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Zusammenfassung

Maossbauerspektroskopie ist in den Naturwissenschaften fest etabliert. Die aufiergewdhnlich schmalen
Linienbreiten von Mossbauerkernen machen sie zudem zu einer vielversprechenden Plattform fiir
Quantenoptik im Rontgenbereich. Mehrere grundlegende quantenoptische Phénomene, darunter elek-
tromagnetisch induzierte Transparenz und Superradianz, konnten bereits nachgewiesen werden. Uber
Jahrzehnte hinweg beschrénkte jedoch genau diese schmale Linienbreite die Experimente an Syn-
chrotronen auf das Niedriganregungsregime, mit im Mittel weniger als einem resonanten Photon pro
Puls. Diese Einschrankung dnderte sich mit dem Aufkommen von Roéntgen-Freie-Elektronen-Lasern
(XFELs), die um Gréfenordnungen mehr Photonen liefern als Synchrotronen. Dadurch treten Pulse
mit mehreren resonanten Photonen regelméfig auf, was zuvor unmdogliche Experimente erlaubt. In
dieser Arbeit présentieren wir mehrere erstmalig durchgefiihrte XFEL-Experimente innerhalb unserer
Kollaborationen. Wir demonstrieren die Réntgenanregung der *°Sc-Kernuhr-Ubergangsfrequenz, en-
twickeln und wenden eine Analyse auf Einzelschussbasis fiir Mossbauerdaten im Zeitraum an und
untersuchen unerwartete Messergebnisse in der resonanten Kernstreuung mit XFELs. Zusétzlich
simulieren wir die Abregungsdynamik eines Kernensembles. Neben der Etablierung eines geeigneten
Simulationsverfahrens konzentrieren wir uns auf nichtlineare Effekte, die aus Dipol-Dipol-Kopplungen
sowie aus nichtlinearen Modifikationen von Propagationseffekten resultieren. Insgesamt zeigen diese
Ergebnisse, wie die beispiellose Intensitit von XFELs eine neue Ara der Mossbauerforschung eréffnet
und sowohl Experimente als auch Theorie entscheidend voranbringt.

Abstract

Mossbauer spectroscopy is well established across the natural sciences. The exceptionally narrow
linewidths of Mdssbauer nuclei also make them a promising platform for x-ray quantum optics. Several
fundamental quantum-optical phenomena, including electromagnetically induced transparency and
superradiance, have already been demonstrated. Yet for decades, the same narrow linewidth restricted
experiments at synchrotrons to the low-excitation regime, with on average less than one resonant
photon per pulse. This limitation changed with the advent of X-ray free-electron lasers (XFELs),
which deliver orders of magnitude more photons than synchrotrons. As a result, pulses containing
multiple resonant photons occur frequently, enabling experiments previously not possible. In this
thesis, we present several first-of-their-kind XFEL-experiments conducted within our collaborations.
We demonstrate the x-ray excitation of the 4°Sc nuclear clock transition, introduce and apply a
single-shot analysis to Mossbauer time-domain data, and investigate unexpected signals observed in
nuclear resonant scattering with XFELs. Additionally, we simulate the de-excitation dynamics of a
nuclear ensemble. Besides establishing a suitable simulation scheme, we focus on non-linear effects
arising from dipole-dipole couplings and non-linear modifications of propagation effects. Together,
these results show how the unprecedented intensities of XFELSs open a new era for Mdssbauer science,
advancing both experiment and theory.
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Chapter 1

Introduction

“Scientific revolutions are more often driven by new tools than by new concepts.”
— Freeman Dyson

1.1 Motivation

The study of quantum dynamics has not only been in the center of scientific interest as we will see
in this chapter, but has also brought significant technological progress. The prime example of this
is the laser, which is not only one of the most important tools in science, but also has numerous
technological applications, e.g., metrology, laser cutting and welding or eye surgery. In the sense
of Freeman Dyson’s quote, the improvement of laser technology has significantly driven the field of
quantum dynamics.

But let us start at the early times of the study of light-matter interactions with relation to quantum
dynamics. Already in the early 1800s, William Hyde Wollaston and Joseph von Fraunhofer indepen-
dently discovered that there are dark lines in the emission spectrum of the sun [Fral7; Wol02]. Only
in 1859, Gustav Kirchhoff and Robert Bunsen attributed the dark lines to the presence of certain
elements in the outer part of the sun [KB60]. This pioneering work laid the foundation for modern
spectroscopy. The new technique lead to the discovery of new elements based on their spectral lines,
e.g., rubidium and cesium by Kirchhoff and Bunsen themselves [KB61], red-shifted stars [Hug68], but
also to systematic measurements of series in an atomic spectrum, such as the Balmer-series [Bal85]
and its generalization by Johannes Rydberg [Ryd90]. In the next decades, the relation of those mea-
sured spectral series with theoretically calculated atomic transition lines by Niels Bohr [Boh13] was
one of the important steps that laid the foundations of quantum mechanics. Further important steps
included the black body-radiation spectrum by Max Planck [Pla01] or the photo-electric effect by
Albert Einstein [Ein05]. The new theory of quantum mechanics revolutionized the interpretation of
light-matter interactions. Atoms were now described by discrete levels and light was known to con-
sist of photons. A first full quantum framework for light-matter interactions was formulated by Paul
Dirac [Dir27]. In the mean-time, the experimental techniques also improved significantly and allowed
precise spectroscopic measurements, e.g., Raman scattering of light [LM28; RK28], i.e., the inelastic
scattering of photons, or the Lamb shift [LR47] due to virtual photons [Bet47]. On the theoretical side,
the Breit-Wigner Theory [BW36] describing resonant scattering and absorption, and the formulation
of quantum electrodynamics [Dys49; Fey49; Sch48; Tom46] were important developments.

Building on the improved understanding of light-matter interactions, the next big breakthrough was
the development of the maser [GZT55| and the subsequent realization of the laser [Mai60; ST58]. As
already mentioned, lasers are nowadays found in nearly every atomic physics laboratory, but also have
various industrial applications. Now, a controllable, coherent and monochromatic light source was
available. Because of this technological advent, in the following a tremendous amount of important
work was performed including the demonstration of second-harmonic generation [Fra-+61], optical
double-photon absorption [Abe62; Go6p3l] and early theoretical proposals of laser cooling [HS75].
Further technological improvement of the light sources followed in the next decades in the form of
Q-switching [MH62], mode-locking [DiD64; HFP64; Yar65] and chirped pulse amplification [SM85],
which allowed to produce stronger and with high-harmonic generation [Bur+77; Lew+94] also shorter
pulses up to attosecond pulse durations [Pau+01]. Furthermore, frequency combs [UHH02| improved
the spetral precision and quantum states of light, e.g., squeezed-light [Cav81; Slu+85] were produced.
Those technological processes led to the ultimate breakthroughs in the field of quantum optics. To
only name a few of them, attosecond pulses allow to study the electron dynamics in atoms [Kie+04]
or molecules [Cal+14]. Besides, based on the improved laser control and smaller bandwidth, several
laser cooling [HS75; PM82; WD75] and trapping schemes [Ash78; Raa+87] have been realized, and
subsequently the first Bose-Einstein condensate [Dav+95; Pau+01] and atom interferometry [CM91;
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PCC99] were demonstrated. The improved control of the lasers further enabled electromagnetically
induced transparency [BIH91; KK86] and related effects [FIMO05; LI01], stimulated Raman adiabatic
passage [BT'S98], and coherent control schemes [SB00]. Nowadays, the laser control and thus the
control of the light-matter interactions is so good to fulfill the exceptionally high requirements for
analogue quantum simulation [Bar+04; Feyl8; Gre+02] or quantum gates [Mon+95]. The utmost
frequency precision provided by frequency combs enable the operation of optical clocks [Blo+14] and
is the basis for high precision experiments, e.g., gravitational redshift [Bot-+22], gravitational wave
detection [Abb+16] or variation of fundamental constants [Ros+08].

We have seen that the progress in the field of light-matter interactions is closely related to the
progress of available light sources. So far we mainly concentrated on the optical regime, but lasers
are nowadays available over a huge range of the electromagnetic spectrum [Tr#l2]. A similar story has
been unfolding in the x-ray regime. After the discovery of x-rays by Wilhelm Réntgen in 1895 [R6n96],
x-rays quickly entered the general public mainly with medical applications [TB13], but also with
bizarre applications such as fitting of shoes [DH00]. Important steps on the scientific side were x-ray
spectroscopy pioneered by Charles Barkla [Bar05; Barll; BS09], Henry Moseley [Mos13| and Manne
Siegbahn [Sie31], diffraction of x-rays by Max von Laue [FKL13] demonstrating that x-rays are in-
deed electromagnetic waves, x-ray crystallography to reconstruct crystal structures by William Henry
Bragg and William Lawrence Bragg [BB13], and the measurement of the Compton effect [Com23|
demonstrating that photons have momentum. Especially the structure determination by x-ray diffrac-
tion was extremely successful, e.g., providing the structure of DNA [FG53; WC53], penicillin [Cro+49],
and insulin [Blu+71].

Despite the already demonstrated success of x-ray science based on x-ray tubes, the particular field
of x-ray quantum optics has been limited in its possibilities due to the lack of coherent and bright
light sources [Ada+13]. This only changed with the advent of synchrotron radiation sources in the
1960s and 1970s. That electrons in a storage ring loose energy due to synchrotron radiation was
predicted in 1944 [IP44] and measured at the General Electric’s synchrotron in 1947 [Ble46]. The
first storage dedicated to producing synchrotron radiation started operation in the late 1960s [RM73].
With synchrotron radiation sources it was now possible to study quantum optical phenomena also
in the x-ray regime [Ada-+13]. X-rays can excite electronic transitions, but also nuclear transitions.
Thus x-ray quantum optics can be divided into two subfield, x-ray quantum optics with atomic
resonances and nuclear quantum optics. While the electronic transitions are typically spectrally broad
and short-lived, nuclear transitions can be spectrally narrow and long-lived [RE21]. Among other
schemes, with atomic resonances the Hanbury-Brown-Twiss effects [Kun+97], x-ray parametric down
conversion [Shw+12], x-ray induced transparency [You+ 10|, four-wave mixing [Glo+12], stimulated
emission [Roh+12| and quantum imaging [Sch+17; Tro+23| have been demonstrated.

In the nuclear counter part, especially Mossbauer nuclei have been established as a valuable plat-
form [RE21]. In 1958 Rudolf Méssbauer discovered the recoilless absorption and emission of x-rays by
nuclei [M6s58], which is now called the Méssbauer effect and leads to narrow observed linewidths of
the transitions in Mossbauer nuclei. For example, the well-established Mossbauer isotope ®"Fe has a
transition energy of 14.4keV and a linewidth of 4.7 neV [R6h04], and can be excited by the radioactive
decay of °"Co [YL13|. The narrow linewidths allow for high-precision spectroscopy, e.g., measuring
material properties such as hyperfine splitting, quadrupole splitting and isomer shift [KS60] and fol-
lowing chemical reactions [Kre+05], but also more bizarre applications like the investigation of the
movement of ants [Bon+68| or basiliar membranes [JB67]. The utmost frequency precision enabled
the first terrestrial measurement of the gravitational redshift by measuring the frequency shift caused
by a height difference in a 22.5m high tower [PR59; PR60] and the measurement of a second order
Doppler effect for accelerated systems as predicted by special relativity [CSW60; Hay+60; Kiin63].
Mossbauer spectrometers further play important roles in art [Kei74], archaeology [WK04] and are sent
on space missions, e.g., to prove the former existence of water on Mars [Kli+03; Kli404]. So far all
the named applications are based on radioactive sources, where the nuclei are excited via radioactive
decay from a parent isotope.

A more efficient and controlled way to excite Mossbauer nuclei is with synchrotron radiation. This
can considerably speed up the measurement due to the order of magnitude higher photon flux and
brightness as compared to radioactive sources and easily allow for measurements in the time do-
main [Rub74]. Furthermore, synchrotrons can provide temporal and partial spatial coherence over
the nuclear linewidth, such that a first coherent response could be detected in 1985 by Gerdau et
al. [Ger+85] leading to the first detection of nuclear forward scattering with synchrotron radiation in
1991 by Hastings et al. [Has+91], which paved the way for many applications nowadays. The high
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Figure 1.1: Artistic view on new possibilities in Mdssbauer science with X-ray free-electron lasers (XFEL).
Experiments at XFELs complement the traditional experiments with synchrotron radiation in two different
ways — higher peak and higher average photon flux. The higher average flux allows to study isotopes with even
smaller bandwidth than at synchrotrons. On the other hand, the higher peak flux implies a higher number of
resonant photons and enables new measurement modi, such as in the direction of single shot spectroscopy. In
addition, the extremely intense pulses might alter the environment of the nuclei, which could be probed with
the nuclei. Third, the higher peak flux allows to study new observables, e.g., photon correlations, because in
a large number of pulses more than one resonant photon can be detected.

photon flux allows faster recordings of spectra in the time domain from which material parameters can
be extracted similar to in standard Mdssbauer spectroscopy with radioactive sources [GBT11; Roh04;
Stu04]. Furthermore, nuclear resonant inelastic x-ray scattering, with which for example phonon en-
ergy spectra can be measured, has been established with synchrotron radiation [Set+95; Stu04]. With
synchrotron radiation also several quantum optical schemes have been successfully demonstrated in
the x-ray regime. Among others there is demonstration of storage of excitation [KP16; Shv-+96],
electromagnetically induced transparency [Roh+12], collective Lamb shift and superradiance [HE13;
Ro6h+10], slow light [Hee+15b], phase control [Hel+91] and related effects [Hee+17|, coherent con-
trol [Boc+21; Hee+21; Vag+14], timed Dicke states [Hab+17; Scu+06], a quantum memory [LPK12;
Vel+24; Zha+19], and phonon-driven control [Naz+25]. Besides a few exceptions, all the named
experiments were performed at synchrotrons.

Although the availability of synchrotron radiation sources boosted the field of nuclear quantum
optics significantly, for Méssbauer nuclei due to their small linewidth the number of resonant photons
per pulse on average is still well below one. However, it was proposed that X-ray free-electron lasers
(XFELs) can overcome this difficulty and open a new era for Mdssbauer science [RE21; SR08]. With
FLASH [Ack+07] the first XFEL started its user operation in 2005, shortly followed by LCLS in 2009,
which was the first XFEL providing hard x-rays. Currently, with LCLS [Emm+10], SACLA [Ish+12],
PAL-XFEL [Kan+17] and the European XFEL [Dec+20] four XFELs operate at high enough photon
energies for typical Mossbauer isotopes. Experiments with those machines now indeed provide pulses
with significantly more than one resonant photon per pulse as it was demonstrated in a first experiment
by Chumakov et al. in 2018 [Chu+18|. In recent years, self-seeding enabled a further increase in the
resonant x-ray flux [Ama+12; Ino+19; Liu+23; Nam+21|. The increase of the resonant photon
flux at XFELs as compared to synchrotron radiation sources is not only a quantitative advantage,
but especially having more than one resonant photon in a considerable amount of pulses is also an
important qualitative improvement. In Fig. 1.1, an artistic view on new experimental possibilities
for Méssbauer science with XFELs is given. It is divided into two categories, the higher average flux
leading to an increased number of resonant photons per second, and the higher peak flux resulting in
an increased number of resonant photons per pulse. Both improvements together bring advancement
in several different aspects — the possibility to study new isotopes, new experimental methods such
as single-shot measurements, new environments created by the strong XFEL radiation and new
observables with more than one photon or higher excitations. In the following paragraphs, we discuss
those aspects in detail.

The higher average flux in general increases the amount of signal photons recorded in the de-
excitation process and thus allows to study even more narrower transitions, for which only a tiny
fraction of the incident light is resonant. Such extremely narrow nuclear transitions do not only pro-
vide improved resolution for spectroscopy, but are comparable with optical clock transitions [PO15].
Precisely measurable clock transitions are the basis of the current definition of a second based on an
atomic transition in cesium [Burl9] and future improvement thereof based on optical clocks [Dim+24],
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fundamental tests such as gravitational red-shift being now measurable on an 1 mm scale [Bot+22],
tests on the variation of fundamental constants [Saf-+18] as well as every day applications, such as
GPS [Ash03]. So far all those applications rely on atomic clock transitions. In [PO15] it has been
pointed out that nuclear clock transitions are promising because of the smaller systematic frequency
shifts due to shielding by the electronic shell, possible operation in solid state and thus large ensem-
bles of emitters and because of the higher transition frequencies. Furthermore, nuclear transitions are
more sensitive for certain tests, e.g., coupling to ultralight dark matter [Fuc+25] or temporal fluctua-
tions from gravitational waves [BC25]. There are two main candidates for a nuclear clock, a thorium
isotope (?2Th) and a scandium isotope (*°Sc). The first one has an extraordinary low lying excited
state of only 8.4eV [Zha-+24] making it accessible with XUV frequency combs. A low-lying state was
already predicted in 1976 [KR76|, but it took several iterations of the transition energy [Bec+07;
HR94; Sik+20] and 40 years until the transition energy could be directly measured after excitation
via a radioactive parent isotope [Wen-+16]. Only last year, the first direct laser-excitation was re-
ported [Elw+24; Tie+24]. Nonetheless, already shortly after the first laser excitation, the nuclear
transition was compared to the well-established 87Sr optical clock transition [Zha+24], thus providing
the resonance transitions on a 107!3 level. Furthermore, the frequency comparison with a different
clock formed an important step on the way to a nuclear clock. The transition energy of the other
mentioned isotope, %°Sc, was indirectly measured to be 14.4keV [HLN64], which is in the hard x-ray
regime. As there exists no radioactive parent isotope, which by decay would populate the excited
state, and synchrotrons also did not provide sufficient photon flux to successfully search for the exact
transition energy, it was an open challenge to directly excite *°Sc for more than 30 years [SS90]. How-
ever, XFELs provide several orders of magnitude more photon flux and can overcome this challenge.

On the higher peak flux side, which leads to more resonant photons per pulse, the first discussed
advancement is that of new measurement modi. For many systems, the higher peak photon flux at
XFELs allows single-shot measurements, i.e., obtaining enough information in the signal following a
single x-ray pulse. Those measurements are now routinely possible and the diffraction before destruc-
tion paradigm [CCT14] has pushed the limits of imaging and structure determination [Aqu+15]. Ex-
amples for single-shot analysis include imaging [Cha+06; Sei+11], structure determination [Red+13],
crystallography [Bar+22; Cha-+11] and absorption spectroscopy [Har-+23], but also pulse character-
ization [Boe+24; Har+13], which can be used in the subsequent analysis. Single-shot measurements
are also extremely beneficial for Mossbauer science because they can solve the typical problem of
extensive averaging and are predicted to be possible with XFELs [SR08]. As in other disciplines, this
simplifies the study of non-repetitive or less likely processes. A first proof-of-principle demonstra-
tion that information can be extracted from a single-shot recording has been done by Chumakov et
al. [Chu+18]. However, this uses only one single shot with a very high photon number to extract a
single fit parameter and the demonstration of broader usage remains open.

A second new possibility due to the higher peak flux is that it not only provides more resonant
photons, but also more non-resonant photons per pulse, which enables the study of new environ-
ments. In standard Mossbauer spectroscopy, the nuclei are used to probe the properties of their
solid state environment, e.g., isomer shift, quadrupole splitting or hyperfine splitting [Hen12]. Under
the intense XFEL irradiation, especially including the off-resonant part, the solid state environment
could potentially change. Demonstrated changes of matter properties after irradiation with an XFEL
include saturated absorption [Nag+09; Rac+15; Yon+14|, reverse saturated absorption [Cho+17],
the transition between both effects in warm dense matter [Mer+24| as well as a modified electronic
structure response [Alo+20]. In all these examples, the studied effect is based on electronic resonances
and is oftentimes probed with the electronic resonances, e.g., the resulting spectrum. Therefore, the
understanding of the underlying mechanisms is difficult, especially for unexpected effects, because
the probe might also be affected by the non-linear effect. For Mossbauer nuclei even at XFELs the
response of the nuclei themselves is expected to be in the well-understood low-excitation regime like
for synchrotrons [LKE25b]. Therefore, the nuclei could serve as excellent observers to study the
XFEL induced dynamics in their surroundings.

Third, the higher peak flux implies a qualitative improvement of having a significant number of
pulses with more than one resonant photon [Chu+18; RE21]. This allows to study relations between
photons from the same x-ray pulse as demonstrated in [Chu+18]. The progress at XFELs and
especially the proposal to build an X-ray free-electron laser oscillator (XFELO) [KSRO08| and first
demonstrations of the concept [Mar+23; Rau-+25], which could increase the resonant photon flux
by another four orders of magnitude, have sparked the interest into theoretical examination of the
dynamics beyond the linear regime [Ada+19]. It is projected that with an XFELO, full inversion of
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a nuclear ensemble is possible [LKE25b]. Several approaches have been suggested for theoretically
modeling the subsequent decay dynamics. Progress was made by restriction to the single most
superradiant symmetric collective eigenstate [HKE16], with a perturbative approach [WE23] and the
use of matrix-product states [Kon+25]. However, all those approaches describe a specialized part of
the problem and open questions remain.

To summarize, at the example of lasers we have seen that new technology has always resulted in
a boost of new experiments. With the availability of XFELs a boost in the x-ray regime is already
visible in some fields and we expect XFELs to significantly advance the field of Mdssbauer science in
a similar manner.

1.2 Goals of this thesis

In the previous section, we have motivated why experiments with Md&ssbauer nuclei at XFELs are
expected to bring significant improvement in the field of Mossbauer science. However, to our knowl-
edge until the beginning of this thesis only one experiment was performed at an XFEL [Chu+18] and
theoretical support beyond the low-excitation regime was limited [HKE16]. Therefore, the goal of
this thesis was to experimentally and theoretically explore the so far rather empty landscape of new
regimes, which are now accessible with Mossbauer nuclei at XFELs or which will become possible
with further improvement, e.g., at an XFELO.

On the experimental side, first experiments with Mdssbauer nuclei at a self-seeded XFEL were
performed by our collaborations. Because of the novelty of experiments with Md&ssbauer nuclei at
XFELs, different challenges had to be faced. This includes rather technological questions. How can
we perform a motor scan to align components in the experiment? How do we analyze the scattering
data containing significantly more than one photon? But also the answer to more conceptual ques-
tions was unclear. Can we measure nuclear coherent scattering in the forward direction, a standard
measurement to extract material parameters at synchrotrons [GBT11; Roh04], or of a thin-film cavity,
which is a standard platform for nuclear quantum optics [RE21], at all? If so, do the results match
the expectations from synchrotron experiments? Can we even perform single-shot measurements with
the higher amount of resonant photons? Does the higher spectral flux allow us to measure extremely
narrow resonances? In this thesis, we will answer these questions while focusing mainly on the data
analysis during and after the experiments.

Because there is no standard method to study the nuclear dynamics after impulsive excitation
beyond the low-excitation regime, for the theoretical investigations, the first challenge is to find a
suitable framework. Can we gain insights analytically even beyond the low-excitation regime or do
we need to numerically simulate the dynamics? What is a suitable method for the simulations? After
answering these questions, we will study the effect of the nuclear dipole-dipole coupling as well as
coupling mediated by a propagating light field especially beyond the low-excitation regime, which
could be realized by an XFELO [LKE25b].

In summary, in this thesis we investigate and demonstrate new possibilities with M&ssbauer nuclei
due to the recent and the expected advancement of available light sources.

1.3 Thesis outline

In Chapter 2 an introduction into the topic of nuclear quantum dynamics is given. At first, we
introduce the platform of Md&ssbauer nuclei, which is followed by a discussion of accelerator-based
light sources. In the third section, we describe the system on a quantum optical level.

In the main part of the thesis, we demonstrate several of the advances in nuclear quantum dynamics
possible with XFELs following the lines of the different advances schematically displayed in Fig. 1.1.

The first part of the thesis is about our experiments performed at the European XFEL. It starts
with an overview over the developed data analysis for the experiments performed at European XFEL
in Chapter 3. This includes data analysis for live view and simple evaluation tasks during the
experiments as well as more complicated but standardized calibration and processing of data after
the experiment.

Following this, the excitation of the 4°Sc nuclear clock transition is the focus of Chapter 4. Here,
we mainly focus on the data evaluation that finally lead to the resonance curve in [Shv+23] and
analyze different stochastic methods (cumulative distribution, kernel density estimate and histogram)
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to retrieve the final resonance energy. Besides this the signal to noise ratio and count rates are
estimated.

A new measurement mode, namely single-shot sorting of Méssbauer time-domain data can be found
in Chapter 5, which is based on [Ger+25b]. We demonstrate an algorithm to sort single-shot data into
two different classes. The algorithm is based on finding representatives of each class by a clustering
algorithm and subsequently sort all data by comparison to those representatives. Furthermore, photon
number estimates are derived and the stability of the single-short sorting is tested.

The last of the experiment related chapters focuses on the nuclei as spectators of effects happening
after irradiation of the host material with XFEL pulses, which possibly modifies the environment.
Here we study anomalies arising in nuclear resonant scattering. The extraction of parameters of the
environment surrounding the nuclei, revealed unexpected values. The results are analyzed in detail
by splitting the datasets by different parameters, e.g., the photon number per pulse.

In the second part, we focus on the theoretical study of new observables motivated by XFELs
and XFELOs and simulate the de-excitation dynamics of a nuclear ensemble after impulsive exci-
tation in the low-excitation regime and beyond. Because we want to study large ensembles beyond
the low-excitation regime, numerical methods are required. The well-established techniques used
here are presented in Chapter 7. We will mainly work with a set of equations for the simulation
derived from a cumulant expansion [Kub62], but use the python package QuTiP [JNN12; JNN13]
for benchmarking and a Monte-Carlo simulation based on the continuous-discrete truncated Wigner
approximation [MF23] for cross-checks.

For the truncated Wigner approximation approach, the preparation of the initial state is not straight
forward for our studies. Therefore, in Chapter 8 different sampling schemes are discussed.

Finally, with the numerical methods we can investigate the de-excitation dynamics of the nuclear
ensemble after impulsive excitation. First, in Chapter 9, the nuclear dynamic in the low-excitation
regime and beyond is studied in the presence of dipole-dipole couplings [GE25]. This analysis is mainly
performed with a translational invariant model, but finite size effects are discussed in addition.

Second, non-linear excitations with light propagation similar to the work in [AGE p; Kon+25]
are studied in Chapter 10. We will discuss clear signatures of excitations beyond the low-excitation
regime in the propagation effects.

Chapter 11 is a stand-alone chapter describing an inline interferometer based on different polariza-
tion states. Here, we focus on the theoretical description of the setup.

The thesis concludes with a summary of the most important results and an outlook to future
perspectives.



Chapter 2

Background — Quantum optics with Mossbauer nuclei

In this chapter, we introduce the topic of quantum optics with Mdssbauer nuclei. At first, the Moss-
bauer nuclei are introduced, which is followed by a discussion of x-ray light sources and experimental
aspects. In the second part, we turn to the quantum optical description of the system.

2.1 Mossbauer nuclei

A particular class of nuclear transitions are those in Méssbauer nuclei, which feature especially narrow
linewidths because of the Mossbauer effect (for details see Section 2.1.1). A large amount of Méssbauer
transitions has been found so far [R6h04|, and an overview over their linewidth and transition energy
is given in Fig. 2.1 in form of the blue circles. Three specific transitions are highlighted by larger
circles. First, there is the 22Th transition (light blue), which has an exceptionally low transitions
energy of E ~ 8¢V [Zha+24] and can therefore be excited by XUV frequency combs. The other two
highlighted transitions are those in °“Fe (magenta) and °Sc, (purple), which are both accessible by
XFELs and are the two transitions investigated in this thesis. More details on these two are given in
Section 2.1.2. Furthermore, ®"Fe is the most used Mdossbauer isotope [R6h04]. For comparison also
some important optical clock transitions are displayed with the green crosses. While most Md&ssbauer
isotopes have lower quality factors Q = E/I', for some exceptions, such as ?2Th and %°Sc, the
quality factors are on a comparable level as those of optical clock transitions. The red horizontal
lines indicate the different photon energy regimes of visible, ultraviolet (UV) or x-ray energies. Here
we mainly focus on possible excitation with XFELs, which is indicated by the orange window. Note
that at synchrotron radiation sources also higher transition energies are available, e.g., up to 100 keV
at PETRA IIT [Wil+10].

2.1.1 Mossbauer effect and zero-phonon transitions

For the resonant scattering of x-rays with nuclear transitions, the largest challenge is the photon
recoil. The recoil energy is given by [YL13]

E2

Er= 5112

(2.1)
with transition energy E, mass of the nucleus M and the speed of light ¢. For a single nucleus of
57Fe the recoil energy is Er = 1.9meV, which is three orders of magnitude larger than the natural
linewidth T'y = 4.7neV. Note that for transitions with lower transition energies the recoil is less
relevant, e.g., for the sodium D-line at 2.1eV the recoil energy is Ep ~ 2.5 x 1073 g [Ste25]. Due
to the recoil, the absorption and emission lines are shifted so far from each other that they do not
overlap anymore and no coherent resonant scattering is possible [YL13]. If the nucleus is embedded
in a solid state environment, the recoil momentum can be spread out over the solid and recoilless
absorption and emission are possible [YL13]. This was first found by Rudolf Méssbauer [Mos58],
which is why it is called the Mdssbauer effect.

The absorption of the recoil energy by the solid can lead to the creation of phonons, i.e., a collective
excitation of the lattice. Only for a zero-phonon transition, the emission and absorption take place
at the same energy. The probability fin of a zero-phonon transition, which is also called the Lamb-
Méssbauer factor [R6h04], can be calculated with the matrix element [GGT71]

fin = const. x |(Lo|e™*F|Lo)|2 = e ' F (2.2)

with the vibrational zero-phonon state |Lo), the wavevector of the emitted photon k and the center
of mass of the nucleus Z. In the last step, we used that |Lg) is normalized. We can replace 7 by (z?)
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Figure 2.1: Overview of transition energy E and natural linewidth I' of the most important Mossbauer
isotopes (circles). Highlighted are 2**Th (light blue) [Zha}24], *"Fe (magenta) [Rch04] and (purple)
453¢ [Shv+23]. For comparison some optical clock transitions are shown by the green crosses: Ca™, Sr,
Hg™, Yb™ and Al*[Lud+15]. The gray lines indicate lines of constant quality factor @ = E/T". The red hori-
zontal lines indicate the different energy regimes and the energy window currently accessible by XFELs [Eurb;
LCL] is marked by the orange shaded area. The figure was inspired by similar plots in [Len21; RE21; Wen+16].

because the vibrations are random and find [GGT1]

Jinm = exp (_ng) ; (2.3)

h2c?

with transition energy Ejy, mean-square displacement (x?), reduced Planck constant A and speed of
light ¢. The dependence on the transition energy FE( sets a natural upper limit for the transition
energy Fy at which the Mdssbauer effect is still measurable. The highest recorded energy for which
the Mossbauer effect was measured so far is the 166 keV transition in 39La [WTAT73.

To further evaluate this expression, we need to assume a model for the lattice vibrations and thus
(x?). On can show that using the Debye model, the expression in Eq. (2.3) evaluates to [GG71]

1 T\? [ T
— — _ 2.4
4+(9D) 0 dxezll} 7 (24)

with the Debye temperature 6p and the recoil energy Eg as in Eq. (2.2). For the typical workhorse
TFe, the Debye temperature is §p = 430 K, and thus at room temperature (7' = 300K) the Lamb-
Mossbauer factor is frm & 0.8 [She+04]. From Eq. (2.4) we can read off that the Lamb-Mdossbauer
factor frwm, i.e., the probability of recoilless resonant scattering, increases for lower temperatures.
However, due to the already high value at room temperature fry ~ 0.8, experiments are often
performed at room temperature, which is also the case for all experiments discussed in this thesis.

6ER

fim = exp {— k60,

2.1.2 Specific Mossbauer isotopes

For this thesis, we will focus on two Mdssbauer isotopes, °“Fe and %°Sc.

Iron isotope °"Fe

The isotope °“Fe is the most used Mossbauer isotope due to its natural abundance, relevance in
biology, geology, and chemistry and the availability of a suitable parent isotope for measurements
with radioactive sources [GBT11; Smil2|. The level scheme of 5"Fe is displayed in Fig. 2.2(a). 5"Fe
has a magnetic dipole (M1) transition with a transition energy of E = 14.4keV and a natural linewidth
of I' = 4.7neV corresponding to a lifetime of 7 = 141ns. The excited state can decay directly to
the ground state by sending out a photon with 14.4keV or via internal conversion. In the case of
internal conversion, the energy of the excited state is transferred to the electronic shell and ejects
an inner-shell electron, which is followed by fluorescence. The dominant fluorescence lines are K, at
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Figure 2.2: Nuclear level schemes of (a) °"Fe and (b) **Sc. The excited state with natural linewidth
I' = 4.7neV (I' = 1.4feV) of the nuclei can be excited with photons matching the transition energy of
E = 14.4keV (12.4keV) for ®"Fe (**Sc). The decay can either happen directly via sending out a photon
with the same energy or via internal conversion (IC), where the energy is transferred to the electronic shell
and subsequent fluorescence is observed. For both isotopes, the internal conversion is the dominant decay
channel. Furthermore, the spin and parity of the ground I, and excited state I. are displayed. For 5TFe, also
the level structure including hyperfine splitting as it occurs in the presence of a magnetic field is displayed
(not to scale) for an internal magnetic field of approximately B = 33 T. The two (four) sublevels of the ground
(excited) state and their respective magnetic quantum numbers m are shown in the right part of panel (a).
In this case six transitions can be driven. For *°Sc, the hyperfine splitted level structure is not observed yet.
Data for °"Fe is taken from [BB86; R6h04; Tho+09], data for **Sc from [Shv-+23].

6.40keV and K3 at 7.06keV. The ratio of direct decay to internal conversion is 1 : o, where « is the
element specific internal conversion coefficient. Because of ap. ~ 8.5 [R6h04], the internal conversion
is the dominant decay channel. The internal conversion also leads to the total linewidth I' = 4.7 neV
being enhanced as compared to the pure radiative linewidth I = 0.49 neV [R6h04].

In the presence of a magnetic field, the ground and excited state split into two and four levels,
respectively. At room temperature a bulk sample of a-iron has an internal magnetic field of B =~
33T, which leads to energy differences of o, = 39.7I' and d. = 22.4T for the ground and excited
state [Heeld; Roh04], respectively. According to the selection rules Am = 0,41, where Am is
the difference of the magnetic quantum numbers, six transitions can be driven. For Am = 0, the
transitions are linearly polarized parallel to the magnetic field, for Am = +1 they are circularly
polarized in the plane perpendicular to the magnetic field.

In natural iron the dominant iron isotope is °Fe with a contribution of about 2% of "Fe. For this
reason in experiments oftentimes enriched iron is used, which consists of nearly 95% 5"Fe [Rch04]. If
not stated otherwise, we consider enriched a-iron throughout the thesis.

Scandium isotope 4°Sc

In 5S¢, there is a magnetic quadrupole (M2) transition [Shv+23], whose level scheme is displayed
in Fig. 2.2(b). While the transition energy E = 12.4keV is similar to those of 5"Fe, the linewidth
I' = 1.4neV is six orders of magnitude smaller featuring a very long lifetime of 7 &~ 500 ms [Shv+23].
For #°Sc with o = 424 the internal conversion is the dominant decay channel mainly resulting in
K-fluorescence at 4.09keV (K, ) and 4.46keV (Kpg).

So far, the hyperfine splitting structure is not measured because this measurement needs coherent
scattering, which up to this date has not been observed yet [Liu-+25a].

The natural abundance of *°Sc is 100%, i.e., natural scandium only consists of 4°Sc.

2.1.3 General experimental aspects

A typical setup of an Mdssbauer experiment is schematically displayed in Fig. 2.3(a). It consists of
a sample, which in our case is either an a-iron foil of several um thickness enriched with 5“Fe (see
Fig. 2.3(b)) or a thin-film cavity with a thin layer (few nm) of 5"Fe inside (see Fig. 2.3(c)). The foil
is probed in the forward direction while the cavity is probed in reflection. The scattering of a foil
probed in forward direction will discussed in Section 2.1.4. The description of the scattering by a
cavity is more complicated, but not of relevance for this thesis. A detailed description can be found
in [Hua+20; Len21; R6h04]. A stainless steel foil is placed on a Méssbauer drive, which moves it
with velocities v typically up to 10 mm/s, which according to the Doppler shift detunes the electric
field scattered of the stainless steel foil by up to approximately 100" from the field scattered by the
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Figure 2.3: (a) Schematic of the typical experimental setup. The x-ray beam (red) impinges on a sample
(gray). The outgoing beam passes a stainless steel foil on a Mossbauer drive (dark blue) before being detected
by Avalanche Photo Diodes (APDs) (light blue). (b) The sample can be a " Fe-foil, which is probed in forward
direction. (c) Alternatively, the sample can be a thin layer of resonant nuclei (gray) embedded in a thin-film
cavity (green) and probed in grazing incidence.
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Figure 2.4: Example of an energy-time-spectrum, i.e., the intensity as a function of detuning and time. The
energy-time spectrum is calculated with pynuss [Heel9] for a 2 um thick 5" Fe-sample with only the two linear
transitions being driven. The stainless steel foil is 2 ym thick.

sample. This provides spectral information. Finally, the arrival time of the x-ray photons is measured
with Avalanche Photo Diodes (APDs) and provides information in the time domain [R6h04].

Measuring the arrival time and Mdéssbauer drive velocity or each photon allows to create two-
dimensional energy-time spectra. The outgoing intensity as a function of time ¢ and detuning A is
given by [Cal+05]

I(A, 1) =|Egample(t) + €2 Ereg (t)]?
=| Esample () + [Eret (6% + 2 - | Esampie (8)] - | Beet (£)] - cos (A -t + Ag) | (2.5)

with the electric fields of sample Eqamplc(t) and reference stainless steel foil E¢(t) and their relative
phase difference A¢. An example of an energy-time-spectrum is displayed in Fig. 2.4. The oscillations
described by 2cos (A -t + Ag¢) are clearly visible. Furthermore, at time ¢t &~ 125ns there is a clear
minimum in the intensity corresponding to the first dynamical beat (see Section 2.1.4) of a 2 um thick
57Fe-foil. Finally, in the frequency domain, especially for late times, there are dominant structures
around +31T, at which the two linearly-polarized lines are expected (see Fig. 2.5(a)). Integrating
over late times indeed approximately reveals the frequency spectrum of the sample [Roh+10].

2.1.4 Coherent nuclear forward scattering

One of the main kind of measurements is the coherently scattered signal in forward direction in
the frequency as well as in the time domain. Here we concentrate on the signal following a short
impulsive, but small excitation pulse as it is the case for synchrotron radiation and XFELs. In this
case the ingoing electric field is given by Ei,(t) o< 8(t) and Fi,(w) o< 1 in time and frequency space,
respectively. To calculate the scattered electric field as it is done in detail in Section 2.3.3, we consider
the low-excitation approximation, which is a valid approximation for current synchrotron and XFEL
experiments [LKE25b; R6h04].

In the low-excitation limit, we can describe the interaction of the incoming light with the sample
by the response function formalism. If Ej,(w) and Ei,(t) are the incoming electric field in frequency
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Figure 2.5: (a) Forward scattered intensity as a function of the detuning A = w — wp for a 2 um (blue) and
a 2 um (orange) thick enriched ®"Fe-foil with all six lines being driven. The symbols above the absorption
dips indicate, whether the line is circularly (¢%) or linearly (7°) polarized. (b) Forward scattered intensity
as a function of time ¢ for a 2 um (blue) and a 2 um (orange) enriched 5"Fe-foil with only the two linearly
polarized lines (second and fifth line in (a)) being driven. In both panels, the incident light field is assumed
to be linearly polarized. The simulations are performed with the python library pynuss [Heel9].

and time space, respectively, the corresponding outgoing fields are given by [KAKT79]

with the response function of the sample R(w) (R(t)) in frequency (time) space.

Frequency domain

The response function of the sample in frequency space is given by [KAK79; Roh04]

- —1ib
R(w) =e _—, 2.7
(@) = exp L_wmg (27)
with the transition frequency wg = F/h, linewidth T' and the thickness parameter
b= UofLMTLLF . (28)

Here og is the resonant cross-section, fry the Lamb-Mossbauer factor, n the number density, and
the physical thickness L. Plugging in the parameters for enriched a-iron at room temperature,
which is our default sample type, the thickness parameter b is related to the physical thickness L by
b =T - L{um]/0.249 [Adi24]. For a detailed derivation of Eq. (2.7) see Section 2.3.3. Including the
hyperfine splitting of the transitions leads to [Shv+98; Smi99]

Rhyp = exp [Z g—————=

where w; now denotes the transition frequency of transition [ and ¢; is the Clebsch-Gordon coefficient
of transition I. With this, the outgoing electric field after an impulsive excitation Fi,(w) = E? is
given by [Shv+98; Smi99|

: (2.9)

w — wl+22

E° . (2.10)

Eou(w) = RYP(w) - Eipy(w) = exp [Z o——=

w — lerzf

Aligning the internal magnetic field with an external magnetic field relative to the incident light

polarization in the experiment allows to choose which set of transitions is driven [R6h04; SBH99].
A simulated typical frequency spectrum, in which all six lines are driven, is shown in Fig. 2.5(a).

The six lines corresponding to the six Lorentzians in Eq. (2.10) are visible. The difference in the
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depths of the dips for the 2 um thick (blue) and the 5 pm thick foil (orange) is due to the different
electronic absorption for different thicknesses. From the frequency spectrum, much information about
the environment of the nuclei can be read off. For example, as the energy shifts due to hyperfine
splitting d. and d, are directly related to the strength of the magnetic field B, from the position of the
lines, one can infer the strength of the magnetic field. For more information, see [GBT11; YL13]. We
can also see that assuming that the lines are well-separated from each other is a valid approximation.
This is even more the case in a setting where not all six lines are driven.

Time domain

The sample response in time domain can be calculated via a Fourier transform of ]:Zhyp(w). To be
able to analytically perform the Fourier transformation, we assume that the lines are well-separated
from each other and that we can approximate

Rhyp Z exp [cl —ib

2.11
W — wy +22 ( )

We can then Fourier transform every summand separately and find [Shv-+98; Smi99]

Rhyp(t) ~8(t) — —Ft/29 che—zwzt\/>J1 (2 bclt) . (2.12)

More details on the derivation can be found in Section 2.3.3 and in [Reil4]. For impulsive excitation
(Ewn(t) = E25(t)) the outgoing electric field is given by [KAK79; R6h04]

l
E(t) = R™P(t) % Bin(t) ~ 5(t)—9(t)e*Ft/2Zcm/?J1 (2 bclt) e~iwrt
=1

This equation consists of several parts with different physical interpretation and an example realization
with only two driven lines is displayed in Fig. 2.5(b). At first, we have the §(¢) peak that represents the
strong unscattered signal. As it arrives immediately at ¢ = 0, it is typically called the prompt pulse.
In contrast, the resonantly scattered second part is referred to as the delayed signal. The 6(¢) function
as the prefactor of the second summand ensures that the scattered contribution only gives a signal
after the excitation at t = 0. Next, we have the exponential decay in e T2, The envelope of the

EY . (2.13)

signal is not only formed by the exponential decay, but an additional contribution \/g J1 (2@)
with the Bessel function of first kind J; from multi-scattering effects in thicker samples. The minima
of the envelope correspond to the roots of the Bessel function J; and thus depend on the thickness
of the sample as we can see by comparing the blue and the orange curve. They are referred to as
the dynamical beats and can be used to determine the thickness of the sample. Such dynamical beats
are visible in Fig. 2.5(b) at around 130ns for the 2 ym thick foil (blue) and at around 50ns and
175 ns for the 5 um thick foil (orange). The last term e %! resembles the slightly different transition
frequencies of the different lines and leads to beatings between the different transition frequencies.
In the example case only the two linearly polarized lines are driven. Since their transition energies
w; = wo £ Ay, are symmetric around wy, this leads to a periodic simulation proportional to sin(Aj,t)
with Ay, being the absolute value of the frequency shift with respect to the unsplitted transition
frequency wg of those lines. If more lines are driven, there are several beating frequencies and the
structure is more complicated. From the positions of the dynamical beats information about the
orientation of the magnetic field relative to the incident light polarization as well as the strength of
the internal magnetic field can be inferred. In analogy to the frequency spectrum, the intensity as a
function of time is called time spectrum. For more information about material properties encoded in
the time spectrum refer to [GBT11].

2.2 Accelerator-based light sources

After discussing how the signal from a M&ssbauer sample excited by a short light pulse looks like, we
now want to have a closer look at accelerator-based light sources, which provide those pulses.

The common feature of all accelerator-based light sources is that bunches of electrons are accelerated
up to highly relativistic energies (Lorenz factor v > 1). They then pass a magnetic field and due
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Figure 2.6: Different tools to produce x-rays with accelerator based light sources. The top row shows a
schematic of the production, the lower row a schematic of the electron bunch and the radiation at different
parts of the production. (a) The simplest scheme is the bending magnet. Here, an electron beam (blue) enters
a magnet (red/green blocks indicating north and south pole) in which it is deflected. Due to the deflection
the electrons tangentially radiate synchrotron radiation. All electrons irradiate independently of each other
as can be seen in the schematic of the radiation. (b) In an undulator, the electron beam (blue) passes through
a sequence of alternating magnets with period A,. In each of them, the electron beam is deflected and sends
out synchrotron radiation. The radiation from the different magnetic sections adds up coherently. Although
the electron beam travels parallel to the x-ray beam, the undulators are typically too short to have a notable
effect on the electrons. (¢) At (X)FELs very long undulators are used. The long interaction of the electron
beam with the photon beam leads to aligning of the electrons at the nodes of their own radiation field, which
is called micro-bunching. While the radiation at the beginning of the undulator is not phase matched, at the
end of the undulator due to the bunching the electrons irradiate in phase.

to the accelerated motion send out synchrotron radiation. The specific setup of the magnetic field
defines the properties of the different light sources. An overview is given in Fig. 2.6, and the different
types are discussed in the following.

The description of the three different types is based on [KHL17; MR11]. While [MR11] gives a
simple overview, in [KHL17| a more detailed theoretical description can be found.

2.2.1 Synchrotron radiation sources
Bending magnet

The simplest setup is that of a bending magnet as displayed in Fig. 2.6(a). If the electron bunch
passes through a magnetic field perpendicular to its direction of motion, it is deflected due to the
Lorentz force. This force is also used to keep the electrons on the circular motion in a storage ring.
As this deflection is an accelerated motion, the electrons start sending out dipole radiation. Because
of the relativistic speed of the electrons, the symmetric dipole radiation pattern in the rest frame
of the electrons is highly focused in the forward direction in the laboratory frame with an opening
angle of approximately 1/, where v is the Lorentz factor. In addition, the Lorentz boost shrinks
the radiated wavelength in the rest frame Ayest t0 A\lap = Arest/y resulting in x-ray wavelengths. The
resulting spectrum of a bending magnet is a broad band spectrum, and due to the electrons following
a circular trajectory with many emission points, the light cone opening is wide.

Undulator

Nowadays third and fourth generation synchrotrons do not use bending magnets anymore, but undu-
lators. An undulator as shown in Fig. 2.6(b) consists of several magnets with alternating polarities,
thus creating an alternating magnetic field with IV, oscillations of period \,. The defining parameter
of an undulator is the undulator parameter [KHL17]

6Bo>\u

K =
me2mw

= 0.934\,, [cm] Bo[T] (2.14)

with the undulator period A, the magnetic field of the undulator By, the natural constants mass m
and charge e of an electron and the speed of light c¢. For an undulator, it is K < 1. If K is larger,
we are in the wiggler regime, which is not discussed here. With this, the fundamental wavelength is
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given by [KHL17]

1 K?
M AN — (14 — + 20> 2.15

with the angle of emission ¢. Thus, in forward direction ¢ = 0 the wavelength A, is reduced by a
factor of 1/42. This can also be understood qualitatively because the electrons in their rest frame see
a reduced undulator period N, = A\, /v and irradiate with that wavelength. The Lorentz boost back
to the laboratory frame gives another factor of 4. With the K parameter, especially the gap between
the magnets, which determines the magnetic field strength By, the radiation wavelength can be fine
tuned.

Each electron makes IV, oscillations in the undulator, and the amplitude of the oscillatory electron
trajectory is small, which is why the radiation from the N, oscillations overlaps. This effectively
corresponds to a train with with N, cycles and leads to an intrinsic bandwidth of [KHL17]

AN 1
N ~ N, (2.16)
peaked around A\; and higher harmonics.

As an example, the 10 m undulator used at the nuclear resonance scattering beamline P01 at
PETRA III [DES25b; Wil+10] has a period length A, = 36mm, N, = 2 x 137 periods, a peak
magnetic field By = 0.72 T resulting in a maximum undulator parameter K = 2.4 and radiates at a
first harmonic of A\; = 0.5nm (F = 2.5keV) [DES25a].

Considering the whole electron bunch of N, electrons, the radiation from each electron has a
random relative phase. Therefore, in a simple model where all electrons irradiate the same field F
the outgoing x-ray intensity

Ne N.
I~ € Bral* = |Eraal? o< Ne (2.17)
l l

is proportional to the number of electrons N.. In the second step we have used the averaging over
the random phases ¢;.

