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ABSTRACT

Recent efforts to incorporate a range of molecular charac-
teristics into diagnostic guidelines underscore the neces-
sity of comprehending the intricacies of tumour biology
for better clinical decision-making. The role of environ-
mental factors and cellular interactions is also increasingly
recognised as a vital component in understanding cancer
growth and progression. A complex cellular and spatial
landscape is particularly evident in gliomas, which repre-
sent highly heterogeneous and plastic brain tumours. In
this work, I develop a robust computational framework
for the analysis of spatial single cell transcriptomics data
and utilise it to conduct two studies on the spatial biology
of gliomas.

In the first study, I conducted a comparative analysis of
necrotic tissues in ten patients who were previously diag-
nosed with glioblastoma and subsequently presented with
either tumour progression or radionecrosis. To this end,
I generated a spatial single cell transcriptomic atlas con-
sisting of over a million of cells and encompassing sev-
eral brain-resident cell types and tumour states. The anal-
ysis of the annotated data revealed that radionecrotic sam-
ples contained abundant tumour cells with downregulated
EGEFR expression and were infiltrated by macrophages that
contributed to gliosis. In contrast, samples with progres-
sion contained progenitor-like and cycling tumour cells
that maintained high EGFR expression. The study offers
invaluable insights into the spatial landscape and cellular
interplay in radionecrosis and holds the potential to in-
form future research aimed at improving diagnostic and
therapeutic strategies for glioblastoma patients.

In the second study, I designed a custom gene panel to
enable a thorough investigation into the intricacies of cel-
lular and spatial composition of over 300 samples from
patients diagnosed with seven different glioma types. The
examination of the annotated data set revealed both dis-



parities and commonalities in the tumour expression pat-
terns among adult-type diffuse gliomas and ependymal
tumours. The spatial resolution permitted systematic ex-
amination of the spatial neighbourhoods that were linked
to individual tumour transcription programs. The study
establishes the foundation for future research projects in
the group that will employ tailored panels and offers a
glimpse into the spatial organisation of gliomas. I believe
that the generated atlas along with standardised clinical
data can facilitate further attempts to identify clinically rel-
evant associations.

To summarise, I posit that the research conducted within
the scope of this dissertation stands to provide a valuable
basis for future endeavours in the spatial field. Further-
more, the biological insights derived from the generated
data can be used to inform a more focused exploration of
the intricate biology of necrotic tissue and the broader spa-
tial patterns characterising multiple gliomas in the future.



ZUSAMMENFASSUNG

Jiingste Bemiihungen, eine Reihe molekularer Merkmale
in Diagnoserichtlinien zu integrieren, unterstreichen die
Notwendigkeit, die Feinheiten der Tumorbiologie zu ver-
stehen, um bessere klinische Entscheidungen treffen zu
konnen. Auch die Rolle von Umweltfaktoren und zellula-
ren Interaktionen wird zunehmend als wichtiger Bestand-
teil fiir das Verstandnis des Wachstums und Fortschreitens
von Krebserkrankungen anerkannt. Eine komplexe raumli-
che Landschaft zeigt sich besonders deutlich bei Gliomen,
die hochgradig heterogene und plastische Tumoren dar-
stellen. Ein besseres Verstdandnis der Zusammensetzung
des rdumlichen Gliom—Okosystems hat das Potenzial, die
Entwicklung neuartiger Behandlungsstrategien zu beein-
flussen. In dieser Arbeit entwickle ich einen robusten rech-
nerischen Rahmen fiir die Analyse rdumlicher Einzelzell-
Transkriptomikdaten und nutze ihn, um zwei Studien zur
raumlichen Biologie von Gliomen durchzufiihren.

In der ersten Studie fiihre ich eine vergleichende Un-
tersuchung von nekrotischem Gewebe bei zehn Patienten
durch, bei denen zuvor ein Glioblastom diagnostiziert wor-
den war und die anschlieffend entweder eine Tumorpro-
gression oder eine Strahlennekrose aufwiesen. Im Rahmen
dieser Studie habe ich einen Einzelzell-Transkriptomik-At-
las erstellt, der aus tiber einer Million Zellen besteht und
mehrere im Gehirn anséssige Zellen und Tumorzustdnde
umfasst. Die Analyse der annotierten Daten ergab, dass
die radionekrotischen Proben reichlich Tumorzellen mit
heruntergeregelter EGFR-Expression enthielten und von
grenznahen Makrophagen infiltriert waren, die zur Gliose
beitrugen. Im Gegensatz dazu enthielten die Proben mit
Progression progenitordhnliche und zyklische Tumorzel-
len, die eine hohe EGFR-Expression aufwiesen. Die Stu-
die bietet wertvolle Einblicke in die raumliche Landschaft
und die zelluldren Wechselwirkungen bei der Radionekro-
se und hat das Potenzial, zukiinftige Studien zur Verbes-



serung der Diagnose- und Therapiestrategien fiir Glioblas-
tom-Patienten zu beeinflussen.

In der zweiten Studie entwerfe ich ein mafsigeschneider-
tes Genpanel, um eine griindliche Untersuchung der Fein-
heiten der zelluldren Landschaft und der rdumlichen Zu-
sammensetzung von tiber 300 Proben von Patienten zu er-
moglichen, bei denen sieben Arten von Gliomen diagnos-
tiziert wurden. Die Untersuchung des annotierten Daten-
satzes ergab sowohl Unterschiede als auch Gemeinsamkei-
ten in den Tumorexpressionsmustern zwischen diffusen
Gliomen vom adulten Typ und ependymalen Tumoren.
Die rdumliche Auflosung ermoglichte eine systematische
Untersuchung der rdumlichen Nachbarschaften, die mit
individuellen Tumortranskriptionsprogrammen in Verbin-
dung standen. Die Studie legt den Grundstein fiir zukiinf-
tige Forschungsprojekte der Gruppe, die mafsgeschneider-
te Panels einsetzen werden, und bietet zudem einen Ein-
blick in die rdumliche Architektur von Gliomen. Ich bin da-
von iiberzeugt, dass der generierte Datensatz zusammen
mit den zugehorigen klinischen Daten die Identifizierung
klinisch relevanter Zusammenhinge erleichtern kann.

Ich gehe davon aus, dass die im Rahmen dieser Disser-
tation durchgefiihrten Forschungen eine wertvolle Grund-
lage fiir zukiinftige Arbeiten im rdumlichen Bereich bil-
den. Dartiiber hinaus konnen die aus den generierten Da-
ten gewonnenen biologischen Erkenntnisse genutzt wer-
den, um in Zukunft eine gezieltere Erforschung der kom-
plexen Merkmale nekrotischen Gewebes und der breiteren
rdumlichen Muster, die multiple Gliome charakterisieren,
zu ermoglichen.
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"We have no reason to mistrust our world, for
it is not against us. Has it terrors, they are our
terrors; has it abysses, those abysses belong to
us; are dangers at hand, we must try to love
them. And if only we arrange our life accord-
ing to that principle which counsels us that we
must always hold to the difficult, then that which
now still seems to us the most alien will become
what we most trust and find most faithful. How
should we be able to forget those ancient myths
about dragons that at the last moment turn into
princesses; perhaps all the dragons of our lives
are princesses who are only waiting to see us
once beautiful and brave. Perhaps everything ter-
rible is in its deepest being something helpless
that wants help from us."

— RAINER M. RILKE
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ABOUT THIS DISSERTATION

The present dissertation delineates my endeavour to estab-
lish a framework for the analysis of spatial data, with the
ultimate objective of contributing to the field of cancer re-
search. As a member of a family of medical professionals,
my fascination with medicine and human diseases was
kindled from a young age. I was therefore honoured to
have the opportunity to contribute to that particular field
of science through my work. Drawing upon both compu-
tational analysis and foundational biology, with this work
I seek to optimise the balance between computational effi-
ciency and biological plausibility.

The present dissertation is structured in the following
manner. Chapter 1 serves as an introductory literature re-
view, which underscores the significance of spatial biology
in both general scientific research and the specific context
of cancer studies. Subsequent to this, I present an overview
of the biology of gliomas, which were selected for estab-
lishing the methodological framework to derive novel in-
sights. The Chapter concludes with an overview of the spa-
tial profiling technologies and computational methods for
the analysis of the associated data.

The computational aspects of my work and underlying
rationale are presented in Chapter 2. In this Chapter, I es-
tablish the fundamental principles of analysis, identify the
most effective methods that align with the specific objec-
tives of spatial studies, and discuss innovative approaches
that have been developed within the scope of this work.

The results of the implementation of the derived meth-
ods are outlined in two chapters, with each devoted to a
distinct project. In Chapter 3, I employ the devised frame-
work for delineating the spatial architecture of necrotic
tissue in glioblastoma patients. In Chapter 4, I present a
large-scale pan-glioma project, to which I contributed at
the early stages by developing the essential prerequisites,
meticulously preparing and consolidating the data, and
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formulating the initial findings based on my analysis of
the data. The two Chapters each commence with a suc-
cinct overview of the background and methods relevant to
the particular study, followed by the presentation of the
analysis results and a discussion of the identified findings.

I conclude with Chapter 5, where I discuss the broader
context of my work and outline potential avenues for fu-
ture development and refinement, building upon the foun-
dation that I have sought to establish.
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INTRODUCTION

In this Chapter, I provide a comprehensive literature re-
view to establish the context for subsequent parts of the
thesis, which present the research results. The introduc-
tion starts with a rationale for studying the spatial aspects
of cancer evolution. It then proceeds to delve into the in-
tricate biology of gliomas, which have been selected as a
primary subject to establish a framework for spatial anal-
ysis. The subsequent parts will address experimental ap-
proaches and consider existing computational methods that
facilitate spatial analysis of tumours.

Section 1.1, Section 1.3 and Figures therein are repro-
duced from my first author publication in Nature Reviews
Genetics [1]. For that publication, I conducted literature
search, designed all figures, and contributed to the writ-
ing of the text. In comparison with the published review,
the text has been updated and substantially rewritten in
order to incorporate new evidence and to suit the presen-
tation of this thesis. The scientific content remains similar.
Section 1.2 and Section 1.4 present new contributions.

1.1 SPATIAL BIOLOGY OF CANCER

Cancer is a disease that evolves within the limits of the
human body (Figure 1.1). Its growth is naturally restricted
by the physical constraints of the organs and influenced
by interactions with neighbouring cells. Consequently, it is
essential that spatial context is considered in the study of
cancer evolution to gain a comprehensive understanding
of the disease. Here I examine in what ways spatial archi-
tecture influences the evolution of healthy and cancerous
tissue.
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28 INTRODUCTION

Spatial biology Single cell
Genomics
Spatial subclonal Subclonal Single-cell genotypes,
variegation, early interfaces latest evolution
subclonal evolution
Anatomy

|/ | Cancersite Organ anatomy Micro-anatomy Cytomorphology

Microenvironment

Spatially segregated Interactions Cell typing
microenvironments between cells
lcm 1-0.1 mm 10 um

Figure 1.1: Genetic, anatomical, and cellular contexts of cancer evolu-
tion. Spatial analyses add a new level of complexity
to single cell studies of cancer. Adapted with permis-
sion from [1].

1.1.1  Tissue architecture and clonal evolution

It has long been established that cancers are mosaics of
A croneisthe  clones shaped by positive selection [2—5]. However, it was
progeny of asingle  only in recent years that the presence of clonal expansion
ancestral cell. Its 0 morphologically normal tissues began to be recognised.
mc;eii;j:fgz Evidence suggests that normal cells too exhibit continu-
population is called ous accumulation of mutations in the course of the ageing
acroNnaL  process, which in turn leads to heterogeneity in healthy
EXPANSION. tissues [6]. It is conceivable that in the context of selective
pressures these mosaics of normal subclones can transition
into expanded clones. Spatial context, including tissue ar-
chitecture and microscopic structure, plays a pivotal role

in shaping the spatial evolution of mutant clones [7, 8].



1.1 SPATIAL BIOLOGY OF CANCER

Tissues exhibit a spectrum of microscopic architectures,
with some demonstrating greater spatial constraints and
others exhibiting less structural complexity (Figure 1.2).
An exemplary illustration of the absence of anatomical bar-
riers is the bloodstream, where clonal populations can dis-
seminate throughout the entire blood system and engage
in unrestricted competition with one another [9]. Conse-
quently, progeny of a single mutated haematopoietic stem
cell can reach a variant allele frequency (VAF) of up to 60%
— a common phenomenon that is closely associated with
ageing and is known as CLONAL HAEMATOPOIESIS [10,
11]. Mutations detected in clonal haematopoiesis include
alterations in known cancer DRIVERS, which confer a se-
lective advantage to the carrying clones and thereby facili-
tate their expansion with age [12].

Colon Skin Blood
Subclones are confined within Clones and subclones are > /HSC
single crypts mosaically distributed ® @
| °®qe @
o @
U , e ®¢
@ _©

Crypts Planar epithelium Well mixed subclones

Slow evolution, small subclones Fast evolution, large subclones

More constrained Less constrained

Figure 1.2: A spectrum of physical architecture constraints in dif-
ferent tissues. In highly organised tissues, such as
the colonic epithelium, the spatial architecture con-
strains the clonal spread and impedes the evolu-
tionary process. Conversely, the haematopoietic sys-
tem exhibits no inherent physical limitations on
clonal mixing, facilitating the most rapid evolution.
Adapted with permission from [1].

In solid tissues, the presence of physical barriers can
have a substantial impact on the competition of mutant
clones, potentially impeding their growth and dissemina-
tion [13]. This is the case in skin, where mutant clones are
able to compete and expand only in a two-dimensional
manner, and their growth is additionally constrained by in-
teractions with adjacent cells. As a result, aged sun-exposed

29
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skin presents as a mosaic of numerous clones, with the
majority exhibiting a VAF of less than 5% and a size be-
low 1 mm?, even in the presence of a driver mutation [14].
The transitional epithelium lining the urinary tract also
comprises a patchwork of clones which have the capac-
ity to proliferate extensively [15]. However, the majority
of clones exhibit low VAFs of approximately 13% and are
only a several hundred micrometers in diameter [16]. In
the oesophagus, clonal growth occurs concurrently with
age, ultimately resulting in the almost complete remod-
elling of the oesophageal epithelium. The median VAF of
somatic mutations in this tissue is low, at approximately
1.6%, yet clones attain considerable sizes, reaching up to
12.8 mm? [17, 18]. Likewise, the liver is composed of a
polyclonal community of small cell populations that ex-
hibit minimal genetic similarity [19]. Finally, in the adult
brain, where the number of stem cells is minimal, cortex
regions also exhibit differences in clonal structure [20].

In tissues characterised by markedly constrained micro-
anatomical features, a mutant clone is limited by the ne-
cessity of accommodating the complex spatial structure of
the tissue. Consequently, clonal expansions are confined
to microanatomical boundaries, resulting in a heteroge-
neous collection of monoclonal units [13]. For instance, in
prostate, clonal expansions can be observed in both ep-
ithelial and stromal populations when exposed to selec-
tive pressure [21]. The main duct of the glandular system
of prostate is constituted of embryonic clones. In the sub-
sequent phase of puberty, new subclones populate novel
components of ducts during their progressive branching.
These results in a continuum of spatially constrained clonal
populations, with a mixed structure in proximity to the
urethra and almost pure clonality in distal branches [22].
In the colonic epithelium, where driver mutations are rare,
a novel mutant clone will ultimately colonise the entire
crypt [23]. The sole means by which a mutant clone can
expand further is through crypt fission, which, on aver-
age, occurs only once in 27 years [24]. Consequently, all
colonic crypts evolve as autonomous, fully clonal popu-
lations with only about 1% of the normal epithelium be-



1.1 SPATIAL BIOLOGY OF CANCER

ing occupied by clones with driver mutations [8]. In the
stomach, glands are also frequently dominated by a single
clone. However, the tubules of stomach glands branch to-
wards the base, which distinguishes them from the straight
tubular intestinal crypts and allows further colonisation of
the epithelium [25]. Endometrial glands exhibit a complex
branching structure similar to that in the stomach. In cer-
tain instances, two monoclonal lower ducts can coalesce,
giving rise to an upper part with the two lower duct clones
coexisting in subclonal states [26].

In certain conditions, such as inflammation or injury,
there can be disruption to or remodelling of organ struc-
ture. The elimination of limits imposed by spatial con-
straints present in healthy tissue allows mutant clones to
expand further [23]. A demonstrative example is the en-
dometrium of the uterus, where the same clone can pop-
ulate glands separated by hundreds of micrometers [27].
This phenomenon could be explained by monthly tissue
breakdown, which allows new clones to colonise extensive
zones of the endometrial lining. Moreover, in the case of
endometriosis, an inflammatory condition that frequently
results in the breakdown of local anatomical structures, so-
matic mutations can attain significantly higher VAFs, with
some cases reaching up to 93% [28, 29]. In the cirrhotic
liver, clones attain a diameter of millimetres, yet remain
separated by fibrotic tissue [19]. In ulcerative colitis, as
much as 83% of rectal epithelium can be repopulated by
clones measuring up to 19 cm? [30]. In the instance of
chronic inflammation of the stomach, clones in affected
remodelled glands demonstrate higher levels of VAF com-
pared to glands with normal gastric epithelium but remain
localised in their expansion [25]. In conclusion, the accu-
mulating corpus of evidence suggests a link between the
spatial architecture of an organ and the manifestation of
the complex clonality in normal tissue.
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DCIS isa
pre-malignant
breast lesion that
may progress to
invasive ductal
carcinoma.

