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Abstract

The ATLAS experiment is a key project in high-energy particle physics exploring
particle collisions at unprecedented energies to recreate early-universe conditions
and probe phenomena that occur at extreme scales. The upcoming high luminos-
ity upgrade of the LHC will significantly increase the collision rate and energy;
the higher data volume and collision complexity necessitate a major upgrade
of the ATLAS detector to consist of a more granular tracking system. Due to
much higher data rate and processing complexity, it is crucial to optimise the
collision selection system (trigger system) and its most computationally expensive
component - the track reconstruction algorithms. This work explores advanced
optimisation methods, including graphics card acceleration and machine learning,
to enhance computational efficiency and effectively manage the increased data
throughput and complexity of the upgraded detector.

The first considered approach optimises the track reconstruction algorithm
used in the ATLAS trigger system. By employing the track seeding on the
graphic card accelerator and adjusting the track seed selection criteria, the final
performance was improved by 95%, achieving an average processing time per
event of 1.16s. The performance was evaluated on different graphics cards,
considering their limitations, with NVIDIA RTX 5000 Ada achieving the best
results due to its exceptionally high number of processing cores.

The second part of this work focuses on the application of machine learning
techniques to particle track reconstruction. A novel Interaction Graph Neural
Network (IGNN) demonstrates competitive reconstruction accuracy; however,
it is known to be resource-consuming. To address these computational chal-
lenges, two optimisation strategies are proposed, aimed at reducing both memory
consumption and inference time without compromising model performance.

The instantaneous memory footprint of the model was reduced by partial
processing (substepping). Memory consumption can be decreased by approxi-
mately 30% without an increase in processing time. Further memory reductions
are achievable by adjusting the size of partitions, enabling the deployment of the
IGNN on memory-constrained GPUs and allowing parallel processing, depending
on the available hardware resources.

The second discussed compression technique is structured pruning of IGNN,

where by removing the least important groups of parameters, the model size is



reduced. A selection of pruning techniques applied to Graph Neural Networks
(GNN) was analysed to determine the most effective methodology for GNN
compression. The final pruning configuration achieves up to 20% improvement in
computational performance without compromising model accuracy. Furthermore,
per-layer sensitivity was analysed and incorporated in the pruning strategy to
guide layer-wise pruning aggressiveness, enabling further model size reduction
by 20% while maintaining reconstruction accuracy. The pruning strategy was
evaluated on the standard GNN benchmark models, demonstrating satisfying
performance gains. The performance of IGNN was evaluated on different graphics
cards, considering their limitations, with NVIDIA RTX A100 achieving the best
results due to its highly efficient memory throughput.



Zusammenfassung

Das ATLAS Experiment ist ein Schliisselprojekt der Hochenergie-Teilchenphysik,
das Teilchenkollisionen bei bislang unerreichten Energien untersucht, um Bedin-
gungen des frithen Universums nachzubilden und Phénomene zu erforschen, die
bei extremen Skalen auftreten. Das bevorstehende Hochluminositatsupgrade
des LHC wird die Kollisionsrate und -energie signifikant erhéhen. Das dadurch
entstehende groflere Datenvolumen und die erhohte Komplexitéat der Kollisionen
erfordern eine umfassende Verbesserung des ATLAS-Detektors, insbesondere
durch ein hochgranulares Spurdetektorsystem. Aufgrund der stark gesteigerten
Datenrate und Verarbeitungskomplexitéit ist die Optimierung des Triggersystems
und dessen rechenintensivsten Bestandteilen — den Spurrekonstruktionsalgorith-
men — von zentraler Bedeutung. Die vorgestellte Arbeit untersucht anspruchsvolle
Optimierungsmethoden, darunter die Beschleunigung durch Grafikkarten sowie
den Einsatz von maschinellen Lernens, um die Recheneffizienz zu steigern und
den erhohten Datendurchsatz sowie die gesteigerte Komplexitit des verbesserten
Detektors effektiv zu bewéltigen.

Der erste betrachtete Ansatz optimiert den im ATLAS-Triggersystem verwen-
deten Spurrekonstruktionsalgorithmus. Durch die Implementierung des Track
Seedings auf einem GPU Beschleuniger und die Anpassung der Auswahlkriterien
des Track Seedings konnte die Leistung um 95% verbessert werden, bei einer
durchschnittlichen Verarbeitungszeit von 1.16 s pro Ereignis. Die Leistung wurde
auf verschiedenen GPUs evaluiert, wobei deren Einschrankungen berticksichtigt
wurden; die NVIDIA RTX 5000 Ada erzielte aufgrund ihrer auflergew6hnlich
hohen Anzahl an Verarbeitungskernen die besten Ergebnisse.

Der zweite Teil dieser Arbeit befasst sich mit dem Einsatz von Techniken des
maschinellen Lernens zur Teilchenspurrekonstruktion. Ein neuartiges Interaction
Graph Neural Network (IGNN) zeigt eine konkurrenzfihige Rekonstruktionsge-
nauigkeit, ist jedoch sehr ressourcenintensiv. Zur Bewéltigung dieser rechentech-
nischen Herausforderungen werden zwei Optimierungsstrategien vorgeschlagen,
die sowohl den Speicherbedarf als auch die Inferenzzeit reduzieren, ohne die
Modellleistung zu beeintrachtigen.

Der momentane Speicherbedarf des Modells wurde durch partielle Verar-
beitung (Substepping) verringert. Dadurch kann der Speicherverbrauch um

etwa 30% gesenkt werden, ohne die Verarbeitungszeit zu erhohen. Weitere Re-



duktionen sind durch Anpassung der Partitionsgrofle moglich, was den Einsatz
des IGNN auf speicherbeschrankten GPUs erméglicht und — abhéngig von den
verfiigharen Hardwareressourcen — parallele Verarbeitung erlaubt.

Die zweite untersuchte Kompressionstechnik ist das strukturierte Pruning
des IGNN, bei dem durch Entfernen der am wenigsten signifikanten Parameter-
gruppen die Modellgréle reduziert wird. Eine Auswahl an Pruning-Methoden
fir Graph Neural Networks (GNNs) wurde analysiert, um die effektivste Meth-
ode zur GNN-Kompression zu ermitteln. Die finale Pruning-Konfiguration
erreicht eine Leistungssteigerung von bis zu 20% bei unveranderter Modellge-
nauigkeit. Dartiber hinaus wurde die schichtweise Sensitivitiat analysiert und in
die Pruning-Strategie integriert, um die Aggressivitit des Prunings pro Schicht
zu steuern. Dies ermoglichte eine zuséatzliche Reduktion der Modellgréie um
20% bei gleichbleibender Rekonstruktionsgenauigkeit. Die Pruning-Strategie
wurde anhand standardisierter GNN Benchmarks evaluiert und zeigte signifikant
Leistungsgewinne. Die Leistung des IGNN wurde auf verschiedenen Grafikkarten
untersucht; die NVIDIA RTX A100 erzielte aufgrund ihres hoch effizienten

Speicherdurchsatzes die besten Ergebnisse.
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Chapter 1
Introduction

Since the mid-20th century, computers have been assisting humans with algorithm
executions. With the technological advancements over the years, microprocessors
have become progressively smaller and more cost-effective, enabling significantly
more complex computations to be performed at higher speeds—an evolution
historically described by Moore’s Law. However, this trend is approaching its
physical limits, as further miniaturisation of transistors is constrained due to
quantum effects and heat dissipation challenges. Initially, the performance was
improved by task parallelisation; however, the speedup of a program is limited
by the fraction of the code that must be executed sequentially, as described by
Amdahl’s Law.

To address the limitations of the CPU-based processing, researchers and
engineers have increasingly turned to specialised hardware accelerators, such as
Graphics Processing Units (GPUs). Unlike traditional CPUs, GPUs are designed
to exploit massive parallelism, enabling them to process large volumes of data
simultaneously. Prioritising throughput and parallel computation over complex
control logic has proven to be an effective strategy with significant performance
improvements across various computational tasks.

The second approach to improve the computing performance involves ex-
ploring alternatives to traditional algorithms, such as machine learning. These
methods can approximate complex functions often more efficiently than con-
ventional rule-based algorithms while preserving accuracy. The combination of
advanced algorithms and high-performance computing architectures has demon-
strated significant improvements in both execution time and accuracy across a

variety of scientific and engineering applications.



Introduction

One of the key projects facing the computing challenge is the ATLAS ex-
periment [1], [2] at CERN, focusing on the general high-energy particle physics
research. The collisions of particles in the centre of ATLAS reach the highest
collision energies ever achieved, enabling recreation of early-universe conditions
and revealing processes that only emerge at extreme scales. The data recorded
by the detector for each particle collision is processed in real time in order
to select only the most interesting collisions for further analysis. Until now,
this processing has been performed by using a CPU computing farm. Since
the beginning of the experiment, significant efforts have been made to opti-
mise computational performance by improving the algorithms and adoption of
multi-threading parallelism.

However, during the years 2026-2030, the Large Hadron Collider (LHC) [3],
the accelerator providing the particle collisions in ATLAS, will be upgraded and
able to deliver many more particle collisions with higher energy (High-Luminosity
LHC [4]). Moreover, to accommodate the increased collision rate, the ATLAS
detector will undergo a significant upgrade that will increase its granularity,
significantly increasing the data volume and processing complexity.

The real-time data processing in the ATLAS experiment has its processing
constraints. With the available computing resources, planned to be expended
for the future data taking, after applying low-latency filtering, the recorded
collisions must be processed at a rate of 1 MHz to prevent data loss. In order to
achieve this limit after the incoming upgrades, the processing algorithms need
to be significantly optimised. The most time-consuming part is the reconstruc-
tion of the trajectory of the particles passing through the detector. This task
involves reconstructing the track left by each particle based on the detector
readouts, while accounting for the approximate shape of the tracks and relevant
experimental conditions. The performance of the current algorithm, fast track
reconstruction [5], scales non-linearly with the increasing number of collisions.
The increased granularity of the detector introduces additional complexity to
the data processing.

To improve the computing performance of this algorithm while achieving
satisfactory accuracy, the ATLAS Collaboration is considering several approaches,
including new algorithms and hardware acceleration techniques. The different
pipelines are prepared and optimised for the final technology choice, planned

to take place in December 2025. This work focuses on two of the proposed



solutions, each leveraging the massive parallelism offered by GPUs. The first
approach enhances the computing performance of the traditional algorithm by
offloading a portion of its execution to the GPU. The second solution proposes
a machine learning-based algorithm, with a complete deployment on the GPU.
Both pipelines face their challenges, which include suboptimal accuracy, high
memory footprint, and extended processing times.

The work will focus on achieving and preserving the required accuracy while
applying extensive performance optimisations specifically tailored for GPU accel-
erators. Both high-level and low-level optimisation strategies will be explored
across multiple software frameworks. In addition to GPU-specific performance
enhancements, machine learning optimisation techniques adapted for GPU ar-
chitectures will also be studied. The proposed methods will be evaluated in the
context of ATLAS reconstruction as well as on standard benchmark problems
to examine their robustness and generalisation. A detailed performance study
will be conducted, with attention to the specific features of the GPU as well as

variations across different hardware platforms.

Contributions

In this manuscript, the following main contributions will be presented:

1. Analysis of GPU-accelerated Track Seeding—a component of the ATLAS
track reconstruction algorithm—focusing on limitations and required op-
timisations to meet High-Luminosity LHC workloads. Performance is
evaluated across diverse hardware architectures with optimisations target-

ing massively parallel processors. (Chapter 3)

2. Memory footprint reduction for the Interaction Graph Neural Network via
iterative partial processing, achieving lower memory consumption without
compromising model accuracy; execution time penalties are mitigated

depending on step size. (Chapter 4)

3. Search for optimal structured pruning configurations for Graph Neural
Networks, evaluated on both benchmark models and the Interaction Graph
Neural Network. The study measures the impact of pruning on inference
performance across multiple hardware platforms and provides an in-depth

analysis of the observed limitations. (Chapter 5)
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Preview

This work is organised into six chapters. The current, introductory Chapter 1 de-
scribes the motivation of this work and its context. It is followed by a Background
Chapter 2, introducing the reader to the ATLAS experiment, its upgrade and the
upcoming challenges. The particle track reconstruction task is introduced, as well
as the Graph Neural Networks. The two auxiliary chapters are followed by three
core Chapters 3-5, each presenting a separate track reconstruction algorithm
optimisation. Each of the core chapters consists of a short introduction, related
works, method description, experiments and discussion of the results. The final

Chapter 6 summarises the presented work.

Contribution 1: GPU-accelerated Track Seeding Optimisa-
tion

The first contribution focuses on upgrading the ATLAS track reconstruction
algorithm. The selection criteria, which enable rejection of incorrect particle
trajectories, are adjusted to accommodate the higher granularity of the upgraded
detector and accept only the tracks that target particles can create. By reducing
the combinatorial complexity by rejection, the accuracy and the computational
performance of the algorithm are substantially improved. The algorithm is
additionally analysed and fine-tuned to maximise utilisation of the GPU’s com-
putational capabilities. The search for the optimal GPU configuration for such
an algorithm is conducted, with attention to present bottlenecks. The perfor-
mance across different hardware platforms is analysed, taking into account the

architectural characteristics and capabilities of the available accelerator cards.

Contribution 2: Memory Footprint Optimisation of Inter-

action Graph Neural Network

The focal point of the second contribution is the reduction of the memory
footprint of the machine learning based trajectory reconstruction algorithm,
Interaction Graph Neural Network (IGNN). The memory consumption is reduced
by explicitly splitting the most memory-consuming tensors into batches of optimal

size (substeps). Since only the temporary data structure is divided, the accuracy



is not affected. To study the impact of this optimisation on the computing
performance, a search for the optimal substep size is conducted, considering
different aspects of the resource utilisation of the algorithm. The performance is
studied on hardware with different on-chip memory capacities to ensure that the

algorithm is available even on the cost-efficient units.

Contribution 3: Inference Optimisation of Interaction

Graph Neural Network

The last contribution concentrates on improving the inference time and model
size of the IGNN algorithm on GPU by applying a structured pruning model
compression method. By removing the least essential parameters of the model,
the number of calculations to perform is reduced. Various configurations of
the pruning procedure are studied to identify the setting that achieves the
highest compression while preserving accuracy. Additionally, a sensitivity-aware
structured pruning is introduced and evaluated against traditional structured
pruning. The impact of the compression method on the computing performance
is considered on the selection of different hardware platforms. The pruning
configuration achieving the best results is evaluated on benchmark models to

assess the generalisation of the study.
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Publications

The following works were published related to the presented studies, exploring

the heterogeneous track reconstruction as well as its context - the ATLAS trigger

e Poreba A. on behalf of the ATLAS Collaboration, Operational experi-
ence with the new ATLAS HLT framework for LHC Run 3, EPJ Web of
Conf. Volume 295 (2024), Proceedings of 26th International Conference on
Computing in High Energy and Nuclear Physics (CHEP 2023)

o The ATLAS Collaboration, The ATLAS Trigger System for LHC Run 3
and Trigger performance in 2022, Journal of Instrumentation 19 (2024),
contributed to the HLT Performance chapter

o Poreba A., Froning H. on behalf of the ATLAS TDAQ Collaboration,
Performance of the ATLAS GNN/ITk Particle Track Reconstruction GPU

pipeline, Proceedings of 27th International Conference on Computing in
High Energy and Nuclear Physics (CHEP 2024)

o Poreba A., Barley D., Petersen B., Froning H., Accelerating Interaction
Graph Neural Network Inference on Massively Parallel Accelerators by

Sensitivity-aware Structured Pruning, (under a journal review)

o The GNN4ITk group, Improving Computational Performance of ATLAS
GNN/ITE Track Reconstruction Pipeline (in preparation, contributing to

the computing performance chapter)



Chapter 2

Background

2.1 ATLAS Experiment

The ATLAS experiment [1], [2] at the European Organisation for Nuclear Research
(CERN) is one of four major experiments built on the Large Hadron Collider
(LHC) accelerator [3] to study and expand the understanding of particle physics.
It is a general-purpose detector (as well as the CMS [6] experiment), focused on

the Standard Model studies and new particle searches.

2.1.1 The Large Hadron Collider

The LHC is the world’s largest hadron collider, able to reach the world’s highest
centre of mass energy of the collision of 13.6 TeV. The high energy allows for the
study of processes that were not possible before, including the process of Higgs
Boson production, discovered in 2012 [7].

The LHC is capable of producing proton-proton collisions as well as heavy
ion collisions, including lead, oxygen, or neon. The particles arranged in beams
follow a series of accelerators, gradually increasing their energy. Before entering
the LHC, the beams are split into two and circulated in opposite directions,
to eventually collide in the centre of the experiments (called interaction points,
[Ps or beam spots referring to the interaction regions) every 25ns (for proton-
proton program, 50ns for heavy ion). The beams are steered by a series of
magnets: superconducting dipole magnets responsible for bending the beams

and quadrupole magnets used to focus the beams.
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To quantify the collision rate and the amount of collected data by the
experiments, a parameter called luminosity reflects how many particles are
delivered to the interaction point per unit area per unit time. The higher the
luminosity, the higher the chances of observing rare physics processes.

In the accelerator, the particles are grouped in bunches, circulated, and
accelerated together. Depending on the number of particles within a bunch,
the number of bunches, and the beam shape, more particles can collide in each
crossing. The quantity describing the number of interactions occurring in a single
bunch crossing is called pile-up.

The LHC and its experiments operate in multi-year-long periods called "Runs’,
lasting a few years and separated by breaks focused on the upgrades. During the
time of writing this thesis (June 2025), Run 3 is approaching its final phase. Two
more 'Runs’ are planned for LHC: Run 4 (2030-2033) and Run 5 (2036 - 2041).

The HL-LHC Upgrade

To push the particle physics knowledge boundaries even further by increasing
the luminosity and the centre of mass energy of 14TeV, a LHC upgrade was
proposed, called High Luminosity LHC (HL-LHC) [4]. By upgrading the existing
technology, the number of proton-proton interactions per bunch crossing will
increase to 140 (or 200 in Run 5).

The substantial rise in collision rates must be processed by the LHC ex-
periments, necessitating significant upgrades to the detector systems and data

processing infrastructure.

2.1.2 ATLAS Detector

The ATLAS experiment is a multipurpose particle detector, illustrated in Fig-
ure 2.1, consisting of a series of subdetectors to record the properties of the
particle collision products.

The ATLAS detector has a cylindrical shape divided into a central Barrel
region and two EndCaps at the ends of the Barrel. This layout was optimised to
maximise the detector coverage and reconstruction efficiency for the particles
produced at LHC. The innermost part of ATLAS includes the Inner tracking
Detector (ID) surrounded by a thin superconducting solenoid providing a 2T

axial magnetic field. It consists of silicon pixels, silicon microstrip, and transition
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Fig. 2.1 Schematic overview of the ATLAS Detector for Run 3 with highlighted
locations of the larger detector sub-systems. [2]

radiation tracking detectors, able to interact with charged particles passing
through them. Usually, a particle leaves a maximum of twelve measurements on
the silicon detectors, which are used to reconstruct the trajectory of the particle.
The solenoidal magnetic field enables the reconstruction of the particle’s charge
through its effect on the particle’s trajectory.

The inner detector is surrounded by calorimeters: electromagnetic and
hadronic, enabling the measurement of the energy of a passing particle. The
outermost layer of the ATLAS contains a muon spectrometer based on three large
superconducting toroidal magnets with eight coils each. The spectrometer allows

identification and precise tracking of muons passing through the calorimeters.

The ATLAS Tracker Upgrade

To manage the particle reconstruction under the high-luminosity conditions of the
HL-LHC, the ATLAS collaboration initiated an upgrade of the existing tracking
detector. The increased number of modules will allow the reconstruction of
passing particles on a broader region than before, increasing the physics potential
of the ATLAS experiment. Moreover, each layer will contain more sensors than

before. Apart from the higher granularity, the new detector will provide higher
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radiation hardness, read-out speed, and lower maintenance costs.

The planned Inner Tracker (ITk) consists of two technologies: ITk-Pixel [8]
and ITk-Strip [9] detectors, constructed entirely with silicon sensors. The layout
of the ITk detector is illustrated in Figure 2.2.

ITk Strip

Barrel

n=1.1

ITk Strip h
Endcap

n=3.2
n=40_

ITk Pixel
Inner Barrel

o < K
= 2366 ITk Pixel § ¥ ‘ 7\
1% Outer Endcap ITk Pixel ‘(\\Q . ' R
Inner Endcap (%)
Ny Outer Barrel
> Tk Pixel

& |
Z & €| outer Barrel
1, (9 O/ uter Barre
I
N

Fig. 2.2 Schematic overview of the ATLAS ITk Detector. [10]

The Pixel detector, the closest one to the LHC beam pipe, is designed to
consist of approximately 100 million read-out channels with pixels of dimension
50 x 50pm? (or 25 x 100pm? in the Barrel region). This fine granularity enables
a precise measurement of the position where the charged particle interacted with
the detector (Figure 2.3). The exact location can be reconstructed based on
the known spatial coordinates of the activated sensor elements. Additionally,
the deposited charge of the particle can be measured by quantifying the electric

signal caused by ionisation within the silicon substrate.

particle
particle

i
l

——< stereo angle

hit—"
hit

Fig. 2.3 [llustration of interaction of a particle with the ITk-Strip detector (left),
leaving two one-dimensional measurements, and the ITk-Pixel (right), leaving
two-dimensional measurements [11].

10
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The ITk-Strip detector, located outside of the I'Tk-Pixel, consists of long,
narrow silicon strips rather than small pixels. The detector is designed to
consist of 60 million strip channels, each with a width of approximately 75pm
and a length spanning over several centimetres. Similarly to pixel technology,
passing charged particles ionise the silicon atoms, creating multiple electron-
hole pairs in one strip. The measurement is only one-dimensional; to identify
the interaction point between the detector and a particle, two strips need to be
considered. As illustrated in Figure 2.3, the strip pairs are tilted by a small stereo
angle of 40 mrad, and the intersection of them gives a precise two-dimensional
measurement in the module plane, which, combined with the known detector
geometry, allows reconstruction of the exact spatial location. In contrast to
pixels, strips do not read out the charge of the particle.

Although the strip technology offers lower spatial resolution compared to pixel
detectors, it is more cost-effective for covering large surface areas. It requires
less material, lighter cooling infrastructure, and a reduced number of read-out
channels per unit, reducing the power demand.

In comparison to the ATLAS Inner Detector, the ITk extends the coverage of
the ATLAS detector to include more forward tracks, close to parallel to the beam
axis. Moreover, the position of the EndCap modules was fine-tuned in comparison
to the ID; instead of disks, each layer consists of rings. The detector coverage
improvement is illustrated in Figure 2.4, the ITk surface will cover 178 m?. The
number of modules will be increased to 28000 from the 6000 installed in ID; the
comparison of the composition of layers is summarised in Table 2.1. The new
design allows for more efficient track reconstruction, with at least nine expected
silicon hits per track, compared to seven [12], enabling the detection of particles

from high-luminosity collisions.

2.1.3 ATLAS Trigger

The bunch crossings within the ATLAS detector are happening at a rate reaching
40 MHz for the proton-proton program, with the ATLAS detector sampling every
25 ns, synchronously with the beam. However, not all of the collisions contain rare
processes - the objects of interest for particle physicists. To reduce the amount
of data saved for further studies, a trigger system is used, filtering the signals

recorded by ATLAS. The collisions, called events, are partially reconstructed to

11



Background

Table 2.1 Comparison of number of layers of Pixel and rings of Strips for Inner
Detector (Run 3) [13] and Inner Tracker (Run 4 and Run 5) [8]. ITk-Pixel
EndCap includes inclined Barrel layers.

Number of layers Inner Detector Inner Tracker
/average rings per layer (Run 2 and 3) (Run 4 and 5)

Pixel Barrel 4 5
Pixel EndCap 3 17
4
9

SCT/Strip Barrel 4
SCT/Strip EndCap 6

I L L A B R
1400—ATLAS Simulation Preliminary

[ ITk Layout: 23-00-03
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Fig. 2.4 Layout of the Inner Tracker (Run 4 and Run 5) and overlayed geometry of
the Inner Detector (Run 3) [14]. The red shapes represent the ID Pixel coverage,
and the blue shapes - ID SCT coverage.

decide if they should be saved or discarded.

