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Zusammenfassung

Aktive Materie nutzt lokale Energiequellen, um Krafte und Bewegung zu erzeu-
gen. Ein wichtiges Beispiel ist die Fortbewegung von Mikroorganismen, die sich
als aktive Brownsche Teilchen modellieren lassen. Ein physikalisch besonders
interessanter Spezialfall sind chirale aktive Teilchen, die einer bevorzugten
Rotationsrichtung folgen. In dieser Arbeit zeige ich mittels theoretischer Anal-
ysen iiber alle relevante Skalen, dass Malaria-Parasiten aufgrund ihrer hohen
Geschwindigkeit und gekriimmten Form ein ausgezeichnetes Modellsystem dafiir
darstellen.

Zunéchst habe ich eine automatisierte Bildverarbeitungspipeline aufgebaut, um
experimentell gemessene Trajektorien in einem dreidimensionalen Hydrogel zu
analysieren. Dabei wurde eine rechtshidndige Chiralitdt nachgewiesen, die auch
Uberginge zwischen zwei- und dreidimensionalen Umgebungen kontrolliert.
Weiterhin formulierte ich eine stochastische Theorie fiir chirale aktive Teilchen
auf Basis eines Ornstein—-Uhlenbeck-Prozesses fiir die Rotation und zeigte,
dass helikale Bewegung robuster gegeniiber Fluktuationen ist und statistisch
zu groferer Nettoversetzung fiihren kann—sodass eine Helix gewissermafien
,gerader als eine Gerade“ sein kann.

Schlieflich entwickelte ich eine Theorie fiir den selbstorganisierten Oberflachen-
fluss von Adhésionsmolekiilen, der die Bewegung antreibt. Diese legt nahe,
dass die gekrimmte Form der Parasiten eine evolutiondre Anpassung ist, um
Rotationen auf der Stelle zu vermeiden. Eine Erweiterung der Theorie um
mechanischen Deformationen fithrt die beobachtete Rechtshandigkeit auf eine
asymmetrische Freisetzung der Adhéasionsmolekiile zuruck; diese Vorhersage

wurde experimentell bestatigt.
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Abstract

Active matter taps local energy sources to generate forces and motion. A
key example is the locomotion of microorganisms, which can be modeled as
active Brownian particles. A particularly intriguing case involves chiral active
particles that follow a preferred sense of rotation. Working across relevant
scales, I show theoretically that malaria parasites, owing to their high speeds
and curved shape, provide an excellent model system for this class.

First, I built an automated image-processing pipeline to analyze experimentally
measured trajectories in a three-dimensional hydrogel. This established proof
of uniformly right-handed chirality, which also controls transitions between two-
and three-dimensional environments.

I then formulated a stochastic theory for chiral active particles based on an
Ornstein—Uhlenbeck process for rotational dynamics, demonstrating that helical
motion is more robust to fluctuations and can, statistically, yield larger net
displacements—so that a helix can be “straighter than a straight line”.
Finally, I developed a theory for the self-organized surface flow of adhesins,
driving the motion. This suggested that the parasites’ curved shape is an
evolutionary adaptation to avoid on-the-spot rotations. An extension of the
theory that incorporates mechanical deformations attributes the observed right-
handedness to an asymmetric release of adhesion molecules; this prediction was

corroborated experimentally.
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Introduction

Motion is fascinating—from children’s toys like spinning tops or marble runs to
watching sporting events, or throwing an American football or a Frisbee yourself
to test how rotation stabilizes the path. This fascination has long been applied
to studying the microscopic realm: Motion at microscopic scales follows its own
rules, with inertial effects irrelevant compared to viscous drag, captured by the
concept of a low Reynolds number [1]. While we can throw a ball and watch
it fly, a swimming F. coli bacterium has to constantly propel itself forward,
barely able to compete with the thermal diffusion randomly moving everything
around [2]. Evolution has engineered many different solutions to generate the
constant propulsion force necessary for continuous movement: microswimmers
may have a few flagella or many cilia, whereas crawling mammalian cells utilize
actin turnover to move through tissue, and certain bacteria fire grappling hooks
called type IV pili to pull themselves forward. Certain parasites, including those
causing the disease malaria, have developed their own specific solution, enabling
them to outrun the immune system. In this thesis, we explore the motion
machinery and motility of these parasites in a series of theoretical models,

motivated and supported by analyzing experimental data from collaborators.

Over 250 million people contract malaria each year, which causes 600 000
deaths, mainly children in sub-Saharan Africa [3]. The disease is caused by
infection with a unicellular parasite from the genus Plasmodium, which contains
hundreds of known species, five of which infect humans. All species share a
complicated life cycle, alternating between a mosquito and a vertebrate host.
During different stages of this life cycle, the parasite takes a number of different
forms. Humans, as the vertebrate host, are infected by sporozoites, a long and
slender stage of the parasite that is transmitted during a mosquito blood meal.
The sporozoite moves through skin tissue, finds a blood vessel and rides the
bloodstream to the liver. There, it eventually morphs into the blood stage of
malaria, and starts infecting red blood cells (RBCs). This is where the disease
becomes symptomatic, and with a few percent to nearly half of RBCs infected,

it can cause a number of life-threatening conditions [4].

The starting point of each infection is the migration of a relatively small
number (few tens) of sporozoites through the skin. Because stopping these
would prevent infection, understanding their migration is of high medical rel-

evance and is the target of recent vaccine approaches [5-11]. But also for
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themselves, Plasmodium sporozoites present very rewarding research targets.
Their gliding motility is empowered by an ingenious machinery, called the
glideosome. Adhesins in the parasite’s membrane are pulled backward by a dis-
tributed actomyosin motor assembly. While they are linked to the extracellular
matrix, this rapidly propels the parasite forward, such that it beats the speed

of the immune cells it wants to outrun by a factor of 10.

The rapid motility is not the only intriguing physical property of Plasmodium
sporozoites. They have a well-maintained, high-aspect-ratio, curved shape. At
about 10 pm long, and with a diameter below 1pum, they form a crescent shape
with a radius of curvature of about 5pm (see the cover of Chapter 1). The
cell is not only highly polarized, with an apical complex marking the front and
constituting the nucleation point for the glideosome, but also chiral: When
placed on a glass slide, the cells circle due to their curved shapes, but the

majority will circle counterclockwise (seen from above).

Chirality is defined as the property of being different from its own mirror
image. Prime examples of this are helices, which are either left- or right-handed.
In biology, chirality is omnipresent at the nanoscale, for example with nearly
all biologically relevant amino acids being L-chiral, while DNA is (usually) a
right-handed double helix. Easier to grasp is the left-right symmetry breaking
of our bodies, propagated from more microscopic chirality during embryonic
development. For the roundworm C. elegans, the left-right symmetry breaking is
known to arise from the fixed chirality of actin filaments [12]. Another everyday
example is the pair of aromas—spearmint and caraway—both produced by a
molecule identical except for chirality, called carvone. In the case of malaria
parasites, we not only find counterclockwise vs. clockwise circling in 2D, but
also strong right-handed chirality of helical trajectories traveled by the parasites
in 3D.

In this thesis, we analyze the properties of these helical trajectories, rational-
ize how they result from the glideosome motor machinery, find the advantages
that helices offer for migration, and finally uncover how their chirality is encoded
in the layout of the cell. Taking the malaria parasite as a model organism and
motivation, the theoretical models developed offer insight into the principles
governing gliding motility of many microbes, from medically relevant parasites

to bacteria and even algae.



Introduction 3

Outline

Chapter 1 sets the stage by introducing the biological and theoretical founda-
tions. We explain the biology of malaria parasites, in particular their motor
machinery, in more detail, and introduce other gliding stages of the malaria
life cycle, and the parasite Tozoplasma gondii, a close relative to Plasmodium
that serves as an important reference and model system. After the biological
introduction, we review some relevant biophysical theories on cell motility in
general and specifically important previous models for the gliding motility of

Plasmodium and Tozoplasma.

Chapter 2 is dedicated to the experiments of our close collaborators at the
parasitology department, the analysis methods we developed, and the obtained
results. We track the sporozoites in a 3D gel assay to find the aforementioned
right-handed chirality, and further quantify the trajectories and also the shapes
of individual sporozoites. With that, the foundation for the modeling in the

following chapters is set.

The following three chapters introduce different theoretical models, starting
from the most coarse-grained, and subsequently incorporating more biological
detail.

Chapter 3 focuses on the stochastic properties of helical trajectories in general,
reducing the parasite to an active particle. Importantly, we abstract main
characteristics that apply to the parasite’s force-generation mechanism and
migration: moving through a gel, classical Brownian noise is less relevant, as
stochasticity is mainly introduced by the motor machinery itself, a paradigm
also valid for larger microswimmers. This drive-based noise is generated in
the frame of the particle and is time-correlated, motivating us to introduce a
general model for helical motion of microorganisms in 3D based on an Ornstein-
Uhlenbeck process to describe the noisy state of the internal force generation
apparatus. In this model, we find advantages for helical trajectories, which
can integrate out part of the noise to become more persistent than straight
trajectories, leading to helices being "straighter than a straight line". These
findings were published as Lettermann et al., Physical Review Letters, 2025,

see 2 in the List of Publications.

Chapter 4 moves on to include more details about the force generation and
transmission of a general glider. We introduce a model that describes how
the surface flow on a fixed geometric shape results in motion of that shape.

Importantly, we assume that the surface flow is actively generated, and responds
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to the motion it itself creates. This sets up a subtle self-organization problem,
where the geometry of the glider dictates stationary and stable configurations
of the surface flow. Our analytical solutions predict an axisymmetric body
will have a strong tendency to rotate around its symmetry axis, providing
an explanation for why Plasmodium, Toxoplasma, and many of its relatives
are curved, thereby breaking axial symmetry. These results were published
as Lettermann et al., Proceedings of the National Academy of Sciences of the
U.S.A., 2024, see 1 in the List of Publications.
Chapter 5 finally comes back to a more detailed, quantitative comparison
with the experimental data from Chapter 2. We extend the general glider
model from the previous Chapter 4 to a more complex model of the surface flow
and include some degree of shape deformability. This allows us to accurately
reproduce the measured trajectories, using either of two competing models
for the origin of chirality. By comparison with the experiments described in
Chapter 2, but also specifically designed two-sided traction force microscopy
assays and STED super-resolution microscopy experiments, we are able to
show that the most likely mechanism generating chirality in sporozoites is an
asymmetric distribution of adhesins, generated by a tilt in the apical organelle
responsible for releasing the adhesins in the outer parasite membrane. The
experimental results presented in Chapter 2 and the results from this chapter
were jointly submitted and accepted for publication as Lettermann, Singer, et
al., Nature Physics, in press, see 3 in the List of Publications.

The Summary & Outlook distills the findings into a coherent picture of
gliding motility in malaria parasites and its consequences for parasite architec-
ture. Furthermore, some currently pursued or possible future research avenues

and yet open questions are presented.









Chapter 1

Active motility of malaria

parasites

This chapter outlines the physical and biological foundations relevant to this
thesis. We begin with a brief overview of relevant physical models of microscale
motility, then introduce the biology of gliding malaria parasites, and conclude

by revisiting prior modeling specific to these parasites.

1.1 Modeling of microbial motility

Evolution has created a vast zoo of different motility mechanisms, which inspired
a similar manifold collection of models focusing on different systems and aspects
of motility, ranging from detailed models of individual molecular motors [13]
to understanding large-scale collective motion of bacteria, cells, or even flocks
of birds [14, 15].

1.1.1 Cell crawling and active gel theory

A significant part of the literature is concerned with the internal dynamics
behind the crawling of mammalian cells [16]. While this is not directly relevant
to modeling gliding, we will see that the underlying theory describing the
actomyosin machinery is. The theory of active gels [17] combines the polarity of
the actin network with the out-of-equilibrium energy turnover of myosin motors
into a consistent, hydrodynamic theory of intracellular force generation [18].
While the gliding of apicomplexans utilizes short actin filaments and fixed
myosin motors in the quasi two-dimensional space defined by the glider’s
surface, and is hence very distinct from classical branched actin networks, we
will rely on the general ideas to introduce a continuum description for such a

system popularized by active gel theory.

7



8 1.1 Modeling of microbial motility

1.1.2 Swimming and active particle models

A second aspect of microbial motility that has been explored from a more
physical viewpoint is swimming. While models concerned with the specifics of
propulsion of different microbes, including bacterial and eukaryotic flagella [19],
are far from our work, the distributed force generation of ciliated swimmers
bears some resemblance to gliding [20]. Furthermore, we will see that swimming
and gliding can be modeled similarly if abstracted sufficiently, in which case the
mode of force generation is no longer of primary importance. This leads to the
large class of models called active particles. The most prominent representative,
the active Brownian particle (ABP, [21]), asks the question of how the active
propulsion of a microscopic agent interacts with thermal fluctuations, leading
to diffusion in both position and orientation, a well-known challenge famously
raised by H.C. Berg and E.M. Purcell [1,2,22] for bacteria. The simple 2D
ABP model assumes a particle with an orientation given by an angle 6 that
actively travels with a velocity vy, and is subject to translational and rotational

diffusion given by D, and D,.:

dx = vpé(f)dt + /2D, dA,(t) (1.1)
df = /2D, dA,(t), (1.2)

where dA,(t) and dA,.(t) are the Wiener noise processes generating translational
and rotational Brownian motion, respectively, and €(6) is the unit vector in
direction given by 6. For suitable parameter values, this system shows different
motility behaviors for three different time scales. On very short time scales,
if the translational diffusion is stronger than the actively traveled distance,
the particle moves diffusively. On intermediate time scales, if active travel
overtakes diffusion, but rotational diffusion does not yet deflect the particle’s
orientation, the particle travels ballistically on a nearly straight line. For long
times, the rotational diffusion leads to random changes in orientation, such
that the trajectory wanders like a random walk, yielding diffusive behavior
once more, but now with a large diffusion constant determined by vy and D,.

The simplicity of active particle models, by prescribing some rules of propul-
sion and interaction with the environment, has made them a widely used tool
for modeling individual microbes, but also collective motion [23-26]. From the
many applications and extensions concerning single active particles [21,27-31],
the ones most interesting to us are those considering not only a force or propul-

sion velocity, but adding a torque or angular velocity to obtain a so-called circle
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swimmer [32-38]. This angular velocity (which is simply adding a constant in
Eq. 1.2) adds a sense of chirality to the particle, which (as most such models
are two-dimensional) leads to circling. The stochastic fluctuations, however,
make these circles imperfect, such that a circle swimmer will perform a random
walk over time. That means adding angular velocity typically reduces the
diffusion of the particle; it can only be partially offset by introducing noise,
as without noise the particle is stuck on its deterministic circle. A second
important extension to the original ABP is to replace the uncorrelated white
noise with time-correlated noise [39-44].

In Chapter 3, we will see how the combination of an angular velocity
and time-correlated noise in case of 3D motility can have the opposite effect
compared to circle swimmers: adding the rotation can stabilize trajectories,
enhancing persistence and therefore enlarging the effective diffusion constant,

because the rotation integrates out part of the noise.

1.2 Plasmodium biology and life cycle

Malaria is caused by unicellular protozoan parasites of the genus Plasmodium,
which belong to the phylum Apicomplexa. Apicomplexa are the only large
taxonomic group that overwhelmingly consists of parasitic organisms, but
still encompasses a very diverse spectrum of species [45]. They share the
name-giving apical complex, an organelle used for secretions related to invasion
and motility [46-48]. Many apicomplexan parasites feature complicated life
cycles, where different stages occupy different host animals or tissues, and
reproduction can happen in a sexual or asexual manner at different stages [49].
Examples include Toxoplasma, which can infect all warm-blooded animals but
requires felids (i.e., cats) for sexual reproduction [50], whereas gregarines infect
invertebrates [51].

The life cycle of Plasmodium alternates between a mosquito vector and
a vertebrate host. In the mosquito, sexual reproduction and development of
sporozoites occurs, culminating in the formation of thousands of sporozoites
inside oocysts attached to the insect’s midgut wall. Once mature, sporozoites
egress from oocysts and invade the salivary glands of the mosquito [4]. During
a blood meal, an infected Anopheles mosquito injects a small inoculum of
sporozoites into the skin of the host (Fig. 1.1a, [52]). The sporozoites are
motile, slender crescent-shaped cells about 10-151m in length, with their

diameter constrained to be smaller than 1pm as they need to fit through the
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Figure 1.1: a: Life cycle of malaria parasites. The sporozoite is the slender and
crescent form of the parasite that is injected by female Anopheles mosquitoes
into the skin of the vertebrate host. In the skin, sporozoites migrate at high
speed, up to 3pums~!, until they enter a blood vessel. b: Sporozoites move by
gliding motility. Myosin motors are located on the inner membrane complex
(IMC), a flattened organelle subtending the plasma membrane. Short actin
filaments are polymerized at the apical rings and are pushed to the basal end
of the parasite by the myosin motors. The actin filaments in turn connect
to adhesins spanning the plasma membrane, which are released at the front.
The surface flow of adhesins leads to productive parasite movement once the
adhesins couple to the extracellular environment. From publication 3.

tiny salivary ducts of the mosquito. After transmission, they rapidly glide
through the dermis of the host at speeds around 1-3pms™! [53]. This active
migration in the skin is crucial: sporozoites must find and enter blood capillaries
to be carried to the liver, where they infect hepatocytes and develop into liver-
stage forms. Successful infection of the liver by even a few sporozoites is a
prerequisite for the subsequent pathogenic blood stage of malaria. If sporozoites
fail to reach a blood vessel, they remain in the skin and the infection is aborted.
This makes the sporozoite stage a critical bottleneck in the parasite’s life cycle
and an important target for prophylactic interventions such as vaccines [5-11].
Indeed, the only licensed malaria vaccine (RTS,S) targets the sporozoite’s
major surface protein (circumsporozoite protein, CSP), aiming to neutralize

sporozoites before they establish infection in the liver [54].

In the liver, each sporozoite invades a hepatocyte and transforms into
an intermediary liver stage, producing tens of thousands of merozoites (see

Fig. 1.1a, [55]). Merozoites are then released into the bloodstream, where they
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initiate the asexual blood cycle by invading red blood cells (RBCs), causing
the symptomatic phase of malaria. Each infected RBC releases between six
and more than 30 new merozoites after species-specific times. The number
of merozoites can vary and depends on an asynchronous replication scheme
[56]. The release time is well coordinated and varies even among the human-
infecting species: P. knowlesi taking 24 hours, P. malariae 72 hours, and the
medically most relevant P. falciparum and P. vivax 48 hours [57,58], similar
to the rodent-infecting P. berghei [59]. Notably, all the clinical symptoms of
malaria are caused by the exponential replication of parasites in blood, whereas
the preceding sporozoite and liver stages are clinically silent. Nonetheless,
these stages are essential to expand the handful of sporozoites to thousands
of merozoites starting the blood stage infection. Finally, some blood-stage
parasites differentiate into sexual forms (gametocytes), which are taken up by
the next mosquito during its blood meal, thereby perpetuating the transmission
cycle (Fig. 1.1a, [60]).

This chapter focuses on the biology of the sporozoite stage, with particular
emphasis on its abilities for rapid locomotion (“gliding motility”) and active
host-cell invasion. As parasites, apicomplexans are subject to high evolutionary
pressure to co-evolve with their hosts’ defense mechanisms, leading to a highly
specialized biochemical apparatus. We will first describe the unique gliding
motility machinery of apicomplexan parasites and then discuss how sporozoites
utilize this machinery to achieve their remarkable journey from the mosquito
to the liver. Throughout, we will highlight current knowledge of the molecular
components (especially the actin—-myosin motor system) and recent insights

into the regulation and biophysics of sporozoite motility.

1.3 Gliding motility of apicomplexan parasites

Gliding motility in general describes a substrate-based (i.e. different from
swimming) locomotion of microorganisms that does not require major shape
changes or internal remodeling (i.e. different from crawling). Furthermore, the
force generation is distributed over the surface, not concentrated at a few large
organelles as in the type IV pili-based motility of some bacteria, which is called
twitching. Tab. 1.1 gives an overview of example organisms for the different
types.

Sporozoites, like other invasive stages of Apicomplexa (e.g. Tozoplasma

gondii tachyzoites), have evolved a sophisticated and well-conserved gliding
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1.3 Gliding motility of apicomplexan parasites

Mode of motility

Description and examples

Gliding

Apicomplexa

Bacteria

Diatoms

Smooth, continuous, substrate-dependent locomotion
without substantial cell-shape changes. Force genera-
tion is distributed across the cell surface, typically in-
volving surface adhesins linked to an internal motor
(actin—myosin or bacterial gliding machinery).
Plasmodium sporozoites: 1-3 pms™! [61],

Toxoplasma gondii tachyzoites: 1.5 pms~! [62],
Mycoplasma mobile: up to 4.5 ums™! [63],
Flavobacterium johnsoniae: gliding with 1-3pum s~ [64]
Myzococcus zanthus: gliding with ~2 pm min~! [65]
Nitzschia ovalis: circular gliding, ~1-2 pm min~! [66]
Craspedostauros australis: straight and circular gliding,
~1-3pmmin~! [67]

Crawling

Locomotion involving substantial shape changes and
internal cytoskeletal remodeling (e.g., amoeboid move-
ment). Typically driven by actin polymerization and
depolymerization cycles.

Fish epidermal keratocytes: 0.2-0.5pum s~ [68,69]
Dictyostelium discoideum (amoeba): 7pmmin~! [70]
Human neutrophils: approximately 20 pm min=* [71].

Swimming

Propulsion through a fluid environment without sub-
strate interaction, typically driven by flagella or cilia.
Escherichia coli (flagellated bacteria): about 10—
20pm s~ [72],

Chlamydomonas reinhardtii (algae): 20-40 pms™! [73],
Trypanosoma brucei (protozoan parasite): around 5—
10 pm s~ [74].

Twitching

Surface-associated bacterial locomotion driven by exten-
sion, attachment, and retraction of type IV pili, causing
intermittent, jerky movements.

Pseudomonas aeruginosa: approximately 1jpmmin~
[75],

Neisseria gonorrhoeae: around 1-2pums~—! [76].

1

Table 1.1: Overview of microorganism locomotion modes with representative
organisms, measured speeds, and references.

machinery, called the glideosome. Gliding allows the parasite to traverse

biological barriers (such as the dermis or blood vessel walls), migrate through

tissues, and actively invade host cells without destroying them in the process.

Maintaining a constant shape allows sporozoites to migrate much faster (1—

3pms~t) compared to the immune cells they need to outrun, which crawl at

about 0.1-0.3 pm s,
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1.3.1 The actomyosin motor and glideosome architecture

The engine powering apicomplexan motility is an actin—myosin motor complex
localized at the interface of the parasite plasma membrane (PM) and the inner
membrane complex (IMC). This machinery, often called the glideosome, is
highly conserved in apicomplexans and is responsible for gliding locomotion as
well as supporting active host cell invasion [48,77-79]. Figure 1.1b schematically
illustrates the core components of the glideosome in a sporozoite [80,81]. The
central force-producing element is class XIV myosin, specifically Myosin A
(MyoA), a small single-headed motor (92 kDa) that is tethered into the IMC
by a group of anchoring proteins [82,83]. These anchoring proteins form a
complex that immobilizes MyoA with respect to the IMC, and also maintains
a controlled spacing to the outer plasma membrane [48,81].

While one end of the motor complex is anchored to the IMC, the other
end must interact with the filamentous actin (F-actin) that connects to the
parasite’s external adhesins. Apicomplexan parasites express a divergent form
of actin (Actin I, or Actl) that polymerizes into unusually short, dynamic
filaments [84]. In the classic model, first proposed two decades ago [85], the
parasite’s transmembrane adhesins (such as TRAP in sporozoites [86, 87],
MIC2 in tachyzoites [88], etc.) form a bridge between the substrate and
actin filaments inside the parasite: their cytoplasmic tails bind to actin either
directly or indirectly via connector proteins (e.g. aldolase or others), and their
ectodomains engage ligands in the environment.

MyoA, anchored to the IMC, then walks along the short actin filaments,
carrying the attached adhesins rearwards in the frame of the parasites [85,89].
As MyoA motors repeatedly powerstroke, they drive a continuous retrograde
flow of actin filaments and adhesins from the anterior (front) end of the cell,
where adhesins are released from micronemes through the apical polar rings
(APR), toward the posterior end [90]. Because the adhesins are temporarily
adhesive to the substrate, their rearward movement imparts forward thrust
to the parasite, much like someone pulling themselves along a rope. Upon
reaching the parasite’s posterior, the adhesin molecules are cleaved or released,
completing the cycle. This model of gliding motility is often likened to a tank
tread: the parasite’s surface proteins engage the substrate at the front and
disengage at the back, with actin filaments acting as the conveyor belt and
myosin as the (stationary) motor.

This general picture holds for many apicomplexan motile life cycle stages,

while deviations in the adapter proteins [48] or different myosin motors [91]
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Figure 1.2: a: Volume rendering of
an electron tomogram of a sporozoite,
displaying reconstructed apical ring
(pink) and microtubules (green), with
the single microtubule clearly dis-
tinct (yellow arrows) (from Fig. 4F
in [104]). Scale bar is 100 nm b: Con-
focal expansion microscopy image of
a Plasmodium ookinete, showing the
dense corset of MTs (from Fig. 4A

in [106]). Scale bar is 5 pm, note this
is enlarged due to expansion. c: Tox-
oplasma tachyzoite in confocal expan-
sion microscopy (from Fig. TA). Scale
bar is 5 um, again sample enlarged
due to expansion.

are mostly specific adaptations that leave the general working mechanism
unchanged. As throughout this thesis we mostly rely on abstract representations
of this general glideosome, we will not dive into the extensive knowledge of

apicomplexans’—and even species’—detailed molecular glideosome architecture.

One exception we make is to briefly explore the mechanical skeletons of
Plasmodium and Toxoplasma. As they produce forces distributed over their
whole surface, gliders need rigid elements to maintain a prescribed shape. In
the absence of branched actin networks that usually support the membranes
of eukaryotic cells [92], they utilize a combination of two elements to achieve
mechanical rigidity. The first are subpellicular microtubules (SPMTs), which
lie directly underneath the IMC and run parallel to the parasite’s body axis
[93]. These microtubules grow from and are organized by the apical ring
complex (APR, pink in Fig. 1.2a) [94,95], ranging back over the whole shape
in Plasmodium ookinetes and Tozoplasma tachyzoites [96-98], while sporozoite
MTs only cover the first half to two-thirds of the cell, ending at the nucleus, but
are essential to the formation and function of the cell [99-103]. Importantly,
the MTs of Toxoplasma tachyzoites and Plasmodium ookinetes are distributed
around the full circumference of the cell evenly, but form helices rotating
around the cell as followed from apical to polar end. In the case of sporozoites,
the microtubules are unevenly distributed, forming a 15 + 1 distribution
around the circumference in P. berghei sporozoites, but following the axis of
the cell without twisting around (see Fig. 1.2 for some examples from the
literature) [102,104-107].
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Figure 1.3: Trajectories of malaria parasites on a 2D glass substrate (a) and in
a 3D hydrogel (b). Scale bars 20 pm. From publication 1.

1.3.2 Experimental observations of gliding motility

Analyzing the motility of apicomplexans under different conditions has been
employed as a way to assess their reaction to environmental conditions [108]
and later genetic mutations [61] for more than half a century. It offers im-
portant insights into whether the cell is functioning correctly, because low-
ered motility often correlates with reduced infectivity [109]. Mostly, these
experiments use 2D assays, where the parasites move on glass slides or gel
substrates [61,62,110-112]. To more closely approximate the physiological
environments, 3D environments have been introduced for Tozoplasma tachy-
zoites [113,114], Plasmodium ookinetes [115], and sporozoites [116]. Given their
curved shapes, these parasites tend to circle on 2D substrates, and move along

helical trajectories in 3D substrates, as illustrated for sporozoites in Fig. 1.3.

Central to this thesis is the observation that the motion of these apicom-
plexan parasites comes with a very specific set of chiralities. While Tozoplasma
tachyzoites and Plasmodium ookinetes do not circle as regularly as the much
more slender sporozoites, they still possess a preferred orientation (i.e. clockwise
[CW] vs. counterclockwise [CCW]) when circling on 2D. In 3D, the helices of
all three of these examples show a 3D chirality, i.e. the helical trajectories are
preferably left- or right-handed, see Tab. 1.2. Investigating and understanding
this chirality and its origin in the surface flow machinery, particularly for

sporozoites, is one main focus of this thesis.
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Cell Toxoplasma Plasmodium Plasmodium
tachyzoite ookinete sporozoite

2D chirality  counterclockwise counterclockwise counterclockwise

3D chirality  left-handed left-handed right-handed
Aspect ratio 3.3 5.7 12.5
Reference [113,117] [115,118] [61,119]

Table 1.2: Chirality behavior and aspect ratio of different apicomplexan gliders.

Detailed observations of the surface flow

While the observations above are concerned with the motility of the cell as a
whole, it is much harder to experimentally access how this motility is actually
generated by the glideosome. As the machinery is small, it cannot be directly
imaged as for example flagella. One possible approach is to put tracer beads on
the surface, which can be bound by the surface adhesins and are subsequently
transported with the flow, as has been done for sporozoites [120, 121] and
tachyzoites [111]. This allowed quantification of the forces exerted on such a
bead by optical tweezers measurements, resulting in 100 to nearly 200 pN for
sporozoites [121].