INTRODUCTION

1.1.2 Invasion and metastasis as an escape from spatial con-
straints

In the field of cancer research, the phenomenon of con-
strained growth within the spatial limitations of the tis-
sue is called NON-INVASIVE. In the breast, non-invasive
ductal carcinoma in situ (DCIS) populate intact ducts with-
out breaching the myoepithelial layer and basement mem-
brane [31]. In DCIS, at higher levels of organisation such
as lobules, multiple clones frequently co-exist while pure
clonality is exhibited only in microscopic acini and ducts
[32]. A comparable pattern is observed in colorectal can-
cer, wherein a precursor lesion, referred to as monocryptal
adenoma, is characterised by a clone populating the entire
crypt and propagating solely through crypt fission [23].

Further clonal expansion typically necessitates a break-
down of tissue architecture and tumour infiltration into
adjacent normal tissue — a transition to an INVASIVE form
of disease [25, 27] (Figure 1.3). Invasive growth frequently
coincides with the loss of normal morphological charac-
teristics and is generally associated with more aggressive
cancer according to many existing histopathological grad-
ing and clinical staging systems [33—36].

The existing subclones can give rise to invasive cancer
in a parallel manner, thus demonstrating a branching pat-
tern of evolution [37—39]. To date, coexisting spatial sub-
clones have been identified in multiple solid cancers in-
cluding, but not limited to, glioblastoma, skin, breast, col-
orectal, pancreatic, prostate, and renal cancers [37, 40, 41].
With respect to multiple myeloma, diverse patterns of can-
cer evolution co-exist or alternately emerge over time in
conjunction with disease progression; in other instances,
clonal expansions were observed to be contingent upon
the anatomical location of the given subclone [42]. In gen-
eral, the mode of tumour evolution can vary depending on
numerous factors, such as the extent of cell dispersal [43,
44]. Regardless of the evolution mode, cancer subclonal
driver alterations typically exhibit a greater degree of di-
versity in comparison to early clonal mutations [43, 45].
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Figure 1.3: Cancer progression is a spatial process. In metastatic
skin cancer, an invasive tumour disrupts the base-
ment membrane to infiltrate the stroma and ulti-
mately disseminate through the vasculature to the
lymph nodes and distant anatomical sites. Adapted
with permission from [1].

The ultimate triumph over spatial limitations in the con-
text of cancer is METASTASIS, a process involving the dis-
semination of invasive tumour cells into the local blood or
lymphatic vessels, subsequent circulation towards distant
organs, and the seeding of a new metastatic site in them
[46] (Figure 1.3). Not all locally invasive tumour cells have
the capacity to metastasise. In certain instances, a clone not
exhibiting dominance at the primary site can function as a
seeding clone for a metastatic tumour [47, 48]. Pan-cancer
studies have demonstrated that, for the majority of can-
cer types, the clones that gave rise to metastases acquired
chromosomal aneuploidy already in the early stages of tu-
mourigenesis [41, 49—-52]. Following seeding, metastases
continuously evolve, acquiring both private clonal and sub-
clonal mutations [38, 53-55], and may undergo further ex-
pansions [32]. Nevertheless, the subclonal diversity in pri-
mary tumour sites is still significantly higher compared to
metastases, which could be explained by different selective
pressures acting in the primary and secondary sites [49].
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The varying patterns of spread exhibited by different
cancer types vary add another layer of complexity. In a
linear model, a single seeding event from the primary tu-
mour initiates the process, with subsequent secondary sites
emerging through a series of metastasis-to-metastasis seed-
ing events [48, 49, 56]. Another pattern, which is some-
times designated as “clonal diaspora”, is distinguished by
direct multifocal dissemination from a primary location
to discrete metastatic sites [38, 54, 55]. Finally, in certain
instances, cross-seeding may occur, when cells from one
metastasis disseminate and seed a new metastatic tumour
at a distinct location [48, 54, 56]. The precise factors that
determine the metastatic spread pattern remain to be elu-
cidated, although evidence indicates that treatment may
impact this process. For instance, in colorectal, breast, and
lung cancers, untreated metastases were characterised by
clonal homogeneity. Conversely, administration of treat-
ment prior to metastasis resulted in a substantial increase
in the proportion of private clonal drivers [49]. Moreover,
novel driver mutations are frequently associated with treat-
ment resistance [50, 52]. These observations suggest that
therapy may introduce new selective pressures, thus pro-
moting further tumour evolution.

In summary, considerable evidence supports the hypoth-
esis that tissue architecture profoundly affects cancer pro-
gression. However, it is imperative to take into account
the cellular context, as the interactions of cancer cells with
adjacent tumour and stromal cells are also poised to influ-
ence the trajectory of cancer evolution.

1.1.3  Cellular context of cancer evolution

A further significant factor contributing to tumour hetero-
geneity arises from its cellular context. The phenomenon
of cross-talk between tumour cells has been a subject of
research for a considerable period [57]. In the recent years,
it is becoming increasingly recognised that stromal cells,
which constitute the organ where the malignancy has man-
ifested, can impact the growth and evolution of cancer.
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Consequently, it is imperative to take the tumour microen-
vironment (TME) into consideration when studying cancer
biology.

Cancer clones are engaged in a continuous battle for
spatial dominance, not only with other cancer clones but
also with stromal cells. In the oesophagus, early neoplas-
tic lesions compete with mutant stromal clones located in
the basal layer [58]. Consequently, if the mutant normal
clone expands sufficiently to displace the nascent malig-
nant clone, the entire cancer lesion is shed. A similar pat-
tern can be observed in a colonic crypt, wherein the coloni-
sation of the entire crypt by mutant cells is contingent
upon the mutation arising in stem cells [23] (Figure 1.4).
However, in certain instances, the development of cancer
is facilitated by the colocalisation with other clones. This is
evidenced by the findings in murine models of intestinal
adenomas, wherein a driver mutation alone was insuffi-
cient for the formation of cancer [59]. The initiation of can-
cer required an increase in the density of mutant colonic
crypts, thus demonstrating an example of cooperation.
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cells are lost maintained and
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as they get may transform the
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Figure 1.4: Colonic crypt organisation defines clonal expansion and
tumour evolution. The anatomical structure can re-
duce the likelihood of malignant transformation by
constraining the fixation capacity to mutations in few
cells. Adapted with permission from [1].

It is evident that specific TMEs are frequently associ-
ated with distinct cancer subclones, transcriptional pro-
files, and clinical outcomes [37, 60-65]. For instance, col-
orectal tumours exhibiting chromosomal instability were
found to be characterised by an immunosuppressed TME,
whereas hypermutant lesions contained a high number of
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cytotoxic T cells [39]. In cutaneous squamous cell carci-
noma, basal tumour cells colocalised with keratinocytes at
the leading edge [66]. In breast cancer, tumour cell expres-
sion correlated to the proximity of the cells to lesion edges
[37]. Distinct phenotypes of tumour-immune interactions
were found to be associated with differing survival rates
amongst pancreatic [67] and breast [68] cancer patients.
Furthermore, the reduction in thickness of the myoepithe-
lial layer, alongside the replacement of normal fibroblasts
with cancer-associated fibroblasts, was found to act as a
protective factor against the progression of DCIS towards
invasive breast cancer [31].

Recent advances in spatial profiling methodologies have
enabled subcellular resolution, facilitating the examination
of not only cellular colocalisation but also cell-to-cell inter-
actions [65]. The capacity of tumour and stromal cells to
exhibit different ligand-receptor interactions was shown
to depend on the respective spatial neighbourhoods in
cutaneous squamous cell carcinoma [66]. In the context
of melanoma, the presence of a stem-like population of
neural crest cells in close proximity to endothelial cells
was demonstrated to be a contributing factor to the can-
cer growth. The underlying mechanism of this process
depended on the NOTCH3 receptor, which expression on
neural crest cells preceded their epithelial-mesenchymal tran-
sition (EMT) [47].

1.2 BIOLOGY OF GLIOMAS IN ADULTS

The recent emphasis on incorporating a variety of molec-
ular characteristics into diagnostic guidelines emphasises
the necessity of understanding the intricacies of tumour
biology to facilitate clinical decision-making. A notable il-
lustration of this can be seen in the World Health Organ-
isation (WHO)’s recent refinement of the classification of
central nervous system (CNS) tumours, which introduced
molecular parameters as a crucial component of the classi-
fication system, complementing the traditional histological
characteristics [33]. Furthermore, DNA methylation pro-
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tiling has been utilised to distinguish clinically-relevant
tumour entities that were previously considered homoge-
neous groups [69].

The present thesis investigates the spatial architecture of
gliomas, which are the most common malignant primary
CNS tumours [70]. In this Section, I explore the existing
literature concerning the intricate biology of gliomas.

1.2.1 A diverse group of CNS tumours

For an extended period, clinicians have relied on histo-
logical findings, supported by tissue-based tests, for the
diagnosis of CNS tumours [71] (Figure 1.5). Nonetheless,
molecular biomarkers are increasingly being incorporated
into diagnostic practice [33]. In the latest edition of WHO
classification of CINS tumours, gliomas are classified into
six families: paediatric-type diffuse low-grade gliomas, pa-
ediatric-type diffuse high-grade gliomas, adult-type dif-
fuse gliomas, ependymal tumours, glioneuronal tumours,
neuronal tumours, and circumscribed astrocytic gliomas
[33]. Although gliomas can occur at any age, the vast ma-
jority of gliomas belong to the adult-type diffuse group
[70]. Within each tumour type, the grading of CNS tu-
mours is analogous to the grading of other tumours [72].
In essence, grade 1 tumours typically exhibit slow growth
and clear margins, often resulting in a favourable progno-
sis if the tumour can be resected completely. Conversely,
grade 4 tumours are characterised by invasive growth and
high degree of malignancy and are associated with a poor
prognosis.

In the classification of adult-type diffuse gliomas, the
most significant molecular criteria are mutations of the
isocitrate dehydrogenase (IDH) gene and the loss of the short
arm of chromosome 1 together with the long arm of chro-
mosome 19 (denoted as "1p/19q"). Accordingly, gliomas
in adults are categorised into three distinct types: IDH-
mutant astrocytoma, [DH-mutant and 1p/19g-codeleted
oligodendroglioma, and IDH-wild type glioblastoma (GB)
[33]. IDH-mutant gliomas exhibit increased 2-hydroxyglu-
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Figure 1.5: Diverse CNS tumours and selected key characteristics.
Percentages indicate tumour frequency among all
CNS tumours. *, intact in low-grade astrocytomas
(LGASs). Based on [33, 70].

tarate levels, an accumulation of lipid clusters containing
phospholipids and monounsaturated fatty acids, and a re-
duction in NADPH production [73]. The WHO grade 4
GBs represent the most aggressive glioma type that ac-
counts for more than one half of all malignant CNS tu-
mours [70]. The earliest copy number variation (CNV) ev-
ent in the pathogenesis of GB is chromosome 10 loss fol-
lowed by chromosome 7 gain (frequently designated as
"7+/10-") [74, 75]. The most common gene alterations in-
clude EGFR and PDGFRA amplifications, recurrent mu-
tations in TERT promoter and EGFR, PTEN, and TP53
genes, and homozygous deletions of CDKN2A/CDKN2B.
An aberrant exon 1-8 junction in the EGFR gene (known
as "EGFR class III variant" or "EGFRVIII") represents a re-
current mutation in GB that is associated with elevated
levels of triglycerides and polyunsaturated fatty acids [73].
In addition, the recent recognition of the clinical signifi-
cance of DNA methylation profiling has led to the cate-
gorisation of GBs into three distinct groups: receptor tyro-
sine kinase (RTK)1, RTK2, and mesenchymal (MES) [69].
Patients diagnosed with either RTK class exhibit reduced
survival rates and may benefit more from maximal resec-
tion in comparison with patients diagnosed with GB of the
MES class [76, 77].

At present, no prevention strategies or screening proto-
cols for early detection are available for adult-type diffuse
gliomas. At the time of disease manifestation, patients typ-
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ically exhibit non-specific neurocognitive symptoms [78].
Magnetic resonance imaging (MRI) is utili-sed as a pre-
operative detection method, yet clinical decision-making
continues to be dependent on tissue biopsy. Surgery is per-
formed for two primary reasons: firstly, to diagnose the
condition, and secondly, to remove as much of the tumour
volume as is feasible. However, due to the location of dif-
fuse gliomas and their highly infiltrative growth, total re-
section is often not possible. Following surgical removal,
patients are subject to a combination of chemo- and ra-
diotherapy, with the choice of detailed strategy informed
by the specific molecular alterations present in a tumour
[79]. For instance, alkylating agents such as temozolomide
(TMZ) are frequently employed in the treatment of gliomas
in patients undergoing chemotherapy. Nevertheless, it is
now evident that, in the case of GB, its efficacy is pre-
dominantly beneficial to patients with tumours exhibiting
MGMT promoter methylation [80]. Furthermore, the re-
sults of a phase III trial, known as INDIGO, demonstrated
the potential benefits of IDH inhibitors for patients diag-
nosed with IDH-mutant grade 2 gliomas [81]. A plethora
of innovative therapeutic modalities, encompassing immu-
ne checkpoint inhibitors and agents that target mutated
proteins, are currently undergoing evaluation in the con-
text of glioma management [82-84]. Nonetheless, the effi-
cacy of these treatments is yet to be substantiated through
definitive studies. Subsequent to the standard of care treat-
ment, the ensuing follow-up entails a watch-and-wait ap-
proach, accompanied by frequent clinical examinations and
MRI [78].

Ependymoma (EPN) is a rare CNS tumour of neuroep-
ithelial origin [70] (Figure 1.5). According to the fifth edi-
tion of WHO classification [33], EPNs are classified based
not only on histopathological and molecular features, but
also on their anatomical location. Three distinct sites of
EPN are recognised, namely supratentorial, posterior fossa,
and spinal. Intracranial EPNs are rare in adults, and are
more prevalent among paediatric and young adult popu-
lations. Conversely, spinal ependymomas (EPN-5Ps) man-
ifest more frequently in adult patients than in children
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[85]. In addition, myxopapillary ependymoma (EPN-MPE)
and subependymoma (EPIN-SE) are recognised as distinct
glioma types [33]. EPIN-SEs are considered to be benign
neoplasms that manifest in all three anatomical compart-
ments [86], whereas EPN-MPEs constitute a specific glioma
type affecting the lower spinal cord in adults [85]. EPN-5Ps
with MYCN amplification and posterior fossa EPIN-SEs are
known to exhibit an especially aggressive disease course.
EPNs present a valuable research opportunity in the con-
text of molecular biomarkers, given the recognised inade-
quacy of the WHO grading system in predicting clinical
outcomes [87]. This underscores the potential for molecu-
lar analysis to provide novel insights into prognostic clas-
sification.

Nonetheless, despite extensive research conducted over
many years [88-90], an ultimate cure for gliomas is yet to
be discovered.

1.2.2 High plasticity and heterogeneity of gliomas

One potential explanation for the resistance of gliomas
to therapeutic interventions is their plastic and heteroge-
neous nature. The heterogeneity of gliomas at the level of
transcription was initially demonstrated in the The Cancer
Genome Atlas bulk RNA sequencing (RNA-seq) data of
GB [74]. In that study, four transcriptional subtypes were
described: classical, mesenchymal, proneural, and neural.
It is important to note that further research revealed the
latter subtype to be non-tumour specific and likely a re-
sult of sample contamination with normal brain tissue [91].
Nonetheless, the subtypes were associated with differing
survival rates, and delineated distinct spatial regions of
the same tumour. Furthermore, their proportions shifted
at recurrence, demonstrating a clinical relevance [74].
Subsequent single-cell RNA-seq (scRINA-seq) studies yi-
elded congruent transcription states in adult-type gliomas,
with three (namely, astrocyte (AC)-, oligodendrocyte pro-
genitor cell (OPC)-, and neural progenitor cell (NPC)-like)
resembling neurodevelopmental cell types, and an addi-
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tional MES-like state [92—94] (Figure 1.6a). Of these, NPC-
and OPC-like states were characterised by increased prolif-
eration and reduced differentiation, while AC- and MES-
like states represented a more differentiated progeny [95].
Similarly to what has been observed previously, a tumour
may comprise cells of multiple states, and, due to high
plasticity, these cells may undergo state transitions [92].

a GB, IDH-wildtype b IDH-mutant gliomas
NPC-like MES-like Progenitor/stem-like
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Prohferanon
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Figure 1.6: Glioma states. Four transcription states of GB (a) and
IDH-mutant gliomas (b). GSC, glioma stem cell. Illus-
tration based on [96].

Similar transcription states were found in IDH-mutant
gliomas [97—99] (Figure 1.6b). However, these tumours com-
prised primarily three states: non-proliferating and more
differentiated AC- and oligodendrocyte (OC)-like states,
and a cycling state resembling a progenitor or stem popu-
lation. While the proportions of the states remained un-
changed at recurrence, they did vary across grades. In
addition, IDH-mutant gliomas demonstrated a generally
lower degree of cellular plasticity and a more stable tran-
scription state hierarchy [100].