2.2.2 X-ray free-electron laser

X-ray free-electron lasers (XFELs) are also based on the undulator principle. However, instead
of using undulators on the order of 10m length, XFELs use undulators with more than 100 m
length [Dec+20; Emm-+10]. Therefore, the time which the electrons spend in the undulator is signif-
icantly longer leading to important modifications of the radiation.

Self-amplified spontaneous emission

So far we have only considered the transverse motion of the electron, which is determined by the
magnetic field and results in a transverse velocity of [KHL17|

K
Uy = e cos(kyz), (2.18)
v

with k, = 2w /\,. However, because the electrons are traveling close to the speed of light, they also
experience the electric field of their own radiation

—

E(z,t) = é,Epsin(kz — wt + ¢) , (2.19)

where é, is the unit vector in z-direction and w = 2me¢/\ and ¢ the frequency and phase of the
irradiated electric field respectively. Therefore, the work performed on the electron is [KHL17]

—CE()K

W=F.-0=—¢E 7= cos(kyz) sin(kz — wt + @) . (2.20)

If the work is positive, the electron is accelerated in the longitudinal direction, if the work is negative
the electron is decelerated. Note that in general the electromagnetic wave propagates ahead of the
electrons, such that no interaction is possible. However, due to the periodicity of the electric field
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the interaction indeed takes place. Because W depends on the position of the electron relative to the
electric field, the interaction with the electric field leads to the electrons accumulating at the nodes of
the electric field. This results in the electron bunch being divided into subslices with spacing A in the
longitudinal direction, which is called micro-bunching and is indicated in the lower part of Fig. 2.6(c).
Note that this process in principal occurs in any undulator, but the undulators used at synchrotrons
are to short to result in a notable effect on the radiation.

Because of the micro-bunching, at the end of an undulator all electrons radiate in phase. Therefore,
here in the simple model where all electrons irradiate the same field F the outgoing x-ray intensity

Ne N,
I~ |Zez¢lErad|2 = |ZErad‘2 X NEZ (221)
l l

is proportional to the squared number of electrons N.. In the second step we have used that all

electrons radiate in phase. The increase from a linear to a quadratic scaling with the number of

electrons N, is what brings the orders of higher intensities at XFELs as compared to synchrotrons.
The process of amplification due to micro-bunching is called self-amplified spontaneous emission

(SASE).

Hard x-ray self-seeding

The process of SASE starts from noise and thus the pulses have very poor longitudinal coherence,
which is why the output consists of several independent wavepackets also called spikes both in the
temporal as well as in the frequency domain [Fel+97]. This problem can be overcome by a two
stage SASE FEL [Fel+97] consisting of two undulators with a monochromator in between. The first
undulator produces x-ray light with the SASE process. In a simplified picture, the monochromator
cuts out a certain window in the frequency domain thereby reducing the spectral bandwidth of the
SASE beam. Therefore, the electric field entering the second undulator is monochromatized. In
addition, it dominates over the electric field generated by the SASE process at the beginning of the
second undulator. Those two effects together result in a micro-bunching in the second undulator
with less energy spread as in the SASE case. Because the second undulator is seeded with the XFEL
radiation from the first one, this scheme it called hard z-ray self-seeding. It results in a narrower
spectral bandwidth of the output and improved longitudinal coherence as compared to a SASE
beam [Fel+97]. A detailed review of the process, especially focusing on the experimental realization,
is given in [Gel20].

For example, with hard x-ray self-seeding at European XFEL [Liu+23], it is possible to reduce
the 10-20eV wide SASE to a spectral band width of less than 1eV and therefore increase the peak
spectral density by a factor of ten approximately.

Note that even the approximately 1eV wide seeded beam is still very broad on the scale of Mdss-
bauer transitions. Therefore, experiments with Mdssbauer nuclei directly benefit from the increased
peak spectral flux.

2.2.3 Comparison between synchrotrons and X-ray free-electron lasers

Synchrotron and seeded XFEL radiation both provide intense x-ray beams, but with different prop-
erties. While full transversal coherence is provided by XFELS naturally, it is only reached with
synchrotrons of the fourth generation, which also only became available in the last decade [Cha23].
Furthermore, XFEL pulses are on the femtosecond scale and thus much shorter than the pulses at
synchrotrons, which are a few picoseconds [Wil21]. The largest difference however is the peak photon
flux. For XFELs, this can be 2 x 10%° photons per pulse, while even the most powerful synchrotrons
do not exceed the 10'¢ level so far [Wil21]. Therefore, XFELs provide orders of magnitude more
resonant photons [RE21] and can overcome the important threshold of one resonant photon per pulse
in a considerable amount of pulses.

For experiments with Mossbauer nuclei, the shorter pulse length probably does not make a difference
as even the picosecond level is short compared to the typical decay time scales, which are hundreds
of nanoseconds. Therefore, the most crucial differences are the several orders of magnitude higher
photon flux and a better transverse coherence. Note that the spatial coherence is only improved
compared to third generation synchrotrons, but the new synchrotrons of fourth generation also have
full transverse coherence.
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Figure 2.7: Schematic overview of the system. Hard x-rays centered around the nuclear transition frequency
wo (red) enter the solid state crystalline sample (black rectangle) with N > 1 nuclei (blue circles). Neglecting
the hyperfine splitting, each nucleus can be represented by a two-level system with transition frequency
wo. The nuclei can couple coherently Jm, and incoherently I's, to each other (green) and can decay via
spontaneous decay I'n, and internal conversion I';¢ (olive). Because of the short wavelengths A, the distance
between two nuclei |r, — 7.,| is typically on the order of the wavelength or larger |r, — r»| = A, such that
free-space couplings are usually weak.

2.3 Quantum optical description

After describing the platform of Mdssbauer nuclei and how we can excite them in experiments, we
now want to describe the system in a quantum optical picture. For simplicity, we do not consider
hyperfine splitting here. However, as typically the hyperfine splitted lines are well-separated from
each other (see Figs. 2.2 and 2.5), hyperfine splitting can often simply be taken into account by
summing over the different hyperfine splitted transition frequencies.

2.3.1 Lindblad master equation

In Fig. 2.7, the system to be studied is shown. A solid state sample with N > 1 nuclei is excited
with a resonant hard x-ray pulse. No matter whether this pulse comes from a synchrotron radiation
source (ps duration [Wil21]) or XFEL (fs duration [Wil21]) the pulse is orders of magnitude shorter
than the typical lifetime and the timescale given by the couplings. Thus, the pulse can be considered
instantaneous and the excitation and de-excitation process can be decoupled. While the excitation
dynamics is studied elsewhere [LKE25a; LKE25b], here we focus on the de-excitation dynamics. The
de-excitation dynamics is governed by the couplings between the nuclei indicated in green and olive
arrows, which will be part of the discussion in this chapter.

State description

Before we start with the time evolution, we first introduce the description of the quantum state of
the system. A general state of a two-level system, e.g., of nucleus j, can be written as

0 o . 0
|T),; = cos §\g>j + €' sin §|e>j, (2.22)

with [g); and |e); being the ground and excited state of the nucleus j, respectively. As displayed
in Fig. 2.8 the single two-level state in Eq. (2.22) can be represented on the Bloch sphere [NC10]
by interpreting the angles # and ¢ in Eq. (2.22) as the polar and azimuthal angle on a unit sphere,
respectively. In this interpretation, the polar angle 6 represents the angle of excitation. According to
the area theorem [AES87; MH67| an incident short pulse prepares the nucleus in an initial state with

T
6o :A:/ QtHat', (2.23)
0

where A is the area of the time-dependent Rabi frequency Q(¢, z;) = d- E(t)/h with dipole moment
d and electric field E(t,F}) at position of the nucleus 7; integrated over the interaction time 7', in
which the pulse is applied. For simplicity, we assume that the phase of the electric field is constant
in time and depends only on the position of the nucleus z;. In this case the phase of the initial state
is determined by the phase of the electric field at position of the nucleus z;

4o = arg (d. h(@')) —Fem, (2.24)
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Figure 2.8: State representation on the Bloch sphere. A state 1) can be represented by two angles 6 an ¢
as in Eq. (2.22). They can be represented as spherical coordinates on the unit sphere with the polar angle 0
(blue) describing the degree of excitation and the azimuthal angle ¢ (red) the phase.

with incident light vector k and position of the nucleus 7;. Therefore, the initial state of nucleus j
after the impulsive excitation is given by

A ST A
|Wo); = cos §|g>j + €M sin (2) le), - (2.25)

The initial state of the total system |¥) after the excitation is the tensor product of the single-nucleus
states of all nuclei and given by

N
) = Q)10 (2.26)

In the low excitation regime A < 7, the state of the total system can be approximated by a super-
position of the ground state and a non-localized single excitation

. N

U, ~~ Sln(%) iEFj . 2.9

o) = |g1,.--,9n) + N E eigrga...ej. .. gN). (2.27)
i=1

This state is similar to the non-classical nuclear exciton [HT99] or timed Dicke state [Scu09]. By
analyzing only those events which led to a detection of a scattered photon, this latter part can
effectively be post-selected from an experiment with a classical light source. Note, however, that the
two states are very different: The classical one in Eq. (2.27) has a non-vanishing expectation value of
the dipole moment operator, whereas the quantum exciton state does not.

As the system is an open quantum system, it is best described by a density matrix

p =), (2.28)

which also captures the loss of coherence due to interaction with the environment. For clarity, we omit
the operator hats throughout this thesis. In the case of a two-level system in the state in Eq. (2.22),
the density matrix p is given by

0 0 0 . 0 0 . 0
p = cos? §\e>(e| + cos 3 sin iel¢\e>(g| + cos 3 sin §e*Z¢|g><e| + sin? §|g><g| , (2.29)

Pee Peg Pge Pag
where we have omitted the index j for simplicity. We further identified the four matrix elements
pab = {a|p|b). The matrix elements p,, and p.. describe the population of the ground and exciting
state, respectively, and it is pgg + pee = 1. The two other terms p.4 and pg. are the complex conjugate
of each other pey, = pf, and describe the quantum superposition of the states. Thus, the closer these
two matrix elements are to zero, the more classical the system behaves.

Time evolution

Time evolution of a density matrix is determined by the Lindblad master equation [BP07]

Co= L iH o+ Ll (2.30)
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In principal, the Hamiltonian consists of a nuclear part, a photonic part and the interaction between
both. However, as we are mainly interested in the nuclear de-excitation dynamics, one can trace out
the photonic part of the system and describe the system by an effective Hamiltonian [HE13; Len+20].
This procedure as well as the resulting effective Hamiltonian [Ase+17b]

N
H = hwy Z ato, — hz Jmmot o, (2.31)
n=1
and Lindbladian [Ase+17b]
an p— +
L [p] = Z T (2Ump0 -0 Ump PO, Om) (232)

are well-established to describe an ensemble of atoms with photon-mediated couplings [Ase+17a;
Ase+17b; Cha+18; DKWO02; FT02]. Here, the coherent couplings J,,,, and the incoherent couplings
I',n between two nuclei n and m enter the equations. In addition, the diagonal part of of the
Lindbladian T',,,, describes single particle decay.

The free-space couplings are given by [AP01; KEKO07]

rad 1 - .
Ln _ Lo o 9.
Jmm + 1 5 hd X (T, P ) - dy (2.33)

with dipole moment d and a tensor [AP01; KEKOT|

L k3 1 i 1 R R [ 1 3i 3
Xpa (P, ) = T l‘qu < t 5 3) ~ T3 12 ( +t 5= 3)] e, (2.34)

determined from the Green’s function with the resonant wavevector ko, the vacuum permittivity €o,
the vector between nucleus n and m Rmn = 7, — Tm and the normalized distance 7,,, = k?0|Rmn|
For a thin-film cavity environment, the calculation of the couplings can be found in [Len+20; Tom95]
and references therein. Here I''2d describes the radiative part of the decay. The full decay rate I,
is speed up by the internal conversion, which adds an additional decay rate to the diagonal terms
I‘}Sn =T"€6,,,, such that the full decay rate is given by ',y = 1“532 + 166,00

Note that for simplicity, the hyperfine splitting is neglected here. It can simply be introduced
by an additional sum running over the different resonance frequencies w{ of the hyperfine splitted
transitions j.

2.3.2 Propagation effects

So far we have only considered a short excitation pulse and no further driving of the nuclei. However,
in an extended system, e.g., in nuclear forward scattering through a thin foil, the nuclei in the back of
the sample, i.e., further downstream, also see the electric field emitted by the nuclei in the front of the
sample. Here, we want to discuss two methods to include this effect either by including the electric
field in a semi-classical description or by including propagation effects via an effective coupling.

Maxwell-Bloch equations

In the Maxwell-Bloch equations [SZ97], the nuclei are treated quantum mechanically and the electric
field is treated classically. The derivation presented here closely follows [Len21; Lial4; Reil4]|. The
starting point is again the Lindblad master equation in Eq. (2.30), but we now consider each nuclei
separately. The interaction with an electric field propagating in the z-direction can be introduced by
a driving term in the Hamiltonian with the Rabi frequency

d- E(t, Faue)

Q(tafnuc) = 7 ; (235)

with the dipole moment of the transition d and the electric field E at the position of nucleus 7yuc

Eo(t) o
E(t,z) = %e_“’tﬂkoz + c.c., (2.36)
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where v = wg + A is the carrier frequency of the electric field detuned from the resonance frequency
wo by A and Ey(t) its time-dependent envelope. For simplicity, we assume that the electric field does
not have an additional phase modulation. The result with phase modulation can be found in [NA85].
Applying the rotating-wave approximation, the Hamiltonian is given by [SZ97]

h

h X ,
H(t) = hwoo "o = SQ(t)e™ Dot — CQp)e Do (2.37)

With Eq. (2.30), we derive the time evolution of the density matrix elements pq, = (a|p|b) [Reil4]:

d Q(t) —iv Q*(t) W
qPoe =+ Dhec —i— e "pge + ZT€+ "Peg (2.38a)
Q(t) —iv Q*(t) v
apee = - Fpee + ’LTG tpge —1 B 6+ tpeg s (238b)
d r . Q) ()
qiPes =~ gPeg — Wopeg + e "0gg — zTe+ e - (2.38¢)
Pge :ng : (238d)

Switching into the interaction picture by absorbing the oscillations into pge = pgee_(“’”A)tH‘b(t), the
equations simplify to the Optical Bloch equations [Reild; SZ97]

 Paolt) = — 1) (1) + 12 (1) 1) + Tpec). (2:399)
%ﬁee (t) =+ iQ(t)ﬁeg (t) - iQ*(t)ﬁge (t) — I'pee (t) ) (2~39b)
 pealt) = —19°(1) (g (1) — pec(t)) — (2 +8) pegt). (2.39¢)

Pe =7ty (2.390)

To also derive the differential equation describing the time evolution of the electric field, we first
restrict the propagation to one dimension z. Furthermore, we want to apply the slowly-varying
envelope approximation. This approximation assumes that the envelope of the electric field evolves
slowly enough compared to its carrier frequency to neglect second order derivatives of the electric field
in time and space. Because of the high transition frequencies in the x-ray regime (=~ 10*° Hz) compared
to the nuclear decay time scale (typically ~ 10~"s) on which the envelope evolves, the requirement is
fulfilled. In addition, the slowly-varying envelope approximation neglects the backward wave, which
could only occur if there was a seed in the backward direction. With the slowly-varying envelope
equation we derive the differential equation for the electric field [Lial4]

10 0\ = 2m o
(F8i + 2) B0 = ) (240

with the vacuum permittivity €y, the resonant wavelength A, the dipole moment J: and the par-
ticle number density n. Inserting Eq. (2.35), we obtain the differential equation for the Rabi fre-
quency [Hee+21; Lial4]
L9 0 Q =inp 2.41
(33 + o2 ) 80 = i), (2.41)
where n = b/(2L) = oo fumnl’/2 with the resonant cross-section g, the Lamb-Méssbauer factor
fLm, and the number density n. Egs. (2.39) and (2.41) form the so-called Mazwell-Bloch equations.
Together they form a closed set of differential equations, which can be studied numerically for a
general solution. In special situations, e.g., in the low-excitation regime (cf. Section 2.3.3), the
differential equations can be solved analytically.

Burnham-Chiao ringing

To derive a simple model for the dynamics of pulse propagation through a resonant medium we
use a slightly different parametrization for the semi-classical formulation of the light-matter inter-
action [AC70; BC69; GH82; HL83; MH67], which was first extensively studied by Burnham and
Chiao [BC69] and is thus called Burnham-Chiao ringing. Instead of describing the system by the
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density matrix elements p.. and pe4 as in the optical Bloch equations, the excitation angle ¢ is used.
To proceed, five key assumptions need to be fulfilled: 1. The calculation only considers times, which
are short compared to the characteristic time scale given by I'. This allows us to neglect 7 = 1/T
in Eq. (2.38). In Mossbauer science, the experiments typically take place only on a few 7, which is
why especially for short time after excitation this approximation is fulfilled. 2. We assume small
attenuation, which is why we can assume that all atoms see the same pulse. That this is a valid
assumption is discussed in [LKE25a]. 3. The system must be described by Maxwell’s equations. For
coherent nuclear forward scattering, this is fulfilled because relativistic, QED, non-linear effects or
similar do not play a role. This assumption is needed to describe the evolution of the electric field
correctly. 4. In the calculations, the backward wave is neglected, which is necessary for assuming
that there is no radiation from the nuclei at any position of the sample while the pulse is passing
through. This directly leads us to the last assumption. 5. The last assumption is the validity of
the slowly varying envelope approximation. The two assumptions 4. and 5. have already been used
in Section 2.3.2. If all assumptions are fulfilled, a simple set of differential equations describes the
system [AB65; BC69; GH82]:

82
782379(7—’ z) =—Qsin(0(r,2)) , (2.42a)
0 2d
— =—F 2.42
with retarded time 7 = t — L/¢, Q = b/L with thickness of the sample L, thickness parameter b
as defined in Eq. (2.8) and dipole moment d. The boundary conditions are 6(r = 0) = A with A
being the degree of initial excitation and F(r = 0,z = 0) = 0. The characteristic time scale of the
system 1/I" is usually orders of magnitude larger then the propagation time of the electric field L/c.
Therefore, time retardation can be neglected, and using the variable transform ¢ = 2,/Qtz, Eq. (2.42)
can be mapped onto [BC69]

2
SO0+ 2 20(a) +sin (0(0) =0, (243

with boundary conditions (0) = 6 and d%@(q)|q:0 = 0. With Eq. (2.42b) the electric field is then
given by
1 /bd
V2V tdg
For arbitrary initial excitation angles, the differential equation in Eq. (2.43) cannot be solved ana-
lytically. However, in the case of small excitation § < 1, we can approximate sin (6(q)) ~ 6(q), and
Eq. (2.43) becomes the Bessel differential equation of 0-th order. The differential equation Eq. (2.43)
is then solved by

E(t,z) x i0(15, 2)

= 0(q) . (2.44)

0(q) = 6oJo(q), (2.45)

where Jj is a Bessel function of first kind. Using the relation dquO(q) = —J1(q) with ¢ = 2v/t, the
electric field is given by

E(t) x \/371 (2\/&) . (2.46)

The Bessel function leads to a beating-like structure in the intensity I(t) = |E(t)|?, which is called
the Burnham-Chiao ringing and has been observed not only in nuclear [Biir99], but also in many
other systems [Fro+91; Gru+08; Hed+25; Nie+05; Oka+19; Skr-+73; ZHO23]. For higher excitation,
the minima shift as theoretically described in [BC69] and measured e.g., in [Nie+05].

With the crucial approximation of neglecting the single-particle decay (I' = 0), the Burnham-
Chiao model provides a simple model to analyze propagation effects even beyond the low-excitation
approximation. In the low-excitation approximation, we recover the result discussed in Section 2.1.4
without the single-particle decay.

Effective coupling

Another possibility to include propagation effects is to apply an effective coupling between the nuclei,
which is mediated by the propagating electric field. In [Can+15; MCD17] a formalism mapping
a cloud of atoms with a propagating electric field onto a 1D waveguide coupled to the atoms is
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presented, which will be shortly summarized in the following. The starting point are the Maxwell-
Bloch equations. The wave equation for the forward F,(z,t) and backward E_(z,t) propagating
component of the electric field F(z,t) = Ei(z,t) + E_(z,t) is [MCD17]

19, 0 _ /T
(cat + 82’) Ei(Z,t) =1 7p59(27t), (247)

where we have introduced the coupling rate of an individual emitter to the one-dimensional input
mode I'1p. The strength of the coupling can be determined by [MCD17]

OD
FlD — WF, (248)

with the optical depth of a target with thickness L [RL24]
L
OD = / dsn(s)o = oonlL, (2.49)
0

with number density n and resonant cross section og. In the last step, we have evaluated the integral
along path s for a uniform target. For enriched a-iron it is OD = 16.0752- L [um]. Note that Eq. (2.48)
allows us to simulate the system with a smaller number of emitters than physically required to match
the thickness L. For simplicity, we assume that the electric field is on resonance A = 0 and thus the
relevant Bloch equation for pcq is

C heo(ent) = iy 22 [y 211) = el D] B 1), (2.50)

We can map the one-dimensional Maxwell-Bloch equations onto a an ensemble of nuclei coupled
to a waveguide [MCD17]. Again, time retardation can be neglected, which simplifies the problem
drastically [AC70]. The coupling via the waveguide can then be included by additional terms in the
Hamiltonian and Lindbladian [MCD17]

N
r
Hyrop :%DZsin(koLG — Zml|) oo, (2.51a)
I
D - _ _
Loeop o] =12 37 c0s (kolzn — 2ol) (207007 — 7 omp — ot o7 - (2.51)

Note that the structure of the terms is the same as in Eqs. (2.31) and (2.32), such that only a
modification of the coupling takes place and we have modified couplings

~ r
n =Jmn — %Dsin (kol2n — 2ml) (2.52a)

1—"rrm :F'mn - 1—‘llD COS (k0|zn - Zm|) . (252b)

Those couplings are essentially a projection of the free-space dipole-dipole couplings onto the forward
propagation mode. The coupling between the nuclei and the incident electric field can be included in
the Hamiltonian by [MCD17]

T N
Hdrive = —\/ %D Z (Q(t, Zj)O';-r + hc) s (253)
j=1

where Q(t, z;) is the time-dependent Rabi frequency.

Because the coupling terms are added to the Hamiltonian and Lindbladian, respectively, the pre-
sented formalism in principle allows to study the propagation effects with additional couplings, which
is not possible with the Maxwell-Bloch equations.

2.3.3 Low-excitation regime

So far in the quantum optical description we have considered arbitrary degrees of excitation A.
However, although the pulses of synchrotron radiation and also of XFELs are strong, there is only a
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very small amount of resonant photons because the spectral width of these pulses is typically orders
of magnitude larger than the natural linewidth [Hee+17]. Therefore, the population of the excited
state is tiny [LE20; LKE25b; Shv99], and it is a valid approximation that there is no population in
the excited state

Pee = (0°°) = 0. (2.54)

Applying this approximation, we can derive the analytical expressions in Egs. (2.10) and (2.12), which
we have only stated in their discussion in Section 2.1.4 so far.

The linear approximation simplifies the equations describing propagation effects Eq. (2.39) signifi-
cantly because it decouples the optical Bloch equations and the only two remaining relevant equations
are

d _ o YA -
Sea(1) = =i () = (F +i8) peg (1), (2.55)
10 0 .
(cat + 5‘2) Q(z,t) =inpeg(z,t). (2.55b)

Setting the field at position z = 0 to (¢, 0), this coupled differential equation can be solved analyti-
cally in frequency space [SO08]. With Q(,2) = 5= [ Q(w, z)e~™" the solution in frequency space is
given by [Reil4]

—1in/2
Q(w, z) = exp in/

2

The solution in time space can be calculated from this via the inverse Fourier transformation [Reil4]

Ot 2) = % /deo(w,O) exp (_”’(Z) - m) , (2.57)

w — wo + 2y

where we have introduced b(z) = nz/2, v = I'/2 and neglected the retardation such that the retarded
time 7 = ¢t — 2 ~ ¢ [AC70]. Given that the lifetime is on nanosecond time scale and for a typical
pm-thick sample z/c¢ is on the order of tens of femtoseconds, this is a valid approximation.

The electric field can be calculated with Eq. (2.35). In frequency space, it is simply given by an
exponential of a Lorentzian profile, the representation in time space needs a few more considerations.

Let us start with ) b(2)
—ib(z
Et,z)=|— [ d — % wt )| EY. 2.
(t, 2) {277/ wexp(w_wo_’_m w )] i (2.58)

By using the Taylor expansion of the exponential, we can rewrite this as

1 iy 1 | —ib(z) A
E(t . d iwt il d wt — "\~ t
(t,2) [QW/ we +27r/ w;e n! (wwoJri'y “")

The first term is the Fourier transform of §(¢) resembles the unscattered part of the outgoing electric
field. The second term describes the interaction with the sample. It can be evaluated by an integration
in the complex plane resulting in [KAK79; Reil4; Roh04]

E(t) = [5@) - \/le (2\/&) ¢ int =t

EP . (2.59)

ES, (2.60)

with the Bessel function of first kind J;(z). An alternative derivation of Eq. (2.60) based on the
refractive index is given in [Biir99]. For a detailed interpretation of the different terms see the
discussion following Eq. (2.13).

2.4 Conclusion

To summarize, in this chapter we have presented an introduction into quantum optics with Mossbauer
nuclei.

First, we introduced the field of M&ssbauer science, where after an introduction into the Méssbauer
effect and the two isotopes used in this thesis, we have seen different experimental aspect and especially
discussed coherent nuclear forward scattering. In the second section, we have seen different x-ray light
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sources with the special focus on the functionality of synchrotrons and XFELs, and their differences.
Those first two sections give the background for the experiments performed at an X-ray free electron
laser in the first part of this thesis and the stand-alone Chapter 11.

The foundations for the second part of this thesis were laid in Section 2.3, which describes the de-
excitation dynamics of a nuclear ensemble from a quantum optics perspective. The photon-mediated
dipole-dipole couplings of the nuclei where introduced as well as the resulting propagational effects. In
general, the principle description is valid for arbitrary excitations, however only in the low-excitation
regime analytical expressions can be obtained.
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Part 1

Experiments performed at an X-ray free
electron laser
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Chapter 3

Data analysis at European XFEL

The standardized data analysis presented in this chapter was developed for the experiments leading
to the following publications:

Resonant X-ray excitation of the nuclear clock isomer *°Sc

Y. Shvyd’ko, R. Rohlsberger, O. Kocharovskaya, J. Evers, G. A. Geloni, P. Liu, D. Shu, A. Miceli,
B. Stone, W. Hippler, B. Marx-Glowna, I. Uschmann, R. Loetzsch, O. Leupold, H.-C. Wille,
I. Sergeev, M. Gerharz, X. Zhang, C. Grech, M. Guetg, V. Kocharyan, N. Kujala, S. Liu, W. Qin,
A. Zozulya, J. Hallmann, U. Boesenberg, W. Jo, J. Mdller, A. Rodriguez-Fernandez, M. Youssef,
A. Madsen, and T. Kolodziej

Nature 622, 471-475 (2023)

Single-shot sorting of Mdssbauer time-domain data at X-ray free electron lasers

M. Gerharz, W. Hippler, B. Marx-Glowna, S. Sadashivaiah, K. S. Schulze, [. Uschmann, R. L&tzsch,
K. Schlage, S. Velten, D. Lentrodt, L. Wolff, O. Leupold, I. Sergeev, H.-C. Wille, C. Strohm, M. Guetg,
S. Liu, G. A. Geloni, U. Boesenberg, J. Hallmann, A. Zozulya, J.-E. Pudell, A. Rodriguez-Fernandez,
M. Youssef, A. Madsen, L. Bocklage, G. G. Paulus, C. H. Keitel, T. Pfeifer, R. Rohlsberger, and
J. Evers

arXiv:2509.15833 [quanth-ph]|

Probing the Linewidth of the 12.4-keV Solid-State *°Sc Isomeric Resonance

P. Liu, M. Gerharz, B. Marx-Glowna, W. Hippler, J.-E. Pudell, A. Zozulya, B. Stone, D. Shu,
R. Loetzsch, S. Sadashivaiah, L. Bocklage, C. Boemer, S. Liu, V. Kocharyan, D. Krebs, T. Long,
W. Qin, M. Scholz, K. Schlage, I. Sergeev, H.-C. Wille, U. Boesenberg, G. A. Geloni, J. Hallmann,
W. Jo, N. Kujala, A. Madsen, A. Rodriguez-Fernandez, R. Rysov, K. Tasca, T. Kolodziej, X. Zhang,
M. Ilchen, N. Wieland, G. Huber, J. H. Edgar, J. Evers, O. Kocharovskaya, R. Rohlsberger, and
Y. Shvyd’ko

arXiv:2508.17538 [quanth-ph]

3.1 Motivation

As discussed in Chapter 1, the advancement of light sources and possibility to perform experiments
at XFELs provides new opportunities for Mdssbauer science. However, experiments at this new
light sources are by far not as standardized as at synchrotron radiation sources, especially those with
Méssbauer nuclei. Before the experiments of our collaborations at the European XFEL [45522; 45524;
5TF22; 57F23; 57F25], only one other experiment was performed at the SACLA XFEL [Chu+ 18] and
the experiments by our collaboration were the first experiments of their kind at the European XFEL
at all. Therefore, many new analysis scripts and tools had to be developed together with the data
analysis group, which were crucial for the successful experiments reported in [Ger+25b; Liu+25a;
Shv+23]. An overview of the standardized parts of the newly developed analysis software is given
in this chapter. Further detailed and beamtime specific data analysis is discussed in the respective
chapters.

As already said, Mdossbauer experiments are currently not standard experiments at XFELs in
contrast to Mossbauer experiments at synchrotron radiation sources. To stress the importance of
developing a data analysis chain for Mossbauer experiments at European XFEL we start with an
overview over the typical data analysis for a synchrotron experiment with °"Fe and compare it to the
availability at the European XFEL.

The first step in any Mdssbauer experiment at an accelerator-based light source is to set the incident
photon energy to the Mdssbauer transition energy. This has to be done on a level comparable to the
spectral width of the incident x-rays. At synchrotrons, for standard Mossbauer isotopes such as
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Figure 3.1: Pulse structure at European XFEL. At European XFEL the pulses come in trains of up to
hundreds of pulses every 100ms. Within the train, the pulses have a fixed temporal distance, which was
4401ns in the setting used in our experiments.

57Fe, the machine settings to produce the respective photon energy are well-known. At European
XFEL, the absolute photon energy is not measured with build-in devices and can therefore only
be adjusted approximately with the standard equipment, which currently is not accurate enough for
Mossbauer experiments. However, it can be measured with the Bond method [Bon60; Shv-+23], which
was provided by our collaborators from Jena and essentially determines the photon energy from the
Bragg angle.

The Bragg angle can be measured by a motor scan, which measures the intensity of a diode at a
constant position as a function of a certain rotation angle of the crystal. A motor scan is a standard
measurement procedure at synchrotrons. At the European XFEL however, such a motor scan could
be run, but only approximately analyzed in real time because the data-matching from different pulses
is only approximately until now [Eurc|. Before the development of our custom motor scan analysis
tool, for precise motor scans, after the measurement the data had to be saved and migrated to a
different storage from which it could be analyzed precisely, which took several minutes.

Once the photon energy is set, the sample is adjusted. After a rough alignment by hand, the fine
alignment is typically done by scanning the number of resonant photons against a motor position.
Again, this is a standard procedure at synchrotrons, but was not available at the European XFEL.
Here, the difficulty is not only to perform a motor scan at all, but in addition the signal has to
be processed before to measure only the resonantly scattered photons. Without the possibility to
perform a precise motor scan with the resonant photons as the signal it would not have been possible
to adjust the setup.

At synchrotron experiments, the number of resonant photons also provides an important observable
to monitor the experiment, e.g., whether the count rate is decreasing. At XFELs due to the higher
peak photon flux, the number of resonant photons per pulse is not easily resolvable for arbitrary
settings. As a flexible measure taking over the role of the number of resonant photons the integrated
APD signal of the delayed photons is implemented.

Finally, measuring time spectra or energy-time spectra is typically readily implemented at syn-
chrotrons. For technical details see e.g. [Vel+24]. For the experiments at the European XFEL, code
to process the raw data into those standard measurements had to be developed.

Similarly to the ®Fe-experiments, also for the 4°Sc-experiments, new data analysis routines had
to be implemented. Here, parts of the ®’Fe analysis could be reused, e.g., motor scans, but the
processing of the raw detector data was implemented new.

Lastly, another big difference between synchrotron and XFEL experiments is the size of data
collected during an experiment. While at synchrotrons, the data recorded during one beamtime
typically easily fits on a standard hard disc, our experiments at the European XFEL had up to
100 TB of data.

3.2 Data structure at European XFEL

Before we go into details of the data analysis, the special data structure at the European XFEL is
introduced.

At the European XFEL, the x-ray pulses arrive in a train-like structure with 10 Hz. That means,
that every 100 ms a specified number of pulses npyises arrives with typically 440 ns temporal separation.
A schematic of the pulse structure is shown in Fig. 3.1. All data, e.g., machine parameters, motors
or detectors, are tagged with a train number and can be processed based on this [Fan+18|. Some
instruments are able to measure data even on a pulse-resolved basis. However, they still send the data
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Figure 3.2: Simplified setup only containing the most relevant measurement devices for data evaluation.
The blue boxes of x-ray gas monitor (XGM), HIREX spectrometer and diagnostic end station (DES), which
among other diagnostic tools contains a spectrometer, represent beamline instruments. The user devices are
indicated by the gray boxes. In the 5"Fe experiments [57F22; 57F23; 57F25], a sample (green rectangle)
was placed in the beam and Avalanche Photo Diodes (APDs) measure the time information of the resonant
photons. Their analog voltage signal is digitalized using an ADQ412. Optionally, a Mossbauer drive (MB
drive) can be placed in the setup for energy information. Because less time resolution is needed, the analog
signal of the M&ssbauer drive can be processed with the fast ADC. In the *°Sc experiments [45524; 57F23],
Amptek-X123 detectors are used at three different positions of the experiment. Their digital output is send
to the data acqusition system directly. In both types of experiment the second user part is the same and
measures the absolute photon energy with the Bond method [Bon60; Shv-+23]. Here, a rotating crystal (green)
is used with two diodes measuring the intensity for absolute measurements of the photon energy. The black
arrows indicate moving devices. For more details on the experimental setup see the respective chapters. The
devices are explained in detail in the main text.

to the data system combined within one train. Instruments which record data in a pulse-resolved
way are called fast devices, those recording only train-resolved slow devices.

In all experiments, European XFEL’s software framework karabo [Hau+19] is used for control and
data acquisition. Each device has a unique name and typically many properties, e.g., the actual
position of a motor. These properties can be set, e.g., to move a motor, or read, e.g., the position of
the motor. Here, the focus is on the read out.

There are two fundamentally different access points to the data. One is the online cluster to which
data is sent in real time and where it can be analyzed in real time, but the data is typically not stored
permanently. The other one is the offline cluster, where data is stored for later analysis. To store
data on the offline cluster, a run has to be taken, which can be e.g., a motor scan which should be
saved or just acquiring for a specified time. The data on the offline cluster is stored on a per run
basis and is available for a long time according to the data policy of European XFEL [Eurl7; Eur23].

3.3 Important devices from a data analysis perspective

A simplified setup showing only the most important devices for data evaluation can be found in
Fig. 3.2. This is a non-complete list of devices used in the experiment, but rather focuses on the
different types from a data-analysis perspective. The different components are explained in the
following.

3.3.1 Beamline instruments

Several devices, which are routinely used at the beamline and also in our experiments, are discussed
in the following.

X-ray gas monitor. The x-ray gas monitor (XGM) [Mal+19] sits upstream in the tunnel and
measures the spectrally and temporally integrated absolute pulse energy in pJ. It has two different
measurement modi running in parallel to measure the average pulse energy over a train or to measure
the pulse energy pulse-resolved. For the train averaged data a single float is given per train, for the
pulse-resolved an array of length npyises-

HIREX /DES spectrometer. The HIgh REsolution Hard X-ray single-shot (HIREX) [Kuj+20]
and diagnostic end station (DES) [Boe+17; Boe+24] spectrometers to measure the incident photon
energy are equipped with the same detector, such that for the data analysis they can be treated
similar. The HIREX spectrometer is upstream of the experiment and can in principle be used all the
time during the experiment. The DES spectrometer is located downstream of the experiment and
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usually blocked by the APDs. However, it is often used in an early phase of the experiment, when no
blocking elements are in the beam, and could also be used in the first **Sc-experiment [45522].

Both spectrometers consist of a bend crystal reflecting the light depending on the photon energy.
The reflected light is detected with a Gotthard-I detector [Moz+12], and recently upgraded with a
Gotthard-II detector [Zha-+18], respectively. For each train, a 2D matrix is returned with the relative
photon energy on one and the different pulses on the other axis. Because not only the photon energy,
but also alignment of the crystal influences the conversion from detector channel to photon energy,
the two spectrometers are mainly used for relative energy measurements.

Motors. All motors belong to the slow devices. Among several settings, most importantly the
actual position, the target position and a possible encoder position are saved. In addition, it is
possible to save details on motor scans.

3.3.2 User instruments

Because the performed experiments are non-standard experiments, e.g., the detectors and further
experimental equipment were brought by the users and were included into the European XFEL data
system.

Avalanche photo diodes. For the experiments with 57Fe, Avalanche photo diodes (APDs) mea-
sure the prompt and delayed photons as a function of time after the excitation. At the time, where a
photon arrives at an APD, the applied constant voltage has a dip. For details on the APDs see [R6h04]
and references therein. For few photons arriving at the same time, the depth of the dip is approxi-
mately proportional to the number of photons. This analog voltage signal of each APD is digitalized
on a per-train level using an ADQ-412 with 0.25ns time resolution. Those digital traces can later in
the analysis be split up into npuises subtraces, one for each pulse in the train. This detector is used
in the experiments with 57Fe.

Mséssbauer drive. The Mdossbauer drive is used for gaining energy information (see Section 2.1.3).
The information on the velocity and thus the energy information, is encoded in a voltage signal by a
coil that measures the movement [Vel+424]. This voltage is then digitalized on a per-train level using
an Analogue to Digital Converter (ADC). The data acquisition is controlled with European XFELs
fast ADC application [Eural. Similar to the APD signal, in the later analysis, the digital voltage signal
is analyzed on a per-pulse basis resulting in one detuning per pulse. Note that the detuning change
of the Mossbauer drive is slow compared to the pulse spacing, such that we can assume that it is
constant over one pulse.

X123 detectors. In the °Sc-experiments, Amptek-X123 detectors are used to measure x-ray pho-
tons in an energy- and time-resolved way with an extremely low background of 2x 104 ph/s [Shv23].
The detectors can be used in different measurement modi. The simpler one is to acquire data for a
specified time and return the spectrum of all photons during that time. In this measurement mode,
one spectrum per run is returned and real-time analysis of the spectrum is not possible until the
specified acquisition time is over. The second measurement mode records time and energy of all
photons per train. In this mode, the data can be analyzed in real time.

Diodes. The diodes are slow devices recording a single number signal for each train. Typically,
two diodes are connected measuring the scattered x-ray light with a high dynamical range. This is
mainly used for absolute photon energy measurements and during alignment.

3.4 Online analysis

The online analysis serves for real time analysis during the experiment. It is mainly used for alignment
of components and monitoring of beam parameters and measurement results. Thereby, it is crucial to
determine if a test or measurement was successful and to decide how to continue. To have full flexibil-
ity regarding the analysis procedures, European XFELSs processing framework EXtra-metro [EuXd]
is used, which provides simple access to the data and flexible processing as we will see in the following.
To display the real time analysis, the gui of extra-foam’s [EuXc| MID special suite Correlator is
chosen.

3.4.1 Principal functionality

The principle concept is that data is quickly analyzed within a train and plotted afterwards. To this
end a so-called context-file is written, which uses the programming language python with custom
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extensions by the European XFEL team. Within this file, small code snippets define the viewgraphs,
which will be updated with the live data. Extra-metro provides a graphical user interface to show
the viewgraphs.

As a simple example, the pulse energy measured with the XGM is monitored. First, the neccessary
modules are loaded

from metropc. analysis.functions import gaussian
from extra_foam.utils import rich_output, Series as S, LinearROI

Afterwards, the XGM data is loaded and returned as a function of the train ID

@View.Compute (name="XGM/pulse_energy_vs_train_ID")
def xgm slow vs trainld(tid: "internal#train_id",
xgm_slow_data: "karabo#SA2_XTD1_XGM/XGM/DOOCS.controlData.slowTrain.value",

):

nnn

Parameters
tid: int
Train ID.
xgm _slow_data: float
Mean value of XGM over train.
Returns
rich _output: rich_ output
Output to be displayed by the GUI.

nnn

ydata = {"y1": S(xgm_slow data, "XGM (slow)")}

return rich output( tid, sxydata ,
title="XGM slow",
xlabel="train id",
ylabel="XGM slow [uJ]",
max_points=2000)

The first line defines the kind and the name of the view. The next lines define the input into the
function. The train ID is loaded from the meta data and the XGM data from karabo. Afterwards
a rich _output is generated, which allows to define axis labels, title, curve labels and the number of
shown points.

Oftentimes for monitoring data like the pulse energy, the output is not needed for every train, but
it is rather desired to have the data over a longer time. Therefore, an average over several trains is
useful, which can be implemented with a local average.

@View.Compute LocalAverage (N=10, name="XGM/averaged_pulse_energy_vs_train_ID")

def xgm_slow_vs_ trainld_ avg(xgm: "view#XGM/pulse_energy_vs_train_ID"):
W
Parameters
xgm: view
Output of view. View.values has shape (train ID, XGM value).
Returns

rich output: rich output
Output to be displayed by the GUI.

nnn

return rich output ( x=xgm.values[0],
y1=S(xgm.values [1],"XGM slow (averaged)"),
title = "XGM slow [uJ] (averaged)",
xlabel= "train id",
ylabel="XGM slow [uJ]")

The first line now has the additional decorator "LocalAverage", where N defines over how many trains
the average is computed. Here, N=10 means that the average is computed over 10 trains and thus
output is generated every second. In the next line, as input now the output of the view defined
above, which returns the XGM value as a function of train ID, is loaded. Finally, the rich output is
generated. An example of the averaged XGM value is shown in Fig. 3.3.

Similarly a global average can be calculated, which averages over all trains since the last reset of
the respective plot.

3.4.2 APD signal

As already discussed in Section 3.3.2 the data for each APD separately is recorded per train and needs
to be processed, e.g., to be split up into pulses. First, some parameters obtained from calibration

31




Tab 2 A - DOX

XGM slow [u)] (averaged)

210 ¢
> &
.
Y Y » o.‘ L b
” a
zoselg... ’: :o - .? v o .o
O o0 C . FLI S F3
e . e W » S
z Py ”‘.‘ .
2 4
] 204 . .. . %
3 s (3
X 202 o O
L]
D
s
v
.
198 '.
L L
1.703586 1.703587

train id (x1e+09)

Figure 3.3: Screenshot of the online view showing the averaged XGM value vs train ID.

measurements (see Section 3.6.2) are set

parameters (data per ns_apd = 4, 7# data points per ns

pulse_separation_ns = 440, separation of x-ray pulses in ns

apd_xray arrival 1A = —50 4 72978 + 23, / index at which the xray pulse arrives
apd xray arrival 1C = —50 4 72978 + 26, index at which the xray pulse arrives
apd _xray _arrival 2A = —50 + 72978 + 0, /# index at which the xray pulse arrives
apd_xray arrival 3A = —50 + 72978 + 9, index at which the xray pulse arrives
apd_xray arrival 3C = —50 4 72978 + 14, index at which the xray pulse arrives
threshold apd = 200, /4 values below threshold is considered noise and set to 0

)

Those parameters define the number of datasamples per ns (data is recorded with 0.25 ns resolution),
pulse separation between two pulses within one train, and the arrival times of the first pulse in a train
in the respective APD. Those parameters are used to split the APD signal into individual pulses. In
addition, the threshold under which data is considered noise is set. The index, at which the first
x-ray pulse arrives is artificially shifted by 50 datasamples, which is equivalent to 12.5ns, such that
the x-ray pulses do not arrive at t=0 but t=12.5ns when being viewed. This is useful for integration
over the prompt pulse.

Afterwards, a function is defined, which is evaluated for every train and processes the APD data.
The function is explained step by step in the following. First, the analog voltage output of each APD,
which was digitalized using an ADQ412, is loaded from karabo. Here, each channel corresponds to
one APD. In addition, the number of pulses in the train is loaded from another view.

def split_ pulses ( chlA raw2: "karabo#MID_EXP_ADQ/ADC/ADQ412:network[digitizers.
channel_1_A.raw.samples]",

chlC raw2: "karabo#MID_EXP_ADQ/ADC/ADQ412:network[digitizers.
channel_l_C.raw.samples]"7

ch2A_raW2: "karabo#MID_EXP_ADQ/ADC/ADQ412:network[digitizers.
channel_2_A.raw.samples]",

ch3A raw2: "karabo#MID_EXP_ADQ/ADC/ADQ412:network[digitizers.
channel_3_A.raw.samples]",

ch30_raw2: "karabo#MID_EXP_ADQ/ADC/ADQ412:network[digitizers.
channel_3_C.raw.samples]",

nPulses : "view#PULSES/npulses_vs_trainID"):
W
Parameters
chx _raw: list
List containing voltage trace of respective APD.
nPulses: int

Number of pulses in train.
Returns

data list: array

APD data in shape (APD ID, pulse ID, time).

nnn

lastPulse = nPulses.values|[1] number of last pulse in train

data structure changed for proposal p8006 and traces have now shape (datasamples, 1)
To reuse subsequent code, reshape data to former format (datasamples)

chlA raw = np.copy(chlA raw2[:,0

chlC_raw = np.copy(chlC_raw2([:,0

ch2A raw = np.copy(ch2A raw2[:,0

ch3A _raw = np.copy(ch3A raw2[:,0

ch3C_raw = np.copy(ch3C_raw2[:,0

Next, the data is cut shortly before the first x-ray pulse of the train arrives. Afterwards, for all APDs
the first x-ray pulse of a train arrives at the same time. For better handling of the cut traces, they
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are all cut to the same length. The cutting in addition significantly reduces the data because only
those parts of the APD trace where an x-ray pulse arrived are considered.

get the maximum XFEL pulse arrival time from the four channels
maximum = max(apd_ xray arrival 1A, apd_ xray arrival 1C, apd_ xray arrival 2A,
apd_xray arrival 3A ,apd_xray_arrival 3C)

cut all channel data such that the x—ray pulse arrives at array element 0 and that
all arrays have the same length
chlA = chlA raw|[apd xray arrival 1A:—(maximum—apd xray arrival 1A+1)]
chlC = chlC_raw[apd_xray arrival 1C:—(maximum—apd_xray arrival 1C+1)]
ch2A raw|apd xray arrival 2A:—(maximum—apd xray arrival 2A-+1)]
ch3A raw|apd xray arrival 3A:—(maximum—apd xray arrival 3A-+1)]
ch3C = ch3C_raw|[apd_ xray arrival 3C:—(maximum—apd xray arrival 3C+1)]

Naturally, the APD has some defined positive voltage as the null line. Every arriving photon reduces
this baseline by a fixed amount, which represents the recorded signal. For better handling of the
data afterwards, the null line is shifted onto zero by subtracting the mean value before the first x-ray
pulse arrival. Furthermore, the signal is inverted subsequently. As a result, every arriving photon
now leaves a roughly Gaussian peak on a roughly zero baseline.

# get an offset value for the channel as mean over many array elements before the
arrival time

avg start = — 1000

avg stop = — 500

offset 1A = int (np.mean(chlA raw[apd xray arrival 1A4avg start:apd xray arrival 1A+
avg_ stop]))

offset 1C = int (np.mean(chlC_raw|[apd xray arrival 1C+avg start:apd_xray arrival 1C+
avg stop]))

offset 2A = int (np.mean(ch2A raw[apd xray arrival 2A4avg start:apd xray arrival 2A+
avg stop]))

offset 3A = int (np.mean(ch3A raw|[apd xray arrival 3A+avg start:apd_ xray arrival 3A+
avg stop]))

offset 3C = int (np.mean(ch3C_raw|[apd xray arrival 3C+avg start:apd_ xray arrival 3C+
avg stop]))

# correct the channels for the offsets

chlA —= offset 1A
chlC —= offset 1C
ch2A —= offset 2A
ch3A — offset_3A
ch3C —= offset 3C

# combine into one list and invert signal
apds = [—chlA, —chl1C, —ch2A, —ch3A, —ch3C]

Finally, the long train-spanning voltage trace is cut into separate parts for every pulse in the train.

data list = []
for i in range(5):
apd = apds|[i]
determine how many pulses are available in the data
num_pulse = int (np.shape(apd)[0] // (pulse separation ns x data per ns_apd))

do not use more pulses than in the data OR than deliverd by XFEL
num_ pulse = min(num_pulse, lastPulse+1) #5 +1 due to pulses counting from 0
split the APD trace into individual pulses
# if less pulses are desired, then manually change here
pulses = []
for pulse idx in range(num _ pulse):
start:idx = int (pulse__idx * pulse separation ns % data_per_ns_apd)
stop_idx = start idx 4+ int(pulse separation ns) x data per ns_apd
data = apd[start idx:stop_ idx]
bin to 1lns
data = data.reshape(—1,data_per_ ns_apd).mean(axis=1)
save data

pulses .append(data)

data _list.append(pulses)
# return the data array, shape is (APD ID, pulse ID, time)
return np.array(data list)

The list with shape (APD ID, pulse ID, time) is returned. In this shape, the APD data can now be
live analyzed. One possibility is to sum over all pulses and APDs and have a GlobalAverage to display
the live time spectrum. Another possibility is to integrate over specific regions of interest in the time
domain to discriminate the unscattered prompt pulse, which is artificially shifted to be at around
12.5ns, and the resonant delayed signal after the prompt pulse. Both signals can be monitored as
a function of time or can be used as signal for motor scans to align components (see Section 3.4.3).
In the online analysis it is not possible to extract arrival times from the voltage traces because the
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analysis is too complicated (see Section 3.6.4). Instead the voltage traces themself are analyzed,
which is a good representation of the actually detected photons and sufficient for live online analysis.