An alternative approach is to label the participating molecules, e.g. the
adhesins. This is difficult because the majority of these molecules are stored
inside the cell, drowning out the signal from those actively engaged in motility
generation at the surface machinery. Advanced imaging techniques are necessary
to overcome these challenges, and it was only recently that single-molecule
observations of sparsely tagged actin allowed some direct insight into the surface

flow of Toxoplasma [117], see Section 1.4.3.

Traction force microscopy

A further inroad into understanding gliding motility from a more mechanis-
tic perspective is to directly measure the produced forces. In the microbial
realm, this is mostly accomplished by traction force microscopy [122-124],
even though more recently the introduction of molecular force sensors offers
an alternative [125,126]. The classical traction force assay observes cells on
an elastic gel substrate, which incorporates fluorescent tracer particles. As
the cell attaches to the substrate and pulls it by establishing focal adhesions,
the substrate gets deformed, which can be quantified by observing the tracer

particles. Subsequently, a deformation field can be obtained, and afterwards the
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Figure 1.4: Observations of trac-
tion force microscopy of sporo-
zoites circling on soft elastic gels
(from Fig. 4 in [61]). Left: Sporo-
zoite on top of tracer particles in
two different fluorescent channels.
Right: Reconstructed tractions
obtained from the displacements
of the tracer particles.

inverse problem of predicting the stress (or traction) applied on the substrate
producing the observed deformation can be solved [124]. For sporozoites, or also
apicomplexan gliders in general, this technique has been successfully applied in
the past, though the low magnitude of the applied forces combined with the fast
movement of the cells make it challenging to do so. In [61], the forces generated
by a sporozoite gliding in 2D were resolved over time (see Fig. 1.4). This
revealed that the produced tractions corresponded to the buildup of adhesion
sites, a stretching of the sporozoite, and an eventual decline as the adhesion at

the sporozoite’s posterior end is released.

More recently, Ref. [127] studied in more detail how the behavior of sporo-
zoites and the observed forces depend, for example, on the elastic properties
of the gel used as substrate. Similar assays have also been performed for
Tozoplasma tachyzoites [105], even though their more irregular shape and
discontinuous gliding on 2D substrates makes for a more complicated multistep

migration process.

Alternatively, traction force microscopy can also be performed in 3D, by a
multitude of different approaches, including measuring the deformation of oil
droplets or elastic beads as sensors [128-130], tracing the movement of beads
or other fluorescently labeled tracers to obtain deformation fields as for the 2D
method [131,132], or inferring forces from geometric features, for example the
angles between cell membranes in organoids [133]. Using fluorescent collagen
fibers and tracer beads, traction force microscopy was performed on Tozoplasma
tachyzoites moving through a 3D environment [114]. There, strong inward
forces toward the parasite were observed, similar to what was seen in [61] in
2D (cf. Fig. 1.4). Interestingly, the tachyzoites seem to move by turnover of
discrete circular attachment zones, formed at the front and stationary in space
as the parasite squeezes through. The forces measured in [114] suggest that
the constriction is created by the parasite itself, rather than being the effect of

an existing pore in the gel as previously suggested [134].
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Motility and invasion

There is plentiful evidence that the glideosome is not simply a motility ma-
chinery, but that it doubles up as a mechanical assistance system for host cell
invasion. The final target of the sporozoite’s journey is to invade specific liver
cells, hepatocytes, where the life cycle continues. Tozroplasma tachyzoites, on
the other hand, are known to invade a large number of different cells, including
fibroblasts and epithelial cells [135,136]. These invasions typically have a large
biochemical component, including the release of an invasion-specific cocktail of
molecules stored in specialized organelles, rhoptries, but have been shown to be
dependent on a functioning glideosome for both Tozoplasma tachyzoites [137]

and Plasmodium sporozoites [79, 138].

1.4 Existing physical models of gliding motility

The fascinating apparatus of gliding motility in apicomplexan parasites has
already seen some attention from biophysics. Here, the most relevant previous

works specific to apicomplexan gliding will be introduced.

1.4.1 (Geometric resolution of sporozoite movement in

obstacle arrays

In Battista et al. [139], the motion of sporozoites on a 2D assay extended by
pillars rising from the glass slide was investigated, finding that the sporozoites
prefer to circle around pillars with a radius corresponding to the roughly 5 pm
radius of curvature usually observed for P. berghei sporozoites. In a more
detailed analysis, a model for sporozoite motility was introduced treating them
as self-propelled rods following the shape of a circular arc, with varying radius
allowing them to elastically deform. Combined with rules for the resolution
of collisions with the pillar obstacles, including deforming or flipping to their
other side (see Fig. 1.5), this model was able to reproduce observed motion

patterns of sporozoites in obstacle arrays with varying geometry.

1.4.2 Self-sorting of sporozoites during collective motion

in vortices

Focusing on the collective motion of sporozoites from the salivary gland, in

Patra et al. [140], the authors observed the behavior of squished infected salivary
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Figure 1.5: Modeling sporo-

zoites and their interactions
Q"+, Wwith pillar arrays in 2D us-

solved v ing active rods with the shape

i of circular arcs (from Fig. 5

¢+ in [139)).

solved

glands, finding that this procedure leads to the sporozoites in the gland starting
to form active vortices (Fig. 1.6a). Tracking individual sporozoites in these
vortices, a puzzling relation between velocity and radial distance was discovered,
neither agreeing with a constant propulsion speed of the sporozoites, nor with
the proportionality expected from a solid rotating disc. To understand this
behavior, a more detailed sporozoite model was introduced, where the sporozoite
consists of around 15 elastically coupled beads, each of which contributes a
constant propulsion force along the sporozoite axis (Fig. 1.6b+c). Based on this
model, collisions between sporozoites could be simulated, and hence their full
collective dynamics resolved. With these simulations, the authors eventually
uncovered that the biological variance in sporozoite properties, leading to
a distribution of speeds and curvatures, coupled with a self-sorting of the
different sporozoites within the vortices could explain the observed velocity-
radius relation.

This study used advanced image analysis and modeling, but focused on 2D
and collective motion, meaning that the model of the individual sporozoite
was relatively simple, and the force generated at every bead is a prescribed
constant. In this thesis, we will explore more detailed models representing the

biological force generation mechanism and its physical implications.

1.4.3 Actin self-organization in the glideosome of Toxo-

plasma

The most influential study to this thesis was put forward by Christina Hueschen
et al. in [117]. This study is concerned with the dynamics of actin in the
glideosome of Toxoplasma tachyzoites, combining advanced modeling with
challenging single-molecule experiments. Sparsely tagging actin, and stabilizing
it with the drug jasplakinolide, produced a small number of long, fluorescent
actin filaments that were moved around by the motors of the glideosome
machinery and could be observed in TIRF microscopy (total internal reflection

fluorescence, essentially using an exponentially decaying evanescent wave to
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Figure 1.6: a: Collective motion of sporozoites in a gently squeezed salivary
gland, forming vortices (from Fig. 1 in [140]). b4c: Modeling sporozoites as
chains of elastically coupled beads (b), with a focus on their collective migration
in constrained spaces, where they either align or pass over each other in the
event of a collision (¢) (from Fig. 3 in [140]).

only excite fluorophores close to the glass slide, Fig. 1.7a). This presents one of
the most direct observations of the surface flow (though at the level of actin, not
adhesins), and strongly confirms the idea that the direction and flow pattern of
the surface flow is not locked in, but can dynamically change and self-organize,
as the actin filaments observed in [117] moved around widely over the whole
cell. Importantly, the focus of this study was the actin motility of its own, and
the cells were not coupled to a substrate and productively gliding while these
observations were made. Later in this thesis we will introduce the importance
of the coupling to the environment, not only for the resulting motion of the

cell, but also for the organization of the surface flow.

Here, the authors focused on the self-organization of the free, i.e. uncoupled
actin in the glideosome. To model the collective dynamics of many small actin
filaments, they turn to a continuum description, more specifically a Toner-
Tu type flocking model [141]. These models are originally developed for the
collective motion of swarming animals, but adapted by Hueschen et al. for
flocks on curved geometries [142] or the dynamics of actin on the irregular

geometry of the Toxoplasma tachyzoite.
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Figure 1.7: Modeling the surface dynamics of the actomyosin machinery in the
glideosome of Tozoplasma gondii (from Fig. 3 in [117]). a: Actin filaments
stabilized with jasplakinolide can be seen moving around by the glideosome
motors, observed in TIRF microscopy. b: Simulation of dynamic actin motion
by self-organized flocking on Tozoplasma shapes experimentally measured by
soft X-ray tomograms.

Minimal Toner—Tu model.

The coarse-graining of the many-agent dynamics into continuum fields on space
and time yields a filament number density p(r,t) and a mean velocity v(r, ).
In the present context these fields are effectively two-dimensional (confined
to the local tangent plane of the surface), and their evolution is governed by
coupled PDEs, explored in detail in [142].

Mass conservation. In the absence of sources/sinks, density obeys the
continuity equation
D +V - (pv) =0, (1.3)

where possible decay proportional to the density or constant source terms can
be added on the right side of the equation to reflect filament turnover.
Velocity dynamics (minimal Toner—Tu). The coarse-grained velocity

follows
ov = {04<p - Pc) - p |V|2]V + DV?v — oVp — )‘(V'V)V ) (1‘4>

where

e « and  are Landau-type coefficients controlling spontaneous polar order.
Below a critical density p. the stable state is disordered (v = 0); for

p > p. a finite-speed state emerges with a characteristic magnitude

v~ falp = pc)/B.
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o D V?v promotes local alignment /smoothing of the velocity field.

e —0Vp is a pressure-like term coupling density gradients to the flow,
helping to keep p within a physical range and enabling propagating

modes.

o —A(v-V)v is a self-advection nonlinearity characteristic of polar active
matter and responsible for convective transport of orientation and speed.
Usual advection as observed in fluid flow corresponds to A = 1, whereas
for example spatially stationary components that encode the velocity

field can reduce it.

Together, Eq. 1.3-1.4 constitute the minimal hydrodynamic description of
a polar active flock. They capture the order—disorder transition at p. and
the ensuing spatiotemporal patterns (e.g. density waves and flocking streams)
arising from the interplay of alignment (D), pressure-like coupling (o), and
advection (\).

The main complication for the application of this theory to the case of
Toxoplasma is the curved geometry. Just solving these equations while correctly
constraining them to the irregular shape is difficult, and only feasible numeri-
cally, using a combination of 3D and 2D descriptions paired with appropriate
projections onto the tangent space [142]. For this study, the authors used appro-
priate functions in COMSOL Multiphysics, a powerful finite element software.
Furthermore, the authors estimated that the curvature might exert a torque on
actin filaments. If the two principal curvatures of the surface differ, the actin
prefers to be aligned with the direction of lower curvature, to minimize its own
curvature energy. This yields an additional, geometry-dependent reorientation
term in Eq. 1.4. The resulting actin surface flow can organize in different modes,
which can be associated to different observed gliding behavior, e.g. oscillatory
modes that might correspond to back-and-forth gliding (cf. Fig. 1.7b).









Chapter 2

Experimental results and data

analysis

This chapter is based on parts of publication 3,

Lettermann, Singer et al., Nature Physics, in press.

Starting point of the understanding of the force generation underlying
malaria parasites’ gliding motility, and in particular their chirality, is a robust,
quantitative analysis of their motion. While the movement on 2D assays, i.e.
on a glass slide, is well established, 3D assays are newer, and only little data
existed. Therefore, in cooperation with the group of Freddy Frischknecht at
the Center for Integrative Infectious Disease Research at Heidelberg University,
and in particular Mirko Singer, who conducted most experiments discussed
in this thesis, we acquired fast 3D imaging of sporozoites moving through
3D hydrogels. I then implemented an automated analysis workflow, enabling
the analysis of thousands of sporozoite trajectories imaged and extracting the
sporozoite migration patterns. In this chapter, I will present the experimental

setup, explain the image analysis pipeline, and discuss the results.

2.1 Experimental setup

Sporozoites move by gliding motility (see Chapter 1), which allows them to
maintain a constant shape and therefore move more rapidly than crawling
immune cells they want to outrun, at speeds reaching 1-3 pms~!. Coupled with
their small diameter of about 1pm, time-resolved imaging of their motility is
challenging, as it requires sufficient 3D resolution, but simultaneously relatively
high frame rates. This can be achieved by spinning-disk confocal microscopy,
which offers a compromise of speed and resolution [143]. By combining many
confocal light paths, created by pinholes and microlenses arranged on two
rotating disks, samples can be scanned much quicker than with traditional
single-focus confocal microscopy. This comes at the cost of reduced resolution,

particularly in z direction, and requires deconvolution of the images.

25
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The sporozoites should be imaged in a 3D environment, because this is closer
to the physiological tissue they migrate through than the 2D assays. While it is
possible to directly image sporozoites in living host tissue [53], the complexity of
the real physiological environment makes it difficult to draw general conclusions
about gliding motility. Therefore, we used a recently established polyacrylamide
hydrogel assay [116]. The experimental setup is illustrated in Fig. 2.1: The
salivary gland is dissected from an infected mosquito, and afterwards placed on
top of the hydrogel, which is incubated on a glass slide and imaged from below
by spinning-disk microscopy. The sporozoites can then egress the salivary gland
and invade the hydrogel, such that imaging the gel underneath the salivary
gland allows observation of large numbers of migrating sporozoites. We mainly
focus on a rodent-infecting species, P. berghei, but also investigate the medically
most relevant human-infecting species, P. falciparum. We use parasite lines
that express a fluorescent protein in their cytoplasm, allowing visualization via
spinning-disk confocal microscopy. Details of the experimental procedures are

given in Appendix A.2.

Figure 2.1: Schematics of the experi-
mental setup. A soft polyacrylamide
hydrogel is prepared on a glass slide.
A salivary gland from an infected
mosquito is placed on top and covered
with a second glass slide (not shown).
Sporozoites (red) invade the hydrogel
beneath the salivary gland. The fluo-
rescent parasites can then be observed
migrating in 3D with a spinning-disk
confocal microscope (tracks in blue).

Salivary gland

Hydrogel

In Fig. 2.2a, we show a representative experiment in which the sporozoites’
trajectories are projected over time and color-coded by their z-position. As can
be readily seen, in the relatively homogeneous 3D environment, the motion of the
sporozoites is very regular. Three main classes of motion can be distinguished:
(1) helical motion within the 3D gel, (2) circular motion at the bottom gel-glass
interface, and (3) transitions where sporozoites come down from the gel but

then start circling once obstructed by the glass substrate (Fig. 2.2b).
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Figure 2.2: a: Sporozoite migration through the hydrogel reveals corkscrew
patterns in the gel and circular movement at the glass below the gel. Experimen-
tally recorded images projected over time and color-coded by z-position. The
boxes mark examples highlighted in b. b: Representative events from a for the
following classes: helical motion (1), circular motion at bottom (2), transition
from helical to circular motion (3). For the example from the transition class,
a side view is shown in addition to the z-projection.

2.2 Image analysis pipeline

To systematically analyze sporozoite motility in 3D, we developed a dedicated
image analysis pipeline (Fig. 2.3). First, the fluorescence images are background-
subtracted, then deconvolved using a special blind deconvolution approach.
This is necessary because the salivary gland, located just above the imaged
volume, emits out-of-focus light and complicates standard deconvolution. After
deconvolution, the images are thresholded, and we apply tracking with a

collision resolution step to handle overlapping sporozoites in highly dense areas.

2.2.1 Automatic sporozoite tracking

The tracking of sporozoites in 3D spinning-disk microscopy data of our assay

faces a number of challenges:

1. The large z-extension of the point spread function (PSF) of the spinning-
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Raw image
Background
subtracted
Deconvolved

i
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Figure 2.3: The image processing pipeline including background subtraction,
automatic blind deconvolution, thresholding and labeling lead to the tracking
of hundreds of sporozoites within a single experiment. Scale bars: 10 pm

disk microscope has to be compensated by deconvolution. However, the
salivary gland on top of the gels gives off a strong signal into the imaging
domain, even though it is just not inside the imaged volume itself. This

is problematic for standard deconvolution techniques.

2. Many tracking algorithms (e.g. [144]) are primarily used to track roughly
circular /spherical objects such as beads, whereas the sporozoites have
a very distinct, high aspect ratio and curved shape. This cannot only
impede such tracking algorithms, but also make the center of mass (which
is often outside of the shape itself) an ill-posed point to use as a tracer

for trajectories.

3. Especially underneath the salivary gland and at the bottom glass slide,
the sporozoites can reach higher densities leading to frequent collisions
or overlaps. This complicates distinguishing them for the purpose of

tracking individual sporozoites.

To address these challenges, we custom-built an image analysis pipeline in
Python, consisting of a deconvolution and tracking part. The code is available in

the git repository github.com/LeonLettermann/hei-sporo-code-tracking.

Automatic blind deconvolution with out-of-volume reconstruction

We require deconvolution primarily to reduce the extent of recovered sporozoite
labels, particularly in the z direction, to facilitate precise localization and
discrimination of close-by sporozoites.

Before deconvolution, we normalize intensities across the stack, and subtract
a smoothed background estimate. The background arises primarily from
signal bleed-through from the salivary gland, which is not imaged directly but
contributes a diffuse signal due to the limited axial confinement of the spinning
disk PSF. To address this, we estimate a background image by averaging

low-intensity regions across time and space, and then apply spatial smoothing.
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Following background subtraction, intensity outliers are suppressed using a
combination of Gaussian and median filtering.

Since a directly measured PSF cannot be easily applied after the background
subtraction, we implemented a blind PSF estimation procedure. The PSF
is initialized based on the observed data by selecting bright subvolumes and
statistically aggregating their profiles. The size of the PSF is limited to a
fixed kernel (typically 35x25x25 pixels) and symmetrized to enforce physical
plausibility.

We apply an iterative blind deconvolution algorithm that simultaneously
refines both the reconstructed image estimate and the PSF using a custom
optimization loop over a user-specified number of epochs (typically 500). The
loss function combines two main criteria: the reconstructed image convolved
with the current PSF estimate should resemble the measured image, and
the intensity within the reconstructed image should be concentrated in small
volumes. With additional normalization constraints, this loss function works

well to obtain sharpened sporozoite shapes for more precise tracking.

3D tracking of sporozoites with iterative collision resolution

The deconvolved stack is first rescaled to 8-bit and binarized in two steps: (i)
an adaptive Gaussian threshold is applied independently to every z-slice to
capture local contrast; and (ii) the result is intersected with a global intensity
mask to suppress dim background voxels. Small gaps are filled by morphological
closing, and an optional dilation can be added when a more generous outline is
desired. Connected-component labeling is then performed in three dimensions
(i.e., independently for each frame). Components outside user-defined size
limits are discarded, yielding an initial label field L(¢, z, x,y) in which each
voxel belongs either to exactly one sporozoite or to the background.

Tracking is now the problem of pairing labels in subsequent frames. We
iterate six times over the movie, alternating forward and backward temporal
directions. In each step the label map of frame ¢ is compared with that of

frame t—1:

1. One-to-one assignments. If a child label in ¢ overlaps a single parent

in t—1, the child is reassigned to that parent.

2. Collision or split events. If a child overlaps multiple parents, collision

resolution is triggered.
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When two tracked objects touch or overlap, they may momentarily merge

into a single connected component. To separate them, we

1. identify the two best parent candidates by voxel overlap with the merged

region;
2. compute a smooth decision image
D = Ga * (Ml — Mg),

where M, , are binary masks of the two parents and G, is a separable
Gaussian (0~ 2 px in z,x and y); pixels of the child with D > 0 are

reassigned to parent 1, the remainder to parent 2;

3. suppress fragments smaller than a minimum size; otherwise they become

new tracks with fresh labels.

Because the split is based on a blurred difference image, the resulting
decision surface follows the curved interface between two sporozoites and
preserves thin tips that would be lost with straight-line Voronoi splits. After
the forward/backward relabelling, every track is examined in four dimensions.
If a label consists of multiple disconnected sub-components, the largest is kept
and each remaining component is moved to a new label, guaranteeing that
every track is a single connected object in space—time. Tracks that disappear
temporarily (e.g. due to transient dimming or occlusion) are reconnected if easily
possible: for every gap of one frame, we pair end points and new beginnings
whose 3D centers of mass are closer than a maximum reconnect distance.

Because of the sporozoites’ characteristic crescent shape, a simple center
of mass can lie outside of the shape itself, and hence does not provide a good
tracer for generating trajectories. Instead, we trace the middle point of the
middle cross-section, which we refer to as biocenter. This point can be found

algorithmically by the following steps:
1. Perform a principal component analysis on the voxelated shape.

2. Take all points close to the center of mass in the leading principal compo-

nent direction. This generates a section from the center of the sporozoite.

3. Take the center of mass of this section, which is short enough not to be

significantly curved.
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Local pitch

Figure 2.4: Tracks of migrating sporozoites in a single experiment. Color map
displays the local pitch, computed from curvature and torsion obtained from
fitting the trajectories with a Fourier series. Positive pitches correspond to
right-handed, negative to left-handed chirality. Scale bar: 20 pm

The resulting trajectories are shown in Fig. 2.4, color-coded by local pitch
(obtained from the curvature and torsion of the trajectories, fitted via a Fourier
expansion similar to the approach of Ref. [113]). The pitch of a helix is the
distance advanced along the helical axis per full turn. We assign positive pitch
to right-handed helices and negative pitch to left-handed helices. At the bottom
interface, where motion is circular, the pitch is effectively zero. We find that
the vast majority of 3D sporozoite trajectories are well-defined, right-handed

helices with a positive pitch, manifesting strong chirality.

2.2.2 Helical fit for trajectory segments

In order to quantify more thoroughly the helical geometry of the trajectories,

we want to fit overlapping trajectory snippets with an analytical helix model.
This model is defined as

r(t) =ry + (st) a + r{cos((l —21) t) R, — sin((l —21) t) R2:|,
axial advance

with parameters screwness s yielding pitch 27s, radius r, center ry, unit axis
vector a, orthonormal radial basis vectors R; 5 and a binary flag ¢« € {0, 1}
that allows to account for both right- and left-handed chirality. An additional
3-parameter Euler rotation R(«, (,7) lets the basis (a,R;, Rs) deviate from
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the principal axes initially estimated from the data.

For every time point of every track we form a window of an adjustable
number of frames centered on that time point. A fast principal-component
analysis (PCA) of the window provides A\; < Ay < A3 and eigenvectors e o 3.

Three cases are distinguished:
1. Helical segment: \; > 0.05 um? and A3 > 10pm? = a = e;.
2. Flat circle: \; < 0.05pm? = a = e; (normal to the disk).

3. Undetermined: otherwise = a is simply the end-to-end vector of the

snippet.

The center ry is the mean position, the initial radius is twice the minimal
radial distance, and the initial screwness is a small constant (s ~ 2pm for
helices, s = 0 for circles). Let 7; be the phase assigned to frame i. Given a

segment from a trajectory with coordinates x;, the loss function

£ = Y|rtm) — x| + 20X ReLU(-A7),  ReLU(z) = max(0, ),
i i

penalizes the squared distance between predicted and observed coordinates
and enforces strictly increasing phases (A1; = 7,41 — 7;). Parameters (5, r,
rg, o, 3,7, {Tl}> are refined by 100-500 steps of gradient descent, using JAX
for just-in-time compilation and automatic differentiation. To remove the
handedness ambiguity the optimization is executed twice, with ¢ = 0 and ¢ = 1;
the solution of lower loss is retained. This segment fit is vectorized twice using
JAX, so it can be executed efficiently for each of the overlapping segments of
a given trajectory and all trajectories in a dataset, performing ~100 000 fits in
total.

2.2.3 'Trajectory geometry for different species and tem-

peratures

Applying the pipeline introduced above to the P. berghei trajectories yields for
each sporozoite median velocities, pitch, and radius, the radius being that of
the local cylindrical hull of the helices (Fig. 2.5a—c). Across 21 experiments and
in accordance with a recent report [119], we find an overwhelmingly positive
pitch distribution centered around 12 pm (Fig. 2.5a), indicating that virtually
all sporozoites follow right-handed trajectories. A small fraction with negative

pitch arises from irregular or collision-affected tracks. The typical radius is
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Figure 2.5: Automated image analysis quantifies geometrical features of sporo-
zoite trajectories in 3D hydrogels. a: To obtain averaged pitch and radius values,
helical segments are fitted to every 10 frame segment taken from the trajectories
away from the top/bottom borders within the hydrogel, and the median of
the segments computed for each sporozoite. The distribution of the resulting
pitches reveals a preferred pitch of the helical trajectories of around 12 pm
(violet line, median). Dashed lines are theoretical predictions from Eq. 2.2. b:
Radii of the fitted helices, with a median of 2.4 pm. c: Velocity values observed
along trajectories, with median velocity of 0.42pums™!. d: Measured pitches
compared between experiments with P. berghei at room temperature (RT) (Pb
at RT, same data as ¢) and with P. falciparum at 31°C (Pf at 31°C) and P.
berghei at 31°C and 21°C. Significances are reported as n.s. for p>0.05, * for
p<0.05 and sxxx for p<0.0001. e,f: Measured radii (e) and velocities (f) from
the experiments in d. Statistical comparisons of trajectory properties were
performed using two-sided independent-sample t-tests without assuming equal
variances (Welch’s t-test). Box plots display the median (central line), the
interquartile range (box from the first to third quartile), and whiskers extending
to the most extreme data points within 1.5 times the interquartile range from
the box. The number of individual sporozoites in Fig. 2.5 and following were
1222, Pb at RT; 304, Pf at 31°C; 319, Pb at 31°C; 2190, Pb at 21 °C.

2.4yum (Fig. 2.5b), and the median velocity is 0.42pums™! (Fig. 2.5¢). This
value is somewhat smaller than in medium or collagen gels, possibly due to
the small pore size of the polyacrylamide gels. Its stiffness was measured via
indentation, obtaining an approximate Young’s modulus of about 150 Pa (in
four independent gels). The gel stiffness was measured by Zeynab Tavasolyzadeh
from the group of Prof. Christine Selhuber-Unkel in the Biomechanics Core
Facility of the Institute for Molecular Systems Engineering and Advanced
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Materials (IMSEAM) at Heidelberg University.

We next compared P. berghei with the human pathogen P. falciparum.
As P. falciparum sporozoites are more sensitive to environmental conditions,
requiring 31 °C for motility, we also performed P. berghei runs at 31°C and
21°C to allow direct comparisons (Fig. 2.5d-f). We found that P. falciparum
also glides in a right-handed fashion (Fig. 2.5d), but with significantly smaller
pitch, radius, and velocity compared to P. berghei (Fig. 2.5e,f). Furthermore,
changing temperature for P. berghei had little influence on pitch or radius, but
strongly affected velocity (Fig. 2.5f), suggesting that macroscopic geometry
remains robust while the microscopic rates of the force-generating processes
(in particular for the myosin motors) scale with temperature, as seen also
in 2D [110]. The experiments for P. falciparum were performed by Smilla
Steinbriick and Sachie Kanatani in the group of Prof. Photini Sinnis at Johns

Hopkins University, Baltimore.

2.2.4 Pitch vs. radius relation suggests torsion more

flexible than curvature

Mathematically, the macroscopic pitch p and radius R of a helix can be related
to the microscopic parameters curvature s and torsion 7, if those are assumed

to be constant:

2
po T R- T 2

(K2 + 72’ (K2 +72)
Hence, changing torsion at a fixed curvature results in different pitches and
radii (Fig. 2.6a). Increasing torsion initially raises the pitch, then lowers
it again (Fig. 2.6b). A scatter plot of radius versus pitch (Fig. 2.6¢, for P.
berghei) suggests that the trajectories in hydrogels exhibit varying torsion with a

1 This value corresponds to

relatively constant curvature around x = 0.22 pm~—
a flat, untwisted radius of 4.5 pm, close to previously measured data [139,140],
but now with less variability (Fig. 2.7).

Interestingly, if torsion increases at fixed curvature, there is a point of
maximal pitch and a corresponding radius:

pmax = E) Rmax - Tmax — K . (22)
K

Indeed, for the fitted curvature this pitch and radius closely match observations
(dashed line in Fig. 2.5a,b). The P. falciparum data (Fig. 2.6d) are somewhat
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Figure 2.6: a: At fixed curvature, increasing torsion progressively reduces the
radius of the shape and its extended centerline, but the pitch is first increased
and later decreased again. b: For a given curvature x, the theoretically possible
pitch and radius values are shown. Each point on the lines corresponds to
a certain torsion. c: Scatterplot of pitch vs. radius for Pb at RT, with
dashed line illustrating allowed values if a fixed curvature is assumed, fitted to
k =0.22pnm~!. d: Same as c for the P. falciparum measurement, resulting fit

k =0.36 pm~!. e: Same as c for the P. berghei at 31 °C measurement, resulting

fit kx =0.27 pm~!.

more limited, but suggest a larger curvature (k = 0.36 pm™!) that agrees
with that species’ smaller pitch/radius, and is also larger than the curvature
measured for P. berghei at 31°C (Fig. 2.6e).

