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Abstract
Applications of symplectic geometry to the Three-Body Problem have slowly begun appearing
in the past few years, allowing one to approach the problem with tools from Floer theory.

In this thesis, we introduce a new variant of Floer theory: Local Wrapped Floer Homology,
which generalises the previously-existing ’Wrapped Floer Homology’ to degenerate settings.
We use this new machinery to prove a generalisation of the famous Poincaré-Birkho! theorem
to open-ended paths with exact Lagrangian ends in a Liouville domain, assuming a twist
condition first stated in [MK22a].

We then proceed to improve the applicability of our theorem to real-world problems, by re-
placing the constraining ’twist condition’ mentioned above by a ’Weakened Twist Condition’,
and by adapting the setup to degenerate Liouville domains.

Finally, we deduce applications to the Three-Body Problem: first to prove existence of
infinitely many trajectories of collision, and then trajectories bi-normal to the xz-plane; under
the assumption of the Weakened Twist Condition.
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Zusammenfassung
Anwendungen der symplektischen Geometrie auf das Three-Body Problem (Drei-Körper-Problem)
sind in den letzten Jahren allmählich in der Literatur erschienen und ermöglichen es uns, das
Problem mit Methoden der Floer-Theorie anzugehen.

In dieser Dissertation führen wir eine neue Variante der Floer-Theorie ein: Die Local
Wrapped Floer Homology, die bisher bekannte Wrapped Floer Homology auf degenerierte Situ-
ationen verallgemeinert. Mit diesem neuen Werkzeug beweisen wir eine Verallgemeinerung des
berühmten Satzes von Poincaré-Birkho! für nicht geschlossene Pfade mit exakten Lagrange-
Enden in einer Liouville-Domäne, unter Annahme einer twist-Bedingung, die erstmals in
[MK22a] formuliert wurde.

Anschließend verbessern wir die Anwendbarkeit unseres Satzes auf reale Probleme, indem
wir die die oben-genannte twist-Bedingung durch eine Weakened-Twist-Bedingung ersetzen
und unseren Satz von Poincaré-Birkho! auf degenerierte Liouville-Domänen anpassen.

Schließlich leiten wir Anwendungen auf das Three-Body Problem her: Zunächst zum Nach-
weis der Existenz unendlich vieler Kollisionsbahnen und anschließend von Bahnen, die bi-
normal zur xz-Ebene verlaufen; jeweils unter der Annahme der Weakened Twist Condition.
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Chapter 1

Introduction
1.1 First words
This thesis lies at an odd intersection: that of an old, unyielding physics problem stated
almost three and a half centuries ago, the Three-Body Problem, and of a much more recent
field of mathematics born in the twentieth century, symplectic geometry.

• Definition. The Three-Body Problem is the study of the motion of three bodies in
space (planets, stars, spacecrafts,...), according to Newton’s classical laws of physics.

• Definition. Symplectic geometry is a branch of di!erential geometry which provides a
rigorous framework for classical physics, on any ’geometric space’ (manifold).

Early on the symplectic community started showing interest in the Three-Body Problem.
People like Conley and Moser pioneered the development of symplectic geometry, motivated
by problems from classical mechanics and astrodynamics. Conley contributed to defining
the Conley-Zehnder index, an essential tool in symplectic geometry which we shall use all
throughout this thesis. Meanwhile, he was also the first to propose using the Restricted
Three-Body Problem to find low-energy transfer orbits to the Moon in the sixties, back when
engineers were still using two-body models. Such techniques were notably used in Belbruno
(a student of Moser) and Miller’s rescue of Japan’s Hiten mission in 1990-1991, after a failure
of one of the transmitters – see [FK18, §1.4] for a history.

The real breakthrough however, the one which turned symplectic geometry from a useful
framework to study the equations of motion into a perennial bridge between topology and
physics, happened in the eighties. Although the story which led to it is rich with great insights
and contributions, by Arnold, Gromov, Taubes, Rabinowitz,... [Hof21] this breakthrough can
mostly be traced back to one name: Andreas Floer (1956 - 1991).

Floer laid down a recipe for re-formulating the famous « Principle of Least Action » from
classical physics into algebraic topological terms, thus relating solutions of the equations of
motion to the topology of the underlying spaces these equations were written on.

✁ Example. In Chapter 9, we will be studying trajectories of collision in the Circular
Restricted Three-Body Problem. We will see that such trajectories can be modelled as paths
with ends in a Lagrangian Lcol, and that we can arrange them into an algebraic object

HW (Lcol)

called the Wrapped Floer Homology of Lcol. The Lagrangian Lcol has a well-known topology
(it is a cotangent fibre of the sphere). In particular, an o!-the-shelf theorem from [AS04]
will yield HW (Lcol) ↗= H(!S2), where H denotes singular homology, and !S2 the based loop
space of the sphere. Standard algebraic topology then tells us that

dimH(!S2) = ↘,

which will help us conclude existence of infinitely many trajectories of collision in the
Spatial Circular Restricted Three-Body Problem (Theorem C), under the assumption of a
twist condition.
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Of course, we skipped quite a few steps in the above "proof". Indeed, while Floer-theoretical
tools flourished and matured in the decades following their introduction, the gap to bridge
in order to be able to apply them to the Three-Body Problem remained wide, and thus our
story only really began in the early 2010s, with [Alb+12a; Alb+12b].

The above papers opened the door for the use of symplectic geometry in the study of the
Circular Restricted Three-Body Problem (CR3BP), by showing that low-energy level sets
were contact. This was another milestone. It told us that while the governing equations
could become very hard to track, we could appeal to a whole new range of tools from the
symplectic world to study their solutions (pseudo-holomorphic curves, Floer theory,...)

Still, even after [Alb+12a; Alb+12b], it took near a decade for such techniques to actu-
ally start being applied to the CR3BP, mostly under the impulse of the research groups of
Frauenfelder, Moreno, and van Koert. This ten-year gap is not so surprising, when one con-
siders the complexity of the matter at hand. The equations for the Three-Body Problem are
notoriously hard, and there exists a plethora of di!erent Floer-theoretical models, all equally
complicated, so that it was not a priori obvious which was the right one to use(1).

In this thesis, we begin from a model developed by Moreno & van Koert in [MK22a; MK22b],
combining Floer theory with a strategy discovered by Poincaré [Poi12] for finding trajectories
in the CR3BP. We introduce new theoretical tools to study open-ended trajectories, and
then improve Moreno & van Koert’s model by significantly relaxing most of the assumptions.
Finally, we use this improved model to study certain types of trajectories in the CR3BP:
trajectories of collision, and trajectories bi-normal to the xz-plane.

✂ Why do we still care about the Three-Body Problem?

The Three-Body Problem is old. As such it has been studied thoroughly, and we now know
that the equations are not integrable [Poi90; Yag24], which essentially means that we will
never be able to write down a complete set of solutions. However, the amount of numerical
work which has been done – especially since the advent of the computer – is colossal, and
soon one might start wondering whether there is still sense in trying to refine our models.
For a comparison, knowing the number ϖ up to about 40 decimals is enough to measure the
length of the observable universe up to the size of a hydrogen atom (physicists’ notion of a
small ϱ). So drawing inspiration, couldn’t we just call it quits, and content ourselves with our
current three hundred years of approximations for the Three-Body Problem?

To answer this, let us look at an example of high interest right now.

Picture: Encroaching Shadow (PIA17184), NASA, Cassini, 2010.

(1)It still isn’t, to some extent. Work done independently from this thesis in [Ruc23] recovers a slightly
di!erent version of Theorem C, from the example, using a di!erent model (Rabinowitz Floer Homology).
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Above is a picture of Enceladus, Saturn’s sixth largest moon. The white rays emanating from
it are actually plumes of liquid water shooting out from cracks in the surface, at an upward
velocity of about 500 to 1000 metres per second [Dor+24]. These plumes were first observed
in 2005 by NASA’s Cassini satellite, which happened to fly by the icy moon while on an
unrelated mission to study Saturn’s rings.

This discovery surprised the scientific world. Enceladus had garnered some interest in the
eighties, after the Voyager I and II fly-bys had hinted at the presence of geothermal activity.
Already then, a model proposed by Cook and Terrile [Smi+81] suggested the presence of a
subsurface ocean of liquid water to explain these observations. However, evidence remained
scarce, and the title of Saturn’s most popular moon remained Titan’s by a long shot.

That is, until Cassini’s 2005 observations tipped the balance. The mission was eventually
extended and re-routed, flying by Enceladus twenty-two times in the following decade. Sub-
sequent studies [al06; Tho+16; TMT20; Hao+22] confirmed the presence of a geothermally
active ocean of liquid water under the crust of Enceladus, rich in salt and phosphorus, with
an estimated depth of about 30 kilometres. This turned the moon into one of the prime
candidates for habitability and for the search for extra-terrestrial life in our solar system.
It is not the only candidate though. Europa – Jupiter’s fourth largest moon, twice as close
to Earth as Enceladus – is heavily suspected to harbour a similar subsurface ocean. ESA’s
Juice and NASA’s Europa Clipper missions, respectively launched in April 2023 and October
2024 as this thesis was being written, are currently on their way to study it.

Picture: Europa’s Stunning Surface (PIA19048), NASA, 2014

Europa Clipper is expected to reach Europa by 2030, and proceed to no less than 49 fly-bys
of the icy moon, as close as 25 kilometres from the surface. One way to generate such close
fly-by trajectories is by slightly perturbing collision trajectories, like the ones in Chapter 9.

Planning such missions requires high precision and trust in the mathematical models (let
us keep in mind the orders of magnitude: Europa is some 600 million kilometres from us).
This makes the need for long-term, rigorous forecasting ever increasing, motivating the search
for ever more precise qualitative and quantitative techniques.

Without further ado, let us present the layout and main results of this thesis. I am aware
that, no matter how much I tried to attenuate it, the di"culty curve in this manuscript is
quite steep. For the reader who is not yet convinced of the complexity of the Three-Body
Problem, I hope the next few pages can be of enlightenment.
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1.2 Outline of the thesis
This thesis is organised around three main axes:

Part I: Introducing the Floer-theoretical machinery:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Floer theory
pre-requisites

Defining Local
Wrapped Floer theory

Introduction

Literature review

New results

Part II: Deriving a few variants of the Poincaré-Birkho! theorem:

Chapter 5

Chapter 6

Chapter 7

Relative Poincaré-
-Birkho! theorem
The Weakened
Twist Condition

Degenerate Relative
Poincaré-Birkho! theorem

New results

Part III: Applying our results to the Three-Body Problem:

Chapter 8 Symplectic geometry in the
Three-Body Problem Literature review

Chapter 9

Chapter 10

Chapter 11

Collision trajectories

Bi-normal trajectories

Conclusion

New results

In this whole thesis, we work with the Circular Restricted Three-Body Problem (CR3BP).
This means that we study the motion of three bodies, which we call the Earth (E), the Moon
(M), and a Satellite (S), in three-dimensional space, assuming:

Assumption (Circular). The Moon moves in a circle around the Earth.

Assumption (Restricted). The satellite has mass m = 0.

The CR3BP is a reasonable model for a number of systems of interest in the space com-
munity: Earth-Moon-Spacecraft, Jupiter-Europa-Spacecraft, Jupiter-Ganymede-Spacecraft,
Saturn-Enceladus-Spacecraft,... as we shall see in Chapter 8.

✂ This thesis gave birth to three research papers: [ML24; ML25; LM25]. [ML24] corresponds
to Chapters 4, 5, and 9 of this manuscript, [LM25] corresponds to Chapters 6 and 7, and
[ML25] corresponds to Chapter 10.
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✂ Before we formally state the main results, let us briefly explain what each of them does:

• Theorems A1, A2: Local Wrapped Floer Cohomology is well-defined, and one can build
a spectral sequence from it which converges to the global Wrapped Floer cohomology
of the Lagrangian.

• Theorems B1, B2, B3: Di!erent variants of a Poincaré-Birkho! theorem for chords with
Lagrangian ends in a Liouville domain. Respectively: assuming Moreno & van Koert’s
twist condition, assuming a weakened twist condition, stated for the first time in this
thesis, and assuming a weakened twist condition on a degenerate Liouville domain.

• Theorem C: Existence of infinitely many trajectories of collision in the CR3BP, assuming
the Weakened Twist Condition.

• Theorem D: Existence of infinitely many trajectories bi-normal to the xz-plane in the
CR3BP, assuming the Weakened Twist Condition.

1.3 Main results

1.3.1 Local Wrapped Floer theory
In Chapter 4, we introduce the notion of Local Wrapped Floer Cohomology. This is an adapta-
tion of the already-existing Wrapped Floer Cohomology, whose construction we recall in Chap-
ter 3. By definition, Wrapped Floer Cohomology associates cohomology groups HW →(L) to
any "nice" Lagrangian in a Liouville domain W (exact, spin, with Legendrian boundary),
by choosing a Hamiltonian Ht : W ! R and studying flow lines with ends in L, or chords.
However, the way this cohomology theory is constructed is by essence global : it deals with
every chord at once.

The new feature of Local Wrapped Floer Cohomology is that it allows to assign a cohomology
HW →

loc(x) to a single chord x : [0, 1] ! W with ends in L. Precisely:

Theorem A1. Let (W,ε = dϑ) be a Liouville domain, L → W an exact spin Lagrangian
with Legendrian boundary, and Ht : W ! R a possibly degenerate Hamiltonian. Then, for
any chord x of H with ends in L, there is a notion of Local Wrapped Floer Cohomology:

HW →
loc(x)

defined as an invariant of the chord x (in the sense explained in §4.3).

The upshot of this result is that while standard Wrapped Floer Cohomology cannot be defined
with degenerate Hamiltonians, this version can. Indeed, if a Hamiltonian Ht : W ! R is
degenerate, we can still construct global Wrapped Floer Cohomology by collecting all of its
local cohomologies, and arranging them in a spectral sequence. Formally:

Theorem A2. Let (Ŵ , ε̂ = dϑ) be the completion of (W,ε = dϑ), and Ht : Ŵ ! R be
a Hamiltonian which is strongly convex at infinity (Assumption 3.68), and whose chords are
isolated. Denote by {Ak}k↑N their actions. There exists a spectral sequence with first page:

Ep,q

1 =






⊕

AH(x)=Ak

HW →
loc(x) p = 2k

0 p = 2k + 1

and which converges to HW →(L), the global wrapped Floer cohomology of L.

✃ The last two sections of Chapter 4, §4.3.1-§4.3.2, are then aimed towards applications of
the theory towards the Circular Restricted Three-Body Problem. We explain how one can
extract a numerically-computable invariant from HW →

loc(x) called the Floer number, and
how this invariant can be used in the numerical continuation of trajectories. This builds up
on work by Aydin, van Koert, Frauenfelder, Koh and Moreno ([Ayd23b; FKM23]) done for
periodic orbits, where they instead used local symplectic cohomology SH→

loc.
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1.3.2 Poincaré-Birkho! theorems
Part II is entirely dedicated to generalisations of the Poincaré-Birkho! theorem [Poi12; Bir13].
In particular, we prove three closely-related results:

Theorem B1. Let (W,ε = dϑ) be a connected Liouville domain, L → W be an exact
spin Lagrangian with Legendrian boundary, and f : W ! W be an exact symplectomorphism.
Further assume that:

• (Wrapped Floer Cohomology). dimHW •(L) = ↘;

• (Index growth). if dimW ≃ 4, then c1(W ) = 0, and (ςW,φ := ϑ|ωW ) is strongly
index-definite (Assumption 5.7). In particular, the contact structure ↼ = kerφ must be
globally trivialisable;

• (Twist condition) f is generated by a C2 Hamiltonian Ht : W ! R whose fixed points
are isolated, and which satisfies the twist condition, i.e.

XHt
= htRε for ht > 0 smooth.

Then f admits infinitely many interior chords with respect to L, of arbitrarily large order,
and which are not sub-chords of any periodic chord.

Theorem B2. Let (W,ε = dϑ) be a connected Liouville domain, L → W be an exact spin
Lagrangian with Legendrian boundary, and f : W ! W be an exact symplectomorphism.
Further assume that:

• (Wrapped Floer Cohomology). HW →(L) ⇐= 0 in infinitely many degrees;

• (Chern class). if dimW ≃ 4, then c1(W ) = 0.

• (Quantitative Weakened Twist Condition) f is generated by a C2 Hamiltonian
Ht : W ! R whose fixed points are isolated, and which satisfies the quantitative weak-
ened twist condition, i.e. Ht|ωW > 0, and

ςrHt|ωW > max
ωW

Ht

Then f admits infinitely many interior chords with respect to L, of arbitrarily large order,
and which are not sub-chords of any periodic chord.

Theorem B3. Let (W,ϑ,φ) be a connected degenerate Liouville domain, L → W be an exact
spin Lagrangian with Legendrian boundary, and f : W ! W be an exact symplectomorphism.
Further assume that:

• (Wrapped Floer Cohomology). HW →(L) ⇐= 0 in infinitely many degrees;

• (Chern class). if dimW ≃ 4, then c1(W ) = 0;

• (Weakened Twist Condition) f is generated by a Hamiltonian Ht : W ! R whose
fixed points are isolated, which is C2 on the interior of W but does not C1-extend to the
boundary, and such that:

ςrHt > 0

in a neighbourhood of ςW .

Then f admits infinitely many interior chords with respect to L, of arbitrarily large order,
and which are not sub-chords of any periodic chord.
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Let us briefly comment on each of these results:

• Theorem B1 is based on the model and assumptions of Moreno & van Koert [MK22a].
In particular, it adapts their main theorem from symplectic to Wrapped Floer homology,
hence allowing one to study open-ended trajectories with prescribed boundary condi-
tions, instead of periodic orbits. However, it has the same built-in issues as Moreno &
van Koert’s model: it relies on a very constraining twist condition, on a strong index-
definiteness assumption (which requires ↼|ωW = kerφ to be trivialisable), and it is not
applicable to the Circular Restricted Three-Body Problem because the latter requires
us to work on a degenerate Liouville domain.

• Theorem B2 improves Theorem B1 by relaxing the twist condition, and dropping the
strong index-definiteness assumption. These already constitute major improvements
toward applicability, as the Weakened Twist Condition is an open condition (whereas
the twist condition wasn’t), and we no longer need to assume trivialisability of ςW .
However, we still cannot apply Theorem B2 to the Circular Restricted Three-Body
Problem, because it cannot deal with degenerate Liouville domains.

• Theorem B3 adapts Theorem B2 to degenerate Liouville domains. As such, it is the
right model for the Circular Restricted Three-Body Problem, modulo the Weakened
Twist Condition. We can rephrase this theorem by using the dictionary between "C2-
Hamiltonian twist maps on a degenerate Liouville domain" and "C0-Hamiltonian twist
maps on a (non-degenerate) Liouville domain" explained in Chapter 7, and thus obtain:

Theorem B3 bis. Let (W,ε = dϑ) be a connected Liouville domain, L → W be an exact
spin Lagrangian with Legendrian boundary, and f : W ! W be an exact symplectomorphism.
Further assume that:

• (Wrapped Floer Cohomology). HW →(L) ⇐= 0 in infinitely many degrees;

• (Chern class). if dimW ≃ 4, then c1(W ) = 0;

• (Weakened Twist Condition) f is generated by a C2-Hamiltonian Ht on int(W ),
whose fixed points are isolated. We further assume that both f and Ht admit C0-
extensions to the boundary, such that

ht := φ(XHt
) > 0, (1.1)

near ςW , and ht ! ↘ as we approach ςW .

Then f admits infinitely many interior chords with respect to L, of arbitrarily large order,
and which are not sub-chords of any periodic chord.
Each of the above theorems admits a natural adaptation to the closed orbit case, instead
of open-ended trajectories, by simply replacing Wrapped Floer Cohomology by Symplectic
Cohomology (see [MK22a] for Theorem B1 and [LM25] for Theorems B2 & B3).

⇒Remark (Weakening the assumption on HW →). In each of these three theorems, we assume
that HW → is non-vanishing in infinitely many degrees (except in Theorem B1, where we simply
assume dimHW → = ↘). One could actually make these results slightly stronger, by adapting
Ginzburg’s arguments using symplectically degenerate maxima from his proof of the Conley
conjecture [Gin10](2), and actually only require that HW → be non-zero. It is still conjectured,
at the time of writing this thesis, that HW → ⇐= 0 ⇑⇓ dimHW → = ↘.

The rest of the thesis is then dedicated to applying these techniques to the Circular Restricted
Three-Body Problem, to try and study specific types of trajectories.

(2)From which our results are inspired.
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1.3.3 Collision trajectories in the Three-Body Problem
In Chapter 9, we prove:

Theorem C. If the Circular Restricted Three-Body Problem satisfies the Weakened Twist
Condition, then for every energy c < H(L1) + ϱ, there exist infinitely many trajectories of
spatial (consecutive) collision near the Earth and Moon, of arbitrarily large length.

The proof consists in reducing the problem to a situation in which we can apply Theorem B3.
More precisely, in the case c < H(L1), we show that collision trajectories can be modelled as
Hamiltonian chords with ends in an appropriate Lagrangian Lcol inside a degenerate Liouville
domain Pϑ/2

↗= DϖS2 (Pϑ/2 is a page of the CR3BP open book [MK22b]). As we shall see,
Lcol is nothing but a cotangent fibre in DϖS2, so that by [AS04] we have

HW →(Lcol) ↗= H→(!S2),

which we can easily show to satisfy the assumptions of Theorem B3. The proof in the case
H(L1) < c < H(L1) + ϱ is exactly the same, except Pϑ/2

↗= DϖS2ωDϖS2.

1.3.4 Bi-normal trajectories in the Three-Body Problem
In Chapter 10, we prove:

Theorem D. If the Circular Restricted Three-Body Problem satisfies the Weakened Twist
Condition, then for every energy c < H(L1) + ϱ, there exist infinitely many trajectories bi-
normal to the xz-plane near the Earth and Moon, of arbitrarily large length.
We call a trajectory −!x (t) bi-normal to the xz-plane (where x is the Earth-Moon axis, and
the xy-plane the Earth-Moon plane) if there exist times t0 ⇐= t1 such that −!x (t0) and −!x (t1)
are normal to the xz-plane, i.e.

y(tj) = 0 = ẋ(tj) = ż(tj), j = 0, 1

where the trajectory is given by −!x (t) =
(
x, y, z, ẋ, ẏ, ż

)
(t). In other words, the trajectory of

the satellite is normal to the xz-plane at two distinct points in time.

Earth-Moon plane

xy

z

Picture from [ML24].

The proof strategy for Theorem D is very similar to that of Theorem C: we find an appropriate
Lagrangian in Pϑ/2, and show that it satisfies the assumptions of Theorem B3.

We will conclude Chapter 10 with a discussion on:

Conjecture 1. Assuming the Weakened Twist Condition or a variation thereof, there exist
infinitely many trajectories bi-normal to the x-axis in the Spatial Circular Restricted Three-
Body Problem, in the low-energy range and near the primaries.

This is the analogue to Theorem D for Reeb chords with Legendrian ends, though beyond
the scope of current Floer-theoretical machinery.
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1.4 From classical mechanics to symplectic geometry
Symplectic geometry appeared in the later half of the twentieth century, out of a desire
to develop a rigorous mathematical framework for the equations of classical mechanics. It
allowed to rewrite these equations in a concise way, on any manifold.

• Definition. A manifold M is a geometric space on which one can still do calculus. More
precisely, it is a second-countable, Hausdor! space such that around every point p ⇔ M , one
can find an open neighbourhood U of p, and a di!eomorphism

↽ : U
↓=−! V

where V is an open set in Rn. This collection of charts (U ,↽), consisting of open neighbour-
hoods and di!eomorphisms (which we ask to be compatible wherever they overlap) allows
one to pull back the notions of derivatives, integrals,... from Rn to M .

The goal of symplectic geometry is to provide a dictionary between physics and geometry:
enabling us to translate notions from classical physics into rigorous mathematical concepts.

1.4.1 The Two-Body Problem
✁ Example 1.1. Assume we have two objects, say the Earth and Moon (figure not to scale),
which we represent by points in three-dimensional space, R3.

Without loss of generality, assume the Earth is cen-
tred at 0 and has mass 1, while the Moon has posi-
tion and momentum q, p ⇔ R3, and mass m.

Define the angular momentum L = q ↖ p of the
Moon. One can easily show that L is conserved
along the motion. In particular, the Earth and
Moon always move in a fixed plane (the ecliptic),
and we can hence reduce our study to the plane R2.

There are three standard, equivalent ways to go about this problem in classical mechanics:
the Newtonian and Hamiltonian formulations, which we will explore now, and the Lagrangian
formulation, which we will discuss in Chapter 2, as it is the starting point of Floer theory.

A) (Newtonian formulation) Using Newton’s original theory [New87], we can write down
the force applied by the Earth on the Moon as:

F = ↑G
m

|q|3 q = ↑G
m

|q|2 q̂ (q̂ := q/|q|), (1.2)

where G ↙ 6.674 · 10↔11kg↔1 ·m3 · s↔2 is a universal constant of the universe.
To solve for the orbit of the Moon, one then simply integrates Newton’s second law:

F = mq̈, (1.3)

which yields conical orbits (ellipses, parabolas, or hyperbolas). Formally, one has to solve a
second-order ODE whose solutions will be linear combinations of sines and cosines.

B) (Hamiltonian formulation) Some one hundred and fifty years later, Hamilton refor-
mulated Newton’s laws into a system of PDEs. We will directly present the more modern
approach of his work, since it is the foundation for symplectic geometry. First, one definition:

• Definition 1.2. Given M a manifold, a flow ↽ : R↖M ! M is an R-family of di!eomor-
phisms ↽t : M ! M , such that ↽0 = id, and ∝s, t ⇔ R : ↽s ′ ↽t = ↽s+t

The idea of Hamilton’s formulation of classical mechanics is to represent the physical evolution
of the object as a flow on phase space.
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• Definition 1.3. Given an object moving in
position space Rn, we define the phase space:

M = R2n = Rn ∞ Rn

(q , p)

where q ought to be thought of as position, and
p as momentum. One can then write down the
total energy of our system

H := Kinetic Energy + Potential Energy

as a function H : M ! R, which we call the
Hamiltonian.

Kinetic energy is given by K = 1
2 ∈p∈

2, while the potential is a function V = V (q) satisfying
F = ↑↔V , where F is a Newtonian force. In the case of the Two-Body Problem, where F is
given by (1.2), we get:

H : R4\{q = 0} −! R : (q, p) #−!
1

2
∈p∈2 ↑G

m

|q| . (1.4)

Note that ςqiH = ςqiV = ↑ς2
qi
F , and ςpi

H = pi, so that we can rewrite Newton’s second
law F = mq̈ as a system of PDEs:





q̇i = ςpi

H

ṗi = ↑ςqiH
(1.5)

called the Hamiltonian equations of motion. Given any initial conditions (q0, p0) ⇔ M in
phase space, we can consider the trajectory

⇀ : t #! (qi(t), pi(t)), ⇀(0) = (q0, p0)

determined by the equations (1.5). This describes the trajectory of the physical object in
phase space. Following all these trajectories defines a flow ↽t on M , formally:

• Definition 1.4. The Hamiltonian flow is the flow ↽t : M ! M defined by:

d

dt
↽t =

(
ςpi

H

↑ςqiH

)
.

Its trajectories, or flow lines, are by definition solutions to the Hamiltonian equations of
motion – i.e. physical trajectories of our system.

In geometric language, we say that the Hamiltonian flow is generated by the vector field

XH :=

(
ςpi

H

↑ςqiH

)
.

XH , thus defined, is called the Hamiltonian vector field. As it happens, we can simplify
its expression to make the equations more appealing. Indeed, let us introduce the standard
almost complex structure (Definition B.1) J0 on M = R4 by:

J0ςqi = ςpi
, J0ςpi

= ↑ςqi . (1.6)

Formally, it can be defined as the pullback of i∞i under the obvious di!eomorphism R4 ! C2.
Then, observe that:

XH =

(
ςpi

H

↑ςqiH

)
= ↑J0↔H,
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so that we can rewrite the classical equations of motion (1.5) as:

d

dt
↽t = XH = ↑J0↔H (1.7)

which is essentially a system of partial di!erential equations on phase space M = R4\{q = 0}.
Let us now set aside the example of the Two-Body Problem for a while, and explain how the
above intuition can be generalised to a much wider class of spaces: symplectic manifolds,
which should be viewed as generalisations of phase space.

1.4.2 Symplectic formalism
• Definition 1.5. An even-dimensional manifold M is called symplectic if it can be endowed
with a closed, non-degenerate 2-form ε, i.e. dε = 0 and ε induces a bundle isomorphism

TM
↓
−! T ϖM

between the tangent and cotangent bundles of M .

• Definition 1.6. Let (M,ε) be symplectic. A Hamiltonian is a function H : M ! R.

• Definition 1.7. Given a C1 Hamiltonian H, its Hamiltonian vector field is defined as
the unique vector field XH satisfying XH ⌐ ε := ε(XH , ·) = ↑dH.

Now, an almost complex structure J on M is a bundle endomorphism J : TM ! TM such
that J2 = ↑id on every tangent space, so that it essentially mimics the action of the complex
structure i =

∋
↑1. Such a J is called compatible (Definition B.3) with the symplectic form

ε if Jϖε = ε, and g(·, ·) := ε(·, J ·) defines a Riemannian metric on M .
One can easily show (Lemma B.4) that every symplectic manifold (M,ε) admits a com-

patible almost complex structure, allowing us to re-write XH as:

Corollary 1.8. If (M,ε) is equipped with a compatible almost complex structure J , then:
XH = J↔H,

where ↔ denotes the gradient associated to the metric g(·, ·) := ε(·, J ·).

⇒Remark 1.9. Note that this expression di!ers from the one derived in the previous sub-
section by a sign, since we previously had XH = ↑J↔H. Technically, this means we are now
working with the backwards Hamiltonian flow. We choose this sign convention for the rest of
the thesis, as it will simplify our calculations.

As we saw in Example 1.1, the flow of XH is called the Hamiltonian flow. Let us write it
as ↽t, and state and prove one famous physical principle:

Proposition 1.10 (Conservation of energy). Energy remains constant along the motion. i.e.
for every c ⇔ R, the energy level set H↔1(c) is invariant under the flow ↽t.

Proof. This follows from the fact that:

d

dt

(
H ′ ↽t

)
|t=0 = dH

(
d↽t

dt

∣∣∣∣
t=0

)
= dH(XH) = ↑ε(XH , XH) = 0.

• Definition 1.11. Let (M,ε), (W,!) be symplectic manifolds. A symplectomorphism

f : (M,ε) −! (W,!)

is a di!eomorphism f : M
↓=−! W such that fϖ! = ε.

✁ Example 1.12. Let H : M ! R be a Hamiltonian, and ↽t its flow. Then ⇁ := ↽t=1 is a
symplectomorphism. It is often called the Hamiltonian di!eomorphism associated to H.
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We could cite many more theorems in elementary symplectic geometry. For example, Dar-
boux’s theorem tells us that all symplectic manifolds of the same dimension are locally sym-
plectomorphic to each other. This implies that there exist no local symplectic invariants, and
that every symplectic manifold locally looks the same. Standard examples are:

✁ Example 1.13. The prototypical symplectic manifold is (R2n,ε0), where ε0 is defined as
ε0(·, ·) = g(J0·, ·), with g the standard Riemannian metric on R2n, and J0 the standard almost
complex structure (1.6). Choosing coordinates {qi, pi} for R2n, one can easily compute:

ε0 =
n∑

i=1

dqi ↓ dpi.

✁ Example 1.14 (Cotangent bundles). Let Q be any smooth manifold with local coordinates
q1, . . . , qn. Consider its cotangent bundle T ϖQ, with coordinates (q, p), and define:

ϑ := ↑
∑

i

pi dqi,

a 1-form on T ϖQ which we call the Liouville form. Then,

ε := dϑ =
∑

i

dqi ↓ dpi

defines an exact symplectic form on T ϖQ. Cotangent bundles are the natural place where
to do classical mechanics. Indeed, if we assume that a physical object is moving in position
space Q, then T ϖQ can be viewed as its phase space (interpreting q as position and p as
momentum), so that one can write down the Hamiltonian equations of motion on T ϖQ, as we
did in the previous subsection with Q = Rn, T ϖQ ↗= R2n.

This concludes our brief overview of Symplectic Geometry. We refer to §A.1 for further discus-
sion on Hamiltonian dynamics, and for a brief introduction to contact geometry (sometimes
referred to as the ’odd-dimensional cousin of symplectic geometry’). We will now proceed to
introduce the cornerstone of this thesis: Floer theory.
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Chapter 2

Foundations of Floer theory

2.1 Short history and motivation
The words « Floer theory » have now become an umbrella term for many di!erent construc-
tions, all tracing back to foundational work of Andreas Floer in the 1980s. The first half
of the twentieth century had already seen the birth of Morse theory, the ancestor of Floer
theory, which gave a topological interpretation of critical points of functions.

• Definition 2.1. Let M be a manifold and f : M ! R be a di!erentiable function. A point
x ⇔ M is called a critical point of f if f ↗(x) = 0.

The goal of Morse theory is to extract algebraic invariants from critical points of f . These
algebraic invariants come in the form of groups, and they turn out to be independent of the
choice of f , only carrying information about the topology of M . As such if we understand
the function f well, then we can leverage knowledge about its critical points to study M , and
vice versa. Let us draw a parallel with physics.

✁ Continuation of Example 1.1. When discussing the Two-Body Problem, we men-
tioned that there were three standard ways of solving a problem in classical mechanics: the
Newtonian formulation, the Hamiltonian formulation, and the Lagrangian formulation. We
discussed the first two in Chapter 1, let us now address the third.

Consider a physical object moving in position space Q, and let M = T ϖQ denote phase
space. Given a path x : [a, b] ! TQ, we define its action:

A(x) =

∫

x

K ↑ V =

∫
b

a

(
K ↑ V

)
(x(t)) dt, (2.1)

where K denotes kinetic energy and V potential energy. Then, we have:

Principle 2.2 (Principle of Least Action). Physical trajectories of our system are those that
extremise the action, i.e. the paths x such that dA(x) = 0.

⇒Remark. Despite the name of the principle, which stuck since its original formulation by
Maupertuis, we are not only interested in minima of the action, but indeed in every possible
extremum. To state it more simply: we are looking for critical points of A.

The action functional A should be viewed as the energetical-cost it would for take an object
to travel along a given trajectory. Therefore, the Principle of Least Action should be viewed
as the universe trying to optimise the energetical cost of anything it does.

✃ The reason we drew this parallel between Morse theory and the Principle of Least Action
is because in both cases we are interested in critical points. The "only" di!erence is that in
Morse theory, we study functions on finite-dimensional manifolds, whereas the action func-
tional A is defined on the space of paths on M , C↘([a, b],M), which is infinite-dimensional.

The idea of adapting the construction and defining a ’Morse theory for action functionals’
was already being discussed in the late 1970s, when Andreas Floer was still but an undergrad.
However, the technical di"culties one needed to overcome to establish such a theory were
deemed too great, and the task hopeless.
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« [T]his variational principle is very degenerate, [...] and is certainly not suitable for an
existence proof. »

Moser, Periodic orbits near an equilibrium and a theorem by Alan Weinstein [Mos76]

At that time, there was large interest in the symplectic community for the Arnold conjecture,
which hypothesised a relation between periodic orbits of a physical system and the topology
of the underlying phase space:

Conjecture (Arnold). Let (M,ε) be symplectic, and H : M ! R be a Hamiltonian. Then:

#{1-periodic orbits of H} ≃
dimM∑

i=0

dimHi(M),

where H→(M) denotes the singular homology of M , if H is non-degenerate. If H is degenerate,
then we replace H→(M) by the Morse homology of a Morse function on M .

The work of Arnold can in many ways be viewed as the foundation of symplectic geometry,
and this conjecture (still far from being solved in full generality(1)) as one of its pillars. The
interest for it was high in the 1970s for a di!erent reason however. In 1978, Eliashberg, then
living in the USSR and unable to communicate with mathematicians outside the country,
found a proof of the Arnold conjecture on surfaces. With the help of Katok, he managed
to smuggle out an incomplete draft of his proof to Gromov, who brought it to the attention
of the Parisian symplectic community. (For a detailed and fascinating account of the events
leading up to the discovery of Floer theory, we refer to Hofer’s talk [Hof21]).

A few years later, as he was finishing his graduate studies, Floer believed he could prove the
Arnold conjecture for a wide class of manifolds, namely any compact symplectic manifold,
as long as he could rule out a « bubbling o! » phenomenon. His construction was highly
technical, relying on an extensive use of pseudo-holomorphic curves, a tool barely just intro-
duced by Gromov in [Gro85], and on a number of very technical arguments from topology
and functional analysis (work by Taubes, Uhlenbeck, Conley, Zehnder,...)

Floer gained instant recognition in the mathematical world for his construction. The com-
munity very quickly recognised that his work did far more than proving the Arnold conjecture:
it provided a general recipe for translating variational problems into topological ones. Be-
fore Floer’s original Floer theory was even written up (this came later, in a series of papers
[Flo88a; Flo88b; Flo89a; Flo89b]) everyone in the geometrical world was already dreaming
of adapting it to their own favourite problem. Unsurprisingly, the next two decades saw the
birth of many a flavour of Floer theory. To list but a few:

Theory Objects of study
Hamiltonian Floer homology
Floer (1980s)

Periodic orbits in a closed symplectically aspherical
manifold.

Lagrangian Floer homology
Floer (1980s)

Lagrangian intersections in a closed symplectically
aspherical manifold.

Embedded contact homology (ECH)
Hutchings & Taubes (2000s)

Reeb dynamics in the symplectisation of a 3-fold.

Heegaard-Floer homology
Ozsváth & Szabó (2000s)

Knots and 3-folds.

Symplectic homology
Hofer & Wysocki & Floer (1990s)

Periodic orbits in a Liouville domain.

Wrapped Floer homology
Abouzaid & Seidel, Abbondandolo & Schwarz
(2000s)

Lagrangian intersections in a Liouville domain.

(1)The version for non-degenerate Hamiltonians is widely considered to have been solved, thanks to work by
Fukaya-Oh-Ohta-Ono over Q, and Abouzaid-Blumberg & Bai-Xu over Z.
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In this thesis, we will mainly be concerned with the last two entries in the table: symplectic
and Wrapped Floer homologies, developed in the 1990s and 2000s. These adapt Floer’s
original work (which essentially took care of the first two entries) to Liouville domains, a
specific type of compact symplectic manifolds with boundary.

Before we start introducing them though, we will start with the "easy" cases: Hamiltonian
and Lagrangian Floer homologies. And before we even do that, we will formally introduce
Morse homology, since it serves as the prototype for any Floer theory.

2.2 Finite-dimensional prototype

2.2.1 Homology and cohomology
For completeness, let us briefly recall what a homology theory is.

• Definition 2.3 (Homology). Let R be a commutative ring, and (Cn) a sequence of R-
modules (e.g. vector spaces, abelian groups,...) endowed with morphisms:

. . .
ωn+3
−! Cn+2

ωn+2
−! Cn+1

ωn+1
−! Cn

ωn−! Cn↔1
ωn→1
−! . . . (2.2)

Then (C→, ς) is called a chain complex if, at every step of the way, ς2 = 0. In other words,
∝n : im(ςn) △ ker(ςn↔1). This motivates the definition:

Hn(C→, ς) :=
ker {ςn : Cn −! Cn↔1}

im {ςn+1 : Cn+1 −! Cn}
.

We call Hn the n-th homology group of the chain complex (C→, ς). We often use the
asterisk * as a placeholder for the index, and hence write H→ for simplicity.
ς is called the di!erential of the chain complex. Then, an element [x] in H→ will be the

equivalence class of an element x in C→ such that ςx = 0. We call such an x ⇔ C→ closed.
[x] being 0 in H→ corresponds to there existing y ⇔ C→+1 such that ςy = x, in which case

we call x ⇔ C→ a boundary.

⇒Remark. It is sometimes more practical to work with the dual picture, cohomology. Define
C→ := HomR(C→, R), the dual of the module C→. We then obtain:

. . .
d

−! Cn↔1 d
−! Cn d

−! Cn+1 d
−! Cn+2 d

−! . . . (2.3)

which still satisfies d2 = 0, where d is the dual of ς. We can define:

H→(C→, d) :=
ker

{
d : Cn −! Cn+1

}

im {d : Cn↔1 −! Cn} ,

called the cohomology of (C→, d). In practice, when constructing a (co)homology theory
from actual problems, the theory may present in either form. For example, singular/simplicial
theory, relating to triangulations of topological spaces, naturally arises as a homology theory
[Hat02]. Meanwhile de Rham theory, relating to integration of di!erential forms, rather lends
itself to cohomology [Lee12]. The bridge between homology and cohomology is given by the
now standard Universal Coe"cients Theorem [Hat02], and it is no issue passing from one to
the other. In this thesis, we will work exclusively with cohomology, by convention.

2.2.2 Morse cohomology theory
We do not prove any results in this subsection, and refer to [AD13, Ch. 1-4], or most any
Morse theory textbook for proofs and a rigorous exposition.
Let M be a smooth manifold, and f ⇔ C↘(M,R). We call x ⇔ M a critical point of f if
f ↗(x) = 0, and we call this critical point degenerate if Hessxf is singular. (See Example
A.28 for the definition of the Hessian on a manifold). We call the function f Morse if it has
no degenerate critical points, which is a generic condition.
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a

b

c

d

Rf

The main idea behind Morse theory is that given any
Morse function f : M ! R, the critical points of f
record qualitative changes in the topology of M .

For example, if M = T2 is a torus, and f : M ! R the
height function, then f has four critical points, which
we denote a, b, c, d from top to bottom.
a is the maximum of f , d its minimum, and b and c
saddle points.

Morse theory constructs a cohomology theory from these
critical points, and shows that it is isomorphic to sin-
gular cohomology. In other words, critical points of a
generic function f are determined by the topology of
M , and vice versa.

✂ We briefly sketch the construction of Morse theory. For simplicity, let us work over the
coe"cient ring R = Z. Since f is Morse, all its critical points are non-degenerate. Hence,
given x ⇔ Crit(f), we can define its Morse index µ(x) ⇔ N as the number of negative
eigenvalues of Hessxf . We then define, for n ⇔ N = {0, 1, . . . }:

CMn(M, f) :=
⊕

x↑Crit(f)
µ(x)=n

Z ▽x̸ .

i.e. CMn(M, f) is defined as the free Z-module (abelian group) generated by critical points
of f of index n. In order to define a cohomology theory though, we still need a di!erential
d : CMn↔1 ! CMn, i.e. a map from formal sums of critical points of degree n↑ 1 to formal
sums of critical points of degree n.

We construct such a map by following flow lines of ↑↔f . Indeed:

Lemma 2.4. Let f : M ! R be Morse(2), and u : R ! M be a flow line of ↑↔f , i.e.

du

ds
= ↑↔f(u(s)).

Then u ends in critical points of f with distinct indices, i.e.

lim
s!↔↘

u(s) = x, lim
s!+↘

u(s) = y,

where x, y ⇔ Crit(f), and µ(x) ⇐= µ(y).

⇒Remark 2.5. The way one should imagine this, in the case where f : M ! R is the height
function of the torus is that we are pouring water onto our manifold from above, and that
flow lines of ↑↔f correspond to trajectories of steepest descent of the water.

The reason the torus on the picture is slightly tilted, and not purely vertical, is to avoid
flow lines between points of same index. Indeed, tilting the torus ensures that there are no
trajectories from one saddle point to the other. This is, in crude terms, why we impose the
Morse-Smale condition mentioned in the footmark.

✃ Given two critical points x and y of f , we can define the moduli space:

M̂(x, y) :=


u : R ! M

∣∣∣∣
u is a trajectory of ↑↔f and
lim

s!↔↘
u(s) = x, lim

s!+↘
u(s) = y


,

which can be shown to be a smooth manifold of dimension µ(x) ↑ µ(y). Elements in this
moduli space naturally carry a parametrisation (they are maps R ! M : s #! u(s)), which
induces a free action R↫M̂(x, y). Quotienting by it yields

(1)Morse-Smale actually, which is a slightly stronger, but still generic condition; see Remark 2.5.
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M(x, y) := M̂(x, y)/R,

whose points are in one-to-one correspondence with Morse trajectories between x and y; and
which is now a manifold of dimension µ(x) ↑ µ(y) ↑ 1. In particular, if x and y are critical
points of consecutive indices, M(x, y) is a 0-dimensional manifold. One can show it to be
compact, so that there are finitely many Morse trajectories between x and y.

• Definition 2.6. The Morse di!erential is defined, for every n, as the map:

d : CMn↔1(M, f) −! CMn(M, f) (2.4)

y #−!
∑

x↑CMn(M,f)

ϱ(x, y)x

where ϱ(x, y) is the oriented count of trajectories in M(x, y). One needs to be a bit careful
in order to define this orientation (see [AD13]), but for simplicity, one may choose to work
over the field of coe"cients R = Z/2Z, so that ϱ(x, y) simply becomes the mod 2 count of
trajectories between x and y, and orientation becomes irrelevant.

✁ Example 2.7. To return to our visual example of the height
function f on the torus: the maximum a has index µ(a) = 2,
while µ(d) = 0, and µ(b) = µ(c) = 1.

On the picture, we have drawn trajectories of the flow ↑↔f be-
tween critical points of consecutive indices (in blue trajectories
flowing into b, in gray trajectories flowing into c, and in pink
trajectories flowing into d).
Now say that we want to construct the Morse cohomology of
f : M ! R, with coe"cients in R = Z/2Z. By (2.4), to define
the Morse di!erential d of a point it su"ces to count incoming
trajectories into this point modulo 2. Therefore:






da = 0

db = dc = 2a = 0

dd = 2b+ 2c = 0

a

b

c

d

Therefore, the Morse complex

0
d0−! CM0(M, f)

d1−! CM1(M, f)
d2−! CM2(M, f)

d3−! 0

actually becomes

0
0

−! Z/2Z 0
−! (Z/2Z)2 0

−! Z/2Z 0
−! 0,

thus yielding cohomology groups:

H0(M, f) =
ker d0
im d↔1

=
Z/2Z
0

= Z/2Z,

H1(M, f) =
ker d1
im d0

=
(Z/2Z)2

0
= (Z/2Z)2,

H2(M, f) =
ker d2
im d3

=
Z/2Z
0

= Z/2Z.

This concludes the example.
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✃ In the above example, we trivially had d2 = 0, which remember from Definition 2.3 is
essential for constructing a cohomology theory. However, in general, one has to do quite some
work to achieve this result. Indeed:
We mentioned earlier that if x and y are points of consecutive indices, M(x, y) is a compact
0-dimensional manifold, and hence finite. However, when µ(x) ↑ µ(y) > 1, this manifold is
no longer compact. This is fixed by the following proposition:

Proposition 2.8 (Compactification of moduli spaces). For µ(x)↑µ(x) > 1, M(x, y) can be
compactified by adding broken trajectories.

Let us sketch the intuition behind this result. Say x and y are such that µ(x) ↑ µ(y) = 2.
Then M(x, y)/R has dimension 1, meaning that we have a 1-dimensional family of trajectories
connecting x and y.

Visually, the claim is that this family θ #! uϱ of trajectories will con-
verge, to either side (θ ! ±↘), to a broken trajectory; i.e. the
concatenation of two smooth trajectories passing through a point of
intermediary index.

More formally, say that µ(x) = k + 1 and µ(y) = k ↑ 1, then:

ςM(x, y) =


µ(z)=k

M(x, z)↖M(z, y),

which is what we mean by « we compactify M(x, y) by adding broken trajectories ». In the
setup of Floer theory, this will be referred to as Gromov compactness (Lemma 3.41). The
picture above was borrowed from Chapter 3 of [AD13], to which we refer for proofs.

Corollary 2.9. d2 = 0.

Proof. Let c be a critical point of our Morse function. Unfolding the definitions gives:

d2c =
∑

µ(a)=µ(c)=+2




∑

µ(b)=µ(c)+1

ϱ(a, b)ϱ(b, c)



 a.

Therefore, to show that d2c = 0, it su"ces to show that for every a with index 2 higher
than c, we have

∑

µ(b)=µ(c)+1

ϱ(a, b)ϱ(b, c) = 0. (2.5)

This corresponds to the cardinality of


µ(b)=µ(a)↔1

M(a, b)↖M(b, c), which by Proposition

2.8 is nothing but the boundary of M(a, c). However, dimM(a, c) = µ(a)↑ µ(c)↑ 1 = 1.
Compact 1-dimensional manifolds are completely classified: M(a, c) must be a disjoint
union of intervals and circles. It is an easy exercise to show that the oriented count of
boundary points of such a manifold is zero.

Thanks to this corollary, we can now define:

• Definition 2.10. Morse cohomology HM→(M, f) is defined as the cohomology of the
complex (CM→, d), for any Morse-Smale function f : M ! R.

One of the most marvellous results is then that Morse homology captures the changes in
topology of the manifold M . More precisely:

Theorem 2.11 (Isomorphism with singular homology). If M is compact and f is Morse-
Smale, then HM→(M, f) ↗= H→(M), where H→ denotes singular cohomology.
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✂ Before we leave Morse theory aside to focus on infinite-dimensional generalisations, let us
briefly summarise the recipe we just used to construct it:

1. Choose a generic function f : M ! R, and define an index µ : Crit(f) ! Z.

2. Study trajectories of du/ds = ↑↔f
(
u(s)

)
. Define the moduli spaces of solutions, and

show that these are smooth manifolds, which compactify nicely.

3. The previous point shows that if we define a co-chain complex

CM→(M, f) := {x ⇔ Crit(f) | µ(x) = ∗} ,

along with a di!erential d counting anti-gradient trajectories, then d2 = 0, allowing us
to define the cohomology groups

HM→(M, f) :=
ker d→

im d→↔1
.

4. By compactness of M , we can show that these modules are independent of f generic.

2.3 Elementary Floer theories
The recipe for a Floer theory is philosophically the same as for a Morse theory. We will,
in the rest of this chapter, expose the main ideas behind Hamiltonian and Lagrangian Floer
theories. Both of these are standardly defined assuming:

Assumption 2.12. (M,ε) is a closed symplectically aspherical manifold, meaning that M
is compact without boundary, and that every 2-sphere has symplectic area zero, i.e. :

∝u : S2 ! M :

∫

S2
uϖε = 0.

2.3.1 Hamiltonian Floer theory
We had already motivated this theory at the beginning of the chapter, as a way of topologically
reformulating the Principle of Least Action in physics. More precisely:

✃ Let (M,ε) be a manifold satisfying Assumption 2.12, and Ht : M ! R a Hamiltonian.
Say that we are looking for periodic orbits of this system.
Then we can write down an action functional:

AH : C↘(S1,M) −! R : x #−! ↑
∫

D2

x̃ϖε +

∫

S1
Ht (x(t)) dt, (2.6)

where x̃ : D2 ! M is a capping disk of x, i.e. ςim(x̃) = im(x). This generalises the standard
action from classical physics, from (2.1). By the principle of least action (Principle 2.2),
physical trajectories are exactly the critical points of AH .

In other words, periodic orbits of the system are the same as critical points of

AH : C↘(S1,M) −! R.

Let us therefore mimic the constructions we did for Morse theory, and try to construct a
cohomology theory from these critical points. The recipe will be exactly the same:
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Principle 2.13 (General recipe for a Floer theory).

1. Analytically study critical points of AH , and define an index µ : CritAH ! Z.

2. Study trajectories of ςsu = ↑↔AH

(
u(s)

)
. Define the moduli spaces of solutions, and

show that those are manifolds which compactify in a nice way.

3. Define the co-chain complex

CF →(M,H) :=
{
x ⇔ CritAH

∣∣µ(x) = ∗
}
, (2.7)

with a Morse-like di!erential. Then the previous point shows that d2 = 0, and so we
can define a cohomology theory

HF →(M,H) := H→(CF →, d),

called Hamiltonian Floer Cohomology, which detects 1-periodic orbits of our phys-
ical system.

4. It remains to show, like in Morse theory, that we have some sort of invariance statement.
In particular, using closedness of M , one can show that HF →(M,H) is independent of
the choice of H. Furthermore, if H is su"ciently C2-small, then Hamiltonian Floer
cohomology is isomorphic to Morse cohomology.

We, of course, sweep quite a bit of technicalities under the rug. We will not rigorously go
through the construction of Hamiltonian Floer homology, as we will essentially reproduce the
same recipe in Chapter 3 in full details, in the case of Wrapped Floer Homology. However,
let us briefly expand on each of these four steps, in an objective to hopefully enlighten the
reader’s intuition. For a thorough exposition, see [AD13, Ch.6-11].

1. The action functional is a map AH : C↘(S1,M) −! R. Hence, its critical points are
period 1 loops x : S1 ! M , which will be the elements of our homology theory. It is
a relatively easy exercise in analysis to compute dAH ,↔AH , and HessxAH (we carry
out these calculations in Chapter 3, for a very similar AH), from which one can deduce
analytical criteria for an orbit to be critical, or degenerate.

• Definition 2.14. A periodic orbit x is called degenerate if HessxAH is singular.
Equivalently, if the linearisation D↽1

H
|x(0) has 1 as an eigenvalue.

Assumption 2.15. Assume that H has no degenerate 1-periodic orbits.

One can then assign to these orbits an index µ ⇔ Z called the Maslov index, which we
use as a substitute for the Morse index (see §3.2.4).

2. We now understand critical points of AH . Let us see how to connect them with anti-
gradient trajectories. As mentioned above, we can explicitly compute that:

↔AH(x) = Jt
(
ẋ(t)↑XH(x(t))

)
,

where Jt is a choice of compatible almost-complex structure on (M,ε), and XH = J↔H
is the Hamiltonian vector field (Definition 1.7). Hence, the equation for anti-gradient
trajectories ςsu = ↑↔AH becomes:

ςu

ςs
+ Jt

ςu

ςt
+↔H = 0, (2.8)

and is called the Floer equation. Its solutions will be maps

u : R↖ S1 −! M : (s, t) #−! u(s, t),

i.e. cylinders in M . We will see, in Proposition 2.24, that these cylinders actually
become pseudo-holomorphic after a change of coordinates.
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Just like in Morse theory, we want these anti-gradient trajec-
tories to connect critical points of AH . Hence we are looking
for solutions u such that:

• u solves the Floer equation (2.8),

• lim
s!↔↘

u(s, ·) = x(·),

• lim
s!+↘

u(s, ·) = y(·),

where x and y are 1-periodic orbits of our Hamiltonian. We
call these solutions Floer cylinders, or trajectories.

x

y

u

Now that these are defined, we can define the moduli space M̂(x, y) of Floer cylinders
joining two orbits x and y, like in Morse theory, and show that it is a smooth manifold, as
well as study how it compactifies. This is where the symplectic asphericity assumption
comes in (see Lemma 3.41).

