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Abstract

Urban regions emit large amounts of CO,, are drivers of national inventory uncertainty, and
have a direct impact on the day-to-day life of their inhabitants. Therefore, an independent
assessment of urban emissions supports climate action and governance. This work presents a
complete pipeline for improving urban emissions estimates. It includes setting up, optimizing,
and evaluating atmospheric transport as well as CO, and CO simulations and estimating
emissions based on aircraft measurements.

We optimize the physics configuration of the WRF atmospheric transport model and
show that its performance exceeds previous studies. We use this optimized configuration
to generate MACRO-2018, a 1 km resolved dataset of meteorology as well as CO, and CO
concentrations in German metropolitan areas for 2018. This dataset provides two different
physics configurations and biogenic models. We evaluate its performance against high-
precision CO, and CO measurements and find mean absolute biases of 5.2 ppm to 6.4 ppm
for CO,, exceeding the quality of comparable datasets. For CO, we find mean absolute
biases of 25.4 ppb to 28.6 ppb. Finally, based on this dataset we set up a Bayesian inversion
framework which assimilates aircraft measurements to optimize the emissions of Berlin
and the background CO, concentration simultaneously. Using this approach, we reduce the
emissions estimate uncertainty from a simpler and widely-used mass balance approach by a

factor of five.
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Zusammenfassung

Stddtische Regionen emittieren grole Mengen an CO,, sind verantwortlich fiir erhebliche
Unsicherheiten in nationalen Inventaren und haben einen direkten Einfluss auf das tigliche
Leben ihrer Einwohner. Daher unterstiitzt die Verbesserung der Schitzungen von stadtischen
Emissionen globalen Klimaschutz und lokale Governance. Diese Arbeit prisentiert eine
komplette Pipeline zur Verbesserung von urbanen Emissionsschdtzungen. Sie umfasst
die Einrichtung, Optimierung und Evaluation von atmosphérischen Transport-, CO;- und
CO-Simulationen und die Emissionsschidtzung basierend auf Flugzeugmessungen.

Wir optimieren die physikalische Konfiguration des atmosphirischen Transportmodells
WRF und zeigen, dass die Leistung frithere Studien iibertrifft. Basierend auf dieser opti-
mierten Konfiguration generieren wir MACRO-2018, einen Datensatz mit einer Auflosung
von 1 km bestehend aus Meteorologie sowie CO,- und CO-Konzentrationsfeldern in deut-
schen Ballungsridumen fiir das Jahr 2018. Dieser Datensatz beinhaltet zwei verschiedene
physikalische Konfigurationen und zwei biogene Modelle. Wir bewerten die Leistung dieses
Datensatzes anhand von hochprizisen CO;- und CO-Messungen und finden einen mitt-
leren Betragsfehler von 5.2 ppm bis 6.4 ppm, was die Leistung vergleichbarer Datensitze
ibertrifft. Fiir CO finden wir einen mittleren Betragsfehler von 25.4 ppb bis 28.6 ppb. Schlus-
sendlich setzen wir ein bayessches Inversionsframework basierend auf diesen Daten auf,
welches Flugzeugmessungen assimiliert um gleichzeitig die Emissionen von Berlin und
die Hintergrund-CO;-Konzentration zu optimieren. Mit diesem Ansatz reduzieren wir die
Unsicherheit der Emissionsschitzung gegeniiber einem einfacheren, aber weit verbreiteten

Massenbilanzansatz um den Faktor fiinf.
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1 Introduction

Climate change is one of the most serious and urgent threats to the stability of both natural
and human systems alike (Ripple et al., 2025). Its observable and ever-growing impacts span
nearly all components of the Earth’s climate system: the atmosphere, ocean, cryosphere,
and biosphere. Global average land-surface temperatures have increased by 1.5 °C to 1.6 °C
over pre-industrial times (1850 to 1900; Kennedy, 2024). Losses and damages related
to climate change are manifesting and will continue to intensify (IPCC, 2022a). These
changes are already apparent in climate-dependent sectors of human society like agriculture
or fishery (Blasiak et al., 2017; Jigermeyr et al., 2021). Long-term, adverse impacts of
climate change on human civilization outweigh beneficial ones (Carleton et al., 2022; IPCC,
2023). Impacts are unevenly distributed, manifesting for example as intensified flooding in
water-rich regions and increased drought frequency in arid zones, which threatens livelihoods
and infrastructure, particularly in vulnerable areas (IPCC, 2022b). Projections suggest that
without substantial mitigation, large populations may be forced out of their climate niche
causing large-scale displacement and making conflicts more likely (Xu et al., 2020; Lenton
et al., 2023).

Anthropogenic emissions of greenhouse gases (GHGs) are the main cause of climate
change (IPCC, 2023). Their impact is measured in global warming potential (GWP) which
quantifies the additional radiative forcing caused by these gases over a fixed amount of years.
The most commonly used metric is the 100-year GWP (GWP1gg). Human GHG emissions
consist of carbon dioxide (CO,, 75 % of GWP| ), methane (CHy4, 18 % of GWP/(g), nitrous
oxide (N20, 4 % of GWPyq), and fluorinated gases (2 % of GWPyqg; Fig. 2.5 in IPCC,
2022b). The overall largest share of this global warming potential is caused by carbon
dioxide emissions from energy generation through the combustion of fossil fuels.

As first posited by Svante Arrhenius in 1896 for CO,, increasing concentrations of GHGs
lead to a rise in Earth’s average surface temperature. The underlying mechanism is GHGs
absorbing and isotropically re-emitting the outgoing infrared radiation. An increase in
GHG concentrations raises the effective atmospheric emission height of radiation into space,
reducing its cooling efficiency due to the lower temperatures at higher altitudes. The most
important part of the spectrum where this happens is the infrared region at the border of the

atmospheric window, which is responsible for a large part of the energy loss of the Earth
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Figure 1.1: Representation of the perturbation of the global carbon cycle by anthropogenic activity.
Fluxes (excl. CDR, which is reported only for 2023) are averaged for the decade 2014
to 2023. Arrow size is not indicative of flux strength. Uncertainty of atmospheric CO,
growth rate is #0.02 Gt C a~'. Figure reproduced from Friedlingstein et al. (2025) under
CC BY 4.0 license.

system. At the same time, the increasing concentrations fill up non-saturated absorption lines
which causes more downwelling radiation from the atmosphere onto the surface. Both of
these effects contribute to effectively trapping a part of the long-wave radiation and lead to
an increase of temperature of the surface-troposphere system. This increase in temperature
eventually balances out the energy budget between the Earth’s outgoing radiation from the
top of the atmosphere with the incoming radiation from the sun. In the following, we focus

on CO; since its emissions make up the bulk of the 100-year Global Warming Potential.

Anthropogenic CO; emissions contribute to the global carbon cycle, of which a yearly
review is published as the Global Carbon Budget. Here, we present the results for the decade
2014 to 2023 as published in Friedlingstein et al. (2025, cf. Fig. 1.1). This cycle is dominated
by the natural land and marine fluxes with 130 Gt C a~! and 80 Gt Ca™! respectively. These
fluxes circulate carbon between vast reservoirs containing thousands of gigatons on land
and ten thousands of gigatons in the ocean. However, the anthropogenic carbon emissions
disturb this balance of emission and uptake. They consist of fossil CO, emissions and land
use, land use change, and forestry (LULUCF) emissions, accounting for 9.7 0.5 Gt Ca™!
and 1.1 £0.7GtCa™! respectively. These get partially absorbed by land and ocean sinks
of 3.2+0.9GtCa! and 2.9+ 0.4 Gt Ca~! leaving 5.20 +0.02 Gt C a~! to accumulate in the



atmosphere. This constitutes a perturbation of the natural carbon cycle, which is approxi-
mately in equilibrium without anthropogenic interference. However small in comparison,
this perturbation is responsible for the increase in atmospheric CO, leading to climate change.
This puts the focus for combatting the root cause of climate change in order to avert negative

consequences for human civilization squarely on reducing GHG emissions.

In order to respond to the growing threat of climate change, in 1992 the United Nations
(UN) created the UN Framework Convention on Climate Change (UNFCCC) to which all 198
UN members are party. Its objective is to stabilize GHG concentrations in the atmosphere
at levels deemed not dangerous, allowing ecosystems to adapt and reducing the impact on
human populations. UNFCCC members meet yearly in the so-called Conference of Parties
(COP), which first took place 1995 in Berlin. While international progress on this topic was
slow, the 21%' COP in 2015 marked a turning point, with the Paris Climate Accords being
finalized and subsequently signed in 2016. Hailed as a breakthrough in combatting climate
change, in the Accords the Parties agree to “[hold] the increase in global average temperature
to well below 2 °C above pre-industrial levels [...]” (UNFCCC, 2015).

The mechanism of the agreement stipulates that countries determine autonomously which
contributions they make towards the agreed-upon goal. These Nationally Determined Con-
tributions (NDCs) are to be submitted every five years and are supposed to become more
ambitious over time. However, these are not legally binding and there are no sanctions
in case of shortfalls, which reduces the probability of compliance and limits the treaty’s
effectiveness. In order to incentivize action, a second pillar of the Accords is the five-yearly
Global Stocktake. The Global Stocktake is supposed to monitor and evaluate the Parties’
progress towards their NDCs and the compatibility of their NDC with the goal of the Paris
Agreement. By way of “name and encourage” as coined by Jadnos Pésztor, the UN’s former
assistant secretary-general, this is supposed to increase countries’ ambitions. The data the
Global Stocktake is based on is provided by the Enhanced Transparency Framework (ETF),
which is a legally binding provision of the Agreement. Thereby all Parties are required to
submit Biennial Tranparency Reports (BTRs). These include the National Inventory Reports
(NIRs), which include assessments of progress towards the NDCs as well as information

about the Parties’ progress towards other parts of the Paris Climate Accords.

Each NIR is a comprehensive budget of all GHG sources and sinks in the respective country.
As laid out in decision 24/CP.19 of COP19 (Warsaw, 2013), NIRs are created following
the 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National
Greenhouse Gas Inventories. These provide two approaches to calculate uncertainties:
error propagation and Monte Carlo simulation, with the latter one being favored. These
uncertainties for Germany amount to around 10 % at the national level, but are much larger

at sub-national scales. In order to reduce these and pursuant to the decision 24/CP.19,
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Annex I countries like Germany are required to submit a Quality Assurance/Quality Control
Plan, which according to the guidelines may include inverse modeling approaches. Here,
inverse modeling is referring to data assimilation from atmospheric measurements in order to
estimate emissions and their uncertainties under the constraint of prior information. In order
to streamline these efforts internationally, in 2015 the 17™ World Meteorological Congress
of the World Meteorological Organization (WMO) created the Integrated Global Greenhouse
Gas Information System (IG3IS).

The German contribution to the IG3IS is the Integrated Greenhouse Gas Monitoring
System (ITMS). It is a joint research project funded by the German Ministry of Research,
Technology, and Space (BMFTR) between academic and non-academic partners across
Germany, which is supposed to develop GHG assimilation capabilities at the German Weather
Service (DWD). These assimilations are supposed improve the estimates of emissions and

uncertainties within the NIR.

When accounting for anthropogenic emissions, their uneven distribution results in both,
challenges and opportunities. While LULUCF emissions occur mostly in rural areas due to
agriculture and deforestation, fossil fuel CO, emissions are more clustered. Crippa et al.,
2021 report that in 2015, European CO; emissions of urban and sub-urban areas constitute
about 60 % of all CO, emissions. However, the shares vary strongly between world regions.
While in the Middle East, Russia, and Asia close to 75 % of all CO, emissions occur in
urban and sub-urban areas, in North America, Africa, and Oceania the share is closer to
50 %. This notwithstanding, the emissions density of urban and sub-urban areas remains
disproportionate, independently of the world region. In fact, while in 2015 only 1 % of the
Earth’s surface was covered by urban and sub-urban areas, they accounted for 50 % of global
emissions (Ribeiro et al., 2019; Crippa et al., 2021). This is slated to increase as populations

all over the globe continue to urbanize (Jiang and O’Neill, 2017).

According to the German NIR for 2023, Germany emitted 0.75 Gt CO,eq with a total
uncertainty of 2.8 % (Giinther et al., 2025). This uncertainty increases to 12.1 % to 13.8 %
according to the Monte Carlo simulation and error propagation approaches when adding
up sectorial uncertainties. Of these emissions, CO; was responsible for 0.68 Gt CO,eq
with a combined sectorial uncertainty of 8.8 % to 9.7 %. According to approach two, the
largest share of uncertainty for CO, originates in sectors which are associated with urban
regions such as Public Electricity and Heat Production, Residential, and Road Transport
(30.6 %; Giinther et al., 2025). In conjunction with the future increase in urban popula-
tions, this makes urban areas an effective target for emissions monitoring and verification
efforts (Jiang and O’Neill, 2017).

Moreover, investigating emissions from urban areas yields additional co-benefits. Indeed,

any knowledge about the sub-national distribution of GHG emissions also helps to inform



the quantification of other GHG fluxes. This is because low uncertainties in one kind of
emissions sector in methods like Bayesian inversions help constrain uncertainties in other
sectors. And lastly, the focus on urban areas is a “think global, act local” approach to
climate politics. Cities as stakeholders are important actors, as their actions directly shape
the day-to-day life of large populations. Many cities have already pledged themselves to
climate targets individually and as parts of organizations like C40 or The Global Covenant
of Mayors for Climate & Energy (C40 Cities, 2025; Global Covenant of Mayors on Climate
& Energy, 2025). Capable monitoring, reporting, and verification systems (MRVs) driving
comprehensive accounting methodologies support local mitigation efforts, enhance trust in
governance, and constitute valuable contributions to climate action (Jungmann et al., 2022;
Ulpiani et al., 2025).

There are multiple preconditions to robust, independent estimates of urban CO, emissions.
These include accurate transport modeling, reliable information on model uncertainty, high-
quality measurements, and a well-constructed inversion which considers sources of error and
biases. In this work, we present a full pipeline for optimizing urban emissions estimates. To
that end, we investigate the sensitivity of the meteorological performance of the Weather
Research and Forecasting Model (WRF) to different physics configurations in the Rhine-
Neckar area in Chapter 2 (published in Pilz et al., 2026). In Chapter 3, we use these sensitivity
studies to create the Metropolitan Area COx RecOrd of Germany 2018 (MACRO-2018),
a high-resolution, high-fidelity, and long-term dataset of meteorological information as
well as CO, and CO concentrations over Europe, focussing on German metropolitan areas.
We evaluate its quality against high-precision measurements over the full year of 2018.
Finally, in Chapter 4 we constrain the Berlin city emissions from data collected by aircraft
measurements within the [UC]?> campaign using a Bayesian inversion approach including
a background estimation based on MACRO-2018 concentration and meteorological data.
Each of the three chapters contains a specific introduction into the methods used therein at
their start. In Chapter 5 we discuss the work done in this thesis and present possible future

avenues of research.






2 Atmospheric Transport Modeling

Atmospheric transport modeling is a crucial part of GHG flux estimation using inverse
methods. Schuh et al. (2019) and Munassar et al. (2023) show that for both, regional and
global surface flux estimates, transport model error is the largest source of uncertainty. Urban
regions contribute substantially to CO, emissions and are therefore a key target area for
emissions monitoring, reporting, and verification systems (MRVs) using inverse modeling.
This requires well-characterized atmospheric transport and urban areas are particularly
challenging to model due to their heterogeneity and micro-climates. Determining the
effect of different parametrization schemes on the (urban) atmospheric transport and its
quality is an important step in improving emissions estimation. We, therefore, conduct a
sensitivity analysis to determine the optimal physics configuration of the Weather Research
and Forecasting Model (WRF) model in a German metropolitan area and present the results in
this chapter. We start with giving some physical background and introducing the atmospheric
transport model in Section 2.1. Continuing with Section 2.2, we discuss the setup of our
simulations. Section 2.3 presents the measured data we use for evaluation and Section 2.4
the evaluation itself. Finally, Section 2.5 discusses the performance and possible causes.
Please be aware that large parts of the content of the following chapter have been adapted
from Pilz et al. (2026).

2.1 Background and Methods

In the first part of this section, we cover the physical basis of urban modeling. We start
by presenting boundary layer physics in general, the structure of the boundary layer, and
methods to analyze it. Next, we describe the impact urban regions have on the boundary
layer and finally its diurnal dynamics. These descriptions are based on Tulapurkara (2005),
Oke (2017), Roedel and Wagner (2017), and Stith et al. (2018).

In the second part, we present the Weather Research and Forecasting Model (WRF), which
we use to simulate the urban meteorology. We first give a general overview over the model

and then describe some of its parametrizations.



2 Atmospheric Transport Modeling

2.1.1 Boundary Layer Physics

Our studies focus on the meteorologically active part of Earth’s atmosphere, the troposphere.
It is the lowest of the five atmospheric layers, extending from the ground to the tropopause at
a height between 6 km and 20 km, depending on latitude. In the mid-latitudes which we are
interested in, the troposphere is approximately 9 km high. Dynamically, it is split into two
layers: the so-called ‘free atmosphere’ or ‘geostrophic layer’, and the ‘atmospheric boundary
layer’ or ‘planetary boundary layer (PBL)’.

The free atmosphere is the topmost layer within the troposphere, which extends from
the top of the PBL to the tropopause. Its other name, ‘geostrophic layer’, stems from the
approximation of geostrophic balance between the forces acting on the winds therein. This is
a theoretical state in which the Coriolis and the pressure gradient force balance exactly and
there are no other forces like friction at action. Although this state is an ideal approximation
and thus nonexistent in nature, wind flows in the free atmosphere outside of the tropics are
close to in geostrophic balance most of the time. These near-geostrophic flows in the free
atmosphere are responsible for the movement of large-scale weather systems.

The PBL is defined as that layer of the atmosphere which is affected by the Earth’s surface
due to friction and surface effects. It is the lowest part of the atmosphere and its height ranges
from the surface to between 100 m and 3000 m depending on the meteorological situation.
Due to the influence of surface effects, turbulence is a central phenomenon in the PBL. The
fundamental description of boundary layer physics originates in fluid theory.

Before the development of boundary layer theory, classical hydrodynamics could not
explain why solid objects experience drag when moving through fluids (Tulapurkara, 2005).
This apparent contradiction between theory and observation became known as d’ Alembert’s
paradox. Ludwig Prandtl resolved this paradox in his 1904 paper “Uber Fliissigkeitsbe-
wegung bei sehr kleiner Reibung”, which was published in the proceedings of the Third
International Congress of Mathematics held in Heidelberg the following year. Therein,
Prandtl posited that any motion of fluids at the interface to objects must be constrained, at a
microscopic scale, by the no-slip condition vr; = O of the fluid at the object’s surface. This
condition creates a ‘boundary layer’ close to the object’s surface which mediates between
the surface interaction and the standard hydrodynamic conditions above. This intermediate
layer is defined by large shear stresses which eventually decrease with distance from the
interface. In the 1920s, boundary layer theory was extended to turbulent flow and free shear
flows like wakes and jets. Today, it provides the fundamental framework for understanding
a wide range of fluid phenomena, including airflow over aircraft wings, fluid flow through
pipes, and, importantly for us, the interaction of the atmosphere with the Earth’s surface.

We will first provide an idealized view of the boundary layer stratification, which assumes

a flat surface of little roughness after Roedel and Wagner (2017). The lowest part of the



2.1 Background and Methods

v profile
in neutral
conditions

A
10 Free atmosphere =0 Vg
107 | o .
A ac
Ekman layer ol x'a
107 Rl v
e
s oL  Prandt layer
= _ o g
@ =+ Monin-Obukhov similarity £
I . . . L= =
1 theory describes wind profile V] =]
under non-neutral conditions o g
w0tk g Le]
(&)
[
1072 = : N
18]
Molecular viscous layer o
L o =

Ground I = ()

Figure 2.1: Structure of the planetary boundary layer. Boundary layer is split into molecular viscous
layer, Prandtl layer and Ekman layer. Molecular viscous layer starts with no-slip condition
at surface and linear velocity profile. Both molecular viscous and Prandtl layer have
constant turbulent shear stress. Under neutral conditions, the Prandtl layer exhibits
logarithmic wind profile. In the Ekman layer, turbulent shear stress decreases until the
free atmosphere where it is zero. The wind vector turns and exponentially approaches the
geostrophic winds. Figure after Roedel and Wagner (2017).

boundary layer is the so-called ‘molecular viscous layer’, in which energy dissipation due to
molecular friction dominates. This layer is only millimeters thick and creates the connection
to the lower boundary condition of the wind velocity, the no-slip condition v,; = 0. Starting
from v = 0 at the surface, the molecular viscous layer exhibits a linear velocity profile.
Above this zone are two layers, which are distinguished by their respective profiles of
turbulent shear stress 7. These are the ‘Prandtl layer’ T = const. < 0 and the ‘Ekman layer’
with ‘j—; > O until T = 0 in the free atmosphere. In the Prandtl layer, which is up to 100 m
tall, the turbulent eddies grow until they reach the Ekman layer. There, above 100 m, the
Coriolis forces increase until the eddies are suppressed. A characteristic phenomenon of the
Ekman layer is the so-called Ekman spiral. This describes a change in wind direction from
the geostrophic wind towards the surface caused by the frictional forces closer to the surface
decelerating and deflecting the winds. This reduction is approximately exponential in nature.

An overview over the layers can be found in Fig. 2.1.

The different parts of the boundary layer are closely connected to one another and turbulent
exchanges between them are not impeded. During daytime, the dynamics within the boundary
layer are dominated by surface heating creating vertical eddies (‘thermals’; Oke, 2017). These

rise through the layers of the PBL and hit the underside of the free atmosphere. Some of



2 Atmospheric Transport Modeling

these eddies overshoot into the free atmosphere and thus entrain warmer, drier air from above
into the PBL, which produces a so-called ‘capping inversion’. This inversion exhibits a sharp
increase in (potential) temperature creating a stable layer at the top of the PBL, significantly
reducing air exchange with the free atmosphere.

This stable layer makes the boundary layer interesting to study for us as it accumulates
surface influences such as GHGs and air pollutants. Of main interest here is the mixing
layer height, as it gives an indication of the volume in which these influences distribute.
This is a crucial parameter, as a wrong mixing layer height severely impacts the estimation
of pollutant concentrations. Applications interested in this are e.g. air quality monitoring
or emissions monitoring of different kinds. We will focus on the retrieval of the mixing
layer height from measurement data next for which we introduce Monin-Obukhov similarity

theory.

Monin-Obukhov Similiarity Theory

In 1954, surface layer physics had made considerable progress from the days of Ludwig
Prandtl and a lot of observational data was available. This progress, however, was mostly
constrained to neutrally-stratified atmospheric conditions. For these, the logarithmic wind
profile had been found to be a model with sufficient representation. However, while there was
a lot of observational data on stable and unstable conditions, there was still no underlying
theory.

The theory describing turbulent exchange which is still used to this day is Monin-Obukhov
similarity theory (MOST; Monin and Obukhov, 1954) . It empirically describes non-dimen-
sionalized mean flow using scale parameters. These scale parameters are the Obukhov length
used to normalize height and the surface friction velocity (Monin and Obukhov, 1954). This
Obukhov length characterizes the relative contribution of buoyancy and shear production to

turbulent kinetic energy (TKE):

3
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with u, being the surface friction velocity, k¥ = 0.4 the von Karméan constant, g the gravita-
tional acceleration, T' the temperature, Q the turbulent heat flux, ¢, the heat capacity, and p
the density.

From a dimensionality argument (and the Buckingham-7 theorem; Buckingham, 1914),
Monin and Obukhov (1954) derive the formulation
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Here, ¢ is a ‘universal function’, which has to be empirically determined. Defining the height

z = zo where u(z9) = 0 as the roughness length and integrating from there to z yields:

u(z) = ”;(*<1n<;0> —W(;)) 2.3)

This can be used to describe wind profiles for different conditions of atmospheric stability.

Importantly, MOST is only applicable to the Prandtl layer as it requires the friction velocity
and Obukhov length to be independent of height. This limited applicability is because the
altitude independence is guaranteed through constant heat and momentum fluxes, by which
the Prandtl layer is defined. Further assumptions the theory makes are static flow and

horizontal surface homogeneity.

Retrieval of Mixing Layer Height

Until the late 19™ century, measurements of the PBL were restricted to using ground-based
instrumentation (Stith et al., 2018). Abbott Lawrence Rotch changed this in 1894 when he
performed the first upper-air observations with an instrument tied to a kite. Tethered balloons
followed the kites and in the 1920s aircraft were used to perform direct measurements of
the boundary layer. However, all of these measurement techniques were restricted to fair
weather conditions and could only provide data after the instruments, which recorded it onto
paper strips, were retrieved. The labor intensity associated with these kinds of measurements
prompted the development of the radiosonde, an untethered balloon carrying instruments
which transmit their data using radio waves, in 1924. These were further developed over the
coming decade and since 1940 almost all upper-air soundings are performed by radiosondes.

They have become the main source of information on the dynamics of the PBL.

There is a multitude of methods for retrieving the mixing layer height from vertical column
data like that of radiosondes (Seibert, 2000). However, not all of them are useful for our
case and would need data like turbulence flux profiles or cloud base height, which are not
readily available. The most ubiquitous methods for mixing layer height retrieval are the
potential temperature gradient method, the relative humidity gradient method, the parcel
method, and the Bulk-Richardson method (Seidel et al., 2010; Li et al., 2021). Of those four,
the Bulk-Richardson method has become one of the most widely used due to its robustness

under varying atmospheric conditions (Seidel et al., 2012).

The Richardson number is a dimensionless variable quantifying the ratio of the buoyancy
and shear flow term in fluid dynamics, which is a measure of turbulence generation vs.

suppression. As such, it is akin to the Reynolds, Prandtl, or Rayleigh numbers used for

11
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quantifying different regimes and phenomena. The fundamental number in meteorology is

the Flux-Richardson number which is defined as

Rij= -2 2.4)

2.9

after Roedel and Wagner (2017). Here, &4 is the buoyancy energy production rate, &g is the
shear energy dissipation rate, and 6 is the virtual potential temperature. This number can
then be simplified to the Gradient-Richardson number using K-Theory, which is a gradient

ansatz for the heat and momentum flux. Inserting the turbulent shear stress and the heat flux

T=—pu,’ = —pK@ (2.6)

dz
dée
0= —cppKQd—Z 2.7)

and, additionally, Eq. (2.2) into Eq. (2.5) yields:

.. K
Ri =Riy - - 2.8)
g db/dz
— & /% 2.9
6 (du/dz)* @9

This number, in turn, gets approximated using finite difference methods to the Bulk-
Richardson number, which after Seidel et al. (2012) and Vogelezang and Holtslag (1996)

18:

Riy() = £ (6(2) —6y) - (z—2z) (2.10)

s (1u(z) — ug) > + (v(z) — vs) 2 + (bu2)

with 6 as virtual potential temperature at surface, z as height above ground level, u(z),v(z)
as horizontal wind velocity components, u; and v as the surface wind velocities, b being a
constant, and u, as the surface friction velocity. Following Seidel et al. (2012), we set u;, vy,

and bu, to zero, which means our final Bulk-Richardson number reads:

_8(6()—6,) - (z—2m)
O u(z)’+v(x)?

Riy(2) .11

Seidel et al. (2012) then determine a critical Bulk-Richardson number of 0.25 to be the
optimal threshold for defining the PBL mixing height. In the following, we use this formula
and the associated threshold.
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Figure 2.2: Overview of the different types of Local Climate Zones (LCZ). Built types vary depend-
ing on building density and height. Figure from Zhao et al. (2019), reproduced under
CC BY 4.0 license.

Urban Meteorology

We now turn to the influence of urban areas on the stratification of the PBL. The mechanisms
through which this influence is exerted are mass, momentum, and heat exchange with the
surface. Urban areas complicate the simple picture laid out above. The resulting type of

boundary layer is called ‘urban boundary layer (UBL)’.

Urban environments differ significantly from the flat, grassy surface over which we previ-
ously defined the four layers of the PBL (cf. Fig. 2.1). They are not a homogenous category
of surface with average characteristics which can be applied everywhere. Indeed, Stewart
and Oke (2012) develop a classification distinguishing built areas into ten different LCZ
depending on building height and density (cf. Fig. 2.2). The largest impact urban surfaces
have on the boundary layer is through surface materials, buildings, and heat emissions.

Surfaces in urban regions are more often made of asphalt, concrete, and stone than in
rural areas. These replace and seal natural surfaces like sand or earth, grass, and larger
vegetation. The largest impacts thereof are the lack of moisture regulation (neither absorption
nor retention), the lower albedos, and the comparatively high heat capacities. This leads
to a phenomenon called the ‘urban heat island’ effect, significantly raising temperatures in
urban areas compared to rural ones (Oke, 2017). In summer conditions, this can increase the
cooling demand and even negatively impact the health of urban populations (Heaviside et al.,
2017).

Buildings have many different impacts on the boundary layer. In first order, they simply
increase surface roughness. However, buildings are not randomly placed in cities, indeed
they usually follow streets. If placed sufficiently close to one another, this can form urban

canyons. These canyons channel wind in street direction and block it perpendicularly to it.
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Figure 2.3: Structure of the UBL by day (Panel a) and by night (Panel b). Note that the height scale
is logarithmic except for near the surface. Figure from Oke (2017), reproduced with
permission of Cambridge University Press through PLSclear.