2.2.5 3D chirality determines 2D — 3D transitions

As shown in Fig. 2.2b, sporozoites reaching the substrate at the bottom of the gel
continue to circle at the interface. Strikingly, they do so in clockwise direction
(Fig. 2.8a), whereas in the classical 2D motility assay (glass with medium on
top), they circle counterclockwise (Fig. 2.8b) [108,110]. The clockwise circling
under gel is the consequence of the right-handed helix hitting the glass slide
at the bottom of the gel from above (Fig. 2.8¢c). The experimentally observed
counterclockwise circling of sporozoites on glass in medium therefore means
that they do not aim to invade the substrate, as commonly assumed, but rather
the medium above (Fig. 2.8d).
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Figure 2.7:
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To quantify these observations, we introduce a Clockwise score. Let x(t)
be a 2D (z,y) trajectory and x(t) = x(t) — (x), with (-) the time average.
Then the clockwise score of this trajectory is computed from the direction of

movement and direction from the average position,

X1 — Xk . (Xg+1 + Xi)

dy = LTk Xy = —— k)
' F e + %)

= = 2.3
o (23)

by taking a cross-product with padded zeroes in the third component, C' =
((dx x Xp),),. This quantification, displayed in Fig. 2.9a, finds that almost all
sporozoites follow the previous observation, i.e. sporozoite underneath the gel
circle the other way round compared to those on a glass slide in medium. Besides
those sporozoites circling, there also exists a significant fraction of sporozoites
that performs unclear (non-circular) motility (see arrows in Fig. 2.8a,b), in
agreement with early observations for sporozoites on flat substrates in medium,
which apart from circling also show back-and-forth motion (patch gliding) and
waving motion (where one end is attached and the other moves) [110]. The
velocities of those that do circle are comparable between both cases (Fig. 2.9b,c)

and also similar to the velocity observed in 3D (Fig. 2.5¢).

Having established that the 3D chirality of sporozoites determines their
motion patterns at 2D interfaces, we next asked if chirality also determined
how they switch from 2D interfaces to 3D environments. To this end, we
devised a novel sandwich invasion assay in which purified sporozoites are first

pipetted onto a hydrogel, then immediately covered with a second hydrogel, and
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Figure 2.8: a: Sequential frames from the bottom layer showing migrating
sporozoites at the glass slide underneath a gel. Colored overlay shows previous
frames. Note that almost all sporozoites move in a clockwise fashion. Scale
bar 10pum. b: Sporozoites gliding on a glass slide in medium. Note that
almost all sporozoites move in a counterclockwise fashion. Scale bar 10 pm.
c: Right-handed helices predict clockwise rotation for sporozoites reaching
the glass bottom. d: Counterclockwise motion on a glass slide with medium
would correspond to a right handed helix leading upwards (blue arrow) into
the medium.

subsequently imaged as they migrated into the gels (Fig. 2.10a, Appendix A.3 for
details). The side view of sporozoite tracks in Fig. 2.10b shows that sporozoites
can invade both up and down, probably depending on their initial orientation.
Defining the turning direction at the top vs. bottom planes (Fig. 2.11) indicates
that top-plane sporozoites predominantly turn counterclockwise (seen from
above), while bottom-plane sporozoites turn clockwise—all consistent with
right-handed helices that either ascend (CCW) or descend (CW) into the
gels. Note that the majority of sporozoites that do not enter any hydrogel
have unclear rotation, likely because most sporozoites moving CW or CCW
have entered the hydrogel. Together, these results establish that 3D chirality
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Figure 2.9: a: Number of sporozoites with observed direction (counterclockwise
[CCW, C < —0.33], clockwise [CW, C' > 0.33] or unclear [Unc|), compared for
under gel or in medium. b: Median velocities of sporozoites circling under gel.
c: Median velocities of sporozoites circling on glass in medium.
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determines the transitions between motions in 2D and 3D, both of which occur

during the initiation of a malaria infection.

Mid

Bottom gel

Figure 2.10: a: Experimental setup of the sandwich invasion assay: two gels are
prepared, purified sporozoites pipetted on top of the bottom gel. Afterwards,
the top gel is added, such that sporozoites are trapped in the small gap between
the gels. b: Trajectories of migrating sporozoites in a hydrogel sandwich
experiment projected in time and viewed from the side. Arrow indicates layer
between the gels, where sporozoites were initially added. Scale bar 20 pm.

2.3 Analysis of sporozoite shapes

Complementing our analysis of the trajectories, we also reconstructed the shapes
of individual sporozoites. Even in the deconvolved images, the segmentation is
often still blurred in z direction, because our deconvolution is limited by the
missing information at top and bottom of the imaged volume and the relatively
low sampling in z direction, limited by time resolution. Therefore, we tried to
directly infer the shapes of individual sporozoites from 3D frames by a direct
approach, utilizing the knowledge of the sporozoite shape to improve compared

to a standard deconvolution.

Figure 2.11: Number of sporo- Mid Bottom

o
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2.3.1 3D shape reconstruction

To extract the central axis of each sporozoite, we implemented a 3D "skinning"
algorithm that reduces the thickness of segmented objects to better define their
original shape, which at roughly 1 pum diameter is filling about one voxel.

The skinning procedure operates on deconvolved intensity data and binary
threshold masks for each tracked sporozoite. For each 3D frame, we identify
ridge-like structures by detecting voxels that are local maxima along each
spatial axis. Specifically, for each dimension (z, y, and z), we find voxels where
the intensity is greater than both adjacent neighbours in that direction, creating
binary ridge maps.

These binary ridge maps are then convolved with a 1D kernel [1, 2, 3, 2, 1]
along each respective axis, creating weighted ridge responses that emphasize
continuous ridge structures, still counting voxels next to a local maximum,
though with a lower weight. The algorithm sums the weighted responses from all
three spatial directions. Voxels with combined scores exceeding 6 are classified
as belonging to the sporozoite’s central structure, ensuring that only voxels
that form ridge-like structures in multiple directions are selected. The resulting
binary mask is then refined by intersection with a dilated version of the original
threshold mask to maintain spatial constraint within the segmented object,
followed by morphological closing with 2 iterations to ensure connectivity and
remove small artifacts.

This skinning approach successfully reduces the effective thickness of sporo-
zoites in z, y and especially z direction. The visual impression suggests that
the reconstructed geometries of the sporozoites and their trajectories conform
to each other (Fig. 2.12a).

2.3.2 Helical fitting of sporozoite shapes

In order to compare the geometries of sporozoite shapes to the extracted
parameters of their helical trajectories, we employ a similar fitting pipeline
as before. Instead of the trajectory, we want to fit a helical segment to the
collection of voxel coordinates found for the segmentation of a sporozoite in

the previous step. This is complicated by

1. the fact that the segmented voxels have no natural time order along the

helical segment, differing from the previously used trajectories.

2. the shape resembling only very short helical segments, often less than
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half a helical turn.

The combination of both makes the fit largely ill-conditioned, and prone to

finding local minima quite far from a visually good agreement between helical

segment and shape. To overcome this issue we employed a multiple shooting
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Figure 2.12: Shapes of individual sporozoites conform to the helical trajectories.
a: Example trajectory with the shapes reconstructed from the 3D spinning-
disk images inserted at 3 time points. b: Details of the 3D reconstruction of
individual sporozoite shapes from a in voxels, with voxel sizes 0.66 pm in x,y
and 1.0pm in z. The orthogonal planes show projections of the imaging data.
The dotted line shows a short helical segment fitted to the reconstructed shape
to obtain pitch and radius. c: Pitches extracted from the shapes in comparison
to the previously shown data from the trajectories, medians per sporozoite. d:
Same as c for radius. e: Correlation of pitch of trajectory and shape, Pearson
correlation of r=0.13 (p=3.8e-05). f: Correlation of radii of trajectory and
shape, Pearson correlation of r=0.32 (p=3.9e-24).
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method. For each sporozoite shape, we started with 200 randomly initialized
parameters for the helical segment (bound to some reasonable ranges), 100 each
for left- and right-handed helices. Each parameter set was optimized for 1500
iterations using gradient descent, and finally the lowest loss over all parameter
sets accepted. This produced visually stable results.

However, the fitted values for pitch and curvature still showed very wide
distributions. This is plausible, because for the still not perfectly slim segmen-
tations both are only weakly constrained if the shape only contains notably
less than half a helical turn. To make this analysis more robust, we added a
second fitting step, in which the results are additionally constrained to follow
the previously observed maintained curvature (cf. Fig. 2.6a). While this is an
additional assumption, it reduces the degrees of freedom and thereby ensures
that the fitting is reproducible and more robust against noise, and produces
accurate helical center lines (Fig. 2.12b).

The resulting values of pitch and radius for the shapes can be compared
to the parameters measured from the trajectories. Given the resolution limit,
especially for small shape radii, shapes and trajectories show similar geometrical
features (cf. Fig. 2.12¢-f). Because variabilities are largest in sporozoite pitch
and trajectory radius, we conclude that sporozoites in 3D tend to twist rather
than to bend. In general, these results support the notion that the observed
trajectories result from the combination of sporozoite flexibility and their

physical interactions with the environment.

2.3.3 Sporozoite shapes show kink at 3D to 2D transition

Moving from the 3D helical migration within the gel, we investigated how
the shape reacts to the rapid change in environmental stiffness presented by
the glass slide at the bottom of the gel, where 3D helical trajectories are
blunted to perform 2D circling motility. Reconstruction of sporozoite shape at
this transition revealed that sporozoites tend to kink as they hit the bottom
glass slide (Fig. 2.13), in agreement with earlier observations that extreme

deformations can occur in mechanically challenging environments [140].

2.4 Conclusion

The results presented in this chapter represent the most thorough study of the
3D motility of Plasmodium parasites to date. The polyacrylamide hydrogel

assay allows large numbers of sporozoites to invade, which can be simultaneously



42 2.4 Conclusion

Figure 2.13: Shape reconstruction suggests kinking in sporozoites during tran-
sition from 3D to 2D. a: Example trajectory transitioning from 3D helical
motility to 2D circling motility upon reaching the glass slide at the bottom of
the gel. b: Time series of 3D reconstructions of the sporozoite shapes from a,
with voxel sizes 0.66 pm in x,y and 1.0 pm in z. The orthogonal planes show
projections of the imaging data. The section of the time evolution around the
kink shown here includes shapes 2 and 3 from panel a. c: Five other different
sporozoites during respective transitions from 3D to 2D motility.

observed in 3D with spinning-disk microscopy. The automated image analysis
pipeline enables automated tracking and analysis of these large numbers of
sporozoites. Key components are the specific blind deconvolution, built to
be more stable against light sources just outside the imaged volume, and the
collision resolution tracking that allows us to maintain 3D tracks under more

crowded conditions. The combination of these methodological advances allows
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to observe hundreds of sporozoites in 3D, improving compared to previous
studies in collagen gels, where individual sporozoites were observed [119], or
studies that relied on 2D imaging only considering the projection of the 3D
trajectories [116]. These large sample sizes, combined with the complex study
including the model system P. berghei and the medically most relevant P.
falciparum, and the advanced analysis significantly advance our knowledge of

parasite migration in 3D.

Firstly, we confirm the right-handed chirality of P. berghei, previously
reported in [119], and extend this observation to P. falciparum. We find that
radius and pitch of helical trajectories are smaller for P. falciparum than for P.
berghei. Additionally, temperature variations impacted primarily the velocity,
while the geometric quantities of the trajectories remained mostly unchanged.
The right-handed helices in 3D lead to clockwise circling at the bottom glass
slide, which we observed to be similarly stable to the usual 2D glass slide assay.
However, in these assays the parasites circle mostly counterclockwise. This
realization implies a major shift in understanding the 2D assay: instead of trying
to invade the glass slide, sporozoites are actually moving on their back, trying
to move upward, as we were able to confirm in our sandwich invasion assay.
An important conclusion is that the (unphysiological) 2D circling might be
unfavorable to invasion, which could contribute to low infectivity in hepatocyte

invasion assays, where sporozoites circle on hepatocyte monolayers [145,146].

The large amount of observed sporozoites and our automatic image pro-
cessing allowed us to investigate in more detail the quantitative properties of
the trajectories. The comparison of pitch and radius suggests that sporozoite
trajectories roughly keep a constant curvature, while their torsion varies more
widely. Intriguingly, we saw that for given curvature, the trajectories seem to
maximize pitch. But more than just trajectories, we could also reconstruct
individual sporozoite shapes. While this reconstruction is limited in resolution,
we could support the idea that sporozoites have sufficient mechanical flexibility
to twist in order to align with their helical trajectories, providing important
input for models. Even more striking, we were able to reliably visualize a
characteristic kink in the sporozoite as it transitions from 3D to 2D motility at
the gel-glass interface, demonstrating how the sporozoite might be reacting to

tissue barriers or other sudden changes in environmental stiffness in the skin.

The data presented here were taken with an (up to fluorescence) wild-
type parasite strain. The established procedure of dissecting the molecular

mechanisms and players within these parasites heavily relies on genetically
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modified parasite lines, e.g., knock-outs of certain proteins. The assays, analysis,
and results we presented here form an important baseline for comparison. For
example, some mutant lines that are non-motile in 2D assays show some
degree of motility in the 3D gel assay. Therefore, the 3D assay can serve as
a more sensitive and more physiological tool to assess sporozoites’ migration
capabilities.

By focusing on capturing many parasites simultaneously we necessarily
sacrificed resolution, both in space and, more importantly, in time. Due to
frame rates on the order of seconds, we were not able to analyze whether
the stop-and-go motion observed in 2D [61] exists to the same degree for 3D
motility in the gel, or if movement in the gel is more continuous, with stopping
a consequence of the less physiological 2D assay. Higher spatial resolution
would, in particular, be interesting to study deformations of the parasite itself,
e.g., as it collides with the bottom glass slide or other obstacles, in more detail.
The experimental data presented in this chapter form the basis for several

models introduced in the following chapters.









Chapter 3

Stochastic particle model for

helical trajectories

This chapter is based on publication 2,

Lettermann et al., Physical Review Letters, 2025.

3.1 Context

The helical trajectories observed in the previous chapter are by no means a
unique characteristic of malaria sporozoites. Quite the opposite, it is a common
feature among motile microbes [147,148]. The survival of microbes like bacteria
or algae is tightly connected to their ability to actively move, which is essential
to seek out more favorable conditions, e.g., places which offer more nutrients
or sunlight for photosynthesis [149, 150]. Although sometimes movement is
collective, e.g., in biofilms or during swarming, at the heart of all migration
processes is always the capability of single microbes to internally generate forces
and torques [151-153]. The motion resulting from these forces often leads to
helical trajectories. This includes not only the parasites discussed before, but
also species of swimming bacteria [154, 155] and swimming algae [156-158].
In this chapter, we will introduce an active particle model that relates the
persistence of helical trajectories, important for how efficiently a microbe
explores its environment, to the internal stochastic properties of its motion
machinery.

As described in Chapter 1, active particle models have been extensively
used to describe in particular swimming microbes. However, most of these
studies considered 2D cases, whereas helical motion of chiral active particles
occurs in 3D [29]. If chiral active motion in 3D was analyzed theoretically, then
mostly in the context of swimming. An early work on asymmetric swimmers in
3D considered the analogy to polymer models to extract new power laws for
effective diffusion [159]; in general, the statistics of fluctuating helices is also

an important aspect of helical biopolymers like DNA [160]. Previous work on

47
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Figure 3.1: Trajectories of
malaria parasites gliding
through synthetic hydrogels,
interpolated using a Fourier
series fit.

sperm swimming considered stochasticity on the level of curvature and torsion
and showed that helical trajectories are useful search strategies for chemotaxis
in noisy environments [161,162]. This line of work also considered colored noise
in the form of a power spectrum [162]. One study of chiral motion in 3D started
from the full mobility tensor for an arbitrarily shaped particle and showed
that helical trajectories are the most likely outcome [163]. Similarly, a chiral
active Brownian particle model has been used to describe the helical motion
of colonial choanoflagellates and to show that purely stochastic propulsion
can result in effective dispersion [164]. Very recently, it has been shown in
a deterministic model for sperm swimming that an asymmetric beat of the
flagellum leads to helical trajectories with high persistence [165]. Collectively,
this body of work demonstrates that helical trajectories can have evolutionary

advantages for microorganisms whose movement is subject to external noise.

Noise does not only arise from the interaction of the microorganisms with
their environment, but also from the internal force generating processes, which
might have a correlation time on the same scale as the movement that they
generate [40]. To address this aspect of the system, Ornstein-Uhlenbeck (OU)
processes have been used, usually replacing the body-fixed constant velocity with
a noisy velocity performing an OU-process around a body-fixed average [166].
This naturally introduces a time scale to the noise and in the context of
2D swimmers in recent years has attracted substantial attention [167-174].
However, the approach of using an OU-process has not yet been explicitly
extended to chiral particles in 3D, although the earlier work with the power
spectrum also allows to address the effect of internal correlation times [162]

(see below).

Here, we introduce a three-dimensional model which represents the noise in
the generation of torque as an OU-process, similarly as suggested previously
for 2D [40]. This introduces a finite correlation time, reflecting transient but
slower additional processes in the torque-generation mechanism, in contrast to

uncorrelated (white) Brownian noise.
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3.2 Obtaining correlation times from measured

trajectories

Utilizing our tracked motion of the malaria parasites through hydrogels (cf.
Chapter 2), we can try to extract the persistence time not only of the trajectory
itself, but also of the motor machinery. The experimentally observed sporozoites
do not move at a constant speed, and even their average speed can vary between
different parasites by a factor of 3. For the analysis in this chapter, we resampled
the trajectories by fitting a Fourier series (similar to [113]) and assuming a
constant speed of 1yms~!. In Fig. 3.1, 10 of these interpolated trajectories
are shown. The motor machinery produces a forward force, but also a torque,
yielding an angular velocity. Fluctuations in the force generation machinery
will produce deviations of this torque, and hence changes in the angular velocity
Q) and its direction, which would be constant for a regular helix. To estimate
the correlation time scale of the angular velocity, we can obtain the estimated
vector 2 from the trajectories as the Darboux vector of the Frenet frame,
which can be derived from the fitted Fourier series. While the modulus shows
a relatively noisy behavior, the direction decays on two clearly separated time
scales as shown in Fig. 3.2. The large time scale of 7 = 100 s describes the
decorrelation of the helical axis. Additionally, a second, shorter time scale is
visible, as expected from the Ornstein-Uhlenbeck process (Gaussian white noise
would lead to decay with only a single time scale). This short time scale of
7 = 20 s represents the time scale on which the axis of rotation of the internal

force-generating apparatus fluctuates during motion.

We conclude that this case is best described by an OU-process. The internal
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correlation time likely results from reorientation in the self-organized flow field
of the adhesins on the parasite surface, which will be more closely analyzed
in Chapter 4 and Chapter 5. But also for other systems, the internal motor
machinery can become the most important source of noise, notably, for example,
if systems get larger, like choanoflagellate colonies [164], or more powerful, as
in sperm [165].

As we will demonstrate in the following, our 3D OU-model for chiral active
particles can be treated analytically by suitably truncating a hierarchy of
equations. We derive equations for the effective correlation time, the mean
position and the mean squared displacement (MSD). Our main finding is that,
in 3D, chirality and hence rotation can lead to enhanced effective persistence
compared to non-rotating particles by an integrative effect of stochastic noise;
a stabilization that can even lead to helical trajectories becoming "straighter
than a straight line', i.e. allowing for larger long-time MSD compared to a
particle moving with the same speed on a straight trajectory without rotation.
A similar conclusion has been drawn before from computer simulations of
swimming sperm [165]. This suggests that helical trajectories are favored
for microorganisms that have to quickly move large distances through their
environment. Finally we compare our model to experimental data from malaria

parasites, demonstrating that it can describe the experimentally observed large
MSD.

3.3 Model

Swimming and gliding microorganisms move in an overdamped fashion and
therefore all internally generated forces and torques are immediately counter-
balanced by drag, such that forces and torques can be replaced by translational
and angular velocities, respectively. To model the intrinsic rotational noise,
we consider an active particle that is moving with a body-fixed constant
translational velocity VBOdy. Its rotational velocity performs an OU-process
around the body-fixed average, QSOdy. In the lab frame we use two vectors to
track the orientation of the particle. n; is the direction of the mean angular
velocity €29 and ny | n; is defined with the angle o between €2y and V (see
Fig. 3.3):

Qp = Qony Vi =|Vo|(n;cosa+nysina) . (3.1)
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Figure 3.3: Model schematics. The translational velocity V| is fixed in the body
frame, but the angular velocity €2 performs an Ornstein-Uhlenbeck process
(OUP) centered around the body fixed €y. The body coordinates are given by
the vectors ny, the direction of the average angular velocity €2y, and ns, chosen
such that Vj is in the plane spanned by nj,ny, with an angle of o between Vg
and nj.

For simplicity, we set [Vo| = 1 in the following. In the lab frame, the equations

of motion are

dQ = — k(Q — Qony)dt + hdA (3.2)
dn; = (Q x ny)dt (3.3)
dny = (2 x ny)dt (3.4)
dr = (cos(a)n; + sin (a)ny)dt. (3.5)

Here, k is the potential strength and A the noise amplitude of the OU-process.
dA is a 3D standard Wiener process. Note that noise is not multiplicative
in the lab frame. Focusing on the intrinsic noise for simplicity, we disregard
external noise (such as Brownian translational noise) or intrinsic noise in the

translational velocity.

3.3.1 Rotation

The rotational part described by Eq. 3.2-3.3 is decoupled from the rest and can
be solved first. The dynamical equations for the expectation values (€2) and (n;)
constitute an infinite hierarchy of expectation values of cross products of these
two quantities, the first four being (Q2), (ny), (2 x n;) and (2 x (Q X ny)).
We can apply moment closure to the higher order terms in the dynamic equation
for (€2 x (€2 x n;)) to truncate this hierarchy.

The dynamic equations for the first four moments expanding the rotational
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problem (Eq. 3.2-3.3) are

d (@) = — k() — Qo (ny)) dt (3.6)
d(n;) = (2 xny)dt (3.7)
d{(Qxny) = —k{(Qxn)dt+ (Q x (2 xny))dt (3.8)

and

d(QA X (2xmny))= —2k(Q x (2 xny))dt
+ (2 x (2 x (2 xmny)))dt
+ kQo (ng X (2 xny))dt
+ h* (dA x (dA x n;)) .

To obtain an analytical solution, we apply moment closure by approximating
the second and third term in this equation. The truncation cannot be performed
earlier due to the necessity of retaining terms up to second order in €2 to properly
account for the effect of noise. First, assuming (2?A) ~ Q2 (A), we get for
the second term (Q x (2 x (2 x ny))) ~ —0Q2 (2 x n;). For the third term,
upon replacing Q with Q. its component perpendicular to n;, the relevant
contribution for the cross product, and applying similar logic as before but with
ny| = 1, we get (ny x (2 xm)) = (1) = (2= (- ny)ny) = (2) — Q (my).
For the last approximation, we assumed that the variance of the OU-process
is small, such that €2 stays close to its average {2on;. The noise term can be
explicitly computed, and we can close the hierarchy by rewriting its fourth

equation as

d(Q2x (2 xmny))=—2k(2x (2 xny))dt (3.9)
— Q2 {Q x ny) dt + kQo ((2) — Qo (ny)) dt — 2h* (n;) dt.

In numerical simulations, we can verify that our truncation works quite well,

as shown in Fig. 3.4

By rotational symmetry, only the component singled out by the initially
parallel €2 and n; axes is relevant (as the rotational problem is independent
of ny), and the other two components of each vector vanish upon averaging
(we choose this direction to be z). Hence, the truncated system defines a
four-dimensional, linear, homogeneous ordinary differential equation problem,

which we can analyze by its eigenvalues.
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Figure 3.4: a: Time course of different moments obtained by averaging nu-
merical simulation (Eq. 3.2-3.5) in comparison with numerical solution of the
truncated system (Eq. 3.6-3.9, gray dashed lines) Parameter values: potential
strength k£ = 0.2, noise amplitude h = 0.3, angular speed 0y = 1, angle o« = 7/6.
b: Same as a, but now for £ = 2, h = 0.1 and €y = 2, i.e. much reduced noise
and faster turning. Here, the agreement between simulations and theory is even
better. ¢: The truncated moments and the approximation used for truncation
in Eq. 3.9. d: Same as ¢ at parameters from b. Here, the truncated moments
are already very small, and even at 20000 simulations the averages have not
yet completely converged. Nonetheless, it is apparent that the approximations
used for truncation work well.

The mode relevant for the long-time behavior can be identified as the unique
mode with real eigenvalue and parallel (€2) and (n;), which describes the
decorrelation of (€2) from its initial orientation. The other eigenvalues describe
the unstable state where €2, n; are antiparallel, and oscillatory states, all of
which decay more quickly. The relevant eigenvalue can be computed exactly,
but is cumbersome as a solution of a fourth-order polynomial. Expanding for
small &/, i.e., assuming the rotation is faster than the time scale on which

the OUP returns to its average, we get the approximation

N PRk R - VE? (03 + k%)% — bt (3.10)
B Qf + k2 '
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which describes the decay as (©2) = (0,0, ) exp (At) and (n;) = (0,0, 1) exp (At).
The more negative A, the faster 2 and n; decorrelate from their initial ori-
entation. For fixed noise amplitude h, both decreasing the strength k of the
OUP potential and decreasing angular speed (), lead to faster decorrelation,
suggesting that the rotation has a stabilizing effect. In the limits of vanishing
noise, diverging potential strength or diverging angular speed, the time scale of
decorrelation diverges. In the limit of small noise amplitude, A converges to the
power spectrum of the OU-process evaluated at the angular speed, consistent

with a derivation starting from power spectra ( [162], Section 3.5).

The truncation presented above breaks down for 2, = 0, because the
equation for € decouples from the rest, and (£2) is dominated by the mean
squared displacement (MSD) of the OUP instead of €2y. However, in the limit
of small noise (h? < k%), the previously derived eigenvalue (Eq. 3.10) has a
well-defined limit 12

A oo ~ 2 (3.11)
Following through the previous derivation of Eq. 3.9 for the case of 2y = 0,
and truncating (2 x (2 x (2 x m))) ~ —h?/(2k) (Q x n;), using the MSD
of the OUP instead of QF, we find the same result. Therefore, even if the
original derivation is not valid, the eigenvalue as written correctly includes the
29 — 0 limiting case. This is also confirmed by the numerical simulations for

the Qy = 0 case in Fig. 3.6.

To validate our approximations, we compared the solutions against numeri-
cal simulations of the initial model, i.e. Eq. 3.2-3.5, implemented in JAX [175]
using standard solvers for stochastic differential equations, set up in diffrax [176],
code available at https://github.com/LeonLettermann/3D-Chiral-0UP. In
Fig. 3.5, different expectation values obtained from averaging 20000 numerical
simulations are compared with (i) the numerically solved truncated ODE system
(Eq. 3.6-3.9, dashed gray) and (ii) the analytical exponential decay given by
the dominant eigenvalue A. As shown in Fig. 3.5a, larger noise yielding faster
decorrelation produces larger values of the higher order expectation values. We
find that the truncations are qualitatively correct (Fig. 3.4), while quantitative
differences are visible — the numerical solution of the truncated system shows
some additional oscillations. The exponential decay by A is too fast here, which
signifies that during the relatively rapid decay, additional modes are relevant.
For lower noise, in Fig. 3.5b we see excellent agreement between numerical
simulation, numerical solution of the truncated system, and the exponential

decay given by A from Eq. 3.10. The latter decay completely dictates the
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Figure 3.5: a: Same as Fig. 3.4, with analytical approximation predicting
exponential decay with eigenvalue A (Eq. 3.10, yellow dotted lines). Parameter
values: potential strength £ = 0.2, noise amplitude h = 0.3, angular speed
Q= 1, angle @ = /6. b: Same as a, but now for k = 2, h = 0.1 and Qy = 2,
i.e. much reduced noise and faster turning. Here, the agreement between
simulations and theory is even better. c: Simulated trajectories at parameters
from a. d: Simulated trajectories at parameters from b. The reduced noise
leads to more regular trajectories.

persistence in the resulting motion, as also apparent in the resulting trajectories
illustrated in Fig. 3.5c+d. Generally, lower decorrelation can be reached by
lower noise amplitude h, stronger Ornstein-Uhlenbeck potential £, or higher

angular speed €.