3. Then, in the same way as for Morse theory, we define:

d : CF →(M,H) −! CF →+1(M,H)

y #−!
∑

µ(x)↔µ(y)=1

ϱ(x, y)x

and we prove that d2 = 0, allowing us to define Hamiltonian Floer cohomology:

HF →(M,H) := H→(CF →, d).

4. The final step is then a standard argument, which can be found in full details in [AD13,
Ch. 11], and which we adapt in §3.4.3 to Wrapped Floer theory. We do not further
mention the isomorphism between Hamiltonian Floer and Morse homologies (for C2-
small Hamiltonians), for it will not be of particular relevance to us in this thesis, and
we refer the interested reader to [AD13, Ch. 10].

2.3.2 Lagrangian Floer theory
We just constructed Hamiltonian Floer cohomology, to study periodic orbits of a Hamiltonian
Ht : M ! R. However, this turns out to only be a special case of a more general construction:
Lagrangian Floer cohomology. Let us make a few definitions. Let (M,ε) be a symplectic
manifold.

• Definition 2.16. A submanifold L of (M,ε) is said to be Lagrangian if ε|L ∀ 0, and L
is of maximal dimension (by non-degeneracy of ε, this means dimL = dimM/2).

✁ Example 2.17. Let Q be a smooth manifold and T ϖQ its cotangent bundle. We embed
Q ↪! T ϖQ : q #! (q, 0) as the zero section. It is an easy exercise to show that the image of
this embedding is a Lagrangian submanifold of T ϖQ with its canonical symplectic structure.
The graph of a 1-form φ ⇔ !1(L) = ”(T ϖL) is a Lagrangian submanifold of T ϖL i! dφ = 0.

✂ Setup: Let (M,ε) be a manifold satisfying Assumption 2.12, and L0, L1 → M be compact
Lagrangian submanifolds. The set L0 ∃ L1 is finite. Therefore, we can try and construct a
homology theory whose objects will be these intersection points.

To achieve this, we need a way of viewing intersection points between L0 and L1 as critical
points of some functional. It is for this easier to adopt a dynamical viewpoint, and choose
some Hamiltonian Ht : M ! R with which we perturb one of the Lagrangians. For example:
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p

L1

L0

L1

↽↔1(L0)

x

where ↽ = ↽t=1
H

is the time-1 map of H. With this process, a point p ⇔ L0∃L1 gets associated
to a trajectory x : [0, 1] ! M of the Hamiltonian H with ends in ↽↔1(L0) and L1.

• Definition 2.18. Let #0,#1 be Lagrangians in M , and Ht : M ! R a Hamiltonian. A
trajectory x : [0, T ] ! M of XH such that

x(0) ⇔ #0, x(1) ⇔ #1

is called a Hamiltonian chord of Ht of length T .

As we have just argued:

Lemma 2.19. Given any Ht : M ! R, there is a bijection between L0 ∃ L1 and the set of
Hamiltonian chords of length 1 between #0 := ↽↔1(L0) and #1 := L1.

The question now becomes to find an action functional whose critical points are exactly these
Hamiltonian chords of length 1. For this, we can use a very similar action functional to
the one used for Hamiltonian Floer theory in the previous subsection. The only di!erence
is that we are working with paths [0, 1] ! M instead of loops. Then, we can unfold the
same recipe and define Lagrangian Floer cohomology HL→(L0, L1;H), whose objects
will be cohomology classes of Hamiltonian chords (alternatively, intersection points between
Lagrangians). Provided that M is closed and symplectically aspherical, this construction
actually turns out to be independent of the choice of Hamiltonian Ht : M ! R.

We do not elaborate further on the construction of Lagrangian Floer theory, as our construc-
tion of Wrapped Floer theory in Chapter 3 will be very similar.

✁ Example 2.20 (Hamiltonian Floer theory is a Lagrangian Floer theory). The Hamiltonian
Floer theory we defined in the previous section can actually be seen as a special case of
Lagrangian Floer theory. Indeed, recall that by construction, HF →(H) detected 1-periodic
orbits of the Hamiltonian H. These are in bijection with fixed points of the Hamiltonian
di!eomorphism

↽ := ↽t=1
H

: M −! M,

or alternatively with intersection points of:

Graph(↽) :=
{(

x,↽(x)
)
| x ⇔ M

}
→ M ↖M, (2.9)

$ :=
{
(x, x) | x ⇔ M

}
→ M ↖M. (2.10)

(2.9) and (2.10) can easily be shown to be Lagrangians in
(
M↖M,ε∞↑ε

)
, and so Hamiltonian

Floer theory is but a special case of Lagrangian Floer theory.

Let us make one final note on Lagrangian Floer theory. Formally, it is only defined if all
Hamiltonian chords of H are non-degenerate, in the sense:

• Definition 2.21. A Hamiltonian chord x : [0, 1] ! M is degenerate if HessxAH is singular.

This can be interpreted visually, looking back at our Lagrangian intersection picture.
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Lemma 2.22. In the correspondence between Hamiltonian chords and Lagrangian intersec-
tions, a Hamiltonian chord is degenerate i! the corresponding intersection is non-transverse.

We will prove this formally in the next chapter (see Lemma 3.27). However, one thing we
can easily do now is show that this new definition of degeneracy is compatible with the one
we had given for Hamiltonian Floer theory (Definition 2.14), when viewing the latter as a
special case of Lagrangian Floer theory.

✁ Example 2.23. In Hamiltonian Floer theory, a 1-periodic orbit ⇀ : S1 ! M of a Hamilto-
nian H is called degenerate if D↽|ς(0) has 1 as an eigenvalue. We want to show that, under
the correspondence given in Example 2.20, degeneracy corresponds to non-transversality of
the intersection. So we want to show that

1 is an eigenvalue of D↽|ς(0) ⇑⇓ Graph(↽) ∃$ is non-transverse.

Since both Lagrangians have dimension 1
2 dimM , their intersection being non-transverse at

p ⇔ M reduces to:
TpGraph(↽) ∃ Tp$ ⇐= ¬.

It is enough to work in a local neighbourhood, so let us identify M with R2n and M ↖ M
with R4n. Then Graph(↽) is locally the zero set of the function:

% : M ↖M −! M : (x, y) #−! y ↑ ↽(x),

which means that at the point p ⇔ Graph(↽), we have:

TpGraph(↽) = kerD%|p = ker (↑D↽ | id) |p =

(
Z

D↽|pZ

)
| Z ⇔ R2n


,

while the diagonal $ is the zero-set of

& : M ↖M −! M : (x, y) #−! y ↑ x,

which implies that its tangent space at p is:

Tp$ = kerD&|p = ker (id | ↑id) =
(

Z

Z

)
| Z ⇔ R2n


.

Hence, if p ⇔ Graph(↽) ∃$, then :

TpGraph(↽) ∃ Tp$ =

(
X

Y

)
⇔ R4n | Y = X = D↽|pX


. (2.11)

Therefore

The intersection is non-transverse ⇑⇓ TpGraph(↽) ∃ Tp$ ⇐= ¬
⇑⇓ ∅X ⇔ R2n such that X ↑D↽|ς(0)X = 0

⇑⇓ 1 is an eigenvalue of D↽|ς(0)

2.3.3 Floer theories and pseudo-holomorphic curves
One of the main tools used by Floer in his original construction was pseudo-holomorphic
curve theory, then just introduced by Gromov in [Gro85]. We recall basic definitions on
pseudo-holomorphic curves in §B.1.2, but to summarise in a few words:
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While a symplectic manifold (M,ε) will rarely be complex, it will always support an almost
complex structure J compatible with the symplectic form (Lemma B.4), allowing us to define
an appropriate notion of pseudo-holomorphicity for curves u : (’, i) ! (M,J), where (’, i)
is an arbitrary Riemann surface. This condition reduces to asking that

ςu

ςs
+ J

ςu

ςt
= 0.

The equation above is often called the Cauchy-Riemann equation.

When sketching the construction of Hamiltonian Floer theory, we looked at Floer cylinders.
These were solutions

u : R↖ S1 −! M

of the gradient-flow equation of AH :

ςu

ςs
+ J

ςu

ςt
+↔H = 0. (2.12)

Let us show that, up to reparametrisation, these Floer cylinders can be viewed as pseudo-
holomorphic curves.

Proposition 2.24. The Floer equation can be reparametrised into a Cauchy-Riemann equa-
tion. Hence, its solutions can be viewed as pseudo-holomorphic cylinders.

Proof. Let ↽t be the flow of our Hamiltonian H. For a curve u : R ↖ S1 ! M , let
ũ(s, t) := (↽t)↔1u(s, t). Or alternatively, ↽t

(
ũ(s, t)

)
= u(s, t). Apply ς/ςt:

ς

ςt

(
↽t ′ ũ)(s, t) =

(
ς

ςt
↽t

)
′ ũ(s, t) + ↽t

ϖ

ςũ

ςt
=

ςu

ςt

=⇓ XH(ũ) + ↽t

ϖ

ςũ

ςt
=

ςu

ςt

=⇓ ςũ

ςt
= (↽t)ϖ

(
ςu

ςt
↑XH

)

Now, equation (2.12) can be rewritten
(
ςu

ςt
↑XH

)
= ↑Jt

ςu

ςs
. Hence:

ςũ

ςt
= ↑(↽t)ϖ

(
Jt

ςu

ςs

)

=⇓ ςũ

ςt
= ↑J̃t

ςu

ςs
by setting J̃t := (↽t)ϖJt

=⇓ ςu

ςs
+ J̃t

ςũ

ςt
= 0

=⇓ ςũ

ςs
+ J̃t

ςũ

ςt
= 0

because (ς/ςs)ũ = (ς/ςs)u, since ↽t does not depend on s. So the Floer equation can
indeed be reparametrised into a Cauchy-Riemann equation.

This means that one can use all the machinery from pseudo-holomorphic curve theory to study
solutions of the Floer equation: bubbling o! analysis (§B.1.4), asymptotical analysis, Siefring
intersection theory (in dimension 4),... which have all become essential in Floer theory.
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Chapter 3

Wrapped Floer Cohomology

The two first variants of Floer theory which we introduced in the previous chapter, though
extremely powerful at studying periodic orbits and Lagrangian intersections in closed sym-
plectic manifolds, fail when (M,ε) is non-compact, or admits a boundary. As it happens,
there is a way of adapting these constructions to a wider class of symplectic manifolds, with a
nice boundary. Paradoxically, the way we get rid of one problem (the boundary) is by turning
it into an other (non-compactness). This "adaptation" will yield two new theories:

Closed symplectically
aspherical manifolds Liouville domains

Periodic orbits Hamiltonian Floer Cohomology Symplectic Cohomology
Lagrangian intersections Lagrangian Floer Cohomology Wrapped Floer Cohomology

Wrapped Floer Cohomology will be our main interest in this thesis. However, Symplectic
Cohomology works extremely similarly – and one can adapt every statement/proof in this
chapter by removing all mentions of the Lagrangians, and considering periodic orbits instead
of Hamiltonian chords; see [Rit13] for example.

3.1 Geometric setup

3.1.1 Liouville domains and Liouville manifolds
• Definition 3.1. A Liouville domain is a compact, exact symplectic manifold (W,ε = dϑ)
with restricted contact-type boundary (i.e. φ := ϑ|ωW is a contact form).

⇒Remark 3.2. By Stokes’ theorem, ε being exact automatically implies that the boundary
must be non-empty. It also implies that any sphere S2 ! W has symplectic area zero, which
means that we no longer need to assume symplectic asphericity, like we did in Chapter 2
(Assumption 2.12), since it now comes for free.

By Proposition A.20, we can re-write the definition as:
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• Definition 3.1 (bis). A Liouville domain is a compact, exact symplectic manifold
(W,ε = dϑ) such that there locally exists a Liouville vector field near ςW which is positively
transverse to it.

This definition is easier to work with in practice, and provides us with examples:

✁ Example 3.3.
(
D2n,ε = 1

2d

i

qidpi ↑ pidqi
)

is a Liouville domain with boundary S2n↔1.

Proof. D2n is indeed a compact, exact symplectic manifold with this symplectic structure,
and its boundary is indeed S2n↔1. The radial vector field V =


qiςqi + piςpi

is then a
Liouville vector field (see Example A.21).

✁ Example 3.4. Let Q be a manifold, and (T ϖQ,ε = ↑dϑ) its cotangent bundle (Example
1.14), endowed with a compatible almost complex structure (which exists by Lemma B.4).
Let ∈·∈ denote the induced norm on M , and a fortiori T ϖM . We define:

• Definition 3.5. The disc cotangent bundle DϖQ and unit cotangent bundle SϖQ
of Q are defined as:

DϖQ := {(x, ↼) ⇔ T ϖQ | ||↼|| ℜ 1},
SϖQ := {(x, ↼) ⇔ T ϖQ | ||↼|| = 1}.

Then for any manifold Q, (DϖQ,ε = dϑ) is a Liouville domain, with boundary SϖQ, where

ϑ := ↑
∑

i

pidqi.

Proof. Heuristically, this is proved by finding an atlas for DϖQ, and applying the previous
example in each chart. We do this formally in Calculation C.1.

✂ At first glance, the main obstruction to defining a Floer theory for (W,ε = dϑ) seems to be
its boundary, which usual Floer theory is not very well equipped to deal with it. As a matter
of fact, it turns out to be easier to drop the compactness assumption, and instead work with
a « non-compact manifold without boundary » than to work with a « compact manifold with
boundary ». For these purposes, we describe a process, called Liouville completion, which
allows to get rid of the boundary of a Liouville domain.

By definition, the Liouville vector field V is positively transverse to the boundary, so that by
flowing backwards along it, we can parametrise a collar neighbourhood (↑▷, 0]↖ ςW :

By §A.1.3, this collar neighbourhood (↑▷, 0]↖ ςW can be endowed with the symplectic form

ε̃ = d(etφ),
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where φ := ϑ|ωW , and t is the coordinate on (↑▷, 0], and a Liouville vector field is given by
V = ςt. For later convenience, we rescale by setting r = et. The collar neighbourhood now
becomes (1↑ ϱ, 1]↖ ςW , and by Remark A.19, we have V = rςr.

• Definition 3.6. The Liouville completion Ŵ of (W,ε = dϑ) is given by half symplectis-
ing (ςW,φ) in the Liouville direction. In other words, we glue a half-clylinder [1,+↘)↖ ςW
along the boundary, defining:

Ŵ := W ℑωW [1,+↘)↖ ςW.

We can endow this extension with an exact symplectic form by setting:

ϑ̂ := rϑ,

ε̂ := dϑ̂.

This smoothly extends the symplectic structure from (W,ε = dϑ) to (Ŵ , ε̂ = dϑ̂), and
ensures that V = rςr remains the Liouville vector field on the extension [1,+↘)↖ ςW .

Lemma 3.7 ([CE12], Prop. 11.8). Up to symplectomorphism, the completion of (W,ε = dϑ)
only depends on the homotopy class of ϑ.

The Wrapped Floer Cohomology of a Liouville domain (W,ε = dϑ) is defined by working on
this Liouville completion (Ŵ , ε̂ = dϑ̂). Hence, two ingredients we need are:

• a Hamiltonian on (Ŵ , ε̂ = dϑ̂);

• an almost complex structure on (Ŵ , ε̂ = dϑ̂).

In Chapter 5, we will explicitly see how to extend a Hamiltonian on (W,ε = dϑ) to one on
(Ŵ , ε̂ = dϑ̂), which is important when working with concrete problems. For now though,
since we are just laying the theory, let us directly pick a Hamiltonian Ht : Ŵ −! R.

Now, for our choice of almost complex structure:

• Definition 3.8. An almost complex structure J on Ŵ is said to be of contact type (or
sometimes, SFT-like) if:

• J |φ is compatible with dφ, where ↼ = kerφ is the contact structure on (ςW,φ). In other
words, dφ(·, J ·) defines a Riemannian metric on ↼.
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• On [1,+↘)↖ ςW , we have:

Jςr = Rε, (3.1)

where Rε is the Reeb vector field on (ςW,φ). In other words, J maps the Liouville
direction to the Reeb one. (Recall that V = rςr is the Liouville vector field).

⇒Remark 3.9 (Comments on J). Let us clarify what we mean by (3.1), since while ςr is
defined on the whole of [1,+↘)↖ςW , the Reeb vector field Rε is a priori only defined along
the boundary. However, notice that every slice {r0}↖ ςW parallel to the boundary is also of
contact type with the form

φr0 := ϑ̂|{r0}≃ωW = r0φ

In particular, the associated Reeb vector
field

Rε0 =
1

r0
Rε

is but a rescaling of the original Reeb vec-
tor field on ςW , translated to the slice
{r0}↖ ςW .

So formally, Rε does live on every slice
{r0} ↖ ςW , and therefore it makes sense
to ask that Jςr = Rε everywhere.

Alternatively, we could rewrite Jςr = Rε

as:

Jϖϑ̂ = rdr. (3.2)

ωW

Rω

{r0}↖ ωW

Rω

ωr J

3.1.2 Hamiltonians dynamics on the extension

Say we have a Hamiltonian Ht : Ŵ ! R, on which we impose:

Assumption 3.10. There exists R0 ≃ 1, and a smooth function ht : [R0,+↘) ! R such
that, for r ≃ R0, Ht = ht(r).

In practice, this is not too wild an assumption since most of the time we construct the exten-
sion of H to [1,+↘) ↖ ςW ourselves (see Chapter 5). Therefore, we can enforce prescribed
behaviours on it – we will see that we can make it polynomial at infinity.

Now, by definitions of the Hamiltonian vector field XH and of J , we have:

XHt
= J↔Ht

= J (h↗
t
(r)ςr)

= h↗
t
(r)Rε.

Corollary 3.11. On [R0,+↘)↖ ςW , the Hamiltonian vector field is a reparametrisation of
the Reeb vector field. In particular, it is constrained to slices {r}↖ ςW .

Let us now bring Lagrangians into the mix. Observe that, just like we completed:

W −! Ŵ := W ℑωW [1,+↘)↖ ςW,

a Lagrangian L → W which intersects ςW can also be completed:

L −! L := L ℑωL [1,+↘)↖ ςW.
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• Definition 3.12. A Lagrangian L is said to be exact if there exists f : L ! R such that
ϑ|L ∀ df . It is said to be admissible if it is exact and has Legendrian intersection with the
boundary ςW . This means that, if we write ςL := L ∃ ςW , and φ = ϑ|ωW , then:

φ|ωL ∀ 0.

⇒Remark 3.13. The reason we assume exactness of L is to ensure that every disc in W with
boundary in L has symplectic area zero, by Stokes’ theorem. This is very similar in essence
to the requirement of symplectic asphericity, and indeed both of these conditions are used to
avoid the bubbling o! of pseudo-holomorphic spheres or discs (see §B.1.4), in the proof of
compactification statements for moduli spaces.

Lemma 3.14. Let L be admissible. Then its completion to Ŵ is also admissible at infinity
(on [R0,+↘)↖ ςW ). In particular, the function f is constant at infinity.

Proof. First, observe that ςL is Legendrian in ςW , so that φ|ωL ∀ 0. In particular,

ϑ̂|[R0,+↘)≃ωW = rφ|ωW ∀ 0.

Therefore, f ∀ constant is a primitive for ϑ̂|
L̂

on [R0,↘)↖ςW . Then, one needs to verify
that the completion of L still intersects the boundary transversely, which is a standard
argument (Lemma 2.2 of [ML24]).

Assumption 3.15. Let #0,#1 → Ŵ be two Lagrangians on Ŵ which are of the form #i
↗= Li

for some compact admissible Lagrangians Li → W .

Just like in Definition 2.18, one can define Hamiltonian chords as trajectories of the Hamil-
tonian vector field with ends in #0 and #1 (which for the exact same reasons are in bijection
with intersection points in ↽(#0) ∃ #1). We can also define:

• Definition 3.16. Consider the Legendrians ς#i := #i∃ςW . A trajectory y : [0, T ] ! ςW
of Rε, such that y(0) ⇔ ς#0 and y(T ) ⇔ ς#1 is called a Reeb chord of length T .

We have:

Proposition 3.17. Hamiltonian chords of Ht on [R0,+↘)↖ ςW with ends in #0,#1 are in
bijection with Reeb chords on (ςW,φ) with ends in ς#0, ς#1.

Proof. By Assumption 3.10, Ht = ht(r) on [R0,+↘) ↖ ςW . By Corollary 3.11, on the
slice {r}↖ ςW we have XHt

= h↗
t
(r)Rε. So a chord x of XHt

can be reparametrised into
y(t) := x(t/h↗

t
(r)), which we can view as a Reeb chord in (ςW,φ). In particular, if x has

length ◁ , then y has length ◁h↗
t
(r).

3.2 Analysis of the action functional
The ground is now set for Wrapped Floer Cohomology. For the rest of this chapter, we
fix (W,ε = dϑ) our Liouville domain, with completion (Ŵ , ε̂ = dϑ̂), and #0,#1 → Ŵ our
admissible Lagrangians.

3.2.1 Definition of AH

Choose a Hamiltonian Ht : Ŵ ! R on which we enforce for now no restrictions, besides C↼

regularity for some 0 ≃ 2. We also choose an almost complex structure like in Definition 3.8,
which we also take to be C↼. We refer to (J,H) as our pair of Floer data.

• Definition 3.18. The space of candidates for Hamiltonian chords is:

P :=


x ⇔ W1,p ([0, 1],W )

∣∣∣∣
x(0) ⇔ #0

x(1) ⇔ #1
, x is contractible


, (3.3)
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for p ≃ 2, and where x is said to be contractible if [x̂] = 0 ⇔ ϖ1(M,L) (where x̂ is the loop
x#x↔1). As a subspace of W1,p, P naturally carries a Banach manifold structure (see §6.8 of
[AD13]), i.e. it is separable, Hausdor!, and locally homeomorphic to a(n infinite-dimensional)
Banach space. Hence, given x ⇔ P, one can speak of the tangent space:

TxP :=


1 ⇔ W1,p


[0, 1], xϖTŴ

 ∣∣∣∣
1(0) ⇔ Tx(0)#0

1(1) ⇔ Tx(1)#1


. (3.4)

This essentially describes the space of vector fields in Ŵ along the path x.

⇒Remark. Recall that our Lagrangians are exact, i.e. ∅fi ⇔ C↘(#i) s.t ϑ|!i
= dfi (i = 0, 1).

• Definition 3.19. Let Ht : W ! R be a Hamiltonian. The associated Wrapped Floer
action functional AH is given by:

AHt
: P −! R : x #−! f1 (x(1))↑ f0 (x(0))↑

∫ 1

0
xϖϑ̂+

∫ 1

0
Ht (x(t)) dt. (3.5)

✁ Example 3.20. If, like in the previous subsection, we assume that Ht only depends on r
at infinity (i.e. ∅R0 s.t ∝r ≃ R0 : Ht = ht(r)), then we have:

AHt
(x) = f1

(
x(1)

)
↑ f0

(
x(0)

)
↑ rh↗

t
(r) + ht(r). (3.6)

The proof is a routine calculation (see Calculation C.2).

⇒Remark. Note that while H is allowed to be time-dependent, we shall hide this from the
equations, to make notation lighter. Technically, we will only state the definitions in the time-
independent case, but every statement/proof carries out to the time-dependent case without
change (see, for example, [KK16, §8]).

✃ Now, we claim that AH is indeed an appropriate functional for our problem, i.e. that
critical points of AH correspond to Hamiltonian chords between #0 and #1, as defined in
Definition 2.18. We now verify this.

Proposition 3.21. The di!erential dAH of the above functional is given by:

dAH(x) : TxP −! R : 1 #−!
∫ 1

0
dϑ̂

(
ẋ(t)↑XH(x(t)), 1(t)

)
dt. (3.7)

Proof. See Computational Appendix, Calculation C.3. The proof essentially boils down
to calculus of variations.

Corollary 3.22. Critical points of AH are the same thing as length 1 Hamiltonian chords
between #0 and #1.

Proof. For x to be a critical point of AH , we’d need dAH(x) ∀ 0, which would mean
that the integral in (3.7) is zero for any choice of vector 1 ⇔ TxP. This implies that
the integrand dϑ (ẋ(t)↑XH (x(t)) , 1(t)) is itself 0. Since 1(t) is arbitrary, this is only
possible when ẋ(t) = XH (x(t)), which is the defining equation for a Hamiltonian chord.
So x is a Hamiltonian chord. (The boundary conditions are automatically satisfied, since
we require them of any element in P). The converse implication is trivial.

Hence, we now have the double dictionary:

Intersection points
between

↽(#0) and #1

Hamiltonian chords
between

#0 and #1

Critical points of AH : P ! R

Lemma 2.19

Corollary 3.22
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These objects will be our main focus in the Floer theory we define. More precisely, they will
be the generators of our chain complex. To get there though, we first need to define a notion
of index for our chords, and before that we need to introduce a notion of degeneracy, for
which we need to define ↔AH and HessAH .

3.2.2 Gradient and Hessian of AH

The Hessian of a function is standardly defined as the linearisation of its gradient at critical
points. Hence, we first need to define ↔AH ; which requires having a metric on TP.
For generality, we may assume without hassle that our complex structure J = Jt is time-
dependent, and define the associated Riemannian metrics gt := ε̂(·, Jt·) on Ŵ . Then, we can
define an L2-metric on TP by setting:

∝11, 12 ⇔ TxP : ▽11, 12̸ :=
∫ 1

0
gt
(
11(t), 12(t)

)
dt =

∫ 1

0
ε̂
(
11(t), Jt12(t)

)
dt. (3.8)

This turns P into a Hilbert manifold, allowing us to define:

• Definition 3.23. ↔AH ⇔ ”(TP) is defined as the unique vector field such that, at every
point x ⇔ P, we have ▽↔AH , ·̸ = dAH(·) (this is an equality of 1-forms on P, i.e. elements
of ”(T ϖ

P)). It is called the gradient of AH .

Lemma 3.24. We have, at any point x ⇔ P:

↔AH(x) = Jt(x)
(
ẋ(t)↑XH(x(t))

)
(3.9)

Proof. By definition, for any 1 ⇔ TxP, ▽↔AH , 1̸ =
∫ 1

0
ε̂
(
↔AH(x), Jt1(t)

)
dt.

We want this to equal dAH(1) which, as we saw in Proposition 3.21, is given by
∫ 1

0
ε̂
(
ẋ(t)↑XH(x(t)), 1(t)

)
dt.

Since we want this equality to be true for all 1, and ε̂ is non-degenerate, this implies that
↑Jt↔AH(x) = ẋ(t)↑XH(x(t)), and hence that ↔AH(x) has the desired form.

⇒Remark. By Definition 3.23, ↔AH = 0 ⇑⇓ dAH = 0. So x ⇔ P is a critical point i!
↔AH(x) = 0. Write CritAH the set of such critical points.

✂ We can now define the Hessian of AH , which is defined as the linearisation of ↔AH at its
zeroes (hence, at critical points of AH). The process of linearising sections at their zeroes is
explained in §A.2.2 of the appendix.

Lemma 3.25. The Hessian of AH at x ⇔ Crit(AH) → P is given by:

HessxAH : TxP −! L2(xϖ(TM)) : 1 #−! Jt(x)
(
↔t1 ↑↔↽XH(x(t))

)
,

where ↔ denotes the Levi-Civita connection associated to the metric gt on Ŵ , and ↔t denotes
the covariant derivative along the curve t #! x(t) (i.e. ↔t := ↔ẋ(t)).

Proof. See Computational Appendix, Calculation C.5. The proof relies on the fact, ex-
plained in §A.2.2, that the linearisation of a section at its zeroes is independent of the choice
of connection. This allows us to pick a particularly nice connection (the Levi-Civita one),
in which the computation can be carried out explicitly.

3.2.3 On degeneracy of chords
Recall that a Hamiltonian chord can simply be viewed as a critical point of AH : P ! R.

• Definition 3.26. Just like in Morse theory, we call a Hamiltonian chord x degenerate if
HessxAH is singular (i.e. if kerHessxAH ⇐= {0}).
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In Chapter 2, we stated that this was equivalent to asking that the intersection between the
corresponding Lagrangians be non-transverse, but only proved it in a special case. We remedy
this:
Lemma 3.27. A Hamiltonian chord between #0 and #1 is degenerate i! the corresponding
intersection between ↽(#0) and #1 is non-transverse.

Proof. See Calculation C.6 of the Computational Appendix.

We also mention an essential result, whose proof is the content of §8 of [AS10], in which
Wrapped Floer theory was first formally defined:
Theorem 3.28. A generic Hamiltonian H has no degenerate chords. Moreover, for a generic
H, the end point of a chord is never the starting point of another chord.
This concludes our discussion on degeneracy. We can add it to our double dictionary:

Analytical picture Dynamical picture Geometric picture
Chord Critical point of AH Hamiltonian path be-

tween #0 and #1

Point in ↽(#0) and #1

Degeneracy kerHessxAH ⇐= {0} D↽|t=1
x

does not have 1
as an eigenvalue

↽(#0) ∃ #1 is non-
transverse

⇒Remark 3.29. Since the beginning of the chapter, we have been assuming our Hamiltonian
chords to have W 1,p regularity, for p ≃ 2. However, since we have ẋ = J↔H, then by an
elliptic bootstrapping argument (see Theorem. B.17), x has regularity at least as high as the
pair (J,H). In other words, if (J,H) is C↼, then so is x.

3.2.4 On the grading of chords
We now have objects for our cohomology theory: Hamiltonian chords. One last thing we need
though, to construct a Floer theory, is a notion of index like the Morse index, associating an
integer to each chord and allowing us to arrange them in a graded cochain complex.
We first briefly explain how to define such an index in R2n. The original construction is
due to Maslov, and it relies on noticing that !, the space of Lagrangians in (R2n,ε0), is
di!eomorphic to Un/On. Hence the map:

2 : ! ↗= Un/On −! S1 : U #−! detU2

is well-defined; and one can easily show that it descends to an isomorphism on the fundamental
groups (by studying the long exact sequence of homotopy groups). Therefore:
• Definition 3.30. To every loop x of Lagrangian subspaces in R2n, one can associate an
integer 2(x) which uniquely determines it up to homotopy. We call this integer the Maslov
index of x.
This construction was generalised by Conley & Zehnder, and Robbin & Salamon to paths
of symplectic matrices (i.e. paths in the symplectic linear group Sp(2n)) which start at the
identity. For a modern exposition, refer to Chapter 7 of [AD13]. The bottomline is that it
allows us to associate an index to chord by considering the linearisations

t #−! D↽|t
x
, t ⇔ [0, 1],

which induce a path of symplectic matrices.
Now, on our Liouville manifold, provided that we can find local trivialisations around each
chord, then we can associate such a Conley-Zehnder index µCZ to every chord. In particular:
Proposition 3.31. Say that 2c1(TW ) = 0, where c1 is the first Chern class. Then, the
Conley-Zehnder index induces a Z-grading on chords.
For which we refer to §9 of [AS10] or §3.6 of [Kim18]. The condition on c1 is here to ensure
the existence of trivialisations.
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3.3 The Floer equation and trajectories
We follow the prototypical recipe for a Morse/Floer theory that we laid out in Principle 2.13.
We now have an action functional AH : P ! R, whose critical points (Hamiltonian chords)
we understand well; and we want to find anti-gradient trajectories to connect them together.

3.3.1 The Floer equation
Our functional is AH , therefore the equation for the anti-gradient flow is given by:

ςu

ςs
= ↑↔AH(u). (3.10)

Using the formula for ↔AH from Prop. 3.9, this equation can be rewritten as:
ςu

ςs
+ Jt

(ςu
ςt

↑XH(u)
)
= 0, (3.11)

or again, using the fact that XH = Jt↔H:

ςu

ςs
+ Jt

ςu

ςt
+↔H(u) = 0. (3.12)

In either of these three forms, this is called the Floer equation. Its solutions will be maps
u : R ↖ [0, 1] ! M , which we shall study in the next subsection. In the same way as in
Proposition 2.24, the Floer equation can be reparametrised into a Cauchy-Riemann equation
(by composing Jt with the Hamiltonian flow), so that solutions to the Floer equation can be
viewed as pseudo-holomorphic curves (§B.1.2). Let us study these solutions further.

3.3.2 Floer trajectories
To understand solutions of the Floer equation more visually, it becomes useful to revert
to the geometric picture, and view critical points of AH as intersection points between the
Lagrangians ↽(#0) and #1. Then:

ε(!0)!1

x

y

We are interested in solutions u : R ↖ [0, 1] ! Ŵ of
the Floer equation (3.10), which satisfy the boundary
conditions:

• lim
s!↔↘

u(s, t) = x(t), lim
s!+↘

u(s, t) = y(t)

• u(s, 0) ⇔ ↽(#0) ∝s ⇔ R

• u(s, 1) ⇔ #1 ∝s ⇔ R

where x and y are intersection points.
These solutions u are called Floer trajectories, or strips.
We ask for them to be at least W1,p, for p > 2, so that
by elliptic bootstrapping (Theorem B.17), they have the
same regularity as (J,H).

Note that, since we assume H : M ! R to be non-
degenerate, all these intersections are transverse.

• Definition 3.32 (Energy of a Floer trajectory). The energy of u is defined as:

E(u) :=

∫

R≃[0,1]

∣∣∣∣
ςu

ςs

∣∣∣∣
2

ds ↓ dt.

Lemma 3.33. E(u) ≃ 0, with equality i! u ∀ x, where x is a Hamiltonian chord of H.
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Proof.

E(u) = 0 ⇑⇓ ςu

ςs
= 0 almost everywhere

⇑⇓ ςu

ςs
∀ 0 (by continuity)

⇑⇓
∣∣∣∣
ςu

ςt
↑XH

∣∣∣∣ ∀ 0 (by (3.11))

⇑⇓ u is equal to a Hamiltonian chord of H.

A more interesting result, however, is the following:

Lemma 3.34. Let u be a Floer trajectory between two Hamiltonian chords x and y of (J,H);
i.e. lim

s!↔↘
u(s, ·) = x, lim

s!↘
u(s, ·) = y. Then, we have:

E(u) = AH(x)↑AH(y).

Proof. From Definition 3.32, we have: E(u) =

∫

R≃[0,1]

∣∣∣∣
ςu

ςs

∣∣∣∣
2

ds ↓ dt

=

∫

R≃[0,1]
gt

(
ςu

ςs
,
ςu

ςs

)
ds ↓ dt

=

∫

R≃[0,1]
ε̂

(
ςu

ςs
, Jt

ςu

ςs

)
ds ↓ dt

=

∫

R≃[0,1]
ε̂

(
ςu

ςs
,
ςu

ςt
↑XH

)
ds ↓ dt.

Recall from Proposition 3.21 that the di!erential of AH is given by:

dAH(x) : TxP −! R : 1 #−!
∫ 1

0
dϑ̂

(
ẋ(t)↑XH(x(t)), 1(t)

)
dt.

So E(u) =

∫

R≃[0,1]
ε̂

(
ςu

ςs
,
ςu

ςt
↑XH

)
ds ↓ dt

=

∫ ↘

↔↘

∫ 1

0
dϑ̂

(
ςu

ςs
,
ςu

ςt
↑XH

)
dt ds

= ↑
∫ ↘

↔↘
dAH

(
ςu

ςs

)
ds

= ↑
∫ ↘

↔↘

d

ds
AH (u(s, ·)) ds

= lim
s!↔↘

AH

(
u(s, ·)

)
↑ lim

s!+↘
AH (u(s, ·)) = AH(x)↑AH(y)

⇒Remark 3.35 (On the orientation of trajectories). Like in Morse theory, one needs to be
able to define an orientation on Floer trajectories, in order to define a Floer di!erential.

This can be avoided by working over the coe"cient ring R = Z/2Z, in which case we simply
need to be able to count trajectories modulo 2. In general though, orienting trajectories is
non trivial. A su"cient condition for it to be possible is that the Lagrangians #1 and #2 are
spin (Definition A.25). We refer to §9 of [Rit13] for more details on orientation of trajectories,
and choose to leave it as a black box – since it does not influence any of our discussions.

3.3.3 Linear Hamiltonians and the maximum principle
We have now defined Floer trajectories, which are anti-gradient trajectories connecting critical
points of AH . We can define moduli spaces of such trajectories. To then obtain a well-defined
cohomology theory, we would need some kind of compactification statement for these moduli
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spaces. However, the proofs of such results, now standard in Floer theories, all rely on some
compactness result for the underlying manifold.
Our manifold Ŵ is non-compact. So before we can proceed with the standard recipe for a
Floer theory, we need to impose some further assumptions. Namely:

Assumption 3.36. Our Hamiltonian H : Ŵ ! R is non-degenerate and linear at ↘, i.e.

∅R0 ≃ 1, ∅ a, b ⇔ R such that for r ≃ R0 : H = h(r) = ar + b,

where a > 0 and it is not the length of any Reeb chord on (ςW,φ) (which we write a /⇔ specφ).

Lemma 3.37. If H : Ŵ ! R satisfies Assumption 3.36, then all its Hamiltonian chords of
length 1 lie in the compact region Ŵ ∃ {r ℜ R0}.

Proof. By Proposition 3.17, length 1 Hamiltonian chords of H on [R0,+↘)↖ ςW are in
bijection with length a Reeb chords on (ςW,φ). However, since we assume a /⇔ specφ,
there can exist no such Reeb chords.

Lemma 3.38 (Maximum principle). This is also true for (non-trivial) Floer trajectories.
More precisely, let u be a Floer trajectory whose image intersects [R0,+↘)↖ ςW . Then, the
coordinate r ′ u cannot have local maxima, unless it is constant. Hence, a Floer trajectory
joining two chords x and y is contained in Ŵ ∃ {r ℜ max{r(x), r(y), R0}}.

Proof sketch. See Lemma 19.1 of [Rit13]. Essentially, this consists in using the contact-
type condition (3.1) and our expression for XH in terms of Rε in order to simplify the
expression of the Laplacian $(r′u); then reducing the problem to the standard maximum
principle for an elliptic operator.

⇒Remark 3.39. These two lemmas ensure that, even though our manifold is non-compact,
we will be able to feign compactness in the next subsection. Indeed, there we will sketch the
proofs of moduli space compactification results, which are standard and common to any Floer
theory. Usually these are proved assuming compactness of the underlying manifold, for two
reasons:

• to derive lower/upper bounds;

• to extract converging subsequences from sequences of chords/trajectories.

Lemmas 3.37 and 3.38 guarantee that we can still do this, even though Ŵ is non-compact.
Indeed, since all Hamiltonian chords/Floer trajectories are contained in a compact subset of
Ŵ , then we can find bounds/extract converging subsequences there with no issue.

3.3.4 Moduli spaces of trajectories

Our manifold Ŵ and Lagrangians #0,#1 are like earlier, but we now impose that our Hamil-
tonian H : Ŵ ! R be linear at infinity (Assumption 3.36).

• Definition 3.40. Let x and y be Hamiltonian chords of (J,H) . Define M̂(J,H)(x, y) to
be the space of Floer trajectories joining them, as defined in §3.3.2. Since we, for now, make
no assumptions on x and y, this may a priori be empty. We also define:

∝x, y : M(J,H)(x, y) := M̂(J,H)(x, y)/R

to be the moduli space of unparametrised Floer trajectories, where we quotient by the R-
action induced by translation in the s-variable (i.e. we identify u(s, t) ↗ u(s+ s0, t) ∝s0 ⇔ R).
Note that, often, we will drop the (J,H) from the notation and simply write M(x, y), when
the choice of Floer data is non-ambiguous.

The goal of this subsection will be to sketch two standard results on these moduli spaces:
that they are smooth manifolds, and that they compactify in a nice way, by adding broken
trajectories. Let us start with an intermediary result:
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Lemma 3.41 (Gromov compactness). Let M :=

M(x, y), where the union ranges over all

pairs of chords x, y in M . Then M is compact.

⇒Remark. The complete proof is standard, and can be found in §6.6 of [AD13]. We here
sketch the main argument, and point out by the symbol !the two instances where compact-
ness of the underlying manifold is used in the proof. These are a priori obstacles, since we
work on a non-compact manifold Ŵ , but they are easily lifted by Remark 3.39.

Note that this statement usually also requires symplectic asphericity of Ŵ – but this is
already follows from the fact that Ŵ is symplectic exact, as was already pointed out in
Remark 3.2.

Proof sketch. Let (un) be a sequence of Floer trajectories in M. By compactness of the
underlying manifold (!), and Lemma 3.34, there is a uniform bound for E(un). Hence,
by a bubbling o! argument (Prop. B.22), one can find a uniform C0 bound for ∈↔un∈.
By Arzelà-Ascoli, one can then extract a convergent subsequence, which is shown to be
C↼

loc by elliptic regularity arguments. Then, we again use compactness of the underlying
manifold (!) to argue that C↼

loc-convergence is the same thing as C↼-convergence.

Corollary 3.42. Any solution u of the Floer equation (3.10) ends in Hamiltonian chords,
i.e. there exist x, y ⇔ CritAH such that lim

s!↔↘
u(s, t) = x, lim

s!+↘
u(s, t) = y.

Proof sketch. This proof is contained in Theorem 6.5.6 of [AD13]. Though it is done for
Hamiltonian Floer theory, the argument is exactly the same (one simply needs to replace
orbits by chords). !This again makes us of the compactness of the underlying manifold,
because at some point in the proof one needs to derive an upper bound for the Hamiltonian
vector field. However, since all chords and trajectories are contained in a compact region,
this upper bound is well-defined, as already explained in Remark 3.39.

✃ So we have seen that M =

M(x, y) is compact. However, the individual moduli spaces

M(x, y) might not be. Before we see how to compactify them, let us investigate their dif-
ferentiable structure. Recall from §3.2.4 that we have a grading on chords, given by the
Conley-Zehnder index µ = µCZ ⇔ Z.

Proposition 3.43. For a generic pair of Floer data (J,H), and for any two chords x, y, the
moduli spaces M(x, y) are smooth manifolds of dimension µ(x)↑ µ(y)↑ 1. We will call such
a pair (J,H) regular.

Proof sketch. A complete proof can be found in Lemma 2.7 of [Gao17], or §3.5 of [Kim18].
This is virtually the same transversality argument as is always used to show that moduli
spaces of pseudo-holomorphic curves are smooth manifolds. Other good sources (besides
the original 1994 paper by Floer-Hofer-Salamon) for such transversality arguments are §8
of [AD13], or §15 of [FK18], although those last two are not for Wrapped Floer theory.
The proof broadly decomposes in three steps:

1. To show that M̂(x, y) is a smooth manifold, the idea is to realise it as the zero set
of a particular function F : B ! E , and then use an implicit function theorem.
We take B to be the Banach manifold of candidates for Floer trajectories, i.e. it
consists of all the trajectories of a given regularity class (say W 1,2) with ends x and
y and boundary in the Lagrangians. We let Eu := Lp(uϖTŴ ) be the fibre above
u ⇔ B. We can then realise M̂(x, y) as F

↔1(0) where:

F : B −! E

u #−!
ςu

ςs
+ Jt

(ςu
ςt

↑XH(u)
)
⇔ Eu.

F is standardly called the Floer operator. Since it is a section of the bundle
E ↬ B, one can linearise it (§A.2.2) along any Floer solution u to get:
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DuF : TuB −! T(u,0)Eu.

The proofs in [Gao17] and [Kim18] then rely on standard arguments of functional
analysis to show that DuF is a surjective Fredholm operator for a generic choice of
data (J,H). This allows us to apply an implicit function theorem, hence showing
that M̂ = F

↔1(0) is a smooth manifold whose dimension is the Fredholm index
indDuF .

2. Let us sketch the proof that indDuF = µ(x)↑µ(y). This is formally proved in Prop.
3.6.9 of [Kim18], or in Theorem 8.8.1 of [AD13].

Recall the trivialisation we used in §3.2.4 in order to define Conley-Zehnder indices;
call it ▷. In this trivialisation, DuF can be shown to look like:

D⇀

u
F = ς + S, (3.13)

where S ⇔ C↘(R↖[0, 1], Sp(2n)). In other words, the linearisation of F is a perturbed
Cauchy-Riemann operator. Furthermore, S±↘ := lims!±↘ S(s, t) are symmetric
matrices for every t (and this convergence is uniform in t).

Note that, as s −! ±↘, the Floer equation converges to:
ςu

ςs
+ Jt

(ςu
ςt

↑XH(u)
)
= 0 −!

s!±↘

ςu

ςt
= XH(u),

which is none other than the defining equation for a Hamiltonian chord. Therefore,
taking (3.13) to ±↘ gives:

lim
s!±↘

D⇀

u
F = ς + S±↘,

which can be interpreted as the linearisation of the Hamiltonian flow at the
chords x or y. This implies that the Conley-Zehnder indices associated to the paths
of symmetric matrices(1) S±↘ naturally correspond to µ(x) and µ(y).

Now, a standard result from Fredholm theory shows that the index of D⇀

u
F is

entirely determined by the indices at ±↘, giving us:

indD⇀

u
F = µ(x)↑ µ(y),

and that this is in independent of the choice of trivialisation ▷. This is an explicit
computation on the dimension of the operator’s kernel, and we refer to §8.8 of [AD13]
for full details. For now, let us note that combining this with step 1, we get that:

M̂(x, y) is a smooth manifold of dimension µ(x)↑ µ(y)

3. If, moreover, none of the solutions u ⇔ M̂(x, y) is constant, the action R↫ Ŵ is free.
One can then show, following the arguments of §15.7 in [FK18], that

M(x, y) = M̂(x, y)/R

is also a smooth manifold, of dimension one lower.

Corollary 3.44. If µ(x) = µ(y) then either x = y, in which case M(x, y) = {x}, or x ⇐= y
and M(x, y) = ¬.

Corollary 3.45. If µ(x) = µ(y)+1, then M(x, y) is compact. In particular, there are finitely
many Hamiltonian chords, and Floer trajectories joining them.

(1)To every path of symmetric matrices t !" S(t) one can associate a path of symplectic matrices (and vice
versa); see §7.2 of [AD13]. This is why it makes sense to talk of the Conley-Zehnder index of a path of
symmetric matrices.
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Proof. M(x, y) is 0-dimensional, hence a discrete subset of the manifold M, which is
compact by Lemma 3.41. Hence M(x, y) is also compact. This implies that there must
be finitely many Floer trajectories joining points of consecutive indices, and a fortiori,
Hamiltonian chords.

As we are about to see though, this is no longer true if µ(x) > µ(y) + 1. However, since we
have shown that M =


M(x, y) is compact, then we know that the closure of M(x, y) is

still contained in M; which gives us hope to understand it.

Proposition 3.46 (Compactification by broken trajectories). If µ(x) > µ(y) + 1, then
M(x, y) compactifies by adding broken trajectories through points of intermediary indices,
i.e. :

ςM(x, y) =


µ(x)>µ(zi)>µ(y)
µ(zi+1)>µ(zi)

M(x, zk)↖M(zk, zk↔1)↖ . . .M(z2, z1)↖M(z1, y).

ε(!0)

!1

z

x

y

More visually, say for example, that µ(x) = µ(y) + 2.
Then, a sequence of trajectories un ⇔ M(x, y) may con-
verge to what we call a broken trajectory, as repre-
sented on the left, which is be piecewise composed of
trajectories between points of intermediate indices.
On the picture, we have:


µ(x) = µ(z) + 1

µ(z) = µ(y) + 1

The idea is the same as for broken trajectories in Morse
theory; see Proposition 2.8.

Proof of Proposition 3.46. See §3.7 of [Kim18].

3.4 Wrapped Floer Cohomology with linear Hamiltonians

3.4.1 Intuition
We have everything we need to write down a first, naïve definition of Wrapped Floer Coho-
mology. We choose, like in this whole chapter, a Liouville manifold (Ŵ , ε̂ = dϑ̂), along with
two admissible Lagrangians #0,#1 (Assumption 3.15), a generic contact-type almost complex
structure (Definition 3.8). We now know that if H : Ŵ ! R is non-degenerate and linear at
infinity (Assumption 3.36), then moduli spaces of its Floer trajectories are smooth manifolds
which compactify by adding broken trajectories.

Therefore, we can now follow the recipe for a Floer theory laid down in Principle 2.13.

• Definition 3.47. Let R be a ring. We define the Wrapped Floer modules:

CW →(J,H) :=
⊕

x↑CritAH

µ(x)=n

R ▽x̸ , (3.14)

where µCZ : CritAH ! Z denotes the Conley-Zehnder index (§3.2.4).

• Definition 3.48. We define a di!erential d which counts incoming trajectories, ie:
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d : CW →(J,H) −! CW →+1(J,H)

y #−!
∑

µ(x)=µ(y)+1

ϱ(x, y)x

where ϱ(x, y) is the oriented count of trajectories in M(J,H)(x, y). Often, we decide to work
with coe"cients in R = Z/2Z, so as not to worry with orientation. Then ϱ(x, y) is simply the
mod 2 count of trajectories between x and y.

Lemma 3.49. d2 = 0.

Proof. Pick an arbitrary y ⇔ CW →. Then, unfolding the definitions, we have:

dy =
∑

µ(x)=→+1

ϱ(x, y)x, d2y =
∑

µ(x)=→+1

∑

µ(z)=→+2

ϱ(z, x)ϱ(x, y)z

=
∑

µ(z)=→+2




∑

µ(x)=→+1

ϱ(z, x)ϱ(x, y)



 z

To show that d2y = 0, it su"ces to show that:

∝ chord z ⇔ CW →+2 :
∑

µ(x)=→+1

ϱ(z, x)ϱ(x, y) = 0.

By proposition 3.46, this quantity corresponds exactly to #

ςM(z, y)


. Observe that,

by Proposition 3.43, M(z, y) is 1-dimensional. Hence, to show that d2 = 0, it su"ces to
show that the oriented count of boundary points of a 1-dimensional manifold is zero. Up
to homeomorphism, a 1-manifold will be a disjoint union of circles S1 and intervals [0, 1].
Since ςS1 = ¬, the problem reduces to showing that, given our choice of orientation, each
point in ς[0, 1] has a di!erent orientation, which is an easy exercise.

• Definition 3.50. Lemma 3.49 proves that (CW →, d) is a co-chain complex, allowing us to
define its cohomology HW →(#0,#1; J,H) := H→(CW →(J,H), d). We call this the Wrapped
Floer Cohomology of the Lagrangians #0,#1, with respect to (J,H).

Hence, given a non-degenerate linear Hamiltonian H : Ŵ ! R, we have managed to define a
cohomology theory HW →(#0,#1; J,H), which records Hamiltonian chords of H between #0

and #1 (or, alternatively, intersections between ↽(#0) and #1).
However, while in Lagrangian Floer theory we can show that our construction does not

depend on the choice of Hamiltonian H, the proof heavily depends on compactness, and does
not carry over to Liouville domains. Hence there is no reason to assume that two di!erent
linear Hamiltonians yield the same cohomology (and in general, they won’t).
The rest of this section will be dedicated to fixing this problem. To do this, we will choose a
family (Hj) of linear Hamiltonians with slopes increasing to +↘, and we will show that, for
j ℜ j↗, we can construct maps

HW →(#0,#1; J,Hj) −! HW →(#0,#1; J,Hj↑). (3.15)

These maps define a directed system, allowing us to take a limit:

HW →(#0,#1) = lim−!
j

HW →(#0,#1; J,Hj).

This will yield a construction which does not depend on any choice of Floer data (J,H), and
which we will call the Wrapped Floer Cohomology of the pair (#0,#1).

⇒Remark 3.51. As we mentioned at the very start of this chapter, the process of Liouville
extending our manifold W ! Ŵ had the e!ect of dilating the Reeb dynamics going on at
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the boundary. Indeed we saw in Corollary 3.11 that a length 1 Hamiltonian chord on the
extension corresponded to a length slope(H) Reeb chord on the boundary.

Therefore, the issue we have when working with a fixed linear Hamiltonian with slope
a ⇔ R+, is that HW →(#0,#1; J,H) only counts Reeb chords on (ςW,φ) up to length a. This
is why, by essence, two Hamiltonians of di!erent slopes may yield di!erent cohomologies.
However, as one can imagine: if we keep raising the slope of our Hamiltonian, then new Reeb
chords will appear on (ςW,φ), which is the intuitive reason why the maps (3.15) exist. One
should simply think of these maps as inclusions, at the cochain level. Therefore, if one wants
to define a cohomology theory which contains all of them, they should take a direct limit over
this sequence of inclusions.

3.4.2 Floer equation with parameters
Let J ↖ H be our space of Floer data, i.e. of C↼ pairs (J,H). Pick two pairs (J0, H0),
(J1, H1) ⇔ J ↖ H , and assume they are regular (so that their wrapped Floer cohomology
is well-defined), and that H0, H1 are linear at infinity. Then our goal in this subsection is to
find out under which conditions we can construct a map

HW →(#0,#1; J0, H0) −! HW →(#0,#1; J1, H1).

✃ To do this, find a homotopy between (J0, H0) and (J1, H1). This can always be done since
J is standardly known to be contractible (see [Wen15]), and H0 and H1 are both linear
outside of a compact region. So we have a path s #! ”s ⇔ J ↖ H such that:

”s = (Js, Hs) =


(J0, H0), s ℜ 0

(J1, H1), s ≃ 1

The idea is that we will now define an action functional with parameters, which varies along
the homotopy:

AHs
(x) := f1

(
x(1)

)
↑ f0

(
x(0)

)
↑
∫ 1

0
xϖϑ+

∫ 1

0
Hs

(
x(t)

)
dt. (3.16)

At s = 0, critical points of AH0 are Hamiltonian chords of (J0, H0), and at s = 1, critical
points are chords of (J1, H1). We can now connect these by using, like before, anti-gradient
trajectories. The equation

ςu

ςs
= ↑↔AHs

becomes
ςu

ςs
+ Js,t

(ςu
ςt

↑XHs
(u)

)
= 0, (3.17)

which we call the Floer equation with parameters.

Now, the next natural thing to do would be: given x0 a Hamiltonian chord of H0 and x1 a
Hamiltonian chord of H1, we would like to find solutions of (3.17) connecting them.

• Definition 3.52. A Floer trajectory with parameters is a map u : R↖ [0, 1] ! Ŵ s.t:

• u is a W1,p solution of (3.17) (for p > 2)

• u(0, ·) ⇔ ↽Hs
(#0), u(1, ·) ⇔ #1

Just like in §3.3.4: given x0 a chord of (J0, H0), and x1 a chord of (J1, H1), we denote by
M”(x0, x1) the moduli space of trajectories u such that:

lim
s!↔↘

u(s, ·) = x0, lim
s!+↘

u(s, ·) = x1.
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However, we can no longer quotient by the s variable, since now our Floer data also varies
along it. Then like in §3.3.2, we can define a notion of energy, and we have the following
result:
Lemma 3.53 (A priori energy estimate). Given a homotopy ”s between (J0, H0) and (J1, H1),
and a solution u of the Floer equation with parameters (3.17) with end chords x0, x1, we have:

E(u) = AH0(x0)↑AH1(x1) +

∫

R≃[0,1]
(ςsHs)(u)ds ↓ dt. (3.18)

Proof. This is proved in Calculation C.10 of the Computational Appendix. The proof is
virtually equivalent to the proof of Lemma 3.34, we just pick up a new term because of
the s-dependency.