Due to their height, they also lead to a phenomenon called ‘radiation trapping’, which we
discuss further in Section 2.1.2.

Direct anthropogenic heat emissions in urban areas are caused by the energy use of urban
populations. These include heating and cooling demand for living and commercial spaces,
industrial heat emissions, and heat generated by internal combustion engines.

The influence of urban areas leads to a slightly more complicated structure of the UBL
compared to the aforementioned conceptualization of the PBL. Due to the built up nature of
the urban canopy, the surface roughness is much larger than on a flat plane of grass. Length
scales can reach tens of meters depending on building height. This large roughness splits
the Prandtl layer into a lower part, which is immediately influenced by urban orography
like buildings and street canyons, and an upper part where MOST applies. These are called
roughness sublayer (RSL) and inertial sublayer (ISL) respectively (cf. Fig. 2.3).

Since much of the dynamics of the PBL and UBL are driven by thermal phenomena,
the largest influence on boundary layer mixing height comes from solar radiation. Indeed,
Fig. 2.4i shows how closely the boundary layer diurnal cycle is tied to the change in solar
radiation. When the sun rises and the turbulent sensible heat flux to the surface Qg increases
sharply, the buildup phase of the mixing layer starts. This causes the surface to heat up,
which in turn causes heat flux QO from the surface to the atmosphere. Depending on surface
type, this heat flux splits into sensible and latent heat fluxes Qg and Qg. This energy then
feeds the thermal eddies building up the mixing layer height until an equilibrium is reached.
When the sun sets, Qg changes sign which causes the boundary layer mixing height to
collapse.

As shown in Fig. 2.41, the boundary layer exhibits broadly similar behavior in urban and
rural regions, yet several structural differences remain. These differences are driven by the
larger roughness length of the urban canopy, more direct anthropogenic heat emissions by

urban populations, as well as the indirect anthropogenic heat emissions due to heat storage
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phase and retains a residual during night. Subfigure (ii) shows an urban region exhibiting
a ‘dome’ shape without ambient wind and a ‘plume’ under moderate winds. Figures
from Oke (2017), reproduced with permission of Cambridge University Press through
PLSclear.
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in materials. Together, these effects not only cause the UBL mixing layer to extend to higher
altitudes during the day, it also remains partially sustained throughout the night.

Since this often gets conflated, at this point it is important to mention the difference
between the PBL or UBL height and the mixing layer height. The mixing layer height is the
height of the layer driven by vertical thermal convection, wherein surface-induced turbulence
leads to strong mixing. As it accumulates surface influences, this layer is of particular interest
to studies of air quality or emissions. In contrast, while the mixing layer is part of the PBL
and UBL heights, the latter also include additional layers such as ground-level inversion
layers and the residual layer, where turbulence decays during the night. During cloudy
conditions, the PBL and UBL heights tend to be close to the mixing layer height. As the
WREF output variable effectively representing the mixing layer height is called PBLH, we use
the terms PBL height and mixing layer height interchangeably.

This urban boundary layer also interacts with the surrounding area and the prevailing
meteorological conditions. During calm conditions, as illustrated in Fig. 2.4ii, vertical mixing
creates a local low-pressure system at surface level that draws in air from the surrounding
rural region. Simultaneously, a high-pressure system forms at the top of the UBL causing a
horizontal expansion of the mixed air masses containing urban influences. This circulation
pattern is commonly referred to as an ‘urban dome’. When stronger ambient winds are
present, the vertical mixing still leads to rising surface level air masses. However, these air
masses do not remain spatially confined but are advected with the prevailing winds resulting
in a phenomenon called an ‘urban plume’.

In this section, we have presented the key effects which must be considered when analyzing
urban areas. However, due to the resolution of most atmospheric models, these can usually
not be computed explicitly. Therefore, models use parametrizations to include the effects of
these sub-grid-scale processes. We explain this in the following section for our model setup
using WRF.

2.1.2 Weather Research and Forecasting Model

WREF is an atmospheric modeling system designed for meso-scale research and numerical
weather prediction. This means it is intended to numerically simulate the Earth’s atmosphere
and coupled systems at resolutions of some tens of kilometers. Its development was started
in the late 1990’s and was driven by the National Center for Atmospheric Research (NCAR),
National Center for Environmental Prediction (NCEP), and Environmental Research Labora-
tory (ERL) (both parts of the National Oceanic and Atmospheric Administration (NOAA)),
US Air Force, the Naval Research Laboratory (NRL), the University of Oklahoma, and the
Federal Aviation Administration (FAA) (UCAR, 2025). In 2006, it was put into active use
and is still used today as the basis for operational forecast models like High Resolution Rapid
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Figure 2.5: Visualization of horizontal and vertical coordinate staggering in WRF’s Arakawa-C grid.
The x, y, and z wind velocity components are staggered a half-cell in the these same
directions. Variables on mass points are (amongst others) temperature, humidity, and
pressure. Figure created based on Fig. 3.2 of Skamarock et al. (2019).

Refresh (HRRR) and North American Model (NAM) at NCEP. As such, it is the successor to
the MMS5 and Eta models being used previously. The model is distributed with two dynamics
solvers called the Advanced Research WRF (ARW) and Nonhydrostatic Mesoscale Model
(NMM). Since it provides more configuration options and is routinely used for research, we
use the ARW in the following. Nowadays, WRF (available in version 4.7.1) is open-source
and can be found on github.com/wrf-model. However, institutional support for the model is
decreasing and more development and maintenance is performed by the community as its

successor Model for Prediction Across Scales (MPAS) continues to be developed.

The ARW core solves the compressible, non-hydrostatic Euler equations (Laprise, 1992).
These are cast in flux-form, designed to conserve dry air mass and scalar mass (Skamarock et
al., 2019). They are a derivative of the Navier-Stokes equations for a fluid with zero viscosity
and thermal conductivity. For numerical reasons, a hydrostatic vertical coordinate is used.
In WREF version 4, this coordinate can be a hybrid-sigma coordinate, which interpolates
between a terrain-following and a pure-pressure coordinate. In this coordinate, the equations
are then integrated using a Runge-Kutta 3 scheme (Skamarock et al., 2019). This integration
is performed on two time-scales, a high-frequency acoustic time step for integrating the Euler
equations and a low-frequency time step simulating computationally more expensive and
slower phenomena like physical parametrizations. These parametrizations are modularized
and consist of microphysics, cumulus parametrization, surface, planetary boundary layer,

and atmospheric radiation physics models.
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Figure 2.6: Overview over interaction of different physics parametrizations in WRF. Figure repro-
duced from Skamarock et al. (2019) under CC BY-NonCommercial 4.0 license.

In order to prevent checkerboard-pattern decoupling between cells, WRF employs an
Arakawa-C grid staggering approach (Arakawa and Lamb, 1977). This means that vector
quantities such as the wind components are defined at points that are staggered by one
half-cell to the cell center points (cf. Fig. 2.5). These center points are also referred to as
‘scalar points’ or ‘mass points’.

Some of the model categories above (microphysics, surface, etc.) have sub-models, which
can be chosen and configured. For example, the surface treatment can be separated into
the surface-layer model, the land surface model, and the urban parametrization amongst
others like the ocean model. Of these, the surface layer model calculates friction velocities
and exchange coefficients for the land surface model. The land surface model in turn uses
these, information from other models, and data on the surface composition like land use
to calculate surface heat and moisture fluxes. Since we are interested in urban areas in
particular, the urban parametrization model is the topic of the next section. The descriptions

in the following sections all follow Skamarock et al. (2019) closely.

Urban Parametrization

There are four physics schemes for urban parametrization implemented in WREF. Their
description here is based on both Skamarock et al. (2019) and Joshi et al. (2025). These
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physics schemes are the Bulk parametrization (Liu et al., 2006; Chen et al., 2011), the
Single-Layer Urban Canopy Model (SLUCM; Kusaka et al., 2001; Kusaka and Kimura,
2004; Chen, 2006), the Building Environment Parametrization (BEP; Martilli et al., 2002),
and the BEP-BEM (Building Energy Model; Salamanca and Martilli, 2009). While the Bulk
parametrization merely conceptualizes urban areas as a surface with special properties like
albedo, surface roughness, and thermal conductivity, the other schemes model these areas
more in-depth. Indeed, both the SLUCM and BEP schemes not only add the possibility to
simulate different types of urban surface (from WREF v4.3 on also LCZ categories), they also

add processes which are simulated for each surface.

Individual urban categories can be assigned parameters, which change variables therein.
Examples of this are road widths, roof height distributions (for BEP), non-vegetated fraction,
or various heat capacities and thermal conductivities of roofs, roads, and walls. While a mix
of roof types (like green roofs) can be simulated per grid cell by both SLUCM and BEP, both

are limited to one type of road and wall. These get selected by the dominant urban category.

The SLUCM simulates the urban canopy as an idealized street canyon. This canyon is
infinitely long and the buildings simulated in this model are of uniform height (Hang et al.,
2024). Most importantly, this urban canopy is a single homogenous layer extending the
whole first vertical simulation level (Hang et al., 2024). In contrast, the BEP resolves the
urban canopy in more detail. It adds the possibility of choosing different street and building
widths for different street direction angles, making surface roughness non-isotropic. It also
separates the urban canyon into multiple layers vertically, which do not have to align with

the vertical simulation levels.

Both schemes conceptualize the impact urban areas have on the meteorology primarily
as driven by its orography. Indeed, urban street canyons are important features of the urban
canopy and take a central role in its description. The impact street canyons have on the
meteorology stems from their geometry modifying turbulent and radiation fluxes as well as
surface roughness. An overview over the radiative impacts of the street canyon geometry is
shown in Fig. 2.7. This figure displays the main features namely shading, energy storage,
and radiation trapping. These can be simulated in principle by both, the SLUCM and BEP
urban schemes.

Both these schemes output important diagnostic variables used to evaluate model perfor-
mance, like 2 m temperature and 10 m wind velocities. These are not prognostic variables
of the schemes, but rather get diagnosed. In the SLUCM scheme, the 2 m temperature is
retrieved from a logarithmic interpolation between the surface- and the first model level
temperature (and scaled by some correction factors; Joshi et al., 2025). The 10 m wind
velocities get diagnosed similarly using a stability function of momentum from MOST for

interpolation. In contrast, the BEP assigns the temperature and wind velocities of the lowest
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Figure 2.7: Schematic of the main energy fluxes in a simple urban canyon during the day. Important
effects are shading, energy storage, and radiation trapping. The variables used here are Qy
(turbulent sensible heat flux), Qg (substrate heat flux), L+ in- and outgoing long-wave
radiation, K |+ in- and outgoing short-wave radiation. Figure from Oke (2017), reproduced
with permission of Cambridge University Press through PLSclear.

urban grid level to the diagnostic variables. This has to be kept in mind for any comparison

of the two diagnostics.

The Building Energy Model (BEM) is an extension to BEP, which adds the simulation of
windows, air conditioning, and direct anthropogenic heat emissions (Salamanca and Martilli,
2009). It can be configured in great detail to simulate different A/C units (coefficient of
performance) and settings (comfort temperature, target humidity, etc.). Even parameters like
average occupancy density or fraction of photovoltaic panels on roofs can be set. Due to the
large uncertainty of these parameters and the high investment associated with researching

suitable settings for our purpose, we decided to forgo using this scheme.

Planetary Boundary Layer Model

The vertical sub-grid-scale transport in WRF is treated by the PBL model. It gets the surface
fluxes provided to it by the surface layer and land-surface models and uses them to compute
the flux profiles in the vertical column. As output, it provides tendencies of temperature,
moisture, and horizontal momentum in the column. The model is one-dimensional and works
on the assumption of WRF being run at resolutions which do not explicitly resolve boundary
layer eddies. These assumptions are not met at resolutions of a few hundred meters. For
these scales an explicit TKE diffusion scheme is provided. In the following we will quickly
go over the schemes we use in our simulations namely Mellor-Yamada-Janjic (MYJ), Yonsei

University (YSU), and Bougeault-Lacarere (BouLac).
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In general, there are two types of PBL schemes: prognostic and diagnostic. Prognostic
schemes solve the energy balance equations explicitly to get an amount of TKE and use this
to estimate the PBL height (mixing layer height). Diagnostic schemes compute estimates of
flux profiles from surface fluxes and local stability parameters without solving additional
prognostic equations and then diagnose the PBL height through explicit methods like Bulk-
Richardson number presented in Section 2.1.1. The central difference between these schemes
is how they calculate the eddy diffusivity. Prognostic schemes parametrize it directly over
the evolving TKE and a mixing length, while diagnostic schemes calculate it from variables
like PBL height, stability, and friction velocity.

The YSU scheme (Hong et al., 2006) is a diagnostic, nonlocal-K scheme, which adds an
explicit treatment of the entrainment layer to the older MRF PBL (Hong and Pan, 1996). Its
parametrizations are based on study results using large-eddy models. It also implements a
counter-gradient term, adding the treatment of the non-local effects of eddies in the transport
of heat of momentum in the boundary layer. This extends the local formulation of K-Theory,
which can be found in Eq. (2.6). Its effect is a cooling of the lower PBL and a warming of
the upper PBL. It defines the PBL top using a critical Bulk-Richardson number criterion.
The MYJ scheme (Janjic, 2002) implements the Mellor-Yamada Level 2.5 turbulence closure
model (Mellor and Yamada, 1982). As such, it is a prognostic scheme using iteratively
solved TKE production/dissipation differential equations. It is explicitly adjusted to improve
flux transfer from the urban parametrization schemes. Finally, the Bougeault-Lacarere
(BouLac) scheme (Bougeault and Lacarrere, 1989), too, is a prognostic TKE-based scheme
that determines a turbulence mixing length based on buoyant parcel energies. It is also

explicitly adapted to be compatible with the urban parametrizations.

Surface Layer Model

The surface layer model provides the friction velocities and exchange coefficients for momen-
tum and moisture for the PBL model on the atmospheric side and the land-surface model on
the ground side. It uses MOST to relate surface fluxes to mean gradients between the lowest
model level and the surface. Using this stability theory, it calculates the 2 m temperature and
10 m wind diagnostics when not simulating over urban areas, where these get overwritten by
urban parametrizations. We use two schemes, Revised MM5 Monin-Obukhov (MMS5) and
Monin-Obukhov (Janjic) (MO).

The MMS5 scheme (Jiménez et al., 2012) is a newer version of the similarity theory used
in the MMS5 model. It updated the stability function and improved the consistency between
Ri and ;. The MO scheme (Janjic, 2002) is based on the same formulations of stability
functions as the MYJ boundary layer scheme. It adds an explicit viscous sub-layer, which is

scaled according to roughness height.
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Land Surface Model

The land-surface model (LSM) uses the exchange coefficients from the surface layer model,
radiative fluxes from the radiation scheme, and precipitation from the microphysics and
cumulus parametrization schemes to simulate various above and below-ground processes.
It provides heat and moisture fluxes as output, which serve as lower boundary conditions
for the PBL model. Our study looks at the Noah and the Noah-Multiparametrization Land
Surface Model (Noah-MP) schemes.

The Noah-MP scheme (Niu et al., 2011; Yang et al., 2011) is a newer, more complex
version of the Noah scheme (Chen and Dudhia, 2001). Both have an internal model state
and treat complex processes like runoff, evaporation, and water absorption of different soil
types. They, furthermore, treat above and below-ground vegetation and snow cover. While
the Noah scheme has four soil layers and a bulk snow layer, the Noah-MP scheme has three
variable snow layers. It is also able to simulate dynamic vegetation, plant stomatal resistance,

and even crop growth including irrigation.

2.2 Simulation Setup

In Section 2.1.2, we have presented a fraction of the available physics schemes one can
choose from using ARW per physics parametrization. However, there is no clear answer as
to which combination of schemes performs better, as that depends on simulation domain,
meteorological situation, and so on. Therefore, we have to test different configurations in
order to find a good match for our situation. In this section, we introduce the setup we used
for the simulation ensemble which makes up this sensitivity study. It covers the study region
used, the model configuration with regards to input and boundary conditions, as well as the

ensemble of physics configurations itself. This section is adapted from Pilz et al. (2026).

2.2.1 Study Region

The Rhine-Main-Neckar area is one of Germany’s largest metropolitan areas and as such
responsible for 8.2 % of German CO, emissions according to TNO GHGco v4.1 (Super et al.,
2020). There are two particularly large sources of emissions, the GroBkraftwerk Mannheim
(GKM), a hard-coal power plant and the BASF complex in Ludwigshafen, the worldwide
largest contiguous chemical park. It is furthermore home to lots of meteorological and GHG
observation equipment. The region is characterized as a so-called polycentric urban region
(PUR; Meijers et al., 2017). These types of regions are defined as “clusters of historically
and administratively distinct but proximate and well-connected cities” (Meijers et al., 2017).
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Figure 2.8: The WRF domain setup is displayed in Panel (a) with the resolutions of the three domains
being 25, 5, and 1km. Within the smallest domain are the 19 DWD meteorological
stations (blue dots) and two radiosonde stations (red crosses) we use to compare against
the simulation. Panel (b) shows the dominant land use categories of the highest-resolution
domain with the largest cities being tagged. The names of the US Geological Survey
(USGS) land use categories are to be found in Table A.2. Map data copyrighted by
OpenStreetMap contributors and available from openstreetmap.org. Figures taken from
Pilz et al. (2026).

PURs are very common in Europe, housing 25 % of the population (Meijers et al., 2017) and
thus a valuable target for modeling.

Our area of interest contains the large cities of Frankfurt (750,000 inh.), Stuttgart (630,000 inh.)
as well as medium-sized cities like Mannheim and Karlsruhe (300,000 inh.) and small cities
like Heidelberg (160,000 inh.) and Wiirzburg (127,000inh.). In Fig. 2.8, we can see the
proximity yet distinctness of the cities which is the defining criterion of a PUR. We also see
that our domain consists of 16 % urban cells, which in turn are dominated by 67 % “open
lowrise” cells, LCZ category 6 in Fig. 2.2. Our study region is favorable as it hosts many
meteorological stations of the DWD, which allows us to thoroughly test the meteorological

performance of the model.

2.2.2 Model Setup

The model we use for this study is WRF in version 4.3.1 with the ARW core. It provides the
option to increase the simulation resolution in parts of the domain which one is interested
in by adding higher-resolution nests. We start with the domain over Europe at a 25 km
resolution, in which we embed a 5 km resolved domain centered on Germany. The innermost
nest is centered on the Rhine-Main-Neckar region and has a resolution of 1km. These three

nests do not feed their results back to the lower-resolution domains (one-way nesting).
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We use 42 vertical layers with 14 levels below 1.5 km like in previous studies, for example
Lian et al. (2018). The Single-Layer Urban Canopy Model (SLUCM; Chen, 2006) urban
parametrization does not allow any vertical levels below the highest building height. Because
of this the lowest level for the SLUCM configurations is set to 90 m whereas it is at 15 m for
the configurations using Building Environment Parametrization (BEP; Martilli et al., 2002;
cf. Table A.1).

WREF provides an option for data assimilation, which can be used to keep the model
dynamics closer to reality. Different methods of data assimilation are implemented like grid
nudging, observation nudging, or spectral nudging. All of these options add an additional
forcing term to the model equations, which keeps the model close to the given data. For our
simulations, we use grid-nudging, which we restrict to the outer two domains above the PBL.
This is done in order to allow WREF to develop finer-scale structures at higher resolutions
while keeping it close to reality overall. Grid-nudging in this way is a common setting used
for example by Lian et al. (2018) or Ho et al. (2024). In preparatory studies, we found
the best temporal resolution of the nudging to be three hours, striking a balance between
simulation performance and storage constraints. The analysis data used for grid-nudging is
the ECMWF Reanalysis v5 (ERAS) data presented in the following Section 2.2.2 (Hersbach
et al., 2020a).

However, there are still some residual long-term deviations in non-nudged variables. One
example is long-term drifts in soil-water content due to drifts in the LSM water budget (Ho
et al., 2024). We restrict the impact of these deviations by reinitializing the meteorology
every seven days from ERAS data. This means that we start a new simulation using initial
condition data from ERAS. However, since the model needs some time to relax into its own
dynamics from a foreign model state, we give it a spin-up period of 6 h to do so before we

consider the model output as valid.

Input and Boundary Condition data

While it is possible to run global simulations with WRF, we use it as a limited area model.
This means that we need lateral boundary condition data to inform the model about the
meteorological conditions outside of its simulation domain. We also need to inform it about
the initial meteorological state from which it is supposed to start.

For both of these applications, we use ERA5-reanalysis data provided by European Center
for Medium-Range Weather Forecasts (ECMWF; Hersbach et al., 2020b). In particular, we
use ERAS hourly data on single levels (C3S, 2018). ERAS is a reanalysis dataset which
combines a state-of-the-art meteorological model used for forecasting with measurement
data. In order to get the simulated data as close as possible to reality, it assimilates data

streams like satellite, in-situ, and radiosonde measurements using 4D-Var. ERAS5 uses a 12-
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hour 4D-Var assimilation window (0 UTC to 12 UTC and 12 UTC to 24 UTC), during which
model fields are adjusted to best fit the available observations. The assimilated variables
include surface pressure, temperature, and humidity from weather stations as well as wind
data from radar, aircraft, and radiosonde soundings. Many in-situ data which are assimilated
in ERAS are provided by the WMO Information System (WIS). The DWD ingests all of the
data of its weather stations into the WIS. This means that the ERAS data is not independent
of the DWD data. In general, reanalysis like ERAS5 have lower resolution than operational
forecasts (31 km vs. 9 km) but provide a temporally consistent estimate of the atmospheric
state by assimilating past observations.

The ERAS data is provided for the time from 1940 to present. It is computed using the
cycle CY41R2 ECMWF Integrated Forecast System (IFS) model in a hybrid sigma/pressure
coordinate with 137 levels similarly to WRF. Internally, the ECMWF models use spherical
harmonics grids. The dynamical core is computed on the truncated linear spectral grid TL639
(639 points, 31 km). We are running our simulations on the Levante supercomputer at the
German Climate Computation Center (DKRZ). In order to save time and bandwidth, we
decided to use the locally provided ERAS5 data files instead of downloading them. These
files are, however, provided on the native spherical harmonics grids which is why they have
to first be converted to lat/lon using Climate Data Operators (CDO).

We replace the default USGS GMTED topographic data at 30" resolution with Copernicus
digital elevation model (DEM) data (Copernicus, 2022), which is available at resolutions
of up to 90 m. Within the European Union (EU), we also replace the default USGS land
use data at 30" resolution using wps_xr (Pilz, 2025b). In a first step, it is replaced with
Coordination of Information on the Environment (CORINE) data re-categorized to USGS at
a resolution of 250 m (Breuer et al., 2021). This data is then augmented in the urban regions
with information from the global LCZ dataset, using the W2W software (Demuzere et al.,
2022). Due to a bug in WRF from version 4.3 on, which is fixed with commit d96478d
(#2153, released in WRF v4.7.0), the USGS LCZ data was overwritten with default USGS
urban category LU_INDEX = 1 where FRC_URB2D > 0.5. However, as this only directly
affects one of our stations (Offenbach-Wetterpark), this bug is neglected in the following

analysis.

Ensemble of Physics Configurations

We simulate four contiguous one-month periods — April, July, September, and December
of 2020. In comparison to previous studies, this is relatively long total simulation time.
These months were selected using the phenological calendar of 2020 to represent the four
meteorological seasons. All periods are run using 16 different physics configurations of WREF.

Within these configurations, the land-surface model (LSM), surface layer model (SLM),
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Boundary Layer  Land Surface Surface Layer Urban

bep_bl_n_mm5 Bou-Lac Noah MM5 BEP
bep_bl_n_mo Bou-Lac Noah Monin-Obukhov BEP
bep_bl_nmp_mm35 Bou-Lac Noah-MP MM5 BEP
bep_bl_nmp_mo Bou-Lac Noah-MP Monin-Obukhov BEP
bep_myj_n_mo MY]J Noah Monin-Obukhov BEP
bep_myj_nmp_mo MY]J Noah-MP Monin-Obukhov BEP
bep_ysu_n_mm5 YSU Noah MMS5 BEP
bep_ysu_nmp_mm5 YSU Noah-MP MM35 BEP
slucm_bl_n_mm5 Bou-Lac Noah MMS5 SLUCM
slucm_bl_n_mo Bou-Lac Noah Monin-Obukhov ~ SLUCM
slucm_bl_nmp_mm5 Bou-Lac Noah-MP MMS5 SLUCM
slucm_bl_nmp_mo Bou-Lac Noah-MP Monin-Obukhov ~ SLUCM
slucm_myj_n_mo MYJ Noah Monin-Obukhov ~ SLUCM
slucm_myj_nmp_mo MY]J Noah-MP Monin-Obukhov ~ SLUCM
sluem_ysu_n_mm5 YSU Noah MM5 SLUCM
slucm_ysu_nmp_mm5 YSU Noah-MP MMS5 SLUCM

Table 2.1: WRF namelist settings describing the physics schemes used by the different configurations.
Not all combinations are compatible, so this is a subset of the 24 theoretical combinations
of settings. Table taken from Pilz et al. (2026).

urban canopy model (UCM), and planetary boundary layer (PBL) model implementations
used by WREF are varied. Each of these models is available in multiple implementations

(schemes) in WRF. The specific configurations used in this study are summarized in Table 2.1.

2.3 Measured Data

In this section, we present which measured data we use to evaluate the performance of
our atmospheric transport model. The density of measurement stations is comparably high
with 20 DWD stations being located in our simulation domain. This section is adapted from
Pilz et al. (2026).

2.3.1 Planetary Boundary Layer Height

In order to ensure compatibility between PBL height definitions of measured and simulated
data, we retrieve these using the Bulk-Richardson method as laid out in Section 2.1.1. To
determine the virtual potential temperature, we use the virtual_temperature function
of metpy.calc (May et al., 2022). The surface virtual potential temperature is calculated
using the potential temperature diagnostic at two meters (TH2) and the water vapor mixing
ratio (QVAPOR) in the lowest model level. Here, we make the assumption that the water vapor
mixing ratio in the lowest model level is similar to the ratio at 2m. This assumption carries
some uncertainty. We found deviations of about 7.5 % for realistic conditions in our setup
adding uncertainty to the retrieved PBL height. However, the necessary variable to calculate

this exactly (Q2) is not available in our simulation outputs.
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In order to calculate the PBL height from the Bulk-Richardson number profile, we in-
terpolate it to the point where it first crosses the critical Bulk-Richardson number using
xgem (Abernathey et al., 2025). This is an empirical number, whose choice is studied in
Vogelezang and Holtslag (1996) and Seidel et al. (2012). In accordance with their findings,
we choose this number to be 0.25. However, sometimes between sensible PBL heights, we
find spurious low values. This is caused by the Bulk-Richardson number at the first level
being slightly higher than 0.25. These profiles first decrease from a little over 0.25 until
they start to rise again, crossing 0.25 again at a higher, more realistic, point. In the instances
where the crossing of the critical Bulk-Richardson number is between the first and second
level, after communication with the data providers, we set the Bulk-Richardson number of

the first model level to zero.

The observation time associated with each sounding, which is stated in the Integrated
Global Radiosonde Archive, version 2 (IGRA) database is a time close to the completed
ascent of the radiosonde, which is one hour and 15 min after the radiosonde release (06:00,
12:00, 18:00, and 00:00 UTC). In order to be closer to the time this radiosonde passed the
PBL height, we change this time to be only 15 min after launch after discussion with the data
providers. We also select only the measurement times when both stations (Stuttgart/Schnar-
renberg and Idar/Oberstein) released radiosondes. This means the radiosonde measurement

times we use in our evaluation are 05:00, 11:00 and 23:00 UTC.

2.3.2 Wind Data

We compare the 2 m temperature and 10 m wind diagnostics output of our model against
the same variables measured at DWD stations within our domain. As commonly done, e.g.,
in Lin et al. (2021), we compare our model’s instantaneous wind diagnostics output to the
hourly averaged measured wind data. These wind data, however, are not useable in their raw
form and have to be corrected first. Natively, they are reported on the hour as an average of
the previous 60 min. Therefore, we assign their measurements to 30 min after the hour and

interpolate them to the full hour to correspond to the simulation data.

An additional peculiarity of the raw wind data provided by DWD concerns the measure-
ment height. While the 2 m air temperature is recorded exactly two meters above a flat, grassy
surface, the 10 m wind data are not measured at a uniform height of 10 m above ground level.
The 20 stations initially in our dataset measure the wind velocity and direction at 10, 12,
14.5, 15, and 29 m. These have to be corrected down to 10 m in order to be comparable to

our simulated 10 m diagnostics.
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2 Atmospheric Transport Modeling

We do this correction using an approximation of Eq. (2.3) for neutral atmospheric condi-
tions as we do not have any independent information about the atmosphere’s stability. The

approximation we are using is (compare Liu et al., 2021):

u(z):l;*on(;o)—w(c;)) A W=0
In(10m/zo)

= u(10m) = u(z) In(z/20)

The wind profile ¥ is set to zero as we assume neutral conditions. Furthermore, we assume
Zo = 0.03m, the surface roughness length of grass. This is the same value that ERAS is
using for the estimation of the Obukhov length at SYNOP stations (ECMWF, 2021).
When applying this correction, the measured wind velocities decrease by 3, 6, 6.5, and
15 % at the stations measuring at 12, 14.5, 15, and 29 m respectively. As the correction at
the station measuring at 29 m (Weinbiet) is more than double that of the other stations, we
decide to exclude this stations from our analysis. This leaves us with a final collection of
19 DWD stations which were active and measuring during our simulation time period.
These 19 stations are categorized into ‘urban’ and ‘rural’ sites by analyzing their sur-
rounding land use. This is necessary as the effect of the urban influence is non-local through
transport even though WREF calculates urban influence only in the column directly above
the cell. Stations are defined as ‘urban’, when the majority of the surrounding tiles have an
dominant land use index which is urban (LU_INDEX > 30). The others are labeled as ‘rural’.

