, y, z > 0 for y /∈ [r1, r2] if a2/2 − b > 0, and y, z > 0 for all y > 0 if
a2/2− b < 0.
Similarly

x = y − a− z = y2/2− 1/2b− 1/4a2

y
.

Let r′1,2 = ±
√
1/2a2 + b with r′1 ≤ r′2. Hence, x, y > 0 if and only if 0 < y /∈ [r′1, r

′
2] if

a2/2 > −b, and x, y > 0 for all y > 0 if a2/2 < −b.
We conclude that to have x, y, z all positive at the same time we need to satisfy the

following conditions all at the same time:

y4 − 4y2(b+ a2/2) + 4y(ba+ c+ 1/3a3)− b2 − ba2 − a4/4 = 0

y /∈ [r1, r2], or ri /∈ R
y /∈ [r′1, r

′
2], or r′i /∈ R

y > 0
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which can be checked with Sturm sequences.
These results pave the way for the following algorithm, which has as input the current

state (a, b, c) of the system and as output the recommended value for u for time optimal
control, either −1 or 1. The origin is then approached by an iterated repetition of the
algorithm.
Algorithm: The Switching Algorithm ([125, Alg. 3], Dynamical Steering of the System to
the Origin): Suppose our system is in the state (a, b, c).

Case 1 (Check whether x = 0) Test the consistency of the system (B.14). If consistent solve
it; if y, z ≥ 0 set u = −1, otherwise set u = 1. If the system (B.14) is not consistent,
go to the next case.

Case 2 (Check whether z = 0) Test the consistency of the system (B.15). If consistent solve
it; if x, y ≥ 0 set u = −1, otherwise set u = 1. If the system (B.15) is not consistent,
go to the next case.

Case 3 a2 = −2b, a3 = 6c. (Check whether y = 0) If a < 0, let u = −1 for a s, at which point
the system will have reached the origin. If a ≥ 0, let u = +1 for a s.

Case 4 a2 = −2b, a3 ̸= 6c, x ̸= 0, y ̸= 0, z ̸= 0. If a3 − 6c < 0 and 11a3 < 6c, let u = −1. Else,
let u = +1.

Case 5 a2 ̸= −2b, x ̸= 0, y ̸= 0, z ̸= 0. Set r1 = a −
√
a2/2− b, r2 = a +

√
a2/2− b,

r′2 =
√
a2/2 + b. Let f(y) = y4 − 4y2(b+ a2/2) + 4y(ba+ c+ 1/3a3)− b2 − ba2 − a4/4

and compute the corresponding Sturm sequence {pi(y)}i≤0. Let I = (0, r1) ∪ (r2,∞)
if ri ∈ R and I = (0,∞) else. Let I ′ = (r′2,∞) if r′2 ∈ R and I ′ = (0,∞) else. Let
S = I ∩ I ′.
Using the Sturm sequence compute the number of solutions of f(y) in S. If this number
is positive, set u = 1, otherwise set u = −1.

Example B.2. We consider the Fuller’s problem
(https://mintoc.de/index.php/Fuller’s_problem)

min
x(·),w(·)

∫ 1

0
x21dt

s.t. ẋ1(t) = x2(t), t ∈ [0, 1] a.e.
ẋ2(t) = 1− 2w(t), w(t) ∈ {0, 1}, t ∈ [0, 1] a.e.
x(0) = (0.01, 0),

(B.16)

Firstly, we can rewrite (B.16) as a relaxed problem as follow

min
x(·),α(·)

∫ 1

0
x21dt

s.t. ẋ1(t) = x2(t), t ∈ [0, 1] a.e.
ẋ2(t) = 1− 2α(t), α(t) ∈ [0, 1], t ∈ [0, 1] a.e.
x(0) = (0.01, 0),

(B.17)

We drop the superscript * to simplify the notation. The Hamilton function reads

H(x, λ, α) = x21 + λ1x2 + λ2(1− 2α).
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The maximality condition implies

H(x(t), λ(t), α(t)) = min
0≤α≤1

{x21(t) + λ1(t)x2(t) + (1− 2α)λ2(t)}

= x21(t) + λ1(t)x2(t)− sgn(λ2(t))λ2(t)

while the optimal control is given by

α(t) =

{
0 if λ2(t) < 0

1 if λ2(t) > 0.

Hence the optimal state trajectories, with c1, c2, c
′
1, c

′
2 are the appropriate constants such

that x1(0) = 0.01 and x2(0) = 0, are

x1(t) =

{
t2

2 + c1t+ c′1 if λ2(t) < 0

− t2

2 + c2t+ c′2 if λ2(t) > 0
, x2(t) =

{
t+ c1 if λ2(t) < 0

−t+ c2 if λ2(t) > 0
,

and the adjoint equations are λ̇1(t) = −2x1(t), λ̇2(t) = −λ1(t), which together with the
terminal condition λ(tf ) = λ(1) = 0 imply the optimal co-states

λ1(t) =

{
− t3

3 −
c1t

2

2 − c
′
1t+ c′′1 if λ2(t) < 0

t3

3 −
c2t

2

2 − c
′
2t+ c′′2 if λ2(t) > 0,

λ2(t) =

{
t4

12 + c1t
3

6 +
c′1t

2

2 − c
′′
1 t+ c′′′1 if λ2(t) < 0

− t4

12 + c2t
3

6 +
c′2t

2

2 − c
′′
2 t+ c′′′2 if λ2(t) > 0.

