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1 Introduction

“We are drowning in information and

starving for knowledge.”

Rutherford D. Rogers

In medical research, prediction models still predominantly make use of com-
posite endpoints such as progression- or event-free survival. However, these
time-to-first-event endpoints do not take into account important aspects of the
individual disease pathway and therapy course. Multi-state models are a natural
framework to assess the effect of prognostic factors and treatment on the event
history of a patient and to separate risks for the occurrence of distinct events.
Event history analysis using these models is a rapidly evolving field in applied
biostatistics. In their introduction to the methodological fundamentals of event
history analysis, some of the pioneers of establishing multi-state models state:

“One of the most remarkable examples of fast technology transfer from new
developments in mathematical probability theory to applied statistical methodol-
ogy is the use of counting processes [. . . ] in event history analysis.” (Andersen
et al., 1993, p. v)

Complex multi-state models extend the classical approach of competing risks
to event history analysis. The event history may include time to progression,
relapse, remission, death or specific therapeutic interventions like stem cell
transplantation. The sequence of competing consecutive events is modeled on a
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1 Introduction

macro level. In survival analysis, the multi-state model class is used for event
history data where individuals experience a sequence of events over time. Each
event is defined by an entry and exit time along with transition types. Parts of
this chapter have already been published. Relevant paragraphs of Sections 1.1,
1.2 and 1.3 are taken verbatim from Miah et al. (2024).

1.1 Motivation and background

This work is motivated by a real-world application to the acute myeloid leukemia
(AML) disease pathway. Figure 1.1 illustrates the event history for AML patients
in the form of a state chart of a multi-state model with nine states and eight
transitions. Distinct states are treated as nodes and observable transitions are
represented by directed arrows. To assess how intensities of going from state to
state depend on covariates, multi-state proportional hazards regression models
can be used. In the era of precision medicine with increasingly high-dimensional
information on molecular biomarkers, such a holistic analysis of a multi-state
model is of essential interest. For the motivating AML application, the effect
of various biomarkers is investigated along with established clinical covariates

Active

disease

1st Complete

Remission 

(CR1)

Death 

(no CR)

Death 

(CR1)
Death

(relapse)

Death

(CR2)

1st

Relapse

2nd

Relapse

First-line therapy Second-line therapy

2nd Complete

Remission 

(CR2)1

2

3

4

5

6

7

8

Fig. 1.1: State chart of the multi-state model for acute myeloid leukemia (AML)
with nine states and eight possible transitions represented by arrows.
Similar transitions from complete remission (CR) to death or relapse (i. e.
transitions 3 and 7 as well as 4 and 8) are marked by yellow and blue
arrows, respectively.
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on the distinct transitions of the multi-state model depicted in Figure 1.1. In
particular, incorporating biomarker effects on similar transitions from complete
remission (CR) to death or relapse marked by yellow and blue arrows in Fig-
ure 1.1 is of interest. Further, no biomarker effect is expected on e. g. transition 1,
i. e. from active disease to early death, since this might rather be related to the
initiation of intensive chemotherapy. Thus, effective variable selection strate-
gies for multi-state models incorporating high-dimensional molecular data are
required to obtain a sparse model and mitigate overfitting. Such data-driven
model building strategies will contribute to a deeper understanding of the in-
dividual disease progression and its therapeutic concepts as well as improved
personalized prognoses. In their renowned book “Elements of statistical learn-
ing” (Hastie et al., 2009) on regularized modeling theory, Trevor Hastie, Robert
Tibshirani and Jerome Friedman state in this context:

“Vast amounts of data are being generated in many fields, and the statistician’s
job is to make sense of it all: to extract important patterns and trends, and
understand ‘what the data says.’” (Hastie et al., 2009, p. xi)

1.2 Related work

A scoping literature review on statistical methods for model selection in the
framework of multi-state models was conducted based on the PubMed database
(http://www.ncbi.nlm.nih.gov/pubmed/advanced). In the following, a brief
overview on existing model selection strategies for multi-state model building in
survival analysis is given. Approaches are categorized by method type. Details
on the scoping review results are provided in Section 3.1.

Common methods for variable selection comprise regularization in the fitting
process in order to avoid the inclusion of covariates with non-relevant effects.
Saadati et al. (2018) proposed a least absolute shrinkage and selection operator
(lasso) penalized cause-specific hazards approach for competing risks data in
higher dimensions, where the independently penalized cause-specific hazards

3
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1 Introduction

models are linked by choosing a combination of tuning parameters that yields
the best prediction in cross-validation. In the multi-state setting, Sennhenn-
Reulen and Kneib (2016) developed a data-driven regularization method for
sparse modeling by combining cross-transition effects of the same baseline
covariate. This so-called structured fusion lasso penalization regularizes the
L1-norm of the regression coefficients as well as all pairwise differences between
distinct transitions. Huang et al. (2018) proposed a regularized continuous-time
Markov model with the elastic net penalty. Further, Dang et al. (2021) suggested
L1-penalization by a one-step coordinate descent algorithm.

Beyond, Reulen and Kneib (2016) introduced the component-wise functional
gradient descent boosting approach to perform unsupervised variable selection
and multi-state model choice simultaneously. In particular, they focused on
non-linearity of single transition-specific or cross-transition effects. With respect
to testing strategies, Edelmann et al. (2020) extended the global test to competing
risks and multi-state models to investigate whether regression coefficients for
a certain subset of transitions are equal under the Markov assumption. Fiocco
et al. (2005) introduced reduced rank proportional hazards regression to competing
risks and later to multi-state models (Fiocco et al., 2008) for limiting the number
of regression parameters.

A model class to directly estimate the effect of a covariate on survival times
are accelerated failure time (AFT) models. With respect to direct modeling se-
lection approaches, Huang et al. (2006) consider regularized AFT models with
high-dimensional covariates. Pseudo-observations in event history analysis
introduced by Andersen et al. (2003) provide another direct modeling technique.
The state occupation probabilities are modeled directly instead of considering
each transition intensity separately. These pseudo-values are then used in a
generalized estimating equation (GEE) to deduce estimates of the model param-
eters. In terms of variable selection procedures, Wang et al. (2012) proposed
penalized GEE based on high-dimensional longitudinal data. Further, Niu et al.
(2020) utilize penalized GEE for a marginal survival model. Based on pseudo-
observations, Su et al. (2022) make use of penalized GEE for proportional hazards
mixture cure models.
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This thesis focuses on the established hazard-based framework of Cox-type
multi-state models, so that direct modeling approaches are not further pursued.
While some interesting approaches for multi-state model selection have been
proposed, none of these fully take into account a-priori information on the
structure of the model in a holistic manner. Since such information is often
available in practice, incorporating it into the model selection process can lead to
models that are more accurate and better aligned with the underlying real-world
processes.

1.3 Objectives and contributions

The main objective of this thesis is to develop an effective variable selection
strategy for multi-state models incorporating high-dimensional data in order to
obtain a sparse model and mitigate overfitting. A-priori knowledge about the
multi-state model structure should be used to help simplify it. This additional
expert knowledge includes assumptions about covariate effects and transition
dynamics. The aim is to reduce model complexity by incorporating a-priori
information into likelihood-based inference. Hence, this work focuses on data-
driven variable selection via penalized multi-state models to capture pathogenic
processes and underlying etiologies more accurately. In particular, the following
research questions are answered in this thesis:

• What are effective model selection strategies for complex multi-
state models based on high-dimensional data?

• How can a-priori knowledge about multi-state model structures
be efficiently integrated into the model-building process?

• How can the fusion penalty tailored to multi-state models by
Sennhenn-Reulen and Kneib (2016) be adapted to better leverage
a-priori information?

5



1 Introduction

• Can the new method simplify multi-state models by incorporat-
ing structural constraints, such as shared biomarker effects and
transition-wise grouping?

• How does the proposed method compare to global lasso penal-
ization in terms of variable selection performance?

• Is the new method robust and applicable to real-world scenarios
with limited sample sizes, as in clinical trials?

• Can the proposed method enhance prognosis for individual pa-
tients?

To this end, the fused sparse-group lasso (FSGL) penalty for multi-state models
is proposed in this work, combining the concepts of general sparsity, pairwise
differences of covariate effects and transition-wise grouping. For fitting such
a penalized multi-state model, the alternating direction method of multipliers
(ADMM) numeric algorithm was adapted to Cox-type hazards regression in the
multi-state setting due to its beneficial feature of decomposing the optimization
problem. In a proof-of-concept simulation study, the algorithm’s ability to select
a sparse model incorporating relevant transition-specific effects and similar
cross-transition effects was evaluated. Simulation settings were investigated in
which the combined penalty is beneficial compared to global lasso regularization.
The potential of FSGL penalized multi-state models was further explored in a
real-world data application to AML patients.

In the era of precision medicine, the extension of model selection strategies
for complex multi-state models utilizing high-dimensional molecular data will
allow a more precise comprehension and interpretation of the individual disease
progression. Consequently, such data-driven procedures will contribute to
a deeper understanding of the specific oncological entity and its therapeutic
concepts as well as improved prognosis for individual patients.
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1.4 Outline

Based on the presented scope of this thesis, the following structure arises: The
methodological background of model selection for multi-state models in time-
to-event analysis needed for the proposed adaptation is given in Chapter 2.
Section 2.1 provides a framework of modeling techniques for the multi-state
model class in survival analysis. Section 2.2 gives a brief overview of established
regularization methods used in time-to-event analysis along with commonly
applied model selection criteria. Section 2.3 introduces the general ADMM
optimization algorithm that proves highly practical in penalized regression.
Subsequently, Section 2.4 provides a brief overview of the concept and design
of empirical simulation studies. Section 2.5 outlines the medical context of the
AML disease, accompanied by a detailed description of the data and results from
a clinical phase III trial in AML patients. Chapter 3 provides the main findings
and novel contributions of this thesis in terms of variable selection strategies
via extended regularization methods. Section 3.1 summarizes the results of a
scoping literature review on model selection strategies for multi-state model
building. Section 3.2 introduces the FSGL penalty extended to the multi-state set-
ting as key variable selection strategy. Section 3.3 describes the adapted ADMM
optimization algorithm for parameter estimation along with the explicitly de-
rived ADMM update steps to fit penalized Cox models in Subsection 3.3.1 and
FSGL penalized multi-state models in Subsection 3.3.2. Section 3.4 outlines the
results of a proof-of-concept simulation study to investigate the regularization
performance of the derived algorithm and Section 3.5 illustrates a real data
application to AML patients. Chapter 4 provides a thorough discussion of the
derived results and offers directions for future research as an outlook. Chapter 5
briefly summarizes the work with concluding remarks.
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2 Methodology and Materials

“We recognize that true models do

not exist. A model will only reflect

underlying patterns, and hence

should not be confused with reality.”

Ewout Steyerberg

The following chapter provides the framework of statistical methodology needed
in the context of model selection strategies for multi-state models. The required
methodological background is given, leading to the proposed adaptation and
results of this thesis described in Chapter 3. Section 2.1 provides the general
framework of the multi-state model class in survival analysis. Section 2.2 gives a
brief overview of established regularization techniques in time-to-event analysis
along with common model selection criteria. Section 2.3 introduces a generic
optimization algorithm emerging very practical in penalized regression. Sec-
tion 2.4 briefly outlines the principles for designing empirical simulation studies.
Lastly, Section 2.5 provides the medical background of acute myeloid leukemia
(AML) along with a comprehensive description of the data and results of the
AMLSG 09-09 clinical phase III trial on AML patients. Parts of this chapter have
already been published. Relevant paragraphs of Sections 2.1 and 2.3 are taken
verbatim from Miah et al. (2024).

9



2 Methodology and Materials

2.1 Multi-state modeling in time-to-event analysis

This section provides a framework of modeling techniques for the multi-state
model class in survival analysis. Subsection 2.1.1 introduces the general multi-
state process while Subsection 2.1.2 defines the concept of transition-specific
Cox proportional hazards regression for multi-state models. Subsection 2.1.3
presents the explicit likelihood formulation in the multi-state setting along with
its derivatives needed for model fitting that is outlined in Subsection 2.1.4.
Subsection 2.1.5 describes a simulation algorithm to generate multi-state data.
Lastly, Subsection 2.1.6 briefly summarizes direct modeling strategies in the
multi-state setting of time-to-event analysis.

2.1.1 Multi-state process

Multi-state modeling is a powerful approach for analyzing the history of events
in survival analysis. A holistic framework for the theory of multi state models
can be found in Andersen et al. (1993).

Following Andersen and Keiding (2002) and Putter et al. (2007), a multi-state
process is a stochastic process {Z(t), t ∈ T } with times in T = [0, tmax], 0 <

tmax < ∞, and a finite state space K = {1, . . . , K}. The transition probabilities
are given as

Pq(s, t) = P[k.k′](s, t) = P(Z(t) = k′ | Z(s) = k)

for transition q = [k.k′] from state k to k′, where k, k′ ∈ K, s, t ∈ T , s ≤ t and
q ∈ Q = {1, . . . , Q} is the set of observable transitions. A Markovian model is
assumed, i. e. the probability for a transition only depends on the current state of
the multi-state process at the current time. The transition intensities are defined
as the corresponding derivatives

hq(t) = lim
∆t↘0

Pq(t, t + ∆t)
∆t

.
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2.1.2 Multi-state proportional hazards regression model

To assess the dependence on covariates, each transition intensity can be modeled
by a separate transition-specific Cox proportional hazards model as

hq(t|x) = h0,q(t) exp{βT
q x}, q = 1, . . . , Q,

for an individual with covariate vector x = (x1, . . . , xP)
T ∈ RP, where h0,q(t) de-

notes the baseline hazard rate of transition q at time t and βq = (β1,q, . . . , βP,q)
T ∈

RP the vector of transition-specific regression coefficients. Thus, Cox-type re-
gression analysis for multi-state data enables simultaneous modeling of the
relationship between covariates and all relevant transitions (Le-Rademacher
et al., 2022).

2.1.3 Multi-state likelihood formulation

In the multi-state framework, the generalized partial likelihood can be written
in terms of a stratified formulation as a product of Cox partial likelihoods for
each transition, i. e.

l(β) =
Q

∏
q=1

lq(βq) =
Q

∏
q=1

N

∏
j=1

(
exp{xT

j βq}
∑l∈Rj,q

exp{xT
l βq}

)δj,q

,

where xj = (x1;j, . . . , xP;j)
T ∈ RP denotes the covariate vector of individual j,

j = 1, . . . , N, βq ∈ RP the transition-specific regression vector, and δj,q the event
indicator for transition q, q = 1, . . . , Q (Putter et al., 2006, 2007). The risk set
for individual j with transition q at time tj is denoted by Rj,q. This set includes
all individuals who are at risk of experiencing a transition of type q at time tj.
The transition-specific Cox partial likelihood lq(βq) compares the hazard of the
individual with an event at time tj to the hazard of all individuals under risk
at tj.
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The multi-state partial likelihood formulation for the stacked regression vector β =

(β1,1, . . . , β1,Q, β2,1, . . . , βP,Q)
T ∈ RPQ and corresponding extended covariate

vector x̃i = (x1.1;i, . . . , x1.Q;i, x2.1;i, . . . , xP.Q;i)
T ∈ RPQ is then derived as

l(β) =
n

∏
i=1

(
exp{x̃T

i β}
∑l∈R̃i

exp{x̃T
l β}

)δi

,

where R̃i denotes the corresponding risk set formulation and δi the event indi-
cator based on long format data according to de Wreede et al. (2010). In this
format, each individual j, j = 1, . . . , N, has a row for each transition for which
it is at risk, with a total number of n rows corresponding to the total number
of transitions for all individuals N. The negative logarithm of the multi-state
partial likelihood is

L(β) = − log[l(β)] =
n

∑
i=1

δi


−x̃T

i β + log


∑

l∈R̃i

exp{x̃T
l β}




 . (2.1)

The regression parameters are then estimated by minimizing this negative partial
log-likelihood. The estimate β̂ is plugged in Breslow’s estimate of the cumulative
baseline hazard (Putter et al., 2007) such that

Λ̂0;q(t) = ∑
j:tj≤t

1

∑l∈Rj,q
exp{xT

l β̂q}
.

For estimation, the first and second derivative of the Cox partial log-likelihood
function are needed. The score vector is given as

U(β) =
∂

∂β
log[l(β)] = XT(δ − µ̂), (2.2)

where X ∈ Rn×PQ denotes the design matrix, δ = (δ1, . . . , δn)T the vector of
event indicators and µ̂ = (µ̂1, . . . , µ̂n)T the estimated cumulative hazards with
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elements µ̂i = Λ̂0;q(ti) exp{x̃T
i β̂}. The Hessian matrix is

J(β) =
∂2

∂β∂βT log[l(β)] = −XTWX, (2.3)

with W ∈ Rn×n the weight matrix of the estimated cumulative hazards µ̂

(Goeman, 2010; van Houwelingen et al., 2006).

2.1.4 Multi-state Cox estimation

Cox proportional hazards models are usually fitted by maximizing the partial
likelihood function (Collett, 2023). The maximum partial likelihood estimator β̂ is
derived by numerically solving the following partial likelihood equation

U(β̂) = 0,

where U(β) denotes the score vector as defined in Subsection 2.1.3. The es-
timator β̂ is consistent (Therneau and Grambsch, 2000). To solve the partial
likelihood equation, several algorithms exist for numerical optimization. In the
following, a brief description of the two most common optimization algorithms
in Cox regression are provided. Using the likelihood formulation introduced in
Subsection 2.1.3, the same algorithms can be used for the multi-state setting.

Gradient descent algorithm

The gradient descent algorithm is a first-order optimization procedure only in-
volving the first derivative in the β-update step. Following Goeman (2010), the
gradient descent update step at iteration r + 1 is given as

β̂r+1 = β̂r − ϵGDU(β̂r)

= β̂r − ϵGD[XT(δ − µ̂r)],
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with step size ϵGD and score vector U(β̂) as defined in Subsection 2.1.3. The
procedure is terminated when the change in the partial (log-)likelihood function
is sufficiently small, i. e. l(β̂r+1) ≈ l(β̂r). Algorithm 1 summarizes the gradient
descent algorithm for estimating the regression coefficients in the multi-state
Cox proportional hazards model.

Algorithm 1 Gradient descent

1: Initialize β̂0.
2: for iteration r = 0, 1, 2, . . . do
3: β̂r+1 = β̂r − ϵGD[XT(δ − µ̂r)]

4: end for until convergence, i. e. |l(β̂r+1)− l(β̂r)| < tolGD.

Newton-Raphson algorithm

The Newton-Raphson algorithm is a second-order optimization procedure involv-
ing both the first and second derivative of the likelihood. The Newton-Raphson
update step (Goeman, 2010) at iteration r + 1 is

β̂r+1 = β̂r − J(β̂r)−1U(β̂r)

= β̂r − (XTW rX)−1[XT(δ − µ̂r)],

where J(β̂)−1 denotes the inverse of the Hessian matrix as defined in Subsec-
tion 2.1.3. According to Therneau and Grambsch (2000), convergence issues
are rare, even when using an initial value of β̂0 = 0. Algorithm 2 summarizes
the Newton-Raphson algorithm for estimating the regression parameter in the
multi-state Cox model.

Algorithm 2 Newton-Raphson

1: Initialize β̂0.
2: for iteration r = 0, 1, 2, . . . do
3: β̂r+1 = β̂r − (XTW rX)−1[XT(δ − µ̂r)]

4: end for until convergence, i. e. |l(β̂r+1)− l(β̂r)| < tolNR.
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The R function coxph() of the survival package (Therneau, 2024) utilizes the
Newton-Raphson algorithm to estimate the regression coefficients in a Cox
model.

2.1.5 Simulation algorithm for multi-state data

Following Fiocco et al. (2008) and Beyersmann et al. (2012), multi-state data
are simulated as a nested series of competing risks experiments. According to
Beyersmann et al. (2009), transition-specific hazards are empirically identifiable
and completely determine the competing risk process. The transition hazard-based
simulation algorithm consists of the following steps (Beyersmann et al., 2012):

1. For individual in state l ∈ {1, . . . , K} at time 0:

1.1 Waiting time t0 in state l is generated with hazard
hl·(t) = ∑K

k=1,k ̸=l hlk(t), t ≥ 0.

1.2 State Xt0 entered at this time is determined in a multinomial experi-
ment with decision probability hlk(t0)/hl·(t0) on state k, k ̸= l.

2. For individual that entered state k at time t0:

2.1 Waiting time t1 in state k is generated with hazard
hk·(t) = ∑K

k̃=1,k̃ ̸=k hkk̃(t), t ≥ t0.

2.2 State Xt0+t1 entered at this time is determined in a multinomial ex-
periment with decision probability hkk̃(t0 + t1)/hk·(t0 + t1) on state
k̃, k̃ ̸= k.

3. Further competing risks experiments are carried out until reaching an
absorbing state.

Thus, the transition hazards fully determine the distribution of a multi-state
model (Beyersmann et al., 2009). The hazard-based simulation algorithm is
summarized in Algorithm 3.

15



2 Methodology and Materials

Algorithm 3 Hazard-based simulation algorithm for multi-state data

1: Set N, P ∈ N, X ∈ RN×P, β ∈ RP.
2: Set baseline hazards h0,q(t) ∀ q = 1, . . . , Q.
3: initialize For individual in state l ∈ {1, . . . , K} at time 0:
4: Waiting time t0 in state l with hazard hl·(t) = ∑K

k=1,k ̸=l hlk(t), t ≥ 0.
5: State Xt0 entered at this time with decision probability
6: hlk(t0)/hl·(t0) on state k, k ̸= l.
7: repeat For individual that entered state k at time t0:
8: Waiting time t1 in state k with hazard hk·(t) = ∑K

k̃=1,k̃ ̸=k hkk̃(t), t ≥ t0.
9: State Xt0+t1 entered at this time with decision probability

10: hkk̃(t0 + t1)/hk·(t0 + t1) on state k̃, k̃ ̸= k.
11: until Absorbing state is reached.

Another simulation approach is based on the latent failure time model. Following
Jackson (2016), the time until the next observed transition can be considered
to equal the minimum of a set of latent times under the cause-specific hazards
model. This generates one latent time for each potential transition whose cause-
specific hazard defines the multi-state model. However, Beyersmann et al. (2009)
do not recommend this simulation approach due to a non-identifiability problem
in the sense that “the dependence structure between the postulated latent failure
times cannot be identified from the observable data” (Beyersmann et al., 2009,
p. 957). Nevertheless, Andersen and Ravn (2023) state that this “method does
provide data with the correct distribution” (Andersen and Ravn, 2023, p. 185).
The simulation approach is applicable in certain situations for non- or semi-
parametric models as in Cox-type models (Andersen and Ravn, 2023, p. 185).
The authors conclude that “the concept of independent censoring [is] important,
whereas the concept of independent competing risks (and the associated latent
failure time approach) [is] less relevant” (Andersen and Ravn, 2023, p. 158).

Data generation for the simulation studies in this work is based on transition
hazards, though I initially implemented and compared both hazard-based and
latent failure times simulation approaches.
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2.1.6 Direct regression modeling

Besides the semi-parametric framework of Cox-type regression, several direct
regression approaches exist for explicitly modeling time-to-event data.

A model class to directly estimate the effect of a covariate on survival time is
established by accelerated failure time (AFT) models. Huang (2000) developed the
multi-state accelerated sojourn times model. Ramchandani et al. (2020) yield
insights into the estimation of an AFT model with intermediate states as auxiliary
information.

The technique of pseudo-observations introduced by Andersen et al. (2003) is
another direct modeling approach. In this framework, state probabilities are
modeled directly instead of considering each transition intensity separately.
These pseudo-values are then used in a generalized estimating equation (GEE)
to derive estimates of the model parameters.

This thesis focuses on the hazard-based framework of Cox regression models, so
that direct modeling approaches are not further pursued.
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2.2 Regularization in time-to-event analysis

This section presents a concise overview of regularization techniques for Cox
proportional hazards models in survival analysis. Subsection 2.2.1 introduces
well-established penalization methods in Cox regression while Subsection 2.2.2
describes several common model selection criteria for penalized Cox models. A
holistic framework to regularized modeling theory can be found in the books
by Hastie et al. (2009) and Hastie et al. (2015). A broad review of regularization
approaches utilized in clinical biostatistics is provided in Friedrich et al. (2023).

2.2.1 Penalization in Cox regression

Various regularization techniques have been introduced in biostatistics to ad-
dress overfitting, leverage sparsity, and enhance prediction accuracy (Friedrich
et al., 2023). The main goal is to reduce model complexity by adding a-priori
information to likelihood-based inference. Penalization methods explicitly bal-
ance the trade-off between model fit and model complexity by adding a penalty
term to the loss function, i. e.

L(β) + pλ(β),

where L(β) denotes the negative log-likelihood function for the regression vector
β ∈ RP in the Cox proportional hazards model and pλ(β) > 0 the non-negative
penalty function with tuning parameter λ > 0. The penalty function is chosen
to either reflect the model complexity or to impose desirable properties of the
maximum likelihood estimator (Friedrich et al., 2023).

In the context of Cox proportional hazards regression, the development of high-
dimensional models where the number of covariates is much larger than the
number of observations is an ongoing challenge. Benner et al. (2010) compared
the choice of penalization methods as part of the model-building process in high-
dimensional Cox regression. Several regularization methods that incorporate
variable selection have been adapted to survival outcomes. These include the
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least absolute shrinkage and selection operator (lasso) introduced by Tibshirani (1996),
elastic net (Zou and Hastie, 2005), fused lasso (Tibshirani et al., 2005), group lasso
(Yuan and Lin, 2006) and sparse-group lasso (Simon et al., 2013) penalization.
In R, penalized Cox regression is implemented in the established R packages
glmnet (Friedman et al., 2010; Simon et al., 2011) and penalized (Goeman, 2010;
Goeman et al., 2022). In the following, the most common L1- and L2-penalties in
Cox regression are briefly described.

L2-penalized Cox models

Penalized maximum likelihood estimation with the ridge penalty in Cox regres-
sion was introduced by Verweij and van Houwelingen (1994). The ridge penalty
function based on the L2-norm is defined as

pλ(β) = λ
P

∑
p=1

β2
p,

where β = (β1, . . . , βP)
T denotes the regression vector of P covariates and λ > 0

the tuning parameter. Ridge penalized regression does not shrink parameter
estimates to zero, thus no model selection is performed. Further, it results in
downwardly biased estimates (Benner et al., 2010).

L1-penalized Cox models

The least absolute shrinkage and selection operator (lasso) penalty function proposed
by Tibshirani (1997) for L1-penalized Cox regression is defined as

pλ(β) = λ
P

∑
p=1

|βp|.