General station information is to be found in Table A.3.
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2.3.3 Statistics

For the performance evaluation, we apply standard statistical measures like mean absolute
bias (MAB), root mean squared error (RMSE) and correlation. Regarding correlation, we
use the Pearson-R coefficient for linear variables and the circular correlation as defined in
Jammalamadaka et al. (2001) for circular variables like wind direction. The measures which

we use are defined as follows:

S; —O0j, ifS[—O,' S |180|
Ad; = { s; —0; — 360, if s; —o0; > 180
s;i—0;+360, ifs;—o; < —180
MAB
MAB = — Z|s,—0,|oer\Ad| MAB = —

RMSE = 4 / Iy / Ad rRMSE = RNESE
= 0

with s; being simulated values, o; observed values, o average of observations, n number of

samples, and Ad; wind direction difference.

2.3.4 Taylor Density Diagrams

A visualization commonly used to compare model performance across multiple stations or
physics configurations are Taylor diagrams (Taylor, 2001). Taylor diagrams can compare
multiple different time series of interest to a reference time series. They exploit the fact that
the bias-corrected RMSE is related to the correlation and standard deviation via the law of
cosines. Indeed, with the RMSE separated into bias and bias-corrected RMSE like:

E?>=E>+E", (2.12)
E” =07+ 07 —2070,R (2.13)

can be identified with the law of cosines:
¢t =a*+b*—2abcos¢. (2.14)

Hereby, E is the RMSE, E is the bias, E' is the bias-corrected RMSE, O/ is standard deviation
of the forecast time series, o, is the standard deviation of reference time series, and R the
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correlation Coefficign;

0
Standard Deviation

Figure 2.9: Example of a Taylor diagram. The radial distance from the origin is proportionate to the
standard deviation, the azimuthal position describes the correlation. The relevant distance
which is equivalent to the bias-corrected RMSE is the distance between the ‘reference’
point at a correlation of one and the ‘test’ point. Figure reproduced from Taylor (2001)
with permission of Wiley through RightsLink.

Pearson-R correlation. Equation (2.13) derives from the definition of the bias-corrected

RMSE from forecast f and reference r as

1 -
E?= Y ((i-D=i=F)" A fi=F+f 2.15)
i=1
1 n
=Y (fl =)’ (2.16)
i=1
1 n
= Y (7 —2p) (2.17)
i=1
1 n
;Zﬂeranfz—;Z i (2.18)
i=1 i=1 i=1
=07+ 07 —2cov(f,r) (2.19)
=0} +0; —2076.R(f,r). (2.20)

An example of a Taylor diagram can be seen in Fig. 2.9. Importantly, the distance which
is equivalent to the bias-corrected RMSE in the Taylor diagrams is not the distance to the
origin. Instead, it is the distance to the reference point, which is located at a correlation of
one.

We would usually mark a station or configuration using a marker at the point where their

(normalized, if multiple stations) standard deviation and correlation are. However, since we
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have 19 meteorological stations and 16 simulation configurations, it is not feasible to plot
all 304 markers. In order to retain some visual clarity, we use averages but augment these
with the kernel density estimates (KDEs) over the full data behind the averages. These KDEs
are computed over all stations and configurations using one scheme of the most sensitive
model. We find that this reduces the amount of data displayed in a Taylor diagram to a
reasonable level.

To identify the aforementioned most sensitive model, for all schemes of this model we
average the MABs of all configurations using this scheme. This yields one averaged MAB
value for each individual scheme of a model. Now we can evaluate the range of these MAB
values. The largest range of MAB values between the schemes of a model indicates the
model most sensitive to change in scheme. The schemes of this model are then assigned
different colors in this diagram. This so-called “Taylor density diagram” presents large
amounts of information in a visually intuitive way. It reduces the visual clutter of large

datasets while retaining information about the dataset’s variability behind the averages.
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2.4 Evaluation

We now present the model data and evaluate it against data measured by the DWD stations.
First, we get an overview over the dataset and look at aggregated statistics. Then, we look at
the individual meteorological variables. Finally, we investigate the robustness of our findings.
This section is adapted from Pilz et al. (2026).

2.4.1 Time Series

In order to give the reader an impression of the data, we present an example two-week period
in this section. This is done purely for illustrative purposes. The statistics for the full time
series are to be found in Table A.4. We present simulations and measurements for the two
stations in our domain where we have radiosonde soundings to measure PBL height and all
meteorological variables. These are the stations Stuttgart/Schnarrenberg and Idar/Oberstein
and for both stations we present the time period between Apr. 7" and Apr. 21% of 2020.
The two stations differ in land use type, as Idar/Oberstein is a station classified as rural and
Stuttgart/Schnarrenberg is an urban station.

Figure 2.10 shows that within the given time period, the ensemble of simulations captures
the diurnal and the synoptic variations of the 2 m temperature well. However the stations
do differ in their performance with regards to this variable. While we generally see a good
agreement between simulations and measurements during the day, we see more variation at
night. There, the ensemble splits into two distinct regimes at Stuttgart/Schnarrenberg, which
it does not do at Idar/Oberstein. These regimes are configurations using different urban
parametrization schemes (SLUCM and BEP). The ERAS record which assimilates these
measurements matches them closely, however it does overestimate the nighttime temperatures
slightly at Idar/Oberstein while underestimating them at Stuttgart/Schnarrenberg which is an
indication of the limited resolution of ERAS.

When comparing the PBL height measurements, we immediately see the main challenge,
which is the sparse temporal resolution of the measured data. Radiosondes measurements
which we retrieve PBL heights from are only taken at 5:00, 11:00 and 23:00 UTC at both
stations, while Idar/Oberstein launches another one at 17:00 UTC. While the data in this
period matches well, we do see a small overestimation of PBL heights by the WRF simulation
during this limited time period. Again, the ensemble shows a larger spread in the simulations
at Stuttgart/Schnarrenberg than at Idar/Oberstein (here especially during transition phases)
and a higher maximum PBL height at Stuttgart/Schnarrenberg. This fits to the more urban
characteristic of Stuttgart/Schnarrenberg.

Looking at wind velocity, larger synoptic changes are simulated correctly, contrary to the

short-term ones. At Idar/Oberstein, the ERAS data and the simulation ensemble both deviate
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Figure 2.10:
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Qualitative overview of simulations and measurements of meteorological parameters
at rural station Idar/Oberstein and urban station Stuttgart/Schnarrenberg in time period
of Apr. 7™ to 21% 2020. ERAS data are shown as red lines, measurements by the
DWD meteorological station as black lines and black crosses are PBL heights retrieved
from radiosonde launches. Colored lines are the WRF ensemble to give an impression
of performance and spread. Please note that in order to discourage comparisons of
individual scheme performance which would not be representative, legend for the
colored lines is omitted. Figures taken from Pilz et al. (2026).
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from measurements but are close to one another. This could be the result of local effects not
being resolved in our simulations. The deviation is also more pronounced during night time.

Wind direction has a larger ensemble spread at Stuttgart/Schnarrenberg than at Idar/Ober-
stein despite similarly steady meteorological conditions. Both, ERAS5 and our simulations

exhibit similar performances here.

2.4.2 Statistics

Figure 2.11 gives an overview over all aggregated statistics for the whole dataset. For all
meteorological variables (relative) MAB, (relative) RMSE and correlation are shown. We
calculate the relative MAB and RMSE in order to make these variables comparable across
seasons. We do this as, for example, the PBL height MAB is much smaller during winter.
This, however, is not due to a more correct estimation, but it is rather driven by generally
lower PBL heights. In this plot, we average over all available stations.

While there is seasonal variability in overall WRF simulation performance, the choice
of optimal physics configuration is dependent on both variable of interest and season. This
indicates that, at least in terms of relative performance, seasons do not have an outsized
influence. While this variability across seasons and variables is present, some configurations
like the one using the SLUCM, MYJ, Noah-MP, and MO schemes give overall better results.

In general, for 2 m temperature, PBL height and 10 m wind velocity we do find larger
ensemble spread in winter than for other seasons. We also find the performance of the
best configuration (in terms of MAB) to differ by 7 % for wind direction, 16 % for 2m
temperature and wind velocity and 26 % for PBL height from the ensemble average. These
deviations increase two- and three-fold when comparing these relative deviations from
ensemble mean in urban vs. rural areas for variables strongly influenced by urban surfaces
(like 2 m temperature and PBL height).

One general characteristic shared by all the following Taylor density diagrams is the
ensemble spread being more dominated by station characteristics (density contour lines) than
by choice of physics scheme (markers). The software used for all Taylor diagrams in this
thesis is based on Copin (2021).

2.4.3 2m Temperature

With regards to 2 m temperature, the model with the highest sensitivity (cf. Section 2.3.4)
is the urban canopy model (UCM). This large difference between SLUCM and BEP con-
figurations is clearly visible in Fig. 2.12. The diurnal cycle is well-captured by SLUCM in
April, July, and September. However, in December there is a unique nighttime and afternoon

34



2.4 Evaluation

T2 PBLH Wvel WDir
MAB RMSE corr. rMAB rRMSE corr. MAB TrRMSE corr. MAB RMSE corr.

bep_bl_n_mm5 Apr.

bep_bl_n_mo Sep

bep_bl_nmp_mm35

bep_bl_nmp_mo

bep_myj_n_mo

bep_myj_nmp_mo

bep_ysu_n_mm5

bep_ysu_nmp_mm5

ucm_bl_n_mm5

ucm_bl_n_mo
ucm_bl_nmp_mm5
ucm_bl_nmp_mo
ucm_myj_n_mo
ucm_myj_nmp_mo
ucm_ysu_n_mm5
ucm_ysu_nmp_mms

eras

Figure 2.11: Relative MAB, relative RMSE, and Pearson-R correlation for 10 m wind velocity and
PBL height and absolute MAB, RMSE, and Pearson-R correlation for 2 m temperature
and 10 m wind direction across all WRF configurations and ERAS data are shown in this
Portrait plot (Gleckler et al., 2008). Each tile is split into the four simulation periods
of April, July, September, and December of 2020. Each column has its own linearly
normalized color map between highest and lowest value. Dark colors indicate better
performance (i.e. lower MAB, RMSE and higher correlation). Figure taken from Pilz
et al. (2026).
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underestimation. In contrast to that, while the BEP configurations exhibit a full-day positive
bias in December, the bias is restricted to nighttime in other months.

As the Taylor diagrams only display bias-corrected RMSEs, the performance difference is
not visible in December (cf. Fig. A.1). However, the sensitivity to the UCM is clearly visible
in the other panels of the Taylor density diagrams. Since the diurnal cycle amplitude is
lower in winter, the correlation performance is worse than in the other months (cf. Figs. 2.11
and 2.12). In general, these differences between UCM are driven by urban stations, which is
visible in Fig. A.2.

These deviations at urban stations could have different causes, either actual differences in
the performance of the urban parametrization or differences in the vertical layer distribution
of the SLUCM and BEP runs. The vertical layer distributions are different between the two
parametrizations, as the implementation of the SLUCM scheme restricts the height of the
first model level to be higher than the highest building height in the domain, as described in
Section 2.2.2. We, thus, repeat a simulation of December 2020 using the YSU, Noah-MP,
MMS5 and BEP configuration with the vertical layer distribution of the SLUCM runs. We
find that this change in vertical level configuration explains about half of the observed bias
between SLUCM and BEP (cf. Fig. A.3). Therefore, this bias is attributable to a mixture of
denser vertical layers in the BEP scheme and a difference in physical parametrization.

Finally, biased temperatures can be an indicator of a bias in other diagnostics like PBL
height, which we analyze next. The best-performing ensemble member with respect to 2 m
temperature is the SLUCM, YSU, Noah-MP, and MMS5 configuration. In December, the best

configuration uses the BouLac scheme for PBL. and MO as SLM scheme instead.

2.4.4 Planetary Boundary Layer Height

For PBL height, the model with the largest sensitivity (see Section 2.3.4) is the UCM. This is
clearly visible in the Taylor density diagrams of PBL height, Fig. 2.13. Similarly to the case
of 2 m temperature, there is a large difference of performance at urban vs rural stations. This
is clearly visible by the large spread in KDEs especially in September. Table A.4 shows that
the average MAB of all WRF simulations is larger at the more urban Stuttgart/Schnarrenberg
station than at Idar/Oberstein.

Figure A.4 clearly illustrates the large seasonal dependency of PBL height. We clearly
see the much lower diurnal cycle amplitude of the December PBL heights compared to the
other months. In the simulations, we also see earlier PBL height growth and later teardown
for July than for April, September, and December. This is accompanied by higher daytime
and lower nighttime PBL heights. These features are even more exaggerated in the BEP
than in the SLUCM simulations. During daytime there is a higher PBL height estimation for
BEP than for SLUCM. We also see a full-day bias of BEP PBL heights in December. The
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Figure 2.12: Diurnal cycle of 2 m temperature averaged over all stations. In black, the measurements
from DWD stations, in red the ERAS data, in orange the average over all simulations
using SLUCM, and in blue the average over all simulations using BEP. Errors are one
standard deviation of all diurnal cycles of each configuration and station. Figure taken
from Pilz et al. (2026).
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different PBL dynamics as well as the full-day bias in December are likely connected to the
2 m temperature misestimation. As we found in Pilz et al. (2026), “[this] is in line with the
2 m temperature bias between BEP and SLUCM, as warmer nighttime 2 m temperatures can
lead to earlier and more effective PBL growth due to higher initial temperatures as well as

deeper PBL mixing over the day”.

For ERAS, the performance is similar between the two stations with smaller biases
at Stuttgart/Schnarrenberg than at Idar/Oberstein except for July. The best-performing
WREF ensemble member with respect to PBL height is the SLUCM, MYJ, Noah and MO

configuration.

2.4.5 10m Wind Velocity

With regards to 10 m wind velocity, the model with the highest sensitivity (see Section 2.3.4)
is the PBL model. A few observations spring to mind when looking at the Taylor density
diagram in Fig. 2.14. Firstly, compared to for example 2 m temperature, the correlations of the
10 m wind velocities are generally smaller. We attribute this to the generally less pronounced
diurnal cycle of wind velocities. Secondly, we find the MYJ scheme to outperform the
BouLac and YSU schemes not only in terms of correlation. The MYJ scheme also has a
smaller spread of KDE in relative standard deviation, indicating more consistent performance

across stations.

Turning to the diurnal cycle in Fig. A.5, we find much smaller amplitudes in Decem-
ber compared to other months. However, we find generally larger uncertainties even in
measurements which are caused by larger heterogeneity across stations compared to other
variables. In general, there is an overestimation of 10 m wind velocities by the SLUCM
scheme especially during the night. In contrast, for the BEP scheme daytime wind velocities

are underestimated.

When looking at urban stations in particular, these aforementioned over- and underestima-
tions by SLUCM and BEP become more pronounced (cf. Figs. A.6 and A.7). We hypothesize
that this is the cause for the overestimation of 2 m temperatures by BEP. This is discussed
further in Section 2.5. On average, though, the MAB of day and night time is the same (cf.
Table A.6). Looking at Table A.4, we also see that the simulation performance is actually
higher at urban than at rural stations for ERAS and for the best WRF ensemble members.
The best-performing WRF ensemble member with respect to 10 m wind velocity is the
configuration using MYJ, Noah-MP, and MO without a clear preference between SLUCM
and BEP.
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Figure 2.13: Taylor density diagram (see Section 2.3.4) of PBL height for all four simulated months

of 2020. ERAS data are plotted in red, configurations using SLUCM scheme in orange,
and configurations using the BEP scheme in blue. Configurations are distinguished
into using Noah or Noah-MP LSM by different markers. Behind each marker is the
average over one simulation configuration averaged over all DWD stations. Spread of
all configurations and stations using the respective UCM scheme is illustrated as KDEs

except for ERAS, where there are only two values contributing to the average. Figure
taken from Pilz et al. (2026).
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marker is the average over one simulation configuration averaged over all DWD stations.
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as KDEs. Figure taken from Pilz et al. (2026).
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2.4.6 10m Wind Direction

We find the 10 m wind direction to be most sensitive (see Section 2.3.4) to choice of PBL
scheme. Since wind direction is a circular quantity (see Jammalamadaka et al., 2001), the
fundamental equations of the Taylor diagrams do not hold. There is also no inherent diurnal
cycle in wind direction. However, we can still look at the ensemble spread of wind direction
(as defined by standard deviation over all configurations averaged over all DWD stations).
Figure A.8 clearly shows the wind direction ensemble spread decreases with increasing wind
velocity. This can be explained by local influences which get estimated differently over
all configurations outweighing synoptic drivers. In order to get more robust results, in the
following we only look at situations with wind velocities above 1 ms™.

We see in Table A.4 that both WRF and ERAS exhibit larger deviations over urban
than over rural areas. This, too, can be explained by local influences like heterogeneity in
materials or orography can influence wind deflection or heat fluxes. Table A.6 shows a better
performance during daytime than nighttime, which is a corollary to wind velocities being
higher during the day. We find the best-performing WRF ensemble member with respect to
10 m wind direction to be the SLUCM, MYJ, Noah, and MO configuration.
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2.5 Discussion

This section is adapted from Pilz et al. (2026).

In this chapter, we have presented our analysis of high-resolution WRF simulations over
a PUR in Europe. We have performed this analysis in order to optimize the setup of our
WREF-Chem simulations of CO, and CO dispersion over German metropolitan areas. In this
study, we have varied multiple different schemes for the land surface, surface layer, and
planetary boundary layer models as well as urban parametrization. This large analysis spans
all four seasons of the year 2020, investigating a whole month for each season. It allows us
to draw conclusions on simulation performance with respect to different variables of interest

and describe shortcomings in physical parametrizations.

Our ensemble consists of 16 different physics configurations of WRF and the simulation
domain encompasses 19 meteorological stations of the DWD. This means that there are 304
combinations of configuration and station to evaluate. This would not be feasible without
our introduction of Taylor density diagrams, augmenting traditional Taylor diagrams by a
KDE. The KDE allows us to retain information about the spread of the data underlying the
presented averages. We find the ensemble spread in our simulations to be dominated by
station characteristics over physics configurations. This shows the importance of using as

many meteorological stations as possible in these kinds of studies.

Overall, our WRF ensemble outperforms previous studies. The best-performing ensemble
members (see ends of Section 2.4.3 to Section 2.4.6) have MAB values of 1.4K to 1.7K
for 2 m temperature, 148 m to 249 m for PBL height, 0.8 ms~' to 1.0ms~! for 10 m wind
velocity, and 36.4° to 42.1° for wind direction. In urban areas, these become 1.2 K to 1.6 K,
168 m to 272m, 0.8 ms~! to 1.0ms™!, and 34.0° to 40.7°. The wind velocity MABs are
lower than reported in Solbakken et al. (2021). Furthermore, all variables outperform the
RMSE and correlation values reported in Ho et al. (2024, cf. Table A.5). We also find the
performance of our WRF simulations to be much closer to ERAS5 performance than the WRF
simulations without observation nudging reported in Lian et al. (2018). Note, again, that
the ERAS performance is artificially inflated by it assimilating the data we compare against.
For an actual comparison of WRF and ERAS performance, independent measurement data
would be necessary. However, our overall good performance compared to previous studies
highlights the benefit of high-resolution simulations and high-quality input data.

In general, we find that WRF performance depends on both variable of interest and
location. Regarding the variables’ sensitivities, we find 2 m temperature and PBL height to
be most sensitive to urban parametrization, while the 10 m wind variables are most sensitive
to PBL schemes. This contrasts previous findings of Jinicke et al. (2017), who report

larger sensitivity of 2 m temperature to PBL scheme selection than to urban parametrization.
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Again, the WRF ensemble members’ performance is dependent on variable of interest, which
makes picking a best-performing configuration difficult. However, one configuration which
performs well in general and especially when it comes to wind variables, which are of interest
to us regarding CO; dispersion, is the SLUCM, MY]J, Noah-MP, and MO configuration.
Comparing the different configurations, we find a large difference in performance between
BEP and SLUCM. This is not a new finding, as e.g. Ribeiro et al. (2021) have also reported
similar performance differences. In Pilz et al. (2026), we have laid out three possible reasons
as to the cause of this underestimation. This phenomenon could be caused by either or a
combination of the following: The first possibility is a difference in diagnostic computation
between the two schemes (cf. Section 2.1.2). Secondly, we found that the difference in
vertical resolution explained about half of the bias. And finally, the default configuration of
the urban parametrization within the BEP scheme could be at fault. This faulty configuration
may overestimate surface friction in the urban scheme, which can be compounded over
multiple vertical urban layers by the higher vertical resolution. The overestimation of surface
friction in conjunction with radiation trapping in urban canyons could lead to higher 2m
temperatures and PBL height biases. This is in line with Ribeiro et al. (2021), who also find
urban friction overestimation to be responsible for an underestimation of wind velocity.
This extensive analysis enables us to choose the physics configuration for WRF such that
atmospheric transport is as accurate as possible for a dedicated trace gas run, the topic of the

next chapter.
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3 MACRO-2018: Modeled COx
Concentrations

The previous chapter presented the sensitivity studies optimizing the meteorological modeling
and laying the groundwork for choosing a favorable model configuration. This chapter
focuses on the presentation of the MACRO-2018 dataset and its genesis. This dataset
includes meteorology as well as CO, and CO concentrations at up to 1 km resolution for
German metropolitan areas for the full year of 2018. It includes two separate simulations
with different physics configurations as well as two different biogenic models each. First
the emissions input data for the simulation is described in Section 3.1. Then, we describe
the data used for boundary conditions of the simulation in Section 3.2 and the configuration
of the simulation itself in Section 3.3. Then, in Section 3.4, we compare the simulated
CO; and CO concentration values to measurements. We first give an overview over the
measurements and their preprocessing (Sections 3.4.1 and 3.4.2), then evaluate the two
different versions of biogenic emissions (Section 3.4.3) and continue with more general
comparisons against measurements (Section 3.4.4). Finally, in Section 3.6 we compare its

performance to previous studies and in Section 3.7 we discuss the results.

3.1 Emissions Data

In order to simulate the dispersion of the CO, and CO concentration fields, information
about their fluxes are required. Here, we focus on the ones for CO,. In general, these are
divided into two categories, anthropogenic emissions and biogenic fluxes. In the following
section, we discuss the emissions inventories which we use to generate the MACRO-2018

dataset.

3.1.1 Biogenic Emissions

To calculate biogenic fluxes, we use the Vegetation Photosynthesis and Respiration Model
(VPRM), which is conceptualizes net biospheric fluxes (net ecosystem exchange (NEE)) as
the difference between gross primary production (GPP) and ecosystem respiration. GPP
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refers to the total amount of carbon fixed by an ecosystem into biomass through photosyn-
thesis. Photosynthesis, in turn, is the process by which plants convert light energy, water,
and carbon dioxide into carbohydrates, releasing oxygen as a byproduct. It occurs when
sufficient nutrients, water, sunlight, and CO, are available. Rates of photosynthesis can
decline under environmental stress conditions like drought, nutrient deficiency, and extreme
temperatures.

To meet their energy demands, plants break down stored carbohydrates through a process
known as autotrophic respiration. Autotrophic respiration results in CO, emission, however
these are typically offset by higher rates of photosynthetic CO, uptake during the day. The
other component of respiration is the heterotrophic (soil) respiration which is caused by
microorganisms.

The underlying model of VPRM was comprehensively described in Glauch et al. (2025)
and we paraphrase this description here. It consists of the following two equations for GPP
and ecosystem respiration

GPP=¢ -PAR-EVI

' 1+PAR/PAR,
Reco = @ -max (T, Tiow) + ﬁ

with photosynthetically active radiation (PAR), enhanced vegetation index (EVI), and €
being the light-use efficiency. In the respiration model, Tjoy, is @ minimum soil temperature
for winter. Furthermore, &, 8, PARg and A are empirical parameters which have to be fitted

for each vegetation type. The light-use efficiency € is calculated as

e =27 'Tscale . Wscale 'Pscale
(T - Tmin) (T - Tmax)

Tscale —
2
(T - Tmin) (T - Tmax) - (T — Topt)
_LSWI-LSWIyin
W ) LSWIux—LSWlnin’ grassland
seale 1+LSWI
THLSW * all other classes

with A being a correction parameter, Py,e the vegetation type dependent effect of leaf age,
Tscale the temperature dependence of photosynthesis and W, the canopy water content.
Tinin» Tmax and Top represent the literature-derived values of minimal, maximal, and optimal
temperatures for photosynthesis and W, is dependent on the leaf surface water index
(LSWD).

While VPRM is a comparably simple model, it is able to simulate the difference of GPP
uptake and respiration fluxes, net ecosystem exchange (NEE), using few inputs. Indeed,

the only meteorological input parameters needed are temperature and PAR, as all other
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3.1 Emissions Data

meteorological influences are proxied by EVI and LSWI measurements from satellites.
These measurements have to be filtered and interpolated in order to make up for gaps in
the data. The procedure of using the model for a specific location consists of two steps.
Before the model can be applied, its parameters have to be fit for all land use classes. Flux
tower measurements (and their surrounding land use) are used in order to constrain the o,
B, PAR( and A parameters. When evaluating the model for a specific location, the land use
data for the location in question have be determined. Then, the respective fitted parameters
are selected. Finally, for the times of interest, the temperature and solar irradiance data are
used to evaluate the model. For the MACRO-2018 dataset we used two versions of the same

model in order to evaluate model uncertainties.

Version 1 The first version of flux data was generated by Prof. Dr. Julia Marshall (DLR)
for the CoCO2 project and uses Moderate-resolution Imaging Spectroradiometer (MODIS)
data measured using the Terra satellite and Synergetic Land Cover Product (SYNMAP)
land use data. Here, the 8-day reflectance product from Terra (MODO09A1, version 6) is
used for EVI and LSWI, which is provided on 500 m to 1000 m pixels. These pixels are
then gap-filled in time using a locally weighted scatter plot smoothing (LOWESS) filter.
As meteorological products, the 2 m temperature and downwelling shortwave radiation are
extracted from analysis and short-term forecast fields from the ECMWF IFS model. The
parameters of this product are presented in Gerbig and Koch (2024).

Version 2 This newer version of flux data was generated by Dr. Theo Glauch (DLR; Glauch
et al., 2025). For EVI and LSWI, it uses the 1-day MODIS products from both, Terra
and Aqua satellites (MODO9GA, MYDO0O9GA). As land use data input the 100 m resolved
Copernicus Dynamic Land Cover Collection 3 data (Buchhorn et al., 2020) are used. To
fit the model parameters, a two-step protocol is applied with the respiration term (a, 3)
being fit only for the nighttime data. After these parameters, the GPP term (PARy, A) is fit
using fixed a and 8 over the daytime data. Furthermore, the Ty, and o parameters in the
respiration function (cf. Section 3.1.1) have been changed in a way which makes the new
model more temperature-sensitive. The effect of using the high-resolution land use data
is that especially in areas of sparse biogenic influence, like cities, this version of VPRM
exhibits much more activity. The temperature products used here are the 2 m temperature and

downwelling shortwave radiation products from ERAS5-Land (C3S, 2019) at 9 km resolution.

3.1.2 Anthropogenic Emissions

The best available estimates for anthropogenic CO, emissions and their locations come from

bottom-up inventories. These inventories use two kinds of reporting to know where emissions
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Figure 3.1: Overview of anthropogenic and biogenic emissions. The total CO; emissions of the
Netherlands Organization for Applied Scientific Research (TNO) GHGco v4.1 inventory
for the year 2018 on a logarithmic scale are displayed in Panel a). Panel b) displays the
biogenic emissions from VPRM v1 of 61 of May, 2018 05:00 UTC scaled up to match
units.

occur. First, they use country-level reporting (for example NIRs) required by supranational
entities like the UNFCCC in the context of the Global Stocktake. Additionally, they use
company-level reporting required by European law. The latter information is contained
in databases like the German Pollutant Release and Transfer Register (PRTR) which is
accessible via Thru.de and the European E-PRTR. They combine these data sources with

proxies like nighttime lights for residential heating to distribute these emissions spatially.

We use the gridded TNO GHGco v4.1 inventory (Super et al., 2020). This inventory
includes fossil- and biofuel emissions of CO,, CH,4, CO, and NOx for the year of 2018. It is
based on NIRs and reporting to European Monitoring and Evaluation Programme/Centre on
Emission Inventories and Projections (EMEP/CEIP). For the year 2023, the NIR of 2025
reports a combined sectorial CO, emissions uncertainty of 7.6 % to 8.3 % (depending on
method) for total German emissions (Giinther et al., 2025). These emissions (grouped into
Nomenclature for Reporting (NFR) sectors) are then gap-filled using the Greenhouse Gas —
Air Pollution Interactions and Synergies (GAINS) and Emissions Database for Global Atmo-
spheric Research (EDGAR) models. After being localized using NFR sector specific proxies
and the temporal profiles being extracted, they are grouped into Gridded Nomenclature for

Reporting (GNFR) sectors. These localized uncertainties on the scale of the simulation
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domains will be considerably higher than the NIR uncertainties. In the end, all emissions are
reported per GNFR sector and source type (point- or area source).