The ATLAS trigger consists of two levels: the Level 1 (L1), a hardware
trigger, and the High Level Trigger (HLT), a software trigger (schematic on
Figure 2.5). The L1 is based on coarse data from Muon Spectrometers (L1Muon)
and Calorimeters (L1Calo). For every event, the L1 system attempts to verify
the 512 physics signatures. If the L1 Trigger passes a collision, it is processed
by the HLT, performing a more detailed analysis, for example, including the
tracking detector read-out for the reconstruction of the particle path. The
collision products are reconstructed, identified, and tested against predefined
requirements. The reconstruction-hypothesis steps are organised in a way that

the most computationally expensive steps are executed only on a subset of events
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2.1 ATLAS Experiment

in order to save resources. An event passing at least one whole chain of the

hypothesis is saved for future physics studies.

Calorimeter detectors
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Muon detectors (including NSW)
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Endcap
sector logic

MUCTPI

Ly cre

» [CTPCORE
CTPOUT }

| Level-1 Calo

Pre-processor TileCal
TREX via TREX

CP (e,y,1) || JEP (jet, E)

Barrel
sector logic

DataFlow

L1Topo
Legacy

L1Topo

Read-Out System
(ROS / Software ROD)

Data Collection Network
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Level-1 Trigger

Data Storage
High Level Trigger
(HLT)

Processors II

Fig. 2.5 The ATLAS TDAQ system in Run 3 with emphasis on the components
relevant for triggering as well as the detector read-out and data flow. [15]

The L1 Trigger, synchronous with the ATLAS Detector read-out, is processing
the signals every 25ns with a latency of 2.5 ps. It is operating on custom-built
Field Programmable Gate Arrays (FPGAs) and Application Specific Integrated
Circuits (ASICs), creating object candidates and applying predefined selections.
The servers are located close to the detector itself to ensure low data transfer
latency. After an event is accepted, the data from the L1 trigger and detector
read-out is transferred to the HLT computing farm with approximately 60000
CPU cores, upgraded for Run 3 with dual-processor servers with AMD EPYC
7302 CPUs. The total farm performance improved from 1.2 x 10 HS06 ! at the
end of Run 2 to 2 x 106 HS06 since 2023.

The reconstruction of an event takes place twice in the ATLAS event process-
ing pipeline: first, during the event selection by the trigger (online) and later,

during the detailed reconstruction for physics analysis purposes (offline). Since

'HS06 - HEP-SPEC06 benchmark [16], a measure of the CPU performance.
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Run 2, the code of reconstruction algorithms is shared between online and offline
in the software package called Athena [17]; however, the settings on which and
how the algorithms are executed can differ. One of the differences is the regional
reconstruction in the online trigger. To reduce the data volume necessary to
process, the reconstruction is restricted to small regions guided by the L1 trigger,
called Regions-of-Interest (Rols) [18].

Online event reconstruction has specific performance requirements regarding
its throughput. The L1 trigger, by applying its selection, reduces the output
rate to 100kHz, which constitutes the input of the HLT. To process all the
incoming events, the average reconstruction time of one event cannot exceed
500 ms, depending on the available CPU farm. To maximise the computing
performance, the executed reconstruction algorithms need to be analysed in
detail and optimised. Table 2.2 contains a summary of the processing time spent
in different components of the HLT. Most of the time (59%) is spent on the

reconstruction of the particle path.

Table 2.2 Average distribution of HLT processing time per event in 2022 [15].

HLT Component Total time [%]
ID reconstruction 29
Muon reconstruction 14
Calorimeter reconstruction 11
Combined reconstruction and hypothesis algorithms 8
Trigger infrastructure 2
Other 6

The ATLAS Trigger Upgrade

The High Luminosity upgrade will result in a significantly higher number of
particles produced per collision (an event with pile-up of 200 is illustrated in
Figure 2.8), thereby increasing the volume of data recorded by the ATLAS
detector. The dataload will directly impact the performance of the algorithms
reconstructing the event, growing exponentially with the pile-up (Figure 2.6).

The track reconstruction algorithm will have to disentangle the trajectories of
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2.1 ATLAS Experiment

approximately 1500 particles per event (for pile-up 200, compared to 800 for
pile-up 70), as presented in Figure 2.7, and utilise significantly more read-out data
as a result of the Inner Tracker upgrade. Moreover, the computing requirements
are not eased - the Event Filter (EF) software trigger, replacing the HLT, must
operate at a rate of 1 MHz - over ten times higher than in Run 3 HLT, and the

EF track reconstruction algorithms must execute at a rate of 200 kHz.
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Fig. 2.6 The dependency of reconstruction  Fig. 2.7 Number of reconstructed

wall time per event on the average number tracks per event with pp > 1GeV

of interactions per bunch crossing (< u>) for tt events at < p >= 200 with

is shown for the Run 2 Inner Detector re- the updated I'Tk layout compared

construction with default tracking cuts. [19] ~ with the Run 2 detector at < u >=
38 [14].

In order to reach the expected computing capabilities of EF, the ATLAS
software trigger requires a significant upgrade. Both new algorithms and hardware
acceleration techniques are considered promising solutions for efficient processing,

as described in this work.

2.1.4 ATLAS Upgrade Input Data

To prepare and validate the reconstruction software ahead of Run 4, featuring
an improved tracking detector and substantially higher luminosity, simulated
datasets reflecting the anticipated future conditions are essential.

One of the widely used data samples is simulated top quark pair production
tt, one of the most interesting outcomes of proton-proton collision for ATLAS
researchers. It allows the study of the top quark, the heaviest particle of the
Standard Model, as well as searches for new physics beyond the Standard Model.

From the perspective of the track reconstruction, the decay of a top quark pair
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ATLAS

EXPERIMENT

HL-LHC tt event in ATLAS ITK
at <p>=200

Fig. 2.8 A simulated proton-proton collision event at average pile-up of 200
collisions per bunch crossing, with an I'Tk layout including the very forward
extension. The bottom-left inset is a 2D z —r view of the interaction region. The
vertical scale is 2.5mm and the horizontal one 12cm. All reconstructed particle
tracks have pT>1 GeV. The tracks coming from the primary vertex are coloured
in cyan. Two secondary vertices can be reconstructed, and the tracks coming
from them are highlighted in yellow. [20]

produces a large number of charged particles that interact with the tracking
detector. This way, the accuracy and computing efficiency can be evaluated
under high-load conditions.

However, the reconstruction of such a task is time-consuming and highly
complex. For the research and development of the new algorithms, a simplified
dataset is available. Initially, it was intended for the TrackML challenge [21],
aiming to find the most efficient method for track reconstruction. The main
difference with respect to the ATLAS dataset is that the number of hits in
one event is an order of magnitude smaller than ATLAS, the tracking detector
read-out data is replaced by partially reconstructed information, and the detector
geometry is simplified. One event of the TrackML dataset contains 1150 particles
per event to reconstruct from 1.2 x 10% hits, compared to 1500 tracks from
3.5 x 10° hits in an average tt sample with pile-up < p >= 200.

In order to validate the accuracy of the event reconstruction, a dedicated
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2.2 Track Reconstruction

sample is used, consisting of events with single muons passing the ATLAS detector.
The primary objective is to ensure the correct reconstruction of individual particle
trajectories prior to evaluating the overall throughput efficiency. The samples
are available with different momenta of the muon, impacting the trajectory of a

track. The samples will still contain detector noise and inefficiencies.

2.2 Track Reconstruction

The particle track reconstruction, commonly known as tracking, is the most
expensive of the algorithms in the online event reconstruction (Table 2.2). From
the clusters of hits from the tracking detectors left by charged particles after the
collision, single measurement spatial points are constructed in three-dimensional
space called SpacePoints (SPs) with dedicated clustering algorithms. From the
SpacePoint cloud, the tracking algorithm is connecting SpacePoints to create
paths reflecting the paths of the passed particles (tracks). The paths are con-
structed from track segments, connecting the subsequent SpacePoints. The paths
are restricted by physical constraints, related to the detector geometry, physics
of particle path, as well as requirements motivated by the physics program of
the experiment. Last, the parameters of the particle track must be estimated,

serving as the input to further event reconstruction and hypothesis testing.

2.2.1 Interaction of Particles with Matter

The charged particles passing the detector interact with the atoms of the material;
the effects can change the trajectory of the particle. Moreover, the particles are
also influenced by the surrounding conditions, such as the magnetic field. In
order to achieve a high quality of track reconstruction, these effects need to be

considered.

Scattering of Particles on Material

When charged particles pass through a material, they experience small-angle
deflections due to repeated interaction with the electric fields of nuclei. This
phenomenon is called Multiple Coulomb Scattering (MCS). The scattering angles
have a Gaussian distribution and can be approximated by the Equation 2.1
proposed by Lynch & Dahl [22].
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_13.6MevV [X

0o (2.1)
pr Xo

where:
) = angular deviation
13.6 MeV = empirical constant

))((o = thickness of the scattering medium in radiation lengths,

X _
(1/ X = 0.036)

pT = transverse momentum of the particle

Magnetic Field

In the ATLAS detector, the tracking sub-systems are surrounded by a solenoid
magnet, enabling reconstruction of the charge of the particles. In a constant
magnetic field, a charged particle is under the magnetic field force (Equation 2.2

derived from the Lorentz force law), resulting in a helix-shaped particle trajectory.

F=qu B (2.2)
where:
F' = magnetic force
q = electric charge of the particle

v| = instantaneous velocity perpendicular to magnetic field

B = magnetic field strength

The circular motion of the particle can be described with (Equation 2.3).

F=ma=—=— (2.3)
where:

F' = kinematic force

m = mass of the particle

a = centripetal acceleration a = %
v = instantaneous velocity

= radius

=

= momentum

S
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2.2 Track Reconstruction

The equation describing particle momentum can be derived from those two

forces (Equation 2.4).

p=qBp (2.4)

2.2.2 Geometry of Tracking

The tracking task involves pattern recognition for reconstructing particle trajec-
tories and estimating track parameters. Those tasks are strongly related to the
geometrical configuration of the tracking detectors, as well as to the kinematic
constraints dictated by particle physics models.

After the initial preprocessing of clusterisation and SpacePoint formation,
only the position of the SpacePoint in Cartesian coordinates (x,y,z) is known,
and its conversion to the cylindrical coordinate system (r,¢,0). The reconstructed
parameters describing the particle trajectory consist of five parameters, expressed

in Equation 2.5 and illustrated in Figure 2.9.

track

Fig. 2.9 Illustration of the global track parameters, defined relative to a reference
point, the perigee, or point of closest approach to the beam line. [23]

The parametrisation is defined with respect to a reference point (perigee). It
includes the impact parameters: the distance of the reference point to the IP dj
and longitudinal distance zg, as well as azimuthal angle ¢, polar angle 6 of the
track at the reference point, and ratio of the charge divided by the momentum
of the reconstructed track, reflecting the its curvature %. The default reference is

the beam line centred at the beam spot.
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where:

x = global position of the reference point, x = (z,y, 2)
p = momentum of the particle, p = (py,py,p-)

pr = transverse momentum pp = 4/ p% + pg
q = electric charge of the particle

Selected geometry parameters in the transverse (z —y) and longitudinal (z —7)
planes, used often for visualisation of the track parameters, are illustrated in
Figure 2.10.

r=v(x2+y?) detector layers
A

/" Particle path within detector

Particle measurement on detector surface

Fig. 2.10 Schematic overview of the ATLAS Detector geometry and the track
characteristics in the longitudinal and transverse planes. The most important
descriptors used for tracking were highlighted. [24]

Beam Spot

During a proton-proton collision, apart from the particle tracks originating from
the primary physics process, there are also secondary tracks caused by pile-up
interactions, which are unrelated to the primary event. The tracks recorded by
the ATLAS detector can come from the products of proton-proton collisions or

secondary decays.
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2.2 Track Reconstruction

The online event selection focuses on the tracks originating directly from the
proton-proton collision. They can be identified by the fact that they start from
the luminous region of ATLAS, where the collisions take place, referred to as
beam spot. Therefore, the reconstructed track or its segment can be classified as
primary only after considering the two parameters: the extrapolated crossing of
the track with the z-axis, zp, and the distance in the x-y plane dg. The z-distance
extrapolation is performed in the z —r plane, where the track is approximated
by a straight line (Figure 2.10).

Curvature and Transverse Momentum Estimation

The track curvature is used to approximate the transverse momentum of the
particle, that is, the amount of a particle’s momentum perpendicular to the
beam direction. It is one of the most important properties calculated during the
track reconstruction, used for the trigger selection and later for physics analysis.
The curvature and transverse momentum estimations (Equation 2.6) are derived
from charged particle motion in a magnetic field (Equation 2.4).

qB

1

where:

k = curvature

p =radius of curvature of a charged particle’s path in a magnetic field
pr = transverse momentum

q = particle’s charge

B = magnetic field strength

Pseudorapidity

Apart from the perigee parameters, described in this subchapter, a spatial
coordinate called pseudorapidity (n) is calculated for every track, defined by
Equation 2.7. It describes the angle of a particle relative to the beam axis. For

the tracks perpendicular to it n =0, for tracks along the beam axis, n tends

n=—In (tcm (g)) (2.7)
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This description of the angle of particle trajectory is used in the event
reconstruction, the hypothesis testing, and the analysis. The pseudorapidity is a
preferred parameter over the polar angle 6, because differences in pseudorapidity

0n remain approximately invariant under Lorentz boosts along the beam axis.

2.2.3 The Tracking Challenge

The computational complexity of tracking is very high, involving hits matching,
rejecting the false positive tracks, and track fitting, all within the online trigger
throughput requirements. In an average bunch crossing in Run 3, the algorithm
needs to process up to 15000 silicon hits, comprising up to 800 final tracks (for
pile-up < u >="70) [25].

Additionally, the algorithm needs to consider interactions of particles with
matter (multiple scattering) that impact the trajectory, as well as the impact of
the magnetic field bending the tracks, depending on their momentum. Moreover,
not all the hits can be associated with particles; some of the hits come from the
detector noise. Not all the possible hits of a track are present in the read-out - a
layer can be missed or not reconstructed because of the detector inefficiencies
(called holes). If the hits were close enough, distinguishing them during the hit
formation can be challenging.

The quality of the track reconstruction can be assessed based on the simulated
data samples, where the particle paths are known (called truth). The recon-
structed tracks can be classified in three categories: true tracks, corresponding
to the simulated tracks, fake tracks, not corresponding to any of the simulated
tracks, or to the tracks that are not the target of the reconstruction, based on
the event reconstruction parameters (false positive tracks). The third category,
duplicate tracks, corresponds to the tracks that overlap with already reconstructed
true tracks. The track reconstruction is quantified as the fraction of success-
fully reconstructed target tracks. However, the number of fake and duplicate
tracks should also be considered, as it impacts the computing performance of
the algorithms. With increasing pile-up, the quality of tracking decreases, as
more available clusters result in more opportunities for incorrectly associated

hits, resulting in fake track reconstruction.
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2.2 Track Reconstruction

2.2.4 Track Reconstruction Requirements

To ensure that only desired tracks are reconstructed, a series of criteria is applied
during reconstruction to reject tracks that are not of interest from a physics
point of view. The settings can be adjusted to accommodate particular needs;
this subchapter presents the requirements from the EF Tracking requirements
document [26], describing requirements for the online track reconstruction for
the ATLAS trigger for Run 4 and Run 5. The criteria are based on the prepared
set of physics signatures that the online trigger should efficiently reconstruct.

The criteria summarised in Table 2.3 ensure that the reconstructed tracks are
within ITk detector coverage |n| < 4 and expected beam spot |z9| < 200mm. The
tracking must cover all the particles with pr > 1GeV for full-scan tracking and
pr > 2GeV for tracking within Rols. The minimum tracking efficiency for high-
pr tracks (pr > 10GeV) is 98% and for low-prp tracks (1GeV < pp < 10GeV) is
95% with respect to tracks reconstructed by the offline reconstruction algorithms.
The maximum rate of fake and duplicate tracks cannot exceed 1% at pile-up
< p>=200.

Table 2.3 EF Tracking track selection requirements as a function of pseudorapid-
ity [26].

Pseudorapidity Interval

Requirements
In| <2.0 20<|n <26 2.6<|n <40

pixel + strip hits >9 > 8 >7
pixel hits >1 >1 >1
holes <2 <2 <2

pr [MeV] > 900 > 400 > 400

|dp| [mm] <2.0 <2.0 <10.0

|z0| [cm] <20.0 <20.0 <20.0

Additionally, a series of requirements can be derived from the presented
requirements and the detector geometry, described in detail in the track seeding-

related chapter.
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2.3 Graph Neural Networks

Neural Networks (NNs) are powerful tools for solving complex problems by
transforming input data through weighted connections and non-linear activation
functions. By adjusting the learnable parameters during training, NNs learn to
approximate complex functions, enabling them to perform tasks such as image

recognition, natural language processing, and time-series forecasting.

Perceptron

One of the first and simplest neural networks is a perceptron [27], capable of
making predictions for linearly separable data, usually in binary classification
tasks.

The functions are modelled by transforming the input vector x with n features
using the network parameters: weight vector w, and a bias b. The weights and
biases are adjusted during the learning process of the NN to minimise the error
between the network’s predictions and the expected values.

During evaluation, the feature vector is combined with the corresponding
set of weights to compute a weighted sum, which is then transformed by a
non-linear activation function f. The step activation function, configured for a
given threshold, allows the decision-making process by distinguishing between
two classes. The result from the activation is the final output of the perceptron.
The evaluation process was illustrated in Figure 2.11 and can be described with

Equation 2.8.

input features ~ weights and sum non-linear output
bias activation function
g wp
“)1\A
z1 > 3 > f >
Wy
Iy b

Fig. 2.11 Schematic overview of a perceptron neural network.
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yzf(b—l—g(:):ci'wi) (2.8)

The model can be extended to result in an output vector instead of a single
value, to model more complex non-linear functions, or facilitate multiclass classi-
fication. In this case, each output feature will have a separate set of weights and
biases.

Before the evaluation, the NN must undergo a training process to learn how
to reflect the expected output by transforming the input features. The process
of minimising the difference between predicted and expected output is guided by
a loss function, which quantifies this difference. The training process where the
expected output is known is called supervised learning. During the training, the
dataset that the network is supposed to model should be split into three parts:
training set, validation set and testing set - the usual proportions are 80-10-10.
The training set is used to fit the parameters of the network during training, and
validation is used to give an unbiased evaluation of the model fit during training,
for example, for early stopping of the training to prevent overfitting (described
later in this subchapter). The test set is used for unbiased evaluation of the final
model fit. In the beginning, the weights and biases are initialised with random

values. In each training iteration, called an epoch, the following steps are taken:
1. Calculate the output of the NN y. (Equation 2.8)

2. Calculate the loss [, quantifying the difference between the NN output and
the expected value d. For a simple network like a perceptron, loss can be

defined as a simple difference with Equation 2.9.

l=y—d (2.9)

3. Update the weights and bias values based on the loss value and the learning
rate parameter r, controlling the volatility in the weight changes. The

parameter adjustment is described by Equation 2.10.

w; =w; +r-l-x; (2.10)

Defining an appropriate stopping criterion for the training is critically impor-

tant. The process is usually repeated until the desired minimal loss is achieved or
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the maximum number of epochs is reached. However, excessive training duration
frequently leads to overfitting by causing the model to align too closely with the

training data, and therefore a deterioration in generalisation performance.

Multi-Layer Perceptron

The simplicity of the perceptron struggles to model problems where the data is not
linearly separable. To mitigate this issue, a Multi-Layer Perceptron (MLP) [27]
allows modelling of complex problems. It consists of an input layer, one or more
hidden layers, and an output layer. Each layer consists of neurons, transforming
its input through a linear operation followed by a non-linear activation function,
in the same way as the perceptron. Output of a single layer can be described by

Equation 2.11.

h=0(Wx+Db) (2.11)
where:

h = the output tensor of a single hidden layer
o = activation function 2
W = weight matrix

X =input vector

b = bias vector

The neurons are fully connected between neighbouring layers. A pass through
all L layers of MLP can be described by Equation 2.12.

h) = o(Wx 4+ bM),
h® =o(W@nW 4 b)),
(2.12)

y =o(WEHhE=D 4 )

In comparison to the training process described for the perceptron, there
are a few changes applied to the training of MLP. The process of updating the
parameters based on the loss is done through backpropagation. After the forward

pass, a gradient of the loss function with respect to the parameters is calculated

2To simplify the notation, ¢ is used to denote both the summation operation and the
activation function f
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(Equation 2.13), representing how much the parameter impacts the loss and how

to adjust it to minimise the model error.

ot _ ol oy
OW 9y OW

The parameters are updated using this information with optimisation algo-

(2.13)

rithms, for example, the Gradient Descent. The parameters will be adjusted in
the gradient direction that minimises the loss function, corrected by the learning
rate r, as presented in Equation 2.14.
ol
W:W—r-a—w (2.14)
Despite their simplicity, MLPs are widely used across a variety of tasks as
effective function approximators. Moreover, they are often used as a building

block for more complicated networks, including Graph Neural Networks.

2.3.1 Graph Neural Networks

Graph Data Structure

Despite being the most popular data structure, the tabular format, which organ-
ises the data in rows and columns, exhibits limitations when modelling complex
relationships between entities or dynamic structures. Such data representation
often requires extensive restructuring or introducing multiple relational tables to
capture the interdependencies. Graphs offer a more flexible format, consisting of
nodes and connections between them (edges) that capture complex and dynamic
interactions. An illustrative example of a simple graph structure is presented in
Figure 2.12.

In the graph data format, both nodes and edges can have features; moreover,
they do not have to be uniform in the graph (heterogeneous graphs). Not all
nodes have to be connected via edges - the relations between nodes are encoded in
different formats, for example, an adjacency matrix A. An example representation
for a graph from Figure 2.12 is shown in Equation 2.16, where n represents the

graph nodes.
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Fig. 2.12 An example graph visualisation, consisting of 5 nodes and connections
(edges) between them.

01101
10100

n=1001,234, A=|1 10 11 (2.15)
00101
10110

Another widely-used format is the edge list (Equation 2.15), where the edges
are represented by a list of their source Ey,. and destination Ej5 nodes. The
choice of the format should depend on the sparsity of the graph - for graphs with
very few connections, the edge list representation is more beneficial as it is much

less memory-consuming.

n=1[0,1,2,3,4], FEgc=1[0,0,0,1,2,2,3], Egu=][1,2,4,2,3,4,4]  (2.16)

The graphs can be directed, which means that an edge (a,b) leads from a to
b but not the other way. Sequences of distinct edges joined by nodes are called
paths. A relation between any two nodes in the graph can be described by a
distance, defined as the number of edges in the shortest path connecting the
nodes.

For each node (and edge), a neighbourhood N can be defined, consisting of
all the nodes connected to the node by an edge. A neighbourhood of distance d
includes all the nodes in the graph to which the distance is less than or equal to
d.
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Graph Neural Networks

Graph Neural Networks (GNNs) [28] are a special type of NNs focused on tasks
related to graph-structured data. Unlike the traditional NNs, instead of a simple
input vector of tabular-format data, GNNs are well-suited for domains where
relationships between entities are crucial, such as social networks or molecular
structures. By using both node-level information and the connections between
them, the model can capture complex dependencies within the graph.

The key element of the GNNs is the message passing mechanism, which
aggregates information through the graph, allowing them to capture both local
and global information. Both node- and edge-related features can be propagated,
depending on the task. This process has two steps, illustrated in Figure 2.13.
First, for each item (node or edge), the features of the defined neighbourhood
are gathered together in a vector or matrix. Next, the gathered features are
aggregated, creating an updated feature value for the given item. The aggregation
can be done by a simple sum or a more advanced function. The process can be

repeated to aggregate the messages from further neighbours.

(-

3

Fig. 2.13 A diagram illustrating the message passing mechanism in GNNs inspired
by [29]. The left side presents the initial state of the graph with five nodes, not
fully connected. Each node has its feature vector. After the message passing
step for node 0, the new feature vector consists of the combined features of
neighbouring nodes and the old node feature.

The most popular tasks involving GNNs are node classification, link prediction
and graph classification. To solve these problems, many different types of GNNs
are available, including Graph Attention Networks [30], Graph Convolutional
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Networks [31], Graph Auto-Encoder Networks [32], or Interaction Graph Neural

Networks.