(B.18)

We consider a Gröbner basis approach. In this example, there are only two possible strate-
gies where the input alternates between 1 and 0, taking the values 0, 1, 0, . . ., or 1, 0, 1, . . .,
respectively. In each case, taking into account the maximal numbers of switching, one can
not so difficult to derive an expression for the objective function value,

∫ 1

0

x21dt ≈
1

4

(
x21(0)

2
+ x21(t1) + x21(t1 + t2) + x21(t1 + t2 + t3) + x21(

4∑
i=1

ti) +
x21(1)

2

)

as a function of the switching times. From (B.18), we see that the control input switches
at most four times. Designate by t1, t2, t3, t4 and t5 the length of the successive intervals
where α(t) stays constant. Any set of initial and final conditions can be translated to having
x(0) = (0.01, 0) and a given value for x(1), and this is the setting from here on. The particular
choice (among the only two possible ones)

α(t) =



1, for 0 ≤ t < t1

0, for t1 ≤ t < t1 + t2

1, for t1 + t2 ≤ t < t1 + t2 + t3

0, for t1 + t2 + t3 ≤ t < t1 + t2 + t3 + t4

1, for t1 + t2 + t3 + t4 ≤ t < t1 + t2 + t3 + t4 + t5 = 1
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drives the chain of integrators for the origin to the approximated points (exactly the points
at the switches) and the final point x(1) given by

x2(1) = −t1 + t2 − t3 + t4 − t5 = 2t2 + 2t4 − 1

x1(1) = −
t22
2
− t24 − 2t1t4 + 2t2t4 + 2t3t4 − t1t2 + 2t2 + 2t4 + 0.01− 1

2
x2(t1 + t2 + t3 + t4) = −t1 + t2 − t3 + t4

x1(t1 + t2 + t3 + t4) = −
t21
2
+ t22 −

t23
2
+
t24
2
− t1t3 − t1t4 + t2t3 + t2t4 − t3t4 + 0.01

x2(t1 + t2 + t3) = −t1 + t2 − t3

x1(t1 + t2 + t3) = −
t21
2
− t23

2
− t1t3 + t2t3 + 0.01

x2(t1 + t2) = −t1 + t2 (B.19)

x1(t1 + t2) = −
t21
2
+ 0.01

x2(t1) = −t1

x1(t1) = −
t21
2
+ 0.01

therein,

x2(t) =



−t, for t ∈ T0
t− 2t1, for t ∈ T1
−t+ 2t2, for t ∈ T2
t− 2t1 − 2t3, for t ∈ T3
−t+ 2t2 + 2t4, for t ∈ T4

x1(t) =



− t2

2 + 0.01, for t ∈ T0
t2

2 − 2t1t+ t21 + t1t2 − t22
2 + 0.01, for t ∈ T1

− t2

2 + 2t2t− 3t22
2 − t1t2 + 0.01, for t ∈ T2

t2

2 − 2(t1 + t3)t+ (t1 + t2 + t3)
2 − t1t2 − t22

2 + 0.01, for t ∈ T3
− t2

2 + 2(t2 + t4)t− t24 − 2t4(t1 + t2 + t3)− t1t2 − t22
2 + 0.01, for t ∈ T4

where T0 := [0, t1), T1 := [t1, t1 + t2), T2 := [t1 + t2, t1 + t2 + t3), T3 := [t1 + t2 + t3, t1 + t2 +
t3 + t4), T4 := [t1 + t2 + t3 + t4, 1).
It turns out that the selection between alternating values 1, 0, 1, . . ., or 0, 1, 0, . . . for the
optimal input α(t) depends on whether the equations in (B.19) have a solution for a specified
condition {x(t1), x(t1 + t2), x(t1 + t2 + t3), x(t1 + t2 + t3 + t4), x(1)}.
We refer to the computational algebraic geometry and Gröbner bases, cf. [125, Sec. III], for
the following calculation. We set

w := t1, x := t2, y := t3, z := t4,

and a := x2(1), b := x1(1), c := x2(t1+t2+t3+t4), d := x1(t1+t2+t3+t4), e := x2(t1+t2+t3),
f := x1(t1 + t2 + t3), g := x2(t1 + t2), h := x1(t1 + t2), i := x2(t1), j := x2(t1).
Then we solve the complex version of the following switching problem.
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Problem 1: Given is the system of equations

a = 2x+ 2z − 1

b = −x
2

2
− z2 − 2wz + 2xz + 2yz − wx+ 2x+ 2z − 0.49

c = −w + x− y + z

d = −w
2

2
+ x2 − y2

2
+
z2

2
− wy − wz + xy + xz − yz + 0.01

e = −w + x− y

f = −w
2

2
− y2

2
− wy + xy + 0.01

g = −w + x (B.20)

h = −w
2

2
+ 0.01

i = −w

j = −w
2

2
+ 0.01.