The TNO GHGco v4.1 inventory we use consists of a zoom and a non-zoom inventory.
While the zoom inventory has a resolution of approx. 1 x 1km, the non-zoom inventory
has a resolution of approx. 6 x 6km. And whereas the non-zoom part is available for all of
Europe (30.025 °N, —29.95 °E to 71.975 °N, 59.950 °E), the zoom inventory only includes
Germany, the Netherlands and Belgium completely. The zoom region’s lower-left corner is
at 47.004 °N, —1.992 °E (approximately at Nantes) and its upper right corner is at 55.996 °N,
18.992 °E (in the Baltic Sea at the longitude of Gdansk). Figure 3.1 gives an overview over

both the zoom inventory anthropogenic emissions and the biogenic emissions of VPRM v1.

3.1.3 Regridding

Regridding is the process of transferring data from one coordinate reference system (CRS)
to another. Most inventory data including both our anthropogenic and biogenic emissions
data are given on the WGS84 geographic CRS (latitude/longitude). However, our WRF
simulations are defined on a projected CRS. We chose the Lambert Conformal Conic (LCC)
projection, as it is widely used and can be easily adjusted to fit the desired simulation region.
This means we have to transfer the emissions between these projections in order to build
WREF input files.

The (non-rotated) LCC projection is an angle-preserving but not area-preserving (confor-
mal) projection. It works by projecting points on the Earth’s surface onto a cone’s surface and
then unrolling it. WRF uses a spherical datum for the WGS84 latitude/longitude coordinate
system, so the cone is intersecting this sphere. In the non-rotated LCC projection, the cone’s
apex is above the north pole. Amongst the parameters of the projection are two “standard
parallels”, which are the latitudes at which the cone intersects the sphere (cf. Fig. 3.2). These
two intersections lead to smaller projection errors over larger areas.

Because we want to regrid emissions fields, we care about the location and amount
of emissions being conserved as much as possible between the projections. Tools like
Earth System Modelling Framework (ESMF) and its derivatives xESMF and ESMPy exist
and provide conservative interpolators. However, the documentation does not provide any
information about whether they take the grid curvilinearity into account or approximate cells
into squares. In order to improve the emissions localization by heeding the curvilinearity of
the grid, we chose to implement our own regridding utility.

Our utility works similarly to the emiproc utility developed by Lionel et al. (2025). The
common functionality is that each individual cell is modeled as a polygon with four corners.

In our utility, each polygon can be assigned additional points on the edges which refine the
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Figure 3.2: Visualization of the LCC projection after a USGS image. Two red “standard parallels”
mark the intersection of the cone with the Earth’s surface. Image from wikimedia (Mysid),
part of public domain.
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Figure 3.3: Visualization of the regridding from lat/lon grid to WRF model grid (LCC projection).
It depicts how one of the WRF model grid cell emissions is computed using polygonal
intersection from the lat/lon gridded emissions. The emissions in that cell are the sum of
all four highlighted partial emissions.

curvilinear shape. These get then intersected with the polygons of the other projection using
the geopandas library.

In preparatory studies, we found the curvilinearity of the grid to be too high and adjusted
the LCC projection’s standard latitudes in order to further reduce regridding errors. The
MAPFAC_M variable in WRF, which describes the deviation of the projection from the sphere
and is supposed to be around one, are for us between 0.999 and 1.023. As visible in Fig. 3.3,

the lat/lon grid is barely curvilinear anymore in our projection.
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Table 3.1: Errors due to regridding in all five focus regions including only Berlin. Compared are
summed up TNO emissions with summed up wrfchemi files. Absolute and relative
errors are given in kilotonnes and percent, respectively. The relative error is defined as
(TNO — WRF)/TNO.

CO, CcO

Traffic Area Point Biofuel Total Total

Rhine-Neckar kt -161  -101 32 -64 -295 -2
% -0.97 -0.53 0.13 -0.72 -042 -0.8

Berlin kt -58 -35 50 -19 -62 -1
% -0.53 -0.25 0.13 -0.27 -0.09 -0.39

Berlin City kt -1 21 7 4 30 0
% -0.05 034 0.14 0.24 0.2 0.0

Rhine-Ruhr kt -151 -82 176 -58  -117 -1
% -0.86 -0.3 0.12 -047 -0.06 -0.22

Nuremberg kt -88 -44 1 -28  -158 -1
% -1.25 -0.68 0.12 -0.84 -0.88 -0.95

Munich kt -85 -71 6 -44  -195 -1

% -0.81 -0.86 0.13 -1.19 -0.72  -0.95

This utility was extensively tested using unit tests which assure a relative reallocation
accuracy of total emissions in our test dataset of 0.01 %.. However, upon reviewing the
final regridded emissions, slightly higher inaccuracies were found (cf. Table 3.1). This
demonstrates the need for not only unit- but integration tests. The emissions regridding was
also qualitatively verified by reviewing all hourly emissions for all available emissions fields
over the whole year. This was done in order to preclude obvious reallocation errors like

shifts of the emissions over the year due to faulty grid definitions.

We evaluate the emissions regridding error for each of the focus domains. The error
consists of two parts, which are caused by the regridding of area sources and the allocation
of the regridded inventory to time and height. Since point sources are not subject to spatial
regridding (other than bilinear interpolation), their errors are considerably smaller than
the other sectors. Table 3.1 shows the regridding errors of anthropogenic emissions are
below 1 % in all domains. However, the combined sectorial uncertainties of the German NIR
which constitute an extreme lower bound for the localized emissions are considerably higher
at 7.6 % to 8.3 % (Giinther et al., 2025). Since our reallocation error is well below that, it is

neglected in the following.
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3.2 Initial and Boundary Conditions

Because our WRF simulations are not global, but only simulate a limited area, they need data
providing initial and boundary conditions. This is required for both meteorological as well
as CO; and CO concentration data. The ERAS data we use for meteorology is presented in
Section 2.2.2. Here we will only present the concentration data.

The CO, and CO concentration data used as initial and boundary conditions is the Coper-
nicus Atmosphere Monitoring Service (CAMS) GHG short-term forecast data (experiment
ID gqpe — IFS cycle CY43R1). These concentration fields assimilate satellite data from
Greenhouse Gases Observing Satellite (GOSAT) measured by the Thermal and Near infrared
Sensor for Carbon Observation (TANSO) instrument. The data used in this thesis was
post-processed as described in Ho et al. (2024). The interpolation onto the 3D WREF grid
was performed using xESMF. It was then integrated into our WRF coupled with Chemistry
(WRF-Chem) model in the C02_BCK and CO_BCK fields.

3.3 Simulation Configuration

The MACRO-2018 dataset contains two separate runs of WRF using the same input files but
two different physics configurations which were identified with guidance from Chapter 2.
Two simulation configurations create a mini-ensemble useful for a first-order estimation of
physics-based model uncertainties. The configurations differ in the boundary layer schemes
and surface layer schemes they use. One uses the YSU boundary layer scheme and MM5
surface layer scheme while the other uses MYJ and MO respectively. Both of them use
the Noah-MP LSM. Further information on the differences between these physics schemes
are presented in Chapter 2 and Pilz et al. (2026). However, they both use the BEP urban
parametrization instead of the SLUCM parametrization as suggested by our studies presented
in Chapter 2. This was chosen to allow for the higher vertical model resolution at low
levels, which is not possible in SLUCM. This increased resolution is important in order to
accommodate Lagrangian particle dispersion model (LPDM) use at urban building heights.

In general, the model setup is the same as presented in Chapter 2, however some ad-
justments were made in order to improve on it. Firstly, the land use bug mentioned in
Section 2.2.2 was fixed, which improves the land use fidelity in urban areas. Secondly, the
revised URBPARM_LCZ. TBL released in WRF v4.6.0 (issue #1954, PR #1969) was used in our
simulations. Furthermore, the model was updated from v4.3.1 to v4.3.3 to include more bug-
fixes without major changes to its behavior. Lastly, its code was modified to accept the new
input and concentration fields, which necessitated adjusting Registry/registry.chem

and chem/module_ghg_fluxes.F.
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One change compared to the prior chapter is that we couple the chemistry module to WRF
(WRF-Chem; Grell et al., 2005). This module adds a lot of different schemes allowing for the
online calculation of complex processes in atmospheric chemistry. We use it in tracer mode,
meaning that all chemistry for both CO; and CO is turned off and they are only advected
with the meteorology. While CO, barely has any relevant chemistry on the time scales we
are evaluating, CO is a precursor in surface-level O3 production and a product of CH4 and
NMVOC oxidation. However, due to the large computational demand explicitly modeling
this chemistry would add and the large existing uncertainties in the CO inventory, we decided
to forgo the chemical modeling. This is in line with previous studies like Callewaert et al.
(2022) and Lama et al. (2022).

The model was run on the DKRZ supercomputer Levante using 156 processors per
configuration. The run for the MYJ configuration took 3 days, 17 hours for spin-up and
47 days, 17 hours for the simulation. The YSU configuration took 3 days, 17 hours for
spin-up and 43 days, 14 hours for the simulation. The integrity of the run was verified in
multiple ways. Firstly, the CO; and CO field continuity was assured by scripts at every
reinitialization. Secondly, a qualitative data integrity assurance was performed using a
self-built dashboard using the Python package panel (see Fig. 3.4). Here, all domains
were plotted in parallel. The variables were separated into two groups, 2D verification
and 3D verification. The 2D verification group included T2, U10, and V10 as well as the
lowest levels of CO_TOTAL, CO2_TOTAL, CO2_TOTAL_V2, and CO2_ANTHRO. The fields of the
2D verification group were verified for every hour of the simulation. In order to prevent
errors around the reinitializations, the 3D verification group was used. It consisted of T, U,
V, as well as all the previously mentioned CO, and CO fields. Here, at least three vertical
levels were verified for all hours of every Sunday and Monday (before and after the ERAS5

reinitialization) in the simulation.

3.4 Evaluation

In order to evaluate the simulation output, we use high-precition in-situ concentration
measurements. First, Section 3.4.1 describes how we pre-process and filter the measurement
data. Then, Section 3.4.2 gives an overview over the processed measurement data. We start
with evaluating the different VPRM versions in Section 3.4.3 and choose one with which
to perform the evaluation. Then, in Section 3.4.4, we compare our simulation data to the
measurements. And finally, we evaluate the realism of our dataset in Section 3.4.5. The
length of our dataset of one year, the size of our study domain (Central Europe) and the two
physics schemes as well as the two biogenic models in each present a unique opportunity for

model evaluation supporting further developments.
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Figure 3.4: Screenshot of dashboard used for MACRO-2018 simulation verification. The panels in
this dashboard display all seven domains at once. Menu enables selection of simulation
output (BL Scheme) and date. Slider selects individual hours within the day and can
start parallel playback of all domains. Selectors on the right determine content of panels.
Variable of interest, simulation height level (Z-Index) and color map can be selected.
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3.4 Evaluation

3.4.1 Measurement Data

First, we present the measurement data we compare our sampled simulations against.
The data we use are a European version of the NOAA GLOBALVIEW Obspack data
for CO, (ICOS RI et al., 2024) and the GLOBALVIEWplus-like Obspack product from
NOAA (Schuldt et al., 2025) for CO. These Obspack datasets are a collection of hourly aver-
aged concentration measurement data from Integrated Carbon Observation System (ICOS)
and non-ICOS stations. They are measured by high-precision cavity ring-down spectrometer
(CRDS) instruments with average measurement precisions of below 0.1 ppm for CO, and
below 2 ppb for CO. As they are so low, these uncertainties will be disregarded in the
following. The data is delivered with auxiliary variables used for quality assurance like the
number of data points the hourly averages are computed from and a quality control flag. In
order to improve representativeness of the data, we filter the number of measurements used
for the average to be four or more. Also the quality control flag is filtered to Flag ’0’:
data correct after manual quality control. From our initial dataset of 40 stations
(98 inlets), this excludes 8 stations (19 inlets) completely.

In order to compare over the whole simulation period, we filter the remaining inlets so
that they have at least half of all possible measurements for each month. We also only keep
inlets with a height of at least 10 m. This means that for CO, 20 stations (52 inlets) remain
while 14 stations (27 inlets) only have valid data for parts of the year. Two stations (SAC and
HFD) appear in both the full-year and the part-year dataset because only some inlets do not
provide full-year coverage. At the BRM station, one inlet does not provide any data at all and
is thus excluded. For CO, 9 stations (24 inlets) remain while 6 inlets only provide partial
data. These are the lowest inlets at KRE and UTO, the second lowest at SAC and inlets two
to four at LIN. We continue our evaluation with the full-year dataset containing 20 stations
(52 inlets) for CO, as well as 9 stations (24 inlets) for CO. An overview of the stations and

their data coverage is to be found in Panel b) of Fig. 3.5.

3.4.2 Measurement Data Overview

First of all, we give an overview over the 54 inlets at 20 stations in our dataset. Of these
20 stations, five are surface stations with only one inlet while the other 15 are tower stations
with two or more inlets. However, as we can see in Panel b) of Fig. 3.5, not all of the stations
have valid data for all inlets over the whole year.

In order to extract comparable simulation data, we sample the MACRO-2018 dataset
at the positions where the stations are measuring. The general problem when it comes to
the question of where to interpolate vertically is that our WRF simulations systematically

underestimate peaks in topography. This underestimation is caused by the simulation grid
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Figure 3.5: Overview over the measurement data uses in this study. Panel a) shows the locations of the
Obspack stations and the number of available inlets for towers. Stations measuring CO;
are marked with a marker pointing to the left. Additionally, CO is measured at all station
which are marked with a marker pointed to the right. Panel b) compares the number of
inlets per station before and after validation (cf. Section 3.4.1). Panel c) illustrates the
mixed inlet heights between stations. Lastly, the dashed lines in Panel d) show the 3 and
9 ppm cutoff values used to categorize stations into ‘remote’, ‘rural’, and ‘urban’. Map
data copyrighted by OpenStreetMap contributors and available from openstreetmap.org.
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3.4 Evaluation

resolution, onto which the input topography gets averaged. This means there are two ways
of interpolating the simulation data to best fit the measurements. We can either interpolate
it onto height above sea level or height above ground level. Using the height above sea
level interpolation would be more accurate for remote stations on top of mountains. This is
because they see more of the background and less surface-level emissions which would be
overestimated if we were to sample above ground level. On the other hand, urban stations
may be systematically underestimating concentrations since the sampling would be too high
above the ground. Since metropolitan areas are our focus regions and we are interested in
anthropogenic emissions, we choose the interpolation to height above ground level. We
perform this interpolation of the simulation data onto inlet heights (above ground level) using
the xgcm and xwrf utilities (Abernathey et al., 2025; Pilz et al., 2025b).

As there is no consistent station characterization given by the dataset provider, we use the
MACRO-2018 data to generate one. We classify the stations into the categories: ‘urban’,
‘rural’, and ‘remote’ based on the signals they measure. It is important to note that these

classifications are only defined relative to other stations in this dataset.

The main metric we use to classify stations this way is the average anthropogenic CO,
concentration. For tower stations we use the maximum of this metric over all heights. We
use averages instead of medians as we want a genuine integration of the signal including,
amongst others, peaks from strong point sources. Panel d) in Fig. 3.5 demonstrates our
stations splitting into three groups. The ‘urban’ stations have average anthropogenic signals
over 9ppm and are KIT, HEI and SAC. They are also the stations with the highest CO
concentrations. While these signals do not need to be from urban areas but could also
originate from industrial sources, we still call this category of stations ‘urban’. The lowest
signals are at the ‘remote’ stations with average anthropogenic signals under 3 ppm (JFJ,
HTM, BIS, UTO, and NOR). These stations are also 5 of the 6 stations with the lowest CO
concentrations. The rest of the stations fall in between. There are two stations, TRN and IPR,
which are located close to urban areas (within max. 50 km) but do not see a lot of urban
signal based on the MACRO-2018 dataset. These are classified as ‘rural’ in this case.

3.4.3 Evaluation of VPRM Versions

Now with a consistent dataset, we evaluate the performance of the two different VPRM
versions in our data, which are presented in Section 3.1.1. This dataset provides a unique
opportunity to investigate concentrations generated by the two different biogenic emissions
models on a nearly continental scale and over a whole year, as they are usually only evaluated
against flux tower data or over smaller simulation domains. The results of our evaluation
directly support the further development of VPRM v2 by Dr. Theo Glauch.
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Figure 3.6: Comparison of VPRM version performance. Panel a) illustrates the average CO; bias over
the inlet heights. Here, we clearly see the larger mean bias of VPRM v2. Panel b) displays
the monthly diurnal cycle of total CO; concentrations using the different VPRM versions.
Again, the positive bias of the VPRM v2 is visible especially in winter. However, it is
good at capturing the diurnal cycle amplitude across the year and especially in summer,
VPRM v2 has a higher fidelity than VPRM v1.

First we assess aggregate statistics before looking into the details of the performance.
Over all 54 inlets (20 stations), we find a MAB for VPRM v1 of 5.2 ppm and for VPRM v2
of 6.4 ppm. This is mostly due to a higher mean bias in the VPRM v2 of 1.8 ppm vs —0.1 ppm
for VPRM v1. We can see this in the overview in Panel a) of Fig. 3.6.

Panel b) of Fig. 3.6 displays the monthly diurnal cycle average over all stations. Here, we
can see structural differences between the VPRM versions. Indeed, VPRM version 2 consis-
tently overestimates winter and nighttime CO; (except for May, June, and July). However,
this version captures the diurnal cycle amplitude more accurately. While it is consistently
underestimated by VPRM v1 with a MAB of 6.0 ppm (mean bias (MB) —5.9 ppm), version 2
has a MAB of 4.1 ppm (MB 2.0 ppm; cf. Table 3.2). We only see minor differences between
the two boundary layer schemes used. For differences between the VPRM versions, please

refer to Section 3.1.1.

There are two possible sources of the performance difference of the simulated CO,
concentrations between VPRM version 1 and 2. One possibility is the PBL height being
underestimated by the model over the winter months, which overestimates the biogenic fluxes
in general. However, the sensitivity studies performed in Chapter 2 and especially Fig. A.4
rather suggest a PBL height overestimation of the model. Additionally, our data includes
two different PBL schemes and both have a similar mean bias (cf. Table 3.2). While not a
perfect error estimate, this increases our confidence that the model PBL height estimation is

not the problem.
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Table 3.2: Overview of cumulative statistics of total CO; concentration using the different versions
of VPRM. These statistics are averaged over all inlets.
VPRM vl VPRM v2
YSU MYJ YSU MY]J

Mean Bias -0.1 -0.2 1.8 1.8
MAB 5.1 52 6.2 6.3
RMSE 8.0 84 9.0 9.7

Diurnal Amplitude MB -55 -54 18 2.1
Diurnal Amplitude MAB 5.7 54 38 3.8

The more likely explanation for these differences appears to point to the biogenic emissions
models themselves. Changes to the respiration function, which increase the night- and winter
time respiration, affect the flux estimates. These adjustments, however, are based on flux
tower data, and since the representativeness of the flux towers across Europe varies, the
VPRM fluxes in some regions are highly uncertain (Glauch et al., 2025). This leads us to
conclude that the extrapolation errors from the flux towers where the parameters were fitted
at to the whole of Europe is the primary source of the increased mean bias in VPRM v2
compared to v1. After communication with the provider of the VPRM v2 dataset, Dr. Theo
Glauch, we continue our evaluation for the rest of this chapter with the VPRM version 1 data

as it demonstrates higher average performance.

3.4.4 Comparison to Measurements

In this section, we compare the total simulated CO, concentrations (using the VPRM v1
biogenic emissions) to the Obspack measurements. The metrics we use are presented in
Section 2.4.2.

First, we look at the overall data before going into more detail. In Fig. 3.7, Panels a) and
b) show a 2D histogram of the simulated CO, and CO concentrations at all inlets against
the measured concentrations. Across all inlets, for CO, concentrations we find a Pearson-R
correlation of 0.76 between measurements and simulation while it is 0.61 for CO. In general,
lower CO, and CO concentrations are simulated more accurately, with differences from the
1:1 line (grey) increasing for higher concentrations. There are both overestimations and
underestimations of concentrations, with underestimations being more prevalent especially
at higher concentrations. This can be attributed to high concentrations occurring more often
at nighttime than at daytime and PBL height estimation at night being more difficult. They
also occur in situations where the sensors measure large anthropogenic influences (especially

for CO, as it has no biogenic component in our simulation). Here also emissions inventory
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Figure 3.7: Histogram of simulated and measured CO; and CO incl. biases. Upper Panels (a, b)
display 2D histogram of simulated CO, and CO concentrations compared to measured
ones. Lower Panels (c, d) display CO; biases over CO biases for VPRM v1 and v2. Color
scale for both is logarithmic. In the comparison of CO, and CO biases, two correlation
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Figure 3.8: Visualization of MAB of all inlets in our dataset. Panel a) displays MYJ and YSU MABs
with inlets sorted by MYJ MAB. The difference in MAB between the two versions of the
dataset is displayed in Panel b). Clearly visible is the outlier inlet which is the lowest in
SAC.

errors in both space and time contribute to concentration misestimations. This very high

anthropogenic influence compared to CO, is why the CO concentration correlation is lower.

Looking at correlations between CO; and CO biases in Panels c¢) and d) of Fig. 3.7, we
find two different correlation regimes. On one side there is a mostly linear relationship
between the biases of the two gases, hinting at common underlying factors like emissions
misestimation in the inventory or boundary layer simulation issues. On the other hand, there
is a second regime of CO» biases without accompanying CO biases. This regime is more
pronounced for VPRM v2 than v1. Since these CO; biases are not associated with CO
biases, they are more likely caused by misestimations in biogenic CO, fluxes, especially of
respiration, than by misestimations in PBL height. We can also see this in Fig. A.9, which
shows the same histogram with measurements filtered for the stable PBL development phase
(find definition below). Here, the second correlation regime is also much larger for VPRM v2
than v1.

The performance metrics for MACRO-2018 at the Obspack stations for CO, and CO are
to be found in Tables A.8 and A.9. The inlet-wise performance can be found in Tables A.10
and A.11. First, we compare the two physics configurations we used for the simulations.
They differ in choice of PBL and surface layer schemes. One used MYJ and MO, while the
other used YSU and MM5. Overall, the differences in CO, concentration MABs between
the two configurations are marginal, however one inlet exhibits a very large difference (cf.
Fig. 3.8). This inlet is the lowest one (15 m agl) at the Saclay station (SAC). While there
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Figure 3.9: Correlation of CO, MAB with average CO; signal. Panel a) displays correlation of
CO, MAB at each inlet with average simulated signal and Panel b) displays the same
with average measured signal. The CO, MABs show correlations of 0.72 and 0.92 with
simulated and measured signal. For the simulated signal, the IPR station deviates from
the clear linear relationship with the other inlets. This points to systematic differences at
that station in particular.

are differences in MAB values of —0.7 ppm to 0.6 ppm (average: —0.02 ppm) for all other
inlets, the lowest inlet at Saclay exhibits a 5.4 ppm higher MAB for the YSU configuration
than for the MYJ one. These differences likely result from a combination of factors from
the measurement height not accurately representing the surrounding area to limitations of
the simulation. In particular, the YSU simulation tends to underestimate the PBL height
compared to MYJ, which in combination with the high emissions in Paris may amplify the
discrepancy. This shows that users of the dataset have to investigate which configuration is
suitable for their location and use case.

In general, the CO, performance at stations which are more remote is higher than at
stations which are more urban. This is to be expected, as urban areas are heterogeneous in
land use and emissions, complicating both meteorological and emissions modeling. Looking
at correlations between MAB and other variables, the highest correlation is with the average
signal strength itself. As visible in both panels of Fig. 3.9, the MAB of most stations correlates
very tightly to the measured signal strength. This is either caused by misestimations of PBL
height or problems with the biogenic respiration model. However, there is one stations which
stands out.

This station is IPR (Ispra, Italy), where the simulated CO, underestimates the mea-
surements by 10 ppm on average (cf. Table A.8). It is located next to Lago Maggiore,
approximately 60 km from the next major city, Milan. There are several factors which can
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Figure 3.10: Taylor diagrams of VPRM v1 and MY]J configuration. The statistics in Panel a) are
computed over the whole year whereas they are deseasonalized by computing monthly
statistics and averaging them in Panel b). Triangle markers are for urban stations, dots
for rural ones and ‘x’ markers are for remote stations.

explain the outstanding deviations at this station. The first is that the emissions inventories
could be incorrect, e.g. by under-reporting of companies, and there are actually be more
emissions in reality than in the TNO inventory. Indeed, there are two cement factories at
5.1 and 8.4 km distance whose emissions impact local measurements. Furthermore, as point

sources, these can also be underestimated by virtue of the simulation resolution.

The resolution of our simulation is also able to affect our results in another way. As we
resolve the simulation only at 5 km, the Alps, which the IPR station is nestled against, appear
smoothed out. For example Monte Leone, the highest mountain of the Lepontine Alps,
which are the closest mountain ridge to Ispra, stands at 3553 m, while in our simulation the
elevation at the same location is only 2317 m. This can cause the accumulation of CO, south
of the Alps to be severely underestimated, as air-mass (and pollution) trapping by Alpine
topography is a well-known phenomenon (Diémoz et al., 2019). Users of the MACRO-2018
dataset have to be careful using the data around regions of high topographic complexity

because of the limited resolution.

Looking more at the bias-corrected performance, we turn to the Taylor diagrams of our

simulation in Fig. 3.10. Here, we have to deseasonalize the data because the base assumption
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of the Taylor diagrams is normally distributed data. We remove the seasonal cycle by
computing standard deviation and correlation per month and then averaging them. As
expected, the correlation performance drops for the deseasonalized data, since the seasonal
cycle is not artificially boosting it. While the three urban stations do cluster together, rural
and remote stations do not show large differences between them. The previously discussed
outlier, IPR, is visible and additionally the JFJ (Jungfraujoch) station shows large deviations.

The JFJ station is the highest measurement station of the dataset with an elevation above
sea level of 3570 m. It is an outlier in this case as the simulation overestimates the standard
deviation of the time series. The probable cause of this is the sampling of the MACRO-
2018 data being performed above ground level. This works well for low-elevation stations,
as it takes care of deviations from the topography due to spatial resolution, however at
high elevations it breaks down due to the overwhelming smoothing effect of resolution on
topography. Indeed, while the station’s inlet in reality is at an elevation of 3583.9 m, we
sample our simulation at 2753.8 m above sea level.

The CO performance metrics are listed in Table A.9. The MACRO-2018 datasets exhibits
good correlations to measurements of above 0.80 except for the stations IPR, SAC, and JFJ.
The performance problems at these three stations were already discussed above for CO, and
the above arguments also apply for CO. With average CO concentrations over the whole
year of 135 ppb to 160 ppb for the other stations, we find comparatively small mean biases
of around 10 %. Most biases except for JFJ and SAC are negative, which could be caused by
model transport, inventory issues, or the missing secondary production by photochemistry.
Indeed, Fisher et al. (2017) and Huijnen et al. (2019) show that secondary production is a
relevant source of CO concentration, which could explain some of our biases.

The MAB of all stations except IPR and SAC are 15 % or lower, which is a good agreement.
However, the KRE station exhibits a rather high MAB of 23 ppb. This MAB is driven by the
large mean bias at that station of —17 ppb. Apparently there is much more measured than
simulated CO at this station, which is why the relative MAB is only 15 %. The largest source
of CO in the vicinity of the station is the ES0 highway, which could be too smoothed out
in our simulations to have its influence on the measurements accurately modeled. Another
possibility is that the CO emissions in the Czech Republic in general could be underestimated
in the TNO GHGco v4.1 inventory.

Analysis across station types and times of day One characteristic of meteorological
modeling, which is important to emissions inversions, is the reduction of transport error. In
order to achieve this, inverters usually choose to only use afternoon measurements, as the
PBL height is relatively stable, thus leading to comparatively low simulation errors. However,

there is no consensus in the community as to what amounts to ‘stable’ conditions (McKain
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Figure 3.11: Diurnal cycle of PBL heights (a) and their absolute gradients (b) averaged over all
stations in the UTC+1 timezone. Two very distinct peaks in the absolute gradient are
visible in Panel b), one from PBL buildup in the morning and the other one from its
teardown. Grey zones are in order of darkness, descending: Night, transition (buildup
and teardown) and stable.

et al., 2015; Lauvaux et al., 2016; Miles et al., 2017; Kunik et al., 2019; Lian et al., 2024;
Monteiro et al., 2024). It is not clear whether daylight savings time (DST) or local standard
time (LST) is supposed to be used and all definitions used in the aforementioned papers are
static over the whole year. So, we use the wealth of data of the MACRO-2018 dataset in

order to define this more clearly.

