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ABSTRACT

Personalized medicine aims to tailor treatments to patients based on individual patient
characteristics and plays an essential role for advancing healthcare and achieving better
patient outcomes. As patients often respond very differently, improving personalized
treatment decisions is a key challenge in this field. In clinical practice, such decisions
are based on predictive biomarkers that indicate whether a patient might benefit from
treatment. While established predictive biomarkers often require invasive procedures,
medical imaging offers a non-invasive alternative by providing high-dimensional, spatially
resolved information that could reveal patterns relevant for making treatment decisions.
However, existing approaches, such as radiomics, rely on handcrafted features rather
than directly estimating treatment-specific effects from imaging data.

To address the current gaps, this thesis investigates the task of discovering predictive
imaging biomarkers in a data-driven way directly from images and providing treatment
recommendations using pre-treatment imaging data without a separate feature extraction
step.

In the first part of this thesis, the first approach for discovering predictive imaging
biomarkers using deep-learning-based causal models for estimating heterogeneous treat-
ment effects is presented. Its main contribution is an evaluation protocol for assessing
identified predictive imaging biomarker candidates and for assessing model performances,
which enables quantitative benchmarking and qualitative interpretation of image-based
treatment effect estimation models. The proposed protocol specifically makes the im-
portant distinction between predictive and prognostic biomarkers, the latter of which
can predict patient outcomes independently of treatment, by comparing predictive and
prognostic effects.

In the second part, image-based treatment effect estimation methods are applied to both
semi-synthetic and real clinical imaging data from a randomized phase II/III trial in
glioblastoma by developing an extension of previous models for binary or continuous out-
comes adapted to more clinically relevant survival outcomes. Furthermore, it investigates
the impact of multimodal integration of clinical tabular data and the use of pre-trained
image encoders on the resulting treatment recommendations of the proposed model and
patient stratification.



The experimental results demonstrate that image-based treatment effect estimation
models can identify predictive imaging biomarkers from semi-synthetic image datasets
and provide interpretable insights, although the performance on real clinical data remains
limited due to small sample sizes and weak treatment effect signals. Nevertheless, the
findings of this work offer valuable insights into the opportunities and current limitations
of image-based treatment effect estimation under realistic constraints and highlight key
directions for future research. Overall, this work bridges causal inference and medical
image analysis, establishing a foundation for future research on radiomics-free predictive
imaging biomarker discovery and for advancing image-based methods that support
personalized treatment decision-making.

vi



/USAMMENFASSUNG

Die personalisierte Medizin hat das Ziel, Behandlungen auf Grundlage individueller
Patientenmerkmale auf Patient:innen mafizuschneidern und spielt eine wesentliche Rolle
dabei, das Gesundheitswesen weiterzuentwickeln und bessere Patientenergebnisse zu
erreichen. Da Patient:innen oft sehr unterschiedlich auf Behandlungen ansprechen, ist
die Verbesserung personalisierter Behandlungsentscheidungen eine zentrale Herausfor-
derung in diesem Bereich. In der klinischen Praxis basieren solche Entscheidungen auf
pradiktiven Biomarkern, die anzeigen, ob Patient:innen von einer Behandlung profitieren
konnten. Wahrend etablierte pradiktive Biomarker oft invasive Eingriffe erfordern, bietet
die medizinische Bildgebung eine nicht-invasive Alternative, indem sie hochdimensio-
nale, raumlich aufgel6ste Informationen liefert, die Muster erkennen konnten, die fiir
Behandlungsentscheidungen relevant sind. Allerdings verlassen sich bestehende Ansétze
wie Radiomics auf manuell entwickelte Merkmale, anstatt behandlungsspezifische Effekte
direkt aus Bilddaten abzuschatzen.

Um diese bestehenden Liicken zu schlieffen, untersucht diese Dissertation die Aufgabe,
ohne einen separaten Schritt pradiktive bildgebende Biomarker auf eine datengestiitzte
Weise direkt aus Bildern zu entdecken und Behandlungsempfehlungen anhand von
Bildgebungsdaten zu geben, die vor einer Behandlung aufgenommen wurden.

Im ersten Teil dieser Dissertation wird der erste Ansatz zur Ermittlung pradiktiver
bildgebender Biomarker vorgestellt, der Deep-Learning-basierte kausale Modelle zur
Abschatzung heterogener Behandlungseffekte verwendet. Der zentrale Beitrag ist ein
Evaluierungsprotokoll, das dazu dient, identifizierte pradiktive bildgebende Biomarker-
Kandidaten zu bewerten und die Leistung eines Modells zu beurteilen, welches ein
quantitatives Benchmarking und qualitative Interpretation bildbasierter Modelle zur
Schitzung von Behandlungseffekten ermoglicht. Das vorgeschlagene Protokoll unter-
scheidet ausdriicklich zwischen préadiktiven und prognostischen Biomarkern, wobei
letztere Patientenergebnisse unabhéngig von der Behandlung vorhersagen koénnen, in-
dem es pradiktive und prognostische Effekte vergleicht.

Im zweiten Teil werden bildbasierte Methoden fiir die Schatzung von Behandlungseffekten
sowohl auf semi-synthetische als auch auf echte klinische Bilddaten aus einer randomisier-
ten Phase-II/III-Studie zu Glioblastomen angewendet, indem eine Erweiterung fritherer
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Modelle entwickelt werden, die urspriinglich fiir binare oder kontinuierliche Ergebnisse
konzipiert wurden, auf klinisch relevantere Uberlebensergebnisse zu erweitern. Dariiber
hinaus wird der Einfluss der multimodalen Integration von klinischen tabellarischen
Daten und der Verwendung von vortrainierten Bildencodern auf die resultierenden Be-
handlungsempfehlungen des vorgeschlagenen Modells sowie die Patientenstratifizierung
untersucht.

Die experimentellen Ergebnisse zeigen, dass bildbasierte Modelle zur Schatzung von
Behandlungseffekten pradiktive bildgebende Biomarker aus semi-synthetischen Bild-
datensitzen identifizieren und interpretierbare Einblicke liefern konnen, obwohl die
Leistungsfahigkeit in der Anwendung auf echte klinische Daten aufgrund kleiner Stich-
probengrofien und schwacher Signale fiir die Behandlungswirkung nach wie vor be-
grenzt bleibt. Dennoch bieten die Ergebnisse dieser Dissertation wertvolle Einblicke
in die Moglichkeiten und aktuellen Einschrankungen der bildbasierten Schéatzung von
Behandlungseffekten unter realistischen Bedingungen und weisen auf wichtige Richtun-
gen fir zukiinftige Forschung hin. Insgesamt schldgt diese Arbeit eine Briicke zwischen
kausaler Inferenz und medizinischer Bildanalyse und schafft damit eine Grundlage fiir
die zukiinftige Radiomics-freie Entdeckung préadiktiver bildgebender Biomarker sowie
fir die Weiterentwicklung bildbasierter Methoden, die personalisierte Behandlungsent-
scheidungen unterstiitzen.
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INTRODUCTION

1.1 Motivation

Images, whether captured by medical scanners, microscopes, satellites, or industrial
sensors, contain a wealth of information useful for making informed decisions. Often, the
central goal is not only to analyze images by what is seen to get a better understanding
(e.g. by segmenting objects or classifying them into categories), but to decide what actions
to take based on predicted consequences, whether to intervene, what treatment to choose,
or which process to apply to change the state and condition of a system. Examples for
areas of application where such questions are relevant may range from policy-making for
poverty relief using satellite imagery (Jerzak et al. 2023) or precision agriculture using
aerial images (Tantalaki et al. 2019; Kim et al. 2021) to robotics using video data (Ho et al.
2020; Li 2023; Gupta et al. 2024).

Fundamentally, making good decisions relies on understanding causal relationships: how
will an action such as the application of a treatment or a change in policy affect the
eventual outcome? One prominent example where visual information plays a critical role
in the decision-making process of treatment planning and in investigating the underlying
causal mechanisms is the area of personalized medicine. There, the ultimate goal is to
achieve the best possible patient outcome by tailoring treatments to individual patients
(Radiology (ESR) 2015).

Medical imaging, such as magnetic resonance imaging (MRI) or computed tomography
(CT), plays an important part in planning such tailored treatments as it can provide
immediate high-dimensional and spatially resolved information about a patient through
a non-invasive acquisition process. For instance, in oncology, images are used in clinical
practice for radiotherapy planning, and criteria such as the Response Evaluation Criteria
in Solid Tumors (RECIST) (Eisenhauer et al. 2009) or the Response Assessment in Neuro-
Oncology (RANO) criteria (Wen et al. 2023) are routinely applied to assess treatment
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response and guide subsequent treatment decisions based on measurements of tumor
size or lesions.

However, since not all patients might benefit equally from a given treatment and since
response assessments typically occur after treatment has started, an important aspect of
developing personalized treatments is to find criteria that can predict whether a patient
will likely benefit from a treatment beforehand. For this reason, personalized medicine
increasingly tailors treatments based on so-called predictive biomarkers.

While biomarkers are generally measurable patient-specific characteristics indicating
the medical state of an individual or which can be associated with clinical outcomes
such as disease status, physiological measures or survival (Lohr 1988; Strimbu et al.
2010), predictive biomarkers indicate the likely benefit (or generally effect) of a treatment
for a given individual within a wider population, where the treatment effect can vary.
Identifying predictive biomarkers is therefore crucial for determining which subgroup
of individuals will have a positive treatment effect and ultimately for making informed
treatment decisions. As this concept is also relevant to making treatment decisions
outside of biomedicine, predictive biomarkers are also referred to as predictive covariates
or features in a wider context.

The use of predictive biomarkers has been successfully and widely adopted in clinical
practice in oncology to select the most beneficial treatment for specific patient subgroups.
For instance, in breast cancer, the human epidermal growth factor receptor 2 (HER2)
overexpression and estrogen receptor (ER) status in tumors serve as predictive biomarkers
for therapies such as trastuzumab (a targeted therapy) or tamoxifen (a hormone ther-
apy), respectively (Tarighati et al. 2023). These well-established predictive biomarkers
illustrate how stratifying patients based on a single covariate can inform treatment and
improve patient outcomes. Furthermore, these examples demonstrate that the discovery
of predictive biomarkers can go hand-in-hand with the development of novel, targeted
treatments and support drug discovery.

While predictive biomarkers, such as HER2 and ER status, are usually determined in-
vasively through the analysis of tumor biopsy samples, ongoing research has explored
whether the biomarker status can also be estimated through less invasive imaging tech-
niques such as nuclear imaging (Ulaner et al. 2016; Weaver et al. 2018; Salvatore et al.
2019). This growing interest highlights the potential of predictive imaging biomarkers,
i.e. features extracted from images that can inform treatment decisions (O’Connor et al.
2017).

When researching new predictive biomarkers, it is essential to distinguish them from
prognostic biomarkers, which can predict a patient’s outcome independent of a treatment
and are therefore not indicative of treatment effects (Ballman 2015). Examples of prog-
nostic biomarkers include tumor size or age, where higher values are typically associated
with a worse prognosis, regardless of which treatment a patient receives. It is important
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to note that biomarkers can be both prognostic and predictive simultaneously, and are
associated with both the outcome itself and the treatment effect. For these reasons, it is
not possible to identify predictive biomarkers from studying treatment response data of
all patients receiving the same treatment alone, such as by simply comparing the states
before and after treatment, as observed responses may stem from prognostic biomarkers.

To discover predictive biomarkers and drive the development of personalized treatments,
it is necessary to compare the outcomes of treated individuals against a control (such as
placebo or standard treatment) to investigate whether specific covariates are associated
with variations in treatment effects across patient subgroups, where the effects are
measured with respect to a pre-defined outcome of interest (Mandrekar et al. 2009). In
clinical research, such outcome data is typically acquired through randomized controlled
trials (RCTs), which are the gold standard of clinical trials to make claims about causal
relationships (Zabor et al. 2020). In the initial stages of predictive biomarker research,
data from such clinical trials is often analyzed retrospectively (Alymani et al. 2010).

RCTs are conducted by randomly assigning individuals to a treatment or control arm to
ensure that patient covariates (e.g. age, tumor volume) are equally distributed across arms
to reduce confounding. However, RCT data are often analyzed only at a population level
by computing the average treatment effect. For personalized medicine and predictive
biomarker discovery, the interest lies instead in the individual treatment effect, that is,
how a specific patient would respond to one treatment compared to another. As observing
both treatment and control arm outcomes of the same patient and thereby measuring a
patient’s individual treatment effect is not possible due to the fundamental problem of
causal inference (Holland 1986), the problem of treatment effect estimation is inherently
different from standard prediction tasks where a ground truth can be obtained.

This problem has been investigated in the field of causal inference, which provides
a theoretical framework for estimating treatment effects from randomized trials and
observational data. In particular, machine learning methods have been developed to
estimate the conditional average treatment effect (CATE), which is a measure for the
true individual treatment effect (ITE) that cannot be observed directly and captures how
the expected treatment effects vary across individuals based on their characteristics.
These methods aim to capture treatment effect heterogeneity within a population and can
support personalized decision-making by estimating how much a given patient might
benefit from a treatment (Curth et al. 2024).

Motivated by the goals of personalized medicine, these CATE estimation have also been
investigated for identifying predictive biomarkers (Sechidis et al. 2018; Bahamyirou et al.
2022; Crabbé et al. 2022; Boileau et al. 2023; W. Zhu et al. 2023; Verhaeghe et al. 2025).
While CATE estimation methods are well-established for tabular input data, translating
them to high-dimensional inputs such as medical images remains an emerging research
topic. Recent work has begun adapting deep-learning-based treatment effect estimation
methods to image inputs (Durso-Finley et al. 2022; Durso-Finley et al. 2023; Ma et al. 2023),
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but their potential to identify predictive imaging biomarkers has not been systematically
explored.

Instead of using treatment effect estimation, the discovery of predictive imaging biomark-
ers has conventionally relied on handcrafted features such as radiomics features (Chiu
et al. 2023). These image features, including features such as tumor intensity, texture, or
shape, are extracted in a multi-step process involving segmenting a region of interest (e.g.
tumor), feature selection, and a statistical analysis, where biases can easily be introduced
(Lambin et al. 2017; Hosny et al. 2019).

This thesis addresses the research gap in this area by developing novel methods for discov-
ering predictive imaging biomarkers in a data-driven manner and estimating treatment
effects using deep learning directly from medical images. Motivated by the “Bitter Lesson”
of artificial intelligence (AI) Sutton (2019), which emphasizes the success of scalable, data-
driven methods over handcrafted solutions with manually in-built knowledge, this thesis
explores whether deep learning models can learn predictive imaging biomarkers directly
from images, without pre-defined features. Through evaluations on both semi-synthetic
and clinical imaging datasets, this work investigates their feasibility, limitations, and
potential clinical utility in supporting treatment decision-making based on images.

While this thesis aims to develop generalizable methods across disease areas, a large part
of this thesis investigates the application of the newly developed methods to an RCT
that studies the treatment of glioblastoma. Glioblastoma is the most common and most
aggressive form of malignant brain cancer (Grochans et al. 2022). It remains difficult to
treat with standard treatments such as surgery, radiotherapy, and chemotherapy, as they
often fail to halt tumor progression, which has motivated a continued effort in researching
more effective therapies (Rodriguez-Camacho et al. 2022). One candidate that has been
widely studied is bevacizumab (BEV), an anti-angiogenic drug used to target the growth
of blood vessels in the brain tumors. However, RCTs with unstratified glioblastoma
patient populations have shown only limited or no benefit in terms of overall survival
(OS) (Chinot et al. 2014; Gilbert et al. 2014; Wick et al. 2017; Ameratunga et al. 2018). This
limited success has raised the question of whether bevacizumab may be beneficial to a
certain patient subgroup, and whether these subgroups can be identified non-invasively
through predictive imaging biomarkers from routinely acquired imaging data.

Despite recent attempts using radiomics features and other handcrafted features, no
reliable predictive imaging biomarker has been established for bevacizumab to date,
and the discovery of novel imaging biomarkers still remains a significant challenge
(Kickingereder et al. 2015; Kickingereder et al. 2016; Grossmann et al. 2017; Schell et al.
2020; Ammari et al. 2021). The availability of data from a randomized trial in patients
with recurrent glioblastoma presents a valuable opportunity to tackle this challenge
from a new perspective. This work leverages this RCT dataset to investigate whether
deep-learning-based treatment effect estimation methods, utilizing images directly, can



1.2 Objectives and Contributions

provide a new direction for guiding personalized therapy strategies with the goal of
improving the overall survival of patients.

1.2 Objectives and Contributions

Motivated by the potential to advance the field of image-based decision-making, the
objective of this thesis is to investigate whether deep-learning-based heterogeneous
treatment effect (HTE) estimation methods can support predictive imaging biomarker
discovery directly from imaging data and improve the ability to make treatment decisions.

This thesis addresses this topic from two perspectives while answering following research
questions (RQs), through research spanning from methodological development of an
evaluation protocol for predictive imaging biomarker discovery (“Part 17) to a study
investigating methods for the application of treatment effect estimation methods in
clinical imaging data (“Part 2”):

Objective of Part 1: Method Development and Evaluation

The first part of the thesis studies the evaluation for predictive imaging biomarker
discovery in a semi-synthetic setting, where treatment effects are simulated from known
pre-defined image features. At the same time, it focuses on the feasibility and robustness
of image-based heterogeneous treatment effect estimation models by benchmarking how
well such models perform at this task. Two main RQs are investigated in this part:

RQ 1.1: Can deep-learning-based heterogeneous treatment effect estimation be
used to discover predictive imaging biomarkers directly from image data without a
separate feature extraction step?

This question investigates whether predictive imaging biomarkers can be learned directly
using deep learning in a data-driven way, with the aim of providing complementary
and new insights to conventional approaches using feature engineering. It is directly
motivated by previously discussed limitations of radiomics-based approaches, including
their potential bias and their often laborious feature extraction process. Given the lack
of true ground-truth predictive biomarkers in real, non-synthetic data, the question
additionally encompasses the development of experiments that can demonstrate the
feasibility of the predictive imaging biomarker process using image data.

RQ 1.2: How can the performance and reliability of image-based heterogeneous
treatment effect models in discovering predictive imaging biomarkers be evaluated
both quantitatively and qualitatively?
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To quantify the predictive imaging biomarker candidates identified by the deep-learning-
based models and assess their interpretability, this question focuses on establishing robust
evaluation strategies. These strategies are designed to be applied in both semi-synthetic
settings and real applications to study any newly identified predictive imaging biomarker
candidates.

Objective of Part 2: Clinical Imaging Application Study

The second part of the thesis investigates the translation of methodological approaches
to imaging data of real clinical patients. It applies the image-based treatment effect
estimation to data from a randomized phase II/III trial in recurrent glioblastoma as well
as a semi-synthetic lung cancer dataset simulating an RCT. The goal is to investigate the
feasibility of making treatment recommendations directly from imaging inputs in realistic
clinical settings. Furthermore, this part addresses specific requirements of such studies
by extending the models to handle survival (time-to-event) outcomes and multimodal
inputs (e.g. clinical tabular data). It investigates the following RQs:

RQ 2.1: Can image-based heterogeneous treatment effect estimation methods be
extended from categorical or continuous outcomes to survival (time-to-event) out-
comes, and how does their treatment recommendation performance compare to
binary-outcome models?

While most prior work on image-based treatment effect estimation focuses on binary or
continuous outcomes, clinical applications are often primarily interested in the overall
survival, which is the main endpoint (i.e. outcome of interest) in many clinical stud-
ies, particularly in oncology (Delgado et al. 2021). This question explores whether
survival-specific loss functions can improve treatment effect recommendations by han-
dling censored time-to-event data (i.e. where the event of interest, in this case death, is
not observed) with more nuance compared to modeling a binary survival status derived
by thresholding the survival time.

RQ 2.2: Can the integration of multimodal inputs or pre-trained image encoders
improve treatment effect estimation performance and robustness on clinical imaging
data?

As clinical tabular data is almost always available in clinical trial settings, this question
investigates whether leveraging multimodal inputs can lead to an improvement in treat-
ment effect estimation and treatment recommendation performance. Furthermore, to
incorporate richer (e.g. anatomical) information and to reduce the risk of overfitting in
applications with limited data, this question explores the benefit of fine-tuning pre-trained
image encoders.
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RQ 2.3: To what extent can image-based heterogeneous treatment effect estimation
models be applied to glioblastoma MRI data from a randomized clinical trial, and what
are their limitations and implications for predictive imaging biomarker discovery?

This question addresses the translation of the developed treatment effect estimation meth-
ods to the clinical trial dataset in glioblastoma. It critically examines model performance,
potential sources of limitations, and the reliability of predictive imaging biomarker dis-
covery under realistic constraints such as limited sample size, censoring, and dataset
imbalances.

Contributions

By addressing the aforementioned objectives, this thesis made the following contributions:

Introduced a novel task for radiomics-free predictive imaging biomarker discovery
using deep-learning-based CATE estimation directly from images, without relying
on handcrafted or radiomics features.

Proposed a new quantitative and qualitative evaluation protocol to assess predic-
tive imaging biomarker discovery and to benchmark the performance and inter-
pretability of deep-learning-based CATE models in discovering predictive imaging
biomarkers.

Conducted a comprehensive evaluation of image-based treatment effect estimation
models in both semi-synthetic and clinical settings, including experiments that
simulate predictive and prognostic imaging biomarkers from pre-defined imaging
features with varying strengths and generate semi-synthetic RCT survival outcomes
from real clinical observational outcomes.

Established the first approach for image-based CATE estimation with survival
(time-to-event) outcomes, analyzing the trade-offs between modeling censored
survival data and using simple thresholded binary survival outcomes for treatment
recommendations.

Presented the first investigation of integrating and fine-tuning pre-trained image
encoders for treatment effect estimation and treatment recommendation from MRI
data, particularly in glioblastoma. Conducted the first systematic investigation
into the impact of advanced deep learning strategies for improving image-based
CATE estimation in clinical imaging settings, including multimodal extensions by
integrating clinical tabular data, segmentation masks, and multitask learning.

Performed the first application of image-based treatment effect estimation to an
RCT in glioblastoma, analyzing heterogeneous treatment effects and evaluating pre-
dictive imaging biomarker discovery performance for treatment with bevacizumab.
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This work provided a rigorous analysis of the translational gap and key challenges
in applying such models under real-world clinical constraints, establishing insights
for future clinical applications.

1.3 Qutline

Most chapters of this thesis, apart from this chapter and Chapter 2, are structured by the
two core research focuses corresponding to the research questions presented earlier:

1. “Evaluating heterogeneous treatment effect estimation models for predictive imag-
ing biomarker discovery”, addressing RQ1.1 and RQ1.2, and

2. “Image-based heterogeneous treatment effect estimation in clinical imaging studies”
addressing RQ2.1, RQ2.2 and RQ2.3.

Following this introduction, the thesis begins with an overview of the relevant clinical
and methodological background covering causal inference and medical image analysis in
Chapter 2.

Chapter 3 reviews the recent works and state-of-the-art methods related to predictive
imaging biomarker discovery and treatment effect estimation, and highlights the main
research gaps in the relevant domains that are addressed in this thesis.

Next, Chapter 4 describes the image-based treatment effect estimation and predictive
biomarker discovery evaluation methods developed in this thesis and the experimental
setup for validating them, including imaging datasets and a strategy for the simulation
of RCT outcomes. Chapter 5 presents the results of the experiments and an extensive
evaluation conducted to answer the research questions.

The main part concludes with a discussion of the experimental results, their broader
implications, main limitations, the overarching themes connecting both studies, and
future research directions in Chapter 6. Finally, a summary of the main contributions
and insights, as well as a brief outlook are provided in Chapter 7.



BACKGROUND

This chapter introduces the most relevant medical and methodological background
for this thesis. Section 2.1 provides the clinical context of predictive and prognostic
imaging biomarkers, and introduces glioblastoma as a motivating application. Section 2.2
introduces the formal framework of causal inference and treatment effect estimation,
while Section 2.3 covers the fundamentals of survival analysis, both of which are necessary
for the methodological developments in later chapters.

2.1 Medical Context

2.1.1 Predictive and Prognostic Imaging Biomarkers

Biomarkers, which is short for biological markers, are measurable characteristics that
provide information about disease status, prognosis, or response to therapy of a patient or
underlying biological processes, and are used to inform clinical decisions (Strimbu et al.
2010). Motivated by their diverse clinical applications, biomarkers have been categorized
into different subtypes, including diagnostic, predictive, and prognostic biomarkers (Califf
2018).

A prognostic biomarker provides information about the likely course of a disease inde-
pendent of treatment and is used to identify patients with higher risks. In contrast, a
predictive biomarker indicates whether a patient is likely to benefit from a particular
therapy (Ballman 2015). These predictive biomarkers play a particularly important part
in personalized medicine, as they inform treatment decisions and can be used for enrich-
ment in clinical trials, where the trial design focuses on selecting patients that might
respond more positively to a treatment (Renfro et al. 2016). Established examples from
oncology include HER2 in breast cancer or epidermal growth factor receptor (EGFR) in
non-small-cell lung cancer (NSCLC), which guide the use of targeted therapies such as
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trastuzumab or (Sutié¢ et al. 2021; Tarighati et al. 2023). These illustrate how predictive
biomarkers can directly inform therapy selection. However, most established biomarkers,
as the previously mentioned examples, are derived from molecular profiling, where tumor
tissue samples obtained through invasive biopsy are analyzed on a molecular level, and
which may not capture the full biological heterogeneity within a lesion or across multiple
lesions.

Medical imaging, in contrast, provides a non-invasive alternative for characterizing tu-
mors and other diseases. Radiologists routinely assess MRI or CT scans to evaluate tumor
morphology, enhancement patterns, and progression over time. Leveraging this data
for biomarker research has led to the development of imaging biomarkers and, more
specifically, the field of radiomics (H. Aerts et al. 2014; Parmar et al. 2015; Kickingereder
et al. 2016; Lambin et al. 2017; Limkin et al. 2017; Park et al. 2018; Chaddad et al. 2019).
Radiomics, as first developed by H. Aerts et al. (2014), aims to extract imaging biomarkers
automatically by segmenting a region of interest, extracting pre-defined handcrafted
features, and performing statistical analysis of prognostic or predictive effects and often
identifying correlations with molecular biomarkers or clinical outcomes. More recently,
deep learning methods have been used for the feature extraction step with automatically
learned representations from image data using pre-trained networks. A key limitation of
radiomics approaches lies in their limited reproducibility, which can be affected by varia-
tions in image acquisition, preprocessing, and feature definition across studies (Pfaehler
et al. 2021).

2.1.2 Glioblastoma: Clinical Context and Treatment

Glioblastoma is the most aggressive and common malignant primary brain tumor in
adults (Grochans et al. 2022). Classified as a World Health Organization (WHO) grade
IV glioma, it is associated with a poor prognosis, with median overall survival typically
below 15 months despite aggressive therapy (Ballman et al. 2007; Tan et al. 2020). Stan-
dard treatment includes maximal safe surgical resection followed by radiotherapy and
concurrent chemotherapy, while corticosteroids are often used to alleviate peritumoral
edema and neurological symptoms (Caramanna et al. 2022). Recurrence, however, is
almost always observed.

In recent years, many computational tools for brain tumor analysis have been developed
in medical image computing, including automated tumor segmentation (Kickingereder
et al. 2019; Helland et al. 2023), growth modeling (Petersen et al. 2019; Elazab et al. 2020),
and survival or outcome prediction (Patel et al. 2021; Li et al. 2022; Poursaeed et al.
2024). These approaches aim to objectively quantify tumor morphology and progression,
supporting diagnosis, therapy planning, and treatment monitoring. Their overall clinical
goal aligns with the motivation of this thesis, which is to use quantitative imaging
information to better guide personalized treatment decisions.
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MRI is central to the diagnosis, treatment planning, and follow-up of glioblastoma. Mul-
tiple MRI sequences, such as T1-weighted, contrast-enhanced T1-weighted (cT1-w), T2-
weighted (T2-w), and FLAIR, provide complementary information about tumor structure,
infiltration, necrosis, and edema. Tumor burden and response to therapy are commonly
assessed using the Response Assessment in Neuro-Oncology (RANO) criteria (Wen et
al. 2010; Wen et al. 2023), which rely on manual two-dimensional measurements of
contrast-enhancing lesions.

The anti-angiogenic therapy Bevacizumab (BEV), which is a humanized monoclonal
antibody (hence the ending “-zumab”) that targets vascular endothelial growth factor
(VEGF) (Ferrara et al. 2005), has been investigated for recurrent glioblastoma. While BEV
has been found to reduce edema and delay progression, large randomized controlled trials
have failed to demonstrate a consistent benefit in overall survival across unstratified
patient populations (Gilbert et al. 2014; Wick et al. 2017). This has motivated efforts to
identify subgroups of patients who might benefit from BEV using predictive biomarkers.

Previous studies have examined both molecular and imaging biomarkers for BEV re-
sponse. Imaging-based biomarkers, such as the apparent diffusion coefficient (ADC,,)
or perfusion parameters derived from dynamic susceptibility contrast MRI, have shown
prognostic associations but failed to demonstrate predictive value (Kickingereder et al.
2020; Schell et al. 2020). Molecular biomarkers, including MGMT promoter methylation,
NF1 mutation status, and the proneural subtype, have shown promise in some stud-
ies (Sandmann et al. 2015; Kessler et al. 2023), but require invasive sampling and are not
yet clinically validated for treatment selection. This ongoing lack of reliable predictive
imaging biomarkers underscores the need for new approaches that can leverage MRI
data to identify patient subgroups that respond positively to treatment non-invasively,
which has also been the medical motivation for the methodological developments in this
thesis.

2.2 Causal Inference and Treatment Effect Estimation

2.2.1 Potential Outcomes and Treatment Effects

In treatment effect estimation, the relation between outcomes and treatment effects has
been formalized by the Neyman-Rubin potential outcome framework (Rubin 2005). In
this framework, each individual ¢ with observed pre-treatment features (e.g. clinical
features or imaging data) z; € R? is considered to have potential outcomes Y;(T) € R,
which are the outcomes that would be observed depending on a treatment assignment
T,. These outcomes can be binary, categorical, continuous or time-to-event data, for
example describing the disease status or survival time of a patient. The observed dataset
of a population of n individuals is then D = {(z;,T;,Y;)}1 ;.

11
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Under the assumption that the treatment assignment is binary, i.e. T' € {0, 1} indicating
for example a control treatment or standard therapy 7" = 0 vs. an experimental treatment
T = 1, the average treatment effect (ATE) can be computed to investigate treatment
effects on a population level. It is defined as the difference between the two potential
outcomes Y;(T' = 0) and Y;(T = 1):

ATE := E[Y,(T = 1) — Y,(T = 0)]. (2.1)

ITE := Y,(T = 1) — Y,(T = 0). (2.2)

Depending on the actual applied treatment the observed outcome is known as the factual
outcome, whereas the unobserved outcome is known as the counterfactual outcome.
Both potential outcomes cannot be observed for the same individual at the same time,
which is the fundamental problem of causal inference (Holland 1986) and which is why
the ITE cannot be measured directly.

For this reason, only the conditional average treatment effect (CATE) 7

() = E[Y,(T = 1) — V(T = )| X = a] (23)
can instead be estimated in practice. Whether this is possible, or in other words whether
the CATE is identifiable, relies on several standard assumptions (Rosenbaum et al. 1983;
Imbens et al. 2009):

« Overlap (Positivity): This states that every individual has a non-zero probability of
receiving each treatment, i.e. Pr(7 = T;|X = z,;) > O forall 7; € {0,1} and all

x;.

« Ignorability (Conditional Exchangeability): Given the observed covariates z, the
treatment assignment is independent of the potential outcomes, i.e. Y(T') L T| z.

« Stable Unit Treatment Value Assumption (SUTVA): This assumes that an individual’s
outcome is not affected by the treatment assignments of individuals (no interfer-
ence) and that always the same potential outcome is observed if an individual
receives a treatment 7, i.e. Y = Y (7T) (consistency).

Additionally, especially in observational settings, an assumption is that there are no
hidden confounders, meaning that all possible confounders that affect the treatment
assignments are observed.

In RCTs, T'is randomly assigned, which ensures ignorability by design, while observa-
tional data require additional modelling strategies to account for confounding.

12
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Unobserved Observed
- Treatment
Predictive
Biomarker Effect 7 Outcomes Y
Xpred & T
Image Treatment Treatment
Group
Prognostic
Biomarker
Xpmg > Y(T=0)
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Q observed O unobserved Grou
: . p
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Figure 2.1: Diagram of the relationship between a prognostic biomarker z,,,, and a predictive
biomarker z,,,; within a causal inference framework. The biomarkers affect the
outcomes Y (T) differently: the prognostic biomarker z,,,,
treatment 7} while the predictive biomarker x4 is associated with T; contributing
to a treatment effect 7. The figure also illustrates the fundamental challenge of causal
inference: the individual treatment effect is not inferable directly in practice, since
both potential outcomes Y;(T' = 0) and Y; (T = 1) cannot be observed for a given
individual at the same time. ©2025 IEEE. Adapted and reprinted with permission
from Xiao et al. (2025).

affects the outcome of

In practice, personalized treatment recommendations can be derived from the estimated
CATE by applying a decision threshold. For example, if 7(z) > 0, the treatment 7' = 1
would be recommended, as it is expected to improve an individual’s outcome compared
to the alternative control treatment 7" = 0.

To make personalized recommendations grounded by pre-treatment data and identifying
subgroups that may benefit from treatment, only the treatment effects that vary among
individuals and covariates x, i.e. HTEs, are relevant. Building on the clinical introduction
of biomarkers in Section 2.1.1, predictive biomarkers x,,, are formally defined as covariates
that directly interact with the treatment and contribute to these HTEs (Ballman 2015). In
contrast, prognostic biomarkers x,,,, are defined as covariates that are associated with
outcomes independent of which treatment is applied. The relationship between these two
types of biomarkers, potential outcomes and treatment effects is illustrated in Figure 2.1,
while their effect on observed survival outcomes is shown later in Figure 2.2 in the context
of survival analysis.

13
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2.2.2 Estimation of Treatment Effects

Even though individual counterfactual outcomes are unobserved, conditional treatment
effects can still be estimated by learning predictive models for the potential outcomes un-
der each treatment. This corresponds to modeling the response surfaces f,(x) and f;(x)
(or equivalently a single function f(x,T")) that map covariates x to the expected outcomes
Y(T =0) and Y(T = 1), respectively, allowing interpolation across individuals with
different treatment assignments.