3.4.3 Motor scans

The MID beamline is equipped with a scantool called karabacon [Eurc] to perform motor scans, which
can display a signal of interest against the motor position and do limited arithmetics. However, at the
beginning of our experiments, the scantool was not capable of matching the data according to their
train ID and could not bin together the signals at equal motor positions. The latter has only become
available recently. Thus, the scantool is useful for rough alignment scans, but not for fine alignment,
where properly matching data and binning is needed. Furthermore, some motor scans are performed
with the resonant photons recorded with the APDs. As discussed in Section 3.4.2, this data needs
extensive processing, which until now is not possible in the scantool. Therefore, motor scans could
only be analyzed once they are finished and the data is migrated to the offline cluster, which leads to
a waiting time of a few minutes. Because this severely restricts the experimental progress, together
with the data analysis team of the European XFEL a motor scan view in the online analysis was
developed.

The heart of the motor scans is a routine, which automatically detects, which motors are currently
scanned. First, the motor position is loaded from karabo for all motors. This can be the actual,
target or encoder position of the motor. For simplicity, in the example code only two motors are
loaded. In addition, the karabacon configuration, i.e., scan tool configuration, is loaded from karabo.

@View.Compute (hidden=True)

def motor(tid: "internal#train_id",
##+ motors
exp_rl : "karabo#MID_EXP_UPP/MOTOR/R1.actualPosition.value"=None,
exp_r2 : "karabo#MID_EXP_UPP/MOTOR/R2.actualPosition.value"=None,

karabacon
config: "karabo#MID_RR_SYS/MDL/KARABACON.actualConfiguration.value"=None,
nnn

Parameters

exp rl/2: float

Motor position of respective motor
config: string

The scan configuration.

Returns
result: list

List of scanned motors with tuples of shape (motor name, motor position)
W

Next, from the karabacon configuration the scanned motors are read. Again, for simplicity only two
motors are included.

only proceed if wvalid karabacon config is found
if config!=None:
get moving motor list from karabacon status
motors = [m.split(":")[0] for m in eval(config.split("---")[1].strip("Motors: "))]
assign motors names according to this list
dict = {

>MID_EXP_UPP/MOTOR/R1’> : exp rl,
>MID_EXP_UPP/MOTOR/R2’> : exp r2,

}

number of configured motors = len(motors)

Finally, for each configured motor, the motor data defined in the beginning is read and appended to
the result, which is returned. For consistency in the code, the number or returned motors is always
equal to a predefined max_number_of _motors. If less motors are scanned, the first motor is appended
at the end to fill up to the desired number.

result = [(motors[i], dict[motors[i]]) for i in range(number of configured motors) |
for i in range(max_number_ of motors — number of configured motors):
result .append ((motors[0], dict[motors[0]]))

return result

For every train, the above described function returns a list of tuples (name, motor position) with
length max_number_of _motors, which can be used by other views.
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For example, for all motors in the list, we can display the motor position as a function of the train
ID, i.e., as a function of time.

for i in range(max number of motors): # loop over list of motors
@View.Compute (name=f"XX_scan/motor_{i+1} _vs_trainId")
def motor position(tid: "internal#train_id", motorArray: "view#motor", i=i):
e
Parameters
tid: int
train ID
motorArray: list
List of scanned motors tuples (name, value).
i: int
Index of scanned motor
Returns
rich output
Output to be displayed by the GUI.
o
data = motorArray[i]

return rich output (x=tid, yl=data[1l],
title=f"position of motor {i+1}: {datal[0]}",
xlabel="Train ID", ylabel="position",
max_points=600)

This view loads the train ID and the data from the function motor and views the motor position as
a function of the train ID. In addition, the name of the i-th motor is displayed.

As an example for a motor scan the data of one of the two diodes is shown against the motor
position.

@View.Compute (name=f"XX_scan/diodel_vs_motor{i+1}")

def diodel vs_ motor (motorArray: "view#motor", photon counts: "view#DIODES/
diodel_vs_trainId", i=i):
o
Parameters
motorArray: list
List of scanned motors tuples (name, value).
photon counts: view
Output of view showing diode 1. view.data has shape (train ID, value of diode
1).
i: int
Index of scanned motor
o
data = motorArray|[i]
return rich output(x=data[l], yl=photon counts.data[l],
title=f"Diode 1 intensity vs motor position {i+1}: {datal[0]}",
xlabel="Motor position", ylabel="Intensity")

Again the motor data is loaded from the function motor. The data of diode 1 is loaded from a
preloading view, which shows the value of diode 1 as a function of the train ID. To bin y-data
according to values of x-data, the data analysis group implemented an additional analysis method
in extra-foam’s MID special suite Correlator. Instead of the data of diode 1, any other processed
detector data returning one value per train can be used.

With this implementation, proper motor scans with correct train matching and binning are now
possible. In addition, processed data like the APD data with prompt or delayed integration ROI can
be used in the real-time display of motor scans.

3.4.4 Online analysis of *"Fe-experiments

The complete online analysis implemented for the °“Fe experiments is represented by the flowchart
in Fig. 3.4. The blue boxes represent the input coming from the data acquisition system karabo.

Some of this data is processed in the gray boxes. The splitting into pulses for the APD signal as
well as the moving motor detection routine were already discussed above. By integrating the APD
signal over different regions of interest in time, a measure for the prompt, the delayed and the total
counts can be received. To receive one value per train from the Mossbauer drive, a linear slope is
fitted to the voltage trace of a train. From this fit the M&ssbauer detuning for each pulse in the train
is read off.

There are different kind of views. The most standard one is to monitor the respective signal as
a function of train ID, which effectively provides the signal as a function of real time. Oftentimes,
this signal is not required to update with 10 Hz, such that a local average over typically 10 trains is
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Figure 3.4: Flowchart of the online analysis for > Fe experiments. The blue rhomboids indicate input coming
from karabo for every train. The gray rectangles represent processing of data and the green rhomboids the
available views. Light green rhomboids indicate principle views, the dark green local (L) or global (G) averages
of these. Details are in the main text.

applied. The other standard view is some detector signal as a function of motor position. Besides
this, there are some special views involving the APD signal. First and foremost, the time spectrum
can be calculated per APD as well as per pulse ID, or fully integrated. In addition, ROIs can be
dynamically defined to integrate the APD signal in the prompt pulse and delayed signal regions.
This forms a measure for the number of photons in the respective regions, which is primarily used
for motor scans with the APDs. Additionally, it is used to monitor the count rate over real time and
as a function of pulse ID. Furthermore, a heatmap showing the APD trace as a function of pulse ID
and time after excitation is generated. For the Mossbauer drive, the voltage trace per train can be
shown and the mininmum and maximum per train. Combining the information from the APDs and
the Mdossbauer drive, a time-energy spectrum can be generated, from which, by integration over late
times, a late time spectrum (see Section 2.1.3) can be generated.

3.4.5 Online analysis of “°Sc-experiments

Similarly, the online analysis for the 4°Sc experiments is illustrated in Fig. 3.5. Again, blue rhomboids
represent input from karabo while light green rhomboids show the possible views with potential
averaging indicated in dark green. Gray boxes indicate data processing for the more complex data.
As in the experiment for 5"Fe, most views are monitoring data as a function of real time. In
addition to the discussed views in Section 3.4.4, here also the machine energy, which can provide
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Figure 3.5: Flowchart of the online analysis for **Sc experiments. The blue rhomboids indicate input coming
from karabo for every train. The gray rectangles processing of data and the green rhomboids the available
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the users control over the photon energy, the seeding pitch angle, and two temperature sensors are
monitored. The data of the X123 detectors is first processed to provide the energy channel and time
after excitation of each detected photon. This can be viewed as a histogram. Furthermore, from the
processed data, the number of counts in the fluorescence region around 4keV and the nuclear signal
around 12.4keV can be determined and monitored. The data processing of this detector is explained
in more detail in Section 3.5.3. Finally, the experimental setup contains several shutters running with
10 Hz, whose functionality is very crucial especially to protect the NFS detector directly in the beam.
Therefore, for each shutter the status value is returned and can be monitored. Furthermore, failures
are detected by comparing the shutter status value to a threshold, thus creating boolean information
on the state. Unfortunately, in extra-foam, currently no feature to trigger an alarm based on a boolean
is implemented. However, returning the maximum over all trains of a view since the last reset of this
observable (similar to the global average), it can be captured whether a failure occurred since the
last reset. If a detector failure is detected, this triggers a visual alarm in form of an orange-yellow
blinking window.

3.5 Data And Metadata iNspection Interactive Thing
(DAMNIT)

The Data And Metadata iNspection Interactive Thing in short DAMNIT [EuXa] is a tool developed
by European XFEL’s data analysis group. It automatically calculates predefined Variables, whenever
the data of a new run arrives at the offline cluster, and stores the computed data in a table with one
row per run. These variables can be anything, e.g., the XGM mean pulse energy, the center of the
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Figure 3.6: Screenshot of part of the table generated with DAMNIT for the latest ®7Fe-experiment
p8006 [57F25]. Displayed are the run number, the time stamp of the run, the number of trains, the run
length, the xgm pulse energy averaged over each train, the number of pulses, the scan type if a scan was
performed, the data of the APD signal, the data of the Energy-Time spectrum, a figure containing the time
spectrum, the run type and sample type read from the metadata, the seeding peak position and whether the
Madssbauer drive is in or out. Values printed in bold font are summary values of the respective data indicating
that the underlying data is more complex than a single float or string. For more details on the respective
variables see Section 3.5.4.
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Figure 3.7: Screenshots of XGM data in DAMNIT for the latest °7Fe-experiment p8006 [57F25]. (a) XGM
averaged over train vs train ID for a single run. (b) XGM averaged over run vs run number.

seeding peak, certain motor positions or more complex processed data. An example used in the latest
5TFe-experiment p8006 [57F25] is shown in Fig. 3.6.

3.5.1 Principal functionality

To illustrate the principal functionality, like in the online analysis, the data of the XGM is used. A
variable can simply be defined by a python function.

@Variable (title="XGM energy slow [uJ]", summary="mean", tags = ["Beam"])

def xgm energy slow(run):
nnn

Parameters
run: run object
Run for which the varibale should be computed.
returns
xgm_values : xarray
Xarray of shape (train ID, xgm average over train).
nnn
xgm_values = run|["SA2_XTD1_XGM/XGM/DOOCS", "controlData.slowTrain"]|.xarray ()

return xgm valus

The function returns the slow XGM value per train and is decorated by a decorator @Variable, which
specifies the name of the variable as is appears in the table. Oftentimes, the resulting value is not
a single number per run. In this case it is useful to specify a summary, which is displayed in the
table. Here, the summary is set as mean value over all trains. Such values, which are represend by a
summary value in the table are printed in bold font. In addition, tags can be set to a function and
in the GUI the tags to be shown can be selected.
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In Fig. 3.7(a), the resulting XGM value averaged over one train is displayed against the train
number exemplarily for one run. These figures can be simply generated by double-clicking on the
respective cell of the table. Furthermore, the GUI allows to view the cell values - may they be single
floats or summary values - as a function of the run number. As an example, in Fig. 3.7(b) the mean
XGM value of a run is shown for all runs in the proposal.

3.5.2 APD signal

As discussed in Section 3.4.2, the APD data has to be processed to have pulse-resolved information,
which typically takes a few minutes for a run acquired over ten minutes. Using DAMNIT this
processing can be done automatically for every new run, thus making the processed data readily
available for data analysis as fast as possible and reducing waiting time until decisions based on the
data can be made. The processing is performed analogously to the one in the online analysis and is
explained in the following.

First, the run is loaded. Sometimes it happens, that some source misses data for a specific train.
In order to align the data per train properly, the function run.select () provides the functionality to
only load trains in which all instruments of a specified list have data. Here, full_selection contains
all relevant measurement devices for the experiment.

@Variable(title="APD traces", cluster=True, tags = ["Delayed photons"])
def APD traces(run, run_idx:"meta#run_number", num pulses:"var#n_pulses"):
W
Function to load all APD data of one train already splitted into one trace per x—ray
pulse.
Parameters
run: XFEL run data
The loaded run.
run_idx: int
Number of run, from which the APD trace is taken.
num _pulses: int
The number of x—ray pulses in each train loaded from function n pulses.
Returns
data list all chunks: list
List containing the APD data information. Format is (APD ID, train ID, pulse ID,
time) .
nnn
run = run.select (full selection, require all=True)

data list all chunks = []

pulses per train = num_pulses

Note, that in the decorator the cluster variable is set to True, which results in this computation being
performed on the offline cluster, reducing the analysis time significantly. No summary is specified,
such that the default one, which is the shape, is returned. Next, the APD data is analyzed. To not
load too much data at the same time, the data is loaded in chunks of at most 1000 trains. Here, the
baseline correction (baselineCorrection) and splitting into pulses (split_pulses) are separated
into two functions, but together they are equivalent to the function discussed in Section 3.4.2. Finally,
the data is reordered into the desired shape and returned

# do analysis for chunks of at most 1000 trains
sel split = run.split trains(trains per part=1000)
for sel_part in sel_ split:

data list = []
for k in range(5): loop over all apds
# apd has dimensions [train id, time]|

apd = sel part[detectorPathAPDs, detectorsAPDs|[k]]. ndarray ()

apply baseline correction
apd = baselineCorrection (apd)

split the apd traces
pulses = split_pulses(apd, apdID= k, pulses per_ train = pulses_ per train,
run_idx = run_idx)

data _list.append(np.array (pulses))

reordering of indices
data list = np.einsum(’aijk->jaik’, np.array(data_list))

if len(data list all chunks) == 0:
data list all chunks = data_list
else:
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data_list all chunks = np.concatenate( (data list all chunks, data_list ) )

# reordering of indices
data list all chunks = np.einsum(’jaik->ajik’, np.array(data_ list all chunks))
return data_list_ all chunks

This processed and saved data now allows quick access to the APD signal on a per pulse basis.

3.5.3 X123 signal counts

For the X123 detectors a very useful variable to have in the table is the number of signal photons,
i.e., photons within a specific energy region of interest. This number is computed automatically, such
that the number of signal photons is easily accessible for monitoring, e.g., whether the XFEL beam
is still on resonance.

Three equivalent detectors were used in the experiment placed upstream and downstream of the
moving #3Sc-foil to measure the fluorescence and downstream of a static *5Sc-foil to measure nuclear
forward scattering (c.f. Fig. 3.2). The data analysis will be explained exemplarily for the upstream
detector. In addition, as already mentioned in Section 3.3.2, the X123 detectors can be run in two
different modi. One just returns the spectrum after a certain measurement time, the other one returns
time and energy information for each photon for every train. The latter mode was used in the last
45Gc-experiment p6536 [45524] and the respective analysis in DAMNIT to get the number of signal
photons is presented in the following.

First, the raw data of the detector is loaded. The time information is stored by a least significant
bit bys continuously running from 0 to least_bits=2'6 and a most significant bit b, counting up by
one every time the most significant bit has reached 2!6. Both values are given in us and set to zero
by the train trigger. Thus the time after train-arrival is given by

t = (bums - 20 + big) pis. (3.1)

After loading the data, the time is converted from least and most significant bit into time in us and
stored in a list together with the amplitude information.

@Variable(title="D_up total data", summary="mean")
def D up raw_data(run):

nan

Parameters

run: XFEL run data
The loaded run.

Returns

merged: list
List of tuples (time, amplitude) containing all recorded photons within run.

won

time least = run|["MID_EXP_UPP/DET/SDD_DETECTOR -1:daqListOutput", ’data.timeTag’].
ndarray () .astype(int)

timeimost = run [ "MID_EXP_UPP/DET/SDD_DETECTOR -1: daqListOutput", ’data.timeTagMsb’ ] .
ndarray () .astype(int)

amplitude = run["MID_EXP_UPP/DET/SDD_DETECTOR -1:daqListOutput", ’data.amplitude’].

ndarray () .astype (int)

merged list = []
for i in range(len(amplitude)):

time = np.array (time most[i])=*least bits + np.array(time least[i])
amplitudes train = np.asarray(amplitude[il])
for j in range(len(time)):
merged list.append ((time[j], amplitudes train[j]))
merged = np.array(merged _list)

return merged

Next, the raw data is cut to the data within the region of interest (ROI) around 4 keV, in which the
fluorescence photons of scandium are expected (see Section 2.1.2). The lower (upper) limit is set in
D1_4keV[0] (D1_4keV[1]). Only tuples for which the amplitude, i.e., photon energy, is within these
bounds and the time is larger than a threshold of 15ms for background suppression, are returned.

@Variable(title="D_up 4keV data", summary="mean"
def D_up_4ch_data(run, mcrgcd_list: "var#D_up_raw_data"):

nnn
Parameters

run: XFEL run data
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The loaded run.
merged list : list
List containing photon events in shape (time, amplitude).

Returns

list roi: list
List of tuples (time, amplitude) containing only photons wihtin energy ROI.
W

list _roi = []

t thresh 15000
list _roi [
for i in range(len(merged list)):
t, A = merged list[i]
if (A>=D1 4keV[0]) and (A<=D1 4keV[1]) and (t>t thresh):
list roi.append((t, A))

return list_roi

Finally, the number of signal photons in the fluorescence ROI around 4keV, measured with the
upstream detector, is simply given by the length of the data array within the ROI.

@Variable(title="D_up 4keV counts")
def Diup74keV7counts(run, merged : "var#D_up_4keV_data"):

nn

Parameters

run: XFEL run data
The loaded run.
merged : list
List containing photon events in the 4keV ROI. Shape is (time, amplitude).
Returns
counts: int
Number of counts within 4keV ROI.
nnn
counts np.shape (merged) [0]

return counts

Similarly, the number of signal photons in the 12.4keV region and for the downstream detector can
be calculated.

3.5.4 DAMNIT variables for *’Fe-experiments

The above discussed examples are only a small part of all variables implemented in DAMNIT for
the experiments with ®"Fe. A comprehensive list of variables implemented for those experiments as
used in beamtime p8006 is given in Table 3.1. The different categories are shortly discussed in the
following.

General. The general variables contain information about the measurement, such as number of
trains and pulses as well as the duration of the run and the size of the total collected data of the
run. In addition, if a motor scan was performed, the most important scan information, i.e., name of
scanned motor, scan range and number of steps, are given. Furthermore, the run and sample type
are read from the meta data of the run.

Beam. The beam variables contain information about the XFEL beam. The HIREX spectrum and
maximum position give information about the spectral properties, the XGM energies about the inte-
grated pulse energy. The two variables pulses and pulse pattern tell which pulses in the train are sent
to the experiment. The transmission, according to optional attenuators through different parts of the
beamline upstream of the experiment between the undulator and the experimental hutch [Mad+21],
is given in the transmission variables.

Delayed photons. The delayed photons variables are all based on the processing of the APD
traces, which is the key part of this category. In addition, the data of the Mdssbauer drive is
processed. On one hand, whether the Mo6ssbauer drive is in the beam or not, and on the other
hand, the Md&ssbauer detuning for each pulse. Using the Mdssbauer and APD data, an energy-time-
spectrum can be generated. Another important information is an estimate for the number of resonant
photons. This is calculated by the area under the APD traces summer over all trains and pulses. It
can be approximately normalized after determining the single-photon area as in Section 3.6.4. This
number can then be compared with a predefined number of wanted counts. Finally, DAMNIT can
also provide figures. For the °"Fe experiments, the two most important ones are a time spectrum, i.e.,
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name summary description

Trains - Number of trains in run
~ Run length - Duration of run
5 Data size [TB] - Data size (raw and proc combined) of run
£  Scan type - If motor scan was performed, information about
© which motor, scan range and number of steps.
Run type — Run type as specified in DAQ
Sample name - Sample name as specified in DAQ
HIREX spectrum mean Spectrum of HIREX averaged over whole run
HIREX max pos mean Pixel, where maximum of mean HIREX spectrum is
XGM energy [uJ] mean Pulse energy measured with XGM, pulse resolved
XGM energy slow [pJ] mean Pulse energy measured with XGM, averaged over
train
Pulses - Number of pulses per train
% Pulse pattern sum Pattern of which pulses within train are filled
m XTDI transmission mean Transmission set by attenuators in beamline module
XTD1
XTD6 transmission mean Transmission set by attenuators in beamline module
XTD6
OPT transmission mean transmission set by attenuators in optics hutch
total transmission mean Combined transmission through above elements
APD traces shape Processed APD data in shape (APD ID, train ID,
0 pulse ID, time)
§ MB drive position - "In" or "out" depending on motor position
2 MB detuning shape MB detuning per pulse in shape (pulse ID, train ID).
—? 2D spectrum shape Energy-Time spectrum integrated over all trains in
g shape (APD ID, pulse ID, detuning, time)
%i Time spectrum - Plot of intensity vs time integrated over all pulses
A Fig 2D spectrum - Energy-Time spectrum integrated over all pulses and
APDs

Table 3.1: Variables implemented in DAMNIT for the experiments with " Fe as used in the latest beamtime
p8006. If no summary is stated, the variable returns a single value or a figure. Details on the variables are
given in the main text.

intensity as a function of time after excitation, and the energy-time spectrum, i.e., a two-dimensional
histogram with time and Mossbauer detuning on the x- and y-axis.

3.5.5 DAMNIT variables for ¥°Sc-experiments

Also for the experiments with 45Sc, the above discussed examples are only a small part of all variables
implemented in DAMNIT and a comprehensive list of variables implemented for those experiments as
used in the latest beamtime p6536 [45524] is given in Table 3.2. The different categories are shortly
discussed in the following.

General. The general variables contain information such as number of trains, duration of run and
the size of the measured data. In addition, it is detected whether, and if so which, motors are moved.
Furthermore, from the motor position, the NFS sample in the beam is read out.

Beam. The beam variables contain information about the XFEL beam as before, i.e., spectral
information, pulse energy and number of pulses. In addition, the machine energy, which is the XFEL
energy tuning knob partially available to the users, and the seeding angle, which mainly defines the
energy of the seeding peak, are given.

X123. In the experiment three different X123 detectors (D_up, D _down and D NFS) were used.
They were all used in the same measurement mode such that the data processing is the same. For
each of them the total data and number of counts, as well as the data and counts in two regions of
interest, one around 4 keV and one around 12keV, are determined. The exact procedure is described
in Section 3.5.3.
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name summary  description
Trains - Number of trains in run
% Run length - Duration of run
& Data size [TB] - Data size (raw data) of run
(B Moving motors - Motor names of moving motors
NFS sample - Name of NFS sample read from motor position
HIREX spectrum mean spectrum of HIREX averaged over whole run
HIREX max pos mean Pixel, where maximum of mean HIREX spectrum is
g energy mean Machine energy
& seeding angle mean Pitch angle of seeding crystal
A XGM energy slow [J] mean Pulse energy measured with XGM, averaged over
train
Pulses — Number of pulses per train
D _up total data - List of (time, amplitude) for recorded photons
D _up total counts - Number of total recorded photons
D _up 4keV data - List of (time, amplitude) for recorded photons
around 4 keV
D _up 4keV counts — Number of photons recorded around 4 keV
D_up 12keV data - List of (time, amplitude) for recorded photons
around 12keV
D_up 12keV counts - Number of photons recorded around 12 keV
D down total data - List of (time, amplitude) for recorded photons
D_down total counts - Number of total recorded photons
R D_down 4keV data - List of (time, amplitude) for recorded photons
e around 4 keV

D down 4keV counts
D down 12keV data

D down 12keV counts
D NFS total data

D NFS total counts
D NFS 4keV data

D _NFS 4keV counts
D NFS 12keV data

D NFS 12keV counts

- Number of photons recorded around 4 keV

- List of (time, amplitude) for recorded photons
around 12keV

- Number of photons recorded around 12keV

- List of (time, amplitude) for recorded photons

- Number of total recorded photons

- List of (time, amplitude) for recorded photons
around 4 keV

— Number of photons recorded around 4 keV

List of (time, amplitude) for recorded photons

around 12keV

Number of photons recorded around 12 keV

Table 3.2: Variables implemented in DAMNIT for the experiments with *°Sc as used in the latest beamtime
p6536. If no summary is stated, the variable returns a single value or a figure. An exception of this is the
X123 data. For the X123 data, none of the implemented summaries is meaningful, which is why they are also
stated without summary. Details on the variables are given in the main text.
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3.6 Near-online and offline analysis

The near-online and the offline analysis are essentially the same and both are based on standard
jupyter notebooks. The only difference is that near-online refers to analysis of finished runs during
the experiment, while offline refers to the potentially more complex analysis after the experiment.
This section provides a few simple and generally necessary examples, which are a by far not complete
list of analyses performed. All data-analyses in Chapters 4 to 6 are performed with those jupyter
notebooks and provides further insights on what is possible.

3.6.1 Loading data

There are two options to read data. One option is to load the run data directly from the raw or
processed data using the European XFEL library EXtra-data [EuXb], the other is reading from the
data created by DAMNIT [EuXa|. In the data analysis both methods are used. If data exists in
DAMNIT, the default is to read from this data. However, for some devices no DAMNIT data is
created and the raw data is read.

One of the goals when developing the analysis pipeline presented in this chapter was to make it
easily accessible for everyone without much preknowledge. In addition, the pipeline should be easy to
update for new experiments, e.g., if data format or name of devices change. Note that name changes
can in principle also be adapted for by defining aliases for the device names. To simplify the read-in
of the data, in an additional python-file a customized class RunData is defined and all notebooks
read-in data by using this class.

An instance data of this class is initialized and loads the most basic data by RunData (run_number)
which is defined by the following code snippet.

from extra_data import open_run # load from raw data
from damnit import Damnit load from damnit data
from dataclasses import dataclass for class
Qdataclass

class RunData:
run_number: int
n_trains: int
n_pulses: int

def init (o, run_ number, fromDamnit=False):
Initialize a RunData instance and load the basic run data.
Parameters
run number: int
Number of the run.
fromDamnit : boolean

Load data from DAMNIT or raw data.

Returns
o: RunData
Instance of the class RunData containing basic information (run number, number
of trains, number of pulses) about the run.
o.run_number = run_ number
db = Damnit(proposal _nr) # Load database
df = db.table(with _ titles=True) # convert into pandas dataframe
if fromDamnit:
o.n_trains = int(get ds(run_number, "n_trains")) number of trains
o.n_pulses = get_ ds(run_number, "n_pulses") number of pulses
o.energy = get_ ds(run_number, "energy") 7 photon ecnergy
o.xgm_slow = get ds(run_number, "xgm_slow") XGM averaged over train
else:
run = open_run(prop_ num, run_number) load run data
run = run.select (full selection , require_all=True) # only use trains ., where all
important devices have data
o.n_trains = len(run.train_ids) / number of trains

o.n_pulses = int(run["SA2_§TD1_XGM/XGM/DDOCS", pulseEnergy .
numberOfBunchesActual’][0].ndarray () [0]) # number of pulses

Depending on fromDamnit, data can be either loaded from the DAMNIT database or the raw data
by using the respective data specific reading functions. The full_selection again takes care of the
train matching as in DAMNIT.
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Figure 3.8: Time calibration of APD data during beamtime p8006. The raw data (top) and time calibrated
APD trace (bottom) is shown for all used APDs in run 72. The left panels show the full trace, while the
right ones are zoomed into the region of the first pulse in the train. The time axis is in datasamples with 4
samples per ns. The APD indices correspond to ADQ412 channels 1A, 1C, 2A, 3A, 3C. Note that the APD
with idx 2 (green) was not in operation.

Usually not all data of a run has to be read in a specfic analysis. Therefore, reading the data is
split into several topics, e.g., read_run_data_APD reading the processed APD data from DAMNIT
into data.apd. That way a user using the jupyter notebooks in the analysis pipeline does not need
to handle the reading of the data and can concentrate on their analysis.

3.6.2 Calibration of APD signal

Time calibration. To calibrate the time zero, at which the first pulse of the train arrives, for each
APD the raw data trace averaged over all trains is loaded from the raw data for a run without sample
in the beam. An example is shown in the top row of Fig. 3.8. On the left side, the full raw voltage
trace for each APD is displayed. We can see the dips in the voltage traces, which correspond to the
prompt pulse for each x-ray pulse in the train. The right panel is a zoom in to the first pulse in
the train clearly showing the different time offsets for the different APDs. They are caused by slight
differences in the cabling.

The local minima are searched for with scipy.signal.find_peaks in the inverted trace. After-
wards the positions of the minima are evaluated. From the mean distance, the pulse separation is
determined, from the index of the first minimum the offset of each channel:

Calculated pulse separation: 1760.0 data samples
Calculated offset 1A: (72987 + 14) data samples
Calculated offset 1C: (72987 + 17) data samples
Calculated offset 2A: (72987 + None) data samples
Calculated offset 3A: (72987 + 0) data samples
Calculated offset 3C: (72987 + 5) data samples

Those calibrated pulse separation and offsets are used to split the APD traces over a whole train into
the different pulses as explained in Section 3.4.2. The pulse separation corresponds to the set value
of 440 ns. In the lower row in Fig. 3.8 the traces are shifted according to the respective offsets. As a
result, the prompt pulse arrives at time channel 0 for all APDs. In order to have the prompt pulse
fully in the APD trace for one shot, we artificially set the arrival of the prompt pulse to 12.5ns. In
further analysis, this is compensated for in the time spectra, but allows to also study the prompt
pulse behavior easily.

Note, that for channel 2A, which in the experiment was used to detect incoherent scattering, no
offset could be determined as this channels did not see photons in the analyzed run. It is set to the
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Figure 3.9: Analysis of single photon area in experiment p3334. (a) A two-dimensional histogram showing
the peak heights and widths. (b) Histogram of the area under the traces within analysis ROI. For the analysis
all data measured in the nuclear forwards scattering setting were used. The blue lines in both panels indicate
n-times the single-photon area.

same as 3A, but was not used in the experiment afterwards.

Single photon area and peak analysis. The other important calibration is to find the char-
acteristics of a single-photon peak, which is its width, height, and area. Because the APDs are all
driven with slightly different high voltage and are not identical, this analysis is performed for each
APD separately.

To gain high enough statistics, the APD data for several runs is loaded. Ideally, those runs should
contain moderate photon numbers. If there are too many photons, the chances that more than ten
photons arrive close to each other resulting in a pileup and a potential non-linear response of the
APDs. If there are too few photons, the chances for seeing a few photon response and also the overall
statistics are worse.

The peak analysis is performed for every pulse in the DAMNIT APD data (see Section 3.5.2).
First, the background of the respective APD trace is corrected with a better baseline correction than
the rough one in DAMNIT. If the count rate is small, it can be expected that photons at late times,
i.e., after 400ns, are extremely rare. Thus the average after 400ns is subtracted as the baseline.
Afterwards, the peaks in the trace are searched for in an iterative way, which is illustrated in the
following pseudo-code.

trace = data.apd|[apd ID, train ID, pulse ID, :]

maximum = maximum/(trace)
max_pos = maximum _index(trace)
while maximum > threshold:
trace in_ roi = roi(trace, max pos, width)
area = sum(trace_in_roi)
peak heights, peak widths = find peak properties(trace_in_roi)
trace[roi] = 0
maximum = maximum(trace)
max_pos = maximum _index(trace)

The maximum within the time range from 20 ns to 400 ns is searched for. Note, that in the processing
of the APD traces in Section 3.5.2, the arrival time of the prompt pulse is set to 12.5ns on purpose.
If the maximum is higher than a previously defined threshold (typically 150 data samples) the peak
analysis is started. If the maximum is lower than the threshold, the analysis for the respective trace
is terminated and the next trace is analyzed. The analysis continues with finding the ROI around
the maximum position, in which the signal is above a second threshold (typically 50 data samples)
and maximally +£10ns wide. Within this ROI, the area under the curve is determined by the sum
over the trace in the ROI, and using scipy.signal.find_peaks and scipy.signal.peak_widths
the peak is analyzed. Afterwards, the trace in the ROI is set to zeros and the analysis is continued
with finding the maximum of the modified trace.

In Fig. 3.9, the results of the analysis are exemplarily shown for one APD. In panel (a) a two-
dimensional histogram of the peak heights and widths is shown. The bright spot of single-photon
peaks is clearly visible and corresponds to a height of 580 data samples and a full-width half-maximum
(FWHM) of 9.4 data samples, which corresponds to 2.35ns. For the two-photon events, a banana-
like shape is visible as indicated by the second lowest of the blue lines, which represent points with
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Figure 3.10: Example of photon arrival time reconstruction. In blue the raw trace is shown. The gray
rectangle indicates the ROI around the maximum position. In this ROI the sum of several Gaussians is fitted,
which is shown by the red dashed line, with the resulting arrival times marked by the black crosses. After the
first iteration step, the respective ROI is set to zero and the analysis is continued with the modified trace.
The shown trace is of APD 1 in run 444, train 20, pulse 11 in experiment p3334.

same area. It ranges from peaks with same FWHM, but double height, i.e., two photons at the
same time, towards peaks with smaller heights close to the single-photon peak and about twice the
FWHM, which represent double peaks of two photons arriving close to each other. Furthermore, the
second "banana" of three-photon events is clearly visible. Panel (b) shows a histogram of the areas
of the analyzed peaks. These areas are defined as the sum over the trace in the peak ROI. Clearly
the single-, double- and triple-photon peaks are visible. The single-photon area is defined as the
maximum position of the first peak. The blue lines indicate multiples of this, which clearly fits also
the two-photon and three-photon peaks . These multiples of single-photon areas are also represented
in panel (a) by the blue lines.
The same analysis is run for all APDs to characterize the respective single-photon peak.

3.6.3 Pseudo time spectra

One of the main tasks in the near-online analysis in the experiments with °"Fe is to view and analyze
time spectra, i.e., intensity as a function of time after excitation. In the near-online analysis during the
experiment, those time spectra are generated by summing up the APD traces instead of creating an
actual histogram of the photon arrival times for which a long preanalysis is needed (see Section 3.6.4).
To distinguish the two kinds of time spectra, the former ones, where the APD traces are integrated,
are referred to as pseudo time spectrum. For sufficient statistics, they represent the actual underlying
time spectrum convoluted with the single-photon peak. They closely resemble the actual time spectra
and provide a good fast alternative for near-online analysis.

To create such a pseudo time spectrum, the APD data is summed over all trains. Typically, the
pulse ID and APD ID are kept as a dimension because of potential differences for different pulses in
the train and APDs. The summed up time spectra in the shape of (APD ID, pulse ID, time [ns]) are
saved for fast viewing and comparing of different runs. The summation can also be performed over
several runs.

Afterwards, the precalculated time spectra can be further analyzed with prepared notebooks, e.g.,
for differences between different pulses. Besides, two time spectra can be compared to each other or
can be fitted.

It is possible to normalize the pseudo time spectra by the single-photon area, such that the area
under the trace gives an estimate for the number of photons. That way a rough uncertainty estimate
can be made by taking the square root of the normalized intensity at every time I(t) & 1/I(t). Note
that this only works if the estimated photon number is high enough to have reasonable statistics in
the spectrum.

3.6.4 Estimating photon arrival times

Extracting the photon arrival times from the APD trace is a difficult task especially for higher count
rates. In [Chu+18] Chumakov et al. reconstruct the photon arrival times by fitting a sum of single-
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photons responses to the detector traces. Here, a similar technique is applied.

Like for the peak analysis performed in Section 3.6.2, an analysis ROI is found. With the knowledge
of the size of a single-photon area, the number of photons in the ROI can be estimated. For reliable
results the fit function should not be ambiguous. Especially, if two Gaussians on top of each other
are assumed, the fitting routine runs into problems. Therefore, before fitting the peak properties are
analyzed with scipy.signal.find_peaks. If the photon number estimate indicates, that there are
two photons in the ROI, at first the voltage trace is tried to be modelled with a double-Gaussian. If
the peak property analysis results in two peaks, those properties are used as the initial fit conditions.
If the peak property analysis found only one peak, the two peaks might be close to each other and as
initial fit parameters the peak properties with slightly shifted times (£2ns) are used. It can happen,
that the two photons arrive close to each other such that they do not produce a double-Gaussian
profile. In this case the double-Gaussian fit fails and triggers the fitting of a single Gaussian. For
more than two estimated photons in the ROI, in a similar way, the number of summed Gaussians is
reduced stepwise if the fit fails. The automatic fitting is currently implemented for up to four photons
within one ROI. Note that there can be several ROIs in one trace. For higher photon numbers, the
photon number estimate is not precise enough and the fitting becomes to hard. Still, manual fitting
might work in some cases. After one ROI is analyzed, the trace in this ROI is set to zero and the
next peaks are searched for.

An example reconstruction is shown in Fig. 3.10. In the left panel, the raw trace is displayed in
blue. As described before, a ROI around the maximum position is defined, which is marked by the
gray rectangle. Depending on the photon number estimate in this ROI, the sum of several Gaussians
is fitted giving the arrival times marked by the black crosses. Afterwards, the trace in the ROI is set
to zero and the analysis is repeated as shown in the right panel.

The photon arrival time analysis is very robust for moderate count rates. For too high count
rates, the dynamical range of the APDs is not large enough to have a linear response over the whole
time range. In this case, especially at early times saturation effects might disturb the signal. More
details on this are discussed for reflectivity measurements in Chapter 5, where for a few traces with
many photons this is an issue. If saturation effects occur, the height of the voltage signal does not
correspond linearly to the number of photons and the presented photon number estimate, which is
required for the photon arrival estimate, does not work reliable anymore. In addition the fitting
function becomes ambiguous. For most data, especially all nuclear forward scattering data from foils
presented in this thesis, saturation problems do not play an important role and the photon arrival
time estimate works fine.

Note that the photon arrival time estimate is a too complex analysis for the near-online analysis
during the short time of the experiment, but a very crucial one for the more detailed analysis after
the experiment. With this data, further analyses, like analyzing photon number distributions and
creating actual time spectra, can be performed.

3.6.5 Near-online analysis for *°Sc-experiments

Automatic update of resonance curve. For the resonance search in the first 4°Sc experi-
ment [45522] for every run, which had a duration of a few minutes, the incident photon energy
was slightly changed. During the experiment the measurement mode, which provides only one spec-
trum at the end of each run, was used, which made an implementation into the online analysis with
extra-foam as presented in Section 3.4 very tricky. In order to still see how the resonance curve
slowly builds up over many hours, an automatically updating viewgraph was designed showing the
most relevant data, i.e., the pulse energy, the signal photons and the signal photons normalized by the
pulse energy as a function of run number and incident photon energy. The relevant jupyter notebook
monitors the DAMNIT data folder and updates the graph automatically as soon as data from a new
run is available.

This provides a "second online analysis" on slower time scales of hours instead of minutes and with
the recorded run data. In addition, the decoupling from the online analysis ensures, that the view
graphs are not cleared by accident while working with the online analysis.

A detailed review of the offline analysis of the first experiment is provided in Chapter 4.

Energy-Time information. In the second *°Sc experiment [45524], the X123 detectors provided
not only energy, but also time information of the signal photons. Therefore, an important quality
check of the data was made by plotting the energy-time information of each recorded photon. Signal
photons should accumulate around 4 keV and 12keV for the fluorescence and NFS signal, respectively,
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Figure 3.11: Example of Energy-Time information from the three X123 detectors in experiment p6536.
The different colors indicate different runs. The energy channel where the K, and Kz fluorescence lines are
expected are indicated by the red vertical lines, the 12keV NFS signal by the magenta line.

and should exceed the background. An example of such a plot is shown in Fig. 3.11. The triangle in
the lower left corner is attributed to noise from the non-resonant light. The fluorescence signal can be
clearly seen, the NF'S signal is on the level of the background. In addition, the data can be integrated
along the energy axis within a ROI for a rough estimate of the lifetime, and can be integrated along
the time axis for spectral information. Such a signal count analysis is crucial for the decisions on
which samples to measure.

3.7 Summary and outlook

Both experiment types using the Mdssbauer isotopes ®"Fe and *°Sc are non-standard experiments at
the European XFEL and XFELs in general. Therefore, unlike at synchrotron radiation sources, no
Méssbauer specific analysis was available. Together with the help of the data analysis group from the
European XFEL we developed the data analysis for Mdssbauer experiments at the European XFEL
with ®"Fe and #°Sc, which was essential for the success of the experiments.

At the European XFEL the data analysis is divided into three different categories. First, the
online analysis is used for real-time analysis throughout the experiment. This includes motor scans,
especially with processed data, which are crucial for alignment of the setup. Furthermore, the data
quality, e.g., in form of a time spectrum or the number of resonant signal photons, can be investigated
in real-time. A big difference as compared to synchrotrons experiments is the processing of the APD
data due to the unique pulse structure at the European XFEL and the amount of photons in each shot.
Second, there is the near-online analysis during the experiment, which is mainly used for inspection
of recorded data and subsequent decision on how to proceed in the experiment. For example, this
can be analyzing recorded time spectra in the ®”Fe-experiments or the number of signal photons in
the 4°Sc-experiments. Lastly, there is the offline analysis, which is the detailed analysis after an
experiment has been finished. Unless for synchrotron experiments, in which the determination of
photon arrival times is simple due to observing none or one photon in most pulses, the photon arrival
times at an XFEL have to be determined by fitting the voltage traces. A similar approach was also
used in [Chu+18]. However, with the current setup, this approach only works if the photon numbers
are not too high. For each of the three categories, examples for the developed standard analysis in
the respective kind of experiment are given.

The developed data analysis focuses on the standard techniques used for the respective isotopes.
Especially for 5“Fe time-spectra, energy spectra and energy-time-spectra are default measurements,
that are well-established at synchrotron facilities. Therefore, analysis of these kinds of data is the key
for many applications of Mdssbauer science at synchrotrons, but in the future possibly also at XFELs.
Furthermore, the modular structure of the workflow enables straightforward access to individual
components and allows step-wise improvement, for instance by a more sophisticated photon arrival
time reconstruction.
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Chapter 4

Excitation of the *Sc nuclear clock transition

This chapter is contains the data evaluation for the main result in the following publication:

Resonant X-ray excitation of the nuclear clock isomer *°Sc

Y. Shvyd’ko, R. Rohlsberger, O. Kocharovskaya, J. Evers, G. A. Geloni, P. Liu, D. Shu, A. Miceli,
B. Stone, W. Hippler, B. Marx-Glowna, I. Uschmann, R. Loetzsch, O. Leupold, H.-C. Wille,
I. Sergeev, M. Gerharz, X. Zhang, C. Grech, M. Guetg, V. Kocharyan, N. Kujala, S. Liu, W. Qin,
A. Zozulya, J. Hallmann, U. Boesenberg, W. Jo, J. Mdller, A. Rodriguez-Fernandez, M. Youssef,
A. Madsen, and T. Kolodziej

Nature 622, 471-475 (2023)

4.1 Motivation

The utmost precision of optical clocks [Blo+14] forms the basis of applications, such as measurements
of the gravitational redshift [Bot+22] or variation of fundamental constants [Ros+08].

Nuclear clock transitions have several potential benefits over optical clock transitions [PO15].
Smaller systematic frequency shifts are expected due to shielding by the electronic shell. Possi-
ble operation in solid state and thus large ensembles of emitters as well as the higher frequency are
expected to increase the statistical uncertainty of the frequency measurements. One candidate for a
nuclear clock is Th?2? [PO15] and tremendous steps towards a nuclear clock including the coupling
to the well-established 87Sr optical clock transition were already made [Zha-+24]. Nonetheless, there
is a second candidate for a nuclear clock, which is **Sc [Shv{23; SS90]. This naturally provides a
suitable solid state environment and a high transition frequency. However, compared to 22°Th, the
higher transition energy of 4°Sc makes a suitable light source more challenging. A proposal on how
to measure long-lived Mossbauer transitions [SS90] has been unsuccessful because synchrotrons do
not provide enough resonant photons to search for such a narrow transition. However, this situation
changed with the advent of XFELs and in [Shv+23] our collaboration reports the successful direct
x-ray excitation of 4°Sc. In this chapter, we discuss the underlying data analysis.

4.2 Experimental setup

The goal of the experiment, which was performed at the "Material Imaging and Dynamics" beamline
(MID) [Mad+21] at the European XFEL [Dec+20], was to directly excite the *°Sc nuclear clock
transition for the first time. A schematic of the setup, which was mainly developed by the groups in
Argonne, Hamburg, and Jena, is shown in Fig. 4.1. The self-seeded XFEL pulses with a central photon
energy of about 12.4 keV and spectral full-width half-maxmimum of about 1.3€V arrive in trains of
400 pulses every 100 ms. The total length of such a train is 176 us, such that the temporal pulse-
structure within a train is negligible on the time scales relevant for the 4°Sc nuclear clock transition,
which has a lifetime of about 500 ms [HLN64]|. Thus, one train is referred to as a macro-pulse.

After the incident beam hits the sample in the resonance detection unit, the sample is moved
between the beam and the two silicon solid-state drift detectors (Amptek X123) synchronized with
the XFEL pulses. When the x-ray pulse arrives, the sample is in the beam, and afterwards moved
to the detection unit. This procedure reduces the background because efficient shielding can be
placed between the x-ray beam and the detectors. Because of the motion, data acquisition of the two
detectors only took place between 20 ms and 80 ms after excitation.

The incident photon energy is measured with a single shot spectrometer in the Diagnostic End
Station (DES) of MID [Boe+17; Kuj+20]. Unfortunately, those are only relative measurements as
the absolute photon energy depends on the exact alignment of the spectrometer. However, several
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Figure 4.1: Upstream and downstream x-ray counters D, and Dy detect time-delayed nuclear decay prod-
ucts—both inelastic Ko, K fluorescence and coherent elastic NFS. To minimize the detection background,
the decay product detectors are offset from the beam path and the sample is moved to the detectors after
irradiation with each pulse train. The resonance energy is measured with x-ray single-shot and Bond spec-
trometers. Material (text and figure) from [Shv-+23].

measurements at different incident photon energies with a Bond spectrometer [Bon60] allow for an ab-
solute energy calibration [Shv+23]. For the experiment the incident photon energy was systematically
scanned over 100 eV with a scan tool newly developed at the European XFEL for this occasion.

For more details on the experimental setup, see the original publication [Shv+23].

4.3 Data processing

During the experiment, several scans with increasing or decreasing incident photon energy were
recorded. Each scan consists of several runs, which are taken for a fixed respective incident photon
energy. In Fig. 4.2, an overview over the data taken for each run is shown. We see the photon flux
integrated over the whole run, the incidence photon energy and the number of signal photons. These
three observables are discussed in the following.

4.3.1 Integrated flux

Due to the stochastic nature of the SASE process, the spectrally integrated pulse energy varies
throughout the experiment and needs to be corrected for in the data analysis. It can be measured
with the XGM on a train-resolved basis. On average, the flux per macro-pulse during the experiment
was approximately 35mJ.

In Fig. 4.2(a), the flux integrated over the run is shown as a function of the run number. The
different colors indicate different scans. Two regimes are visible, until run 405 scans with 200s acqui-
sition time were performed, afterwards the run length was increased to 500 s to perform high statistic
scans around the resonance region. In addition, especially in the second half of the experiment, the
fluctuations in the integrated pulse energy from run to run are clearly visible.

Note that for the experiment in principle the pulse energy integrated only over the resonant part
of the spectrum should be analyzed, which is not possible due to the extremely narrow resonance.
Nonetheless, because the frequency spectrum of the pulse is stable, when averaging over one run, we
expect the ratio of the resonant photon flux and the integrated photon flux to be constant. Therefore,
we can use the integrated photon flux as measured by the XGM for normalization to the resonant
photon flux.

4.3.2 Different measures for incident photon energy

The experiment crucially relies on an absolute and precise measurement of the incident photon energy,
which is shown in Fig. 4.2(b). In the experiment, different measures were used and are discussed in
the following.

DES spectrometer

The spectrometer in the DES was used to measure the spectrum of each macro-pulse. It consists of a
bent crystal, which diffracts the beam onto a pixel screen. The resolution depends on the used crystal
reflection and was 0.223 eV /channel in the experiment. The absolute photon energy depends on the
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exact alignment of the spectrometer. Nonetheless, as long as the alignment of the spectrometer is
not changed, it can be calibrated with absolute photon energy measurements at different energies.