Transcriptional heterogeneity of EPNs has not been as
extensively studied, yet some understanding is emerging.
It has been observed that EPIN cells manifest in a variety
of transcriptional states, encompassing cycling, undifferen-
tiated, and differentiated populations as well as metabolic
programs [101, 102]. The proportion of undifferentiated
and cycling states was associated with more aggressive
EPN groups, whilst the more benign EPNs were charac-
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terised by a higher prevalence of differentiated programs
[101]. Additionally, three hierarchical trajectories were iden-
tified, all beginning with the undifferentiated neural stem
cell (NSC)-like state and each one progressing towards
either undifferentiated glial progenitor-like, undifferenti-
ated NPC-like, or differentiated ependymal-like cells (thro-
ugh an intermediate astroependymal-like state) [101]. Cy-
cling and differentiated programs were shared amongst
diverse EPNs, while undifferentiated cell states were more
distinctive of a specific type [101] or existed in a mutu-
ally exclusive manner and followed divergent differentia-
tion trajectories depending on the EPN type [102]. Interest-
ingly, some of EPN programs resembled those identified
in adult-type diffuse gliomas [101]. In particular, the un-
differentiated NI’C-like program was similar to the diffuse
glioma NPC-like program, one of the metabolic programs
that was enriched in glycolytic signature resembled the
MES2-like glioma state, and the intermediate astroependy-
mal-like program correlated with the AC-like program in
GB. In contrast, the undifferentiated NSC-like and differ-
entiated ependymal-like EPN programs did not correlate
with any known adult-type diffuse glioma states, likely in-
dicating cancer cell populations that were unique to EPNs.
Despite the long-standing recognition of the heterogene-
ity of gliomas, the precise origin of their transcriptional
variability remains to be elucidated. It is conceivable that
distinct progenitor cells could give rise to separate popu-
lations of glioma cells, thus generating the observed cel-
lular complexity. In the adult human brain, only a small
number of cells have retained the capacity for self-renewal
and the generation of new cells. Consequently, NSCs and
OPCs have long been hypothesised to be the cells of origin
for gliomas [103]. Although the latter are established to
be restricted to the oligodendrocyte lineage, under certain
conditions, they can undergo dedifferentiation into a mul-
tipotent stem-like state [104]. The aforementioned glioma
transcription states bear a resemblance to these neurode-
velopmental cell types, thus lending further credence to
the cell of origin hypothesis. A recent study of GB us-
ing scRNA-seq reported a fifth glioma state resembling



1.2 BIOLOGY OF GLIOMAS IN ADULTS

progenitor-like cells [93]. These progenitor-like cells exhib-
ited a high rate of proliferation and had a capacity to dif-
ferentiate into all glioma states. Nevertheless, other studies
do not appear to support the notion of a defined progeni-
tor population [92, 105]. In fact, a xenograft study suggests
that all four states may in fact be generated by any glioma
cell [92].

A conceivable explanation could be that the glial proge-
nitor-like cancer cells are not a distinct cell type, but al-
ternatively, a plastic cellular state guided by external TME
cues [106]. This is substantiated by the observation that
the discrepancy between glioma samples from disparate
anatomical locations is more pronounced than that between
samples from distinct tumours [107, 108]. Furthermore, in
EPNSs, brain-resident TME cells were proposed to have the
capacity to promote the differentiation of progenitor cells
towards a particular differentiated state [102]. The advent
of novel technologies has led to a proliferation of research
exploring spatial glioma heterogeneity, a subject that will
be addressed in the following Subsection.

1.2.3 Spatial architecture of gliomas

In gliomas, the concept of spatial niches has been recog-
nised for many years, with the initial classification being
based primarily on histological observations [109]. In re-
cent years, a growing body of evidence derived from single
cell studies has begun to provide a more profound under-
standing of the spatial organisation of gliomas [110-113].
A necrotic core has been recognised as an intrinsic fea-
ture of GB, characterised by the presence of macrophages
and glioma cells that are exposed to nutrient-deprived con-
ditions under hypoxia [95, 114] (Figure 1.7). The perinecro-
tic glioma cells were shown to express a quiescent and
wound response gene signatures [95]. Furthermore, hy-
poxia was demonstrated to facilitate the organisation of
gliomas in a spatial manner, whereas non-hypoxic regions
generally exhibited a lower degree of organisation [102,
115]. Chapter 3 is devoted to a comprehensive examina-
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tion of the spatial architecture of necrotic tissues in indi-
viduals previously diagnosed with GB. Vessels (which are
frequently abnormal in gliomas), pericytes, astrocytes, and
various types of immune cells are typically categorised
into a peri-vascular niche. Endothelial cells within the peri-
vascular niche are thought to contribute to glioma stem
cell (GSC) maintenance, invasion, and tumour growth [116].
The invasive edge located at tumour periphery is thought
to contribute to tumour recurrence and is comprised of in-
vasive, stem-like cycling glioma cells as well as microglia
and mature AC-like glioma state [95, 116, 117]. Recent
studies identified an additional proliferative niche com-
posed of glioma cells expressing OPC- and NPC-like sig-
natures [110].

A growing body of research employing spatial profil-
ing suggests a potential association between spatial neigh-
bourhoods and clinical outcomes in glioma patients. For
instance, in GB, increased survival was found to be asso-
ciated with macrophage-enriched neighbourhoods as well
as neighbourhoods composed of AC-like, NPC-like, and
MES-like glioma states [111, 113]. Conversely, a colocalisa-
tion of AC-like, OPC-like, and MES-like states was identi-
fied as a negative prognostic factor [113]. In Chapter 4, I
discuss the findings of a study examining spatial architec-
ture across multiple glioma types.

Perivascular niche

AC endfoot ? PVF
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Figure 1.7: Spatial niches in GB. Pseudopalisading necrosis and
a perivascular niche comprised of vascular and im-
mune cells. BAM, border-associated macrophage;
EC, endothelial cell; PVF, perivascular fibroblast. II-
lustration based on [109, 118].
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Finally, there has been a recent surge of interest in so-
called glioma tumour networks. Specifically, glioma cells
were demonstrated to establish connections with each other
and with astrocytes via gap junctions, thereby forming
a functional, communicating synthicium [117]. The inva-
sive edge was characterised by a predominance of uncon-
nected glioma cells, whereas connected glioma cells re-
mained stationary within the bulk of the tumour. Further-
more, a small proportion of tumour cells, which act like
periodic cells and express high levels of the potassium
channel gene, were observed to induce calcium oscillations
within the tumour network [119]. The dynamic nature of
these periodic glioma cells” identity was evident. Addition-
ally, up to ten percent of both connected and unconnected
glioma cells were observed to form heterogeneous gluta-
matergic synapses with neurons. It was hypothesised that
through these synapses neurons may induce calcium oscil-
lations within glioma networks [120].

In light of the evidence presented, it can be concluded
that the spatial context is of paramount importance in the
investigation of cancer evolution. As computational and
experimental methodologies evolve rapidly, they are en-
abling the generation of increasingly extensive atlases with
superior resolution. The review of technologies and analyt-
ical methods will be the focus of the subsequent Sections.

1.3 EXPERIMENTAL TECHNOLOGIES FOR SPATIAL PRO-
FILING

The advent of numerous single cell methodologies has en-
gendered a paradigm shift in our understanding of cellu-
lar properties and variability [121-124]. Nevertheless, the
initial stage involves dissociating solid tissues and organs
to yield a single cell sample for subsequent profiling. This
step consequently results in the loss of crucial spatial in-
formation, thereby hindering the capacity to evaluate the
spatial organisation of single cell architectures. A plethora
of technological innovations has facilitated the spatial ge-
nomic, epigenomic, transcriptomic, and proteomic profil-
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ing. The choice of the most appropriate platform depends
on the specific scientific problem to be addressed (Fig-
ure 1.8a). The key factors to be considered are resolution,
throughput, field of view size, and sensitivity.
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Figure 1.8: Experimental approaches to study spatial cancer ecosys-
tem. Higher resolution typically implies lower mul-
tiplexity (a). Spatial methods can be grouped into
macro- and microdissection-based (b), barcode-based
(c), imaging-based (d) methods or methods employ-
ing mass spectrometry (e). Re-printed with permis-
sion from [1].

1.3.1 Sequencing-based methods

The foundation for sequencing-based approaches was laid
by tissue dissection techniques, which entail the extraction
of numerous sample regions that researchers subsequently
subject to bulk sequencing [125-129] (Figure 1.8b). The res-
olution of tissue dissection methods depends on the cut-
ting technology employed. In some cases, the resolution
can reach microscopic levels, or even the level of individ-
ual cells. The known position of the extracted samples pro-
vides the spatial resolution for the resulting bulk data sets.
Furthermore, the capacity of tissue dissection methodolo-
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gies to integrate with any subsequent high-throughput se-
quencing renders them remarkably versatile and applica-
ble to a wide range of tasks [130]. A frequently employed
tissue dissection method is laser-capture microdissection,
which utilises laser ablation to isolate minute regions of
interest [131-133]. An alternative approach typically em-
ployed in the analysis of large anatomical structures en-
tails the acquisition of discrete tissue cryosections through
serial microtomy [134, 135].

The recent advancement of spatially-resolved sequen-
cing-based methods entails the use of spatial molecular
barcodes [136—142] (Figure 1.8¢c). In essence, spatial molec-
ular barcodes define unique sequences for each location,
which enables the subsequent mapping of the captured
molecules to their original spatial coordinates. The pri-
mary advantage of the sequencing-based methods is their
capacity to generate unbiased high-throughput data. Nev-
ertheless, the resolution of such approaches is inherently
constrained by the dimensions of the designated spots,
which typically fall below the size of a single cell. Despite
ongoing development of enhanced-resolution approaches
[143-146], currently existing sequencing-based methods ge-
nerate bulk cell profiles within each spot, necessitating ad-
ditional analytical procedures to comprehensively assess
cell-level composition.

1.3.2 Image-based methods

Over a span of many years, in situ hybridisation of fluo-

rescently labelled probes has played a pivotal role in elu-

cidating the spatial distribution of DNA and RNA with

subcellular resolution [147, 148]. This traditional approach

has later undergone a quantitative evolution, characterised

by an increase in multiplexity [149-153] (Figure 1.8d). No-  murtiprLexity
table advances were achieved through the development  denotes the capacity
of sequential barcoding, wherein each molecule is iden- tomsj;;’zuﬁzxjo;‘:ly
tified through several cycles of hybridisation, with the or- ;:nolecules wZ‘hin ;
der of fluorescent probes detected defining the final se-  ¢jpen sample.

quence [154, 155]. Several methodologies employ a similar
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approach, sequential antibody staining, for spatial protein
profiling [156—158]. However, sequential antibody staining
approach is constrained by the necessity for a considerable
period of incubation. Sequential antibody staining, utilised
by several methodologies for spatial protein profiling [156—
158], has limited appeal due to the significant time in-
vestment required for antibody incubation. An alternative
method, termed in situ sequencing, is based on the use
of fluorescently labelled padlock probes and rolling circle
amplification [159-163]. Given its high specificity, in situ
sequencing was furthermore adapted for the detection of
mutations [32]. In the case of multiplexed protein analy-
sis, it is possible to visualise DNA-barcoded antibodies us-
ing in situ polymerisation with fluorescently labelled nu-
cleotides [164].

Image-based methods are capable of providing subcellu-
lar resolution, yielding readouts originating from individ-
ual cells. Nevertheless, the present limitation is a highly
restricted number of targeted molecules, typically up to
hundreds. Furthermore, the necessity of defining the panel
in advance confines the investigation to the study of a pri-
ori defined phenomena. Novel approaches promise to of-
fer larger target panels, with some already reaching up to
several thousands of targets [165].

1.3.3 Mass spectrometry-based methods

The spatial distribution of proteins is frequently studied
by means of mass spectrometry (Figure 1.8e). In this class
of methods, the target proteins are firstly labelled using
metal-conjugated antibodies, and then the tissue sections
are subjected to laser [166] or ion beam ablation [167-169].
The application of mass spectrometry can be integrated
with other methodologies, for example, with laser capture
microdissection [170] or combinatorial tagging [171]. In
addition to proteins, mass spectrometry-based methods
are capable of analysing even smaller molecules, lipids
and metabolites in particular. Nevertheless, the efficacy of
these methodologies depends on the specificity of the an-
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tibodies employed, and their utility is constrained by the
size of the panel, which typically enables the profiling of
only a few dozen proteins. The development of method-
ologies that facilitate the spatial profiling of the complete
proteome at the level of individual cells remains a subject
of ongoing research.

To summarise, a plethora of innovative experimental ap-
proaches permit spatial proteomic, transcriptomic, and me-
tabolic characterisation of tissue sections. Nonetheless, the
advent of novel technologies that facilitate profiling of ex-
tensive fields of view, yield exhaustive readout (e. g.whole
transcriptome) with subcellular resolution, and enable con-
current spatial profiling of multiple modalities from a sin-
gle sample is required to facilitate a nuanced comprehen-
sion of the intricacies of cancer biology.

1.4 COMPUTATIONAL TOOLS FOR SPATIAL DATA ANAL-
YSIS

Given the nascent nature of spatial profiling technologies,
there is currently no established set of best practices for
computational analysis of these data. The following Sec-
tion will examine the computational challenges in spatial
transcriptomics data analysis and evaluate potential ap-
proaches to address these challenges. The primary focus
of this Section will be data that can be generated using 10x
Xenium, as this is the protocol that has been implemented
in the projects in this dissertation.

1.4.1  Gene panel design

In the context of conventional scRNA-seq data analysis,
the existence of whole transcriptomes provides compre-
hensive cell expression profiles, enabling detailed analysis
of cellular states and the identification of transcriptomic
signatures. Conversely, in image-based spatial transcrip-
tomics, the limitation of panel size gives rise to a combina-
torial problem, necessitating a balance between the identi-
tication of all possible cell types and the ability to explore
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greater expression diversity within these cell types. The
optimal balance between these two objectives remains an
open challenge and is contingent on the specific objectives
of the study in question.

CELL TYPE RECOVERY. The ability to successfully iden-
tify and categorise cell types is fundamental to all sub-
sequent analyses. In spatial contexts, the failure to anno-
tate a cell introduces an additional difficulty — artificially
missing parts of the sample. This complicates later spatial
pattern and interaction discovery and may even lead to
false conclusions. A natural approach for marker gene se-
lection is to use known literature markers [172]. To this end,
curated cell type marker databases could be used, such
as The Human Protein Atlas [173], the Human Cell Atlas
[174], PanglaoDB [175], and CellMarker [176]. The evolu-
tion of scRNA-seq technologies has provided a new way
to study cell type-specific expression in detail. In the pres-
ence of an annotated scRINA-seq atlas for the chosen tissue
and condition, cell type marker selection amounts to a sta-
tistical comparison of the gene expression of each cell clus-
ter against the rest [177]. A multitude of methodologies
exists for such analyses, with the majority relying on exist-
ing annotations [178-182], but some offering cluster-free
approaches [183-186].

EXPRESSION DIVERSITY. To facilitate a comprehensive
understanding of sample biology that extends beyond the
spatial localisation of individual cell types, it is essential to
include genes that drive expression heterogeneity across
cell populations. One potential strategy involves incorpo-
rating genes that are components of signalling pathways,
metabolic networks, or biological processes, which are of
particular interest in this context. To this end, several ex-
isting databases of conserved pathways could be utilised,
the Molecular Signatures Database [187] being one of the
commonly used ones.

An alternative approach that does not require prior kno-
wledge of gene function is to include top highly variable
genes (HVGs) as their variable expression is believed to un-
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derlie specific functional diversity of cells within a given
tissue [188]. A different mathematically-driven approach
is to apply a dimensionality reduction algorithm to pre-
serve as much information within the data as possible
while reducing the overall number of dimensions. One
common linear approach, known as principal component
analysis (PCA), is based on the ranking of linear combi-
nations of features (i. e.genes) according to the amount of
variation they capture [189]. The main advantages of this
method are its computational efficiency and interpretabil-
ity, as PCA enables gene importance evaluation through
the computation of loadings. PCA-based methods outper-
form alternative approaches in terms of variation recovery
[190]. Nevertheless, a potential constraint of PCA arises
from the exclusive density of all components. In the con-
text of gene expression, sparse vectors may be a more ap-
propriate choice, as they clearly delineate individual gene
contributions. To this end, a variant of PCA termed sparse
PCA (sPCA) that is designed to identify sparse compo-
nents for optimal reconstruction of initial data could be
utilised [191].

STUDY-SPECIFIC CONSIDERATIONS. To design a panel,
it is also necessary to consider the objectives of a specific
study. While it is challenging to propose a strictly outlined
set of steps to follow, there are a number of considerations
that can be made in advance, based on the study question.
For instance, additional markers can be incorporated for a
particular cell type that is known to be difficult to recover,
or alternatively, markers recapitulating different levels of
granularity (e.g.neurons and inhibitory neurons) can be
introduced [192]. Furthermore, in the context of cancer, it
is imperative to differentiate between malignant and non-
malignant cells. To this effect, the inclusion of well-known
tumour drivers that are anticipated to be homozygously
lost or overexpressed specifically in cancer cells can be con-
sidered [193]. An alternative strategy is to select genes uni-
formly across all chromosomes, thus enabling CN'V analy-
sis to be performed at a later stage to identify malignant
cells [194].
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1.4.2 Spatial signal assignment

Prior to the analysis of spatial single cell data, detected
molecules need to be assigned to individual cells. This step
assumes that cellular boundaries are known, thus necessi-
tating prior cell segmentation. Despite numerous attempts
to develop a generalised algorithm for all tissues [195-198],
there is still no universally recommended tool that works
well in all settings.

The raw output of image-based spatial transcriptomic
profiling typically comprises nuclear boundaries, as deter-
mined by a segmentation run on the nuclei-stained (DAPI)
image, and cell boundaries, as determined by expanding
the corresponding nuclei [199]. However, in a recent bench-
mark [200], alternative approaches based on Bayesian mix-
ture models [195] performed best, although nuclear tran-
scripts were sufficient to recover all cell types. Given the
high level of dependency of downstream analyses on the
selected segmentation algorithm, a more prudent approach
would be to define cell types based on nuclear transcripts
and thereafter incorporate cytoplasmic transcripts to inves-
tigate further expression diversity.

Nonetheless, nuclear masks may be a suboptimal solu-
tion for segmenting cells with irregular morphology [201].
In such cases, it is possible to rely upon grouping tran-
scripts into signatures without delineating cell boundaries.
Several such segmentation-free approaches have been de-
veloped [201—204], which, in addition to their primary func-
tion, may also assist in the identification of subcellular and
extracellular compartments.