Different strategies have been developed to estimate CATEs. Among the most widely
used approaches are the so-called meta-learners (Kiinzel et al. 2019), which can be applied
using standard supervised prediction models, such as regression or deep learning models.
The simplest meta-learner is the S-learner, which uses a single model to predict outcomes
for all treatment groups by taking the treatment indicator as an additional input feature.
It can leverage the full dataset and is stable when sample sizes are limited, but often
underestimates the treatment effect when the true effect is small. The T-learner consists
of two separate models for each treatment group and is thereby more flexible, but might
not be able to capture similarities between treatment groups. The X-learner was proposed
by Kiinzel et al. (2019) to balance these limitations by combining both modeling strategies
and directly estimating the CATE. Other extensions, such as Treatment-Agnostic Rep-
resentation Network (TARNet) (Shalit et al. 2017) and its variants, learn shared feature
representations with separate outcome heads to improve balance between treatment
groups. Matching, weighting, or regularization techniques (e.g. integral probability
metric (IPM)) can further reduce bias due to covariate imbalance, as explored in later
deep-learning-based methods of treatment effect estimation.

2.2.3 Evaluation of Treatment Effect Estimators

Evaluating treatment effect estimators is challenging, since the true individual treatment
effect cannot be observed directly. When both factual and counterfactual outcomes are
available, for example in simulated or semi-synthetic experiments, performance of CATE
estimation models can be quantified using the precision of estimating heterogeneous
effects (PEHE) (Hill 2011):

1 .
CPEHE = Z(Tz — %)%, (2.4)
5

where n is the number of test samples, 7, the true CATE and 7; estimated CATE of a
model, and lower €pp; indicate better estimated treatment effects.

For real clinical applications, where counterfactuals are unobservable, evaluation instead
focuses on decision-based metrics. The policy value (Kallus et al. 2018; Jesson et al. 2021)

14
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measures the expected outcome under a treatment recommendation policy 7(x) € {0,1}
(such as the one described in Section 2.2.1):

Ve = E[Yz ()]

= Pr(r(z) = 1) - E[Y(1) | 7(z) = 1] (2.5)
+Pr(n(z) = 0) - E[Y(0) | n(z) = 0]

When computed using observed (factual) outcomes only, the policy value corresponds to
the Expected Response Under Proposed Treatments (ERUPT) (Zhao et al. 2019; Hitsch et al.
2024), which measures the average observed outcome among individuals whose assigned
treatment follows the ones recommended by the model.

The policy value in Equation 2.5 can be applied to outcomes of any scale, while the policy
risk can be applied when the outcomes are bounded to values in [0, 1], such as in binary
classification. In that case, the policy risk provides a normalized performance measure in
the range of 0 and 1 for treatment recommendations, representing the expected decrease
in outcome when following the given policy:

RPol =1- VPOI
- <Pr(7r(.r) =1)-E[Y (1) | m(x) = 1] (2.6)

+ Pr(m(z) = 0) - E[Y(0) | n(z) = 0]).

Another metric for assessing treatment recommendations is the decision accuracy, which
quantifies the fraction of correctly predicted treatment recommendations. In its basic
form, it requires access to the ground-truth treatment effect and the optimal policy, but
extensions have extended this metric to observed data only (Efthimiou et al. 2023).

2.3 Survival Analysis

Survival analysis deals with time-to-event outcomes, where each individual is represented
by aset {(z;,Y;,d,;)}, which consists of features describing the individual x,, the observed
time until the occurrence of an event Y (e.g. death or failure of a system), referred to
as survival time throughout this thesis, and a censoring indicator § € {0, 1} denoting
whether an event was observed (0 = 1) or censored (6 = 0). Unlike classification
or regression, where the outcome is a single categorical or continuous value, survival
analysis must account for time-dependent outcomes and censoring, as some patients may
still be alive or lost to follow-up at the end of a study or withdraw from it. For this reason,

the observed survival time ¥ = min(Y’, C) is equal to the censoring C' when ¢ = 0.

15
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2.3.1 Survival and Hazard Functions

To describe the survival probability of surviving beyond ¢, the survival function
S(tlx) = P(Y > t|z) (2.7)

is defined. Its derivative, the hazard function A(t|z) = —% log S(t|z), corresponds to
the instantaneous risk of an event taking place at time ¢, given it has not occurred before

yet.

The median survival time is defined as the time point ¢ at which S (t) = 0.5, and is used
for the characterization and comparison of survival curves. Alternatively, the restricted
mean survival time (RMST) (Irwin 1949) is defined as the area under the survival curve
up to t/,

RMST(7) = / t S(t) dt. (2.8)
0

Cox Proportional Hazards Model

To model the survival time depending on covariates x, the Cox proportional hazards
model (Cox 1972) describes the hazard function using \(t|z) = \,(t) exp(8' z), where
it is assumed that only the baseline hazard function A, (¢) varies and is the same for all
individuals, while the multiplicative contribution exp(3 ' z) remains constant over time
(proportional hazards assumption).

Under this proportional hazards assumption, the ratio between the hazards of two indi-
viduals 7 and j, or hazard ratio (HR), is

A
Y Altly)

HR = exp(B' (z; — z;)), (2.9)

which is constant as well over time. This property implies that the survival curves for
different subgroups do not cross.

The model parameters (3 can be estimated by minimizing the negative partial log-likelihood

function:
LOEEDY [M—m( > ﬁ)] (2.10)

3:0,=1 j:yjeﬂk'i
where the risk set X, = {j | Y; > Y, } includes all patients who have survived up to time
point Y.

This formulation is widely used in modern survival models, such as the neural-network-
based survival model by Faraggi et al. (1995) or DeepSurv (Katzman et al. 2018) (see
Section 3.2 and Section 4.2.2).
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Figure 2.2: lllustration of how predictive and prognostic biomarkers affect survival probability,
shown using simulated Kaplan-Meier curves (adapted from Ballman (2015)). When
stratified by predictive biomarkers (top), treatment effects differ between biomarker
subgroups, with only biomarker-positive patients benefiting from the treatment (e.g.
here represented as the difference in median survival time). In contrast, when strati-
fied by prognostic biomarkers (bottom), the biomarker influences overall survival
prognosis but not the treatment effect, which remains constant across subgroups.

Kaplan-Meier Estimator

While the Cox model provides a semi-parametric approach to modeling effects of co-
variates on survival, the Kaplan-Meier estimator (Kaplan et al. 1958) offers a fully non-
parametric estimate of the survival function. It estimates the probability of surviving

beyond time ¢ as
. d.
S(t) = 1—— 2.11
m=11 ( n) : (2.11)

t,<t i
where d; is the number of events and n; the number of individuals that are at risk at time
t.

i

17



2 Background

Kaplan-Meier curves are often used to visualize differences in survival between sub-
groups, such as treatment versus control or biomarker-positive and biomarker-negative
subgroups. An example for such a visualization is shown in Figure 2.2, which illustrates
how predictive and prognostic biomarkers can lead to different effects in survival curves
when comparing treatment and control groups.

To statistically compare two survival curves and assess differences, the log-rank test (Man-
tel et al. 1966) is commonly used to test the null hypothesis that there is no difference
between the survival distributions of two groups. Alternatively, the HR obtained from
a Cox model can quantify the relative risk between groups, where HR< 1 indicates a
survival benefit from treatment.

2.3.2 Evaluation of Survival Analysis

C-index

The performance of survival models is commonly evaluated using Harrell’s concordance
index (C-index) (Harrell et al. 1982; Harrell Jr et al. 1996), which measures the proportion
of correctly ordered pairs of predicted risk scores 7),, 7); and observed survival times Y,

Yj:

A value of C' = 0.5 corresponds to random ranking and C' = 1 to perfect concordance.
Time-dependent variants (Antolini et al. 2005) extend the metric to handle censored data
more accurately.

Handling censoring

Naively, censoring data can be handled by excluding censored observations during
training and evaluation. However, this approach can lead to a bias, as patients with
longer survival times are more likely to be censored (e.g. due to study end or dropout),
so that the outcome distribution skews towards shorter survival times.

To account for the impact of censoring, inverse probability of censoring weighting (IPCW)
was introduced by (Robins et al. 1992; Robins et al. 2000). This approach weights the
contribution of uncensored observations inversely by their probability of remaining
uncensored, which can, for example, be estimated non-parametrically using a Kaplan-
Meier estimator or through covariate-dependent models, such as Cox regression, to model
the censoring process (Robins et al. 2000; Satten et al. 2001). Uncensored observations
with a lower probability remaining uncensored thus have a higher contribution, ensuring
that they better represent censored cases. IPCW can be applied both during training of
survival models (Vock et al. 2016) and evaluation, including the computation of metrics
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such as the C-index (Uno et al. 2011) or Brier score (Gerds et al. 2006) or the restricted
mean survival time (Tian et al. 2014).
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RELATED WORK

The areas investigated by this thesis cover multiple research topics, including causal in-
ference (specifically treatment effect estimation), predictive biomarker discovery, medical
imaging, and survival analysis. Table 3.1 summarizes representative works in these areas,
structured to highlight the key gaps addressed by this thesis.

This chapter is structured by two main parts of this thesis, with Section 3.1 providing
an overview of works related to heterogeneous treatment effect estimation models for
predictive imaging biomarker discovery and Section 3.2 providing an overview of works
related to image-based heterogeneous treatment effect estimation models in clinical
imaging studies with a focus on those concerning survival outcomes. While this structure
is used for clarity, many of the topics discussed are inherently cross-cutting and relevant
to both main areas of investigation of the thesis.

3.1 Evaluating Heterogeneous Treatment Effect
Estimation Models for Predictive Imaging
Biomarker Discovery

Disclosure: Parts of this section are based on previously published work (Xiao et al.
2025). ©2025 IEEE. Content has been adapted with permission.

3.1.1 Heterogeneous Treatment Effect Estimation

The estimation of heterogeneous treatment effects aims to quantify how treatment efficacy
varies across individuals or subgroups, supporting personalized treatment recommen-
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3 Related Work

Table 3.1: Comparison of works related to this thesis, including treatment effect estimation,
survival prediction, and predictive biomarker discovery from image data. Methods
that only partially address a task that is not the main focus are marked with (v).

a Related to heterogeneous treatment effect estimation for predictive imaging biomarker discovery.

Input Task

Treatment Predictive

Method Image Multi- Survival .
effect - biomarker

data modal S prediction .
estimation discovery

Predictive biomarker discovery

Sechidis et al. (2018) X
Hermansson et al. (2021) X
Bahamyirou et al. (2022) X
Crabbé et al. (2022) X
W. Zhu et al. (2023) X
Boileau et al. (2023) X
Svensson et al. (2025) X
Vollenweider et al. (2025) X
Verhaeghe et al. (2025) X
Bo et al. (2025) X
Z. Liu et al. (2025) X
Arango-Argoty et al. (2025) X

N X X %X %X X X X X X %X X%
LIRSS NENENE N N NS
N X X X %X X X X X X %X X%
NN N N N N S NN

Image-based treatment effect estimation

Medical imaging data
Durso-Finley et al. (2022),
Durso-Finley et al. (2023)
Ma et al. (2023),

Ma et al. (2024)

Herzog et al. (2025)

Jiang et al. (2023)
Non-medical imaging data
Takeuchi et al. (2021)
Deshpande et al. (2022)
Jerzak et al. (2023)

Cadei et al. (2024)

F. W. Zhu et al. (2025)

AR NEE NN
AR NEE NN
AR NEE NN

*x X
> X

N X %X X% X%

)

SNITSNSNSNAS NS
IR R N
SNTITSNSNSNAS S
x| > X X % %

Xiao et al. (2025)
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3.1 Evaluating HTE Estimation Models for Predictive Imaging Biomarker Discovery

b Related to image-based heterogeneous treatment effect estimation in clinical imaging studies.

Input Task
Method . Treatment . Predictive
Image Multi- Survival .
effect - biomarker
data  modal L prediction .

estimation discovery
Deep-learning-based survival treatment effect estimation
Katzman et al. (2018) X X ) v X
Curth, Lee, et al. (2021) X X v v X
Schrod et al. (2022) X X v v X
Chapfuwa et al. (2021) X X v v X
Frauen et al. (2025) X X v v X
Kim (2025) X X v v X
Survival prediction using medical imaging data
Haarburger et al. (2019) v X X v X
Li et al. (2022) X X 4 X
Vale-Silva et al. (2021) v v X v X
Wolf et al. (2022) v v X v X
Meng et al. (2022) v X X v X
Hao et al. (2022) v v X v X
Huo et al. (2025) v v X v X
This thesis v 4 v 4 v
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dations. The PATH (Predictive Approaches to Treatment effect Heterogeneity) State-
ment (Kent et al. 2020) provided a unifying framework for such analyses in clinical trials,
distinguishing between risk-modeling and effect-modeling strategies and emphasizing
their role in patient-centered treatment recommendations.

Different deep learning methods have been developed for heterogeneous treatment effect
estimation from tabular input data, addressing, for example, observational data, data
coming from imbalanced classes, or multiple types of treatments (Alaa et al. 2017; Shalit
et al. 2017; Amsterdam et al. 2019; Kiinzel et al. 2019; Shi et al. 2019; Jin et al. 2021).

In contrast to treatment effect estimation models on tabular input data, image-based
models remain less widely explored, but are an emerging field (see Table 3.1a). In medical
imaging, early approaches adapted multi-headed deep neural networks based on the
TARNet architecture by Shalit et al. (2017) to estimate treatment effects from MRI scans in
multiple sclerosis, incorporating lesion segmentation masks and clinical tabular covariates
as additional inputs (Durso-Finley et al. 2022; Durso-Finley et al. 2023).

For head CT scans, more recent work has proposed a multimodal architecture incor-
porating clinical tabular data as well, for example, using representation learning and
distribution balancing in aneurysmal subarachnoid hemorrhages (Ma et al. 2023; Ma et al.
2024), or for outcome prediction using a pre-trained SwinUNETR image encoder (Herzog
et al. 2025). Jiang et al. (2023) further explored deep ensemble models for treatment effect
estimation from chest X-ray images.

Outside medical imaging, image-based treatment effect estimation has been applied to
diverse domains, including satellite imagery (Jerzak et al. 2023; F. W. Zhu et al. 2025),
spatial crowd movements (Takeuchi et al. 2021), or video data (Cadei et al. 2024).

For example, Cadei et al. (2024) conducted benchmark experiments on causal inference
tasks with image and video data, introducing the ISTAnt benchmark to compare different
neural architectures.

Jerzak et al. (2023) proposed a probabilistic model to cluster images based on similar
estimated treatment effects, providing interpretable subgroups for anti-poverty policies.

Although not explicitly framed as predictive biomarker discovery, F. W. Zhu et al. (2025)
applied image-based CATE estimation to a similar remote-sensing dataset and inves-
tigated the features driving heterogeneous treatment effects. Although these features
could be interpreted as predictive biomarkers, they did not explicitly perform biomarker
discovery, focusing instead on representation-level analyses of treatment-effect hetero-
geneity.

All of these works address categorical or continuous outcomes (for example, predicting a
survival probability at a fixed time point rather than a time-to-event outcome (Ma et al.
2024)), and none explicitly aim to identify predictive biomarkers.
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3.1 Evaluating HTE Estimation Models for Predictive Imaging Biomarker Discovery

Evaluating HTE estimation models (i.e. CATE estimation models) by their ability to learn
predictive biomarkers has been stressed by works of Curth, Svensson, et al. (2021) and
Crabbé et al. (2022), as this is often the more relevant downstream task for real-world
applications such as personalized medicine. They also emphasized the importance of
utilizing semi-synthetic data to benchmark these methods, which motivated the use of
simulated imaging biomarkers in this thesis.

3.1.2 Predictive Biomarker Discovery Using Causal Inference

Building on the concept of predictive imaging biomarker discovery introduced in Sec-
tion 2.1.1, which has relied on radiomics features and correlations with molecular biomark-
ers in medical imaging traditionally, recent work has explored this task using causal
inference methods.

Many approaches have been proposed to evaluate whether predictive effects can be iden-
tified in a data-driven way as listed in Table 3.1a, which typically rank features by their
contribution to treatment effect heterogeneity Hermansson et al. (2021), Bahamyirou et al.
(2022), Crabbé et al. (2022), Boileau et al. (2023), Svensson et al. (2025), and Verhaeghe et al.
(2025). In these studies, predictive biomarker discovery is often formulated as a down-
stream task of HTE or CATE estimation, using explainable artificial intelligence (XAI)
techniques or other variable-importance measures. Other related works, such as Sechidis
et al. (2018) and W. Zhu et al. (2023), approach predictive biomarker discovery from
a more general feature-importance perspective without explicitly modeling treatment
effects. This ranking approach however limits their applicability to high-dimensional
inputs such as imaging data.

A key challenge for predictive biomarker discovery is distinguishing predictive from
prognostic covariates, since both can influence outcome prediction, but only the for-
mer contribute to heterogeneous treatment effects. Several studies have shown that
CATE estimators can mistakenly identify prognostic as predictive biomarkers (Sechidis
et al. 2018; Hermansson et al. 2021; Crabbé et al. 2022), which can lead to treatment
recommendations that are potentially ineffective or even harmful.

It is therefore essential to ensure that these methods can distinguish the two types of
biomarkers, which has motivated the development of methods that explicitly separate
them (Sechidis et al. 2018; Hermansson et al. 2021; Arango-Argoty et al. 2025; Verhaeghe
et al. 2025).

Several deep-learning-based predictive biomarker discovery approaches have mentioned
their potential applicability to imaging data as well, although none of them have explicitly
demonstrated it. The Predictive Biomarker Modeling Framework (PBMF) proposed
by Arango-Argoty et al. (2025) employs a contrastive learning objective based on survival
differences within treatment groups to directly predict biomarker status and confidence
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scores. So far, it has only been shown on clinical and omics-type features, and its
scalability to mini-batch training remains to be evaluated. Similarly, Z. Liu et al. (2025)
introduced DeepRAB, a deep-learning-based framework for subgroup identification and
predictive biomarker discovery that incorporates a biomarker selection layer to output
feature-importance scores.

Closely related to heterogeneous treatment effect is the concept of digital twins (also
known as virtual twins), which aim to build individualized computational models that
simulate a patient, or systems in general, to predict patient-specific treatment outcomes
or disease progression under alternative conditions such as different therapies. Such
approaches have also been explored for subgroup identification and predictive biomarker
discovery (Foster et al. 2011; Hermansson et al. 2021; Susilo et al. 2023), although many
approaches rely on mechanistic modeling rather than purely data-driven learning.

Despite these advances, to date, there is currently no well-validated method for predictive
imaging biomarker discovery that directly leverages raw image data without a separate
handcrafted feature extraction step.

3.2 Image-Based Heterogeneous Treatment Effect
Estimation in Clinical Imaging Studies

3.2.1 Treatment Effect Estimation Methods for Survival Outcomes

The goal of personalized therapy is often to extend the survival time of patients, which
is why overall survival is one of the most common clinical endpoints and outcomes of
interest in many clinical studies, particularly in oncology (Delgado et al. 2021). There-
fore, an important requirement for treatment recommendation methods based on CATE
estimation is to model time-to-event outcomes, and to account for its specific challenges
such as censoring.

Classical survival models such as the Cox proportional hazards model (Cox 1972) and
its generalization to deep learning, DeepSurv (Katzman et al. 2018), or DeepHit (Lee
et al. 2018), can in principle be integrated into standard treatment effect frameworks,
such as S- or T-learners, to model treatment-specific survival functions. DeepSurv
reformulates the Cox model using the negative partial log-likelihood loss and has been
applied to treatment recommendation scenarios. While the original work does not
explicitly estimate heterogeneous treatment effects or perform causal evaluation, it has
been used as baselines for CATE estimation for survival outcomes, but typically without
explicitly accounting for confounding or covariate imbalance.

Recent research has proposed deep learning architectures that explicitly extend CATE
estimation to censored survival data, which are summarized in Table 3.1b.
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Curth, Lee, et al. (2021) introduced SurvITE, which estimates heterogeneous treatment
effects based on the restricted mean survival time by learning discrete-time treatment-
specific conditional hazard functions. The model uses separate outcome heads for each
time interval and applies covariate balancing to mitigate distributional shifts between
treatment arms.

Schrod et al. (2022) proposed Balanced Individual Treatment Effect for Survival Data
(BITES), which incorporates an IPM loss term into a Cox-based survival model to bal-
ance latent representations among treatment arms and reduce confounding bias during
training.

Similarly, Chapfuwa et al. (2021) developed a generative framework for individualized
treatment effect estimation on survival outcomes, using planar flow-based latent trans-
formations to jointly account for selection bias and censoring bias.

For the evaluation of survival-outcome treatment effect estimation, Efthimiou et al. (2025)
proposed performance metrics tailored to treatment recommendations, extending existing
measures such as the C-for-benefit and decision accuracy to time-to-event outcomes.

Beyond methodological developments in deep learning, related work has also investigated
predictive biomarker discovery and using treatment effect estimation models for survival
data. For example, Ternes et al. (2017) compared a range of approaches based on the Cox
model for identifying predictive biomarkers from high-dimensional tabular data in RCTs.

Although these works have been successfully applied to make treatment recommenda-
tions, all have only been applied to structured tabular inputs and have not been extended
to imaging data. A straightforward extension of survival prediction models, such as Deep-
Surv or BITES, could in theory provide treatment-specific survival modeling, but such
adaptations have not yet been validated or benchmarked on clinical imaging datasets.

3.2.2 Survival Prediction from Imaging Data

Many survival prediction methods for medical imaging data have relied on traditional
approaches such as the Cox proportional hazards model (Cox 1972) or classical machine
learning methods such as random survival forests (Ishwaran et al. 2008) and gradient-
boosted survival trees (Chen et al. 2016). These methods typically operate on handcrafted
or radiomics-derived image features and thus depend on a separate feature extraction
step. While these methods are straightforward and effective on limited dataset sizes,
the reliance on handcrafted feature-based pipelines is not well suited for discovering
predictive imaging biomarkers and cannot easily integrate multimodal data.

Deep learning has enabled end-to-end survival prediction directly from images (also see
Table 3.1b) and has the advantage of learning subtle patterns in a data-driven way. Several
models extend the DeepSurv framework by Katzman et al. (2018) to convolutional neural
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network (CNN) architectures, such as DeepConvSurv (X. Zhu et al. 2016), DeepMTS (Meng
et al. 2022) or the work by Haarburger et al. (2019). These models replace the handcrafted
feature step with learned representations and optimize the Cox partial log-likelihood loss
for time-to-event prediction.

Haarburger et al. (2019) further used a hybrid approach combining CNN-derived with
radiomics features and compared direct survival modeling against binary median-survival
classification and highlighted the practical challenges of mini-batch training in survival
settings due to censored samples. Similarly, SurvCNN (Hao et al. 2022) combines CT
imaging with radiomics features, while DeepMTS (Meng et al. 2022) jointly learns tumor
segmentation and survival risk prediction, showing that such multitask and multimodal
designs can outperform purely radiomics-based baselines.

Several studies have explored architectures specifically for brain cancer survival predic-
tion. For example, Li et al. (2022) proposed the DeepRisk model, which incorporates
spatial and channel attention mechanisms into a residual neural network (ResNet) back-
bone to identify high-risk regions across whole-brain MRI, illustrating the potential of
tully convolutional attention-based networks to identify prognostic imaging patterns.

Multimodal integration has been shown to enhance survival prediction further. The
DAFT framework (Wolf et al. 2022) and MultiSurv (Vale-Silva et al. 2021) integrate
imaging and clinical covariates through learned feature fusion, with the latter employing
a discrete-time survival formulation to model time-to-event outcomes.

Recent studies have also leveraged pre-training and transfer learning to mitigate data
scarcity in medical imaging, for example by pre-training time-aware models on longitudi-
nal imaging data for improved survival prediction (Huo et al. 2025). Similarly, Dancette
et al. (2025) introduced the CURIA multimodal foundation model for radiology, showing
that large-scale pre-training on observational imaging data can improve downstream
survival prediction performance.

Finally, some studies compared discrete binary risk classification with continuous time-
to-event modeling. For instance, Haarburger et al. (2019) used median-survival thresholds
as binary endpoints, while Zhou et al. (2023) found that quantized survival categories
improved patient stratification robustness using multimodal whole slide imaging, clinical,
and genomic data. However, other analyses have shown that directly modeling time-
to-event outcomes yields more accurate and interpretable risk estimates on multimodal
(chest X-ray and demographic) data (M. Liu et al. 2024).

While these studies demonstrate substantial progress in prognostic survival prediction
from medical images, they do not address treatment effect estimation or predictive
imaging biomarker discovery, which remain open challenges motivating this thesis.
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3.2.3 Transfer and Self-Supervised Learning for Treatment Effect
Estimation

Transfer and self-supervised learning have emerged as important strategies to address data
scarcity in deep-learning-based treatment effect estimation. Several studies demonstrated
that pre-training can enhance generalization and stability of CATE models, even though
most prior work focused on tabular data. For instance, Aloui et al. (2023) investigated
transfer learning for tabular treatment-effect estimation, and R. Liu et al. (2024) introduced
a large-scale foundation model (CURE) trained on electronic health records to predict
individualized treatment responses. More recently, Zhang et al. (2024) proposed a causally
aware foundation model that unifies observational and interventional representations,
indicating a step toward integrating causal reasoning into pre-trained architectures. In
the imaging domain, Herzog et al. (2025) applied a pre-trained SwinUNETR encoder
for outcome prediction on CT data, illustrating the potential of leveraging pre-trained
backbones for image-based CATE estimation.

Despite these advances, no prior work has systematically applied pre-trained image
encoders to treatment effect estimation from brain MRI data, which is investigated in
this thesis.

Conclusion

This chapter has provided a detailed review of the state-of-the-art in heterogeneous treat-
ment effect estimation, predictive biomarker discovery, and image-based survival analysis.
As summarized in Table 3.1, while prior work has advanced treatment effect estimation,
survival prediction, and predictive biomarker discovery individually, no approach jointly
addresses all three tasks for making treatment recommendations from imaging data and
thereby advancing personalized medicine. This thesis therefore proposes methods that
integrate these tasks into an approach for discovering and evaluating predictive imaging
biomarker discovery (Section 4.1) and a unified model for image-based CATE estimation
for survival outcomes (Section 4.2).
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MATERIALS AND METHODS

This chapter presents the methods that have been developed in this thesis to address the
research questions outlined in Section 1.2, as well as the datasets, model architectures
and training strategies used throughout the experiments.

In Section 4.1 the proposed approach for discovering predictive imaging biomarkers
(RQ1.1) is described, along with a novel evaluation protocol to assess the performance
of heterogeneous treatment effect estimation models in predictive imaging biomarker
discovery (RQ1.2). Section 4.2 introduces methods for image-based heterogeneous treat-
ment effect estimation to deal with survival outcomes (RQ2.1) and for integrating tabular
inputs and pre-trained image encoders (RQ2.2) while supporting their application to
clinical imaging study data (RQ2.2).

4.1 Evaluating Heterogeneous Treatment Effect
Estimation Models for Predictive Imaging
Biomarker Discovery

Disclosure: Parts of this section are based on previously published work from Xiao
et al. (2025), which was originally written by the author of this thesis. ©2025 IEEE.
Content has been adapted with permission.

This section establishes the task of radiomics-free predictive imaging biomarker dis-
covery by explaining how it is connected to heterogeneous treatment effect estimation
(specifically CATE estimation), which is done in Section 4.1.1, and presents the deep-
learning-based model used in this thesis for this purpose in Section 4.1.2. One of the main
contributions, the proposed evaluation protocol for predictive imaging biomarker discov-
ery including the quantitative statistical evaluation and qualitative evaluation using XAI
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methods, is presented in Section 4.1.3. The section closes with the experimental setup in
Section 4.1.3, where a strategy for simulating outcomes using pre-defined predictive and
prognostic imaging biomarkers is proposed, to enable the benchmarking of predictive
imaging biomarker discovery. The following subsections in this section were adapted from
(Xiao et al. 2025), which was originally written by the author of this thesis.

4.1.1 Treatment Heterogeneity and Predictive Biomarkers

After establishing the fundamentals of causal inference and treatment effect estimation in
Section 2.2, this subsection describes the relationship between estimating heterogeneous
treatment effects and identifying predictive imaging biomarker, which is a central topic
to RQ1.1.

In heterogeneous treatment effect estimation, the goal is to estimate the CATE from
observable pre-treatment covariates x € X. When the CATE of the observed outcome Y
directly depends on such a covariate, it is considered to be a biomarker, and when this
biomarker can be extracted from images I and measure image features, it is referred to
as an “imaging biomarker”. In this thesis, the term “biomarker” is used to describe such
covariates with an established relation to the CATE of the observed outcome Y'in general,
independent of whether used in the biomedical context, where the term was originally
established, or not. For making treatment decisions or selecting subgroups of patients
that may benefit from treatment, only heterogeneous treatment effects are relevant,
which vary among individuals and covariates = within the whole observed population.
Therefore, identifying predictive biomarkers, which in this context are covariates that
directly contribute towards the heterogeneous treatment effect, i.e. CATE and interact
with the treatment, is highly relevant for the aforementioned tasks.

A common assumption in literature, e.g. by Sechidis et al. (2018), Kiinzel et al. (2019),
Curth, Svensson, et al. (2021), and Hermansson et al. (2021), is that treatment-independent
prognostic effects f,,,, and treatment-related predictive effects f,,,, are additive. Under
this assumption, the expected outcome can be written as

E[YT(2)] = foog(2) + fprea(x)T, (4.1)

where f,,.;(x) only depends on predictive biomarkers z,,,,;, but not prognostic ones
(Zprog)- In this formulation, the CATE as defined in Equation 2.3 directly corresponds
to fyea(Z) as a constant average treatment effect is not modeled explicitly in more
general formulations one could instead write the contribution of the treatment effect as

fireat(T) = To + fprea(x) With 7, representing a constant average treatment effect.

Thus, prognostic and predictive effects can automatically, in principle, be separated by

treatment effect estimation, which in turn identifies predictive biomarkers . .

It is important to note that since a biomarker can be both prognostic and predictive at
the same time, the same covariates can contribute to both f,,,.(7) and f,.4(z).
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4.1.2 Deep Learning Model for Treatment Effect Estimation from
Imaging Data

To implement the discovery of predictive imaging biomarkers using treatment effect esti-
mation, deep neural network-based CATE estimation models are leveraged and adapted
with a convolutional image encoder to process image inputs. The experiments presented
in this thesis used a modified version of the TARNet model (Shalit et al. 2017), which was
originally designed for tabular input data.

The network, illustrated in Figure 4.1, is adapted similarly to (Durso-Finley et al. 2022),
utilizing shared convolutional layers (in this case, ResNet blocks (He et al. 2016)) as an
image encoder. Its purpose is to learn the similarities between the control and treatment
arms that contribute to prognostic effects (Curth and Schaar 2021). These shared layers
are followed by two treatment-specific heads (in this case, fully connected layers) for
predicting the potential outcomes Y (7).

In the training phase of the image-based CATE estimation model, as shown in Figure 4.1a,
the loss is computed only for the output head corresponding to the treatment that was
actually received and is therefore specific to the treatment arm. The weights of both
network heads are updated jointly in every training step based on the total loss, which is
obtained by summing up the loss of the control group head output and the treatment
group head output within a mini-batch.

The inference step is depicted in Figure 4.1b, where the CATE is estimated using
7 =Y, (T =1) - Y,(T = 0), (4.2)

(3

i.e. by subtracting the model’s predicted control group outcome from the predicted
treatment group outcome.

Baseline. To assess whether the CATE estimation model truly learns treatment-dependent
effects and can successfully facilitate the discovery of predictive imaging biomarkers, it
is compared against a single-headed baseline with the same shared image encoder. It is
expected that such a model likely predicts the average outcome across both treatment
arms from predictive and prognostic biomarkers, without explicitly separating treatment-
specific contributions from predictive imaging biomarkers and treatment-independent
contributions from prognostic biomarkers.

4.1.3 Proposed Evaluation Protocol for Predictive Imaging
Biomarker Discovery
The evaluation protocol detailed in the following subsections was designed to directly

address RQ1.2 by describing how the performance and reliability of image-based CATE
estimation models can be assessed both quantitatively and qualitatively.
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a. Method Training b. Method Inference
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Figure 4.1: Overview of the identification of predictive biomarkers approach from pre-treatment
images. During the training phase (a) a two-headed TARNet-like architecture (Shalit
et al. 2017) is used to predict the potential outcomes Y;(T = 0) and Y;(T = 1),
optimized using a group-specific loss applied to only predictions with available fac-
tual outcomes. In the inference step (b), these outcomes are used to estimate the
treatment effect CATE 7 from images. In the evaluation step (c), the estimated 7
is treated as a predictive biomarker candidate and used to quantify the predictive
strength with a regression analysis. In the simulation experiments (d), the synthetic
outcomes Y, are generated using image features from ground truth annotations,
which are designated to be prognostic or predictive biomarkers, and random treat-
ment assignments 1. ©2025 IEEE. Adapted and reprinted with permission from Xiao
et al. (2025).

Statistical Evaluation of the Predictive Biomarker Strength

The goal of the statistical evaluation, as illustrated in Figure 4.1c, is to assess whether the
trained CATE estimation models have recovered a heterogeneous treatment effect, i.e.
predictive effect, by testing whether the estimated CATE 7 is indeed predictive and can
be considered a predictive biomarker candidate.

To achieve this, a test for biomarker-by-treatment interactions is performed, which is
also performed in clinical biomarker validation studies (Polley et al. 2013; Ballman 2015).

Here, a linear relationship between biomarkers and outcome is assumed (as in Equa-
tion 4.5) when a linear regression of the outcomes Yis performed with coefficients 3,
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according to
Bo+BrT + BT+ Bz 77T ~Y, (4.3)

where the term f3; ;-7 represents the biomarker-by-treatment interaction term.

To assess this term, the null hypothesis that the corresponding interaction coefficient
is Bz p = 0 is tested using a Student’s {-test. The resulting t-value test statistic {5

is proportional to the estimated parameter BA&T and indicates whether the estimated
biomarker has a statistically significant predictive effect. This test is repeated for all other
coefficients f3; to assess the contributions of the other terms.

To quantify the predictive strength of the estimated CATE 7 compared to its prognostic
strength, the ¢-value ratio of the corresponding test statistics is computed:

tﬁ%,T/tﬁ% = tPVed/thg' (4.4)

Finally, the experimental lower bound (indicating a purely prognostic biomarker) and
upper bound (indicating a purely predictive biomarker) of the relative predictive strength
is determined. This is done by conducting the same evaluation, replacing 7in Equation 4.3
with either the purely prognostic or a purely predictive ground truth biomarker z .,
T preg-

While the evaluation described here uses linear regression under the assumption of a
linear relationship between biomarkers and outcomes, the analysis could also, in principle,
be repeated using a Cox proportional hazards regression model and survival outcomes,
as applied in the experiments described in Section 5.2.2.