Graph Attention Networks

Graph Attention Networks (GATSs) are a special type of GNNs, introducing the at-
tention mechanism in the message passing step. Attention heads can indicate how
relevant the information from each neighbouring node is by attention coefficients
(acting as weights). As a result, GATs are especially powerful for processing
noisy graphs, where not all connections contribute equally to the prediction
accuracy. The model can employ multiple attention heads, learning different
attention coefficients in parallel, and capture diverse patterns in the graph. GATs
are successfully applied in different tasks, including bioinformatics [33], traffic

networks [34], and cybersecurity [35].

Graph Convolutional Networks

Graph Convolutional Networks (GCNs) are a type of GNNs, enabling convolution
on graph-represented data. Convolution mechanism, widely used in the machine
learning community via Convolutional Neural Networks (CNNs), acts as a
filter over structured input data, such as grids or images, to extract localised
functions. This operation enables the network to capture local patterns and reduce
the dimensionality of the input while preserving essential information. Graph
convolution, instead of filtering over a grid-shaped space, works by aggregating
the features from the neighbours. GCNs are commonly applied to tasks related to

recommendation systems [36], drug discovery [37], or social network analysis [31].

Interaction Graph Neural Network

One of the special types of GNNs is the Interaction Graph Neural Network
(IGNN), based on the Interaction Neural Network concept [38]. They are designed
to model the interaction between the nodes in the graph through the message
passing mechanism and feature aggregation. Through the ability of learning from
both node attributes and the interactions between them, IGNNs can capture
dynamic higher-order relationships between nodes. IGNNs are widely used in
domains such as molecular modeling [33], [39], physics simulations [40], and

social network analysis [41].
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2.4 GPU Programming

Graphics cards implement a massively parallel architecture optimised for handling
large volumes of data, initially designed for graphics rendering. GPU program-
ming leverages this architecture to accelerate a broad range of computational
tasks. Unlike CPUs, which typically have a few cores optimised for sequential
processing, GPUs contain thousands of smaller, efficient cores designed for par-
allel execution of many threads simultaneously (Figure 2.14). However, in the
single-thread performance, CPU processing is always more efficient. The GPUs
are widely applied in fields requiring high computational throughput, including

machine learning, simulations, and real-time data processing.
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Fig. 2.14 Comparison of CPU and GPU architecture [42]. The CPU architecture
consists of a few powerful cores performing basic arithmetic and logical operations,
which are supported by large caches and advanced control. In contrast, a GPU
consists of thousands of simpler cores with minimal control logic, providing high
throughput for parallel applications.

The programming of graphics processors requires specialised frameworks that
provide APIs and language extensions to offload code to the hardware. They are
leveraging the parallelism at different granularities and providing various levels
of user customisation and interaction with the GPU. One of the most popular
platforms is CUDA [43], providing a software layer to access the NVIDIA GPUs
directly. The user can directly implement functions called kernels and control
their runtime, requiring advanced programming skills. The second framework

used in this work is PyTorch [44], providing seamless CUDA integration for
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Python applications. Users can leverage GPU acceleration with minimal code
modification; moreover, it is well integrated with ML tools available in Python.
Custom CUDA extensions can be added for low-level GPU optimisation.

In the CUDA programming model [45], the parallelisation is based on a
hierarchy that efficiently divides the workload between the processing units. A
thread block collects threads executing the same kernel function on the same
Streaming Multi-processor (SM), which gives them access to low-latency shared
memory. The number of threads can be configured during the kernel launch, and
exposed variables can address them. Each thread can be uniquely identified by its
index within a block threadIdx and the x,y, 2z dimension, as thread blocks can
be defined in up to three dimensions. The thread blocks are organised into a grid,
which can also be multidimensional, collectively executing a given kernel. Each
block can be referred to, similarly to threads, by the blockIdx and its position
in the grid dimensions. Additionally, the CUDA interface provides the block and
thread dimensions as well: blockDim and threadDim respectively. Blocks are
independent - they do not share memory or synchronise. The described hierarchy

is illustrated in Figure 2.15.

Block

Grid Thread (0, 0) | Thread (1, 0) | Thread (2, 0) | Thread (3, 0)

Block (0, 0) Block (1, 0) Block (2, 0) g g g g
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ééggé gég«ggg ggéééé Thread (0, 2) | Thread (1, 2) | Thread (2, 2) | Thread (3, 2)

AREREEE

Fig. 2.15 CUDA virtual thread-block-grid organization [42]. The illustration
shows two-dimensional grid of size (2,3) with two-dimensional blocks, each of a
size (3,4).

The threads are grouped within a block by the configuration of the user;
however, they are scheduled and executed on the GPU in groups of 32 called warp,
partitioned by the hardware. The hardware does the grouping, and each warp
executes the same instruction at a time, but on different data (Single Instruction,

Multiple Thread). The warp mechanism should be considered during the code
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optimisation; the conditional branching within a warp can lead to reduced
performance, as divergent paths are serialised. To improve the throughput,
aligning memory accesses among threads in a warp should be optimised to
exploit coalesced memory access.

Apart from the mentioned shared memory (accessible within a thread block),
the GPU structure offers global off-chip dynamic random-access memory (DRAM).
It is accessible to all the threads and blocks with high latency.

2.4.1 Awvailable Hardware

Graphics cards available on the market have fine-tuned features for different
purposes, prioritising the optimal memory access, precision, or concurrency.
To identify the best hardware for each algorithm presented in this work, the

performance will be evaluated on the following GPUs:
o NVIDIA Tesla T4 (released 2018),
« NVIDIA RTX A5000 (released 2021),
« NVIDIA RTX 5000 Ada (released 2023),
« NVIDIA A100 (released 2020).

In Table 2.4, chosen properties of the cards are listed, which can noticeably
impact the performance of the algorithm. The details of the differences will be
described in this subchapter.

The memory amount on a card can be limiting for memory-consuming
algorithms, including NNs. The high memory consumption can arise from the
model size (for example, a large number of parameters in Convolutional Neural
Networks) or from large model input (often encountered with Graph Neural
Networks). The DRAM type can also be a limiting component. The considered
GPUs have two different types: GDDR and HBM. Graphics Double Data Rate 6
(GDDR) [46] is a standard of synchronous random access memory implementing
data transfer on both the rising and falling edges of the clock cycle (Double
Data Rate - DDR) and doubling the data transfer rate. FEach memory chip
has two independent 16-bit channels, doubling the throughput in comparison
to the previous technology. The second memory architecture, High Bandwidth

Memory (HBM) [47] instead of the traditional two-dimensional model, relies
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Table 2.4 Overview of chosen properties of GPU cards used for particle track
reconstruction evaluation.

NVIDIA  NVIDIA  NVIDIA RTX NVIDIA

Property Tesla T4 RTX A5000 5000 Ada A100
Architecture Turing Ampere Ada Ampere
Memory [GB] 16 24 32 40
Memory type GDDR6 GDDR6 GDDR6 HBM2e
Memory bandwidth [GB/s] 320 768 576 1555
Number of SM 40 64 100 108
iizb;;oéﬁUDA 64 128 128 64
gfﬁ?;g;“ifgﬁber of 1024 1536 1536 2048
Thermal Design Power 2 [W] 70 230 250 250
Market price k$ 3 0.8-1.1 3-4 4.5-5.5 8-10

on three-dimensional stacking of memory dice, providing high bandwidth for
memory access. The dice are in physical proximity to the processors; therefore,
a wide data bus and low latency are possible. This memory type is popular in
bandwidth-constrained environments, such as high-performance computing or
Al training.

The next property to consider when choosing GPU hardware is its processing
power. The more SMs a GPU has, the more independent parallel blocks can
execute at the same time, improving scalability for large workloads. More CUDA
cores per SM provide higher throughput within SM, allowing, for example, more
simultaneous threads.

The last criterion to consider is the price and the availability of the hardware.
The cutting-edge generation of graphics cards, including NVIDIA Hopper or
Blackwell, is subject to prolonged delivery times. Moreover, their market-driven
cost is considerably high (NVIDIA H100 80GB costs 25 k$-35k$ per unit, June
2025). Making optimal decisions for the event processing farm requires selecting

hardware that achieves a balance between cost and performance, matched with

2Thermal Design Power (TDP) - the power consumption under the maximum theoretical
load
3June 2025
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an optimised algorithm to ensure cost efficiency. The power consumption of the

card should be taken into account in long-term cost planning.

2.4.2 Profiling

To fully leverage the computing power provided by GPU parallel processing,
the code can be analysed and fine-tuned with dedicated tools. This subchapter

provides an overview of profiling programs used in this work.

CUDA

Along with the CUDA platform, NVIDIA provides advanced tools for GPU
program analysis. In this work, NVIDIA Nsight Compute was used to measure
the resource utilisation during the inference. This tool offers easy access to the
execution time of kernels, memory consumption, throughput, scheduling, and
many other characteristics.

One of the important metrics is the number of Floating Point Operations
(FLOPs), necessary to estimate the computational demand placed on the proces-
sor and measure how intensively a model utilises the resources. As the subtotals
of fused multiply-add (FMA), addition (ADD), and multiplication (MUL) (float-
ing point) operations are not directly comparable due to different hardware
complexity, we calculate the total number of FLOPs as follows to approximate

underlying hardware complexity:

FLOP = 2-FMA + ADD + MUL (2.17)

Another metric measured with the NVIDIA tools is the instantaneous power
consumption. The measurements are done every 1 ms during the algorithm’s
execution. The granularity can be adjusted according to the walltime of the
algorithm.

The CUDA code used in this work is a part of the Athena framework. Internal
Athena time monitoring was used to measure the wall-clock time of different

components of the tracking algorithm.
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PyTorch

To analyse the PyTorch code, the same NVIDIA profiling tools can be used;
however, the PyTorch framework provides a set of profiling tools fine-tuned for
its algorithms.

In this work, two built-in PyTorch tools are used to measure the memory
consumption of the algorithm. Both require enabling the recording of memory
history 4. The recorded allocations can be dumped into a snapshot ® and later
analysed with the visualisation tool called memory_viz 5. The allocations are
annotated with relevant information such as size, duration, and code source.
Alternatively, to measure the peak memory per input, a dedicated built-in tool *
can be used. Throughout the measurements summarised in this work, the
mentioned tool was integrated into the PyTorch Lightning Callback & to measure
the peak memory consumption during the inference per the model input.

In order to measure the processing time of the given input, the torch.event
package ? was used. It provides a precise measurement, but it requires synchro-
nisation; therefore, the measurements cannot be nested, and the total walltime is
impacted. The PyTorch Lightning Advanced Profiler 10 is implemented using the
cProfile profiler ', providing a generic overview of the most computationally
expensive functions on both CPU and GPU. By inserting hooks and callbacks,
all the operations are recorded; however, the measurements are not as precise as
torch.event package, using native CUDA timing mechanisms with nanosecond
resolution. Moreover, by profiling the nested operations, the overhead from

measuring them can be observed.

*https://docs.pytorch.org/docs/stable/torch__cuda__memory.html#torch.
cuda.memory. record memory history

https://docs.pytorch.org/docs/stable/generated /torch.cuda.memory__
snapshot.html#torch.cuda.memory_ snapshot

Shttps://pytorch.org/memory  viz

"https://docs.pytorch.org/docs/stable/generated /torch.cuda.max_memory
allocated.html

Shttps://lightning.ai/docs/pytorch /stable/extensions/callbacks.html

%https://docs.pytorch.org/docs/stable/generated /torch.cuda.Event.html

Ohttps://lightning.ai/docs/pytorch /stable/api/lightning.pytorch.profilers.
AdvancedProfiler.html

Uhttps://docs.python.org/3/library /profile. html#module-cProfile
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Chapter 3

GPU-accelerated Track Seeding
for ATLAS Phase-1I Trigger

Particle track reconstruction remains the most computationally demanding task
of the ATLAS online trigger (the details of the challenge of event reconstruction
are presented in Subchapter 2.2.3). The challenges are further amplified in
the context of the High-Luminosity LHC (Subchapter 2.1.1), and the enhanced
complexity introduced by the upgraded ATLAS detector (Subchapter 2.1.2). This
chapter provides an overview of the tracking algorithm employed during Run 2
and Run 3 of the ATLAS experiment, highlighting the limitations of the current
approach and the necessary upgrades for the expected Run 4 conditions. To
further improve the computational performance, a GPU-accelerated solution is
proposed, exploiting the parallelism of this algorithm. The proposed optimisations

and their effects on the accuracy and performance are discussed in detail.

3.1 Fast Track Reconstruction Algorithm

This subchapter provides an overview of the fast tracking algorithm (FTF) [5],
used by the ATLAS Collaboration as an online trigger track reconstruction
algorithm. The GPU-accelerated track seeding [48] will be described, currently
not used for the online trigger, but prepared as a proof of concept for early

studies of accelerators in ATLAS event reconstruction.
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3.1.1 Algorithm Overview

Clustering and SpacePoint Formation

Before the algorithm matching the hits together into particle tracks can be exe-
cuted, first, the raw detector data is transformed into SpacePoint representation
in a process called clustering [49].

The SpacePoints are constructed from clusters, created directly from the
detector read-out of the charge deposit as well as the read-out module position.
A clustering algorithm groups together signals left in adjacent channels, repre-
senting the intersection of a passing charged particle with detector material. A

visualisation of a particle interacting with detector cells is presented in Figure 3.1.

Insufficient charge

X collection
Charged
particle

L
:
|

Fig. 3.1 Illustration of a particle interacting with detector cells: three-dimensional
view (left) and local cluster two-dimensional view (right).

Based on the charge read-outs ¢ and positions 1 of N cells with recorded
signal, the final measurement of the cluster centre m can be calculated with a

charge-weighted approach, described by Equation 3.1.

. N
> ails (3.1)

N
>im19i i3

The process of clusterisation requires sophisticated algorithms to disentangle

m=—

close-by or joint clusters. Based on the formed clusters and their geometry:
location and rotation, SpacePoints can be created as three-dimensional points in
space. Each SpacePoint is represented by one cluster from the I'Tk-Pixel detector

or two clusters from the I'Tk-Strips, illustrated in Figure 2.3.
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To correctly reconstruct the track, the uncertainty of the measurement needs
to be considered. Although the modules are small and highly precise — the
pixels from [Tk detector are approximately five times smaller than those in the
Inner Detector Pixel — they do not provide the exact location on the module’s
surface where the interaction took place. To account for this uncertainty in the
measurement, each SpacePoint has an associated error, calculated based on the
dimensions of the cluster surface. Afterwards, the error on the cluster needs to
be transformed according to its position in the detector. The active size of a
single read-out pixel chip module is 19.2 x 20mm? (384 x 400 pixels, each pixel
sensor of size 50 x 50pm?), and the depth is estimated to be 100 — 150pm? [8].

Similar constraints regarding the measurement uncertainty arise for the I'Tk-
Strip detector. The created clusters are combinations of two one-dimensional
read-outs. The layers of strip modules are tilted by a stereo angle with respect
to each other as presented in Figure 2.3. The position of the SpacePoint is
determined by the geometric intersection of two strip modules.

However, the sensors are not directly above each other, but separated by a
gap. Therefore, a particle passing through the detector with a bent track due
to the magnetic field could hit the outer sensor, not directly above the inner
plane. The cases are illustrated in Figure 3.2. By default, the hits from the
[Tk-Strip detector are created assuming the particle travelled straight from the
IP; however, it’s only true for the high pp tracks.

A o
o outer plane ,)21 outer plane
1 ’
I a2 inner plane [ o inner plane
T I r ,/
¢ ¢
(a) Particle passing in a direction per-  (b) Particle passing in a direction leaning
pendicular to the module plane. towards right wrt the module plane.

Fig. 3.2 Tllustration of particle passing through strips modules in different direc-
tions based on illustrations from [50].

Final SpacePoint contains information about its global position and derived
parameters, the ID of the detector module that it interacted with, and a list of

clusters that it was created from.
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Track Finding

The second step of the fast track reconstruction algorithm, track finding, consists
of two parts: track seeding and track following. Track seeding searches for
combinations of three SpacePoints (called triplets) that are promising to be part
of a track corresponding to a target particle (true tracks). Seeds are filtered by
applying selection criteria to reject the seeds that are not likely to be part of the
true tracks. A typical track finding algorithm in ATLAS and its selection cuts
will be described in detail in Subchapter 3.1.2.

Track seeding is followed by track finding, where the track candidates are built
from the seeds. There are several algorithms available, including the combinatorial
Kalman Filter [51] (CKF) used for ATLAS online track reconstruction. The
track finding algorithm should maximise the number of true tracks and minimise
the number of fake and duplicate tracks.

The ATLAS online track following algorithm is illustrated in Figure 3.3. First,
based on the identified seeds, search roads are created through the remaining
layers of the detector based on the estimated track trajectory from the seed. The
roads consist of detector modules that are expected to contain clusters compatible
with the considered seed. Within the roads, the track is extended from the seed
through a CKF. First, the track is extrapolated to find the location of the
best-fitting next hit. Next, the most compatible seeds are selected as candidates
for the extrapolation - this allows branching of the fit, in contrast to the standard
Kalman Filter approach. This way, even if the true hit is not the best candidate
due to detector inefficiencies or noise, it will still be considered to be a part of
a track. At each step, the procedure of refitting, extrapolation, and selection
is repeated until there are no hits available, and the set of track candidates is
selected. The ambiguity resolution algorithm selects the best candidate for a

seed based on the reconstructed parameters of tracks.

Track Fitting

The last step of the track reconstruction is track fitting, which aims to estimate
the parameters of the created track.
The fast tracking algorithm uses the Kalman filter track fitter [52], which

is much more computationally efficient compared to the y? method [53] used
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Fig. 3.3 Hlustration of track finding with CKF algorithm. The arches represent
detector layers, and red circles - identified SpacePoints. The search road is
marked in blue, and the current track candidate is indicated by a blue arrow.
The triangle represents the search area for the next hit, extrapolating the track.

for precision tracking. This strategy takes into account uncertainties caused by

particles interacting with matter.

3.1.2 Track Seeding

The first part of the track finding, the track seeding, is a crucial step, allowing
the start of the search for the track candidates. The algorithm first creates pairs
of hits (called doublets) prefiltered by their geometric properties, which are later
matched into track seed candidates (triplets). The two doublets creating a triplet
must share one of their points (the middle SpacePoint of the seed). To reject the
fake seeds, a series of selection cuts is applied, closely related to the position of
the hits, the detector geometry and parameters of the tracks to reconstruct. The
selections are scheduled in a way that the fastest and the most rejecting cuts are
applied first, to reject as many fake seeds as soon as possible and accelerate the
algorithm execution.

The GPU-accelerated track seeding was implemented by three kernels; their
workflow is illustrated in Figure 3.4. The first two kernels, doublet counting
and doublet making, are responsible for the creation of SpacePoint pairs, which
will later construct a track seed. The same selection code is executed twice to
distribute the memory along the preallocated data structures efficiently. The size
of the data structure corresponds to the expected maximum number of doublets.

First, the number of doublets for each middle SpacePoint is counted, and later,
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the doublets are saved; this way, continuous memory to store all doublets can be
used. If the first step was skipped, and for each middle SpacePoint, the maximum
possible doublet size was allocated, the available memory on the hardware would

be exceeded.

Middle SPs and Track seed
Space number of their candidates
¢ S — (
Points Doublet doublets Doublet Doublets Doublet (triplets)
ouble N ouble N ouble
Counting Making Matching

Match doublets
sharing one point
into triplets

For each middle
Space Point save
the doublets

For each middle SP
count the number of
other SPs creating
doublets to allocate the
memory

Fig. 3.4 Illustration of the flow between the kernels implementing the GPU-
accelerated track seeding.

The GPU acceleration of the track seeding is possible because the seeds can
only be created from points within a defined neighbourhood. The search for the
seeds is performed in sectors of the detector, illustrated in Figure 3.5, restricted
by azimuthal angle ¢ and pseudorapidity 7. The SpacePoints from the Barrel
are divided into 30 equally sized sectors in ¢ and 13 in 7, and SpacePoints from

the EndCap into 73 sectors in ¢ and 2 in 7.

. midpoint
sector +1 L,,s,egtgr, . / sector -1
| 0 W \ |
: [ | |1 | |
inner middle outer

Fig. 3.5 Illustration of sectors considered for track seeding. During the triplet
search, the currently processed sector is considered as well as the adjacent
ones [49].

Doublet Selection Cuts

The filtering in search for track seed candidates begins with the selection of layers

within the considered sector and its two closest neighbours, which are considered
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for a given point to contain a corresponding point that can form a doublet.
The layer selection process involves projecting a straight line in the z-r plane
from the currently processed SpacePoint (further called SP,,) to the boundaries
of the layer under consideration; the projected range must overlap with the
beam spot boundaries to accept this layer. This way, the criterion described in
Subchapter 2.2.2 to reconstruct only primary tracks originating from the beam
spot is fulfilled. The projection is illustrated in Figure 3.6, where 2j,,,in and zpnaz

mark the projected range.

O layer candidate

Q current layer

Ny

Zimin 2o Zlmax

Fig. 3.6 Illustration of a layer and SpacePoint projection onto the beam spot
used as a selection criterion for track seeding. The purple circle symbolises the
currently considered SpacePoint, SP,,, and the red line at » =0 - beam spot
limits. The layer candidate for containing possible hits to form a seed and its
projection over the z-axis is marked with a green colour. A hit belonging to the
layer candidate SP, and its projection are marked in blue.

Additionally, only detector layers located within a specified distance [ from
the SpacePoint SP,, should be accepted. This distance is evaluated from the
geometric centre of each layer and is defined to ensure the inclusion of both the
nearest and the most distant successive layers. Considering the doublets created
from distant layers lead to the creation of duplicate seeds or even fake seeds. In
the current configuration, the parameter [ ranges from 2 to 150mm.

After accepting the layer for further processing, each of the SpacePoints
belonging to it is (further called SP,). The distance selection cut is applied again
for SP,, followed by a cut on the pseudorapidity of the doublet - the maximum
n € [—4,4] of the track seed candidate, described by Equation 2.7, cannot be

exceeded.
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Last but not least, a projection is made, similar to the layer boundaries
described earlier in this subchapter, if the track created from this seed could
originate from the beam spot, as illustrated in Figure 3.6.

If a doublet passes all the selection requirements, it is saved for further

processing by triplet formation.

Doublet Selection Implementation

A block diagram of the doublet selection algorithm is presented in Figure 3.8.
These kernels are leveraging the parallel processing by utilising a two-dimensional
configuration of thread blocks and grid, illustrated in Figure 3.7, enabling efficient
computation across spatially organised data. Each block is assigned to process
a separate part of the detector consisting of three adjacent sectors containing
points able to create a seed (Figure 3.5). The results from different sectors are
independent of each other, enabling parallelism of the algorithm. If the number

of scheduled blocks exceeds the available GPU resources, they will be processed

iteratively.
Detector layer Other SpacePoint Index
X 4. Ncores
0 1 2 - Nigers -§ 0o 1 2 ... 39
0 g 0
— [e]
g 3
o
% 1 § 1
2 %)
§ 2 % 2
1] =}
8] IS
<
o
Nectors 5 32
O
Grid scheduling Block scheduling

Fig. 3.7 Illustration of the grid and block configuration for the doublet counting
and making kernels.

Each thread assigned to process the data from a three-sector window evaluates
points from the current layer to determine whether a doublet can be created
based on predefined selection criteria. Within each block, the threads with the
same x-index are processing the same middle SpacePoint. A maximum of 32
middle SpacePoints can be processed in parallel. Threads sharing the same

y-index test whether the SpacePoint with a given index quantifies as a doublet
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candidate. Each middle SpacePoint is assigned a multiple of four threads to
process potential partner SpacePoints, depending on the number of cores on the

underlying hardware.

Triplet Selection Cuts

Each triplet considered consists of a pair of doublets sharing a middle point;
therefore, the filtering is based on the kinematic and geometric properties of
these doublets. The selection cuts described in this subchapter are designed to
assess whether the properties of the seed candidate are consistent with those of
a track candidate seed.

The first applied selection evaluates if the polar angle 6, therefore, the
inclination in the z-r plane of the doublets is similar enough to form a triplet,
expressed in Equation 3.2. The track seed in this plane should form approximately

a straight line.