1.4.3 Spatial single cell data analysis

Once the spatial transcriptomic signal has been assigned
to cells, the computational workflow is similar to a stream-
lined scRNA-seq analysis. Although there are many pub-
lications that describe current best practices (for example,
see [172]), there is a range of important considerations for
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working with spatial data that will be outlined in this Sub-
section.

CELL ANNOTATION. A typical scRNA-seq analysis in-
cludes cell filtering and count normalisation, which may
not be optimal for spatial data [205]. As discussed above,
in a spatial context, filtered cells pose additional problems
(e. g.non-biological areas of absent tissue) that complicate
turther analysis. Furthermore, spatial patterns in the dis-
tribution of transcript counts may reflect a biologically rel-
evant sample structure [206] and therefore any raw count
transformations should be made with care. To overcome
these challenges and to recover as many cells as possible,
an alternative strategy of label transfer can be employed

[207].

BIOLOGICAL VARIABILITY. Following initial processing,
transcriptomics data can still contain unwanted variabil-
ity that may mask interesting signals. A common example
of this is the cell cycle, which can dominate cell cluster-
ing and therefore compromise the detection of less promi-
nent cellular states [172]. In addition, tests assessing dif-
ferentially expressed genes are sensitive to technical con-
founding factors [208]. To remove unwanted variability, a
variety of batch correction methods can be applied [209].
However, overcorrection may lead to loss of heterogeneity
— a crucial characteristic of many tumours [210]. Further-
more, in the case of cancer, cycling cells often represent a
biologically-relevant population [211]. Therefore, whether
or not to batch correct depends entirely on the specific re-
search question.

TRANSCRIPTIONAL PROGRAMS. Manual annotation re-

lies on pre-existing knowledge and cannot identify novel

transcriptionally distinct populations. To discover new tran-

scriptional patterns hidden in the data, unsupervised learn-

ing tools should be used [210]. An intuitive choice is matrix MF decomposes a
factorisation (MF), as genes encoding parts of the same bi-  matrix into two
ological pathway should be co-regulated across samples ~ "a¢rices of lower
and can therefore be represented as latent components of rank
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the count matrix [212]. A popular algorithm commonly
used in scRNA-seq is non-negative MF (NMF), owing to
the strict non-negativity of transcriptional data [213—215].
NMF finds interdependent, additive and equally impor-
tant components that can be interpreted as transcriptional
programs. Since NMF handles dropout events by imputing
missing signal, it is well suited to sparse single cell data.
However, like other unsupervised algorithms, the num-
ber of components must be specified in advance, and the
choice of an optimal value remains an open problem in the
field. In addition, initialisation can greatly affect the con-
vergence rate as well as the result, since the objective func-
tions for NMF are non-convex [216]. Random initialisation
has a low computational cost; however, it does not gener-
ally generate reproducible results. Hence, to select the best
number of components and the optimal local minimum,
the algorithm should be run a number of times with a dif-
ferent starting point. This drastically increases the compu-
tation time and reduces the advantage of the approach. A
more sophisticated starting point can be calculated by us-
ing a low-dimensional representation of the input matrix.
Theoretically, this should result in a deterministic model
that gives meaningful results and only needs to be run
once [216]. Nonetheless, in this approach, additional con-
siderations such as biological relevance have to be taken
into account when choosing the optimal number of com-
ponents.

1.4.4 Spatial exploration

The ultimate objective of applying spatially resolved ap-
proaches is to gain insight into the spatial heterogeneity
of tissue. Spatial information can be utilised in numer-
ous ways, and biological hypotheses should inform the
method selection. This Subsection will delineate a num-
ber of general techniques, extending from visual observa-

tions to quantitive associations defined by local neighbour-
hoods.
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VISUAL ASSESSMENT. When a single cell atlas consists
of only tens of cell types; therefore, spatial exploration
may begin simply by examining the location of individual
cell types [95]. Furthermore, when the number of targeted
genes is low, it is feasible to visually explore the spatial ex-
pression of the selected genes of interest. The identification
of spatial patterns is already facilitated by such straightfor-
ward approaches, especially in tissues that exhibit clearly
defined cell zonation [110, 217].

SPATIAL STATISTICS. The calculation of spatial metrics
typically involves the construction of a SPATIAL NEIGH-
BOURHOOD GRAPH, wherein nodes represent cells and
edges connect neighbouring cells. The most common meth-
ods for constructing a neighbourhood graph include radius-
based, k-nearest neighbours (kNIN), and Delaunay triangu-
lation. The selection of the algorithm is dictated by the na-
ture of the task at hand, given that graphs defined by the
three approaches differ in their characteristics [218].

In particular, a graph based on a radial distance implies
direct biological meaning of spatial scale. Nonetheless, this
approach can result in irregular communities when cell
densities are not uniform across the sample tissue. More-
over, this approach does not take into account neighbour-
hood topology, as cells on opposite sides of cavities and
cells on the same side are treated equivalently, provided
they are within the same distance. The kNN method guar-
antees that all cells are assigned an equal number of neigh-
bours regardless of the local cell density. Nevertheless, it
may result in neighbourhoods with little biological rea-
soning, for instance, including cells separated by spatial
obstacles. Finally, kNN approach will produce neighbour-
hoods biased towards more prevalent cell types. Hence, in
the context of biological systems, Delaunay triangulation
may yield a balanced solution. Its performance is not con-
tingent on a predefined radius or number of neighbours,
thereby ensuring greater adaptability to local cell densi-
ties. Additionally, the Delaunay triangulation is topology-
aware and discourages connections across gaps, as the al-
gorithm maximises minimum angles and therefore encour-
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ages near-equiangular triangles [219]. Consequently, if a
triangle is formed by connecting cells across a gap, it is
likely to be rejected unless there is no alternative. Finally,
to achieve a greater degree of control, Delaunay method
can be combined with post-filtering of biologically unreal-
istic long edges.

Following the construction of the neighbour graph, the
quantitative measurement of observed patterns can be fa-
cilitated by the application of spatial statistics [220, 221].
Metrics originating from graph theory, including central-
ity and clustering coefficients, Ripley’s statistics, and auto-
correlation scores have been implemented in squidpy [222]
Python package and can be employed directly. Moreover,
novel spatial statistics and other measures of the degree of
spatial tissue organisation are being constantly developed

[113, 115].

NEIGHBOURHOOD ANALYSIS. Despite their simplicity,
visual assessment and spatial statistics calculation do not
exploit the breadth of information contained in high-dime-
nsional transcriptomic data. It is conceivable, however, that
certain patterns can become apparent only when relation-
ships between different cell populations are taken into con-
sideration [223]. Therefore, for comprehensive exploration
of tissue spatial complexity, it is necessary to define recur-
rent spatial communities or SPATIAL NEIGHBOURHOODS.

One common method of defining a neighbourhood is
to conceptualise it as an aggregation of cells of particular
types [95, 111, 224]. To illustrate this principle, one may
consider the perivascular niche in the brain, wherein en-
dothelial cells forming a vessel are surrounded by vascular
smooth muscle cells (VSMCs) or pericytes, fibroblasts, as-
trocytic endpoints, and various immune cells including
border-associated macrophages (BAMs). Despite its sim-
plicity, the cell type-based approach heavily relies on the
cell annotation and its granularity. An alternative approach
to defining a neighbourhood is to consider local conditions
that manifest as altered transcript counts. An example of
a such neighbourhood could be a hypoxic region charac-
terised by the expression of genes responsible for survival
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in low oxygen conditions. A plethora of cell-type-agnostic
methods that utilise transcript data directly have been de-
veloped for the annotation of expression-driven neighbour-
hoods [110, 225, 226].

Although simple methods were found to be advanta-
geous [111, 200, 224], both approaches are valid, and the
comparison between them can assist in the identification
of novel spatial biomarkers [227].
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AIMS OF THIS DISSERTATION

To address the knowledge gaps in the field of glioma re-
search and to tackle the computational challenges presented
in Chapter 1, I set the following objectives within the scope
of this dissertation:

1. To establish a robust and efficient computational pipe-
line to enable the analysis of spatial single cell tran-
scriptomics data;

2. To decipher the complex ecosystem of necrotic tissue
in GB patients;

3. To launch a large-scale pan-glioma study and eluci-
date the discrepancies in cellular landscape and spa-
tial organisation across seven gliomas.
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COMPUTATIONAL METHODS FOR
SPATIAL ANALYSES

As aforementioned, owing to the recent emergence of spa-
tial technologies, a consensus on best practices for compu-
tational analysis of spatial data remains to be established.
In this Chapter, I present a comparison of the methods that
were available at the beginning of my doctorate a few years
ago. Moreover, due to the paucity of tools readily available
for analysis, I was required to devise novel approaches to
spatial analysis. These methods are also discussed in this
Chapter. Given that both projects included in this disserta-
tion employed the 10x Xenium technology, the following
text will address only the analysis of the associated data.

2.1 DESIGNING A CUSTOM GENE PANEL

While commercial spatial platforms provide predesigned
gene panels, a custom panel that is tailored to specific
needs may be required when the research question is more
narrow or involves rare cancer types. The study discussed
in Chapter 4 encompasses adult-type diffuse gliomas and
multiple EPNs. To develop a custom panel of 350 target
genes for a detailed spatial profiling of these gliomas, I
formulated the following recommendations:

1. The panel should recover all cell types expected to
be found in gliomas;

2. The panel should capture the diversity of gene ex-
pression beyond that determined by a cell type;

3. The panel should incorporate genes of particular in-
terest for glioma research.

The following text discusses the approaches I developed
to guarantee the fulfilment of each of the three require-
ments.
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COMPUTATIONAL METHODS FOR SPATIAL ANALYSES

CELL TYPE RECOVERY. To conduct cell type marker se-
lection, I used a published GB data set [228] and a cosine
similarity-based method named C0SG [178] (Figure 2.1). To
evaluate the capacity of the gene set to recover all cell types
of interest, I compared the silhouette scores of cell type clus-
ters within two distinct data sets: one consisting of the
whole transcriptome (Figure 2.1a), and the other contain-
ing only the selected markers (Figure 2.1b). The average
silhouette score for clusters in whole transcriptome space
was -0.1022, and for the marker space it reached 0.02242
(Figure 2.1c). Considering that result, I concluded that the
selected markers were efficient at recovering cell types.
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Figure 2.1: Cell type recovery. UMAP of the GB data set using
the whole transcriptome (a) and only markers (b).
Silhouette score per cell type (c). Classification accu-
racy depending on the number of markers (d). DC,
dendritic cell; EC, endothelial cell; Mg, microglia;
M, macrophage; MoM@, monocyte-derived Mp;
NK, natural killer.



2.1 DESIGNING A CUSTOM GENE PANEL

Due to the limited size of the panel, it is necessary to de-
tine the smallest number of markers per cell type sufficient
to recover all cell clusters. To this end, I calculated the cell
classification accuracy using the Python package spapros
[190]. As, on average, the accuracy curve reached a plateau
at seven markers (Figure 2.1d), I decided to proceed with
seven markers per cell type.

To inform the selection of seven genes out of 50 markers
per cell type, I calculated the expression correlation within
each cell type (Figure 2.2). Certain cell types, such as neu-
rons, exhibited a high positive correlation between their
markers, while other cell types, for example neutrophils,
demonstrated minimal to no correlation. The correlation
coefficients were instrumental in optimising the recovery
of expression information while reducing the number of
redundant markers for each cell type. To this end, I incor-
porated at least one marker per individual cluster of corre-
lated markers. In instances where the number of markers
was still below seven, I opted to include genes exhibiting
low correlation with other markers or additional markers
for each cluster.

Since the study in Chapter 4 focuses on multiple glioma
types, I additionally evaluated the performance of the cell
type markers on publicly available astrocytoma [97] (Fig-
ure 2.3a) and oligodendroglioma [98] (Figure 2.3b) data
sets. As demonstrated by the high level of accuracy of the
classifier calculated using spapros [190], the selected cell
type markers were effective in accurately capturing major
cell types present in both data sets.

EXPRESSION DIVERSITY. Next, I employed both PCA
and sPCA on all three data sets in order to identify genes
that accounted for the expression variation in these tu-
mours (Figure 2.4a-b). To evaluate the performance of the
methods, I selected genes with a minimum of 0.5 load-
ing values across all components and calculated the panel
quality metrics implemented in spapros. In the case of as-
trocytoma, both methods demonstrated comparable per-
formance (Figure 2.4c). Conversely, for oligodendroglioma,
sPCA was more effective in selecting uncorrelated mark-
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Figure 2.2: The correlation of marker expression. Clustering high-
lights redundant markers.

ers and preserving local cell neighbourhoods (Figure 2.4d).
Therefore, I opted to employ sPCA to incorporate genes
reflecting expression diversity within the glioma types un-
der study.

To finalise the gene panel, I included additional markers
for specific challenges that may arise in the glioma study.
In particular, since glioma cells express markers of brain-
resident cells [104], it can be difficult to distinguish sur-
rounding tissue from tumour. In order to take this into
account and facilitate glioma cell identification, I included
additional astrocytic markers into the panel. Furthermore,
the gene list was further augmented with genes involved
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Figure 2.3: Cell type recovery in IDH-mutant gliomas. Classification
accuracy for astrocytoma (2) and oligodendroglioma
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in tumour networks [229], therapeutic targets, genes with
common mutations and CNVs, and previously established
principal markers of glioma states not covered by the tran-
scriptomic atlas (e. g.NPC1- and NPC2-like programs) [92].
Finally, I expanded the panel by adding genes implicated
in the hallmark functional pathways, namely proliferation,
angiogenesis, hypoxia, glycolysis, apoptosis, necrosis, fer-
roptosis, growth, senescence, and invasion.

2.2 CHOOSING A CELL SEGMENTATION METHOD

To select the best segmentation approach, I used a data set
produced in the study that will be discussed in Chapter 4
to compare three methods: distance-based segmentation,
nuclear segmentation, and Baysor [195] (Figure 2.5). The
raw output of the 10x Xenium platform comprises nuclear
boundaries, as determined by a segmentation run on the
nuclei-stained (DAPI) image, and cell boundaries, as de-
termined by expanding the corresponding nuclear masks
[199]. I utilised these outputs in the comparison, the first
one representing nuclear segmentation and the latter rep-
resenting a distance-based approach.

| | Lty el TS
¥ “Proliferating R TR
UMAP  tumour UMAP UMAP

Figure 2.5: Segmentation approaches. Spatial masks (top) and
UMAP embedding (bottom) of the distance-based (a),
nuclear (b), and Baysor (c) segmentation. Cell colours
in the top panel correspond to the cell types in
the bottom panel; white staining shows nuclei; dots
show transcripts.




2.3 ADAPTIVE CELL ANNOTATION

Distance-based segmentation led to considerable signal
mixing among cells of differing types, a finding that may
be attributable to cell spatial colocalisation (Figure 2.5a).
It is evident that the highly heterogeneous morphology of
brain cells, characterised by dendrites and irregular shapes,
may necessitate a more sophisticated approach than merely
extending masks by a pre-defined universal radius.

Conversely, the exclusive use of nuclear transcripts pro-
duced well-defined cell type clusters with little overlap
(Figure 2.5b). Concurrently, the available signal was suffi-
cient to annotate all cell types present in the data. However,
a considerable proportion of transcripts located outside
the nuclei, which may offer crucial information regarding
the cell expression, was discarded.

Finally, Baysor presented a balanced solution that pro-
duced well-defined cell type clusters while capturing the
maximum amount of transcript information (Figure 2.5¢).
Nonetheless, due to the persisting complexity of delineat-
ing cell boundaries away from the nuclei, a certain degree
of signal leakage might be inevitable. Therefore, the se-
lection of the appropriate segmentation algorithm may be
contingent upon the specific requirements of the task at
hand.

2.3 ADAPTIVE CELL ANNOTATION

CELL ANNOTATION. In a spatial context, it is impera-
tive to maximise the recovery of cells. This necessity will
be particularly apparent in Chapter 3, where I discuss ex-
pansive necrotic regions that exhibit reduced transcript lev-
els despite intact nuclei (Figure 2.6). In this case, a con-
ventional universal filtering procedure, based on raw tran-
script counts, would have resulted in the exclusion of all
cells from these regions.

To overcome the challenge, I used an alternative, more
adaptable strategy:

1. Initial annotation is performed on a subset of "high
quality" cells;
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2. The cell type labels are transferred to all segmented
cells with a certain confidence score. Then, depend-
ing on the task at hand, cells can be filtered to max-
imise either the annotation confidence or the number
of the preserved cells.

a  Raw counts b Segmented nuclei ¢ Annotated histology

[ o] ) .
0 15 >30 0 25 >50 Necrotic areas
Transcript count Nucleus area (um?)

Figure 2.6: Transcript counts reflecting sample histology. Raw tran-
script counts (a), nuclear area (b), and the correspond-
ing haematoxylin and eosin (H&E) staining (c).

In the following text I discuss each step in more detail.

INITIAL ANNOTATION. The initial annotation included
removal of cells with low counts, count normalisation by a
universal size factor, log 1p-transformation, and gene count
scaling. The next step was to perform a PCA and to build
a kNN-graph on the basis of the first principal compo-
nents. The generated kINN-graph was further clustered us-
ing the Leiden algorithm to identify cell types and visu-
alised using uniform manifold approximation and projec-
tion (UMADP).

At this stage, a decision must be made regarding the
necessity of batch correction prior to the definition of cell
type clusters. In order to make a decision, I analysed the
data from multiple glioma types (discussed in detail in
Chapter 4). Upon examination of the UMAP and cell clus-
tering (Figure 2.7), it became apparent that TME clusters
were defined by their respective cell types, while tumour
cells were grouped according to glioma type and/or sam-
ple origin.