This technique potentially shrinks parameters to zero, thus performing shrinkage
and variable selection simultaneously, but leads to biased parameter estimates.
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The adaptive lasso penalty, proposed by Zou (2006) and adapted to Cox regression
by Zhang and Lu (2007), to reduce estimation bias is defined as

pλ(β) = λ
P

∑
p=1

wp|βp|,

incorporating individual data-dependent weights wp in the penalty. Zhang
and Lu (2007) suggest to set wp = 1/|β̃p|γ with γ > 0 for an initial parameter
estimate β̃p, p = 1, . . . , P, thus penalizing larger coefficients less than smaller
ones.

The fused lasso penalty, introduced by Tibshirani et al. (2005) to linear regression
and adapted to Cox models by Chaturvedi et al. (2014), is given as

pλ(β) = λ
P

∑
p=2

|βp − βp−1|,

such that successive pairwise differences of regression coefficients are penalized.
The early suggestion of the fused lasso is designed for situations in which
features can be ordered in a meaningful way.

L1- and L2-penalized Cox models

The elastic net penalty, introduced by Zou and Hastie (2005), is a convex combi-
nation of the lasso and ridge penalties. The penalty function is given as

pλ1,λ2(β) = λ1

P

∑
p=1

β2
p + λ2

P

∑
p=1

|βp|,

with tuning parameters λ1, λ2 > 0. Zou and Hastie (2005) rescale the initial
naive elastic net estimate by the factor 1 + λ2 in order to reduce the effect of
double shrinkage.

The group lasso penalty, proposed by Yuan and Lin (2006) and adapted to Cox
models by Kim et al. (2012), uses further a-priori information in settings with
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grouped covariates. The penalty function is

pλ(β) = λ
g

∑
l=1

∥β(l)∥2,

with tuning parameter λ > 0, g groups and subvector β(l) of the regression
vector β corresponding to the predictors in group l, l = 1, . . . , g. These groups
may be e. g. genetic pathways in gene expression data.

The sparse-group lasso penalty, introduced by Simon et al. (2013) to Cox regression,
is given as

pλ,α(β) = αλ
P

∑
p=1

|βp|+ (1 − α)λ
g

∑
l=1

√
pl∥β(l)∥2,

with tuning parameters α ∈ [0, 1] and λ > 0. The number of predictors in group l
is denoted by pl, and β(l) is a subvector of the regression vector β corresponding
to the predictors in group l, l = 1, . . . , g. The convex combination of lasso and
group-lasso penalties provides groupwise and within-group sparsity (Simon
et al., 2011). For α = 0, the solution corresponds to the group-lasso fit, while for
α = 1, it reduces to the lasso fit.

2.2.2 Model selection criteria

The validation step of model selection can either be approximated analytically
via information criteria and generalized cross-validation, or by efficient re-use
of samples as in cross-validation or bootstrap (Hastie et al., 2009, p. 223). In the
following, a brief overview of commonly used approximate and direct model
selection criteria is provided.
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Cross-validation

Cross-validation (CV) can be used as a direct selection criterion to estimate an
optimal value for the tuning parameter λ (Hastie et al., 2015, p. 13). For this
procedure, data is randomly divided into K > 1 folds to create artificial training
and test sets. Typical choices are K = 10 or K = N splits. Then one fold is fixed
as a test dataset, and the penalized model is fitted to the remaining training
data for a range of λ values. Each estimate is utilized to predict the response
in the test dataset, i. e. calculating the mean squared prediction error for each λ.
Averaging the K estimates for each λ, the cross-validation prediction error curve is
obtained. The optimal value λ̂opt is then chosen via some pre-specified criterion,
e. g. as the λ minimizing the CV error.

In penalized Cox regression, Verweij and Van Houwelingen (1993) and van
Houwelingen et al. (2006) proposed the cross-validated partial likelihood as
selection criterion. The cross-validated partial log-likelihood (CVL) is defined as

CV[log l(λ)] =
n

∑
i=1

[log l(β̂(−i))− log l(−i)(β̂(−i))],

where log l(λ) denotes the partial log-likelihood, β̂(−i) the leave-one-out regres-
sion estimate where observation i is left out, and log l(−i)(β) the leave-one-out
partial log-likelihood for a given λ. For a given model, the CVL evaluates how
effectively each observation i can be predicted using the remaining observations,
serving as a measure of predictive performance. The optimal tuning parameter
is then derived as

λ̂opt = arg maxλ{CV[log l(λ)]}.
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Akaike’s information criterion

The Akaike Information Criterion (AIC), proposed by Akaike (1973) for tuning
parameter or model selection, is defined as

AIC(λ) = −2 log l(β̂) + 2e(λ),

where e(λ) denotes the degrees of freedom, i. e. the effective number of model
parameters depending on λ. This function provides an estimate of the test error
curve (Hastie et al., 2009, p. 231). The optimal tuning parameter value is then
obtained as

λ̂opt = arg minλ{AIC(λ)}.

Notably, model choice via cross-validation and AIC-based selection is asymptot-
ically equivalent, provided the assumed model is correct (Stone, 1977).

Bayesian information criterion

The Bayesian Information Criterion (BIC), developed by Schwarz (1978) for tuning
parameter selection, is defined as

BIC(λ) = −2 log l(β̂) + log(E)e(λ),

where E denotes the number of events in a Cox regression model. BIC tends to
impose a stronger penalty on model complexity, thus favoring simpler models
during the selection process (Hastie et al., 2009, p. 233). Although similar to AIC,
BIC is based on a different rationale, originating from the Bayesian framework
for model selection. As a result, the penalty factor of BIC is greater than that of
AIC for any appropriate sample size, leading BIC to select smaller models. The
optimal tuning parameter is likewise obtained as

λ̂opt = arg minλ{BIC(λ)}.
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Generalized cross-validation

The generalized cross-validation (GCV) statistic, proposed by Craven and Wahba
(1978), approximates 1-fold cross-validation and is defined as

GCV(λ) =
− log l(β̂)

N[1 − e(λ)/N]2
,

where l(β̂) denotes the partial likelihood function evaluated at the estimated
regression vector β̂, N the total number of observations and e(λ) the effective
number of model parameters. The optimal tuning parameter is then selected
as

λ̂opt = arg minλ{GCV(λ)}

(Fan and Li, 2002). In certain settings, GCV is computationally more beneficial
than CV (Hastie et al., 2009, p. 245).

Grid search

For the selection of an optimal combination of multiple tuning parameters,
grid search is utilized, see e. g. Tibshirani et al. (2005) or Sennhenn-Reulen and
Kneib (2016). In this approach, all combinations of candidate tuning parameters
are evaluated and the best combination, e. g. (λ∗

1, λ∗
2, λ∗

3) for a triplet of tuning
parameters, is chosen with respect to a selection criterion.

2.2.3 Model stability

In the context of model stability, Heinze et al. (2018) provided general recom-
mendations on how to perform stability investigations and sensitivity analyses
for variable selection procedures. Besides calculating bias and variances of
estimated regression coefficients, bootstrap resampling with replacement is recom-
mended to assess and quantify model stability of selected models (Sauerbrei and
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Schumacher, 1992; De Bin et al., 2016). The core concept involves generating B
resamples from the original dataset and performing variable selection repeatedly
for each resample. This method provides several key insights, including:

(i) Bootstrap inclusion frequencies which indicate how likely a covariate is
selected,

(ii) Sampling distributions of regression coefficients,

(iii) Model selection frequencies which indicate how often a specific set of
covariates is chosen,

(iv) Pairwise inclusion frequencies which assess whether pairs of correlated
covariates are competing for selection.

Further, the 2.5th and 97.5th percentiles of the resampled regression coefficients
can be used as naive resampling-based confidence intervals (Heinze et al., 2018).
However, valid post-selection inference is still not achievable (Leeb and Pötscher,
2005; Heinze et al., 2018).
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2.3 Optimization via alternating direction method of
multipliers

This section introduces the general concept of the Alternating Direction Method
of Multipliers (ADMM) algorithm for numerical optimization. The generic
algorithm is described in Subsection 2.3.1. The choice of a suitable stopping
criterion is depicted in Subsection 2.3.2, convergence considerations in Subsec-
tion 2.3.3 as well as further algorithmic patterns in terms of soft-thresholding in
Subsection 2.3.4 and adaptive step size in Subsection 2.3.5. Subsequently, Subsec-
tion 2.3.6 presents the explicitly derived ADMM updating steps for L1-penalized
linear regression models.

2.3.1 Algorithm

The Alternating Direction Method of Multipliers (ADMM) algorithm provides a
very general framework for numerical optimization of convex functions. It
originates from the 1950s (von Neumann, 1950) and was developed in the 1970s
(Glowinski and Marroco, 1975; Gabay and Mercier, 1976), but was holistically
examined later by Boyd et al. (2010) for a broader conceptual framework. The
algorithm combines the decomposability of the optimization problem with
superior convergence properties of the method of multipliers (Boyd et al., 2010).
Consider the following general optimization problem w. r. t. a variable β ∈ RP

minβ f (β) + g(β),

where f , g denote convex functions. In the ADMM framework, the generic
constrained optimization problem introducing an auxiliary variable θ ∈ RP is
given as

minβ,θ f (β) + g(θ) subject to θ− β = 0.
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Thus, the objective function becomes additively separable, which simplifies the
subsequent optimization steps. As in the method of multipliers, the augmented
Lagrangian function, which adds an L2-term to enhance optimization stability
(Parka and Shin, 2022), is given as

L(β, θ, ϕ) = f (β) + g(θ) + ϕT(θ− β) +
ρ

2
∥θ− β∥2

2

= L(β, θ, ν) = f (β) + g(θ) +
ρ

2
∥θ− β + ν∥2

2 −
ρ

2
∥ν∥2

2,

with Lagrangian multiplier ϕ ∈ RP, augmented Lagrangian parameter ρ > 0
(i. e. the ADMM step size) and scaled dual variable ν = ϕ

ρ ∈ RP. The general
ADMM iterations consist of the following alternating update steps at iteration
r + 1:

βr+1 = arg minβ L(β, θr, νr),

θr+1 = arg minθ L(βr+1, θ, νr),

νr+1 = νr + βr+1 − θr+1.

The algorithm comprises a β-minimization step, a θ-minimization step and a
dual variable ν-update. Thus, the usual joint minimization is separated across
the decomposition of the objective function over parameters β (e. g. likelihood)
and θ (e. g. penalty) into two steps.

2.3.2 Stopping criterion

As a stopping criterion, Boyd et al. (2010) proposed sufficiently small primal and
dual residuals, i. e.

∥ur+1∥2 = ∥βr+1 − θr+1∥2 < ϵ1,

∥sr+1∥2 = ∥ρ(θr+1 − θr)∥2
2 < ϵ2,
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with feasibility tolerances ϵ1, ϵ2 > 0 chosen as

ϵ1 =
√

pϵabs + ϵrel max{∥βr∥2, ∥θr∥2},

ϵ2 =
√

pϵabs + ϵrel∥νr∥2.

Typical choices for the absolute and relative tolerances are ϵabs = 10−4 and
ϵrel = 10−2, depending on the application setting.

2.3.3 Convergence

As described and proven in Boyd et al. (2010), the ADMM algorithm satisfies
certain convergence properties under the following assumptions:

(A1) The functions f , g are closed, proper and convex.

(A2) The unaugmented Lagrangian has a saddle point.

Then, the following convergence results arise:

(C1) Residual convergence: The updates approach feasibility, i. e. the primal
residuals converge to 0, i. e.
ur −→ 0 for r → ∞.

(C2) Objective convergence: The objective function of the updates converges to
the optimum, i. e.
f (βr) + g(θr) −→ p∗ for r → ∞.

(C3) Dual variable convergence: The ν-update converges to its optimum, i. e.
νr −→ ν∗ for r → ∞.

In practice, ADMM can be quite slow to achieve high accuracy convergence
(Boyd et al., 2010). Nevertheless, the algorithm often reaches a moderate level of
accuracy within just a few tens of iterations that is adequate for many practical
applications. According to Boyd et al. (2010), ADMM is most useful in scenarios
where moderate accuracy is sufficient.
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2.3.4 Soft-thresholding

For an efficient θ-updating step, the proximity operator of the L1-norm is utilized,
i. e. the elementwise soft-thresholding operator for a, κ ∈ R

Sκ(a) =





a − κ, if a > κ,

0, if |a| ≤ κ,

a + κ, if a < −κ,

or equivalently Sκ(a) = a · (1− κ/|a|)+ for a ̸= 0 with (·)+ = max{0, ·}. For the
lasso penalty function, i. e. g(θ) = λ∥θ∥1 with λ > 0, the θi-update solution is
given as θmin

i = Sλ/κ(νi) (Boyd et al., 2010). The vector soft-thresholding operator
for a ∈ Rm is defined as

Sκ(a) = (1 − κ/∥a∥2)+ · a,

with Sκ(0) = 0. As a shrinkage operator, it provides a simple closed-form
solution for the θ-update. See Boyd et al. (2010) for further details.

2.3.5 Adaptive step size

Regarding the ADMM step size or augmented Lagrangian parameter ρ > 0,
Boyd et al. (2010) suggested an adaptive step size for each iteration, following
He et al. (2000) and Wang and Liao (2001). In order to accelerate the convergence
of the ADMM algorithm, the adaptive step size is given as

ρr+1 =





τρr, if ∥ur+1∥2 > η∥sr+1∥2,
ρr

τ , if ∥ur+1∥2 < η∥sr+1∥2,
ρr, otherwise,

where typical choices are τ = 2, η = 10 and initialization ρ0 = 1. Thus,
performance is less dependent on the initial choice of the augmented Lagrangian
parameter.
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2.3.6 ADMM for penalized linear models

This subsection provides the explicitly derived ADMM updating steps for L1-
penalized linear regression models. The ADMM algorithm for penalized linear
regression models is implemented in the R package ADMM (You and Zhu, 2021).

ADMM for lasso penalized linear models

For global lasso penalized linear regression models, consider the following opti-
mization problem

min
β,θ

f (β) + g(θ) subject to β − θ = 0,

with convex least squares loss function

f (β) =
1
2
∥y − Xβ∥2

2,

where β ∈ RP denotes the regression vector for P covariates, X ∈ RN×P denotes
the (standardized) design matrix with N observations and y ∈ RN the outcome
vector, along with the lasso penalty function

g(θ) = λ∥θ∥1,

where θ ∈ RP denotes the ADMM auxiliary variable and λ > 0 the scalar
penalty parameter. The ADMM updating steps of iteration r + 1 are then given
as

βr+1 = arg minβ∈Rp L(β, θr, νr) = (XTX + ρIP)
−1[XTy + ρ(θr − νr)],

θr+1 = arg minθ∈Rp L(βr+1, θ, νr) = S λ
ρ
(βr+1 + νr),

νr+1 = νr + βr+1 − θr+1.
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The identity matrix is denoted as IP ∈ RP×P, the ADMM parameters ρ > 0 and
θ, ν ∈ RP are defined as in Subsection 2.3.1 and the soft-thresholding operator
Sκ(a) as in Subsection 2.3.4. Thus, the β-update is a closed-form ridge regression
solution. See Boyd et al. (2010) for further details. Algorithm 4 summarizes the
ADMM algorithm for global lasso penalized linear regression models.

Algorithm 4 ADMM for lasso penalized linear regression models

1: initialize ρ0 = 1, β0 = 0P, θ0 = 0P, ν0 = 0P.
2: repeat
3: Update βr+1 = (XTX + ρIP)

−1[XTy + ρ(θr − νr)],
4: Update θr+1 = S λ

ρ
(βr+1 + νr),

5: Update νr+1 = νr + βr+1 − θr+1,
6: until ∥θr+1 − βr+1∥2 < ϵ1 and ∥ρ(θr+1 − θr)∥2 < ϵ2 for sufficiently small ϵ1

and ϵ2.
7: obtain β̂ = θ̂.

ADMM for fused lasso penalized linear models

For fused lasso penalized linear regression models, the optimization problem is

min
β,θ

1
2
∥y − Xβ∥2

2 + λ∥θ∥1 subject to Dβ − θ = 0,

where D ∈ R(P−1)×P denotes the fusion matrix that consists of contrast vectors
for P − 1 pairwise differences of regression effects, with elements

dij =





1, if j = i,

−1, if j = i + 1,

0, otherwise.

The ADMM updating steps are then closed-form solutions given as

βr+1 = (XTX + ρDTD)−1[XTy + ρDT(θr − νr)],

θr+1 = S λ
ρ
(Dβr+1 + νr),
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νr+1 = νr + Dβr+1 − θr+1.

Fur further details, see Boyd et al. (2010), Ramdas and Tibshirani (2016) or Parka
and Shin (2022). Algorithm 5 summarizes the ADMM algorithm for fused lasso
penalized linear models.

Algorithm 5 ADMM for fused lasso penalized linear regression models

1: Set D ∈ RP−1×P.
2: initialize ρ0 = 1, β0 = 0P, θ0 = 0P, ν0 = 0P.
3: repeat
4: Update βr+1 = (XTX + ρDTD)−1[XTy + ρDT(θr − νr)],
5: Update θr+1 = S λ

ρ
(Dβr+1 + νr),

6: Update νr+1 = νr + Dβr+1 − θr+1,
7: until ∥θr+1 − βr+1∥2 < ϵ1 and ∥ρDT(θr+1 − θr)∥2 < ϵ2 for sufficiently small

ϵ1 and ϵ2.
8: obtain β̂ = θ̂.

ADMM for group lasso penalized linear models

For group lasso penalized linear regression models, the optimization problem
is

min
β,θ

1
2
∥y − Xβ∥2

2 + λ
g

∑
l=1

√
pl∥θl∥2 subject to β − θ = 0,

for pl covariates in group l, l = 1, . . . , g, and the subvector θl ∈ Rpl of θ corre-
sponding to group l. The ADMM updating steps are

βr+1 = (XTX + ρI)−1[XTy + ρ(θr − νr)],

θr+1
l = S√

pl
λ
ρ
(βr+1

l + νr
l ), l = 1, . . . , g,

νr+1 = νr + βr+1 − θr+1,

where Sκ(a) denotes the vector soft-thresholding operator as defined in Subsec-
tion 2.3.4. See Boyd et al. (2010), Zhu (2017) or Ke et al. (2024) for further details.
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Algorithm 6 summarizes the ADMM algorithm for group lasso penalized linear
models.

Algorithm 6 ADMM for group lasso penalized linear regression models

1: initialize ρ0 = 1, β0 = 0P, θ0 = 0P, ν0 = 0P.
2: repeat
3: Update βr+1 = (XTX + ρI)−1[XTy + ρ(θr − νr)],
4: Update θr+1

l = S√
pl

λ
ρ
(βr+1

l + νr
l ), l = 1, . . . , g,

5: Update νr+1 = νr + βr+1 − θr+1,
6: until ∥θr+1 − βr+1∥2 < ϵ1 and ∥ρ(θr+1 − θr)∥2 < ϵ2 for sufficiently small ϵ1

and ϵ2.
7: obtain β̂ = θ̂.

ADMM for fused sparse-group lasso penalized linear models

The fused sparse-group lasso (FSGL) penalty, originally proposed by Zhou et al.
(2012) and later adapted by Beer et al. (2019) to linear regression models, inte-
grates lasso, fused and grouped regularization. This allows the incorporation of
prior knowledge about spatial and group structures into the prediction model.
A comprehensive description of the FSGL penalty is given in Section 3.2.

For FSGL penalized linear regression models, the optimization problem is

min
β,θ

1
2
∥y − Xβ∥2

2 + λmwm∥θm∥2 subject to Kmβ − θm = 0,

where λm ∈ {λ1, λ2, λ3} denote the tuning parameters for the lasso, fusion and
group penalties, wm are penalty-specific weights and K = (K1| . . . |KM)T ∈
RM×P denotes the general penalty structure matrix. Each row vector Km consists
of elements kij ∈ {−1, 0, 1}, such that

Km =





um, if m ∈ {1, . . . , P},
dm−P, if m ∈ {P + 1, . . . , P + s},
Gm−P−s, if m ∈ {P + s + 1, . . . , P + s + Q},

33



2 Methodology and Materials

where um denotes the unit vector of the identity matrix IP ∈ RP×P corresponding
to the global lasso penalty. The contrast vector of the (m− P)-th row of the fusion
matrix D ∈ Rs×P, which represents s fusion pairs with elements dij ∈ {−1, 1}
at the corresponding positions of the covariates in each pair, is denoted as
dm. For example, d1 = (1,−1, 0, . . . , 0)T for covariates X1 and X2, or d1 =

(1, 0,−1, . . . , 0)T for covariates X1 and X3. Hence, such fusion pairs are not
restricted to adjacent covariates. The group matrices Gm−P−s ∈ RP×P of the Q
groups consist of unit vectors that indicate the group allocation of a variable for
the group penalty. The penalty structure matrix K is then given as

K =




IP

D

G1
...

GQ




=




1 0 0 · · · · · · 0 0 0
0 1 0 · · · · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 · · · · · · 0 0 1

1 −1 0 · · · · · · 0 0 0
1 0 −1 · · · · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 · · · · · · 0 1 −1

1 0 0 · · · · · · 0 0 0
0 0 0 · · · · · · 1 0 0
...

...
...

...
...

...
...

...
0 0 0 · · · · · · 0 0 1




.

Thus, the total number of rows of the penalty structure matix K ∈ RM×P is
M = P + s + PQ.

The ADMM updating steps are

βr+1 = (XTX + ρKTK)−1[XTy + ρKT(θr − νr)],

θr+1
m = S λmwm

ρ
(Kmβr+1 + νr), m = 1, . . . , M,

νr+1 = νr + ρ(θr+1 − Kmβr+1),
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where wm denotes group weights, e. g. wm =
√

pm of group size pm for group
lasso. For further details, see Zhou et al. (2012) and Beer et al. (2019). Algorithm 7
summarizes the ADMM algorithm for FSGL penalized linear models.

Algorithm 7 ADMM for fused sparse-group lasso penalized linear regression
models

1: Set K ∈ RM×P.
2: initialize ρ0 = 1, β0 = 0P, θ0 = 0M, ν0 = 0M.
3: repeat
4: Update βr+1 = (XTX + ρKTK)−1[XTy + ρKT(θr − νr)],
5: Update θr+1

m = S λmwm
ρ

(Kmβr+1 + νr), m = 1, . . . , M,

6: Update νr+1 = νr + ρ(θr+1 − Kmβr+1),
7: until ∥θr+1 − Kmβr+1∥2 < ϵ1 and ∥ρKT(θr+1 − θr)∥2 < ϵ2 for sufficiently

small ϵ1 and ϵ2.
8: obtain β̂ = θ̂.
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2.4 Simulation study design

This section provides a concise overview on how to structurally design a sim-
ulation study in order to empirically evaluate statistical methods in specific
scenarios.

Parametric simulation studies are computer-based experiments that generate data
through pseudo-random sampling from known probability distributions (Morris
et al., 2019). They serve as a crucial tool in statistical research, especially for em-
pirically evaluating new methods and comparing alternative approaches. Hence,
simulation studies are used to gather empirical insights into the performance of
statistical methods in certain scenarios, in contrast to more general analytical
results that may apply across a wide range of settings (Morris et al., 2019).

Simulation design with ADEMP criteria

In their frequently referenced paper, Morris et al. (2019) provide guidance on
how to design a simulation study in order to evaluate statistical methods. In
particular, the tutorial presents a structured framework for planning and re-
porting simulation studies. This incorporates the systematic definition of aims,
data-generating mechanisms, estimands, methods, and performance measures,
using the so-called ADEMP structure. Table 2.1 provides a concise definition of
each ADEMP criterion according to Morris et al. (2019).

Further, a template for pre-registering the design of a simulation study for
methodological research in the form of a statistical simulation plan according to
ADEMP-PreReg is available in Siepe et al. (2024).

Performance measures

Performance measures are quantities to assess the performance of a method, de-
pending on the aim and target of the simulation study (Morris et al., 2019).
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Tab. 2.1: Definition of the ADEMP structure for designing a simulation study
according to Morris et al. (2019).

ADEMP criterion Definition
Aim The objectives of the simulation study, specifying what

it aims to investigate.
Data-generating mechanism The use of random numbers to generate simulated

datasets, including model assumptions and parameter
choices.

Estimand/target The quantity of interest that the study aims to estimate,
such as population parameters or effect sizes.

Methods The statistical techniques or models applied to the
simulated data for analysis.

Performance measures The quantities used to assess the performance of the
methods under study.

Common performance measures for an estimand β as target are e. g. bias, empiri-
cal standard errors, mean squared error (MSE) or coverage. A detailed overview
on definitions, estimates and Monte Carlo standard errors (MCSE) is given in
Morris et al. (2019). As an example, the MSE defined as MSE(β̂) = E[(β̂ − β)2]

is estimated as

M̂SE(β̂) =
1

nsim

nsim

∑
i=1

(β̂i − β)2,

with corresponding MCSE calculated as

MCSE[M̂SE(β̂)] =

√
∑nsim

i=1 (β̂i − β)2 − M̂SE(β̂)

nsim(nsim − 1)
.

Simulation repetitions calculations

Sample size calculations for simulation studies are based on the Monte Carlo
error, i. e. the degree of precision for estimating key performance measures
(Morris et al., 2019). The sample size or number of simulation repetitions nsim is
calculated based on the primary performance measure of interest. For e. g. the
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true positive rate (TPR) for variable selection as key performance measure, the
number of simulation repetitions is derived as

nsim =
E(TPR) · [1 − E(TPR)]

MCSE(TPR)2 ,

where E(TPR) denotes the expected TPR and MCSE(TPR) the required Monte
Carlo standard error of TPR.
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2.5 Leukemia data

This thesis is motivated by a real-world application to the acute myeloid leukemia
(AML) disease pathway. Hence, the potential of model selection strategies for
multi-state models is investigated in illustrative applications to AML data. This
section provides the medical background of the AML disease in Subsection 2.5.1
along with the study design and results of the AMLSG 09-09 phase III clinical
trial in Subsection 2.5.2.

2.5.1 Acute myeloid leukemia

Acute myeloid leukemia (AML) is a malignant disease of the hematopoietic system
which is characterized by the uncontrolled proliferation of immature precursor
blood cells in the bone marrow, blood and other tissues (Döhner et al., 2015).
The malignancy is particularly a disease of the elderly with a median age at
diagnosis of 68 years (Shimony et al., 2023). AML captures approximately 1%
of all cancers and 10% of all hematological malignancies. Depending on the
type of blood cells affected, a distinction is made between AML and acute
lymphoblastic leukemia (ALL). In adults, around 80% of acute leukemias belong
to the AML group and around 20% to the ALL group. As an acute leukemia,
AML is a rapidly progressing disease that is usually fatal within weeks or
months if not treated. Figure 2.1 illustrates the disease pathway for AML patients
treated with intensive chemotherapy in the form of a state chart of a multi-state
model. This 9-state model was developed in collaboration with the clinical
expert Prof. Dr. med. Hartmut Döhner, chair of the German-Austrian AML study
group (AMLSG).