We can fit the mean spectrum of each run with a Gaussian fit function to find the incident photon
energy. This energy is referred to as the DES energy and will be used as the primary relative energy
measure. The mean width of the fitted spectra is oypean = (0.6340.11) €V, which dominates the jitter
over a train of the center value F;. Note that the real spectral width is smaller because the spectra
from the DES spectrometer are convoluted with the instrument function.

Although the actual data analysis is performed on the raw data in channels of the DES spectrometer
detector to not increase the uncertainty of the incident photon energy, for better readability in the
text and figures we converted all raw values to eV as described in the next paragraph.

Bond method

The bond method was operated by our collaborators from Jena to measure the absolute photon
energy, and thus to calibrate the raw channels of the DES spectrometer to an absolute energy value.
A conversion of the DES energy in raw channels to eV can be made with

0.215eV
E; = E; [channel] - —2200% | 19341.86V. (4.1)
channel
Here, the analysis is performed on the raw data in channel to not introduce additional uncertainties
from the conversion into the analysis, but for illustration, the results and figures are given in eV using
the above conversion. More details on the method and corresponding uncertainties can be found
in [Shv+23].

Machine energy

The machine energy is one of the control parameters of the photon energy at the European XFEL. It
is related to the undulator gap. For this experiment, a new tool was implemented at the European
XFEL, which allows to scan the incident photon energy from the experiment hutch. If a change in
the machine energy is detected by this new tool, it triggers the adjustment of the seeding crystal and
also the undulator parameters if necessary. Thus, the machine energy is the scan control parameter
for the incident photon energy scans.

In Fig. 4.3(a) the machine energy is plotted against the DES energy of the respective run. There is
an approximately linear relationship. However, a closer look reveals that the machine energy is shifted
in the upstream and downstream scans. This demonstrates that the control of the incident photon
energy via the machine energy works within a scan. From scan to scan, however, the same set machine
energy does not lead to the same DES energy. As the spectrometer is expected to work reliably, we
conclude that from scan to scan the optimization of the seeding crystal and undulator parameters
after a change of the machine energy results in slightly different incident photon energies. In addition,
at some point in the experiment, the macro to scan the machine energy had to be readjusted, which
resulted in a significant change of the incident photon energy for a set machine energy as can be seen
by the offset short diagonal. Summarizingly, we conclude that there is a linear relationship between
the DES energy and the machine energy, but different offsets due to different origins occur.

Seeding pitch angle

As hard-x-ray self-seeding was used in the experiment, the incident photon energy is defined not only
by the undulator settings, but also by the orientation of the seeding crystal. The incident photon
energy is well-defined by the seeding crystal pitch angle, however, only as long as there is no change in
the roll angle of the crystal. Unfortunately, during the experiment changes in the roll angle occurred,
therefore resulting in a complicated relationship between the seeding crystal pitch angle and the
incident photon energy and not for all settings absolute calibration measurements were performed
with the Bond method. Nonetheless, if the roll-angle is constant, a simple linear relation between the
seeding pitch angle and the DES energy can be used to interpolate the incident photon energy for
runs in which the DES spectrometer failed to save data.

The seeding pitch angle as a function of the DES energy is shown in Fig. 4.3(b). We see three
parallel lines, which are stable within the respective line. The stability shows, that in general there is
a linear relationship within a scan and the seeding pitch angle can be used to interpolate the incident
photon energy for runs in which no spectrum from the DES spectrometer was measured. The two
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Figure 4.4: Measurement of the direct K,- and Kg-fluorescence at around 4keV via electronic scattering
immediately after the x-ray pulse arrival. The two panels show the results for the upstream and downstream
detectors, respectively. A zoom to the region around 4keV is given in the insets. The ROI, in which signal
photons are counted is displayed in gray.

shifts of the diagonal lines are from a shift in the seeding roll angle as well as the restart of the energy
scan macro.

Incident photon energy measure

Ideally, we would use the machine energy for the incident photon energy determination because it is
the scan parameter. Unfortunately, we have seen that there is no fixed linear relationship to the DES
energy over all scans. Similarly, the seeding pitch angle does not allow us to determine the incident
photon energy easily over all scans. The absolute value of the photon energy can be measured with
the Bond. However, this method is time consuming and was thus performed only at selected settings.
Therefore, to determine the incident photon energy, a combination of the different methods is used.
As the primary measure for the incident photon energy E;, we use the DES energy, which is calibrated
to absolute values with Bond measurements at selected energies. For runs, in which the DES energy
is not available, it can be interpolated from the neighboring runs based on the seeding pitch angle.

4.3.3 Determination of signal photons

The energy scale of each of the SDD detectors was roughly calibrated by a measurement with a
radioactive source. For an improved calibration, in the experiment we recorded the direct electronic
scattering and thus the K, and Kpg lines, which have photon energies of 4.09 keV and 4.46 keV,
respectively. The results are shown in Fig. 4.4. We can clearly see the fluorescence at around 4 keV.
Furthermore, we see multi-photon pile-ups in the detector at multiples of the 4 keV region. Around
the fluorescence lines, we define an approximately 1keV wide region of interest (ROI), in which the
photons are considered signal counts. To reduce the background noise during the excitation, the
signal photons are only recorded between 20-80 ms after every macro-pulse.

4.3.4 Raw data - incident vs outgoing photon energy

After the energy measures of incident and outgoing photon energy are discussed, the energy of the
recorded photons are shown as a function of the incident photon energy for all runs in the analysis in
Fig. 4.5. The two colors of the dots indicate the two detectors in the resonance detection unit. The
background noise is uniformly distributed and only higher in between the two orange vertical lines
due to more measurement time inside this region close to the resonance. A clear accumulation of
the energy of the outgoing photons in between the horizontal pink lines around E; ~ 4.5 keV, where
the K, and Kpg lines are expected, is visible already in the overview panel (a), but even better in
the zoom-in in panel (b). Furthermore, no significant signal above the background noise is visible
inbetween the horizontal dark yellow lines around F; = 12.4 keV, where the coherent nuclear forward
scattering signal is expected.

In the next step, the signal in panel (b), i.e., the signal in the ROI of E; and E;, will be used to
extract the resonance curve and the resulting resonance energy. In this region around the incident
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Figure 4.5: The photons were recorded in a time window of about 20-80 ms after every pulse-train excitation.
Each photon is shown by a blue circle for D, and a yellow circle for Dg. (a), All detector counts with
Ey < 26keV for incident energies in a range of -40eV< E; — Ey <40eV around the 458¢ resonance energy
FEy. Vertical red lines indicate a 10-eV ROI around E; = FEy. Horizontal dark yellow lines indicate a 1-keV
ROI around E;y=12.4 keV, whereas the horizontal magenta lines indicate a 1-keV ROI around Ey=4.3 keV,
the approximate energy of the fluorescence photons. (b), Close-up of the 4.3-keV ROI, showing two clusters
of counts centred at the energies of Sc K, and Kg fluorescence. (c), Close-up of the 12.4-keV ROI. Material
from [Shv-+23] (text verbatim, figure adapted).

resonance energy and the outgoing fluorescence energy, a total of 93 photons were detected. The very
small number of signal photons demonstrates how demanding the experiment was. Furthermore, the
low statistics made the data evaluation challenging.

4.4 Determination of resonance energy

The measured resonance curve is a convolution of the actual resonance with the incident pulse shape.
Because the actual resonance is orders of magnitude smaller than the incidence pulse shape, the
measured curve is dominated by the latter one. Thus, the measured curve should be well represented
by a Gaussian centered around the resonance energy with a width of the incident pulse width.

In the experiment the machine energy was scanned, but there is not a fixed linear relation to the
DES energy over all scans as we have seen in Fig. 4.3. Therefore, the DES energy, i.e., the actual
incident photon energy, does not follow the steps of the scan. As a consequence, all runs have a slightly
different incidence energy and the signal photons cannot simply be summed up at different energy
steps. Due to the small statistics, the resulting resonance energy can depend strongly on the analysis
method as well as the analysis parameters and the best method is not known a priori. Therefore,
for the data analysis three different methods are used with different parameters: the cumulative
probability function, a kernel density estimate and the classic histogram. They are discussed in the
following sections.

4.4.1 Cumulative distribution function

The first evaluation method uses the combined information of all measurements around the resonance
energy. For each run the tuple consisting of incident photon energy, the number of signal photons
and the integrated pulse energy is stored. Depending on whether the normally ordered cumulative
distribution function (CDF) ®»ormal(X) = P(z < X) with P(z) being the underlying probability
density function or the reversely order CDF ®™Versed(X) = P(z > X) is evaluated, the run data is
sorted with ascending or descending incident photon energy. Afterwards, for each incident photon
energy step EZ- the number of signal photons in runs with E; < E~Z- (E; > El) are summed up and
are divided by the total integrated pulse energy over those runs for normalization to the integrated
photon flux. Afterwards, the distribution is normalized to form the normally (reversely) ordered
CDF in Fig. 4.6. The errorbars indicate the uncertainty of signal photons summed up until this step
according to a Poissonian counting statistic. The uncertainty of the incident photon energy is within
the size of the points.

We can now extract the resonance energy from a fit to the CDFs. For a Gaussian probability
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distribution, the normally ordered and reversely ordered CDF is given by

grormal () :% [1 +erf (”i/; : ﬂ , (4.22)
greversed () —1 % [1 +erf (”i/; : )] : (4.2b)

respectively, with mean p and standard deviation o and can be fitted to the respective curves. To
estimate the uncertainty of the fit results, the usual way via the covariance matrix is not possible as
this assumes independent data points and uncorrelated residuals, which is not the case for a CDF.
Thus, instead of using a standard fitting routine like least-squares and including the errorbars as used
in Fig. 4.6, i.e., the uncertainty of the number of signal photons, bootstrapping is performed for an
uncertainty estimate of the fit parameters taking into account the uncertainty of the input data. To
this end, for each repetition, the energy of each run is drawn from a normal distribution centered
around the incident photon energy with the uncertainty of the DES energy fit as the width, and the
number of signal photons is drawn from a Poissonian distribution with the actual number of signal
photons as the mean. For each modified set, the CDF is calculated as explained above within the
10 eV region of interest, which is shown in Fig. 4.5, and fitted with the respective function in Eq. (4.2).
After 1000 repetitions, the fit result and its uncertainty of each parameter are calculated as the mean
and standard deviation over the fit results in each repetition. For the normally and reversely ordered
CDF, the resulting mean and width are given by

Epormal —(12389.61 + 0.22) eV, oormal — (0.80 £ 0.15) eV, (4.3a)
Ereversed —(12389.71 4 0.22) eV, oreversed — (.82 +0.15) eV, (4.3b)
respectively. The fit results of the two different orderings agree well with each other. The final result
of the CDF analysis for the resonance energy is given by the mean of both directions
ESPY =(12389.7 £ 0.3) eV, (4.4)
oPF =(0.81£0.21) eV,
The standard deviation of ¢ = (0.81 £ 0.21) eV is in good agreement with the mean spectral width

Omean = (0.63 £0.11) éV. Note, that this so far only contains the uncertainty from the analysis. For
the final result, the uncertainty of the Bond measurement has to be included.

4.4.2 Kernel density estimate

A qualitatively different method to extract the resonance energy from the data is that of a kernel
density estimate (KDE). This tackles the problem, that the runs are all performed at slightly different
incident photon energies, but each run does not have enough statistics to analyze it on its own. Again,
for each run j the tuple consisting of incident photon energy F?, the number of signal photons N7
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Figure 4.7: Results of the KDE analysis. (a) The KDE of the resonance curve for two different kernel band-
widths with ten repetitions each (dark colors, solid) and corresponding Gaussian fits (light colors, dashed).
(b) Fitted resonance energy Eo and width oeorr as a function of the kernel bandwidth h with the uncertainties
given by the standard deviation. The colored vertical lines represent the bandwidths in (a). The gray vertical
lines correspond to Asilverman, Rscott and hprs, while the gray shaded area indicates the region over which
the mean is evaluated.

and the integrated pulse energy Egulse is used. The number of signal photons is normalized by the

integrated pulse energy and the kernel density estimate is then formed as [Dek-+05; Sil86]

J .
KDE(E;) = ij K(E; — E)), (4.6)
j pulse

with here the kernel of choice

i1 (E; — EJ)?
K(E;, - E])= Tah exp <_2hQ> , (4.7)

being a Gaussian centered around Ef with bandwidth h. For the choice of the bandwidth there
are several options. One is to use the spectral width of the beam opeam, = 0.63€eV and thus hpgs =
Obeam = 0.63 eV. Furthermore, there are several different estimates for an optimal bandwidth. Among
others, there is Scott’s rule [Scol5]

hScott = Un_l/S ’ (48)
and Silverman’s rule [Sil86]
. IQRY _
hSilverman = 0.9 - min (Ua 16234) n 1/5 y (49)

where o is the standard deviation, IQR = ¢,,(0.75)—g,, (0.25) the interquartile range, i.e., the difference
of the upper quartile ¢, (0.75) and the lower quartile g,(0.25)[Dek+05], and n the size of the dataset
{E}}. Restricting the dataset to the 10-eV ROI around the resonance as shown in Fig. 4.5(b), it is
hscott = 0.54€V and hgiiverman = 0.50€V. However, for insight into the analysis the bandwidth A is
varied between 0.1eV and 1eV.

To account for the uncertainty in the number of signal photons, for each bandwidth 100 repetitions
of bootstrapping are performed, in which for each run, a random number is drawn from the Poissonian
distribution with the number of signal photons as mean. To the resulting KDEs for each repetition a
Gaussian is fitted to find the center and width of the KDE. A few examples are displayed in Fig. 4.7(a).
To retrieve the actual width of the resonance curve, it has to be taken into account, that the resulting
KDE is a discrete convolution of the actual underlying distribution with the kernel. As here both are
of Gaussian form, the KDE is also Gaussian and the actual width o, can easily be corrected for

this
Ocorr = £/ OR, — h2. (4.10)

In Fig. 4.7(b) for each bandwidth h, the mean resonance energy Ey and mean the corrected width
Oactual are shown with the uncertainty given by the respective standard deviations from the bootstrap-
ping. The fit values are stable over a broad range of bandwidths h. Because there is no unambiguous
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Figure 4.8: Histograms of the resonance center and standard deviation width obtained by sampling over bin
sizes and centers. The solid orange lines show the respective the Gaussian fits.

choice of the bandwidth h, the fit results are averaged over the stable region from A = 0.35€V to
h = 0.8eV and give the final resonance energy and width

EEPE = (12389.54 4+ 0.09) &V, (4.11a)
o¥PE — (0.71£0.11)eV. (4.11b)

Again, the width agrees with the mean spectral width of the incident pulse.

4.4.3 Histogram

The third analysis approach, which is used, is a histogram. As there is no natural choice of the bin
size and the bin center along the incident photon energy axis, the fit results are sampled over a broad
range of bin sizes and bin shifts (shift of the bins along the energy axis). To this end, the following
analysis is performed: First, a bin size and bin shift are chosen and the resonance region is split into
the bins. The energy of each bin is defined by its center value. For each bin, the total number of signal
photon counts, as well as the corresponding integrated pulse intensity are calculated. Afterwards,
the detector counts are normalized by the integrated pulse energy on a per-bin basis and a Gaussian
with amplitude A, center Ey and width o is fitted to the binned data. Because of the finite bin size
h, the resonance widths have to be corrected according to Sheppard’s correction [KK54; She97]

Ocorr = V02 —h2/12. (4.12)

For each choice of bin size and shift, Fy and o¢.,, are stored. Repeating this analysis for many bin
sizes and shifts, histograms are obtained for Fy and oo, For this sampling, bin sizes in the range
of [0.460, 1.148] eV with step size 0.002€V are considered. These bin sizes were then sampled for bin
shifts in the range [—(bin size)/2, +(bin size)/2[ around the resonance in 200 steps. The corresponding
histograms are shown in Fig. 4.8. As expected from such a sampling, the results are approximately
normally distributed. The kink in both distributions might be caused by small sidebands, which are
also visible in Fig. 4.7 and are caused by artifacts due to noise counts and the binning procedure. In
Fig. 4.8, the solid orange lines show Gaussian fits to the histograms. The center and width of these
Gaussian fits then determine value and uncertainty of the respective observable

Elisto —(12389.59 4 0.06) eV, (4.13)
Ohisto =(0.54 £ 0.05) eV, (4.14)

which again agrees with the width of the incident pulse.

4.4.4 Comparison

The results of the three different methods are summarized in Table 4.1 and agree within the uncer-
tainties, which is remarkable because the idea behind the analysis methods is very different. The
cumulative density function combines the data for more statistics in a very natural way, namely by
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‘ Ey [eV] o [eV]

CDF 12389.7+£0.3 0.81+0.21
KDE 12389.54 £0.09 0.71 £0.11
Histogram | 12389.59 £0.06 0.54 £ 0.05

Table 4.1: Analysis result of resonance energy Fo and width o for the three different methods: cumulative
density function (CDF), kernel density estimate (KDE), and histogram.

using the cumulative information. This has the advantage that we do not need to choose a kernel
or band width. Unfortunately, the small statistics in the tail lead to larger uncertainties on the
side with smaller (higher) incident photon energy for the normally ordered (reverse) CDF., which
can lead to large uncertainties in the fitting. The kernel density estimate deals with the problem of
low statistics by smoothing out the information of a single count to have more overlap, while the
histogram sums up the counts in certain regions to increase the statistics within these regions. Both
the kernel density estimate as well as the histogram suffer from the need of choosing a kernel widths
or bin width, respectively, which in our case cannot be done unambiguously due to the not equally
distributed measurement points and the low statistics.

We find that the cumulative distribution has the largest uncertainty, while the histogram has
the smallest. Note that the given uncertainties are only the uncertainties from the data evaluation
methods as discussed. The results are given in eV with a rough energy calibration, but the evaluation
is based on the raw data, which is why the uncertainties from the calibration are neglected so far.
They are considered in the final result in Eq. (4.26) and are on a similar level as the uncertainties in
Table 4.1.

All methods agree well with each other and have their advantages and disadvantages. Because the
histogram is the simplest method, we choose it as the main analysis method for the final resonance
curve in Section 4.7.

4.5 Signal-to-noise ratio

For the signal-to-noise ratio, the count rate in the background region is compared to the count rate
on resonance.

To calculate the background count rate, the background region is defined as the energy region
outside a 50, i.e., 5 standard deviations, region around the resonance. In this region there are
Npg = 1075 counts in an acquisition time of t,, = 59163s, which results in a background count rate

of
Nig

Ry = =% = (L755:7) x 10~ ph/s. (4.15)
bg
The uncertainty (one standard deviation) is dominated by the Poissonian uncertainty of the counts.
The acquisition time given above is calculated by taking the mean acquisition time of the two detectors
and summing over all runs with incident photon energy in the background region.
In the signal region, defined as 50 around the resonance, there are Nz = 93 £ 9 counts in an
acquisition time of s = 34009s, which gives an average count rate of
-3
Rs;f = (2.73 £0.16) x 10~ ph/s (4.16)
in the signal region. However, to determine the count rate on resonance, the shape of the resonance
curve in the signal region, i.e., a Gaussian with the mean value and width obtained in our resonance
analysis in Section 4.4.3, needs to be taken into account. The amplitude is fixed by demanding that
the integral over the signal region remains the same as in the homogeneous case,

xo+5o r_ 2 xro+50
/ tia XD {(Cﬂgﬂo)} dr' = / RE8dx’ . (4.17)
xro—5bo 20 rog—50 &
From the scaled Gaussian, the count rate on resonance evaluates to
B = (1.09£0.11) x 10~ % ph/s. (4.18)
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The signal-to-noise ratio (SNR) is then given as

Rmax
SNR = % = 6537, (4.19)
g

The uncertainty is dominated by the Poisson uncertainty of the low number of counts in the back-
ground region.

4.6 Experimental count rate analysis

For each run j with integrated pulse energy EW

sulse the pulse energy delivered onto resonance is
estimated as

4 ) 1 (wo—w@)?
EU) =W | 2T oo (4.20)

res pulse 2T o

where ~ is the *®Sc line width, w¥) and ¢ the resonance energy and spectral width of the incident
pulse in run j, and wy the #?Sc resonance energy. From this, the total pulse energy delivered into the
Scandium resonance is obtained as the sum over all runs in the energy scans,

B =3 "B =1.14x107° pJ, (4.21)

res

J

independent of whether they had a signal count or not. From this, via the energy per resonant photon,
we can calculate the total number of photons delivered into the Sc resonance

total

Ntotal _ _Tres  _ pmorn 4.22
res 12.4keV b725 ( )

Within a spectral region of 5 standard deviations around the resonance, in total N, = 93 signal
photons were recorded. This results in an experimental count rate of

N
oK = N;fal =0.0162 £ 0.0017 phy /phy, . (4.23)

res

Correcting this value for the x-ray beam attenuation A=0.44(9) on the path from the XGM to the
sample and for limited detection efficiency Deg=0.084(7), which is dominated by the coverage of the
solid angle, a count rate of

o’ =0.44 £ 0.13 phy /phy, (4.24)

is obtained. In this analysis, the relative uncertainties of the correction factors are added to the total
relative uncertainty, and all absolute uncertainties are given in standard deviations.

Including further the Poisson uncertainty /Ngig into the uncertainty analysis, the corresponding
value becomes

o$XP" = 0.44 £ 0.17 phy /phy, . (4.25)

Note that even for different incident pulse line widths (¢ in Eq. (4.20),) the results remain very
well within the above-mentioned uncertainty budget.

4.7 Final resonance curve result

For the final resonance curve shown in Fig. 4.9, the analysis with a histogram is chosen. The different
colors indicate four example choices of bin size and shift, the black line a Gaussian centered around
the resonance energy Ey = (12389.59+0.06) eV with width o. The normalization for the left y-axis is
chosen in such a way that the integration over the curve yields the total recorded number of photons
in a range of 5 standard deviations around the resonance of Ny, = 93.

The yield shown by the axis on the right hand side follows from a simple axis scale conversion,
in such a way that the maximum of the resonance corresponds to 0.44 phy /phy  as calculated in
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Figure 4.9: Final resonance curve given by the normalized count rate or fluorescence yield as a function of
the incident photon energy FE;. The different colors exemplarily show four different choices of bin size and
and shift. The black curve shows the Gaussian centered around the resonance energy Ey with width o. The
full-width half-maximum FW HM = 2.350 is also indicated and corresponds to the incident photon beam
spectral width. Figure adapted from [Shv+23].

Eq. (4.25). The width indicated in the figure is the FWHM width in eV, with the standard deviation
error in brackets. The error bars in y-direction are obtained as Poisson count uncertainty for the
unnormalized number of signal counts in the bin. This uncertainty is then scaled by the integrated
flux and normalized in the same way as the count rate itself. Due to the small count rates, the
uncertainties are asymmetric because they are obtained from the Poissonian distribution [Geh86].

Including the uncertainty of the absolute energy calibration, the resonance energy is determined to
be [Shv+23]

+0.15(stat)
12,380.59 10 1oovet) oV (4.26)

Note that the uncertainties are asymmetric due to asymmetric uncertainties in the absolute energy
calibration (see [Shv-+23]).

4.8 Summary and Outlook

In summary, after shortly presenting the experimental setup we discussed the data analysis leading
to the final resonance curve in [Shv+23| and the demonstration of the direct x-ray excitation of >Sc.

First, the raw data was processed. This included the integrated incident photon flux determination
as well as choosing a meaningful measure for the incident photon energy and a region of interest for
the fluorescence signal. We further saw that the incident photon energy scan unfortunately did not
have clear equal distant steps because one machine energy setting resulted in different actual incident
photon energies in the different scans. Furthermore, only 93 signal photons were recorded. Therefore,
no unambiguous choice of bins to bin the data was possible. Because of the low count rate different
settings for the binning have a significant impact on the determined resonance energy. For this reason,
in the following we determined the resonance energy with three different methods — the cumulative
distribution, a kernel density estimate and a histogram. The best method was not clear a priori, but
all methods result in values for the resonance energy and width, that agree with each other. Because
of its simplicity, for the final resonance curve we decided for the histogram as the analysis method.
In addition to the resonance energy determination, the signal-to-noise ratio was estimated and the
experimental count rate analyzed. Finally, the resonance energy was measured more than 300 times
more precisely than previously known.

The next step on the road towards a nuclear clock is the better understanding of the transition prop-
erties. This includes an even more precise measurement of the transition energy with a monochroma-
tor and a lifetime measurement after direct excitation. Furthermore, measuring the time-dependence
of coherent nuclear coherent scattering would provide the transition width, which is usable for coher-
ent scattering experiments. The coherent nuclear scattering is also the basis for further applications
like MGssbauer spectroscopy with feV resolution and measurements of the gravitational red-shift in
the sub-millimeter regime. A first step in this direction was made in [Liu-+25a].
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Chapter 5

Single-shot sorting of Mossbauer time-domain data
at X-ray free electron lasers

This chapter is based on the following preprint:

Single-shot sorting of Mdssbauer time-domain data at X-ray free electron lasers

M. Gerharz, W. Hippler, B. Marx-Glowna, S. Sadashivaiah, K. S. Schulze, I. Uschmann, R. L&tzsch,
K. Schlage, S. Velten, D. Lentrodt, L. Wolff, O. Leupold, 1. Sergeev, H.-C. Wille, C. Strohm, M. Guetg,
S. Liu, G. A. Geloni, U. Boesenberg, J. Hallmann, A. Zozulya, J.-E. Pudell, A. Rodriguez-Fernandez,
M. Youssef, A. Madsen, L. Bocklage, G. G. Paulus, C. H. Keitel, T. Pfeifer, R. Rohlsberger, and
J. Evers

arXiv:2509.15833 [quanth-ph]

Content has been reproduced verbatim, but the article was restructured to suit the format of this
thesis. In particular, main text and supplementary material were merged and additional motivation
is provided in the context of this thesis.

5.1 Motivation

Mbossbauer nuclei provide extremely high energy resolution [Smil2], but the narrow spectral width
implies the need for averaging over many x-ray shots. The reason is that the signal rate per shot
is low since the spectral width of the x-ray light is orders of magnitude broader than the nuclear
resonance, such that the vast majority of the intense initial x-ray light is off-resonant and hence not
contributing to the excitation.

This averaging requirement poses a severe challenge for studying statistical or non-repetitive dy-
namics, out-of-equilibrium dynamics or related phenomena with Mdssbauer spectroscopy [SROS]. If
the sample dynamics is not always the same after each x-ray shot, then the averaging inevitably
ranges over different evolution pathways from the out-of-equilibrium state back into equilibrium,
thereby impeding their disentangling and understanding.

For instance, statistical nuclear dynamics are expected in the random sequence of coherent and
incoherent emissions from a higher-excited nuclear ensemble, potentially involving the transient for-
mation of entanglement [Cab+99; Moe-+07; Thi+07]. More generally, Mdssbauer nuclei are widely
used to probe the dynamics of their surrounding host material [GBT11; GW99; Shel2|, with even
non-repetitive host dynamics being mapped onto the nuclear dynamics. Particularly following exter-
nal stimuli [Boc+21; Hee+21; KKR99; Sak-+17; Shv-+96; VSK13], the nuclear dynamics can change
drastically. In the simplest case, the stimulus induces dynamics only with a certain success proba-
bility. More interestingly, the host dynamics can involve quantum mechanical superpositions, prob-
abilistically leading to different measurement outcomes. Examples include the laser pumping of the
electronic sub-system of the host [KKR99|, which can also be prepared in a superposition state.
Laser-pumping can also control the vibrational state of the host [VSK13], or the switching of spin-
crossover complexes [Sad+21; Sak+17]. Analogously, magnons have been studied via their transient
impact on the nuclear dynamics [Boc+21|. In chemistry [GBT11], Méssbauer spectroscopy is pivotal,
e.g., for studying biochemical reactions involving iron [SW00], but the study of short-lived transient
intermediate states is difficult using Mdssbauer spectroscopy [Kre-+05].

5.1.1 Progress of light sources

Here, we demonstrate the disentangling of different Mossbauer dynamics by analyzing time-domain
data on the single-shot level. For this, we tackle the averaging challenge from two sides. First, we
demonstrate coherent nuclear forward scattering of self-seeded radiation delivered by the European
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XFEL [Dec+20; Liu+23|, which allowed us to record Mdossbauer datasets with up to 900 signal
photons per x-ray shot using the isotope ®’Fe. These shots with highest photon number directly
reveal the nuclear dynamics up to about 50 ns after excitation. Second, we develop an approach
which generalizes the analysis to shots with lower signal photon rate, and to longer times after
excitation. It relies on the presence of distinct evolution pathways from out-of-equilibrium back into
equilibrium, which we denote as dynamics classes. We determine the classes from the data, and
assign each shot to a class. Analyzing the shots of each class separately then avoids an averaging
over different dynamics. The purely data-driven approach does not involve theoretical modeling, such
that it applies to a priori unknown effects.

Increasing the signal photon rate until sufficient time-domain data can be recorded using sin-
gle x-ray shots [SRO8] is a seemingly simple solution to the averaging challenge. XFELs [Bar+10;
Dec+20; Emm-+10; Ish+12] are routinely used for single-shot measurements involving electronic res-
onances [Bos+16; RSW19; URMI12] and have recently moved this approach also within reach for
Mossbauer resonances. As a first proof-of-principle experiment, Chumakov and co-workers extracted
the nuclear hyperfine splitting in *"Fe from single-shot data with about 60 signal photons [Chu{18].
Meanwhile, self-seeding enabled a further increase in the resonant x-ray flux [Ama+12; Ino+19;
Liu+23; Nam+21]. This way, recently the ultra-narrow Mdssbauer transition in *°Sc could reso-
nantly be excited [Shv+23| (c.f. Chapter 4). However, the corresponding observation of coherent
nuclear forward scattering, which is the key requirement for most applications of Mdssbauer nuclei,
has not been reported before.

5.1.2 Proof-of-principle demonstration of Mdssbauer single-shot analysis

Despite this progress, recording Mossbauer single-shot datasets beyond the proof-of-principle stage
remains a challenge, since, due to the XFEL photon-number distribution [Gor+18], the shots with
highest signal-photon number only form a negligible fraction of all shots [Chu+18]. The vast major-
ity of shots typically does not have sufficient signal for a single-shot analysis. Increasing the x-ray
intensity further is subject to sample damage, since the “probe-before-destroy” paradigm [Neu-+00]
established for electronic scattering cannot straightforwardly be generalized to Méssbauer nuclei due
to the long lifetimes of the nuclear excited states. This is particularly important if focusing to smaller
excitation volumes is desired in order to avoid extensive spatial averaging. Recording Md&ssbauer
single-shot data is further limited by the dynamical range of the commonly-used APDs, since the
overall exponential decay of the scattered photon intensity typically spans over several orders of mag-
nitude, thereby exceeding the linear detection range. As an example, in the present experiment,
we observe APD saturation effects at early times in the shots with highest signal-photon number,
even though they resolve the nuclear dynamics only for about 50 ns after excitation. Another chal-
lenge is the desired scope of single-shot measurements, which is to probe non-repetitive phenomena.
In [Chu+18], a known theory was fitted to the data in order to extract a single parameter, namely the
frequency of an oscillation throughout the entire time-domain. By contrast, lifting the requirement to
average over many shots is particularly important if the phenomenon under study has a comparably
subtle effect on the time-domain data. Further, the requirement of fitting theory models restricts the
analysis to known effects.

We overcome these challenges in directly recording and evaluating Mossbauer single-shot datasets
using a sorting approach on the single-shot level.

5.1.3 Single-shot sorting in other areas

Note that sorting approaches are well-established, e.g., in the context of coherent diffractive imag-
ing [Dol+25; Sch1lh; SWC12; Zim-+23], where the scattering data is used to determine the sample
orientation on a per-shot basis. However, this classification is concerned with geometric properties,
and not with dynamics. Another example is coherent correlation imaging [Klo+23], which classifies
recorded camera images in Fourier space. Measure-and-sort approaches are also used involving aux-
iliary diagnostics measurements, e.g., to determine the unknown delay between optical pump and
XFEL probe pulses [Har+13], or to characterize XFEL pulses temporally [Fun+24; Har+18] and
spectrally [Str-+22]. However, analogous approaches have not been explored with nuclear resonances
before, and standard XFEL diagnostics do not straightforwardly apply to nuclear resonances because
of their ultra-narrow spectral width, which typically cannot be resolved.
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Figure 5.1: (a) Single-shot sorting. We consider a generic experiment in which Méssbauer nuclei may undergo
different dynamics following an x-ray excitation. Two dynamics classes “A” and ”"B” are indicated in red and
blue as examples. The information on the dynamics is typically lost for most shots during the measurement
(gray squares). Our data-driven approach identifies different dynamics classes, and subsequently sorts all shots
according to the identified classes. This way, the classes can be analyzed separately, avoiding an averaging over
different dynamics. (b) Schematic experimental setup at European XFEL. The self-seeded x-rays pass through
a double-crystal monochromator (DCM), which removes the SASE background, and are then reflected from a
thin-film waveguide containing 5" Fe nuclei. The nuclear-resonant signal and the off-resonant background are
separated using a polarization analyzer. The time-dependent intensity of the x-rays scattered by the nuclei
is then recorded using APDs. The two dynamics classes are deterministically implemented using slightly
different scattering geometries, as explained in the main text. (c) Average intensities as a function of time
after x-ray excitation for dynamics classes A (red) and B (blue) separately, as well as their average (black).
Only the latter signal is accessible without per-shot information on the dynamics. The shaded areas around
the lines indicate the 1o uncertainty band (see Section 5.2.2).

5.2 Experimental details

5.2.1 Experimental setup

The schematic setup of our approach was mainly developed by the groups in Hamburg and Jena
and is illustrated in Fig. 5.1(a). We consider a generic Md&ssbauer experiment at an XFEL source
(Fig. 5.1(a)) comprising a large number of shots, each initiated by the arrival of an x-ray pulse. After
each x-ray excitation, detectors record the time-dependent scattered light intensity as a signature of
the nuclear dynamics. As an example, one of two dynamics classes (A or B) is randomly realized
in each shot. For most shots, the information on the dynamics class is not accessible by standard
measurement approaches due to insufficient signal photon statistics, as indicated by the gray squares.
Our goal therefore is to sort the data on a single-shot level such that the dynamics classes can be
distinguished and analyzed separately.

In order to demonstrate our approach, we performed an experiment at the Materials Imaging and
Diagnostics (MID) instrument of the European XFEL [Mad+21]. The schematic setup is shown
in Fig. 5.1(b). The XFEL was operated in self-seeding mode [Liu+23| with an average pulse en-
ergy of 170 uJ and bandwidth of 1.2eV. The accelerator was operated in the 2.2 MHz mode, with
30 pulses per train and 440ns separation between two subsequent pulses, which matches the nu-
clear life time very well. The photon energy was set to the nuclear resonance energy of 14.4
keV employing absolute energy measurements via the Bond method [Bon60]. The incoming self-
seeded x-rays pass MID’s Si(111) double-crystal monochromator (DCM) with about 1€V transmis-
sion bandwith, in order to remove the off-resonant SASE background. The x-rays are naturally
polarized in the horizontal plane, and a channel-cut Si(840) polarization analyzer in crossed setting
is used to block this polarization channel, thereby protecting the APDs from the incident beam.
The 5“Fe Mossbauer nuclei are embedded in a thin-film waveguide sample (structure fitted to be
Si/Pt(14.8 nm) /5"Fe(15.3 nm) /Pt(2.1nm)[Ger+25b]) aligned to reflect the beam in grazing incidence
geometry. A weak external magnetic field is applied to align the nuclear magnetization along the beam
propagation direction, so that the circular polarizations are eigen-polarizations and the incident hor-
izontal linear o-polarization experiences strong scattering into the perpedicular w-polarization. This
polarization component will pass the analyzer and its time-dependent intensity is recorded with
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Figure 5.2: Example high-signal shots. Out of the full dataset, the 20 shots with highest signal content are
shown in gray. The lines are plotted semi-transparent. This way, for example, the individual single-photon
detection events at late times can be distinguished from the overlapping data at early times via the plot
density. The black dashed line displays the time-domain data averaged over the full dataset. The green
dotted line indicates the average height of the APD signal for individual recorded photons.

APDs. An averaged detection signal is shown in Fig. 5.1. Examples for single shot raw data with
high, medium and low signal content are shown in Fig. 5.5 and are discussed in Section 5.2.2.

To allow for a quantitative assessment of our approach, we designed the experiment such that
it features two different dynamics classes, and that it is known which shot belongs to which class.
To this end, two separate measurements are performed using a single target, but for two slightly
different incident angles of the x-rays onto the waveguide (4.15mrad and 4.03mrad obtained by
fitting [Ger+25b]), which represent the two dynamics classes (indicated as A/B in Fig. 5.1(b)) . This
way, the time-domain data of each of the two classes can be obtained separately by averaging over
the data of each measurement for later reference. This information is blinded in the actual analysis.
The two measured reference datasets averaged over all shots of each subset are shown in Fig. 5.1(c).
They can be well-described by standard low-excitation theory [Ger+25b], and exhibit characteristic
differences at around 5 ns after excitation, around 50 ns, and after 70 ns. Note that the measured data
are not histograms of signal photon arrival times, as they are established, e.g., for nuclear resonant
scattering experiments at synchrotrons. Rather, they are sums of the full APD detector signals, since
a disentangling of shots with tens or even hundreds of signal photons into individual arrival times is
challenging (see Fig. 5.2).

5.2.2 Detected signal
Detection

Since the individual shots contain up to several hundred signal photons, the majority of which arrives
in a comparably short time interval after the x-ray excitation, the employed APDs cannot distinguish
the individual arriving photons. Therefore, rather than counting arrival times, we record the entire
time-dependent voltage traces of the APDs using fast digitizers. As a result, the recorded time-domain
data is convoluted by the detector response. For isolated signal photons, the detector response can
be modeled using a Gaussian envelope of about 2.5 ns temporal full-width at half maximum. In order
to estimate the uncertainty of the measurements, the recorded voltage traces are scaled with the area
of the single-photon detector response, such that the area under the curve is equal to the estimated
integrated number of photons. Subsequently, a Poissonian uncertainty can be applied.

Raw data

In Fig. 5.2, the 20 shots with highest signal content are displayed. For comparison, the reference
time-domain data obtained by averaging over all shots is displayed as the black dashed line. There
are three important observations. First, up to 20ns there is a strong deviation in the recorded
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Figure 5.3: A histogram of the signal content in the single shots. Estimates on the corresponding photon
numbers and their uncertainties are indicated by the green bars on the top axis. For details on the photon
number estimate see the "Signal content" in Section 5.2.2. In addition, the purple dashed lines indicate low
(10% of the traces), medium (50% of the traces) and high (20 highest traces) signal content as used in Fig. 5.5.
The inset shows a zoom into the highest signal region.

intensity of the single shots as compared to the averaged time-domain data. This can be attributed
to saturation effects in the detector, due to the limited dynamical range of the APDs employed in
the experiment. This saturation is most pronounced at early times due to the overall approximately
exponential decay of the scattered intensity with time. Furthermore, the saturation is strongest for
the shots with highest signal content shown in the figure. By contrast, the majority of shots has
a lower signal content, and therefore is less affected by the detector saturation. As a result, the
averaged data deviates from the shots with highest signal content, and better represents the true
amount of light scattered by the nuclei. Second, we can analyze whether the individual shots with
highest signal content contain sufficient count statistics to allow for an analysis of the time-domain
data on a single-shot basis. We find that this is indeed the case at short times, although bounded
by the saturation effects discussed above. However, at times later than approximately 50 ns after the
excitation, the recorded single-shot intensities approach the level of individual recorded photons, such
that the dynamics can no longer be reconstructed reliably. Finally, we find that at times around 5 ns,
the data of the subset of shots with highest signal content clearly divides into two different subsets.
One exhibits a pronounced dip in the intensity, while the other subset remains approximately constant.
This feature is reflected by the region of interest from 3 ns to 7 ns identified by the clustering approach
in Section 5.3.2. Other features distinguishing the two dynamics classes A and B in our measurement
are visible at later times in the averaged time-domain data (see Fig. 5.1(c)), but they cannot be
resolved on the single-shot level due to the low statistics. Around ¢ = 0 ns, the averaged time-domain
data comprise prompt scattering contributions, which can be attributed to the finite polarization
extinction of the analyzer, the convolution of the signal with the single-photon detector response, and
to background photons. Instead, the distinct feature at around 5 ns also appears in the corresponding
idealized theory calculation, and can be attributed to the first quantum beat due to the interference
of different scattering channels between the involved hyperfine states.

Signal content and photon number estimate

Because the signal content should not be dominated by the high statistics at early times, but should
account for a signal spread out over the entire analysis region, the signal content is defined by the
area under the logarithm of the APD trace. The logarithm suppresses early-time contributions and
enhances the relative importance of later times. A histogram of the distribution of signal content is
displayed in Fig. 5.3. In addition, in Fig. 5.3 an estimate on the photon number corresponding to a
certain range of signal content is given. To this end, 1000 single-shot traces with a specific photon
number N are simulated by drawing N random numbers from the averaged time-domain data and
summing up the single-photon detector response of those. For those artificial traces the signal content
is calculated. To avoid influence of the saturation effects, the signal content is evaluated only after
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Figure 5.4: Analysis for photon number estimate. (a) Histogram correlating the signal content between 3 ns
to 400 ns as used in the main analysis to the signal content between 20ns to 400 ns. The colors indicate the
number of traces. (b) Histogram of the signal content between 20ns and 400 ns of the simulated traces. For
each photon number N, which is represented by the different colors, N arrival times are drawn randomly
from the mean time spectrum and convoluted with the single pulse response to receive a simulated trace
and calculate the corresponding signal content. Repeating this process 1000 times results in the displayed
histograms.

20ns. This is a valid approach due to the good correlation between the signal content evaluated from
3ns onwards and the signal content evaluated from 20 ns onwards, which is displayed in Fig. 5.4(a).
Histograms with the signal content evaluated from 20ns onwards of the 1000 simulated single-shot
traces are displayed in Fig. 5.4(b) for different numbers of photons N used in the simulation. For
each N this results in an approximately Gaussian distribution. Finally, for all shots in our measured
dataset, whose signal content from 20ns onwards lies within the 1o interval around the mean of the
Gaussian distribution, the mean and standard deviation of the signal content over the whole time
range is calculated. This is the estimated signal content and its uncertainty for a given photon
number N, which is indicated by the green dots and errobars in the figure. It is important to note
that the shots with highest signal content are statistical outliers, and the 20 spectra shown above
only constitute a tiny fraction of the 362.610 shots measured during the experiment (181.350 shots
for A, and 181.260 for B). To illustrate this further, example shots with high, medium and low signal
content are shown in Fig. 5.5. For the high signal content shots, the ten shots with highest signal
content are used, for medium signal content the ten with highest signal content out of the lower half
and for low signal content the ten highest out of the lowest 10%. The respective cutoffs are shown in
Fig. 5.3 as the dashed purple lines. In the high-signal single-shot data, the difference at around 5ns
is clearly visible while later features already lack statistics. In the shots with medium signal content,
the differences at around 5 ns are still partially visible, while the low signal shots contain only a small
number of photons.

5.3 Single shot sorting of Mossbauer time domain data

5.3.1 Overview

For the analysis, we do not use any of the prior knowledge about the sample or measurement geometry
throughout the analysis. Instead, the information on the dynamics class is eliminated by combining
the different shots of the two measurements into a single dataset, with its average shown as the
black line in Fig. 5.1(c). The analysis sequence is illustrated in Fig. 5.6. The first step is to identify
dynamics classes (model 1 and 2) in the “blinded” data (indicated by the gray rectangles), which can
then be used to sort all shots accordingly. For this clustering step, only a selection of the shots with
the highest signal content is used, which circumvents the statistical uncertainty in the data associated
with low-count shots. This way time-domain data representing the specific features of each class can
be extracted more reliably from the measured data. In the following we denote this step as model-
building. Generally, Méssbauer time-domain data features an approximately exponentially decaying
scattered light intensity, due to the spontaneous emission of the nuclei. Shots suitable for the model-
building should ideally contain information, i.e., recorded signal photons, across a broad time range
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Figure 5.5: Example single-shot time-domain data. For measurement A (left column) and B (right), ten
single-shot examples with high (top row), medium (center) and low (bottom) signal content, respectively,
are shown in different shades of gray. The selected traces are the ones with highest signal content overall
(high), of the lower half of the shots according to the signal content (medium) and of the lowest 10% of the
shots according to the signal content (low) In red (blue) the averaged data belonging to measurement A (B)
are displayed. The gray dashed line indicates the average height of the APD signal for individual recorded
photons.

after excitation, which is why the logarithm of the APD trace is applied to linearize this scaling.
The signal content is then defined as sum over the logarithm of the APD trace (see Section 5.2.2).
To avoid prompt artifacts from the intense incident x-ray pulse, the first 3ns are excluded from the
analysis (see Section 5.2.2).

5.3.2 Clustering of highest signal content traces

In order to search for the presence of different dynamics classes, we employ an agglomerative clustering
algorithm [Jr63] on the set of the Nyg shots with highest signal content. The clustering is based on
calculating the pairwise distances between the Nys shots. As a distance measure d(a, b) between two
shots a and b, we use the negative Poissonian log-likelihood P(a,b) = — >, a;-Inb; —b; —InT'(a; + 1),
symmetrized by using the maximum of both directions d(a,b) = max [P(a,b), P(b,a)] and evaluated
within an analysis region of interest (ROI) on the time axis. As illustrated in the “clustering” box in
Fig. 5.6, the two closest shots are joined into a single cluster. This clustering step is then repeated until
only two clusters remain (For the result when enforcing three clusters see Fig. 5.10 and Section 5.3.4).
We employ the complete-linkage measure [Joh67] to quantify the distance between two clusters, which
is defined by the maximum of the pairwise distances between individual elements of the two clusters.

Next, we assess if the data indeed comprises different dynamics classes, by evaluating the quality
and consistency of the clustering. For this, we use the silhouette score [Rou87], which quantifies how
similar a shot is to the other elements of its own cluster, on a scale given by its distance to the other
clusters. The measure compares the distance d; of shot i to the averaged time-domain data of its own
cluster normalized by its standard deviation, with the respective distance d’; to the second cluster.
The silhouette score of a cluster then is evaluated as s; = (d; — d’;)/max{d;,d’;}, and thus ranges
from —1 to +1. A high score requires that the distance of shot i to its own cluster is much smaller
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a reference in order to sort all shots of the experiment into corresponding sets which can then be analyzed
separately.
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Figure 5.7: Overall clustering quality S as a function of the analysis region of interest start and end times.
Results are shown for the subset of Nps = 20 shots with highest signal content. A moving Gaussian average
filter of width o = 1 ns was applied to the data to reduce the influence of outliers and to favor stable analysis
parameter regions. The lighter the color, the better the clustering quality S, with the optimum found for the
analysis ROI of (3ns, 7ns) and marked by the red cross. In gray invalid regions are marked.

than the distances to the shots of the other clusters, d; > d’;. Therefore, a high mean silhouette
score 5; averaged over all elements in cluster j indicates that indeed a separate dynamics class was
successfully identified in the data. As a measure for the overall clustering quality S of both clusters,
we use the minimum of the average scores of the two clusters S = minjeciusters{5;} to ensure that
both dynamics classes are well-represented. This clustering quality measure can be simply extended
to more clusters and can be used to identify the optimal number of clusters, which in our case results
in two clusters as expected.

In order to determine the optimum analysis parameters, i.e., the number of highest-signal shots
Nyps and the analysis ROI, we maximize the clustering quality S. For this, the above analysis is
systematically repeated for different numbers of shots Vs and analysis ROIs. This way, the analysis
parameters for the model building are fixed based on the experimental data without the need for
prior knowledge about the system, nor theory modeling of it. As an example, we show the overall
clustering quality S as a function of start- and end time of the analysis ROI for Nps = 20 shots in
Fig. 5.7. In order to reduce the influence of outliers and to favor stable analysis parameter regions, a
narrow moving Gaussian average filter of width ¢ = 1ns is applied to the clustering quality S in this
figure. We find that best clustering qualities are grouped in certain ROI ranges, and we select the
optimum ROI via the maximum of the clustering quality, indicated by the red cross in Fig. 5.7. Early
times for the ROI are likely favored since the signal rate rapidly drops with time after excitation
due to the exponential decay. We found that the clustering quality S is maximized by including the
Nps = 20 shots with highest signal content out of all 362,610 shots into the model building, and by
using an analysis ROI between 3 ns and 7 ns. Note that the clustering quality and the optimum ROIs
are similar over a broader range of Nys, which indicates that the analysis is stable against variations
in the analysis parameters.

The assessment of the clustering algorithm is based on the overall clustering quality S. As a more
detailed consistency check for the clustering, the individual silhouette scores of the shots used for the
model building are shown in Fig. 5.8 for the optimum analysis parameters Ny = 20 and analysis ROI
between 3ns and 7ns. Each horizontal bar represents the silhouette score of a single shot with the
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Figure 5.8: Individual silhouette coefficients for the shots used in the model building. The figure shows the
individual silhouette scores of the Nns = 20 shots of the experiment used for the model-building. The ROI
for comparing different shots ranges from 3 ns to 7ns. Each bar represents one shot with the colors indicating
to which cluster the respective shot belongs. There are 9 shots in cluster 1, and 11 in cluster 2. The mean
clustering quality S = 0.783 is represented by the dashed black line.

colors indicating the cluster, to which the shot belongs. For better visibility, the clusters are spatially
separated. A large fraction of the shots has a silhouette score larger than 0.5, many even larger than
0.8, indicating good clustering [KR05|. However, a few shots have a small silhouette score indicating
that they do not so clearly belong to either cluster. Nonetheless, those outliers are only few and
together with the fact that a stable ROI is found, which is similar for different number of high-signal
content shots Nyg, the model generation is reliable.