Interpretation of Biomarkers using Feature Attribution Methods

The second part of the predictive imaging biomarker discovery evaluation protocol
focuses on interpreting which parts of the images likely contributed to the prognostic
or predictive effects learned by the model. This is achieved by investigating which
input image features the trained model attends when predicting the CATE 7, which in
turn likely correspond to candidate predictive imaging biomarkers. For assessing the
model performance when using semi-synthetic data, this evaluation additionally allows
comparing the identified features to the ground truth predictive imaging biomarkers.

While predictive biomarkers identified by CATE estimation models for tabular input data
can easily be assessed quantitatively using feature attribution methods, as for example
applied by Crabbé et al. (2022) and Verhaeghe et al. (2025), such an assessment is generally
not straightforward for image input data. To enable the discovery and clinical adoption
of novel biomarkers, the identified features must be interpretable. For this reason, the
assessment relies on a qualitative analysis using visual explanations via attribution
maps (Simonyan et al. 2014).
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To this end, the XAI methods Expected Gradients (Expected Gradients) (Erion et al. 2021)
and Guided Gradient-weighted Class Activation Mapping (GGrad-CAM) (Springenberg
et al. 2015; Selvaraju et al. 2017) are employed to generate attribution maps from the
trained model and input images.

Using the attribution maps of the control group head prediction f’(T = 0), it is then
possible to assess the contribution of individual pixels to the prognostic effect on the one
hand. On the other hand, the attribution map of the estimated CATEY (T =1)—-Y (T =
0) enables the analysis of individual pixels’ contribution to the predictive effect.

Simulation of Imaging Biomarkers and Outcomes for Validation

To validate the proposed approach using CATE estimators for predictive imaging biomarker
discovery, experiments were performed with the aim of assessing and interpreting the
predictive imaging biomarker that the CATE estimation model was able to identify, and
also to investigate how well the model performs at the predictive imaging biomarker
discovery task while disentangling them from prognostic imaging biomarkers.

The experiments were conducted on image datasets under controlled conditions, specif-
ically with synthetic outcomes, which were necessary as ground truth counterfactual
outcomes are not available in real datasets.

For this reason, synthetic datasets with simulated treatment effects and ground truth
counterfactual outcomes of varying predictive and prognostic biomarker strengths and
were generated to experimentally verify the model, as illustrated in Figure 4.1d.

In this study, an approach to simulate outcomes from image data is proposed. In contrast to
tabular-data simulations, where outcomes are directly sampled from predefined covariates,
the present approach simulates outcomes based on imaging biomarkers by linking specific
image features to biomarker values z,,,, ,..q- These features are selected from available
image information and can represent attributes from available metadata, class labels, or
radiomics features.

Examples of such features used in the experiments of the first part of the thesis are
illustrated in Figure 4.2. In the experiments, the biomarkers were defined to be either
purely prognostic or predictive and could take binary or continuous values depending
on the type of dataset.

The simulated outcomes Y were then generated according to a simple linear function
from only two biomarkers:

Y(T7 I) - bprog'rprog + bpred xpredT . (4'5)
~————— S — e’
Prognostic Effect  Predictive Effect

For simplicity, it was assumed here that no offset b, and constant treatment effect b are
present following the setup of Krzykalla et al. (2020).
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This experimental setup using simulated outcomes allows direct control over the relative
magnitude of prognostic or predictive effects by adjusting the parameters b,,,, and b,,, .
Thus, the ratio of the parameters b,,,.4/b,,.,,» which is also referred to as the biomarker
parameter strength ratio in this thesis, can be interpreted as a measure of the signal-to-
noise ratio of the predictive effect in the input data. The contributions of prognostic
imaging biomarkers can hereby be considered to represent noise, as the models need to
visually disentangle them from predictive contributions, and as there is a risk of assuming

a purely prognostic biomarker to be predictive.

In all simulations, the treatment assignment 7" € {0, 1} was randomized with equal
probabilities p(T") = 0.5 to simulate RCT data.

4.1.4 Experimental Setup

Datasets and Imaging Biomarker Features for Outcome Simulation

1 2 1 2 1 2 1 2
te digitis1,2,3,4, digit i primary color bill is longer has has pigment Contint 1S Energy Flatness
5or7 igit is is white than head globules network (i.e. magnitude of voxel (i.e. ratio of principal
(i.e. has no circle) 9reen 0 o | ] values incl. offset) components)
-
\'.‘

.

Figure 4.2: Image features from the four datasets that were used to simulate the outcomes,
where either feature 1 or 2 is designated as predictive or prognostic biomarkers. For
the ISIC 2018 dataset, the skin lesion features are shown with ground-truth masks.
Globules (highlighted with a light green mask) appear as darker dots, whereas
pigment networks (shown with a dark blue mask) exhibit dark grid-like patterns
of streaks interspersed with lighter regions or “holes”. For the NSCLC-Radiomics
lung CT images, features are extracted from the segmented tumor regions outlined
for a 2D slice (left) and in the corresponding reconstructed 3D volumes (right).
Images shown in the top row depict images where both biomarkers features are
either present (CMNIST, CUB-200-2011, ISIC 2018) or have a high value (NSCLC-
Radiomics), whereas the images in the bottom row show examples where the features
are absent or low. ©2025 IEEE. Adapted and reprinted with permission from Xiao
et al. (2025).

Parts of the following paragraphs in this subsection were taken from (Xiao et al. 2025) with
minor adaptation, which was originally written by the author of this thesis.
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For the experiments in this part of the thesis, four diverse publicly available image datasets
were used, which are shown in Figure 4.2, including the features used as biomarkers.
The datasets are: a colored version of the Modified National Institute of Standards and
Technology database (MNIST) dataset (CMNIST) (Deng 2012; Arjovsky et al. 2019), a
dataset of bird images from Caltech-UCSD Birds (CUB), CUB-200-2011 (Wah et al. 2011),
a skin lesion dataset from the International Skin Imaging Collaboration (ISIC), ISIC
2018 (Tschandl et al. 2018; Codella et al. 2019), and a 3D dataset with lung cancer CT
scans of NSCLC patients NSCLC-Radiomics (H. J. W. L. Aerts et al. 2014).

Colored MNIST (CMNIST). The MNIST dataset is adapted by introducing color as
an image feature. The color of the digits is determined based on the random variable z;
sampled from a binomial distribution (with p = 0.5). The following binary features are
defined as imaging biomarkers 0 ;o € {0, 1}: (a) the color (green or not green) as
prognostic feature and whether digits lack or contain a circle or loop (i.e. {1,2,3,4,5,7}
vs. {0,6,8,9}) as the predictive feature or (b) vice versa.

For intuition, a setting where image-based treatment effect estimation could be relevant
for this dataset could involve a treatment such as the application of an image filter to
alter the digit’s appearance. In this scenario, it could be of interest to assess how an
outcome, such as a digit classifier’s confidence score, changes when a treatment is applied,
depending on which color or shape of the digit is present.

Bird species dataset (CUB-200-2011). The dataset includes images of 200 bird species,
5,794 for testing and 5,994 for training, which is further split into training and validation
data with an 80%/20% split. From the binary attributes of the birds, two visually distinct
biomarkers 4 , € {0, 1} with high annotator certainty are selected: (a) “has primary
color: white” as prognostic and “has bill length: longer than head” as the predictive feature
or (b) vice versa.

In this scenario, an illustrative example for the relevance of treatment effect estimation
could be investigating predictive imaging biomarkers for the modification of a habitat,
such as snow, serving as the treatment. The outcome of interest in this case might
relate to a bird’s future observed behavior, which is to be extracted from pre-treatment
observations of birds in the form of imaging input data and might depend on both the

color of the bird and the length of the bill.

Skin lesion dataset (ISIC 2018). The ISIC 2018 dataset contains skin lesion images
with a designated training dataset of 2,594 images, which is split into a training and
validation set of sizes 2,075 and 519, respectively. Final evaluations were performed on
the designated validation set with 100 images.
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Dermoscopic attributes, i.e. visual skin lesion patterns, are identified using ground truth
segmentation masks and assigned their presence to biomarkers. In feature set (a), the
presence of globules is prognostic and the presence of a pigment network is predictive, or
in (b) vice versa. Both features have been evaluated as imaging biomarkers for diagnosing
melanoma (Gareau et al. 2017; Gareau et al. 2020), making them realistic examples of
biomarkers. Unlike the features of the previous datasets, these features are based on the
presence of patterns rather than localized features or color values.

Lung cancer CT dataset (NSCLC-Radiomics).

This dataset comprises 415 3D CT volumes of pre-treatment scans from NSCLC patients
and ground truth segmentation masks of the lung tumors. The volumes were cropped
to the largest connected tumor volume bounding box. The dataset was divided such
that 332 samples were used for 5-fold cross-validation, and 83 samples were reserved for
testing. Two continuous, uncorrelated radiomics features described in (Zwanenburg et al.
2020) were defined as biomarkers, which have both been evaluated for their prognostic
or predictive value before (H. Aerts et al. 2014; Bortolotto et al. 2021): (a) the shaped-
based feature “flatness” describing the ratio between the smallest and largest principal
tumor components as a prognostic feature and the first-order statistics feature “Energy”
characterizing the sum of squares of tumor intensity values as a predictive feature or (b)
vice versa. The flatness feature is inverse to the actual flatness of the tumor. Values close
to 0 indicate flat shapes, whereas values close to 1 indicate sphere-like shapes. Energy
depends strongly on both volume and minimum pixel intensity, as the minimum intensity
value is added as an offset. The radiomics features were extracted from the annotated
ground truth tumor segmentation volumes with PyRadiomics (Van Griethuysen et al.
2017).

All datasets were randomly split into two equally sized treatment arm subsets, a control
(I' = 0) and a treatment group dataset (1" = 1). Treatment group-specific outcomes
Y (T, x) were then generated according to Equation 4.5. For each CMNIST feature, the
biomarker strength parameters b,,,04 o, € {0.0,0.1,...,1.0} were chosen, resulting in
training 121 models. For the remaining datasets, the biomarker strength parameters
bpred,prog € 10.0,0.2,0.4,0.6,0.8,1.0} were chosen, resulting in 36 different trained
models.

Implementation Details

Model Architecture and Training. In the experiments, the two-headed CATE esti-
mation models were all based on the ResNet (He et al. 2016) architecture tailored to each
dataset. For the CMNIST experiments, a MiniResNet (ResNet-14) was utilized, which
had 14 layers, 0.20 M parameters, and only three building blocks. In the CUB-200-2011
and ISIC 2018 experiments, a two-headed ResNet-18 with 11.18 M parameters, and for the
NSCLC-Radiomics a two-headed 3D ResNet with 33.30 M parameters were used. In all
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architectures, the treatment-specific heads consisted of either the last fully connected
layer or the last four fully connected layers for NSCLC-Radiomics experiments. Its pre-
ceding convolutional layers learn shared presentations of control and treatment group
data. The corresponding ResNet architectures with a single output head were used as
baseline models.

The models for CMNIST were trained for 400 epochs with a mini-batch size of 1000. For
CUB-200-2011 and ISIC 2018, the models were trained with a mini-batch size of 64 and
for 1000 or 2000 epochs respectively. The NSCLC-Radiomics models were trained with a
batch size of 8 and 2000 epochs.

For all datasets, the mean squared error (MSE) loss function, a learning rate of Ir = 0.001,
and the stochastic gradient descent (SGD) optimizer were used.

Data preprocessing and augmentation. For preprocessing, zero padding of size 2
was applied to each edge of the CMNIST images. The CUB-200-2011 images were resized
so that their smaller edge had the size 256. The data was augmented by performing
random crop and horizontal flips so that all final images have the size 224 x 224. The
ISIC 2018 images were resized to 224 for the shorter edge, cropped to between 40%
and 100% of their previous size, and resized again to size 224 x 224. This dataset was
augmented with random horizontal and vertical flips, randomly applied rotations by
90 degrees and color jitters. During the inference of both CUB-200-2011 and ISIC 2018
images, center crops were used. All 2D images were normalized by subtracting the mean
and dividing by the standard deviation of the respective channel from the training dataset.
For the NSCLC-Radiomics dataset, padding of value -1024 (HU) was added so that all
padded 3D patches had the size 162 x 162 x 54. All radiomics features were normalized
by subtracting the mean and dividing by the standard deviation of each feature. 3D
image augmentations were implemented using the MONAI deep-learning framework
(Cardoso et al. 2022) and included random flipping, random rotation by 90 degrees along
the zy-axis, and random zooming with probability 0.5 by a factor in the range [0.9, 1.1].
Resampling to the median spacing of the dataset [0.9765625, 0.9765625, 3.0] mm was
based on Isensee et al. (2021) and uses a third-order spline in-plane and nearest-neighbor
interpolation out-of-plane.

Evaluation details. For the statistical evaluations, linear regression using ordinary
least squares and ¢-tests for the fit coefficients as described in Section 4.1.3 was performed
using the statsmodels python module (Seabold et al. 2010). To create attribution maps,
expected gradients (EG) (Erion et al. 2021) for CMNIST and Guided Grad-CAM (Sprin-
genberg et al. 2015; Selvaraju et al. 2017) for the other three datasets were used. Using
EG enabled determining the attribution of each color channel in contrast to CAM meth-
ods, which is vital for discovering the color-related CMNIST biomarkers. Both methods
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were implemented using Captum (Kokhlikyan et al. 2020) and enhanced by Smooth-
Grad (Smilkov et al. 2017) to make the attribution maps less noisy and more robust.

4.2 Image-Based Heterogeneous Treatment Effect
Estimation in Clinical Imaging Studies

Building on the methodological foundations for predictive imaging biomarker discovery
introduced in the previous section, the methodological developments in this section aim
to enhance the applicability of image-based heterogeneous treatment effect estimation
methods to clinical practice. The overarching goal is to experimentally assess whether
such methods can provide more useful treatment recommendations and can support the
identification of potential predictive imaging biomarker candidates in such a setting.

This section begins with Section 4.2.1 describing the two pre-treatment clinical imaging
datasets used in the experiments, namely the lung cancer CT dataset previously described
in Section 4.1 (NSCLC-Radiomics) and a brain cancer MRI dataset, and the motivation
behind selecting them for the experiments. The outcomes of interest provided by both
datasets are time-to-event, specifically survival, data. However, for the image-based
heterogeneous treatment effect estimations used so far, the assumption has been that the
outcomes of interest are either continuous of categorical, which is also a limitation in
literature that has not been addressed so far as noted in Chapter 3. For this reason, this
part of the thesis adapts existing treatment effect estimation methods that handle survival
outcomes to accommodate image-based inputs, as detailed in Section 4.2.2. The utility
of these models for treatment recommendations is compared experimentally against an
alternative approach that reformulates the survival prediction task as a simple binary
classification task (also see Section 5.2). Additionally, it is described how multimodal data
consisting of both image and tabular inputs is integrated. The subsection is followed by
Section 4.2.3, which presents a strategy to incorporate pre-trained image encoders into
the image-based treatment effect estimation pipeline along with regression-based CATE
estimation baselines for tabular-only inputs. The section closes with Section 4.2.4, where
the evaluation setup of the models and the evaluation metrics are described.

4.2.1 Clinical Imaging Study Datasets

The treatment effect estimation experiments for this part of the thesis investigates the
lung cancer CT dataset NSCLC-Radiomics and a brain cancer MRI dataset of glioblastoma
patients, both of which are chosen as they provide survival outcome data in addition to
3D images and tabular clinical information. For the lung cancer CT dataset, which is also
used in Section 4.1, additional survival outcomes are simulated based on the available
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factual outcomes to enable controlled validation of estimated individual treatment effects
and help bridge the gap to clinical applications. The brain cancer MRI dataset, in contrast,
contains data from an RCT and is therefore used for the retrospective application study
to assess how suitable the methods developed in this thesis are for clinical trial settings
with real patient outcomes.

Lung Cancer (NSCLC) Dataset and Simulation of Semi-Synthetic Survival
Outcomes

The publicly available lung cancer CT dataset, NSCLC-Radiomics, was initially used by H.
Aerts et al. (2014) to study the prognostic association between radiomics features obtained
from pre-treatment scans and the overall survival time of NSCLC patients retrospectively
and is referred to as “Lung 1” in that publication.

A general description of the image preprocessing steps can be found in paragraph 4.1.4,
including the details regarding the image preprocessing steps (resampling to a consistent
spacing, intensity normalization, cropping to the tumor bounding box, padding and
computation of radiomics features), which are the same for this part of the thesis. The
cropping was done so that the model could focus on relevant information related to
the treatment effect, which was only related to the tumor shape itself according to the
implemented simulation. As some experiments use the provided tumor segmentation
masks as a second image channel to provide additional anatomical information, these
segmentation maps are preprocessed in the same way as the CT images, except by
omitting the intensity normalization and by padding with pixels having the value of
the background label. Also, the same number of cases are excluded, with the 415 cases
remaining, which are split into the same splits used for 5-fold cross-validation (332 cases)
and testing (83 cases) as before.

The experiments in this section build upon the previous simulations described in para-
graph 4.1.4 using radiomics features as imaging biomarkers to create outcomes with
known ground truth individual treatment effects, which serves as a valuable baseline
to validate the proposed approaches. In addition, the available survival outcome data
for this dataset are utilized, which contain the overall survival time measured from the
start of treatment, of which 47 are censored cases. Seven covariates of this dataset’s
tabular clinical data were used in the experiments: the tumor stage (T stage), nodal
stage (N stage), metastatic stage (M stage), overall stage, histological subtype, patient
age and gender. These clinical variables have been shown to be prognostic for survival
prediction using the NSCLC-Radiomics dataset (H. Aerts et al. 2014; Braghetto et al. 2022;
F.-H. Tang et al. 2023). The tabular data were preprocessed as follows: The tumor, nodal,
metastatic, and overall stages were kept as categorical covariates with integer values. The
histological subtype was one-hot encoded by converting it into four binary covariates:
“adenocarcinoma”, “large cell”, “squamous cell carcinoma”, and “not otherwise specified”
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(NOS). Missing patient age values were imputed using the mean age of the training set
with an additional binary covariate “age missing” introduced to flag imputed data points,
before applying z-score normalization.

Here, all patients are considered to have received the “standard” or baseline treatment
(T' = 0) are treated as the control group when simulating semi-synthetic outcomes, as
the NSCLC-Radiomics dataset is observational rather randomized (i.e. the treatment was
not randomly assigned). The idea behind simulating semi-synthetic outcomes for the
experiments presented in Section 5.2.1 is to then simulate the treatment effect using the
real outcomes, i.e. additional survival times for a counterfactual “experimental” treatment
group (I' = 1) are generated. This approach has been described by (Curth, Svensson,
et al. 2021) as a slightly more realistic alternative to using fully synthetic outcomes for
benchmarking.

While the focus of the experiments using this dataset is on semi-synthetic outcomes
with simulated treatments, it is worth noting the NSCLC patients underwent different
types of treatment: all received radiotherapy, with only a subset additionally receiving
chemo-radiation and the remaining undergoing radical radiotherapy alone. Although
two types of treatments were applied, the observed outcome data is not suitable for
individualized treatment effect estimation. The reason is that the type of treatment
was not randomized, but was made in clinical practice based on the tumor and nodal
(lymph node) stage as a criterion. Specifically, patients with more advanced stages were
more likely to receive chemotherapy. Therefore, the distribution of clinical stages differs
between the two treatment groups, violating the assumption that the distributions of
covariates overlap between both groups, which is usually a key assumption causal effect
estimation relies on (see Section 2.2.1). This limitation, however, makes the dataset well
suited for simulating hypothetical treatments as the non-randomized assignments are
confounded and can be safely disregarded in the simulation setup so that only known
synthetic treatment effects remain.

The generation of survival outcomes follows a similar procedure as in Section 4.1 by
employing radiomics features as imaging biomarkers x and by randomly assigning
patients to treatments 7' € {0, 1} with equal probability p(7') = 0.5. However instead
of assuming a linear biomarker—outcome relationship with continuous outcomes, the
assumption here is that the underlying hazard A(t) of the survival outcome Y follows a
Cox proportional hazards model (Figure 2.3.1).

For simulating semi-synthetic counterfactual outcomes under a hypothetical experi-
mental treatment 7" = 1, it is additionally assumed the hazard of the observed control
group Ap_(t) at time ¢ scales by a proportional-hazard shift exp (TbT + Tppeq @ pred)
depending on a predictive biomarker .,
A (t ’ xpred’ T) = >‘T:O (t) exp (TbT + prred xpred) : (4'6)

observed hazard under T'=0
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A survival time Y with such a hazard constant in time, can then be generated according
to Bender et al. (2005) using Y = —% with a random uniformly distributed variable
u ~ U(0,1), which is equivalent to drawing Y from an exponential distribution ¥ ~
Exp (A (t)). Therefore, to semi-synthetically simulate the survival time for those patients
that have been randomly assigned to 7" = 1, the observed control group survival time
Y7T=0 is scaled using

YT=O
yT=1 = : (4.7)
exp<bT + bpredxpred)
The outcomes of censored cases, i.e. the observed time of the last follow-up, are also scaled
in this simulation to at least partially preserve the information about the treatment-effect
and as it is assumed that the censoring is non-informative and treatment independent. In

the experiments for this thesis, the parameters were set to by = 0.0 and b,,,;, = —0.8.

In addition to the time-to-event outcomes, binary survival outcomes are simulated by
thresholding the survival time at a fixed cutoff of 365 days. This results in an imbalanced
label distribution: 268 patients with Y7 > 365 are assigned to Y.~ = 1 (“long

binary
survival”), while 147 patients with Y7 < 365 are assigned to Y:b,li;lary = 0. Despite the
imbalance, the 365-day cutoff is retained, as the 12-month (1-year) survival rate is a
commonly reported threshold and endpoint in oncology (Ballman et al. 2007; Antonia
et al. 2018). Censoring is disregarded in this binarization, as it is generally assumed that
all patients are observed up to the cutoff time. Only one censored patient in the hold-out
test set had a last recorded follow-up time below the cutoff (314 days) and was therefore

labelled as “short survival” (0) for evaluation purposes.

To simulate a synthetic predictive imaging biomarker, the z-score standardized version of
the shape-based radiomics feature “flatness” is used. This feature, which is also used in
Section 4.1, was chosen for simplicity, as it showed minimal prognostic influence in a Cox
proportional hazards model fitted on real survival outcomes when included individually
alongside clinical tabular features, making it suitable for simulating isolated predictive
effects without confounding prognostic effects.

Brain Cancer (Glioblastoma) Dataset from a Randomized Clinical Trial

One of the main areas of investigation in this part of the thesis, as detailed in RQ2.3,
is the application of the CATE estimation models proposed in Section 4.2.2 to a real
non-synthetic RCT dataset.

Specifically, experiments were performed on the brain cancer dataset “EORTC”, which
comprises pre-treatment MRI scans and the tabular clinical data of 427 glioblastoma
patients. It is a subset of data initially acquired as part of the phase 3 portion of the
EORTC-26101 trial (ClinicalTrials.gov identifier: NCT01290939), a large-scale, multi-
center randomized phase II and III clinical trial conducted by the European Organisation
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for Research and Treatment of Cancer exploring the treatment of glioblastoma patients
using the drug bevacizumab (BEV) in combination with lomustine (Wick et al. 2016; Wick
et al. 2017).

Due to its randomized design, the dataset is well-suited for studying the individual
treatment effects between the two treatments groups. In the experiments in Section 5.2.2
two groups of patients are compared according to their assigned treatment at time of
randomization: those who received bevacizumab in their initial treatment (experimental
arm ]’ = 1 with 160 patients) and those who have not received bevacizumab but lomustine
alone (control arm 7" = 0 with 267 patients). While some patients from the control arm
received bevacizumab at a later stage, but not during initial treatment, the number of
patients the number of patients treated with bevacizumab (323) and the number of those
not treated with any at all (104) was imbalanced, as noted by Kickingereder et al. (2020).
This distinction is however not made in the experiments, as the focus is only on the type
of the initial treatment.

The overall survival time, which is the primary outcome of interest of the trial and the
treatment effect estimation experiments, was recorded from the time of randomization
until the last follow-up or death, and was censored for 84 cases. Although the trial also
collected follow-up scans, they are not used in this thesis, as it is assumed that only the
pre-treatment data is relevant for treatment decision-making and predictive imaging
biomarker discovery. As for the NSCLC-radiomics lung cancer dataset, binary survival
outcomes are additionally computed by thresholding the time-to-event survival outcomes
at a fixed cutoff of 365 days, resulting in an imbalanced distribution with 343 patients

having a “long survival” (Yb]i;wlry = 1) and 84 patients having a “short survival” Ybﬂary = 0.

The tabular clinical information additionally included several covariates recorded at
baseline: contrast-enhancing tumor volume, age, sex, corticosteroid use (yes vs. no), and
WHO performance status (>0 vs. 0). These covariates have been established as known
prognostic confounders with, for instance, larger tumor volumes, higher age, male sex,
corticosteroid use and a poor WHO performance status (>0) being associated with a
shorter overall survival (Kickingereder et al. 2019).

For each MRI scan, four MRI modalities were acquired: T1-w, contrast-enhanced T1-
weighted after administration of a contrast agent (cT1-w), fluid-attenuated inversion
recovery (FLAIR) and T2-w 3D images, which are treated as four separate input channels
when fed into a neural network. The initial preprocessing of the provided MRI scans
is described by (Kickingereder et al. 2019): the images had been co-registered to the
T1-w image and skull-stripped, with the background value set to 0, and cropped to the
foreground bounding box. Additionally, segmentation masks labeled by experts are
available, containing the classes edema, contrast-enhancing tumors and background.

For the experiments in Section 5.2.2, the images and segmentation maps were further
preprocessed by resampling to the median voxel spacing 1 x 1 x 1mm, followed by
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performing a z-score normalization of the intensity the of MRI scans, which subtracted
the mean and divided by the standard deviation computed on foreground pixels only,
following the procedure by Isensee et al. (2021). Two scans and segmentation maps
with incorrectly cropped bounding boxes required manual correction of their bounding
boxes to exclude non-connected foreground regions and remove large sections of empty
background slices.To ensure compatibility with the residual encoder (ResEnc)-L image
encoders described in Section 4.2.3, the images used the experiments with pre-trained
image encoders in Section 5.2.2 were automatically preprocessed using the preprocessing
pipeline derived from nnU-Net (Isensee et al. 2021), which resampled all images to the
same constant shape of 160 x 192 x 160 (instead of the same spacing) after normalizing
the MRI images using the same z-score normalization.

The dataset was randomly split into 341 (80 %) cases used for 5-fold cross-validation and
86 (20 %) for testing.

4.2.2 Model for Multimodal Inputs and Survival Qutcomes

The treatment effect estimation model developed for clinical imaging RCT data in this
second part of the thesis specifically addresses the fact that in clinical studies, especially
in oncology, the most important outcome of interest is the overall survival. The survival
time often represents the primary endpoint that defines treatment success in a clinical
trial, which is why image-based treatment effect estimation for continuous or categorical
outcomes (see Section 4.1.2) is extended to handle survival outcomes. Additionally,
multimodal data is typically acquired from each patient, including tabular clinical data (as
mentioned in Section 4.2.1). As this data often offers important prognostic information, it
is integrated as an additional input modality to the model.

An overview of the full proposed CATE estimation method and evaluation strategy is
presented in Figure 4.3, which illustrates the three key objectives it aims to address simul-
taneously: using multimodal inputs (A) to estimate heterogeneous treatment effects (B) by
predicting survival outcomes (C), with the goal of obtaining treatment recommendations
D).

The details of the combined model, representing the first CATE estimation approach for
survival outcomes based on clinical imaging data and using multimodal integration, are
described in the following.

Survival Modeling and Loss Function
As illustrated in Figure 4.3, the goal is to estimate the causal effect of a treatment on

survival (or more generally, time-to-event) outcome data and make treatment recom-
mendations based on individualized predictions. While this task could be reformulated
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Figure 4.3: Overview of the proposed image-based treatment effect estimation approach for
survival outcomes, which addresses three key objectives simultaneously: A multi-
modal data integration for 3D imaging and tabular (clinical) data, B estimation
of heterogeneous treatment effects, and C modeling survival outcomes. This is
implemented using a TARNet-like architecture with a shared CNN-based image
encoder, trained using the BITES loss function (Schrod et al. 2022), which combines
the Cox partial log-likelihood and a balancing term IPM to account for covariate
imbalance. The network predicts treatment-specific hazards S\T, which are used
to compute the survival functions. Here, the estimated CATE is defined as the
difference in time points at which the predicted survival probability is 50% for treated
vs. control. Treatment decisions (i.e. the model’s recommended treatment) in D are
made by comparing the estimated CATE 7; to a given threshold: if 7, > 0, which
indicates that a more favorable survival outcome is predicted for T = 1, the model
recommends 7' = 1 and 7" = 0 otherwise. The evaluation assesses how well the
model recommends the optimal treatment. Both “oracle metrics” (PEHE, decision
accuracy) requiring counterfactual outcomes and factual-outcome-based metrics
(policy value, policy risk) based on observed outcomes are used.
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into a binary classification problem by thresholding the survival times at a given cutoff
time, it could potentially lead to loss of information. For this reason, the direct modeling
of survival outcomes using survival analysis techniques is proposed in this thesis to
potentially allow a more detailed and nuanced evaluation of heterogeneous treatment
effects and subsequently more accurate treatment recommendations.

The key difference in the survival modeling approach is that the model output is a
patient-specific hazard A’ for a treatment 7, from which the baseline hazard function
and the survival function describing the survival probability at time ¢ are derived (see
Section 2.3). To estimate these hazards using deep learning, an established approach
using the DeepSurv model was employed (Katzman et al. 2018), where the network is
trained using the Cox model’s negative partial log-likelihood loss function £,

L) == [hT (D(x, log( > e )] . (4.8)
3:0;=1 Jy;ER,;

This function is a version of the Cox partial log-likelihood Equation 2.10 from the Cox
proportional hazards model, which is modified according to Faraggi et al. (1995) so that it
can be applied to deep learning by replacing BTxi with the output of a neural network
h (®(x;)). Here, &(x;) represents the shared intermediate feature representation (see
Figure 4.3) derived from the multimodal input x; and k' is the treatment-specific network
head prediction also known as the relative risk score. By minimizing this loss function,
the likelihood that subjects who experienced an event (death) have a higher predicted risk
than all other subjects at risk (given by X;) at that specific time point gets maximized.

For reliable treatment effect estimation, it is important that the distributions of learned
representations are balanced for both treatment arms and covariate shifts are minimized,
as imbalances can lead to biases in the counterfactual predictions. While balancing tech-
niques are especially crucial for observational datasets where the treatment assignment
may be confounded, they can also be important in an RCT setting such as the EORTC
study, where the size of the two treatment groups is imbalanced and the number of
samples in the dataset is limited. Additionally, training deep learning models with 3D
image inputs requires the use of mini-batches (instead of the full dataset at once) due to
memory constraints, which can additionally cause instabilities.

For this reason, the network was trained using the BITES loss (Schrod et al. 2022), an
extension of the Cox negative partial log-likelihood loss with an additional balancing
term originally designed for observational data, but which could also be used to improve
the robustness in an RCT setting. The balancing term £yp) is based on IPM (Miller 1997)
for regularizing the learned shared representations @(x;). Schrod et al. (2022) defines
the BITES loss as

Lyirps =048 (W= (D(x;))) + (1 — ) CESH (BT (D(x;)))

Cox Cox

4.9
+a- ’CIPM(@T:O7 ¢T:1)7 (49)
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where g denotes the fraction of control group samples in the mini-batch and « a hyper-
parameter for adjusting the strength of the IPM regularization term.

Following Schrod et al. (2022), the ITE for this study is defined based on the median
survival time Y, 4., i.€. the time at which the survival function S(Y,,.4.,|X) reaches
the probability of 50%., as illustrated in Figure 4.3. The median survival time is computed
by solving S (Y, .4i.n|X) = 0.5 using the survival functions obtained from the predicted
hazard function.

Thus, the treatment recommendations are informed by the estimated CATE, which is
computed from the difference in expected median survival time for the treated and control
outcomes

F(x;) = Yok (%) — Y130 (x,). (4.10)

The exact decision rule and corresponding evaluation metrics are detailed in Section 4.2.4.

Model Architecture and Integration of Tabular and Image Data

Similar to the architecture from Section 4.1.2, a TARNet-like architecture with a shared
ResNet-18 image encoder with four ResNet blocks to learn treatment-independent com-
mon representations ¢ and two treatment-specific fully connected layer heads was
employed for the CATE estimation model (see Figure 4.3). The output of each of the
heads represents the treatment-specific hazard AT as described earlier.

To leverage all available data for making survival predictions and address RQ2.2, both
clinical tabular data and 3D multi-channel image data were integrated to obtain ¢ by
simply concatenating flattened image representations (after adaptive average pooling)
with tabular data directly, similar to Durso-Finley et al. (2022).

Additionally, integration using a Dynamic Affine Feature Map Transform (DAFT) block
by Wolf et al. (2022) was investigated, which was used to replace the fourth ResNet block,
where the image feature maps are dynamically transformed conditioned on the tabular
data, to allow the tabular data to directly influence the learned features, rather than being
treated separately.

Experimental Details

Training setup and sampling strategy. In contrast to survival CATE estimation
models for tabular inputs, which are commonly trained with batches consisting of the
entire training dataset (i.e. whole batch) or at least very large mini-batches (e.g. models
by Curth, Lee, et al. (2021) and Schrod et al. (2022)), a model for 3D image inputs trained
using SGD needs much smaller mini-batch sizes to manage memory requirements and
to mitigate overfitting. Although the Cox negative partial log-likelihood loss function
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requires the risk set over the full dataset, the approximation using mini-batches has
been theoretically justified by Kvamme et al. (2019), Tarkhan et al. (2024), and Zeng et al.
(2025).

To ensure stable training with small mini-batch sizes, the CATE estimation model was
trained using a stratified mini-batch sampling strategy, where it was ensured that each
batch contained at least one patient per treatment group.

In the experiments, all models for this part of the thesis (unless specified otherwise) were
trained using 5-fold cross-validation, a mini-batch size of 10 with a constant learning
rate of Ir = 104, and the SGD optimizer for 1000 epochs. Due to the smaller batch sizes,
instance normalization (Ulyanov et al. 2016) was used in the ResNet blocks instead of the
standard batch normalization (Ioffe et al. 2015). The fully connected heads consisted of
two layers with 16 and 8 hidden units, respectively. The dropout rate of these heads was
set to 0.1 only for the NSCLC-Radiomics dataset to reduce overfitting. On the EORTC
dataset, where dropout had no benefit, it was set to 0.