As described in Section 2.1.1, the mixing layer has two transition phases. It grows in the
morning and then collapses in the evening. We identify these two phases by the gradient
in PBL height. Here, we use the native WRF PBL height diagnostics to do this in contrast
to Chapter 2. First, we select all stations which are in timezone UTC+1 and calculate the
absolute average gradient in PBL height across all months. The result is visible in Panel b)
of Fig. 3.11. We now only use the data from the MY]J simulation, as the only difference
between MYJ and YSU is the shift of YSU peaks one hour later in January and one hour
earlier in August. We then define the stable phase of the PBL development to be from one
hour after the morning gradient peak to one hour before the evening gradient peak. Secondly,
we identify the nighttime to be the last (in the mornings) and first (evening) mixing layer
height gradient to be below 25 % of the morning peak. The transition phases are then the
buildup phase between end of nighttime and the stable phase as well as the teardown phase

between the end of the stable phase and the beginning of nighttime.
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Figure 3.12: Exact definition of PBL height development phases for stations in timezones UTC+0,
UTC+1, and UTC+2 by month. The phase definitions were created using the UTC+1
stations and then transferred to the UTC+0 and UTC+2 stations.

We then assign these to all stations shifted according to station timezone. The definition
of the phases across the three timezones (UTC+0, +1 and +2) is provided in Fig. 3.12.
Please note that we moved the BIS station from timezone UTC+1 to UTC+0 because it is
geographically further west than other UTC+0 stations even though France uses UTC+1.
As expected, Fig. 3.12 shows that stable conditions increasing in length over the year with
May, June, and July having the longest stable phases. Additionally, except for the month of
April, the starts and lengths of all phases behave monotonically. This, in conjunction with
the general agreement of our definition with the previously cited studies, shows that we have

developed a robust metric.

We now use this metric to analyze the simulation performance by station type and phase
of PBL development. Results of this are to be found seen in Fig. 3.13 and Table 3.3. In
general, we find that as expected urban areas are more difficult to simulate than rural areas
and nighttime more than stable conditions. For stable conditions, in the MYJ simulation we
find MAB values for CO; of 5.6, 4.3, and 3.2 ppm for urban, rural, and remote stations. At
night, these increase to 7.8, 5.4, and 3.7 ppm. Pearson-R correlations in stable conditions
are 0.83, 0.88, and 0.90 while at night they drop to 0.70, 0.78, and 0.83. The results are
slightly different for CO, where the only available urban station is SAC and the IPR station

errors are dominating the rural stations (cf. Table 3.4)
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Figure 3.13: Overview of MAB (Panel a) and Pearson-R correlation (Panel b) of the simulated CO;

concentrations split into station types and PBL phases. The performance dependency
on PBL phase and station type is clearly visible. This figure was generated using
portraitpy (Pilz, 2025a).

Table 3.3: Comparison of CO; concentration simulation performance across stations and phases of

PBL development. All entries are averaged over all available inlets.
urban rural remote all
MYJ YSU MYJ YSU MYJ YSU MYJ YSU
stable MB [ppm] 0.4 -0.4 1.6 1.4 1.6 1.6 1.4 1.2
MAB [ppm] 5.2 5.3 4.1 4.1 3.2 3.2 4.1 4.1
RMSE [ppm] 7.6 7.9 54 5.4 4.1 4.0 5.5 5.5
Pearson-R [1] 0.83 081 0.88 0.87 091 091 088 0.87
transition MB [ppm] 27 27 02 -05 06 04 -04 -0.6
MAB [ppm] 7.4 7.9 5.1 5.2 3.5 34 5.2 5.2
RMSE [ppm] 112 11.9 7.2 7.2 4.7 4.7 7.3 7.4
Pearson-R [1] 0.74 0.72 0.78 0.77 085 0.84 0.79 0.78
night MB [ppm] -38 -17 -06 -08 -00 -02 -09 -0.8
MAB [ppm] 8.2 9.9 5.7 5.7 3.8 3.8 5.7 5.9
RMSE [ppm] 122 143 7.8 7.8 54 5.3 7.9 8.2
Pearson-R [1] 0.64 0.61 074 073 0.78 0.78 0.74 0.73
all MB [ppm] 22 -14 0.1 -0.1 0.6 0.5 -0.1  -0.2

MAB [ppm] 7.1 8.1 5.1 5.1 3.6 3.5 5.1 5.2
RMSE [ppm] 10.7 122 7.1 7.1 4.9 4.8 7.2 7.4
Pearson-R [1] 0.75 0.73 082 0.81 0.85 0.85 0.81 0.81
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Table 3.4: Comparison of CO concentration simulation performance across stations and phases of
PBL development. All entries are averaged over all available inlets.

urban rural remote all
MYJ YSU MYJ YSU MYJ YSU MYJ YSU
stable MB [ppb] -8.7 -140 -160 -19.1 -9.1 -10.1 -134 -16.0

MAB [ppb] 16.8 190 226 241 132 13,5 194 206
RMSE [ppb] 268 30.0 375 400 193 196 31.3 332
Pearson-R [1] 087 087 079 077 088 0.89 0.82 0.81

transition MB [ppb] 1.1 157 -181 -21.0 -89 -99 -13.8 -14.7
MAB [ppb] 249 382 267 283 135 138 2277 249
RMSE [ppb] 38.8 578 43.6 46.1 20.1 206 363 39.6
Pearson-R [1] 0.75 0.68 0.77 075 0.88 0.88 0.80 0.78

night MB [ppb] 57 567 270 -296 -91 -99 -19.1 -16.7
MAB [ppb] 344 797 36.6 382 144 148 300 348
RMSE [ppb] 524 1054 582 60.8 224 23.1 473 535
Pearson-R [1] 0.64 0.66 0.75 072 085 084 077 0.75

all MB [ppb] 03 270 -220 -248 -91 -100 -164 -16.2
MAB [ppb] 272 529 305 321 139 142 254 286
RMSE [ppb] 437 814 505 53.0 21.1 216 413 462
Pearson-R [1] 0.71 0.67 0.76 0.74 086 0.86 0.79 0.77

Monteiro et al. (2024) tried to find some better metrics to decide which observations
to include in atmospheric inversions for emissions estimation. They used data from the
non-growing season and identified a wind velocity criterion of > 5ms~!. We now filter our
data by situations, where the simulated wind velocity exceeds Sms™! and see the results
for the same analysis in Tables A.12 and A.13. We can see that this criterion significantly
reduced the MAB for all phases of PBL development. Indeed, the MAB values now mostly
depend on station type and not PBL development phase. This is because at winds of Sms™!,
the atmosphere is well-mixed without a clearly defined mixing height. However, we also
see that the correlations at nighttime are still lower than correlations at stable conditions or
in transitions. This indicates that the nighttime CO, concentrations even for this subset of
measurements are still not as well-represented as CO; concentrations in other times. Using

our data we can more clearly separate these effects and confirm this well-known result.

Vertical Gradient

Now we can have a closer look at the individual inlets. Figure 3.14 gives an overview of the
simulation performance at each individual inlet over inlet height above ground level. We
compute the vertical gradient as the concentration difference between the two consecutive

available heights divided by the distance between these inlets in meters. These concentration
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Figure 3.14: Mean biases (MBs) and mean absolute biases (MABs) of the MYJ simulation for both
CO; and CO over all available inlet heights. This is a visualization of Table A.10. The
increasing performance with increasing inlet height is clearly visible, as are the outliers,
IPR and the lowest HUN inlet.
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gradients are then assigned to the mid-point between these two inlets. The resulting gradients

are to be found in Fig. 3.15.

As we can see in Fig. 3.15, vertical gradients are higher at low levels and then decrease
with height. Looking at the deviations of CO» in Fig. 3.15, some station outliers, namely
the stations IPR, BRM and HUN, are visible. As stated above, the IPR station (Ispra) is
in a topographically and emissions-wise challenging spot at our simulation resolutions.
Similarly, the BRM station (Beromiinster) is located at the northern border of the Alps in
Switzerland, 20 km to the North-West of Lucerne and 30 km to the South-West of Zurich.
While it is also situated in close proximity to complex topography, the reason for the CO,
concentration overestimation at the lowest inlet causing this gradient mismatch is probably
the proximity to the A-2, the Gotthard-Highway. This highway is one of the most used ones
in Switzerland and the 5 km resolution of our simulation causes the regridding to push some
of the emissions into surrounding grid cells. Lastly, the HUN station (Hegyhdtsdl) is located
in the Hungarian countryside. Here, the simulation performance could be affected by the
VPRM misestimating biogenic fluxes due to the flux tower coverage over Eastern Europe
in general and Hungary in particular being sparse. The only notable source of CO; in its
vicinity is the trans-European E65 highway which it is located only 500 m away. Another
reason for the gradient underestimation in our simulations, thus, may be the smoothing out

of the E65 highway’s emissions to the whole 15 km grid cell.

The general trend of vertical gradient deviations, however, hints at a systematic under-
estimation of the vertical gradient at lower elevations. This correlates with proximity to
emissions in some cases, like KIT and SAC. However, also stations like NOR and HTM which
we classified as remote see this underestimation of gradient. Looking at Fig. 3.14, we do
not see a clear trend in biases between the stations seeing this underestimation. While
stations like KIT, SAC, and NOR have negative biases, other stations like HTM or TRN see slight
positive biases. This leads to the conclusion that this underestimation may be caused by a

misestimation of the vertical diffusion coefficients in WRF.

3.4.5 Evaluation of Realism

The dataset produced is unique in terms of time period and area covered and is of high interest
for many synthetic studies with various applications, which is why we want to evaluate its
realism. We do this by looking at two main aspects. First, we analyze the features of our
simulated data and check whether they are similar to ones of the measured data. In the
second part, we check whether the simulated data is within known year-to-year variability.

In this section, we do not directly compare with measurements as in the previous section.
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Figure 3.15: Simulated and measured vertical gradients and their deviation for the MYJ simulation

of both, CO, and CO. Simulation and measurement are plotted over inlet height above
ground while deviations are plotted over inlet height above sea level. For CO;, this
clearly shows the BRM station outlier as well as IPR and HUN. A general underestimation
of vertical gradient is seen for lower station heights. Vertical gradients are captured well
for CO except for IPR and SAC.
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Figure 3.16: Power spectrum of average CO; concentration time series. Clearly visible are two main
features, the seemingly regular peaks and the increasing deviation of the tail.

CO, Concentration Time Series

Our aim in assessing the realism of the CO, concentration time series is to take a step
back from looking at whether the exact plume which passed over our measurement stations
also passes over it at the exactly correct time in the simulations; rather we want to know
whether, for example, these kinds of plumes come at similar intervals in our simulations
as in measurements. This is why we use a power spectrum analysis for looking at the CO,

concentration time series.

Due to the large amount of atmospheric noise on our data, we estimate the power spectral
density of the averaged CO, time series using Welch’s method (Welch, 1967). Figure 3.16,
shows the spectrum which is cut off at 2 h, consistent with the Nyquist frequency of an hourly
dataset. Additionally, there are some regular peaks clearly visible in the spectrum and we

observe a deviation from the measured spectrum which is increasing at higher frequencies.

These peaks, which are present in the simulated and measured data, occur at 23.68, 12,
8.03, 6, 4.8, 4, 3.4, and 3 h. While some deviations from integer values like 8.03 and 23.68 h
are probably due to the fast Fourier transform (FFT) grid not including an integer 24 h
frequency, there are some that are not dividers of the base frequencies 24 h (diurnal cycle)
like 4.8 and 3.4 h. We now reconstruct the signal of these peaks by doing an inverse FFT.
However, since Welch’s method does not have an inverse, we use these frequencies from
Welch’s method to find the closest ones in a standard FFT (where we find an additional peak
at 2.7 h), extract the values of the peaks (including a buffer) and do an inverse FFT. Because

of the noise on the measurements, it is not possible to extract all simulated peaks from their
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Figure 3.17: Visualization of the reconstructed signals from both VPRM models (MYJ configuration)
and the trend-corrected diurnal cycle from measurements. Here, as already highlighted
in Section 3.4.3, the VPRM v2 performs overall slightly better than VPRM v1, more
accurately matching the diurnal cycle amplitude especially during summer.

spectrum. We, thus, compute the diurnal cycle of the time series corrected by a weekly
rolling average trend. Figure 3.17 shows the diurnal cycle of the signals reconstructed from
the sampled frequencies and the one computed from the measurements. We can clearly see
the diurnal cycle amplitude increasing over the year and also its shift while some residual
from the non-optimal biogenic model remains. This shows that our simulations realistically
model the diurnal cycle but also hints at further development of the biogenic model being a
fruitful avenue of progress.

The next feature we are going to analyze is the deviation in the tails between the simulated
and measured spectra. This deviation is reminiscent of the spectral analysis of the kinetic
energy in Skamarock (2004). In order to test the theory that the deviation-point is dependent
on the resolution, we sample all stations within our 1km domain also in the 5km one.
This 5 km domain has not only a coarser resolution, it also has a larger timestep than the 1 km
one. Figure 3.18 shows a comparison between the spectra of the two simulation resolutions.
While we do see the 1 km simulation performing better at timescales between 24 and 2.5 h,
the 5 km simulation does not produce the same deviation at high frequencies as the 1 km one.
As the 1 km resolution is part of the so-called gray zone of turbulence, the lower performance
at higher frequencies may be due to a partial resolution of convection (Han and Hong, 2018;
Honnert et al., 2020; Shi and Wang, 2022). This could produce high-frequency structures

omitted by the 5 km resolution simulation.
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Figure 3.18: Comparison of power spectra of 1 and 5 km simulations and measurements. The 1 km
simulation shows higher performance between 24 and 2.5 h. Its deviation below 2.5h
could be caused by partial resolution of convection.

CO, Seasonal Cycle

Next, we analyze the seasonal cycle of our simulated CO, concentration timeseries. Fol-
lowing Thoning et al. (1989), we calculate daily averages in order to filter out diurnal
variations. However, since our stations are not background stations like Mauna Loa, we
forgo further filtering of the data. We then use the following function to extract the seasonal

cycle amplitude:
COy(t)=a-cos(b-t+c)+d-t+e. 3.1)

It models the seasonal cycle as a cosine and adds a linear CO; increase over the whole
year. We call the parameter a the seasonal cycle amplitude (even though it only is half the

amplitude).

The daily averages of the simulated and measured CO, concentrations can be found
in Figs. A.10 to A.15. Here, the daily averages of the simulated CO, concentrations are
displayed in solid blue and the daily averages of the measured CO; concentrations in solid
black. The dashed lines in the same colors are the fits of the respective concentrations with
the function of Eq. (3.1). The amplitudes of the simulated timeseries are then subtracted from
the ones of the measured timeseries. This deviation of the amplitude parameter is displayed
in Fig. 3.19.
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Figure 3.19: Deviation of simulated seasonal cycle amplitude fit parameter from measured one.
Calculated as agjy, — @meqs- The stations IPR and HUN are clear outliers. The general
overestimation of the seasonal cycle amplitude could be caused by the heat wave in
2018 (Ramonet et al., 2020; Zscheischler and Fischer, 2020).

Except for the station IPR, where our simulations underestimate the seasonal cycle am-
plitude, there is a general tendency toward overestimation. The seasonal cycle amplitude
of 10.7 ppm averaged across all inlets is underestimated by our simulations by 1.6 ppm. A
likely source of this bias in amplitude is the heat wave of 2018 (Zscheischler and Fischer,
2020), which Ramonet et al. (2020) have shown reduced the seasonal cycle of CO, over
Central Europe by 1.4 + 0.5 ppm. This suggests that the overestimation of CO, concentration
seasonal cycle in our model may stem from the VPRM model and especially its respiration

function not performing well in extreme situations.

In order to gauge how realistic our simulations of 2018 are, we do this fit procedure for all
years with at least half data each month for each available inlet of the VPRM v1 dataset using
the MYJ configuration. We then assume a Gaussian distribution for each of these parameters
and check how well the 2018 parameters of our simulations fit to this distribution. To that

end, we do a simple two-sided p-value calculation and select 5 % as significance criterion:

ix = (parx,sim - .u(parx,meas,ﬁ2018))/G(parx,meas,ﬁZOIS)
px=2-(1—CDF(z))

with par, s, the parameter fitted to simulated data to compare, pary meas,~2018 the same

parameters fitted to measured data for all years but 2018 with y and o its mean and standard
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deviation. Furthermore, CDF is the cumulative distribution function of the normed normal
distribution.

We find that the p-value meets the significance criterion at 20 of 52 inlets (p >= 0.05,
“realistic”’), while it falls short at 32 of 52 inlets (p < 0.05, “unrealistic”). Stratifying this by
station type, we find the simulation to be “realistic” at all 7 urban inlets, while this is only the
case at 12 of 36 rural and 1 of 9 remote inlets. We can explain this by the larger biospheric
signal seen at the rural and remote inlets compared to the urban ones (cf. Section 3.4.3). One
further confounding factor is the year 2018 being a particularly extreme climatic year in
central Europe with a large heat wave (Zscheischler and Fischer, 2020). In order to assess
how extreme this year was, we calculate the p-value of the 2018 measurements compared to
all other years. Here, we find that even for the measured data seven rural inlets fall short of
the significance criterion and are deemed “unrealistic”. This indicates that this year was a

particularly difficult year to model for a relatively simple biospheric model like VPRM.

3.5 Data Access

As of writing of this thesis, the MACRO-2018 dataset has been published on the Wold Data
Center for Climate (WDCC) under Pilz et al. (2025a). There, a post-processed version is avail-
able as a part of WDCC under 10.26050/WDCC/MACRO-2018. The raw data are also avail-
able on WDCC under https://www.wdc-climate.de/ui/entry 7acronym=DKRZ_LTA_1170_dsg0001.
A second post-processed version is available in the DKRZ-provided S3 bucket under the
Endpoint URL https://s3.eu-dkrz-1.dkrz.cloud/ and path s3://bb1170/public/MACR0-2018/.

It can be easily accessed using the python packages xarray and zarr as seen in Fig. 3.20.

3.6 Comparison to Literature

Next, we compare the performance of the MACRO-2018 dataset to studies published be-
tween 2012 and 2025. Since, however, few previous studies simulated CO, and CO con-
centrations with a comparable setup for a comparable length of time, we have to adjust
some metrics or time periods we calculate our statistics over. We also try to find the closest
comparison in station types to the stations the other studies evaluated their data at. For better
readability, and because of the not well-understood deviation of YSU from measurements at
the lowest SAC inlet, we only compare the MYJ configuration of MACRO-2018.

Ganshin et al. (2012) use a setup coupling the LPDM FLEXPART with the Eulerian model
National Institute for Environmental Studies Japan Transport Model (NIES-TM). They
compare at four stations over different time periods all over one year with three different

model setups. We compare our results only with the best-performing, 1 km flux resolution
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Figure 3.20: Access to MACRO-2018 dataset on S3 at DKRZ using python. Necessary dependencies
for this are xarray, zarr, and s3fs.

coupled setup. Comparing Fig. 2 from Ganshin et al. (2012) (which is created from only
daytime data) to our Fig. 3.10 (which includes all PBL development phases), the standard
deviations clearly match better in our data. Using only daytime measurements, Ganshin et al.
(2012) find correlations of around 0.69 to 0.74 while the MACRO-2018 dataset exhibits
correlations over all investigated Obspack inlets during stable PBL phases of 0.81 to 0.94.

Nehrkorn et al. (2013) simulate CO; using WRF-Chem over Salt-Lake City, Utah at 1.3 km
resolution for October 2006. They find mean biases of —16.07 ppm to —13.3 ppm and RMSEs
of 27.3 ppm to 34.1 ppm. Trying to make the comparison as similar as possible, we select
the urban stations for October 2018. Here, the MACRO-2018 dataset has biases of —4.5 ppm
to 3.2 ppm (average: —1.1 ppm) and an RMSEs of 4.1 ppm to 12.7 ppm (average: 9.6 ppm).

Bréon et al. (2015) use the Chimere transport model (Menut et al., 2013) to simulate
CO; concentrations at 2 km resolution. Their study region is the greater Paris area and
includes the 180 m inlet of the TRN station, which is also available in the Obspack dataset.
They report a bias of —2.8 ppm and a correlation of 0.81 for the period of November 27% to
December 27™ 2010. Comparatively, for the same period in 2018, we find a bias of 1.8 ppm
and a correlation of 0.80 at the same inlet.

Boon et al. (2016) also use the Chimere model to simulate CO, concentrations in the vicin-
ity of London at 2 km resolution. Unfortunately, they do not compare at Obspack stations.
However, three of their stations are urban and one is rural. They calculate the aggregated
statistics for the stable PBL development phase from July to September 2012. We select the
same PBL development phase and months to get the best possible comparison. For the urban
stations, while Boon et al. (2016) find mean biases and RMSEs of —9.1 ppm to —5.5 ppm
and 9.0 ppm to 11.7 ppm, we find biases of —2.2 ppm to 1.4 ppm (average: —0.5 ppm) and
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RMSE values of 3.0 ppm to 6.5 ppm (average: 5.6 ppm). For their rural station, they find
a mean bias of —=5.3 ppm and a RMSE of 8.4 ppm. The MACRO-2018 dataset has mean
biases of —1.0 ppm to 1.0 ppm (average: 0.0 ppm) and RMSEs of 2.4 ppm to 6.2 ppm (aver-
age: 3.7 ppm).

Feng et al. (2016) use WRF-Chem in four different configurations at resolutions of 1.3 km
to 4km. They compare the forward simulated CO, concentrations to the ones measured
during the CalNex-LA campaign from mid-May to mid-June 2010. Both of the sites they
compare their simulations against can be classified as urban, as they are in Los Angeles
and very close to the city respectively. They compare the stable PBL phase measurements
to their simulations and, for hourly concentrations, get biases of —1.38 ppm to 8.91 ppm
(average: 4.5 ppm) and RMSEs of 9.13 ppm to 19.64 ppm (average: 13.7 ppm). Looking at
stable PBL phase measurements between 15 of May and 15" of June, the MACRO-2018
dataset exhibits biases of —2.5 ppm to 0.1 ppm (average: —1.7 ppm) and RMSEs of 7.8 ppm
to 8.9 ppm (average: 8.6 ppm).

Another study investigating CO, dispersion in Europe is Lian et al. (2021). They use
WRF-Chem v3.9.1 centered over Paris for the time period December 2015 to November 2016.
Lian et al. (2021) simulate CO; using the Institute of Energy Economics and the Rational
Use of Energy, University of Stuttgart (IER) and AirParif inventories (at 5x Skma 1x 1 km
for the Ile de France region) at 1 km resolution. Their physics configuration also uses the
BEP urban parametrization and the MYJ PBL scheme. The inlets they evaluate their CO,
concentration at include two SAC inlets that are also in our Obspack data. While they find
RMSE values of 10.23 and 7.64 ppm for the 15 m and 100 m Saclay inlets, the MACRO-2018
dataset has RMSEs of 9.76 and 6.42 ppm. As for Pearson correlation coefficients, our dataset
has coefficients of 0.76 and 0.84 versus coefficients of 0.72 and 0.74 in Lian et al. (2021).

The most recent paper on CO, concentration simulation is Bisht et al. (2025). They simu-
late CO; concentrations over Japan at up to 1 km resolution using WRF-GHG v4.2.1, the
EDGAR inventory for anthropogenic, and VPRM for biogenic emissions. These simulations
are compared with one continuous monitoring site for February 2018 and February 2020 and
two additional ones for May 2018. However, for these comparisons, the only aggregate statis-
tical metric they report is the Pearson correlation coefficient, which is a shortfall in reporting
quality even compared to papers over ten years old. Nevertheless, for February 2018, they
find a correlation of 0.38 and one of 0.66 for the 1 and 27 km domains while the correlations
for the February 2020 simulations are 0.66 and 0.74. For May 2018, the correlations at the
Kisai, Mt. Dodaira and Yoyogi stations are 0.38 to 0.47, 0.22 to 0.29, and 0.20 to 0.25 for
different emissions inventories. Since the Kisai and Yoyogi stations are located within the
greater Tokyo area, we compare them with our urban stations. The Mt. Dodaira station is

located on a mountain in the vicinity of Tokyo and thus be compared to our rural stations.
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For February 2018, our simulations exhibit correlations of 0.63 to 0.84 (average: 0.71) for
urban stations. For May 2018, the correlations for rural stations like their Mt. Dodaira station
are 0.44 to 0.82 (average: 0.62) and for urban ones 0.49 to 0.71 (average: 0.62).

Finally, the study which is the closest to our setup is Wang et al. (2025) (preprint at time
of writing). They simulate CO; dispersion over Belgium and surrounding regions at 3 km
resolution between 1% of June and 31% of August 2018 and compare their simulations to
ICOS stations which are part of Obspack. Their physics setup is based on Kuik et al. (2016)
with BEP as urban parametrization and YSU as PBL scheme. We compare the MACRO-2018
dataset to their results at the inlets which we both evaluated in Table 3.5. They simulate
multiple emissions inventories, CAMS, EDGAR, and TNO, however without any vertical
distribution of emissions. Our simulation performance is on par with or exceeds all of these
inventories with regards to RMSE and correlation. They also present simulations assuming
all emissions are from point sources and distributed them vertically based on plume rise
models of Brunner et al. (2019) (CAMS_P, EDGAR_P). Compared to these unrealistic
inventories, MACRO-2018 performance is exceeded at the lower inlets of KIT, an urban
station. However, our performance is higher at the other inlets. Overall, as evidenced by
the higher performance at the more rural stations, one major contributor to our simulation
performance is the comparatively good biogenic emissions model. However, as also pointed
out by Wang et al. (2025), the extreme weather conditions in 2018 could show limitations
in performance of the relatively simple respiration model in VPRM. This is also suggested
by the general overestimation of the seasonal cycle in our simulations which fits findings
by Ramonet et al. (2020), as presented in Section 3.4.5. This, in conjunction with the
higher summer daytime performance of VPRM v2, suggests that there is large potential for
developments in the biogenic model. Wang et al. (2025) attribute the large performance
differences between the inventories at KIT to an oil refinery at a distance of 6.5km. If
this is correct, the comparatively lower performance of the MACRO-2018 dataset to the
artificial inventories could be caused by the emissions time factors not being accurate for

this particular point source.
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Table 3.5: Comparison of RMSE and correlation values for simulation of CO, concentrations during June to August 2018, following the analysis by Wang

et al. (2025). The best performing simulation for each inlet height is highlighted in grey.

RMSE Pearson-R
CAMS_P CAMS_S EDGAR_P EDGAR_S TNO MACRO-2018 CAMS_P CAMS_S EDGAR_P EDGAR_S TNO MACRO-2018
KIT_30m 15.3 38.7 15.2 57.4 26.6 17.7 0.79 0.57 0.78 0.53 0.65 0.77
KIT_60m 12.0 22.0 11.8 30.6 17.6 13.7 0.78 0.65 0.78 0.61 0.71 0.74
KIT_100m 10.6 15.0 10.3 19.0 13.3 11.1 0.74 0.63 0.75 0.59 0.70 0.71
KIT_200m 9.9 10.8 9.9 11.3 10.6 9.5 0.63 0.57 0.63 0.56 0.59 0.62
TRN_50m 10.0 10.0 10.1 10.1 10.1 9.3 0.62 0.62 0.63 0.63 0.62 0.63
TRN_100m 8.3 8.3 8.3 8.3 8.3 7.7 0.56 0.56 0.56 0.57 0.56 0.55
TRN_180m 7.0 7.0 7.0 7.0 7.0 6.2 0.44 0.45 0.45 0.45 0.45 0.49
SAC_60m 7.7 7.6 7.8 7.7 7.8 7.2 0.69 0.70 0.69 0.70 0.71 0.74
SAC_100m 7.5 7.5 7.5 7.6 7.5 6.6 0.62 0.63 0.63 0.63 0.64 0.71
OPE_50m 9.5 9.5 9.6 9.6 9.6 7.4 0.46 0.47 0.46 0.47 0.47 0.57
OPE_120m 6.9 6.8 6.9 6.8 6.8 5.5 0.46 0.47 0.46 0.47 0.47 0.56
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3.7 Discussion

In this chapter, we have presented MACRO-2018, a unique dataset containing meteorology
as well as CO; and CO concentrations at 1 km resolution over German metropolitan areas,
which provides an extensive simulation period of one year and a large spatial extent across
Central Europe. It, furthermore, includes two separate physics configurations and two
different biogenic models which enables atmospheric and biogenic model performance
investigations. We have evaluated its performance against high-precision CO, and CO
concentration measurements from Obspack datasets (ICOS RI et al., 2024; Schuldt et al.,
2025).

Both the MYJ and YSU physics configurations demonstrate similar performances with
the largest differences at SAC station. Overall, the dataset performance in CO, MAB (using
VPRM v1) is 5.1 ppm for MYJ and 5.2 ppm for YSU. For CO, the MABs are 25.4 and
28.6 ppb for MYJ and YSU. The biogenic emissions we use are modeled using VPRM and are
available in two versions which use different satellite data products and parameters (Marshall,
2022; Glauch et al., 2025). Due to the large simulation domain and long time period,
MACRO-2018 presents a unique opportunity to validate the developments in VPRM v2.
Here, we show a lower performance during night time which hints at too large respiratory
fluxes, however a high performance in the summer months at daytime. This comparison of
forward modeled concentrations over such a long timeframe at nearly continental scale is

unique and our results are actively supporting the further development of VPRM.

In order to make our evaluation more robust, we have categorized the stations of the
Obspack dataset into ‘urban’, ‘rural’, and ‘remote’ based on their exposure to anthropogenic
CO, concentrations. We show that performance at urban stations is lower than at rural ones
due to the more difficult meterological situation and the higher heterogeneity in emissions.
As such, while remote stations usually exhibit MABs for CO; of 3.2 ppm to 3.8 ppm, urban
stations’ CO,; MABs range from 5.2 ppm to 8.2 ppm for the MYJ configuration.

