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ABSTRACT

Physicians face major challenges in perioperative decision-making, as they need to rely
on clinical intuition and limited information for critical real-time judgments. Spectral
imaging (SI) could support this process by rapidly and non-invasively revealing changes
in tissue composition that alter spectral signatures. While such changes often remain
invisible to the human eye or conventional RGB imaging, SI captures subtle variations
in tissue reflectance spectra at each pixel. Combined with machine learning (ML), this
high-dimensional data could efficiently yield clinically relevant insights.

Numerous proof-of-concept studies have demonstrated the potential of SI, particularly
for estimating functional tissue parameters such as oxygenation, thereby enabling non-
invasive distinction between perfused and ischemic tissue during surgery. However,
several important clinical applications of SI remain underexplored:

Clinical Gap: Automated Surgical Scene Segmentation Visual discrimination of
tissue types remains an important challenge for surgeons, and automated surgical
scene segmentation is a key component of surgical data science applications such
as surgical phase recognition and robot-assisted surgery. However, SI-based segmen-
tation, particularly in open surgeries, has received little attention. Consequently, it
remains unclear whether SI offers advantages over other imaging modalities (e.g., RGB
imaging) for surgical scene segmentation and how to optimally represent the input
data in terms of spatial granularity (e.g., pixels, entire images). Leveraging the largest
semantically annotated SI database to date, we close this gap and demonstrate that
SI consistently outperforms RGB across all spatial granularities. Our image-based SI
segmentation reaches performance comparable to a second human expert.

Clinical Gap: Sepsis Diagnosis and Mortality Prediction in Critically Il Patients
Sepsis remains a leading cause of mortality and critical illness. Early detection is vital
to reduce mortality risk, yet reliable biomarkers for timely diagnosis and outcome
prediction are still lacking. Sepsis diagnosis in intensive care unit (ICU) patients is
particularly challenging due to high baseline illness severity. SI could potentially close
this gap by capturing early signs such as edema formation and microcirculatory dys-
function. However, prior studies compare sepsis patients to healthy volunteers or
narrowly selected cohorts, introducing a substantial risk of shortcut learning from
confounding factors such as age and treatment regimens. We address this critical gap
through a prospective study in ICU patients, comprising the largest SI patient cohort to



date, in which we diagnose sepsis and predict mortality on the day of admission. Our
SI-based ML models achieve high accuracy, particularly when combined with minimal
clinical data, and outperform widely used biomarkers and scores, while enabling rapid,
non-invasive, cost-effective and mobile assessments.

Technical Gap: Investigation of Domain Shifts A key challenge for SI analysis is
its clinical translation. Numerous studies outside medical SI have shown that domain
shifts between training and real-world application data can severely degrade algorithm
performance, yet this issue has received little attention in medical SI. We are the first to
investigate the impact of important real-world domain shifts: [lluminant and hardware-
related shifts in functional tissue parameter estimation, geometric shifts (e.g., situs
occlusions) in surgical scene segmentation, and population shifts in sepsis diagnosis
and mortality prediction. Our results show that such shifts can substantially degrade
downstream task performance.

Technical Gap: Mitigating performance degradation under domain shifts We
propose methods to mitigate the performance degradation under domain shifts and
improve algorithm robustness. To address drops in functional tissue parameter estima-
tion due to illuminant changes, we introduce the first intraoperative, live illuminant
estimation approach. Our method outperforms state-of-the-art illuminant estimation
techniques from nonmedical domains, achieving accuracy close to the ideal scenario
of a perfectly known illuminant. Additionally, we provide recommendations to mitigate
hardware-related bias in SI study design. To enable robust surgical scene segmentation
under geometric domain shifts, we introduce a surgery-inspired data augmentation
strategy which restores in-distribution performance across diverse out-of-distribution
scenarios.

In conclusion, this thesis contributes substantial advancements towards the robust and
reliable application of ML-based SI analysis in real-world clinical settings. Specifically,
it enables, for the first time, (1) intraoperative functional tissue parameter estimation
under illuminant and hardware-related shifts, (2) automated surgical scene segmenta-
tion under geometric domain shifts, and (3) automated sepsis diagnosis and mortality
prediction among ICU patients. Our findings are supported by extensive validation
studies which are among the largest in the field of medical SI to date. To support
the research community and facilitate the clinical translation of SI, we have publicly
released datasets!, as well as our code and pretrained models?.

Thttps://spectralverse-heidelberg.org/
2https://github.com/IMSY-DKFZ/htc
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ZUSAMMENFASSUNG

Arzt:innen stehen im perioperativen Entscheidungsprozess vor groBen Herausforde-
rungen, da sie auf klinische Intuition und begrenzte Informationen angewiesen sind,
um kritische Entscheidungen in Echtzeit zu treffen. Spektrale Bildgebung (SI) konnte
diesen Prozess unterstiitzen, indem sie schnell und nicht-invasiv Verdnderungen in der
Gewebezusammensetzung aufzeigt, die spektrale Signaturen beeinflussen. Wahrend
solche Verdnderungen fiir das menschliche Auge oder herkdmmliche RGB-Bildgebung
oft unsichtbar bleiben, erfasst SI subtile Unterschiede in den Gewebereflexionsspek-
tren auf Pixelebene. In Kombination mit maschinellem Lernen (ML) konnten diese
hochdimensionalen Daten effizient klinisch relevante Informationen liefern.

Zahlreiche Machbarkeitsstudien haben das Potenzial von SI insbesondere zur Schét-
zung funktioneller Gewebeparameter wie der Oxygenierung gezeigt. Dies ermoglicht
beispielsweise eine nicht-invasive Unterscheidung zwischen durchblutetem und ischi-
mischem Gewebe wihrend chirurgischer Eingriffe. Andere wichtige klinische Anwen-
dungen von SI sind jedoch bislang nicht ausreichend erforscht:

Klinische Liicke: Automatisierte Segmentierung chirurgischer Szenen Die visuel-
le Differenzierung von Gewebetypen stellt fiir Chirurg:innen weiterhin eine zentrale
Herausforderung dar. AuSSerdem ist die automatisierte Segmentierung chirurgischer
Szenen ist ein Schliisselelement zahlreicher Anwendungen, beispielsweise in der ro-
botergestiitzten Chirurgie. Die Segmentierung mithilfe von SI wurde bislang kaum
untersucht, insbesondere in offenen Operationen. Folglich ist unklar, ob SI gegeniiber
anderen Bildgebungsmodalitidten (z. B. RGB) Vorteile bei der Segmentierung chirurgi-
scher Szenen liefert und wie die Eingangsdaten optimal hinsichtlich ihrer rdumlichen
Granularitit (z. B. Pixel, ganze Bilder) verarbeitet werden sollten. Aufbauend auf der
bisher groBten semantisch annotierten SI-Datenbank schliefen wir diese Liicke und
zeigen, dass SI iiber alle raumlichen Granularitdten hinweg besser abschneidet als RGB.
Unsere bildbasierte SI-Segmentierung erreicht eine zu einem menschlichen Experten
vergleichbare Leistung.

Klinische Liicke: Sepsisdiagnose und Mortalititsprognose bei Intensivpatienten
Sepsis bleibt eine fithrende Ursache fiir Mortalitdt und kritische Erkrankungen. Eine
frithzeitige Erkennung ist entscheidend, um das Sterberisiko zu senken, jedoch feh-
len bislang verldssliche Biomarker fiir eine rechtzeitige Diagnose und Prognose. Bei
Patienten auf der Intensivstation ist die Sepsisdiagnose aufgrund der hohen zugrundlie-
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genden Krankheitsschwere besonders herausfordernd. SI konnte diese Liicke schlie8en,
indem sie frithe Anzeichen wie Odembildung und mikrozirkulatorische Dysfunktion
erfasst. Frithere Studien verglichen Sepsispatienten jedoch lediglich mit gesunden
Probanden oder selektiven Kohorten, was ein erhebliches Risiko von ,Shortcut Lear-
ning“ durch Storfaktoren wie Alter- oder Behandlungsregimes birgt. Wir adressieren
diese kritische Liicke durch eine prospektive Studie an Intensivpatienten, der bislang
grofSten SI-Patientenkohorte, in der wir am Tag der Aufnahme auf die Intensivstation
Sepsis diagnostizieren und die 30-Tage-Mortalitdt vorhersagen. Unsere SI-basierten
ML-Modelle erreichen hohe Genauigkeit, insbesondere in Kombination mit wenigen
klinischen Daten, und iibertreffen weit verbreitete Biomarker und Scores. Gleichzeitig
ermoglichen sie schnelle, nicht-invasive, kosteneffiziente und mobile Messungen.

Technische Liicke: Untersuchung von Doménenverschiebungen Die klinische
Translation SI-basierter Algorithmen stellt eine zentrale Herausforderung dar. Zahl-
reiche Studien aus anderen Bereichen haben gezeigt, dass Domédnenverschiebungen
zwischen Trainings- und Einsatzdaten die Leistungsfahigkeit von Algorithmen erheb-
lich beeintrachtigen konnen. In der medizinischen SI-Analyse wurde dieses Problem
jedoch bislang kaum bertiicksichtigt. In unserer Arbeit untersuchen wir erstmals re-
levante Doménenverschiebungen und deren Auswirkungen, wie Beleuchtungs- und
hardwarebedingter Variationen auf die Schidtzung funktioneller Gewebeparameter,
geometrischer Verdnderungen (z. B. Situsverdeckungen) auf die Segmentierung chir-
urgischer Szenen sowie populationsbedingte Unterschiede auf Sepsisdiagnose und
Mortalitdtsprognose. Unsere Ergebnisse belegen, dass solche Domanenverschiebungen
die Leistungsfihigkeit SI-basierter Algorithmen deutlich reduzieren kénnen.

Technische Liicke: Adressierung von Domiinenverschiebungen Wir schlagen Me-
thoden vor, um Leistungseinbullen bei Domédnenverschiebungen zu mindern. Um
Ungenauigkeiten bei der Schiatzung funktioneller Gewebeparameter aufgrund von
Beleuchtungsdnderungen zu beheben, prasentieren wir den ersten intraoperativen An-
satz zur automatisierten Beleuchtungsschitzung. Unsere Methode iibertrifft den Stand
der Technik aus nicht-medizinischen Bereichen und erreicht eine Genauigkeit, die dem
Idealfall einer bekannten Beleuchtung nahekommt. Dartiiber hinaus geben wir Empfeh-
lungen zur Vorbeugung hardwarebedingter Variationen im Design von SI Studien. Fiir
die Segmentierung chirurgischer Szenen bei geometrischen Doménenverschiebungen
fithren wir eine von der Chirurgie inspirierte Strategie zur Datenaugmentierung ein,
die zur Trainingsdoméne vergleichbare Leistungen erzielt.

Zusammenfassend leistet diese Arbeit bedeutende Fortschritte fiir die robuste und zu-
verldssige Anwendung von ML-basierter SI-Analyse in realen klinischen Umgebungen.
Sie ermoglicht erstmals (1) die intraoperative Schédtzung funktioneller Gewebeparame-
ter unter beleuchtungs- und hardwarebedingten Veranderungen, (2) die automatisierte
Segmentierung chirurgischer Szenen unter geometrischen Domédnenverschiebungen
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Zusammenfassung

und (3) die automatisierte Sepsisdiagnose und Mortalitdtsprognose bei Intensivpati-
enten. Unsere Ergebnisse werden durch umfangreiche Validierungsstudien gestiitzt,
die zu den groten im Bereich der medizinischen SI zdhlen. Zur Unterstiitzung der
Forschungsgemeinschaft und Férderung der klinischen Translation von SI haben wir
Daten® sowie unseren Code und trainierte Modelle* 6ffentlich zugénglich gemacht.

Shttps://spectralverse-heidelberg.org/
*https://github.com/IMSY-DKFZ/htc
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CLINICAL MOTIVATION AND OPEN
CHALLENGES

1.1 Motivation

Advancements in medical imaging technologies have revolutionized healthcare by of-
fering detailed insights into the human body without the need for invasive procedures.
Since Wilhelm Conrad Rontgen captured the first X-ray in 1895, modalities such as
computed tomography, magnetic resonance imaging, positron emission tomography,
ultrasound, and various others have become essential for tasks like disease diagnosis,
treatment planning, and imaging-guided interventions [36, 2]. However, widely used
imaging techniques primarily provide morphological information and are limited in
their ability to monitor changes in tissue chemical composition and function. Moni-
toring these changes, which can result from pathological alterations, is essential for
the early detection and identification of tissue abnormalities [205].

Changes in tissue biochemical composition are often imperceptible to the human eye
and conventional imaging methods that mimic it. However, these changes do alter the
tissue’s spectral signature. Spectral imaging (SI), a technique that combines imaging
with spectroscopy and was initially developed for remote sensing [121], enables non-
invasive and quantitative measurement of tissue composition along with its spatial
distribution by capturing detailed spectral information for each image pixel [65] (cf.
Figure 1.1). SI holds substantial promise for medical diagnostics and imaging-guided
interventions, and could enhance our understanding of disease-related metabolic
processes [205, 380]. For example, retinal SI has shown promise in the diagnosis of
Alzheimer’s disease [207]. Additionally, several studies have highlighted the potential
of SI in accurately identifying tumors and delineating their boundaries across various
cancers, including colon cancer [229], breast cancer [255], brain tumors [202], and skin
cancer [203]. By reducing the risk of residual tumor tissue, SI could lead to improved
prognosis and survival outcomes [228]. Moreover, functional tissue parameters such
as oxygen saturation, perfusion, and water content can be estimated from SI data [367,



1 Clinical Motivation and Open Challenges

141, 188]. Identifying perfused and ischemic tissue is critical in most surgical interven-
tions, such as verifying the successful transplantation of organs [332], ensuring proper
anastomosis of blood vessels [326], and confirming effective vessel clamping to pre-
vent excessive bleeding [21]. While typically injection of contrast agents is required to
identify perfused and ischemic tissue, SI could provide this information non-invasively
and repeatedly [21]. Furthermore, SI-enabled functional imaging has demonstrated
potential for monitoring treatment response in diabetic foot ulcers [251] and shock
therapy [327], as well as for guiding the optimization of surgical techniques [248].

Despite numerous proof-of-concept studies showcasing the potential of SI across
various medical applications, its role in perioperative care remains underexplored.
For example, it is still unclear whether SI offers benefits for automated surgical scene
segmentation compared to conventional RGB imaging and how to optimally represent
the SI data for deep learning (DL)-based analysis. Likewise, the use of SI for rapid,
non-invasive sepsis diagnosis and mortality prediction in the intensive care unit (ICU)
has not yet been investigated, despite the urgent need for such a tool. Beyond these
clinical gaps, technical challenges concerning the robustness and generalizability of
SI-based algorithms continue to limit their clinical translation. This thesis addresses 3
key open challenges in advancing the clinical adoption of SI in perioperative care.

1.2 Open Challenges

First, this thesis investigates the accuracy of functional tissue parameter estimation
under real-world imaging conditions, focusing on challenges such as dynamic illumi-
nant shifts during open surgery and hardware-related spectral variability (Section 1.2.1,
Part IT). Second, it explores the potential of SI for automated surgical scene segmenta-
tion, addressing geometric domain shifts arising from factors like situs occlusions and
organ resections commonly encountered in real-world surgeries (Section 1.2.2, Part III).
Third, it pioneers the use of SI for rapid, non-invasive sepsis diagnosis and mortality
prediction in an ICU population, with a particular emphasis on evaluating algorithmic
generalizability under population shifts (Section 1.2.3, Part IV). A graphical overview of
the clinical and technical challenges addressed in this work is provided in Figure 1.1,
and the resulting core research questions are outlined below.
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Figure 1.1: Potential benefits and challenges of spectral imaging (SI) in the perioperative
workflow. Unlike conventional RGB imaging and human vision, SI captures de-
tailed reflectance spectra for each pixel, illustrated here with an example skin pixel
spectrum. This rich spectral information enables the estimation of functional tissue
parameters, and holds potential for automated surgical scene segmentation, as well
as rapid, non-invasive sepsis diagnosis and mortality prediction — critical challenges
in perioperative care. However, clinical translation of SI faces several challenges.
This thesis tackles inaccuracies in functional tissue parameter estimation caused
by dynamic illuminant shifts during open surgery and hardware-related spectral
variations (Part IT). It further explores optimal SI data representations for automated
surgical scene segmentation and addresses geometric domain shifts (Part III). Fi-
nally, it pioneers automated sepsis diagnosis and mortality prediction, evaluating
the generalizability of algorithms trained on selectively chosen cohorts to a clinically
more relevant intensive care unit population (Part IV).



1 Clinical Motivation and Open Challenges

1.2.1 RQ1: How can we achieve robust functional tissue parameter
estimation with spectral imaging under real-world imaging
conditions?

As outlined above, non-invasive, continuous, and quantitative functional parameter
estimation from SI data holds substantial promise for a range of perioperative appli-
cations, including organ transplantation [332], anastomosis assessment [326], partial
nephrectomy [21], the optimization of surgical techniques [248], as well as therapy
monitoring [83, 327]. Realizing this potential in clinical practice, however, depends
on obtaining accurate parameter estimates under real-world imaging conditions. As
illustrated in Figure 1.2, this thesis focuses on two major technical challenges to achiev-
ing this goal: dynamic illuminant shifts during open surgery and hardware-induced
spectral variability.

Illuminant Shifts During Open Surgery SI captures the intensity of light reflected from
tissue across various spectral bands. The resulting spectra are influenced not only
by the tissue’s chemical composition and functional states but also by the illuminant
spectrum (cf. Section 2.1 for a detailed review of spectral image formation). Therefore,
accurate SI analysis requires precise knowledge of the illuminant spectrum to extract
meaningful reflectance data and accurately estimate functional tissue parameters. This
can be achieved either by controlling the lighting conditions to ensure that only a light
source with a known spectrum illuminates the tissue or by capturing a reference image
of a known reflectance standard under the same illumination conditions as the tissue
image.

However, both approaches present challenges in clinical settings. In open surgeries,
for instance, the surgical site is typically illuminated by multiple light sources, such as
overhead lights, ceiling lights, and head torches, all of which may be moved during
the procedure. This creates a dynamic and complex combined illuminant spectrum at
the surgical site, which can change substantially over time. Requiring all lights except
the known light source to be turned off during image acquisition is impractical in
real-world open surgeries, as it would severely disrupt the surgical workflow and pose
risks to patient safety. Similarly, calibrating the SI system with a reflectance standard
is not feasible, as the standard would need to be placed in the surgical field, which is
impossible due to sterility requirements.

To overcome this substantial barrier in the clinical translation of SI, Chapter 3 investi-
gates the robust estimation of functional tissue parameters under real-world imaging
conditions. It includes an analysis of how real-world illumination impacts the accu-
racy of functional parameter estimation, and introduces the first approach for live
illuminant estimation that does not disrupt the surgical workflow. This work lays the
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Figure 1.2: Research Question 1 (RQ1) investigates how to achieve accurate functional tis-

sue parameter estimation from spectral imaging (SI) data under real-world
imaging conditions. (a) In open surgeries, the illuminant spectrum shifts dynami-
cally due to multiple light sources being switched on and off, or repositioned. Since
conventional illuminant calibration methods cannot be safely integrated into the
surgical workflow, this thesis analyzes how such real-world illumination shifts affect
parameter accuracy and introduces the first approach for automated illuminant
estimation. (b) Despite the growing adoption of SI devices, particularly the med-
ically certified Tivita® systems (Diaspective Vision, Am Salzhaff, Germany), the
impact of hardware-related spectral variability on the accuracy of functional pa-
rameter index estimation has not yet been studied. This thesis addresses this gap
by analyzing spectral shifts across device generations and between devices of the
same generation, as well as temporal variability over short-term (minutes to hours)
and long-term (months to years) periods, and provides recommendations for a
hardware bias-aware design of SI studies.
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foundation for safely integrating functional parameter estimation with SI into clinical
practice.

Hardware-Related Spectral Variability Beyond environmental influences such as illu-
minant shifts, variability in the SI hardware itself could affect the captured spectra and,
consequently, the accuracy of functional tissue parameter estimation. This issue is
particularly relevant given the growing body of studies using SI devices, most notably
the medically certified Tivita® systems (Diaspective Vision, Am Salzhaff, Germany).
These systems are widely used for assessing functional tissue parameter index images,
involving different device instances and generations. Furthermore, many studies com-
pare data acquired at different timepoints that can be up to months or even years apart
(cf. Section 4.1). Such studies implicitly assume stability of measurements over time
and comparability across devices, i.e., that neither short-term shifts (minutes to hours)
nor long-term shifts (months to years), nor differences between devices or generations,
affect measurement consistency. However, the extent of such hardware-related spectral
variability and its impact on the accuracy of functional parameter estimation has not
yet been investigated.

Chapter 4 closes this critical gap by presenting the first systematic analysis of hardware-
related sources of variation in SI measurements using Tivita® systems and by quanti-
fying their effect on functional tissue parameter indices. Based on these findings, it
introduces a set of recommendations for mitigating hardware-related variation in SI
study design. Adhering to these guidelines not only improves the reliability of func-
tional tissue parameter estimation but also supports unbiased data acquisition, thereby
laying a foundation for clinically robust SI applications beyond functional parameter
estimation — such as automated surgical scene segmentation, as well as sepsis diagnosis
and mortality prediction.

1.2.2 RQ2: How can we achieve robust surgical scene segmentation under
geometric domain shifts?

Semantic segmentation of surgical scenes is a crucial foundation for numerous surgical
data science applications, such as surgical phase recognition, and surgical robotics.
Through an automated delineation of organs, tissues, and instruments in the surgical
field, semantic segmentation enables intraoperative decision support and context-
aware assistance, thereby improving the quality of interventional medicine [223, 221,
308].

While the state of the art in surgical scene segmentation has primarily focused on
analyzing conventional RGB video data from minimally invasive surgeries [302, 125],
and on binary segmentation tasks such as instrument segmentation [294], full semantic
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Figure 1.3: Research Question 2 (RQ2) investigates robust surgical scene segmentation
under geometric domain shifts. (a) Surgical scene segmentation from spectral
imaging (SI) data remains underexplored, with the optimal spectral granularity
(conventional RGB imaging, full ST data or derived tissue parameter images (TPI))
and spatial granularity (pixels, superpixels, patches or full images) yet to be estab-
lished. This thesis provides the first systematic analysis of these factors for deep
learning-based surgical scene segmentation. (b) Real-world surgeries involve ge-
ometric domain shifts, such as situs occlusions and organ resections. This thesis
offers the first evaluation of segmentation model performance under such shifts
and introduces a novel approach to improve generalizability.
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scene segmentation using SI data from open surgeries has received little attention.
Consequently, it has not yet been determined whether SI data offers advantages over
other modalities like RGB data or processed spectral data (e.g., functional tissue pa-
rameters) and how to most effectively represent SI data for DL-based segmentation
(cf. Figure 1.3). These gaps in literature are addressed in Chapter 5.

Artificial intelligence (AI), and DL in particular, has driven substantial advancements
in various disciplines, as demonstrated by recent breakthroughs in text-to-image gen-
eration [278], image synthesis and style transfer [290], and the success of large language
models [348, 386, 274]. Al has also revolutionized the biomedical field, achieving impor-
tant milestones in protein structure prediction [164], drug discovery [282], personalized
medicine [116], and medical image analysis [206].

Despite the impressive performance of DL models on in-distribution data, general-
ization to real-world application data remains an important challenge. Numerous
examples demonstrate that model accuracy can drop substantially due to shortcut
learning and failing to extrapolate on out-of-distribution (OOD) data [288, 370, 378,
241]. This issue is particularly critical in healthcare, where understanding when al-
gorithms might fail is essential to prevent patient harm. Nevertheless, the topic of
generalizability remains largely underexplored in surgical scene segmentation.

To close this important gap, Chapter 6 presents the first investigation of the generaliz-
ability of surgical scene segmentation models under geometric domain shifts, such as
situs occlusions and organ resections — common challenges in real-world surgeries. It
introduces a novel approach to tackling these domain shifts, thereby advancing the
clinical translation of DL-based surgical scene segmentation.

1.2.3 RQ3: Can we reliably diagnose sepsis and predict mortality in an
intensive care unit population using skin spectral images?

Sepsis is a life-threatening syndrome that arises when a dysregulated host response to
an infection causes organ dysfunction [320]. It is a leading cause of mortality, with an
estimated 48.9 million cases resulting in 11 million deaths in 2017, representing 19.7 %
of all global deaths [296]. A major challenge persists in the early and accurate diagnosis
of sepsis, as the progression of irreversible organ damage increases the mortality risk
with each hour of delayed treatment [97]. Conversely, the unnecessary treatment of
patients misdiagnosed with sepsis using antibiotics contributes to the global surge
in antibiotic resistance [350]. As the clinical diagnosis of sepsis typically relies on
detecting organ dysfunction, sepsis is often recognized only in its more advanced
stages [320]. The nonspecific symptoms and signs of the sepsis syndrome, as well as
its complex, heterogeneous, and still not fully understood pathophysiology, further
complicate an early diagnosis [136].
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Figure 1.4: Research Question 3 (RQ3) investigates skin hyperspectral imaging (HSI) for

rapid, non-invasive sepsis diagnosis and mortality prediction in intensive care
unit (ICU) patients. (a) To date, automated sepsis diagnosis and mortality predic-
tion from HSI has not been studied in ICU patients. This thesis addresses this gap
by systematically evaluating the optimal measurement site (palm or finger), spectral
granularity (RGB, full HSI, or derived tissue parameter images (TPI)), and spatial
granularity (median spectra or patches). In light of recent advances in sepsis and
mortality prediction from clinical data, the analysis further compares HSI-based
models against clinical data baselines and examines the added value of multimodal
integration. (b) Since previous studies compared septic patients with selectively
chosen cohorts (e.g., healthy volunteers or patients undergoing pancreatic surgery),
the resulting models are at risk of shortcut learning. This thesis therefore investi-
gates their generalizability on a clinically relevant ICU population.
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In addition to the early identification of septic patients, accurately and swiftly recogniz-
ing those at high risk of mortality is crucial. Timely identification enables the prompt
implementation of appropriate interventions, which can substantially enhance patient
outcomes. It also contributes to the overall efficiency and effectiveness of patient
care by optimizing resource allocation, informing decisions about palliative care, and
offering greater insight into the factors influencing patient outcomes [155, 190].

Despite extensive research suggesting over 250 potential diagnostic or prognostic
biomarkers for sepsis and mortality, no robust and reliable biomarker has yet been
identified [265]. Consequently, there is a critical need for rapid, non-invasive diagnostic
tools that can accurately identify sepsis and predict patient mortality. In ICU patients,
the diagnosis of sepsis is particularly challenging due to disease complexity, high base-
line illness severity, and the difficulty of distinguishing sepsis from non-infectious
systemic inflammation [42, 212].

Building on the hypothesis that hyperspectral imaging (HSI) enables automated sepsis
diagnosis and mortality prediction by capturing early pathophysiological changes such
as microcirculatory dysfunction and edema formation, Chapter 7 presents the first
analysis of SI for rapid, non-invasive sepsis diagnosis and mortality prediction in ICU
patients. As illustrated in Figure 1.4, the study investigates the optimal measurement
site (palm or finger), spectral granularity (conventional RGB imaging, full SI data, or
derived tissue parameter images (TPI) data), and spatial granularity (median spectra
or patches) for DL-based prediction. Furthermore, given recent advances in sepsis and
mortality prediction from high-dimensional clinical data, the analysis also compares
SI-based models to clinical data baselines and explores the added value of combining
SI with clinical data.

Previous HSI-based studies compared septic patients with selectively chosen cohorts,
such as healthy volunteers or patients undergoing pancreatic surgery (cf. Section 7.1).
Such designs are prone to shortcut learning, as potential confounders like age, comor-
bidity and therapy regimens may bias the models [85], thereby limiting their generaliz-
ability to unseen data [113]. To address this risk, Chapter 7 investigates the generaliz-
ability of such algorithms to a clinically relevant ICU population.

1.3 Outline

This thesis is structured into 5 parts. Part I provides an introduction by outlining the
motivation behind the research, formulating the research questions, and providing an
outline in the present Chapter 1. It also presents the necessary background in medicine,
biophotonics, and machine learning in Chapter 2. Part II, Part IIT and Part IV detail the
research conducted to address the respective research questions RQ1, RQ2, and RQ3 (cf.
Section 1.2). These parts are organized into chapters, each focusing on a specific set of

12
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sub-research questions and comprising a related work section, a materials and methods
section, an experiments and results section, and a discussion and conclusion section.
This thesis closes with a high-level summary of the main findings and contributions,
followed by an outlook on remaining open questions in Part V.
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FUNDAMENTALS

2.1 Biophotonics Background

Biophotonics, which exploits the interaction of light with biological tissue for advanced
imaging, diagnostics and therapy, is a rapidly evolving field poised to significantly
impact current and future healthcare [253]. The basic functional principle of biopho-
tonics imaging is that light-tissue interaction depends on the tissue composition. Since
changes in light-tissue interaction change the spectral signature of the tissue, changes
in tissue composition can be measured [40]. While such changes are imperceptible
to the human eye, SI techniques exploit this principle to monitor and measure tissue
function and chemical composition by capturing tissue reflectance. The fundamentals
of light-tissue interaction are presented in Section 2.1.1. The subsequent sections focus
on SI, the biophotonics imaging method employed in this work. These sections cover
SI hardware (Section 2.1.2), processing techniques (Section 2.1.3), and methods for
estimating functional tissue parameters from SI data (Section 2.1.4).

2.1.1 Light-Tissue Interaction

The interaction of light with biological tissue encompasses several physical processes,
as illustrated in Figure 2.1 for light interaction in human skin tissue. First, light from
a light source strikes the biological tissue. The light may either be reflected at the
tissue surface, referred to as specular reflection, or undergoes refraction, scattering,
and absorption within the tissue. The likelihood of scattering and absorption events
depends on both the tissue composition and the wavelength of the light. Some of
the incident light eventually emerges from the tissue surface upon multiple scattering
events, referred to as diffuse reflection. SI devices capture this diffusely reflected light
to extract the encoded information about tissue composition and function.

15
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Figure 2.1: Schematic overview of light-tissue interactions in biological tissue. When light
interacts with human tissue (here: skin model, according to [264]), it can either
undergo specular reflection at the surface or experience refraction, scattering, and
absorption within the tissue. The likelihood of scattering and absorption events de-
pends on both the wavelength and tissue composition. Consequently, the diffusely
reflected light, captured by the spectral imaging device, carries valuable informa-
tion about the tissue’s structure and composition. Additionally, the depth of light
penetration in biological tissue depends on the wavelength, with the depth where
light intensity for a certain wavelength is halved denoted by stars. For visible and
near-infrared (NIR) light, this depth ranges from several hundred micrometers to a
few millimeters. Therefore, diffusely reflected light only carries information about
superficial tissue layers. Figure inspired from [311].
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Specular Reflection and Refraction When light encounters the boundary between two
media with different refractive indices, such as air and biological tissue, its behavior
depends on the angle of incidence, 0, relative to the surface normal (cf. Figure 2.1). If 6
exceeds the critical angle, 0., total internal reflection can occur, also called specular re-
flection. Specular reflectance, which describes the ratio of specularly reflected photons
to incident photons, is approximately wavelength-independent, as the wavelength
dependence of the refractive index is minimal [160]. Thus, aside from a multiplicative
factor, the spectrum of specularly reflected light is nearly identical to that of the inci-
dent light source. If 0 is below 6., the light is refracted into the tissue. The refracted
light can undergo scattering and absorption inside the tissue.

Absorption Absorption refers to the transfer of photon energy to the tissue, leading
to the destruction of the photon. The primary absorbers in biological tissues include
the chromophores deoxyhemoglobin (dHb), oxyhemoglobin (HbO,), water, lipid, and
melanin, with the latter predominantly found in skin and eye tissues [343, 157]. Their
absorption coefficients u,, which quantify on average how far a photon can travel
in a medium with a given chromophore concentration before being absorbed, are
depicted in Figure 2.2!. Key to functional parameter estimation using SI is the fact that
absorption coefficients vary between different chromophores and are also wavelength-
dependent. Additionally, the total absorption coefficient in biological tissues is a linear
combination of the individual absorption coefficients, weighted by the concentrations
of the respective chromophores [358]. Consequently, diffuse reflectance spectra, which
carry information about tissue absorption, can be utilized to estimate the concen-
trations ¢ of tissue chromophores, such as dHb (c4qup) and HbO; (cypo2), as well as
functional tissue parameters like tissue oxygen saturation (StO,):

$t02 = — 02 (2.1)

Cdub + CHbO2

Scattering Scattering refers to the alteration of a photon’s trajectory and/or wave-
length. Biological tissues are highly scattering, with the primary scatterers being cellular
structures such as membranes, nuclei, lysosomes, mitochondria, and entire cells [243,
48]. Elastic scattering occurs when a photon excites a molecule into a transient virtual
state, which subsequently re-emits the photon in a different direction upon relaxation,
without changing the photon’s energy [358]. This process, together with absorption,
dominates light-tissue interactions in biological tissues [48]. In contrast, inelastic
scattering (e.g., Raman scattering), where the photon energy changes, occurs with a
probability several orders of magnitude smaller than that of elastic scattering [48]. The

'More specifically, the absorption coefficients measure the likelihood of a photon to be absorbed per
unit path length travelled.
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Figure 2.2: Absorption and scattering in biological tissues. (a) Absorption coefficients are
shown for key chromophores in human tissue, within the 450-1000 nm spectral
range, including deoxyhemoglobin (dHb), oxyhemoglobin (HbO,), lipids, water,
and melanin. The underlying data was sourced from the website [269], based on
a comprehensive body of experimental research summarized in [157]. For dHb
and HbO,, the absorption coefficients were calculated from their molar extinction
coefficients, assuming a typical blood concentration of 150 g/L. (b) The reduced
scattering coefficient of human tissues is depicted, using averaged values compiled
from multiple studies as presented in [157].
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Figure 2.3: Human skin reflectance spectrum. The ¢!-normalized reflectance spectrum of
skin from healthy volunteers is displayed, with the mean spectrum across 25 indi-
viduals shown as solid line and standard deviation represented by a shaded area.
Details of the underlying dataset are provided in Section 7.2.2.

anisotropy factor, denoted as g, represents the expected value of the deflection angle
a of a photon from its initial trajectory upon scattering:

g = (cos(a)) (2.2)

In biological tissue, g typically approximates 0.9, indicating a high degree of forward
scattering [376]. The likelihood of photon scattering per unit path length is described
by the scattering coefficient, u, while the reduced scattering coefficient p, further
accounts for the direction of scattering:

py = ths - (1-g) (2.3)

As illustrated in Figure 2.2, the reduced scattering coefficient is influenced by both the
wavelength of light and the quantity and distribution of scatterers within the tissue,
which differ across tissue types.

Multiple scattering events can result in a photon exiting the tissue from the same
side as the incident illumination, contributing to diffuse reflection, or from the op-
posite side, contributing to transmission. In SI, it is the diffusely reflected light that
is typically captured by the imaging device. It is used to determine the tissue diffuse
reflectance, measuring the ratio of diffusely backscattered photons to incident photons.
An exemplary diffuse reflectance spectrum for skin is shown in Figure 2.3.

The average number of photons penetrating to a given tissue depth decreases progres-
sively due to absorption and scattering, a process called attenuation. Since absorption
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Figure 2.4: Human vision spectral sensitivity. Human vision is limited by the presence of 3
types of cone cells, the short-, middle- and long-wavelength cones. Their spectral
sensitivities are broad, peaking around 420 nm, 530 nm, and 560 nm, respectively.
Spectral sensitivity data for human cone cells is sourced from [325].

and scattering depend on both tissue composition and photon wavelength, the light
penetration depth is also wavelength-dependent. In skin, the penetration depth at
which the intensity of the incident light is halved ranges from several hundred mi-
crometers to a few millimeters for visible and NIR light, with light in the wavelength
range 600-930 nm penetrating deepest [20, 101]. Consequently, diffusely reflected light
primarily provides information about superficial tissue layers, making SI particularly
useful for analyzing tissue surfaces, such as skin or the exposed surface of internal
organs during surgery.

2.1.2 Spectral Imaging Hardware

SI devices capture the diffusely reflected light of biological tissue across multiple wave-
lengths, typically spanning the visible to NIR range [270]. Unlike traditional spec-
troscopy, which measures the reflectance spectrum at a single point, these devices
capture spectral data for every pixel in an image, producing 3-dimensional imaging
cubes with two spatial and one spectral dimension. This allows for the analysis of
spatial variations in tissue reflectance. Compared to human vision and conventional
RGB imaging, which mimics human vision (see Figure 2.4 for the spectral sensitivity of
human vision), SI devices record the reflected light in a greater number of narrower
spectral bands, often extending beyond visible light. Depending on the number and
bandwidth of these spectral channels, the imaging modality is either referred to as
multispectral imaging (MSI) or HSI. MSI captures up to tens of relatively broad, non-
contiguous spectral bands, whereas HSI captures up to hundreds of narrow spectral
bands [65].
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There are several approaches to MSI and HSI, which can be broadly divided into
two categories: scanning techniques, which capture data by sequentially scanning
either the spatial or spectral dimension, and snapshot techniques, which acquire both
spectral and spatial information simultaneously. Figure 2.5 illustrates the functional
principles of cameras from both categories that are used in this thesis.

The medical device-graded HSI systems TIVITA® Tissue and TIVITA® Surgery (Diaspec-
tive Vision GmbH, Am Salzhaff, Germany), utilized in this thesis, employ a push-broom
scanning technique. In push-broom scanning, a broad-spectrum light source illumi-
nates the entire field of view across the full wavelength range. As depicted in Figure 2.5,
an entrance slit blocks all reflected light except for a single line of the image, which is
then spectrally dispersed onto the camera sensor. By moving the slit across the scene,
the system captures the complete HSI cube line by line.

This technique provides detailed spectral information, with the TIVITA® systems cap-
turing 100 spectral channels across the visible and NIR range from 500-1000 nm, each
with a bandwidth of approximately 5 nm (cf. Figure 2.6 for spectral sensitivities of the
channels) [141, 188]. However, it suffers from poor temporal resolution: capturing a
single HSI cube of dimensions 640 x 480 x 100 (width x height X number of spectral
channels) takes an acquisition time of approximately 7s. This leads to several lim-
itations in clinical settings. First, motion artifacts from patient movement, such as
breathing, can distort the images, and the system is not suitable for handheld use. Sec-
ond, highly dynamic processes, such as rapid perfusion changes, cannot be adequately
monitored at low temporal resolution [360].

Snapshot imaging offers an alternative technique for video-rate SI, capturing the en-
tire MSI cube in a single exposure. This is achieved using mosaic sensors, where a
repeating pattern of bandpass filter arrays is placed over the sensor, with each sensor
pixel assigned to a specific bandpass filter (cf. Figure 2.5). Since each pixel in the array
captures a different spectral channel, the simultaneous acquisition of all spectral chan-
nels is possible. The recorded data is then demosaiced to reconstruct the MSI cube by
stacking the pixel values corresponding to the same filter array. The MSI snapshot cam-
era MQO22HG-IM-SM4x4-VIS (XIMEA GmbH, Miinster, Germany) used in this thesis
captures 16 spectral channels at a rate of 25 Hz [25]. While this technique supports high-
speed imaging, it comes with trade-offs in both spectral and spatial resolution. The
spectral resolution is reduced, with fewer channels and broader spectral bandwidths
compared to HSI devices, as illustrated in Figure 2.7. Most of the spectral channels
exhibit secondary peaks in spectral sensitivity due to second-order interferences in the
bandpass filters?. Additionally, the spatial resolution is lower, generating MSI cubes
with spatial dimensions of 272 px X 512 px.

For a comprehensive review of additional imaging techniques, see [65, 73].

2This problem has been solved in newer generations of the camera.
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Figure 2.5: Functional principles of scanning and snapshot spectral imaging devices. (a) In
the push-broom scanning device TIVITA® (Diaspective Vision GmbH, Am Salzhaff,
Germany) used in our work, a slit aperture selects a line of the image, which is then
spectrally dispersed onto a camera sensor. As the slit moves across the scene, the
hyperspectral imaging cube is gradually built. (b) In the snapshot device MQ022HG-
IM-SM4x4-VIS (XIMEA GmbH, Miinster, Germany) used in our work, spectral data
is captured simultaneously for all pixels in the image. This is achieved through a
mosaic sensor, where each pixel is subdivided into an array of subpixels, each with
its own bandpass filter. This subfigure is adapted from [21].
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Figure 2.6: Estimated spectral sensitivities of our hyperspectral imaging device. Unlike
human RGB vision (see Figure 2.4), which is limited to 3 broad spectral channels,
the TIVITA® system (Diaspective Vision GmbH, Am Salzhaff, Germany), used in our
work, captures 100 narrow, contiguous spectral channels in the range 500-1000 nm
at a bandwidth of 5nm. Figure adapted from [311].
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Figure 2.7: Spectral sensitivities of our multispectral imaging device. The MQ022HG-IM-
SM4x4-VIS (XIMEA GmbH, Miinster, Germany), used in our work, captures 16
spectral channels within the range 465-641 nm. In comparison to our hyperspectral
imaging device (cf. Figure 2.6), the spectral channels are broader and often exhibit
secondary peaks in spectral sensitivity due to second-order interferences in the
bandpass filters. Figure adapted from [21].
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2.1.3 Spectral Image Processing

Raw SI measurements are influenced by various factors, such as the illumination source,
the optical properties of the tissue, and the characteristics of optical components
and sensor. To extract meaningful diffuse reflectance spectra from SI data, several
preprocessing steps are typically applied, including dark and white calibration, and
normalization.

Dark and White Calibration Sensors in SI devices are subject to dark current, which is
the signal generated by the sensor in the absence of light. It is a function of the sensor
temperature and proportional to the exposure time. To correct for this noise source, a
dark image is taken by keeping the camera shutter closed [215].

White calibration is performed to correct for variations in the illumination and sensor
response. It involves capturing an image of a white reference standard, a material with
known reflectance properties, under the same lighting conditions as the tissue [91].
Typically, a National Institute of Standards and Technology-certified Spectralon® (Lab-
sphere Inc., North Sutton, United States of America) diffuse reflectance target is used,
offering nearly uniform reflectance above 99 % across the 400-1500 nm wavelength
range [95].

The tissue reflectance image R is obtained from the raw SI measurement I, the dark
image D and white reference image W as:

I-D
R =
W -D

(2.4)

White calibration can be challenging under dynamically changing illumination, as a
new white reference image must be captured each time the lighting changes. This is
particularly problematic in open surgeries, where lighting conditions can vary sub-
stantially due to multiple light sources like overhead lamps, ceiling lights, and head
torches, which are frequently adjusted or switched on and off during the procedure [24].
Recalibrating with a diffuse reflectance target at the surgical site is generally infeasible
due to sterility concerns. As a result, up to date, all additional light sources must be
turned off during SI acquisition to maintain the static lighting conditions used during
calibration [141, 188]. We address this important issue in Chapter 3.

Normalization Variations in illumination intensity, such as changes in the distance
between the light source, tissue, and camera, can cause multiplicative shifts in the
measured spectral reflectance R [66]. To correct for this, the reflectance image is nor-
malized by dividing it by the mean reflectance across all spectral channels, effectively
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performing ¢!-normalization along the spectral dimension [367]. This normalization
is essential for ensuring consistent comparison of reflectance spectra across different
measurements.

Additional processing steps may be required depending on the specific application and
camera setup, such as compensating for a non-linear camera response or temperature-
dependent dark current. Techniques to handle these challenges have been explored in
prior work [134, 126, 230, 170].

2.1.4 Functional Parameter Estimation from Spectral Images

A key application of medical SI is estimating functional tissue parameters at each image
pixel, as illustrated in Figure 1.2 with an example parametric map. This information can
offer valuable guidance for perioperative decision-making. However, several challenges
need to be addressed to enable functional tissue parameter estimation based on SI
data.

While light-tissue interactions in biological tissue can be analytically described under
mild modeling assumptions (e.g., only elastic scattering being present) using the radia-
tive transfer equation, this differential equation is difficult to solve without introducing
simplifications based on strong modeling assumptions [384]. One common simpli-
fication leads to the Beer-Lambert law, the most widely used method for estimating
functional parameters from SI data [77, 300, 29, 368, 256]. Although this approach is
computationally efficient, it relies on several assumptions that are violated in clinical SI
applications. These include the assumption that photons travel the same path length
through tissue (ignoring wavelength-dependency and tissue inhomogeneities), that
chromophores do not interact with each other (invalid, for instance, with fluorescent
molecules), that scattering remains constant (ignoring, for instance, changes in scat-
tering coefficients during neuronal or muscle activation [171]), and that chromophore
concentrations are homogeneous across the tissue (which is rarely the case due to the
presence of multiple tissue types) [138]. A comprehensive overview of the extensions of
the Beer-Lambert law and their limitations can be found in [256]. Overall, methods de-
rived from the Beer-Lambert law are inadequate for estimating functional parameters
in complex biological tissues [366].