After having identified the optimum analysis parameters based on the clustering quality S, a further
consistency check is possible by analyzing the individual silhouette scores s; of the different shots in
all clusters. Indeed, we find that our approach identified two clusters comparable in size, and that
the majority of shots in both clusters has a high individual silhouette score.

5.3.3 Sorting of all traces

Once the dynamics classes are identified and corresponding models are generated, we proceed with the
entire set of measured shots, independent of their signal content, and assign each shot to one of the
models (see “sorting” in Fig. 5.6). Note that this comparison of individual shots with the generated
models has a crucial advantage over the direct comparison of individual shots. A direct comparison of
two shots with low signal content is subject to comparably high statistical uncertainties. In contrast,
the statistical fluctuations are greatly reduced in the models comprising a number of shots, such that
a comparison of a low-signal shot with one of the models is more reliable. For this comparison, we
employ the negative Poissonian log-likelihood P(a,b), regarding the individual shots as the data to
be tested against the models. This sorting step results in one set of shots for each of the dynamics
classes determined throughout the sorting.

The two sets of sorted data can now be analyzed individually. Summing over each set separately
results in two time-dependent intensities, which reflect the nuclear dynamics in the two respective
dynamics classes, and form the main results of the data-driven analysis. They are shown as solid
lines in Fig. 5.9. The two time-dependent intensities clearly differ at certain times, e.g., around 5ns
and 50ns as well as from 70ns to 90ns, indicating that the clustering algorithm indeed identified
different types of dynamics. In order to verify the data-driven analysis approach, we finally unblind
the information on the experimental settings for each of the shots, which we have due to the specific
design of the underlying experiment, but which was not used during the data-driven analysis. The
resulting “true” reference time-domain data for the two different dynamics classes are shown as dashed
lines in Fig. 5.9. We find that the results of the data-driven analysis indeed follow the reference
measurements closely. In particular, the regions with characteristic higher deviations between the
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Figure 5.9: Measured time-domain data in experimental settings A (red dashed) and B (blue dashed),
which serve as a reference to benchmark the analysis. The 1o uncertainty band of the measurements is
indicated by the shaded area around the respective lines (see Section 5.2.2). The corresponding results of the
data-driven single-shot analysis (class 1 and 2) are shown as solid lines. Here an estimate of the uncertainty
based on the data variability is given by the standard deviation of the subset analysis in see Section 5.3.4,
which is drawn as the shaded band around the lines. The two time-domain datasets are scaled for better
comparability by fitting an overall scaling factor from Ons to 100ns. The ROI (3-7ns) used for the analysis
is indicated in gray.

two dynamics classes are well-reproduced in both cases. Interestingly, the regions around 50ns, or
after 70ns, are well-recovered even though they are far outside the analysis ROI from 3ns to 7ns
used to generated the original models. Note that deviations at initial times up to 4 ns are likely due
to saturation effects (see Section 5.2.2).

5.3.4 Stability of analysis

The stability, reproducibility and consistency of the analysis can be tested in various ways. First,
we artificially create repetitions of the experiment with different statistical realizations of the photon
detection by dividing the full dataset randomly into 5 subsets. Note that this division at the same
time corresponds to a reduction of the effective measurement time realized in the experiment by
a factor of 5, thereby rendering the analysis more challenging. Subsequently, the complete sorting
algorithm described in the main part is applied to each of the subsets. To improve the statistics of
this analysis, we repeat this procedure ten times with new randomly chosen subsets. Afterwards, the
50 reconstructed time-domain datasets can be compared to each other and their standard deviation
at any instance in time provides an estimate of the uncertainty of the analysis due to data variability.
For the sorting analysis discussed in the main part, the uncertainties are indicated as the shaded areas
around the respective lines in Fig. 5.9. It can be seen that the uncertainties are small compared to
the difference between the averaged time-domain data of the two measurement sets, such that they
can reliably be distinguished.

Next, we can use a stability analysis in order to verify the identification of dynamics classes, as
shown in Fig. 5.10. As a first test, we perform the analysis only on the shots belonging to one of
the measurements, A or B, while still enforcing the determination of two clusters in the clustering
analysis. The results are shown in the left panel (a) of Fig. 5.10. The red and blue solid lines display
the recovered averaged time-domain data of the two classes. The dashed lines show the recovered
time-domain data of Fig. 5.9, corresponding to class 1 (red dashed) and class 2 (blue dashed) as
a reference. For better clarity, the two cases with data of measurement A and measurement B are
shifted with respect to each other along the y-axis. We find that the two recovered datasets (test class
1 and test class 2) agree within their uncertainty, such that we conclude that the algorithm did not
identify different dynamics classes. Furthermore, the recovered averaged time-domain datsets agree
with the reference data for measurement A in case that the shots of A were used for the analysis, and
analogously for B. Thus, the analysis works as expected.

In a third test, we repeat the main analysis with data of both measurements A and B, but allow
for three clusters in the clustering analysis. The corresponding results are shown in the right panel
(b) of Fig. 5.10. As a first observation, we find that the overall uncertainties are considerably larger
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Figure 5.10: Stability of analysis. (a) In the top part of the panel, the analysis is only performed on the shots
from measurement A. The lines “test class 1/2” show the time-domain data of the two classes reconstructed
from the subsets. For comparison, the dashed lines ("class 1" and "class 2") represent the analysis results of
the full dataset in Fig. 5.9. It can be seen that for the dataset restricted to measurement A, the two recovered
classes agree with each other within their uncertainty, as expected. Furthermore, they agree well with "class
1", which corresponds to measurement A. For completeness, the same analysis is performed with the data
only from measurement B and shown in the lower part of the panel. For better visibility, the results for data
for the two measurement settings are shifted along the y-axis such that they can be better distinguished from
each other. (b) Results of the sorting analysis applied to the full dataset comprising measurement settings
A and B, but with clustering into three classes. The results of these three test classes are shown as solid
lines. The time-domain data is scaled for better comparability by fitting an overall scaling factor in the time
range from Ons to 100 ns. The uncertainty bands of the different sets are calculated by a statistical analysis
as explained in Section 5.3.4. As a reference, also the results of the sorting analysis in Fig. 5.9 are displayed
in addition (dashed lines "class 1" and "class 2").

than in the case with two clusters (see Fig. 5.9), indicating a less reliable analysis. Second, we find
that two of the recovered time-domain data (test class 1 and test class 3) agree well with each other,
within their respective uncertainties. They also agree well with the reference data “class 1”7 obtained
with the analysis involving only two clusters in Fig. 5.9. Correspondingly, the third of the recovered
time-domain data (test class 2) agrees well with with the second reference data “class 2”. Thus, the
analysis is consistent with only two dynamics classes in the data, as expected.

Overall, we therefore conclude that the sorting algorithm works as expected, in particular with
regards to the correct number of dynamics classes extracted from the data.

5.4 Summary and Outlook

We have demonstrated the possibility to perform coherent nuclear forward scattering experiments
using self-seeded XFEL radiation. The exceptionally high resonant flux per shot unlocks fundamen-
tally new applications for Mossbauer nuclei. In particular, our results demonstrate the possibility to
disentangle different evolution pathways from the out-of-equilibrium state back into equilibrium by
analyzing time-domain datasets on the level of single shots. For this, we identify different dynamics
classes and sort the data accordingly. Since the clustering analysis is data-driven and does not require
a theoretical modeling of the data, also previously unknown phenomena can be searched for. The
analysis can readily be applied to standard experimental approaches, without the need for dedicated
measurements or instrumentation.

Importantly, we found that our sorting analysis is capable of clearly revealing the differences in the
two dynamics classes also for times larger than approximately 50ns after excitation. By contrast,
even the rare shots with highest signal-photon number do not contain sufficient counts to resolve
these differences in the dynamics directly, due to the overall approximately exponential decay of the
scattered light intensity with time (see Section 5.2.2). This highlights the advantage of the sorting
approach over the direct single-shot analysis.

By repeating the clustering analysis for different final numbers of clusters, the most probable
number of dynamics classes can be identified. In the present experiment, we find that an analysis
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with two clusters yields the highest clustering quality and stability, consistent with the original
experimental design (see Section 5.2.1). In practice, already a stable and reproducible identification
of qualitatively different time-domain data is a clear indication that the experiment comprises different
classes of dynamics (see Section 5.3.4).

We envision that the single-shot sorting approach applied to coherent forward scattering data
recorded with self-seeded x-ray pulses will open up new applications for Mossbauer science. Broadly
speaking, different dynamics classes can originate from the nuclei themselves, or from the surround-
ing host environment. Under XFEL excitation conditions, even the unperturbed nuclear relaxation
dynamics of a multiply-excited nuclear ensemble back to the ground state comprises different se-
quences of coherent and incoherent emission events. The time-resolved observation of the emitted
photons can project the nuclear ensemble onto entangled states [Thi+07], or correlate independent
excitation volumes in the sample [Cab+99; Moe+07]. An analysis on the single-shot level provides
a route towards the observation of the nuclear ensemble in a quantum state. Furthermore, a major
contribution to the incoherent decay is formed by internal conversion [LMS17], such that our method
provides an opportunity to study the interaction between the nuclei and the electronic environment in
a controlled way. On the other hand, the majority of current-day applications of Mdssbauer nuclei are
related to studying the structure and dynamics of the surrounding host material. The host evolution
may also impose different dynamics onto the nuclei, e.g., if it involves quantum-mechanical super-
position states with probabilistic measurement outcomes. Our sorting approach opens an avenue to
developing the nuclei as non-invasive high-resolution probes for the electronic, phononic and struc-
tural dynamics of the environment geared towards the unique excitation conditions at XFELs. At
these machines, mostly interactions of the x-rays with electronic degrees of freedom are used to probe
targets, while these electronic properties oftentimes are subject to the investigation themselves, such
that the probe and the probed system are intrinsically intertwined. By contrast, nuclei form an in-
dependent subsystem, and thereby offer valuable complementary information. Key examples involve
the dynamics after impulsive pumping of the electronic [KKR99], vibrational [VSK13], spin [Sad+21;
Sak+17] or magnetic [Boc+21] state of the host material. We further envision the extension of the
sorting approach to nuclear inelastic scattering [CR98; VSK13], which next to the study of phonons
could also allow one to generalize XFEL Mossbauer studies to liquids, gases, plasmas, higher-energy
nuclear transitions, “detect-before-destruct” approaches, or other samples with low probability for
recoilless x-ray-nucleus interactions [Bar+96; Ser+06]. Furthermore, coherent control mechanisms
with Mossbauer nuclei [Boc+21; Hee+21] could be transferred towards the single-shot domain.
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Chapter 6

XFEL anomalies in nuclear resonant scattering

6.1 Motivation

Seeded XFELs provide orders of magnitude higher intensities than synchrotrons, typically within a
bandwidth of about 1eV. However, due to the narrow nuclear resonance, e.g., I' = 4.7neV for *"Fe,
only a tiny fraction of the total beam intensity is resonant. Therefore, at XFELs the response of the
nuclei is expected to still be in the low-excitation regime [LKE25b]. A first experiment at SACLA
confirmed this expectation by demonstrating that the time spectrum of an iron-borate sample in
reflection geometry behind a high-resolution monochromator measured at an XFEL is the same as
measured at a synchrotron [Chu+18].

However, during calibration measurements in our first experiment with °"Fe at the European
XFEL [57F22], we found totally unexpected behavior of scattering in the nuclear forward direc-
tion off an 8 pm thick enriched a-iron foil. While the time spectrum could be fitted with the standard
theory presented in Section 2.1.4, the fitted thickness was to small. We call this unexpected behavior
the thickness anomaly and continued to study it also in the next experiment [57F23]. In the new
experiment, we could not only confirm the thickness anomaly, but in addition also found unexpected
behavior when introducing attenuators in the experiment. The count rates and time spectra depend
strongly on the amount of attenuating material upstream the sample although the total amount of
attenuating material in the beam is kept constant. In the low-excitation regime, this is also unex-
pected and therefore called the attenuator anomaly. Understanding the origin of those two anomalies
is crucial for further experiments, such as the original goal of measuring the collective Lamb-shift
under XFEL conditions [57F22; 57F23], and to establish Mdssbauer spectroscopy at XFELs.

Here, we present the data evaluation studying both anomalies in detail with the data from the
second experiment [57F23]. Although the underlying physical mechanism is yet to be found, we
discuss potential explanations. Finally, we shortly discuss a third experiment dedicated to analyze
the anomalies in detail [57F25].

6.2 Thickness anomaly

6.2.1 Experimental setup

The experiment p3334 [57F23] was performed at the MID instrument [Mad+21] of the European
XFEL [Dec+20]. The setup is shown in Fig. 6.1. Trains containing 30 pulses of hard x-ray self-seeded
XFEL light with a total pulse energy, i.e., including the SASE pedestal, of approximately 200 pJ were
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Figure 6.1: Experimental setup for thickness anomaly measurements. The self-seeded XFEL beam at
14.4keV photon energy reaches the experiments in trains of 30 pulses with approximately 200 pJ pulse energy
each. Afterwards, an optional monochromator can reduce the bandwidth to 1eV. The sample is a stack of
enriched 5"Fe-foils. A polarization analyzer removes the unscattered background. Optionally, a stainless steel
foil mounted on a Mdssbauer drive can be inserted to measure energy-time spectra. Finally a stack of four
APDs records the arrival times of the x-ray photons.
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Figure 6.2: (a) Expected time spectra for the different foil thicknesses. For better visibility, the spectra are
shifted vertically. (b) The measured time spectra for the foils of different thickness with monochromator. The
spectrum of the 2 pm-foil is scaled for better comparability.

used. The XFEL light is intrinsically horizontally polarized. Optionally, MID’s Si(111) double-crystal
monochromator (DCM) was placed in the beam to reduce the bandwidth of the incoming light to 1 eV,
thus effectively removing the SASE pedestal. The samples consist of stacks of one, two or four slices
of an approximately 2 um thick a-iron foil enriched with ®"Fe. Therefore, the samples are referred
to as the 2 um-, the 4 um-, and the 8 um-foil. The samples are placed in a magnetic field, which
is perpendicular to the beam and rotated by 45° with respect to the beam polarization. Therefore,
all six hyperfine transitions are driven and scattering into the other polarization component occurs.
A Si-840 polarization analyzer [Mar-+21] filters out the horizontal polarization component and thus
the unscattered light. Otherwise, due to the high intensities at XFELs, the APDs would be too
much saturated by the prompt pulse and blind for the delayed resonant photons. The scattered light
can be rotated into the perpendicular polarization component and can thus pass the analyzer. It
is detected with a stack of four APDs. To reduce saturation effects, in the case without DCM an
approximately 1 mm-thick aluminum plate was placed before the APDs, in the measurements with
DCM an approximately 0.5 mm-thick stack of aluminum foils.

6.2.2 Comparison of time spectra

In Fig. 6.2(a) the expected time spectra for the different foils are shown. The time spectra for different
thicknesses vary because of the envelope Bessel function in Eq. (2.12), which depends on the thickness.
The measured time spectra with monochromator are displayed in Fig. 6.2(b). It can be easily seen
that the measured time spectra approximately agree with each other and all show a time spectrum
roughly equivalent to that expected for a 2 um-foil, but not corresponding to their actual physical
thickness. This observation was unexpected and is therefore now called the thickness anomaly. Note
that in the linear regime, the fact, that the foils in the experiment are no monolithic foils, but stacked
foils should not make a difference. The first idea was that maybe, because the different slices are
only loosely mounted between two Kapton foils, they are moving relative to each other, such that the
2 pm-parts do not add up coherently as expected, but incoherently. If the motion is slightly different
for each pulse and at least on the order of a wavelength, which is 86 pm, this could lead to a thinner
effective thickness. The effect of coherent versus incoherent interaction is discussed in more detail in
Section 6.2.7.

The possibility to measure with and without DCM, which effectively is with and without SASE
pedestal, allows to investigate the effect of the non-resonant SASE pedestal. Note that at synchrotrons
the experiments are typically performed with high-resolution monochromators well below 1 eV[Rch04].
For the interpretation of the results, it should also be kept in mind that the DCM does not only reduce
the bandwidth, but in addition has transmittance losses, and therefore leads to a reduced pulse energy
on the sample. Assuming the standard theory, which is well-established at synchrotrons, there should
be no difference for a monochromator with a bandwidth of approximately 1eV as at MID because
it is still many orders of magnitude wider than the resonance. In Fig. 6.3 for the 8 pm-foil the time
spectra measured with (blue solid line) and without (red solid line) monochromator are compared.
It can be immediately seen that they do not agree. For a quantitative analysis, the data can be well
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Figure 6.3: Comparison of time spectra measured with (blue solid line) and without (red solid line) monochro-
mator for the 8 um-foil. For better comparability, the time spectrum without monochromator is scaled. The
dashed lines indicate respective fits with standard theory.

fitted with the standard theory in Eq. (2.12) (dashed lines), but the resulting thicknesses are
Ly =18pum and Ly, =0.7pum, (6.1)

for the measurements with and without monochromator, respectively. This is in strong contradiction
to the standard theory, which does not predict any difference, and the physical thickness of Lactual =
8 pm. For the other foils the results are qualitatively similar.

The measurements without monochromator also rule out the potential explanation that the stacked
foils do not add up coherently and thus the fit result is close to the thickness of the single foils in
the stack. Furthermore, in the latest experiment p8006 [57F25] the samples were monolithic and the
thickness anomaly still exists.

The fact, that the fitted thickness does not match the physical thickness under intense XFEL
irradiation was very surprising. A more detailed analysis will be done in the following section. So
far, this effect is not explained, but some ideas will be discussed in Section 6.2.7.

6.2.3 Pulse-resolved analysis

The train structure allows to disentangle effects on different times scales. While pulses within a train
come every 440 ns, the time difference between the last pulse of the previous train and the new train
is nearly 100 ms. Thus a pulse-resolved analysis can help to disentangle effects on short time scales
within a train and long-term effects.

Count rates

At first, the count rates of the prompt pulse are analyzed in Fig. 6.4(a,b) for the different foils and the
measurements with and without monochromator. It can be seen that they are clearly not constant
over one train. This can be related to heating of the crystal optics, i.e., the monochromator and the
polarization analyzer. During a pulse train the crystals heat up, which slightly changes the lattice
plane distance and thus distorts the alignment. Until the next pulse train arrives, the optics have
cooled down again. This is also the reason why only 30 pulses per train were used in the experiment
as more pulses could not be well transported through the crystal optics. Furthermore, the count rates
are highest for the thinnest foil and thus the lowest absorption in the beam as expected. The count
rates with monochromator are higher because for the measurements without monochromator, a 1 mm
thick aluminum foil (=~ 10% transmission) was placed in front of the APDs to avoid APD saturation
and especially subsequent electronic ringing, while for the measurements with monochromator only a
0.5 mm thick stack of aluminum (a 30% transmission) is used. The transmission ratio approximately
matches the count rate ratios for the different foils. Nonetheless, after correcting the count rates for the
different amount of attenuating aluminum, the count rate in the measurements with monochromator
are slightly lower, which is probably due to transmission losses of the monochromator.

For the delayed count rates, we notice that the thicker the foil, the higher the count rate, and the
count rates have approximately similar ratios as the ratios of the thicknesses, which is the expected
behavior. This seems obvious, but is a very important observation as it indicates, that even though
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Figure 6.4: Count rates of prompt (a, b) and delayed photons (c,d) as a function of pulse ID in a train for
the measurements without (a,c) and with (b,d) monochromator. For the prompt pulse, the APD traces are
summed up over the whole run and integrated over the time window from -2.5ns to 2.5 ns, because no photon
arrival time extraction is possible. For the delayed counts, the number of photons between 5ns and 400 ns
after excitation is used. The different colors correspond to the different samples. The mean delayed count
rates are indicated by the dashed lines of same color in (¢,d). For the measurements without monochromator
the mean count rates are (0.254+0.04) ph/2 (2 pm sample), 0.414+0.04 ph/s (4 pm sample) and 0.82+0.10 ph/s,
(8 um sample) for the measurements with monochromator 12.74+1.6 ph/2 (2 yum sample), 17.2+1.7 ph/s (4 um
sample) and 43 &+ 5ph/s, (8 pum sample).

the time spectra do not look as expected, the whole sample takes part in the scattering and not
only the first 1 um or 2 um of the sample. Furthermore, the count rates with monochromator are
approximately 50 times higher than those without monochromator with the same sample. This is
unexpected, because the ratio is significantly higher than for the prompt pulse. Lastly, also the
delayed count rates are not constant throughout the train but show a general trend of rising first and
lowering at later times. Interestingly, the curve shapes are different as compared to the prompt count
rates, which indicates that also the sample changes its behavior over a train.

Fitting of time spectra

For each foil and each pulse in the train a separate time spectrum can be generated and fitted with
the standard theory presented in Section 2.1.4. Because of the small count rates for the measurements
without monochromator, 5 pulses are combined to increase the statistics.

To find the global optimum of the fit parameters, a combination of evolutionary algorithms [Coe05;
Rec78] and the standard Nelder-Mead [GH12| with the python library scipy [Vir+20] is used. To
quantify the deviation of the theoretical model from the experimental data, a Poissonian likelihood
distribution is used. This accounts for Poissonian shot noise, which is our main source of uncertainty
in the time spectra. The Poissonian likelihood measures the probability [HJO01]

e_"theo,i

P(nexp,i

Piheo,i) X (Nheo,i) " ; (6.2)

nexp,i!

how likely it is to find mexp,; counts in the experiment assuming a prediction of 7theo, i counts under
the assumption of Poissonian shot noise. Using Bayes theorem [Dek-+05|, the reversed probability,
which is needed for the fitting process, can be derived as [Len21|

P(ntheo,i|Pexp,i) X P(nexp,i|Ptheo,i) . (63)
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Figure 6.5: (a) Pulse-resolved fit results for different parameters and the normalized fitness of the fit. We
fit the orientation of the magnetic field relative to the incident light polarization, which is characterized by
the azimuthal ¢ and polar angle 6, the magnetic field strenght B and the thickness of the sample L. (b)
The fitness F representing the goodness of the fit and the photon number as a function of the pulse ID. The
different colors indicate the different datasets. The horizontal errorbars show combined pulses, the vertical
the statistical uncertainties.

This is discussed in more detail in [Len21]. For numerical reasons typically, instead of the likelihood
itself, its logarithm is used. Thus, the fitting fitness F is defined by a Poissonian log-likelihood [HJ01;
Len21]

F= Z lOg Ntheo,i * Texp,i — Mtheo,i — r (nexp + 1) ’ (64>

7

with the Gamma function I'(z). The larger this number, the higher the probability to measure the
experimental data with the fitted parameters and thus the higher the fit quality. The evolutionary
algorithms introduce some randomness to find the global minimum and are therefore not deterministic.
To take this into account, each time spectrum is fitted ten times and the reported fit results are the
mean values with the uncertainty given by the statistical standard deviation. The theoretical models
for a given set of parameters are calculated with the python library pynuss [Heel9]. More details on
the fitting procedure is given in Appendix A.1.

In Fig. 6.5(a) the fit results for the different foils are displayed and will be discussed in the following.
The respective fits can be found in Figs. A.1 to A.6. To better interpret the results, in Fig. 6.5(b) the
fitness F and the integrated photon number are shown. It can be clearly seen that the time spectra
with monochromator have higher fitnesses than those without. This should be kept in mind when
analyzing the fit parameters. In general, we see modifications of the fit parameters with the pulse
ID, which are correlated with the photon number. The photon number modifications over the train
are due to varying transmission through the x-ray crystal optics caused by heating.

The first two parameters define the direction of the magnetic field via azimuthal and polar angle
with respect to the beam axis. In principle, in the given setting with the analyzer perpendicular
to the incident polarizations, it can be demonstrated that the azimuthal angle ¢ is indefinite (see
Appendix A.1.1). Nonetheless, in the experiment the polarization blocking of the polarization ana-
lyzer is not perfect (purity estimated to be on the order of 107° [HL25]|), which results in a favored
value of the azimuthal angle. However, this is widespread and uncertain. Nonetheless, the results for
the different settings agree with each other. For the polar angle 6, from the experimental setting an
angle of approximately § = 7/2 is expected. Considering alignment uncertainties, the fit values are
reasonable.

The next fit parameter is the strength of the internal magnetic field at the positions of the nuclei.
This is expected to be around B = 33 T, which is the case for all settings. Interestingly, the magnetic
field seems to slightly decrease over the train.

Most interesting are the fitted thicknesses because already in the comparison of the time spectra in
Section 6.2.2 the time spectra seemed to be from samples, which are not matching the actual physical
thickness. Here, this finding is confirmed. The time spectra measured without the monochromator
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Figure 6.6: Time spectra for small (blue) and large (red) pulse energies for the measurements with different
foils and with as well as without monochromator as indicated in the respective subtitles. For the measurements
without monochromator, the small (large) intensity time spectra are defined by summing over the 40% of the
pulses with smallest (highest) pulse energy, for the measurements with monochromator by the 15% outliers.
For better comparability, the time spectra are normalized by the number of total counts in the spectrum.

have a fitted thickness of about 1 pm, the measurements with monochromator around 2.5 ym indepen-
dently of the actual thickness. With monochromator, the intensity on the sample and the bandwidth
is reduced and thus closer to the case with synchrotron radiation. Therefore, the effect is probably
reduced and a fitted thickness closer to the actual thickness is expected. In the pulse-resolved analysis
it is visible that, especially for the thicker foils, the fitted thickness rises within the first few pulses.
Note that those differences have a similar shape as the count rates in Fig. 6.4. When interpreting
the fitted thickness results it should be noted that the actual defining parameter is not the physical
thickness L, but the thickness parameter b, which is related to L by (see Eq. (2.8))

b= JofLMTLF . L, (65)

with resonant cross section og, Lamb-Mossbauer factor fin, nuclear number density n, and linewidth
I". Thus any change of the parameters involved could result in a different fitted thickness.

The fact, that we can fit the time spectra, although with a modified thickness, is quite remarkable
because it tells us that even though the thickness does not match the expected value, the system
can be described with the standard theory in Section 2.1.4. Therefore, although we do not know the
physical origin of the thickness anomaly yet, we expect that the effect is caused by modifications of
time scales different from the nuclear nanosecond scales.

6.2.4 Pulse-energy resolved analysis

The XGM measures the total, i.e., resonant and non-resonant combined, pulse energy on a shot-to-
shot level. Because of the narrow linewidth of ®"Fe (4.7neV) compared to the incident x-ray pulse
width (0.1—1€V) this property is dominated by the non-resonant pulse energy. For all measurements,
the pulse energy measured with the XGM is approximately Gaussian distributed with mean values
between 186 uJ and 200 uJ and standard deviations of roughly 40 uJ.

To investigate the effect of the pulse energy, in Fig. 6.6, the time spectra only integrated over the
pulses with smallest (blue) and highest (red) pulse energy. For the measurements with (without)
monochromator, for the integration the 15% (40%) of all pulses with smallest or highest pulse energy,
respectively, are used. In general, for all measurements the two spectra are very similar to each other.
Nonetheless, in the time region between 135 ns and 200 ns, for the measurements with monochromator,
differences are visible and a similar trend is visible for all three foils. However, this deviations are
significantly smaller than the differences between expected and measured time spectra resulting from
the thickness anomaly as discussed before.
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Figure 6.7: Photon number distribution for the different measurements with and without monochromator
and different foil thickness. For the measurements with monochromator also the fit of a negative binomial
distribution is shown (red line). The corresponding fit parameters are given in Table 6.1.

6.2.5 Photon-number resolved analysis

While in the previous section, the effect of the total pulse energy, which is dominated by the non-
resonant pulse energy, was discussed, also the resonant pulse energy can be investigated. To this end,
a photon-number resolved analysis is performed.

Photon number distribution

The photon number distribution of an FEL or XFEL, even if operated in seeded mode, is not simply
a Poissonian distribution because of the randomness in the SASE process. It can rather be modeled
by a Gamma-distribution, which models a chaotic source obeying Gaussian statistics, [Zha+20|

M M-—1
Poman (0 30050 = 5y (7)o (017557 ) 00

with mean photon number (N,,) and number of degrees of freedom M. The Poissonian statistics of
the detection is taken into account by fitting with a Poissonian log-likelihood. The sample response
will be dominated by a Poissonian distribution, such that the combined photon distribution is given
by the convolution of a Gamma-distribution with a Poissonian-distribution resulting in a negative
Binomial distribution [Chu+18; Gool5]. The negative binomial distribution in terms of mean photon
number (Npp) and number of degrees of freedom M is given by [Hilll]

_ _ D(Npn+ M) (Npw)  \ e M M
st 05 = it o (i) () - O

Note, that this is the observed mean photon number while the actual photon number is given by
(Npn) = n{(Npp) with the detection efficiency 7.

In Fig. 6.7 the photon number distributions for the different foils and measurements with and
without monochromator are displayed. For the thicker foils the probability to find a larger number of
photons after excitation is higher. This is in agreement with the higher count rates for thicker foils,
which was found in Fig. 6.4 due to more resonant material in the beam. Similarly, the shift towards
higher photon numbers in the measurements with monochromator agrees with the higher count rates
in this setting.

Furthermore, the measurements with monochromator provide enough statistics to fit the negative
binomial distribution in Eq. (6.7) by using a Poissonian log-likelihood. The fit results are displayed
in Table 6.1 and are indicated in Fig. 6.7 by the red line. For all three measurements, the mode
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number of modes M mean photon number (Npp)

2 pm 1.14+ 0.04 1.247 £ 0.018
4 pm 1.06 £ 0.03 1.701 £ 0.024
8 pm 1.09 £ 0.03 4.32 £ 0.07

Table 6.1: Fit results of fitting a negative binomial distribution to the photon number distribution for the
measurements with different foils and with monochromator.. The corresponding data is shown in the lower

row of Fig. 6.7.
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Figure 6.8: Photon-resolved time spectra for the measurements with monochromator. For each dataset,
the time spectrum from pulses containing only one photon (blue) is compared to the time spectrum from
pulses containing a medium number of photons (red) and a high number of photons (orange). For better
comparability, the time spectra are normalized by their respective number of total counts.

numbers M agree within their uncertainties and indicate a single-mode source. The mean photon
number (Npy) rises with rising foil thickness. This is the expected behavior, as a thicker foil should
have a stronger scattering signal and agrees with the observations in Section 6.2.3. This sounds trivial,
but in the context of the unexpected behavior of the time spectra, it is a very crucial observation. It
makes an explanation of the unexpected time spectra behavior by the XFEL pulse only exciting the
first 2 ym unlikely. In addition, the ratios of the mean photon numbers agree with the ratios of the
respective mean count rates, which are given in Fig. 6.4.

Time spectra

For the measurements with monochromator the statistics of the photon number distribution is high
enough to evaluate the time spectrum in a photon-number resolved way. To this end, we define a low,
medium and high photon number regime for each foil separately depending on the highest occurring
photon number in the respective measurement. For the low photon number regime, we use only
pulses with a single photon, which is the typical regime at synchrotrons. The medium regime has a
lower bound at 10% of the maximal occurring photon number, but at least 2 photons, and an upper
bound at half of the maximum photon number. For the high photon number regime, we consider
pulses with at least half of the maximal occurring photon number. Integration over pulses in the
respective regime gives the time spectrum of this photon number regime. For the measurements with
monochromator and the three different foils, those time spectra are shown in Fig. 6.8. In general, the
time spectra in the low (blue), medium (red) and high (orange) high photon number regime agree
with each other. For the 8 ym foil there are some minor deviations in the spectrum especially at
around 70ns and 110 ns after excitation. The differences are similar to the differences discussed in
Section 6.2.4 and might originate from intensity effects similar to the differences in the measurements
with and without monochromator, which are correlated with the photon number. Note, that the
recorded photon number does not equal the incident photon number due to internal conversion and
finite detection probability, however they are correlated. Unfortunately, the statistics are not sufficient
enough to evaluate the time spectra in more detailed steps of the photon number. Nonetheless, we
can conclude that the different photon numbers cannot explain the thickness anomaly by a non-linear
excitation of the nuclei. Not only is the number of resonant photon compared to the number of nuclei
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Figure 6.9: Comparison of the energy-time-spectrum as predicted from theoretical calculations (a) and
measured in the experiment (b). Clearly a reduced prominence of the interference fringes in the experimental
data is visible. The measurement is performed for the 8 um foil with the monochromator. The colorbar
represents the number of counts in the respective bin. The measurements are performed with 1mm of

aluminum in front of the sample to reduce the intensity on the sample. In the white regions no data was
recorded.
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Figure 6.10: (a) Energy-time-spectrum integrated over only the first seven and last seven pulses in the train.
The colorbar represents the number of counts in the respective bins. (b) The shift towards higher Mdssbauer
detuning in (a) can be quantitatively analyzed by displaying the center of gravity for each pulse ID. The
different colors represent different integration time regions for the calculation of the center of gravity. The
measurements are performed with 1 mm of aluminum in front of the sample to reduce the intensity on the
sample.

in the solid state target negligible, such that non-linear effects are extremely unlikely. But in addition
the differences in the photon-resolved spectra are significantly smaller than the effect of the thickness
anomaly.

6.2.6 Loss of interference

During the experiment, also an energy-time-spectrum was measured by inserting the Mdssbauer drive
with a stainless steel foil (see Fig. 6.1) for the 8 um foil with the monochromator. As we have seen in
Section 2.1.3, the interference fringes in the energy-time spectra are due to interference of the sample
and an analyzer foil on the Mossbauer drive. While the nuclear forward scattering is based on the
coherent response of a single target, the energy-time spectra are based on the interference between
two targets. To reduce the beam intensity on the sample 1 mm of aluminum was placed in front of the
sample. Without the attenuation no interference pattern was visible. Assuming approximately the
fit parameters from Section 6.2.3, the sample can be theoretically modeled. Here, the analyzer foil on
the Mdéssbauer drive was an approximately 2 ym thick stainless steel foil. Unfortunately, no separate
time spectrum of the stainless steel foil alone exists, such that a sample parameter characterization
from the experimental data was not possible. However, this foil was used several times in other
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experiments, such that the sample parameters from other experiments can be used for a qualitative
comparison. In addition, the sample was placed behind the polarization analyzer, which is why it was
only hit by weak x-ray light and thus a behavior as at a synchrotron is expected. From the sample
and analyzer foil properties, a theoretical prediction of the energy-time-spectrum can be calculated
and is displayed in Fig. 6.9(a). Along the y-axis, the temporal beating structures as in the discussed
time spectra are visible. In addition, along the z-axis, interference fringes are evident, which arise
from the interference of the sample and analyzer foil response.

The experimental result is displayed in Fig. 6.9(b). While the temporal structure is similar to the
theoretical prediction, the interference fringes are significantly less prominent. This can be best seen
in the time region between 30ns and 50ns. A first measurement without the aluminum attenua-
tor in front of the sample showed even less pronounced interference fringes. Furthermore, in a new
experiment [57F25] it was possible to regain the interference by reducing the incident x-ray beam
intensity on the sample even further. Therefore, it was clearly demonstrated, that for the measure-
ments in nuclear forward scattering, the prominence of the interference correlates with the incident
x-ray intensity on the sample.

The energy-time-spectrum, like the time spectrum, can be analyzed in a pulse-resolved way. How-
ever, due to the limited statistics integration over several pulses is necessary. The energy-time-
spectra integrated over only the first seven and the last seven pulses within a train are compared
in Fig. 6.10(a). The interference is reduced over the train and interestingly, the spectrum seems to
shift towards positive detunings, which is again most prominently visible in the region between 30 ns
and 50ns. This effect can be studied in more detail by integrating the energy-time-spectrum in a
certain region of interest in the time domain. This increases the statistics, such that the analysis
is possible on a single-pulse basis. For the resulting counts as a function of Mo6ssbauer detuning,
the center of gravity, i.e., the average Mossbauer detuning when weighted by the number of counts
per bin, can be calculated. For different integration regions in the time domain, which are indicated
by different colors, the center of gravity is displayed as a function of pulse ID in Fig. 6.10(b). For
integration regions starting at 10ns (blue and green dots), in which the shift is dominated by the ear-
liest horizontal lines without interference, and integration regions starting from 50ns (violett dots),
which are dominated by the third horizontal band at around 50 ns, no significant dependency on the
pulse ID exists. However, for the integration regions starting at 30ns (orange and red dots), the
shift slowly rises until approximately pulse 10 at which it has reached a plateau. The shift is most
prominent in the time region between 30ns and 50 ns (orange dots) because it has enough statistics
and does not contain one of the peaks in the time domain, i.e., the horizontal bars, at which the
interference is small. Focusing on this region, the shift reaches up to A = 15T equivalent to speed of
v =cA/E = 1.5mm/s, at which the analyzer foil on the Mdssbauer drive moves. Here the formula
for the Doppler shift with speed of light ¢ and photon energy E = 14.4keV was used. If the frequency
shift is actually due ot a mechanical movement, using the pulse separation of 440 ns and integrating
the displacement over all pulses, it can be concluded that the over a train the sample would have
moved by 12.5nm.

6.2.7 A possible explanation with a modified theory

One possible explanation for the thickness anomaly, which is inspired by the loss of interference and
the fact that the count rates still scale depending on the actual physical sample thickness, is presented
in this section. As discussed in Section 2.1.4, the dynamical beats in the time spectrum are due to
coherent interference of the different layers. However, a yet to be discussed physical mechanism could
lead to an incoherent summation of the electric field from different layers. If, for example, the sample
would consist of two parts, whose responses are incoherently summed up, the sample would appear
to have half the thickness, but still the expected count rate. This would directly lead to a reduced
thickness while the time spectra can still be fitted well with standard theory.

An effectively incoherent summation could also arise from another mechanism. By an also yet
unknown mechanism the sample could be split into several subslices. In addition, due to the intense
and fluctuating XFEL pulses, each subslice could have a random phase, which fluctuates from shot
to shot. For a single subslice with response in frequency space R(w), the response can be divided into
a non-scattering ("1") and a scattering part ("T(w)")

Rw)=1+T(w), (6.8)

where electronic scattering was neglected for simplicity. The electric field behind a sample excited by
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Figure 6.11: Comparison of standard theory (blue) and calculation with N = 15 subslices in the modified
theory in Eq. (6.12) (orange) to experimental data with 8 um foil and monochromator (black). For comparison
all time spectra are normalized by their respective sum under the curve.

a short pulse such as a synchrotron or XFEL pulse, i.e., Ei,(t) = 6(t), equivalent to Ei,(w) = 1, is
given by
Eout(w) = R(w) - Fin(w) = R(w) . (6.9)

An instantaneous phase jump from 0 to ¢ immediately after the excitation acts only on the scattering
part of the response. The relevant time scale for the phase jump is the nuclear lifetime 7, e.g.,
7 = 141ns for ®"Fe. Following the formalism in [Hee+17; Hel+91; Reil4], it can be demonstrated
that the electric field behind N identical targets with responses R(w), but individual phases ¢; is
given by

E(N)( =1+T(w Z 61¢'JR (6.10)

out

A detailed derivation of this formula is given in Appendix A.2. The first "1" represents the unscattered
contribution. If scattering takes place, indicated by "T'(w)", this can happen in any of the N subslices,
which is represented by the sum over j. For each term of scattering in different subslices, the relevant
phase is that of the subslice in which the first scattering takes place due to the incident x-ray light at
the time of excitation. Finally, the R(w)" =7 describes the interaction with the downstream subslices.
In the experiment, the electric field is not measured directly, but the intensity

I(w) =|Eout(w)[?

=1+ 2Re T(w)zewaR(w)N—i HTW)2D D eI Rw)N T (Rw)NF)" . (6.11)

j=1k=1

Although a physical mechanism, which could induce such phases, is yet to be discussed, due to the
stochastic properties of XFEL pulses, it can be assumed that the phases are randomly fluctuating
from shot to shot. In addition, the measured time spectra are averaged over very many pulses such
that the phases average out. For the intensity, this means that all terms containing phase differences
vanish and the final result for the averaged intensity is

Tavg(w) =1+ |T(w \QZIR (6.12)
7=0

where the order of the sum was reversed to simplify the expression. The first "1" again corresponds to
the non-scattered light, while the T'(w) describes the scattering process. If scattering takes place, there
are many options, where scattering can take place. These options are described by the sum, which is
an incoherent sum over the combined scattering response of j subslices. Because of the transmission
of two samples with thicknesses L; and Lo being multiplicative, i.e., R(L1) - R(L2) = R(L1 + L),
the sum effectively sums over the response of a stack with thicknesses j-times the single-subslice
thickness. The expression in Eq. (6.12) strongly depends on the number of subslices N.
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Figure 6.12: Setup for the attenuator anomaly. Trains with 30 pulses of the hard x-ray self-seeded beam
at 14.4keV and approximately 200 uJ pulse energy each enter the setup. Upstream and downstream of the
8 pm sample aluminum attenuators with thicknesses dup and daown, respectively, and dup + ddown = 1 mm are
placed. The polarization analyzer is used to suppress non-resonantly scattered light. For the detection of the
scattered photons a stack of four APDs is used.

In Fig. 6.11 the measured time spectrum for the 8 ym foil with monochromator (black line) is
compared to the expected time spectrum (blue) line. As discussed in Section 6.2.2, there is a strong
deviation. In addition, the result of the proposed theory in Eq. (6.12) is displayed for N = 15 subslices
(orange line), which clearly matches the measured spectrum better than the expected spectrum.
However, as already said the result strongly depends on the number of subslices N and N = 15 fits
the data reasonably well. In addition, the overall decay of the measured spectrum is slower than in
the expected spectrum and also slightly slower than in the spectrum with the modified theory.

6.2.8 Summary of the thickness anomaly

To summarize, we found two unexpected results in the context of the thickness anomaly. First,
independent of the physical thickness, the time spectra look similar and the fitted thickness is too
thin compared to the physical thickness. Second, for the same foil, the time spectrum and the fitted
thickness differ for the measurements with and without monochromator. While both effects are
unexpected, it is remarkable that the time spectra can be fitted with standard theory, assuming a
modified thickness. This indicates that still coherent nuclear forward scattering takes place, but a
yet to be determined mechanism modifies the effective thickness. Additional analysis revealed that
there are small differences as a function of the pulse ID, which we attribute to different transmittance
through the x-ray optics because of heating of the crystals. As a function of the total pulse energy
measured by the XGM and as a function of the photon number, no significant differences in the time
spectra are visible. While, within a single sample, the coherence is not lost, the energy-time spectra
reveal a loss of interference between the sample and a second foil mounted on a Md&ssbauer drive.
This effect is especially strong for later pulses in a train, where the interference fringes are completely
washed out and the center of gravity shifts. In the last part, we presented a simple model, which
could explain a thinner thickness. If the sample is split into N slices and the response of each slice is
multiplied with a random phase, averaging over many shots leads to a modified response. By tuning
the number of slices to N = 15, the time spectrum of a thinner foil can be approximately reproduced.

6.3 Attenuator anomaly

6.3.1 Experimental setup

The experimental setup to investigate the attenuator anomaly is displayed in Fig. 6.12. The self-
seeded XFEL pulses impinge on the sample, which is placed between two aluminum attenuators.
During the experiment the thickness of the upstream attenuator d,, is varied, but the thickness of
the downstream attenuator dgown is modified accordingly such that the total amount of attenuating
material dyp + dgown = 1mm is constant. The total absorption of both attenuators together thus
is always around 90%, while the pulse energy on the sample is varied. The photons are detected
by a stack of four APDs, which are placed behind a polarization analyzer to suppress non-resonant
photons. In all measurements the 8 um foil is used as the nuclear resonant sample.
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Figure 6.13: (a) The count rates for the measurements with different thickness of the aluminum attenuator
upstream the sample. (b) The time spectra for the measurements with different attenuation. The colors
correspond to the thicknesses of the upstream attenuator dup in panel (a). For reference the measurement
without aluminum attenuators is shown by the gray dashed line. As a sample the 8 um foil without DCM
was used.
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Figure 6.14: Ratio It /Inone of the time spectra with (Iaet) and without (Inone) attenuators for different
amount of attenuating material upstream d.,. Note that the scaling is only defined up to a shift on the
y-axis. Here, the ratios are scaled such that the mean ratio between 300ns and 400ns is equal to 1. All
measurements are performed without DCM.

6.3.2 Experimental results

Because the nuclei even at an XFEL are driven only very weakly, the nuclei are expected to remain
in the low-excitation regime with linear behavior. Therefore, the results are expected to not depend
on the distribution of attenuating material dy,p and dqown, as long as the total amount of attenuating
material dyp, + ddown is constant. This is because for a linear process it does not matter, whether
less photons are impinging on the sample or whether a certain proportion of the signal photons is
absorbed before the detector. In Fig. 6.13 the experimental findings for the measurements with
varying thickness of the upstream attenuator dy, are summarized and are discussed in the following.

As discussed in the introduction of this section, a count rate independent of the thickness of the
upstream attenuator d,, is expected in the experiment. Instead, the count rate drops significantly
with rising thickness of the upstream attenuator d,p, as can be seen from Fig. 6.13(a). This is the
first observation in the attenuator anomaly.

Even more surprisingly, the measured time spectra in Fig. 6.13(b) show a strong dependence on the
thickness of the upstream attenuator d,,, which is the second observation of the attenuator anomaly.
This dependence is mainly a strong deviation in the envelope from the reference measurement without
the attenuators, while the quantum beat structure remains the same.

The differences can be further investigated by calculating the ratio of the measurement with at-
tenuators I,i; and the reference measurement without attenuators I,one for all times. The results
for the different amounts of attenuating material upstream the sample is displayed in Fig. 6.14. Due
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to the different count rates, there is an intrinsic scaling factor between the measurement with and
without attenuators. It is not known so far where the attenuator anomaly comes from and whether
the different shape is due to redistribution or an overall scaling. Thus the scaling factor is in principle
undefined. For better comparability, the ratios are scaled such that the mean ratio between 300 ns
and 400 ns is equal to 1 in all settings. The general shape of the ratio ILnit/Ihone is independent of
the upstream attenuator thickness d,,. At very early times, the variation from the reference time
spectrum without attenuators is small. Afterwards, all measurements feature a dip at around 20 ns
before rising again with decreasing speed. The less attenuating material is in front of the sample, the
steeper is the rise.

The investigation of the ratio of the measurement with attenuators I,:¢ and the reference measure-
ment without attenuators I, indicates, that something is happening on nanosecond time scales.
However, the physical origin is not known so far.

6.3.3 Discussion of possible effects

For synchrotron experiments, it does not matter whether attenuators are placed in front or behind
the sample as long as the total amount of attenuating material in the beam is constant. At the XFEL
experiment we have seen unexpected and strong dependence of the count rates and the time spectra
on the positioning of the attenuating material, which we call the attenuator anomaly. So far, the
origin of the attenuator anomaly is not known. Nonetheless, we can speculate on possible effects.

First, aluminum is a crystalline material and as such problematic if combined with a polarimeter.
Our setup is designed in such a way that resonant scattering in the sample rotates the incident
horizontal polarization into the vertical polarization component. The polarization analyzer is aligned
to ideally only let the vertical component pass, thereby blocking the unscattered light. The crystalline
aluminum attenuators in front and after the sample could potentially spoil this alignment and lead
to modified count rates.

The second effect is that as ®”Fe has an abundance of approximately 2% and if the used aluminum
is not highly-purified aluminum, it might still contain small amounts of °”Fe in the attenuators, which
is resonantly excited. However, from the synchrotron experience, this would be unexpected to explain
the observed effects.

6.3.4 Summary of the attenuator anomaly

To study the attenuator anomaly, we keep the amount of attenuating aluminum in the beam constant,
but vary how much of the attenuation material is placed upstream of the sample. The anomaly consists
of two observations: The count rates drop with increasing thickness of the upstream attenuator and
the time spectra show an envelope modification. We further discussed whether a change of polarization
by the aluminum and °7Fe-contamination of the aluminum attenuators could potentially explain the
effects. However, so far as for the thickness anomaly, the physical origin of the attenuator anomaly
is unknown.

6.4 The follow-up experiment

Based on the results discussed above, a new proposal p8006 [57F25] was put forward to further in-
vestigate the anomalies by more systematic studies with the to goal to identify a possible physical
origin. Understanding the anomalies is also crucial for Mdssbauer spectroscopy under XFEL condi-
tions. In the long run, the observed anomalies could be used to pave the way to apply Mdssbauer
nuclei as spectators for the electronic environment under XFEL conditions. Which systematic studies
we planned is discussed in the following.

Samples. To investigate the thickness anomaly further, more systematic studies of the samples are
planned. These include first of all monolithic samples of roughly 2 pm, 4 pm, 8 ym, and 12 pm instead
of the stacked samples used so far. The new set of samples also includes foils down to 1.2 ym, thus
allowing to test whether samples can also appear thicker than expected. Furthermore, non-enriched
samples are used because they have a different ratio of the resonant ®"Fe to the non-resonant °6Fe
and thus potentially allow an at least partial disentangling of electronic and nuclear effects.