With respect to the molecular landscape, somatic mutations are the driving force
behind the disease pathway of AML (Döhner et al., 2022). Leukemia arises
from the sequential accumulation of somatic mutations in hematopoietic stem
and progenitor cells. Initiating mutations may result in the expansion of a cell
clone detectable in the peripheral blood, i. e clonal hematopoiesis, a common
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Fig. 2.1: State chart of the multi-state model for acute myeloid leukemia (AML)
with nine states and eight possible transitions.

pre-malignant state that becomes more prevalent with age. Such mutations as
of the genes DNMT3A, TET2 and ASXL1 are more common in early stages of
leukemogenesis whereas mutations of FLT3, NRAS and RUNX1 appear later in
the leukemia disease pathway. The combinations of mutations that ultimately
drive leukemogenesis are shaped by biological interactions, including coopera-
tivity and mutual exclusivity among mutated genes (Döhner et al., 2022). The
International Consensus Classification of AML that updated the World Health
Organization (WHO) classification of AML introduced new genetic entities
to define AML, further expanding the spectrum of classification identified by
cytogenetic and mutational profiles. Table 2.2 provides an overview of AML
subtypes with genetic abnormalities according to the International Consensus
Classification published in Arber et al. (2022).

Recommendations on treatment strategies and disease management for AML
from an international expert panel on behalf of the European LeukemiaNet (ELN)
are provided in Döhner et al. (2010) and Döhner et al. (2017). An update on
recommendations for AML genetic risk classification, revised response criteria
and treatment strategies can be found in Döhner et al. (2022).
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Category AML subtype with genetic abnormalities

AML with recurrent
genetic abnormalities
(requiring ≥10% blasts in
BM or PB)

APL with t(15;17)(q24.1;q21.2)/PML::RARA

AML with t(8;21)(q22;q22.1)/RUNX1::RUNX1T1

AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22) /
CBFB::MYH11

AML with t(9;11)(p21.3;q23.3)/MLLT3::KMT2A

AML with t(6;9)(p22.3;q34.1)/DEK::NUP214

AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2) /
GATA2, MECOM(EVI1)

AML with other rare recurring translocations

AML with mutated NPM1

AML with in-frame bZIP mutated CEBPA

AML with t(9;22)(q34.1;q11.2)/BCR::ABL1

Tab. 2.2: Classification of AML subtypes with genetic abnormalities according
to the International Consensus Classification. BM: bone marrow; PB:
peripheral blood.

2.5.2 AMLSG 09-09 trial

The AMLSG 09-09 study is a randomized phase III trial conducted between 2010
and 2017 at 56 study hospitals in Germany and Austria (Döhner et al., 2023).
The open-label phase III clinical trial evaluated intensive chemotherapy with
or without gemtuzumab ozogamicin (GO) in 588 patients with Nucleophosmin1
(NPM1)-mutated AML. Eligible participants were aged 18 years or older with
newly diagnosed NPM1-mutated AML and an Eastern Cooperative Oncology
Group (ECOG) performance status of 0–2. Participants were randomly assigned
in a 1:1 ratio to two treatment groups, with age (18–60 years vs >60 years) used
as a stratification factor. Treatment included two induction therapy cycles with
idarubicin, cytarabine, and etoposide (ICE) combined with all-trans retinoic
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Fig. 2.2: Flow chart of the AMLSG 09-09 trial.

acid (ATRA), followed by three consolidation cycles of high-dose cytarabine (or
intermediate-dose for participants over 60 years) and ATRA, with or without GO.
A GO dose of 3 mg/m² was administered intravenously on day 1 of the first two
induction cycles and the first consolidation cycle. Figure 2.2 illustrates the flow
chart of the 09-09 trial design. The study is registered with ClinicalTrials.gov
(NCT00893399) and has been completed.

The co-primary endpoints of the trial were short-term event-free survival (EFS)
and overall survival (OS) in the intention-to-treat (ITT) population. Secondary
endpoints included EFS with long-term follow-up, rates of complete remission
(CR), complete remission with partial hematological recovery (CRh), complete
remission with incomplete hematological recovery (CRi), cumulative incidences
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of relapse and death, and the number of days spent in the hospital. Final
analysis results for the primary and secondary efficacy and safety endpoints are
published in Döhner et al. (2023). In conclusion, primary endpoints of the trial in
terms of EFS and OS were not met. However, an anti-leukemic effectiveness of
GO in patients with NPM1-mutated AML was shown by a significantly reduced
cumulative incidence of relapse (CIR), indicating that the inclusion of GO may
decrease the need for salvage therapy in those patients (Döhner et al., 2023).

Additionally, Cocciardi et al. (2025) conducted exploratory analyses to evaluate
the impact of additional gene mutations on outcomes in intensively treated
patients with NPM1-mutated AML of the 09-09 trial. Targeted DNA sequencing
of 263 genes was conducted in 568 NPM1-mutated AML patients with a median
age of 59 years enrolled in the prospective AMLSG 09-09 study. NPM1-mutated
AML is often linked to mutations in signaling (e. g. FLT3, NRAS, PTPN11), DNA
methylation (e. g. DNMT3A, TET2, IDH1, IDH2), and cohesin complex genes
(e. g. RAD21, STAG2, SMC3) (Bullinger et al., 2017). In the 09-09 trial, the most fre-
quently co-mutated genes were DNMT3A (49.8%), FLT3-TKD (25.9%), PTPN11
(24.8%), NRAS (22.7%), TET2 (21.7%), IDH2 (21.3%), IDH1 (18%), and FLT3-ITD
(17.3%). Myelodysplasia-related gene (MRG) mutations were detected in 18.1%
of cases (9.8% in patients aged 18–60 years and 28.7% in those over 60 years). In
a cohort of 470 patients with 2022 ELN favorable-risk NPM1-mutated AML, mul-
tivariable Cox regression analysis for EFS identified age, DNMT3AR882, IDH1,
and MRG mutations as unfavorable factors, while cohesin gene co-mutations
and treatment with GO emerged as favorable factors (Cocciardi et al., 2025).

However, the effect of various gene mutations on the holistic AML disease
pathway as depicted in Figure 2.1 was not investigated in previous works. Thus,
the proposed penalized multi-state model in this thesis is applied to the 09-09
clinical and gene mutation data, reported in Subsection 3.5 of the results.
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3 Results

“It is hard to keep things simple.”

Sir Richard Branson

This chapter provides the main findings and novel contributions of this disserta-
tion. The results of a scoping literature review on model selection strategies for
multi-state models are reported in Section 3.1. The adapted fused sparse-group
lasso (FSGL) penalty to multi-state models as key variable selection strategy for
increasingly high-dimensional multi-state modeling is described in Section 3.2.
Section 3.3 provides the explicitly derived ADMM optimization steps to fit pe-
nalized Cox models in Subsection 3.3.1 and FSGL penalized multi-state models
in Subsection 3.3.2. The chosen criterion for selecting optimal tuning parameters
is described in Subsection 3.3.3. The design and results of a proof-of-concept
simulation study are depicted in Section 3.4, followed by an illustrative real data
application to leukemia patients in Section 3.5. Parts of this chapter have already
been published. Relevant paragraphs of Sections 3.2, 3.3, 3.4 and 3.5 are taken
verbatim from Miah et al. (2024).

3.1 Scoping review: Selection methods for
multi-state models

This section summarizes the scoping literature review results conducted on
model selection strategies for multi-state models, categorized by method type.
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3 Results

The subsequent sections briefly describe model selection procedures by penal-
ization in Subsection 3.1.1, boosting in Subsection 3.1.2, testing procedures in
Subsection 3.1.3, and reduced rank regression in Subsection 3.1.4.

For model selection, classical approaches incorporate regularization in the fitting
process in order to perform variable selection. Especially in higher dimensions,
statistical boosting algorithms reveal powerful techniques. Further, appropriate
testing procedures can be utilized to assess the association of predictor variables
with a time-to-event outcome for stepwise model reduction. All described
methods are based on the Cox proportional hazards model adapted on transition-
specific hazards for time-to-event outcomes.

A scoping literature review on statistical methods for model selection in the
framework of multi-state models was conducted based on the PubMed database
(http://www.ncbi.nlm.nih.gov/pubmed/advanced, accessed 26-04-2022) utiliz-
ing the following keywords: multi-state models; model/variable selection/re-
duction; regularization; penalization; lasso; elastic net; boosting. The search was
restricted to 19 methodological journals in the field of biostatistics. Further, cited
papers of the formerly identified manuscripts as well as manually discovered
papers were added as target-related manuscripts. The Preferred Reporting Items
for Systematic reviews and Meta-Analyses (PRISMA) flow diagram in Figure 3.1
illustrates the selection process of articles included in the scoping review accord-
ing to Page et al. (2021). The identified manuscripts can be categorized by type
of model selection strategy:

(M1) Penalization (#5),

(M2) Boosting (#4),

(M3) Testing procedures (#3),

(M4) Reduced rank regression (#2),

(M5) Bayesian (#2).

An overview of all relevant manuscripts included in the scoping review along
with their method categorization and outcome type is provided in Table 3.1.1.
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Fig. 3.1: PRISMA flow diagram of the scoping review on “model selection for
multi-state models” according to Page et al. (2021).
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3
R

esults
Tab. 3.1: Relevant manuscripts of the scoping review with target “model selection for multi-state models”.

Reference Journal Method categorization Type of outcome

Beesley and Taylor (2021) Statistical Modelling Bayesian Multi-state data
Bender et al. (2021) Machine Learning and

Knowledge Discovery in
Databases

Boosting High-dimensional multi-state
data

Binder et al. (2009) Bioinformatics Boosting High-dimensional competing
risk data

Dang et al. (2021) Journal of Healthcare In-
formation

Penalization Multi-state data

Edelmann et al. (2020) Statistical Methods in
Medical Research

Testing Multi-state data

Eulenburg et al. (2015) PLOS ONE Testing Multi-state data
Fiocco et al. (2005) Biostatistics Reduced rank regression Competing risks data
Fiocco et al. (2008) Statistics in Medicine Reduced rank regression Multi-state data
Huang et al. (2018) Biometrics Penalization Multi-state data
Koslovsky et al. (2018) Biometrics Bayesian Multi-state data
Machado et al. (2021) Computational Statistics

and Data Analysis
Penalization Multi-state data

Marshall and Jones (1995) Statistics in Medicine Testing Multi-state data
Mayr et al. (2017) Computational and

Mathematical Methods in
Medicine

Boosting [review] High-dimensional multi-state
data

Reulen and Kneib (2016) Lifetime Data Analysis Boosting High-dimensional multi-state
data

Continued on the next page
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Reference Journal Method categorization Type of outcome

Saadati et al. (2018) Biometrical Journal Penalization High-dimensional competing
risks data

Sennhenn-Reulen and Kneib
(2016)

Statistics in Medicine Penalization Multi-state data
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3 Results

3.1.1 Penalization

In the multi-state framework, adapted regularization approaches incorporate the
lasso (Saadati et al., 2018; Dang et al., 2021), elastic net (Huang et al., 2018) and
structured fusion lasso (Sennhenn-Reulen and Kneib, 2016) for penalized multi-
state modeling. Table 3.2 gives an overview of existing penalization methods
along with their penalty functions as well as their original publications for linear
regression models and first adaptations to Cox models for survival outcomes,
accompanied by extensions to the multi-state setting.

Lasso penalized competing risks

For modeling competing risks data in higher dimensions, Saadati et al. (2018)
provided a penalized cause-specific hazards approach. Due to its simplicity and
variable selection ability, the lasso penalization is chosen, i. e. maximizing the
penalized log-partial likelihood for each cause k by

max
β∈RP

[log l(βk)− λk∥β∥1],

where λk > 0, k = 1, . . . , K, denote the cause-specific lasso tuning parameters.
The Cox model for each cause uses a separate tuning parameter. The idea is to
link the independently penalized cause-specific hazards models by choosing the
combination of tuning parameters that yields the best prediction w.r.t. the inci-
dence of the event of interest at a fixed time point t∗. The predictive performance
is assessed by the Brier score for the event of interest k, i. e.

PEk(t∗) = E
[
1{T≤t∗,ZT=k} − πk(t∗|X)

]2
,

where T = inf{t > 0, Zt ̸= 0} denotes the failure time, {Zt, t ∈ T } the compet-
ing risks counting process with Zt ∈ {1, . . . , K} and πk the predicted cumulative
incidence function of event type k. The penalized competing risks algorithm is then
provided for K = 2 event types as follows:
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Tab. 3.2: Examples of penalization methods.

Penalization method Penalty function Parameters Model type
Ridge λ∥β∥2

2 λ > 0 Linear (Hoerl and Kennard, 1970),
Cox (Gray, 1992)
(Verweij and van Houwelingen, 1994)

Lasso λ∥β∥1 λ > 0 Linear (Tibshirani, 1996),
Cox (Tibshirani, 1997)

Elastic net α∥β∥1 + (1 − α)∥β∥2
2 α ∈ [0, 1] Linear (Zou and Hastie, 2005),

Cox (Simon et al., 2011)
Fused lasso λ1 ∑P

p=1 |βp|+ λ2 ∑P
p=2 |βp − βp−1| λ1, λ2 > 0 Linear (Tibshirani et al., 2005),

Cox (Chaturvedi et al., 2014)
Group lasso λ ∑g∈G

√pg∥βg∥2 λ > 0, groups G, Linear (Yuan and Lin, 2006),
group size pg Cox (Kim et al., 2012)

Sparse-group lasso α∥β∥1 + (1 − α)∑l∈G
√

pl∥βl∥2 α ∈ [0, 1] Linear & Cox (Simon et al., 2013)
Fused sparse-group lasso λ [αγ∥β∥1 + (1 − γ)∥Dβ∥1 λ > 0, α, γ ∈ [0, 1], Linear (Beer et al., 2019)

+(1 − α)γ ∑g∈G
√pg∥βg∥2] fusion matrix D

Lasso mstate λ ∑q ∑p |βp,q| λ > 0 Competing risks (Saadati et al., 2018),
Multi-state (Dang et al., 2021)

Elastic net mstate (1 − α)∑p,q β2
p,q + α ∑p,q |βp,q| α ∈ [0, 1] Multi-state (Huang et al., 2018)

Fusion lasso mstate λ1 ∑q ∑p |βp,q| λ1, λ2 > 0 Multi-state
+λ2 ∑q,q′ ∑P

p=1 |βp,q − βp,q′ | (Sennhenn-Reulen and Kneib, 2016)
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3 Results

1. Set up a grid of tuning parameters λkr, r = 1, . . . , R, for cause k that ranges
from smallest (full model) to largest (empty model).

2. Perform cross-validation, i. e. partition data into a number of folds. For
each fold

(i) use the remaining folds to fit a cause-specific penalized regression
model for cause of interest ∀ r = 1, . . . , R,

(ii) predict for each patient in the current fold the probability of event
type 1.

3. Calculate the prediction error PE1(t∗), i. e. Brier score for event type 1 at
time point t∗. Time t∗ is advocated to be chosen as a clinically relevant
time point, e. g. considering relapse-free survival within three years from
remission.

4. Select the optimal tuple of tuning parameters (λ1;r∗1 , λ1;r∗2 ) with the smallest
average PE1(t∗) and fit the final cause-specific hazards model.

Lasso penalized multi-state models

Based on L1-regularization, Dang et al. (2021) proposed a lasso penalization
approach for multi-state models by a one-step coordinate descent algorithm to
solve the corresponding optimization problem. The penalty function is given
as

pλ(β) = λ
Q

∑
q=1

P

∑
p=1

|βp,q|,

where λ denotes the tuning parameter and βp,q the regression coefficient of
covariate Xp, p ∈ {1, . . . , P}, for transition q ∈ {1, . . . , Q}.
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Elastic net penalized multi-state models

A regularized continuous-time Markov model with the elastic net penalty was
proposed by Huang et al. (2018). The penalty function is given as

pλ(β) = λ

[
1
2
(1 − α)∑

k
β2

k + α ∑
k
|βk|

]
,

for tuning parameters λ, α ∈ [0, 1]. The tuning parameter λ controls the overall
level of shrinkage and α controls the mixture of lasso (α = 1) and ridge (α = 0)
penalties. The intercepts are not penalized.

Structured fusion lasso penalized multi-state models

In the multi-state setting, Sennhenn-Reulen and Kneib (2016) developed a data-
driven approach for sparse modeling by combining so-called cross-transition
effects of the same baseline covariate. Such a cross-transition effect is defined
as a homogeneous effect across a combination of distinct transitions. The pair-
wise fused lasso extends the fused lasso which penalizes absolute successive
differences between covariate effects for problems with natural ordering. Thus,
the structured fusion lasso penalization regularizes the L1-norm of the covariate
coefficients βp,q for the p-th covariate, p = 1, . . . , P, and transition q, q = 1, . . . , Q,
as well as all pairwise differences for transitions q and q′ in a structured way:

pλ(β) = λ1

Q

∑
q=1

P

∑
p=1

|βp,q|+ λ2 ∑
q,q′

P

∑
p=1

|βp,q − βp,q′ |,

with penalty parameters λ1 and λ2. The first term represents a lasso-type penalty,
while the second term corresponds to a fusion-type penalty.

Estimation is performed by the penalized iteratively re-weighted least squares (PIRLS)
algorithm. According to the authors, this approach gives flexibility to incorpo-
rate penalties and yields stable results. The (r + 1)-th iteration of the algorithm
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3 Results

is given as

β̂r+1 = β̂r − ν[−F(β̂r)− Pλ]
−1[U(β̂r)− Pλ β̂r],

with step length factor ν ∈ (0, 1] and local quadratic approximation of the
penalty matrix Pλ. The score vector and Fisher information matrix are

U(β) =
∂

∂β
L(β),

F(β) =
∂2

∂β∂βT L(β),

respectively. Optimal penalty parameters are then selected by grid search based
on the effective AIC. Thus, the best combination (λ∗

1, λ∗
2) among all pairwise

combinations of tuning parameter values is chosen with respect to this selection
criterion.

3.1.2 Boosting

Especially in higher dimensions, statistical boosting algorithms reveal powerful
techniques with respect to model selection. A general update on boosting
algorithms in biomedical research is given in Mayr et al. (2017). In the presence of
high-dimensional data, boosting approaches are promising to estimate survival
models incorporating both clinical and molecular data for prediction.

For multi-state models, Reulen and Kneib (2016) introduced a data-driven ap-
proach to intrinsically select relevant combinations. The component-wise functional
gradient descent boosting algorithm performs unsupervised variable selection and
model choice simultaneously within a single estimation run. In particular, it
addresses a possible non-linearity of single transition-type-specific or cross-
transition-type effects. The procedure is based on a stratified partial likelihood
formulation of multi-state models to estimate effects of different transition types
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simultaneously. The general additive linear predictor is defined by

ηi =
P

∑
p=1

(
Q

∑
q=1

fxp,q(xp,q,i) + ∑
q,q′

fxp,q,q′ (xp,q,q′,i) + . . .

)
, i = 1 . . . , N,

where xp,q,i = xp,i · 1{transi=q}, p = 1, . . . , P, denotes the transition-type spe-
cific covariate for transition q = 1, . . . , Q, and xp,q,q′,i = xp,q,i + xp,q′,i = xp,i ·
1transi∈{q,q′} denotes the cross-transition covariate for transitions q and q′ of
observation i. Thus, the inner sum consists of model components fxp,q(xp,q,i)

for transition-type-specific covariates and model components fxp,q,q′ (xp,q,q′,i) for
cross-transition-type covariates.

Estimation is performed by the functional gradient descent boosting algorithm.
Therefore, the lack-of-fit criterion is chosen as the negative derivative of the loss
function which is aimed to be minimized w. r. t. the linear predictor η. The r-th
iteration of the algorithm consists of the following procedure:

1. Calculation of base-learner fits b̂∗(xp,q), i. e. single regression models, using
the current lack-of-fit based on the linear predictor.

2. Selecting the best base-learner fit b̂∗xp,q w. r. t. the ability of decreasing the
loss function.

3. Updating the coefficients f [r+1] = f [r] + ν · b̂∗xp,q with a step-length factor
ν ∈ (0, 1] and subsequently the multi-state model’s linear predictors
η̂[r+1] = η̂[r] + ν · b̂∗xp,q .

With respect to a link between boosting and lasso regularization, Bühlmann
and Hothorn (2007, p. 492) resumed that “[...] L2-boosting and lasso are not
equivalent methods in general, it may be useful to interpret boosting as being
’related’ to L1-penalty based methods”.
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3 Results

3.1.3 Testing procedures

Within the framework of stratified Cox regression models, Thall and Lachin
(1986) proposed a test-based model reduction strategy based on likelihood ratio
tests on stratum interactions with covariates. Further, Marshall and Jones (1995)
suggested a systematic procedure for testing the assumption of equal covariate
effects based on likelihood ratio tests on interactions between transitions and
covariates. For the illness-death model, Eulenburg et al. (2015) provided a
systematic model specification procedure by stepwise reduction.

In the context of multi-state models, Edelmann et al. (2020) extended practiced
testing methodology in survival analysis to competing risks and multi-state
settings. The global test for a multi-state model offers the possibility to test if the
regression coefficients for a certain subset of transitions S are equal under the
Markov assumption. Thus, by reparametrizing the regression coefficients for
transition k −→ k′ ∈ S , i. e.

βp,[k,k′] = µp + δp,[k,k′],

the test problem is given as

H0 : δp,[k,k′] = 0 ∀ transitions k −→ k′ ∈ S

with test statistic

T̂µ = ∑
[k,k′]∈S

T̂µ,[k,k′],

consisting of the global test statistics T̂µ,[k,k′] in a corresponding Cox model. See
Goeman et al. (2005) for further details.
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3.1.4 Reduced rank regression

To obtain parsimony in multi-state modeling with covariates, the reduced rank
proportional hazards regression approach proposed by Fiocco et al. (2008) limits
the number of regression parameters by reducing the dimensionality of the
parameter space. This is achieved by representing the regression coefficients as
a reduced rank matrix B ∈ RP×Q defined as

B = [β1| . . . |βQ]

= [α1| . . . |αR]× [γ1| . . . |γR]
T,

with αr ∈ RP and γr ∈ RQ, r = 1, . . . , R. The rank of the matrix B is R ≤
min{P, Q}, implying that the matrix is constrained to R linear combinations of
covariates. These linear combinations correspond to a reduced set of prognostic
scores given by αT

1 X, . . . , αT
RX, which help summarize the predictive information

from the covariates. The hazard rate for transition q is then given as

λq(t) = λ0,q(t) exp

{
R

∑
r=1

γq,rαT
r X

}
,

where the hazard function depends on the reduced number of prognostic scores,
ensuring a more compact and interpretable model. To estimate regression
coefficients, the alternate rank R algorithm is utilized. See Fiocco et al. (2005) for
details.
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3 Results

3.2 Fused sparse-group lasso penalized multi-state
models

This section describes the adapted fused sparse-group lasso penalty to multi-
state models as key variable selection strategy for increasingly high-dimensional
multi-state modeling proposed in this thesis.

The fused sparse-group lasso (FSGL) penalty, introduced by Zhou et al. (2012) and
adapted by Beer et al. (2019) for linear regression models, provides a combi-
nation of lasso, fused and grouped regularization. Thus, prior information of
spatial and group structure can be incorporated into the prediction model. The
global lasso penalty fosters overall sparsity. The fusion penalty regularizes ab-
solute pairwise differences of regression coefficients. The group penalty allows
variables within the same group to be jointly selected or shrunk to zero.

In this thesis, the combined penalty is adapted to the multi-state framework
based on transition-specific hazards regression models in order to obtain overall
sparsity, link covariate effects across transitions and incorporate transition-wise
grouping. Thus, the FSGL penalty is advocated providing regression estimates
with three properties:

1. Sparsity: The resulting estimator automatically zeros out small
estimated coefficients to achieve variable selection and simplify the
model (Fan and Li, 2002).

2. Similarity: The resulting estimator penalizes absolute differences
of covariate effects across similar transitions, thus addressing ho-
mogeneous cross-transition effects.

3. Transition-wise grouping: The resulting estimator allows variables
within the same transition to be jointly selected or shrunk to zero,
thus incorporating transition grouping.
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With regards to assumptions, the same set of P (time-fixed) covariates, e. g.
biomarkers, is considered for each transition q ∈ {1, . . . , Q} = Q. Further,
a subset of pairs of similar transitions S = {(q, q′) : q ̸= q′, q, q′ ∈ Q} is
presumed, thus assuming that covariate effects across these transitions are of
a similar magnitude, i. e. one considers potential cross-transition effects. The
FSGL penalty function is then defined as

pλ,FSGL(β) = λ

[
αγ

Q

∑
q=1

P

∑
p=1

|βp,q|+ (1 − γ) ∑
(q,q′)∈S

P

∑
p=1

|βp,q − βp,q′ |

+ (1 − α)γ
Q

∑
q=1

∥βq∥2

]
, (3.1)

with transition-specific regression coefficients βp,q of covariate xp, p = 1, . . . , P
for transition q, transition-specific regression vector βq ∈ RP and tuning
parameters λ, α, γ. The tuning parameter λ > 0 controls the overall level of
regularization, α ∈ [0, 1] balances between global lasso and group lasso and
γ ∈ [0, 1] balances between sparse penalties and the fusion penalty (Beer et al.,
2019). Thus, the optimal tuning parameter λopt is chosen at pre-selected values
of α and γ. For (α, γ) = (1, 1), the estimator reduces to the global lasso, for
(α, γ) = (0, 1) to the group penalty and for (α, γ) = (1, 0) or (α, γ) = (0, 0)
to the fusion penalty. The regression vector β is estimated by minimizing the
penalized negative partial log-likelihood function, i. e.

β̂ = arg minβ [L(β) + pλ,FSGL(β)] .

3.3 Optimization algorithm

This section provides the explicitly derived Alternating Direction Method of
Multipliers (ADMM) optimization steps to fit penalized Cox models in Subsec-
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3 Results

tion 3.3.1 and FSGL penalized multi-state models in Subsection 3.3.2. The crite-
rion of selecting optimal tuning parameters is described in Subsection 3.3.3.

For penalized Cox-type regression, several numerical optimization algorithms
exist for parameter estimation by minimizing the penalized negative likelihood
function. Simon et al. (2013) utilized an accelerated generalized gradient algo-
rithm for the sparse-group lasso penalty. However, the accelerated gradient
method depends on the separability of the penalty term across groups of β, so
that the fusion penalty can only be applied within groups. For the structured
fusion lasso penalty, Sennhenn-Reulen and Kneib (2016) used a penalized itera-
tively re-weighted least squares algorithm. This second-order optimization has
high computation cost and potential convergence problems (Dang et al., 2021).
Further, coordinate descent algorithms do not work for the fused lasso penalty
due to its non-separability into a sum of functions of the elements of β that
beyond is not continuously differentiable. Thus, the ADMM optimization algo-
rithm is chosen for FSGL penalized multi-state models in this work, due to the
decomposability of the optimization problem as well as superior convergence
properties.