Another substantial challenge in validating functional parameter estimation methods is
the absence of ground truth data. Currently, there is no established reference technique
that can provide functional parameters, such as StO,, across the entire field of view of
a camera.

To overcome these challenges and the limitations of Beer-Lambert-based methods,
several alternative approaches have been proposed to estimate functional tissue pa-
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rameters from HSI and MSI data. These include techniques such as spectral derivatives
and Monte Carlo simulations.

Spectral Derivatives Holmer et al. proposed using spectral derivatives to estimate
functional tissue properties from HSI data acquired with the TIVITA® systems. Since
changes in the molecular composition of biological tissue cause intensity variations
in the reflectance spectrum without shifting the positions of its peaks, they suggested
quantifying chromophore concentrations using the first and second derivatives of the
spectrum in wavelength regions most sensitive to concentration changes [141]. For
example, hemoglobin displays characteristic absorption peaks between 570 nm and
590 nm, with intensity variations being a function of its oxygen content. While this
method is straightforward to implement, it requires a high number of narrow spec-
tral bands to accurately compute the spectral derivatives. To this end, this approach
is used throughout this thesis in the estimation of functional parameters from the
HSI cubes acquired with the TIVITA® cameras, while a different approach is needed
for functional parameter estimation from MSI data. Further details on the spectral
derivative approach are provided in [141].

Monte Carlo Approach To enable a data-driven approach for estimating functional
tissue parameters from MSI data in the absence of labeled real data, machine learning
(ML) methods have been proposed to regress these parameters using Monte Carlo
simulations of diffuse reflectance spectra [367, 368]. This method involves generating a
digital representation of the tissue, incorporating all necessary optical and physiological
parameters. Subsequently, the probabilistic path of photons through the tissue is
simulated and the fraction of diffusely reflected photons collected to determine the
reflectance spectrum. We employ this approach in Chapter 3 to estimate the StO,
from MSI data. Specifically, our simulations utilize the GPU-accelerated version of
the Monte Carlo Multi-Layered framework [356, 357], developed by Alerstam et al.
[11], with functional parameter regression performed using a random forest model (cf.
Section 2.3.2 for an introduction of random forests). Further implementation details
can be found in [366, 367, 21] and in Chapter 3.

2.2 Medical Background

Having covered the physical foundation of SI and the functional parameter estimation
thereof, this section provides the medical background necessary to understand the
clinical motivation, challenges and hypothesis related to the exploitation of SI for
functional parameter estimation and fully semantic scene segmentation in surgery
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(Section 2.2.1), as well as for automated sepsis diagnosis and mortality prediction in
perioperative care (Section 2.2.2).

2.2.1 Challenges and Future of Surgical Interventions

Surgical interventions are increasingly complex procedures that require a high level of
skill, precision, and decision-making [299, 112]. For instance, complications following
visceral surgery, also known as abdominal surgery, remain a major concern, affecting
nearly half of all patients undergoing major abdominal procedures. Postoperative
complications lead to a considerable increase in length of hospital stay, healthcare
costs, and patient morbidity and mortality rates [198]. In Germany, 2% of patients
undergoing visceral surgery die within the hospital [33]. At a global scale, death within
30 days from surgery is the third leading cause of mortality, accounting for 7.7 % of all
global deaths [247].

Over the past decades, surgical techniques have evolved significantly with the rise of la-
paroscopic surgery. Unlike traditional open surgery, laparoscopic surgery is performed
through small incisions, offering benefits such as reduced postoperative pain, shorter
recovery times, and fewer postoperative complications [238]. As a result, laparoscopic
procedures are increasingly replacing open surgeries [323, 305].

However, despite these advantages, laparoscopic surgery presents new challenges for
surgeons, such as reduced tactile feedback, limited dexterity and field of view due
to the confined space, and a two-dimensional camera view of the surgical field that
hampers depth perception [45]. Robot-assisted surgery, introduced in 1984 to address
these limitations [114], enhances surgical precision and reduces complication rates
by providing improved dexterity, tremor reduction, and 3-dimensional visualization
of the surgical field. This leads to better outcomes and a more ergonomic working
environment for surgeons [244]. As a result, robot-assisted surgery has gained popu-
larity across various surgical specialties and has become the gold standard in several
minimally invasive procedures such as tumor nephrectomy, renal tumor excision, and
prostatectomy [49].

Despite these substantial advancements in surgical techniques and technology, surgi-
cal interventions remain challenging and still carry a high risk of complications [191].
Approximately 30 % of surgical complications are attributed to human error, particu-
larly misrecognition [333]. Patient outcomes are linked to the technical skills of the
surgeon [330]. Inexperienced surgeons often lack sufficient anatomical knowledge, and
reduction of cognitive abilities due to fatigue deteriorates the surgeon’s performance
(166, 129].

To this end, further technological innovations are needed to enhance surgical vision,
provide real-time guidance, and support decision-making, ultimately reducing com-
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plications and improving patient outcomes [60]. We propose that functional tissue
monitoring and automated surgical scene segmentation based on SI data could sig-
nificantly enhance the quality and outcomes of surgical care. The following sections
discuss the importance of functional tissue information (Section 2.2.1.1) and fully se-
mantic scene segmentation (Section 2.2.1.2) in surgery.

2.2.1.1 Functional Tissue Information in Surgery

Real-time functional tissue information, such as StO,, perfusion, hemoglobin and
water content (cf. Figure 1.2 for exemplary parametric maps), is crucial for a variety of
surgical procedures.

In resective procedures such as tumornephrectomy or hemicolectomy, for instance, it
is crucial to interrupt blood flow to a specific tissue region through vascular clamping,
a process referred to as ischemia induction [338]. Verifying successful ischemia is essen-
tial, as selective clamping of segmental arteries can be challenging due to substantial
inter-patient variability in vascular anatomy. Failure to achieve proper ischemia can
result in excessive bleeding during resection [234]. The current gold standard involves
injecting a fluorescent dye, leading to several limitations — the test cannot be eas-
ily repeated if clamping is unsuccessful, and there is a risk of severe complications,
such as anaphylactic shock [108, 64]. MSI has shown promise for real-time ischemia
monitoring without the need for an invasive application of contrast agents [21].

Inversely, ensuring adequate blood and oxygen supply to tissues during reperfusion is
critical, especially in anastomotic areas and transplanted organs. Inadequate tissue
perfusion can lead to ischemia, necrosis, organ dysfunction, and anastomotic leakage,
all of which contribute to higher morbidity and mortality rates [228, 326]. Several stud-
ies have highlighted the potential of SI for monitoring tissue function during colorectal
resection [159], liver resection [331], esophagectomy [181], and transplantation [332,
316].

Furthermore, functional tissue information obtained from SI data also holds potential
for guiding therapy, such as optimizing the treatment of intraoperative hemorrhagic
shock [327]. Additionally, SI has been investigated for improving surgical techniques,
such as determining optimal resection margins in oncological surgeries [159], and
improving anastomotic techniques in esophagectomy [248].

2.2.1.2 Automated Surgical Scene Segmentation
Abdominal organs vary substantially among patients in terms of size, shape, posi-

tion, and vascular supply, making tissue differentiation in visceral surgery particularly
challenging, as depicted in Figure 2.8 [285, 150]. Surgeons must meticulously identify
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Figure 2.8: Human anatomy. (a) The anatomical sketch illustrates the 18 organ classes sub-
ject to surgical scene segmentation in Chapter 5 and Chapter 6. (b) In opposite to
the clear tissue discriminability conveyed in the anatomical sketch, intraoperative
tissue discrimination is challenging. Sample images are shown for a minimally
invasive gastrectomy (left) and an open pancreatectomy (right). Anatomical sketch
adapted from [311], based on an image by Mikael Haggstrom via Wikimedia Com-
mons, Public Domain [132]. Intraoperative sample figure from [191].
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structures in each case, with anatomical variations further complicated by the presence
of connective tissue covering organs and vulnerable structures like nerves, vessels, and
ducts. This increases the risk of unintended tissue damage and surgical complications.
For example, surgically-induced neuropathic pain affects 10-50 % of patients undergo-
ing routine surgeries due to nerve transection, contusion, stretching, or inflammation
[173, 324]. Bile duct injury, primarily caused by misidentification of biliary anatomy
by the surgeon, is a severe complication occuring in 0.4-1.5% of cholecystectomies.
It results in increased postoperative morbidity and mortality rates and often leads to
a substantial reduction in quality of life [262, 18, 63]. Tissue discrimination becomes
even more difficult in the presence of pathologies such as tumors, which can distort
anatomy and appearance. Delineating pathological from healthy tissue is critical, as
removing healthy tissue may cause complications and functional impairments, while
incomplete tumor removal increases the risk of recurrence and reoperation [254, 228].

Multiple studies have demonstrated the potential of SI in accurately identifying spe-
cific structures, such as tumors, and delineating their boundaries [203, 229, 255, 202].
However, the potential of SI for automated, fully semantic scene segmentation in vis-
ceral surgery remains underexplored. Surgical scene segmentation, which involves
the precise identification and delineation of all relevant anatomical structures in the
surgical field (e.g., organs, tissues, instruments, pathologies), is critical for advanc-
ing computer-assisted surgery. Providing this information in real-time, for instance
through augmented reality overlays, could help reduce human misinterpretations and
ensure safer, high-quality surgeries, that are less dependent the surgeon’s experience
level [184]. Beyond improving intraoperative tissue discrimination, automated surgical
scene segmentation could serve as foundation for numerous other applications, such
as surgical education, tracking of target structures, and the development of navigation
and decision support systems that are aware of the surgical context, offering warnings
against potential complications and providing actionable recommendations [183, 128].
Furthermore, it is an important prerequisite for autonomous robotic surgery, where the
robot must fully understand the surgical scene to perform procedures independently
[308, 184].

While surgical scene segmentation is an active area of research, most existing methods
rely on RGB images, as this is the standard imaging modality used in minimally invasive
surgeries. However, RGB images provide limited information about the underlying
tissue properties and composition. In contrast, SI provides rich spectral data that cap-
tures detailed biochemical information, offering the potential for more precise tissue
differentiation. This suggests that integrating SI could lead to a more comprehensive
and accurate segmentation of the surgical scene compared to conventional RGB imag-
ing. To explore this hypothesis, we investigate the potential of SI for automated surgical
scene segmentation in Chapter 5 and Chapter 6.
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2.2.2 Sepsis and Mortality in Intensive Care

Sepsis is a severe clinical syndrome in which infection induces a dysregulated immune
response leading to life-threatening organ dysfunction [320]. It is associated with high
mortality and morbidity and requires immediate recognition and treatment to prevent
further organ damage and death. The following sections provide an overview of the
epidemiology (Section 2.2.2.1), pathophysiology (Section 2.2.2.2), and diagnosis and
therapy of sepsis (Section 2.2.2.3).

2.2.2.1 Epidemiology of Sepsis

The Global Picture Despite intensive research efforts, sepsis remains a major cause of
morbidity and mortality worldwide [362]. Collecting population-level data on sepsis is
challenging, particularly in low-income countries where sepsis often goes unrecognized
or unreported [103]. As a result, estimating the true global burden of sepsis is complex.
The 2020 IHME Global Burden of Sepsis study [296] estimated that in 2017, sepsis
affected approximately 48.9 million people worldwide (with a 95 % confidence interval
(CI) of 38.9 to 62.9 million). These cases led to 11 million sepsis-related deaths (with a
95 % CI of 10 to 12 million). Notably, sepsis contributed to approximately 19.7 % (95 % CI
of 18.2 to 21.4 %) of all deaths in 2017. The distribution of sepsis cases is uneven across
countries (cf. Figure 2.9), with approximately 85 % (95 % CI: 82.2 to 87.4 %) occurring
in lower-middle-income countries.

A study conducted across 1072 US hospitals in 2014 found that sepsis was the most
common cause of in-hospital deaths, with one in every two to 3 deaths occurring in
patients with sepsis. In most cases, sepsis was already present on admission [210].
Furthermore, physical disability, cognitive impairment, and hospital readmission are
common outcomes for sepsis survivors, requiring ongoing medical treatment and
support and highlighting the substantial economic burden of sepsis [271]. Every third
sepsis survivor dies within one year, and every sixth survivor develops persistent cog-
nitive impairment [271, 242]. According to a retrospective study on about 2.5 million
sepsis cases in the US between 2010 and 2016, the average cost per hospitalized sepsis
patient ranges from about $18 000 to over $50 000. In 2013, the total cost of sepsis in
the US was estimated to be over $24 billion, representing 13 % of all US hospital costs
[260].

Epidemiology in Germany In Germany, an average of 169 patients die from sepsis daily.
In 2017, there were approximately 90 000 sepsis cases, with around 26 000 involving
septic shock. The overall in-hospital mortality rate for septic patients was 38.4 %, rising
to 56.7 % for those with septic shock [362]. The number of sepsis cases is continuously
increasing at a rate of 5.7 % per year based on data from 2013 to 2017 [102]. According to
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Figure 2.9: Global burden of sepsis in 2017. Map of the estimated incidence of sepsis (a) and
deaths related to sepsis (b) for all countries worldwide in 2017. Figure modified

from [296].
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a study by Rose et al., the sepsis incidence in Germany was 178 per 100 000 inhabitants
in 2016. Substantial regional differences in sepsis prevalence and mortality rates exist
and could be associated with the socioeconomic status and pharmacy density [293].
Among 11883 patients in 133 ICUs, a sepsis rate of 17.9% could be observed, with
in-hospital mortality ranging from 40.4 % to 55.2 % [88, 127].

2.2.2.2 Pathophysiology of Sepsis

Sepsis is a syndrome which is both influenced by pathogen (e.g., kind of pathogen, site
of infection) and host factors (e.g., genetics, age, comorbidities, environmental factors)
and evolves over time. The pathogenesis of sepsis therefore remains heterogeneous and
not fully understood [90, 362, 55]. Distinguished from infections, the key characteristics
of sepsis are (1) a dysregulated host response to infection and (2) the presence of
organ dysfunction [320]. The goal of this section is to provide a high-level summary
of the main drivers of sepsis pathophysiology, namely a dysregulated inflammation
response that triggers a complex interplay between endothelial and immune system
with associated coagulation abnormalities (cf. Figure 2.10) [19].

Initiation through Infection Sepsis arises from an initial infection, with the lung and
abdomen being the most common sites of infection [200, 351]. In patients that are
immunocompetent at the time of infection, bacterial infections, particularly with
pathogens like Escherichia coli and Staphylococcus aureus, predominate. Conversely,
viral and fungal infections are more common in immunodeficient patients [362].

Immune Dysregulation In immune homeostasis, there is a finely tuned balance be-
tween pro-inflammatory immune response, which is essential for the elimination of
pathogens, and anti-inflammatory immune response, which is essential for the regula-
tion of inflammation and tissue repair. The pathophysiology of sepsis is characterized
by a disruption of this balance. The resulting immune dysregulation varies across
patients and over the course of sepsis, ranging from hyperinflammation with potential
collateral organ damage, to immunosuppression (also referred to as immuno-paralysis
or immune exhaustion) associated with increased susceptibility to secondary infec-
tions and reactivation of dormant viruses due to apoptotic depletion and functional
unresponsiveness (“exhaustion”) of immune cells [118]. The timeline of immune dys-
regulation in sepsis is not yet well understood [19]. While previous studies suggested
that sepsis progresses from an initial hyperinflammation phase to a later immuno-
suppression phase, more recent studies lead to the hypothesis that phases of hyperin-
flammation and immunosuppression can alternate or coexist dynamically throughout
the course of sepsis [143]. Both pro-inflammatory and anti-inflammatory immune
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responses are accompanied by the release of cytokines, chemokines, and other inflam-
matory mediators. An excessive secretion of cytokines, referred to as cytokine storm,
is associated with sepsis. It leads to an auto-amplification cascade of the immune
response causing fever, shock, respiratory failure and early death due to multiple organ
failure [246, 19].

Endothelial, Microcirculatory and Coagulation Dysfunction Endothelial cells, which line
the interior surface of vessels, contribute to the pro-inflammatory immune response by
sensing pathogens, recruiting immune cells, and producing inflammatory mediators
[16]. Early in sepsis, a maladaptive endothelial cell activation and endothelial damage
(e.g., due to the cytokine storm or bacterial endotoxins) lead to an increased vessel
permeability. The increased vessel permeability allows the leakage of plasma proteins
and fluids into the interstitial space. This leads to the formation of interstitial edema,
which provoke complications such as respiratory failure (referred to as acute respira-
tory distress syndrome) due to the accumulation of fluid in the alveoli [199] or septic
encephalopathy caused by damage in the blood-brain barrier [217]. Furthermore, the
formation of interstitial edema promotes increased venous pressure, resulting in areas
of microvascular stasis and tissue hypoperfusion [90]. The decreased local blood flow
velocity might also contribute to the amplification of the inflammatory response by
increasing the contact time between immune cells and endothelial cells [267].

The activation of endothelial cells leads them to release more nitric oxide, which causes
vasodilation and disrupts calcium homeostasis and compensatory reflexes. The het-
erogeneous distribution of nitric oxide expression in the vascular bed causes uneven
vasodilation, leading to a characteristic redistribution of blood flow in sepsis. Under
physiological conditions, perfusion and oxygen delivery are coupled to metabolic de-
mand, but in sepsis, this redistribution disrupts efficient oxygen and nutrient delivery.
As aresult, areas of tissue become either hypo- or hyperperfused, contributing to organ
dysfunction [267]. Extensive vasodilation and loss of intravascular fluid volume due to
increased vessel permeability are key drivers in the development of systemic hypoten-
sion, compromising blood flow and consequently oxygen supply to vital organs such
as the heart, brain, and kidneys, and ultimately causing organ damage. Patients with
persistent hypotension that does not respond to resuscitation therapy are diagnosed
with septic shock. Septic shock is associated with a hospital mortality rate of above
40 %, that is twice as high as the in-hospital mortality of sepsis alone [320, 296].

Under physiological conditions, the endothelium regulates the balance between co-
agulation and fibrinolysis to achieve hemostasis and prevent both systemic bleeding
and clotting [139]. Endothelial damage due to the inflammation in sepsis disrupts this
balance, leading to a pro-coagulant state [19]. As a consequence of the maladaptive
endothelial cell activation, the release of coagulation factors by the endothelial cells is
amplified, which promotes platelet aggregation and the formation of microthrombi
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[362]. The coagulation dysfunction in sepsis varies from mild to severe hematological
abnormalities with thrombi forming in small- and medium-sized vessels. The latter
condition, referred to as sepsis-induced coagulopathy (SIC), evolves in up to one third
of septic patients [4, 304]. Severe SIC leads to simultaneous widespread microvascular
thrombosis and excessive bleeding and is a key contributor to multiorgan failure [204].

Overall, the septic failure of the microcirculation resulting from endothelial dysfunction
promotes tissue hypoxia and organ dysfunction, particularly in the lungs, kidneys, and
liver [362].

Multiple Organ Failure Sepsis can impact any organ system, with dysfunction varying
from mild impairment to total organ failure. Single-organ dysfunction is uncommon in
sepsis. Because of organ-organ crosstalk, the dysfunction of one organ typically results
in the dysfunction of another, leading to the simultaneous dysfunction of multiple
organ systems. For example, kidney failure may lead to fluid overlead, affecting heart
and lung function, and the impaired elimination of toxins and metabolites from the
blood might further impair the functioning of other organs [201]. Sepsis mortality is
influenced by both the pattern and the number of co-occurring organ dysfunctions,
with rates increasing as the number of organ failures rises [298]. Studies report hetero-
geneous mortality rates of 14-40 % with a single organ failure, 20-76 % with two organ
failures, 30-90 % with 3 organ failures, and up to 100 % with 4 or more organ failures
[41].

The development of organ dysfunction across various organ systems involves a combi-
nation of several mechanisms. An excessive immune response contributes to tissue
damage through the toxicity of mediators, such as reactive oxygen species, which
harm the endothelium and mitochondria. Circulatory alterations, including systemic
hypotension, microcirculatory dysfunction, coagulopathy, and cardiovascular impair-
ment, result in tissue edema and tissue hypoxia. In recent years, cellular metabolic
alterations in septic patients are increasingly studied as they may also contribute to the
development of organ dysfunction [68, 201]. Many cell death pathways are dysregulated
in sepsis, either due to direct interaction with pathogens or as a result of the immune
response, leading to for example increased apoptosis of endothelial cells, respiratory
and gut epithelial cells, lymphocytes and cardiomyocytes [145, 201]. Mitochondrial
function, which is essential in energy production, protein synthesis and catabolism,
is commonly impaired in patients who do not survive sepsis [58]. As a consequence,
metabolic intermediates accumulate and cells become unable to maintain homeosta-
sis and function, leading to the apoptosis of organ and immune cells, and ultimately
promoting immunosuppression and multiple organ failure [149]. The role of the gut
and its microbiome in the development of multiple organ dysfunction is not yet fully
understood. The composition of the gut microbiome is profoundly disturbed in critical
illness, which may both be attributed to the disease itself and the interventions in
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critical care, such as the administration of antibiotics, vasopressors and opioids as
well as perenteral nutrition. Experimental work indicates that the microbiome plays
an important role in maintaining gut-barrier function and modulation of the innate
and adaptive immune system, and a disturbed composition might contribute to the
development of organ dysfunction [131]. One hypothesis, supported by substantial
experimental evidence, proposes that the injured gut mucosa releases toxic mediators
that are transported through lymph nodes and cause dysfunction in distant organs
[237]. Alternatively, an impairment in the epithelial barrier function may promote the
translocation of bacteria from the gut into the bloodstream, thereby contributing to
inflammation and organ dysfunction [268].

Autopsy studies suggest that in most organs, organ dysfunction is mainly functional
and accompanied by only minimal structural tissue damage. Exceptions are immune
cells, the gut and the spleen, in which higher levels of cell apoptosis could be observed
(146, 68, 362]. The organ dysfunction in sepsis may thus be a mixture of adaptive
and pathogenic responses, with the former being reversible and the latter leading to
irreversible damage. A cellular metabolic downregulation can be observed in early
sepsis, which may be a protective mechanism, seeking to re-prioritize cellular energy
consumption to limit further damage to the organs and maintain energy balance [267].
Nevertheless, the downregulation of cellular metabolism may also lead to a decreased
ability to respond to infections and repair tissue damage, ultimately promoting organ
failure [362]. In the lungs for example, processes that clear fluid from the alveolar space
are inactivated during sepsis, resulting in the progression of pulmonary edema [345].

In summary, the pathophysiology of sepsis is dynamic and heterogeneous and involves
a multitude of mechanisms that contribute to the development of organ dysfunction.
A dysregulated immune response, endothelial dysfunction and resulting microcircu-
lation and coagulation dysfunction could be identified as key drivers of sepsis in the
past two decades [201]. However, knowledge gaps remain: The understanding of the
pathophysiological events during sepsis is incomplete, and how immunological alter-
ations predispose to sepsis as well as the long term effects of sepsis on immunity are
fairly unknown [295]. Understanding the pathophysiology of sepsis is thus an active
area of research, and new insights are expected to contribute to the development of
novel diagnostic and therapeutic strategies [233].

2.2.2.3 Sepsis Diagnosis and Therapy

With increasing knowledge of the pathophysiology of sepsis, the definition and diagno-
sis of sepsis have evolved over time. The most recent update occurred in 2016 when an
expert consensus process, led by the European Society of Intensive Care Medicine and
the Society of Critical Care Medicine, published the “Third International Consensus
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Definitions for Sepsis and Septic Shock”, known as Sepsis-3. As depicted in Figure 2.11,
it redefined sepsis as a “life-threatening organ dysfunction caused by a dysregulated
host response to infection”, thereby emphasizing the significance of organ dysfunction
in sepsis [320].

For clinical operationalization, organ dysfunction is assessed using the Sequential
Organ Failure Assessment (SOFA) score (cf. Figure 2.12), which evaluates the function of
6 organ systems, namely the respiratory, cardiovascular, central nervous, liver, renal and
coagulation system. It ranges from zero to 24, with higher scores indicating more severe
organ dysfunction [349]. Sepsis is diagnosed when the SOFA score increases by at least
two points within 24 h. The assessment of the SOFA score comes with considerable time
and resource requirements, as laboratory tests are needed to evaluate the functionality
of some organ systems (e.g., coagulation, liver, and renal system), making it less suitable
for rapid bedside evaluation. Therefore, the quick Sequential Organ Failure Assessment
(qSOFA) score was introduced as a simplified version of the SOFA score, focusing on 3
clinical criteria, namely increased respiratory rate, reduced systolic blood pressure, and
altered mental status [320]. The qSOFA score was designed to quickly identify patients
at risk of poor outcomes, with the purpose to ensure that patients suspected of having
sepsis, especially in pre-hospital settings, general wards, and emergency departments,
receive rapid treatment and are immediately transferred to an ICU, where the more
comprehensive SOFA score could subsequently be determined [362]. However, due to
the low sensitivity and specificity of the qSOFA score, it is not recommended for the
diagnosis of sepsis, but rather for risk stratification [17].

Septic shock is a severe form of sepsis, characterized by persistent systemic hypoten-
sion. It is defined by the need for vasopressor therapy to maintain a mean arterial
pressure (MAP) of at least 65 mmHg, together with a serum lactate level exceeding
2mmol/L, despite adequate fluid resuscitation [320].

The rapid and targeted treatment of sepsis is crucial, as with every hour the treatment
is delayed, the mortality increases due to irreversible organ damage [97]. A major
challenge consists in the early diagnosis of sepsis. Clinical symptoms of infection are
often atypical and unspecific (e.g., in most cases absence of fever), especially in elderly
patients, causing common delays in diagnosis [136]. Furthermore, organ dysfunction
is a late sign of sepsis, making the SOFA score unsuitable for early diagnosis. The
gSOFA score has poor sensitivity and specificity [17]. To this end, an active body of
research investigates biomarkers that can support both early sepsis diagnosis and risk
stratification, such that preventive, diagnostic, therapeutic and palliative measures can
be initiated in a timely manner [362]. An overview of the current state of the art in
early sepsis diagnosis is given in Section 7.1.

Evidence-based guidelines on the management of sepsis and septic shock are pro-
vided by the Surviving Sepsis Campaign, an international initiative sponsored by the
European Society of Intensive Care Medicine and the Society of Critical Care Medicine
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Figure 2.11: Diagnosis of sepsis and septic shock according to Sepsis-3. Sepsis is defined
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as “life-threatening organ dysfunction caused by a dysregulated host response to
infection” [320]. The Sequential Organ Failure Assessment (SOFA) score (cf. Fig-
ure 2.12) is employed as a clinical measure to evaluate organ dysfunction, assessing
the functionality of 6 organ systems using vital signs and laboratory parameters.
Sepsis is diagnosed when the SOFA score increases by at least two points within
24 h. In pre-clinical and emergency settings, the quick Sequential Organ Failure
Assessment (qSOFA) score is recommended due to its suitability for bedside assess-
ment. Septic shock, a subset of sepsis, is characterized by the need for vasopressor
administration and an elevation in serum lactate levels.
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Figure 2.12: Definition of the Sequential Organ Failure Assessment (SOFA) score. To com-
pute the SOFA score, the functionality of the respiratory, cardiovascular, central
nervous, liver, renal and coagulation system is assessed based on vital and labora-
tory parameters. The resulting 6 sub-scores are summed up to compose the SOFA
score.

(286, 89]. They were last updated in 2021 and recommend that within the first hour
of recognition, serum lactate should be measured, blood cultures obtained and the
administration of broad-spectrum antibiotics started. For patients with sepsis-induced
hypoperfusion or septic shock, resuscitation therapy should be initiated. If hypoten-
sion persists during or after fluid resuscitation, vasopressors should be administered to
maintain a MAP of at least 65 mmHg. Organ support measures should be applied for
patients with sepsis-induced organ dysfunction, for example mechanical ventilation
for patients with sepsis-induced respiratory failure, and renal replacement therapy for
patients with sepsis-induced kidney dysfunction. The guidelines also recommend the
use of adjunctive therapies in specific patient populations, for example, corticosteroids
should be administered for patients with an ongoing requirement for vasopressor ther-
apy [286]. Controlling the source of infection plays a major role in sepsis therapy, and
surgical interventions might be needed (e.g., debridement, surgical drainage) [362].

The evidence-based guidelines on the treatment of sepsis have contributed to a decline
in early sepsis mortality [144]. However, survivors often succumb to long-term com-
plications like secondary infections [242]. Although decades of clinical research have
targeted late-stage sepsis, no sepsis-specific therapies have been developed to date.
Given the limited success of decades of clinical trials targeting hyperinflammation,
recent research has shifted its focus to the immunosuppressive phase of sepsis and the
development of novel immunomodulatory therapies [143, 233]. Following the discovery
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of additional pathophysiological mechanisms in sepsis, such as the role of endothelial
and coagulation dysfunction and cell apoptosis, novel therapies targeting these mecha-
nisms are being developed [131, 233]. For example, inhibiting the apoptosis of immune
cells has shown promising improvements of survival in septic animal models [145, 62].

Despite advances in the definition and guidelines for sepsis over the past decades
aimed at enhancing accurate and early diagnosis, the rapid identification and ini-
tiation of treatment remain major challenges in sepsis management. The clinical
methods for early identification of suspected sepsis patients lack specificity, leading
to the overuse of antibiotics and other resources [89]. In fact, only 30 % to 40 % of
patients receiving antimicrobial therapy for presumed sepsis are eventually confirmed
to have an infection [179]. While early and empirical antimicrobial therapy can reduce
mortality, its overuse increases the risk of antimicrobial resistance and adverse effects
[350]. It is estimated that in 2019, nearly 5 million deaths were associated with bacterial
antimicrobial resistance, with 1.27 million deaths directly attributed to it [245]. Conse-
quently, the development of novel diagnostic and therapeutic strategies is an active
research area, aiming to improve the accuracy of early sepsis diagnosis and develop
more targeted treatment options.

2.3 Machine Learning

Due to the high dimensionality of SI data, the development of automated algorithms
for surgical scene segmentation and sepsis diagnosis requires advanced statistical and
ML methods [148]. This section provides a high-level overview of the fundamental
concept of ML (Section 2.3.1), before introducing the ML models used in this thesis,
namely random forests (Section 2.3.2) and convolutional neural networks (CNNs)
(Section 2.3.3).

2.3.1 Concept of Machine Learning

ML is a subfield of artificial intelligence that focuses on the development of algorithms
that can learn patterns from data and make predictions without being explicitly pro-
grammed [98]. The goal of ML is to develop models that make accurate predictions
on data that was not used during training. The ability of an ML algorithm to perform
well on previously unseen data is called generalization, and achieving good general-
ization is a key challenge in ML [123]. The ML models used in our work are trained
on a dataset that consists of input-output pairs, where the input is a set of features
x, such as a spectrum or a 3-dimensional SI cube, and the output is a target variable
¥, which in our applications can be a functional parameter value (regression), a class
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label (classification) or a two-dimensional organ map (segmentation). In this process,
referred to as supervised learning, the model learns the relationship between the input
features and the target variable.

To validate the model performance, performance measures that are appropriate for
the given target task, algorithm and dataset structure are needed to quantify the error
in the model predictions. A comprehensive overview of validation metrics for the
analysis of biomedical imaging data, including common pitfalls recommendations in
which instances to use which metrics, is given in [222]. Having chosen appropriate
validation metrics, 3 data splits are needed to train and validate an ML algorithm: a
training dataset, a validation dataset, and a test dataset. The training dataset is used
to optimize the parameters of the model (i.e., decision rules in the case of random
forests, weights in the case of neural networks). Model hyperparameters are parameters
that control the learning process, such as the capacity of the model (i.e., the number
of layers in a neural network, the number of decision trees in a random forest). To
avoid overfitting when optimizing hyperparameters on the training data, a separate
validation dataset is required. This dataset contains samples that are distinct from
both the training and test datasets. The test dataset remains untouched until model
parameter and hyperparameter optimization is finalized, and is then used to estimate
the model generalization error.

ML is an active area of research since about 1950, and numerous algorithms have
been developed since then to address different types of tasks and data structures. The
success of ML was mainly driven by the availability of large datasets and the increase in
computational power, which enabled the training of complex models on large datasets
[197]. ML, particularly DL, a subfield of ML that focuses on the development of deep
neural networks, has spurred substantial advancements across various disciplines.
Recent breakthroughs include text-to-image generation [278], image synthesis and
style transfer [290], as well as the success of large language models [348, 386, 274]. In the
biomedical domain, ML has revolutionized key areas, leading to major advancements
in protein structure prediction [164], drug discovery [282], personalized medicine [116],
and medical image analysis [206]. For an in-depth overview of ML algorithms, their
mathematical foundations, key methodological aspects, successes and open challenges,
there are numerous decent textbooks, such as [249, 123, 98]. In the following, we focus
on the ML algorithms used in this thesis: We utilize random forests for functional tissue
parameter regression and automated sepsis diagnosis and mortality prediction from
tabular data. The DL algorithms CNNs are employed for surgical scene segmentation
and automated sepsis diagnosis and mortality prediction from SI data.
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2.3.2 Random Forests

The random forest algorithm [51] is a popular ML method for classification and regres-
sion tasks based on tabular data. Besides offering low computational costs and being
easy to implement, random forests have demonstrated high predictive performance in
various real-world applications [389]. As illustrated in Figure 2.13, random forests are
an ensemble learning method. Multiple decision trees are generated from the training
data, and during inference, the predictions of the individual trees are aggregated.

Decision Trees Decision trees predict the value of a target variable y by learning sim-
ple if-then-else decision rules inferred from the set of features of the training data.
If y is a categorical variable, this process is referred to as classification, whereas, if y
is a continuous variable, it is referred to as regression. In the example illustrated in
Figure 2.13, y is a categorical variable with two classes, called a binary classification. A
key strength of decision trees is that they can handle features of different data types
simultaneously, including categorical variables (e.g., sex, presence of a comorbidity)
and continuous variables (e.g., age, weight), thus offering substantial flexibility regard-
ing the combination of input features. In the example illustrated in Figure 2.13, xo, x;
and x3 are continuous variables, while x, is a categorical variable.

Each decision rule splits the data into two partitions based on a single feature. If
the feature is continuous, the split is based on a threshold ¢ (e.g. xo < t) with the
threshold being chosen from the set of midpoints between adjacent, unique fea-
ture values. For example, in the left tree in Figure 2.13, unique feature values of
Xp are: xo € {—4,5,12,15,23,25,30}. The set of potential thresholds for x; is thus:
t € {0.5,8.5,13.5,19, 24, 27.5}. If the feature is categorical, the split is based on the
presence or absence of a category (e.g. x, = A) or set of categories (e.g. x, € A, B).

The process of splitting the data into two partitions based on a decision rule is recur-
sively repeated until a partition is only composed of samples from one target value,
referred to as pure node, or a maximum tree depth or minimum number of samples in a
node is reached. The terminal nodes, referred to as leaf nodes, are thus not necessarily
pure nodes. Nevertheless, the same prediction is made for all samples in a leaf node,
which is the mode of the target variable in the case of classification or the average
target value in the case of regression [158].

An optimal decision rule is one that minimizes the inhomogeneity (also referred to as
impurity) of the target variable y in the two resulting partitions L and R. For instance,
a split resulting in pure nodes would be ideal, whereas a split resulting in a uniform dis-
tribution of target variables would be undesirable. The reasoning behind this heuristic
is to favor shallow trees, that achieve high predictive accuracy for a minimal number
of strongly discriminative rules. With an increasing number of tree nodes, the model
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Figure 2.13: Random forest algorithm. The random forest algorithm builds multiple decision
trees during training and aggregates their predictions to determine the target label
y during inference. In this binary classification example with 3 decision trees, the
final prediction is the mode of the tree predictions. Each decision trees consists of
split nodes (white rounded rectangles) and leaf nodes (circles), with the underlying
decision rules optimized by a greedy algorithm to minimize the impurity of the
split. To enhance the diversity between trees and improve generalization, each
tree is trained on a bootstrapped subset of the data, and at each split node, the
optimal decision rule is selected on a random subset of features. For simplicity, in
the example, the same random feature subset was used for all split nodes of a tree.
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becomes more complex and specialized on the training data, capturing its noise and
outliers. While higher model complexity can thus lead to better performance on the
training data, shallow trees likely generalize better to unseen data [98, 31]. Different
impurity functions have been proposed, and a review of these functions, and research
targeting the optimal choice of impurity function, is provided in [276]. The most com-
mon impurity measure for classification decision trees is the gini impurity Qg, which
is defined as:

Q=1-) pt (2.5)

ceC

with p, being the proportion of samples of class c¢ in the partition, and C denoting
the set of classes [158]. A pure node yields a gini impurity of zero. In our example of a
binary classification, the gini impurity can be simplified as a function of p;:

Qe=1-pi—(1-p)’=2p(1-p1) (2.6)

In this case, a uniform distribution of classes, which corresponds to p; = 0.5, yields
the highest gini impurity of 0.5. The gini impurity for binary classification is illustrated
in Figure 2.14.

The impurity measure is computed for the left partition L and right partition R of the
split node, and the overall impurity is computed as the weighted sum of the impurity
of the partitions, with the weights being the proportion of number of samples in the
partitions (|L| and |R|) relative to the total number of samples (|L| + |R|):

L]
L[ + |R|

R

L+ R |R|Q(R) (2.7)

Q(split) = Q(L) +
The intuition behind this is to penalize splits that result in small partitions, as they are
more likely to be overfitting the training data. An example of a comparison between

two possible decision rules with different impurity measures is illustrated in Figure 2.14.

For regression decision trees, the mean squared error can be used as impurity measure,
which is defined as:

1 _
Q= Z; (vi =) (28)

with n being the number of samples in the partition, y; the target value of sample i,
and y the mean target value of the partition. The lowest possible value of 0 is again
achieved in a pure node that only contains samples of the same target value.

46



2.3 Machine Learning

split 1: x, < 8.5 split 2: x> 7
125 = ] > 125 = 8
]
10.0 = : 10.0 =
75 - H 75 = e e e e e emee——eo
m [} Gl
R 50 - : R 50 -
1
25 - H 25 -
1
0.0 - : 0.0 -
. 5
-25 - 1 1 1 1 -25 - 1 1 1 1
0 10 20 30 0 10 20 30
Xo Xo
class 0 class 1 === 1 === R

4

Qsplit 1) = % Q1) + % - QR) =034 < Qsplit2) =2 - Q1) + % - QR) =0.40

Figure 2.14: Selection of decision rules in decision trees. The optimal decision rule for a
split node is the one that minimizes the impurity Q (split) of the resulting data
partitions. Impurity can be quantified using the gini impurity Qg, which in the case
of binary classification is a function of p;, the proportion of samples belonging
to class 1 in a given partition. The impurity of a split node is calculated as the
weighted sum of the impurities Qg (L) and Qg (R) of the left and right partitions L
and R, with the weights determined by the proportion samples in each partition
relative to the total number of samples. In this example, we evaluate two potential
decision rules for the initial split in the left tree of Figure 2.13: split 1 and split 2.
Split 1 yields a lower gini impurity Qg, making it the preferred choice.
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The decision tree algorithm is a greedy algorithm, meaning that it determines the
optimal decision rule for a given split node without updating the decision rules of
previous splits. While this local optimization does not guarantee the globally optimal
set of splits, it is computationally efficient. On each split node, the decision rule is
determined by iterating over all possible decision rules (including which feature to use
for the split and the set of all possible splitting conditions, such as thresholds) and
selecting the one that minimizes the impurity Q (split) of the resulting data partitions.

Pruning While a high number of tree nodes can lead to better performance on the
training data, it can also result in poor generalization on unseen data [98]. To prevent
overfitting, decision trees are typically pruned by limiting the maximum depth of the
tree or by setting a minimum number of samples required to split a node, referred to as
pre-pruning. Alternatively, decision trees can also be learned without these constraints,
and in post-pruning, the complexity of the tree is reduced by removing nodes.

Bagged Decision Trees A disadvantage of decision trees is their limited robustness,
as small perturbations in the training data can lead to substantial changes in the
resulting sequence of decisions [98]. This sensitivity of decision trees on the training
data can be mitigated by combining multiple decision trees into an ensemble model.
To obtain a variety of different decision trees, each tree is trained on a randomly
drawn subset of the training data, sampled with replacement — a procedure referred to
as bootstrapping. The predictions of the individual trees are aggregated by majority
voting for classification tasks and by averaging for regression tasks. The entire process
is referred to as bagging, which stands for bootstrap aggregating [50]. Bagging can
provide more accurate and stable predictions compared to individual decision trees.

Random Forests For applications in which few features dominate the decision pro-
cess, the benefit of bagging could be small as the decision trees would still be highly
correlated [98]. To address this issue, random forests were introduced as an extension
of bagging, in which a random subset of features is selected for each split node, thus
encouraging a higher degree of feature assessment variability. The random feature
selection further reduces the correlation between the trees and improves the general-
ization of the model [389].

2.3.3 Convolutional Neural Networks

CNNs s constitute a specialized architecture of neural networks developed for the analy-
sis of grid-like data, such as images, which can be regarded as a two-dimensional grid
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Figure 2.15: Convolution operation. The convolution operation is applied to the input data
by element-wise multiplication of the kernel K with the subset of the input data
I covered by the kernel, followed by the summation of the resulting products.
The kernel is then shifted to the next position, and the process is repeated until
the entire input data has been processed. Here, the example of a Laplace kernel
Kiaplace is illustrated, which can be used for edge detection. Figure inspired from
[311].

of pixels. In fact, state-of-the-art performance in image classification, object detection,
and image segmentation tasks is achieved by CNNs [197, 123].

Convolution Operation CNNs use a mathematical operation called convolution, which
involves sliding a filter, also referred to as kernel K, over the input I to extract the
response R. In the example of a two-dimensional image and a two-dimensional kernel
of an odd-numbered width W and height H, the convolution operation, denoted with
%, is defined as:

1Y) 1y
R(i,j) =(I+K)(i,]) = Z Z I(i+w,j+h)K(w,h) (2.9)

w=—[ % | h=—| 4|

As illustrated in Figure 2.15, the convolution operation is applied to the input data by
element-wise multiplication of the kernel with the subset of the input data covered by
the kernel, followed by the summation of the resulting products. The kernel is then
shifted to the next position, and the process is repeated until the entire input data has
been processed. To compute the convolution for border pixels, the image borders are
typically expanded, for example through padding with zeros or mirroring the image
along the borders [53].

Convolutional operations have been widely utilized in the computer vision and image
processing fields for many years [53]. They are performed independently at each po-
sition of the input data, making them well-suited for parallel processing on graphics
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processing units (GPUs). In fact, modern GPUs have been optimized for the compu-
tation of convolutional operations, which has contributed to the success of CNNs in
image processing tasks [72]. An example for a widely used convolutional operation
is the Laplace kernel, which approximates a second derivative of the image I, can be
used to detect edges in an image as shown in Figure 2.15 [249].

Convolutions in Convolutional Neural Networks As shown in Figure 2.15, the Laplace
kernel primarily detects the edges of specular highlights, while the more relevant organ
boundaries remain poorly identified. The key concept behind CNNs is that the kernel
parameters, referred to as weights, are not fixed, but learned during training, allowing
the network to discover the optimal filter for the task at hand. A major advantage of
CNNs compared to fully-connected networks [389] is parameter sharing, where the
same kernel is applied across all positions of the input data. This significantly enhances
computational efficiency, particularly with high-dimensional input, as the number
of parameters depends on the kernel size rather than the input size. Additionally,
parameter sharing contributes to the model’s translational invariance. For instance, as
the same filter is applied across the entire image, the model is able to detect objects
regardless of their location [123].

In CNNs, non-linear activation functions are applied to the output of the convolution
operation to introduce non-linearity into the model, enabling the learning of complex
patterns in the data [123]. This concept is somewhat similar to how neurons are acti-
vated in the human brain: a neuron receives input signals, which can be inhibitory or
excitatory, from other neurons, and if the sum of the input signals exceeds a certain
threshold, the neuron fires and transmits an output signal to the subsequent neurons.
This analogy, among others, shaped the term “neural network”.

Common activation functions include the rectified linear unit (ReLU) ReLU(x) [6],
leaky rectified linear unit (LeakyReLU) LeakyReLU ,(x) [219] and exponential linear
unit (ELU) ELU,(x) [67] function [158], which are illustrated in Figure 2.16 and defined
as follows:

x ifx>0
ReLU(x) = ) (2.10)
0 otherwise

LeakyReLU ,(x) = {x ifx>0 (2.11)

ax otherwise

ELU,(x) = {x ifx>0 (2.12)

a(exp(x) —1) otherwise
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Figure 2.16: Activation functions in convolutional neural networks. Activation functions
introduce non-linearity by transforming the output of the convolution operation.
Common activation functions include the rectified linear unit (ReLU) ReLU(x),
leaky rectified linear unit (LeakyReLU) LeakyReLU,(x), and exponential linear
unit (ELU) ELU, (x) function.