The BITES loss was only applied to the EORTC dataset, where the weight of the balancing
IPM loss term was set to &« = 0.01, whereas the model for the NSCLC-Radiomics was
trained using the standard Cox loss terms in Equation 4.8.

All deep learning methods were implemented using the PyTorch framework (Paszke et al.
2019). The training pipelines were built with PyTorch Lightning (Falcon et al. 2019) and
performed on a single graphics processing unit (GPU).

Image augmentation. The image augmentation scheme for both datasets included
padding to a uniform patch size (54 x 162 x 162 for NSCLC-Radiomics and 164 x 192 x 162
for EORTC), random zooming, and random rotation. Additionally, dataset-specific image
augmentation was applied.

For the NSCLC-Radiomics dataset, the augmentation scheme included random flipping
along all three spatial axes, and the background padding value was set to -1024 HU to
maintain consistency with the physical background voxels (air). For the EORTC dataset,
random flipping was only applied along the left-right axis and the background padding
value was set to 0.

Stronger intensity-based or non-linear deformation augmentations were deliberately
avoided to prevent the loss of subtle image information (e.g. texture or intensity distribu-
tion) that could potentially serve as important information for survival prediction and
imaging biomarkers.

Binary Model Comparison. For direct comparison against a CATE estimation model
for binary survival classification and to address RQ2.1, a binary-outcome model was
trained using the same architecture and hyperparameters as the survival-outcome models.
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The survival loss (BITES or the Cox loss) was replaced with the Binary Cross-Entropy
with Logits Loss (BCEWithLogitsLoss), as implemented in PyTorch, which consists of the
binary cross-entropy (CE) combined with an internal sigmoid final activation layer. The
balancing IPM term was kept when the balancing parameter was set to a > 0, so that
’Cbinary = ngc:EO +(1— Q>£1§(::El +a- Lpy.

Hyperparameter tuning and model selection. As the ground truth treatment effects
are not accessible in real datasets, hyperparameter tuning of CATE estimation models
needs to rely on alternative performance metrics (Machlanski et al. 2023).

For the preliminary tuning, the hyperparameters, including the selection of the learn-
ing rate, learning rate scheduling, balancing parameter «, or number of epochs, were
primarily selected based on the best validation C-index obtained through 5-fold cross-
validation using the image-only survival-outcome CATE estimation model. The C-index
was prioritized to ensure a reliable survival predictions and as it is more stable compared
to metrics directly related to the treatment effect.

To ensure consistency across experiments, the best-performing configuration of the
image-only survival model was kept fixed for all subsequent multimodal and binary-
outcome experiments. This strategy was necessary to isolate the influence of the choice of
hyperparameters, which can otherwise dominate model performance in CATE estimation
tasks as emphasized in (Machlanski et al. 2023).

The selection of the final model architecture and input modalities (e.g. binary vs. survival
and image-only vs. multimodal inputs) was based on the validation set’s policy value or
policy risk metrics, as detailed in Section 5.2. This ensured that the final model was chosen
for its performance on the relevant downstream task of informing optimal treatment
decisions.

Multitask learning with auxiliary classification head. The idea behind training a
multitask learning model for CATE estimation was to leverage the faster convergence
and additional supervision provided by the binary classification task to guide the model
during training and regularization, thereby potentially leading to improved learned
representation.

In the multitask learning experiments, two treatment-specific auxiliary classification
heads were added to CATE estimation model. These heads predict the binary survival
outcome from the same shared representations ¢ as the survival-outcome prediction
heads using the following combined loss function:

’Cmultitask = ng’;ﬂ + (1 _ q>£(1;o§1 + Q’Cg(;‘,o + (1 _ Q)’Cgéil +a- L‘IPM' (4~11)
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S-Learner architecture variant. The S-Learner CATE estimation architecture (Kiinzel
et al. 2019) was used in the experiments to study whether using a single combined
prediction head could better leverage shared similarities between treatment and control
arm during training, especially when treatment effects are close to zero. In the S-Learner
models, treatment indicators 7'are given as an additional input, which are concatenated
to the latent representations @. Predictions for the counterfactual potential outcomes
(Y=Y and Y7=!) were then generated by passing the input through the head twice with
different treatment indicators, i.e. once with 7" = 0 and once with 7" = 1.

4.2.3 Baselines and Pre-trained Encoder Extension

This subsection presents two variants of the CATE estimation model from Section 4.2.2
that are used in the experiments for further comparisons: First, the regression models for
are considered as baselines, as they only leverage mainly known prognostic covariates.
Secondly, the image-based CATE estimation models are extended using pre-trained image
encoders to investigate whether their image representations can improve treatment effect
estimation over models trained from scratch.

Tabular-only Regression Baselines

To put the performance of the previously proposed deep-learning-based CATE estimation
models (Section 4.2.2) into context and assess the added value of image inputs, these
models are compared against simple regression models for tabular input data only.

Similar to Schrod et al. (2022), the T-learner was employed as the metaalgorithm for
the regression-based CATE estimation (Kiinzel et al. 2019), where separate models are
trained for the treated 7' = 1 and the control group 7" = 0. The S-Learner version,
which only requires performing regression using a single model by taking the treatment
directly as an input variable, was not pursued further due to its poorer performance in
making individual treatment recommendations, as noted by Schrod et al. (2022). This was
also supported by preliminary experiments on the tabular data of both datasets, which
consistently showed a lower decision accuracy for treatment recommendations compared
to the T-learner on the semi-synthetic NSCLC-Radiomics dataset, despite inconclusive or
inconsistent results with respect to the factual survival prediction performance metrics
(e.g. C-index) across both datasets.

For binary outcomes, logistic regression models were implemented using scikit-learn (Pe-
dregosa et al. 2011) and fitted with a maximum of 1000 iterations. For survival outcomes,
Cox proportional hazards models were implemented using the lifelines package (Davidson-
Pilon 2019). All regression models were trained using 5-fold cross-validation with the
same data splits as those for the deep-learning-based models.
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For NSCLC-Radiomics dataset, the clinical variable M stage was excluded from the input
covariates for the Cox proportional hazards regression. This exclusion was due to its
near-constant values for almost all samples (M stage= 0 in 98.5% of cases), which caused
instability in the convergence.

Finally, the evaluation metrics and procedures were identical to those used for the deep-
learning-based models.

Leveraging Pre-trained Image Encoders

The comparatively small number of labeled samples in medical imaging datasets, par-
ticularly in clinical trial datasets, is often one of the main limiting factors in making
accurate survival predictions and subsequently identifying heterogeneous treatment
effects. Especially in cases when heterogeneous treatment effects are small compared to
anatomical variations and other noise factors in the dataset, deep learning models trained
from scratch are often prone to overfitting and fail to capture robust features.

To mitigate the challenges of data scarcity, semi-supervised learning and transfer learning
have been adopted for not only standard medical image analysis tasks such as image
segmentation or classification to improve their performance, but also most recently for
tasks related to treatment effect estimation and survival prediction (see discussed in
Section 3.2.3).

This thesis therefore explored whether integrating pre-trained image encoders could
provide a benefit for image-based CATE estimation methods and reduce overfitting, which
addresses RQ2.2. To this end, publicly available encoders from Wald et al. (2025) were used,
which were pre-trained on a large-scale public dataset comprising 114k 3D MRI volumes
of brains using different semi-supervised learning strategies. To leverage the information
specific to anatomical region and modalities, the transfer learning experiments for this
thesis focused on their application to the EORTC dataset, as it includes images from a
similar imaging modality (MRI sequences) and anatomical region (brain).

For the image encoders, the ResEnc-L architecture from Isensee et al. (2021) and Isensee
et al. (2024), a CNN-based encoder derived from the U-Net (Ronneberger et al. 2015) with
residual connections, was chosen because it showed higher average segmentation and
classification performance in (Wald et al. 2025).

Similar to Wald et al. (2025), the implementation of the image-based CATE estimation
models followed the Image Classification framework (Ziegler et al. 2024) but used two
instead of one single-layer classification heads to form a TARNet. As the framework was
initially designed for classification outputs and to specifically isolate the impact of pre-
training, only binary-outcome CATE estimation models are assessed for the comparison
between encoders trained from scratch and pre-trained ones. Tabular data was integrated
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the same way as described in Section 4.2.2 by concatenating the tabular covariates with
the representations after the image encoder before the classification heads.

Experimental details for fine-tuning pre-trained encoders. The publicly available
pre-trained ResEnc-L encoders used in the experiments were previously trained using
the SWinUNETR (Y. Tang et al. 2022) and masked autoencoder (MAE) (He et al. 2022)
pre-training scheme. They were chosen for these experiments due to their best validation
results in preliminary classification experiments on the EORTC dataset. As a baseline,
they were compared against a model using a ResEnc-L encoder trained from scratch on
the EORTC dataset.

All encoders were either fully fine-tuned (i.e. without any frozen weights) or trained
from scratch for 200 epochs using a batch size of 2, gradient accumulation for 12 batches,
the AdamW optimizer (Loshchilov et al. 2017) with a weight decay coefficient set to
0.01, a maximum learning rate of 1 x 10~ with a cosine annealing scheduler where the
learning rate is increased for 20 epochs during the warm-up phase, similar to (Wald et al.
2025). Also, the same image augmentation scheme as used by Wald et al. (2025) for their
downstream classification task was applied. Additionally, label smoothing (Szegedy et al.
2016) with a value of 0.1 was used in combination with the binary CE loss function as
a regularization technique to reduce overfitting and increase the robustness to noisy
labels. The evaluation procedure of the binary-outcome CATE estimation models with
pre-trained encoders was identical to the previously described models and is specified in
the following subsection, Section 4.2.4.

4.2.4 Evaluation Setup
Factual Outcome Prediction Metrics

On both datasets, factual metrics were used to assess the model performance at predicting
observed (non-counterfactual) outcomes as a secondary task to ensure a fair comparison.
The advantage of these metrics is that the observed outcomes required to compute
the factual outcome prediction metrics are always available, unlike the counterfactual
outcomes needed for assessing treatment effect estimation.

The binary-outcome models were evaluated with standard classification metrics for
binary classification, including the balanced accuracy, F1, average precision, and area
under the receiver operating characteristic curve. The predicted binary classification
labels needed to compute the balanced accuracy and the Fl-score were obtained by
thresholding the predictions at 0.5. The balanced accuracy was reported instead of the
accuracy due to class imbalances in both datasets, and for its intuitive interpretability,
AUROC summarizes overall discrimination performance, while F1 and AP were included
for reference to capture whether the model tends to always predict the majority class.
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When averaging these metrics, the samples were weighted using IPCW to adjust for
possible biases introduced by censoring (see Equation 2.3.2).

For the evaluation of the survival-outcome models, the survival curves were obtained
following the evaluation of (Schrod et al. 2022) and using the implementation by the
PyCox package (Kvamme et al. 2019; Kvamme et al. 2021), where the survival curves are
obtained using the computed treatment group specific baseline hazard functions and the
relative risk score obtained directly from the model’s outputs. The resulting survival
curves were evaluated with Antolini’s C-index (Antolini et al. 2005), a version of Harrell’s
C-index (Harrell et al. 1982; Harrell Jr et al. 1996) computed only on uncensored pairs
without reweighting.

Evaluation of Treatment Effect Recommendations and Decision Rules

Asillustrated in Section 4.2.2, both metrics requiring counterfactual outcomes (i.e. decision
accuracy and PEHE) and metrics only requiring observed outcomes (i.e. policy risk and
policy value) were computed to directly assess the performance of the models with respect
to the primary task investigated in this part of the thesis, treatment effect estimation
performance and treatment recommendation. Since counterfactual outcomes were only
available for the semi-synthetic NSCLC-Radiomics dataset, the evaluation differed from
that of the EORTC dataset. All the mentioned metrics were again adjusted using IPCW
to account for censoring.

The PEHE was computed as defined in Equation 2.4, whereby the respective definition
of the CATE was used depending on the outcome type of the model. The CATE of the
binary-outcome model was defined as the difference in predicted probabilities, whereas
the CATE of the survival-outcome model was defined as the difference in the estimated
median survival times (Y, 4i.n) computed from the survival curves. The ground truth
CATE (ITE) was defined analogously using the actual (observed) survival times from
both potential outcomes.

Treatments 7' = 1 were recommended based on the predicted median survival times
for treated and control (see Equation 4.10) if 7, > 0 and 7" = 0 otherwise. In other
words, treatments were recommended if the estimated treatment effect was more than
0 d, indicating a longer survival associated with that treatment. These recommendations
are then used to compute the fraction of correctly assigned treatments, i.e. decision
accuracy (Efthimiou et al. 2023), by comparing the treatment recommendations obtained
from the ground truth treatment effect and the estimated CATE values.

To evaluate the treatment recommendations without ground truth, the treatment rec-
ommendations based on the estimated CATE were also used for the calculation of the
observed policy risk Rp,; (Equation 2.6) for the binary-outcome models or policy value

55



4 Materials and Methods

YA/POI for the survival-outcome models, as defined by Equation 2.6 and Equation 2.5 (see
Section 2.2.3).

Kaplan-Meier Curves and Patient Stratification

To further interpret and qualitatively validate the impact of the treatment recommenda-
tions on patient stratification, Kaplan-Meier survival curves were generated using the
lifelines Python package (Davidson-Pilon 2019).

Following the approach of Katzman et al. (2018) and Schrod et al. (2022), patients were
grouped based on whether their actual received treatment matched the model’s recom-
mendation (“recommendation-followed group”) or not (“anti-recommendation followed
group”). Additionally, for assessing the impact of treatment within the patient sub-
groups with a positive or negative estimated CATE, the patients were also grouped by
the treatment they received.

The survival differences were assessed using the Kaplan-Meier curves using log-rank
tests and Cox proportional hazards regression. The resulting HR indicates an improved
survival if HR < 1, no difference if HR~ 1, and worse survival outcomes if HR > 1.

Additionally, patients were stratified into tertile subgroups according to the estimated
treatment effect magnitude to explore the heterogeneity of the difference between the
average observed survival times of treated and control group patients within each tertile
subgroup (see Section 5.2.2), following Durso-Finley et al. (2022).

When generating the treatment recommendations for the Kaplan-Meier curves, model
ensembling was applied by averaging the predictions of all five models trained during
cross-validation before computing the estimated CATE. For survival-outcome models,
the individual median survival times were averaged to obtain the ensemble prediction
before computing treatment effects. For binary-outcome models, predicted probabilities
(after the sigmoid activation) were averaged, as Ju et al. (2018) found it to be slightly
more beneficial than averaging logits. The treatment effect (CATE) was then derived
from these ensembled predictions.

Conversion of Survival Predictions for Binary-Outcome Model Comparisons

To enable a direct comparison of the results with the binary-outcome model, the empirical
policy risk was computed using the observed thresholded outcomes at 365 d. Additionally,
all other metrics, including the PEHE, observed policy risk Rpol, and classification metrics
for factual predictions were computed after binarizing the predictions from the survival-
outcome model.

The binarized predictions used for the Balanced Accuracy and F1 score were obtained by
thresholding the predicted median survival time Y'; at the threshold time of 365 d. For
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AUROC and AP, the survival-outcome model’s predictions were converted into classi-
fication probabilities using the predicted survival function S 7(365d), i.e. the survival
probability of surviving beyond one year. Similarly, for PEHE on the survival model, the
treatment effect is defined using 77> = S7=1(365d) — S7=°(365 d), which differs from
the median-time CATE used for recommendations but allows the comparison to binary
ground-truth treatment effects on the probability scale. All metrics were IPCW adjusted
to account for biases introduced by censoring.
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EXPERIMENTS AND RESULTS

This chapter presents the description and results of the experiments, which have the
general aim of assessing predictive imaging biomarker discovery using deep-learning-
based treatment effect estimation methods for imaging data. It is divided into two
main sections: Section 5.1, where the feasibility and proposed evaluation protocol of
predictive imaging biomarker discovery is studied on image datasets in a controlled
setting with simple semi-synthetic outcomes, and Section 5.2, where the deep-learning-
based treatment effect estimation approach previously used in Section 5.1 and extended to
survival outcomes and tabular inputs is evaluated on two more complex clinical imaging
datasets, one with semi-synthetic outcomes, and the other with outcomes from real
outcomes from a randomized controlled trial.

5.1 Evaluating Heterogeneous Treatment Effect
Estimation Models for Predictive Imaging
Biomarker Discovery

Disclosure: Parts of this section are based on previously published work (Xiao et al.
2025). ©2025 IEEE. Content has been adapted with permission.

The first major goal of this thesis was to study how predictive imaging biomarkers can be
directly discovered using image-based methods for estimating heterogeneous treatment
effects, i.e. CATE estimation models. The underlying hypothesis is that methods trained
to estimate heterogeneous treatment effects also automatically learn to identify relevant
imaging features that are predictive. To recover, quantify, and interpret these features so
that they can be further verified and used to guide treatment decisions in practice, this
thesis proposed an evaluation protocol in Section 4.1.3.
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The experiments studied the image-based CATE estimation models with the proposed
evaluation protocol for predictive imaging biomarker discovery in a controlled setting
with known treatment effects and with varying strengths of predictive and prognostic
imaging biomarkers. For this purpose, four different semi-synthetic image datasets were
used (Section 4.1.4). They were guided by the following research questions, as outlined
in Section 1.2:

RQ 1.1: Can deep-learning-based heterogeneous treatment effect estimation be
used to discover predictive imaging biomarkers directly from image data without a
separate feature extraction step?

RQ 1.2: How can the performance and reliability of image-based heterogeneous
treatment effect models in discovering predictive imaging biomarkers be evaluated
both quantitatively and qualitatively?

RQ1.1is an overarching question addressed throughout this section, whereas the section
is structured according to the two aspects of RQ1.2. The quantitative evaluation from
Section 5.1.1 is presented in Section 5.1.1, and the qualitative evaluation is presented in
Section 5.1.2.

5.1.1 Predictive Strength of the Estimated CATE

Predictive imaging biomarker discovery performance. The purpose of this sub-
section is to demonstrate how the strength of a predictive imaging biomarker identified
by a CATE estimation model can be quantified using the evaluation protocol presented
in Figure 5.1 and in Figure 4.1. This is done by computing the relative predictive strength
| pred /T prog| UsIng the estimated CATE as a predictive biomarker candidate, which does
not require the ground truth treatment effect and is therefore in principle not limited to
synthetic data.

At the same time, this subsection investigates whether the image-based deep learning
CATE estimation model outlined in Section 4.1.2 is capable of identifying predictive
imaging biomarkers (relating to RQ1.1) and, if that is the case, its performance at do-
ing so. Answering these questions relies on the predictive biomarker strength being
known, which is why the experiments employed image datasets with outcomes simulated
according to Section 4.1.3.

The performance is measured by how robust the model is to varying strengths of prog-
nostic biomarkers present at the same time as predictive biomarkers in the images. This
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is captured by the relative size of the true predictive effect b,,,,/b,,, used in the data
simulation. A model that identifies predictive imaging biomarkers correctly should ideally
also be sensitive to the strength of the predictive imaging biomarker, here given by b,,,,4,
while not being affected by the prognostic imaging biomarker, with strength given here

by b,/6,-

To assess this, the relative predictive strength [t,,,,/t,,,,| of the model estimations (i.e.
CATE) along with that of the baseline model prediction are summarized as boxplots.
The results are shown in Figure 5.1 with respect to b,,.;/b,,,,, Which represent the
experimental parameter setting here. For comparison, the figure includes the results
of a one-headed baseline model used for simply regressing the outcome regardless of
treatment instead of estimating the CATE (see Section 4.1.2). Additionally, [t,,.;/ ]
of the ground truth predictive biomarker is plotted as the experimental upper bound
along the [t,,,4/t,,,,| of the prognostic biomarker as the experimental lower bound for
comparison. The results are shown for different choices of predictive and prognostic
imaging biomarkers, denoted with (a) or (b), to assess if there is a difference in performance
in that regard.

The following paragraphs from this section are adapted from the article by Xiao et al. (2025),
originally written by the author of this thesis, and therefore resemble the text of the original
manuscript.

A common observation across all four datasets, CMNIST, CUB-200-2011, ISIC 2018, and
NSCLC-Radiomics, is that the relative predictive strength [t,,.4/,,,,| of the CATE esti-
mation model increases with increasing relative predictive biomarker signal strength
bpred/Dprog- As expected, the predictive biomarker discovery performance is lower in
terms of [t .4/t proe| £OT by /yree > 1, indicated by lower [t,,,,/t,,,,|, likely because the
prognostic biomarker effects dominate over the predictive biomarker effects. In most

cases, the [t,,.4/t | values surpass those of the baseline models, especially in the range

prog
for lower b,,.,/,,y5-

CMNIST results. The comparably high [t,,.4/t,,,| values indicate that the models were
able to identify strong predictive imaging biomarkers for different settings with varying
bpred/Dprog- In addition, the smaller gap to the upper bound and the notably larger gap
from both the baseline and the lower bound indicate that the models perform best on
CMNIST among all four datasets. For example, the gap between baseline and CATE
estimation model result reaches a factor of 10? for bpred/Dprog i the range of 0 to 1.
Comparing the results for models trained on biomarker feature set (a) (“model (a)”) to
the ones trained on feature set (b) (“model (b)”) reveals that the results were more similar
between models (a) and (b) than the other three datasets, where some of the results for

| prea /T prog| Vary considerably.

CUB-200-2011 results. The separation between the relative predictive strength [t ../t |
of the CATE estimation model and the baseline is slightly smaller for the CUB-200-2011
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Figure 5.1: Model performance based on the relative predictive strength t,,,;/t,,,, of the es-
timated CATE, shown on a logarithmic scale. The two-headed TARNet-like CATE
estimator is compared to a one-headed baseline model trained to predict the outcome
regardless of treatment. The results are shown across different values of simulation
parameters b,,.; /b, This ratio is the relative strength of the predictive effect ver-
sus the prognostic effect, both of which influence the simulated outcome. Boxplots
summarize data averaged over b,,,.;/b,,,,-bin widths, as indicated by the horizontal
error bars over the median line. Rows (a) and (b) correspond to different sets of
prognostic and predictive features used for generating the data (see Section 4.1.4
and Figure 4.2). Note that the variance of the boxplots is affected by the differing
number of samples each bin contains. The horizontal gray dotted line marks where
tored/torog = 1. ©2025 IEEE. Reprinted with permission from Xiao et al. (2025).
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dataset than the CMNIST dataset, indicating that the higher complexity of the predictive
and prognostic imaging biomarkers chosen for the bird species dataset (“primary color is
white” and “bills is longer than head”) also impacted the performance. For example, the
median [t,,,4/t,,,,| is a factor of 10 or 5 of the medians of the baseline for models (a) and
(b) respectively for b,,,.4/b,,,, between 0 and 1. The relative predictive strengths remain
much closer to the upper bound than the lower bound and mostly above 1. Generally,
even though the gap to the baselines is slightly larger for models (a) than (b), the absolute
values are smaller for (a), which is further evidence of the dependency on the biomarker

choice.

ISIC 2018 results. The relative predictive strength values [t,,,;/t,,,,| of the skin lesion
dataset ISIC 2018 results show a higher variability across b,,,.4/b,,,, bins compared to
the CUB-200-2011 dataset. Their mean values remain above the lower bound and mostly
above 1, except for two outliers at high b,,,.4/b,,,,,, Which are based on a single sample. The
results also depend on which image features were chosen to be predictive or prognostic
biomarkers. The models trained on feature set (a), where the presence of globules (i.e.
“has globules”) was predictive, had higher [t,,,,/t,,,,| values that were much closer to
the upper bound, compared to the models trained on feature set (b), where the predictive
biomarker was the presence of pigment networks (i.e. “has pigment networks”). This
indicated that the models (a) were able to identify a stronger predictive imaging biomarker.
However, the overlap of the boxplots with the baseline was also greater for models (a)
compared to (b), especially for low b,,,.4/b,.,,- The large [t,,.;/t,,,,| values of the baseline
models suggest that their outcome predictions also strongly relied on the predictive
biomarker. For models (b), the medians of the [t,,,,/,,,,| values differed by a factor of 4

for relative b,,,;/b,,, in the range of 0 to 1.

prog

NSCLC-Radiomics results. For the NSCLC-Radiomics, the image-based CATE estimation
model showed an inconsistent behavior when trained with data generated with fea-
ture set (a), where the radiomics feature “energy” is predictive, compared to (b), where
the radiomics feature “flatness” is predictive. While the relative predictive strengths
| prea/t prog | Were generally large and increasing with larger b,,,,;/b,,,, for models (a), the
gaps decreased for models (b). The smaller gaps indicate that the predictive imaging
biomarkers of the NSCLC-Radiomics, especially the feature “flatness” were the most
difficult features to extract for the models among all four datasets. The medians of the
models (a) and (b) for b,,,,/b,,,, in the range of 0 to 1 were larger than the baseline by a
factor of 13 and 4, respectively.

Heterogeneous treatment effect estimation performance. While the primary
focus of this part of the thesis is to assess CATE estimation models by how well they
perform at predictive imaging biomarker discovery, the models can also be evaluated by
how accurately they estimate heterogeneous treatment effects. This is commonly assessed
using metrics such as the root PEHE  /€pppy and the root mean squared error (RMSE) for
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Figure 5.2: Performance of the CATE estimation models, evaluated with respect to the root

precision of estimating heterogeneous effects (PEHE), denoted as ,/€ppg, across
different simulation parameters b,,,.4/b,,,, Which indicate the relative size of the
predictive effect in the simulated outcomes. Lower values of /€ pgpp indicate a better
performance. The row (a) and (b) indicate the different sets of biomarker features
used for generating the data. ©2025 IEEE. Adapted and reprinted with permission
from Xiao et al. (2025).

Table 5.1: Performance of CATE estimation models trained with biomarkers from feature set
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(a) or (b) per dataset, evaluated on simulated outcomes. Metrics shown are the root
PEHE /€pgyg for treatment effect estimation and RMSE for the prediction of factual
outcomes only.

Dataset Feature Set /épppz | RMSE |
(a) 0.121 0.094
CMNIST
(b) 0.045 0.115
(a) 0.227 0.304
CUB-200-2011
v (b) 0.277 0.261
(a) 0.304 0.352
ISIC 2018
(b) 0.308 0.362
o (a) 0.475 0.561
NSCLC-Radiomics (b) 0.469 0.633
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factual outcome prediction, as introduced in Chapter 2. For completeness, these metrics
are reported in Figure 5.2 and Table 5.1. This analysis aims to investigate whether the
performance of predictive biomarker discovery, which is found to depend heavily on the
dataset, can be linked to either treatment effect estimation performance or factual outcome
prediction performance. Although these metrics are only of secondary interest, they help
contextualize the observed differences in predictive biomarker discovery across datasets,
and will also be relevant in the subsequent part of the thesis (Section 5.2), where they are
related to the model performance in terms of making treatment recommendations.

The results show a lower PEHE and RMSE for the CMNIST compared to the other three
datasets, which also corresponds to the higher performance for the relative predictive
strength as observed in Figure 5.1. The root PEHE and RMSE are the highest for the
NSCLC-Radiomics dataset, and the PEHE also has the highest variance, which matches
the worst performance in identifying predictive biomarkers. Figure 5.2 and Table 5.1 also
illustrate the variations within the same dataset between models (a) and (b). While the
models trained on CMNIST and NSCLC-Radiomics have lower PEHE for feature set (b)
compared to (a), the difference is smaller for CUB-200-2011 and ISIC 2018. The RMSE
values, however, show that the factual prediction performance is better for models trained
on feature set (a) compared to (b) for those two datasets. This suggests that the models
trained on feature set (a) were worse at predicting counterfactual outcomes than those
trained on (b), while the opposite is the case for CUB-200-2011.

Unlike the predictive strength shown in Figure 5.1, the PEHE increases (i.e. worsens) on
average for increasing b,,,.4/b,,, as shown in Figure 5.2. The reason for this is likely
the different scale of the actual CATE, which automatically changes with the absolute
values of parameters b,,.; and b,,,,, as noted by Crabbé et al. (2022), resulting also in
changes in the scale of the root PEHE and RMSE. As the metrics depend on the scale of
the outcomes, this limits the comparability across different settings b,,,,;/b,,,, and further
highlights the shortcomings of solely using PEHE or RMSE for the evaluation.

5.1.2 Interpreting Predictive Imaging Biomarker Candidates

The following paragraphs from this section are adapted from the article by Xiao et al. (2025),
and therefore resemble the text of the original manuscript.

As mentioned RQ1.2, another goal of this part of the thesis is to demonstrate how the image
features identified by an image-based CATE estimation model can be qualitative assessed
and interpreted. This part of the evaluation is done using the XAlI-based evaluation
protocol described in Section 4.1.3, where attribution maps (Springenberg et al. 2015;
Selvaraju et al. 2017; Sundararajan et al. 2017; Erion et al. 2021) are computed to highlight
the predictive and prognostic features learned by the model for different input images.
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Figure 5.3: Attribution maps for the control group prediction head (last row) and the estimated
CATE output (middle row) for different example images from each dataset (top row).
For the CMNIST dataset, the attribution is shown for each RGB color channel (red:
left, green: top, blue: right), as the color information is important for the biomarker
prediction. An additional zoomed-in patch of the ISIC 2018 attribution map is
overlaid with a grayscale version of the original image. For the NSCLC-Radiomics
dataset, sagittal slices of the 3D patches are shown with segmented tumors outlined
in orange. Here, results are based on models trained with b,,,q, b,,, = 1.0. ©2025

prog
IEEE. Adapted and reprinted with permission from Xiao et al. (2025).

To assess the performance of image-based CATE estimation model at identifying the
correct predictive and prognostic imaging biomarkers, the analysis for this part of the
thesis again relies on semi-synthetic datasets with known ground-truth imaging biomark-
ers initially used to simulate the outcomes. These ground-truth imaging biomarkers
are then compared to the attribution maps, indicating positive (blue) and negative (red)
contributions to the prediction.

Examples of such attribution maps, computed with respect to two different model outputs
for the four datasets, are shown in Figure 5.3: the attribution maps for the predicted
CATEY (T =1) — Y(T = 0) (“treatment effect attribution”), which is expected to be
sensitive only to the predictive biomarker (Figure 4.1b), and the attribution maps for
control group head Y (7' = 0) (“control group head attribution”), which is expected to be
sensitive to the prognostic biomarker.

CMNIST results. The qualitative results for the first example from the CMNIST dataset,
showing a green digit zero, reveal that the treatment effect attribution maps are mostly
negative for the green channel in the same ring-like shape as the object, and mostly
positive for the red channel. For the second example image, showing a red digit four,
the outline of the object can be observed as well, but in a different color channel (i.e.
red). This suggests that, according to the CATE estimation model, the strokes of the
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digits themselves did not contribute to the predictive imaging biomarker. While the
red channel shows mostly negative attribution values, along with some noisy positive
attribution in the background, more localized positive attribution values can be seen in
the green channel, indicating that the model identified the gaps between the strokes of
the digits as possible contributions of a predictive imaging biomarker. These observations
for all channels combined mostly correspond to the ground truth predictive imaging
biomarker “has no circle” being absent in the first example and present in the second
one. However, the positive attribution from the red channel in the first example and the
negative attribution from the red channel in the second example appear to contradict
this observation when only considering a single channel in isolation.

The attribution maps of the control group head for channels green and red are mostly
positive for the first CMNIST example and mostly negative for the second one, strongly
indicating that the model found a prognostic image biomarker to be present or absent,
respectively, and that it depends on the presence or absence of the green or red color
channel. This observation directly corresponds to the prognostic imaging biomarker
“digit is green”, which also indicates that the CATE estimation model correctly identified
the correct feature from the respective color channel.

For both input images and both outputs, the attribution maps are mostly noisy for the
blue channel, suggesting that the CATE estimation model did not use this channel for
predictions and did not identify relevant image features from it.

CUB-200-2011 results. For the CUB-200-2011 dataset, the treatment effect attribution map
of the first input image shows mostly diffuse negative attributions with some heatmap
pixels focused around the eye, as well as the outlines of the throat and breast of the bird.
In contrast, the attribution map shows mostly positive and localized values outlining the
area of the head, neck, and bill, and indicates that the other areas of the bird were mostly
ignored. The attribution map patterns suggest that the image-based CATE estimation
model identified the absence of the predictive imaging biomarker in the first example from
the eye and general shape of the bird, while it identified the presence of the predictive
imaging biomarker in the second example by the outline of the bill and head of the bird.
Especially the attribution map for the second example image directly matches the ground
truth predictive imaging biomarker “bill longer than head” and suggests that the model
was sensitive to the correct region.

The control group head attribution map of the first input image is overall positive,
indicating that features of the head, neck, and breast region were primarily used for
the predictions, while the wings were largely ignored. The attribution of the second
bird, in contrast, is mostly negative, particularly in the wing, main body, and pouch
region, but also in the area of the reflections in the water. The regions with a strong
positive attribution overlap with the regions where the bird is primarily white, and the
regions with a strong negative attribution overlap with the regions where the bird (or its
reflection) is dark. This suggests that the CATE estimation model identified a prognostic
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imaging biomarker related to the color and brightness of the bird, which indeed directly
corresponds to the ground truth prognostic imaging biomarker “is white”.

ISIC 2018 results. Overlaying the treatment effect attribution map with the corresponding
image from the image-based ISIC 2018 dataset and zooming in shows that positive
attributions are given to the area surrounding the dark center of the skin lesion, especially
the less pigmented gaps between the dark network-like structures. This suggests that
the CATE estimation model identified the predictive imaging biomarker to be related to
the gaps in the darker network or grid-like structure. The ground truth mask for the
predictive imaging biomarker “has pigment network” reveals that the model was indeed
able to identify the pigment network in the correct area and from the correct patterns.

The control group head attribution map displays strong and predominantly negative
attributions to the darker center of the skin lesion, marked by red and blue spots. This
indicates that the model identified the absence of prognostic imaging biomarkers from the
darker patterns within the skin lesion, which matches the fact that the prognostic imaging
biomarker “has globules” is indeed absent in the shown image example. However, due to
the higher complexity of the imaging biomarkers, the attribution maps only provide a
limited insight into what the corresponding image feature looks like, especially when the
imaging biomarker is absent.