3.3.1 ADMM for penalized Cox models

For penalized Cox regression models, the generic constrained optimization
problem is given as

min
β,θ

f (β) + g(θ) subject to θ− β = 0,

where f (β) = L(β) is the negative Cox (full or partial) log-likelihood and g(θ)
the penalty function with auxiliary variable θ. Thus, optimization of the like-
lihood and penalty terms are separated and therefore simplified. To estimate
the Cox regression vector β efficiently in the β-updating step, several numer-
ical optimization algorithms exist, e. g. gradient descent or Newton-Raphson
as depicted in Subsection 2.1.4. In the following, numeric solutions based on a
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second-order optimization procedure incorporating the first and second deriva-
tive of the partial log-likelihood function as in the Newton-Raphson algorithm
are provided.

ADMM for lasso penalized Cox models

For global lasso penalized Cox regression with penalty function g(θ) = λ∥θ∥1 of
the auxiliary variable θ ∈ RP, the optimization problem is

min
β,θ

L(β) + λ∥θ∥1 subject to β − θ = 0.

The augmented Lagrangian function along with its first and second derivative
w.r.t. β ∈ RP are deduced as

L(β, θ, ν) = L(β) + g(θ) +
[
νT(θ− β) +

ρ

2
∥θ− β∥2

2

]
,

∂

∂β
L(β, θ, ν) =

∂

∂β
L(β)− ν − ρ(θ− β) = −U(β)− ν − ρ(θ− β)

= −XT(δ − µ̂)− ν − ρ(θ− β),

∂2

∂β∂βT L(β, θ, ν) =
∂2

∂β∂βT L(β) + ρIP = −J(β) + ρIP

= XTWX + ρIP,

where ν ∈ RP denotes the ADMM scaled dual variable, ρ > 0 the ADMM step
size, X ∈ RN×P the (standardized) regression matrix, W the weight matrix of
the estimated cumulative hazards µ̂, IP ∈ RP×P the identity matrix, δ the event
indicator along with the score vector U(β) and Hessian matrix J(β) of the Cox
partial log-likelihood.

Thus, by plugging-in both derivatives to the Newton-Raphson β-updating step,
the ADMM algorithm in a global lasso penalized Cox model consists of the
following steps at iteration r + 1:

1. Initialize β0, θ0 and ν0.
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2. Update until stopping criterion met:

(2.1) Newton-Raphson step for βr+1 :

Initialize βr+1,(0) = βr.

For r∗ = 0, 1, 2, . . . until convergence:

βr+1,(r∗+1) = βr+1,(r∗) +
(

XTW r,(r∗)X + ρI
)−1 [

XT(δ − µ̂r,(r∗))

− νr − ρ(θr − βr+1,(r∗))
]

Set βr+1 = βr+1,(R∗).

(2.2) Update auxiliary variables:

θr+1 = S λ
ρ
(βr+1 + νr),

νr+1 = νr + ρ(θr+1 − βr+1),

where Sκ(a) denotes the vector soft-thresholding operator as defined in Sub-
section 2.3.4. Algorithm 8 summarizes the adapted ADMM algorithm to global
lasso penalized Cox models.

Algorithm 8 ADMM for lasso penalized Cox models (LASSOCox)

1: Set ρ = 1, ϵNR = 0.01, and tolNR = 10−6.
2: initialize β0 = 0, θ0 = 0, ν0 = 0.
3: repeat
4: Update βr+1 = arg minβ L(β, θr, νr),
5: Update θr+1 = S λ

ρ
(βr+1 + νr),

6: Update νr+1 = ρ(θr+1 − βr+1),
7: until ∥ur+1∥2 = ∥θr+1 − βr+1∥2 < ϵ1 and ∥sr+1∥2 = ∥ρ(θr+1 − θr)∥2 < ϵ2

for sufficiently small ϵ1 and ϵ2.
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ADMM for fused lasso penalized Cox models

For fused lasso penalized Cox regression, the optimization problem is

min
β,θ

L(β) + λ∥θ∥1 subject to Dβ − θ = 0,

where D ∈ Rs×P denotes the fusion matrix that consists of contrast vectors
for s pairwise differences of potential cross-transition effects, with elements
dij ∈ {−1, 1} at the corresponding positions of covariates of such fusion pairs,
e. g. d1 = (1,−1, 0, . . . , 0)T ∈ RP for covariates X1 and X2.

The augmented Lagrangian function along with its first and second derivative
w. r. t. β ∈ RP are calculated as

L(β, θ, ν) = L(β) + g(θ) +
[
νT(θ− Dβ) +

ρ

2
∥θ− Dβ∥2

2

]
,

∂

∂β
L(β, θ, ν) =

∂

∂β
L(β)− DTν + ρDT(θ− Dβ)

= −XT(δ − µ̂) + DT[ρ(θ− Dβ)− ν],

∂2

∂β∂βT L(β, θ, ν) =
∂2

∂β∂βT L(β) + ρDTD = −J(β) + ρDTD

= XTWX + ρDTD,

with notation as above. The following ADMM updating steps are derived:

1. Initialize β0, θ0 and ν0.

2. Update until stopping criterion met:

βr+1 = arg min
β

L(β, θr, νr),

θr+1 = S λ
ρ
(Dβr+1 + νr),

νr+1 = νr + ρ(Dθr+1 − βr+1).
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Algorithm 9 summarizes the adapted ADMM algorithm to fused lasso penalized
Cox models.

Algorithm 9 ADMM for fused lasso penalized Cox models

1: Set ρ = 1, ϵNR = 0.01, and tolNR = 10−6.
2: initialize β0 = 0, θ0 = 0, ν0 = 0.
3: repeat
4: Update βr+1 = arg minβ L(β, θr, νr),
5: Update θr+1

j = S λ
ρ
(Dβr+1 + νr),

6: Update νr+1 = ρ(Dθr+1 − βr+1),
7: until ∥ur+1∥2

2 = ∥θr+1 − βr+1∥2
2 < ϵ1 and ∥sr+1∥2

2 = ∥ρ(θr+1 − θr)∥2
2 < ϵ2

for sufficiently small ϵ1 and ϵ2.

ADMM for group lasso penalized Cox models

For group lasso penalized Cox regression with g predefined groups, the optimiza-
tion problem is

min
β,θ

L(β) + λ
g

∑
l=1

√
pl∥θ(l)∥2 subject to β − θ = 0,

for pl covariates in group l, l = 1, . . . , g, and the subvector θ(l) ∈ Rpl of θ

corresponding to group l. The ADMM algorithm consists of the following steps
at iteration r + 1:

1. Initialize β0, θ0 and ν0.

2. Update until stopping criterion met:

βr+1 = arg min
β

L(β, θr, νr),

θr+1
l = S√

pl
λ
ρ
(βr+1

l + νr
l ), l = 1, . . . , g,

νr+1 = νr + ρ(θr+1 − βr+1),
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with vector soft-thresholding operator Sκ(a) as defined in Subsection 2.3.4 and
group weights

√
pl , consisting of the size pl of group l, l = 1, . . . , g. Algorithm 10

summarizes the adapted ADMM algorithm to group lasso penalized Cox models.

Algorithm 10 ADMM for group lasso penalized Cox models

1: Set ρ = 1, ϵNR = 0.01, and tolNR = 10−6.
2: initialize β0 = 0, θ0 = 0, ν0 = 0.
3: repeat
4: Update βr+1 = arg minβ L(β, θr, νr),
5: Update θr+1

l = S√
pl

λ
ρ
(βr+1

l + νr), l = 1, . . . , g,

6: Update νr+1 = νr + ρ(θr+1 − βr+1),
7: until ∥ur+1∥2

2 = ∥θr+1 − βr+1∥2
2 < ϵ1 and ∥sr+1∥2

2 = ∥ρ(θr+1 − θr)∥2
2 < ϵ2

for sufficiently small ϵ1 and ϵ2.

ADMM for fused sparse-group lasso penalized Cox models

For FSGL penalized Cox regression models, the constrained optimization prob-
lem is

min
β,θ

L(β) + λmwm∥θm∥2 subject to Kmβ − θm = 0, m ∈ {1, . . . , M},

where λm ∈ {λ1, λ2, λ3} denotes the tuning parameters for the lasso, fusion and
group penalties, wm are penalty-specific weights and K = (K1| . . . |KM)T ∈
RM×P denotes the general penalty structure matrix. Each row vector Km consists
of elements kij ∈ {−1, 0, 1}, such that

Km =





um, if m ∈ {1, . . . , P},
dm−P, if m ∈ {P + 1, . . . , P + s},
Gm−P−s, if m ∈ {P + s + 1, . . . , P + s + Q},

where um denotes the unit vector of the identity matrix IP ∈ RP×P corresponding
to the global lasso penalty. The contrast vector of the (m − P)-th row of the
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fusion matrix D ∈ Rs×P for s fusion pairs, with elements dij ∈ {−1, 1} at the
corresponding positions of covariates of such pairs, corresponding to the fusion
penalty, is denoted as dm, e. g. d1 = (1,−1, 0, . . . , 0)T for covariates X1 and X2.
The group matrices Gm−P−s ∈ RP×P of the Q groups consist of unit vectors that
indicate the group allocation of a variable for the group penalty. The penalty
structure matrix K is then given as

K =




IP

D

G1
...

GQ




=




1 0 0 · · · · · · 0 0 0
0 1 0 · · · · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 · · · · · · 0 0 1

1 −1 0 · · · · · · 0 0 0
1 0 −1 · · · · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 · · · · · · 0 1 −1

1 0 0 · · · · · · 0 0 0
0 0 0 · · · · · · 1 0 0
...

...
...

...
...

...
...

...
0 0 0 · · · · · · 0 0 1




.

Thus, the total number of rows of the penalty structure matrix K ∈ RM×P is
M = P + s + PQ. The ADMM algorithm consists of the following steps:

1. Initialize β0, θ0 and ν0.

2. Update until stopping criterion met:

βr+1 = arg min
β

L(β, θr, νr),

θr+1
m = S λmwm

ρ
(Kmβr+1 + νr

m/ρ), m = 1, . . . , M,

νr+1 = νr + ρ(θr+1 − Kβr+1),
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where wm denotes group weights, e. g. wm =
√

pm of group size pm for group
lasso. Algorithm 11 provides a summary of the adapted ADMM algorithm to
FSGL penalized Cox models (FSGLCox).

Algorithm 11 ADMM for fused sparse-group lasso penalized Cox models (FS-
GLCox)

1: Set K ∈ RM×P, α, γ ∈ [0, 1], ρ = 1, ϵNR = 0.01, and tolNR = 10−6.
2: initialize β0 = 0P, θ0 = 0M, ν0 = 0M.
3: repeat
4: Update βr+1 = arg minβ L(β, θr, νr),
5: Update θr+1

m = S λmwm
ρ

(Kmβr+1 + νr
m/ρ), m = 1, . . . , M,

6: Update νr+1 = νr + ρ(θr+1 − Kβr+1),
7: until ∥ur+1∥2

2 = ∥θr+1 − Kβr+1∥2
2 < ϵ1 and ∥sr+1∥2

2 = ∥ρKT(θr+1 − θr)∥2
2 <

ϵ2 for sufficiently small ϵ1 and ϵ2.

3.3.2 ADMM for FSGL penalized multi-state models

In the FSGL penalized multi-state framework, the constrained optimization
problem for the stacked regression parameter β ∈ RPQ is given as

minβ,θ f (β) + g(θ) subject to θm − Kmβ = 0, m ∈ {1, . . . , M},

where f (β) = L(β) is the negative multi-state partial log-likelihood function as
defined in (2.1) and g(θ) = pλ,FSGL(θ) is the FSGL penalty function (3.1) with
auxiliary variable θ = (θ1, . . . , θM)T ∈ RM, M = PQ + s + PQ, such that θm =

Kmβ. The penalty structure matrix is defined as K = (K1| . . . |KM)T ∈ RM×PQ,
with elements kij ∈ {−1, 0, 1}, such that

Km =





um, if m ∈ {1, . . . , PQ},
dm−PQ, if m ∈ {PQ + 1, . . . , PQ + s},
Gm−PQ−s, if m ∈ {PQ + s + 1, . . . , PQ + s + Q},

where um denotes the unit vector of the identity matrix IPQ ∈ RPQ×PQ corre-
sponding to the global lasso penalty. The contrast vector of the (m − PQ)-th
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row of the fusion matrix D ∈ Rs×PQ for s pairs of similar transitions with
elements dij ∈ {−1, 1} at the corresponding positions of covariates of such
similar transitions corresponding to the fusion penalty is denoted as dm, e. g.
d1 = (1,−1, 0, . . . , 0)T for covariates X1.1 and X1.2 of transitions 1 and 2.
Gm−PQ−s ∈ RP×PQ are the group matrices of the Q transitions consisting of
unit vectors that indicate the group allocation of a variable to a corresponding
transition for the group penalty. The penalty structure matrix K is then given
as

K =




IPQ

D

G1
...

GQ




=




1 0 0 · · · · · · 0 0 0
0 1 0 · · · · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 · · · · · · 0 0 1

1 −1 0 · · · · · · 0 0 0
1 0 −1 · · · · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 · · · · · · 0 1 −1

1 0 0 · · · · · · 0 0 0
0 0 0 · · · · · · 1 0 0
...

...
...

...
...

...
...

...
0 0 0 · · · · · · 0 0 1




.

Thus, the total number of rows of the penalty structure matrix K ∈ RM×PQ

is M = PQ + s + PQ. Optimization of the likelihood and penalty terms are
separated and therefore simplified.

For the β-updating step, Cox-type estimation of the regression vector β is per-
formed by numerical algorithms. The gradient descent update is given as
βr+1

GD = βr − ϵGDU(βr) using the score vector U(βr) at iteration r as defined in
(2.2) and step size ϵGD. The Newton-Raphson update is

βr+1
NR = βr − J(βr)−1U(βr),
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using both the gradient U(βr) and Hessian matrix J(βr) at iteration r as de-
scribed in Subsection 2.1.4. The estimation tolerance for the convergence crite-
rion based on the partial log-likelihood is denoted as vNR. A hybrid algorithm as
proposed by Goeman (2010) combines adaptive gradient descent and Newton-
Raphson to derive β-estimates in a Cox model. It starts with a single gradient
descent step and then switches to Newton-Raphson updating steps. For an
efficient θ-updating step, the vector soft-thresholding operator Sκ(a) is used
as defined in Subsection 2.3.4. As a shrinkage operator, it provides a simple
closed-form solution for the θ-update.

The augmented Lagrangian function, along with its first and second derivative
w.r.t. β, is deduced as follows

L(β, θ, ν) = f (β) + g(θ) +
M

∑
m=1

[
νm(θm − Kmβ) +

ρ

2
∥θm − Kmβ∥2

2

]
,

∂

∂β
L(β, θ, ν) = f ′(β) +

M

∑
m=1

[−νmKm + ρ(−θm + Kmβ)Km]

= −U(β) + [ρ(βTKT − θT)− νT]K

= −XT(δ − µ̂) + [ρ(βTKT − θT)− νT]K,

∂2

∂β∂βT L(β, θ, ν) = f ′′(β) +
M

∑
m=1

[
ρKT

mKm

]
= −J(β) + ρKTK

= XTWX + ρKTK,

with ADMM step size ρ > 0, scaled dual variable ν = (ν1, . . . , νM)T ∈ RM,
score vector U(β) as defined in (2.2) and Hessian matrix J(β) as in (2.3). Thus,
by plugging-in both derivatives to the Newton-Raphson β-updating step, the
adapted ADMM algorithm for the stacked regression parameter β ∈ RPQ in a
multi-state model consists of the following steps:
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ADMM updating steps for FSGL penalized multi-state models

1. Initialize β0, θ0, and ν0.

2. Update until stopping criterion met:

βr+1 = arg min
β

L(β, θr, νr),

θr+1
m = S λmwm

ρ
(Kmβr+1 + νr

m/ρ), m = 1, . . . , M,

νr+1 = νr + ρ(θr+1 − Kβr+1).

Parameter dimensions are θ, ν ∈ RM. λm denotes the regularization parameters
for the global lasso, fusion and group penalties, respectively, and wm =

√
P

group weights incorporating the group sizes corresponding to the group penalty.
For the stopping criterion, I follow the approach by Boyd et al. (2010), adapted
to the FSGL penalty by Beer et al. (2019), as follows

∥θr+1 − Kβr+1∥2 < ϵ1 and

∥ρKT(θr+1 − θr)∥2 < ϵ2,

with

ϵ1 =
√

PQϵabs + ϵrel max{∥Kβr+1∥2, ∥θr+1∥2},

ϵ2 =
√

Mϵabs + ϵrel∥KTνr+1∥2

and tolerances ϵabs, ϵrel as chosen in Subsection 2.3.2. Regarding the ADMM step
size ρ > 0, I follow Beer et al. (2019) by implementing an adaptive step size to
accelerate the convergence of the ADMM algorithm, such that

ρr+1 =





τρr, if ∥θr+1 − Kβr+1∥2 > η∥ρKT(θr+1 − θr)∥2,
ρr

τ , if ∥θr+1 − Kβr+1∥2 < η∥ρKT(θr+1 − θr)∥2,
ρr, otherwise,
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while setting τ = 2, η = 10 and initialize ρ0 = 1. Algorithm 12 provides
a summary of the adapted ADMM algorithm to FSGL penalized multi-state
models (FSGLmstate).

Algorithm 12 ADMM for fused sparse-group lasso penalized multi-state models
(FSGLmstate)

1: Set K ∈ RM×PQ, α, γ ∈ [0, 1], ρ = 1, ϵNR = 0.01, and vNR = 10−6.
2: initialize β0 = 0PQ, θ0 = 0M, ν0 = 0M.
3: repeat
4: Update βr+1 = arg minβ L(β, θr, νr),
5: Update θr+1

m = S λmwm
ρ

(Kmβr+1 + νr
m/ρ), m = 1, . . . , M,

6: Update νr+1 = νr + ρ(θr+1 − Kβr+1),
7: until ∥θr+1 − Kβr+1∥2 < ϵ1 and ∥ρKT(θr+1 − θr)∥2 < ϵ2 for sufficiently

small ϵ1 and ϵ2.
8: obtain β̂ = θ̂.

To tackle the dependency of the penalized estimation solution on relative va-
riable scales, standardization is performed for continuous covariates before
applying penalization, i. e. x∗p.q =

xp.q
σ̂xp.q

, where σ̂xp.q denotes the empirical stan-
dard deviation of xp.q. For interpretation, the regression coefficients have to be
scaled back after estimation.

The algorithm can be easily amended to situations in which certain covariates
should not be penalized (e. g. established clinical predictors). Therefore, an
individual penalty scaling factor ζm ≥ 0, m = 1, . . . , PQ is introduced, which
allows different penalties for each variable, i. e. λm = λζm (Friedman et al., 2010).
Unpenalized parameters get a penalty scaling factor set to zero, i. e. ζm = 0 for
m ∈ {1, . . . , PQ}.

Further, it is important to note that the ADMM algorithm does not generate exact
zeros for the β̂-solution (Andrade et al., 2021; Parka and Shin, 2022). However,
the estimated auxiliary variable θ̂ is sparse, so that variable selection results are
based on the derived estimate θ̂. Thus, the final estimated penalized regression
vector is obtained as β̂ = θ̂.
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3.3.3 Tuning parameter selection

For tuning parameter selection, this work focuses on the approximate generalized
cross-validation (GCV) statistic proposed by Craven and Wahba (1978) as defined
in Subsection 2.2.2. This selection criterion was used by Tibshirani et al. (2005)
for the fused lasso and Fan and Li (2002) for variable selection in penalized Cox
models. GCV is an estimator of the predictive ability of a model (Jansen, 2015),
which is defined as

GCV(λ) =
L(β̂)

N[1 − e(λ)/N]2
,

where λ is a general tuning parameter. The effective number of model param-
eters for the Cox proportional hazards model in the last step of the Newton-
Raphson algorithm iteration (Fan and Li, 2002) is approximated as

e(λ) = tr

[{
∂2

∂β∂βT L(β̂) + Σλ(β̂)

}−1
∂2

∂β∂βT L(β̂)

]
,

with

Σλ(β̂) = diag

{
p′(β̂1,1)

|β̂1,1|
, . . . ,

p′(β̂P,Q)

|β̂P,Q|

}
,

and p′(·) denoting the first derivative of the locally quadratic approximated
penalty function. The optimal tuning parameter is then selected as

λ̂opt = arg minλ{GCV(λ)}.

For the selection of an optimal combination of multiple tuning parameters,
I utilize grid search (Tibshirani et al., 2005) along with the Brent optimization
algorithm (Brent, 1973). Thus, for each pair of tuning parameters α, γ ∈ [0, 1],
the optimal overall penalty parameter λ̂opt > 0 is selected by minimal GCV.
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3.4 Simulation study: 9-state model

This section describes the design and results of a proof-of-concept simulation
study on assessing FSGL penalized multi-state models in terms of variable
selection for the motivating 9-state model of the AML disease pathway.

3.4.1 Simulation design

The aim of the following proof-of-concept simulation study is to evaluate the
variable selection procedure based on FSGL penalized multi-state models in
terms of its ability to select a sparse model distinguishing between relevant
transition-specific effects and equal cross-transition effects. As a methodological
phase II simulation study according to Heinze et al. (2023), it offers empirical
evidence to demonstrate validity in finite samples across a limited range of
scenarios. The corresponding ADEMP criteria of the simulation study based on
Morris et al. (2019) are summarized in Table 3.3. A detailed simulation study
plan according to ADEMP-PreReg (Siepe et al., 2024) can be found in Appendix
Section A.2.

Tab. 3.3: ADEMP criteria of the simulation study according to Morris et al. (2019).

ADEMP criterion Definition
Aim Evaluation of sparse variable selection detecting

relevant transition-specific effects and
equal cross-transitions effects

Data-generating mechanism Multi-state model based on transition-specific
hazards models

Estimand/target Regression coefficients
Methods Unpenalized Cox-type multi-state estimation with

ADMM optimization;
Lasso penalized multi-state model with ADMM
optimization (LASSOmstate);
Fused sparse-group lasso penalized multi-state model
with ADMM optimization (FSGLmstate)

Performance measures True positive rate (TPR); False discovery rate (FDR);
Bias; Mean squared error (MSE)
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Data-generating mechanism

In each simulation run, multi-state data with a sample size of N = 1000 are
generated from the 9-state AML model shown in Figure 3.2, using the transition-
specific hazards regression simulation algorithm outlined in Subsection 2.1.5.
Thus, data has been generated by the following data-generating process: Waiting
times in state l are generated from an exponential distribution with hazards
hl· = ∑9

k=1,k ̸=l hlk, l = 1, . . . , 9. Transition-specific baseline hazards are set con-
stant to h0,q(t) = 0.05 for all transitions q = 1, . . . , 8. Two independent biomark-
ers are generated as binary covariates Xp,i ∼ B(0.5), p = 1, 2, i = 1, . . . , 1000.
The true regression parameters for biomarker X1 are set to β1,1 = 1.5 for tran-
sition 1, β1,3 = β1,7 = 1.2 for transitions 3 and 7, β1,4 = β1,8 = −0.8 for
transitions 4 and 8 and β1,2 = β1,5 = β1,6 = 0 for transitions 2, 5 and 6. Similar
transitions are 3 and 7, i. e. from first complete remission (CR1) to first relapse
and from second complete remission (CR2) to second relapse, as well as 4 and 8,
i. e. CR1 to death in CR1 and CR2 to death in CR2. Thus, covariate X1 has equal
effects on these two pairs of similar transitions. Covariate X2 has no effect on
any transition, i. e. β2,1 = · · · = β2,8 = 0.

Active

disease

1st Complete

Remission 

(CR1)

Death 

(no CR)

Death 

(CR1)
Death

(relapse)

Death

(CR2)

1st

relapse

2nd

relapse

First-line therapy Second-line therapy

2nd Complete

Remission 

(CR2)1

2

3

4

5

6

7

8

Fig. 3.2: State chart of the multi-state model for acute myeloid leukemia (AML)
with nine states and eight possible transitions represented by arrows.
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Target

The primary target focuses on the true non-zero regression coefficients βp.q from
the penalized multi-state Cox-type proportional hazards models

hq(t|x) = h0,q(t) exp{βT
q x}, q = 1, . . . , 8,

where h0,q(t) denotes the baseline hazard rate of transition q at time t, x =

(x1, . . . , xP)
T ∈ RP the vector of covariates and βq ∈ RP the vector of transition-

specific regression coefficients for P covariates.

Methods

The aim is to compare the FSGLmstate algorithm to unpenalized multi-state
Cox-type estimation and global lasso penalized estimation (LASSOmstate) based
on ADMM optimization. For fitting penalized Cox-type multi-state models by
the ADMM algorithm as described in Subsection 3.3.2, the following parameter
settings are chosen: The ADMM variables are initialized as β0 = θ0 = ν0 = 0
and the adaptive ADMM step size as ρ0 = 1. The step size in gradient descent
is set to ϵGD = 0.01, the tolerance of the stopping criterion for Cox estimation
tolGD = 10−6, the relative and absolute tolerances for the ADMM stopping
criterion to ϵrel = 10−2 and ϵabs = 10−4 and the maximum number of
iterations to maxiter = 500. For each combination of tuning parameters α, γ ∈
{0, 0.25, 0.5, 0.75, 1}, the optimal overall tuning parameter λ̂opt > 0 is selected by
minimal GCV over a grid of λ ∈ {0.01, . . . , 500}, equally spaced on a logarithmic
scale.

Performance measures

Regularization performance is assessed by true positive rates (TPR) and false
discovery rates (FDR) of variable selection. Median counts of true positives (TP),
true negatives (TN), false positives (FP) and false negatives (FN) of variables
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over all simulations are calculated. Based on these absolute counts, TPR is
calculated as TPR = TP

TP+FN . Further, FDR is defined as the number of unrelated
variables selected (i. e. false positives) divided by the total number of selected
variables, such that FDR = FP

TP+FP .

For quantifying the estimation bias, Bias(β̂) = β̂− β, for the non-zero covariates,
the mean squared error (MSE) over all simulation iterations is used. The MSE
for the non-zero covariates is defined as

MSEnz(β̂) =
1
d ∑

p,q:βp,q ̸=0
(β̂p,q − βp,q)

2,

where d denotes the number of non-zero covariates with βp,q ̸= 0 of the true
model. The mean bias and mean MSE averaged over the non-zero predictors
over all simulation runs along with Monte Carlo standard errors (MCSE) are
calculated as depicted in Subsection 2.4 according to Morris et al. (2019).