We use the Macaulay symbolic program to compute the complex solutions w, x, y, z of the
above system. By a similar way as in [125, Subsec. A. Complex Solutions] and Ex. B.1, we
can conclude that

i. the system does always have a complex solution;

ii. if h = j ≤ 0.01 and a, b, c, d, e, f, g, h, i, j ∈ R, the system has real solutions;

iii. if h = j < 0.01 and a, b, c, d, e, f, g, h, i, j ∈ R, the system has real nonnegative solutions.

We are interested in the third case. Hence, we will investigate the following question as a
second step.

Problem 2: Given are a, b, c, d, e, f, g, h, i, j ∈ R. Does there exist a nonnegative solution
vector (w, x, y, z) for the system (B.20) in the sense that w > 0, x ≥ 0, y ≥ 0, z ≥ 0? If
there is a positive solution w, x, y, z, then the value of the optimal control α assumes the
values 1, 0, 1, 0, 1 successively, and in particular, the present value for the optimal control
is α(0) = 1. If no positive solution exists then the present value of the optimal control is
α(0) = 0.
We will use Sturm sequences similarly as the previous example to compute suitable Gröbner
bases together with an algorithm from real algebraic geometry.
As a first step, we compute a Gröbner basis for the ten polynomials in (B.20) under an
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elimination order with w > x > y > z > j > i > h > g > f > e > d > c > b > a. One gets

b = −x
2

2
− z2 − 2wz + 2xz + 2yz − wx+ 2x+ 2z − 0.49

d = −w
2

2
+ x2 − y2

2
+
z2

2
− wy − wz + xy + xz − yz + 0.01

f = −w
2

2
− y2

2
− wy + xy + 0.01

h = −w
2

2
+ 0.01

j = −w
2

2
+ 0.01

w = −i (B.21)
x = g − i
y = g − e

z =
a+ 1

2
− g + i.

Remark 42. From examples B.1 and B.2, for solving these problems by using the Gröbner
basis, we realize that the complexity rises a lot when we increase the number of variables or
the degrees of the polynomial in the equations.
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Nomenclature

List of Symbols

def
= / := Defined to be equal

□ End of a proof

∪ Set-theoretic union("unified with")

∩ Set-theoretic intersection("intersected with")

∧ Logical conjunction("AND")

⊕,∨ Logical exclusive/inclusive disjunction("EX-OR/OR")

⊇,⊃ Superset of a set("is a (proper) superset of")

⊆,⊂ Subset of a set("is a (proper) subset of")

∈, /∈ Set membership("is (not) an element of")

\ Set difference

∅ The empty set

∀ Universal quantification("for all")

∃ Existential quantification("exists")

Ai,·, A·,j i-th row/j-th column of matrix A, row/column vector

AT Transpose of matrix A

A−1 Inverse of matrix A

xi i-th entry of vector x

fi i-th entry of vector-valued function f

⌈x⌉ Least integer greater than or equal to x

∂F
∂x (x, y) Partial derivative of F at (x, y)

∇F (x) Gradient of F : R→ R at x
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NOMENCLATURE NOMENCLATURE

Black Board Symbols and Function Space

N Set of natural numbers excluding zero

Z Set of integer numbers

R Set of real numbers

Rn Space of n-vectors with elements from the set R

Rm×n Space of m× n-matrices with elements from the set R

C Space of continuous functions

Interval Symbols and Norm Symbols

T Time horizon T = [t0, tf ] ⊂ R for an ODE or OCP

t Model or process time t ∈ T

t0, tf Initial/Final model or process time, start/end of time horizon T

| · | Component-wise mapping of a real number to the absolute value

∥·∥ The Euclidean norm of a matrix or vector

Sets

|X | Cardinality of a set X

A(x) Active set at x (see Definition 8)

U Set of all continuous control functions

X Set of all differential state trajectories

conv(X ) Convex hull of a set X

Functions

H(·) Hamilton function

H̄(·) Augmented Hamilton function

L(·) Lagrange function

sgn(·) Sign function

σ(·) Switching function

φ(·) Bolza cost function

l(·) Lagrange cost function

m(·) Mayer cost function

c(·) Path constraint function
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NOMENCLATURE NOMENCLATURE

r(·) Endpoint constraint function

f(·) ODE system right hand side

u(·) Trajectory of continuous process controls

w(·) Trajectory of discrete process controls

x(·) Trajectory of ODE system states

α(·), γ(·) Trajectory of relaxed convex multipliers

Dimensions

nc Number of path constraints c(·)

nr Number of boundary constraints r(·)

nu Number of controls u(·)

nx Number of differential states x(·)
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