
Linguistically-Inspired Neural Coherence
Modeling

Wei Liu

Department of Computational Linguistics
Heidelberg University

This dissertation is submitted for the degree of
Doctor of Philosophy



First examiner: Prof. Dr. Michael Strube
Second examiner: Prof. Dr. Anette Frank
Third examiner: Prof. Dr. Amir Zeldes

Submission date: 05.08.2025.



Acknowledgements

I would like to express my sincere gratitude to my supervisor, Prof. Dr. Michael Strube,
for giving me the opportunity to pursue my PhD at HITS and for his invaluable guidance
over the past four years. I am especially thankful for his encouragement to present more
frequently at our colloquium, which significantly helped me to improve my presentation
skills and academic confidence.

I am also deeply grateful to Prof. Dr. Anette Frank and Prof. Dr. Amir Zeldes for kindly
agreeing to serve as the reviewers of my thesis.

I would like to extend my heartfelt thanks to all my colleagues in the NLP group at HITS:
Mehwish Fatima, Sungho Jeon, Haixia Chai, Yi Fan, Souvik Banerjee, Shimei Pan, and
Stephen Wan. I will always cherish the fun and insightful conversations, especially with
Sungho, Yi, and Souvik.

Special thanks also go to the wonderful staff at HITS. I would like to thank Frauke Bley
for her kind assistance with my visa application, and Silvia Galbusera for her continuous
support throughout my PhD journey. I will always remember Silvia as a kind, warm-hearted,
and elegant Italian lady. I also thank Harald Haas for sharing many interesting stories,
especially those about football (although I know little about the sport). I am grateful to Jose
Avila for the delicious meals and his unfailing kindness over the years.

I would also like to thank my colleagues from my internship at Amazon Berlin: Adrián
Bazaga, Bill Byrne, Dawei Zhu, Felix Hieber, Leonardo F. R. Ribeiro, Luke Ablonczy, Sony
Trenous, Tobias Domhan, and Zachary Hille. In particular, I thank Felix, who taught me how
to deliver effective presentations in the company and how to collaborate within a team. I am
also grateful to Sony for helping me navigate Amazon’s platforms and for supporting the
design of our annotation guidelines. Bill and Leonardo provided crucial guidance on how to
structure our work and present it clearly in the paper. I will always treasure the time I spent
at Amazon.

Finally, I owe my deepest thanks to my family. My parents, Caichang Liu and Xinying
Zeng, though both farmers with limited formal education, have always supported and en-
couraged me to pursue my studies and explore the world beyond our hometown. During my
PhD, I was away from home for nearly four years. I deeply regret not being able to visit my



iv

parents, and I am sincerely grateful for their love and understanding. I also thank my sisters,
Yanqing Liu and Yanmei Liu, and my brother-in-law, Houhua Xiong, for being there with
my parents in my absence. Lastly, I thank my girlfriend, Xiyan Fu, for her unwavering love
and support throughout my PhD journey.



Abstract

Coherence is an essential property of well-written text, making it easier to read and understand
than a sequence of randomly arranged sentences. Assessing text coherence is valuable for
many tasks. For example, it can be used to automatically score documents, reducing manual
effort, or to provide feedback to students, helping them improve their writing quality. It
can also serve as a reward model for training Large Language Models (LLMs) to generate
more coherent and natural text. Given the importance of the task, many methods have
been proposed for coherence modeling. Among these approaches, the dominant ones are
neural network-based models due to their strength in representation learning and feature
combination.

In linguistics, many factors contribute to achieving textual coherence. For example, text
coherence can be achieved by describing the same set of entities or using discourse relations
between sentences. However, existing work on neural coherence modeling focuses on using
more powerful encoders or solely entity information, without a systematic analysis of the
benefits of different linguistic features. In this thesis, we investigate the importance of entity-
and relation-based patterns for coherence assessment and develop novel approaches to utilize
these features individually or jointly.

We first investigate the benefits of entity-based patterns for coherence modeling. We
analyze previous work that has leveraged entity patterns for coherence assessment. Then,
we introduce a novel graph-based approach that captures the similarity of entity transition
patterns between documents, rather than limiting the modeling of these patterns within
a single document. We evaluate this approach on multiple benchmarks, and the results
demonstrate that it outperforms various baselines.

Next, we examine the role of discourse relations in coherence modeling. Existing
discourse parsers struggle with implicit discourse relation classification, limiting the use of
discourse relations in coherence assessment. To address this, we propose a novel framework
that jointly generates a connective between arguments and predicts discourse relations based
on both the arguments and the generated connectives. Experiments show that our joint model
achieves state-of-the-art performance on the PDTB 2.0, PDTB 3.0, and PCC datasets.
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Beyond proposing a novel model for implicit discourse relation classification, we also
investigate an unanswered question in the discourse processing community: why do relation
classifiers trained on explicit examples (with connectives removed) perform poorly in real
implicit scenarios? We identify label shift caused by the removal of connectives as a key
factor contributing to this failure. To support this finding, we provide both manual analysis
and corpus-level empirical evidence. Additionally, we propose two strategies to mitigate the
impact of label shift.

Using the improved discourse parser, we identify discourse relations within documents
and empirically demonstrate their correlation with textual coherence. Based on this observa-
tion, we develop a novel fusion model that integrates discourse relation-based features into a
pre-trained model for coherence modeling.

Finally, we explore combining entity-based and discourse relation-based features for
coherence modeling. This approach is motivated by the observation that writers typically
employ multiple strategies simultaneously to ensure coherence. To this end, we design
two methods to jointly model entities and discourse relations for coherence assessment.
Experimental results demonstrate that both approaches significantly outperform models that
use either features in isolation, highlighting the importance of considering both types of
features simultaneously.
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Chapter 1

Introduction

1.1 Motivation

Coherence is an important aspect of text quality, which describes how sentences of a text
connect to each other. Sentences in a coherent text are usually logically connected rather
than randomly assembled (Jurafsky and Martin, 2025). Consider the two examples below,
each consisting of three sentences. Example (1.1) is highly coherent because all sentences
are about "John" and "piano". In contrast, Example (1.2) lacks coherence, as the sentences
shift between unrelated topics. Specifically, while the first sentence discusses "John" and
"piano", the second suddenly introduces "dog" and "big house", and the third shifts again to
a different subject.

(1.1) [John wanted to buy a piano.]s1 [He went to a piano store.]s2 [He picked up one and
paid for it.]s3

(1.2) [John wanted to buy a piano.]s1 [The dog lived in a big house.]s2 [Mary likes Chinese
food.]s3

Coherence modeling is the task of assessing the coherence of a given text. It is beneficial
for various NLP applications. For instance, it can be used to automatically evaluate document
quality (Farag et al., 2018), provide feedback on student writing (Sarzhoska-Georgievska,
2016), or serve as a reward model in training large language models (LLMs) to generate more
coherent outputs (Kwon et al., 2023). Given its importance, many methods for coherence
modeling have been proposed over the years. Early work in this area is dominated by entity-
based approaches. For example, the entity grid (Barzilay and Lapata, 2008) captures the
entity transition between adjacent sentences of a text to model local coherence, while the
entity graph (Guinaudeau and Strube, 2013) measures coherence using the entity connection
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structure of a document. More recently, neural models (Li and Hovy, 2014; Li and Jurafsky,
2017; Mesgar and Strube, 2018; Xu et al., 2019; Jeon and Strube, 2020a; Mesgar et al., 2021)
have been applied to the task due to their strength in representation learning and feature
combination. Those models learn a document’s representation from word embeddings or
pre-trained language models, significantly outperforming previous statistical methods. While
achieving impressive results, these neural models have paid little attention to linguistic
features associated with text coherence.

In linguistics, text coherence can be achieved in multiple ways, with two of the most
common being entity-based and discourse relation-based coherence (Jurafsky and Martin,
2025). In the former, coherence is established by discussing a set of related entities throughout
the text, as illustrated in Example (1.1). By contrast, the latter relies on discourse relations
between sentences to achieve coherence. For instance, Example (1.3) is considered highly
coherent due to its well-structured discourse relations: a Contrast relation links the first two
sentences, an Instantiation relation provides additional details about the strike, and a Cause
relation introduces the final sentence.

(1.3) [Tom was late for the meeting this morning.]s1 [However, it was not his fault but
rather due to the citywide strike.]s2 [All the roads were blocked, and the buses were
canceled.]s3 [Therefore, he had to walk to the office, which took a lot of time.]s4

Existing neural models have attempted to incorporate entity-based features by mod-
eling entity transitions within a document using architectures such as convolutional net-
works (Tien Nguyen and Joty, 2017) or long short-term memory networks (Mesgar and
Strube, 2018). Some subsequent studies have expanded the entity set to include topically
related words (Mesgar and Strube, 2016; Jeon and Strube, 2020a, 2022). However, these
efforts primarily focus on extracting entity-based patterns within individual documents and
do not account for correlations between documents. Another limitation of existing work is
the lack of investigation into whether discourse relations are helpful to coherence modeling.
This gap is caused by the poor performance of available discourse parsers (Lin et al., 2014),
particularly in classifying implicit discourse relations.

This thesis aims to address these limitations by systematically investigating the role of
linguistic features in coherence assessment. First, we examine whether similarities in entity
transition patterns between documents can enhance coherence modeling. Next, we turn
to discourse-based features, proposing a novel approach to improve the classification of
implicit discourse relations. In this context, we analyze the influence of discourse connectives
on relation classification and evaluate the contribution of discourse relations to coherence
assessment. Finally, we adopt a joint modeling perspective, combining both entity-based and
discourse relation-based features for coherence assessment.
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1.2 Research Questions

For a better overview, we group our research on coherence modeling into three research
questions (RQ1-3):

• RQ1: Does structural similarity between documents contribute to coherence
assessment?
Centering Theory (Grosz et al., 1995), the most influential theory of entity-based
coherence, models local coherence by capturing entity transitions between adjacent
sentences in a text. Inspired by this theory, many works (Barzilay and Lapata, 2008;
Guinaudeau and Strube, 2013; Tien Nguyen and Joty, 2017; Jeon and Strube, 2020a,
2022) have focused on extracting entity-based features for coherence assessment.
However, these approaches primarily analyze features within a single document, over-
looking potential correlations between documents. Given that coherence describes
how sentences within a text are connected (Schwarz, 2001), we hypothesize that texts
with similar entity structures should exhibit similar degrees of coherence. This leads
us to investigate whether we can develop an enhanced method that explicitly models
structural similarities between documents for coherence assessment.

As mentioned before, coherence can be achieved not only by discussing a set of related
entities but also by forming meaningful discourse relations between sentences. This brings
us to the second research question:

• RQ2: Can an improved discourse parser assist in coherence modeling?
Discourse coherence theories posit relations between text spans as a key feature of
coherent texts (Rohde et al., 2018). However, existing work on coherence modeling has
paid little attention to discourse relations. One major reason is the limited performance
of existing discourse parsers (Lin et al., 2014), particularly in classifying implicit
discourse relations. Inaccurate parsing results can lead to misleading conclusions about
the role of discourse relations in coherence modeling. To address this issue, it is crucial
to develop a better understanding of both explicit and implicit discourse relations,
especially the role of discourse connectives, and to design more effective parsers for
extracting discourse relations from documents:

◦ RQ2(a): How can we design a novel model to enhance the performance of
implicit discourse relation classification?

◦ RQ2(b): Why do classifiers trained on explicit examples perform poorly in real
implicit scenarios?
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By addressing the above two subquestions, we can better understand discourse con-
nectives for discourse relation classification and obtain an improved implicit relation
classifier. This enables us to investigate:

◦ RQ2(c): Can we enhance coherence modeling by carefully designing methods to
leverage discourse relations parsed from documents?

Once we complete the study on coherence modeling based on entities and discourse
relations, we can take it a step further and explore the joint modeling of these two types of
features. In other words, we aim to investigate:

• RQ3: Can the combination of entity and discourse relations further boost the
performance of coherence modeling?
While entity-based and discourse relation-based methods have proven effective indi-
vidually, real-world texts often require a more integrated view. In practice, entity and
discourse relation cues frequently coexist and interact in complex ways. To illustrate
this, consider Example (1.4), which consists of four sentences and is considered highly
coherent. Establishing the coherence using entities is not straightforward in this case,
as there are no overlapping entities between the second and third sentences. Instead,
we must use a more complex linguistic phenomenon, namely bridging (Clark, 1975),
to link "city" (in "citywide") and "road". Meanwhile, the connection between these
sentences is more readily explained by a discourse relation (e.g., Instantiation), as the
third sentence elaborates on the strike mentioned earlier. However, relying solely on
discourse relations also has limitations, as it can compromise the smooth tracking of
the protagonist if the referents are unclear. For example, if the final sentence were
changed to "So, Maria couldn’t get to the airport...", the discourse relation might still
hold, but the referent switch (i.e., John→Maria) would disrupt the overall coherence.

(1.4) [Did you know that John is still in Germany?]s1 [He was planning to leave Berlin
today but ran into a citywide strike.]s2 [All the roads were blocked, and buses and
trains were cancelled. ]s3 [So, he couldn’t get to the airport and now has to stay
in the city for a few more days.]s4

Therefore, we must consider both entities and discourse relations simultaneously for
more effective coherence modeling.

1.3 Contributions

In sum, our main contributions are:
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• To answer RQ1:

◦ We present a graph-based approach for coherence modeling that connects struc-
turally similar documents through a graph and leverages a GCN to learn repre-
sentations of documents while considering connections between them.

◦ We evaluate our method on two tasks, assessing discourse coherence and auto-
mated essay scoring, and show that our graph-based approach outperforms strong
baselines.

◦ We perform detailed analyses to show that structural similarity information helps
to mitigate the effects of uneven label distributions in datasets and improve the
model’s robustness across documents of different lengths.

• To answer RQ2, we conduct three studies, each addressing a sub-question:

◦ To answer RQ2(a):

▶ We design a joint training approach that leverages discourse connectives for
implicit discourse relation classification, inspired by the human annotation
of implicit relations.

▶ We evaluate our model on two English corpora and a German corpus, and
show that our connective-enhanced model significantly outperforms previous
relation classifiers.

▶ We show that the end-to-end training characteristics enable our model to
learn a good balance between arguments and connectives for implicit relation
classification.

◦ To answer RQ2(b):

▶ We identify label shift as one cause for the failure of explicit to implicit
discourse relation classification.

▶ We manually analyze 100 examples to show the existence of label shift when
removing connectives from explicit examples.

▶ We develop an empirical method to verify the occurrence of label shift at the
corpus level.

▶ We investigate various factors contributing to this phenomenon and find that
the syntactic role of the connective has the most significant impact.

▶ We propose two strategies to mitigate label shift: filtering out noisy training
instances and joint learning with connectives.
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▶ We show that these strategies achieve significant improvements over strong
baselines for explicit to implicit relation classification.

◦ To answer RQ2(c):

▶ We demonstrate that discourse relations parsed from documents are highly
correlated with text coherence.

▶ We propose a novel fusion model to combine text- and relation-based features
for coherence assessment.

▶ Experimental results demonstrate that incorporating discourse relations sig-
nificantly enhances the model’s performance in both in-domain and cross-
document evaluations.

• To answer RQ3:

◦ We propose two methods for jointly modeling entities and discourse relations to
assess coherence.

◦ We show that models leveraging both entity and discourse relation features
consistently outperform those that rely on only one or neither.

◦ We demonstrate that models combining entities and discourse relations can learn
more robust coherence patterns across different domains.

1.4 Thesis Overview

After discussing the background and related work in Chapters 2 and 3, the main content of
this thesis is structured into three parts. Part I (Chapter 4) explores entity-based features for
coherence modeling. Part II examines discourse relation-based features for coherence assess-
ment, including improving discourse parsing for implicit relations (Chapter 5), analyzing the
role of connectives in explicit and implicit relations (Chapter 6), and evaluating the benefits
of discourse relations for coherence modeling (Chapter 7). Part III (Chapter 8) investigates
the combination of entity- and discourse relation-based features for coherence modeling.

Preliminaries: Background and Related Work
In Chapter 2, we begin by describing key concepts such as coherence, discourse relation,
and other relevant terms used throughout this thesis. Next, we introduce neural network
techniques used in this thesis, such as the Transformer and Graph Convolutional Networks.

In Chapter 3, we review existing works related to the research topic of this thesis. Specif-
ically, we discuss prior studies on coherence modeling and point out their shortcomings.
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Neural Coherence Modeling

Chapter 4: Document
Structure Similarity-Enhanced

Coherence Modeling

Chapter 5: Annotation-
Inspired Implicit Discourse
Relation Classification

Chapter 6: Explicit to
Implicit Discourse Relation

Classification

Chapter 7: Discourse
Relation-Enhanced
Coherence Modeling

Chapter 8: Coherence
Modeling Using Entities and

Discourse Relations

Entity-based Discourse Relation-based

Entity + Discourse Relation

Fig. 1.1 Overview of this thesis. It comprises three components: entity-based coherence
modeling, discourse relation-based coherence modeling, and a combined approach that
integrates both types of features.

These works will serve as baselines throughout this thesis. We also summarize the key
challenges in implicit discourse relation classification and discuss previous efforts to address
these challenges.

Part I: Coherence Modeling with Entity-based Features
In Chapter 4, we introduce the motivation for using structural similarities between documents
for coherence assessment, present a graph-based approach, and validate its effectiveness
through extensive experiments and analyses.

Part II: Coherence Modeling with Discourse Relation-based Features
In Chapter 5, we first describe why implicit discourse relation classification is challenging
and present how humans annotate such relations in the Penn Discourse Treebank. We then
propose a novel approach that jointly learns to generate a connective between arguments and
predicts a discourse relation based on both arguments and the generated connective. Finally,
we evaluate our model on two English corpora and one German corpus.
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In Chapter 6, we identify label shift as one cause for the poor performance of explicit to
implicit discourse relation classification. We provide manual and empirical evidence to
demonstrate the existence of such a shift when removing connectives from explicit examples,
analyze contributing factors, and propose two mitigation strategies, which we validate through
experiments on various corpora.

In Chapter 7, we present an enhanced PDTB parser that incorporates our annotation-inspired
implicit discourse relation classifier to extract discourse relations from texts. With this parser,
we show that text coherence is correlated with the sequence of parsed discourse relations.
Building on this insight, we propose a novel fusion model that leverages these relations
for coherence modeling. Finally, we assess the effectiveness of our model across multiple
corpora.

Part III: Coherence Modeling Enhanced with Entities and Discourse Relations
In Chapter 8, we introduce two methods, a Fusion Transformer and a Graph Prompt, that
jointly model entities and discourse relations for coherence assessment. Our results show
that models leveraging both types of features consistently outperform those that use only one
or neither.

Conclusions
Finally, we conclude this thesis in Chapter 9, where we first summarize our findings and
contributions, and then discuss potential directions for future research.

1.5 Published Work

This dissertation expands on the following publications:

• Wei Liu, Xiyan Fu, Michael Strube. Modeling Structural Similarities between Doc-
uments for Coherence Assessment with Graph Convolutional Networks. In: ACL 2023,
pages 7792-7808. Code: https://github.com/liuwei1206/StruSim. C.f.:
Chapter 4.

• Wei Liu, Michael Strube. Annotation-Inspired Implicit Discourse Relation Classi-
fication with Auxiliary Discourse Connective Generation. In: ACL 2023, pages
15696-15712. Code: https://github.com/liuwei1206/ConnRel. C.f.:
Chapter 5.

https://github.com/liuwei1206/StruSim
https://github.com/liuwei1206/ConnRel
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• Wei Liu, Yi Fan, Michael Strube. HITS at DISRPT 2023: Discourse Segmentation,
Connective Detection, and Relation Classification. In: DISRPT 2023, pages 43-49.
Code: https://github.com/liuwei1206/disrpt2023. C.f.: Chapter 5.

• Wei Liu, Stephen Wan, Michael Strube. What Causes the Failure of Explicit to
Implicit Discourse Relation Recognition? In: NAACL 2024, pages 2738–2753. Code:
https://github.com/liuwei1206/Exp2Imp. C.f.: Chapter 6.

• Wei Liu, Michael Strube. Discourse Relation-Enhanced Neural Coherence Modeling.
In: ACL 2025, pages 4748–4762.. Code: https://github.com/liuwei1206/
Relcoh. C.f.: Chapter 7.

• Wei Liu, Michael Strube. Joint Modeling of Entities and Discourse Relations for
Coherence Assessment. In: EMNLP 2025. Code: https://github.com/

liuwei1206/EntyRel. C.f.: Chapter 8.

Additional publications from my PhD period that are not covered in this thesis:

• Wei Liu, Sony Trenous, Leonardo F. R. Ribeiro, Bill Byrne, Felix Hieber. XRAG:
Cross-lingual Retrieval-Augmented Generation. In: EMNLP 2025 Findings. Code:
https://github.com/amazon-science/XRAG.

https://github.com/liuwei1206/disrpt2023
https://github.com/liuwei1206/Exp2Imp
https://github.com/liuwei1206/Relcoh
https://github.com/liuwei1206/Relcoh
https://github.com/liuwei1206/EntyRel
https://github.com/liuwei1206/EntyRel
https://github.com/amazon-science/XRAG




Chapter 2

Background

This chapter introduces fundamental concepts essential for understanding the topics and
methods developed later in this thesis. We begin with the definitions of coherence and dis-
course relations, then discuss commonly used corpora for coherence modeling and discourse
relation classification. Finally, we present the deep learning techniques applied in this thesis.

2.1 Coherence

Coherence describes the relationship between sentences that makes a group of sentences
logically connected rather than just a random collection of them (Jurafsky and Martin, 2025).
A coherent text presents topics in a structured manner, enabling readers to recognize their
relationships and perceive the text as a unified whole. For instance, Example (2.1) is highly
coherent because it consistently focuses on Mike’s efforts to secure a faculty position. Each
sentence logically follows the previous one, detailing the steps he has taken to improve his
profile. In contrast, Example (2.2) lacks coherence, as its sentences introduce unrelated
information without a clear thematic connection.

(2.1) [Mike wants to find a position in academia, but his profile is not good enough.]s1 [So,
he has been doing a lot to improve it.]s2 [For example, he has volunteered to teach
more classes to gain teaching experience.]s3 [He has also been working hard to get
more publications.]s4

(2.2) [Mike wants to find a job in academia, but his profile is not good enough.]s1 [He eats
a lot at lunch every day, so he’s getting fat.]s2 [Mike likes traveling and trying new
things.]s3 [He also has a dog named Bob.]s4

In linguistics, coherence can be established through various means, namely entity-based,
topic-based, and discourse relation-based approaches (Jurafsky and Martin, 2025).
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2.1.1 Entity-based Coherence

Entity-based coherence is achieved when all sentences describe common entities and maintain
continuity by consistently tracking and organizing references to them (such as people, objects,
or concepts) throughout a text. An example is shown in Example (2.3), where all four
sentences are related to AI: the first two introduce the topic of AI, and the last two describe
its advantages and disadvantages.

(2.3) [Artificial intelligence (AI) has rapidly transformed various industries, from health-
care to finance.]s1 [This technology enables machines to learn from data and make
decisions without human intervention.]s2 [As AI systems become more advanced, they
can analyze vast amounts of information in real-time.]s3 [However, these intelligent
models also raise ethical concerns, such as bias in decision-making.]s4

The most influential framework for explaining entity-based coherence is Centering Theory,
introduced by Grosz et al. (1995). This theory identifies the most salient entity in each
sentence (referred to as the "center" or "focus") and describes the coherence by tracking how
these centers are referenced across sentences. Specifically, Centering Theory proposes that
discourses in which consecutive sentences consistently focus on the same salient entity are
more coherent than those that frequently switch between multiple entities. Below are two
examples from Grosz et al. (1995), which convey the same information but exhibit different
levels of coherence:

(2.4) [John went to his favorite music store to buy a piano.]s1 [He had frequented the store
for many years.]s2 [He was excited that he could finally buy a piano.]s3 [He arrived just
as the store was closing for the day.]s4

(2.5) [John went to his favorite music store to buy a piano.]s1 [It was a store John had
frequented for many years.]s2 [He was excited that he could finally buy a piano. ]s3 [It
was closing just as John arrived. ]s4

The first text is more coherent than the second because, as Grosz et al. (1995) pointed out, it
maintains a clear focus on John, describing his actions and feelings. In contrast, the second
text shifts between John and the store multiple times (first focuses on John, then on the store,
next back to John, and finally returns to the store again), resulting in a lack of consistency.

To implement this idea, Centering Theory maintains two representations for each sentence
Si: the backward-looking center, Cb(Si), and the forward-looking centers, Cf(Si). The
backward-looking center of a sentence is the most salient entity regarding the previous
context. The forward-looking centers are a list of entities within the sentence that might



2.1 Coherence 13

become the focus of the next sentence. The elements of the forward-looking centers are
ordered based on factors such as grammatical roles to reflect their relative prominence in
the sentence. The highest-ranked element among the forward-looking centers is called the
preferred center, Cp(Si).

The theory also defines several types of transitions between pairs of sentences Si and Si+1,
including Continue, Retain, and Shift, based on the relationships among Cb(Si+1), Cb(Si),
and Cp(Si+1). Brennan et al. (1987) further subdivide the Shift transition into Smooth Shift
and Rough Shift, a distinction that has since been widely adopted in the literature. Table 2.1
summarizes the definitions of these transitions.

In Centering Theory, transitions are ordered by preference, with Continue preferred over
Retain, Retain over Smooth Shift, and Smooth Shift over Rough Shift (i.e., Continue > Retain
> Smooth Shift > Rough Shift). We focus here on these canonical transition types, which
assume the presence of a well-defined backward-looking center. Extensions of the framework
have proposed additional transition types, such as Establishment, Null, and Zero, to account
for discourse-initial sentences and cases where no plausible backward-looking center can be
identified (see Poesio et al. (2004) for an overview). In Example (2.4), the backward-looking
center, the forward-looking centers, and the preferred center of the first two sentences are:
Cb(S1) = undefined
Cf(S1) = {John, music store, piano}
Cp(S1) = John
Cb(S2) = John
Cf(S2) = {John, music store}
Cp(S2) = John
Since Cb(S1) = NIL and Cb(S2) = Cp(S2), the transition between the first two sentences is
Continue. Similarly, for the first two sentences of Example (2.5), we have:
Cb(S1) = undefined
Cf(S1) = {John, music store, piano}
Cp(S1) = John
Cb(S2) = John
Cf(S2) = {John, music store}
Cp(S2) = music store (referent "it")
Here, Cb(S2) ̸= Cp(S2), so the transition is Retain. This explains why Example (2.4) is more
coherent than Example (2.5) because Continue is preferred to Retain.
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Cb(Si+1) = Cb(Si) or Cb(Si) = NIL Cb(Si+1) ̸= Cb(Si)

Cb(Si+1) = Cp(Si+1) Continue Smooth-Shift
Cb(Si+1) ̸= Cp(Si+1) Retain Rough-Shift

Table 2.1 Four types of transitions in Certering Theory, from Brennan et al. (1987).

2.1.2 Topic-based Coherence

In addition to describing common entities, coherence can also be established by discussing
topically or semantically related words across sentences, which is called topic- or lexicon-
based coherence (Jurafsky and Martin, 2025). An instance can be found in Example (2.6),
where no common entities are shared between sentences, but the text is still coherent because
the sentences are linked by sports-related vocabulary.

(2.6) [Different excercise have different benifits for our body.]s1 [Jogging can increase your
breathing and heart rate.]s2 [Table tennis keeps you away from shortsightedness.]s3

[Playing basketball can stengthen your muscles.]s4 [Yoga helps to relieve your back
pain.]s5 [So, pick the one your body needs the most.]s6

Topically coherent texts usually draw from a single semantic field or topic, which often
leads to lexical cohesion (Halliday and Hasan, 1976), a surface-level property where related
words link sentences together. There are two primary forms of lexical cohesion: reiteration
and collocation. Reiteration can be accomplished by repeating lexical items or by using
synonymy, antonymy, hyponymy, taxonomy, etc. Example (2.6) belongs to this category,
where taxonomy (i.e., different types of exercise) is applied to create ties between sentences.
By contrast, collocation is a form of lexical cohesion that depends on the tendency of some
words to co-occur in texts. For example, when one sees the noun bicycle in a sentence, it is
more probable that the verb ride will also appear.