From this lemma, we deduce that if we define the moduli spaces:

M”(x0, y0) :=


u is a solution of (3.17) | lim

s!↔↘
u(s, ·) = x0, lim

s!↘
u(s, ·) = x1


,

M” :=


x0,y0

M”(x0, y0).

Then M” is compact, for philosophically the same reasons as in Lemma 3.41. The full details
of this proof are carried out in Chapter 11 of [AD13]; the only di!erences being that:

• in [AD13], they work with periodic orbits instead of Hamiltonian chords. This makes
virtually no di!erence in the analysis;

• they work on a compact manifold, whereas we work on Ŵ . However, since H0 and
H1 are linear at infinity, then for the exact same reasons as in Remark 3.39, we can
ensure that this does not pose any issue when carrying over to the non-compact setting.
Indeed, Hamiltonian chords of H0 and H1 are both contained in a compact region of
Ŵ , therefore we only need to ensure that the Floer trajectories connecting them are as
well. This requires an additional assumption.

Assumption 3.54. We assume that the homotopy ”s = (Js, Hs) is monotone, i.e. :
∅R0 ≃ 1 s.t Hs = hs(r),

and:

∅R1 ≃ R0 s.t ςsh
↗
s
(r) ℜ 0 for r ≃ R1.

For simplicity, we set R0 := max(R0, R1).

⇒Remark 3.55. This assumption automatically implies that the expression (3.18) is bounded
from above, since the integrand of the third term will become non-positive for s large enough;
hence yielding our desired C0-bound on the gradient of trajectories, and therefore on the
energy, by the exact same proof as in Lemma 3.41.

Meanwhile, we claim that Assumption 3.54 also forces Floer trajectories with parameters
to be contained in a compact region of Ŵ :
Lemma 3.56 (Maximum principle with parameters). Let ”s = (Js, Hs) be a monotone
homotopy of Floer data such that, for every s, h↗

s
(r) ℜ 0. Then for any solution of (3.17)

intersecting Ŵ∃{r ≃ R0}, the coordinate r′u cannot have local maxima, unless it is constant.
Hence, all trajectories joining chords x0, x1 are contained in Ŵ∃{r ℜ max{r(x0), r(x1), R0}}.

Proof. Lemma 19.1 of [Rit13].
Corollary 3.57. The moduli spaces M”(x0, y0) of the Floer equation with parameters are
smooth manifolds of dimension µ(x0)↑µ(y0), which compactify by adding broken trajectories.

Proof. The proof of this corollary is exactly the same as in §3.3.4. Once again, we refer to
Chapter 11 of [AD13] for the explicit proof; where once again, all the issues arising from
passing from a compact setting to a non-compact one are addressed by Remark 3.39, and
the newly-found maximum principle with parameters.
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3.4.3 Continuation maps in Wrapped Floer Cohomology
Recall what was our objective in considering the Floer equation with parameters: given two
pairs of Floer data (J0, H0), (J1, H1), we want to find a way of constructing a map between
their respective Wrapped Floer Cohomology theories.
Recall that by assumption, H0 and H1 are linear at infinity. Clearly, we have:

Lemma 3.58. There exists a monotone homotopy from (J0, H0) to (J1, H1) i!

slope(H1) ℜ slope(H0).

Let us assume this is the case. Then, at a chain-level, we define:
• Definition 3.59 (Continuation maps).

f” : CW →(J1, H1) −! CW →(J0, H0)

x1 #−!
∑

µ(x0)=µ(x1)

ϱ(x0, x1)x0

where ϱ(x0, x1) is the oriented count of trajectories in M”(x0, x1). So f” is essentially defined
just like a standard Morse/Floer di!erential: it maps a Hamiltonian chord x1 of H1 to all the
Hamiltonian chords of H0 that flow into it, along the Floer equation with parameters.

Then, Lemma 3.57 tells us that f” is a chain morphism, in much the same fashion as we
proved that d2 = 0 in Lemma 3.49 (see the discussion right after Prop. 11.1.14 of [AD13]).
Therefore, f” descends to a map on cohomology:

f” : HW →(J1, H1) −! HW →(J0, H0),

which we call a continuation map. In summary, we have sketched the proof that:

Corollary 3.60. If (Ja, Ha) and (Jb, Hb) are such that slope(Ha) ℜ slope(Hb), then there
exists a continuation map fab

” : HW →(#0,#1; Ja, Ha) ! HW →(#0,#1; Jb, Hb).

However, we still have something important to prove:

Proposition 3.61. Given two such pairs (Ja, Ha), (Jb, Hb), the continuation map

fab : HW →(#0,#1; Ja, Ha) ! HW →(#0,#1; Jb, Hb)

does not depend on the choice of monotone homotopy between them.

Proof sketch. The strategy is basically « re-doing everything one more time ». One chooses
a homotopy of homotopies of Floer data, ϑ #! ”⇁

s
. Then, one can once again derive a Floer

equation (now with three parameters, t, s, and ϑ) and study its solutions. The proofs that
moduli spaces are manifolds, and of the compactification will be yet more technical, but in
the end, they allow us to define a chain homotopy f”0 ! f”1 , in the same way we defined
both the Floer di!erential, and the continuation maps.

Once again, full explicit details can be found in Chapter 11 of [AD13], where the com-
pactness issues are once again resolved by Remark 3.39.

✃ This is all we needed to prove for the purposes of defining Wrapped Floer Cohomology.
However, let us mention a few properties of these continuation maps, which may come in
handy later in the thesis.

Lemma 3.62. Say (Ja, Ha) = (Jb, Hb) and ” ∀ id. Then, f” ∀ id.

Proof. At a chain-level we have, for any chord x:

f”(x) =
∑

µ(y)=µ(x)

ϱ(y, x)y

Since µ(y) = µ(x), we have M(y, x) =


{x} if x = y

¬ else
, so that f”(x) = x.
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Proposition 3.63. Assume that there exist monotone homotopies in both directions:

(Ja, Ha) (Jb, Hb)
”

”↑

Then, the induced continuation maps are isomorphisms.

Before we prove this, let us explore one easy corollary:

Corollary 3.64. If Ha and Hb are linear at infinity, and of the same slope, then

HW →(#0,#1; Ja, Ha) ↗= HW →(#0,#1; Jb, Hb).

Proof of Corollary 3.64. Construct a homotopy between Ha and Hb which leaves the slope
untouched, and alters only the constant term. Then, both this homotopy and its backwards
homotopy (obtained by reversing the s-direction) are monotone, so that we can define
continuation maps in both directions, and conclude by Proposition 3.63.

Proof strategy of Proposition 3.63. We only sketch the proof and refer to §11.4-11.5 of
[AD13] for the full explicit argument. Once again, the only di!erences are that we replace
"orbits" by "chords", as well as the compactness issues, addressed in Remark 3.39. The
technical part of the argument lies in showing that a triangle of homotopies:

(Jb, Hb)

(Ja, Ha) (Jc, Hc)

”↑”

”↑↑

induces a commutative triangle of continuation maps:

HW →(Jb, Hb)

⊜

HW →(Ja, Ha) HW →(Jc, Hc)

f!↑f!

f!↑↑

Once we know this, it su"ces to take (Ja, Ha) = (Jc, Hc) and ”↗↗ = id to show that our
two homotopies ” and ”↗ induce inverses on cohomology.

3.4.4 Wrapped Floer Cohomology: First definition
We are now finally in a position to define Wrapped Floer Cohomology.
Let us recall the setup. We work on a Liouville manifold Ŵ , and have two Lagrangians
#0,#1 satisfying Assumption 3.15, as well as a generic contact-type almost complex structure
J (Definition 3.8). We have shown that, given a non-degenerate Hamiltonian H which is
linear at infinity, we could define HW →(#0,#1; J,H), and that given two such Hamiltonians
Ha, Hb with slope(Ha) ℜ slope(Hb), we could define a continuation map:

fab : HW →(#0,#1; Ja, Ha) −! HW →(#0,#1; Jb, Hb).

We now define:

• Definition 3.65 (Wrapped Floer Cohomology). The Wrapped Floer Cohomology of
the pair of Lagrangians (#0,#1) in Ŵ is defined as:

HW →(#0,#1) := lim−!
j

HW →(#0,#1; J,Hj),
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where (Hj) is a family of non-degenerate Hamiltonians with increasing slopes going to in-
finity. There, lim−! denotes the direct limit of this system, as defined in Definition B.26. If
#0,#1 = L0, L1, then we often simply write HW →(L0, L1), since #0,#1 are unique up to
symplectomorphism (Lemma 3.7).

⇒Remark. This definition is now completely independent of the choice of Hamiltonian: it
only depends on the Lagrangians #0,#1 → Ŵ , because we have explicitly gotten rid of the
dependencies. Also, note that here, (Hj) is taken to be a family of Hamiltonians; but in
practice, any sequence (Hn) such that slope(Hn) ! ↘ will do the job.

✃ Now, since the beginning of this chapter, we have been discussing Lagrangian intersection
theory of two Lagrangians. However, our construction could also be used to study Hamiltonian
chords from a single Lagrangian to itself. Indeed:

• Definition 3.66. Let # be an admissible Lagrangian in Ŵ . We define a Hamiltonian
chord on # as a path x : [0, 1] ! Ŵ such that x(0), x(1) ⇔ #. Then, we can define exactly
the same cohomology theory for #, and write it HW →(#). We call it the Wrapped Floer
Cohomology of #.

Proposition 3.67. There exists a module morphism:

H→(L) −! HW →(L),

over the appropriate ring, where H→ denotes singular cohomology.

Proof. Let H be linear at infinity, i.e. H = ar + b for r above some R0. By Lemma 3.37
and Lemma 3.38, all chords and Floer trajectories are contained in Ŵ0 := Ŵ ∃ {r ℜ R0}.
So from a Floer point of view, nothing of interest happens above R0. Hence, we have:

HW →(L ∃ Ŵ0; J,H) = HW →(L; J,H),

which is an equality, not just an isomorphism, since we already have an equality at chain-
level, both of CW →(J,H) and of d.
Now, it is a standard fact from Floer theory (see [Oh96] for HL→) that, given a generic J ,
and some Hε su"ciently C2-small on Ŵ0, there exists an isomorphism between Floer and
Morse cohomologies, on compact manifolds. Therefore:

HW →(L ∃ Ŵ0; J,Hε) ↗= HL→(L ∃ Ŵ0; J,Hε)

↗= HM→(L ∃ Ŵ0;Hε)

↗= H→(L ∃ Ŵ0).

From the way we constructed our cylindrical end, Ŵ0 deformation retracts onto W , and
thus L ∃ Ŵ0 onto L, giving us HL→(L ∃ Ŵ0; J,Hε) ↗= H→(L).
Now, since Hε is non-degenerate, we can fit HW →(L ∃ Ŵ0; J,Hε) in our directed system
with increasing slopes:

HW →(L ∃ Ŵ0; J,Hε) HW →(L ∃ Ŵ0; J,Hj) HW →(L ∃ Ŵ0; J,Hj↑) . . .

H→(L)

...

↓=

The isomorphism H→(L)
↓=−! HW →(L ∃ Ŵ0; J,Hε) will most likely not survive the direct

limit process – however, the map

H→(L) ! lim−!HW →(L ∃ Ŵ0; J,H) = HW →(L)

will, yielding our desired module homomorphism.
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3.5 Wrapped Floer Cohomology with strongly convex Hamil-
tonians

3.5.1 Intuition
We just gave a definition of wrapped Floer cohomology, allowing us to associate a cohomology
HW →(#0,#1) to two admissible Lagrangians in a Liouville manifold. We went to great lengths
to make sure that this construction did not depend on any choice of Hamiltonian, taking a
direct limit over a large family of Hamiltonians whose slopes blew up.

Alternatively, we could avoid having to take a direct limit altogether by choosing a Hamil-
tonian extension H with a faster growth. Indeed, recall from Remark 3.51 that the point of
taking a direct limit over a sequence of Hamiltonians, with slope going to ↘, was that in
doing so we counted Reeb chords of higher and higher length on (ςW,φ), and made sure not
to miss any. However, in theory, such a result could also be achieved by choosing a single
Hamiltonian H such that at infinity, H = h(r) where h↗(r) ! ↘.

Then, Hamiltonian chords appearing higher and higher in our extension will correspond to
Reeb chords of higher and higher lengths, so that philosophically, we should directly obtain
an isomorphism HW →(#0,#1; J,H) ↗= HW →(#0,#1), without having to take a limit.

This definition looks easier to construct than the one with linear Hamiltonians. The main
issue – which makes it less popular – lies in the fact that it is much harder to ensure that H is
non-degenerate, since it may have infinitely many chords shooting up to ↘, so that one would
need to take global perturbations of (J,H). We will resolve this issue in the next chapter by
defining Local Wrapped Floer Cohomology. For now, let us just assume H is non-degenerate.

Assumption 3.68. In general, in order to define wrapped Floer cohomology with a single,
non-degenerate Hamiltonian H : Ŵ ! R, we assume:

• H has infinitely many chords, but they are isolated, so that there are countably many.

• The chords of H shoot o! to ↘ in the collar Ŵ\int(W ).

• H = h(r) at infinity, where h is strongly convex (∅3 > 0 such that h↗↗(r) ≃ 3).

⇒Remark 3.69. The first and second assumptions are harmless. Indeed, if H has finitely
many chords, or if they don’t shoot o! to ↘, then they are all contained in a compact region,
so that we can use our previous constructions to define HW →(#0,#1; J,H).

✁ Example 3.70. A few examples of Hamiltonians satisfying Assumption 3.68 are:

• H grows like a quadratic at infinity. i.e. h(r) ↗ 1
2ar

2 for large r.

• H grows faster than a quadratic at infinity. i.e. h(r)/r2 ! ↘ as r ! ↘.

Corollary 3.71. Let H satisfy Assumption 3.68. Write {xk} the set of Hamiltonian chords,
which we order by height in the collar (i.e, by the r coordinate). Write Ak := AH(xk). Then,
for k ⊤ 1, Ak becomes strictly decreasing, and goes to ↑↘.

Proof. By Lemma 3.20, if H = h(r) at infinity, then:

AH(x) = AH(r) = ↑rh↗(r) + h(r),

where r is the height of the chord x (by Corollary 3.11, Hamiltonian chords high enough
in the collar are constrained to slices of constant height). Di!erentiating, we get:

ςrAH(r) = ↑rh↗↗(r).

Since h is strongly convex at infinity, this becomes strictly negative for r ⊤ 1, so that
AH(r) becomes strictly decreasing, and goes to ↑↘ by the mean value inequality.
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3.5.2 The action filtration
To define wrapped Floer cohomology with a single Hamiltonian, we shall need one essential
tool: the action filtration.

• Definition 3.72. Let J be generic and H : Ŵ ! R be a Hamiltonian satisfying Assumption
3.68. We define the Floer cochain complex:

CW →(J,H) :={Hamiltonian chords of H of index ∗}
={x ⇔ Crit(AH) | µCZ = ∗},

and the Floer di!erential d as in Definition 3.48. At this point, we don’t know whether the
cohomology will be well-defined, but the complex for sure is.

Lemma 3.73. The Floer di!erential d is action-increasing.

Proof. Let y be a chord. Recall that dy, as defined in Definition 3.48, counts incoming
Floer trajectories into y. Recall from Lemma 3.34 that, given a trajectory from some
chord x to y, we have E(u) = AH(x) ↑ AH(y) ≃ 0. Therefore, dy is a formal sum of
chords x, each of which must have action AH(x) ≃ AH(y).

Corollary 3.74. The Floer di!erential goes
downwards, when high enough in the collar
Ŵ\int(W ).

Proof. If we go high enough in the collar,
the action decreases as r increases, by Corol-
lary 3.71. However, d is action-increasing by
Lemma 3.73, therefore it must necessarily go
downwards.

ωW

d

Because of the above results, we can choose an increasing sequence rp ! ↘, where p ⇔ N,
and a corresponding sequence ap ! ↑↘ such that:

AH(x) ≃ ap ⇑⇓ im(x) → Ŵ ∃ {r ℜ rp}.

For brevity, let us write Ŵp := Ŵ ∃ {r ℜ rp}. Note that this manifold is compact (it consists
of the truncation of Ŵ at height r = rp).

• Definition 3.75 (Action filtration). Given our chain complex CW →(J,H), we define the
action filtration:

FpCW →(J,H) = {x ⇔ CW →(J,H) | AH(x) ≃ ap} , p ⇔ N. (3.19)

By the discussion above, we can also write:

FpCW →(J,H) =

x ⇔ CW →(J,H) | im(x) → Ŵp


. (3.20)

By Corollary 3.71, this filtration is increasing, i.e. :

FpCW →(J,H) → Fp+1CW →(J,H),

and by Lemma 3.73, the Floer di!erential respects the action filtration, i.e.

d (FpCW →) → FpCW →+1,

which implies that we can write F→CW as a filtration on the total complex CW =


CW →.
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• Definition 3.76. We write

HW →
⇐ap

(#0,#1; J,H) := H→(FpCW →(J,H)),

and call HW →
⇐ap

(#0,#1; J,H) the filtered Wrapped Floer Cohomology of the pair (#0,#1),
with respect to J and H.

Since the total complex CW →(J,H) contains all chords, its cohomology is by definition the
total wrapped Floer cohomology:

H→(CW →(J,H), d)=: HW →(#0,#1; J,H) (3.21)

Note that, a priori, there is no reason to assume that either HW →
⇐ap

or HW → is well-defined.
We will prove this formally in §3.5.3. Before that, let us prove:

Proposition 3.77. Assuming that both sides of the equation below are well-defined, then we
have the isomorphism:

HW →(#0,#1; J,H) ↗= lim−!
p

HW →
⇐ap

(#0,#1; J,H).

Proof. We will prove this from first principles, by showing that the left-hand side satisfies
the universal property of a direct limit (Defn. B.26). First, we construct continuation
maps:

fp : HW →
⇐ap

(#0,#1; J,H) −! HW →
⇐ap+1

(#0,#1; J,H), (3.22)

which compose well (§3.4.3), and such that:

fp([x]) = 0 if x is a boundary in Fp+1CW →(J,H), fp([x]) = [x] else(2). (3.23)

Similarly, we define:

4p : HW →
⇐ap

(#0,#1; J,H) −! H→(C→(J,H), d) (3.24)

where 4p([x]) := 0 if x eventually becomes a boundary as we increase p, and 4p([x]) :=
[x] ⇔ H→(C→(J,H), d) else.

Note that, despite their intuitive construction, it is not a priori clear that fp and 4p are
well-defined (but, note that we haven’t even shown that HW →

⇐ap
or HW → are, for that

matter). All of this will be formally proved after this proposition, hence let us assume
for now that all these maps exist. We want to show that HW →(#0,#1; J,H) is the direct
limit of this system. Going back to first principles (Definition B.26), we need to show that
given any object Y (a module over the same ring as our cohomologies), and collection of
morphisms:

5p : HW →
⇐ap

(#0,#1; J,H) −! Y (3.25)

such that 5p+1 ′ fp = 5p, then there exists a unique 5 : HW →(#0,#1; J,H) ! Y making
the following diagram commute:

. . . HW →
⇐ap

HW →
⇐ap+1

. . .

HW →

Y

fp

ιp

▷p

ιp+1

▷p+1

⇒!▷

(2)For every p such that AH(x) → ap, else taking fp([x]) does not make sense.
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We can construct this 5 explicitly. Let [x] ⇔ HW →, and let [x]p be its representative in
HW →

⇐ap
. Pick any p0(3), and set 5([x]) := 5p0([x]p0).

This is well-defined, indeed: if [x] ⇐= 0, then x never becomes a boundary as we increase
the filtration window. Hence, our continuation map fp acts as the identity for every p.
Since at every step we have 5p = 5p+1(f), the quantity is 5p0([x]p0) is independent of the
choice of p0.

Meanwhile, if [x] = 0, then the choice of p0 does not matter either. If it is such that
[x]p0 = 0, then we directly have 5([x]) := 5(0). Else, we know that ∅p such that [x]p = 0,
and since all the maps 5p commute with the fp’s, the value of 5p([x]p) must also be 5(0).

Therefore, we can indeed define a map 5 : HW →(#0,#1; J,H), verifying that:

HW →(#0,#1; J,H) ↗= lim−!
p

HW →
⇐ap

(#0,#1; J,H).

In conclusion, provided that both quantities are well-defined, then the total cohomology of
the complex is isomorphic to the direct limit over all the filtered cohomologies. This will
become essential in the next section.

3.5.3 Wrapped Floer Cohomology: Second definition
Given our choice of Floer data (J,H), where H satisfies Assumption 3.68, we just constructed
a cochain complex CW →(J,H), as well as an increasing action filtration F→CW → on it. Fur-
thermore, we showed that:

HW →(#0,#1; J,H) ↗= lim−!
p

HW →
⇐ap

(#0,#1; J,H),

provided that both sides were-well defined. Let us first prove that the right-hand side is.

Proposition 3.78. One can find a Hamiltonian Hp : Ŵ ! R, which is linear at infinity,
and such that:

FpCW →(J,H) = CW →(J,Hp),

hence ensuring, by §3.4, that HW →
⇐ap

(#0,#1; J,H) is well-defined, and that we have:

HW →
⇐ap

(#0,#1; J,H) = HW →(#0,#1; J,Hp),

where this is an equality, not just an isomorphism.

Proof. (From [Rit13]) Let FpCW →(J,H) be the action filtration from the previous section.
Recall that we had defined:

HW →
⇐ap

(#0,#1; J,H) := H→(FpCW →(J,H), d),

though with no guarantee that this was well-defined. Besides, recall that we had an
increasing sequence rp in [1,+↘) such that, writing ap := AH(rp), we have:

∝x ⇔ CW →(J,H) : AH(x) ≃ ap ⇑⇓ im(x) → Ŵp := Ŵ ∃ {r ℜ rp}.

Assume that H has no Hamiltonian chords on the slice {rp}↖ςW (this is always possible,
since our chords are isolated), and construct a new Hamiltonian Hp in the following way:

✃ On Ŵp, we set Hp ∀ H. We then chop o! the rest of H, and replace it by a linear
extension at infinity (choosing the coe"cients so that Hp is C1 at rp).

(3)Such that AH(x) → ap0 , for the same reason as in the previous footnote.
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r

Hp ∀ H

Hp = ar + b

rp

By construction, H and Hp will have the same Hamiltonian chords on Ŵp, and by Lemma
3.37 Hp has no chords outside of Ŵp. Since by Lemma 3.38 Floer trajectories do not leave
Ŵp either, we have:

CW →(#0,#1; J,Hp) = FpCW →(#0,#1; J,H).

In particular, since the cohomology of the left-hand side is well-defined by §3.4, then so is
it on the right-hand side, and we have:

HW →(#0,#1; J,Hp) = H→(FpCW →, d) =: HW →
⇐ap

(#0,#1; J,H),

where these are equalities, not just isomorphisms.

Corollary 3.79. If it is well-defined, then HW →(#0,#1; J,H) ↗= HW →(#0,#1).

Proof. This follows directly from the previous results. We showed in Proposition 3.77 that,
if it was well-defined, then HW →(#0,#1; J,H) was isomorphic to the direct limit over the
action filtration HW →

>ap
(#0,#1; J,H). Then we showed that each of these modules was

isomorphic to the homology of a linear Hamiltonian Hp.
As we take ap ! ↑↘, the slope of the Hamiltonians Hp goes to ↘, so that the direct

limit over the action filtration recovers the Wrapped Floer Cohomology HW →(#0,#1)
defined in the §3.4. (Note that the existence of continuation maps from the proof of
Proposition 3.77 is now obvious, since they are the same maps as in §3.4.3).

≿ In summary, we have shown that if HW →(#0,#1; J,H) is well-defined, then it equals the
direct limit over all the filtered Floer cohomologies. We have also shown that, at each step of
the filtration, cohomology is well-defined, and that so is the direct limit. Actually, not only is
it well-defined, but it is isomorphic to standard Wrapped Floer Cohomology HW →(#0,#1).
Therefore, we can take as a definition:

• Definition 3.80 (Wrapped Floer Cohomology). Let (J,H) be a regular pair of Floer
data, where H satisfies Assumption 3.68. Then, we can assign to it:

HW →(#0,#1; J,H) := lim−!
p

HW →
⇐ap

(#0,#1; J,H) ↗= HW →(#0,#1).

⇒Remark 3.81. Instead of taking this as a definition, one could first independently show
that HW →(#0,#1; J,H) is well-defined, and then prove the isomorphism with HW →(#0,#1).
The isomorphims are proved as above; however, the argument to show that the first quantity
is well-defined is quite technical (see §18 of [Rit13]).

This is why we do this "trick" of taking the above isomorphism as a definition, instead of
making it a theorem.
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✂ To summarise this chapter, we now have two ways of defining Floer cohomology, given
admissible Lagrangians in a Liouville domain W :

1. by choosing a sequence of non-degenerate Hamiltonians Hk : Ŵ ! R which are lin-
ear at infinity, and with increasing slopes going to +↘, and defining wrapped Floer
cohomology as the direct limit over the Lagrangian Floer cohomologies of all these
Hamiltonians;

2. by choosing a single non-degenerate Hamiltonian H : Ŵ ! R, which is strongly convex
at infinity (see Assumption 3.68), and defining wrapped Floer cohomology as a direct
limit over its action filtration.

Both of these constructions are equivalent, and yield the same algebraic invariants HW →(#0,#1)
of the pair of Lagrangians (#0,#1) → W .
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Chapter 4

Local Wrapped Floer Cohomology

In this chapter, we propose a notion of Local Wrapped Floer cohomology. This will allow us
to assign wrapped Floer cohomology to Hamiltonians with degenerate Hamiltonian chords.
Indeed, given a degenerate Hamiltonian, the Floer-theoretical constructions from Chapter
3 fail; most saliently because we no longer have a well-defined Conley-Zehnder index, and
therefore notion of grading, as per §3.2.4.

To fix this, the rough strategy we will employ is the following:

degenerate Hamiltonian wrapped Floer cohomology

non-degenerate Hamiltonian local wrapped Floer cohomology

≃

locally perturb

More precisely, given a degenerate chord x of our Hamiltonian, we will zoom in on a small
neighbourhood U of x, perturb our Hamiltonian so that it becomes non-degenerate on U ,
and show that we can then define a local wrapped Floer cohomology HW →

loc(x) which only
records local information, and is independent of the perturbation. This will be the content
of Theorem A1.

Then, Theorem A2 will give us a way to complete this diagram, by means of a « local-to-global
spectral sequence », which will recover the global cohomology from all the local ones:

degenerate Hamiltonian wrapped Floer cohomology

non-degenerate Hamiltonian local wrapped Floer cohomology

locally perturb local-to-global
spectral sequence

This was first introduced by the author and Agustin Moreno in [ML24], in order to prove a
Poincaré-Birkho! type theorem for wrapped Floer cohomology (see Chapter 5). It was in-
spired by similar constructions already done for other types of Floer theories, like for example
in [GG10] (for local Hamiltonian Floer theory), [Oh96] (for local Lagrangian Floer theory),
or [KK16] (for local symplectic homology).
We here go through the construction from [ML24], while adding some motivation, a few
technical details, and properties of HW →

loc which were not included in the paper.
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4.1 Definition of Local Wrapped Floer Cohomology

4.1.1 What is a local cohomology theory?
If our Hamiltonian H is degenerate, then it is no longer possible to associate a Floer theory
to it. To understand why, let us go back to the prototype of Floer theory: Morse theory.

✁ Example 4.1. Consider the function f : R ! R : x #! x3. It has a degeneracy at x = 0,
since f ↗(0) = f ↗↗(0) = 0. What this means is that, under small deformations of f , the critical
point at x = 0 will bifurcate. In this case, it undergoes a « birth-death bifurcation ».

x #! x3

x #! x3 ↑ ϑx

x #! x3 + ϑx

• Definition 4.2. A deformation of f is a continuous family s #! fs, where f0 = f .
A perturbation f̃ of f : x #! x3 is a function which is close to f in one’s desired topology.

Therefore, a C↼-deformation is a family of C↼-perturbations.

In our case, notice that while the cohomology of f is not well-defined because of the degeneracy
at 0, the cohomology of any close enough perturbation f̃ is. Actually:

• if f̃(x) = x3 + ϱx (ϱ > 0), then it has no critical points, so that HM→(f̃) = 0, where
HM→ denotes Morse cohomology (§2.2.2).

• if f̃(x) = x3 ↑ ϱx, then f̃ has two critical points, a and b. One can easily show that
they have distinct, consecutive Morse indices, so that from elementary Morse theory,
we must have da = b without loss of generality. In particular, a is not closed, so that it
does not count toward cohomology, and b is a boundary, so that it is zero in cohomology.
Hence HM→(f̃) = 0.

• by Thom’s classification of small-order bifurcations (see, for example, [Gol78]), any
generic deformation of f : x #! x3 can be written in the form ϱ #! x3 + ϱx. Hence, we
have covered all the cases.
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Therefore, a generic perturbation f̃ of f is non-degenerate, and has zero Morse cohomology.
This motivates us to define the local Morse cohomology of the function f , at the critical
point x = 0, to be:

HM→
loc(f, 0) := 0

We just did this with a function which only has one critical point, but if f had more than
one, then we would need to enforce that they are isolated from each other.
Then, around each critical point x, one would choose a small neighbourhood U , perturb f on
U , and thus define local Morse cohomology HM→

loc(x) as the cohomology of this perturbation:

↑1 ↑0.5 0.5 1

↑0.2

↑0.1

0.1

0.2

x

f(x)

We end up with many di!erent local Morse cohomologies: one for each critical point. Then,
from all these local cohomologies, one can recover the global Morse cohomology of the un-
derlying manifold, by means of a spectral sequence. We will not show this in the context of
Morse theory, for we will give the same proof for Wrapped Floer cohomology, in Theorem A2.

4.1.2 Analytical estimates
The proof that Local Wrapped Floer cohomology is well-defined, as well as the construction
of the aforementioned local-to-global spectral sequence, will mainly rely on two lemmas. We
claim that these two lemmas are necessary and su"cient ingredients for constructing any local
Floer theory, and its local-to-global spectral sequence.

Like in the previous chapter, #0 and #1 are two admissible Lagrangians (Assumption 3.15) in
a Liouville manifold (Ŵ , ε̂ = dϑ̂), and J is a generic contact-type almost complex structure.
We choose an at least C2 Hamiltonian H : Ŵ ! R, on which we enforce no restrictions (in
particular, it could be degenerate), except:

Assumption 4.3. Hamiltonian chords of H are isolated.

• Definition 4.4. Let x be a Hamiltonian chord of H between the Lagrangians #0 and #1.
We call an open set U an isolating neighbourhood of x if it contains x, and its closure
intersects no other chords of H.

Then, the first ingredient for defining a local cohomology theory is:

Lemma 4.5 ([Cie+96]). Let x be a chord of H and U an isolating neighbourhood. Then, for
every open set V →→ U , there exists a C↼ neighbourhood U of (J,H) (for 0 ≃ 1 any integer)
such that, for any (J̃ , H̃) ⇔ U, we have:

• all chords of (J̃ , H̃) contained in U are already contained in V;

• all Floer trajectories of (J̃ , H̃) contained in U are already contained in V.
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We do not include the proof since it is the same as in [Cie+96]. This is essentially a proof
by contradiction, which is very similar to the one given in 2. of the next lemma.

The second lemma is an analytical estimate, inspired by a similar estimate from [Oh96].
However, we insist on giving it a name, the « Energy Separation Property », for this property
is a cornerstone both in the construction of local Floer (co)homologies, and of their associated
local-to-global spectral sequences.

Lemma 4.6 (Energy Separation Property). Let x be a chord of H. For any ϱ1 > 0, there exist
an isolating neighbourhood U of x, as well as a C1-neighbourhood U of (J,H), and ϱ2 ⇔ (0, ϱ1]
such that for any (J̃ , H̃) ⇔ U, and for any Floer trajectory u of (J̃ , H̃) intersecting U :

1. im(u) → U =⇓ E(u) < ϱ1,

2. E(u) < ϱ2 =⇓ im(u) → U ,

where E(u) is the energy of u (Definition 3.32).

Energy

ϱ2

ϱ1

Proof. First, notice that if ϱ2 > 0 exists, then without loss of generality ϱ2 ℜ ϱ1. Indeed,
if we had ϱ2 > ϱ1, then there could exist no Floer trajectory u with energy in [ϱ1, ϱ2),
because then we would have the contradiction:

E(u) < ϱ2
2.
=⇓ im(u) → U 1.

=⇓ E(u) < ϱ1.

Hence, we may always set ϱ2 ℜ ϱ1. Now let us prove 1. and 2.

1. Fix ϱ1 > 0. The first implication relies on the following analytical estimate:

Lemma 4.7. Let x be a (possibly degenerate) Hamiltonian chord of (J,H), with isolating
neighbourhood U . Then, there exists C > 0 such that, for every C1-close enough perturba-
tion (J̃ , H̃) of (J,H), and chord x̃ of (J̃ , H̃):

∣∣AH(x)↑A
H̃
(x̃)

∣∣ < C ∈x↑ x̃∈C1 + |H ↑ H̃|C0 ,

where C does not depend on the choice of perturbation.

Proof. We prove this in Calculation C.11 of the Computational Appendix. Essentially,
this relies on finding a C1-Lipschitz estimate for each term of AH .

Now, notice that since ẋ = XH = J↔H, the C1-distance between x and x̃ is governed by
both the C1-distance between (J,H) and (J̃ , H̃), and the C0 distance between x and x̃;
which is in turn bounded from above by diamU .(1) In particular, we can rewrite:

∣∣A
H̃
(x̃)↑AH(x)

∣∣ < C̃

diamU +

(J,H)↑ (J̃ , H̃)

C1


. (4.1)

Hence, by shrinking U , and choosing a perturbation (J̃ , H̃) which is very C1-close to (J,H),
we can make the left-hand side smaller than ϱ1/2

Let u be a Floer trajectory contained in U . A fortiori, so are its end chords, which we
write y and z. By Lemma 3.34, we have E(u) = A

H̃
(y)↑A

H̃
(z). Hence, by the triangle

inequality:
(1)Note that since U needs to contain the chord x, it cannot be any small neighbourhood, like a ball. One

can take, for example, a slightly enlarged tubular neighbourhood of x, in which case, when we say diamU , we
mean its diameter in the normal direction.



Chapter 4. Local Wrapped Floer Cohomology 56

E(u) = A
H̃
(y)↑A

H̃
(z) ℜ

∣∣A
H̃
(y)↑AH(x)

∣∣+
∣∣A

H̃
(z)↑AH(x)

∣∣

< ϱ1/2 + ϱ1/2 = ϱ1

which concludes the proof of 1.

2. Let U be the isolating neighbourhood and U the C1 neighbourhood of (J,H) in J ↖H

from Step 1.. Assume 2. doesn’t hold, i.e. there exists a sequence (Jn, Hn) ! (J,H), as
well as a sequence (un) of (Jn, Hn) trajectories, and ϱn ! 0 such that:

E(un) < ϱn,

im(un) /⇔ U .

By elliptic regularity (Theorem B.19), we extract a converging subsequence with limit
u↘. Since E(u↘) is necessarily 0, u↘ must be equal to a Hamiltonian chord, by Lemma
3.33. Since U is isolating, x is the only chord that intersects it, telling us that necessarily
u↘ ∀ x, up to parametrisation. However, since we assumed that im(un) /⇔ U ∝n, then
there must exist t↘ ⇔ [0, 1] such that u↘(t↘) /⇔ U , which is a contradiction.

We claim that these two lemmas are the two essential ingredients to defining a local coho-
mology theory, as well as its local-to-global spectral sequence. This will be made clear in the
case of Wrapped Floer Cohomology, by Theorems A1 and A2.

4.1.3 Local Wrapped Floer Cohomology: definition

Let (W,ε = dϑ) be a Liouville domain, which we complete to (Ŵ , ε̂ = dϑ̂), and let #0,#1 be
admissible Lagrangians in Ŵ (Assumption 3.15). We choose an almost complex structure J
of contact type (i.e. Jςr = Rε, where V = rςr is the Liouville vector field, and φ := ϑ|ωW ),
and a Hamiltonian H : Ŵ ! R on which we enforce no assumptions.

In particular, it may have degenerate chords. We only ask that these chords be isolated.

• Definition 4.8. Let x be a Hamiltonian chord of H. We define its Local Wrapped Floer
Cohomology HW →

loc(x) in the following way:

• choose an isolating neighbourhood U of x, and a generic C1-close perturbation (J̃ , H̃)
of (J,H), which we choose to be non-degenerate;

• since (J̃ , H̃) is non-degenerate, we can locally define its Lagrangian Floer cohomology
on U , as the cohomology of the complex of chords, and set:

HW →
loc(x) := HL→(U ,#0,#1; J̃ , H̃). (4.2)

We call this the local wrapped Floer cohomology of the chord x.

Theorem A1. Local wrapped Floer cohomology HW →
loc(x) is well-defined, for any chord x.

The proof of this will constitute the remainder of this section, and will consist in three steps:

1. First, we must show that given two Hamiltonian chords of H̃ in the isolating neighbour-
hood U , Floer trajectories connecting them stay in U ; which is essential if we want to
define our local cohomology. Once this is done, we shall still need to argue that HL→(U)
is well-defined, which is not automatic since U is open, and HL→ is usually defined for
closed manifolds.

2. Then, we show that the right-hand side of (4.2) is independent of the choice of pertur-
bation (J̃ , H̃).
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3. Then, we show that it does not depend on the choice of neighbourhood U either.

Let us proceed.

Step 1 (Locality). We show:

Proposition 4.9. Let x be a (potentially degenerate) Hamiltonian chord. One can find an
isolating neighbourhood V of x such that, for (J̃ , H̃) su"ciently C1-close to (J,H), and y and
z any two chords of (J̃ , H̃) in V, Floer trajectories connecting y and z do not exit V.

Proof. This follows from Lemmas 4.5 and 4.6. Indeed, fix ϱ1 > 0. The Energy Separation
Property gives us an isolating neighbourhood U of x, as well as an ϱ2 ⇔ (0, ϱ1] such that

E(u) < ϱ2 =⇓ im(u) → U (4.3)

for any Floer trajectory u of (J̃ , H̃) intersecting U . By the action estimate (4.1), one
can find a smaller isolating neighbourhood V →→ U such that E(u) < ϱ2 holds for any
trajectory u of (J̃ , H̃) with ends in V. By (4.3), such a trajectory will be contained in U .
By Lemma 4.5, im(u) → U =⇓ im(u) → V, which concludes the proof.

This was the main technical step (which seems trivial now since we had already proved
Lemmas 4.5 and 4.6), ensuring that trajectories between local chords stay local. Recall that
the reason we wanted to prove this was so that we could define something like

”HW →
loc(x) := HL→(V,#0,#1; J̃ , H̃)”.

Now, this right-hand side is simply defined as the cohomology of the complex:

CF →(V; J̃ , H̃) :=
{
x ⇔ CF →(J̃ , H̃) | im(x) → V

}

=
{
Hamiltonian chords of H̃ in V

}
.

It is not automatic that its cohomology, HL→(CF →(V; J,H)) is well-defined, since HL→ is
usually defined on a closed manifold (i.e. compact without boundary), and V is an open
neighbourhood.

However, we have already seen one way to go about this issue: in Remark 3.39, and all
through the rest of Chapter 3, we were working on a non-compact symplectic manifold, but
every chord/trajectory was contained in a compact region, which allowed us both to extract
bounds and converging subsequences. We can make a similar argument here:

Recall that we had originally started from an isolating neighbourhood U of x, and produced
V →→ U such that for small enough perturbations of (J,H), all chords/trajectories from U
were contained in V. In particular, if we take U to be our new manifold of interest, then we
are back in the situation of Remark 3.39: all chords/trajectories from U are contained in the
compact subset V. Hence, we can use bounds from this region to bound objects in U , and
extract converging subsequences to any sequences of chords/trajectories. Therefore:

HL→(U ,#0,#1; J̃ , H̃) := H→((CF →(U ; J̃ , H̃), d
)
= H→((CF →(V; J̃ , H̃), d

)

is well-defined, and we can formally define:

HW →
loc(x) := HL→(U ,#0,#1; J̃ , H̃) (4.4)

which concludes this first step.
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Step 2 (Perturbation invariance). Let us now show that the right-hand side of (4.4) is
independent of the choice of perturbation (J̃ , H̃), as long as it is su"ciently C1 close to (J,H).

This is the exact same argument as in §3.4.3, and in particular Proposition 3.63. Indeed,
since we only work locally, we need not worry about the maximum principle, or trajectories
escaping to infinity. We can ensure that trajectories stay inside U thanks to the a priori
energy estimate (Lemma 3.53) and Energy Separation Property (Lemma 4.6).

Hence, given any two pairs of regular Floer data (Ja, Ha), (Jb, Hb), we can construct a
homotopy and its inverse, and then reproduce the argument from Proposition 3.63 to show
that they induce inverses in cohomology:

HL→(U ;#0,#1; Ja, Ha) ↗= HL→(U ,#0,#1; Jb, Hb).

Once again, one needs to be careful since U is an open neighbourhood, and not a closed
manifold, but this issue is easily addressed in the same way as in Step 1.

Step 3 (Invariance on U) Let us now show that our construction is independent of the
choice of isolating neighbourhood U . In other words, let U ,U ↗ be two isolating neighbourhoods
containing the chord x.

U U ⊥

W

x

Choose an open neighbourhood W → U ∃ U ↗ of x (a fortiori, also isolating). Then, following
the recipe from Steps 1. and 2., one can find perturbations


(J̃ , H̃)

(J̃ ↗, H̃ ↗)

of (J,H), on U and U ↗ respectively, and which allow us to define:

HL→(U ,#0,#1; J̃ , H̃)

HL→(U ↗,#0,#1; J̃ ↗, H̃ ↗)

Note that actually, by Step 2., neither of these quantities depend on the perturbation used
to define them, so that we can drop it from the notation.

Lemma 4.10. HL→(U ,#0,#1) ↗= HL→(W,#0,#1).

Proof. Choose K → W compact, and a bump function 5 : U ! [0, 1] such that

5|K ∀ 1, 5|U\W ∀ 0

Now define (J̃ϖ, H̃ϖ) := (J̃ , H̃) ′ 5. Then, (J̃ϖ, H̃ϖ) is a non-degenerate pair of Floer data
on W, so that it allows us to construct HL→(W,#0,#1). We can construct a homotopy
between (J̃ , H̃) and (J̃ϖ, H̃ϖ), so that by Step 2. the induced cohomologies are isomorphic.

Since we can reproduce the exact same argument for U ↗, we get that:

HL→(U ,#0,#1) ↗= HL→(U ↗,#0,#1)
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which concludes the proof of Step 3., and hence of Theorem A1.

✂ Summary. Given any Hamiltonian chord x of (J,H), potentially degenerate, we can
construct its local Wrapped Floer Cohomology by finding an isolating neighbourhood U of
x and a close enough perturbation (J̃ , H̃) of (J,H) – as imposed by Proposition 4.9 –, and
then defining:

HW →
loc(x) := HL→(U ,#0,#1; J̃ , H̃).

This cohomology theory is independent of the choice isolating neighbourhood U and pertur-
bation (J̃ , H̃), and is therefore an invariant of the Hamiltonian chord x.

4.2 The local-to-global spectral sequence

4.2.1 Statement of the theorem
As before, we work with two admissible Lagrangians #0,#1 in a Liouville manifold Ŵ , and
a pair of Floer data (J,H). In the previous section, we saw how one could associate a local
cohomology to every Hamiltonian chord x of H, even degenerate ones.

Now let us show how one can recover the global cohomology HW →(#0,#1) from all these
local cohomologies.

Theorem A2. Let (W,ε = dϑ) be a Liouville domain with completion (Ŵ , ε̂ = dϑ̂), and
#0,#1 → Ŵ be admissible Lagrangians. Let H : Ŵ ! R be a Hamiltonian which is strongly
convex at infinity (Assumption 3.68). Write {xk}k↑N the set of chords of H on L, and
Ak := AH(xk) the sequence of actions (from which we discard the repeated values). Then
there exists a spectral sequence (E→,→

n
) such that:

Ep,q

1 =

⊕

AH(x)=Ak

HW →
loc(x) p = 2k

0 p odd





=⇓ HW →(#0,#1)

which we call the local-to-global spectral sequence.

For example, if we assume that all chords xk have distinct action, then E1 looks like:

...
...

...
...

...
...

...

0 HW 3
loc(xk↔1) 0 HW 3

loc(xk) 0 HW 3
loc(xk+1) 0

0 HW 2
loc(xk↔1) 0 HW 2

loc(xk) 0 HW 2
loc(xk+1) 0

0 HW 1
loc(xk↔1) 0 HW 1

loc(xk) 0 HW 1
loc(xk+1) 0

...
...

...
...

...
...

... p

Let us point out that we can order the chords in a countable sequence because they are
isolated, as per Assumption 3.68. While there is no reason to assume that all their actions
are distinct, we still have:

Lemma 4.11. Under Assumption 3.68, the sequence (Ak) has no accumulation points.
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Proof. This follows directly from the fact that for high values of k, (Ak) becomes strictly
decreasing, and Ak

k!↘
−−−−! ↑↘ (Corollary 3.71).

Hence for low (even) values of p, the p-th column of the E1-page contains the local cohomology
of finitely many chords, while for high values of p, each column corresponds to exactly one
chord.

⇒Remark 4.12. The main point of Theorem A2 is that it allows us to associate a wrapped
Floer cohomology theory to a degenerate Hamiltonian, by following the heuristic diagram
presented at the start of the chapter:

degenerate Hamiltonian HW →(#0,#1)

non-degenerate Hamiltonian HW →
loc(xk)

locally perturb
around each chord

Theorem A1

Theorem A2

Hence, not only can we associate a wrapped Floer cohomology theory to a degenerate Hamil-
tonian, but it will be isomorphic to the standard HW →(#0,#1), as defined in Chapter 3.

This is the bottomline of this chapter: even if we start from a degenerate Hamilto-
nian system (e.g. from physics), we can still recover knowledge about its dynamics from
HW →(#0,#1), which is a purely topological invariant of #0 and #1.

Before we prove Theorem A2, let us state one modified, simpler version:

Theorem 4.13. Let H : Ŵ ! R be a Hamiltonian which is linear at infinity, and whose
chords are isolated. Then, there exists a spectral sequence (E→,→

n
) such that:

Ep,q

1 =

⊕

AH(x)=Ak

HW →
loc(x) p = 2k

0 p odd





=⇓ HW →(#0,#1; J, H)

Proof. We will prove this after Theorem A2, in Calculation 4.16.

⇒Remark 4.14. Heuristically, the reason this second spectral sequence only converges to
HW →(#0,#1; J,H), instead of the whole HW →(#0,#1), is for the same reason as in §3.5.1.
Indeed, recall from Prop. 3.17 that a Hamiltonian chord of H at height r corresponds to a
Reeb chord of period h↗(r) on the boundary. Hence, if we choose a Hamiltonian H with slope
a, then our spectral sequence can by construction only count Reeb chords with period ℜ a,
so that it cannot recover the whole cohomology.

Meanwhile, if we choose H to satisfy Assumption 3.68, then H = h(r) at infinity, with
h↗(r) ! ↘. Therefore, all chords will appear in the spectral sequence.

4.2.2 Construction of the spectral sequence
Let us construct the spectral sequence from Theorem A2. Recall that we have a sequence of
actions Ak := AH(xk), with no accumulation points, no repeated values, and which eventually
becomes strictly decreasing. Re-order it so that (Ak) is stricly decreasing for every k.
Now fix ϱ1 > 0. The Energy Separation Property (Lemma 4.6) gives us, for every chord xk,
an isolating neighbourhood Uk, as well as some ϱk2 ⇔ (0, ϱ1] such that: given any close enough
perturbation (J̃ , H̃) of (J,H) with Floer trajectory u intersecting Uk:
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im(u) → Uk =⇓ E(u) < ϱ1

E(u) < ϱk2 =⇓ im(u) → Uk

Now, construct ϱk2-neighbourhoods centred around each Ak:

Action AHAk↔1

ϱk↔1
2

Ak

ϱk2

Ak+1

ϱk+1
2

which we can choose not to overlap (if they do, try again with a smaller ϱ1. Since (Ak) has
no accumulation points, mink |Ak ↑ Ak+1| > 0, so that this is possible). Then, define a new
sequence (ap), p ⇔ N, by taking the bounds of these intervals, ie:

For p = 2k :


ap := Ak ↑ 1

2ϱ
k

2

ap+1 := Ak + 1
2ϱ

k

2 .
(4.5)

Pick (J̃ , H̃) a local, non-degenerate perturbation of (J,H), and consider the chain complex
CF →(J̃ , H̃). There, define the action-filtration:

FpCF →(J̃ , H̃) :=

x ⇔ CF →(J̃ , H̃) | AH(x) ≃ ap


, p ⇔ N (4.6)

where the grading ∗ is given by the Conley-Zehnder index (§3.2.4). The latter is well-defined
since (J̃ , H̃) is non-degenerate.

By standard arguments (see for example, §14 of [BT82]), such a filtration induces a spectral
sequence with first page:

Ep,→
1 = H→(Fp+1CF →(J̃ , H̃)/FpCF →(J̃ , H̃), d→)

where d→ descends from the standard Floer di!erential.

With our definitions, Fp+1CF →(J̃ , H̃)/FpCF →(J̃ , H̃) consists of Hamiltonian chords with ac-
tion in (ap, ap+1]. Therefore:

• if p is even, then (ap, ap+1] = (Ak ↑ 1
2ϱ

k

2 , Ak +
1
2ϱ

k

2 ]. Take two chords y and z of (J̃ , H̃)
with actions in this interval. If y and z are both in Uk, then

|A
H̃
(y)↑A

H̃
(z)| < ϱk2

so that Floer trajectories connecting y and z are in Uk, by the Energy Separation
Property. Therefore: Ep,→

1 ℵ ∞HW →
loc(x), where the direct sum is taken over all chords

with action Ak.
This is actually all of it. Indeed, by the Energy Separation Property, Floer trajectories

exiting Uk have energy strictly greater than ϱk2 . This cannot happen since y and z both
have action in an interval of amplitude < ϱk2 . Hence, for p even:

Ep,→
1 =

⊕

AH(x)=Ap/2

HW →
loc(x)

• if p is odd, then (ap, ap+1] = (Ak +
1
2ϱ

k

2 , Ak+1↑ 1
2ϱ

k+1
2 ]. Hence, Floer trajectories would

try to connect chords with actions outside of the ϱk2 intervals. Since we have chosen
those ϱk2 neighbourhoods to not overlap, then by the action estimate (4.1), there exist
no such chords. Hence, H→(Fp+1CF →(J̃ , H̃), FpCF →(J̃ , H̃); d→) = 0.
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Therefore, we have a spectral sequence whose first page is given by:

Ep,q

1 =






⊕

AH(x)=Ap/2

HW q

loc(x), for p ⇔ 2N

0 for p ⇔ 2N+ 1

, q ⇔ Z

which is our candidate for the spectral sequence of Theorem A2.

4.2.3 Convergence of the spectral sequence
While our spectral sequence (E→,→

n
) has the desired first page, it is a priori unbounded (since

H has infinitely many chords), so that its convergence is not obvious. To prove it, we will
construct a sequence of intermediary spectral sequences, and force them to converge to (En).
Namely, we prove the intermediary proposition:

Proposition 4.15 (Filtered spectral sequence). Let (aj) be our sequence of interval bounds
from the previous section. For every j, there exists a spectral sequence (jE→→

n
) such that:

jEp,q

1 =

⊕

AH(x)=Ak⇐aj

HW →
loc(x) p = 2k

0 p odd





=⇓ HW →

⇐aj
(#0,#1; J,H)

Proof. The E1 page of the spectral sequence is constructed exactly as in §4.2.2, giving it
its desired form. The only di!erence is that now, this spectral sequence is bounded (it has
finitely many columns, since chords of action ≃ aj are contained in a compact region).
Hence, by a standard theorem on filtration spectral sequences (§14 of [BT82]), (jE→→

n
)

converges to the cohomology of the total complex:

FjCF →(J̃ , H̃).

By Proposition 3.78, H→(FjCF →(J̃ , H̃), d) is well-defined and isomorphic to the filtered
cohomology HW⇐aj

(#0,#1; J̃ , H̃), concluding the proof.

Hence, we have a sequence (jE)j of spectral sequences, each of which satisfying

jE =⇓ HW →
aj
(#0,#1; J̃ , H̃).

Now, since aj > aj+1, recall by §3.4.3 that there exist continuations maps HW →
aj

! HW →
aj+1

.
A fortiori, there exist continuation maps jE ! j+1E. On the first page, this continuation
map is just an inclusion:

jE1 ↪! j+1E1

which, depending on whether j is odd or even, is either the identity, or the addition of a new
column. Taking a direct limit over this sequence of inclusions, we get:

E1 = lim−!
j

jE1 (4.7)

where E1 is the first page of the global spectral sequence constructed in the previous section.
Hence, there is an isomorphism between the first page of the sequences (En) and (lim−!j

jEn).
By the comparison theorem for spectral sequences [Wei94, Thm 5.2.12], this isomorphism will
survive in every page, ensuring in particular that:

E↘ = lim−!
j

jE↘ (4.8)

Now, by Proposition 4.15, (jEn) converges to HW →
⇐aj

(#0,#1; J̃ , H̃). Therefore, (En) con-
verges to:

lim−!
j

HW →
⇐aj

(#0,#1; J̃ , H̃)
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which is isomorphic to HW →(#0,#1) by Proposition 3.80, hence concluding the proof of
Theorem A2.

Calculation 4.16 (Proof of Corollary 4.13). Assume we have a Hamiltonian H : Ŵ ! R
which is linear at infinity. Then, the action of chords no longer goes to ↑↘, however we can
still order them decreasingly and construct the same action-filtration and spectral sequence.
By Corollary 3.45, H has finitely many Hamiltonian chords, so that this spectral sequence is
bounded. Hence, by the same argument as above, it converges to:

H→(CF →(J̃ , H), d→) = HW →(#0,#1; J̃ , H)

which is what we wanted to prove.

4.3 Applications to dynamics and mission design
The bottomline of this section is the following:

Theorem 4.17. Given Ht : W ! R a Hamiltonian on a Liouville domain, then to any
Hamiltonian chord x of H between admissible Lagrangians, one can assign a numerically
computable integer 6(x) which stays invariant under deformations of H.

This is a very concrete result, with direct applications to the numerical continuation of families
of trajectories. By computing this integer at di!erent stages of the process, we can directly
know whether our numerical algorithms have missed some solutions or not. This strategy is
not new: it has already been experimented with for periodic orbits in [FKM23; Ayd+24a] as
part of a collaboration between Heidelberg, Augsburg, Seoul, and NASA’s JPL.

