
Inaugural dissertation

for

obtaining the doctoral degree

of the

Combined Faculty of Mathematics, Engineering and Natural Sciences

of the

Ruprecht - Karls - University

Heidelberg

Presented by

M.Sc. Elena K. Matveishina

born in: Moscow, Russia

Oral examination: 17-12-2025





Consensus approach for

assessing and resolving uncertainty in

genome-scale metabolic models:

advancing systems-level understanding of

microbial metabolism

Referees: Prof. Dr. Ursula Kummer

Dr. Mikhail Savitski





Abstract

Genome-scale metabolic models (GEMs) are an important methodology in systems biology:
they play a major role in investigating microbial metabolism and predicting responses to
perturbations by representing bacterial metabolism as a whole system. GEMs can be
automatically reconstructed from bacterial genomes with computational tools that employ
distinct methodological approaches. My initial analyses of GEMs reconstructed by different
tools for a small set of diverse gut microbial species revealed that automated reconstruction
pipelines often produce GEMs with different structures and predictive behaviour, even for the
same organism. Because individual models can excel at different tasks and capture distinct
metabolic capabilities, I hypothesised that combining them can increase confidence in network
content and improve performance. In this thesis, I present a consensus approach implemented
in GEMsembler, a Python package for cross-tool model comparison and assembly of consensus
models from any subset of input GEMs. Alongside the consensus strategy, GEMsembler offers
broad analysis functionality, including detection and visualisation of biosynthetic pathways,
growth evaluation, and an agreement-driven curation workflow. In a use-case study, consensus
models curated with this workflow, combining four automatically reconstructed GEMs for
Lactiplantibacillus plantarum and Escherichia coli, outperform gold-standard models on
auxotrophy and gene-essentiality benchmarks. Moreover, enabled by GEMs comparison,
optimising gene–protein–reaction (GPR) rule combinations derived from input and consensus
models improves gene-essentiality predictions even for manually curated gold-standard models.
GEMsembler also helps explain model performance by highlighting relevant metabolic pathways
and, together with the consensus principle, supports the assessment of network uncertainty and
informs the design of targeted experiments to resolve it. Finally, I apply the consensus approach
to de novo reconstruction of two of the most abundant human gut bacteria, Bacteroides uniformis
and Phocaeicola vulgatus, yielding first-iteration curated models that reproduce their growth
and major metabolic phenotypes. In agreement with experimental data, the B. uniformis model
secretes more lactate and malate but grows less, whereas the P. vulgatus model secretes less of
these metabolites, grows more, and also secretes succinate. Together, these results show that the
consensus approach facilitates building metabolic models that are more accurate, concise, and
biologically informed, advancing systems-level understanding of microbial metabolism.
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Zusammenfassung

Genome-scale metabolic models (GEMs) sind eine wichtige Methodik in der
Systembiologie: sie spielen eine zentrale Rolle bei der Untersuchung des mikrobiellen
Metabolismus und der Vorhersage von Reaktionen auf Störungen, indem sie den
bakteriellen Stoffwechsel als ein gesamtes System darstellen. GEMs können automatisch
aus bakteriellen Genomen mit rechnergestützten Werkzeugen rekonstruiert werden, die
unterschiedliche methodische Ansätze verwenden. Meine ersten Analysen von GEMs, die
mit verschiedenen Tools für eine kleine Auswahl unterschiedlicher Darmmikrobenarten
rekonstruiert wurden, zeigten, dass automatisierte Rekonstruktionspipelines oft GEMs mit
unterschiedlichen Strukturen und unterschiedlichem Vorhersageverhalten erzeugen, selbst
für denselben Organismus. Da einzelne Modelle in verschiedenen Aufgabenbereichen
besonders leistungsfähig sein und unterschiedliche metabolische Fähigkeiten abbilden
können, stellte ich die Hypothese auf, dass ihre Kombination das Vertrauen in
den Netzwerkinhalt erhöhen und die Leistungsfähigkeit verbessern kann. In dieser
Arbeit präsentiere ich einen Konsensusansatz implementiert in GEMsembler, einem
Python-Paket für werkzeugübergreifenden Modellvergleich und die Erstellung von
Konsensusmodellen aus beliebigen Teilmengen von Eingabe-GEMs. Neben der
Konsensusstrategie bietet GEMsembler umfangreiche Analysefunktionen, einschließlich
der Erkennung und Visualisierung von Biosynthesewegen, Wachstumsauswertung und
einem auf Übereinstimmung basierenden Kurations-Workflow. In einer Fallstudie
zeigen Konsensusmodelle, die mit diesem Workflow kuratiert wurden, und vier
automatisch rekonstruierte GEMs für Lactiplantibacillus plantarum und Escherichia
coli kombinieren, bessere Ergebnisse als Goldstandardmodelle in Auxotrophie- und
Genessenzialitäts-Benchmarks. Darüber hinaus ermöglicht der Vergleich von GEMs die
Optimierung von Gen-Protein-Reaktions-(GPR)-Regelkombinationen, die aus Eingabe-
und Konsensusmodellen abgeleitet werden, wodurch die Vorhersage der Genessenzialität
selbst für manuell kuratierte Goldstandardmodelle verbessert wird. GEMsembler trägt
zudem zum Verständnis der Modellleistung bei, indem es relevante Stoffwechselwege
hervorhebt, und unterstützt zusammen mit dem Konsensusprinzip die Bewertung von
Netzwerkunsicherheiten sowie die Planung gezielter Experimente zu deren Auflösung.
Schließlich wende ich den Konsensusansatz auf die de novo-Rekonstruktion von zwei
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4 Zusammenfassung

der häufigsten menschlichen Darmbakterien, Bacteroides uniformis und Phocaeicola
vulgatus, an, was zu erstkuratierten Modellen führt, die deren Wachstum und zentrale
metabolische Phänotypen reproduzieren. In Übereinstimmung mit experimentellen Daten
sezerniert das B. uniformis-Modell mehr Laktat und Malat, wächst jedoch weniger,
während das P. vulgatus-Modell geringere Mengen dieser Metabolite produziert, stärker
wächst und zusätzlich Succinat freisetzt. Zusammen zeigen diese Ergebnisse, dass
der Konsensusansatz die Erstellung metabolischer Modelle erleichtert, die präziser,
kompakter und biologisch aussagekräftiger sind, und damit das systemische Verständnis
des mikrobiellen Metabolismus vorantreibt.
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Introduction
Genome-scale metabolic models (GEMs)
as a versatile tool to study microbial
metabolism

1 Importance of human gut bacteria and their metabolism
Human gut harbors trillions of bacteria from more than fifty bacterial phyla [1, 2].

Among them, Firmicutes and Bacteroidetes dominate, followed by Proteobacteria,
Verrucomicrobia, and others [3]. These gut bacteria contribute to numerous metabolic
functions, shape host physiology, and play a crucial role in human health and diseases
[2, 4, 5].

Human gut bacteria function as a “metabolic organ” that complements human
physiology by digesting otherwise indigestible dietary substrates, synthesising
micronutrients, and chemically modifying host compounds, participating in the metabolism
of carbohydrates, proteins, bile acids, vitamins, and other compounds [2, 6]. Initial
degradation of insoluble carbohydrates can be performed by colonic microbes such as
Bacteroides, Ruminococcus, and others [2,6,7]. This fermentation results in the production
of short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate [2, 6]. Gut
bacteria also supply essential nutrients to the host. For example, certain commensals
(e.g. Bifidobacterium, Lactobacillus) can de novo synthesise B-vitamins, including folate,
riboflavin, and vitamin B12, which cannot be synthesised by humans [2, 8]. In addition,
the microbiota participates in host lipid metabolism by transforming primary bile acids
(made in the liver) into secondary bile acids that play key roles in fat digestion and act as
hormone-like signalling molecules in the gut [2, 6].

Beyond metabolic digestion, commensal bacteria have coevolved for mutually
beneficial symbiosis with humans and profoundly shape host physiology and immune
development [4, 5]. Microbial metabolites serve as messengers in host endocrine and
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10 Introduction: Importance of human gut bacteria and their metabolism

metabolic pathways. A prime example is SCFAs, which bind to G protein-coupled receptors
on host cells to modulate gut barrier function, appetite regulation, glucose homeostasis,
and adiposity [4–6]. Gut microbes also help maintain the integrity of the intestinal
barrier and calibrate the host’s immune responses. For example, neonatal gut microbiome
dysbiosis can promote CD4+ T cell dysfunction associated with childhood atopy and
asthma [9]. Another example is the anti-inflammatory activity ofB. thetaiotaomicron, which
regulates nuclear–cytoplasmic shuttling of transcription factors involved in inflammatory
signalling [10]. In these ways, the gut microbiota plays an integral role in shaping normal
physiology, ranging from immune equilibrium to energy balance.

An imbalance in the gut microbiome (dysbiosis) has been implicated in a wide range
of diseases, most notably metabolic and inflammatory disorders [4, 5]. In obesity and
type 2 diabetes, characteristic shifts in microbial composition, such as an increased
Firmicutes-to-Bacteroidetes ratio, enhance the capacity to degrade polysaccharides and
generate fermentative products like short-chain fatty acids (SCFAs), thereby promoting
energy harvest and influencing host lipid metabolism [5, 11, 12]. In inflammatory bowel
disease (IBD), dysbiosis manifests as reducedmicrobial diversity and depletion of beneficial
SCFA-producing species, such as Faecalibacterium prausnitzii, which normally support
barrier integrity and exert anti-inflammatory effects [13, 14]. The consequent reduction
in butyrate availability is thought to impair mucosal health and worsen inflammation,
consistent with the therapeutic benefits of butyrate supplementation or butyrate-producing
probiotics [14, 15].

Microbial metabolism can even influence diseases beyond the gastrointestinal tract. A
notable example is cardiovascular disease: certain gut bacteria metabolize dietary choline
(from foods like red meat or eggs) into trimethylamine (TMA), which is absorbed and
oxidized by the host liver into trimethylamine-N-oxide (TMAO) – a metabolite strongly
linked to atherosclerosis risk [5,16]. Elevated TMAO levels contribute to plaque formation
in arteries, suggesting that TMA-producing gut microbes (e.g. within the Clostridial and
Proteobacteria l groups) can affect host cardiovascular health via their metabolites [5, 16].

Furthermore, microbial metabolites have been implicated in cancer development. For
example, bacteria in the colon convert primary bile acids into secondary bile acids; these
microbial-derived bile acids can cause DNA damage and promote oxidative stress in colon
epithelial cells [17]. Such effects may increase the risk of colorectal cancer, especially when
certain bile-tolerant bacteria (like Clostridia species with 7α-dehydroxylation activity) are
overrepresented in the gut [17, 18]. On the other hand, some fermentation byproducts (like
butyrate) can induce protective anti-cancer mechanisms, illustrating the dualistic influence
of microbial metabolism on tumorigenesis [17, 19].
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In summary, the human gut microbiota profoundly influences host nutrition and
physiology through its metabolic activities, with bacterial metabolites and biochemical
signals tightly integrated into host metabolic pathways.

2 Studying bacterial metabolism: from metabolites to
metabolic networks

Given the pivotal role of the human gut microbiota, the number of studies devoted to
human-associated bacteria has drastically increased over the past two decades. Pioneering
studies such as the Human Microbiome Project (HMP) [20] and MetaHIT (METAgenomics
of the Human Intestinal Tract) [21] paved the way to acquiring wide-scale genomic data and
assessing microbial diversity in human organisms.

Since one key way in which microbes interact with the host is through the production
and consumption of metabolites, microbial studies aim not only to characterise bacterial
diversity, but also to assess their metabolic functions by measuring these metabolites in
metabolomics assays [4]. Metabolites can be measured with liquid chromatography–mass
spectrometry (LC–MS) or gas chromatography–mass spectrometry (GC–MS) platforms,
enabling both untargeted and targeted analyses that provide semi-quantitative or even
quantitative information on metabolite concentrations [4, 22, 23].

Although numerous studies have examined associations between metabolite levels and
various conditions, concentrations alone do not reveal the underlying metabolic processes
occurring in biological systems, whereas metabolic fluxes and corresponding reaction rates
can serve as more informative biomarkers [24, 25]. However, measuring these reaction
rates remains a very challenging task. Common experimental approaches to gain insights
into metabolite fluxes rely on 13C-labelling techniques and tracking the propagation of the
label through metabolic pathways [25,26]. Nevertheless, these methods are applicable only
to a very limited set of metabolites and pathways, primarily focusing on central carbon
metabolism.

Overall, experimental measurements of metabolite concentrations and fluxes provide
valuable yet incomplete insights into microbial metabolism. To overcome the limitations of
experimental techniques, various computational modelling approaches have been developed
to investigate the mechanisms underlying metabolic changes [26]. Pharmacokinetic
modelling enables the description of the dynamics of selected metabolites [27], whereas
approaches such as genome-scale metabolic models (GEMs) and flux balance analysis
(FBA) are employed to capture the complexity of whole-system metabolism at the
organismal or community level [28].
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3 What are genome-scale metabolic models and flux
balance analysis?

Genome-scale metabolic models (GEMs) represent the comprehensive metabolic
network of an organism, connecting metabolites through biochemical reactions catalysed
by enzyme-encoded genes, and serve as a framework to estimate reaction fluxes (v)
across the system using flux balance analysis (FBA) [13]. In these models, metabolites
participate in reactions with coefficients that reflect the stoichiometry of each reaction,
which enables the formulation of a stoichiometric matrix (S) where rows correspond
to metabolites, columns to reactions, and entries to stoichiometric coefficients. The
steady-state assumption ensures that, for each metabolite, the total amount of production
equals the total amount of consumption, resulting in the condition S∙v = 0. However,
this equation alone is insufficient to calculate unique reaction rates, since the number of
reactions (variables) typically exceeds the number of metabolites (equations), leading to
an underdetermined system. FBA addresses this challenge by introducing an objective
function that is optimised through linear programming, most often it means maximising the
flux through a selected reaction, thereby narrowing the solution space [28].

For GEMs representing single bacteria, the most common objective function is an
artificial biomass reaction, reflecting the principle that bacterial growth can be modelled
by maximising the yield of biomass [28]. The biomass reaction comprises essential
cellular components required for growth, such as nucleotides, amino acids, various lipids,
vitamins, and cofactors, together with an energy requirement in the form of adenosine
triphosphate (ATP) [29]. The growth-associated ATP maintenance (GAM) is implemented
as ATP hydrolysis within the lumped biomass reaction, while the non-growth-associated
ATP maintenance (NGAM) is incorporated as a separate ATP hydrolysis reaction [29].
Under certain conditions, alternative objective functions, such as maximising overall ATP
production or ATP yield per unit of flux, may be more appropriate [30]. In addition,
optimisation of artificial demand reactions for specific metabolites of interest can be used
to test whether these metabolites can be produced and at what rate.

In addition to the choice of objective function, the definition of environmental and
physiological conditions plays a crucial role in FBA-based simulations [28, 31]. These
conditions are implemented as lower and upper bounds on specific reactions, thereby
defining their directionality through the sign of the flux and constraining the magnitude
of flux values. In GEMs, metabolites are distributed and reactions take place in distinct
cellular compartments, which in bacteria are typically defined as cytosolic, periplasmic, and
extracellular. Transport reactions connect these compartments by enabling the transfer of
metabolites between them. Therefore different growthmedia and nutrient availability can be
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simulated by adjusting the bounds of artificial exchange reactions, introducing metabolites
into the extracellular compartment, which represent the uptake and secretion of metabolites
permitted in the model [28]. With various constraints narrowing the feasible solution
space, GEMs and their simulations can also be referred to as constraint-based modelling
approaches. [32]

The connection between the bacterial genome and the reactions in the GEM is
implemented via gene-protein-reaction (GPR) associations, also called gene-reaction
rules [29, 33]. These rules describe the logical relationships between genes encoding
enzyme subunits or isoenzymes and the corresponding metabolic reactions. In GEMs,
GPRs are formulated as Boolean expressions, where an ‘AND’ operator links genes that
encode different subunits of the same enzyme complex (all of which are required for the
reaction to occur), while an ‘OR’ operator represents isoenzymes, where the presence of
any one gene is sufficient to catalyse the reaction [29]. This formalism allows systematic
translation of gene presence/absence, mutations, or differential expression into constraints
on reaction activity. For example, gene knock-outs are simulated by blocking (or deleting)
the associated reaction(s), whereas reduced enzyme activity can be modelled by imposing
tighter bounds on the corresponding flux [34]. In this way, GPR rules provide a crucial link
between genotype and metabolic phenotype.

For a more nuanced analysis of metabolic flexibility and robustness under different
conditions, GEMs can be used not only with standard FBA but also with several extended
methodologies [35]. For example, flux variability analysis (FVA) [36] quantifies the
possible range of each reaction flux by maximising and minimising individual fluxes while
constraining the original objective function to a defined fraction of its optimal value obtained
from the initial FBA. Flux sampling [37], instead, generates random solutions within
the feasible flux space, thereby producing a distribution of possible flux values for each
reaction rather than a single optimal value. Parsimonious FBA (pFBA) [38] introduces
the principle of minimal enzyme usage by selecting among alternative flux distributions
those that minimise the total flux while still achieving the optimal objective. Furthermore,
optimising for the production of a specific metabolite with pFBA can reveal a set of reactions
that approximate a biosynthetic pathway. Together, these and other extensions provide
complementary perspectives on network capabilities and allow a more detailed exploration
of the feasible flux space.

In practice, GEMs are most commonly distributed in SBML (Systems Biology Markup
Language) format, [39], which provides a standardised way to represent models and
ensures their compatibility across different software platforms. These models can then
be manipulated and simulated using the MATLAB COBRA Toolbox [32] or the Python
implementation COBRApy [40]. There are also various extensions and packages that
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enable advanced analyses, simulations and data integration, such as CellNetAnalyzer [41],
MetaboTools [42], and many others [43].

4 Genome-scale metabolic models (GEMs) in system
biology

Overall, with all these GEMs and FBA methodologies, systems biology has gained a
rigorous framework for bridging experimental data with mechanistic models of metabolism,
iteratively generating hypotheses with genome-scale metabolic reconstructions and
validating them with multi-omic datasets [31] (Fig. 1A). With this approach, various
experimental observations can be converted into mathematical constraints on the reaction
network, resulting in cell-type- or condition-specific GEMs (Fig. 1C).

The most direct experimental input comes from growth rate measurements, as GEMs
typically use a biomass objective function to represent cellular proliferation (Fig. 1B). The
closest experimental set-up to the steady-state assumption of GEMs is growing bacteria in
chemostat cultures, where the growth rate equals the dilution rate [44]. In practice, however,
growth rates are more commonly estimated from growth curves obtained by monitoring the
optical density (OD) of a microbial batch culture over time, with the exponential phase of
these curves providing a growth rate (h−1) estimate [45]. The experimentally determined
growth rate can then be directly compared with the biomass flux predicted by the model,
enabling both validation and calibration of the GEM. In this way, growth rate measurements
serve as a crucial benchmark, ensuring that computational predictions are anchored in the
physiological reality of the system under study [29, 31].
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Figure 1. Iterative usage of genome-scale metabolic models (GEMs) for generating biological insights with
multi-omic data integration (from Edward J O’Brien et. al., Cell 2015 [31]). A - Overview of the GEM usage
workflow with stages corresponding to other panels. B - Integration of various experimental data as model
constraints. C - Derivation of condition-specific models from integrated data. D - GEM simulation and flux
quantification. E - Hypothesis generation through comparison of fluxes under different conditions.

Time-course profiles of extracellular metabolites quantify uptake and secretion and
thereby define the nutritional environment for a GEM by constraining its exchange reactions
[31] (Fig. 1B). In typical workflows, bacterial supernatant is sampled at multiple time points
during exponential growth, and concentrations of metabolites of interest are measured either
by targeted mass spectrometry or by other appropriate assays, for example enzymatic assay
for determining glucose concentration [22,46]. These measurements allow the computation
of uptake or secretion rates, which, after accounting for the culture volume (typically 1 L
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by convention), are expressed as mmol h−1. To compare these empirical rates with model
variables, units must match the convention used for exchange reactions in GEMs, which are
defined per unit biomass. Dividing the empirical rates by the measured biomass, converted
from optical density (OD) to grams of dry weight (gDW), results in the rates in mmol
gDW−1 h−1. These resulting uptake and secretion rates can then be imposed as lower or
upper bounds on the corresponding exchange reactions, tightening the feasible flux space
and grounding simulations in the assayed nutritional condition [45, 47].

Intracellular fluxes derived from 13C tracer experiments can constrain specific internal
reactions or pathway branch points, complementing uptake and secretion measurements
(Fig. 1B). They resolve otherwise underdetermined intracellular routes and thereby narrow
the solution space, particularly within central carbon metabolism, where such techniques
are most effective [31].

Transcriptomic and proteomic data provide condition-specific evidence for reaction
activity and capacity, and can be integrated into GEMs to tailor networks to the measured
state by constraining reactions via gene–protein–reaction (GPR) rules (Fig. 1B). In typical
workflows, mRNA abundance is quantified by RNA-seq or microarrays and reported as
normalised counts, while protein abundance is obtained using shotgun or targeted mass
spectrometry [48–50]. These measurements are then converted into model constraints either
by thresholding to define reactions as active or inactive, or by applying enzyme kinetics to
scale reaction bounds in proportion to expression levels [51–53]. Compared with exchange
fluxes or 13C-derived internal fluxes, expression data are indirect and do not uniquely
determine fluxes due to various regulatory mechanisms. Nevertheless, they are valuable for
constructing condition-specific subnetworks and for further narrowing the feasible solution
space.

Beyond simply constraining models with experimental data, GEMs are employed in a
comparative framework (Fig. 1E). By constructing condition- or cell-type-specific models
and exploring the feasible flux spaces with flux variability analysis (FVA) or flux sampling
(Fig. 1D), it becomes possible to contrast metabolic states across various conditions. These
comparisons can be made, for instance, between healthy and diseased cells, between
pathogenic andmutualistic bacteria, or under distinct environmental conditions. Differences
in the predicted metabolic capabilities highlight molecular mechanisms that distinguish
the states and naturally generate biological hypotheses about altered pathways. These
hypotheses can then be subjected to targeted experimental validation, thereby closing the
loop between computation and experimental work.

In this way, data integration with GEMs is not a one-time procedure but rather an
iterative discovery cycle: models are progressively refined as new data resolve uncertainties,
while simultaneously guiding the design of new experiments that probe the most uncertain
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or divergent predictions (Fig. 1). This feedback loop ensures that GEMs function both
as structured repositories of current knowledge and as engines of discovery, continuously
improving their predictive scope while driving biological insight.

5 Reconstruction of genome-scale metabolic models
(GEMs)

The accuracy and predictive power of GEM simulations strongly depend on model
quality, making reconstruction crucial for their further use and development. All
reconstructions are initially based on the genome of the organism of interest. Performing
genome annotation provides information on enzymatic functions, including the substrates
and products of each enzyme, their stoichiometric coefficients, the reversibility of
corresponding reactions, and the cellular compartments in which these reactions occur [54].
These elements are then integrated into a single, connected metabolic network that forms
the foundation of the GEM.

Nowadays, a variety of computational tools exist for GEM reconstruction, many of
which can automate parts or even the entire workflow (Fig. 2), thereby streamlining the
process [55]. A central step relies on homology searches, in which the gene or protein
sequences of the organism of interest are aligned with previously annotated enzymes of
known function in organisms available in a reference database. These functional annotations
are then mapped onto metabolic reactions using biochemical databases, for example, BiGG
[33], KEGG [56], MetaCyc [57], or ModelSEED [58], resulting in a draft network of
metabolites and reactions together with their corresponding gene–protein–reaction (GPR)
associations. Reactions that are required for the synthesis of biomass components under
a given or predicted growth medium but lack genetic evidence (i.e., no enzyme assigned)
can be identified and incorporated through gap-filling procedure (Fig. 2). Reconstruction
pipelines that integrate all of these steps automatically are capable of generating GEMs
ready for simulation, typically in SBML format, directly from genome or proteome FASTA
sequences.
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Figure 2. Automatic genome-scale metabolic model (GEM) reconstruction (adapted from Machado et. al.,
Nucleic Acid Research 2018 [59])

Different tools for automaticGEM reconstruction utilise distinct approaches, algorithms,
and databases for these steps, and none of them invariably outperforms the others [55].
For example, merlin [60] provides a semi-automated framework that integrates genome
annotation and database mapping with user-guided curation. Its main strength lies in the
high degree of control it offers, allowing variation in the annotation algorithms, refinement
of gene–protein–reaction associations and adjustments to biomass formulations. Another
example is MetaDraft [61, 62], which builds draft reconstructions by leveraging selected
reference models for related organisms. While this strategy speeds up the reconstruction
process, it still requires user involvement to curate the transferred reactions and ensure
consistency. Overall, GEM reconstruction tools differ considerably in terms of user
experience and the extent of manual involvement they demand, ranging from platforms that
emphasise detailed curation to those that prioritise efficiency.

In contrast to these semi-automated platforms, other reconstruction tools aim for a fully
automated workflow with minimal user intervention (Table 1). Among these, CarveMe [59]
represents a unique top-down approach that begins with a curated template model based
on the BiGG database. Unnecessary reactions are then removed according to enzyme gene
presence, determined byDIAMOND [63] alignment of the input bacterial protein sequences.
CarveMe high-speed reconstructions are useful in large-scale studies, as generating a model
from a bacterial genome containing 4000-6000 genes typically takes 1-3 minutes. gapseq
[64] does not utilise protein sequences as input, but instead identifies genes directly from
the genome. It uses a manually curated reaction set compiled from several databases (e.g.,
MetaCyc, ModelSEED), and extensive built-in pathway definitions to improve the coverage
of metabolic capabilities. However, the procedure is time-consuming and typically requires
8–24 hours per model. ModelSEED [65] supports protein sequence alignment and is one
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of the earliest and most established automated pipelines, producing draft reconstructions
through a web service of the corresponding database [58]. The KBase [66], online platform
builds on the updated ModelSEED pipeline but requires built-in RAST [67] annotation of
the entire bacterial genome, providing an integrated environment for model reconstruction.
All of the above tools support either universal or gram-positive/gram-negative bacterial
model templates and can perform default gap filling or allow user-defined gap-filling media.
Finally, AGORA [68,69], although not a reconstruction tool per se, is a large-scale resource
of semi-automatically built GEMs for human gut bacteria, available for download from
the Virtual Metabolic Human (VMH) database [70]. Collectively, such tools (Table 1)
provide efficient solutions for large-scale or high-throughput reconstruction tasks, offering
researchers rapid access to functional draft models across a wide range of organisms.

Tool Type Input Nomencl.
Reactions

Databases Nomenclature
Genes

Gap-filling Gram-templ Ref

CarveMe Command
line tool

Proteins BiGG BiGG Adjusted IDs
from input
sequence

Top-down
(universal
model)

+ [59]

gapseq Command
line tool

Genome modelSEED modelSEED,
KEGG,
MetaCyc

Gene
coordinates

Bottom-up + [64]

modelSEED Web-service Proteins modelSEED modelSEED IDs from input Bottom-up + [65]
Kbase Web-portal Genome modelSEED modelSEED Coordinates

from internal
annotation

Bottom-up +
[66],
[65]

AGORA Database NaN Recon modelSEED
and literature

Internal IDs
and sequence

Bottom-up
and curation

+
[68],
[69]

Table 1. Different tools for automatic reconstruction of functional genome-scale metabolic
models (GEMs).