The number of simulation runs is based on the TPR as one of the primary
performance measures of interest. Thus, nsim = 225 simulation repetitions are
needed per scenario to achieve a TPR ≥ 0.9 and MCSE(TPR) ≤ 0.02, resulting
in nsim = 0.9·0.1

0.022 = 225.

3.4.2 Simulation results

This subsection summarizes the main simulation findings. Tuning parameter
selection by minimal GCV for FSGLmstate is illustrated in Figure 3.3. Boxplots
depict mean GCV across tuning parameter pairs (α, γ) for a grid of penalty
parameter λ ∈ {0.01, . . . , 500} over all nsim = 225 simulated data sets. For LAS-
SOmstate corresponding to the tuning parameter pair (α, γ) = (1, 1), the most
frequent lowest GCV is obtained for the optimal tuning parameter λ̂opt,L = 8.6
with mean GCV(λ̂opt,L) · 1000 = 0.52597 over all simulations. For FSGLmstate,
the tuning parameter combination (α, γ) = (1, 0.25) yields the most frequent
lowest GCV for λ̂opt,FSGL = 38.1 with mean GCV(λ̂opt,FSGL) · 1000 = 0.52663
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over all simulated data sets with the corresponding penalty parameter combi-
nation. The regularization performance of the FSGLmstate algorithm in com-
parison to unpenalized and lasso penalized multi-state Cox-type estimation is
depicted in Figure 3.4. For the simulation setting with N = 1000 observations
and PQ = 16 regression parameters, unpenalized Cox-type estimation serves
as a gold standard. The boxplots illustrate the estimated regression coefficients
of the binary covariates based on λ̂opt,L and λ̂opt,FSGL. Whereas LASSOmstate
identifies the non-zero effects of β1,1 = 1.5, β1,3 = β1,7 = 1.2 and β1,4 = −0.8,
the negative effect of β1,8 = −0.8 for the late transition 8 from CR2 to death in
CR2 is set to zero on average. FSGLmstate recognizes the similarity structure of
the covariate effect pairs β1,3 = β1,7 = 1.2 as well as β1,4 = β1,8 = −0.8 while
setting all other true negative covariate effects to zero. The unpenalized Cox-
type estimation based on ADMM optimization identifies all non-zero effects,
but inherently does not perform regularization, which results in larger variances
for all true negative coefficients. Figures 3.5 and 3.6 depict variable selection
results in terms of TPR and FDR for LASSOmstate and FSGLmstate. Whereas
FSGLmstate more often detects all non-zero regression effects, LASSOmstate’s
estimated TPR varies between 0.8 and 1.0. With regard to FDR, FSGLmstate has
an estimated median FDR of 0.29 and LASSOmstate of 0.38. Figures 3.7 and 3.8
illustrate the mean bias and MSE of estimating the non-zero covariate effects
along with MCSE. As expected, unpenalized Cox-type estimation exhibits small-
est mean bias and MSE of estimating the non-zero covariates in the simulation
setting with N = 1000 observations. Notably, FSGLmstate provides smaller
mean MSEs than LASSOmstate.
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Fig. 3.3: Tuning parameter selection results for FSGLmstate: Mean generalized cross-validation (GCV) statistics
across all pre-selected combinations of penalty parameters (α, γ) over all simulation runs. The pair
(α, γ) = (1, 1) corresponds to the global lasso penalty.
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transitions and two binary covariates. X1.3 and X1.7 as well as X1.4 and X1.8 refer to transitions with
true equal effects of covariate X1. Covariate X2 has no true effect on any transition. Dots depict estimated
covariate effects based on λ̂opt,L and λ̂opt,FSGL of each simulated data set. True underlying covariate effects
βtrue are denoted as crosses (×).
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Fig. 3.5: Variable selection results in terms of true positive rates (TPR) for LAS-
SOmstate and FSGLmstate. Dots illustrate TPR of each simulated data
set.
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Fig. 3.6: Variable selection results in terms of false discovery rates (FDR) for
LASSOmstate and FSGLmstate. Dots illustrate FDR of each simulated
data set.
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Fig. 3.7: Mean bias of estimating the non-zero covariate effects along with 95%
Monte Carlo confidence intervals (MC-CI). Dots illustrate mean bias of a
single simulated data set.
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Fig. 3.8: Mean squared error (MSE) of estimating the non-zero covariate effects
along with 95% Monte Carlo confidence intervals (MC-CI). Dots illustrate
mean MSE of a single simulated data set.
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3.5 Application to leukemia data

This section provides a real data application to leukemia patients. An overview
of the medical background of AML and a comprehensive description of the
clinical trial data are provided in Section 2.5.

AMLSG 09-09 trial

The potential of FSGL penalized multi-state models is further investigated in an
illustrative application to AML data. The AMLSG 09-09 study is a randomized
phase III trial conducted between 2010 and 2017 at 56 study hospitals in Germany
and Austria. The clinical trial evaluated intensive chemotherapy with or without
gemtuzumab ozogamicin (GO) in patients with NPM1-mutated AML. Final
analysis results for the single and composite endpoints EFS, OS, CR rates and
CIR with long-term follow-up are published in Döhner et al. (2023). Further
details on the clinical trial data are given in Subsection 2.5.2. Gene mutation
data are available for N = 568 study patients.

The motivating 9-state model for AML along with event counts based on the 09-
09 trial data is illustrated in Figure 3.9. Late transitions 7 and 8 are rather rarely
observed with few events (E7 = 31, E8 = 25). Derived from this multi-state
model, Figure 3.10 depicts the stacked transition probabilities to all states from
randomization. The probability of being in an intermediate state can fluctuate
over time, either increasing or decreasing, while the absorbing state probabilities
can only increase over time. Further, Figure 3.11 illustrates the separate state
probabilities since randomization derived from the 9-state model.
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Fig. 3.9: Event counts of the multi-state model for acute myeloid leukemia (AML)
with nine states and eight transitions based on the AMLSG 09-09 trial
data.
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For the 9-state model, covariate effects are investigated of P = 24 gene mu-
tations with a prevalence of >3% along with Pc = 4 established clinical pre-
dictors, comprising treatment (GO vs. standard), age (years), sex (male vs.
female) and log10-transformed white blood cell count (109 cells/l). Considering
these P = 28 covariates and Q = 8 transitions, it is necessary to incorporate
(P + Pc) · Q = 28 · 8 = 224 regression parameters. The clinical predictors
should persist unpenalized, thus the FSGL penalty is applied to the remain-
ing 192 mutation parameters. Similarity is assumed for transitions 3 and 7,
i. e. from CR1 to first relapse and CR2 to second relapse, as well as transitions
4 and 8, i. e. from CR1 to death in CR1 and CR2 to death in CR2, resulting in
s = 2 pairs of similar transitions. With respect to a-priori expert knowledge on
similarity and grouping structures in AML mutations, tuning parameter com-
binations are investigated for α ∈ {0.5, 0.75, 1} with more weight on the global
lasso and γ ∈ {0, 0.25, 0.5} putting more weight to the fusion penalty. Among
all pre-defined pairs (α, γ), the optimal combination of penalty parameters
(α̂opt,FSGL, γ̂opt,FSGL) = (0.75, 0.5) and λ̂opt,FSGL = 20 is then selected by minimal
GCV over the grid λ ∈ {0.01, . . . , 500}. Figures 3.12 and 3.13 depict all estimated
regression coefficients of clinical and mutation variables by FSGLmstate, sep-
arately for each transition. In consistence with final analysis results for CIR
published in Döhner et al. (2023), treatment has a negative regression effect on
transition 3, i. e. from CR1 to first relapse, suggesting an anti-leukemic efficacy
of intensive chemotherapy including GO (β̂treatment.3 = −0.34). With respect to
molecular biomarkers, mutations of the DNA methylation gene DNMT3AR882

are selected for transition 3 from CR1 to first relapse, as well as for transition
7 from CR2 to second relapse. This result aligns with accompanying gene mu-
tation analyses of Cocciardi et al. (2025), where DNMT3AR882 mutations were
associated with an increased CIR.
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Fig. 3.12: Estimated regression effects of clinical and mutation variables by FS-
GLmstate, separately for transitions 1, 3, 5 and 7 derived from the
9-state model for acute myeloid leukemia (AML) based on the AMLSG
09-09 trial data.
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Fig. 3.13: Estimated regression effects of clinical and mutation variables by FS-
GLmstate, separately for transitions 2, 4, 6 and 8 derived from the
9-state model for acute myeloid leukemia (AML) based on the AMLSG
09-09 trial data.
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4 Discussion

“Statistical learning should not be

viewed as a series of black boxes.”

James et al. (2013)

This chapter discusses the results of this thesis. Section 4.1 outlines the contribu-
tions of the present work to the research field and critically reviews its findings.
Section 4.2 depicts possible limitations of the work and provides an outlook
on directions for further research. Section 4.3 summarizes the contributions
with a conclusion. Parts of this chapter have already been published. Relevant
paragraphs of Sections 4.1 and 4.2 are taken verbatim from Miah et al. (2024).

4.1 Research contributions

Prediction models in medical research often rely on composite endpoints like
progression- or event-free survival. However, these time-to-first-event endpoints
fail to consider key aspects of an individual’s disease progression and treatment
trajectory. Multi-state models offer a natural framework for analyzing event
histories by distinguishing between different risks and evaluating the impact
of prognostic factors and treatments over time. Nevertheless, effective variable
selection strategies tailored to multi-state models are needed to improve the
accuracy of capturing disease pathways and underlying etiologies. Therefore,
the main objective of this thesis was to develop a data-driven model selection
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strategy for event history analysis in high-dimensional settings using advanced
regularization techniques.

In the pursuit of an effective variable selection procedure for multi-state models,
the following research questions have been addressed in this thesis:

• What are effective model selection strategies for complex multi-state
models based on high-dimensional data?

Standard methods in biostatistics for model or variable selection com-
prise regularization in the fitting process in order to avoid the inclusion of
covariates with non-relevant effects. The main goal is to reduce model com-
plexity by adding a-priori information to likelihood-based inference. Most
interestingly, Sennhenn-Reulen and Kneib (2016) developed a data-driven
regularization method for sparse multi-state modeling by incorporating
cross-transition effects. The so-called structured fusion lasso penalization
regularizes the L1-norm of the regression coefficients as well as pairwise
differences of effects between distinct transitions. While some interesting
approaches for multi-state model selection have been proposed, none of
these take into account detailed a-priori knowledge on the model structure
in terms of similar transitions or particular transitions of interest. Since
such information is often available in practice, incorporating it into the
model selection process can lead to models that are more accurate and
better aligned with the underlying real-world processes.

Following up on the scoping literature review on articles published before
April 2022 and reported in Subsection 3.1, Salerno and Li (2023) provided
a recent review on methods in model selection for survival outcomes with
high-dimensional predictors. However, all reviewed methods focus on
single time-to-event endpoints. The authors’ extension in terms of a deep
learning approach is limited to competing risks settings and the illness-
death model. Consequently, up to date and to the best of my knowledge,
no further ready-to-apply methods for model selection in more complex
multi-state models have been developed.
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• How can a-priori knowledge about multi-state model structures be effi-
ciently integrated into the model-building process?

Integrating a-priori knowledge on the model structure can further enhance
interpretability and accuracy. This may demand upfront effort from the
researcher, requiring careful consideration of which a-priori information to
incorporate and the best approach for doing so. However, this additional
work is beneficial if the goal is to gain scientific insight into the underlying
process from which predictions are derived. Such further a-priori knowl-
edge can be efficiently integrated in extended regularization techniques.
In the context of the AML disease pathway, clinical experts would expect
similar effects of molecular biomarkers for similar transitions within the
disease trajectory. Moreover, biomarker effects may be relevant only for
specific transitions, such as those associated with disease progression, but
not for early treatment-related deaths. Thus, incorporating a-priori knowl-
edge on similarity and grouping structures of transitions is essential for
sparse model building.

• How can the fusion penalty tailored to multi-state models by Sennhenn-
Reulen and Kneib (2016) be adapted to better leverage a-priori informa-
tion?

The structured fusion lasso penalization proposed by Sennhenn-Reulen
and Kneib (2016) regularizes absolute differences of covariate effects of
suitable transitions. However, the choice of such suitable transitions is not
further investigated. In order to incorporate further a-priori knowledge
on the model structure, the fused sparse-group lasso (FSGL) penalty, intro-
duced by Zhou et al. (2012) and adapted by Beer et al. (2019), is proposed
to the multi-state setting in this thesis. FSGL penalization has never been
investigated in the framework of multi-state models. The combined pe-
nalization approach tackles sparse model building while incorporating
detailed a-priori information about the covariate and transition structure
into a prediction model. The following assumptions are considered: First,
most biomarkers might have no effect on any disease transitions, and if they

91



4 Discussion

have an effect on one transition, they might have an effect on many. Second,
parameter values of similar transitions might be of a similar direction and
magnitude. Third, biomarker effects might only be relevant for specific
transitions. Thus, the parameter space dimensionality should be decreased
by setting non-relevant biomarker effects to zero (i. e. sparsity), identifying
similar biomarker effects across distinct transitions (i. e. similarity) and
detecting only relevant biomarker effects for specific transitions of interest
(i. e. transition-wise grouping). Hence, prior information of spatial and
group structure can be incorporated into the model-building process.

Beyond, ADMM optimization provides a practical framework to facilitate
the fitting process in penalized Cox-type regression due to the decompos-
ability of the objective function into the likelihood and penalty function.
The algorithm yields moderate accuracy and simplifies numerical optimiza-
tion which is particularly challenging when allowing for fusion penaliza-
tion across groups. Further, the ADMM algorithm can handle large-scale
problems due to its decomposability and exhibits moderate convergence
properties. However, since the β-update is not a closed-form solution
as in linear regression, the algorithm incorporates a second optimization
procedure for Cox estimation within its iterations.

• Can the new method simplify multi-state models by incorporating struc-
tural constraints, such as shared biomarker effects and transition-wise
grouping?

In this work, the variable selection procedure based on FSGL penalized
multi-state models (FSGLmstate) was investigated in a proof-of-concept
simulation study. As a phase II simulation study according to the phases
of methodological research in biostatistics defined in Heinze et al. (2023), it
offered empirical evidence to demonstrate validity in finite samples across
a limited range of scenarios. In contrast to unpenalized and global lasso
penalized estimation, FSGLmstate identified similarity and grouping struc-
tures depending on the choices of the corresponding tuning parameters
in a moderately complex setting. Thus, the selected multi-state model
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was much simplified by incorporating only relevant biomarker effects for
specific transitions of interest as well as cross-transition effects.

• How does the proposed method compare to global lasso penalization in
terms of variable selection and regularization performance?

In the setting of the empirical simulation study, FSGLmstate recognized the
similarity structure in terms of equal covariate effects. Further, FSGLmstate
more often detected all non-zero regression effects compared to LASSOm-
state. With regard to FDR, FSGLmstate had a lower estimated median
FDR than LASSOmstate. In terms of mean bias and MSE of estimating the
non-zero covariate effects along with MCSE, results were comparable for
FSGLmstate and LASSOmstate. Notably, FSGLmstate provided smaller
mean MSEs than LASSOmstate.

• Is the new method robust and applicable to real-world scenarios with
limited sample sizes, as in clinical trials?

The real-world data application on the AMLSG 09-09 phase III clinical trial
demonstrated the effectiveness of an FSGL penalized multi-state model
in reducing model complexity while integrating clinical and molecular
data for a moderate sample size comprising N = 568 patients. While an
unpenalized 9-state model, including all established clinical predictors and
high-dimensional mutation data, severely suffered from overfitting due
to low numbers of events per variable, the FSGLmstate approach enabled
fitting a penalized 9-state model that integrated clinical predictors with
gene mutations, significantly reducing bias of the regression estimates.

• Can the proposed method enhance prognosis for individual patients?

In terms of prognosis in the era of precision medicine, the real-world
application to the AMLSG 09-09 trial data revealed further insights into
the molecular landscape particularly relevant for specific transitions of the
AML disease pathway. With respect to molecular biomarkers, mutations
of the DNA methylation gene DNMT3AR882 were selected for transition 3
from CR1 to first relapse, as well as for transition 7 from CR2 to second

93



4 Discussion

relapse. This result aligns with accompanying gene mutation analyses
published in Cocciardi et al. (2025), where DNMT3AR882 mutations were
associated with an increased CIR.

As a major contribution, this thesis proposed FSGL penalized multi-state models
for data-driven variable selection and model reduction. The ADMM algorithm
was adapted to FSGL penalized multi-state models combining the penalization
concepts of general sparsity, pairwise differences of covariate effects along with
transition-wise grouping. The novel contribution of this dissertation includes
an algorithm and flexible R functions to fit FSGL penalized multi-state models
(FSGLmstate), along with a proof-of-concept simulation study and illustrative
data application to leukemia patients.

4.2 Limitations and outlook

The main drawback of the current FSGLmstate implementation is its slow com-
putational performance. Execution of generalized cross-validation for tuning
parameter selection can take several hours, depending on the dimension of the
dataset as well as the model complexity. In order to keep computational time
within a reasonable range for the current FSGLmstate software, feature screening
may be necessary, and leveraging high-performance cloud computing resources
to parallelize model validation steps is essential.

Several improvements and extensions of the proposed FSGL penalty to multi-
state models offer further research directions. One limitation of the current work
is that time-dependent covariates, e. g. allogeneic stem cell transplantation, and
time-dependent effects are not yet incorporated. Further, post-selection inference
requires to be investigated. Besides, the algorithm may profit from further
adaptations to enhance computational speed and efficiently handle performance
in very high dimensions with P ≫ N. Additionally, different tuning parameter
selection criteria should be investigated and extensive simulation studies for
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empirical method comparisons are required to evaluate the performance of the
variable selection method across a wide range of settings.

4.3 Conclusion

To conclude, this thesis presents a comprehensive investigation of model se-
lection procedures for complex multi-state models and proposes an extended
penalization method as key data-driven variable selection strategy. The FSGL-
mstate algorithm integrates the principles of overall sparsity, effect similarity,
and transition grouping, accompanied by a ready-to-apply software implemen-
tation.

No published package on the Comprehensive R Archive Network (CRAN)
of the statistical software R (R Core Team, 2025) can handle model selection
for more complex multi-state models along with a moderate number of tran-
sitions and covariates. In the R package penMSM (Reulen, 2015) correspond-
ing to fusion penalized multi-state models proposed by Sennhenn-Reulen and
Kneib (2016), penalization can be performed for a chosen combination of tun-
ing parameters of a moderately complex multi-state model with a moderate
number of covariates. However, selection of optimal tuning parameters with
any model selection criterion is not implemented. The flexible R functions
of FSGLmstate in Appendix Section A.1 and publicly available on GitHub
(https://github.com/k-miah/FSGLmstate) provide a ready-to-use toolkit for
performing data-driven variable selection via FSGL penalized multi-state mod-
els incorporating a-priori information along with GCV as model selection crite-
rion.
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5 Summary

“All models are wrong, but some are

useful.”

Box and Draper (1987)

In medical research, prediction models predominantly make use of composite
endpoints such as progression- or event-free survival. However, these time-to-
first-event endpoints do not take into account important aspects of the individual
disease pathway and therapy course. Multi-state models are a natural framework
to assess the effect of prognostic factors and treatment on the event history of a
patient and to separate risks for the occurrence of distinct events. These extend
competing risks analyses of event time endpoints such as time to progression,
relapse, remission or death, by modeling the sequence of competing consecutive
events on a macro level.

This thesis was motivated by an application to the acute myeloid leukemia
(AML) disease pathway. To assess how intensities of going from state to state
depend on covariates, multi-state proportional hazards regression models can
be used. In the era of precision medicine with increasingly high-dimensional
information on molecular biomarkers, such a holistic analysis of a multi-state
model is of essential interest. For the motivating AML application, the effect of
biomarkers in terms of gene mutations was investigated along with established
clinical covariates on the transitions of a 9-state model. Thus, effective variable
selection strategies for multi-state models incorporating high-dimensional data
are required to obtain a sparse model and mitigate overfitting. Such data-driven
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model building strategies will contribute to a deeper understanding of the
individual disease progression and its therapeutic concepts as well as improved
prognoses.

In this thesis, fused sparse-group lasso (FSGL) penalized multi-state models are
proposed for data-driven variable selection and dimension reduction in order
to capture pathogenic disease processes more accurately while incorporating
clinical and molecular data. The objective was to select a sparse model based
on high-dimensional molecular data by extended regularization methods. The
alternating direction method of multipliers (ADMM) algorithm was adapted
to FSGL penalized multi-state models. This FSGLmstate algorithm combines
the penalization concepts of general sparsity, pairwise differences of covariate
effects along with transition-wise grouping. Thus, FSGL penalized multi-state
models tackle sparse model building while incorporating a-priori information
about the covariate and transition structure into a prediction model. Further, the
ADMM algorithm can handle large-scale problems due to the decomposability
of the optimization problem. The proof-of-concept simulation study evaluated
the FSGLmstate algorithm’s regularization performance to select a sparse model
incorporating only relevant transition-specific effects and similar cross-transition
effects. In contrast to unpenalized and global lasso penalized estimation, FS-
GLmstate identifies similarity and grouping structures depending on the choices
of the tuning parameters. The real-world data application on a phase III AML
trial illustrated the utility of an FSGL penalized multi-state model to reduce
model complexity while combining clinical and molecular data. By using the FS-
GLmstate approach, overfitting is avoided in contrast to an unpenalized 9-state
model.
One limitation of the current work is that time-dependent covariates, e. g. allo-
geneic stem cell transplantation, and time-dependent effects are not yet incorpo-
rated. Further, post-selection inference requires to be investigated. Besides, the
algorithm may profit from further adaptations to enhance computational speed
and efficiently handle very high dimensions. Additionally, extensive phase
III simulations for empirical method comparisons are required to evaluate the
performance of the variable selection method across a wide range of settings.
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To conclude, this thesis provides a thorough investigation of model selection
for more complex multi-state models and suggests an extended penalization
approach as key data-driven variable selection strategy combining the concepts
of overall sparsity, effect similarity and transition grouping, along with a corre-
sponding software implementation.
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6 Zusammenfassung
In der medizinischen Forschung werden in Prognosemodellen überwiegend
zusammengesetzte Endpunkte wie das progressions- oder ereignisfreie Über-
leben verwendet. Diese Überlebenszeitendpunkte für die Zeit bis zum Auftreten
des ersten Ereignisses lassen jedoch wichtige Aspekte des individuellen Krank-
heitsverlaufs und der Therapie unberücksichtigt. Mehrstadienmodelle sind
ein nützliches methodisches Konzept, um Effekte von prognostischen Faktoren
und Behandlungen auf den Ereignisverlauf eines Patienten zu schätzen und
die Risiken für das Auftreten verschiedener Ereignisse zu separieren. Sie er-
weitern die Analyse konkurrierender Risiken für Endpunkte wie die Zeit bis
zum Fortschreiten der Erkrankung, Rezidiv, Remission oder Tod, indem sie die
Abfolge konsekutiver Zustände modellieren.

Diese Arbeit wurde durch eine Anwendung auf den Krankheitsverlauf der
akuten myeloischen Leukämie (AML) motiviert. Um zu beurteilen, wie die
Wahrscheinlichkeit, von einem Zustand in einen anderen zu wechseln, von
Kovariablen abhängt, können proportionale Hazard-Regressionsmodelle im
Mehrstadienkontext verwendet werden. Im Rahmen der Präzisionsmedizin
mit hochdimensionaler Information in Form von molekularen Biomarkern ist
eine solche holistische Analyse eines Mehrstadienmodells von wesentlichem
Interesse. Für die motivierende AML Anwendung wurde der Einfluss von
Biomarkern in Form von Genmutationen zusammen mit etablierten klinischen
Prädiktoren auf die Übergänge eines 9-Stadienmodells untersucht. Dabei sind
wirksame Strategien zur Variablenselektion für Mehrstadienmodelle basierend
auf hochdimensionalen Daten erforderlich, um ein schwach besetztes Modell
zu erhalten und eine Überanpassung zu vermeiden. Solche datengetriebenen
Modellbildungsstrategien tragen zu einem tieferen Verständnis des individu-
ellen Krankheitsverlaufs und seiner Therapiekonzepte sowie zu verbesserten
Prognosen bei.

In dieser Arbeit wurden Fused Sparse-Group Lasso (FSGL) penalisierte Mehr-
stadienmodelle für die datengetriebene Variablenselektion vorgeschlagen, um
pathogene Krankheitsprozesse unter Einbeziehung klinischer und molekularer
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Daten genauer zu erfassen. Ziel war es, ein schwach besetztes Modell auf Grund-
lage hochdimensionaler Daten mittels erweiterter Regularisierungsverfahren
zu selektieren. Der Alternating Direction Method of Multipliers (ADMM) Algo-
rithmus wurde für FSGL penalisierte Mehrstadienmodelle adaptiert. Dieser FS-
GLmstate-Algorithmus kombiniert die Penalisierungskonzepte der allgemeinen
Variablenselektion, paarweisen Differenzen von Kovariableneffekten sowie
der Gruppierung von Übergängen. Auf diese Weise erreichen FSGL penal-
isierte Mehrstadienmodelle eine dimensionsreduzierte Modellbildung unter
Einbeziehung von a-priori Informationen über die Kovariablen- und Über-
gangsstruktur. Des Weiteren kann der ADMM-Algorithmus aufgrund der Zer-
legbarkeit des Optimierungsproblems hochdimensionale Problemstellungen
bewältigen. Mittels einer Proof-of-Concept-Simulationsstudie wurde die Regu-
larisierungsleistung des FSGLmstate-Algorithmus evaluiert, um ein Modell zu
selektieren, welches nur relevante übergangsspezifische Effekte sowie ähnliche
übergangsübergreifende Effekte enthält. Im Gegensatz zu nicht-penalisierten
und globalen Lasso-penalisierten Schätzungen identifiziert FSGLmstate Ähn-
lich keits- und Gruppierungsstrukturen in Abhängigkeit von der Wahl der Penal-
isierungsparameter. Die Anwendung auf eine klinische Phase III Studie für die
AML veranschaulicht den Nutzen eines FSGL penalisierten Mehrstadienmodells
zur Reduzierung der Modellkomplexität bei gleichzeitiger Berücksichtigung
von klinischen und molekularen Daten. Durch die Anwendung des FSGLmstate-
Ansatzes wird im Gegensatz zu unpenalisierten Mehrstadienmodellen eine
Überanpassung vermieden.
Eine Limitation der aktuellen Arbeit besteht darin, dass zeitabhängige Kovari-
ablen, wie beispielsweise die allogene Stammzelltransplantation, sowie zeitab-
hängige Effekte noch nicht berücksichtigt werden. Zudem muss die Inferenz
nach Modellselektion mittels Penalisierung weiter untersucht werden. Auf-
grund der Rechenintensität würde der Algorithmus von einer Erhöhung der
Recheneffizienz profitieren, um die Leistungsfähigkeit in sehr hohen Dimensio-
nen effizient zu verbessern. Weiterhin sind umfangreiche Simulationsstudien
für empirische Methodenvergleiche erforderlich, um die Leistungsfähigkeit
des entwickelten Variablenselektionsverfahrens in einem breiten Spektrum von
Szenarien zu evaluieren.