Experimental settings. To investigate the effect of the bandwidth of the incident x-ray pulses,
measurements without monochromator, with the beamline’s DCM (bandwidth ~ 1eV) [Mad+21],
and with a Si(840) polarization analyzer (bandwidth ~ 50meV) [Mar25] are performed. This allows
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us to study the behavior for different ratios of resonant to total photon flux and decouples the effect
of high intensity on the nuclei, which depends on the resonant photon flux, and the environment, for
which the total photon flux is relevant.

Attenuators. In a similar fashion as in the attenuator anomaly setup (see Fig. 6.12) systematic
studies of the attenuators are performed. They serve two purposes, first to study the attenuator
anomaly, but second to study the thickness anomaly for different x-ray beam intensities on the sam-
ple. To exclude a material effect in the attenuator anomaly, measurements with different attenuator
material, especially non-crystalline material, are conducted. Furthermore, not only different attenu-
ator thicknesses are tested, but also a finer step size of the amount of attenuation placed upstream of
the sample. This should include steps with less than half of the attenuation material placed upstream
of the sample to investigate whether the attenuator anomaly is influenced by the balance of the up-
and downstream thicknesses or rather governed by the amount of material upstream of the sample.

The experiment took place in March 2025, but the data evaluation is still ongoing and outside
the scope of this thesis. Results of the more systematic studies performed in this experiment will be
presented in [Yag p|, which is currently in preparation.

6.5 Summary and Outlook

In summary, we for the first time have reported two unexpected anomalies in nuclear resonant scat-
tering at an XFEL. First, there is the thickness anomaly, which is that unexpectedly the measured
time spectra are independent of the thickness of the samples and the fitted thickness is thinner than
the physical thickness of the sample. Second, the attenuator anomaly is the count rate and time
spectrum dependence on the amount of attenuating material upstream of the sample, while the total
amount is constant. In the low-excitation regime, the count rate as well as the time spectra should
be independent of this as long as the total amount of attenuating material in the beam does not vary.

First, we measured the time spectrum of three different foils with thicknesses of approximately
2 pm, 4 pm and 8 um. According to standard theory, we would expect the respective time spectra
to differ because the dynamical beats occur at different times. However, we found that they are all
very similar. Furthermore, the time spectra can be fitted reasonably with a thinner sample thickness
than the actual physical thickness. In contrast, measurements with and without monochromator of
the same foil are different, although standard theory predicts no difference. The fact, that although
with an unexpected thickness the data can be fitted with standard theory, suggests that there are no
modifications on the nuclear time scales, which is on the nanosecond level. We further found slight
differences depending on the photon number and beam intensity, as well as depending on the pulse
number within a train.

Secondly, we performed measurements for a fixed foil with different amounts of aluminum attenu-
ators in front and behind the sample. The total amount of aluminum in the beam was kept constant,
such that standard linear theory would predict no differences. However, we saw a decreasing count
rate for more attenuating material in front of the sample. In addition, unlike for the thickness
anomaly, we saw differences in the time spectra that cannot be explained in standard nuclear forward
scattering theory, especially variations on the nuclear time scale when comparing to the time spectra
without aluminum attenuators. This suggests that in the setting of the attenuator anomaly, there
are indeed effects with influence on the nuclear time scale.

We have further mentioned a new experiment to study the observed anomalies in a more detailed
and systematic way by additional measurements. With this additional knowledge, potentially the
underlying physical mechanisms can be identified.

Understanding the underlying physical mechanisms of the anomalies is crucial for further exper-
iments at XFELs. As mentioned in the beginning, the nuclear forward scattering measurements
were performed as simple calibration measurements. As long as those simple measurements are not
understood, more complicated experiments are ambitious. However, there are also more compli-
cated settings in which the samples behave as expected [Chu+18; Ger+25b]. Another aspect is that
nuclear forward scattering is a standard setting in Mossbauer spectroscopy with synchrotron radi-
ation [GBT11; Roh04; YL13]. In order to establish Mdssbauer spectroscopy at XFELs one has to
understand the occurring anomalies. Understanding the anomalies is not only important to interpret
the data of experiments, which are standard at synchrotrons, but can also open a new dimension at
XFELs. Following the lines of M&ssbauer spectroscopy, the nuclei could serve as spectators for effects
induced by XFEL radiation in an XFEL-pump nuclear-probe scheme.
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Part 11

Simulation of the de-excitation dynamics of
large nuclear ensembles
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Chapter 7

Numerical methods for many-body simulations

7.1 Motivation

For the simulation of the de-excitation dynamics of an ensemble of Mdssbauer nuclei, a particular
challenge is that the interaction between the nuclei and the incoherent loss channels operate on
comparable time scales, such that neither dominates. If the coherent interaction dominates, the
incoherent losses can be treated as a perturbation [AE87; Cri70; RS12]. In the case where the
incoherent losses dominate, the emitters can be treated independently and the incoherent losses
predominantly define the system dynamics. [GZ04; PK98]. In the case, where none of the two
processes dominates, as it is the case for an ensemble of Mdssbauer nuclei, those approximations are
invalid and the full master equation has to be studied.

In the low-excitation limit, the resulting equations can be solved analytically (see Section 2.3.3),
giving rise, e.g., to the well-known response function formalism. However, new possibilities with
XFELs and the realization of an XFELO being on the horizon require a true many-body description
beyond this linear case, which is still an open challenge. As already discussed in Section 2.3, the
de-excitation dynamics of an ensemble of N Mdossbauer nuclei can be described by a master equation
with the Hamiltonian

H=hY Juno, o, (7.1)
and Lindbladian
F n —_ — —_
Llp] = ;’; o Qompol —olonp— poton) (7.2)
where p is the density matrix and the indices n,m € 1,..., N label the nuclei in the ensemble. The

coupling constants J,,,, and I';,,, describe the coherent and incoherent coupling between nuclei n and
m, respectively, and we set J;; = 0 by including these energy-shifts in a suitable transition frequency
wp. The time evolution of the density matrix is then given by

C o= 1Hol+ Ll (7.3)

and the time evolution of expectation values of operators X can be simply calculated with

%m - Tr{X;tp}. (7.4)

This would be the standard quantum optical approach to simulate the de-excitation dynamics of an
ensemble of N nuclei. Unfortunately, the dimension of the corresponding Hilbert space scales with
2N such that already for 60 nuclei the necessary computational storage exceeds that of the currently
best supercomputer "El capitan" [Law] (5568 TiB system memory) according to the Top500 list [Str]
and for 300 nuclei, the dimension of the Hilbert space is already larger than the number of protons
in the universe [Edd31]|. Therefore, solving the full master equation is only suitable for very small
numbers of nuclei.

For reasonable simulations of a solid state ensemble of nuclei, a significantly higher number of nuclei
needs to be simulated in order to exclude edge effects. Different approaches have been studied, e.g.,
analytically solving the system for some special cases [HKE16; WE23] or numerical simulations with
matrix product states [Kon-+25]. In this thesis, we also want to study the system mostly numerically
with different methods that will be explained in this chapter.

93



AN

Cumulant Truncated
expansion Wigner

approximation

Coupling strengths J,,,,, and ',

Figure 7.1: Overview over the three methods used in the many-body simulations: the python library
QuTiP[JNN12; JNN13|, the cumulant expansion [Kub62| and a specific truncated Wigner approach [MF23].
All three methods cover different regimes depending on the number of nuclei N and the coupling strengths
Jmn and Ty, n 7% m. Details on the methods are given in the main text.

7.2 Overview of established numerical methods

To simulate open many-body dynamics, a large toolbox of methods exists including packages for
efficient full quantum optical calculation with few emitters [JNN12; Mer+25]|, using the cumulant
expansion [Kub62], especially the mean-field approximation, phase-space methods [GZ04], the quan-
tum jump approach [DCM92; MCD93|, and matrix product states [Sch11; Whi92]. Here, we employ
three different methods of which an overview of the operating regime is presented in the following.
The methods are explained in detail in the subsequent section.

First, there is the python package QuTiP (Quantum Toolbox in Python) [JNN12; JNN13], in which
the full quantum optical simulation, as described above, is efficiently calculated. Because it does not
apply approximations it is suitable for arbitrary couplings, but due to the computational complexity
it can only be used for very small numbers of nuclei.

Second, there is the cumulant expansion [Kub62], which is effectively an expansion in the coupling
strength. Therefore, it is only suitable for systems in which the couplings are not too strong. However,
it has a favorable scaling of the number of equations, which depends on the number of nuclei NV and
the order of the expansion as N°'°". In our case, the expansion is used in first order because the
free-space couplings are weak, such that 1000s of nuclei can be easily simulated. Furthermore, the
choice for the first order is made because the cumulant expansion does not necessarily converge with
higher order and therefore the second order is not reliable [Fow23].

Third, a specific version of a truncated Wigner approximation developed by Mink et al. [MF23|
based on the work in [HRR22; MPF22; SPR15; SW22| is used. This method works best for strong
coupling. As the number of coupled differential equations is 2N also larger ensembles can be cal-
culated. However, as it is a Monte-Carlo approach, the computation time depends on the number
of Monte-Carlo trajectories, which depends on the observable. In general, the truncated Wigner
approximation is slower than the cumulant expansion, but complements it in the coupling regime as
it works the better the stronger the coupling is, which is the opposite for the cumulant expansion.
We expect our system to be in the overlapping regime of both methods, such that they can be used
to perform cross-checks on each other. Note that previous implementations of a truncated Wigner
function have proven to be successful [HRR22; Pin+17; SPR15|, but the formulation in [MF23] is
best-suited for our system.

In the following sections, the different methods are discussed in more detail.

7.3 Quantum Toolbox in Python (QuTiP)

The simplest approach to simulate an ensemble of nuclei is using QuTiP [JNN12; JNN13], which is
a well established python package. To calculate a unitary time evolution, first the initial quantum
state and a Hamiltonian is defined. For the non-unitary time evolution, the initial state is encoded
in the density matrix, whose time evolution is given by Eq. (7.3). This can be either solved with an
ODE solver or by diagonalization. Which one is faster depends on the number of emitters [JNN12].
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Both options provide a numerical solution of the exact Hamiltonian and Lindbladian without further
approximations. However, this comes with high computational costs and the number of emitters N
in QuTiP simulations is severely limited to typically N < 10 on a standard computer.

Despite the crucial limitations in the number of emitters NV, for small numbers QuTiP provides an
important cross-check because it does not require further approximations.

7.4 Cumulant expansion

The dynamics of the nuclei can be described by the time evolution of the expectation values of
population (0§¢) and coherence (o;). They can be computed with Eq. (7.4). By inserting the
specific Hamiltonian in Eq. (7.1) and Lindbladian in Eq. (7.2), the equation for the time evolution of
the expectation value of an operator X can be simplified to be

d 1 Ty _ _
o (X) = = (X.H)) + 7;1 —5 (o [X, o)) +([oof, X 7)) - (7.5)

Using this equation, for the expectation values of population and coherence of nucleus j we then find

d

3000 =~ Tuloi®) - Y Culofor) +Chlofoy), (7.6a)
ngél

d, _ 'y, _ x - ee —

&Q’z ) == 7(01 ) — Zcm (<0n> - 2({0; %)) ) (7.6b)
n;lél

where we introduced the complex coupling
Fm.n .
Conn = 5 + i - (7.7)

For a detailed derivation see Appendix B.2. In Eq. (7.6) not only expectation values of single operators
appear, but also expectation values of products of operators. Thus, the differential equations in
Eq. (7.6) do not form a closed set of equations, and the time evolution of the expectation value of the
appearing products has to be included. Similarly, the equations of motion for the two-nuclei operator
contain products of operators from three nuclei leading to the hierarchy problem. To truncate the
hierarchy and find a closed set of equations, we can approximately represent expectation values of
products of operators from k& nuclei by an expression containing only products of operators from k — 1
nuclei by using the cumulant expansion [Kub62]. This cumulant expansion is essentially an expansion
in the correlations between k nuclei and therefore its applicability depends on the coupling strength
between the nuclei. In first order, the expectation value of the product of two operators A,, and B,
acting on different nuclei m and n can be approximated in the cumulant expansion by [Kub62]

(AnBn) = (Apm)(Bn) (m#n). (7.8)
Similarly, for second order
(AmBnCo) & (AmBn)(Co) + (AnCo)(Bn) + (Am) (BnCo) — 2{Am)(Bn){(Co) (m#n#0), (7.9)

thus reducing the number of factors in an expectation value by one. This then leads to a closed set
of equations, and the number of equations scales with the number of nuclei N and the order of the
expansion as N°'9¢' Unfortunately, the cumulant expansion does not converge like a perturbative
approach and therefore considering higher orders does not necessarily improve the result [Fow+23].

Applying the first order cumulant expansion to the time evolution in Eq. (7.6) results in (see
Appendix B.3)

o) == Tulof®) Y Culortor) + Cinlo7 o) (7.108)
ngél

) == o) = 3 (fo) 2009 e7) (7.100)
n#l
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This set of 2N differential equations can be efficiently solved, e.g., using the programming language
julia. The julia package QuantumCumulants [PHR22] provides an implementation of the cumulant
expansion for arbitrary systems. However, as in our investigations the form of Hamiltonian and
Lindbladian is fixed, a custom implementation of the equations of motion is faster than the fully
flexible solution provided by the package. Therefore, the package is employed only for cross-checks,
while the faster custom implementation is used for the actual simulations.

7.5 Continuous-discrete truncated Wigner approximation

There exist different modifications of the truncated Wigner approximation to make it suitable for
open quantum systems. Here, we focus on the continuous-discrete truncated Wigner approximation
(CDTWA) developed by Mink et al. [MF23| because it can treat discrete ensembles of two-level
systems properly while capturing collective effects and is thus a fitting method to simulate correlated
two-level systems with dissipation. The CDTWA [MF23] will be summarized in the following.

7.5.1 General idea

The general idea of the approach is to represent operators in the Hilbert space in terms of a phase space
function. To this end, so-called continuous point operators or wigner kernels A(Q) are introduced,
which effectively provide an operator basis for the Hilbert space. The Q) variables parameterize
the Wigner “space”. For a single particle, they are later chosen simply as Q= (0, 9), with the
straightforward generalization Q= (01, ¢1,02, P2, ...) to multiple particles. Then, any operator X can

be written as,
X:/ﬂﬁWﬂ®~A@y (7.11)

In this expression, the so-called Weyl symbol W () is introduced, which is the desired phase-space
representation. In the case of the density operator, X = p, the Weyl symbol is called the Wigner
function. The Weyl symbol can be evaluated from the operator X via

WM@zﬂ%@Xy (7.12)

For a single spin-1/2 system, i.e., a two-level system, the point operators can be parameterized via
two variables € = (6, ¢), and the point operators are given by

1 . . 1(1+ \/3005(9) V/3e~i® sin(0)
A, 9) == [15+35(0,0) 5] = = o . (7.13)
2 2 \ V3e™ sin(f) 1 —+/3cos(f)
Here, & is the Pauli matrix vector, 1o the 2 x 2 unit operator. Further, we define a vector
50,¢) =Wz = \/§(Sin(9) cos(¢), sin(6) sin(gzﬁ),cos(@))T7 (7.14)

which is the Weyl symbol of the Pauli matrix vector. The angles # and ¢ can now be interpreted as
the angles defining a point on a sphere with radius v/3. To generalize this to N spin-1/2 systems,
one simply replaces § — §; with spin index j, and generalizes the variables to 2 = {€,}.

7.5.2 Initial state sampling

The initial state is stochastically sampled for the different phase space trajectories in order to capture
its possible quantum nature. For this to be possible, its phase-space representation must be positive-
valued to allow for a probability interpretation. To this end, Mink et al. exploit that the discrete
phase-point operators give rise to positive-valued discrete “Weyl weights” in many cases. Note that
these discrete operators are different from the continuous phase-point operators defined above. The
four discrete phase-point operators are

1 — —
A@haz = 5 (]12 + rOél,Otz U) 9 (715)
= « (0% o (0% T
Forae = ((1)%2, (1) 7% (=1)*)", (7.16)
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with aq, s € {0,1}. Given this, the discrete initial state Weyl weights according to the variables 2
are obtained as

1
Wa17a2 = ETT [Aahaz : p(t = O)] . (717>
This can be translated into the continuous representation via

Z 5 - O‘l’QQ ((Z5 ¢a1,a2) 1,002 9 (718)

Q1,02

where xo(6, ¢) is the Wigner function in continuous phase space, and

oo = Oo1 = arccos(l/\/g), $oo = —Tm/4, ¢o1 = —3m/4,
(7.19)
910 = 911 =T — arccos(l/\/§>, ¢10 = 7’/T/47 lel = 757T/4 .

It can be shown that the angles above lead to the correct mapping of the continuous Wigner function
in Eq. (7.13) to the discrete case in Eq. (7.15).

To give an example, for the fully excited state, the Weyl weights are given by Wyo = 1/2, Wy =
1/2, and Wiy = W1l = 0. Thus the initial state is sampled from 6 = arccos(l/\/g) and ¢ €
{=Tm/4, -3 /4}.

7.5.3 Dynamics of variables

After sampling the initial state, we need to calculate the time evolution of the variables 0. A general
system including driving by an external field is governed by the master equation

d . 1 _
= [H,p] + 3 ZI‘mn (20,,p0,5 — oo p—poto,), (7.20)
mn

with the effective Hamiltonian

H=- %Z o — Z (Qpo;f + h.a.) Z Jmno o (7.21)

n#m

Here T';,;, describes the dissipation, A the detuning, 2 is the corresponding Rabi frequency, which
can be time-dependent, and J,,, describes the coupling. In phase space, this can be mapped to a
Fokker-Planck equation for the Wigner function W,(€,t) [MF23; MPF22|. To numerically solve this
equation, it is mapped to an Ito Stochastic differential equation [Gra85; MF23]

do,, = | 22 cot 0,, + V3 Z sin 0, ( mn SN O + % cos ¢mn> +Im (Qneid)n)] dt
N
+ ) Gom (— cos ¢ndWy,, +sing,d Wy, ) (7.22a)
m=1
N .
A = |V3cot 0, Y _ sinby, (—Jmn COS Gpp + —5 sin ¢mn> + Re (2,e") cot 0, — A| dt
m=1
N
+ > G (sin ¢ dWp,, + cos pdWy,,) | (7.22b)

m=1

where dW are the differentials of a Wiener process, ¢mn = ¢m — ¢n, and G a matrix such that the
T-matrix can be written as T' = GGT in the Cholesky decomposition [GV13]. This set of equations
is a good approximation for large N because the expansion used for the truncated correspondence
rules to receive the Fokker-Planck equation breaks down for small N [MF23].
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7.5.4 Expectation values of operators

Expectation values of operators (X) can be evaluated by the mean of the corresponding Weyl symbol
Wx over all trajectories, i.e., random realizations of the initial state sampling,

Niraj

Wx (™) (7.23)

n=t¢

1

X) ~
< > Ntraj

where (} = (61,...0n,01,...,0N) and Q™) is its realization in trajectory n. This holds in every time
step.

For the population (0%¢) and coherence (o) of atom j, which are the key observables in Section 7.4,
the respective Weyl symbols are given by

Wy (6) :% (1+VBeos(8))) . (7.24a)
W, Q) :? e~ sin(6;) . (7.24b)

The necessary number of trajectories to achieve a certain minimal uncertainty strongly depends on
the observable. Depending on the observable and system parameters, typically 10,000 to 10,000,000
trajectories are needed.

7.5.5 Unphysical behavior at later times

In [MF23], Mink et al. discuss an unphysical behavior in the subradiant regime at late times when
analyzing the decay of an initially fully excited system of N emitters decaying to the ground state.
While in the superradiant regime I't < 1 the results of the truncated Wigner approximation closely
match those of a second order cumulant expansion, there are strong deviations in the subradiant
regime I't 2 1 and the total number of excitations approaches an unphysical plateau at approximately
N/10. Furthermore, if the system is initially in the ground state, it also asymptotically approaches
this plateau even in the absence of an external driving field. Thus unphysical driving of the system
can occur. Mink et al. associate the effect with unphysical behavior of the subradiant modes and
the distribution of eigenvalues of the incoherent I' and coherent J coupling matrices, which dominate
the superradiant and subradiant regimes, respectively. For the subradiant modes, it can happen
that a crucial validity criterium for the derivation of Eq. (7.22) is not fulfilled, which leads to the
unphysical behavior. The eigenvalues of I'" provide an estimate for the relevant time scales. As
the magnitude of this effect depends on the balance between the decay and the unphysical driving,
especially for a non-driven system, the results are worse the lower the initial excitation is. Note that
the unphysical driving is especially severe in our situation because we want to study the de-excitation
dynamics after an impulsive excitation, such that after the initial short pulse the system is not driven
externally anymore.

However, we can test for physical vs. unphysical effects by using different start times of our
dynamics. For physical effects, after compensation of the time shift, the dynamics should be identical.
Since the origin of the unphysical effects always starts at the beginning of the simulation, a time shift
would lead to different results in the case of the unphysical effects.

7.6 Summary and outlook

For a large ensemble, it is not possible to exactly solve the full master equation because of the
exponential scaling of the Hilbert space with the number of nuclei. Therefore, we have discussed three
different methods to calculate the de-excitation dynamics of an ensemble of nuclei, which together
cover the space of number of nuclei N and coupling strength. All of the three methods have their own
regime, in which they work well, but there also exist overlapping regimes available for cross-checks.
For example, reducing the number of nuclei N in the cumulant expansion or the CDTWA allows
for cross-checks with QuTiP. Furthermore, a medium coupling strength allows calculations with the
cumulant expansion as well as the CDTWA.

For most parts in this thesis, we consider free-space couplings with typical °“Fe parameters, where
the inter-nuclear spacing is approximately three times larger than the resonant wavelength. There-
fore, the couplings are typically weak and we expect the cumulant expansion to work well. Nonethe-
less, they are large enough to compare the results to those derived with the CDTWA. Because the
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computational costs for simulations with the cumulant expansion are significantly smaller than for
simulations with CDTWA the cumulant expansion is the main method for our ensemble simulations.
For selected parameters at stronger coupling, the simulations are additionally performed with the
CDTWA to verify the results.

Placing the nuclei in structured environments, e.g., thin-film cavities [DLE22a|, can enhance the
couplings. Future investigations using enhanced couplings can also be handled by the combination
of the three methods because larger couplings can be calculated with the CDTWA if the cumulant
expansion is not appropriate.

Therefore, we have established a toolbox to calculate the de-excitation dynamics of an ensemble of
nuclei beyond the linear regime and in different parameter regimes. This allows for many applications
also beyond the scope of this thesis.
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Chapter 8
Initial state preparation for CDTWA

8.1 Motivation

As we have described in the previous chapter, we want to use both the cumulant expansion as well as
the CDTWA for the simulation of the nuclear dynamics because they work best in different coupling
regimes and allow for cross-checks in the regime with medium coupling. As the excitation and de-
excitation dynamics take place on different time scales, we usually want to disentangle those two
parts of the dynamics. To study the de-excitation dynamics, we typically prepare the system already
in the partially excited state

|T) = cos §|g> + eifo sin?\e), (8.1)

in which it is after the excitation. Here A is the excitation angle on the Bloch sphere according to
the area theorem and ¢g a possible phase of the excited state.

However, in the CDTWA by Mink et al. [MF23] as initial states only the ground state and the
fully excited state, but not a partially excited state, are discussed. In this chapter, we discuss
different possibilities to prepare such a state for the CDTWA. Thereby, we investigate different
schemes for the preparation. It is known that different sampling schemes can lead to different predicted
dynamics [Czi+18; MPF22; PRK16]. Therefore, we demonstrate that the onset of the dynamics gives
crucial insights into this problem. Finally, we evaluate the results for simulations in which the system
is actually driven into the partially excited state.

8.2 Sampling the partially excited state

Using the definition in Eq. (7.17), the Weyl weights for the partially excited state are given by

LT
Woo == |sin? A + sin A cos A (cos g —singyg) | , (8.2a)
2 |7 2 2 %72
1[.,A A A :
Woi =3 _sm2 o —sin o cos o (cos ¢p — sin (bo)} , (8.2b)
Wio -1 cos? A + sin A cos A (cos o +singg) | (8.2¢)
2 |“" 2 2 %
Wi :% cos? é — sin ? cosé (cos ¢g + sin (;So)] . (8.2d)

Unfortunately, non-negativity of the weights in Eq. (8.2) is only guaranteed for A = 0 and A = ,
i.e., the ground state and the fully excited state. For arbitrary A and ¢g, in general, at least one
weight is negative and thus the probability interpretation is not valid any more.

8.2.1 Ensuring non-negative weights

The problem with the non-negativity of the weights in Eq. (8.2) can be circumvented by an optimized
set of variables (3. A different but equivalently valid set of four points can be chosen by rotating the
VeCtor 7y, o, i Eq. (7.16) by 7/2 around the z-axis [Woo87]. We can generalize this with a rotation
by 1 around the z-axis. This transforms the vector 7y, q, into

cos(yp) —sin(yp) 0 —192
ng)haz = Sln(w) COS(QZJ) 0 : 71a1+o¢2 B (83)
0 0 1 —1™
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Figure 8.1: Validity range, in which all four weights in Eq. (8.5) are non-negative, as a function of the degree
of initial excitation A and azimuthal angle ¢o + 1. The valid regions are marked in green, the invalid ones in
red.

and correspondingly 6% oy = 0y, and gi)fl’a = @y, T U, With 0, and ¢, given in Eq. (7.19).
Following the weight caleulation procedure in Section 7.5.2 with the modified
1 "
Ay () = 5 (Lo + 78, 0, 7) (8.4)

we find the following weights

W, :% :sin2 g ~V2sin g cos g sin (o + v - D} : (8.5a)
W :% :sin2 g +v/2sin g cos ? sin (¢0 typ— D} : (8.5b)
W{% :% :cos2 g +V/2sin g cos g sin <¢0 +U+ Z)] , (8.5¢)
W :% :cos;l — V2sin é cos ? sin (9o + v + D} . (8.5d)

Note that those weights are not necessarily non-negative and that an initial phase ¢y can easily be
taken into account by a modified ¢. Thus, we consider the combined azimuthal angle ¢ + . In
Fig. 8.1 for different combinations of initial excitation 4 and azimuthal angle ¢g + v it is indicated
whether this pair leads to all four weights being non-negative (green) or not (red). Note that because
the sampling points come in pairs for a fixed value of oy, which determines the z-component, ¢ and
1 + 7 lead to the same sampling points. Therefore, we evaluate 1 only from 0 to 7. Although the
weights are not non-negative in general, for each initial state as in Eq. (8.1) represented by A and
¢o we can find ¥ such that all four weights are non-negative. Except of states close to inversion
(A =7/2), for states below (above) inversion, we can choose ¢g + 1 = 7/4 (¢o + ¢ = 37/4).

The presented procedure allows us in principal to sample any initial state of the form in Eq. (8.1).
The correct sampling can be demonstrated by showing that the density matrix

sin2(é) eio Cos(é) sin(é))

e~ o cos(%) sin(é) cosz(%)

p =)l = ( (8.6)

where in the last step we used the matrix notation with the convention |e) = (1,0)T and |g) = (0,1)T,
is sampled correctly. The density matrix is sampled by [MPF22]

p=> W AL o (8.7)

1,02

with WY, given in Eq. (8.5) and AY, ,, in Eq. (8.4). Evaluating this expression leads to the correct
density matrix.
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Figure 8.2: Initial state sampling tuples and corresponding weights for initial state with A = 0.77 and ¢o = 0
for (a) the rotation by v around the z-axis and (b) the double rotation, which consists of a rotation of .
around the z-axis followed by a rotation of v, around the y-axis. For each rotation, angle the resulting tuples
(0, ¢) are calculated. If all four weights are non-negative they are displayed here with their corresponding
weight indicated by the color. More details on the calculation of the tuples are given in the main text. All
rotation angles are evaluated on a grid from 0 to 7 in steps of 0.027.

8.2.2 Sampling schemes with more sampling points

For ¢ = 0, the vectors Fgl’w evaluate to 70 = (1,1, )T, o1 = (=1,-1,1)7, 710 = (1,—-1,—-1)T,
and 71 = (—1,1,—1)7. For a fixed z-component of the vectors, the z- and y-components are thus
entangled, which can lead to wrong dynamics [Czi+18; MPF22; PRK16|. Therefore, in [MPF22] it
is proposed to use a sampling scheme with arbitrary ¢ to sample the ground or excited state. This
is possible because any modified set of tuples, which is generated from the default one by a unitary
transformation U, # = UF, can in principle be considered as a sampling set [Woo87; Zunl5]. If all

four weights are non-negative, it is a valid sampling set.

Rotation around z-axis

In Section 8.2.1, we have already discussed the generation of a modified set of tuples from the default
ones in Eq. (7.19) by a rotation around the z-axis by ¥. The validity range of ¥ can be read off from

Fig. 8.1. For choosing ¢ = 7/4 in the low excitation regime (A < 7/2), the vectors 7%, ,, evaluate

to 7y = (0,v2,1)T, 7 = (0, —v2,1)T, @y = (v/2,0,=1)T, and 7}, = (—/2,0,—1)7, and we again
see the entanglement of the x- and y-component for a fixed z-component. Similarly, we find the
entanglement for the high excitation regime. However, we can resolve this entanglement by choosing
two angles 17 and 15 in the validity range.

For the ground state and the fully excited state, it is possible to choose arbitrary ¥ and it turned
out that more sampling points result in more accurate dynamics [MPF22|. Therefore, also for the
arbitrary state |¥) we want to sample from many points in the valid range.

Numerically this is implemented by evaluating i) on a grid from 0 to 7 with steps of 0.02w. For
each v the four weights nghaz and the tuples (9]’1[’17&2, (bgjh%) are evaluated. If all four weights are
non-negative, the tuples are added to the sampling list from which the initial values for § and ¢
according to the respective weights are drawn for each trajectory. An example of the sampling tuples
(0, ¢) and weights for the initial state with initial degree of excitation A = 0.77 and phase ¢y = 0
is displayed in Fig. 8.2(a). The weights corresponding to the tuples are represented by the colorbar.
We see that we sample with different ¢, but, unlike for the ground or excited state, not all values
between 0 and 7 can be used. Nonetheless, for each § we sample from more than two points, which
partially resolves the x- and y-component entanglement as discussed before. As € is not modified by
the rotation, only the two values used in the original sampling scheme with four points appear.

Double rotation

We can improve the coverage of the (¢, ¢)-space by adding a second rotation around the y-axis by 1,
after the first rotation around the z—axis by .. This generalizes the vector (a1, ) in Eq. (7.16)
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to

cos(tpy) 0  —sin(ey) cos(,) —sin(¢,) 0 —]102
o, o, ¥z, vy) = 0 1 0 sin(y.)  cos(y.) 0| =1tz ) (8.8)
sin(y,) 0 cos(vy) 0 0 1 —1
and correspondingly
A(alaO[?v,(/)) = %(12+F(0417a2a¢1,¢2)5)~ (89)

Using spherical coordinates, the new vector 7(ay, s, 1, 12) can be represented by a modified tuple

(¢, ¢)

0’ = arccos % , (8.10)
@' =sign (ry) - arccos 7:011/1\0/’3 : (8.11)

If all four weights are non-negative, the set of tuples (6’,¢’') is added to the set of used tuples O and
the corresponding weights to the distribution from which the initial variables are drawn. Note that
this is possible because each set of (8, ¢’) is a representation of the initial state on its own.

For the numerical implementation, 1, and v, are evaluated on a grid from 0 to 7 in steps of 0.027.
The resulting tuples (6, ¢’) for which all four weights are non-negative are displayed in Fig. 8.2(b),
again for the initial state with initial degree of excitation 4 = 0.77 and phase ¢g = 0. As compared
to the single rotation case in Fig. 8.2(a) this improves the coverage of the (6, ¢) space significantly
and especially improves the number of values for 6.

The coverage of the (6, ¢) space can be improved further by adding a third rotation around the
z-axis. However, this comes with the cost of needing more sampling trajectories, to recover the weight
distribution of the initial state properly. Thus, one has to make a tradeoff of computational cost for
the number of sampling trajectories and coverage of the (6, ¢) space to remove correlations potentially
leading to wrong dynamics as we will see in Section 8.3.

Demonstrating the correct sampling of the density matrix of the initial state is difficult in the case
of the double rotation because finding those rotation values 1, and v, for which all four weights are
non-negative is not straightforward. However, one can easily check the correct sampling numerically.

We note that a similar scheme to sample partially excited states from a unitary transformation of
the default set of tuples is discussed in [Pin+17].

8.2.3 Different weight function

All discussed sampling schemes so far relied on the same four base points creating the default set of
tuples to sample from and unitary transformation of the default set. In [Teb-+24] a slightly different
approach to sample an arbitrary state represented by

1
p= 5(1+uaz +vo, +wo) , (8.12)

is given. In this reference, it is proposed to sample the initial state from the Wigner function

. 2
W (9, 6) = siriaﬁ(" 6, (1 L %“ (¢)> , (8.13)

3—w?

strate that this always leads to non-negative weights and samples the initial state correctly.

with 6,, = arccos (w/v/3) and C = 3 (1 +4/1— 2“2+v2>. In [Teb+24], Tebbenjohanns et al. demon-

8.3 First time step analysis

So far we have discussed several possibilities to sample the initial partially excited state. To validate
the initial state sampling, we want to analyze the first time step of the z-component of the spin-
operator (S#), from which the population (c¢¢) can be easily derived by (c¢¢) = ({S*) 4+ 1)/2, and of
the coherence (o).
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For an expectation value of a function whose parameters come from a SDE, the first time step
is not just given by the differential. Instead, we need Ito’s lemma [Gar+04], which is basically a
generalization of the chain rule to stochastic processes. For a set of SDEs

and a scalar function Y (¢, X;), the time evolution of Y is given by [Gar+04]

1
dy = {aty +fTVY + 5 Tr (gTHyg)} dt + (VY)" gdW,, (8.15)

with VY the gradient of Y and Hy the Hessian matrix of Y. Thus, the stochastic part of the SDE
g does not only give a stochastic contribution to dY’, but also a deterministic one. For the first time
step, the stochastic noise dW; averages out, and the incremental first time step is given by

ay® — [aty FTTY 4 In (gTHyg)} dt. (5.16)

With this, we can now evaluate the first time step evolution of

(5%)(t) = Z Way 0,5z (01, a2, 1) (8.17a)
<Ji>(t) = Z Wa1,0¢20—7(a1;a27t); (817b)

with aq, a0 € {0,1}, Wy, o, the corresponding weights, and

S. (a1, az,t) =vV3c080a, oy, (8.18a)
3 .
o~ (a1, a2,t) :g SN By, qpe Porez (8.18b)

For an observable Y the gradient is given by VY = (0gY, 04Y)T. For the above observables (S*)(t)
and (o7 )(¢) the gradients are given by

VS. (a1, as,t) = (—\/gosin&l) ) (8.19a)

_ 1 [ \/3e 1.0z cos b,
Vo~ (a1, as,t) =3 <—Z’\/§e_i¢”1‘“2 sin0a> , (8.19Db)

and the Hessian matrices Hy by

—v3cosbp, 0, O
Hs = ( V3 ' ) , (8.20a)

0 0
1( — V3 sin A e"tara2  — /3 cos Oar a0 e Pa1 .0z
H,- =3 | | (8.20b)
2\ = i3 cos Oor,an e eras  — /3 gin Ocry 0 e 1ot an

To evaluate dY' (V)| we still need ¢ and f, which are given by the stochastic differential equation. In
the following, we consider the single nucleus equations as well as the ensemble ones with uncoupled
nuclei. In both cases, the analytical solution is known, and the infinitesimally small first time step is
given by its first order Taylor expansion

(S.)(At) =2 - (sin2 ge—“ - 1) ~ (2 sin? g - 1) + (—2 sin? érm) , (8.21a)
(8:)(t=0) d(S:)(1)
VAD =sin P eos P 5 x (sin D eos ) 4 (—sin A eos AL
(c7)(At) =sin - cos —e ~ (sm 5 €08 > + ( sin 5 cos 5 2At> . (8.21b)

(=) (t=0) d{e)(t)
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Single nucleus equations

At first we focus on the time evolution of a single emitter with the single rotation sampling scheme.
Here, we assume an initial state

A A
|¥) = cos 5|g> + sin 5|e), (8.22)
where we have omitted a possible phase for the excited state, which is left out for simplicity and can

easily be inserted into the equations. To evaluate the first step, we consider the stochastic equations
of the dynamics of a single emitter [MF23]

csc
df =I'y | cot O + dt, 8.23a
o (w045 (525
2 cot A csc 6
dé =4/T 1+2cot29+>dW , 8.23b
s \/ o Feel)aw, (5.230)
and by inserting 0% . = 0, ., as in Eq. (7.19) we find
or
\[O > for a1, ap = 0i
f= , (8.24)
0 for aq,an = 14
0 1, &2 —
0 0
N Jﬁ) for ay, a0 = 01
g= 00 (8.25)
0 \/f) for a1, a0 = 13

Plugging those expressions together with the respective gradients given in Eq. (8.19) and Hessian
matrices given in Eq. (8.20) into the first time step equation given by Eq. (8.16), we can derive the
first time step of our observables of interest for different o, g

—2Idt  f ,a0 = 01
dS. (o, o)V = oram e = (8.26a)
0 for a1, ap = 13
T .
do~ (ag,00)M) = — 2\7@(27’@“1’0‘2 . (8.26b)
Averaging over all weights as described in Eq. (8.18), we finally find
d(s.)M = — 2T sin? édt, (8.27a)
r
dio™)M = - §sin§cos gdt. (8.27b)

Note that this result is independent of 1, the rotation angle for the sampling of the Wigner function.
Finally, by comparing to Eq. (8.21), we can conclude that the dynamics of the first time step are
correct with the given sampling for the single emitter conclusions. This demonstrates that not only
the initial state is represented accurately, but also the dynamics starts correctly.

Ensemble equations

Next, we want to perform the same analysis as for the single emitter equations for the ensemble
equations in Eq. (7.22) and again use the single rotation sampling scheme. Although the ensemble
equations are not exact and not a good description for low cooperativity [MF23], we can study the
uncoupled case nonetheless due to its simplicity to get some insights into the dynamics. For the
uncoupled case (Jn = 0, Ty = Ty ) without driving (€2, = 0) on resonance A = 0, the ensemble
equations are given by

r
dé,, =5 |cot 0, + V3sin 6, | dt + T (— cos ¢, dWy, + sin ¢, dWy, ) , (8.28a)
d¢,, =TI (sin ¢,,dWy,, + cos ¢,dWy, ) . (8.28b)
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The equations decouple and each emitter is described by two equations. Therefore, from now on we
leave out the index n for the rest of this analysis. We identify

3
=-T
2v2 for oy =0

=91 : (8.29)

0
(iﬁcos (5+v) +vTsin( +w>) for ay = 0
: ™ s 1=
g ) \EGsin(F+0) £Fcos (5 +0) | (5.30)
FVsin(F+9) #Vsin(F-9)\ .
:I:% sin (2 — ) :F%Sin (Z + 1)) 1

where the "+" ("-") depends on ay =0 (ay = 1) . By plugging the expressions for f and g together
with the respective gradients (Eq. (8.19)) and Hessian matrices (Eq. (8.20)) into the first time step
equation (Eq. (8.16)) we find

—2I'dt for a3 =0
ds, (a1, as)® = ! , 8.31
(a1, 0) 0 for oy = 1 ( )
0 for oy =0
do™ M = o ' 8.32
o (051’&2) {$12+Z€“prdt for o -1 ) ( )
and finally with Eq. (8.17)
d(S.)M = — 2T sin? ?dt, (8.33a)
(1) il +0) N in A eos A
d{c™) e "\1 sin (1/1+ 4) 5 Sl cos
_Tain & A _z
:{ ['sin 5 cos 5 for ¢ gﬂ (8.33b)
0 for o = °F

For simplicity, we only considered initial excitations A, which can be sampled with ¢ = 7/4 (low
excitation) or ¢ = 3w/4 (high excitation), i.e., initial excitations that are not too close to A = 7/2.
By comparing to the analytical solution in Eq. (8.21), we find that only for (S.) the correct time
evolution is retrieved. We expect (o~) to decay with I'/2 (c.f. Eq. (8.21)), but instead find in the
low excitation regime (¢ = 7/4) the decay constant is T' and thus the decay is too fast, while in the
high excitation regime ¢ = 37 /4 there is no decay at all in the first time step.

In Fig. 8.3, the time evolution of the population (c°¢)(t) = ((S.)(¢t) + 1) /2 and the coherence
(c7)(t) are shown for the 5th nucleus in a chain of 10 nuclei. For two different initial excitations
A, the solid lines show the results from the CDTWA while the dashed lines show the analytical
expressions from Eq. (8.21). As demonstrated by Eq. (8.33) for the population, we find the correct
dynamics at early times, but for the coherence the decay is too fast for A = 0.37 and no decay is
visible for A = 0.77 at early times. In addition, the results from the sampling schemes based on two
rotations as discussed in Section 8.2.2 are shown in the dark colors. The more sampling points in this
scheme partially resolve the entanglement of the x— and y—component of Fgl’% and the deviation in
the coherence reduces. However, there are still deviations between the CDTWA and the analytical
results. The deviations in the population at larger times are due to the unphysical driving even in
the absence of a driving field as discussed in Section 7.5.5.

Note that for the ground state or the fully excited state without external driving, the coherence
is zero at all times and thus the problem with the wrong first time step in the coherence is not
considered.
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Figure 8.3: Comparison of CDTWA results (solid lines) with analytical results (dashed lines) for a chain
with no couplings between the nuclei for an initial excitation of A = 0.37 (orange) and A = 0.77 (orange). In
(a), the population of the 5th nucleus in a chain of 10 nuclei is displayed, in (b) the coherence. Shown are the
results for two different sampling schemes, the default schemes adjusted for the partially excited state as in
Section 8.2.1 (light colors) and the sampling schmes with more points based on two rotations as explained in
Section 8.2.2 (dark colors). For comparison, the analytical expression in Eq. (8.21) is indicated by the dashed
lines. The calculation is performed without inter-nuclear coupling (Jmn = 0, I'mn = I'dmp) and the incident
light is incident perpendicular to the chain such that there are no relative phases between the nuclei.

8.3.1 Different Wigner function

Finally, we do the first time step analysis for the different Wigner function in Eq. (8.13). For simplicity,
here we only consider (S.). For the single nucleus equation in Eq. (8.23) in general we have

£ (F (cov+ Csc39)> , (8.34)

0
0 0

g= 2 2 cot O cscb . (835)
0 \/F (1+2C0t 9+T)

With this result, the gradient in Eq. (8.19) and Hessian matrix Eq. (8.20), Ito’s lemma for the first
time step in Eq. (8.16) gives
dSM (o, a) = r(- V30804, 0y — 1)dt. (8.36)

Finally, we need to average to find
d(S,)(single) — / b0, 0, / dBay.as W (Oayass Bay,as)ASH (a1, az)
= _—dt /deal,a25(9a1,a2 - t‘)w)F(\/gcos Ou; an + 1)
— —orsin® S, (8.37)

where for the second row we have used that ngl)(oq,ozg) does not depend on ¢4, o, and that
W (0u, azs Pay,a) is normalized. This is the correct time evolution as given in Eq. (8.21). Similarly,
we find the correct result for the coherence (o).

A similar analysis for the ensemble equations yields

dG(Lensemble) () [g( —V/3cosf — 3sin? 0) + %2( —V/3cos 9)} dt, (8.38)

which does not agree with the analytical result. Furthermore, the two results from the rotated set
of points in Eq. (8.33) and the different Wigner function in Eq. (8.38) differ from each other, which
shows how the sampling scheme can influence the predicted dynamics.

We can conclude that also this different Wigner function, which is not based on unitary transfor-
mations of the default set of four points, samples the initial state correctly, but does not predict the
dynamics properly in the presented setting.
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Figure 8.4: Comparison of the CDTWA results, where the system was driven into the initial state, (solid
lines) with the analytical expression in Eq. (8.21) (dashed lines) for the time evolution of (a) the population
(c°?) and (b) the coherence (0 ~). For comparison, the dashed lines show the results from Fig. 8.3, where the
partially excited state is prepared directly and sampled from with the double rotation. Considered are the
two different initial excitations of A = 0.37 (blue) and A = 0.77 (orange). The observables from the CDTWA
are shown for the 5th nucleus in a chain of 10 nuclei without inter-nuclear coupling (Jmn = 0, I'mn = T'dmn)
and the incident light is perpendicular to the chain, such that all nuclei have the same initial phase.

8.4 Driving into the initial state

In Section 8.2, we have seen different sampling schemes to prepare the system in a partially excited
state as in Eq. (8.1). However, in Section 8.3 it was demonstrated that for a non-coupled and non-
driven system the first time steps from the ensemble calculations and therefore potentially all following
dynamics are not represented properly for the partially excited state.

Another possibility is to not prepare the system in the wanted initial state, but to prepare the
system in the ground state, which can unambiguously be sampled correctly, and drive it into this
state with a short Gaussian pulse

E(t) = eiaﬁo\/%a exp (—(t;;;)> (8.39)

at time tg with width o after the start of the simulation. The simulation results are corrected for this
time offset by to. According to the area theorem [AE87; MH67], this pulse drives the system into the
desired excited state given in Eq. (8.1). As default parameters we choose to = 0.05/T" and ¢ = 0.005/T
and sample the ground state with the double rotation scheme introduced in Section 8.2.2.

8.4.1 No inter-nuclear coupling

In Fig. 8.4, the time evolution of the population and of the coherence from the CDTWA initialized
in the ground state and driven into the excited state is compared to the analytical expression in
Eq. (8.21) for a smaller excitation of A = 0.37 (blue) and a higher excitation of A = 0.77 (orange).
Here, we again consider nuclei without coupling. For the higher excitation of A = 0.77 we find good
agreement with the analytical expression. However, at early times the results from the CDTWA
have a slightly smaller decay rate. For the smaller excitation of A = 0.3, the agreement is slightly
worse, especially for the coherence, which might be due to the unphysical effects. We also see slight
deviations of the initial state values. Shorter excitation pulses should be able to improve the quality
of the state preparation, but also increase the computational effort due to the necessity of finer time
steps. However, the time evolution of the two observables also for the smaller excitation matches the
analytical result on a similar level as in the case of sampling the wanted initial state directly, which
is discussed in Fig. 8.3 and shown in Fig. 8.4 for comparison.

We can conclude that preparing the system in the ground state and driving it into the desired
initial state performs as good as sampling the initial state directly with the double rotation scheme.
However, driving the system into the partially excited state has the advantage, that all investigations
can be performed with the same set of sampling points and effects due to different sampling points
are excluded.
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Figure 8.5: Time evolution of different observables calculated with CDTWA (solid lines) and QuTiP (dashed
lines) for an initial excitation of A = 0.37 (blue) and A = 0.77 (red). Displayed are the excited state
population (0°?), and the absolute value and phase of the coherence (¢~ ) of the 5th nucleus of a linear chain
with 10 nuclei. For the calculation the free-space couplings in Eq. (8.40) with the dipole moment perpendicular
to the chain of nuclei (§4 = 0.57) are used, and the incident light is perpendicular to the chain, such that all
initial phases are the same.

8.4.2 With inter-nuclear coupling

As already mentioned, it is known for the CDTWA that the ensemble equations do not represent the
single particle case, and thus also not the case of an ensemble without couplings, appropriately [MF23].
Therefore, as a final benchmark we want to cross-check the time evolution with couplings between
the nuclei. In this case, no exact analytical formula is known, but we can calculate the dynamics
for a small system of N = 10 nuclei with the python package QuTiP [JNN12; JNN13]. To this end,
we use the free-space couplings in Eq. (2.33). For a linear chain along the z-direction, the free-space
couplings simplify to

rad 3irrad [( 1 i 1 ) ( 1 3i 3 )} ,
L —t —— — —— | —cos?(# +————]| ", (8.40)
2 2 Nmn  Mon Mo ©) Nmn  Non Mo (

with 6 being the angle between the dipole moment and the chain and the normalized distance 7,,, =
Noln — m| with n = koagp =~ 21 being the product of wavenumber k and lattice spacing ag. Since
the CDTWA works better for higher cooperativity in the system, we neglect the internal conversion
channel T = 0 and thus T,,,, = "3,

For 57Fe, the resulting time evolution is shown in Fig. 8.5 for the excited state population (o*¢) and
the absolute value and phase of the coherence (o) of the 5th nuclei calculated with the CDTWA
(solid lines) and QuTiP (dashed lines). The population and absolute value of the coherence in
Fig. 8.5(a) and Fig. 8.5(b), respectively, agrees for the higher excitation of A = 0.77 (red line). For
the smaller excitation of A = 0.3, similar to the situation without coupling in Fig. 8.4, the situation
is worse. This is attributed to an unphysical driving as discussed in [MF23| and summarized in
Section 7.5.5, which is the worse the lower the excitation is. Including couplings can also induce a
time-dependent phase in the coherence, which is displayed in Fig. 8.5(c). We will study this in more
detail in Chapter 9. Interestingly, for both initial excitations the time evolution of the coherence is
not so much affected by the unphysical driving, but still the higher initial excitation matches the
results from QuTiP better.