Despite their advantages, fully automated reconstruction tools also come with important
limitations [55]. The resulting models often contain reactions with weak or lacking
genetic support, inconsistencies in biomass composition, or incomplete representation of
organism-specific pathways [71]. In many cases, these draft models are functional enough
for simulations but still require post-reconstruction curation to achieve biological accuracy
[72]. Automated pipelines also struggle with less-studied organisms, where genome
annotation is sparse or database coverage is limited, leading to gaps or incorrect assignments
[73]. Therefore, while these tools are invaluable for high-throughput applications and rapid
generation of GEMs, they are best viewed as a starting point that should be refined through
targeted manual curation and experimental validation [29].
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6 Curation of GEMs and challenges for de novo
reconstructions

Currently, the established practice is to base GEM reconstruction on a previously curated
model from a related organism, or on a draft generated by a single reconstruction tool,
followed by manual curation and verification [29]. This process becomes particularly
challenging in de novo reconstructions of non-model organisms. While draft models may
contain two to three thousand reactions, the limited biological knowledge available for
non-model species often provides little guidance for the curation process, making it difficult
to determine which reactions are reliable and which may be erroneous or irrelevant.

The most common experimental data used for model curation include measurements
of biomass composition, auxotrophies for essential biomass components, carbon source
utilisation, and gene essentiality screens [29]. Biomass composition experiments quantify
the relative amounts of macromolecules and key metabolites, such as amino acids,
nucleotides, lipids, and cofactors, required for cellular growth, providing the basis for
constructing or refining the stoichiometry of the biomass reaction [45, 74]. Auxotrophy
assays determine which metabolites an organism cannot synthesise autonomously by
testing growth in minimal media supplemented with specific compounds; these data are
used to verify the presence or absence of biosynthetic pathways and guide addition or
removal of reactions [75]. Carbon source utilization experiments assess the ability of the
organism to grow on different substrates by measuring growth rates or biomass yields
in media containing a single carbon source, informing constraints on exchange reactions
and the network’s substrate usage capabilities. Gene essentiality screens identify genes
that are indispensable for survival under defined conditions, typically through systematic
knockout experiments (e.g., using transposonmutant libraries) [76]. Сomparison with GEM
predictions allows validation and refinement of gene–protein–reaction (GPR) associations
and detection of missing or misannotated reactions [77]. Integrating these datasets ensures
that the GEM reflects experimentally observed metabolic capabilities.

While integrating experimental datasets into GEMs ensures that the model reflects
overall metabolic capabilities, it does not provide direct evidence for the activity of
individual reactions or the correctness of specific gene–protein–reaction (GPR) associations.
Achieving amodel that is fully consistent with experimental observations requires additional
steps, including manual curation, literature-based verification, and, where possible,
incorporation of complementary data sources. This process often involves deciding which
reactions should be included or removed, which GPR associations need adjustment, and
how to reconcile inconsistencies between annotation and experimental phenotypes. For
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poorly studied organisms, where genome annotation is limited and many genes have
unknown functions, this curation becomes particularly challenging.

Another challenge arises when starting from a single draft model, as it provides
only one initial network configuration, limiting the exploration of alternative metabolic
arrangements, flux distributions or GPR rules that could potentially satisfy the experimental
data. This makes it difficult to formulate hypotheses about how the network could function
or produce specific metabolites. It also constrains the ways in which the model can be
systematically adjusted to align with observed phenotypes.

All these challenges make the draft GEMs and the reconstruction tool used for their
generation highly consequential for final model structure and accuracy. Moreover, emerging
cross-tool studies [78–80] have revealed that models of the same organism reconstructed
with different tools often exhibit more divergence than similarity. In fact, technical factors
introduced by the reconstruction pipeline can shape model content more strongly than
the underlying biological information, such as genome annotation or ecological context.
For example, recent work [78] on environmental bacterial communities demonstrated
that models reconstructed with the same tool were more similar to each other in their
predictions of metabolite exchange than models of comparable communities generated with
different tools. This study also shows that models built with different tools can capture
complementary aspects of metabolic behaviour, motivating initial efforts to integrate them
[78,79].

Currently, integrating or even systematically comparing GEMs reconstructed with
different tools or protocols remains a major challenge due to the limited degree of
standardisation. Models frequently employ distinct nomenclatures for reactions and
metabolites, depending on the underlying biochemical database (Table 1), which creates
classical issues of identifier conversion. They may also differ in their representation of
compartments; for example, a periplasmic compartment is included in CarveMe and gapseq
reconstructions but is absent in ModelSEED and AGORA. Similarly, exchange reactions
are implemented in tool-specific ways, such as the introduction of additional artificial
boundary metabolites in ModelSEED. Finally, inconsistencies in gene integration generate
variation both in gene identifiers and in the formulation of Boolean rules, which are often
expressed differently across GEMs, further complicating direct comparison and integration.

Overall, GEM reconstruction remains challenging: drafts for non-model organisms offer
limited reliability, and standard experimental datasets align models with phenotypes without
proving direct reaction activity or GPR validation. Reliance on a single tool narrows the
search space of potential GEM structures and weak standardization hinders comparison
and integration of different GEMs. These issues argue for multi-tool workflows in GEMs
reconstruction and curation to reduce pipeline bias and improve model performance.
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7 Aims of the thesis
In this thesis, I present my work that addresses the methodological challenges associated

with the reconstruction of genome-scale metabolic models (GEMs), particularly the
lack of standardised frameworks for systematically comparing and integrating models
generated with different tools. I introduce a consensus approach that, by enabling structural
comparison across GEMs, enhances reconstruction and curation, moving beyond the
constraints of individual tools.

Chapter I illustrates my initial attempts to reconstruct models using different tools and
to compare them, highlighting the discrepancies observed and motivating the transition
from single draft reconstructions to a consensus-based strategy. Chapter II introduces the
methodology and the GEMsembler Python package (already published: Matveishina et
al. mSystems 2025 [81]), which I developed for systematic comparison and integration
of GEMs. By assessing structural differences and generating consensus models, this
framework enables new strategies for reconstruction and curation, improving GEM
performance with use cases in Lactobacillus plantarum and Escherichia coli. Finally, in
Chapter III, I apply this consensus-based approach to the de novo reconstruction of two of
the most abundant human gut bacteria, Bacteroides uniformis and Phocaeicola vulgatus
(formerly Bacteroides vulgatus). Thus, this work establishes a consensus approach and
demonstrates its utility in GEM reconstruction, systematic assessment of metabolic network
uncertainties, and advancing knowledge of bacterial metabolism.



Chapter I
Initial comparison of genome-scale
metabolic models (GEMs) of
representative human gut bacteria
reconstructed with different tools.

1.1 Introduction
Human gut bacteria exhibit remarkable metabolic diversity that underlies their ability

to process nutrients, modulate host physiology, and influence health and disease [2, 4, 5].
Unravelling this diversity is challenging, as many species differ in genomic content,
regulation, and environmental constraints, while experimental characterisation, including
growth phenotypes, secreted metabolites, and dietary responses, remains limited and often
inconsistent [82, 83]. To bridge this gap, several studies have combined genome-scale
metabolic models (GEMs) with experimental data to explore the metabolic behaviour of
different gut microbes and to systematically characterise and compare bacterial metabolism
across species [84, 85].

Comparative analysis of GEMs has been used to characterise variation in microbial
metabolism. For example, in constraint-based modelling analysis of the metabolism of two
Pelobacter species [86], models of closely related bacteria were compared at the level of
reactions and pathways, revealing both shared and species-specific metabolic capabilities,
particularly in amino acid and cofactor metabolism. A subsequent study [87] reconstructed
models for over 300 gut microbial species and examined differences in reaction content
and inferred pathways, showing that metabolic repertoires correlate with phylogeny and
ecological niche. More recently, a comparative work [88] systematically analysed multiple
bacterial GEMs under simulated perturbations, identifying conserved and variable reactions
and demonstrating that differences among networks can influence predicted metabolic

23



24 Chapter I Materials and Methods

phenotypes. Together, these studies illustrate how systematic model comparison can
uncover conserved and species-specific pathways, providing insight into metabolic diversity
in the human gut microbiota.

My initial goal was to compare the metabolic capabilities of representative gut
bacterial species in order to identify common and species-specific metabolic functions
and pathways. Given the diversity of the human gut microbiome, nine bacteria were
selected to represent three dominant phyla [3]. These include Bacteroides uniformis,
Bacteroides thetaiotaomicron, Parabacteroides distasonis, and Prevotella copri from
Bacteroidetes; Akkermansia muciniphila from Verrucomicrobia; and Eubacterium rectale,
Ruminococcus gnavus, Clostridium sporogenes, and Lactobacillus gasseri from Firmicutes.
Together, they reflect a broad functional and phylogenetic spectrum of the gut community.

In this chapter, I aim to reconstruct genome-scale metabolic models for these
representative bacterial species using the three different tools: CarveMe [59], gapseq [64],
and AGORA [68], each representing a distinct methodological strategy. I then compare
the resulting metabolic networks with each other and assess which factors (e.g., the
reconstruction approach or the input bacterial genome) have more influence on the network
structure. The results of this comparison are the main motivation for my subsequent work
on developing a method for systematic comparison of metabolic networks, and they lay the
foundation for the consensus modelling approach proposed in my thesis.

1.2 Materials and Methods
1.2.1 Reconstruction of GEMs with different tools

Genome and protein sequence files for nine representative gut bacterial species were
retrieved by NCBI assembly ID (Table 1.1) from RefSeq with ncbi_genome_download
package [89]. The phylogenetic tree for these nine bacteria (Fig. 1.1) is obtained fromNCBI
taxonomy web service.

Species Type Strain NCBI RefSeq assembly Gram
Akkermansia muciniphila ATCCBAA-835 GCF_017504145.1 Negative
Bacteroides thetaiotaomicron VPI-5482 GCF_900624795.1 Negative
Bacteroides uniformis ATCC8492 GCF_900896415.1 Negative
Clostridium sporogenes ATCC15579 GCF_000155085.1 Positive
Eubacterium rectale DSM17629 GCA_000209935.1 Positive
Lactobacillus gasseri ATCC33323 GCF_008868295.1 Positive
Parabacteroides distasonis ATCC8503 GCF_900683725.1 Negative
Prevotella copri ATCC18205 GCF_020735445.1 Negative
Ruminococcus gnavus ATCC29149 GCF_009831375.1 Positive

Table 1.1. Nine human gut bacterial representatives and their genomes



Chapter I Materials and Methods 25

Genome-scalemetabolicmodels (GEMs)were reconstructed using CarveMe and gapseq
tools (Fig. 1.1). For both pipelines, the Gram status of each organism was specified using
the appropriate Gram-negative or Gram-positive template. Reconstructions were performed
under anaerobic conditions and without any medium-specific gap-filling, to preserve the
intrinsic metabolic capabilities of each genome. CarveMe models were generated from
the protein sequence files, whereas gapseq models were reconstructed from the genome
sequences, both in FASTA format. In parallel, corresponding AGORA1 models and their
associated genome files were retrieved from the VMH database, resulting in a total of 27
GEMs, three per organism (Fig. 1.1).

Figure 1.1. Taxonomic tree of nine human gut bacterial representatives and the workflow with their
genome-scale metabolic model (GEM) reconstruction and pathway coverage comparison.

1.2.2 GEMs comparison with pathway coverage
For the comparison of reactions and metabolites included in different models, all

identifiers were converted into the BiGG nomenclature. For AGORA models, outdated
BiGG identifiers were updated to the current version using information from the BiGG
database. For gapseq models, metabolites and reactions were mapped via cross-references
from the ModelSEED and MetaNetX databases, incorporating all available conversion
matches.

For the pathway-based comparison, the complete set of MetaCyc pathways and their
associated reaction lists were downloaded from the MetaCyc database (Fig. 1.1). Reaction
identifiers from all models were then converted to MetaCyc IDs through BiGG and
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MetaNetX cross-references. All accessible crosslinks were used to collect corresponding
MetaCyc reaction identifiers. Pathway coverage for each model was calculated as the
proportion of reactions present in the model relative to the total number of reactions defined
for each MetaCyc pathway. The resulting pathway abundance matrix was subjected to
hierarchical clustering using the ComplexHeatmap R package, applying Euclidean distance
and complete linkage as default parameters of the Heatmap function.

1.3 Results
1.3.1 GEMs reconstructed with different tools cluster according to the

tool
As a first step in the metabolic modelling, I generated genome-scale metabolic models

(GEMs) for nine representative human gut bacterial species and assessed the differences in
their resulting metabolic networks.

To evaluate the overall similarity between models reconstructed with CarveMe,
gapseq, and AGORA, the sets of reaction and metabolite identifiers were compared
across the three reconstruction approaches (Fig. 1.2). The number of shared reactions and
metabolites was largely comparable among any pair or combination of methods. Across
all species, approximately half of the reactions and metabolites were common between
different reconstruction pipelines, representing a conserved metabolic core. The remaining
fraction consisted of method-specific reactions and metabolites, reflecting differences in
reconstruction strategies (Fig. 1.2).
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Figure 1.2. Comparison of metabolites (m), reactions (r) in CarveMe, gapseq, AGORA models for 9 species.
Columns for one model show the original number of ids in the model. Columns for two or three models
show the number of ids after conversion and intersection. AM - A. muciniphila, BT - B. thetaiotaomicron
BU - B. uniformis, CS - C. sporogenes, ER - E. rectale, LG - L. gasseri, PC - P. copri, PD - P. distasonis,
RG - R. gnavus.

Given the large number of reactions that differed among the reconstructed models, I
next compared them at the pathway level to better summarise the variation in metabolic
content (Fig. 1.3). In total, 246 MetaCyc pathways showed a coverage greater than
0.5 and contained more than two reactions present in at least one model of at least one
species. Based on hierarchical clustering of the pathway coverage, only the models of
Akkermansia muciniphila and Lactobacillus gasseri clustered by species, whereas all other
models grouped according to the reconstruction method rather than their taxonomic origin.
This pattern indicates that the technical factor, the choice of the reconstruction tool, can



28 Chapter I Results

influence the overall network structure even more strongly than the biological factor, i.e.,
the underlying bacterial genome.

Figure 1.3. GEMs cluster by the reconstruction tool instead of the corresponding bacterial species when
considering all reactions to calculate pathway coverage. Pathways with the highest coverage are shown. Green
rectangles highlight GEMs clustering by species, orange rectangles highlight a subset of GEMs clustering by
species, while red rectangles highlight GEMs clustering by the reconstruction tool. Symbols correspond to
the model type (circle for gapseq, triangle for carveme, and square for agora), while their colours correspond
to different species.

1.3.2 GEMs reconstruction differs in GPR rule assignment
Next, I hypothesised that the network differences among different types of models

could result from the gap-filling procedures employed by each reconstruction tool. To test
this, I evaluated whether models were more consistent when considering only reactions
with genetic evidence (GPRs), i.e., reactions associated with enzyme-coding genes in the
corresponding bacterial genome. Contrary to my hypothesis, clustering of models based
on pathways with known genes was still largely driven by the reconstruction method,
rather than by the species-specific genomic information (Fig. 1.4). Only Clostridium
sporogenes formed a species-specific cluster after filtering for GPR-containing reactions, in
addition to the species-specific clusters previously observed for Akkermansia muciniphila
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and Lactobacillus gasseri. These results indicate that the majority of differences among the
networks arise not from gap-filling procedures, but from the enzyme annotation and GPR
rule assignment.

Figure 1.4. GEMs cluster by the reconstruction tool instead of the corresponding bacterial species when
considering only not gap-filled reactions with genetic evidence (GPRs) to calculate pathway coverage.
Pathways with the highest and the lowest coverage are shown. Green rectangles highlight GEMs clustering
by species, while red rectangles highlight GEMs clustering by the reconstruction tool. Symbols correspond to
the model type (circle for gapseq, triangle for carveme, and square for agora), while their colours correspond
to different species.

To further test the hypothesis that differences among reconstruction methods arise from
the genes included in the models, I focused only on reactions associated with genes common
to all three model types (CarveMe, gapseq, and AGORA) based on genetic evidence.
Under this restriction, the models clustered predominantly according to species, with the
exception of Bacteroides thetaiotaomicron and Parabacteroides distasonis, which did not
form distinct species clusters (Fig. 1.5). These results confirm that the majority of variation
among models generated by different reconstruction tools originates from differences in
genome-based enzyme annotation, together with the downstream reconstruction procedures
(e.g. gap-filling).
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Figure 1.5. GEMs cluster by the corresponding bacterial species when considering only reactions with genes
common between all three different GEMs to calculate pathway coverage. Pathways with the highest and
the lowest coverage are shown. Green rectangles highlight GEMs clustering by species, orange rectangles
highlight a subset of GEMs clustering by species, while red rectangles highlight GEMs clustering by the
reconstruction tool. Symbols correspond to the model type (circle for gapseq, triangle for carveme, and square
for agora), while their colours correspond to different species.

1.4 Discussion
The results of this chapter demonstrate substantial differences in GEMs reconstructed

with different tools (CarveMe, gapseq, and AGORA), reflecting variations in reconstruction
algorithms, templates, and database dependencies. While it was expected that the models
built with different tools would be different from each other, because of the differences
in the underlying gap-filling procedures, it was surprising that models clustered by tool
even when considering only reactions associated with genes. This indicates the decisions
on gene inclusion and GPR definitions are the primary drivers of the observed model
difference. Such substantial variation indicates several layers of uncertainty in automated
GEM reconstructions.

This work also revealed that systematically comparing GEMs generated by different
reconstruction tools is far from straightforward. The complexity of model structure,
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variation in all its components, and ambiguity in nomenclature cross-links make direct
model-to-model comparisons challenging. To address the challenge, I aimed to develop
a tool that enables a structured and systematic comparison of metabolic networks and to
establish a consensus approach for GEMs analysis. This approach provides a framework
to assess and resolve uncertainties in the models, ultimately improving understanding of
bacterial metabolism.





Chapter II
GEMsembler: consensus model
assembly and structural comparison
improve functional performance of
GEMs

2.1 Introduction
Genome-scale metabolic models (GEMs) have become central tools for studying

microbial metabolism, yet their growing number and the diversity of reconstruction
pipelines create a pressing need for systematic comparison [31, 55]. While individual
reconstructions provide valuable insights into metabolism, differences in the outputs of
reconstruction tools, model structures, and underlying assumptions, together with limited
standardisation, make it difficult to assess their consistency or integrate them within
a unified framework [55]. Existing efforts to compare models remain limited in their
applicability.

In most cases, approaches to comparing GEMs do not go beyond converting and
matching metabolite and reaction identifiers (IDs). In this context, MetaNetX [90, 91] is a
particularly useful resource: an online platform that links a wide variety of namespaces for
metabolites and reactions. It extends cross-database mappings already present in commonly
used biochemical databases for GEM reconstruction, such asModelSEED [58], KEGG [56],
and BiGG [33]. For example, MetaNetX has been used to compare IDs across models
reconstructed with different tools in the COMMIT pipeline [79], which generates consensus
models as part of microbial community analyses.

When relying on identifier mappings, several well-known sources of ambiguity limit
the reliability of cross-model comparisons. Cross-references between databases are rarely
one-to-one (often many-to-one, one-to-many, or even many-to-many), for example because
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of differences in tautomeric form, stereochemistry, or the level of generality of a compound
or reaction. Out-of-date or missing IDs and duplicate reactions add further complications.
Indirect mappings that pass through multiple databases, where IDs are converted into an
intermediate namespace, like in MetNetX [90, 91], propagate and can amplify mistakes.
Altogether, naive ID-based matching with the selection of a single identifier is prone to false
conversions, which hides the real biological agreement and disagreement between GEMs.

One example that sought to mitigate this problem comes from a study, comparing GEMs
reconstruction tools [55], where identifiers were first converted via MetaNetX [90, 91]
and reactions were then matched by their reaction equations, with equations reconstructed
from metabolite identifiers and compared across models. However, the code used for
this procedure was a custom implementation developed for that study, not released as a
reusable tool or package. Another attempt is modelBorgifier [92], an addition to the COBRA
Toolbox [32] that assists in merging two GEMs in a semi-automatic manner, relying on user
review and confirmation of conversion results. While such efforts can improve matching
within a study, they remain labour-intensive and they do not resolve identifier ambiguity in
a systematic or reproducible way.

On current evidence, the first dedicated tool for merging heterogeneous GEMs appears
to be the recently published Python package mergem [80]. It merges input models into
a single union by matching metabolite identifiers and reaction equations. The package
is geared towards comparing particular models rather than harmonising them to a single
nomenclature. It processes models sequentially, retaining the identifier from the first
occurrence; as a result, the merged model can contain a mixture of namespaces. When
an identifier originates from a later model namespace, it becomes impossible to tell
whether this reflects a technical failure to convert it into the first model’s namespace or
a genuine difference in model content. More importantly, mergem [80] does not account
for key attributes of GEMs, such as genes, gene–protein–reaction (GPR) rules, or reaction
boundaries and therefore directionality. Consequently, to date, no framework can provide
rigorous model comparison, integrate all model features, and support fine-tuned, flexible
combinations of GEMs.

In this chapter, I introduce my recently published work (Matveishina et al. mSystems
2025 [81]) on GEMsembler, a Python package designed to make models built by different
reconstruction pipelines directly comparable and to enable a consensus approach in GEM
reconstruction and curation. The package centres on three capabilities: first, structural
comparison of GEMs produced by different tools, while tracking the origin of each
feature; second, systematic assessment of network confidence, defined by agreement
between models on metabolites, reactions, and genes; third, assembly of alternative
model combinations followed by evaluation of their predictive performance for growth,
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auxotrophy, and gene essentiality. In addition, I provide a protocol for semi-automated
curation based on a consensus approach across multiple GEMs.

I demonstrate the framework on two case studies, Escherichia coli and
Lactiplantibacillus plantarum (formerly Lactobacillus plantarum). In both cases,
GEMsembler-curated consensus models achieve higher accuracy than current
gold-standard, manually curated models for auxotrophy and gene essentiality. The
workflow also identifies the specific features that drive these improvements, providing
clear targets for experimental follow-up to close the current knowledge gaps and address
remaining uncertainties in metabolic network reconstructions.

2.2 Materials and Methods
2.2.1 GEMsembler package development and overview

I designed GEMsembler as a Python package to interoperate tightly with the major
GEM manipulation and analysis library, COBRApy [40]. A bioinformatician in my group,
Bartosz J. Bartmański, assisted with files handling and the packaging of the software for
PyPI. GEMsembler depends on standard Python libraries, BLAST for gene mapping [93],
and the MetQuest package for topological network analysis [94]. Of these, only BLAST
must be installed separately by the user, because its installation procedures differ across
environments.

I organized GEMsembler as a four-stage pipeline: (i) conversion of input GEMs, (ii)
supermodel assembly, (iii) comparison and consensusmodel generation, and (iv) assessment
of model agreement followed by downstream functional analysis (Fig. 2.1). I decided that
input GEMs in SBML format must be accompanied by metadata specifying model type (the
reconstruction tool), which informs GEMsembler how eachmodel should be handled. In the
current implementation, models produced by CarveMe [59], gapseq [64], MetaNetX [91]
and modelSEED [65] are supported, as well as reconstructions retrieved from the AGORA
[69] and BiGG [33] databases. To accommodate additional sources, Bartosz J. Bartmański
introduced a custom model type that enables user-defined import logic.

To enable accurate cross-model mapping of gene–protein–reaction (GPR) rules, I added
optional genomic inputs (Fig. 2.1). These comprise: (i) the bacterial genome or protein
FASTA files used to generate each model, and (ii) either a local genome file or an NCBI
assembly identifier for automated download. The latter serves as the target reference to
which gene IDs in the final GPRs are converted.
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Figure 2.1. GEMsembler workflow. This figure was published in Matveishina et. al., mSystems 2025 [81];
it was made fully by myself.



Chapter II Materials and Methods 37

I designed GEMsembler to emit two principal outputs (Fig. 2.1): a supermodel, that
tracks the origin of each feature, and consensus models that are the results of comparisons
among selected input models. Using COBRApy, I implemented consensus models as
standard GEMs in SBML format. The supermodel was initially stored as a Python object
in pickle format, but later my husband, Gleb E. Gavrish, implemented JSON export for
the supermodel, enabling cross-platform integration of GEMsembler. For the downstream
analysis stage, the required inputs typically include a specification of the growth medium
and the metabolites or pathways of interest, and my package produces plots, tables, and
interactive pathway maps in HTML format.

2.2.2 GEMs conversion step
GEMsembler workflow begins by converting metabolite identifiers in all input models

to BiGG IDs [33] (Fig. 2.1). To do this, I prioritised multiple cross-reference sources and
applied them in a fixed order to maximise precision and reproducibility:

1. Intersection first. When BiGG IDs were present both in the model’s own annotations
and in the originating database (ModelSEED [58] or BiGG [33]), I used the
intersection as the highest-priority mapping.

2. Model annotations. If there was a discrepancy, the BiGG IDs listed in the model
annotation field served as the second priority.

3. Origin database crosslinks. If model annotations were missing, crosslinks from the
model’s source database were used as the third priority.

4. Meta-databases. When neither of the above yielded a match, I consulted additional
crosslink resources, notably MetaNetX [90], as the fourth priority.

5. Pattern rules. If no BiGG ID was recovered, heuristic renaming rules were applied as
a fifth priority (for example, transforming certain AGORA IDs by replacing a trailing
single underscore with a double underscore).

6. Direct lookup. As a last resort, the unmodified identifier was checked directly against
the BiGG namespace.

For each supported model type, I implemented a dedicated conversion routine that
reflects its native nomenclature and attributes. For custom model types, the conversion
step must be adapted to the submitted naming scheme.

Because cross-databasemappings are often non-bijective, in the selection stage (Fig. 2.1)
I explicitly tracked ambiguity: one-to-many, many-to-one, and many-to-many relations.
When different input models shared the same biochemical nomenclature (for example,
gapseq and ModelSEED models, both rooted in the ModelSEED database), I checked
consistency across models to eliminate ambiguous results, if possible. For the main



38 Chapter II Materials and Methods

analysis path, only metabolites with a unique one-to-one mapping to BiGG were advanced;
ambiguous cases were retained and handled separately.

I decided to convert reactions based on their equations (Fig. 2.1), following the
approach from a study comparing GEM reconstruction tools [55], to preserve correct
network topology. To increase the number of successful mapping I composed reaction
equations using only metabolite identifiers, ignoring stoichiometry, and tolerated variation
in hydrogen inclusion. First, I reconstructed equations in the BiGG namespace using
only metabolites with one-to-one mappings to establish an unambiguous baseline.
Metabolites without unique conversions (e.g., one-to-many mappings) were then resolved
by enumerating the possible mappings to compose candidate reaction equations and
automatically checking whether any of these equations exist in the BiGG reaction set.
When a candidate equation matched, the corresponding mapping was fixed for that
metabolite and propagated to all reactions containing it. For models without a periplasmic
compartment, I allowed compartment reassignment if moving a metabolite from the
cytosolic or extracellular compartment to a periplasmic compartment yielded a reaction
present in BiGG. Finally, reactions with identical equations across input models and BiGG
were merged, retaining the identifier used by the largest number of models in the BiGG
database so as to favor the most widely adopted identifiers.