Zusammenfassend ist festzuhalten, dass die vorliegende Dissertation eine um-
fassende Untersuchung von Modellselektionsverfahren für komplexe Mehrsta-
dienmodelle darlegt. Die Arbeit schlägt einen erweiterten Penalisierungsansatz
als datengetriebene Variablenselektionsstrategie vor, welche die Konzepte von
allgemeiner Sparsamkeit, Ähnlichkeit von Regressionseffekten und übergangs-
weiser Gruppierung kombiniert, einhergehend mit einem flexiblen Algorithmus
(FSGLmstate) sowie zugehöriger Softwareimplementierung.

102



References

Akaike, H. (1973). Information theory as an extension of the maximum likelihood
principle. In Second International Symposium on Information Theory, Akademiai
Kiado, Budapest, 276–281.

Andersen, P. K., Borgan, O., Gill, R. D., and Keiding, N. (1993). Statistical models
based on counting processes. Springer, New York.

Andersen, P. K. and Keiding, N. (2002). Multi-state models for event history
analysis. Statistical Methods in Medical Research, 11(2):91–115.

Andersen, P. K., Klein, J. P., and Rosthoj, S. (2003). Generalised linear models
for correlated pseudo-observations, with applications to multi-state models.
Biometrika, 90(1):15–27.

Andersen, P. K. and Ravn, H. (2023). Models for multi-state survival data: Rates,
risks, and pseudo-values. CRC Press, Boca Raton.

Andrade, D., Fukumizu, K., and Okajima, Y. (2021). Convex covariate clustering
for classification. Pattern Recognition Letters, 151:193–199.

Arber, D. A., Orazi, A., Hasserjian, R. P., Borowitz, M. J., Calvo, K. R., Kvasnicka,
H.-M., Wang, S. A., Bagg, A., Barbui, T., Branford, S., Bueso-Ramos, C. E.,
Cortes, J. E., Dal Cin, P., DiNardo, C. D., Dombret, H., Duncavage, E. J., Ebert,
B. L., Estey, E. H., Facchetti, F., Foucar, K., Gangat, N., Gianelli, U., Godley,
L. A., Gökbuget, N., Gotlib, J., Hellström-Lindberg, E., Hobbs, G. S., Hoffman,
R., Jabbour, E. J., Kiladjian, J.-J., Larson, R. A., Le Beau, M. M., Loh, M. L.-C.,
Löwenberg, B., Macintyre, E., Malcovati, L., Mullighan, C. G., Niemeyer, C.,
Odenike, O. M., Ogawa, S., Orfao, A., Papaemmanuil, E., Passamonti, F.,

103



References

Porkka, K., Pui, C.-H., Radich, J. P., Reiter, A., Rozman, M., Rudelius, M.,
Savona, M. R., Schiffer, C. A., Schmitt-Graeff, A., Shimamura, A., Sierra, J.,
Stock, W. A., Stone, R. M., Tallman, M. S., Thiele, J., Tien, H.-F., Tzankov, A.,
Vannucchi, A. M., Vyas, P., Wei, A. H., Weinberg, O. K., Wierzbowska, A.,
Cazzola, M., Döhner, H., and Tefferi, A. (2022). International Consensus Classi-
fication of myeloid neoplasms and acute leukemias: Integrating morphologic,
clinical, and genomic data. Blood, 140(11):1200–1228.

Beer, J. C., Aizenstein, H. J., Anderson, S. J., and Krafty, R. T. (2019). Incorporating
prior information with fused sparse group lasso: Application to prediction of
clinical measures from neuroimages. Biometrics, 75(4):1299–1309.

Beesley, L. J. and Taylor, J. M. (2021). Bayesian variable selection and shrinkage
strategies in a complicated modelling setting with missing data: A case study
using multistate models. Statistical Modelling, 21(1-2):11–29.

Bender, A., Rügamer, D., Scheipl, F., and Bischl, B. (2021). A general machine
learning framework for survival analysis. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases. Springer.

Benner, A., Zucknick, M., Hielscher, T., Ittrich, C., and Mansmann, U. (2010).
High-dimensional Cox models: The choice of penalty as part of the model
building process. Biometrical Journal, 52(1):50–69.

Beyersmann, J., Allignol, A., and Schumacher, M. (2012). Competing risks and
multistate models with R. Springer, New York.

Beyersmann, J., Latouche, A., Buchholz, A., and Schumacher, M. (2009). Simulat-
ing competing risks data in survival analysis. Statistics in Medicine, 28(6):956–
971.

Binder, H., Allignol, A., Schumacher, M., and Beyersmann, J. (2009). Boosting
for high-dimensional time-to-event data with competing risks. Bioinformatics,
25(7):890–896.

104



References

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2010). Distributed
Optimization and Statistical Learning via the Alternating Direction Method of
Multipliers. Foundations and Trends in Machine Learning, 3(1):1–122.

Brent, R. P. (1973). Algorithms for minimization without derivatives. Prentice-Hall,
Englewood-Cliffs, New Jersey.

Bühlmann, P. and Hothorn, T. (2007). Boosting algorithms: Regularization,
prediction and model fitting. Statistical Science, 22(4):477–505.

Bullinger, L., Döhner, K., and Döhner, H. (2017). Genomics of acute myeloid
leukemia diagnosis and pathways. Journal of Clinical Oncology, 35(9):934–946.

Chaturvedi, N., de Menezes, R. X., and Goeman, J. J. (2014). Fused lasso algo-
rithm for Cox proportional hazards and binomial logit models with application
to copy number profiles. Biometrical Journal, 56(3):477–492.

Cocciardi, S., Saadati, M., Weiß, N., Späth, D., Kapp-Schwoerer, S., Schneider, I.,
Meid, A., Gaidzik, V. I., Skambraks, S., Fiedler, W., Kühn, M. W. M., Germing,
U., Mayer, K. T., Lübbert, M., Papaemmanuil, E., Thol, F., Heuser, M., Ganser,
A., Bullinger, L., Benner, A., Döhner, H., and Döhner, K. (2025). Impact of
myelodysplasia-related and additional gene mutations in intensively treated
patients with NPM1-mutated AML. HemaSphere, 9(1):e70060.

Collett, D. (2023). Modelling survival data in medical research, volume 4. Chapman
and Hall/CRC, Boca Raton.

Craven, P. and Wahba, G. (1978). Smoothing noisy data with spline functions:
estimating the correct degree of smoothing by the method of generalized
cross-validation. Numerische Mathematik, 31(4):377–403.

Dang, X., Huang, S., and Qian, X. (2021). Risk factor identification in heteroge-
neous disease progression with L1-regularized multi-state models. Journal of
Healthcare Informatics Research, 5(1):20–53.

De Bin, R., Janitza, S., Sauerbrei, W., and Boulesteix, A.-L. (2016). Subsampling
versus bootstrapping in resampling-based model selection for multivariable
regression. Biometrics, 72(1):272–280.

105



References

de Wreede, L. C., Fiocco, M., and Putter, H. (2010). The mstate package for esti-
mation and prediction in non-and semi-parametric multi-state and competing
risks models. Computer Methods and Programs in Biomedicine, 99(3):261–274.

Döhner, H., Weisdorf, D. J., and Bloomfield, C. D. (2015). Acute myeloid
leukemia. New England Journal of Medicine, 373(12):1136–1152.

Döhner, H., Estey, E., Grimwade, D., Amadori, S., Appelbaum, F. R., Büchner, T.,
Dombret, H., Ebert, B. L., Fenaux, P., Larson, R. A., Levine, R. L., Lo-Coco, F.,
Naoe, T., Niederwieser, D., Ossenkoppele, G. J., Sanz, M., Sierra, J., Tallman,
M. S., Tien, H.-F., Wei, A. H., Löwenberg, B., and Bloomfield, C. D. (2017).
Diagnosis and management of AML in adults: 2017 ELN recommendations
from an international expert panel. Blood, 129(4):424–447.

Döhner, H., Estey, E. H., Amadori, S., Appelbaum, F. R., Büchner, T., Burnett,
A. K., Dombret, H., Fenaux, P., Grimwade, D., Larson, R. A., Lo-Coco, F., Naoe,
T., Niederwieser, D., Ossenkoppele, G. J., Sanz, M. A., Sierra, J., Tallman, M. S.,
Löwenberg, B., and Bloomfield, C. D. (2010). Diagnosis and management of
acute myeloid leukemia in adults: recommendations from an international
expert panel, on behalf of the European LeukemiaNet. Blood, 115(3):453–474.

Döhner, H., Weber, D., Krzykalla, J., Fiedler, W., Kühn, M. W. M., Schroeder,
T., Mayer, K., Lübbert, M., Wattad, M., Götze, K., Fransecky, L., Koller, E.,
Wulf, G., Schleicher, J., Ringhoffer, M., Greil, R., Hertenstein, B., Krauter, J.,
Martens, U. M., Nachbaur, D., Samra, M. A., Machherndl-Spandl, S., Basara,
N., Leis, C., Schrade, A., Kapp-Schwoerer, S., Cocciardi, S., Bullinger, L., Thol,
F., Heuser, M., Paschka, P., Gaidzik, V. I., Saadati, M., Benner, A., Schlenk, R. F.,
Döhner, K., and Ganser, A. (2023). Intensive chemotherapy with or without
gemtuzumab ozogamicin in patients with NPM1-mutated acute myeloid
leukaemia (AMLSG 09–09): a randomised, open-label, multicentre, phase 3
trial. The Lancet Haematology, 10(7):e495–e509.

Döhner, H., Wei, A. H., Appelbaum, F. R., Craddock, C., DiNardo, C. D., Dom-
bret, H., Ebert, B. L., Fenaux, P., Godley, L. A., Hasserjian, R. P., Larson, R. A.,
Levine, R. L., Miyazaki, Y., Niederwieser, D., Ossenkoppele, G., Röllig, C.,
Sierra, J., Stein, E. M., Tallman, M. S., Tien, H.-F., Wang, J., Wierzbowska, A.,

106



References

and Löwenberg, B. (2022). Diagnosis and management of AML in adults: 2022
recommendations from an international expert panel on behalf of the ELN.
Blood, 140(12):1345–1377.

Edelmann, D., Saadati, M., Putter, H., and Goeman, J. (2020). A global test
for competing risks survival analysis. Statistical Methods in Medical Research,
29(12):3666–3683.

Eulenburg, C., Mahner, S., Woelber, L., and Wegscheider, K. (2015). A systematic
model specification procedure for an illness-death model without recovery.
Plos One, 10(4):e0123489.

Fan, J. and Li, R. (2002). Variable selection for cox’s proportional hazards model
and frailty model. The Annals of Statistics, 30(1):74–99.

Fiocco, M., Putter, H., and van Houwelingen, H. C. (2008). Reduced-rank
proportional hazards regression and simulation-based prediction for multi-
state models. Statistics in Medicine, 27(21):4340–4358.

Fiocco, M., Putter, H., and van Houwelingen, J. C. (2005). Reduced rank propor-
tional hazards model for competing risks. Biostatistics, 6(3):465–478.

Friedman, J. H., Hastie, T., and Tibshirani, R. (2010). Regularization paths for
generalized linear models via coordinate descent. Journal of Statistical Software,
33:1–22.

Friedrich, S., Groll, A., Ickstadt, K., Kneib, T., Pauly, M., Rahnenführer, J., and
Friede, T. (2023). Regularization approaches in clinical biostatistics: A review
of methods and their applications. Statistical Methods in Medical Research,
32(2):425–440.

Gabay, D. and Mercier, B. (1976). A dual algorithm for the solution of non-
linear variational problems via finite element approximation. Computers &
mathematics with applications, 2(1):17–40.

Glowinski, R. and Marroco, A. (1975). Sur l’approximation, par éléments finis
d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes

107



References

de dirichlet non linéaires. Revue française d’automatique, informatique, recherche
opérationnelle. Analyse numérique, 9(R2):41–76.

Goeman, J. J. (2010). L1 penalized estimation in the cox proportional hazards
model. Biometrical Journal, 52(1):70–84.

Goeman, J. J., Meijer, R. J., and Chaturvedi, N. (2022). Penalized: L1 (lasso and
fused lasso) and L2 (ridge) penalized estimation in GLMs and in the Cox model. R
package version 0.9-52.

Goeman, J. J., Oosting, J., Cleton-Jansen, A.-M., Anninga, J. K., and
Van Houwelingen, H. C. (2005). Testing association of a pathway with survival
using gene expression data. Bioinformatics, 21(9):1950–1957.

Gray, R. J. (1992). Flexible methods for analyzing survival data using splines,
with applications to breast cancer prognosis. Journal of the American Statistical
Association, 87(420):942–951.

Hastie, T., Tibshirani, R., and Friedman, J. H. (2009). The elements of statistical
learning: Data mining, inference, and prediction, volume 2. Springer, New York.

Hastie, T., Tibshirani, R., and Wainwright, M. (2015). Statistical learning with
sparsity: The lasso and generalizations. CRC Press, Boca Raton.

He, B.-S., Yang, H., and Wang, S. (2000). Alternating direction method with self-
adaptive penalty parameters for monotone variational inequalities. Journal of
Optimization Theory and Applications, 106:337–356.

Heinze, G., Boulesteix, A.-L., Kammer, M., Morris, T. P., White, I. R., and Sim-
ulation Panel of the STRATOS Initiative (2023). Phases of methodological
research in biostatistics - Building the evidence base for new methods. Biomet-
rical Journal, 66(1):2200222.

Heinze, G., Wallisch, C., and Dunkler, D. (2018). Variable selection - A review and
recommendations for the practicing statistician. Biometrical Journal, 60(3):431–
449.

Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics, 12(1):55–67.

108



References

Huang, J., Ma, S., and Xie, H. (2006). Regularized estimation in the accelerated
failure time model with high-dimensional covariates. Biometrics, 62(3):813–820.

Huang, S., Hu, C., Bell, M. L., Billheimer, D., Guerra, S., Roe, D., Vasquez, M. M.,
and Bedrick, E. J. (2018). Regularized continuous-time Markov model via
elastic net. Biometrics, 74(3):1045–1054.

Huang, Y. (2000). Two-sample multistate accelerated sojourn times model.
Journal of the American Statistical Association, 95(450):619–627.

Jackson, C. (2016). flexsurv: A platform for parametric survival modeling in R.
Journal of Statistical Software, 70(8):1–33.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An introduction to
statistical learning. Springer, New York.

Jansen, M. (2015). Generalized cross validation in variable selection with and
without shrinkage. Journal of Statistical Planning and Inference, 159:90–104.

Ke, C., Shin, S., Lou, Y., and Ahn, M. (2024). A generalized formulation for group
selection via admm. Journal of Scientific Computing, 100(1):1–37.

Kim, J., Sohn, I., Jung, S.-H., Kim, S., and Park, C. (2012). Analysis of survival
data with group lasso. Communications in Statistics-Simulation and Computation,
41(9):1593–1605.

Koslovsky, M. D., Swartz, M. D., Chan, W., Leon-Novelo, L., Wilkinson, A. V.,
Kendzor, D. E., and Businelle, M. S. (2018). Bayesian variable selection for mul-
tistate markov models with interval-censored data in an ecological momentary
assessment study of smoking cessation. Biometrics, 74(2):636–644.

Le-Rademacher, J. G., Therneau, T. M., and Ou, F.-S. (2022). The utility of multi-
state models: a flexible framework for time-to-event data. Current Epidemiology
Reports, 9(3):183–189.

Leeb, H. and Pötscher, B. M. (2005). Model selection and inference: Facts and
fiction. Econometric Theory, 21(1):21–59.

109



References

Machado, R. J., van den Hout, A., and Marra, G. (2021). Penalised maximum
likelihood estimation in multi-state models for interval-censored data. Compu-
tational Statistics & Data Analysis, 153:107057.

Marshall, G. and Jones, R. H. (1995). Multi-state models and diabetic retinopathy.
Statistics in Medicine, 14(18):1975–1983.

Mayr, A., Hofner, B., Waldmann, E., Hepp, T., Meyer, S., and Gefeller, O. (2017).
An Update on Statistical Boosting in Biomedicine. Computational and Mathe-
matical Methods in Medicine, 2017:1–12.

Morris, T. P., White, I. R., and Crowther, M. J. (2019). Using simulation studies to
evaluate statistical methods. Statistics in Medicine, 38(11):2074–2102.

Niu, Y., Wang, X., Cao, H., and Peng, Y. (2020). Variable selection via penalized
generalized estimating equations for a marginal survival model. Statistical
Methods in Medical Research, 29(9):2493–2506.

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow,
C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville,
J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-
Wilson, E., McDonald, S., McGuinness, L. A., Stewart, L. A., Thomas, J., Tricco,
A. C., Welch, V. A., Whiting, P., and Moher, D. (2021). The PRISMA 2020
statement: an updated guideline for reporting systematic reviews. BMJ, 372.

Parka, S. and Shin, S. J. (2022). ADMM for least square problems with pairwise-
difference penalties for coefficient grouping. Communications for Statistical
Applications and Methods, 29(4):441–451.

Putter, H., Geskus, R. B., and Fiocco, M. (2007). Tutorial in biostatistics: Compet-
ing risks and multi-state models. Statistics in Medicine, 26(11):2389–2430.

Putter, H., van der Hage, J., de Bock, G. H., Elgalta, R., and van de Velde, C. J.
(2006). Estimation and prediction in a multi-state model for breast cancer.
Biometrical Journal, 48(3):366–380.

R Core Team (2025). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

110



References

Ramchandani, R., Finkelstein, D. M., and Schoenfeld, D. A. (2020). Estimation
for an accelerated failure time model with intermediate states as auxiliary
information. Lifetime Data Analysis, 26(1):1–20.

Ramdas, A. and Tibshirani, R. J. (2016). Fast and flexible ADMM algorithms for
trend filtering. Journal of Computational and Graphical Statistics, 25(3):839–858.

Reulen, H. (2015). penMSM: Estimating regularized multi-state models using L1
penalties. R package version 0.99.

Reulen, H. and Kneib, T. (2016). Boosting multi-state models. Lifetime Data
Analysis, 22(2):241–262.

Saadati, M., Beyersmann, J., Kopp-Schneider, A., and Benner, A. (2018). Pre-
diction accuracy and variable selection for penalized cause-specific hazards
models. Biometrical Journal, 60(2):288–306.

Salerno, S. and Li, Y. (2023). High-dimensional survival analysis: Methods and
applications. Annual review of statistics and its application, 10:25–49.

Sauerbrei, W. and Schumacher, M. (1992). A bootstrap resampling procedure
for model building: Application to the Cox regression model. Statistics in
Medicine, 11(16):2093–2109.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics,
6(2):461–464.

Sennhenn-Reulen, H. and Kneib, T. (2016). Structured fusion lasso penalized
multi-state models. Statistics in Medicine, 35(25):4637–4659.

Shimony, S., Stahl, M., and Stone, R. M. (2023). Acute myeloid leukemia: 2023
update on diagnosis, risk-stratification, and management. American Journal of
Hematology, 98(3):502–526.

Siepe, B. S., Bartoš, F., Morris, T. P., Boulesteix, A.-L., Heck, D. W., and Pawel, S.
(2024). Simulation studies for methodological research in psychology: A stan-
dardized template for planning, preregistration, and reporting. Psychological
Methods.

111



References

Simon, N., Friedman, J., Hastie, T., and Tibshirani, R. (2011). Regularization
paths for Cox’s proportional hazards model via coordinate descent. Journal of
Statistical Software, 39(5):1.

Simon, N., Friedman, J., Hastie, T., and Tibshirani, R. (2013). A Sparse-Group
Lasso. Journal of Computational and Graphical Statistics, 22(2):231–245.

Stone, M. (1977). An asymptotic equivalence of choice of model by cross-
validation and akaike’s criterion. Journal of the Royal Statistical Society: Series B
(Methodological), 39(1):44–47.

Su, C.-L., Chiou, S. H., Lin, F.-C., and Platt, R. W. (2022). Analysis of survival data
with cure fraction and variable selection: A pseudo-observations approach.
Statistical Methods in Medical Research, 31(11):1–17.

Thall, P. F. and Lachin, J. M. (1986). Assessment of stratum-covariate interactions
in Cox’s proportional hazards regression model. Statistics in Medicine, 5(1):73–
83.

Therneau, T. M. (2024). A package for survival analysis in R. R package version
3.5-8.

Therneau, T. M. and Grambsch, P. M. (2000). Modeling survival data: Extending
the Cox model. Statistics for Biology and Health. Springer, New York.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society: Series B (Methodological), 58(1):267–288.

Tibshirani, R. (1997). The lasso method for variable selection in the Cox model.
Statistics in Medicine, 16(4):385–395.

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., and Knight, K. (2005). Sparsity
and smoothness via the fused lasso. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 67(1):91–108.

van Houwelingen, H. C., Bruinsma, T., Hart, A. A. M., van’t Veer, L. J., and
Wessels, L. F. A. (2006). Cross-validated Cox regression on microarray gene
expression data. Statistics in Medicine, 25(18):3201–3216.

112



References

Verweij, P. J. M. and Van Houwelingen, H. C. (1993). Cross-validation in survival
analysis. Statistics in Medicine, 12(24):2305–2314.

Verweij, P. J. M. and van Houwelingen, H. C. (1994). Penalized likelihood in Cox
regression. Statistics in Medicine, 13(23-24):2427–2436.

von Neumann, J. (1950). Functional operators. The Geometry of Orthogonal Spaces.

Wang, L., Zhou, J., and Qu, A. (2012). Penalized generalized estimating equations
for high-dimensional longitudinal data analysis. Biometrics, 68(2):353–360.

Wang, S. and Liao, L. (2001). Decomposition method with a variable parameter
for a class of monotone variational inequality problems. Journal of Optimization
Theory and Applications, 109:415–429.

You, K. and Zhu, X. (2021). ADMM: Algorithms using Alternating Direction Method
of Multipliers. R package version 0.3.3.

Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with
grouped variables. Journal of the Royal Statistical Society Series B: Statistical
Methodology, 68(1):49–67.

Zhang, H. H. and Lu, W. (2007). Adaptive lasso for Cox’s proportional hazards
model. Biometrika, 94(3):691–703.

Zhou, J., Liu, J., Narayan, V. A., and Ye, J. (2012). Modeling disease progres-
sion via fused sparse group lasso. In Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 1095–1103.

Zhu, Y. (2017). An augmented ADMM algorithm with application to the gener-
alized lasso problem. Journal of Computational and Graphical Statistics, 26(1):195–
204.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the
American Statistical Association, 101(476):1418–1429.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic
net. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
67(2):301–320.

113





Author’s Publications

Related Publication

This thesis was conducted as part of the Deutsche Forschungsgemeinschaft
(DFG) project “Mehrstadienmodellierung zur Prüfung prognostischer und prädiktiver
Biomarker in der akuten myeloischen Leukämie” (grant number 514653984) and is
partly published in the following manuscript:

1. Miah, K., Goeman, J. J., Putter, H., Kopp-Schneider, A., and Benner, A.
(2024). Variable selection via fused sparse-group lasso penalized multi-
state models incorporating molecular data. arXiv preprint arXiv:2411.17394.
(Submitted to Biometrical Journal)

The author of this thesis provided the central methodological idea, implemented
the software package, simulation studies and data analyses, and wrote the first
draft of the manuscript. Fruitful discussions and revisions were conducted under
the supervision of all co-authors Axel Benner, Annette Kopp-Schneider, Jelle
J. Goeman and Hein Putter. The use of OpenStack cloud computing resources
provided by the IT Core Facility of the DKFZ was supported by Maral Saadati
and Axel Benner.

115



References

Further Publications

2. Klein, E. M., Hujic, S., Miah, K. et al. (2024). Efficacy and safety of
autologous stem cell transplantation in first-line treatment and at relapse
in elderly patients with multiple myeloma. Oncology, 1-22.

3. Salwender, H., Weinhold, N., Benner, A., Miah, K. et al. (2024). Cy-
tomegalovirus immunoglobulin serology prevalence in patients with newly
diagnosed multiple myeloma treated within the GMMG-MM5 phase III
trial. Hematology, 29(1), 2320006.

4. Mai, E. K., Goldschmidt, H., Miah, K. et al. (2024). Elotuzumab, lenalido-
mide, bortezomib, dexamethasone, and autologous haematopoietic stem-
cell transplantation for newly diagnosed multiple myeloma (GMMG-HD6):
results from a randomised, phase 3 trial. The Lancet Haematology, 11(2),
e101-e113.

5. John, L., Miah, K. et al. (2023). Impact of novel agent therapies on immune
cell subsets and infectious complications in patients with relapsed/refrac-
tory multiple myeloma. Frontiers in Oncology, 13, 1078725.

6. Mai, E. K., Huhn, S., Miah, K. et al. (2023). Implications and prognostic
impact of mass spectrometry in patients with newly-diagnosed multiple
myeloma. Blood Cancer Journal, 13(1).

7. Giesen, N., Chatterjee, M., Scheid, C., Poos, A. M., Besemer, B., Miah, K. et
al. (2023). A phase 2 clinical trial of combined BRAF/MEK inhibition for
BRAF V600E-mutated multiple myeloma. Blood, 141(14), 1685-1690.

8. Raut, J. R., Bhardwaj, M., Niedermaier, T., Miah, K. et al. (2022). As-
sessment of a serum micro-rna risk score for colorectal cancer among
participants of screening colonoscopy at various stages of colorectal car-
cinogenesis. Cells, 11(15), 2462.

9. Raut, J. R., Schöttker, B., Holleczek, B., Guo, F., Bhardwaj, M., Miah, K. et
al. (2021). A microRNA panel compared to environmental and polygenic

116



References

scores for colorectal cancer risk prediction. Nature communications, 12(1),
1-9.

10. Salwender, H., Elmaagacli, A., Merz, M., Miah, K., Benner, A. et al. (2021).
Long-term follow-up of subcutaneous versus intravenous bortezomib
during induction therapy for newly diagnosed multiple myeloma treated
within the GMMG-MM5 phase III trial. Leukemia, 35(10), 3007-3011.

11. Mai, E. K., Miah, K. et al. (2021). Bortezomib-based induction, high-dose
melphalan and lenalidomide maintenance in myeloma up to 70 years of
age. Leukemia, 35(3), 809-822.

117





Appendix

A.1 R Code: FSGLmstate

The R code of FSGLmstate is build up on the R packages penMSM (Reulen, 2015),
penalized (Goeman et al., 2022) and the GitHub R package fsgl (Beer et al.,
2019).

Listing 1: R-functions calculating the likelihood and derivatives for Cox-type
multi-state models.