2.3 ADAPTIVE CELL ANNOTATION

a TME cell ty{fes luster b Tumour cells group
y

independently of tumour y tumodr

Glioma

MEPN
mGB

W HGA
HLGA
EoLGo

Figure 2.7: Batch effect during cell annotation. TME cell clusters
defined by cell type (a). Batch effect for tumour cells
(b).

Based on these observations, I concluded that batch cor-
rection was not required at the level of broader cell groups,
since the difference in expression observed between cell
types exceeded the diversity present within cell type clus-
ters, thereby preventing their mixture.

In a standard scRINA-seq analysis, it is common practice
to further examine each broad cell type cluster in isolation,
aiming to generate fine cell subtype annotations. In this
case, another question that must be addressed concerns
the necessity of re-scaling the transcript counts prior to the
re-clustering. As evidenced by an investigation into T cells
(Figure 2.8), no re-scaling impeded the identification of
proliferating T cells, potentially due to the greater expres-
sion diversity between cell types that exceeded the subtle
variations between cell subtypes (Figure 2.8a). Conversely,
re-scaling of gene expression resulted in the aggregation
of proliferating T cells into a separate cluster (Figure 2.8b).
Therefore, I concluded that re-scaling represented a better
strategy to facilitate the annotation of subtle cellular states.

An alternative approach exists, however, which is not
dependent on the subjective elements of data preparation
and annotation. In this approach, cell states are defined by
means of matrix factorisation (see Section 2.4).
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Figure 2.8: Re-scaling during cell annotation. UMAP embedding of
T cells with no re-scaling (1) and after re-scaling (b).

LABEL TRANSFER. In order to annotate the filtered cells
and to refine the previous annotations, I employed mod-
els using variational inference (scVI) that are part of the
scvi-tools Python package [207] (Figure 2.9). I trained a
scVI model [230] with a Poisson count distribution on a
random sample from the annotated data set to compute
the latent space. In the next step, I used the weights of the
trained scVI model to initialise and train a scANVI model
[231] to transfer the annotations to all cells (Figure 2.9a).

Such approach facilitated greater adaptability and cus-
tomisation, enabling either the prioritisation of cells with
high confidence predictions or threshold adjustment ac-
cording to the task at hand (Figure 2.9b). Furthermore, in
Chapter 3 and Chapter 4, the approach described above
results in the discovery of a new cell type.

2.4 DESCRIBING TRANSCRIPTION PROGRAMS

As mentioned above, an alternative to manual annotation
of fine cell types is MF. Using a GB data set (discussed



2.4 DESCRIBING TRANSCRIPTION PROGRAMS

a  Raw counts Model confidence Predicted cell type

W’&’ 80 ;
’ ' 00 gk h
UMAP [MAf [%P

b EC Excitatory neuron  Inhibitory neuron

40
0

 Myeloid

/ Confidence threshold

/

s
Raw count threshde >

Model confidence
r o o o o
(universal)

PVF'

Raw count threshold &

{adapted)

0 10°
Transcript count

Figure 2.9: Adaptive thresholds for cell quality control. UMAP of
sampled cells coloured by count, prediction confi-
dence, and label (a). Model confidence depending on
the cell type (b). Cell type colours in (a) match the
colours used in (b). Red curves show averaged val-
ues.

in Chapter 3), I tested two NMF initialisation methods for
tinding transcriptional programs for tumour cells: random
(implemented in concensus NMF [232] Python package, fur-
ther referred to as rNMF) and low-rank approximation
(non-negative double singular value decomposition used
by default in scikit-learn [233] Python package, further
referred to as IrNMF) (Figure 2.10). For rINMF, I chose ten
components, as this solution corresponded to the highest
stability and a low error rate. In the case of IrNME, the so-
lution was comparatively stable regardless of the number
of components. Since numbers higher than ten produced
programs consisting of one gene only, I concluded than ten
components would be optimal.
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The rNMF produced programs that were mutually un-
correlated (Figure 2.10a) and could be clearly annotated
based on the contributing genes. In contrast, the IrNMF ap-
proach yielded highly correlated programs that clustered
into groups defined by similar functional signatures clus-
ters (e. g.a hypoxic mesenchymal signature) (Figure 2.10b).
Furthermore, one of the IrNMF programs was attributed
to a single gene, EGFR (Figure 2.10b), which undermined
the very objective of identifying metaprograms. Such fac-
tor redundancy was effectively addressed by the rNMF
algorithm which consolidated the correlated IrNMF pro-
grams into single uncorrelated programs (Figure 2.10c).
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Figure 2.10: Comparison of rNMF and IrNMF solutions. Expression
correlation for INMF (a) and IrNMF (b) programes.
Correlation between rNMF and IrNMF programs
(c).

In addition, the expression of INMF programs was ob-
served within discrete populations of tumour cells (Fig-
ure 2.11a), highlighting the heterogeneity of glioma cells.
Conversely, most IrNMF programs were distributed over
cells across all patients, exhibiting no discernible patterns.
Moreover, INMF programs were confined to specific spa-
tial areas (Figure 2.11b), whereas in the case of IrNMEF, the
redundancy of programs was furthermore evident as their
spatial expression considerably overlapped (Figure 2.11c).

Consequently, in both studies discussed in this disser-
tation, I employ the NMF method (further referred to by
the corresponding package name, consensus NMF [232]), in
view of its ability to capture information about heteroge-
neous cell populations in a spatial and sample-based man-
ner demonstrated here.
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2.5 DESCRIBING SPATIAL PATTERNS

VISUAL EXAMINATION. When a study involves a small
number of samples and cell types (as in Chapter 3), spatial
exploration could be started with the visual examination
of the location of individual cell types. In certain cases,
cell type distribution within anatomical regions may offer
insight into the nature of the region itself (Figure 2.12).

Excitatory neurons  Inhibitory neurons OCs H&E

Figure 2.12: Visual assessment of cell type location. The majority of
neuronal signals are derived from the grey matter,
where the somas are situated.

SPATIAL NEIGHBOURHOODS. To identify recurring spa-
tial patterns in a quantitative manner, it is essential to
compute a neighbourhood graph. Despite the existence
of numerous algorithms for the construction of such a
graph (see Subsection 1.4.4), for a general task of iden-
tifying spatial neighbourhoods, 1 selected the Delaunay-
based approach as it produced neighbourhoods of similar
size, that were independent of cell type or sample region
(Figure 2.13a), whereas the results of the radius-based ap-
proach depended on the selected radius (Figure 2.13b-c).
The resulting neighbourhood graph can then be visu-
alised in order to identify recurrent spatial connections
among cell types. The capacity for customisation of such
visualisation is noteworthy, suggesting its suitability for a
range of analytical applications. To illustrate, I visualised
spatial connections existing in samples from two groups
from Chapter 3 (Figure 2.14). In the given example, the size
of the nodes is proportional to the frequency of neighbours
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Figure 2.13: Comparison of neighbour distribution for three graphs.
Distribution of the number of neighbours per cell
for the Delaunay-based (a), 20um-radius-based (b),
and 4opm-radius-based (c) spatial graphs.

of the same type, and the width of an edge is proportional
to the neighbouring frequency of the corresponding two
cell types. Samples in the first group demonstrated high
interconnectivity (Figure 2.14a), whereas the second group
exhibited the loss of interconnectivity, with only three cell
types maintaining spatial connections (Figure 2.14b).
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Figure 2.14: Graph visualisation for spatial analysis. Spatial connec-
tions in samples from group 1 (a) and group 2 (b).

In order to facilitate a quantitative calculation of neigh-
bourhoods, which would be independent of subjective vi-
sual evaluation, I employed a method that defined neigh-
bourhoods based on their cell type composition, similarly
to previously described approaches [111, 224]. The initial
step involved the construction of a matrix, where the rows
corresponded to each cell in the data set, and the columns
denoted the number of neighbours of each cell type. I

75



COMPUTATIONAL METHODS FOR SPATIAL ANALYSES

subsequently clustered the matrix using the k-means al-
gorithm to obtain cellular neighbourhoods.

LOCATION-DEPENDENT EXPRESSION CHANGES. The
analysis of spatial single cell data provides a valuable op-
portunity to investigate context-dependent expression pat-
terns. In the two studies discussed in this dissertation, the
number of profiled genes was insufficient for the differential
expression (DE) tools that are frequently applied in the
scRNA-seq studies, as the data was too sparse to distin-
guish noise and signal leakage from true DE expression.

To address this challenge, I adopted a different approach
(Figure 2.15). To this end, for all cells belonging to a spe-
cific group, I calculated the correlation coefficients between
gene expression and the distance of these cells to a tar-
get spatial location. To account for inter-sample variation,
the correlation coefficients were first calculated on a per-
sample basis and then averaged across samples. As the
distribution of averaged correlation coefficients should ap-
proach a normal distribution even in cases where sample
correlations are not normally distributed, I made an as-
sertion that genes located at the extremes of the empiri-
cal correlation distribution (i. e.below the 5th or above the
o5th percentile) could be interpreted as statistically and
biologically meaningful.

Sample Averaged
distribution distribution

0.05 quantile 0.95 quantile

Density

"Enriched"” far
away from target

"Enriched”
close to target

1.0 05 0.0 05 1.0

&pearman correlation
(distance vs expression)

Figure 2.15: A custom method for gene enrichment analysis. Correla-
tion between expression and a spatial distance used
to define gene enrichment.



SPATIAL PROFILING OF NECROSIS IN
GLIOBLASTOMA

3.1 BACKGROUND AND CONTEXTUAL FRAMEWORK

The current standard of care for GB involves radiother-
apy, a procedure that frequently results in complications,
such as radionecrosis (RIN) [234]. RN manifests in approxi-
mately 20% of GB patients, typically within several months
to several years after radiation exposure [235, 236]. In rou-
tine MRI scanning, which is frequently employed to assess
disease status, RIN can be misinterpreted as GB progres-
sion, as both are characterised by contrast enhancement
and perilesional oedema. Nonetheless, progressive GB and
RN demand different therapeutic strategies, and incorrect
diagnosis may lead to the worsening of symptoms [78].
Despite the potential of perfusion MRI and amino acid
positron emission tomography (PET) to facilitate differen-
tial diagnosis, these techniques have yet to achieve wide
usage [235]. Consequently, the differential diagnosis of GB
progression and post-treatment complications is currently
based on histopathological evaluation [237]. Histologically,
the manifestation of RN is characterised by coagulative
necrosis, vessel wall hyalination, and marked vasculature
damage [238]. Conversely, in GB, a necrotic core is encir-
cled by hypercellular zones comprised of elongated tu-
mour cells, known as PSEUDOPALISADES [239]. Despite
extensive research, the fundamental causes of the dispari-
ties between RN and pseudopalisading necrosis in GB re-
main to be fully elucidated.

In the study discussed in the present Chapter, I em-
ployed spatial single cell transcriptomic profiling of 266
genes to generate the first spatial atlas of progressive GB
and RN encompassing eight brain-resident cell types and
ten tumour transcription programs. In RN samples, large
numbers of infiltrating BAMs and the prevalence of mu-
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tant cells with low EGFR expression were identified. Con-
versely, progressive GB contained progenitor-like and pro-
liferating tumour cells that exhibited high EGFR expres-
sion. The present study offers invaluable insights into the
intricate architectural patterns and cellular interplay in RN,
which may assist in improving GB patient outcomes in the
future.

The text and Figures herein are reproduced from the
manuscript that has been published on medRxiv (Sefer-
bekova, Ritter, Ruckhovich, Schinkewitsch, Koberer, Grassl,
Kessler, Goidts, Ratliff, Herold-Mende, Krieg, Etminan, Plat-
ten, Wick, Reuss, von Deimling, Sahm, Gerstung & Suwala
[240]) and is currently in revision at Neuro-Oncology. For
that manuscript, I analysed all data, interpreted the results,
prepared all figures, and wrote all the text. In comparison
with the published manuscript, some parts were omitted
and the text has been rewritten to follow the overarching
narrative of this dissertation. The Figures were updated
to fit the general style of this work. The scientific content
remains similar.

3.2 MATERIALS AND METHODS
3.2.1  Specimen collection

Abigail K. Suwala and Felix Sahm provided formalin-fixed
paraffin-embedded (FFPE) material from nine GB patients,
who previously underwent standard of care treatment con-
sisting of chemo- and radiotherapy. At the time material
was collected, MRI scans of all patients revealed signs of
tumour progression in accordance with the RANO guide-
lines [241]. Nevertheless, upon histological examination,
four patients were confirmed to have tumour progression,
four exhibited radionecrotic changes, and one patient was
found to have both. Abigail K. Suwala assembled the sam-
ple cohort and performed neuropathological annotations
on consecutive H&E slides.
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3.2.2  Spatial single cell transcriptomic experiment

Abigail K. Suwala selected areas of interest, encompassing
both necrosis and the adjacent tissue. Michael Ritter car-
ried out the Xenium sample preparation, involving cut-
ting tissue sections (5 pm thick), sample mounting onto
Xenium slides, incubation, and air-drying. Michael Ritter
in collaboration with scOpenlab processed the samples
using the Xenium Sample Preparation Kit and the off-the-
shelf Xenium Human Brain Panel, comprising 266 genes
(PN-1000599), in accordance with the manufacturer’s pro-
tocols.

3.2.3 Spatial single cell transcriptomics data analysis

CELL SEGMENTATION. Gleb Rukhovich utilised Baysor
v0.6.1 [195] to segment whole cells. The nuclear segmen-
tation, informed by DAPI staining, was used as a prior,
with a confidence threshold set at 0.1. The minimal num-
ber of transcripts required for a cell to be classified as real
was set to 5. After segmentation, I combined the generated
per sample expression matrices into one data set.

CELL ANNOTATION. For computational data analysis
I used Scanpy v1.10 [242] and Python v3.9. Initially, I
tiltered out 1,360,821 (56% of all segmented cells) cells
that contained less than 30 transcripts. Next, I normalised,
loglp-transformed, and scaled the transcript counts for
the remaining 1,065,178 (44%) cells. I performed PCA on
the scaled data with default parameters, and generated a
kNN graph using 50 principal components and 15 neigh-
bours. For visualisation purposes, I embedded the graph
using UMALP with default parameters. Finally, to annotate
cells, I clustered them using the Leiden algorithm with a
resolution of 0.5. I annotated six major cell types (Oligo-
dendrocytes, Neurons, Vascular, Myeloid, Lymphoid, and
Tumour cells) based on cell type marker expression (Fig-
ure 3.1). In the final step, counts for Vascular cells, Lym-
phoid cells, and Neurons were re-scaled and re-analysed
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separately to produce perivascular fibroblasts (PVFs), En-
dothelial cells, T cells, and Inhibitory and Excitatory neu-
rons. I labelled 14,185 cells from the Lymphoid cluster as
"Unknown" due to the lack of specific expression.

REFINING CELL ANNOTATION. To annotate filtered out
cells and refine the generated annotations, I used models
implemented in scVI-tools v1.2.0 [207]. First, to obtain
the latent representation of the transcript space, I trained
an scVI model [230] on a random sample from the anno-
tated data set (115,165 cells stratified by patient and cell
type, excluding "Unknown") with Poisson gene likelihood
distribution and 16 latent dimensions. Cell clustering em-
ploying the latent space yielded two clusters for Endothe-
lial cells. I re-labelled one cluster as Pericytes/VSMCs due
to its high expression of NR2F2, CDH6, and SLIT3 and re-
trained the scVI model with this cell type added to the
labels. Subsequently, I used the new model to generate de-
coded transcript fractions per cell. To transfer annotations
and obtain cell type probabilities for the entire data set, I
used the same training sample to train a scANVI model
[231] initialised with weights from the scVI model. Cells
with at least 10 transcripts and 0.8 cell type probability
were assigned the predicted label. As PVFs presented the
greatest challenge and exhibited the lowest model confi-
dence (Figure 2.9b), I assigned this label to cells that had
at least 30 transcripts. The remaining cells were annotated
as "Uninformative".

TRANSCRIPTION PROGRAMS. To identify transcription
programs within the Tumour and Myeloid clusters, I em-
ployed the consensus NMF [232]. Ten and four programs
were found to achieve the highest stability-to-error ratio
for the Tumour and Myeloid clusters correspondingly (Fig-
ure A.1). For the Tumour cluster, I excluded from the sub-
sequent analysis the minor (less than 20% of total tumour
signal) Myeloid and Neuronal programs as well as sample-
specific Invasion and Hypoxic MES2b-like programs. For
the Myeloid cluster, although the optimal stability-to-error
ratio was also achieved for the solution with ten programs,
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the additional six programs mostly corresponded to brain-
resident cell transcriptional profiles. Hence, I hypothesised
that the extra programs could be explained by an over-
training and proceeded with four Myeloid programs. All
programs were annotated based on the top contributing
genes.

3.2.4 Spatial analysis

SPATIAL COMMUNITY IDENTIFICATION. For the spa-
tial computations, I used functions implemented in the
squidpy [222] package. First, I constructed a spatial graph
based on Delaunay triangulation, filtering out neighbours
at the distance more than 100 um. Next, for a given pair
of cell types, a metric of neighbourhood enrichment was
defined as a z-score standardising the observed number of
colocalisation events compared to the number of colocali-
sation events in 1,000 random permutations of cell labels.

OVEREXPRESSED GENES PRIORITISATION. To identify
genes that were overexpressed in cells of a target cell type
in close proximity to cells of another cell type, I imple-
mented a prioritisation strategy (see Chapter 2). In short,
for the two cell types, I computed Spearman correlation
coefficients between cell distances and target cell gene ex-
pression for each gene and sample and calculated median
values within diagnosis groups. Genes with a correlation
coefficient below the 0.05 quantile of the diagnosis-level
distribution were considered "overexpressed" in the target
cell type in close proximity to the second cell type. Sim-
ilarly, genes with a correlation coefficient above the 0.95
quantile were considered "overexpressed" away from the
second cell type.
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3.3 RESULTS

3.3.1 Spatially-resolved transcriptomics facilitates RN and GB
comparison

The objective of the present study was to describe the spa-
tial cellular landscape across the RN and progressive GB
histologies. To this end, ten samples from a cohort of nine
patients who had undergone the current standard of treat-
ment were collected (Table 3.1). According to the histolog-
ical assessment, four cases met the criteria for progressive
GB, four demonstrated features of RN, and one patient
presented with both. The samples were analysed using the
Xenium In Situ platform and the Human Brain Panel (Fig-
ure 3.1a).