The ReLU function is the most commonly used activation function in CNNs due to
its simplicity and computational efficiency. The LeakyReLU function is a variant of
the ReLU function that allows a small, non-zero gradient for negative input values,
which can prevent the dying ReLU problem, where neurons that output zero are no
longer updated during training [219]. The ELU function is another variant of the ReLU
function that provides a smoother activation, which is beneficial in some cases [67].

Another modification to the convolution operation performed in CNNs is the addition
of a bias term b € R, which is a learnable parameter that shifts the output of the
convolution operation. It is added to the output of the convolution operation before
applying the activation function, which effectively permits to perform a shift in the
activation along the x-axis.

The filter response R(i, j) of a two-dimensional convolution operation in a CNN for a 3-
dimensional image (i, j, c), where ¢ denotes the channels, with a total of C channels,
spatial position (i, j), activation function a(-), filter matrix with learnable weights
Q € RW*HXC and learnable bias b, can be expressed as [311]:

R(i’j) =a

w "
L7] 2] cC
I(i+w,j+h,c)Q(w,h,c)+b (2.13)

=1

w=-|"4 | h=—L 4] €

This is the fundamental building block of a CNN. In analogy to the brain function,
which involves a network of an estimated 86 - 10° interconnected neurons to pro-
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Figure 2.17: Convolutional neural network architectures. The U-Net architecture (top) com-
bines a contracting path with a symmetric expanding path. The contracting path
captures contextual information, while the expanding path enables precise local-
ization. Skip connections between the contracting and expanding paths enable
the integration of high-resolution features with contextual information. The resid-
ual network (ResNet) architecture (bottom) also uses skip connections, known as
residual connections. These connections allow the network to pass the output of
one layer to a deeper layer, bypassing intermediate layers. This helps to improve
network convergence. U-Net sketch adapted from [308, 311].

cess information, CNNs involve a network of multiple convolutional building blocks,
each with randomly initialized weights [137]. This allows each block to learn differ-
ent features, enabling the network to recognize diverse patterns within the data. The
convolutional building blocks are organized in layers, with the output of previous
layers serving as input to subsequent layers. The layers are typically organized in a
hierarchical manner, with the initial layers learning low-level features, such as edges
and textures, and the subsequent layers learning high-level features, such as shapes
and objects [123].

Having introduced the basic building blocks of a CNN, we now take a closer look at
the CNN architectures used in this thesis.
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U-Net An effective architecture for image segmentation tasks is the U-Net [291], which
is characterized by a U-shaped structure as illustrated in Figure 2.17. It combines a
contracting path with a symmetric expanding path. The contracting path reduces
the spatial dimension of the input, thereby decreasing the number of weights in the
network, which improves computational efficiency and makes the network more robust
to small translational shifts in the input data [249]. Among others, this reduction is
achieved through pooling layers, where the activation at a given location is replaced
by a summary statistic of the surrounding activations, such as the arithmetic mean in
average pooling or the maximum activation in max pooling [303]. The pooling and
convolution process is repeated, with the number of activation maps increasing at
each step, until a bottleneck layer is reached.

In the expanding path, upscaling layers are used to increase the spatial dimension of
the activations. First, these layers perform interpolation to upsample the activation
map from the previous layer, matching the shape of the corresponding activation map
at the same hierarchical level in the contracting path. The upsampled activation map
is then concatenated with the corresponding activation map from the contracting path,
transferred to the expanding network via a skip connection. A convolution layer is
subsequently applied to process the concatenated activation map effectively [252]. By
leveraging skip connections, the U-Net architecture combines high-resolution features
from the contracting path with the upsampled output, enabling the generation of
high-resolution segmentation maps [291].

ResNet Residual networks (ResNets) were introduced for image recognition in 2015
[133]. A ResNet is a CNN equipped with residual connections, which are skip connec-
tions that transfer the output of one layer to a layer that is two or more layers deeper
in the network, as illustrated in Figure 2.17. These connections mitigate a common
issue in deep neural networks®: During backpropagation?, gradients can become very
small — a phenomenon known as the vanishing gradient problem - resulting in slow
convergence or even stalled training (see [105] for a more detailed explanation). In
addition to residual connections, the fundamental architecture of ResNets consists
of a series of convolution, batch normalization, and pooling layers (cf. Figure 2.17).
Batch normalization normalizes the input of each layer to have zero mean and unit
variance, which mitigates the internal covariate shift. By enforcing that features and
weights remain on a more consistent scale across layers, batch normalization promotes
smoother convergence during training.

3Neural networks with many layers.
4Gradient estimation method used to update the weights of the network.
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RoOBUST FUNCTIONAL PARAMETER
ESTIMATION THROUGH AUTOMATED
ILLUMINANT ESTIMATION

As outlined in Section 1.2.1, a key challenge in safely integrating functional SI into
clinical practice is the need for automated illuminant estimation. In open surgeries,
illumination conditions can change dramatically throughout the procedure, and con-
trolling the lighting or recalibrating the camera with a white reference standard is
impractical due to the sterile environment and the requirement for an uninterrupted
clinical workflow. This chapter analyzes the impact of varying illumination on the
estimation of the functional tissue parameter StO, and introduces the first approach
to automated illuminant estimation in the operating room (OR).

Section 3.1 provides an overview of the related work on illuminant estimation, followed
by a description of our specular highlight-based approach to automated illuminant
estimation and the datasets specifically acquired for this study in Section 3.2. The
experimental setup and results are presented in Section 3.3, and the chapter concludes
with a discussion of the strengths, limitations, and directions for future research in
Section 3.4.

The research presented in this chapter was conducted in 2019, and published in the
proceedings of the International Conference on Information Processing in Computer-
Assisted Interventions (IPCAI) in 2020 [24], as well as in the thesis of Leonardo Ayala in
2023 [26]. It further resulted in the filing of two patents [225, 226].

3.1 Related Work

[lluminant estimation is closely linked to computational color constancy (CCC) meth-
ods, which aim to perceive constant color of an object regardless of changes in the
illumination [175]. While the human visual system inherently maintains color consis-
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tency despite variations in the light source’s spectral composition, CCC remains an
active area of research focused on replicating this capability in artificial systems [37].

CCC methods can generally be divided into ML-based approaches (cf. Section 3.1.1)
and model-based (cf. Section 3.1.2) approaches. Although few methods have been
specifically developed for SI data, several CCC methods originally designed for RGB
image calibration can be adapted for use with SI data. The following sections provide
an overview of the most promising methods, specifically those with high potential for
application in open surgery SI data. For a broader survey of CCC methods, refer to [87,
208].

3.1.1 Machine Learning Approaches

CNNs are the most common ML architecture for illuminant estimation [39, 147, 5, 192,
163], consistently outperforming model-based methods on RGB data [318, 74]. However,
several challenges prevented the application of ML-based approaches to surgical SI
data at the time of model development and publication:

1. Need for extensive training data: ML approaches for illuminant estimation
demand extensive training data, covering a large variety of different surgical
scenes captured under a wide range of illumination conditions, to ensure model
generalization to unseen data.

2. Need for reference illuminant spectra: In addition, corresponding reference
illuminant spectra are required for the training data. However, due to sterility
requirements, obtaining intraoperative surgical images with matching white
reference standards is not feasible in real-world human open surgeries. This
limitation makes it impractical to create an in vivo database of human open
surgery images with corresponding reference illumination.

3. Diversity of SI devices: SI devices vary widely in spectral range, number of
spectral channels, and spectral sensitivities, posing challenges for generalizing
an ML model across different devices.

At the time of model development and publication, the availability of surgical SI data
was limited to few, small datasets, each obtained using different SI devices [239, 73].
To this end, we decided to develop a generic, model-based illuminant estimation
framework that does not depend on annotated training data.

In recent years, the availability of in vivo surgical SI data has grown, with datasets now
comprising several hundred images (see Chapter 5, Chapter 6). This increase in data
availability enabled us to develop the first DL-based approach to automated illuminant
estimation of surgical SI data in 2024 [34]. A discussion of our DL-based approach and
our model-based approach presented in this chapter is provided in Section 3.4.2.
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3.1.2 Model-Based Approaches

Model-based approaches refer to automated illuminant estimation methods that de-
pend on specific modeling assumptions. A frequent assumption is that the scene is
uniformly illuminated, either due to the presence of a single illuminant or, in cases
with multiple light sources, by approximating them as a single average illuminant when
they are sufficiently distant or when the field of view is sufficiently small [87].

Khan et al. expanded the 4 most commonly used model-based approaches initially
developed for RGB imaging — Max-RGB, Gray-world, Shades-of-gray and Gray-edge —
for application to MSI data. The study reported promising performance when applied
to outdoor natural scenes [175].

Max-RGB The Max-RGB approach is also known as the white patch Retinex algorithm
[195]. It is based on the assumption that, for each channel ¢ of an image, there exists at
least one pixel p in the set of image pixels ¥ that reflects the illuminant at its maximum
level, resulting in the highest measured pixel intensity. The illuminant is estimated by
collecting these maximum intensity values across all channels. With L. representing
the illuminant, and I.(p) representing the intensity of pixel p in spectral channel c,
the Max-RGB approach can be expressed as:

Le e max Ie(p) = || Il (3.1)
peP

Gray-world The Gray-world approach is based on the assumption that the average
reflectance across a scene is achromatic, so that the average pixel intensity reflects
only the characteristics of the illuminant [52]. Thus, the illuminant is estimated by
computing the average intensity across all pixels:

1 1
Leoc — > |I.(p)| = ||l (3.2)
c |P|’;) c\p 1P| cllh

Shades-of-gray The Shades-of-gray approach [100], which generalizes the Max-RGB
and Gray-world methods, estimates the illuminant using the Minkoswski norm of the
intensity image:

1/m

Leo| Y @™ | =l (33)

peP
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While the order of the norm, m, is set to m =1 for the Gray-world approach, and to
m = oo for the Max-RGB approach, it is empirically set to m = 6 in the Shades-of-gray
approach.

Gray-edge The Gray-edge approach assumes that, on average, edge differences within
a scene are achromatic [346]. To minimize the impact of noise, local spatial smoothing
of the intensity image I with a Gaussian filter of standard deviation o is applied as a
preprocessing step. The illuminant is then estimated by averaging the gradient of the
smoothed image, I'J, across all pixels:

1/m

Leoc| Y10 =1L, (3.4)
peP

The gradient I’] is computed using pixel coordinates x and y as follows:

I'7(x,) = \J(0x18 (x, )% + (3y1¢ (x,7))* (3.5)

Following the recommendations of Finlayson and Trezzi, the settings 0 =2 and m =6
are used for the Gray-edge approach.

Specular Highlights The spectrum of specularly reflected light closely matches that of
the incident light source (cf. Section 2.1.1). This property could be leveraged to estimate
the illuminant spectrum in an image by identifying specular highlights and using their
spectra to infer the illuminant. However, prior work attempting to exploit this property
is either limited to RGB data [99] or relies on additional modeling assumptions that do
not hold in surgical scenes. For example, Imai et al. assume that the scene consists of
inhomogeneous dielectric materials like plastic or paint, while Kaneko et al. incorporate
assumptions about the illuminant spectrum in the form of a daylight spectrum model
[151, 168].

In summary, at the time of model development and publication (2020), no prior work
had explored the impact of illumination shifts on functional parameter estimation, nor
had any illuminant estimation method been proposed for surgical SI specifically. Most
methods developed outside the field of surgery are unlikely to generalize effectively
to surgical SI data due to unrealistic model assumptions in model-based approaches,
as well as the unmet need for labeled training data and limited generalization across
diverse SI devices in ML-based approaches. To address these gaps in the literature, we
investigate the following research questions:
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RQ1.1: Can we address illumination shifts in surgeries by leveraging specularly
reflected light for automated illuminant estimation?

RQ1.2: What is the impact of errors in the illuminant estimation on the perfor-
mance of StO, estimation from SI data?

RQL.3: How does our method perform relative to state-of-the-art model-based
approaches?

3.2 Materials and Methods

This section describes our proposed approach to automated, intraoperative illuminant
estimation based on specular highlights (Section 3.2.1), as well as the datasets used to
address our research questions (Section 3.2.2).

3.2.1 Automated Illuminant Estimation From Specular Highlights

As illustrated in Figure 3.1, our illuminant estimation method consists of 3 main steps:

Acquisition of Low-Exposure Images Our initial approach aimed to extract the illu-
minant directly from the specular highlights in the MSI cubes used for functional
parameter estimation. However, these MSI cubes are optimized for exposure time
to capture the tissue diffuse reflectance spectra at a high signal-to-noise ratio. This
typically leads to oversaturation of the camera sensor by the more intense specularly re-
flected light, preventing accurate measurement of the spectra of the specular highlights.
To address this challenge, we propose acquiring a separate set of images specifically for
illuminant estimation at a lower exposure time, which allows for the effective capture
of specular highlights without oversaturation. We performed experiments to determine
the optimal exposure time for this purpose, which are described in Section 3.3.

Segmentation of Specular Highlight Pixels Since both over- and undersaturated pixels
provide inaccurate spectral information, we ensured that such pixels p are excluded
when segmenting the specular highlight pixels.

Underexposed pixels are defined as pixels where the minimum of the intensity values
I.(p) across all spectral channels c, n@inlc(p), is less than or equal to the sensor’s dark
Cc

current level d(Teyp) at the given exposure time Tey,. The dark current d(Teyp) is a
sensor-specific parameter that needs to be determined once for a given camera.

Overexposed pixels are defined as pixels where the maximum of the intensity values
I.(p) across all spectral channels ¢ exceeds or equals a threshold intensity Ihoninear-
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Figure 3.1: Concept of the proposed illuminant estimation method. Specular highlight
pixels are segmented from a series of low-exposure images and used to estimate
the illuminant spectrum. To determine tissue oxygenation in the target image, the
image is recalibrated based on the estimated illuminant, and a regression model
adapted to this illuminant spectrum is applied. Figure inspired by [24].
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This threshold, also a sensor-specific parameter, describes the intensity level at which
the sensor response becomes nonlinear, resulting in distorted spectra. In our case,
Thonlinear 1S set to 950.

Thus, the set of valid pixels V, representing the subset of image pixels ¥ that are
neither over- nor undersaturated, is defined as:

V= {p eP| n\}‘i:nlc(p) > d(Texp) A rgﬁxIc(p) < Inonhnear} (3.6)

For each pixel in V, we compute the lightness I7(p) by averaging the intensity values
I.(p) across all spectral channels c¢. With C representing the total number of spectral
channels, this is expressed as:

C
() == 3 1e(p) (3.7
c=1

Assuming that specular highlight pixels exhibit the highest lightness values, the top N
pixels with the highest lightness are selected as the specular highlight pixels S. The
optimal value of NV was determined experimentally, as described in Section 3.3.

Estimation of the Illuminant Spectrum Based on the assumption that specular reflec-
tion dominates over diffuse reflection in the specular highlights, the illuminant spec-
trum is approximated by taking the ¢!-normalized spectrum of the specular highlight
pixels. Assuming approximately uniform illumination across the image, the illuminant
spectrum L is estimated by averaging the spectra I of the specular highlight pixels S:

_ 1 I(p)
L={8 2o, .

3.2.2 Datasets

Our analysis is based on porcine ex vivo and human in vivo MSI data, supplemented
by simulated tissue spectra. The simulated data enable a quantitative assessment of
the StO, error, which is otherwise infeasible with real tissue samples due to the lack of
ground truth StO, values (cf. Section 2.1.4).
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Spectral Measurements and Light Sources The real data was acquired using the MSI
snapshot camera MQO022HG-IM-SM4x4-VIS (XIMEA GmbH, Miinster, Germany) de-
scribed in Section 2.1.2. This camera captures 16 spectral channels in the 450-650 nm
range, at spatial dimensions of 272 px x 512 px. We employed 5 different light sources,
representing 4 types of illumination commonly encountered in the OR, namely xenon,
halogen, fluorescent, and light-emitting diode (LED) light sources:

L;: Xenon (D-light P 201337 20, Karl Storz GmbH, Tuttlingen, Germany)

L,: Halogen (Halopar® 16, Osram GmbH, Munich, Germany)

Ls: Fluorescent (FLS 11W 2700K, Paulmann Licht GmbH, Springe Vélksen, Ger-
many)

Ly: Xenon (Auto LP 5131, Richard Wolf GmbH, Knittlingen, Germany)

Ls: LED (Endolight LED 2.2, Richard Wolf GmbH, Knittlingen, Germany)

Reference Measurements As outlined in Section 2.1.3, the gold standard for correcting
illumination variations involves capturing an image of a white reference standard
under the same lighting conditions as the tissue. To enable a comparison with this
gold standard, we acquired MSI data of a Spectralon® diffuse reflectance standard (SRT-
99-050, Labsphere Inc., North Sutton, United States of America) for each of the 5 light
sources L; to Ls. For each light source, 100 images were captured and hierarchically
averaged to compute the reference illuminant spectrum.

Ex Vivo Liver Recordings We acquired MSI data of an ex vivo porcine liver alternately
illuminated by the 5 light sources L; to Ls. To assess the robustness of our approach
to changes in the imaging geometry, images were captured from 8 distinct camera
poses: The liver was consistently illuminated from the east (E), while the camera was
positioned at 4 angles: vertical (V) (angle of 0° to the organ surface normal), north (N),
south (S), and west (W) (N, S and W at 40° to the organ surface normal). Additionally,
two different camera distances were used: D1 = 8 cm and D2 = 18 cm from the liver
surface.

For each camera pose, a series of 10 images per exposure time was acquired while
varying the exposure time in the range 5-150 ms at increments of 5 ms. These images
were used to determine the optimal exposure time for illuminant estimation and
validate whether there is a benefit in aggregating the estimated illuminant across
repeated low-exposure images. The chosen exposure times covered the entire range
from nearly underexposed to nearly overexposed specular highlight pixels.

In Vivo Human Lips Recordings For qualitative in vivo validation, we acquired a MSI
video stream of a human subject’s lips, while switching the illumination from L; to
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Ls during the recording. This setup allowed us to simulate an illuminant shift in a
controlled environment and assess the performance of our approach in real-time.

Simulation Framework for Oxygen Saturation Estimation We simulated tissue spec-
tra r’'™ (A, t;) from a vector of tissue properties t; using the Monte Carlo simulation
framework outlined in Section 2.1.4 and in [366, 367]. In this framework, the tissue is
modeled as a 3-layer structure with thickness ranging from 20-2000 pm, blood volume
fraction in the range 0-30 %, and StO, values spanning 0-100 %.

The simulated tissue reflectance spectra were subsequently converted to image in-
tensities I, in channel ¢ by taking into account constant multiplicative changes of
reflectance a(p), the noise in channel c, n., the illuminant spectrum L;(1), and the
factor O.(A) which represents all linear, hardware related factors (e.g., transmittance
of the optics, filter response in channel ¢, and quantum efficiency of the camera):

1™ (p, 1) = a(p) - ne - A (A, 1) - Li(A) - Oc(A)dA (39)

In total, 15000 tissue spectra were simulated and subsequently adjusted for each of the
5 light sources L; to Ls. This process resulted in a complete set of 15000 simulated MSI
spectra, each paired with corresponding reference StO, values, for every illumination
configuration.

3.3 Experiments and Results

The details of our experimental setup are provided in Section 3.3.1, followed by the
presentation of our findings in Section 3.3.2.

3.3.1 Experimental Setup

This section presents an overview of our experimental setup, detailing the validation
metrics used to evaluate the performance of our illuminant estimation method, our
parameter optimization strategy, and our approach to quantifying the impact of illu-
minant shifts on StO, estimation.

Validation Metrics  To quantify the similarity between two spectra L; and L;, we treated
them as vectors and computed the cosine similarity, which measures the angle 6
between the two vectors:
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cosine similarity(L;, Lj) = e R cos(0) (3.10)
L3l [|L5]],

The cosine similarity ranges from —1 to 1, where 1 signifies identical spectra, 0 indicates
orthogonal spectra, and —1 is obtained for opposite spectra. To assess the error in the
estimation of the illuminant spectrum L, we calculated the cosine similarity between
the estimated illuminant spectrum L°' and the reference illuminant spectrum L™ for
each light source L;.

To evaluate the impact of illuminant shifts on StO, estimation and the performance
enhancements achieved through our illuminant estimation approach, we calculated
the StO, error. This metric represents the absolute difference between the estimated
StO, value and the reference StO, value for a given sample.

Parameter Optimization We divided our ex vivo liver dataset into two parts: a valida-
tion set for optimizing the parameters of our illuminant estimation approach, including
the number of specular highlight pixels IV, the exposure time Tey, and the required
number of low-exposure images E, and a test set for evaluating the performance of
our method. The validation set included data collected using light sources L; to Ls,
while the test set comprised data obtained with the light sources L, and Ls.

We found that varying N between 75 and 200 had minimal impact on performance, so
we set N = 100.

For determining the optimal exposure time Tcy;, of the low-exposure images, we intro-
duced a goodness metric G(Texp), with the cosine similarity between the estimated
and reference illuminants increasing with G. Similar to the signal-to-noise ratio, G
compares the level of informative lightness I — d (signal) to the level of dark current
d (noise) within the specular highlight pixels S for a given exposure time:

It (p, Texp) — A (Tex
G(Texp):median L(p ep) (ep)

(3.11)
peS (Texp) d(Texp)

Averaging the illuminant estimates across multiple low-exposure images with the same
Texp did not result in any performance improvement. Based on these findings, we
recommend capturing a total of 9 low-exposure images (at 5ms, 10 ms, 20 ms, 40 ms,
60 ms, 80 ms, 100 ms, 125 ms and 150 ms) and then selecting the low-exposure image
that achieves the highest G. With a total acquisition time of about 0.6 s, we believe
that capturing the sequence of low-exposure images has a negligible impact on the
surgical workflow.
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Impact of Illuminant Shifts on Oxygen Saturation Estimation We divided the simulated
tissue spectra with corresponding reference StO; values into a training set of 10 000
spectra, and a test set of the remaining 5000 spectra. This configuration was used
to train and validate an ML model for StO, estimation for each illuminant spectrum,
maintaining a consistent data split across all illuminants. Following the approach by
Wirkert et al., we used a random forest regression model, with parameters as specified
in [366, 367].

For each light source L;, we compared the StO, estimation error across 3 scenarios:

1. Reference illuminant spectrum: We trained a random forest regressor using
the reference illuminant spectrum Llr.ef.

2. Mismatched illuminant spectrum: We trained 4 mismatched random forest
regressors, each using the illuminant spectrum from a different light source L;
(J # 1)

3. Our approach: We trained random forest regressors using the illuminant spec-
trum L;?St, estimated from the ex vivo liver recordings with our approach. To
assess the impact of different camera poses on the accuracy of functional param-

eter estimates, we computed one illuminant estimate per camera pose, resulting
in a total of 8 random forest regressors.

Adapting the simulated spectra to a specific (estimated) illuminant spectrum and
training the random forest regressor requires less than 50 ms in total, enabling real-
time recalibration of the model during surgery.

Performance Ranking Against State-Of-The-Art Illuminant Estimation Approaches We
reviewed state-of-the-art methods for illuminant estimation and selected 4 methods
that do not require supervised training and are potentially applicable to surgical MSI
data: Max-RGB, Gray-world, Shades-of-gray, and Gray-edge (cf. Section 3.1). To ensure
a fair comparison, unaffected by the optimized exposure time in our approach, we
evaluated the performance of these state-of-the-art approaches across a range of
exposure times using our ex vivo liver recordings.

Following the ranking and stability assessment guidelines in [364], we computed per-
formance rankings based on the cosine similarity between estimated and reference
illuminant spectra. We calculated the rank for each illuminant estimation method
across 1000 bootstrap samples, each comprising 5 light source-level cosine similarity
scores randomly selected without replacement. The light source-level cosine similarity
scores were obtained by averaging cosine similarities across all camera poses for a
given light source.
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Figure 3.2: Light sources used in our study. The ¢'-normalized reference intensity spectra of
the 5 light sources /., to 5 utilized in our study are displayed on the left. These
spectra were hierarchically aggregated from 100 MSI cubes of a white reference
standard, with the shaded areas representing 0.1 times the standard deviation. On
the right, the cosine similarity between the light source spectra is illustrated. Figure
adapted from [24, 26].

3.3.2 Automated Illuminant Estimation From Specular Highlights

The primary objective of this study was to evaluate whether our specular reflection-
based approach can accurately estimate illuminant spectra during surgery (RQ1.1),
to analyze the impact of errors in illuminant estimation on StO, accuracy (RQI.2),
and to compare our method with state-of-the-art model-based illuminant estimation
approaches (RQ1.3).

Accuracy of our llluminant Estimation Approach To assess the performance of our
illuminant estimation approach, we estimated the illuminant spectrum from the ex
vivo liver recordings for each of the 5 light sources, L; to Ls, and across all camera poses,
from D1_N to D2_W. An overview of the reference illuminant spectra is available in
Figure 3.2. The principal component analysis projection of the reference and estimated
illuminant spectra is displayed in Figure 3.3. For most light sources, distinct clusters can
be observed, with the estimated illuminant spectra closely matching the corresponding
reference illuminant spectra. Only for L; and L4, which are both xenon light sources
that only differ by the manufacturer, there is substantial overlap between the projected
illuminants. In fact, Figure 3.2 demonstrates that the spectra of L, and L, are nearly
identical, with a cosine similarity of S, ~ 1.

68



3.3 Experiments and Results

® reference spectrum X estimated spectrum
L, (Xenon) L, (Halogen) L5 (Fluorescent) ® L,(Xenon) Ls (LED)
* DI N m D1S ¢ DIV ¢ DI W
D2_N D2_S D2V D2 W
—=— °
0.04 - 0.99975 [ * I
= > % _I_
= £ 0.99950 - * ¢
ﬁ 0.02 - ;a s ..... O .....
—_ = | e |
° g 0.99925 —
N 0.00 - = “ 417
= 0 7
I % o 0.99900
oy
N 7]
o —0.02 5 © 0.99875 -
3]
A 0
0.04 - 0.99850
o
T T T T T T T T
0.00 0.05 0.10 L L, L Ly Ls
PC 1 (74.0%) [a.u.] light source

Figure 3.3: Performance of our illuminant estimation approach on ex vivo porcine liver
images. The left figure shows the projection of the reference spectra (circles) and
corresponding estimated spectra (crosses) for 8 different camera poses, D1_N to
D2_W, and 5 different light sources, /., to Ls, onto the first two principal compo-
nents (PC 1 and PC 2) computed from principal component analysis of the reference
spectra. The explained variances for each principal component are indicated in
brackets. The right figure displays the distribution of cosine similarity between the
estimated and reference spectra for each light source. The boxplots represent the
quartiles of the distribution across camera poses, with whiskers showing the range
excluding outliers. The median is shown as a solid line, the mean as a dotted line,
and the markers correspond to specific camera poses. Figure adapted from [24, 26].

We quantitatively compared our estimated illuminant spectra with the corresponding
reference spectra by calculating their cosine similarity. The distribution of these co-
sine similarities for each light source is shown in Figure 3.3. Our method consistently
achieved a cosine similarity above 0.998 across all light sources and camera poses. The
performance on the test light sources Ly and Ls; was comparable to that on the valida-
tion light sources L, to L3, demonstrating that our approach generalizes effectively to
previously unseen light sources.

Impact of Illuminant Estimation Errors on Oxygen Saturation Estimation  As illustrated in
Figure 3.4, substantial StO, estimation errors, up to 38.4 %, occur when a mismatched
illuminant spectrum is used for estimation. In contrast, our approach effectively com-
pensates for illuminant shifts across both validation and test light sources, as well as
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camera poses. A reduction in the average StO, estimation error from 22.0 % (standard
deviation (SD) 8.0 %) to 13.5% (SD 2.5%) is achieved using our approach. For com-
parison, the average StO, estimation error using the reference illuminant spectrum is
11.3% (SD 0.8 %).

Figure 3.5 provides a qualitative validation of our approach using in vivo human lip
recordings. The average StO, within a region of interest is shown for a continuous
video stream of the lips, with an illuminant shift occurring between frames 85 and
100. When assuming constant illumination, this shift causes a noticeable drop in the
average estimated StO, from 89.9 % before the shift to 82.4 % after the shift. In contrast,
our approach effectively compensates for the illuminant change, maintaining a more
stable StO, estimate, with an average StO, of 91.1 % after the shift.

Comparison to State-Of-The-Art Illuminant Estimation Approaches To evaluate the
performance of our approach against state-of-the-art model-based illuminant estima-
tion methods, we compared the cosine similarity between the estimated and reference
illuminant spectra for each method, using ex vivo porcine liver data captured at 3
different exposure times. Figure 3.6 displays the distributions of the cosine similarities
across the 5 light sources. Our approach consistently outperformed the competing
state-of-the-art methods, with the Max-RGB and Gray-world approaches showing the
poorest performance.

Figure 3.7 shows the cosine similarity-based ranking of our illuminant estimation ap-
proach compared to the state-of-the-art methods. Across all 3 exposure times, our
approach consistently ranks first, followed by the Gray-edge and Shades-of-gray ap-
proaches in second and third rank, respectively. Overall, the ranking variability is
higher for the state-of-the-art methods compared to our approach.

3.4 Discussion and Conclusion

This work presents the first approach to automated illuminant estimation for surgical
SI data. Through a combination of in silico, ex vivo, and in vivo experiments, we
identified the following key findings:

1. Illuminant estimation based on specular highlights: Our experiments confirm
our hypothesis that specular highlight spectra from low-exposure MSI data are
an accurate estimate of the illuminant spectrum in surgical scenes. Our approach
demonstrates consistent performance across diverse light sources and camera
poses, showcasing its robustness to variations in imaging and illumination con-
ditions.
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Figure 3.4: Error in the tissue oxygen saturation (StO,) estimation using our approach
compared to using a mismatched illuminant spectrum. The error in StO; es-
timation is presented for 3 scenarios: (1) using the reference illuminant (dashed
lines), (2) using a mismatched illuminant, and (3) using our approach to estimate
the illuminant spectrum. For a given light source L;, the distribution of StO, errors
is hierarchically aggregated over all other light sources {L;} .., in the mismatched
illuminant scenario and over the 8 camera poses, D1_N to D2_W, for our approach.
Markers denote different light sources and camera poses. The boxplots depict the
quartiles of the distribution, with whiskers showing the range excluding outliers,
the median indicated by a solid line, and the mean by a dotted line.
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Figure 3.5: Qualitative validation of our illuminant estimation approach on in vivo human
lips. A continuous video stream of a human subject’s lips was recorded, with an
illuminant shift occurring between frames 85 and 100. When constant illumination
is assumed, this shift causes a drop in the estimated tissue oxygen saturation (StO)
within the region of interest (highlighted by the yellow square). In contrast, our
approach effectively compensates for the illuminant shift, maintaining accurate
StO, estimates. Figure adapted from [24, 26].
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Figure 3.6: Performance of our illuminant estimation approach compared to state-of-the-
art color constancy methods on ex vivo porcine liver images. State-of-the-art
color constancy methods include the Gray-edge, Shades-of-gray, Gray-world, and
Max-RGB approaches. Distributions of the cosine similarity between estimated
and reference illuminants are shown for 3 different exposure times, and across
5 distinct light sources, /.| to L5, with each light source represented by different
markers. The boxplots illustrate the quartiles of the distribution, with whiskers
showing the range excluding outliers. The median is marked by a solid line, and
the mean by a dotted line. Figure inspired from [24, 26].
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Figure 3.7: Ranking stability of our illuminant estimation approach compared to state-of-
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the-art color constancy methods on ex vivo porcine liver images. State-of-the-art
color constancy methods include the Gray-edge, Shades-of-gray, Gray-world, and
Max-RGB approaches. The ranking stability based on bootstrap sampling of the
cosine similarity between reference and estimated illuminants is shown. For each
blob at position (M, rank r), its area is proportional to the frequency of illuminant
estimation method M achieving rank r across 1000 bootstrap samples. Each sample
consists of 5 light source-level cosine similarity scores (concept adapted from [364]).
For each method, black crosses indicate the median rank, gray diamonds show
the mean rank, and gray lines represent the 95 % quantile of the bootstrap results.
Figure adapted from [24, 26].



3.4 Discussion and Conclusion

2. Impact of illuminant shifts on functional parameter estimation: Illuminant
shifts can lead to substantial errors in StO, estimation, with deviations reaching
up to 38.4%. This presents an important challenge, particularly when precise
StO, measurements are crucial for informed intraoperative decision-making.
Our approach effectively addresses this issue, delivering accuracy close to the
ideal scenario in which the illuminant spectrum is perfectly known.

3. Comparison to state-of-the-art methods: Our approach outperforms state-of-
the-art model-based illuminant estimation methods, consistently achieving the
first rank across a variety of light sources and exposure times.

The following sections highlight the key strengths of our approach (Section 3.4.1),
discuss its limitations, and provide an outlook on future research directions and recent
developments that build on our findings (Section 3.4.2), followed by a summary of our
contributions (Section 3.4.3).

3.4.1 Key Strengths of Our Approach

A key strength of our approach lies in its ability to generalize effectively without re-
quiring extensive training data, unlike learning-based methods. It performs robustly
across unseen light sources, camera poses, and specimens, as demonstrated with liver
and human lips. This adaptability is particularly valuable in surgical scenarios, where
imaging setups and scene content can vary widely across devices and procedures.
Additionally, the method is computationally efficient, with a total acquisition time of
approximately 0.6 s for capturing low-exposure images, and below 50 ms for training a
matching StO, regressor. This efficiency makes it well-suited for real-time applications
in the OR, where rapid decision-making is essential.

3.4.2 Limitations and Future Work

While our approach represents a substantial advancement in automated light source
calibration and live functional imaging during open surgery, several potential limita-
tions should be addressed to fully realize its capabilities:

* Nonuniform illumination: The proposed method assumes uniform illumination
across the entire image, which may not be the case in all surgical scenarios or
imaging setups (e.g., multiple light sources, short distances between light sources
and the surgical scene, or large field of views). Future work could investigate
more advanced methods that account for spatially varying illumination, such as
estimating an illuminant spectrum for each pixel.
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* Presence of specular highlights: Our method depends on the presence of spec-
ular highlight pixels in the image. While specular highlights are generally present
in surgical scenes, this reliance may limit the applicability of our approach to
other types of tissue or imaging setups where specular reflections are less promi-
nent (e.g., skin imaging or hardware setups designed to suppress specularly
reflected light).

e Limited validation: While our approach has demonstrated its potential using
two different specimens (ex vivo porcine liver and in vivo human lips), clinical
validation in real open surgeries involving a broader variety of surgical tissue
types is essential. Additionally, while we covered all types of light sources that
commonly occur in an OR (LED, xenon, halogen, and fluorescent light), test-
ing with a wider range of light source configurations — such as combinations
of different light sources or specific setups like forehead-mounted torch lamps
and surgical overhead lights of different manufacturers — would provide valuable
insights. Due to the limited availability of SI devices during our study, our exper-
iments were conducted with a single MSI setup. Further validation across other
SI devices, particularly those with different spectral channels would be highly
beneficial.

* Impact on the surgical workflow: Our method requires acquiring a separate set
of low-exposure images for illuminant estimation, which, although quick (under
1s), could disrupt the clinical workflow if frequently repeated. To minimize this
impact, we propose developing a method for illumination change detection,
allowing low-exposure images to be captured only when needed. Given the su-
perior accuracy of our method compared to existing approaches, we believe the
occasional acquisition of low-exposure images is a reasonable trade-off. How-
ever, future work could explore alternative approaches that enable illuminant
spectrum estimation directly from the MSI data used for functional parameter
estimation, eliminating the need for additional images.

In 2024, we addressed these limitations by building upon the presented work and
developing a novel method for estimating the illuminant spectrum directly from the
SI data, eliminating the need for additional low-exposure images. This new approach
also enables pixel-wise illuminant predictions [34]. It represents the first DL-based
method for automated illuminant estimation in surgical SI data, made possible by our
extensive collection of in vivo porcine surgical SI datasets (cf. Chapter 5 and Chapter 6)
over the past few years. These datasets were acquired using the novel medical-grade
HSI system TIVITA® described in Section 2.1.2. This system offers a larger field of view
compared to the MSI setup (approximately 20 cmx30 cm vs. up to approximately 3 cmx
5.6 cm). Although a direct quantitative comparison between the two methods was not
possible due to the inability to capture low-exposure images with the HSI device, a
comparison of pixel-wise illuminant estimates (which capture spatial inhomogeneities
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in the illuminant spectrum) and image-wide average illuminant estimates (assuming
uniform illumination) showed that pixel-wise estimations lead to improved functional
parameter estimates in devices with larger fields of view.

3.4.3 Conclusion

In conclusion, we have shown that low-exposure MSI data is highly effective for re-
covering the illuminant through specular highlight analysis, particularly in scenarios
where the illumination across the field of view is nearly uniform. This study marks an
important first step toward enabling real-time functional imaging in open surgery.
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HARDWARE-RELATED SOURCES OF
VARIATION IN HYPERSPECTRAL IMAGING

In the previous chapter, we examined the impact of illuminant shifts on SI measure-
ments and derived functional tissue parameter values (cf. Chapter 3). While we demon-
strated that such environmental factors can influence the accuracy of SI measurements,
an equally important consideration for the clinical translation of SI is the reliability of
the imaging devices themselves.

In this chapter, we focus on TIVITA® cameras (Diaspective Vision GmbH, Am Salzhaff,
Germany). These devices are increasingly adopted in clinical studies due to their
medical device certification, which facilitates regulatory approval, and their ease of use,
enabling operation by clinical staff. In practice, different instances and generations
of the same device type are deployed within and across studies, raising important
questions: Do systematic shifts occur between devices? Are measurements stable
over time, or are they affected by hardware-related factors such as shifts in sensor
temperature or calibration drifts? This chapter provides a systematic investigation of
hardware-related sources of variation in HSI measurements. Based on our findings, we
propose strategies to mitigate these sources of variation in HSI study design. Following
these guidelines supports unbiased data acquisition and the development of reliable,
generalizable algorithms, for example for automated surgical scene segmentation
(Part III), as well as automated sepsis diagnosis and mortality prediction in the ICU
(Part IV).

Section 4.1 provides an overview of related work on hardware-related sources of varia-
tion in HSI devices, underscoring the need for systematic investigations in this area.
Section 4.2 provides details on the devices and datasets specifically acquired for this
study. The experimental setup and results are presented in Section 4.3. The chapter
concludes with recommendations for HSI study design, along with a discussion of
strengths, limitations, and directions for future research in Section 4.4.

Parts of the research described in this chapter were previously presented at the Institute
of Electrical and Electronics Engineers (IEEE)’s 13" Workshop on Hyperspectral Image
and Signal Processing: Evolution in Remote Sensing (WHISPERS) in 2023 [310].
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4.1 Related Work

An estimated 257 publications have reported the use of different generations and
instances of the TIVITA® devices'. Despite this growing body of literature on TIVITA®-
based clinical studies, only a few works have examined sources of variation in measured
spectra and functional tissue parameter index values. Existing studies have primarily
investigated subject-related factors such as variations in skin tone, age, and sex [258]
and imaging conditions, including illuminant changes [34] (cf. our work in Chapter 3)
and imaging geometries [329]. To date, however, hardware-related sources of variation
- such as device shifts and temporal drifts — have not been systematically investigated.

Device Shifts In the broader field of medical imaging, the effects of device shifts
have been investigated across multiple imaging modalities (e.g., magnetic resonance
imaging, radiography, mammography), showing that such shifts can lead to critical
clinical errors, including misdiagnosis by ML models due to shortcut learning and
poor generalizability across devices [28, 374, 292]. We hypothesize that, owing to
manufacturing and calibration tolerances, data shifts between different generations
and instances of the same HSI device type are highly likely. However, the magnitude
of these shifts and their impact on measured spectra and derived functional tissue
parameter indices remains unknown.

Temporal Stability Many HSI studies compare data acquired at different time points.
Examples include assessing the impact of an intervention over time or detecting tissue
malperfusion [83, 289, 96, 326, 227]. In several cohort comparison studies, data are col-
lected months or even years apart [81, 327]. Such analyses assume that measurements
remain stable over time and that devices do not exhibit measurement shifts — neither
in the short term (minutes to hours) nor in the long term (months to years).

However, in HSI devices, measurement shifts over time can arise from several sources,
such as thermal effects: In Complementary Metal-Oxide-Semiconductor (CMOS) imag-
ing sensors, which are used in TIVITA® devices, increasing sensor temperature leads
to an exponential rise in dark current due to thermal electron generation [1] and a de-
terioration of linearity [354]. Push-broom HSI imagers, including the TIVITA® cameras,
capture a vertical line of the scene dispersed through a grating while scanning across
the other spatial dimension (see Section 2.1.3). In such systems, wavelength calibration
can drift over time due to misalignment between the slit, grating, and imaging optics
caused by temperature variations or mechanical stress [75]. In spectroscopy, further

Data retrieved from the Digital Science Dimensions platform app.dimensions.ai using the search
terms “hyperspectral imaging” and “TIVITA” and “Diaspective Vision” in the full-paper dataset on
July 30th, 2025.
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measurement shifts have been observed due to component aging, such as soiling of
optical surfaces or changes in illuminant spectra [232]. Since push-broom HSI devices
contain a spectrometer unit, these effects likely occur in TIVITA® cameras as well.

Many of these intra-device shifts could be mitigated by recalibrating the device (cf.
Section 2.1.3). However, the TIVITA® manufacturer does not recommend regular cali-
bration, stating: “No, it is not necessary to calibrate the TIVITA® Tissue. The TIVITA®
Tissue system is calibrated during production and the calibration data are saved within
the camera” [120]. This approach overlooks the possibility of hardware-related drifts
over time. To this end, a systematic investigation of temporal stability in HSI devices,
including a comparison of calibration strategies, is urgently needed.

To address the lack of research on hardware-related variation, including device shifts
and the temporal stability of devices over both short and long timescales, we address
the following research questions:

RQ1.4: How do spectra and functional tissue parameter index values vary across
different generations and instances of TIVITA® cameras?

RQL.5: How stable are TIVITA® measurements over short timescales (up to hours)
in terms of spectral accuracy and functional tissue parameter index shifts?

RQ1.6: Do long-term drifts occur in spectra and functional tissue parameter in-
dices, and how do calibration strategies (e.g., single vs. daily calibration)
affect them?

4.2 Materials and Methods

This section outlines our HSI devices (Section 4.2.1), the experimental setup (Sec-
tion 4.2.2), and the resulting datasets used to address our research questions (Sec-
tion 4.2.3).

4.2.1 Hyperspectral Imaging Devices

Two generations of TIVITA® cameras for extracorporeal imaging are currently in clinical
use. The first generation includes the TIVITA® Tissue and TIVITA® Wound editions,
while the second generation comprises TIVITA® 2.0, TIVITA® 2.0 Surgery, and TIVITA®
2.0 Wound. All devices share the same spectral specifications, with a spectral resoultion
of approximately 5 nm and 100 spectral channels spanning 500 nm to 1000 nm. The
resulting HSI cubes measure 640 x 480 x 100 (width x height X spectral channels).
Editions differ mainly in application-specific add-ons (e.g., the Surgery edition features
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an elongated cardanic mount, an additional monitor, and a sterile handle adapter),
whereas more substantial differences exist between the first and second generation,
including:

« Optical Components: The field of view differs between the two TIVITA® genera-
tions as different objective lenses were installed. The second-generation devices
have a fixed lens resulting in a field of view of approximately 16 cm X 11.5 cm
at the recommended measurement distance of 50 cm. In the first-generation
devices, the user can choose from a set of lenses with focal lengths of 8 mm,
12mm, 16 mm, 25 mm, 50 mm and 75 mm. Since our focus is on analyzing spec-
tral shifts across devices, we aim to minimize geometric differences from varying
fields of view. To this end, we used a 12 mm lens for the first-generation devices,
resulting in a field of approximately 18.5 cm X 13.5 cm, closely matching that
of the second-generation devices. The optical path of the second-generation
devices differs from the first generation through the addition of an RGB sensor
and a semi-reflective mirror that splits the incoming light between both sensors.

e Ilumination: The first-generation TIVITA® cameras use a halogen light source,
while the second-generation devices feature a broadband LED light source. Fig-
ure 4.1 shows spectra from white reference standard images captured with two
devices from each generation, reflecting the combined effects of illumination
and the transmission characteristics of optical components.