To enable robust performance evaluation, we have developed a coherent meteorological
definition of diurnal PBL stability phases based on PBL height gradients. This definition has
the potential to improve measurement data filtering, increasing the amount of data available
for applications like emissions estimations. We show that when applying this definition, the
performance of the MACRO-2018 dataset for CO, behaves as expected, depending on both
PBL stability phase (best at stable conditions, worst at night) and station type (best at remote
and worst at urban stations). For CO, however, the dependency on PBL stability phase and
station type is less pronounced due to lower amount of measurements and CO in general

having a less clear diurnal cycle in emissions.
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We have also evaluated the realism of the dataset. To that end, we have investigated the
Fourier transform of the CO; concentration time series and the seasonal cycle. We show that
our simulated concentrations exhibit the most important features of the Fourier transform
of the measured ones. Here, the 1 km resolution matches the measurements more closely
for sub-daily to 2.5-hourly frequencies than the 5km resolution. Furthermore, we have
found that the dataset reproduces a realistic seasonal cycle at the urban stations compared to

previous years.

These results have to be seen in the context of the very challenging meteorological
situation of the year 2018. Especially the biospheric development was significantly impacted
by the large heat wave across the whole year (Zscheischler and Fischer, 2020). This is a
difficult situation for the VPRM models as they were not developed for extreme conditions.
Improvements in construction of the model can help here. Promising avenues are a more
realistic, non-linear, respiration function (Niu et al., 2024) and spatially disaggregated
parameters for land use classes. The latter ones are important as, at the moment, land
use classes like ‘grassland’ or ‘cropland’ are treated the same over all of Europe, even
though they might contain widely varying species of plants depending on their geographical
location, exhibiting different characteristics. The data generated in MACRO-2018 are

actively supporting these developments.

Finally, we compare our simulated CO, and CO concentrations against previous studies.
Here, we find the performance of our dataset to match or exceed all presented results. This
shows that it is a valuable asset for the scientific community and is ready to be used for
different applications. Forms in which it is already being used are the comparison with
high-precision measurements by ICOS station staff, preparatory studies for satellite mission
planning, and investigations of urban emissions monitoring systems. These investigations
include observing system simulation experiments (OSSEs) and the analysis of long-path

dual-comb spectrometer measurements over urban areas.

In conclusion, the MACRO-2018 dataset created in this thesis is a high-resolution, high-
fidelity, and realistic dataset whose performance is similar to or better than all comparable
previous forward modeled CO, concentration results we were able to find. It delivers two full
simulation runs of different physics configurations including two different biogenic models
each, creating a mini-ensemble. This ensemble not only supports the development of the
biogenic models but also enables a first-order estimate of model and transport uncertainties.
While there are some discrepancies to measurements, these behave mostly as expected. Possi-
ble sources of these deviations include atmospheric transport (IPR, JFJ), errors in emissions
inventories (VPRM vl vs. v2) and even completely neglected sources of CO, emissions like

human respiration, which can contribute about 7 % to 18 % in urban areas (Stagakis et al.,
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2023; Droge et al., 2024). These shortcomings in the inventories can be resolved to some

degree by conducting a data assimilation, which is the topic of the next chapter.
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The previous chapter presented the MACRO-2018 dataset and its genesis. This chapter
focuses on the optimization of a CO, emissions estimate for Berlin. We base this analysis on
aircraft measurements which were performed in the context of the Urban Climates Under
Change ([UC]?) campaign around Berlin in 2018, published in Scherer et al. (2019) and
Klausner et al. (2020). Since aircraft can cover large areas in a short amount of time,
this data provides valuable insights into urban boundary layer meteorology and trace gas
dispersion. Given its high cost of generation, it is crucial to analyze it as thoroughly as
possible. We do this by integrating it into a Bayesian inversion framework combining
traditional emissions estimation with a background estimation. The Bayesian inversion is
driven by the meteorology of MACRO-2018 and by its forward modeled concentration data
which is used as a prior background estimate. We compare the emissions estimate from
this Bayesian inversion to a simpler mass balance approach. In Section 4.1, we present the
methodology of the two different emissions estimation approaches under comparison, mass
balance and Bayesian inversion. Continuing, in Section 4.2, we present the measurement data
and resulting mass balance emissions estimate. We then introduce our Bayesian inversion
framework in Section 4.3. Next, in Section 4.4 we compare simulated to measured data,
explain the setup of our Bayesian inversion and present its results. In Section 4.5, we end

with discussing outcomes and differences between the estimation approaches.

4.1 Background and Methods

This section will present both, the mass balance approach to emissions estimation as well
as the Bayesian inversion approach. We start with discussing the theory and assumptions
behind mass balance following Klausner et al. (2020). Then we dive into the theoretical basis
of the Bayesian inversion based on Rodgers (2000). Finally, we will discuss FLEXPART,

the Lagrangian particle dispersion model driving our Bayesian inversions.

4.1.1 Mass Balance

The mass balance approach to emissions estimation, fundamentally, is derived from conser-

vation of mass. It uses inflow and outflow measurements over an area in order to determine
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a change in concentration of the same air mass. This change is then attributed to the flux
within the area between the measurements. In urban areas, the influence of biospheric fluxes
is expected to be small in comparison to anthropogenic emissions (in our case approx. 10 %).
Thus, while we will use the term ‘emissions’ in the following, we mean CO; fluxes which
also include a small biospheric component.

The mass balance method as used in Klausner et al. (2020) tries to capture the concentra-
tions within the urban plume. The concept and physics of the urban plume were presented
in Section 2.1.1. The method estimates emissions by measuring the flow of trace gas en-
hancements through a plane normal to the prevailing winds. This plane is vertically bounded
by the UBL height, since its entrainment layer at the top restricts vertical GHG transport.
Therefore, only measurements during phases where a well-defined mixing layer spans the
whole UBL up to the entrainment layer can be used. Aircraft-based methods determine these
enhancements by flying upwind and downwind transects from the target and comparing the
respective concentrations.

The flux (in mass per time) through said normal plane is computed as:

f= /OPBL dz/: dx(c(x,z) — cpek(%,2)) M -u(x,z)

p(x,z
T(x,2) R
with (a,b) being the horizontal extent of the plume, ¢,k the (background) concentrations,
p the pressure, 7' the temperature, R the ideal gas constant, M the molar mass, and u the
component of the horizontal wind velocity perpendicular to the normal plane.

This approach assumes a static meteorological system with a well-defined mixing layer
extending the UBL for several hours before and after the flight. This significantly reduces
the number of useable meteorological situations and introduces large uncertainties in the esti-
mated emissions. The largest contributions to this uncertainty are the variation in background,

wind velocity and direction, and PBL height.

4.1.2 Bayesian Inversion

Bayesian inversions are a fundamental tool in atmospheric science. They enable the estima-
tion of parameters of a linear system from observational data under the consideration of prior
knowledge and uncertainties.

The system under investigation looks like this:
y=F(x)+e¢ 4.1)

with y being the measurements of the system F at state x with measurement error €. Here,

F is also called the forward model. Our objective is to estimate the system state x using
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information we gain from measurements y. This requires inverting Eq. (4.1), which we do
using Bayes’ theorem. The following description of how Bayesian inversions work is based
on Rodgers (2000).

Bayes’ theorem, which is the basis for this approach, reads:

P(ylx) P(x)

Pl = =0

4.2)
What we are interested in is the posterior probability density function (PDF) P(x|y), the
probability of system state x given measurements y. In order to find this, we update our prior
knowledge expressed in the prior PDF P(x) with the information gained from measurements.
The PDF P(y|x) describes the probability to obtain observations y given system state x.
Finally, P(y) is the PDF of the measurements y and is usually disregarded as it is just a
normalizing factor.

More explicitly, assuming a linear forward model, we obtain:
y=F(x)+e=Kx+e. (4.3)

Assuming Gaussian PDFs and using the forward model to obtain the most likely observation

given a certain state, we get
—2InP(ylx) = (y—Kx)'S, 7 (y = Kx) +¢1 (4.4)

with the covariance matrix of the model-measurement part S, (also called model-data
mismatch covariance matrix). We construct P(x) as a Gaussian distribution centered around

our prior assumption x,
—2InP(x) = (x—x)"Sa (x —xa) + 2 (4.5)

with x, the a priori value of the system state and S, the prior covariance matrix.
We now substitute Eqgs. (4.4) and (4.5) in Eq. (4.2) to find

J(x,y) = _21nP(x|y) = (y - KX)TSe_l (y - K)C) + (x_xa)TSa_l (x _xa) +c3. (4.6)

This equation J is central to the implementation of this approach, as it is the cost function of
our problem, meaning that minimizing J maximizes P(x|y). Varying states x while keeping
measurements y constant until J is minimal now yields exactly what we were looking for,
which is the most probable state x given measurements y.

This most probable state given the measurements is called the posterior and is denoted

by £. However, the formal solution to the Bayesian problem is the complete PDF P(x|y) of
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which £ is only the expected value. As such, it is associated with the so-called posterior

covariance S via

—2InP(xy) = (x— )78 (x—%). 4.7)

Equating linear and quadratic terms of Eqs. (4.6) and (4.7) and following the derivation in

Rodgers (2000) yields us the following form for the posterior and its covariance:

= X0 —{—SaKT(KSaKT +Se)_1(y - K)CO)
S=K’'S, 'K+S,7".

Since the covariance matrices are quite central to Bayesian inversions, we discuss them in

the following section.

Covariance Matrix

In general, the covariance is a measure of joint variability of two random variables. For the

variables X and Y, is defined as
Cov(X,Y) =E[(X —E[X])(Y —E[Y])]

with E[.] being the expected value operator. It is closely related to the Pearson correlation

coefficient, which is essentially a normalized version of the covariance
Cov(X,Y)
C X,Y)=————
orrXY) = a0 st ()
= Cov(X,Y)=Corr(X,Y)-Std(X)-Std(Y)
= Px,y - Ox - Oy.

In our case, where the random variables are vector elements, the covariance is a matrix which

is defined as

Sij = 0 Pij Oj
or

o 0p0 1 po,
S=|owo1 o} ©po1 1

with © being the element-wise multiplication operator.
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These uncertainties are important because they determine how strongly the posterior is
driven by measurements and prior information. While they are central to Bayesian inversions,
they can be difficult to obtain directly from a priori information. In practice, while parts of the
model-data mismatch covariance can be derived from measurement statistics, estimating the
prior covariance from data is rarely possible. Therefore, the prior covariance is often defined
by operator’s choice or selected to balance inversion stability and physical interpretability of

the results.

Evaluation

One of the important points to analyze regarding the performance of our inversion is the
construction of our state space. There are two important concepts which help with its
evaluation, the gain matrix and the averaging kernel matrix. These concepts are sometimes
known under different names, as the gain matrix is sometimes also called the ‘generalized
inverse of K’ and the averaging kernel matrix has names ranging from ‘model resolution
matrix’ to ‘resolving kernel’ (Rodgers, 2000).

The derivation of these concepts is performed in Rodgers (2000) with their respective

definitions being
G=(K'S;'K+S,') 'K’S;"
A =GK.

These concepts are interesting to us as they allow us to formulate versions of the posterior

state vector like

X0+G(y—K)C()) (4.8)
(1—A)xo+Gy. (4.9)

X

This shows that the gain matrix describes the influence of the measurements on our posterior.
In order to gain a better understanding for the averaging kernel, we can substitute y =
K)Ctrue +€in Eq. (49)

£= Axyue + (1 — A)xo + Ge. (4.10)

The averaging kernel matrix, thus, describes the posterior’s distance between the prior and
the true state. The gain matrix has a more descriptive function and there is no obvious form
to optimize for. However, the influence the measurements have on the posterior should be

realistic. In contrast, there is a clear ideal averaging kernel matrix, which would be an identity
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matrix. This would mean that the estimated state is as close to the true state as is possible
considering the measurement error and forward model construction. Large off-diagonal
elements, however, indicate interdependencies between the state vector elements and hint at
possible improvements in state vector construction. If these off-diagonal elements exceed
the bounds of negative and positive one, the simulation is considered not to be physically
sensible.

Another metric being used to assess inversion performance is the error reduction. It
quantifies how the posterior uncertainties compare to the prior ones and is defined for each

state vector element as:

Err. Red.; = (\/Sai — \/Se.ii)/ /Saiii -

An issue with this metric is that it can be arbitrarily inflated by choosing larger prior
uncertainties. However, if the uncertainties are chosen in a well-founded and considerate
way, the metric illustrates how much more informed the state vector estimate has become
due to the measurements being assimilated.

Until now, we have derived the general Bayesian inversion of a linear model. Applying
this to a traditional investigation of GHG emissions, excluding background corrections, the

individual terms would be:

X — emissions

y — measured enhancements

K — matrix containing footprints (sensitivity of emissions x to measurements y)
S, — prior covariance matrix (covariance of emissions)
S. — model-data mismatch covariance matrix (combined covariance of

modeled concentrations and measurements).

However, in Section 4.3 we extend this for our specific use case.

4.1.3 FLEXPART

We now present the Lagrangian particle dispersion model (LPDM) we use to linearize the
forward model in our Bayesian inversion framework. Our LPDM is called FLEXPART-
WREF (Brioude et al., 2013). It is an adaptation of the Flexible Particle dispersion model
(FLEXPART; Pisso et al., 2019) which is able to ingest WRF meteorology. This is of

great advantage, as our WRF meteorology is of much higher resolution than the ERAS
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meteorology, which would be used instead. LPDMs in general have been extensively used
to study transport processes in the atmosphere. These studies range from investigating
radionuclide fallout in the context of emergency response systems (Stohl et al., 2012; Arnold
et al., 2013) over short- and long-range pollutant transport (Bahreini et al., 2009; Cooper
et al., 2010) to determining flux footprints of measurement stations (Flesch et al., 1995; all
as cited in Brioude et al., 2013).

As the name suggests, LPDMs are Lagrangian models, meaning they stochastically
simulate the advection of individual tracer particles through an Eulerian meteorology instead
of computing Eulerian concentration fields. However, they are constructed to be consistent
with Eulerian transport probability density functions. This focus on individual particles
makes them very well suited for investigating individual point events. These events could
be emissions from sources like power stacks or measurements from receptors like in-situ
concentration sensors or aircraft.

The capability to investigate not only sources but also receptors stems from the fact that
LPDM in general as well as FLEXPART in particular can integrate the advection of these
particles not only forwards but also backwards in time. This means we can spawn pseudo-
particles associated with certain substance masses at the measurement times and locations
(receptors), integrate their transport backwards with the provided meteorological fields and
study their origin. In order to better sample the particles’ distribution, it is also possible to
increase the number of pseudo-particles.

The sensitivities FLEXPART returns are volumetric data on the whole emissions grid.
This data is a function of the residence time of the particles in the specific cells which uses a
unit akin to ppm/(mol/km?/h), so concentration per emission. Multiplying these so-called
footprints with the emissions fields then yields the enhancement in ppm caused by the
emissions at the specified receptor and to the specified time we spawned our particles at.

However, in order to get a footprint for the whole measurement, one would have to
theoretically integrate the meteorology backwards ad infinitum. This means there is always
a residual of the concentration contribution from before the end point of the backwards
integration, which has to be treated. We call this contribution the ‘background’. We present
the concrete implementation of the Bayesian inversion framework and how we leverage the
forward modeled concentrations from the MACRO-2018 dataset in order to constrain this

background in Section 4.3.

4.2 Case Study: Aircraft Campaign

The following section presents the aircraft campaign measurements and emissions estimate
which was published in Klausner et al. (2020).
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4.2.1 Aircraft Measurements

The [UC]? campaign was a large measurement campaign focussing on urban meteorology
in Berlin, Hamburg, and Stuttgart which included the aircraft measurements we use in the
following (Scherer et al., 2019). It was conducted from the 16 to 26" of July 2018. The
aircraft measurements used a Cessna 208B Grand Caravan from The German Aerospace
Center (DLR), which was fitted with a meteorological sensor package (METPOD) and
multiple trace gas analyzers. The relevant analyzer for our purposes is the Picarro (G1301-
m) CRDS, which measures CO,, CHy, and water vapor. Information on the calibration
procedure is provided in Klausner et al. (2020).

Within the time of the campaign, from 16™ to 26 of July 2018, five flights took place (cf.
Fig. 4.1). The purpose of these flights was to fly upwind transects measuring background
air and then fly downwind of the city in order to transect the urban plume. The flights were
carried out on the 18, 20, 23, 24 "and 25" of July. The three flights on the 181", 23,
and 25™ of July are excluded because either the urban plume was missed or the PBL was not
clearly separated from the free troposphere. Furthermore, the flight on the 23" of July does
not yield any emissions estimate because of low wind velocities. This leaves the flight of the
20" of July, which serves as a proof of concept for establishing the Bayesian inversion and
its performance compared to the mass balance approach. We investigate this flight in the

following.

4.2.2 Results

Figure 4.2 displays the CO, measurements during the transects, which were flown at 489,
969, and 1601 m altitude and the vertical profile measured over Tempelhofer Feld. The
PBL height needed for the flux estimation was identified by Klausner et al. (2020) from
the meteorological variables of the vertical profile shown in Panel b) to be 2737 + 2 m. It is
assumed that the PBL height does not vary between the time the vertical profile was recorded
(12:10 to 12:20 UTC) and the downwind transects (12:30 to 13:45 UTC).

In order to get an estimate of the background uncertainty, Klausner et al. (2020) use two
methods of background estimation. First, the background is linearly estimated (dashed lines
in Fig. 4.2, Panel a). Here, the plume is identified as “when the measured mixing ratios
exceeded the inward running mean (interval of +30 s) plus one standard deviation [...] for at
least five consecutive measurement points” (Klausner et al., 2020). The background is then
calculated using the average of 60 measurement points outside the plume. The second method
uses the Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT) in order
to project the upwind trajectory onto the downwind wall. These projected measurements are

also depicted in Panel a) of Fig. 4.2 as the solid faint purple line.

92



4.2 Case Study: Aircraft Campaign

—— City boundaries
X City center
52.87 ,) Schoenhagen

— 18.07.
— 20.07.
_|— 23.07.
— 24 .07.

25.07.

5241 R

latitude [°N]

52.0

12.5 13.5
longitude [°E]

Figure 4.1: Flight tracks of all DLR Cessna research flights within the [UC]? campaign. Respective
upwind and downwind transects as well as the vertical spiral flown over Tempelhofer Feld
are visible for all flights. The flight used for this work is the one performed on July 20",
Figure taken from Klausner et al. (2020) under CC BY 4.0 license.

These different approaches yield emissions of 2.12 tCO,/s for the first and 1.39 tCO,/s for
the second approach. The additional sources of uncertainty are wind direction (+2°), wind
velocity (0.3 ms™"), and the PBL uncertainty, which is assumed to be between 5 % and
10 %. The flux uncertainties resulting from the combination of these different uncertainties
are 52, 15, and 9 %. Klausner et al. (2020) then use the flux estimate of the HYSPLIT
background method and include the linear background estimations only in the uncertainty
estimation, which yields a final CO, flux estimate of 1.39 £ 0.76 tCO,/s, which is equivalent
to 44 +24 Mta™'.

This flux estimate is approximately double the Berlin city emissions derived from the
CAMS-REG and the EDGAR inventories but agrees within the uncertainty. Sampling the
inventories by weighting them with the footprints of the measurements, the estimates get
closer. This indicates a two-fold limitation of the mass balance method. Firstly, the area this
method is sensitive to cannot be exactly constrained to just the administrative boundaries
of a city. Secondly, the uncertainty of the emissions estimate is quite large. Both of these
limitations are inherent to the method and cannot be easily resolved. This is why we use a

different approach in the following — Bayesian inversion.
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Figure 4.2: GHG mixing ratios and meteorological variables measured during the vertical profile
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over Tempelhofer Feld of the July 20" flight. Upwind and downwind mixing ratios
of CO; and CHy in Panel a). The x-axis is distance of measurement to point ‘A’ at
52.41°N and 13.95°E, the curve in the downwind flight track. Upwind transect is
projected onto downwind wall using HY SPLIT simulations. Dashed lines are backgrounds
estimated as described in Klausner et al. (2020). Panels b) and c) depict vertical profiles
of meteorological variables and trace gases. Figure taken from Klausner et al. (2020)
under CC BY 4.0 license.
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4.3 Bayesian Inversion Framework

We now extend the Bayesian inversion as presented in Section 4.1.2 for our problem of
estimating GHG emissions of Berlin. In our case, y is a vector of the in-situ aircraft
measurements and x is a vector representing the system state we want to estimate. The
forward model F describes the relationship between our system state and the measured
concentrations. Normally, these measurements are defined as enhancements against some
background which is subtracted from the measurements in advance. However, we integrate
this background into our forward model and system state.

The forward model F has to linearize the relationship between emissions, background,
and measurements driven by meteorological transport. This is usually done by using an
LPDM to calculate ‘footprints’ of the measurements (cf. Section 4.1.2). These footprints
describe the sensitivity of the concentration measurements to the emissions across our spatial
domain in a linear fashion. We aggregate these emissions from our simulation resolution
into larger cells, striking a balance between the fidelity of our system and the information
content afforded by the measurements. This is the first part of our forward model and yields
enhancements which are caused by the emissions.

The second part of our forward model is an added background concentration value for every
measurement. Since the MACRO-2018 dataset includes forward modeled concentrations,
we can use the CAMS background as a first estimate of this inversion-specific background.
The reason this remains a first estimate is that this CAMS background is only transported
from outside the Europe domain. The background concentrations we want to estimate in the
inversion, however, also include a part caused by fluxes between the edge of the footprints
and the boundary of the Europe domain. These enhancements have to be added by the
inversion.

Our forward model is, thus, a matrix of shape m x (¢ - ¢ +m) with m being the number
of measurements, ¢ the number of time steps, and ¢ the number of emissions cells. This
matrix projects between the state space of size ¢ - ¢ + m with the additional m elements being
the background concentrations and the measurement space of size m. Thus, our version of
Eq. (4.3) looks like:

€0

€cl
my fnoc0 fuwoer 10 :
my | = | fulec0 fmlel 0 1 | +e
. . . . me

bml
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with € being the measurement uncertainties and f,; ; the footprint fractions of state vector
cell ¢; contributing to measurement m;. The state vector elements for our inversion are
the emissions e.; of cell ¢; and background concentrations of measurements ;. A similar

approach was also used by Lopez-Coto et al. (2020).

4.4 Optimization of Emissions

Now, we use the MACRO-2018 dataset to optimize a bottom-up emissions estimate for
Berlin using measurements from the [UC]? aircraft data. As a first step, we evaluate the
simulation fidelity of concentrations and meteorological variables to the measured data in

order to gauge the suitability of our dataset for this task.

4.4.1 Simulation Evaluation

We start our evaluation by sampling the MACRO-2018 dataset along the flight track in
time and space and comparing the extracted data to the measurements. Figure 4.3 depicts
the CO, concentrations sampled from the MACRO-2018 dataset compared to the aircraft
measurements. Panels a) and b) display the concentrations using the VPRM v1 and v2
biogenic fluxes respectively. As described in Section 3.4.3, the VPRM v2 emissions capture
the summer daytime CO, uptake better. This is why they have a smaller mean bias (0.5
and 0.7 ppm) than the VPRM vl data (1.7 and 1.9 ppm). However, after subtracting this
bias, both VPRM versions exhibit a similar fidelity across the transects, as evidenced by
the similar cMAB (corrected MAB) values (0.5 ppm for vl and 0.6 ppm for v2). When
comparing the two physics configurations we find the MYJ configuration to be exhibiting a
slightly lower mean bias by 0.2 ppm indicating a model uncertainty of at least that magnitude.
The largest deviation of the simulated concentrations from measurements occurs during the
vertical profile, which was flown over the Tempelhofer Feld.

The flight path of the aircraft is displayed in Panel a) of Fig. 4.4. Here, we can clearly
make out the corkscrew pattern flown for the vertical profile as well as the upwind and
three downwind transects. The other panels in this figure display the comparison of the
aircraft measurements to simulated variables extracted from a column of the simulation at
12:15 above the center of the spiral. Some residuals of the spiral flight pattern are visible in
the wind velocity and CO; concentration fields. However, all in all (neglecting fine-scale
structures) there is good agreement between the simulations and measurements up to 2 km
height.

Above 2 km, deviations increase (cf. Table 4.1). These deviations stem from the measure-
ments showing a strong capping inversion at the top of the boundary layer (2737 + 2 m as

estimated from vertical profile by Klausner et al., 2020). This capping inversion is typical
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: Comparison of aircraft measured CO, concentrations to concentrations extracted from
MACRO-2018. Panel a) displays VPRM v1 and Panel b) VPRM v2 biospheric emissions.
Black line represents aircraft measurements, the blue and orange lines the MYJ and
YSU configurations. Hatched background marks vertical profile flown over Tempelhofer
Feld, solid backgrounds mark transects. Transects are first upwind (780 m height), then
three downwind transects (489, 969, and 1601 m height). The cMAB statistic is the
bias-corrected MAB. Aggregated statistics are calculated across the transects only.
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Figure 4.4: Display of aircraft track and comparison of vertical profile flown over Tempelhofer

Feld to MACRO-2018 column. Panel a) displays the aircraft flight track and the CO;
concentration measurements. Clearly visible are the upwind transect NW of Berlin, the
corkscrew vertical profile and the three downwind transects SE of Berlin. Panels b) to f)
show air temperature, potential temperature, relative humidity, wind velocity, and CO,
concentrations compared to aircraft measurements. While the aircraft measurements
exhibit a very clear inversion at the top of the boundary layer, the vertical resolution of
our simulation is too coarse to resolve this.
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Table 4.1: Mean absolute bias of variables in MACRO-2018 compared to flight measurements for the
vertical profile on July 20 2018, separated into values below and above 2 km altitude. All
variables show better matches at height except for wind velocity, which is more strongly
influenced by the surface.

below 2km above 2km
MYJ YSU MYJ YSU

T [°C] 0.5 0.3 1.2 1.1
0 [K] 0.2 0.1 1.3 1.2
RH [%] 34 34 230 208
wind velocity [m/s] 1.3 14 1.1 1.1
CO; v2 [ppm] 0.6 0.7 1.9 2.1

for urban boundary layers and separates the mixing layer below from the free atmosphere
above (cf. Section 2.1.1). Our simulations, however, exhibit a lower PBL height (MYJ:
1900 m, YSU: 2250 m; from PBLH diagnostics) and a less strong inversion (as visible in
Fig. 4.4, Panel c¢). A partial explanation is the much lower vertical resolution at these heights
contributing to more smoothed-out variables. However, the main features of the variables
are well-captured. The temperature, potential temperature, and relative humidity profiles
are similar to measurements except for the lower simulated capping inversion. The CO,
concentrations in the boundary layer are close to the measurements as well, except for the
peak caused by the capping inversion at the top of the PBL, which is smeared out in the sim-
ulation. Above the PBL height, where air masses belong to the larger background, however,
the CO; concentrations are overestimated. This indicates that the model background we use
as background concentration prior might not be perfect and will need to be optimized in the
inversion itself.

Comparing the two physics configurations, we find a similar performance of MYJ and
YSU. The CO, concentrations within the boundary layer of the MYJ simulation are a bit
lower compared to YSU. This could be caused by the lower boundary layer height estimation
reducing the volume where CO, uptake takes place. Compared to CO,, the deviations
of wind velocity are larger. Here we find the clearest differences between the MYJ and
YSU configurations. The lower boundary layer height notwithstanding, for wind velocities
the MYJ configuration is more in agreement with measurements than YSU (cf. Table 4.1).
Therefore, we will continue with the MYJ configuration.

In conclusion, we use the MYJ configuration and the VPRM v2 emissions for our Bayesian
inversion. Following from the above analysis, we can conclude that the meteorology and

emissions used in the MACRO-2018 dataset represent a solid basis for our inversion.
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4.4.2 Inversion Setup

We now use the meteorological data from the MACRO-2018 dataset and the same prior
emissions input files we used to calculate the concentrations in MACRO-2018 in order to run
our Bayesian inversions. The measurement footprints will provide the link between emissions
and measured concentrations (cf. Section 4.3). For the integration of the meteorological
fields, we use FLEXPART-WREF as described above (cf. Section 4.1.3). The spawn points
of the footprints are evenly spaced at 5 min intervals and integrated backwards for 24 h.
Along the transects, this 5 min spacing corresponds approximately to 10 km distance. These

footprints were kindly provided by Christopher Liiken-Winkels.

As we do not have enough information to invert every one of the simulation grid cells on
1x1km resolution, they have to be aggregated into larger state vector elements. Since this
aggregation is already a constraint we place on the system, we aim to make it as task-driven
as possible. Our objective is the Berlin city emissions, so one state vector element includes
the administrative boundary of Berlin. The other elements are border cells and we divide
them according to the footprint influence. We separate the elements at the WRF domain
boundaries in order to distinguish between near- and far-field contributions. Furthermore,
we divide them into upwind and downwind elements as the sensitivity of the measurements
varies starkly between them. This results in five emissions state vector elements which we
use in our inversion. The exact shape and size along with the flight track and footprint release
points is displayed in Fig. 4.5. We use the measurements taken during the one upwind and
three downwing transects, which were flown at 780, 489, 969, and 1601 m altitude. We
exclude the measurements at 11:45 UTC and 13:45 UTC due to data quality issues.