2.1.3 Discourse Relation-based Coherence

Ultimately, a text can maintain coherence by systematically using logical or semantic relations
to connect clauses or sentences. Below, we show two examples:

(2.7) [Hagen took a flight from Berlin to Seattle.]s1 [He had to attend a conference about an
AI product.]s2 [The product will be used to facilitate remote education.]s3

(2.8) [Hagen took a flight from Berlin to Seattle.]s1 [He likes spinach.]s2 [Spinach is a very
common vegetable in China.]s3
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The first example is very coherent because there is a strong connection between the sentences.
Specifically, the second sentence explains Hagen’s actions in the first, and the third provides
more detailed information about the product mentioned in the second. By contrast, the second
example is less coherent because it’s unclear to the reader why the second sentence follows
the first: what does liking spinach have to do with flight trips? Similarly, it’s hard for readers
to understand why "Spinach in China" relates to the first two sentences about Hagen. We
call the logical connection between sentences discourse relations (or coherence relations).
Many discourse relation theories analyze how sentences and clauses are connected to create
coherent text. Here, we introduce the two most common theories: Rhetorical Structure
Theory (RST) and the Penn Discourse Treebank (PDTB) Framework.

Rhetorical Structure Theory
Rhetorical Structure Theory (RST) was developed by Mann and Thompson (1988) for
analyzing the coherence of written and spoken discourse. It describes how parts of a text
relate to each other structurally and functionally to form a meaningful whole. Specifically, in
RST, texts are structured in a tree-like structure, with nodes representing specific text spans
connected by discourse relations. Below is an example from Marcu (2000a). Figure 2.1
shows the rhetorical structure representation of the text in Example (2.9).

(2.9) With its distant orbit–50 percent farther from the sun than Earth–and slim atmospheric
blanket, Mars experiences frigid weather conditions. Surface temperatures typically
average about -60 degrees Celsius (-76 degrees Fahrenheit) at the equator and can
dip to -123 degrees C near the poles. Only the midday sun at tropical latitudes is
warm enough to thaw ice on occasion, but any liquid water formed in this way would
evaporate almost instantly because of the low atmospheric pressure.

In the RST tree, the smallest unit corresponds to a sentence, clause, or phrase, referred to
as an Elementary Discourse Unit (EDU). These units can be connected to form larger text
spans, which can, in turn, be linked to even larger spans until they encompass the entire text
(see Figure 2.1). The edges in the tree represent discourse relations, typically connecting a
nucleus and a satellite, though they can also link two nuclei. The nucleus is the central unit
of a discourse relation, carrying the core meaning that remains coherent even on its own. In
contrast, the satellite provides supporting information that enhances, explains, or modifies
the nucleus but is not essential for understanding the main message.

The discourse relations in RST can be broadly categorized into two types: nucleus-
satellite relations and multi-nuclear relations. In the nucleus-satellite relations, one unit
(the nucleus) is more central, while the other (the satellite) provides supporting information.
The satellite depends on the nucleus, whereas the nucleus can stand alone. Taking the text
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C1 C2

C3 C4

C5 C6 C7 C8

C5-6 C7-8

C5-8C3-4

C1-2 C3-8

C1-8

Explanation-
argumentativePurpose

ContrastList

Elaboration-additionalBackground

Evidence

C1: With its distant orbit–50 percent farther from the sun than Earth–and slim 

atmospheric blanket,

C2: Mars experiences frigid weather conditions.

C3: Surface temperatures typically average about -60 degrees Celsius (-76 

degrees Fahrenheit) at the equator

C4: and can dip to -123 degrees C near the poles.

C5: Only the midday sun at tropical latitudes is warm enough

C6: to thaw ice on occasion,

C7: but any liquid water formed in this way would evaporate almost instantly

C8: because of the low atmospheric pressure.

Fig. 2.1 A rhetorical structure representation of the text in Example (2.9).

spans C1 and C2 in Figure 2.1 as an example, C2 is a nucleus unit, expressing the core idea
that it is very cold on Mars, while C1 is a satellite unit, providing background information
explaining why this happens. Below are a few examples of nucleus-satellite relations:

• Elaboration: The satellite expands on the nucleus by adding details.
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▶ [City, in Sweden, will be the site of the 1969 International Conference on Compu-
tational Linguistics, September 1-4.]nucleus [It is expected that some 250 linguists
will attend from Asia, Western Europe, Eastern Europe, including Russia, and
the United States.]satellite

• Cause: The satellite explains the reason for the nucleus.

▶ [Hagen failed to pass the examination]nucleus [because he didn’t spend much time
on study.]satellite

• Evidence: The satellite supports the nucleus with evidence.

▶ [Sun Yusha is a highly skilled table tennis player.]nucleus [She has won several
international championships, including two last year.]satellite

In multi-nuclear relations, both units have equal importance, and removing one unit would
significantly alter the overall meaning. The Contrast relation between the text spans C5-6
and C7-8 in Figure 2.1 falls into this category, in which removing any part would result in
incomplete information for the reader. Below are a few examples of multi-nuclear relations:

• Contrast: Two units present opposing ideas.

▶ [She likes sunny days,]nucleus [but he likes rainy days.]nucleus

• List: Multiple units contribute to a common topic

▶ [I am 17 years old.]nucleus [It is summer, and football practice is about to begin.]nucleus

Penn Discourse TreeBank
In the early stages of computational discourse research, the study of discourse relations is
closely linked to discourse structure. As a result, theories such as RST implicitly assume a
tree structure. However, many studies (Mann and Thompson, 1988; Knott et al., 2000) have
identified this as a drawback, as annotating discourse relations requires an understanding
of the overall coherence of a given text, and annotators often disagree on this. This has
motivated efforts to annotate discourse relations independently of discourse structure. Such a
shallow model of discourse coherence can be annotated based solely on local context. The
Penn Discourse TreeBank (PDTB, Miltsakaki et al., 2004) is the most prominent framework
in this category.

The Penn Discourse TreeBank is a corpus that uses a lexically grounded framework to
annotate discourse relations. It adopts a shallow discourse annotation approach, focusing on
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discourse connectives (such as because, however, and as a result) and the two text spans
they connect, known as arguments. Specifically, rather than having annotators identify
discourse relations between text spans directly, they are provided with a list of discourse
connectives. Annotators then recognize the discourse connectives in the text along with
the two arguments linked by each connective and finally mark a discourse relation for each
connective. An instance is shown in Example (2.10), where the connective because signals a
Cause relation between two arguments. Discourse relations signaled by connectives present
in the text are referred to as Explicit discourse relations.

(2.10) [They may feel emotionally secure now]Arg1 because [they are not heavily in the stock
market]Arg2

(2.11) [He has not changed, but those around him have.]Arg1 (implicit=Because) [Many of his
views on the protection of wilderness areas are now embraced by the mainstream.]Arg2

(2.12) [After training at an average discount of more than 20% in late 1987 and part of last
year, country funds currently trade at an average premium of 6%.]Arg1 (AltLex) [Share
prices of many of these funds this year have climbed much more sharply than the
foreign stocks they hold.]Arg2

(2.13) [Pierre Vinken, 61 years old, will join the board as a non-executive director on Nov.
29.]Arg1 (EntRel) [Mr. Vinken is chairman of Elsevier N.V., the Dutch publishing
group.]Arg2

(2.14) [Mr. Rapanelli met in August with U.S. Assistant Treasury Secretary David Mulford.]Arg1

(NoRel) [Argentine negotiator Carlos Carballo was in Washington and New York this
week to meet with banks.]Arg2

However, not all text spans are connected by a connective. Therefore, the PDTB also an-
notates adjacent sentence pairs with no explicit signal. In some cases, a discourse connective
can be inserted between paragraph-internal adjacent sentence pairs despite not being related
by any explicit connectives, as shown in Example (2.11). In this example, we can insert
an implicit connective because between the two arguments without causing redundancy.
Discourse relations inferred from such implicit connectives are called Implicit discourse
relations. In other instances, when annotators determine that no implicit connective is suitable
between adjacent sentence pairs, they are further categorized as follows: (a) AltLex, where a
discourse relation is inferred, but inserting an implicit connective would be redundant, as the
relation is already expressed through an alternative lexicalization; (b) EntRel, where no clear
discourse relation is inferred, and the second sentence elaborates on or continues discussing
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Level-1 Level-2 Level-3

TEMPORAL
Synchronous -

Asynchronous
precedence
succession

CONTINGENCY

Cause
reason
result
negresult

Cause+Belief
reason+belief
result+belief

Cause+SpeechAct
reason+speechact
result+speechact

Condition
arg1-as-cond
arg2-as-cond

Condition+SpeechAct -

NegActive-Condition
arg1-as-negcond
arg2-as-negcond

NegActive-Condition+SpeechAct -

Purpose
arg1-as-goal
arg2-as-goal

COMPARISON

Concession
arg1-as-denier
arg2-as-denier

Concession+SpeechAct arg2-as-denier+SpeechAct
Contrast -
Similarity -

EXPANSION

Conjunction -
Disjunction -
Equivalence -

Exception
arg1-as-excpt
arg2-as-excpt

Instantiation
arg1-as-instance
arg2-as-instance

Level-of-Detail
arg1-as-detail
arg2-as-detail

Manner
arg1-as-manner
arg2-as-manner

Substitution
arg1-as-subst
arg2-as-subst

Table 2.2 PDTB 3.0 Sense Hierarchy. The leftmost column contains the Level-1 senses, and
the middle column, the Level-2 senses. For asymmetric relations, Level-3 senses are located
in the rightmost column.
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an entity mentioned in the first, aligning with entity-based coherence (Knott et al., 2000); and
(c) NoRel, where neither a discourse relation nor entity-based coherence is present between
the sentences. Examples (2.12), (2.13), and (2.14) illustrate these three cases, respectively.

In the PDTB framework, discourse relations are organized hierarchically into three levels:
class, type, and subtype (cf. Table 2.2). At the top level, the framework defines four broad
semantic classes: TEMPORAL, CONTINGENCY, COMPARISON, and EXPANSION. Each
class is subdivided into types that further specify its meaning. For instance, TEMPORAL
includes two types: Synchronous and Asynchronous. At the third level, subtypes clarify
the semantic role of each argument. Within TEMPORAL, the Asynchronous type is further
divided into two subtypes: precedence and succession.

Other Theories of Discourse Coherence
In addition to RST and PDTB, several other well-known theories of discourse coherence

have been proposed, such as Segmented Discourse Representation Theory and the Cognitive
approach to Coherence Relations.

Segmented Discourse Representation Theory (SDRT; Asher and Lascarides, 2003) is
a discourse interpretation theory that combines formal semantic representation with discourse
structure and pragmatic reasoning. Building on dynamic semantics, SDRT models how
the interpretation of a sentence depends on the evolving discourse context, while also
incorporating insights from AI-based approaches that emphasize discourse structure and
commonsense inference.

SDRT extends prior work on discourse structure by assigning rhetorical relations a precise
dynamic semantic interpretation, which explains how the content of a discourse augments
the compositional semantics of its clauses. In addition, SDRT incorporates commonsense
reasoning with linguistic and non-linguistic information to determine rhetorical relations and
resolve discourse-level phenomena such as pronoun interpretation, presupposition resolution,
and bridging inferences. In this way, SDRT provides a unified account of how discourse
structure and semantic interpretation jointly contribute to discourse coherence.

Another well-known framework for discourse coherence is the Cognitive approach
to Coherence Relations (CCR; Sanders et al., 1992). Unlike formalisms that primarily
focus on structural representations or formal semantics, CCR adopts a cognitive perspective,
viewing coherence relations as mental constructs that reflect how language users establish
meaningful connections between discourse segments during comprehension and production.
It decomposes discourse relations into a small set of cognitively motivated dimensions: (I)
Basic Operation: Causal vs. Additive. This dimension captures whether the coherence
relation involves a causal dependency between discourse segments or merely adds informa-
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tion without implying causation. (II) Source of Coherence: Semantic vs. Pragmatic. This
dimension distinguishes whether the coherence relation is grounded in objective, real-world
states of affairs (semantic) or arises from the speaker’s reasoning, evaluation, or communica-
tive intention (pragmatic). (III) Polarity: Positive vs. Negative. Positive relations reinforce
expectations or alignments, while negative relations signal denial, contrast, or violation of an
expected causal or logical connection. (IV) Basic Order: Basic vs. Non-basic. In basic order,
the segments follow the canonical sequence (e.g., cause preceding effect), whereas non-basic
order involves a reversal of this sequence, such as presenting an effect before its cause.

The strength of CCR lies in its parsimony. By using these four dimensions, CCR can
generate a taxonomy of relations that aims to capture psychologically plausible distinctions in
discourse processing. These abstract dimensions have also made CCR a useful "interlingua"
for mapping and comparing different annotation schemes, such as aligning the disparate
relation labels used in RST and PDTB (Sanders et al., 2021).

2.2 Tasks and Corpora

This thesis focuses on neural coherence modeling and includes discourse relation classifica-
tion; therefore, we introduce both tasks and the corpora used for evaluation.

2.2.1 Coherence Modeling

Coherence modeling is the task of assessing how coherent a given text is (Lapata and Barzilay,
2005). It can be formulated as a classification task when applied to a single document (cf.
Figure 2.2a), or as a ranking problem when applied to a pair of documents (cf. Figure 2.2b).

Doc

Highly Coherent

Incoherent

Coherent

Doc1

Doc2

Which is more coherent?
? Doc1 > Doc2

Doc2 > Doc1

(a) Classification Task (b) Ranking Task

Fig. 2.2 Two forms of the task of Coherence Modeling.

Manually annotating text coherence is costly and time-consuming, as it requires linguistic
expertise. As a result, prior work mainly evaluates coherence models on synthetic tasks
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Original
S1: The Justice Department is conducting an anti-trust trial against Microsoft Corp. with
evidence that the company is increasingly attempting to crush competitors.
S2: Microsoft is accused of trying to forcefully buy into markets where its own products
are not competitive enough to unseat established brands.
S3: The case revolves around evidence of Microsoft aggressively pressuring Netscape
into merging browser software.
S4: Microsoft claims its tactics are commonplace and good economically.
S5: The government may file a civil suit ruling that conspiracy to curb competition
through collusion is a violation of the Sherman Act.
S6: Microsoft continues to show increased earnings despite the trial.

Shuffled
S5: The government may file a civil suit ruling that conspiracy to curb competition
through collusion is a violation of the Sherman Act.
S1: The Justice Department is conducting an anti-trust trial against Microsoft Corp.
with evidence that the company is increasingly attempting to crush competitors.
S4: Microsoft claims its tactics are commonplace and good economically.
S3: The case revolves around evidence of Microsoft aggressively pressuring Netscape
into merging browser software.
S2: Microsoft is accused of trying to forcefully buy into markets where its own products
are not competitive enough to unseat established brands.
S6: Microsoft continues to show increased earnings despite the trial.

Table 2.3 An example of shuffle test from Barzilay and Lapata (2008), where the first is the
original document and the second is the shuffled one.

(e.g., the shuffle test) or proxy tasks (automatic essay scoring). More recently, recognizing
the importance of coherence modeling for NLP applications, researchers have developed
higher-quality datasets specifically designed to assess discourse coherence.

The Shuffle Test
In early work, the shuffling test, introduced by Barzilay and Lapata (2005, 2008), was the
most widely used task for evaluating coherence models. The task is a ranking problem (but in
the form of binary classification): Given a pair of documents, one original and one generated
by randomly shuffling the sentences of the original, the model must predict which document
is more coherent. The underlying assumption is that the original document is inherently more
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Sections # Doc. # Pairs Avg. # Sent.
Train 00-13 1378 26422 21.5
Test 14-24 1053 20411 22.3

Table 2.4 Statistics of the shuffle test dataset created from the Wall Stree Journal portion of
Penn TreeBank.

coherent than its shuffled counterpart. Ideally, a robust coherence model should consistently
rank the original document higher. Table 2.3 provides an example from Barzilay and Lapata
(2008), showing both the original and its shuffled version.

The shuffle test dataset has multiple versions. The original version comprises documents
from two distinct genres: newspaper articles about earthquakes (Earthquake) and government-
written accident reports (Accidents). A more widely used version, introduced by Elsner and
Charniak (2011), replaces these with articles from the Penn Treebank (specifically, the Wall
Street Journal). In this version, articles from Sections 00 to 13 are used for training, while
articles from Sections 14 to 24 are reserved for evaluation. Table 2.4 summarizes the number
of <original, permuted> pairs included in the training and evaluation sets.

However, many studies have raised concerns about the suitability of this artificial task for
coherence modeling. For instance, Lai and Tetreault (2018) create a high-quality corpus for
coherence assessment using expert annotators (see Section 2.3), and finds that models trained
on <original permuted> pairs, despite achieving near-perfect accuracy on the shuffle test,
perform poorly on their dataset, even falling below a random baseline. Similarly, Mohiuddin
et al. (2021) examine whether models trained on the shuffle test learn features that generalize
to real-world tasks. They train models on the shuffle test training set and evaluate them
on downstream tasks such as machine translation and text summarization. The underlying
hypothesis is that models capturing genuine coherence should prefer outputs that align with
human judgments. However, their results show that models performing well on the artificial
task often perform poorly on these downstream tasks. These findings have prompted recent
work to explore alternative evaluation strategies for coherence modeling, including automatic
essay scoring and assessing discourse coherence.

Automatic Essay Scoring
Automated Essay Scoring (AES) is the task of automatically assigning a holistic score to an
essay, summarizing its overall quality (Ke and Ng, 2019). Since coherence is a key factor
in determining the quality of an essay, early work has investigated the relationship between
this task and coherence modeling. For example, Miltsakaki and Kukich (2000) annotate
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ID Content

1
Agree or Disagree: It is better to have broad knowledge of many academic
subjects than to specialize in one specific subject.

2 Agree or Disagree: Young people enjoy life more than older people do.

3
Agree or Disagree: Young people nowadays do not give enough time to
helping their communities.

4
Agree or Disagree: Most advertisements make products seem much better
than they really are.

5
Agree or Disagree: In twenty years, there will be fewer cars in use than there
are today.

6 Agree or Disagree: The best way to travel is in a group led by a tour guide.

7
Agree or Disagree: It is more important for students to understand ideas and
concepts than it is for them to learn facts.

8
Agree or Disagree: Successful people try new things and take risks rather than
only doing what they already know how to do well.

Table 2.5 Topic prompts in the TOEFL dataset.

Prompt ID # Doc. Avg # Word. Max # Word. Avg # Sent.
1 1656 339.1 806 13.7
2 1562 357.8 770 15.7
3 1396 343.5 731 14.7
4 1509 338.0 699 15.1
5 1648 358.4 876 15.2
6 960 358.3 784 15.3
7 1686 336.6 638 14.0
8 1683 340.9 659 14.7

Table 2.6 The statistics of the TOEFL dataset.

centering transitions in student essays and examines how these transitions relate to various
levels of writing quality. Their findings reveal a strong correlation between essay scores and
coherence scores derived from centering transitions. Building on these insights, automatic
essay scoring has become a widely used method for evaluating coherence models (Farag
et al., 2018; Jeon and Strube, 2020b; Liu et al., 2023a).
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Split # Doc. Avg # Word. Max # Word. Avg # Sent.

Yahoo
Train 1000 157.2 339 7.8
Test 200 162.7 314 7.8

Clinton
Train 1000 182.9 346 8.9
Test 200 186.0 352 8.8

Enron
Train 1000 185.1 353 9.2
Test 200 191.1 348 9.3

Yelp
Train 1000 178.2 347 10.4
Test 200 179.1 340 10.1

Table 2.7 The statistics of the GCDC dataset.

Coherence
GCDC TOEFL

Yahoo Clinton Enron Yelp P1 P2 P3 P4 P5 P6 P7 P8
low 45.56 28.22 29.89 27.00 09.58 08.33 13.16 12.82 09.92 10.63 09.80 11.20
medium 17.54 20.67 19.33 21.89 54.23 54.92 50.24 53.26 53.24 54.53 54.95 55.78
high 37.00 51.11 50.78 51.11 36.19 36.75 36.66 33.92 36.84 34.84 35.25 33.00

Table 2.8 Label distribution in TOEFL and GCDC (%).

The TOEFL dataset (Blanchard et al., 2014) is a widely used resource for coherence
modeling in automatic essay scoring. It consists of essays written by students from various
countries, covering eight prompts (see Table 2.5). Each essay is labeled with a readability
level: low, medium, or high. Previous studies (Jeon and Strube, 2020b, 2021) have shown
that the TOEFL dataset generally contains higher-quality essays compared to those in other
corpora, such as ASAP (Hamner et al., 2012). Therefore, this dataset will be used to evaluate
our models in this thesis. Table 2.6 presents the statistics of the TOEFL dataset and Table 2.8
shows the label distribution of the corpus.

Assessing Discourse Coherence
Assessing Discourse Coherence (ADC) is the task of measuring the coherence of a text. It
aligns closely with the goal of coherence modeling and is therefore widely used in recent
studies (Farag and Yannakoudakis, 2019; Sheng et al., 2024). The benchmark dataset for this
task is the Grammarly Corpus of Discourse Coherence (GCDC) dataset, introduced by
Lai and Tetreault (2018). This dataset is valuable because it includes coherence annotations
for texts, a process that, as previously mentioned, is both costly and time-consuming.
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The GCDC dataset includes texts from four domains: (1) online forum posts from the
Yahoo Answers L6 corpus (Yahoo); (2) emails from the U.S. State Department’s release of
Hillary Clinton’s office emails (Clinton); (3) emails from the Enron Corpus (Enron); and
(4) business reviews from the Yelp Open Dataset (Yelp). Expert raters with prior experience
in linguistic annotation assigned each text a coherence score from 1 to 3, corresponding to
low, medium, and high coherence, respectively. Tables 2.7 and 2.8 provide the statistics and
label distribution for this corpus, respectively.

2.2.2 Discourse Relation Classification

Discourse relations, such as Cause and Contrast, describe the logical relationship between
two text spans (called arguments in the PDTB). Discourse connectives, such as because and
as a result, are words or phrases that signal the presence of a discourse relation (Pitler et al.,
2009). In the two examples below, Example (2.15) contains a Cause relation between its
two arguments, while Example (2.16) demonstrates an Instantiation relation. Here, the word
because and the phrase for example serve as discourse connectives.

(2.15) [People love Heidelberg]Arg1 [because the city is beautiful]Arg1

—- Contingency.Cause

(2.16) [Heidelberg is attractive for many reasons.]Arg1 [For example, the city has rivers and
mountains.]Arg1

—- Expansion.Instantiation

(2.17) [Tom was selected as the president to handle the issue.]Arg1 [Many people doubt if he
has the ability.]Arg1

—- Comparison.Contrast

Discourse Relation Classification is the task of identifying the type of discourse relation
between two given text spans (arguments). It is typically divided into two forms, depending
on whether a connective is present in the input text:

• Explicit Discourse Relation Classification is performed when a connective (e.g.,
because in Example 2.15) is present.

• Implicit Discourse Relation Classification is required when no connective is explicitly
stated (as in Example 2.17), and the relation must be inferred from context.

Explicit discourse relation classification is relatively straightforward, as discourse connectives
serve as clear indicators of the relationship between arguments. For example, in most
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PDTB 2.0 PDTB 3.0

L1

Comparison Comparison
Contingency Contingency
Expansion Expansion
Temporal Temporal

L2

Comparison.Concession Comparison.Concession
Comparison.Contrast Comparison.Contrast
Contingency.Cause Contingency.Cause
Contingency.Pragmatic cause Contingency.Cause+Belief
Expansion.Conjunction Contingency.Condition
Expansion.Instantiation Contingency.Purpose
Expansion.Alternative Expansion.Conjunction
Expansion.List Expansion.Equivalence
Expansion.Restatement Expansion.Instantiation
Temporal.Asynchronous Expansion.Level-of-detail
Temporal.Synchrony Expansion.Manner

Expansion.Substitution
Temporal.Asynchronous
Temporal.Synchronous

Table 2.9 The top-level (L1) and second-level (L2) discourse relations in PDTB 2.0 and
PDTB 3.0 commonly used in the literature.

cases, the connective because signals a Cause relation. In contrast, implicit discourse
relation classification is more challenging, as it requires inferring the relation solely from the
arguments without explicit connective cues.

Discourse relation classification is a key component of various discourse theories, such
as Rhetorical Structure Theory (RST) and the Penn Discourse TreeBank (PDTB) framework.
Consequently, many corpora have been developed for training and evaluating discourse
relation classifiers. Here, we introduce two such corpora used in this thesis: the Penn
Discourse TreeBank and the Georgetown University Multilayer Corpus.

Penn Discourse TreeBank
The Penn Discourse TreeBank (PDTB) is a large-scale corpus for discourse analysis that
provides annotated discourse relations between two adjacent text spans. It provides a clear
distinction between explicit examples (where connectives are present in the text) and implicit
examples (where connectives are absent), and annotates suitable connectives for the implicit
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Dataset Type Train Dev Test

PDTB 2.0
Explicit 14117 1462 1285
Implicit 12632 1183 1046

PDTB 3.0
Explicit 18626 1944 1767
Implicit 17085 1653 1474

Table 2.10 The statistics of PDTB 2.0 and PDTB 3.0.

Type Train Dev Test
Explicit 5185 813 796
Implicit 3136 519 541

Table 2.11 The statistics of the GUM corpus.

cases. The corpus has two versions, PDTB 2.0 (Prasad et al., 2008) and PDTB 3.0 (Webber
et al., 2019b), with PDTB 3.0 being an improved and extended version of PDTB 2.0. Each
version includes annotations using a hierarchical discourse relation schema.

Most existing studies consider all four relation types for top-level (L1) relation prediction.
In contrast, second-level (L2) relation recognition is often restricted to a smaller set of relation
types, mainly because some relations (e.g., NegActive–Condition) have very few training
instances. Consequently, prior work typically evaluates 11 L2 relation types in PDTB 2.0
and 14 in PDTB 3.0, as shown in Table 2.9.

Two data splitting strategies are widely used for PDTB 2.0 and PDTB 3.0. The first,
proposed by Ji and Eisenstein (2015), uses Sections 2–20 for training, Sections 0–1 for
development, and Sections 21–22 for testing, as presented in Table 2.10. The second strategy,
referred to as section-level cross-validation (Kim et al., 2020), partitions the 25 sections into
12 folds, where each fold consists of 21 training sections, 2 validation sections, and 2 test
sections.

The Georgetown University Multilayer Corpus
The Georgetown University Multilayer (GUM) corpus is an open-source, richly annotated
corpus of English text created by the Computational Linguistics and Information Processing
(CLIP) group at Georgetown University (Zeldes, 2017a). It is designed to facilitate research
in a variety of linguistic domains by offering multiple layers of annotation, including tok-
enization and lemmatization, part-of-speech (POS) tagging, dependency syntax, discourse
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parsing, and more. For discourse annotation, the GUM corpus adopts the framework of
Rhetorical Structure Theory (RST).

The original GUM corpus is annotated with a constituent tree structure that contains both
structural and relational information. In its latest version, 1 the authors of this corpus extend it
to include annotations in the style of the Penn Discourse Treebank (PDTB). Specifically, they
convert constituent trees into dependency trees, and map the resulting triples (EDUi, Relation,
EDUj) to PDTB-style tuples (Arg1, Relation, Arg2). The discourse units (EDUs) are referred
to as text units, and discourse connectives within these units are annotated accordingly. Each
instance is categorized as explicit or implicit depending on whether a connective is present
in the text unit. Due to the imbalance in label distribution across the full set of discourse
relations, we focus on a subset comprising the following relation types: Causal, Concession,
Conjunction, Contrast, Elaboration, Purpose, and Temporal. The statistics for this filtered
subset of the corpus are presented in Table 2.11.

2.3 Deep Learning in NLP

Over the past few decades, research in NLP has developed rapidly. Different techniques have
dominated the field over time, ranging from rule-based methods in the 1980s to statistical
models in the 1990s and, more recently, neural networks. Neural models have been applied
to almost every NLP task due to their strength in representation learning and feature combi-
nation. In this thesis, we primarily introduce several key techniques, including Transformers,
Graph Neural Networks, Pre-trained Language Models, Large Language Models, and Model
Adaptation.