 Camera Housing: Both generations of the TIVITA® cameras differ in the mechan-
ical design of the camera head. As illustrated in Figure 4.2, the second-generation
devices feature a more compact housing of the camera head, with the camera
sensors and LED lightning unit being in proximity and covered by a glass window.

4.2.2 Experimental Setup

Our experiments were conducted using two device instances from each generation: the
TIVITA® Tissue (halogen illumination) and the TIVITA® 2.0 Surgery (LED illumination).
The devices are referred to as Halogenl, Halogen2, LED1, and LED2.

To investigate the effects of hardware-related sources of variation, we conducted exper-
iments on both phantoms and in vivo human skin (cf. Figure 4.2). Phantoms have the
advantage of possessing stable optical characteristics over extended periods of time
such that shortcomings in accuracy and shifts in measurements can be immediately
related to the measurement hardware. In vivo skin measurements, by contrast, allow
for the assessment of hardware-related sources of variation on the spectra and resulting
functional tissue parameter shifts in a realistic setting, closely reflecting the devices’
intended clinical applications, such as automated sepsis diagnosis and mortality pre-
diction (cf. Chapter 7).
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Figure 4.1: Comparison of halogen and light-emitting diode (LED) illumination in TIVITA®
devices. Over one month, images of a white reference standard were captured on
different days using two TIVITA® Tissue devices (halogen illumination: cameras
Halogenl and Halogen2) and two TIVITA® 2.0 Surgery devices (light-emitting diode
(LED) illumination: cameras and LED2). Pixel spectra were aggregated at
the image level. The average spectra across images are shown as solid lines, with
shaded areas representing one standard deviation.
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Figure 4.2: Experimental setup. (a) Experiments were conducted using two generations of
TIVITA® systems: two TIVITA® Tissue devices with halogen illumination (I 1alogenl,
Halogen?2) and two TIVITA® 2.0 Surgery devices with light-emitting diode (LED)
illumination ( , LED2). (b) Measurements were performed on a colorchecker
board phantom and on the palm skin of 7 healthy volunteers (proband to CS7).
The colorchecker phantom enabled reproducible assessment of device accuracy,
while the human skin measurements allowed evaluation of functional tissue param-
eter shifts in a realistic clinical scenario, relevant to applications such as automated
sepsis diagnosis and mortality prediction.
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Phantom Measurements Generating tissue-mimicking phantoms for spectral imaging
that closely replicate optical characteristics of biological tissues, is an active area of
research. To date, reproducible and durable phantoms that accurately reflect tissue op-
tical properties across the entire wavelength range of 500-1000 nm covered by TIVITA®
devices are still lacking [337]. To this end, we utilized colorchecker board phantoms
as they offer a standardized and reproducible reference that is widely used in the
technical validation of MSI and HSI devices. We used a combination of the calibrite®
ColorChecker Classic Mini with the calibrite® ColorChecker Passport Video (Calibrite
LLC, Wilmington, USA). A sample RGB image of our combined colorchecker board is
shown in Figure 4.2. It contains 48 color fields, including a white color field, 8 color
fields with different skin tones and 3 color fields with different flesh tones. To rule out
potential manufacturing variation between different colorchecker boards, the same
colorchecker board was utilized across all measurements.

Proband Measurements Upon approval by the Ethics Committee of the Medical Fac-
ulty of Heidelberg University, Germany (study reference number: S-530/2020), we
conducted measurements on skin of palm for healthy, adult volunteers. The study was
performed in compliance with the Declaration of Helsinki and its subsequent revi-
sions, and all 7 included probands, referred to as probands CS1 to CS7 in the following,
provided written informed consent prior to study participation. Our study population
covered Fitzpatrick skin types in the range 2 to 4 (cf. Figure 4.2 for more details). Of
the participants, 4 were female, and 3 male.

To reduce inter-proband variability and avoid biases when comparing measurements
of the same proband taken at different timepoints, several measures where taken: The
right hand was used across all measurements of a proband, and the probands were
asked to refrain from applying any creams or lotions to their hands on the day of the
measurement. Probands were asked to clean their hands with lukewarm water prior
to the measurements. All measurements were conducted with the proband resting
in an upright seated position. After the proband was seated, a waiting period of 5
minutes was observed before starting the measurements to minimize fluctuations
in skin temperature and circulation caused by prior physical activity. To ensure that
the probands were in a stable physiological state, heart rate, respiratory frequency
and pulse oxymetrical oxygen saturation (SpO;) were monitored throughout the HSI
measurements using a pulse oximeter mounted on the tip of the digitus medius of the
right hand (Masimo MightySat Rx, Masimo Corporation, Irvine, USA). The probands
were instructed to rest their arm on the measurement table with the palm facing
upwards. The hands were kept in a standardized, relaxed but motionless position
during the measurements, supported through mounting the hand on a custom frame
placed on the table (cf. Figure 4.2 for an example image). The mounting frame further
ensured a consistent background across all images.
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Hyperspectral Image Acquisition Several measures were taken to control environmen-
tal factors and reduce their impact on measurements: All light sources other than the
TIVITA® device were turned off, and all window blinds were closed to prevent straylight.
The measurements were conducted in a temperature-controlled room with a constant
temperature of 19 °C, which is within the range of operation room temperature of 0°C
to 30°C recommended by the manufacturer [120]. The devices were operated at an
imaging distance of approximately 50 cm, ensured by an integrated distance calibration
system. The positioning of colorchecker boards and hands within the field of view
was standardized, with both the board and the palm centered in the field of view and
oriented consistently.

Hyperspectral Image Annotation In the first stage, annotations were generated auto-
matically. For colorchecker board images, a 8 X 6 grid of patches with size 23 px x 23 px
was fitted to annotate the 48 individual color fields. For human skin images, a DL-based
segmentation algorithm was used to delineate the skin [308, 314]. All automatically
generated annotations were then manually verified and corrected as needed to ensure
consistency across images.

Reference Spectral Measurements To assess the accuracy of the TIVITA® measure-
ments, we compared them to reference measurements taken with a spectrometer
(HR2000+, Ocean Insight (formerly Ocean Optics) Orlando, Florida, USA) equipped
with a Tungsten Halogen lightsource (HL-2000, Ocean Insight, Orlando, Florida, USA).
The spectrometer captures 1131 spectral channels in the range of 200 nm to 1100 nm.
Spectrometer measurements were repeated 100 times for each color field of the col-
orchecker board phantom, with the resulting spectra averaged to obtain a single refer-
ence spectrum per color field.

Data Preprocessing Calibration with dark and white reference spectra / images was
performed for all spectrometer and HSI measurements (cf. Section 2.1.3). Spectrometer
measurements were transformed to the same spectral range as the TIVITA® mea-
surements based on the spectral sensitivities of the individual channels presented
in Figure 2.6. To avoid shifts from slight fluctuations in the measurement distance,
¢'-normalization was applied across the spectral dimension. The tissue parameter
index images StO, tissue perfusion index (NPI), tissue hemoglobin index (THI), and
tissue water index (TWI) were derived from the HSI cubes according to the formulas
described in [141].
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Figure 4.3: Device shift experiments. For all 4 devices , Halogen2, and LED2,
measurements were conducted on (a) a colorchecker board phantom and (b) on
the palm skin of 6 healthy volunteers (proband to CS6). Each measurement
object was measured 3 times per device, with the devices used in a fixed rotating
order to minimize potential device-related heat-up effects and to reduce the risk of
introducing bias from changes in the proband’s physiological condition over the
course of the measurement session.

4.2.3 Datasets

To study the impact of device shifts, as well as the sort-term and long-term temporal
stability of the devices, we acquired a total of 11 028 images, constituting the following
datasets:

Device Shifts As illustrated in Figure 4.3, we conducted measurements on colorchecker
boards and palm skin of 6 probands (CS1 to CS6) using all 4 devices Halogen1, Halogen2,
LEDI1 and LED2, with each measurement object measured 3 times per device. The
devices were used in a fixed rotating order (Halogen1, Halogen2, LED1, LED2) which
was repeated 3 times per object. This approach minimized potential device-related
heat-up effects by allowing sufficient cooling time between uses. It also reduced the
risk of bias from changes in the proband’s physiological state by evenly distributing
measurements from different devices throughout the session. As the 7 measurement
sessions for the colorchecker board phantom and all 6 probands could not be per-
formed on the same day, we ensured consistent conditions across sessions. Prior to
each measurement session, devices were stored in the measurement room for at least
1h to equilibrate to room temperature, and dark and white calibration was performed
for each device.

Short-Term Temporal Stability To investigate the short-term temporal stability of the
devices, we conducted series of measurements on colorchecker boards and human
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Figure 4.4: Experiments to study short-term temporal stability. Measurement series last-
ing approximately 2 h were conducted on both a colorchecker board and human
palm skin, with measurements taken approximately every 30 s and device sensor
temperature recorded throughout. (a) For the colorchecker board, each series was
repeated 3 times for all 4 devices , Halogen2, and LED2. (b) Human
skin measurements were performed using the devices Halogen2 and LED2, with 3
probands per device and no repetitions.

palm skin. Each series lasted approximately 2 h, with measurements taken at an ap-
proximately 30 s interval®. During the measurements, the device’s sensor temperature
was recorded. Before each measurement series, devices were placed in the measure-
ment room and left unused for at least 1 h to ensure they had equilibrated to ambient
temperature. Also, dark and white calibration was performed prior to each measure-
ment series. As shown in Figure 4.4, measurements on the colorchecker boards were
repeated 3 times and conducted with all 4 devices Halogen1, Halogen2, LED1, and
LED2. In contrast, due to the time demands on participants, human skin measure-
ments were only conducted with the devices Halogen2 and LED2, using 3 probands
per device, and without performing repetitions.

Long-Term Temporal Stability In our device shift and short-term temporal stability
experiments, we recorded new dark and white reference images before each measure-
ment series to recalibrate the TIVITA® devices. This calibration strategy is meant to
account for potential long-term drifts in device performance, however, it differs from
the manufacturer’s recommended procedure, which suggests using the dark and white
calibration files recorded during production [120].

To assess long-term device shifts in TIVITA® cameras, we conducted a multi-month
measurement campaign imaging a colorchecker board phantom and the palm skin

2The 30 s measurement interval was generally maintained, though occasional device freezes required
restarting before continuing the measurements, thereby extending the interval between measure-
ments.
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Figure 4.5: Experiments to study long-term temporal stability and calibration strategies.
A multi-month measurement campaign was conducted using the device on
(a) the colorchecker board and (b) human palm skin of two probands (CS2, CS7).
Measurements were taken daily, excluding some weekends and public holidays. For
each measurement day, calibration files were also recorded, enabling a comparison
between two calibration approaches: a single calibration at the beginning of the
campaign (calibrating once) versus calibration performed on the same day as the
measurement (daily calibration).

of two probands (CS2 and CS7), as illustrated in Figure 4.5. Measurements were per-
formed daily, with occasional breaks on weekends and public holidays. For the col-
orchecker board, the observation period spanned 418 days with 313 measurement days.
For the human skin measurements, the observation period covered 204 days, with
the two probands measured on separate days, totaling 183 measurement days. Due to
limited device availability, only the device LED1 was used in this experiment. Before
each measurement session, new white reference images were recorded, enabling a
direct comparison of two calibration strategies: (1) the manufacturer-recommended
approach of using calibration files recorded during production, referred to as calibrat-
ing once, and (2) our daily calibration approach, using calibration files recorded on
the same day as the measurements.

4.3 Experiments and Results

This section presents the validation approach and findings for our 3 research questions
on hardware-related sources of variation in TIVITA® devices. We first investigate the
impact of device shifts on measured spectra and functional tissue parameter indices
(Section 4.3.1), followed by an analysis of short-term temporal stability (Section 4.3.2)
and long-term temporal stability (Section 4.3.3).
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4.3.1 Device Shifts

To investigate the impact of device shifts on measured spectra and functional tis-
sue parameter indices (RQ1.4), we compared measurements from two generations of
TIVITA® devices, as well as measurements from different instances of the same device
generation, conducted on a colorchecker board phantom and on human palm skin.

Colorchecker Phantom We hierarchically aggregated the measured spectra by first
computing the median spectrum within the annotated area of each color field and then
averaging the results across the 3 repetitions per device and color field. Figure 4.6 shows
the resulting aggregated spectra alongside reference spectrometer measurements for
12 selected color fields from the colorchecker board phantom, including white, 8 color
fields with different skin tones (desert sand, pancho, gold sand, tumbleweed, antique
brass, light skin, dark skin, and tobacco brown) and 3 color fields with different flesh
tones (froly, moderate red, and red).

For a quantitative assessment of the accuracy of the TIVITA® measurements, we com-
puted the Euclidean distances between the TIVITA® spectra and spectrometer spectra
for each color field in an image. Euclidean distances across the 3 repetitions were
averaged. The resulting distribution of Euclidean distances across color fields and
devices are shown in Figure 4.7.

Overall, the TIVITA® measurements are in good agreement with the spectrometer
measurements. The largest deviations occur for the relatively dark color field “tobacco
brown” measured with the first-generation devices Halogen1 and Halogen2. These
devices are generally less accurate than the second-generation devices (LED1, LED2),
particularly in the NIR range and below 550 nm. This may be caused by limitations of
the halogen illumination: as shown in Figure 4.1, halogen light delivers high intensity
around 700 nm but lower intensity in the NIR and below 550 nm.

Human Skin To assess the impact of device shifts on human palm skin spectra, we
compared measurements from the 4 devices Halogen1, Halogen2, LED1 and LED2.
Spectra were aggregated hierarchically by first computing the median within each
annotated area and then averaging these medians across the 3 repetitions per device
and proband. As shown in Figure 4.8, the standard deviation across repetitions is small.
Consistent with the colorchecker board phantom results, systematic deviations across
devices occur mainly in the NIR range and below 550 nm. Inter-device differences
show that second-generation devices (LED1, LED2) produce more similar spectra to
each other than to the first-generation devices (Halogen1, Halogen2).

The impact of device shifts on palm skin functional tissue parameter index values is
shown in Figure 4.9. Index values were aggregated hierarchically by first computing the
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Figure 4.6: Comparison of colorchecker board spectra measured with different TIVITA®
devices and a reference spectrometer. ¢!-normalized spectra are shown for 12
color fields of the colorchecker board, measured with the 4 devices Halogenl, Halo-
gen2, LEDI and LED2 as well as a reference spectrometer. Spectra were aggregated
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devices Halogenl, Halogen?2, and LED2. Spectra were aggregated hierarchically
(first at the image level, then across repetitions) and shaded areas represent one
standard deviation across the repetitions.
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median within the annotated area of each image, and then averaging these medians
across the 3 repetitions for each device and proband. Due to a high inter-subject
variability in functional tissue parameter index values, we first computed a subject-
specific baseline for each functional tissue parameter index p and subject s as the
mean of index values i(p, s, d) across all devices d in our set of 4 devices D:

7= Y ipsd) @)

|D| deD

The device-specific deviation from this baseline was then calculated as:

Amindex(p, s, d) = i(p,s,d) - i¥ (4.2)

As shown in Figure 4.9, overall shifts in functional tissue parameter indices across
devices are small. This is further illustrated in Figure 4.10, which presents sample
images of proband CS1’s palm skin measured with the 4 devices Halogen1, Halogen2,
LED]1, and LED2. The largest shift in functional tissue parameter indices occurred for
tissue perfusion index in proband CS3, where values from Halogen2 and LED2 differed
by 0.07.

4.3.2 Short-Term Temporal Stability

To investigate the short-term temporal stability of TIVITA® devices (RQL5), we analyzed
how sensor temperature shifts affect spectral measurements and functional tissue
parameter indices. Measurements were performed on a colorchecker board phantom
and human palm skin, recording spectra every 30 s over a two-hour period. During this
time, sensor temperature increased steadily, with an average rise of 3.9°C (SD 0.8°C)
for the halogen devices and 23 °C (SD 4 °C) for the LED devices.

Colorchecker Phantom As illustrated in Figure 4.11 for the device Halogen2 and Fig-
ure 4.12 for the device LED2, the spectra of the colorchecker board phantom show a
progresive shift with increasing sensor temperature. This also holds for the devices
Halogenl1 and LED1, as shown in the appendix figures Figure B.1 and Figure B.2, re-
spectively.

To quantify the impact of sensor temperature shifts on spectral measurement accuracy,
we calculated the Euclidean distance between spectra recorded at different sensor
temperatures and the corresponding reference spectrometer spectra for each color
field and device. The progression of Euclidean distances across color fields and sensor
temperatures is shown in Figure 4.13 for the device Halogen2 and in Figure 4.14 for
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Figure 4.9: Impact of device shifts on functional tissue parameter indices of human palm
skin. The distribution of Ay, index, the relative shift in a functional tissue parameter
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devices. For proband , reconstructed RGB images are shown overlaid with
color-coded maps of the 4 functional tissue parameter indices tissue oxygen satu-
ration, tissue perfusion index, tissue hemoglobin index, and tissue water index.
Images are from a single measurement repetition for each of the devices Halogenl,
Halogen2, LED1 and LED2.
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the device LED2. Results for Halogen1 and LEDI are provided in the appendix (Fig-
ure B.3 and Figure B.4). Across all devices, the Euclidean distance between TIVITA®
measurements and reference spectrometer measurements increases with rising sensor
temperature, indicating a gradual loss of accuracy over the measurement series.

Human Skin To assess the impact of sensor temperature shifts on human skin spectra,
we analyzed measurements from the devices Halogen2 and LED2 for 3 probands each.
Consistent with the colorchecker phantom results, human palm skin spectra show a
progressive shift with rising sensor temperature (cf. Figure 4.15).

Figure 4.16 shows the progression of the functional tissue parameter indices StO,, NP]I,
THI, and TWI across sensor temperatures for the devices Halogen2 and LED2. Notable
observations include a strong decline in StO, for the device LED2 with increasing
sensor temperature, with a reduction in StO, of up to -0.27 between first and last
measurement. The TWI shows a small decline for both devices, with a reduction
between first and last measurement of up to -0.06. The indices NPI and THI show no
consistent trends across probands.

Compared to the small inter-device shifts in functional tissue parameter indices (cf.
Figure 4.9), the changes linked to rising sensor temperature are substantially larger —
particularly for StO, estimates from the LED2 device, where shifts are roughly an order
of magnitude greater. As shown in Figure 4.17, which presents sample index maps of
human palm skin from Halogen2 and LED2 at both low and high sensor temperatures,
these pronounced shifts are clearly visible in the functional tissue parameter images.

4.3.3 Long-Term Temporal Stability

To investigate the long-term temporal stability of TIVITA® devices and analyze the
impact of calibration shifts (RQ1.6), we performed repeated measurements on a col-
orchecker board phantom and human palm skin over several months. Each image
was processed twice, once using the calibration files recorded on the same day as the
measurement (daily calibration) and once using the calibration files recorded at the
beginning of the multi-month measurement period (calibrating once), thus enabling a
direct comparison of the two calibration strategies.

Colorchecker Phantom To quantify the impact of calibration strategy on the accuracy
of TIVITA® measurements, we compared the Euclidean distances between calibrated
TIVITA® spectra and reference spectrometer measurements on the colorchecker board
phantom across the different measurement days. As shown in Figure 4.18, consistently
across all color fields, the daily calibration strategy results in lower Euclidean distances
compared to calibrating once at the beginning of the measurement campaign.
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Figure 4.16: Impact of rising sensor temperature on functional tissue parameter indices
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Figure 4.17: Exemplary functional tissue parameter images of human palm skin across
sensor temperature. Reconstructed RGB images are overlaid with color-coded
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surement (low sensor temperature) is compared with the last measurement (high
sensor temperature) for two series: proband CS2 measured with LED2 (left) and
proband CS5 measured with Halogen?2 (right).
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Figure 4.18: Accuracy of TIVITA® measurements as a function of calibration scheme. The
boxplots show the distribution of Euclidean distances between measurements
taken with the device .ED1 and a reference spectrometer across 313 different
measurement days. Two calibration strategies are compared: daily calibration
and calibrating once at the beginning of the measurement period. Measurements
were taken on 12 distinct color fields of a colorchecker board phantom. Each box
displays the interquartile range of the distribution, with whiskers showing the
range excluding outliers. The median and mean are indicated by solid and dotted
lines, respectively.
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Human Skin To evaluate the effect of different calibration schemes on human skin
functional tissue parameter indices, we calculated the absolute difference between
index values from pairs of processed TIVITA® images differing only in calibration
method, denoted as A, index. The resulting distributions of A, index are shown in
Figure 4.19 for the two probands CS2 and CS7. Overall, shifts in functional tissue
parameter indices due to calibration scheme are small. The largest calibration-related
shifts are observed for StO, and TWI, with up to 0.06 and 0.08, respectively. The shifts
in NPI and THI are smaller, with maximum shifts of 0.02 and 0.01, respectively.

4.4 Discussion and Conclusion

In this study, we demonstrated for the first time that TIVITA® HSI devices are sensi-
tive to hardware-related sources of variation. Through an extensive validation on a
colorchecker board phantom and the skin of 7 healthy volunteers, we investigated 3
hardware shift scenarios: (1) inter-device variability, (2) sensor temperature increases
during a measurement series, and (3) calibration shifts over several months.

Our results show that TIVITA® devices exhibit systematic spectral measurement shifts
across device generations and instances, sensor temperatures, and calibration schemes.
Overall, second-generation devices and the use of daily calibration - rather than the
manufacturer’s recommended single initial calibration — yield spectral measurements
that more closely match reference spectrometer data. Shifts in functional tissue param-
eter indices caused by changes in device or calibration scheme were generally small.
In contrast, rising sensor temperature produced substantial index shifts, particularly
in StO, estimates from the LED2 device.

4.4.1 Implications for the Design of Bias-Aware Hyperspectral Imaging
Studies

Our findings highlight the need to account for hardware-related sources of variation in
HSI studies, particularly when using TIVITA® devices. We recommend the following
countermeasures for study design and analysis:

* Counteracting device shifts: To avoid device shifts, the same device should be
used for all measurements in a study.

* Counteracting sensor temperature shifts: To mitigate sensor temperature shifts,
sensor temperatures should be monitored during measurements. In our experi-
ments, a 30 s interval was chosen to capture fast physiological dynamics. If high
temporal resolution is not required, measurement intervals should be increased
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Figure 4.19: Impact of calibration scheme on human skin functional tissue parameter

indices. Two calibration strategies are compared for the device : (1) using
calibration files recorded on the same day as the measurement, and (2) using
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plots show the distribution of absolute differences in oxygen saturation, perfusion
index, hemoglobin index and water index — denoted as A, index — calculated by
processing each image with the two calibration strategies. Each box displays the
interquartile range of the distribution, with whiskers showing the range excluding
outliers. The median and mean are indicated by solid and dotted lines, respec-
tively. Measurements were performed on probands CS2 (top) and CS7 (bottom).
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to reduce sensor temperature rise. For comparisons between cohorts, the order
of measurements should be carefully planned - ideally randomized - to avoid
systematic temperature differences between groups.

* Counteracting calibration shifts: To avoid calibration shifts and improve the
accuracy of HSI measurements, we recommend performing frequent device
calibration. Although calibration during a measurement session may not be
practical in some clinical contexts (e.g., due to sterility constraints, cf. Chapter 3),
calibration prior to each measurement session should be performed whenever
possible. This is particularly important in long-term studies, where hardware
aging could introduce gradual measurement drift.

* Device characterization: We recommend performing a rigorous characteriza-
tion of each device in use, for example through regular measurements on a
colorchecker board phantom. This allows for monitoring of device accuracy,
detection of hardware-related shifts over time, and potential correction based
on these observations.

* Interpretation of HSI data: Small differences in HSI data should be interpreted
cautiously if potential confounding from hardware-related sources of variation
cannot be excluded. This is particularly relevant given that several studies using
TIVITA® devices have reported and interpreted changes in functional tissue pa-
rameter indices of similar magnitude to those observed from hardware-related
variation, for example when evaluating intervention effects [124, 327] or compar-
ing sepsis survivors with non-survivors [80].

4.4.2 Limitations and Future Work

In the following, we discuss the key strengths and limitations of our study and outline
potential directions for future research.

Strengths and Limitations of Our in Vivo Measurements Our in vivo measurements
were conducted on the palm skin of healthy volunteers, providing direct insight into
hardware-related variability at a measurement site intended for our future study on
automated sepsis diagnosis and mortality prediction. The calibration scheme assess-
ment was unaffected by potential changes in the proband’s physiological state, as both
schemes were applied to the same set of images. In contrast, analyses of device shifts
and sensor temperature shifts required comparisons between different images, relying
on the assumption that each proband’s physiological state remained stable throughout
the measurement series.

As described in Section 4.2.2, several precautions were taken to ensure physiological
stability, including prohibiting physical activity during measurements and having

108



4.4 Discussion and Conclusion

probands sit for at least 5 min prior to measurements. In addition, a pulse oximeter was
used to continuously monitor SpO,, heart rate, and respiratory frequency. Figure B.5,
Figure B.6, and Figure B.7 display these parameters for the 6 probands during the sensor
temperature experiments, plotted against the corresponding HSI sensor temperature.
The absence of parameter trends aligning with shifts in HSI spectra or functional tissue
parameter estimates supports the assumption that physiological changes did not bias
our results.

As an additional validation, we compared the impact of sensor temperature shifts on
functional tissue parameters of human skin to that observed for the “light skin” color
field of the colorchecker board phantom, which most closely resembles human skin
spectra. As shown in Figure B.8, the “light skin” field exhibited similar trends to in vivo
skin measurements with increasing sensor temperature, including a strong decrease in
StO, for LED2 and a slight decrease in TWI across all devices. These findings support
the robustness of our conclusions.

Generalizability of Our Findings In our colorchecker board phantom measurements,
we observed that the accuracy of TIVITA® measurements depends on the measure-
ment object. For example, Euclidean distances for the “tobacco brown” field were
consistently larger than for “light skin” (cf. Figure 4.7, Figure 4.18). This suggests that
the impact of hardware-related sources of variation on HSI measurements may differ
across measurement objects, such as different tissue types. Furthermore, this study fo-
cused on functional tissue parameter estimation as the downstream task, since it is the
most common application of TIVITA® devices. However, hardware-related shifts in HSI
measurements may influence other downstream tasks in different ways. Even within
our analysis, the magnitude of these shifts varied across functional tissue parameter
indices — for example, StO, and TWI estimations were more strongly affected by sensor
temperature changes than NPI and THI. In particular, ML algorithms are prone to
exploiting unwanted shortcuts in the data rather than learning task-relevant features
[28, 113, 385, 288]. Future work should therefore investigate the influence of hardware-
related variation on a broader range of measurement objects and downstream tasks,
including HSI-based classification and segmentation algorithms.

Hardware-Related Variation Beyond Spectral Shifts This study focused on spectral
shifts as the primary source of hardware-related variation. However, other factors —
such as geometric shifts caused by differences in field of view across devices — may also
be relevant, particularly for image-based rather than pixel-based algorithms. Future
work should examine these additional sources of variation and assess their effects on
HSI data and different downstream tasks.
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Addressing Hardware-Related Variation We have provided recommendations for miti-
gating hardware-related bias in study design and analysis. In parallel, there is a need
for manufacturers to improve the reliability of measurements. For instance, the impact
of sensor temperature shifts could be reduced through improved heat dissipation.
Additionally, manufacturers should offer clear guidance on the expected accuracy of
measurements under different conditions and define error margins that set meaningful
boundaries for interpreting HSI data. Furthermore, algorithms could be developed to
automatically detect hardware-related shifts, enabling real-time corrective actions such
as initiating recalibrations or scheduling cooldown periods. Future research should
focus on creating algorithms that are inherently robust to residual hardware-related
variation, including more reliable functional tissue parameter estimation algorithms
and ML models trained to generalize across hardware shifts.

4.4.3 Conclusion

To our knowledge, this work presents the first systematic analysis of hardware-related
sources of variation in HSI measurements obtained with TIVITA® devices. We showed
that these devices are sensitive to such variations, particularly increases in sensor
temperature, and provided recommendations for study design and analysis to mitigate
associated bias. Adhering to these guidelines will facilitate unbiased evaluation of HSI
for applications such as automated surgical scene segmentation (Part III) as well as
sepsis diagnosis and mortality prediction (Part IV).
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Hyperspectral Imaging (RQ2)
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IMPACT OF SPATIAL GRANULARITY AND
MODALITY ON SURGICAL SCENE
SEGMENTATION

As outlined in Section 1.2.2, fully automated surgical scene segmentation is a pivotal
step towards the development of intelligent surgical systems capable of providing real-
time, context-aware intraoperative decision support, as well as advancing autonomous
surgical robotics. However, to date, semantic surgical scene segmentation using SI data
has received little attention. Consequently, the potential advantages of SI data over
other modalities, as well as how best to optimally represent input data for DL-based
segmentation algorithms, remain largely unexplored. In this chapter, we address this
important knowledge gap by investigating the impact of the input spatial granularity
(e.g., pixels, superpixels, patches, or images) and imaging modality (e.g., RGB, HSI,
or processed HSI data) on the performance of DL-based surgical scene segmentation
algorithms. Our work contributes the largest semantically annotated intraoperative SI
dataset to date, alongside a comprehensive framework for surgical scene segmentation
across spatial granularities and modalities, which is publicly available in our GitHub
repository (https://github.com/IMSY-DKFZ/htc)[312].

Section 5.1 provides an overview of the related work on surgical scene segmentation,
followed by a description of our datasets and DL approach to automated semantic
scene segmentation in Section 5.2. The experimental setup and results are presented
in Section 5.3, and the chapter concludes with a discussion of the design choices,
strengths, limitations, and directions for future research in Section 5.4.

The research presented in this chapter was published in the Medical Image Analysis
journal in 2022 [308], as well as in the thesis of Jan Sellner in 2024 [311]. It was further
presented at the IPCAI in 2022 [307].
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5.1 Related Work

Only few works have addressed the task of surgical scene segmentation using MSI or
HSI data. To this end, we provide a broad overview of related work in surgical scene seg-
mentation using RGB data (Section 5.1.1), followed by a more detailed discussion of the
existing literature on multispectral and HSI-based intraoperative tissue segmentation
(Section 5.1.2).

5.1.1 Surgical Scene Segmentation Using RGB Data

Segmentation of RGB data of surgical scenes has been explored in various studies,
with most efforts focusing on medical instrument segmentation [297]. This trend is
driven by challenges in the field, such as the CATARACTS challenge on automatic tool
segmentation in microscopic cataract surgery [10], and the Endoscopic Vision Grand
Challenges in laparoscopic colorectal surgery [43, 13, 224]. The release of additional
public datasets for instrument segmentation, such as those for gastrointestinal en-
doscopy [161] and robot-assisted prostatectomy [27], has further spurred research in
this area.

In contrast, relatively few studies have focused on the segmentation of anatomical
structures in surgical scenes. A snapshot of related work is presented in Table 5.1. These
studies either target specific organ classes — such as the uterus [69], liver [119, 106], or
recurrent laryngeal nerve [122] — or, more commonly, address full scene segmentation
in various surgical contexts, such as robotic nephrectomy [12], laparoscopic hysterec-
tomy [220], laparoscopic cholecystectomy [231], and robotic rectal resection [185]. The
datasets used in these studies differ widely in terms of the spatial and temporal reso-
lution of the video frames, as well as the number of classes considered (cf. Table 5.1).
Surgical scene segmentation approaches for RGB data predominantly rely on CNNs
that process entire images.

The vast majority of studies on automated surgical scene segmentation focus on mi-
croscopic or minimally invasive procedures, likely because RGB imaging systems are
routinely utilized in these procedures. We are aware of only one study that specifically
addresses segmentation in open surgical scenes using RGB data ([122]). Compared
to minimally invasive surgeries, automated semantic segmentation in open surgeries
poses additional challenges due to the greater variability and complexity of the surgical
scene. For instance, Gong et al. demonstrated that shifts in imaging conditions, such as
changes in lighting or variations in camera distance, substantially affect segmentation
performance [122].

Previous research has highlighted several key challenges for automated surgical scene
segmentation using RGB data, including substantial variability in tissue appearance
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both across patients [69, 119] and within images due to factors such as occlusions
or deformations [239]. Incorporating additional spectral information could be key
for overcoming these challenges, since SI may depend less on spatial context while
offering enhanced clinical insights (e.g., functional tissue parameters) [95].

5.1.2 Surgical Scene Segmentation Using Spectral Imaging Data

We only identified 15 studies addressing the task of intraoperative organ segmentation
using MSI or HSI data. A tabular summary of these studies is presented in Table 5.2.
Of these, 10 studies employ DL methods. Most studies focus on tumor segmentation
in brain surgery or ex-vivo specimens, while only two studies tackle surgical scene
segmentation in visceral surgeries, which is the focus of our work.

The key limitations of existing studies include:

* Benefit of SI over RGB data: Only few studies have explored whether SI provides
advantages over RGB imaging for organ segmentation. Moccia et al. performed
segmentation of 6 abdominal organs during laparoscopic hepatic surgery. To
demonstrate the benefit of MSI over RGB, they compared MSI to a selection of
3 spectral bands. However, the narrow spectral bandwidth of these bands does
not accurately represent realistic RGB data [239]. Garifullin et al. compared MSI
and RGB data for segmenting vessels, optic disc, and macula in retinal imag-
ing, finding only marginal performance improvements from MSI [110]. Similarly,
Garcia Peraza Herrera et al. observed only mild improvements in image-wide
performance metrics when using HSI compared to RGB data for segmenting 35
classes in oral and dental SI data. However, certain tissue classes (e.g., attached
gingiva) were significantly better recognized with HSI [109]. Despite these ef-
forts, the potential advantages of HSI over RGB data for fully semantic scene
segmentation in visceral surgeries remain unexplored.

e Spatial granularity: The spatial granularity of segmentation algorithms varies
substantially across studies. Some focus on pixel-level segmentation (e.g., [9,
279, 92]), while others employ superpixels (e.g., [239, 214]), patches (e.g., [340, 59,
70, 339]), entire images (e.g., [110, 109]), or a mixture of granularities (e.g., [339,
202, 214]). The choice of spatial granularity likely influences the performance of
surgical scene segmentation algorithms and their ability to generalize to unseen
surgical scenarios. However, a systematic investigation into this relationship has
not yet been performed.

e Amount of training data: The number of subjects used for training and vali-
dation ranges widely, from as few as one subject [9] to 169 subjects in the most
recent study [30]. Some researchers justify using smaller input spatial granulari-
ties, such as patches, with limited dataset sizes (e.g., [59, 70]). They argue that
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Table 5.1: Snapshot of related work on surgical scene segmentation using RGB data. Related
publications are organized chronologically by publication year and include details
on the type of surgery, the number of subjects (), the number of classes (N;), and
the name of the dataset in case a publicly available dataset was used.

publication year type of N; N, dataset
surgery
Collins et al. [69] 2015 laparoscopic 126 1 private
(uterus)
Gibson et al. [119] 2017 laparoscopic 13 1 private
(liver)
Fu et al. [106] 2019 laparoscopic 13 1 private
(liver)
Kadkhodamoham- 2019 laparoscopic 5 14 private
madi et al. [165] (liver)
Laves et al. [196] 2019 endoscopic 2 7 private
(larynx)
Allan et al. [12] 2020 robotic 19 12 EndoVisSub2018
nephrectomy
Madad Zadeh et al. 2020 laparoscopic 8 3 SurgAl
[220] hysterectomy
Magbool et al. [231] 2020 laparoscopic ? 19 m2caiSeg
cholecystectomy
Scheikl et al. [302] 2020 laparoscopic 2 6 private
cholecystectomy
Gong et al. [122] 2021 open thyroidec- 130 1 private
tomy
Grammatikopoulou et 2021 microscopic 25 8-25 CaDIS
al. [125] (cataract)
Jin et al. [162] 2022 mixed 25/19 8-25/12  CaDIS/EndoVis-
Sub2018
Bhattarai et al. [38] 2023 mixed 25/19 8-25/12  CaDIS/EndoVis-
Sub2018
Ghamsarian et al. [115] 2023 microscopic 30 12 Cataract-1K
(cataract)
Kolbinger et al. [185] 2023 robotic (rectal re- 32 1 Dresden Surgical
section) Anatomy Dataset
Luo et al. [216] 2023 microscopic 12 19 private
(neurosurgery)
Liu et al. [209] 2024 mixed 25/19/8 8-25/12/8 CaDIS/EndoVis-
Sub2018/private
Urrea et al. [344] 2024 laparoscopic 17 13 CholecSeg8K
cholecystectomy
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Table 5.2: Overview of related work on multispectral and hyperspectral imaging-based
intraoperative tissue segmentation. Related publications are organized chronolog-
ically by publication year and include details on the target tissues, the number of
subjects (IV;), the number of classes (IN,), the spatial granularity of the segmentation
algorithms, and the level of detail of the provided annotations. In the context of the
selected input spatial granularity, the term “mixed” denotes models that combine
multiple levels of spatial granularity. Our own work on surgical scene segmentation
([308, 314, 309, 315]), is excluded from this list, as it is discussed in detail in the
following chapters.

publication year target N; N, spatial annotations
granularity
Akbari et al. [9] 2008 abdomen 1 5 pixels semantic
Fabelo et al. [93] 2016 brain 22 4 mixed sparse
Ravi et al. [279] 2017 brain 18 2 pixels sparse
Fabelo et al. [94] 2018 brain 22 4 mixed sparse
Garifullin et al. [110] 2018 retina ? 3 images semantic
Moccia et al. [239] 2018 abdomen 7 6 superpixels semantic
Fabelo et al. [92] 2019 brain 16 4 pixels, patches sparse
Trajanovski et al. [340] 2019 ex-vivo 14 2 patches semantic
specimen
Cervantes-Sanchez et al. 2021 abdomen 7 4  pixels, patches sparse
[59]
Collins et al. [70] 2021 ex-vivo 22 2 pixels, patches sparse
specimen
Trajanovski et al. [339] 2021 ex-vivo 14 2 pixels, semantic
specimen patches,
mixed
Garcia Peraza Herrera et al. 2023 mouth 30 35 pixels, images sparse
[109]
Leon et al. [202] 2023 brain 34 4 pixels, mixed sparse
Lotfy et al. [214] 2023 ex-vivo 30 3 superpixels, sparse
specimen mixed
Bannone et al. [30] 2024 abdomen 169 13 patches sparse
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dividing SI cubes into smaller regions generates more training samples, thereby
mitigating overfitting [70]. However, the relationship between the number of
training subjects and segmentation performance — and whether smaller spatial
granularities provide a tangible advantage over larger ones — has not yet been
systematically studied.

e Annotation sparsity: The majority of studies (67 %) rely on sparse annotations
that do not accurately delineate tissue boundaries. Instead, these annotations
are for example confined to small circular regions within the target organs [59]
or limited to tissue areas with available histopathological evidence [93]. This
limitation impedes the practical applicability of such algorithms for tissue seg-
mentation, as (1) the algorithms are not trained to accurately identify tissue
boundaries, and (2) their performance in regions outside the sparse annotations
cannot be assessed, making the reported segmentation performances unreliable.

e Flaws in algorithm validation: Many studies lack an independent test set, in-
stead reporting performance metrics on validation sets that were also used for
hyperparameter tuning. This practice risks overestimating algorithm perfor-
mance [9, 279, 92, 59, 339].

In summary, existing research on surgical scene segmentation remains limited, partic-
ularly in the context of open surgeries. The optimal spatial granularity of input data to
achieve high segmentation quality and reduce the number of required training subjects
has yet to be established. Moreover, no prior study has conclusively demonstrated the
superiority of SI data over RGB data for deep learning-based surgical scene segmen-
tation, particularly in open visceral surgeries. To address these gaps in literature, we
investigate the following research questions:

RQ2.1: What is the optimal spatial granularity of input data (pixels, superpixels,
patches, or full images) in terms of segmentation performance and the
number of required training subjects?

RQ2.2: Does HSI data offer advantages over RGB data and processed HSI data (e.g.,
tissue parameter estimations) for DL-based surgical scene segmentation?

5.2 Materials and Methods

The following sections describe our dataset (Section 5.2.1) and deep learning pipeline
(Section 5.2.2) used for automated surgical scene segmentation.
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5.2.1 Dataset

We collected a dataset of 506 HSI cubes from 20 pigs undergoing midline laparotomy,
with a thoracotomy subsequently performed on a subset of 8 pigs. Each image was
fully annotated with 18 distinct organ classes and background. The HSI data was col-
lected at Heidelberg University Hospital with approval from the Committee on Animal
Experimentation of the Regional Council of Baden-Wiirttemberg, Karlsruhe, Germany
(G-161/18 and G-262/19). The pigs were managed in compliance with German ani-
mal welfare laws and in accordance with the European Community Council Directive
(2010/63/EU). Further information regarding the surgical procedures, anesthesia, and
animals are provided in [329].

Hyperspectral Image Acquisition The HSI data was acquired using the medical device-
graded camera system TIVITA® Tissue (Diaspective Vision GmbH, Am Salzhaff, Ger-
many) described in Section 2.1.2. It consists of a push-broom HSI unit, halogen illumi-
nation, a computer for data acquisition and processing, and a monitor, all mounted
on a mobile cart for convenient intraoperative measurements. The camera system cap-
tures 100 spectral channels in the visible and NIR range from 500-1000 nm with a spec-
tral bandwidth of approximately 5 nm. It captures a field of view of about 30 cmx20 cm
at an imaging distance of about 50 cm, which is maintained using an integrated dis-
tance calibration unit. The resulting HSI cubes measure 640 x480x 100 (width X height
X spectral channels) and the acquisition of one HSI cube takes about 7 seconds. TPI,
including StO,, TWI, THI and NPI, were computed from the acquired HSI data using
proprietary algorithms provided by the manufacturer [141]. Additionally, RGB images
were generated based on the HSI data by combining reflectances across spectral chan-
nels corresponding to red, green, and blue channels of conventional RGB cameras,
respectively [141].

To ensure uniform illumination from the camera’s integrated halogen lighting unit, the
room light was dimmed during image acquisition. To minimize motion artifacts, the
entire camera system remained stationary throughout image acquisition, eliminating
any potential camera motion. Additionally, images were captured from static scenes,
with no movement of objects caused by the operating surgeon. Consequently, motion
artifacts were limited to natural sources such as respiration and heartbeat, making
them relatively mild and primarily affecting images of thoracic organs (see Figure 5.8
for an example image).

Hyperspectral Image Annotation Two medical experts performed the semantic anno-
tation process using vector annotation tools on the SuperAnnotate platform (SuperAn-
notate, Sunnyvale, USA) [7]. To ensure consistency, all annotations were reviewed and
refined by the same medical expert.
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Each pixel was assigned to one out of 19 classes, including:

 two thoracic organs, namely lung and heart.

e 8 abdominal organs, namely stomach, liver, gallbladder, spleen, pancreas, small
bowel, colon, and kidney. Kidney images were taken prior to removing Gerota’s
fascia and afterwards, and labeled as “kidney with Gerota’s fascia” and “kidney”,
respectively.

* one pelvic organ, namely bladder.

 the anatomical structures skin, subcutaneous fat, muscle, peritoneum, omentum,
and major vein.

* the label “background”, which was used for inorganic objects, such as metallic
objects, compresses, cloth, tubes, gloves and foil. This label appears in every
image, with annotated areas covering an average of 47 % (SD 24 %) of an image.

 the label “ignore”, which was assigned to regions where the organ class was
unclear or ambiguous, or where the area belonged to an organic structure outside
the defined 18 tissue classes. The “ignore” label appears in 221 of the 506 images,
covering on average 2% (SD 3 %) of their area. These pixels were excluded from
subsequent analysis.

An example image and segmentation for each of the 19 classes are shown in Figure 5.1.
The figure also includes heatmaps that highlight the typical spatial distribution of each
class within an image and the average class spectra aggregated across subjects.

Data Statistics An overview of the class distribution across the images is provided
in Figure 5.2. For each organ, 32 to 405 images were collected from 5 to 20 subjects.
As certain organs naturally appear more frequently within the field of view of others,
the number of images per organ class varies. For example, because the liver encloses
the gallbladder, the liver is consistently visible in gallbladder images, whereas the
gallbladder does not appear in all liver images. Additionally, differences in the surgical
procedures performed on the pigs led to variations in the number of subjects per organ
class. For example, thoracotomy — a highly invasive and complex procedure associated
with substantial mortality and extended operating times — could only be performed on
8 of the 20 subjects, resulting in missing lung and heart HSI data for the remaining 12
subjects.