Patient — Histology Age Days after radi- Status

ation*

Patient 1 GB 58 231 Deceased
Patient 2 GB 66 252 Alive
Patient 3 GB 66 998 Alive
Patient 4 GB 57 58 Alive
Patient 5 RN 52 351 Deceased
Patient 6 RN 60  No data No data
Patient7 RN 50 226 Alive
Patient 8 RN 79 53 Deceased
Patientg RN & GB 59 141 Alive

Table 3.1: Patient cohort. *, time of material collection in days af-
ter radiation exposure.

In general, GB samples displayed higher cell densities
in comparison with samples exhibiting RN histology (Fig-
ure 3.1b, P = 1.29 x 107>, two-sided Mann-Whitney U test).
Following the processing of raw data (see Section 3.2), I
generated a spatial single cell transcriptomics atlas of RIN
and progressive GB, that encompassed 1,189,460 cells and
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Figure 3.1: Atlas of necrotic tissue in GB patients. Experimental
pipeline (a). Cell density comparison (b). Cell type
markers (c). UMAP of annotated cell coloured by
type (d) and histology (e). Adapted with permission
from [240].

112,423,484 transcripts. The annotated cell types included
Tumour cells and eight TME cell types, namely Myeloid
cells, Oligodendrocytes, PVFs, Pericytes/VSMCs (further
as "Pericytes"), Endothelial cells, T cells, and Excitatory
and Inhibitory neurons (Figure 3.1c). The presence of all
nine cell types, inclusive of Tumour cells, was identified in
both GB and RN samples (Figure 3.1d-e).

During the annotation process, one major cluster showed
expression of both glioma and astrocytic marker genes
(Figure A.2). Concurrently, no individual cluster was found
to exclusively express astrocyte-specific markers. The dis-
tinction between malignant and TME cells is a frequently
encountered challenge in scRNA-seq and spatial transcrip-
tomics analysis and is traditionally solved through the anal-
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ysis of CNV profiles [243]. However, due to the insuffi-
cient number of target genes in the panel, CNV analysis
could not be conducted in the present study. Furthermore,
GB has been shown to contain cell populations exhibiting
transcriptional similarities to brain-resident astrocytes [92],
which additionally complicated the distinction. To address
the problem, I annotated the cluster as "Tumour cells (in-
cluding astrocytes)" and subsequently identified cell pop-
ulations via transcription program inspection (see Subsec-
tion 3.3.2). To ascertain the validity of this approach, I com-
pared the annotated Tumour cell percentages with the ex-
pected tumour cell counts, the latter being devised from
VAFs of TERT promoter mutations, a hallmark alteration
in GB [244] (Figure A.3). The surprising conclusion was
that the established annotations may in fact be an under-
estimation of the number of glioma cells in samples re-
gardless of histology. On the basis of this evidence, I con-
sidered the proposed strategy adequate and employed the
same approach for the Myeloid cluster. In this particular
case, the strategy was further driven by the observation
that, in the brain, myeloid populations form a transcrip-
tional continuum, as opposed to individual cell type clus-
ters [245]. Consequently, I delineated myeloid cell states
through the identification of transcription programs (see
Subsection 3.3.3).

The comparison of cell proportions revealed that there
was no statistically significant difference between Uninfor-
mative cell numbers in the two histologies (Figure 3.2a,
P > 0.05, two-sided Mann-Whitney U test), indicating that
the employed filtering procedure did not have a bias to-
wards one particular histology. In addition, since irradia-
tion is known to be associated with RN changes in the
white matter, a significant proportion of which consists of
axons [246], I hypothesised that the low transcript num-
ber within axons would not be captured efficiently in a
spatial single cell experiment. This, in turn, should result
in a reduced number of neurons annotated in samples
with RN histology. Indeed, I found a statistically signif-
icant difference in the proportions of Inhibitory neurons
(Figure 3.2b, P = 0.028571, two-sided Mann-Whitney U
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test). However, after multiple test correction, this differ-
ence was rendered insignificant. The other seven cell types
did not show significant differences between GB and RN
samples (Figure 3.2b, P > 0.05, two-sided Mann-Whitney
U test with Benjamini-Hochberg correction). In both sam-
ple groups, Tumour cells constituted the predominant cell
type, while Inhibitory neurons were the least prevalent cell
population.
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Figure 3.2: Cell type proportion comparisons. GB and RN samples
did not differ in proportions of filtered-out cells (a)
or any annotated (b) cell types. Adapted with permis-
sion from [240].

Taken together, I generated a spatial single cell transcrip-
tomic atlas of nine cell types across ten samples with RN
changes and GB, which enabled a nuanced comparison of
the two histologies.

3.3.2 Progenitor-like tumour state is downregulated in RN sam-
ples

To characterise the transcriptomic heterogeneity concealed
within the Tumour cluster, I annotated ten tumour tran-
scription programs using consensus NMF [232] (see Sec-
tion 3.2). Subsequently, given that four tumour transcrip-
tion programs accounted for either sample-specific or mi-
nor signals in the Tumour cluster (Figure A.4), I focused
on the remaining six programs for downstream analyses
(Figure 3.3).

In alignment with previously reported findings [247], I
identified two distinct transcription programs associated
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Figure 3.3: Tumour transcription programs. Program markers (a).
Program distribution between the two histologies
(b). Spatial distribution of programs (c). EGFR ex-
pression in samples where the gene is amplified (d).
Genes enriched perinecrotically (top) and away from
necrosis (bottoms) (e). Hyp., hypoxic; Reac., reactive.
Adapted with permission from [240].

with the MES-like glioma state. The first program consti-
tuted the largest proportion of the Tumour cluster and was
characterised by the presence of both MES2-like (IGFBP3)
and hypoxia-response (LOX, CAV1, HILPDA) markers (Fig-
ure 3.3a). The distribution of these tumour cells aligned
with perinecrotic areas (Figure 3.3c, Figure A.5a), indicat-
ing the potential stress environment. Consequently, I an-
notated that transcription program as Hypoxic MES2-like
program.

The second MES program was enriched in genes previ-
ously assigned to the MES1-like program (MGST1, SER-
PINA3, IFITM3) (Figure 3.3a), which are involved in in-
jury response. Spatially, the program was expressed in re-
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gions in close proximity to Hypoxic MES2-like cells, but
distant from areas of necrosis (Figure 3.3¢, Figure A.5a).
I hypothesised that this program may represent cells in
the direct vicinity of stress-affected tissue that facilitate
wound-healing. The program was therefore annotated as
Gliosis MES1-like program.

The third program was associated with glial (OLIGz2,
OLIG1) and neuron (SOX4) progenitor markers, as well
as general stem (BCAN, PTPRZ1, NOTCH1) markers (Fig-
ure 3.3a), therefore it was annotated as Progenitor-like tu-
mour program. The proportions of cells expressing this
particular program were different in RN samples in com-
parison to GB samples (Figure 3.3b, P = 0.047619, two-
sided Mann-Whitney U test with Benjamini-Hochberg cor-
rection). Notably, EGFR, a pivotal driver in GB biology,
was among the genes associated with this program. Since
EGFR amplification is common in GB, it is therefore con-
ceivable that all samples with the amplification should
have high EGFR expression. However, upon comparing
EGEFR expression among the three patients with confirmed
EGFR amplification (one with GB histology, one with RN
histology, and one with both samples), it was revealed that
the expression levels of EGFR in RN samples were low,
whereas GB samples demonstrated high expression (Fig-
ure 3.3d). This discrepancy was particularly pronounced
in two samples from the same patient (Patient 9). Further-
more, an assessment of DNA methylation array data re-
vealed that the EGFR amplification was not genetically lost
(Table A.1).

The fourth program was enriched in oligodendocytic
(CNDP1, ERMN) and OPC (MAG) markers (Figure 3.3a)
and was therefore termed OPC-like. Tumour cells express-
ing this program could represent OPCs differentiating to-
wards mature oligodendrocytes. In a similar manner, the
tifth program was characterised by the markers of brain-
resident astrocytes (AQP4, FGFR3, SOX9, SPON1) and was
annotated as Reactive AC-like program. Finally, the Prolif-
erating program was expressed in the lowest fraction of
Tumour cells was associated with cell cycle-related genes.
Similarly to Progenitor-like tumour cells, Proliferating tu-
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mour cells were present in different proportions in GB and
RN samples (Figure 3.3b, P = 0.047619, two-sided Mann-
Whitney U test with Benjamini-Hochberg correction).

Finally, to facilitate the analysis of potential associations
between Tumour gene expression and the distance to necro-
sis, I employed a gene prioritisation procedure (see Subsec-
tion 3.2.4). A negative correlation was observed between
distance to necrosis and the expression of genes associ-
ated with cell migration (NRP1, IGFBP3, PHLDB2). It has
been previously observed that pseudopalisading cells may
exhibit migratory behaviour directed away from hypoxic
conditions [114]. The present study posits that, despite dis-
tinct histopathological representation (i. e.the absence of
an elongated shape), perinecrotic cells in RN exhibit a sim-
ilar migratory transcription signature as pseudopalisading
glioma cells.

Taken together, the findings outlined here demonstrated
that GB samples contained larger fractions of Progenitor-
like and Proliferating tumour cells compared to RN. Fur-
thermore, Tumour cells in GB samples maintained high
EGFR expression, whilst in RN, they expressed low levels
of EGFR even in the presence of EGFR amplification.

3.3.3 Border-associated macrophages infiltrate RN samples

In a similar manner to the Tumour cluster, I employed
consensus NMF [232] to describe four transcription states
for cells in the Myeloid cluster (Figure 3.4, Figure A.sb,
see Section 3.2). The first program was associated with
P2RY12, CX3CR1, and GPR34 expression and corresponded
to brain-resident Microglia (Figure 3.4a). The second pro-
gram was enriched in LYVE1, THBS1, and CD163, markers
of BAMs. Finally, I identified Proliferation and Hypoxia
programs, which resembled the tumour transcription pro-
grams but were defined by different genes (Figure 3.1a).
Furthermore, Proliferating myeloid cells had significantly
higher fractions in GB samples in comparison to RN sam-
ples (Figure 3.4b, P = 0.0317, two-sided Mann-Whitney U
test with Benjamini-Hochberg correction).
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Figure 3.4: Myeloid transcription programs. Program markers
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tologies (b). Spatial distribution of programs (c).
immunohistochemistry (IHC) staining for a BAM
marker (d). Adapted with permission from [240].

On average, BAMs constituted the largest proportion of
the Myeloid cells in samples with RN histology — four RN
samples exhibited higher BAMs fractions than all GB sam-
ples. Surprisingly, I observed that, in GB, BAMs were re-
stricted to smaller areas, while in RN samples, they demon-
strated a diffuse pattern (Figure 3.4c, Figure A.5b). This
observation was corroborated by IHC staining for CD163,
which showed pronounced positive staining in the sample
with RN histology and not in the GB sample (Figure 3.4d).

The results of the analysis outlined here indicated that
the Proliferation myeloid transcription program is more
prevalent in samples with GB histology than in RN sam-
ples. Furthermore, in RN, the most prevalent myeloid pop-
ulation, BAMSs, was enriched across the whole sample area,
whereas in GB samples BAMs were observed in few small
clusters.
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3.3.4 RN and GB histologies exhibit different spatial architec-
tures

To investigate the differences in spatial architectures un-
derlying GB and RN histologies, I utilised a permutation
test (see Section 4.2). I assessed whether particular cell
types demonstrated a preference for colocalisation, form-
ing recurrent spatial communities (Figure 3.5, Figure A.6).
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Figure 3.5: Recurrent spatial communities. Three recurrent com-
munities in GB (a) and RN (b) samples. Adapted with
permission from [240].

The first spatial community was formed by Hypoxic
myeloid and Hypoxic MES2-like tumour cells (Figure 3.6),
delineating a potential area with the conditions of severe
hypoxic stress. Furthermore, BAMSs, Pericytes, Endothe-
lial cells, and T cells formed a second spatial community,
the Perivascular community, which was shared by both
histologies (Figure 3.5). It is noteworthy that, despite the
marked severity of vessel damage observed after brain ir-
radiation, this finding suggests that the Perivascular niche
is preserved in RN samples. Finally, I observed a colocali-
sation of brain-resident cell types, namely Neurons, Oligo-
dendrocytes, and Microglia and defined this spatial com-
munity as “Stromal”.

Additionally, I observed multiple instances of colocalisa-
tion between only two cell types. In particular, in GB sam-
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ples, Proliferating tumour cells colocalised with Progenitor-
like tumour cells (Figure 3.5a). Moreover, I observed a colo-
calisation of Reactive AC-like cells with BAMs within the
stromal community only in samples displaying RN his-
tology (Figure 3.5b, Figure A.6b, showed with an arrow).
Furthermore, BAMs recurrently colocalised with Gliosis
MES1-like tumour cells in RN samples (Figure 3.5b). To as-
sess whether such colocalisations could be associated with
a functional interplay between the cell types, I evaluated
how gene expression correlated with spatial distances. In
the case of BAMs in proximity to Gliosis MES1-like tu-
mour cells, the colocalisation was associated with an up-
regulation of cytokine production in BAMs, particularly
TNF (Figure A.7).

To summarise, the current study posits that necrotic tis-
sue in GB patients is characterised by an intricate spatial
architecture, displaying variations in minor cellular com-
munities depending on the exact histology of the sample.
In cases exhibiting RN histology, I observed the colocal-
isation of BAMs with Reactive AC-like cells and Gliosis
MES1-like tumour cells. Concurrently, the upregulation of
BAM cytokine production was evident when they were lo-
cated close to Gliosis MES1-like tumour cells.

3.4 DISCUSSION

The study presented in this Chapter is the first to provide
a comprehensive analysis of RN changes in comparison
to GB histology using spatially-resolved single cell tran-
scriptomics. According to the results of the study, samples
which were histologically diagnosed with RN changes and
no GB progression (i.e.no evidence of pseudopalisades)
contained a high number of cells with characteristic CNVs
and TERTp mutations. Despite the frequent detection of
sparse tumour cells in pseudoprogression following treat-
ment [248], it is yet to be elucidated why only in progres-
sive GB and not in RN samples these tumour cells organise
into pseudopalisades.
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The study additionally revealed that GB samples exhib-
ited higher fractions of Progenitor-like and Proliferating
tumour cells, while in RN samples, these tumour cells
were rare. The discrepancy was particularly pronounced
in two samples collected from the same patient. A key GB
driver, EGFR, was one of the genes associated with the
Progenitor-like transcription program. Interestingly, EGFR
expression differed between the two histologies in a simi-
lar manner. In particular, in the presence of EGFR ampli-
tication, tumour cells in samples with GB histology over-
expressed EGFR, whilst in RN samples, EGFR expression
was markedly low. In a study on postnatal rats, the expres-
sion of EGFR in progenitor cells was demonstrated to play
a pivotal role in maintaining their proliferative capacity
[249]. In the current study, Proliferating tumour cells were
found to colocalise with Progenitor-like cells in GB sam-
ples. Therefore, despite the limited number of samples and
low Proliferating tumour cell number, it could be hypoth-
esised that, in GB samples, the proliferating population is
replenished from cells in the progenitor pool.

As demonstrated in earlier studies [246], brain irradia-
tion can have an adverse impact on the NPC and OPC
populations. Given that the Progenitor-like transcription
program was associated with markers of brain-resident
progenitors, it could be hypothesised that these tumour
cells may be similarly sensitive to radiotherapy. Moreover,
Proliferating cells are expected to be more radiosensitive
[250]. Nevertheless, all patients in the cohort underwent
the same course of treatment that included radiation ther-
apy. Furthermore, RN typically manifests from months to
years after the exposure [236], and all patient material used
in this study was collected after comparable time periods
in both groups (Table 3.1). Hence, it is difficult to attribute
the observed discrepancies to irradiation alone.

It is also notable that an amplification signal for the
EGFR was detected in the DNA methylation data in both
GB and RN samples; yet, at the transcriptomic level, EGFR
expression was dramatically low in samples with RN his-
tology. One potential explanation for this could be the
death of tumour cells with high EGFR expression. This
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follows from the fact that the rate of RNA degradation
is faster than that of DNA degradation, hence DNA signal
might provide enough evidence to detect the amplification
even if RNA has already degraded and no signal is present
in scRNA-seq data. However, unlike DNA, DNA methyla-
tion can undergo substantial alterations when stored for a
duration exceeding three days [251].

Therefore, I speculate here that tumour cells in RN sam-
ples downregulate their EGFR expression as well as the
Progenitor-like and Proliferation transcription programs.
Theoretically, such transcriptional plasticity could enable
a substantial population of glioma cells to transition into
a resistant state of quiescence by reducing their prolifer-
ation. One possible driver of such plasticity could be the
TME and/or spatial architecture, as the discrepancies were
also observed in two samples that had different histologies
but were collected from the same patient.