2.3.1 Transformer

The Transformer is a deep learning architecture introduced by Google researchers in Vaswani
et al. (2017). It first splits a text into tokens and converts them into vectors. Then, multiple
layers of multi-head attention are applied to learn contextualized representations of the text.
The attention mechanism allows key tokens to be emphasized while reducing the influence of
less relevant ones. Compared to other widely used neural models in NLP, such as Recurrent
Neural Networks (RNN, Elman, 1990) and Long Short-Term Memory Networks (LSTM,
Hochreiter and Schmidhuber, 1997), it has several distinct advantages:

• Parallel Processing. Unlike RNNs or LSTMs, which process data sequentially, Trans-
formers process entire sequences at once, allowing for faster training and inference.

1https://github.com/disrpt/latest

https://github.com/disrpt/latest
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Fig. 2.3 An overview of the Transformer.

• Better Handling of Long-Range Dependencies. The attention mechanism in the
Transformer allows it to consider relationships between all words in a sequence, making
it better at capturing long-term dependencies.

• Scalability. Transformers scale well with large datasets and computational power (e.g.,
GPUs and TPUs).

Because of these advantages, Transformers have revolutionized AI and dominated modern
AI research and applications. Figure 2.3 shows an overview of the Transformer. It contains
two key components: an Embedding Layer and multiple Transformer Layers.

Embedding Layer. The embedding layer in a Transformer is the first step in processing
input sequences. It converts discrete tokens into dense numerical representations that the
model can understand. This step is crucial for capturing semantic relationships between
words before going through attention mechanisms.
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The embedding layer typically consists of two key components:

• Token Embeddings. It contains a learnable matrix E of size V × dmodel that maps
each token wt to a high-dimensional vector:

xt = E[wt] (2.1)

where V is the vocabulary size and dmodel is the embedding dimension.

• Positional Encoding. Since the Transformer does not have a recurrence (like RNNs)
or a convolution (like CNNs), it requires a way to incorporate information about the
order of words in a sequence. This is achieved through Positional Encoding (PE),
which is added to the token embeddings:

ht = xt + pt (2.2)

where xt is the embedding of the t-th token, pt is the positional encoding for position t,
and ht is the final input representation of the t-th token, passed into the Transformer
layers.

Transformer Layer. The transformation layer is responsible for converting the input
representation sequence into a richer and more meaningful representation by capturing the
relationships between tokens, regardless of their positions in the sequence. It consists of
Multi-Head Self-Attention, Add & LayerNorm, and Feedforward Network (FFN).

• Multi-Head Self-Attention. Multi-head self-attention is a key mechanism in the
Transformer model, which is inspired by self-attention. Self-attention allows a model to
weigh the importance of different tokens within a sequence when encoding information.
Unlike traditional sequence models, such as LSTM, that process inputs sequentially,
self-attention considers all positions in the input simultaneously. Specifically, given an
input X with length L, we first project it into queries Q, keys K, and values V :

Q = XWQ, K = XWK , V = XW V (2.3)

where Q,K, V ∈ RL×D, and D represents the dimension of hidden states. Then, we
compute the dot product of the queries and keys, divide by a scaling factor

√
dk (dk

is the dimension of query vectors), convert the scores into attention weights using
softmax, and calculate the weighted sum of value vectors:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (2.4)
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The result is a new sequence of vectors, each representing a position in the input
attended by all other positions.

The multi-head variant of self-attention extends this concept by employing multiple
attention heads in parallel. Each head operated independently, projecting the input into
distinct subspaces and learning different attention distributions. This allows the model
to jointly attend to information from different representation subspaces at various
positions, thus enhancing its expressive power. The outputs of these heads are then
concatenated and linearly transformed to produce the final output:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O (2.5)

and each head is:

headi = Attention(QWQ
i , KWK

i , V WK
i ) (2.6)

where h is the number of heads and WO is the output projection matrix.

• Feedforward Neural Network. In addition to the self-attention mechanism, a Trans-
former Layer includes a feedforward network (FFN). This component is crucial for
introducing non-linearity and learning complex transformations independently at each
position in the input sequence. Specifically, the FFN comprises two linear (fully con-
nected) layers that transform the input data. The first layer expands the input dimension
dmodel to a larger dimension 4dmodel, and the second layer projects it back to dmodel.
A Rectified Linear Unit (ReLU) activation function ReLU(x) = max(0, x)is applied
between these two linear layers to introduce non-linearity into the model, helping it to
learn more complex patterns:

FFN(x) = max(0, xW1 + b1)W2 + b2 (2.7)

where W1, b1,W2, b2 are learnable parameters of the two linear layers.

• Add & LayerNorm. In the Transformer, each sub-layer, such as multi-head self-
attention and feedforward networks, is followed by a residual connection and a layer
normalization operation, often referred to as "Add & LayerNorm":

Output = LayerNorm(x+ Sublayer(x)) (2.8)
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where x is the input to a Sublayer and the Sublayer is a Multi-Head Self-Attention or
a Feedforward Network. This step plays a crucial role in stabilizing and improving the
training of deep Transformer networks.

In summary, given the input H l−1 = {hl−1
1 , hl−1

2 , ..., hl−1
n } with n tokens, the L-th

Transformer Layer compute the Multi-head Self-attention, Add & Layernorm, Feedforward
Network, and another Add & LayerNorm, and output H l = {hl

1, h
l
2, ..., h

l
n}:

G = LN(H l−1 +MHAttn(H l−1))

HL = LN(G+ FFN(G))
(2.9)

Figure 2.3 shows an overview of a Transformer Layer.

2.3.2 Graph Neural Networks

Graph Neural Networks (GNNs) are a class of neural architectures designed to perform
inference on data represented as graphs (Wu et al., 2021a). Unlike traditional neural networks
that operate on grid-like structures such as sequences or images, GNNs are specifically
designed to capture the complex relationships and interdependencies between nodes in
arbitrary graph topologies.

In a typical GNN, each node iteratively updates its representation by aggregating and
transforming information from its neighbors (see Figure 2.4). This process, often referred
to as message passing, enables the model to learn node embeddings that encode both local
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structure and feature information. The general formulation can be described as:

hk
v = UPDATEk

(
hk−1
v ,AGGREGATEk

(
{hk−1

u : u ∈ N (v)}
))

(2.10)

where hk
v denotes the representation of node v at k-th GNN layer and N (v) means the set of

neighbors of node v. AGGREGATE represents a permutation-invariant function, such as
mean and sum, and UPDATE is a learnable function, such as MLP.

Graph Convolutional Networks (GCNs)
Graph Convolutional Networks (GCNs) are among the most widely used variants of Graph
Neural Networks (GNNs) (Kipf and Welling, 2017). They generalize the concept of convo-
lution from grid-structured data (such as images) to graph-structured data. In a GCN, each
node updates its representation by aggregating normalized features from its neighbors and
itself, effectively performing a form of feature smoothing over the graph. The update rule for
a single GCN layer is defined as:

Hk+1 = σ(D̃− 1
2 ÃD̃− 1

2
HkWk

) (2.11)

where Ã = A+ I is the adjacency matrix of the graph with added self-loops, D̃ is the degree
matrix of Ã, Hk is the node feature matrix at layer k, and W l is a learnable weight matrix.

2.3.3 Pre-trained Language Models & Large Language Models

Traditionally, NLP systems relied heavily on task-specific models and manual feature en-
gineering, which often led to fragmented solutions with limited generalization capabilities.
To address this, researchers have long sought to develop general-purpose language repre-
sentations by pre-training on large-scale unlabeled text (Mikolov et al., 2013). However,
progress has been constrained by the limited efficiency of sequence models such as LSTMs.
The emergence of Transformers has effectively addressed this issue, as they not only model
dependencies between words effectively, but also support parallelized training. This has
led to the development of Pre-trained Language Models (PLMs), which are typically first
trained on massive amounts of raw text using self-supervised learning, and then fine-tuned
for specific NLP tasks.

Pre-trained Language Models
The first successful Transformer-based pre-trained language model (PLM) is Generative Pre-
trained Transformer (GPT), introduced by Radford et al. (2018). It is a decoder-only model
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(b) GPT: Tokens are predicted auto-
regressively, meaning GPT can be used
for generation. However, words can
only condition on leftward context, so it
cannot learn bidirectional interactions.

(c) BART: Inputs to the encoder need not be aligned with decoder outputs, allowing
arbitrary noise transformations. Here, a document has been corrupted by replacing spans of
text with mask symbols. The corrupted document (left) is encoded with a bidirectional
model, and then the likelihood of the original document (right) is calculated with an
autoregressive decoder. For fine-tuning, an uncorrupted document is input to both the
encoder and decoder, and we use representations from the final hidden state of the decoder.

Fig. 2.5 A schematic comparison between GPT (decoder-only), BERT (encoder-only) and
BART (encoder-decoder).

that uses a causal language modeling (CLM) objective for pretraining, in which the model is
trained to predict the next word in a sequence using only the preceding words, never those that
follow. Due to its left-to-right training approach, GPT cannot leverage bidirectional context,
which is crucial for many natural language understanding tasks. The encoder-only model
BERT (Bidirectional Encoder Representations from Transformers), proposed by Devlin et al.
(2019), addresses this limitation with a different training objective called masked language
modeling (MLM). Specifically, BERT randomly masks a portion of the input tokens and
trains the model to predict these masked tokens based on the surrounding unmasked context.
While effective for understanding tasks, BERT is not suitable for text generation because it
is trained to predict randomly masked tokens rather than generating sequences left-to-right.
Therefore, some works propose using an encoder-decoder architecture that combines both



36 Background

Model Architecture Size

PLMs
Bert Encoder-only 110M
RoBERTa Encoder-only 125M
XLNet Decoder-only 340M

LLMs
LLaMA 2 Decoder-only 7B, 13B, 70B
LLaMA 3.1 Decoder-only 8B, 70B, 405B
GPT-4o Decoder-only >200B

Table 2.12 Examples of Pre-trained Language Models (PLMs) and Large Language Models
(LLMs) used in this thesis.

types of training. For example, T5 (Raffel et al., 2020) and BART (Lewis et al., 2020)
input masked text into an encoder and then use a decoder to reconstruct the original text
by generating words sequentially. Figure 2.5 shows a comparison between encoder-only,
decoder-only, and encoder-decoder PLMs.

Large Language Models
Large Language Models (LLMs) are a significant evolution of PLMs, characterized by
scaling up both the model architecture and the volume of training data. LLMs, such as
GPT-4 (OpenAI, 2023), Gemini (DeepMind, 2024), and LLaMa (Touvron et al., 2023), are
trained as autoregressive models (i.e., decoder-only) to predict the next token in a sequence,
enabling them to generate coherent and contextually rich text across diverse domains. The
central idea behind this transition is the hypothesis that increasing model size, data diversity,
and training duration leads to emergent abilities not observed in smaller models (Kaplan
et al., 2020), such as in-context learning, reasoning over long contexts, and multilingual
generalization. Unlike earlier PLMs, which required task-specific fine-tuning, many LLMs
demonstrate strong zero-shot and few-shot capabilities using prompt-based learning. This
shift reflects a broader trend in NLP toward general-purpose models that can perform a wide
range of tasks with minimal adaptation.

Table 2.12 provides a summary of both Pretrained Language Models (PLMs) and Large
Language Models (LLMs) used in the experiments presented in this thesis, including details
on their architecture and size.

2.3.4 Model Adaptation

The adaptation of pre-trained language models (PLMs) and large language models (LLMs)
to specific natural language processing (NLP) tasks has emerged as a central theme in recent
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Model Type Parameter Updates Data Requirement

Fine-tuning PLMs or LLMs Yes Large amounts of labeled data

Zero-shot Prompting LLMs No No labeled data needed

In-context Learning LLMs No Few labeled examples

Table 2.13 Comparison of model adaptation strategies, including fine-tuning, zero-shot
prompting, and in-context learning.

research (Han et al., 2024). In this context, we present the three most common approaches to
model adaptation: fine-tuning, zero-shot prompting, and in-context learning (see Table 2.13
for a comparison between them).

Fine-tuning
Fine-tuning is a widely adopted approach for adapting PLMs and LLMs to specific down-
stream NLP tasks (Peters et al., 2019). In this paradigm, a model that has been pre-trained on
a large-scale general-purpose corpus is further trained on a smaller, task-specific dataset. This
additional training allows the model to adjust its parameters to better capture the nuances
and requirements of the target task, such as sentiment analysis or question answering. Fine-
tuning typically results in improved performance compared to using the pre-trained model
alone, as it leverages both the general linguistic knowledge acquired during pre-training and
task-specific patterns learned during adaptation.

Zero-shot Prompting
Zero-shot prompting is a technique used with LLMs (not for PLMs) where the model is
given a task instruction or question without any examples of how to perform the task (Kojima
et al., 2022). Instead of training or fine-tuning the model on task-specific data, zero-shot
prompting relies entirely on the model’s pre-existing knowledge, acquired during pre-training,
to understand and complete the task based on the prompt alone. Here is an example:
Task: Translate English to German
Prompt: "Translate the following sentence to German: ‘Heidelberg is a very beautiful city.’"
Output: "Heidelberg ist eine sehr schöne Stadt."

In-context Learning
In-context learning is an adaptation method for large language models (LLMs) that enables
them to perform specific tasks without modifying their underlying parameters (Brown
et al., 2020). Instead of traditional training or fine-tuning, the model is provided with a
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sequence of task demonstrations, examples of input-output pairs, directly within the prompt
at inference time. By conditioning on these examples, the model can infer the task and
generate appropriate outputs for new inputs. This approach leverages the model’s ability to
recognize patterns and generalize from context, making it highly flexible and suitable for
scenarios where labeled training data is scarce or rapid deployment is needed. Here is an
example:
Prompt:
Translate the following English sentences to German:

English: The cat is sleeping.
German: Die Katze schläft.

English: I would like a cup of coffee.
German: Ich hätte gerne eine Tasse Kaffee.

English: Heidelberg is a very beautiful city.
German:

Output:
Heidelberg ist eine sehr schöne Stadt.

2.3.5 MASK Stragegy in Transformers

Mask strategy is a widely used approach in Transformer-based models for controlling
information flow during training and inference (Radford et al., 2018; Devlin et al., 2019;
Dong et al., 2019). By selectively masking input tokens or attention connections, the model
is constrained to access only a subset of available information.

In pre-trained models and large language models, masking is mainly used to define
training objectives and prediction settings. For example, masked language models, such
as BERT (Devlin et al., 2019), mask a portion of the input words and train the model to
recover those words, thus achieving self-supervised learning of contextual representations
(see Figure 2.5a). In contrast, causal language models, such as GPT (Radford et al., 2018),
apply causal attention masks to prevent words from focusing on future positions, so each
word is generated using only its left-hand context (see Figure 2.5b).

Beyond general information control, mask strategies can also be used to inject prior
knowledge into Transformer models. By constructing attention masks based on linguistic or
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task-related constraints, such as syntactic structures (Li et al., 2021), discourse relations (Mi-
haylov and Frank, 2019), or knowledge graph (Liu et al., 2020a), the model’s attention can
be restricted to meaningful token-to-token interactions. Under such designs, only predefined
token pairs are allowed to attend to each other, while irrelevant connections are blocked.
This form of prior-guided masking enables the model to better utilize structured knowledge
without modifying the core Transformer architecture.





Chapter 3

Related Work

This chapter reviews prior research on coherence modeling and discourse relation classifica-
tion, which together serve as the foundation for the present study.

3.1 Coherence Modeling

3.1.1 Entity-based Methods

Coherence modeling has long been a central topic in discourse analysis and natural language
processing (NLP), with researchers aiming to capture how texts flow logically and mean-
ingfully. Early coherence modeling approaches are grounded in linguistic theories, such
as Centering Theory (Grosz et al., 1995), which describes how entities shift focus across
different discourse segments to maintain coherence. These models provide the foundation
for more structured representations of text organization.

Entity Grid
A significant milestone in coherence modeling is the entity grid model, proposed by Barzilay
and Lapata (2008). Given a text, this approach first identifies the entities and their gram-
matical roles: subjects (S), objects (O), or others roles (X). It then represents the text as a
two-dimensional grid, where each row corresponds to a sentence and each column to an
entity. Each cell (si, ej) in the grid indicates the grammatical role of the j-th entity ej in
the i-th sentence si. An example is shown in Figure 3.1. Finally, the entity grid method
counts the occurrences of all N-gram transitions among the syntactic categories S, O, X, and
–, normalizes these counts, and uses them as coherence patterns. Taking the grid in Figure
3.1 as an example, all 2-gram transitions among S, O, X, and - include: "S S", "S O", "S X",
"S –", "O S", "O O", "O X", "O –", "X S", "X O", "X X", "X –", "– S", "– O", "– X", and "–
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1. [The Justice Department]S is conducting an [anti-trust trial]O against 
[Microsoft Corp.]X with [evidence]X that [the company]S is increasingly 
attempting to crush [competitors]O. 

2. [Microsoft]O is accused of trying to forcefully buy into [markets]X where 
[its own products]S are not competitive enough to unseat [established 
brands]O. 

3. [The case]S revolves around [evidence]O of [Microsoft]S aggressively 
pressuring [Netscape]O into merging [browser software]O. 

4. [Microsoft]S claims [its tactics]S are commonplace and good 
economically. 

5. [The government]S may file [a civil suit]O ruling that [conspiracy]S to 
curb [competition]O through [collusion]X is [a violation of the Sherman 
Act]O. 

6. [Microsoft]S continues to show [increased earnings]O despite [the trial]X.
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(a) A text with recognized entities and their grammatical roles.

(b) The entity grid of the text.

Fig. 3.1 An illustrative example of the entity grid. Given a text, all entities and their
grammatical roles, subject (S), object (O), or other (X), are identified. The text is then
represented as a two-dimensional grid, where each row corresponds to a sentence and each
column to an entity. Each cell (si, ej) in the grid denotes the grammatical role of the j-th
entity ej in the i-th sentence si.

–". The number of occurrence of "S O" between adjacent sentences is 1, and the normalized
value is 0.013 (1/75, where 75 is the total number of 2-grams in the grid).
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The entity grid model has been enhanced by numerous subsequent studies. For instance,
Filippova and Strube (2007) extend the original model by accounting not only for transitions
involving the same entities but also for those between semantically related entities. To
determine semantic relatedness, they employ the WikiRelate! API (Strube and Ponzetto,
2006) to compute a relatedness score between entities; if this score exceeds a predefined
threshold, the entities are considered related. Elsner and Charniak (2011) propose an
extension to the entity grid model that differentiates between various types of entities. In the
standard entity grid, no information about the nature or importance of the entity is considered,
i.e., each entity is treated equally in terms of transition probability. To address this limitation,
their approach incorporates additional information derived from syntactic structure, named
entity recognition, and statistical data from an external coreference corpus into the entity grid
representation.

Entity Graph
Another prominent early approach to coherence modeling is the Entity Graph, proposed
by Guinaudeau and Strube (2013), which aims to refine the entity grid model. Unlike the
entity grid, which represents coherence through discrete grammatical role transitions of
entities across sentences, the entity graph models sentence-entity relationships as a bipartite
graph and assesses coherence based on the structural properties of the resulting graph. As
with the entity grid, the entity graph approach begins by identifying all entities in a given text.
It then constructs a bipartite graph linking entities and sentences, where an edge is established
between a sentence and an entity if the sentence contains that entity. This bipartite graph
is subsequently transformed into a sentence graph through a one-mode projection onto the
sentence nodes, such that an edge is created between two sentence nodes if they share at least
one common entity. Finally, the coherence of the text is assessed by calculating the average
outdegree of the sentence graph. Figure 3.2 shows an example of the entity graph.

Several studies have aimed to improve the entity graph for coherence modeling. Mesgar
and Strube (2015) argue that relying solely on the out-degree is inadequate for capturing the
structural properties of the sentence graph. Motivated by the functional sentence perspective
of text coherence (Danes, 1974), they enhance the entity graph with graph-based features
extracted from text structures. Specifically, they extract subgraphs from the sentence graph
that represent the local structure of the text, and use these subgraphs as patterns to evaluate
local coherence. Building on a similar idea, Mesgar and Strube (2016) use subgraph patterns
for coherence assessment, but utilize word embeddings to construct the sentence graph.
In this approach, two sentences are connected if they contain entities with a similarity
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1. The Turkish [government]𝑒! fell after mob-tie [allegations]𝑒". 
2. [Turkey’s]𝑒# [constitution]𝑒$ mandates a [secular]𝑒% [republic]𝑒& despite its 

Muslim [majority]𝑒'. 
3. [Military]𝑒( and [secular]𝑒% [leaders]𝑒) pressured [President]𝑒!* [Demirel]𝑒!! to 

keep the Islamic-oriented [Virtue]𝑒!" [Party]𝑒!# on the [fringe]𝑒!$. 
4. [Business]𝑒!% [leaders]𝑒) feared [Virtue]𝑒!" would alienate the [EU]𝑒!&.

s1 s2 s3 s4

e1 e16e2 e3 e4 e5 e6 e7 e8 e9 e10 e14e13e12e11 e15

s1 s2

s3 s4

(a) A text with recognized entities.

(b) The bipartite graph between sentences and entities of the text.

(c) The sentence graph of the text.

Fig. 3.2 An illustrative example of the entity graph. Given a text with identified entities,
a bipartite graph is constructed linking sentences and entities. This bipartite graph is sub-
sequently transformed into a sentence graph via a one-mode projection onto the sentence
nodes.

score exceeding a predefined threshold, determined by the cosine similarity between the
embeddings of those entities.

Neural Coherence Models
With the advent of deep learning, neural models have become dominant in coherence research.
Early neural models for coherence modeling primarily focus on learning improved sentence
representations. For instance, Li and Hovy (2014) and Xu et al. (2019) develop models that
assess coherence by training neural encoders to distinguish coherent texts from incoherent
ones. Other studies have aimed to extend the traditional entity grid model by incorporating
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Fig. 3.3 Neural entity grid model proposed by Tien Nguyen and Joty (2017). The model is
trained using a pairwise ranking approach with shared parameters for positive and negative
documents.

neural components. Tien Nguyen and Joty (2017) and Joty et al. (2018), for example, propose
using a convolutional neural network to capture transitions between entities, replacing the
n-gram patterns used in the standard entity grid approach. An example of this approach is
shown in Figure 3.3.

More recently, several studies have explored whether neural models that mimic Centering
Theory can lead to improved coherence modeling. Mesgar and Strube (2018) propose a
model designed to capture the most relevant elements between adjacent sentences, analogous
to the focus in Centering Theory. Specifically, they employ an LSTM to obtain hidden states
for the words in each sentence and then identify the words with the highest similarity across
adjacent sentences. The hidden states of these most similar word pairs are treated as salient
information. A CNN is subsequently used to extract patterns from the changes in this salient
information across the text; these patterns are then utilized for coherence evaluation.

Jeon and Strube (2020a) propose a coherence model designed to approximate Centering
Theory for tracking shifts in discourse focus across segments. This model identifies the
focus of each sentence within its contextual setting, consistent with Centering Theory’s
emphasis on monitoring discourse entities to maintain coherence. By capturing shifts in
sentence-level focus, the model constructs hierarchical discourse structures that reflect the
relationships among different segments of the text. These structures are then integrated
into a structure-aware transformer model, improving its capacity to evaluate coherence by
incorporating both local and global connectivity information, as illustrated in Figure 3.4. One
shortcoming of this approach is that it computes coherence based on connections between
any words, including sub-words or function words. This can lead the model to focus on
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Fig. 3.4 An overview of the model proposed by Jeon and Strube (2020a). The approach
approximates Centering Theory to track shifts in discourse focus across segments and
constructs hierarchical discourse structures that represent relationships between different
segments of the text (see the Discourse Segment Parser). These structures are then utilized
by a structure-aware Transformer for coherence assessment.

irrelevant or spurious information, and it is not linguistically sound, as coherence theories
typically emphasize entities. To address this, Jeon and Strube (2022) refine the method by
restricting the focus to noun phrases and proper names.

While the entity-based models discussed above have demonstrated strong performance,
they focus exclusively on identifying entity-based patterns within individual documents,
overlooking the underlying relationships between documents. Coherence refers to how
sentences within a text are connected. Theoretically, documents with similar entity structures
are likely to exhibit comparable levels of coherence, which can serve as valuable prior
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knowledge for coherence modeling. In Chapter 4, we demonstrate that explicitly modeling
structural similarity between documents contributes to a more effective coherence assessment.

3.1.2 Discourse Relation-based Methods

Discourse relations, such as Cause and Contrast, describe the logical relation between two
text spans. In discourse coherence theory (Crothers, 1978; van Dijk and Kintsch, 1983),
discourse relations between text spans play a key role in establishing the coherence of texts.
This has inspired several studies utilizing discourse relations for coherence modeling.

Lin et al. (2011) is among the few studies that utilizes discourse relations for coherence
assessment. Their approach is inspired by the entity grid model. Similar to that model,
they construct a matrix where the rows represent sentences and the columns represent terms,
respectively (see Figure 3.5b). However, instead of simply marking the syntactic roles of
terms, they populate the matrix with information about discourse relations. Specifically,
given a text, the method first identifies all the discourse arguments and determines the
discourse relations between each pair of arguments (see Figure 3.5a). It then extracts, for
each sentence, the discourse arguments in which a given term is involved, along with the
associated discourse relations. For example, consider the term "Cananea" in Figure 3.5. It
occurs in three locations: the first sentence (S1), the first clause of the third sentence (C3.1),
and the third clause of the fourth sentence (C4.3). Sentence S1 serves as the first argument in a
Comparison relation between S1 and S2; therefore, the cell corresponding to (S1, Cananea) is
assigned the value "Comp.Arg1". Similarly, clause C3.1 functions as the second argument in
a Comparison relation between S2 and S3, the first argument in a Temporal relation between
C3.1 and C3.2, and the first argument in an Expansion relation between S3 and S4. As a result,
the cell (S3, Cananea) is assigned the combined value "Comp.Arg2, Temp.Arg1, Exp.Arg1".
The method then computes the frequencies of n-gram transitions between discourse roles
(i.e., relation types combined with argument positions), normalizes these counts, and treats
them as coherence patterns, in a manner analogous to the entity grid model. This approach is
later extended by Feng et al. (2014), who replace the PDTB discourse relations with those
defined in the RST framework.

However, Mesgar and Strube (2015) argue that these methods are conceptually flawed,
as they treat discourse relations as properties of entities, which contradicts the established
understanding of discourse relations as operating between sentences or elementary discourse
units. Additionally, the effectiveness of these approaches was limited by the poor performance
of discourse parsers at the time. For example, the PDTB parser used by Lin et al. (2011)
achieve an F1-score of only 25.46 in identifying top-level implicit discourse relations. This
limitation also discouraged subsequent research from incorporating discourse relations into
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[Japan normally depends heavily on the Highland Valley and Cananea mines as well as

the Bougainville mine in Papua New Guinea.]S! [Recently, Japan has been buying

copper elsewhere.]S" [[But as Highland Valley and Cananea begin operating,]C#.!
[they

are expected to resume their roles as Japan’s suppliers.]C#."
]S# [[According to Fred

Demler, metals economist for Drexel Burnham Lambert, New York,]C%.!
[“Highland

Valley has already started operating]C%."
[and Cananea is expected to do so soon.” ]C%.#

]S%

5 discourse relations are present in the above text:

1. Implicit Comparison between S1 as Arg1, and S2 as Arg2

2. Explicit Comparison using “but” between S2 as Arg1, and S3 as Arg2
3. Explicit Temporal using “as” within S3 (Clause C3.1 as Arg1, and C3.2 as Arg2)

4. Implicit Expansion between S3 as Arg1, and S4 as Arg2
5. Explicit Expansion using “and” within S4 (Clause C4.2 as Arg1, and C4.3 as Arg2)

copper cananea operat depend …
S1 nil Comp.Arg1 nil Comp.Arg1

S2
Comp.Arg2
Comp.Arg2 nil nil nil

S3 nil
Comp.Arg2
Temp.Arg1
Exp.Arg1

Comp.Arg2
Temp.Arg1
Exp.Arg1

nil

S4 nil Exp.Arg2 Exp.Arg1
Exp.Arg2 nil

(a) An excerpt with four contiguous sentences from wsj 0437, showing five gold 
standard discourse relations. “Cananea” is highlighted for illustration.

(b) Discourse role matrix for the text above. Rows correspond to sentences, 
columns to stemmed terms, and cells contain extracted discourse roles.

Fig. 3.5 An illustrative example of the method proposed by Lin et al. (2011). Given a text,
the method first identifies all discourse arguments and determines the discourse relations
between each pair of arguments. It then extracts, for each sentence, the discourse arguments
involving a given term, along with their associated discourse relations.
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coherence modeling, prompting the question: Can discourse relations contribute to neural
coherence modeling?