5.2.2 Deep Learning Pipeline

The primary objective of our study was to systematically evaluate the performance of
DL-based surgical scene segmentation algorithms across varying spatial granularities
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Figure 5.1: Characteristic locations and spectra for the 18 different organ classes and back-
ground. For each class, sample RGB images are displayed alongside their corre-
sponding segmentations, location maps and characteristic spectra. Figure contin-
ued on the next page.
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Continued Figure 5.1: Characteristic locations and spectra for the 18 different organ classes
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and background (continuation). Heatmaps of the location are gener-
ated by overlaying all available segmentations for the respective class.
Exemplary RGB images were chosen to maximize the overlap between
the respective class segmentation and the heatmap. Median spectra
were aggregated at the subject level, with the overall mean spectrum
depicted as a solid line and the shaded area representing the standard
deviation across subjects. Figure adapted from [311].
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Figure 5.2: Dataset overview. The dataset comprises 506 images from 20 pigs, each with
fully semantic annotations covering 18 distinct organ classes and background. The
bar plots illustrate the number of images per organ class, with each pig uniquely
identified by a subject-specific identifier, Pxx, and represented by a distinct color.
Figure adapted from [308].
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Figure 5.3: Overview of our deep learning pipeline for automated surgical scene segmen-
tation based on hyperspectral imaging (HSI) data. After preprocessing the HSI
data, including calibration and normalization, networks were trained to handle
different spatial granularities: pixels, , patches, and images. Pixel spec-
tra were input into the spectrum network for classification. For superpixel-based
classification, superpixel boundaries were identified from reconstructed RGB im-
ages. For each superpixel, a minimum enclosing bounding box was computed,
with pixels outside the superpixel set to zero. The resulting superpixel cube was
processed through a U-Net encoder, followed by a classification head. For patch-
based segmentation, fixed-shape patches were extracted from the preprocessed
HSI cube and analyzed using a U-Net. For image-based segmentation, the entire
preprocessed HSI cube was fed into the U-Net, yielding an image segmentation
map. For pixel-wise, superpixel-wise, and patch-wise approaches, predictions from
the same image were aggregated to construct an image segmentation map. Figure
adapted from [308, 311].

and modalities of the input data. To achieve this, we developed a comprehensive DL
pipeline capable of processing imaging data at 5 distinct spatial granularities: pixels,
superpixels, patches of two different shapes, and entire images. The pipeline was
designed to handle multiple imaging modalities, including RGB, HSI, and processed
HSI data, the latter of which was generated by stacking TPI data for StO,, NPI, TWI
and THI. Figure 5.3 offers an overview of our DL pipeline for automated surgical scene
segmentation, with further details provided in the following sections.

Data Preprocessing The HSI cubes were first calibrated using white and dark reference
cubes to eliminate sensor noise and convert the spectra from radiance to reflectance
[141]. Following calibration, ¢!-normalization was applied across the spectral channels
to compensate for multiplicative changes in illumination, such as variations in the
measurement distance.
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Pixel-Based Segmentation Individual pixel spectra represent the smallest possible
input data spatial granularity, corresponding to feature vectors of length ¢ = 100 for
HSI, ¢ =4 for TPI and ¢ = 3 for RGB data.

Building on our previous work [329], the DL model for HSI spectra comprises 3 one-
dimensional convolutional layers, using 64 filters in the first, 32 filters in the second,
and 16 filters in the third layer. Each convolution uses a kernel size of 5 and after each
convolutional layer, an average pooling layer is applied across the spatial dimensions
with a kernel size of two. The output from the final convolutional layer is flattened and
fed into two fully connected layers, with the first layer containing 100 neurons and the
second layer containing 50 neurons. A final linear layer computes the class logits, with
the predicted class label determined by taking the argmax of these logits. To generate
a segmentation map for the entire image, class label predictions are collected for each
individual pixel.

Due to the small channel size, convolutional operations across channels are not feasi-
ble for TPI and RGB input data. Therefore, the model is composed of 3 fully connected
layers, comprising 200, 100 and 50 neurons in the first, second and third layer, respec-
tively.

The model architecture was selected for its simplicity and effectiveness in analyzing
spectral information. The convolutional layers capture local spectral patterns, while
stacking 3 layers with a small kernel size efficiently expands the receptive field. The
fully connected layers make decisions based on the global context, allowing the model
to balance local and global information processing while remaining computationally
efficient, with only 34 300 trainable weights for the HSI, 27 819 weights for the TPI, and
27 619 weights for the RGB modalities.

The ELU activation function [67] (cf. Section 2.3.3) was employed, with batch normal-
ization applied to all layers except for the pooling layers. The model was optimized
using the cross-entropy (CE) loss function.

Superpixel-Based Segmentation Superpixels, defined as regions of low spatial granu-
larity that conform to local boundaries, are constructed by grouping together pixels
with similar characteristics. Analogous to the pixel-based surgical scene segmentation,
unsupervised superpixel clustering converts the segmentation task into a classification
problem. In this approach, each superpixel is assigned a single class label based on
the assumption that the entire area of a superpixel covers the same class.

To generate superpixels, the simple linear iterative clustering (SLIC) algorithm [3] was
employed on RGB images that had been smoothed using a Gaussian kernel of width 3.
The algorithm was configured to produce 1000 superpixels per image and perform 10
iterations, while dynamically adjusting the compactness parameter for each superpixel
(SLICO mode). Subsequently, a minimum enclosing bounding box was calculated for
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each superpixel, and pixel values outside the superpixel were replaced by zeros. The
resulting superpixel cubes were resized via bilinear interpolation to a uniform shape of
32 x 32 x ¢ (where ¢ denotes the number of channels), ensuring a standardized input
format across all superpixel cubes.

The superpixel cubes are processed by an EfficientNet B5 encoder [336] from the Seg-
mentation Models PyTorch library by Yakubovskiy [372], pretrained on the ImageNet
dataset [78]. This encoder was selected for its strong performance, efficiency in terms
of number of parameters, minimal memory usage, and fast computation speed. To
compute the class logits, the output of the encoder network is forwarded to a clas-
sification head, which consists of a fully connected layer with 19 neurons. During
inference, the superpixel-wise class label is obtained by taking the argmax of these
logits, and predicitons over all superpixels of an image are collected to generate an
image segmentation map.

During training, fuzzy labels were employed in place of one-hot-encoded labels for
the superpixels, enabling the model to account for the possibility that pixels within a
superpixel belong to different classes. This approach assigns a label vector of length
19 to each superpixel, indicating the relative frequency of each class label among the
pixels within the superpixel. As loss function, the Kullback-Leibler divergence [189]
between the softmax output and the fuzzy labels was utilized.

Patch-Based Segmentation Patches are defined as regions of rectangular shape, with
each patch containing a fixed number of pixels. In our study, we extracted patches
of two different sizes from the image cubes: 32 X 32 X c, referred to as patch_32, and
64 X 64 X c, referred to as patch_64, where ¢ denotes the number of channels. These
sizes serve as intermediate levels of spatial granularity between the superpixel and
image models (see Table 5.3). Furthermore, patch dimensions that are powers of two
facilitate the integration with encoder architectures that halve the input dimensions
multiple times.

To facilitate the comparison across different spatial granularities, the patches, similar to
the superpixel-based segmentation, are processed using a U-Net [291] (cf. Section 2.3.3)
with an EfficientNet B5 encoder [336], which was pretrained on the ImageNet dataset
[78].

During training, an average of the Dice loss [236] and CE loss were computed based on
valid pixels!. The inclusion of the Dice loss addresses class imbalance in the dataset
by placing greater emphasis on misclassified pixels from underrepresented classes
compared to those from overrepresented classes, such as the background. In contrast,
the CE loss treats all misclassified pixels equally. By combining these two loss functions,
their respective strengths are effectively leveraged [153].

Ipixels that do not belong to the “ignore” class.
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While patches were extracted at random locations of the image during training, im-
ages were divided into a grid of non-overlapping patches during inference. As for the
patch_64 model, one of the image dimension was not an integer multiple of the patch
size (480/64 = 7.5), the overhanging areas of the grid were padded with zeros. The
segmentation maps generated for each individual patch were aggregated to generate a
complete image segmentation map, with segmentations corresponding to previously
zero-padded regions excluded.

Image-Based Segmentation Entire images represent the maximum level of spatial
granularity in the input data. The DL model architecture and loss functions for image-
based segmentation are identical to those used in the patch-based model, except that
the entire image cube is provided as input to the network.

Table 5.3: Epoch and batch sizes across the different spatial granularities. The number of
pixels (# pixels), along with the epoch and batch sizes, are detailed for the 5 spatial
granularities: image, patch_64 and patch_32 — referring to patches with dimensions
64 X 64 X ¢ and 32 X 32 X ¢, respectively, where c represents the number of channels
— as well as superpixel and pixel. Table adapted from [308, 311].

spatial granularity # pixels epoch size batch size

image 307200 500 5
patch_64 4096 37632 336
patch_32 1024 150 528 1176
superpixel ~ 300 500760 1560
pixel 1 153608400 118800

Training Setup To enable a systematic and fair comparison of the different spatial
granularities and modalities, data augmentations, model optimization, and training
budget were standardized, ensuring maximum comparability of the training setup
across all models.

Data augmentations are widely used in computer vision to expand the diversity and
size of the training data, thereby boosting convergence, generalization, and robustness
to OOD data [54]. For all spatial models, training data augmentation was applied at
the image level, prior to extracting smaller granularities such as pixels, superpixels, or
patches, using the Kornia library [287]. Augmentations included shifting (shift factor
limit: 0.0625), scaling (scaling factor limit: 0.1), rotating (rotation angle limit: + 45°),
and flipping (both horizontally and vertically). To balance computational efficiency
with augmentation effectiveness, the probability p of applying an augmentation was
setto p =0.5.
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All models used the Adam optimization algorithm [177] (8; = 0.9, B2 = 0.999) with an
exponential learning rate schedule (initial learning rate = 0.001, decay rate y = 0.99).
The models were trained for 100 epochs, and stochastic weight averaging (SWA) [156]
was applied over the final 20 epochs.

For image-based segmentation, one epoch was defined as processing 500 images.
For segmentation based on the other spatial granularities, the number of samples
per epoch was adjusted such that the total number of extracted pixels approximately
matched the total pixel count of 500 images (cf. Table 5.3). This approach ensured an
approximately uniform training budget across all spatial granularities. Exact equiva-
lence was not achievable because the epoch size needs to be an integer multiple of
the batch size to ensure a balanced workload distribution among all workers in the
data loader (see [308] for further details).

Recommendations in the literature regarding the optimal batch size are mixed (e.g.,
[322, 167]). Smaller batch sizes can accelerate the learning process by enabling more
frequent updates [240], while larger batch sizes offer a better representation of the
overall population, which can lead to more stable gradient estimates and improved
batch statistics [152]. To strike a balance, we maximized the batch size while extending
the training over a large number of epochs to mitigate the potential slowdown in the
learning process. In practice, the maximum achievable batch size is determined by
the available GPU memory, as well as the memory demands of the model and input
samples. Consequently, the batch size was optimized individually for each model, with
smaller spatial granularities allowing for larger batch sizes. The resulting batch sizes
are detailed in Table 5.3.

Each model was evaluated on the validation set at the end of each training epoch
by calculating the Dice similarity coefficient (DSC), with the hierarchical structure
of the data taken into account. This score was subsequently used to select the best-
performing model across all epochs.

To prevent overfitting, dropout regularization with a probability of p = 0.1 was applied
to the fully connected layers in the pixel and superpixel models.

Reduction of Network Variability Training neural networks involves several sources of
variation [263] that need to be minimized as much as possible to obtain reproducible
outcomes and enable a fair model comparison across spatial granularities and modali-
ties. Achieving perfectly reproducible results often requires longer training times, such
as by using deterministic operations or a single, homogeneous hardware setup [263].
Due to the large number of training runs required for our study, we were unable to
enforce deterministic operations and a single hardware setup. Instead, we exploited a
cluster infrastructure with heterogeneous GPUs (e.g., NVIDIA® DGX™ A100, NVIDIA®
GeForce RTX™ 2080 Ti (Nvidia Corporation, Santa Clara, United States of America)).
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Nevertheless, we implemented several measures to reduce the network variability: We
set the number of workers in each data loader to 12 and used a random seed for the
training process to ensure consistent initialization of network weights and workers
across all experiments. The consistent initialization of the data loading workers en-
sured that all models for a given spatial granularity received samples from the same
spatial locations and in the same order. Additionally, the exact same sequence of data
augmentations was applied across all models.

5.3 Experiments and Results

The purpose of our experiments was to identify the optimal input spatial granularity for
DL-based surgical scene segmentation (RQ2.1, Section 5.3.2), considering segmentation
performance and the amount of training data required. Additionally, we explored
whether HSI data offers advantages over RGB data and processed HSI data (RQ2.2,
Section 5.3.3). Details of the experimental setup are provided in Section 5.3.1.

5.3.1 Experimental Setup

We trained and validated our DL pipeline on the dataset described in Section 5.2.1. In
the following, we provide an overview of our dataset splits, validation metrics, and
the approach used for hierarchical aggregation of the results and uncertainty-aware
ranking of our models. Furthermore, we describe how we evaluated the quality of our
reference annotations, and present our experiment on the required amount of training
data.

Dataset Splits A consistent training and validation setup was applied across all models.
We divided the dataset, which comprises 506 images of 20 pigs, at the subject level,
yielding a training set of 15 pigs and 340 images and a hold-out test set of 5 pigs and 166
images. The test pigs were selected randomly, ensuring that all 18 organ classes were
represented in both the training and test sets. We performed 5-fold cross-validation on
the training set, with folds constructed to maximize the number of organ classes across
validation folds. Once model development was completed, we assessed segmentation
performance on the previously untouched test set by ensembling the predictions from
all 5 folds, averaging the softmax values.

Validation Metrics Following the recommendations from [284, 222, 283], we assessed
the segmentation performance of our models using 3 metrics: the DSC? [79] (an

2The DSC measures the overlap between reference and predicted object segmentation.
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overlap-based metric), the normalized surface Dice (NSD)? [250] (a boundary-based
metric that accounts for annotation uncertainty), and the average surface distance
(ASD)* [135] (a boundary-based metric). Each of these metrics has its strengths and
limitations (as discussed in [283]), and by combining them, we sought to provide a
comprehensive evaluation of our models.

Several design choices were required regarding the metrics: For the ASD, there is
no consensus on handling missing classes® [135]. We opted to assign the ASD value
for a missed class to the maximum ASD observed among other classes in the same
image, introducing a potentially substantial image-dependent penalty when a class was
not predicted. For the NSD, a clinically acceptable deviation threshold 7 between the
reference and predicted segmentation boundaries must be defined. Given the variation
in annotation difficulty across different organs, we established a class-specific threshold
7. for each organ class c. To determine these thresholds, 20 randomly selected images
(one per pig, ensuring at least two images per organ class) were once more annotated by
a second medical expert. Distances between the boundaries of the original annotation
and the re-annotation were computed for each organ ¢ and image i, and an image-
and organ-specific threshold 7/ was obtained by averaging these distances. If an organ
was missed in one of the annotations, the organ was excluded from the analysis, as
distances could not be calculated. The final class-specific threshold 7, was determined
as the average of the image-specific thresholds /. The implications of these design
choices are further discussed in Section 5.4.1.

Our dataset follows a hierarchical structure, with each subject comprising one or more
images, and each image containing multiple classes. To account for this hierarchy
(following [140, 222]), we first aggregated metric values at the image level, yielding
image-wise scores, and subsequently aggregated the scores from all images of one
subject, resulting in subject-wise scores. While this approach introduces the limitation
that image-level scores are influenced by the class distribution within an image, it
offers the advantage of enabling an analysis of performance variability across subjects.

Uncertainty-Aware Model Ranking We evaluated model rankings and their stability
concerning two sources of variability: sampling variability and metric choice. Following
the method outlined in [364], model rankings were established based on the average
metric value calculated across the 5 subject-level metric values in the test dataset. To
assess the impact of metric choice on ranking stability, we independently performed
rankings using each validation metric and compared the results.

3The NSD quantifies the proportion of the predicted object boundary that lies within a clinically
acceptable deviation from the reference boundary.

“The ASD computes the average distance between reference and predicted object boundaries.

SClasses present in the reference annotations but not in the predictions.
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To examine the stability of rankings under sampling variability, we applied bootstrap-
ping. Specifically, we generated 1000 bootstrap samples, each comprising 5 subject-
level metric values randomly selected with replacement from the 5 available subject-
level metric values in the test dataset. For each bootstrap sample, the metric values
were averaged, and models were ranked based on these aggregated scores, resulting in
1000 ranks for each model.

Quality of Reference Annotations To evaluate the accuracy of our reference annota-
tions, we analyzed both inter-rater and intra-rater variability. Inter-rater variability was
assessed using the set of 20 re-annotated images previously utilized for determining
the NSD thresholds, while intra-rater variability was estimated by having the original
medical expert re-annotate the same set of 20 images. Annotation pairs were com-
pared using the DSC, NSD, and ASD metrics. To avoid penalizing differences in the
assignment of the “ignore” class — since expressing uncertainty is a valid annotation
choice - pixels labeled as “ignore” in either of the annotations were excluded from the
analysis.

Training Size Experiment To evaluate model performance as a function of the available
training data, a random sample of n pigs was drawn from the training set of 15 pigs
without replacement, with n varying from one to 14. Our different models were then
re-trained exclusively on the images from the n sampled pigs without using 5-fold
cross-validation, and their performance was evaluated on the test dataset. To mitigate
variations in data availability across pigs for different classes, performance was mea-
sured only for the 8 classes consistently represented across all training subjects: skin,
peritoneum, spleen, liver, colon, small bowel, stomach and background. To enhance
stability in the presence of inter-pig variability, the experiment was repeated 5 times,
each with a different random seed, facilitating that a new set of pigs was sampled for
each iteration.

5.3.2 Optimal Spatial Granularity

Our experiments aimed to determine the optimal input spatial granularity for DL-
based surgical scene segmentation with respect to segmentation performance and the
amount of training data needed.

Quality of Reference Annotations In addition to evaluating the segmentation perfor-
mance of our models, we assessed the quality of our reference annotations by analyzing
the inter-rater and intra-rater variability. This analysis serves two key purposes: (1)
to identify the challenges faced by human medical experts in segmenting surgical
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scenes, and (2) to provide context for interpreting model performance, as high-quality
annotations are essential for training reliable models and for accurately validating their
performance. We observed a DSC of 0.89 (SD 0.07), an NSD of 0.80 (SD 0.08), and an
ASD of 4.88 (SD 5.33) for the inter-rater variability. The intra-rater agreement is slightly
better than the inter-rater agreement, at a DSC of 0.91 (SD 0.05), NSD of 0.82 (SD 0.06),
and ASD of 4.74 (SD 5.04). These results highlight the inherent difficulty of accurately
segmenting surgical scenes, even for medical experts.

Figure 5.4 illustrates the inter-rater agreement for all 20 selected images. The intra-rater
agreement is shown in the appendix (Figure B.9). In addition to discrepancies at organ
boundaries, additional classes not present in the original reference segmentation map
were annotated 8 times in the inter-rater comparison and 6 times in the intra-rater
comparison. Conversely, classes present in the reference segmentation map were
omitted 7 times in the inter-rater and 4 times in the intra-rater evaluations. Differences
involving the “ignore” class were noted in 14 of the 20 images for both the inter-rater
and intra-rater comparisons, respectively. Specifically, there were 34 063 px instances
for the inter-rater case and 37 397 px instances for the intra-rater case where the ignore
label was assigned to a pixel that had been assigned a different label in the reference
annotation, or vice versa.

Segmentation Performance Figure 5.5 presents the test performance of our segmenta-
tion models across all 5 spatial granularities (pixel, superpixel, patch_32, patch_64, and
image) and 3 modalities (RGB, TPI, and HSI), evaluated using the DSC, NSD and ASD
metrics. While the performance differences across spatial granularities are less pro-
nounced for HSI data compared to RGB and TPI data, larger input spatial granularities
consistently lead to better segmentation performance. Notably, the best performing
model — the image-based segmentation model using HSI data — achieved a DSC of 0.90
(SD 0.04), an NSD of 0.80 (SD 0.07) and ASD of 6.19 (SD 3.20), which is comparable to
the performance obtained for a second medical expert (the inter-rater performance).

The ranking stability with respect to sampling variability is illustrated in Figure 5.6
for the DSC, with results for the NSD and ASD shown in Figure B.10 and Figure B.11,
respectively. The rankings are largely in agreement. Notably, across all metrics, the first
rank and last two ranks are highly stable, with more than 90 % of bootstraps yielding
the same rank. Compared to the DSC, the ranking variability is smaller for the NSD
and ASD.

A comparison of the rankings obtained for the different metrics is provided in Fig-
ure 5.7. Across all modalities and metrics, the spatial granularities consistently rank
in the order: image, patch_64, patch_32, superpixel, and pixel (from best to worst).
This finding reaffirms the observation from Figure 5.5, demonstrating that increased
contextual information consistently enhances segmentation performance, regardless
of the modality or metric. Overall, the rankings across different metrics are closely
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Figure 5.4: Inter-rater agreement of reference annotations. Re-annotations of the 20 selected
images are shown with their RGB images, original annotations, and difference maps
between the annotations. Figure continued on the next page.
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Continued Figure 5.4: Inter-rater agreement of reference annotations (continuation). Mis-
matches between the “ignore” class and a valid class are highlighted in
gray, while discrepancies between valid classes are marked in black.
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Figure 5.5: Segmentation performance across different spatial granularities and modali-
ties. The boxplots illustrate the segmentation performance across different spatial
granularities (pixel, superpixel, patch, and image) and modalities (RGB, tissue pa-
rameter images (TPI), and hyperspectral imaging (HSI)), evaluated using 3 different
metrics (a-c). Each box displays the interquartile range of the distribution, with
whiskers showing the range excluding outliers, and median and mean indicated by
a solid and dotted line, respectively. Each marker represents one test subject. The
dashed line indicates the mean of the inter-rater performance, with the standard
deviation denoted as shaded area. Figure adapted from [308, 311].
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Figure 5.6: Ranking stability of our segmentation algorithms with respect to sampling

136

variability using the Dice similarity coefficient (DSC). Following the concept
from [364], bootstrap sampling was performed to assess the ranking stability of our
segmentation algorithms across different spatial granularities (pixel, ,
patch_32, patch_64 and image) and modalities (RGB, tissue parameter images (TPI),
and hyperspectral imaging (HSI)) and modalities (RGB, tissue parameter images
(TPI), and hyperspectral imaging (HSI)). For each blob at position (a, rank r), its
area is proportional to the frequency of algorithm a achieving rank r across 1000
bootstrap samples. Each sample comprises 5 subject-level DSC values. For each
method, black crosses indicate the median rank, gray diamonds show the mean
rank, and gray lines represent the 95 % quantile of the bootstrap results. Ranking
stability figures for the normalized surface Dice (NSD) and average surface distance

(ASD) are available in Figure B.10 and Figure B.11, respectively. Figure adapted from
[308, 311].
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aligned: image-based segmentation using HSI data consistently ranks first, while the
bottom 5 positions are consistently occupied (from best to worst) by superpixel#TPI,
superpixel#RGB, pixel#HSI, pixel#TPI and pixel#RGB. The most notable discrepancy
in rankings across metrics is observed for the superpixel#HSI model, which achieves
rank 6 for the ASD but falls to ranks 9 and 10 for the DSC and NSD, respectively. This
discrepancy may be attributed to the ASD metric’s sensitivity to boundary alignment
and will be further discussed in Section 5.4.1.
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Figure 5.7: Ranking stability of our segmentation algorithms across 3 different metrics.
Following the concept from [364], each line illustrates how the ranking of our seg-
mentation algorithms varies across different spatial granularities (pixel, ,
patch_32, patch_64 and image) and modalities (RGB, tissue parameter images (TPI),
and hyperspectral imaging (HSI)) when evaluated using 3 different metrics: Dice
similarity coefficient (DSC), average surface distance (ASD) and normalized surface
Dice (NSD). Figure adapted from [308, 311].
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Visual Comparison of Segmentation Quality Figure 5.8 showcases example predictions
across the 5 spatial granularities using HSI-based models. The images illustrate cases
of poor, intermediate, and good segmentation performance, corresponding to the 5 %,
50 %, and 95 % quantiles of the average image DSC across all 5 models. Segmentation
artifacts characteristic of each spatial granularity are evident: Pixel-based segmenta-
tion predictions exhibit fragmented and scattered boundaries. In superpixel-based
segmentation, organ boundaries appear irregular, a result of misclassified superpixels
in the boundary regions. In patch-based segmentation examples with poor perfor-
mance, prominent vertical and horizontal edges are noticeable at patch boundaries,
resulting from the intentionally non-overlapping patch extraction during inference
(see Section 5.4.1 for a discussion of this design choice).

Amount of Training Data Required Several researchers in the related work have sug-
gested that dividing SI cubes into smaller regions to generate more training samples
could be advantageous in data-limited settings, thereby advocating for the use of
smaller spatial granularities in such cases [59, 70]. Figure 5.9 illustrates the relation-
ship between the number of training subjects and the segmentation performance
of HSI-based models across different spatial granularities and performance metrics.
While performance generally improves with an increasing number of training subjects,
image-based segmentation consistently outperforms or matches the performance of
other spatial granularities, regardless of the number of training subjects and valida-
tion metric. Conversely, pixel-based segmentation performs the worst, followed by
superpixel-based segmentation. These results indicate that the additional contextual
information provided by larger spatial granularities outweighs potential benefits of
generating more training samples using smaller spatial granularities. It is worth noting
that the observed decrease in SD with an increasing number of training subjects should
be interpreted with caution. As the number of training subjects increases, the overlap
between randomly selected subjects increases due to the limited pool of 15 training
subjects available for sampling without replacement. For example, when selecting two
sets, each comprising 14 training subjects, the overlap between the sets can include up
to 13 subjects, significantly reducing the variability between them.

5.3.3 Comparison of Modalities

A primary purpose of our study was to investigate whether there is a substantial benefit
in HSI-based surgical scene segmentation over RGB and TPI data.

Segmentation Performance As illustrated in Figure 5.5, the average segmentation
performance using HSI data is superior to that of using TPI or RGB data across all
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Figure 5.8: Example predictions for hyperspectral imaging-based segmentation algorithms
across different spatial granularities. The images were sampled based on the av-
erage q % quantile of the Dice similarity coefficient (DSC) across all 5 granularities
(pixel, superpixel, patch_32, patch_64 and image), denoted as DSC,. Correspond-
ing values of DSC, average surface distance (ASD), and normalized surface Dice
(NSD) are displayed for each prediction. Figure adapted from [308, 311].
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Figure 5.9: Performance of hyperspectral imaging-based segmentation algorithms across
different spatial granularities as a function of the number of training subjects.
To account for sampling variability, n training subjects (n € {1,2,...,14}) were
randomly selected without replacement from the full set of training subjects, with
this process repeated 5 times using different random seeds. The average perfor-
mance across these runs is shown as a solid line, while the shaded area represents
one standard deviation. Figure adapted from [308, 311].
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spatial granularities and metrics. Consequently, models based on HSI data consistently
achieve higher rankings than their TPI and RGB counterparts, as shown in Figure 5.7.
In most cases, TPI-based models outperform their RGB counterparts. The performance
gap is most pronounced in pixel-based segmentation, where using HSI instead of RGB
results in a DSC improvement of 80.4 %. This gap diminishes as the spatial granularity
increases, with improvements of 11.9 % for superpixel-based segmentation, 8.1 % for
patch_32, 5.5 % for patch_64, and 2.8 % for image-based segmentation. However, it is
worth noting that as the performance of image-based models is comparable to the
level of inter-rater agreement, the small performance differences between image-based
models using different modalities may also be influenced by the quality of our reference
annotations.

Misclassification Analysis To gain a deeper understanding of the segmentation per-
formance across different modalities, we analyzed the confusion matrices for image-
based segmentation using HSI, TPI, and RGB data. The confusion matrix for HSI data
is shown in Figure 5.10, while the confusion matrices for TPI and RGB data are provided
in the appendix (Figure B.12 and Figure B.13, respectively). Additionally, the recall for
the 3 models is displayed in Figure 5.11, highlighting notable variations in segmenta-
tion performance across different classes. For the image#HSI model, on average over
95 % of the pixels were correctly classified for 8 out of the 19 classes. The major vein
exhibits the lowest recall, with only 57.1 % of its pixels correctly identified. Generally,
the recall for the image#HSI model is higher or comparable to that for the image#TPI
and image#RGB models for most classes, with the only exceptions being major vein
and pancreas.

For the image#HSI model, the highest confusion rate of 32.2 % occured between the
classes major vein and peritoneum. This is likely due to their proximity and the limited
training data available for the major vein, which is present in only 32 images (see
Figure 5.2). Furthermore, the visible regions of the major vein are relatively small
with an average size of 4192 px (SD 3621 px). Other frequently misclassified classes
include those with indistinct boundaries (e.g., omentum, peritoneum, subcutaneous
fat) or those with challenging differentiation from other structures (e.g., kidney with
Gerota’s fascia and peritoneum). Many misclassifications in the confusion matrix
involve adjacent classes within the images (e.g., stomach and omentum, heart and
lung, liver and gallbladder, background and skin). These errors are likely driven by
inaccuracies in the predicted segmentation boundaries, as highlighted in the examples
shown in Figure 5.8.
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Figure 5.10: Confusion matrix for image-based segmentation using hyperspectral imaging
data. Each entry (i, j) denotes the average proportion of pixels from the reference
class i that are classified as class j, with values below 0.1% omitted for clarity.
Confusion matrices were row-normalized using pixel data from all images of a
single subject, and the subject-specific matrices were averaged across subjects
to produce the final confusion matrix. The standard deviation across subjects is
indicated in brackets. Diagonal entries correspond to recall (sensitivity). Figures
for the tissue parameter images and RGB modalities are provided in Figure B.12
and Figure B.13, respectively. Figure adapted from [308, 311].
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Figure 5.11: Recall of image-based segmentation across modalities and classes. The box-
plots illustrate the recall across the modalities RGB, tissue parameter images (TPI),
and hyperspectral imaging (HSI), as well as the 19 different classes. Each box dis-
plays the interquartile range of the distribution, with whiskers showing the range
excluding outliers, and median and mean indicated by a solid and dotted line,
respectively. Each marker represents one test subject. Figure adapted from [308,
311].

5.4 Discussion and Conclusion

In this study, we explored two important and previously unanswered research questions
in DL-based surgical scene segmentation: (1) What is the optimal spatial granularity of
input data in terms of segmentation performance and the required amount of training
data? (2) Does HSI data offer substantial advantages over other modalities, such as TPI
and RGB data? Our main findings are:

1. Optimal spatial granularity: Across all validation metrics and modalities, seg-
mentation performance consistently improved with increasing input spatial
granularity. Notably, image-based segmentation using HSI data achieved perfor-
mance on par with re-annotations by a second medical expert.

2. Required amount of training data: Regardless of the number of training sub-
jects, image-based segmentation with HSI data consistently outperformed or
matched the performance of all other spatial granularities.
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3. Benefit of HSI data: HSI-based models consistently outperformed their TPI and
RGB-based counterparts across all spatial granularities and metrics, with the
largest benefit observed at smaller spatial granularities.

The following sections provide a discussion of our design choices (Section 5.4.1), key
strengths and limitations of our study as well as potential directions for future research
(Section 5.4.2), and a conclusion summarizing our findings (Section 5.4.3).

5.4.1 Design Choices

The primary goal in designing our study was to ensure a fair and comprehensive evalu-
ation of the segmentation performance across different spatial granularities and modal-
ities. To achieve this, we made several design choices regarding validation metrics,
model hyperparameter optimization, and postprocessing techniques. In the following,
we discuss the rationale behind these decisions, along with their associated advantages
and limitations.

Validation Metrics Following the recommendations from [284, 222, 283], we employed
multiple metrics to evaluate our results and establish rankings. Specifically, we used an
overlap-based metric (DSC), a distance-based metric (ASD), and a boundary-overlap-
based metric that accounts for annotation uncertainty (NSD).

Each metric captures distinct aspects of the predicted segmentation map, leading
to differences in model rankings depending on the metric used. For instance, a no-
table shift in the ranking of the superpixel#HSI model was observed when comparing
rankings based on ASD with those based on DSC and NSD (cf. Figure 5.7). While the
DSC- and NSD-based rankings position the patch-based counterparts ahead of the
superpixel#HSI model, the ASD metric ranks the superpixel#HSI model as superior
to its patch-based counterparts. Figure 5.8 reveals that sharp vertical and horizontal
edges appear in patch-based predictions, while superpixel boundaries more closely
match the annotated boundaries. As boundary-distance metrics like the ASD are par-
ticularly sensitive to boundary misalignment, combining multiple metrics is crucial
for obtaining a comprehensive model evaluation.

A critical factor influencing the metrics is the strategy for dealing with missing classes in
the prediction. Evaluation frameworks such as Medical Open Network for AT (MONAI)
[56] typically yield nan or inf values in these cases, requiring the user to determine
how to handle aggregation. This design choice is particularly crucial for the ASD
metric, as it is unbounded. Several strategies exist for handling missing classes, such
as disregarding them entirely or applying a fixed penalty, that is, for example, based
on the image diagonal. In order to prevent the introduction of outliers, we opted to
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set the ASD for missing classes to the maximum distance from the other classes in
the image. However, this approach has the downside that the value assigned to the
missing class is influenced by the predictions of the other classes in the image.

For the NSD metric, it is required to define a (class-specific) threshold for the clinical
acceptable deviation of the segmentations. To establish these thresholds, a subset of
images needs to be re-annotated by at least one additional human annotator [250]. As
obtaining re-annotations for many images is often impractical, this subset is typically
small (e.g., 20 images in our case). Consequently, errors in these re-annotations sub-
stantially impact the NSD results. Missing classes in the re-annotations also pose a
challenge, as distances cannot be calculated for these missing classes. In the original
publication on the NSD, this issue did not occur, as a re-annotation was performed
separately for each known class [250]. However, in our study, the annotators could
not be informed about which classes were present in the image, as the identification
of different tissue types is an important aspect in the determination of inter-rater
variability.

Another challenge lies in selecting the appropriate aggregation function to determine
the threshold 7, from the set of inter-rater distances obtained for class c¢. In Fig-
ure 5.12, we present several thresholds derived using different aggregation functions.
The choice of aggregation function substantially impacts the resulting thresholds. Orig-
inally, Nikolov et al. utilized the 95 % quantile of the distances [250], which in our case
resulted in very high thresholds, exceeding 80 px. Therefore, we utilized the mean,
resulting in moderate distances consistently below 20 px. However, other aggregation
methods, such as the median or alternative quantiles, could also have been suitable
choices.

Furthermore, considerable differences in thresholds across classes can be observed (cf.
Figure 5.12), with the largest thresholds obtained for peritoneum and the smallest for
bladder. Additionally, for some classes the thresholds substantially vary across subjects
— for example, the SD for the mean aggregation of skin is 2.5 times higher than the
mean itself. These findings highlight that the difficulty of annotation varies between
organs and reinforce our decision to establish class-specific thresholds.

Hyperparameter Optimization For our segmentation models, we used default hyper-
parameters wherever possible and ensured consistent hyperparameter settings across
algorithms (e.g., the learning rate). When deviations were necessary, we based them
on consistent criteria, such as optimizing the batch size according to GPU memory
usage. However, hyperparameters can substantially impact the network performance,
and given the diversity of our model architectures and input sizes, our chosen settings
are unlikely to be optimal for all algorithms. Identifying the ideal hyperparameter set
for each algorithm would require extensive training runs. Since training all 15 models
(spanning 5 spatial granularities and 3 modalities) across 5 folds already consumed
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Figure 5.12: Comparison of different aggregation functions to determine class-wise dis-
tance thresholds for the normalized surface Dice (NSD) metric. Based on
independent annotations from two experts, the class specific distance thresholds

were determined using the , and

of the set of dis-

tances between the paired annotations. The error bars represent 0.25 standard
deviations of the aggregated values across subjects. The thresholds obtained for
mean aggregation were applied in our analysis. Figure adapted from [308, 311].
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approximately 292 h GPU training time®, comprehensive hyperparameter tuning would
lead to substantially higher resource costs and environmental impact.

To assess how our design choice might impact the algorithm ranking, we performed
a small hyperparameter search. As the learning rate n is among the most important
hyperparameters in deep learning [240], we focused our analysis on this parameter. In
addition to the default learning rate of 77p=0.001, which was used in our main analysis,
we trained two additional models per spatial granularity and modality: one with a
reduced 7-,=0.0001 and another with an increased 7,,=0.01. We then identified the
optimal learning rate for each algorithm by selecting the one among n_;, 19, and 14
that yielded the highest average DSC on the validation set. Subsequently, we repeated
the ranking analysis on the test data, using the optimal learning rate for each algorithm
rather than a fixed default value.
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Figure 5.13: Effect of learning rate optimization on the algorithm ranking. Each algorithm
was retrained using a reduced and increased learning rate (17-1=0.0001, 7,,=0.01) in
addition to the default (19=0.001). The optimal learning rate 7 for each algorithm,
indicated in the lower box, was determined based on the average Dice similarity
coefficient (DSC) on the validation set. Rankings were recalculated across all 1000
bootstrap samples using algorithms trained with the optimized learning rate. The
heatmap displays the proportion of samples in which a given rank difference Ayani
occurred compared to the default setting. Algorithms are ordered by their median
rank under the default learning rate using the DSC as metric (cf. Figure 5.6). Figure
adapted from [308, 311].

As illustrated in Figure 5.13, the optimal learning rate coincided with the default value
for most algorithms. Deviations were observed only for the pixel-based models, yielding

This corresponds to approximately 32kg of CO, emissions when trained on an NVIDIA® GeForce
RTX™ 2080 Ti [194].
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merely marginal improvements in DSC (less than 0.007 across all pixel models). As
a result, the overall ranking remained unchanged, with only minor variations across
different bootstrap samples. This demonstrates that our study’s findings are valid, even
without performing extensive hyperparameter tuning for each algorithm.

Postprocessing Our models were designed to facilitate a fair and unbiased compar-
ison, including key design choices such as using the same U-Net architecture and
similar epoch sizes across all models. This approach ensured that the primary sources
of variation were the input size and modality, rather than differences in model-specific
configurations. Similarly, we avoided applying any postprocessing to the network out-
puts, even though certain models, auch as pixel-based segmentation, could potentially
benefit from morphological postprocessing to address the fragmented and scattered
boundaries (cf. Figure 5.8). During inference, each model was constrained to its pre-
defined input spatial granularity to allow for an unbiased comparison across spatial
granularities. For example, patch models were evaluated on non-overlapping patches
to ensure the spatial context did not exceed the specified granularity. However, as
illustrated in Figure 5.8, this design choice may lead to artifacts, especially along the
patch boundaries in patch-based segmentation.

5.4.2 Strengths, Limitations and Future Work

In the following, we discuss the key strengths and limitations of our study and the
methodologies explored, and outline potential directions for future research.

Strengths and Limitations of Hyperspectral Imaging Considering the modest gains in
image-based segmentation performance of HSI over RGB, other benefits and limita-
tions of HSI systems should be evaluated when selecting the optimal imaging modality
for surgical scene segmentation. Beyond distinguishing tissue classes, the detailed
spectral information provided by HSI systems offers additional possibilities in surgical
guidance, such as assessing functional tissue characteristics like perfusion state or
diagnosing pathological tissues [95, 382]. While, the HSI system used in this study has
certain limitations compared to conventional RGB devices, such as longer acquisition
times, higher cost, and limited availability, HSI is a rapidly evolving technology, and fu-
ture iterations are expected to overcome these constraints (cf. Section 8.2 for a detailed
discussion).

Upper Bound of Superpixel Performance The superpixel classification approach rests
on the assumption that the entire area of a superpixel covers the same class, and
therefore superpixel boundaries do not intersect organ boundaries. To evaluate this
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assumption and determine an upper performance bound for our superpixel model, we
assigned each superpixel the modal label across its constituent pixels. This corresponds
to the scenario of all superpixels being correctly classified.

Figure 5.14, presents the results of this experiment, yielding performance limits of
0.92 (SD 0.03) for the DSC, 0.74 (SD 0.04) for the NSD, and 2.91 (SD 0.74) for the ASD.
The performance of the superpixel#HSI model is consistently below these limits by
a substantial margin, with a DSC of 0.82 (SD 0.06), an NSD of 0.61 (SD 0.09), and an
ASD of 16.51 (SD 9.23). While a perfect superpixel-based model achieving these upper
bounds would perform slightly better than the best-performing image#HSI model
for the DSC and ASD metrics, the maximum achievable NSD still lags behind (0.80
(SD 0.07) for the image#HSI model), suggesting that the superpixel boundaries do
not perfectly align with the annotated tissue boundaries. Given these limitations in
superpixel clustering, which would require improved algorithms to better match tissue
boundaries, as well as the substantial performance gap between the superpixel#HSI
model and its upper performance limit, it is questionable whether superpixel-based
surgical scene segmentation is a promising direction for future research.

Quality of Reference Annotations Compared to the state of the art in SI-based surgical
scene segmentation, our study represents the largest available semantically annotated
SI dataset for surgical scene segmentation. To enforce high-quality annotations, we
implemented a rigorous two-stage process: initial annotations were provided by two
medical experts, followed by a comprehensive review of all annotations by a third ex-
pert. Despite these efforts, the quality of our reference annotations remains a potential
limitation of our study, as highly accurate annotations are essential for training reliable
models and accurately assessing their performance. The inter-rater agreement indi-
cates room for improvement, as reflected by the DSC of 0.89 (SD 0.07), the NSD of 0.80
(SD 0.08), and the ASD of 4.88 (SD 5.33). This aligns with feedback from our medical
experts, who noted that determining which pixel belongs to which class is neither
straightforward nor entirely unambiguous. Furthermore, the time-intensive nature of
the annotation process, requiring approximately 30 min per image, underscores the
inherent complexity and challenges of this task.

In addition to deviations in annotated tissue boundaries, we observed instances of
tissue class misclassification between the two experts (e.g., labeling spleen as liver or
skin as stomach). These misclassifications often occurred when only a small portion
of the tissue class was visible, typically due to factors such as occlusions or image
boundaries (cf. Figure 5.4). A potential strategy to mitigate such misclassifications
could involve leveraging contextual information available intraoperatively, such as the
unrestricted field of view, and the ability to gain alternative perspectives or haptic feed-
back. Although live intraoperative semantic annotation has not been feasible due to its
time-intensive nature, future studies could explore the feasibility of live intraoperative
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Figure 5.14: Upper bound of the superpixel-based segmentation performance. (a) The
upper bound to the superpixel-based segmentation performance is computed
by assigning the label for each superpixels based on the mode of the reference
annotation labels of the enclosed pixels. (b) The algorithm performance of the
superpixel-based segmentation algorithm using hyperspectral imaging data is
compared to its upper bound for the metrics Dice similarity coefficient (DSC),
average surface distance (ASD) and normalized surface Dice (NSD). Each box
displays the interquartile range of the distribution, with whiskers showing the
range excluding outliers, and median and mean indicated by a solid and dotted
line, respectively. Each marker represents one test subject. Figure adapted from
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sparse annotations, particularly for ambiguous tissues, to guide subsequent semantic
annotations.

Moreover, the labor-intensive process of creating semantic annotations restricts the
overall size of the segmentation dataset. In fact, the presented semantically anno-
tated dataset constitutes only a fraction of our continuously growing intraoperative
SI database, which now includes 46 831 images from 388 subjects across 3 species (cf.
[315]). Given the impracticality of semantically annotating such a large dataset in its en-
tirety, future efforts could explore active learning strategies to prioritize and select the
most informative images for annotation, thereby maximizing the information gained
from each annotation.

Spatial Granularities and Geometric Domain Shifts Our findings revealed that segmen-
tation performance consistently improved across all modalities and metrics with larger
input spatial granularity. This prompts the question of whether there are practical
scenarios in which using input data with smaller spatial context might be beneficial, de-
spite the observed reduction in performance. One potential advantage of using smaller
input spatial granularity could be improved generalization to out-of-distribution data
in terms of scene geometry. Such geometric variations could arise from scenarios like
partially or fully resected organs. As the spatial context of the input data increases,
segmentation models may become more sensitive to out-of-distribution scene geome-
tries. Since our original dataset did not encompass radical changes in scene geometry,
we investigated this research question in a follow-up study presented in the following
Chapter 6.

5.4.3 Conclusion

Leveraging the largest semantically annotated SI dataset to date for surgical scene
segmentation, we demonstrated that HSI data offers substantial performance improve-
ments over both RGB data and processed HSI data, with the benefit becoming more
pronounced as the spatial granularity decreases. Our findings highlight the critical
importance of selecting the optimal spatial granularity for surgical scene segmentation,
with larger spatial granularities consistently outperforming smaller ones. Notably, the
image-based HSI model performed on par with annotations made by a second medi-
cal expert. We conclude that HSI has the potential to emerge as a powerful imaging
modality for automated surgical scene understanding, offering numerous benefits over
conventional RGB imaging, such as the capability to additionally extract functional
tissue information. To support further research, we have publicly released our surgical
scene segmentation framework, together with our pretrained models’ [312].