The work in this chapter allows us to easily adapt their scheme to study open-ended trajec-
tories with Lagrangian ends instead of periodic orbits. In Part III, we will give two examples
of such trajectories in the Circular Restricted Three-Body Problem: trajectories of collision,
and trajectories bi-normal to the xz-plane; though our methods are abstract, and carry over
to any trajectory with appropriate boundary conditions.

4.3.1 The Floer number
Recall that given a cohomology theory (H→)→↑Z, its Euler number is defined as:

6 :=
∑

n↑Z
(↑1)n dimHn.

• Definition 4.18. Given any Hamiltonian chord x, we define its Floer number as the
Euler number of HW →

loc(x):

6(x) :=
∑

n↑Z
(↑1)n dimHWn

loc(x). (4.9)

Lemma 4.19. 6(x) is invariant under deformation, i.e. given a smooth family (xs) of
trajectories, 6(xs) is constant. Furthermore, if a chord x is non-degenerate, then 6(x) = ±1.

Proof. Invariance of 6(x) follows from invariance of HW →
loc(x) under perturbation, which

we argued in Step 2 of §4.1.3. If a chord x is non-degenerate, then HW →
loc(x) only contains

the element [x] so that 6(x) = (↑1)m for some m ⇔ Z.

We can yet be more precise. By §3.2.4, the grading on Wrapped Floer Cohomology is given
by the Conley-Zehnder index µCZ.

Lemma 4.20. Let x be a (potentially degenerate) Hamiltonian chord. Then:

6(x) =
∑

y↑HW
•
loc(x)

(↑1)CZ(y).
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Proof. This is simply re-arranging the terms in the definition of 6(x). Indeed, write
dn := dimHWn

loc(x), and note that by definition:

∝y ⇔ HWn

loc(x) : µCZ(y) = n.

Then, we can re-write:

6(x) =
∑

n↑Z
(↑1)n dimHWn

loc(x)

=
∑

n↑Z
(↑1)n

(
1 + · · ·+ 1

)
︸ ︷︷ ︸

dn times

=
∑

y↑HW
•
loc(x)

(↑1)µCZ(y)

In particular, this implies:

Corollary 4.21. 6(x) is numerically computable.

Proof. The Conley-Zehnder of a trajectory can be explicitly computed. See the work
of C. Aydin ([Ayd23a; Ayd23b; Ayd+24b], who developed a deformation technique. He
studied all possible jumps in the Conley-Zehnder index which may occur under bifurcation,
and implemented (in Python) a scheme which computes µCZ as we continue a family
of trajectories. This is in particular powerful when we study perturbations of known
trajectories (say, from the planar problem, or the Rotating Kepler problem).

More recently, in [Ayd+24a], O. van Koert gave a full Python implementation of an
algorithm computing the Conley-Zehnder index from scratch, following the original defini-
tion. This has recently been reproduced in Matlab by B. Kumar, and can readily import
their codes and use them right out of the box to compute the Floer number.

So 6(x) is perturbation-invariant and numerically computable. This makes it possible to im-
plement it concretely for trajectory design (see [FKM23; Ayd23b; Ayd+24b; AB24]). There,
it becomes useful in the numerical continuation of trajectories. Let us see how.

4.3.2 A sanity check to refine data-bases of trajectories
The previous subsection provided us with an invariant 6 of Hamiltonian chords in a Liouville
domain. The bottomline of Part III of this thesis is that some trajectories in the Circular
Restricted Three-Body Problem (CR3BP) can be viewed as Hamiltonian chords in a Liouville
domain, where the Lagrangians correspond to physical boundary conditions.

Let x be such a physical trajectory (e.g. collision trajectory or halo orbit, as in Part III), and
s #! xs a continuous deformation such that x0 = x. By the previous section, 6(xs) remains
constant along s. Let us give an example of how we can use this fact in practice.

✃ Say that we are numerically continuing a family of trajectories. In practice, this is done by
discretising time and using numerical ODE solvers at each time increment. Assume that while
following this routine, we observe that our family of trajectories has undergone bifurcation
between times s = 0 and s = ϱ.
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s = 0 s = ϑ

Since our search is numerical by essence, and relies on ODE solvers, we may have « missed
» some solutions. However, the Floer number allows us to perform a sanity check. Indeed,
write x0 the original trajectory at s = 0, and xε, x↗

ε
the ones at s = ϱ. By Corollary 4.21, we

can numerically compute the Conley-Zehnder indices of each of these trajectories.
Invariance of 6 (Lemma 4.19) then tells us that we should have:

(↑1)µCZ(x0) = (↑1)µCZ(xω) + (↑1)µCZ(x
↑
ω
).

There is no way this equality can hold. This means we must have missed a trajectory:

s = 0 s = ϑ
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After searching more, say our ODE solvers found a third trajectory. We check again if:

6(x0) = 6(xε) + 6(x↗
ε
) + 6(x↗↗

ε
). (4.10)

If not, we keep searching. If the equality does hold, then we may reasonably tell our solver
to have a rest – unless we have strong cause to believe that there may be more trajectories.
Indeed, it might be that both sides of (4.10) agree, but that we are still missing trajectories,
for example a birth-death pair, whose Conley-Zehnder indices have di!erent parity.

Hence this algorithm remains imperfect. However it already gives us a first sanity check,
which we can concretely implement to refine our data-bases of periodic orbits/trajectories.
Consequent work has been done in this direction by C. Aydin in the past few years, especially
in the Earth-Moon problem [Ayd23b; AB24]. We also refer to [FKM23; Ayd+24a] for other
concrete examples in mission design, as well as other tools from symplectic geometry with
applications to astrodynamics (B-signature, GIT sequence,...) not mentioned in this thesis.
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Chapter 5

A relative Poincaré-Birkho!
theorem

5.1 Poincaré’s last geometric theorem

5.1.1 Statement of the theorem(s)
The whole second part of this thesis will be dedicated to di!erent generalisations of the
Poincaré-Birkho! theorem. In its original form, the theorem reads:
Theorem 5.1 (Poincaré-Birkho!, 1912-1913). Let f be an area-
preserving self-homeomorphism of the annulus which satisfies the twist

condition, i.e. it rotates both its boundary components in opposite direc-
tions. Then, f has infinitely many interior periodic points (points x such
that fk(x) = x for k ⇔ N), of arbitrarily large period.

This theorem was stated and partially proved by Poincaré in [Poi12], a few months before his
demise – conferring it the title of ’Poincaré’s last geometric theorem’. It was then proved in full
generality by Birkho! in [Bir13]. The theorem takes its source in the study of the Three-Body
Problem, and was the key element in constructing periodic orbits in the PCR3BP (Chapter
8, §A.3). The goal of Part II of this thesis is to generalise the theorem to higher dimensions,
in an attempt to apply it to the Spatial Circular Restricted Three-Body Problem.

The first step in this direction was made by Moreno & van Koert, a century after the
original Poincaré-Birkho! theorem:

Theorem 5.2 (Generalised Poincaré-Birkho! theorem [MK22a]). Let (W,ε = dϑ) be a
connected Liouville domain, and f : W ! W an exact symplectomorphism such that:

• (Symplectic cohomology). dimSH•(W ) = ↘.

• (Index growth). if dimW ≃ 4, then c1(W ) = 0, and (ςW,φ := ϑ|ωW ) is strongly
index-definite (Assumption 5.7). In particular, it is globally trivialisable;

• (Twist condition) f is generated by a C2 Hamiltonian Ht : W ! R satisfying the
twist condition (Assumption 5.5), and whose fixed points are isolated;

Then f admits infinitely many interior periodic points, of arbitrarily large order.

We will not address here the physics behind the statement, and why it should apply to the
Spatial CR3BP – we leave the physical intuition for Part III. However, we remark that:

⇒Remark 5.3. In the case of the Spatial Circular Restricted Three-Body Problem, our
Liouville domain of interest will be W = DϖS2, and we readily have dimSH→(W ) = ↘ by
[AS04]. Similarly, it is shown in [MK22a] that the index growth assumption holds in a certain
range of {mass, energy} values called the convexity range.

However, at the time of writing this thesis, Moreno & van Koert’s twist condition has still
not been verified in the Spatial Circular Restricted Three-Body Problem. Actually, it has not
even been proved in its simplest limit case: the Rotating Kepler Problem!
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This will motivate us, in Chapters 6 and 7, to find a weakening of the twist condition, and
show how we can also get rid of the other technical assumptions, thus significantly improving
the applicability of Moreno & van Koert’s theorem.

Before we proceed to weaken the assumptions in Moreno & van Koert’s model though, let
us generalise Theorem 5.2 to a di!erent setting. Assume we have a Lagrangian L in our
Liouville domain (W,ε = dϑ), satisfying the assumptions of Part I. Instead of periodic orbits
of Ht : W ! R we will consider Hamiltonian chords, i.e. paths x : [0, 1] ! W such that

ẋ(t) = XH

(
x(t)

)
, x(0), x(1) ⇔ L. (5.1)

Then, we shall prove the following theorem, which we first stated in [ML24]:

Theorem B1. Let (W,ε = dϑ) be a connected Liouville domain, L → W be an exact spin
Lagrangian with Legendrian boundary, and f : W ! W be an exact symplectomorphism.
Further assume that:

• (Wrapped Floer Homology). dimHW •(L) = ↘;

• (Index growth). if dimW ≃ 4, then c1(W ) = 0, and (ςW,φ := ϑ|ωW ) is strongly
index-definite (Assumption 5.7). In particular, it is globally trivialisable;

• (Twist condition) f is generated by a C2 Hamiltonian Ht : W ! R satisfying the
twist condition (Assumption 5.5), and whose fixed points are isolated.

Then f admits infinitely many interior chords with respect to L, of arbitrarily large order,
and which are not sub-chords of any periodic chord.

⇒Remark (Degeneracy). Notice that this theorem does not make any assumptions on non-
degeneracy. In particular, the Hamiltonian Ht generating f may very well be degenerate.
This is the reason why we developed Local Wrapped Floer Cohomology in Chapter 4: so we
would be able to take care of such cases.

In Part III of this thesis we will see how we can apply Theorem B1 (or rather, its improvements
Theorem B2 and B3) to the Circular Restricted Three-Body Problem and deduce concrete
statements about the physics. In the meantime though, before we prove Theorem B1, let us
clarify on what we mean by the ’order of chords’.
Note that a length-1 Hamiltonian chord, as defined in (5.1), can alternatively be viewed as a
point p := x(0) ⇔ L such that f(p) ⇔ L. We call such a point a chord of order 1.

• Definition 5.4. A chord of order m ⇔ N is a point p ⇔ L such that fm(p) ⇔ L. The
chord is called periodic if fk(p) = p for some k ⇔ N.

We respectively call minimal order and minimal period the smallest such m and k.

5.1.2 Initial assumptions: Moreno & van Koert’s model
In Theorem B1, we make the same assumptions as Moreno & van Koert in Theorem 5.2,
namely:

Assumption 5.5 (Twist Condition). f : W ! W is generated by a C2 Hamiltonian
Ht : W ! R such that:

XHt
|ωW = htRε,

where ht > 0 is a smooth function and Rε is the Reeb vector field on (ςW,φ). In other words,
we ask that the Hamiltonian and Reeb dynamics on the boundary be positive reparametrisa-
tions of each other.

⇒Remark 5.6. This is indeed a generalisation of Poincaré’s original twist condition. Indeed,
let W = DϖS1 be the annulus with its standard orientations. Then the boundary circles have
opposite orientations, so that XHt

|ωW = htRε with ht > 0 ⇑⇓ f rotates the boundary
components in opposite directions.
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Assumption 5.7. (ςW,φ) is called strongly index-definite, in the sense of [MK22a], if
there exists a global trivialisation ▷ of TςW , and constants c > 0, d ⇔ R such that for any
Reeb arc x : [0, T ] ! ςW :

|µCZ(x; ▷)| > cT + d,

where µCZ denotes the Conley-Zehnder index (see §3.2.4).

Then, with these two assumptions, we will have:

Proof sketch of Theorem B1 (Full proof in §5.3).

1. First, we need to extend H to a Hamiltonian H on the Liouville completion Ŵ (§5.2.1).

2. By studying the Hamiltonian chords of H, we can define HW →(L), the Wrapped Floer
Cohomology of L. If H is non-degenerate, then this is done using the standard Wrapped
Floer constructions from Chapter 3. If H is degenerate, then this can be done using our
Local Wrapped Floer theory from Chapter 4; see Remark 4.12.

3. We argue, by an index growth argument (§5.2.2), that we can ignore chords on
Ŵ\int(W ) in our cohomology HW →(L). This is where Assumptions 5.5 and 5.7 are
used.

4. Therefore, the assumption that dimHW →(L) = ↘ implies that there are infinitely many
(homologically distinct) interior chords.

We will combine all of these elements together, and carry out this proof rigorously in §5.3.
First, we need to introduce the necessary ingredients. Hence without further ado:

5.2 Index growth

5.2.1 Extending our Hamiltonian from W to Ŵ

The first thing we need to do, if we are to assign a Wrapped Floer Cohomology to our
Hamiltonian Ht : W ! R, is to extend it to the Liouville completion Ŵ .

First, recall how Ŵ is constructed (§3.1.1):
W being a Liouville domain means that ςW is of restricted contact type, i.e. that it is

transverse to the Liouville vector field. Hence, by flowing backwards along the latter, one can
parametrise a neighbourhood (1↑ ϱ, 1]↖ ςW of ςW , with coordinate r ⇔ (1↑ ϱ, 1]. Then, Ŵ
is constructed by smoothly gluing [1,+↘)↖ ςW along the boundary.

✃ Let us now construct a polynomial extension H of H. First, note that in (1↑ ϱ, 1]↖ ςW ,
we can write H = H(r, b, t) where b is the coordinate in ςW .

Now Taylor expand H in the r-direction:

For r ⇔ (1↑ ϱ, 1] : H(r, b, t) = H|ωW + (r ↑ 1)(ςrH)|ωW +
(r ↑ 1)2

2!
(ς2

r
H)|ωW + . . . (5.2)

More concisely, write Hi := (ςi

r
H)|ωW . Then

H(r, b, t) =
m∑

i=0

(r ↑ 1)i

i!
Hi(b, t) +Rm(r, b, t), (5.3)

where the remainder Rm is o
(
(r ↑ 1)m

)
for r ↗ 1, i.e. :

lim
r!1

Rm(r, b, t)

(r ↑ 1)m
= 0.
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Now choose a smooth cut-o! function 2 : [1,+↘) ! R such that


2(1) = 1

2(r) = 0, for r ≃ 1 + 3 > 1

1 + 3

1

1
r

2(r)

An example of such a 2 is given in §6.2. Define:

• Hi(r, b, t) := 2(r)Hi +
(
1↑ 2(r)

)
Ci for some Ci ≃ max

ωW

Hi,

• Rm(r, b, t) := 2(r)Rm(r).

⇒Remark 5.8. Formally, before we write Rm = 2(r)Rm, we need to extend Rm to the collar
[1,+↘)↖ ςW . A method for doing this is given in [See64].

• Definition 5.9. For any m ⇔ R, we define H such that:





On W : H ∀ H

On [1,+↘)↖ ςW : H(r, b, t) =
m∑

i=0

(r ↑ 1)i

i!
Hi + Rm

This defines a smooth extension of H : W ! R to the whole of Ŵ , with the feature that H
is polynomial at infinity. Indeed:

∝r ≃ 1 + 3 : H(r, b, t) = C0 + C1(r ↑ 1) + · · ·+ Cm(r ↑ 1)m.

Note that we can choose the coe"cients Ci to be anything we want, as long as Ci ≃ maxHi,
and we can control the speed at which H becomes polynomial by modifying 3; two features
we will exploit quite a lot in the next few chapters.

✂ In summary, we have found a way to artificially extend our original Hamiltonian H on W
(which may come from a physical problem, say the CR3BP) to a Hamiltonian H on Ŵ . This
allows us to now construct Symplectic or Wrapped Floer Cohomology.

! Problem: when constructing our extension H, we made choices (in particular, the cut-
o! function 2). These choices may cause the appearance of undesirable Hamiltonian chords
on [1,↘)↖ ςW . We call them undesirable because these chords have no physical relevance,
and are simply artifacts of our extension process.
As of now, we do not know of a method for distinguishing physically relevant trajectories from
undesirable ones. This is the reason why Theorem B1 is only concerned with interior chords:
so far, our only way about the issue is to ignore all chords on [1,+↘)↖ ςW altogether.
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5.2.2 Index growth

As discussed at the very end of the last subsection, our extension Ht : Ŵ ! R presents
one issue: it may have undesirable chords on the extension [1,+↘) ↖ ςW . To fix this, we
will impose additional assumptions (the twist condition + index growth) to ensure that our
homological tools ignore the dynamics on [1,+↘)↖ ςW , and only see interior dynamics.

Namely, we prove:

Proposition 5.10 (Index growth [MK22a]). Let (W,ε = dϑ) be a Liouville domain whose
boundary (ςW,φ) is strongly index-definite, and Ht : W ! R be a Hamiltonian satisfying the
twist condition. Then, the flow of the polynomial extension H from Definition 5.9 is strongly
index-definite on [1, 1 + 3)↖ ςW , for any degree m, after potentially shrinking 3 > 0.

This was originally proved in [MK22a], for m = 1. We will show in this section that their
proof also applies to polynomial extensions of degree m > 1. Note that if m = 1, then the flow
being strongly index-definite on [1, 1+3)↖ςW means that it is on the whole of [1,+↘)↖ςW ,
since by Lemma 3.37 there are no chords on [1 + 3,+↘)↖ ςW .

Before we proceed with the proof, let us show why it does the job that we intended:

Corollary 5.11. Using Proposition 5.10, we can homologically separate interior chords from
the ones on [1,+↘)↖ ςW , and thus ignore the latter.

Proof sketch. This is only a proof sketch, because this argument is the core of the proof
of Theorem B1 (see §5.3). Essentially, the idea is that since the flow of H is strongly
index-definite on [1,+↘)↖ ςW , we have

|µCZ(x; ▷)| > cT + d, (5.4)

for every Hamiltonian arc x : [0, T ] ! [1,+↘)↖ ςW ; for some c > 0, d ⇔ R.
Meanwhile, recall that Wrapped Floer Cohomology HW →(L) is defined as

HW →(L) = lim−!
n

HW →(L; J,Hn), (5.5)

where (Hn) is any sequence of Hamiltonians which are linear at infinity, with increasing
slopes going to ↘. In particular, we can define

HW →(L) = lim−!
n

HW →(L; J, H#n),

where H#n is the n-th iterate of H (Definition A.3). Hamiltonian chords of length 1 of
H#n correspond to Hamiltonian chords of length n of H. In particular, by (5.4), any such
chord x will satisfy

µCZ(x; ▷) > cn+ d.

As we travel further and further along the direct limit, the index of chords on the extension
[1,+↘)↖ςW hence blows up to infinity, and so these chords appear extremely high in the
grading. This will allow us, in Theorem B1, to ignore them, and show that dimHW →(L)
being infinite implies the existence of infinitely many interior chords.

This phenomenon, first observed in [MK22a] in the case of symplectic homology, is called
index growth, because it relies on the fact that the indices of chords blow up to infinity. As
we shall see, its proof requires both the twist condition (as stated by Moreno & van Koert),
and the index growth assumption for (ςW,φ).

⇒Remark 5.12. In Chapter 6 of this thesis, we show that the index growth argument can
be replaced by an « action growth » argument – actions of chords on the extension blow up
to ↘. This argument will actually rely on weaker assumptions: we will no longer need index
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growth of (ςW,φ), and we will be able to replace the twist condition by the Weakened Twist
Condition. Moreover, this new setup will be better suited to the study of degenerate Liouville
domains (Definition 7.1), making it more applicable to concrete examples like the CR3BP.

Without further ado, let us proceed with the proof of Proposition 5.10. It relies on one linear
algebra lemma, from Appendix E of [MK22a]:

Lemma 5.13 ([MK22a]). Let 5̇(t) = A0(t)5(t) be a strongly index-definite system of ODEs,
where A0(t) ⇔ sp2n↔2(R). Let A(t) ⇔ sp2n(R) be of the form form:





0
0

0 0 a(t) 0
U t(t) V t(t) b(t) ↑a(t)

A0(t) J

(
U(t)

V (t)

) 

.

Then, the system 5̇(t) = A(t)5(t) is also strongly index-definite.

Proof of Lemma 5.13. See Lemma E.2 of [MK22a].

The proof of Proposition 5.10 then relies on studying the system 5̇(t) = ↔X
Ĥ
5(t), which

is the linearisation of the Hamiltonian flow. We will show that, asymptotically near the
boundary, ↔X

Ĥ
can be put in the appropriate form for Lemma 5.13, thanks to the twist

condition. In particular, the top-left block will correspond to the Reeb flow on (ςW,φ),
which is strongly index-definite by assumption, allowing us to conclude.

Proof of Proposition 5.10. The proof contains five steps:

1. Computing X
Ĥ

.
2. Computing ↔X

Ĥ
.

3. Showing that the matrix ↔X
Ĥ

can be put in the form L0 + (r ↑ 1)L1.
Consequently, if 3 A 1, then ↔X

Ĥ
↗ L0.

4. Proving that L0, L1 ⇔ sp2n, and that L0 is in the right form for Lemma 5.13.
5. Using Lemma 5.13 to show that the system of ODEs 5̇ = L05 is strongly index-

definite. Since the Conley-Zehnder index measures a crossing number for solutions
of 5̇(t) = A(t)5(t), they remain close-by given two matrices A(t) and A↗(t) asymp-
totically close (see Lemma 2.2.9 of [Ust99] for a proof), which will conclude.

Steps 1↑3 are purely computational, and we therefore relegate them to Calculation C.12
of the Computational appendix. They yield:

X
Ĥ

= FRε ↑ (r ↑ 1)Gςr + (r ↑ 1)Xφ (5.6)

↔X
Ĥ

= dF BRε + F↔Rε + dr B (Xφ ↑Gςr) + (r ↑ 1)
(
↔Xφ ↑ dGB ςr

)
(5.7)

=





0
0

0 0 a 0

b c

F⇑εRϑ Xφ

dF |ε





︸ ︷︷ ︸
L0

+(r ↑ 1)





0
0

0 a↗

0 0 0 0

↔φXφ ⇑Rϑ
X

ε|ε

↑dεG





︸ ︷︷ ︸
L1

(5.8)

where the matrix expressions are given in the frame ↼̂ ℑ {Rε, ςr}, with ↼̂ a frame for the
contact structure ↼; and where:
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F = ςr H0 +

(
m∑

i=1

(r ↑ 1)i↔1

(i↑ 1)!
Hi +

(r ↑ 1)i

i!
ςr Hi

)
+

(r ↑ 1)m

m!
R+

(r ↑ 1)m+1

(m+ 1)!
ςr R

G :=
m∑

i=1

(r ↑ 1)i↔1

i!
d Hi(Rε) +

(r ↑ 1)m

(m+ 1)!
d R(Rε)

Xφ :=
m∑

i=1

(r ↑ 1)i↔1

i!
Xφ

Ĥi

+
(r ↑ 1)m

(m+ 1)!
Xφ

R̂

⇒Remark 5.14. Note that Step 1 of the proof (see Calculation C.12) is the only place
where we make explicit use of the twist condition; in order to show that G has no term
containing d H0. This use of the twist condition is marked by the symbol ! .

Meanwhile, the strong index-definiteness assumption for (ςW,φ) only comes in in Step
5, when we use the recursive argument from Lemma 5.13.

Step 4. The proof of Step 4, also relegated to Calculation C.12 of the Computational
Appendix, relies on heavy but elementary linear algebra. We first show that L1 ⇔ sp2n,
which is equivalent to showing that JL1 is symmetric. The tricky part of this is showing
that ↑dφG and ↔Rϑ

Xφ|φ are dual to each other. This implicitly relies on the twist
condition, since it uses the expression for G found in Step 1, and the fact that there is
no term in d H0 (see Remark 5.14).

Then, we argue that since ↔X
Ĥ

is the linearisation of a Hamiltonian flow we have
↔X

Ĥ
⇔ sp2n, from which we deduce that

L0 = ↔X
Ĥ
↑ (r ↑ 1)L1 ⇔ sp2n.

In particular, this implies that JL0 is symmetric, so that L0 must have the form:

L0 =





0
0

0 0 a 0
U t V t b ↑a

F⇑εRϑ J

(
U

V

) 

.

Step 5 (Conclusion). Recall that we want to show that the Hamiltonian flow of H on
[1,+↘)↖ ςW , whose linearisation is given by

5̇(t) = ↔X
Ĥ
5(t),

is strongly index-definite. From Step 3 we have ↔X
Ĥ

= L0 + (r ↑ 1)L1. If we choose
the cut-o! function 2 from Definition 5.9 to be fast enough (i.e. 3 A 1), then we have
↔X

Ĥ
↗ L0 on [1, 1 + 3)↖ ςW .

Meanwhile, the top-left block of L0 is strongly index-definite (it corresponds to the
linearisation of the Reeb flow, which is strongly index-definite by assumption), so that by
Lemma 5.13, the system 5̇(t) = L05(t) is also strongly index-definite.

Since ↔X
Ĥ

and L0 are asymptotically close to each other, then so are the Conley-
Zehnder indices of the systems

5̇(t) = ↔X
Ĥ
5(t),

5̇(t) = L05(t),

because the Conley-Zehnder index is continuous (see Lemma 2.2.9 of [Ust99]). Therefore,
the flow of H on [1, 1 + 3)↖ ςW is also strongly index-definite.
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This concludes the proof of Proposition 5.10, and hence of our discussion on the « index
growth phenomenon ». Let us now introduce the last ingredients for the proof of Theorem
B1.

5.2.3 The support and the mean index
Before we proceed with the proof of Theorem B1, we need two last ingredients. First:

• Definition 5.15. The support HW →(L) is defined as the discrete subset:

suppHW →(L) := {n | HWn(L) ⇐= 0} → Z.

In other words, it is the set of degrees in which HW →(L) is non-trivial.

Lemma 5.16. Assume HW →(L) is infinite-dimensional, and (ςW,φ) is strongly index-
definite. Then, |suppHW →(L)| = ↘.

Proof. Recall that HW →(L) can be defined as a direct limit over a sequence of linear
Hamiltonians (§3.4). Pick H : Ŵ ! R linear at infinity and non-degenerate, and define
H#n to be its n-th iterate. Then, we can write:

HW →(L) = lim−!
n

HL→(L;H#n).

Since H#n is linear at infinity, then by Corollary 3.45 it has finitely many chords, so
that there are finitely many generators in CF →(L;H#n). Since dimHW →(L) = ↘, then
that means new chords appear arbitrarily late in the direct limit. However, since chords
[0, 1] ! Ŵ of H#n are the same thing as trajectories [0, n] ! Ŵ of H, then, by the strong
index-definiteness condition, these chords have indices:

|µCZ| ≃ c · n+ d.

Since µCZ gives the grading on wrapped Floer cohomology, this implies that HW →(L) has
Floer generators of arbitrarily large degree, which verifies the claim.

✃ Now, notice that we can also define the support of local cohomology of a chord x:

supp HWloc(x) := {i ⇔ Z | HW i

loc(x) ⇐= 0}.

In particular, the last lemma we will need before the proof of Theorem B1 will be that, for any
x, suppHW →

loc(x) is bounded. Even better: we can show that all the non-vanishing degrees
of HW →

loc(x) are concentrated around a specific value: the mean index of x.

⇒Remark 5.17. Note that dimHW i

loc(x) being non-zero implies that there exist arbitrarily
small perturbations of x with index i. So this lemma will show that, under small perturbations
of the Hamiltonian, the Conley-Zehnder index of a chord does not stray too far.

The mean index is a di!erent type of index than the Conley-Zehnder one (which is, by
definition, a homotopy invariant of paths in Sp(2n); see §3.2.4). We follow the introduction
of the mean index by Ginzburg and Gurel in [Gin10; GG15].

• Definition 5.18. A map F : G ! G↗ between Lie groups is said to be a quasimorphism if

∝5,↽ ⇔ G : |F (5↽)↑ F (5)↑ F (↽)| < C,

where C is a constant that depends only on G and G↗.

• Definition 5.19. Let
↗

Sp(2n) be the universal cover of the symplectic group Sp(2n). Then,

one can prove ([GG15]) that there exists a unique quasimorphism $ :
↗

Sp(2n)−! R satisfying:

1. Let ( be a symplectic path. For any close enough non-degenerate perturbation (̃ of (,
we have |$(()↑ µCZ((̃)| ℜ n.
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2. Assume ( is non-degenerate. Then lim
T!↘

µCZ((|[0,T ])

T
= $(().

3. Assume ( = ⇀ is a loop, and write ⇀k its k-iteration. Then, $(⇀k) = k$(⇀).

We call $ the mean index.

We refer to §3 of [GG15] for a more thorough exposition, and interpretation of the mean
index. We can now prove our claim that the local Wrapped Floer cohomology of a chord is
concentrated around its mean index:

Lemma 5.20. Let H be some C2 Hamiltonian, and x a Hamiltonian chord. Then:
supp HWloc(x) → [$(x)↑ n,$(x) + n],

where 2n is the dimension of the ambient manifold.

Proof. This directly follows from property (1) of Definition 5.19.

5.3 Proof of Theorem B1
For the rest of this chapter, we fix (W,ε = dϑ) our connected Liouville domain (with strongly
index-definite boundary – Assumption 5.7), L → W our exact spin Lagrangian with Legen-
drian boundary, and f : W ! W our exact symplectomorphism, generated by a Hamiltonian
H satisfying the twist condition (Assumption 5.5). We construct a linear extension H of H
like in Definition 5.9, i.e.

∅3 > 0 such that, for r ≃ 1 + 3, H = H(r) = ar + b (a > 0, b ⇔ R).

Given p ⇔ N\{0}, we write H#p its p-th iteration, i.e. the Hamiltonian s.t. ↽t=1
Ĥ#p

= ↽t=p

Ĥ
.

⇒Remark 5.21. While a Hamiltonian chord ⇀ : [0, 1] ! Ŵ of H#p is by definition a
trajectory ⇀̃ : [0, p] ! Ŵ of H with ends in L, there is no reason to assume that the latter
is constituted of consecutive 1-chords of H. In fact, Lemma 8.2 of [AS10] tells us that for a
generic Hamiltonian, end points of chords are never the starting points of other chords. This
shows that generically, chords of f do not have sub-chords; and that their minimal order is
always equal to their order, unless they are periodic.

However, recall once again that our inspiration is the Three-Body Problem, where our
Hamiltonian might very well be degenerate. Therefore we cannot a!ord to make genericity
assumptions.

Proof of Theorem B1. By assumption, f has finitely many interior periodic chords. Write:

• c1, . . . , ck the interior periodic chords of period 1.

• d1, . . . , dq the interior periodic chords of minimal periods n1, . . . , nq, with ni > 1.

Assume for a contradiction that f has finitely many interior chords which are not periodic
chords, nor sub-chords of periodic chords. Write them x1, . . . , x↼, and let m1, . . . ,m↼ denote
their minimal orders.

Let Ht be the Hamiltonian generating f (satisfying the twist condition), and H be a linear
extension of Ht to Ŵ (as provided by Definition 5.9). Then, recall that we have:

HW →(L) = lim−!
i

HW →(L; H#pi), (5.9)

where we choose (pi) to be a sequence of primes going to ↘, such that pi > maxj,k{nj ,mk};
and where H#pi denotes the pi-th iterate of H.

Indeed, all these cohomologies are well-defined, because even if H (or one of its iterates) were
degenerate, we could appeal to the results from Chapter 4 (i.e. local Floer cohomologies,
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and the local-to-global spectral sequence) to ensure that each HW →(L; H#pi), and a fortiori
HW →(L), are well-defined.

Pick N > 2nk (where 2n = dimW ). By Lemma 5.16, HW →(L) is non-zero in infinitely many
degrees. Therefore we can find i1, . . . , iN , ordered by increasing absolute value, and such that
HW ij (L) ⇐= 0. Combining this with Proposition 5.10, we may choose i su"ciently large such
that the following hold:

(1) Each chord of H#pi that is contained in Ŵ \ int(W ) has a Conley-Zehnder index whose
absolute value is larger than |iN |+ 2n;

(2) the Floer cohomology groups HLij (L, H#pi) are non-trivial for j = 1, . . . , N .

Now look at the E1 page of the spectral sequence associated to H#pi , from Theorem 4.13.

q

Ep,q

1 (L; H#pi)

...

HW 2
loc(x1) . . .

HW 1
loc(x1) HW 1

loc(x2) . . .

p

p+ q = ij

From (2) we deduce that there must be non-trivial summands with p+ q = ij . From (1) we
know that no chord in Ŵ \ int(W ) can contribute to local Floer homology of degree ij , since
their Conley-Zehnder indices are too large. Therefore, each of these non-trivial summands
must come from the local wrapped Floer homology of a chord in int(W ).

By assumption though, there are only finitely many such interior chords:

• c1, . . . , ck, interior periodic chords of period 1;

• d1, . . . , dq, interior periodic chords of periods n1, . . . , nq > 1;

• x1, . . . , x↼, interior chords which are neither periodic, nor sub-chords of periodic chords,
with minimal orders m1, . . . ,m↼.

We have chosen the sequence of primes (pi) such that pi > maxj,k{nj ,mk}. Therefore, the
chords d1, . . . , dq, x1, . . . , x↼ cannot contribute to the cohomology HW ij (L; H#pi), and nor
can the iterates of the di’s (since nj ⇐ |pi).
Therefore, the chords contributing towards HW ij (L; H#pi) must necessarily be iterates cpi

j

of interior periodic chords cj of period 1. However, by Lemma 5.20, we get:

suppHW →
loc(c

pi

j
) → [$(cpi

j
)↑ n,$(cpi

j
) + n]

= [pi$(cj)↑ n, pi$(cj) + n] by 3. of Defn. 5.19.



Chapter 5. A relative Poincaré-Birkho! theorem 77

For each chord cj , this support ranges over 2n degrees, and there are k periodic chords of
period 1 in total. Therefore, this covers at most 2nk di!erent degrees, leaving some of the
degrees i1, . . . , iN uncovered since we had chosen N > 2nk. This yields a contradiction.

Therefore, there must exist infinitely many interior chords which are not sub-chords of any
periodic chord; and they must have arbitrarily large degrees.
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Chapter 6

The Weakened Twist Condition

6.1 Weakening the twist condition

6.1.1 Why weaken the twist condition?
The twist condition is the main assumption in Moreno & van Koert’s model, and as such
remains the main obstruction to applying Theorems 5.2 and B1 to the Three-Body Problem.
Indeed, as pointed out in Remark 5.3, the twist condition still hasn’t been verified – not
even in the Rotating Kepler Problem. In a way, this is not so surprising. Indeed, consider a
connected Liouville domain (W,ε = dϑ). The twist condition asks that we find a Hamiltonian
Ht : W ! R whose Hamiltonian vector field satisfies

XHt
= htRε (ht > 0 smooth),

where Rε is the Reeb vector field on (ςW,φ := ϑ|ωW ). This is an incredibly constraining
assumption on the Hamiltonian; and therefore it is little surprise that we have not been able
to verify it in practice.

In the next two chapters, we shall prove that we can replace the twist condition by the
Weakened Twist Condition, which only asks that

▽XHt
,Rε̸ > 0.

In other words, instead of trying to find a Hamiltonian whose vector field is collinear with
the Reeb vector field along the boundary, we only need to ensure that the two vector fields
"point roughly in the same direction"(1).

Rε

XH |ωW

However, we are jumping ahead. This version of the Weakened Twist Condition will only be
the content of Theorem B3. For now, let us prove the intermediary result:

Theorem B2. Let (W,ε = dϑ) be a connected Liouville domain, L → W be an exact spin
Lagrangian with Legendrian boundary, and f : W ! W be an exact symplectomorphism.
Further assume that:

• (Wrapped Floer Homology). HW →(L) ⇐= 0 in infinitely many degrees;

• (Chern class). if dimW ≃ 4, then c1(W ) = 0.

(1)The metric ↑·, ·↓ used here is not arbitrary. It is the one given by dω(·, J )̇ + ω↔ ω.
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• (Quantitative Weakened Twist Condition) f is generated by a C2 Hamiltonian
Ht : W ! R satisfying the quantitative weakened twist condition (Assumption 6.2), and
whose fixed points are isolated;

Then f admits infinitely many interior chords with respect to L, of arbitrarily large order,
and which are not sub-chords of any periodic chord.

⇒Remark 6.1 (On assumptions). This intermediary statement relies on a ’Quantitative
Weakened Twist Condition’, stated right below. It is not the definitive version we are looking
for, which we can apply to the Three-Body Problem. However, it already constitutes a
significant improvement of Moreno & van Koert’s twist condition.

Besides weakening the twist condition (which is now open), observe that we no longer need
to assume the strong index-definiteness assumption, and therefore that the contact structure
on ςW is trivialisable, which is a major improvement for applicability of this theorem. We
still require C2 regularity of our Hamiltonian because we need to have a well-defined grading.

The mild trade-o! is that we now need to assume that HW →(L) is non-zero in infinitely
many degrees, whereas Theorem B1 only assumed that it was infinite-dimensional. In all our
cases of interest from Part III, this won’t matter.

Assumption 6.2 (Quantitative Weakened Twist Condition). Let (W,ε = dϑ) be a
connected Liouville domain and f : W ! W a di!eomorphism. f is said to satisfy the
Weakened Twist Condition if it can be generated as the time 1-map of a C2 Hamiltonian
Ht : W ! R such that:

(1) Ht|ωW > 0;

(2) min
ωW

ςrHt > max
ωW

Ht.

Note that, because of our choice of complex structure J (such that Jςr = Rε), we have
(ςrHt)|ωW = φ(XHt

) = ▽XHt
,Rε̸, so that we can rewrite:

(2) min
ωW

▽XH |ωW ,Rε̸ > max
ωW

H.

Note that (1) can always be achieved by shifting Ht by a constant, so that (2) is the main part
of the assumption. So in other words, we no longer require that XHt

and Rε be collinear,
but that their inner product be large enough.

6.1.2 How to weaken the twist condition?
So in short, our goal is to rewrite Theorems 5.2 and B1, but replacing both the twist condition
and strong index-definiteness assumption by the Quantitative Weakened Twist Condition. We
will present the argument for adapting Theorem B1 here, and refer to [LM25] for Theorem
5.2 (the proofs are almost exactly the same, replacing Wrapped Floer by Symplectic Coho-
mology).
✃ Question: where in the proof of Theorem B1 were Assumptions 5.5 and 5.7 used?

Short answer: in the « index growth » argument (§5.2.2). This allowed to separate
chords/orbits in the interior of W from chords/orbits on the extension [1,+↘) ↖ ςW , in
order to ignore the latter in our local-to-global spectral sequence. The reason we did this is
because there may be undesirable chords in [1,+↘) ↖ ςW which are solely artifacts of our
extension process, and have no physical relevance.

Long answer: The twist condition was used in Step 1 of the proof of Proposition 5.10 (the
Index Growth proposition), when computing the r-derivative of H at the boundary.

Indeed, recall from Definition 3.8 that all along this thesis, we choose an almost complex
structure J on Ŵ such that Jςr = Rε, where V = rςr is the Liouville vector field near
(ςW,φ). By definition, XH = J↔H, so that the twist condition

XH |ωW = htRε, ht > 0 smooth,
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can be rewritten
↔H ∀ (ςrH)|ωWςr, (ςrH)|ωW > 0 smooth.

This is the form in which we actually use the twist condition in the proof of the index growth
argument (Proposition 5.10), and it is essential to the proof: because the ultimate goal of the
argument is to put the linearised Hamiltonian flow 5̇(t) = ↔X

Ĥ
5(t) of an extension H of H

in a nice form. The twist condition allows to kill many o!-diagonal terms in ↔X
Ĥ

.
Then, once this matrix has been put in a nice form, one uses the strong index-definiteness

assumption along with an recursive linear algebra argument to conclude the proof.

✂ So in summary, the index growth argument was what the reason we needed the twist con-
dition and strong index-definiteness assumption in B1. In a nutshell, we ignored trajectories
on the collar [1,+↘)↖ ςW was by showing they satisfied

µ > cT + d,

where µ the Conley-Zehnder index, T the period of a trajectory, and c > 0, d ⇔ R constants
independent of the trajectory.

Let us now see how we could replace this index growth argument.

6.2 Action growth
We propose, instead of separating interior chords from those on the completion via index, to
do it via action. In other words, we show:

Theorem 6.3 (Action growth). Let (W,ε = dϑ) be a connected Liouville domain, and
Ht : W ! R satisfy the Quantitative Weakened Twist Condition (Assumption 6.2). Then we
can construct an extension H of H such that, at infinity, H looks like:

H = ar ↑ ϱ, (6.1)

for a, ϱ > 0 satisfying (6.3) and (6.4), and there exist constants c > 0, d ⇔ R such that for
every trajectory x : [0, T ] ! [1,+↘)↖ ςW of the flow of H, we have:

A
Ĥ
(x) < ↑c · T + d. (6.2)

⇒Remark 6.4 (On a and ϱ). We have quite a decent amount of control over the constants
a and ϱ in the expression of H. The only constraints are that a must be su"ciently big, and
ϱ su"ciently small. More precisely, need:

a ≃ max
ωW

ςrH (6.3)

0 < ϱ < min
ωW

ςrH ↑max
ωW

H (6.4)

In particular, we can choose H to be arbitrarily close to the Hamiltonian ar – though then,
as we shall see in the proof, the action growth phenomenon will become arbitrarily slow.

⇒Remark 6.5. As we shall see in the proof of Theorem B2, this action growth argument
completely replaces the index growth argument from Theorem B1. Indeed, instead of ignoring
chords on [1,+↘)↖ςW because their indices blow up to infinity, we will ignore them because
their actions blow up to ↑↘.

Proof of Theorem 6.3. The proof will essentially consist in brute-forcing some asymptotical
estimates out of the action functional A

Ĥ
.
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Step 1 (Simplifying the statement).
Recall that we are working with Hamiltonian chords with ends in an exact Lagrangian L → W
(exactness means that ϑ|L = df for some function f). We complete W to a Liouville manifold
(Ŵ , ε̂ = dϑ̂), with ϑ̂ = rφ = rϑ|ωW on the completion [1,+↘)↖ ςW , and we also complete
L to L (which is still exact Lagrangian by Lemma 9.4).

Then, from Chapter 3, the action functional of H on Ŵ is defined as

A
Ĥ
(x) := f(x(1))↑ f(x(0))↑

∫
T

0
xϖϑ̂+

∫
T

0

H(x(t))dt

for a Hamiltonian chord x : [0, T ] ! Ŵ . By our extension process H ! H (which we recall in
the next step), we have that outside of W ℑωW [1, 1 + 3)↖ ςW , the Hamiltonian H is linear.
Therefore, by Lemma 3.37, it has no Hamiltonian chords there, and hence it su"ces to prove
action growth in [1, 1 + 3)↖ ςW .

In this window, the function f is bounded, so that it actually su"ces to prove action growth
for the functional defined by:

A(x) := ↑
∫

T

0
xϖϑ̂+

∫
T

0

H(x(t))dt.

In particular, observe that A is exactly the action functional for symplectic cohomology (up
to replacing [0, T ] by R/TZ), which means that our proof in the Wrapped Floer cohomology
case directly carries over to symplectic cohomology.

Step 2 (Expanding A).
Let us now expand the expression for A. Recall from Definition 5.9 that the linear extension
H of H is defined on [1,+↘)↖W as:

∝r ≃ 1 : H(r, b, t) := H0(r, b, t) + (r ↑ 1) H1(r, b, t) +
(r ↑ 1)2

2!
R1(r, b, t), (6.5)

where b is the coordinate on ςW , and Hi := (ςi

r
H)|ωW . We then choose a small 3 > 0, and

a cut-o! function 2 such that

2(1) = 1

2(r) = 0 for r ≃ 1 + 3

and we define:

Hi(r, b, t) := 2(r)Hi(b, t) + (1↑ 2(r))Ci,

R(r, b, t) := 2(r)
∑

i⇐2

(r ↑ 1)i

i!
Hi,

where the numbers Ci > 0 are constants. The point is that, for r ≃ 1 + 3, we have:

H = C0 + C1(r ↑ 1).

For now, we impose no assumption on the Ci’s, except that Ci ≃ max
ωW

Hi, like in Definition

5.9, and that C1 /⇔ specφ (which can always be achieved by a perturbation), so that H has
no Hamiltonian chords on [1 + 3,↘)↖ ςW , by Lemma 3.37.

From Step 1, we want to prove action growth for the associated functional

A : x #! ↑
∫

T

0
xϖϑ̂+

∫
T

0

H(x(t))dt,
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for Hamiltonian arcs x : [0, T ] ! [1, 1+ 3)↖ ςW . Such arcs must satisfy ẋ(t) = X
Ĥ
(x(t)), by

definition; and since our almost complex structure satisfies Jςr = Rε, we must have:

xϖϑ̂ = ϑ̂
(
x(t)

)
dt

= ϑ̂(X
Ĥ
)dt

= rφ(X
Ĥ
)dt (Because ϑ̂ = rφ = rϑ|ωW on [1,+↘)↖ ςW ])

= rφ(J↔ H)dt

= rςr H dt (Because Jςr = Rε)

Now, just like in Calculation C.12, we can explicitly compute:

ςr H =
ς

ςr

(
H0 + (r ↑ 1) H1 +

(r ↑ 1)2

2!
R
)

= ςr H0 + H1 + (r ↑ 1)ςr H1 + (r ↑ 1) R+
(r ↑ 1)2

2!
ςr R =: F.

With this new notation, we can write:

A(x) = ↑
∫

T

0
rFdt+

∫
T

0

H
(
x(t)

)
dt.

Step 3 (Asymptotically approximating A).

To construct our extension H in the previous step, we had to choose a cut-o! function
2 : [1, 1 + 3] ! [0, 1], which looked something like:

1 + 3

1

1
r

2(r)

For example, we have here drawn the cut-o! function 2(r) := ↽(r ↑ 1), with:

↽ : (0, 3) −! (0, 1) : s #−!
exp

(
1

s

)

exp

(
1

s

)
+ exp

(
1

3 ↑ s

) ,

which is then continuously extended to [0, 3].

Let us choose 3 > 0 extremely small, so that our neighbourhood [1, 1 + 3]↖ ςW is extremely
thin, and we always have r ↗ 1. In particular, we can ignore terms of order ≃ 1, and
asymptotically approximate:
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H C H0,

F C ςr H0 + H1.

Therefore, the functional A asymptotically becomes:

A(x) = ↑
∫

T

0
rF dt+

∫
T

0

H
(
x(t)

)
dt

C ↑
∫

T

0

(
ςr H0 + H1)dt+

∫
T

0

H0dt

C
∫

T

0

( H0 ↑ H1)dt↑
∫

T

0
ςr H0 dt

on [1, 1 + 3)↖ ςW . Now, from the expressions of H0 and H1, we can simplify:

H0 ↑ H1 = 2(r)

(H0 ↑H1)↑ (C0 ↑ C1)


+ (C0 ↑ C1),

ςr H0 = 2↗(r)
(
H0 ↑ C0

)
,

so that our functional A becomes:

A(x) C
∫

T

0
2(r)


(H0 ↑H1)↑ (C0 ↑ C1)


dt+

∫
T

0
(C0 ↑ C1)dt↑

∫
T

0
2↗(r)

(
H0 ↑ C0

)
dt.

(6.6)

Step 4 (Zone-appropriate asymptotics).
Recall that we want to prove an action growth statement for A. We will not attack the
expression (6.6) head-on; instead, we will make use of the particularly nice form of the function
2 to approximate A in di!erent zones:

1 + 3

1

Zone 1 Zone 2 Zone 3

1
r

2(r)

We can roughly delimit the interval [1, 1+ 3] into three zones, depending on the behaviour of
the cut-o! function 2 : [1, 1 + 3] ! [0, 1]. Indeed:

• in Zone 1, 2(r) C 1, 2↗(r) C 0;

• in Zone 2 2 decreases rapidly, i.e. 2↗(r) < ↑▷ for some ▷ > 0;

• in Zone 3, 2(r) C 0, 2↗(r) C 0.
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We choose these zones to slightly overlap so that they cover the whole interval [1, 1 + 3]. We
can then asymptotically approximate A in each of these zones:

Zone 1. We have 2 C 1, 2↗ C 0, therefore:

A(x) C
∫

T

0


(H0 ↑H1)↑ (C0 ↑ C1)

)
dt+

∫
T

0
(C0 ↑ C1)dt

=

∫
T

0
(H0 ↑H1)dt.

However, by the Quantitative Weakened Twist Condition (Assumption 6.2), we have

min
ωW

ςrH > max
ωW

H,

or in other words
min
ωW

H1 > max
ωW

H0.

Define c1 := min
ωW

H1 ↑max
ωW

H0 > 0. Then, we must have:

A(x) ≳ ↑c1 · T

so that A does satisfy action growth for chords in Zone 1.

Zone 3. Zone 3 is even simpler than Zone 1. We have 2 C 0 C 2↗, so that A simplifies to

A(x) C
∫

T

0

(
C0 ↑ C1

)
dt.

Recall that the only constraints on the constants C0 and C1, so far, are that Ci ≃ maxHi.
In particular, if we choose C1 > C0, then there exists c3 > 0 such that

A(x) ≳ ↑c3 · T

Zone 2. 2 is rapidly decreasing from 1 to 0, and we have ςr2 < ↑▷, for some ▷ > 0.

First, let us look at the last term of A:

↑
∫

T

0
2↗(r)

(
H0 ↑ C0

)
dt.

Since C0 ≃ maxH0 by construction, the above expression is negative, and we must have:

↑
∫

T

0
2↗(r)

(
H0 ↑ C0

)
dt < ↑ϱ(C0 ↑maxH0) · T.

✂ Let us enforce C0 > maxH0 (which we can do, since we have control over the coe"cients
C0 and C1). Then, ∅ c↗↗2 > 0 such that:

↑
∫

T

0
2↗(r)

(
H0 ↑ C0

)
dt < ↑c↗↗2 · T.

Now let us look at the first term of A:
∫

T

0
2(r)


(H0 ↑H1)↑ (C0 ↑ C1)


dt.

We would also like it to satisfy an "action growth" result. First note that, on Zone 2,
min 2 > ▷ > 0. For the second term to be negative, we would need:

C1 ↑ C0 < H1 ↑H0. (6.7)
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Recall that H1 > H0 by the Weakened Twist Condition (actually, minH1 > maxH0). In
particular, we must have

minH1 ↑maxH0 ℜ min
(
H1 ↑H0

)
,

since H0 and H1 are real-valued functions.

✂ Therefore, let us choose C0 and C1 such that 0 < C1 ↑ C0 < minH1 ↑maxH0. Then:

(C1 ↑ C0) < min
ωW

H1 ↑max
ωW

H0 ℜ min
ωW

(H1 ↑H0),

so that there exists a constant c↗2 > 0 such that:

min
ωW

(H1 ↑H0)↑ (C1 ↑ C0) > c↗2,

and hence: ∫
T

0
2(r)


(H0 ↑H1)↑ (C0 ↑ C1)


dt < ↑c↗2 · T.

Therefore, we can asymptotically bound A:

A(x) C
∫

T

0
2(r)


(H0 ↑H1)↑ (C0 ↑ C1)


dt

︸ ︷︷ ︸
≳ ↑c↗2 · T

+

∫
T

0
(C0 ↑ C1)dt

︸ ︷︷ ︸
≳ ↑b3 · T

↑
∫

T

0
2↗(r)

(
H0 ↑ C0

)
dt

︸ ︷︷ ︸
≳ ↑c↗↗2 · T

.

where b3 = C0 ↑ C1 < 0. Then, if we set c2 = c↗2 + c↗↗2 + c3, we get:

A(x) ≳ ↑c2 · T

for every chord x of length T in Zone 2.

Step 5 (Patching the zones together).

To summarise Step 4:

We delimited the neighbourhood
[1, 1+3]↖ςW into three Zones 1, 2, 3,
and found constants ci > 0 so that for
every Hamiltonian path

x : [0, T ] ! Zone i,

we had

A(x) ≳ ↑ci · T.

Of course, in general, a path x will
not lie exclusively in one of the three
zones, but it may travel freely across
them. To account for this, we can
partition [0, T ] into sub-intervals:

Zone 1

Zone 2

Zone 3

ωW r = 1

r = 1 + ϖ

[0, T ] = [t0, t1] ℑ · · · ℑ [tj , tj+1] ℑ · · · ℑ [tN↔1, tN ],

such that on each [tj , tj+1], x lies constantly in one of the zones. (Such partitions exist because
we have chosen our three zones to overlap). In particular, even if x a chord x in [1, 1+3)↖ςW
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travels freely between the zones, we still have:

A(x) ≳ ↑c · T

for c := min(c1, c2, c3) > 0.

Step 6 (Concluding).
So we have shown that, for any Hamiltonian trajectory x : [0, T ] ! [1, 1 + 3) ↖ ςW of our
extension H, we have

A(x) ≳ ↑c · T,

where the symbol ≳ means "less than, up to a small error term", so that there exists some
small constant d ⇔ R such that

A(x) < ↑c · T + d.

By Step 1, this concludes the proof of action growth for A
Ĥ

on [1,+↘)↖ ςW . Let us briefly
recall the assumptions that we made on the constants Ci along the way:

• by construction of the extension H (Definition 5.9), we had Ci ≃ maxHi.

• in Step 4, for the purposes of studying Zone 2, we assumed that C0 > maxH0.

• also for the purposes of studying Zone 2 (and 3), we assumed that C1 = C0 + ϱ, where
ϱ < minH1 ↑maxH0. In particular, this implies that we must have C0 ≃ maxH1 ↑ ϱ.

Therefore, our extension H must look like, at infinity:

H = C0 + (C0 + ϱ)(r ↑ 1)

= (C0 + ϱ)r ↑ ϱ

= ar ↑ ϱ (Setting a = C0 + ϱ)

where a ≃ maxH1, and ϱ < minH1 ↑maxH0.

⇒Remark 6.6. If we’re interested in a specific chord x, and want to refine the bound on its
action, then we can do this by using our partition from above. Indeed, for i ⇔ {1, 2, 3}, let us
define Ti < T to be the time that the chord x spends in Zone 1. In other words:

Ti :=
∑

j

(tj+1 ↑ tj),

where the sum is taken over all indices j such that

x|[tj ,tj+1]

lies in Zone i. Then, we have:

A(x) ≳ ↑c1 · T1 ↑ c2 · T2 ↑ c3 · T3,

where we explicitly determined c1, c2, and c3 in Step 4.