3.3.2 Translation

For the analytical treatment of the translational part, we assume that initially
Q = Qun; is in z direction. The solution of the rotational part then allows
to solve Eq. 3.5 for the motion in z, d (z) = cos («) (n;). To obtain the MSD
and the remaining coordinate, we need an expression for (ny). By construction,
ny, 1 np, so ny is rotating in the plane perpendicular to n; with angular
frequency €2y, which is on average the x-y-plane. We assume that n, initially
points in z-direction. The decorrelation of n; is also decorrelating the plane in
which ny rotates, but the latter additionally decorrelates within the plane by
variations of the magnitude of the rotational velocity. Both effects are caused
by € deviating from 2, the tilting of the plane by deviations perpendicular to

2y, and in-plane deviations by parallel components. Because of this additional
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effect, we obtain a twofold faster decorrelation of (ny) compared to (n;) (see
Appendix A.6),
(ng) = (cos Qot, sin Qot, O) e (3.12)

The MSD can now be obtained by first computing it from the formal solution
and inserting the solutions obtained for (n;) and (ny). Starting with the formal
solution .

re = /O dt (cos (a)n, + sin ()ny)) | (3.13)

this yields

<r%t)> = /Ot ds; /Ot dSQ(C032 () (my(s1) - 01 (s2))

(3.14)
+ sin® (@) (ny(s;) - n2(32)>> ,

where the mixed terms vanish, as due to their perpendicularity and the rota-
tional symmetry the expectation value of their scalar products has to be zero
even if evaluated at different times. The remaining correlation functions can

be directly obtained from the solutions obtained for (n;) and (n,) as

(ny(s1) - my(sg)) = eMer=s2l (3.15)
(ny(s1) - na(s2)) = cos (Qo|s1 — 82|)€2M51_52 , (3.16)

such that we finally compute the MSD by simple integration, resulting in
(except for the degenerate case g = 0 and a > 0):

2 cos?(a) (—)\t +eM — 1)

2
(tty) = 2
2sin®(a) 2 2 2 2 (3.17)
0

+ (4)\2 - Qg) e*M cos(Qot) 4 4AQpe*M sin(QOt)} :

Let us consider two limiting cases. First, for « = 0, corresponding to a particle

rotating while traveling in average on a straight line, we obtain

(r}y) = —it - ; (1-¢*) , (3.18)

which recovers the case of an active Brownian particle (see Section 3.5, note
A < 0). Second, for general « in the limit of large ¢, we can approximate

<r%t)> ~ 6D ,t, where we obtain the effective diffusion constant describing the
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Figure 3.6: a: Mean distance traveled in z-direction (the initial orientation of the
helical axis) for different Qg at k = 2, h = 0.1. Full lines show particles moving
straight while turning (a=0), dashed lines particles on helical trajectories
(a=m/4), which can be seen overtaking slower turning straight particles. Colored
and black lines are theoretical and numerical, respectively, and in very good
agreement. b: Mean squared displacement for the same parameters as shown
in a, theoretical results from Eq. 3.17 in color. c: Effective long-time diffusion
constant D, cf. Eq. 3.19, as a function of noise amplitude ~ and angular speed
. Black lines mark contours of constant D,.

long time behavior as

2 2
Do — A [cos*(a) N 2sin®(«)
3 A2 (422 + Q3F)

(3.19)

In the case \? < 02, meaning small noise leading to a decay time much longer
than the rotation period, and a < 7/2, i.e. the particle not just circling, but

having some average net movement, this reduces to Do, ~ — cos?()/(3)).

Lastly, with Eq. 3.12 we compute (z) and (y) by integrating d (x) =

sin(a) (ny), dt, allowing to obtain the expectation value of the trajectory,

€2 (2 cos(Qot)+Q0 sin(Qot)) —2X
4X2+Q3
. €2 (2 sin —Qq cos
(ra)) = | sin(a) ROl | (3.20)

e (00 -1

sin(a)

which is a logarithmic spiral on a radical surface, i.e. z o< \/r.
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3.4 Results

The derived solutions show that increasing rotation 2, stabilizes the particle
against its intrinsic noise. In Fig. 3.6a and b we plot the mean z-position and
the MSD, respectively, which both increase with increasing angular speed. In
both cases we find that the numerical simulations agree well with the analytical
results, cf. the third component of Eq. 3.20 and Eq. 3.17. The plots show that
if the particle travels on a helix (case a = m/4, cf. dashed lines in Fig. 3.6a,b)
with the same speed as a non-rotating particle traveling in a straight fashion, if
it turns sufficiently fast (i.e. if the helix is sufficiently tightly wound) it travels
further from the origin on average at large time scales. Therefore a helical
trajectory can be "straighter than a straight line".

The long time behavior is described by the effective diffusion constant
Eq. 3.19, which has a complicated dependence on €2y, k and h through .
In Fig. 3.6c we see that at constant OU potential strength &k, D, increases
with higher angular speed {29, as this suppresses deviations of the helical axis,
different from what was found for chiral active Brownian particles without the
OU-process [164] (see Section 3.5). This effect becomes more pronounced for
higher noise amplitude h, i.e. at higher noise, the stabilizing effect of rotation
is more pronounced. Increasing effective diffusion by introducing rotation
or equivalently chirality is strikingly different from known examples. In 2D,
chirality reduces long-time diffusion by enforcing circular turning [36, 177].
Similarly, a 3D active Brownian particle with external torque exhibits reduced

long-time diffusion [29].
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Figure 3.7: a: Mean squared displacement for a close to m/2, such that
the particles are close to describing circles, with £k = 1, h = 0.5, Qy = 2.
Black dotted lines are averages from numerical simulations. b: Theoretical
expectation value of trajectories (Eq. 3.20) for the two lower values of 7/2 — a.

We can also study the short time behavior. Fig. 3.7a shows that at short
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Figure 3.8: a: Log-log plot of the mean squared displacement extracted from
observed malaria parasite trajectories as shown in Fig. 3.1 (purple, dotted),
with 5th and 95th percentiles (purple, shaded) and the fitted model (orange).
The gray dashed line is a fitted power law. b: Deviation from fitted power law.
The vertical dashed line marks one period of rotation as extracted from the
fitted model. c¢: Trajectories simulated with parameters obtained from MSD fit
resembling Fig. 3.1.

times, the MSD of a helix grows slower, because it is curving back onto itself,
depending on the pitch of the helix defined by the angle o. For o = /2, the
MSD shows strong oscillations, as the mean position, see Fig. 3.7b, describes
a planar inward spiral due to the influence of noise that diverts it from the
circle of a noise-free particle. For smaller a, the spiral gets the 3D structure
of a logarithmic spiral on a radical surface as found in Eq. 3.20, with both
cases showing good agreement between the numerical and analytical results (a
similar spiral was found numerically in [163] for active Brownian particles with

torque, see Section 3.5).

Finally, we can use our measured trajectories for malaria parasites in
hydrogels to extract their MSD (Fig. 3.8a, averaged from 140 trajectories) and
fit it with our model prediction of Eq. 3.17, similar to what has been done
before in 2D-projections for choanoflagellate colonies [164]. In general, we find
good agreement. Our theory successfully describes the first two extrema in the
deviation of the MSD from a power law (Fig. 3.8b), corresponding to the first
turn of the helix. Our theory also predicts some effects of second and third turns
visible in the MSD deviation, which are not observable in the experimental
data, most likely because the biological population has a distribution of helical
pitches and radii such that the later turns cannot be resolved in the average.
From the fitted model parameters (Tab. 3.1), we can derive estimates for pitch

and radius of the helical trajectories as 13.2 pm and 2.8 um, respectively, well
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Parameter Qo o k h

Fit Result  0.285 1/s 0926  1.078 1/s 0.1541/s3/2

Table 3.1: Results for fitting the model to the MSD computed from experimen-
tally observed and resampled trajectories of malaria parasites.

within the observed range [116]. We note in passing that a phenomenological fit
of the period as the period in the MSD-deviation would yield incorrect results
for the oscillation period. Trajectories simulated with the fitted parameters
(Fig. 3.8¢) visually resemble the observed trajectories from Fig. 3.1.

It is notably smaller than the time scale 1/k as extracted from the MSD
fit, which would give the time scale of decay for the full €2 in the OUP if n;
would be fixed. Note, however, that the direction of angular velocity €/|€2]
relative to the moving center of the OUP follows a more complicated decay
law. Additionally, it is likely that for the malaria parasite the assumed isotropy
of the OUP is not exactly true, and the magnitude of the angular velocity

fluctuates faster then the direction.

3.5 Comparison with related models

To better understand the properties of the model we introduce here, in the
following we will define some related models and compare them to the chiral
OUP.

Active Brownian particles (ABPs) are the most common active parti-
cle model, and are usually written down with a translational and rotational
noise, the latter given by a rotational diffusion Dg, [21,29]. Disregarding the

translational noise (to compare to our approach), the MSD in 3D reads

2 2
(st) = Bt = 5z (1= ™) (3.21)
which reproduces the a = 0 limit from Eq. 3.18 with A = —2Dxq,.

Worm-like chain (WLC) models [178,179] describe the configuration of a
fixed-length polymer with a given persistence length. Replacing the total length
with the traveled distance (using a velocity V;), and writing a persistence time
T = P/Vj instead of the persistence length P we recover the MSD of the ABP
above, where 7 = —1/\ = 2/Dq,.

The ABP or WLC model can describe the MSD of our theory for @ = 0,
but deviate for the true helical case (o > 0). This is apparent for the long
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time limit, where Eq. 3.21 yields (scaling V, with cosa) DABFY = cos?(a)Dq,
i.e. these theories do not include the translation generated by the imperfect
circular motion in the plane perpendicular to the helix, which is relevant for

larger o as seen from Fig. 3.9a.

Chiral active Brownian particles as discussed in [164] include this effect.
Rewriting the long-time diffusion from their work by replacing the velocities

v, = cosa and v, = sin « it reads (Eq. 4 in [164])

DeABP _ CT;(;) N SIHQ(Z)DQ (ngJng " 4D?22+Qg> ’ (3.22)
which has a similar form as our Eq. 3.19, but considers a 2D projection of the
3D problem because their experiments imaged 2D projections. However, it
decreases monotonically with increasing €25. Hence, importantly, the stabilizing
influence of rotation as observed in our model is not present, as expected
because their rotational noise is classical rotational diffusion (external, white

noise); thus, the rotation cannot act to integrate out part of the noise.

Arbitrarily shaped active Brownian particles were studied in 3D
in [163] by starting from the full 6x6 diffusion tensor and subsequently analyzing
its symmetry properties dependent on the shape’s symmetry. For an orthotropic
particle (i.e., possessing three pairwise orthogonal planes of symmetry) and in
the absence of noise they analytically solved the resulting helical trajectory as

a function of active force, torque, and shape-dependent drag of the particle.

By numerical simulations including noise they found the expectation value
of many stochastic helical trajectories as an exponentially damped helix, or a
concho-spiral, as found here analytically in Eq. 3.20. They fitted two exponential
decay scales, y; = 0.04 and v, = 0.06 describing the decay of radius and decay
in axial direction respectively. Interestingly, identifying these for the Ornstein-
Uhlenbeck particle presented here, we find v; = —2X and v, = — A\, and in
particular 7; > 75, meaning faster radial than axial decay. This might be
caused by the difference of Brownian to Ornstein-Uhlenbeck particle, or by the

particular diffusion tensor used to obtain this result in [163].

In a related manner to the shape dependence one could study direction-
dependent internal noise in the OUP, by exchanging h and k£ with 3x3 tensors,
describing different noise strengths in different directions in the body frame
and necessarily being appropriately rotated to the lab frame. This would allow,
for example, different behavior in the magnitude and orientation of the angular

velocity, as discussed for the experimental data above. Because this would
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introduce multiplicative noise, similarly to [163] an analytical solution would

be challenging and likely only possible in certain special cases.

Stochastic trajectory models have been proposed in [161,162] to describe
helical swimming and chemotaxis of sperm cells. There, the curvature k)
and torsion 7(;) are the main properties of interest, and modeled including
stochastic influences of arbitrary, possibly correlated noise. Although in these
references Gaussian white noise is used in their explicit solutions, it is possible
to approximately solve our OU model in their framework. Rewriting our model
with (in the body-frame) fixed, unit-length velocity V, and dynamic angular
velocity 2y = Qon; + w(), with w a 3D Ornstein-Uhlenbeck process centered

around 0, curvature and torsion at time ¢ are given as

Ky = Hﬂ(t) X VOH = HQO sin ang + W) X VOH (323)
Tty = Q) - Vo = Qo sina + wit) - Vo (3.24)

We can then decompose the 3D OUP wy;) into two independent 1D processes,
wyt) parallel to Vg, and wé) perpendicular to both V and n3z. The latter is one
of two directions relevant for the curvature, but the leading-order contribution.

Expanding the norm we find
K = Qosina + wé) , T(t) = o cos v + wyt) . (3.25)

Hence, in leading order we find both the curvature and the torsion being subject
to independent Ornstein-Uhlenbeck noises. Using the power spectrum of the
OUP [180], we can evaluate the combined power spectrum of curvature and
torsion noise (S(w) in [162]), as its value at Qq is proportional to the rotational
diffusion of the helical centerline (Eq. (4) in [162]):

~ h2

S2(2y) = ——= 3.26

2( 0) kQ + Q% ( )

Therefore, we recover the power spectrum of an Ornstein-Uhlenbeck process.

Furthermore, this result is (up to sign) identical to a low noise expansion h < 1
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of the eigenvalue A found in Eq. 3.10:

_ R 2R E — k2 (B + k) — bt

lim A = lim —

h—0 h—0 Q(Q) + k2

PR R - R (QF R - O ()
Q% + k2

h? 4

Thus, we can (to leading order) recover our results for the orientation
decorrelation (or equivalently the persistence of the helix center line) from the

moment closure procedure by solving our model with the approach from [162].

Limit of OUP as Gaussian White Noise and direct comparison.
For a direct comparison of the long time diffusion dependency on the angular
speed {2y between the different models, we first look at the Brownian-like limit
of the OUP, that is taking k¥ — oo and h — oo simultaneously, while keeping
the variance o2 = % constant. This leads to vanishing correlation time 1/k
of the Ornstein-Uhlenbeck process, and subsequently €2 as a random variable
becomes Gaussian white noise, around its center Qyn; with fixed variance and

delta-peak time correlation (see [181]),

Q(t) ~ N <Q01’11 (t), O'2>

<<Q(t) — Qonl(t))i (Q(S) — Qonl(S))j> = (51'3'5(75_5) .

This means {2 becomes a non-continuous process, which can be understood as

a derivative of Brownian motion as its rescaled integral
1kt ) )
@(t) = \/E/Q Q(t) = O'*Bt, g, = 20

recovers Brownian motion B, [182], where the rescaling is necessary, as otherwise
the variance of the integral vanishes for & — oo . The resulting system is
hence different from a Brownian particle where the angle/orientation performs
Brownian motion, but using the rescaling we can identify it with Brownian

motion of the orientation with variance 202.

Utilizing this identification, we can derive the effective long time diffusion

D, equivalent to Eq. 3.19 for the different models discussed above. For the
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classic ABP, we obtain

‘72 h2
D =2 with Dg=0"=_—
P 6Dg 1t Q=0 5%

where V| is either 1, the particle velocity, or Viop, = cos a, the effective velocity

along the centerline.

For the chiral ABP from [164] we take DSABY given in Eq. 3.22, rescaled
by % to get effective 3D instead of 2D diffusion and also utilizing the same

estimated Dq as above.

Lastly, for the stochastic trajectory model from [162] with the decorrelation
time for the OUP obtained from the power spectrum in Eq. 3.26, we take the
ABP again but estimate Dg based on the persistence time obtained from the

power spectrum as

T () B2
DSt.TraJ. — 0 ith Do =2 2 — )
> 6Dg 2 4 20k + 2)

Fig. 3.9b displays these different results compared to D, for the chiral
OUP (Eq. 3.19). The solution for the chiral OUP has a minimum at low
(but non-zero) angular speed, which agrees with the estimated behavior of the
ABP based on the effective velocity of the helix center line. If the angular
speed is approaching zero, both the chiral OUP and the chiral ABP capture
that the effective long-time diffusion increases: the chirality is hindering the
diffusivity, and reducing it makes both solutions approach the ABP solution
with the particle velocity V. Towards higher angular speeds, the chiral OUP
as well as the stochastic trajectory model for the OUP capture the increase
in persistence due to the rotation, and agree well for these parameters. The
stochastic trajectory model describes only the center line, and hence misses the
increase of persistence with low angular speed, as this description breaks down.
Additionally, if the helix is at low pitch, i.e., « close to 7/2, inaccurate circling
contributes to the MSD in addition to the motion of the helix center line, such
that the stochastic trajectory model underestimates the MSD for those cases
(Dotted lines in Fig. 3.9a), while still more accurate than the straightforward
ABP estimate.
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Figure 3.9: a: Mean squared displacement for « close to 7/2, such that the
particles are close to describing circles, with £ = 1, h = 0.5, y = 2. Black
dotted lines are averages from numerical simulations. Dashed colored lines are
the MSD as estimated for the active Brownian particle (ABP) with rotational
diffusion derived from the variance of the Ornstein-Uhlenbeck process. Dotted
lines are the MSD for the helical centerline with the persistence derived from
stochastic trajectory models. b: Long-time effective diffusion D, for different
models, compared to the result found in Eq. 3.19 for the chiral OUP. Parameter
values: potential strength £ = 1, noise amplitude A = 0.1, angular speed ¢ = 1,
angle o = /4.

3.6 Conclusion

In this chapter we introduced a novel 3D active particle model that includes
stochastic influences due to fluctuations in the driving mechanism of the particle.
This is distinct from the more commonly used Brownian noise in two regards:
Firstly, the motor machinery is not necessarily subject to white noise, but
more likely has a characteristic time scale which is also represented in the
noise. Secondly, this noise is generated in the body frame of the particle, i.e.,
rotated with the particle. Both points raise complications for the mathematical
implementation of such a model, and in particular its solution. The active
Ornstein-Uhlenbeck model proposed here retains these characteristics, while
being simple in its composition, allowing for powerful analytical solutions.

From these solutions, we concluded that helical trajectories provide an
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advantage for swimming or gliding microorganisms with noisy force generation
to effectively cover distance more quickly than when going straight. This result
from a general stochastic theory for microorganisms with colored noise in their
internal torque generation complements earlier insights about the potential
evolutionary advantages of helical motion for swimming [161, 164, 165].

Because of its simple structure still allowing analytical solutions, the model
we propose here can serve as a baseline model for 3D chiral motility. It can be
extended to study the behavior of such particles in confined environments, or
the collective motion of many identical chiral particles.

The underlying assumption of the model is relatively simple: The internally
generated noise of the motor machinery dominates external noise from the
environment. This can be expected for many systems, in nature as well
as artificially created ones. Systems that are sufficiently large or fast, as
multicellular motile colonies, will likely fall in this category, but also synthetic
microswimmers. In the future, our model could guide the design of micro-
and nanobots [183,184], for example in medical applications where enhanced

persistence of motion is required [185].









Chapter 4

Analytical theory for geometric

gliders

This chapter is based on publication 1,
Lettermann, Ziebert, Schwarz, PNAS, 2024.

4.1 Context

In the previous chapter, we discussed helical motility as a pattern repeatedly
observed over many different species. From the more macroscopic perspective
in Chapter 3, investigating the trajectories produced by total forces, torques,
and their stochasticity, we now move to modeling directly the force generation
mechanism of the sporozoite. This will also require including the geometry of
the cell, instead of treating it as a particle.

The physical mechanisms used by cells and microbes to achieve motility vary
vastly [152]. In a fluid environment, motility is often achieved by swimming
with rotating or beating flagella. For animal cells, the most common form of
motility is crawling, when the front is pushed forward by a lamellipodium and
the back is pulled forward by actomyosin contractility [186]. While swimming
is typically as fast as 100 pm/s, crawling is much slower, with a typical speed of
1 pm/min. Besides swimming and crawling, other major modes of cell motility
are twitching and gliding, which both do not require major shape changes.
While twitching uses pili that extend and retract, here we focus on gliding,
usually based on surface flow of adhesion molecules as introduced in Chapter 1.
Because the internal structure of gliders does not need to change, high speeds are
possible, typically in the range of 1 pm/s. Gliding motility has evolved mainly
for organisms that have to quickly move in a solid environment that provides
substrates to which they can adhere. The model presented here is motivated by
the well-conserved gliding machinery of apicomplexan parasites [48, 187, 188],
but has applications to other gliding microbes, including bacteria [64,189] and
diatoms [66].

69
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We briefly recap the main elements in gliding motility of Plasmodium sporo-
zoites (Chapter 1). Sporozoites have the shape of a 10 pm long, thin, curved
rod and move with high speeds up to 3 pm/s to cross tissue barriers and escape
the immune system of the host. Adhesins like the thrombospondin-related
anonymous protein (TRAP, [190]) are released at the front and effectively
pulled towards the rear by an actomyosin system located below the membrane.
On a flat (2D) substrate sporozoites primarily run on circular trajectories [61],
while in a more physiological 3D environment they move on helical tracks [116]
(cf. Fig. 1.3). The ookinetes of Plasmodium and invasive stages of other api-
complexan parasites, such as Tozroplasma tachyzoites and sporozoites, perform
similar gliding motility and also tend to have helical trajectories [191, 192].
Although the helical trajectories of microgliders resemble the ones predicted
for microswimmers (Chapter 3, [163]), the underlying physical mechanisms are
fundamentally different, namely substrate- and not fluid-based. Recently, the
self-organized surface flow has been investigated for experimentally measured
shapes of Tozoplasma gondii tachyzoites ( [117], Section 1.4.3) and their motil-
ity patterns in structured environments have been characterized by different
biophysical methods [112], but the exact relation between cell shape, surface
flows and motility patterns has not been addressed yet, which we aim to do in

this chapter.

In addition, gliding motility is not only prominent for apicomplexa, but
also for many bacteria [64, 189]. Gliding motility of bacteria is based on a
larger range of mechanisms than for the apicomplexa, but here we focus on
the ones similar to apicomplexa in that their gliding is based on a surface flow
adhesively coupled to the substrate, like the adventurous mode of Myxococcus
zanthus or the gliding motility of Flavobacterium johnsoniae [65,193-202].
Both bacteria have the shape of cylindrical rods of 5 to 10 um length and
1 pm diameter, and rotate around their long axis while gliding along their
body axis, with Flavobacterium johnsoniae being roughly 50 times faster at
2 pm/s. While the machineries generating gliding motility in these bacteria
are not yet fully understood, it is known that Myzococcus xanthus elastically
couples to the substrate [197]. Moreover, its motor units are rotary and
not stationary [203] and move MreB-filaments along helical tracks inside the
cells [204]. In Flavobacterium johnsoniae, the motor units are also rotary, but
stationary [195]. While the molecular basis of gliding motility in bacteria is
diverse and still unclear, the general concept seems to be similar to the case

of apicomplexa, namely that spatially distributed force generators effectively
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move adhesins over the cell surface. Our treatment will not cover twitching
motility of bacteria like the social mode of Myzococcus xanthus or motility of
Neisseria gonorrhoeae, which are based on pilus retraction rather than surface
flow and therefore are also more jerky than the gliding motility discussed here.

Given the importance of surface flow for gliding, it is clear that cell shape
plays a central role in determining the resulting motility patterns. However,
a unifying theory relating cell shape, surface flow and motility patterns is
missing. In this chapter, we introduce such a theory to describe how the
shape of a microglider determines its motility. Importantly, our approach
is geometrical in nature and does not depend on the details of the gliding
motility apparatus. Motivated by the case of the apicomplexa, we start with
the assumptions that gliding motility is driven by independent motor units,
which are uniformly distributed below the glider’s surface, and that they self-
organize to generate motion through adhesive coupling to a solid substrate.
From these assumptions we derive the complete phase behavior of possible
motility patterns of microgliders.

We then extend the model to also address gliding bacteria, which in contrast
to the apicomplexa predominantly move on surfaces and use internal tracks to
control surface flow. Again our theory can be used to predict cell trajectories
from microscopic rules.

In general, our theory reveals that the surface flows powering gliding always
have a strong tendency to rotate the glider in place, and that additional elements
are required to avoid pure rotation without productive translocation. We show
that curved shape for apicomplexa and pre-patterned flow for bacteria would
both serve such a function and lead to circular and helical trajectories, exactly
as observed for gliding apicomplexa and bacteria. Finally, we also introduce
diatoms, hard-shelled algae, as a particularly interesting and simple special

case to which the developed theory can be applied.

4.2 (Geometrical theory of gliding

While the majority of experimental work investigating gliding motility is per-
formed with 2D substrates, the more physiological environment for apicom-
plexan parasites is 3D. Motivated mainly by this case, we first formulate our
theory for 3D environments and later specify it also for 2D. We consider gliding
motility that is based on adhesion distributed over the complete surface and

thus take a continuum approach. We make the following assumptions, as
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Figure 4.1: Schematic representation of a microglider and its mathematical de-
scription. Gliding motility is generated by independent motor units, distributed
below the surface of the fixed-shape microglider. The geometry of the glider is
described by its surface shape 74,y and its global movement with translational

and rotational velocities V and Q, respectively. The motors generate a surface
flow of adhesins, ug ), which generates friction through the difference to the
local relative velocity of the environment, @g,y. This friction determines the
global motion and also reorganizes the surface flow.

visualized in Fig. 4.1:

1. The glider is a rigid body of fixed geometry, which leads to its surface
parameterization 7, and it performs global motion with translational
and angular velocities V and ﬁ, respectively. Thus we do not consider

any deformations of the cell body.

2. Gliding motility is caused by the surface flow u,y of adhesins, actively

driven by a distributed motor machinery.

3. The driving motor system has a fixed target flow speed, which by choice
of units is set to 1. Because experimental evidence does not suggest
otherwise, we assume that the driving is isotropic, that is individual

motors do not have any preferred direction.

4. The surface motors tend to align their direction with the relative movement
direction of the environment. This means that the mismatch between the
motor target velocity and the actual environment velocity does not only
create forces, but also feeds back into the motor configuration, establishing

a mechanism for adaptive self-organization.

The existence of the surface flow field u ) is not only the simplest assump-
tion to explain gliding motility, it also has been directly measured by particle

tracking [112,121,193] or indirectly by fluorescence microscopy of moving parts
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of the motor machinery [117,194]. Due to the small density of adhesins in the
membrane, this flow is assumed to be infinitely compressible (or, equivalently,
pressure free). Moreover, the density of the adhesins is assumed to be constant,
resulting in a constant coupling strength between surface flow and environment

over the whole surface.

In order to describe the coupling between cell and environment, we first
consider how movement determines surface flow; then we consider how the
surface flow determines movement. The surface flow has to be compared with
the relative velocity of the environment to a surface element, @), which

depends on the total translational and angular velocities through
77(971) = — (‘7 + Q X 77(9’[)) . (4.1)

The relative velocity can be further decomposed into tangential and normal

parts by means of the local projection into the surface:
Vion = PonBen, 7= (1—PhyPony) 7 4.2
(0 — LY, v = onLen)v . ( . )

Here bold symbols, like u,) and v|(|97l)7 denote 2-component vector fields in the
tangent bundle of the surface, while usual vector arrows mark 3-component
vectors. A tangential 2-component vector at coordinates (6,1) can be embedded

into the lab-frame by P(EJ). This can be defined via the tangent vectors

0T,
20

04,1
ol

t9(0.1) = t(0,1) = (4.3)

as the 2 x 3 matrix given by the transposed and normalized version of these

£T0.1
Poy = fT( ) . (4.4)
Zfl (eal)

tangents:

It projects a 3-component lab-frame vector @ into a 2-component surface vector

a. Its transpose, PT, embeds a 2-component surface vector in the lab-frame.

Assuming linear feedback of friction from the difference between surface
flow ug) and tangential environmental velocity V‘(‘GJ) into the motor machinery
with a coupling constant I', as well as a third order active driving term with
driving strength 7 as known from Vicsek or other flocking models [117,141,205],

the following is the simplest generic evolution equation for the surface flow:

desy = —T (Wop — Vipy ) + e (1= [ugenl?) - (4.5)
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Through v, this equation depends on the global motion, described by V and
Q). There are numerous additional contributions that could be included, as
advection of the polarised component of the motor machinery (and hence the
velocity), or local ordering. While relevant to the dynamics in the absence of
coupling to the environment [117], we omit them here in our analytical theory.
If the coupling with the environment is strong, as assumed in the following,
these additional local contributions will be negligible compared to the global
geometric constraints. In the numerical simulations, however, we can introduce
these terms, and later verify that their influence on the stationary solutions is
small (see Section 4.3.8).

We next consider how the surface flow leads to movement, thus closing
the equations of our gliding model. The mismatch between surface flow and
environment velocity in the tangent space creates frictional forces with a friction

constant 7, leading to a driving force resulting from integration over the surface:

Fll = —y/dA P@) [u(e,z) - V|(|97l)} : (4.6)

The environmental velocity normal to the surface also creates friction, for which
we introduce a dimensionless factor ¢ to allow for different friction behavior

between tangential and normal velocity:

Ft=¢y / dA 5, . (4.7)

In the context of adhesive friction in a complex solid environment, it is an
unknown parameter that we assume to be of order unity. An estimate for the
related friction anisotropy in Myzococcus zanthus is also in this range [206]. For
microswimmers, the global analog ¢ has the typical value of 2 [22]. Assuming
overdamped dynamics, for a given surface flow u the rigid body dynamics will

immediately adapt and V and Q are determined according to the force balance

— —

Fll(ugy, V, Q) + FH(ugy, V,9) =0 (4.8)

In this overdamped description, V and Q are not dynamical quantities, but
are instantaneously determined by the surface flow field u, ), which is the
only dynamical field of the theory. The global motion is determined by an
integral of the surface flow, making this an integro-differential equation. For

the torques, we have a similar balance equation as for the forces, by locally
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introducing 79, x factors,
MH (u(G,l)7 ‘77 Q) + ML(U(Q,ZM ‘77 Q) =0 ) (49>

thus completing our model definition.

4.2.1 Stationary solutions

We start our discussion of the solutions of our gliding model with the stationary
solutions of the dynamical equation Eq. 4.5. We immediately see that these
solutions require a parallel orientation of the surface flow to the environmental
velocity, that is u(9,1)|\v|(|9’l) everywhere. This reduces it to a scalar equation,
which as a third order polynomial can be solved analytically. We now make
the assumption of strong coupling to the environment, g = I'/n > 1, which
means that an adhesin, bound on one side to the environment and on the other
side subject to the motor machinery of the glider, will mostly be stationary
with respect to the environment, as indeed observed for clusters of adhesins in
apicomplexan parasites as well as in gliding bacteria [61,65,194]. Under this

assumption, the only physically relevant, positive, real solution is

1 — |vl? !
—vl

a(vlh =
(v') A

(4.10)
We conclude that the surface flow generally follows the environment, but will
be slightly faster and driving the system if the tangential environmental speed
vl is smaller than the motors target speed 1. Otherwise it will be slower and
reduce the motion. Overall, this defines a stable stationary solution of the

system.