"https://github.com/IMSY-DKFZ/htc
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ROBUST SURGICAL SCENE SEGMENTATION
UNDER GEOMETRIC DOMAIN SHIFTS

In the previous chapter (Chapter 5), we demonstrated that DL-based surgical scene
segmentation can achieve high performance comparable to human expert annotations
when using HSI instead of RGB data, and entire images instead of smaller input spatial
granularities. However, the generalization capabilities of surgical scene segmentation
algorithms under domain shifts remains largely underexplored, despite the well-known
vulnerability of DL models to substantial performance degradation when training
and test data distributions differ. In this chapter, we address the critical challenge of
geometric domain shifts in surgical scene segmentation: Despite geometric domain
shifts frequently occur in real-world surgical scenes due to variations in procedures
or situs occlusions, model development and validation are typically conducted on
idealized scenes, overlooking these practical challenges. We close this important gap by
presenting the first investigation of the generalizability of surgical scene segmentation
models under geometric domain shifts, and introducing a novel data augmentation
technique specifically designed to mitigate these shifts.

Section 6.1 provides an overview of related work on the generalization of surgical scene
segmentation models, and summarizes the state-of-the-art use of data augmentation
techniques in this field. Our approach to addressing geometric domain shifts, together
with the datasets used, is presented in Section 6.2. This is followed by a description
of our experimental setup and results in Section 6.3. The chapter concludes with a
discussion of the strengths, limitations, and directions for future research in Section 6.4.

The research presented in this chapter was conducted in 2021 — 2023 and published in
the proceedings of the International Conference on Medical Image Computing and
Computer Assisted Intervention (MICCAI) in 2023 [314], as well as in the thesis of Jan
Sellner in 2024 [311]. Moreover, an extended version of the MICCAI paper is available
on arXiv [309].
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6 Robust Surgical Scene Segmentation Under Geometric Domain Shifts

6.1 Related Work

To our knowledge, there is no prior work on the generalizability of surgical scene seg-
mentation models under geometric domain shifts. We are only aware of a single related
work in the context of surgical instrument segmentation: Kitaguchi et al. demonstrated
that surgical instrument segmentation algorithms fail to generalize to unseen sur-
gical procedures, even when the instruments themselves are familiar but appear in
unfamiliar contexts [178].

In the broader deep learning community, domain shifts are an intensively studied
challenge, and data augmentation has emerged as a simple yet effective strategy for
enhancing model generalizability [317, 14]. Traditional augmentation techniques can be
grouped into several categories, including geometric (e.g., cropping, resizing, shifting,
scaling, rotating, flipping, perspective transforms), photometric (e.g., color jittering),
noise (e.g., Random Erasing [388]), kernel (e.g., blurring, sharpening), and image-
mixing transformations (e.g., CutMix [379]). Among these, geometric transformations
are most widely used by the general semantic scene segmentation community [169].
To determine the state of the art on data augmentation usage in DL-based surgical
scene segmentation, we analyzed the related work presented in the previous chapter
(cf. Section 5.1), comprising 15 works on SI data and 18 works utilizing RGB data. Our
findings are summarized in Table 6.1.

As in the broader field of semantic scene segmentation, geometric transformations
are the most commonly used augmentation technique in DL-based surgical scene
segmentation, employed in 19 out of 20 studies reporting data augmentation usage.
Photometric transformations were applied in 40 % of these studies, and kernel trans-
formations were used in 15 %. Notably, none of the studies utilized topology-altering
transformations such as Random Erasing' [388], Hide-and-Seek? [321], Jigsaw® [61],
CutMix* [379], or CutPas® [86] (cf. Figure 6.1 for example images), likely because they
were originally developed for classification and object detection rather than segmenta-
tion tasks. However, because topology-altering augmentations distort the contextual
information available to the network, they hold the potential to enhance model gener-
alizability under geometric domain shifts.

To address the gaps in the literature regarding the impact of geometric domain shifts
on surgical scene segmentation performance and potential strategies to mitigate them,
we investigate the following research questions:

1Blacking out a randomly selected rectangular region within an image.

2Dividing an image into a grid of patches, with randomly selected patches blacked out.
3Dividing images into grids of patches and swapping randomly selected patches across images.
4Copying a random patch from one image to another.

>Copying objects onto random background images.
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Table 6.1: State of the art regarding usage of data augmentations in deep learning-based
surgical scene segmentation. We reviewed publications on surgical scene segmenta-
tion utilizing multispectral imaging (MSI), hyperspectral imaging (HSI), or RGB data
to evaluate the use of data augmentation techniques during model development.
Studies marked with v/, X and ? indicate that the manuscript reported the use of the
specified data augmentation, reported the use of other augmentations, or provided
no details on data augmentations, respectively. Table inspired from [311].

publication year modality geometric photometric kernel
Akbari et al. [9] 2008 HSI ? ? ?
Ravi et al. [279] 2017  HSI v X X
Fabelo et al. [94] 2018 HSI ? ? ?
Garifullin et al. [110] 2018 MSI v X X
Moccia et al. [239] 2018 MSI ? ? ?
Fabelo et al. [92] 2019 HSI v X X
Trajanovski et al. [340] 2019 HSI v X X
Cervantes-Sanchez et al. [59] 2021 HSI ? ? ?
Collins et al. [70] 2021 HSI ? ? ?
Trajanovski et al. [339] 2021 HSI v X X
Seidlitz et al. [308] 2022 HSI v X X
Garcia Peraza Herrera et al. [109] 2023 HSI ? ? ?
Leon et al. [202] 2023 HSI ? ? ?
Lotfy et al. [214] 2023  HSI v v v
Bannone et al. [30] 2024 HSI ? ? ?
Collins et al. [69] 2015 RGB ? ? ?
Gibson et al. [119] 2017 RGB ? ? ?
Fu et al. [106] 2019 RGB v v X
Kadkhodamohammadi et al. [165] 2019 RGB ? ? ?
Laves et al. [196] 2019 RGB v X X
Allan et al. [12] 2020 RGB v v X
Madad Zadeh et al. [220] 2020 RGB ? ? ?
Magbool et al. [231] 2020 RGB v X X
Scheikl et al. [302] 2020 RGB v X v
Gong et al. [122] 2021 RGB v v X
Grammatikopoulou et al. [125] 2021 RGB v v X
Jin et al. [162] 2022 RGB v X X
Bhattarai et al. [38] 2023 RGB ? ? ?
Ghamsarian et al. [115] 2023 RGB v v v
Kolbinger et al. [185] 2023 RGB v v X
Luo et al. [216] 2023 RGB v X X
Liu et al. [209] 2024 RGB v v X
Urrea et al. [344] 2024 RGB X X X
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6 Robust Surgical Scene Segmentation Under Geometric Domain Shifts

RQ2.3: How do geometric domain shifts affect the performance of state-of-the-art
RGB and HSI models for surgical scene segmentation?

RQ2.4: How does the spatial granularity of the input data influence the extent of
performance degradation?

RQ2.5: Can topology-altering augmentation techniques address geometric domain
shifts?

6.2 Materials and Methods

This section describes our approach to addressing geometric domain shifts in surgical
scene segmentation (Section 6.2.1), as well as the datasets used to analyze the impact
of geometric domain shifts and validate our approach (Section 6.2.2).

6.2.1 Proposed Approach to Address Geometric Domain Shifts

Our approach is driven by the hypothesis that topology-altering data augmentation
techniques can help mitigate geometric domain shifts. Therefore, rather than altering
the architecture of the segmentation networks, we propose to combine the segmen-
tation models presented in the previous Chapter 5 with a novel data augmentation
technique inspired by geometric domain shifts commonly encountered during surg-
eries.

Surgery-Inspired Data Augmentation Our data augmentation technique, referred to
as Organ Transplantation, is illustrated in Figure 6.1. Much like how a donor organ is
transferred during transplantation, our Organ Transplantation augmentation involves
copying all pixels of a specific object class (e.g., an organ or background) and pasting
them into a different surgical scene: From a batch of n images, we randomly select
m images (based on the probability parameter p for applying the augmentation) that
act as donor images from which the selected classes will be transplanted. For each of
these m donor images, a class is chosen at random, and all pixels belonging to that
class are transferred to another randomly selected image in the batch (the acceptor).
As illustrated in Figure 6.1, the corresponding object segmentation is transferred in
tandem.

Our Organ Transplantation augmentation places a class object in an unconventional
geometric context while maintaining its original shape and texture, thus (1) generating
an occlusion in the acceptor image and (2) forcing the model to detect donor classes
independent of their surroundings. The technique can be regarded as an advancement
of the image-mixing augmentation CutPas that was initially introduced for object
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detection [86]. Since then, it has been adapted for instance segmentation [117] and for
creating cost-effective datasets in surgical instrument segmentation by synthesizing
images from a limited set of real-world images [353].

Alternative Augmentations Other topology-altering augmentations suggested for clas-
sification and object detection could also be promising candidates for addressing
geometric domain shifts in surgical scene segmentation. For instance, Random Erasing
[388] and Hide-and-Seek [321], which black out pixels within rectangular image re-
gions, could be used to simulate situs occlusions. Jigsaw [61] and CutMix [379] transfer
rectangular image regions onto a different scene, thus both occluding parts of the orig-
inal scene and placing image segments in unusual contexts. To enable a comparison
of these augmentation techniques to our Organ Transplantation augmentation, we
adapted them for a segmentation task by transferring/invalidating the corresponding
segmentation regions together with the image regions.

6.2.2 Datasets

To assess the performance of surgical scene segmentation models under geometric do-
main shifts and evaluate the improvements introduced by targeted data augmentations,
we examined the following geometric OOD scenarios:

(I) Isolation: Abdominal linens are frequently used during surgeries to protect or-
gans and soft tissues, absorb secretions and blood, and manage bleeding. In
certain procedures, such as enteroenterostomy, it is even required to cover all
but one organ [361]. In these scenarios, accurately identifying an isolated organ
without contextual cues from neighboring organs is essential.

(IT) Resection: Resection procedures involve removing parts or even entire organs,
making it necessary to identify surrounding organs even when typical neighbor-
ing structures are absent.

(IIT) Occlusion: Parts of the surgical scene may be obscured due to the ongoing
intervention, introducing OOD elements such as gloved hands. Despite these
occlusions, the unobstructed parts of the surgical field need to be accurately
identified.

Manipulated Datasets The data previously used to determine the optimal input spatial
granularity and modality for surgical scene segmentation (cf. Section 5.2.1), referred to
as the dataset original, consists exclusively of idealized scenes and lacks isolated or
resected classes. To address this limitation, we created 4 new datasets by modifying im-
ages from original. To simulate an isolation scenario, we processed each image I and its

157
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(a) Concept of the Organ Transplantation Augmentation
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Figure 6.1: Approach and experimental setup to investigate and enhance the generaliz-
ability of deep learning-based surgical scene segmentation under geometric
domain shifts. (a) We propose to address geometric domain shifts with a surgery-
inspired augmentation method, termed Organ Transplantation, which transfers
image features and corresponding segmentation masks of randomly selected organs
(here: spleen and stomach) between images within the same batch. (b) We evaluate
the generalization performance of state-of-the-art surgical scene segmentation
models under geometric domain shifts by using either the proposed Organ Trans-
plantation augmentation or one of 6 alternative data augmentation techniques
(Affine, Elastic, Hide-and-seek, Random Erasing, Jigsaw, and CutMix augmenta-
tions). Our test datasets comprise the 3 geometric out-of-distribution scenarios
(I) organs in isolation, (II) organ resections, and (III) situs occlusions, as well as

in-distribution data (highlighted in italic). Figure adapted from [314, 309, 311].
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corresponding class label ¢ from the original dataset. Pixels in I not belonging to class
¢ were replaced either with zeros, creating the isolation_zero dataset, or with spectra
from a background image containing only abdominal linen, forming the isolation_bgr
dataset. Similarly, the resection datasets removal_zero and removal_bgr were generated
by replacing all pixels in I corresponding to class ¢ with zeros and background spectra,
respectively. Example images from these manipulated datasets are shown in Figure 6.1.
By generating redundant datasets that differ only in the method of pixel replacement —
either with zeros or with background spectra — we can compare scenarios where pixel
values are OOD relative to the training data (replacement with zeros) against those
where pixel values are in-distribution, originating from a background class seen during
training (replacement with abdominal linen spectra).

Real-World Datasets In addition to the manipulated datasets, we collected a real-
world isolation dataset, isolation_real, comprising 94 images from 25 pigs. In this
dataset, all organs except one were covered with abdominal linen. The same HSI
camera, acquisition protocol, and annotation process described in Section 5.2.1 for the
original dataset were applied.

To study the impact of occlusions, we divided the original dataset into two subsets: 142
images from 20 pigs containing real-world situs occlusions, such as those caused by
gloved hands (dataset occlusion), and 364 images without such occlusions (dataset
no-occlusion). Example images from all datasets are provided in Figure 6.1.

6.3 Experiments and Results

The purpose of our experiments was to assess the performance of state-of-the-art
DL-based surgical scene segmentation algorithms under geometric domain shifts,
considering the input modality (RQ2.3) and spatial granularity (RQ2.4) (Section 6.3.2).
Additionally, we sought to evaluate the effectiveness of topology-altering augmenta-
tions, particularly our proposed Organ Transplantation augmentation, in mitigating
these shifts (RQ2.5, Section 6.3.3). Details of the experimental setup are provided in
Section 6.3.1.

6.3.1 Experimental Setup

An overview of our experimental setup is provided in Figure 6.1.
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6 Robust Surgical Scene Segmentation Under Geometric Domain Shifts

Dataset Splits The same split established in the previous chapter for the dataset
original was used, including a training split comprising 340 images from 15 pigs and a
hold-out test split containing 166 images from 5 pigs. To ensure a fair comparison across
all models and OOD scenarios, the identical train-test split was consistently applied
at the pig level. The test splits for isolation_zero, isolation_bgr, removal_zero, and
removal_bgr were thus generated by modifying the images in the test split of original.
In the occlusion scenario, models were trained on the subset of images in the training
split of original that do not contain occlusions, and testing was conducted on both the
subset of the test split of original without occlusions (test dataset no-occlusion) and
with occlusions (test dataset occlusion).

Model and Training Parameters To study the effect of data augmentations in isolation,
we used the same model architectures and training parameters for a given spatial
granularity and modality as presented in the previous chapter (cf. Section 5.2.2), with
the only divergence between models consisting in the applied data augmentations
during model training. The baseline models used geometric data augmentations com-
monly applied in the state of the art, namely shift, scale and rotate, each applied with
a probability of p = 0.5. Our competitor models employed one of the augmentations
Elastic transformations, Hide-and-Seek, Random Erasing, Jigsaw, CutMix and Organ
Transplantation, in addition to the geometric augmentations. Elastic transformations,
which apply a random displacement to each pixel, thereby generating tissue defor-
mations that distort the local neighborhood [319], were applied with a displacement
magnitude of @ = 0.7 and a displacement smoothness of o = 16. To minimize the need
for extensive hyperparameter tuning, instead of determining the optimal grid size in
the Hide-and-Seek and Jigsaw augmentations, we randomly sampled grid sizes from a
set including grids of 5x 5, 8 X8, 10 X 10, 16 X 16 and 20 X 20 patches. These sizes were
chosen because the image dimensions are divisible by these numbers. Furthermore,
the ratio r of grid patches to be blacked out in the Hide-and-Seek augmentation was
randomly sampled from the range r € [0.2; 0.8]. Only the probability p of applying one
of the 6 competing augmentations was optimized through a grid search with values
p € {0.2,0.4,0.6,0.8,1} — for our image-based models with a batch size of 5, these
values correspond to applying the data augmentation on 1, 2, 3, 4 or all 5 images. The
optimal p-value was identified using 5-fold cross-validation on the training splits of
the original, isolation_zero, and isolation_bgr datasets. This approach ensures that the
selected value of p is optimal for both in-distribution and OOD data while preserv-
ing the OOD scenarios resection and occlusion, as well as all real-world datasets, as
untouched test sets. The resulting optimal p-values are listed in Table 6.2.

Validation Strategy Following the recommendations from [284, 222, 283], we assessed
the segmentation performance of our models using both the overlap-based metric DSC
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Table 6.2: Optimal setting of the probability hyperparameter according to our grid search.
For each data augmentation method, the probability p of applying the augmentation
was optimized in a grid search over the values p € {0.2,0.4, 0.6, 0.8, 1}. Table adapted

from [311].
data augmentation optimal probability p
Elastic 0.6
Hide-and-Seek 1
Random Erasing 0.4
Jigsaw 0.8
CutMix 1

Organ Transplantation 0.8

and the boundary-based metric NSD. For the NSD, we used the same class-specific
thresholds as derived in the previous chapter (cf. Figure 5.12).

Our datasets maintain a hierarchical structure, with each subject comprising one or
more images, and each image containing multiple classes. In the previous chapter, we
have accounted for this hierarchy by first aggregating metric values at the image level,
yielding image-wise scores, and subsequently aggregating the scores from all images
of one subject, resulting in subject-wise scores. Although this approach allowed for
analyzing the performance variability across subjects, it introduced the limitation that
image-level scores are influenced by the class distribution within an image. Based on
the hypothesis that specific classes may be more susceptible to geometric domain
shifts than others, we shifted our focus to class-wise scores in this analysis. To achieve
this, we calculated the DSC and NSD for each class in every image, and then aggregated
the class-wise scores first across all images of one subject, and subsequently across
subjects.

In the organ removal scenario, for each class label ¢ in an image I, a set of metric
scores {M;(¢)} was obtained by removing each class ¢ in I one at a time. To assess
the impact of removing the most important neighboring class of ¢, we selected the
minimum score from {M.(¢)} before proceeding with hierarchical aggregation.

We computed performance rankings and assessed their stability with respect to sam-
pling variability in accordance with the guidelines provided by [364]: We generated
1000 bootstrap samples, each comprising 19 class-level scores. For each class label
¢, the class-level score was derived by randomly selecting N, subject-level scores be-
longing to ¢ without replacement, with N, representing the total number of subjects
with images available for class c. These N, scores were then averaged to obtain the
class-level score.
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6 Robust Surgical Scene Segmentation Under Geometric Domain Shifts

6.3.2 Impact of Geometric Domain Shifts on State-Of-The-Art Surgical
Scene Segmentation Models

Our experiments aimed to assess the effect of geometric domain shifts on DL-based
surgical scene segmentation as a function of (1) the imaging modalities RGB and HSI,
and (2) the choice of input spatial granularity, including pixels, superpixels, patches
and entire images.

Performance Degradation as a Function of Modality and Spatial Granularity Figure 6.2
illustrates the segmentation performance, as measured by the DSC, across all studied
modalities (HSI and RGB), spatial granularities (pixel, superpixel, patch_32, patch_64
and image), and clinical scenarios involving geometric domain shifts (organs in isola-
tion, resections and situs occlusions). While substantial performance drops between
in-distribution and OOD data are observed for both RGB and HSI data, despite the
latter’s rich spectral information content, the average drop in performance is smaller
for HSI, with a decrease of 23 %, compared to a drop of 30 % for RGB.

Consistent with our previous findings, the in-distribution performance is highest for
image-based segmentation in both modalities (RGB: DSC of 0.83 (SD 0.10); HSI: DSC
of 0.86 (SD 0.10)) and decreases with reduced spatial granularity of the input.

While pixel-based segmentation models exhibit the lowest overall performance, they
show no decline when applied to OOD data in the isolation and removal scenarios. In
fact, in the isolation scenario, pixel-based models even show improved performance for
both manipulated and real-world data. This improvement can likely be attributed to
the tendency of pixel-based segmentation models to produce fragmented and scattered
boundaries for tissue classes, while background pixels are generally identified with high
accuracy (cf. Figure 5.8). In the manipulated isolation data, pixels outside the target
organ annotation were replaced with zeros and background pixels. Similarly, in the
isolation_real dataset, the entire scene, except for the target organ, was obscured with
abdominal linen. These strategies effectively eliminate mispredictions of the target
class beyond the annotated region, a challenge often encountered in multi-organ
images.

As the spatial granularity increases, the drop in segmentation performance for organs
in isolation and removal scenarios becomes more pronounced across both modalities.
For image-based segmentation, this performance drop is largest, ranging from 10-46 %
for RGB to 5-45 % for HSI, depending on the specific OOD scenario. Although models
using smaller input spatial granularities exhibit less performance degradation under
geometric domain shifts, none achieve an OOD performance comparable to the in-
distribution performance of image-based models. Thus, relying on smaller spatial
granularities is not a viable strategy for improving generalizability under geometric
domain shifts.
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Figure 6.2: Role of the input modality and spatial granularity in segmentation perfor-
mance degradation under geometric domain shifts as measured by the Dice
similarity coefficient (DSC). The segmentation performance is reported for 3
clinical scenarios: organs in isolation (I), organ resections (II), and situs occlusions
(I1). Columns represent the corresponding in-distribution datasets (highlighted
in italic) and out-of-distribution (OOD) datasets. Rows indicate different models,
each combining one of two modalities (RGB or hyperspectral imaging (HSI)) with
one of 5 spatial granularities: pixel, superpixel, patches of size 32 x 32 (patch_32)
or 64 X 64 (patch_64), and image. The numbers represent the average DSC across
classes, with standard deviations denoted in brackets. The color-coding reflects the
difference in DSC relative to the corresponding in-distribution DSC for the same
model. Results for the normalized surface Dice (NSD) are shown in Figure B.14.
Figure adapted from [309].
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Impact of Neighborhood on Segmentation Performance We analyzed which classes
are most affected by the removal of neighboring classes in the organ removal scenario.
As shown in Figure 6.3, the drop in performance using the image#HSI model is highest
with 63 % for the gallbladder upon removal of the liver, and second highest for the
major vein after removing the peritoneum. In both cases, the removed organ is a
prominent neighbor of the organ under investigation: the liver constitutes 83.9 % of
the gallbladder’s neighborhood, and the peritoneum makes up 60.1 % of the major
vein’s neighborhood, on average. Other classes, such as liver, colon, and muscle, do
not exhibit a decline in performance upon removal of neighboring classes. These
findings indicate that the impact of neighboring classes on segmentation performance
is class-specific.

6.3.3 Effectiveness of Data Augmentations

Our experiments aimed to evaluate the effectiveness of targeted data augmentations,
particularly our proposed Organ Transplantation augmentation, in mitigating geomet-
ric domain shifts in surgical scene segmentation.

Comparison of Our Organ Transplantation Augmentation to the State of the Art As
shown in Figure 6.4 for the DSC, and in Figure B.15 for the NSD, equipping the image-
based segmentation models with our organ transplantation augmentation effectively
mitigates geometric domain shifts for both the HSI and RGB modalities. Notably, small
performance improvements are observed even on in-distribution data. For HSI, the
performance improvement over the baseline ranges from 9-90 % (DSC) and 16-96 %
(NSD), whereas the performance improvement using RGB falls within a lower range of
9-67 % (DSC) and 15-79 % (NSD), underscoring the importance of spectral information
in scenarios with limited context.

The largest performance improvement is observed in the isolation scenario, which
also exhibits the largest performance drop in the baseline model. In contrast, situs
occlusions show the smallest baseline performance drop and the least improvement
with the Organ Transplantation augmentation. However, there is a noticeable variation
in performance improvement across classes. For instance, on the occlusion dataset,
the largest DSC improvement for HSI is obtained for the pancreas (283 %), followed by
the stomach (69 %), suggesting that certain classes particularly benefit from the Organ
Transplantation augmentation.

The performance improvements observed on manipulated datasets (average DSC im-
provement of 57 % for HSI and 61 % for RGB across the datasets isolation_zero and
isolation_bgr) align with those observed on real data (DSC improvement of 50 % for
HSI and 46 % for RGB on the dataset isolation_real). This consistency highlights the
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Figure 6.3: Impact of local neighborhood on performance drop following organ removal.
The top confusion matrix shows the change in average Dice similarity coefficient
(DSC) for class ¢ (columns) when class ¢’ (rows) is replaced with zeros, using the
image#HSI model. Changes |A DSC < 0.01| were omitted for clarity. The bottom
confusion matrix presents the average proportion of boundary pixels in the dataset
original that class ¢ (columns) shares with class ¢’ (rows), with values below 0.1 %
omitted for readability. Figure adapted from [314, 309, 311].
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effectiveness of our manipulated datasets in accurately evaluating segmentation per-
formance under geometric domain shifts.

Visual Assessment of Segmentation Quality Figure 6.5 shows example predictions
from the image#HSI baseline model, and the corresponding Organ Transplantation-
augmented model, for each of the 6 OOD datasets. The examples were chosen based
on the largest difference in DSC performance between the baseline model and the
Organ Transplantation model, illustrating cases where the augmentation provides the
largest benefit. In all 6 examples, the baseline model’s performance drop is mainly due
to misclassifying entire organ classes, such as failing to identify the gallbladder and
stomach after liver removal or missing the stomach and large portions of the omentum
obscured by a gloved hand in the occlusion scenario.

Comparison to Alternative Data Augmentation Techniques Figure 6.6 shows the DSC-
based ranking of our Organ Transplantation augmentation compared to the baseline
geometric augmentations, Elastic transformations, and 4 other topology-altering aug-
mentations on the 6 geometric OOD test datasets, while the NSD-based ranking is
presented in Figure B.16. The Organ Transplantation augmentation consistently ranks
first, whereas the baseline augmentations rank last across most OOD scenarios. Al-
though rankings for the other augmentations vary across geometric OOD datasets,
the overall ranking reveals that most topology-altering augmentations outperform the
Elastic transformations.

Among the topology-altering methods, image-mixing augmentations, such as CutMix
and Jigsaw, demonstrate superior performance compared to noise-based augmen-
tations like Random Erasing and Hide-and-Seek. This may be due to image-mixing
augmentations introducing unusual neighborhood relationships by copying patches
from one surgical scene into another, whereas noise augmentations merely obscure
parts of the scene without modifying the existing neighborhood relationships. Ad-
ditionally, it is notable that Random Erasing and Hide-and-Seek rank better on the
datasets isolation_zero and removal_zero compared to the corresponding datasets
where tissues were replaced with background, isolation_bgr and removal_bgr. This
observation suggests that these augmentations are more effective when the same type
of obscuration (i.e., zero values) is present in both the augmented training data and
validation data, while their ability to generalize to other types of obscurations, such as
those involving background, appears to be limited.

In addition to our Organ Transplantation augmentation consistently ranking first, it is
noteworthy that topology-altering augmentations that randomly select patches gen-
erally outperform those based on a grid structure (e.g., CutMix vs. Jigsaw, Random
Erasing vs. Hide-and-Seek). This may be attributed to the extent of unnatural bound-
aries introduced by each method: Our Organ Transplantation augmentation preserves
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Figure 6.4: Performance comparison of the baseline model and the Organ Transplantation
model under geometric domain shifts using the Dice similarity coefficient
(DSC). Distributions of class-wise DSC scores are shown for the baseline model
and the Organ Transplantation model across the 3 clinical scenarios (I) organs
in isolation, (IT) organ resections, and (III) situs occlusions, with in-distribution
datasets highlighted in italic. The boxplots illustrate the quartiles of the distribution
across classes, with whiskers showing the range excluding outliers. The median
is shown as a solid line, the mean as a dotted line, and the markers correspond
to individual classes. Results for the normalized surface Dice (NSD) are shown in
Figure B.15. Figure adapted from [314, 309, 311].
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Figure 6.5: Example predictions from the image#HSI baseline model and corresponding
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Organ Transplantation model on geometric out-of-distribution (OOD) datasets.
For each of the 6 OOD datasets (rows), an image was selected to maximize the
difference in Dice similarity coefficient (DSC) values between the baseline and
Organ Transplantation models. From left to right, the corresponding RGB image,
segmentation predictions from the baseline and Organ Transplantation models,
and the reference annotation are displayed, along with the image-wise DSC and
normalized surface Dice (NSD) scores for the segmentation predictions. Figure
adapted from [314, 309, 311].
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natural organ boundaries, while CutMix and Random Erasing create artificial bound-
aries along the edges of a single rectangle. In contrast, Jigsaw and Hide-and-Seek
generate even more unnatural boundaries due to their grid-based modifications.

6.4 Discussion and Conclusion

In this study, we demonstrated for the first time that state-of-the-art surgical scene
segmentation networks experience substantial performance degradation under geo-
metric domain shifts. Through an extensive validation on 6 geometric OOD datasets,
consisting of 600 RGB and HSI cubes from 33 pigs, each annotated with 19 classes,
we observed that performance degradation was generally more severe for RGB data
compared to HSI. Furthermore, the decline was more pronounced with larger spatial
granularities, such as images and patches, compared to smaller spatial granularities
like pixels and superpixels. To improve the generalization of state-of-the-art models to
OOD geometries, we adapted previously unexplored topology-altering data augmen-
tation methods for surgical scene segmentation. Among these, our proposed Organ
Transplantation augmentation outperformed all other topology-altering methods and
achieved performance comparable to in-distribution results.

The following sections provide a discussion of key strengths and limitations (Sec-
tion 6.4.1) and potential future research directions (Section 6.4.2), as well as a conclu-
sion summarizing our findings (Section 6.4.3).

6.4.1 Strengths and Limitations

In the following, we discuss the key strengths and limitations of our manipulated data
and our proposed Organ Transplantation augmentation.

Strengths and Limitations of Our Manipulated Data While we validated model per-
formances on real-world data for the isolation and occlusion scenarios, obtaining
real-world data was impractical in the resection scenario. In fact, due to the invasive
nature of organ resections, covering a wide range of resection scenarios would have
required more animals. To minimize animal suffering and reduce research costs, we
instead relied on manipulating existing data as a viable alternative for validating our
model performance in the resection scenario. We further reduced the amount of real-
world data needed by tuning model hyperparameters on the validation splits of the
in-distribution dataset original and the manipulated OOD datasets isolation_zero and
isolation_bgr, keeping all real-world OOD datasets as untouched test sets. Despite
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Figure 6.6: Uncertainty-aware Dice similarity coefficient (DSC)-based ranking of different
data augmentation methods for addressing geometric domain shifts. Following
the concept from [364], bootstrap sampling was performed to assess the ranking
stability with respect to sampling variability of our image#HSI models utilizing the
data augmentation techniques Organ Transplantation (OT), CutMix (CM), Jigsaw
(JT), Random Erasing (RE), Elastic transformations (EL), Hide-and-Seek (HS) and
Baseline geometric transformations (BA). For each blob at position (a, r), its area is
proportional to the frequency of algorithm a achieving rank r across 1000 bootstrap
samples. For each method, black crosses indicate the median rank, gray diamonds
show the mean rank, and gray lines represent the 95 % quantile of the bootstrap
results. Ranking stability results for the normalized surface Dice (NSD) are shown
in Figure B.15. Figure adapted from [314, 309, 311].
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these restrictions, (1) our proposed Organ Transplantation augmentation proved ef-
fective across all datasets, and (2) we observed similar performance improvements
for image-based segmentation on manipulated and real data in the isolation scenario,
highlighting the utility of our image manipulations as an effective substitute for real-
world data in this context.

However, limitations arise from the oversimplification of our manipulations: First, the
removal_zero and removal_bgr datasets do not account for the emergence of other
tissues that may be visible in place of the removed organ. Second, our manipulated
datasets led to artifacts in the comparison of spatial granularities by biasing the re-
sults in favor of the superpixel-based spatial granularity: For instance, as shown in
Figure 6.2, superpixel-based models exhibit performance improvements in the ma-
nipulated isolation scenarios, which are not observed in the real-world isolation data.
This discrepancy can likely be attributed to our manipulation strategy: As shown in
Section 5.4.2, superpixel boundaries in real data often do not align precisely with
annotation boundaries. In contrast, for the manipulated data, we utilized the refer-
ence boundary annotations of the target organ to replace non-target pixels with zeros
or background spectra. This approach produced superpixel boundaries that closely
matched the annotations, resulting in improved segmentation scores. Despite their
limited capability to represent the complexity of real-world geometric OOD scenes, our
manipulated datasets provide a valuable tool for evaluating model performance under
geometric domain shifts, as they allow for a controlled comparison of the impact of
specific geometric changes on segmentation performance.

Strengths of Limitations of Our Organ Transplantation Augmentation Key strengths of
our Organ Transplantation augmentation include:

* Flexibility: Our Organ Transplantation augmentation is compatible with any
existing model architecture, providing the flexibility to select models based on
specific requirements while still benefiting from topology-altering augmenta-
tions, all without the need for specialized architectures.

* Effectiveness: Our augmentation method effectively mitigates geometric domain
shifts, as demonstrated by the consistent performance improvements across
all OOD scenarios, yielding performance comparable to in-distribution results.
Furthermore, the augmentation consistently outperformed competing data aug-
mentation methods, achieving the highest rank across all OOD scenarios.

* Efficiency: Our augmentation is computationally efficient for image-based seg-
mentation models, as it can be performed on the GPU [313]. An exception are
smaller spatial granularities: Here, the augmentation would introduce substan-
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tial computational overhead and increased memory requirements®, rendering
batch-level augmentations impractical in these cases. However, as image-based
segmentation models outperformed models using smaller spatial granularities
on in-distribution data (cf. Figure 6.2), and our Organ Transplantation augmenta-
tion combined with image-based segmentation achieved geometric OOD perfor-
mance comparable to the baseline in-distribution performance (cf. Figure 6.4),
this is not a strong limitation in practice.

A general limitation of image-mixing augmentations, such as our Organ Transplanta-
tion method, is the requirement for a minimum batch size of two images to transplant
an organ from one scene to another. In our case, this limitation was not problematic
due to our batch size of 5 images. However, it may become a concern for applications
with limited computational resources or large images.

6.4.2 Future Work

In this study, we investigated geometric OOD scenarios commonly encountered in
real-world open surgeries. Similar challenges, such as instrument occlusions and organ
removals, also arise in minimally invasive surgeries. However, key differences include
more focused views of organs, fewer neighboring organs visible in the image, tissue
deformations, and substantial changes in imaging perspectives. With the recent avail-
ability of medical device-graded HSI systems for minimally invasive surgery, coupled
with the steady increase in such procedures over the past decades [323], exploring and
mitigating geometric domain shifts in this context represents a promising avenue for
future research.

Furthermore, this work provides a first step towards the broader challenge of investigat-
ing and addressing domain shifts in DL-based surgical scene segmentation using RGB
and HSI data. Other potentially relevant domain shifts between our training data and
real-world human surgeries include for example shifts in illumination and measure-
ment devices (e.g., different spectral channels across MSI and HSI devices, shifts in
field of view and image resolution), pathological conditions of tissues instead of physio-
logical data (e.g., presence of tumors, inflammation, malperfusion) and the emergence
of artifacts introduced by surgical procedures (e.g., injection of fluorescent dyes, bleed-
ing, cauterization). Since the publication of this study, we have demonstrated and
addressed drops in surgical scene segmentation performance under illuminant shifts
[34], tissue malperfusion [273, 315] and injection of indocyanine green [315]. Despite

%Due to memory and efficiency constraints, extracting smaller input granularities from images must
be performed on the central processing unit (CPU). As a result, augmentations would also need to be
performed on the CPU, even though this is less efficient compared to GPU-based augmentation [313].
Additionally, the requirement to load at least two images simultaneously would substantially increase
both memory usage and computational load when working with lower spatial granularities.
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this progress, investigating the impact of additional, so far unexplored domain shifts on
the segmentation performance and developing strategies to mitigate them are crucial
steps towards enhancing the generalizability of surgical scene segmentation models
for real-world human surgeries.

6.4.3 Conclusion

To the best of our knowledge, this work is the first to address surgical scene segmen-
tation under geometric domain shifts. We have demonstrated that state-of-the-art
segmentation models experience substantial performance degradation under geomet-
ric domain shifts and showed that in-distribution performance can be restored using
our Organ Transplantation augmentation. Our method is computationally efficient,
effective, and model-independent, making it applicable to image-based surgical scene
segmentation for both HSI and RGB data, and across various model architectures. To
support further research, we have publicly released our code repository and pretrained
models on GitHub” [312] and have integrated our Organ Transplantation augmentation
into the Kornia library® [287], enabling easy access for the broader computer vision
community.

https://github.com/IMSY-DKFZ/htc
8Kornia RandomTransplantation augmentation
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Part IV

Robust Sepsis Diagnosis and Mortality
Prediction with Hyperspectral Imaging
(RQ3)
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AI-DRIVEN SKIN SPECTRAL IMAGING FOR
RAPID SEPSIS DIAGNOSIS AND MORTALITY
PREDICTION IN CRITICALLY ILL PATIENTS

As outlined in Section 1.2.3, the early identification of septic patients and individuals
at high risk of mortality is of major socioeconomic relevance, as every hour of delayed
intervention increases mortality. This chapter presents the first analysis of the potential
of DL-based HSI analysis to close this diagnostic gap by enabling rapid, non-invasive
sepsis diagnosis and mortality prediction in ICU patients.

Section 7.1 provides an overview of the related work on sepsis diagnosis and mortality
prediction, highlighting the limitations of existing approaches. Our DL approach to
address the diagnostic and prognostic gaps in current clinical practice, together with
our large-scale HSI study conducted in an interdisciplinary surgical ICU, is presented in
Section 7.2. Our experimental setup and findings are detailed in Section 7.3, followed
by a discussion of the strengths, limitations, and directions for future research in
Section 7.4.

The research presented in this chapter was published in the journal Science Advances
in 2025 [306], building on earlier work first reported on arXiv in 2021 [85].

7.1 Related Work

Previous research has primarily focused on sepsis diagnosis and mortality prediction
through two key avenues: the discovery of diagnostic and prognostic biomarkers, and
ML-based prediction using clinical data from electronic health records (EHRs).

Diagnostic and Prognostic Biomarkers Over the past decades, extensive research has
explored the identification of biomarkers for sepsis diagnosis and mortality predic-
tion, proposing over 250 molecules as potential candidates. While the investigation of
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biomarkers has contributed to the identification of sepsis endotypes and pathways
[350], up to date, none of the proposed biomarkers have shown sufficient sensitivity
and specificity for reliably detecting sepsis or predicting clinical outcomes [265, 19].
This challenge is likely due to the heterogeneity and complexity of the sepsis patho-
physiology, compounded by its non-specific signs and symptoms [136]. For example,
C-reactive protein (CRP), an inflammatory marker extensively studied for sepsis di-
agnosis, is also elevated in sterile inflammations following autoimmune responses or
surgical trauma, leading to a high incidence of false positives [362].

Sepsis and Mortality Prediction from Clinical Data More recently, researchers have
turned to ML for predicting sepsis and mortality using high-dimensional clinical data
from EHRs [186]. Among these approaches, random forest models have emerged as the
most frequently employed [375]. While the number and selection of clinical features
differ across studies — ranging from as few as two to over 100 — the most commonly
employed data for ML models include vital signs, laboratory values, and patient demo-
graphics [154]. A 2020 meta-analysis of 28 publications, covering 130 models, reported
area under the receiver operating characteristic curve (AUROC) performances between
0.68 and 0.99 for sepsis prediction up to 48 h prior to its onset [104, 154]. Despite these
encouraging results, translating EHR-based sepsis and mortality prediction models
into clinical practice remains challenging. EHR data, originally designed for clinical
documentation and billing, suffers from a lack of standardization, incompleteness,
inaccuracies, and inherent biases (e.g., correlations between measurement frequency
and disease severity, sample selection biases) [301]. These limitations affect the gen-
eralizability of models to external data, as shown in multiple studies on EHR-based
sepsis prediction [370, 241]. Moreover, while EHR systems are prevalent in high-income
countries, their adoption is much slower in low- and middle-income countries (LMICs),
where 85 % of sepsis cases occur [296]. This gap is attributed to inadequate laboratory
facilities, lack of infrastructure, training, and implementation frameworks, limited
access to expensive monitoring equipment, and insufficient technical support [369].

Leveraging Microcirculatory Dysfunction and Edema Formation for Sepsis Diagnosis  Sec-
tion 2.2.2.2 provides a detailed overview of sepsis pathophysiology. A key pathophysio-
logical process is endothelial and coagulation dysfunction, leading to edema formation
and microcirculatory dysfunction, characterized by impaired blood flow in the smallest
vessels. Microcirculatory dysfunction emerges early in sepsis [275], plays a critical role
in organ failure, and is closely linked to poor outcomes [342, 76]. Because microcir-
culation is frequently decoupled from systemic hemodynamics, traditional systemic
parameters such as blood pressure and cardiac output fail to capture its impairment
[275, 355]. Instead, advanced imaging techniques, including NIR spectroscopy, laser
speckle contrast imaging, laser Doppler flowmetry, sublingual microscopy, and HSI
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could be explored for microcirculatory monitoring. These methods already revealed
that sepsis-induced microcirculatory dysfunction is characterized by reduced capillary
density and increased microperfusion heterogeneity, resulting in localized hypoxic
regions [352, 257].

We thus hypothesize that HSI can support automated sepsis diagnosis and mortality
prediction in the ICU by capturing edema formation and microcirculatory dysfunction.
HSI offers several key strengths, including its mobility, non-invasiveness, rapidity,
objectivity, cost-effectiveness, and standardization. Unlike other imaging techniques
that could monitor microcirculation, medical-grade HSI systems are now emerging,
setting the stage for HSI to become a standard tool in clinical practice [80, 355].

Previous studies have shown distinct patterns in functional tissue parameters de-
rived from HSI when comparing septic patients to controls [172, 193, 80] and reported
promising performance for HSI-based sepsis diagnosis [85, 182]. However, these studies
suffer from a major limitation: Septic patients were compared to healthy volunteers or
narrowly defined cohorts, such as pancreatic surgery patients. This study design intro-
duces a high risk of shortcut learning, driven by confounders like large age differences,
comorbidities, or therapy regimens between groups [85]. As a result, the proposed
algorithms are unlikely to generalize to real-world clinical settings, such as automated
sepsis diagnosis in ICU patients, where diagnosis is particularly challenging due to
disease complexity, high baseline illness severity, and the difficulty of distinguishing
sepsis from non-infectious systemic inflammation [42, 212].

Overall, despite substantial research efforts, reliable biomarkers for early sepsis diag-
nosis and mortality prediction remain elusive. While existing studies suggest that HSI
holds promise for automated sepsis diagnosis, their findings are unlikely to generalize
to realistic clinical settings. We address this critical gap by presenting the first DL-based
HSI analysis for automated, rapid, and non-invasive sepsis diagnosis and mortality
prediction in ICU patients. Using data from a prospective study of more than 480
patients — representing, to our knowledge, the largest HSI patient cohort to date — we
investigate the following research questions:

RQ3.1 Can DL-based skin HSI analysis enable automated, rapid, and noninvasive sepsis
diagnosis and mortality prediction in ICU patients? Which measurement site,
imaging modality (HSI vs. TPI vs. RGB images) and spatial granularity (patches
vs. median spectra) yields the best performance?

RQ3.2 Do algorithms trained on existing HSI data of selectively chosen cohorts gener-
alize to an ICU population?

RQ3.3 Can structured clinical data further improve diagnostic and predictive perfor-
mance?
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RQ3.4 How does the performance of our approach compare to established clinical
biomarkers and scores?

7.2 Materials and Methods

The following sections describe our large-scale HSI study conducted in an interdisci-
plinary surgical ICU (Section 7.2.1), the external dataset used to evaluate the generaliz-
ability of an algorithm trained on existing HSI data of selectively chosen cohorts to an
ICU population (Section 7.2.2), and our DL approach for automated sepsis diagnosis
and mortality prediction from skin HSI data (Section 7.2.3).

7.2.1 Intensive Care Unit Dataset

In a prospective observational study, we collected HSI and corresponding RGB skin
images from patients admitted to the interdisciplinary surgical ICU at the University
Hospital Heidelberg, Germany. All adult patients admitted to the ICU between October
24, 2022, and December 15, 2023, were included. The study followed the ethical stan-
dards of the 1964 Declaration of Helsinki and its subsequent revisions. Approval was
obtained from the Ethics Committee of the Medical Faculty of Heidelberg University
(study reference number: S-288/2022), and the trial was prospectively registered in the
German Clinical Trials Register (DRKS00029709).

Study Design  HSI cubes of the patients’ skin, specifically at the measurement sites
palm and annular finger, were acquired on the day of admission to the ICU. These
measurement sites were selected for their accessibility and lower melanin content com-
pared to other skin areas [373]. For each patient, the decision to image the left or right
hand was based on ensuring that the selected hand was not utilized for intravascular
access or intra-arterial cannulation. Characteristic spectra for septic and non-septic
patients, as well as for survivors and non-survivors, are illustrated in Figure B.17.