NSCLC-Radiomics results. The treatment effect attribution map of the first NSCLC-
Radiomics example image slice in Figure 5.3 shows the highest absolute values within the
tumor area, with negative attributions to the darker tumor regions and a larger region
with positive attributions to the surrounding areas. Mostly negative attributions are
observed for the second example, particularly in the upper left region of the tumor outline.
These two attribution maps suggest that the predictive imaging biomarker identified
by the image-based CATE estimation model is negatively correlated with regions of
low image intensity but positively correlated with areas of very high image intensities,
such as the very bright structures on the left side of the first example image. While the
observations are consistent with the ground-truth predictive biomarker “energy”, which
has a higher value in the first example than in the second, attributions are also given
to areas outside the tumor volume. This suggests that the model had some difficulty in
correctly identifying the exact tumor boundary.

The control group head attribution maps show strong negative and positive attributions,
primarily to areas outside the tumor outline, with a focus on specific regions, such as the
bottom right region for the first example image slice and the top left region for the second
example image slice. This indicates that the model identified the prognostic imaging
biomarker from some localized areas around the tumor, but not from the whole outline.
Additionally, attributions are assigned to regions surrounding the image patch, indicating
that the patch shapes also partially contributed to the model predictions.

Attribution maps for additional lung tumor CT slices are provided for completeness in
Figure 5.4 to further demonstrate how the CATE estimation model behaves for different
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Figure 5.4: Attribution maps generated using Grad-CAM and Guided-Grad-CAM for the control
head, and CATE prediction of the trained CATE estimation model for one sagittal slice
of each of the four NSCLC-Radiomics dataset samples, showcasing the predictive
and prognostic biomarker with varying strengths. The tumor segmentation outlines
are shown in orange. ©2025 IEEE. Adapted and reprinted with permission from Xiao
et al. (2025).
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Figure 5.5: Three-dimensional Grad-CAM attribution maps of the trained CATE estimation
model for the control head, treatment group head, and CATE prediction, illustrated
for a 3D patch from the NSCLC-Radiomics dataset. Additionally, a 3D render of the
segmented tumor and a corresponding 2D sagittal slice are shown for reference in
gray. ©2025 IEEE. Adapted and reprinted with permission from Xiao et al. (2025).

types of lung tumors. The Grad-CAM treatment effect attribution maps, where the
color scale is based on absolute attribution scores, show that the model focuses more on
regions with low intensities in the image slices. The corresponding Guided-Grad-CAM
attribution maps again reveal strong negative attributions to areas within the tumor with
very low intensities and strong positive attributions to the lighter areas neighboring
those low-intensity regions, similar to the examples shown previously in Figure 5.3.
Both Grad-CAM and Guided-Grad-CAM attribution maps again show that the highest
importance is given to localized areas surrounding the tumors.

To provide deeper insights otherwise not captured by the 2D slices, attribution maps are
also shown in 3D in Figure 5.5, in addition to a 3D render of the tumor volume itself. It
should be noted that the image features for the prognostic and predictive biomarkers are
reversed compared to the previous figures. Here, the “energy” is prognostic and “flatness”
is predictive. The 3D treatment attribution maps show strong attribution to the upper
right side of the tumor, likely erroneously, while the 3D control group head attribution
maps show attribution to areas outside the tumor boundaries.

Overall, the observations for the attribution maps highlighting areas with the lowest
intensity and neighboring areas with higher intensities largely align with the fact that
the minimum pixel intensity value contributes strongly to the image feature “energy”.
However, the observations also demonstrate the model’s difficulty in accurately localizing
the tumor. The observation that the control group head attribution in Figure 5.3 and
Figure 5.4 or treatment effect attribution in Figure 5.5 only highlights localized areas
on the tumor border is consistent with the fact that only the principal components con-
tribute to the image feature “flatness”. The qualitative results emphasize the challenges in
interpreting predictive and prognostic imaging biomarkers when the ground-truth imag-
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ing biomarkers are unknown. The figures also highlight the importance of considering
both 2D slices and 3D attribution maps to support the assessment of identified imaging
biomarkers.

5.2 Image-Based Heterogeneous Treatment Effect
Estimation in Clinical Imaging Studies

To bridge the gap between the image-based CATE estimation approaches investigated
in the previous part Section 5.1 and their application in real clinical imaging studies,
this section’s experiments assess the methodological extensions of the earlier deep-
learning-based models (Section 4.1.2) to support survival outcomes and multimodal inputs
(Section 4.2). Here, the underlying goal is to answer the following research questions
previously presented in Section 1.2:

RQ 2.1: Can image-based heterogeneous treatment effect estimation methods be
extended from categorical or continuous outcomes to survival (time-to-event) out-
comes, and how does their treatment recommendation performance compare to
binary-outcome models?

RQ 2.2: Can the integration of multimodal inputs or pre-trained image encoders
improve treatment effect estimation performance and robustness on clinical imaging
data?

RQ 2.3: To what extent can image-based heterogeneous treatment effect estimation
models be applied to glioblastoma MRI data from a randomized clinical trial, and what
are their limitations and implications for predictive imaging biomarker discovery?

The experiments use two different clinical imaging study datasets (see Section 4.2.1 for
details). The first is the semi-synthetic lung cancer CT dataset NSCLC-Radiomics with
simulated ground-truth treatment effects, the second is the brain cancer MRI dataset
EORTC from a glioblastoma RCT with unknown treatment effects. Because the inter-
pretation of the results for both datasets differs noticeably, the results are presented
separately for clarity in two different subsections: Section 5.2.1 and Section 5.2.2.

Although presented separately, both subsections follow a similar parallel structure. First,
RQ2.1is addressed by directly comparing the results of a binary-outcome CATE estimation
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model with a survival-outcome model with binarized predictions (“Using Binary vs.
Survival Outcomes”). Then, for RQ2.2, the impact of using different input configurations,
for example, with or without clinical tabular data, is assessed (“Value of Multimodal
Integration for Treatment Effect Estimation”). The results for pre-trained image encoders
are presented only in Section 5.2.2. Both subsections conclude with an assessment of
model robustness and limitations to address RQ2.3, for example, by comparing to simple
regression baselines.

Most evaluations focus on assessing the performance of heterogeneous treatment effect
estimation and the resulting treatment recommendations (using empirical estimates
whenever the ground-truth treatment effect is unavailable), as well as whether the
resulting subgroup stratification is expected to improve the overall survival outcomes.
Additionally, factual prediction quality metrics for survival prediction or classification
are also presented. Finally, for an exploratory analysis, a limited predictive imaging
biomarker analysis is provided specifically for Section 5.2.2.

5.2.1 Baseline Experiments on Semi-Synthetic Survival Data

The experiments in this subsection used the NSCLC-Radiomics dataset with simulated
ground-truth individual treatment effects to establish a performance baseline for the
proposed image-based CATE estimation approach for survival outcomes before moving
on to RCT outcomes of real patients in Section 5.2.2. To this end, the treatment effects
were simulated using the radiomics feature “flatness” as a predictive imaging biomarker
extracted from the tumor region of the images. In this setup, information about the
treatment effect was only contained in the image data. The semi-synthetic outcomes
were then generated from the real survival outcomes by scaling them with a predictive
imaging biomarker-dependent factor, as described in more detail in Section 4.2.1. Since the
ground-truth ITEs and therefore also the resulting optimal treatment recommendations
were available here, oracle metrics such as the PEHE and decision accuracy, which require
the ground-truth ITEs, could be computed. This also enabled a more detailed quantitative
performance assessment, providing more accurate insights compared to empirical metrics
like observed policy risk or policy value, which were computed from observed outcomes
alone.

The experiments first compare the performance of a model trained on binary outcomes
versus survival outcomes after binarizing the predictions, then they assess whether
integrating tabular clinical data or ground-truth tumor segmentation masks as an input
provides a benefit compared to a model for image inputs, and finally, they provide
insights regarding the reliability and limitations of the proposed model and its treatment
recommendations.
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Using Binary vs. Survival Outcomes

The proposed image-based CATE estimation models for binary survival classification
outcomes, trained with a binary cross-entropy loss function, were directly compared
to survival-outcome models trained using the negative Cox partial log-likelihood loss
(Section 4.2.2) to investigate RQ2.1. This comparison evaluates whether performing treat-
ment effect estimation on survival outcomes yields better and more nuanced information
for making treatment recommendations compared to framing it as a binary classification
task, which is often simpler to optimize but discards not only time-to-event information
but also censoring information.

The general evaluation setup is described in Section 4.2.4. It also includes the specific
details for evaluating the survival-outcome models, for which the predictions were
converted to binary outcomes to match the metric scale of the binary-outcome models,
enabling a direct comparison.

Table 5.2: Comparison of CATE models trained on survival versus binary outcomes on the
NSCLC-Radiomics dataset. Reported are the fraction of correctly assigned treatments
(Decision Accuracy), root PEHE (,/€pgp) and the observed policy risk IA%POI, as well as
Balanced Accuracy, F1, AP and AUROC, with mean + SD across folds. To enable a
direct comparison, all metrics except Decision Accuracy are computed using binarized
survival outcomes (threshold: 365 d). An asterisk (*) indicates models trained on con-
tinuous survival outcomes whose predictions were post hoc binarized for evaluation.
All metrics are IPCW-adjusted.

a Treatment effect estimation and recommendation performance.

Split Model Type Decision AccT |\ /€pprr | Rpy |

Val Binary 0.48 £ 0.09 0.49 £0.11 0.71 £0.03

" Survival® 0.56 £ 0.10 0.57 £0.10  0.64 + 0.05

Test Binary 0.50 £ 0.01 0.47 £0.05 0.67 £ 0.00

Survival® 0.53 £ 0.02 0.51 £0.02 0.64 = 0.03

b Factual outcome prediction performance.
Split Model Type Balanced Acc AUROC 1 F117 AP T

Val Binary 0.55 + 0.04 0.59 £0.07 0.789+0.017 0.71 £0.05
' Survival® 0.54 £ 0.06 0.62 £0.06 0.751 £0.026 0.75 £ 0.04
Test Binary 0.51 £ 0.01 0.49 £0.03 0.790 £0.009 0.68 £0.02
Survival® 0.52 = 0.02 0.57 £0.02 0.788 £ 0.005 0.74 = 0.01
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The results in Table 5.2 show that the survival-outcome models consistently achieve a
higher decision accuracy and lower empirical policy risk than the binary-outcome models
across validation and hold-out test sets, even though the decision accuracy is only slightly
above chance level (0.5). Both models have a high variability across folds, especially in
terms of validation decision accuracy and root PEHE.

The root PEHE, which has a theoretical upper bound of 2 on the probability scale (since
7,7 € [—1,1]), remains moderate for both model types and is lower for the binary-
outcome than the survival-outcome model. However, this difference is difficult to interpret
as the models use different definitions of the probability scale to compute the treatment
effect. As noted in the evaluation details Section 4.2.4, the binary-outcome models
use classification probabilities, whereas the binarized survival-outcome models use the
survival probabilities at one year.

There is no consistent winner for the factual prediction metrics. While the AUROC
and AP scores are higher for the survival-outcome model, the F1 score is higher for the
binary-outcome model. The balanced accuracy score is similar on both splits and only
slightly exceeds 0.5 in all cases. The relatively high F1 and AP scores, in contrast, are
likely driven by the strong class imbalance in the data and the resulting tendency of both
models to predominantly predict the positive class “long survival”. While some metrics
(balanced accuracy, AUROC, and AP) show a drop in performance from validation to test
set results, other metrics remain similar.

Overall, the survival-outcome models demonstrate a small but consistent advantage in
treatment recommendation metrics, suggesting that modeling survival outcomes can
yield slight improvements in treatment recommendations at least for the semi-synthetic
setting of the NSCLC-Radiomics dataset. However, the evidence in favor of RQ2.1 is
limited, since neither approach produces highly accurate predictions.

Value of Multimodal Integration for Treatment Effect Estimation

Motivated by the limited treatment recommendation and factual prediction performance
of image-based CATE estimation models presented in the previous experiments, as seen
by the low decision accuracy and balanced accuracy, this study also explored whether
additional input data could improve these metrics, addressing RQ2.2.

As the treatment effects for the semi-synthetic NSCLC-Radiomics outcomes are generated
directly using a single image feature (i.e. the radiomics feature “flatness”), all treatment
effect information is contained in the images by construction. Nevertheless, the available
clinical tabular data might provide further prognostic information, as explained in Sec-
tion 4.2.1, which is relevant for predicting factual outcomes. Additionally, the available
ground-truth segmentation maps for the lung tumors may provide both prognostic and
treatment effect information. While segmentation masks highlight the relevant regions,
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they can also help guide the model in learning the shape of the tumor and thus identify
the predictive imaging biomarker “flatness”.

To test these hypotheses, both binary-outcome and survival-outcome image-based CATE
estimation models were trained with different combinations of tabular data and segmen-
tation masks as additional inputs using the same hyperparameter settings as described in
Section 4.2.2.

Table 5.3: Comparison of CATE estimation models trained with different combinations of in-
put modalities (tabular data and tumor segmentation mask “Seg.”) on the NSCLC-
Radiomics dataset. Reported are the fraction of correctly assigned treatments (Deci-
sion Accuracy), root PEHE (\/€pgpg), observed policy risk RPol or policy value Vpol, as
well as the Balanced Accuracy and Antolini’s C-index, with mean + SD across folds.
All metrics are IPCW-adjusted, except for the C-index.

a Performance of binary-outcome CATE estimation models.

. Modalities .. A
Split Decision Acc T | /€pprr | Rp,; 1  Balanced Acc 1
Image Segm. Tabular
v - - 0.48 £ 0.09 0.49 £0.11  0.71 £0.03 0.552 + 0.045
Val. v - v 0.46 = 0.07 0.46 £ 0.10 0.69 +0.06  0.548 + 0.021
v v v 0.50 = 0.08 0.49 £0.10 0.70 £ 0.01 0.557 + 0.041
v - - 0.50 £ <0.01 0.47 £0.05 0.67 £0.00 0.508 + 0.015
Test v - v 0.51 + 0.02 0.43 + <0.01 0.65+0.03 0.510 = 0.006
v v v 0.50 £ 0.01 0.44 £ <0.01 0.67 + 0.00 0.499 + 0.008
b Performance of survival-outcome CATE estimation models.
Modaliti N
Split ocatities Decision Acc T /e | [10%d] V1 [10°d]  C-Index 1
Image Segm. Tabular
v - - 0.56 = 0.10 43+1.8 0.37 £0.13  0.564 + 0.029
Val v v - 0.55 £ 0.09 3.9+£20 0.38 +0.14 0.583 + 0.035
’ v - v 0.54 £ 0.09 4.0+1.38 0.46 +0.14 0.568 + 0.034
v v v 0.53 £0.10 4.1+2.2 0.32+0.05 0.579 +0.028
v - - 0.53 £0.02 21+£03 0.36 £ <0.01 0.474 £ 0.017
Test v v - 0.55 £ 0.03 2.2 +0.5 0.52 +0.37 0.500 + 0.003
v - v 0.50 £ 0.04 25+0.7 0.35+£0.03 0.456 = 0.026
v v v 0.58 £ <0.01 2.7+0.2 0.35 £ <0.01 0.508 + 0.007
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Figure 5.6: Histograms showing the distribution of true individual treatment effects 7 (green)
versus the estimated CATEs 7 (blue) for four different combinations of input modali-
ties on the NSCLC-Radiomics dataset. The vertical dashed line indicates the zero
point, where no treatment benefit is expected. Results are shown for the validation
splits, aggregated across all cross-validation folds. The root PEHE (,/€pgp) scores
are reported above the plots for reference.
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The results are reported for the metrics related to treatment effect estimation, as well as
the factual prediction performance metrics for reference, including balanced accuracy for
classification and Antolini’s C-index for survival analysis, in Table 5.3.

For the binary-outcome models, adding tabular information resulted in a slight improve-
ment across all metrics in both the validation and hold-out test sets, except for the
validation balanced accuracy (Table 5.3a). Including the segmentation mask as an extra
channel does not generally help. While it led to a minor increase in validation decision
accuracy from 0.48 £ 0.09 to 0.50 £ 0.08, the test balanced accuracy even decreased in
performance from 0.508 £ 0.015 to 0.499 4 0.008. Generally, both decision accuracy and
balanced accuracy exhibit performance close to random chance (0.5), indicating limited
treatment recommendation and survival classification performance. Some standard devi-
ations in the results are zero due to identical predictions across folds, which can occur
with small datasets and thresholded outputs or identical treatment policies.

Integrating additional modalities into the survival-outcome models does not consistently
improve results across metrics and splits, as shown in Table 5.3b. For example, the
image-only model achieves the best decision accuracy on the validation set. On the test
set, however, the model that additionally takes segmentation and tabular inputs achieves
the best decision accuracy score. In addition, the PEHE and its variation across folds are
high with values up to 4.3 x 10° d, corresponding to an error for the treatment effect of
around 12 years.

Although both the balanced accuracy and the C-index have a validation score above
chance, larger than 0.5, the drop from validation to test results suggests that both the
binary-outcome and the survival-outcome models generalize poorly.

To give a better picture of the treatment effect distribution, histograms of the estimated
CATE by the survival-outcome models and the corresponding ground-truth ITE are
plotted in Figure 5.6. While the true ITE has a large peak around 0d, the estimated
CATE is more spread out, with outliers at high values around 8000d. This indicates
that the models tend to highly overestimate the treatment effect for certain cases, while
underestimating it for some others. The histogram for the image-only has the lowest
overlap with the ground-truth ITE and is more spread out compared to, for example,
the model trained on image and segmentation inputs, which shows a higher peak at
0 d. This observation is also consistent with the lower PEHE score of models trained on
multimodal inputs, suggesting integrating tabular or segmentation data has an impact on
the estimated CATE for cases with very high or low treatment effects, even though this
might not directly affect the decision accuracy if the sign of the estimated CATE stays
the same.

Additional ablation results presented in Appendix Table B.1 indicate that replacing the
simple multimodal fusion method of concatenating image representations and tabular
data with a more complex fusion method using the DAFT module (Wolf et al. 2022) leads
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to even worse results. Additionally, setting the regularization hyperparameter o used
for the BITES loss to 0.01 instead of 0.0 resulted in worse general performance, albeit a
better policy value, but with increased variation across folds.

Overall, the results provide only weak support for RQ2.2 and indicate that for the NSCLC-
Radiomics dataset, the models are not able to utilize the additional information from
tabular and segmentation data well for treatment effect estimation. While binary-outcome
models benefit slightly from including tabular data, survival-outcome models show
inconsistent gains and no clear improvement. Moreover, the significant decrease in
performance from validation to test indicates that generalizability remains an important
challenge, particularly for the survival-outcome models, which perform less reliably than
the binary-outcome models.

Model Reliability and Baseline Comparison

The results from previous experiments indicated limitations in performance, motivating
a more detailed investigation to make an assessment for RQ2.3 before moving on to RCT
data. In the following experiments, the limitations of the proposed CATE estimation
model are further examined. For this purpose, the performance of both binary-outcome
and survival-outcome models is compared against a tabular-only regression baseline,
analyzing the reliability of the resulting treatment recommendations and conducting a
limited investigation into whether the models can identify the ground-truth predictive
imaging biomarker.

Comparison to regression and alternative baselines. The proposed image-based
CATE estimation models are compared against simple regression models (Section 4.2.3)
to evaluate whether using image inputs with a deep-learning approach provides a benefit
over using clinical tabular data only with a regression approach. Table 5.4 shows the
results for the best-performing image-based deep-learning model with a TARNet-like ar-
chitecture (denoted as “Bin-TARNet” for binary outcomes or “Surv-TARNet” for survival
outcomes), selected based on the best validation decision accuracy. These are presented
alongside the logistic regression T-learner results (“Logistic Reg”) for binary outcomes
and the Cox proportional hazards regression T-learner results (“Cox PH”), fitted using
11 clinical covariates, which are expected to provide only prognostic information by
simulation design, with and without the predictive imaging biomarker “flatness” as an
additional covariate.

The results in Table 5.4 show that regression using the clinical tabular data plus “flatness”
consistently outperforms the deep-learning-based TARNet, even though the TARNet has
access to the same predictive imaging biomarker feature in theory and, in the Bin-TARNet
case, additional information from imaging data and segmentation masks beyond the clini-
cal tabular covariates. The regression model using clinical tabular data and “flatness” also

78



5.2 Image-Based Heterogeneous Treatment Effect Estimation in Clinical Imaging Studies

Table 5.4: Comparison of the proposed deep-learning-based CATE estimation models using im-
age inputs (configuration selected based on validation performance) with a regression-
based T-Learner CATE estimation baseline trained on tabular clinical data only, with
and without the predictive imaging biomarker “flatness” included in the tabular in-
puts. The “flatness” radiomics feature was used to simulate the treatment effects on
the NSCLC-Radiomics outcomes. “Bin-TARNet” denotes the binary-outcome CATE
estimation model, whereas “Surv-TARNet” denotes the survival-outcome CATE esti-
mation model. Reported are the fraction of correctly assigned treatments (Decision
Accuracy), root PEHE (| /€pgpg), observed policy risk Rpol or policy value ‘A/Pol’ as well
as the Balanced Accuracy and Antolini’s C-index, with mean + SD across folds. All
metrics are IPCW-adjusted, except for the C-index.

a Performance of binary-outcome CATE estimation models.

Split Method Modalities Decision Acc T\ /€pprr 4 RPOI | Balanced Acc 1
Logistic Reg. Tabular 0.54 £ 0.04 0.44 £0.09 0.68 = 0.06 0.49 £ 0.05

Val.  Logistic Reg. Tab. + Flatness 0.84£0.02 0.40%0.08 0.64+0.04 0.56 +0.06
Bin-TARNet Img. + Seg. + Tab. 0.50 £ 0.08 0.49 +0.10 0.70 = 0.01 0.56 + 0.04
Logistic Reg. Tabular 0.46 + 0.03 0.42 £ 0.02 0.66 + 0.02 0.56 = 0.04

Test Logistic Reg. Tab. + Flatness 0.74+0.06 0.38%0.02 0.64  0.02 0.59 £ 0.02
Bin-TARNet Img. + Seg. + Tab. 0.50 £ 0.01 0.44 £ <0.01 0.67 = 0.00 0.50 £ <0.01

b Performance of survival-outcome CATE estimation models.

Split Method Modalities Decision Acc T /éppr 4 [103d] ‘A/Pol 1 [103d] C-Index T
Cox PH Tabular 0.51 £0.13 20+09 0.68 £0.30 0.55+0.03

Val. Cox PH Tab. + Flatness ~ 0.74 £ 0.11 1.6 £ 0.7 1.13+£0.32 0.61 + 0.02
Surv-TARNet Image only 0.56 £ 0.10 43+1.8 0.37£0.13  0.56 +0.03
Cox PH Tabular 0.47 £ 0.05 1.8+ 0.1 0.83+0.44 0.55+0.04

Test Cox PH Tab. + Flatness 0.70 = 0.06 1.6 £ 0.1 1.21 £ 0.37 0.59 £ 0.04
Surv-TARNet Image only 0.53 £0.02 21+0.3 0.36 £ <0.01  0.47 £ 0.02
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clearly outperforms the clinical tabular-only baseline, which is expected since “flatness”
is the true predictive biomarker in this setting.

For binary-outcome models, even the clinical tabular-only regression baseline achieves a
better score for decision accuracy, PEHE, and policy risk compared to the image-based
model on the validation set, as well as for the PEHE, policy risk, and the balanced accuracy
on the test set. The only metric where the TARNet performs better than the clinical
tabular-only baseline is the validation balanced accuracy, which it also matches with the
clinical tabular data plus “flatness” regression model.

For the survival-outcome models, the clinical tabular-only regression baseline outper-
forms the Surv-TARNet in terms of PEHE and policy value, but not in terms of decision
accuracy. The C-index of the survival-outcome TARNet is slightly higher than the Cox
PH baseline on the validation set but drops below 0.5 on the test set, again indicating
poorer generalization.

For binary and survival outcomes, the regression models show a better generalization
for factual prediction metrics (i.e. balanced accuracy and C-index) compared to the deep-
learning models. It is also notable that the decision accuracy is higher for binary-outcome
regression (logistic regression) compared to survival-outcome regression (Cox PH), likely
reflecting that regression using simplified survival class labels has a greater stability.
This trend is reversed for the deep-learning models, which is consistent with the finding
from the direct comparison between binary-outcome and survival-outcome models that
the image-based TARNet appears to benefit from a richer supervision from time and
censoring information for treatment recommendations, although these gains do not
translate to factual prediction metrics.

Both balanced accuracy and C-index remain only slightly above 0.5 for all regression mod-
els, indicating that the available clinical covariates do not provide sufficient information
for strong factual outcome prediction performance, and that other relevant prognostic
factors may be missing.

Overall, the results show no clear performance benefit of image-based deep-learning
CATE estimation models over regression CATE estimation models, even when the deep-
learning model should, in theory, have access to the predictive imaging biomarker through
the image data. This suggests that, despite having access to all relevant information,
deep-learning models are unable to effectively capture the predictive imaging biomarker
signal in this setting for the NSCLC-Radiomics dataset.

Reliability of survival analysis and treatment recommendations. For an analysis
of the quality of the final treatment recommendations derived from the ensembled esti-
mated CATE by the best-performing image-based CATE estimation models (determined
by validation decision accuracy), Kaplan-Meier curves were plotted to illustrate the ex-
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(a) Recommendations by binary-outcome CATE estimation model.

1.0
===+ Control T=0
Treated T=1
:’ Recommendation Followed
| Anti-Recommendation Followed
0.8 1 t
45.8 were recommended for T=1
\ og-rank p = 0.712
[}
> [}
= \
2061 l.
2 L1
o |
o 1)
[-% 8
T |4
S 0.4 A ‘.
£
a B
1 \—\
-l
0.2 ==
3 |
EEs
0.0 T T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time [d]

(b) Recommendations by survival-outcome CATE estimation model.

Figure 5.7: Kaplan-Meier curves on the NSCLC-Radiomics dataset comparing the survival prob-
ability for patients who received the treatment recommended by the estimated CATE
(green) versus those who did not (orange). For reference, the curves for the treated
group (I' = 1, red) and control group (I = 0, blue) are also shown. Results are
shown on the hold-out test set using ensembled cross-validation models selected
based on validation performance. Log-rank p-values are reported for reference.
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pected impact of the recommendations on the survival probability of patients in the test
set (see Section 2.3.1)

Patients with recommended and anti-recommended treatments. Figure 5.7 shows the Kaplan-
Meier curves of the observed subset of patients who received the same treatment as the
one recommended by the model (“recommendation followed”), as well as the curves
of the subset of patients who received the opposite treatment (“anti-recommendation
followed”), following the evaluation procedure of Katzman et al. (2018) and Schrod et al.
(2022). In an ideal scenario, where the recommendations lead to an improvement in
survival probability compared to randomly assigned treatments in an RCT, effective
recommendations would lead to a “recommendation followed” Kaplan-Meier curve that
lies above the treated and control group curves, whereas the “anti-recommendation curve”
would lie below.

The binary-outcome model (Figure 5.7 (a)) recommended the treatment (7' = 1) for
almost all patients (98.8%), resulting in the curve for the “recommendation followed”
subset to almost coincide with the curve of the treated group and the one of the “anti-
recommendation followed” subset to almost coincide with the control group curve. As
the treatment and control group curves already showed a separation, this likely indicates
that the model made recommendations purely based on the average treatment effect,
rather than the true predictive imaging biomarker.

The survival-outcome model (Figure 5.7 (b)) recommended the treatment for only 45.8%
of patients. This led to a worse separation between the “recommendation followed” curve
and the“anti-recommendation followed” curve with an intersection between them, and
the “recommendation followed” subset showing a lower survival probability than the
originally treated group.

The log-rank tests did not yield significant differences between the “recommendation
followed” and “anti-recommendation” groups for either model (p = 0.1108 for binary-
outcome, p = 0.7126 for survival-outcome model). Further, the wide confidence intervals
of the curves, reflecting the small sample size, limit the interpretability of these results.

Recommended subgroups. To further investigate if the patient subgroups identified by the
models truly benefit from their respective recommended treatment (i.e. 7' = 1 for the
7, > 0 subgroup and 7" = 0 for 7; < 0), additional Kaplan-Meier curves for the treatment
arms are shown for each subgroup in Figure 5.8.

In the ideal scenario, the 7, > 0 subgroup benefits from the treatment 7" = 1, so that the
Kaplan-Meier curve of the treated subset of that subgroup would lie above the one of the
control subset. In contrast, the 7, < 0 would not benefit from 7" = 1, leading to a lower
treated subset curve compared to the control subset.

The results indicate that the treated subset in the predicted 7; > 0 subgroup shows
a slightly higher survival probability compared to the control group for both binary-
outcome (Figure 5.8 (a)) and survival-outcome model (Figure 5.8 (c)). Additionally, the Cox
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Figure 5.8: Kaplan-Meier curves on the NSCLC-Radiomics dataset for observed patient sub-
groups stratified by the sign of the estimated CATE (7; > 0 vs. 7; < 0), where a
positive CATE indicates that the patient is predicted to benefit from treatment 7" = 1.
Within each subgroup, curves compare the survival probability for patients who were
actually treated (1" = 1, red) versus the control group patients (1" = 0, blue). Results
are shown on the hold-out test set using ensembled cross-validation models selected

based on validation performance. Log-rank p-values and Cox proportional hazards
results are reported for reference.
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proportional hazards regression using treatment as the only covariate (see Section 4.2.4)
reported a hazard ratio below 1, indicating a lower hazard or better survival under
treatment, but with relatively large confidence intervals. As the binary-outcome model
recommended treatment 7" = 1 for almost all patients except for one, the remaining data
point for the 7; < 0 subgroup (n = 1) offered no insight into the expected treatment
response (Figure 5.8 (b)), highlighting the extreme imbalance in predicted treatment effect.
For the survival-outcome model, the 7; < 0 subgroup (Figure 5.8 (d)) also showed a
hazard ratio below 1 with a relatively large confidence interval. Neither of the log-rank
tests for the four Kaplan-Meier curves indicated a significant separation between curves.

For completeness, additional Kaplan-Meier curves are provided in the Appendix Sec-
tion B.1 for the results on a single validation split. The curves in Figure B.2 show stronger
separation between “recommendation followed” and “anti-recommendation followed”
groups than in the ensembled evaluation, with the “recommendation followed” curve
lying slightly above both the treated and control curves. For the subgroups, the curves
in Figure B.3 indicated a slight benefit for the treated subset compared to the control
subset in the 7, > 0 subgroup, and the opposite tendency in the 7; < 0 subset. However,
neither the log-rank test nor the Cox PH results were statistically significant. An analysis
using the ground truth ITE as policy on the same validation fold as shown in Figure B.5
and Figure B.4 did not yield clear separation either. Possible explanations include small
subgroup sizes, wide confidence intervals, and small (simulated) treatment effect sizes
relative to the noisy prognostic effects and survival variability of real patients.

Overall, both the analysis of the “recommendation” versus “anti-recommendation” fol-
lowed subset and the subgroup analysis results provide no strong evidence that either
model can reliably identify patient groups that truly benefit from treatment 7" = 1.

Relationship between treatment effect and predictive biomarker. Because the
predictive imaging biomarker (“flatness”) used to simulate the treatment effects in semi-
synthetic NSCLC-Radiomics experiments is known, it enables the direct investigation
of whether the CATE estimation model is able to identify and recover it. To this end,
the z-score normalized “flatness” feature is plotted against the estimated CATE and the
true ITE in Figure 5.9 for the validation fold with the highest decision accuracy (0.68,
image-only survival-outcome model). As expected from the simulation, the true ITE
values follow a clear monotonic trend with increasing “flatness”, with larger positive
treatment effects for larger positive “flatness” values and vice versa. In contrast, the
estimated CATE does not show a clear association with the “flatness” and only a very weak
correlation (Spearman correlation coefficient p = 0.10), despite the model’s comparably
high decision accuracy among all other models. The sign also often mismatches, indicating
that the recommended treatment arm do not reflect the true treatment effect determined
by the predictive imaging biomarker. This suggests that in many cases, model makes
correct recommendations even without capturing the underlying predictive imaging
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Figure 5.9: Scatter plot of the predictive imaging biomarker (radiomics feature “flatness”) z,,,4
used to simulate the treatment effects of NSCLC-Radiomics outcomes versus the
estimated CATEs 7 (blue) and the true individual treatment effect 7 (green). Results
are shown for the validation split using the cross-validation fold with the best
validation performance.
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biomarker signal. A full overview of the combined scatter plots across folds is provided
in Appendix Figure B.6, which also shows systematic overestimation of treatment effects
for some samples, similar to what was observed in Figure 5.6, and in Figure B.1 for the
ensembled results on the test set, which exhibit a similarly weak correlation.

In summary, semi-synthetic experiments presented in this section provided a controlled
setting to validate the methodology and to assess whether the models could recover a
known predictive imaging biomarker. The results provided insights into the proposed
CATE estimation model behavior, and also highlighted its limitations, such as a weak
correlation with the true treatment effect despite seemingly high decision accuracy.
However, poor performance in a simulated setting does not necessarily imply failure on
real clinical data. Therefore, the subsequent experiments on the EORTC dataset focus on
the ultimate application of interest, that is, the image-based treatment effect estimation in
areal RCT, and aim to gain further insight into the sources of model limitations observed
here.

5.2.2 Application Study on Glioblastoma Imaging from a
Randomized Controlled Trial

The results in this subsection summarize the findings of the experiments on the EORTC
brain cancer MRI dataset. Their overall purpose was to address RQ2.3 by investigating
whether the proposed image-based CATE estimation model for either binary or sur-
vival outcomes is able to identify a heterogeneous treatment effect of an experimental
glioblastoma treatment from this retrospective RCT study dataset that could be leveraged
for making treatment recommendations from pre-treatment images and for identifying
possible predictive imaging biomarkers.

To investigate dataset-specific behaviors of the model, similar experiments that were
conducted on the NSCLC-Radiomics are also repeated for the EORTC dataset, including
comparisons of the performance of binary-outcome and survival-outcome models and
different input modalities or multitask learning, where binary-outcome and survival-
outcome heads are trained jointly. Additionally, variations of the model and strategies to
possibly mitigate the limited dataset size and signal are studied, such as the leveraging
pre-trained image encoders.

As the ground truth treatment effect estimation is unknown for this case, it is impossible
to compute the same oracle metrics that were used for the evaluation of the semi-synthetic
NSCLC-Radiomics experiments, decision accuracy and PEHE. The evaluation is therefore
restricted to metrics that only require observed outcomes, such as the observed policy
risk and policy value and other factual prediction metrics. Instead, an assessment of the
strength of the predictive biomarker signal identified by the model is made using part of
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the proposed evaluation from Section 5.1.1, combined with an analysis of the treatment
response levels and the information content of the images is made.