With Eq. 4.10, we can now eliminate the surface flow u from the force
balance, Eq. 4.8. We introduce the generalized 6-component velocity W =
(V,9) and find

. — |vil2
Fll = _V/dA pPrp [wgl
g
- Z / dA (1 - WGy W) (4.11)

x PTP [‘7 + Q X F(gyl)} .
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Here the 6x6 geometrical kernel G,y arising from |V”\2 is defined as

PL P, P P
G = ([ [CORIC (91 [

_ Feo ) enlx (112)
To.0]xPo.1Flo. [T(fu)] o.0)[T(0.)) %

and combines the surface orientation information Py relevant to determine
the tangential part with the position information 7y ;) in form of the matrix
representation of the cross product [F]xd = 7 X @, necessary to compute the

effect of rotation.

4.2.2 Introducing geometry tensors

The geometric part of the problem can now be condensed into the geometry

tensors
G = [da G, . (4.13)
i = [da Gl G, (4.14)

The substructure of three velocity and three angular velocity components of W
gives G a block matrix structure. The upper left sub-matrix can be understood
as the mean projection of a vector given in the lab frame onto the surface, while
the other block matrices are weighted with the distance vector to the origin.
As one can see from Eq. 4.12, G is symmetric. Under an affine transformation

of the parameterization with rotation R and translation d
Toq) — 7;(9,1) = Ripy +d (4.15)
projection and cross product matrix change as
By = PoyR" Fon] = Rl R"+[d] . (4.16)
X X
which can be used to see that the geometric kernel G changes as

R 0
on =TGonT" . T = . (]1+ [Cﬂ ) . (4.17)

The same transformation 7 applies to the integrated tensor quantities G,
klij
5 7, e

~§lz] TkaleTchjdgabcd (418)
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where summation over repeated indices is implied. These transformation laws

are reminiscent of the ones for the hydrodynamic resistance tensor [207,208].

Identifying the remaining geometry dependent part of Eq. 4.11 as the top
row of G(Q,Z)W, and the bottom row as the similar term that would arise in the

respective expression for M I, we find for the forces and torques:

ﬁl) o . L
L =2 [dA (1= WGy GG W
, 0,073
(M' i 9 (4.19)

= (97— gy W) W

Repeating the same line of argument for the normal component (Eq. 4.7), a
third geometry tensor R* emerges, similar to G¥, but replacing the projections
P in Eq. 4.12 with identity operators, taking the full space instead of the

projection to the tangent space into account,

(GJ) - — — — T ( * )
[Tonlx  [TonlxTenlx
and therefore
R — / dA Gy (4.21)

Using this, the normal space can be expressed by the difference of R and G:

Ft o
(ML) =0 (R —g")w; . (4.22)

7

Finally, we can rewrite the force and momentum balance Eq. 4.8 and 4.9 as a

condition on the global motion W,
(0% - W) Wy — o (R -G ) Wy =0, (4.23)

which effectively is a third order polynomial in V and €. Its coefficients encode
the geometric shape of the glider and its solutions determine the full stationary
field configuration of the surface flow via Eq. 4.2 and Eq. 4.10. Furthermore,
these solutions depend only on one effective parameter, ¢ = (g = (T"/n. This ¢
is small for strong driving, weak coupling and weaker normal than tangential
friction, and large for weak driving, strong coupling and stronger normal than
tangential friction. Our theory as discussed here is an approximation for the

large coupling case. The geometry tensors can be calculated analytically for
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many shapes of interest (for the simplest case of an open cylinder, the results

are shown in detail in Section 4.2.4).

4.2.3 Stability analysis

A linear stability analysis in regard to the surface flow u;) based on Eq. 4.5
shows that the stationary solutions are stable as long as the global motion W
is not affected. This makes sense because we already have seen from Eq. 4.10
that mechanisms exist to stabilize the surface flow. Therefore it is a better
question to ask about an effective, more global view on stability: if by an
external influence (e.g. a collision with an obstacle) the surface flow is globally
changed with a resulting deviation in W, will the surface flow afterwards relax
back towards the previous configuration, necessarily also reverting W to its
previous value, or not?

To answer this question, we start with a perturbation SW around a solution

W with corresponding surface flow u;) and look for the change
(511(971,15) = —P(gJ) (5‘7 + 5@ X 77(971)) . (4.24)

As a measure for the effect of the perturbation, we will investigate the dynamics
of

2
At) = [ dA [dugrn| (4.25)

which is the surface integrated change in surface flow induced by the perturba-

tion. Upon expanding expanding in small perturbations and large coupling c,

it is found to be

BA(t) = 2T95W;0W; (4.26)
]

700) = [a(6 R+ (1~ 00)"9)

+(1-9)G7 — G W W, — QQékjkaWz] . (4.27)

A stationary solution of global movement W is hence predicted to be stable
in the above-defined sense if the matrix J (W) is negative definite. As this
procedure probes only a subspace of possible perturbations and only uses the
surface integrated perturbation A(t) to decide about growth or decay of a
particular perturbation, our stability analysis is not complete. We therefore

complement it by numerical simulations that directly solve Eq. 4.5-4.9 with
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appropriate discretizations (details in Section 4.3.2). In general, we find excellent
agreement with the predictions of our stability analysis. In contrast to the
analysis of the stationary solutions, we find that the stability depends directly
on the individual values of g and ¢, and not only on their product (in the
following, we will use ¢ = 1/2, cf. also Fig. 4.6). This results from the fact
that while the stationary problem could be reduced to the finite space of the
rigid-body motion described by Eq. 4.10, the underlying dynamical problem is

still that of the infinite dimensional surface flow field ug,).

4.2.4 Detailed derivation for the open cylinder

Geometry tensors

As one of the simplest possible examples, we calculate the quantities defined
above for an open cylinder, that is omitting the spherical caps that will later
on be included to arrive at the closed spherocylindrical cell shape we will use
as a model for rod shaped bacteria below. First, we parameterize the cylinder

of length 1 and radius R as

Rcost
F(G,l) = | Rsin# ) 0 e [0727T)a l e [_1/27 1/2] (428>
{

This gives the normalized tangents and the projection P as

—sin 6 0 " 9 0
A ~ — S1n
@O0 =| coso |, G@OH=|0|, Poy={ """ . (4.29)
0 0 1
0 1
Next, we write the 3x3-matrices
sin?(6) —sin(f) cos(d) 0
P(F‘ZJ)P(QJ) = | —sin(@)cos(d) cos?(6) 01, (4.30)
0 0 1
0 —1 Rsind
[Fonlx = l 0 —Rcos? | . (4.31)
—Rsinf Rcosf 0
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which can be combined to give G,y (cf. Eq. 4.12):

sin?(6) —sin(6) cos(6) 0 Isin(f) cos(0) Isin?(0) —Rsin(f)
—sin(6) cos(6) cos?(6) 0 —lcos?(0) —Isin(6) cos(6) Rcos(f)
G 0 0 1 Rsin(f) —Rcos(0) 0
@0 Isin(6) cos(0) —lcos?(8) Rsin(0) 12cos?(0) + R?sin?(0)  sin(0)cos(0)(I — R)(I+ R) —IRcos(0)
Isin®(0) —Isin(f) cos(d) —Rcos(f) sin(f)cos(0)(I — R)(I+ R)  I*sin*(0) + R*cos*(0) —IRsin(0)
—Rsin(f) Rcos(0) 0 —IR cos(f) —IRsin() R?
(4.32)

Upon integrating to obtain the geometry tensors, many of these terms vanish

and we obtain

TR 0 0 0 0 0
0 7R 0 0 0 0
0 0 2R 0 0 0
1o 0 0 o« (R*+ L) 0 0 (4.83)
0 0 0 0 T(R+2E) 0
0 O 0 21 R3

Note that the 3, 3-entry is the surface area of the cylinder (length has been set
to 1). A velocity in z-direction is tangential everywhere on the surface. An z-
or y-velocity is tangential only half of the time, hence the 1, 1- and 2, 2-entries
are half as large. The 6, 6-entry can be explained similarly: rotation around the
z-axis generates tangential velocity everywhere, weighted here by the square of

the distance to the axis of rotation (via two factors [7(g ]« in Eq. 4.12).

Finally we give a single 6 x 6 submatrix of the 4th order tensor G, to
exemplify that it captures more complicated aspects of the geometry and can

have non-diagonal entries even for this simple example, and the third geometry

tensor R:
0 = 0 0 0 0
™m0 0 0 0 0
Gi2ii _ 0 0 0 0 1 0 0 (4.34)
0 0 0 0 ~TR(12R?—1) 0
0 0 0 gZmR(12R*—1) 0 0
0 0 0 0 0 0
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27k 0 0 0 0 0
0 27RO 0 0 0
s_| 0 0 2R 1 0 0 0 (4.35)
0 0 Lt (6R® + R) 0 0
0 0 0 0 LT (6R*+R) 0
0o 0 0 0 0 2R3

Polynomial for stationary solutions

The polynomial from Eq. 4.23 leads to 6 equations for the components of V
and Omega. They determine the stationary global solutions for the cylinder.

Given the geometry tensors computed above, it turns out as

V. (1&: + 12V 4+ (12R? + 1) Q2 + (4R* + 3) Q2 + 48R*Q2 — 16) +12V3 + 16V, V2 + 8R*V,0,Q, — 32R?V.Q, Q. = 2V,Q.0Q,
v, (160 + (AR? +3) Q2 + (12R? + 1) Q2 + 48R%Q2 — 16) + 12V2V, 4 8R?V,Q,9Q, + 12V, + 16V, V2 — 32R*V.Q,Q. = 2V,Q,Q,
V. (12V2 + 12V2 + (36R? + 1) Q2 + (36R% + 1) Q2 + 24R202 — 24) + 24V = 24 RV, 0,0, + 24R?V,0, Q.
Q, (—96OR2 + 80c + (T20R* + 40R* 4+ 9) Q2 — 80) + (T20R? + 60) V,2Q, + (240R* 4 180) V,2Q2,

+ (2880R? + 80) V2Q, + (T20R* + 40R? + 9) Q3 + (960R* + 240R?) Q,0? = 120 (1 — 4R?) V,V,Q, + 1920R*V, V.,
€, (~960R? + 80c — 80) + 60 (4R? + 3) V2Q, + 120 (4R* — 1) V,V, 2, + (T20R? + 60) V22, + (2880R? + 80) V.2Q,

+ (720R* + 40R* 4 9) Q2Q, + (T20R* + 40R? 4 9) 23 + (960R* 4 240R?) Q,Q2 = 1920R*V, V.Q,

Q. (12V2 +12V2 + 8V2 + ((4R? + 1) Q2 + (4R? + 1) Q2 — 8) + 8R202) = V.(8V,Q, + 8V, )

To simplify, we can ask what the possible solutions are if we consider only
V.,Q, # 0 and all others vanishing, that is only translation along the cylinder

axis and rotation around it. Only two of the six equations above remain, giving
V. (V24 RO = V., Q. (V2+RQ2) =Q.  (4.36)
with solutions

V24 R =1=V.=4,/1- R0 Q,c[-1/R,1/R]. (4.37)

This result is shaped by the very regular geometry of the cylinder: if it turns
and translates in this way, every point on its surface has precisely the same
relative velocity. If this velocity matches unity, the surface flow is completely

force free. Obviously, this does not reflect the full, real situation, as the
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cylinder is open on both ends here, and the spherical caps included later would
generate drag dependent only on the translational part, leading to a collapse of
the continuous space of solutions onto the discrete solutions appearing in the

bifurcation diagrams shown in Section 4.3.3.

Stability matrix

Finally, we document the stability matrix 7 for this reduced cylindrical case,
i.e. we assume W = (0,0,V.,,0,0,1,), leading to

C 0 0 2rRV,Q, 0 0
0 6] 0 0 2rRV,Q, 0

Fo 0 0 Cy 0 0 — 4 RV,Q,

JW) = 2R3V, 0 0 Cy 0 0 ;o (438)

0 2R3V, Q. 0 0 Cy 0
0 0 — A R¥V,Q, 0 0 o

C— — TR(c+ ((+1)BR*Q2Z+V2—-1))

C+1 ’

Cy= —27R(RQ2+3V2—1) ,

7R(12¢R?+c+(C+12R24+1) (12R1024+3R2(12V2+02—4)+V2-1))
Cs=— 12(C+12R2+1) g

Ci= — 2R (BRPQ2+ V2 —1) .

The eigenvalues determining the stability are rather cumbersome in general,

but can be computed easily for a specific solution.

Extension to spherocylindrical shape

The degeneracy of the solutions in Eq. 4.37 is due to the open shape of the
cylinder, offering no resistance to translation in z-direction. However, as the
geometry tensors are defined as surface integrals, they are additive under
constructing the geometry tensors for a more complicated surface from simpler
components of that surface. Therefore, we can complete the cylinder with
two spherical caps by solving separately for the geometry tensors of spherical
caps, either parameterizing them at the right spatial position to be aligned
with the cylinder, or transforming the spherical cap into the right position
by means of Eq. 4.17. For the open cylinder, this leads to the axisymmetric
(straight) spherocylinder as discussed in Section 4.3.3. As shown there, the
continuous solution space of the open cylinder then collapses on the rotational
and translational solutions, with the first and second being stable and unstable,

respectively.
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4.2.5 Breaking local isotropy by introducing bias

Our theory assumes that the surface flow is self-organized, with individual
motors being completely isotropic. This is a strong assumption, and a possible
point of attack for evolution to engineer additional control of the surface flow
and the subsequent dynamics. We can extend our framework to include a
directional bias of the surface flow, which we will later find necessary to describe
certain situations. Assume we want to achieve global motion in direction of
the unit vector éy, then we assume that we locally want to add a bias term in

equation Eq. 4.5 so it becomes

oy = —T (u(e,l) - V|(|9,l)) + Ny, (1 - |11(9,z)!2) —nBPgnéy , (4.39)

where B measures the bias strength in units of the isotropic drive strength 7.
For small bias B, in the strong coupling limit this shifts the stationary solution
found in Eq. 4.10,

1— vl | B

—V

— ZPynéy . (4.40)

1 — I
u(vl) =vl+
) g

Tracing the additional term through the force balance, we eventually find the

new force balance equation replacing Eq. 4.23,

A D

(69 - 65" Wii) W — ¢g (RY = G7) W; = BGY (
Q

V) . (4.41)
Here, for full generality we included a vector éq giving the lab-frame orientation
for a desired angular speed that should be generated by the bias. With this
equation we find again that we can reduce the problem of surface flow and
motility to a third order polynomial in the global motion, where the bias

introduces a zero order term.

In the first order expansion for the bias B, it is shifting the positions of
stationary solutions, but the stability theory around this stationary solutions
remains as before. Hence we can analytically obtain stability of the biased

stationary solutions by the eigenvalues of the previously described matrix

T(W).
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4.3 Results

4.3.1 Overview

In the following, we apply our geometrical theory of gliding motility to a range
of different cell shapes, starting with rods and ellipsoids and continuing with
curved rods. Afterwards we investigate the motion on a 2D substrate, with
particular attention to gliding bacteria. In general, all our results are analytical
solutions to the central equation Eq. 4.23, as demonstrated for the example of
the open cylinder above in Section 4.2.4. For each case of interest, the geometry
tensors G, G and R are calculated analytically with the computer algebra
software Mathematica. Once a solution is obtained in terms of the global
movement W, we can find the corresponding surface flow field ug,. Stability
of the solutions is decided according to the matrix J (W) from Eq. 4.26. Very

importantly, all our analytical results are verified by numerical solutions.

4.3.2 Numerical solution

The goal of the numerical solution is to solve the dynamical system posed by
Eq. 4.5-4.9, in order to verify the analytical treatment. To this end, we briefly
introduce here a simplified version of the more complex numerical framework
developed in Chapter 5. To do so, the shape is discretized by a grid, e.g. 20
gridpoints around and 61 along the axis of the shapes. Each of these points
carries a distance vector 7 to the origin of the parameterization, an assigned
surface area, the local projection P, and a value for the current surface flow
u. With this information, at a timestep the force and momentum balance

condition,

Fl(ugy, V, Q) + F(ugy,V,Q) =0, (4.42)
Mgy, V, Q) + M (ug,, V,9) =0, (4.43)
F(uga, V98 = = [ A Py [ues = V] - (4.44)
Vigy = — Ploay (V+ G x 7)) (4.45)

F(uy, V, ) = ¢y / dA 55, (4.46)

define a linear problem in W = (‘7, ﬁ)T, where the integrals are converted to
sums over the grid points, weighted by their area. The resulting linear problem

can be solved dependent on the current surface flow configuration to obtain the
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instantaneous velocity and angular velocity by explicitly computing the linear
problem and inverting the relevant matrix.

With the global motion W determined, the surface flow evolution can be
computed by its evolution equation Eq. 4.5 which can be evaluated separately
for every grid point.

The procedure outlined above was implemented in Python using JAX [175]
for higher performance, and solved using a Doprib (Mixed 4th/5th order Runge-
Kutta ODE solver with Dormand-Prince adaptive step sizing, [209]) provided
by the JAX odeint routine. The intermediately computed instantaneous trans-

lational and rotational velocities were integrated in order to obtain trajectories.

4.3.3 Spherocylindrical cell shape

The spherocylinder is the open-ended cylinder discussed before, but closed
by two spherical caps, and can be readily treated by our theory. Due to the
three symmetry planes, the geometry tensor G has to be diagonal. With the
radius set to 1, aspect ratio o and the axis of symmetry in z-direction, it can

be written as
3a+1
3a+1
2 6 — 2
Diag(G) = 3 Wl da—2] (4.47)
a4+ a?+4a —2
6 — 2

We find only two non-trivial solutions, namely pure rotation (only {2, nonzero)

and pure translation (only V, nonzero):

ro 150 — 5 rans. da—c—1

The respective surface flows generating these motions are displayed in Fig. 4.2a.
For large aspect ratio o, both values approach unity, because for very elongated
shapes the driving force created at the tangential part of the surface dominates
over the drag created at the ends (note that both velocity and radius are
normalized to 1, thus also normalizing angular velocity). For aspect ratio
approaching 1 (the case of a sphere), the angular velocity actually becomes
larger than 1, because now a larger portion of the surface drives the rotation
from positions close to the axis of rotation.

We next investigated the stability of the two stationary solutions and found
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Figure 4.2: Steady-state solutions for rotationally symmetric shapes, namely
a spherocylinder and an ellipsoid, in a 3D environment. a: The surface flows
for the three types of solutions identified by the theory: pure rotation (blue),
pure translation (red), and mixed motion (green). b,c: Bifurcation diagram
for the spherocylinder (b) and for the ellipsoid (c). Top row shows velocity in
direction of the long axis and bottom row angular velocity around that axis.
The three fundamental solutions are distinguished by the same colors used in
(a). Dashed and solid lines are unstable and stable solutions, respectively. Both
the aspect ratio a and the coupling ¢ of the surface flow to the environment
are varied as bifurcation parameters. The bifurcation diagrams are symmetric
under sign change and only the positive branches are shown. Black circles
denote pitchfork bifurcations from the trivial solution, which is not shown.
Orange circles denote pitchfork bifurcations. Diamonds are steady-states found
by numerical simulation and are in excellent agreement with the analytical
results.

that pure rotation is always stable, while pure translation is always unstable.
The corresponding bifurcation diagrams are shown in Fig. 4.2b; with solid and
dashed lines for stable and unstable solutions, respectively. The translational
solution bifurcates from the trivial solution with increasing aspect ratio, i.e. it

does not exist for a near spherical shape, where the surface area parallel to the
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motion used for driving is comparable to the perpendicular area, generating
friction. The translating solution also bifurcates into the trivial solution for
higher coupling, i.e. weaker driving. The trivial solution (vanishing surface flow
and hence no motion) remains unstable before and after both these bifurcation
points, as it is still unstable to perturbations in the direction of the rotational
solution. Other solutions, such as rotations around another axis, arise only at
c < 1, outside the range in which our theory is valid, or at aspect ratios a ~ 1,
where the solutions become degenerate as the geometry approaches a sphere.

The fact that the spherocylindrical glider in 3D prefers the rotating solution
can be understood from an energy perspective: for the rotating cylinder, the
surface is fixed in space, as the surface flow compensates the underlying rotation,
hence minimizing drag and dissipation. For a biological system, which invests
energy to drive the surface flow in order to move, the global stability of the
solution with pure rotation is a fundamental problem. In the following we will
investigate which different shapes can help to mitigate the tendency of surface

flow motors to rotate the glider in place.

4.3.4 Ellipsoidal cell shape

The ellipsoid, more specifically a prolate spheroid with short semi-axis 1 and
long semi-axis «, shows similar rotational and translational solutions as the
spherocylindrical glider. Strikingly, however, now a third mode becomes possi-
ble, namely a mixed solution with a tilted flow field, as shown in Fig. 4.2a on
the right.

In Fig. 4.2¢ we show the corresponding bifurcation diagrams. The rotational
and translational solutions in Fig. 4.2¢ look similar to the previous case of the
spherocylinder. The translational solution only deviates by the bifurcation
into the trivial solution being shifted to even higher coupling, caused by the
smaller proportion of perpendicular surface area for the ellipsoid compared
to the spherocylinder. The rotating solution bifurcates into the new mixed
solution for increasing aspect ratio or decreasing coupling, made possible by
the varying radius of the ellipsoid: while for the spherocylindrical glider the
radius is constant and the surface flow can be at its target speed everywhere
except at the caps, for the ellipsoidal glider the varying distance from the axis
of rotation creates a mismatch. To compensate, additional flow in z-direction
is created where the radius and hence the velocity due to rotation is smaller,
causing translation. As all bifurcations in our theory are symmetric under

velocity reversal, this solution spontaneously breaks symmetry to decide in
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which direction the glider starts to move.

4.3.5 Curved cell shape

(a Rotation Translation Mixed Motion

Axis of
rotation

®=1/3,a=10.0 c=3.0,a=10.0

T
2 5 10 151 10 20 30 40 0 1/2 1

Aspect Ratio a Coupling € Curvature Angle ®

Figure 4.3: Steady-state solutions for a curved spherocylinder (segment of a
torus with spherical caps), which breaks rotational symmetry, gliding in a 3D
environment. a: The surface flows for the three types of solutions identified by
the theory. b: Bifurcation diagrams. Top row shows velocity in direction of the
long axis and bottom row angular velocity around that axis. Colors again as in
a. The trivial solution is plotted in gray, but only in the middle column where
it is displaced below 0 for better visibility where necessary, otherwise it remains
unstable and is omitted. Dashed and solid lines are unstable and stable solutions,
respectively. The bifurcation parameters are the aspect ratio a, the coupling ¢
of the surface flow to the environment and the curvature angle ® as described
in the inset. The bifurcation diagrams are symmetric under sign change, only
the positive branches are shown. Black circles mark pitchfork bifurcations from
the trivial solution, orange circles pitchfork bifurcations between the displayed
solutions. Diamonds are steady-states found by numerical simulation and are
in excellent agreement with the analytical results.

The most obvious solution to overcome the pure rotation solution is to
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break rotational symmetry of the shape, which is achieved e.g. by a curved rod.
This immediately suggests that Plasmodium sporozoites have evolved curvature

in order to avoid the stability of the rotational solution.

We define the geometry of the curved rod as a torus segment of curvature
angle ®, closed by spherical caps like the straight spherocylinder. The surface
flow for this shape allows in principle the same three solutions as previously
discussed and now shown in Fig. 4.3a. However, due to the curved shape, the
rotational solution becomes coupled to a V, contribution, offsetting the axis of
rotation, while the translational solution becomes coupled to an €2, rotation,
leading to circular trajectories. The mixed motion here has non-zero V,,, V., ),
and €),, and because the coefficients are very complex combinations in the free
parameters, the aspect ratio «, curvature angle ® and coupling ¢, the solutions
for the mixed state here were obtained as numerical roots of the polynomial
Eq. 4.23.

To keep the bifurcation diagrams simpler, we only present the z-quantities
in Fig. 4.3b. The dependent y-quantities are shown in Fig. 4.4. In general, we
find that the mixed solution bifurcates from the rotational solution as before,
but now leads into a stable translational solution with increasing aspect ratio
or curvature, or decreasing coupling. Taking a closer look at the coupling
in Fig. 4.3b, we notice that high coupling leads to another bifurcation of
the rotational solution into the trivial solution. Opposed to the rotationally
symmetric shapes, here the trivial state becomes stable at sufficiently high

coupling, as the asymmetry prevents friction free rotation.

To represent the complete solution space of our theory, in Fig. 4.5 we have
assembled phase diagrams. In Fig. 4.5a we show as a reference the phase
diagram for the previously discussed ellipsoid, which has stability regions for
both rotating (blue) and mixed (green) solutions. From the analytical solutions,
the critical value of coupling cc,i. separating rotational and mixed solution can
be approximated as

8(a—1)  596(cx —1)?

. ~ — 3 .
Conir. (@) TR + O((a=17) (4.49)

which is shown in orange in Fig. 4.5a. From the phase diagrams for the curved
spherocylinder, Fig. 4.5b-d, we see that now the solution with translation (red
regions), which leads to circular trajectories, is very prominent. As before,
there are also parameters for which only rotation can occur (blue regions). The

mixed state (green region), which leads to helical trajectories, usually occurs
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Figure 4.4: Dependencies of €, V, (in Fig. 4.3, only V., (2, were shown) on
curvature angle ®. a: In the pure translating solution, the rotation around
the y axis based on the V, speed and the curvature angle ®, where (¢ is the
rotation speed corresponding to circular trajectory of the identical radius as the
underlying torus (cf. Fig. 4.3). The rotation around the y axis is only slightly
below what is expected based on the V, speed and the curvature angle @, i.e.
the circular trajectory has slightly larger radius than the underlying torus. b:
In the pure rotation solution, the €2, rotation causes a V, velocity, where Vg
is an estimate based on an assumed displacement of the origin from the axis
of rotation of half the projected distance to the center of the spherical caps.
The movement of the origin in y direction is at low curvatures well captured
by assuming the axis of rotation is placed halfway between the origin and the
centers of the spherical caps, putting the origin at distance oc sin(®/4). At
higher curvatures, where the rotating solution is already unstable, the V; speed
becomes larger than predicted by this simple argument, indicating that the
solution here resembles a translation in V,, direction.

as a transitional state between rotation and translation, with the transition
taking place at higher curvatures for lower aspect ratios (Fig. 4.5¢). This can
be understood as the influence of curvature being more pronounced in a more
slender shape. At high coupling and fixed curvature, Fig. 4.5b additionally
reveals that the transition in aspect ratio can also have an intermediate regime
where the trivial state is stable, i.e. a thick rod rotates, at an intermediate
thickness the rod is motionless, and a thin rod translates. For fixed aspect
ratio, the coupling determines if with increasing curvature the rotational
solution transitions into the translational (low coupling) or trivial solution
(high coupling). At the bifurcation points and boundaries more complicated
solutions arise, including e.g. a rotation around an additional axis, which we
omitted above as the stable solutions we discuss cover the vast majority of the
phase space. In Fig. 4.5e we show one of the helical trajectories occurring in
the mixed state (the blue and red lines track the center and an off-axis point

on the surface, respectively). Such helical trajectories are precisely what we
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Figure 4.5: a: Phase diagram for the ellipsoid as a function of aspect ratio a and
coupling ¢ (¢ = 1/2), showing the transition from stable rotating solution (blue)
to stable mixed solution (green), with the analytical critical value Eq. 4.49
(orange). Compare Fig. 4.6 for different values of . b-d: Cross sections of
the parameter space of stable solutions for the curved spherocylinder, at fixed
curvature angle ® (b), coupling ¢ (c¢) or aspect ratio o (d). Dash-dotted, dotted
and dashed lines correspond to the planes intersecting each other and the
conditions shown in the first, second and third column of Fig. 4.3, respectively.
e: Helical trajectory of the mixed state at ® = 1/3, ¢ = 3 and a = 10, in
blue the trajectory of the center, in red that of an off-axis point at the rear
of the shape. f: Maximum intensity projection in z and time for fluorescence
microscopy images of a Plasmodium sporozoite moving through a 3D hydrogel,
exhibiting a helical trajectory. Data courtesy of Mirko Singer and Friedrich
Frischknecht.

found in the 3D experiments in Chapter 2, and a close-up for an experimental

example is shown in Fig. 4.5f.

4.3.6 2D gliding of apicomplexa

Many experiments on apicomplexa are performed on 2D substrates rather than
in their natural 3D environments. Therefore we now consider the 2D case as a
limit of our 3D theory (see Fig. 4.7a for schematics). To this end we have to
make two changes: First, the geometry tensors G¥, GZ* and R, previously
obtained by integration over the whole surface, are now computed only for the
part of the glider’s surface that is sufficiently close to the substrate to interact

adhesively, described by a contact angle dg (cf. Fig. 4.7b). Second, assuming
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Figure 4.6: a: Phase diagram as Fig. 4.5 as a function of aspect ratio «
and coupling ¢ for the ellipsoid and low (, showing the transition from stable
rotating solution (blue) to stable mixed solution (dark green). b: At high ¢ an
unstable mixed solution regime appears. While the existence of solutions does
only depend on the combined parameter ¢, the stability can change by (. At
high ¢ values the mixed solution becomes stable only at even weaker couplings.

the body keeps maximal contact with the substrate, the degrees of freedom of
the rigid body movement are restricted as explained below.