To make the conversion transparent and to leave room for potential user control,
I recorded every conversion stage in a dedicated GatheredModels class that precedes
supermodel assembly. Although only one converted ID, if selected, is used in supermodel
assembly, GatheredModels retains all alternative mappings for inspection, including
reaction identifiers obtained solely via MetaNetX [90] or other databases that were not
confirmed by equation-level evidence.

I designed GEMsembler to optionally accept the genomes used for the original
reconstructions together with either an NCBI assembly ID or a FASTA genome file for
the output; when these inputs are provided, the software converts model gene identifiers
to the target genome (Fig. 2.1). If an NCBI assembly ID is supplied, the assembly is
downloaded automatically with the ncbi_genome_download package [89] and locus tags
from that assembly are used as gene IDs; otherwise, genes are mapped to the identifiers
present in the user-provided FASTA genome file. Tool-specific changes in gene naming
are handled during this step, including punctuation changes introduced by some tools, such
as added dots or replaced underscores. For gapseq, gene sequences must be additionally
retrieved, since genes are represented by coordinates. Actual gene conversion is performed
by sequence alignment with BLAST [93].

To handle the diversity in how GPRs were formulated across different model types, I
standardised all GPR rules to a canonical two-level form: each rule is a Boolean expression
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where genes are grouped inside parentheses with AND, and those groups are connected
by OR. This corresponds to a disjunctive normal form (DNF), which guarantees a single,
comparable structure rather than arbitrary nesting. CarveMemodels already provided GPRs
in this format; other inputs could contain any amount of nesting and mixed operators.
I therefore implemented a standardisation step that parses each GPR rule and converts it
to DNF by applying Boolean distributive law via the SymPy library [95].

2.2.3 The supermodel structure and functionality
I assembled all information from the input GEMs into a Python structure I call the

supermodel, which resembles the COBRApy implementation for a GEM (Fig. 2.1).
Metadata from every source model are preserved in a “notes” attribute. The supermodel
comprises three core classes, metabolites, reactions, and genes, each with three main fields:
“assembly”, “comparison”, and “not_converted”. The “assembly” field aggregates, for
each entity, the instances drawn from all input models; “comparison” stores comparison
results and is empty at the time of supermodel creation; and “not_converted” contains
elements that could not be mapped. For direct access, I also retained per-model
subfields within metabolites, reactions, and genes. By default, GEMsembler sacrifices
non-converted entities in favour of a unified nomenclature and higher conversion
confidence; however, if users prefer not to lose non-converted content, the pipeline
can mix these entries into “assembly” using their original identifiers from the input models
via the “do_mix_conv_notconv” parameter.

To keep the structure familiar, I mirrored key COBRApy attributes for metabolites,
reactions, and genes (Fig. 2.1). For example, metabolites include “name” and “reactions”;
genes include “reactions”; reactions include “metabolites”, “genes”, “gene_reaction_rule”,
“lower_bound”, and “upper_bound”. Within each attribute, I added separate fields for every
input model alongside their union. This layout enables direct comparison of attribute values
per source model and their assembly, while preserving the origin for all features.

I implemented various comparison functionalities directly in the supermodel (Fig. 2.1).
In particular, the methods “at_least_in” and “exactly_in” compute features supported by at
least, or exactly, X input models, respectively, and “present” identifies features included
by some models and excluded by others. Beyond set-level comparisons of metabolites,
reactions, and genes, I also implemented comparisons of their attributes. For reaction
boundaries, I intersected the lower–upper intervals across the selected models and then,
based on possible model combinations, took the union of the resulting intersections.
Because I ensured consistent orientation of reactants and products during supermodel
assembly, reaction directionality is compared via their numeric bounds. For stoichiometric
coefficients, I applied an arbitrary rule: for each metabolite, the coefficient is taken as the
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most frequent value among the models of interest, with averaging within possible model
combinations. In cases of agreement, the coefficient remains unchanged; where models
disagree, all are taken into account, but that can lead to artificially unbalanced reactions. To
address this issue, further I introduced a reaction-balance check and subsequent coefficient
adjustment. I did not implement any special treatment for growth-related terms, so
the Growth-Associated Maintenance (GAM) value is treated like any other coefficient
and the Non-Growth-Associated Maintenance (NGAM) like the lower bound of the ATP
maintenance reaction (ATPM). Thus, if GAM and NGAM values are known, they should
be introduced into the GEMs outside GEMsembler. For gene–reaction rules, I decided
to identify AND groups of genes on which all models of interest agree (a group can be
treated as a single clause or genes within it can be intersected separately, controlled by the
“and_as_solid” parameter), and then to unite these agreed parts with OR across the relevant
model combinations. All comparison outputs are recorded in the “comparison” field of the
supermodel with assigned comparison identification (for example, core3).

Each comparison can comprise a corresponding consensus model, and I implemented
its extraction as a standard GEM in SBML format (Fig. 2.1). On top of the comparison
that forms a given consensus model, I enabled targeted addition or removal of reactions
according to user-specified lists, and, when a reaction is added, all of its attributes are taken
from the assembly level. The consensus level for genes and for the biomass reaction can be
set independently. To resolve orphan metabolites across compartments, additional transport
reactions can be inserted from the overall assembly. To control reaction stoichiometry,
GEMsembler evaluates mass and charge balance using metabolite formulas from the BiGG
database, when available. If a reaction is unbalanced but can be balanced by adopting
coefficients from the original models or by adding or removing hydrogen, the stoichiometry
is adjusted accordingly.

2.2.4 Downstream analysis of the network topology and function
With supermodel and consensus models available, a wide range of downstream analyses

become feasible. The analyses I consider most insightful I implemented directly in the
GEMsembler package, enabling exploration of network topology and functional behaviour
of consensus GEMs.

For topology-driven pathway search, I adapted the MetQuest package [94]. The
package accepts a path to an SBML/XML model file, a growth-medium specification as
a configuration file, and optional parameters such as a list of metabolites of interest for
targeted pathway extraction. MetQuest enumerates all feasible paths up to a specified
length from medium components to reachable metabolites, using only compounds already
available. Because networks with over a thousand metabolites and reactions can require
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more than 16 GB of RAM (at least 32 GB recommended), a bioinformatician in my
group, Bartosz J. Bartmański, transferred this step to a separate “pathsfinding” module so
it can be executed on a high-performance cluster, when available. The module writes an
HDF5 file, “metquest.h5”, containing the full dictionary of biosynthetic pathways up to
the chosen length, and a “shortest_paths.pkl” file with a smaller dictionary of the shortest
paths, three per metabolite by default, for either all metabolites or a user-specified subset.
To analyse outputs from multiple original and consensus models simultaneously, I wrote
the “run_metquest_results_analysis” function, that summarises what metabolites via what
pathways in which models can be synthesised.

Another analysis to explore network topology that I implemented in GEMsembler is
called “get_met_neighborhood”, and it computes and visualises the network neighbourhood
around a specified metabolite. The user provides the starting metabolite, a radius in
number of reactions, and a threshold for highly connected nodes; the function returns the
subnetwork induced by all reactions within that radius, stopping at metabolites involved
in more reactions than the threshold, and generates the corresponding plots. This function
is also used to compute each reaction’s distance from a pathway’s biosynthetic product,
enabling distance-based summaries and filtering.

To assess functional behaviour of the models, I used the FBA and pFBA functions
in COBRApy. In GEMsembler, I implemented growth simulation in specified media
and testing of production either for all biomass components or for user-selected
metabolites. Production of a metabolite is counted when the flux through its demand
reaction, set as the simulation objective, exceeds 0.001 mmol gDW−1 h−1. In the
corresponding pFBA solution, reactions carrying more than 0.001 mmol gDW−1 h−1

define a biosynthetic pathway for that metabolite. I implemented this biosynthesis
analysis simultaneously, together with a summary across a dictionary of models, in the
“run_growth_full_flux_analysis” function of GEMsembler.

As output, the functions “run_metquest_results_analysis” and “run_growth_full_flux_analysis”
produce summary plots and tables of production and pathway agreement for metabolites
of interest across all models. I also made GEMsembler automatically generate companion
tables listing all the identified paths, together with interactive network maps built using the
networkx (v 3.3) [96] and pyvis (v 0.3.2) [97] packages.

2.2.5 Case study: draft models reconstruction, supermodel, and
consensus models generation for E. coli and L. plantarum

To demonstrate GEMsembler’s functionality, I selected two bacteria, Lactiplantibacillus
plantarum WCFS1 (LP) and Escherichia coli BW25113 (EC), and reconstructed draft
GEMs for them using the CarveMe and gapseq command-line tools and the ModelSEED
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web server. Protein sequences were used for CarveMe and modelSEED, whereas gapseq
was run with nucleotide sequences. For L. plantarum I used assembly GCF_000203855.3.
For E. coli I reconstructed models de novo from the BW25113 genome associated with the
KEIO gene-essentiality dataset (available at https://fit.genomics.lbl.gov/cgi-bin/org.cgi?o
rgId=Keio). I selected the gram-positive template for L. plantarum and gram-negative for
E. coli and used default gap filling without specifying a medium.

In parallel, species models were downloaded from the AGORA2 collection [69]at https:
//www.vmh.life/files/reconstructions/AGORA2/version2.01/sbml_files/individual_re
constructions/. Because AGORA2 does not distribute genomes, I paired the L. plantarum
model with the genome from AGORA1 (https://www.vmh.life/files/reconstructions/AGO
RA/genomes/AGORA-Genomes.zip). For E. coli, I used assembly GCF_000750555.1,
which matches the AGORA2 model’s gene identifiers when locus tags are selected (https:
//ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/750/555/GCF_000750555.1_ASM75055v1/
GCF_000750555.1_ASM75055v1_cds_from_genomic.fna.gz)

For both organisms, I first converted the input models using the “GatheredModels” class
via its “run” method. I then assembled two supermodels with the “assemble_supermodel”
method of the “GatheredModels” class: a default version with “do_mix_conv_notconv” set
to False, and a mixed version with “do_mix_conv_notconv” set to True. In each case, I
ran input GEMs comparison with the supermodel method “get_all_confident_levels” and
generated consensus GEMs with the function “get_models_with_all_confidence_levels”.
These models were subsequently used for topology-driven pathway searches and for growth
and pFBA-based pathway analyses.

As a baseline for comparison, I used four original models for each organism,
AGORA, CarveMe, gapseq, and ModelSEED, converted to the BiGG nomenclature
with GEMsembler’s mixed approach and without adding transport reactions.

2.2.6 Models curation for E. coli and L. plantarum
To ensure GEMs reproduction of growth phenotypes I curated the models in two

stages: (i) the biomass reaction composition, and (ii) the biosynthetic pathways for biomass
components under the specified growthmedium, PMM5 for L. plantarum andM9 forE. coli.

PMM5 = ’pi_e’: 1000, ’glc__D_e’: 10, ’na1_e’: 1000, ’ac_e’: 1000, ’ascb__L_e’:
10, ’arg__L_e’: 10, ’glu__L_e’: 10, ’ile__L_e’: 10, ’leu__L_e’: 10, ’met__L_e’: 10,
’phe__L_e’: 10, ’thr__L_e’: 10, ’trp__L_e’: 10, ’tyr__L_e’: 10, ’val__L_e’: 10, ’nac_e’:
1000, ’pnto__R_e’: 10, ’ribflv_e’: 1000, ’mg2_e’: 1000, ’cl_e’: 1000, ’ca2_e’: 1000,
’mn2_e’: 1000, ’fe3_e’: 1000, ’fe2_e’: 1000, ’zn2_e’: 1000, ’so4_e’: 1000, ’cobalt2_e’:
1000, ’cu_e’: 1000, ’mobd_e’: 1000, ’k_e’: 1000, ’cu2_e’: 1000, ’h2o_e’: 1000, ’h_e’:
1000

https://fit.genomics.lbl.gov/cgi-bin/org.cgi?orgId=Keio
https://fit.genomics.lbl.gov/cgi-bin/org.cgi?orgId=Keio
https://www.vmh.life/files/reconstructions/AGORA2/version2.01/sbml_files/individual_reconstructions/
https://www.vmh.life/files/reconstructions/AGORA2/version2.01/sbml_files/individual_reconstructions/
https://www.vmh.life/files/reconstructions/AGORA2/version2.01/sbml_files/individual_reconstructions/
https://www.vmh.life/files/reconstructions/AGORA/genomes/AGORA-Genomes.zip
https://www.vmh.life/files/reconstructions/AGORA/genomes/AGORA-Genomes.zip
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/750/555/GCF_000750555.1_ASM75055v1/GCF_000750555.1_ASM75055v1_cds_from_genomic.fna.gz
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/750/555/GCF_000750555.1_ASM75055v1/GCF_000750555.1_ASM75055v1_cds_from_genomic.fna.gz
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/750/555/GCF_000750555.1_ASM75055v1/GCF_000750555.1_ASM75055v1_cds_from_genomic.fna.gz
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M9 = ’glc__D_e’: 10, ’pi_e’: 1000, ’co2_e’: 1000, ’mg2_e’: 1000, ’cl_e’: 1000,
’ca2_e’: 1000, ’mn2_e’: 1000, ’fe3_e’: 1000, ’fe2_e’: 1000, ’zn2_e’: 1000, ’so4_e’: 1000,
’cobalt2_e’: 1000, ’mobd_e’: 1000, ’k_e’: 1000, ’cu2_e’: 1000, ’h2o_e’: 1000, ’h_e’:
1000, ’ni2_e’: 1000, ’sel_e’: 1000, ’nh4_e’: 1000, ’na1_e’: 1000, ’o2_e’: 1000, ’tungs_e’:
1000, ’slnt_e’: 1000

To decide which biomass components to retain, I first ran preliminary growth and
biomass components synthesis analyses on the original models after conversion to the
BiGG nomenclature using GEMsembler’s default and mixed approaches. I then used the
agreement score from the GEMsembler “biomass” function to keep components present in
at least three models with several exceptions. One exception is acyl carrier protein (ACP_c),
which appeared in three of four models, except CarveMe, yet none could produce it in the
preliminary analysis; ACP is also not included in the biomass of the BiGG models [98] so I
excluded it. For E. coli, vitamin B12 (adenosylcobalamin, adocbl_c), core oligosaccharide
lipid Al (colipa_c), and phosphatidylethanolamine (dioctadecanoyl, n-C18:0, pe180_c)
were removed, as they were included by three of four models but not produced by any. I also
reviewed metabolites supported by only one or two models, retaining some low-confidence
lipids where they are essential for biomass formation despite inter-model disagreement.
Conversely, two lipid metabolites and siroheme in L. plantarum, and one lipid in E. coli,
were removed because their biosynthetic routes were long, non-linear, and present in only
a single model, making their presence less likely.

In this case study, my biomass selection was driven primarily by the presence of
components in the input GEMs and by whether their production was achievable, without
considering experimental validation, stoichiometric refinement, or normalisation, because I
was not using the models’ growth rate values and aimed to demonstrate the principle rather
than report curated models.

I curated the L. plantarum and E. coli core3 models to produce all biomass components
using the consensus approach as follows. For each precursor that core3 could not produce, I
inspected pathwaymaps from the core2 model or fromwhichever original model was able to
produce the target metabolite, then identified a minimal set of reactions missing in core3 and
added them. When the pathway for one biomass component required another component
upstream, I curated the upstream component first. During pathway-map inspection, I also
added transport reactions for common metabolites that had agreement in fewer than three
models. If, after introducing all reactions from the functional pathway, the curated core3
model still failed to produce the metabolite, I compared reaction bounds with those in
the original models and adjusted them as needed. For example, in ATP biosynthesis for
L. plantarum, a comparison of bounds between core3 and the CarveMe model revealed
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a constraint on phosphoribosylaminoimidazole carboxylase (AIRCr). Making AIRCr
bidirectional restored ATP production in the curated core3 model.

Instead of a manual curation procedure for baseline original models converted to BiGG
I performed automatic gap-filling on the minimal PMM5 medium using the CarveMe
gap-filling command. The numbers of gap-filled reactions added by CarveMe were 8, 0,
3, and 27 for the AGORA, CarveMe, gapseq, and ModelSEED L. plantarummodels, and 0,
1, 1, and 19 for the correspondingE. colimodels. Note that the L. plantarumCarveMemodel
and theE. coliAGORAmodel required no gap filling because they already grew in the tested
medium. For E. coli, I used the biomass components from the supermodel’s “assembly”
field. For L. plantarum, I instead took biomass components from each original model and
then modified them according to the curation procedure described above. This divergence
was necessary because gap-filling was not feasible when the L. plantarum biomass reaction
was taken from the “assembly” level.

2.2.7 Comparison with the gold-standard models for E. coli and
L. plantarum

As gold-standard references, I used the original Lactiplantibacillus plantarum model
iLP728 [99] and, forEscherichia coli, the iML1515/iML1515amodels adapted by Bernstein
et al. for the BW25113 strain bymodifying the original MG1655-based iML1515 to account
for strain differences [77, 100]. To assess basic similarity to these references in terms of
overall reaction lists, I computed recall and precision for each evaluated model. At the
reaction level, I formed the set intersection between reaction IDs in the gold-standard model
and in the evaluated model; recall was calculated as the intersection divided by the total
number of reactions in the gold standard, and precision was calculated as the intersection
divided by the total number of reactions in the evaluated model. At the gene level, I applied
the same definitions but restricted comparisons to genes associated with the same reaction
in both models (i.e., each model’s GPR contains the gene for that specific reaction, but
GPRs do not have to be identical). Consequently, genes present in both models but linked
to different reactions were excluded from the gene intersection set for recall and precision
calculations.

To assess model similarity in a low-dimensional space, a postdoc in my group, Sara
Benito-Vaquerizo, carried out principal component analysis (PCA) on reaction–presence
matrices using the PCA implementation in the scikit-learn package [101] and visualised
the models’ projections onto the first two principal components. Two scopes were
analysed separately, before and after gap filling/curation: first, the non-gap-filled
GEMsembler-converted original GEMs, the consensus models, and the gold-standard
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model; second, the gap-filled GEMsembler-converted original GEMs, the curated Core3
consensus model, and the gold-standard model.

2.2.8 Auxotrophy prediction for L. plantarum
For auxotrophy analysis in L. plantarum, I classified the experimental growth outcomes

in CDPMmedium lacking each of the 35 components reported in [75] into three categories:
growth (OD600 ≥ 1), no growth (OD600 ≤ 0.1), and reduced growth (0.1 < OD600 < 1). For
three metabolites, I adjusted these labels based on a previously published auxotrophy study
[99]. Specifically, growth without isoleucine was set to zero (OD600 = 0 rather than 0.2), as
the authors reported that L. plantarum cannot synthesise isoleucine and the observed growth
was due to trace carryover in the medium [99]. Growth without phenylalanine and without
tyrosine was set to the reduced-growth category (OD600 = 0.2 rather than 0.1), in line with
the reported visible growth under these conditions [99].

To simulate auxotrophies, CDPM medium was used as follows:
CDPM = [”pi”, ”glc__D”, ”na1”, ”ac”, ”nh4”, ”cit”, ”ascb__L”, ”ala__L”, ”arg__L”,

”asp__L”, ”cys__L”, ”glu__L”, ”gly”, ”his__L”, ”ile__L”, ”leu__L”, ”lys__L”, ”met__L”,
”phe__L”, ”pro__L”, ”ser__L”, ”thr__L”, ”trp__L”, ”tyr__L”, ”val__L”, ”lipoate”, ”btn”,
”nac”, ”pnto__R”, ”4abz”, ”pydam”, ”pydxn”, ”ribflv”, ”thm”, ”adocbl”, ”ade”, ”gua”,
”ins”, ”xan”, ”orot”, ”thymd”, ”ura”, ”mg2”, ”cl”, ”ca2”, ”mn2”, ”fe3”, ”fe2”, ”zn2”, ”so4”,
”cobalt2”, ”cu”, ”mobd”, ”k”, ”cu2”, ”h2o”, ”h”]

For each GEM, I predicted auxotrophies by running FBA to maximise biomass
production under each condition in which one of the tested CDPM nutrients was removed.
Predicted outcomes were classified as growth or no growth using absolute or relative
thresholds. Growth was assigned if the growth rate was at least 1 h−1 (absolute) or at least
0.85 of the model’s maximum growth rate in unmodified CDPM (relative). No growth was
assigned if the rate was at most 0.001 h−1 or at most 0.15 of the corresponding maximum
in unmodified CDPM. No cases of reduced growth were predicted for any model in any
condition. Finally, I compared these predicted categories with those derived from the
experimental data.

2.2.9 Gene essentiality prediction for E. coli
To evaluate gene essentiality prediction, I used the KEIO collection fitness dataset for

E. coli BW25113 (https://fit.genomics.lbl.gov/cgi-bin/org.cgi?orgId=Keio) [102, 103],
comprising gene knockout mutants grown on minimal media with diverse carbon and
nitrogen sources. This dataset had previously been assembled in a study to assess four
curatedMG1655 models that were adapted to BW25113; in that work, iML1515 was further
manually turned for improving essentiality predictions, yielding iML1515a [77]. For each

https://fit.genomics.lbl.gov/cgi-bin/org.cgi?orgId=Keio
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gene and condition, the dataset reports a fitness defect as the log2 fold change in growth
relative to the wild type; measurements are available for 3,789 genes across 28 carbon
sources and 13 nitrogen sources.

Because I reconstructed models directly from the E. coli BW25113 genome, no
additional strain-adjustment was required. I therefore followed the same evaluation
pipeline and predicted essentiality with COBRApy’s single_gene_deletion for each tested
model: the four original GEMs, the curated core3 consensus GEM and the gold-standard
iML1515, and iML1515a. I counted a gene as essential if the predicted growth rate with
its knockdown was less than 0.001 h−1, and non-essential otherwise. I then ranked genes
by increasing experimental fitness defect and computed precision–recall curves and the
corresponding area (AUCPR) using scikit-learn package. The set of genes evaluated varies
per model, depending on overlap with the experimental gene list. To ensure comparability
across models, I restricted analysis to conditions on which all models grew: resulting in 15
of the 28 carbon sources and all 13 nitrogen sources. For counting improved predictions
relative to the experimental benchmark, I set a fitness-defect threshold of log2 fold change
to −2, as in the prior study [77].

2.2.10 Improving gene essentiality prediction
In order to improve gene essentiality predictions I implemented two strategies for GPR

rules modification using GEMsembler supermodel (Fig. 2.2).

Figure 2.2. Schematic representation of the GPR modification to improve gene essentiality predictions by
each model. This figure was published in Matveishina et. al., mSystems 2025 [81]; it was made fully by
myself.

The first strategy, a stepwise GPR-combination algorithm (SA (Fig. 2.2), enriches the
target model’s GPRs by replacing them with alternatives drawn from other models, tested in
order of their overall predictive accuracy (AUCPR). I began by identifying reactions whose
GPRs include a gene misclassified as essential or non-essential in the target model. For each
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such reaction, I substituted the target GPR with the GPR from another model in which the
gene was predicted correctly for that reaction. A substitution was retained only if it corrected
the selected gene’s prediction without degrading predictions for genes that the target model
already classified correctly. If not, I tried the next candidate GPR from a different model.

As a second strategy, I implemented a genetic algorithm (GA) (Fig. 2.2) to search
agnostically the space of cross-model GPR combinations and maximise AUCPR for
gene-essentiality prediction in a given target model. In the GA encoding, each reaction that
has alternative GPR variants across the input sources acts as a locus in the chromosome.
For each such reaction, the choice of GPR source was encoded as an integer: 0 for the
target model itself, 1 for Core3, 2 for ag_EC, 3 for ga_EC, 4 for ca_EC, and 5 for mo_EC.
A chromosome is therefore a vector of these integers, one per reaction with alternatives, and
the full solution space is the Cartesian product over all such choices. With such formulation I
reduced potential space by eliminating cases in which different sources do not yield different
GPRs.

I performed the search in this solution space, optimising a fitness function that computes
AUCPR, using the PyGAD package with the following settings:

”num_generations” = 50, ”num_parents_mating” = 40, ”sol_per_pop” = 200,
”parent_selection_type” = ”tournament”, ”K_tournament” = 20, ”keep_elitism” = 5,
”crossover_type” = ”two_points”, ”mutation_type” = ”random”, ”mutation_by_replacement”
= true, ”mutation_probability” = 0.05, ”random_seed” = 42, ”parallel_processing” = 100.

A bioinformatician in my group, Bartosz J. Bartmański, assisted with running the GA
on a high-performance cluster and resolved numerical-accuracy failures observed with the
GLPK solver in COBRApy’s “single_gene_deletion” function by switching to the CPLEX
solver.

To limit unnecessary GPR changes, I post-processed GA outputs by intersecting
solutions across generations and retaining only those reaction-level choices on which the
last N generations agreed. Starting with N equal to 1 (the 50th generation), I progressively
tightened this consensus by adding one earlier generation at a time and re-evaluatingAUCPR
(e.g., 50th and 49th agree; 50th, 49th, and 48th agree, etc.). The procedure stopped when the
AUCPR of the consensus solution fell below the 50th-generation AUCPR, rounded down
to two decimal places.
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2.3 Results
2.3.1 Introduction to GEMsembler, generating cross-tool consensus

models
GEMsembler provides a unified procedure to harmonise, combine, and analyse

heterogeneous genome-scale metabolic reconstructions. In brief, it assembles GEMs
through four main steps: (i) conversion of input-model features (metabolites, reactions,
genes) into a unified nomenclature, (ii) assembling of the converted models into a single
object, hereafter the supermodel, (iii) comparison of the input models and generation of
consensus models comprising different combinations of input features, and (iv) downstream
analysis of the resulting consensus models (Fig. 2.1, 2.3A).

Figure 2.3. GEMsembler overview. (A) Schematic workflow with assembling supermodel and deriving
confidence-stratified consensus models. (B) Supermodel layout mirroring the COBRApy model class, but
extended with conversion details and source tracking for all features. (C) Major examples of downstream
analyses: pathway visualisation (left), growth via metabolite production (centre), and assessing gene
essentiality from GPR combinations (right). This figure was published in Matveishina et. al., mSystems
2025 [81]; it was made fully by myself.

GEMsembler first maps metabolite identifiers from the input models to BiGG IDs
[33]using multiple cross-referencing sources. The resulting mappings are then used to
rewrite reaction equations in the BiGG nomenclature, preserving the original network
topology (Fig. 2.1). When genome sequences are supplied, genes from the input models
are mapped to the locus tags or user-defined gene names of a selected output genome via
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BLAST [93](Fig. 2.1). At each stage, GEMsembler records intermediate states, enabling
inspection and troubleshooting of the conversion process.