Using Binary vs. Survival Outcomes.

Table 5.5: Comparison of CATE models trained on survival versus binary outcomes on the
EORTC-Radiomics dataset. Reported are the fraction of correctly assigned treatments
(Decision Accuracy), root PEHE (4 /€ppr) and the observed policy risk Rpo,, as well as
Balanced Accuracy, F1, AP and AUROC, with mean 4 SD across folds. To enable a
direct comparison, all metrics except Decision Accuracy are computed using binarized
survival outcomes (threshold: 365 d). An asterisk (*) indicates models trained on con-
tinuous survival outcomes whose predictions were post hoc binarized for evaluation.
All metrics are IPCW-adjusted.

Split Model Type Epol d Balanced AccT AUROC 1 F117 AP 1

Binary 0.86 + 0.04 0.54 + 0.09 0.50 +0.14 0.40+0.12 0.40 £0.16

Val.
a Survival® 0.85 £ 0.06 0.50 £ 0.09 0.50£0.09 0.18+0.20 0.38 £ 0.09

Binary 0.82 + 0.00 0.50 + 0.00 0.50 + <0.01 0.42 + <0.01 0.47 + <0.01

Test
&t survival® 0.78+0.01 052%0.02 0.55+<0.01 024+007 0.47+<0.01

Following the experiments on the NSCLC-Radiomics dataset (Section 5.2.1), the proposed
model trained on different outcome formulations, i.e. binary survival outcomes thresh-
olded at 365 d and time-to-event survival outcomes, using different loss functions, are
compared to provide more evidence to address RQ2.1. Using these experiments, it is
investigated whether the same trend of an improvement in treatment recommendations
with regard to policy risk can also be seen in this dataset for the survival-outcome model.

To make the performance of the two models directly comparable, the results are again
presented for the binarized survival outcomes thresholded using the same threshold of
365d as described in Section 4.2.4.

The results shown Table 5.5 only report a slight, but not significant improvement of
the policy risk on the validation set for the survival-outcome model (0.85 £ 0.06) over
the binary-outcome model (0.86 £ 0.04), which turned out to be slightly larger on the
hold-out test set (0.78 + 0.01 vs. 0.82 4 0.00). Here, some standard deviations are again
zero due to identical predictions across folds, which can occur with small datasets and
thresholded outputs or identical treatment policies.

For the other factual outcome classification metrics, the difference between the models is
varied. While it is very clear for the F1 score that the binary model outperforms on both
the validation and test set, the other metrics, balanced accuracy, AUROC and AP are all
very similar, but with a tendency of the binary-outcome model to have slightly higher
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scores on the validation set and the survival-outcome model to have slightly higher scores
on the test set.

All factual outcome classification metrics show values very close to random (0.5), or
even below, and minor variation between validation and test results, suggesting a limited
binary survival classification performance for both models. This also indicates that the
observed improvement in treatment recommendations in policy risk with the survival-
outcome model may have limited robustness and could be influenced by the variability
arising from the limited sample size.

Value of Multimodal Integration and Multitask Learning for Treatment Effect
Estimation

The clinical tabular data in the EORTC dataset include several known prognostic factors,
as mentioned in Section 4.2.1, which motivates further investigation of RQ2.2. Therefore,
the following experiments evaluate whether incorporating these tabular covariates might
provide additional information to improve both treatment recommendations and survival
predictions, similar to the experiments on the NSCLC-Radiomics dataset. They also
explore the added value of a segmentation mask with delineated tumors as an additional
input channel and the benefits of using multitask learning, where both the binary-
outcome and survival-outcome treatment effect estimations are trained simultaneously
(Section 4.2.2).

As shown in Table 5.6, integrating tabular inputs into the binary outcome models did
not yield a significant difference in the results. Combining tabular input data with
multitask learning lowered the policy risk on both the validation set (0.858 4 0.038 to
0.831 + 0.047) and hold-out test set (0.821 4 0.000 to 0.811 4+ 0.022) and increased the
AUROC (0.51 4 0.14 to 0.61 4 0.05) on the validation data only, but at the cost of a
decrease in the balanced accuracy. Adding a segmentation channel on top of tabular
inputs and multitask learning resulted in the lowest test policy risk (0.801 4 0.027), but
did not lead to a consistent improvement in the other scores.

For the survival-outcome model, integrating tabular data and additionally a segmentation
mask channel resulted in a higher policy value on the validation set ((0.137+0.041) x 103d
to (0.166 + 0.045) x 103d), but resulted in no change or a slight decrease on the test set,
with the best policy value remaining at (0.165+0.014) x 103d. Multitask learning reduced
the policy value on the validation set and did not help to surpass the best non-multitask
model on the test set. In contrast, it contributed to achieve a higher C-index on both
splits, with the best C-index achieved by the model trained on image, segmentation and
tabular inputs and higher values for the test compared to the validation set (0.536 4-0.032
for the validation set and 0.582 4 0.004 for the test set). Integrating tabular input data
and a segmentation mask channel also improved both the validation and test C-index
compared to the respective model trained without these modalities.
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Table 5.6: Comparison of CATE estimation models trained with different combinations of input
modalities (tabular data and tumor segmentation mask “Seg””) on the EORTC dataset.
Reported are the observed policy risk RPol or policy value Vpol, as well as the Balanced
Accuracy, AUROC, and Antolini’s C-index, with mean 4 SD across folds. All metrics
are IPCW-adjusted, except for the C-index.

a Performance of binary-outcome CATE estimation models.

Modaliti A
Split ocanities Multitask Rpor Balanced AccT AUROC 1
Image Segm. Tabular
v - - - 0.858 £ 0.038  0.541 = 0.092 0.50 £ 0.14
v - v - 0.858 + 0.038  0.541 £ 0.092 0.51 £0.14
Val.
v - v v 0.831 £ 0.047  0.518 = 0.041 0.61 + 0.05
4 v v 4 0.837 + 0.059 0.496 £ 0.038 0.54 £ 0.11
v - - - 0.821 £ 0.000  0.501 = 0.000 0.50 + <0.01
v - v - 0.821 £ 0.000  0.501 £ 0.000 0.51 = 0.02
Test
v - v v 0.811 £ 0.022  0.500 £ <0.001 0.49 £ 0.02
v v v v 0.801 £ 0.027 0.500 = <0.001  0.51 = 0.05
b Performance of survival-outcome CATE estimation models.
Modaliti N
Split ocattties Multitask 1V, 1 [103d]  C-Index 1
Image Segm. Tabular
v - - - 0.137 £ 0.041  0.497 £ 0.027
v - v - 0.147 £ 0.046  0.501 £ 0.026
Val. v v v - 0.166 + 0.045 0.503 + 0.048
v - v v 0.109 £ 0.007  0.527 + 0.035
v v v v 0.109 £ 0.007 0.536 + 0.032
v - - - 0.165 + 0.015 0.546 + 0.004
v - 4 - 0.165 £ 0.014 0.556 = 0.017
Test v v v - 0.159 £ 0.006  0.561 £ 0.014
v - v v 0.161 £ 0.000 0.576 £ 0.011
v 4 4 4 0.161 £ 0.000 0.582 + 0.004
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In summary, multimodal integration and multitask learning resulted in, at best, some
small but inconsistent gains on the EORTC dataset. While some configurations of input
modalities and multitask learning improved the policy risk or policy values, as well
as AUROC and C-index, these effects were not robust across dataset splits or types of
outcome formulation. Additionally, as the balanced accuracy and AUROC remain close
to chance (0.5), and the C-index scores only slightly exceed it, this suggests an overall
weak survival prediction performance on the factual data.

The results also highlight that optimizing for factual prediction metrics, such as C-index,
does not automatically also improve metrics related to treatment effect estimation, such
as policy risk or policy value. However, even though policy risk or policy value are
the more relevant for the task at hand, i.e. treatment recommendations, they are also
insensitive to minor changes in the model predictions, making them not the ideal choice
either for hyperparameter tuning. The fact that experiments with the same policy risk or
value still yielded different AUROC or C-index values, as observed in the experiments,
shows that the models may make similar treatment decisions even when the underlying
model predictions differ.

Impact of Leveraging Pre-trained Image Encoders

A common observation from all the previous experiments was the consistently poor
performance of the deep-learning CATE estimation models in making factual predictions.
This was also seen in the NSCLC-Radiomics experiments (Section 5.2.1), despite being
semi-synthetic with a clearly defined treatment effect, but with a similar number of
samples.

The purpose of the experiments presented in the following was to assess whether a
possible strategy to mitigate the limited amount of data using transfer learning could lead
to an improvement of CATE estimation models compared to a model trained from scratch.
The experiments thereby address RQ2.2 by examining the potential benefits of using
pre-trained encoders and tabular data integration. Transfer learning was implemented
by using image encoders pre-trained on a large-scale brain MRI dataset (OpenMind) and
fine-tuned on the EORTC dataset, as detailed in Section 4.2.3.

The results summarized in Table 5.7 show that the best metrics (policy risk, balanced
accuracy and AUROC) are achieved by models with pre-trained encoders on both the
validation and hold-out test sets, although not consistently by the same model across all
metrics.

On the validation set, the model with the MAE pre-trained encoder, fine-tuned on both
image and tabular inputs, had the lowest policy risk and highest AUROC among all
models, whereas the highest balanced accuracy was achieved by the model with the same
pre-trained encoder, but fine-tuned without tabular inputs. On the test set, the lowest
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Table 5.7: Comparison of binary-outcome CATE estimation models trained from scratch or with
different pre-trained ResEnc-L encoders released by Wald et al. (2025), fine-tuned
on the EORTC dataset, with and without clinical tabular inputs. Reported are the
observed policy risk Rpol, as well as the Balanced Accuracy and AUROC, with mean
=+ SD across folds. All metrics are IPCW-adjusted.

Split Pre-training Method Tabular RPUI l Balanced AccT AUROC 1

From Seratch ; 0.827 +0.026 0533 +0.074  0.54 +0.09

v 0.869 +0.046 0528 +0.076  0.57 +0.10

Val. . - 0.850 +0.044 0517 +0.033  0.53 +0.05
SwinUNETR

win v 0.835+0.032 05200062  0.54 +0.07

MAE - 0.827 +0.058  0.539 £ 0.053  0.56 + 0.04

v 0.821+0.034  0529+0020  0.60 + 0.03

Erom Seratch - 0.801+0.037 0503 +0.028  0.51 +0.05

v 0.811+0.022 0518 %0015  0.55+0.04

Test . - 0.801+0.029  0.554 £ 0.060  0.60 + 0.06
SwinUNETR

win v 0.811+0.032 0549 +0.061  0.62 + 0.08

MAE - 0.814+0.032  0505+0018  0.54 +0.03

v 0.788+0.011  0514+0.019 057 +0.07

policy risk was again achieved by the model with the MAE pre-trained encoder and with
tabular data integration. In contrast, the SwinUNETR pre-trained models exhibited better
generalization on the test set than the MAE pre-trained model for the factual prediction
metrics, with a notably higher balanced accuracy and AUROC compared to both models
trained from scratch, though the models did not outperform MAE pre-trained models in
terms of policy risk.

Integrating the clinical tabular data led to an increased AUROC for all models. However,
this integration did not consistently improve policy risk or balanced accuracy, which is
consistent with earlier observations from the multimodal integration comparison. This
also highlights that integrating tabular data impacts treatment recommendations and
factual predictions differently.

As the experimental setup differed slightly from the previous experiments, including
the architecture (ResEnc-L instead of ResNet encoder) as well as data preprocessing and
augmentation scheme, the results are only comparable to a limited extent. Nevertheless,
the models trained from scratch with the ResEnc-L encoder already achieved a lower
policy risk and higher AUROC compared to their counterpart from the earlier ResNet-
based setup (see Table 5.6a), indicating that the architecture and data preprocessing choice
already had an impact itself. On top of this, the best policy risk achieved by the ResEnc-L
CATE estimation models (0.821 4 0.034 on the validation set and 0.788 4 0.011 on the
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test set, both for MAE pre-trained encoders) showed a further improvement over the
ResNet-based models (0.831 4 0.047 on the validation set and 0.801 4- 0.027 on the test
set).

To sum up, the models with pre-trained encoders demonstrated an improved perfor-
mance over models trained from scratch, providing some evidence in favor of RQ2.2
that pre-training could improve image-based treatment effect estimation. However, the
performance gains were modest relative to the SDs across folds. Even the best balanced
accuracy remained close to chance (0.5), and the best AUROC only slightly exceeded it.
The improvement also depended on the type of pre-training method and, to some extent,
on whether tabular data was included during fine-tuning.

Model Reliability and Predictive Signal of Images

The previous experiments assessed possible strategies to improve the performance of the
proposed image-based CATE estimation models for survival outcomes on an RCT imaging
dataset, including multimodal integration, multitask learning, and transfer learning,
which yielded modest performance gains at best. To better understand the possible root
causes as well as the limitations and robustness of the proposed model and also to address
RQ2.3, a similar analysis to that in Section 5.2.1 for the NSCLC-Radiomics dataset is
presented here for the EORTC dataset. This includes comparisons against regression
baselines and an analysis of the treatment recommendations. As it remains unknown
whether a predictive imaging biomarker, which could be leveraged in making treatment
recommendations, is truly present in the EORTC images, the predictive biomarker signal
strength in the estimated treatment effects is assessed as in Section 5.1.1. Additionally,
the information content of the imaging data is investigated by testing whether tabular
clinical covariates can be predicted from the baseline MRI scans.

Comparison to regression and alternative baselines. To further assess whether a
deep-learning approach using image input data provides a benefit for CATE estimation on
the EORTC dataset over using tabular clinical covariates, the proposed image-based CATE
estimation models with a TARNet-like architecture were compared against regression
baselines, similar to the experiments for the NSCLC-Radiomics dataset in Section 5.2.1.
The presented CATE estimation regression baselines include the logistic regression T-
learner (“Logistic Reg”) for binary outcomes and the Cox proportional hazards regression
T-learner (“Cox PH”) for survival outcomes, which were fitted using five known prog-
nostic clinical covariates (see Section 4.2.3). Their performance is presented in Table 5.8,
along with the results of the best-performing image-based models (“Bin-TARNet” and
“Surv-TARNet”) trained from scratch, which were selected based on their validation
policy risk or policy value, respectively.
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Table 5.8: Comparison of the proposed deep-learning-based CATE estimation models using im-
age inputs (configuration selected based on validation performance) with a regression-
based T-Learner CATE estimation baseline trained on clinical tabular data only.

“Bin-TARNet” denotes the binary-outcome CATE estimation model,

“Surv-TARNet”

the survival-outcome CATE estimation model, and “Surv-CNN” a survival outcome
prediction model with the same backbone as Surv-TARNet but trained to predict only

factual outcomes rather than performing CATE estimation. Both the “Bin-TARNet”

and “Surv-CNN” were trained using multitask learning in this case. Reported are
the observed policy risk Rpol or policy value Vpol, as well as the Balanced Accuracy,
AUROC and Antolini’s C-index, with mean 4 SD across folds. All metrics are IPCW-
adjusted, except for the C-index.

a Performance of binary-outcome CATE estimation models.

Split Method Modalities RPOI { Balanced Acct AUROC 1
Val Logistic Reg. Tabular 0.83 £ 0.06 0.515 £ 0.037 0.62 £ 0.11
' Bin-TARNet Img. + Tab. 0.83 £ 0.05 0.518 £ 0.041 0.61 £ 0.05
Test Logistic Reg. Tabular 0.78 £ 0.01 0.554 £ 0.016  0.69 = 0.02
Bin-TARNet Img. + Tab.  0.81 £ 0.02 0.500 £ 0.000 0.49 + 0.02

b Performance of survival-outcome CATE estimation and survival prediction models.

Split Method Modalities CATE Est. ‘A/Pol 1[103d] C-Index ©
Cox PH Tabular v 0.173 £ 0.065 0.60 + 0.09
Val.  Surv-TARNet Img. + Seg. + Tab. 4 0.166 £ 0.045  0.50 + 0.05
Surv-CNN Img. + Seg. + Tab. - - 0.58 + 0.06
Cox PH Tabular v 0.201 + 0.018 0.68 + 0.01
Test  Surv-TARNet Img. + Seg. + Tab. v 0.159 £ 0.006  0.56 + 0.01
Surv-CNN Img. + Seg. + Tab. - - 0.64 + 0.01
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For binary-outcome models, the performance of both the tabular-only regression baseline
and Bin-TARNet turned out to be very similar on the validation set, with the Bin-TARNet
having a slightly higher balanced accuracy, but a slightly lower AUROC than the regres-
sion model, and both having almost the same policy risk. The test results, however, show
that the Bin-TARNet generalizes poorly, with a lower AUROC and balanced accuracy
compared to the validation set, both of which are close to chance, indicating that it
strongly overfits and thus that it fails to capture robust image features for predicting
the outcomes. The regression baseline model outperformed the Bin-TARNet on all three
metrics, exhibiting even better performance on the test set compared to the validation
set.

For the survival-outcome models, the tabular-only regression model always outperformed
the Surv-TARNet across both splits and both policy value and C-index. The table also
shows the results for a CNN model (“Surv-CNN”) for factual survival prediction only
instead of CATE estimation, which was also selected based on the best validation policy
value and trained with the same image encoder architecture, but with a single output
head and without any information about the treatment indicator. It showed a clearly
higher C-index on both splits compared to the Surv-TARNet. This suggests that the
individual treatment effects are weak in this dataset compared to the overall prognostic
signal.

Table 5.9: Comparison of the proposed two-headed TARNet-like CATE estimation model (con-
figuration selected based on validation performance) with a single-headed S-Learner
architecture sharing the same backbone and configuration. Reported are the observed
policy risk RPOI or policy value ffpol, as well as the Balanced Accuracy, AUROC and
Antolini’s C-index, with mean 4 SD across folds. All metrics are IPCW-adjusted,
except for the C-index. For full results, please refer to Appendix Table B.2.

a Performance of binary-outcome CATE estimation models.

Split Model Rpol l Balanced AccT AUROC 7

S-Learner (Img. + Tab., Multitask) 0.810 + 0.053 0.500 = 0.000 0.58 £ 0.06

Val.
TARNet (lmg. + Tab., Mu|titask) 0.831 + 0.047 0.518 £ 0.041 0.61 £ 0.05

b Performance of survival-outcome CATE estimation models.

Split  Model Vpy T[103d]  C-Index 1

S-Learner (Img. + Tab.) 0.200 £ 0.073 0.506 + 0.030

Val,
& TARNet(Img. +Tab)  0.147 £0.046  0.501  0.026

S-Learner. Given that the Surv-CNN clearly outperformed Surv-TARNet in terms of
C-index, this also raised the question of whether the shared information and struc-
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ture across treatment groups could be further exploited. For this reason, the proposed
Surv-TARNet is compared against an S-Learner version, which only has one output head
(as the Surv-CNN) to induce a stronger inductive bias through more shared layers, but
incorporates treatment assignment information as an additional tabular input covariate
(see Section 4.2.2). The results are shown in Table 5.9 for the S-Learner with the best
validation policy risk or value and the TARNet with the same configuration. While the
binary-outcome S-Learner achieved a lower policy risk, it performed worse in terms of
balanced accuracy and AUROC. For the survival-outcome models, however, the S-Learner
outperformed the TARNet model in both policy value and C-index. The additional results
in Appendix Table B.2 reveal that these differences were not consistent across splits and
metrics, indicating that neither architecture offers a systematic advantage on the EORTC
dataset.

Reliability of survival analysis and treatment recommendations. The final treat-
ment recommendations by the ensembled CATE estimation predictions on the test set of
the EORTC dataset and the resulting subgroups are assessed using Kaplan-Meier plots
in the same way as for the NSCLC-Radiomics dataset (see Section 5.2.1). The results are
only shown for the best-performing image-based CATE estimation models selected by
the best policy risk or value.

Patients with recommended and anti-recommended treatments. The plots in Figure 5.10
show the Kaplan-Meier curves of the patients stratified by whether they have received the
same treatment as recommended by the model according to the estimated CATE or the
opposite treatment, denoted as “recommendation followed” and “anti-recommendation
followed”. As outlined for the NSCLC-Radiomics dataset, in an ideal scenario the “rec-
ommendation followed” curve would show a larger survival benefit compared to the
“anti-recommendation followed” curve respectively.

The plot for the binary-outcome model (Figure 5.10 (b)) shows a “recommendation fol-
lowed” Kaplan-Meier curve (green) with a higher survival probability compared to the
other curves for almost all time points. A log-rank test comparing the curve to the “anti-
recommendation followed” curve (orange) indicates a statistically significant separation
(p = 0.0146). Latter “anti-recommendation followed” curve lies closer to the control group
for times below 400 d and closer to the treated group for times above 400 d. The results
suggest that the ensembled models could provide useful treatment recommendations to
improve the overall survival outcome. Nevertheless, due to the limited sample size and
resulting large confidence however, the level of uncertainty remains high.

As the survival-outcome model recommended the treatment for almost all patients (96.5%,
see Figure 5.10 (b)), the “recommendation followed” curve almost coincide with the treated
group (T=1) curve, and similarly for the “anti-recommendation followed” curve and the
control group curve. All four curves lie very close to each other and intersect, indicating
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(b) Recommendations by survival-outcome CATE estimation model.

Figure 5.10: Kaplan-Meier curves on the EORTC dataset comparing the survival probability for
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patients who received the treatment recommended by the estimated CATE (green)
versus those who did not (orange). For reference, the curves for the treated group
(I' = 1, red) and control group (I' = 0, blue) are also shown. Results are shown on
the hold-out test set using ensembled cross-validation models selected based on
validation performance. Log-rank p-values are reported for reference.



5.2 Image-Based Heterogeneous Treatment Effect Estimation in Clinical Imaging Studies

1.0 +— === Control T=0 (n=20) 1.0 === Control T=0 (n=19)
I| Treated T=1 (n=15) l| Treated T=1 (n=32)
- 1
L -l
0.8 1 L-. log-rank: p=0.1202 0.8 1 L log-rank: p =0.0883
> : 1 Cox PH: HR = 0.51, p=0.1270, > : L—I Cox PH assumptions not met
.‘: 1 95% Cl: (0.22, 1.21) .4: -
- v =
5 s 5 1
1
8 0.6 R 8 0.6 I
o L <) =
1S 1 1S 4
o - a 1
= = 1
8 0.4+ L. ® 0.4 E-=>
= 1 = S
4 Yy 4 i
= 1 = L
(1] - (7] 1
0.2 1 ! 0.2 1 boosooss==s
__________ 1 1
1 [
1 1
1 1
0.0 A ' 0.0 '
0 200 400 600 800 0 200 400 600 800
Time [d] Time [d]

(a) 7; > 0 subgroup, binary-outcome model

(b) 7, < 0 subgroup, binary-outcome model

1.0 === Control T=0 (n=38) 1.0 +——— T === Control T=0 (n=1)
'| Treated T=1 (n=45) : Treated T=1 (n=2)
1 L
= 1
| |
0.8 1 = log-rank: p=0.4777 0.8 - : log-rank: p =0.1573
> : |I Cox PH assumptions not met > : 1 Cox PH: HR = 0.00, p = 0.9960,
- -} - 1 95% Cl: (0.00, inf)
- i = 1
2 '-I 2 1
© [0} 1
02 0.6 1 ‘I. o 0.6 1
2 L 2 !
o I o i
T . I !
.2 04 . I'I .2 04 T :
> r > 1
- LI -
E] n E] !
0 L_ ] !
0.2 1 v 0.2 |
L = \
1 |
| 1
— | |
0.0 A ' 0.0 4 :
T T T T T T T T
0 200 400 600 800 0 200 400 600 800
Time [d] Time [d]

(c) 7; > 0 subgroup, survival-outcome model

(d) 7, < 0 subgroup, survival-outcome model

Figure 5.11: Kaplan-Meier curves on the EORTC dataset for observed patient subgroups stratified
by the sign of the estimated CATE (7; > 0 vs. 7, < 0), where a positive CATE
indicates that the patient is predicted to benefit from treatment T' = 1. Within each
subgroup, curves compare the survival probability for patients who were actually
treated (T' = 1, red) versus the control group patients (I = 0, blue). Results are
shown on the hold-out test set using ensembled cross-validation models selected
based on validation performance. Log-rank p-values and Cox proportional hazards
results are reported for reference.
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that there is no significant benefit to be expected if the recommendations from the models
are followed.

Recommended subgroups. The next step of the reliability analysis addresses the question:
How do the patient subgroups identified by the model (i.e. the 7, > 0 or the 7, < 0
subgroup) respond to treatment? For this purpose, Figure 5.11 displays the Kaplan-Meier
curves of patients within these subgroups, stratified by the treatment actually received,
similar to Figure 5.8 for the NSCLC-Radiomics dataset.

The subplots for the binary-outcome model, Figure 5.11 (a) and Figure 5.11(b), show a
behavior close to what would be desired: within the 7, > 0 subgroup, the curves indicate
a higher survival probability for the treated patients 7' = 1 (red) compared to the control
group patients 7" = 0 (blue) with a HR of 0.51 (95% CI: 0.22-1.21, p = 0.1270), whereas
within the 7, < 0 subgroup, the survival probability of the 7" = 0 is similar or higher,
especially for later time points past around 400 d. However, neither the log-rank test
nor the Cox proportional hazards results report a significant difference between treated
and control patients within the two subgroups, as also indicated by the wide confidence
intervals for the Kaplan-Meier curves.

Since the survival-outcome model estimated a treatment effect 7, > 0 for almost all
patients, the resulting Kaplan-Meier curves for 7' = 1 and 7" = 0 in Figure 5.11 (c) almost
directly correspond to the curves for the whole test set cohort, as seen in Figure 5.10 (b),
and do not exhibit a significant separation or benefit from the treatment. For the only
three remaining patients in the 7; < 0 subgroup, Figure 5.11(d), no useful conclusion
could be made from the plot either.

For completeness, the Kaplan-Meier plots for the best-performing ResEnc-L CATE estima-
tion model for binary outcomes, which was fine-tuned using a MAE-pre-trained encoder,
are shown in Figure 5.12. Even though the recommended subgroups for7’ = 1and 7" = 0
are more balanced compared to the survival-outcome model, the plot comparing the
Kaplan-Meier curves for the “recommendation followed” with the “anti-recommendation
followed” patients (Figure 5.12 (a)) did not show a statistically significant separation,
as is also supported by log-rank test (p = 0.5893). The two plots for the treated and
control patients within the recommended subgroups (Figure 5.12 (b) and Figure 5.12 (c))
also showed wide confidence intervals and no separation, with log-rank test p-values of
0.9306 and 0.5990, respectively. These findings indicate that the recommendations by
the model with the MAE-pre-trained encoder could not provide a clear benefit for the
patients either.

Estimated CATE and predicted outcomes. To further understand the behavior of the
CATE estimation models in making their individual predictions and to identify possible
weaknesses, histograms of the estimated CATE values 7 for the test set are provided in
Appendix Figure B.7. Additionally, scatter plots of the individual predicted outcomes
Y (T'), which were used to compute the estimated CATE, are provided in Appendix
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Figure 5.12: Kaplan-Meier curves for the recommendation results by a binary-outcome CATE
estimation model with a pre-trained ResEnc-L encoder by Wald et al. (2025) using
MAE (selected based on validation performance), fine-tuned on EORTC dataset. (a)
Curves for patients who received the treatment recommended by the estimated
CATE (green) versus those who did not (orange), and the treated group (7" = 1, red)
and control group (1" = 0, blue) shown for reference. (b) and (c) Survival probability
for patient subgroups stratified by the sign of the estimated CATE. Within each
subgroup, curves compare the survival probability for patients who were actually

treated (T' = 1, red) versus the control group patients (1" = 0, blue). Results are
shown on the hold-out test set using ensembled cross-validation models. Log-rank
p-values and Cox proportional hazards results are reported for reference are reported

for reference.
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Figure B.8. The histogram and scatter plot of the model with the MAE-pre-trained
ResEnc-L encoder are summarized in Appendix Figure B.9.

The plots indicate that the behavior differs widely between the types of models. On the
one hand, the predicted CATE 7 and the predicted outcomes Y (T") of the binary-outcome
model within a fold have a low variance compared to the differences across folds with little
overlap. Even though the CATE of the ensembled model has a mean close to 0, indicating
its recommended treatments are fairly balanced between 7" = 0 and 7' = 1, the plots
suggest that there is little agreement between the models for each fold, which could be
due to a lack of robustness towards variations in the dataset and instabilities. On the other
hand, for the survival-outcome model, the agreement of the models for the individual
folds is far greater and the histograms of all five models have a similar peak around
the mean average treatment effect of 41.6 d, indicating that all model recommendations
including the one of the ensembled model tend to favor 7" = 1, as seen in the previous
Kaplan-Meier plots. As for the survival-outcome model with the ResNet encoder, the
predictions of the model with the MAE-pre-trained ResEnc-L for binary outcomes show
a large overlap between folds and a larger variance within each fold, which is possibly
an effect of regularization using label-smoothing. As the histograms of the individual
folds differ widely with no clear peak of the 7, this indicates that there is a similar poor
agreement between the cross-validation folds as for the ResNet encoder binary-outcome
model. Overall these plots highlight that the CATE estimation models either substantially
disagree across folds (both ResNet and ResEnc-L encoder binary-outcome models) or are
systematically biased (survival-outcome model), further suggesting that the models were
not able to recover a reliable predictive signal from the EORTC dataset.

Table 5.10: Evaluation results of the predictive strength of the estimated CATE from binary-
outcome “Bin-TARNet” and survival-outcome “Surv-TARNet” CATE estimation mod-
els (configuration selected based on validation performance) on the EORTC dataset.
To enable a direct comparison, the policy value (‘A/POI) is computed using survival
outcomes for both models. Reported are the results from a Cox regression testing
the estimated CATE as a predictive biomarker candidate (see Section 4.1.3): the
p-value from the Wald test for the biomarker-by-treatment interaction term, the
ratio of absolute Wald z-statistics |24/ 20| for the predictive vs. prognostic term
(analogous to the relative predictive strength in Section 4.1.3), and the p-value of the
likelihood ratio test comparing the full versus reduced model.

Split Model Voo T [103d]  Wald p 2pred/ 2progl LR D
Test Bin-TARNet 0.167 £ 0.011 0.012 5.13 0.013
Surv-TARNet  0.159 £ 0.006 0.065 0.94 0.067
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Predictive biomarker signal strength analysis. To investigate whether the image-
based CATE estimation models were able to identify a predictive (imaging) biomarker
and to answer RQ2.3, the statistical analysis from the previously proposed evaluation
protocol in Section 4.1.3 was applied for the EORTC experiments. As the outcomes of
interest are survival outcomes for this dataset, the results were obtained by regressing
the survival outcomes using a Cox proportional hazards regression model instead of a
linear regression model as used previously in Section 5.1.1.

Evaluation results of the predictive strength. The results for this evaluation on the test
set are summarized in Table 5.10. In the direct comparison, the binary-outcome model
shows a slightly higher policy value (Vp,, = (0.167 4+ 0.011) x 103d) compared to the
survival-outcome model ((0.159 + 0.006) x 103d), and the results of the statistical test
further provide evidence that the binary-outcome model was better able to identify a
predictive biomarker signal compared to the survival-outcome model: Both the Wald test
for the coeflicient of the biomarker-by-treatment interaction term and the likelihood ratio
test comparing the full regression model with the biomarker-by-treatment interaction
term and the reduced regression model without report significant results with p=0.012 and
p=0.013 respectively, whereas this is not the case for the survival-outcome model. More-
over, the ratios of the Wald z-statistics, also described as “relative predictive strength”,
indicate that the binary-outcome model was able to identify a stronger predictive than
prognostic signal in the data with [2,,.4/2,,| = 5.13 > 1 compared to the survival-
outcome model, for which |24/ 2| = 0.94. Results for the binary-outcome ResEnc-L
models are included in the Appendix Table B.3. Even though both the ResEnc-L trained
from scratch and fine-tuned using a MAE-pre-trained encoder show a higher policy value
(Vpy = (0.173 £ 0.010) x 103 d and V;,; = (0.185 4 0.017) x 103 d respectively), the
statistical tests could not indicate that the models were able to identify a strong predictive
biomarker signal.

Observed survival treatment effect by tertiles. Additionally, plots for the observed survival
treatment effect stratified by the estimated CATE tertiles, or also referred to as uplift bins
(Ascarza 2018), are provided in Figure 5.13 to get a better understanding of how useful the
model recommendations are. Since an assessment of the treatment effect on an individual
level is not possible for real data without access to counterfactuals, the patients are split
into three equally sized groups based on their estimated CATE 7 and evaluated on a group
level. The figures plot the difference between the average observed survival times of
treated and control group patients within each tertile subgroup, similar to (Durso-Finley
et al. 2022). In an ideal case, the upper tertile, i.e. patients that are predicted to benefit
the most from the treatment, would have a greater observed treatment effect than the
bottom tertile. While the plot for the binary-outcome model (Figure 5.13 (a)) shows this
general trend with a higher observed treatment effect for the upper tertile compared to
the middle and the bottom tertile, the predictions for each tertile have high uncertainty,
resulting in wide error bars and only a small difference between the middle and the
bottom tertile. For the survival-outcome model, the middle tertile even shows a higher
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(a) Observed treatment effect of binary-outcome model.
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(b) Observed treatment effect of survival-outcome model.

Figure 5.13: Observed survival treatment effect by tertiles of the estimated CATE from the (a)
binary-outcome and (b) survival-outcome CATE estimation model (selected based
on validation performance) on the EORTC dataset. For each tertile subgroup, the
plot shows the average difference in the observed survival time between the patients
who were actually treated (1" = 1) and the control group patients (1" = 0) within
that tertile. The rightmost point shows the average treatment effect across all
patients. Error bars represent the standard deviation within each subgroup.
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observed survival treatment effect than the top tertile, and all three values again have
similarly wide confidence intervals. Both figures indicate that the models were unable to
reliably capture the actual heterogeneous treatment effects, which prevented them from
accurately ranking the patients into subgroups.

In summary, and to address RQ2.3, while the binary-outcome model showed some
statistically significant results in the predictive strength analysis, combined evidence
from the quantitative analysis and the observed survival treatment effect by tertiles plot
(uplift bins) provide limited evidence that the models were able to robustly identify a
predictive imaging biomarker.