The second part of the forward model is the background (cf. Section 4.3). Here, we can
leverage our Eulerian background concentrations which are part of the MACRO-2018 dataset.
We sample the C02_BCK field at the measurement times and locations used for the footprints
and use this as our background prior. Without the forward modeled CO, concentrations, in a
purely Lagrangian approach, this would be more difficult. It would require a background
calculation based e.g. on footprints at downwind locations or background measurements,

both of which may be associated with large uncertainties.

The inversion additionally requires the compilation of uncertainty information in the
covariance matrices. Their design is important for the inversion result (cf. Section 4.1.2) as
they constrain the state vector optimization. The two matrices we have to construct are the
prior covariance matrix and the model-data mismatch covariance matrix (cf. Eq. (4.6)). We

will focus on this next.
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Figure 4.5: Setup of the emissions elements of the state vector. Panel a) displays the Berlin domain
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and parts of the Germany domain (note the lower resolution). These domains are split into
five state vector elements. The state vector elements are Berlin city, Berlin upwind, and
Berlin downwind as well as Germany upwind and Germany downwind (in order). Fur-
thermore, the flight track as well as the footprint releases are displayed. The first upwind
measurement (11:45 UTC) and one of the later downwind measurements (13:45 UTC) had
to be excluded due to data quality issues. Panel b) illustrates the surface level footprints
of the selected measurements and the Berlin administrative boundary.



4.4 Optimization of Emissions

Prior Covariance

The prior covariance matrix consists of both, the prior emission and the prior background
covariances. Where possible we present a data-driven estimation of the associated uncertain-
ties and correlations. We first discuss the prior emissions uncertainties before turning to the

background in the second part.

Emissions uncertainty The emissions uncertainties arise from the underlying emissions
inventories, in this case both TNO and VPRM. However, we do not have enough infor-
mation about either inventory to construct our prior covariance purely from the inventory
uncertainties. One effect, which should be similar for both emissions inventories, though,
is the scaling of the uncertainty with the cell size. Since continental-scale biogenic fluxes
and national-level anthropogenic emissions are much better constrained than their gridded

variants at 1 km resolution, larger cells should have smaller uncertainties than smaller ones.

When inquiring about inventory uncertainties, the inventory developers, Dr. Ingrid Super
and Hugo Denier van der Gon, provided the uncertainty for the spatial distribution and the
national emissions of an inventory created in the context of the AVENGERS project. These
data are provided on an approximately 7 km resolved lat/lon grid. We aggregate these to
our state vector elements by using sum of squares. As uncertainties in temporal and height
distribution of emission are not included in this estimate, this estimate cannot be used to
determine the total uncertainties. We can, however, still use it to get the relative difference
in uncertainty between state vector elements of different sizes. In effect, we will scale the
uncertainties of the other state vector elements relative to element zero (Berlin city). Doing
this, state vector elements one and two (Berlin domain) get scaled by two-thirds, while the
latter two (Germany domain) get scaled by one tenth due to their larger areas. To get a final
uncertainty for the inversion, we now only need to set a sensible value for the Berlin state

vector element.

As we lack the data to directly calculate the uncertainty, we do an investigation of the
numerical stability and the sensitivity of the posterior emissions estimate for Berlin to the
prior uncertainty. Our goal is to have an emission estimate that is as measurement-informed
as possible by having a weak prior constraint, while still being physically sound. This means
we run inversions with various relative emissions uncertainties for the Berlin element (25, 50,
75, 100, and 125 %). Evaluating their averaging kernels, we see that at uncertainties higher
than 75 %, there are off-diagonal elements which exceed the lower bound of negative one,
which is considered physically sound. Therefore, we use 75 % as our emissions uncertainty

for Berlin, which gets downscaled to the other state vector elements as shown above.
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Background uncertainty The background of our inversion includes all concentration
contributions that are outside of the footprint. To estimate the background uncertainty
from outside the Europe domain we use the MACRO-2018 dataset’s C02_BCK field. For
each measurement, we can sample the background concentrations (from outside the Europe
domain) for 75 min around the measurement itself. We choose this time period as this
is approximately the time needed by the aircraft for all three transects. We extract the
background variability for each measurement (standard deviation). To additionally account
for inner-European emissions that are not covered by the footprint, we increase this by
0.5 ppm.

Correlations of the far-field contribution to the measurements are expected to be large.
We extract the correlations of the sampled time series and use it as a lower bound. Then we
increase the correlation such that the local CO, signals do not get imprinted onto the posterior
background, meaning that the correlation between the background and the measurements is

not changed by the inversion.

Model-Data Mismatch

The model-data mismatch includes the covariance of the model concentrations and the
measurements. Here, the uncertainties include the uncertainty of the measurement instrument
and that of the model transport. We construct our model-data mismatch error as in Boschetti
et al. (2018), who use:

_ 2 2
Se - CSCtetran + gmeas

with C; being inter-species covariance (which we do not have), C; being temporal corre-
lation, &,y being transport error and €ne,5 being measurement error. Since we explicitly
sample non-homogeneous air masses (plume transects) and work on urban scales and not on
continental ones like Boschetti et al. (2018), we do not assume any temporal correlations of
our measurements. Since the MACRO-2018 dataset includes two simulations with different
physics configurations, we use this mini-ensemble to estimate the transport error. As such,
we use the mean absolute differences between the C02_TOTAL_V2 concentrations for the
MY]J and YSU configurations as an estimate which are on average 0.49 ppm. This then is
combined with the instrument measurement uncertainty of 0.15 ppm using sum of squares to

a total uncertainty of 0.51 ppm.

4.4.3 Emissions Estimate

With our uncertainties contsructed, we can now turn to the emissions estimate. Here, we try

to include the uncertainty associated with the choice of prior covariance into our estimate. In
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Table 4.2: Details of inversion result. Change in emissions and error reduction are both relative to
prior. All values of the averaging kernel diagonal are below one and the first two are close
to one suggesting high performance.

Prior Posterior Change in Error Averaging

emissions [Mta']  emissions [Mta!] emissions [%] reduction [%] kernel [1]
Berlin city 9.1 16.5 82.0 36.6 0.60
Berlin upwind -34.2 -23.1 32.5 57.7 0.82
Berlin downwind 4.1 4.1 -0.6 0.2 0.00
Germany upwind -169.7 -163.4 3.7 2.5 0.05
Germany downwind —-1908.0 -1907.5 0.0 0.0 0.00

order to gauge the dependence of our inversion output to this choice, we perform a small
sensitivity study where we vary the prior uncertainty between 50, 75, and 100 %. For the
chosen prior covariance of 75 %, our Bayesian inversion yields an emissions estimate of
16.5+43Mta"!. The maximum change of the emissions estimates compared to using
50 % or 100 % is 2.55Mta~!. We add this amount using sum of squares to the posterior

uncertainty, which yields the final emissions estimate of 16.5 + 5.0Mta™!.

Figure 4.6 compares this estimate to the mass balance estimate from Klausner et al. (2020),
the average daily Berlin emissions from the self-reported inventory, TNO, and the CAMS
and EDGAR inventories also used in Klausner et al. (2020). We can clearly see that the
Bayesian inversion is close to the average daily emissions from inventories, indicating a
realistic estimation. Additionally, the uncertainty has been reduced from 24 Mta™! for the
mass balance approach to 5.0 Mta~! for our Bayesian inversion. This is a decrease by nearly

a factor of five.

Figure 4.7 and Table 4.2 give an overview of the inversion result. In Fig. 4.7, we see an
overview over the Bayesian inversion and some details on its performance. It shows that the
error reduction is the largest for the Berlin city and the Berlin upwind cell (36.6 and 57.7 %)
while the other cells’ error reductions are two orders of magnitude smaller. These are also
the cells whose emissions got adjusted the most (82.0 and 32.5 %). This is expected, as the
Berlin city and the Berlin upwind cell are the ones the inversion is most sensitive to as seen
by the largest footprints. Turning our attention to the averaging kernel (Table 4.2), we see
that the elements on the diagonal are all close to and below one, which is good. However,
we also see large off-diagonal elements between the Berlin city (zero), Berlin upwind (one),
and Germany upwind (three) cells (cf. Fig. 4.7). These off-diagonal elements indicate that
the emissions estimates of the Berlin city cell and the upwind cells are not independent of
one another. This is caused by the measurement footprints being sensitive to all three cells
simultaneously. In effect, there are just too few measurements and meteorological situations

to perfectly separate the Berlin city cell from the surrounding cells.
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The average posterior background concentrations get adjusted downwards from the prior
ones of 403.5 ppm to 402.3 £ 0.3 ppm. To ensure that the measurements do not unduly
influence the background, we check the posterior background-measurement correlation and
find it to be the same as the prior background—measurement one. This indicates that the
inversion is not over-fitting the background to the measured concentrations. The direction
of this change in background concentration is expected since the emissions between the
footprint boundary and the Europe domain boundary, which we expect the inversion to
add, are mostly negative. Additionally, the value the posterior background concentrations
are corrected to (402.3 £ 0.3 ppm) matches closely to the median of the observed CO;
concentrations above the PBL with 402.6 ppm (cf. Fig. 4.4). We expect these concentrations
above the background to constitute the far-field background of our measurements, since
the near-field emissions influence is mostly limited to the mixing layer. This adjustment
by our inversion is remarkable, as we only use measurements well within the PBL up to
1.6 km. This notwithstanding, the inferred posterior background is very close to the observed
background at 3 km height. This validation with independent data speaks to the robustness
of our method.

In order to test the importance of assimilating the background and the emissions at the
same time, we conduct an experiment where we set the prior background uncertainty to
zero. This means that the background does not get changed at all by the inversion and
just adds an offset to the measurements. Under these conditions, the inversion returns
a posterior emissions estimate of 10.6 + 4.0 Mta~'. These emissions are 40 % below our
estimate considering the background concentrations. Thus, assimilating the background

concentrations is crucial as it avoids systematic errors implicit in the inversion construction.
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CO; emissions [Mt/a]

Mass  Inversion Inversion EDGAR CAMS-REG Berlin TNO
Balance Posterior  Prior

Figure 4.6: Comparison of emissions estimate from mass balance (44 + 24 Mta™!) and Bayesian inver-
sion (16.5 + 5.0 Mta™!). Prior of the Bayesian inversion is displayed with 9.1 + 6.8 Mta™!
(including 1.7 Mta~! biogenic uptake). Error reduction of 36.6 % for the Berlin state vec-
tor element is clearly visible. This is compared to EDGAR, CAMS-REG, the self-reported
and the TNO average yearly emissions for the city of Berlin for 2018 (24.2, 22.6, 15.7, and
15.3Mta™!). Hatched part of the TNO inventory bar is the Berlin emissions after applying
the time factors, which is the anthropogenic part of the prior emissions (10.8 Mta™!).
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Figure 4.7: Averaging kernel emissions part shows positive and below one diagonal and less ideal
off-diagonal elements. Gain matrix illustrates the large influence of the measurements
(MO0-M14) on the Berlin city emissions estimate and the smaller influence on the Berlin
upwind cell. This is reflected in the relative emissions adjustment from prior to posterior.
Transects are marked by ‘UW’ (upwind) and ‘DW’ (downwind) labels.

105



4 Emissions Estimation

4.5 Discussion

In this chapter we have improved an emissions estimate for the city of Berlin based on
aircraft measurements. The original estimate using a mass balance method was presented by
Klausner et al. (2020) and resulted in emissions of 44 + 24 Mta~!. As reported by Klausner
et al. (2020), this estimate matches closer to the inventories when sampling the inventories

using the footprints of the measurements and not the administrative boundary of Berlin.

We have now used the meteorology and concentration fields provided by the MACRO-
2018 dataset and have performed a Bayesian inversion, yielding a posterior emissions
estimate. This inversion is based on an LPDM transport linearization and explicitly includes
the background concentrations of each measurement as state vector elements. We have used
the concentration fields included in the MACRO-2018 dataset in order to get first-order
estimates of the backgrounds. Furthermore, we have constructed the uncertainties based
on data and, where necessary, expert judgement. We have performed a sensitivity study in
order to reduce the impact of arbitrary choices on our result and have added the difference
in posterior emissions on top of our uncertainty. Using this approach, we get an emissions
estimate of 16.5+5.0Mta~'.

Our posterior emissions estimate increases the total prior emissions of 9.1 + 6.8 Mta™! by
approx. 80 %. This speaks to there being either less biogenic uptake or more anthropogenic
emissions than estimated in our inventories. However, the posterior emissions are already
larger than just the anthropogenic part of the prior emissions (hatched part of TNO bar in
Fig. 4.6; 10.8 Mta~!). Since we can most likely neglect biogenic respiration as a significant
source of CO», our findings point to the anthropogenic emissions being higher than reported
in the TNO inventory. This can either be caused by a misestimation of total emissions of
some sources in the inventory or by the time factors, which get applied to a whole emissions
sector across all of Europe, being wrong in this particular area. Another possible explanation

are missing emissions sources like human respiration.

The posterior emissions estimate of the Berlin state vector element shows an error reduction
of 36.6 %. This indicates that the measurements we use in the inversion significantly reduce
the emissions uncertainty. However, the largest error reduction in our state vector is in the
Berlin upwind cell with 57.7 %. This is due to the measurements having a larger sensitivity
to the Berlin upwind emissions than the actual city emissions. Said sensitivity was also found
and discussed in Klausner et al. (2020). Klausner et al. (2020) compute footprints for the
aircraft measurements and find that they are sensitive to large areas outside the administrative
boundaries of Berlin. Our method, however, is able to leverage the footprints to restrict

the emissions estimate to the Berlin administrative boundaries. We, furthermore, achieve
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a posterior emissions uncertainty which is a factor of five smaller than the one of the mass
balance method.

While our emissions estimate is obviously only valid for the 20™ of July 2018, in order to
stay comparable to Klausner et al. (2020) we also compare it to the average daily emissions
reported in the inventories. Our posterior emissions estimate fits the annual 2018 emissions
reported in the TNO GHGco v4.1 inventory (Super et al., 2020) and the self-reported
Berlin 2018 emissions estimates (Amt fiir Statistik Berlin-Brandenburg, 2025) of 15.3 and
15.7 Mta~! within the uncertainty. It is lower than the emissions reported in the EDGAR 2015
and the CAMS-REG 2015 inventory presented in Klausner et al. (2020). Our emissions
estimate being in between the inventory estimates indicates that it is realistic. However, it
should be reiterated that the inventory estimates represent the average daily emissions of
Berlin based on the total 2018 emissions, and not the estimates for this particular day. In
order to be able to make judgments about the quality of the inventories’ emissions estimates,
more flights are needed.

We have shown that our Bayesian inversion framework, assimilating emissions and
background concentrations at the same time, is robust. The background estimation is able
to reconstruct a background concentration from above the PBL while only assimilating
measurements from within the PBL. This is good evidence not only for our method working
but also for the usefulness of forward modeled datasets like MACRO-2018, without which
this would not have been possible. This approach of combining forward concentration
modeling and emissions estimation using Bayesian inversions has the potential to help
future measurement campaigns extract the maximum possible amount of information about

emissions from their measurements.
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Emissions monitoring, verification, and reporting is a key component of global climate action
and helps hold governments accountable to their climate promises. Germany’s contribution
to the IG3IS coordinating these efforts internationally is the ITMS. In the context of the
ITMS, we focus on urban monitoring as emissions sectors associated with urban areas
are responsible for 31 % of the CO, emissions uncertainty in the German NIR. Reliable,
high-quality emissions quantification requires high-performance modeling which is validated
against independent data and an inversion framework which is constructed to treat sources of
error and biases.

This thesis presents the development of the MACRO-2018 dataset and its use for emissions
estimation in urban areas. We present the setup of WRF and the corresponding sensitivity
studies investigating its meteorological performance in the Rhine-Main-Neckar area, as
published in Pilz et al. (2026). This investigation forms the basis of the WRF-Chem
simulations which generate the high-quality, long-term MACRO-2018 dataset published as
Pilz et al. (2025a). Finally, this dataset is used to drive and constrain a Bayesian inversion
optimizing CO; emissions using aircraft measurements over the city of Berlin.

The setup of our atmospheric transport model is presented in Chapter 2. Therein, we
describe the establishment of a new WRF simulation setup on the supercomputer Levante
at DKRZ. We conduct a sensitivity analysis of different physics configurations in order to
optimize the atmospheric transport simulation for our use case. To this end, we evaluate the
meteorological performance of 16 physics configurations at 19 meteorological stations in the
Rhein-Main-Neckar area of Germany. This area not only provides a lot of meteorological
stations to compare our simulation against, it is also a polycentric urban region (PUR) and
as such representative of other European metropolitan areas like the Rhein-Ruhr area. We
identify well-performing configurations, discuss possible reasons, and compare to previous
studies, demonstrating that our simulation performance exceeds theirs.

This analysis is the basis for generating Metropolitan Area COx RecOrd of Germany
2018 (MACRO-2018; Pilz et al., 2025a), which we present in Chapter 3. It provides two
separate physics configurations and biogenic models enabling first-order estimates of model
uncertainty. We present its data consisting of hourly output at up to 1 km resolution over the

full year of 2018 for meteorology as well as CO, and CO concentrations. Available CO,
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concentration fields include biogenic contributions, background as well as traffic, point, and
area emissions driven by the VPRM and TNO inventories. We evaluate the CO, and CO
concentration performance against high-precision Obspack measurements. To that end, we
develop a new, robust, method of disambiguating different PBL development phases. This
is necessary as studies usually only use a fixed time window of, for example 13 UTC to
17UTC. We could show that this does not match with the underlying physical reality, leading
to either useful data being discarded or data during unstable conditions being used. Our new
definition now gives a dynamical definition of which data is useful and can be adapted by

the wider community improving measurement filtering.

We benchmark MACRO-2018 against previous simulations of CO, concentrations and
demonstrate it performing on par with or better than all previous studies we were able to
find. By providing validated long-term, high-resolution meteorology as well as CO, and
CO concentration fields over Europe of the highest quality, MACRO-2018 offers a powerful
foundation for various kinds of scientific investigation. It is already being actively employed
for multiple different applications. These include satellite mission planning, investigating
the impact of biogenic models at sub-continental scale, the optimization of MRV systems of

urban CO,, and the optimization of urban CO; emissions as done in this thesis.

This high-quality data provides a solid basis for the optimization of urban CO, emissions.
In Chapter 4, we use it to estimate CO, emissions of Berlin using aircraft measurement data
collected in the context of the [UC]?> campaign. Since these aircraft data provide important
information but are also expensive to generate, we build a Bayesian inversion framework
to extract the maximum possible amount of information from these measurements. This
framework allows us to optimize CO; emissions and CO, background values simultane-
ously. The meteorological data of MACRO-2018 is used to drive the LPDM FLEXPART,
and its CO, concentration data is used for prior estimates of background concentrations.
Using this approach, we reduce the emissions uncertainty over a previous emissions esti-
mate based on the same measured data using a mass balance approach from 24 Mta™! to
5.0Mta~!. Furthermore, we find the optimized background concentration values to closely
match measured concentrations outside of the PBL, unseen by the inversion. The value of
our optimized posterior emissions being in between the average daily emissions reported by
multiple different inventories indicates its realism, while the reproduction of unseen back-
ground concentrations demonstrates the robustness of our method. We find CO, emissions
for Berlin of 16.5 + 5.0 Mta~!, which is 8 % above daily average emissions from TNO and
32 % below EDGAR. The Bayesian inversion framework we have developed is ready-to-use
for future measurement campaigns. This approach of combining forward concentration

modeling and emissions estimation using Bayesian inversions has the potential to help future
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campaigns extract the maximum possible amount of information about emissions from their

measurements.

There are multiple avenues for future developments to build upon this work. In order
to further improve the meteorological modeling, larger ensemble sizes using more physics
configurations could be used. These configurations should include previously untested PBL
schemes like, for example, MYNN (Nakanishi and Niino, 2009) or Shin-Hong (Shin and
Hong, 2015). Additionally, comprehensive investigation into the observed underestimation
of wind velocities when using the BEP urban parametrization should be carried out, as this is
a long-standing issue. Furthermore, new meteorological models are emerging showing strong
performances, which partially exceed WRF. Therefore, switching to a different underlying
model like ICON-ART, whose driver ICON shows high fidelity (Magnusson et al., 2022;
Loprieno et al., 2026) could be considered. However, especially the combination of urban

parametrization and tracer dispersion in these models should be investigated.

A new version of the MACRO-2018 dataset should include a larger meteorological
ensemble. One should investigate the possibility of adding CO chemistry to the simulation
in order to improve CO concentration fidelity. Furthermore, we clearly show the importance
of the biogenic models to simulation fidelity. While their optimization is already ongoing
and MACRO-2018 is actively supporting this development, this is an avenue of research
which should be prioritized. Regarding the anthropogenic emissions, a future version of
MACRO-2018 could also include more emissions inventories like EDGAR or CAMS to
have an ensemble of anthropogenic influences. One should furthermore consider including
CO; fluxes from human respiration, as they represent a significant part of total CO; fluxes in
urban areas (7 % to 18 % Stagakis et al., 2023; Droge et al., 2024).

This work has paved the way to improve emissions estimation based on future aircraft
campaigns. Increasing the amount of flights will lead to a higher temporal representativeness
of the emissions estimate, which is important for emissions accounting on the annual level. It
will also reduce the underconstraint of the spatial dimension evident in the averaging kernel.
Our Bayesian inversion framework is able to be extended to support the disaggregation of
anthropogenic and biogenic emissions using a multi-species approach including CO and
isotopologues of CO,. Finally, beyond aircraft measurements, different kinds of observations
should be investigated as tools for long-term urban emissions MRV systems. Multiple new
satellites include target modes, which enable the observation of areas of interest at very high
spatial resolutions on the kilometer scale (Guanter et al., 2015; Taylor et al., 2020; Cogliati
etal., 2021; Tanimoto et al., 2025). Using these for urban areas can increase the coverage
and spatial disaggregation of emissions, opening the door to operationalized urban emissions
accounting. Further important methods include in-situ CO, concentration measurement

networks, which are already being deployed worldwide (Shusterman et al., 2016; Grange
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5 Conclusion and Outlook

et al., 2025; Kim et al., 2025; Aigner et al., 2025). These have the advantage of uninterrupted
temporal coverage, high signal-to-noise ratios, and comparably simple characterization.
However, since they are static, the structure of the network design has to be thoroughly
studied.

In summary, this thesis establishes a robust framework for high-resolution, top-down urban
CO; emissions estimation from model sensitivity study to inversion-based quantification.
Through the development and validation of the MACRO-2018 dataset, we demonstrate that
the careful comparison of simulated and measured concentrations is important for improve-
ments in both models and emissions inventories. Through its application to Berlin, we show
that rigorous model optimization allows quantifying model-data mismatch errors central
to urban emissions estimation. Furthermore, we show that the use of a well-optimized
atmospheric transport model and concentration dataset for emissions estimation is able to sig-
nificantly reduce emissions uncertainties, contributing to independent emissions monitoring
in the spirit of the Paris Agreement. Beyond its immediate results, the methods, datasets, and
tools developed here form a flexible foundation for future work on regional atmospheric mod-
eling and urban emissions monitoring. As cities become increasingly important to climate
action, high-quality scientific evidence and analysis will play a central role in supporting

credible emissions mitigation verification.
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A Appendix

Sensitivity Studies

index SLUCM levels BEP levels H index SLUCM levels BEP levels

— e = b e e e e e
@OO\]O’\U]#W[\)»—‘OOOO\IO\U]#DJN'_‘

[\
(]

21

Om
89.9 m
181.6 m
2754 m
3712 m
469.6 m
570.5 m
674.5m
781.8 m
892.8 m
1008.0 m
1128.0 m
12534 m
1385.1 m
1524.1 m
1671.6 m
1829.2 m
1998.9 m
2183.4 m
2386.3 m
2612.5m

Om
15.0 m
344 m
59.5m
91.8 m
1333 m
186.6 m
254.6 m
341.0 m
450.2 m
586.9 m
756.6 m
964.6 m

1216.2 m
1515.6 m
1865.4 m
2266.1 m
2715.6 m
3209.3 m
3745.8 m
4328.1 m

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

2869.2 m
3167.0 m
35229 m
3965.9 m
4549.8 m
5324.6 m
6345.8 m
7475.0 m
8559.3 m
9612.4 m
10629.7 m
11611.3 m
12557.0 m
13471.2 m
14385.4 m
15299.5 m
16213.7 m
17127.9 m
18042.1 m
18956.3 m
19870.5 m

4959.1 m
5641.5 m
6378.2 m
7171.6 m
8023.8 m
8863.8 m
9681.9 m
10478.1 m
11252.5 m
12005.1 m
12735.8 m
13450.4 m
14165.1 m
14879.7 m
15594.3 m
16308.9 m
17023.5 m
17738.1 m
18452.7 m
19167.4 m
19882.0 m

Table A.1: Table of WREF level heights output by real.exe. Table taken from Pilz et al. (2026).
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Figure A.1: Taylor density diagram (see Section 2.3.4) of 2m temperature for all four simulated
months of 2020. ERAS data are show in red, configurations using SLUCM scheme in
orange and configurations using the BEP scheme in blue. Configurations are distinguished
into using Noah or Noah-MP LSM by different markers. Behind each marker is the
average over one simulation configuration averaged over all DWD stations. Spread of all
configurations and stations using the respective UCM scheme is shown as KDEs. There,
some outliers namely the Stotten and Kleiner Feldberg/Taunus stations which are both at
elevation are visible. Figure taken from Pilz et al. (2026).
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Figure A.2: Comparison of 2 m temperature bias for SLUCM and BEP runs stratified by urban and
rural stations. Solid lines are average of urban stations, dashed lines are average of rural
stations. Clearly, the BEP scheme shows a much larger difference of performance at
urban vs at rural stations. Figure taken from Pilz et al. (2026).
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Figure A.3: Influence of vertical configuration on BEP 2 m-temperature and wind velocity. Vertical
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configuration was changed from the original BEP setup of the lowest layer at 15 m (dashed
blue line) to the lowest layer at 90 m (solid blue line). Mean absolute biases improve for
2 m-temperature (Total: 1.4K — 0.6K, Urban: 2.3 K — 0.7 K) and remain approximately
similar for wind velocity (Total: 0.7ms~! — 0.7ms™!, Urban: 0.7ms~! — 0.6ms™!).
Figure taken from Pilz et al. (2026).
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Figure A.4: Diurnal cycle of PBL height for SLUCM and BEP configurations averaged over both
stations. Orange line is the SLUCM configuration, blue line is the BEP configuration, and
red line is ERAS data. Black markers are the PBL height measurements retrieved from
radiosonde launches. Error bars and shading are one standard deviation of all diurnal

cycles. Figure taken from Pilz et al. (2026).
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10m wind velocity [m/s]

10m wind velocity [m/s]

04/2020 07/2020
T
— REF
40— BEP
—— SLUCM
—— ERA5
&> 35
E
>
5 3.0
o
[}
>
225
E
£
220
1.5
. 1.0
0 5 10 15 20 0 5 10 15 20
Time of day [h] Time of day [h]
09/2020 12/2020
4.0 4.0 ‘
= —
3.5 35
@
S
3.0 =30
.“5
o
g
25 2 25
£
E
2.0 520
1.5 1.5
1.0 [ | i | 1.0
0 5 10 15 20 0 5 10 15 20
Time of day [h] Time of day [h]

Figure A.5: Diurnal cycle of 10 m wind velocity for SLUCM and BEP configurations averaged over
all stations. Orange line is the SLUCM configuration, blue line is the BEP configuration,
red line is ERAS data, and black line is the DWD station measurements. Shading is one
standard deviation of all diurnal cycles. Figure taken from Pilz et al. (2026).
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Figure A.6: Diurnal cycle of 10m wind velocity for SLUCM and BEP configurations averaged
over urban stations. Orange line is the SLUCM configuration, blue line is the BEP
configuration, red line is ERAS data, and black line is the DWD station measurements.
Shading is one standard deviation of all diurnal cycles. Figure taken from Pilz et al.
(2026).
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10m wind velocity bias [m/s]
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Figure A.7: Diurnal cycle of 10 m wind velocity bias for SLUCM and BEP configurations averaged
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both urban and rural stations. Orange line is the SLUCM configuration, blue line
is the BEP configuration, red line is ERAS data, and black line is the DWD station
measurements. Solid lines are urban and dashed lines rural stations. Shading is one
standard deviation of all diurnal cycles. Figure taken from Pilz et al. (2026).
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Figure A.8: Ensemble spread of 10 m wind direction against 10 m wind velocity. Ensemble spread
is defined by circular standard deviation (see Jammalamadaka et al., 2001) across all
configurations averaged over all DWD stations. Figure taken from Pilz et al. (2026).
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Category  Description

Category  Description

EENERUS I (O

Urban and Built-up Land
Dryland Cropland and Pasture
Irrigated Cropland and Pasture
Mixed Dryland/Irrigated Cropland
and Pasture
Cropland/Grassland Mosaic
Cropland/Woodland Mosaic
Grassland

Shrubland

Mixed Shrubland/Grassland
Savanna

Deciduous Broadleaf Forest
Deciduous Needleleaf Forest
Evergreen Broadleaf
Evergreen Needleleaf