⇒Remark 6.7. The Weakened Twist Condition was key in proving the action growth of
chords extremely close to the boundary ςW (in Zone 1). It was also important in Zone 2
(especially at "low values of r"), to make sure the first term satisfied action growth, but the
more we progressed along Zone 2, the more A

Ĥ
became dominated by the integral in ↑2↗(r),

because of 2’s rapid decrease.
Finally, in Zone 3, we didn’t need the Weakened Twist Condition at all, and simply achieved

action growth thanks through our choice of constants C0, C1.
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6.3 Proof of Theorem B2
We now have all the ingredients necessary to prove Theorem B2. The proof will be almost
exactly the same as that of Theorem B1, in Chapter 5, except we replace index growth by
action growth.

Proof of Theorem B2. By assumption, f has finitely many interior periodic chords on L. Let
us write:

• c1, . . . , ck the period-1 periodic chords of f on L.

• d1, . . . , dq the interior periodic chords of minimal periods n1, . . . , nq, with ni > 1.

Assume, for a contradiction, that f has finitely many interior chords which are not periodic
chords, nor sub-chords of periodic chords, and let m1, . . . ,m↼ denote their (minimal) orders.
Choose a sequence of primes (pi) going to ↘, and such that pi > maxj,k{nj ,mk}. Then, pick
N > 2nk (where 2n = dimW ). Since HW →(L) is non-zero in infinitely many degrees (by
assumption), we can find i1, . . . , iN such that HW ij (L) ⇐= 0. Recall that, by definition,

HW →(L) := lim−!
pi

HL→(L, H#pi).

This tells us that:

HW ij (L) ⇐= 0 =⇓ HLij (L; H#pi) ⇐= 0 for pi large enough.

Indeed, if HLij (L; H#pi) were 0 for infinitely many values of pi, then HW ij (L) = lim−!HLij (L; H#pi)
would be zero. Note that by action growth (Theorem 6.3), we have that for every chord x of
H#pi on the collar [1,+↘)↖ ςW :

A
Ĥ
(x) ℜ ↑c · pi + d. (6.8)

Then, define the co-chain complex:

CW →( H) :=

x is a chord of degree ∗ of H#pj , for some j


.

as well as the associated action-filtration by A
Ĥ

(see §3.5.2). By Proposition 3.78, there
exists a spectral sequence whose E1 page consists of the local cohomology of chords with
action ≃ ↑c · pi, and such that:

E1 =⇓ HL→(L; H#pi).

As argued above, HLij (L; H#pi) ⇐= 0 for our specific values i1, . . . , iN . Recall that conver-
gence of spectral sequences means that:

HLij (L; H#pi) ↗=
⊕

p+q=ij

Ep,q

↘ .

Therefore, there must be non-zero elements on the diagonals p+ q = ij of E↘. Pick pi very
large, so that pi ⊤ |ij | ∝j. Then, by (6.8), chords of H#pi on [1,+↘)↖ ςW will have action
going to ↑↘, and hence will appear very late in the action-filtration (on columns very far
away, with p ⊤ 1). Hence, such chords cannot count towards the diagonals p+ q = ij , and a
fortiori towards HLij (L; H#pi), so that only interior chords contribute to it.

Also, recall that we had assumed p prime, so that nj ⊋ pi, ensuring that none of the chords
contributing towards our cohomology can be the iterate of a non-fixed interior periodic chord.
Hence, the only chords which can count towards HLij (L; H#pi) are iterates cpi

j
of the fixed

chords c1, . . . , ck. However, by Lemma 5.20:

∝j : suppHW →
loc(c

pi

j
) → [$(cpi

j
)↑ n,$(cpi

j
) + n]

Since we have k fixed chords, the E1 =


i,j
HWloc(x

pi

j
) covers at most 2nk degrees in

cohomology. However, we know that HLij (L; H#pi) must be non-zero in at least N degrees,
where N > 2nk, yielding a contradiction. Hence, there must exist infinitely many interior
chords, with arbitrary large lengths.



88

Chapter 7

A relative Poincaré-Birkho!
theorem on degenerate Liouville
domains

Let us now conclude the trilogy of Poincaré-Birkho! theorems we began in Chapter 5. Recall:
Theorem B1 showed existence of infinitely many interior chords with Lagrangian ends, in the
model of Moreno & van Koert. Theorem B2 then generalised said model by weakening the
assumptions. We will now adapt Theorem B2 to a di!erent class of manifolds: degenerate
Liouville domains (Definition 7.1).
All the results in this chapter were originally published in [LM25].

Theorem B3. Let (W,ϑ,φ) be a connected degenerate Liouville domain, L → W be an exact
spin Lagrangian with Legendrian boundary, and f : W ! W be an exact symplectomorphism.
Further assume that:

• (Wrapped Floer Homology). HW →(L) ⇐= 0 in infinitely many degrees;

• (Chern class). if dimW ≃ 4, then c1(W ) = 0;

• (Weakened Twist Condition) f is generated by a Hamiltonian Ht : W ! R whose
fixed points are isolated, which is C2 on the interior of W but does not C1-extend to the
boundary, and such that:

ςrHt > 0

in a neighbourhood of ςW .

Then f admits infinitely many interior chords with respect to L, of arbitrarily large order,
which are not sub-chords of any periodic chord.

The main idea behind the proof of this theorem is that we will use a process called non-
degeneration, turning (W,ϑ,φ) into a non-degenerate Liouville domain, and our C2 twist
Hamiltonian into a C0 Hamiltonian. We will then approximate this new C0 Hamiltonian
by a sequence of C2 Hamiltonians (on the non-degeneration of (W,ϑ,φ)), and show that far
along enough in this sequence, the Quantitative Weakened Twist Condition from the previous
chapter will be satisfied; allowing us to replicate the argument of Theorem B2.

We give a more precise proof sketch in §7.1.3, after explaining the non-degeneration process.
Note that, in the above theorem, the assumption that Ht does not C1-extend to ςW is
crucial, as without it, the Quantitative Weakened Twist Condition could not hold in the
approximating sequence – a fact we explore in Remark 7.6.

⇒Remark. Since, by essence, the proof of Theorem B3 relies on a non-degeneration process,
we could rephrase the theorem. Instead of a theorem for C2 Hamiltonian twist maps on
degenerate Liouville domains, we could state a theorem for C0 Hamiltonian twist maps on
non-degenerate Liouville domains, which we did at the end of §1.3.2.
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7.1 Bypassing the degeneracy

7.1.1 Degenerate Liouville domains
• Definition 7.1. A degenerate Liouville domain is a triplet (W,ϑ,φ) where:

• W is a smooth, compact manifold with non-empty boundary ςW ;

• φ is a contact form on ςW .

• ϑ is a 1-form on W such that ε := dϑ is symplectic in the interior, but degenerates
along the boundary, i.e

∅X such that (X ⌐ ε)|ωW ∀ 0.

The last condition actually implies that ϑ = A(r)φ on some collar neighbourhood (1↑ ϱ, 1]↖
ςW , where

ςrA|r > 0 for r ⇐= 1, ςrA|r=1 = 0, A(1) = 0.

So in short, a degenerate Liouville domain is a Liouville domain whose symplectic form
degenerates along the boundary.

✁ Example 7.2. We will see explicit examples in Chapter 8. Most notably, we will see that
when an open book is adapted to a Reeb flow in the sense of Giroux, its pages are degener-
ate Liouville domains. In particular, since the CR3BP exhibits an open book decomposition
for low energies [MK22b], then we can find physically relevant degenerate Liouville domains
(see Lemma 8.25), most notably, by studying the open book associated to the Circular Re-
stricted Three-Body Problem (see Chapter 8). Another example is that of billiards, which
are currently of high interest in Hamiltonian dynamics [Mor24, Ch. 4, §6].

7.1.2 Degeneration and non-degeneration
As already explored in [Mor24, Ch. 4], we can turn a degenerate Liouville manifold into a
standard, non-degenerate one, and vice versa. Namely:

Lemma 7.3. Let (W,ϑ,φ) be a degenerate Liouville domain. There exists a homeomorphism
Q : W ! W , smooth in the interior but only continuous along the boundary, such that if we
set ϑQ := Qϖϑ, then (W, dϑQ) is a non-degenerate Liouville domain.

Lemma 7.4. Given f : W ! W smooth, then fQ := Q↔1 ′ f ′Q is smooth in the interior,
but only continuous along the boundary.

We will make use of this bridge between degenerate and non-degenerate Liouville domains all
throughout this chapter.

Proof sketch of Lemma 7.3. Let b denote the coordinate on the boundary, and consider a
collar neighbourhood (↑ϱ, 0] ↖ ςW , with s ⇔ (↑ϱ, 0]. There, the Liouville form ϑ can be
written ϑ = A(s)φ, where A(0) = 1, ςsA|s=0 = 0 and ςsA > 0 for every s ⇐= 0. Then,
define a map

Q : (s, b) #! (⇁(s), b),

where ⇁ is a solution of the ODE

⇁↗(s) = ↑ 1

ςsA|s
> 0. (7.1)

By integration, we get (A ′ ⇁)(s) = 1 ↑ s. Writing r := 1 ↑ s ⇔ (1 ↑ ϱ, 1] ↖ ςW , and
defining the form ϑQ := Qϖϑ, we see that

dϑQ = d(A(⇁(s))φ) = d(rφ),

which is the standard symplectic form, and a fortiori non-degenerate.
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Proof of Lemma 7.4. This directly follows from the fact that Q is a di!eomorphism on
int(W ), but only continuous along ςW ; which itself follows from the fact that (7.1) only
has one solution satisfying ⇁(0) = 0, which is only continuous at s = 0.

We refer to §2 of [LM25] or Chapter 4 of [Mor24] for more details on this non-degeneration
technique.
What the above lemmas tell us is that we can think of Q as a "squareroot map" near the
boundary. We can explicitly compute an inverse S, which turns a standard Liouville domain
into a degenerate one. Indeed, given (W,ε = dϑ) a "true" Liouville domain, then by setting

S : (s, b) #!(s2, b),

ϑS := Sϖϑ =(1↑ s2)φ,

we obtain a degenerate Liouville domain (W,ϑS ,φ := ϑS |ωW ).

In summary, we have homeomorphisms Q and S such that Q turns a non-degenerate Liouville
domain into a degenerate one, and S does the reverse. In short:

(W, dϑQ) (W,ϑS ,φ)
Q

S=Q
→1

fQ=Q
→1⇓f⇓Q f

Non-degenerate Degenerate

⇒Remark 7.5. Let us make one final observation, about our construction of the last two
lemmas. Near the boundary, we have Q = (F, id) with F (r) = 1↑ ⇁(1↑ r), where F, F ↗ > 0
on the interior of W , F |ωW ∀ 1, and F ↗ blows up to infinity along ςW = {r = 1}.

7.1.3 Intuition behind Theorem B3, and some definitions
Proof sketch of Theorem B3.

1. Let (W,ϑ,φ) be degenerate, and say we have a di!eomorphism f : W ! W satisfying
the Weakened Twist Condition, i.e. it is generated by a C2 Hamiltonian Ht such that

(ςrHt)|ωW > 0.

2. Use the non-degeneration process described above (pull back by Q), to obtain a non-
degenerate Liouville domain (W,ε), and a map fQ which is now only C0 at the boundary.

3. Approximate fQ by a sequence of C2 maps f⇀ such that

f⇀
C0

−! fQ as ▷ ! 0.

We can construct this sequence in such a way that f⇀ satisfies the Quantitative Weakened
Twist Condition from Chapter 6 for ϱ A 1. We call this process a smoothing.

4. Therefore, by re-working slightly the proof of Theorem B2, we can assign a Wrapped
Floer Cohomology to fQ (a fortiori, f) which only detects its interior chords.

⇒Remark 7.6 (Why is Ht forbidden from C1-extending to ςW?). There remains to explain
one subtlety: why do we enforce that Ht does not C1-extend to the boundary in the statement
of Theorem B3?

This is because, on the degenerate Liouville domain from Theorem B3, the symplectic
form near the boundary is given by εS = d(A(r)φ), where A(r) ∀ 1 along ςW (in particular,
ςrA(r)|ωW ∀ 0). Assume that the Hamiltonian Ht did C1-extend to the boundary, implying
that XHt

was well-defined. Then, by a routine calculation, we would have:

ςrA · φ(XHt
) = εS(ςr, XHt

)

= (ςrA dr ↓ φ+Adφ) (ςr, XHt
)

= ςrHt.
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In particular, we would then have

ςrHt

ςrA
= φ(XHt

) < ↘.

However, since ςrA ∀ 0 along ςW , then this would necessarily imply that ςrHt ∀ 0 too. This
would make it impossible for the Weakened Twist Condition to hold, and a fortiori, for the
Quantitative Weakened Twist Condition to hold for the smoothing sequence approximating
the non-degeneration of Ht. Therefore, we must necessarily ask that XHt

does not C0-extend
to ςW in the statement of Theorem B3.

✃ As explained in the proof sketch, the first step in the proof corresponds to non-degenerating
our original setup. In particular, if we take our C2 Hamiltonian twist map through the non-
degeneration process, we get:

• Definition 7.7. (C0-Hamiltonian twist maps) Let f : (W,ε) ! (W,ε) be a map on a
Liouville domain, and let φ be the contact form along ςW . We say that f is a C0-Hamiltonian
twist map if the following conditions hold:

• (Hamiltonian) f |int(W ) = ↽1
H

is generated by a C2 Hamiltonian Ht : int(W ) ! R;

• (Extension) Both f and the Hamiltonian Ht admit C0 extensions to the boundary,
but not necessarily C2 extensions; and

• (Weakened Twist Condition) Near the boundary ςW , the generating Hamiltonian
satisfies φ(XHt

) = ςrHt > 0, and φ(XHt
) = ςrHt ! +↘ as we approach ςW .

We say that the isotopy Ht is infinitely strictly wrapping or infinitely positively wrapping, or
simply infinitely wrapping.

As explained in the main idea, we would like to approximate such a C0-Hamiltonian twist
map by a sequence of C2-Hamiltonian maps, with which we can use our Floer-theoretical
arguments from Chapter 6. For this purpose, we also make the definition:

• Definition 7.8. (C2-Hamiltonian twist map) Let f : (W,ε) ! (W,ε) be a map on a
Liouville domain. We say that it is a C2-Hamiltonian twist map, if

• (Hamiltonian) f = ↽1
H

is generated by a C2 Hamiltonian Ht : W ! R;

• (Weakened Twist Condition) Ht satisfies (ςrHt)|ωW > 0.

In this case, we say that the isotopy Ht is strictly wrapping or positively wrapping.

7.1.4 C2-approximating a C0-Hamiltonian twist map (Smoothing)
The goal of this subsection is to provide a scheme for constructing a C2-approximating se-
quence (f⇀) of a C0-twist map f (1), on a standard Liouville domain (W,ε).

Theorem 7.9 ([LM25]). Let f be a C0-Hamiltonian twist map. For ▷ ≃ 0, there exists a
family of C2-Hamiltonian twist maps f⇀ on a Liouville domain (W,ε⇀), such that:

• f⇀ is generated by a C2 Hamiltonian H⇀ = Ht,⇀ which converges in C0 to Ht as ▷ ! 0.

• Along B, the function ht,⇀ = φ(XHt,ϖ
) = ςrHt,⇀ diverges uniformly and monotonically as

▷ ! 0, but all derivatives of Ht,⇀ in directions tangent to B remain uniformly bounded.

• As ▷ ! 0, ε⇀ converges to ε in C↘.

• The completion ε⇀ on Ŵ is independent of ▷ > 0, i.e. it is symplectomorphic to ε.
(1)Note that in the proof sketch laid out in the previous section, our current f was actually called fQ.
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• The slope of the extension H⇀ on Ŵ is bounded below by C/▷ with C > 0, and hence
monotonically diverges as ▷ ! 0.

⇒Remark 7.10. This proof is one of the main results in [LM25], and we therefore only
include a proof sketch. The main idea can be traced back to an observation done in [Mor24,
Ch. 5, §5], where both the calculations sketched below, and the non-degeneration process
were explained. The novelty is that now that we have access to the Quantitative Weakened
Twist Condition, and to Theorem B2, we can combine these ideas in such a way as to force
the Quantitative Weakened Twist Condition to hold along the smoothing sequence.

Proof sketch of Theorem 7.9 [LM25]. Let (W,ε) be a Liouville domain and f a C0-Hamiltonian
twist map, with generating Hamiltonian Ht. Let Et be the degeneration of Ht, i.e. Et is
the Hamiltonian on the degeneration (W,εs) such that Ht = Et ′Q.

(W,ε) (W,εS) RQ

H

E

Then one can compute (see [Mor24, Ch. 5]):

XHt
= [((ςrEt) ′Q) · F ↗(r)]Rε +

1

F (r)

[
Xφ

Et
↑ dEt(Rε)V


′Q

]
, (7.2)

which in particular has a pole at r = 1 because F ↗ does, by Remark 7.5. Now recall that
Q was defined by Q = (F, id) on (1↑ ϱ, 1]↖ ςW , where

F (r) = 1↑ ⇁(1↑ r),

and where ⇁ = ⇁(s) solves the ODE (7.1), for s := 1↑ r. Set g := ⇁, and define a smooth
sequence (g⇀) such that g⇀(0) = 1/▷, and g⇀ ∀ id on [▷, 1]. Then, define:

⇁⇀(s) =

∫
s

0
g⇀(x)dx,

and Q⇀ := (⇁⇀, id). Going back to the coordinate r = 1↑ s, this yields

Q⇀(r, b) =
(
1↑ ⇁⇀(1↑ r), b

)
.

(Q⇀) is hence a sequence of truncations, equal to Q away from (1↑ ▷, 1]↖ ςW , and whose
r-derivatives blow up to ↘ along ςW . We can now construct our desired sequence of
Hamiltonians:

Ht,⇀ := Et ′Q⇀.

Then, for every ▷ we have:

XHt,ϖ
= [((ςrEt) ′Q⇀) · g⇀(1↑ r)]Rε +

1

F⇀(r)

[
Xφ

Ht
↑ dHt(Rε)Y


′Q⇀

]
, (7.3)

which is now smooth, and no longer blows up at 0 (it will be at most of the order of 1/▷).
Formally, we have

ht := φ(XHt,ϖ
) = (ςrHt,⇀)|B =

1

▷
(ςrHt)|B ,

so that (ςrHt,⇀)|B > C/▷ where C := maxB(ςrHt). This quantity is positive, by the
Weakened Twist Condition. In particular, the extension H⇀ we construct, as per Chapter
5, will have slope ≃ C/▷.

Corollary 7.11. Given an admissible Lagrangian L → (W,ε = dϑ), we have

HW →(L) ↗= lim−!
⇀!0

HW →(L, H⇀).
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Proof. By construction, H⇀ is C2, and its extension H⇀ is linear at infinity with slope
≃ C/▷. Therefore, the above isomorphism holds by Chapter 3.

Corollary 7.12. Given an increasing sequence of integers m⇀ ! ↘ as ▷ ! 0, we also have

HW →(L) ↗= HW →(L, H#mϖ

⇀
).

where H#mϖ

⇀
denotes the m⇀-th iteration of H.

Proof. This converges to HW →(L) for the same reason as in the previous corollary – the
only di!erence being that it converges faster. Indeed, recall that a Hamiltonian of slope
a counts Reeb chords on the boundary up to length a. Therefore, the di!erence is that in
Corollary 7.11 we counted Reeb chords on ςW up to length slope( H⇀) at each step in the
limit, whereas we now count them up to length

slope( H#mϖ

⇀
) = m⇀ · slope( H⇀).

7.2 Proof of Theorem B3

7.2.1 Intuition
Let us take a step back and think about what it is we actually want to prove:

We want to prove a Poincaré-Birkho! theorem for maps satisfying the Weakened Twist
Condition on a degenerate Liouville domain – or, alternatively, for C0-Hamiltonian twist
maps on a non-degenerate Liouville domain.

We have already proved two Poincaré-Birkho! theorems in Chapters 5 and 6: first for C2

Hamiltonian twist maps satisfying a twist condition, and then for C2 Hamiltonian twist maps
satisfying a quantitative weakened twist condition. In both cases, we first constructed a linear
extension of our Hamiltonian, and then took a direct limit over a sequence of iterations.

Our proof for C0-Hamiltonian maps will be extremely similar, except since we can’t directly
work with our Hamiltonian Ht, we will work with the smoothing sequence (H⇀), and take
a direct limit both over smoothing and iterations, to make sure that we count chords of
arbitrarily large order, arbitrarily close to the boundary. In other words, we will construct
Wrapped Floer Cohomology as

HW →(L) ↗= lim−!
⇀!0

HW →(L; Hpϖ

⇀
),

where p⇀ ! ↘ as ▷ ! 0, and then reproduce the exact same argument as in the proof of
Theorem B2.

7.2.2 Proof of the theorem
Proof. By assumption, f has finitely many interior periodic chords on L. Let us write:

• c, . . . , ck the period-1 periodic chords of f on L.

• d1, . . . , dq the interior periodic chords of minimal periods n1, . . . , nq, with ni > 1.

Assume for a contradiction that f has finitely many interior chords x1, . . . , x↼ which are not
periodic chords, nor sub-chords of periodic chords, with minimal orders m1, . . . ,m↼.
For ▷ ≃ 0, denote by H⇀ a smoothing of H as given in §7.1.4, and by H⇀ the corresponding
admissible extension. We assume that ▷ has been chosen small enough so that the cj , dj , and
xi chords of f all lie far enough away from the boundary, so that they are also chords of the
smoothing H⇀.
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Choose a sequence of primes {pi} going to +↘, and such that pi > maxj,l mj , dl. Let
▷i = 1/pi > 0. By Corollary 7.12, we have:

HW →(L) := lim−!
pi

HW →(L; H#pi

⇀i
),

where H#pi

⇀i
is the pi-th iterate of H⇀i

.

Now pick N > 2nk, where 2n = dimW . Recall that by assumption, HW •(L) is non-zero in
infinitely many degrees, so that we can find i1, . . . , iN such that HW ij (W ) ⇐= 0. Therefore

HW ij (L; H#pi

⇀i
) ⇐= 0 for i large enough and for all j = 1, . . . , N.

By action growth (Theorem 6.3), we have, for any length-1 path x of H#pi

⇀i
on the collar

[1,+↘)↖ ςW :

A
Ĥ

#pi
ϖi

(x) ℜ ↑ci · pi + d, (7.4)

with ci ! +↘ as i ! +↘. Moreover, by Theorem 4.13, for every i there exists a local-to-
global spectral sequence whose E1 page is

Epq

1 ( H#pi

⇀i
) =

⊕

x

HW p+q

loc
(x; H#pi

⇀i
),

made up of the local Floer cohomologies of length-1 chords x of H#pi

⇀i
. By Theorem A2, this

spectral sequence converges to the Floer homology:

E1( H#pi

⇀i
) =⇓ HW →(L; H#pi

⇀i
), i.e. HW ij (L; H#pi

⇀i
) ↗=

⊕

p+q=ij

Ep,q

↘ .

Since HW ij ( H#pi

⇀i
) ⇐= 0 for all j, there must be non-zero elements on the diagonals p+ q = ij

of E↘. If pi ⊤ maxj |ij |, then by (7.4), chords of H#pi

⇀i
on [1,+↘) ↖ ςW will have action

escaping to ↑↘, and hence appear on columns with p ⊤ 1. Therefore such chords cannot
contribute to the diagonals p + q = ij , and a fortiori towards HW ij (L; H#pi

⇀i
), so that only

interior chords contribute.
Now recall that pi is prime, so that n1, . . . , nq ⊋ pi, ensuring that none of x1, . . . , x↼, d1, . . . , dq,

or the iterates of the di’s contribute to HW ij (L; H#pi

⇀i
). Then the chords we have found con-

tributing to HW ij ( H#pi

⇀i
) must necessarily be iterates cpi

j
of one of the period-1 chords cj .

However, by Lemma 5.20:

suppHW •
loc(c

pi

j
; H#pi

⇀i
) → [$(cpi

j
)↑ n,$(cpi

j
) + n] for all j,

where the support denotes the range of degrees in which the local cohomology is non-vanishing.
Hence, each chord ⇀pi

j
can contribute to at most 2n degrees in cohomology, so that by counting

all of them, we have covered 2nk degrees. However, we had found N > 2nk values for the
degree in which the cohomology is non-zero. This yields a contradiction.

Therefore, there must exist infinitely many interior chords which are not sub-chords of any
periodic chord, and of arbitrarily large order.
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Chapter 8

Symplectic introduction to the
Three-Body Problem
8.1 Introduction to the problem
The first mention of the Three-Body Problem can be traced all the way back to Newton’s
Principia Mathematica ([New87]). After establishing his rules of calculus and stating his
three laws of motion, Newton employed them to try and understand the Solar system. In the
first few chapters, he initially focused on the motion of bodies all under the influence of one
large fixed attractor, and which did not influence it back or each other. Though this model
provided a good enough approximation of the solar system, given how massive the Sun is,
Newton himself recognised it was not representative of reality.

In [New87, Sec. XI], he proceeded to allow bodies to mutually attract each other. For two
bodies, the system is completely solvable, as we saw in Example 1.1, and as Newton explored
in a few propositions(1). However, he quickly realised that as soon as he added a third body,
the problem became virtually unsolvable. Though he stayed optimistic, managing to scrape
a few approximations through elementary, albeit ingenious geometry, he achieved no general
solution.

Excerpt from Newton’s Principia Mathematica, Book 1, Section XI,
Translated from Latin to English by Andrew Motte.

The following centuries saw contributions from many great mathematicians: Euler, Lagrange,
Hill, Poincaré,... It was the latter who finally proved, in the late nineteenth century, that the
equations were non-integrable, and that the problem exhibited chaotic behaviour.

(1)His study is nowadays a bit di"cult to read, because the modern language for calculus hadn’t yet been
developed when Newton wrote his Principia Mathematica, and hence everything was stated in terms of
elementary geometry. However, in the commentary to her French translation, the Marquise Émilie du Châtelet
carried out all of Newton’s calculations (and more) in modern calculus language. In particular, she gave an
explicit solution of the Two-Body Problem in Proposition XII, Problèmes VII-VIII of the first section of
Solution analytique des principaux problèmes qui concernent le système du monde.
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Henri Poincaré had started working on the Three-Body Problem in the 1880s, two centuries
after Newton. In his Méthodes Nouvelles de la Mécanique Céleste (1892), he developed much
of the theory we still use to this day for the qualitative study of dynamical systems. He
pioneered the use of geometric and topological methods in dynamics, for the very purpose of
understanding three-body motion.

Near the end of his life, he imagined a scheme to find periodic orbits, relying on the
Poincaré-Birkho! theorem (Theorem 5.1). While he did not have time to complete the proof,
his ideas gave birth to a set of tools dynamicists still use extensively, and which we will explore
in the next chapters. First though, let us formally introduce the Three-Body Problem.

8.1.1 The Circular Restricted Three-Body Problem
Consider three bodies, which we call the Earth (E), the Moon (M) and a satellite (S), moving
in standard three-dimensional space R3, under the influence of Newtonian gravity, as defined
in Example 1.1. We make two assumptions:

Assumption 8.1 (Circular). The Earth and Moon move in circles around their common
centre of mass.

Assumption 8.2 (Restricted). The satellite has mass zero.

m = 0

This problem is called the Circular Restricted Three-Body Problem (CR3BP), or sometimes
the Spatial Circular Restricted Three-Body Problem (SCR3BP), to emphasise the fact that
the satellite is allowed to move in all of R3. By opposition, if we enforce the extra assumption
that the satellite is constrained to the Earth-Moon plane (the ecliptic), then we speak of
the Planar Circular Restricted Three-Body Problem (PCR3BP). Throughout this thesis,
CR3BP is understood to mean SCR3BP.

⇒Remark 8.3. The restricted assumption tells us about scenarios where a small object
(e.g. a spacecraft) is orbiting two large bodies. Indeed, the mass of a human-made satellite is
negligible compared to the masses of planets or moons. Meanwhile, most systems of interest
in astrodynamics at the moment satisfy the circular assumption, due to the second body’s
orbit having very low eccentricity around the largest one (see the table below).

Despite our notation, we are of course not just interested in the Earth and Moon, but in
any two bodies with arbitrary masses mE ,mM . Since the satellite has mass zero, we can
re-normalise the problem so that the masses mE and mM sum up to 1. By convention, this
is done by defining the ratio:

µ =
mM

mE +mM

. (8.1)

System Mass ratio Eccentricity
Earth-Moon µ ↙ 1.21 · 10↔2 e ↙ 0.0549
Jupiter-Europa µ ↙ 2.53 · 10↔5 e ↙ 0.009
Saturn-Enceladus µ ↙ 1.90 · 10↔7 e ↙ 0.0047
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✂ Let R3 denote position space with coordinate q, and T ϖR3 denote its phase space with
coordinates (q, p). The Hamiltonian of the CR3BP is given by:

H(q, p, t) = Kinetic energy + Potential energy

=
1

2
∈p∈2 ↑ 1↑ µq ↑

−!
E (t)


↑ µq ↑

−!
M(t)


,

where
−!
E (t) and

−!
M(t) are the respective positions of the Earth and Moon. Now observe that

we can get rid of the time-dependency thanks to Assumption 8.1. Indeed, since the Moon
moves in a circle about the Earth, we can choose a rotating frame in which they are both
fixed with

−!
E = (µ, 0, 0),

−!
M = (µ ↑ 1, 0, 0). This only causes the appearance of an angular

momentum term L = q1p2 ↑ q2p1, giving us the new, autonomous Hamiltonian:

H(q, p) =
1

2
∈p∈2 ↑ 1↑ µq ↑

−!
E

↑ µq ↑

−!
M


+ q1p2 ↑ q2p1. (8.2)

Formally, this Hamiltonian is a map H : T ϖ(R3\{−!E ,
−!
M}) −! R.

✁ Example 8.4 (Rotating Kepler problem). Say we set µ = 1, or µ = 0. Then, H virtually
describes the Two-Body Problem in a rotating frame. It is as if we had removed one of the
large masses, but we remembered its rotational e!ect on the coordinates. We call this limit
the Rotating Kepler Problem.

8.1.2 The Lagrange points and the Hill regions
• Definition 8.5. The Lagrange points Li are the equilibrium configurations of the CR3BP.
In other words, they are critical points of H (H ↗(Li) = 0).

One can show that there are exactly five Lagrange points [FK18], which we order by:

H(L1) ℜ H(L2) ℜ H(L3) ℜ H(L4) ℜ H(L5).

✁ Example 8.6. For instance, in the Sun-Earth-Moon three-body system:

Picture: Webb’s Orbit at Sun-Earth Lagrange Point 2 (L2), NASA, STScI, CSA,
2021.
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The first three, L1, L2, L3, originally found by Euler, all lie on the Earth-Moon axis. They are
unstable, which means that the least perturbation of the satellite would send it flying away.
Meanwhile, the points L4 and L5, discovered by Lagrange, are stable. This is good news since,
if we look for example at the Sun-Jupiter system, then the L4 and L5 points accommodate
the Trojan asteroids – a number of which range hundreds of kilometres in diameter.

We refer to [FK18, Ch. 5] for more details on these critical points/equilibrium configura-
tions, we simply recall the following fact:

Lemma 8.7. H(L1) ℜ ↑3/2.

Pick an energy c < H(L1), and define the level set ’c := H↔1(c) → T ϖR3. It has 3 connected
components: one near the Earth, one near the Moon, and one far away. Their projections to
position space, under the map ϖ : T ϖR3 ↬ R3 are called the Hill regions. They represent
the regions accessible by a satellite with energy H = c.

ϱ(”E
c ) ϱ(”M

c )

ϱ(”far
c )

For example, a satellite starting near the Earth with energy c < H(L1) will be constrained to
the gray ball around it; likewise for the Moon. Meanwhile, an object starting far away from
Earth with energy c will stay far away from it, and the region in white is forbidden.

✂ Now let us ask ourselves what happens if we take our energy to be slightly above the first
Lagrange energy, i.e. H(L1) ℜ c < H(L1) + ϱ. From Morse theory, passing the critical point
L1 corresponds to adding a topological handle to the level set H↔1(c). Therefore, projected
to position space, the new level set will look something like:

ϱ(”E
c ς”

M
c )

ϱ(”far
c )

In other words, by crossing the critical energy H(L1) we add a transfer window between
the Earth and the Moon, allowing us to send the satellite from one to the other.
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Hence, ’c now only consists of two connected components: the boundary connected sum
’E,M

c
↗= ’E

c
ω’M

c
, comprising the Earth and Moon, and ’far

c
, far away at infinity.

⇒Remark. A more physical way to observe these Hill regions is by directly looking at the
contour lines of the Three-Body Problem potential:

Picture: E!ective potential for the planar three-body problem, [Nol19], 2019.

8.1.3 Regularising at collisions
Now assume that our satellite of mass zero is on course to collide with one of the two large
bodies; without loss of generality, the Earth. Assume that the satellite has subcritical energy
c < H(L1), so that we can restrict our attention to the connected component ’E

c
.

Lemma 8.8. As the satellite collides with the Earth, momentum p blows up to infinity.

Proof. If the satellite collides with the Earth (i.e. q !
−!
E ), the second term of

H(q, p) =
1

2
∈p∈2 ↑ 1↑ µq ↑

−!
E

↑ µq ↑

−!
M


+ (q1p2 ↑ q2p1)

blows up to infinity. However, conservation of energy says that H ∀ c, which implies that
momentum p must necessarily go to infinity to counter-act this blow up.

One way to rephrase this is by saying that the connected component ’E

c
of ’c = H↔1(c) is

non-compact. More precisely, since ’E

c
is contained in phase space T ϖ(R3\{−!E ,

−!
M}), with

coordinates (q, p), then we can observe that:

As q !
−!
E in the base space, p ! ↘ in the fibres.

The fact that this blow up happens in the fibres is not very convenient. Indeed, it would
be easier to compactify the base space once and for all than each fibre individually. For this
reason, we swap the q and p coordinates, by applying a simple switch map:

switch : T ϖR3 −! T ϖR3 : (q, p) #−! (p,↑q) =: (x, y). (8.3)
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We add a minus sign so that switch preserves the symplectic form. Ambient space is still
T ϖR3, except base space is now momentum space, and the fibres are minus position space.
This is much easier to compactify, because it su"ces to compactify the base space R3 into
S3, by adding a point N at p = ↘. This process is called Moser regularisation.

Schematic visualisation of Moser regularisation:

R3

T ϑ

q
R3

p " ↗

R3 R3

p " ↗

T ϑ

x
R3

R3

S3

N

↼

T ϑ

ε
S3

Switch map Compactification

Formally, the compactification step is done via inverse stereographic projection. Write:

T ϖS3 :=

(↼, 7) ⇔ T ϖR4 | ∈↼∈2 = 1


(8.4)

↗=

(↼, 7) ⇔ R4 ∞ R4 | ∈↼∈2 = 1, ▽↼, 7̸ = 0


,

with N = (1, 0, 0, 0) ⇔ S3 be the North pole. Then, the standard stereographic projection is
defined as the map T ϖS3\{N} ! TϖR3 : (↼, 7) #! (x, y) such that:

x =
↼

1↑ ↼0
, y = 70↼ + (1↑ ↼0)7. (8.5)

Its inverse % is given by:

↼0 =
∈x∈2 ↑ 1

∈x∈2 + 1

↼i =
2xi

∈x∈2 + 1
for i = 1,2,3 (8.6)

70 = ▽x, y̸

7i =
∈x∈2 + 1

2
yi ↑ ▽x, y̸xi for i = 1,2,3

Proposition 8.9 ([Alb+12b; CJK20]). In these regularised coordinates, the Spatial Circular
Restricted Three-Body Problem is described by the Hamiltonian:

Q(↼, 7) =
1

2
f(↼, 7)2 ∈7∈2 , (8.7)

where:
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f(↼, 7) := 1 + (1↑ ↼0)b(↼, 7) +M(↼, 7), (8.8)

b(↼, 7) := ↑(c+ 1/2)↑ 1↑ µ−!7 (1↑ ↼0) +
−!
↼ 70 +

−!m ↑−!e

, (8.9)

M(↼, 7) := (1↑ ↼0)(↼271 ↑ ↼172)↑ ↼2(1↑ µ), (8.10)

where −!e and −!m are the coordinates of the Earth and Moon after regularisation.

In particular, the regularisation of the energy hypersurface H↔1(c) is given by Q↔1
(
1
2µ

2
)
.

Proof sketch. (For full proof, see §6 of [CJK20]). For energies c < H(L1), consider the
connected component ’E

c
above the Earth

−!
E . We saw in Lemma 8.8 that the singularity

in the Hamiltonian arises as q !
−!
E , in which case the term

1↑ µ

∈q ↑ E∈

blows up to ↘ in the expression for H(q, p). The first, naïve guess to get rid of this
singularity is to consider:

H ↗(q, p) = H(q, p) ·
q ↑

−!
E
 ,

which is now continuous at q =
−!
E . Implicitly, defining this new Hamiltonian corresponds

to reparametrising the time-variable by

dt↗ =

∫
1q ↑
−!
E

dt.

We explain this time reparametrisation in Remark A.30. Now, if we apply the Moser
change of coordinates

(q, p) (x, y) (↼, 7)switch #

to H ↗, then we get:

H̃ ↗(↼, 7) = ∈7∈
(
1↑ (1↑ µ)(1↑ ↼0)

∈(1↑ ↼0)7 + 70↼ +
−!m ↑−!e ∈ + (1↑ ↼0)(↼271 ↑ ↼172) + ↼2m1 ↑

(
c+ 1/2

)
(1↑ ↼0)

)
↑ µ

= ∈7∈ f(↼, 7)↑ µ.

≿ In particular, the level set H ↗↔1(0) describes the regularisation of H↔1(c).

However, it has the undesirable property that H̃ ↗ is not smooth at 7 = 0, since the norm
∈·∈ isn’t. To fix this, we consider instead the Hamiltonian:

Q(↼, 7) :=
1

2


H̃ ↗(↼, 7) + µ

2
=

1

2
f(↼, 7)2 ∈7∈2 ,

which is now smooth, and has the same dynamics as H̃ ↗ up to a time reparametrisation.
In particular, we have H̃ ↗↔1(0) = Q↔1

(
1
2µ

2
)
.

To formally prove that H̃ ↗↔1(0) = Q↔1
(
1
2µ

2
)
, at the end of the previous proof, we technically

need to ensure that f does not change signs along it, namely:

Lemma 8.10. f is positive along Q↔1
(
1
2µ

2
)
. Actually, f(↼, 7) > µ/2.

Proof. In §6.2 [CJK20], they explicitly derive the estimate

|f(↼, 7)| > µ/2
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essentially by using the triangle inequality on the expression of f , (8.8). Therefore, f does
not change signs. Meanwhile, notice that H̃ ↗↔1(0) → Q↔1

(
1
2µ

2
)
. Indeed,

f(↼, 7) ∈7∈ = µ =⇓ f(↼, 7)2 ∈7∈2 = µ2

On the level set H̃ ↗ = f(↼, 7) ∈7∈ ↑ µ = 0 we must have f > 0. Therefore, we have f > 0
on all of Q↔1( 12µ

2).

✂ So in summary, the regularised flow of the Spatial Circular Restricted Three-Body Problem,
for low energies and near the Earth and Moon, can be expressed as the flow of:

Q : T ϖS3 −! R

(↼, 7) #−!
1

2
f(↼, 7)2 ∈7∈2 ,

which is a deformation of the free-particle Hamiltonian Q0(↼, 7) =
1
2 ∈7∈

2 on S3.

✁ Example 8.11. The Hamiltonian Q0(↼, 7) =
1
2 ∈7∈

2 generates the standard geodesic flow
on T ϖS3. Indeed, it corresponds to the total energy of a particle moving in S3, on which no
external forces are applied. Its trajectories project down to geodesics of the 3-sphere S3 – in
other words, great circles. Hypersurfaces of this flow are given by:

’̃c := Q↔1

(
1

2

)
=

{
(↼, 7) ⇔ T ϖS3 | ∈7∈ = 1

}
= SϖS3 ↗= S3 ↖ S2. (8.11)

In the CR3BP, we do not have such a nice expression for ’̃c = Q↔1
(
1
2µ

2
)
. However, one can

still construct a di!eomorphism ’̃c
↗= SϖS3 (see §2 of [Kum82]). Hence, the regularised flow

of the CR3BP can be viewed, up to a di!eomorphism, as a flow on SϖS3.

≿ Take-away: In general, for energies c < H(L1), the regularised connected component ’̃E

c

near the Earth is di!eomorphic to SϖS3. Similarly, ’̃M

c
↗= SϖS3 near the Moon.

⇒Remark 8.12. All the computations we did were for energies c < H(L1). If c is, instead,
between H(L1) and H(L2), then we have:

’̃M,E

c
↗= ’̃M

c
ω’̃E

c
↗= SϖS3ωSϖωS3,

where ω denotes the boundary connected sum.

⇒Remark 8.13. Ultimately, this change of coordinates we performed had the e!ect of regu-
larising two-body collisions into elastic collisions. Indeed, in these new coordinates, it looks
as if the satellite slowed down to speed 0 when colliding with the Earth and then bounced
back where it came from (see Remark A.30). This bouncing back phenomenon is more eas-
ily observed in the planar case (Remark A.31), where our change of coordinates is simply
the cotangent lift of z #! z2. For a great, general survey on how to regularise central force
problems via elastic bouncing, from a symplectic point-of-view, see [FZ20].

⇒Remark 8.14 (On other regularisation processes). As we have already mentioned, there
are more than one regularisation techniques. The one we described, Moser regularisation,
provides a regularisation of a singular flow on T ϖRn to T ϖSn. In the case of the SCR3BP,
regularised energy hypersurfaces become SϖS3 ↗= S3 ↖ S2; and in the case of the PCR3BP,
they become SϖS2 ↗= RP3.

This was not the first regularisation technique to be discovered though. The first one,
in the case of the Kepler and Three-Body Problems, was due to Levi-Civita. It regularised
hypersurfaces of the PCR3BP flow to S3, which is nothing but the double cover of RP3. In
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particular, one can show that Levi-Civita regularisation is a double-cover of Moser regulari-
sation in dimension n = 2. We explain Levi-Civita regularisation in §A.3.1.

There are many other types of regularisation techniques in classical physics/celestial me-
chanics; each achieving a di!erent purpose. In the presence of N bodies, for N a large
number, we also need to talk about three-body collision, four-body collision, etc... For a
(non-exhaustive) survey of regularisation techniques in N -body problems, see [Int21]. In this
thesis, we will be exclusively interested in Moser regularisation.

8.2 Early symplectic steps in space

8.2.1 Contact geometry of the Three-Body Problem
The first steps towards marrying modern symplectic geometry and the Three-Body Problem
were taken in the 2010s. The theorem which opened the door for the whole alley of research
we follow in this thesis can concisely be written:

Theorem 8.15 ([Alb+12b; CJK20]). For subcritical energies c < H(L1), the connected
components ’̃E

c
and ’̃M

c
of the regularised energy hypersurface, endowed with the CR3BP

flow, are contactomorphic to (SϖS3,φstd). In particular, the regularised flow of the CR3BP is
proportional of the standard Reeb flow on SϖS3.

This is still true for energies H(L1) ℜ c < H(L1) + ϱ, for small enough ϱ, except we now
have the contactomorphism ’̃E,M

c
↗= (SϖS3ωSϖS3,φstd).

This was proved in two stages. First, in [Alb+12b], Albers, Frauenfelder, Paternain, and van
Koert proved it for the planar circular restricted three-body problem (PCR3BP). Hence, they
showed that energy hypersurfaces of the PCR3BP were contactomorphic to SϖS2 ↗= RP3 with
its standard contact structure.

Less than a decade later, the result was generalised to the spatial problem (SCR3BP),
which is the form in which we stated it, by Cho, Jung, and Kim.

Proof sketch of Theorem 8.15. The planar and spatial proofs ([Alb+12b] and [CJK20]) are
extremely similar to each other. The idea, for energies c < H(L1), is to pick the connected
component near the Earth or Moon (say the Earth, which we centre at zero). Then, after
regularisation to T ϖS3, the Liouville vector field is given by

V =
∑

i

7i
ς

ς7i
.

One can explicitly show that V (H) > 0, by using the estimate from Lemma 8.10. See §6
of [CJK20] for a complete proof.

Corollary 8.16. Consider, for example, the connected component ’̃E

c
, in the SCR3BP. Write

(’̃E

c
)P its equivalent in the PCR3BP, i.e. we enforce q3 = p3 = 0 before regularising at

collisions. Let φP be the contact form obtained on (’̃E

c
)P by Theorem 8.15, and φ the one

on ’̃E

c
. Then:

φP ∀ φ|($̃E
c
)P .

In other words, if we restrict the contact form generating the SCR3BP flow to the planar
problem, then it generates the PCR3BP flow.

Proof. Both cases [Alb+12b; CJK20] are proved in the exact same way, the only di!erence
is that when restricting from the spatial to the planar case, we drop the last term in the
expression of V . In particular, the contact structure induced on ’P is simply the restriction
of the one induced on ’.

Theorem 8.15 is the foundation of our research. It opens the door for the use of all sorts
of tools from symplectic and contact geometry in the study of the Three-Body Problem:
Conley-Zehnder indices, pseudo-holomorphic curves, Floer theory,...

In particular, our hope now is to use our Poincaré-Birkho! theorems from Part II to find
trajectories in the CR3BP. For this purpose, we need to find Liouville domains.
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8.2.2 Poincaré’s last theorem and the search for periodic orbits
In this section, we explain Poincaré’s original idea to find periodic orbits in the Three-Body
Problem. We start with the Planar Circular Restricted Three-Body Problem (PCR3BP),
since that was the setup Poincaré used; and we will then generalise to the spatial one.

In the PCR3BP, unregularised phase space is given by T ϖ(R2\{−!E ,
−!
M}), which after Moser

regularisation becomes T ϖS2. For energy c < H(L1), the bounded connected components of
the regularised energy hypersurface are then di!eomorphic to SϖS2 ↗= RP3.

• Definition 8.17. Let ↽t be a flow on a manifold M . A global hypersurface of section
is a compact, oriented, codimension 1 submanifold S → M such that:

(i) ςS is invariant under ↽t (it could be empty);

(ii) the flow ↽t is positively transverse to the interior of S;

(iii) for every x ⇔ int(S), there exist t+ > 0 and t↔ < 0 such that ↽t±(x) ⇔ S. In other
words, for any x in the interior of ’, the flow of x returns to S both in the future and
in the past.

x

y

z

S

x

↽t+(x)

The most important property being the third one. It allows us to define a map

◁ : int(S) −! int(S) : x #−! ↽t+(x),

where t+ > 0 is taken to be the first t+ > 0 such that ↽t+(x) ⇔ S. ◁ : S ! S is often referred
to as the Poincaré return map.

Poincaré’s insight was then the following: a periodic orbit of the flow is the same thing as a
periodic point of the map ◁ : S ! S, i.e. a point x such that ◁k(x) = x for some k ⇔ N\{0}.
Therefore, if he could find a global hypersurface of section for the PCR3BP, and prove a fixed
point theorem for its return map, then he had come up with a scheme to find periodic orbits.

In a perturbative setting, Poincaré and Birkho! showed [Poi12; Bir13] that one could find
such a global hypersurface of section, in the form of an annulus called the Birkho! annulus.
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As it happens, Poincaré did find such hypersurface of section for the PCR3BP, in the form of
an annulus, whose construction we explicit in §A.3.2 of the appendix. His construction was
actually carried out in the Two-Body Problem, and as such only generalises to perturbative
cases of the PCR3BP. Its general existence is still an open problem, encapsulated in:

Conjecture (Birkho! conjecture). For every energy c < H(L1)+ ϱ, there exists an annulus-
like global surface of section for the PCR3BP flow.

At the time of writing this thesis, the Birkho! conjecture is known to hold in the convexity
range, a specific range of parameters (µ, c) (see Remark 5.3). For a state-of-the-art on this
conjecture, see [FK18, Chapter 1].

✂ Hence, finding periodic orbits of period 1 of the Planar Circular Restricted Three-Body
Problem corresponds to finding fixed points of a map ◁ on the annulus (when it exists). One
can easily show that this map is a symplectomorphism ([FK18]), and we observe in §A.3.2
that the boundary circles of this annulus are the direct and retrograde orbits of the moon –
so that ◁ rotates them in opposite direction.

In particular, we are now in a position to apply the Poincaré-Birkho! theorem, which we
already stated in Chapter 5:

Theorem (Poincaré-Birkho!, 1912-1913). Let ◁ be an area-preserving
self-homeomorphism of the annulus which satisfies the twist condition,
i.e. it rotates both its boundary components in opposite directions. Then,
◁ has infinitely interior periodic points, of arbitrarily large order.

Corollary 8.18. For every pair (µ, c) in the convexity range, where µ is the mass ratio
and c the energy, there exist infinitely many periodic orbits in the Planar Circular Restricted
Three-Body Problem, of arbitrarily large period.

In [MK22a; MK22b], Moreno and van Koert reproduced roughly the same scheme as Poincaré,
but for the Spatial Circular Restricted Three-Body Problem (SCR3BP). The first step was,
hence, to find a global hypersurface of section.

8.3 The Three-Body Problem open book

8.3.1 What is an open book?
In [MK22b], Moreno and van Koert constructed a global hypersurface of section for the
SCR3BP. Actually, they constructed a whole S1-family of them, arranged in an open book.

• Definition 8.19. Let M be a manifold of dimension 3 or more, and B be a codimension 2
submanifold. An open book decomposition is a fibration ϖ : M\B ! S1 such that, in a
tubular neighbourhood of B, ϖ agrees with an angular coordinate θ. B is called the binding,
and the fibres are called pages, written P .

The reason for this name is because locally, this decomposition looks just as if we had taken
an actual book and glued its front cover to its back, so that the pages spread out in a circle.
Then B corresponds to the actual binding of the book, and the pages to actual pages.
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Picture: An open book in R3 (Credit: Microsoft Copilot AI).

Every page P of the open book shares the binding B as a boundary, and every point in M\B
belongs to exactly one page of the open book.

For convenience, we assume that M is oriented, so that this orientation, along with the
standard one on S1, induces orientations on every page P and on the binding B.

✁ Example 8.20. Let M = R3 ↗= R2 ∞ R, with coordinates (r, θ, z), and let B = {z-axis}.
Then a natural open book decomposition is given by ϖ : M\B : (r, θ, z) #! θ; with pages
P = {θ = cst}.

• Definition 8.21. A flow ↽t on M is said to be adapted to the open book if every page
of the open book is a global hypersurface of section for ↽t, and the binding B is ↽t-invariant.

Actually, if the flow ↽t is a Reeb flow, we can make this definition stronger:

• Definition 8.22. Let (M, ↼) be a contact manifold. Then an open book on M is adapted
to ↼ in the sense of Giroux if there exists a contact form φ supporting ↼ such that

• φ|B is of positive contact type, where B is the binding of the open book.

• dφ is positive, and induces a symplectic structure on the interior of every page.

We can invoke a standard lemma, of which a proof can be found in [Koe17]:

Lemma 8.23. A contact form φ is adapted to an open book in the sense of Giroux i! the
binding B is invariant, and the Reeb vector field Rε is positively transverse to the interior of
every page.

✁ Example 8.24 (Geodesic open book on SϖSn). Consider the standard Reeb flow on
(SϖS3,φstd). One can easily show that this is the same thing as the geodesic flow on S3, gen-
erated by the free-particle Hamiltonian Q0(↼, 7) =

1
2 ∈7∈

2 (see Example 8.11). This geodesic
flow formally lives T ϖS3, but in practice it su"ces to work on hypersurfaces of the form:

Q↔1
0

(
1

2

)
=

{
(↼, 7) ⇔ T ϖSn | ∈7∈2 = 1

}
= SϖSn.

Notice that B := {↼n = 7n = 0} is invariant under the flow of Q0, so that we can define:
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ϖg : SϖSn\B −! S1 : (↼0, . . . , ↼n, 70, . . . , 7n) #−!
↼n + i7n
∈↼n + i7n∈

. (8.12)

A short calculation (see §6.2 of [MK22b]) ensures that the Hamiltonian vector field, XQ0 , is
positively transverse to the interiorvery page, verifying (ii) of Definition 8.17. The geodesic
flow is well-known to be periodic (its orbits are great circles), therefore the flow returns to
every page(2), verifying (iii). Hence, ϖg does define an open book on SϖSn, which we call the
geodesic open book. By Lemma 8.23, this open book is adapted to the geodesic flow in
the sense of Giroux.

✂ We can explicitly study the symplectic structure of the pages:

Lemma 8.25. Let (’,φ) be a contact manifold, with an adapted open book decomposition in
the sense of Giroux. Then every page P is a degenerate Liouville domain (Definition 7.1).

Proof. ϑ := φ|P . Then by assumption, dϑ defines a symplectic form on int(P ). However,
it degenerates along B := ςP because ϑ|B ∀ φ|B which is of contact type. Therefore,
dϑ(Rε, ·) ∀ 0, so that dϑ degenerates along the boundary.

8.3.2 The open book of the SCR3BP
The upshot of this subsection is that for low energies in the SCR3BP, there exists an open
book adapted to the regularised flow, whose binding is the PCR3BP.

To make sense of this last statement: let us go back to unregularised coordinates (q, p). In
position space, the Planar Circular Restricted Three-Body Problem (PCR3BP) is obtained
by constraining the satellite to the plane {q3 = p3 = 0}.

Therefore, in phase space T ϖ(R3\{−!E ,
−!
M}), the PCR3BP can be viewed as the subspace:


(q, p) ⇔ T ϖ(R3\{−!E ,

−!
M}) | q3 = p3 = 0


↗= T ϖ(R2\{−!E ,

−!
M}),

which, after Moser regularisation (§8.1.3), becomes

B :=
{
(↼, 7) ⇔ T ϖS3 | ↼3 = 73 = 0

}
. (8.13)

Then, the main result that interests us is:

Theorem 8.26 (Moreno, van Koert [MK22b]). Fix an energy c < H(L1), and any mass ratio
µ ⇔ [0, 1] in the Spatial Circular Restricted Three-Body Problem. Then the connected compo-
nents ’̃E

c
and ’̃M

c
containing the Earth and Moon admit an adapted open book decomposition,

in the sense of Giroux, whose binding is B = {↼3 = 73 = 0} ↗= SϖS2.
In other words, energy hypersurfaces of the SCR3BP admit open book decompositions, whose

bindings are the corresponding energy hypersurfaces for the PCR3BP.

Proof sketch of Theorem 8.26 (see [MK22b]). By §8.1.3, the regularised Hamiltonian of
the SCR3BP on T ϖS3 is given by Q(↼, 7) = 1

2f(↼, 7)
2 ∈7∈2. If f were constantly equal to

1, the connected component ’̃E

c
of Q↔1

(
1
2µ

2
)

containing the Earth would be equal to
SϖS3; in which case we could use the geodesic open book from Example 8.24, given by:

ϖg : ’̃E

c
\B −! S1 : (↼0, . . . , ↼3, 70, . . . , 73) #−!