Alongside the HSI data, we collected 45 structured clinical data. Of these, 33 parameters
are typically available within 1h of ICU admission, comprising demographics, vital
signs, blood gas analysis (BGA) parameters, and therapy details such as organ replace-
ment, ventilation settings and vasopressor or inotrope doses. In addition, 12 laboratory
parameters were collected, which are typically available within 10 h of admission. De-
scriptive statistics are summarized in Table 7.1 (clinical data available within 1h) and
Table 7.2 (laboratory parameters), with more detailed distribution figures for septic
and non-septic patients provided in the appendix (Figure B.18 — Figure B.24).
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Table 7.1: Descriptive statistics for non-septic and septic patients, as well as survivors and
non-survivors. They include clinical data available within 1h of intensive care unit
admission, covering demographics, vital signs, blood gas analysis (BGA) values, or-
gan replacement therapies, ventilation parameters, and vasopressor/inotrope dosing.
For ratio-scaled variables, means with standard deviation in brackets are shown. For
nominal variables, patient counts per category are listed. For binary therapy vari-
ables, the proportion of patients receiving the treatment is reported. Abbreviations:
mean arterial pressure (MAP), pulse oxymetrical oxygen saturation (SpO,), carbon
dioxide partial pressure (pCO2), oxygen partial pressure (pO2), oxygen saturation
(sO2), hemoglobin (Hb), extracorporeal membrane oxygenation (ECMO), airway
pressure release ventilation (APRV), fraction of inspired oxygen (FiO2), positive end-
expiratory pressure (PEEP), peak inspiratory pressure (P-peak). Table adapted from

[306].
attribute no sepsis sepsis non survivor survivor
number of subjects 308 129 68 415
demographics
age 6.2-10' (1L5-10Y) 6.6 - 10' (1.4 - 10") 6.9-10' (1L5-10Y) 6.3-10' (1.4 - 10Y)
sex 220 male 90 male 41 male 299 male
88 female 39 female 27 female 116 female

weight [kg]
type of weight
measurement

heart frequency
(bpm]
sinusrhythm [%)
MAP [mmHg]
systolic blood
pressure
temperature [°C]
Sp02 [%]

pCO2 [mmHg]
pO2 [mmHg]
s02 [%]

Hb (BGA) [g/d]]
lactate [mg/dl]
pH

type BGA

renal replacement
therapy [%]
ECMO [%]
impella [%)]

liver replacement
therapy [%]

invasive ventilation
[%]

ventilation [%]

APRV [%]

FiO2 [%]

PEEP [mbar]

P-peak [mbar]
respiratory frequency
[min™]

noradrenaline dose
[ug/ (kg min)]
adrenaline dose
[ng/(kgmin)]
vasopressin dose
[Unit/(kg min)]
dobutamine dose
[wg/ (kg min)]
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9.7 -10' (2.3)

4.0 - 10' (7.0)
9.9-10' (3.2-10Y)
9.7 - 10" (1.6)

9.5 (1.7)

1.5-10" (1.1-10Y)
7.4(6.5-107%)
358 arterial

10 venous

7
1

0

0

59

34

0

3.4-10' (13- 10Y)
8.1(2.9)

2.0-10! (5.8)

1.7 - 10" (5.0)
7.7-1072 (1.4 - 107"
7.0-107* (1.0 - 1072)
1.2-107°(7.3-107%)

2.7-1071 (1.2)
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Table 7.2: Descriptive statistics for non-septic and septic patients, as well as for survivors
and non-survivors (continuation). Table presents descriptive statistics for labora-
tory parameters obtained within 10 h of intensive care unit admission. Means with
standard deviation in brackets are presented. Abbreviations: glomerular filtration
rate (GFR), lactate dehydrogenase (LDH), C-reactive protein (CRP), hemoglobin
(Hb), procalcitonin (PCT). Table adapted from [306].

attribute no sepsis sepsis non survivor survivor
creatinine [mg/dl] 1.3(11) 1.9 (1.5) 1.7 (9.7 -107) 1.5(1.3)

GFR [ml/min] 7.3-10' (3.6 - 101) 4.9-10' (3.4 -10") 4.6-10' (2.9 -10") 6.7 -10' (3.7 - 101)
LDH [Unit/1] 5.4 -10% (7.8 - 10%) 6.8 -10% (1.6 - 10°) 1.3-10% (2.3 - 10%) 4.8 107 (6.7 - 10%)
bilirubin [mg/dl] 1.9 (2.4) 2.4 (3.5) 2.7(3.7) 1.9 (2.4)

CRP [mg/1] 6.6 - 10! (7.4 - 10") 2.0-10% (1.1-10%) 1.2-10% (9.5 - 101) 1.1-10% (1.1 -10%)
leukocytes [nl™] 1.1-10' (5.0) 1.6 - 10" (1.1 -10Y) 1.5 -10' (9.7) 1.3-10' (7.3)

Hb (lab) [g/dl] 9.9 (1.9) 9.8 (1.8) 9.6 (1.6) 9.8 (1.9)

platelets [nl™] 1.6 - 107 (8.3 - 10") 2.1-10% (1.4 - 10%) 1.8-10% (1.2 - 10%) 1.8 -10% (1.1 - 10%)
hematocrit [%)] 29-107' (5.3-107%) 3.0-107! (5.5-1072) 2.9-107" (5.1-107%) 2.9-107" (5.4 -1072)
sodium [mmol/L] 1.4 - 10% (4.3) 1.4 - 10% (6.0) 1.4 - 10% (5.9) 1.4 - 10% (4.9)
potassium [mmol/L] 4.5 (5.3-107") 4.7(6.2-107) 4.7 (6.8-107) 45(5.4-107)
PCT [ng/ml] 1.9 (7.7) 5.2-10' (1.6 - 10%) 2.3-10' (6.3-10Y) 1.6 - 10' (9.6 - 10")

To compare our HSI-based models for sepsis diagnosis and mortality prediction against
widely used clinical biomarkers and scores, we additionally collected a range of refer-
ence measures.

Rapid bedside scores for diagnosing sepsis include the capillary refill time (CRT) [259]
and skin mottling score (SMS) [8], both relying on visual assessment of the patient’s
skin, as well as the national early warning score (NEWS) [280] and qSOFA score [320],
which are based on cognitive function and vital signs. Sepsis diagnosis scores avail-
able within 10 h of admission include the Systemic Inflammatory Response Syndrome
(SIRS) criteria [46], formerly employed for diagnosing sepsis, and the SOFA score, a
cornerstone of the current definition of sepsis according to Sepsis-3 [320]. Distributions
of these scores among the non-septic and septic patients in our ICU population are
shown in the appendix (Figure B.25).

To assess disease severity and mortality risk, the vasoactive inotropic score (VIS) [107]
provides a rapidly available bedside score that quantifies the degree of hemodynamic
support required from vasopressors and inotropes. Within 10 h of admission, additional
scores become available, including the SOFA score, which evaluates organ dysfunction,
and the Acute Physiology and Chronic Health Evaluation (APACHE) II score [180], which
measures overall disease severity. These scores are calculated from a combination
of vital signs, laboratory results, and patient or therapy characteristics. While they
are conventionally based on the most abnormal values within the preceding 24 h, we
employed modified versions of SOFA and APACHE II that rely on the most recent values
at admission, ensuring score availability on the day of ICU admission. Distributions of
these scores among the survivors and non-survivors in our ICU population are shown
in the appendix (Figure B.26).
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Hyperspectral Image Acquisition The HSI data was acquired with the camera system
TIVITA® 2.0 Surgery Edition (Diaspective Vision GmbH, Am Salzhaff, Germany). As
described in Section 4.2.1, it images an area of approximately 16 cm X 11.5 cm at an
imaging distance of approximately 50 cm, ensured by an integrated distance calibra-
tion system. The push-broom HSI device captures 100 spectral channels in the range
500-1000 nm at a spectral resolution of approximately 5nm. The resulting HSI data
cubes measure 640 x 480 x 100 (width x height x spectral channels). The acquisi-
tion of on image takes approximately 7s. In addition to the HSI sensor, the system
is equipped with an RGB sensor of identical spatial resolution, enabling automatic
parallel acquisition of RGB images with each HSI cube.

To ensure that the scene was solely illuminated by the integrated LED lighting unit of
the camera, the room lights were turned off and window blinds were lowered. Patient
hands were stabilized by the examiner to minimize motion artifacts and standardize
positioning, with a uniform background applied across all images.

Hyperspectral Image Annotation Despite the standardized hand positioning and uni-
form background, images could still contain elements such as wounds, tubes, wires,
dressings, or gloved hands of the examiners. To prevent potential shortcut learning
from such image elements, analyses were restricted to annotated skin regions. Circu-
lar annotations were chosen to ensure consistent measurement sites across patients,
independent of the hand’s rotation within the imaging plane and avoiding the afore-
mentioned elements. Annotation radii were set to 100 px for the palm and 20 px for
the annular finger. Finger annotations were centered on the fingertip, while palm
annotations were centered on the palm, defined as the region enclosed by the thumb
basal joint, metacarpophalangeal joints, and wrist. The annotations were performed
using the built-in annotation software of the HSI system Tivita® Suite.

Definition and Labeling of Sepsis and Mortality Status Sepsis was diagnosed according
to the Sepsis-3 criteria, definining it as “life-threatening organ dysfunction caused by a
dysregulated host response to infection” [320]. The SOFA score was used to quantify
organ dysfunction, with sepsis identified by an acute increase of two or more points.
Distinguishing sepsis-related organ failure from dysfunction due to non-septic inflam-
mation is particularly challenging in a surgical ICU setting after surgical trauma. To
ensure label accuracy and reduce ambiguity, a third label, “unsure”, was introduced in
addition to “sepsis” and “no sepsis”. Each patient’s sepsis status was independently
evaluated by two expert anesthetists, with disagreements resolved by a senior anes-
thetist (the head of the department of anesthesia and intensive care). Mortality was
determined via a follow-up conducted 30 days after inclusion.
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Study Population A total of 508 patients were initially included in the study. For 71
patients, the sepsis status could not be determined. Consequently, automated sepsis
diagnosis could only be assessed on the remaining 437 patients, of whom 129 (30 %)
were diagnosed with sepsis, and 308 (70 %) did not have sepsis at the time of inclusion.
Most septic patients had an abdominal focus (53 %), while the focus was respiratory
for 17 %, skin or soft tissue for 5%, and genitourinary for 3% of the septic patients.
Additionally, 8% of septic patients had multiple infection foci, whereas in 14 % the
focus remained unknown.

For 483 of the initial 508 patients, follow-up on mortality 30 days after ICU admis-
sion was successful. This cohort, comprising 415 (86 %) survivors and 68 (14 %) non-
survivors, was used to evaluate automated mortality prediction. The mortality rate
was higher among patients admitted with sepsis (27 % (35/129)), compared to patients
without sepsis at admission (6 % (18/308)).

7.2.2 External Dataset

To assess the generalizability of a DL algorithm trained on existing HSI data of selec-
tively chosen cohorts to an ICU population (RQ3.2), we leveraged the dataset from
[81, 82, 80, 85]. After approval by the Ethics Committee of the Medical Faculty of Hei-
delberg University, Heidelberg, Germany (study reference number: S-148/2019) and
registration with the German Clinical Trials Register (DRKS00017313), the data was
acquired at the Heidelberg University Hospital in 2019. Informed consent was obtained
from all participants or their legal guardians.

Study Design and Population A total of 25 septic patients were recruited for the study.
Additionally, two control groups were established, comprising 25 healthy volunteers
and 25 patients undergoing pancreatic surgery (referred to as pancreas group). Preg-
nant patients and those under 18 years of age were excluded from the study. Patients
in the sepsis subgroup were included upon admission to the interdisciplinary surgi-
cal ICU if they met all Sepsis-3 criteria [320], with sepsis onset occurring within the
previous 24 h. Healthy volunteers were included if they were free from both acute
and chronic diseases. Patients in the pancreas subgroup were included if they were
scheduled for an open pancreatic surgery and postoperative ICU admission.

While healthy subjects underwent HSI acquisition at a single time point, pancreas and
sepsis patients were imaged at specific intervals over an approximately 72 h observation
period.

As illustrated in Figure 7.1, pancreas patients were imaged prior to the induction of
anesthesia, after anesthesia induction, before anesthesia emergence, approximately 6 h
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Figure 7.1: Study design of the external dataset. The dataset comprises hyperspectral imaging
data of the palm (dashed circle) and annular finger (solid circle) for 25 healthy
subjects (top), 25 patients undergoing pancreatic surgery (middle) and 25 septic
intensive care unit (ICU) patients (bottom). Scheduled measurement timepoints
on up to 4 consecutive days are illustrated on the left, with dashed lines indicating
optional measurement timepoints.

185



7 Al-Driven Skin Spectral Imaging for Sepsis Diagnosis and Mortality Prediction

after the emergence of anesthesia, and 3 times daily during the first two postoperative
days, resulting in 10 consecutive measurements per patient.

For sepsis patients, HSI data was intended to be collected at admission to the ICU,
approximately 6 h later, and, if admitted earlier in the day, additional measurements
were supposed to be taken in the afternoon and evening. Subsequently, HSI data
should be acquired 3 times a day for the following 2-3 days, such that 10 consecutive
measurements were achieved. Although HSI measurements were successfully taken
for all sepsis patients upon admission to the ICU, subsequent measurements were not
always feasible, as 5 patients deceased and one was transferred to another hospital
within the 72h observation period. Additionally, 3 septic patients deviated from the
measurement schedule due to undergoing surgery. A total of 563 HSI images were
acquired.

Hyperspectral Image Acquisition The HSI data was acquired using the medical device-
graded camera system TIVITA® Tissue (Diaspective Vision GmbH, Am Salzhaff, Ger-
many). It is equipped with an 8 mm focal length lens, yielding a field of view of
20cm X 30 cm at an imaging distance of approximately 50 cm. The spectral speci-
fications and image dimensions match those of the TIVITA® 2.0 Surgery used in our
ICU study (Section 7.2.1), although no RGB images were captured alongside the HSI
acquisition. A detailed comparison of the devices is provided in Chapter 4. Unlike in
the ICU study, where palm and finger had to be imaged separately, the larger field of
view of the TIVITA® Tissue allowed both measurement sites to be captured in a single
image (cf. Figure 7.1).

To minimize motion artifacts, all subjects were instructed to lie still during image
acquisition, with their hand placed next to their body on the bed. If necessary, such as
with an unconscious patient, the examiner assisted by gently positioning the hand.

Hyperspectral Image Annotation Circular regions were annotated on the palm and an-
nular finger of each patient, adhering to the same guidelines used for skin annotations
in our ICU study. To account for the difference in field of view between the cameras,
the annotation radii were set to 70 px for the palm and 13 px for the annular finger.

7.2.3 Hyperspectral Image Analysis

To address RQ3.1, we developed DL classifiers for sepsis diagnosis and mortality predic-
tion using different input modalities and measurement sites: HSI data, TPI cubes and
RGB images from both palm and finger sites. We further compared our classification
based on HSI patches to a model based on median spectra across the annotated areas
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Figure 7.2: Overview of our deep learning pipeline for automated sepsis diagnosis and
mortality prediction. After preprocessing the HSI data, including calibration and
normalization, circular skin regions were manually annotated to extract both me-
dian spectra and image patches. Median spectra were classified using the spec-
trum#HSI model, a network with 3 convolutional and two fully connected layers,
previously established for pixel-based organ segmentation [329] (cf. Chapter 5).
Patch-based classification was performed with the patch#HSI model, based on a
ResNet14d architecture [133, 365]. To compare modalities, analogous models were
trained on TPI and RGB patches ( and patch#RGB). To assess the benefit
of structured clinical data, we employed the patch#HSI + clinical data model, in
which the output of the patch#HSI network is concatenated with the output of a
meta network processing clinical features, and the combined representation is fur-
ther processed by a multimodal fusion network. Clinical data alone was processed
with a random forest classifier (clinical data model). Mortality prediction models
were trained analogously to the sepsis diagnosis models.

to assess the role of spatial context in HSI. To investigate whether structured clinical
data can improve diagnostic and predictive performance (RQ3.3), we extended the
patch-based classification model to incorporate clinical features and compared it to a
model solely based on clinical data.

An overview of our DL classifiers is provided in Figure 7.2. The subsequent paragraphs
detail our data preprocessing steps, model architectures, and training parameters.

Data Preprocessing The HSI cubes were first calibrated using white and dark reference
cubes to eliminate sensor noise and convert the spectra from radiance to reflectance
[141] (cf. Section 2.1.3). Following our recommendations to address calibration shifts (cf.
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Section 4.4), calibration files were captured daily for the ICU dataset. After calibration,
¢'-normalization was applied across the spectral dimension.

Based on the HSI cubes, the tissue parameter index images StO,, NPI, THI, and TWI
were derived using the formulas from [141]. A TPI cube with dimensions 640 x 480 x 4
(width x height X number of channels) was generated by stacking all 4 index images.
Although HSI, TPI and RGB data were in practice generated by the same device in
our study, we refer to these input types as different modalities to highlight that future
applications could use TPI and RGB data from a different device (e.g., an MSI camera,
a conventional RGB camera).

To assess the importance of spatial context in the HSI data, we compared the median
spectra of the annotated regions with patches generated by cropping the images to a
square tightly encompassing the circular annotation. Pixels outside the annotated area
were blackened out. The patches were resized using bilinear interpolation to ensure
that identical input dimensions were used across palm and finger data. The resulting
dimensions were 224 X 224 x 100, 224 X 224 X 4, and 224 x 224 x 3 (width X height x
number of channels) for the HSI, TPI, and RGB patches, respectively.

The proportion of missing clinical parameter values was low, averaging only 1.6 %.
Missing entries were imputed using a value of -1.

Sepsis Diagnosis and Mortality Prediction from Median Spectra For our median spectra-
based models, referred to as spectrum#HSI, we adopted a DL architecture that we pre-
viously used for organ classification from median spectra [329] and pixel-based organ
segmentation [308] (cf. Section 5.2.2). It comprises 3 one-dimensional convolutional
layers, using 64 filters in the first, 32 filters in the second, and 16 filters in the third layer.
Each convolution uses a kernel size of 5 and after each convolutional layer, an average
pooling layer is applied across the spatial dimensions with a kernel size of two. The
output from the final convolutional layer is flattened and fed into two fully connected
layers, with the first layer containing 100 neurons and the second layer containing 50
neurons. A final linear layer computes the class logits.

This architecture was selected for its simplicity and effectiveness in analyzing spectral
information. The convolutional layers capture local spectral patterns, while stack-
ing 3 layers with a small kernel size efficiently expands the receptive field. The fully
connected layers make decisions based on the global context, allowing the model to
balance local and global information processing while remaining computationally
efficient.

The same training setup as in [329] was used: The ELU activation function [67] was
employed, with batch normalization applied to all layers except for the pooling layers.
The model was optimized using the CE loss function and trained with the AdamW opti-
mizer [213], utilizing an exponential learning rate schedule (initial learning rate: 0.0001,
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decay rate y: 0.9, Adam decay rates f;: 0.9 and S,: 0.999). Network regularization was
implemented with a weight decay of 0.001. To avoid overfitting, dropout regularization
was applied with a rate of 0.5. The model was trained over 10 epochs, with each epoch
consisting of 500 000 median spectra using a batch size of 20 000 median spectra. acswa
[156] was applied over the final two epochs. Oversampling was applied to ensure equal
representation of all classes.

Sepsis Diagnosis and Mortality Prediction from Patches For patch-based classification,
we employed a ResNet14d architecture [133, 365], initialized with ImageNet pretrained
weights. A CNN architecture was selected due to its widespread use in medical HSI
classification and its advantages over traditional ML approaches, such as improved
accuracy and computational efficiency through weight sharing and hardware opti-
mization [176]. Employing standardized architectures with pretrained weights further
accelerates convergence and typically enhances performance compared to training
CNN s from scratch, especially in small medical datasets [335]. Depending on the input
modality, this model is referred to as patch#HSI (for HSI data), patch#TPI (for TPI
cubes), or patch#RGB (for RGB images).

To ensure a fair comparison across modalities while minimizing computational cost
and environmental impact, all patch-based classification models were trained with
an identical training setup and fixed hyperparameters instead of modality-specific
hyperparameter tuning. During training, data augmentation techniques were applied,
including random horizontal and vertical flips, as well as random rotations up to +180°,
each with a probability of 0.5. The CE loss function was used, and the AdamW optimizer
[213] was employed with an exponential learning rate schedule (initial learning rate:
0.001, decay rate y: 0.99, Adam decay rates $;: 0.9 and fB,: 0.999). A weight decay of
0.001 was applied for network regularization. The model was trained for 10 epochs,
with acswa [156] applied during the final two epochs. Each epoch consisted of 500
patches, and the batch size was set to 32 patches. To ensure balanced class distribution
within each batch, underrepresented classes were oversampled.

Multimodal Sepsis Diagnosis and Mortality Prediction from Patches and Clinical Data
Our multimodal patch#HSI + clinical data model is composed of two submodules:
As in the patch#HSI model, the HSI data are processed with a ResNet14d backbone
pretrained on ImageNet, up to the bottleneck layer. The clinical data are processed
by a dedicated submodel consisting of two fully connected blocks, each comprising a
linear, batch normalization, ELU activation, and dropout layer. The first block uses a
linear layer of size 50, and the second a size of 30. These are followed by a linear head
of size 10, chosen to match the bottleneck dimension of the patch#HSI submodel. After
batch normalization, the bottleneck features from both submodels are concatenated
and passed through an additional fully connected block, before reaching the final
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classification head. The training setup and hyperparameter settings were set identical
to those of the patch-based models.

Sepsis Diagnosis and Mortality Prediction from Clinical Data Given the widespread
use of random forests for sepsis prediction from EHR data [375], we implemented a
100-tree random forest trained exclusively on clinical data, referred to as the clinical
data model. The sklearn implementation [261] was employed with default parameters,
except for enabling balanced class weights to account for class imbalance by weighting
classes inversely proportional to their frequencies in the training set.

Reduction of Non-determinism in the Network Training Non-determinism in neural
network training is undesirable as it results in non-reproducible outcomes [263]. As
exact reproducibility would necessitate using slower deterministic operations and result
in longer training times, we implemented several measures to improve reproducibility
while preserving training efficiency: All models were trained on the same hardware,
namely a single NVIDIA® GeForce RTX"" 4090 GPU (Nvidia Corporation, Santa Clara,
California, United States of America). Additionally, we set the number of workers as well
as a random seed for the training process to ensure consistent random initialization of
weights and workers.

7.3 Experiments and Results

The purpose of our experiments was to assess the feasibility of automated sepsis
diagnosis using DL-based HSI analysis. Specifically, we aimed to determine the optimal
measurement site (palm vs. finger), input modality (HSI vs., TPI vs. RGB data) and
spatial granularity (patches vs. median spectra) for this task (RQ3.1, Section 7.3.2). We
further assessed the generalizability of an algorithm trained on existing HSI data of
selectively chosen cohorts to an ICU population (RQ3.2, Section 7.3.3), as well as the
added value of structured clinical data (RQ3.3, Section 7.3.4). Finally, we compared the
performance of our models against established clinical biomarkers and scores (RQ3.4,
Section 7.3.5). Details of the experimental setup are provided in Section 7.3.1.

7.3.1 Experimental Setup

This section describes the dataset splits and validation metrics, the experimental setup
for addressing RQ3.2, and the procedures for hierarchical data aggregation, statistical
testing, and feature importance analysis of clinical data.
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Dataset Splits To enable a fair model comparison, a consistent training and validation
setup was applied across all models. Due to the limited amount of data, we opted
against holding out a single untouched test set for validation. Instead, we utilized a
nested cross-validation scheme consisting of 5 outer and inner folds, allowing for a
more reliable performance estimation using the entire dataset [347].

As described above, we set random seeds during training to enhance reproducibility.
To further address the variability introduced by different random seeds and improve
the network stability, each training was repeated 3 times with distinct random seed
settings. Ensembling was applied to the validation sets by averaging the logits across
these 3 repetitions. For the test data, ensembling was performed by averaging logits
from networks across all 5 folds and 3 repetitions, resulting in ensembling a total of 15
networks.

Validation Metrics In line with the recommendations in [222], we validated the model
performance using the receiver operating characteristic (ROC) curve and AUROC. To
account for sampling variability and compute confidence intervals, for each test set
T, we generated 1000 bootstrap samples, each consisting of |T'| instances randomly
drawn with replacement.

Generalizability Experiment Most models were trained and validated on the ICU
dataset described in Section 7.2.1. Only for the generalizability experiment (RQ3.2), the
patch#HSI model was trained and validated on the external dataset from Section 7.2.2,
with the ICU dataset serving as a hold-out test set. Training was performed on the
entire external dataset, following the nested cross-validation scheme described above.
To reflect the anticipated clinical scenario of early sepsis diagnosis at ICU admission,
validation for septic patients was restricted to their first measurement taken at admis-
sion. For validation on the ICU dataset, logits were averaged across the 75 networks
produced by nested cross-validation (5 outer folds, 5 inner folds, 3 repetitions).

Hierarchical Aggregation To account for the hierarchical structure of the data, we
aggregated median spectra, functional tissue parameter indices, and clinical metadata
at the subject level. For ratio- and interval-scaled parameters, the averages across all
measurements were computed, while for nominal and boolean parameters, the mode
was used to represent the subject-level data. These subject-wise aggregates were then
used as the foundation for visualizations and descriptive statistics.

Statistical Testing To examine whether significant differences in functional tissue
parameter indices exist between septic and non-septic patients, as well as between
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survivors and non-survivors, a two-sided Welch'’s t-test [363] was performed. The
analysis encompassed 8 tests in total (4 functional parameters x 2 datasets). The
overall significance level was set at 0.05 and to mitigate the accumulation of alpha
errors from multiple testing, the Bonferroni correction [47] was applied, adjusting the
significance level to 0.0125 per test.

Feature importance of clinical data We assessed the importance of clinical features by
applying recursive feature elimination (RFE) [130] to the clinical data models. To adapt
RFE to the 5-fold cross-validation scheme of the inner folds, feature importances were
averaged across folds before removing the least important feature from the input set.
This procedure was carried out independently within each of the 5 outer folds.

7.3.2 Hyperspectral Imaging-Based Sepsis Diagnosis and Mortality
Prediction

Our approach to automated sepsis diagnosis is based on the hypothesis that micro-
circulatory dysfunction and edema formation in septic patients are reflected in HSI
measurements of the skin.

Shifts in Functional Tissue Parameters To test this hypothesis, we compared the distri-
bution of the functional tissue parameters StO,, NPI, THI and TWI, between non-septic
and septic patients, as well as between survivors and non-survivors. The distributions
of these functional tissue parameters are displayed in Figure 7.3 for the palm mea-
surement site. Distributions for the finger measurement site are shown in Figure 7.4.
Exemplary functional tissue parameter images of palm and finger skin for a non-septic
survivor and a septic non-survivor are provided in Figure 7.5.

Statistical analysis showed that, for both palm and finger measurements, septic patients
exhibited significantly lower StO, and higher THI compared to non-septic patients.
Additionally, palm measurements revealed significantly elevated TWI, while finger mea-
surements showed significantly reduced NPI in septic patients. In non-survivors, both
palm and finger measurements indicated significantly lower StO, and NPI, along with
higher THI compared to survivors. Palm measurements further revealed significantly
elevated TWI in non-survivors. Detailed results of the statistical analyses are provided
in Table B.1.

Optimal Measurement Site, Modality and Spatial Granularity As shown in Figure 7.6,
across all modalities and spatial granularities, DL-based sepsis diagnosis achieved
higher performance at the palm site compared to the finger site (e.g., AUROC of 0.80
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Figure 7.3: Characteristic shifts in functional tissue parameter index distributions of palm
skin for (a) non-septic vs. septic patients and (b) survivors vs. non-survivors.
Subfigures show the distributions of tissue oxygen saturation, tissue perfusion
index, tissue hemoglobin index and tissue water index derived from hyperspectral
imaging measurements of the palm skin. Each box displays the interquartile range
of the distribution, with whiskers showing the range excluding outliers, and median
and mean indicated by a solid and dotted line, respectively. Each marker represents
one patient. Figure adapted from [306].
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Figure 7.4: Characteristic shifts in functional tissue parameter index distributions of finger
skin for (a) non-septic vs. septic patients and (b) survivors vs. non-survivors.
Subfigures show the distributions of tissue oxygen saturation, tissue perfusion
index, tissue hemoglobin index and tissue water index derived from hyperspectral
imaging measurements of the finger skin. Each box displays the interquartile range
of the distribution, with whiskers showing the range excluding outliers, and median
and mean indicated by a solid and dotted line, respectively. Each marker represents
one patient. Figure adapted from [306].
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Figure 7.5: Exemplary functional tissue parameter images of palm and finger skin for a
non-septic survivor (left) and a septic non-survivor (right). Shown are recon-
structed RGB images overlaid with color-coded maps of the 4 functional tissue pa-
rameter indices tissue oxygen saturation, tissue perfusion index, tissue hemoglobin
index, and tissue water index within the annotated circular skin region.
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Figure 7.6: Sepsis diagnosis performance across different measurement sites, modalities
and spatial granularities. Receiver operating characteristics (ROCs) are shown
for models based on hyperspectral imaging (HSI) data (patch#HSI), stacked tissue
parameter images ( ), RGB data (patch#RGB), and median HSI spectra
(spectrum#HSI) of the palm (left) and annular finger (right). The 95 % confidence
interval derived from 1000 bootstrap samples is shown as shaded area, with mean
and standard deviation of the area under the receiver operating characteristic curve
(AUROC) reported in the legend. Figure adapted from [306].

(95% CI [0.76; 0.84]) vs. 0.72 (95 % CI [0.67; 0.78]) for the patch#HSI model). Likewise,
mortality prediction performed better at the palm than at the finger site (e.g., AUROC
of 0.72 (95 % CI [0.65; 0.79]) vs.0.66 (95 % CI [0.59; 0.73]) for the patch#HSI model), as
illustrated in Figure 7.7.

For both sepsis diagnosis and mortality prediction, HSI outperformed conventional
RGB imaging, achieving up to a 23 % improvement in classification performance. Mod-
els trained directly on HSI data and those using TPI data showed similar performance,
indicating that TPI data capture information relevant for sepsis diagnosis and mortality
prediction. Also, models based on HSI patches performed similarly to those based on
median spectra, suggesting that spatial context within the annotated region plays a
minor role in sepsis diagnosis and mortality prediction.
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Figure 7.7: Mortality prediction performance across different measurement sites, modali-
ties and spatial granularities. Receiver operating characteristics (ROCs) are shown
for models based on hyperspectral imaging (HSI) data (patch#HSI), stacked tissue
parameter images (patch#TPI), RGB data (patch#RGB), and median HSI spectra
(spectrum#HSI) of the palm (left) and annular finger (right). The 95 % confidence
interval derived from 1000 bootstrap samples is shown as shaded area, with mean
and standard deviation of the area under the receiver operating characteristic curve
(AUROC) reported in the legend. Figure adapted from [306].
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Figure 7.8: Performance drop of a sepsis diagnosis model trained on selected cohorts when
tested on the intensive care unit (ICU) cohort. The patch#HSI model was trained
on the dataset from [81, 80], comprising 25 septic patients, 25 patients undergoing
pancreatic surgery, and 25 healthy volunteers. This dataset was previously used
to assess the potential of hyperspectral imaging (HSI) for sepsis diagnosis [85].
Dashed lines indicate in-distribution performance, while dotted lines represent
out-of-distribution performance on the ICU cohort. The 95 % confidence interval
derived from 1000 bootstrap samples is shown as shaded area, with mean and
standard deviation of the area under the receiver operating characteristic curve

(AUROC) reported in the legend.

7.3.3 Sepsis Diagnosis Performance under Population Shift

Previous studies compared selectively chosen cohorts, such as septic patients against
healthy controls or patients undergoing pancreatic surgery. We evaluated the gen-
eralizability of models trained on such data to our ICU population. To this end, we
trained the patch#HSI model on the external dataset described in Section 7.2.2 and
tested it on our ICU dataset. As shown in Figure 7.8, the palm-based model achieved
an AUROC of 0.91 (95 % CI [0.85; 0.96]) on in-distribution data, but its performance
dropped markedly to 0.73 (95 % CI [0.69; 0.78]) on the OOD ICU dataset. At the finger
measurement site, the performance gap is even more pronounced, with in-distribution
performance reaching 0.95 (95 % CI [0.90; 0.97]) but dropping to 0.59 (95 % CI [0.53;
0.65]) in the OOD setting. These findings support our hypothesis that models trained
on selectively chosen cohorts fail to generalize to realistic clinical settings.
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7.3.4 Performance Boost Through Multimodal Data Fusion

As automated sepsis diagnosis and mortality prediction may be further improved by
incorporating structured clinical data, we extended the palm-based patch#HSI model
to a multimodal patch#HSI + clinical data model (cf. Figure 7.2). We compared this
multimodal model to the patch#HSI model and a clinical data model based solely on
structured clinical data.

As shown in Figure 7.9, incorporating all clinical data available within 1h of admission
to the ICU into the patch#HSI + clinical data model yielded better sepsis diagnosis
performance, with the AUROC increasing from 0.80 (95 % CI [0.76; 0.84]) to 0.90 (95 %
CI [0.87; 0.93]). When additional clinical data available within 10 h from ICU admis-
sion were included, the AUROC further rose to 0.94 (95% CI [0.92; 0.96]). Although
the clinical data model performed slightly better than the patch#HSI + clinical data
model when using the full dataset available within 10 h, the combined approach proved
substantially superior when only limited clinical features were accessible — a situation
frequently encountered in emergency care, outpatient settings, and LMICs.

We assessed the importance of clinical features through RFE [130] on the clinical data
model, starting from the complete set of features available within one or 10 h of admis-
sion, respectively. Results are summarized in Figure B.27 (1h) and Figure B.28 (10 h).
As shown in Figure 7.9, sequentially adding features by importance revealed that com-
bining HSI data with a single readily available bedside parameter — the administered
noradrenaline dose — already yielded an AUROC of 0.87 (95 % CI [0.83; 0.90]).

As shown in Figure 7.10, combining HSI and clinical features also enhanced mortality
prediction. When including all clinical data available within 1h of ICU admission,
the AUROC increased from 0.72 (95 % CI [0.65; 0.79]) to 0.82 (95 % CI [0.76; 0.88]), and
further to 0.83 (95 % CI [0.78; 0.88]) upon incorporating data from the first 10 h. The
patch#HSI + clinical data model consistently performed better than the clinical data
model when sequentially adding clinical features according to their importance, with
the largest advantage observed when only few features were available. The 3 most
important features within 1h of admission — lactate, pH, and noradrenaline dose —
combined with palm HSI data yielded an AUROC of 0.80 (95 % CI [0.74; 0.85]).

7.3.5 Comparison to Established Clinical Biomarkers and Scores

To evaluate the clinical relevance of our sepsis diagnosis and mortality prediction
models, we compared their performance against established clinical biomarkers and
scores. For sepsis diagnosis, we included the NEWS, CRT, SMS, and qSOFA scores for
data available within 1 h of ICU admission, and CRP, procalcitonin (PCT), SIRS criteria,
and SOFA score for data available within 10 h. For mortality prediction, we compared

199



7 Al-Driven Skin Spectral Imaging for Sepsis Diagnosis and Mortality Prediction

sepsis diagnosis 5@;
¢

organ -
gdemographics @Vital signs oblood gas @reglacement ventilation Vasopressors @laboratory

analysis therapies parameters & inotropes parameters

patch#HSI [ patch#HSI + clinical data ~ [EZ3 clinical data

available within 1 hour available within 10 hours

0.7

C
A

T T T T T T T T T
@ 0 ® © 3¥° @ 0 0 © 33
0o® oo

— [ —~ ~~ —~ — —~ () — ~~

2] = N a2 2] 2] — <] m n

T~ > A -~ [y T~ o —

=R s 2 o 2 = =K i 2

5} Qg 0 (5] Q [} = 5}

= < A~ S T =9 A <

T3 = + 3 T8 + 3

= O o 2 = o 2

= H = e ®

+ + + +

input data input data

Figure 7.9: Sepsis diagnosis performance with added clinical data. Performance is shown
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for models based on hyperspectral imaging (HSI) data of the palm skin (patch#HSI),
combined HSI and clinical data (patch#HSI + clinical data) and using only clinical
data (clinical data), stratified by data availability within 1h (left) and 10 h (right)
after intensive care unit admission. Within each subplot, the patch#HSI model is
compared to models utilizing the most important, two most important, 3 most
important, or all clinical features available within the respective timeframe. The
number of clinical features used is indicated in brackets. The feature importance
ranking was derived via recursive feature elimination [130] using the clinical data
model, starting from the full set of clinical features available within the given
timeframe. Each box plot displays the distribution of the area under the receiver
operating characteristic curve (AUROC) across 1000 bootstrap samples, with boxes
spanning the interquartile range, whiskers showing the range excluding outliers,
and solid and dashed lines marking the median and mean, respectively. Figure
adapted from [306].
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Figure 7.10: Mortality prediction performance with added clinical data. Performance is
shown for models based on hyperspectral imaging (HSI) data of the palm skin
(patch#HSI), combined HSI and clinical data (patch#HSI + clinical data) and
using only clinical data (clinical data), stratified by data availability within 1h
(left) and 10 h (right) after intensive care unit admission. Within each subplot, the
patch#HSI model is compared to models utilizing the most important, two most
important, 3 most important, or all clinical features available within the respective
timeframe. The number of clinical features used is indicated in brackets. The
feature importance ranking was derived via recursive feature elimination [130]
using the clinical data model, starting from the full set of clinical features available
within the given timeframe. Each box plot displays the distribution of the area
under the receiver operating characteristic curve (AUROC) across 1000 bootstrap
samples, with boxes spanning the interquartile range, whiskers showing the range
excluding outliers, and solid and dashed lines marking the median and mean,
respectively. Figure adapted from [306].
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against the VIS for data available within 1h, and the SOFA and APACHE 1I scores for
data available within 10 h. As shown in Figure 7.11 and Figure 7.12, our patch#HSI +
clinical data model outperformed all clinical scores and biomarkers for both sepsis
diagnosis and mortality prediction, regardless of whether data were available within
1h or 10 h of ICU admission.

7.4 Discussion and Conclusion

In this study, we tackled the urgent need for reliable biomarkers to identify septic
patients and those at high risk of mortality. We are the first to show that automated,
rapid, and non-invasive sepsis diagnosis and mortality prediction in ICU patients can
be achieved through DL-based skin HSI. Drawing on what is, to our knowledge, the
largest HSI patient cohort to date, we report the following key findings:

1. HSI-based prediction: DL models can accurately predict both sepsis and mor-
tality from HSI data, with palm measurements outperforming the annular finger.
HSI provides a clear advantage over conventional RGB imaging. In septic pa-
tients and non-survivors, palm skin shows significantly lower StO, and higher
THI and TWI compared to non-septic patients and survivors.

2. Generalizability to OOD populations: Models trained on selectively chosen co-
horts from previous studies fail to generalize to an ICU population, underscoring
the importance of representative datasets when developing clinically applicable
algorithms.

3. Multimodal data fusion: Integration of structured clinical data substantially
boosts model performance, reaching AUROC scores of up to 0.94 for sepsis diag-
nosis and 0.83 for mortality prediction. Notably, combining HSI with just a few
clinical features available at bedside already outperforms models based solely
on clinical data.

4. Clinical relevance: Our multimodal models outperform established clinical
biomarkers and scores.

The following sections provide a discussion of key strengths and limitations of our HSI-
based approach to automated sepsis diagnosis and mortality prediction (Section 7.4.1),
outline directions for future research (Section 7.4.2), and conclude with a summary of
our findings (Section 7.4.3).
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Figure 7.11: Comparison of our sepsis diagnosis models with established clinical biomark-
ers and scores. Performance is shown for models based on hyperspectral imaging
(HSI) data of the palm skin (patch#HSI) and a combination of HSI data with all clin-
ical data available within 1h (left) and 10 h (right) from intensive care unit admis-
sion (patch#HSI + clinical data), compared against widely used clinical biomarkers
and scores. For data available within 1h, the comparison comprises national
early warning score (NEWS), capillary refill time (CRT), skin mottling score (SMS)
and quick Sequential Organ Failure Assessment (qSOFA) score. For data available
within 10h, it includes C-reactive protein (CRP), procalcitonin (PCT), Systemic
Inflammatory Response Syndrome (SIRS) criteria and Sequential Organ Failure
Assessment (SOFA) score. Each box plot displays the distribution of the area under
the receiver operating characteristic curve (AUROC) across 1000 bootstrap samples,
with boxes spanning the interquartile range, whiskers showing the range excluding
outliers, and solid and dashed lines marking the median and mean, respectively.
Figure adapted from [306].
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Comparison of our mortality prediction models with established clinical
biomarkers and scores. Performance is shown for models based on hyperspectral
imaging (HSI) data of the palm skin (patch#HSI) and a combination of HSI data
with all clinical data available within 1h (left) and 10 h (right) from intensive care
unit admission (patch#HSI + clinical data), compared against widely used clinical
biomarkers and scores. For data available within 1h, the comparison comprises
the vasoactive inotropic score (VIS). For data available within 10 h, it includes Se-
quential Organ Failure Assessment (SOFA) score and Acute Physiology and Chronic
Health Evaluation (APACHE) II score. Each box plot displays the distribution of
the area under the receiver operating characteristic curve (AUROC) across 1000
bootstrap samples, with boxes spanning the interquartile range, whiskers showing
the range excluding outliers, and solid and dashed lines marking the median and
mean, respectively. Figure adapted from [306].
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7.4.1 Strengths and Limitations

We consider the main strengths of our HSI-based approach for sepsis diagnosis and
mortality prediction to be its objectivity, non-invasiveness, cost-effectiveness, and
speed, as predictions are derived from a single HSI cube acquired within few seconds
directly at the bedside. These advantages suggest that our method could serve as a
screening tool for all critically ill ICU patients, enabling timely and objective identifica-
tion of those at high risk for sepsis and mortality, thereby supporting rapid initiation of
further diagnostics and therapeutic interventions. Moreover, HSI systems are portable,
allowing measurements to be performed in various clinical settings, including emer-
gency departments and even ambulances.

We recognize that our classification models based solely on HSI data may not achieve
sufficient accuracy to serve as standalone diagnostic or prognostic tools. Nevertheless,
we see high potential for HSI as a pre-screening method to identify patients who would
benefit from more time-consuming and costly assessments, such as laboratory tests
and intensive monitoring. This approach is especially valuable in resource-limited set-
tings, including LMICs, where roughly half of critical care interventions occur outside
the ICU [32], and in scenarios requiring rapid decision-making, such as emergency
care.

We demonstrated that integrating just a few clinical parameters readily available at the
bedside can lead to substantial performance gains. For example, combining HSI with
the administered noradrenaline dose increased the AUROC for sepsis prediction from
0.80 (95 % CI [0.76; 0.84]) to 0.87 (95 % CI [0.83; 0.90]). However, it is important to note
that incorporating clinical data can introduce potential biases and limit generalizability.
Treatment decisions, such as the administered noradrenaline dose, are influenced by
local clinical guidelines, which can vary over time and between healthcare systems.

While our patch#HSI + clinical data models achieved excellent sepsis diagnosis and
mortality prediction, and substantially outperformed widely used clinical biomarkers
and scores, a key limitation of models requiring clinical data is the considerable effort
needed for prospective data collection. We opted against the more convenient extrac-
tion of EHR data because many clinical features are either are captured at insufficient
temporal resolution or not reliably recorded. For instance, vital signs and ventilation
parameters in the EHR often fail to reflect the status of the patient at the time of HSI
measurement. Since collecting clinical involves substantial effort, it is desirable to
minimize the number of required clinical features. Importantly, our results show that,
for both sepsis diagnosis and mortality prediction, the multimodal models outperform
clinical data models when only a limited set of clinical parameters is available.
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7.4.2 Future Work

A major limitation of our study is that all data were obtained from a single surgical
ICU, where the majority of septic patients had an abdominal infection focus, with
other infection sites being less represented. Additionally, different clinical sites man-
age critically ill patients differently. At some hospitals, patients are initially managed
in emergency wards before ICU transfer, whereas at our site, critically ill patients —
whether newly admitted from the emergency department or experiencing postopera-
tive complications on general wards — are transferred directly to the ICU. Consequently,
in our cohort, septic patients may be at earlier stages of the syndrome compared to
other ICUs populations. Due to these differences in patient populations, external vali-
dation of our models is required to determine their generalizability across various ICU
settings and clinical sites.

Considering the primary advantages of our HSI-based classification models, which
allow for a non-invasive, mobile, rapid, and cost-effective diagnosis of sepsis and
prediction of mortality, a promising avenue for future research is to evaluate their
performance in resource-limited and time-critical settings, such as ambulances, emer-
gency wards, and LMICs. It would also be valuable to investigate whether HSI can
detect sepsis earlier in the course of the disease, potentially hours or even days before
organ dysfunction occurs. Furthermore, considering that approximately 40 % of sepsis
cases in 2017 involved children under 5 years old [296], including infants in the study
cohort represents another important direction for future work.