GEMsembler then assembles the converted models into a single supermodel
(Fig. 2.1, 2.3A). The supermodel mirrors the COBRApy class structure [40]and adds
fields that record each converted element of the network (metabolite, reaction, gene)
together with its source provenance (Fig. 2.1, 2.3B). Elements that could not be mapped are
stored separately in a “not_converted” field. At the moment of creation, the supermodel
contains only the union of input features, termed the “assembly”, which includes everything
present in at least one model. All other combinations of input GEMs, termed consensus
models, can be generated at the next step with supermodel comparison functionalities. For
example, “coreX” consensus models retain features present in at least X input models, so
the assembly equals core1. Feature confidence is defined as the number of input models
that include the feature (metabolite, reaction or gene), and attributes of each feature in
consensus models follow the same agreement principle. For instance, if a reaction is
unidirectional in three of four input GEMs and bidirectional in one, it is unidirectional in
core4, core3, and core2, and bidirectional in the assembly. GPR attributes are reconciled
by comparing the logical gene expressions from the original GEMs to construct new GPRs
for the outputs. Consensus models are stored within the supermodel and can be exported
as standalone SBML models for downstream analyses with COBRA tools, including flux
balance analysis and gene essentiality prediction.

2.3.2 Investigating the structure and functions of the metabolic
network with GEMsembler consensus models

The GEMsembler supermodel comprises metabolite, reaction, and gene objects that can
be inspected interactively and that summarise agreement across the original models for each
network feature, supporting assessment of the network uncertainties and highlighting gaps
for potential experimental validation. Given the size of GEMs, pinpointing subnetworks
or features of interest can be difficult. To aid this, I integrated additional functionality into
GEMsembler (Fig. 2.3C) to systematically explore metabolic capabilities, assign confidence
levels to network structure via consensus models, and identify subnetworks of interest.

GEMsembler supports exploration of network structure by offering a neighbourhood
search that lists all reactions within a user-defined distance of a metabolite of interest, and
by providing three ways to define a “pathway” as a proxy for a given metabolic capability
whose confidence can be evaluated. First, a pathway can be user-defined, allowing
investigation of expected functions of interest; central carbon metabolism pathways:
glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle, are already
implemented in GEMsembler. Second, a pathway can reflect the capability to produce a
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target metabolite and can therefore be inferred topologically by enumerating feasible routes
from the supplied medium to that metabolite using the integrated MetQuest package [94],
yielding routes that resemble classical pathways in KEGG [104]or MetaCyc [57]. These
topology-derived routes are not guaranteed to carry flux, since no flux analysis is performed
at this stage. Third, biosynthetic pathways can be derived by parsimonious flux balance
analysis (pFBA) [38], which maximises production of the metabolite of interest while
selecting a minimal-flux solution. For any of the three definitions, pathway confidence
is quantified by agreement scores across input GEMs for the constituent metabolites,
reactions, and GPR rules. Outputs include a summary table and an interactive pathway map
for visual exploration (Fig. 2.3C).

To probe the functional behaviour of GEMs, GEMsembler simulates growth in a
specifiedmedium by running FBAwith biomass production as the objective. Additionally, it
redirects the objective to each biomass component in turn to test whether it can be produced,
and, together with pFBA-based pathway identification, allows pinpointing of missing routes
when growth is not achieved (Fig. 2.3C). Beyond reaction-network analysis, GEMsembler
compares alternative GPR formulations supplied by different input GEMs and assembles
their combinations. The resulting per-reaction GPR variants provide testable options and
guidance for model curation aimed at improving gene-essentiality predictions (Fig. 2.3C).

2.3.3 GEMsembler enables systematic characterisation of uncertainties
in GEMs: a use case with L. plantarum and E. coli

In order to showcase GEMsembler functionality, I focused on two well-characterised
bacteria: Lactiplantibacillus plantarum WCFS1 (LP), a gram-positive inhabitant of
fermented foods and the gastrointestinal tract with multiple auxotrophies, and Escherichia
coli BW25113 (EC), a gram-negative model organism with extensive gene-essentiality
measurements. Both species have established minimal media: PMM5 for L. plantarum
and M9 for E. coli, defining their nutritional requirements. Curated GEMs are available
for both species [99, 100], providing gold-standard references against which to evaluate
GEMsembler outputs. The workflow proceeded as follows: automatic reconstruction for
each organism with three tools (CarveMe, gapseq, ModelSEED) together with downloading
the corresponding AGORA models; assembly of supermodels in GEMsembler; assessment
of agreement for reactions and GPRs across consensus models spanning the union of inputs
(assembly) to the intersection of all four inputs (core4); and comparison of these consensus
models to the gold-standard reconstructions.

Checking the conversion procedure by comparing the number of metabolites, reactions,
and genes in the original GEMs, those incorporated into the supermodel, and those
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not converted shows that the majority of features from the four original models were
successfully converted and included in the supermodels (Fig. 2.4).

With regard to the basic agreement on network elements (Fig. 2.4), roughly half of
all metabolites and reactions appeared in only a single model, and between one quarter
and one third of genes were present in GPRs of only one model (LP: 339 of 1186 genes;
EC: 663 of 1952 genes). Full agreement across all four models was uncommon, not
exceeding one quarter of metabolites, reactions, or genes. For reactions with GPRs, a
separate GPR-agreement score was computed, which for many reactions was lower than
the reaction-level agreement. Overall concordance across model types was, as expected,
limited, but higher among the E. colimodels than among the L. plantarummodels, reflecting
E. coli’s status as the best-studied model bacterium (Fig. 2.4).
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Figure 2.4. General characteristics of L. plantarum (A) and E. coli (B) models, showing agreement across
metabolites, reactions, genes, and GPRs. ag: AGORA; ca: CarveMe; ga: gapseq; mo: ModelSEED. CoreX
indicates features shared by X models. This figure was published in Matveishina et. al., mSystems 2025 [81];
it was made fully by myself.
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To compare pathway-level agreement, I first examined production routes for central
carbon metabolites with available GEMsembler functionality (Fig. 2.5A, B). Topologically
feasible biosynthetic routes were enumerated in PMM5 minimal medium for L. plantarum
and in M9 minimal medium for E. coli. For each route, confidence was then evaluated
by inspecting reaction- and GPR-level agreement along the path. Central carbon outputs
were largely consistent across tools: for L. plantarum (Fig. 2.5A), all four models agreed
on the ability to produce most of the metabolites (all four original GEMs producing the
metabolite) and, in many cases, on the specific routes (the core4 consensus GEM also
produces it). At the same time GPR concordance was lower than reaction-level agreement.
(Fig. 2.5A). In E. coli case (Fig. 2.5B), models showed complete agreement in every
case except β-D-glucose 6-phosphate, whose route includes several reactions present in
only three of four models. GPRs likewise showed strong consensus: nearly all reactions
achieved core4 agreement, with four exceptions: HEX1, EDA, ALKP (appearing in many
of the tested routes), and FBA3 (specific to D-fructose 1,6-bisphosphate) – which reached
core3 agreement (Fig. 2.5B). Examination of canonically defined glycolysis, the pentose
phosphate pathway, and the TCA cycle led to the same conclusion: high agreement in
glycolysis and the pentose phosphate pathway and the most discrepancies in the TCA. The
discrepancies occur primarily at the GPR level in E. coli and, for L. plantarum, with many
of the TCA cycle reactions absent or represented with large inconsistencies.

Figure 2.5. Central carbon metabolite production determined by the network topology (left panels) in
converted original models and in consensus models, and agreement scores for reactions and GPRs (right
panels) in the corresponding highest-confidence pathways (marked with an asterisk) for L. plantarum (A)
and E. coli (B). This figure was published in Matveishina et. al., mSystems 2025 [81]; it was made fully by
myself.
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I then applied the same topology-based analysis to biomass components. Because
the biomass reaction differs across models, I took the union of components to obtain
a comprehensive set: 76 reactants across both species (Appendix I, II). Since medium
nutrients and cofactors are required as starting points for the topology search, biomass
components belonging to these categories were excluded from pathway analysis andmarked
separately (Fig. 2.6, 2.7). Compared with central carbon metabolites, producibility of
biomass components showed markedly lower confidence in both organisms, though the
E. colimodels still exhibited higher agreement. For L. plantarum, only six components were
produced with complete agreement (Fig. 2.6), whereas E. coli reached core4 agreement for
eleven components (Fig. 2.7).
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Figure 2.6. Biomass components production as determined by the network topology (left panel) in converted
original models and in consensus models, and agreement scores for reactions and GPRs (right panels) in the
corresponding highest-confidence pathways for L. plantarum. ag: AGORA, ca: CarveMe, ga: gapseq, mo:
modelSEED. CoreX corresponds to the agreement of X models. This figure was published in Matveishina et.
al., mSystems 2025 [81]; it was made fully by myself.
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Figure 2.7. Biomass components production as determined by the network topology (left panel) in converted
original models and in consensus models, and agreement scores for reactions and GPRs (right panels) in
the corresponding highest-confidence pathways for E. coli. ag: AGORA, ca: CarveMe, ga: gapseq, mo:
modelSEED. CoreX corresponds to the agreement of X models. This figure was published in Matveishina et.
al., mSystems 2025 [81]; it was made fully by myself.

Summarising the topology analysis highlights specific regions of uncertainty in the
metabolic networks and motivates a stepwise follow-up, enabling a zoom-in from the global
network to a handful of pathways and even individual reactions (Fig. 2.8A). First, the
metabolites of interest (30 central-carbon compounds and 76 biomass components) were
partitioned into “regular” metabolites versus categories that serve as inputs or enabling
factors for the analysis (nutrients, other medium components, and cofactors), thereby
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removing metabolites whose biosynthesis is either irrelevant or not assessable with a
topology-only approach. Second, for the regular metabolites, an agreement score was
computed across models and entries below core2 were excluded; this stage filters out
metabolites whose presence is unlikely, making their biosynthesis less informative to
investigate. This yielded 51metabolites for L. plantarum and 60 for E. coli, which were then
examined for the presence of production pathways. Third, metabolites showing complete
agreement across input GEMs on either their biosynthetic pathway or its absence were
set aside, as they carry high certainty and thus low priority for further analysis. Finally,
metabolites lacking complete agreement on their biosynthetic routes were flagged for
manual inspection (Fig. 2.8A).
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Figure 2.8. Mapping uncertainty in topology analyses of metabolic networks with pathway examples. (A)
Overview of the step-wise prioritisation scheme: a left-panel decision cascade narrows the search from
the full network to candidate pathways/reactions; the right panel reports outcomes for central carbon and
biomass components sets in L. plantarum and E. coli. (B) Profile of reactions prioritised in panel C,
summarising per-reaction agreement, GPR-rule agreement, and network distance from the target metabolite
of the biosynthesis pathway. (C) L. plantarum example: ambiguous succinate synthesis driven by SUCDi and
ABTA reactions. (D) E. coli example: uncertain valine synthesis driven by ACLS reaction. This figure was
published in Matveishina et. al., mSystems 2025 [81]; it was made fully by myself.

At the final stage, I inspected biosynthetic routes for 7 central carbon metabolites and 19
biomass components in L. plantarum, and for 1 central carbon metabolite and 18 biomass
components in E. coli, using GEMsembler’s interactive maps. Each case was assigned to
one of three outcome classes: produced, not produced, or uncertain, reflecting the inferred
biosynthesis (Fig. 2.8A). Pathways labelled uncertain contain reactions required for the
biosynthesis of the target metabolite whose gene-level annotations disagree across at least
two models. Such disagreement highlights these routes as areas of highest uncertainty in
the network, so they should be prioritised for further investigation. In L. plantarum, the
uncertain set includes two central-carbon metabolites (succinate and succinyl-CoA) and 11
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biomass components; in E. coli, 8 biomass components (and no central carbon metabolites)
fall into this category (Fig. 2.8A). Each uncertain pathway harbours at least one reaction
responsible for the ambiguity, yielding 26 uncertain reactions in L. plantarum and 10 in
E. coli (Fig. 2.8B). In L. plantarum, most of these reactions are supported by two models
but have a GPR present in only one; in E. coli, confidence is slightly higher, with GPRs
typically present in two models. The majority of uncertain reactions lie at the product node
or one step upstream, although some occur as far as seven steps away along the biosynthetic
route (Fig. 2.8B).

GEMsembler’s interactive maps enable visual inspection of candidate routes and
localisation of the reactions that drive uncertainty. For L. plantarum succinate synthesis,
two alternative routes explain the ambiguity: one via succinate dehydrogenase (SUCDi) and
another via 4-aminobutyrate transaminase (ABTA), with GPR support for these branches
coming from only a single model (Fig. 2.8C). In E. coli valine synthesis, three reactions
appear in only two models: ACLS, GLUDxi, and ALATA_L (Fig. 2.8D). The glutamate
dehydrogenase reaction GLUDxi duplicates the role of the better-supported GLUDy but
uses NAD instead of NADP, so it does not affect valine production; given that E. coli
glutamate dehydrogenase is NADP-specific [105, 106], GLUDxi is likely an artefact of
automatic reconstruction. The L-alanine transaminase reaction ALATA_L is essential
for alanine synthesis and was therefore flagged within the alanine pathway; reports of
multiple alanine transaminases in E. coli [107]suggest this reaction is plausibly present.
The acetolactate synthase reaction ACLS is directly required for valine formation and has
been identified in E. coli [108, 109], so it should be retained. In this way, the uncertain
reactions identified can either be resolved using existing knowledge, where available, or
serve as candidates for further experimental verification.

In this section, I showed how GEMsembler identifies uncertain regions of the network
and characterises confidence across metabolites, reactions, and GPRs. By combining
consensus-based agreement scores with topology-derived pathways, the workflow narrows
broad uncertainty to a focused set of pathways and reactions for follow-up.

2.3.4 Curation of GEMs with GEMsembler to reproduce growth
phenotypes

A principal step in GEM curation is to ensure the organism’s metabolic capabilities
by reproducing growth phenotypes via classical FBA simulations, and consensus models
generated with GEMsembler provide a basis for this process. Both L. plantarum and E. coli
grow in defined minimal media (PMM5 and M9, respectively), which implies that all other
required metabolites must be synthesised under those constraints. I used this information to
guide curation under the consensus approach.
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GEMsembler’s growth-analysis module applies FBA to test the producibility of each
biomass component, thereby explaining growth failures under the given conditions. In this
section, I define biosynthesis in FBA terms rather than topology terms to ensure relevance to
growth simulations and to account for transport and cofactor usage. Preliminary simulations
on mixed original and consensus models indicated that none of the models achieved growth,
as at least one required biomass component could not be produced in each case.

To curate the models of L. plantarum and E. coli, I first revised the biomass reaction and
then ensured that all biomass components were producible in FBA simulations. Using the
agreement score from GEMsembler’s “biomass” function, I retained components present
in at least three models (Appendix I, II). I also kept several metabolites supported by only
one or two models when their synthesis was feasible in the corresponding reconstructions
(see Materials and Methods). In total, the curated biomass comprised 58 components for
L. plantarum and 61 forE. coli (Appendix I, II). This approach does not replace experimental
curation, but it provides criteria for deciding on biomass composition when experimental
data are unavailable.

After revising the biomass reaction under the consensus approach, I re-ran FBA across
all models using GEMsembler’s functionality to test for growth. All models, except the
assembly, failed to grow because at least one biomass component remained non-producible
(Fig. 2.9A, B). Nevertheless since each biomass component is produced by at least one input
GEM, combining different GEMs provides an opportunity to restore the required functions
in any model. Complete core4 agreement on biomass-precursor biosynthesis was low in
both organisms (LP: 10/58; EC: 12/61), with E. coli again showing higher concordance
overall. In E. coli, the core2 consensus produced most precursors (Fig. 2.9A), whereas
in L. plantarum the core2 and core3 consensus GEMs performed similarly and produced
fewer than half of the targets (Fig. 2.9B), indicating lower inter-model consistency. Some
metabolites, such as cysteine, glutathione, and 2-demethylmenaquinone, were producible in
all input models but not in every consensus, reflecting divergent pathway realisations that
introduce gaps and yield incomplete routes in the consensus GEM. As a curation strategy, I
selected a single consensus model and restored its ability to grow. To balance confidence,
complexity, and functionality, I chose the core3 consensus as the base and added a minimal
set of reactions from othermodels withGEMsembler-guided procedure to ensure all biomass
precursors could be produced.
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Figure 2.9. Production of revised biomass components for E.coli (A) and L. plantarum (B) estimated with
GEMsembler growth analysis functionality based on FBA simulations. Green horizontal rectangles highlight
the consensus models selected for further curation; vertical rectangle in B highlights metabolite for which the
curation process is exemplified in Figure 2.10. This figure was published in Matveishina et. al., mSystems
2025 [81]; it was made fully by myself.

Alongside the summary of biomass component production, GEMsembler’s
growth-analysis function automatically derives biosynthesis pathways for all biomass
components that are producible in each GEM using pFBA simulations, and it generates
corresponding tables and interactive maps. These outputs provide the information needed
to identify which reactions should be added during curation. Accordingly, I inspected
the interactive maps of pFBA-derived routes for components that the core3 model fails
to produce but at least one other model can. Along these routes in the producing models,
reactions with confidence below core3 are candidates for restoring the target metabolite’s
biosynthesis, even when they lie several steps away. Not all such reactions are necessary,
therefore indiscriminately adding them would introduce unnecessary uncertainty, so I used
visual examination of the maps to make an initial selection of curated reactions. Restoration
of each pathway was then confirmed by rerunning FBA.

As an example, in L. plantarum the thiamine diphosphate pathway contains two to three
low-confidence reactions in three segments that were curated (Fig. 2.10). Highly connected
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precursors, such as ATP or NAD, pose an additional challenge: adding reactions may be
insufficient and reaction boundsmay require adjustment. In L. plantarum, only the CarveMe
model produced ATP, owing to the bidirectional setting of phosphoribosylaminoimidazole
carboxylase (AIRCr); adopting bidirectionality for AIRCr in the curated core3 model
likewise enabled ATP production.

Figure 2.10. GEMsembler interactive map derived from CarveMe model for the thiamine diphosphate
(tmpp_c) biosynthesis pathway in L. plantarum, with curated reactions that restore this function in the core3
model. This figure was published in Matveishina et. al., mSystems 2025 [81]; it was made fully by myself.

In total, I added 72 reactions to the L. plantarum core3 model, including 28 transport and
exchange steps, yielding a curated core3 model with 639metabolites, 729 reactions, and 420
genes. The E. coli core3 model was curated analogously: 43 reactions were added, 11 of
which were transport or exchange, resulting in a curated core3 model with 943 metabolites,
1217 reactions, and 644 genes.

In this section, I showed howGEMsembler supports semi-automated curation to recover
a known growth phenotype. Using the consensus approach and FBA-based checks,
I pinpointed missing functions, yielding high-confidence, functional core3 models for
L. plantarum and E. coli.
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2.3.5 Comparing GEMsembler-curated models to original GEMs and
gold-standard models for L. plantarum and E. coli

After curating the core3 consensus models of L. plantarum and E. coli, I evaluated them
against the original GEMs as a baseline and against previously reported curated models
as the gold standards. The curated L. plantarum reference iLP728 [55, 99]and the latest
curated E. coli model iML1515 [77]are already in the BiGG nomenclature. It should be
noted that the iML1515 version used here was modified by Bernstein et al. from the
original strain MG1655-based iML1515 [100]to reflect differences between MG1655 and
BW25113, the strain I used in this study. The four original GEMs (AGORA, CarveMe,
gapseq, ModelSEED) were converted to the BiGG namespace with GEMsembler using the
mixed approach to preserve native structure while maximising comparability.

With respect to the growth phenotypes in minimal media, among the original GEMs only
the CarveMe model for L. plantarum and the AGORA model for E. coli reproduced growth
in PMM5 and M9, respectively. All other models required gap filling in the corresponding
medium, which I performed automatically with the CarveMe tool, consistent with automatic
draft reconstruction.

To quantify overall similarity of GEMsembler-curated core3 models and the original
drafts to the gold standards, I compared reactions and genes (Fig. 2.11, Fig. 2.12). For each
model, I computed the intersection of reaction and gene sets with the gold standard and
derived precision (intersection divided by the size of the model under consideration), recall
(intersection divided by the size of the gold standard), and the F1 score (the harmonic mean
of precision and recall).
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Figure 2.11. Comparison of reactions and genes in the GEMsembler-curated core3 model and the four original
L. plantarummodels (AGORA, CarveMe, gapseq, ModelSEED) against the gold-standard iLP728. Bars show
set overlaps with iLP728 quantified as precision, recall, and F1 score for reactions and for genes (left axis).
Red bars represent total number of reactions and genes in the models (right axis). This figure was published
in Matveishina et. al., mSystems 2025 [81]; it was made fully by myself.

Relative to the original GEMs, the core3 model recalls a similar fraction of iLP728
reactions and their associated genes while including far fewer features not present in iLP728,
yielding the highest reaction-level F1 score (0.58) and the second-highest gene-level F1
score (0.51) (Fig. 2.11). Overall, the GEMsembler-curated core3 model is closer to the
iLP728 gold standard than any of the four original models, reflecting the consensus-based
reconstruction that reduces unconfirmed elements.

Figure 2.12. Comparison of reactions and genes in the GEMsembler-curated core3 model and the four original
E. colimodels (AGORA, CarveMe, gapseq, ModelSEED) against the gold-standard iML1515. Bars show set
overlaps with iML1515 quantified as precision, recall, and F1 score for reactions and for genes (left axis). Red
bars represent the total number of reactions and genes in the models (right axis). This figure was published in
Matveishina et. al., mSystems 2025 [81]; it was made fully by myself.
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For E. coli, the original CarveMe model is the closest to iML1515, which is expected
given that CarveMe’s universal template draws extensively on reactions from BiGG E. coli
reconstructions (Fig. 2.12). This E. colimodel-organism heritage yields substantial overlap
with the curated reference. The Core3 consensus, despite containing the fewest reactions
and genes, attains the highest gene-level precision and the second-highest reaction-level
precision relative to iML1515 (Fig. 2.12), making it the second-closest model to the gold
standard.

Principal component analysis (PCA) of reaction–presence matrices (Fig. 2.13) was
conducted by a postdoc in my group, Sara Benito-Vaquerizo. The PCA places the
GEMsembler-curated E. coli Core3 model nearest to iML1515 among all candidates
(Fig. 2.13D). For L. plantarum, the GEMsembler-curated Core3 model is the closest along
the first principal component (Fig. 2.13B).
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Figure 2.13. Principal component analysis of reaction-presence matrices for automatically reconstructed,
consensus, and gold-standard models of L. plantarum (A, B) and E. coli (C, D).
A, C: GEMsembler-converted originals prior to gap filling, consensus models (core3 not curated), and the
gold-standard references. B, D: GEMsembler-converted originals after CarveMe gap filling together with the
GEMsembler-curated core3 model. Only the core3 consensus is shown in panels B and D, as this was the only
consensus model curated for growth. This figure was published in Matveishina et. al., mSystems 2025 [81];
it was the only plot generated not by me, but by a postdoc in my group, Sara Benito-Vaquerizo.

Overall, the consensus approach eliminated large numbers of low-confidence reactions
typical of draft reconstructions and produced medium-sized, high-confidence models that
more closely match the gold-standard reconstructions.

2.3.6 GEMsembler-curated model outperforms the gold-standard
L. plantarum model in auxotrophy prediction

Following structural analysis of the models, I evaluated their functional performance
through auxotrophy prediction. For L. plantarum greater similarity to the iLP728 reference
does not automatically imply higher quality, since novel gene functions and pathways
may have emerged since iLP728 was published. Models were tested for L. plantarum
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auxotrophies in an alternative medium, CDPM and compared against experimental
classifications of growth, no growth, and reduced growth [75,99]. For eachmodel–condition
pair, growth was predicted by running FBA in CDPM with one tested nutrient removed.
Because no simulations yielded an intermediate outcome, predictions were binned into
growth or no growth.

The GEMsembler-curated core3 model performed best overall, exceeding the accuracy
of all other models, including iLP728, in two to four conditions. No metabolites were found
for which core3 was wrong while another model was correct (Fig. 2.14). Four of the five
errors made by core3 corresponded to experimentally observed “reduced growth,” where
the binary classification necessarily mislabels the outcome. For tryptophan, all models,
including core3, predicted growth; the discrepancy likely reflects non-metabolic inhibition
by other aromatic amino acids present in the medium [99]. Relative to iLP728, core3
correctly captured four phenotypes: growth in the absence of biotin and pyridoxamine, and
no growth in the absence of glutamate and riboflavin (Fig. 2.14).

Figure 2.14. Auxotrophy predictions in CDPM medium for all models compared with experimental
information. Labels: core3, GEMsembler-curated core3 model; ag_LP, AGORA; ca_LP, CarveMe; ga_LP,
gapseq; mo_LP, ModelSEED (L. plantarum models); exp_data, experimental data. This figure was published
in Matveishina et. al., mSystems 2025 [81]; it was made fully by myself.

GEMsembler’s network-structure analysis enables moving beyond mere comparison
of simulation outputs to investigate the underlying causes of improvements in specific
predictions.

For biotin, the key difference is compositional: iLP728 treats biotin as a biomass
component, whereas none of the original reconstructions, and consequently the core3model,
include it in biomass (Appendix I). This change yields the correct prediction of growth
without biotin supplementation in L. plantarum, but it does not clarify the organism’s
biosynthesis route to biotin. Given biotin’s role in fatty acid synthesis in lactic acid bacteria
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[75], the corresponding biosynthetic pathway warrants dedicated follow-up. Riboflavin
shows the opposite pattern. The experimentally observed auxotrophy is missed by iLP728
because riboflavin is not part of its biomass reaction. In contrast, core3 and all original
models include riboflavin in biomass (Appendix I). Among these, CarveMe and AGORA
incorrectly predict its production, while core3, gapseq, and ModelSEED lack a riboflavin
biosynthesis route, aligning with auxotrophy.

Two further discrepancies between core3 and iLP728 arise from differences in the
pathway structure. For pyridoxamine, iLP728 incorrectly predicts its auxotrophy because
the model requires it to make biomass component pyridoxal 5′-phosphate via ALATA_Lr,
a reaction without a GPR (interactive map is available with GEMsembler publication as
File S10). The core3 model instead uses PYDXS to form pyridoxal 5′-phosphate without
pyridoxamine: an interactive map is available with GEMsembler publication on Zenodo
and GitLab (Appendix III) as File S11. PYDXS appears in three original models, also
without a GPR, but correctly implies that pyridoxamine is non-essential. Finally, glutamate
auxotrophy is not predicted by iLP728 because it contains P5CD, which converts proline
(present in CDPM) to glutamate (interactive map is available with GEMsembler publication
as File S12). P5CD lacks a GPR in iLP728 and is absent from all original models;
consequently, it is not present in core3, resulting in the correct prediction of glutamate
auxotrophy.

This section shows that models generated with the consensus approach can capture
experimental phenotypes and even outperform the curated gold-standard model. The
consensus strategy is not a substitute for experimental validation; rather, together with
GEMsembler’s network-structure exploration, it provides a principled way to generate
hypotheses and prioritise validation. As new evidence becomes available, GEMsembler
can support an iterative curation loop between the data and the models.