In Chapter 5, we demonstrate that the performance of the PDTB discourse parser can
be substantially improved by leveraging pre-trained language models such as RoBERTa,
combined with a carefully designed approach inspired by human annotation practices. Build-
ing on this enhanced parser, Chapter 7 shows that when discourse relations are employed
in a more linguistically grounded manner, they provide significant benefits for coherence
assessment.

The aforementioned studies enhance coherence models either from an entity-based perspec-
tive or a discourse-based perspective, but none consider both features simultaneously. In
practice, entity cues and discourse relations often coexist and interact in complex ways.
Therefore, integrating both types of information has the potential to further improve perfor-
mance. In Chapter 8, we explore two approaches that jointly model entities and discourse
relations for coherence assessment and demonstrate that they significantly outperform strong
baselines that consider only one of these features, or neither.

3.2 Discourse Relation Classfication

The task of Discourse Relation Classification (DRC), identifying the logical or rhetorical
relations between textual units, has undergone significant evolution over the past two decades.

Early work in discourse analysis is predominantly rule-based, heavily influenced by
Rhetorical Structure Theory (RST, Mann and Thompson, 1988). These works aim to
construct full hierarchical discourse trees, which requires segmenting text into elementary
discourse units, identifying discourse relations, and recursively building a coherent hierarchi-
cal structure. A notable contribution in this line is Marcu (2000b), who develops one of the
first end-to-end discourse parsers based on RST, utilizing decision trees and syntactic tem-
plates. Building on this foundation, subsequent studies apply increasingly powerful learning
models, ranging from early statistical classifiers, such as support vector machines (Hernault
et al., 2010), to recent neural architectures (Nguyen et al., 2021; Kobayashi et al., 2022;
Yu et al., 2022b; Maekawa et al., 2024), which yield more robust and accurate discourse
trees. These prasers generally adopt either a bottom-up or a top-down strategy (Kobayashi
et al., 2022; Maekawa et al., 2024). Bottom-up approaches (Feng and Hirst, 2014; Ji and
Eisenstein, 2014) recursively merge adjacent text spans, typically starting from individual
EDUs. At each step, a classifier determines whether to combine spans and assigns the
corresponding nuclearity roles and discourse relations until the full tree is rooted. Top-down
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approaches (Lin et al., 2019; Zhang et al., 2020) treat the entire document as a single span
and recursively partition it into smaller constituent spans. These models identify the optimal
split point within a span and simultaneously predict the nuclearity and relation labels for the
resulting sub-spans.

The release of the Penn Discourse Treebank (PDTB) by Prasad et al. (2008) marks a
significant shift toward data-driven approaches. The PDTB annotates discourse relations
between pairs of text spans, distinguishing between explicit relations (signaled by discourse
connectives) and implicit ones (inferred without connectives). This resource enables the
application of supervised learning techniques to discourse relation classification. Crucially,
as established by Pitler et al. (2008, 2009), discourse connectives serve as the most reliable
surface indicators of discourse coherence, allowing for straightforward mapping to relation
classes. However, they also highlight that the problem becomes substantially more complex
for implicit units, where the underlying relations are not lexically signaled but must be
inferred by interlocutors or readers. This inferential process involves a broader field of lin-
guistic analysis than mere structural parsing, encompassing pragmatic reasoning (Torabi Asr
and Demberg, 2012), lexical semantics (Pitler et al., 2009), and the synthesis of world knowl-
edge (Kishimoto et al., 2018) to reconstruct the intended coherence. Their findings highlight
the particular challenge of classifying implicit relations, which soon became a central focus
in the field.

Implicit Discourse Relation Classification
In response to this challenge, much of the subsequent research focuses on directly predicting
implicit discourse relations from the input arguments. Early efforts treat implicit relation clas-
sification as a supervised learning problem, employing lexical features, syntactic cues, and
shallow semantic indicators. Notably, Lin et al. (2009) incorporat word pairs extracted from
argument spans into the model to model lexical associations that indicate discourse relations,
thus establishing a strong baseline for implicit relation classification. Rutherford and Xue
(2014) has expanded this direction by introducing richer semantic representations, including
polarity, modality, and semantic role information. As the field progressed, researchers in-
creasingly adopted neural networks for their ability to automatically learn rich semantic and
syntactic representations from raw text, thereby reducing dependence on manual feature engi-
neering. Ji and Eisenstein (2015) pioneer neural models for discourse relation classification
by introducing distributed representations of argument spans and an attention-based fusion
mechanism. Qin et al. (2016a,b) further advance the field with bi-directional LSTM models
that incorporate pairwise interaction features, surpassing traditional feature-based methods.
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Fig. 3.6 The overall idea of Long and Webber (2022). Given an anchor instance, positive
and negative examples are identified within a training batch according to the PDTB sense
hierarchy. The contrastive objective encourages instances sharing higher-level discourse
senses to be closer in the representation space, while pushing apart instances belonging to
different branches of the sense hierarchy.

Beyond purely lexical or compositional semantics, some studies argue that the classi-
fication of implicit discourse relations inherently involves pragmatic reasoning and world
knowledge. Torabi Asr and Demberg (2012) analyze the cognitive basis of implicit relations,
showing that readers rely on expectations of coherence and causality. Complementary com-
putational studies have incorporated external knowledge sources or underlying semantic
abstractions to model such reasoning processes (Kishimoto et al., 2018). These findings
suggest that successful implicit relation classification extends beyond structural parsing,
requiring the integration of lexical semantics, pragmatic inference, and background knowl-
edge.

More recently, pre-trained language models (PLMs) have become the state-of-the-art for
implicit discourse relation classification. Shi and Demberg (2019b) highlight that BERT’s
next-sentence prediction task benefits cross-domain classification of implicit relations. Long
and Webber (2022) propose to incorporate the hierarchical structure of discourse relation
senses into contrastive learning, encouraging instances that share higher-level senses to have
similar representations while pushing apart instances belonging to different branches of
the sense hierarchy. As illustrated in Figure 3.6, the framework pulls anchor and positive
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Arg1: Tom was selected as the president.

Arg2: Many doubt if he has the ability.

Arg1: Tom was selected as the president.
Arg2: However, Many doubt if he has
the ability.

+ implicit connective: However

i - Encoder

a - Encoder

Discriminator D Classifier C

Fig. 3.7 The architecture of the adversarial model proposed by Qin et al. (2017). The
framework contains three main components: 1) an implicit relation network i-encoder over
raw sentence arguments, 2) a connective-augmented relation network a-encoder whose inputs
are augmented with implicit connectives, and 3) a discriminator distinguishing between
the features by the two networks. The features are fed to the final classifier for relation
classification. The discriminator and i-encoder form an adversarial pair for feature imitation.
At test time, the implicit network i-encoder with the classifier is used for prediction.

examples closer in the representation space, while separating negative examples from the
anchor.

The significant performance gap between explicit and implicit discourse relation classifi-
cation has motivated a line of work exploring the use of discourse connectives to address
the implicit case (refer to as connective-enhanced methods). Zhou et al. (2010) introduce
a pipeline approach that leverages connectives recovered from an n-gram language model
to aid in recognizing implicit relations. Their findings demonstrate that incorporating these
recovered connectives as features can achieve performance comparable to a strong baseline.
This pipeline-based strategy has been refined through the use of pre-trained language mod-
els (Kurfalı and Östling, 2021; Jiang et al., 2021) and prompt-based techniques (Xiang et al.,
2022; Zhou et al., 2022). However, some studies (Qin et al., 2017; Xiang and Wang, 2023)
have highlighted a key limitation of pipeline methods: the accumulation of cascading errors.
In response, recent work has shifted toward end-to-end neural architectures. For instance, Qin
et al. (2017) propose a feature imitation framework designed to transfer information from
explicit to implicit discourse relation classification. Their method introduces two encoders:
one is trained on the original implicit discourse instances (without connectives in the input),
while the other is trained on the same set of examples with implicit connectives included in
the input. The implicit encoder is encouraged to learn representations that resemble those
produced by the connective-aware encoder through an adversarial training objective. By
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Fig. 3.8 Overview of the multi-task model proposed by Kishimoto et al. (2020). The input
is an implicit argument pair randomly selected from the training data, where annotators
have provided an implicit connective for each pair. BERT is trained to predict the implicit
connective and the discourse relation.

aligning implicit representations with connective-enhanced ones, the model leverages the
strong signaling effect of discourse connectives while remaining applicable to implicit rela-
tion classification at test time (see Figure 3.7). Similarly, Shi and Demberg (2019a) propose
a sequence-to-sequence encoder-decoder model that generates implicit discourse connectives
from text. By treating connective generation as an auxiliary task, the encoder learns richer
representations of discourse arguments, which are then used for implicit discourse relation
classification. Kishimoto et al. (2020) further explores a BERT-based multi-task learning
framework, in which connective prediction is jointly learned with implicit discourse relation
classification, allowing the model to capture discourse-level information better and improving
overall performance (see Figure 3.8).

However, we argue that these connective-enhanced methods remain suboptimal because
connectives are still not explicitly present in the input text. This limitation is underscored
by the findings of Kishimoto et al. (2020), who show that incorporating implicit connective
prediction as an auxiliary training objective yields only marginal improvements in classifying
implicit relations on the PDTB 2.0 dataset. In Chapter 5, we propose an end-to-end approach
that addresses this limitation by explicitly generating a connective between two arguments
and incorporating it into the input for relation classification. This method is inspired by
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the human annotation process used for implicit discourse relation labeling. Our results
demonstrate that this approach significantly outperforms previous connective-enhanced
methods.

Explicit to Implicit Discourse Relation Classification
Corpora of explicit discourse relations are relatively easy to construct, both manually and
automatically, because connectives serve as clear indicators of the underlying relations (Pitler
and Nenkova, 2009). In contrast, annotating implicit relations is far more challenging and
costly, as it requires inferring the relation from context without explicit markers. This
difficulty has led many early studies to leverage explicit examples to train models for
classifying implicit relations, a strategy often referred to as explicit to implicit relation
recognition.

Marcu and Echihabi (2002) train the first classifier for implicit intra-sentential discourse
relations using explicitly marked examples from a raw English corpus, BLIPP (Charniak,
2000), and the RST Treebank (Carlson et al., 2001). Lapata and Lascarides (2004) present
a similar approach using BLIPP but focus on sentence-internal temporal relations. Blair-
Goldensohn et al. (2007) extend this line of work by refining the training process using
parameter optimization, topic segmentation, and syntactic parsing on the Gigaword (Graff
and Cieri, 2003) and PDTB (Prasad et al., 2004). These three works are evaluated on test sets
constructed in the same manner as the training set and show good performance. Sporleder
and Lascarides (2008a) and Lin et al. (2009) investigate the applicability of this approach to
real implicit scenarios and find that performance degrades substantially. They claim, based
on a manual analysis of a few instances, that the linguistic dissimilarities between explicit
and implicit examples may be the cause. However, a corpus-level empirical analysis is not
provided to establish how widespread the problem is.

More recent work has focused on improving the performance in explicit to implicit
discourse relation recognition. Wang et al. (2012) propose to use typical examples with
linguistic structure shared between explicit and implicit relations for training. Ji et al. (2015)
adopt techniques such as resampling and transfer learning to handle the mismatched label
distribution between explicit and implicit corpora. Huang and Li (2019) follow a similar
domain adaptation idea but focus on minimizing the distance between representations of
explicit and implicit examples using an adversarial training framework. Kurfalı and Östling
(2021) tackle this task from a distant supervision perspective. However, little attention has
been paid to the underlying causes of the poor results.
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In Chapter 6, we show that one cause for this failure is a label shift after connectives are
eliminated. We present both manual and empirical evidence to demonstrate the existence of
such a shift in the explicit corpus and investigate two strategies to mitigate it.





Chapter 4

Document Structure Similarity-Enhanced
Coherence Modeling

Entity-based methods have been extensively developed for coherence modeling. Early
approaches, such as the Entity Grid (Barzilay and Lapata, 2008), assess coherence by
capturing entity transitions between adjacent sentences. Other methods, like the Entity
Graph (Guinaudeau and Strube, 2013), evaluate coherence by leveraging structural properties
of the sentence graph of a document. More recently, researchers have explored the use
of neural network architectures, including Convolutional Neural Networks (CNNs), Long
Short-Term Memory networks (LSTMs), and Transformers, for entity-based coherence mod-
eling (Tien Nguyen and Joty, 2017; Mesgar and Strube, 2018; Farag and Yannakoudakis,
2019; Jeon and Strube, 2020a, 2022). However, these methods primarily focus on fea-
ture extraction within individual documents, overlooking potential correlations between
documents.

In this chapter, we first present the motivation of leveraging structural similarity between
documents for coherence modeling. Next, we introduce a graph-based approach that explicitly
connects structurally similar documents and employs Graph Convolutional Networks (GCNs)
to capture inter-document connectivity. Finally, we report experimental results comparing our
model with previous methods on two widely used benchmark corpora, followed by in-depth
analyses demonstrating the effectiveness of leveraging structural similarity information for
this task.
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1. The Internet is changing Africa.
2. In South Africa, people can look for jobs without leaving home.
3. Movies from Nigeria can easily spread around the world.
4. Playing music on mobile phones is becoming popular in Senegal.
5. Farmers in Tanzania can learn to grow vegetables from videos.
6. These results show the power of the Internet.
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1. Different exercise have different benefits for the body.
2. Jogging can increase your breathing and heart rate.
3. Table tennis keeps you away from shortsightedness.
4. Playing basketball can strengthen your muscles. 
5. Yoga helps to relieve your back pain.
6. So, pick the one your body needs the most.
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s% s&

Fig. 4.1 An example of two highly coherent texts exhibiting similar entity connectivity
structures. Recognized nouns are highlighted in bold.

4.1 Why Consider the Structural Similarity?

Coherence describes how sentences of a text connect to each other (Reinhart, 1980; Foltz
et al., 1998; Schwarz, 2001). Theoretically, documents with similar structures should tend
to have a similar degree of coherence. Figure 4.1 illustrates this idea using two texts with
entirely different content but quite similar structural patterns. The first text discusses the
internet in Africa, beginning with a general overview, followed by an examination of specific
African countries, and concluding with a summary. The second text introduces the topic
of exercise, then discusses various daily sports, and also ends with a summary. According
to linguistic theories of textual coherence, these two texts should exhibit a similar degree
of coherence due to their analogous organizational structures. This observation suggests
that structural similarity can serve as valuable prior knowledge in coherence assessment.
For instance, given the structural alignment between the two texts in Figure 4.1, one could
reasonably estimate the coherence of one text by referencing the coherence label of the other.

Although structural similarity between documents holds potential for improving coher-
ence assessment, it has not been explored in previous work. To address this gap, we propose
a graph-based approach, which will be described in detail in the following section.
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Fig. 4.2 Overview of the proposed graph-based approach. Our method identifies the graph
structure of each document, converts the graph into a set of subgraphs, constructs a corpus-
level graph based on the shared subgraphs between structurally similar documents, and finally
encodes those connections using a Graph Convolutional Network (GCN). For simplicity, we
illustrate this process with only three documents and five subgraphs, limiting the number
of sentences per document. su, di, and gj denote the u-th sentence in a document, the i-th
document in the training corpus, and the j-th defined subgraph.

4.2 Graph-based Method

In this section, we present a graph-based approach to modeling the structural similarity
between documents for coherence assessment. The main idea is to connect structurally
similar documents through a graph and capture their connectivity relationships using Graph
Convolutional Networks (GCN). Figure 4.2 provides an overview of our proposed method.
We describe step-by-step how to capture the structural similarities between documents,
including i) identifying the structure of a document (Section 4.2.1); ii) representing the
sentence graph of a document as a set of subgraphs (Section 4.2.2); iii) constructing a corpus-
level heterogeneous graph to connect structurally similar documents based on the shared
subgraphs (Section 4.2.3); iv) applying a GCN encoder to capture connectivity relationships
between document nodes (Section 4.2.4).

4.2.1 Sentence Graph

To model structural similarities between documents, it is first necessary to identify the struc-
tural representation of each document. Following the approach of Guinaudeau and Strube
(2013), we represent each document as a directed sentence graph, with several modifications
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Algorithm 1 Constructing sentence graph
Input: Document d, threshold δ

Output: Sentence graph G

1: S,NS ← stanza(d) ▷ Sentences and nouns
2: L← len(S)
3: G← zeros(L, L) ▷ Init adjacency matrix
4: for u← 1 to L− 1 do
5: for v ← u+ 1 to L do
6: un, vn← len(NSu), len(NSv)
7: sim_scores← [ ]

8: for a← 1 to un do
9: for b← 1 to vn do

10: ea ← embed(NSu,a)
11: eb ← embed(NSv,b)
12: score← cos_sim(ea, eb)
13: Append(score, sim_scores)
14: end for
15: end for
16: max_score← max(sim_scores)
17: if max_score > δ then
18: Gu,v ← 1

19: end if
20: end for
21: end for

to the original graph construction process. Specifically, in our implementation, two sentences
are considered semantically connected if there exists a strong semantic relationship between
the nouns in the two sentences. We use nouns instead of entities, as suggested in the origi-
nal work, because previous studies have shown that nouns are more effective in capturing
semantic connections between sentences (Elsner and Charniak, 2011; Tien Nguyen and Joty,
2017).

Given a document, we use the Stanza toolkit (Qi et al., 2020) to segment it into sentences
{s1, s2, . . . , sL} and identify all nouns in each sentence. For a pair of sentences su and sv

(u < v), we compute the similarity score for each pair of nouns from the two sentences (one
noun from su and the other from sv) and use the maximum similarity score to measure their
semantic connection. The score between two nouns is computed as the cosine similarity
between their embeddings. If the maximum similarity score exceeds a preset threshold δ,
then the two sentences are considered semantically connected, and we add a directed edge
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Fig. 4.3 An example of subgraphs, in which graph (b) and graph (c) are 3-node subgraphs of
graph (a).

between them (from su to sv). By iterating over all sentence pairs (su, sv) where u < v

within the document, we construct a directed graph in which nodes correspond to sentences
and edges represent semantic links. The construction process is outlined in Algorithm 1.

4.2.2 Subgraph Set

After constructing the graph representation of each document, we represent each sentence
graph as a set of subgraphs. This subgraph set provides an efficient means of comparing
the topological structures of sentence graphs (Shervashidze et al., 2009), enabling structural
comparison across documents.

Formally, a graph g is considered a subgraph of a graph G if there exists a mapping from
the nodes of g to a subset of nodes in G, such that the edge relationships are preserved. When
a subgraph contains k nodes, we refer to it as a k-node subgraph. In our method, we only
consider subgraphs without backward edges. This is because when constructing the sentence
graph, we process the document from left to right and never look back. We include both
weakly connected and disconnected subgraphs (illustrated in Figure 4.3), as we empirically
find they both capture important aspects of document coherence.

Given a sentence graph Gi of a document di, we extract all k-node subgraphs by enumer-
ating every possible combination of k nodes and their corresponding edges in Gi. To reduce
noise and computational complexity, we discard subgraphs in which the inter-sentence dis-
tance between any two nodes exceeds a predefined threshold w, based on the assumption that
distant sentences are less likely to be semantically related. Among the remaining subgraphs,
structurally identical ones that differ only in node IDs are treated as equivalent, as they are
isomorphic in graph theory. We identify such isomorphic subgraphs using the pynauty library
and count the frequency of each unique k-node subgraph. Consequently, a sentence graph is
represented as a k-node subgraph set. Implementation details are provided in Algorithm 2.
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Algorithm 2 Counting Subgraph Frequency
Input: Sentence graph G, subgraph size k, max sentence distance w
Output: subgraph set freq

1: freq ← {} ▷ frequency of each subgraph
2: nodes← G.nodes()
3: i, n← 0, len(nodes)
4: while i < (n− k + 1) do
5: w_n← nodes[i : i+ w] ▷ distance < w
6: k_node_combs← combinations(w_n, k)
7: for k_nodes in k_node_combs do
8: subgraph← extract(G, k_nodes)
9: signature← pynauty(subgraph)

10: Add(freq[signature], 1)
11: end for
12: i← i+ (w − k + 1)
13: end while

4.2.3 Doc-subgraph Graph

A graph is an efficient way to model the correlation between items and has been widely used in
various domains, such as knowledge graphs (Carlson et al., 2010) and social networks (Tang
and Liu, 2009). We build a corpus-level undirected graph (on the training dataset), named
doc-subgraph graph, to explicitly connect structurally similar documents through their
shared subgraphs (shown in Figure 4.2). The graph contains document nodes and subgraph
nodes, and the total number of nodes is the sum of the number of documents (N ) and the
number of k-node subgraph types (M ) mined in Section 4.2.2. We design two types of
edges in the graph: (i) edges between documents and subgraphs, and (ii) edges between
subgraphs. The first type of edge is added when a document’s subgraph set contains a
given subgraph, and its weight is computed as the product of the subgraph’s normalized
frequency within the document and its inverse document frequency in the corpus. The
definition of inverse document frequency follows that of TF-IDF, but in this context, it
reflects how common a subgraph is across all documents’ subgraph sets. The second type
of edge is constructed between two subgraphs that co-occur in the same subgraph set of a
document, with edge weight corresponding to their co-occurrence probability. We model the
co-occurrence information between subgraphs because it has been shown to be useful for
comparing similar structures between graphs (Kondor et al., 2009).

Formally, we denote the documents in a training corpus as D = {d1, d2, . . . , dN} and all
types of k-node subgraphs mined from the corpus as SubG = {g1, g2, ..., gM}. We use Gi

to denote the sentence graph of document di and Fi = {fi1, fi2, ..., fiM} to denote the k-node
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subgraph set mined from Gi, where fij denotes the frequency of subgraph gj in Gi. We
represent nodes in the doc-subgraph graph as V = {v1, ..., vN , vN+1, ..., vN+M}, in which
{v1, ..., vN} are documents D and {vN+1, ..., vN+M} are k-node subgraphs SubG.

For any pair of document node vi (i ≤ N) and subgraph node vN+j (j ≤M), we build
an edge between them if gj appears in the subgraph set of di, i.e., fij > 0, and define the
edge weight as:

Ai,N+j =
fij∑M

j′=1 fij′
· log N

|{d ∈ D : gj ∈ d}|
(4.1)

where the first term is the normalized frequency of subgraph gj in the subgraph set Fi, and
the second term is an inverse document frequency factor, which diminishes the weight of
subgraphs that occur frequently in subgraph sets and increases the weight of subgraphs that
occur rarely. |{d ∈ D : gj ∈ d}| represents the number of documents whose subgraph set
contains subgraph gj . A denotes the adjacency matrix of the doc-subgraph graph with shape
(N +M)× (N +M) and is initialized as a zero matrix. To make the graph symmetrical, we
set the value of AN+j,i to be equal to Ai,N+j .

We also construct edges between any pair of subgraph nodes vN+j and vN+j′ (j ≤
M, j′ ≤M, j ̸= j′) if gj and gj′ co-occur in the subgraph set of a document, i.e., ∃ di ∈ D :

fij > 0, fij′ > 0. The weight is defined as the Pointwise Mutual Information (PMI) between
these two subgraphs, which is a popular way (Ghazvininejad et al., 2016; Yao et al., 2019) to
measure co-occurrence information:

AN+j,N+j′ = log
p(j, j′)

p(j) p(j′)
(4.2)

p(j) =
|d ∈ D : gj ∈ d|

N

p(j, j′) =
|d ∈ D : gj ∈ d, gj′ ∈ d|

N

(4.3)

The PMI can be positive or negative. Following previous work, we clip negative PMI values
at 0 since this strategy works well across many tasks (Kiela and Clark, 2014; Milajevs et al.,
2016; Salle and Villavicencio, 2019).

4.2.4 GCN Encoder

We adopt a GCN (Kipf and Welling, 2017) to encode the built doc-subgraph graph. GCN
is a graph neural network that directly operates on graph-structured data. By integrating
the normalized adjacency matrix, the GCN learns node representations based on both the
connectivity patterns and feature attributes of the graph (Li et al., 2018).
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Formally, given the built graph with (N + M) nodes, we represent it using an (N +

M) × (N + M) adjacency matrix A. Following Kipf and Welling (2017), we first add
self-connections for each node:

Ã = A+ IN+M (4.4)

where IN+M is an identity matrix. A two-layer GCN is then applied to the graph, with the
convolution operation at the l-th layer defined as:

H(l) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l−1)W(l−1)

)
(4.5)

Here, D̃ denotes the degree matrix (i.e., D̃i,i =
∑

j Ãi,j) and W(l−1) is a layer-specific
trainable weight matrix. σ is an activation function, such as ReLU. H(l) denotes the output
of l-th GCN layer; H(0) = X , which is a matrix of node features. We use representations
from the pre-trained model as features of document nodes due to its excellent performance
on document-level tasks (Guo and Nguyen, 2020; Yin et al., 2021; Zhou et al., 2021). For
subgraph nodes, since they have no textual contents, we set their features to zero vectors,
which is a common setting in heterogeneous graphs (Ji et al., 2021). Finally, we feed the
outputs of the two-layer GCN into a softmax classifier:

P = softmax(H(2)) (4.6)

and train the model by minimizing the Cross-Entropy loss over document nodes:

L = −
N∑
i=1

C∑
c=1

Yi,c · log (Pi,c) (4.7)

where Yi is the label of document node vi with a one-hot scheme, C is the number of classes.
While evaluating, for each document in the test corpus, we add it to the doc-subgraph

graph, normalize the adjacency matrix of the updated graph, and predict its label, as shown
in Algorithm 3.

4.3 Experiments

4.3.1 Datasets

We evaluate the proposed method on two benchmark tasks: assessing discourse coherence
(ADC) and automated essay scoring (AES). Detailed descriptions of the datasets used for
each task are provided in Section 2.2.1.
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Algorithm 3 Evaluation
Input: Test corpus TC, Doc-subgraph graph G, Trained GCN
Output: Predictions preds

1: preds← []
2: N ← len(TC)
3: for i← 1 to N do
4: di ← TC[i]
5: G∗ ← Add(di, G) ▷ Add document
6: G∗ ← Norm(G∗) ▷ Norm graph
7: li ← GCN(G∗) ▷ Predict label
8: Append(li, preds)
9: end for

Assessing Discourse Coherence. ADC refers to the task of measuring the coherence
of a given text. The benchmark dataset used for this task is the Grammarly Corpus of
Discourse Coherence (GCDC) dataset (Lai and Tetreault, 2018). GCDC contains texts
from four domains: Yahoo online forum posts, emails from Hillary Clinton’s office, emails
from Enron, and Yelp online business reviews. Each text is annotated by expert raters
with a coherence score in {1, 2, 3}, indicating low, medium, and high levels of coherence,
respectively.
Automated Essay Scoring. AES is the task of assigning scores to essays and has been used
to evaluate coherence models (Burstein et al., 2010; Jeon and Strube, 2020b). Following
previous work (Jeon and Strube, 2020b), we employ the Test of English as a Foreign
Language (TOEFL) dataset (Blanchard et al., 2014) in our experiments. The corpus contains
essays written in response to eight prompts, with each essay annotated with a score level:
low, medium, or high.

4.3.2 Experimental Settings

We implement our method using the PyTorch library. The pre-trained embedding we use to
calculate the similarity between nouns is GloVe (Pennington et al., 2014), and we set the
similarity threshold δ to 0.65. For the subgraph set construction, we use 4-node subgraphs as
basic units for the ADC task and 5-node subgraphs for the AES task, and limit the maximum
sentence distance w to 8 for both tasks. A two-layer GCN is employed in our method, with
ReLU as the activation function. We follow previous work (Jeon and Strube, 2020b) to
use the representation from XLNetbase (Yang et al., 2019) as document node features, and
initialize XLNet using the pre-trained checkpoint from Huggingface.1

1https://huggingface.co/xlnet-base-cased

https://huggingface.co/xlnet-base-cased
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For the GCDC dataset, we perform 10-fold cross-validation on the training dataset
following previous work (Lai and Tetreault, 2018). The dimensionality of the two-layer GCN
is set to 240 for the Clinton and Enron domains, and 360 for the Yahoo and Yelp domains.
We use the Adam optimizer with an initial learning rate of 0.01 for Clinton and Enron, and
0.008 for Yahoo and Yelp. For the TOEFL corpus, we conduct 5-fold cross-validation on the
dataset for each prompt, which is the standard evaluation setting for the AES task (Taghipour
and Ng, 2016). A two-layer GCN with a dimension size of 240 and the Adam optimizer with
an initial learning rate of 0.05 is employed for every prompt dataset. A dropout rate of 0.5
is applied to both tasks. We train the model for 160 epochs on the GCDC dataset and 400
epochs on the TOEFL dataset. All experiments are conducted on a single Tesla P40 GPU
with 24 GB of memory. Training takes approximately 0.5 days for the GCDC dataset and 1.5
days for the TOEFL dataset.
Baselines. To assess the effectiveness of structural similarities between documents for
coherence modeling, we conduct an empirical comparison between our proposed method
and a baseline that does not use such information. We refer to this baseline as XLNet+DNN,
which inputs document representations from XLNet as features, learns document embeddings
with a two-layer deep neural network (DNN), and uses a softmax layer as the classifier. The
only difference between the XLNet+DNN baseline and our method in terms of mathematical
form is whether the regularized adjacency matrix D̃− 1

2 ÃD̃− 1
2 is applied (Li et al., 2018).