Finally, we can conclude that sampling the initial ground state with the double rotation sampling
scheme and driving the system into the desired initial state according to the area theorem is a reason-
able approach to prepare the desired initial state. This is especially the case for higher excitations,
where the unphysical effects discussed in Section 7.5.5 are not as severe as for lower excitations. This
is why in the remaining part of the thesis we preferably use the CDTWA above inversion A > 0.57.

8.5 Summary and outlook

The sampling of the initial state in the framework of the truncated Wigner approximation is a much
discussed problem in the literature [MPF22; Pin+17; PRK16]. Here we have first studied different
methods to sample a partially excited initial state. Afterwards, we performed a first time step analysis
to investigate whether the sampling scheme also results in the correct dynamics. This was done for
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the single nucleus equations as well as for the ensemble equations without coupling. Note that the
latter is a very unfavorable case for the CDTWA, which is why the results should only bring some
qualitative insights, but are not assumed to be accurate. For the single nucleus equations, all sampling
schemes give the correct first time step. For the ensemble equations without coupling, this is not the
case. This might be due to the ensemble equations without coupling not properly representing the
dynamics of the single nuclei in the ensemble [MF23]. Interestingly, we find different first time steps
for different sampling schemes. This demonstrates that the choice of the sampling scheme can strongly
influence the predicted dynamics. Furthermore, we investigated the situation in which the system is
prepared in the ground state and driven into the desired initial state by a short pulse. Here, for the
early time evolution the agreement with analytical and QuTiP results is on a similar level than for the
results where the system was prepared directly in the partially excited state. However, if we drive the
system into the partially excited state, we can prepare it in the ground state at the beginning of the
simulation. This allows us to take advantage of the ground state sampling as presented in [MPF22].
In addition, the sampling is independent of the desired partially state and thus does not influence
the predicted dynamics. Therefore, for the rest of the thesis, we drive the system into the partially
excited state.

For future initial state preparation in the framework of the truncated Wigner approximation, we
propose to not only consider whether the initial state is sampled correctly, but in addition perform
a first time step analysis, as discussed here, to ensure a correct prediction of the time evolution.
As an alternative to the direct preparation of the desired initial state with potentially complicated
sampling schemes, we propose to prepare the system in the ground state for which the sampling is
established [HRR22; MPF22|, and drive the system into the desired initial state.
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Chapter 9

Cumulant expansion approach to the decay dynamics
of interacting Mossbauer nuclei after strong
impulsive excitation

This chapter is based on the following preprint:

Cumulant expansion approach to the decay dynamics of interacting Mdssbauer nuclei
after strong impulsive excitation

M. Gerharz and J. Evers

arXiv:2510.00970 [quanth-ph]

Content has been reproduced verbatim, but the article was restructured to suit the format of this
thesis. In particular, main text and supplementary material were merged.

9.1 Motivation

Mossbauer nuclei have already proven to be a versatile platform for quantum optics and related con-
cepts, even though typical experiments so far have been restricted to the low-excitation limit with
less than one signal photon on average due to source limitations [Fuj+21; Ger+25a; Hab+16; Hab+17;
Hee+13; Hee+15a; Hee+15b; Hee+21; Hel+91; Kuz+24; Loh+25b; Naz+25; RE21; Roh+10; R6h+12;
Sak+17; Sch+02; Shv+96; SVP25; Vag+14; Vel+24; VSK13; Yam+24; Zha+19]. XFELs [Ama+12;
Bar+10; Dec+20; Emm+10; Ino+19; Ish-+12; Liu+23; Liu+25b; Nam-+21] provide access to new
excitation regimes which are expected to advance the field [RE21; Shel2|, and first experiments
have already demonstrated some of the novel possibilities [Chu+18; Ger+25b; Liu+25a; Shv+23].
Towards higher excitation, more than 900 signal photons after a single x-ray excitation have been ob-
served recently [Ger+25b], and it has been theoretically proposed that focusing the x-ray beam could
significantly enhance the fraction of excited nuclei in the ensemble [LKE25b]. Further source devel-
opment such as XFELOs [KSR08; Mar+23; Rau-+25] could even bring full inversion of an ensemble
of Méssbauer nuclei within reach [Ada+19; LKE25b].

A corresponding theoretical framework is therefore required to match the pace of experimental
advances. From a theoretical point of view, the nuclear ensemble forms an interacting many-body
system. As such, the problem is strongly related to other many-body systems from a theoretical point
of view. A particular challenge is that in general the interaction between the nuclei and the incoherent
loss channels may operate on comparable time scales, such that neither dominates. This renders some
of the well-known approaches less suitable (see, e.g., the discussion in [MF23]). In the low-excitation
limit, the resulting equations can analytically be solved, giving rise, e.g., to the well-known response
function formalism [HT99; KAK79] and quantum optical models [HE13; KCP20; Len+20]. Towards
higher excitation, different theoretical approaches have been pursued. Typical experiments excite the
nuclei impulsively, fast as compared to all other time scales in the system. This allows one to separate
and analytically solve the nuclear excitation [LKE25a; LKE25b]. By contrast, the subsequent decay
dynamics of the interacting ensemble of nuclei is much harder to treat. It has been suggested to
use a perturbative approach to characterize the nuclear dynamics in leading order beyond the linear
case [WE23]. This approach allows one to derive experimental signatures for the non-linear excitation,
but it fails towards higher excitation. Assuming that the dynamics is restricted to the fully symmetric
superradiant subspace, the dynamics can also be evaluated [HKE16]. However, this approach fails
to capture the incoherent single-particle dynamics which evolves the system out of the symmetric
subspace, but is crucial in nuclei due to the non-radiative internal conversion channel [HT99; R6h04].
Recently, it has been suggested to use a matrix-product state approach [Sch11] to model the many-
body dynamics [Kon+25]. This approach can handle higher excitation and allows one to analyze
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photon correlations, but only a small number of nuclei can be modeled without further approximations
and entanglement between the particles is only partially captured.

In the following, we pursue a different approach, which exploits that in typical bulk target materials
the coupling between the nuclei is moderate. This suggests a perturbative expansion in the nuclear
coupling, rather than an expansion in the degree of excitation or a truncation of the Hilbert space. One
approach is the cumulant expansion [Kub62], which is well-known in modeling many-body dynamics
in general [KK08; KK18; KR15; ROY23; RS21; SSF20] but so far has not been applied to model the
dynamics of Mdssbauer nuclei.

Here, we solve the nuclear many-body system using a cumulant expansion approach. We derive
effective many-body equations valid for arbitrary degrees of excitation, which can efficiently be solved
even for larger ensembles since their number scales linearly with that of the nuclei. Assuming fur-
ther a translational invariance in an extended ensemble under homogeneous excitation conditions,
we derive an effective single-particle non-linear equation of motion which captures the many-body
dynamics in leading order of the cumulant expansion. It allows one to model the many-body system
very efficiently, independent of the number of nuclei. Solving this equation, we show that towards
higher excitation, the couplings between the nuclei imply a characteristic non-linear evolution of the
nuclear dipole phase, and put forward a method to interferometrically measure it which exploits the
geometry-dependence of the inter-nuclear couplings. By comparing with the case without transla-
tional invariance, we further uncover interesting finite-size effects in smaller ensembles which could
also be experimentally explored.

9.2 Equations of motion

9.2.1 Decay dynamics of the nuclear many-body system

The decay dynamics can be modeled using a master equation for N nuclei [Ase+17a; FS05; HE13;
Kif+10]

1
p=%[H,p]+£[/}], (9.1)
N
H=-h Y Junolo,, (9.2)
n,m=1
Nor
Ll = D 5" (000 = ofonp = poyoy) | (9.3)
n,m=1

where I';,,,, = I‘fﬁi+§mnf‘lc. Here, L]p] describes the incoherent dynamics, where I' = Ty, is the total
linewidth (I' = 4.7eV for a-iron) comprising the radiative contribution I'"®! and the non-radiative
part T'1¢ of the single-particle spontaneous decay. The other elements J,,,, and 2 with n # m
describe the coherent and the incoherent coupling rates between two nuclei n, m which are derived
by tracing out the modes of the environmental radiation field.

We proceed by deriving equations of motion for the expectation values of relevant single-particle
operators o; and o}¢ = U;raf , where the former characterizes the coherence and the latter the
excited-state population of atom [. Here, ali are Pauli raising and lowering spin operators acting on
atom /. We obtain (see Appendix B.2)

d, _ Iy, _ a * - ce _—
a(ol >:—7<al >*chl (<0n>—2<al an>) , (9.4)
Wl
d N
a<0’fe> = — 1-\”<O_lee> — chl <O’7T0'l_> + Cl*n <O'l+0';> y (95)
n=1
n#l

where C,,p = Fg‘” + i mn-

9.2.2 Cumulant expansion

The equations of motion for the single-particle expectation values Eqs. (9.4) and (9.5) depend on two-
particle expectation values. This hierarchy generalizes to higher-order expectation values, rendering
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an exact solution impossible. In the cumulant expansion approach, a closed set of equations is
obtained by truncating this hierarchy at a given order [Kub62]. We employ the first order expansion,
by approximating

(An Bm) = (An) (Bm)  (n#m), (9.6)
for operators acting on different atoms n and m. We obtain (see Appendix B.3)
d = F” =~ — ee
o) =5 () — (A =2(ef) Al 9.7)
d ee ——\—
S =—(1-2(0) (o7) ], (938)
d ee ee -—
Et<ol ) = —Tuloi®) =2 (3, ) #7", (9.9)
N .
K= k[ ikl =Y Chy(a,)el@n o). (9.10)
n=1
n#l

Here, we have further decomposed the nuclear coherences into their magnitude and their phase,
(o7) = [{o] )| e = (5, )e'”. We find from Eq. (9.8) that the phase ¢ of the nuclear dipole
moments in general has a non-linear and excitation-dependent time evolution. Below, we develop
this feature as a signature for non-linear nuclear excitation.

Note that the Egs. (9.7)-(9.9) already admit for an efficient numerical simulation, since they have
a favorable linear scaling with the number of nuclei N. In contrast, the number of matrix elements
of the original density operator scales exponentially with N.

9.2.3 Translationally invariant systems

We now continue the discussion by focusing on translationally invariant systems, which will allow
us to reduce the computational effort further. To this end, we assume that the nuclei are arranged
in an infinite translationally invariant lattice. Furthermore, we assume that the initial excitation is
due to a plane wave field incident with wave vector k on all nuclei with the same magnitude. Hence,
the coherences of all nuclei after the excitation differ only in their initial phases ¢;(0). In this case,
Egs. (9.7)-(9.9) become (see Appendix B.4)

oy = 5 (77) ~ (1= 2(0")) (5)K", (9.11)
%gb =—(1-2(*))K!, (9.12)
%we) =-T(o*) -2 (67 ) K", (9.13)
K=K, = iv:c;le“%(f’)*@@)) : (9.14)

el

Here, (67) = (5; ), (5°°) = (67°) and K = K are the same for all atoms, respectively, and K* and
K denote the real and imaginary part of K, respectively. Analogously, the nuclear phase evolves
as ¢ = ¢1(0) + ¢ including the initial excitation phase. Finally, K is a constant which crucially
determines the dynamics.

As a result we find that for typical experimental situations, the many-body dynamics can be
modeled using a simple set of nonlinear equations, independent of the number of nuclei. In Section 9.4,
a comparison to chains of finite length is provided, which supports the validity of our translationally
invariant model.

9.3 De-excitation dynamics

9.3.1 Temporal dynamics in the low-excitation limit

Egs. (9.11)-(9.13) immediately allow us to connect our results to known phenomena in the well-studied
low-excitation limit (o°¢) ~ 0. Then, the equations of motion reduce to < (67) ~ —(I'/2+ K#)(57)
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Figure 9.1: Schematic of the investigated setup. A linear chain of N nuclei (gray) placed with distance ao
is irradiated with x-rays (red) under an incident light angle 6;,. The dipole moments (blue) of the nuclei are
aligned with an angle 6; with respect to the chain of nuclei.

and %gb ~ —K'. From these equations we can immediately interpret the real and imaginary parts
of K in terms of a superradiant broadening and an interaction-induced energy shift of the nuclear
resonance, respectively [HT99; RE21; Roh+10].

9.3.2 Temporal dynamics beyond the low-excitation limit

Next we turn to the largely unexplored regime of higher excitation. We start by noting that the
magnitude of the coupling parameter K generally is small as compared to I'. The reason is that the
total decay rate I' is dominated by the non-radiative (internal conversion) parts I''C which do not
contribute to the couplings. A more detailed numerical study of K is provided below.

Therefore the phase of the nuclear dipole moment Eq. (9.11) is the most promising signature for
effects of the non-linear excitation, as it is only governed by K, but not by I'. In order to derive
its time evolution, we can approximately solve for (c°¢) by neglecting the small contribution K% in
Eq. (9.13). Inserting the solution (0°¢)(t) ~ sin®(.A/2) exp(—T't) into Eq. (9.11), we find

p(t)=—K" |t — % (1 —e 1) sin? (“;)} + ¢p . (9.15)

Here, A is the pulse area characterizing the initial nuclear excitation via (0°¢)(0) = sin®(A/2) and
(7)(0) = sin(A/2) cos(A/2) [AE87]. We find that the nuclear phase evolves non-linearly at inter-
mediate times until (0°¢) has decayed to zero, with magnitude governed by K.

9.3.3 Coupling parameter K

We have seen that the central quantity governing the coupled decay dynamics is the parameter K.
In preparation for the following numerical study of the system, we now explore the parameter range
of K® and K! as a function of the geometry of the nuclear ensemble. For this, we assume that the
nuclear dipole moments are aligned at an angle 8, relative to the chain axis, and that the incident
plane wave x-ray pulse propagates at an angle 6;, with respect to the chain. A schematic of this is
setup is displayed in Fig. 9.1. We model the couplings using the well-known expression for free-space
dipole-dipole couplings [FS05; Kif+10]

- -

an

1
Jnm""i 9 = ﬁ " 'X(anfm)'da (916)
with
k3 1 i 1 (Rl [Bnmle (1 3 3 .
o :75 R - _# R - Unm
qu(rn;Tm) 47’('80 [ pq (nnm + n%m n2m> |an|2 T + n%m 7’];’Lm e

(9.17)

Here it is, Rpm = 7 — Tm and 0 = kol Rum|-
We continue the discussion for a linear chain of nuclei with a dipole moment at angle 6; and the
incident light at angle 6;, with respect to the chain as displayed in Fig. 9.1. For a linear chain of
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Figure 9.2: Coupling parameter K as a function of the incident angle 6;,. For the calculation, Eq. (9.21) is
used with three different dipole angles, 84 = 0, 84 = 0.257, and 04 = 7/2, in the different panels. The dotted
vertical lines indicate angles at which K formally diverges.

atoms along the z-direction, we can set 7, = (0,0,n - ag)T, where aq is the lattice constant. Then,
NMnm = koag|n — m| = noln — m|, and Eq. (9.16) simplifies to

Tom  Kk3|d)? 1 i 1 ) 1 3 3 .
7 _ _ _ 9 SO 2 )| e (9018
mm T T dnheg |\t 2 i) " (6a) P e I (9.18)

where 6, is the orientation of the dipole moment relative to the chain as displayed in Fig. 9.1. We
thus find

. 3irrad 1 i 1 5 1 3i 3 ;
Cr,=— 5 [( +——3—>—cos (6) <—+———>] et (9.19)

TInm U%m Tam TInm "7721m ﬂf’m

with the radiative decay rate I'™¢ = I'*2d  which is significantly smaller than the total decay rate I

Therefore, for an infinite chain of nuclei with free-space coupling, the coupling parameter K is given
by

= 1 i 1 1 3i 3 :
K = — 3irad [( + - > — cos?(0q) < + - ﬂ etmm
mzz:l nom - mpm?  gm? mom - mpm? - mgm?
X (elMAd 4 gmimAPy (9.20)

This expression can be simplified using Y -, Z—i = Lig(2) if 2 # 1, and we find

'Frad Frad 'Frad
K = _3 sin?(04) X1—3 5—[1 + 3 cos(264)] X2—32 +—[1 + 3cos(264)] A3,
Mo 4ng 4ng
X, = Li, (a’("o%@) +Li, (e“"o—M)) , (9.21)

where Li, (2) is the polylogarithm. For the analysis, we use wavevector kg = 27/86 pm corresponding
to the resonance frequency of the Mdssbauer transition in >Fe and a lattice constant ag = 286 pm
corresponding to the nearest-neighbor spacing in a-Fe. With these parameters, the scaled distance
parameter 19 = koag =~ 21 reflects the weak coupling due to the comparably large separation of the
nuclei, justifying the cluster expansion approach. Further, A¢ = ng cos 8, characterizes the incident
phase difference between two neighboring nuclei.

In Fig. 9.2, the dependence of the coupling parameter K on the incident angle 6y, is investigated for
different dipole angles 6;. Overall, we find that K is comparably small on the scale of the total decay
rate I', confirming our approximation leading to Eq. (9.15). At first, we discuss the left panel in which
the dipole angles is 8; = 0. This is a special situation because in this case the 1/1,,,, term vanishes. As
a result the overall coupling parameter results are small. Furthermore, it is dominated by ys, which
is represented by a different shape of the functions as in the other panels. Especially, the singularities
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Figure 9.3: Nuclear dipole phase evolution as a function of incidence angle and degree of excitation. For
a fixed incident angle 6, = 5mrad the different colors of the solid lines indicate different degrees of initial
excitation A. The transition to a non-linear phase evolution is clearly visible. For comparison, the shaded
lines show the results for the central nucleus calculated on a finite chain with N = 3000 nuclei. In addition,
in the low-excitation regime A = 10757, the different line styles of the blue lines show the results for different
incident light angles 6in. The dipole moment is set perpendicular to the chain of nuclei (0q = 7/2).

do not occur in this configuration. Now, we focus on the other two panels for dipole angles 64 = 0.257
and 05 = 0.57, respectively. In both cases, the dependence on the incident light angle 6y, is governed
by x1, which is represented in the similar shape and only a different scale on the y-axis due to the
sin? 8, prefactor. The real part K7 essentially takes one of two values, either approximately 0.01T or
—0.015T", and therefore is small as compared to I' dominated by its non-radiative contribution. For
K, in the center around the perpendicular incident direction, a set of characteristic minima appears.
Mathematically these can be traced back to the fact that the polylogarithm Lij(z) = —In(1 — 2)
formally diverges for z = 1. As a result, the imaginary part of the coupling parameter K formally
diverges for 65 # 0 and 19 £ A¢ = n2mw, for any integer n. In practice, this divergence is regularized
by a finite interaction volume, e.g., limited by the photo-absorption in the target. The imaginary
part can take large values. From an experimental point of view, the region of small incidence angles
appears favorable, since it allows one to tune K ! over its entire range of values. The choice of a small
incidence angle also ensures the possibility of a large number of nuclei in the excitation volume, as
required by the assumption of translational invariance. For example, a beam of width 100 ym incident
on the chain under an incident light angle of 5 mrad couples to approximately 100 million nuclei.

The formally divergence at certain incident light angles 6;, is clearly visible and additionally indi-
cated by the gray dotted lines. The real part of the coupling parameter K has an approximately
constant value of 0.01T and —0.01T" with a slight asymmetry towards the negative values and jumps
between those two values at the divergence angles. For the real part of the coupling parameter K7,
there are local maxima at approximately 0.01T", but more interestingly close to the divergences, val-
ues with significantly larger absolute values are reached. Both the real and the imaginary part follow
the behavior of iy; as expected. To study coupling induced effects, we are mainly interested in K’
because KT always appears together with I' and thus only provides a correction on the few percent
level. The absolute value and thus the effect of the imaginary part of the coupling parameter K7 is
strongest close to the singularities. To ensure a large number of nuclei and therefore the translational
invariant approximation, we choose a grazing incidence geometry, i.e., very small incident light angles
0in. For example a beam with a width of 100 ym hitting the chain under an incident light angle of
5mrad excites approximately 100 million nuclei.

9.3.4 Numerical simulation of the phase evolution

We can now turn to a numerical simulation of the phase evolution governed by Egs. (9.11)-(9.13). The
result is shown in Fig. 9.3 for different degrees of initial excitations A and x-ray incidence angles 6.
The blue curves correspond to the limit of linear excitation (A = 107°7), with a linear time evolution
as expected. From the dotted and the dashed lines we further find that the slope of the phase can be
controlled via the incidence angle 6;,, as described by K. Next, we turn to the main results beyond
the linear excitation regime. The solid lines of different color show the evolution for different initial

118



1071 4 1073 4

1077 4

[arb. units]
-
1)
&
% .
IS

A=10"n
A=03m
A=057
A=07m
A=097

Intensity [arb.

10—7 4

T T T T
146 148 150 152 154
Time ¢ [ns]

Figure 9.4: Time-dependent intensity of the x-ray scattered by two nuclear chains. The reference chain
has a detuning of the nuclear resonance of A = —3I'; such that the interference between the chains leads to
pronounced minima in the intensity. The non-linear phase evolution can then be observed via shifts of these
minima in time. The different lines illustrate the dependence on the different degrees of excitation A. For the
sample chain the dipole moment is set perpendicular to the chain of nuclei (§4 = 7/2) and the x-ray incidence
angles for the sample [reference| chain is 5mrad [0.22 rad]. The inset shows the signal intensity as a function
of time over a larger time interval. The gray area marks the time region shown in the main panel.

degrees of excitation A at x-ray incidence angle 6;, = 5 mrad. With increasing excitation, a non-linear
time evolution of the phase develops, which leads to a growing deviation from the low-excitation case.
At later times, the phase evolution becomes linear again, but an excitation-dependent offset to the
linear case remains.

In order to quantify the impact of the assumption of an infinite chain of atoms, the shaded colored
lines display the phase evolution of the central atom in a finite chain of N = 3000 nuclei. The
results qualitatively agree well with the infinite chain results. As discussed in Section 9.4, the small
quantitative differences can be attributed to the deviation of the finite-chain coupling parameter K
to that of the infinite chain, which provide a handle to experimentally explore finite-size effects in
nuclear ensembles. We further compare our results to calculations based on the continuous-discrete
truncated Wigner approximation (CDTWA) [MF23] in Section 9.5, an alternative approximation
which is expected to work best in the case of strong nuclear correlations. We find good qualitative
agreement, which supports the validity of the cluster expansion approach.

9.3.5 Experimental signatures of the non-linear phase evolution

Finally, we discuss how the non-linear phase evolution shown in Fig. 9.3 can be experimentally
explored. We focus on the scattered electric field, which is commonly observed in experiments with
Mossbauer nuclei. The overall electric field is obtained from a suitable summation of the contributions
of each of the nuclear dipole moments (o, ). We consider a scattering geometry in which the differences
between the initial phases ¢;(0) are compensated for by the respective propagational phases from the
individual nuclei to the detector, e.g., the forward scattering geometry. In this case, the residual
relevant phase evolution of all nuclei is given by ¢(t).

We propose to measure the time evolution of the phase ¢(t) interferometrically, using two chains of
nuclei. The orientation of the first chain relative to the x-ray incidence direction is varied, leading to
phase evolutions as shown in Fig. 9.3. The other reference chain is fixed at an incidence angle where
KT~ 0 (6, =~ 0.22rad). In this setting, the intensity of the x-ray scattered by both chains increases
together with the degree of excitation, but only the first one exhibits a non-linear phase evolution,
which is ideal for interferometry with high visibility. The effect of the different phase evolutions can
then most straightforwardly be measured by detuning the resonance energy of the reference sample
by an energy shift A, e.g., via a Mdssbauer drive [Grel2]. The total intensity then takes the form

Leomb (t) X |Aref(t)eiA.t + Asampleei¢salnple(t) |27 (922)

where Ayer and Agample are the amplitudes of the scattered fields of the reference chain and the
sample chain, respectively. Assuming that both amplitudes approximately follow the single-particle
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Figure 9.6: Coupling parameter K; as a function of the position in the one-dimensional chain [ for two
different incident light angles i, = 5mrad (left) and i, = 50mrad (right). The solid lines show K; according
to Eq. (9.14) evaluated at nucleus [ in a chain with length N = 500. For comparison the coupling parameter
K evaluated for an infinite chain of nuclei according to Eq. (9.21) is indicated by the dashed lines. The
calculations are performed for dipole moment perpendicular to the chain (64 = 7/2).

exponential decay Arer(t) &= Asample(t) ~ exp(—I't/2), the total intensity approximately becomes
Teomb o< € Sin [A - ¢+ sample(t)] - (9.23)

Hence, the interference between the chains leads to a modulation of the exponentially decaying
intensity with frequency A. The non-linear phase shift of the first chain shifts this entire quantum
beat pattern, facilitating its measurement.

An example for the time-dependent intensity in this detection scheme is shown in Fig. 9.4. The
detuning is chosen as A = —3T". The linear low-excitation case is given by the dark blue line with
lowest value for A. With increasing degree of excitation, the quantum beat minimum progressively
shifts towards lower times by a few nanoseconds. Note that state-of-the-art experiments on nuclear
forward scattering routinely measure the time-dependence with (sub-)nanosecond resolution.

9.4 Finite size effects

So far, we have studied the translational invariant system with the coupling parameter K being
evaluated for an infinite chain. In Fig. 9.5 the coupling parameter K calculated for a finite chain
with N nuclei according to Eq. (9.14) and evaluated at the central nucleus I = N/2 is displayed as a
function of the number of nuclei in the chain. Overall, we see convergence to the asymptotic value in
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Figure 9.7: Comparison of the phase evolution computed with a finite chain evaluated at the central nucleus
(dashed) and the translational invariant model (dotted). In (a) the chain has a length of N = 362 nuclei,
which corresponds to a point of maximal deviation of K in Fig. 9.5(b), in (b) a length of N = 257 nuclei
corresponding to a point of minimal deviation in K7 is chosen. The different colors indicate different initial
excitations A according to the respective legend. The calculations are performed for dipole moment perpen-
dicular to the chain (64 = 7/2) and a small incident light angle of 6, = 50 mrad.

Eq. (9.21) (dashed) for increasing N. Furthermore, we see oscillations around the asymptotic value.
The frequency of those is decreasing for smaller incident light angles 6;,, as can be seen by comparing
the two panels.

In Fig. 9.6, the coupling parameter for a finite chain K; in Eq. (9.14) is evaluated as a function
of the position within the chain [. Due to the asymmetry of number of nuclei left and right of a
certain nucleus, this function exhibits oscillations and is asymmetric. By comparing the two different
incident light angles 6;, in the two panels, we see that especially for K; the variation over the chain
is stronger for smaller incident light angles. The oscillations decrease with rising number of nuclei
N. For smaller chains, they are however of relevance when summing the scattered electric field of
all nuclei and might already in the low-excitation limit lead to modified angular patterns. For larger
samples, the variations are negligible, which is why we continue with the analysis of finite size effects
at the central nucleus only.

To investigate finite size effects during the time evolution in Fig. 9.7, the results for the central
nucleus in a finite chain are compared to those from the translational invariant model for different
initial excitations A. For Fig. 9.7(a), the number of nuclei is N = 362, which corresponds to a maximal
difference of the coupling parameter K' from the asymptotic value, as can be seen from Fig. 9.5(b).
Although qualitatively the overall trends of the non-linear time-evolution agree, there are noticeable
quantitative differences. In Fig. 9.7(b) a smaller chain with N = 257 nuclei, but with minimal
deviation of the coupling parameter K’ is used. Here, the quantitative agreement is significantly
better than in the other case although the chain is smaller. This is already a strong indication,
that the dominant finite size effect for observables on the single atom level is the convergence of the
coupling parameter K.

To quantify the convergence with chain length, for each observable O we calculate the mean squared
absolute difference between the result from the translational invariant model O, and the finite chain
of length N result Oy integrated over time AO = +; Zf\il |00 (t;) — On(t;)|2. In Fig. 9.8, the
deviation AQO is displayed for the absolute value and phase of the coherence and the population
evaluated at the central nucleus in the chain [ = N/2 as a function of the number of nuclei in the
chain N. The general trend is that the deviations decrease with rising length of the chain as expected.
In addition, the deviations for the absolute values of the coherence and the population are smaller
because in the respective equations of motions, the relevant part of the coupling parameter K% is
dominated by the single-particle decay I'. Besides the general convergence, there is an oscillatory
structure. This structure comes from the oscillatory convergence behavior as shown in Fig. 9.5. To
see this more clearly, on a second y-axis for the real and imaginary part, respectively, the squared
absolute difference of the coupling parameter calculated for a finite chain K is compared to the
asymptotic value given by Eq. (9.21) is displayed. The oscillatory structure of AO clearly follows the
differences of K. Therefore, we conclude that for the central nucleus the most-dominant finite size
effect is the difference in the imaginary part of the coupling parameter K’, which in a converging but
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Figure 9.8: Impact of finite size effects on the nuclear dynamics. The deviation of observable O is quantified
by the integrated quadratic differences over time AO = &7 S M |00 (ts) — ON(t)|?, where O is the result
for a translationally invariant infinite chain and Op is the result from a finite chain of length N evaluated at
the central nucleus. The three panels show the deviation as a function of chain length N (black markers). The
comparison is made for the absolute value of the nuclear coherence (top panel), the phase of the coherence
(central panel) and the population (bottom). For comparison, on the second y-axis, the absolute difference
|Koo — Kn|? of the dominant part (real or imaginary part) of the coupling parameter K is shown (red and
blue dashed lines). The integration time is up to ¢t = 2/T", the dipole is perpendicular to the chain 64 = /2
and the incident light angle is 6;, = 50 mrad.

oscillating manner depends on the number of nuclei in the chain N.

9.5 Beyond cumulant expansion

In order to verify that the results discussed in the main text obtained from the cumulant expansion are
within the validity range of the method, we compare the results with the phase evolution obtained in
the framework of the CDTWA developed by Mink et al. [MF23]. This approach is known to work best
for stronger couplings and higher excitations, whereas in the opposite case beyond ¢ = 1/I" unphysical
effects appear [MF23]. Therefore, we neglect the internal conversion for this comparison (I''° = 0)
which results in higher cooperativity and thus better validity of CDTWA, but is a less favorable
parameter range for the cumulant expansion. With internal conversion, the cumulant expansion
results are expected to be be more reliable. Nonetheless, the CDTWA provides a good crosscheck for
the cumulant expansion results because the approximation methods are complementary to each other.
In Fig. 9.9 for the central nucleus [ = N/2 in a chain of length N = 100, the phase evolution calculated
with the cumulant expansion and the CDTWA is compared for different initial excitations 4. For all
three shown different degrees of initial excitation, the results obtained with the cumulant expansion
(dashed lines) and CDTWA (solid lines) agree qualitatively well, which confirms the non-linear phase
evolution.

9.6 Summary and Outlook

Motivated by recent experimental progress, we analyzed the decay dynamics of an interacting en-
semble of Mossbauer nuclei after an impulsive excitation by an accelerator-based x-ray source. Un-
like previous approaches, we expanded the equations of motion to leading order in the degree of
interaction-induced nuclear correlations, which is justified by the comparably small coupling of nuclei
in bulk material. Within this approach, we derived equations of motions for the ensemble which
scale only linearly in the number of nuclei, and therefore can efficiently be simulated even for larger
ensembles. Assuming further a translational invariance of the arrangement of the nuclei and the
x-ray excitation, which is a good approximation for established experimental settings, we could fur-
ther reduce the theoretical description to three non-linear real-valued equations which describe the
dynamics of the entire ensemble. We found that the dynamics then is governed by a single coupling
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Figure 9.9: Phase evolution of the central nucleus in a chain of length N = 100. The figure compares
results of the cumulant expansion (dashed) with corresponding results obtained from the truncated Wigner
approximation (solid). The different colors indicate different initial excitations .A. The calculations are
performed without internal conversion (I''® = 0) for dipole moment perpendicular to the chain (84 = 7/2)
and a small incident light angle of 6;, = 5 mrad.

parameter K, which can be tuned in experiments.

As the main signature for higher excitation, we found that the inter-nuclear interactions lead to
additional non-linear phase dynamics of the nuclear dipole moments. Based on this observation, we
proposed a setup for measuring this signature, exploiting the geometry-dependence of K. This opens
up an approach for the exploration of the non-linear nuclear decay dynamics.

For the future, we envision the generalization of our results to structured nuclear environments,
which allow one to engineer and enhance the inter-nuclear couplings [DLE22a; DLE22b; LKE16;
Loh-+25b; RE21]. Such design capabilities could allow one to achieve particular control operations for
the nuclear phase, or to also significantly affect the nuclear population dynamics. Furthermore, source
development also brings experiments on smaller samples within reach. We identified characteristic
finite-size effects which lead to both, variations in the coupling parameter K with chain length, as
well as a dependence of the nuclear dynamics on their position within the chain. We envision future
experiments exploring these finite-size effects, e.g., exploring the impact of the geometry on the
coherence volume responsible for the collective effects observed in nuclear resonance scattering. Such
studies would also form an important basis for future Mossbauer experiments with highest spatial
resolution, i.e., small sample volumes.
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Chapter 10

Propagation effects beyond the low-excitation regime

10.1 Motivation

Studying the nuclear forward scattering signal of a Mossbauer sample is well-established at syn-
chrotrons [GBT11; R6h04] and we have seen in Section 2.1.4 how host material properties can be
extracted from the time spectrum. Furthermore, the simple experimental setup of nuclear forward
scattering makes it ideally suited for exploratory experiments at new light sources. In the low-
excitation regime, the equations of motion decouple and an analytical formula can be derived, as we
have seen in Section 2.3.3, and which is well-established in the theory of nuclear resonance scatter-
ing [KAK79; Roh04]. However, with recent experiments at XFELs [Chu+18; Ger+25b; Liu+25a;
Shv-23] and the progress towards even more powerful x-ray light sources such as XFELOs [Mar-23;
Rau+25], theoretical predictions beyond the low-excitation regime are required for two reasons. First,
to extract material properties from the signal, also at potentially higher excitation, a precise under-
standing of the signal is required. Second, potential non-linear signatures are interesting themselves
and could serve as indicators for the degree of initial excitation.

In the previous chapter, we investigated the de-excitation dynamics beyond the low-excitation
regime of a very long chain, such that we can assume translational invariance and derive a simple model
to describe the system [GE25]. However, in contrast to the setting discussed before, in nuclear forward
scattering typically propagation effects occur, which originate from multiple scattering in extended,
but finite systems [Shv+98]. Therefore, the translational invariance is not a valid assumption anymore
and we have to model the full system. For the special case in which spontaneous decay is neglected,
the dynamics can be described by a single differential equation [BC69|, which is easily solvable
numerically. Previous attempts to explore the dynamics of the system were made by numerically
solving the Maxwell-Bloch equations in Egs. (2.39) and (2.41) directly [Adi24; AGE_p|, and by
effective couplings and Matrix product states [Kon+25].

Here we follow a slightly different approach also by including the propagation effects via an effective
coupling, but simulating the system with the cumulant expansion [Kub62] and the continuous-discrete
truncated Wigner approximation (CDTWA) [MF23].

10.2 Many-body simulations

For definiteness, all calculations are made for ®"Fe with a lattice constant ag = 286 pm and resonant
wavelength A = 86 pm. However, all calculations can be performed for a different Mossbauer isotope
straightforwardly. Furthermore, for simplicity we consider a linear chain in z-direction.

The propagation effects are included via an effective coupling as discussed in Section 2.3.2 resulting
in coupling terms

~ I
Imn z%D sin (kgagln —m|) , (10.1a)
Tnn =Dmn — Tip cos (kgag|n — m) (10.1b)

where I'ip = %F, with the optical density OD, the decay rate I', and the number of nuclei N. For
enriched a-iron, the optical density depends on the thickness parameter b as OD = 4 - b[[']. This
reduced coupling constant I';p allows us to study macroscopic samples, e.g., 1 um thick samples
(b ~ 4) with 3500 nuclei, with smaller effective numbers of nuclei N on the order of a few hundred

nuclei. Finally, the complex coupling parameter C' is given by

~ r T
5 + iJmn = §5mn + %D exp (koagln — m|) . (10.2)

Omn =
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Figure 10.1: Intensity as a function of time for the analytical response function (gray solid line) and results
from the cumulant expansion (colored dashed lines) in the low-excitation regime (A = 0.017). The different
colors indicate the different chain lengths N. For the simulation the thickness parameter is chosen to be
b=16T". The curves are normalized such that the area under the curve equals 1.

As the main simulation tool we use the cumulant expansion, because the couplings are moderate,
e.g., for N = 100 nuclei and b = 4T" it is I'1p = 0.08[". A detailed derivation of the equations of motion
for the population (of¢) and coherence (0;") = |(0; )| " = (5, ) €'’ can be found in Appendix B
and results in

d — I ~— ee
o) =5 (o) — (1 =2(o{) ", (10.3)
d .
0=~ (1=2(of) (o) '], (10.4)
d __
a@f@) = —Iyu(ot®) =2 (; ) K], (10.5)
N ~
K= K ikl = Z C;‘n<6;>ei(¢"_¢l) , (10.6)

n=1
n#l

with the complex coupling C given by Eq. (10.2). Furthermore, we consider the setup in which the
incident light is parallel to the chain of nuclei (6;, = 0), such that the initial phases are given by
1 = koagl = 21 - | with wavevector kg = 27 /X and lattice constant ag. The initial parameters for the
population (of¢)(0) = sin®(.A/2) and absolute value of the coherence (o, )(0) = sin(.A/2) cos(.A/2)
are determined by the initial degree of excitation A.

The main observable to study propagation effects is the outgoing electric field after the sample,
which in the forward scattering geometry is given by [MCD17]

N
E(t) = En(t) +iy/ F%D D e thomligT(t). (10.7)
=1

In our case, the incident field is a very short pulse compared to the nuclear decay time scale and
can therefore be approximated by &, (t) o< 6(¢). The experimentally observed intensity is given by
I(t) = [E(t)*.

10.3 Low-excitation regime
We start our investigations in the low-excitation regime. As we have seen in Section 2.3.3, in the

low-excitation regime the outgoing electric field can be calculated analytically and the normalized
electric field is given by (see Eq. (2.12))

E'(t,2) = EY,

5(t) — \/le (2\/@ eiwotevfe(t)] , (10.8)
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Figure 10.2: Intensity as a function of time for different thickness parameters b indicated by the different
colors in the low-excitation regime (A = 0.017). Compared are the results of the analytical response function
(solid lines) and the cumulant expansion (dashed lines). The length of the chain is chosen to be N = 100
nuclei. The curves are normalized such that the area under the curve equals 1.

where EY is the electric field amplitude. Therefore, in the low-excitation regime we can benchmark
the results of the many-body simulation with the analytical formula. Note that here we consider the
single-line case without hyperfine splitting for simplicity.

In Fig. 10.1, the scattered intensity is shown as a function of time for the analytical formula in
Eq. (10.8) (gray solid line) and the many-body simulation (colored dashed lines). For the many-body
simulations an initial excitation of A = 0.017 is used. We can clearly see the dips in the intensity

at the roots of the Bessel function J; (2\/&) in all lines. For the numerical results we note that

for very short chains, e.g., N = 10 (blue line), those dips are slightly shifted. This is because the
chain is too short to appropriately represent the propagation dynamics since for kgag = 21 from the
central atoms to the edge not even a full oscillation period of the oscillating part of the couplings in
Eq. (10.2) is covered. Note that I'ip allows us to use a smaller amount of nuclei for the simulation
than actually are in a chain of corresponding length. For increasing chain length, the results match
the analytical result. We conclude that for the low-excitation regime we should use at least N = 100
nuclei. A similar shift of the minima for chains which are to short to simulate the dynamics properly
is also visible in [Kon+ 25|, but the origin is not discussed.

A comparison of the scattered intensity as a function of time between the analytical formula in
Eq. (10.8) (solid lines) and the simulation results (dashed lines) for different thickness parameters b
is given in Fig. 10.2. For the results with different b represented by the different colors, the minima
occur at different times as expected because they are caused by the roots of the Bessel function

Ji (2\/5)7 whose positions depend on b. For all different thickness parameters b there is excellent

agreement between the analytical and the numerical result. This demonstrates, that the cumulant
expansion can accurately capture the system dynamics arising from the couplings which represent
the propagation effects in the low-excitation regime.

10.4 Beyond the low-excitation regime

After we have confirmed, that the system dynamics is accurately represented in the low-excitation
regime by comparing it to the analytical response function, we can now investigate the full excitation
regime, for which no analytical solution exists, with the numerical simulation.

As for the low-excitation regime, we start our investigations by analyzing the convergence of the
results with the number of nuclei N. To this end, Fig. 10.3 displays the intensity as a function of time
for different numbers of nuclei N and two different initial excitations A = 0.57 and A = 0.97 in the
two panels. For medium excitation (A = 0.5, left panel), we see that already for N = 50 nuclei, the
results are converged like for the low-excitation case in Fig. 10.1. For the high excitation at N = 50
nuclei, there are still deviations especially in the position of the first minimum and in high intensity
regions. Only for NV = 500 are the results converged. Furthermore, the position of the minima for
the two different initial excitations A in the two panels differ from each other, which is a first hint of
a non-linear signature depending on the initial excitation A.
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Figure 10.3: Intensity as a function of time calculated with the cumulant expansion for two different initial
excitations A. The different colors represent calculations with different chain length N. The curves are
normalized such that the area under the curve equals 1 and the thickness parameter is chosen to be b = 16 T".
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Figure 10.5: Intensity as a function of time calculated with the cumulant expansion (dashed lines) and the
Burnham-Chiao ringing in Eq. (2.43) (solid lines). The different colors represent different initial excitations
A. For the cumulant model we set the decay constant in the incoherent coupling in Eq. (10.1) I = 0 to match
the Burnham-Chiao ringing conditions. For the time scale we keep the standard I'. The number of nuclei is
set to N = 2000 and the thickness parameter is chosen to be b = 16T".
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Figure 10.6: (a) Intensity as a function of time for different thickness parameters b in the low-excitation
regime. Compared are the results from the CDTWA (dashed lines) and the analytical formula in Eq. (10.8)
(solid lines). (b) Intensity as a function of time for different initial excitation A with a fixed thickness
parameter b = 64. Compared are the results from the CDTWA (dashed lines) and the cumulant expansion

(dashed lines). For the simulations N = 100 nuclei are used. The curves are normalized such that the area
under the curve equals 1.

To study this effect in more detail, in Fig. 10.4 for a fixed number of nuclei N = 1000 and thickness
parameter b = 16 the intensity is displayed as a function of time for different initial excitations .A.
We see that the position of the minima shifts to later times for increasing initial excitations A. For
an initial excitation of A = 0.27, there are only tiny differences as compared to the result in the
low-excitation regime (A = 0.01). For an initial excitation of .4 = 0.57 the shifts of the minima are
clearly visible and the amount by which the minima shift increases non-linearly with increasing initial
excitation A. A detailed study of this shifts can be found in [Adi24; AGE p|. Further, those shifts
are visible in [Kon+25], but not analyzed in detail.

To understand the shift of the dynamical beats, we can compare the result from the cumulant
expansion to the results from the simple Burnham-Chiao ringing model presented in Section 2.3.2.
This simple model describes the outgoing electric field by (see Eq. (2.44))

d 1 /bd
t —

E(t) o« ,0(t) = NARKT (9), (10.9)

with ¢ = 24/QtL, where @Q = b/L with the length of the sample L and d%@(q) being governed by the
following differential equation (see Eq. (2.43)):

d? 1d
— 9 -
dg? @)+ qdq

0(q) +sin (6(q)) =0, (10.10)

which is a modified Bessel differential equation with sin(f(q)) instead of 6(gq) and can be solved
numerically. One crucial approximation in the derivation of this Burnham-Chiao ringing was that
there is no decay during the time evolution. Therefore, to compare the results from our full simulation
to Burnham-Chiao ringing, we set the decay constant to zero (I' = 0).

In Fig. 10.5, the intensity as a function of time is calculated with the cumulant expansion (dashed
lines) and the Burnham-Chiao model (solid lines) for different initial excitations A. For all initial
excitations A indicated by the different colors, there is excellent agreement. This indicates, that
indeed the shift of the minima originates from the governing differential equation not being a Bessel
differential equation for higher excitations. For higher excitations sin(6(g)) cannot be approximated
with 6(q) anymore and introduces non-linear effects.

The intuitive physical interpretation is that for higher excitation, there is more population in
the excited state, such that the absorption cross section shrinks and the sample is effectively thin-
ner [Kon+25]|. This leads to the minima shifting to later times as we see in Fig. 10.2. Note however,
that this is only an approximate description as the the intensity as a function of time for higher
excitations cannot be represented by a Bessel function of first kind as in the low-excitation regime.
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Figure 10.7: Intensity as a function of time for two different arrival times of the excitation pulse to. For
comparison in gray, the analytical response function is displayed. For the simulation N = 100 nuclei and a
thickness parameter of b = 64" is used. The curves are normalized such that the area under the curve equals
1.

10.5 Validation of effect with CDTWA

Finally, as we have done in the previous chapter, we want to validate the cumulant expansion results
by simulating the system with a different method, namely the CDTWA.

First, we validate the CDTWA results in the low-excitation regime by comparing them to the
analytical formula (Eq. (10.8)). Fig. 10.6(a) shows the intensity as a function of time in the low-
excitation regime for different thickness parameters b represented by different colors. The dashed lines
show the simulation results from the CDTWA, the solid lines the result of the analytical expression for
comparison. We find that also for the CDTWA the dynamical beat minima are visible. The minima
positions as well as the overall curves are in good agreement with the analytical result for early times
(t < 0.4T~1). For later times, the agreement is worse and especially the minima are shifted. This
might be due to the known unphysical effects, which can appear for a system without continuous
driving (see Section 7.5.5). The unphysical driving would lead to higher populations similar to a
higher initial excitation (c.f. Fig. 8.4) and the deviation increases with increasing time.

We can test for this by running the simulation for two different arrival times of the excitation pulse
to. In Fig. 10.7, the intensity as a function of time is shown for ¢y = 0.05T~! as before (blue) and
a later pulse at to = 0.2T71 (red) with respect to the start of the simulation. If the deviation from
the response function (gray) is physical, the deviation should not depend on ¢, after correcting the
time axis for the different arrival times. However, we see that for £y = 0.05T' ! there is reasonable
agreement up to t ~ 0.2I'~!, while for o = 0.2I'~! the agreement only reached until ¢ ~ 0.06 .
Note that the curves are normalized, such that the area under the curve equals 1, which leads to
different relative heights. This indicates that the deviation indeed arises from the unphysical effects,
which only depend on the start time of the simulation. Furthermore, the background level at time
t < 0 before the excitation pulse arrival is significantly higher for the later pulse.

In the next step, we compare the results from CDTWA and cumulant expansion for different initial
excitations A. From the comparison with the analytical formula we already know that the results
from CDTWA might be incorrect for later times ¢t > 0.4I'~!. For earlier times from Fig. 10.6(b) we
can see that the CDTWA results (dashed) lines agree reasonably well with the cumulant expansion
results (solid lines). Especially the shift of the minima depending on the initial excitation A can be
confirmed qualitatively but also quantitatively.

10.6 Summary and Outlook

At first, we benchmarked the cumulant expansion results with the analytical formula in the low-
excitation regime. After confirming that the cumulant expansion captures the dynamics correctly,
especially the dynamical beat minima, we increased the initial excitation beyond the low-excitation
regime. In this analysis we noted that the position of the minima depends on the initial excitation
A, which provides a clear signature of non-liner effects beyond the low-excitation regime. Similar
shifts have already been reported in other work [Adi24; AGE p; Kon-+25], however with different
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simulation methods. We were able to identify the origin as non-linear effects in the simplified model
of the Burnham-Chiao ringing [BC69]. Afterwards, we compared the cumulant expansion results
to those obtained with the CDTWA. The results of the CDTWA are strongly influenced by the
unphysical driving (see Section 7.5.5), but nonetheless we could validate the shift of the dynamical
beat minima depending on the degree of excitation A.

The shift of the dynamical beat minima provides a clear signature of appearing nonlinearities
beyond the low-excitation regime. Those shifts could be used to demonstrate higher excitations
with a simple experimental setting. In the distant future, an experimental demonstration of the
dynamical beat shift depending on the initial excitation is expected to be realizable with an XFELO.
Furthermore, the shifts could serve as diagnostics for the degree of excitation, especially if combined
with a single-shot analysis [Ger-+25b].

So far we have discussed the propagation effects based on the free-space dipole-dipole couplings.
For the future, it would be interesting to study propagation effects beyond the linear regime in
structured environments, e.g., in waveguides [Loh-+25a], with the same formalism. Besides, it would
be interesting to extend the formalism and include transverse couplings. As the effective couplings to
model the propagation effects are the projection of the dipole-dipole couplings onto the forward mode,
another interesting aspect to study in the future is whether there is a connection of the excitation-
dependent phase evolution discussed in Chapter 9 and the excitation-dependent shift of the dynamical
beats studied here.
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Part 111

Experiments performed at a synchrotron
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Chapter 11

Dark-fringe interferometer with dynamic phase
control for Mossbauer science

This chapter is based on the following preprint:

Dark-fringe interferometer with dynamic phase control for Mdssbauer science

M. Gerharz, , D. Lentrodt, L. Bocklage, K. Schulze, C. Ott, R. Steinbriigge, O. Leupold, 1. Sergeev,
G. Paulus, C. H. Keitel, R. Rohlsberger, T. Pfeifer, and J. Evers

arXiv:2509.24658 [quanth-ph]|

Content has been reproduced verbatim, but the article was restructured to suit the format of this
thesis. While the foundations and measurement results were already discussed in [Ger21], within the
scope of this thesis the interferometer was studied in detail, which is presented in this chapter, and
the manuscript was prepared.