Azl AZQ

Ari Bl |cosf — cosfa| < 0.25 (3.2)

The next selection fine-tunes the z-r plane inclination cut even more, estimat-
ing whether the triplet forms an approximately linear trajectory in the z-r plane,
unaffected by the magnetic field (Figure 2.10), after taking into consideration
the Multiple Coulomb Scattering (MCS) and pixel cluster measurement error.

The effects of Multiple Coulomb Scattering (MCS), described in Subchap-
ter 2.2.1, are corrected by including a variance factor for the possible scattering
angles. They are estimated by Equation 2.1. In order to calculate the maximum
variance that can occur, the minimum pp = 900 GeV is used for the calculations.

The cluster measurement error is determined by the detector resolution, for
the Inner Detector err, = 0.01mm,err, = 0.13mm for the Barrel region and
err, =0.13mm, err, = 0.0lmm for the EndCap.

Next, the transverse momentum pp is estimated based on the track curvature
(Equation 2.6). The calculation is done by transforming the transverse plane (z,y)
coordinates onto a new plane (conformal mapping) to find the linear equation
describing the circle. The transformation is illustrated in Figure 3.10.

First, each doublet (SP,,,SP,), where each SpacePoint is represented by
coordinates (z,y,z) and their polar representation (r,¢,), undergoes a transfor-

mation to two-dimensional plane, where the middle point of the triplet is the
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Fig. 3.8 Block diagram represent-
ing the operations flow in the dou-
blet counting and making algorithms.
Block and thread indices identify the
current block and thread executing
the kernel.

Fig. 3.9 Block diagram representing the
operations flow in the doublet matching al-
gorithm. Block and thread indices identify
the current block and thread executing the
kernel.
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center of the plane to simplify the further calculations (Equation 3.3). This
way, one of the points of the triplet belongs to the circular path. After the
transformation, the SpacePoints are represented by a vector (u,v). The circular
shape of the track is in the x-y plane; therefore, the z coordinate is not considered

here.

u cos¢ sing | [z

= (3.3)
v —sing coso | \y
Next, conformal mapping to a plane (£,7), where a straight line represents a

circle, is applied to each SpacePoint SP;. The transformation is described by

Equation 3.4, where p is the distance of the point from the centre of the (u,v)

plane.
u; v;
&= ;227 ni = p% (3.4)
(2 (2

If the inner and outer SpacePoint of the track belong on the same line in the
new space (£,7), they are part of the same circle and can represent a true track
seed.

The last cut is related to the distance of the middle of the seed from the IP,
do < 4mm. The triplets closest to the IP are chosen to avoid the duplicates.

Seed Selection

For each middle space point, only a selected number of them (the default value
is 3) are saved for further track reconstruction. The selection is based on the
distance from IP dy. This way, the amount of duplicate seeds, related to the same
track, is reduced, and seeds that are a part of the same track are not separately
processed - only the seed closest to the IP is selected. However, the seeds of a
true track can also be rejected in favour of fake track seeds very close to IP but

not corresponding to a real track.

Triplet Selection Implementation

In contrast to the doublet selection, only one dimension of the grid and thread
block is used in the doublet matching implementation (illustrated in Figure 3.11).

Each block of the grid processes a separate middle SpacePoint, shared between a
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u

\ 4

Fig. 3.10 Illustration of a conformal mapping of three SpacePoints. The initial
three considered points: inner SP;, middle SP,, and outer SP, are transformed
from the  —y plane (black axes), to u—wv (green axes), where SP,, is the origin
of the plane.

doublet in a triplet candidate. As illustrated in the block diagram of this algorithm
in Figure 3.9, first, the doublet parameters are calculated and saved, split into
inner doublet and outer doublet categories; the classification is done based on
the distance from the beam spot. If the distance of the middle SpacePoint (SPy,)
is higher than that of the other SpacePoint (SP,), the doublet is considered as
inner; otherwise, it is considered as outer. Next, all the combinations of inner
and outer doublet pairs are evaluated to determine which pairs can become track
seed candidates. If all selection criteria are passed, a score for the pair is saved,
based on the estimated dy distance from the IP. Lastly, for each processed middle
SpacePoint, the three best candidates are saved as track seed candidates (the
number of the best candidates is an adjustable parameter).

A maximum of 1024 middle SpacePoints are processed in parallel by different
blocks. The threads are responsible for data preparation and selection of the
doublet pairs, associated with the middle SpacePoint, a maximum of 1024 in

parallel, which is the maximum number of threads per block possible.
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Current middle SpacePoint index Other SpacePoint index
0 1 2 ... 1024 0 1 2 ... 1024
Grid schedN Block scheduling

Fig. 3.11 Tllustration of the grid and block configuration for the doublet matching
kernel.

3.1.3 Performance of Tracking

Throughput

To understand the correctness of the algorithm and identify the inefficient areas,
the distribution of the output seeds is analysed. The seeds are divided into three

categories:
o true seeds, which are reconstructed into a track in the following steps,

o duplicate seeds, which are a part of an already reconstructed track from

another seed,

o fake seeds, that are rejected during the track extension or track fitting

stage.

To minimise the memory consumption, the number of duplicate seeds should
be reduced, as they are unnecessary for a successful reconstruction yet occupy
valuable memory space. To minimise the overall time consumption of the track
reconstruction algorithm, the number of fake seeds should be minimised, so that
the further steps are not unnecessarily executed. The number of true tracks

should remain as high as possible.

Efficiency

The accuracy of the online track reconstruction is measured by considering how
many of the true tracks were reconstructed. This measurement can be done with
respect to the true information; in the case of the MC simulated data, where the
information which the tracks were simulated is preserved. However, considering,

for example, the data recorded by the ATLAS detector, the truth particle labels
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are not available. In this case, the performance is often compared to the track
reconstruction accuracy of the offline precision tracking algorithm.

To measure the physics efficiency of the algorithm, an Athena tool IDPVM was
used, prepared by the EF Tracking group, to compare the performance of different
track reconstruction workflows. There are multiple different measurements
provided; however, during evaluation, the analysis in this work focused on the
n and pp distributions of the efficiency. The first one ensures the algorithm
correctly reconstructs the tracks from all the regions of the detector, both the
forward detector and the Barrel tracks. The second ensures that particles with
different traverse momenta, therefore, different track shapes are reconstructed in

the event.

3.2 Fast Track Reconstruction Upgrade

The fast track reconstruction algorithm was successfully used during Run 2 and
Run 3. However, with the upcoming upgrade of the ATLAS detector and LHC,
the computing performance of this algorithm is expected to worsen drastically,
based on the experiments with simulated data. The cost of the fast tracking
algorithm scales exponentially with pile-up, as shown in Figure 2.6. With
expected conditions of pile-up of 140 during Run 4 and 200 during Run 5, the
track reconstruction algorithm requires optimisation.

The proposed GPU-accelerated version of the fast track reconstruction [48] is a
promising candidate for the future ATLAS online track reconstruction algorithm.
The track seeding phase involves the largest volume of data to process (3.5 x 10°
SpacePoints on average 1); moreover, the data processing can be naturally
parallelised. This stage directly influences the performance of the subsequent
track reconstruction steps, as all created seeds will be extended to a track using
a computationally expensive Kalman filter algorithm.

Before the future integration of this algorithm as a part of the online trigger,
several upgrades are necessary. The algorithm was configured to support only
the Inner Detector geometry, containing fewer layers than the I'Tk detector
and covering a much smaller area (Subchapter 2.1.2), and the expected Run 3

workload (Subchapter 2.1.3). The initial selections for track seeding prepared for

I Average value of SpacePoints from ITk-Pixel and ITk-Strips, from simulated ATLAS tt
events with < p >=200
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Run 2 and Run 3 require extensive tuning to adapt to the new geometry and to
reduce the combinatorics of the fast track reconstruction algorithm. The existing
selection cuts should be studied in detail and fine-tuned to reflect the new ATLAS
detector. After improving the performance of the complete tracking pipeline to
match the accuracy and computing performance of the CPU approach, the track
seeding part should be optimised further to fully leverage the parallelism offered
by the GPU.

3.3 Related Work

To replace the track seeding approach used in the fast track reconstruction
algorithm, a Graph-Based Track Seeding (GBTS) was proposed, also known as
FASTrack [54]. The SpacePoints are connected by an edge, within restrictions
imposed by the geometry, and sharing similar parameters (similarly to doublet
creation in FTF track seeding, Subchapter 3.1.2). The connected edges create a
graph - by walking through it with a Kalman filter, pure seeds can be found. At
the start of that work (July 2023), the GBTS was in development for the CPU
track reconstruction. A GPU-accelerated version is planned as well, available
in Athena at the time of writing this work (July 2025). The traditional track
seeding approach described in this work was prepared as a baseline for the GBTS
implementation and a proof of concept for GPU acceleration for ITk seeding.
As an alternative to the traditional track reconstruction algorithms with
track seeding, various machine learning models are proposed. One of them,
the Interaction Graph Neural Network, is described in detail in Subchapter 4.1.
Similarly to GBTS, the ITk detector readouts are represented as a graph, with
nodes representing hits, and edges representing track segment candidates.
Alternatively, a project called TrackFormers [55] proposes the application of
transformer networks [56] to solve the tracking challenge. Inspired by the large
language models, in one inference step, each hit is classified as a part of a specific
track. The process consists of three main stages: embedding hits to a multi-
dimensional latent space, a transformer encoder with multi-layer self-attention
capturing the global relations between hits, and a classifier assigning each hit a
probability distribution over predefined track classes. The project is reported
to be in an early stage of development, only available with a simplified dataset,
TrackML, not with the ATLAS simulated events. Moreover, the transformer
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networks have proven to be highly resource-consuming solutions.

3.4 Track Seeding Improvements

This subchapter describes improvements to the GPU-accelerated track seeding
algorithm to process the simulated HL-LHC data efficiently.

After applying necessary adjustments in the configuration to support the
[Tktracking, including using correct tools to extract the detector geometry, scaling
the data structures for the expected workload, and expanding the pseudorapidity
coverage, the average efficiency of the track reconstruction was 73%. Based on its
distribution as a function of 7, presented in Figure 3.12, specifically, the Barrel
region is the area requiring improvement. The low efficiency will be addressed in

this subchapter and improved by relevant selection cuts.
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Fig. 3.12 Initial tracking efficiency as a function of pseudorapidity n and transverse
momentum pr for a 100 simulated ATLAS ¢ events with < p >= 200.

The inefficiency in the Barrel region is not a result of incorrect selection cuts,
but rather a consequence of high combinatorial complexity rejecting the correct
seeds. Tests with a Single Muon sample (Figure 3.13) show that the efficiency of
reconstruction particles is high, just not with the high workload.

The computing performance of the algorithm needs improvement as well.
The target performance should match the offline tracking, where the average
time of processing one event is 1.52s; while the current performance of the FTF
with GPU-accelerated track seeding on average is 26.7s. The combinatorial
tracking drives the execution time of the algorithm. If the number of input seeds
is decreased (in particular, the fake input seeds), the track finding step will not

be unnecessarily executed, and resources will be saved.
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Fig. 3.13 Tracking efficiency as a function of pseudorapidity n 100 simulated
ATLAS tt events with < p >= 200 and a Single Muon sample of p7 = 100 GeV.
The high uncertainty for the single muon sample occurs due to the low number
of reconstructed tracks - one per event, compared to 1500 per event for ¢t events.

The peak memory consumption depends on the number of SpacePoints, and
it is not a bottleneck for the online FTF algorithm - the maximum observed
value was 2.5GB2. In this algorithm, the memory is statically allocated to fit
the largest expected workload. In the initial state, the maximum number of
SpacePoints is 3.5 x 10°, the number of created doublets is 5 x 108, and the
number of seed candidates is 5 x 10°. The numbers were chosen based on the
experiments; the distribution of the input (SpacePoints), throughput (doublets)
and output (seeds) of the track seeding algorithm is presented in Figure 3.14.
The consumption will naturally decrease as the number of processed points is

reduced through execution time optimisation.
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Fig. 3.14 Number of input SpacePoints (3.14a), created doublets (3.14b) and
selected triplets (3.14c) for 100 simulated ATLAS ¢t events with < u >= 200.

2Measured on NVIDIA RTX A5000 24GB
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3.4.1 Input Prefiltering

To minimise the volume of data handled by the algorithm, the area of the
seed finding was restricted to only the I'Tk-Pixel detector. In comparison to
the geometry of the ATLAS Inner Detector, the number of layers and their
range within I'Tk-Pixel are enough to form seeds for all physics-interesting tracks
efficiently (Subchapter 2.1.2).

After the restriction, the number of doublet candidates decreased from over
3.95 % 107 to 1.3 x 108 on average. The number of SpacePoints from the ITk-Strip
detector stands for 20% of the total seed number; and the accuracy of track
finding is not significantly affected by this change. To further decrease the
number of track seed candidates, the middle SpacePoints were restricted to only
selected layers, based on the detector geometry, illustrated in Figure 3.15. Each
track originating from the IP should interact with one of them, even if one of

the layers is missed.
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Fig. 3.15 Layout of the ITk-Pixel detector [14] with layers marked in orange
colour, that are candidates for containing the middle SpacePoint of the track
seed.

Impact on Performance

The impact of the introduced changes on computing performance is presented in
Table 3.1. It is not possible with available resources to measure the track seeding
algorithm with both ITk-Pixel and I'Tk-Strips - the I'Tk-Pixel only version will
represent a baseline in this chapter. With respect to the initial data volume, the

number of doublet candidates was reduced by 37%, reducing the track seeding
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time by 18%. The number of the final track seed candidates decreased by 56%,
improving the track seeding time by 42% due to processing significantly fewer
doublets.

Table 3.1 Summary of the impact of the track seeding input preparation on the
number of track seed candidates and the track seeding time.

o Average Average Seeding time  Tracking time

Optimization  number of number of
seods trie soeds  PET event [ms]  per event [s]

Restriction
to only 3.35x10°  9.46 x 103 1219 +43 26.74+0.5
ITk-Pixel SPs
Restriction
to only 1.91 x 10>  6.07 x 103 1000 + 36 15.640.3

selected layers

The accuracy after reducing the input data is presented in Figure 3.16. The
efficiency overall decreased; however, the slight loss of efficiency is not significant
enough to discard all the improvements with regard to the processing time. The
average execution time per event improved by 42% with a loss of 56% of true

seeds. The low efficiency will be addressed in further steps.
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Fig. 3.16 Tracking efficiency after applying selection cuts related to the track
seeding input.

3.4.2 Improvements to Doublet Selection

The next series of optimisations added to the algorithm are related to the doublet

selection, applied during doublet counting and doublet making.
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Doublet Length

The first considered selection focuses on the length of the doublet. This parameter
is calculated with Equation 3.5, and is dependent on the distance between detector
layers to which the considered SpacePoints belong; therefore, the expected values
can be easily restricted by a selection cut. The doublet length value will be
different for doublets very close to the IP, where the distance of the layers is
significantly smaller than in the outer layers of the detector, and for particles
with varying angles of the particle path, dependent on the transverse momentum

pr of the particle.

Al =/ (rm —70)2 + (z1m — 20)? (3.5)

The measured doublet length for true tracks is presented in Figure 3.17.

1750 F
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Doublet length [mm]

250 f

Pseudorapidity

Fig. 3.17 Distribution of the doublet length for different pseudorapidity n regions.
The applied doublet length cut is marked with a red dashed line.

The doublet length selection cut was described by a single value in Run
3. To fine-tune this criterion, instead of a single value, a new n-dependent
selection cut was applied, restricting the doublet length by a combination of
linear (defining maximum value in high-n region) and quadratic functions. The
new cut eliminated doublets between layers that are too distant from each other

to create a promising track seed candidate.

Cluster Width Uncertainty

The next candidate considered for fine-tuning is the selection cut on the polar

angle of the doublet. The maximum and minimum value, determined by the
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parameters of target tracks, needs to be corrected by the uncertainty on the
SpacePoint position measurement, dictated by the width of the clusters creating
the point. While in the EndCap region, the paths of the particles cross the
sensors nearly perpendicularly, in the Barrel region, the hits are left by both
high-p7, perpendicular tracks as well as low-pp tracks, almost parallel to the
z-axis. This results in both small and large clusters left in the Barrel region,

while EndCap only contains small-sized clusters (Figure 3.18).

tracks

>

z

Fig. 3.18 Illustration of the cluster sizes for two tracks: track 1, passing only
through the Barrel region, and track 2, with higher pseudorapidity passing
through both Barrel and EndCap regions. The clusters left in the Barrel region
will consist of small and larger clusters, depending on the polar angle of the
passing particle; the EndCap will only contain small-sized clusters.

To fine-tune the doublet selection, the uncertainty related to the cluster size
was added to the polar angle selection cut. The smaller the polar angle, the
more forward the track is, therefore the bigger the cluster leaving the track. The
selection should only accept the points that left clusters with expected sizes, and
of a similar size with respect to each other. The maximum and minimum size of

the cluster for the ATLAS detector pseudorapidity is presented in Figure 3.19.

Beam Spot Origin

The tracking task focuses on finding the primary track originating from the IP;
therefore, the selected doublets should originate from it as well. The tracks can
be approximated by a straight line in the z —r plane (illustrated in Figure 3.6).
The added selection cut restricts the maximum 2z distance from the beam spot;

the r distance criterion was already in place.
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Fig. 3.19 Distribution of the pseudorapidity for different cluster sizes. The applied
cut on minimum and maximum pseudorapidity is marked with a red dashed line.

Track Curvature

With the given restriction on the minimum transverse momentum pr of the
particle to reconstruct, a maximum curvature of the track can be calculated for
minimum transverse momentum of target tracks pp =900 GeV (Equation 2.6) and
used as a selection criterion. The maximum expected value differs in the Barrel,
where mostly high-pr tracks are expected, compared to the EndCap region.
Equation 3.6 is used to approximate the curvature £ of a doublet, describing
how fast the azimuthal angle ¢ of the track candidate SpacePoints would change

with changing distance r.

_ ¢
k=5 (3.6)

Impact on Performance

By fine-tuning the doublet selection criteria, the track reconstruction efficiency
improved significantly; the results are presented in Figure 3.20. The accuracy
was the most affected by the beam spot restriction, successfully rejecting fake
seeds in the Barrel region of the detector and improving the efficiency in that
region from 0 to 0.8. The fake seeds, with a high dy score, due to low r distance
but high z distance from the beam spot, were eliminated, allowing the true seeds
to be chosen as candidates in the last step of the doublet matching.

When comparing the number of seeds before and after applying improvements

(Table 3.2), the number remained stable with minor fluctuations after different
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Fig. 3.20 Tracking efficiency after applying selection cuts related to the doublet
selection.

enhancements. The track seeding time was reduced by 82% on average by
decreasing the number of selected doublets and their early rejection (number
of doublets was reduced by 97%, illustrated in Figure 3.21). The number of
fake seeds is still high (90%), dominating the tracking computing performance.
Therefore, the following steps focus on reducing the number of fake track seeds

in order to improve the computing performance of track seeding.

Table 3.2 Summary of the impact of improvements done to the track seeding dou-
blet finding on the number of track seeds and computing performance. "Baseline"
refers to the track seeding with the input prefiltering optimisations included.

Average Average  Track seeding Total tracking

Optimization number of number of time per event time per event
seeds true seeds [ms] [s]

Baseline 1.91x10° 6.07 x 103 1000 + 36 15.6+0.3
Doublet Length 1.93x10° 6.72 x 103 5564 18 14.940.3
Cluster Width ~ 1.86 x 10°  6.66 x 103 503415 14.540.2
Beam Spot = 10 105 713% 103 28047 19.140.3
distance

Curvature 1.83x 105 5.24 x 103 17745 17.1+0.3
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Fig. 3.21 Distribution of number of doublets before and after fine-tuning the
input prefiltering and doublet selection.

3.4.3 Improvements to Triplet Selection

Breaking Angle

The first addition to the triplet selection involves an adjustment of the breaking
angle cut, illustrated in Figure 3.22. If a doublet pair belongs to a true seed,
the polar angle 6 of the doublets must be within agreement, considering the
uncertainties related to the interaction of the particle with detector material:
the uncertainty on the cluster measurement and the multiple scattering effect,
impacting the pr.

The detector resolution determines the first value. For the ITk-pixel, the
tracking resolution is much higher than for the Inner Detector because the pixel
sizes are much smaller; therefore, the implemented calculation needs reevaluation.

The comparison of errors for ID and ITk is included in Table 3.3.
Table 3.3 Error on cluster position for ID and ITk-Pixel detector.
ID-Barrel ID-EndCap ITk-Barrel ITk-EndCap

dr[mm)| 0.01 0.13 0.01 0.02
dz[mm] 0.13 0.01 0.02 0.01

The second term, the multiple scattering effect, described by Equation 2.1,
needs to be recalculated for a minimum transverse momentum of pr = 900 MeV.

The error value depends on pr and is inversely proportional to pr; the lower pp,
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the higher the uncertainty. Therefore, the highest possible error value for the
target tracks is considered as a part of the breaking angle measurement.

The measurement of the breaking angle and its error are included in Fig-
ure 3.23 as well as their Gaussian distribution fit. The maximum ratio of the

measurement to error is reduced from 3 to 2, covering 99.8% of possible values.
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Fig. 3.22 Illustration of the doublet 5Cot(6)/y/CoVis + COViuster

pair, a triplet candidate in the z —r _ R .
plane. Each of the doublets has its Fig. 3.23 Distribution of the breaking
angle measurement and its error related

to the cluster measurement and MCS
effects.

polar angle 6, related to the pr of the
track candidate containing this doublet
as a track segment.

Triplet Confirmation

After applying all the selection cuts related to the new detector geometry and
parameters of target tracks, the number of fake and duplicate seeds still dominates
the number of track seed candidates. However, the duplicate seeds can provide
helpful information and be leveraged instead of being a redundancy. A new
algorithm was added, where at the end of the doublet matching algorithm, all the
seeds are searched in order to find duplicates, serving as a confirmation that the
seed is correct. For a true track, multiple true seeds can be found (Figure 3.24).
The quality score of a seed with duplicates (at least one) is increased to favour it
for the final seed selection for the processing block (Subchapter 3.1.2).

To consider two seeds as duplicates, they must fulfil a list of requirements:

e They must share two SpacePoints (inner and middle),
o Their outer SpacePoints will not belong to the same detector layer,

o Their curvatures’ direction must agree,
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e The estimated difference in the estimated transverse momentum must
be within the standard deviation (calculated based on the Single Muon

sample).

All the duplicates are accepted - they are rejected in the next step of the

track reconstruction at a low computing cost.

Fig. 3.24 Tllustration of two seeds confirming each other. The blue circles
represent hits, grey rectangles - detector layers and the green and purple loops -
seed candidates. The triplets share two SpacePoints, and if their parameters are
within agreement, they may belong to the same track. Predominantly, only true
tracks have seed duplicates.

Impact on Performance

After including the adjusted selections in the triplet creation step, the efficiency
improvement is observable primarily in the |n| < 2.5 region (Figure 3.25). The
Barrel performance was impacted by the breaking angle cut, and the inclined
Barrel region by triplet confirmation. The inclined Barrel (1 < || < 2.5) consists
of the highest number of layers, therefore the highest number of SpacePoints,
and is prone to contain fake seeds, eliminated by the triplet confirmation cut.
The number of seeds decreased by 74% while preserving the number of true
seeds, resulting in a significant improvement in computing performance of the
track finding algorithm, presented in Table 3.4. The computational cost of
track reconstruction was reduced by 80% after the integration of the triplet
confirmation kernel, which led to an 80% reduction in the number of fake seeds
(Table 3.5). To further improve it by rejecting the fake track seeds, a global seed

confirmation should be included, as described in the next subchapter.
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Fig. 3.25 Tracking efficiency after applying selection cuts related to the triplet
selection.

Table 3.4 Summary of the impact of improvements done to the track seeding triplet
finding on the number of track seeds and computing performance. "Baseline"
refers to the track seeding with the doublet finding optimisations included.

Average Average  Track seeding Total tracking
Optimization number of number of time per event time per event

seeds true seeds [ms] [s]
Baseline 1.83x10° 5.24 x 103 177+5 17.14£0.3
Breaking angle 1.78 x10° 4.99 x 103 121+4 12.940.3
gﬁffﬂaﬁon 4.56 x 10*  4.84 x 103 14344 3.1240.11

Table 3.5 Average number of track seed candidates before and after adding triplet
confirmation to the triplet selection.