In support of that hypothesis, I observed distinct spatial
patterns between GB and RN samples. In cases of GB his-
tology, BAMs were confined to the small areas surround-
ing blood vessels, a pattern that mirrors the distribution
of BAMs in the healthy brain [252]. In contrast, in RN
cases, BAMs represented the largest myeloid population
and infiltrated the parenchyma. Interestingly, BAM mark-
ers were previously demonstrated to be expressed in brain
parenchyma in several other brain pathologies [253, 254].
Within parenchyma, BAMs colocalised with Reactive AC-
like cells and Gliosis MES1-like tumour cells. The prox-
imity of the latter was associated with increased expres-
sion of cytokine-related genes, particularly TNF, in BAMs.
The upregulation of cytokines has been linked to neuroin-
flammation [255], which may provide a rationale for the
cognitive impairment and epileptic seizures observed in
patients with RN [235]. Furthermore, TNF has been identi-
fied as a key factor in the development of gliosis, which
can result in the formation of glial scar tissue [256]. A
study that used transgenic rodent models demonstrated
that glial scar tissue could function as a form of protec-
tive environment for glioma cells, thus contributing to GB
resistance [257]. The increased presence of BAMs in RN
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samples also has the potential to offer a novel diagnos-
tic modality. Despite the fact that the presence of glioma
cells in the cerebrospinal fluid (CSF) is infrequent [258],
certain BAM markers, including CD163, have soluble pro-
tein forms [259] and have therefore the potential to be de-
tected in blood plasma or CSF biopsies. The identification
of a biomarker which could be evaluated non-invasively to
differentiate RN from GB progression would considerably
enhance clinical decision-making.

In order to provide a comprehensive discussion of the
tindings, it is imperative to consider the limitations of this
study. Firstly, a fundamental limitation inherent to any
study of necrosis is the presence of numerous dead cells
that lack molecular signals suitable for investigation. Sec-
ondly, the cohort was confined to patients who satisfied
the RANO criteria for tumour progression [241], as deter-
mined by MRI scanning. This inherent limitation is dif-
ficult to overcome, as the second surgery that provides
tissue material is performed solely in the event of a sus-
pected tumour recurrence. Consequently, it would be pro-
hibitively difficult to obtain RN samples in cases where
there is no radiological progression diagnosis. This limita-
tion renders it challenging to determine the direct extrap-
olation of current findings to cases of radiologically diag-
nosed RN. Nevertheless, it is important to acknowledge
that, despite the term "radionecrosis" being predominantly
utilised in the field of imaging, it is histology that remains
the accepted gold standard for making the definitive diag-
nosis [237].

Finally, the current study is limited by the number of tar-
geted genes. Despite a select number of markers specific
to GB, the commercially available Brain Expression Panel,
utilised in the present study, exhibited a limited capacity
to describe tumour cell expression diversity, given its pri-
mary focus on neuron subsets. The advent of rapidly ad-
vancing spatially-resolved profiling technologies, offering
simultaneous exploration of thousands of genes, might en-
able the identification of finer spatial architectures shaped
by necrosis in GB patients.
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Figure 3.7: A schematic representation of the findings. DT, distant
tissue; H, hypoxia; N, necrosis; perivasc., perivas-
cular; prolif.,, proliferating; WH, wound-healing.
Adapted with permission from [240].

To summarise, the present work elucidates the spatial
characteristics of tissue with RN changes, thereby estab-
lishing a foundation for future research aimed at enhanc-
ing the treatment of GB patients.



A PAN-GLIOMA SPATIAL
TRANSCRIPTOMIC ATLAS

4.1 BACKGROUND AND CONTEXTUAL FRAMEWORK

Adult gliomas are a diverse group of highly plastic and
heterogeneous tumours [33]. The tumour tissue is com-
prised of subpopulations of shared stem-like cells and vari-
ous more differentiated progenies, the presence of which is
associated with varying degrees of tumour resistance and
disease progression [92, 97, 98, 115, 260]. Gliomas are also
found to contain non-malignant cells that constitute the
TME, which include neurons, astrocytes, oligodendrocytes,
vascular, and myeloid cells [111, 112, 261, 262]. Collectively,
malignant cells and the TME form complex communities
that are associated with survival and therapy response [95,
110, 113, 115]. As tumours are generally studied in isola-
tion, there is still a limited understanding of the recurrent
patterns in spatial organisation and cell interactions across
different entities.

Within the study discussed in this Chapter, I designed
a custom gene panel and subsequently utilised it for the
spatial profiling of single cells from seven gliomas, namely
adult-type diffuse gliomas and ependymal tumours. The
panel demonstrated efficacy in its depiction of the com-
plex cellular landscape across all examined glioma types.
The use of the annotated data set enabled the investigation
of tumour expression programs and identification of recur-
rent spatial neighbourhoods. The constructed comprehen-
sive atlas of seven adult gliomas could serve as a valuable
resource for the exploration of spatial biomarkers and their
correlation with clinical data.
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4.2 MATERIALS AND METHODS

The thorough discussion of computational approaches and
the underlying rationale can be found in Chapter 2. The
following summary is provided to outline the specifics and
deviations from the aforementioned workflow.

4.2.1  Custom panel design

The cell markers were selected on the basis of publicly
available scRNA-seq data sets of gliomas. In short, a GB
data set with 1,135,677 cells [228] was utilised. The marker
selection process involved 680,156 cells (60% of the total
data). I utilised COSG [178] for the identification of 50 mark-
ers for the 17 distinct cell types present in the data set.
Mast cells, radial glia, and plasma B cells were excluded.
The remaining 453,437 cells (40%) were used to construct
a kNN graph and compute UMAP for visualisation. Fur-
thermore, 1 used 3,400 cells (0.3%) from the latter set to
calculate the silhouette score and metrics for classification
quality (implemented in the Python package spapros[190],
see Figure 2.1). The average silhouette score and random
forest classifier accuracy demonstrated that a set of seven
marker genes per cell type was sufficient to successfully
identify all the cell types analysed (Figure 2.1d). In order
to select seven genes out of 50, I computed expression cor-
relation within cell types and prioritised genes that were
uncorrelated or negatively correlated (Figure 2.2). Follow-
ing this, I expanded the data set to include cell types not
present in the GB scRNA-seq data set, by incorporating
known markers for other immune cells and genes of inter-
est in GB research. Finally, to complement the panel and
cover expression diversity within and across cell popula-
tions, I included genes with the highest loadings for top 30
sparse principal components computed for the aforemen-
tioned GB data, as well as scRNA-seq astrocytoma and
oligodendroglioma data sets [97, 98]. Following multiple
filtration procedures and rigorous evaluations on the 10x
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Genomics side, the final panel was composed of 343 genes
(Figure 4.1a).

4.2.2  Sample collection & experimental procedures

Abigail K. Suwala and Felix Sahm provided archival FFPE
samples from 283 patients who were diagnosed with one
of seven glioma types: oligodendroglioma (OLIGO), LGA,
high-grade astrocytoma (HGA), GB, EPN-SE, EPN-MPE,
or EPN-5P. Using tissue microarrays (IMAs) with 313 cores
of 1.5 mm size, Domenico Calafato in collaboration with
scOpenlLab performed spatial transcriptomic profiling us-
ing the 10x Xenium platform and the designed panel (Fig-
ure 4.1b).

4.2.3 Spatial single cell transcriptomics data analysis

SEGMENTATION. I used the assignment the segmenta-
tion of DAPI staining to define nuclear boarders. Only
transcripts within the nuclear masks were used for further
analysis.

CELL ANNOTATION. Utilising Scanpy v1.10 [242] and
Python v3.9, I filtered out 867,569 (31.01% of total) cells
(nuclei) with less than 30 nuclear transcripts. Counts for
the remaining 1,929,837 (68.99%) cells were log1p-transfor-
med and scaled. Next, I computed PCA on the scaled data
with default parameters, and constructed a KNIN graph us-
ing 50 principal components and 15 neighbours. UMAP
with default parameters was used for visualisation pur-
poses. For cell annotation, I performed Leiden clustering
with a resolution of 0.2. Four of the clusters were pooled
and annotated as "Tumour cells". The remaining clusters
were annotated as T cells, Oligodendrocytes, Neurons, Vas-
cular, Myeloid/B cells, and Mast cells based on cell type
marker expression. In the final step, counts for Vascular
cells, Myeloid/B cells, and Neurons were re-scaled and
re-analysed separately to produce PVFs, Endothelial cells,
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Myeloid cells, B cells, and Inhibitory and Excitatory neu-
rons.

REFINING CELL ANNOTATION. Cell annotations were
refined and transferred to the filtered cells using scVI-tools
v1.2.0 [207] according to the pipeline outlined in detail in
Section 3.2. The final atlas comprised 2,797,406 cells.

TRANSCRIPTION PROGRAMS. lused the consensus NMF
[232] to identify nine tumour transcription programs (Fig-
ure 4.4, Figure A.9). I excluded from the subsequent anal-
ysis Immune and Interferon-response programs that ac-
counted for less than 20% of total signal (Figure A.10). All
programs were annotated based on the top contributing
genes.

4.2.4 Neighbourhood detection

To characterise recurrent spatial neighbourhoods, I utilised
functions from the package squidpy [222]. Initially, a cell
neighbourhood graph was constructed from Delaunay tri-
angulation, with all edges exceeding 50 um being removed.
Subsequently, I utilised the graph connectivity matrix to
calculate the number of neighbours of each cell type per
cell. This procedure produced a N x N matrix, where N
denotes the number of cell types. Subsequently, the ma-
trix was clustered using the K-means algorithm with the
number of clusters ranging from 5 to 30. The final choice of
five clusters was determined by its highest silhouette score
(Figure A.12). The final step included neighbourhood an-
notation according to the relative proportions of different
cell types present within the neighbourhoods.

4.2.5 Metadata standardisation

The manual assignment of sample IDs to each core was
performed using TMA slide images in collaboration with
Abigail K. Suwala. Next, I aggregated and standardised
clinical data collected by Abigail K. Suwala separately for
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each TMA. To this end, I assigned standardised English
nomenclature to all columns. In instances where a single
category was represented by multiple entries, I aligned
all entries with the standardised category names. Subse-
quently, I parsed the columns representing CN'Vs and single
nucleotide variants (SNVs) and represented each signifi-
cant diagnostic alteration as a separate identifier column.
The remaining non-diagnostic alterations were pooled and
saved to a new column. To standardise survival time, I
converted dates to the more standardised units of days.
Finally, columns containing irrelevant metadata were re-
moved, and the remaining columns were used for all sub-
sequent analysis requiring clinical information.

4.3 RESULTS

4.3.1  Custom panel captures complex cellular landscapes across
gliomas

The aim of the present study was to characterise the spa-
tial cellular landscapes across seven glioma types, namely
LGA, HGA, OLIGO, GB, EPN-SE, EPN-MPE, and EPN-SP
(Figure 4.1). In order to ensure the capture of all cell types,
as well as the expression heterogeneity observed across
distinct tumours, a custom gene panel was designed (Fig-
ure 4.1a). The panel encompassed 56 brain-resident and
61 tumour cell markers, 108 markers of finer subsets of
immune cells, 40 markers that covered glioma expression
heterogeneity, and 78 genes that are representative of hall-
mark biological pathways or active research in gliomas.
Utilising the panel, the spatial transcriptomic profiling of
313 cores from 283 patients was conducted using the Xe-
nium In Situ platform (Figure 4.1b). Furthermore, clinical
data (e.g.survival, grade, and progression status) as well
as molecular data (e. g.mutational and copy number pro-
files) were collected from discrete sources. The data un-
derwent a rigorous processing and standardisation proce-
dures, and was matched with the single cell data, generat-
ing a complete and integrated data set (Figure 4.1c).
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Figure 4.1: Pan-glioma study design. Custom panel composition
(a). Experimental pipeline (b). Cohort composition
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Subsequent to nuclear segmentation and cell annotation
(Section 4.2), the resulting spatial single cell transcriptomics
data set consisted of 2,797,406 nuclei with 167,890,066 tran-
scripts (Figure 4.2). Despite the panel’s extensive reliance
on GB data, no statistical significance was observed in
median transcript counts between GB and the other six
glioma types (Figure 4.2a, P > 0.05, two-sided Dunnett’s
test). Nevertheless, I identified significant differences in
cell count for LGA and EPN-SE samples, as compared
with GB (Figure 4.2b, P < 0.001 and P = 0.002 accord-
ingly). The observed lower cell counts could be attributed
to the low grade, as tumours of lower grades are typically
associated with lower cell densities [85].

Using a set of cell markers, I performed cell annota-
tion to produce Tumour cells and nine TME cell types,
namely Endothelial cells, Pericytes/VSMCs (further "Per-
icytes"), Oligodendrocytes, Excitatory and Inhibitory neu-
rons, T cells, B cells, Myeloid cells, and Mast cells (Fig-
ure 4.2c). It is noteworthy that TME cells from distinct
gliomas formed mixed clusters that were characterised by
their cellular identity (Figure 4.2d-e). Conversely, Tumour
cells from OLICO, LGA, and HGA were found in a sin-
gle cluster, while Tumour cells from GB and all three EPIN
types were separated into distinct clusters. All annotated
cell types were shared among patients with all gliomas
(Figure 4.3a-b). The most prevalent cell types in gliomas,
irrespective of the specific tumour, were Tumour cells, fol-
lowed by Myeloid cells, Endothelial cells, and Pericytes.
Mast cells constituted the rarest cell type (Figure A.8). De-
spite the presence of a substantial number of Oligodendro-
cytes and Neurons in certain samples, a greater degree of
variation in their numbers was observed within the same
glioma types than between different glioma types (Fig-
ure A.8). This variation could be indicative of a sampling
bias.

Finally, I assessed the capacity of the panel and em-
ployed computational workflow to facilitate the recovery
of spatial cell distributions (Figure 4.3). A visual exami-
nation revealed that, irrespective of a glioma type, cells
were successfully recovered throughout all sample areas,
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Figure 4.2: Spatial atlas of gliomas. Transcript (a) and cell (b)

counts. Cell type markers (c). UMAP of the atlas
coloured by cell type (d) and glioma type (e). Tu-
mour (a) and TME (b) cell counts across tumours. EC,
endothelial cell; exc., excitatory; inh., inhibitory; OC,
oligodendrocyte. **, P < 0.01; **, P < 0.001; two-
sided Dunnett’s test.
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with no evidence of missing regions. Within necrotic ar-
eas, the presence of Tumour cells was scarce, yet Pericytes
and Myeloid cells that infiltrated the areas and presumably
engaged in tissue repair [263] could be retrieved. There-
fore, despite the potential difficulty in detecting necrotic
tumour cells, the workflow once more proved advanta-
geous in elucidating tissue repair mechanisms following
cellular death.
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Figure 4.3: Spatial landscape of gliomas. Cell type distribution
highlighting large vessels and necrotic areas.

In summary, a spatial single cell transcriptomic atlas,
comprising 313 samples from 283 patients diagnosed with
seven glioma types, was constructed. The custom target



106

A PAN-GLIOMA SPATIAL TRANSCRIPTOMIC ATLAS

gene panel and the subsequent computational data pro-
cessing demonstrated efficacy in capturing the cellular and
spatial landscape of all the examined gliomas. The gener-
ated atlas is a valuable resource, offering an opportunity to
explore its content and gain profound insights into glioma
biology.

4.3.2 Glioma expression variability is successfully recovered

To ascertain the extent to which the panel is capable of
capturing expression heterogeneity, I employed consensus
NMF to identify nine transcription programs within the
Tumour cluster (Figure 4.4, Section 4.2). The program an-
notation was conducted using the top contributing genes
(Figure 4.4a, Figure A.10). Five tumour transcription pro-
grams were consistent with known glioma states [92, 115,
247], including AC-, MES-, OPC-, and NPC-like states. I
focused on the analysis of seven programs that accounted
for more than 80% of total signal in Tumour cells (Fig-
ure A.11).

Similarly to the previous study discussed in this disser-
tation (see Chapter 3), I identified two transcription pro-
grams associated with the mesenchymal state: a Hypoxic
MES2-like program and Gliosis MES1-like program. Inter-
estingly, I did not identify statistically significant differ-
ence in Hypoxic MES2-like program proportions between
LGAs and HGAs samples (Figure 4.4b, P > 0.05, two-
sided Mann-Whitney U test with Benjamini-Hochberg cor-
rection). However, the difference in Hypoxic MES2-like tu-
mour cell proportion between EPN types was found sig-
nificant (P = 3.7120 x 10—, two-sided Kruskal test with
Benjamini-Hochberg correction). The Hypoxic MES2-like
cells were most prevalent in GB in comparison to other
gliomas (Figure 4.4b), aligning with necrosis being a known
distinctive morphologic feature of GB [239]. Of the three
EPN types, EPN-MPE exhibited the highest proportion of
the Hypoxic MES2-like tumour cells. The Gliosis MES1-
like program was characterised by a combination of mes-
enchymal, neuronal, and astrocytic markers. Cells express-
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ing this program were most prominent in HGA and GB
(Figure 4.4b). I did not identify statistically significant dif-
ferences in Gliosis MES1-like cell proportions between nei-
ther astrocytomas nor EPNs (P > 0.05, two-sided Mann-
Whitney U test and Kruskal test with Benjamini-Hochberg
correction, correspondingly).

Two transcription programs represented progenitor-like
Tumour cells. The OPC-like program was characterised
by OPC (OLIG1, OLIG2) and stem cell (BCAN) markers,
whereas the NPC-like program was associated with both
NPC1 and NPC2 markers (Figure 4.4a). A fifth program,
annotated as a Proliferation program, was enriched in genes
associated with cell cycle. Notably, the two progenitor-like
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programs as well as the Proliferation program were largely
restricted to adult-type diffuse gliomas, while in EPNs Tu-
mour cells expressing these transcription programs were
rare (Figure 4.4c). Furthermore, in OLIGO samples, the
OPC-like program accounted for the largest proportion of
Tumour cells (Figure 4.4b). Additionally, I observed sta-
tistically significant differences in the NPC-like and Pro-
liferation program proportions between HGA and LGA
samples (P = 8.5634 x 107® and P = 6.1808 x 107", two-
sided Mann-Whitney U test with Benjamini-Hochberg cor-
rection, correspondingly).