We configure this baseline to have the same number of parameters as our method for a fair
comparison.

We also compare our method with the approach of Mesgar and Strube (2016), which
incorporates subgraphs as extra input features. For a fair comparison, we input document
representations from XLNet to this model, equip it with a two-layer DNN and a softmax
layer for feature extraction and classification. Furthermore, we evaluate our model against
existing state-of-the-art methods for each task to validate its effectiveness.

4.3.3 Overall Results

Assessing Discourse Coherence. Table 4.1 presents the experimental results on the GCDC
dataset.2 The first three rows in the upper block of the table report the performance of
embedding-based models (Li and Jurafsky, 2017; Mesgar and Strube, 2018; Lai and Tetreault,
2018), while the following four rows (Mesgar and Strube, 2016; Moon et al., 2019; Jeon and
Strube, 2020a,b) present results from state-of-the-art models that utilize XLNet. The latter

2In Tables 4.1 and 4.2, † indicates that the same XLNet encoder used in our method is employed.
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Model Yahoo Clinton Enron Yelp Avg
Li and Jurafsky (2017) 53.50 61.00 54.40 49.10 54.50
Lai and Tetreault (2018) 54.90 60.20 53.20 54.40 55.70
Mesgar and Strube (2018) 47.30 57.70 50.60 54.60 52.55
Mesgar and Strube (2016)† 61.300.84 64.600.89 55.740.90 56.700.78 59.59
Moon et al. (2019)† 56.800.95 60.650.76 54.100.89 55.850.85 56.85
Jeon and Strube (2020a)† 56.750.83 62.150.88 54.600.97 56.450.97 57.49
Jeon and Strube (2020b)† 57.30 61.70 54.50 56.90 57.60

XLNet+DNN 60.701.03 64.001.36 55.151.14 56.450.94 59.10

Our Method* 63.650.74 66.200.81 57.000.81 58.051.21 61.23

Table 4.1 Mean accuracy (standard deviation) on GCDC. * indicates that our model signifi-
cantly outperforms the XLNet+DNN baseline (p < 0.05).

group, which leverages a pre-trained transformer as the encoder, substantially outperforms the
embedding-based methods, highlighting the effectiveness of contextualized representations.

The performance of the XLNet+DNN baseline and our proposed method is reported in
the last two blocks of Table 4.1. As shown, incorporating structural similarity information
between documents significantly improves coherence assessment, increasing the average
accuracy from 59.10% (XLNet+DNN) to 61.23% with our approach. While using subgraphs
as input features (Mesgar and Strube, 2016) also contributes to performance gains, the
improvement is comparatively limited. We hypothesize that simply concatenating subgraph
features does not effectively capture structural similarities across documents. In contrast, our
method explicitly models these similarities by connecting structurally related documents in
a graph, thereby making more effective use of this information. Notably, even our simple
XLNet+DNN baseline outperforms previous state-of-the-art models built on XLNet. This
may be because the GCDC dataset contains mostly short and informal texts, while previous
SOTA models are designed to handle long and well-formatted documents. In contrast, our
method performs well on the corpus, achieving the best results.
Automated Essay Scoring. As discussed in Section 4.3.1, Automated Essay Scoring (AES)
is a task aimed at evaluating the overall quality of essays and has been widely adopted as
a benchmark for assessing coherence models. To better illustrate the effectiveness of our
approach, we report the performance of both existing coherence models (Mesgar and Strube,
2018; Moon et al., 2019; Jeon and Strube, 2020a,b) and a representative model specifically
designed for the AES task. For the latter, we report the results of Dong et al. (2017), a
state-of-the-art AES method.
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Model
Prompt

1 2 3 4 5 6 7 8 Avg

Dong et al. (2017) 69.30 66.47 65.84 66.38 68.89 64.20 67.11 65.73 66.74

Mesgar and Strube (2016)† 75.310.77 74.900.94 73.420.81 74.351.18 76.100.74 75.420.68 72.480.83 72.310.65 74.29

Moon et al. (2019)† 73.840.81 72.540.87 72.321.27 73.260.67 75.340.72 74.720.78 71.970.71 72.140.93 73.27

Jeon and Strube (2020a)† 75.100.74 73.350.92 74.750.61 74.181.07 76.380.91 74.301.13 73.610.72 73.441.15 74.39

Jeon and Strube (2020b)† 75.60 73.40 75.00 73.50 76.80 75.20 73.50 72.80 74.48

XLNet+DNN 74.700.88 74.460.97 73.070.92 74.091.04 75.450.83 75.210.94 71.170.76 71.950.81 73.84

Our Method* 75.971.14 76.251.07 74.141.18 75.810.71 77.010.94 77.081.14 73.550.80 72.910.66 75.34

Table 4.2 Mean accuracy (standard deviation) on TOEFL. * indicates that our model signifi-
cantly outperforms the XLNet+DNN baseline (p < 0.05).

Table 4.2 presents the results on the TOEFL dataset. Previous coherence models and
the XLNet+DNN baseline significantly outperform the AES model proposed by Dong et al.
(2017). Similar to our findings on the GCDC dataset, using subgraphs as input features
leads to marginal improvements. However, the XLNet+DNN baseline fails to surpass the
performance of existing state-of-the-art coherence models on this dataset. The results are
reasonable because those coherence models are not only based on XLNet but also consider
the characteristics of long documents. Consistent with our observations on the GCDC dataset,
our method, by explicitly modeling structural similarities between documents, outperforms
the XLNet+DNN baseline on the TOEFL dataset and achieves state-of-the-art performance.

4.3.4 Performance Analysis

To understand how structural similarity contributes to coherence modeling, we compare our
model with the XLNet+DNN baseline in terms of predicted label distribution and document
length.
Predicted Label Distribution. Figure 4.4 presents the distribution of predicted essay scores
produced by the XLNet+DNN baseline and our proposed model on the TOEFL P1 dataset.
The predictions from XLNet+DNN exhibit a strong bias toward the medium score category,
with approximately 60% of essays assigned to this group. We speculate this is caused by
the uneven label distribution in the TOEFL P1 dataset, where low-, medium-, and high-
scoring essays comprise 10.3%, 53.8%, and 35.9% of the data, respectively. In contrast, our
model appears less influenced by this uneven distribution, making more low and high score
predictions. We also collect the prediction accuracy of the two models for each essay score.
The prediction accuracy of the XLNet+DNN model for low, medium, and high scores is
35.29%, 83.71%, and 76.47%, respectively, and that of our method is 50.00%, 82.02%, and



4.3 Experiments 69

Low Medium High
Essay Score

0

10

20

30

40

50

60

Di
s 

rib
u 

io
n

Ground  ru h
XLNe +DNN
Our Me hod

Fig. 4.4 Predicted label distribution in TOEFL P1 dataset.

84.87%, respectively. XLNet+DNN mainly predicts medium scores, so this label’s recall
value is high. Compared with the baseline, our method makes relatively accurate predictions
for all essay scores, suggesting that capturing structural similarities between essays helps
mitigate the effects of uneven label distribution and thus focuses on learning coherence
patterns.
Document Length. Figure 4.5 shows the accuracy trends of the baseline and our method on
the TOEFL P1 dataset as essays become longer. The curve of XLNet+DNN generally shows
a downward trend, with accuracy decreasing as the essay’s length increases. The results are
not surprising, since long documents contain more complicated semantics and are therefore
more challenging. Our model performs comparably to the baseline on short documents
(length ≤ 200). However, as essay length increases, our method maintains relatively high
accuracy and even shows a slight improvement in the medium-length range (200 < length ≤
400). These results suggest that structural similarity information can improve the model’s
robustness when the document length increases.

4.3.5 Ablation Study

To assess the contribution of each type of edge in our method, we conduct an ablation study
by selectively removing specific edges from the graph structure. Specifically, we evaluate the
performance of our model after removing the edges between subgraph nodes (denoted ESS)
and then the edges between the document node and subgraph nodes (denoted EDS). Notably,
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Fig. 4.5 Accuracy against essay length.

when all edges are removed, resulting in each document node being completely isolated, our
method degrades to the XLNet+DNN baseline.

Model
GCDC Clinton TOEFL P1

Acc Acc
Our Method 66.20 75.97
- ESS 66.00 75.42
- ESS, EDS 64.00 74.70

Table 4.3 Ablation study for different edges on the GCDC Clinton and TOEFL P1 dataset.

Table 4.3 presents the experimental results on the GCDC Clinton and TOEFL P1 datasets.
It is evident that removing either type of edge negatively impacts model performance. Notably,
the performance degradation is more pronounced when edges between the document node
and subgraph nodes (EDS) are removed, compared to the removal of edges between subgraph
nodes (ESS). This outcome aligns with the intuition that edges between documents and
subgraphs are the key to connecting documents with similar structures, while edges between
subgraphs are considered to further assist it (Kondor et al., 2009).
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Fig. 4.6 The top two most positively correlated subgraphs for each coherence level on the
GCDC Clinton and TOEFL P1. r denotes the correlation coefficient value, and p is the
p_value (p < 0.05 means statistically significant).

4.3.6 Subgraph Analysis

In this section, we conduct a statistical analysis to identify which subgraphs,3 representing
sentence connection patterns, are most strongly associated with each level of coherence.
Specifically, we compute the Pearson correlation coefficient between the frequency of each
subgraph and the corresponding coherence label and test the significance of these correlations.
Figure 4.6 presents the two most highly correlated subgraphs for both the GCDC Clinton
and TOEFL P1 datasets.

Overall, subgraphs that exhibit positive correlations with higher coherence tend to contain
more edges. This observation aligns with prior findings (Guinaudeau and Strube, 2013) that
coherence correlates with the average out-degree of sentence graphs. Weakly connected
subgraphs are more likely to reflect higher coherence than disconnected ones. For instance,
in the GCDC Clinton dataset, the two subgraphs most strongly correlated with low coherence
contain isolated nodes or disconnected components, whereas nodes in subgraphs associated
with high coherence are (weakly) connected. Furthermore, subgraphs with more connections
between adjacent sentences seem to be more correlated with high coherence. For example,

3We show readable text examples of subgraphs in Appendix A.1.
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there is an almost linear subgraph (or contains linear structure) in the high category of both
datasets.

We also find that the subgraph results per coherence level on the GCDC Clinton dataset
differ from those on the TOEFL P1 dataset. This discrepancy may stem from two factors:
first, the datasets comprise texts from different domains, each with distinct writing styles and
structures; and second, the annotation processes involved different annotators who may have
had varying preferences for text organization styles.

4.4 Summary

In this chapter, we explore the effectiveness of leveraging structural similarity between
documents for coherence modeling. We introduce a graph-based approach that connects
documents exhibiting similar structural patterns through shared subgraphs and employs a
graph convolutional network (GCN) to model these connectivity relationships. Experimental
results on two benchmark datasets demonstrate that our method consistently outperforms
strong baselines, achieving state-of-the-art performance on both tasks. Furthermore, we
present a comprehensive comparison and in-depth analysis, demonstrating that structural
similarity information helps alleviate the impact of uneven label distributions in the datasets
and improve the model’s robustness across documents of varying lengths.



Chapter 5

Annotation-inspired Implicit Discourse
Relation Classification

In linguistics, textual coherence can be achieved not only through the continuity of entities but
also via discourse relations. Discourse coherence theories posit relations between text spans
as a key feature of coherent text. Nevertheless, existing research on coherence modeling
has largely overlooked the role of discourse relations. One contributing factor is the limited
accuracy of current discourse parsers, particularly in the classification of implicit discourse
relations. For example, the PDTB parser employed by Lin et al. (2011) achieves an F1-score
of only 25.46 in recognizing top-level implicit discourse relations. Poor parsing results can
undermine the reliability of findings, potentially leading to wrong conclusions regarding the
contribution of discourse relations to coherence modeling.

In this chapter, we aim to enhance the performance of implicit discourse relation clas-
sification, thereby laying a solid foundation for the coherence analysis based on discourse
relations presented in subsequent chapters. We begin by briefly introducing the challenges as-
sociated with classifying implicit discourse relations. Next, we revisit the annotation process
for these relations and describe the key motivation behind our proposed method. We then
provide a detailed description of our approach, which is inspired by the human annotation
process. Finally, we demonstrate empirically that our method substantially outperforms
previous work, achieving an accuracy of 76.23% in top-level relation classification of PDTB
3.0.
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5.1 Why Is Implicit Relation Classification Challenging?

Discourse relations, such as Cause and Contrast, describe the logical relation between two
text spans (Pitler et al., 2009). Discourse connectives (e.g., but, as a result) are words or
phrases that signal the presence of a discourse relation (Pitler and Nenkova, 2009). They can
be explicit, as in Example (5.1), or implicit, as in Example (5.2):

(5.1) [I refused to pay the cobbler the full $95]Arg1 because [he did poor work.]Arg2

(5.2) [They put the treasury secretary back on the board.]Arg1 (Implicit=However) [There
is doubt that the change would accomplish much.]Arg2

When discourse connectives are explicitly present between arguments, identifying the sense of
a discourse relation is relatively straightforward, as there is typically a strong correspondence
between specific connectives and particular relation types. For instance, the connective
because frequently signals a Cause relation. Pitler and Nenkova (2009) demonstrate that using
only discourse connectives as features, a four-way classification task of explicit discourse
relations in PDTB 2.0 can achieve an accuracy of 85.8%. In contrast, classifying implicit
discourse relations is challenging, as there are no connective cues present in the text. In
such cases, it is necessary to rely on the context or semantics of the two arguments to
infer the underlying relation. For instance, in Example (5.2), cues such as "put somebody
back", "doubt", and "change" suggest the presence of a Contrast relation between the
arguments. Existing work has attempted to perform implicit discourse relation classification
directly from arguments. These approaches range from designing linguistically informed
features from arguments (Lin et al., 2009; Pitler et al., 2009) to modeling interaction between
arguments using neural networks (Lei et al., 2017; Guo et al., 2018). Despite their impressive
performance, the absence of explicit discourse connectives makes the prediction extremely
hard and hinders further improvement (Lin et al., 2014; Qin et al., 2017).

Due to the significant performance gap between explicit and implicit discourse relation
classification, some studies have attempted to incorporate implicit connectives into the
training of implicit relation classifiers (i.e., connective-enhanced methods). For example, Qin
et al. (2017) propose an adversarial model to transfer knowledge from a model trained
with access to implicit connectives to one that does not have access to such information.
Similarly, Kishimoto et al. (2020) introduce a multi-task learning framework that incorporates
implicit connective prediction as an auxiliary training objective. However, these approaches
may be suboptimal, as discourse connectives are still absent from the input text.
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Tom was selected to solve the problem. Many people doubt whether he has the ability.

Tom was selected to solve the problem. (However) Many people doubt whether he has the ability.

Step 1: Insert a connective

Step 2: Annotate a relation

Comparison.Contrast

Fig. 5.1 An example illustrating the two-step annotation procedure for implicit discourse
relations in the Penn Discourse Treebank (PDTB) 2.0.

5.2 The Annotation Process of Implicit Relations

According to the annotation manual of the Penn Discourse Treebank 2.0 (Prasad et al., 2006),
annotators follow a two-step procedure to label implicit discourse relations. Given a pair
of arguments, they first insert an appropriate discourse connective between them. Based
on the inserted connective and the content of the arguments, they then annotate a discourse
relation. Prasad et al. (2006) note that the two-step method facilitates the annotation of
implicit discourse relations and improves inter-annotator agreement. Figure 5.1 illustrates an
example of this annotation process.

This annotation strategy raises a natural question: can we design a model that mimics
this process in order to improve the performance of implicit discourse relation classification?

5.3 An Annotation-inspired Model

Inspired by the PDTB annotation process, we explicitly generate discourse connectives for
implicit relation classification. Following previous work (Lin et al., 2009), we use the gold
standard arguments and focus on relation prediction. Figure 5.2 shows the overall architecture
of our proposed model. It consists of two components: (1) generating a discourse connective
between arguments; (2) predicting a discourse relation based on arguments and the generated
connective. In this section, we provide a detailed description of each component, discuss the
challenges encountered during training, and show our solutions.

Formally, let X1 = {x1, ..., xn} and X2 = {xn+1, ..., xn+m} be the two input arguments
(Arg1 and Arg2) of implicit relation classification, where xi denotes the i-th word in Arg1
and xn+j denotes the j-th word in Arg2. We denote the relation between those two arguments
as y. Similar to the setup in existing connective-enhanced methods, each training sample
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Fig. 5.2 An overview of the proposed approach. The left part is the connective generation
module, which generates a connective at the masked position between arguments (Arg1,
Arg2). The right part is the relation classification module, which predicts the relation based
on both arguments and the generated connective. The two modules share the embedding
layer and transformer blocks, and the entire model is trained in an end-to-end manner.

(X1, X2, c, y) also includes an annotated implicit connective c that best expresses the relation.
During evaluation, only arguments (X1, X2) are available to the model.

5.3.1 Connective Generation

Connective generation aims to generate a discourse connective between two arguments
(shown in the left part of Figure 5.2). We achieve this by using bidirectional masked language
models (Devlin et al., 2019), such as RoBERTa. Specifically, we insert a [MASK] token
between two arguments and generate a connective on the masked position.

Given a pair of arguments Arg1 and Arg2, we first concatenate a [CLS] token, argument
Arg1, a [MASK] token, argument Arg2, and a [SEP] token into X̃ = {[CLS] X1 [MASK] X2

[SEP]}. For each token x̃i in X̃ , we convert it into the vector space by adding token, segment,
and position embeddings, thus yielding input embeddings E ∈ R(n+m+3)×d, where d is the
hidden size. Then, we input E into L stacked Transformer blocks, and each Transformer
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layer acts as follows:
G = LN(H l−1 +MHAttn(H l−1))

H l = LN(G+ FFN(G))
(5.1)

where H l denotes the output of the l-th layer and H0 = E; LN is layer normalization;
MHAttn is the multi-head attention mechanism; FFN is a two-layer feed-forward network
with ReLU as hidden activation function. To generate a connective on the masked position,
we feed the hidden state of the [MASK] token after L Transformer layers into a language
model head (LMHead):

pc = LMHead(hL
[MASK]) (5.2)

where pc denotes the probabilities over the whole connective vocabulary. However, a
normal LMHead can only generate one word without the capacity to generate multi-word
connectives, such as "for instance". To overcome this shortcoming, we create several
special tokens in LMHead’s vocabulary to represent those multi-word connectives, and
initialize their embedding with the average embedding of the contained single words. Taking
"for instance" as an example, we create a token [for_instance] and set its embedding as
Average(embed("for"), embed("instance")).

We choose cross-entropy as the loss function for the connective generation module:

LConn = −
N∑
i=0

CN∑
j=0

Cij log(P
c
ij) (5.3)

where Ci is the annotated implicit connective of the i-th sample represented as a one-hot
scheme, CN is total number of connective classes.

5.3.2 Relation Classification

The goal of relation classification is to predict the implicit relation between arguments.
Typically, it is solved using only arguments as input (Zhang et al., 2015; Kishimoto et al.,
2018). In this work, we propose to predict implicit relations based on both input arguments
and the generated connectives (shown in the right part of Figure 5.2).

First, we need to obtain a connective from the connective generation module. A straight-
forward way is to apply the arg max operation on the probabilities output by LMHead,
i.e. Conn = arg max(pc). However, it is a non-differentiable process, which means the
training signal of relation classification cannot be propagated back to adjust the parameters
of the connective generation module. Hence, we adopt the Gumbel-Softmax technique (Jang
et al., 2017) for the task. The Gumbel-Softmax technique has been shown to be an effective
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approximation to the discrete variable (Shi et al., 2021). Therefore, we use

g = − log(− log(ξ)), ξ ∼ U(0, 1)

ci =
exp((log(pci) + gi)/τ)∑
j exp((log(p

c
j) + gj)/τ)

(5.4)

as the approximation of the one-hot vector of the generated connective on the masked position
(denoted as Conn in Figure 5.2), where g is the Gumbel distribution, U is the uniform
distribution, pci is the probability of i-th connective output by the LMHead, τ ∈ (0,∞) is a
temperature parameter.

Once the generated connective, denoted as "Conn", is obtained, we concatenate it with
arguments and construct a new input as X̄ = {[CLS] X1 Conn X2 [SEP]}. This new form
of input is precisely the same as the input in explicit discourse relation classification. We
argue that the key to fully using connectives is to insert them into the input texts instead of
treating them merely as a training objective. Like the connective generation module, we
feed X̄ into an Embedding Layer and L stacked Transformer blocks. Note that we share
the Embedding Layer and Transformers between the connective generation and relation
classification modules. Doing so can not only reduce the total memory for training the model
but also prompt the interaction between the two tasks. Finally, we feed the output of the L-th
Transformer at the [CLS] position to a relation classification layer:

pr = softmax(Wrh
L
[CLS] + br) (5.5)

where Wr and br are learnable parameters. Similarly, we use cross-entropy for training, and
the loss is formulated as:

LRel = −
N∑
i=0

RN∑
j=0

Yij log(P
r
ij) (5.6)

where Yi is the ground truth relation of the i-th sample with a one-hot scheme, RN is the
total number of relations.

5.3.3 Training and Evaluation

To jointly train those two modules, we use a multi-task loss:

L = LConn + LRel (5.7)

A potential issue in this joint training is that poorly generated connectives in the early stages
may mislead the relation classifier. One possible solution is always providing manually
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Algorithm 4 Scheduled Sampling in Training
Input: relation classifier RelCls, arguments X1,X2, annotated connective true_conn, gene-

rated connective gene_conn, training step t, hyperparameter in decay k
Output: logits

1: p = random() ▷ [0.0, 1.0)
2: ϵt =

k
k+exp(t/k)

3: if p < ϵt then
4: logits = RelCls(X1,X2, true_conn)
5: else
6: logits = RelCls(X1,X2, gene_conn)
7: end if

annotated implicit connectives during training to the relation classifier, similar to Teacher
Forcing (Ranzato et al., 2016). However, this might lead to a severe discrepancy between
training and inference since manually annotated connectives are not available during infer-
ence. We address those issues by introducing Scheduled Sampling (Bengio et al., 2015) into
our method. Scheduled Sampling is designed to sample tokens between gold references
and model predictions with a scheduled probability in seq2seq models. We incorporate
Scheduled Sampling in our training by sampling between the manually annotated and the
generated connectives. Specifically, we use the inverse sigmoid decay (Bengio et al., 2015),
in which the probability of sampling manually annotated connectives at the t-th training step
is calculated as follows:

ϵt =
k

k + exp(t/k)
(5.8)

where k ≥ 1 is a hyperparameter to control the convergence speed. In the beginning, training
is similar to Teacher Forcing due to ϵt ≈ 1. As the training step t increases, the relation
classifier gradually uses more generated connectives, and eventually uses only generated
ones (identical to the evaluation setting) when ϵt ≈ 0. We show the sampling process during
training in Algorithm 4.

5.4 Experiments

We carry out a set of experiments to investigate the effectiveness of our method across differ-
ent corpora and dataset splits. In addition, we perform in-depth analyses to demonstrate that
our model learns a better balance between using connectives and arguments than baselines.
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Comparison.Concession Comparison.Contrast
Contingency.Cause Expansion.Conjunction
Expansion.Equivalence Expansion.Instantiation
Expansion.Level-of-detail Temporal.Asynchronous

Table 5.1 Second-level (L2) relations of PCC used in our experiments.

5.4.1 Experimental Settings

Datasets. We evaluate our model on two English corpora, PDTB 2.0 (Prasad et al., 2008)
and PDTB 3.0 (Webber et al., 2019b), as well as a German corpus, the Potsdam Commentary
Corpus (Bourgonje and Stede, 2020). In the PDTB corpora, discourse relations are annotated
using a three-level sense hierarchy. Following prior work (Ji and Eisenstein, 2015; Kim
et al., 2020), we perform both top-level 4-way and second-level 11-way classification for
PDTB 2.0, and top-level 4-way and second-level 14-way classification for PDTB 3.0. For
dataset splitting, we adopt two widely used settings for both PDTB 2.0 and PDTB 3.0. The
first, introduced by Ji and Eisenstein (2015), uses sections 2–20 for training, sections 0–1
for development, and sections 21–22 for testing. The second, known as section-level cross-
validation (Kim et al., 2020), divides 25 sections into 12 folds, with each fold comprising 21
training sections, 2 validation sections, and 2 test sections. Although PDTB contains over
one hundred distinct connectives (e.g., 102 in PDTB 2.0), many of them appear infrequently
(e.g., the connective next occurs only 7 times in PDTB 2.0). To reduce the complexity of
connective generation and ensure sufficient training data for each connective, we limit our
experiments to those that occur at least 100 times in the dataset.

The Potsdam Commentary Corpus (PCC) is a German corpus constructed following
the annotation guideline of PDTB (Bourgonje and Stede, 2020). In this dataset, relations
are also organized in a three-level hierarchy structure. However, this corpus is relatively
small, containing only 905 instances of implicit discourse relations, and exhibits a highly
imbalanced distribution of relation types, particularly at the top level. For example, the
"Expansion" (540) and "Contingency" (246) account for more than 86% of the data among all
top-level relations. Bourgonje (2021) concludes that two of four relations are never predicted
in his classifier due to the highly uneven distribution of the top-level relation data. Therefore,
we only use the second-level relations in our experiments. Furthermore, we use a similar
setup to PDTBs for PCC, considering only relations whose frequency is not too low (over
10 in our setting). The final PCC used in our experiments contains 891 isolated data points
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covering 8 relations (shown in Table 5.1). As for connectives, we consider only those with a
frequency of at least 5, due to the limited size of this corpus.
Implementation Details. We implement our model using the PyTorch library. The bidirec-
tional masked language model employed in this work is RoBERTabase, initialized with the
pre-trained checkpoint provided by Huggingface. For hyperparameter settings, we primarily
follow the configuration used in the original RoBERTa model (Liu et al., 2019). Specifically,
we use the AdamW optimizer with an initial learning rate of 1e-5, a batch size of 16, and
train for a maximum of 10 epochs. Given the variability in training outcomes on the PDTB
datasets, we report the average performance over five random runs for the "Ji" data splits, as
well as for section-level cross-validation (Xval), following the protocol of Kim et al. (2020).
For the PCC corpus, due to its smaller size, we perform 5-fold cross-validation. Model
performance is evaluated using standard metrics: accuracy (Acc, %) and macro-averaged F1
score (F1, %).
Baselines. To demonstrate the effectiveness of our model, we compare it against state-of-the-
art connective-enhanced methods and several variants of our model:

• RoBERTa. This baseline fine-tunes RoBERTabase for implicit discourse relation classi-
fication, using only the argument pair (Arg1, Arg2) as input. No discourse connective
information is used during training.

• RoBERTaConn. A variant of the RoBERTa baseline that incorporates gold (annotated)
connectives during training. Specifically, the input to the model is (Arg1, true_conn, Arg2).
During inference, however, only the arguments (Arg1, Arg2) are provided.

• Adversarial. An adversarial-based connective-enhanced method (Qin et al., 2017), in
which an implicit relation network is driven to learn from another neural network with
access to connectives. We replace its encoder with RoBERTabase for a fair comparison.

• Multi-Task. A multi-task framework for implicit relation classification (Kishimoto et al.,
2020), in which connective prediction is introduced as another training task. We equip it
with the same RoBERTabase as our method.

• Pipeline. A pipeline variant of our method, in which we first train a connective generation
model, then train a relation classifier with arguments and the generated connectives. Note
that these two modules are trained separately.