1

2 # *************************************************************
3 # * Likelihood & derivatives for Cox -type multi - state models : *
4 # *************************************************************
5

6 # Negative full log - likelihood function :
7

8 ## Input : X [ matrix ]: Regression matrix of dimension n_obs x p_vars
9 ## d [data frame ]: Data set with variables Tstart , Tstop , trans

10 ## and status
11 ## beta [ vector ]: Regression parameter
12 ## Riskset [ matrix ]: Risk set matrix
13 ##
14 ## Output : loglik [ numeric ]: Negative full log - likelihood at beta
15

16 full_ll <- function (X, d, beta , Riskset ){
17

18 # Data extraction
19 status <- d$ status
20

21 # Linear predictor
22 lp <- X %*% beta
23 ws <- drop(exp(lp))
24

25 # Breslow estimate of baseline hazard : lambda _0(y_i)
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26 breslows <- drop (1 / ws %*% Riskset )
27 # Weighted sum of Breslow estimates : Lambda _0(y_i)
28 breslow <- drop( Riskset %*% breslows )
29

30 # Full log - likelihood
31 loglik <- -sum(ws * breslow ) + sum(log( breslows )) + sum(lp[ status ==1])
32

33 return ( loglik )
34 }
35

36

37 # Partial log - likelihood function :
38

39 ## Input : X [ matrix ]: Regression matrix of dimension
40 ## n_obs x p_vars
41 ## d [data frame ]: Data set with variables Tstart ,
42 ## Tstop , trans and status
43 ## beta [ vector ]: Regression parameter
44 ## risksetlist [list ]: Risk set list
45 ##
46 ## Output : logplik [ numeric ]: Partial log - likelihood at beta
47

48 partial _ll <- function (X, d, beta , risksetlist ){
49

50 X <- as. matrix (X)
51 event <- d$ status
52 n <- length ( event )
53 risk <- numeric (n)
54 f <- as. numeric (X %*% beta)
55 ef <- exp(f)
56

57 for(i in which ( event == 1)){
58 risk[i] <- sum(ef[ risksetlist [[i]]])
59 }
60 logplik <- sum( event * (f - log(risk)), na.rm = TRUE)
61 return ( logplik )
62 }
63

64

65 # Gradient of augmented Lagrangian of partial log - likelihood :
66

67 ## cox_ll_lagr_ gradient - R- function calculating the gradient of the augmented
68 ## Lagrangian form of partial log - likelihood
69 ##
70 ## Input : X [ matrix ]: Regression matrix of dimension n_obs x p_vars
71 ## d [data frame ]: Data set with variables Tstart , Tstop , trans
72 ## and status
73 ## beta [ vector ]: Regression parameter
74 ## Riskset [list ]: Risk set list
75 ## rho [ numeric ]: Augmented Lagrangian parameter (step size;
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76 ## default : 1)
77 ## theta [ numeric ]: ADMM parameter theta ( dimension M x 1)
78 ## nu [ numeric ]: ADMM parameter nu ( dimension M x 1)
79 ##
80 ## Output : scorevector [ numeric ]: Gradient at beta
81

82 cox_ll_lagr_ gradient <- function (X, d, beta , Riskset , rho = 1, theta , nu){
83

84 X <- as. matrix (X)
85 event <- d$ status
86

87 # Linear predictor
88 lp <- X %*% beta
89 ef <- exp(lp)
90

91 # Initializing risk matrix
92 n <- length ( event )
93 p <- length (beta)
94 riskmatrix <- matrix (0, nrow = n, ncol = p)
95

96 # Calculating risk matrix
97 for (i in 1:n) {
98 riskset <- Riskset [[i]]
99 ef. riskset <- ef[ riskset ]

100 currentrisk <- sum(ef. riskset )
101 X.i <- X[riskset , ] / currentrisk
102 riskmatrix [i, ] <- t(ef. riskset ) %*% X.i
103 }
104

105 # Score vector calculation
106 scorevector <- as. numeric ( event %*% (X - riskmatrix )) + rho * (- theta - nu)
107

108 return ( scorevector )
109 }
110

111

112 # Gradient of augmented Lagrangian of full/ partial log - likelihood with penalty
113 # matrix K:
114

115 ## cox_ll_lagr_ gradient _K - R- function calculating the gradient of the augmented
116 ## Lagrangian form of full/ partial log - likelihood with
117 ## penalty matrix K
118 ##
119 ## Input : X [ matrix ]: Design matrix of dimension n_long x p_vars
120 ## d [data frame ]: Data set with variables Tstart , Tstop , trans
121 ## and status
122 ## K [ matrix ]: Penalty matrix of dimension M x p (M=p+m+g)
123 ## beta [ vector ]: Regression parameter
124 ## Riskset [list ]: Risk set list
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125 ## rho [ numeric ]: Augmented Lagrangian parameter (ADMM step size;
default : 1)

126 ## theta [ numeric ]: ADMM parameter theta ( dimension M x 1)
127 ## nu [ numeric ]: ADMM parameter nu ( dimension M x 1)
128 ##
129 ## Output : scorevector [ numeric ]: Score function at beta
130

131 cox_ll_lagr_ gradient _K <- function (X, d, K, beta , Riskset , rho = 1, theta , nu){
132

133 X <- as. matrix (X)
134 event <- d$ status
135

136 # Linear predictor
137 lp <- X %*% beta
138 ef <- exp(lp)
139

140 # Initializing risk matrix
141 n <- length ( event )
142 p <- length (beta)
143 riskmatrix <- matrix (0, nrow = n, ncol = p)
144

145 # Calculating risk matrix
146 for (i in 1:n) {
147 riskset <- Riskset [[i]]
148 ef. riskset <- ef[ riskset ]
149 currentrisk <- sum(ef. riskset )
150 X.i <- X[riskset , ] / currentrisk
151 riskmatrix [i, ] <- t(ef. riskset ) %*% X.i
152 }
153

154 # Score vector calculation
155 scorevector <- t(as. numeric ( event %*% (X - riskmatrix )) + (rho * (t(beta) %*% t

(K) - t( theta )) - t(nu)) %*% K)
156

157 return ( scorevector )
158 }
159

160

161 # Fisher information matrix of partial log - likelihood :
162

163 ## Input : X [ matrix ]: Regression matrix of dimension n_obs x p_vars
164 ## d [data frame ]: Data set with variables Tstart , Tstop , trans
165 ## and status
166 ## beta [ vector ]: Regression parameter
167 ## Riskset [list ]: Risk set list
168 ##
169 ## Output : info [ numeric ]: Fisher information matrix at beta
170

171 cox_ll_ fisher <- function (X, d, beta , Riskset ){
172
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173 X <- as. matrix (X)
174 event <- d$ status
175 n <- length ( event )
176

177 P <- length (beta)
178 f <- as. numeric (X %*% beta)
179 ef <- exp(f)
180

181 info <- matrix (nrow = P, ncol = P, 0)
182 index <- which ( event == 1)
183

184 for (p in 1:P) {
185 for (q in 1:P) {
186 part1 <- part2 <- rep (0, n)
187 for (i in index ) {
188 j <- Riskset [[i]]
189 ef.j <- ef[j]
190 risk <- sum(ef.j)
191 X.j.p <- X[j, p]
192 X.j.q <- X[j, q]
193 part1 [i] <- sum(ef.j * X.j.p * X.j.q)/risk
194 part2 [i] <- sum(ef.j * X.j.p) * sum(ef.j * X.j.q)/(risk * risk)
195 }
196 info[p, q] <- sum( event * part1 ) - sum( event * part2 )
197 }
198 }
199 return (info)
200 }

Listing 2: R-functions implementing numerical algorithms for Cox estimation.
1

2 # *****************************************
3 # * Beta estimation in the Cox PH model : *
4 # *****************************************
5

6 ## cox_ fixed _ gradient _ ascent - R- function implementing fixed gradient ascent
7 ## for estimation in the Cox PH model
8 ##
9 ## Input : X [ matrix ]: Regression matrix of dimension n_obs x p_vars

10 ## d [data frame ]: Data set with variables Tstart , Tstop , trans
11 ## and status
12 ## K [ matrix ]: Penalty matrix of dimension M x p (M=p+m+g)
13

14 ## eps [ numeric ]: Step size in [0 ,1] ( default : .01)
15 ## beta.init [ vector ]: Initial value of beta ( default : 0)
16 ## Riskset [list ]: Risk set list
17 ## tolerance [ numeric ]: Tolerance for stopping criterion ( default : 1e -6)
18 ## max_iter [ numeric ]: Maximum number of iterations ( default : 1000)
19 ## rho [ numeric ]: Augmented Lagrangian parameter (step size;
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20 ## default : 1)
21 ## theta [ numeric ]: ADMM parameter theta = beta
22 ## nu [ numeric ]: ADMM parameter nu = theta - beta
23 ##
24 ## Output : res [list ]: Beta estimation for Cox model at stopping
25 ## iteration ’iter ’
26

27 cox_ fixed _ gradient _ ascent <- function (X, d, K, eps = 0.01 , beta.init = NULL ,
28 Riskset , tolerance = 1e-6, max_iter = 1000 ,
29 rho = 1, theta , nu){
30

31 # Initialize coefficient beta
32 if(is.null(beta.init)){
33 beta <- rep (0, ncol(X))
34 } else{
35 beta <- beta.init
36 }
37

38 # Iterate until convergence or maximum iterations reached
39 it <- 1
40 tol <- 1
41 ll <- 0
42

43 while (tol > tolerance && it < max_iter){
44

45 # Update coefficients : Fixed gradient ascent step
46 if(is.null(K)){
47 gradient <- cox_ll_lagr_ gradient (X, d = d, beta = beta , Riskset = Riskset ,
48 rho = rho , theta = theta , nu = nu)
49 } else{
50 gradient <- cox_ll_lagr_ gradient _K(X, d = d, K = K, beta = beta ,
51 Riskset = Riskset , rho = rho ,
52 theta = theta , nu = nu)
53 }
54 beta_new <- beta + eps * gradient
55

56 # Stopping criterion : partial log - likelihood
57 ll_old <- ll
58 ll <- partial _ll(beta = beta_new , X, d, risksetlist = Riskset )
59 tol <- abs(ll - ll_old)
60

61 # Check step size for overshooting
62 if(it > 1 & ll_old > ll){
63 # reduce step size (step - halving )
64 eps <- eps/2
65 beta_new <- beta
66 ll <- ll_old
67 }
68

69 it <- it + 1
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70 beta <- beta_new
71 }
72 # If max_iter is reached , print warning and exit loop
73 if(it == max_iter){
74 warning ( paste (" Gradient ascent did not converge after ", max_iter , " iterations

\n"))
75 }
76

77 # Return estimated coefficients
78 return (list(beta = beta , partial _ loglik = ll , iter = it))
79 }
80

81

82 ## cox_ newton _ raphson - R- function implementing Newton - Raphson for estimation
83 ## in the Cox PH model
84 ##
85 ## Input : X [ matrix ]: Regression matrix of dimension n_obs x p_vars
86 ## d [data frame ]: Data set with variables Tstart , Tstop , trans
87 ## and status
88 ## K [ matrix ]: Penalty matrix of dimension M x p (M=p+m+g)
89

90 ## beta.init [ vector ]: Initial value of beta ( default : 0)
91 ## Riskset [list ]: Risk set list
92 ## max_iter [ numeric ]: Maximum number of iterations ( default : 1000)
93 ## tolerance [ numeric ]: Tolerance for stopping criterion ( default : 1e -6)
94 ## eps [ numeric ]: Step size in [0 ,1] ( default : .01)
95 ## rho [ numeric ]: Augmented Lagrangian parameter (step size;
96 ## default : 1)
97 ## theta [ numeric ]: ADMM parameter theta = beta
98 ## nu [ numeric ]: ADMM parameter nu = theta - beta
99 ##

100 ## Output : res [list ]: Beta estimation for Cox model at stopping
101 ## iteration ’iter ’
102

103 cox_ newton _ raphson <- function (X, d, K, beta.init = NULL , Riskset ,
104 max_iter = 1000 , tolerance = 1e-6, eps = 0.01 ,
105 rho = 1, theta , nu){
106

107 # Initialize coefficients
108 if(is.null(beta.init)){
109 beta <- rep (0, ncol(X))
110 } else{
111 beta <- beta.init
112 }
113

114 # Update until convergence or maximum iterations reached
115 it <- 1
116 tol <- 1
117 ll <- 0
118
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119 while (tol > tolerance && it < max_iter){
120

121 if(it == 1){
122 if(is.null(K)){
123 gradient <- cox_ll_lagr_ gradient (X, d = d, beta = beta ,
124 Riskset = Riskset , rho = rho ,
125 theta = theta , nu = nu)
126 } else{
127 gradient <- cox_ll_lagr_ gradient _K(X, d = d, K = K, beta = beta ,
128 Riskset = Riskset , rho = rho ,
129 theta = theta , nu = nu)
130 }
131 beta_new <- beta + eps * gradient
132 } else{
133

134 if(is.null(K)){
135 gradient <- cox_ll_lagr_ gradient (X, d = d, beta = beta ,
136 Riskset = Riskset , rho = rho ,
137 theta = theta , nu = nu)
138 H <- cox_ll_ fisher (X, d = d, beta = beta , Riskset = Riskset ) + rho * diag(

ncol(X))
139 } else{
140 gradient <- cox_ll_lagr_ gradient _K(X, d = d, K = K, beta = beta ,
141 Riskset = Riskset , rho = rho ,
142 theta = theta , nu = nu)
143 H <- cox_ll_ fisher (X, d = d, beta = beta , Riskset = Riskset ) + rho * t(K) %

*% K
144 }
145

146 # Pseudo - inverse of Fisher matrix
147 M <- svd(H)
148 # Check for zero singular values in the diagonal matrix M$d
149 zero_ indices <- which (M$d == 0)
150 # Replace zero singular values with 1 ( fulfills D^ -1=0 for d[ii ]=0)
151 M$d[zero_ indices ] <- 1
152 M <- M$v %*% diag (1/M$d) %*% t(M$u)
153

154 # Update coefficients : Newton - Raphson step
155 beta_new <- beta + M %*% gradient
156 }
157

158 # Stopping criterion : partial log - likelihood
159 ll_old <- ll
160 ll <- partial _ll(beta = beta_new , X, d, risksetlist = Riskset )
161 tol <- abs(ll - ll_old)
162

163 # Step - halving if needed
164 if(it > 1 & ll_old > ll){
165 beta_new <- beta/2 + beta_new/2
166 ll <- ll_old
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167 }
168

169 it <- it + 1
170 beta <- beta_new
171 }
172 # If max_iter is reached , print warning and exit loop
173 if(it == max_iter){
174 warning ( paste ("Newton - Raphson did not converge after ", max_iter , " iterations \

n"))
175 }
176

177 return (list(beta = beta , partial _ loglik = ll , fisher = H, iter = it))
178 }

Listing 3: R-functions implementing the FSGLmstate ADMM algorithm.
1

2 # ********************
3 # * ADMM algorithm : *
4 # ********************
5

6 ## S_ kappa - R- function implementing the vector soft thresholding operator
7 ## S_ kappa (a)
8

9 ## Input : a [ vector ]: Numeric vector
10 ## kappa [ numeric ]: Scalar
11

12 ## Output : s [ numeric ]: Shrinked value
13

14 S_ kappa <- function (a, kappa ){
15 a <- as. matrix (a)
16 if(all(a == 0) | any(is.na(a))){
17 s <- 0
18 } else {
19 s <- max (0, 1- kappa /norm(a, type = "F"))*a
20 }
21 return (s)
22 }
23

24 ## Adapt _rho - R- function implementing adaptive ADMM step -size
25

26 ## Input : rho [ numeric ]: ( Fixed ) ADMM step size
27 ## r_norm [ numeric ]: L2 -norm of primal residuals
28 ## s_norm [ numeric ]: L2 -norm of dual residuals
29 ## tau [ numeric ]: Scalar
30 ## eta [ numeric ]: Scalar
31

32 ## Output : rho [ numeric ]: Adaptive ADMM step size
33

34 Adapt _rho <- function (rho , r_norm , s_norm , tau = 2, eta = 10){
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35 rho <- ifelse (r_norm > eta * s_norm , tau*rho ,
36 ifelse (r_norm < eta * s_norm , rho / tau , rho))
37 return (rho)
38 }
39

40

41 ## fit.admm.fsgl. mstate - R- function utilizing ADMM for FSGL - penalized
42 ## multi - state models for estimation of beta for
43 ## one set of tuning parameters
44 ##
45 ## X [data frame ]: Regression matrix of dimension n x p (=P*Q)
46 ## with transition - specific covariates
47 ## d [data frame ]: Data set with variables Tstart , Tstop , trans
48 ## and status
49 ## (long format data)
50 ## penalized [data frame ]: Regression matrix of dimension n x p (=P*Q)
51 ## with covariates that should be penalized
52 ## unpenalized [data frame ]: Regression matrix of dimension n x p (=P*Q)
53 ## with additional covariates that should remain
54 ## unpenalized
55 ## K [ matrix ]: Penalty matrix of dimension M x p (=P*Q)
56 ## standardize [ logic ]: Standardization of design matrix X
57 ## (TRUE: columns divided by standard deviation )
58 ## trace [ logic ]: Storage of updates / history at iteration k
59

60 ## nl [ numeric ]: Number of rows of K that encode the lasso
61 ## penalty (If lasso penalty is applied to all
62 ## coefficients : p)
63 ## nf [ numeric ]: Number of rows of K that encode the fused
64 ## penalty
65 ## ng [ numeric ]: Number of groups for the group penalty
66 ## groupsizes [ vector ]: Vector of length ngroups that gives the size
67 ## of each group in the order they appear in the
68 ## K matrix (Sum should equal ng)
69

70 ## penalty . factor [ vector ]: Individual penalty scaling factor
71 ## ( default : 1)
72 ## alpha [ numeric ]: Tuning parameter in [0 ,1]; controls degree of
73 ## group ( alpha = 0) vs lasso ( alpha =1) penalty
74 ## gamma [ numeric ]: Tuning parameter in [0 ,1]; controls degree of
75 ## lasso ( gamma =1) vs fused ( gamma =0) penalty
76

77 ## rho [ numeric ]: Augmented Lagrangian parameter
78 ## (ADMM step size; default : 1)
79 ## beta.init [ vector ]: Initial value of beta ( default : 0)
80

81 ## est_ algorithm [ character ]: Cox estimation algorithm
82 ## ( default :’ gradient .ascent ’)
83 ## step_size [ numeric ]: Cox estimation step size in (0 ,1)
84 ## ( default : .01)
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85 ## est_tol [ numeric ]: Tolerance of stopping criterion
86 ## ( partial log - likelihood )
87 ## for beta estimation ( default : 1e -6)
88

89 ## eps_rel [ numeric ]: Relative tolerance for ADMM stopping
90 ## criterion ( default : .01)
91 ## eps_abs [ numeric ]: Absolute tolerance for ADMM stopping
92 ## criterion ( default : .0001)
93 ## max_iter [ numeric ]: Maximum number of iterations ( default : 1000)
94 ##
95 ## Output : res [list ]: Beta estimation at stopping iteration
96 ## ’num.iter ’ with history
97

98

99 fit.admm.fsgl. mstate <- function (X, d, penalized = NULL , unpenalized = NULL , K,
100 standardize = FALSE , trace = TRUE ,
101 nl , nf , ng , groupsizes , penalty . factor = 1,
102 lambda = 1, alpha , gamma ,
103 rho = 1, beta.init = NULL ,
104 est_ algorithm = " gradient . ascent ",
105 step_size = 0.01 , est_tol = 1e-6,
106 eps_rel = 1e-2, eps_abs = 1e-4,
107 max_iter = 1000 , seed = 2024) {
108 set.seed(seed)
109

110 n <- nrow(X)
111 pq <- ncol(K)
112 M <- nrow(K)
113

114 # Total number of samples
115 Ns <- nl + nf + ng
116

117 # Standardize only continuous variables
118 if( standardize ){
119 continuous _cols <- apply (X, 2, function (col) length ( unique (col)) > 10)
120 # Assume matrix columns with <= 10 unique values are categorical
121

122 tmp <- scale (X, center = FALSE , scale = TRUE)
123 tmp2 <- attributes (tmp)$‘scaled :scale ‘
124 #tmp2[! continuous _cols] <- 0
125 scales <- tmp2[ continuous _cols]
126 X[, continuous _cols] <- scale (X[, continuous _cols], center = FALSE , scale =

TRUE)
127

128 if(!is.null( unpenalized )){
129 continuous _cols <- apply ( unpenalized , 2, function (col) length ( unique (col))

> 10)
130 tmp <- scale ( unpenalized , center = FALSE , scale = TRUE)
131 tmp2 <- attributes (tmp)$‘scaled :scale ‘
132 scale _ unpen <- tmp2[ continuous _cols]
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133 unpenalized [, continuous _cols] <- scale ( unpenalized [, continuous _cols],
134 center = FALSE , scale = TRUE)
135 }
136 }
137

138 # Risk set list
139 r <- buildrisksets (d$Tstart , d$Tstop , d$trans , d$ status )
140 riskset <- r$Ri
141

142 # Calculate the cumulative sum of samples for each part of the design matrix
143 ni <- c(rep (1, nl), rep (1, nf), groupsizes )
144 cumsum _ni <- cumsum (ni)
145

146 # Calculate the indices for each group based on groupsizes
147 group _ indices <- lapply (1:Ns , function (i) seq(max (1, cumsum _ni[i - 1] + 1) ,

cumsum _ni[i]))
148

149 # Overall tuning parameter vector
150 Lambda <- c(rep( alpha * gamma * lambda , nl) * penalty .factor ,
151 rep ((1 - gamma ) * lambda , nf),
152 rep ((1 - alpha ) * gamma * lambda , ng))
153

154 # (1) Initialization :
155 if(is.null(beta.init)){
156 beta <- matrix (0, nrow = pq , ncol = 1)
157

158 if(!is.null( unpenalized )){
159

160 # Start with fully penalized model keeping only unpenalized covariates
161 unpenalized . names <- colnames ( unpenalized )
162 long.data <- cbind (d, unpenalized )
163

164 beta <- coefficients ( coxph (as. formula ( paste ("Surv(Tstart , Tstop , status ) ~
", paste ( unpenalized .names , collapse = "+"), "+ strata ( trans )")), data
= long.data))

165 if(!is.null( penalized )){
166 beta <- c(beta , rep (0, ncol( penalized )))
167 }
168 }
169 } else{
170 beta <- beta.init
171 }
172 theta <- matrix (0, nrow = M, ncol = 1)
173 nu <- matrix (0, nrow = M, ncol = 1)
174

175

176 # Orthogonalize penalized with respect to unpenalized
177 if(!is.null( unpenalized ) & !(is.null( penalized ))){
178 orthogonalizer <- solve ( crossprod ( unpenalized ),
179 crossprod ( unpenalized , penalized ))
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180 penalized <- penalized - unpenalized %*% orthogonalizer
181

182 # Join penalized and unpenalized together
183 X <- cbind ( unpenalized , penalized )
184 }
185 X <- as. matrix (X)
186

187 if( trace ){
188 history <- vector (mode = "list")
189 updates <- vector (mode = "list")
190 }
191 for(k in 1: max_iter){
192 # (2) Alternatingly update beta , theta , nu:
193

194 # Update beta
195 if(est_ algorithm == " gradient . ascent "){
196 beta_new <- cox_ fixed _ gradient _ ascent (X = X, d = d, K = K,
197 beta.init = beta ,
198 Riskset = riskset ,
199 eps = step_size ,
200 tolerance = est_tol ,
201 max_iter = max_iter , theta = theta ,
202 nu = nu)$beta
203 } else{
204 beta_new <- cox_ newton _ raphson (X = X, d = d, K = K, beta.init = beta ,
205 Riskset = riskset , tolerance = est_tol ,
206 max_iter = max_iter , theta = theta ,
207 nu = nu)$beta
208 }
209

210 # Calculate eta ( intermediate variable ) for updating theta
211

212 eta <- K %*% beta_new + nu/rho
213

214 # Update theta using soft - thresholding for each group
215 theta _old <- theta
216 theta _new <- theta
217 for(i in 1: Ns){
218 theta _new[ group _ indices [[i]]] <- S_ kappaAB (a = eta[ group _ indices [[i]]] ,
219 kappa = ( Lambda [i] * sqrt(

length (eta[ group _ indices [[
i]]]))) / rho)

220 }
221 # Update nu using dual ascent
222 nu_new <- nu + rho * (K %*% beta_new - theta _new)
223

224 # Updated estimates
225 beta <- as. matrix (beta_new)
226 theta <- as. matrix ( theta _new)
227 nu <- as. matrix (nu_new)
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228 # residuals
229 r_norm <- norm( theta - K %*% beta , type="F") # primal residuals
230 s_norm <- norm(rho * t(K) %*% ( theta - theta _old), type="F") # dual

residuals
231

232 # sufficiently small epsilons (Boyd et al. (2011) : eps_abs = 10^ -4 , eps_rel
= 10^ -2)

233 eps_pri <- sqrt(pq) * eps_abs + eps_rel * max(norm(K %*% beta , type="F"),
norm(theta , type="F"))

234 eps_dual <- sqrt(M) * eps_abs + eps_rel * norm(t(K) %*% nu , type="F")
235

236 # (3) Storage at iteration k: Store updates , residuals , epsilons
237 if( trace ){
238 updates [[k]] <- list(beta = drop(beta), theta = drop( theta ), nu = drop(nu))
239

240 history $r_norm[k] <- norm( theta - K %*% beta , type="F") # primal residuals
241 history $s_norm[k] <- norm(rho * t(K) %*% ( theta - theta _old), type="F") #

dual residuals
242 history $eps_pri[k] <- sqrt(pq) * eps_abs + eps_rel * max(norm(K %*% beta ,

type="F"), norm(theta , type="F"))
243 history $eps_dual[k] <- sqrt(M) * eps_abs + eps_rel * norm(t(K) %*% nu , type

="F")
244 }
245

246 # Adapt rho
247 rho <- Adapt _rho(rho=rho , r_norm = r_norm , s_norm = s_norm)
248

249 # (4) Stopping criterion : Sufficiently small primal & dual residuals
250 if(r_norm < eps_pri && s_norm < eps_dual){
251 break
252 }
253 }
254

255 # Model diagnostics : Generalized cross - validation estimate
256 # (Wahba , 1980; Tibshirani , 1997)
257

258 myTheta <- beta
259 myTheta [1: nrow(beta) ,] <- theta [1: nrow(beta), ]
260 nlpl <- -partial _ll(X, d, myTheta , risksetlist = riskset )
261

262 fisher <- fisherinfo (beta = myTheta , X = X, risksetlist = riskset , event = d$
status )