2.3.7 Curating GPR rules with GEMsembler improves gene
essentiality predictions in E. coli

Model quality depends not only on network topology (the reactions) but also on the
gene content encoded in GPR rules. These rules can be evaluated via gene-essentiality
tests: simulate growth with a given gene knocked out so that its associated reactions carry no
flux, then compare predictions to experimental outcomes. Because GPR formulations differ
across input reconstructions, evenwhen built from the same genome, essentiality predictions
also diverge. I therefore first assessed models performance in this regard. In addition,
since GEMsembler aggregates GPRs from all original and consensus models, I investigated
whether this pool of alternatives can be leveraged to improve essentiality predictions by
recombining GPR rules from different models.
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To evaluate functional performance, I compared modelled gene essentiality
with experimental fitness defects for 3789 single-gene knockouts measured across
41 minimal-media conditions comprising 28 carbon and 13 nitrogen sources
[102, 103]available for E. coli BW25113, which motivated selection of this strain for
this project.. This dataset was previously used to benchmark four curated E. coli models
and to produce an adjusted version of iML1515 (iML1515a) with improved essentiality
predictions [77]. For comparability, I restricted analysis to the 15 carbon sources and all 13
nitrogen sources on which every model grows.

Functional performance for each model was evaluated as the area under the
precision–recall curve (AUCPR) over gene–condition pairs ranked by the experimental
growth defect (Fig. 2.15). Among the tested models, the AGORA reconstruction achieved
AUCPR = 0.642, surpassed only by the adjusted gold standard iML1515a (AUCPR
= 0.754), and exceeding the standard iML1515 (AUCPR = 0.593) (Fig. 2.15). The
GEMsembler-curated Core3 model followed with AUCPR = 0.556, whereas the original
gapseq, CarveMe, and ModelSEED drafts performed worse, with AUCPR values between
0.3 and 0.5 (Fig. 2.15).

Misclassifications of essential/nonessential genes can stem from either network
topology or from GPR specification. To target the latter, I used the consensus approach to
revise GPRs in each tested model, including iML1515 and its adjusted variant with one
knowledge-driven and another agnostic strategy (see Materials and Methods and Fig. 2.2).

First, I applied a stepwise combination algorithm (SA): for a given model, reactions
whose GPRs implicated mispredicted genes were reassigned to GPRs taken from alternative
sources in the supermodel (meaning alternativemodels) that correctly classified those genes,
testing candidates in order of decreasing AUCPR (see Materials and Methods and Fig. 2.2).
Second, I used a genetic algorithm (GA) to select, for each reaction, one GPR from the pool
offered by all models, optimising AUCPR on the carbon-source conditions. After tuning on
carbon sources, I evaluated whether these changes also improved predictions on nitrogen
sources (see Materials and Methods and Fig. 2.2).
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Figure 2.15. Combining GPR rules in E. coli models
improves gene-essentiality predictions across carbon
and nitrogen sources. Precision–recall curves and
AUCPR are shown for carbon sources (left) and
nitrogen sources (right) for the original models (blue,
solid) and for models modified with the combination
algorithm (turquoise, dashed) or the genetic algorithm
(green, dotted). This figure was published in
Matveishina et. al., mSystems 2025 [81]; it was made
fully by myself.
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The two GPR-modification strategies differ markedly in the extent of changes they
introduce. The stepwise algorithm alters only a few dozen GPRs per model, from as few
as three in iML1515a up to thirty-four in iML1515, whereas the genetic algorithm typically
rewrites hundreds of GPRs (Fig. 2.16A). These edits also change gene content. The SA
affects between one and ten genes per model, while the GA alters between six and 248
genes (Fig. 2.16B). Under SA, gene removals are rare, limited to six genes in iML1515a
and one in the gapseq model. The GA likewise tends to add rather than remove genes, with
the main exceptions being iML1515a and CarveMe, which already contain the largest gene
sets (Fig. 2.16B).

Figure 2.16. Curation of GPRs using the stepwise combination algorithm (SA) and the genetic algorithm
(GA). (A) Number of GPRs changed in each model by SA and by GA. (B) Number of genes changed in each
model by SA and by GA. This figure was published in Matveishina et. al., mSystems 2025 [81]; it was made
fully by myself.

Applying the stepwise combination algorithm (SA) improved gene-essentiality
predictions across all models (Fig. 2.15). For the core3 model, AUCPR rose by 13.5%
to 0.691, exceeding the gold-standard iML1515. AGORA increased by 8.7% to 0.729.
Gapseq gained the smallest improvement 1.8%, while CarveMe and ModelSEED showed
the largest relative jumps, +12.8% and +16.7%, reaching AUCPR = 0.513 and 0.492,
respectively. Even the gold standards benefited from considering GPRs in the other GEMs:
iML1515 reached 0.616 (+2.3%) and the adjusted iML1515a reached 0.767 (+1.3%).
Notably, improvement was not one-way from strong to weak models. For example, despite
its higher baseline performance, AGORA was still enhanced by combinations with core3,
gapseq, CarveMe, and ModelSEED, each of which started with lower original performance.

Using the GA to select an optimal cross-model GPR set yielded even larger
improvements in essentiality prediction than using the SA across all analysed models.
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The modified core3 and AGORA models reached AUCPR values of 0.711 and 0.731,
respectively, again outperforming the gold-standard iML1515, and by an even wider
margin (Fig. 2.15). Gapseq improved by 6.6%, while CarveMe and ModelSEED again
showed the largest boosts, 19.7% and 27.7%, achieving AUCPR = 0.582 and 0.602,
respectively. The original gold-standard iML1515 benefited more considerably, by 6.0%,
and the adjusted iML1515a also improved by 1.7% (Fig. 2.15).

Improvements in overall prediction quality were accompanied by more genes falling
into the all-correct or mixed categories across the 15 carbon sources and by fewer genes
with completely incorrect predictions (Fig. 2.17A). Across the analysed GEMs, between 3
and 15 mispredicted genes were corrected by either the SA or GA procedure, often across
multiple conditions (Fig. 2.17B). Both approaches also introduced new genes with correct
or mixed predictions: 1 to 8 genes with SA and 6 to 229 genes with GA (Fig. 2.17B). No
genes in any model moved into the wrong category as a result of SA or GA. However, there
was one new gene added by SA to the ModelSEED model that was mispredicted in all 15
carbon-source conditions.
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Figure 2.17. Genes in E. coli models: essentiality predictions and improvements. (A) Number of genes
separated by prediction quality status for original and SA/GA-modified models. (B) Number of genes whose
essentiality predictions improved after SA or GA, genes newly added with at least partially correct predictions,
and the overlap between genes improved by SA and GA. This figure was published in Matveishina et. al.,
mSystems 2025 [81]; it was made fully by myself.

To understand how performance gains arose in the adjusted iML1515a, the strongest
curated model to date, I examined which genes and GPR changes were introduced. Both
GA and SA improved predictions for three existing genes (b0131, b0134, b0778) and added
one correctly predicted gene (b1593). Each of the three improved genes maps to a single
reaction in iML1515a (ASP1DC, MOHMT, and DBTS, respectively).

In the original model these genes were predicted essential, but after GPR revision
they became non-essential, matching the experimental dataset. The mechanism was the
same in all cases: a single-gene GPR was replaced with a different rule that includes
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additional isoenzymes (two or three genes), offering alternative routes. For example,
for the dethiobiotin synthase reaction (DBTS), the GPR changed from “b0778” to
“b0778 or b1593”. Notably, b1593 is annotated in Ensembl [110]as a putative dethiobiotin
synthetase and is supported by recent functional experimental assays [111]; it is also
correctly predicted as non-essential, consistent with experimental evidence.

Since it is important to test whether the model improvement can be generalised, I tested
it on an different set of experimental data. I performed gene essentiality predictions for the
same mutants but grown on alternative nitrogen sources (Fig. 2.15). Using the input models
and the GPR-modified variants (tuned on the carbon-source data), both the improvement
trends and the overall performance levels were recapitulated on the nitrogen-source dataset
(Fig. 2.15). This suggests that, although experimental data are needed to guide automatic
improvements, the resulting models can transfer those gains to conditions not used during
curation.

Overall, GEMsembler’s comparison and consensus framework enables merging
model features through targeted edits or automated pipelines, improving the predictive
performance of both original reconstructions and consensus models.

2.4 Discussion
GEMsembler provides a unified, flexible framework for cross-tool comparison of GEMs

and for assembling consensus reconstructions at various agreement levels, depending on the
required confidence. Cross-tool evaluation is crucial, because the choice of reconstruction
pipeline can shape network structure and downstream predictions as much as, or more
than, the biological input from the genome itself [24]. By exposing tool-driven variability,
offering utilities to navigate large networks, and deriving consensus models from areas of
agreement, GEMsembler helps mitigate tool-specific biases.

Beyond comparison, consensus building proves practically useful: models can
complement one another and improve predictive performance, as seen for auxotrophy
and essentiality benchmarks. Although experimental data remain the arbiter for refinement,
GEMsembler provides semi-automatic routes to combine features that best align with
observations, thereby accelerating design–build–test–learn cycles. Systematic contrasts of
alternative reactions and GPR rules highlight uncertainties and knowledge gaps, guiding
experimental prioritisation. The proposed, transparent curation workflow yields consensus
models that match or even surpass gold-standard reconstructions for L. plantarum and
E. coli, streamlining the otherwise time-intensive process of model reconstruction and
curation while meeting quality standards.

GEMsembler, however, comes with certain limitations. First, it relies on BiGG [33]
as the primary biochemical database, which is smaller than broader resources such as
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ModelSEED [58]. There are still good reasons to choose BiGG: it is model-oriented, widely
adopted, and uses readable identifiers. Nevertheless, the GEMsembler framework is flexible
enough to adopt a different primary database if the scientific community needs such change.
The second limitation arises from standard conversion issues: some metabolites, reactions,
and sometimes even genes cannot be converted. By design, the default supermodel assembly
omits non-converted elements to remain conservative about conversion results and for the
sake of standardisation, in contrast to the mergem tool [80], which mixes nomenclatures.
GEMsembler still mitigates conversion loss issue with a “mixed” supermodel option that
retains non-converted elements when they are relevant to the analysis. Finally, GEMsembler
requires prior knowledge of the input GEM format, which must be provided by the user.
Although six input model types are currently supported, models may follow other formats,
some of which may be difficult or impossible to anticipate. The current solution is to
allow users to add new formats by adapting the existing conversion classes and pipeline
parameters.

Regarding consensus assembly, a central challenge is how to combine specific model
attributes, particularly GPR rules. Consider GPR rule “(geneA and geneB) or geneC” in
one model versus GPR rule “(geneA and geneD) or geneE” in another. The consensus
can be interpreted as “geneA,” retaining the shared subclause present in both models, or
as empty, requiring intact AND groups because the models disagree on the enzymatically
active unit. GEMsembler adopts the former interpretation by default, but provides an
“and_as_solid” parameter in the supermodel assembly and comparison functions that handle
GPR combination; setting it enforces the stricter interpretation.

A broader issue is that there are many legitimate ways to combine models, and the most
appropriate choice depends on the question being asked and the analysis goals; anticipating
every use case is challenging. As an example, the current GEMsembler comparison
combines model structural elements (metabolites, reactions, genes) at a certain agreement
level and evaluates their attributes at the same level. This is sensible in most scenarios,
yet it can discard useful information: for instance a reaction may be kept because three
models include it, while its GPR is dropped because no GPR overlaps across the same three
models. In such cases one might wish to preserve a high-confidence network topology but
also retain as much genetic evidence as possible. A more dynamic scheme would decouple
structural inclusion from attribute evaluation, for instance keeping the reaction at the chosen
agreement level while attaching the best available GPR, defined as the highest non-empty
agreement across sources. Exposing this as an option would let users prioritise either strict
consistency or richer genetic context, depending on their aims.

Pathway transfer between consensus models raises a related issue. When a route from a
lower-agreement consensus is added to a higher-agreement model, reactions are currently
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selected via pFBA, following a minimal-length principle for pathway composition. As
an alternative, reaction selection could maximise the proportion of reactions in the path
at the highest available agreement level, even at the expense of path length, reflecting
a most-confidence principle. Further improvements on the GEMsembler roadmap
include more nuanced merging of duplicate reactions, exporting richer metabolite and
reaction annotations that bridge additional namespaces, and optional user guidance during
conversion to resolve ambiguous mappings.

Although the case studies focus on single-species bacterial GEMs, GEMsembler is
not limited to this setting. By aligning alternative pathway realisations across models,
it can highlight substitute routes that inform strain-engineering strategies to increase
target metabolite production or optimise growth [48]. Beyond single strain engineering,
GEMsembler can compare models from closely related species or isolates to pinpoint
metabolic divergences at the level of pathways, reactions, and genes that may underlie
phenotypic differences [23, 49–52]. GEMsembler can also compare distantly related
organisms that share a similar metabolic phenotype to reveal recurrent pathway motifs that
may explain convergent behaviour [53, 54]. The GEMsembler workflow also extends to
microbial communities [10,55,56]. Community-level assembly that connects models of its
members can reveal overlapping and complementary pathways, suggesting potential
cross-feeding, competition, and division-of-labour patterns, and thereby generating
hypotheses on interspecies interactions and priorities for experimental design [57, 58].



Chapter III
Reconstruction of B. uniformis and
P. vulgatus GEMs with consensus
approach and evaluation of their
metabolic behaviour

3.1 Introduction
The human gut microbiota plays a crucial role in host health and physiology, especially

through its involvement in nutrient processing and metabolic regulation [2, 5]. Due to
the complexity of the microbiota community, the essential step of clarifying this role is
examining the dominant members of the microbiota. In the majority of healthy “western”
human intestine communities, the most abundant genus is Bacteroides, and the two most
abundant species are Bacteroides uniformis and Phocaeicola (former Bacteroides) vulgatus.
These species have been shown to play a central role in carbohydrate breakdown, various
metabolic and inflammatory responses, drug effects, etc. [5, 112–116].

With respect to carbon source utilisation, Bacteroides are able to degrade long-chain
polysaccharides, which are intractable for both human enzymes and many other bacteria,
due to their unique gene clusters called polysaccharide utilisation loci (PULs) [112, 117].
For example, B. uniformis PULs show distinct glycan-degrading functions in the xyloglucan
or type-II mucin media and therefore additionally mediate glycan-dependent interactions
with butyrate producers in the bacterial community [117]. Another example demonstrates
that B. uniformis and P. vulgatus contain fructan-utilisation loci that allow them to grow
on fructose-based carbohydrates in quite minimal media, which contains only L-cystein
and hematin/L-histidine as potential additional nutritional compounds [118]. For glucose,
fructose and sucrose, the reported doubling time for B. uniformis is quite stable: 2 h, 2.1 h,
2.1 h, respectively, while for P. vulgatus it varies more: 2.8 h, 3.2 h, 2.4 h, respectively [118].

77
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Depending on the available carbon source, Bacteroides demonstrate various metabolic
capabilities. B. uniformis can utilise gum arabic, mucin, pectin, WBE (wheat bran
extract), inulin and has different expression patterns in neurotransmitter GABA
(gamma-aminobutyric acid), butyrate and fatty acids biosynthesis pathways in these
media [119]. It is also proven to produce more GABA when grown on mucin or pectin
instead of glucose [119].

Many Bacteroides, including B. uniformis and P. vulgatus, are associated with different
metabolic compounds, crucial for various aspects of host physiology, including bile acid
[114], acetate [116], propionate [120], folate [121], butyric- and caproic-acid [115]. They
can even share the bile acid biosynthesis pathway with other members of the microbial
community, by utilising taurocholic acid with bile salt hydrolase and producing cholic acid,
which can be further utilised by Clostridium [122].

The abundance andmetabolic capabilities ofB. uniformis andP. vulgatusmake them key
representatives of the gut microbiome, but current knowledge about these bacteria is quite
limited compared to model organisms such as E. coli. Even within the genus Bacteroides,
the most studied species is B. thetaiotaomicron [112, 123].

The limitation of knowledge about B. uniformis and P. vulgatus starts with functional
annotation. It is striking compared to the most extensively studied bacteria E. coli and quite
substantial compared to adequately characterised Bacteroides, B. thetaiotaomicron. Both
B. uniformis and P. vulgatus have reference proteomes in UniProt [124]; the total number
of protein entries for B. uniformis falls between that of E. coli and B. thetaiotaomicron,
whereas the number of proteins in P. vulgatus is lower (Table 3.1). Annotation score of the
corresponding entries, which goes from 1 (basic, low confidence) to 5 (high confidence, with
experimental evidence), demonstrates how far B. uniformis, P. vulgatus and Bacteroides in
general are from the model organism in terms of available annotation, with the vast majority
of proteins having only the most basic annotation [125]. P. vulgatus does not have any
protein in the best annotation category [29], and B. uniformis has only one entry in the
category above basic [126], while B. thetaiotaomicron annotation scores are better (Table
3.1). In regard to genome size, the corresponding NCBI RefSeq assemblies [127] show
that B. uniformis and P. vulgatus genome length is in the range of ~5 Mb, which places
them between E. coli and B. thetaiotaomicron, but their number of annotated genes is lower
(Table 3.2).
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Entries annotation score Species ( Ref. proteome ID) Total entries 1 2 3 4 5
B. uniformis (UP000004110) 4618 4617 1 0 0 0
P. vulgatus (UP000002861) 3982 3107 617 241 17 0
B. thetaiotaomicron (UP000001414) 4782 3735 725 286 25 11
E. coli (UP000000625) 4402 538 847 679 718 1620

Table 3.1. Characteristics of protein annotation quality in B. uniformis, P. vulgatus,
B. thetaiotaomicron and E. coli according to UniProt [124]. The annotation score goes
from 1 (basic, low confidence) to 5 (high confidence).

Species Type Strain NCBI RefSeq assembly Genome
size

Genes
(RefSeq)

Protein-coding
(RefSeq)

B. uniformis ATCC8492 GCF_000154205.1 4.7 Mb 3,872 3,692
P. vulgatus ATCC9482 GCF_000012825.1 5.2 Mb 4205 3982
B. thetaiotaomicron VPI-5482 GCF_000011065.1 6.3 Mb 4888 4687
E. coli K-12. MG1655 GCF_000005845.2 4.6 Mb 4651 4290

Table 3.2. B. uniformis and P. vulgatus genome information and comparison with model
organism E. coli and the most studied Bacteroides species B. thetaiotaomicron according to
their NCBI assembly [127].

From a metabolic modelling perspective, there are no genome-scale metabolic models
of B. uniformis or P. vulgatus published to date. For B. thetaiotaomicron, there is a GEM
from 2013 [98], reconstructed similarly to the AGORA procedure [68]: originally built
with ModelSEED and then manually curated based on the literature [29]. This GEM
was expanded later in 2021 [45], and includes comparison with B. thetaiotaomicron GEM
reported as part of the AGORA database [68], as well as experimental biomass, GAM and
NGAM quantifications. Though the latest B. thetaiotaomicron model is available only in
the form of tables, and not in the SBML format [45].

Given the importance of B. uniformis and P. vulgatus, which remain poorly
characterised, a Flagship project (as part of the Microbial Ecosystems Transversal Theme
EMBL program) aims to establish these species as new model organisms for the human gut
microbiome. As part of this large-scale effort, I carry out the de novo reconstruction and
curation of genome-scale metabolic models of B. uniformis and P. vulgatus type strains.
To this aim, I use the GEMsembler framework, which I previously developed, to assemble
several draft models of these bacteria and to curate them using consensus approach together
with the previously reported GEM for B. thetaiotaomicron as a phylogenetically close
reference point. The available experimental data, collected either by collaborators or by
myself, were then used to further curate the models for growth and secretion phenotypes
and to assess the metabolic behaviour of B. uniformis and P. vulgatus.
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3.2 Materials and Methods
3.2.1 Reconstructing draft genome-scale metabolic models (GEMs),

assembling supermodels and consensus models for B. uniformis
and P. vulgatus

Genomes of B. uniformis (BU) and P. vulgatus (PV) type strains were provided
by my collaborators from the Michael Zimmermann and Robert Finn groups at EMBL
and EMBL-EBI. Genomes underwent PacBio long-read sequencing, and afterwards were
assembled with Flye [128] and annotated using mettannotator [129]. The resulting genomes
are of similar size to previous assemblies 4.7 Mb (4688977 nt and 22713 nt plasmid) for
B. uniformis and 5.2 Mb (5163190 nt) for P. vulgatus. The mettannotator pipeline increased
the number of annotated proteins to 3846 for B. uniformis and 4200 for P. vulgatus compared
to the RefSeq annotation (Table 3.2).

For each of the species, I downloaded AGORA models, built three draft CarveMe,
gapseq, modelSEED models, and later, a master student in my lab, Valerio Boccolini,
built draft Kbase models, making it a total of five draft GEMs per species. CarveMe
command-line tool and modelSEED web service were used with the protein sequence
files produced by mettannotator, while gapseq command-line tool and Kbase web platform
were used with full genome sequences. In all cases, reconstruction was performed with
a gram-negative template for the models and only default gap-filling without specifying
any media, and for CarveMe and gapseq, I specified an anaerobic environment. AGORA
models and the corresponding genomeswere downloaded from theAGORA2 collection [68]
https://www.vmh.life/files/reconstructions/AGORA2/version2.01/sbml_files/individual_re
constructions/. As genomes were not available for the AGORA2 collection, I used the ones
provided in the AGORA1 version [67] (https://www.vmh.life/files/reconstructions/AGO
RA/genomes/AGORA-Genomes.zip ).

I used all five draft GEMs per species and the corresponding genome/protein sequences
as input to GEMsembler, which I used to assemble supermodels of B. uniformis and
P. vulgatus. Due to the challenges in extracting Kbase internal annotation (performed
by RAST [67]), I decided to use Kbase models without genes. Additionally, biomass
from KBase models, defined in the form of several artificial reactions and metabolites
representing different parts of biomass (e.g. for proteins or lipids), was transformed into
a lump biomass reaction in order for these models to be processed by GEMsembler.
Supermodel and five consensus models for each species were assembled with default
parameters and genes were converted to the custom protein sequence file with genes IDs
as locus tags from the mettannotator annotation.

https://www.vmh.life/files/reconstructions/AGORA2/version2.01/sbml_files/individual_reconstructions/
https://www.vmh.life/files/reconstructions/AGORA2/version2.01/sbml_files/individual_reconstructions/
https://www.vmh.life/files/reconstructions/AGORA/genomes/AGORA-Genomes.zip
https://www.vmh.life/files/reconstructions/AGORA/genomes/AGORA-Genomes.zip
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3.2.2 Growth in the minimal media
B. uniformis and P. vulgatus minimal media requirements were investigated with the

help from postdoc Mariia Beliaeva and lab technician Matthias Gross from the Michael
Zimmermann group. Since the Varel-Bryant minimal medium proposed for Bacteroides
contains cysteine and methionine (Table 3.3) [130], ), I wanted to replace these compounds
to make sure that they do not serve as additional carbon sources with B12 and Na2S
respectively, but due to issues with Na2S solubility, I had to switch the media base to Eric
Marten’s minimal medium (Table 3.4) [131].

Ingredients Quantity per litre
Mineral 3B solution 50 ml
Glucose (20% in H2O, filter sterilised) 25 ml (0.5% 28 mM)
L-cysteine (free base) 1g
Hemin (100 mg hemin in 2ml 1M NaOH in 200ml dH2O) 10 ml
L-methionine (0.2% in H2O, filter sterilised) 10 ml
FeSO4 (0.278g FeSO4*7H2O in 100ml H2O+2 drops HCl) 1.5 ml
NaHCO3 (10% sterile solution) 20 ml
H2O 885 ml

Table 3.3. Composition of the Varel-Bryant minimal medium (VB) [130].

Ingredients Quantity per litre
10X Bact salts (pH 6.9-7.1) 100 ml
100X Trace elements 10 ml
Glucose (20% in H2O, filter sterilised) 25 ml (0.5% 28 mM)
Na2S solution (nonahydrate, 0.05 g mL-1) (instead of Cys) 10 ml
Vitamin B12 (0.3 g mL-1) 20 ul
Hemin (0.5 mg mL-1) (instead of hematin/histidine) 4 ml
CaCl2 (0.1 M) 0.75 ml
MgCl2 (0.1 M) 1 ml
FeSO4 (0.4 mg mL-1) 1 ml
Vitamin K3 (1 mg mL-1) 1 ml
H2O 885 ml

Table 3.4. Composition of the Eric Marten’s minimal medium [131] with Na2S and hemin.

Growth experiments were performed according to the following protocol.
Day 1:
1) Streak out the bacteria from the glycerol stock on the BHI (brain heart infusion) blood

plate and incubate at 37°C anaerobically for 2 days. Afterwards keep at RT, wrapped in
airtight foil until further usage.
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2) Prepare 500 mL of 1X Eric Marten’s minimal medium with Na2S, check the final pH
(to be between 6.9 - 7.1), sterile filter, and place into the anaerobic chamber.

3) Place 7 bottles for cultures (100 mL) into the chamber (for triplicate of each strain +
control).

Day 3:
4) Pick up several colonies (one ’full’ 1 µL inoculation loop of biomass) from the BHI

plate and inoculate into 5 mL of the preculture media (in triplicate), let it grow at 37°C for
two days.

Day 5:
5) Check OD600 of all cultures (diluted 1:5 solution in the media was measured with a

spectrophotometer, then the value was multiplied by 5 to calculate the actual OD600) and
start 50 mL cultures in each culture from the corresponding preculture to achieve a starting
OD600 of 0.05 (start in the morning).

6) Measure OD600 at different time points across 3 days: 0 h, 8 h, 24 h, 28 h, 32 h, 48 h,
52 h, and collect samples for metabolomics (metabolomics measurements were planned
originally, but not measured due the bacterial cuture growth inconsistency).

The OD-to-gDW (optical density to grams of dry weight) coefficient was estimated for
P. vulgatus at 52 h as follows:

Collect 10 mL of culture in 15 mL falcon tubes (once from each triplicate tube), spin
for 30 min at max speed at 4°C to collect the pellet, and discard the supernatant. Then
add 0.5 mL of 0.9% NaCl, resuspend, and transfer carefully to weighted Eppendorf tubes
(weighted on 5-digit scales (up to decile mg), and write the mass and label on the tube (no
tape label)). Spin for 20 min at 4°C at max speed, remove supernatant, and measure the wet
weight. Dry on speedvac for 1 h at 45°C, check the mass, and put on speedvac for 0.5 h at
45°C, check the mass again. If the mass is not changing anymore, then report the final dry
weight.

The final minimal medium was developed by another PhD student in my group Daniel
Benjamin Torka as VBDBT minimal medium with glucose as the sole carbon source (see
Results).

3.2.3 Curating biomass composition
Preliminary growth and biomass component production analysis for B. uniformis and

P. vulgatuswas performed using the draft (converted to BiGG nomenclature) and consensus
models with GEMsembler “run_growth_full_flux_analysis” function and agreement score
of potential biomass components was calculated by the GEMsembler “biomass” function.

Biomass reaction curation was based on the previously reported B. thetaiotaomicron
model [45]. I incorporated most of its compounds, excluding metabolites created
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specifically for the B. thetaiotaomicron model and absent from the BiGG database.
Another exception is acyl-CoA, which is a modified form of coenzyme A, already included
in the biomass. I also omitted biotin, since it was not a biomass component in any of the
draft models and reported as a conditionally essential cofactor [132]. Chorismate was not
included either, because it was also not part of the biomass in any of the draft models,
and it serves as a major branch-point intermediate in the aromatic amino acid biosynthesis
pathway [133]. Finally, vitamin B12 (adenosylcobalamin, adocbl_c) was removed from
the biomass despite being present in three B. uniformis or four P. vulgatus draft models,
since it is required for methionine biosynthesis but is not essential for B. thetaiotaomicron
growth when methionine is available [134,135].