Furthermore, we compare our model against previously reported state-of-the-art results on
each corpus to provide a comprehensive evaluation. More detailed descriptions of the datasets
and baselines are provided in Appendix B.1.
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Level-1 4-way Level-2 11-way

Ji Xval Ji Xval

Models Acc F1 Acc F1 Acc F1 Acc F1

Liu et al. (2020b) 69.060.43 63.390.56 - - 58.130.67 - - -

Kim et al. (2020) 66.30 56.00 - - 54.730.79 - 52.980.29 -

Wu et al. (2022) 71.18 63.73 - - 60.33 40.49 - -

Zhou et al. (2022) 70.84 64.95 - - 60.54 41.55 - -

Long and Webber (2022) 72.18 69.60 - - 61.69 49.66 - -

RoBERTa 68.610.73 60.890.19 68.661.29 60.491.86 58.840.48 39.310.83 55.401.65 36.512.75

RoBERTaConn 55.340.39 37.472.27 54.282.12 34.712.75 31.972.75 17.102.81 32.122.63 17.912.12

Adversarial 69.430.70 62.440.61 69.131.14 60.631.47 57.631.10 38.812.25 54.431.79 36.792.24

Multi-Task 70.820.72 63.790.82 70.021.40 62.191.84 60.210.94 39.750.70 56.851.13 36.832.42

Pipeline 71.010.89 64.651.03 69.121.03 61.650.89 59.420.54 40.840.39 55.241.72 37.032.83

Our Model 74.590.44 68.640.67 71.331.25 63.841.96 62.750.59 42.360.38 57.981.22 39.053.53

Table 5.2 Results on PDTB 2.0. Subscripts are the standard deviation of the mean perfor-
mance.

5.4.2 Overall Results

PDTB 2.0. Table 5.2 shows the experimental results on PDTB 2.0. RoBERTaConn performs
much worse than the RoBERTa baseline on this corpus, indicating that simply feeding anno-
tated connectives to the model causes a severe discrepancy between training and evaluation.
This finding aligns with the observations of Sporleder and Lascarides (2008b), who showed
that models trained on explicitly marked relations often generalize poorly to implicit relation
identification. Models enhanced with discourse connective information, namely Adversar-
ial, Multi-Task, Pipeline, and Our Model, consistently outperform the RoBERTa baseline.
This demonstrates the effectiveness of leveraging annotated connective information during
training for improving implicit discourse relation classification. However, the performance
improvements of the Adversarial and Multi-Task models over the RoBERTa baseline are
relatively limited and unstable. We attribute this to the fact that these methods incorporate
connectives as auxiliary training objectives rather than as explicit input features, thereby
limiting their contributions to implicit relation classification. The Pipeline variant also yields
limited gains over the RoBERTa baseline. We speculate that this is due to its sequential,
non-joint training procedure, i.e., connective generation followed by relation classification,
which may lead to error propagation from the first stage to the second, as previously discussed
in Qin et al. (2017). Compared to the above connective-enhanced models, our method shows
a greater improvement over the RoBERTa baseline, which suggests that our approach is more
efficient in utilizing connectives. To further show the efficiency of our approach, we compare
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Level-1 4-way Level-2 14-way

Ji Xval Ji Xval

Models Acc F1 Acc F1 Acc F1 Acc F1

Kim et al. (2020) 71.30 64.80 - - - - 60.780.24 -

Xiang et al. (2022) 74.36 69.91 - - - - - -

Long and Webber (2022) 75.31 70.05 - - 64.68 57.62 - -

RoBERTa 73.510.69 67.980.97 73.420.90 67.541.40 63.320.40 52.491.26 62.651.32 53.191.20

RoBERTaConn 51.740.76 41.450.69 53.901.71 39.392.74 33.671.78 25.402.11 36.682.39 28.184.11

Adversarial 73.830.28 68.600.75 73.301.32 67.231.85 63.000.48 54.281.76 62.121.46 53.851.46

Multi-Task 74.970.70 69.670.76 73.830.94 68.041.30 64.520.31 53.120.63 62.811.36 53.071.40

Pipeline 74.540.22 69.190.60 73.700.89 68.311.78 63.980.63 52.950.48 63.071.70 53.431.63

Our Model 76.230.19 71.150.47 75.410.89 70.061.72 65.510.41 54.920.81 64.591.21 55.261.32

Table 5.3 Results on PDTB 3.0.

Level-2 8-way
Xval

Models Acc F1
RoBERTa 35.801.13 15.080.97

RoBERTaConn 30.302.86 12.622.06

Adversarial 35.023.18 18.481.51

Multi-Task 40.481.47 21.222.01

Pipeline 42.973.48 22.661.20

Our Model 44.543.06 26.932.06

Table 5.4 Results on PCC.

it against previous state-of-the-art models on PDTB 2.0 (Liu et al., 2020b; Kim et al., 2020;
Wu et al., 2022; Zhou et al., 2022; Long and Webber, 2022). These results are summarized
in the first block of Table 5.2. Our model outperforms most existing methods, particularly
in terms of accuracy, and achieves the best overall performance on this dataset. The only
exception is the F1 score, where our model lags behind that of Long and Webber (2022),
especially for second-level (Level-2) classification. This discrepancy can be attributed to our
model’s inability to predict certain fine-grained discourse relations (see Section 5.4.4), such
as Comparison.Concession, which negatively impacts the macro-averaged F1 score.
PDTB 3.0 / PCC. Results on PDTB 3.0 and PCC are shown in Tables 5.3 and 5.4. Similar
to the results on the PDTB 2.0, simply feeding connectives for training (RoBERTaConn)
hurts performance, especially on the Level-2 classification of PDTB 3.0. Although the
Adversarial and Multi-Task models outperform the RoBERTa baseline, the gains are relatively
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Fig. 5.3 Level-1 classification results on PDTB 2.0 (Ji split) when annotated connectives are
fed to connective-enhanced models. "Increase" denotes performance gain compared to the
model with default settings ("Base").

modest. Interestingly, despite being affected by cascading errors, the Pipeline variant achieves
comparable or even superior results to Adversarial and Multi-Task on both datasets. This
suggests the advantage of using connectives as explicit input features, rather than merely as
auxiliary training targets, particularly in the case of the PCC corpus. Consistent with the
results on PDTB 2.0, our method outperforms Adversarial, Multi-task, and Pipeline on both
datasets, demonstrating the superiority of inputting connectives to the relation classifier in an
end-to-end manner. It also shows that the method generalizes well across different languages.
We further compare our method with three existing SOTA models on PDTB 3.0, Kim et al.
(2020), Xiang et al. (2022), and Long and Webber (2022). Results in Table 5.3 show that our
approach performs better than these three models.

5.4.3 Performance Analysis

To better understand the effectiveness of our model, we conduct a series of analyses aimed at
addressing the following two questions: (1) Does it really benefit from discourse connectives?
(2) Can it still make correct predictions when connectives are missing? Additionally, we
examine the performance of different models on relation classification when connectives are
correctly and incorrectly generated (or predicted).
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Fig. 5.4 Level-1 classification results on PDTB 2.0 (Ji split). "Remove" denotes the generated
connectives are removed from the original model ("Base").

We perform the first analysis by replacing the generated connectives in our model with
manually annotated ones,1 and compare the model’s performance before and after this setup.
Intuitively, if our model benefits from discourse connectives, both accuracy and macro-
averaged F1 score should improve under this setup. For comparison, we apply the same
procedure to other connective-enhanced models. We conduct experiments on the Level-1
classification task of PDTB 2.0 using the Ji split, with accuracy results presented in Figure 5.3.
As expected, our model shows a substantial performance improvement when provided with
gold connectives, confirming that it effectively learns to utilize them for implicit relation
classification. While other connective-enhanced models also benefit from gold connectives,
the degree of improvement varies. Notably, models that incorporate connectives as part of the
input during training (RoBERTaConn, Pipeline, and Our Model) exhibit greater performance
gains and higher upper bounds than those that treat connectives solely as auxiliary training
objectives (Adversarial and Multi-Task). These findings support our hypothesis that directly
incorporating connectives into the model’s input is a more effective strategy for enabling the
model to utilize them. However, this approach introduces a potential drawback: models may
become overly dependent on connectives. For example, RoBERTaConn achieves 96.69%
accuracy when gold connectives are available, but its performance drops sharply to 55.34%
in their absence, highlighting its over-reliance on connective information.

To examine whether our model suffers from over-reliance on discourse connectives,
we perform the second analysis by removing the generated connectives in our model and

1In both PDTB 2.0 and 3.0, each instance includes an annotated implicit connective, enabling this analysis.
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Models Correct Group Incorrect Group
BaseMulti-Task 83.67 59.82
Multi-Task 90.60(+6.93) 59.88(+0.06)
BasePipeline 78.87 61.46
Pipeline 89.29(+10.4) 59.81(-1.64)
BaseOur Model 80.28 60.56
Our Model 94.04(+13.8) 62.22(+1.66)

Table 5.5 Level-1 classification results on PDTB 2.0 (Ji split) when connectives are correctly
and incorrectly generated (or predicted). "+" and "-" denote the increase and decrease
compared to the RoBERTa baseline (Base).

observing changes in its performance. For comparison, we apply the same setting to the
Pipeline model. Figure 5.4 presents the Level-1 classification results on PDTB 2.0 (Ji
split). Although both models experience a drop in performance, they still outperform
RoBERTaConn. This can be attributed to the fact that both models were trained using
generated (rather than manually annotated) connectives, which mitigates their dependence on
connective information. Notably, our model shows a relatively small performance decrease
(from 74.59% to 72.27%), while Pipeline exhibits a more substantial decline (from 71.01%
to 58.15%). We hypothesize that this difference arises from the end-to-end nature of our
training framework, which enables the model to learn a better balance between argument
content and connective cues for relation classification. In contrast, the Pipeline model, with
its separately trained connective generation and relation classification components, fails to
achieve this balance effectively.

Finally, Table 5.5 presents the performance of the relation classifiers in Multi-Task,
Pipeline, and Our Model2 on PDTB 2.0, evaluated under two conditions: when the connec-
tives are correctly and incorrectly generated or predicted. It is important to note that the
results in the "correct" and "incorrect" groups are not directly comparable across models,
as each model produces different connective predictions. To address this, we report the
performance gain of each model relative to the RoBERTa baseline and compare them from
this perspective. When connectives are correctly generated, both Pipeline and our method
show an improvement of over 10% in accuracy compared to the RoBERTa baseline, whereas
Multi-Task achieves a smaller gain of 6.9%. This suggests that Pipeline and our method make
more effective use of connective information than Multi-Task. Conversely, when connectives
are incorrectly generated, the Pipeline model performs 1.64% worse than the baseline. By

2This analysis excludes models such as Adversarial, which do not generate or predict connectives.
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Labels RoBERTa Adversarial Multi-Task Pipeline Our Model
Temporal.Asynchronous 54.62 55.01 58.37 55.69 59.48
Temporal.Synchrony 00.00 06.03 00.00 04.00 00.00
Contingency.Cause 60.03 59.00 64.24 65.40 66.35
Contingency.Pragmatic cause 00.00 05.00 00.00 00.00 00.00
Comparison.Contrast 60.44 58.20 61.73 60.78 65.75
Comparison.Concession 00.00 01.14 00.00 01.82 00.00
Expansion.Conjunction 56.03 53.26 58.94 54.79 57.04
Expansion.Instantiation 74.07 72.85 74.12 70.76 73.87
Expansion.Restatement 57.87 56.94 59.68 57.75 60.94
Expansion.Alternative 49.06 44.76 54.82 43.96 51.13
Expansion.List 18.07 11.68 11.43 29.96 25.47

Table 5.6 F1 results for each second-level relation of PDTB 2.0.

contrast, both Multi-Task and our method maintain performance levels comparable to the
baseline, showing good robustness when exposed to incorrect connectives. Although our
method consistently outperforms the baseline in both scenarios, its performance drops con-
siderably in the incorrect connective group compared to the correct one. This indicates that
its major performance bottleneck originates from the incorrectly generated connectives. A
possible solution to this bottleneck is to first pre-train our model on a large explicit connec-
tives corpus, like Sileo et al. (2019). By doing so, the connective generation module may
generate more correct connectives, thus improving classification performance, which we
leave for future work.

5.4.4 Relation Analysis

We examine which discourse relations benefit most from the joint training of connective
generation and relation classification, and compare the results with those of other baselines.
Table 5.6 presents the F1-scores for each second-level sense in PDTB 2.0 (Ji split) across
different models. Generally, incorporating connectives improves the prediction performance
for most relation types, especially in the Multi-Task, Pipeline, and Our Model. For instance,
these three models outperform the RoBERTa baseline by more than 4% in F1-score on the
Contingency.Cause relation.

However, for certain relations such as Expansion.Instantiation, the connective-enhanced
models exhibit mixed results, with some showing improvement while others experience
declines. Notably, all models fail to accurately predict relations such as Temporal.Synchrony,
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PDTB 2.0 PDTB 3.0
Models Acc F1 Acc F1
Our Model 74.59 68.64 76.23 71.15
- SS 73.42 66.68 75.87 70.68
- SS, LConn 70.63 63.43 74.58 69.17
RoBERTa 68.61 60.89 73.51 67.98

Table 5.7 Ablation study for Scheduled Sampling and connective generation loss LConn.

Contingency.Pragmatic cause, and Comparison.Concession, despite being trained with
manually annotated connectives. We hypothesize that this limitation stems from the small
number of training instances for these relations, causing models to predict more frequent
labels. A feasible solution to this issue is Contrastive Learning (Chen et al., 2020), which
has been shown to improve the predictive performance of these three relations (Long and
Webber, 2022). We leave the integration of Contrastive Learning with our method to future
work.

5.4.5 Ablation Study

We conduct ablation studies to assess the effectiveness of two key components in our
framework: Scheduled Sampling (SS) and the connective generation loss, LConn. To this
end, we test the performance of our method by first removing the Scheduled Sampling and
then omitting the connective generation loss LConn. It is important to note that removing
LConn means that our whole model is trained with only gradients from LRel.

Table 5.7 presents the Level-1 classification results on PDTB 2.0 and PDTB 3.0 (Ji split).
The results show that removing either Scheduled Sampling or the connective generation
loss LConn leads to a noticeable drop in performance, highlighting the importance of both
components for achieving strong results. Interestingly, even when the model is trained solely
with the relation classification loss LRel, it still significantly outperforms the RoBERTa
baseline. This suggests that the performance improvements of our full model stem not
only from supervision provided by manually annotated connectives but also from the well-
designed structure inspired by PDTB’s annotation (i.e., the connective generation module
and relation prediction module).
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5.5 Summary

In this chapter, we propose a novel connective-enhanced method for implicit discourse
relation classification, inspired by the annotation framework of the Penn Discourse Treebank
(PDTB). We introduce several key techniques to enable effective end-to-end training of our
model. Experimental results on three benchmark datasets demonstrate that our approach
consistently outperforms a range of baseline models. Further analyses of model behavior
reveal that our approach can learn a good balance between using arguments and connectives
for implicit discourse relation prediction.





Chapter 6

Explicit to Implicit Discourse Relation
Classification

In the previous chapter, we mentioned that discourse relations can either be signaled explicitly
with connectives, as in Example (6.1), or expressed implicitly, as in Example (6.2):

(6.1) [The city had expected to pay about 11 million yen]Arg1 but [Fujitsu essentially offered
to do it for free.]Arg2 — Contingency.Cause

(6.2) [He has not changed, but those around him have.]Arg1 [Many of his view on the protec-
tion of wilderness areas are now embraced by mainstream.]Arg2 — Contingency.Cause

Implicit discourse relations present a significant challenge not only for classification but
also for annotation, as annotators must infer the relation based solely on the content of the
arguments. In contrast, explicit discourse relations are relatively easier to annotate due to
the strong association between discourse connectives and relation types. This distinction
has prompted many early studies (Marcu and Echihabi, 2002; Lapata and Lascarides, 2004;
Sporleder and Lascarides, 2005; Saito et al., 2006) to use explicit examples to classify
implicit relations (dubbed explicit to implicit relation recognition). The main idea is to
construct an implicit-like corpus by removing connectives from explicit instances and use it
to train a classifier for implicit relation recognition. While this method attains good results on
test sets constructed in the same manner, it is reported by Sporleder and Lascarides (2008b)
to perform poorly in real implicit scenarios. They claim this is caused by the linguistic
dissimilarities between explicit and implicit examples, but provide no corpus-level empirical
evidence. More recent works (Huang and Li, 2019; Kurfalı and Östling, 2021) focus on
enhancing transfer performance from explicit to implicit discourse relations. However, little
attention has been paid to the underlying causes of these poor results.
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Relation Classifier

Explicit Corpus

Implicit-like Corpus

Implicit Classifier

[People love Heidelberg]Arg1 [because the city is beautiful.]Arg2

Cause

[People love Heidelberg]Arg1 [the city is beautiful.]Arg2

CauseRemove ConnectiveStep 1

Step 2

Fig. 6.1 An illustration of the process for training an implicit discourse relation classifier
using explicit relation examples.

In this chapter, we show that one cause of the poor transfer performance in explicit to
implicit discourse relation classification is the presence of a label shift in the construction of
the implicit-like corpus. We begin by formally defining the task, introducing the benchmark
dataset, and highlighting the degraded performance of implicit discourse relation classifi-
cation under this transfer setting compared to the standard setting, where models are both
trained and evaluated on real implicit examples. Next, we define the concept of label shift
and provide both manual analysis and empirical evidence to demonstrate its presence. We
then analyze why label shift happens in the implicit-like corpus by considering factors such as
the syntactic role played by connectives, the ambiguity of connectives, and more. Finally, we
propose and evaluate two strategies, one data-centric and the other model-centric, to mitigate
the impact of label shift, and present experimental results that confirm the effectiveness of
our proposed solutions.

6.1 Background

6.1.1 Task

The task of explicit to implicit relation classification aims to build an implicit classifier based
on explicit examples. The traditional setup for this task is to construct an implicit-like corpus
by excluding connectives from explicit examples, and then train a classifier on this corpus
with the original explicit relations as ground-truth labels, as illustrated in Figure 6.1.
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Fig. 6.3 Performance comparison of implicit discourse relation classification between the
classifier trained on explicit examples (Exp2Imp) and one trained on real implicit examples
(Imp2Imp), using the PDTB 2.0 dataset.

6.1.2 Datasets

The most commonly used datasets for explicit to implicit discourse relation classification
are the Penn Discourse Treebank (PDTB) versions 2.0 and 3.0 (Ji et al., 2015; Huang and
Li, 2019; Kurfalı and Östling, 2021). These corpora (Prasad et al., 2008; Webber et al.,
2019b) are annotated using a lexicalized framework that categorizes discourse relations into
several types, including the two central to this study: explicit and implicit relations. This
clear grouping makes the PDTBs particularly well-suited for explicit to implicit relation
classification, as it eliminates the need to manually distinguish between explicit and implicit
instances (Huang and Li, 2019; Kurfalı and Östling, 2021). Furthermore, both versions
provide manually annotated connectives for implicit examples, which is especially valuable
for our comparative analysis between explicit and implicit discourse relations.
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6.1.3 The Performance Gap

Although explicit to implicit relation classification offers a cost-effective and seemingly
ideal approach for training implicit discourse relation classifiers, its practical performance
is poor (Ji et al., 2015). To examine this issue, we train two classifiers with identical
architectures, each consisting of a RoBERTa encoder followed by a linear classification
layer (see Figure 6.2). One classifier is trained on the implicit-like corpus constructed from
explicit instances in PDTB 2.0, while the other is trained directly on real implicit instances in
PDTB 2.0. We train the two models following most of the default settings in RoBERTa. The
optimizer used in the experiments is AdamW, with an initial learning rate of 1e-5, a batch
size of 16, and a maximum of 10 training epochs. The maximum input sequence length is set
to 256 tokens.

Figure 6.3 presents their performance on the PDTB 2.0 test set of implicit discourse
relations. As shown, there is a substantial performance gap between the two models: the
classifier trained on real implicit data outperforms the one trained on explicit-derived data by
approximately 20 macro-F1 points.

In this chapter, we aim to answer the question: why does a classifier trained on explicit
examples (with connectives removed) perform poorly in a real implicit scenario? We identify
that one key cause of this failure is the occurrence of label shift induced by the removal
of connectives from explicit examples. This label shift can lead the classifier to learn
inconsistent and unreliable patterns, resulting in poor performance when classifying real
implicit discourse relations.

6.2 Label Shift in Discourse Relations

6.2.1 What Is Label Shift?

We consider label shift as the difference in relations observed between the same example
with and without a connective:

Rel(Arg1,Conn,Arg2) ̸= Rel(Arg1,Arg2) (6.1)

where Arg1 and Arg2 are the arguments of the example, and Conn denotes the connective.
Figure 6.4 shows examples of suffering and not suffering from label shift. Example (6.3)
is originally annotated as an Expansion.Conjunction relation due to the presence of the
connective and. However, once the connective and is removed, the example tends to convey
a Comparison.Contrast relation, as suggested by the contrasting lexical cues (e.g., "would
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Label Shift

[We backed this bill because we thought it would help 
Skinner]Arg1 [now we're out there dangling in the wind.]Arg2

[We backed this bill because we thought it would help 
Skinner]Arg1 and [now we're out there dangling in the wind.]Arg2

Yes

No

[The procedure causes great uncertainty]Arg1 [an investor can't 
be sure of his or her individual liability.]Arg2

[The procedure causes great uncertainty]Arg1 because [an 
investor can't be sure of his or her individual liability.]Arg2

Expansion.Conjunction

Comparison.Contrast

Contingency.Cause

Contingency.Cause

Text Relation

(6.3)

ID

(6.4)

Fig. 6.4 Examples of suffering and not suffering from label shift.

help" vs. "dangling in the wind"). In contrast, Example (6.4) maintains the same relation,
Contingency.Cause, even after the connective because is removed. This is because the first
argument describes a result ("uncertain"), while the second provides a reason ("unsure of
liability"), thereby preserving the causal semantics.

6.2.2 Do Explicit Examples Suffer from Label Shift?

We manually analyze 100 explicit instances in PDTB 2.0 to ascertain the existence of label
shift. Specifically, we randomly sample 100 explicit examples and remove the connectives
from each instance. Two student annotators are then trained1 to label discourse relations
according to the PDTB framework, using raw text without connectives. Upon completion of
the training, the annotators independently annotate the 100 connective-removed examples.
The inter-annotator agreement, measured using Cohen’s Kappa,2 is 0.7346. We find that 37
of these 100 examples are annotated with relations different from the original annotation,
suggesting the presence of label shift. We categorize the observed label shift phenomena into
three distinct cases:

(i) Removing connectives leads to different relations. For example, in Example (6.5),
the connective then signals a Temporal relation, while the arguments express a Contin-
gency relation because the first argument describes a result ("stock plummet") and the
second points out the reason, a suspension of dividend pay.

1See Appendix C.1 for more details about the annotation.
2We use the cohen_kappa_score function from the scikit-learn library.
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[There’s nothing in the least contradictory in all this]Arg1 and [it would be nice to think that
Washington could tolerate a reasonably sophisticated, complex view.]Arg2

Expansion.Conjunction

(6.7)

[Mr. Stein and other officers decided to sell that business]Arg1 after [Japanese competitors
grabbed a dominant share of the market.]Arg2

Temporal.Asynchronous

(6.6)

[Crossland Savings Bank's stock plummeted.]Arg1 Then [management recommended a
suspension of dividend payments on both its common and preferred stock.]Arg2

Temporal.Asynchronous

(6.5)

Fig. 6.5 Different cases suffering from label shift.

(ii) Deleting connectives causes ambiguity in relations. This occurs when the arguments
contain clues to multiple relations without clearly favoring one. In Example (6.6) in
Figure 6.5, the arguments can express either Contingency or Temporal relations, since
inserting because or after between them is acceptable.

(iii) No relation is observed after eliminating the connective. This happens when there
are no clues indicating discourse relations, or when the arguments are too short to
provide sufficient context. For example, in Example (6.7) in Figure 6.5, there is low
lexical cohesion between the two arguments, requiring extensive world knowledge to
understand that "Washington" refers to the U.S. government and that "politics" can be
"complex" or "contradictory," making it hard to infer any relation.

6.2.3 Does Label Shift Exist at the Corpus Level?

We devise an empirical approach to show that label shift exists at the corpus level. The
key idea comes from our definition of label shift, where an example is considered to suffer
from label shift if its expressed relations are different when containing or not containing a
connective. We mimic this judgment process but replace relations inferred by humans with
those predicted by relation classifiers.

Given a corpus containing connectives, either an explicit corpus or an implicit corpus with
implicit connectives, we first train a discourse relation classifier using arguments–label pairs
from the corpus.3 We then evaluate the classifier on the same corpus under two conditions:

3We did not use examples with connectives to train classifiers because models trained in this way rely
heavily on connectives for prediction (Pitler and Nenkova, 2009). By contrast, classifiers trained on arguments
without connectives make predictions grounded in the semantics of examples.
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Algorithm 5 Measuring Label Shift

Input: Relation Classifier M, Corpus with Connectives {(Arg1i,Conni,Arg2i,Reli)}|Ni=1

Output: diff_num, scores

1: Train(M, {(Arg1i,Arg2i,Reli)}|Ni=1)
2: diff_num = 0
3: scores = []
4: for i = 1, . . . ,N do
5: # without and with connectives
6: p1 = M.pred(Arg1i,Arg2i)
7: p2 = M.pred(Arg1i,Conni,Arg2i)
8: v1 = M.get_rep(Arg1i,Arg2i)
9: v2 = M.get_rep(Arg1i,Conni,Arg2i)

10: if p1 ̸= p2 then
11: diff_num = diff_num + 1
12: end if
13: value = cosine_similarity(v1,v2)
14: Append(scores, value)
15: end for
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PDTB3 Imp

Same Different

Fig. 6.6 Percentage of examples in Explicit and Implicit corpora that receive the same and
different predictions when the input contains and not contains a connective.

with and without connectives (i.e., explicit examples vs. explicit examples with connectives
removed, or implicit examples with implicit connectives vs. implicit examples). If there is a
substantial difference in the classifier’s predictions between the two conditions, quantified
by diff_num defined in Algorithm 5, this indicates that connectives can substantially affect
the semantics of examples throughout the corpus. That is, label shift exists across the entire
dataset.

We perform analyses on both the explicit and implicit portions of the PDTB 2.0 and
PDTB 3.0 corpora, providing a comparison between these two types of examples. Figure 6.6
shows the assessment results on PDTB 2.0 and 3.0 (on top-level relations). In explicit
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(a) Explicit w/o Connectives (b) Explicit w/ Connectives

(c) Implicit w/o Connectives (d) Implicit w/ Connectives

Comparison Contingency Expansion Temporal

Fig. 6.7 Visualization of example representations in PDTB 2.0 with and without connectives.

corpora, connectives are more likely to influence the predictions of relation classifiers, with
approximately 30% of the examples being predicted as different relations when containing
and not containing a connective. By contrast, only about 5% of instances in the implicit
corpora are predicted in different relations under the same settings.

We further visualize the representations of examples with and without a connective (see
v1 and v2 in Algorithm 5). Figure 6.7 shows the visualized results on the training set of
PDTB 2.0 (top-level relation) using t-SNE (van der Maaten and Hinton, 2008). Without
connectives (see Fig. 6.7a), explicit examples are well separated since the classifier is trained
on arguments-label pairs. When inserting explicit connectives into inputs (see Fig 6.7b), the
representations undergo significant changes, intertwining examples of different relations.
Compared to the explicit cases, the representations of implicit instances generally remain
unchanged after incorporating connectives (see Fig. 6.7c and 6.7d), suggesting that relations
expressed by implicit arguments are barely affected by connectives.

The above results indicate that, after removing connectives, many examples in the explicit
corpus express relations that differ from the original annotation. Consequently, classifiers
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trained on explicit examples (with connectives removed) learn a chaotic pattern for relation
prediction, resulting in poor performance in real implicit scenarios.

6.2.4 Can Label Shift Be Measured?

Different explicit instances exhibit varying degrees of label shift. For example, case (i) in
Section 6.2.2 is more severe than case (ii), as deleting the connective causes the former to
convey a completely different relation (Temporal→ Contingency) while rendering the latter
ambiguous (but the original relation holds). We design a label shift metric to quantify the
degree of label shift occurring in each instance of an explicit corpus. We show in Sections
6.2.5 and 6.3.1 that this metric can be used to analyze factors causing label shift and to filter
out noisy examples that suffer from label shift, respectively.