263 Lambda _K <- c(rep( alpha * gamma * lambda , nl),
264 rep ((1 - gamma ) * lambda , nf),
265 rep ((1 - alpha ) * gamma * lambda , ng*p))
266 A <- penaltymatrix ( lambda = Lambda _K, PSM = K, beta = myTheta , w = rep (1, M),
267 constant = 1e -08)
268 M <- svd( fisher + A)
269 M <- M$v %*% diag (1/M$d) %*% t(M$u)
270 df <- sum(diag( fisher %*% M))
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271

272 gcv <- (1/n) * nlpl/(n * ((1 - df/n)^2))
273

274 if( standardize ){
275 # Scale back estimates to original covariate scales
276 beta[ continuous _cols ,] <- beta[ continuous _cols ,]/ scales
277

278 theta <- theta [1:( pq), ]
279 theta <- as. matrix ( theta )
280 rownames ( theta ) <- colnames (X)
281 theta [ continuous _cols ,] <- theta [ continuous _cols ,]/ scales
282 }
283 if(!is.null( unpenalized ) & !is.null( penalized )){
284 # Scale back unpenalized estimates after orthogonalization
285 beta [1: ncol( unpenalized ), ] <- beta [1: ncol( unpenalized ), ] - drop(

orthogonalizer %*% beta [( ncol( unpenalized )+1): length (beta), ])
286 theta [1: ncol( unpenalized ), ] <- theta [1: ncol( unpenalized ), ] - drop(

orthogonalizer %*% theta [( ncol( unpenalized )+1): length ( theta ), ])
287

288 }
289 rownames (beta) <- colnames (X)
290 beta <- cbind (beta , exp(beta))
291 colnames (beta) <- c("Beta estimates ", "exp(beta)")
292

293 theta <- cbind (theta , exp( theta ))
294 colnames ( theta ) <- c(" Theta estimates ", "exp( theta )")
295

296 res <- list(beta = beta ,
297 theta = theta ,
298 lambda = lambda ,
299 alpha = alpha ,
300 gamma = gamma ,
301 gcv = gcv ,
302 df = df ,
303 num.iter = k)
304 if( trace ){
305 res$ updates <- updates
306 res$ history <- history
307 }
308

309 return (res)
310 }
311

312

313 ## gcv.fit.admm.fsgl. mstate - R- function utilizing ADMM to fit FSGL - penalized
314 ## multi - state models for beta estimation for
315 ## optimal lambda with minimal general cross -
316 ## validation (GCV) statistic via grid search
317 ##
318 ## Input : lambda .grid [ vector ]: Candidate vector for overall regularization
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319 ## parameter in [0 ,1]
320 ## X [data frame ]: Regression matrix of dimension n x p (=P*Q)
321 ## with transition - specific covariates
322 ## d [data frame ]: Data set with variables Tstart , Tstop , trans
323 ## and status
324 ## (long format data)
325 ## penalized [data frame ]: Regression matrix of dimension n x p (=P*Q)
326 ## with covariates that should be penalized
327 ## unpenalized [data frame ]: Regression matrix of dimension n x p (=P*Q)
328 ## with additional covariates that should remain
329 ## unpenalized
330 ## K [ matrix ]: Penalty matrix of dimension M x p (=P*Q)
331 ## standardize [ logic ]: Standardization of design matrix X
332 ## (TRUE: columns divided by standard deviation )
333

334 ## nl [ numeric ]: Number of rows of K that encode the lasso
335 ## penalty (If lasso penalty is applied to all
336 ## coefficients : p)
337 ## nf [ numeric ]: Number of rows of K that encode the fused
338 ## penalty
339 ## ng [ numeric ]: Number of groups for the group penalty
340 ## groupsizes [ vector ]: Vector of length ngroups that gives the size
341 ## of each group in the order they appear in
342 ## the K matrix (Sum should equal ng)
343

344 ## penalty . factor [ vector ]: Individual penalty scaling factor
345 ## ( default : 1)
346 ## alpha .grid [ vector ]: Tuning parameter in [0 ,1]; controls degree of
347 ## group ( alpha = 0) vs lasso ( alpha =1) penalty
348 ## gamma .grid [ vector ]: Tuning parameter in [0 ,1]; controls degree of
349 ## lasso ( gamma =1) vs fused ( gamma =0) penalty
350

351 ## rho [ numeric ]: Augmented Lagrangian parameter
352 ## (ADMM step size; default : 1)
353 ## beta.init [ vector ]: Initial value of beta ( default : 0)
354

355 ## step_size [ numeric ]: Cox estimation step size in (0 ,1)
356 ## ( default : .01)
357 ## est_tol [ numeric ]: Tolerance of stopping criterion
358 ## ( partial log - likelihood )
359 ## for beta estimation ( default : 1e -6)
360

361 ## eps_rel [ numeric ]: Relative tolerance for ADMM stopping
362 ## criterion ( default : .01)
363 ## eps_abs [ numeric ]: Absolute tolerance for ADMM stopping
364 ## criterion ( default : .0001)
365 ## max_iter [ numeric ]: Maximum number of iterations ( default : 1000)
366 ## n. cores [ numeric ]: Number of cores to use for parallel computing
367 ## ( default : 1)
368 ##
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369 ## Output : res.min.gcv [list ]: Beta estimation for optimal lambda
370 ## (i.e. minimal GCV)
371

372 gcv.fit.admm.fsgl. mstate <- function ( lambda .grid , X, d,
373 penalized = NULL , unpenalized = NULL ,
374 K, standardize = TRUE ,
375 nl , nf , ng , groupsizes , penalty . factor = 1,
376 alpha .grid = seq (0, 1, by = 0.25) ,
377 gamma .grid = seq (0, 1, by = 0.25) ,
378 rho = 1, beta.init = NULL ,
379 step_size = 0.01 , est_tol = 1e-6,
380 eps_rel = 1e-2, eps_abs = 1e-4,
381 max_iter = 100 , n. cores = 1){
382

383 # all combinations of tuning parameters along grids
384 alpha _ gamma _ lambda <- expand .grid( alpha = alpha .grid , gamma = gamma .grid ,
385 lambda = lambda .grid)
386

387 # res.fsgl. mstate _all <- lapply (seq_len(nrow( alpha _ gamma _ lambda )), function (i,
...){

388 res.fsgl. mstate _all <- mclapply (seq_len(nrow( alpha _ gamma _ lambda )), function (i,
...){

389

390 alpha <- alpha _ gamma _ lambda $ alpha [i]
391 gamma <- alpha _ gamma _ lambda $ gamma [i]
392 lambda <- alpha _ gamma _ lambda $ lambda [i]
393

394 fit.admm.fsgl. mstate (X = X, penalized = penalized , unpenalized = unpenalized ,
395 d = d, K = K, nl = nl , nf = nf , ng = ng ,
396 groupsizes = groupsizes , penalty . factor = penalty .factor

,
397 standardize = standardize ,
398 lambda = lambda , beta.init = beta.init ,
399 alpha = alpha , gamma = gamma , rho = rho ,
400 step_size = step_size , est_tol = est_tol ,
401 eps_rel = eps_rel , eps_abs = eps_abs ,
402 max_iter = max_iter)
403 }, mc. cores = n. cores )
404 # })
405

406 gcv <- sapply (res.fsgl. mstate _all , function (x) x$gcv)
407

408 # Result for optimal lambda :
409 index .min.gcv <- which .min(gcv)
410 res.min.gcv <- res.fsgl. mstate _all [[ index .min.gcv ]]
411 # lambda .min <- lambda .grid[ index .min.gcv]
412

413 return (list(res.min.gcv = res.min.gcv , res.all = res.fsgl. mstate _all))
414 }
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Listing 4: R-function implementing the penalty structure matrix.
1

2 # ***************************
3 # Penalty structure matrix : *
4 # ***************************
5

6 ## penalty _ matrix _K - R- function constructing a combined penalty structure matrix
7 ## for use in penalized regression
8 ##
9 ## Input : P [ numeric ]: Number of regression parameters ,

10 ## i.e. covariates
11 ## Q [ numeric ]: Number of transitions
12 ## fused [ character or matrix ]: Character string / matrix indicating
13 ## whether
14 ## - all pairwise differences (" all ") or
15 ## - adjacent differences (" neighbors ") or
16 ## - user - specific pairs ( matrix D)
17 ## shall be penalized for the fusion penalty
18 ## D [ matrix ]: Difference matrix
19 ## groups [ vector ]: Vector indicating group membership of
20 ## regression parameters for the group
21 ## penalty
22 ##
23 ## Output : K [ matrix ]: General combined penalty matrix of
24 ## dimension (P*Q + s + P*Q) x (P*Q)
25

26 penalty _ matrix _K <- function (P, Q, fused = "all", D = NULL , groups ){
27

28 n.col <- P*Q
29

30 # Lasso penalty : unit matrix
31 I <- diag(n.col)
32

33 # Fused penalty : difference matrix
34 if( fused == "all"){
35 D <- pairwise _ contrast _ matrix (n.col)
36 }
37 if( fused == " neighbors "){
38 D <- -(diff(diag(n.row), diff = 1))
39 } else{
40 D <- D
41 }
42

43 # Group penalty : unit vectors where 1 indicates a sample of a group
44 group _ matrices <- lapply (1: max( groups ), function (i) diag( groups == i))
45 G <- do.call(rbind , group _ matrices )
46 G <- G[ rowSums (G) == 1, ]
47

48 # General combined penalty matrix
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Appendix: R code for FSGLmstate

49 K <- rbind (I, D, G)
50

51 return (K)
52 }
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A.2 Simulation Study Plan: FSGLmstate

This section of the Appendix contains the detailed Simulation Study Plan ac-
cording to ADEMP-PreReg (Siepe et al., 2024).



ADEMP-PreReg
Simulation Study Plan

Project: FSGLmstate

Kaya Miah

September 12, 2024

Version: 0.1.0
Last updated: 2023-10-31

Preregistration template designed by
Björn S. Siepe, František Bartoš, Tim P. Morris, Anne-Laure Boulesteix, Daniel W.

Heck, and Samuel Pawel



ADEMP-PreReg Template for Simulation Studies

1 Instructions

General Information

This template can be used to plan and/or preregister Monte Carlo simulation studies
according to the ADEMP framework (Morris et al., 2019). The preprint associated
with this template is (Siepe et al., 2023). Alternative Google Docs and Word ver-
sions of this template are available at (https://github.com/bsiepe/ADEMP-PreReg). To
time-stamp your protocol, we recommend uploading it to the Open Science Frame-
work (https://osf.io/) or Zenodo (https://zenodo.org/). When using this template, please
cite the associated preprint (Siepe et al., 2023). If you have any questions or sugges-
tions for improving the template, please contact us via the ways described at (https:
//github.com/bsiepe/ADEMP-PreReg).

Using this template

Please provide detailed answers to each of the questions. If you plan to perform multi-
ple simulation studies within the same project, you can either register them separately
or number your answers to each question with an indicator for each study. As the
planning and execution of simulation studies often involves considerable complexity
and unknowns, it may be difficult to answer all the questions in this template or some
changes may be made along the analysis pathway. This is to be expected and should
not deter from preregistering a simulation study; rather, any modifications to the pro-
tocol should simply be reported transparently along with a justification, which will ul-
timately add credibility to your research. Finally, the template can also be used as a
blueprint for the reporting of non-preregistered simulation studies.

2 General Information

2.1 What is the title of the project?

Answer

Variable selection via fused sparse-group lasso penalized multi-state models in-
corporating molecular data

2.2 Who are the current and future project contributors?

Answer

Kaya Miah, Jelle J. Goeman, Hein Putter, Annette Kopp-Schneider, Axel Benner
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2.3 Provide a description of the project.

Explanation: This can also include empirical examples that will be analyzed within the
same project, especially if the analysis depends on the results of the simulation.

Answer

We will investigate effective multi-state modeling strategies to determine an op-
timal, ideally parsimonious model. In particular, linking covariate effects across
transitions is required to conduct joint variable selection. A useful technique to
reduce model complexity is to address homogeneous covariate effects for dis-
tinct transitions based on a reparametrized model formulation. We integrate this
approach to data-driven variable selection by extended regularization methods
within multi-state model building. We propose the fused sparse-group lasso
(FSGL) penalized Cox-type regression in the framework of multi-state models
combining the penalization concepts of pairwise differences of covariate effects
along with transition grouping. For optimization, we adapt the alternating direction
method of multipliers (ADMM) algorithm to transition-specific hazards regression
in the multi-state setting.

2.4 Did any of the contributors already conduct related simulation
studies on this specific question?

Explanation: This includes preliminary simulations in the context of the current project.

Answer

No, we did not conduct previous simulation studies for investigating regularized
multi-state model building.

3 Aims

3.1 What is the aim of the simulation study?

Explanation: The aim of a simulation study refers to the goal of the research and
shapes subsequent choices. Aims are typically related to evaluating the properties of
a method (or multiple methods) with respect to a particular statistical task. Possible
tasks include ‘estimation’, ‘hypothesis testing’, ‘model selection’, ‘prediction’, or ‘de-
sign’. If possible, try to be specific and not merely state that the aim is to ‘investigate
the performance of method X under different circumstances’.
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Answer

The aim of the simulation study is to evaluate the model selection procedure
based on FSGL penalized transition-specific hazards regression in terms of its
ability to select a sparse model identifying relevant transition-specific and equal
cross-transition effects.

4 Data-Generating Mechanism

4.1 How will the parameters for the data-generating mechanism
(DGM) be specified?

Explanation: Answers include ‘parametric based on real data’, ‘parametric’, or ‘resam-
pled’. Parametric based on real data usually refers to fitting a model to real data and
using the parameters of that model to simulate new data. Parametric refers to generat-
ing data from a known model or distribution, which may be specified based on theoret-
ical or statistical knowledge, intuition, or to test extreme values. Resampled refers to
resampling data from a certain data set, in which case the true data-generating mech-
anism is unknown. The answer to this question may include an explanation of from
which distributions (with which parameters) values are drawn, or code used to gener-
ate parameter values. If the DGM parameters are based on real data, please provide
information on the data set they are based on and the model used to obtain the param-
eters. Also, indicate if any of the authors are already familiar with the data set, e.g.,
analyzed (a subset of) it.
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Answer

In each simulation repetition, we generate multi-state data based on transition-
specific hazard regression for N = 1000 subjects as a nested series of competing
risks experiments (Beyersmann et al., 2012) as depicted in Figure 1:

1. Individual in state l ∈ {1, . . . , K} at time 0.

• Waiting time t0 in state l is generated with hazard hl·(t) =∑K
k=1,k ̸=l hlk (t), t ≥ 0.

• State Xt0 entered at this time is determined in a multinomial experiment
with decision probability hlk (t0)/hl·(t0) on state k , k ̸= l .

2. Individual has entered state k at time t0.

• Waiting time t1 in state k is generated with hazard hk ·(t) =∑K
k̃=1,k̃ ̸=k hkk̃ (t), t ≥ t0.

• State Xt0+t1 entered at this time is determined in a multinomial experi-
ment with decision probability hkk̃ (t0 + t1)/hk ·(t0 + t1) on state k̃ , k̃ ̸= k .

3. Further competing risks experiments are carried out until reaching an ab-
sorbing state.

Active

disease

1st CR

Death 

(no CR)

NRM 

(CR) RM
Death

(CR2)

1st

relapse 2nd CR
2nd

relapse

First-line therapy Second-line therapy

Figure 1: State chart of the multi-state model for acute myeloid leukemia (AML) with
nine states and eight possible transitions represented by arrows.

4.2 What will be the different factors of the data-generating mech-
anism?

Explanation: A factor can be a parameter/setting/process/etc. that determines the
data-generating mechanism and is varied across simulation conditions.
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Answer

We will vary the following factors:

• Event times drawn from an exponential distribution as described in Sec-
tion 4.1

• Design matrix X with binary covariates

• Transition-specific baseline hazards h0,q(t)

• Regression parameter β

• Penalty parameters λ,α, γ

• Augmented Lagrangian parameter ρ

• Step size in gradient descent ϵGD

• Tolerance of stopping criterion for Cox estimation optGD

• Relative/absolute tolerance for ADMM stopping criterion ϵrel , ϵabs

• Maximum number of iterations maxi ter

4.3 If possible, provide specific factor values for the DGM as well
as additional simulation settings.

Explanation: This may include a justification of the chosen values and settings.
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Answer

We will use the following values for our data-generating mechanism:

Multi-state data:

• Event times T ∼ Exp(η)

• Binary covariates Xp,i ∼ B(0.5), p = 1, . . . , 50, i = 1, . . . , 1000

• Transition-specific baseline hazards h0,q(t) = 0.05

• Regression parameters βp,q ∈ {−1.2,−0.8, 0, 0.8, 1.2}

FSGL Method:

• Penalty parameters: Optimal λ selected by generalized cross-validation
(GCV); α ∈ {0, 0.25, 0.5, 0.75, 1}; γ ∈ {0, 0.25, 0.5, 0.75, 1}

• Augmented Lagrangian parameter ρ = 1

• Step size in gradient descent ϵGD = 0.01

• Tolerance of stopping criterion for Cox estimation optGD = 10−6

• Relative/absolute tolerance for ADMM stopping criterion ϵrel = 10−2, ϵabs =
10−4

• Maximum number of iterations maxi ter = 1000

4.4 If there is more than one factor: How will the factor levels be
combined and how many simulation conditions will this cre-
ate?

Explanation: Answers include ‘fully factorial’, ‘partially factorial’, ‘one-at-a-time’, or
‘scattershot’. Fully factorial designs are designs in which all possible factor combina-
tions are considered. Partially factorial designs denote designs in which only a subset
of all possible factor combinations are used. One-at-a-time designs are designs where
each factor is varied while the others are kept fixed at a certain value. Scattershot
designs include distinct scenarios, for example, based on parameter values from real-
world data.

Answer

We will vary the conditions in a partially factorial manner, i.e. we will repeat multi-
state simulations for all combinations of penalty parameters.
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5 Estimands and Targets

5.1 What will be the estimands and/or targets of the simulation
study?

Explanation: Please also specify if some targets are considered more important than
others, i.e., if the simulation study will have primary and secondary outcomes.

Answer

Our primary target/model-based estimand focuses on the regression coefficients
βp.q from the penalized Cox-type proportional hazards models

hq(t |x) = h0,q(t) exp{βT
q x}, q = 1, . . . , Q,

where h0,q(t) denotes the baseline hazard rate of transition q at time t , x =
(x1, . . . , xp)T ∈ RP the vector of covariates and βq ∈ RP the vector of transition-
specific regression coefficients for P covariates.

6 Methods

6.1 How many and which methods will be included and which
quantities will be extracted?

Explanation: Be as specific as possible regarding the methods that will be compared,
and provide a justification for both the choice of methods and their model parameters.
This can also include code which will be used to estimate the different methods or
models in the simulation with all relevant model parameters. Setting different prior
hyperparameters might also be regarded as using different methods. Where package
defaults are used, state this. Where they are not used, state what values are used
instead.

Answer

We will compare the following methods:

1. Unpenalized estimation of a multi-state model with ADMM optimization

2. Lasso penalization of a multi-state model with ADMM optimization

3. FSGL penalization of a multi-state model with ADMM optimization

7
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7 Performance Measures

7.1 Which performance measures will be used?

Explanation: Please provide details on why they were chosen and on how these mea-
sures will be calculated. Ideally, provide formulas for the performance measures to
avoid ambiguity. Some models in psychology, such as item response theory or time
series models, often contain multiple parameters of interest, and their number may
vary across conditions. With a large number of estimated parameters, their perfor-
mance measures are often combined. If multiple estimates are aggregated, specify
how this aggregation will be performed. For example, if there are multiple parameters
in a particular condition, the mean of the individual biases of these parameters or the
bias of each individual parameter may be reported.

Answer

1. Primary performance measure: Sensitivity & specificity for covariate se-
lection

• Mean counts of true positives (TP), true negatives (TN), false positives
(FP) and false negatives (FN):

#{βp.q ̸= 0} #{βp.q = 0}
#{β̂p.q ̸= 0} TP FP
#{β̂p.q = 0} FN TN

TP + FN FP + TN

TPR = TP
T P+FN , FDR = FP

TP+FP

2. Secondary performance measure: Prediction accuracy

• Bias for non-zero predictors

• Mean squared error (MSE) for non-zero predictors

7.2 How will Monte Carlo uncertainty of the estimated performance
measures be calculated and reported?

Explanation: Ideally, Monte Carlo uncertainty can be reported in the form of Monte
Carlo Standard Errors (MCSEs). Please see Siepe et al. (2023) and Morris et al. (2019)
for a list of formulae to calculate the MCSE related to common performance mea-
sures, more accurate jackknife-based MCSEs are available through the rsimsum (Gas-
parini, 2018) and simhelpers (Joshi & Pustejovsky, 2022) R packages, the SimDesign

(Chalmers & Adkins, 2020) R package can compute confidence intervals for perfor-
mance measures via bootstrapping. Monte Carlo uncertainty can additionally be visu-
alized using plots appropriate for illustrating variability, such as MCSE error bars, his-
tograms, boxplots, or violin plots of performance measure estimates, if possible (e.g.,
bias).
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Answer

We will report Monte Carlo uncertainty in tables (MCSEs next to the estimated
performance measures) and in plots (error bars with ±1MCSE around estimated
performance measures). We will use the formulas provided in Morris et al. (2019)
to calculate MCSEs.

7.3 How many simulation repetitions will be used for each condi-
tion?

Explanation: Please also indicate whether the chosen number of simulation repetitions
is based on sample size calculations, on computational constraints, rules of thumb,
or any other heuristic or combination of these strategies. Formulas for sample size
planning in simulation studies are provided in Siepe et al. (2023). If there is a lack
of knowledge on a quantity for computing the Monte Carlo standard error (MCSE) of
an estimated performance measure (e.g., the variance of the estimator is needed to
compute the MCSE for the bias), pilot simulations may be needed to obtain a guess for
realistic/worst-case values.

Answer

The number of simulation runs is based on the MCSE of TPR as primary perfor-
mance measure of interest. Thus, we need nsim = 225 simulation repetitions per
condition as we aim for MCSE(TPR) ≤ 0.01 and assume MCSE(T̂PR) ≤ 0.15,
resulting in nsim = 0.152

0.012 = 225.

7.4 How will missing values due to non-convergence or other rea-
sons be handled?

Explanation: ‘Convergence’ means that a method successfully produces the outcomes
of interest (e.g., an estimate, a prediction, a p-value, a sample size, etc.) that are re-
quired for estimating the performance measures. Non-convergence of some iterations
or whole conditions of simulation studies occurs regularly, e.g., for numerical reasons.
It is possible to impute non-converged iterations, exclude all non-converged iterations
or to implement mechanisms that repeat certain parts of the simulation (such as data
generation or model fitting) until convergence is achieved. Further, it is important to
consider at which proportion of failed iterations a whole condition will be excluded from
the analysis.

Answer

We do not expect missing values or non-convergence. If we observe any non-
convergence, we exclude the non-converged cases and report the number of
non-converged cases per method and condition.

9
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7.5 How do you plan on interpreting the performance measures?
(optional)

Explanation: It can be specified what a ‘relevant difference’ in performance, or what
‘acceptable’ and ‘unacceptable’ levels of performance might be to avoid post-hoc inter-
pretation of performance. Furthermore, some researchers use regression models to
analyze the results of simulations and compute effect sizes for different factors, or to
assess the strength of evidence for the influence of a certain factor (Chipman & Bing-
ham, 2022; Skrondal, 2000). If such an approach will be used, please provide as many
details as possible on the planned analyses.

Answer

To assess variable selection, a higher TPR and TNR of the corresponding reg-
ularization method is considered to perform better in terms of model selection.
Further, we aim for little loss of predictive accuracy (i.e. smaller bias and MSE)
as a secondary criterion.

8 Other

8.1 Which statistical software/packages do you plan to use?

Explanation: Likely, not all software used can be prespecified before conducting the
simulation. However, the main packages used for model fitting are usually known in
advance and can be listed here, ideally with version numbers.

Answer

We will use the following packages of R version 4.3.3 (R Core Team, 2024) in their
most recent versions: The mstate package (Wreede et al., 2011) to generate
data, penMSM (Sennhenn-Reulen & Kneib, 2016) to perform penalized multi-state
regression, and the ggplot2 package (Wickham, 2016) to create visualizations.

8.2 Which computational environment do you plan to use?

Explanation: Please specify the operating system and its version which you intend to
use. If the study is performed on multiple machines or servers, provide information for
each one of them, if possible.

Answer

We will run the simulation study on a Windows 10 machine. The complete output
of sessionInfo() will be saved and reported in the supplementary materials.
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8.3 Which other steps will you undertake to make simulation re-
sults reproducible? (optional)

Explanation: This can include sharing the code and full or intermediate results of the
simulation in an open online repository. Additionally, this may include supplemental
materials or interactive data visualizations, such as a shiny application.

Answer

We will upload the fully reproducible simulation script as well as all reported sim-
ulation results to GitHub (https://github.com/k-miah/FSGLmstate).

8.4 Is there anything else you want to preregister? (optional)

Explanation: For example, the answer could include the most likely obstacles in the
simulation design, and the plans to overcome them.

Answer

No.
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Angabe zu verwendeter KI-basierter
elektronischer Hilfsmittel
Information on the use of AI-based tools
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To document the tools used, a special appendix has been added to the written report, which

contains a list and description of all AI-based tools used. The special appendix to document the

tools used meets the following criteria:

1. Auflistung der Ziele, für die die KI-basierten Hilfsmittel in der vorliegen-
den Arbeit eingesetzt wurden.
List of the goals for which the AI-based tools were used in this work.

2. Dokumentation der Verwendungsweise der KI-basierten Hilfsmittel.
Documentation of how AI-based tools are used.

3. Nennung der Kapitel und Abschnitte der vorliegenden Arbeit, in denen
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Documentation on the use of
AI-based tools

1. Objectives of AI-based tool usage

In this thesis, AI-based tools were used for the following purposes:

• Enhancing linguistic quality and stylistic coherence.

• Checking the comprehensibility and readability of texts.

• Improving text formatting in LATEX.

• Refining R code for visualizations.

2. Documentation of AI-based tool usage

I have used the following generative AI-based system in the creation of this
thesis:

• ChatGPT (OpenAI, 2025)

The AI-based tool was utilized occasionally in the following ways:

• Linguistic refinement: Improving phrasing, grammar correction and stylis-
tic adjustments.

• Comprehensibility: Improving the logical structure of text snippets.

• LATEX formatting: Enhancing table layouts and listings.
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• Visualization refinement: Improving code snippets for visualizations
generated in R.

3. Assignment to chapters of AI-based tool usage

AI-based tools were used in the following chapters:

Chapter Purpose of AI usage

Introduction Comprehensibility
Results Visualization refinement
Discussion Comprehensibility

All chapters LATEX formatting; Linguistic refinement

All AI-generated content was reviewed, revised, and, if necessary, adjusted by
the author to ensure academic quality and factual accuracy.
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