Predicting clinical covariates for assessing image information content. While
the previous analyses revealed that both the image-based CATE estimation methods
trained from scratch and using pre-trained encoders were unable to reliably estimate
heterogeneous treatment effects and identify a predictive imaging biomarker signal, the
question remains whether this is due to a limitation of the model itself or due to an
inherent (lack of) treatment effect signal in the data. For this reason, to examine more
closely if this data-related factor could be the case and to assess the information content
of the imaging data, models with the same backbone architecture as the previously
employed ResNet encoder are trained to individually predict the clinical covariates and
treatment indicators of the EORTC dataset using the pre-treatment MRI scans alone as
inputs. The purpose of the analysis is twofold: first, to assess whether the model has
sufficient capacity to learn from image data by regressing a known image feature, such as
tumor volume, and second, to determine if the images contain information about other
confounding clinical factors or spurious associations with the treatment assignment.

Experimental details. The same one-headed model with the ResNet encoder architecture
as the previously mentioned Bin-CNN and Surv-CNN was employed. The models were
trained with the same settings as the ResNet-based CATE estimation models, except with
no dropout. The loss functions were replaced with the MSE loss for the regression tasks
and binary CE loss for the classification tasks.

Results. The results for this regression and classification analysis are presented in Ta-
ble 5.11. The regression results (Table 5.11a) show that, as expected, the model struggles
more to regress the age compared to the tumor volume, as indicated by the higher mean
absolute error, MSE, and the negative 22 values on both the validation and test set. While
the results were better for regressing the tumor volumes from images, adding the ground
truth tumor segmentation mask as an extra channel to the image input generally provides
either only a slight improvement or no additional improvement for the mean absolute er-
ror on the test set. This suggests that the model has some capacity to extract some simple
information (i.e. the image feature tumor volume) directly from the images, but it is not
able to achieve a strong improvement even with access to the ground truth segmentation
masks from which the tumor volumes were computed. The limited performance on a
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simple task like tumor volume regression is an indication that the size of the dataset may
also be a limiting factor for the model to accurately identify relevant image features.

The classification results for the three clinical characteristics (Table 5.11b) largely show
performance close to chance, especially with respect to balanced accuracy. While the
model predicting the patient sex had a slightly above chance performance for the AUROC,
F1, and AP, the performance drop from validation set to test set suggests that the prediction
might not be entirely robust, and that class imbalances might be present.

Classifying the two treatment schemes AnyBEV or BEV versus control (Table 5.11c)
consistently shows a balanced accuracy and AUROC close to random, confirming that the
treatment assignment in the RCT for the EORTC dataset was not informed by features
present in the images but random, ruling out possible confounding.

These results suggest that while the model was able to identify the image-derived feature
tumor volume, the images do not contain enough information about prognostic factors
such as the patients’ age, corticosteroids use, WHO performance status, and also sex as
well as the assigned treatment for the model to learn. On the other hand, the results
support the hypothesis that integrating the available clinical tabular data might provide
additional information complementary to the image data.
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Table 5.11: Results from experiments assessing whether EORTC images contain information
about baseline clinical characteristics and treatment assignments. Reported are
regression performance metrics (mean absolute error (MAE), MSE and R?) or classifi-
cation performance metrics (Balanced Accuracy, AUROC, F1 score and AP) for models
using images only, which share the same backbones as the Bin-CNN/Surv-CNN mod-
els from earlier experiments.

a Regression of age and baseline tumor volume, with or without segmentation masks for tumor volume as
additional input. All variables shown are z-scored.

Split Variable MAE | RMSE | R% %
Age 092+0.09 1.11£0.09 -0.28+0.16

Val.  Tumor Volume from Img. 0.56 £0.12 0.79£0.11  0.31 £0.23
Tumor Volume from Img. + Seg.  0.53 £ 0.06 0.73 + 0.07  0.43 £ 0.08
Age 0.78 £0.05 098 £0.06 -0.07 +0.14

Test  Tumor Volume from Img. 0.54+0.11 0.76 £+ 0.08 0.37 £ 0.12

Tumor Volume from Img. + Seg.  0.54+0.10 0.73+0.07 0.43+0.10

b Classification of baseline clinical characteristics (corticosteroid use, sex and WHO performance status)

Split Variable Balanced AccT AUROC 1 F1 7 AP T
Corticosteroids 0.50 + 0.02 0.51 +0.04 0.29 +0.22 0.52 + 0.04

Val. Sex 0.55 + 0.04 0.71 £ 0.04 0.75 £ 0.04 0.82 + 0.03
WHO PS 0.50 + <0.01 0.59 £ 0.06 0.79 £0.04 0.73 £ 0.08
Corticosteroids 0.55 +0.03 0.58 +0.02 0.36 +0.23 0.57 £ 0.02

Test Sex 0.55 + 0.04 0.66 + 0.03 0.69 + <0.01 0.70 + 0.04
WHO PS 0.50 + <0.01 0.48 + 0.03 0.78 + <0.01 0.63 £ <0.01

c Classification of applied treatments (anyBEV vs. control and BEV vs. control).

Split Variable Balanced AccT AUROC 1 F11 AP 1
Val AnyBEV 0.50 £ 0.00 0.46 £ 0.08 0.87 £0.05 0.76 £ 0.08
' BEV 0.50 £ 0.00 0.39 £0.03 0.78+0.05 0.60 = 0.05
Test AnyBEV 0.50 £ 0.00 0.52+0.03 0.81+£0.00 0.71 £0.03
BEV 0.50 + 0.00 0.54+0.04 0.71+£0.00 0.61+0.04
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DISCUSSION

This chapter places the experimental findings from the previous chapter within a broader
context by discussing the resulting insights, implications, and limitations of this thesis for
predictive imaging biomarker discovery and heterogeneous treatment effect estimation for
clinical imaging studies with survival outcomes. After discussing both parts individually
(Section 6.1 and Section 6.2) and then jointly to provide an overarching perspective
(Section 6.3), the chapter closes with Section 6.4 by outlining future research directions
for which this thesis lays the foundations.

6.1 Evaluating Heterogeneous Treatment Effect
Estimation Models for Predictive Imaging
Biomarker Discovery

Disclosure: Parts of this discussion section are based on previously published
work (Xiao et al. 2025). ©2025 IEEE. Content has been adapted with permission.

The work presented in the first main area of investigation of this thesis (Section 5.1)
proposed a novel approach to predictive imaging biomarker discovery, which is to leverage
deep-learning-based CATE estimation models for image inputs without relying on a
separate feature extraction step and pre-defined handcrafted biomarker candidates. A
primary goal of the experiments was to investigate whether image-based CATE estimation
models can be leveraged for this task (RQ1.1). To test this, experiments were conducted
to assess whether the performance of such image-based CATE estimation models in
discovering predictive imaging biomarkers can be reliably evaluated (RQ1.2) using a
protocol proposed in this thesis.

107



6 Discussion

The results show that it is indeed feasible for an image-based CATE estimation model
to identify predictive imaging biomarkers under the experimental conditions (RQ1.1),
specifically when trained on semi-synthetic datasets with real pre-treatment images and
simulated RCT outcomes. To support this finding, an evaluation protocol was developed
and proposed as a solution to RQ1.2. One of its purposes was to enable the quantification
of the strengths of unknown predictive imaging biomarkers using the relative predictive
strength ¢/t .- It further allowed their visual interpretation using attribution maps.
Comparing these evaluation results with the strength and appearance of the known
ground truth predictive and prognostic imaging biomarkers used in the simulation
experiments addressed the second purpose of the protocol: to provide a reliable and
reproducible method for assessing model performance in identifying predictive imaging
biomarkers.

Predictive Strength of the Estimated CATE

The quantitative evaluation approach introduced in Section 4.1.3 relies on the estimated
CATE as a measure for the predictive imaging biomarker candidate identified by the
trained model.

The results presented in Section 5.1.1 showed that the measured relative predictive strength
tored/tprog Was generally positively correlated with the true relative predictive effects
bpred/Dprog- This indicates that the estimated CATE is indeed a reliable measure for both
the ground truth predictive effect and the ground truth predictive biomarker itself, albeit
under the assumption of a linear biomarker-outcome relation, as used in the simulation
setup.

The ability of an image-based CATE estimation model to identify predictive imaging
biomarkers while not being affected by the presence of prognostic imaging biomarkers
was assessed as follows: The relative predictive strength measure ¢ ,,.4/t,,,, Was compared
to the experimental baseline, where the regressed outcome is used as the predictive
biomarker candidate, and additionally to the experimental upper bound for a purely
predictive biomarker and lower bound for a purely prognostic biomarker. This comparison
was done across multiple models trained on outcomes simulated using varying predictive
and prognostic effects b,,.; and b,,,, as well as four types of image datasets and two types
of image biomarker features each. The results highlighted that even in scenarios where
predictive effects are smaller than prognostic effects, i.e. b,4/bp, < 1, which is often
observed in clinical data such as the EORTC dataset discussed later in Section 6.2, the
model’s ability to identify predictive imaging biomarkers could still be demonstrated by

showing relative predictive strengths ((t,,e4/?,r05))greaterthanl.

The heavy variation in performance across image datasets also highlights the limita-
tions of the specific image-based CATE estimation model and datasets employed in the
experiments. Especially for CUB-200-2011, ISIC 2018, and NSCLC-Radiomics, and par-

ticularly for cases where b,,,,;/0,,,, Was high, the ¢,,.;/t,,,, was lower and closer to the
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baseline, therefore indicating a weaker performance. A possible explanation for this is
the lower accuracy of the model in predicting factual outcomes (Table 5.1) when facing
more abstract imaging biomarker features, which also translated into a poorer treatment
effect estimation performance indicated by a lower PEHE score (Table 5.1, Figure 5.2).
In addition to the higher complexity of imaging biomarker features, the imbalance and
distribution of image features in the datasets, as well as the dataset size, could have
contributed. For example, the NSCLC-Radiomics dataset only had 332 training samples
and was therefore much smaller than the CMNIST dataset (60,000 training samples), as
well as the CUB-200-2011 dataset (5,794 training samples), and ISIC 2018 dataset (2,075
training samples).

Interpreting Predictive Imaging Biomarker Candidates

While the quantitative part of the evaluation protocol offers insight into the estimated
strength of an identified predictive imaging biomarker candidate, the qualitative part
of the evaluation protocol introduced in Section 4.1.3 again serves two purposes as
mentioned earlier: (1) enabling the interpretation of predictive and prognostic image
features identified by an image-based CATE estimation model, as well as (2) empirically
validating the model’s performance at this task by comparing the learned features to the
known ground truth imaging biomarkers.

The experimental results in Section 5.1.2 demonstrated the practical utility of using the
attribution maps that were described by the evaluation protocol for the interpretation of
the identified imaging biomarkers, even without access to the ground truth. Especially
for the CMNIST, CUB-200-2011, and also to a lesser extent for the ISIC 2018 dataset, it
was possible to directly infer the predictive and prognostic imaging biomarkers from
the treatment effect attribution maps and control group head attribution maps. For
the CMNIST dataset, for example, it was possible to infer that the predictive imaging
biomarker was a shape-based feature and that the prognostic imaging biomarker was
a color-based one with the help of attribution maps from different examples and color
channels, as well as the information about the sign of the attribution in different regions.
Using this information, it was similarly possible to infer from the CUB-200-2011 dataset
that the predictive imaging biomarker was associated with the head, bill, and outline of
the bird, while the prognostic biomarker was related to the brightness or color of the
bird’s main body. This also highlights the importance of using multiple input image
examples to interpret the identified biomarkers. For the NSCLC-Radiomics dataset, the
3D attribution maps complemented the 2D attribution maps, providing further insights
into which regions contributed positively or negatively to the predictive or prognostic
effects.

However, the results were also more ambiguous compared to the other three datasets, and
the interpretation was not immediately apparent on its own. The attribution maps for
both the treatment effect and the control group head focused on the same pixels, making
it difficult to discern whether an image feature that is both predictive and prognostic was
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present, or if two independent imaging biomarkers with distinct meanings were spatially
overlapping.

By comparing the attribution maps to the ground truth imaging biomarker values and
appearances, it was nevertheless possible to validate the model’s performance. The
results confirmed that the CATE estimation models mostly learned to identify the correct
features as biomarkers, including localized features based on color and shape (CMNIST,
CUB-200-2011, NSCLC-Radiomics), as well as first-order statistics (NSCLC-Radiomics) or
patterns (ISIC 2018).

The comparison to the ground truth provided further evidence for the variations of the
model performance across datasets, in addition to the quantitative results. The noisier
heatmaps for the NSCLC-Radiomics dataset and attributions to areas outside the region
of interest (i.e. the tumor volume), from which the actual ground truth imaging biomarker
feature was computed, indicated that the model had more difficulty in identifying the
correct imaging biomarkers and possibly learned spurious correlations instead.

Overall, the observations represent a key limitation of the qualitative evaluation using
XAI methods: Attribution maps, in general, can only support the explanation but are
prone to bias in human interpretations and often require domain-specific knowledge.

General Strengths and Limitations of the Experimental Setup

The experimental design of this part of the thesis relied on simulated outcomes from pre-
defined image features as biomarkers. The main advantage is that it enabled the reliable
and reproducible assessment of the image-based CATE estimation model performance,
which would have otherwise been impossible without access to the complete ground truth.
The disadvantage of this approach, however, is the limited realism of simulated scenarios.
This included the imaging biomarkers themselves, which were mostly visually obvious,
thereby simplifying the interpretation of the attribution maps and the simple linear
biomarker—outcome relationship. As RCT outcomes were simulated, no confounders
were present, which could have impeded the model’s performance.

As this work primarily served as a methodological proof-of-concept for the evaluation
protocol, the same hyperparameter settings were used for all models trained on the same
image dataset across all outcome simulation parameters and not tuned individually. While
this ensured consistency and comparability, the models may not have achieved the best
possible performance. Additionally, 5-fold cross-validation could have helped to assess
the robustness of the CATE estimation models to dataset variations. Furthermore, the
attribution maps in the qualitative evaluation were shown only for models trained on data
from a single parameter setting for the predictive and prognostic effects (b,,q; by = 1.0).
A more comprehensive visual interpretation of the identified prognostic and predictive
imaging biomarkers would involve comparing the attribution maps across different
parameter combinations. Despite the challenges, the XAI analysis using attribution maps
remains essential for interpreting and distinguishing predictive and prognostic imaging
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biomarkers, particularly since, unlike tabular data, where variable importance scores can
be computed directly for pre-defined features, images lack discrete input variables.

Broader Implications

While the experiments were conducted in a controlled setting using semi-synthetic image
datasets, the evaluation protocol proposed in this work was designed to be applicable
to any dataset with unknown biomarkers to assess if a predictive imaging biomarker
candidate may be potentially present. Section 5.1 outlines how such an evaluation can be
carried out, without relying on handcrafted features such as radiomics features. In such
applications where a single model is trained on data with unknown predictive effects,
the same regression and the ¢-tests on the resulting parameters would be performed,
as described in Section 4.1.3 to get a quantitative measure of the predictive biomarker
effects.

A second important use case for the proposed evaluation protocol is benchmarking:
specifically, to compare the performance of image-based CATE estimation models for
model selection. This use case does require simulated outcomes based on known image
features, but these can be arbitrarily defined. For instance, radiomics features were only
used in the NSCLC-Radiomics dataset to simulate both prognostic and predictive imaging
biomarkers.

The focus of this work was to establish a generalizable evaluation protocol for predictive
imaging biomarkers that can, in principle, be applied to benchmark image-based CATE
estimation methods on any RCT image datasets. While the presented experiments
demonstrate the feasibility of this approach, translating these methods to clinical imaging
datasets of real patients requires further adaptation to address data-specific challenges,
such as more complex biomarker—outcome relationships. These are addressed in the
second part of this thesis.

6.2 Image-Based Heterogeneous Treatment Effect
Estimation in Clinical Imaging Studies

After addressing predictive imaging biomarker discovery using image-based CATE esti-
mation models in controlled experiments, the second main area of investigation of this
thesis (Section 5.2) focused on applying these models to clinical imaging datasets and
addressing the challenges this entails. Specifically, the goal was to adapt and evaluate
CATE estimation methods for use in realistic clinical settings. To this end, a solution
was proposed to extend these methods to handling survival outcomes (RQ2.1), which
are often the primary endpoint or outcome of interest in clinical imaging studies, as
opposed to simpler categorical or continuous outcomes. The performance of a survival-
outcome model was compared to that of a binary-outcome model by evaluating their
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ability to recommend the optimal treatment. The second main goal was to investigate
if incorporating additional multimodal information from the clinical imaging study or
pre-trained encoders could improve the model’s performance (RQ2.2). Finally, in addition
to assessing the limitations of the image-based CATE estimation model and its method-
ological adaptations, it was investigated if the model could be used to gain further insights
about heterogeneous treatment effects and possible predictive imaging biomarkers in the
EORTC dataset, a RCT dataset with real patient outcomes (RQ2.3).

To investigate the research questions, experiments were conducted on both the EORTC
dataset (Section 5.2.2) and also the NSCLC-Radiomics dataset (Section 5.2.1), which
served as a semi-synthetic baseline to accurately assess the treatment effect estimation
performance. This time, the semi-synthetic outcomes included real control group survival
outcomes and simulated treatment effects instead of fully simulated continuous outcomes
used in Section 5.1.

Using Binary vs. Survival Outcomes

The underlying hypothesis behind studying RQ2.1 was that using survival instead of
binary outcomes to train CATE estimation models would allow them to learn more
meaningful and nuanced insights for making treatment recommendations. While the
binary-outcome model only predicts the probability for a patient to survive past a chosen
threshold for a given treatment, i.e. coarse labels, the survival-outcome model predicts
the survival probability of a patient over time, i.e. entire survival functions for each
individual.

In the direct comparison of binary-outcome and survival-outcome models on both the
NSCLC-Radiomics and the EORTC dataset, the survival-outcome model yielded slightly
better results in terms of policy risk and also decision accuracy for the NSCLC-Radiomics
dataset. These findings supported the answer to RQ2.1, demonstrating that image-based
CATE estimation methods could indeed be extended to survival outcomes and that they
could offer a slight benefit in heterogeneous treatment effect estimation.

However, the factual outcome prediction metrics and the Kaplan-Meier curves assessing
the impact of the recommended treatments did not show a consistent benefit of training
on either type of outcome. This observation is also in line with the findings of Haar-
burger et al. (2019), who reported almost identical C-index results for their two-stage
median survival classification model and their hazard-based survival model. This implied
that the presumed advantage of using survival-outcome models was balanced out by
other disadvantages compared to binary-outcome models. One possible disadvantage is
that survival outcomes introduce additional complexity to the outcome prediction task,
resulting in less stable training. Binary-outcome CATE estimation models, on the other
hand, may be less sensitive to outliers and easier to train, as the binary CE loss does
not require large batch sizes as opposed to the Cox proportional hazards loss, which
was also noted by Haarburger et al. (2019). Another aspect is that they do not require
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population-level evaluation metrics such as the C-index, which is only meaningful when
computed on a sufficiently large dataset. However, this binary outcome formulation is
sensitive to the choice of the survival threshold. The 1-year survival cutoff chosen in this
thesis differed from the median survival of both datasets and resulted in class imbalance,
which may have further contributed to overfitting and unstable performance.

It should be noted that the comparison of the factual prediction performance relied on
metrics computed on binarized survival predictions, which inevitably discards temporal
information and may put the survival-outcome models at a disadvantage, as they were
not directly trained to optimize the binary classification objectives. The results should
therefore be interpreted with caution when drawing conclusions about whether one
outcome formulation should be favored over the other, and the downstream treatment
recommendation performance needs to be considered.

In the experiments, the training of binary-outcome models did not explicitly account for
censoring, whereas the survival-outcome models were trained with a censoring-aware
Cox proportional hazards loss function. To further assess the impact of censoring on
the comparison between binary-outcome and survival-outcome models, the training
data could also be IPCW-adjusted (Vock et al. 2016), which was only employed for the
evaluation metrics in this thesis.

Given the slightly better treatment recommendation performance of survival-outcome
models across both clinical imaging datasets, and the fact that these models inherently
handle survival-risk modeling over time and censoring, employing the proposed survival-
outcome extension of the image-based CATE estimation models is still recommended for
future applications, despite the aforementioned challenges.

Binary modeling of the survival outcomes nevertheless remains valuable when only
rough treatment recommendations are relevant, for example, when a treatment policy
is desired where only patients with an estimated CATE larger than a treatment effect
threshold are considered. To leverage potentially higher training stability, binary outcome
prediction could also be integrated as an auxiliary task in a multitask learning model, as
demonstrated in Section 5.2.2 and discussed in the next paragraph.

Value of Multimodal Integration for Treatment Effect Estimation

The results for investigating the value of integrating clinical tabular data and tumor
segmentation masks showed inconsistent changes compared to the results for the image-
only CATE estimation model across datasets. At most, the improvements were modest,
as seen for the EORTC dataset, where the combination of image, segmentation, and
clinical tabular data together with multitask learning led to a higher C-index for the
survival-outcome across validation and hold-out test sets, but did not improve the policy
value. Based on these results, the experiments did not provide a clear indication for
RQ2.2.
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The results were also inconsistent across validation and test splits, and different input
configurations generalized differently. This points to overfitting as a possible factor
contributing to less conclusive results, in addition to the small validation and test set
sizes. Another explanation is provided by the differences in generalization performance
between the two datasets: The multimodal survival-outcome model with tabular inputs
showed much better generalization on the EORTC dataset than on the NSCLC-Radiomics
dataset, as indicated by a higher C-index. This implies that the degree of overfitting may
largely depend on the dataset and on whether the additional modalities also provide
complementary information.

The clinical tabular-only regression models achieved a comparably strong factual predic-
tion performance as the multimodal deep-learning models on both datasets (Table 5.4,
Table 5.8). This suggests that the tabular data already provides strong prognostic informa-
tion, which the multimodal models may not have sufficiently prioritized over the imaging
input, and that the model may have failed to sufficiently capture the tabular-outcome
relationship.

The similar or even worse performance of a multimodal model compared to one with
fewer modalities is also in line with the findings of the review by Cui et al. (2023), who
mentioned the introduction of biases and increased model complexity as possible reasons,
though they also note that prior studies more commonly report performance gains from
multimodal models.

A possible way to overcome overprioritizing one modality and a subject of future work
is using different multimodal fusion strategies. Even though the concatenation approach
used in the experiments has been reported to only learn limited interactions between
the image and tabular representations, as stated by Wolf et al. (2022), it outperformed
the alternative approach using the DAFT layer proposed by Wolf et al. (2022), which
attempted to overcome this issue.

Despite the ambiguous results, the histograms comparing the distribution of the estimated
CATE to the ground truth treatment effect of the NSCLC-Radiomics validation split
showed that integrating a segmentation mask channel and clinical tabular data had
some impact by slightly increasing the overlap and reducing the prediction of CATE
outliers. However, this reduction of outliers could not translate to a direct improvement
in treatment recommendation performance, which illustrates again that improving the
treatment effect estimation performance does not necessarily translate to an improvement
in treatment recommendations. While metrics such as policy risk and policy value are
directly related to the relevant downstream task, they are insensitive to small changes
in the model predictions. This reiterates that they are not an ideal choice for model
hyperparameter tuning.

Based on the aforementioned insights of this thesis, incorporating additional modalities
does not guarantee an improved performance of CATE estimation models and should
therefore be evaluated on a case-by-case basis to assess their added value.
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Impact of Leveraging Pre-trained Image Encoders

Integrating pre-trained image encoders to the image-based CATE estimation models
led to modest improvements over the models trained from scratch, and consistently
outperformed both versions with or without clinical tabular inputs, as described in
Section 5.2.2. Improvements were observed across all three metrics — policy risk, balanced
accuracy, and AUROC — however, not consistently for the same pre-training method.
Even though the large-scale brain MRI dataset used by Wald et al. (2025) for their self-
supervised pre-training only contained anatomical and not disease-related or treatment-
related information, especially the MAE pre-trained encoder led to a performance gain
in the treatment-related policy risk. This suggests that the anatomical or structural
information from the pre-trained encoders provided valuable additional information
beyond the EORTC dataset that helped to improve factual outcome predictions, which in
turn could have contributed to making the CATE estimations more stable.

Integrating tabular data did not yield a consistent gain for different pre-trained encoders,
which suggests that the image representations from the different pre-training strategies
(such as SWinUNETR or MAE) may have interacted differently with the concatenated
tabular representations, and that multimodal integration depends considerably on the
fine-tuning strategy.

These observations for the binary-outcome models fine-tuned on the relatively smaller
EORTC dataset supported part of the underlying hypothesis of RQ2.2, which was that
leveraging encoders that were pre-trained on another large-scale image dataset of the
same anatomical region can improve the treatment recommendation and factual predic-
tion performance.

One caveat is that this study was only performed on the EORTC dataset and using binary-
outcome models with a ResEnc-L encoder, which may not be entirely comparable with
the previously employed ResNet-based models due to the different architecture, pre-
processing, and data augmentation scheme. For this reason, further studies are necessary
to investigate if the insights also translate to survival-outcome models or datasets of
different anatomical regions and imaging modalities than the one used for pre-training,
such as NSCLC-Radiomics.

Nevertheless, the slight improvements in the results suggest that employing a pre-trained
image encoder to image-based CATE estimation models should be generally preferred
over training from scratch, especially when dealing with limited dataset sizes. The
experiments provided a proof-of-concept for this recommendation, serving as a basis
for further investigating the potential of pre-training, transfer learning, and fine-tuning
strategies for treatment effect estimation models.

Model Reliability and Baseline Comparison

To assess the reliability of the image-based CATE estimation models in clinical imaging
use cases, and to explore possible reasons for limitations in their performance, multiple
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analyses were performed on the semi-synthetic NSCLC-Radiomics dataset and the EORTC
RCT dataset to address RQ2.3 from different angles.

Comparison to regression and alternative baselines. In the comparison of the
image-based CATE estimation models against simple tabular-only regression baselines
(Table 5.4,Table 5.8), the clinical tabular-only regression baselines generally outperformed
the image-based deep learning models on both datasets in terms of either factual outcome
prediction metrics on the hold-out test set or treatment-related metrics (decision accuracy,
PEHE, policy value, policy risk). This held true even when the tabular data included only
information that was presumed to be prognostic, and, in the case of the semi-synthetic
NSCLC-Radiomics dataset, when all the information about predictive effects was only
present in the images. This suggests that the image-based models failed to reliably extract
an additional predictive signal from the imaging inputs. Nevertheless, the better decision
accuracy of the survival-outcome CATE estimation models on the NSCLC-Radiomics
indicated that the models were at least partially able to do so.

Another possible implication is that the tabular-only regression baselines were more
stable and less likely to overfit, for example, by learning spurious correlations, due
to having a higher bias and lower variance compared to more flexible deep learning
models. This factor is especially important in smaller datasets, which is often the case for
clinical imaging datasets such as the EORTC and NSCLC-Radiomics datasets. The poorer
performance of deep learning models for tabular data compared to classical tree-based
methods has also been discussed by Shwartz-Ziv et al. (2022), who mention the need for
more extensive hyperparameter optimization as one of the reasons.

As noted earlier, the results underscore that the clinical tabular data from both datasets al-
ready provide valuable prognostic information, which is not only important for predicting
factual outcomes but also for reliably estimating heterogeneous effects as a consequence.

The aforementioned considerations about bias-variance trade-off and the influence of the
dataset size are also in line with the better performance of the survival outcome prediction
model (“Surv-CNN”) compared to the CATE estimation version (“Surv-TARNet”) in terms
of C-index on the EORTC dataset. The better performance could be explained by the fact
that the former one-headed model was trained using the full training dataset. In contrast,
the two-headed model could only update each head using data from the respective
treatment arms, which reduces the effective sample size for each head. While this offers
more freedom, it comes at the cost of being able to generalize robustly. Additionally, the
treatment effects of the EORTC study were much weaker than the prognostic effects, as
supported by the study of Wick et al. (2017), which found no significant average treatment
effect with respect to overall survival between the treatment and control groups.

While the experiments in this thesis using the one-headed S-Learner versions of the
Surv-TARNet models attempted to take advantage of the shared similarities between
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treatment and control groups, as well as the negligible average treatment effect, they
did not consistently outperform the two-headed Surv-TARNet models. This suggests
that more research is needed to identify alternative metalearners or CATE estimation
architectures that optimally introduce dataset-specific inductive biases, as suggested by
Curth and Schaar (2021).

Reliability of survival analysis and treatment recommendations. The treatment
recommendations made by both the binary-outcome and survival-outcome image-based
CATE estimation models generally led to Kaplan-Meier curves that did not show a
meaningful benefit of following the recommendations by the ensembled models compared
to the actual randomly assigned treatment. As seen in Figure 5.7, Figure 5.10, and
Figure 5.12 (a), there were no significant differences between the patients who received
the recommended treatment and those who received the anti-recommended treatment.
The Kaplan-Meier curves of the individual subgroups that were stratified according to
the treatment recommendations mostly did not show a meaningful separation either
(Figure 5.8, Figure 5.11, and Figure 5.12).

The only exception was the binary-outcome model on the EORTC dataset, which showed
a slightly larger difference between the “recommendation followed” patients and the
“anti-recommendation followed” patients and also a slight separation between control
and treated patients within the recommended subgroups. However, in that case, the
disagreement between the predictions of the cross-validation folds suggested that the
models were unstable towards variations in the training data. While comparing the
results across folds was useful for assessing robustness, the ensemble-level treatment rec-
ommendations used for stratification of patients for the Kaplan-Meier curves may partly
mask this instability, as averaging across folds can yield seemingly better performance
by chance.

These results were another indication that the models likely did not learn meaningful
treatment policies from the data, but instead often overfitted or sometimes produced trivial
recommendation policies (e.g. by recommending T=1 to everyone), which could be due to
limitations of the model but also due to the size of the dataset and the underlying signal
itself. They again highlight the broader issue of model reliability and the importance
of validating treatment recommendations beyond selecting the best models based on a
single metric such as policy value or policy risk.

Predictive Signal of the EORTC Dataset

One major aim of this part of the thesis was to assess whether there are heterogeneous
treatment effect signals in the EORTC dataset using the proposed image-based CATE
estimation models, which, to the best of my knowledge, have not been investigated
previously for this dataset. Such a signal would point to predictive imaging biomarker
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candidates for the tested experimental treatment using bevacizumab, which also ties to
RQ2.3.

The analysis of the semi-synthetic NSCLC-Radiomics dataset provides a useful reference
point for the predictive imaging biomarker analysis. Even though the nature of the
simulated outcomes ensured that a predictive biomarker signal was present in the dataset,
the model was not able to recover the predictive imaging biomarker accurately, as shown
by the direct comparison of the estimated CATE with the value of the ground truth
predictive imaging biomarker used in the data simulations, i.e. the radiomics feature
“flatness”, which displayed no significant correlation (Figure 5.9).

This highlights that the weak treatment recommendation performance observed in both
datasets could not be attributed solely to the absence of a predictive biomarker signal, but
most likely also reflects common methodological limitations affecting both the NSCLC-
Radiomics and EORTC dataset, such as limited sample size, noise, and unstable training.

To analyze the results for the EORTC dataset without access to a confirmed ground truth
predictive imaging biomarker, the analysis relied on the same quantitative evaluation
as proposed in the evaluation protocol of the first part of the thesis (Section 4.1.3). Only
the ensembled binary-outcome CATE estimation model showed a statistically significant
biomarker-by-treatment interaction. Its relative predictive strength, with values greater
than 1, was much stronger compared to the results of the survival-outcome model, which
failed to show evidence for the presence of a predictive imaging biomarker.

The observed survival treatment effect stratified by tertiles, which were determined
according to the estimated CATE of the models (uplift bins), also supported this finding.
The binary-outcome model showed a stronger trend towards a larger treatment effect in
the higher CATE tertiles compared to the survival-outcome model, for which this trend
was not apparent.

However, the evidence for the presence of a predictive imaging biomarker in the EORTC
dataset was not robust or conclusive for RQ2.3, which was evidenced by the large confi-
dence intervals of the tertile plot combined with the high variability of the results across
cross-validation folds, and the lack of a meaningful separation in the Kaplan-Meier curves
stratified by treatment recommendations suggest that.

To further investigate the information content of the imaging data in the EORTC dataset,
the capacity of the models’ image encoder and the potential presence of confounders,
an additional set of experiments evaluated whether the available tabular covariates
(patient age, sex, WHO performance status, and the tumor volume) could be predicted
directly from the MRI scans. These analyses indicated that the imaging data carried very
limited signal for predicting the covariates, aside from the tumor volume, with model
performance close to chance for most classification tasks. This provides further evidence
that the clinical tabular data contain information complementary to the imaging data.
The imaging data, in turn, likely do not contain information about potential confounders,
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as suggested by the performance close to chance in classifying the applied treatment.
Even tumor volume regression yielded only modest performance, and the inclusion of
ground truth tumor segmentation masks yielded little additional benefit.

These findings reflect limitations in the model capacity, but also the dataset size, both
of which likely contributed to overfitting. Learning to directly regress tumor volume
from image data alone is a challenging task without additional model supervision, and
the models were likely unable to reliably disentangle subtle imaging features associated
with measuring the tumor volume. The wider implication of these results is that the
imaging modality of the EORTC dataset, at least in this setup, may not only lack predictive
but also prognostic information, which could help to explain the limited success of the
image-based CATE estimation models.

While the results do not provide robust evidence for the presence of a predictive imaging
biomarker for bevacizumab in the EORTC dataset, they nevertheless demonstrate how
the proposed image-based CATE estimation model for survival outcomes can be applied
to explore treatment effect heterogeneity in clinical imaging datasets and gain insights
into the robustness and limitations of such as models. Additionally, the results also
show that the quantitative evaluation methods from the first part of the thesis (described
in Section 4.1.3) can support the systematic analysis of predictive imaging biomarker
discovery.

General Strengths and Limitations

This part of the thesis, to the best of my knowledge, introduced the first study to extend
image-based CATE estimation models with multimodal inputs to survival outcomes and
to comprehensively evaluate their feasibility for making treatment recommendations. It
presented the first application of such a methodology to a clinical imaging MRI dataset
from an RCT in glioblastoma patients, which allowed a post-hoc exploratory investigation
of the possible presence of a predictive imaging biomarker without handcrafted features
or a separate feature extraction step as proposed in the first part of the thesis. In this
context, this thesis is also the first to demonstrate the value of integrating pre-trained
image encoders trained on MRI data for treatment effect estimation.