Given an explicit corpus with annotated relations {(Arg1i,Conni,Arg2i,Reli)}|Ni=1, we
first train a classifier using arguments–relation pairs. For each instance in the corpus, we
then extract two types of contextualized representations, with and without the connective,
using the encoder of the trained classifier. We compute the cosine similarity between these
two representations (corresponding to the variable value in Algorithm 5). A cosine similarity
close to 1 indicates that the semantic representation of the instance remains largely unchanged
with or without the connective, suggesting that the connective is likely removable. Conversely,
a low similarity implies that the connective contributes significantly to the meaning of the
instance, and its removal may cause a shift in the expressed relation. We apply this label
shift metric to the explicit portions of PDTB 2.0 and PDTB 3.0. Our results show that
approximately 33% of explicit examples in PDTB 2.0 and 29.6% in PDTB 3.0 exhibit a
cosine similarity below 0.5, indicating that a substantial proportion of connectives in these
corpora are not removable.

6.2.5 Why Does Label Shift Happen?

While we have demonstrated that label shift occurs during the construction of the implicit-like
corpus, we know little about why removing a connective has such a significant impact. We
investigate four factors that can contribute to label shift:

(i) Is the removed connective a conjunction or an adverb (Prasad et al., 2006)? Conjunc-
tions join clauses of equal grammatical rank in a sentence or join a subordinate clause
to a main clause (Blühdorn, 2017). Removing conjunctions disrupts the syntactic
structure of the text and may make the expressed relations unclear.
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PDTB 2.0 PDTB 3.0
coefficient p-value coefficient p-value

Conjunction vs. Adverb -0.3946 <0.001 -0.3226 <0.001
Ambiguity -0.0981 <0.001 -0.0412 <0.001
Intra- vs. Inter-Sentential -0.1947 <0.001 -0.1898 <0.001
Input length 0.1416 <0.001 0.1944 <0.001

Table 6.1 Pearson correlation between each individual factor and the label shift metric.

(ii) Is the removed connective ambiguous (Webber et al., 2019a)? Some connectives, such
as since, are ambiguous and signal multiple relations, which may cause the annotated
relations of explicit examples to differ from the relations inferred from their arguments.

(iii) Is the status of the arguments intra- or inter-sentential (Prasad et al., 2018)? The infor-
mation carried by intra-sentential arguments is incomplete (only parts of a sentence)
and may not indicate a clear relation without the help of connectives.

(iv) What is the length of the input arguments? Sufficient information is key to inferring
relations from text. If the arguments are very short, it will be hard to infer a relation in
the absence of connectives.

We extract these four features for each example in the explicit corpus, where the first three are
represented as Boolean values (i.e., 0 or 1) and the last one is represented as a floating-point
value normalized between 0 and 1.

We calculate the Pearson correlation between each factor and the label shift metric
calculated in Section 6.2.4, and show the results on PDTB 2.0 and 3.0 (top-level relations)
in Table 6.1. All factors are significantly correlated with the label shift metric (p-value <
0.001), but with different correlation coefficients. The syntactic role played by connectives
has the largest absolute correlation value, indicating that whether the removed connective is a
conjunction or an adverb has the most impact on the occurrence of label shift. It is followed
by the status and length of arguments. Surprisingly, the ambiguity of connectives has the
lowest correlation coefficient and shows a clear gap with the other factors. This suggests that
the ambiguity of connectives is not the primary cause of label shift in PDTB 2.0 and PDTB
3.0.

The results above show only the correlation of standalone factors with label shift, without
considering all factors simultaneously. Inspired by Liu et al. (2023b), we train an XGBoost
model (Chen and Guestrin, 2016) to determine the importance of each factor when using
the four features to predict the calculated label shift metric. XGBoost is a gradient boosting
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(a) PDTB 2.0 (b) PDTB 3.0

Fig. 6.8 Feature Importance of the XGBoost Model in predicting the label shift metric on
PDTB 2.0 and 3.0.

framework, where the importance of a feature can be measured by the performance gain it
provides (Shang et al., 2019). The framework also harnesses arbitrary interactions between
features and is highly regularized to prevent overfitting, making it suitable to analyze a set of
features.

We conduct experiments on PDTB 2.0 and 3.0, and show the results in Figure 6.8.
Consistent with the Pearson correlation analysis, the syntactic role played by connectives is
found to be overwhelmingly important in predicting the label shift metric, with an importance
score exceeding 0.8. In contrast, the status and length of arguments are less important when
all factors are considered together. This may be because the three factors, the syntactic role
played by the connective, the state of the arguments, and the length of the arguments, are not
independent of each other,4 so the latter two factors provide limited additional information
beyond the first feature in predicting label shift. The last feature, the ambiguity of the
connective, remains useful but is less important than the other three factors.

6.3 Strategies to Alleviate Label Shift

In this section, we introduce two strategies to alleviate the impact of label shift in the task of
explicit to implicit relation recognition.

4For example, 62.87% of explicit examples (in PDTB 2.0) whose connectives are conjunctions, contain
intra-sentential arguments. And inter-sentential arguments are usually longer and contain more words than their
intra-sentential counterpart.
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Algorithm 6 Filtering Noisy Examples

Input: Examples with scores {(Ei,Reli, si)}|Ni=1

Output: Filtered corpus C

1: groups = {}
2: threshold = {}
3: C = []
4: for i = 1, . . . ,N do
5: if Reli in groups then
6: Append(groups[Reli], si)
7: else
8: groups[Reli] = [si]
9: end if

10: end for
11:
12: for Rel in groups do
13: threshold[Rel] = Avg(groups[Rel])
14: end for
15:
16: for i = 1, . . . ,N do
17: if si ≥ threshold[Reli] then
18: Append(C,Ei)
19: end if
20: end for

6.3.1 Filter Out Noisy Examples

Our first strategy is straightforward: filtering out examples that may have suffered from
label shift. For each instance in the explicit corpus, we calculate the cosine value of each
example following the approach in Section 6.2.4, and remove those with low values. Instead
of applying a fixed filtering threshold to all relation types, we compute a different threshold
for each relation type. This is motivated by the observation that data with different relations
suffer from varying degrees of label shift. To implement this, we group examples according to
their discourse relation, compute the average cosine value within each group, and discard any
instance whose cosine value falls below the corresponding group average (see Algorithm 6).

6.3.2 Joint Learning with Connectives

We further investigate a joint learning framework to alleviate label shift in cases where
the filtering result is imperfect. The main idea is that label shift is caused by removing
connectives; therefore, if we attempt to recover the discarded connective during training,
examples may be more consistent with the original relation labels.



6.4 Experiments 103

RoBERTa

<s> Arg1 <mask> Arg2 </s>

ℎ!"#

Relation Classification Layer

Connective Classification Layer

ℎ!$%"&#

RoBERTa

<s> Arg1 pred_conn Arg2 </s>

Fig. 6.9 The architecture of the joint learning model.

Given an explicit instance (Arg1,Conn,Arg2,Rel), we replace the connective with a
<mask> token inserted between the two arguments. A connective classifier is then trained to
predict a suitable connective pred_conn for the masked position. Simultaneously, we train
a relation classifier to predict a relation based on both input arguments and the predicted
connective, i.e., (Arg1, pred_conn,Arg2). By introducing the predicted connective, we
hypothesize that the input becomes more semantically aligned with the original example,
thereby mitigating the effects of label shift. The architecture of the proposed joint learning
model is illustrated in Figure 6.9.

6.4 Experiments

We conduct experiments to demonstrate that our method not only improves the performance of
explicit to implicit relation recognition on both PDTB 2.0 and PDTB 3.0, but also generalizes
well to a corpus annotated with RST relations.
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6.4.1 Baselines and Upper Bounds

We evaluate our proposed method on both PDTB 2.0 (Prasad et al., 2008) and PDTB
3.0 (Webber et al., 2019b). For each experiment, we report the average performance over five
runs with different random seeds. Our method is compared against existing state-of-the-art
approaches for explicit to implicit relation recognition. In addition, we include several strong
baselines and upper bounds to contextualize the results:

• Common: A naive baseline that always predicts the most frequent label in the training set.

• E2I-Entire: A standard explicit to implicit setting where RoBERTa is fine-tuned on the
entire set of explicit training examples and evaluated on implicit examples.

• E2I-Reduced: A variant of E2I-Entire, where the explicit training set is downsampled to
match the size of our filtered corpus.

• I2I-Entire: An upper-bound setting in which RoBERTa is fine-tuned directly on the entire
set of implicit training examples.

• I2I-Reduced: A size-controlled version of I2I-Entire, using the same number of training
examples as in our filtered corpus.

We follow previous work (Zhou et al., 2022; Long and Webber, 2022) to use RoBERTabase
as the encoder to train E2I-Entire, E2I-Reduced, I2I-Entire, and I2I-Reduced. The optimizer
used in the experiments is AdamW, with an initial learning rate of 1e-5, a batch size of 16,
and a maximum of 10 training epochs. The maximum input sequence length is set to 256
tokens.

For our approach, we use the average cosine similarity score within each relation group as
the threshold for data filtering. This works well for PDTB 2.0 and PDTB 3.0, but we made a
slight modification to the settings for the GUM corpus. Specifically, we filter out an instance
(in the GUM corpus) only if its cosine similarity score is lower than the average value of
the group it belongs to, and its cosine similarity score is less than 0.6. We do so because
the size of the GUM corpus is small (see Table 2.11). If we filter out too many instances,
there will not be enough data to train classifiers to converge. For joint learning, we adopt
settings nearly identical to those used for the baselines, including the use of RoBERTabase,
the AdamW optimizer, a batch size of 16, a learning rate of 1e-5, a maximum of 10 training
epochs, and a maximum input length of 256 tokens.
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Top-level Second-level
Models Acc F1 Acc F1
I2I-Entire 67.970.64 59.740.94 58.110.63 37.740.31

I2I-Reduced 63.770.53 54.661.31 54.070.83 35.490.49

Ji et al. (2015) - 38.62 - -
Huang and Li (2019) - 40.90 - -
Kurfalı and Östling (2021) - 33.55 25.32 13.01
Common 53.73 17.48 25.22 03.66
E2I-Entire 56.140.65 41.490.59 34.570.38 22.030.58

E2I-Reduced 55.580.59 39.131.05 31.650.99 18.031.09

Our Method 60.500.34 51.250.70 39.330.28 27.130.50

w/o filtering 58.700.24 45.390.63 36.280.27 23.550.53

w/o joint learning 57.740.45 44.420.83 35.230.34 22.500.48

Table 6.2 Results on PDTB 2.0 (with standard deviation). E2I-Entire is the typical setting for
explicit to implicit discourse relation recognition, serving as the baseline, and I2I-Entire is
the upper bound for implicit relation classification. Our two strategies can effectively close
the gap between the baseline and the upper bound.

6.4.2 Overall Results

The evaluation results on PDTB 2.0 and PDTB 3.0 are presented in Tables 6.2 and 6.3.
Classifiers trained on explicit corpora (E2I) perform significantly worse on implicit relation
recognition compared to those trained directly on implicit datasets (I2I). For instance, on
top-level relations, the E2I-Entire model lags behind the I2I-Entire model by 18.25% and
21.95% in F1 score on PDTB 2.0 and PDTB 3.0, respectively. These findings are consistent
with prior research indicating that models trained on explicit examples tend to perform poorly
when applied to real implicit relations (Lin et al., 2009). Our proposed method substantially
improves explicit to implicit relation recognition, narrowing the F1 gap between E2I-Entire
and I2I-Entire from 18.25% to 8.49% on PDTB 2.0, and from 21.95% to 16.19% on PDTB
3.0. These results highlight the effectiveness of our approach for the task, which, in turn,
demonstrates that label shift is one cause for poor transfer performance from explicit to
implicit relations.

Despite these improvements, our method does not fully reach the upper bound established
by I2I-Entire. We attribute this to several remaining challenges: (1) explicit and implicit
examples differ significantly in syntactic structure (Lin et al., 2009), and (2) the label
distributions across explicit and implicit corpora are very different (see Figure 6.7). These
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Top-level Second-level
Models Acc F1 Acc F1
I2I-Entire 72.400.21 67.200.34 62.620.87 53.110.58

I2I-Reduced 69.860.91 64.121.29 59.430.40 46.650.83

Common 15.19 27.69 03.10
E2I-Entire 51.490.39 45.250.50 39.090.87 33.560.72

E2I-Reduced 48.570.30 40.090.97 36.540.55 28.321.03

Our Method 57.540.16 51.010.45 41.500.30 37.080.13

w/o filtering 52.240.32 46.030.67 40.450.33 34.150.48

w/o joint learning 52.310.38 44.460.56 40.110.28 33.930.30

Table 6.3 Results on PDTB 3.0 (with standard deviation).

differences may give rise to additional types of shifts beyond label shift, which we leave for
future investigation.

We further analyze the contribution of each component in our proposed method through
an ablation study. Specifically, we evaluate the impact of removing the filtering strategy while
retaining the joint learning component. As shown in the "w/o filtering" rows in Tables 6.2
and 6.3, excluding the filtering strategy leads to a decline in performance, with F1 scores
for top-level relation recognition decreasing by 5.86% on PDTB 2.0 and 4.98% on PDTB
3.0. Conversely, when we remove the joint learning component and retain only the filtering
strategy, the resulting model, structurally similar to the baseline but trained on the filtered
corpus, also exhibits degraded performance (see "w/o joint learning" in Tables 6.2 and 6.3),
comparable to the effect of removing the filtering strategy. These results highlight the
importance of both components for achieving strong performance. Furthermore, we observe
that applying each strategy individually yields only marginal improvements, and does not
reach the level of effectiveness achieved when both are used in combination. This suggests
that (1) neither strategy alone is sufficient to fully address the impact of label shift; and (2)
the two strategies are complementary, with their integration leading to a more robust solution.

We also examine whether our filtering strategy can really improve data quality. To this
end, we compare the performance of models trained on the same number of training examples
drawn from three different sources: our filtered corpus (i.e., "w/o joint learning"), a randomly
sampled subset of the original explicit corpus (i.e., "E2I-Reduced"), and a similarly sized
subset of the implicit corpus (i.e., "I2I-Reduced"). The results, presented in Tables 6.2
and 6.3, show that models trained on our filtered corpus outperform those trained on E2I-
Reduced and achieve performance closer to I2I-Reduced. These findings suggest that our
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Models Acc F1
I2I-Entire 64.700.38 53.540.68

I2I-Reduced 55.370.46 48.360.84

Common 26.62 06.01
E2I-Entire 43.621.08 37.831.54

E2I-Reduced 41.211.23 35.241.74

Our Method 48.240.89 43.861.02

w/o filtering 45.660.67 40.210.92

w/o joint learning 45.291.02 40.141.35

Table 6.4 Results on the RST GUM corpus.

filtering strategy enhances the quality of the training data, outperforming random sampling
from the original explicit corpus.

6.4.3 Results on the GUM Dataset

Our approach is developed based on analyses of the PDTB corpora. To assess its generaliz-
ability, we evaluate it on the GUM dataset (Zeldes, 2017b), which is annotated with RST
relations. Among the various versions of GUM, we use the most recent release5 from the
DISRPT project, which provides PDTB-style annotations and explicitly labels each discourse
instance as either explicit or implicit.

The evaluation results are shown in Table 6.4. The classifier trained on explicit examples
(E2I-Entire) performs poorly on implicit relation recognition, lagging behind the classifier
trained on implicit examples (I2I-Entire) by more than 15 points in F1 score. Each of our
proposed strategies, filtering and joint learning, contributes modest improvements when
applied individually. When combined, they achieve the best performance, resulting in a
6-point F1 improvement over the E2I-Entire baseline. These findings indicate that our
approach generalizes effectively to other discourse datasets.

6.5 Summary

In this chapter, we show that one cause of the poor transfer performance from explicit to
implicit relations is the occurrence of label shift when deleting connectives from explicit
examples. We present both manual and empirical evidence to demonstrate the existence of

5https://github.com/disrpt/latest

https://github.com/disrpt/latest
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such a shift in the explicit corpus. We design a cosine similarity-based metric to measure
label shift in the corpus, filter out noisy data, and investigate a joint learning framework
to mitigate label shift. Experiments on PDTB 2.0 and PDTB 3.0 demonstrate that training
classifiers on the filtered corpus with our joint learning strategy can significantly enhance
the performance of explicit to implicit relation recognition. Furthermore, we show that our
approach also works well on the GUM dataset, suggesting its generalizability.



Chapter 7

Discourse Relation-Enhanced Coherence
Modeling

In linguistics, discourse relations between text spans play a crucial role in maintaining
textual coherence (Rohde et al., 2018; Jurafsky and Martin, 2025). Consider the example in
Figure 8.1, which contains four sentences. This text is regarded as highly coherent due to its
well-structured organization through specific discourse relations. In particular, a Contrast
relation connects the first two sentences, an Instantiation relation elaborates on the strike
mentioned earlier, and a Cause relation introduces the final sentence. Despite their potential

Tom was late for the meeting this morning. 

However, it was not his fault but rather due to the citywide strike.

All the roads were blocked, and the buses were canceled.

Therefore, he had to walk to the office, which took a lot of time.

Contrast

Instantiation

Cause

Fig. 7.1 A coherent text with discourse relations.

usefulness, existing works on coherence modeling primarily focus on integrating entity-based
features (Barzilay and Lapata, 2008; Guinaudeau and Strube, 2013; Tien Nguyen and Joty,
2017; Jeon and Strube, 2022) or applying powerful pre-trained models (Shen et al., 2021;
Laban et al., 2021; Abhishek et al., 2022; Liu et al., 2023a), and little attention has been paid
to whether discourse relations can contribute to coherence assessment.
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One key reason for this gap, as discussed in Chapter 5, is the limited accuracy of previous
discourse parsers, particularly for implicit relations. With our improved parser, we investigate
how discourse relations contribute to neural coherence modeling. In this chapter, we first
present empirical evidence that text coherence is correlated with the sequence of discourse
relations inferred from documents. Building on this finding, we introduce a novel fusion
model that integrates both text-based and relation-based features to assess coherence. Finally,
extensive experiments against strong baselines validate the effectiveness of our proposed
approach.

7.1 Discourse Relation and Coherence

This section begins with a concise introduction to discourse relations and their extraction
from documents. We then present empirical evidence demonstrating a significant correlation
between discourse relation features and varying levels of text coherence. Finally, we demon-
strate that a BiLSTM classifier utilizing relation sequences as input achieves performance
comparable to a model relying solely on textual input.

7.1.1 Discourse Relations

Discourse relations are a means of logically connecting two segments of discourse. Over
the past few decades, various frameworks have been introduced to annotate discourse rela-
tions. The most widely used among these are Rhetorical Structure Theory (RST, Mann and
Thompson, 1988) and the Penn Discourse Treebank (PDTB, Prasad et al., 2008). In the RST
framework, a text is represented as a hierarchical discourse tree, where relations are used to
link different text spans. By contrast, PDTB does not postulate any structural constraints on
discourse relations and focuses on labeling local discourse relations between sentences and
clauses. In this work, we follow previous work (Lin et al., 2011) in adopting PDTB relations
and leave RST relations for future work.

We use discopy (Knaebel, 2021) as the discourse parser to extract relations from
documents, with some adjustments. First, we use the relations in PDTB 3.0 (Webber
et al., 2019b) instead of PDTB 2.0 (Prasad et al., 2008), as the newer version offers an
expanded set of relations and represents an improved annotation framework. We consider
explicit and implicit relations between adjacent sentences of a text. For explicit relations,
we consider 15 discourse relations that have sufficient training instances (Liu et al., 2024).
For implicit relations, we include the 14 most frequent relations along with a "NoRel"
category to account for cases where no discourse relation exists, a common occurrence
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Explicit Distribution Implicit Distribution
Asynchronous 8.69% Asynchronous 4.64%
Cause 7.87% Cause 24.23%
Concession 19.94% Cause+Belief 0.82%
Condition 5.99% Concession 6.72%
Conjunction 36.55% Condition 0.85%
Contrast 4.58% Conjunction 20.84%
Disjunction 1.23% Contrast 3.86%
Instantiation 1.30% Equivalence 1.21%
Level-of-detail 1.01% Instantiation 6.84%
Manner 1.23% Level-of-detail 14.60%
Negative-condition 0.54% Manner 0.74%
Purpose 1.63% Purpose 3.31%
Similarity 0.42% Substitution 1.34%
Substitution 0.96% Synchronous 2.35%
Synchronous 8.07% NoRel 8.18%

Table 7.1 Explicit and Implicit relations used in this study and their distribution in the training
set of PDTB 3.0.

in low-coherence texts. The complete set of relations used in our study, along with their
distributions in PDTB 3.0, is presented in Table 7.1. Second, we adopt the connective-
enhanced approach from Liu and Strube (2023) for implicit relation recognition, as it achieves
state-of-the-art performance. The parser is trained on the PDTB 3.0 corpus using the data
split established by Ji and Eisenstein (2015), with evaluation conducted at the second-level
relations. Our implementation achieves an accuracy of 89.61% for explicit relations and
67.80% for implicit relations, demonstrating robust performance that provides a reliable
foundation for subsequent analysis.

7.1.2 Correlation Analysis

In coherence theories, discourse relations between text spans play a key role in achieving text
coherence (Jurafsky and Martin, 2025). Furthermore, Lin et al. (2011) observed that coherent
text exhibits preferences for specific discourse relation ordering. This is somehow verified
by Biran and McKeown (2015), which shows that relation N-gram planning (transitions
between discourse relations) helps generate coherent text. Inspired by these works, we aim
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GCDC Enron
coef p-value

2-gram
Synchronous→ Conjunction 0.3924 <0.01

Asynchronous→ Asynchronous 0.3675 <0.01

Level-of-detail→ Asynchronous 0.3040 0.042

Cause→ NoRel -0.2300 0.015

3-gram
Cause→ NoRel→ Conjunction -0.4835 <0.01

NoRel→ Conjunction→ Cause -0.4359 <0.01

Cause→ Level-of-detail→ Conjunction 0.4160 0.012

Conjunction→ Cause→ Asynchronous 0.3133 0.056

Table 7.2 Correlation between discourse relation N-gram patterns and coherence levels. Only
the top four patterns with the highest absolute correlation coefficients are shown.

to provide evidence demonstrating the correlation between relation N-gram patterns and text
coherence.
Dataset. We conduct analyses on two widely used corpora in coherence modeling: the
Grammarly Corpus of Discourse Coherence (GCDC) (Lai and Tetreault, 2018) and the
TOEFL dataset (Blanchard et al., 2014). GCDC is a corpus constructed for assessing
discourse coherence (ADC), containing texts from four domains: Yahoo, Enron, Clinton,
and Yelp. The TOEFL dataset was originally used for automated essay scoring (AES) but
has been used to evaluate coherence models (Burstein et al., 2010; Jeon and Strube, 2020b).
See Section 2.2.1 for detailed descriptions these two corpora.

For each document d in the two corpora, we use Stanza (Qi et al., 2020) to segment it
into sentences {s1, s2, ..., sL} and employ the enhanced discopy parser to recognize the
relations between adjacent sentences, obtaining a relation sequence {r1, r2, ..., rL−1}, where
ri denotes the parsed relation between si and si+1. From these relation sequences, we extract
all relation n-gram transition patterns. Finally, we compute Spearman’s rank correlation
coefficient1 between the frequency of each n-gram pattern and the document’s ground-truth
coherence rating.
Results. Tables 7.2 and 7.3 show the results on the GCDC Enron and TOEFL P1 datasets.
In general, relation N-gram features are empirically correlated with coherence levels. For
example, in GCDC Enron, relation 3-grams containing NoRel, e.g., Cause → NoRel →
Conjunction, are negatively correlated with coherence level. In the TOEFL P1 dataset,

1Spearman’s correlation is particularly appropriate for this analysis as both coherence levels and n-gram
frequencies represent ordinal variables.
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TOEFL P1
coef p-value

2-gram
Disjunction→ Cause 0.5242 <0.01

Synchronous→ Conjunction 0.4733 <0.01

Instantiation→ Level-of-detail 0.3483 <0.01

Conjunction→ Synchronous 0.3477 <0.01

3-gram
Level-of-detail→ Conjunction→ Instantiation 0.5239 <0.01

Conjunction→ Contrast→ Conjunction 0.5234 <0.01

Conjunction→ Conjunction→ Contrast 0.5227 <0.01

Level-of-detail→ Concession→ Cause 0.4882 <0.01

Table 7.3 Correlation between discourse relation N-gram patterns and coherence levels. Only
the top four patterns with the highest absolute correlation coefficients are shown.

essays containing Cause and Level-of-detail relations, e.g., Disjunction→ Cause, tend to
be more coherent. This aligns with existing theories where discourse relations play a key
role in achieving text coherence (Rohde et al., 2018). Relation 3-gram patterns seem to be
more strongly correlated with text coherence than relation 2-gram ones. For instance, in the
TOEFL P1 dataset, 3-gram patterns yield correlation coefficients predominantly exceeding
0.5, compared to approximately 0.4 for 2-grams. We also observe that the two corpora
exhibit different relation n-gram patterns correlated with text coherence. This difference may
be due to fundamental genre distinctions in discourse organization (Webber, 2009). In the
TOEFL corpus, essays are viewpoint-oriented, using evidence (Cause relation) and examples
(Instantiation relation) to support opinions. In contrast, the documents in the GCDC Enron
dataset are narrative texts, typically employing Conjunction relations. These distributional
differences are quantitatively shown in Table 7.4.

7.1.3 Text vs. Relations

To further investigate the role of discourse relations in coherence modeling, we conduct a
comparison experiment between two BiLSTM-based classifiers, where the first uses the raw
text of the document as input while the other inputs the discourse relation sequence parsed
from the document.

Table 7.5 shows the accuracy and macro-F1 results on GCDC Enron and TOEFL P1
datasets. Surprisingly, the classifier built on the discourse relation sequence (Rel Sequence)
can achieve comparable performance to that built on raw text. On the GCDC Enron dataset,
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Relation GCDC Enron TOEFL P1
Conjunction 33.47% 19.29%
Cause 25.72% 37.40%
Concession 8.92% 7.60%
Level-of-detail 13.48% 11.99%
Asynchronous 4.51% 1.69%
Synchronous 0.80% 0.61%
Contrast 1.09% 4.65%
Instantiation 1.49% 10.58%
NoRel 8.55% 1.12%
Condition 0.32% 0.41%
Purpose 0.32% 0.17%
Substitution 0.57% 1.31%
Manner 0.01% 0.01%
Disjunction 0.01% 0.06%
Equivalence 0.39% 2.56%
Cause+belief 0.26% 0.37%
Negative-condition 0.08% 0.14%
Similarity 0.01% 0.04%

Table 7.4 The distribution of discourse relations parsed from GCDC Enron and TOEFL P1.

Input Type
GCDC Enron TOEFL P1

Acc F1 Acc F1
Raw Text 46.200.77 42.860.97 57.551.24 50.390.78

Rel Sequence 44.150.92 39.431.24 59.170.87 53.510.99

Rel Sequence (shuffled) 37.401.05 31.621.07 50.540.92 43.031.53

Table 7.5 The performance (with std) of BiLSTM classifier when using text, relation sequence,
and shuffled relation sequence as input, respectively.

the classifier based on the relation sequence only lags behind that on raw text by 2 to 3 points,
despite the relation sequence being much shorter than the word sequence of the text. The
results on the TOEFL P1 dataset are more encouraging, with the BiLSTM classifier using
relations as input outperforming the counterpart based on raw text. These results indicate
that discourse relations parsed from the document are useful for coherence modeling. We
further investigate the importance of the relation order by training another classifier on the
shuffled relation sequence, and show the result in Table 7.5. The results of the classifier
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Fig. 7.2 Two ways to combine text- and relation-based features: concatenation vs. fusion.

trained on the shuffled relations lag behind the counterpart trained on the original relation
sequence by more than 7 points, strongly indicating that transition patterns between relations
are crucial for coherence modeling. In addition, our analysis reveals that only approximately
60% of correct predictions overlap between the text-based and relation-based classifiers. This
suggests that raw text and the relation sequence provide different information for coherence
assessment.