Mixed Forest

Water Bodies

Herbaceous Wetland

18
19
20
21
22
23
24
31
32
33
34
35
36
37
38
39
40
41

Wooden Wetland

Barren or Sparsely Vegetated
Herbaceous Tundra

Wooded Tundra

Mixed Tundra

Bare Ground Tundra

Snow or Ice

LCZ 1: Compact high-rise
LCZ 2: Compact midrise
LCZ 3: Compact low-rise
LCZ 4: Open high-rise

LCZ 5: Open midrise

LCZ 6: Open low-rise

LCZ 7: Lightweight low-rise
LCZ 8: Large low-rise

LCZ 9: Sparsely built

LCZ 10: Heavy industry
LCZE (LCZ 11): Rock and paved

Table A.2: Names of USGS land use categories in WRF. Table taken from Pilz et al. (2026).
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dix

avg.  avg. best WRF simulation avg.
SLUCM BEP MAB name ERAS
T2 [°C] Apr. Total 1.8 22 1.7 slucm_ysu_nmp_mm5 1.4
Urban 1.7 2.6 1.6  slucm_ysu_nmp_mm5 1.2
Rural 1.9 2.0 1.8 slucm_ysu_nmp_mm5 1.6
Jul. Total 1.5 1.7 1.4 slucm_ysu_nmp_mm5 1.3
Urban 1.4 1.8 1.2 slucm_ysu_nmp_mm5 1.1
Rural 1.6 1.7 1.5  bep_ysu_n_mm5 1.5
Sep.  Total 1.6 1.9 1.5  slucm_ysu_nmp_mm5 1.3
Urban 1.4 22 1.3 slucm_ysu_nmp_mm5 1.1
Rural 1.7 1.8 1.6  bep_ysu_n_mm5 1.4
Dec.  Total 1.4 1.8 1.3 sluem_bl_nmp_mo 1.0
Urban 1.5 2.3 1.4 slucm_bl_nmp_mo 0.9
Rural 1.3 1.5 1.3 sluem_bl_nmp_mo 1.1
PBLH [m] Apr. Total 271 346 249  slucm_bl_n_mm5 158
Urban 293 452 271 slucm_bl_nmp_mm5 134
Rural 249 240 208  bep_ysu_n_mm5 182
Jul. Total 268 308 220 slucm_myj_n_mo 191
Urban 267 345 219 slucm_myj_n_mo 208
Rural 270 270 226 sluem_myj_n_mo 174
Sep.  Total 240 310 203  slucm_myj_n_mo 137
Urban 247 367 206  slucm_myj_n_mo 137
Rural 234 253 189  bep_ysu_n_mm5 138
Dec.  Total 158 263 149 slucm_myj_n_mo 108
Urban 167 362 139  slucm_bl_n_mo 102
Rural 149 163 130 slucm_myj_n_mo 115
WVel [m/s] Apr.  Total 1.0 1.0 0.9  slucm_myj_nmp_mo 1.0
Urban 1.1 1.0 0.9  bep_bl_n_mo 0.9
Rural 1.0 1.1 0.9  sluem_myj_nmp_mo 1.1
Jul. Total 0.9 1.0 0.8  sluem_myj_nmp_mo 0.9
Urban 09 1.0 0.8 sluem_myj_nmp_mo 0.8
Rural 0.9 1.0 0.8  slucm_myj_nmp_mo 0.9
Sep.  Total 1.0 0.9 0.8  bep_myj_nmp_mo 0.9
Urban 1.0 0.8 0.7  bep_myj_nmp_mo 0.8
Rural 1.0 1.0 0.8  bep_myj_nmp_mo 1.0
Dec.  Total 1.1 1.2 0.9  sluem_myj_nmp_mo 1.1
Urban 1.1 0.9 0.8  bep_myj_nmp_mo 0.9
Rural 1.2 1.3 1.0 slucm_myj_nmp_mo 1.2
WDir [°] Apr. Total 32 33 30  slucm_myj_n_mo 32
Urban 39 39 36  sluem_myj_n_mo 38
Rural 28 29 26 slucm_myj_n_mo 29
Jul. Total 33 33 32 slucm_bl_n_mo 32
Urban 37 38 36  bep_bl_nmp_mm5 35
Rural 30 31 29  bep_bl_n_mo 30
Sep.  Total 35 35 33  slucm_myj_n_mo 36
Urban 41 41 38  slucm_myj_n_mo 42
Rural 31 31 30  sluem_myj_n_mo 33
Dec.  Total 32 34 29  sluem_myj_nmp_mo 30
Urban 37 39 35  slucm_myj_nmp_mo 33
Rural 30 32 26 slucm_myj_nmp_mo 29

Table A.4: Comparison of Mean Absolute Bias between WRF simulations and ERAS5 for 2 m-temperature, PBL
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height, wind velocity and wind direction rounded to instrument precision. Mean Absolute Bias
values are given for each month for either averaged over all, only urban or only non-urban stations
(Total, Urban, Rural). They are given for the average over all simulations using SLUCM and using
BEP urban parametrization schemes. Also, the best WRF simulation is given with its name and
MAB value. For comparison, ERAS performance is given and rows where WRF outperforms ERAS
on full precision are highlighted in grey. Table taken from Pilz et al. (2026).



avg.  avg. best WRF simulation avg.

SLUCM BEP RMSE name ERAS

T2 [°C] Apr. Total 2.3 29 2.2 slucm_ysu_nmp_mm5 1.8
Urban 22 34 2.0  sluem_ysu_nmp_mmS5 1.6

Rural 2.4 2.6 2.3 slucm_ysu_nmp_mm5 2.0

Jul. Total 2.0 2.2 1.8 slucm_ysu_nmp_mm35 1.6
Urban 1.8 2.2 1.6  slucm_ysu_nmp_mm5 1.4

Rural 2.1 2.2 1.9  bep_ysu_n_mm5 1.8

Sep.  Total 2.0 2.4 1.9  slucm_ysu_nmp_mm35 1.6
Urban 1.8 2.7 1.6 slucm_ysu_nmp_mmS5 1.4

Rural 22 2.3 2.0  bep_ysu_n_mm5 1.8

Dec.  Total 1.8 2.3 1.7 slucm_ysu_nmp_mm35 1.3
Urban 1.9 2.8 1.8  slucm_ysu_nmp_mm5 1.1

Rural 1.7 2.0 1.7 sluem_bl_nmp_mo 1.4

PBLH [m] Apr. Total 271 346 249  slucm_bl_n_mm5 158
Urban 293 452 271 sluem_bl_nmp_mm35 134

Rural 249 240 208  bep_ysu_n_mmS5 182

Jul. Total 268 308 221 sluem_myj_n_mo 191
Urban 267 345 215  slucm_myj_n_mo 208

Rural 270 270 226 sluem_myj_n_mo 174

Sep.  Total 240 310 203 slucm_myj_n_mo 137
Urban 247 367 206  slucm_myj_n_mo 137

Rural 234 253 189  bep_ysu_n_mmS5 138

Dec.  Total 158 263 149 slucm_myj_n_mo 109
Urban 167 362 139  slucm_bl_n_mo 102

Rural 149 163 130  slucm_myj_n_mo 115

WVel [m/s] Apr.  Total 1.3 1.3 1.1  sluem_myj_nmp_mo 1.3
Urban 1.4 1.3 1.1 bep_bl_n_mo 1.1

Rural 1.3 1.4 1.1 slucm_myj_nmp_mo 1.4

Jul. Total 1.2 1.3 1.0 slucm_myj_nmp_mo 1.1
Urban 1.2 1.3 1.1 slucm_myj_nmp_mo 1.0

Rural 1.2 1.3 1.0  sluem_myj_nmp_mo 1.1

Sep.  Total 1.3 1.2 1.0  bep_myj_nmp_mo 1.2
Urban 1.3 1.0 1.0  bep_myj_nmp_mo 1.0

Rural 1.3 1.3 1.0  bep_myj_nmp_mo 1.3

Dec.  Total 1.5 1.5 1.2 sluem_myj_nmp_mo 1.3
Urban 1.4 1.2 1.1  bep_myj_nmp_mo 1.1

Rural 1.5 1.7 1.2 sluem_myj_nmp_mo 1.4

WDir [°] Apr. Total 47 48 45  slucm_myj_n_mo 46
Urban 55 55 52 sluem_myj_n_mo 53

Rural 42 43 41 slucm_myj_n_mo 42

Jul. Total 47 48 46 slucm_myj_n_mo 44
Urban 52 53 50  bep_bl_nmp_mm5 49

Rural 44 45 43 slucm_myj_n_mo 41

Sep. Total 50 50 48  slucm_myj_n_mo 51
Urban 58 56 54  bep_myj_nmp_mo 57

Rural 46 46 45  slucm_myj_n_mo 48

Dec. Total 46 48 43 sluem_myj_nmp_mo 42
Urban 51 53 49 slucm_myj_nmp_mo 44

Rural 43 46 39  sluem_myj_nmp_mo 40

Table A.5: Comparison of Root Mean Squared Error between WRF simulations and ERAS5 for 2 m-temperature,
PBL height, wind velocity and wind direction rounded to instrument precision. Root Mean Squared
Error values are given for each month for either averaged over all, only urban or only non-urban
stations (Total, Urban, Rural). They are given for the average over all simulations using SLUCM and
using BEP urban parametrization schemes. Also, the best WRF simulation is given with its name
and MAB value. For comparison, ERAS performance is given and rows where WRF outperforms
ERAS on full precision are highlighted in grey. Table taken from Pilz et al. (2026).
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avg. avg. best WRF simulation avg.
SLUCM BEP MAB name ERAS
T2 [°C] Apr. Day 1.5 1.7 1.4 sluem_ysu_nmp_mm5 1.2
Night 2.2 3.0 2.1 slucm_ysu_nmp_mm5 1.8
Jul. Day 1.4 1.5 1.2 sluem_ysu_nmp_mm5 1.2
Night 1.8 2.1 1.7 sluem_ysu_nmp_mm5 1.5
Sep. Day 1.4 1.7 1.3 sluem_ysu_nmp_mm5 1.2
Night 1.8 2.3 1.7 sluem_ysu_nmp_mm5 1.5
Dec. Day 1.3 1.9 1.3 sluem_bl_nmp_mo 1.1
Night 14 1.7 1.4 sluem_bl_nmp_mo 1.0
PBLH [m] Apr. Day 310 471 270 sluem_ysu_n_mm5 212
Night 154 144 100 bep_bl_nmp_mo 64
Jul. Day 255 310 207 sluem_myj_n_mo 200
Night 235 213 167 sluem_myj_n_mo 114
Sep. Day 278 385 234 sluem_myj_n_mo 171
Night 133 163 108 slucm_ysu_nmp_mm5 79
Dec. Day 157 293 144 slucm_myj_n_mo 115
Night 135 222 126 sluem_bl_nmp_mmS5 89
WVel [m/s] Apr. Day 0.9 1.1 0.9 sluem_ysu_nmp_mm5 1.0
Night 1.1 1.0 0.8 bep_myj_nmp_mo 1.0
Jul. Day 0.9 1.0 0.8 sluem_myj_nmp_mo 0.9
Night 1.0 0.9 0.8 bep_myj_nmp_mo 0.9
Sep. Day 0.9 0.9 0.8 bep_myj_nmp_mo 0.9
Night 1.1 0.9 0.8 bep_myj_nmp_mo 0.9
Dec. Day 1.1 1.1 0.9 sluem_myj_nmp_mo 1.1
Night 1.1 1.2 0.9 slucm_myj_nmp_mo 1.1
WDir [°] Apr.  Day 30 31 29 sluem_bl_nmp_mo 31
Night 39 39 34 slucm_myj_n_mo 39
Jul. Day 31 32 30 sluem_ysu_n_mmS5 30
Night 41 40 37 sluem_myj_n_mo 39
Sep. Day 34 35 34 slucm_myj_n_mo 37
Night 39 38 34 slucm_myj_n_mo 39
Dec. Day 32 33 29 slucm_myj_nmp_mo 30
Night 34 36 30 slucm_myj_nmp_mo 32

Table A.6: Comparison of Mean Absolute Bias between WRF simulations and ERA5 for 2 m-temperature,
PBL height, wind velocity and wind direction rounded to instrument precision. Mean Absolute
Bias values are averaged over all stations and given for each month averaged over either daytime or
non-daytime hours. These were selected based on the sunrise and sunset of the first of the respective
month. They are given for the average over and all simulations using SLUCM and using BEP urban
parametrization schemes. Also, the best WRF simulation is given with its name and MAB value. For
comparison, ERAS performance is given and rows where WRF outperforms ERAS on full precision
are highlighted in grey. Table taken from Pilz et al. (2026).
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MACRO-2018

Known Issues

The main known issue with the MACRO-2018 dataset are the slight deviations in total
emissions due to regridding (cf. Section 3.1.3). If totally perfect conservation of the
field is required, these can then be scaled in post-processing using the factors given in
Table 3.1. However, when doing so the pre-aggregated fields (CO2_ANTHRO, CO2_TOTAL, and
C02_TOTAL_V2) in the dataset should not be used.

Careful selection of the appropriate boundary layer scheme for the location of interest is
an important consideration for users. Our studies find the YSU scheme to underperform the
MY]J scheme at the 15 m inlet of SAC station (Saclay in the vicinity of Paris; cf. Section 3.4.4).

Users should be careful around topographically complex areas like the Alps. Here, the
relatively low resolution in the Germany and Europe domains (5 and 15 km) can contribute

to significant deviations like at IPR station (Ispra, Italy; cf. Section 3.4.4).
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Simulated CO, conc. (VPRM v1) [ppm]
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Figure A.9: 2D Histogram of simulated CO, and CO concentrations vs measurements only for stable
PBL development phase. Lower panels show CO, vs. CO biases for both VPRM versions.
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CO3 [ppm]

Figure A.11: Timeseries of simulated and measured daily average CO, concentrations (solid blue and black lines) and seasonal cycle fits (dashed blue and
black lines).
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CO3 [ppm]

Time

Figure A.13: Timeseries of simulated and measured daily average CO, concentrations (solid blue and black lines) and seasonal cycle fits (dashed blue and
black lines).
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450 | LIN 40m

CO; [ppm]

Figure A.15: Timeseries of simulated and measured daily average CO; concentrations (solid blue and black lines) and seasonal cycle fits (dashed blue and
black lines).
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Table A.8: Statistics of CO, concentrations averaged over all inlets for each station and boundary
layer scheme. Stations are sorted by average MAB. Average at bottom is computed over
per-station values, which are averaged over the respective inlets. As such it differs from

Table A.10.
Inlets Category MB [ppm] MAB [ppm] RMSE [ppm] Pearson-R

MYJ YSU MYJ YSU MYJ YSU MYJ YSU
UTO 1.0 Remote 1.0 09 33 33 4.2 42 090 0.90
HTM 3.0 Remote 0.9 07 33 32 4.1 41 090 090
JFJ 1.0 Remote 29 27 3.6 33 4.2 39 085 0.87
HFD 1.0 Rural 1.5 1.3 3.6 34 4.7 45 089 0.89
BSD 3.0 Rural 2.5 25 35 3.5 4.4 43 091 091
NOR 3.0 Remote -06 -06 3.7 3.6 54 53 082 081
BIS 1.0 Remote 0.5 04 38 3.8 53 53 079 0.79
HPB 3.0 Rural 1.3 0.8 3.8 3.7 4.8 48 086 0.84
KRE 4.0 Rural 1.3 1.1 3.7 3.6 4.7 46 087 0.87
WAO 1.0 Rural 1.6 1.5 40 40 52 51 086 0.86
TOH 4.0 Rural 32 30 4.0 3.9 5.0 48 090 090
TRN 3.0 Rural 0.5 02 4.1 4.0 6.0 59 080 0.81
BRM 4.0 Rural 1.0 03 40 41 52 54 083 081
OPE 3.0 Rural 1.6 14 45 4.5 6.2 62 081 0.79
LIN 3.0 Rural 0.2 02 45 4.5 6.3 63 084 0.84
HUN 4.0 Rural -20 -18 6.1 59 9.0 86 0.74 0.76
SAC 2.0 Urban -04 35 52 7.1 7.5 101 0.80 0.75
KIT 4.0 Urban -2.6 -32 72 74 106 109 075 0.74
HEI 1.0 Urban 43 43 8.0 84 122 129 0.76 0.72
IPR 3.0 Rural -97 -102 114 119 162 169 0.69 0.65
Average 0.0 0.0 47 4.8 7.2 7.5 083 0.82
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Table A.9: Statistics of CO concentrations averaged over all inlets for each station and boundary
layer scheme. Stations are sorted by average MAB. Average at bottom is computed over
per-station values, which are averaged over the respective inlets. As such it differs from

Table A.11.
Inlets Category MB [ppb] MAB [ppb] RMSE [ppb] Pearson-R

MYJ YSU MYJ YSU MYJ YSU MYJ YSU
JF] 1.0 Remote 4.8 34 113 10.6 15.8 15.0 0.72 0.73
NOR 3.0 Remote -11.5 -11.8 134 13.7 186 19.1 090 0.89
HTM 3.0 Remote -11.3 -12.6 151 156 250 260 0.88 0.88
TRN 3.0 Rural -54 -75 150 151 22.1 228 0.85 0.85
OPE 3.0 Rural -89 -109 170 176 259 27.0 0.82 0.81
HPB 3.0 Rural -92 -12.0 178 19.1 274  29.6 0.80 0.78
KRE 3.0 Rural -17.3 -195 236 249 387 40.6 0.80 0.79
SAC 2.0 Urban 03 266 256 442 399 643 0.72 0.63
IPR 3.0 Rural -70.7 -75.6 782 825 1359 142.8 0.58 0.50
Average -144 -133 241 271 524 574 0.79 0.76
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Table A.10: Statistics of CO; concentrations for each inlet and boundary layer scheme. Inlets are

sorted by average MAB.
Inlet height MB [ppm] MARB [ppm] RMSE [ppm] Pearson-R
Station [m agl] MYJ] YSU MYJ YSU MYJ] YSU MYJ YSU
HTM 150 1.4 1.2 3.0 29 3.8 37 092 092
UTO 57 1.0 0.9 33 33 42 42 090 090
HTM 70 0.9 0.6 33 32 43 43 090 089
NOR 100 0.0 -0.2 33 33 4.6 47 086 085
KRE 250 1.4 1.3 35 33 43 42 090 090
BSD 248 2.6 2.5 35 34 44 43 090 090
JF] 13 2.9 2.7 3.6 33 42 39 085 087
HFD 100 1.5 1.3 3.6 34 47 45 089 0289
BSD 108 24 2.3 3.6 35 4.5 44 090 090
KRE 125 1.3 1.1 3.7 35 4.6 44 089 088
BRM 212 0.4 -0.1 3.6 3.6 49 50 083 081
HPB 131 1.4 1.0 3.7 3.6 4.6 46 086 085
NOR 58 -0.6 -0.7 3.7 3.7 5.6 56 081 0.80
TRN 180 1.1 0.9 3.8 3.7 5.3 52 084 0.84
HTM 30 0.5 0.2 3.8 3.7 5.1 52 086 085
HPB 93 1.2 0.8 3.8 3.7 4.8 48 085 084
BIS 47 0.5 0.4 3.8 3.8 53 53 079 079
TOH 147 29 2.8 3.8 3.8 4.8 4.7 0.90 0.89
BRM 132 0.1 -0.6 3.8 39 5.0 52 083 0.8l
BSD 42 2.6 2.6 39 39 5.0 49 089 0289
KRE 50 1.3 0.9 4.0 3.8 5.1 50 086 085
TOH 110 3.1 2.9 4.0 39 49 48 090 089
OPE 120 1.6 1.3 4.0 4.0 5.4 53 085 0.84
TOH 76 3.1 2.9 4.0 3.9 5.1 49 090 089
WAO 10 1.6 1.5 4.0 4.0 52 51 086 0.86
HPB 50 1.2 0.5 4.1 4.0 5.2 52 084 082
LIN 98 0.9 0.8 42 4.1 5.7 57 085 085
NOR 32 -1.1 -1.0 42 4.1 6.6 65 076 0.76
TRN 100 0.4 0.0 4.4 4.3 6.5 64 079 079
BRM 44 0.4 -0.5 4.4 4.5 5.8 6.0 081 079
HUN 115 -0.3 -04 4.5 45 6.4 63 084 084
TOH 10 3.6 34 4.6 4.5 5.8 56 087 087
SAC 100 0.0 -1.1 4.5 4.6 6.4 6.7 084 083
LIN 40 0.3 0.2 4.6 4.6 6.4 64 083 083
OPE 50 1.6 1.1 4.6 4.5 6.5 64 080 0.79
TRN 50 0.0 -0.2 49 49 7.4 74 076  0.76
KRE 10 0.8 0.6 5.0 5.0 7.5 74 075 0.5
HUN 82 -0.6 -0.8 5.1 5.0 7.3 73 081 081
LIN 10 -0.7 -0.3 5.6 5.7 8.7 86 078 0.79
OPE 10 1.6 1.7 5.7 5.9 8.4 88 072 0.70
HUN 50 -1.7 -1.8 6.2 6.2 9.5 9.4 0.74 0.74
BRM 12 2.9 2.6 6.1 6.4 8.1 86 076 0.71
KIT 200 -1.5 =22 6.3 6.4 9.3 9.6 074 073
100 -1.9 2.7 72 74 106 11.0 073 0.72
HEI 30 -43 -4.3 8.0 84 122 129 076 0.72
KIT 60 -3.0 -39 8.1 84 123 127 072 0.71
SAC 15 -0.9 8.2 64 118 98 182 076  0.67
KIT 30 -3.9 -39 9.1 9.4 14.2 14.5 0.73 0.72
HUN 10 =55 -4.1 103 96 176 158 0.60 0.68
IPR 100 -84 -89 101 106 145 152 070  0.66
60 -9.8 -104 115 121 164 172  0.69 0.65
40 -11.0 -11.5 129 134 184 19.1 067 0.63
Average -0.1 -0.2 5.1 52 8.0 84 081 0.81
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Table A.11: Statistics of CO concentrations for each inlet and boundary layer scheme. Inlets are

sorted by average MAB.
Inlet height MB [ppb] MAB [ppb] RMSE [ppb] Pearson-R
Station  [m agl] MYJ YSU MYJ YSU MYJ] YSU MYJ YSU
JFJ 13 4.8 34 113 106 158 150 0.72 0.73
NOR 32 -11.0 -109 133 13,5 185 188 0.89 0.89
58 -11.5 -120 13.6 139 188 193 0.89 0.89
100 -11.8 -125 13.6 141 188 195 090 0.89
TRN 180 -56 =76 141 145 214 223 085 0.84
HTM 30 -10.5 -11.8 150 155 252 26.1 0.88 0.88
150 -12.0 -133 153 158 251 26.1 0.89 0.89
70 -11.3 -128 153 159 254 264 0.88 0.88
TRN 100 -59 84 157 159 235 244 084 0.84
50 -49 -69 171 170 253 259 083 0383
OPE 120 -9.7 -11.7 170 17.7 257 268 0.81 0.80
50 -9.1 -114 175 182 269 278 081 0.1
HPB 131 -89 -114 173 186 264 285 0.80 0.78
OPE 10 -79 95 176 185 276 288 0.80 0.79
HPB 93 -95 -123 181 194 281 302 0.80 0.78
50 -95 -129 188 202 293 316 0.78 0.77
SAC 100 -63 -139 202 224 314 350 081 0.79
KRE 125 -152 -174 218 23.1 341 361 081 0.80
250 -18.6 -202 238 248 38.6 399 080 0.79
50 -142 -172 240 254 391 415 079 0.78
SAC 15 69 679 341 834 560 1278 0.61 0.54
IPR 100 -64.2 -693 703 74.6 1227 1294 056 0.46
60 =709 =762 78.6 832 1373 1445 057 048
40 -76.0 -804 86.0 90.1 1513 157.8 0.58 0.1
Average -16.5 -16.1 255 288 560 635 079 0.77
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Table A.12: Comparison of CO, concentration simulation performance across stations and phases of
PBL development. This includes only situations with winds over Sms~'. All entries are
averaged over all available inlets.

urban rural remote all

MYJ YSU MYJ YSU MYJ YSU MYJ YSU

stable MB [ppm] 2.1 1.5 24 2.2 1.9 1.9 23 2.0
MAB [ppm] 4.3 4.4 3.8 3.8 3.1 3.0 3.8 3.7

RMSE [ppm] 5.8 6.1 4.8 4.8 39 3.7 4.8 4.8

Pearson-R [1] 0.86 0.83 0.89 0.88 091 091 0.89 0.88

transition MB [ppm] 0.6 -0.1 1.1 0.7 1.3 1.0 1.1 0.7
MAB [ppm] 4.5 4.7 39 4.1 3.1 3.0 39 4.0

RMSE [ppm] 6.5 7.2 5.1 54 3.8 3.8 5.1 54

Pearson-R [1] 0.80 0.78 0.84 082 0.89 0.88 0.84 0.83

night MB [ppm] 02 -13 02 -02 05 0.2 02 -03
MAB [ppm] 4.6 5.7 4.3 4.5 3.2 3.2 4.1 4.4

RMSE [ppm] 6.6 8.6 55 5.8 4.1 4.2 54 5.9

Pearson-R [1] 0.72 0.64 0.79 077 086 0.85 0.79 0.77

all MB [ppm] 06 -04 038 04 1.1 0.9 0.8 0.4
MAB [ppm] 4.5 5.2 4.2 4.4 3.2 3.1 4.0 43

RMSE [ppm] 6.4 7.8 54 5.7 4.0 4.0 53 5.7

Pearson-R [1] 0.80 0.73 0.84 082 089 0.88 0.84 0.82
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Table A.13:

Comparison of CO concentration simulation performance across stations and phases of
PBL development. This includes only situations with winds over 5ms~'. All entries are
averaged over all available inlets.

urban rural remote all

MYJ YSU MYJ YSU MYJ YSU MYJ YSU

stable MB [ppb] 95 -11.1 -147 -185 -94 -104 -12.7 -155
MAB [ppb] 135 145 187 214 124 128 164 184

RMSE [ppb] 214 228 309 358 182 18.8 264 298

Pearson-R [1] 090 088 0.77 074 090 090 0.82 0.80

transition MB [ppb] 92 80 -175 -219 -100 -109 -14.6 -17.5
MAB [ppb] 155 163 227 265 134 139 194 220

RMSE [ppb] 2477 253 367 427 204 212 309 35.0

Pearson-R [1] 0.88 0.85 0.75 076 088 0.88 0.80 0.80

night MB [ppb] -89 -105 -22.7 -29.2 -109 -11.5 -181 -22.5
MAB [ppb] 155 186 288 347 145 147 235 27.6

RMSE [ppb] 243 286 46.1 552 231 236 375 438

Pearson-R [1] 0.87 0.87 0.73 070 087 087 0.78 0.76

all MB [ppb] 92 -109 -209 -274 -102 -11.0 -16.8 -21.2

MAB [ppb] 151 165 263 321 136 140 21.7 255
RMSE [ppb] 23.8 256 43.1 523 21.1 218 351 412
Pearson-R [1] 0.88 0.87 0.74 0.72 0.88 0.88 0.79 0.78
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Emissions Estimation
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Figure A.16: Averaging kernel and gain matrix of full state vector. Averaging kernel shows large
elements in the lower left off-diagonal block, which shows the influence of the emissions
state vector elements on the background estimation. These elements are mostly in the
upwind cells. On the other side of the diagonal, elements are smaller and the influence
of the background elements on the emissions estimation is visible. The gain matrix
shows the influence of the measurements on the state vector elements. Due to the large
correlations between background elements, the influences are quite similar across them.
The largest influences of the measurements on the emissions state vector elements are
for the Berlin city cell.
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Acronyms

[UCP?

ARW

ATC
AVENGERS

BASF
BEM
BEP
BMFTR
Boulac
BTR
CAMS
CDO
CDR
CoCO2
cop
CORINE
CRDS
CRS
DEM
DKRZ
DLR
DST
DWD
E-PRTR
ECMWF
EDGAR
EMEP/CEIP

Urban Climates Under Change

Advanced Research WRF

Atmospheric Thematic Center

Attributing and Verifying European and National Greenhouse Gas
and Aerosol Emissions and Reconciliation with Statistical Bottom-
up Estimates

Badische Anilin- und Sodafabrik

Building Energy Model

Building Environment Parametrization

German Ministry of Research, Technology, and Space
Bougeault-Lacarere

Biennial Tranparency Report

Copernicus Atmosphere Monitoring Service

Climate Data Operators

carbon dioxide removal

Prototype system for a Copernicus CO; service

Conference of Parties

Coordination of Information on the Environment

cavity ring-down spectrometer

coordinate reference system

digital elevation model

German Climate Computation Center

The German Aerospace Center

daylight savings time

German Weather Service

European Pollutant Release and Transfer Register

European Center for Medium-Range Weather Forecasts
Emissions Database for Global Atmospheric Research

European Monitoring and Evaluation Programme/Centre on Emis-

sion Inventories and Projections
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Acronyms

ERAS5 ECMWEF Reanalysis v5

ERL Environmental Research Laboratory

ESMF Earth System Modelling Framework

ETF Enhanced Transparency Framework

EU European Union

EVI enhanced vegetation index

FAA Federal Aviation Administration

FFT fast Fourier transform

FLEXPART Flexible Particle dispersion model

GAINS Greenhouse Gas — Air Pollution Interactions and Synergies

GHG greenhouse gas

GKM GroBkraftwerk Mannheim
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