↼3 + i73
∈↼n + i7n∈

. (8.14)

In the general case though, f ⇐∀ 1, and actually has quite a complicated expression (8.8).
However, we still have a di!eomorphism ’̃E

c
↗= SϖS3 (and actually, a contactomorphism,

by Theorem 8.15), and the map (8.14) still defines an S1-fibration. Therefore, we can still
define the geodesic open book as in Example 8.24.

(2)The return map of the flow is hence nothing but the identity.
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The issue arises when trying to show that this open book is adapted to the contact flow
(the tricky point being to show that XQ is transverse to the pages). In [MK22b], Moreno
and van Koert manage to do this in a neighbourhood of the collision locus {↼0 = 1}.
However, their proof does not allow to conclude away from the collision locus.
To palliate this, they use a di!erent open book ϖp, the physical open book, defined
right after this proof sketch, and for which one can prove that XQ is transverse to the
pages away from the collision locus. Then, in [MK22b, §8], they interpolate between the
two open books, so as to construct one global open book, which is everywhere adapted to
the contact flow, by Lemma 8.23.

• Definition 8.27 (Physical open book). To define the physical open book on ’̃E

c
, let us

first revert to unregularised coordinates (q, p), in T ϖ(R3\{−!E ,
−!
M}). There, in much the same

fashion as in Example 8.24, we can define an S1-fibration:

ϖp : T ϖ(R3\{−!E ,
−!
M})\B −! S1 (8.15)

(q, p) #−!
q3 + ip3
∈q3 + ip3∈

,

where B = {(q, p) | q3 = p3 = 0} is the phase space of the Planar CR3BP. After Moser
regularisation (§8.1.3), the map ϖp becomes

ϖp : T ϖS3 −! S1\B : (↼, 7) #−!
&p(↼, 7)

∈&p(↼, 7)∈
, (8.16)

where

&p(↼, 7) = ↼3 + i(1↑ ↼0) (70↼3 + (1↑ ↼0)73) . (8.17)

The induced fibration ϖp : ’̃E

c
\B −! S1 is called the physical open book, where now

B = {↼3 = 73 = 0}.

The computation of &, as well as the proof that this open book is adapted to the SCR3BP
flow on ’̃E

c
away from the collision locus are carried out in [MK22b, §6-8].

Theorem 8.28 ([MK22b]). Let ◁ : Pϑ/2 ! Pϑ/2 be the return map of the SCR3BP flow
(Definition 8.17). Then ◁ is an exact symplectomorphism, i.e it can be generated as the
time-1 map of a Hamiltonian Ht : Pϑ/2 ! R. Moreover, it extends smoothly to ςPϑ/2.

✂ In summary: for sub-critical energies, Moreno & van Koert proved the existence of an
open book adapted to the regularised CR3BP flow, and that the return map on the pages
was an exact symplectomorphism. The upshot of Part III of this thesis is that we want to
use Wrapped Floer theory on pages of this open book.

8.3.3 A particularly nice page of the open book
Let us single out a particularly nice page of the CR3BP open book, which we will use to do
Floer theory.
Recall from §8.1.3 that for energies c < H(L1), the connected component of the energy
hypersurface near the Earth (or Moon) is given by:

Q↔1

(
1

2
µ2

)
=


(↼, 7) ⇔ T ϖR4 | ∈↼∈2 = 1, ▽↼, 7̸ = 0, Q(↼, 7) =

1

2
µ2


.

There, let us define the hypersurface:

Pϑ/2 =


(↼, 7) ⇔ Q↔1

(
1

2
µ2

)
| ↼3 = 0, 73 ≃ 0


. (8.18)
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⇒Remark 8.29. In unregularised coordinates (q, p), Pϑ/2 translates to {q3 ℜ 0, p3 = 0}.
Since p = q̇ along physical trajectories, by the Hamiltonian equations of motion, Pϑ/2 e!ec-
tively captures when trajectories x(t) = (q(t), p(t)) reach their minimum height q3 ℜ 0.

Back to regularised coordinates. Observe that Pϑ/2 can be re-written as:

Pϑ/2 =
{
(↼0, ↼1, ↼2, 0, 70, 71, 72, 73) ⇔ T ϖR4 | ∈↼∈2 = 1, Q(↼, 7) = µ2/2, 73 ≃ 0

}

=
{
(↼0, ↼1, ↼2, 0, 70, 71, 72, 73) ⇔ T ϖR3 | ∈↼∈2 = 1, f(↼, 7)2 ∈7∈2 = µ2, 73 ≃ 0

}
.

S3

S2

In other words, viewing S2 as the equator in S3, then Pϑ/2 → T ϖS3 consists of all the vectors
pointing away from it and into the upper hemisphere, with length µ/f(↼, 7).

Lemma 8.30. Pϑ/2 is di!eomorphic to the disc cotangent bundle DϖS2 (Definition 3.5).

Proof. This is because 1/f is smooth (due to f being positive, Lemma 8.10), so that we
can smoothly transform the condition ∈7̃∈2 ℜ µ2/f2 into ∈7̃∈2 ℜ 1.

Proposition 8.31 ([MK22b]). Pϑ/2 is a page both for the geodesic open book ϖg (Example
8.24), and for the physical open book ϖp (Defn. 8.27). Therefore, it is a page for the SCR3BP
open book.

Proof sketch. Near the collision locus, we use the geodesic open book:

ϖg(↼, 7) =
↼3 + i73
∈↼3 + i73∈

,

and away from it, we use the physical open book, given by:

ϖp(↼, 7) =
&p(↼, 7)

∈&p(↼, 7)∈
, &p(↼, 7) = ↼3 + i(1↑ ↼0) (70↼3 + (1↑ ↼0)73) .

We can easily observe that Pϑ/2 = ϖ↔1
g

(i) near the collision locus, and Pϑ/2 = ϖ↔1
p

(i) away
from it. A fortiori, for a sensible interpolation ϖ between ϖg and ϖp (see [MK22b, §6-8]),
we get Pϑ/2 = ϖ↔1(i) globally.

⇒Remark 8.32. Note that ϖ↔1(↑i) = {↼3 = 0, 73 ℜ 0} is also a page of the open book.
Visually, it lies diametrically opposite to Pϑ/2.

✁ Example 8.33 (Truncated coordinates on Pϑ/2). Since Pϑ/2 is given by

Pϑ/2 = Q↔1

(
1

2
µ2

)
∃
{
(↼, 7) | ↼3 = 0, 73 ≃ 0

}
,

we can get rid of two of the coordinates, and describe it using coordinates on T ϖS2. Indeed,
let us write ↼̃ := (↼0, ↼1, ↼2) and 7̃ := (70, 71, 72). Then, since 73 ≃ 0 on Pϑ/2, we can recover:

73 =

√
µ2

f2
↑ ∈7̃∈2.
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In particular, if we decide to forget about the ↼3 and 73 coordinates, and write:

f(↼̃, 7̃) := f



↼̃, 0, 7̃,

√
µ2

f2
↑ ∈7̃∈2



 , (8.19)

then we can rewrite:

Pϑ/2 =


(↼̃, 7̃) ⇔ T ϖS2 | 1

2
f(↼̃, 7̃)2 ∈7∈2 =

1

2
µ2


.

Since, by construction, ∈7̃∈2 ℜ ∈7∈2, with equality i! 73 = 0 (i.e. we lie on the boundary
ςPϑ/2), then we can rewrite:

Pϑ/2 =


(↼̃, 7̃) ⇔ T ϖS2 | 1

2
f(↼̃, 7̃)2 ∈7̃∈2 ℜ 1

2
µ2


, (8.20)

ςPϑ/2 =


(↼̃, 7̃) ⇔ T ϖS2 | 1

2
f(↼̃, 7̃)2 ∈7̃∈2 =

1

2
µ2


. (8.21)

For simplicity, write F (↼̃, 7̃) := f(↼̃, 7̃) ∈7̃∈. Since, by Lemma 8.10, the function f is positive,
we can rewrite:

Pϑ/2 =

(↼̃, 7̃) ⇔ T ϖS2 | F (↼̃, 7̃) ℜ µ


, (8.22)

ςPϑ/2 =

(↼̃, 7̃) ⇔ T ϖS2 | F (↼̃, 7̃) = µ


. (8.23)

8.4 The Floer-theoretical model
In [MK22a; MK22b], Moreno & van Koert proved a first Poincaré-Birkho! theorem in the
Spatial CR3BP. However, its applicability remained limited due to a number of technicalities:

Assumption (Moreno & van Koert’s CR3BP model).

• Pϑ/2 is a non-degenerate Liouville domain. ✄ False.

• (ςPϑ/2,φ) is strongly index-definite. True, but only in a certain range of mass and
energy parameters, called the convexity range.

• ◁ : Pϑ/2 ! Pϑ/2 is an exact symplectomorphism. True.

• ◁ : Pϑ/2 ! Pϑ/2 satisfies the twist condition. ? Unknown.

The work from Part II of this thesis, which culminated in Theorem B3, allows us to replace
their model by the improved:

Assumption (Improved CR3BP model).

• Pϑ/2 is a degenerate Liouville domain. True.

• ◁ : Pϑ/2 ! Pϑ/2 is an exact symplectomorphism. True.

• ◁ : Pϑ/2 ! Pϑ/2 satisfies the Weakened Twist Condition. ? Unknown.

In Chapters 9 and 10 we will apply this model to concrete examples in the CR3BP, assuming
the veracity of the Weakened Twist Condition – which remains an open problem, at least
away from a perturbative setting.
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Chapter 9

Collision trajectories in the
Circular Restricted Three-Body
Problem

This chapter presents a first application of our machinery from Part II to the Circular Re-
stricted Three-Body Problem. This result was first presented in [ML24].

Theorem C. If the Circular Restricted Three-Body Problem satisfies the Weakened Twist
Condition, then for every energy c < H(L1) + ϱ, there exist infinitely many trajectories of
spatial (consecutive) collision near the Earth and Moon, of arbitrarily large length.

⇒Remark 9.1. The terminology « consecutive collision » may be confusing from a physics
point-of-view. It is a by-product of the fact that we regularised at collisions (§8.1.3), which
made it so that the dynamics continued after the satellite collided with the Earth or Moon,
e!ectively as if it bounced back (see Remark 8.13).

There are many reasons why one may care about collision trajectories. Avoiding them seems
like a valid one, for example. More interestingly, by perturbing a trajectory of collision, one
obtains a trajectory of close fly-by. Those are for instance interesting for gravitational assist :
using the pull of a large body to propel a spacecraft far into space.

⇒Remark. A similar theorem to Theorem C had already been derived in the Planar case, in
[FZ19]. More recently, at the time of writing this thesis, Theorem C was obtained indepen-
dently by Ruck in [Ruc23], using Rabinowitz Floer instead of Wrapped Floer Cohomology.

9.1 The collision Lagrangian
We will prove Theorem C as a direct application of Theorem B3. We will first find a La-
grangian Lcol → Pϑ/2 describing configurations of collision in the SCR3BP, where Pϑ/2 is our
page of the open book from §8.3.3; and we will show that HW →(Lcol) is non-zero in infinitely
many degrees. Then, since Pϑ/2 is a degenerate Liouville domain, we will conclude that if the
SCR3BP satisfies the Weakened Twist Condition, then there exist infinitely many trajectories
of collision, by Theorem B3.

Assumption 9.2. c < H(L1). Without loss of generality, the satellite starts near the Earth.

Recall the scheme that we used to regularise at collisions in §8.1.3. We were faced with the
issue that p ! ↘ as q !

−!
E . To fix the blow-up at collision, first we had swapped coordinates:

T ϖR3 D (q, p) #−! (p,↑q) ⇔ T ϖR3,
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so that the blow up now happened in the base space (instead of the fibres), and then we had
compactified the base space by adding a point at p = ↘, obtaining:

T ϖR3 −! T ϖS3.

We call the {p = ↘} the North pole N ⇔ S3. Formally, the compactification above is given
by the inverse stereographic projection (see §8.1.3).

✃ In unregularised coordinates (q, p), we define:

• Definition 9.3. The collision locus is the
set of normalised directions along which the
satellite can come crashing into the Earth.

Topologically, it simply corresponds to a 2-
sphere S2 around the Earth.

Heuristically, in unregularised phase space, this collision locus can be written:

S2 ↖ {p = ↘}. (9.1)

After regularisation this becomes a spherical fibre in T ϖS3 above the point N = {p = ↘}. In
other words:

Lcol ↗= Sϖ
N
S3 :=

{
(↼, 7) ⇔ T ϖS3 | ∈7∈ = 1

}
. (9.2)

S3

T ϖ

N
S3

Sϖ
N
S3

In other words, in regularised coordinates, the collision locus corresponds to the fibre above
the North pole in SϖS3. This is nothing surprising: recall that by definition the North pole
corresponds to trajectories with infinite momentum.

Now let Pϑ/2
↗= DϖS2 be our page of the open book from §8.3.3, given in regularised coordi-

nates by:

Pϑ/2 =

(↼, 7) ⇔ T ϖS3 | ↼3 = 0, 73 ≃ 0, ∈7∈2 ℜ µ2/f2


. (9.3)

In this page, we have:

Lemma 9.4. Lcol := Lcol ∃ Pϑ/2 is di!eomorphic to the fibre Dϖ

N
S2, and it is an exact

Lagrangian in Pϑ/2. We call it the collision Lagrangian.
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Proof. Since the page Pϑ/2 agrees near the collision locus with the set of covectors along
the equator pointing into the upper-hemisphere, then we directly have that W ∃ T ϖ

N
S3 is

identified with Dϖ

N
S2, which is a disc under the di!eomorphism W ↗= D→S2. Visually, one

can view it as the upper-hemisphere of the collision locus S2 (the fiber of ’c over N),
whose boundary is the planar collision locus S1, embedded as the equator. In particular,
Lcol is exact Lagrangian because this is true of any fibre in a cotangent bundle.

⇒Remark 9.5. In the case where our satellite has energy c ⇔ [H(L1), H(L1)+ϱ) (so that, by
§8.1.1, there is a transfer window between the Earth and the Moon), then energy hypersurfaces
are given by Q↔1(1/2) ↗= SϖS3ωSϖS3, while Pϑ/2

↗= DϖS2ωDϖS2. The collision Lagrangian is
given by Lcol ↗= Dϖ

N
S2ωDϖ

N
S2.

9.2 Floer cohomology of the collision Lagrangian
Lemma 9.4 tells us that Lcol is exact. Observe that it is also orientable (it is a disc), and thus
spin. Therefore, Lcol is admissible for wrapped Floer cohomology, meaning that HW →(Lcol)
is well-defined. Let us compute it.

This computation relies on work which even predated wrapped Floer theory, and which we
owe to Viterbo, Salamon-Weber, Abbondandolo-Schwarz,... In its current formulation, the
theorem we will use is:

Theorem 9.6 ([AS04]). Let M be a compact, connected, orientable smooth manifold, and !M
be its based loop space (Definition B.37). Let pt ⇔ M be a point. There is an isomorphism:

HW →(T ϖ

pt
M) ↗= H→(!M)

where H→ denotes singular cohomology.

Corollary 9.7. HW →(Lcol) is non-zero in infinitely many degrees.

Proof. Lcol → Pϑ/2 is di!eomorphic to Dϖ

N
S2. Therefore, its completion in P̂ϑ/2

↗= T ϖS2 is
di!eomorphic to the fibre T ϖ

N
S2. Hence, by Theorem 9.6:

HW →(Lcol) ↗= HW →(T ϖ

N
S2) ↗= H→(!S2).

From standard algebraic topology (see Lemma B.41), H→(!S2) is non-zero in infinitely
many degrees.

Therefore, Lcol is an exact spin Lagrangian in Pϑ/2
↗= DϖS2, and HW →(Lcol) ⇐= 0 in infinitely

many degrees. So we are exactly in the position to use Theorem B3, which readily yields:

Theorem C. If the Circular Restricted Three-Body Problem satisfies the Weakened Twist
Condition, then for every energy c < H(L1) + ϱ, there exist infinitely many trajectories of
spatial (consecutive) collision near the Earth and Moon, of arbitrarily large length.
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Chapter 10

Bi-normal trajectories in the
Circular Restricted Three-Body
Problem

This chapter contains a second application of Theorem B3, this time from the paper [ML25].
We study elementary symmetries of the SCR3BP and observe that, in our preferred page of
the open book, the fixed point sets of these symmetries give, in turn: the planar problem, a
Legendrian, and a Lagrangian satisfying the hypotheses of Theorem B3.

In particular, applying our machinery to the aforementioned Lagrangian yields:

Theorem D. If the Circular Restricted Three-Body Problem satisfies the Weakened Twist
Condition, then for every energy c < H(L1) + ϱ, there exist infinitely many trajectories bi-
normal to the xz-plane near the Earth and Moon, of arbitrarily large length.

• Definition 10.1. We call a trajectory bi-normal to the xz-plane (or q1q3 -plane) if
there exists times t0 < t1 such that the trajectory is normal the the plane at time t0, i.e.

q2(t0) = q̇1(t0) = q̇3(t0) = 0

and then again at time t1 > t0.

Earth-Moon plane

q1q2

q3

In our coordinates, the xy (or q1q2)-plane is the Earth-Moon plane (the ecliptic), and the
x-axis in the Earth-Moon axis. In our symplectic language, trajectories correspond to chords
(hence, "open-ended trajectories", which do not close up on themselves).

✁ Example 10.2 (Example of such trajectories). One of the most famous examples of
trajectories bi-normal to the xz-plane is what the mission design community calls halo orbits.

The notion of halo orbit was defined in the 1960s by Farquhar, as a family of orbits bi-
furcating from Lyapunov orbits of the planar problem, around some of the Lagrange points
L1, L2, L3. In particular, the first studied were halo orbits around L2 in the Earth-Moon
system (L2 is situated on the far side of the Moon). Farquhar proposed that such orbits
would yield, with minimum fuel usage, uninterrupted communication with the far side of the
Moon, in particular the lunar south pole (see [Far66; GS19]).
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This was experimented with by the China National Space Administration (CNSA)’s Queqiao-
1 satellite, a communication relay satellite placed on a halo orbit near L2 in 2018. Other
famous examples of famous satellites on halo orbits include NASA’s James Webb and ESA’s
Euclid telescopes, or ISRO’s Aditya-L1 satellite, launched as this thesis was being written.

Since halo orbits are constructed as bifurcations from planar orbits, one often makes the sim-
plifying assumption of an xz-symmetry when numerically looking for them [GS19; YSM13].
Therefore, most of the halo orbits we know of are by construction bi-normal to the xz-plane.
The fact that we can approach them with Floer homology, as we will see in this chapter, tells
us that we can use the tools from §4.3 to study their bifurcation behaviour.

10.1 Symmetries of the spatial problem

10.1.1 The group of symmetries
In unregularised coordinates, the Hamiltonian of the CR3BP is given by:

H(q, p) =
1

2
∈p∈2 ↑ mEq ↑

−!
E

↑ mMq ↑

−!
M


+ q1p2 ↑ q2p1, (10.1)

where
−!
E = (µ, 0, 0) and

−!
M = (↑1 + µ, 0, 0), µ = mM/(mE +mM ), and L = q1p2 ↑ q2p1.

From looking at (10.1), we can directly observe a few symmetries of the Hamiltonian:

• r : R6 ! R6 : (q1, q2, q3, p1, p2, p3) #! (q1, q2,↑q3, p1, p2,↑p3). Its fixed point set is

Fix r = {(q, p) ⇔ R6 | q3 = p3 = 0}, (10.2)

which is the Earth-Moon plane (the ecliptic). Hence, the symmetry r is simply reflection
about the ecliptic.

• 21 : R6 ! R6 : (q1, q2, q3, p1, p2, p3) #! (q1,↑q2,↑q3,↑p1, p2, p3). Its fixed point set is:

Fix21 = {(q, p) ⇔ R6 | q2 = q3 = p1 = 0}, (10.3)

• 22 : R6 ! R6 : (q1, q2, q3, p1, p2, p3) #! (q1,↑q2, q3,↑p1, p2,↑p3). Its fixed point set is:

Fix22 = {(q, p) ⇔ R6 | q2 = p1 = p3 = 0}. (10.4)

Indeed, we can easily check that H′r = H′21 = H′22 = H, so that all of these are symmetries
of the CR3BP. Furthermore, they are all involutions, and r preserves the symplectic form,
while 21 and 22 invert it.
Let : R6 ! R6 be the identity, and define G := { , r, 21, 22}. Then, we can easily see that:

r ′ 21 = 21 ′ r = 22, r ′ 22 = 22 ′ r = 21, 21 ′ 22 = 22 ′ 21 = r,

thus explicitly verifying that G ↗= Z2 ∞ Z2, the Klein 4-group. We call G the group of
symmetries of the (spatial) circular restricted three-body problem.

10.1.2 The symmetry Lagrangian and Legendrian
Let us now look at what the symmetries r, 21, and 22 become after regularising at collisions.
Write % the inverse stereographic projection, whose expression is given in (8.6). We restrict
ourselves to low energies c < H(L1), so that we are working in a neighbourhood of the Earth
or the Moon, like in §8.1.3.

The image under % of the fixed point sets Fix(r),Fix(21),Fix(22) is given by:

F̃0 := %
(
Fix(r)

)
=

{
(↼, 7) ⇔ T ϖS3 | ↼3 = 73 = 0

}
, (10.5)

F̃1 := %
(
Fix(21)

)
=

{
(↼, 7) ⇔ T ϖS3 | ↼1 = 70 = 72 = 73 = 0

}
, (10.6)

F̃2 := %
(
Fix(22)

)
=

{
(↼, 7) ⇔ T ϖS3 | ↼1 = ↼3 = 70 = 72 = 0

}
. (10.7)
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We have already studied the first of these in Chapter 8. Indeed, F̃0
↗= SϖS2 is a regularised

energy hypersurface of the PCR3BP, for low energies. There, we had called it B, and used it
as a binding for the SCR3BP open book (Theorem 8.26).

Let us focus our attention on the other two, F̃1, F̃2, i.e. the regularised fixed point sets of
the symmetries 21 and 22. Alternatively, we can write them:

F̃1 =

(↼, 7) ⇔ T ϖR4 | ∈↼∈2 = 1, ↼1 = 70 = 72 = 73 = 0


, (10.8)

F̃2 =

(↼, 7) ⇔ T ϖR4 | ∈↼∈2 = 1, ↼1 = ↼3 = 70 = 72 = 0


. (10.9)

Since energy is conserved along the motion, we are only interested in F̃i ∃ ’̃, where ’̃ is our
regularised energy hypersurface. By §8.1.3, we can write ’̃ = Q↔1(1/2), so that:

F̃1 ∃ ’̃ =


(↼, 7) ⇔ T ϖR4 | Q(↼, 7) =

1

2
, ∈↼∈2 = 1, ↼1 = 70 = 72 = 73 = 0


, (10.10)

F̃2 ∃ ’̃ =


(↼, 7) ⇔ T ϖR4 | Q(↼, 7) =

1

2
, ∈↼∈2 = 1, ↼1 = ↼3 = 70 = 72 = 0


. (10.11)

This is better, but we can still drop down one dimension. Like in Chapters 8 and 9, we use
the SCR3BP open book from [MK22b], and we restrict our attention to the particularly nice
page we derived in §8.3.3, given by Pϑ/2 = {(↼, 7) | Q(↼, 7) = 1

2 , ↼3 = 0, 73 ≃ 0}. Then:

F̃1 ∃ ’̃ ∃ Pϑ/2 =


(↼, 7) ⇔ T ϖR4 | Q(↼, 7) =

1

2
, ∈↼∈2 = 1, ↼1 = ↼3 = 70 = 72 = 73 = 0


,

(10.12)

F̃2 ∃ ’̃ ∃ Pϑ/2 =


(↼, 7) ⇔ T ϖR4 | Q(↼, 7) =

1

2
, ∈↼∈2 = 1, ↼1 = ↼3 = 70 = 72 = 0, 73 ≃ 0


.

(10.13)

By the implicit function theorem, the first of these two submanifolds is only one-dimensional:

F̃1 ∃ ’̃ ∃ Pϑ/2 =


(↼, 7) = (↼0, 0, ↼2, 0, 0, 71, 0, 0, 0) | Q(↼, 7) =

1

2
, ↼20 + ↼22 = 1


(10.14)

Meanwhile, the second one is a surface in W , which can be written:

F̃2 ∃ ’̃ ∃ Pϑ/2 =


(↼, 7) = (↼0, 0, ↼2, 0, 0, 71, 0, 73) | Q(↼, 7) =

1

2
, ↼20 + ↼22 = 1, 73 ≃ 0



(10.15)

• Definition 10.3. Write #1 := F̃1 ∃ ’̃ ∃ Pϑ/2, and L2 := F̃2 ∃ ’̃ ∃ Pϑ/2.

Observe that #1 = ςL2. Actually, we can prove:

Lemma 10.4. L2 is an exact Lagrangian submanifold of (Pϑ/2,ε = dϑ), and #1 = ςL2 is
its Legendrian boundary in (ςPϑ/2,φ = ϑ|ωPϱ/2

).

Proof. Pϑ/2 inherits its symplectic form from the contact form ϑ on Q↔1(µ2/2), which by
the proof of Theorem 8.15 is the standard φ = ↑


i
7id↼i.

ε|Pϱ/2
=

2∑

i=0

d↼i ↓ d7i = d

(
↑

2∑

i=0

7id↼i

)
= dϑ.

Clearly from (10.15) ϑ vanishes on L2 (ℵ #1), which proves both claims.

We are getting closer and closer to being able to attack this problem with Floer theory. Before
we do that though, let us try and visualise what these regularised symmetry sets look like.
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✁ Example 10.5. Let us first consider the simplifying case f ∀ 1. Then, Q(↼, 7) = 1
2 ∈7∈

2

induces the standard geodesic flow on S3 (the regularised flow of the two-body problem), and
the symmetry Lagrangian L2 is given by:

L2 =
{
(↼0, 0, ↼2, 0, 0, 71, 0, 73) | ↼20 + ↼22 = 1, 721 + 723 = 1, 73 ≃ 0

}
.

This describes a half-torus in Pϑ/2
↗= DϖS2, whose boundary is a disjoint union of circles in

ςPϑ/2, i.e. #1
↗= S1 E S1 → ςPϑ/2.

ωPϖ/2

W

L2

Topologically, a half-torus is the same thing as an annulus, i.e. L2
↗= DϖS1.

In the general SCR3BP case, where f ⇐∀ 1, the expression for L2 will not be as easy. However,
as the topology of the open book does not change (from the Two-Body to the Spatial Circular
Restricted Three-Body Problem), one can pull back L2 through a global di!eomorphism of
the pages, and thus still obtain that L2 is an annulus.

10.2 Floer cohomology of the symmetry fixed point sets

10.2.1 Floer cohomology of L2 and bi-normal trajectories
Let us focus on the Lagrangian L2 → Pϑ/2 defined in the previous section.

We have seen that it was exact (i.e. ∅f : L2 ! R s.t ϑ|L = df), and from its coordinate
expression (10.15) we see that it is an orientable surface, so that it is spin.

Therefore, its wrapped Floer cohomology HW →(L) is well-defined, by Chapter 3. Given a
Hamiltonian Ht : Pϑ/2 ! R satisfying the twist condition, we can use the relative Poincaré-
Birkho! theorem from Chapter 5 to prove the existence of infinitely many Hamiltonian chords
on L2 – provided we can show that HW →(L2) is supported in infinitely many degrees.

We will do this by showing that L2 can be expressed as a conormal bundle in Pϑ/2
↗= DϖS2,

allowing us to explicitly compute this cohomology, using o!-the-shelf results from [APS08].

• Definition 10.6. Let R be a submanifold in some ambient Riemannian manifold (M, g).
The normal bundle of R is defined as the complementary of TR in TM , with respect to g.
We write it NR ↬ R. By definition, it is a subbundle of TM .
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The conormal bundle NϖR ↬ R is the fibrewise dual of NR ↬ R. By definition, it is a
subbundle of T ϖM .

With this definition in mind, we call to the result:

Proposition 10.7 ([APS08], Prop. 2.1). Let M be a manifold, and L a submanifold of
T ϖM on which the Liouville form ϑ vanishes identically. Then the intersection of L with the
zero section of T ϖM is a submanifold R. Furthermore, if L is a closed subset of T ϖM , then
L = NϖR.

This directly tells us that L can be viewed as the conormal bundle of some R → S2. However,
we can be more specific:

Proposition 10.8. L2 → Pϑ/2 can be viewed as the conormal bundle of the equator:

R :=
{
(↼0, 0, ↼2) ⇔ R3 | ↼20 + ↼22 = 1

} ↗= S1 (10.16)

Proof.(1) The tangent bundle of R is given by:

TR :=


(↼0, 0, ↼2, v0, 0, v2) | ↼20 + ↼22 = 1,

(
↼0
↼2

)
·
(
v0
v2

)
= 0


↪! T ϖS2.

Thus, its normal bundle (in ambient space T ϖS2) is given by:

NR : =
{
(↼, v) = (↼0, 0, ↼2, v0, v1, v2) | ↼20 + ↼22 = 1, v · w = 0 ∝w ⇔ T ϖS2

}

=
{
(↼, v) = (↼0, 0, ↼2, 0, v1, 0) | ↼20 + ↼22 = 1, v1 ⇔ R

}
.

The conormal bundle is then obtained by fibrewise dualising NR, so that:

NϖR =
{
(↼0, 0, ↼2, 0, 71, 0) | ↼20 + ↼22 = 1, 71 ⇔ End(T(φ0,φ2)R,R)

}
.

We can identify End(T(φ0,φ2)R,R) ↗= R. Hence, we get:

NϖR =
{
(↼0, 0, ↼2, 0, 71, 0) | ↼20 + ↼22 = 1, 71 ⇔ R

}
,

and thus:

NϖR ∃ Pϑ/2 =
{
(↼0, 0, ↼2, 0, 71, 0) | ↼20 + ↼22 = 1, 721 ℜ µ2/f2

}
,

which is exactly our expression for L2 from (10.15).

So topologically, L2 is the conormal bundle of a circle, intersected with our page Pϑ/2
↗= DϖS2.

We claim that this determines the wrapped Floer cohomology of L2. Indeed:

Theorem 10.9 ([APS08]). Let M be a manifold, and L → T ϖM be a Lagrangian such that
L = NϖR for some submanifold R → M . Then:

HW →(L) ↗= H→(PRM),

where PRM is the space of paths in M with endpoints in R (Definition B.43), and H→ denotes
singular homology.

Corollary 10.10. HW →(L2) is non-zero in infinitely many degrees.

Proof. By Theorem 10.9, HW →(L2) ↗= H→(PS1S2). To show that this is infinite-dimensional,
we first invoke the fact that there exists a path space fibration:

!S2 −! PS1S2 −! S1 ↖ S1,

as shown in Lemma B.45 of the appendix, where !S2 denotes the loop space of S2. By
using Proposition B.36 of the appendix, such a fibration induces a spectral sequence:

Ep,q

2 = Hp(S1 ↖ S1;Hq(!S2)) =⇓ Hp+q(PS1S2), (10.17)
(1)We check this in regularised coordinates for completeness. However, this result is obvious from the fact

that, in unregularised coordinates, the fixed point set of ϖ2 is the conormal bundle of the xz-plane.
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and from standard singular cohomology, given M a module of coe"cients we have:





Hp(S1 ↖ S1;M) ↗= M for p ⇔ {0, 2},
Hp(S1 ↖ S1;M) ↗= M2, for p = 1,

Hp(S1 ↖ S1;M) = 0, for p /⇔ {0, 1, 2}.

Hence, we have





Ep,q

2
↗= Hq(!S2) for p ⇔ {0, 2},

Ep,q

2 = Hq(!S2)2, for p = 1,

Ep,q

2 = 0, for p /⇔ {0, 1, 2}.

In particular, since the spectral sequence di!erential on the E2 page goes from degrees::

d2 : Ep,q

r
! Ep↔2,q↔1

r
,

then derivatives from and towards the column {p = 1} are all zero.

...
...

...
...

... E2

0 ∗
(
Hq(!S2)

)2 ∗ 0

0 ∗
(
Hq↔1(!S2)

)2 ∗ 0

...
...

...
...

...

p

In particular, the column p = 1 will survive unchanged to the next page of the spectral
sequence, since

Ep,q

3 =
ker{d2 : Ep,q

2 ! Ep↔2,q+1
2 }

im{d2 : Ep+2,q↔1
2 ! Ep,q

2 }
=

(
Hq(!S2)

)2

0
=

(
Hq(!S2)

)2
.

By induction, the column {p = 1} will survive all the way to E↘. Now recall from Lemma
B.41 that Hq(!S2) is non-zero in infinitely many degrees. Since Ep,q

2 =⇓ H→(PS1S2), we
have:

∝n : Hn(PS1S2) =
⊕

p+q=n

Ep,q

↘ ,

which implies that H→(PS1S2) is non-zero in infinitely many degrees, concluding the proof.

Hence, L2 satisfies all the conditions necessary for Theorem B3, yielding:

Theorem D. If the Circular Restricted Three-Body Problem satisfies the Weakened Twist
Condition, then for every energy c < H(L1) + ϱ, there exist infinitely many trajectories bi-
normal to the xz-plane near the Earth and Moon, of arbitrarily large length.

Proof. By definition, a bi-normal trajectory in phase space T ϖ(R3\{−!E ,
−!
M}) (unregularised

coordinates) is a path ⇀(t) such that ⇀(0), ⇀(1) ⇔ Fix22, where 22 is the symmetry of the
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SCR3BP defined in (10.4). After regularising at collisions, and restricting to our page
Pϑ/2 of the open book, we see that Theorem D reduces to Theorem B3.

10.2.2 Conjecture for trajectories bi-normal to the x-axis
At the beginning of the chapter, we defined the group of symmetries

G = { , r, 21, 22},

of the CR3BP. By studying the fixed point set of 22, and assuming the Weakened Twist
Condition, we deduced existence of infinitely many trajectories bi-normal to the xz-plane.
However, the anti-symplectic involution

21 : R6 ! R6 : (q1, q2, q3, p1, p2, p3) #! (q1,↑q2,↑q3,↑p1, p2, p3)

also has an interesting fixed point set. Indeed, we saw in Lemma 10.4 that it corresponds to
the Legendrian boundary of L2, in the binding (ςPϑ/2,φ).

Hence, if we could prove a Poincaré-Birkho! type theorem for Legendrian contact homology,
instead of the ones we already have for symplectic homology ([MK22a]) and wrapped Floer
homology (Chapter 5), then we would get the following result:

Conjecture 1. Assuming the Weakened Twist Condition or a variation thereof, there exist
infinitely many trajectories bi-normal to the x-axis in the Circular Restricted Three-Body
Problem, in the low-energy range and near the Earth and Moon. These are trajectories x =
(qi, q̇i)(t) such that there exist times t0 ⇐= t1 with:

q2(tj) = q3(tj) = q̇1(tj) = 0,

for j = 0, 1. In other words, the trajectory starts on the Earth-Moon axis, but with velocity
pointing strictly outward, and comes back to satisfy the same condition after finite time.

Earth-Moon plane

q1q2

q3

Recent work done by Bro#i#, Cant, and Shelukhin [BCS24] shows that, given R → M closed
manifolds, and # → SϖM a Legendrian which is isotopic to ςNϖR, then the chord conjecture
holds; meaning that there exists at least one Reeb chord on (ςPϑ/2,φ) with ends in #. This
gives existence of at least one trajectory bi-normal to the x-axis.

In particular, since their techniques do not require completing Pϑ/2 to P̂ϑ/2, they do not
need a way of ignoring chords on [1,+↘) ↖ ςPϑ/2, so that in particular they don’t need to
assume any variation of the twist condition.
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Chapter 11

Conclusion

11.1 Final state-of-the-art
Our goal, all throughout this thesis, has been to apply Floer-theoretical tools to the Three-
Body Problem.

We began with a model by Moreno & van Koert [MK22a; MK22b], in which we proved
a Poincaré-Birkho! theorem for Wrapped Floer cohomology. We then improved the model
by relaxing most of the technical assumptions, and we derived applications to the Spatial
Circular Restricted Three-Body Problem (SCR3BP) – under the assumption of a Weakened
Twist Condition.

Therefore, the current state-of-the-art Floer-theoretical model for the SCR3BP is:

• For low energies, the Moser-regularised flow of the SCR3BP is a Reeb flow on a contact
5-fold (’,φ), contactomorphic to (SϖS3,φstd).

[Alb+12b; CJK20].

• (’,φ) admits an adapted open book decomposition, whose every page P is a degenerate
Liouville domain with di!eomorphism type DϖS2.

[MK22b].

• The Poincaré return map ◁ : P ! P of the regularised flow is an exact symplectomor-
phism, which extends smoothly to the (degenerate) boundary.

[MK22b].

• There are two Poincaré-Birkho! theorems, Theorem A of [LM25] and Theorem B3,
which respectively give the existence of infinitely many periodic orbits and Hamiltonian
chords in int(P ), assuming a Weakened Twist Condition.

[LM25], Chapter 7.

• Assuming the Weakened Twist Condition, the above theorems can explicitly be used to
study trajectories in the Spatial Circular Restricted Three-Body Problem.

Chapters 4, 9, 10.

This journey led us to formulate two conjectures.
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11.2 Open problems and conjectures

11.2.1 On trajectories bi-normal to the x-axis
In Chapter 10 we studied symmetries of the Spatial Circular Restricted Three-Body Problem.
We saw that two of them, 21 and 22, were anti-symplectic involutions. Denoting by #1 and
L2 their fixed point sets in the page P of our open book, we saw that L2 was a Lagrangian
admissible for Wrapped Floer Cohomology, and that #1 was its Legendrian boundary.

By applying our theorems from Part II to L2 we proved Theorem D, showing existence of
infinitely many trajectories bi-normal to the xz-plane in the Circular Restricted Three-Body
Problem, under the assumption of the Weakened Twist Condition.

If we could prove a similar result for the Legendrian #1
↗= NϖS1, we would get:

Conjecture 1. Assuming the weakened twist condition or a variation thereof, there exist
infinitely many trajectories bi-normal to the x-axis in the SCR3BP, in the low-energy range
and near the primaries. These correspond to trajectories x(t) = (qi, q̇i)(t) such that there
exist times t0 ⇐= t1 with:

q2(tj) = q3(tj) = q̇1(tj) = 0 for j = 0, 1.

In other words, the trajectory starts on the Earth-Moon axis but with velocity pointing strictly
outwards, and comes back to satisfy the same condition after finite time.

Earth-Moon plane

q1q2

q3

Showing this though would require di!erent machinery than the one developed in Part II.
One way to prove this conjecture would be by proving a Poincaré-Birkho! type theorem for
Legendrian Contact Cohomology – which has not been done yet. Another way would be to
stick with our current machinery, but try and find a way of distinguishing physically relevant
chords on the collar [1,+↘)↖ ςP from the undesirable ones.

So far we have no way of doing this. This is why we used an index growth argument in
Chapter 5, or an action growth one in Chapter 6: so we could ignore chords on [1,+↘)↖ ςP
altogether, and care only about the dynamics in int(P ). If we could refine this part of the
argument and find a way of e"ciently distinguishing between physical and undesirable chords
on the collar, then we may gain a lot of understanding about Reeb chords on (ςP,φ).

Recent work conducted in [BCS24] showed that the Reeb chord conjecture held for Legendrian
submanifolds isotopic to the boundary of a co-normal bundle. This yields:

Corollary. There exists at least one Reeb chord on (ςP,φ) with ends in #1. In particular,
there exists at least one trajectory bi-normal to the x-axis in the SCR3BP, for low energies
and near the primaries.

The argument of Bro#i#, Cant, and Shelukhin does not require any form of twist condition,
because they do not need to complete their Liouville domain. Instead, they prove existence
of the chord directly, using tools from homotopy theory (a version of the Hurewicz theorem).
However it seems like a stretch to generalise these methods to showing existence of infinitely
many Reeb chords, without making further assumptions.
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11.2.2 The Weakened Twist Condition: the final obstacle
As recalled at the beginning of this chapter, the results in this thesis allowed us to significantly
refine the Floer-theoretical model of the Spatial Circular Restricted Three-Body Problem: by
getting rid of most of the technical assumptions from the work of Moreno-van-Koert, and
considerably weakening their twist condition. However, we are still left with one obstacle:

Conjecture 2. The Weakened Twist Condition, or a variation thereof, holds in the SCR3BP,
for every energy below or slightly above the first Lagrange energy, near the primaries.

At this stage, the universe splits into two categories.
An optimist would say that so much has already been done: getting to this weakening.

The new condition (a derivative being positive) is so much simpler than the original twist
condition (getting two unrelated vectors to be collinear). And it is possible to partially
generate the SCR3BP return map in a way that satisfies the Weakened Twist Condition.
Indeed, working on the page of the open book of interest, if we choose to use the regularised
planar Hamiltonian instead of the regularised spatial Hamiltonian, then we can generate a
map which is also a rotation, and satisfies the Weakened Twist Condition.(1) This rotation
does not coincide exactly with the SCR3BP return map, due to an error in angle, however one
could try to correct this angle in a way that leaves the Weakened Twist Condition unchanged
– which is theoretically possible because the Weakened Twist Condition is an open condition,
whereas the original twist condition was not.(2)

φ

◁P

◁

P1

P2

εt

Pϱ/2

FIGURE: ϱt represents the flow of the SCR3BP, ς its return map on the page Pω/2, and ςP represents the map
we can currently generate satisfying the Weakened Twist Condition, thanks to work of Dr. Connor Jackman
and the author. φ is the angle error (or overshoot) which one has to palliate to prove Conjecture 2.

(1)The calculations leading to that result remain partial, and are therefore not included in this thesis. They,
however, constitute work in progress which the author is quite optimistic about.

(2)It seems that, using a slow composition trick, one could manage to generate the error in angle very slowly,
so as not to a!ect the positivity of the derivatives, and hence not a!ect the Weakened Twist Condition. This
would imply that the Weakened Twist Condition can be satisfied in very slow time, instead of time 1, and for
extremely low energies. This is not yet the desired statement, but it constitutes a good case for the optimist.
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On the other hand, a pessimist would say that too much has already been done. Getting
to such a weakening might have been the final push. Indeed, to prove the Weakened Twist
Condition, one would need to find a very specific Hamiltonian on the page; one that is C2

on the interior but does not C1 extend to the boundary, all while generating the return map
of the SCR3BP. Any attempt which seems to get close to generating the Weakened Twist
Condition, like the partial calculations mentioned in the previous paragraph, seem to lead to
a blow up in time, or other fundamental issues which seem, at the moment, impossible to
circumvent.

Even if we decide to adopt a pessimistic viewpoint though, no matter how fundamental some
of the obstructions we face may seem, it is not all bad news. Our Weakened Twist Condition
was a refinement of the one in [MK22a], which was itself a generalisation of the one in [Poi12].
It is more than likely that the story is not over, and that we need yet a di!erent version of
the twist condition, or more advanced machinery – in the form of a Floer theory for time-↘
maps for example.

What this thesis tells us is that the Weakened Twist Condition is the final obstacle, and
that all the other technical obstructions (present in the previous models) have been taken
care of. Once we overtake this final obstacle, we will be in full power of applying our Floer-
theoretical machinery to the Spatial Circular Restricted Three-Body Problem.

11.3 Closing words
It is still a bit early to observe major impacts of Floer theory on space mission design. How-
ever, as e!ort in this direction gets increasingly coordinated, the timeline is shrinking fast.
Work done in [FKM23; Ayd+24a] between the departments of Heidelberg (Germany), Augs-
burg (Germany), Seoul (Korea), and NASA’s Jet Propulsion Laboratory (USA) established a
state-of-the-art of the current symplectic toolkit which could be applied to mission analysis,
to study periodic orbits:

• Local Floer invariants;

• Maslov-type indices;

• B-signatures;

• the GIT sequence (a refinement of the Broucke stability diagram).

The work done in this thesis generalises these tools to open-ended trajectories with nice
boundary conditions (e.g. collision trajectories, halo orbits, etc...) instead of periodic orbits.
This enterprise, however, is far from over.

The marriage between symplectic geometry and the Three-Body Problem is still burgeon-
ing, and many more tools and techniques need to be investigated at every stage: from the
theory to the engineering. Bi-lateral feedback between the two is essential, as has been
demonstrated time and again in recent years. The frontier is becoming increasingly porous,
as theoretical tools start getting applied to engineering (e.g. the Conley-Zehnder index),
and conversely some are being developed for the very purpose of mission design (e.g. Local
Wrapped Floer Cohomology from Part I, which we introduced specifically for the SCR3BP).
Another salient example of this dialogue is that of the Broucke stability diagram, known to
the engineering community since the 1960s, but recently re-discovered and generalised by
geometers, though under a di!erent name (the GIT sequence) [Ayd+24a].

✂ So what now?

In a hundred and twenty pages or so we introduced one new algebraic topological invariant,
proved three versions of one fixed point theorem, and then two existence theorems in the
Circular Restricted Three-Body Problem. We improved a previously-existing model by lifting
three assumptions, but ended up with one final obstruction: the Weakened Twist Condition.

Let us take a few steps back.
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In its three and a half centuries of existence the Three-Body Problem has observed, sometimes
even prompted the birth of many mathematical theories, and survived them all. Likely it will
keep inspiring new mathematical, physical, engineering techniques for quite some time; and
survive many more. Floer theory is but one of the many heads of the hydra: while it gives us
powerful heuristics, and invaluable insights into how physical motion is constrained by loop
space homology, it comes with its own drawbacks. Despite its elegance, the theory seems
bound to forever remain somewhat niche, due to its sheer di"culty.

It is likely that the methods discussed in this thesis eventually get generalised, and our
Floer-theoretical model for the SCR3BP superseded by finer models. This is the natural way
of things: this never-ending cycle is woven into the history of the Three-Body Problem.

But even when a head of the hydra is chopped o!, echoes of it remain. The insights
we gained in this manuscript cannot be forgotten, nor can the bridge between physics and
topology unveiled by Floer theory.

The Three-Body Problem is analytical, numerical, geometric, topological. It is old, compli-
cated, deceitful, humbling. It captivates far beyond science, and has by now well seeped into
pop culture. We can only hope that it keeps inspiring movies, TV shows, books aimed at a
general audience (like this manuscript), and new generations of people fascinated by space;
for the story is far from over. Despite its disconcerting simplicity, the Three-Body Problem
may never be within the grasp of our mathematics. It is fascinating that, no matter how elab-
orate our tools and models become, they cannot help but fall short in one way or another.
Likely we shall have to content ourselves with what we have been doing for more than three
centuries: slowly chipping away at the surface of the problem, decades at a time.

"There’s this emperor, and he asks this shepherd’s boy ‘How many seconds in eternity?’
And the shepherd’s boy says, ‘There’s this mountain of pure diamond. It takes an hour
to climb it and an hour to go around it. Every hundred years a little bird comes and
sharpens its beak on the diamond mountain. When the entire mountain is chiselled
away, the first second of eternity will have passed.’ You may think that’s a hell of a
long time. Personally, I think that’s a hell of a bird."

Peter Capaldi, Doctor Who: “Heaven Sent”, written by Steven Mo!at, BBC, 2015.
Based on a fairy tale by the Brothers Grimm.
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Appendix A

Geometric appendix

A.1 More symplectic and contact geometry

A.1.1 Hamiltonian dynamics
The goal of this section is to complement the brief introduction to Symplectic Geometry
we gave at the beginning of this thesis (see §1.4). In particular, let us mention a few basic
definitions/facts about the dynamics of Hamiltonians on symplectic manifolds.

Periodic Hamiltonians.

Let (M,ε) be a symplectic manifold, and H : R ↖ M ! R a time-dependent Hamiltonian.
Our first claim is that, without loss of generality, we may assume that H is periodic.

Lemma A.1. Let H : R↖M −! R be a time-dependent Hamiltonian, with flow ↽t

H
. Then,

we can find a periodic Hamiltonian K : S1 ↖ M ! R such that the time-1 maps ↽t=1
H

and
↽t=1
K

have the same fixed points.

Proof. Choose a smooth map φ : [0, 1] ! [0, 1] such that φ(0) = 0,φ(1) = 1, and φ is flat
near 0 and 1, and replace ↽t

H
by ↽ε(t)

H
. Then:

d

dt
↽ε(t)
H

(p) =
dφ

dt
XHϑ(t)

(
↽ε(t)
H

(p)
)
= Xε↑(t)Hϑ(t)

(
↽ε(t)
H

(p)
)
.

In particular, the flow t #! ↽ε(t)
H

is generated by the Hamiltonian Kt := φ↗(t)Ht. By
construction, ↽t=1

H
and ↽t=1

K
= ↽ε(1)

H
have the same fixed points, since φ is flat near 1.

Since φ is also flat near zero, then we can artificially turn it into a periodic function
φ : S1 ! [0, 1], and therefore make K periodic.

Let us now define an important notion, very heavily used in Chapters 5 and 6: that of
composing, and iterating Hamiltonians.

• Definition A.2. Let K and H be two 1-periodic Hamiltonians. We define their composition
K#H by:

(K#H)t := Kt +Ht ′ (↽t

Kt
)↔1.

This is defined so that ↽K#H = ↽K ′ ↽H .

• Definition A.3. For k ⇔ N, we define the k-iteration H#k of H by:

H#k := H# . . .#H︸ ︷︷ ︸
k times

.

Then, ↽t

H#k = ↽t

H
′ · · · ′ ↽t

H
= ↽kt

H
.

Corollary A.4. A time 1 trajectory x : [0, 1] ! M of the Hamiltonian H#k corresponds to
a time k trajectory x : [0, k] ! M of H.
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Which follows directly from the line above. In particular, using Definition A.2, we can show
by an easy induction that

H#k = H +
k↔1∑

i=1

Ht ′ (↽it

H
)↔1.

Liouville vector fields. Let us now define an important object in symplectic (and later on,
contact) dynamics: Liouville vector fields.

• Definition A.5. A Liouville vector field V on a symplectic manifold (M,ε) is a vector
field such that LV ε = ε, where L denotes the Lie derivative.

Lemma A.6. The existence of Liouville vector fields on (M,ε) is equivalent to ε being exact;
and a choice of Liouville vector field V corresponds to a choice of primitive ϑ for ε (also called
a Liouville form).

Proof. Assume such a V exists, and define ϑ := V ⌐ ε. Then, by Cartan’s magic formula:

dϑ = d
(
V ⌐ ε) = LV ε ↑ V ⌐ dε = ε, (A.1)

and vice versa: if ϑ is already a primitive for ε, then we can explicitly construct a V
satisfying (A.1), as is shown in the Example below.

✁ Example A.7. Let Q be a smooth manifold, and T ϖQ be its cotangent bundle, with
coordinates (qi, pi), and symplectic form ε = dϑ0, with

ϑ0 = ↑
∑

i

pidqi.

Write V = aiςqi+biςpi
for some coe"cients ai, bi ⇔ R, and plug V into the equation V ⌐ε = ϑ.

Comparing coe"cients, we get:

V0 =
∑

i

piςpi
. (A.2)

✁ Example A.8. Say that, instead of ↑ϑ0, we pick the following primitive of ε:

ϑ =
1

2

∑

i

qidpi ↑ pidqi.

Then, a short calculation gives:

V =
∑

i

qiςqi + piςpi
. (A.3)

A.1.2 Contact geometry
Contact geometry is often introduced as the odd cousin of symplectic geometry. Definitions
are stated in the same language, tools from one field are frequently applicable in the other,
and often results from the symplectic and contact worlds turn out to be intricately related,
sometimes in quite beautiful ways. To start from the basics:

• Definition A.9. Let N2n↔1 be an odd-dimensional manifold. A contact form on N is a
1-form φ such that:

φ ↓ (dφ)n↔1 is a volume form.

In other words, φ↓ (dφ)n↔1 never vanishes. In particular, it has constant sign, and we call φ
positive (resp. negative) if φ ↓ (dφ)n↔1 > 0 (resp. < 0).

• Definition A.10. The hyperplane distribution defined by ↼ := kerφ is called the contact
structure induced by φ. It is a rank 2n↑ 2 bundle over N .



Appendix A. Geometric appendix 129

Lemma A.11. (↼, dφ) is a symplectic vector bundle, i.e. dφ is closed and non-degenerate.

Proof. By assumption, φ ↓ (dφ)n↔1 is never zero. Hence, dφ cannot vanish on ↼ = kerφ,
and actually neither can (dφ)n↔1. By standard linear algebra, this implies that dφ is
non-degenerate. It is trivially closed since d2 = 0.

⇒Remark A.12. By the Frobenius theorem (see [Lee12], Chapter 21), the vanishing of the
form (φ ↓ dφ)n↔1 is related to the integrability of the distribution ↼ = kerφ. Therefore, it
never vanishing is equivalent to saying that the distribution ↼ is maximally non-integrable
(i.e. it can never be viewed, not even locally, as the tangent bundle of a submanifold of N).

Contact structures are somehow a more canonical piece of structure than contact forms.
Indeed, if φ↗ and φ are proportional to each other (φ↗ = fφ, for f ⇐= 0), then they induce the
same ↼. This motivates the following definitions:

• Definition A.13. A contact manifold (N, ↼) is an odd-dimensional manifold, endowed
with a maximally non-integrable hyperplane distribution.

• Definition A.14. A strict contact manifold (N, ↼ = kerφ) is a contact manifold, along
with a choice of contact form generating ↼.

Choosing a contact form on a contact manifold is not an innocent choice. It can be akin to
choosing a Hamiltonian H on a symplectic manifold. Indeed:

Any choice of contact form φ on (N, ↼) induces some specific dynamics on N .

Indeed, consider the 2-form dφ on N . By Lemma A.11, it is non-degenerate on ↼n which is a
2n ↑ 2 bundle over N (in other words, ↼ → TN has codimension 1, and ↼x → TxN ∝x ⇔ N).
However, there remains one direction to be covered in the tangent bundle. One can easily
show that a 2-form on an odd-dimensional (vector) space must necessarily degenerate in at
least one direction, so that we have dφ ∀ 0 in TN\↼.

• Definition A.15. The Reeb vector field Rε on (N, ↼ = kerφ) is the unique vector field
on N satisfying dφ(Rε, ·) ∀ 0 and φ(Rε) = 1.

Existence of Rε follows from the discussion right above, while unicity is ensured by the
normalisation condition φ(Rε) = 1. We call Reeb flow the flow of Rε, and refer to its
dynamics as the Reeb dynamics.

✁ Example A.16. The standard contact manifold is given by (R2n↔1, ↼ = kerφ), where

φ = dz +
n↔1∑

i=1

dxi ↓ dyi,

and where (x1, y1, . . . , xn, yn, z) are coordinates for R2n↔1.

We hold o! on more interesting examples of contact manifolds, and Reeb flows for now, to
focus on one specific construction.