All True Fake Duplicate
Before 1.78x10° 4.99x10% 1.60x10° 1.31 x 10%
After  4.56x 10% 4.84x 103 2.62x 10* 1.45x 104

3.4.4 Improvements to Track Seeding Algorithm

Track Seed Confirmation

In the triplet selection algorithm, each block processes a different middle Space-
Points; therefore, the considered seed duplicates always share the middle point.
However, it is possible that in the set of all final track seed candidates, the

overlapping seeds do not share a middle SpacePoint, for example, inner and
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middle points from one triplet and inner and outer seeds in the second one
(Figure 3.24). Moreover, for true track candidates, it is expected that multiple
seed duplicates exist. This knowledge can be leveraged as a global seed filtering
algorithm to reduce the number of fake seeds by tracking duplicate seeds.

The criteria for track duplicates are:

e The seeds are entirely in the EndCap,

o They must share two SpacePoints,

o Direction of their curvatures must agree,

e The difference in the estimated transverse momentum must be within the

standard deviation (calculated based on the Single Muon sample).

If the seed has at least two other confirming seeds, it is saved for further
reconstruction; others are rejected. The confirmation is not applied in the Barrel
region, because it consists of only five layers; therefore, the number of fake
seeds and possible duplicates is low. A comparison of the number of seeds as a

distribution of pseudorapidity 7 is presented in Table 3.26.
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Fig. 3.26 Number of true, fake and duplicate seeds presented as a function of
pseudorapidity 7, before (3.26a) and after (3.26b), including the seed confirma-
tion.

Impact on Performance

The summary of the change in the amount of track seed candidates is presented in
Table 3.6. The number of the fake track seeds was reduced by 60%, constituting
36% of the seed candidates (62% before the cut). The number of duplicate seeds
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increased; however, they are rejected at a low cost, before the track extension.
The number of true seeds decreased as well, leading to lower efficiency of track
reconstruction in the EndCap region (Figure 3.27). Considering the significant
improvement in the computing performance, the slight performance loss for
tracks with low pr is acceptable in this case.

Table 3.6 Average number of track seed candidates before and after adding track
confirmation to the triplet selection.

Optimization All True Fake Duplicate
Before 456 x 10* 4.84x10% 2.62x10* 1.45x 10%
After 2.39x10% 3.73x 103 8.64x10% 1.15x 104
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Fig. 3.27 Tracking efficiency before and after including triplet confirmation kernel.

The computing cost, included in Table 3.7, was reduced by 48% for tracking,
making the track seeding algorithm competitive with the offline track reconstruc-
tion algorithms, therefore fulfilling the specified requirements. The new kernel
caused an increase in the track seeding algorithm time; however, the cost of it is
not as high as the improvement in the full track reconstruction algorithm.

Table 3.7 Performance of the track finding algorithm before and after including
track seed confirmation.

Track seeding time per event Total tracking time per event

[ms] [5]
Before 14344 3.12+0.11
After 18446 1.62+0.49
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3.5 GPU Utilization

This subchapter focuses on the improvements in GPU utilisation of the Track
Seeding algorithm. This code was implemented using native CUDA; therefore,
the evaluation will focus on identifying and incorporating optimisations specific
to the CUDA architecture. Performance on different hardware will be considered,

as well as GPU occupancy, throughput, and memory access.

3.5.1 Computing Performance

First, the algorithm bottlenecks in the context of GPU acceleration will be
analysed and optimised. The computing performance will be evaluated with the
available NVIDIA profilers.

Floating Point Precision

One of the first improvements included in the considered algorithm is the reduction
of numerical precision. Single-precision (32-bit) floating-point representation
can be implemented in place of double-precision (64-bit) with minimal loss of
accuracy. According to the NVIDIA Guide, the ratio of the performance of
double to single precision is 64:1 3, suggesting a substantial advantage in using
single precision . The improvement in the performance is presented in Table 3.8,
where the processing time was slightly reduced. The change in the precision did
not affect the accuracy of the algorithm. Not all of the floating point operations
were using the double precision before the update (percentage double precision
operations: doublet counting 75%, doublet making 71%, doublet matching 8%,
seed confirmation 1%), predominantly it was the mathematical C++ functions,

automatically casting the value to double precision.

Kernel Performance Analysis

The seed finding consists of four kernels after the addition of the triplet con-

firmation. In order to understand the performance of the overall algorithm,

3Value dependent on the hardware, available in the graphic card specifications, NVIDIA
Tesla T4 32:1, NVIDIA RTX A5000 64:1, NVIDIA RTX 5000 Ada 64:1, NVIDIA A100 PCle
2:1. In all cases, the double precision performance is worse than single precision performance.
4Nsight Compute Profiling Guide, profiling output for measurement on NVIDIA RTX A5000
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Table 3.8 Performance of the track seeding algorithm with mixed and single
precision of floating point representation.

Track Seeding Time per Event [ms]

Single and Double precision 184+6
Single precision 174£5

the detailed performance of the kernels was analysed as well. The results are
presented in Table 3.9.

Table 3.9 Measured performance of the individual kernels on NVIDIA A5000
24 GB.

Duration  Average performance Memory bandwidth

[ms] [TFLOP /5 [GB/s]
e - il T6s
Doublet Counting 16.0+1.7 1.98+0.15 0.21
Doublet Making 13.1+1.6 1.94+0.16 1.84
Doublet Matching ~ 35.64+13.4 (2.2740.03) x 1072 1.09
Triplet Confirmation 38.54+15.8 (7.13+£0.13) x 1074 0.15

The doublet counting and making kernels are reaching good computational
performance. Due to the nature of this algorithm, focused on rejecting impossible
combinations of two processed points, theoretical peak performance can never
be achieved. Some of the threads terminate early to achieve the goal of the
algorithm, causing thread stalls. It is impossible to predict which pairs of points
will pass all the selections and saturate the performance and which will not;
therefore, the stalls are unavoidable.

In contrast, the computing performance of the doublet matching kernel is
suboptimal. A maximum of 1500 pairs is processed for each middle SpacePoint.
If a separate thread processes each pair, it is not possible to process them all
simultaneously; the maximum number of threads per block is 1024 for all modern
GPUs. Moreover, this kernel consumes a significant amount of shared memory

- 46.87kB. Each streaming multi-processor has 102.4kB of shared memory >

5For NVIDIA RTX A5000, value retrieved with CUDA built-in tools.
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The shared memory size for all considered GPUs is available in Table 3.14.
On the other hand, increasing the block size and allowing multiple threads to
process point pairs concurrently leads to frequent thread stalls due to early
termination due to pair rejection. In order to improve the performance, the
kernel functionality could be split into two parts: one to reject the incorrect
triplets and another to sort and select the best candidates. However, a kernel
launch and memory transfer overhead may deteriorate the performance after the
split. The second solution would focus on reusing the shared memory.

The triplet confirmation kernel is responsible for considering all the final
track seed candidates and identifying those that belong to the same track. The
amount of computations in this kernel is minimal - the seed properties, such
as estimated transverse momentum, are reused from the preceding kernel. The
thread with index 0 saves the confirmed seeds into a final list. During that time,
the other threads are idle; moreover, the index 0 may not be coalesced to the
memory, where the output is saved.

In summary, the performance of each type of kernel is limited by a different
property: for doublet counting, computing is the limiting factor to improve the
performance, the size of shared memory is a bottleneck for doublet matching,
and for the triplet confirmation kernel, it is the memory access.

The measured triplet seeding algorithm time is longer than the sum of
the execution times of the kernels. The complete step includes pre- and post-

processing, for example, data preparation and transfer.

Search for Parallelization Configuration

An important factor to consider for CUDA kernels is the optimal block and
grid configuration. The parameters for the doublet finding kernels are based
on the processed event: number of layers in the detector, number of sectors to
process, and the expected number of middle SpacePoints and doublet candidates.
In contrast, the triplet finding and triplet confirmation kernels are based on
preselected values.

In the CUDA programming model, the maximum number of threads per block
is 1024, and optimal performance is achieved when this number is a multiple
of 32, aligning with the warp size. For the considered GPU - NVIDIA RTX
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A5000 - the maximum number of threads per SM is 1536 6. With 64 SM, the
Ninreadspervlock X Nplocks must be lower than 98304 to process all the blocks
concurrently. If the number is exceeded, the blocks will be queued until resources
are free.

First, the doublet matching kernel will be considered. The more blocks,
the more middle SpacePoints can be processed concurrently; the more threads,
the more doublet pairs can be considered simultaneously. The results from
processing a middle SpacePoint are independent of each other. While choosing the
configuration, the bottlenecks related to the shared memory size limitation and the
thread stalls need to be considered, as described in the previous subchapter. The
results of processing time performance for different configurations are presented
in Table 3.10.

Table 3.10 Performance of the doublet matching kernel with different thread-

/block configurations on NVIDIA RTX A5000. The red colour marks the initial
performance of the kernel, the blue one - the best one achieved.

Execution time Threads Per Block
per event [ms] 128 256 512 1024
512 _ 12.141.6 _ _

1024 420£154 40.24+14.6 39.0£124 70.8+£26.6
2048 40.6£15.0 38.6+12.3 38.2%14.1 -

fg 4096 39.0£14.8 38.1+14.1 - -
B 8192 - 37.5£139 37.1+£13.7 -
16384 - 37.7+13.9 36.6+13.6 -
32768 - - 36.5+13.5 -

The best performance for the doublet matching kernel was achieved for 512
threads with 32 thousand blocks. During the experiments with an even higher
number of blocks, the performance stayed stable. With this configuration, each
block will process on average two middle SpacePoints. With the new configuration
with a higher number of blocks, the total number of warps is much higher, giving
the hardware more flexibility to schedule execution of warps and hide latencies.

The chosen number of threads balances between the limitations from scheduling

6CUDA Device properties from NVIDIA CUDA Library
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too few warps (a small number of threads) and the thread stalls (a high number
of threads).

The second considered kernel is the triplet confirmation kernel. Similarly
to the doublet matching kernel, each block processes a middle SpacePoint and
threads the doublet pairs. The main bottleneck in this kernel is the memory
access, described in the previous subchapter. The results of the configuration

search are presented in Table 3.11.

Table 3.11 Performance of the triplet confirmation kernel with different thread-
/block configurations on NVIDIA RTX A5000. The red colour marks the initial
performance of the kernel, the blue one - the best one achieved.

Execution time Threads Per Block

per event [ms] 64 128 256 512 1024
512 ] - 55.3422.9 - ]
1024 - 5014210 4744181 56.7+24.6 63.6-+-28.2

£ 2048 | 6264258 4194169 4594183 559+24.1 ;

2 4006 - 39.6+15.9 46.2+18.4 - ;
8192 ; 3074151 47.0419.0 57.3+25.4 ;
16384 ; 40.6+£16.3 48.2420.0 58.26+26.4 ;

The best performance results were achieved for 128 threads per block and 4096
blocks. With a smaller number of threads, the impact of thread stalls caused by
the thread with index 0 saving the result is reduced, as fewer threads are blocked
during the data saving. The low number of blocks can cause inefficiencies due to
warp scheduling, and excessive overhead from kernel launch and scheduling.

The final configuration of 512 threads per block with 32 thousand blocks
for the doublet matching and 128 threads per block and 4096 blocks for triplet

confirmation will be used in the following studies.

3.5.2 Performance on Different Hardware

Different graphics cards released over the years have different properties, beneficial
for various parallel tasks, discussed in Subchapter 2.4.1. In order to make the

best choice for the ATLAS EF computing farm, the graphics card with the
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best algorithm performance should be chosen. This subchapter compares the

performance of the track seeding algorithm on different available hardware.

Track Seeding Execution Time

The average processing time per event for the track seeding algorithm is presented
in Table 3.12. The best grid and block size configuration was used, as discussed
in the previous subchapter. When changing the configuration for other cards,

the differences in the performance remained within uncertainty.

Table 3.12 Performance of the track finding algorithm with default threading
configuration.

Execution Time
per event [ms]

Tesla T4 RTX A5000 RTX 5000 Ada A100

Track Seeding 433 £ 15 138 £ 3 942 £ 1.8 149 + 3
Doublet Counting 33.1+4.2 16.1£1.7 10.7£1.1 10.9+£1.9
Doublet Making 27.3+£39 13.1£1.6 8.72+1.05 10.9+£2.1

Doublet Matching 201+76 35.6+13.4 23.94+8.9 33.2+11.9
Triplet Confirmation 145+63  38.9+15.8 27.1+11.3 34.9+14.7

Among all the tested GPUs, the NVIDIA RTX 5000 Ada demonstrated
the best performance. Its advantage is primarily due to its large number of
CUDA cores, which enables a high degree of parallelism when executing the
algorithm. A clear correlation was observed between the number of CUDA
cores and the computing efficiency of the seeding process. Even though other
GPUs can achieve higher performance when considering characteristics such as
memory access, parallelism has the most significant impact on the final result.
The NVIDIA RTX 5000 Ada card is already a technology with one of the highest
numbers of CUDA cores on the market (12.8 x 103). The GPU cards that are
expected to improve the performance even more are RTX PRO 6000 Blackwell
with up to 24.1 x 103 CUDA cores or H200 with up to 16.9 x 103 CUDA cores.

Among all the kernels, the performance of the doublet matching changes the
most on different hardware. The differences in performance due to kernel-specific

bottlenecks will be discussed in detail in the following subchapter.
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Computing Resource Utilization

Table 3.13 presents a summary of measurements of the number of FLOPs per
second, compared to the theoretical peak performance that the considered card
can achieve. Based on the previous studies (Table 3.9), only the doublet counting
and making kernels are limited by the computational capabilities. The kernels
do not fully saturate the available computational resources; however, it is not
possible due to thread stalls that are unavoidable in this algorithm. The higher
the number of CUDA cores in the hardware, the better the performance of the

analysed kernels.

Table 3.13 Measured computing performance of the doublet counting and doublet
making kernel on different hardware.

FP32 Performance
[TFLOP /5]
Theoretical
performance
Doublet Counting
[TFLOP /5]
Doublet Making
[TFLOP /5]

Tesla T4 RTX A5000 RTX 5000 Ada A100

8.141 27.77 65.28 19.49

0.62+0.05 1.97£0.15 2.95+0.23 1.87£0.11

0.62£0.05 1.94+0.16 2.92£0.25 1.57+0.09

The next discussed bottleneck is the doublet matching kernel and the limita-
tions of the shared memory size. The kernels in this implementation use only
static shared memory - its size per SM is predefined, included in Table 3.14,
summarising conducted experiments. Based on the available shared memory, only
a limited number of blocks can be scheduled at the same time, which can lead
to resource underutilization. The shared memory consumption for this kernel is
very high - 46.87 kB per block. This way, for most of the available cards, only
two blocks can be active at the same time. With each block having 512 threads
grouped in 8 warps, the computing capabilities of the SM are underutilised.
In order to improve this inefficiency, some of the cards offer dynamic shared
memory that could be used to schedule more blocks simultaneously. Another
solution, requiring code refactoring as well, is to reuse the shared memory or
split the functionality of the kernel into separate selection and sorting, each using
effectively less shared memory.

The performance of the last kernel in the track seeding, the triplet confirmation
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Table 3.14 Measured GPU occupancy by a number of active concurrent blocks
of the GPU for the doublet matching kernel on different hardware.

Tesla T4 RTX A5000 RTX 5000 Ada A100

Static shared memory

per SM [KB] 65.5 102.4 102.4 167.9
Maximum warps per SM 32 48 48 64

@;f;zgsefuﬁer of 15.9 31.7 31.7 31.7
Average occupancy [%] 49.9 66.24 66.24 49.6

kernel, is limited primarily due to execution stalls, as indicated by the NVIDIA
profiler. These stalls occur when threads are forced to wait for thread 0 to
complete data write operations, which happens twice: at the beginning and the
end of the kernel. The bottleneck of slow uncoalesced memory access suggests
that the high memory bandwidth of the hardware card would improve overall

performance.

Table 3.15 Measured computing performance for triplet confirmation kernel on
different hardware.

Tesla T4 RTX A5000 RTX 5000 Ada A100

Number of CUDA

cores per SM 64 128 128 64
Peak performance

[TFLOP/s] 8.14 27.8 65.3 195
Memory bandwidth

[GB/s] 320 768 576 1555
Duration [ms] 145+£63 38.8£15.8 27.1+£11.3 34.9+14.7
Compute throughput

IMFLOP/s] 19645  717+£133 1031 £197 802 4147
Memory throughput 96 4+ 99 154438 160462 R,
[MB/s|

The measured performance of the triplet confirmation kernel is presented
in Table 3.15. Although the NVIDIA RTX 5000 Ada exhibits lower memory
bandwidth compared to the A5000 and A100 GPUs, this kernel achieves the best
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performance with this GPU, in terms of the average processing time of one event.
In this case, a higher number of CUDA cores per streaming multi-processor and
an increased peak floating-point operation throughput help to compensate for
the bandwidth deficit. The system’s ability to hide memory latency through
parallelism is reducing the relative impact of memory access as a performance

bottleneck.

Energy Consumption

The last measurement in this subchapter is the energy consumed during track

seeding, summarised in Table 3.16.

Table 3.16 Measured computing performance for triplet confirmation kernel on
different hardware.

Tesla T4 RTX A5000 RTX 5000 Ada A100

TDP [W] 70 230 250 250

Average Power
Consumption [W]

Energy per event [J] 28.1 29.4 21.1 28.8

65 213 224 193

The NVIDIA A100 card does not reach the power limit, possibly due to its
low computing capabilities. The least energy is consumed by NVIDIA RTX
5000 Ada, proven to be the best fit for this algorithm in the previous studies
in this subchapter. This algorithm fully exploits the computing power of the
card, operating at maximum power utilisation; however, due to the card’s high

computational efficiency, it achieves the lowest overall energy consumption.

3.6 Discussion

By applying a series of selection cuts to the track seeding algorithm, the track
reconstruction efficiency was recovered from 65% to 85% on average; the detailed
efficiency as a function of pseudorapidity and transverse momentum is included
in Figure 3.28. Most notably, the efficiency in the Barrel region of the I'Tk-Pixel

detector improved from close to 0 to almost 90%.
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Fig. 3.28 Tracking efficiency after applying selection cuts described in this chapter.

The addition of the triplet and seed confirmation algorithm significantly
improved the computing performance of the algorithm. The total number of
processed seeds (including both true and fake) was reduced by 96%, while the
number of fake seeds alone decreased by 97%. The proportion of their contribution
to the total number declined from 91% to 36%. As demonstrated in Table 3.17,
this resulted in a substantial improvement in computing performance. The event
processing time matched one of the offline track reconstruction, fulfilling the
predefined performance objective.

Table 3.17 Summary of the impact of the track seeding optimisations on the

number of track seed candidates and the track seeding time. The optimisations
with the biggest impact on the performance were chosen.

nﬁr‘fg:rgif nﬁ;fg:fif Seeding time  Tracking time

seods trie seadg  POT event [ms|  per event s
Initial 3.35 x 10°  9.46 x 103 1219443 26.7+0.5
Middle SP restriction 1.91 x 10°  6.07 x 10? 1000 + 36 15.6+0.3
Beam spot cut 2.10x10°  7.13x 103 280+ 7 19.14+0.3
Triplet Confirmation  4.56 x 10 4.84 x 103 14344 3.12+0.11
Final 239x10* 3.73x103 184+6 1.62+0.49

The final track reconstruction efficiency (Figure 3.29) is in 98% agreement
with the offline track reconstruction for tracks with ppr < 10GeV, fulfilling the
predefined performance objective. The reconstruction efficiency of tracks with
pr > 10GeV is suboptimal; however, the uncertainty of the result is high due to

insufficient data volume.

5



GPU-accelerated Track Seeding for ATLAS Phase-II Trigger

o e o A —

2 005 . g F ]

3 | 1 R S

& L ] £ 09— — T |

i r 7 i] :jz""_ .

09 | . E 7

F N\ A {XX; 08— =

0.85}/ \ j / 0 ; ]

L == -/l N 0.7~ |

08F . r 5

B i 06~ i

C ] [ — Offline FTF u

0.75(— — Offline FTF - o5 — GPUFTF =

L GPU FTF ] F ]

Loyl I I Ll | [ ] 071 AR S RSV AUV SN WA BRI IS S N

-4 -3 -2 -1 0 1 2 3 4 -0 5 10 15 20 25 30 35 40 45 50

E 1 05: T "o E 1'1; T T T T T T . T T o
£ £ .- £ £ hd

[ B g el .| g 4

2 e = S P S £ EEe NS - - e e E

z E o %o o o 1 > ook > o* A o

o . 3 2 0.9F

5 095F% .- 1 8 F -

L ‘ ‘ s o8k . ‘ ‘ ‘ ‘ ‘ ‘ . AN

-4 -3 -2 -1 0 1 2 3 4 0 5 10 15 20 25 30 35 40 45 50

n P, [GeV]

Fig. 3.29 Final tracking efficiency of the FTF algorithm with GPU-accelerated
track seeding compared to the efficiency of the offline algorithm.

To further improve the algorithm’s performance, the GPU utilisation was
analysed in detail with available profiling tools. The reduction to single precision
floating point and adjustment in the blocks and grid configuration improved the
performance of the algorithm even further to 138 ms per event.

In order to choose the best hardware card for the described algorithm, four
GPUs were compared; among them, the NVIDIA RTX 5000 Ada performed the
best. It was observed that the computing efficiency increases with the number of
available CUDA cores. With the recommended accelerator, the track seeding
time per event reaches 94 ms per event, resulting in 93% improvement with
respect to the initial performance. Moreover, this graphics card offers the lowest
energy consumption per event processing out of the considered solutions.

The computing performance can be further improved by optimising memory
offloading and management. The static structures of arrays (SoA) allocations can
be replaced by a dynamic one, integration of one of the frameworks developed in
the ATLAS Collaboration: vecmem [57] or Marionette [58]. This way, instead
of preallocating the data structures for every event, the sizes can be configured
dynamically, and the memory footprint of an event will be decreased. The
dynamic shared memory could be used, improving the throughput of the memory-
consuming kernels. Moreover, system failures due to exceeding the hardcoded
maximum sizes of the data containers will be mitigated.

The track seed redundancy is a problem present in all traditional track
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reconstruction algorithms. The selection cuts described in this chapter were also
applied in the ACTS framework [24], and can be further used by other projects in
order to fine-tune the selection. The computationally expensive GBTS algorithm

can significantly improve the redundancy.
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Chapter 4

Memory Footprint Optimisation
of Interaction Graph Neural

Network

As an alternative to the traditional track reconstruction algorithm performing
the track seeding, extension and fitting, discussed in the prior chapter, a machine
learning solution was proposed by the GNN4ITk group. The particle tracks are
reconstructed from the ATLAS detector hits by using an IGNN model, classifying
the track segment candidates into true or fake based on their geometric properties
and their graph neighbourhood. This chapter presents the details of such a model

and applied optimisations improving the memory footprint of IGNN inference.

4.1 Interaction Graph Neural Network for

Track Reconstruction

This subchapter describes the track reconstruction approach using the IGNN.
Its steps are illustrated in Figure 4.1.

First, from the read-out detector hits, a graph is constructed using Module
Map or Metric Learning algorithms described in [60]. The graph nodes represent
hits, and the edges represent track segments. The first approach to graph
construction uses the map between detector modules to reject node connections
that are not possible. The map was created based on 90000 t¢ simulated events,

saving all the pairs of modules creating the target particle trajectories. The
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Fig. 4.1 Schematic overview of the GNN4ITk pipeline [59].

second method applies a neural network that embeds the SpacePoints into a
latent space and connects them based on their proximity. The network is trained
in a way that SpacePoints from the same target particle are close to each other
in the embedded space, with the embedding radius being a hyperparameter
of the training. This approach uses a fast Fixed Radius Nearest Neighbour
algorithm [61] to create the connection graph, optimised for large-scale data
processing under resource-constrained conditions.

After the graph construction, the next step uses the IGNN to classify the
graph edges by evaluating the probability that the edge is a true track segment.
This subchapter focuses on the detailed description of this step.

Finally, the Graph Segmentation algorithm walks through the created paths
in the graph in order to extract the final tracks. The Connected Components
algorithm [62] is illustrated in Figure 4.2. Graph edges with sufficiently high edge
classification scores are grouped into connected components, where each node
can be linked to others by different paths. If each node in a connected component
has only one incoming and outgoing edge, the path is directly classified as a
track candidate. Otherwise, the paths are disentangled by a Wrangler algorithm,
creating a path from a node by choosing the outgoing edge with the highest
score. If more than one edges have a high classification score s > 0.8, multiple

paths are created, and eventually, the longest one is saved as a track candidate.