As a general rule, cellular biomass components not reported in B. thetaiotaomicron
model were still added to the final biomass if they were confirmed by three or more draft
models in both B. uniformis and P. vulgatus. Additionally, I included KDO(2)-lipid IV(A)
with laurate (kdo2lipid4L_c), which сan be synthesized by two draft models (AGORA and
gapseq) in both species, to enrich the Lipid A class of lipopolysaccharides (LPS), which
is less abundant compared to the glycerophospholipid class in the biomass equation. In
contrast, I removed spermidine (spmd_c) because, in B. uniformis, although it is included in
the biomass reaction of three models, it can be synthesized only by the CarveMe model.
Similarly, acyl carrier protein (ACP_c), which is present in the biomass reaction of all
models except CarveMe, cannot be synthesized at all. ACP is also not included in the
biomass of the BiGG models [98], and therefore it was removed from the final biomass.

Biomass reaction stoichiometry was based on the curated B. thetaiotaomicron reaction.
Initial coefficients were taken from B. thetaiotaomicron whenever available; otherwise, the
median values from the draft models were used. GAM and NGAMwere adopted unchanged
from the B. thetaiotaomicron model. To normalise the non-ATP biomass stoichiometric
coefficients to 1 g of cell dry weight [29,74], the growth-associated ATP hydrolysis reaction
(with GAM-derived coefficients) was temporarily removed from the lump biomass reaction;
the remaining coefficients were normalised; the ATP hydrolysis term was then restored.

The final biomass reaction was saved as a separate SBML model with one reaction, so
that for the FBA simulations it can be easily swappedwith the draft biomass from anymodel.

3.2.4 Curation for growth on the minimal media
Biomass components requiring external curation were identified by intersecting the

final biomass components with those not produced by the assembly models of either
B. uniformis or P. vulgatus in the preliminary growth analysis with GEMsembler described
in the previous section. Potential biosynthesis pathways for the identified metabolites
(three lipids) were determined using GEMsembler pFBA functionality on the universal
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BiGG model [33], as the curated B. thetaiotaomicron model is available only in tables
and not in SBML format, therefore it could not be used as input for FBA simulations or
to GEMsembler for direct comparison of synthesis paths. One reaction common to all
pathways was verified in the B. thetaiotaomicron tables and then added to the consensus
models from the universal BiGG. For the modified models, biomass component production
analysis and identification of the corresponding pathways were performed again using the
GEMsembler “run_growth_full_flux_analysis” functionality.

For all simulations the VBDBT minimal media was used as the following dictionary:
vbdt_media = ”glc__D_e”: 10, ”pheme_e”: 10, ”hemeA_e”:10, ”b12_e”: 10, ”adocbl_e”:
10, ”tsul_e”: 10, ”k_e”: 10, ”pi_e”: 10, ”na1_e”: 10, ”cl_e”: 10, ”nh4_e”: 10, ”so4_e”: 10,
”mg2_e”: 10, ”fe2_e”: 10, ”fe3_e”: 10, ”ca2_e”: 10, ”zn2_e”: 10, ”mn2_e”: 10, ”cu2_e”:
10, ”cobalt2_e”: 10, ”H2O_e”: 10, ”h_e”: 10, ”ni2_e”: 10, ”hco3_e”:10

Curation of the core3 B. uniformis model was performed by adding missing reactions
from other models and systematically ensuring biomass component production one by one.
For each biomass compound not produced by core3, I examined the potential pathway
maps (automatically generated by GEMsembler using the “run_growth_full_flux_analysis”
functionality), calculated either for the core2 model if it could produce the corresponding
metabolite, or for the assembly and draft models otherwise. From each map, I identified
reactions with lower agreement than core3 that were essential based on pathway topology,
and ensured their addition to the core3 model in GEMsembler. The resulting ability to
produce each biomass component was verified using FBA optimization of its demand
reaction.

Since missing reactions were added sequentially and one biomass component could
depend on the production of another, curation was performed starting with the most basic
metabolites (e.g., ATP, NAD, etc.). If the pathway map for a certain biomass component
showed that it depended on another metabolite, the latter was curated first. Three lipids
(pg140_c, pe140_c, clpn140_c), which none of the B. uniformis models could produce,
were first curated in the P. vulgatus core3 model using the assembly model. The identified
reactions were then added to the B. uniformis model from the P. vulgatus assembly model
using COBRApy, and demand FBA simulations for these compounds confirmed that
production was successfully restored in B. uniformis as well.

Curation of the P. vulgatus core3 model was initiated by ensuring the addition of
reactions curated for B. uniformis using GEMsembler. If reactions were already present
in the P. vulgatus core3 model, they were removed from the curation list; if certain
reactions were absent from the P. vulgatus supermodel or failed to restore growth, the
corresponding biomass components were curated additionally with P. vulgatus maps.
Glycerophospholipids were curated separately for B. uniformis and P. vulgatus. For
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phosphatidylglycerol (dioctadec-11-enoyl, n-C18:1; pg181_c), I chose the B. uniformis
pathway for both species, as the pathway predicted for P. vulgatus was substantially longer
and predicted only by the CarveMe model, without any GPRs for its reactions.

Additionally, I added all available genes to the curated core3 models of B. uniformis
and P. vulgatus by incorporating GPRs for all reactions lacking a core3 GPR, using the
corresponding GPR from core2 if available, or otherwise from the assembly model. BiGG
and, if available, ModelSEED IDs for metabolites and reactions were added as annotations
to their corresponding databases. The final models were then saved as SBML files.

3.2.5 Assessing models with experimental growth in the Varel–Bryant
minimal medium and extracellular metabolite dynamics

To curate models based on their metabolic capabilities, I utilised the results of targeted
GC-MS/MS time-course analysis of extracellular metabolites, performed by PhD student
Nikita Denisov from theMichael Zimmermann group. He cultured four biological replicates
of B. uniformis and P. vulgatus (wild-type strains) in Varel–Bryant minimal medium for
24 hours, measuring OD every hour. Supernatants for metabolomic analysis were collected
at the start of the experiment (0 h), and then hourly from 8 h to 19 h, with the final samples
taken at 24 h. Metabolites were extracted and analyzed with GC-MS/MS using the targeted
method developed by Nikita Denisov [136].

For the growth analysis, I normalised OD values so that the mean OD of the three
no-bacteria control replicates at each time point was fixed at 0.001. This adjustment
corrected for a slight increase in OD in the control samples over time, likely caused by
evaporation. Growth rates were estimated by fitting a logistic growth function with the
‘curve_fit’ method from the SciPy library, using initial estimates (p0 = 0.01, 0.2, 0.4) and
bounds ((0.0, 0.001, 0.005), (0.1, 1.5, 1.5)) for three parameters y0 (initial population), r
(growth rate) and K (carrying capacity), correspondingly. Four biological replicates for
each species were fitted simultaneously using nonlinear least-squares optimization with the
trust region reflective algorithm. Dry cell weight for each time point was calculated by
multiplying normalised OD values by the OD-to-biomass conversion coefficient determined
in Section 2.2.2 and was later used to normalize extracellular metabolite fluxes determined
by the metabolomics analysis.

Of the 90 compounds profiled by the GC-MS/MS, 66 have corresponding entries in the
BiGG database. I therefore used the absolute concentrations (mM) of these 66 compounds
in subsequent analyses. To determine which of these metabolites were unambiguously
consumed or produced by B. uniformis and P. vulgatus, I compared the slopes of linear
fits to their concentration profiles with the slope of the control sample over the 8–18
h interval. For slope comparison, bacterial replicate profiles were shifted so that their
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initial time point matched the control value. Slope differences were tested using analysis
of covariance (ANCOVA), implemented with smf.ols, by fitting a single model to both
the control and four biological replicates per species and testing whether the interaction
coefficient between time and group (species/control) was significantly different from zero
via a t-test on that coefficient. P-values were adjusted for multiple testing using the default
Benjamini–Hochberg procedure from stats.false_discovery_control in SciPy.

Metabolites were classified as consumed if they met all three criteria: adjusted
p-value < 0.05 (significance), slope < -0.01 (effect size threshold), and R2 > 0.5 (linearity
assumption). Metabolites classified as consumed additionally to cysteine and methionine:
ectoine in P. vulgatus, hydroxycinnamate in B. uniformis, and 4-aminobenzoate in both
species were excluded from downstream analyses, as these compounds are not part of the
defined medium; their presence at certain time points may indicate carryover from the
bacterial precultures and is to be investigated separately. Metabolites classified as produced
met the criteria: padj < 0.05, slope > 0.01, and R2 > 0.5.

Exchange rates were computed for each replicate as the change in metabolite
concentration between the initial and final time points within the 8-18 h interval,
normalised by the corresponding change in dry weight biomass over the same period
(mmol gDW−1 h−1). The mean and standard deviation of these consumption and production
rates, as well as of the underlying concentration changes and biomass differences, were
calculated across four biological replicates.

Consumption rates for cysteine and methionine were incorporated into the P. vulgatus
model by constraining uptake to at most the mean rate plus one standard deviation,
while no uptake was allowed in the B. uniformis model since these compounds were not
consumed according to the experimental data. Production rates for secreted metabolites
were implemented by enforcing secretion at least at the mean rate minus one standard
deviation.

All flux balance analysis (FBA) simulations were performed using COBRApy. Network
exploration was conducted with GEMsembler pathway and metabolite neighborhood maps.
All additional plots were generated using the seaborn and matplotlib libraries.

3.3 Results
With GEMsembler workflow which I developed to compare metabolic models and

aid the curation process, I set out to reconstruct and curate B. uniformis and P. vulgatus
genome-scale metabolic models by using consensus modelling and experimental data on
bacterial growth and metabolites secretion.
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3.3.1 Reconstructing draft genome-scale metabolic models (GEMs),
assembling supermodels and consensus models for B. uniformis
and P. vulgatus

For both B. uniformis and P. vulgatus, I compiled five different draft GEMs (CarveMe,
gapseq, ModelSEED, AGORA, KBase)) and subsequently used them to assemble the
supermodel. The majority of metabolites and reactions from the five original models, as
well as genes from the four models (excluding Kbase, for which genes were not available,
see Methods) were successfully converted and included in the supermodels (Fig. 3.1, 3.2).

From these supermodels I then generated consensus GEMs and characterised both the
draft and consensus models in terms of the number of reactions, metabolites, and genes
(Fig. 3.1, 3.2). The draft models contained a substantial number of reactions, ranging
from 1131 to 2418 for B. uniformis and from 1131 to 2474 for P. vulgatus, which were
assembled into 2869 and 3110 reactions in the respective supermodels. Approximately half
of the metabolites (1007/2123 and 1110/2268 for B. uniformis and P. vulgatus respectively)
and a bit more than half of the reactions (1670/2869 and 1867/3110 for B. uniformis and
P. vulgatus respectively) were identified only by one model. Complete agreement between
all five models was observed for no more than 20% of metabolites (488/2123 and 499/2268
for B. uniformis and P. vulgatus respectively) and 10% of reactions (383/2869 and 401/3110
for B. uniformis and P. vulgatus respectively). Core3 agreement level of the three models
balances network agreement and size, demonstrating the number of included reactions
within the range for published curated models [44, 99]: 842 for B. uniformis and 872 for
P. vulgatus (Fig. 3.1, 3.2).

Four draft models with genes available, ranging from 707 to 894 for B. uniformis
and from 710 to 872 for P. vulgatus, assemble into 1221 and 1286 genes in respective
supermodels (Fig. 3.1, 3.2). There were some losses in gene conversion for gapseq models
due the possible difference in gene annotation, since gapseq performs the annotation itself.
Similar issue is possible for AGORA models, but in this case some genes can not be
converted due to the technical limitations of AGORA. More specifically, the fact that not
all gene IDs from AGORA model can be found in AGORA genome and therefore can not
be used for conversion. In the case of B. uniformis only 248 AGORA genes had sequences,
while for P. vulgatus the number is 777 and closer to the total number of genes in the
model. Therefore B. uniformis demonstrated lower agreement for genes than P. vulgatus
with 573/1221 and 483/1286 genes being predicted only by one model, and 108/1221 and
251/1286 genes having the highest possible agreement of four models, respectively. For
core3 agreement level the number of genes is higher (348 for B. uniformis and 515 for
P. vulgatus), but still substantially lower than the number of reactions. The reason for such
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difference is that GPR agreement (maximum number of models that agree at least on some
part of the predicted GPR for a given reaction) often does not correspond to the agreement
score of the reaction itself. From distributions of GPR agreement for reactions with a certain
agreement level, it is clear that often GPR agreement is one level lower than agreement of
reaction itself, but the difference can be bigger and for any levels of reaction agreement
there are reactions without any GPR assigned (Fig. 3.1, 3.2).

Figure 3.1. The number of metabolites, reactions and genes in the draft models, their conversion status
to supermodel and models’ agreement on metabolites, reactions, genes and GPRs for B. uniformis. CoreX
corresponds to the agreement of X models (assembly = core1). GPR_core0 means no GPR in any model.
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Figure 3.2. The number of metabolites, reactions and genes in the draft models, their conversion status
to supermodel and models’ agreement on metabolites, reactions, genes and GPRs for P. vulgatus. CoreX
corresponds to the agreement of X models (assembly = core1). GPR_core0 means no GPR in any model.

In general, the agreement between B. uniformis models is slightly higher than between
P. vulgatusmodels with respect to metabolites and reactions. While in the case of genes, the
trend is in favour of P. vulgatus. From the perspective of network size, the core3 agreement
level provides a reasonable balance between confidence and overall network coverage but
still requires additional curation of GPRs to increase the number of genes included in the
model.

3.3.2 Growth in the minimal media
Before I could start curating B. uniformis and P. vulgatus genome-scale metabolic

models I needed to know their basic nutritional requirements. Given the availability of
the well-established Varel–Bryant minimal medium for Bacteroides (Table 3.3) [130] or
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Eric Marten’s minimal medium (Table 3.4) [131], which contains only glucose, cysteine
and methionine, or glucose, cysteine and histidine respectively as potential carbon sources,
means that B. uniformis and P. vulgatus are not auxotrophic to any other compounds. The
auxotrophy to cysteine and the requirements for histidine and methionine still needed to be
assessed. No auxotrophies to L-methionine and L-histidine are likely, because these two
media already provide substitutions for these compounds: unlike Eric Marten’s medium,
which contains hematin and L-histidine, the Varel–Bryant minimal medium includes hemin;
whereas in Eric Marten’s formulation L-methionine is substituted with vitamin B12, which
is required for methionine biosynthesis in Bacteroides [134, 135]. L-cysteine serves two
roles in these minimal media: reducing agent and sulfur source, since sulfate from the
solution can not be utilised by Bacteroides [130]. That is why, with the guidance of
postdoc Mariia Beliaeva, I set out to replace cysteine with Na2S, as sulfide can overtake
both roles [130, 137].

I initially added Na2S to the Varel–Bryant minimal medium, but due to its poor solubility
and precipitation in the buffer, I switched to Eric Marten’s minimal medium, which contains
a different buffer that allowed Na2S to dissolve (Table 3.4). With this medium, Na2S was
fully dissolved, and growth of B. uniformis and P. vulgatus was observed in some culturing
experiments (data not shown). However, the bacterial culture growth was inconsistent,
since sometimes cultures grew to OD600 of more than 1, while in other repetitions of the
experiment no growth was observed.

Later, this experiment was continued by another PhD student in my group Daniel
Benjamin Torka, who managed to substitute L-cysteine in the Varel–Bryant minimal
medium with Na2S2O3 as sulfur source and dithiothreitol as a reducing agent. With
B12 substitution of L-methionine, it resulted in a minimal medium not containing any
amino acids (Table 3.5), with only glucose as a nutritional source. Both B. uniformis and
P. vulgatus can grow reproducibly well in this medium.
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Ingredients Quantity per litre
Mineral 3B solution 50 ml
Glucose (20% in H2O, filter sterilised) 25 ml (0.5% 28 mM)
160mM Dithiothreitol (instead of Cys) 25ml (4 mM)
160 Na2S2O3 (instead of Cys) 25ml (4 mM)
Hemin solution 10 ml
Vitamin B12 0.05% (instead of Met) 1 ml
FeSO4 solution 1.5 ml
NaHCO3 (10% sterile solution) 20 ml
H2O 885 ml

Table 3.5. Final minimal medium with only glucose as a nutritional source (VBDBT)

In order to use experimental results as constraints for modelling, I estimated a
growth-related parameter: the conversion ratio between optical density (OD), measured
experimentally, and gram dry weight (gDW), used in modelling. I measured the OD600

of P. vulgatus in one of my growth experiments and dried and weighed the biomass from
three corresponding cultures. The resulting OD-to-gDW conversion coefficient k equals
0.4896 ± 0.0137, which I extrapolated on B. uniformis as well.

Measurement P. vulgatus 1 P. vulgatus 2 P. vulgatus 3
OD600 at 52 h 1.260 1.436 1.260
tube weight (g) 1.0035 1.0042 1.0074
wet weight (g) 10ml 1.1137 1.1214 1.1372
dry weight -1h (g) 1.0122 1.0162 1.0171
dry weight -1.5h (g) 1.0093 1.0121 1.0136
dry weight - 2h (g) 1.0096 1.0115 1.0134
biomass (min - tube) (g) 0.0061 0.0073 0.0060
ConversionConvertion 1L k=biomass/OD*100 0.4841 0.5084 0.4762

Table 3.6. OD to gDW (dry weight) conversion. The three P. vulgatus columns correspond
to three biological replicates.

Results above demonstrate that neither B. uniformis nor P. vulgatus are auxotrophic
to any metabolite and can generate all required biomass components from glucose. This
information together with thecalculation of their dry weight I will use further for curation
of their genome-scale metabolic models.

3.3.3 Curating biomass composition
With the availability of VBDBT minimal media and no auxotrophies identified,

B. uniformis and P. vulgatus were expected to synthesize all biomass components from
glucose. Therefore, the first crucial curation task was to define the composition of their
biomass reaction.
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Initially, I used GEMsembler to verify that the draft and consensus models of
B. uniformis and P. vulgatus could not grow in the VBDBT minimal medium without
curation, and to identify biomass components that could not be produced, as well as the
differences in their representation in the biomass reaction. Predicted synthesis of biomass
components varied considerably across the draft models (Fig. 3.3), and this information
was later incorporated into the curation process (see Materials and Methods).

Despite the differences between draft models, potential biomass components do not
differ between B. uniformis and P. vulgatus except cardiolipin tetraoctadecanoyl, n-C18:0
(clpn180_c), which is only present in the biomass of AGORA P. vulgatusmodel, leading to
74 and 75 assembly reactants respectively (Table 3.7). Given this similarity and the common
practice of inheriting biomass reactions from closely related, well-curated bacterial species,
I decided to assemble a single biomass reaction for both B. uniformis and P. vulgatus, based
on the reported curated biomass reaction of B. thetaiotaomicron [45] (Table 3.7).

The majority of biomass components from B. thetaiotaomicron [45] were included in
the final biomass, regardless of how many draft GEMs of B. uniformis and P. vulgatus
included them (Table 3.7). With this approach, 54 biomass components predicted in
some B. uniformis and P. vulgatus models were confirmed by the curated model of
B. thetaiotaomicron. Adenosylcobalamin (adocbl_c) was removed from the biomass (see
Materials and Methods). Thirteen biomass components that were absent from the biomass
reactions of both B. uniformis and P. vulgatus, as well as clpn180_c, which was not
detected in B. uniformis, were also inherited from the B. thetaiotaomicron biomass reaction.
Among the remaining 19 assembly reactants not present in the B. thetaiotaomicron biomass
reaction, eight were included based on the agreement among draft GEMs and their ability to
synthesise these metabolites. The products of the biomass reaction were kept in the minimal
BiGG form, with products from the ATP hydrolysis and diphosphate (ppi_c) derived from
nucleotide and protein biosynthesis. As a result, the biomass reaction of B. uniformis and
P. vulgatus contained 76 reactant metabolites and 4 product metabolites (Table 3.7).

Biomass stoichiometry was inherited from B. thetaiotaomicron wherever possible, with
the remaining coefficients derived from the draft models. Growth-associated maintenance
(GAM) was incorporated into the biomass reaction as an ATP hydrolysis term, while
non-growth-associated maintenance (NGAM) was represented as the lower bound of the
ATP maintenance (ATPM) reaction. The GAM and NGAM values (18.526 and 5.54,
respectively) were adopted from the curated model of B. thetaiotaomicron as well [45]. To
complete the curation, I normalised the biomass reaction coefficients to 1 gDW of biomass.

The curated B. uniformis and P. vulgatus biomass reaction was finalized as a standalone
model with single reaction and subsequently incorporated into the consensus models,
replacing the draft biomass formulations.
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Figure 3.3. Preliminary production of potential biomass components in B. uniformis (left) and P. vulgatus
(right) calculated with GEMsembler. The list of biomass components is taken from the assembly model.
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Name Metabolite B.theta Type Met_bu Biomass_bu Met_pv Biomass_pv Decision
Biotin btn_c 2.00E-06 r no
Co2+ cobalt2_c 2.50E-05 r Core5 Core5 Core5 Core5 yes
Malonyl CoA C24H33N7O19P3S malcoa_c 3.13E-05 r yes
Nicotinamide adenine
dinucleotide - reduced

nadh_c 4.47E-05 r yes

Undecaprenyl diphosphate udcpdp_c 5.54E-05 r Core2 Core1 Core2 Core1 yes
Nicotinamide adenine
dinucleotide phosphate

nadp_c 1.12E-04 r Core5 Core5 Core5 Core5 yes

Coenzyme A coa_c 1.68E-04 r Core5 Core5 Core5 Core5 yes
5,10-Methylenetetrahydrofolate mlthf_c 2.23E-04 r Core5 Core1 Core5 Core1 yes
5-Methyltetrahydrofolate 5mthf_c 2.23E-04 r Core5 Core3 Core5 Core4 yes
Adenosylcobalamin adocbl_c 2.23E-04 r Core4 Core3 Core4 Core4 no
10-Formyltetrahydrofolate 10fthf_c 2.23E-04 r Core5 Core4 Core5 Core5 yes
5,6,7,8-Tetrahydrofolate thf_c 2.23E-04 r Core5 Core4 Core5 Core5 yes
Thiamine diphosphate thmpp_c 2.23E-04 r Core5 Core4 Core5 Core5 yes
S-Adenosyl-L-methionine amet_c 2.23E-04 r Core5 Core5 Core5 Core5 yes
Flavin adenine dinucleotide
oxidized

fad_c 2.23E-04 r Core5 Core5 Core5 Core5 yes

Pyridoxal 5'-phosphate pydx5p_c 2.23E-04 r Core5 Core5 Core5 Core5 yes
Riboflavin C17H20N4O6 ribflv_c 2.23E-04 r Core5 Core5 Core5 Core5 yes
Chorismate chor_c 2.23E-04 r no
Acetyl-CoA accoa_c 2.79E-04 r no
Zinc zn2_c 3.33E-04 r Core5 Core5 Core5 Core5 yes
Nicotinamide adenine
dinucleotide phosphate - reduced

nadph_c 3.35E-04 r yes

Manganese mn2_c 6.77E-04 r Core5 Core5 Core5 Core5 yes
Nicotinamide adenine
dinucleotide

nad_c 1.79E-03 r Core5 Core5 Core5 Core5 yes

Sulfate so4_c 4.25E-03 r Core5 Core5 Core5 Core5 yes
Chloride cl_c 5.10E-03 r Core5 Core5 Core5 Core5 yes
Magnesium mg2_c 8.50E-03 r Core5 Core5 Core5 Core5 yes
DTTP C10H13N2O14P3 dttp_c 9.24E-03 r Core5 Core5 Core5 Core5 yes
DCTP C9H12N3O13P3 dctp_c 9.31E-03 r Core5 Core5 Core5 Core5 yes
Phosphatidylglycerol
(dihexadecanoyl, n-C16:0)

pg160_c 1.06E-02 r yes

Phosphatidylethanolamine
(dihexadecanoyl, n-C16:0)

pe160_c 1.06E-02 r Core5 Core1 Core5 Core1 yes

Phosphatidylethanolamine
(dioctadecanoyl, n-C18:0)

pe180_c 1.06E-02 r Core5 Core3 Core5 Core4 yes

Phosphatidylglycerol
(dioctadecanoyl, n-C18:0)

pg180_c 1.06E-02 r Core5 Core3 Core5 Core4 yes

Cardiolipin (tetraoctadecanoyl,
n-C18:0)

clpn180_c 1.06E-02 r Core1 Core1 yes

Cardiolipin (tetratetradecanoyl,
n-C14:0)

clpn140_c 1.06E-02 r yes
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Name Metabolite B.theta Type Met_bu Biomass_bu Met_pv Biomass_pv Decision
Cardiolipin (tetrahexadecanoyl,
n-C16:0)

clpn160_c 1.06E-02 r yes

Phosphatidylethanolamine
(didodecanoyl, n-C12:0)

pe120_c 1.06E-02 r yes

Phosphatidylethanolamine
(ditetradecanoyl, n-C14:0)

pe140_c 1.06E-02 r yes

Phosphatidylethanolamine
(dioctadec-11-enoyl, n-C18:1)

pe181_c 1.06E-02 r yes

peai15_c 1.06E-02 r no
peai17_c 1.06E-02 r no
pei14_c 1.06E-02 r no
pei15_c 1.06E-02 r no
pei16_c 1.06E-02 r no
pei17_c 1.06E-02 r no