The curved spherocylinder on a substrate (Fig. 4.7a) resembles the well
established 2D gliding assay as introduced for Plasmodium sporozoites in
Chapter 2. We assume the body is oriented and stays oriented maximizing
contact area, hence allowing only rotation perpendicular to the substrate. We
find stable translation on shape dependent circular trajectories and analyze
these by comparing the trajectory radius R to the glider’s radius of curvature
Re. We find that generally Ryp is larger than Ro. This effect is partly due to
the friction at the caps generating torque against turning, hence increases with
larger contact angle dg (Fig. 4.7c). Secondly, the flow on the inner side of the
contact area has a slightly smaller effective radius, but the same target speed,
resulting in an increasing trajectory radius for low coupling (Fig. 4.7d). The
analytical prediction is once again confirmed by the simulation, showing that
our theory can include subtle effects as the distribution of the force generation
over different radii (i.e. inside vs outside of contact area) and the torque

generated by friction at the spherical caps, all as a function of contact angle dg.

4.3.7 2D gliding of bacteria

Finally, we investigate the straight spherocylinder on a substrate, a situation
resembling the geometry of gliding bacteria, which often move on 2D surfaces.

Flavobacterium johnsoniae and Myxococcus ranthus are both known to rotate
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while gliding on a substrate [194,198,203]. An ad hoc application of our
theory finds again that the only stable solution is rotation in place (Fig. 4.8),
without productive gliding. Because these microgliders are not curved and
axisymmetric, other mechanisms must be at play to avoid the stability of the

rotating solution.

From the assumptions made for the general 3D theory motivated by the
apicomplexa, the most obvious aspect that does not fit to bacteria is the
assumption that the motor-driven movement of the adhesins is isotropic. In
fact it is well known that the propulsion of the adhesins in bacteria is more
directed, often along internal tracks of a helical geometry as shown in Fig. 4.9a.
We therefore start by introducing a small directional bias B to the motors,
which is dimensionless and measured relative to the driving strength 7, as

introduced in Section 4.2.5.

In contact with the substrate, there is an additional effect on the bias to
be accounted for. For a given surface contact angle dg (see Fig. 4.7), a certain
location on the substrate only spends a fraction of dg/7 in contact with the
substrate, as the rod rotates. The analytical theory only models the part of the
surface in contact with the substrate. If B is small, the bias will persistently
act on the surface flow while it is not in contact with the substrate. As only the
bias during contact is modeled, we have to account for the non-contact action
of the bias by introducing an additional 7/dg factor scaling the bias strength.

This correction is no longer needed if the solution we look at is not rotating.

We can analytically solve the resulting dynamic equation for its stable

states, depending on aspect ratio «, coupling strength ¢, contact angle d5 and
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Figure 4.8: Spherocylinder gliding on a 2D substrate without bias. a: Bifur-
cation diagram for the analytical model coupled to the 2D substrate shows
that only the rotating solution is stable without bias. Symbols are numerical
simulations. b: Time evolution of V, and €2, in a simulation, initialized close
to a purely translating solution. c: Same as b, but now with a surface flow
evolution biased in direction of the long axis, favoring the translational solution,
resulting in a helical surface flow pattern with one way flow lines as displayed
in Fig. 4.9.

bias strength B. For suitable parameters, a stable mixed solution as shown
in Fig. 4.9b (compare Fig. 4.8) emerges. This demonstrates that anisotropic
flow stabilizes forward motion. Furthermore, the flow field of the mixed state
produce flow lines (green in Fig. 4.9b) that follow the observed helical track in

bacterial surface flows in one direction.

Investigating the parameter dependence in more detail, the bifurcation
diagram Fig. 4.9c demonstrates that effective motility can be obtained with
small bias values of around 0.01, suggesting a small anisotropy is sufficient to
shift the stable solution to mixed translation and rotation. At a finite bias, a
pitchfork bifurcation occurs and the rotation vanishes completely. As discussed
in Section 4.2.5, the stability theory introduced before remains valid for small
B, but we can observe that the stability change of the pure translation branch
after the pitchfork bifurcation at higher bias is not captured anymore, and
corrections for the bias in the stability theory are necessary. The bifurcation as
function of contact angle dg in Fig. 4.9d is largely the inverse, at large contact
angle the higher friction at the caps favors rotation. This suggests a more rigid
shape, which in reality reduces contact area due to reduced flattening, makes
it easier to glide productively. The relation between coupling ¢ and bias B
in Fig. 4.9e shows that the higher the coupling the stronger the anisotropy
has to be in order to obtain the same translational velocity. This is similar to
a recently found trade-off in twitching motility of Pseudomonas aeruginosa,

which need to balance their adhesion in order to avoid being ripped off the
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Figure 4.9: Bacterial gliding on surfaces. a: Schematic of the gliding of
bacteria, gliding forward while simultaneously rotating. Experiments suggest
Flavobacterium johnsoniae and Myzococcus ranthus organize the flow along
opposing helical tracks, possibly with only one track coupled for productive
motility. b: With a small bias along the long axis, we obtain self-organized
surface flow patterns resulting in simultaneous rotation and translation. This
generates the one-way helical flow lines along the surface (green) shown in
a. Inset shows a cross section and the definition of the contact angle dg.
c: Bifurcation diagram displaying the solutions for the translational velocity
along (red) and rotational velocity around (blue) the long axis of the cylinder,
as function of bias B with fixed ds=7/4 and a=c=10. Orange circles mark
pitchfork bifurcations, and diamond symbols results of numerical simulations.
d: Same as ¢, but now bifurcation diagram as function of contact angle dg at
fixed bias B=0.01 e: Translational velocity in the coupling ¢ vs. bias B phase
space. f: Pre-patterned surface flow with helical pattern turning around the
cell body in opposite directions as illustrated in a, with color map showing
coupling strength. g: Resulting mean translational (red) and angular (blue)
velocities for prescribed helical surface flows as shown in f.

surface, but still be able to migrate [210].

The helical surface flow lines used by this model are not closed, they only

move from the front to the back. We can also consider a pre-patterning in the
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model, replacing the self-organization with a detailed patterning of the surface
flow consisting of intertwined bidirectional helical trajectories (Fig. 4.9f). The
opposing tracks would generate forces canceling each other. We additionally
assume that only one of the two directions is coupled to the substrate (Fig. 4.9a),
a mechanism that was proposed and investigated for gliding bacteria in a
simplified 1D model in [211]. Varying the number of helical turns along the cell
length, the model can predict the corresponding motility patterns (Fig. 4.9g).
The more helical turns are included, the more dominant rotational motion
becomes compared to translation. The absolute pre-patterning is neglecting the
dynamic component of the surface flow, but demonstrates that these surface
flows, once established, are mechanistically consistent with the observed global

motion.

4.3.8 Influence of additional terms in surface flow evolu-

tion

Within the numerical simulation, it is possible to investigate the influence of
additional terms, which are omitted in the analytical treatment but suggested
by Toner-Tu-like models for collective self-propelled objects (see Section 1.4.3).
The first such term is a velocity advection term, as expected when a large
part of the polarization is due to a mobile component, i.e. actin filaments.
The second term is a neighbor alignment, which can be written as an effective

diffusion of velocity. The equation for the surface flow evolution then becomes

Oy = =T (won = Vigy) +maen (1 - [uen?)

) (4.50)
— Mg,y - V)uey + DViugy,

where A measures the strength of the advective term, and D is the diffusion
constant of the velocity. For comparison, we define a rescaled, dimensionless
D~ rescaled by the timescale given due to coupling to the environment I', and
estimated length scale of neighbor interactions /10 based on the shape radius
a (for sporozoites, this corresponds to the length of actin filaments), such that
D* = D/(T'(a/10)?). We run simulations corresponding to the middle column
of Fig. 4.3 to compare for the influence of these effects. We find no qualitative
changes, only some quantitative derivation for larger diffusion constants (cf.

Fig. 4.10).
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Figure 4.10: Steady-state solutions for a curved spherocylinder (segment of a
torus with spherical caps), as Fig. 4.3, but obtained by numerical simulation
of the extended surface flow evolution including velocity advection (a) and
diffusion (b). Different velocity components V,, 2., and V, are shown in different
rows. Right column varies the advection strength A from 0 (no advection) to 1
(full advection). Right column varies the diffusion constant D*, which is the
diffusion divided by the timescale set by the coupling to the environment I' and
the expected neighbor interaction length scale «/10, where « is the shape’s
radius, D* = D/(T'(a/10)?).

4.4 A simple special case: Diatoms

Diatoms are a large group of microalgae, encompassing around 200 000 species
[212], living mostly in the oceans. They contribute a major part of the total
biomass on earth and are estimated to perform 20 % of all photosynthesis on
the planet [213,214]. They protect their regularly 20-200 um large bodies by a
hard silicate shell, which can have a number of slits called raphes. It is through
these raphes, which can vary widely in shape, that diatoms perform gliding
motility, resulting in equally varying motility patterns [66].

The force generation within the cell is believed to be based on two fixed
bundles of actin, on which mobile myosin motors run [215,216]. In some sense

this is inverted compared to the case of apicomplexan gliding, which utilizes
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fixed myosins moving short actin filaments. How these forces are transduced to
the substrate is not completely understood, but thought to use a combination
of secreted mucus and adhesive strands that the diatom also uses to stick to
the substrate [217,218]. The raphe therefore defines a quasi 1D line of force
generation, producing a 2D path as the diatoms glide on a glass slide. We
can apply the mechanistic understanding of how local forces lead to whole
cell motion developed in this chapter to explicitly compute this raphe to path

geometry relationship.

4.4.1 Assumptions

1. The raphe is assumed to be a 1D feature, described by a line parameterized
in 2D as 7(s) (see Fig. 4.11). Here, s is parameterizing the position along
the raphe. This can parameterize the whole raphe, or subsections of it that
are regarded as in active contact with the substrate. The parameterization
7(s) is relative to a reference point 7, i.e. the cell center. Later inferred

trajectory information describes the trajectories of this point.

2. We assume that the active section of the raphe is producing a constant
motion of the mucus layer in a single tangential direction. This velocity

is in direction of the tangent £(s), with speed o.

—

3. The whole cell moves as a rigid body with a translational velocity V
and angular velocity (rotating around the reference point) Q. As we are
moving in 2D now, and assume the diatom is rotating only perpendicular
to the plane, not around itself, (2 is a scalar. As before in Eq. 4.1, a
point on the raphe at s is moved over the substrate due to the global
motion of the cell as V + € x 7(s) (where the 3D cross product is used

by extension).

4. We assume a local force is produced at position s due to the friction of
the mucus/adhesive strand motion relative to the substrate. That means
the force is proportional (with a constant that we set to 1 here) to the
resulting relative velocity, obtained by adding the velocity due to cell
motion and the velocity of tangential motion of the motors in the raphe.
If both velocities add up to zero, the adhesion point is stationary on the

substrate, and no force is produced. Hence, we get the force density

— — —

fls) = oi(s) + V + QO x 7(s) . (4.51)
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T'ref.

Figure 4.11: Schematics of an assumed active raphe segment (blue), described
by parameterization 7(s) relative to reference point 7, and with tangent
vectors t(s)

Based on this setup, we get the motion of the cell described by V and Q,

by enforcing global force balance,

F = /f(s)\/gds = / (@f(s) +V +0Qx f’(s)) Vgds = 0, (4.52)

where /g is the Jacobian determinant necessary if 7(s) is not an arc-length
parameterization. Because we assume a constant force per length, and not
an adapting self-organization of the force generation machinery, this equation
directly delivers a condition for V and €. Paired with an analogous condition
for torque balance, we get three equations (as the force equation has two
components, but we only have one relevant torque perpendicular to the plane),
for three unknowns V,, V,, and 2. The problem can be formulated as a
3x3 inhomogeneous linear matrix problem, where the matrix coefficients are
dependent on the raphe geometry and can easily be computed by numerical
integration. This problem (usually) has a unique solution, which gives us the
velocity V and rotation around the reference point 2 that fulfill global force
and torque balance. As both are constants, the resulting trajectory will be a
circle (with the exception of either V or Q vanishing, yielding a point or a line,

respectively). The radius of the resulting circle is given as R = |V|/Q.

4.4.2 Example results

Fig. 4.12 displays results for example shapes. Fig. 4.12a is modeled to agree
with the experimentally observed end segment of the raphe of Craspedostauros
australis [67]. In other, more academic examples we can see that if the raphe is
a perfect circular segment (Fig. 4.12b), the trajectory will follow that arc. For
more complex shapes, the precise radius of the resulting circle becomes harder
to predict by eye (Fig. 4.12c). A publication using this model in combination

with experimental results from collaborators in Dresden is in preparation as
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publication 13.
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Figure 4.12: Examples of 3 shapes for the active raphe (blue) and the resulting
trajectory of the reference point (here (0,0)) in red, in arbitrary units. a:
Analytical shape roughly approximating the raphe towards the end. b: A circle
segment of radius 1, where the trajectory aligns with the raphe shape. c: A
straight leg meeting a circular segment.
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4.5 Conclusion

In this chapter we have presented a universal and geometrical theory of how
active surface flow leads to the motility patterns of microgliders. The overall
thrust of this theory is similar to the question how the local movements of
microswimmers lead to their large-scale motility patterns. We found that the
central concept required to answer this question is the definition of geometrical
quantities (the three geometry tensors G7, G&/* and R¥), which capture
the important influence of cell shape, and which have similar transformation
properties like the resistance tensors for microswimmers. Otherwise, however,
the underlying physics is very different and therefore we also find unique answers

that have not been described before.

As we show here, the three geometry tensors can be calculated analytically
for all shapes of interest, namely spherocylinders modeling rod-like bacteria,
ellipsoids modeling bulky shapes like Plasmodium ookinetes and curved sphe-
rocylinders modeling Plasmodium sporozoites and Toxoplasma tachyzoites.
Inserting them into the force balance, Eq. 4.23, we succeeded in analytically
deriving stationary solutions and their stability, in excellent agreement with

the results from numerical simulations.

Our theory reveals a tight interaction between rotation and translation
for gliding microorganisms. In a simple axisymmetric shape, the rotational
solution is dominant, and has to be suppressed for productive forward motion.
This might be achieved by curved shapes, like for Plasmodium sporozoites. The
curved shape of sporozoites leads to circular and helical trajectories. Helical
trajectories allow for productive motility, but exist only in 3D environments,
hence curved shapes might not be as favorable for organisms that require motility
on 2D substrates. The helical trajectories of the mixed state of the curved
spherocylinders resemble the experimentally observed motility patterns of
Plasmodium sporozoites and Tozoplasma tachyzoites [114,116]. Although other
reasons exist that might have favored the evolution of such helical trajectories,
like circling around blood vessels or efficient search strategies in complicated 3D
environments [139,219], or the heightened persistence discovered in Chapter 3,
our universal theory makes a strong case for the need to avoid rotation by
shape control. A notable exception seems to be the case of certain gregarines,
which have been observed to glide on straight paths on 2D substrates [220].
However, at several hundred pm in length, these parasites are one to two orders

of magnitude larger compared to gliding Plasmodium or Toxoplasma gliders,
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thus several additional effects might come into play, most prominently the
effects of cell deformability. Our theory assumes a rigid shape that leads to
instantaneous information transfer across the whole cell body; in practice, even

Plasmodium sporozoites are known to be rather flexible [140].

Another limitation of our theory is that helical trajectories emerge only
for the mixed state of curved spherocylinders, while the phase diagrams from
Fig. 4.5b-d show larger stability regions for rotating and circular solutions. This
might be in part due to the assumption of a rigid shape. Allowing the shape
to twist and adapt to the helical trajectory could widen the parameter region
where the mixed solution is stable. We will explore this to some degree in
Chapter 5. Generally, deformation is another layer of complexity to the motility
situation, as many of the organisms described here are observed to deform, at
times strongly, e.g. kink, during motility. However, they usually return to their
prescribed shape rather quickly. Hence, we believe that our theory is a valid
reference case, upon which deformability acts as an additional degree of freedom.
The (in)stability behavior of deformability might open interesting insights into
interactions with obstacles and path finding in constrained environments, but

has to be studied by more complex numerical models.

We further note that our theory predicts bifurcations that are invariant
under velocity reversal and therefore symmetric in regard to the direction of
motion, while many biological systems of interest are polarized and favor one
direction of motion (including a preference for a certain chirality). Yet our
theory provides an interesting reference against which one now can discuss
potential mechanisms to break this symmetry. An obvious one would be to
abandon the isotropic activity of the motors and to give them a preferred
direction; however, for sporozoites there is no experimental evidence in this
direction. This suggests that the self-organized nature of the surface flow has
other advantages; in particular, it might be needed to quickly switch motility
patterns if the glider runs into a mechanically difficult situation. Another and
possibly more likely way to control the direction of surface flow is the secretion of
the adhesins, which is known to be strongly polarized in apicomplexa (secreted
at the apical ring at the front and severed by enzymes at the back). This will

also be investigated in the more detailed model in Chapter 5.

Extending the theory, developed for apicomplexa, to bacteria, which typi-
cally move on external surfaces, we find that also on 2D substrates the rotating
solution is stable. For motility on a substrate, curvature as in sporozoites

leads to circular trajectories, hence bacteria necessarily have to find another
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solution to this fundamental constraint. We show that locally biasing the
direction of the surface flow, which leads to helical surface flow fields, can
accomplish this. Experimental observations suggest that the organization of
the flow field enforced by bacteria might be more complex, featuring opposing
helical tracks, which might be needed to ensure material transport in both
directions. Pre-patterning such surface flows yields comparable resulting global
motion within our theory. In both cases, the initial stability of the rotational

solution is mirrored by the mixed nature of the resulting motion.

The general set-up of our theory allows to derive corollaries for related
biological situations, for example the gliding of diatoms. Due to their fixed
shell, with gliding forces only generated along the quasi-1D raphe, they present
an excellent simplified example. An important difference from apicomplexans
they share with bacteria is the missing cell polarity along the direction of
movement, which leads to the frequent observation of reversals. This points
to a stochastic component of the gliding machinery, which might assume
bistable states moving in one direction for some time, but eventually flip
direction. The simplified system of the diatom promises an excellent starting
point of stochastic generalizations of the deterministic model we introduced
here, including stochastic binding dynamics [221], and tug-of-war type direction
determination [211,222].

Due to its general nature, our theory should also be useful to design synthetic
microgliders. Moving microorganisms are a great inspiration for the design of
autonomous nano- and microrobots, and many different designs have already
been suggested [223]. Gliding motility driven by surface flow of adhesins, like
discussed here, has not been realized yet in this context, but the gliding motility
of Mycoplasma mobile ghosts suggests that such designs might be possible [224].
One interesting avenue in this context might be the use of DNA-origami, which
has strongly advanced over the recent decade as an extremely versatile approach
to engineer molecular machines [225]. In particular, a synthetic DNA-glider
has been engineered, in which DNA-nanotubes with different binding tracks,
similar to the internal bacterial tracks discussed above, are propelled over a
field of beating molecular motors [226]. It has been noted before that shape
design of such DNA-origami will determine its gliding motility [227], but for
more autonomous control of these microgliders, the motors should be placed

on the surface of the object itself, similar to the case of Mycoplasma mobile.

In summary, our universal theory of gliding motility does not only explain

many experimental observations, it also provides a useful reference to explain
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deviations from our predictions and to identify the ways in which microorgan-
isms have managed to avoid the fundamental physical constraints geometry
imposes on gliding motility. Moreover, it might be helpful for the design of

synthetic microgliders.
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Chapter 5

Unraveling chirality with

simulations, traction force and
STED

This chapter is based on parts of publication 3,

Lettermann, Singer et al., Nature Physics, in press.

5.1 Context

In this thesis, we have so far explored the motility of malaria parasites from dif-
ferent experimental and theoretical perspectives. In the experiments introduced
in Chapter 2, we found regular, helical trajectories. These were the motivation
for the two theoretical frameworks introduced thus far: In the active particle
model in Chapter 3, we found that the stochastic nature of the force generation
machinery can give rise to an advantage of persistence of helical compared to
straight trajectories. Taking more detail into account, in Chapter 4 we saw
that the curved shape can assist the self-organization of the surface flow to
produce productive motility, also suggesting helical trajectories as a natural
consequence of the needed curvature. In this chapter, we finally increase the
level of detail in our modeling to the extent that we can directly compare it to
the experimental data. Where the previous models suggested reasons for why
helical trajectories were developed, here we shift to how these trajectories are
achieved by the cell, and in particular where in the architecture of the parasite
the observed chirality is encoded.

Revisiting the experimental results from Chapter 2, the most important
observation is the overwhelming right-handed chirality of the 3D trajectories
(Fig. 2.5). However, we will see that particularly the combination of 3D with
2D chirality is a powerful guide to finding the origin of chirality. We saw that
while sporozoites turn counterclockwise on 2D glass assays, underneath the 3D
gel they turn clockwise, as dictated by the right-handed 3D chirality (Fig. 2.8).

107
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This, in particular, meant that sporozoites on glass are on their back, trying to
invade the medium above.

Next to chirality, a second important experimental observation was the
dependence of pitch and radius on each other, suggesting a relatively fixed
curvature in contrast to varying torsion (Fig. 2.6). We will use this result,
because we need to incorporate some degree of deformability to accurately
represent the experiments, as we saw significant deformation of sporozoites.
This is challenging, and to use torsion as the single deformable degree of freedom
is an important simplification we can make based on these observations.

In this chapter, we will focus primarily on the specific chirality of Plasmod-
tum sporozoites, only occasionally comparing it to ookinetes or Toxoplasma
tachyzoites. Leaving the more general scope of the previous models, as well
as choosing numerical over analytical approaches, allows us to construct a
model that can be directly compared to the behavior of sporozoites in different
environments. In the first part of this chapter, we will use this framework
to investigate two different models for the origin of chirality, one based on a
directional bias of the surface flow, the other on an asymmetric distribution of
adhesins. Finding only the latter in agreement with all chirality observations
listed above, we use this hypothesis to design two follow-up experiments. First,
a two-sided traction force microscopy assay allowed us to distinguish forces on
different sides of the sporozoite, finding a difference confirming the asymmetric
distribution model. Secondly, STED super-resolution microscopy revealed that
the apical ring complex, where the adhesins are released, is actually tilted
toward the expected higher adhesin concentration, making this tilt a prime

candidate for the architectural encoding of chirality.

5.2 Detailed numerical model of sporozoite
motility

We first devised a theoretical model (Fig. 5.1) that allows us to test different
possible scenarios. For that, we extend the mathematical model introduced in
Chapter 4, that predicts how cell shape and actively generated surface flow
determine the motion pattern of a gliding cell. We add several elements that
become relevant in this context. First, in order to address the question of how
adhesion molecules are distributed across the surface, we added a corresponding
concentration field that couples to the flow field. Second, motivated by the

observed variability in torsion, we added deformability to our model framework.
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Since we focus on steady-state solutions, we do not explicitly model rapid shape
changes, but use an iterative scheme: we first fix a shape and equilibrate the

surface flow, then relax the shape given the new flow, and repeat until stable.

5.2.1 Theoretical framework to describe gliding motility

based on shape, surface flow, and adhesion

We extend the analytical model from Chapter 4 with an adhesion field b ), that
describes the concentration of bound adhesins. This includes the assumption
that there is no highly relevant binding/unbinding kinetics, and that adhesins
are binding while at the front, and being cleaved in the posterior section by
rhomboid proteases. This assumption is in agreement with previous observations

of discrete adhesion sites [61].

Translational velocity V

Surface flow @ - i

Fans” SRR
.
Adhesin density b 3‘1“““ :

High

Angular velocity €

Figure 5.1: Theoretical model: vectorial surface flow field @ (orange arrows)
and the scalar adhesion density field b (colormap) together determine the global

motion of the sporozoite described by translational and angular velocities, 1%
and ().

In the following we present the detailed mathematical description of our
model. Throughout this section, we use bold letters to describe two component
vectors in the tangent bundle of the glider’s surface (e.g. u,)), and vector
arrows to denote three component 3D vectors as the parameterization, 7y ).
At every point on the surface a projection Py, maps a 3D vector into the
local tangent space. Describing the shape as a rigid body that moves with
translational speed V and angular speed ﬁ, we can also use this projection to

write down the relative speed of the substrate as seen from a surface element
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on the sporozoite and its tangential and normal components as

17(97” = — (‘7 + Q X 77(97[)) , V‘(‘B,l) = P(97l)17(9,l) s UL = (1 — P(j.;’l)P(gJ)) 17,
(5.1)

identical to Eq. 4.1 and 4.2 introduced in the previous chapter.

Surface dynamics

The two dynamical fields in our theory are the surface flow ug;), which
represents how adhesins move relative to the parasite surface under the action
of myosin motors and the adhesion concentration b(g;). The evolution of ug,)

is an extension of Eq. 4.5:

ou U, + AV - (I,I(gl ®U(91))

—Tbgyy (uw,n - V‘('a,n) + gy (1 - !uw)\z) + DuAuggy) — xp Vb, -
(5.2)

Here, u tries to align with the local relative speed of the substrate vl, with
coupling proportional to b and a constant I'; while the internal motor machinery
sets a preferred magnitude of u with a strength 1. The diffusion D, is aligning
nearby motors with each other. As the motors are fixed on the surface, there
is no usual advection which would correspond to A = 1, though there might
be some transport of orientation in direction of the surface flow by the actin
filaments, which can be modeled by choosing a small, non-zero \.

The adhesion field is moved by the surface flow according to
0:b 0,0) + V- (b 0,0) U, l)) = DbAb(gJ) + baﬁ,l) — 0(9,1)5(9,1) . (53)

The adhesion concentration b is generated near the apical region (where the
adhesins are released and bind to substrate and actin), as modeled by a source
field bae’l), and then transported rearward by the surface flow u. As adhesins
are also cleaved more strongly at the posterior end (where rhomboid proteases
act), the adhesin concentration obeys a spatially variable decay ¢ proportional
to its local concentration. Importantly, adhesins are transported with the flow,
hence they are subject to a regular advection term. The diffusion of adhesins
parameterized by D, and the pressure gradient prefactor x, in Eq. 5.2 are
chosen to be very small, as we consider b to describe bound adhesins, and

mostly used for numerical stability.
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Forces and global motion

At each surface element, the mismatch (u—vl) weighted by b produces frictional
forces, with a friction coefficient v, which reduces to the case from Eq. 4.6
for constant uniform adhesion. The shape of the glider is prescribed by a
parameterization 7y ;). With Py ) the projection into the tangent space, PT,
embeds a two-component tangent vector into 3D space, necessary to compare
the local forces generated at different points. We then get the force generated

by the tangential mismatch between substrate velocity and surface flow as

FH = —’y/dA b(gJ)P(E’l) [U(QJ) — V|(|0,l)} . (54)

The analogous normal component is independent of the surface flow, and
we allow an additional scaling ¢ (set to 1/2, see Section 4.2.3), to allow for

differences in normal vs. tangential frictional behavior,

Fr = ¢y / dA b - (5.5)

Including an additional 74,y x in these integrals allows to define the correspond-
ing torques Ml and M*. Assuming that we are in the typical overdamped
regime, these force and torques prescribe the global motion ‘7, ﬁ, for a given

surface flow configuration by demanding force and torque balance,

F (a0, boay, V, )
ML(U(e,z)a b(0,1)7 ‘7, Q)

(5.6)
. (5.7)

>
=
I

0
0

Because adding an adhesion field greatly increases the complexity compared
to the analytically solvable cases previously investigated in Chapter 4, here we
perform a numerical solution. The code is written in JAX [175] as an extension
of our earlier code that confirmed analytical results in simpler (non-adhesive)
models (see 5.2.2).

Parameterizing the sporozoite shape

In our previous, analytical model, we used simple shapes like curved sphe-
rocylinders. Here, as we perform a numerical treatment and also want to
encompass torsion as a second deformation next to curving, we are aiming for
a more accurate and consequently more complex shape. In order to model api-

complexan gliders, in particular sporozoites, we use a curved, twisted ellipsoid.
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Let the center line ¢ of this ellipsoid be given as a helix with radius R and
screw parameter s (related to pitch p as p = 27s), and the shape around this

line have cross-sectional radius r¢g given as

R(1 - cos(i6n)) 1
Cuy = l¢05 , Cbo = W, rosq = av 1 —4]2 . (58)
Rsin(l¢y)

Here, [ is the coordinate along the axis, normalized to [ € [—1/2,1/2], ¢y is the
angular extent of the shape along the helix, and « is the radius of the cross-
section at its thickest position, in the center. Then, constructing tangential
and normal vectors to c(;), a parameterization of the desired shape (where the
rotation of the normal vectors is chosen such that the resulting coordinate

system is orthogonal) is obtained with azimuthal coordinate 6:

1A L gip (1 77 e (s
Sy gryez S ( R2+32) sin (sz»sz - 0) + cos ( R2+32) <a 1 — 412 cos (Rzisz — 9) - R) +R
- ls—a@Rsin(uzliSQ _9)
(0.0)
R2+s2

sin (ﬁ) (R — a1 — 42 cos (RJ—;} - 5)) + asy/ é;f; cos ( R§+32) sin (RJiSQ - 6)
(5.9)

From this parameterization (Fig. 5.1 shows one realization), other quantities

like the local metric tensor or its partial derivatives dz(f%’” and di(ii’” can be
obtained by Mathematica. The notebook including these is provided in the

simulation git repository (see Section 5.2.2).