Finally, I identified a Reactive AC-like program, that
likely represented brain-resident astrocytes, and a Neu-
ronal program, that was associated with neuronal markers
(NR4A3, KCNMA1) and genes assigned to the Ependymal
program in previous studies (FANK1, PAMR1) [102]. Inter-
estingly, the Reactive AC-like cells were particularly abun-
dant in low grade tumours, namely EPN-SEs and LGAs.
In EPN-SE samples, this program accounted for the major-
ity of Tumour cells, whereas in the two other EPN types
most Tumour cells expressed the Neuronal program.

To summarise, the findings presented herein indicate
the efficacy of the designed panel and the optimised com-
putational workflow in recovering expression within the
tumour clusters. The data set contained sufficient informa-
tion to enable the identification of glioma programs pre-
viously reported in the literature and to characterise their
distribution across seven glioma types.

4.3.3 Spatial neighbourhoods introduce additional complexity

The primary objective of a spatial study is to discern novel
spatial biomarkers when examining complex cell commu-
nities, thus surpassing the information attainable at the
level of individual cell types. To this end, I constructed a
neighbourhood graph and clustered it to produce five spa-
tial neighbourhoods (Figure 4.5, Section 4.2). Given that
one of the neighbourhoods was predominantly associated
with EPNs, I focused on the remaining four, that were bet-
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ter sampled across all glioma types. Furthermore, since
adult-type diffuse gliomas were better represented in the
cohort compared to EPNs, I utilised them to compare spa-
tial neighbourhood distribution in different gliomas.

The Hypoxic MES2-like tumour cells formed a discrete
Hypoxic neighbourhood with an admixture of Myeloid
cells (Figure 4.5a). The prevalence of the neighbourhood
was most pronounced in GB, followed by OLIGO, HGA,
and EPN-MPE samples (Figure 4.5b). The LGAs and two
other EPNs exhibited a minimal presence of the Hypoxic
neighbourhood, a finding that is consistent with the estab-
lished grading criteria, wherein low grades correspond to
the absence of necrosis [72].

The second neighbourhood, termed Wound-healing, com-
prised Gliosis MES1-like tumour cells, a smaller fraction
of Myeloid cells, as well as OPC-like and Reactive AC-like
cells (Figure 4.5a). The largest proportion of the Wound-
healing neighbourhood was identified in GB samples, at
approximately 30%, followed by HGA, OLIGO, and LGA
(Figure 4.5b). It is noteworthy that, in EPN-MPE, which
contained the largest fraction of the Hypoxic neighbour-
hood, the Wound-healing neighbourhood constituted a mi-
nor proportion. In terms of spatial relationships, the pres-
ence of Hypoxic and Wound-healing neighbourhoods in
close proximity to each other possibly indicates an area of
tissue damage and its active repair (Figure 4.5¢c).

The Proliferatory neighbourhood primarily consisted of
OPC-like cells and constituted the most substantial propor-
tion observed in OLIGOs. Finally, the Perivascular neigh-
bourhood combined vascular and immune cells, together
with AC-like cells, which are known to be integral to the
integrity of the blood-brain barrier [264]. This neighbour-
hood was found to be abundant across all adult-type dif-
fuse gliomas and EPN-SE (Figure 4.5b). In terms of spa-
tial location, the Perivascular neighbourhood was charac-
terised by its localisation in non-necrotic areas (Figure 4.5¢).

To summarise, the established workflow employed for
the design of a custom panel, in conjunction with the anal-
ysis of the resulting data, has facilitated an investigation
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into the cellular and spatial landscape of seven gliomas at
the single cell resolution.

4.4 DISCUSSION

This Chapter presented a distinctive study utilising a novel
spatially-resolved single cell transcriptomics methodology.
Within the scope of the study, I conducted a comprehen-
sive evaluation of a multitude of computational methods
and formulated a set of considerations and best practices
for panel design and spatial data analysis. The results pre-
sented here demonstrated that a panel tailored for spatial
cancer profiling can be developed even in the absence or
restricted availability of tumour-specific scRNA-seq data.
As I outlined above, the panel demonstrated its efficacy in
the recovery of cells and transcript data that was consis-
tent across all seven glioma types. In view of the restricted
nature of patient data, the development of a gene panel in
the absence of prior information about single cell expres-
sion in the target cancer type can assist in the investigation
of spatial architecture in rare tumour entities.

Furthermore, while there have been numerous studies
that examined the transcriptomic and spatial diversity of
distinct gliomas [101, 115, 247, 265], this is the first study
to provide a comprehensive pan-glioma overview. This is
of particular importance in the context of ependymal tu-
mours, which have been the focus of fewer scRNA-seq
studies over the recent years. According to the findings
presented in this Chapter and in line with previous studies
[101, 102], Reactive AC-like, Hypoxic MES2-like, and Glio-
sis MES1-like transcription states were observed across all
seven glioma types. Interestingly, although all EPN-SP and
EPN-MPE tumours were classified as grade 2, EPN-MPEs
samples exhibited the greatest proportion of Hypoxic MES2-
like cells, likely reflecting the prevailing notion that the
histopathological grading of ependymal tumours is of lim-
ited value [87].

Several tumour programs were unique to certain gliomas.
For instance, the Proliferating, OPC-like, and NPC-like tu-
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mour cells, were predominantly observed in adult-type
diffuse gliomas, with their presence in EPNs being min-
imal. Furthermore, one program, the Neuronal program,
was largely limited to ependymal tumours and aligned
with a program defined in one previous study of supra-
tentorial EPNs [102]. Moreover, all three EPN types un-
der consideration were mostly dominated by one differen-
tiated tumour program, with the AC-like state dominat-
ing grade 1 and the Neuronal state dominating grade 2
tumours. Interestingly, in previous studies [101], undiffer-
entiated transcription states were found in supratentorial
and posterior fossa EPNs. Since all supratentorial and pos-
terior fossa EPPNs discussed in this study were diagnosed
as EPN-SEs, the observed discrepancies in tumour tran-
scription states may provide further evidence in support
of such separation.

Furthermore, in contrast to the current four-state model
of GB and a three-state model of IDH-mutant gliomas, I
demonstrated here that the four adult-type diffuse gliomas
exhibit shared programs and differ solely in their relative
proportions. Moreover, the MES-like state corresponded to
two distinct programs: one associated with a hypoxic re-
sponse and the other linked to a wound-healing signature.
Finally, I identified significant differences in the tumour
state composition between LGA and HGA samples, a find-
ing that lends support to the grouping of astrocytomas
into low- and high-grade groups. Nevertheless, the clini-
cal importance of these disparities is yet to be elucidated.

Lastly, the present study provided insights into the spa-
tial architecture of gliomas. Except for the Perivascular
community, each recurrent neighbourhood corresponded
predominantly to a single tumour program. Among adult-
type diffuse gliomas, GB exhibited the largest area of Hy-
poxic neighbourhoods, while the LGAs demonstrated only
a minor presence of this spatial community. Although the
characterisation of ependymal tumours was constrained
by the limited number of samples available for analysis,
it was evident that grade 1 EPIN-SEs had the largest pro-
portion of Perivascular neighbourhoods. Finally, both low-
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grade glioma types, LGA and EPN-SE, displayed the great-
est fraction of Perivascular neighbourhoods.

Notwithstanding the contributions of this study, it is im-
portant to acknowledge its limitations. Firstly, the limited
panel size and the paucity of available EPN scRNA-seq
data made it challenging to incorporate markers that would
encompass all transcriptional variations in gliomas. This
limitation is particularly evident in the case of EPNs, for
which ependymal-like or stem-like tumour programs that
were previously reported [101, 102] could not be identified.
The advent of enhanced technologies, which have the po-
tential to profile a greater quantity of genes, may provide
a more comprehensive solution in the coming years. Sec-
ondly, especially with regard to ependymal tumours, the
available data set was constrained in terms of the num-
ber of samples, and the presence of multiple methylation
classes within each EPIN type rendered the comparison dif-
ficult.

In summary, the findings presented in this Chapter de-
lineate the distinguishing features of seven glioma types in
terms of tumour transcription and spatial architecture. The
atlas produced in the present study is intended to function
as a valuable resource and a basis for subsequent studies.
The utilisation of TMAs enabled a high-throughput spatial
profiling of several hundreds of samples, thereby empow-
ering prospective detection of clinically relevant biomark-
ers.
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Notwithstanding the considerable variability in the cellu-
lar composition of tumour bulk, in certain instances, the
neoplastic contribution can be as modest as one-tenth of
the total cell count [266]. It is therefore paramount to em-
phasise the necessity of a nuanced examination of the TME.
Moreover, a growing body of research is revealing the ways
in which spatial interactions between TME and cancer, as
well as the intricate neighbourhoods that emerge from these
interactions, hold the potential to guide cancer treatment
strategies [60, 66, 68, 111, 113]. In the present dissertation I
set out the rationale for the significance of investigating the
spatial aspect of cancer evolution, and employ the method-
ology of spatial single cell transcriptomics to illuminate
the intricacies of cancer ecosystems observed in gliomas.
The majority of preceding studies investigating spatial
structures of tumours have utilised the Visium technology,
a method that relies on the profiling of spots, despite the
capacity to generate a whole-transcriptome readout [40, 60,
110, 113, 115, 213, 228, 267, 268]. Despite the advent of
novel spatial profiling methodologies that offer single-cell
resolution, the analysis of the associated data remains non-
standardised and unvalidated. Within the scope of this
dissertation, I conducted an extensive comparison of nu-
merous analytical methods, and presented the optimal ap-
proaches along with newly developed strategies in Chap-
ter 2. At the inception of my PhD, the availability of re-
sources to inform researchers engaged in spatial single cell
transcriptomics studies was severely limited. In the con-
text of our research group, I was the first member to estab-
lish the foundation for future spatial analysis initiatives
within the group. Despite the potential for technological
advancements to alleviate the analytical demands placed
upon researchers in future research projects, the hope is
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that the present contribution will facilitate the design of
studies and the generation of valuable insights.

The present dissertation has furthermore made a con-
tribution to research on glioma. Chapter 3 detailed the
pioneering spatial investigation into the complex spatial
structure of necrotic tissue in GB patients. The study pre-
sented a spatially resolved single-cell atlas consisting of
over a million cells from nine patients diagnosed with GB
and RN. Notably, I demonstrated that, in contrast to pro-
gressive GB, tumour cells in RN samples exhibited low
levels of EGFR expression despite the genetic amplifica-
tion, and did not proliferate or express a progenitor sig-
nature. This is noteworthy, as it suggests a potential rea-
son why the large number of tumour cells identified by
transcriptomics are not apparent during histopathological
examination. Moreover, the finding that in RN there was
an abundance of BAMs in the brain parenchyma offers
an avenue for future research, particularly in the develop-
ment of a non-invasive diagnostic test. The potential for
blocking BAM cytokine release to alleviate clinical symp-
toms in GB patients merits further investigation. Chap-
ter 4 presents the development of a large-scale pan-glioma
study. In this study, I demonstrated how a targeted panel
of genes can be designed even in the absence of exhaus-
tive scRINA-seq atlas. The study provides a comprehen-
sive analysis of tumour expression and spatial patterns
in seven glioma types in adults. This analysis served as a
foundation for further investigations in our group aimed
at elucidating the associations between various clinical pa-
rameters and the identified tumour characteristics. The de-
signed panel and the compiled data set were utilised to
generate a second, upgraded panel that comprised 500
genes and covered a more extensive range of CNS tumour
types.

Despite a firm conviction concerning the significance of
the work delineated in this study, I believe it is impera-
tive to address certain challenges to identify prospects for
future efforts. For instance, effective segmentation, that
would accommodate the wide range of tissue types and
technological variations, remains one of the most persist-
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ing challenges in the field. The employment of nuclear
transcripts for the definition of cellular identities, in con-
junction with cytoplasmic transcripts for the identification
of more subtle variations in expression, may prove advan-
tageous. The combination of spatial transcriptomics with
antibody labelling is another option that may assist in iden-
tifying cell membranes, thereby facilitating accurate signal
assignment to cells. Nonetheless, in certain instances, it
can be challenging to find a suitable membrane marker.
Another problem, particularly within the context of the
brain, is the presence of cells with many dendrites that
are difficult to segment. In such cases, the development of
new computational models with the capacity to separate
spatial signals could prove to be advantageous [197].

It is also evident that certain hurdles demand enhance-
ments of a technological nature. A notable constraint of
in situ techniques is the rate at which they permit the ac-
quisition of images. As current imaging methods require
a relatively high level of magnification, spatial studies are
limited to profiling either a small number of whole-slide
samples (as evidenced by the study in Chapter 3) or a
greater number of samples of a reduced size (as evidenced
by the study in Chapter 4). The choice therefore lies in
determining whether to opt for sufficiently large fields of
view for robust spatial characterisation or to ensure the
availability of extensive data to empower statistically sub-
stantiated conclusions. Furthermore, both studies reported
in this dissertation focused on the profiling of only a few
hundred genes, which hindered the ability to conduct a
more comprehensive investigation into the spatial archi-
tecture of gliomas. Moreover, a meticulous gene selection
process was imperative, which required reference data sets
and resulted in an increased timelines. The advent of novel
approaches with higher multiplexity and enhanced image
acquisition times has the potential to facilitate a thorough
characterisation of cancer ecosystems.

Notwithstanding the aforementioned challenges, a ple-
thora of opportunities for spatial cancer research are read-
ily apparent. Recent studies investigating the spatial ar-
chitectures of cancer have begun to elucidate the mech-
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anisms through which various types of TME and cancer
cells establish spatial communities and engage in complex
dynamic interactions [47, 65, 66]. Advances in technology
are set to delineate the influence of these spatial structures
on the treatment of cancer [60, 66, 68, 111, 113]. This could
be of particular benefit in the case of ependymal tumours,
as only a small number of independent prognostic fac-
tors have been identified thus far, and the incorporation
of molecular biomarkers could present a promising new
avenue [85]. In Chapter 4, I paved the way by describing
recurrent spatial neighbourhoods that are shared across
seven gliomas or are unique to certain types. In Chapter 3,
I utilised single cell transcriptomics to identify spatial and
functional heterogeneity among myeloid cell populations
between samples with two distinct histological diagnoses.
The future studies within the domain of glioma research
could further delve into the influence of glioma proxim-
ity to neurons and its interconnectivity with astrocytes on
cancer evolution and therapeutic resistance [269)].

Another emergent field is multimodal spatial profiling,
that could enhance our understanding of the molecular
mechanisms underlying cancer evolution [270]. The poten-
tial for simultaneous spatial characterisation of the same
sample at the transcriptomic, proteomic and genetic levels
could assist in addressing the current challenge of aligning
molecular phenotypes found in consecutive tissue sections.
Spatial genomics represents a particularly exciting modal-
ity, with the potential to improve prediction of the clinical
course of a disease and underpin the diverse clinical out-
comes of genetically identical clones, attributable to the
varying characteristics of the TME [32, 140]. Moreover, the
evolution of advanced technologies in the field of artificial
intelligence promises to transform the diagnostics by inte-
grating the analysis of histopathological features and the
assessment of spatially resolved molecular signals.

Currently, there are numerous ongoing initiatives aimed
at generating useful resources that delineate the molecular
characteristics of various cancers, with examples including
The Cancer Genome Atlas [271]. In a similar vein, the de-
ployment of spatial profiling methodologies holds promise
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in the generation of comprehensive and informative cen-
suses of spatial cancer communities across diverse human
tissues. Such collections of reference data could function
as sources of knowledge, serving to inform prospective

studies aimed at addressing nuanced biological questions.
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Figure A.1: Identification of transcription programs. Error and sta-
bility depending on the number of factors for tu-
mour (a) and myeloid (b) transcription programs.
Adapted with permission from [240].
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Figure A.2: Tumour cell cluster expression. Expression of astrocytic

and tumour markers in the Tumour cluster and the
cell origin. Adapted with permission from [240].

147



148 APPENDIX

a 1.0 b Sample origin

) d.&\(')‘o,, 0.5 Patient 1 g
g 08 \&K},‘?" Patient 2 z
’é @ +Q?i(j/ 0.4 Pat?ent 3 g
£ % 06 <</ , % Patient 4 §

i 0.3 . Patient 9
SHo4 Patient 5 |
2 8 e 021 N Patient 6 §
2 o2 < ® 01l ®® Patient7 | 2
®e : L Patient8 | &
- ° 0.0 Patient 9 €

0'%.0 0.2 0.4 0.6 0.8 1.0 0 10 20 30 40 50
2 x mutated TERTp VAF Ki67+ cells in IHC staining (%)

Figure A.3: Assessment of Tumour cell fractions. Observed Tumour
fractions based on the spatial single cell atlas and
the expected fractions based on mutated cell signal
(a) and IHC staining (b). Adapted with permission
from [240].

Patient  Diagnosis Chry EGFR Chry/EGFR

Patient9g RN 0.051 0.271 5.314
Patient 9 GB 0.277 1.501 5.419
Patient 5 RN 0.152 1.544 10.158
Patient 2 GB 0.4685 1.533 3.272

Table A.1: A validation of EGFR amplification. Re-printed with
permission from [240].
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cluded from the analysis. Adapted with permission
from [240].
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Figure A.5: The spatial distribution of transcription programs. Tu-
mour (a) and Myeloid (b) programs distribution for
the rest of the samples. Adapted with permission
from [240].
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calisation in samples with GB (a) and RN (b) histolo-
gies. Adapted with permission from [240].
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Figure A.10: Tumour transcription program markers.
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Figure A.11: Tumour transcription program distribution. Two mi-
nor programs were excluded from the analysis.
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