While our observational study demonstrated high accuracy for automated HSI-based
sepsis diagnosis and mortality prediction and highlighted potential applications, fu-
ture interventional studies should evaluate the clinical impact of integrating such an
automated alert system into routine care, comparing it to the standard of care and
assessing its effects on key outcomes, such as mortality, morbidity, and hospital length
of stay. To date, only a limited number of studies have systematically examined the
clinical effectiveness of automated sepsis and mortality alert systems [383].

Although we view our single timepoint measurements as advantageous for enabling
immediate diagnosis with minimal resource requirements, future studies could fur-
ther expand the potential of HSI by incorporating longitudinal measurements. Such
longitudinal measurements may enhance understanding of disease progression by
revealing features linked to clinical improvement or deterioration.

Beyond its applications in disease diagnosis and prognosis, HSI holds promise for
guiding novel therapeutic strategies by continuously monitoring tissue microcircula-
tion, assessing treatment responses, and informing interventions. Recently, studies in
animal models have explored the use of HSI to monitor the impact of vasopressor and
fluid administration in hemorrhagic shock [83, 327]. Likewise, future research should
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explore the potential of HSI to guide therapy in septic patients and other high-risk
conditions, with the goal of improving clinical outcomes.

7.4.3 Conclusion

In this study, we addressed the urgent need for reliable sepsis diagnosis and mortality
prediction. Based on a prospective study of over 480 patients — the largest HSI patient
cohort to date — we present the first investigation of HSI for automated sepsis diagnosis
and mortality prediction in the ICU. Our models utilizing single HSI cubes acquired
within seconds achieved high predictive performance, which was further enhanced
by combining HSI with a minimal set of clinical data. Our HSI + clinical data models
outperformed established clinical scores and biomarkers. The non-invasive, mobile,
rapid, and cost-effective nature of our HSI-based predictions makes them suitable
for a wide range of clinical settings, including resource-limited environments (e.g.,
LMICs) and time-critical scenarios (e.g., ambulances, emergency wards). In addition
to the demonstrated value in sepsis diagnosis and mortality prediction, monitoring
microcirculation with HSI may deepen our understanding of disease progression and
contribute to the development of novel therapeutic strategies. To support further re-
search, we have publicly released our framework, together with our pretrained models!
[312].

thttps://github.com/IMSY-DKFZ/htc
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DiscussioN AND CONCLUSION

While the individual research questions are discussed and concluded within their
respective chapters, this chapter provides a high-level summary of the main contri-
butions of this thesis (Section 8.1). The work presented here has pioneered previously
underexplored applications of SI in perioperative care and addressed key technical
challenges hindering the clinical translation of ML-based SI analysis. Nevertheless,
numerous challenges remain before such methods can be routinely integrated into clin-
ical practice. To inspire future research, several of these open challenges are outlined
in Section 8.2. The chapter concludes with a brief summary in Section 8.3.

8.1 Summary of Contributions

This thesis has made several contributions to advance the field of ML-based SI analysis
in perioperative care. The answers to the core clinical and technical research questions
of this thesis, along with related publications and international conference presenta-
tions, are summarized in Section 8.1.1. The broader impact of this thesis is highlighted
in Section 8.1.2, including open-source contributions to foster future research in the
field.

A more comprehensive overview of publications, international conference contribu-
tions, awards and patents is provided in Appendix A. This overview extends beyond
the core outcomes of this thesis to include results from my supervision of fellow SI
researchers as group lead, as well as from additional data science and clinical collabo-
rations.

8.1.1 Answers to Research Questions

A structured overview of the individual contributions and their relation to the research
questions is provided in Figure 8.1.
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Figure 8.1: This thesis has advanced the field of spectral imaging (SI) analysis in periop-
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erative care by addressing key clinical and technical challenges. Clinically, it
tackled the need for robust functional parameter estimation (research question
(RQ) 1), robust surgical scene segmentation (RQ2), and reliable sepsis diagnosis and
mortality prediction (RQ3). Technically, we provided the first evidence of substantial
inaccuracies in functional tissue parameter estimation caused by illuminant shifts
during real-world surgeries and introduced a surgical workflow-compatible method
for automated illuminant estimation. We presented the first systematic analysis
of hardware-related spectral shifts and their impact on parameter estimates, and
proposed strategies for bias-aware study design. Through a comprehensive deep
learning (DL) framework, we addressed key knowledge gaps on the value of SI data
for surgical scene segmentation and its optimal representation. We further demon-
strated, for the first time, that real-world geometric domain shifts, such as situs
occlusions, cause substantial performance drops which can be effectively mitigated
by our proposed surgery-inspired data augmentation method. Through our DL
framework and a large-scale observational study, we pioneered SI-based sepsis di-
agnosis and mortality prediction in intensive care unit (ICU) patients and identified
strategies for optimal performance. Moreover, we showed that prior work relying
on selectively chosen cohorts fails to generalize to a real-world ICU population.



8.1 Summary of Contributions

RQ1: How can we achieve robust functional tissue parameter estimation with spectral
imaging under real-world imaging conditions?

We were the first to demonstrate that illuminant shifts during real-world open surgeries
can cause substantial inaccuracies in estimating tissue oxygenation. To address this
challenge, we proposed an automated illuminant estimation method that can be seam-
lessly integrated into the surgical workflow. Our approach outperforms state-of-the-art
color constancy methods and achieves accuracy close to the ideal scenario in which
the illuminant spectrum is perfectly known. These findings were presented orally to
an international expert audience at the IPCAI 2020, with a full article published in
the conference proceedings [24]. Furthermore, the proposed automated illuminant
estimation method was included in two filed patents [225, 226].

We conducted the first systematic analysis of hardware-related variability in HSI mea-
surements and found that the widely used medical-grade TIVITA® cameras (Diaspec-
tive Vision GmbH, Am Salzhaff, Germany) are affected by spectral shifts across device
generations and instances, sensor temperatures, and calibration schemes. In particular,
rises in sensor temperature over minutes to hours of measuring led to substantial drifts
in functional tissue parameter index values. Based on these findings, we proposed
recommendations for mitigating hardware-induced variability in HSI study design. An
abstract summarizing parts of this work was accepted at IEEE’s 13 WHISPERS in 2023,
where I delivered an oral presentation to an international audience of SI researchers
[310].

Both studies represent important milestones toward reliable functional tissue parame-
ter estimation under real-world imaging conditions, paving the way for safe integration
of SI-based functional imaging into clinical practice to support informed intraoperative
decision-making.

RQ2: How can we achieve robust surgical scene segmentation under geometric domain

shifts?

Using the largest semantically annotated intraoperative SI dataset to date, we con-
ducted the first systematic analysis of the optimal spectral and spatial granularity
for automated surgical scene segmentation. Based on developing an extensive DL
framework encompassing segmentation at different spatial granularities (pixels, super-
pixels, patches, and full images), as well as multiple imaging modalities (RGB, HSI, and
derived functional tissue parameters), we demonstrated that HSI data outperforms
both RGB and processed HSI data, particularly at small spatial granularities. At the
same time, image-based segmentation consistently outperformed smaller granularities,
independent of the number of training subjects. Notably, segmentation performance
based on full HSI cubes matched the accuracy of annotations by a second medical
expert. This work was published in the journal Medical Image Analysis in 2022 [308],
and following submission of a long abstract, I orally presented the research to an
international expert audience at the IPCAI 2022 [307].
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Given the well-known vulnerability of DL models to domain shifts, we addressed the
lack of research on the generalizability of surgical scene segmentation models under
such conditions. We were the first to show that geometric domain shifts — frequently
arising in real surgeries due to variations in procedures or situs occlusions, yet typically
overlooked during model development — cause substantial performance degradation.
To mitigate these effects, we introduced a surgery-inspired data augmentation tech-
nique that is computationally efficient, model-independent, and capable of restoring
in-distribution performance. This work was accepted at MICCAI 2023, where I pre-
sented it to an international audience of medical image computing experts. The full
article was subsequently published in the conference proceedings [314]. The contribu-
tion was recognized with the MICCAI Student-Author Registration (STAR) award and
the MICCAI Young Scientist Award.

Our work represents a key advance toward robust surgical scene segmentation un-
der real-world domain shifts, forming a critical foundation for surgical data science
applications that enable intraoperative decision support and context-aware assistance.

RQ3: Can we reliably diagnose sepsis and predict mortality in an intensive care unit
population using skin spectral images?

Based on a large-scale observational study of over 480 patients — representing the so far
largest HSI patient cohort — we were the first to demonstrate that DL-based analysis
of skin HSI enables rapid, mobile and non-invasive sepsis diagnosis and mortality
prediction in ICU patients. Through an extensive DL framework encompassing classi-
fication at different spatial granularities (median spectra and patches) and imaging
modalities (RGB, HSI, and derived functional tissue parameters), as well as multimodal
fusion of HSI with clinical data, we showed that HSI is superior to conventional RGB
imaging, with the palm identified as the optimal measurement site. The predictive
performance was further enhanced when HSI data were combined with a minimal
set of clinical parameters, outperforming established clinical biomarkers and scoring
systems. Moreover, we showed that previous approaches, which relied on selectively
chosen cohorts and were therefore susceptible to shortcut learning, fail to generalize
to a real-world ICU population. This work was published in Science Advances in 2025
[306] and an abstract was accepted for oral presentation at the 5 Conference on
Clinical Translation of Medical Image Computing & Computer Assisted Intervention
(CLINICCALI, part of the MICCAI) in 2025 [84].

Our work tackles the critical shortage of reliable biomarkers for timely sepsis diagnosis
and mortality prediction in ICU patients — a challenge of high socioeconomic impor-
tance — and lays the groundwork for future research on the potential of HSI-based
sepsis diagnosis and mortality prediction in other clinical settings (e.g., LMICs) and
for therapy guidance.
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8.1.2 Broader Impact of this Thesis

Maier-Hein et al. identified the lack of data, and in particular representative annotated
data, as a major obstacle in the field of surgical data science [221]. Medical SI is no
exception: Although the increasing adoption of medically certified SI devices has led
to the creation of larger datasets — the biggest ones now encompassing several tens to
hundreds of patients [308, 30, 315, 306] — only few datasets in the field have been made
publicly available [73]. This scarcity represents a substantial barrier to the clinical
translation of ML-based SI analysis, as developing and validating robust ML models
requires large, diverse datasets to capture the full variability of the underlying data
distribution and to evaluate and improve generalizability. While our ICU dataset cannot
be shared due to the lack of patient consent, we have released the majority of our open
surgery datasets along with their annotations [328, 315]. These include a total of 10 818
images from 89 subjects across two species and different perfusion states, establishing
them as the largest publicly available medical SI resource to date in terms of number
of images.

In addition to releasing open datasets, we contributed to established open-source
frameworks for medical image analysis such as MONAI, where we integrated our im-
plementation of the NSD [56], and the Kornia library [287], where we integrated our
Organ Transplantation augmentation. Furthermore, we advanced the field of medical
SI analysis by open-sourcing all our code as a comprehensive framework! [312]. The
framework provides modules for data loading, preprocessing, augmentation, visualiza-
tion, and the training and validation of DL models specifically tailored to SI data, and
includes pretrained models. It enables benchmarking against our models and allows
researchers to easily train or fine-tune segmentation and classification models for other
applications. Since models trained on SI data often suffer from data-loading bottle-
necks due to large image sizes, leading to delayed training runs, low GPU utilization,
and long inference times, we developed several strategies to optimize data-loading
efficiency [313]. These strategies are transferable to any application where data loading
is a bottleneck, making them broadly useful even beyond medical SI.

8.2 Open Challenges

Beyond pioneering underexplored applications of SI in perioperative care, the overarch-
ing goal of this thesis was to advance the clinical translation of SI analysis by enhancing
the robustness of ML models to domain shifts between training and real-world ap-
plication data. However, several challenges related to SI hardware (Section 8.2.1) and

thttps://github.com/IMSY-DKFZ/htc
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ML-based SI analysis (Section 8.2.2) still impede a widespread clinical adoption of pe-
rioperative SI. This section highlights these challenges with the aim of guiding future
research.

8.2.1 Challenges Related to Spectral Imaging Hardware

The clinical translation of SI remains challenged by limitations in the available hard-
ware:

Trade-off Between Spectral, Spatial, and Temporal Resolution SI devices typically
involve trade-offs between spectral, spatial, and temporal resolution [65]. For example,
the HSI system used in this thesis captures a cube with 100 spectral bands at spatial
dimensions of 640 pxx480 px, but the acquisition of a single image takes approximately
7s. In contrast, our MSI system achieves a frame rate of 25Hz, but comes with a
reduced number of only 16 spectral bands and lower spatial dimensions of 512 px X
272 px. These limitations introduce several challenges:

The slow acquisition speed of our HSI device restricts its use to stationary objects
in a mounted setup, rather than handheld use, and prevents real-time feedback on
rapidly evolving scenes. In time-critical clinical settings where rapid decision-making
is essential (e.g., during intraoperative tissue clamping [21]), such delays can pose a
substantial barrier. Additionally, object movements — such as tissue movements due
to respiration, heartbeat, surgical manipulation or patient movements — inevitably
introduce motion artifacts (cf. Figure 5.8 for an example).

Compared to modern RGB cameras, which routinely provide videos at spatial dimen-
sions of 3840 px x 2160 px [221], both our HSI and MSI devices provide only limited
pixel resolution. Particularly for our HSI systems that need to be operated at a fixed
imaging distance with a fixed focal length, the resulting spatial resolution can be a
limiting factor. For example, the HSI system used in this thesis for automated sur-
gical scene segmentation provides a spatial resolution of only about 0.5 mm, which
limits the visibility of fine structures. For instance, in our surgical scene segmentation
datasets, the class major vein was often represented by only a few pixels, while smaller
structures such as nerves and lymph nodes were not distinguishable at all. Both the
limited spatial resolution and motion artifacts resulting from low temporal resolution
complicate the annotation process, as poorly defined structure boundaries can lead to
imprecise annotations.

Variability and Limited Availability of Spectral Imaging Hardware The trade-off between
temporal, spatial and spectral resolution has contributed to existing SI devices being
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highly diverse regarding number of spectral channels, spectral range, bandwidths,
spatial resolution, and acquisition speed [205]. Furthermore, a range of different light
sources, including halogen, LED, or tunable lights, are used across studies [21, 218].
Most devices are custom research prototypes tailored to a single specific application,
and oftentimes equipped with additional optical components, such as laparoscopes,
endoscopes or microscopes [377, 25, 272]. The high diversity across devices and setups
poses a major challenge: algorithms developed on data from one device may fail to
generalize to another device. Unless the community converges on a few standardized
setups, developing robust algorithms that are invariant to hardware differences will be
essential.

The recent introduction of the first commercial, medically certified SI systems offers
potential for convergence toward fewer, more standardized setups. Medical certifica-
tion reduces bureaucratic hurdles in clinical studies and facilitates clinical translation
by ensuring regulatory compliance for safe integration into workflows. However, the
high cost of these systems remains a substantial barrier — particularly in LMICs, where
limited access to advanced imaging technology further exacerbates global disparities
in perioperative care [299]. Moreover, the SI hardware market is still small, with only a
handful of manufacturers producing devices in limited quantities, further impeding
widespread clinical adoption.

Reliability of Spectral Imaging Devices We showed that medically certified HSI systems
are subject to hardware-related spectral variability, which can cause substantial drifts in
functional tissue parameter estimates (cf. Chapter 4). In addition to these inaccuracies,
the HSI devices used in this thesis exhibited data acquisition and storage failures in
about 1% of cases, resulting in corrupted images or metadata. Such errors can delay
clinical workflows when measurements must be repeated and, if unnoticed, may lead
to the irreversible loss of valuable data.

To mitigate hardware-related measurement inaccuracies, we implemented several
measures in our studies, such as frequent device calibration and extending the interval
between acquisitions to limit sensor heating. However, these remain only temporary
workarounds. Long-term solutions require manufacturers to enhance device reliability
and reproducibility, for example by improving sensor cooling, correcting systematic
errors, and developing algorithms to compensate for hardware-related shifts. In paral-
lel, the field urgently needs systematic investigations of additional bias sources in SI
measurements, along with community-wide standardized recording protocols (e.g.,
timing and methods for calibration, acquisition of imaging metadata such as sensor
temepratures) and quality control procedures (e.g., regular phantom measurements)
to ensure data accuracy and comparability.
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In summary, the clinical translation of SI remains constrained by limitations in hard-
ware reliability, availability, and standardization, as well as the need to balance spa-
tial and temporal resolution against spectral information content. Nonetheless, the
field has made substantial progress in recent years, with key manufacturers in the
nonmedical domain (e.g., imec, Leuven, Belgium; HAIC, Hanover, Germany) and
researchers developing more compact, real-time SI systems and scaling production
toward high-volume, cost-effective availability [35, 387, 75, 148, 277, 341]. Future re-
search should support these efforts by exploring emerging technologies and software
advances. Promising directions include ML-based methods to enhance spatial and
spectral resolution [73, 148, 235, 218], band-selection strategies that improve temporal
resolution by discarding uninformative channels [22, 381], and tunable-band devices
that allow adaptive spectral sampling [272, 218]. In light of these advances, future gener-
ations of SI hardware can be expected to overcome many of the current shortcomings
and move closer to widespread clinical adoption.

8.2.2 Challenges Related to Machine Learning-Based Spectral Image
Analysis

To date, the potential of ML in medicine has only been partially realized, with relatively
few tools developed in academia successfully implemented in clinical practice [266].
The translation of ML models into real-world healthcare is hindered by multiple factors:
some are inherent to the broader medical ML community, such as limitations in the
generalizability and trustworthiness, while others are specific to SI, particularly the
challenges of data availability and rigorous validation.

Generalizability and Trustworthiness of Machine Learning Models This thesis has fo-
cused on improving the robustness of ML models under domain shifts between training
and real-world application data — one of the key barriers to clinical translation. We
effectively addressed shifts in illumination and surgical scene geometry and investi-
gated the impact of hardware and population shifts. However, important domain shifts
remain unexplored. For example, population distributions can differ substantially
across hospitals and countries [57], and in the case of SI, may be further compounded
by variations in devices, acquisition, and annotation procedures. While such technical
shifts should be minimized through community-wide efforts to establish standard-
ized hardware, acquisition, and annotation protocols (cf. Section 8.2.1), residual shifts
must be systematically investigated and addressed within the ML community (cf. Sec-
tion 6.4.2 for a detailed discussion of further potential domain shifts in the context of
surgical scene segmentation). A particular challenge lies in the inherently dynamic
nature of healthcare: evolving clinical practices and shifting patient populations con-
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tinuously alter data distributions, requiring strategies for drift detection and regular
model updates to ensure sustained performance [174].

ML models are often considered as “black boxes”, as it is not directly accessible how
they arrive at their predictions. This property conflicts with the demand for account-
ability and result transparency in medical scenarios [334], and raises the need for
models that are not only performing well, but also trustworthy and explainable [142].
In the context of S, this is particularly important, as the rich spectral information
captured by SI devices is not immediately interpretable by humans. Explainable ML
models hold the potential to provide novel insights into the underlying biological pro-
cesses. However, only few studies have yet investigated the explainability of ML models
for spectral data [71], and we are not aware of a single study investigating explainable
ML for medical SI analysis. Despite substantial progress in recent years, developing
explainable ML remains a major challenge across the entire ML community. Many
existing approaches lack end-to-end interpretability and computational efficiency, and
trust in their explanations is limited by inconsistencies between methods and the lack
of objective validation [334]. Future research should aim to address these challenges by
developing explainable ML models that provide consistent, reliable, and interpretable
explanations for SI data.

Further trust in ML prediction could be strengthened through the quantification of
model uncertainty. Assessing the confidence of model predictions could enable more
principled decision-making by allowing uncertain outputs to be discarded, thereby
reducing the risk of potentially harmful misclassifications [187]. However, in the broader
field of ML, uncertainty quantification remains underexplored, with no consensus on
optimal methods and persistent shortcomings in the evaluation of methods on real-
world data [211, 111]. Future research should explore uncertainty quantification in
medical SI analysis to establish reliable measures of model confidence.

Sparsity of Annotated Data Large, high-quality datasets are essential for developing
and validating robust ML models, as they allow capturing the full diversity of the
underlying data distribution and improve generalizability [15]. However, the availability
of such datasets remains a major challenge in medical SI. Compared to widely used
datasets from general computer vision, such as ImageNet (1281167 training examples)
[78], annotated SI datasets are comparably small. While the size of SI datasets has
grown over the past years — for instance, surgical scene segmentation datasets have
increased from several tens to several hundreds of patients (cf. Table 5.2) — they remain
orders of magnitude smaller than standard computer vision benchmarks. This is partly
due to the substantial complexity of conducting clinical studies with devices that are
not yet standard of care, have limited availability, and are costly (cf. Section 8.2.1).
Additionally, generating extensive, high-quality annotations for SI data poses its own
challenges.
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In fact, our continuously growing intraoperative SI database currently comprises 46 831
images from 388 subjects across 3 species (cf. [315]), yet only about 6 % of these images
are semantically annotated. Manual annotation is time-consuming, taking approxi-
mately 30 min per image for our semantic surgical scene annotation. Future efforts
could leverage active learning strategies to prioritize the most informative images for
annotation, thereby maximizing the value of each annotated sample. Such approaches
have already proven successful in surgical workflow analysis [44]. Moreover, given
the abundance of unlabeled SI data — with our entire perioperative SI database even
encompassing 69 747 images from 1000 subjects — semi-supervised and unsupervised
learning methods represent a promising avenue to exploit this data and potentially
improve model performance [281].

Another challenge arises from uncertainties in manual annotations. For example, in
our porcine surgical scene segmentation dataset, 2% of the scene on average could
not be confidently assigned a class label, and in our sepsis diagnosis dataset, 14 % of
patients had an ambiguous sepsis status. While some of these uncertainties could
potentially be mitigated by improving the annotation process (cf. Section 5.4.2 for
suggestions in the context of surgical scene segmentation), a large portion reflects
the inherent difficulty of clinical practice: even experienced medical experts may
struggle to differentiate certain tissue types or determine sepsis status in critically ill
patients. In our analyses, instances with uncertain labels were excluded. Although
this approach avoids introducing potentially incorrect labels, it reduces the amount of
usable data and may bias ML models, as the remaining dataset may not fully represent
the underlying population. Although data with uncertain labels could, in principle, be
incorporated into training using approaches such as soft labels, evaluating algorithm
performance on samples with ambiguous labels remains an open challenge across the
entire ML community.

Lack of External Validation External Validation is essential for the clinical translation
of ML models, as it demonstrates reliable generalization to data that may differ in
population, device or other factors [266]. However, due to the considerable effort
required to acquire and annotate SI data, we were unable to perform multi-center
studies. To our knowledge, only a single study to date has conducted external validation
of an SI-based ML model on data from a different clinic [30].

External validation of ML models could be facilitated through the availability of open-
source datasets. However, in medical SI, publicly available datasets are scarce, often
small, and frequently lack high-quality data calibration [73]. To advance the field,
we have released large portions of our data [328, 23, 315]. Nevertheless, to reduce
inconsistencies between datasets and enable meaningful model comparisons, the
establishment of community-wide benchmarks, along with standardized acquisition,
annotation, and evaluation protocols, is essential.
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Lack of Clinical Value Demonstration Metrics commonly used during model devel-
opment and validation often fail to capture the ultimate clinical value of a model,
such as improvements in patient outcomes or cost-effectiveness. To date, only a few
randomized controlled trials have evaluated medical ML algorithms (e.g., [359, 371]),
and, to the best of our knowledge, no interventional studies have been conducted
using SI. Future research should therefore focus on demonstrating the clinical benefit
of ML-based SI analysis.

8.3 Conclusion

This thesis represents a pioneering step toward the clinical translation of ML-based SI
analysis in perioperative care. We demonstrated the potential of SI in underexplored
applications, including semantic scene segmentation in open surgeries, as well as
sepsis diagnosis and mortality prediction among critically ill ICU patients. Importantly,
we investigated and addressed critical domain shifts previously overlooked by the
community, including variations in illumination, hardware, surgical scene geometry
and population between training and real-world application data.

In addition, we contributed to the advancement of the field by releasing open-source
data, annotations and pretrained models, encompassing both RGB and SI data [328,
315]. These could serve as a benchmark for future research. Furthermore, we developed
and publicly released a comprehensive framework for efficient SI data management
and DL model development [312].

Beyond the perioperative applications studied in this thesis, many of the concepts,
tools, and datasets introduced are broadly applicable: For example, our framework
includes strategies to improve training efficiency on high-dimensional HSI data, trans-
ferable to other domains facing data-loading bottlenecks, and our approaches to inves-
tigate and mitigate domain shifts may inspire similar efforts in SI and other medical
imaging fields.

We acknowledge that, despite representing important first steps, several challenges
remain for the clinical translation of ML-based SI analysis in perioperative care, in-
cluding shortcomings of spectral imaging hardware and limitations of the ML models.
Future research should aim to address these challenges by developing more standard-
ized and reliable hardware, advancing generalizable, explainable, and uncertainty-
aware ML methods for SI analysis, and establishing community-wide benchmarks and
standardized protocols through collaborative efforts. In the light of recent promising
advancements (e.g., in imaging technologies and data availability), it is expected that
the clinical translation of SI will continue to progress, ultimately integrating ML-based
SI analysis as a routine component of perioperative care.
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A.1 Own Contributions

This thesis was carried out in the Division of Intelligent Medical Systems (IMSY), for-
merly Computer Assisted Medical Interventions (CAMI), at the German Cancer Re-
search Center (DKFZ) under the supervision of Prof. Dr. Lena Maier-Hein, and sup-
ported by the Helmholtz Information & Data Science School for Health (HIDSS4Health).
Close collaboration with IMSY group members and clinical partners was integral to
the work. To distinguish own contributions from team efforts, I highlight my key
contributions to each research question addressed in this thesis in the following.

RQ1: How can we achieve robust functional tissue parameter estimation with spectral
imaging under real-world imaging conditions?

Regarding the research on robust oxygenation estimation under illuminant shifts (Chap-
ter 3), I designed the experiments, acquired and curated the data, conducted the data
analyses, and designed, developed and validated the illuminant estimation method-
ology. I also created the manuscript figures and contributed to writing the resulting
publication [24]. In addition, I contributed to the filing of two patents covering the auto-
mated illuminant estimation method by conducting the prior art search and providing
technical input during the patent drafting process [225, 226].

Regarding the research on robust functional tissue parameter estimation under hard-
ware variations (Chapter 4), I planned and conducted the experiments, acquired,
annotated and curated the data, performed the data analysis, and developed the rec-
ommendations for hardware bias-aware study design. I also generated the figures and
wrote the corresponding abstract for conference presentation [310].

RQ2: How can we achieve robust surgical scene segmentation under geometric domain
shifts?

Regarding the research on optimal spectral and spatial granularity for robust surgical
scene segmentation (Chapter 5), I designed the experiments, curated the data, and
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supervised the annotation process. I designed, developed and validated the pixel- and
superpixel-based models, conducted the training size experiments, generated figures,
and wrote the corresponding journal manuscript [308] and long abstract [307].

Regarding the research on robust surgical scene segmentation under geometric domain
shifts (Chapter 6), I designed the experiments, curated the OOD data and supervised
its annotation. I designed, developed and validated the Organ Transplantation aug-
mentation. I conducted the experiments comparing the effects of geometric domain
shifts across different spatial granularities and input modalities and co-supervised the
bachelor thesis of Alessandro Motta including the local neighborhood experiment. I
generated figures, and wrote the manuscript published in the MICCAI proceedings
[314], as well as the extended version on arXiv [309].

RQ3: Can we reliably diagnose sepsis and predict mortality in an intensive care unit
population using skin spectral images?

Regarding our research on automated sepsis diagnosis and mortality prediction, I co-
designed the clinical study in ICU patients, supervised data acquisition and annotation,
and curated the dataset. I performed the data analysis, including statistical testing,
and designed, developed and validated the machine learning models. I generated the
figures and wrote the manuscript of the resulting publication [306].
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My research has led to several publications in peer-reviewed journals and conference
proceedings. In addition to the 6 first-author publications directly related to this thesis,
my role as group lead supervising a team of SI researchers, together with close collabo-
rations with further data scientists and clinical partners, has enabled me to contribute
to a wider range of research projects beyond visceral surgery and anesthesiology, ex-
tending into gastroenterology, urology, oncology and hematology. As a result, I have
authored further publications in SI and medical image computing, both as last author
and as co-author. In the following, these publications are categorized according to my
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B.1 Hardware-Related Sources of Variation in Hyperspectral
Imaging
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Figure B.1: Shift in colorchecker board spectra measured with the device Halogenl as a
function of sensor temperature. ¢!-normalized spectra are shown for 12 color
fields of the colorchecker board, with curves color-coded according to the sensor
temperature at the time of measurement. For clarity, only data from one of the 3
repetitions is displayed.
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Figure B.5: Recordings of pulse oxymetrical oxygen saturation (Sp0O.) in human probands
during sensor temperature experiments. SpO, was measured in 6 healthy volun-
teers using a pulse oximeter on the same hand examined with HSI. Scatter plots
show SpO, values against the corresponding sensor temperature of the HSI device
used in parallel (LED2 for probands to and Halogen2 for probands to
CS6).

240



B.1 Hardware-Related Sources of Variation in Hyperspectral Imaging

heart rate [bpm]

heart rate [bpm]|

cs1 2, cs2
°
90 90 A °
° L}
80 - ‘ I
8070 hee ot oy
s = oo : ¢ ... [ ] .:
07 TR g Bt
° L ] ° [ ] L ] L ]
70 - . o
T T T T T T
65 70 75 65 70 75
Cs4 & css
e
o
90
80
70 A
T T T T T T
44 45 46 44 45 46

sensor temperature [°C]

sensor temperature [°C]

CS3

80

70 A

60 -

50 A

150

125

100 ~

45.0

45.5
sensor temperature [°C]

46.0
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iments. Heart rate was measured in 6 healthy volunteers using a pulse oximeter
on the same hand examined with HSI. Scatter plots show heart rate values against
the corresponding sensor temperature of the HSI device used in parallel (LED2 for
to CS6). Linear regression fits
are shown as lines, with the 95 % confidence interval derived from 1000 bootstrap
samples indicated by shaded areas.
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Figure B.7: Recordings of respiratory rate in human probands during sensor temperature
experiments. Respiratory rate was measured in 6 healthy volunteers using a pulse
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Linear regression fits are shown as lines, with the 95 % confidence interval derived
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Figure B.8: Impact of sensor temperature increase on functional tissue parameter indices.
Scatter plots show measurements of the tissue parameter indices oxygen saturation,
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a colorchecker board, plotted against sensor temperature for the devices Halogenl,
Halogen2, LEDI] and LED2. Linear regression fits are shown as solid lines, with
shaded areas indicating the 95 % confidence interval from 1000 bootstrap samples.
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B.2 Impact of Spatial Granularity And Modality on Surgical
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Figure B.9: Intra-rater agreement of reference annotations. Re-annotations of the twenty
selected images are shown with their RGB images, original annotations, and differ-
ence maps between the annotations. Figure continued on the next page.
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Figure B.10: Ranking stability of our segmentation algorithms with respect to sampling
variability using the normalized surface Dice (NSD). Following the concept
from [364], bootstrap sampling was performed to assess the ranking stability of our
segmentation algorithms across different spatial granularities (pixel, ,
patch_32, patch_64 and image) and modalities (RGB, tissue parameter images
(TPI), and hyperspectral imaging (HSI)) and modalities (RGB, tissue parameter
images (TPI), and hyperspectral imaging (HSI)). For each blob at position (a, rank
r), its area is proportional to the frequency of algorithm a achieving rank r across
1000 bootstrap samples. Each sample comprises 5 subject-level NSD values. For
each method, black crosses indicate the median rank, gray diamonds show the
mean rank, and gray lines represent the 95% quantile of the bootstrap results.
Ranking stability figures for the Dice similarity coefficient (DSC) and average

surface distance (ASD) are available in Figure 5.6 and Figure B.11, respectively.
Figure adapted from [308, 311].
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Ranking stability of our segmentation algorithms with respect to sampling
variability using the average surface distance (ASD). Following the concept from
[364], bootstrap sampling was performed to assess the ranking stability of our
segmentation algorithms across different spatial granularities (pixel, ,
patch_32, patch_64 and image) and modalities (RGB, tissue parameter images
(TPI), and hyperspectral imaging (HSI)) and modalities (RGB, tissue parameter
images (TPI), and hyperspectral imaging (HSI)). For each blob at position (a, rank
r), its area is proportional to the frequency of algorithm a achieving rank r across
1000 bootstrap samples. Each sample comprises 5 subject-level ASD values. For
each method, black crosses indicate the median rank, gray diamonds show the
mean rank, and gray lines represent the 95% quantile of the bootstrap results.
Ranking stability figures for the Dice similarity coefficient (DSC) and normalized

surface Dice (NSD) are available in Figure 5.6 and Figure B.10, respectively. Figure
adapted from [308, 311].
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Figure B.12: Confusion matrix for image-based segmentation using tissue parameter im-
ages data. Each entry (i, j) denotes the average proportion of pixels from the
reference class i that are classified as class j, with values below 0.1 % omitted for
clarity. Confusion matrices were row-normalized using pixel data from all images
of a single subject, and the subject-specific matrices were averaged across subjects
to produce the final confusion matrix. The standard deviation across subjects is
indicated in brackets. Diagonal entries correspond to recall (sensitivity). Figures
for the hyperspectral imaging and RGB modalities are provided in Figure 5.10 and
Figure B.13, respectively. Figure adapted from [308, 311].
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Figure B.13: Confusion matrix for image-based segmentation using RGB data. Each entry
(i, j) denotes the average proportion of pixels from the reference class i that are
classified as class j, with values below 0.1 % omitted for clarity. Confusion matrices
were row-normalized using pixel data from all images of a single subject, and
the subject-specific matrices were averaged across subjects to produce the final
confusion matrix. The standard deviation across subjects is indicated in brackets.
Diagonal entries correspond to recall (sensitivity). Figures for the hyperspectral
imaging and tissue parameter images modalities are provided in Figure 5.10 and
Figure B.12, respectively. Figure adapted from [308, 311].
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B.3 Robust Surgical Scene Segmentation Under Geometric
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Figure B.14: Role of the input modality and spatial granularity in segmentation perfor-
mance degradation under geometric domain shifts as measured by the nor-
malized surface Dice (NSD). The segmentation performance is reported for 3
clinical scenarios: organs in isolation (I), organ resections (II), and situs occlusions
(II1). Columns represent the corresponding in-distribution datasets (highlighted
in italic) and out-of-distribution (OOD) datasets. Rows indicate different models,
each combining one of two modalities (RGB or hyperspectral imaging (HSI)) with
one of 5 spatial granularities: pixel, superpixel, patches of size 32 x 32 (patch_32)
or 64 x 64 (patch_64), and image. The numbers represent the average DSC across
classes, with standard deviations denoted in brackets. The color-coding reflects
the difference in DSC relative to the corresponding in-distribution DSC for the
same model. Results for the Dice similarity coefficient (DSC) are shown in Fig-
ure 6.2. Figure adapted from [309].
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Figure B.15: Performance comparison of the baseline model and the Organ Transplanta-
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tion model under geometric domain shifts using the normalized surface Dice
(NSD). Distributions of class-wise NSD scores are shown for the baseline model
and the Organ Transplantation model across the 3 clinical scenarios (I) organs
in isolation, (IT) organ resections, and (III) situs occlusions, with in-distribution
datasets highlighted in italic. The boxplots illustrate the quartiles of the distri-
bution across classes, with whiskers showing the range excluding outliers. The
median is shown as a solid line, the mean as a dotted line, and the markers corre-
spond to individual classes. Results for the Dice similarity coefficient (DSC) are
shown in Figure 6.4. Figure adapted from [314, 309, 311].
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Figure B.16: Uncertainty-aware normalized surface Dice (NSD)-based ranking of different
data augmentation methods for addressing geometric domain shifts. Following
the concept from [364], bootstrap sampling was performed to assess the ranking
stability with respect to sampling variability of our image#HSI models utilizing
the data augmentation techniques Organ Transplantation (OT), CutMix (CM),
Jigsaw (JI), Random Erasing (RE), Elastic transformations (EL), Hide-and-Seek
(HS) and Baseline geometric transformations (BA). For each blob at position (a,
r), its area is proportional to the frequency of algorithm a achieving rank r across
1000 bootstrap samples. For each method, black crosses indicate the median rank,
gray diamonds show the mean rank, and gray lines represent the 95 % quantile of
the bootstrap results. Ranking stability results for the Dice similarity coefficient
(DSC) are shown in Figure 6.4. Figure adapted from [314, 309, 311].
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B.4 Al-Driven Skin Spectral Imaging for Rapid Sepsis
Diagnosis and Mortality Prediction in Critically Ill Patients
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Figure B.17: Characteristic spectra for (a) non-septic and septic patients and (b)
and non-survivors. The plots show ¢!-normalized spectra for the measurement
sites palm (left) and finger (right). Median spectra were first computed for each
annotated image region and then averaged across patients (solid lines), with
shaded areas indicating one standard deviation. Figure adapted from [306].
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Table B.1: Statistical analysis of significant differences in functional tissue parameters for

non-septic and septic patients, and survivors and non-survivors. Stratified by
measurement site (first column), two-sided Welch’s t-tests [363] were conducted to
assess significant differences in functional tissue parameter indices (third column)
by sepsis and survival status (second column). The table summarizes the p-values,
degrees of freedom (DOF), t-statistic and 95 % confidence interval (CI). p-values
are colored according to whether they are below or above the Bonferroni-corrected
significance level of 0.0125. Table adapted from [306].

site target functional parameter  p-value DOF ¢-statistic 95% CI
palm  sepsis oxygen saturation 71-10% 208 -3.44 [-0.06; —0.02]
palm sepsis  perfusion index 1L1-100 205 -1.63  [-0.03;0.00]
palm  sepsis hemoglobin index 6.2-107° 198 4.09 [0.03;0.08]
palm sepsis  water index 4510710 222 6.53 [0.03; 0.06]
palm survival oxygen saturation 6.8-107 79 -3.54 [-0.09; -0.02]
palm survival perfusion index 2.5-1073 82 -3.12  [-0.06; —0.01]
palm survival hemoglobin index 6.0-107* 81 3.57 [0.03;0.09]
palm survival water index 7.0-107° 93 4.16 [0.02;0.05]
finger sepsis oxygen saturation 1.4-10% 176 -3.89 [-0.07;-0.02]
finger sepsis perfusion index 1.5-10° 196 -3.22  [-0.06; —0.02]
finger sepsis = hemoglobin index 441077 205 5.22 [0.05;0.10]
finger sepsis water index 1.2-107! 194 1.56 [—0.00; 0.02]
finger survival oxygen saturation 3.7-107* 75 -3.73 [-0.10; —0.03]
finger survival perfusion index 5.4-107* 79 -3.61 [-0.09; —0.03]
finger survival hemoglobin index 4.6-107 81 3.65 [0.03;0.11]
finger survival water index 5.6-107! 84 -0.59 [—0.02; 0.01]
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Figure B.18: Distribution of demographic parameters among non-septic and septic pa-
tients. Shown are the distributions of age, sex, weight, type of weight measure-
ment (measured or estimated) and Fitzpatrick skin type. For continuous pa-
rameters, boxplots indicate the quartiles, with whiskers extending to the range
excluding outliers. Solid and dashed lines mark the median and mean, respec-
tively. Each dot corresponds to one patient. For categorical parameters, bar plots
display the number of patients (# patients) per category, with percentages given
relative to all patients of the same sepsis status.
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Figure B.19: Distribution of vital parameters among non-septic and septic patients. Shown
are the distributions of heart frequency, presence of a sinusrhythm, mean arterial
pressure (MAP), systolic blood pressure, temperature and pulse oxymetrical oxy-
gen saturation (SpO;). For continuous parameters, boxplots indicate the quartiles,
with whiskers extending to the range excluding outliers. Solid and dashed lines
mark the median and mean, respectively. Each dot corresponds to one patient.
For categorical parameters, bar plots display the number of patients (# patients)
per category, with percentages given relative to all patients of the same sepsis
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Figure B.20: Distribution of blood gas analysis (BGA) measurements among non-septic
and septic patients. Shown are the distributions of carbon dioxide partial pres-
sure (pC0O2), oxygen partial pressure (pO2), oxygen saturation (sO2), hemoglobin
(Hb), lactate, pH value and type of BGA (arterial or venous). For continuous
parameters, boxplots indicate the quartiles, with whiskers extending to the range
excluding outliers. Solid and dashed lines mark the median and mean, respec-
tively. Each dot corresponds to one patient. For categorical parameters, bar plots
display the number of patients (# patients) per category, with percentages given
relative to all patients of the same sepsis status.
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Figure B.21: Distribution of organ replacement therapies among non-septic and septic
patients. Shown are the distributions of renal replacement, extracorporeal mem-
brane oxygenation (ECMO), impella and liver replacement therapies. Bar plots
display the number of patients (# patients) per category, with percentages given
relative to all patients of the same sepsis status.
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Figure B.22: Distribution of ventilation parameters among non-septic and septic patients.
Shown are the distributions of invasive ventilation, ventilation, airway pressure re-
lease ventilation (APRV), fraction of inspired oxygen (FiO2), positive endexpiratory
pressure (PEEP), peak inspiratory pressure (P-peak) and respiratory frequency.
For continuous parameters, boxplots indicate the quartiles, with whiskers ex-
tending to the range excluding outliers. Solid and dashed lines mark the median
and mean, respectively. Each dot corresponds to one patient. For categorical
parameters, bar plots display the number of patients (# patients) per category,
with percentages given relative to all patients of the same sepsis status.
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Figure B.23: Distribution of vasopressor/inotrope dosing among non-septic and septic
patients. Shown are the distributions of whether vasopressors/inotropes were
administered, and if so, the dosing of noradrenaline, adrenaline, vasopressin and
dobutamine. For continuous parameters, boxplots indicate the quartiles, with
whiskers extending to the range excluding outliers. Solid and dashed lines mark
the median and mean, respectively. Each dot corresponds to one patient. For
categorical parameters, bar plots display the number of patients (# patients) per
category, with percentages given relative to all patients of the same sepsis status.
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Figure B.24: Distribution of laboratory parameters among non-septic and septic pa-
tients. Shown are the distributions of creatinine, glomerular filtration rate (GFR),
lactate dehydrogenase (LDH), bilirubin, C-reactive protein (CRP), leukocytes,
hemoglobin (Hb), platelets, hematocrit, sodium, potassium and procalcitonin
(PCT). Boxplots indicate the quartiles, with whiskers extending to the range ex-
cluding outliers. Solid and dashed lines mark the median and mean, respectively.
Each dot corresponds to one patient.
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Figure B.25: Distribution of established diagnostic and prognostic clinical scores among
non-septic and septic patients. Shown are the distributions of the Sequential
Organ Failure Assessment (SOFA) score, national early warning score (NEWS), skin
mottling score (SMS), capillary refill time (CRT), quick Sequential Organ Failure
Assessment (qSOFA) score and Systemic Inflammatory Response Syndrome (SIRS)
criteria. Bar plots display the number of patients (# patients) per category, with
percentages given relative to all patients of the same sepsis status.
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Figure B.26: Distribution of established diagnostic and prognostic clinical scores among

and non-survivors. Shown are the distributions of the vasoactive in-
otropic score (VIS), Sequential Organ Failure Assessment (SOFA) score and Acute
Physiology and Chronic Health Evaluation (APACHE) II score. For continuous
parameters, boxplots indicate the quartiles, with whiskers extending to the range
excluding outliers. Solid and dashed lines mark the median and mean, respec-
tively. Each dot corresponds to one patient. For categorical parameters, bar plots
display the number of patients (# patients) per category, with percentages given
relative to all patients of the same survival status.
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CPU central processing unit

CRP C-reactive protein

CRT capillary refill time

dHb deoxyhemoglobin

DKFZ German Cancer Research Center

DL deep learning

DOF degrees of freedom

269



List of Acronyms

DSC Dice similarity coefficient

ECMO extracorporeal membrane oxygenation

EHR electronic health record

ELU exponential linear unit

FiO2 fraction of inspired oxygen

GFR glomerular filtration rate

GPU graphics processing unit

Hb hemoglobin

HIDSS4Health Helmholtz Information & Data Science School for Health
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pCO2 carbon dioxide partial pressure
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pO2 oxygen partial pressure
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ReLU rectified linear unit

ResNet residual network

RFE recursive feature elimination
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S| spectral imaging
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