Iterative scheme to equilibrate the geometry of gliders

The interaction between surface flow, geometry and the resulting forces is
especially challenging if the sporozoite can deform, since its total movement
and its shape changes are coupled degrees of freedom, both reacting to the forces
created by the surface flow. Rather than looking for the fully dynamical shape
evolution, which is very challenging [228,229], we seek equilibrium solutions by

alternating two steps:
1. Equilibrate the surface flow u(-) and adhesion b(-) on a fixed shape.

2. Relax the shape based on the computed forces, and update its shape

accordingly.

We model the sporozoite as a curved, twisted ellipsoid described by a curvature
k and a variable torsion 7, or equivalently radius and screw parameter as used

in Eq. 5.8. Motivated by the findings in Fig. 2.6, we assume that the sporozoite
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keeps a fixed curvature, such that we can reduce the deformation problem to a
single degree of freedom, the torsion. The shape has a torsional elastic energy
with modulus K:

Erorsion = 3K T2 (5.10)

In each iteration step, we project local forces onto the torsional degree of
freedom to see whether they favor increased or decreased torsion, iterating until
an overall equilibrium is found. This yields a self-consistent shape, flow field,
and adhesion distribution that can be used to predict the parasite’s helical
path.

5.2.2 Numerical solution and implementation

With the addition of adhesion and the more complex shapes including de-
formability a numerical simulation framework has to be used to solve the
equations. It was custom implemented in JAX [175], which allows for just-
in-time compilation of code and hence performant execution. The sporozoite
shapes were discretized with 20 points around their circumference and 91
points along their axis, and subsequently finite difference schemes were used
to implement the dynamics of the dynamical fields ug;) and b ;) on the 2D
geometry defined by the parameterization. Laplace-Beltrami operators with
5-point stencils were used for diffusion terms, at the poles, coordinates where
continued using methods from [230]. The advection terms were implemented
using a first-order upwind scheme in curvilinear coordinates. As we are only
investigating equilibrium behavior here, the finite difference scheme is suf-
ficient, especially as it makes implementation of the global constraints and
deformation easier and faster compared to finite element approaches that were
used for similar (but not including substrate interactions and deformability)
dynamical theories of actin flocking on curved surfaces in Tozoplasma [117,142].
The code for the simulations, visualizations, as well as the implementation
of the iterative deformation equilibration scheme, is available on GitHub at

https://github.com/LeonLettermann/hei-sporo-code-simulation.

5.2.3 Two different mechanisms to explain 3D chirality

The described motion patterns of Plasmodium sporozoites differ from the
ones known from other apicomplexan forms like Plasmodium ookinetes and
Toxoplasma tachyzoites. Both parasite forms have been reported to run on left-

handed helices in 3D gels [113,115], implying they circle CCW when contacting
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a rigid boundary from above. In 2D and in medium, both prefer CCW motion if
they circle, signifying a distinctly different chirality behavior than Plasmodium
sporozoites. To better understand why this case differs so strongly from the
others, we set out to identify its origin. Our comprehensive model framework
now allows us to define two fundamentally different models that are informed
by experimental observations and can explain chirality in the gliding motility
of apicomplexa. We start defining the models and presenting their conclusions,
with estimated simulation parameters and details on the deformation procedure
used given at the end of this section.

In model I (chiral flow), we assume that surface flow is not isotropic, but
has a chiral bias (Fig. 5.2a). Structurally, this model requires the motors to
exert forces in certain directions, e.g. because their orientation is biased by the
underlying microtubule system. In fact this seems to be likely for the cases of
Plasmodium ookinetes and Toxoplasma tachyzoites, which have a twisted corset
of microtubules. Similar mechanisms also seem to be at work for some types of
gliding bacteria, which seem to have fixed internal helical tracks [194,203].

In model II (asymmetric distribution), we assume that chirality arises from
an asymmetric distribution of adhesion molecules (Fig. 5.2b). This asymmetry
could arise from the known tilt of the apical ring [104], which might lead to
an asymmetry in the secretion of adhesins at the apical ring. This case might
specifically apply to Plasmodium sporozoites, because their microtubule corset
is straight and because they are the only apicomplexan parasite form with a

tilted ring.

Model I: Model II:
Chiral flow Asymmetric distribution

Figure 5.2: a: Chiral flow model (model I): directional bias in the surface flow
of adhesins can produce chiral helical trajectories. b: Asymmetric distribution
model (model II): asymmetric adhesin release or binding creates a biased
distribution of force generation which can result in chiral helical trajectories.

For model T (chiral flow), the bias to the direction of the surface flow u
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was included as a preferred direction, conferred by an angle ¢g;.s, and a bias
strength Bpgi.s. These were included in Eq. 5.2 as an additional term of the

form A
U,y X €

8t11(9,l) = ... — |BpiasU(g,) X &(0Bias) , (5.11)

]
where we use the cross product with the two-component vector €(¢pias) by
appending zeros to specify an angle, and the cross-product of the two-component
vector u with the orthogonal three-component vector é, to rotate by m/2. For
the chiral flow model, we used an angle of ¢pi.s = 7/6, i.e. a 30° angle offset
from the straight backwards direction.

For model IT (asymmetric distribution), the asymmetry of the release of
adhesins at the tip of the parasite is controlled by an asymmetry parameter
ARelease; such that the profile of release (up to normalization) in the 6 coordinate

is given as
bz;ﬁ,l) (0) = ARelease €xp [— (1 — cos (—7/2 4 0)) /2] + (1 — ARelease) , (5.12)

interpolating between a strongly one-sided (ARelease = 1) and uniform (Agejease =

0) angular distribution.

Simulation results for 3D chirality

Deformation iterations
>

Figure 5.3: Results of numerical simulations alternately equilibrating surface
flow configuration and parasite shape, shown are the first five and the final
iterations for model I (a:; chiral flow) and model II (b:; asymmetric distribution).
Left and right are two views on the same configurations.

Using our computer simulations, we first checked that both models can
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reproduce the experimentally measured trajectories for reasonable parameter
values (Fig. 5.3). In model I (chiral flow), the sporozoite can achieve the target
pitch of the trajectory with comparatively less torsion of the shape, because the
flow itself already induces twisting. In Fig. 5.3a, an untwisted shape still follows
a significantly helical path. By contrast, in model II (asymmetric distribution),
the untwisted shape circles with almost zero pitch (p ~ 0) (Fig. 5.3b), so the
sporozoite shape must twist more to match the measured trajectory pitch.
Here, we find the more adhesive side on the back (dorsal side) of the sporozoite,

which predicts that the apical ring faces backwards.

a Model | c Model Il
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Torsional stiffness K ; - 10° Torsional stiffness K ; - 10®

Figure 5.4: Resulting pitch (a:,c:) and radius (b:,d:) (color coded, color map
given to the right) of the shape after equilibrating for different torsion stiffness
K. (relative to the adhesion strength) and chiral flow bias (a,b; model I) or
adhesin release asymmetry (c,d; model II). Shaded areas are within 33 % of
experimentally found values.

We next examined how each model responds to changes in parameters.
Model I exhibits a strong variation of pitch (Fig. 5.4a) and radius (Fig. 5.4b)
with torsion stiffness and chiral flow bias, achieving the high pitches observed
experimentally only in a narrow parameter subset. Model II is smoother
(Fig. 5.4c,d) and has a larger parameter regime consistent with the experimental
data. Because the sporozoite is quite slender, it has only a short lever arm for
any lateral force. Thus, in a chiral flow scenario, the flow bias must be precisely
tuned to avoid high torsion regimes where pitch /radius are too small (upper-left
region of Fig. 5.4a,b). This sensitivity is also visible in Fig. 5.5a,b, which
compares pitch/radius of the shape itself to that of the resulting trajectory,
revealing a mismatch for the chiral flow as discussed before. Lastly, the coupling
parameter ¢, determining the ratio of environment coupling to motor driving

in the model, mostly affects velocity (Fig. 5.5¢), without strongly altering
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geometry, unless it becomes so large to stall gliding (Fig. 5.7).

Pitch (pm)

o

Radius (pm)

0

bk DALY I LLLL B |
10°7 10°% 1075 1074
Torsional stiffness K

10’ 102
Coupling ¢

Pitch/Radius model I:
=== Deformed shape
== = Trajectory
Pitch/Radius model Il:
== Deformed shape
== = Trajectory

Figure 5.5: a,b: Resulting pitch (a) and radius (b) as in Fig. 5.4, but at fixed
chiral flow bias (model I) or adhesin release asymmetry (model IT). Dashed
lines show similarly the pitch and radius of the resulting trajectory, which
can deviate from those of the shape. c: Velocity as function of the coupling
parameter ¢, which is the quotient of coupling to the environment and driving

strength of the motor machinery.

unstable stable "

| stable unstable \

Figure 5.6: Models for right-
handed 3D chirality make op-
posite predictions for 2D chi-
rality on a substrate covered in
medium only. The chiral flow
model (a) produces a torque ren-
dering CCW motion unstable.
The asymmetric distribution
model (b) is stable if the more
adhesive/active side is facing
towards the substrate, render-
ing CW motion unstable as ob-
served experimentally.



118 5.2 Detailed numerical model of sporozoite motility

Chirality models suggest opposite 2D chirality

Having established our models in 3D, we next used them to predict motion
patterns in 2D. We found that model I predicts a torque that renders CCW
motion on a 2D substrate unstable (Fig. 5.6a), while CW motion would be
stable. In contrast, model II stably supports CCW rotation, where the more
adhesive side is against the substrate (Fig. 5.6b), as experimentally observed.
Model II also explains the unintuitive result that sporozoites attempt to move
upwards from the glass in 2D: in 3D, the back side of the parasite has more
adhesins, generating right-handed helices. In medium, the parasite circles on

its back, which is more adhesive and in direct contact with the glass.

Estimating parameter values for chirality models

The undeformed reference geometries for both the sporozoite and toxoplasma/
ookinete case were constructed with the same parameterization Eq. 5.9, but
different sets of parameters as specified in Tab. 5.1. Note that for use with the
non-dimensionalized versions of the equations, these parameters were converted

to units rescaled by the length of a parasite of around 10 pm.

Model R S «Q

Sporozoite 44pm Opm 0.4 pm
Toxoplasma/Ookinete 4.7pm  Opm 1.5 pm

Table 5.1: Parameters specifying the geometry of gliders, with data for sporo-
zoites estimated from [61,139], and for Toxoplasma from [117].

The parameters for the surface dynamics, in the dimensionless formulation
of the equations based on L=10 pm, the shape length, and T=10s, such that the
target speed of the surface flow is 1), are given in Tab. 5.2. For the steady-state,
only the coupling parameter ¢ = (I'/n (with ¢ = 1/2) is relevant, not their
individual values as found in Section 4.2.3. The relative values of I" and n
are chosen to get the correct resulting movement velocity (Fig. 5.7), while
absolute magnitudes control the timescale of the dynamics, chosen suitable
for our numerical simulations as we are only interested in the equilibrium
configurations. Here, we chose I' = 10 such that the timescale of the surface
flow adapting to the environment is Tr =0.1T.

The diffusion coefficient D,, describes the alignment of nearby motors, which
primarily happens if they are coupled to the same actin filament. The actin

filaments are around 100 nm=0.01L in length, and if motors are bound to the
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Figure 5.7: The resulting pitch (a), velocity (b) and radius (c) of the shape
and the trajectory as obtained from numerical simulations after equilibration
and as function of varying coupling strength c.

same actin filament alignment should happen on a similar timescale as alignment
via the environment (as given by Tt ), hence we estimate D, = (0.01L)?/0.1T =
0.001L?/T. The advection parameter A controlling the orientation transport
with the flow was set at A = 0.1, to include some transport, but the simulation

for alternatively A = 0; 1 did not show a strong influence of this choice (Fig. 5.8).

For the adhesion, diffusion constants (D;) and pressure response (x,) are
believed to play a minor role, as our adhesin field explicitly models adhesins
bound to the environment, which are mostly fixed. Therefore, the small values
used were chosen for numerical stability. Changing the different parameters for
comparing the simulations inevitably changes the surface flow configuration,
and, at fixed ba,e,l) and ¢, thereby the overall abundance of adhesins. That in
turn has a similar effect as changing I', and can heavily alter the behavior, for
example increasing the effective I' to a level where the motion arrests (Fig. 5.7).
To avoid this, we regulated the adhesin release baﬁ’l), such that the average

density of adhesins on the surface was always 1.0.
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Figure 5.8: The resulting pitch (a), velocity (b) and radius (c) of the shape
and the trajectory as obtained from numerical simulations after equilibration
and as function of varying surface flow advection .

Parameter I' 17 Dy, A Dy Xp
Value 10 0.125 0.001 0.1 1x107% 1x107°

Table 5.2: Parameters of the surface dynamics, in dimension-free units based
on L=10pm and T=10s.

Estimating deformation forces in iterative equilibration

At this point, we review the technical details of the procedure to iteratively
equilibrate of the deformation used to obtain the results above. We aim for a
simplified description, which allows us to estimate equilibrium shapes, i.e. we
look for configurations where the shape naturally follows the motion prescribed
by the surface flow. Trying to naively decouple global motion and deformability,
we compare two approaches: First, computing the deformation force before any
reaction of the global motion, i.e. we assume a local force is created at each

surface element by the surface flow while the shape is kept at rest,

—

f(ree,sit) = —P(:g,l)u(e,l) . (5.13)

This is a very rough estimate, because usually most of the forces created by the

surface flow should result in motion instead of deformation. Alternatively, we
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can take first the global motion (V,W) computed by global force balance of the
rigid shape as before, and afterwards compute the local force as the mismatch

of the surface flow with the resulting tangential velocity,

rinovin, T
fon &= Py (‘1(071) ‘(‘9 1)) : (5.14)
This includes the global motion, but needs to encompass an additional minus
to agree qualitatively with the previous estimate as shown below and allow
equilibration, most likely because the a priori equilibration of the global motion

for the rigid shape overestimates the reduction of the forces for deformation.

To compare these two approaches, we first map the field of local forces to a
single effective force on the sporozoite’s torsion. Given our parameterization
Eq. 5.9, we can project either of the local forces defined above to a local
contribution of force affecting the shape radius R and screwness s using the
partial derivatives of the parameterization. Integrating yields effective forces

on R and s,

dT‘gl)
dR

dT(@l

FR_/dAf ds

F,— /dAfgl (5.15)

As we want fixed curvature and varying torsion, we project these forces onto an
effective force that changes the torsion, and combine it with the contribution
given by the torsional energy F, = %KTTZ to obtain

dR ds

F="F F— KT, 5.16
I R+d T ( )

where the last term models the elastic relaxation towards the untwisted (7 = 0)

state.

To compare the two different schemes of estimating the effective local
deformation force above, in Fig. 5.9 we analyze F, for K, = 0. As expected, we
find the force if computed with respect to the shape at rest around two orders
of magnitude larger than if we take the forces including the global motion of
the rigid body. Moreover, we generally see a decrease for both forces and both
models with increased torsion. However, this decrease is much more notable for
model II, the asymmetric distribution model, compared to model I, the chiral
flow model. As this difference between the models is also similarly observed for
both introduced schemes for estimating the local force, we conclude that our
observation above that model I requires more finely tuned relation between bias

strength and elastic constant K, holds for both schemes. In order to include
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Figure 5.9: Effective torsion deformation force F, computed without taking
global motion into account (F'*") and (sign-flipped) force computed from the
velocity mismatch u — vil| that is with the shape performing rigid body motion
(Fmoving) - for the chiral flow (a) and asymmetric distribution (b) model for
different torsions of the shape in color (untwisted, blue; twisted, yellow).

the global motion, we used the local force ﬁrg(l’)vmg for our equilibration scheme.

If one would instead use the other scheme based on ﬁ"gslt), similar results would
be obtained, except the torsional stiffness K, would be about two orders of
magnitude larger.

With this choice, we can use this force F to alternately update the torsion
of the shape, and the surface flow and adhesin configuration on the deformed
shape. Once this scheme converges, we have obtained an estimate for the
equilibrium shape and flow configuration. Note that the absolute values of
K, as shown in Fig. 5.4 depend on the local force scheme chosen, and it is
only used as an effective elastic torsional stiffness to compare the behavior of
different surface dynamics and cannot be easily related to the actual stiffness

of the parasite.

5.2.4 Comparison to other apicomplexan gliders

Figure 5.10: a: Schematics of pre- Toxoplasma & Ookinetes —
dicted Toxoplasma or ookinete move- a B
ment under gel (cf. Fig. 5.11). b: ‘ 2 /QCCW
Schematics of predicted motion of " = N
Tozxoplasma or ookinete in medium. __‘L N 53
= 23
w 2p0
COW ey ~ 8%

The results above strongly indicate that indeed model II seems to apply

to Plasmodium sporozoites. However, remembering the different chirality for
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Figure 5.11: Deformation analysis for shapes thicker than sporozoites (aspect
ratio of 3.33 instead of 12.5). a-d: Resulting pitch (a,c) and radius (b,d)
after equilibrating in simulations performed for different torsional stiffness
K. (relative to the adhesion strength) and chiral flow bias (a,b; Model I) or
adhesin release asymmetry (c,d; Model II). e,f: Resulting pitch (e) and radius
(f) after equilibrating in simulations performed for different torsion stiffness K,
at fixed chiral flow bias (1; Model I) or adhesin release asymmetry (m; Model II).
Dashed lines show the pitch and radius of the resulting trajectory. g: Velocity
as function of the coupling parameter ¢. h: Results of numerical simulations
including deformability. Final configurations for four sets of parameters marked
in the previous panels are shown, a higher (1) and reduced (2) bias of the chiral
flow model (Model I), as well as an intermediate (3) and higher (4) torsional
stiffness in the asymmetric adhesion model (Model II). Left and right are two
views on the same configurations.
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ookinetes and Tozxoplasma, the predictions of model I seem to fit better to
these other apicomplexan forms, as they do not exhibit the observed inversion
associated to moving on their back for sporozoites. Their left-handed helices
imply CCW circles when contacting a rigid boundary from above (Fig. 5.10a),
but they also prefer CCW circles in medium, suggesting they try to invade the
glass slide (Fig. 5.10b).

We note that they are thicker (aspect ratio smaller) and have denser and
chiral microtubule corsets, thus might more easily establish a rotationally biased
actin flow. Indeed, simulations of model I with thicker shapes (see Fig. 5.11)
show a less sensitive response to the chiral bias strength, expected due to
the larger radius of the shape. However, more complicated flow patterns can
emerge with small parameter changes, supporting the earlier suggestion that
more accurate models of the actual shape are required to predict the motion of
these forms [112,117].

5.3 Two-sided traction force microscopy sup-

ports the asymmetric distribution model

To directly test the predictions of model II (asymmetric distribution) that
different physical forces should appear at the ventral and dorsal side of the
sporozoite, we developed a two-sided traction force microscopy assay. Purified
sporozoites in a small amount of medium are pipetted on one traction force gel,
then immediately covered with another. The amount of medium is controlled to
yield a roughly 1 pm gap, allowing the sporozoites to move in between both gels
while being in contact with both (See Appendix A.4 for experimental details).

Unlike the invasion sandwich, here the gels are stiffer and contain fluorescent
beads, which can be imaged in two distinct planes above and below the
sporozoite (Fig. 5.12a). Fig. 5.12b shows an example of the top plane with
tracked beads; Fig. 5.12d zooms in. Fig. 5.12c,e show the bottom plane. This
assay is more challenging than for mammalian cells [231,232] for several reasons:
sporozoites move quickly (leaving limited time to capture images), the forces are
small and localized in very small regions, and the two planes are just 1 — 2 pm
apart, so many beads appear in both planes. Because the top and bottom
gels closely approach each other and are coupled by the sporozoite, the usual
assumption of force balance in a single gel is not valid. Additionally, all bead
displacements are imaged from below in an inverted microscope, resulting in an

optical distortion of the beads directly above the sporozoite by the sporozoite
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Figure 5.12: Two-sided traction force assay reveals asymmetry in force genera-
tion. a: Schematics of a gel sandwich traction force assay. Sporozoites (red)
are sandwiched between two gels, which are too stiff to be invaded, but contain
fluorescent beads imaged in two planes, above (orange) and below (cyan) the
sporozoite. b: Top gel imaging plane with tracked beads that were localized
in the top gel (orange) and computed displacements for three frames. Scale
bar 10 pm. c: Same as b for bottom gel. d: Zoom-in view: The first panel
shows enlarged bead trajectories; subsequent panels display consecutive frames
showing the individual positions and displacements. e: Zoom-in as ¢ for bottom
gel.

itself.

We address these challenges in two ways. First, the assay provides an
intrinsic control: we can compare clockwise and counterclockwise sporozoites
under identical conditions. Second, we exploit the regular circular motion of
sporozoites to compile bead displacements from multiple frames into a single
aggregate displacement field, registering each displacement by the relative

position of the sporozoite (Fig. 5.13a, see Section 5.3.1).

We then use a model-based approach to infer forces from these displacement
fields. The model allows for a force plus a contractile dipole on top and bottom
gels at 20 points along the sporozoite’s length, details given below. We fit
this model to the displacement field around the sporozoite, excluding points
directly under and above it (to avoid optical lensing artifacts) and points too

far away (where gel-gel coupling might overshadow local differences). Crucially,
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global force balance is imposed, so we simultaneously reconstruct forces on both
gels (Fig. 5.13b,c). From the resulting forces, we compute the total tangential
component (along the parasite axis). A positive tangential force drives motion,
while a negative one is dragging the sporozoite. Plotting the difference in
tangential force between top and bottom gels for 13 sporozoites (Fig. 5.13d)
reveals that CCW sporozoites show a negative difference, meaning they drive

more strongly on the bottom gel and drag on the top, whereas CW sporozoites
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Figure 5.13: a: Schematics of generating an aggregate displacement field by
overlaying displacements from multiple single frames, using their position in a
polar coordinate system aligned to the current sporozoite position, in order to
obtain a single displacement field from the observed motion of the sporozoite.
b: Displacement field of the top gel averaged from multiple frames where the
sporozoite was stopping (red), which is now generated by forces (blue) and
force dipoles (brown), predicting the black displacement field. This sporozoite
moves counterclockwise, i.e. it faces to the right. c: Same as b for bottom gel.
d: Difference of the total tangential force produced by the sporozoite on the
top vs. the bottom gel, where positive tangential force is defined as driving
the sporozoite forward, and negative tangential force is dragging it. Hence, a
positive difference means the sporozoite is exerting more driving force on the
top gel, and more dragging on the bottom gel, and vice versa for a negative
difference.
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do the opposite. This strongly supports the asymmetric distribution model, in
which the side with more adhesins (which convey the active driving force) faces
downward for CCW motion and upward for CW motion, while the less-adhesive
side creates drag by friction due to non-specific interactions. The question
remains as to how a difference in adhesion strength can be established in the

first place.

5.3.1 Details of traction force analysis

Here we describe the analysis used to obtain the traction force results described
above in more detail. The analysis is divided in two parts. First, a displacement
field is derived from the imaging data, and in a second step the forces creating

these displacements are estimated.

Construction of the experimental displacement field

1. The time-lapse stack contains two channels with two z-slices each: top-
gel beads (z = +A), bottom-gel beads (z = —A) and the sporozoite

fluorescence in both slices.

2. Because most beads are visualized in both z-slices, we cannot construct the
deformation field by standard PIV or optical flow techniques, correlating
small windows of the image [124], because beads from both layers would
be mixed. Instead, we want to track individual beads, and then assign
every bead to one of the z-slices. Bead centers are detected in every frame
(using the python package TRACKPY [144]) and linked into trajectories
with a nearest-neighbor linker (search radius 1.5 px, memory 3). Each
top-plane trajectory is paired to its counterpart in the bottom plane by
joint linking through an interleaved frame series and by majority voting

of overlapping detections.

3. Within our experimental protocol, we cannot take reference images
without the sporozoites. For every bead i the frame-averaged position
(b;) weighted by its distance to the sporozoite (such that positions
far from the sporozoite, which have lesser expected displacement, are
weighted more strongly) is taken as reference and the raw displacement
1,(t) = b;(t) — (b;) is smoothed with a 2-frame Gaussian kernel. Global
stage drift is removed by subtracting the running mean of all bead dis-

placements.
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4. The sporozoite is segmented independently in both focal planes, yielding
a label field and coordinates of center, tip and tail, which are used to

define the sporozoite arc as a circular segment connecting all three points.

5. By fitting a circular arc to the sporozoite, a polar coordinate system
was defined in each frame (with origin at the circle center, and angles
and radius defined relatively from radius and front/end position of the
sporozoite). Aggregating these displacements from all frames where
the sporozoite briefly stopped (i.e. got stuck and hence created larger
forces) in a single coordinate system and averaging nearby displacements

produced more reliable displacement maps.

Force inference with a bi-layer elastic model

To obtain forces, we used a simple model to describe the force generation
along the sporozoite: at 20 points along its length (such that the distance
between the points is comparable to the thickness of the contact surface and
we can use circular contacts at each point as approximation), we positioned
a force and a contractile dipole, each for both the top and bottom gel. The
dipole was necessary as we observed strong inward forces, similar to what was
previously observed for classical traction force microscopy of sporozoites [61]
or 3D traction force of Toxoplasma [114]. Using a Green’s-functions approach,
from a prescribed set of forces and dipoles we computed the displacements
independently for top and bottom gel and compared them with the aggregate.
Combining this with the constraint of vanishing total force (i.e. sum of top and
bottom forces), which we also demanded in the summed tangential component, a
loss function was formulated, which was implemented in JAX and subsequently

minimized, thereby simultaneously optimizing top and bottom forces.

Force representation. The cell is discretised into NV centers r; equally spaced
along the sporozoite arc, each with a tangential point force F; and
co-located contractile dipole D; (scalar, direction €p orthogonal to the
sporozoite arc) on both the top (superscript 1) and bottom (superscript 2)
gels.

Elastic kernel. Each substrate is treated as an infinite-thickness, linear,
isotropic layer (Young modulus F, Poisson ratio v). The in-plane dis-
placement generated by a single force is obtained from a modified Boussi-

nesq/Hertz Green function G(x; F,v,a) [233]. A dipole enters via the
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spatial derivative VG [234]. The predicted displacement at bead location

X in the top plane therefore reads

N
ul = Z|:G(Xk —r;) FE” +VG(xp — 1) : (Dz(l)éD ® éD)

i=1

Y

and analogously for the bottom plane.

Joint optimisation. Forces and dipoles of the two gels are obtained by min-
imising the cost functional (with u}**** the displacement previously ob-

tained from the bead measurements)
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where \; controls usual regularization, Ay regularizes spatial variation
of the forces, and the last line enforces global force and torque balance.
Automatic differentiation (JAX) supplies gradients and the exact Hessian

for a trust-region Newton solver.

These routines are available in the git repository https://github.com/

LeonLettermann/hei-sporo-code-tracking.

5.4 STED microscopy reveals a consistent chi-
ral orientation of the apical complex rela-

tive to sporozoite curvature

Previous work using cryo-electron tomography of sporozoites showed two types
of asymmetries at the apical end. The APR of sporozoites is tilted and the
subpellicular microtubules originating from the APR are arranged in a peculiar
1541 fashion relative to the tilt such that the single microtubule reaches the most
apical position (Fig. 5.14a, [104]). However, with cryo-electron tomography, we
were not able to reveal the orientation of the APR relative to the substrate

during gliding as sporozoites detach during sample preparation [235]. Clearly,
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the asymmetric distribution model could be explained by one-sided secretion
of adhesins through the tilted APR. Thus, we aimed to measure the tilt of the

APR relative to the gliding orientation by live-cell microscopy.

Figure 5.14: a: Cartoon (with a
enlarged apical region) showing

the position of the apical polar

ring APR (blue) with respect

to the single (orange) and all

other 15 microtubules (green) APR
as observed by electron tomog-
raphy [104]. b: Top view of dif- p
ferent possible positions of the
apical ring and microtubules,

inset showing a cross-section.

© Single MT
@ 15 other MT

Ring outwards
Ring inwards

)0l
o))

However, the APR is small and challenging to visualize by live cell mi-
croscopy [104,236]. We thus performed STED super-resolution microscopy of
microtubules labeled with SiR-tubulin in live sporozoites that had reached the
bottom of the gel and were circling with the aim of visualizing the position of
the single microtubule, indicating the ring tilt (Fig. 5.14b). Sporozoites that
were still motile at the bottom of the hydrogel were imaged continuously in
confocal mode, and a volume of the first half of the sporozoite was acquired
immediately if a sporozoite paused in 3D STED mode. If a sporozoite moved
or died (resulting in a strong increase of background signal) during volume
acquisition, the dataset was discarded (see Appendix A.5 for details on the
sample preparation). After several hours, the sporozoites were trapped inside
the hydrogel and regularly stopped moving for a few seconds. This allowed
us to capture 3D image stacks of parasites at the bottom of the gel. In the
top-down view (Fig. 5.15a+c), we aligned a circular arc with the sporozoite,
and subsequently defined cross-sections perpendicular to this arc every 120 nm.
These cross-sections revealed an isolated signal that likely corresponds to the
single microtubule (Fig. 5.15b+d). By averaging the angular intensity profile

of multiple cross-sections along a sporozoite, we consistently observe a small
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Figure 5.15: a: An example of 3D STED imaging of living sporozoites labeled
with SiR-tubulin and moving clockwise at the bottom of the hydrogel. Three
optical sections at different positions are indicated in this top view. Scale
bar 500 nm. b: Cross-sections marked in d. Note the single microtubule in
images 2 and 3 (bottom left). Scale bar 500 nm. c,d: Same as a,b for a second
sporozoite. e: Angular intensity profile from a single sporozoite (a) averaged
over different cross sections along the imaged part of the sporozoite (Std. dev.
over cross sections in yellow). A single, isolated peak (dashed line) marks the
peak corresponding to the single MT. f: Same as e for sporozoite from c.

isolated peak feature corresponding to that single microtubule (Fig. 5.15e+f,
see Section 5.4.1).