4.1.1 Input Data

In the input graphs to the IGNN, each node represents a point, where a passing

particle interacted with the detector and has four features related to its position:
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Fig. 4.2 Schematic overview of the connected components and walkthrough
algorithms. Figure based on [63].

r, z, ¢ and n described in detail in Subchapter 2.2.2. A node from the I'Tk-Strip
detector can additionally contain features of two clusters composing the hit,
with the same features as the reconstructed position: r, z, ¢ and 7. The cluster
information is necessary to account for the point position uncertainty, described
in more detail in Subchapter 3.1.1.

Each edge connecting two hits represents a track segment candidate, with
six geometry-related features: or, dz, 69, 01, @giope slope, and r-¢ggpe. For ng
and no being the nodes connected by the considered edge, the features can be
described by Equation 4.1.

or=ro—ry 0z=29—2]

dp=dp2—p1 dn=mn1—n2

b, — 69 (4.1)
slope — Sr

_ 172 _

r= 2 T'(bslope = (bslope T

The chosen edge and node features are crucial for reconstructing the helix-
shaped particle track and distinguishing it from the other tracks. The GNN4ITK
group selected them throughout years of research to encode the most critical
features of the true tracks for accurate reconstruction. During the graph con-
struction stage, the graph is preprocessed to eliminate impossible track segments
based on the requirements of the target tracks.

The size of the final graph, apart from the edge and node features, depends

on the conditions of particle collision and the detector granularity. The example
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sizes for datasets considered in the chapter are presented in Table 4.1.

Table 4.1 Sizes of graphs from chosen data samples. The chosen dataset ATLAS
consists of 10000 events and TrackML of 1500 events.

Number of nodes Number of edges
Dataset Name
avg max avg max

ATLAS 3.36 x 10° 5.83x10° 9.15x10° 3.17x 106
TrackML 1.29x10* 1.90x10% 4.81x10* 8.53x 104

4.1.2 Model Description

Number of
steps

o G0 2o ( Node )
Nowie= | 1 1 7 | Encoder A

T On Zn — — Edge | §> Node | §> Edge | ﬁ> M, _ |-

Am Ady Ary Az Network Network Decoder edaes = 0

Megges = | ¢ : P % Edge &7 ) ) N ) N )
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Input graph represented Encoders embed . . Decoder transforms
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and nodes a D-dimentional latent space g P into classification scores

Fig. 4.3 Schematic overview of the IGNN forward step. The input features of
nodes and edges are encoded into a latent space. Encoded features are the input
to the edge and node networks, learning the geometric patterns of the tracks
by a message passing mechanism. As the last step, features of the edges are
decoded into edge scores. All the neural networks are MLLPs with 2-3 hidden
layers, depending on the network. The diagram is based on Ref. [40].

This edge classification model consists of the following steps, illustrated in
Figure 4.3. First, the edges and nodes are encoded into a latent space of size
D with two dedicated MLPs, each with two hidden layers. Next, the edge
and node features are aggregated through L message passing steps. During
the aggregation, the features of the neighbouring edges or nodes are encoded
into the latent space with a separate MLP for each iteration, and propagated
through the neighbourhood. After the last step, the edge features are decoded
and transformed into a score.

Considering all the processing steps and the number of message passing

iterations L = 8, the model consists of 20 MLPs. Eight message passing iterations
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4.1 Interaction Graph Neural Network for Track Reconstruction

is a default setting for the IGNN; this way, the neighbourhood of distance eight
can be considered for each hit, covering even the longest forward region tracks.
The detailed functions of the MLP types are presented in Table 4.2 and the
summary of their sizes in Table 4.3. For graphs, where the number of edges
is higher than the number of nodes (which is true for the graphs representing
the collisions), the edge encoder is the network with the highest number of

parameters, as well as one with the largest input tensor.

4.1.3 Model Evaluation

To evaluate the classification, the GNN Edge-wise Efficiency and Purity scores [40]
are used as the accuracy metric, presented in Equation 4.2. High efficiency of
IGNN indicates that the majority of the edges were correctly classified as true
segments, and high purity, that the number of incorrectly classified edges is low.
By considering both metrics, the model will be able to correctly identify particles
and maintain the number of track segment candidates as low as needed, thereby

reducing the associated computational costs of the following track reconstruction

steps.
. number of correctly classified true track segments
efficiency =
number of true track segments
) (4.2)
) number of correctly classified true track segments
purity =

number of track segments classified as true

The loss function of the IGNN model is prepared to separately consider the
fraction of the true and fake classified track segments, and balance their contri-
bution to the loss based on model hyperparameters. In the process of calculating
the loss function, the background edges, linking two successive SpacePoints of a
non-target particle, need to be distinguished from simply incorrect, nonexistent
edges. The background edges should be masked to prevent the model from clas-
sifying edges from non-target particles with similar topology to target particles
as false, which could mislead the training process and impact the performance of
the model.
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Table 4.2 Names and function of the ML Ps building the IGNN.

Name Function
Node Encoder

Edge Encoder

Encode node features into latent space

Encode edge features into latent space

Compute new edge features based on
the features from the source and destination nodes
Compute new node features based on the
aggregated features from the incoming and outgoing edges

Edge Network

Node Network

Edge Decoder

Edge Output
Transform

Decode the edge features into latent space features

Decode the latent space features into
a score describing if the edge can be a track segment

Table 4.3 Sizes of the model parameters, inputs and outputs for MLPs building
the IGNN. Node and edge networks are created L times, separate for each
message passing step; the numbers in the table reflect just one step. Parameters:
Np - number of input graph nodes, Ng - number of input graph edges, Fly -
number of node features, Fp - number of edge features, D - size of the latent
space.

Input Output . Number of parameters
Name Size Size Sizes of layers (weights)
Node Encoder Ny x Fy NyxD N XDDX’%X D, Fy-D+2D?
Edge Encoder NpxFy NgxD 'F XDD;%X D, Fy-D+2D?
3D xD,DxD,
Edge Network Npx3D NgxD DxD 5D?
Node Network Ny x2D NyxD 2PXD.DxD, AD?
DxD
DxD,DxD,
Edge Decoder NgxD NgxD DwD 3D?
Edge Qutput -\ N w1 DxD.Dx1 D24+ D

Transform

4.2 Memory Footprint of Interaction Graph
Neural Network

Despite achieving competitive accuracy of the track reconstruction, the IGNN
faces several inefficiencies limiting its computational performance. The first area

of improvement for the GNN4ITk track reconstruction pipeline discussed in this
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4.2 Memory Footprint of Interaction Graph Neural Network

work is its memory footprint.

The proposed IGNN model with HL = 128, achieving the highest accuracy,
requires up to 80 GiB/event during training and up to 16 GiB/event during
inference!. By reducing the instantaneous memory consumption, it would be
possible to use cost-efficient and market-available GPUs with smaller memory
for both training and inference, or process multiple graphs simultaneously. This
work focuses on the application of the track reconstruction in the online trigger;
therefore, this chapter concentrates on improving the memory consumption only
during the inference.

The peak memory consumption per input graph for the chosen IGNN is
presented in Figure 4.4. Even though the average memory consumption is
5.26 GB, the algorithm should be able to process the largest events, representing
the busiest collisions, on the chosen accelerator. Within the current configuration,
the peak memory consumption for the biggest event with 3.17 x 10% edges reaches
15.8 GB; however, this value is highly dependent on IGNN configuration as well
as the input graphs and the graph construction algorithm.
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Fig. 4.4 Peak memory consumption of the IGNN inference as a function of
number of nodes (4.4a) and edges (4.4b) in the input graphs. The red dashed
line represents data fit: quadratic for 4.4a and linear for 4.4b.

In order to understand the memory footprint, one of the available PyTorch
performance analysis tools was used to create a memory snapshot. An example
of a snapshot is presented in Figure 4.5, and a summary of the most expensive

allocations is included in Table 4.4.

LFor the largest event in the considered ATLAS dataset
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Fig. 4.5 Snapshot of memory allocations during a forward step of the IGNN
inferring a simulated ¢t event with pile-up 200 with ITk geometry. Different blocks
represent different memory allocations. Eight peaks are visible, corresponding to
message passing steps.

Table 4.4 Selected most memory-consuming allocations in the IGNN inference.
Measured on NVIDIA RTX A5000 with 32-bit float precision.

Estimated size for

Function name Allocation size the biggest graph [GB]
Edge network input tensor Ng x3D 4.87
Edge network output tensor NgxD 1.63
Edge decoder output tensor NgxD 1.63
Node network input tensor Ny x3D 0.89
Node network output tensor Ny x D 0.29

Memory footprint is dominated by one allocation, namely the input tensor
to the MLP classifying the encoded features of edges and their source and
destination nodes (edge network). The size of that tensor is 3D x Ng (Table
4.3), where 3D equals the features of the edges, and related source and destination
nodes, each encoded to a latent space of size D = 128. With the average number
of edges per graph Negges = 0.91M (maximum observed Negges = 3.17M) and
using single-precision floats, the average size of the structure is equal to 1.40 GB
(4.87GB).

This chapter focuses on improving the peak memory consumption of the infer-
ence by applying the substepping mechanism, sequentially filling and processing

memory-consuming temporary tensors, such as the input to the edge network
MLP.
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4.3 Related Work

Optimisation of the inference memory consumption is a crucial task for enabling
efficient deployment of neural networks, particularly in resource-constrained
environments. There is a range of techniques available to reduce the memory
footprint.

Quantisation [64], [65] is a well-known compression model reducing the pre-
cision of weights and activations of the model to a lower-bit floating point
representation. It is known for effectively reducing memory footprint and acceler-
ating computation, making it a widely adopted optimisation technique in FPGA
development. However, the process of quantisation can lead to a degradation in
model accuracy and a need for additional fine-tuning to recover some of the lost
performance.

The second widely-known method for memory footprint optimisation is
pruning [66], [67], reducing the size and computational complexity of neural
networks by eliminating redundant or less important parameters. However, the
memory footprint of the presented model is driven by the size of the input
structures rather than the number of model parameters themselves.

The neural networks often use a mechanism called batching, where the input
is split into smaller sequences and processed independently. In the context of the
track reconstruction and its message passing mechanism, partitioning the input
requires additional preprocessing. One batch should contain the neighbourhood
of size eight (configurable parameter) of the considered edges to classify them
correctly. The regionalisation for the IGNN track reconstruction is currently
studied as a compression technique for FPGA acceleration [68]. This solution can
also be deployed in the future for the GPU-accelerated version of the algorithm;
however, more studies are required on the region overlap to remove the duplicates,

which can degrade computing performance.

4.4 Reducing Instantaneous Memory Consump-
tion by Substepping

During the MLP evaluation on a GPU, the input tensor is split among the threads
and blocks by the underlying PyTorch scheduling. However, the evaluation input
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is created in the memory before the parallel scheduling; therefore, it can exceed
the available memory capacity.

To fit the memory-consuming structures into any size-restricted hardware,
the algorithm must be able to split the inputs and process them sequentially. It is
not always possible, however, in the case of the IGNN, such a mechanism can be
implemented. The edge network input, identified as the most memory-consuming
allocation, is only a temporary tensor, and processing it sequentially will not
have an impact on the accuracy. The splitting of the tensor is described by
Equation 4.3. For example, a tensor of size N = 3174201 can be decomposed into
q = 3 substeps of size S = 100000 and a last substep with a remainder r = 174 201.
The mechanism of explicit splitting of the workload into steps of predefined size

is called substepping.

N=q-S+r (4.3)
where:

N = size of the tensor
g = number saturated substeps
S = substep size

r =remainder

The pseudocode for the substepping mechanism is presented in Listing 4.1.
The maximum size of a processed segment is defined as an inference hyperpa-
rameter. The last segment, with the size of the remainder, is often underfilled,

containing fewer elements than the maximum allowed.
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Listing 4.1 Pseudocode of substepping mechanism applied in IGNN to evalu-
ate the edge network

n_substeps = ceil(n_edges/max_edges_per_step)
result [n_edges][latent_space_dim] = 0
for i from O to n_substeps:
# Calculate the start and end of the substep
start_index = i*max_edges_per_step
end_index = (i+1)*max_edges_per_step - 1
if end_index >= n_edges:

end_index = n_edges

# Prepare input to MLP for the currently processed
edges, consisting of edge features and source and
destination node features for each edge

mlp_input = cat([edge_features[start_index:end_index],

node_features[src[start_index:end_index]],

node_features[dst[start_index:end_index]]], dim=-1)

# Evaluate MLP on the partial input and save the

result

result [start_index:end_index] = mlp(mlp_input)

An example memory snapshot with the substepping mechanism applied is

shown in Figure 4.6. The biggest allocation is split into five sequential substeps,

four with the maximum step size, and the last one containing the remainder.

4.5 Impact of Substepping on GNN Inference

In order to analyse the impact of substepping on the performance of the algorithm,

different computing metrics will be collected regarding the memory consumption,

inference time, and FLOPs. All the tests are done with acorn [69] implementation
of the IGNN with 1000 simulated ATLAS tt events with < 1 >= 200 transformed
into graphs with the module map algorithm. The hardware used was NVIDIA
RTX A5000 24GB, unless specified otherwise.
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(b)

Fig. 4.6 Snapshot of memory allocations during one message passing step of
the IGNN without (4.6a) and with (4.6b) applied substepping mechanism of
500000. The dominating allocation (4.6a pink) was replaced by the edge output
preallocation (4.6b yellow) and five substeps (4.6b brown, purple, green, red
and blue). The last allocation (blue), with the size of the remainder, is only
deallocated at the end of the message passing function.

Inference Memory Footprint

To evaluate the effects of the substepping on the inference memory footprint, first,
the peak memory consumption for different substeps is examined. To measure the
memory consumption during the inference, PyTorch CUDA memory-related tools
were used to read the peak memory consumption recorded during processing.
The peak memory consumption as a function of substep size is presented in
Figure 4.7.

Adding the substepping mechanism does not increase the memory consump-
tion compared to the baseline model, even with the preallocation. The trend
of the measurements is determined by the number of edges in the processed
graphs and the substep size. With the applied substepping, the MLP input is

overwritten for each substep, and only the last allocation with remainder remains
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Fig. 4.7 Peak memory consumption for 100 graphs with the highest number of
graph edges for different substep sizes. The trend of measurements is determined
by the size of the last substep - the edge network input is only deallocated after
finishing processing one message passing iteration. The data measurements are
highly dependent on the number of edges in processed graphs - the red line marks
the maximum memory consumption assuming the last substep is saturated.

until the processing unit leaves the function and the memory is deallocated.
The sizes of the last allocation for an example graph are presented in Table 4.5.
Whenever a substep size exceeds the next divisor of the number of edges, the
remainder is low, and the last allocation will be significantly smaller at a cost of
executing more substep iterations. The lower the substep size is, the smaller the
remainders will be.

Table 4.5 Example number of edges in the last substep (remainder) for a selection
of substep sizes for an example graph.

Substep size Number of substeps Remainder
3500000 1 3174201
1590000 2 1584201
1580000 3 14201
500000 7 174201
100000 32 74201
50000 64 24201

The model should not be fine-tuned to fit the data sample; therefore, the

maximum possible allocation should be considered rather than the measurements

themselves, marked with a red line in Figure 4.7.
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The experiments were repeated on other graphics cards as well; no difference

in the memory-related performance was observed.

Inference Time

The measurement of edge network input preparation and evaluation time with
included substepping is presented in Figure 4.8. The performance without
substepping applied is measured at 128 ms+ 2. With a substep size of 500000,
which achieved the best performance during tests, the processing time is measured
at 130ms 4 1; therefore, the cost of substepping is within the standard deviation

of the measurement.
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Fig. 4.8 Elapsed time of edge network input preparation and evaluation of IGNN
over repeated experiments on a graph with the highest number of edges in the
available data sample.

The cost of substepping is driven by two operations: concatenation of the
tensors with features of edges, incoming, and outgoing nodes, and the model
evaluation. With the number of steps increasing exponentially with decreasing
substep size, the cost of the repeated operations affects the performance drastically
for steps smaller than 500000 (up to 6 iterations per input graph). For each

processing step, time spent in a function can be described by Equation 4.4.

Neq
tf (Nedges) = \:NegesJ : tf (Nsubstep) + tf (Nedges mod Nsubstep) (4-4)
substep
where:
ty = elapsed execution time
Negges = number of edges in the processed graph

Nsubstep = substep size
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4.6 Discussion

The inference performance of the IGNN on different graphics cards will be

considered in the Chapter 5.

Computing Resource Utilization

Figure 4.9 presents the number of FLOPs as a function of a substep size. The
increase for steps smaller than 100000 is driven by an increase in the number of
operations of the matrix multiplication (SGEMM) (executed for each substep).
The performance of the hardware, presented in Figure 4.10, decreases for substeps
smaller than 100000 due to the exponential increase of the number of FLOPs. The
decline of the performance could be related to the time overhead from the other
repeated functions, increased kernel launch overhead - multiplication for each
substep is launched separately, or reduced parallel efficiency - the multiplication

of a smaller matrix does not fully saturate the available hardware.
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Fig. 4.9 Number of FLOPs as a func-
tion of substep size. The measurement
was done for one event, with the high-
est number of edges in the available
data sample.

4.6 Discussion

Fig. 4.10 Number of FLOPs per sec-
ond as a function of substep size. The
measurement was done for one event,
with the highest number of edges in the
available data sample.

The first presented optimisation for the IGNN track reconstruction, substepping,
significantly reduces the instantaneous memory consumption during IGNN infer-
ence. With this mechanism applied, graphs of any input size can be processed, a

critical requirement for the ATLAS experiment’s data-taking operations, where
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every event must be processed. The track reconstruction efficiency is not af-
fected; only the temporary structure is split for independent input matrix rows.
Application of substepping does not require retraining of the network and can
be adjusted based on the used hardware.

By analysing the performance of the model with different substep sizes,
presented in Figure 4.11, the optimal substep size for NVIDIA RTX A5000
with 24 GB of memory is 500000. It guarantees optimal inference time with no
performance degradation observed with respect to the baseline, while achieving

a substantial 30% reduction in peak memory consumption.
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Fig. 4.11 Measured time of edge network input preparation and evaluation of
IGNN on the graph with the highest number of edges in the available data
sample.

The substepping mechanism is highly dependent on the neural network imple-
mentation; therefore, it cannot be easily transferred to other models. However,
if, after the memory consumption analysis, a temporary memory-consuming

structure is identified, a similar mechanism can be applied.
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Chapter 5

Inference Optimisation of
Interaction Graph Neural

Network

The chapter focuses on the inference optimisation of the IGNN for the particle
track reconstruction, described in detail in Subchapter 4.1. There are no specific
execution time requirements in the EF Tracking requirements document [26],
described in Subchapter 2.2.4; however, the online trigger system must be able
to perform track reconstruction at a rate of 1 MHz on a computing farm, with
potential accelerator cards, created with a limited budget. At the time of writing,
the computing farm design was not finalised yet.

Apart from the track reconstruction step, other algorithms must be executed
as well within this time frame, including the clusterisation, selection, or muon
reconstruction; therefore, the IGNN inference time should be as fast as possible
while preserving the accuracy of the model. Moreover, while studying the
inference time, one must not only consider the average time per input graph but
also the time of processing the biggest graph possible, to consider the cost of
processing the busiest collisions and understand the performance scaling trends.
Of course, the simulated data is limited, but the biggest graph was selected from
the available sample, and it will be used for the benchmarking.

The measured inference time of the IGNN forward step is presented in
Figure 5.1. The inference time scales linearly with the number of graph edges,
driving the cost of executed operations. To understand its performance in detail

and identify the bottlenecks, a detailed profiling was performed, with its results
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presented in Table 5.1.
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Fig. 5.1 Measured IGNN inference time on NVIDIA RTX 5000 Ada for 1000
input graphs.

Table 5.1 Summary of fraction of inference time of the four most expensive
PyTorch functions, executed during IGNN inference. Measurement was done
with the cProfile profiler on NVIDIA RTX A5000.

Function Fraction of processing time [%]
Fully connected layer evaluation Linear 32.1
Layer normalization LayerNorm 7.94
Rectified Linear Unit activation ReLU 6.40
Tensor concatenation cat 1.73
Other functions 51.8

The most time-consuming function of the IGNN inference is the linear layer
evaluation. The matrix multiplication of the large input tensors and the weight
matrices drives the performance cost. The most expensive multiplication - the
Edge Network evaluation - performs multiplication of Negges X 3D ® 3D x D
(Table 4.3), for the model configuration used in this work and the biggest event
is it equal to 3.17 x 106 x 384 ® 384 x 128.

Reducing the dimensionality of the matrices involved in the linear transforma-
tions is a promising approach for reducing the computational cost of the IGNN

inference.
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Pruning

Pruning [66], [67] is a model compression technique aimed at reducing the size
and computational complexity of neural networks by eliminating redundant
or the least important parameters. It identifies and removes the parameters,
most commonly weights, that contribute the least to the accuracy of the model.
Pruning is also proven to prevent overfitting of the model [70], [71]. However,
due to the unstructured nature of pruning, the parameter removal introduced by
pruning does not necessarily lead to improved computational performance on
massively parallel processors. In order to take advantage of introduced sparsity,
sparse operators could be used [72]-[74]; however, they tend to perform better
with regular sparsity patterns.

In contrast to unstructured methods that remove individual elements, struc-
tured pruning removes subtensors of defined shape that embrace multiple individ-
ual elements. This way, it not only reduces model complexity, but it is also in line
with the computing performance optimisations for massively parallel processors.
By introducing sparsity in the structure, sparse operators can be used, or the
pruned tensors can be resized. The studies in this chapter focus on the second
approach - by reducing the size of the weight matrices, the functions should take

less time.

5.1 Related Work

The model compression techniques used for reducing the memory footprint,
described in Chapter 4, can also be used for model compression targeting the
inference time. Quantisation can successfully reduce the model size by reducing
the precision of weights and activations of the model to a lower-bit floating point
representation. They are proven to not only improve the memory footprint of the
model but accelerate its inference as well [75]. Unstructured pruning, covered in
the previous subchapter, successfully identifies the least important parameters;
however, without additional operators leveraging the sparsity, no performance
benefits can be observed.

Another technique to reduce the model size, the knowledge distillation
method [76]-[78] was proposed, where a small model, called a student, is trained

by a complex model, the teacher. The student learns from the teacher’s output
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probabilities or intermediate representations, which encode richer information
than if it were trained from scratch. This allows for better generalisation for the
student model. Knowledge distillation is particularly used in resource-constrained
environments, as it produces a compact model with the power of the original
one. However, it still requires sufficient capacity to capture the complexity of

the teacher model.

5.2 Search for Optimal Pruning Configuration

The search for the optimal pruning configuration is a time-consuming task, re-
quiring fine-tuning of multiple independent parameters. To optimise this process,
the search will be performed with an IGNN model with the same architecture
but with a much simpler dataset TrackML, described in Subchapter 2.1.4 The
size of a model was adjusted to 32 HL as a compromise between efficiency and
timing; results from the search for the right size are presented in Figure 5.2. The
training of TrackML IGNN is 11 times faster than ATLAS IGNN. It is assumed

that the same conclusions will translate to the network trained on ATLAS data.
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Fig. 5.2 Accuracy metrics and the training time for the IGNN model with different
latent space dimensions. To compromise between efficiency and the time needed
to train, HL=32 was chosen for further studies. Its accuracy loss is minimal
compared to the base model of HL=128, but it is not as overparameterised. It
requires around 200 epochs to reach the minimum.

During the structured pruning, we aim to reduce the size of the model by
removing the unimportant neurons in the hidden layers of the network. In order
to achieve that, the pruning algorithm masks the rows and columns of the weight
matrices to remove the corresponding neurons in the hidden layers. The process

is illustrated in Figure 5.3.
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Fig. 5.3 Illustration of structured pruning of an example MLP. The figure on the
left side presents the connections between input, output, and hidden layers in
a fully connected network. The right side illustrates the matrix multiplications
performed during the evaluation of this network. One neuron hy, marked in red,
is pruned in this example, and related connections to the previous and following
layers need to be removed. The removal will result in a smaller size of the weight
matrices used in the model.