Phosphatidylglycerol
(didodecanoyl, n-C12:0)

pg120_c 1.06E-02 r yes

Phosphatidylglycerol
(ditetradecanoyl, n-C14:0)

pg140_c 1.06E-02 r yes

Phosphatidylglycerol
(dioctadec-11-enoyl, n-C18:1)

pg181_c 1.06E-02 r yes

pgai17_c 1.06E-02 r no
pgi17_c 1.06E-02 r no

DATP C10H12N5O12P3 datp_c 1.23E-02 r Core5 Core5 Core5 Core5 yes
DGTP C10H12N5O13P3 dgtp_c 1.24E-02 r Core5 Core5 Core5 Core5 yes
Ammonium nh4_c 1.27E-02 r yes
Fe2+ mitochondria fe2_c 1.38E-02 r Core5 Core5 Core5 Core5 yes
L-Tryptophan trp__L_c 3.12E-02 r Core5 Core5 Core5 Core5 yes
GTP C10H12N5O14P3 gtp_c 3.78E-02 r Core5 Core5 Core5 Core5 yes
UTP C9H11N2O15P3 utp_c 4.23E-02 r Core5 Core5 Core5 Core5 yes
CTP C9H12N3O14P3 ctp_c 4.74E-02 r Core5 Core5 Core5 Core5 yes
L-Histidine his__L_c 6.42E-02 r Core5 Core5 Core5 Core5 yes
L-Cysteine cys__L_c 1.01E-01 r Core5 Core5 Core5 Core5 yes
Calcium ca2_c 1.03E-01 r Core5 Core5 Core5 Core5 yes
L-Methionine met__L_c 1.21E-01 r Core5 Core5 Core5 Core5 yes
L-Arginine arg__L_c 1.30E-01 r Core5 Core5 Core5 Core5 yes
L-Threonine thr__L_c 1.65E-01 r Core5 Core5 Core5 Core5 yes
L-Asparagine asn__L_c 1.87E-01 r Core5 Core5 Core5 Core5 yes
L-Aspartate asp__L_c 1.87E-01 r Core5 Core5 Core5 Core5 yes
Potassium k_c 1.91E-01 r Core5 Core5 Core5 Core5 yes
L-Isoleucine ile__L_c 2.16E-01 r Core5 Core5 Core5 Core5 yes
L-Phenylalanine phe__L_c 2.19E-01 r Core5 Core5 Core5 Core5 yes
L-Proline pro__L_c 2.25E-01 r Core5 Core5 Core5 Core5 yes
Glycine gly_c 2.30E-01 r Core5 Core5 Core5 Core5 yes
L-Valine val__L_c 2.51E-01 r Core5 Core5 Core5 Core5 yes
L-Tyrosine tyr__L_c 2.54E-01 r Core5 Core5 Core5 Core5 yes
L-Glutamine gln__L_c 2.62E-01 r Core5 Core5 Core5 Core5 yes
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Name Metabolite B.theta Type Met_bu Biomass_bu Met_pv Biomass_pv Decision
L-Glutamate glu__L_c 2.62E-01 r Core5 Core5 Core5 Core5 yes
L-Alanine ala__L_c 2.63E-01 r Core5 Core5 Core5 Core5 yes
L-Serine ser__L_c 2.79E-01 r Core5 Core5 Core5 Core5 yes
L-Leucine leu__L_c 3.58E-01 r Core5 Core5 Core5 Core5 yes
L-Lysine lys__L_c 3.69E-01 r Core5 Core5 Core5 Core5 yes
H2O H2O H2O_c 1.44E+01 r Core5 Core5 Core5 Core5 yes
ATP C10H12N5O13P3 atp_c 1.86E+01 r Core5 Core5 Core5 Core5 yes
KDO(2)-lipid IV(A) with laurate kdo2lipid4L_c r Core4 Core1 Core4 Core1 yes
KDO(2)-lipid IV(A) kdo2lipid4_p r Core1 Core1 Core1 Core1 no
Menaquinol 8 mql8_c r Core5 Core1 Core5 Core1 no
Two disacharide linked murein
units, pentapeptide crosslinked
tetrapeptide (A2pm->D-ala)
(middle of chain)

murein5px4p_p r Core2 Core1 Core2 Core1 no

Phosphatidylethanolamine
(dihexadecanoyl, n-C16:0)

pe160_p r Core1 Core1 Core1 Core1 no

Phosphatidylethanolamine
(dihexadec-9enoyl, n-C16:1)

pe161_c r Core5 Core1 Core5 Core1 no

Phosphatidylethanolamine
(dihexadec-9enoyl, n-C16:1)

pe161_p r Core1 Core1 Core1 Core1 no

2-Demethylmenaquinone 8 2dmmq8_c r Core5 Core2 Core5 Core3 no
Menaquinone 8 mqn8_c r Core5 Core2 Core5 Core3 no
Ubiquinone-8 q8_c r Core5 Core2 Core5 Core3 no
Core oligosaccharide lipid A colipa_c r Core3 Core3 Core3 Core3 yes
Reduced glutathione gthrd_c r Core4 Core3 Core5 Core4 yes
Putrescine ptrc_c r Core5 Core3 Core5 Core4 yes
Spermidine spmd_c r Core5 Core3 Core5 Core4 no
Acyl carrier protein ACP_c r Core5 Core4 Core5 Core4 no
Protoheme C34H30FeN4O4 pheme_c r Core5 Core4 Core5 Core5 yes
Siroheme C42H36FeN4O16 sheme_c r Core4 Core4 Core5 Core5 yes
Copper cu2_c r Core5 Core5 Core5 Core5 yes
Iron (Fe3+) fe3_c r Core5 Core5 Core5 Core5 yes
Diphosphate ppi_c 2.03E-01 p Core5 Core5 Core5 Core5 yes
ADP C10H12N5O10P2 adp_c 1.85E+01 p Core5 Core5 Core5 Core5 yes
H+ h_c 1.85E+01 p Core5 Core5 Core5 Core5 yes
Phosphate pi_c 1.85E+01 p Core5 Core5 Core5 Core5 yes
Biomass: total biomass_c p Core1 Core1 Core1 Core1 no
Cobinamide cbi_c p Core4 Core3 Core4 Core4 no
5,6-Dimethylbenzimidazole dmbzid_c p Core4 Core3 Core4 Core4 no
Apoprotein [acyl carrier protein] apoACP_c p Core5 Core4 Core5 Core4 no

Table 3.7. Potential biomass components of B. uniformis and P. vulgatus originating from
the assembly model, agreement among draft models on these metabolites, comparison with
the curated B. thetaiotaomicron biomass model, and final decision on their inclusion in the
biomass reaction. Metabolites without names are not present in the BiGG database.
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3.3.4 Curation for growth on the minimal media
With the VBDBT minimal medium and curated list of biomass components, I set out to

ensure their synthesis and B. uniformis and P. vulgatus growth.
Among the final curated biomass components three, phosphatidylethanolamine

(pe180_c), phosphatidylglycerol (pg180_c), and cardiolipin (clpn180_c), could not
be produced by any of consensus models in either B. uniformis or P. vulgatus
(Fig. 3.3). Therefore, I searched for a potential biosynthesis pathway in the universal
BiGG model [33] with pFBA. All three pathways included a common reaction,
glycerol-3-phosphate acyltransferase (C18:0) (G3PAT180), which is also present in
the curated B. thetaiotaomicron model. Adding this reaction to the B. uniformis and
P. vulgatus models and reassessing curated biomass components production (Fig. 3.4, 3.5)
demonstrated that the addition is sufficient to enable synthesis of these three lipids at least
in the assembly models.

After introducing the G3PAT180 reaction from the B. thetaiotaomicron model, the
largest consensus assembly model of B. uniformis was still unable to produce three
glycerophospholipids (pg140_c, pe140_c, clpn140_c), whereas the P. vulgatus assembly
model could produce all biomass components, including these metabolites (Fig. 3.4, 3.5).
Therefore curating reactions across both species provides reactions in the B. uniformis and
P. vulgatus assembly models sufficient to produce all required biomass components.

For both bacteria, curation is based on the core3 consensus model due to its balance
between draft model agreement and functionality, specifically its ability to produce
biomass components. The complete-agreement core5 model barely produces any biomass
components, while core4 is also quite limited. In contrast, core3 matches the performance
of the draft models, producing more biomass components than the ModelSEED and KBase
GEMs and only falling behind gapseq by a few metabolites. Core2 reaches a similarly
high level of biomass component production as the CarveMe and AGORA models,
but confidence in this network is lower, as it may reflect agreement between only two
draft models, which are already similar due to the features of the reconstruction tools
(Fig. 3.4, 3.5).

Thus, biomass component production and growth in the VBDBTminimal medium were
achieved by incorporating 93 reactions into the B. uniformis core3 model: 45 reactions
were added from core2, 35 from one of the draft B. uniformis models, 12 from P. vulgatus
models, and 1 from B. thetaiotaomicron, as described above (Table 3.8). The core3 model of
P. vulgatus also incorporated 93 additional reactions: 37 confirmed by core2, 53 predicted
by one of the draft P. vulgatus models, the same 1 reaction from B. thetaiotaomicron, and
2 reactions from B. uniformis models (Table 3.9). These latter two reactions were selected
for phosphatidylglycerol (dioctadec-11-enoyl, n-C18:1; pg181_c) biosynthesis because the
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P. vulgatus pathway is considerably less confidently reconstructed than that of B. uniformis.
These reactions are priority candidates for further validation.

Additionally, to avoid losing information on potential enzymes when reaction or GPR
agreement was low, while still retaining GPRs with high core3 agreement whenever
possible, I added GPRs from the core2 or assembly consensus models for all reactions
lacking core3 GPRs. This increased the number of genes in the models by approximately
twofold.

Figure 3.4. Production of curated biomass components in the VBDBT minimal medium and summary of
corresponding biosynthesis pathway agreement in B. uniformis calculated with GEMsembler. Light blue
indicates metabolites that are synthesized, while green indicates metabolites that are not. The intensity of
orange represents the reaction agreement score, with the brightest colour corresponding to core5 reactions and
the lightest to core1. The intensity of yellow represents the agreement score of the corresponding GPR, with
the brightest colour indicating core5 and white indicating no GPR.
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Figure 3.5. Production of curated biomass components in the VBDBT minimal medium and summary of
corresponding biosynthesis pathway agreement in P. vulgatus calculated with GEMsembler. Light blue
indicates metabolites that are synthesized, while green indicates metabolites that are not. The intensity of
orange represents the reaction agreement score, with the brightest colour corresponding to core5 reactions and
the lightest to core1. The intensity of yellow represents the agreement score of the corresponding GPR, with
the brightest colour indicating core5 and white indicating no GPR.

The resulting core3 model of B. uniformis contains 984 reactions and 608 genes, while
the core3model ofP. vulgatus contains 1,020 reactions and 651 genes. With anNGAMvalue
of 5.54 set as the lower boundary for the ATP maintenance reaction, and VBDBT minimal
medium uptake constrained to 10 mmol gDW−1 h−1, these B. uniformis and P. vulgatus
models demonstrated substantial growth, reaching the rate of approximately 1.2 h−1.
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Reaction R_agreement R_models GPR_agreement
FE2t 2 carveme kbase 1
RHCYS 1 gapseq 1
GTHS 1 gapseq 0
GLUCYS 1 gapseq 0
3HAD120 2 agora kbase 0
G1PACT 2 agora modelseed 0
UAGDP 2 agora carveme 1
C120SN 1 gapseq 0
KAS15 2 gapseq kbase 1
ACGAM6PS 1 gapseq 0
UDCPDPS 1 agora 0
HDECH 1 carveme 0
KAS7 1 carveme 1
KAS8 1 carveme 1
AGPATCOA_PALM_PALM_c 1 agora 0
DHDPRx_r 1 carveme 1
THDPS 1 carveme 1
SDPTA 2 carveme gapseq 1
SDPDS 1 carveme 1
MCTP1App 1 carveme 1
MPTG 1 carveme 1
DALAabcpp 1 carveme 0
AIRC1 2 carveme gapseq 1
PAPSR 2 carveme kbase 1
SULR 2 agora carveme 1
AKGDH 2 carveme gapseq 2
DHORD6 2 gapseq kbase 1
RBFSa 2 agora carveme 1
DHPPDA 2 agora carveme 1
GTPCII 2 agora carveme 1
AGTi 2 carveme gapseq 1
GCALDD 2 agora gapseq 0
DHNPA_1 2 agora carveme 0
HPPK 2 agora carveme 0
FOLD3 2 agora carveme 1
DNTPPA 1 carveme 1
DNMPPA 1 carveme 1
HPPK2 2 agora carveme 2
DHPS2 2 agora carveme 2
GCALDt 2 agora carveme 0
EX_gcald_e 2 agora carveme 0
ACLS 2 carveme kbase 1
METGL 2 carveme gapseq 1
AHSERL 2 carveme gapseq 2
METS 2 agora carveme 1
AHSERL2 2 agora carveme 2
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Reaction R_agreement R_models GPR_agreement
PDX5PS 2 agora carveme 2
PDX5PO2 2 agora gapseq 2
AHMMPS_1 2 agora carveme 1
DM_4hba_c 1 agora 0
HSK 2 agora gapseq 1
OCBT 2 carveme gapseq 1
ORNDC 2 gapseq modelseed 1
ALAS 2 carveme gapseq 0
UAGDP 2 agora carveme 1
3OAR40 2 agora carveme 1
ACGAMPM 1 gapseq 0
UDPACGLP 1 carveme 0
GALUi 2 agora gapseq 0
MEPCT 2 agora carveme 1
UDCPDP 2 agora carveme 1
HPYRDC 1 modelseed 1
HPYRRx 2 carveme gapseq 2
AGPAT180 1 agora 0
CLPNS180 1 agora 0
3OAR180 1 agora 0
3OAS180 1 agora 0
3HAD180 2 agora kbase 0
AACPS3 1 carveme 1
AACPS5 1 carveme 1
KAS17 1 carveme 1
G3PAT181 1 carveme 1
PGSA181 2 agora carveme 0
CLPNS160 1 agora 0
PGSA160 2 agora carveme 0
PItex 1 carveme 1
H2Otex 1 carveme 1
PGSA120 2 agora carveme 0
G3PAT120 1 kbase 0
AGPAT120 1 agora 0
2AGPG140tipp 0 P.vulgatus 0
2AGPGAT140 0 P.vulgatus 0
AACPS1 0 P.vulgatus 0
AGPATCOA_MYRS_MYRS_c 0 P.vulgatus 0
CLPNS140 0 P.vulgatus 0
FACOAL140t2pp 0 P.vulgatus 0
G3PAT140 0 P.vulgatus 0
G3PAT180 0 B.thetaiotaomicron 0
KAS2 0 P.vulgatus 0
PGP140abcpp 0 P.vulgatus 0
PGPP140pp 0 P.vulgatus 0
PGSA140 0 P.vulgatus 0
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Reaction R_agreement R_models GPR_agreement
PLIPA1G140pp 0 P.vulgatus 0

Table 3.8. Reactions incorporated into the B. uniformis core3 consensus model to enable
biomass component synthesis and, consequently, growth in the VBDBT minimal medium.
Number of draft B. uniformis models agreeing on each reaction, corresponding source of
each reaction, and number of draft models agreeing on a non-empty GPR for each reaction.

Reaction R_agreement R_models GPR_agreement
FE2t 2 carveme kbase 1
HMBS 2 agora gapseq 0
RHCYS 1 gapseq 1
GTHS 1 gapseq 0
GLUCYS 1 gapseq 0
G1PACT 2 agora carveme 1
UAGDP 2 agora carveme 1
KAS15 2 gapseq kbase 1
ACGAM6PS 1 gapseq 0
HDECH 1 carveme 0
KAS7 1 carveme 1
KAS8 1 carveme 1
AGPATCOA_PALM_PALM_c 1 agora 1
DHDPRx_r 1 carveme 1
THDPS 1 carveme 1
SDPTA 2 carveme gapseq 1
SDPDS 1 carveme 0
MCTP1App 1 carveme 1
MPTG 1 carveme 1
UDPDPS3 1 agora 1
AIRC1 2 carveme gapseq 1
SULR 2 carveme modelseed 1
AKGDH 2 carveme gapseq 2
RBFSa 2 agora carveme 2
DHPPDA 2 agora carveme 2
GTPCII 2 agora carveme 2
AGTi 1 gapseq 1
DHNPA_1 2 agora carveme 2
HPPK 2 agora carveme 1
FOLD3 2 agora carveme 2
DNTPPA 1 carveme 1
DNMPPA 1 carveme 1
HPPK2 2 agora carveme 1
DHPS2 2 agora carveme 1
GCALDt 2 agora carveme 0
EX_gcald_e 2 agora carveme 0
ACLS 2 carveme kbase 1
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Reaction R_agreement R_models GPR_agreement
METGL 2 carveme gapseq 1
AHSERL 2 carveme gapseq 2
METS 2 agora carveme 2
AHSERL2 2 agora carveme 2
PDX5PS 2 agora carveme 1
AHMMPS_1 1 carveme 1
DM_4hba_c 2 agora carveme 0
HSK 2 agora gapseq 1
ALAS 1 gapseq 0
UAGDP 2 agora carveme 1
3OAR40 2 agora carveme 2
ACGAMPM 2 gapseq modelseed 0
UDPACGLP 1 carveme 0
MEPCT 2 agora carveme 2
UDCPDP 2 agora carveme 2
HPYRDC 1 modelseed 1
AGPAT180 1 agora 1
CLPNS180 1 agora 1
PGPP180 2 agora gapseq 0
AACPS6 1 agora 0
KAS13 2 carveme gapseq 1
AACPS5 1 carveme 1
KAS17 1 carveme 1
G3PAT181 1 carveme 1
CLPNS160 1 agora 1
PGSA160 1 carveme 0
PGPP160 1 carveme 1
CLPNS140 1 agora 1
2AGPGAT140 1 carveme 0
KAS2 1 carveme 1
AACPS1 2 carveme gapseq 1
G3PAT140 1 agora 0
PGSA140 1 carveme 0
AGPATCOA_MYRS_MYRS_c 1 agora 1
PGP140abcpp 1 carveme 1
PGPP140pp 1 carveme 0
FACOAL140t2pp 1 carveme 1
PLIPA1G140pp 1 carveme 0
2AGPG140tipp 1 carveme 0
PItex 1 carveme 1
H2Otex 1 carveme 1
2AGPGAT120 1 carveme 0
2AGPG120tipp 1 carveme 0
DDCAt2pp 1 carveme 0
PLIPA1G120pp 1 carveme 0
PGPP120pp 1 carveme 0
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Reaction R_agreement R_models GPR_agreement
PGP120abcpp 1 carveme 1
PGSA120 1 carveme 0
G3PAT120 1 kbase 0
AGPAT120 1 agora 1
EX_cys__L_e 2 carveme gapseq 0
CYSabc 2 carveme gapseq 1
CYSt2r 1 gapseq 1
G3PAT180 0 B.thetaiotaomicron 0
PGSA181 0 B.uniformis 0
PGPP181 0 B.uniformis 0

Table 3.9. Reactions incorporated into the P. vulgatus core3 consensus model to enable
biomass component synthesis and, consequently, growth in the VBDBT minimal medium.
Number of draft P. vulgatusmodels agreeing on each reaction, corresponding source of each
reaction, and number of draft models agreeing on a non-empty GPR for each reaction.

3.3.5 Assessing quantitative model performance with experimental
data on growth and extracellular metabolite fluxes in minimal
medium

After ensuring that the models of B. uniformis and P. vulgatus can grow in glucose
minimal medium, I accessed coupled growth and extracellular metabolic fluxes quantified
with time-course targeted metabolomics data, generated by PhD student Nikita Denisov in
the Varel–Bryant minimal medium.

B. uniformis began growing at the start of the 24-hour observation period but showed
only moderate growth, reaching approximately 0.1 OD without clearly defined lag,
exponential, or saturation phases (Fig. 3.6). In contrast, P. vulgatus exhibited a long lag
phase, followed by rapid exponential growth and a plateau at around 0.4-0.5 OD by the
end of the 24-hour observation. P. vulgatus also demonstrated higher variability between
replicates at the second part of its growth (Fig. 3.6).
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Figure 3.6. Growth curves of B. uniformis and P. vulgatus in the Varel-Bryant minimal medium. Growth
curves are normalised and plotted as mean OD values of four biological replicates; shaded areas indicate
standard deviation. Dashed curve demonstrates logistic fitting, used for growth rates calculation (0.20 for
B. uniformis and 0.54 for P. vulgatus). The plot was generated by myself based on the experimental data
provided by Nikita Denisov.

For the growth rate calculation I used logistic model, that incorporates the environmental
carrying capacity K to account for the saturation, eventual plateau of the growth [138]
(Fig. 3.6). The estimated model parameters indicate growth rates (r) of 0.20 h−1 for
B. uniformis and 0.54 h−1 for P. vulgatus, carrying capacities (K) of 0.133 and 0.501,
respectively, and initial population sizes (y0) of 0.0118 and 0.000018. The initial population
size estimated for P. vulgatus is lower than the observed values, likely due to its long lag
phase. However, for subsequent analyses only the growth rates were required, and these
estimates fall within the range of previously reported growth rates for B. uniformis and
P. vulgatus in similar minimal media [118].

Since bacterial growth depends on substrate consumption, but glucose was not measured
in these experiments, I first focused on the remaining nutrients available to B. uniformis and
P. vulgatus in the Varel-Bryant minimal medium: cysteine and methionine. The metabolite
concentration profiles showed that P. vulgatus consumed both cysteine and methionine,
whereas B. uniformis did not take up either compound (Fig. 3.7).
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Figure 3.7. Cysteine andmethionine consumption forB. uniformis andP. vulgatus in the Varel-Bryantminimal
medium. The concentration curves are plotted as mean of four biological replicates; shaded areas indicate
standard deviation. The plot was generated by myself based on the experimental data provided by Nikita
Denisov.

To formally assess the consumption and secretion of all analyzed metabolites in
B. uniformis and P. vulgatus grown in minimal medium, I decided to assume a linear
concentration dynamic over the time interval between 8 and 18 hours, as this period
corresponds to the early exponential phase in P. vulgatus (Fig. 3.6). This approach makes
it possible to capture the exponential growth phase of both species and to identify the main
exchange trends. Secreted metabolites were identified by comparing the slopes of linear
fits to metabolite concentrations between bacterial and control samples using covariance
analysis (ANCOVA). Eight metabolites exhibited a trend following the assumption of
linearity and statistically significant increases with slopes of sufficient magnitude, indicating
notable production. All eight metabolites were attributed to P. vulgatus, with four of
these were also produced by B. uniformis (Table 3.10, Fig. 3.8). Actual secretion rates
were calculated as the change in metabolite concentration in the 8–18 h interval over
time, normalised to the corresponding change in dry weight biomass (mmol gDW−1 h−1)
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calculated from the OD600 curve. Final values are reported as the mean and standard
deviation from four replicates (Table 3.10, Fig. 3.8).

Figure 3.8. Secretion/uptake rates (mmol gDW−1 h−1) for B. uniformis and P. vulgatus in the Varel-Bryant
minimal medium. Secreted metabolites are identified with ANCOVA. Error bars represent standard deviations
of four replicates. The rate calculations were performed and the plot was generated by myself based on the
experimental data provided by Nikita Denisov.
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bigg_id Species padj rate_mean rate_std delta_conc
_mean

delta_conc_std delta_g_bio
_mean

delta_g_bio_std

cys__L pvulg 3.13E-03 -3.95E-01 2.28E-01 -2.77E-01 8.79E-02 8.00E-02 2.79E-02
met__L pvulg 7.10E-04 -1.73E-01 9.10E-02 -1.19E-01 2.69E-02 8.00E-02 2.79E-02
asp__L pvulg 7.53E-08 1.10E-01 3.18E-02 8.20E-02 9.79E-03 8.00E-02 2.79E-02
ala__L pvulg 2.65E-18 2.12E-01 5.80E-02 1.58E-01 1.34E-02 8.00E-02 2.79E-02
ac pvulg 2.75E-04 3.30E-01 1.14E-01 2.40E-01 3.63E-03 8.00E-02 2.79E-02
akg pvulg 7.39E-03 3.95E-01 1.17E-01 2.94E-01 3.33E-02 8.00E-02 2.79E-02
fum pvulg 2.25E-08 5.38E-01 1.65E-01 3.99E-01 4.51E-02 8.00E-02 2.79E-02
ac buni 2.31E-03 8.01E-01 1.92E-01 1.96E-01 2.70E-03 2.62E-02 5.61E-03
fum buni 7.01E-05 1.31E+00 3.27E-01 3.22E-01 2.21E-02 2.62E-02 5.61E-03
mal__L pvulg 4.99E-11 1.67E+00 5.40E-01 1.22E+00 6.68E-02 8.00E-02 2.79E-02
mal__L buni 9.93E-07 4.06E+00 9.88E-01 9.96E-01 6.52E-02 2.62E-02 5.61E-03
succ pvulg 4.98E-25 4.25E+00 1.18E+00 3.16E+00 2.70E-01 8.00E-02 2.79E-02
lac__D pvulg 1.53E-10 5.52E+00 1.76E+00 4.10E+00 6.22E-01 8.00E-02 2.79E-02
lac__D buni 8.97E-04 9.52E+00 1.35E+00 2.37E+00 2.25E-01 2.62E-02 5.61E-03

Table 3.10. B. uniformis and P. vulgatus secretion/uptake rates (mmol gDW−1 h−1)
calculation with normalisation per gDW biomass in the 8-18 h growth period. Metabolite
production and the corresponding p-values identified with ANCOVA.

Lactate, succinate, and malate were identified as the three main products under
these conditions, showing the highest secretion rates and corresponding extracellular
concentration profiles (Fig. 3.8, 3.9). The data indicate that B. uniformis and P. vulgatus
differ not only in their growth patterns but also in their metabolic states. First, only
P. vulgatus produces succinate, while in B. uniformis the change in succinate concentration
is not significant (Fig. 3.8, 3.9). Second, although lactate is the major product for
both species, its concentration profile shows a greater absolute change in P. vulgatus.
However, because P. vulgatus grows much faster, biomass-normalised secretion is higher
in B. uniformis, reversing the trend (Table 3.10, Fig. 3.9). Third, malate shows a similar
change in concentration for both species, but biomass-normalised secretion is substantially
higher in B. uniformis (Table 3.10, Fig. 3.9).
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Figure 3.9. Profiles of the three top products, lactate, succinate and malate, for B. uniformis and P. vulgatus in
the Varel-Bryant minimal medium. The concentration curves are plotted as mean of four biological replicates;
shaded areas indicate standard deviation. The plot was generated by myself based on the experimental data
provided by Nikita Denisov.
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With experimental growth andmetabolite exchange rates calculated, I set out to compare
them with quantitative B. uniformis and P. vulgatus models flux simulation and curate the
models accordingly.

To simulate growth in the B. uniformis and P. vulgatus models, I constrained them with
the Varel–Bryant minimal media, allowing cysteine and methionine uptake for P. vulgatus
according to experimental data, and none for B. uniformis. Since glucose uptake was
not measured, I explored a plausible range of this boundary (between 0.5 and 10 mmol
gDW−1 h−1) and its effect on the growth rate (Fig. 3.10). The initially curated core3
models of B. uniformis and P. vulgatus showed similar growth predictions, ranging from
0.06 h−1 to 1.20 h−1 depending on the glucose uptake (Fig. 3.10, left). Experimentally
observed growth rates fell within this predicted range, proving that the models can provide a
reasonable approximation of growth behaviour. Glucose uptake rates of 2mmol gDW−1 h−1

for B. uniformis and 5 mmol gDW−1 h−1 for P. vulgatus resulted in optimized growth rates
close to the experimental data (0.24 and 0.60 h−1, respectively; Fig. 3.10, 3.11). A summary
of the FBA simulations shows that the growth difference is primarily driven by glucose
consumption, while P. vulgatus uptake of cysteine and methionine remains substantially
lower than the allowed limits and contributes little to the overall uptake or secretion fluxes
(Fig. 3.11).

Figure 3.10. FBA-simulated growth rates (h−1) of B. uniformis and P. vulgatus models in Varel–Bryant
minimal medium with varying glucose uptake boundaries (mmol gDW−1 h−1), shown before (left) and after
(right) curation for the secretion and constraining the secretion of three major products: lactate, malate, and
succinate.



Chapter III Results 111

Figure 3.11. COBRApy summary of the FBA simulations for the initially curated B. uniformis (left) and
P. vulgatus (right) models, with consumption constraints based on the Varel–Bryant minimal medium and
experimental data on cysteine and methionine uptake, and without secretion constraints. Glucose uptake
boundaries were set to 2 mmol gDW−1 h−1 for B. uniformis and 5 mmol gDW−1 h−1 for P. vulgatus, chosen
as the nearest round values yielding biomass reaction fluxes close to the experimental data.