Figure 5.16: Cross sections
from six different sporo-
zoites, illustrating that the
orientation of the single mi-
crotubule is highly repro-
ducible. Scale bars 500 nm.
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In 20 out of 30 imaged sporozoites a single microtubule was distinctly
visible. It was invariably located at the bottom side, i.e. toward the glass slide

(Fig. 5.16).
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Figure 5.17: a: Results aggregated from STED microscopy of sporozoites
reaching the glass underneath the gel (see d and following for details), showing
the angular dependence of the intensity averaged over sporozoites. Fitting
the intensity profile by angular positions of 16 microtubules reveals the single
microtubule at the bottom as predicted, but slightly offset. b: Distribution of
angles at which the peak in the angular intensity distribution corresponding to
the single MT could be clearly identified (18 sporozoites). Dashed line marks
the position of the single MT fitted to the average of all sporozoites.

Aggregating the average angular profiles from all sporozoites yields the
distribution in Fig. 5.17a. As this intensity is generated by 16 microtubules, we
were able to reconstruct their positions (details given below), placing the single
microtubule at 335°. This agrees with the single microtubule peak location
from individual sporozoite measurements in Fig. 5.17b. From this, we conclude
that the single microtubule faces the glass and hence that the APR is tilted
upward, away from the glass slide confining the hydrogel. This suggests that
adhesins are released on the dorsal surface of the parasite, consistent with the

asymmetric distribution model for 3D chirality.

5.4.1 STED cross-sections and azimuthal mapping of

the 16 subpellicular microtubules

Computation of angular profile

STED stacks were resliced perpendicular to the longitudinal axis of the sporo-

zoite; therefore, each slice shows an approximately circular cross section of the
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cell cortex. For a given slice image I(x) the position of the center c is selected

at that pixel position that maximizes

X

c(ae) = |z, I

ZG Aé/2:| )

where I, is the sum of intensities around the tentative center at radius r and Ay
is the maximal intensity along the corresponding angular sector (30 bins). This
optimization selects the center such that it is surrounded on all sides equally
(Ag term to power 1), but the radial intensity is concentrated at one radius (12
term). The cross sectional radius is estimated as the first maximum of I,.. Slices
are discarded when they contain excessive background or an angular profile
with > 50 % values below half the slice mean. The angular profiles A% ()
of valid slices counted by k are normalized, and, assuming the distribution is

similar over the cross sections in the sporozoite region we observe, averaged,

o1 K AWK (f)
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Inference of microtubule positions

For inferring the distribution of microtubules, we can use that the angular profile
above is generated by exactly 16 microtubules. Assuming each microtubule
contributes an identical Gaussian line source at azimuth ¢; with amplitude A,

offset B and standard deviation o:
Sl(e) — Ae_(A9¢)2/20-2 + B, Ael = ml% ’9 — ¢1 — 27Tn|
ne

With N = 16 microtubules the predicted profile is S(#) = N=* SN | S;(6).
The unknown parameters are the 16 angles ¢; and the common parameters
0, A, B controlling the intensity profile of a single microtubule. They are

obtained by minimizing
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where the second term (6 = 0.05 rad) penalizes unrealistically close microtubules.
Gradients and the Hessian are supplied by JAX; a simultaneous gradient
descent on ¢ and (o, A, B) converges within ~ 10° iterations (git repository

https://github.com/LeonLettermann/hei-sporo-code-sted).
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5.5 Conclusion

Here, we analyzed how 3D chirality determines the motion patterns of Plas-
modium sporozoites, the transmission form of malaria-causing parasites. We
found that in homogeneous 3D environments, they move in a right-handed
fashion, in contrast to the left-handed migration of Plasmodium ookinetes [115]
and Tozoplasma tachyzoites [113]. Our data suggest that sporozoites generate
macroscopic chirality via an asymmetrically tilted apical complex, resulting in
an asymmetric force distribution stabilizing counterclockwise motility in 2D
and right-handed motility in 3D (schematic summary in Fig. 5.18). In con-
trast, ookinetes and tachyzoites appear to use a chiral surface flow to generate

chirality.

Asymetric distribution

creates chirality: Dorsal: More adhesins

stronger force

Right-handed
helix in gel

CW circle
at bottom

Figure 5.18: Schematics of the suggested model for sporozoite chirality.

Our data provide the first explanation why the sporozoite is the only
form with a tilted apical end and features microtubules that show an uneven
distribution pattern (15+1 in P. berghei) but run straight along the parasite’s
longitudinal axis. A key implication of our finding is that sporozoites generate
forces as they glide that are different on their dorsal and ventral sides. While
previous experiments on sporozoites addressed forces on either the substrate-
facing side by traction force microscopy [61,116] or on the substrate-opposing
side by optical tweezers trapping beads [120,121,237], our sandwich traction
force microscopy setup allowed us to determine force generation on both sides.
Remarkably, this showed that sporozoites moving CCW produce more force

on the bottom gel and those moving CW produce more force on the upper gel.



Chapter 5. Unraveling chirality with simulations and experiments 135

Together with our finding that CCW-moving sporozoites move upward and
those moving CW move downward in a soft sandwich gel assay, this suggests
that sporozoites placed on liver cells are geared to move away (upward) from
them, rather than into them. This suggests a reason why liver cell invasion
assays produce very low rates of infection [145,146] and opens the prospect
of improved liver invasion assays, which are crucial to identify the involved
molecules and potential inhibitors.

In conclusion, our combination of theoretical and conceptual analysis with
novel experimental setups allowed us not only to better understand the chirality
encoded in the cellular architecture of sporozoites, but also how it might
fundamentally differ from gliding machinery of related systems that are similar
in many molecular aspects. Our work provides new physical understanding
of how to realize chirality in microscopic agents, and has medically relevant

implications for the invasion behavior of Plasmodium sporozoites.
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Summary & Outlook

In this thesis, we explored the gliding motility of apicomplexans, in particular
Plasmodium sporozoites. Focusing on 3D, we started with experimental results,
derived by advanced image analysis from microscopy data of a hydrogel assay,
finding helical tracks with right-handed chirality. Introducing an active particle
model, we saw that noise in the internal motor machinery can be partly
compensated by the rotation of a helical trajectory, yielding higher persistence.
Moving into more detail, we developed a theoretical and numerical framework
to treat the self-organization problem of the actively generated surface flow on
the gliders, coupled to the motion this surface flow produces. This proved to
be a powerful tool, allowing insights into why these parasites might be curved,

and how they generate their chirality.

Malaria parasites are a fascinating biophysical system. As we introduced in
Chapter 1, they can assume different shapes during their mosquito—vertebrate
alternating life cycle. Our main focus was on sporozoites, the long, slender,
highly polarized form of the parasite transmitted from the mosquito, migrating
through the host skin to find a blood vessel. Their motility is powered by
the glideosome, a highly evolved machinery allowing them to outrun the
immune system. The distributed force generation of this glideosome, posing
a self-organization problem and the possibility of approaching it using mean-
field descriptions, makes it a prime target for the methodology of theoretical
biophysics. Understanding sporozoite migration is of direct medical relevance,
as stopping the relatively small number of sporozoites from reaching blood

vessels offers an early block to infection, as attempted by current vaccine efforts.

The basis of this thesis is the experiments and the biological understanding
of Mirko Singer and Freddy Frischknecht from the parasitology department.
The gel assay previously developed in the group [116] and refined for this
study allowed us to simultaneously observe many sporozoites migrating in a
3D hydrogel. This environment was closer to physiological conditions than the
simple 2D assay, while still being much simpler and more homogeneous than
true in vivo assays. This offered the perfect setup for a physical understanding
of their 3D migration, as presented in Chapter 2. Mirko and I optimized the
experiments for the best compromise of spatial and temporal resolution, with
the requirements of automatic image analysis necessitated by the large number

of sporozoites as a baseline. I developed the full image and data analysis pipeline,
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which allowed us to track hundreds of sporozoites and quantify their trajectories.
Core achievements of this analysis pipeline are the blind deconvolution, more
stable against diffuse scattering from outside the imaged volume, and the
collision resolution, which, in combination, allowed reliable tracking of many
sporozoites in dense scenarios. Main results obtained from this include the
right-handed chirality of both the rodent-infecting Plasmodium berghei, and
the human pathogen Plasmodium falciparum. Furthermore, we discovered a
radius-to-pitch relationship pointing toward a maintained, constant curvature
of the parasites. Within this relationship, we find that the maximum possible
pitch and associated radius are very close to the median values observed; while
we did not deeply investigate the possible reasons for this, it seems plausible
that this optimizes the explored volume. How precisely this works remains
an open question, partly because the extent to which sporozoites are directed
by chemical, mechanical, or temperature gradients toward blood vessels is the

subject of current research [238].

The regularity of the helical trajectories (sometimes neatly following a helix
for 10 or more turns) motivated the most general of the models in this thesis,
the chiral active Ornstein-Uhlenbeck particle introduced in Chapter 3. The
underlying assumption is that for sporozoites moving through a gel, Brownian
motion induced by the environment is less relevant, and the stochasticity of
their motion is mostly introduced by fluctuations in the forces and torques
the parasite actively generates. However, this certainly is also relevant for
microorganisms that are sufficiently large or fast (i.e. strongly driven) such that
the external fluctuations become less important by comparison. We introduced
a novel active particle model, reminiscent of famous models, such as the active
Brownian particle [21] and the circle swimmer [32]. In our model, we propose
an inclusion of stochastic effects by the motor machinery through an Ornstein-
Uhlenbeck process in the dynamics of the angular velocity. This captures two
main properties of noise introduced by a microbe’s motor machinery: it is
internally generated, i.e. moves with the microbe, and will usually have a
characteristic time scale depending on the propulsion mechanism. Both are
distinct from an active Brownian particle, where the white noise is attributed
to the environment and has vanishing internal correlation time. The model we
propose includes these effects, but at the same time is sufficiently simple to still
allow analytical solutions, which we derived for the expected trajectory and the
mean squared displacement. These revealed a strong stabilizing influence of

rotation and hence chirality: because the noise is time-correlated, and fixed to
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the particle, a rotating particle can integrate out part of the noise if the time
scale of rotation is similar to or smaller than the time scale of the noise. This
effect proved to be so strong that a particle traveling on a helix can on average
even travel farther from the initial position than a particle running straight.
Even if, after the time of one helical turn has passed, a straight-traveling
particle will on average be farther, the helix maintains the direction of its center
line more persistently, such that the helix ends up "straighter than a straight
line". Extracting the MSD from the experimentally measured trajectories, we
were able to show that we can fit our active Ornstein-Uhlenbeck particle to
the trajectories of sporozoites in a 3D gel and obtain correct predictions for
pitch and radius. Because the trajectory segments we observe are limited by
the extent of the imaged volume, we obtained these results from fitting the
beginning of the MSD curve. To more clearly quantify whether sporozoite
helices make use of the stabilization effect we discovered here, experimental
data of even more sporozoites, traveling unconstrained for even longer distances,

would be necessary, posing an experimental challenge.

From the abstract description of the active particle we moved to a more
detailed description of the force generation during gliding motility in Chapter 4.
Assuming a rigid cell shape, two main parts to the physics can be distinguished:
First, the actively generated surface flow is evolving as a result of its internal
driving and the friction it receives. This friction, on the other hand, depends
on the global motion of the rigid body, which is a result of the current overall
configuration of the surface flow and the cell geometry. We formulated a closed
system of integro-differential equations describing this intricate coupling, and
found that the introduction of geometry tensors, condensing the static influence
of geometry and removing it from the dynamical problem, was key. Computing
these geometry tensors allowed deriving analytical results for the stationary
states and estimates for their stability. Using computer algebra software to
analytically calculate the geometry tensors for fixed geometries, including a
spherocylinder, an ellipsoid, and a curved cylinder, then allowed us to perform
classical bifurcation analysis, using changes to the underlying geometry as a
control parameter. The most important result was that axisymmetric shapes
often have only one stable solution: to rotate in place. Breaking this axial
symmetry by curving the cylinder leads to productive translation, previously
unstable, becoming a stable solution. This offers a plausible explanation to
a long open problem in apicomplexan parasitology: Not only Plasmodium

sporozoites, but also ookinetes and Tozxoplasma tachyzoites have a curved,
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non-axisymmetric geometry. Our theory suggests that this supports organizing
their surface flow for productive migration. Of course there are many other
factors that could contribute to the evolutionary selection of curved shapes,
including more efficient spatial exploration or association with the curvature of
target blood vessels. Turning away from apicomplexans, the theory developed
here can also be applied to gliding bacteria and diatoms. For bacteria, which
are axisymmetric, we find that they do retain a rotational component and might
avoid only rotating by fixed helical tracks restricting their adhesins. Diatoms
have an even more reduced active gliding motility zone: only the small raphe
slit in their hard silicate shells allows force transmission to the substrate. Our
theory can be adapted to study the relation between raphe shape and resulting
trajectory, and because of the simplification the raphe’s fixed shape brings,
diatoms are a promising model system for more stochastic extensions of our

geometric theory of gliding.

With the experimental observations of Plasmodium sporozoite trajectories
and the theoretical understanding of how their surface flow and geometry relate
to the resulting motion, we finally developed a comprehensive numerical model
of apicomplexan gliders, and specifically sporozoites, in Chapter 5. This
model extended the analytical theory by including the adhesin concentration
as a second dynamic field and allowing some degree of deformability of the cell
in reaction to the acting forces. Most importantly, however, it presented us
with conceptual access to probe possible origins of the very peculiar chirality
behavior seen in the experiments. This included the 3D right-handed chirality
of the parasites’ helical trajectories, but also extended to 2D motion on glass
slides. Underneath the gel, reaching the glass slide from above, the parasites
circle clockwise—opposite from their known preference for counterclockwise
circling on established 2D motility assays, i.e. a glass slide in medium. Besides
delivering important information on the origin of chirality, this implies that
in these 2D assays sporozoites do not attempt to invade the glass slide, but
instead move on their backs, aiming to climb into the medium above. We
investigated this further by introducing two alternative models for chirality
generation, the chiral flow and asymmetric adhesion model. The combination of
2D and 3D chirality observations alone was sufficient to distinguish between the
two, with only the asymmetric adhesion model in agreement with the observed
sporozoite chirality. Strikingly, the previously reported chirality behavior of
Plasmodium ookinetes and Toxoplasma is different, precisely pointing toward

the chiral flow model. For sporozoites, we corroborated our hypothesis by



Summary & Outlook 141

an advanced two-sided traction force microscopy assay and 3D STED super-
resolution microscopy. Mirko Singer once more performed these experiments,
and I performed the analysis, which allowed us to confirm that the driving
force of sporozoite migration is asymmetrically distributed as expected, and the
apical ring tilted in the direction of expected higher adhesin concentration and
hence higher force. With this, a comprehensive picture of sporozoite chirality
emerged: The structurally encoded tilt of the apical polar ring produces an
asymmetric release of adhesins, which leads to stronger force generation on
one side of the sporozoite. In 3D migration, the sporozoite is bent away from
this side, such that the more adhesive side forms the back, or dorsal, side. On
the classical 2D assay, the sporozoite attaches more reliably with this more
adhesive side, such that it runs on its back and a right-handed helix would lead
it upward, instead of invading the gel. Furthermore, ookinetes and Tozoplasma
tachyzoites plausibly generate chirality by the chiral flow model: their apical
rings are not tilted, their chiral microtubule corset may serve as a director, and
their thicker shape makes the chiral flow model overall more effective and more
easily controlled. The striking geometric feature of sporozoites—their very
slender cell body forced by the necessity to fit through the mosquitoes’ salivary
ducts—might have forced them to attain a different strategy. Because the chiral
flow acts via the lever arm given by the cell radius, the slender sporozoites
might have developed the tilted apical ring as a more effective alternative given

their slender shape.

The work presented in this thesis constitutes multiple significant advance-
ments. First, it deepens our understanding of apicomplexan and in particular
sporozoite motility. We make the first rigorous connection between the local
organization of the glideosome, the cell shape, and the resulting motion. This
understanding offers insights into the curvature of sporozoites, as a tool to help
self-organize the surface flow and use the stabilizing effect of helical trajectories,
and in particular into their chirality. The discovered distinction in the chirality
between Plasmodium sporozoites and Tozoplasma tachyzoites is consequential,
because in many aspects these systems are treated as similar, and results from
one are often extrapolated to the other. In terms of chirality and glideosome
self-organization, our work cautions that there might be some fundamental
differences in how these parasites organize their surface flow machinery. The
experimental assays developed, supported by the image and data analysis
software, are a second major contribution: The 3D assay is more sensitive to

quantify motility in mutant sporozoites, which are routinely used to study



142 Summary & Outlook

the effects of certain protein changes introduced by gene editing. For some
such mutants, the standard 2D assay produces just a negative result, i.e. the
parasites are unable to glide. But they can recover some motility in the 3D gel
assay, allowing more accurate quantitative measurements. Coupled with image
analysis and the theoretical framework developed here, we aim to link changes
in observed migration to functional changes in the mechanism of the glideosome.
The more general theoretical models, i.e. the active chiral Ornstein-Uhlenbeck
particle and the geometric glider theory, provide significant theoretical advances,
applicable to more general situations than just apicomplexan parasites. One
application in particular is the design of synthetic microgliders, which are
candidates for targeted drug delivery through tissues. The theories presented in
this thesis can be applied to optimize trajectory and shape design for maximal

persistence and velocity.

There are numerous points where the investigations herein can be continued
and improved. The 3D imaging was designed to observe many sporozoites and
be able to track them, which was accomplished and allowed definitive statements
about trajectory shape and chirality. However, it did limit the spatial and
temporal resolution achieved. Concerning time, we were in particular unable to
investigate whether previously observed stop-and-go behavior on 2D substrates
is still present or changed in the 3D environment, because the typical stop
times correspond to only one frame in our 3D imaging setup. Faster imaging
would answer if the fact that sporozoites seem to get stuck with their rear
end and thus slow down is an artifact of the non-physiological 2D assay, or a
general feature of their gliding motility. Higher spatial resolution would allow
us to extract more quantitative information from the reconstructed shapes of
individual sporozoites. Where we previously just observed a kink as sporozoites
transition from 3D to 2D motility, this might allow us to resolve at which
positions sporozoites kink how often and in which direction, yielding a more
precise model of their elastic properties. This could be used to improve the
very simple deformability model we introduced, in which we allowed only the
torsion to vary, and only via a simple relaxation. To dynamically deform the
shape simultaneously with adapting the surface flow and moving according to
overdamped dynamics is a challenging problem on its own. For predictive power
in understanding how sporozoites navigate complex environments, such a model
must be informed by the complex elastic properties of the sporozoite. By its
architecture (microtubules extend only to the nucleus behind the cell center), it

seems likely that the elastic properties of the sporozoite are changing along the
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Figure 5.19: Sporozoite motility probed by configurable spofold, a 3D micro-
printed scaffold, developed by Zeynab Tavasolyzadeh in the group of Prof.
Christine Selhuber-Unkel, in preparation for publication 8. a: SEM image
of a 2-layer spofold. Scale bar 10 um. b: Rendering of observed trajectories,
overlaid with reconstructed spofold position.

length of the cell. In this thesis, we mostly considered equilibrium configurations
of the motion and the optimal helical trajectories followed in the homogeneous
3D assay. Here, shape changes were not too crucial, and the equilibration
method was sufficient. But it also means that there are dynamical parameters
within the theory, for example the time scale with which the surface flow reacts
to external perturbations, that we cannot constrain by these experiments. One
way to address both the elastic model and the dynamic time scales is to observe
sporozoites in more complex, but still well-controlled, environments. To this
end, Zeynab Tavasolyzadeh from the group of Christine Selhuber-Unkel at
the IMSEAM, Heidelberg University, developed a microprinted scaffold, called
spofold. This regular cubic lattice with adjustable pillar spacing and diameter
presents a configurable 3D environment that can be embedded in medium or a
hydrogel. The presence of the structure makes imaging and analysis even more
challenging, but we now possess a setup of experimental conditions and image
analysis that allows us to systematically test and analyze sporozoite motility
in different spofolds (Fig. 5.19).

The results of this project exemplify the power of interdisciplinary col-
laboration, beyond just applying the tools of one field to another. In our
experimental collaboration between biophysicists and parasitologists, we de-
signed experiments, developed image analysis code, and built theoretical models
that allowed us to further our understanding of apicomplexan parasites, their
gliding, how it interacts with the cell architecture, and in particular how their
chirality is generated. The methods and ideas developed during this project are
much more general. The experimental assays are not limited to the analysis

performed here, but can now serve as a baseline to probe mutant parasite
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motility, learning in more detail how introduced mutations affect motility. The
theoretical frameworks, inspired by sporozoite biology, can be extended to other
microbes, including bacteria and diatoms, but also to the design of synthetic

microgliders.



Appendix A

Experimental and technical
details

A.1 Infection of Anopheles mosquitoes with P.

berghet and P. falciparum

Experiments for P. berghei were performed with a selection-marker-free ANKA
strain that constitutively expressed eGFP and mCherry in sporozoites (R/G)
[239], whereas for the P. berghei controls for P. falciparum an mCherry ANKA
strain was used [240]. On day -7, a CD1 Swiss mouse was injected i.p. with a
stabilate of (R/G). On day -3, 20 million parasites each were transferred into
two naive mice by i.p. injection. On day 0, exflagellation of both mice was
tested by taking a small drop of blood from the tip of the tail, placing it on an
objective slide, and covering it with a cover slide. After 10 minutes at 20°C,
exflagellation was evaluated on an inverted microscope with a 40x objective in
phase-contrast. Both mice were anesthetized and placed on top of a mosquito
cage with approximately 400 female Anopheles stephensi. Feeding took place
at room temperature (RT) for 20-30 minutes in the dark, then both mice were

sacrificed and the mosquito cage was incubated at 21°C and 80 % humidity.

Mosquito infection with P. falciparum tdTomato [241] was performed as
previously described [242]. Asexual cultures were maintained in vitro in O+
erythrocytes at 4 % hematocrit in RPMI 1640 supplemented with 2.1 mMm L-
glutamine, 25mM HEPES, 0.72mM hypoxanthine, 0.21 % (wt/vol) sodium
bicarbonate, and 10 % (vol/vol) heat-inactivated human serum. Cultures were
maintained at 37°C in a candle jar and gametocyte cultures were initiated at
0.5 % parasitemia and 4 % hematocrit. Medium was changed daily for up to 15
to 18 days without the addition of fresh blood to promote gametocytogenesis.
Adult An. stephensi mosquitoes (3 to 7 days after emergence) were allowed
to feed through a glass membrane feeder for up to 30 minutes on gametocyte
cultures at 40 % hematocrit containing fresh O+ human serum and O+ ery-

throcytes. Infected mosquitoes were maintained for up to 19 days at 25 °C with
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80 % humidity and were provided with a 10 % (wt/vol) sucrose solution.

A.2 Hydrogel assays and spinning-disk microscopy
for high-throughput 3D sporozoite imag-
ing

Hydrogels were prepared as in [116], soft hydrogels were prepared with 3 %
acrylamide (AA) and 0.03 % bisacrylamide (BIS). For reference and traction
force measurements, fluorescent beads (0.02 pm 660/680 nm) were added prior
to activation by APS and TEMED. After polymerization, gels were stored
in PBS at 4°C. For standard hydrogel assays, hydrogels were incubated for
30 minutes with RPMI medium with 3% BSA. Around 20 mosquitoes were
aspirated, cooled on ice, rinsed in ethanol, and then dissected in PBS to remove
the salivary glands. Salivary glands were transferred onto a 22x22 mm glass
cover slide with 30 uL. of RPMI/3% BSA and cut 1-2 times each using 27G
needles. The excess medium on top of the hydrogel was then removed and the
hydrogel inverted onto the prepared slide with cut salivary glands. The slide
was sealed with a 1:1:1 mixture of lanolin/vaseline/paraffin and imaged with a
20x oil-immersion objective at the spinning-disk confocal (PerkinElmer with
Nikon Ti series). Single-channel 4D stacks were acquired with 20-60 z-slices
with a spacing of 1 um, and 2-6's per frame depending on the number of z-slices.

Imaging of P. falciparum and P. berghei control sporozoite motility in
hydrogels was performed using a 20x objective on a Zeiss LSM 880 confocal
microscope. Focus was maintained using the Definite Focus system. Single-
channel 4D image stacks were acquired, consisting of 14 z-slices with a spacing

of 1.546 nm. Images were captured every 4.17s for a total of 120 frames.

A.3 Hydrogel sandwich assay for 2-way inva-
sion

For two-sided hydrogel invasion, hydrogels were prepared as for the high-
throughput sporozoite imaging with 3 % acrylamide (AA) and 0.03 % bisacry-
lamide (BIS) with fluorescent beads (0.02 pm 660/680 nm). The salivary glands
of 50 infected mosquitoes were collected in 100 pL. of RPMI on ice. Salivary
glands were physically disrupted with a plastic pestle inside a 1.5 mL tube for
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one minute, then 900 nL. of RPMI was added and the sample transferred into
a 15mL Falcon tube. The solution was carefully underlaid with 3mL of 17 %
(w/vol) Accudenz solution in water and centrifuged for 20 minutes at 2500 g
without braking. The interphase and top liquid was collected with a Pasteur
pipette and centrifuged for 3 minutes at 10000 g [243]. The pellet containing
the sporozoites was resuspended in 2 pL of RPMI/3 % BSA and placed on the
hydrogel with no excess buffer that had been incubated with RPMI/3 % BSA
for 30 minutes. The hydrogel was then covered by a second hydrogel and the
sample sealed at the edges and imaged at the spinning-disk confocal. The

sandwich invasion assay was imaged with a 20x oil objective.

A.4 Hydrogel sandwich assay for two-sided

traction force

For two-sided hydrogel traction force imaging of sporozoites, stiff hydrogels
with 5% AA and 0.3 % BIS and fluorescent beads (0.02 pm 660/680 nm) were
prepared and stored in PBS at 4°C. Sporozoite purification and sandwich
assembly was performed as for the 2-way invasion hydrogel sandwich assay.
Imaging was performed at the spinning-disk confocal with a 60x 1.49 NA
objective. Areas were selected where the distance of the two hydrogels was
between 1-21m. Using the beads, the two focal planes of the hydrogel surfaces
were selected and imaging was performed in the order of red to far-red for both
z-layers so that tension in the glass coverslip/hydrogel sandwich caused by focal

changes has relaxed by the time the far-red beads are imaged.

A.5 STED sporozoite preparation

For STED microscopy of subpellicular microtubules in living sporozoites, the
standard hydrogel assay was set up, the 30 pL. of RPMI/3 % BSA to collect
the salivary glands was supplemented with a 1M concentration of SiR-tubulin
(Spirochrome). The sample was sealed and incubated at RT for 3h. During
that time, sporozoites entered the hydrogel, reached the bottom, and, over
time, reduced motility. Imaging was performed with a 100x 1.4 NA objective
at the Abberior SLM 2D /3D STED using the 3D STED mode.



148 A.6 Decorrelation of body-frame for the OUP model

A.6 Decorrelation of body-frame for the OUP

model

We want to find the decorrelation of (ny) in the regime where €y dominates the
noise of the OUP. For that, we can use that the rotational problem possesses
axial symmetry around the z axis, and that the translational problem is
deterministic given a solution of the rotational problem. Therefore, the z
components of moments must be invariant under rotation of n; and n,, forcing
many expectation values to vanish. From the previous solution, Eq. 13, we
obtain

d(n;) = (2 xn;)dt =—-\(ny)dt . (A.1)

The analogous equation for ny can be expanded by introducing the vector
n3z, which completes n; and ny to an orthonormal basis, and using the Jacobi

identity,

d(ng) /dt = (2 x ng) = (2 X (n3 X ny)) (A.2)
= — (n3 X (n; x Q)) — (n; x (2 x n3))

In the first term, we can write n; X Q = (n; x ) + A, where by rotational
symmetry A is isotropic in the x, y-plane, and hence (n3 x A) = 0 (at least to

first order in A), such that, with the previous result,
— {ng % (m x Q)) = — (15 x (A (n1))) = —A (na) | (A3)

where the last step follows a similar argument (introducing an isotropic A and
computing the cross product nz X n; = ny through the averages). For the

second term, similar logic can be applied, yielding

—(np X (2 Xxn3)) = —(n; x (2 X (—ny xny))) (A.4)
= —(n; X (n2 X (n; x Q))) — (n; x (n; x (2 xny)))
= —A(ny) — (n; X (n; X (2 X ny))) . (A.5)

Now, with an analogous argument as used in the truncation in deriving Eq. 15,
for the last term in Eq. A.5 only the nj-orthogonal part of €2 x ny is relevant,

which is generated by the nj-parallel component of 2. We approximate this as
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Ql ~ Qon; to obtain
—(ny; X (n; X (2 X ny))) =Q(n3) , (A.6)
which ultimately combines to give
d (ng) /dt = —2X (n3) + O (n3) . (A.7)

An analogous equation can be derived for (n3), giving decay with twice the
original eigenvalue \ while rotating with angular speed €2y. The two terms in
the expansion of Eq. A.4 can be interpreted as the aforementioned decorrelation
of the plane on the one hand, and rotation and decorrelation within the plane,
on the other hand.
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