11.1 Motivation

The phenomenon of interference is ubiquitous in physics. For instance, the paradigmatic example of
double-slit interference allows one to explore key concepts of quantum mechanics [FLS63]. In general,
interferometers are among the most versatile and precise measurement devices. However, interfer-
ometric control and measurements become more challenging at energies of hard x-rays, due to the
small x-ray wavelength. Nevertheless, interference effects also play an important role in nuclear reso-
nance scattering, which typically operates at photon energies of order 10 keV. Already the interference
between scattering involving different hyperfine transitions gives rise to the characteristic quantum
beats [Roh04]. The situation becomes richer if more than one nuclear target is considered, since
then also interferences between pathways involving interactions with several targets become relevant
(see, e.g., [Blir+99; Hee+17; Hee+21; Pot+01]). These interferences open up a number of important
applications, such as controlling the scattered y-rays and the nuclear dynamics [Boc+21; Biir+99;
Hee+13; Hee+15a; Hee+17; Hee+21; Hel+91; KKR99; Kuz+24; Lin+22; LP17; LPK12; PKE09;
Pot-+01; Sch+02; Shv+96; SS89; Vag+14; Vel+24; Zha+19] or in precise measurements [Boc+21;
Cal405; Goe+19; Hee+21; Loh+25b; SLT04; Stu01l; Yua+25]. One example is the manipulation of
the intensity of the transmitted light, e.g., motivated by the desire to remove the huge off-resonant un-
scattered background from the detection signal at accelerator-based x-ray sources [Che+83; Ger-+85;
Hee+13; Muk+15; Pot+12; Roh+00; Roh+92; SBH93; Smi+84; Smi00; SS89; Toe+11; Toe+95].
From a broader perspective, the Mossbauer interference schemes are also at the heart of the develop-
ment of x-ray and nuclear quantum optics [Ada+13; Ada+19; Ada03; KK17; RES14; WK21].

The favorable properties and applications call for a further development of Méssbauer interferome-
try. However, traditional x-ray interferometers based on crystal optics are challenging to implement,
since they require an alignment and stability of the setup on the Angstrom level [BH65; Bow96;
Shv-+03]. In contrast, in the multi-target Mossbauer settings the interfering pathways are not spa-
tially separated. This has the advantage that the measurements are only susceptible to relative phase
changes between the targets over the duration between the excitation and the subsequent scattering.
For the archetype ®"Fe with a lifetime of 141 ns, this measurement cycle is fast enough to outpace
many sources of mechanical noise. As a result, stabilities well below the wavelength scale have been
demonstrated [Hee+21]. However, in a conventional interferometer the probed sample is placed in one
of the interfering pathways, while a variable phase shift is applied to the other pathway. Neither the
selective coupling to one of the paths, nor the phase variation is straightforwardly possible in the in-
line configuration. Furthermore, the radiative coupling between multiple Mossbauer targets [Biir+99;
Pot-+01] involving x-ray scattering on more than one target spoils the analogy to traditional interfer-
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Figure 11.1: (a) Schematic setup. X-rays linearly polarized in 6-direction enter the setup. With a polarime-
try setup, the two perpendicular polarization states Es and Es can be selected. Inside the polarimeter, two
resonant targets are placed with their magnetization set to a; = 7/4 and as = —m/4, which forms the dark
fringe setting, in which no light can pass the setup. The first target is mechanically moved via a piezoelectric
transducer and thereby imprints a time-dependent phase onto the x-rays. This allows to dynamically control
the interferometer and enables a dynamical temporal gating of the outgoing x-ray intensity. (b) Schematic
representation of the different interfering paths. First, the polarizer blocks the #-component (solid line) and
lets only pass the -component (dashed line) of the initial short x-ray pulse (gray vertical line) of the in-
coming electric field. In the first target, the light can either pass the target without scattering (top path)
or is scattered into the perpendicular component (empty circle) or into the same polarization component
(filled circle). Both scattering components are indicated by dark red triangles since their duration is of order
of the nuclear lifetime and therefore orders of magnitude longer than the initial x-ray pulse. They have a
dynamically-controllable phase ¢ relative to the initial x-ray pulse. Subsequently, similar scattering happens
in the second target (orange triangle). The two double-scattering paths interfere destructively for both polar-
ization components (crossed arrow). Finally, the analyzer blocks the & components, such that the outgoing
electric field behind the interferometer is given by the sum of two single-scattering paths, whose relative phase
can be controlled.

ometry setups, and impedes the direct phase measurements and control [Cal+05; Goe+19; Hee+21;
Smi+06].

Here, we theoretically introduce and experimentally demonstrate a dynamically-controllable x-ray
interferometer for Méssbauer science which overcomes these challenges. We engineer the interference
in such a way that only two co-propagating pathways contribute to the detection signal. In this
setting, the radiative couplings cancel, the two pathways can individually be addressed via their
different polarizations, and the transmitted intensity in the empty interferometer ideally vanishes.
Thereby we combine the stability of an x-ray inline interferometer with the easy selective access
to the individual interfering pathways for spatially separated pathways. Despite not being used in
Mossbauer interferometers so far, due to its high sensitivity, the “dark-fringe” mode is well-established
in other fields, e.g., in astrophysics [Hin+98] or gravitational-wave detection [Bon-+16].

11.2 Experimental setup

The schematic setup is shown in Fig. 11.1(a). The incoming x-rays are polarized in the horizontal
plane. The analyzer is aligned in crossed setting, such that the empty polarimeter ideally does not
transmit any x-rays [Mar+11; Mar+21]. Each of the two targets is operated in such a way that its
response also comprises scattering into the vertical polarization direction, and vice versa. Therefore,
including only one of the targets into the polarimeter leads to a transmission through the analyzer. In
the following, we show that a second target can be added in such a way that the transmission through
the analyzer ideally vanishes again. The reason for this is that the respective contributions of the two
targets to the transmission through the analyzer interfere destructively. As a result, the setting can
be interpreted as an interferometer. This interpretation is further supported by the observation that
in our setting, the final signal behind the analyzer only comprises the interference between the linear
scattering of the first target with the linear scattering of the second target, without contribution from
the radiative coupling of both targets (see Fig. 11.1(b)). Since the transmitted intensity vanishes in
the idle state, the interferometer operates in the dark-fringe mode. By additionally mounting the first
target on a piezo-electric transducer such that it can be mechanically displaced, the relative phase
between the interfering pathways can be dynamically controlled, and thus the transmitted intensity.
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11.3 Theoretical description of the interferometer

11.3.1 Polarization-dependent response of a moving target

We start with the analysis for a single target, assuming an idealized motion, which will allow us to
obtain analytical expressions. For definitiveness, we consider the standard isotope °”Fe with resonance
frequency wp and a magnetic dipole (M1) Mossbauer transition from the ground state. Following the
standard approach to polarization-dependent nuclear forward scattering [Roh04; SBH99|, we can
relate the linear - and the d-polarized components of the outgoing electric field (E) to the incident
electric field (E™) by

(B = e (£2) .
Rlera) = g0 (RL(EW) Rco<w>> 9a" (11.2)

where & = exp(ikz — pe d/2) and p. is the electronic contribution characterizing the absorption and
phase shift due to off-resonant electronic processes. g, is a two-dimensional rotation matrix,

cosa  Sina
o = (— sin v cosa) ’ (11.3)

capturing the effect of the magnetic field being rotated by a from the # axis. For °Fe, the two
response functions for transitions with linear and circular dipole moments are given by

Ry, (w) = eF2@)HLs@) (11.4a)
Ro(t) = 41 H £ H 2+ 2800) (11.40)
Here, the Lorentzians L;(w) = il'c/(w — w; — %7) correspond to the six Zeeman transitions in

magnetically-split 5"Fe, weighted by their respective Clebsch-Gordan coefficients, with transition
frequencies w;, natural decay rate v and enhanced decay rate I'. [SBH99].

For simplicity, we consider instantaneous phase jumps due to step-like target displacements Az
immediately after the excitation. This approximation is valid as typical rise times of the motion are
of order of 1 — 10 ns, which can be considered sufficiently short as compared to the nuclear lifetime
of 141 ns. For temporally short incident x-ray pulses E™ o §(t), the effect of these step-like motions
is characterized by the replacement [Hel+91]

Ry c(w) = Ry c(w,¢) =1+ [Ryc(w) — 1] e, (11.5)

where Ry c(w,¢) denotes the response with phase jump ¢ = 2rAz/X. The first “1” in Eq. (11.5)
describes unscattered light which does not interact with the target and therefore is unaffected by the
motion, whereas the resonantly scattered part proportional to (Ry,/c — 1) is phase-shifted. Note that
as the six hyperfine-splitted lines are well-separated, specifying the transition to linearly polarized
wc or linearly polarized wr,, we can approximate Ry, /c(wo/r) =~ 1.

11.3.2 Dynamical interference control

In order to derive the transmitted intensity behind the analyzer, we consider the archetype isotope
5TFe with resonance frequency wy and a magnetic dipole (M1) Mdssbauer transition from the ground
state. This transition has a hyperfine splitting with six lines of which two are linearly polarized along
the magnetization and four are circularly polarized in the plane perpendicular to the magnetization.
Each of the two identical targets has its magnetization aligned in the plane perpendicular to the x-ray
propagation direction, at an angle «; (¢ = 1,2) relative to the # direction.

From Eq. (11.1), for magnetization directions /4 the outgoing field comprises contributions in
both polarization directions, even if the incident field only comprises one of the two polarization
components. This is due to polarization-changing scattering contributions [SBH99]. In contrast, we
combine two targets in such a way that this is not the case. After the analyzer, only the & component
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of the short incoming x-ray pulse impinges on target 1. The electric field after the first target then
becomes

m\ (En
EM (wy/c) =RW (wL/cxb,ozl = Z) ( 6’) (11.6)
1) ig
E . (24T e
= Ey 1/ | (11.7)
2 FIt e

where we left out the argument wy,/c of the transmission functions for brevity. The signs F are for
the two different polarization contributions L/C. From the equation, we can read off the three paths
after the first sample as they are illustrated in Fig. 11.1(b): the prompt unscattered contribution
("1") and the scattering components into the parallel and perpendicular polarization components
("TE})(Jei¢/2")'

Analogously, after the second target we find

B0 <61 (a3 R0 1) ()

Lo (M) (19
The different scattering contributions are given by
5O —y4 (11.9a)
SW =2 (1 + 15, | (11.9b)
S® =1 T e’ - TELT e =0, (11.9¢)
PO =2 (15, - 1) | (11.9d)
PO =2 17T e F TLT] e =0, (11.9¢)

and each of these nine terms corresponds to one of the interfering pathways shown in Fig. 11.1(b).
Here, S/ P indicates contributions to the ¢ and 7 polarization, respectively, and the superscript labels
the number of targets that this pathway interacts with. Note that in both polarization components,
for this particular set of chosen angles «; /o, the scattering paths involving two targets cancel each

other, S? = (0 = P®). The analyzer blocks the é-component such that the outgoing signal behind
the interferometer becomes

s . ‘
B (wyj0) = 25 B (TG = T e ) (11.10)
Assuming identical samples TL(I/)C = Téz/)c =T, /c, the outgoing field reduces to

s . ,
E(wy/0) = iiE}Tn(l — ') Ty c(w/e)- (11.11)

Without motion (¢ = 0), this outgoing field indeed vanishes in the ideal case due to destructive
interference between the respective single-scattering paths, thus forming the dark-fringe setting. As
a result, the interference and thus the outgoing intensity

I
L(Z’L/C) = |&|? sin? (‘5) |TL/C(w)|2 . (11.12)

can be dynamically controlled, e.g., by mechanical motion inducing a relative phase ¢.
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11.4 Applications of the interferometer

Although the applications were studied outside the scope of this thesis in [Ger21]|, we want to name
them for completeness. Details can be found in [Ger+25a; Ger21]. We have seen that the interference
and thus the transmitted intensity of the interferometer can be tuned by mechanical motion. We
employ piezo transducers to displace one of the targets and control the output intensity on the
nanosecond time scale. In the experiment, we use an event-based detection system to measure the
effect of individual sudden target displacements on the interferometer transmission up to about 7.5 us,
i.e., about 50 lifetimes of the bare nuclei. This opens up two classes of applications.

On the one hand, relative displacements of the targets can precisely be measured on x-ray wavelength-
and nanosecond-time scales via the transmitted intensity. This was used to measure residual relative
motion between the two samples. Furthermore, the long measurement times of up to 7.5 us allowed
us to see revivals of shock waves after approximately 3 us, that were introduced by the sudden piezo
motion.

On the other hand, a deterministic displacement of the targets allows one to control the intensity
of the transmitted light as a function of time. This allows for gating on nanosecond times scales and
the creation of single pulses.

These two applications experimentally demonstrate the sensitivity in the dark-fringe mode in the
first application, and the dynamical control of the interferometer in the second one.

11.5 Summary and outlook

In summary, we introduced and demonstrated an inline x-ray interferometer for Mossbauer science
operated in the dark-fringe mode. The resulting minimum of the transmitted intensity forms an ideal
starting point for a variety of applications. Mounting one of the two targets on a piezo-transducer
further allows one to dynamically control the relative phase of the interfering pathways, and thus the
interferometer transmission.

The dark-fringe operation is gained by operating two targets containing Mossbauer nuclei in a
particular geometry, such that their individual scattering responses partially interfere. Importantly,
all scattering channels involving interactions with both targets cancel each other, in stark contrast
to many previous experiments involving multiple Mdssbauer targets. Because of this feature, the
final signal behind the analyser only comprises two interfering contributions, which are formed by
individual scattering from each of the two targets. One of the two contributions then acquires an
additional relative phase shift by the mechanical displacement of the corresponding sample. This
particular feature allows us to directly relate the setting to a conventional interferometer with two
interfering pathways.

For the future, we envision a more refined control of the mechanical displacement to generate
versatile tuneable multi-peak pulses. This would allow, e.g., for the coherent control of Md&ssbauer
nuclei [Hee+21|. If combined with seeded XFEL radiation comprising many resonant photons per
shot, Ramsey-like control operations or even multi-dimensional spectroscopy could become within
reach. Such control could be achieved along the lines of adaptive optics, using feedback control to
determine the piezo motion which achieves the desired time-dependent x-ray pulses. On the mea-
surement side, the polarization-dependent nature of the pathways in the dark-fringe interferometer
could be harnessed to study polarization-dependent effects, such as circular dichroism, in a space-
and time-resolved way. Furthermore, our approach to explore relative target motion with nanosecond
time-resolution and x-ray-wavelength spatial-resolution over extended measurement times of more
than 10 us appears particularly suitable for the study of impulsively induced mechanical motion, e.g.,
initiated by laser pulses or x-ray scattering.
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Chapter 12

Summary and outlook

In this chapter, the thesis results are summarized and an outlook is given. In particular, we focus on
the broader picture of nuclear quantum optics at XFELs. More detailed conclusions are given at the
end of each chapter in the main part of the thesis.

12.1 Brief summary

At the start of this thesis, Mdssbauer experiments were almost exclusively performed at synchrotrons,
and only a single experiment at an XFEL had been reported [Chu+18]. Over the course of this thesis,
in total five experiments were carried out by the ®”Fe EuXFEL collaboration and the *°Sc EuXFEL
collaboration at the European XFEL. These experiments were not only among the first Mdssbauer
experiments at any XFEL, but also the first at the European XFEL and the first to employ hard
x-ray self-seeding.

The first part of this thesis documents the thesis author’s contributions to these first-of-their-kind
experiments. Because of the novelty of the experiments, we had to develop a data-analysis pipeline,
which was used in all experiments and which is expected to serve as the basis for future work. The
data analysis consists of two parts: real-time analysis during data-collection and analysis of recorded
data afterwards. The custom real-time routines were essential to align all experimental components
and provide rapid access to key observables such as the time spectrum, which is crucial for successful
operation. Unlike at synchrotrons, where standardized procedures exist, Mossbauer experiments at
the European XFEL required entirely new approaches, particularly for processing resonantly scattered
photons, which form the foundation of the subsequent experiment-specific analyses. We then discussed
the main data analysis of the resonant x-ray excitation of the 4°Sc nuclear clock transition [Shv-+23].
This included the processing of raw data and the extraction of the resonance curve, which was
especially challenging due to the limited statistics of only 93 recorded signal photons. In addition,
we designed and demonstrated a single-shot sorting method of Mdssbauer time-domain data in °“Fe
experiments, which allows us to exploit the full dataset rather than restricting the analysis to high-
photon shots [Ger+25b]. Further experiments with °”Fe revealed striking and previously unreported
anomalies in nuclear resonant scattering. Although the data can be fitted with standard theory, the
inferred sample thicknesses disagreed with the physical values. Moreover, both the count rates and
time spectra unexpectedly depended on the distribution of aluminum upstream of the sample, even
though the total amount of aluminum in the beam remained constant. This behavior is entirely
unexpected in the low-excitation regime.

Besides the experiments, the second part of this thesis focused on theory and simulations for
future studies. We investigated the de-excitation dynamics of interacting nuclear ensembles, which
forms a complicated many-body problem, including finite-size effects that may already be observable
at XFELs, as well as non-linear phenomena predicted to emerge beyond the low-excitation limit,
which is anticipated to be reached with an XFELO [LKE25b]. For this purpose, we established
a versatile simulation toolbox combining the cumulant expansion [Kub62], the continuous-discrete
truncated Wigner approximation (CDTWA) [MF23], and QuTiP [JNN12; JNN13]. We further closely
investigated and extended the preparation of initial states, especially partially excited states, for the
CDTWA. Using this framework, we predicted clear non-linear signatures in two settings: excitation-
dependent phase evolution in one-dimensional nuclear chains [GE25], and excitation-dependent shifts
of dynamical beats in nuclear forward scattering. The results of the latter one are similar to those
obtained in [Adi24; AGE p; Kon+25], but obtained with a different method. In both settings, clear
signatures of non-linear behavior beyond the low-excitation approximation are visible.

Outside the XFEL context, we investigated an optimized two-foil configuration acting as an inline
interferometer operated in dark-fringe mode, where the two linear polarization components serve as
the interferometer arms [Ger+25a]. The optimized configuration combines the stability of an inline
interferometer with the accessibility of an interferometer with separated paths.
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In summary, this thesis advances the field of nuclear quantum dynamics in both experiment and
theory, enabled or inspired by XFELs. Several important contributions for the first Mdssbauer ex-
periments at the European XFEL were made, thereby establishing the field at a seeded XFEL for the
first time. In parallel, methods to tackle many-body and non-linear nuclear dynamics were developed,
laying the groundwork for phenomena expected to emerge at present and future facilities, and first
applications discussed.

12.2 Detailed summary

In Chapter 1, we motivated how the unique capabilities of XFELs can expand the scope of Mdoss-
bauer science. When this work began, Mdssbauer experiments were almost exclusively performed
at synchrotrons, with only a single XFEL experiment reported [Chu+18]. Over the course of the
thesis, however, five experiments were carried out within our collaborations at the European XFEL.
Those experiments were not only among the first Mossbauer studies at any XFEL, but also the first
at the European XFEL and with hard x-ray self-seeding. The first part of this thesis presents the
thesis author’s contributions to these experiments. The second part is devoted to theoretical and
numerical studies of nuclear ensembles, while the third part describes an additional experiment at a
synchrotron.

The first part begins with the development of a dedicated analysis framework for Méssbauer exper-
iments at the European XFEL, described in Chapter 3. Because of the novelty of these experiments,
no standardized routines existed, so we designed a modular data-analysis pipeline that was essen-
tial for the success of the experiments and is expected to serve as a foundation for future work.
The pipeline comprises two parts: real-time analysis during the measurements and analysis of the
recorded data. The real-time routines enabled motor scans for alignment of experimental components
and provided live access to key observables, such as time spectra, which is crucial for the success of
the experiment. For the recorded data, we implemented standard analysis routines, such as photon
arrival time extraction, which serve as the basis for subsequent experiment-specific analyses. The
modular structure of the software ensures that individual steps can be refined and reused for future
Mossbauer experiments at the Furopean XFEL, but can also be adapted for data analysis at other
XFELs.

Building on this framework, the first experiment presented in Chapter 4 investigated the x-ray
excitation of the *5Sc nuclear clock transition. The corresponding main data analysis, which lead
to the resonance energy reported in [Shv+23], is presented here. A measure for the incident photon
energy was established, and events with outgoing photon energies in the signal range were identified.
From only 93 detected signal photons the resonance energy was then determined using three different
stochastic methods — a cumulative distribution, a kernel density estimate and a histogram — all of
which yielded consistent results within their uncertainties. The final value improved the precision of
the resonance energy by a factor of 300 compared to previously known results [Shv+23].

Besides 4°Sc we also studied the archetypal Mossbauer isotope ®’Fe. While in the first XFEL-
experiment Chumakov et al. recorded up to 68 resonant photons in a single pulse [Chu+18], at the
FEuropean XFEL we were able to push this record to up to 900 signal-photons after excitation with a
self-seeded pulse [Ger+25b|. This enabled us to introduce a single-shot analysis of Mdssbauer time-
domain data [Ger+25b|. We showed, that at XFELs there are pulses with a few hundred detected
photons, such that even a single shot may already provide sufficient statistics to extract information.
However, because of the stochastic nature of the photon production such pulses are rare. Most pulses
result in far fewer signal photons, encoding only partial information. To address this, we developed a
data-driven scheme to sort Mdossbauer time-domain data on a per-shot basis. The method identifies
representatives of different classes from the high-signal shots, and subsequently assigns all other shots
to theses classes by comparing them to the representatives. Afterwards, the data can be evaluated
separately for each class. In this way, our algorithm incorporates all recorded shots into the final
analysis, making full use of the available statistics.

The last XFEL experiment, described in Chapter 6, revealed unexpected and previously unre-
ported anomalies in nuclear forward scattering from °7Fe foils, even though the nuclei are expected
to remain in the low-excitation regime [LKE25b]. First, we found a thickness anomaly, i.e., the thick-
ness extracted from the time spectra systematically deviates from the physical one, converging to
about 2 pm regardless of the actual sample thickness. The fitted value differs depending on whether
a monochromator is used. Remarkably, apart from this discrepancy, the time spectra can still be
described well by standard theory. We further reported a second anomaly, the attenuator anomaly.
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The attenuator anomaly emerged when varying the amount of attenuating aluminum upstream of
the sample while keeping the total aluminum thickness constant. Contrary to expectations in the
low-excitation regime, the count rate strongly depends on the placement of the aluminum, and the
corresponding time spectra also differ. Since the nuclei are still assumed to be in the low-excitation
regime, these anomalies are likely linked to environmental effects rather than the intrinsic nuclear
dynamics. Because Mossbauer nuclei are typically employed as sensitive probes of their surroundings,
the discovery of such unexpected anomalies is both intriguing and potentially transformative. Un-
derstanding them is essential for establishing Md&ssbauer spectroscopy at XFELs in the conventional
sense, that is to probe the properties of the host material, but also to exploit potential studies of
XFEL-induced effects in the host material.

In the second part of the thesis we turned from experiment to theory, addressing the de-excitation
dynamics of nuclear ensembles following impulsive excitation. This setting represents a complex
many-body problem, and previous approaches were insufficient to capture all relevant aspects. Our
simulations go beyond the well-studied low-excitation regime and extend to arbitrary degrees of exci-
tation, thereby accessing parameter ranges that will become increasingly relevant at current XFELs
and, in particular, at future XFELOs. To enable the studies, Chapter 7 introduced a simulation
toolbox combining several complementary existing methods. We mostly employ a custom implemen-
tation of the first order cumulant expansion, which due to the linear scaling with the number of nuclei
is capable of efficiently simulating interacting ensembles with more than 1000 nuclei on a standard
laptop. For validation and cross-checks we further employ the python package QuTiP [JNN12; JNN13]
and a self-implemented version of the continuous-discrete truncated Wigner approximation [MF23].

Before simulations could be performed, however, in Chapter 8, we addressed the preparation of
arbitrary initial states for the CDTWA, with particular focus on partially excited states. Unlike
the well-studied ground and fully excited states, these had received little attention by the CDTWA
so far and required modifications to the initial state sampling. We systematically examined both
existing and newly developed sampling schemes and found that the predicted de-excitation dynamics
are already sensitive to the choice of initial sampling in the very first time step. Finally, we decided
for a strategy in which the system is initialized in the ground state and then driven into the desired
state using the area theorem. This approach guarantees that all investigations rely on a consistent
sampling scheme, thereby eliminating any artifacts that could arise from the choice of sampling.

The first application of the simulation toolbox in Chapter 9 are the studies of the de-excitation
dynamics of a nucleus in a one-dimensional chain of coupled nuclei [GE25]. Assuming translational
invariance, the system reduces to three coupled differential equations. In the low-excitation limit, the
dipole-dipole couplings induce a linear phase evolution of the coherence, corresponding to a collective
energy shift. At higher excitations, this phase evolution is modified, providing clear signatures beyond
the low-excitation regime. The effect can, in principle, be probed via interferometric measurements.
Finally, finite-size effects were investigated, revealing signatures that could potentially be observed
at XFELs. The predicted effects in the phase evolution were independently confirmed using the
CDTWA.

As a second application, we investigated propagation effects beyond the low-excitation regime.
Here, we implemented the propagation effects by an effective coupling and primarily study the sys-
tem with the cumulant expansion. We found that the dynamical beats, i.e., minima in the time
spectrum in forward direction caused by propagation effects, shift depending on the initial excitation.
Similar observations have been reported using other approaches [Adi24; AGE p; Kon+25]. Further-
more, we confirmed the effect qualitatively with the CDTWA. This shift provides a clear signature of
excitation beyond the low-excitation limit. Since dynamical beats are commonly used to determine
the effective thickness of a sample, the excitation-dependent shifts must be accounted for when esti-
mating thicknesses at higher excitations. Beyond this correction, the shifts also offer an unambiguous
correspondence to the initial excitation level and can thus serve as a tool to categorize and sort data.

Finally, in the third part of the thesis, presented in Chapter 11, we returned to synchrotron-based
studies with an experiment on an optimized interferometer configuration [Ger-+25a]. In this setup,
two samples are placed inside a polarimeter in such a way that they form a dark-fringe interferom-
eter, where the two perpendicular linear polarizations serve as the interferometer arms. This design
combines the stability of an inline x-ray interferometer with spatially overlapping paths and the ver-
satility of conventional x-ray interferometers, where individual samples can be selectively coupled
to one arm or the interference can be externally controlled. Operating the interferometer in the
dark-fringe mode provides optimal sensitivity. Moreover, we demonstrated that all scattering paths
which involve scattering in both samples cancel out, leaving only the single-scattering paths. As a
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result, the interferometer can be directly mapped to a conventional two-path interferometer, with the
interference between the two arms controlled by mechanically-induced phase shifts.

12.3 Outlook

In the sense of Freeman Dyson’s quote "Scientific revolutions are more often driven by new tools
than by new concepts.", XFELs have the potential to open a new era for Mossbauer science. The
very first step was taken by Chumakov et al. [Chu+ 18|, who in 2018 demonstrated the feasibility of
using an XFEL for Mossbauer experiments, showing that pulses with more than one resonant photon
could indeed be produced with a significant fraction. In recent years, enabled by advances such as
hard x-ray self-seeding [Liu-+23], our collaborations demonstrated how these technological advances
opened the door for further new possibilities, e.g., the study of ultra-narrow transitions [Liu+25a;
Shv+23] or single-shot analysis [Ger+25b].

We view the few existing experiments as the starting point of a broader success story of Mdssbauer
science at XFELs. The extremely narrow nuclear resonance in 4°Sc could enable high-precision exper-
iments, such as measurements of gravitational red-shift over less than a millimeter, or nuclear spec-
troscopy at a frequency resolution surpassing that of the standard Méssbauer isotope ®"Fe by many
orders of magnitude. The ultimate goal is to build a nuclear clock [AK15; Shv+23], which, e.g., could
be used for gravitational wave detection [BC25|, the search for new physics as with 229Th [BC25;
Fuc+25; Saf+18], or precision experiments with quantum networks [Fro+25]. The demonstrated
single-shot sorting enables a new class of experiments in which different de-excitation dynamics can
occur [Boc+21; KKR99; Sad+21; Sak+17; VSK13] and it is beneficial to analyze them separately.
Furthermore, the time-resolved observation of the emitted photons could prepare the nuclear ensem-
ble in a quantum state [Cab+99; Moe+07; Thi+07]. Moreover, unexpected anomalies in nuclear
resonant scattering already indicate that even in the low-excitation regime differences arise compared
to synchrotron experiments. Further investigation of these anomalies is crucial to understand and
establish experiments with Mdssbauer nuclei at XFELs. Beyond this, nuclei may serve as sensitive
probes of the solid-state environment under XFEL irradiation, opening perspectives for electronic-
pump-nuclear-probe schemes at XFELs. Besides following the path of the presented experiments,
the improved x-ray light sources, especially the improved average flux, bring smaller sample sizes
within reach, relevant for cases where only limited material is available or where finite-size effects
are of interest. The availability of several resonant photons per pulse in a considerable fraction of
shots provides new opportunities. It enables photon-number resolved measurements of time spectra,
for which a proof-of-principle demonstration can be found in [Chu+18], but photon-number resolved
measurements can also be extended to the energy spectra or other observables. Another straight-
forward application of the high peak flux is the study of time correlations of the observed photons with
a first analysis in [Chu+18]. With upcoming improved x-ray detectors [Chu+25; Cor+24; Llo+22]
not only correlations in the time domain, but also spatial correlations can be studied.

In the longer term, XFELOs are expected to excite nuclear ensembles well-beyond the low-excitation
regime even reaching full excitation [LKE25b|. This would enable the implementation of additional
experimental schemes, such as stimulated Raman adiabatic passage [LPK11; LPK13], nuclear Rabi
oscillations [BEKO06] or two-photon excitation of Mossbauer resonances [Don00]. In general, the
increased average flux would push the boundaries of low-signal experiments, e.g., small samples or
narrow resonances, even further. In addition, the intrinsic pulse-to-pulse coherence of an XFELO will
make advanced spectroscopies, including multidimensional x-ray spectroscopy [Ada-+19], feasible.

On the theoretical side, the progress with XFELs and the developments toward an XFELO have
shifted the focus beyond the traditional low-excitation limit. This requieres not only refined tools,
but also new concepts. Progress has been made in recent years [AGE _p; HKE16; Kon+25; LKE25b;
WE23| and is accompanied by the non-linear effects studied in this thesis. Yet, most investigations
so far remain specific to individual scenarios, leaving many open questions. We expect that the
demand of theoretical investigations beyond the low-excitation limit will increase in the upcoming
years and that the toolbox presented in this thesis can help answering current and arising questions.
Questions of particular interest include the role of transverse dipole—dipole couplings in propagation
effects and the behavior of temporal and spatial photon correlations in various geometries. Besides the
search for effects beyond the low-excitation limit, further studies of schemes to enhance the excitation
conditions, e.g., thin-film cavities [LKE25b] or tapered waveguides [Che+22], are expected to be of
interest and might not only enhance the initial excitation, but also subsequent effects. In addition,
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further optimization of the coupling parameters in structured environments [DLE22a; LAL25]| could
lead to a possible tuning of effects within the low-excitation regime as well as beyond.

Parallel to the investigations of applications of new light sources, the development of new light
sources themselves continues. First proof-of-principle demonstrations of an XFELO [KSR08; Mar+23;
Rau+25| have already been achieved. A more ambitious vision is the realization of a true x-ray laser
based on nuclear gain — a so-called graser [BSG81|. Although earlier schemes, such as lasing without
inversion [Koc92], have been ruled out due to the “graser dilemma” [BS97], research remains active.
Lasing from atomic shells has been demonstrated [Roh+12], and recently a multi-photon stimulated
nuclear graser scheme has been proposed [YSD24]. Further experimental progress and theoretical
understanding, supported by experiments at XFELs and theory beyond the low-excitation limit, is
expected to advance this field.

Looking ahead, the studies of nuclear quantum dynamics with XFELs presented here can be ex-
tended naturally along the lines developed in this thesis while many additional, so-far unexplored
effects remain to be discovered and investigated. Together, these directions open up the largely
unexplored landscape of Mdossbauer science at XFELs and beyond.
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Appendix A

Additional information on nuclear forward scattering

In this chapter we provide additional information on nuclear forward scattering. In the first part,
details on the fit routines are given, while in the second part the combined contribution of several
samples, that are displaced after excitation, is discussed.

A.1 Fitting of time spectra

A.1.1 Indefiniteness of the azimuthal angle

In the fitting of the time spectra, due to the experimental setup, we only consider & — 7 scattering,
in which the azimuthal angle of the magnetic field is indefinite as we will show in the following.

Following the standard approach to polarization-dependent nuclear forward scattering [Roh04;
SBH99], the linear 6- and 7- polarized components of the outgoing electric field E can be related to
the incident electric field E™ by

@:EZD =ER(w.9) (%n) ! (A.1)
Rew.) =0 (") i) at a2

where € = exp(ikz — pe d/2) and p. is the electronic contribution characterizing the absorption and
phase shift due to off-resonant electronic processes and Ry, and R¢ being the two response functions
for transitions with linear and circular dipole moments (see Section 2.1.2). g, is a two-dimensional

rotation matrix
[ cos¢ sing
9¢ = <— sing cos ¢> ’ (A-3)

capturing the effect of the magnetic field being rotated by the azimuthal angle ¢ from the 7-axis.
Assuming that the incoming light only has a polarization along the &-direction, according to

Eq. (A.1) it is
Es(w)\ _ , (Rrcos® ¢+ Resin® ¢
(Eﬁ(w)> =¢ ((Ec — Ry,) cos ¢sin (;5) : (A4)

Only the 7-component can pass the polarization analyzer, thus
Lout (W) = |Ex(w)|? = sin? ¢ cos? ¢ (Rc — RL)” , (A.5)

and the azimuthal angle ¢ only leads to an overall scaling. However in the fits, the absolute scaling
between the experimental and theoretical time spectra is not known, which is why the azimuthal
angle ¢ remains indefinite in the perfectly aligned setup.

A.1.2 Fit routine

On a parameter landscape with several parameters, it is usually difficult to find the global minimum.
Therefore, we follow a two-step process.

First we perform an evolutionary fitting [Coe05; Rec78|. In this case, we call a set of values for the
different fit parameters the DNA. In the first step, a fixed number of DNA is drawn randomly with
the parameters being in a user-defined interval. For each DNA the fitness, i.e., the goodness of the
fit, is calculated. This step is called the first generation. For the second generation, the best DNAs
from the previous one are kept. In addition, some DNAs are merged and some are newly drawn.
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Figure A.1l: Pulse resolved fit results for the 2 um foil without monochromator. The black dots show the
measured time spectra with the black line as a guide to the eye. The fits are indicated by the red dashed
lines. Only the fitted time region is shown.

After repeating this procedure for several generations, the result converges and the DNA with the
best fitness provides a good estimate for the global minimum.

Afterwards, a standard fit routine like "Nelder-Mead" [GH10] is used to find the local minimum
close to the identified best parameters.

The theoretical calculations for the fit are performed with the python package pynuss [Heel9].

A.1.3 Pulse-resolved fits

In Figs. A.1 to A.6 the fits performed in Section 6.2.3 are shown. As fit parameters we fit the thickness
of the sample L, the field strength of the internal magnetic field B and its orientation relative to the
incident light polarization, which is described by the azimuthal ¢ and polar angle . Note that in
the setting with a polarization analyzer in theory the azimuthal angle ¢ is undefined as we showed
in Appendix A.1.1. However, in the experiment, the polarizations are not perfect, such that the
azimuthal angle ¢ does have an influence on the time spectrum.

We see that the fits resemble the data reasonably well, especially for the measurements with
monochromator in which the signal is stronger. Note, that in Section 6.2.3 we are mainly inter-
ested in the thickness L, which is determined by the envelop, and the internal magnetic field strength
B, which leads to the additional oscillations. Both are parameters that are easy to fit even for lower
signal. The magnetic field angles are mainly fitted because the alignment in the experiment was not
perfect.
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Figure A.2: Pulse resolved fit results for the 4 ym foil without monochromator. The black dots show the
measured time spectra with the black line as a guide to the eye. The fits are indicated by the red dashed
lines. Only the fitted time region is shown.
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Figure A.3: Pulse resolved fit results for the 8 um foil without monochromator. The black dots show the
measured time spectra with the black line as a guide to the eye. The fits are indicated by the red dashed
lines. Only the fitted time region is shown.
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Figure A.4: Pulse resolved fit results for the 2 um foil with monochromator.
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A.2 Combined response of moving targets
The combined response of several moving targets can be calculated following the formalism in [Hee+17;
Reild]. For a single target with phase jump to ¢, ¢(t) = ¢ - 6(¢) with #(0) = 0, at the time of an
impulsive excitation the response function is given by [Hel+91]

R(w,¢) = 1+ €“T(w), (A.6)
where T(w) is the scattered contribution. Thus, the electric field behind the sample is given by (cf.

Eq. (2.6))
E(w) = R(w,¢) - Bin(w) = E%, R(w, ¢), (A7)

where in the last step an impulsive excitation E(t) o §(t) equivalent to E(w) = EY, was assumed. To
include a second sample with a phase jump to ¢s, the electric field after the first sample is Fourier
transformed into the time domain

Ey(t) = Ep, F [Ry(w, ¢1)] , (A.8)

and afterwards is transformed into the rest frame of the second sample with a phase jump ¢s(t) =
¢-0(t)
E{(t) = ES, Oy (1) = B, 'O F [Ry(w,61)] - (A.9)

To calculate the interaction of the second sample with the above field, the field has to be transformed
back into the frequency domain by the inverse Fourier transform

Bl(w) = B F L [0 F [Ry(w, 1) ] | (A.10)
Now the electric field behind the second sample in its rest frame can be calculated to be
Bj(w) =Ef, Ra(w) - Bl (w) = EY, Ro(w) - F1 [P O F [ Ry (w, 1) | (A11)
and transformed into the time domain
By (t) =B, F | By(w)| = B F [ Ra(w) - F~* [P0 F [Ra(w, 01)]|] - (A.12)
Transforming back into the lab frame gives
Ba(t) = By e 00 - By(t) = B, e 00 F [Ry(w) - F 7 [0 OF [Ra(w,0)] ] (A13)

The expression can be further simplified by replacing R;(t, ¢;) = §(t) + €'%s Tj(t), which leads to

Eo(t) =E0 ¢~1200) . F [(1 + T}(w)) F [ewzw) [5@) + ewlfl(t)m (A.14)
— O ~i20(8). { [5(75) n :@(@] % [ewz@(t) [5@) F T (t)” } (A.15)
—E° (5(15) F e NTL(L) + 92Ty (t) + e Ty (1) + T (t)) : (A.16)

where in the last step d(x) * f(z) = f(x) and 6(¢t > 0) = 1 was used. This result can be straight
forwardly translated to frequency space

Eo(w) = B® F~L[Ey(t)] = EO, (1 T (w) + €92 Ty (w) + ewlﬁ(w)@(w)) . (A.17)
Analogously, for three samples, the electric field after the last sample is given by
E3(w) =E2 (1 + T (w) + €92 Ty (w) + eP3Ty(w) 4 1 Ty (w) To(w) + 1Ty (w)T3(w)
+e' 2 Ty (w) Ty (w) + €T (W)T2(M)T3(w)> - (A.18)
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It can be clearly seen that for the product terms describing scattering in several targets, only the
phase of the first sample in which scattering occurs is relevant. The result can be generalized to IV
samples. The resulting electric field behind the last sample is given by

En(w) = E° 1+ZZ¢J- T (w) > T Tew || (A.19)

SC{j+1.....N} k€S

where the first sum over j represents the sample in which the first scattering takes place, which is
why the corresponding term has a phase ¢; and the sum over S describes the samples in which the
subsequent scattering takes place. The term in the large bracket can be simplified to find

n N
En(w) =E°, 1+Zei¢jfj(w) I1 (1+Tk(w)) (A.20)
j k=j+1
=E° 1+Ze’¢JT H Ri(w)| . (A.21)
_JJ,»l

The term in the first row allows a different view on the multiple sample response. Again the sum over
j represents the sample in which the first scattering event happens. The product over k describes all
different scattering combinations behind sample j by no scattering in sample k represented by "1"
and scattering in sample k indicated by "

For equal samples, i.e., Ry(w) = R(w) and Tj(w) = T(w), the product can be further simplified to
find

Enx(w)=E% |1+ T(w Ze“”JR . (A.22)

Setting all phases ¢; = 0, the expected result for N identical samples of EN(w) = Ey R(w)N is
retrieved.
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Appendix B

Derivation of the operator’s equations of motion

In this chapter, we derive the equations of motion for the population and coherence of a nuclei, and
the translational invariant model in detail.

B.1 Master equation

As we have seen in Section 2.3.1 the system is governed by the Master equation

d 1

o === [H,p] + Llp], (B.1)

which describes the time evolution of the density matrix p, with

H=hY " Jmn oy o, (B.2)

n,m

an —
[:[p}zz 5 (20mpa —ofonp— panam)—f-ﬁlc[]

*Z m" ZO'mpgn 70’ amp POy Um) ) (Bg)
| A :r;;gi + 8 ITC (B.4)

where the coupling constants I',,, and J,,, depend on the photonic environment, and I' consists
of the radiative part I"®d and the internal conversion I''C of the single-particle spontaneous decay.
Note further that we assume J;; = 0, by including these energy-shifts in a suitably defined transition
frequency wg.

B.2 Equations of motion for operator expectation values

To derive the equations of motion, we consider an operator X that acts on the atom Hilbert space
and calculate its expectation value. Note that in this first step, we take into account the possibility
that X acts on multiple atoms.

g0 =n{xgs]

- %n{x [H, p]} + Tr {XL[p]}

1 Lin _
:%Tr{[X,H]p}—i-Z 5 Tr {2Xo,,po;" — Xo}to,.p— Xpoto,}

n,m

1 an - — —
= ih <[X7 H]> + Z 2 Tr {QUIXU'HLp - XUfJ?,ro'mp - O-TJLramXp}

n,m

= — (X, H]) +Z L TX. o)) + (o), X]o,)) - (B.5)

n,m

In the derivation of the final form, also known as the adjoint Lindbladian, we made use of the cyclic
permutation symmetry of the trace operation.
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B.2.1 General single-particle operators

Next, we specialize the general equation (B.5) to single-particle operators X; acting on atom [ only.

This allows us to simplify the sum and index structure considerably. We obtain

%(Xﬁ = ZZ o ([X1, o o)) + Z F;n (o [X1,0,,]) + ([of, Xilo))

I
—zZJmn (X, oo, + 0t [Xi,0,] +Z nl [Xz,Uf]>+Z%<[UTT7Xz]

m

:iZJlm<[Xl7 Ul Tm +ZZJnl Xl,O'l ]>+Z%<JJ[XI’UZ—]>+ZFZZHL
- Z ( +2an) (o (X o7 1)+ (F;’” - z'Jlm) (o}, X)o7 .

m

3

Here, we used

Defining the coupling constant

Cmn = mn s
2

we finally obtain

Zcm a1 X0 ]) + 8L (o, Xiloy )

U;>

On > Xl] m>

(B.6)

(B.9)

(B.10)

Note that the derivation of this equation did not involve any approximation going beyond the initial

model - but it is only valid for single-particle operators.

B.2.2 Specific single-particle operators

We now calculate the equations of motion for two specific single-particle operators. The expectation
values of interest are (0[ ) and (o7¢) i.e., the coherence and the excited state population. We find

chl sl or )+ Chlor o lon )
:Zcm CAR AL
= Zcm (o or o) (o))
F” - Zcm o) = 2(0f%)) .
and
d chl ot o7 1) +Ch ([oit, o507
:_chl (o707 ) +Cy (oo
= —Tu(of*) =Y _Culofoy ) +Ci, (o) ay) .

n
n#l

For deriving those equations, we used our convention J;; = 0 and the commutators

[0, 07 1 =0f =207° — 1,
[0, 07 =—0",
[ot,0%] = -0t

158

(B.11)

(B.12)

(B.13a)
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B.3 1st order cumulant expansion

Egs. (B.11) and (B.12) depend also on two-nuclei operators, which depend on three-nuclei operators
and so on, with the last one being the equation of motion for an N-nuclei operator. However, due
to computational resources we cannot take this to an arbitrary level, but need to truncate the set
of equations. Because our system is only weakly coupled, we do not expect strong correlations.
Therefore, here we approximate the system in the lowest order cumulant expansion, i.e., [Kub62]

(AnBm) = (An)(Bm) , (B.14)
for operators belonging to different atoms with indices n, m. We obtain from Egs. (B.11, B.12):
d Iy

a<al—>:— 5 (o7)—(1-2(c Zcm or ), (B.15)
notl
%@—;w = —Tulo*) —2Re{(o7) 3 C1, (07)} - (B.16)

n
n#l
Note that the sum on the right hand sides of the two equations is the same, such that it only has to
be evaluated once in an efficient numerical implementation:

Lo = (o7 ) = (1=2(0f)) (Sh), (B.17)
%@f% = —Tyu(of) —2Re{(0;") (S)) }, (B.18)
S=>» Cho, . (B.19)

ngél

Further decomposing the coherence into its absolute value and phase

(07) =Wop ) e = (5;) e, (B.20)
we find
i d gy ——y d d, _ ' /- i6n (5
T i D) o = loT) = 560 67) ~ (1= 2efN TG loy) . (B2
notl

Multiplying this equation with exp(—i¢;) and dividing it into its real and imaginary part, we find
(Ap Bn) = (An) (Bn) (n#m), (B.22)

for operators acting on different atoms n # m. Further, we decompose the nuclear coherences into
their magnitude and their phase,

(o7) =Ko )l e = (a,) e (B.23)
We obtain the set of 3N real-valued differential equations

d I'y

o =5 (67) — (1 =2(of)) K[, (B.24)
Sor=—(1-206{")) o) s (5.25)
Z@y>=—nxﬁ%—2<avﬁﬁ, (B.26)
ki = KP4 k] = chn a7 el P90 (B.27)

n;&l
which is the set of equations used in Section 9.2.2.
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B.4 Derivation of equations of motion with translational
invariance in the infinite chain

Finally, we derive much simpler equations by assuming that the ensemble of atoms is infinite and
translationally invariant. In practice, these conditions are reasonable fulfilled if the nuclei have
equidistant spacing and finite size effects are negligible because of a large distance to the edges for
most nuclei. This should be the case for many situations of interest with nuclei, given the lattice
spacing of 286 pm of a-Fe. For example, a sample range of only 1 pum already has approximately
3500 lattice planes.

Under these assumptions, one might expect that each atom evolves in the same way, except for the
initial phase factor that is imprinted onto it by the exciting light. In order to test this, we make an
ansatz for the required expectation values as

(o7 (1) =(a~ (1)) "), (B.28)
{o7° (1)) =(o*“(2)) - (B-29)

Then, Egs. (B.17-B.19) become

g<5,>ei¢l(t) _ emz(t)i@j + i(&*)ewl(”%qﬁz(t)

dt dt
= —g (7)) —(57) (1—-2(0°)) ) _Cp e ). (B.30)
n?él
Thus,
d, _ o d r, __
Sle) e Zat) = —5 (77) (57 (1 2(0°) K, (B31)
(B.32)
with
K=Kp+iK;=Y Cpel¢n®=a) (B.33)
n&l
which can be decomposed into
d =~ F Pt = ee
£<a >:—§<a Y= (67)(1—=2(c*)) KR, (B.34)
d
ﬁ@(t) =—(1-2(c*%)) K;. (B.35)
Regarding the populations, we find
d ee ee - 2
-(0%) = —T(o ) =2 (o))" Kg. (B.36)

As aresult, we find that if K is independent of [ as already suggested by the omission of the subindex
[ to K in the above definition, i.e., it is the same for each atom, then the ansatz Egs. (B.28, B.29)
leads to a self-consistent set of equations. Thus, if the initial state satisfies the ansatz, then also the
subsequent dynamics will satisfy it.

Within the limit assumed in this section, K is independent of [, which can be seen by a simple
index translation of the atoms. In other words, K only depends on the relative distance and phase
of two atoms [,n, and each atom [ is surrounded by an equivalent set of atoms n in the case of a
translationally invariant ensemble.

Note that because Cj;, is constant in time and the phase difference only depends in the initial phases
of nucleus [ and n, the coupling parameter K is time-independent. Therefore, the system reduces to
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a set of only three coupled non-linear equations, which can efficiently be solved numerically:

%(6_) =— [g + (1 —2(c*)) KR} (7), (B.37)
S = - (1-2 (") K1, (B.3%)
%(0”) — T(o*) =2 |(a7)|" Kg, (B.39)
K =Kg+iK; =) Cpe n(=00=01(=0) (B.40)

n?él
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