While searching for a setting that reaches the highest pruning percentage
without a significant accuracy loss, different criteria are considered. The pre-
trained model will be pruned and fine-tuned for 10 epochs, which is sufficient
to recover as much prediction quality as possible. The number of epochs was
chosen based on conducted experiments with IGNN.

In the remainder of this work, prediction quality is assessed based on the
metrics described in Subchapter 4.1.3. The minimum GNN Edge-wise efficiency
for the model is marked on the plots with a red dashed line, and it is defined
as 0.99 for IGNN. The pruning percentage on all the presented figures refers to
the percentage of parameters that can be pruned - that is, only from parameters
from hidden layers.

The following subsections will present a selection of various experiments to

highlight the findings with regard to different pruning configurations.
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Importance Scores

To decide which subtensors of the pruned weight matrices should be kept and
which should be removed, first, an importance score needs to be assigned to
each of the considered subtensors. Three different scoring methods are tested
in this work; the first, and the most popular, is weight magnitude pruning
(WMP). A high absolute value of a parameter implies a high importance in the
accuracy score; therefore, it should not be pruned. However, during training,
when pruning is applied, some of the weights have not reached their minimum,
and their value can change. To mitigate this issue, in gradient magnitude
pruning (GMP), the current gradient on a weight is factored into an overall
score of |w; - g;|. This method is not perfect either; it informs only if the weight
is going to change in the current epoch, but not about the direction of the
change. To consider that factor, the third method, optimal brain damage
(OBD) [66] is used. It estimates the saliency of a parameter by approximating
the second-order derivative of the loss function. This way, parameters that are

contributing least to the loss, and thus accuracy, can be removed.
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Fig. 5.4 Comparison of GNN Edge-wise Efficiency with chosen importance
scores: WMP, GMP, and OBD. The plots show the accuracy averaged over
five experiments. Pruning is applied iteratively with 10 epochs of fine-tuning in
between iterations, with L2 norm for importance score aggregation and TopK
pruning criterion.

The effects of structured pruning for these three scores are presented in
Figure 5.4. The accuracy is not highly impacted by changing the method; the
WMP score performed the worst, not reflecting the importance of the neurons
well enough. The other two methods maintain similar efficiency with the same

pruning amount.
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5.2 Search for Optimal Pruning Configuration

To decide the best pruning configuration, the cost of the methods during
training should be considered as well. In the case of the importance scores, GMP
and OBD require additional computations. Compared to the WMP, the GMP
accounts for only 0.2% increase of the average training epoch time, which falls
within the standard deviation of the measured results, while for the OBD method
it is 3% 1.

In the following studies in this chapter, the GMP importance score will be
used as the best importance score method, reporting the highest efficiency at a

low cost.

Importance Score Aggregation Methods

The structured pruning considered in this work focuses on masking rows and
columns of weight matrices; therefore, it requires aggregation of the importance
scores for each subtensor. To perform it, two metrics are considered: L1 norm

and L2 norm.
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Fig. 5.5 Comparison of different importance score aggregation methods. The
plots show the accuracy of the model averaged over five experiments. Pruning
is applied iteratively with 10 epochs of fine-tuning in between iterations, with
GMP importance score and TopK pruning criterion.

Based on the results of the experiments, illustrated in Figure 5.5, the L2
norm achieves the best results. It emphasises the importance of outliers in the
weight distributions; thus, assuming a magnitude correlates with importance, it
preserves important weights better.

Considering all the factors, the L2 norm is a better choice to be used for

applying structured pruning to GNNs, as also reported in Reference [79].

IMeasured for IGNN, with 1200 training input graphs NVIDIA RTX A5000 24 GB
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Pruning Criteria

To select which of the subtensors should be removed while pruning, a criterion
should be applied to the aggregated importance scores. This paper considers
two of them: TopK and threshold. The first method removes the k least
important parameters, based on the importance score. For x being the aggregated
importance scores of the given weight matrix, and M™*™ being the mask for
the structures to prune, the TopK pruning procedure can be described by

Equation 5.1.

topk(x,k) = argmax Y _ |z
Sc{l,...m},|S|=kicgs

m; = for all j € {1,...,n}
0, otherwise
The second considered criterion, the threshold method, removes all subtensors
with an aggregated importance score below a defined threshold. For x being
the aggregated importance scores of the given weight matrix, M"™*" being the
mask for the structures to prune, and t being the chosen threshold, the threshold

pruning procedure can be described by Equation 5.2.

o |1 il >t ,
i = for all j € {1,...,n} (5.2)

0, otherwise

In the experiments, multiple layers are pruned at the same time. In order to
simplify the process and use one threshold value for all the layers, the importance
score was normalised before applying the threshold. For x being the aggregated
importance scores of the given weight matrix, the normalisation is described by
Equation 5.3. Since the pruning is applied iteratively, some of the values in the
importance score vector are already equal to zero because they were pruned in
past iterations. For the current pruning, the threshold value should be applied
to unpruned structures; therefore, the current minimum is recognised.

x; —min(Xz>0)

T, = (5.3)

~ max(x) —min(xz~0)

Based on conducted experiments, the results of which are presented in Fig-

ure 5.6, the TopK criterion performs better than the threshold-based selection.
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Fig. 5.6 Comparison of GNN Edge-wise Efficiency after applying different pruning
criteria: TopK and threshold. Pruning is applied iteratively with 10 epochs of
fine-tuning in between iterations, with GMP importance score and L2 norm for
importance score aggregation.

Considering that the pruning is applied iteratively, one needs to take into
account that the TopK pruning is fine-tuned for more epochs in total. It is hard to
control the cumulative pruning percentages for threshold-based pruning because
it is highly dependent on the values of the importance scores. There is no control
over how many of the weights in the network are below the defined threshold;
therefore, one iteration can prune a very small or a very high percentage of the
weights. Depending on how many weights are pruned in each of the iterations,
threshold pruning can terminate earlier compared to TopK, where the pruning

amount for each iteration is defined.

Pruning Procedure

Finally, it is essential to consider when and how often the pruning is applied
throughout the training process.

The experiments were conducted in two ways: one-shot pruning with the
desired amount and fine-tuned or iterative, with 10 epoch fine-tuning in between
epochs, as illustrated in Figure 5.7. The pruning amount in each iteration is
chosen based on the experiments; the initial steps are bigger, but as the accuracy
limit is closer, the steps become smaller. Moreover, the memory alignment should
also be taken into account; therefore, the sizes of steps have a value of 2V,

The GPU kernels, such as SGEMM, are scheduled by the underlying PyTorch

libraries with consideration of the warp organisation, where each warp consists
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of 32 threads. A range of kernel tile shapes 2 is available to maximise warp
utilisation. When matrix dimensions align with the available tile shapes, all
threads within each warp remain active and fully utilise available computing
resources. In case of "edge tiles" containing residual matrix elements that do not

fit the tile shape, their performance is suboptimal due to low thread occupancy.

one-time pruning iterative pruning

number of weights
number of weights

epochs epochs

Fig. 5.7 Illustration of one-shot and iterative pruning. To achieve the same
sparsity, one-shot pruning is applied once, but the iterative approach applies
pruning in small steps, separated by fine-tuning.

In the case of the IGNN, where the layer normalisation is used, the alignment
to the multiplication of four is even more important - without it, inference time can
increase by even 57% with respect to the baseline model. This performance decline
is attributed to the PyTorch CUDA implementation of covariance computation
within layer normalisation. PyTorch employs two different methods for variance
calculation — vectorised layer normalisation and the Welford algorithm —
depending on whether the input tensor is memory-aligned. The non-aligned
variant is much more computationally expensive.

To consider the size of the pruning step, minimum accuracy is usually reached
around 60% of pruning; therefore, close to this value, pruning steps should
become more granular. The final procedure, for p4.; being the pruning amount
in the current iteration epoch and ppere being the current pruning percentage of

the layer, can be described by Equation 5.4.

4, if ppere <50
Pdef = (54)
2, otherwise
The results from pruning each of the models are presented in Figure 5.8.

In both cases, iterative pruning maintains accuracy better at higher pruning

2Tile refers to part of the matrix processed independently
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Fig. 5.8 Comparison of model accuracy after applying pruning with different
frequencies and number of fine-tuning epochs. "Adjusted" one-shot pruning is
fine-tuned for the same number of epochs as it would happen in iterative pruning
to reach the same pruning amount. The plots show the accuracy averaged over
five experiments. Pruning is applied with the TopK pruning criterion, GMP
importance score and L2 norm for importance score aggregation.

percentages, compared to one-shot pruning. It can be explained by the fact that
when pruning a small amount followed by fine-tuning, the model can recover lost
efficiency. When pruning a significant number of parameters at the same time,
some of the relations may be lost. However, iterative pruning takes significantly
more time, depending on the number of iterations.

When the cost of iterative pruning is considered, it requires significantly more
training epochs, as fine-tuning is performed multiple times compared to one-shot
pruning. This makes direct accuracy comparisons with one-shot pruning less
fair due to the additional optimisation effort. When the number of fine-tuning
epochs is the same for both one-shot and iterative pruning, one-shot pruning
tends to preserve accuracy with a higher pruning percentage. It could be related
to the fact that in iterative pruning, each new pruning step can overwrite or
diminish the improvements gained during previous fine-tuning phases, leading to
a gradual loss of recovered information.

On the other hand, iterative pruning offers the advantage of being stopped
when accuracy falls below an acceptable threshold, making it more suitable for
experimental settings. However, for the final production model, one-shot pruning

should be considered with an adjusted number of training epochs.
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Structured Pruning Procedure Evaluation

A high efficiency is maintained for the smallest models when using GMP impor-
tance score, 1.2 norm, TopK criterion, and pruning applied iteratively. With this
configuration, for IGNN we can prune up to 55% while maintaining over 99% of
the GNN edge-wise efficiency.

A comparison of the best structured pruning configuration and unstructured
pruning is illustrated in Figure 5.9. Despite the best efforts to optimise it, the
model accuracy degrades sooner than the unstructured variant. By pruning
subtensors but not individual elements, loss of important information is inevitable.
On the other hand, the structured pruning allows resizing the model and gaining
performance improvements, which is usually not possible for unstructured pruning,

as discussed in the introduction of this subchapter.
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Fig. 5.9 Comparison of the best structured and unstructured pruning methods.
The plots show the accuracy averaged over five experiments. Pruning is applied
iteratively with 10 epochs of fine-tuning in between iterations, TopK pruning
criterion, GMP importance score and L2 norm for importance score aggregation.

Application of Structured Pruning to ATLAS Model

The chosen pruning procedure with the TrackML IGNN can now be applied to
ATLAS IGNN; the measured accuracy while pruning is presented in Figure 5.10.
The pruning amount per iteration was adjusted to fit the network dimension.
In order to reduce the pruning time, the fine-tuning in between pruning
iterations was only done on a restricted dataset of 780/100/100 training/val-
idation/testing graphs. Comparison of fine-tuning with a full and restricted

dataset is presented in Figure 5.11. The accuracy of the model is expected to

106



5.3 Model Sensitivity

51_000_| T T T T ] (>),1_000_| T T T T T 1]

5 5 g N e T i ke = Ly N

o o

& 0.975 £ 09751 -

L L

3 3 |

= 0.950 E 0.950 - -

g 5 |

S ° L Pruning with full o

wj 0.925 w 0925 — dataset fine-tuning

% - : % Pruning with small

G 0.900F |_ Strluctuted plrunlr?g | | | | . G 0.900F . datlaset.fme-ltumr? | | | | -
0 20 40 60 80 100 0 20 40 60 80 100

Pruning percentage [%] Pruning percentage [%]

Fig. 5.10 Accuracy of the ATLAS Fig. 5.11 Comparison of model accu-
IGNN after applying structured prun- racy with fine-tuning on full and small
ing with the best chosen configuration. datasets.

The fine-tuning was applied to a lim-

ited dataset.

be preserved for higher compression; however, the same patterns are expected.
With the small dataset, the complete pruning time was reduced approximately
10 times.

Based on the conducted experiments, to maintain the GNN edge-wise efficiency
over 99%, the ATLAS IGNN model can be pruned up to 65%. However, the
final model can be further fine-tuned to regain lost accuracy. This work does not

include this type of study; however, it will be conducted in the future.

5.3 Model Sensitivity

One of the disadvantages of the pruning with the TopK strategy presented in the
previous subchapter is that all layers are pruned the same amount per pruning
step. However, some layers may require larger or smaller dimensions than others
to perform optimally. As a result, they may benefit from being pruned more
conservatively, depending on their importance. The process to find the optimal
set of hidden layer sizes is similar to model architecture search.

In this work, to find the optimal number of parameters of each layer, also
known as sensitivity, each of the layers is pruned individually with progressively
smaller amounts. Then, the epoch when the accuracy reaches a value below a
defined threshold is tracked. The score is an exponential function of that epoch,

as a linear scoring function did not provide sufficient performance. Based on
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those scores, a sensitivity dictionary is created, storing sensitivity scores for each
layer.

When applying the pruning, the sensitivity score affects the pruning amount
in the current pruning step pge, thus & for TopK or ¢ for threshold-based pruning,
respectively. For a given layer [, a sensitivity score s; € (0,1}, the pruning amount
p; is determined by Equation 5.5. The first two cases in the Equation apply to
TopK pruning, where the number of layers defines the pruning amount to prune,
and the third case applies to TopK pruning, where the pruning amount is defined

by the fraction of total parameters to prune and threshold pruning.

|Pdef - s1); if [pageg-sil >=1 and  pgey € Z
=11, if’pdef-81|<1 and  pgey € Z (5.5)

PdefSt;, i pgep <1

There are other methods for assessing the best model size [80]-[82]. The
chosen approach is simple, yet the performance improvements can be observed
during the tests with TrackML IGNN. In future work, other methods can be
explored to improve the sensitivity search.

Additionally, when resizing the model pruned with sensitivity scores, the
memory alignment must be taken into account as well. The pruning amount
per iteration, described in 5.2, is adjusted by the sensitivity scores, breaking
the aligned sizes. To mitigate this issue, an alignment option was added to
the resizing procedure, avoiding the more expensive execution path for layer
normalisation.

The new resizing procedure ensures that the number of remaining rows in
the weight matrix is rounded up to the nearest multiple of four. The impact on
the performance is presented in Table 5.2. Alignment significantly improved the
performance on the pruned IGNN inference (reduced by 50%) with a small cost

of the model size increase (1%).

Table 5.2 Model size and performance pruned with and without alignment

Pruning option Model size Inference time
Pruning without alignment  3.61E+04 31.2+0.1
Pruning with alignment 3.65E+04 15.9+0.3
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5.3 Model Sensitivity

The results of applying the sensitivity scores to the TrackML IGNN are
presented in Figure 5.12. The model accuracy is improved. By recognising how
much of which layer of the model can be pruned, the accuracy is maintained
above the desired minimal threshold for longer than when treating all layers in

the same way.
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Fig. 5.12 Comparison of structured pruning with and without sensitivity scores.
The plots show the accuracy averaged over five experiments. Pruning is applied
iteratively with 10 epochs of fine-tuning in between iterations, TopK pruning
criterion, GMP importance score, and L2 norm for importance score aggregation.

Applying Sensitivity to ATLAS IGNN Pruning

Before applying the sensitivity-guided structured pruning to ATLAS IGNN, a test
was conducted to determine if the TrackML IGNN sensitivity scores are in line
with the ATLAS model. Experimental results show that, in the case of TrackML
IGNN, reducing the dimensionality of encoder and decoder networks leads to
the most significant decline in model accuracy. In contrast, for the ATLAS
IGNN, although pruning the encoder networks does affect the performance of the
model, a greater impact is observed when reducing the size of the edge network
components. In graphs representing high-complexity collision events from the
ATLAS dataset, the features of neighbouring nodes and edges are critical to
determine whether an edge belongs to a true track. A substantial decrease in
performance was observed when restricting the size of edge networks from the
first four message-passing iterations, suggesting that the edge neighbourhood
of distance four is generally sufficient for reliable edge classification. Similar
conclusions were drawn for independent tests, with the IGNN model trained

with only four message-passing steps.
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The results of pruning with sensitivity scores of ATLAS IGNN are presented
in Figure 5.13. In comparison to TrackML IGNN, the benefit of sensitivity-aware
pruning is much less significant. By introducing irregular pruning amount over

the layers, an additional 5% of parameters were removed.
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Fig. 5.13 Comparison of structured pruning with and without sensitivity scores.
Pruning is applied iteratively with 10 epochs of fine-tuning in between iterations,
TopK pruning criterion, GMP importance score, and L2 norm for importance
score aggregation. A small dataset was used for the fine-tuning.

The lack of a significant improvement can be explained by multiple restrictions
applied to the experiments. The retraining on the ATLAS IGNN was done on a
reduced dataset, proven to cause faster accuracy loss (Figure 5.11). Moreover,
the impact of the sensitivity scores’ aggressiveness should be studied further.
Additionally, other architecture search techniques could be used to describe
the per-layer sensitivity, which could be more efficient than the chosen simple

technique.

5.4 Application of Structured Pruning to Graph

Neural Networks

To study the portability of optimisation techniques applied to IGNNs, two other
example GNNs were chosen: GCN and GAT, described in Subchapters 2.3.1
and 2.3.1. Different pruning techniques will be applied to both of them to choose
the best pruning strategy for the GNNs.
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5.4.1 Models

Graph Convolutional Network

An example GCN chosen for the experiments on portability of structured pruning
is solving the node classification task on the CORA dataset [83]. It consists of
2708 academic publications, represented as the nodes, each classified in one of
the seven classes representing different machine learning topics, and the 5429
citation links between them, represented by edges.

The model prepared to predict classes of the nodes uses three GCN Con-
volutional layers, implementing the graph convolutional operator [31] from the
PyTorch Geometric library [84]. In each step, first, the message passing takes
place, where all the features are aggregated, including the features of the node
itself. The features are normalised, depending on the size of the neighbourhood
(degree), and aggregated by summing the messages. Last, a linear transformation
is applied to aggregated features by multiplying them by a learnable weight
matrix.

The accuracy of the network prediction is evaluated by the simple ratio of

the number of correctly predicted labels to the total number of tests.

Graph Attention Network

A GAT example considered in this work performs node classification on a Protein-
Protein Interactions (PPI) dataset [85]. From the input graphs representing
different tissues in the human body, where nodes are proteins with 50 different
features and edges represent interactions between them, the goal is to label each
of the nodes with multiple labels out of 121, corresponding to biological functions.

The prepared model consists of 3 hidden GAT layers, each starting with an
MLP encoding the node features into a latent space. For each of the nodes and
their neighbourhoods, an attention score is calculated, reflecting how important
the neighbouring nodes are for each node. The features are aggregated for each
of the heads, and at the end, the outputs from multiple attention heads are
concatenated (or averaged for the last layer).

To assess the accuracy of the network, the micro-F1 score [86] is used,
which is common for multi-label classification tasks. It aggregates the total

true positives (TP), false positives (FP), and false negatives (FN) across all
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classes and nodes, providing a balanced measure of overall classification quality,
described by Equation 5.6.
2-TP
Micro F1 = .
e 2.TP +FP +FN (5.6)

It is particularly used for imbalanced datasets, as it gives equal importance

to each prediction rather than each class.

5.4.2 Experimental Setup

The differences in model sizes and inputs are summarised in Table 5.3. The toy
models contain only two hidden layers, which are the target of structured pruning,

compared to 39 in IGNN, with much more complex dependencies between them.

Table 5.3 Overview of models and datasets used in experiments.

Total number of Number Of. Average
Name Task Dataset tors parameters in I s
parameters hidden layers graph size
Edge 5 5 1.2 x 10* nodes
IGNN Classification TrackML [21] 1.25 x 10 1.05 x 10 5.0 x 101 edges
Edge 6 6 3.4 x 10° nodes
IGNN Classification ATLAS 1.45x 10 1.38 x 10 9.1 x 10 edges
Node 4 4 2.7 x 103 nodes
GCN Classification CORA [83] 4.72 x 10 4.69 x 10 5.4 x 10° edges
Node 6 4 2.4 x 10® nodes
GAT Classification PPI [85] 3.7x10 7.8x10 7.0 x 10* edges

5.4.3 Graph Convolutional Network Experiments

This subchapter presents a study on the pruning of the GCN. Each of the
convolutional layers has a linear layer, applying a learnable transformation to
the aggregated data. The weights of those linear layers will be pruned. The size
of the input and output to the GCN will be preserved, analogous to IGNN.
Different pruning configurations were studied for the presented GCN; only the
best results will be shown and discussed in the subchapter. The results averaged
over repeated experiments are presented in Figure 5.14. The highest achieved
accuracy of the GCN pretrained model is 0.815, and the desired minimum

accuracy after pruning is 0.75 for this study.
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Fig. 5.14 Comparison of model efficiency of different pruning methods applied
to GCN: unstructured pruning, structured TopK pruning, and structured TopK
pruning with sensitivity. Pruning is applied iteratively with 10 epochs of fine-
tuning in between iterations, with GMP importance score and L2 norm for
importance score aggregation.

The best results for structured pruning were achieved with the TopK iterative
pruning with L2 norm and GMP importance score, similarly to IGNN. The
unstructured pruning maintains the desired efficiency when pruned 15% more
than the structured approach. Applying the sensitivity to the pruning procedure
did not improve the accuracy. The difference in the impact of pruning each of
the layers on the overall accuracy is not significant - the second layer can be
pruned slightly less.

What is also important to notice here is that the first layer has many more
parameters than the second one; each of the 1433 features is a separate input.
Pruning the output features of the first layer (weight matrix size 1433 x 32), each
with 1433 parameters, will have a bigger impact on total pruning percentage than
pruning the output parameters of the second layer (weight matrix size 32 x 32),

where each weight matrix row contains 32 parameters.

5.4.4 Graph Attention Network

In the Graph Attention Network, each attention layer begins with a transforma-
tion of the input using a linear layer. Next, attention coefficients are calculated
to determine the influence of each neighbour, and features are updated by aggre-
gating neighbouring information weighted accordingly. The weights of the linear
layer transforming the input are pruned in this work. The highest accuracy of

the GAT pretrained model is 0.966, but the model is reported to achieve a score
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of 0.973. The desired minimum accuracy is 0.9.
The results of repeated experiments with different pruning methods of GAT
are presented in Figure 5.15. The differences between different configurations

were not as significant as those observed for the IGNN.
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Fig. 5.15 Comparison of model efficiency of different pruning methods applied
to GAT: unstructured pruning, structured threshold pruning, and structured
TopK pruning with sensitivity. Pruning is applied iteratively with 10 epochs of
fine-tuning in between iterations, with GMP importance score and L2 norm for
importance score aggregation.

The final pruning configuration can achieve results almost as good as the
unstructured pruning approach. The threshold pruning criterion was chosen
as the best approach to structured pruning (without sensitivity) because it
performed better than TopK (Figure 5.16). To understand this difference in
comparison to IGNN, the pruning percentage of each of the layers needs to be
taken into account separately. During the threshold pruning, the first layer is
pruned much less than the second layer. It may indicate that the first layer
has a significantly greater impact on the overall accuracy of the model. Since
the second hidden layer has more parameters than the first one, it has a bigger
impact on the pruning percentage metric as shown in Figure 5.17.

However, after applying the sensitivity scores, accounting for the impact of
each layer on the total efficiency of the model, the TopK pruning can achieve

results as good as the threshold pruning approach (Figure 5.15).
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for importance score aggregation.

5.5 Impact of Pruning on IGNN Inference

This subchapter evaluates the computing performance of IGNN model inference
for TrackML and ATLAS datasets, with emphasis on the impact of applied
structured pruning. For each example, three models will be considered: baseline
(not resized version), pruned and resized without sensitivity scores (regular
shape), and pruned and resized with sensitivity scores (irregular shape) at the
point of the minimum allowed accuracy. The models with unstructured pruning,
which are competitive in terms of performance, cannot be easily resized with the
proposed method; therefore, their performance will be the same as the baseline
version for GPU inference.

After applying the pruning, the sizes of the models were reduced by 50% /65%
(TrackML IGNN/ATLAS IGNN), and their sizes are presented in Table 5.4. By
applying the sensitivity while pruning, the model size was reduced by another
40%/15% (TrackML IGNN/ATLAS IGNN). The impact of the model size reduc-
tion and the irregularity patterns in the removed parameters will be studied in

this subchapter.
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Table 5.4 Overview of the number of parameters in models before and after
pruning.