A.1.3 The symplectisation of a contact manifold
The concept of symplectisation can be summarised concisely:

Every (strict) contact manifold can be embedded in a symplectic manifold.

The idea is quite simple:

• Definition A.17. Let (N, ↼ = kerφ) be a strict contact manifold. We define its symplec-
tisation as M = R↖N :
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N

R↖N

ω

ωt

where we write t the coordinate on R. We can endow M = R↖N with the 2-form

ε = d(etφ),

which turns it into a symplectic manifold.

Lemma A.18. Let
(
M,ε = d(etφ)

)
be the symplectisation of (N, ↼ = kerφ). Then, the

associated Liouville vector field (Definition A.5) is given by V = ςt.

Proof. First, notice that if we set V = ςt, then we do indeed have

V ⌐ ε = V ⌐ (etdt ↓ φ+ etdφ
)
= etφ,

and we can explicitly check that V is Liouville. Indeed, by Cartan’s magic formula:

LV ε = V ⌐ dε + d(V ⌐ ε)
= 0 + d(V ⌐ ε).

Now, by Leibniz: ε = d(etφ) = etdt ↓ φ+ etdφ. Therefore:
V ⌐ ε = etφ↑ etdt ↓ (V ⌐ φ) + et(V ⌐ dφ),

but since φ (and hence dφ) are only defined on N , and that V = ςt is orthogonal to it,
V ⌐ φ = V ⌐ dφ = 0. So:

LV ε = d(V ⌐ ε) = d(etφ↑ 0 + 0) = d(etφ) = ε,

which is what we wanted to prove.

⇒Remark A.19. In Chapter 3, we will consider a special case of symplectisation, called
Liouville completion, in which we only symplectise our contact manifold in one direction, i.e.
we work on R+ ↖ N , instead of R ↖ N . For convenience, we will work with the coordinate
r = et ⇔ [1,+↘) instead of t. Then, the Liouville vector field will be given by:

V = r
ς

ςr
. (A.4)

Proof. V =
ς

ςt
=

ςr

ςt

ς

ςr
= et

ς

ςr
= r

ς

ςr
.

A.1.4 Examples
The reason we defined the process of symplectisation before actually giving examples of
contact manifolds is the following:

Proposition A.20. Let (M,ε) be a symplectic manifold. Then a hypersurface S → M is of
contact type ⇑⇓ there exists a Liouville vector field, defined locally around S, and which is
transverse to it.
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Proof. This is a standard result in contact geometry. Our proof follows from the presen-
tation in [Wen15].
( =⇓ ) By the tubular neighbourhood theorem, we can find a neighbourhood (↑ϱ, ϱ)↖ S
of S in M . Since we know S to be contact, then we can treat this neighbourhood as a
symplectisation, and define a symplectic form ε = d(etφ), and a fortiori a Liouville vector
field.

( ⇑= ) Assume that there is a neighbourhood U of S in M in which we can find a Liouville
vector field V . Define ϑ := V ⌐ ε, and recall that by Lemma A.6, we have ε = dϑ.

Claim. φ := ϑ|S is a contact form on S.
Indeed, φ ↓ (dφ)n↔1 =

(
ϑ ↓ (dϑ)n↔1

)
|S

=
(
(V ⌐ ε) ↓ εn↔1

)
|S

F (V ⌐ εn) |S
Now, εn is a volume form on M , and V is transverse to S, so (V ⌐εn)|S never vanishes.
Therefore, φ := ϑ|S is a contact form on S.

✁ Example A.21. Consider (R2n,ε0) with its standard symplectic form

ε0 =
∑

i

dqi ↓ dpi,

but consider the primitive:

ϑ =
1

2

∑

i

qidpi ↑ pidqi.

Then (S2n↔1,ϑ) is a contact manifold.

Proof. We showed in Example A.8 that the associated Liouville vector field is given by
V =


i
qiςqi + piςpi

. This points radially outwards, and is therefore clearly transverse to
the sphere.

We see more examples of contact manifolds at the beginning of Chapter 3, where they are
not only hypersurfaces in symplectic manifolds, but boundaries.

A.2 Fibre bundles

A.2.1 Spin structures
• Definition A.22. Let G be a Lie group. A fibre bundle ϖ : E ! B is called a principal
G-bundle if there exists a free, transitive right-action of G on E.

✁ Example A.23. Let M be a manifold, and Fr(M) ! M its unit frame bundle, i.e. the
fibre above a point x ⇔ M consists of all orthonormal bases of TxM .

Then, Fr(M) ! M is a principal On-bundle, because On acts freely and transitively on
each fibre.
If we define Fr+(M) as the space of oriented orthonormal frames, then Fr+(M) ! M is a
principal SOn-bundle.

Let us focus a bit more on SOn, the special orthonormal (Lie) group. From standard algebraic
topology, ϖ1(SOn) = Z/2Z, which tells us that its universal cover is a double cover. We define:

• Definition A.24. For n > 2, the Spin group Spin(n) is defined as the double cover of
SOn.

Since it is a double cover, the bundle Spin(n) ! SOn is a principal Z/2Z-bundle.

This allows us to make one definition:
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• Definition A.25 (Spin structures). Let M be an oriented, Riemannian manifold of dimen-
sion n ≃ 3. Then it is said to be spin if there exists an equivariant lift of its frame bundle
Fr+(M) ! M with respect to the double-cover Spin(n) ! SOn.

In other words, there exists a principal Spin(n)-bundle ϖ : Spin(M) ! M , along with a
map Spin(M) ! Fr+(M) making the following diagram commute:

Spin(M)↖ Spin(n) Spin(M)

Fr+(M)↖ SOn Fr+(M)

M

ϑ

The bundle ϖ : Spin(M) ! M is often called a spin-structure on M .

A.2.2 Linearisation of a section at zero
We assume the reader is familiar with the di!erent definitions of connections in Riemannian
geometry, and we will move freely between them.
Consider a vector bundle ϖ : E ! M , and a section s : M ! E. We will explain what it
means to linearise s at 0. More precisely, we will show that, at any point x ⇔ M such that
s(x) = 0, its total covariant derivative ↔s(x) : TxM −! Vs(x)E does not depend on the
choice of connection ↔ – it will be what we call the linearisation of s at x.

⇒Remark A.26. Consider the standard covariant derivative

↔X : ”(E) −! ”(E)

along a given vector field X, from Riemannian geometry, which allows us to di!erentiate
sections. The total covariant derivative ↔ is defined as the map:

↔ : X(M)B ”(E) −! ”(E)

which, when contracted with any X ⇔ X(M), becomes ↔X .

sM

Since E ! M is a bundle, we can naturally in-
clude M into E as the zero section (M, 0) ↪−!
E.

Along this zero section, there is a canonical
splitting of TE into horizontal and vertical
subspaces:

TxE = TxM ∞ Ex.

Where the vertical subspaces are simply the
fibres Ex (vertical blue lines, on the picture),
and the horizontal distribution is the tangent
bundle of our original manifold, M .
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From standard Riemannian geometry, the connection ↔ on E can also be viewed as a choice
of horizontal distribution HE such that TE = HE ∞ V E.

Alternatively, one could see it as a fibrewise-linear map K : TE ! V E which restricts to
the identity on V E. Indeed, when provided with such a map, it su"ces to set HE := kerK
to get the horizontal distribution. With this formalism, one can prove (see [Wen16])

↔Xs = K ′Ds(x). (A.5)

In other words, the covariant derivative is the vertical part of the standard, geometric deriva-
tive.

Proposition A.27. Given a section s : M ! E and a point x such that s(x) = 0 (by which
we mean, s(x) lies in the zero section M ↪! E); then the covariant derivative ↔s(x) : TxM !
Vs(x)E does not depend on the choice of connection ↔. It is denoted Ds(x), and called the
linearisation of s at x.

Proof. As we saw, along the zero section M
0

↪−! E, there is a canonical splitting:

Ts(x)E = TxM ∞ Ex, (A.6)

which holds true at any x satisfying s(x) = 0.
Hence, at such an x, the connection map K|x : Ts(x)E −! Ex must be the projection

K : Ts(x)E ↬ Ex onto the second factor of the splitting. (There is no other possible choice
for the map, since we require that K|V E = id).
Therefore, the map K at x is independent of the choice of connection, and the covariant
derivative, given by A.5, reduces to the usual derivative:

↔Xs(x) = K ′Ds(x) ∀ id|Ex
′Ds(x) = Ds(x).

✁ Example A.28. (Hessian of a function) Let M be a manifold endowed with a Riemannian
metric g. Recall that the gradient of f is defined as the unique vector field

−!↔f which is dual
to the di!erential df through g, i.e. :

df = g(
−!↔f, · ) everywhere.

The gradient is a vector field, so in other words, a section of the tangent bundle TM ! M .
As such, it can be linearised at the points where

−!↔f = 0 (otherwise known as the critical
points of f).

• Definition A.29. The Hessian of f at a critical point x, which we denote Hessxf , is the
linearisation D

−!↔f of the section
−!↔f .

So, choosing any connection ↔ on TM , we can compute Hessxf as ↔−!↔f ; and the result will
not depend on ↔ by Proposition A.27. Working in local coordinates {xi}i for M , we have:

−!↔f : Rn −! TRn = Rn ∞ Rn

x #−!

(
x, (

ςf

ςx1

∣∣
x
, . . . ,

ςf

ςxn

∣∣
x
)

)
.

Now, as we saw in A.5, the linearisation of
−!↔f is the vertical part of its usual geometric

derivative, so it is the symmetric operator given by:

Hessxf = pr2 ′D(
−!↔f)x =

(
ς2f

ςxiςxj

∣∣
x

)

i,j

. (A.7)

⇒Notice that in Rn, we usually define this Hessian matrix globally ; which is possible because
the canonical splitting of TRn into horizontal/vertical subspaces exists everywhere. On an
arbitrary Riemannian manifold however, the Hessian is only defined at critical points.
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A.3 The Two-Body Problem

A.3.1 Levi-Civita regularisation
In §8.1.3, we described a scheme to regularise the Circular Restricted Three-Body Problem
at collisions. Let n = 2 or 3 (2 for the planar problem, 3 for the spatial problem), then this
scheme regularised the low-energy dynamics from T ϖ(Rn\{−!E ,

−!
M}) to T ϖSn, thus e!ectively

compactifying the energy hypersurfaces near the Earth and Moon to SϖSn.
In the planar case (PCR3BP), the regularisation is given by SϖS2 ↗= RP3. Let us de-

scribe a di!erent regularisation scheme which, historically, came earlier, and which instead
compactifies the dynamics of the planar problem to S3, the double-cover of RP3.

This section is entirely based on §2 of [Che85], and §4-5 of [Bla62]. Since both sources are
in French, we thought pertinent to dress a summary of the main ideas.

Since we only really care about two-body collisions, we simplify our model to that of the
Two-Body Problem (or Kepler problem). The PCR3BP is then but a perturbation of that
model, and every result we discuss holds likewise (see the sources we cited, or [FZ20]).

Setup. Consider the Two-Body Problem (Example 1.1), with Hamiltonian:

H(q, p) =
1

2
∈p∈2 ↑ 1

∈q∈ , (A.8)

where H is defined on phase space T ϖ(R2\{0}) = {(q, p) | q, p ⇔ R2}; q being position, and
p momentum. Instead of vectors in R2, we choose to view q and p as complex numbers:

q = q1 + iq2, p = p1 + ip2,

and thus view H as a Hamiltonian on T ϖ(C\{0}) instead.
Fix a negative value c of the energy, which we decide to write c = ↑1/ϱ2 for some ϱ > 0,

following [Che85]. We are interested in the energy hypersurface ’c := H↔1(c).
’c is non-compact. Indeed, by Lemma 8.8, p must blow up to infinity as q ! 0, by

conservation of energy. Hence, we need to find a way to regularise at collisions. Levi-Civita
proposes the change of coordinates given by:

(q, p, t) #−! (z, w, t↗) where






q = z2

p =
w

ϱz
dt = 2ϱ ∈q∈ dt↗

(A.9)

which is but the cotangent lift of the map C ! C : z #! z2 (see §3.3 of [FZ20]).

⇒Remark A.30. The change in the time coordinate can be re-written:
dt↗

dt
=

1

2ϱ ∈q∈ ,

or yet

dt↗ =

∫
1

2ϱ ∈q∈dt.

This reparametrisation serves to ensure that the speed no longer goes to infinity at collision.
Heuristically: by conservation of energy (H ∀ ↑1/ϱ2), ∈p∈2 ! ↘ as q ! 0. In particular,
∈p∈2 must grow to infinity as fast as 1/ ∈q∈, so that:

|p| ↗ 1√
∈q∈

as q ↗ 0. (A.10)

Consider a trajectory (q(t), p(t) = q̇(t)) satisfying the equations of motion, and such that
q(t) ! 0. Then, in unregularised time, we have:

dq

dt
= p(t) −! ↘ as q ! 0.

However, in the t↗ coordinate, we have:
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dq

dt↗
=

dq

dt/ (2ϱ ∈q∈) = 2ϱ ∈q∈ dq

dt
= 2ϱ ∈q∈ p(t)

↗ 2ϱ
∈q∈√
∈q∈

by (A.10)

↗ 0 for q ↗ 0.

⇒Remark A.31 (Regularisation via elastic bouncing). With the time change we did above,
speed becomes zero at collision. This is a symptom of the type of regularisation technique
that we use: by doing a z #! z2 change of coordinates, we are essentially replacing the original
collision with elastic bouncing.

In other words, the colliding body bounces back, returning whence it came with no loss in
kinetic energy. For more on the symplectic approach to regularising central force problems
through elastic bouncing, we refer to the great survey [FZ20]. In particular, §3.2-3.4 for the
Moser and Levi-Civita regularisations.

In these new coordinates (z, w, t↗), we define the regularised Hamiltonian:

K : T ϖ(C\{0}) ! R : (z, w) #! ϱ2|z|2
(
H(z2,

w

ϱz
) +

1

ϱ2

)
, (A.11)

which, by a simple calculation, reduces to:

K(z, w) =
1

2
|w|2 + |z|2 ↑ ϱ2 (A.12)

=
1

2
ww + zz ↑ ϱ2. (A.13)

In particular, the Hamiltonian equations of motion are given by

ż =
ςK

ςw
= w/2, ẇ = ↑ςK

ςz
= ↑z. (A.14)

This gives us the regularised equations of motion on the hypersurface ’̃c := K↔1(0). In
particular, from (A.12), it is clear that ’̃c is a 3-sphere of radius ϱ. In summary:

Corollary A.32 (Levi-Civita regularisation). For low energies c = 1/ϱ2, the energy hyper-
surface ’c = H↔1(c) compactifies to ’̃c

↗= S3, and the Hamiltonian equations of motion can
be regularised into the Hamiltonian flow of (A.14) on S3.
As we have already mentioned in Remark 8.14, Levi-Civita regularisation is the double-cover
of Moser regularisation (§8.1.3) in dimension n = 2; so in particular, for the PCR3BP. We
will use this fact in the next section when trying to construct a global hypersurface of section.

A.3.2 The Birkho! annulus, direct, and retrograde orbits
Just like in the previous section, we here use the Two-Body Problem (or Kepler Problem)
as a toy model, but all the constructions we discuss hold, and are by now standard in the
Planar Circular Restricted Three-Body Problem (PCR3BP), see for example [Che85]; with
the exception of the Birkho! annulus, as we shall explain.
Before we define our global surface of section, we fully solve the Two-Body Problem – as this
will help us in our construction. Recall, from the previous section, that we have a regularised
flow on S3. First, let us once again change coordinates:

u1 := w + iz, u2 := w + iz.

Then, observe that we can rewrite our regularised hypersurface

K↔1(0) =
{
(z, w) | |z|2 + |w|2 = ϱ2

}

=
{
(u1, u2) | |u1|2 + |u2|2 = 2ϱ2

}
.
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In these new coordinates, the equations of motion (A.14) turn into


u̇1 = iu1

u̇2 = iu2

where the dot denotes the time derivative with respect to regularised time, t↗. Therefore, an
easy integration shows that integral curves of the flow have expression:

(u1(t
↗), u2(t

↗)) =

c1e

i(t↑+s1), c2e
i(t↑+s2)


where c21 + c22 = 2ϱ2, (A.15)

where s1 and s2 are initial times for both variables, and we can assume without loss of
generality that cj ⇔ R (if they were complex, then we could write cj = c↗

j
ei◁j , where c↗

j
⇔ R,

and then the argument ⇁j would get absorbed into sj ⇔ [0, 2ϖ)).

Now that we have solved the Two-Body Problem in regularised coordinates (u1, u2), let us go
back to our original, unregularised coordinates (q, p), which we can recover by:

q = 2z2 = ↑1

4
(u1 ↑ u2)

2, p =
w

ϱz
=

1

iϱ

u1 + u2

u1 ↑ u2
.

Then, in position space C\{0}, solutions to the Two-Body Problem are given by:

q = ↑1

2
ei◁

(
(c21 + c22) cos6↑ 2c1c2 + i(c21 ↑ c22) sin6

)
. (A.16)

where

⇁ := arg(u1)↑ arg(u2) mod 2ϖ, (A.17)
6 := arg(u2) + arg(u2) mod 2ϖ. (A.18)

From (A.15), we get ⇁ = s1 ↑ s2 ∀ cst along every fixed trajectory q, and 6 = s1 + s2 + 2t↗.

The trajectory q from (A.16) draws out an ellipse in C\{0} ↗= R2\{0}, with inclination ⇁
from the q-axis, and whose axes have lengths c21 + c22 = 2ϱ2, and |c21 ↑ c22|; see [Che85, p.12].

✃ The limit cases of our ellipse are obtained by setting c1 = 0, or c2 = 0, in which case the
expression (A.16) reduces to the equation of a circle. In general, we borrow the following
picture from [Che85], showing what happens as we vary from c2 = 0 to c1 = 0:

Formally, we define:

• Definition A.33. The direct (circular) orbit is defined as the orbit obtained by setting
c2 = 0, i.e. it is the circle |u1| =

∋
2ϱ.

The retrograde (circular) orbit is defined as the orbit obtained by setting c1 = 0, i.e.
it is the circle |u2| =

∋
2ϱ.

The names direct and retrograde have a long history ↑ taking their root in stargazing. Say,
for example, that we are studying the Earth-Moon system. Then the Moon’s direct orbit is
its one circular orbit going in the same direction as Earth’s spin on itself, and its retrograde
orbit is the circular orbit which goes in the opposite direction.

We may sometimes call an ellipse direct or retrograde when it goes in the same direction
as the direct or retrograde (circular) orbits. However, when we say the direct or retrograde
orbits, we mean the circular ones, i.e. the limit cases of the above diagram, at cj = 0.

✃ Now let us define our surface of section, discovered by Poincaré, and first studied in [Poi12;
Bir13; Bir15].
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Recall from (A.17) that ⇁ ∀ cst along a solution, and that 6 = s1 + s2 + 2t, where s1 + s2 ∀
cst. Therefore, every trajectory q can be parametrised by 6 (with the subtlety that this
reparametrisation doubles the speed). Now define the set:

int(A) :=
{
(u1, u2) ⇔ S3 | 6 = arg(u1) + arg(u2) ∀ 0 mod 2ϖ

}
, (A.19)

and denote by A its closure.

Proposition A.34. A is an annulus in S3, with boundary the direct and retrograde circular
orbits. Moreover, it is a global surface of section (Definition 8.17) for the regularised flow of
the two-body problem.

Proof. First, notice that (arg(u1), c21 ↑ c22) define coordinates on int(A) (since we know
that c21 + c22 = 2ϱ2 already). Write:

θ := arg(u1) ⇔ [0, 2ϖ), (A.20)

and:
2 := c21 ↑ c22 ⇔ [↑2ϱ2, 2ϱ2], (A.21)

so that:
A ↗=

{
(u1, u2) ⇔ C2 | c21 + c22 = 2ϱ2, θ ⇔ [0, 2ϖ), 2 ⇔ [↑2ϱ2, 2ϱ2]

}
.

This is indeed di!eomorphic to the annulus (ϱ
∋
2)S1↖[↑2ϱ2, 2ϱ2] in S3. The two boundary

components are given by setting 2 = ↑2ϱ2 or 2 = 2ϱ2. These respectively correspond to
c2 = 0 and c1 = 0, i.e. the direct and retrograde orbits.

Let us now show that A is a global surface of section. First, it clearly is compact, oriented,
and has codimension 1 in S3. Then, notice that its boundary is indeed flow-invariant, since
it consists of the circular and direct orbits, which are both periodic orbits of the 2BP flow.

Since solutions of the two-body problem (A.16) are periodic in 6 with period 2ϖ, and
since

6 = arg(u1) + arg(u2) ∀ 0 mod 2ϖ,

int(A) picks up, for every orbit, a point every 2ϖ. Therefore, A satisfies that every point
in the interior returns to the surface both in the future and in the past.

The last thing to show now is that the flow is transverse to the interior of A. By
definition, (u1, u2) ⇔ S3 belongs to int(A) i! 6 ∀ 0 mod 2ϖ, where 6 = arg(u1) + arg(u2).
Also recall that 6 = s1 + s2 + 2t↗, so that 6̇ = 2. In particular, along int(A), 6̇ > 0, so
that the flow is indeed transverse to the interior.

Therefore, A is a global surface of section for the regularised 2BP flow.

Visually, if we imagine S3 as compactified R3, the Birkho! annulus looks something like:

where this picture is again borrowed from [Che85]. We can clearly see that the two boundary
components, the direct and retrograde orbits, rotate in di!erent directions.
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⇒Remark A.35. One thing which may appear clear from the figure is that the two boundary
components of the annulus above form a Hopf link. We can state this formally: in our Levi-
Civita regularised coordinates (u1, u2), the map

S3 D (u1, u2) #−! [u1, u2] ⇔ CP1 ↗= S2

is the standard Hopf fibration (see [Che85]). Actually, the converse also holds from from Prop.
1.15 of [HSW22]: any pair of Reeb orbits in a Hopf link on the standard contact 3-sphere,
and with positive Conley-Zehnder indices, bounds an annulus-like global surface of section
(which follows from more general existence results from [HSW22]).

⇒Remark A.36. Unlike all other constructions in this appendix, the aforementioned annulus
does not readily carry away from the Two-Body Problem to the Planar Circular Restricted
Three-Body Problem, as explained in §8.2.2. Indeed, the existence of this annulus in the
PCR3BP has so far only been proved in the convexity range

✂ As claimed at the beginning of the section, all this work we carried out for the Two-
Body Problem also holds in the Planar Circular Restricted Three-Body Problem. Hence,
in summary, we have described a way to regularise collisions in the PCR3BP, by changing
coordinates to S3. As we had claimed in Remark 8.14, Levi-Civita regularisation actually
turns out to be the double-cover of Moser regularisation, in dimension n = 2 (see [FZ20]).
Recall that Moser regularisation (§8.1.3) provided a change of coordinates to SϖS2 ↗= RP3, for
the PCR3BP.

In the next lemma, we show (for the Two-Body Problem) that if we take the surface of
section A → S3 we have found through the quotient

S3 ↬ S3/Z2
↗= RP3,

then it is still a surface of section in RP3, and still di!eomorphic to an annulus.

Lemma A.37. Consider the map 8 : C2 ! C2 : (z, w) #! (↑z,↑w), and its restriction
8 : S3 ! S3/Z2

↗= RP3. Then, the image of A under 8 is still an annulus, and it is a global
surface of section for the regularised two-body problem flow on RP3.

Proof. In (u1, u2) coordinates, 8 also reads (u1, u2) #! (↑u1,↑u2). Now, note that the
expression (A.19) for int(A) is preserved by 8, since the norms |ui|2 are una!ected, and
we have that arg ′ 8 = arg ↑ ϖ. Hence, the condition

arg(u1) + arg(u2) ∀ 0 mod 2ϖ

is unchanged. As for the boundary components, i.e. the circular curves |ui| = 0, these
also project down to curves which are still flow-invariant.

Then, it remains to show that the flow of the 2BP is transverse to the interior of our
new annulus, and that the flow always comes back to it in the past and the future, no
matter where we start. These hold for the exact same reasons as in Lemma A.34.
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Appendix B

Topological appendix

B.1 Pseudo-holomorphic curves

B.1.1 Almost complex structures
Let M be a smooth even-dimensional manifold, and TM its tangent bundle.

• Definition B.1. An almost complex structure on M is a linear bundle endomorphism
J : TM ! TM such that, on every tangent space TpM , J2 = ↑ .

So J « emulates » the action of the standard complex structure i =
∋
↑1 ⇔ C on every

tangent space. If M admits an almost complex structure J , then we call (M,J) an almost
complex manifold.

✁ Example B.2. On R2n, the standard (almost) complex structure is given by:

J0 =





0 0 0 00 ↑1

1 0 0 0 0 0

0 0 0 0

0 0

. . . 0 0

0 0 0 0

0 0 0 0

0 ↑1

1 0





, (B.1)

which is simply the pullback of i∞ · · ·∞ i under the standard isomorphism R2n
↓=−! Cn.

• Definition B.3. Let (M,ε) be a symplectic manifold, and J an almost complex structure.
J is said to be compatible with ε if Jϖε = ε, and ε(·, J ·) defines a Riemannian metric.

Lemma B.4. Every symplectic manifold (M,ε) admits an almost complex structure com-
patible with ε.

Proof. It su"ces to locally construct a symplectic frame {ui, vi} (satisfying ε(ui, vj) = 3j
i
,

and ε(ui, uj) = ε(vi, vj) = 0), and define J such that Jui = vi, Jvi = ↑ui. Then, it is a
simple exercise to show that g := ε(·, J ·) is a Riemannian metric.

Given a symplectic manifold (M,ε), let us denote by J (M,ε) the space of almost complex
structures compatible with J . We endow it with the C↘

loc-topology, i.e. a sequence (Jn) is
said to converge if it converges on every compact subset of M .

We just showed that J (M,ε) ⇐= ¬. However, from a homotopical point-of-view, we have:

Proposition B.5 (Gromov). J (M,ε) is contractible.

Proof. See §2.2 of [Wen15].

This is a standard, but very important fact, which we use in Chapters 3 and 4, because it
implies that any two compatible almost complex structures can be connected by a homotopy.

We then state one last definition:
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• Definition B.6. We call an almost complex structure J on M integrable if it arises from
holomorphic coordinates on M . In other words, we can find a complex atlas for M (turning
it into a complex manifold), such that in every chart, J reduces to the standard complex
structure i∞ · · ·∞ i.

✁ Example B.7. It is standard knowledge that in dimension 2, every complex structure is
integrable (see [Wen15], Theorem 2.1.4). Therefore, any almost complex surface (’, J) (i.e.
dimR ’ = 2) is actually a complex manifold of complex dimension 1 – a Riemann surface.

Therefore, when dealing with Riemann surfaces, we often simply assume that J = i, and
write (’, i).

B.1.2 Pseudo-holomorphic curves
Defining pseudo-holomorphicity is quite straightforward: we reproduce the usual definition of
holomorphicity, but with an almost complex structure, instead of i. The real importance of
pseudo-holomorphic curves lies in their power to probe the topology of a symplectic manifold.

They were first introduced by Gromov, in [Gro85], to prove his famous « non-squeezing
theorem », which states one cannot symplectically embed a ball of radius r into a cylinder of
smaller radius r↗ < r (in other words, symplectic maps cannot « squeeze/shrink » stu!).

The theory of pseudo-holomorphic curves was then thoroughly developed in the next two
decades, by names like Hofer, Wysocki, Zehnder, Siefring, Wendl,... and we now have a good
understanding of their behaviour, especially in dimension 4.

Most importantly for us: the main objects of Floer theory (solutions of the Floer equation)
turn out to be pseudo-holomorphic curves, as we shall see in Proposition 2.24. So let us
formally define what a pseudo-holomorphic curve is. First, recall:

• Definition B.8. Let M be a complex manifold. Then a function f : M ! C is said to be
holomorphic if

Df ′ i = i ′Df.

By choosing coordinates (z1, . . . , zm) = (x1 + iy1, . . . , xm + iym) on M , we can rewrite the
above criterion as (

ς

ςxj

+ i
ς

ςyj

)
f = 0 ∝i,

or, more concisely, as

ς

ςz
f = 0, (B.2)

where
ς

ςzj
=

ς

ςxj

+ i
ς

ςyj
, and

ς

ςz
=

(
ς

ςz1
, . . . ,

ς

ςzm

)t

.

Equation (B.2) is called the Cauchy-Riemann equation.(1) We then generalise this defini-
tion to maps f : M ! N between complex manifolds by decomposing f = (f1, . . . , fn), and
calling it holomorphic i! every fj is.

• Definition B.9. Let (X, j) and (M,J) be almost complex manifolds. A map f : X ! M
is said to be pseudo-holomorphic if, on every tangent space:

Df ′ j = J ′Df.

(1)If we write f = u+ iv, with u and v real-valued functions, then Equation (B.2) reduces to





↼u

↼xj

=
↼v

↼yj
↼u

↼yj

= ↘
↼v

↼xj

which is the form in which it is commonly stated.
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• Definition B.10. Let (’, i) be a Riemann surface and (M,J) an almost complex manifold.
Then, a pseudo-holomorphic map

u : (’, i) −! (M,J)

is called a pseudo-holomorphic curve.
Writing z = s + it the coordinate on ’, we reformulate the condition of u being a pseudo-
holomorphic curve as:

ςu

ςs
+ J

ςu

ςt
= 0, (B.3)

which is again nothing but the Cauchy-Riemann equation.

We do not address in this thesis all the applications of pseudo-holomorphic curves to symplec-
tic and contact topology; we refer to [Wen15; AH19; MS04] for starting points in the theory.
The main reason we care about them is because of their importance in Floer theory; and we
will hence only introduce the relevant machinery.

First, just like in §3.3.2, we can define a notion of energy for pseudo-holomorphic curves:
• Definition B.11. Let u : (’, i) ! (M,ε, J) be a pseudo-holomorphic curve in a symplectic
manifold. Then we define its (ε-)energy:

E(u) :=

∫

$
uϖε.

Lemma B.12. Assume that (M,ε, J) is a symplectic manifold, and J is compatible with ε.
Then, we have:

E(u) =

∫

$
|ςsu|2 ds ↓ dt =

∫

$
|ςtu|2ds ↓ dt,

where g := ε(·, J ·) is the Riemannian metric induced by ε and J .

Proof. It is an easy exercise in linear algebra to show that

uϖε = ε(ςsu, ςtu) ds ↓ dt.

Hence, we have:

E(u) =

∫

$
uϖε

=

∫

$
ε(ςsu, ςtu) ds ↓ dt

=

∫

$
g(ςsu,↑Jςtu) ds ↓ dt (By compatibility)

=

∫

$
g(ςsu, ςsu) ds ↓ dt (Since ςsu+ Jςtu = 0)

=

∫

$
|ςsu|2 ds ↓ dt

=

∫

$
|ςtu|2 ds ↓ dt (Since J is an isometry w.r.t g).

Corollary B.13. E(u) = 0 i! u is constant.

✂ For the rest of this section, we will be concerned with sequences of pseudo-holomorphic
curves, and their convergence properties. For these purposes, let us take a small step aside,
and introduce some standard elements functional analysis.
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B.1.3 Arzelà-Ascoli and elliptic regularity
We will state, in their simplest form, some standard results about convergence of sequences
of functions. First, let us recall a few definitions.
✂ Fix two metric spaces X and Y , with respective metrics dX and dY .

• Definition B.14. Let (fn) be a sequence of functions f : X ! Y . The sequence (fn) is
said to converge uniformly to f↘ if, for every ϱ > 0, there exists N ⇔ N such that:

∝n ≃ N, ∝x ⇔ X : dY (fn(x), f(x)) < ϱ.

• Definition B.15. A family of functions F → C(X,Y ) is said to be equicontinuous if for
every ϱ > 0, there exists a 3 > 0 such that:

∝f ⇔ F, ∝x1, x2 ⇔ X : (dX(x1, x2) < 3) =⇓ (dY (f(x1), f(x2)) < ϱ) .

Note that this is attained if, for example, the derivatives of functions in F are uniformly
bounded.

Theorem B.16 (Arzelà-Ascoli). Let fn : Rk ! Rd be a sequence of functions which is
uniformly bounded and equicontinuous. Then (fn) admits a convergent subsequence (in the
C0 topology).

⇒Note: there exist many statements of the Arzelà-Ascoli theorem, including some quite more
general than this one, but this is the form that we will mostly use throughout this thesis.

We now state the two main elliptic results, which are standard in symplectic geometry, and
we refer to Appendix B.4 of [MS04] (from which we borrowed these statements), or Chap. 12
of [AD13] for a more detailed exposition, and proofs.

Theorem B.17 (Elliptic bootstrapping). Let ’ be a Riemann surface with a smooth complex
structure j, and M a manifold with a C↼ almost complex structure J , for some integer 0 ≃ 2.
Assume that

u : (’, j) −! (M,J)

is a pseudo-holomorphic curve (i.e. J ′Du = Du ′ j) of class W1,p, for some real p > 2.

Corollary B.18. Let u ⇔ W1,p for p > 2 and J be C↼. Then u is C↼. In particular, if J is
smooth, then so is u.

Theorem B.19 (Elliptic compactness). Let (’, j) and (M,J) be as before. Assume we have
a sequence (jn) of complex structures on ’ such that jn −!

C↓
j, and a sequence of C↼ almost

complex structures on M such that Jn −!
Cς

J , where 0 ≃ 2.

Now, let (Un) be an increasing sequence of open sets which exhausts ’, and write ςUn the
boundary Un ∃ ς’. Furthermore, fix L a totally real subspace of (M,J).

Assume we have a sequence of (jn, Jn)-holomorphic curves:
un : (Un, ςUn) −! (M,L)

of class W1,p, whose first derivatives are uniformly (Lp-)bounded on every compact set.
Then, (un) admits a converging subsequence in the C↼↔1

loc norm; i.e. it converges in
the C↼↔1 norm on every compact subset of ’.

This theorem is pretty bulky to state, but it can be summarised very concisely:

First derivatives are
uniformly bounded =⇓ There exists a

converging subsequence (B.4)

Let us see how we can ensure this.
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B.1.4 Bubbling o!
In light of the last theorem, we ask ourselves:

☎ Let (un) be a sequence of pseudo-holomorphic curves. What is a su"cient condition
for all its first derivatives to be uniformly bounded?

A good candidate answer would be the following:

Energies E(un) are
uniformly bounded

?
=⇓ First derivatives are

uniformly bounded (B.5)

Main idea. We will soon see that an obstruction to having this implication is the appearance
of spherical bubbles. Visually, one should imagine that as we progress along the sequence
(un), we see the appearance of a sphere « bubbling o! of the surface of our curves »; as if one
had attached a balloon to it, and started inflating it.

✁ Example B.20 (A sphere bubbling o! of a sequence of pseudo-holomorphic tori).

Instead of trying to stop these « bubbles » from appearing, we take another approach: making
sure that if they exist, they have energy zero, so that they do not mess with our calculations.
More precisely:

• Definition B.21. A symplectic manifold (M,ε) is said to be symplectically aspherical
if every continuous 2-sphere in M has energy zero. In other words:

∝v : S2 −! M :

∫

S2
vϖε = 0.

With this assumption, we can now prove the main result:

Proposition B.22 (Bubbling o!). Let (M,ε) be a symplectically aspherical manifold en-
dowed with a smooth, compatible almost complex structure J . Let (Jn) be a sequence such
that Jn −! J in C↘, and (un) a sequence of Jn-holomorphic curves with uniformly bounded
energy; i.e. there exists A > 0 such that

E(un) ℜ A for every n.

Then, the gradients of the un’s are uniformly bounded, i.e. ∅B > 0 such that:
∈↔un∈C0 ℜ B for every n.
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This argument, which we will review in the proof below, is what is commonly referred to as
the « bubbling o! argument ». For other expositions, see §6.6 of [AD13] (which is the one we
follow), §4 of [MS04], §5.3 of [AH19], §5.3 of [Wen15]...

The main take-away is:

Corollary B.23. Let (M,ε) be a symplectically aspherical manifold, and (un) a sequence of
pseudo-holomorphic curves with uniformly bounded energies. Then (un) admits a converging
subsequence.

Proof of Proposition B.22. Assume for a contradiction that the ↔un’s ar not uniformly
bounded, so that there exists a sequence of points zn ⇔ ’ (the domain of our holomorphic
curves) such that Rn := |↔uk(zn)| −! ↘. We appeal to the following lemma by Hofer:

Lemma B.24 (Half-maximum lemma). Consider a complete metric space (X, d), and a
continuous function g : X ! R+. Then for any x0 ⇔ X, and ϱ0 > 0, there exists y ⇔ X
and ϱ ⇔ (0, ϱ0] such that: 





d(y, x0) ℜ 2ϱ

ϱg(y) ≃ ϱ0g(x0)

∝x ⇔ Bε(y) : g(x) ℜ 2g(y)

where Bε(y) is the ball of radius ϱ around y.

Proof. See Lemma 6.6.3 of [AD13]. This is an easy recursion argument.

In light of this, choose a sequence ϱn −! 0, such that we still have Rnϱn −! ↘. Then, a
conformal rescaling of the holomorphic curves:

vn(z) := uk(
z

Rn

+ zn)

gives us a sequence (vn) such that, for every n:


∈↔vn(0)∈ = 1

∈↔vn(·)∈ ℜ 2 on BεnRn
(0)

.

By elliptic regularity (Theorem B.19), we can extract a C↘
loc-converging subsequence, and

hence a limit v, such that


∈↔v(0)∈ = 1

∈↔v∈C0 ℜ 2
.

We will derive a contradition by showing that this limit v must necessarily contain a
bubble of non-zero energy, contradicting the symplectic asphericity assumption. First:

Lemma B.25 (Lemma 6.6.5 of [AD13]). We can find an increasing sequence of balls
Brn

(0), with rn ! ↘, and such that:

length (v(ςBrn
(0)))

n!↘
−−−−! 0.

Proof. Since v is pseudo-holomorphic, vϖε is a symplectic form on ’, allowing us
to write vϖε = f(2, θ) dθ↓d2, for some f > 0. Then, compatibility of ε and J gives
us a Riemannian metric, and hence allows us to talk about lengths. We define:

0(r) := length
(
v(Br(0))

)
= r

∫ 2ϑ

0

√
f(r, θ) dθ,

E(r) := E(v|Br(0)) =

∫

Br(0)
vϖε =

∫ 2ϑ

0

∫
r

0
f(2, θ)2 d2dθ.

A short calculation of E↗(r), followed by the Cauchy-Schwarz inequality, gives:

0(r)2 ℜ 2ϖrE↗(r).

Since E is bounded and di!erentiable, it is now an easy exercise in analysis (see
Lemma 6.6.5 of [AD13]) to show that there exists a sequence of radii rn ! ↘ such
that rnE↗(rn) ! 0.
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v(Brn(0)) −! 0

In other words, as rn ! ↘, the boundaries of the balls Brn
(0) get squished into a point.

This corresponds to the formation of what we call a bubble.

However, since eventually the Brn
(0) exhaust all of ’, we have:

lim
n!↘

∫

Brn
(0)

vϖε =

∫

$
vϖε = E(v),

which is non-zero since v is non-constant (by construction, its gradient at 0 is non-zero).

We now work to derive a contradiction:

Pick rn ⊤ 1, so that v(ςBrn
(0)) is contained

in a small neighbourhood U ↗= R2n in M .
Then, in this neighbourhood, the symplectic
form is exact, i.e. there exists a 1-form ϑ
such that ε|U = dϑ.

Topologically, v(ςBr(0)) is a circle so that we
can find a disc filling Dn

↗= D2 of it (in red
on the figure).

The union:
Sr := v(Br(0)) ℑ Dn

gives us a 2-sphere in M , whose energy is
given by:

∫

Sr

ε = lim
n!↘

∫

v(Brn
(0))

ε +

∫

Dn

ε.
Dn

U

We have already established that
∫

v(Brn
(0))

ε =

∫

Brn
(0)

vϖε
n!↘
−−−−! E(v) ⇐= 0.

Meanwhile, the second term goes to 0 as n ! ↘, which we can show by using successively
Stokes’ theorem, and the ML-inequality:
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∣∣∣∣
∫

Dn

ε|U
∣∣∣∣ =

∣∣∣∣
∫

Dn

dϑ

∣∣∣∣ =
∣∣∣∣
∫

v(ωBr(0))
ϑ

∣∣∣∣

ℜ length (v(Brn
(0))) · sup

U
(|ϑ|)

−−−−!
n!↘

0.

Therefore,
∫

Sr

ε = E(v) ⇐= 0. This contradicts the symplectic asphericity assumption,

which asks that every 2-sphere in M have energy zero.
In other words, the existence of such a bubble is prohibited.

≿ Our assumption that there existed a sequence rn = |↔uk(zn)| −! ↘, which allowed
us to rescale our holomorphic curves, and produce this bubble, must necessarily be false,
concluding the proof.

✂ This closes our section on pseudo-holomorphic curves. For the rest of this appendix, we
will forget about complex geometry, and dive a little into algebraic topology, to derive results
that will help us compute Floer homology, in Chapters 9 and 10.

B.2 A bit of homotopy theory
We assume the reader is familiar with the definitions of categories and functors, which can
be found in most any textbook on the topic.

B.2.1 Direct and inverse limits
• Definition B.26. Let (Xi, fi) be a directed system, ie a sequence of objects Xi with
morphisms fi : Xi ! Xi+1; which we furthermore assume to be index over a small category
I (ie, ObI is a set).

Then, its direct limit (or colimit), denoted lim−!XI =: X, is the object X, along with
morphisms 4i : Xi −! X such that:

For every object Y and collection of morphisms 5i : Xi −! Y , the morphisms 5i factor
uniquely through X. In other words, the following diagram commutes:

. . . Xi Xi+1 . . .

X

Y

fi

ιi ιi+1

⇒!

▷i ▷i+1

If such an X exists, then any other object in the category satisfying this (universal) property
is isomorphic to X.

✁ Example B.27. The most natural example is that of a directed system of inclusions. If
Xi ↪! Xi+1 ∝i, then lim−!Xi =


i
Xi is the natural limit of the sequence. Indeed, we can

easily check that the union does satisfy the universal property that we want, then invoke
uniqueness.
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⇒Remark B.28. Though the construction applies to much more general situations than
sequences of inclusions, the overall idea is essentially the same:

From the definition we gave, two elements in X = lim−!Xi are identified if they eventually
become equal in the sequence (Xi, fi). In other words, the underlying set of X is:(⊔

Xi

)
/ ↗ (where Xi D xi ↗ xj ⇔ Xj if ∅k > i, j s.t fik(xi) = fjk(xj) ⇔ Xk)

where fab denotes the composition of all the maps from Xa to Xb.
Hence, the limit lim−!Xi consists of all these elements that survive all throughout the direct

system (Xi, fi).

✃ By standard methods in category theory, we can prove that if the direct limit of a system
exists, then it is unique (up to isomorphism). We can also define the concept of inverse limit
in a very similar fashion:

• Definition B.29. The inverse limit (or limit) of the directed system (Xi), denoted lim↔−
if it exists, is an object X together with maps ϖi : X ! Xi such that:

For every cone N above (Xi) (ie an object N together with morphisms ⇁i : N −! Xi),
the morphisms ⇁i factor uniquely through X. In other words:

N

X

. . . Xi Xi+1 . . .

ϑi
ϑi+1

⇒!

◁i
◁i+1

✁ Example B.30. Let us look at one of the easiest examples of inverse limits. Consider R
a commutative ring, and let I 9R be an ideal.

We can endow R with a topology by taking
{
Im

}
m⇐0

to be a system of open neighbourhoods
of 0; where recall that the product of two ideals I and J 9R is given by

I · J :={
∑

k<↘
ikjk | ik ⇔ I, jk ⇔ J}.

Now, observe that we have natural surjections R/In+1 ↬ R/In, and hence a system of
R-modules. The inverse limit: R := lim↔−R/Im is called the I-adic completion R of R.

B.2.2 Fibrations
In this section, we work in the smooth category, so that all objects are topological spaces,
and all maps are taken to be continuous. We write I the unit interval [0, 1].

• Definition B.31. A commutative square

X Z1

Z2 Y

ι1

ι2 01

02
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is called a pullback square if for any space K and pair of maps .i : K ! Zi commuting
with everything, there exists a unique map ↽ : K ! X such that the following diagram:

K

X Z1

Z2 Y

1

21

22

ι1

ι2 01

02

still commutes. We will see some examples of this notion in §B.2.4.

• Definition B.32. Let p : E ! B be a map, and X be a space. p is said to satisfy the
(right) homotopy lifting property w.r.t X if: given a homotopy X ↖ I ! B such that
X ↖ {0} ! B lifts to E, then the whole homotopy lifts to E. More concisely:

X E

X ↖ I B

i0 p
⇒

• Definition B.33. p : E ! B is a called a Hurewicz fibration, or simply fibration, if it
satisfies the right homotopy lifting property w.r.t every space X.

It is called a Serre fibration, or weak fibration, if it satisfies it w.r.t every CW complex X
(which can be reduced to showing it satisfies it for every disc Dn).

Lemma B.34. Let p↗ : E↗ ! F ↗ be a (Hurewicz/Serre) fibration, and

E E↗

B B↗

p p
↑

be a pullback square. Then p : E ! B is also a (Hurewicz/Serre) fibration.

Proof. Being a Hurewicz/Serre fibration means satisfying the homotopy lifting property
for a certain class of spaces. Let X be in said class, and assume we have a homotopy
f : X ↖ I ! B such that f |X≃{0} : X ! B lifts to f̃0 : X ! E. i.e. :
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X E E↗

X ↖ I B B↗

f̃0

i0 p p
↑

f

First, notice that since p : E↗ ! B↗ is a fibration, then the bottom composition lifts to a
map ” : X ↖ I ! E↗. Hence, forgetting the top left element of the diagram, we have:

E E↗

X ↖ I B B↗

p p
↑

⇒”

f

Then, recall that the square on the right is a pullback square, so that by definition, the
existence of f and ” implies the existence of a map:

E E↗

X ↖ I B B↗

p p
↑⇒f̃

”

f

which is our desired lifting.

✂ Now, the reason we study fibrations is mostly for homotopical/homological purposes:

Proposition B.35. Given a fibration, all fibres have the same homotopy-type.

A proof can be found, for instance, in [Hat02, Prop. 4.65]. In particular, it su"ces to know
the fibre at one point to know it everywhere, up to homotopy. It is also standard knowledge
that fibrations induce long exact sequences in homotopy (see [Mit01], for example). Actually,
looking at homology, we can obtain an even stronger result:

Proposition B.36. Let X be a manifold. A Serre fibration F ! E ! X induces a spectral
sequence called the Leray-Serre spectral sequence, such that:

Ep,q

2 = Hp(X;Hq(F )) =⇓ Hp+q(E).
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Furthermore, if X is simply connected, and H•(F ) is finite-dimensional, then the second page
decomposes:

Ep,q

2 = Hp(X)BHq(F ).

Proof. See §14 of [BT82], which is dedicated to this construction.

B.2.3 Homology of loop spaces

• Definition B.37. Let X be a topological space. Its free loop space is defined as:

LX := Map(S1, X). (B.6)

We can add a base point pt ⇔ X, and ask that all the loops start at pt, thus defining the
based loop space:

!ptX := Map

(S1, 1), (X, pt)


. (B.7)

Both of these are topological spaces, endowed with the compact-open topology.

Letting !X :=
⊔

pt
!ptX, then we have a natural fibra-

tion, called the loop space fibration.

!X LX

X

In this thesis, since our inspiration comes from physical examples, we will mostly be interested
in the loop and path spaces of spheres (mostly for the purposes of Chapters 9 and 10). There,
we can actually uncover more structure:

Lemma B.38. X = G is a topological group. Then the short exact sequence !G ! LG ! G
splits. i.e. LG = G↖ !G (where this decomposition holds as spaces, not just groups).

Proof. See [Jai21].

✁ Example B.39. Let X = S1. From standard algebraic topology, !S1 C Z up to homotopy.
Since S1 can be viewed as a topological group, the previous lemma then gives us LS1 C Z↖S1.
In particular, H→(!S1) and H→(LS1) are both infinite-dimensional, where H→ denotes singular
cohomology.

Lemma B.40 ([Zil77]). Let n ≃ 2 be even. Then, for every m ≃ 1, we have:

H2m(n↔1)(LSn,Z) ↗= Z/2.

In particular, H•(LSn,Z) is infinite-dimensional, and non-zero in infinitely many degrees.

Actually, we can deduce more:

Lemma B.41. Let n ≃ 2 be even. Then H•(!Sn;Z) is also infinite-dimensional.

Proof. By Proposition B.36, the fibration !Sn ! LSn ! Sn induces a spectral sequence
converging to the total cohomology of LSn (which we now know to be infinite-dimensional).
Since n ≃ 2, Sn is simply connected, and if we assume !Sn to have finite-dimensional
cohomology, then the second page decomposes:

Ep,q

2 = Hp(Sn)BHq(!Sn)

This is a contradiction, since Ep,q

2 now only has finitely many non-zero elements, while it
should converge to something infinite-dimensional.



Appendix B. Topological appendix 151

⇒Remark B.42. The (co)homology of the based/free loop spaces of spheres is actually very
well-understood. For a brief survey on the homology of !Sn, we refer to [Dev16], which fully
explicits its algebraic structure. For more general work on the cohomology of loop spaces,
we refer to [Zil77], for example. We have only stated a few special results because for the
purposes of this thesis, we are only concerned with specific cases.

B.2.4 Homology of path spaces
For the purposes of Chapter 10, we are also interested in the path spaces of spheres. Formally:

• Definition B.43. Let X be a topological space. Its free path space is defined as:

PX := Map([0, 1], X). (B.8)

If we add a base point pt ⇔ X, then we can define its based path space:

PptX := {⇀ : [0, 1] | ⇀(0) = pt} . (B.9)

Actually, we can go further than that. Given Q → X a subspace, we can define the space of
paths with ends in Q:

PQX := {⇀ : [0, 1] ! X | ⇀(0), ⇀(1) ⇔ Q} . (B.10)

Lemma B.44 (Loop-path fibration). There is a fibration:

!X −! PX
ϑ

−! X ↖X, (B.11)

where ϖ = (ev0, ev1) : PX ! X ↖X maps a path to its endpoints.

Proof. To show ϖ : PX ! X ↖X is a fibration, we show it satisfies the homotopy lifting
property. One can explicitly write down the lift of any homotopy to X↖X; which is done
in [Swi02, Prop. 4.3]. Hence, we have a fibration F ! PX ! X ↖X.

By Proposition B.35, the homotopy type of fibres is unique, so that it su"ces to deter-
mine F above one point. Pick (x, x) ⇔ X↖X in the diagonal. Then clearly, ϖ↔1(x) = !xX.
Therefore, in general, F ↗= !ptX.

Lemma B.45. Let Q → X. Then, the diagram:

PQX PX

Q↖Q X ↖X

ι

(ev0,ev1) (ev0,ev1)

(i,i)

is a pullback square (Definition B.31). Moreover, we have a fibration:

!X −! PQX −! Q↖Q. (B.12)

Proof. 1) First, let us prove that the square above is a pullback square. Assume we have
a topological space K, along with maps .1,.2 such that the diagram
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K

PQX PX

Q↖Q X ↖X

22

21

ι

(ev0,ev1) (ev0,ev1)

(i,i)

commutes. This necessarily implies that, for any k ⇔ K, .2(k) ⇔ PX is a path with ends
in Q, since we must have:

(ev0, ev1) ′ .2 = (i, i) ′ .1.

Hence, there exists a natural map K ! PQX : k #! .2(k), which verifies that the original
square was indeed a pullback square.

2) Now that we know we have a pullback square, we can invoke Lemma B.34, which tells
us that, since PX ! X ↖X is a fibration, then PQX ! Q↖Q must also be a fibration.
Hence it only remains to determine its fibre.

Like in the previous Lemma, we appeal to Prop. B.35, which tells us that all fibres have
the same homotopy-type, so that it su"ces to look at one fibre. In particular, above a
point (q, q) in the diagonal of Q↖Q, the fibre will be homotopic to !qX, so that all fibres
are, concluding the proof.

✁ Example B.46. An example of application of these arguments is the proof that H→(PS1S2)
is infinite-dimensional, which we carry out in Corollary 10.10.
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Appendix C

Computational appendix

This appendix contains all the computations/proofs which did not make it into the main
body, often to avoid breaking the flow of the discussions with lengthy calculations.

Calculation C.1. Let us prove the fact (from Example 3.4) that for any manifold Q, DϖQ
is a Liouville domain, with boundary SϖQ. First, we need to show that SϖQ is indeed the
manifold boundary of DϖQ.

We will accept, without proof, the following standard fact:

Fact. Sn↔1 is the manifold boundary of Dn. In particular, we can find an atlas {(Ui,5i)} of
Dn consisting of both interior charts

5i : Ui ! Vi → Rn,

and boundary charts
5i : Ui ! Vi → Rn↔1 ↖ R+.

Now, take n = dimQ. Then DϖQ is by definition a Dn-bundle over Q, so that we can find
local trivialisations

DϖUi Vi ↖ Dn

Ui

↓=

where each open set Ui → Q supports a chart ↽i : Ui

↓=−! Vi → Rn.

✃ Then we can define an atlas (Ui ↖ Uj ,↽i ∞ 5j) for DϖQ, such that ↽i ∞ 5j is a boundary
(resp. interior) chart whenever 5j is. In particular, in every local trivialisation, the boundary
of DϖQ will look like Vi ↖ Sn↔1, which we can identify with SϖQ, by definition.

✃ It remains to prove that this boundary is of restricted contact type, with respect to the
natural symplectic form on DϖQ. As we saw, this is equivalent to asking that the associated
Liouville vector field V (such that V ⌐ ε = ϑ) be positively transverse to the boundary SϖQ.

Now recall that we are working with the contact form

ϑ = ↑
∑

i

pidqi,

where the (qi, pi) are the coordinates on our local trivialisations. Then, from the condition
V ⌐ ε = ϑ, we can easily deduce that we have:

V =
∑

i

pi
ς

ςpi
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on V⇔ ↖ Dn. In particular, V points radially outwards in the fibre Dn, so that it is indeed
transverse to Sn↔1.

Calculation C.2. We prove the statement from Example 3.20, ie given a Hamiltonian on
(Ŵ , ε̂ = dϑ̂) satisfying H = h(r) for r ≃ R0, we have that every Hamiltonian chord on the
collar [R0,+↘)↖ ςW has action:

AH(x) = f1
(
x(1)

)
↑ f0

(
x(0)

)
↑ rh↗(r) + h(r).

Recall from (3.5) that:

AH : P −! R : x #−! f1 (x(1))↑ f0 (x(0))↑
∫ 1

0
xϖϑ̂+

∫ 1

0
H (x(t)) dt.

We focus on the last two terms.