Even without any constraints on metabolite production, the B. uniformis and P. vulgatus
models showed a difference in the secretion of one metabolite, succinate (Fig. 3.11). This
aligns with experimental data, where succinate is the second major product of P. vulgatus,
whereas it is not significantly produced byB. uniformis, and suggests that themodels already
capture differences in network topology that lead to distinct succinate secretion fluxes.

As succinate is an intermediate in the TCA cycle, I examined this key pathway in
B. uniformis and P. vulgatus using GEMsembler pathway maps (Fig. 3.12, 3.13). These
maps indicate that most TCA reactions are supported by at least three draft models and



112 Chapter III Results

some genetic evidence. In B. uniformis, the main uncertainty concerns the AKGDH
(2-oxoglutarate dehydrogenase) reaction (Fig. 3.12). However, this reaction is supported
by two draft models with assigned GPRs and was already incorporated into the core3 model
during curation, resulting in a fully functional TCA cycle for B. uniformis. In contrast,
P. vulgatus shows greater uncertainty at the SUCOAS (succinyl-CoA synthetase) reaction,
which was gap-filled by two models (gapseq and AGORA) but lacks genetic evidence
(Fig. 3.13).

Therefore, the succinyl-CoA synthetase reaction, which directly involves succinate, is
absent in the curated core3 P. vulgatus model. Meanwhile, the B. uniformis model includes
this reaction, as it is part of core3, and the CarveMe model identified a candidate gene
(BU_ATCC8492_00941) for its enzyme (Fig. 3.13).

The absence of SUCOAS in P. vulgatus explains the observed differences in succinate
secretion between the two models, which align with experimental data. Indeed, in
B. uniformis, the TCA flux through the reductive branch flows from succinate to
succinyl-CoA and 2-oxoglutarate, whereas in P. vulgatus these reactions are missing,
therefore succinate needs to be secreted. However, the underlying biological reasons
require further investigation, including examining the presence of unusual succinyl-CoA
synthetase variants, other pathway differences, or enzyme activity regulation.
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Figure 3.12. TCA pathway map in the B. uniformis supermodel showing agreement among three draft
models (CarveMe, gapseq, and AGORA) on the reaction SUCOAS (succinyl-CoA synthetase, GPR:
BU_ATCC8492_00941), which is included in the curated core3 model. This reaction is proposed as a
hypothesis to explain the observed difference in succinate secretion (B. uniformis does not produce succinate).
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Figure 3.13. TCA pathway map in the P. vulgatus supermodel showing agreement among two draft models
(gapseq, and AGORA) on the reaction SUCOAS (succinyl-CoA synthetase) without any GPR assigned, which
is excluded in the curated core3 model. This reaction is proposed as a hypothesis to explain the observed
difference in succinate secretion (P. vulgatus produces succinate).

Next, I investigated the remaining two major products that were not produced by the
models initially. D-lactate could be secreted by both B. uniformis and P. vulgatus core3
models, so this metabolite did not require curation of network topology. In contrast,
L-malate could not be secreted, even though intracellular L-malate could be produced by
both species, indicating that transport curation was necessary. The GEMsembler-generated
map of the extracellular L-malate neighborhood revealed three potential transport routes,
all predicted by a single draft model, involving the same putative transporters (Fig. 3.14).
Therefore, I selected the simplest transport reaction, without additional ions or compartment
transitions, to add to the core3 models and restore L-malate secretion.
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Figure 3.14. Neighborhood map for extracellular malate from GEMsembler, showing the curated transport
reaction (MALt2r), which, together with the exchange reaction, restores malate secretion in B. uniformis and
P. vulgatus.

With the network topology of the curated B. uniformis and P. vulgatus models aligned
with the experimentally identified exchange metabolites, I next evaluated whether the
observed extracellular metabolite fluxes, together with the growth patterns, could be
captured by FBA simulations. After introducing secretion constraints, the glucose uptake
boundary shifted (Fig. 3.10, right), requiring at least 6.5 mmol gDW−1 h−1 for B. uniformis
and 5 mmol gDW−1 h−1 for P. vulgatus to obtain maximal FBA solutions for biomass
flux comparable to the experimentally observed values. Under both uptake and secretion
constraints, the models began to display differences in predicted growth rates, with
B. uniformis growing more slowly at the same glucose uptake rate (Fig. 3.10, right).
Consequently assuming an equal glucose uptake boundary of 8 mmol gDW−1 h−1 for both
species resulted in optimized biomass production rates close to the experimental growth
data: 0.25 h−1 for B. uniformis and 0.46 h−1 for P. vulgatus (Fig. 3.15).
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Figure 3.15. COBRApy summary of the FBA simulations for the finally curated B. uniformis (left) and
P. vulgatus (right) models, with consumption constraints based on the Varel–Bryant minimal medium and
experimental data on cysteine and methionine uptake, as well as on lactate, succinate and malate secretion.
Glucose uptake boundaries were set to 8 mmol gDW−1 h−1 for both B. uniformis and P. vulgatus, chosen as
the single nearest round value yielding biomass reaction fluxes close to the experimental data.

Growth reduction under all secretion constraints occurs primarily because enforcing the
secretion of the major product, lactate, redirects a substantial portion of carbon derived
from glucose and glycolysis into the D-lactate dehydrogenase (LDH_D) reaction, leaving
less carbon available for central carbon metabolism and, consequently, growth. At a glucose
uptake rate of 8 mmol gDW−1 h−1, 56.95% of pyruvate is consumed for lactate synthesis
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in B. uniformis (38.73% enters the TCA cycle), while in P. vulgatus this fraction is roughly
half of that in B. uniformis, at 27.76% (62.62% enters the TCA cycle).

Figure 3.16. Comparison of experimentally determined uptake and secretion rates of major products, obtained
from time-course extracellular metabolomics data (x-axis), with corresponding flux predictions in the final
curated models of B. uniformis and P. vulgatus (y-axis). Error bars represent the standard deviations of four
replicates. Glucose uptake was limited to 8 mmol gDW−1 h−1. for both species, and the corresponding
predicted biomass flux (y-axis) is shown together with the experimentally measured growth rate (x-axis).

In summary, the final genome-scale metabolic models of B. uniformis and P. vulgatus,
curated using a consensus-based approach, reproduce all experimental observations taken
together (Fig. 3.16), including major metabolite uptake and secretion fluxes within the
standard deviation range of the data and the experimentally determined growth rates.

3.4 Discussion
Genome-scale metabolic model reconstruction and refinement is a highly iterative

process, with each step building on previous discoveries and earlier versions of the model
[29, 31]. In this project, I initiated the de novo reconstruction of genome-scale metabolic
models for two key human gut bacteria and model organisms to be, B. uniformis and
P. vulgatus.
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This de novo reconstruction was based on a comparison of draft models, automatically
derived from bacterial genomes using different algorithms. Applying a consensus-based
approach using the GEMsembler workflow that I previously developed, enabled me to make
initial decisions about the overall model structure while simultaneously identifying nodes
of uncertainty in the metabolic networks and prioritizing reactions for future validation.

Validation of uncertain reactions in future stages of model curation can take many paths,
ranging from additional computational approaches to identify enzymes and their functions
to experimental confirmation of predicted reactions. One promising computational strategy
is to move beyond sequence-based annotation and incorporate protein structure-based
predictions, which have been made significantly more reliable with neural-network based
models, such as AlphaFold2 [139].

Building on computational predictions, experimental validation provides the strongest
evidence for confirming model reactions. A particularly effective approach, directly linking
genes to reactions in the model, is based on the gain-of-function strategy [140]. In this
method, a reaction of interest is first identified in a model organism such as E. coli, along
with a mutant strain lacking the enzyme required for this reaction, which results in loss
of viability under specific conditions. Introducing a candidate gene from the organism of
interest (ex. B. uniformis or P. vulgatus) into the mutant and observing restoration of the
growth provides evidence that the gene encodes the predicted function. If no clear candidate
is available, a gain-of-function screen can be performed. In this case a gain-of-function
library, composed of plasmids carrying random genomic fragments, can be used to identify
positive hits restoring the phenotype of the recipient strain and thus pinpoint potential genes
for further investigation.

However, despite its value, the gain-of-function approach has a fundamental limitation:
only a small subset of reactions can feasibly be tested. This constraint arises from differences
between the metabolic networks of the model organism and the target species, ambiguity
in gene-to-reaction relationships, like isoenzymes or protein complexes, and variability in
mutant phenotypes, which can range from complete growth loss to no detectable deviation
from the wild type.

In addition to uncertain reactions, the biomass reaction composition is a crucial element
of genome-scale metabolic models that requires validation. For the B. uniformis and
P. vulgatus models, a consensus-based biomass reaction derived from draft models was
used to supplement a curated formulation from the related species B. thetaiotaomicron,
resulting in a biomass composition that incorporates both high-confidence genus-level
and species-specific elements. While inheriting biomass reactions from better-studied
organisms is a common practice [132], achieving model-organism-level accuracy for
B. uniformis and P. vulgatus will require experimental validation, including verification
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of uncertain precursors, determination of the stoichiometry of biomass components, and
calculation of growth-associated (GAM) and non-growth-associated maintenance (NGAM)
parameters for these species [141].

Since glucose consumption was not quantified in the growth experiments available for
this curation, the growth rate predictions of the B. uniformis and P. vulgatus models cannot
yet be fully evaluated. If the experimentally measured glucose uptake substantially deviates
from the model-derived value of 8 mmol gDW−1 h−1, reassessment of the biomass reaction
parameters, including GAM, NGAM, and stoichiometric composition, will be a priority.
In particular, the GAM parameter requires confirmation, as it has a strong influence on
biomass yield [142]. Another reason for careful re-evaluation is that theGAMvalue reported
for B. thetaiotaomicron (18.526 mmol gDW−1) [45] is markedly lower than the typical
value included in biomass templates (~55 mmol gDW−1) and falls below the lower bound
for the GAM demand of E. coli (22.363 mmol gDW−1) [143]. Finally, it is essential to
consider that the steady-state assumption of flux balance analysis is most appropriate for
chemostat conditions, and that the use of batch culture experiments may introduce additional
discrepancies in growth rate estimates.

As this work represents the first stage of reconstructing genome-scale metabolic models
for B. uniformis and P. vulgatus, the reconstruction was based on data from highly
minimal and defined media, allowing precise determination of nutritional constraints and
identification of major metabolic trends. However, this work can be further expanded,
particularly in the comparative analysis of the two species, by exploring P. vulgatus’s
superior growth and broader metabolic activity, as well as B. uniformis’s greater production
capacity for major metabolites. Modeling approaches such as flux variability or sampling
analysis could be applied to investigate differences in metabolic fluxes and pathway
utilisation between the two species. In addition, studies of enzymatic activity and regulatory
mechanisms may provide further insight into the observed phenotypes.

A common approach to extend minimal media conditions is to investigate the ability
of bacteria to utilise a variety of carbon sources beyond glucose. For B. uniformis and
P. vulgatus, this is an important direction, although large variation is not expected, as
Bacteroides are known for their broad saccharide utilisation capabilities [112]. In the future,
such metabolic capacities should also be incorporated and investigated in the models.

In addition to reaction validation, the genes included in the genome-scale metabolic
models of B. uniformis and P. vulgatus should also be curated with experimental data. The
most common and high-throughput source for this is gene essentiality datasets, which can
be directly compared with model predictions of essential genes. It would be particularly
useful to apply the same approach I used in Section 2.3.6 for E. coli to refine the existing
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gene–reaction rules of B. uniformis and P. vulgatus, taking into account their variations in
the corresponding supermodels.

Overall, while minimal media provided a controlled starting point for model
development, their restrictive nature inevitably limits the range of metabolic functions
that can be assessed. Expanding to more favorable growth conditions and incorporating
strain-level diversity in B. uniformis and P. vulgatus will be essential for advancing from
initial curated reconstructions to comprehensive, biologically representative genome-scale
metabolic models, thereby bringing these species closer to established model organisms.



Conclusion

My PhD began as an effort to reconstruct genome-scale metabolic models (GEMs) for
several non-model human gut bacteria in order to probe community metabolic interactions.
Early on, it became clear that de novo reconstruction of GEMs for non-model organisms
presents a substantive challenge: different pipelines yield substantially distinct networks,
and the available means of comparison were limited and fragmented, with no tool available
that treated models as coherent systems rather than isolated components. Motivated by this
gap, I embraced the challenge and focused on filling the niche created by the lack of holistic
approaches to GEM comparison. The guiding idea is that comparison is a cornerstone of
scientific inquiry, and implementing model-level comparison in GEM research enables the
formulation of hypotheses about metabolic differences betweenmodels, the identification of
complementary functions, and systematic reasoning about confidence in network elements.
In the context of GEM reconstruction, this idea underpins a consensus approach, turning
reconstruction-tool disagreement from a source of noise into a source of evidence and
testable alternatives.

I implemented GEM comparison and a consensus model reconstruction approach in
the GEMsembler Python package, which keeps track of all network elements and their
origin via supermodel structure that enables the various comparisons and combinations.
Moreover, GEMsembler also provides tools to explore metabolic networks: from systematic
assessment of biomass-component biosynthesis to enumeration of the neighbourhood of
a metabolite of interest. I believe that GEMsembler’s systematic approach to building
consensus models and its flexibility and accessibility will help researchers at any stage,
even with minimal programming skills, who need to build, analyse, or curate GEMs
for their organisms of interest. GEMsembler’s functionality can also be generalised and
plugged into other computational pipelines and research settings that address different
aspects of bacterial metabolism. If the systems and computational biology community
adopts GEMsembler widely, it will aid in assessing and resolving uncertainties in metabolic
models and support the reconstruction of models that are more comprehensive, concise, and
biologically informed.
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Case study to demonstrate GEMsembler functionality includes curation of models
for Lactiplantibacillus plantarum and Escherichia coli, based on a consensus of
four automatically reconstructed GEMs and begins with a systematic assessment of
biomass-component biosynthesis. The curation workflow pinpointed low-confidence
reactions missing from high-confidence networks, and adding reactions originating from
multiple reconstruction sources restored coherent pathways. For L. plantarum, this
process yielded a consensus model with more accurate auxotrophy predictions than the
reference gold-standard model and made it possible to trace the improvement to specific
biosynthetic routes. For E. coli, evaluation against gene-essentiality data also showed
that the consensus-curated model outperformed the reference gold standard. In addition,
strategies to combine alternative gene–protein–reaction (GPR) rules drawn from the input
and consensus models improved gene-essentiality predictions across all models, including
the curated gold-standard ones.

With the consensus approach established, I next applied it to the de novo reconstruction
of two of the most abundant yet underexplored human gut bacteria, Bacteroides uniformis
and Phocaeicola vulgatus. I built and curated their models by balancing confidence in
network features against identified biosynthetic capability. The resulting first-iteration
curated models reproduced characteristic growth patterns and biosynthetic product profiles.
With experimentally measured secretion-rate constraints enforced for major products
(lactate and malate for B. uniformis; lactate, malate, and succinate for P. vulgatus),
the models’ topology supported the experimentally observed growth behaviour, with
B. uniformis growingmore slowly. Although amore complete understanding ofB. uniformis
and P. vulgatus metabolic capacities will require further investigation, these results already
show that the approach works well for relatively poorly characterised gut bacteria.

Overall, this thesis establishes a consensus approach for assessing and resolving
uncertainty in genome-scale metabolic models. By comparing and integrating alternative
reconstructions into agreement-driven consensusmodels, it converts inter-tool disagreement
into evidence and testable biological alternatives, prioritises targeted curation, increases
confidence in the network content and improves the models’ predictive reliability and
interpretability. In doing so, it advances systems-level understanding of microbial
metabolism and provides a practical foundation for robust, concise, and biologically
informed GEMs.
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Appendices

Appendix I

Metabolite Type Met_conf. Biomass_conf. Status ag_LP ca_LP ga_LP mo_LP Decision
ACP_c r Core4 Core3 yes + - + + no
ala__L_c r Core4 Core4 yes + + + + yes
amet_c r Core4 Core4 yes + + + + yes
arg__L_c r Core4 Core4 yes + + + + yes
asn__L_c r Core4 Core4 yes + + + + yes
asp__L_c r Core4 Core4 yes + + + + yes
atp_c r Core4 Core4 yes + + + + yes
ca2_c r Core4 Core4 yes + + + + yes
cl_c r Core4 Core4 yes + + + + yes
coa_c r Core4 Core4 yes + + + + yes
cobalt2_c r Core4 Core4 yes + + + + yes
ctp_c r Core4 Core4 yes + + + + yes
cu2_c r Core4 Core4 yes + + + + yes
cys__L_c r Core4 Core4 yes + + + + yes
datp_c r Core4 Core4 yes + + + + yes
dctp_c r Core4 Core4 yes + + + + yes
dgtp_c r Core4 Core4 yes + + + + yes
dttp_c r Core4 Core4 yes + + + + yes
fad_c r Core4 Core4 yes + + + + yes
fe2_c r Core4 Core4 yes + + + + yes
fe3_c r Core4 Core4 yes + + + + yes
gln__L_c r Core4 Core4 yes + + + + yes
glu__L_c r Core4 Core4 yes + + + + yes
gly_c r Core4 Core4 yes + + + + yes
gtp_c r Core4 Core4 yes + + + + yes
h2o_c r Core4 Core3 yes + + + - yes
his__L_c r Core4 Core4 yes + + + + yes
ile__L_c r Core4 Core4 yes + + + + yes
k_c r Core4 Core4 yes + + + + yes
leu__L_c r Core4 Core4 yes + + + + yes
lys__L_c r Core4 Core4 yes + + + + yes
met__L_c r Core4 Core4 yes + + + + yes
mg2_c r Core4 Core4 yes + + + + yes
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Metabolite Type Met_conf. Biomass_conf. Status ag_LP ca_LP ga_LP mo_LP Decision
mn2_c r Core4 Core4 yes + + + + yes
nad_c r Core4 Core4 yes + + + + yes
nadp_c r Core4 Core4 yes + + + + yes
phe__L_c r Core4 Core4 yes + + + + yes
pro__L_c r Core4 Core4 yes + + + + yes
pydx5p_c r Core4 Core4 yes + + + + yes
ribflv_c r Core4 Core4 yes + + + + yes
ser__L_c r Core4 Core4 yes + + + + yes
so4_c r Core4 Core4 yes + + + + yes
tcam_c r Core3 Core3 yes + - + + yes
thr__L_c r Core4 Core4 yes + + + + yes
trp__L_c r Core4 Core4 yes + + + + yes
tyr__L_c r Core4 Core4 yes + + + + yes
udcpdp_c r Core2 Core1 no + - - - yes
utp_c r Core4 Core4 yes + + + + yes
val__L_c r Core4 Core4 yes + + + + yes
zn2_c r Core4 Core4 yes + + + + yes
10fthf_c r Core4 Core3 yes - + + + yes
gtca1_45_BS_c r Core1 Core1 no - + - - yes
gtca2_45_BS_c r Core1 Core1 no - + - - yes
gtca3_45_BS_c r Core1 Core1 no - + - - yes
lipo1_24_BS_c r Core1 Core1 no - + - - no
lipo2_24_BS_c r Core1 Core1 no - + - - no
lipo3_24_BS_c r Core1 Core1 no - + - - no
lipo4_24_BS_c r Core1 Core1 no - + - - no
mlthf_c r Core4 Core1 no - + - - no
mql8_c r Core4 Core1 no - + - - no
peptido_BS_c r Core1 Core1 no - + - - yes
thf_c r Core4 Core3 yes - + + + yes
thmpp_c r Core4 Core3 yes - + + + yes
gthrd_c r Core4 Core2 q - - + + no
5mthf_c r Core4 Core2 q - - + + no
pheme_c r Core3 Core2 q - - + + no
ptrc_c r Core4 Core2 q - - + + yes
spmd_c r Core4 Core2 q - - + + yes
adocbl_c r Core2 Core2 q - - + + no
sheme_c r Core2 Core2 q - - + + no
pg180_c r Core4 Core2 q - - + + no
pe180_c r Core3 Core2 q - - + + no
q8_c r Core4 Core1 no - - - + no
mqn8_c r Core4 Core1 no - - - + no
h_c r Core4 Core1 no - - - + no
2dmmq8_c r Core4 Core1 no - - - + no
adp_c p Core4 Core4 yes + + + + yes
apoACP_c p Core4 Core3 yes + - + + no
biomass_c p Core1 Core1 no + - - - no
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Metabolite Type Met_conf. Biomass_conf. Status ag_LP ca_LP ga_LP mo_LP Decision
h_c p Core4 Core3 yes + + + - yes
pi_c p Core4 Core4 yes + + + + yes
ppi_c p Core4 Core4 yes + + + + yes
dmbzid_c p Core2 Core2 q - - + + no
cbi_c p Core2 Core2 q - - + + no
h2o_c p Core4 Core1 no - - - + no

Table 5.1. Curating the Biomass reaction for L. plantarum.

Appendix II

Metabolite Type Met_conf. Biomass_conf. Status ag_EC ca_EC ga_EC mo_EC Decision
10fthf_c r Core4 Core4 yes + + + + yes
ala__L_c r Core4 Core4 yes + + + + yes
amet_c r Core4 Core4 yes + + + + yes
arg__L_c r Core4 Core4 yes + + + + yes
asn__L_c r Core4 Core4 yes + + + + yes
asp__L_c r Core4 Core4 yes + + + + yes
atp_c r Core4 Core4 yes + + + + yes
ca2_c r Core4 Core4 yes + + + + yes
cl_c r Core4 Core4 yes + + + + yes
coa_c r Core4 Core4 yes + + + + yes
cobalt2_c r Core4 Core4 yes + + + + yes
ctp_c r Core4 Core4 yes + + + + yes
cu2_c r Core4 Core4 yes + + + + yes
cys__L_c r Core4 Core4 yes + + + + yes
datp_c r Core4 Core4 yes + + + + yes
dctp_c r Core4 Core4 yes + + + + yes
dgtp_c r Core4 Core4 yes + + + + yes
dttp_c r Core4 Core4 yes + + + + yes
fad_c r Core4 Core4 yes + + + + yes
fe2_c r Core4 Core4 yes + + + + yes
fe3_c r Core4 Core4 yes + + + + yes
gln__L_c r Core4 Core4 yes + + + + yes
glu__L_c r Core4 Core4 yes + + + + yes
gly_c r Core4 Core4 yes + + + + yes
gtp_c r Core4 Core4 yes + + + + yes
h2o_c r Core4 Core4 yes + + + + yes
his__L_c r Core4 Core4 yes + + + + yes
ile__L_c r Core4 Core4 yes + + + + yes
k_c r Core4 Core4 yes + + + + yes
leu__L_c r Core4 Core4 yes + + + + yes
lys__L_c r Core4 Core4 yes + + + + yes
met__L_c r Core4 Core4 yes + + + + yes
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Metabolite Type Met_conf. Biomass_conf. Status ag_EC ca_EC ga_EC mo_EC Decision
mg2_c r Core4 Core4 yes + + + + yes
mn2_c r Core4 Core4 yes + + + + yes
nad_c r Core4 Core4 yes + + + + yes
nadp_c r Core4 Core4 yes + + + + yes
phe__L_c r Core4 Core4 yes + + + + yes
pheme_c r Core4 Core4 yes + + + + yes
pro__L_c r Core4 Core4 yes + + + + yes
pydx5p_c r Core4 Core4 yes + + + + yes
ribflv_c r Core4 Core4 yes + + + + yes
ser__L_c r Core4 Core4 yes + + + + yes
sheme_c r Core4 Core4 yes + + + + yes
so4_c r Core4 Core4 yes + + + + yes
thf_c r Core4 Core4 yes + + + + yes
thmpp_c r Core4 Core4 yes + + + + yes
thr__L_c r Core4 Core4 yes + + + + yes
trp__L_c r Core4 Core4 yes + + + + yes
tyr__L_c r Core4 Core4 yes + + + + yes
utp_c r Core4 Core4 yes + + + + yes
val__L_c r Core4 Core4 yes + + + + yes
zn2_c r Core4 Core4 yes + + + + yes
2dmmq8_c r Core4 Core3 yes + - + + yes
5mthf_c r Core4 Core3 yes + - + + yes
ACP_c r Core4 Core3 yes + - + + no
adocbl_c r Core3 Core3 yes + - + + no
colipa_c r Core3 Core3 yes + - + + no
gthrd_c r Core4 Core3 yes + - + + yes
mqn8_c r Core4 Core3 yes + - + + yes
pe180_c r Core4 Core3 yes + - + + no
ptrc_c r Core4 Core3 yes + - + + yes
spmd_c r Core4 Core3 yes + - + + yes
pg180_c r Core3 Core2 q + - - + no
q8_c r Core4 Core2 q + - - + no
clpn180_c r Core1 Core1 no + - - - no
dtdprmn_c r Core3 Core1 no + - - - no
kdo2lipid4L_c r Core3 Core1 no + - - - no
udcpdp_c r Core2 Core1 no + - - - yes
kdo2lipid4_p r Core1 Core1 no - + - - no
mlthf_c r Core4 Core1 no - + - - no
mql8_c r Core4 Core1 no - + - - no
murein5px4p_p r Core1 Core1 no - + - - no
pe160_c r Core4 Core1 no - + - - yes
pe160_p r Core1 Core1 no - + - - no
pe161_c r Core4 Core1 no - + - - no
pe161_p r Core1 Core1 no - + - - no
adp_c p Core4 Core4 yes + + + + yes
h_c p Core4 Core4 yes + + + + yes
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Metabolite Type Met_conf. Biomass_conf. Status ag_EC ca_EC ga_EC mo_EC Decision
pi_c p Core4 Core4 yes + + + + yes
ppi_c p Core4 Core4 yes + + + + yes
apoACP_c p Core4 Core3 yes + - + + no
cbi_c p Core3 Core3 yes + - + + no
dmbzid_c p Core3 Core3 yes + - + + no
biomass_c p Core1 Core1 no + - - - no

Table 5.2. Curating the Biomass reaction for E. coli.

Appendix III
Resourcers for GEMsembler framework.
GEMsembler source code is available at: https://github.com/zimmermann-kogadeeva

-group/GEMsembler
GEMsembler tutorials and example notebooks are available at: https://grp-zimmerman

n-kogadeeva.embl-community.io/gemsembler/, and https://git.embl.org/grp-zimmerman
n-kogadeeva/GEMsembler/-/blob/master/docs/tutorial.ipynb.

Code and data required to reproduce results from Chapter II GEMsembler, as well as
tables and interactive maps used, are available at: https://git.embl.de/grp-zimmermann-k
ogadeeva/GEMsembler_paper and on Zenodo: https://doi.org/10.5281/zenodo.16529342.

Appendix IV
Authorship declaration and use of AI.
I confirm that this dissertation is my own work and has not been submitted, in whole or

in part, for a degree at any other institution. Contributions from collaborators are explicitly
acknowledged in the relevant parts of the text.

The writing, editing, and formatting of this dissertation were partially supported by AI
tools, specifically OpenAI’s ChatGPT, Google’s Gemini, and Perplexity.ai. These tools
were used solely for rephrasing, improving clarity, summarising notes, and maintaining
stylistic consistency throughout the text. For the visual component, AI assistance was also
used to suggest LaTeX formatting and code for generating plots, without involvement in any
aspect of figure design. All scientific ideas, data analyses, interpretations, and conclusions
are my own.
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