Dataset Applied Pruning Number of Parameters
baseline 1.25x10°
TrackML pruned 6.13 x 104
pruned with sensitivity 3.65 x 10*
baseline 1.45 x 106
ATLAS pruned 5.28 x 10°
pruned with sensitivity 4.49 x 10°

Inference Time

The measured inference time of baseline, pruned and pruned with sensitivity
models is presented in Table 5.5. For each of the considered models and the
datasets, pruning improved the inference time by 18%. By including the sensitiv-
ity guidelines, a slight improvement can be observed; however, its impact is not

significant.

Table 5.5 Measured inference time per input graph for an average and the biggest
graph in the input datasets. The measurements were done on an NVIDIA RTX
A5000 24GB and are averaged over repeated experiments.

Input graph ~ Baseline ~ Model pruned w/o Model pruned with

Model
size model [ms]  sensitivity [ms] sensitivity [ms]
avg 19.7+0.3 16.7+0.6 15.9+0.3
TrackML
max 33.4+£0.1 28.2+£0.1 27.1+0.1
avg 7217 o088 £ 3 566 £ 3
ATLAS
max 237316 1932+13 1876 =16

The improvement in the inference time of IGNN is correlated with improved
computing performance of the linear layer evaluation, which performs the matrix
multiplication. Reduction in size of matrices leads to multiplication of matrices
with a smaller size, executed faster. The detailed performance of this operation

is considered in the following subchapter.
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5.5 Impact of Pruning on IGNN Inference

Computing Resource Utilization

The next considered metric is the number of FLOP per inference step. This
measurement helps to estimate the computational demand placed on the processor
and directly indicates how intensively a model utilises the resources. The results

of the conducted measurements are included in Table 5.6.

Table 5.6 Measured number of executed FLOP per input graph of the inference
step for an average and the biggest graph in the input datasets. The measurements
were done on an NVIDIA RTX A5000 24GB and are averaged over repeated

experiments.

Input graph Baseline Model pruned w/o Model pruned with

Model size model sensitivity sensitivity
TrackML, avg 15.7 12.6 11.9
[GFLOP] max 27.3 21.7 20.6
ATLAS avg 2.88 1.21 1.2
[TFLOP] max 6.35 2.64 2.61

For the TrackML IGNN, the reduction in FLOPs for the pruned model is
approximately only 20%, and 25% for the model pruned with sensitivity. These
gains are notably smaller than those observed for the ATLAS IGNN, where FLOP
performance improved by 60%. The number of FMA operations, particularly
those associated with SGEMM, demonstrated a smaller change than in the
ATLAS IGNN.

Due to the small dimensions of the TrackML IGNN (D = 32), the dimensions
of the pruned hidden layer are rounded to fit the kernel tile size by the underlying
PyTorch library. Due to the small hidden-layer dimension of the TrackML
IGNN (D = 32), the dimensions of the pruned hidden layers are rounded by
the underlying PyTorch libraries to match the available kernel tile sizes. In the
experiments presented in Figure 5.18, the used kernel tile sizes during IGNN
inference are 128 x 64 and 128 x 32. All SGEMM operations in the TrackML
IGNN employed the 128 x 32 tile size, whereas in the ATLAS IGNN, the initial
model utilised the 128 x 64 tile. The 128 x 64 tile was observed to be selected

only when the hidden-layer dimension exceeded 64, which does not occur in the
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TrackML IGNN. With pruning applied to ATLAS IGNN, decreasing the size of
the hidden layer to below 64, the more efficient kernel with 128 x 32 tile is used,
causing a substantial performance gain.

The performance scaling of kernels for each tile size does not directly corre-

spond to the associated matrix size; the performance gain is smaller.
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Fig. 5.18 Number of FLOP during evaluation of an MLP with an architecture of
IGNN edge network reflecting sizes of ATLAS IGNN and TrackML IGNN. The
input to MLP reflects the IGNN input of a tensor with 5 x 10° edges. For MLPs
with dimensions larger than 64, the SGEMM kernel with a tile size of 128 x 64 is
used, increasing FLOPs.

Memory Footprint

To measure how the memory footprint of the model inference is impacted
by the structured pruning, peak memory consumption during graph inference
was analysed. Similarly to the previous studies, the memory consumption was
measured on average and for the largest input graphs. The results are summarised
in Table 5.7.

The peak memory consumption improved only by 5%/10% (TrackML IGN-
N/ATLAS IGNN) after applying pruning. There is no observable difference for
models pruned with and without sensitivity - the difference in model size is too
low to make an impact after different layers of tooling.

The memory footprint of the IGNN is driven by the size of the input graphs,
rather than the model itself. The model with 1.45 x 105 parameters translates

to 5.8 MB 2 while an average input graph with 3.4 x 10° nodes with 12 features

3With single-precision floating-point representation
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5.6 GPU Utilisation of IGNN

Table 5.7 Measured peak memory consumption per input graph of the inference
step for an average and the biggest graph in the input datasets. The measurements
were done on an NVIDIA RTX A5000 24GB and are averaged over repeated
experiments.

Input graph  Baseline ~ Model pruned w/o Model pruned with

Model size model [GB]  sensitivity [GB] sensitivity [GB]

avg 0.117 0.110 0.110
TrackML

max 0.190 0.179 0.179

avg 5.17 4.69 4.69
ATLAS

max 15.8 14.2 14.2

each and 9.14 x 10° edges with 6 features each to 38 MB. Moreover, there are
multiple temporary structures, serving as inputs to each of the MLPs creating

the IGNN; their sizes are not reduced by pruning.

5.6 GPU Utilisation of IGNN

After a detailed analysis of the computing performance of the IGNN before
and after pruning, similar studies were conducted on a selection of hardware.
Based on the inference time measurements, summarised in Table 5.8, the shortest
inference time was achieved for NVIDIA A100.

Table 5.8 Measured inference time of the IGNN on an average-sized graph on
selected hardware. The presented results are averaged over repeated experiments.

Inference Time [ms] Tesla T4 RTX A5000 RTX 5000 Ada  A100
Baseline model 2769114 7217 493 +1 458 £1

Pruned model 2122+ 82 H&& £+ 3 382+1 378+ 1

Model pruned
with sensitivity

2058 +93 566 £ 3 375+1 3631

To understand those results, selected performance metrics will be compared
across the cards to determine which offers the best performance and to identify
the characteristics that contribute to its advantage. The tests were conducted

on an input graph with an average size from the ATLAS dataset.
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Memory Throughput

The results of measured memory throughput during IGNN inference are presented
in Table 5.9. For all the cards, the memory bandwidth is not saturated, achieving
up to 50% of available bandwidth. The higher the theoretical performance is
reported, the higher the observed throughput is. NVIDIA A100 achieved the
highest memory throughput, which substantially affects the inference time of the
network - the IGNN inference operates on large input graphs, and operations on
them can cause substantial latencies.

Table 5.9 Measured memory throughput of IGNN inference on different hardware
for an average graph.

Memory Throughput Tesla T4 RTX A5000 RTX 5000 Ada  A100

[GB/s|

Theoretical Performance 320 768 576 1555
Baseline model 165 390 325 670
Pruned model 160 349 291 628

Model pruned

with sensitivity 161 352 290 628

Based on the detailed performance study, the memory throughput is limited
for the most time-consuming operations by the computational throughput - the
SGEMM operations saturate the SMs to 95% while the memory throughput
stays at a level of 50%.

Computing Resource Utilization

The next considered metric is the number of operations that a card can perform
per second. The measurements are included in Table 5.10. Even though NVIDIA
A100 does not have the theoretical highest performance, it achieves the best
performance out of the measured cards.

For each of the considered cards, the compute resource utilisation decreased
by half after pruning - only one input graph is processed simultaneously, with a
reduced number of weights, and fewer FLOPs are performed.

The results presented in Table 5.10 can be misleading due to the way this
metric is calculated. The number of recorded FLOPs is divided by the elapsed
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5.6 GPU Utilisation of IGNN

Table 5.10 Measured computing performance of IGNN inference on different
hardware.

FP32 Performance Tesla T4 RTX A5000 RTX 5000 Ada A100

[TFLOP /5]

Theoretical Performance — 8.141 27.77 65.28 19.49
Baseline Model 1.12 3.07 4.56 5.12
Pruned Model 0.60 1.51 2.34 2.58

Model Pruned

with Sensitivity 0.61 1.56 2.36 2.65

GPU time, which includes synchronisation stalls, kernel launch overhead or mem-
ory access latency. The number of operations is the same across cards; however,
the NVIDIA A100 recorded shorter GPU time due to the substantially higher
memory bandwidth. Even though NVIDIA RTX 5000 Ada has a considerably
higher number of CUDA cores, due to lower memory bandwidth, they may be
underutilised, unlike NVIDIA A100.

Power Consumption

The last measurement considered in this subchapter is the energy consumed
during IGNN inference. Table 5.11 summarises the recorded measurements. No
significant differences in the instantaneous power consumption were observed for
full and reduced models; therefore, only the performance of the baseline model

was presented.

Table 5.11 Measured average power and energy of an inference step consumption
of IGNN inference on different hardware.

Tesla T4 RTX A5000 RTX 5000 Ada A100

TDP [W] 70 230 250 250
Instantaneous Power

Consumption [W] 06 225 242 246
Baseline [J] 182 162 119 112
Pruned model [J] 140 129 93.6 86.2
Model pruncd 135 124 91.9 82.4

with sensitivity [J]
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For all the cards, the power limit is reached. After the pruning application,
the energy is reduced by 20% for all presented cards.

Despite the smallest power consumption, when considering the performance
of the complete inference step, NVIDIA Tesla T4 consumes the most energy out
of the considered cards. NVIDIA A100 reports the smallest energy consumption
out of reported GPUs; the maximum power consumption is similar to the other
cards, yet, as reported in this chapter, its inference time is faster due to high
memory throughput benefits. Low energy consumption directly translates to
long-term savings, even though the initial cost of this GPU is higher than other

considered models.

5.7 Discussion

Structured pruning, removing the hidden layer neurons, proves to be a promising
model compression solution for IGNNs as well as other complex GNNs. Based
on the conducted experiments, compression of 60% on average can be achieved
without compromising the accuracy of the model. Combined with resizing,
structured pruning gives promising results in 20% faster inference and 20% of
energy savings.

The structured pruning for the GNNs can be configured in many different
ways regarding various aspects, with the solutions proposed by the community
over the years. This work proposes the best set of pruning parameters based
on extensive studies on the importance scores and their aggregation methods,
pruning criteria and pruning frequency. The configuration of GMP importance
score, aggregated with L2 norm, TopK pruning criterion, and iterative pruning,
yields the best results, maintaining model accuracy in the model with the highest
compression.

Complicated, multi-layer models can be further pruned while preserving
the accuracy by adjusting the pruning amount based on the sensitivity score.
The chosen shape of structures to prune, combined with resizing of the model,
significantly reduces the model size and the inference computing resource con-
sumption. Additionally, applying sensitivity while pruning reduces model size
by an additional 20%, but for even stricter accuracy requirements, the gain in
model compression can be even higher. After application of sensitivity-guided

structured pruning, no significant performance gains were observed. The pro-
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5.7 Discussion

posed structured pruning can be further studied and improved by considering
a different sensitivity score, for example, inspired by the architecture search
tasks [80]-[82] or analysing the impact of reemerging weight subtensors [87], [88].

The proposed pruning strategy, as well as the sensitivity-guided pruning,
were evaluated on benchmark GAT and GCN models with promising results.
However, the unique architecture of IGNN, comprising of multiple but rather
small MLPs exploits the sensitivity scores more effectively than the benchmark
models, which contain fewer layers.

Based on the performance studies of the IGNN on selected hardware, NVIDIA
A100 shows the best inference performance, offering substantial time and energy
savings—the performance benefits from extremely efficient memory type HBM2e,
delivering outstanding memory bandwidth. Even though the cost of the card is the
highest among those examined, its long-term energy efficiency is a cost-effective
investment over time. To reach even higher memory throughput, graphics cards
from Hopper and Blackwell generations can be considered, with the memory
bandwidth reaching over 4 TB/s.
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Chapter 6
Conclusions

The upcoming upgrade of the LHC will enable particle collisions with up to 200
interactions of single bunch crossing, facilitating more extensive studies in particle
physics. The LHC experiments, such as ATLAS, must adapt to the increased
rate and complexity of these collisions. To fully leverage the physics potential of
the enhanced accelerator, the ATLAS detector will undergo an upgrade of the
tracking detector, incorporating a substantially larger number of modules with
improved precision and expanded coverage around the IP.

Track reconstruction is a challenging task, involving resource-consuming,
advanced algorithms capable of distinguishing particles traversing the tracking
detectors. Its accuracy is crucial for successful studies of the interactions of
particles. Moreover, in the event selection system environment, additional
challenges arise due to the limited computing resources; all particle collisions
must be processed to avoid data loss. Experiments such as ATLAS must consider
alternatives to traditional CPU-bound track reconstruction algorithms to improve
the efficiency of the event selection system. Recent advances in GPU acceleration,
coupled with the growth of machine learning capabilities, have emerged as a
promising solution to address these computational challenges.

This work presents two track reconstruction solutions involving graphics
card acceleration, one enhancing the traditional track reconstruction algorithm,
and one proposing a novel approach with the IGNN. Both of the solutions are
effectively optimised to reduce computational resource usage while maintaining

satisfactory accuracy.
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Fast Track Reconstruction Algorithm

The first discussed solution, fast track reconstruction, has been successfully used
in the ATLAS trigger in Run 2 and Run 3. This algorithm can be partially accel-
erated with a GPU, as one of the proposed EF track reconstruction algorithms.
Specifically, the track seeding component, identified as a strong candidate for
parallel processing, is offloaded to the graphics card for optimisation.

The optimisation of the algorithm required adjustments to both track seed
selection and GPU resource configuration. By fine-tuning the selection cuts to fit
the expected data from the new ATLAS tracking detector, the average accuracy
was improved from 65% to 85%. By rejecting the incorrect seed candidates, the
efficiency in the Barrel region of the detector improved from 0% to almost 90%.
The number of fake track seeds was reduced by 97%, the full track reconstruction
time improved from 26.7s to 1.62s on average, matching the performance of the
offline track reconstruction algorithm.

The performance improved due to the novel triplet confirmation kernel pro-
posed in this work. The supposedly redundant duplicate seeds, belonging to the
same true track, were used to confirm whether the seed can belong to a true track.
The novel adjustments to selection cuts were applied in track seeding algorithms
of other ATLAS track reconstruction algorithms. The triplet confirmation kernel
can be adapted to other frameworks as well, helping with the present problem
of a high number of fake track seeds, significantly deteriorating the computing
performance of track finding.

Furthermore, the GPU usage of the algorithm was analysed in detail, identify-
ing bottlenecks of the kernels. The most crucial parts were addressed, including
floating-point precision and scheduling configuration. However, further optimisa-
tions are possible, including modifications to the code architecture to address
issues arising from limited shared memory.

The conducted studies show that shared memory as well as the number of
CUDA cores limit the performance of this algorithm. The graphics cards with
the highest number of CUDA cores (NVIDIA RTX 5000 Ada) reported the best
performance of the algorithm, as well as the lowest energy consumption.

The current fast track reconstruction track seeding algorithm can benefit
from refactoring of the last two kernels to fully leverage the available parallelism.

Moreover, memory management can be optimised by replacing the static alloca-
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tions by frameworks allowing modern memory management. The fast tracking
algorithm can be further improved by implementing the Graph Based Track
Seeding algorithm for track seeding, proven to substantially reduce the computing

cost of track building by providing preselected, high-quality track seeds.

Interaction Graph Neural Network

The second considered track reconstruction algorithm, involving IGNN, has
proven to achieve high track reconstruction accuracy; however, it is resource-
consuming. The performance bottlenecks arise from a high memory footprint
and suboptimal inference time. Both of those challenges are addressed in this
work.

The architecture of the IGNN consists of multiple MLLP networks, processing
the propagated features of graph nodes and edges. The temporary structures,
which serve as inputs for those networks, are identified as the most memory-
consuming parts of the model, yet they are only temporary. A mechanism called
substepping was proposed, processing those temporary structures iteratively,
split into predefined sizes, reducing the instantaneous memory footprint to a
chosen size. This way, the model can be deployed on memory-limited hardware,
or multiple graphs can be processed in parallel.

The impact of the substepping on the computing performance was analysed -
the time penalty for iterative processing is noticeable only for steps smaller than
500000. The number of iterations increases exponentially with decreasing step
size, outweighing the performance gains from executing functions on all sizes
of tensors. Additionally, the additional substepping operations cause overhead.
The optimal performance was achieved for the substep size of 500000, matching
the inference time of the non-substepping model while reducing the memory
footprint by 30%.

To address the suboptimal inference time, a structured pruning model com-
pression technique was applied. It has proven to be compatible with modern
hardware, reducing the model complexity by introducing structured sparsity in
the underlying tensors. This work explores different structured pruning config-
urations applied to IGNN as well as GNN benchmark models to reveal which
pruning achieves the best results.

A search for the GNN pruning configuration that the importance scores
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including both values of weights and their gradients sufficiently reflect the
importance of the network neurons, preventing premature accuracy loss. The
tests with scores with Optimal Brain Damage achieved similar performance;
however, its computational cost is much higher compared to the gradient based
method. The L2 norm has been demonstrated to be the optimal score aggregation
method, a result widely reported in the machine learning community. Based on
conducted experiments, the TopK pruning criterion proved to perform better than
threshold-based selection, and the iterative pruning stands as an optimal choice
for the pruning search. After establishing the maximum model compression for
desired accuracy, the model should be one-shot pruned, followed by fine-tuning
epochs.

The found pruning configuration was applied to the ATLAS IGNN, allowing
for 62.5% compression while preserving the accuracy of 99%. This accuracy can
be improved even more by additional fine-tuning.

Structured pruning can be further improved for models with a large number
of layers by guiding the pruning amount by the sensitivity scores. Each of the
layers was analysed to determine how its compression affects accuracy. The
pruning sensitivity guidelines allow for higher model compression, reducing the
model size by 20% compared to structured pruning without sensitivity guidelines.
Additionally, minor performance improvements were observed for the model
pruned with the sensitivity scores.

In the future, the sensitivity scores can be further fine-tuned by using neural
architecture search algorithms or studying the impact of the aggressiveness of
the scores in more detail. Moreover, the pruning strategy can be improved by
including pruning of input and output layers of IGNN. This way, the temporary
structures, serving as MLP inputs, can have reduced sizes and offer substantially
lower memory footprint.

The conducted measurements of the IGNN performance show that its main
limitation corresponds to the memory throughput possible on the GPU. NVIDIA
A100 demonstrated the shortest inference time and the smallest energy consump-
tion due to its exceptional memory bandwidth.

To further improve the performance, multiple compression techniques, includ-
ing model compilation or mixed precision, can be applied to IGNN, which are

not discussed in this work.
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Comparison of the Algorithms

The presented algorithms achieve satisfactory accuracy, making them suitable
candidates for the algorithm choice for the future ATLAS trigger. Their comput-
ing performance was thoroughly optimised, making them competitive with other
proposed solutions.

When comparing the complexity of the algorithms, the fast track reconstruc-
tion seeding requires expertise and a deep understanding of the particle track
reconstruction, its geometry and the impact of the data taking conditions (rule-
based algorithm). In contrast, the IGNN seems to be a much simpler algorithm,
requiring the user to have a sufficient understanding of track reconstruction
to select the appropriate input features. Rather than explicitly implementing
selection criteria, the network autonomously learns them from the data, thereby
reducing the user’s workload (learning-based approach). However, because these
selections are deeply embedded within the model, diagnosing potential perfor-
mance issues and verifying correctness is more challenging than in the case of
the FTF.

The direct comparison of the performance of those algorithms is not obvious.
While the FTF is already integrated in the ATLAS trigger, the studies of the
IGNN were performed in a standalone environment of the acorn [69] framework.
To assess its efficiency as the track reconstruction algorithm, the IGNN and its
pre- and post-processing steps need to be integrated into the ATLAS trigger
framework and evaluated with dedicated tools.

Table 6.1 summarises improvements to the GPU algorithms proposed in this
work. Both of the algorithms require additional pre- and post-processing on the
CPU, including the computationally expensive CKF algorithm. The performance
of the FTF Track Seeding algorithm on GPU achieves much better performance,
consuming less time, memory and energy. The IGNN memory consumption can
be further reduced by applying more restrictive substepping.

The algorithms exhibit different bottlenecks, requiring different optimisation
approaches. The limiting factors in FTF are the parallel processing power related
to the high number of processed data, related to the number of CUDA cores
and the size of the shared memory. The latter can be addressed by algorithm
redesign. In contrast, the performance of IGNN is limited by the memory

bandwidth correlated to the substantial size of the model input graphs and
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Table 6.1 Comparison of FTF GPU Track Seeding and IGNN algorithms. The
included numbers present performance metrics recorded on the best identified
GPU for each algorithm, for an average input size.

Metric FTF Track Seeding IGNN
GPU NVIDIA RTX 5000 Ada NVIDIA A100
Execution time per event [ms] 94 363
Execution time improvement 75% 20%
Number of FLOPs [GFLOP] 58 2610
Number of FLOPs improvement 65% 60%
Memory Bandwidth [GB/s] 0.51 628
Memory Footprint [GB] 2.5 5.26
Energy per event [J] 21.1 82.4

necessary SGEMM operations. The algorithms need hardware cards focusing on
the number of CUDA cores or the memory bandwidth; neither of the analysed
cards satisfied both requirements. However, the newest NVIDIA architectures,
Hopper and Blackwell, include cards with promising properties.

To further evaluate the proposed solutions, the performance of the algorithms
should be evaluated when processing multiple inputs simultaneously. Multithread-
ing and multiprocessing are essential features of the ATLAS trigger. Moreover,

this way, the computing resources can be fully saturated.

Comparison of Hardware

In the presented studies, four graphics cards were compared, with different
architectures, and focusing on various aspects of performance.

The exceptionally high parallel processing power of NVIDIA RTX 5000 Ada
driven by the number of available CUDA cores facilitating massive parallelism of
floating-point operations, has proven to be the best accelerator for the parallel
track seeding. During the conducted experiments, it was able to reach the highest
memory and compute throughput. Even though the available memory bandwidth
is higher for NVIDIA A100, it could not be fully leveraged due to the lower

computing capabilities.
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The high memory bandwidth of the NVIDIA A100 is particularly beneficial
for algorithms involving GNNs, resulting in a notable improvement in inference.
Out of all the considered accelerators, it was able to reach the highest compute
throughput by avoiding memory access stalls, even if its theoretical performance
was not the best out of the selected cards. Due to the discussed advantages, it

achieved the lowest energy consumption of event processing.
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Acronyms

ACTS A Common Tracking Software.

CKF Combinatorial Kalman Filter (Chapter 3.1.1).

CPU Central Processing Unit.
EF Event Filter (Chapter 2.1.3).

FLOP Floating Point OPeration (Chapter 2.4.2).
FMA Fused Multiply-Add (Chapter 2.4.2).

FTF Fast Track Finder algorithm (Chapter 3.1).

GAT Graph Attention Network (Chapter 2.3.1).
GBTS Graph-Based Track Seeding (Chapter 3.3).
GCN Graph Convolutional Network (Chapter 2.3.1).
GMP Gradient Magnitude Pruning (Chapter 5.2).
GNN Graph Neural Network (Chapter 2.3.1).

GPU Graphics Processing Unit (Chapter 2.4).

HL-LHC High Luminosity Large Hadron Collider (Chapter 2.1.1).

HLT High Level Trigger (Chapter 2.1.3).

ID Inner Detector (Chapter 2.1.2).

IGNN Interaction Graph Neural Network (Chapter 2.3.1).
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IP Interaction Point (Chapter 2.1.1).

ITk Inner Tracker (Chapter 2.1.2).
LHC Large Hadron Collider (Chapter 2.1.1).
MLP Multi-Layer Perceptron (Chapter 2.3).
NN Neural Network (Chapter 2.3).
OBD Optimal Brain Damage (Chapter 5.2).

SGEMM Single precision GEneral Matrix Multiply.

SM Streaming Multi-processors (Chapter 2.4).
TDP Thermal Design Power (Chapter 2.4.1).

WMP Weight Magnitude Pruning (Chapter 5.2).
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