• First, notice that
∫ 1

0
xϖϑ̂ is standardly the ϑ̂-period of the chord x (where ’period’ is to

be understood as Reeb-length). Recall that ϑ̂ = rφ, where φ = ϑ|ωW , the contact form
on the boundary. Since H = h(r) on the collar end, we have XH = h↗(r)Rε, as shown
in Corollary 3.11.
In particular, Hamiltonian chords x are restrained to slices {r}↖ςW , and can be written
x(t) = y(h↗(r)t) where y is a Reeb chord on ςW . Therefore:

∫ 1

0
xϖϑ̂ =

∫
h
↑(r)

0
yϖϑ̂

=

∫
h
↑(r)

0
yϖ(rφ)

= r

∫
h
↑(r)

0
yϖφ = rh↗(r),

since
∫

h
↑(r)

0
yϖφ is the Reeb-length of y on ςW .

• For the last term, recall that for r ≃ R0, H = h(r) only depends on the r-coordinate.
Furthermore, as shown in Cor. 3.11, Hamiltonian chords above r0 are restrained to
horizontal slices {r}↖ ςW . Therefore:

∫ 1

0
H
(
x(t)

)
dt =

∫ 1

0
h(r)dt = h(r).

This completes the calculation.

Calculation C.3 (Proof of Proposition 3.21). Let AH : P −! R be the action functional
from Wrapped Floer homology, as defined in Defn 3.19. Then, its derivative at a point x ⇔ P

is given by:

dAH(x) : TxP −! R : 1 #−!
∫ 1

0
dϑ̂

(
ẋ(t)↑XH(x(t)), 1(t)

)
dt.

Proof. (From [Kim18], but we rewrite it because we use a di!erent sign convention - and
add details):
Step 1. We want to compute the derivative at a point x ⇔ P, where P is the space of
W1,2 Hamiltonian chords (trajectories) which start in ϑ̂0 and end in ϑ̂1.

Recall that TxP =
{
1 ⇔ W1,2


[0, 1], xϖTŴ


| 1(0) ⇔ Tx(0)ϑ̂0, 1(1) ⇔ Tx(1)ϑ̂1

}
, whose

elements are vector fields along the path x.
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Pick an arbitrary 1 ⇔ TxP. Then, we can find a curve (xs)
(
s ⇔ (↑▷, ▷)

)
in P (so

essentially, a 1-parameter family of paths in Ŵ ), such that

d

ds
xs|s=0 = 1.

We can extend 1 to a neighbourhood of x in Ŵ , while ensuring that 1 = (d/ds)xs along
the whole family (xs). (On the other dimensions of Ŵ , we extend it arbitrarily; which
will not matter in the end since we will always work along the family

{
(s, t) #−! xs(t)

}
,

which yields an embedded surface in Ŵ ).

Now let us get to the calculations. Since 1 = (d/ds)xs|s=0, then by definition:

dAH(x)1 =
d

ds
AH(xs)|s=0.

Now, recall that AH(x) := f1
(
x(1)

)
↑ f0

(
x(0)

)
↑
∫ 1

0
xϖϑ̂+

∫ 1

0
H
(
x(t)

)
dt, where fi is the

primitive of ϑ̂ along Li (since we assume the Lagrangians to be exact). So:

dAH(x)1 =
d

ds
AH(xs)|s=0

=
d

ds

∣∣
s=0

(
f1
(
xs(1)

)
↑ f0

(
xs(0)

)
↑
∫ 1

0
xϖ

s
ϑ̂+

∫ 1

0
H
(
xs(t)

)
dt
)
.

Let us di!erentiate this expression term by term:

•
d

ds
fj
(
xs(j)

)
= dfj

(
1(x(j))

)
by chain rule. We can rewrite this as dfj

(
1
)
(x(j));

and recall that since the Lagrangians are exact, we have ϑ̂|
L̂j

= dfj , and hence
dfj

(
1
)
(x(j)) = ϑ̂

(
1
)
(x(j)).

•
d

ds

∣∣
s=0

∫ 1

0
xϖ

s
ϑ̂ =

∫ 1

0
xϖ

L↽ ϑ̂, where L↽ denotes the Lie derivative with respect to

the vector field 1. The proof of this equality in itself is a bit involved, so we move it
to calculation C.4.

•
d

ds

∣∣
s=0

∫ 1

0
H
(
xs(t)

)
dt =

∫ 1

0

d

ds
H
(
xs(t)

)∣∣
s=0

dt =

∫ 1

0
dH

(
1(t))dt, where we can dif-

ferentiate under the integral sign thanks to the Leibniz integral rule.

Therefore:

dAH(x)1 = ϑ̂
(
1
)
(x(1))↑ ϑ̂

(
1
)
(x(0))↑

∫ 1

0
xϖ

L↽ ϑ̂+

∫ 1

0
dH

(
1(t)

)
dt.

Step 2. We can simplify this expression further. Indeed, recall that Cartan’s magic
formula says: L↽ ϑ̂ = d

(
1 ⌐ ϑ̂)+ 1 ⌐dϑ̂, where ⌐ denotes the interior product. So the third

term of the expression above becomes:
∫ 1

0
xϖ

L↽ ϑ̂ =

∫ 1

0
xϖ

(
d(1 ⌐ ϑ̂) + 1 ⌐ dϑ̂)

=

∫ 1

0
d
(
ϑ̂(1)

)
(x(t))dt+

∫ 1

0
xϖ

(
dϑ̂(1, ·)

)

= ϑ̂
(
1
)
(x(1))↑ ϑ̂

(
1
)
(x(0)) +

∫ 1

0
xϖ

(
dϑ̂(1, ·)

)
.

Therefore:
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dAH(x)1 =
(
ϑ̂
(
1
)
(x(1))↑ ϑ̂

(
1
)
(x(0))

)
↑
(
ϑ̂
(
1
)
(x(1))↑ ϑ̂

(
1
)
(x(0))

)

↑
∫ 1

0
xϖ

(
dϑ̂(1, ·)

)
+

∫ 1

0
dH

(
1(t)

)
dt

= ↑
∫ 1

0
xϖ

(
dϑ̂(1, ·)

)
+

∫ 1

0
dH

(
1(t)

)
dt.

Now, it is a standard exercise in linear algebra to show that xϖ
(
dϑ̂(1, ·)

)
= dϑ̂

(
1(t), ẋ(t)

)
dt

(this is true of any 1-form). Recall that by definition, we have ↑dH = XH ⌐ dϑ̂, where
XH represents the Hamiltonian vector field of H. So we have:

dAH(x)1 = ↑
∫ 1

0
xϖ

(
dϑ̂(1, ·)

)
+

∫ 1

0
dH

(
1(t)

)
dt

= ↑
∫ 1

0
dϑ̂

(
1(t), ẋ(t)

)
dt↑

∫ 1

0
dϑ̂

(
XH(x(t)), 1(t)

)
dt

=

∫ 1

0
dϑ̂

(
ẋ(t), 1(t)

)
dt↑

∫ 1

0
dϑ̂

(
XH(x(t)), 1(t)

)
dt

=

∫ 1

0
dϑ̂

(
ẋ(t)↑XH(x(t)), 1(t)

)
dt.

Calculation C.4. In the previous calculation, we stated a fact which we did not prove:

d

ds

∣∣
s=0

∫ 1

0
xϖ

s
ϑ̂ =

∫ 1

0
xϖ

L↽ ϑ̂,

where L↽ denotes the Lie derivative with respect to the vector field 1.
We can di!erentiate under the integral sign, hence we really want to show that

d

ds
(xϖ

s
ϑ̂)|s=0 = xϖL↽ ϑ̂.

Let (↑▷, ▷) D s #! xs be our family of paths
(i.e. for every s, xs : [0, 1] ! Ŵ ), and define:

1s :=
d

ds
xs. (C.1)

x⇀

x = x0

x↔⇀

So 10 = 1, our previously-defined vector field along x = x0. Define the surface:

S := {xs(t) | s ⇔ (↑▷, ▷), t ⇔ [0, 1]} → Ŵ .

Then, given t0 ⇔ [0, 1], the path s #! xs(t0) can be interpreted as a flow line of the flow of
1s, by definition. Since 1s = (d/ds)xs ⇔ TS, this flow line is contained is S (actually, S is
foliated by such flow lines, by definition).

Hence, there is a flow 5s : S ! S, with infinitesimal generator 1s ⇔ TS. By construction, we
must have:

5s ′ x0 = xs ∝s ⇔ (↑▷, ▷). (C.2)

Now, since 1 ⇔ TS, and im(xs) → S by definition, we can make sense of the expression L↽ ϑ̂

on S (and actually, even if we extended 1 to a neighbourhood U of S in Ŵ , we would have
(L↽ ϑ̂)|U ∀ (L↽ ϑ̂)|S). We compute:
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xϖL↽ ϑ̂ = xϖ

0L↽ ϑ̂ = xϖ

0

(
lim
s!0

1

s


5ϖ

s
ϑ̂↑ ϑ̂

)

= lim
s!0

1

s


xϖ

05
ϖ

s
ϑ̂↑ xϖ

0ϑ̂


= lim
s!0

1

s


(5s ′ x0)

ϖϑ̂↑ xϖ

0ϑ̂)

= lim
s!0

1

s


xϖ

s
ϑ̂↑ xϖ

0ϑ̂


by (C.2)

=
d

ds
(xϖ

s
ϑ̂)|s0 .

Calculation C.5 (Proof or proposition 3.25). We want to show that the Hessian of the
action functional that we have been studying is given by:

HessxAH : TxP −! L2(xϖ(TM)) : 1 #−! Jt(x)
(
↔t1 ↑↔↽XH(x(t))

)
.

Recall from A.28 that we can define the Hessian of AH as the linearisation of the section
↔AH . This process (which is described in subsection A.27 of the appendix) can only be done
at points where ↔AH = 0; hence, at critical points.

As proved in Proposition A.2.2 of the appendix, this linearization is independent of the
choice of connection we make. So we need only choose a connection ↔, and compute
↔(↔AH)). Let us pick ↔ = ↔LC the Levi-Civita connection on M .(1)

Now pick a vector 1 ⇔ TxP, and let (xs) be a curve in P generating it (ie
dxs

ds
|0 = 1). We

then have:

HessxAH1 : = Dx(↔AH)1

= ↔LC↔AH(x)1

= ↔s↔AH(xs)|s=0

= ↔s

(
Jt(xs)

(
ẋs(t)↑XH(xs)

))
|s=0

= ↔sJt(xs)
(
ẋs(t)↑XH(xs)

)
|s=0 + Jt(xs)|s=0

(
↔s

ςxs

ςt
↑↔sXH(xs)

)
|s=0

= ↔↽Jt(x)
(
ẋ(t)↑XH(x)

)
+ Jt(x)

(
↔t

ςxs

ςs
|s=0 ↑↔↽XH(x)

)
;

where, to pass to the last line, we took s ! 0 wherever we could; and made use of the equality
↔sςt = ↔tςs, which is a standard fact from Riemannian geometry.
Now, the first term above becomes 0, since ẋ(t) = XH

(
x(t)

)
. To simplify the second term,

we make use of the fact that
dxs

ds
|s=0 = 1. So we get:

HessxAH(x) 1 = Jt(x)
(
↔t1 ↑↔↽XH(x)

)
.

Calculation C.6 (Proof of Lemma 3.27). We want to prove the following equivalence:

kerHessxAH ⇐= {0} ⇑⇓ D↽(Tx(0)#0) ∃ Tx(1)#1 is not transverse.

(1)Technically, this connection varies with t. Indeed, recall that we work with a family (Jt) of almost complex
structures (0 ≃ t ≃ 1), and the associated Riemannian metrics gt := ↽(·, J ·). We then take ⇐ to be the Levi-
Civita connection associated to gt (not expliciting clearly the dependency on t; for it is not important in the
calculations).
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• ( ⇑= ) First, let us assume that the intersection D↽(Tx(0)#0) ∃ Tx(1)#1 is non-transverse.
For dimensional reasons, this means there exists a non-zero v1 ⇔ D↽(Tx(0)#0) ∃ Tx(1)#1. In
other words, ∅v0 ⇔ Tx(0)#0 such that v1 = D↽(v0) ⇔ Tx(1)#1.

Now, our goal is to prove that there exists a non-zero 1 ⇔ kerHessxAH . Recall, from Lemma
3.25, that:

HessxAH : TxP −! L2(”(xϖTŴ ))

1 #−! Jt
(
↔t1 ↑↔↽XH

)
.

where TxP =
{
1 ⇔ ”(xϖTM) | 1(0) ⇔ Tx(0)#0, 1(1) ⇔ Tx(1)#1

}
.

So essentially, we want to find a vector field in ”(xϖTŴ ), with Lagrangian ends, and which
is in the kernel of HessxAH . From the discussion at the start, a natural candidate for such a
vector field would be one that "connects" v0 and v1.

Indeed, since ↽ = ↽1
H

is the time-1 map of the Hamiltonian flow, we can define:

v : [0, 1] −! xϖTŴ

t #−! vt = ↽t

ϖ
v0 = D↽t

H
(v0) ⇔ Tx(t)Ŵ .

which is, by construction, a non-zero vector field in TxP. So let us see whether or not
HessxAHv = 0.
In the proof of Lemma 3.25, we chose ↔ to be the Levi-Civita connection, which is torsion-free.
What this implies, in particular, is that for any two vector fields X,Y :

↔XY ↑↔Y X = [X,Y ],

where [·, ·] is the standard Lie bracket on the tangent bundle.
In particular, it is a standard result from di!erential geometry that this Lie bracket is zero

if and only if the flows of X and Y commute.

So since HessxAH1 = Jt[XH , 1], we want to prove that for the vector field v we defined above,
[XH , v] = 0. Since vt = ↽t

ϖ
v0 by definition, the flows of v and XH are the same. Hence they

clearly commute. So [XH , v] = 0.

•( =⇓ ) Let us now prove the converse. So assume we have a non-zero vector field v ⇔
kerHessxAH , and let us try and prove D↽(Tx(0)#0) ∃ Tx(1)#1 ⇐= {0}. So we need to find a
non-zero vector in this intersection.
Like earlier, there is an immediate candidate for what this vector could be: perhaps we could
choose vt=1. This is clearly in Tx(1)#1, but there is a priori no guarantee that it would belong
to D↽

(
Tx(0)#0). However, one can prove that it does using the following lemma:

Lemma C.7. If v ⇔ kerHessxAH , then we have vt = ↽t

ϖ
v0; where ↽t = ↽t

H
.

(This construction is completely inspired from the ( ⇑= ) direction of the proof.)

Proof. Let ṽ be the vector field defined by ṽt = ↽t

ϖ
v0. We want to show that ṽ = v. We

will do this via an Existence/Uniqueness theorem for di!erential equations.

Indeed, v and ṽ satisfy


↔XH

v ↑↔vXH = 0

↔XH
ṽ ↑↔ṽXH = 0

.(2)

The second equation holds for the same reason as in the ( ⇑= ) direction.

So both v and ṽ satisfy the same first-order di!erential equation. Hence, to show that
they are equal, it su"ces to show that two (independent) initial conditions agree. Hence,
it would be enough to show that:

(2)These are the equations (HessxAH)v = 0 and (HessxAH)ṽ = 0. We have removed the Jt factor, since it
does not change whether the result is 0 or not.
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
v0 = ṽ0

(↔XH
v)|t=0 = (↔XH

ṽ)|t=0

(C.3.a)
(C.3.b)

.

(C.3.a) is directly satisfied by definition of ṽ. Meanwhile, using the di!erential equation
which both v and ṽ satisfy, (C.3.b) can be rewritten as the condition:

(↔vXH)|t=0 = (↔ṽXH)|t=0. (C.4)

Notice that the expression (↔vXH)|t=0 only depends on v at the point t = 0; in other
words, (↔vXH)|t=0 = ↔v0XH .

Hence, condition C.4 (which we want to prove holds) reduces to:

↔v0XH = ↔ṽ0XH (C.5)

(which is an equality at the point x(0) ⇔ Ŵ ). This trivially follows from the fact that
v0 = ṽ0; hence concluding the proof of the lemma.

≿ Therefore, we have seen that for any vector field v ⇔ TxP in the kernel of HessxAH , we
have that vt = ↽t

ϖ
v0 along the chord x. Thus, v1 ⇔ D↽(Tx(0)#0) ∃ Tx(1)#1.

Hence, the existence of a non-zero vector v ⇔ kerHessxAH would imply that the intersec-
tion D↽(Tx(0)#0) ∃ Tx(1)#1 is non-transverse.

The goal of the next lemma and calculation is to set up for Calculation C.10, in which we
prove a a priori energy estimate for solutions of the Floer equation with parameters (3.17).

Lemma C.8. Assume H = Hs is s-dependent. Then, we have:

dHs(
ςu

ςs
) = ςs(Hs ′ u)↑ (ςsHs)(u).

This is basically a fancy application of the chain rule; but let us prove it formally, because we
shall use it in the next calculation.

Proof. Recall that u is a map R ↖ [0, 1] ! Ŵ (where s is the R-coordinate). Consider
H̃ : R↖ Ŵ −! R : (s, ·) #−! Hs. Let ũ = (s, u(s, t)).

The point of this abstract mumbo-jumbo is so we can write ςs(Hs ′ u) = ςs(H̃ ′ ũ). Let us
now choose local coordinates (y1, . . . , y2n+1) = (s, x1, . . . , x2n) on R↖ Ŵ . Then:

ς

ςs

(
H̃ ′ ũ

)
=

2n+1∑

k=1

ςH̃

ςyk

ςũk

ςs

=
ςH̃

ςy1
(ũ)

ςũ1

ςs
+

2n+1∑

k=2

ςH̃

ςyk

ςũk

ςs

=
ςH̃

ςs
(ũ)

ςs

ςs
+

2n∑

j=1

ςH̃

ςxj

ςuj

ςs

=
ςH̃

ςs
(ũ) + dHs

(ςu
ςs

)

=
ςHs

ςs
(u) + dHs

(ςu
ςs

)

Hence, dHs(
ςu

ςs
) = ςs(Hs ′ u)↑ (ςsHs)(u).
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Calculation C.9. Here, we compute the di!erential of the perturbed action functional (3.16),
for the purposes of the next calculation. Recall that:

AHs
(x) := f1

(
x(1)

)
↑ f0

(
x(0)

)
↑
∫ 1

0
xϖϑ+

∫ 1

0
Hs

(
x(t)

)
dt, (C.6)

where s #−! (Js, Hs) is a homotopy of Floer data.
The first three terms are the same as for the non-s-dependent action functional, and hence
their derivative is the same (Calculation C.3). The last term, however, picks up an s depen-
dency. Let us see how it a!ects dAHs

.
Recall from Chapter 3 that AHs

is defined on a space P of paths [0, 1] ! M , and hence,
dAHs

(x) : TxP ! R. Pick a vector 1 ⇔ TxP, and a path (xs) in P s.t (d/ds)xs = 1.

Then, dAHs
(1) =

d

ds
dAHs

(xs). In particular, the last term in (C.6) becomes:

d

ds

∫ 1

0
Hs(xs(t))dt =

∫ 1

0
ςs
(
Hs(x(t)

)
dt

=

∫ 1

0
dHs(1)dt+

∫ 1

0
(ςsHs)(x(t))dt (By Lemma C.8).

Combining this with Step 1 of calculation C.3 (where we compute the derivative of the first
three terms), we get:

dAHs
(x)1 = ϑ

(
1
)
(x(1))↑ ϑ

(
1
)
(x(0))↑

∫ 1

0
xϖ

L↽ϑ+

∫ 1

0
dHs

(
1(t)

)
dt+

∫ 1

0
(ςsHs)(x(t))dt.

In the same way as in Step 2 of Calculation C.3, one can identify the first four terms of this
expression with:

∫ 1

0
dϑ (ẋ(t)↑XHs

(x(t)), 1(t)) dt.

(All the calculations in Step 2. work the same when H depends on s). Therefore, we have:

dAHs
(x)1 =

∫ 1

0
dϑ (ẋ(t)↑XHs

(x(t)), 1(t)) dt+

∫ 1

0
(ςsHs)(x(t))dt. (C.7)

Calculation C.10. We here prove the a priori energy estimate for solutions of the Floer
equation with parameters (Proposition 3.53). From expression (C.7), we have:

∫ 1

0
dϑ (1, ẋ(t)↑XHs

(x(t)) dt = ↑dAHs
(x)1 +

∫ 1

0
(ςsHs)(x(t))dt, (C.8)

where (x : [0, 1] ! M) ⇔ P, and 1 ⇔ TxP is a tangent vector.

In particular, consider a Floer strip u : R↖ [0, 1] ! M (which is a solution of the perturbed
Floer equation, (3.17)). Then for every s ⇔ R, we have a path u(s, ·) ⇔ P. We consider the
tangent vector 1 = (ς/ςs)u. This gives us:

∫ 1

0
dϑ

(
ςu

ςs
,
ςu

ςt
↑XHs

(u)

)
dt = ↑dAHs

(u)
ςu

ςs
+

∫ 1

0
(ςsHs)(u)dt. (C.9)

Now, we can expand the left-hand side with:
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∫ 1

0
dϑ

(
ςu

ςs
,
ςu

ςt
↑XHs

(u)

)
dt =

∫ 1

0
ε

(
ςu

ςs
,
ςu

ςt
↑XHs

(u)

)
dt

=

∫ 1

0
ε

(
(
ςu

ςs
, Js,t

ςu

ςs

)
)dt

=

∫ 1

0
gs,t

(
ςu

ςs
,
ςu

ςs

)
dt

=

∫ 1

0

∣∣∣∣
ςu

ςs

∣∣∣∣
2

dt.

Notice that the energy E(u) is then the integral of this quantity with respect to s. So,
integrating both sides of (C.9), we get:

E(u) = ↑
∫ ↘

↔↘
dAHs

(u)
ςu

ςs
ds+

∫

R≃[0,1]
(ςsHs)(u)ds ↓ dt

= ↑
∫ ↘

↔↘

d

ds
AHs

(u) +

∫

R≃[0,1]
(ςsHs)(u)ds ↓ dt

= lim
s!↔↘

AHs
(u(s, t))↑ lim

s!+↘
AHs

(u(s, t)) +

∫

R≃[0,1]
(ςsHs)(u)ds ↓ dt

= AH0(x0)↑AH1(x1) +

∫

R≃[0,1]
(ςsHs)(u)ds ↓ dt,

which concludes the proof of the a priori energy estimate.

Calculation C.11. [Proof of Lemma 4.7] Let x be a chord of (J,H) with isolating neigh-
bourhood U , and (J̃ , H̃) be a perturbation of our Floer data, which has a chord x̃ in U . By
definition:






AH(x) = f1 (x(1))↑ f0 (x(0))↑
∫ 1

0
xϖϑ̂+

∫ 1

0
H (x(t)) dt

A
H̃
(x̃) = f1 (x̃(1))↑ f0 (x̃(0))↑

∫ 1

0
x̃ϖϑ̂+

∫ 1

0
H̃ (x̃(t)) dt

⇒Note: the functions fi are the same in both expressions. Indeed, recall that they are defined
(Assumption 3.15) so that ϑ̂!i

= dfi, and the Lagrangians are not a!ected by perturbations
of our Floer data (J,H), so these fi’s are the same in both expressions.
Hence, we have:

A
H̃
(x̃)↑AH(x) = (f1(x̃(1))↑ f0(x̃(0)))↑ (f1(x(1))↑ f0(x(0))) (C.10)

↑
∫ 1

0
x̃ϖϑ̂+

∫ 1

0
xϖϑ̂ (C.11)

+

∫ 1

0
H̃(x̃(t))dt↑

∫ 1

0
H(x(t))dt (C.12)

We have numbered these lines for we will bound each of them separately. Since x and x̃ are
both contained in U , we will restrict our attention to this neighbourhood. Let us proceed:

Step 1. Let us find an upper bound for the first line, (C.10). We can rewrite it as:

(f1(x̃(1))↑ f1(x(1)))↑ (f0(x̃(0))↑ f0(x(0))) . (C.13)

For i = 0, 1, the function fi is C1 and hence Lipschitz-continuous on U . Indeed, by the
mean-value inequality:
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∝p, q ⇔ U : |fi(p)↑ fi(q)| ℜ |f ↗
i
(↼i)| · ∈p↑ q∈ ,

for some ↼i in the segment [p, q] → #i. Since the closure U of U is compact, |f ↗
i
(↼i)| reaches a

maximum Mi ≃ 0, and therefore:

∈|fi(p)↑ fi(q)|∈ ℜ Mi ∈p↑ q∈ .

Hence, we can bound (C.13):
∣∣ (f1(x̃(1))↑ f1(x(1)))↑ (f0(x̃(0))↑ f0(x(0)))

∣∣ ℜ M1 ∈x̃(1)↑ x(1)∈+M0 ∈x̃(0)↑ x(0)∈
ℜ (M0 +M1) sup

t↑[0,1]
∈x̃(t)↑ x(t)∈

ℜ (M0 +M1) ∈x̃↑ x∈C0

Step 2. To bound the third line, (C.12), notice that:

∝t : |H̃(x̃(t))↑H(x(t))| ℜ sup
p,q↑U

|H̃(p)↑H(q)|.

The supremum is finite, since U ↖U is compact. The right-hand side can be simplified by the
triangle inequality:

|H̃(p)↑H(q)| = |H̃(p)↑H(p) +H(p)↑H(q)|
ℜ |H̃(p)↑H(p)|+ |H(p)↑H(q)|.

Now, from Lipschitz continuity, ∅B > 0 s.t |H(p)↑H(q)| ℜ B ∈p↑ q∈. As for the other term,
we have |H̃(p)↑H(p)| ℜ sup

p↑U
|H̃(p)↑H(p)| =: |H̃ ↑H|C0

Therefore:

∫ 1

0
H̃(x̃(t))dt↑

∫ 1

0
H(x(t))dt =

∫ 1

0


H̃(x̃(t))↑H(x(t))


dt

ℜ
∫ 1

0


B ∈x̃(t)↑ x(t)∈+ |H̃ ↑H|C0


dt

ℜ B ∈x↑ x̃∈C0 + |H̃ ↑H|C0 .

Step 3. Finally, for the second line, (C.11), we have:
∫ 1

0
xϖϑ̂↑

∫ 1

0
x̃ϖϑ̂ =

∫ 1

0


ϑ̂x(t)(ẋ(t))↑ ϑ̂x̃(t)( ˙̃x(t))


dt,

from Step 2 of Calculation C.4, and where ẋ(t) is the tangent vector:

ẋ(t) =




ẋ1(t)
...

ẋ2n(t)



 =
∑

i

ẋi(t)ςxi
⇔ Tx(t)U ,

where we assume U to be small enough that U → R2n, with coordinates {x1, . . . , x2n}.
Note that we can’t abbreviate the last integrand into ϑ̂(ẋ(t) ↑ ˙̃x(t))dt, since terms in the

integrand are the 1-form ϑ̂ evaluated on di!erent tangent spaces. However:

ϑ̂x(t)(ẋ(t))↑ ϑ̂x̃(t)( ˙̃x(t))


= ϑ̂x(t)(ẋ(t))↑ϑ̂x(t)( ˙̃x(t)) + ϑ̂x(t)( ˙̃x(t))↑ ϑ̂x̃(t)( ˙̃x(t))

=

ϑ̂x(t)(ẋ(t))↑ ϑ̂x(t)( ˙̃x(t))


+

ϑ̂x(t)( ˙̃x(t))↑ ϑ̂x̃(t)( ˙̃x(t))


.

We proceed term by term.
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• Since we assume U → R2n, ϑ̂x(t) can be viewed as a linear map R2n ! R. Hence, by a
Lipschitz continuity argument, we can find D > 0 such that:

∝t :
∣∣ϑ̂x(t)(ẋ(t))↑ ϑ̂x(t)( ˙̃x(t))

∣∣ ℜ D
ẋ↑ ˙̃x


C0 .

This gives us a bound on the first term.

• In coordinates on U , we can write ϑ̂ as:

ϑ̂p =
2n∑

i=1

ϑi(p)dxi,

where ϑi ⇔ C↘(U). Then, the second term can be rewritten as:

ϑ̂x(t)( ˙̃x(t))↑ ϑ̂x̃(t)( ˙̃x(t))


=

∑

i

(ϑi(x(t))↑ ϑi(x̃(t))) ˙̃xi(t). (C.14)

Since each individual ϑi is smooth, we can find Ci > 0 s.t:

∝t : |ϑi(x(t))↑ ϑi(x̃(t))| ℜ Ci ∈x↑ x̃∈C0

Then, taking the absolute value of (C.14), we get:

∣∣ϑ̂x(t)( ˙̃x(t))↑ ϑ̂x̃(t)( ˙̃x(t))
∣∣ =

∣∣∣∣
∑

i

(ϑi(x(t))↑ ϑi(x̃(t))) ˙̃xi(t)

∣∣∣∣

ℜ
∑

i

|ϑi(x(t))↑ ϑi(x̃(t))| | ˙̃xi(t)|

ℜ 2nmax
i

|ϑi (x(t))↑ ϑi (x̃(t)) || ˙̃xi(t)|

ℜ 2n

max

i

Ci


max

i

| ˙̃x(t)|

∈x↑ x̃∈C0 .

Now, maxi | ˙̃xi(t)| is known as the maximum, or infinity norm, denoted
 ˙̃x(t)


↘. Since

all norms on a finite-dimensional vector space are equivalent, there is some K > 0 such
that

 ˙̃x(t)

↘ ℜ K

 ˙̃x(t)
. Therefore, writing C := maxi Ci, and taking suprema, we

get:

|ϑ̂x(t)( ˙̃x(t)↑ ϑ̂x̃(t)( ˙̃x(t))| ℜ
(
2KnC

 ˙̃x

C0

)
∈x↑ x̃∈C0 . (C.15)

So we have found an upper bound. The only problem is that the multiplicative constant
in front of ∈x↑ x̃∈C0 depends on the perturbed chord x̃, which is undesirable. However,
this is easily fixed. Indeed, since


ẋ = XH = J↔H
˙̃x = X

H̃
= J̃↔H̃

,

Then for every ϱ > 0, we can choose (J,H) and (J̃ , H̃) close enough, in the C1 norm,
such that

ẋ↑ ˙̃x

C0 < ϱ. Note that this is the only place in the proof where we make

use of the "C1-close" assumption.

In particular, choose ϱ < ∈ẋ∈C0 , so that, by triangle inequality,
 ˙̃x


C0 < 2 ∈ẋ∈C0 . Then,

setting C̃ := 4KnC ∈ẋ∈C0 , (C.15) becomes:

|ϑ̂x(t)( ˙̃x(t)↑ ϑ̂x̃(t)( ˙̃x(t))| < C̃ ∈x↑ x̃∈C0 .

The constant C̃ no longer depends on the perturbed chord x̃, and is therefore universal
for any small perturbation of (J,H).
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• Combining these two substeps, we have:

∣∣∣∣
∫ 1

0
xϖϑ̂↑

∫ 1

0
x̃ϖϑ̂

∣∣∣∣ =
∣∣∣∣
∫ 1

0


ϑ̂x(t)(ẋ(t))↑ ϑ̂x̃(t)( ˙̃x(t))

 ∣∣∣∣

ℜ
∣∣

ϑ̂x(t)(ẋ(t))↑ ϑ̂x̃(t)( ˙̃x(t))

 ∣∣

< C̃ ∈x↑ x̃∈C0 +D
ẋ↑ ˙̃x


C0 .

Step 4. Combining the results from Steps 1, 2, and 3, we now get:∣∣A
H̃
(x̃)↑AH(x)

∣∣ < (M0 +M1 +B + C̃) ∈x↑ x̃∈C0 +D
ẋ↑ ˙̃x


C0 + |H̃ ↑H|C0 .

The C1-norm is defined as:

∈x↑ x̃∈C1 := sup
t↑[0,1]

∈x(t)↑ x̃(t)∈+ sup
t↑[0,1]

ẋ(t)↑ ˙̃x(t)


= ∈x↑ x̃∈C0 +
ẋ↑ ˙̃x


C0 .

Therefore, setting C := max{M0 +M1 +B + C̃,D}, we have:

|A
H̃
(x̃)↑AH(x)| < C ∈x↑ x̃∈C1 + |H̃ ↑H|C0

which is the desired inequality. All we have left to prove now is that this constant C doesn’t
depend on the choice of perturbation.

Step 5. Showing that C is universal.

We want to show that C does not depend on the choice of perturbation (Js, Hs), or of
perturbed chord x̃. We will show that this is the case for all the intermediary constants we
derived:

1. The constants M0,M1 from Step 1 can be set to: Mi := sup
φi↑U↖!i

|f ↗
i
(↼i)|. These only

depend on #i, fi, and U . So this works for any perturbation.

2. Similarly, the constant B from Step 2 can be taken to be:

B := sup
p↑U

|H ↗(p)|,

which only depends on H and U .

3. In Step 3, we derive two constants: C̃ and D. We have already made sure in Step 3
that C̃ did not depend on the perturbation.

Meanwhile, D is the Lipschitz-continuity constant for ϑ̂x(t), and hence only depends on ϑ̂ and
x.

≿ In conclusion, C = max{M0 + M1 + B + C̃,D} only depends on U , #i, fi, H and x.
In particular, it works for any perturbation of (J,H) whose chords stay in U . Hence, C is
universal.
Therefore, though we constructed C after choosing a specific perturbation, this choice will
work for any perturbation (J̃ , H̃), which is C1-close enough to (J,H).
This concludes the proof of the lemma.
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Calculation C.12 (Steps 1-4 of Proposition 5.10).

Step 1 (Computing X
Ĥ
). Recall that, on [1,+↘)↖ ςW :

H(r, b, t) =
m∑

i=0

(r ↑ 1)i

i!
Hi + Rm. (C.16)

First, note that we can rewrite Rm = (r ↑ 1)m+1 R, for a function R : [1,+↘) ↖ ςW ! R.
We rewrite it in this way, for later convenience.

Now, our goal is to compute X
Ĥ

= J↔ H. We will work in a frame ↼̂ ℑ {Rε, ςr} where ↼̂ is
a frame for the contact structure ↼ = kerφ, Rε is the Reeb vector field on ςW , and ςr is
the derivative of the coordinate on the collar. Recall from Chapter 3 that rςr is the Liouville
vector field, and that Jςr = Rε.
By definition, we have:

↔ H = (ςr H)ςr + (Rε · H)Rε +↔φ H, (C.17)

where ↔φ is the restriction of the gradient operator ↔ to ↼. We can easily compute the first
term using our expression (C.16) for H:

ςr H = ςr H0 +

(
m∑

i=1

(r ↑ 1)i↔1

(i↑ 1)!
Hi +

(r ↑ 1)i

i!
ςr Hi

)
+

(r ↑ 1)m

m!
R+

(r ↑ 1)m+1

(m+ 1)!
ςr R

(C.18)
=: F (r, b), (C.19)

where b is the coordinate on the boundary ςW . Now let us look at the second term in the
expression (C.17). By definition, Rε · H = d H(Rε), and:

d H = d H0 +

(
m∑

i=1

(r ↑ 1)i↔1

(i↑ 1)!
Hidr +

(r ↑ 1)i

i!
d Hi

)
+

(r ↑ 1)m

m!
Rdr +

(r ↑ 1)m+1

(m+ 1)!
d R.

Since dr(Rε) = 0, we have:

d H(Rε) = d H0(Rε) +
m∑

i=1

(r ↑ 1)i

i!
d Hi(Rε) +

(r ↑ 1)m+1

(m+ 1)!
d R(Rε). (C.20)

make Let us further show that the first term is 0. This will use the twist condition (see
!).
By definition, d H0 is the dual of the gradient ↔ H0 through the metric, and recall that
H0 := 2(r)H0 + (1↑ 2(r))C0, where C0 ≃ max

ωW

H0. Therefore:

↔ H0 = 2↗(r) (H0 ↑ C0) ςr + 2(r)↔H0.

Let us argue that ↔H0 = 0. By definition, we have H0 = H|ωW . Let ↼̂ := {ςi} be a frame
for ↼, so that {ςi,Rε} is a frame for TςW = ↼ ∞ ▽Rε̸. Then:

↔H0 =
2n↔2∑

i=1

ςiH0ςi + dH0(Rε)Rε

=
∑

i

(ςiH)|r=1ςi + dH(Rε)|r=1Rε.

Meanwhile:

(↔H)|ωW = (ςrH)|r=1ςr +
2n↔2∑

i=1

(ςiH)|r=1ςi + dH(Rε)Rε (C.21)

= H1ςr +↔H0.
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!By the twist condition, we have XH |ωW = J↔H = htRε, for some function ht > 0.
Therefore, we must have:

H1 ∀ ht,↔H0 ∀ 0 .

In particular, the first term in (C.20) is zero(3). Hence, we can write:

d H(Rε) = (r ↑ 1)

(
m∑

i=1

(r ↑ 1)i↔1

i!
d Hi(Rε) +

(r ↑ 1)m

(m+ 1)!
d R(Rε)

)
.

For convenience, let us define the function:

G =
m∑

i=1

(r ↑ 1)i↔1

i!
d Hi(Rε) +

(r ↑ 1)m

(m+ 1)!
d R(Rε), (C.22)

on Ŵ\int(W ). This allows us to write:
↔ H = Fςr + (r ↑ 1)GRε +↔φ H.

Finally, let us look at the last term of that expression. By definition:

↔φ H =
m∑

i=0

(r ↑ 1)i

i!
↔φ Hi +

(r ↑ 1)m+1

(m+ 1)!
↔φ R.

Indeed, note that we have ↔φr = 0, since the coordinate r is independent from the contact
structure, and we proved, a few lines above, that ↔ H0 F Rε, so that ↔φ H0 = 0. Therefore,
we have:

↔φ H = (r ↑ 1)

(
m∑

i=1

(r ↑ 1)i

i!
↔φ Hi +

(r ↑ 1)m

(m+ 1)!
R
)

Then, recall that we want to compute the Hamiltonian vector field X
Ĥ

= J↔ H. Let us set:

Xφ :=
m∑

i=1

(r ↑ 1)i

i!
J↔φ Hi +

(r ↑ 1)m

(m+ 1)!
J↔φ R, (C.23)

so that J↔φ H = (r ↑ 1)Xφ. Then, we have:

X
Ĥ

= J↔ H = J

Fςr + (r ↑ 1)GRε +↔φ H



= FRε ↑ (r ↑ 1)Gςr + (r ↑ 1)Xφ.

Where the expressions for F , G and Xφ are given respectively in (C.18), (C.22), and (C.23).
This concludes step 1.

Step 2 (Computing ↔X
Ĥ
).

Let us now linearise the vector field X
Ĥ

. This first requires a choice of connection. Define
the metric(4):

7 = dφ(·, J ·) + dr B dr + φB φ

on T (Ŵ\int(W )), and choose the associated Levi-Civita connection ↔. We can easily show
(see Calculation C.14), that it has the following properties:

1. ↔ςr = 0;
(3)Essentially, we proved that H0 = H|εW ⇒ cst. This reproves the statement that a regular energy

hypersurface of a Hamiltonian is contact i! the Hamiltonian and Reeb vector field are reparametrizations of
each other (see, for e.g. [Wen15]).

(4)Note that in the original proof, in Lemma 4.5 of [MK22a], the authors have a factor of 1
r2

in front of the
dr ↔ dr coe"cient; because they choose to work with the Liouville vector field r↼r in their frame for TŴ ;
while we pick ↼r. (Of course, the computations are purely equivalent, but note that some factors may di!er
from our computation to theirs).
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2. ↔Rϑ
Rε = 0 and ↔ωr

Rε = 0;

3. ∝Z ⇔ ↼ : ↔ZRε ⇔ ↼;

4. ∝Z ⇔ ↼ : ↔ωr
Z = 0;

5. by assumption, (↼, dφ) is symplectically trivial. Let {ei}i↙2n↔2 be a trivialising frame.
Then, ↔Rϑ

ei = 0.

With the above properties, we can proceed with the computation of ↔X
Ĥ

. Recall that this
notation denotes the total covariant derivative of X

Ĥ
, ie the 1-form such that for a vector

field Z, (↔X
Ĥ
)(Z) = ↔ZXĤ

. Hence, to compute it, pick some Z ⇔ T (Ŵ\int(W )):

↔ZXĤ
= ↔Z

(
FRε ↑ (r ↑ 1)Gςr + (r ↑ 1)Xφ

)

= dF (Z)Rε + F↔ZRε ↑ dr(Z)Gςr ↑ (r ↑ 1)dG(Z)ςr ↑ (r ↑ 1)G↔Zςr

+ dr(Z)Xφ + (r ↑ 1)↔ZX
φ

= dF (Z)Rε + F↔ZRε + dr(Z)
(
Xφ ↑Gςr

)
+ (r ↑ 1)

(
↔ZX

φ ↑ dG(Z)ςr
)

Hence, we have:
↔X

Ĥ
= dF BRε + F↔Rε + dr B (Xφ ↑Gςr) + (r ↑ 1)

(
↔Xφ ↑ dGB ςr

)
, (C.24)

which concludes Step 2.

Step 3 (Decomposing ↔X
Ĥ
).

Let us see what can still be simplified in the expression (C.24). First, expand:

↔Xφ = dr B↔ωr
Xφ + φB↔Rϑ

Xφ +↔φXφ.

Observe that the first term is zero, by property 4 of Step 2.

The term dG in (C.24) can also be expanded: dG = dG(ςr)dr+Rε(G)φ+ dφG, where dφ is
the exterior derivative on ↼. Therefore, we can now write:

↔X
Ĥ

= dF BRε + F↔Rε + dr B (Xφ ↑Gςr)

+ (r ↑ 1)
(
φB↔Rϑ

Xφ +↔φXφ ↑
(
dG(ςr)dr +Rε(G)φ+ dφG

)
B ςr

)

= L0 + (r ↑ 1)L1,

where we have set:

L0 :=dF BRε + F↔Rε + dr B (Xφ ↑Gςr)↑ (r ↑ 1)dG(ςr)dr B ςr (C.25)

L1 :=φB↔Rϑ
Xφ +↔φXφ ↑Rε(G)φB ςr ↑ dφGB ςr. (C.26)

Let us express L0 and L1 in matrix form, in the frame ↼̂ ∞ {ςr,Rε} of T (Ŵ\int(W )). Write
this frame {e1, . . . , e2n}. Then, both matrices will look like:

Li =





, ,
, ,

, , a b
, , c d

L↼
i



,

where the top-left block is Li|φ · ↼̂, and is hence (2n ↑ 2) ↖ (2n ↑ 2); the bottom-right block
is Li|∝ωr,Rϑ⇔ · {ςr,Rε}, and is 2↖ 2. Meanwhile, the o!-diagonal blocks are (2n↑ 2)↖ 2 and
2↖ (2n↑ 2), and respectively correspond to Li|∝ωr,Rϑ⇔ · ↼̂ and Li|φ · {ςr,Rε}.

✃ Let us first look at L0.
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• First, to determine the two left blocks, we look at L0|φ. The last two terms of L0 are
zero, since dr|φ = 0. Hence:

L0|φ = dF |φ BRε + F↔φRε.

(Note that by the properties of ↔ from Step 2, ↔Rε = ↔φRε).

Hence, the top-left block is given by F↔φRε, and the bottom-left block by
(
0 0

dF |ε

)
.

• Meawnhile, L0|∝ωr,Rϑ⇔ = dF |∝ωr,Rϑ⇔ BRε + dr B (Xφ ↑Gςr)↑ (r ↑ 1)dG(ςr)dr B ςr.

Hence, the top-right block is given by:

L0|∝ωr,Rϑ⇔ · ↼̂ = dr BXφ =

(
0
0

Xφ

)
,

and the bottom-right block by:

L0|∝ωr,Rϑ⇔ · {ςr,Rε} =

(
↑G↑ (r ↑ 1)dG(ςr) 0

dF (ςr) dF (Rε)

)
=:

(
a 0
b c

)
.

Finally, this gives us:

L0 =





0
0

0 0 a 0

b c

F⇑εRϑ Xφ

dF |ε



.

✃ Let us now look at L1.

• first, L1|φ = ↔φXφ ↑ dφG B ςr, so that the top-left block is given by ↔φXφ, and the
bottom-left block by:

(

0 0
↑dφG

)
.

• L1|∝ωr,Rϑ⇔ = φB↔Rϑ
Xφ ↑Rε(G)φB ςr. Applied to ςr, it gives 0, which tells us that

the column before last is zero; moreover, we see that the top-right block is given by:

L1|∝ωr,Rϑ⇔ · {ςr,Rε} = φ↔Rϑ
Xφ|φ =

(
0
0

⇑Rϑ
X

ε|ε

)
.

Furthermore, notice that ▽↔Rϑ
Xφ,Rε̸ = 0. Indeed, with our choice of metric, Rε is

orthogonal to ↼, so that:

0 = ↔Rϑ
▽Xφ,Rε̸ = ▽↔Rϑ

Xφ,Rε̸+ ▽Xφ,↔Rϑ
Rε̸ .

Hence the only non-zero coe"cient in the bottom-right block is ▽↔Rϑ
Xφ, ςr̸ =: a↗.

This finally gives us L1 =





0
0

0 a↗

0 0 0 0

↔φXφ ⇑Rϑ
X

ε|ε

↑dεG



.

≿ In conclusion, we have:
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↔X
Ĥ

= L0 + (r ↑ 1)L1

=





0
0

0 0 a 0

b c

F⇑εRϑ Xφ

dF |ε



+ (r ↑ 1)





0
0

0 a↗

0 0 0 0

↔φXφ ⇑Rϑ
X

ε|ε

↑dεG



.

Step 4 (Proof that L0, L1 ⇔ sp2n).
Recall that we want to use Lemma 5.13, for which we need to show that L0, L1 ⇔ sp2n. This
requires showing that JL0 and JL1 are symmetric. We start with JL1.
A. i) First, note that since J = i∞ . . . i = J |φ ∞ i, the top-left block of L1 simply gets taken
to J |φ↔φXφ. So it su"ces to show that this is symmetric.
This follows from the fact that Xφ is made-up of Hamiltonian vector fields on ↼. Indeed,
recall that:

Xφ =
m∑

i=1

(r ↑ 1)i

i!
J↔φ Hi +

(r ↑ 1)m

(m+ 1)!
J↔φ R

=
m∑

i=1

(r ↑ 1)i

i!
JXφ

Ĥi

+
(r ↑ 1)m

(m+ 1)!
Xφ

R̂
.

Since ↔φr = 0, it su"ces to show that for a Hamiltonian H̃, the matrix J |φ↔φXφ

H̃
is sym-

metric. This is a straightforward computation. Indeed, first compute:

↔φXφ

H̃
= ↔φJ |φ↔φH̃

= J |φ↔φ


↔φH̃


(since J↔ = ↔J on a Kähler manifold)

= J |φ





. . .

. . .

. . .

. . .

↔1↔φH̃ ↔2n↔2↔φH̃



 = J |φ





↔1ς1H̃ ↔2ς1H̃ . . .
↔1ς2H̃ ↔2ς2H̃ . . .

...
...

...

↔1ς2n↔2H̃ ↔2ς2n↔2H̃
. . .




.

We want to show that J↔φXφ

H̃
= (J↔φXφ

H̃
)t, which is equivalent to showing that the ma-

trix

↔iςjH̃



ij

is symmetric. Note that, since ςjH̃ is a function, ↔iςjH̃ = ςiςjH̃. This

expression is symmetric in (i, j) since we assume H̃ to be at least C2.

≿ So the top-left block of L1 belongs to sp2n↔2.

A. ii) The bottom-right block clearly belongs to sp2, since it is of the form
(
0 a↗

0 0

)
, which

gives
(
0 0
0 a↗

)
when multiplied on the left by J .

A. iii) Finally, let us look at the o!-diagonal blocks. Recall that L1 =





0
0

0 a↗

0 0 0 0

↔φXφ ⇑Rϑ
X

ε|ε

↑dεG



.

For simplicity, let us write ↔Rϑ
Xφ|φ =:

(
U

↑

V ↑

)
, and ↑dφG = (W ↗ Z ↗), where U and V are

(n↑ 1)-column vectors, and W and Z are (n↑ 1)-row vectors. Then:



Appendix C. Computational appendix 170

JL1 = J





0 U ↗

0 V ↗

W ↗ Z ↗

0 0



 =





0
0

0 0
W ↗ Z ↗

J

(
U ↗

V ↗

)

,

so that (JL1)t =





0 (W ↗)t

0 (Z ↗)t

0 0
↔J

(
U

↑
V ↑

)



.

Hence, for JL1 to be symmetric, we require that J
(
U

↑

V ↑

)
= (W ↗ Z ↗)t. Or, in other words,

J↔Rϑ
Xφ|φ = (↑dφG)t.

Since the matrix transpose corresponds to taking the dual under the metric, we want:
▽J↔Rϑ

Xφ|φ, ·̸ = ↑dφG,

where ▽·, ·̸ = dφ(·, J ·) on ↼. Recall that:

Xφ :=
m∑

i=1

(r ↑ 1)i↔1

i!
Xφ

Ĥi

+
(r ↑ 1)m

(m+ 1)!
Xφ

R̂
,

G :=
m∑

i=1

(r ↑ 1)i↔1

i!
d Hi(Rε) +

(r ↑ 1)m

(m+ 1)!
d R(Rε).

⇒Remark C.13. !The following argument implicitly relies on the twist condition, because
the latter implies why G looks like this (it has no term in d H0).

Since ↔Rϑ
r = dφr = 0, we can treat the terms in r as linear. Therefore, without loss of

generality, it su"ces to show that:
▽J↔Rϑ

Xφ

H̃
|φ, ·̸ = ↑dφG̃, (C.27)

where H̃ is any C2 Hamiltonian with vector field Xφ

H̃
on ↼; and where G̃ := dH̃(Rε).

Then, recall that since (Ŵ , ε̂, J) is Kähler, we have J↔ = ↔J , and hence:

J↔Rϑ
Xφ

H̃
= ↑↔Rϑ

↔φH̃

= ↑↔Rϑ

(
2n↔2∑

i=1

ςiH̃ςi

)

= ↑
2n↔2∑

i=1

ςεςiH̃ςi ↑
2n↔2∑

i=1

ςiH̃↔Rϑ
ςi,

where ςi = ei is our frame for ↼; and we write ςε := Rε. The second sum in the last line is
zero by property 5 from Step 2 (note that this property uses our assumption that (↼, dφ) is
symplectically trivial).

Meanwhile, ↑ dφG̃ = ↑
2n↔2∑

i=1

ςiG̃ςi

= ↑
2n↔2∑

i=1

ςi(dH̃(Rε))ςi

= ↑
2n↔2∑

i=1

ςiςεH̃ςi = ↑
2n↔2∑

i=1

ςεςiH̃ςi.

by using the fact that H̃ is C2 in the last line, in order to commute the partial derivatives.
This verifies that J↔Rϑ

Xφ and ↑dφG are dual under the metric ▽·, ·̸, which is what we
wanted to prove.
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≿ This concludes the proof that JL1 is symmetric, and thus that L1 ⇔ sp2n.

B. The proof that L0 ⇔ sp2n is then quite straightforward. Indeed, L0 = ↔X
Ĥ
↑ (r ↑ 1)L1,

and we have already argued in A. i) above that matrices of the form ↔X
Ĥ

belonged to sp2n.
Since the latter is a vector space, we automatically have L0 ⇔ sp2n.
We can still make one more observation. Recall that L0 has the form:

L0 =





0
0

0 0 a 0

b c

F⇑εRϑ Xφ

dF |ε



.

First, for the same reason as above, we observe that the top-left block belongs to sp2n↔2.
Moreover, since we now know that JL0 is symmetric, we can write it in simplified form:

L0 =





0
0

0 0 a 0
U t V t b ↑a

F⇑εRϑ J

(
U

V

) 

.

Step 5 (Conclusion of the proof).
The conclusion is given in the proof of Proposition 5.10, in §5.2.2.

Calculation C.14. We prove the properties of ↔, from Step 2 of Calculation C.12. Recall
that we use a metric 7 with 7|φ = dφ(·, J ·), and 7rr = 1 and 7εε = 1. In Einstein notation,
the Christo!el symbols are given by:

”k

ij
=

1

2
7ka (ςi7ja + ςj7ia ↑ ςa7ij) .

Recall that, since ↔ is the Levi-Civita connection associated to 7, we by definition have
↔ei

ej = ”k

ij
ek, where

{e1, . . . , e2n} = {ς1, . . . , ς2n↔2, ςr,Rε}

is a frame for T (Ŵ\int(W )) (with {ςi} a frame for ↼).

1. We want to show that ↔ςr = 0. In other words, we want to show that ”k

ir
= 0 for all

indices r, k. We have:

”k

ir
=

1

2
”k

ij
=

1

2
7ka (ςi7ra + ςr7ia ↑ ςa7ir)

=
1

2
7kk (ςi7rk + ςr7ik ↑ ςk7ir) .

If k = r, then this is 0 for all i, since 7rr = 1. If k = φ, then it is also 0, since 7εε does
not depend on r, and 7rr does not depend on φ. Finally, if k ℜ 2n ↑ 2, then ”k

ij
= 0,

since 7|φ does not depend on r, and 7rr does not depend on ↼. So ↔ςr = 0.

2. Similarly, let us look at ”k

εε
= 1

2g
kk (2ςε7εk ↑ ςk7φφ). Since 7εε = 1, this is always

zero, ensuring that ↔RεRε = 0. We have:

”k

rε
=

1

2
7kk (ςr7εk + ςε7rk ↑ ςk7rε) .

which is always zero since 7rr = 7εε = 1. So ↔ωr
Rε.

3. We want to show that if Z is a vector in ↼, then ↔ZRε ⇔ ↼. In other words, we want
to show that if i ℜ 2n ↑ 2, and k > 2n ↑ 2, then ”k

iε
= 0 (indeed, recall that {ei} for

i ℜ 2n↑ 2 is a frame for ↼).
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First, observe that

”r

iε
=

1

2
7rr (ςi7εr + ςε7ir ↑ ςr7iε) = 0,

and then:

”ε

iε
=

1

2
7εε (ςi7εε + ςε7εi ↑ ςε7εi) = 0,

since 7εε = 1; which proves the statement.

4. Finally, we want to show that ↔ωr
Z = 0 for every Z ⇔ ↼. This would require us showing

that ”k

ri
= 0 for every k (and fixing i ℜ 2n ↑ 2). However, we have already shown, in

step 1, that ”k

ir
= 0 for every i and k. Since the Levi-Civita connection is symmetric,

we are done.

5. Finally, we want to show that ↔Rϑ
ei is 0, where {ei} is a trivialising frame for (↼, dφ).

Recall that this implies that the metric 7 := dφ(·, J ·) is the standard metric 7 = eiBei,
where ei is the dual of ei. Then:

”k

εi
=

1

2
7kk (ςε7ik + ςi7εk ↑ ςk7εi) .

If k = φ, then this is 1
27

εεςi7εε = 0, and if k = i, then this is 1
27

iiςε7ii = 0, by
assumption.
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