A comprehensive evaluation was enabled by evaluating the model in diverse settings.
These included two very distinct medical imaging datasets of two anatomical regions
and imaging methods, the lung CT dataset NSCLC-Radiomics and the brain MRI dataset
from the EORTC trial, which represent a semi-synthetic dataset with outcome simulated
using a known predictive imaging biomarker signal and a real RCT dataset, respectively.
Additionally, the comparisons were performed across two types of outcomes (binary and
survival), multiple combinations of multimodal inputs (imaging data, segmentation masks
and clinical tabular data), different training strategies (multitask and transfer learning)
and architectures (S-learner versus T-learner, ResNet versus ResEnc-L encoders trained
from scratch or pre-trained).
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Comparing the results across this diverse experimental and evaluation setup revealed
several limitations, which may have affected the factual outcome prediction performance,
as well as the treatment effect estimation and treatment recommendation performance.
At the same time, this setup allowed clarifying where potential failures of the models
stemmed from.

One of the main dataset-related limitations that affected both datasets was the small sam-
ple sizes (n = 415 for NSCLC-Radiomics and n = 427 for EORTC) compared to related
heterogeneous treatment effect studies, which could be counteracted by augmentation
and regularization strategies only to a limited extent. For instance, Durso-Finley et al.
(2022) had access to a cohort of n = 1817 patients and Ma et al. (2023) to a dataset of
n = 656 cases for their image-based CATE estimation study for regression or classifica-
tion outcomes, while Schrod et al. (2022) used a dataset with n = 1545 for their method
for tabular inputs survival outcomes, which allowed them to make reliable statements
about their results.

In the setting of this study, the impact of the dataset size is amplified by different factors.
First, the effective number of survival outcomes is reduced due to censoring, and mod-
eling the stochastic time-to-event processes is inherently more complex than standard
regression. Second, learning meaningful representations from often noisy and heteroge-
neous imaging data additionally increases the difficulty compared to using tabular inputs.
Unlike segmentation tasks, where each image pixel or voxel has a label and provides a
signal, treatment effect estimation for survival outcomes relies on a single patient-level
outcome per sample. Additionally, the overall survival time might also not be directly
tied to distinct visual features, as is often the case in classification tasks. Third, each
treatment group head of the TARNet-like architecture is only trained on the respective
subgroup of patients, reducing the effective training size for each head.

The ability of the CATE estimation models to make optimal treatment recommendations
for the patients was likely not only affected by the small sample size of the datasets
themselves, but also by the weak treatment effects present in the datasets. Both datasets
had an average treatment effect close to zero, indicating that neither treatment was
extremely beneficial or harmful, which made it inherently more challenging for the
models to make a certain treatment decision. For NSCLC-Radiomics dataset, this was a
deliberate simulation choice when generating the outcomes to obtain survival times in
a realistic range. In this context, the coefficient of the predictive imaging biomarker (a
z-standardized feature with a mean of zero) was set to a value that ensured a plausible
rather than an artificially strong heterogeneous treatment effect size. Due to the lower
signal-to-noise ratio, it is therefore difficult to make statements about whether a predictive
imaging biomarker is truly present in the EORTC dataset, as the signals may be too weak
for the current model to capture.

In addition to the limited dataset size, a higher model complexity of the CNN-based mod-
els (compared to regression models) could have contributed to overfitting and variations
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across folds when training on the two clinical imaging datasets, despite measures to coun-
teract it, such as dropout, weight decay, extensive image augmentation, label-smoothing,
and the IPM balancing term of the BITES loss function to compensate for the imbalanced
treatment arms.

The hyperparameter tuning process was also impacted by these limitations in the training,
but more importantly, depended heavily on the choice of metrics used for model selection.
Different metrics often led to different rankings of the model performance, as they
prioritize different aspects. For example, factual outcome prediction metrics such as the
C-index were used for preliminary hyperparameter tuning in the experiments as they are
more stable and more discriminative compared to the observed policy value, but can lead
to different model selections than metrics more relevant to the task of treatment effect
estimation. The latter, computed only on factual outcomes, can have the same value
even with different treatment effect estimations as long as the recommended treatment
is identical, which makes it less informative as a model optimization metric.

This stresses the importance of a comprehensive evaluation rather than relying on a single
metric, which was demonstrated in this thesis through multiple analysis approaches,
which has also been raised by Lillelund et al. (2025).

Broader Implications

This study’s primary clinical application was to evaluate whether the proposed image-
based CATE estimation models for survival outcomes could stratify patients provide
evidence for a predictive imaging biomarker in pre-treatment MRI scans associated with
a treatment benefit of bevacizumab in glioblastoma patients using data from the EORTC-
26101 trial. The methodological contributions of this study thereby provided a new
causal inference perspective to the post-hoc exploratory analysis of this dataset, which
is fundamentally different from prior related work focusing on features derived from
diffusion MRI (Schell et al. 2020), perfusion MRI (Kickingereder et al. 2015), or radiomics
features (Kickingereder et al. 2016; Grossmann et al. 2017; Ammari et al. 2021) as potential
pre-defined biomarker candidates without directly modeling the heterogeneous treatment
effects.

Despite methodological advancements that modeled survival outcomes, combined multi-
modal inputs and leveraged pre-trained image encoders, the experiments in this thesis
did not indicate conclusive evidence for a predictive imaging biomarker or strong hetero-
geneous treatment effects, which is consistent with the earlier mentioned prior works in
glioblastoma. While some of them showed evidence for a predictive biomarker (Kickin-
gereder et al. 2015), none of them could confirm it, but often reported evidence for a
prognostic biomarker and the challenge of disentangling predictive and prognostic sig-
nals (Schell et al. 2020). This challenge specifically what CATE estimation is designed
to address, as discussed in Section 6.1. The results from the experiments of this thesis
altogether represent valuable findings demonstrating the inherent challenges of deep-
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learning-based CATE estimation models when dealing with clinical imaging data under
real-world constraints.

These challenges highlight the requirements for performing image-based CATE estima-
tion on survival outcomes, especially regarding data, offer several lessons for future
research directions, which are discussed in Section 6.4. Reliable treatment recommen-
dation and predictive biomarker discovery fundamentally depends on the accurately
estimating heterogeneous treatment effect estimation, which was difficult to achieve in
both studied datasets due to small sample sizes, weak treatment effects, a high variability
and imbalances.

The proposed image-based CATE estimation model remains a valuable tool for future
clinical research. It offers an additional way of retrospectively analyzing RCT data with
survival outcomes and deriving data-driven insights directly from clinical imaging data
without requiring image feature candidates, for example to generate new data-driven
hypotheses about patient subgroups and to inform the design of future, more targeted
clinical trials.

6.3 General Discussion

This thesis addressed challenges related to supporting image-based treatment decision-
making, but from two different perspectives. The first part introduced the task of discov-
ering predictive imaging biomarkers, which are useful for guiding treatment decisions,
without requiring a separate image feature extraction step. It established the method-
ological foundations for evaluating the discovery of predictive imaging biomarkers using
experiments on datasets with simulated continuous outcomes and known ground truth
imaging biomarkers. While the concepts of this part were not limited to biomedical data
and applicable to any scenario where images can be used to predict treatment effects,
as illustrated in the toy experiments using datasets such as CMNIST and CUB-200-2011,
the second part of this thesis focused on clinical imaging datasets and survival outcomes
from RCTs. It addressed the challenge of applying image-based CATE estimation models
to datasets with more complex real-world constraints than those in the first part to make
individualized treatment recommendations based on images and provided a rigorous
evaluation of survival treatment effects.

Despite tackling distinct research questions, both parts of this thesis are connected
through the use of image-based treatment effect estimation models to analyze RCT
data, with the shared goal of advancing personalized medicine. The evaluation protocol
established in the first part of the thesis can be directly applied to assess the performance
of the extended CATE estimation model proposed in the second part. Vice versa, the
extensions such as integrating multimodal inputs, survival outcomes and pre-trained
encoders can be employed to potentially enhance predictive biomarker discovery. As
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demonstrated in Section 5.2.2 of the experiments, the same evaluation methods are also
applicable for assessing whether such a model is able to identify predictive imaging
biomarkers in the clinical imaging datasets with survival outcomes from the second part.
Altogether, the work bridges the gap between causal inference, and medical imaging for
predictive imaging biomarker discovery and image-based treatment decision-making.

The experiments from both studies leverage semi-synthetic data for validation, where
outcomes are simulated using pre-defined image features as imaging biomarkers. Notably,
the NSCLC-Radiomics dataset was used in both parts. The first part simulated continuous
outcomes based on a linear biomarker—outcome model using different combinations
of predictive and prognostic biomarker strength parameters, whereas the second part
simulated semi-synthetic time-to-event outcomes by scaling the real-world outcomes
with a single pre-defined parameter for the predictive biomarker strength. A similar
series of experiments as in the first part could be repeated in future work using multiple
parameter settings for the treatment effect to determine how strong the predictive imaging
biomarker must be for it to be reliably detected by the model under clinically realistic
conditions with survival outcomes.

Even though semi-synthetic data is inherently less realistic, it was crucial for the experi-
mental validation setup to include ground-truth treatment effects, as discussed previously.
Its utility for benchmarking the discovery of predictive biomarkers has also been stressed
by (Curth, Svensson, et al. 2021) and (Crabbé et al. 2022). Publicly accessible RCT or even
observational image datasets with a verified predictive imaging biomarker that would be
suitable for benchmarking treatment effect estimation methods remain extremely limited.
Therefore, the semi-synthetic setup based on the NSCLC-Radiomics dataset remains a
viable alternative for the validation of image-based treatment effect estimation methods,
particularly given the current lack of any widely accepted benchmark for imaging data.
As argued by Brouillard et al. (2024), the availability of higher-quality datasets, including
realistic synthetic datasets, and benchmarks is important for the development of causal
models, both of which are addressed by the contributions of this thesis.

Beyond the availability of benchmarks, the two parts of this thesis also revealed other
data-related limitations that impacted them both. One of the most critical factors was
the limited dataset size, which had a stronger impact on the clinical imaging datasets
(NSCLC-Radiomics and EORTC), and to some extent also on ISIC 2018, while being less
pronounced on the larger CMNIST and CUB-200-2011 datasets. This, in turn, also affected
the model performance and led to overfitting on the smaller datasets, which was partly
mitigated by data augmentation. However, its effectiveness heavily depends on the dataset
and the underlying treatment effect estimation task itself, as a heavy image augmentation
scheme can negatively impact the prognostic or predictive signals. In this context, other
design choices can influence the performance. For example, choosing an image cropped
to the pathology or tumor bounding box (as done for the NSCLC-Radiomics dataset) or
the whole image (as done for the EORTC dataset) as input can either exclude potentially
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relevant information or introduce redundant and noisy information, respectively. This
highlights the need for data-centric adaptations to strike a balance between over- and
underfitting when applying image-based CATE estimation models.

The underlying motivation throughout the thesis was to explore whether end-to-end
learning approaches can be used to discover predictive imaging biomarkers and estimate
treatment effects from images without requiring handcrafted features or a separate feature
extraction step, as is commonly done in radiomics pipelines. This was successfully
demonstrated, in particular, in the first part of the thesis using simple synthetic linear
outcomes. A key advantage of the proposed approach is that relevant information can be
learned directly from the raw images without imposing prior assumptions that may bias
the discovery process, such as defining a region of interest for feature extraction. This
makes the approach potentially more general and flexible and well-suited for exploratory
biomarker discovery, especially when larger and more diverse datasets become available.
Although no direct comparisons to radiomics were conducted in this work, the methods
explored here should be viewed as complementary, rather than competitive with existing
radiomics pipelines.

Radiomics features have the advantage of being more explicitly interpretable and easier
to integrate into regression-based or causal inference models for tabular data. The
experiments from the second part of the thesis, where simpler clinical tabular regression
models often outperformed deep image-based models, imply that tabular models with
radiomics features may also be more stable in such a low-sample setting. Combining the
proposed image-based CATE estimation approaches with radiomics may therefore be a
promising future direction in small or noisy clinical datasets, which are discussed further
in Section 6.4.

6.4 Future Research Directions

The challenges and limitations discussed in earlier sections of this chapter outline several
open problems that need to be addressed to improve the robustness, scalability, and
clinical applicability of the proposed image-based CATE estimation methods and their
downstream tasks. They motivate several directions for future research, spanning data-
centric solutions, model development, evaluation methodology, and clinical applications.

Data Scale and Availability

While the experiments in this thesis demonstrated the feasibility of estimating treatment
effects from medical imaging data, they also highlighted that one of the most critical cur-
rent limitations is the availability of suitable data. As previously emphasized by Curth et
al. (2024), the performance of treatment effect estimation models fundamentally depends
on the quality and quantity of data available. For example, the available image signal
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could be enhanced by employing more advanced imaging modalities such as different
MRI techniques (e.g. diffusion or perfusion imaging) or contrast agents. However, simply
acquiring more imaging data is often infeasible, particularly in clinical studies, due to
high cost, time, and logistical complexity.

For this reason, causal machine learning methods for CATE estimation have often focused
on more abundant observational datasets, where the treatment is not assigned randomly
and can depend on patient covariates. Leveraging such real-world data is promising for
future work including predictive biomarker discovery, as noted by (Weberpals et al. 2025),
as it is often more representative of the real patient populations. Since the approaches
used in this thesis are based on models, such as TARNet (Shalit et al. 2017) and BITES
(Schrod et al. 2022), which were originally developed for observational settings, they
could similarly be applied to data with non-randomized treatments in future work, as
long as assumption that there are no unmeasured confounders holds. In this setting it
needs to be considered that common evaluation metrics such as risk need to be adjusted
using inverse probability of treatment weighting (Austin et al. 2015).

Another possible solution is to leverage multiple studies through either pooling multiple
datasets or federated learning, which aims to train a model across multiple sites while
preserving privacy. Works from Makhija et al. (2024), L. Han et al. (2025), and Ogier
du Terrail et al. (2025) employ federated learning for treatment effect estimation primarily
on tabular data or electronic health records and could be extended to imaging data.

While this thesis addressed the lack of standardized benchmarks through semi-synthetic
datasets and a tailored evaluation setup for image-based treatment effect estimation,
further work can expand on this foundation to establish more generalizable benchmarks
across different disease areas and downstream tasks. Such a benchmark would further
support method development, enable reproducible comparisons of different image-based
CATE estimation models, and facilitate broader clinical translation. Although Cadei
et al. (2024) has introduced a visual causal inference benchmark (ISTAnt) using an
RCT dataset with ant videos, similar standardized benchmarks in the medical imaging
domain, especially in combination with survival outcomes, remain relevant for future
work. To that end, future studies could apply extended image-based CATE estimation
model developed in this thesis to other publicly available large-scale clinical imaging
datasets, such as the observational RADCURE dataset (Welch et al. 2023; Welch et al.
2024), which contains pre-treatment CT scans of 3,346 head and neck cancer patients
along with radiotherapy treatment data and survival outcomes, to help establish realistic
benchmarks for other use cases further.

Multimodal Integration

This thesis explored multimodal integration as an avenue for improving deep-learning-
based CATE estimation performance. To leverage the often superior performance of the
clinical tabular-only regression baselines, the integration of Cox regression models with
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the image-based deep-learning models could be explored further to allow the network
to prioritize the prognostic tabular information during training. For example, possible
strategies to achieve this could include late fusion approaches combing the final outputs
of the models and other information fusion strategies beyond simple concatenation
and a DAFT block. To account for dataset imbalances across treatment arms, sampling
strategies during training and balancing approaches, similar to the IPM term of the
BITES loss function, could be combined with the fusion strategies of representations
to handle modality-specific imbalances, such as the representation balancing approach
used by Ma et al. (2024). Future work could also explore the incorporating of additional
data modalities, such as genomics or electronic health records data, which may offer
complementary information to improve the treatment recommendation performance, but
may also require specialized architectures to process modalities such as text or structured
inputs.

Pre-training, Transfer Learning and Foundation Models

Using pre-trained image encoders offered some modest benefits in the experiments
presented in this thesis, suggesting that pre-training and transfer learning for image-
based treatment effect estimation are promising areas for future work, especially when
the dataset size is limited or noisy. An immediate next step would be to explore a broader
range of pre-trained image encoders trained using different self-supervised learning
strategies. Well-suited examples include the ones pre-trained on a large-scale brain
MRI dataset by Wald et al. (2025) such as VoCo (Wu et al. 2024) or SimCLR (Chen et al.
2020). Another step would be to compare different fine-tuning strategies, such as using
frozen image encoders, different multi-stage warm-up schedules or parameter-efficient
fine-tuning (Z. Han et al. 2024).

An important extension of this work would be to systematically evaluate these pre-trained
image encoders within CATE estimation models for survival outcomes. Motivated by the
time-to-event pre-training framework proposed by Huo et al. (2025) and the radiology
foundation model proposed by Dancette et al. (2025), where pre-training on a large-scale
observational medical imaging dataset led to improvements in image-based survival
prediction, similar techniques could be adapted for treatment effect estimation and
predictive imaging discovery.

Furthermore, recent progress in pre-training causal models on large-scale observational
datasets for treatment effect estimation on tabular or other structured data, such as the
CURE framework (R. Liu et al. 2024), the methods proposed by Zhou et al. (2025) or
Zhang et al. (2024), could inspire similar strategies for image-based models.

Together with the approaches presented in this thesis, these advancements also motivate
the development of a foundation model for image-based treatment effect estimation,
either specialized for specific disease areas (e.g. glioblastoma) or designed for predictive
imaging biomarker discovery from clinical imaging datasets in general. Combining
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image-based encoders with large vision-language models could potentially further guide
the interpretation of predictive imaging biomarkers and leverage multimodal clinical
data with text-based clinical information (Ligero et al. 2025; Xiang et al. 2025).

Importantly, the evaluation protocol and the experimental setup with (semi-)synthetic
outcomes based on pre-defined imaging biomarkers, as proposed in the first part of
this thesis, can be readily used to benchmark future models with respect to predictive
biomarker discovery, a task that remains largely overlooked in the development of image-
based foundation models.

Evaluation and Interpretability

Especially in low-data regimes, evaluating predictive imaging biomarker discovery and
image-based treatment effect estimation remains challenging, as shown in the second part
of the thesis. The evaluation strategies presented in this work could be further enhanced
in the future by integrating uncertainty quantification. This may help characterize the
confidence level of the employed models and increase trust in the resulting treatment
recommendations (Durso-Finley et al. 2023), especially when data limitations lead to
overfitting or a high variance across cross-validation folds, and support the quantitative
evaluation results of the predictive imaging biomarker discovery task.

The qualitative evaluation in this thesis, using attribution maps to analyze potential
imaging biomarker candidates, showed that the interpretation becomes difficult when
the attribution maps focus on the same region. Such results could indicate that the model
identifies potentially overlapping predictive and prognostic imaging biomarkers with
different meanings or an imaging biomarker that is both predictive and prognostic. This
motivates the development of more advanced XAI methods to support treatment effect
estimation in the image domain, such as using counterfactual explanations (Goyal et al.
2019) or methods that combine this with learning disentangled representations to separate
predictive from prognostic contributions (Chu et al. 2021; Martinez 2021).

Applications

The treatment recommendations produced by the CATE estimation models in this thesis
followed a simple policy, where patients were assigned to treatment if the estimated
treatment effect was positive. For the translation to clinical practice, future work could
explore risk-aware treatment recommendation policies that also account for factors such
as cost or potential negative side effects and adjust the treatment decision threshold
accordingly.

While risk-aware treatment recommendations have been investigated in the context of
categorical or continuous outcomes by Durso-Finley et al. (2022), such future work could
explore how such an approach can be extended to image-based survival-outcome models
from this thesis. Further work could also consider taking the full estimated survival
curves into account for modeling time-varying treatment, instead of computing the CATE
from median survival times alone.
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The clinical translation of the models developed in this thesis would also require address-
ing additional challenges, such as managing distribution shifts across sites, detecting
unfavorable or erroneous treatment recommendations via failure detection. Ultimately,
prospective studies will be needed to validate both predictive imaging biomarker and
treatment effects in real-world settings.
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CONCLUSION

This thesis investigated how image-based treatment effect estimation models can con-
tribute to discovering predictive imaging biomarkers for predicting future treatment
benefits and making image-based treatment recommendations using data from random-
ized studies. The main motivation behind this work was its potential in helping to gain
scientific insights into what kind of information clinical imaging data can provide regard-
ing patient outcomes and to ultimately contribute to advancing image-based personalized
medicine and improving patient outcomes.

In the following, the main findings and contributions are summarized and related to the
research questions posed in Section 1.2.

Summary of Contributions

Part 1: Evaluating heterogeneous treatment effect estimation models for pre-
dictive imaging biomarker discovery. The first part of this thesis introduced an
approach for discovering predictive imaging biomarkers from pre-treatment imaging data.
This was defined as a novel machine learning task, where predictive imaging biomarkers
are identified in a data-driven manner using causal inference models—specifically, deep-
learning-based models for estimating heterogeneous treatment effects from image inputs,
also known as CATE estimation models. This approach is complementary to the common
approach of using image features from a separate (deep-learning) feature extraction step
or handcrafted features, such as radiomics features, but which might lead to potential
biases. One advantage of using CATE estimation models is that by explicitly modeling
heterogeneous treatment effects using these models, the risk of potentially conflating
prognostic with predictive imaging biomarkers is reduced.

One of the main contributions of this first part is an evaluation protocol that was devel-
oped for this previously defined predictive imaging biomarker discovery task, which has
two purposes: The first purpose is to evaluate a predictive imaging biomarker candidate
identified by the model itself quantitatively and qualitatively, independent of whether
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7 Conclusion

a ground truth exists. Its second purpose is validating and benchmarking the perfor-
mance of a treatment effect estimation model at identifying a known predictive imaging
biomarker feature.

The quantitative part of the proposed evaluation protocol supports the evaluation of the
estimated predictive biomarker strength through statistical tests of the biomarker-by-
treatment interaction and directly comparing the predictive effects to prognostic effects.
The qualitative evaluation part employs XAI methods, specifically attribution maps, to
support the visual interpretation of the identified predictive imaging biomarker candidate.

The first part of the thesis introduced benchmarking experiments for the task of identi-
tying predictive imaging biomarkers, where outcomes are simulated using real image
features by altering the strength of predictive and prognostic biomarkers. The experi-
ments on a variety of image datasets and imaging biomarker features demonstrated that
the proposed approach using image-based CATE estimation models can indeed success-
fully identify these imaging biomarkers (RQ1.1). Using these reproducible experiments, it
could also be shown that the evaluation protocol can successfully be used to measure
model performance (RQ1.2), therefore offering valuable insights for improving and further
developing image-based CATE estimation models.

Part 2: Image-based heterogeneous treatment effect estimation in clinical imag-
ing studies. Building on these insights gained from the benchmarking experiments
on semi-synthetic image datasets in a controlled setting regarding the value of using
image-based CATE estimation, the second part of this thesis developed approaches for
translating these models to real-world clinical imaging datasets. This second part of
the thesis developed and evaluated a multimodal CATE estimation model for survival
outcomes in an RCT setting, combining imaging and tabular data as an input. Motivated
by accounting for censoring and more accurately capturing the overall survival, which
is often the main outcome of interest in clinical trials, it thereby extended previous
image-based approaches limited to continuous or categorical outcomes only.

The experiments presented the first evaluation of such an image-based CATE estimation
model in glioblastoma. Specifically, data from a real clinical trial (EORTC) was used to
assess heterogeneous treatment effects of using bevacizumab, as well as the resulting
patient treatment recommendations and the potential presence of predictive imaging
biomarkers for this experimental treatment (RQ2.3).

Further, a lung cancer CT dataset (NSCLC-Radiomics) was used to simulate semi-synthetic
RCT survival outcomes with a controlled treatment effect based on real observational
outcomes, which was leveraged for accurately validating the treatment recommendation
performances of the proposed models.

With these datasets, this work assessed whether modeling survival outcomes instead of
binarized survival times could improve treatment recommendations (RQ2.1) and whether
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integrating clinical tabular data, segmentation masks, and performing multitask learning
has an impact on model performance and robustness (RQ2.2). This work was also the
first to investigate the impact of integrating pre-trained image encoders on estimating
treatment effects and making treatment recommendations from MRI data.

Using experiments and an extensive evaluation setup, including an analysis of stratified
subgroups and baseline comparisons, critical dataset-related and methodological limi-
tations in applying the image-based CATE estimation models to clinical imaging data
could be revealed. These limitations include the risk of overfitting due to small sample
sizes, limited treatment effect signals, and the underutilization of the clinical tabular
data. While modeling survival outcomes and using pre-treatment image encoders led to
modest improvements, the impact of multimodal integration and multitask learning was
mostly inconsistent. Additionally, results did not indicate evidence for a strong predictive
imaging biomarker in the EORTC dataset.

Even though the results suggest that methods developed for large imaging datasets
with strong treatment effect signals may not directly translate to clinical imaging stud-
ies with limited sample sizes, they identified important practical and methodological
challenges that future work must overcome to make accurate image-based treatment
recommendations and for its downstream tasks.

Outlook

The findings of this thesis demonstrate both the opportunities offered by image-based
treatment effect estimation models for discovering predictive imaging biomarkers and
making image-based treatment recommendations, as well as the current limitations of
applying such an approach to currently available clinical imaging data. They highlight the
need for more robust and generalizable methods combined with more realistic evaluation
benchmarks.

Despite the challenges, this thesis also offers important insights and outlines future
research directions for the development of deep learning methods at the intersection
of causal inference, computer vision, and medical research. These include leveraging
observational data and employing domain-specific pre-training or the use of foundation
models. The models and evaluation methods developed here may serve as a valuable
foundation for advancing the field of image-based decision-making and for inspiring
applications of image-based treatment effect estimation in the medical domain and

beyond.
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APPENDIX

B.1 Additional Results

Table B.1: Additional ablation results for experiments on the NSCLC-Radiomics dataset. The
results are shown for three variations of the survival-outcome model for image and
tabular inputs: the model with concatenated representation and no regularization
term, the model with a DAFT module (Wolf et al. 2022) for multimodal integration
instead, and the model trained using the BITES loss function (Schrod et al. 2022) with
the hyperparameter o = 0.01 for the IPM regularization term. Reported are the
fraction of correctly assigned treatments (Decision Accuracy), root PEHE (,/€pppr),

observed policy value Vpol, and Antolini’s C-index, with mean + SD across folds. All
metrics are IPCW-adjusted, except for the C-index.

Split Method Decision Acc  /epgrz 4 [103d] V7 [10°d]  C-Index
Survival 0.54 £ 0.09 4.0 £1.8 0.46 £ 0.14 0.57 £ 0.03

Validation Survival + DAFT 0.51 £ 0.08 4.5+ 23 0.39 £ 0.12 0.55 £ 0.04
Survival + o = 0.01 0.52 £ 0.03 4.7 +£25 0.84 £ 0.60 0.53 £0.04
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Figure B.2: Kaplan-Meier curves on the NSCLC-Radiomics dataset comparing the survival prob-
ability for patients who received the treatment recommended by the estimated CATE
(green) versus those who did not (orange). For reference, the curves for the treated
group (T' = 1, red) and control group (1" = 0, blue) are also shown. Results are based
on the validation set of fold 2, using recommendations from the best-performing
survival-outcome model for that fold (image-only input). Log-rank p-values are
reported for reference.
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Figure B.3: Kaplan—Meier curves on the NSCLC-Radiomics dataset for observed patient sub-
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groups stratified by the sign of the estimated CATE (7; > 0 vs. 7, < 0), where a
positive CATE indicates that the patient is predicted to benefit from treatment 7' = 1.
Within each subgroup, curves compare the survival probability for patients who
were actually treated (" = 1, red) versus the control group (T = 0, blue). Results
are shown on the validation set of fold 2 using the image-only model. Log-rank
p-values and Cox proportional hazards results are reported for reference.
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Figure B.4: Kaplan-Meier curves on the NSCLC-Radiomics dataset comparing the survival
probability for patients who received the treatment recommended by the ground
truth ITE (green) versus those who did not (orange). For reference, the curves for
the treated group (1" = 1, red) and control group (I" = 0, blue) are also shown.
Results are based on the validation set of fold 2. Log-rank p-values are reported for
reference.
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Figure B.5: Kaplan—Meier curves on the NSCLC-Radiomics dataset for observed patient sub-
groups stratified by the sign of the ground-truth ITE (7; > 0 vs. 7; < 0), where a
positive ITE indicates that the patient truly benefits from treatment I" = 1. Within
each subgroup, curves compare the survival probability for patients who were actu-
ally treated (T=1T=1, red) versus the control group (T" = 0, blue). Results are shown
on the validation set of fold 2. Log-rank p-values and Cox proportional hazards
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Figure B.6: Scatter plot of the z-score-normalized radiomics feature flatness vs. estimated ITE
computed on each validation fold of the 5-fold cross validation models trained
on different input modalities on the NSCLC-Radiomics dataset. For comparison,
the relationship between flatness, which was used to simulate the semi-synthetic
treatment effect, and the true ITE is shown.
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Table B.2: Full comparison of the proposed two-headed TARNet-like CATE estimation model
with a single-headed S-Learner architecture sharing the same backbone and configu-
ration. Reported are the observed policy risk }A%POI or policy value T7pol, as well as the
Balanced Accuracy, AUROC and Antolini’s C-index, with mean 4 SD across folds.
All metrics are IPCW-adjusted, except for the C-index.

a Performance of binary-outcome CATE estimation models.

Modalities

Split  Model Multitask

Rpy | Balanced AccT AUROC 1

Image Tabular

0.858 £ 0.038
0.858 £ 0.038
v 0.810 + 0.053

0.520 £ 0.045
0.506 £ 0.014
0.500 £ 0.000

0.52 = 0.06
0.54 + 0.06
0.58 + 0.06

S-Learner

AN

Val.

TARNet

NN

0.858 £ 0.038
0.858 £ 0.038
0.831 £ 0.047

0.541 £ 0.092
0.541 £ 0.092
0.518 £ 0.041

0.50 = 0.14
0.51 £ 0.14
0.61 + 0.05

S-Learner

0.821 £ 0.000
0.821 = 0.000

0.499 £ 0.002
0.500 £ 0.000

0.55 + 0.01
0.53 £ 0.01

ANIAN

v 0.805 + 0.023 0.500 £ 0.000 0.46 + 0.07

Test

0.821 £ 0.000
- 0.821 = 0.000
v 0.811 = 0.022

0.501 + 0.000
0.501 £ 0.000
0.500 £ 0.000

0.50 = 0.00
0.51 £ 0.02
0.49 £ 0.02

TARNet

NN NE NN RN NENIENENEN

AN

b Performance of survival-outcome CATE estimation models.

Modalities

Split  Model Multitask V1 [10°d]  C-Index 1

Image Tabular

S-Learner

Val.

AN

0.187 £ 0.080
0.200 £ 0.073
0.107 £ 0.009

0.492 + 0.027
0.506 £ 0.030
0.504 + 0.019

TARNet

AN

0.137 £ 0.041
0.147 £ 0.046
0.109 + 0.007

0.497 + 0.027
0.501 £ 0.026
0.527 + 0.035

S-Learner

Test

ENIAN

0.178 £ 0.015
0.184 £ 0.013
0.161 £ 0.000

0.520 £ 0.030
0.527 £ 0.020
0.522 + 0.028

TARNet

SSSNISSSNISSNSNISSS

ANIAN

0.165 £ 0.015
0.165 £ 0.014
0.161 £ 0.000

0.546 + 0.004
0.556 £ 0.017
0.576 £ 0.011
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Figure B.7: Histograms showing the distribution of the estimated CATEs 7 on EORTC dataset
for the individual cross-validation folds and for the resulting ensemble. Results
are shown on the hold-out test set using cross-validation models selected based on
validation performance.
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Figure B.8: Scatter plots showing the predicted control group outcome lA/(T = 0) versus the

predicted treatment group outcome Y (7' = 1) on EORTC dataset for the individual
cross-validation folds and for the resulting ensemble. Results are shown on the hold-
out test set using cross-validation models selected based on validation performance.
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Figure B.9:
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Results for the estimated CATEs and predicted outcome probabilities of the control
group Y (T = 0) versus the treatment group outcome Y (7" = 1) predicted outcome
probabilities of a model fine-tuned a pre-trained ResEnc-L encoder for different
folds and ensemble on the EORTC dataset. Results are shown on the hold-out test
set using cross-validation models selected based on validation performance (MAE
encoder released by (Wald et al. 2025)).



B.1 Additional Results

Table B.3: Evaluation results of the predictive strength of the estimated CATE from binary-
outcome CATE estimation models using the ResEnc-L backbone, trained from scratch
or fine-tuned from a pre-trained MAE-encoder (Wald et al. 2025) on the EORTC
dataset. The policy value (‘A/Pol) is computed using survival outcomes. Reported are
the same Cox regression statistics as in Table 5.10: the p -value from the Wald test
for biomarker-by-treatment interaction term, the ratio of absolute Wald z -statistics
|2pred/ %prog | for the predictive vs. prognostic term, and the p -value of the likelihood

ratio test.
Split  Model Vot T[10°d] Wald p  |2,00/ %] LR P
Test ResEnc-L Bin-TARNet (From Scratch) 0.173 + 0.010 0.731 0.35 0.731
ResEnc-L Bin-TARNet (MAE) 0.185 £ 0.017 0.662 0.60 0.660
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LIST OF ACRONYMS

Al artificial intelligence

AP average precision

ATE average treatment effect

AUROC area under the receiver operating characteristic curve
BEV bevacizumab

BITES Balanced Individual Treatment Effect for Survival Data
C-index concordance index

CATE conditional average treatment effect

CE cross-entropy

Cl confidence interval

CNN convolutional neural network

CT computed tomography

CUB Caltech-UCSD Birds

DKFZ German Cancer Research Center

EG Expected Gradients

EORTC European Organisation for Research and Treatment of Cancer
FLAIR fluid-attenuated inversion recovery

GPU graphics processing unit

Grad-CAM Gradient-weighted Class Activation Mapping

HR hazard ratio

HTE heterogeneous treatment effect

HU Hounsfield unit
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List of Acronyms

IPCW inverse probability of censoring weighting
IPM integral probability metric

ISIC International Skin Imaging Collaboration

ITE individual treatment effect

MAE mean absolute error

MAE masked autoencoder

MIC Medical Image Computing

MITK Medical Imaging Interaction Toolkit

MNIST Modified National Institute of Standards and Technology database
MRI magnetic resonance imaging

MSE mean squared error

NSCLC non-small-cell lung cancer

OS overall survival

PEHE precision of estimating heterogeneous effects
RCT randomized controlled trial

ResEnc residual encoder

ResNet residual neural network

RQ research question

SD standard deviation

SGD stochastic gradient descent

T1-w Tl-weighted

T2-w T2-weighted

TARNet Treatment-Agnostic Representation Network
WHO World Health Organization

XAl explainable artificial intelligence
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