7.2 Discourse Relation-Enhanced Fusion Model

Inspired by the above analyses, we explore approaches in this section to combine text- and
relation-based features for coherence modeling. A straightforward way to use both types of
information is to extract text- and relation-based features separately, concatenate them, and
feed them into a classifier (as shown in Figure 7.2a). However, this concatenation approach
fails to capture potential interactions between these two types of features. Prior studies (Ji
et al., 2016; Yu et al., 2022a) have demonstrated that incorporating discourse relations into
language models can lead to better text representations. Therefore, we investigate a fusion
model to facilitate the interaction between text and relation information.

Figure 7.2b shows the overall architecture of the proposed model. First, we use a text
encoder and a relation embedding layer to generate sentence and relation representations,
respectively. Specifically, given a text d = {s1, s2, ..., sL} with L sentences, we input the
entire text to a text encoder to obtain representations of tokens {et1, et2, ..., etN}, where N

is the number of tokens in the text. The text encoder can be a pre-trained language model
(PLM), such as RoBERTa (Liu et al., 2019), or a large-scale language model (LLM), such
as LLaMA (Touvron et al., 2023). Following previous work (Jeon and Strube, 2022), we
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Fig. 7.3 Converting original sentences and parsed relations (a) into a flat sentence-relation
structure (b), where start_pos and end_pos denote the start and end positions of the node in
the original sentence sequence.

derive the sentence representation by averaging representations of tokens2 contained in each
sentence, i.e., esj =

1
M

∑
ti∈sj e

t
i, where M is the number of tokens in sentence sj . Regarding

discourse relations {r1, ..., rL−1} parsed from the text, we embed each relation rj into a
vector erj = Embed(rj), where Embed denotes a relation embedding lookup table. Then, we
input sentences and relations into a fusion transformer. The challenge here is how to promote
the interaction between sentence and relation representations while ensuring that sentences
attend to the right relations (and vice versa). We address this through three components: (1)
a flat structure of sentences and relations with positional information, (2) a position-aware
attention, and (3) a visibility matrix between sentences and relations.

7.2.1 Flat Structure with Positions

After applying the discourse parser, we obtain the sentences of the text (the lower part of
Figure 7.3a) and discourse relations between adjacent sentences (the upper part of Figure
7.3a), forming a graph structure. However, since the Transformer is designed for sequence
modeling (Vaswani et al., 2017), it is not straightforward for the Transformer to process
graph-structured input. One possible solution is to insert relations into the sentence sequence,
for example [s1, r2, s2, ...], but the resulting new sequence is no longer natural text.

To address these issues, we introduce a flat structure to organize sentences and relations,
in which the two types of elements are concatenated and equipped with positional information

2We also experimented with [CLS] pooling but found average pooling is consistently better.
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Fig. 7.4 Fusion Transformer.

(as shown in Figure 7.3b). Specifically, sentences and relations are represented as a sequence
of triples, where each triple contains three elements: (1) a node, which can be either a
sentence or a relation; (2) start_pos and (3) end_pos, denoting the start and end position
of the node in the original sentence sequence, respectively. If the node is a sentence, the
start and end positions are the same. If the node is a relation, the start and end positions
are different, indicating which two sentences the relation connects. For example, (s1, 1, 1)
denotes that this is the first sentence in the text, while (r1, 1, 2) means that this is a discourse
relation connecting the first and second sentences of the text. With this flat structure, we
can maintain the original order information of sentences while enabling the Transformer to
process these two features (see next section).

7.2.2 Position-aware Attention

The vanilla Transformer encodes the sequence using absolute positions, which is not suitable
for our flat structure input. Taking s1 and r1 in Figure 7.3b as an example, they are related,
but their absolute positions are far apart. Inspired by the self-attention mechanisms proposed
in Dai et al. (2019) and Li et al. (2020), we investigate position-aware attention to facilitate
the interaction between relevant sentence and relation nodes. The position-aware attention
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between the i-th and the j-th nodes is defined as:

Aij = qik
T
j + qir

T
i−j + ukT

j + vrTi−j (7.1)

where qi,kj, ri−j = eiWq, ejWk,pei−jWr, ei denotes the representation of the i-th node,
pei−j denotes the relative position embedding between the i-th and the j-th nodes, and
Wq, Wk, Wr, u, v are trainable parameters. The first and third terms in Equation 8.1 are
content-based addressing, where the former calculates weight between query and key, and
the latter governs a global content bias (Dai et al., 2019). The second and last terms compute
weight with relative positional information, which helps guide the attention between relevant
sentences and relations. Specifically, since each triple in the flat structured input contains two
positional information (i.e., start_pos and end_pos), we can calculate four types of
relative distances between the i-th and the j-th nodes: (i) starti − startj; (ii) starti − endj;
(iii) endi−startj; and (iv) endi−endj. Under the guidance of relative positional information,
a sentence will not only attend to neighboring sentences but also the relation acting upon
it. Taking s1 and r1 in Figure 7.3b as an example, the distance between the start positions
(start_pos) of the two nodes is 0, indicating they are very related. The final relative
position embedding between the i-th and the j-th nodes, i.e., pei−j , is defined as a non-linear
transformation over the four relative distances:

pei−j = (psi−sj ⊗ psi−ej ⊗ pei−ej ⊗ pei−ej)Wp (7.2)

The position embedding p is initialized following the original Transformer formulation,
where p2k

pos = sin
(
pos/100002k/dmodel

)
and p2k+1

pos = cos
(
pos/100002k/dmodel

)
(Vaswani

et al., 2017).

7.2.3 Visibility Matrix

While relative position embeddings can effectively guide attention calculation, sentence
nodes may still attend to irrelevant relation nodes, such as s1 attending to r3 (see Figure
7.3a), leading to a poor text representations. Thus, we further introduce a visibility matrix
M (Mihaylov and Frank, 2019) to prevent this. The matrix M is defined as:

Mij =

0, if cond1 | cond2 | cond3

−∞, otherwise
(7.3)
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where cond1 and cond2 are defined as both nodes i and j being either sentences or relations,
respectively; and cond3 is defined as one of the nodes being a sentence and the other a
relation, with the relation acting upon the sentence. We apply the visibility matrix to the
attention calculation:

A∗ = Softmax(A+M) (7.4)

Then layer normalizations and a feed-forward network (as shown in Figure 7.4) are applied
to produce the text representation v. Finally, we input v into a softmax classifier and use the
cross-entropy loss for training.

7.3 Experiments

We conduct experiments on the GCDC (Lai and Tetreault, 2018) and TOEFL (Blanchard
et al., 2014) datasets to show the effectiveness of relation features for coherence modeling.

7.3.1 Experimental Settings

Implementation Details. We implement our model using the PyTorch library, experiment
with two different text encoders, a pre-trained language model RoBERTabase (Liu et al.,
2019), and a large language model Llama-2-7B (Touvron et al., 2023), and initialize the
relation embeddings with Glove (Pennington et al., 2014). We use the AdamW optimizer
with an initial learning rate of 1e-3, a batch size of 32, and a maximum of 20 training
epochs. Considering the training variability in GCDC, we follow the setting in Lai and
Tetreault (2018) to perform 10-fold cross-validation over the training dataset. Regarding the
TOEFL dataset, we conduct 5-fold cross-validation on the dataset of each prompt, which is a
common setting for the AES task (Taghipour and Ng, 2016). Like previous work (Farag and
Yannakoudakis, 2019; Jeon and Strube, 2022), we use standard accuracy (Acc, %) as our
evaluation metric.
Baselines. To investigate the usefulness of discourse relations, we compare with a baseline
using only textual input without any relation information:

• TextOnly. This model consists of a text encoder to obtain sentence representations, a
sentence-level Transformer to extract coherence patterns, and a softmax classifier for
prediction.

To show the effectiveness of our fusion strategy, we compare it with the concatenate baseline:

• Concat. This baseline simply concatenates text- and relation-based features without
considering interactions between them (see Figure 7.2a).
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Text: [Tom was late for the meeting this morning. However, it was ….]

Level of Coherence: High

Fig. 7.5 The template used for the Llama-Prompt baseline

Replace the MASK token by selecting only one of the following

coherence labels: [Low, Medium, High].

Examples:

Text: [text_1]

Coherence level: Low

Text: [text_2]

Coherence level:Medium

Text: [text_3]

Coherence level: High

<other two examples for each coherence level>

Text: [target_text]

Coherence level: [MASK]

Fig. 7.6 The template used for the GPT4-Prompt baseline.

Recently, prompt-based methods using large language models (LLMs) have significantly im-
pacted various NLP tasks. Therefore, we also compare our method with baselines following
this trend:

• Llama-Prompt. Using LoRA (Hu et al., 2022) to tune Llama-2-7B, and predict the
coherence of an input document with the designed template. Figure 2 presents the template
employed in this baseline.

• GPT4-Prompt. Calling GPT-4o API and applying in-context learning (Min et al., 2022)
for coherence assessment. Figure 3 illustrates the prompt utilized for in-context learning.

Further, we compare our method against previous state-of-the-art models on each corpus.
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Model Clinton Enron Yahoo Yelp Avg
Jeon and Strube (2022) 64.200.40 55.300.30 58.400.20 57.300.20 58.90
Liu et al. (2023a) 66.200.81 57.000.81 63.650.74 58.051.21 61.23
Llama-Prompt 62.601.59 57.351.42 60.051.41 57.501.02 59.36
GPT4-Prompt 53.00 53.00 50.00 49.00 51.25

RoBERTa

TextOnly 64.550.69 57.500.89 60.050.35 58.200.75 60.10
Concat 65.450.79 58.300.56 61.350.67 59.050.57 61.04
Our Method 66.250.64 59.601.26 63.050.42 60.200.95 62.28

LLaMA

TextOnly 63.900.49 57.050.79 59.600.49 57.350.74 59.47
Concat 64.100.66 57.150.50 61.150.81 58.350.71 60.19
Our Method 65.750.46 59.300.98 61.700.78 59.450.99 61.55

Table 7.6 Mean accuracy results (with std) on the GCDC dataset.

7.3.2 Overall Results

GCDC. Table 7.6 presents the results on the GCDC dataset, where the last two blocks show
the results based on RoBERTa and LLaMA. When using RoBERTa as the text encoder,
both Concat and Our Method outperform the TextOnly baseline, indicating that relation
features are helpful for coherence assessment. The improvement of Concat over the TextOnly
baseline is limited, with an increase in accuracy of less than one point (60.10 → 61.04).
We argue that simply concatenating text- and relation-based features cannot fully utilize
relation information since the two features are processed separately, without considering the
interaction between them. Compared to Concat, Our Method shows a greater improvement,
increasing by 2.18% in accuracy, suggesting that our approach is more efficient in utilizing
relation information. When using LLaMA as the text encoder, similar results are observed,
showing that relation features are useful across different encoders. Surprisingly, our method
implemented with RoBERTa performs better than the counterpart with LLaMA (62.28
vs. 61.55) despite the latter having more parameters and being pre-trained on a larger
corpus than the former. We suspect this is because RoBERTa learns bidirectional context-
aware representations while LLaMA is limited by its uni-directional context (Yang et al.,
2019). Recent work also observed similar results of RoBERTa and LLaMA on other text
classification tasks (Rodriguez-Garcia et al., 2024).

The second block in Table 7.6 shows the results of prompt-based methods, including
Llama-Prompt and GPT4-Prompt. Similar to using LLaMA as a text encoder, the perfor-
mance of Llama-prompt also underperforms our method using RoBERTa, with an accuracy
gap of 2.92%. The performance of GPT 4 on this task is even worse, lagging behind our
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Model
Prompt

Avg
1 2 3 4 5 6 7 8

Jeon and Strube (2022) 78.380.00 75.700.30 76.580.00 76.560.00 79.100.00 76.410.00 75.030.00 74.540.00 76.54

Liu et al. (2023a) 75.791.14 76.251.07 74.141.18 75.810.71 77.010.94 77.081.14 73.550.80 72.910.66 75.34

Llama-Prompt 76.811.36 76.121.12 76.571.23 75.551.06 76.931.16 76.331.04 76.100.96 74.731.37 76.14

GPT4-Prompt 59.21 58.65 64.28 58.27 58.48 65.10 60.23 59.34 57.25

RoBERTa

TextOnly 76.360.90 75.101.03 75.290.51 75.331.47 75.901.01 75.611.88 73.760.91 73.341.06 75.08

Concat 77.631.31 75.870.36 76.720.93 76.661.87 78.201.14 77.081.31 75.480.69 74.921.15 76.57

Our Method 78.970.75 77.210.99 77.590.92 77.190.90 78.451.14 78.221.57 76.780.96 75.851.06 77.49

LLaMA

TextOnly 74.961.17 74.451.55 74.710.43 73.811.45 75.651.55 75.620.96 74.640.93 73.341.02 74.65

Concat 75.940.75 75.851.21 75.310.56 74.471.47 76.501.19 76.350.98 75.120.74 73.581.23 75.39

Our Method 77.161.12 76.891.33 76.290.71 76.191.04 77.411.12 77.291.06 76.310.82 75.190.94 76.59

Table 7.7 Mean accuracy results (with std) on the TOEFL dataset.

method (RoBERTa) by 11% in accuracy. This is consistent with previous findings that
GPT-4 achieves a certain level of accuracy in scoring essays but still underperforms trained
models (Mizumoto and Eguchi, 2023). To further show the importance of relation features
and the efficiency of our method, we compare against two state-of-the-art models (Jeon and
Strube, 2022; Liu et al., 2023a) on this corpus. Both models are entity-based, and their results
are shown in the first block of Table 7.6. Our method, using relation features, outperforms
the two entity-based models for coherence assessment, indicating its superiority for this task.
TOEFL. Results on the TOEFL dataset are shown in Table 7.7. Similar to the observations on
the GCDC dataset, relation features contribute to coherence modeling. When using RoBERTa
as the text encoder, Concat and Our Method outperform the TextOnly baseline by 1.49%
and 2.41% in accuracy, respectively. The same results are observed when using LLaMA
as a text encoder, where the improvement of Concat and Our Method over the TextOnly
baseline is 0.72% and 2.05%, respectively. In both settings, Our Method outperforms Concat,
demonstrating the effectiveness of fusion for text- and relation-based features. Despite
being quite popular in recent research, prompt-based methods, including Llama-Prompt
and GPT4-Prompt, perform comparably to other baselines and are slightly inferior to our
method using RoBERTa or LLaMA as the text encoder. We further compare our method
with previous entity-based approaches. Results in Table 7.7 show that our approach performs
better than the two models, highlighting the usefulness of relation features for this task.
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Fig. 7.7 Accuracy against text length.

7.3.3 Performance Analysis

We conducted two analyses to understand why relation features perform well in coherence
assessment. First, we compare the performance of Our Method and Concat with the TextOnly
baseline across different document lengths (measured by the number of sentences). Figure 7.7
shows the accuracy trends of these three models (using RoBERTa) on the TOEFL P1 dataset
as the number of sentences increases. Our Method and Concat show comparable performance
to the TextOnly baseline at the beginning, but gradually outperform it as the number of
sentences increases, demonstrating that relation information contributes to learning better
coherence patterns for longer documents. Our Method consistently outperforms Concat,
indicating that it is more efficient in exploiting relation features.

To probe whether our model has truly learned better coherence patterns, we further
examine its transferability in cross-domain settings. Specifically, we train TextOnly, Concat,
and Our Method on Enron of GCDC (or Prompt 1 of TOEFL), and evaluate their performance
on other parts of the GCDC (or other prompts of the TOEFL) datasets. Table 8.4 shows the
results of these three models. With relation information, Concat and Our Method consistently
show better performance than the TextOnly baseline in the cross-domain setting, indicating
the relation sequence of texts can serve as domain-agnostic features for coherence assessment.
Our Method outperforms the Concat baseline in all cross-domain experiments, showing the
superiority of fusion over simple concatenation.
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Model
Enron→ Others TOEFL P1→ Others

RoBERTa LLaMA RoBERTa LLaMA
TextOnly 51.83 47.50 71.88 67.70
Concat 53.50(+1.67) 49.83(+2.33) 74.86(+2.98) 70.93(+3.23)
Our Method 56.33(+4.50) 52.33(+4.83) 75.52(+3.64) 72.49(+4.79)

Table 7.8 Cross-domain accuracy of models.

7.3.4 Ablation Study

We conduct ablation studies to evaluate the effectiveness of position-aware attention (PAA)
and the visibility matrix (VM). Specifically, we first remove the visibility matrix, and then
replace the position-aware attention with a vanilla attention mechanism. Table 7.9 shows
the results on the GCDC Enron and TOEFL P1 datasets using RoBERTa. We observe that
each component contributes to the performance, showing its essential role in achieving good
performance. Furthermore, the performance drop from removing the position-aware attention
mechanism is greater than that from eliminating the visibility matrix, indicating that relative
position information is more important in guiding fusion.

Model
RoBERTa LLaMA

Enron TOEFL P1 Enron TOEFL P1
Our Method 59.60 78.97 59.30 77.16
- VM 59.20 78.12 58.55 76.26
- VM, PAA 58.15 77.24 57.40 75.68

Table 7.9 Ablation study for visibility matrix (VM) and position-aware attention (PAA) in
our method.

7.4 Summary

In this chapter, we provide empirical evidence to demonstrate the correlation between
discourse relations and text coherence. Then, we introduce a novel fusion model to combine
text- and relation-based features for coherence assessment. Experiments on two benchmarks
show that our method consistently outperforms various baseline models, demonstrating the
importance of relation features and the effectiveness of our approach.



Chapter 8

Coherence Modeling Using Entities and
Discourse Relations

In linguistics, coherence can be achieved through various means, such as maintaining
reference to the same set of entities across sentences and establishing discourse relations
between them. As demonstrated in Chapters 4 and 7, both entity-based and discourse relation-
based features independently contribute to the assessment of coherence. However, real-world
texts often demand a more integrated perspective to fully account for coherence, as entity
and discourse relation cues frequently coexist and interact in complex and interdependent
ways. To illustrate this, we present an example in Figure 8.1, which contains four sentences
and is considered highly coherent.

1 Did you know that John is still in Germany?

2 He was planning to leave Berlin today but ran

into a citywide strike.

3 All the roads were blocked, and buses and trains

were cancelled.

4 So, he couldn’t get to the airport and now has to

stay in the city for a few more days.

Reason

Instantiation

Result

Fig. 8.1 An example of a coherent text, whose coherence should be explained using both
entities and discourse relations. We bold the interlinked entities in the text and show the
discourse relations between sentences.
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Establishing coherence through entities is not straightforward in this case, as there are no
overlapping entities between the second and third sentences. Instead, we must use a more
complex linguistic phenomenon, namely bridging (Clark, 1975; Hou et al., 2018), to link
"city" (in "citywide") and "road". Meanwhile, the connection between these sentences is
more readily explained by a discourse relation (e.g., Instantiation), as the third sentence
elaborates on the strike mentioned earlier. However, relying solely on discourse relations also
has limitations, as it may compromise the smooth tracking of the protagonist if the referents
are unclear. For example, if the final sentence were changed to "So, Maria couldn’t get to
the airport...", the discourse relation might still hold, but the referent switch (i.e., John→
Maria) would disrupt the overall coherence. This underscores the need to jointly consider
both entity continuity and discourse structure.

Although entities and discourse relations offer complementary perspectives on coher-
ence, few studies have empirically examined whether integrating them yields more effective
coherence assessment. In this chapter, we propose two approaches to jointly model entities
and discourse relations for coherence assessment. Experiments conducted on three bench-
mark datasets demonstrate that our methods significantly outperform strong baseline models,
highlighting the benefits of incorporating both entity- and discourse-based features. Further
analysis indicates that this integrated modeling approach facilitates the learning of more
robust coherence patterns, helping to alleviate the effects of imbalanced data distributions
and enhance the generalization ability of models across domains.

8.1 Method

In this section, we describe how to identify entities and discourse relations in a document,
and then present two methods that use them to evaluate coherence.

Given a document, we use Stanza (Qi et al., 2020) to identify all nouns and coreference
chains, and to segment the text into sentences. We focus on nouns rather than named entities,
as previous studies have shown that nouns yield better performance in coherence model-
ing (Elsner and Charniak, 2011; Tien Nguyen and Joty, 2017). For discourse relations, we
follow prior work (Lin et al., 2011) that adopts the Penn Discourse Treebank (PDTB) frame-
work (Prasad et al., 2006). Specifically, we use the discourse parser discopy, developed
by Knaebel (2021), to extract relations between adjacent sentences, with a few modifications.
First, we use PDTB 3.0 (Webber et al., 2019b) instead of PDTB 2.0 (Prasad et al., 2006), as
the newer version includes more relation types and offers several improvements. Second,
for implicit discourse relation classification, we use the model proposed by Liu and Strube
(2023), which achieves state-of-the-art performance.
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Fig. 8.2 Sentences (in Figure 8.1) linked by entities and discourse relations.

After identifying nouns, coreference relations, and discourse relations, we link two
sentences if (1) they share the same nouns or have a coreference link between their mentions,
or (2) they are connected by a discourse relation. In the first case, we add an edge labeled
"entity" between the sentences; in the second, we add an edge labeled with the specific
discourse relation type. Figure 8.2 illustrates how the sentences in Figure 8.1 are linked via
these identified entities and discourse relations, forming a graph structure.

However, since the Transformer is designed for sequence modeling (Vaswani et al., 2017),
it does not naturally handle graph-structured input. One possible solution is to use Graph
Neural Networks (GNNs); however, standard GNNs are permutation-invariant and cannot
capture order information (Wu et al., 2021b), which is crucial for coherence modeling (Lapata,
2003). Below, we introduce two approaches to address these issues.

8.1.1 Method I: Fusion

In this approach, we introduce a flat structure to organize sentences, entities, and discourse
relations, and design a fusion Transformer to jointly model these elements. Figure 8.3
provides an overview.

In the flat structure, sentences, entities, and discourse relations are concatenated into a
sequence. Each element in this sequence is assigned a two-dimensional position (see the
bottom part of Figure 8.3), indicating its start and end positions within the original sentence
sequence. Take s1 and r1 as an example: their positions are (1, 1) and (1, 2), respectively,
meaning that s1 is the first sentence in the text, and r1 links the first and second sentences. This
flat structure preserves sentence order as well as the connections among sentences, entities,
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Fig. 8.3 The sentences, entities, and discourse relations in Figure 8.2 are organized into a flat
structure, in which each element is assigned a two-dimensional position indicating its start
and end within the original sentence sequence. This flat input is then processed by a fusion
Transformer.

and discourse relations. Its sequential format also makes it well-suited for Transformer
models.

To handle this flat structure, we propose a fusion Transformer that enhances the vanilla
Transformer with a novel position-aware attention mechanism and a visibility matrix. Specif-
ically, we first use a text encoder, such as RoBERTa or LLaMA, to obtain representations
of sentences, entities, and discourse relations. Then, we feed all elements along with their
two-dimensional positions into the position-aware attention module. The position-aware
attention between the i-th and j-th elements in the sequence is defined as:

Aij = qik
T
j + qir

T
i−j + ukT

j + vrTi−j (8.1)

where qi,kj, ri−j = eiWq, ejWk,pei−jWr. Here, ei denotes the representation of the i-th
element, pei−j denotes the relative position embedding between the i-th and j-th elements,
and Wq, Wk, Wr, u, and v are trainable parameters. The first and third terms in Eq.8.1 are
content-based addressing: the former computes the attention weight between the query and
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key, while the latter introduces a global content bias (Dai et al., 2019). The second and last
terms compute weights using relative positional information, which guides attention between
relevant elements. Since each element in the flat structure has a 2D position, we compute
four types of relative distances between the i-th and j-th elements: (i) starti − startj; (ii)
starti − endj; (iii) endi − startj; (iv) endi − endj. The final relative position embedding
pei−j is defined as a non-linear transformation over these four relative distances:

pei−j = (psi−sj ⊗ psi−ej ⊗ pei−ej ⊗ pei−ej)Wp (8.2)

The position embedding p is initialized following the standard Transformer formulation,
where p2k

pos = sin
(
pos/100002k/dmodel

)
and p2k+1

pos = cos
(
pos/100002k/dmodel

)
(Vaswani

et al., 2017).
Although relative positional information can effectively guide how nodes attend to one

another, the model may still assign attention to irrelevant nodes, for example, a discourse
relation node attending to an entity node. To mitigate this issue, we further introduce a
visibility matrix M to guide the attention mechanism:

Mij =

0, if C1 | C2 | C3 | C4

−∞, otherwise
(8.3)

where C1 corresponds to i = j (i.e., self-connection), C2 indicates that both i-th and j-th
elements are sentences (text content), C3 refers to that one element is a sentence and the other
is an entity, and the sentence links to the entity (entity patterns), and C4 is defined as nodes
i and j is one sentence and one relation, and the relation works on the sentence (discourse
relation patterns). We apply the visibility matrix to the attention calculation:

A∗ = Softmax(A+M) (8.4)

Then, layer normalization and a feed-forward network (as shown in Figure 8.3) are applied
to produce the text representation. Finally, the resulting representation is fed into a softmax
classifier, and cross-entropy loss is used for training.

8.1.2 Method II: Prompt

While the first approach can model coherence using entity and discourse relation information,
it relies on an additional fusion module and cannot fully leverage the generative capabilities
of Large Language Models (i.e., it merely treats LLMs as feature extractors). Inspired
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You are an AI assistant tasked with coherence assessment. You will be given a set of 
sentences from a text, along with parsed relations between some sentence pairs. Each relation 
is represented as a triple in the form (si, r, sj), where si and sj denote the i-th and j-th sentences 
from the text and r is the relation between them. The relation r can be one of the following: (1)
“entity”: indicates that the two sentences discuss the same entities; (2) a discourse relation, 
such as “reason” and “contrast”: indicates there is a discourse relation between the two
sentences. Your task is to evaluate the overall coherence level of the text by considering
the content of the sentences and the relations between them. Please assign one of the 
following coherence levels to the text: {low, medium, high}.

Here are the sentences in the given text:
s1: Did you know that John is still in Germany?
s2: He was planning to leave Berlin today but ran into a citywide strike.
s3: All the roads were blocked, and buses and trains were cancelled.
s4: So, he couldn’t get to the airport and now has to stay in the city for a few more days.

Here are the relations between sentences: (s1, entity, s2), (s1, reason, s2), (s1, entity, s4), (s2,
instantiation, s3), (s2, entity, s4), (s3, result, s4)

Large Language Models high

input

generate

Fig. 8.4 Illustration of our second approach. We use natural language to describe the
relationships between sentences, entities, and discourse relations in Figure 8.2, presenting
the graph structure in a concise and intuitive way. We then instruct LLMs to consider these
elements for coherence assessment.

by Ye et al. (2024), we explore a second approach that uses natural language to describe
the connections among sentences, entities, and discourse relations, and then prompts LLMs
to take this information into account for coherence assessment. Figure 8.4 illustrates this
approach using the example from Figure 8.1 and its corresponding connection graph from
Figure 8.2.

Given a graph composed of sentences, entities, discourse relations, and their connections,
we traverse all sentence nodes in the order they appear in the text, from left to right. Sentences
are added to the prompt and labeled with their positions (e.g., s1, s2, etc.; see Figure 8.4).
For each sentence node, we perform a depth-first search to find all two-hop neighboring
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nodes that are bridged by an entity or a discourse relation. This allows us to break down
the graph into a list of triples, where each triple (si, rij, sj) includes two sentences, si and
sj, along with the relation rij between them. We only retain triples where i < j, following
the natural left-to-right reading order of humans, as suggested by Liu et al. (2023a). For
example, the graph in Figure 8.2 is broken down into the following triples: (s1, entity, s2),
(s1, reason, s2), (s1, entity, s4), (s2, instantiation, s3), (s2, entity, s4), and (s3, result, s4). These
triples are expressed in natural language format, making them easy for LLMs to process.
More importantly, they retain all the connection information between sentences, entities,
and discourse relations. Finally, we include the list of triples in the prompt and instruct the
LLMs to assess coherence by considering both the content of the sentences and the patterns
of entities and discourse relations between them (see Figure 8.4).

8.2 Experiments

8.2.1 Experimental Settings

Datasets. We conduct experiments on three widely used corpora for coherence model-
ing: GCDC (Lai and Tetreault, 2018), CoheSentia (Maimon and Tsarfaty, 2023), and
TOEFL (Blanchard et al., 2014). GCDC is designed for evaluating discourse coherence,
containing texts from four distinct domains: Yahoo, Enron, Clinton, and Yelp. CoheSen-
tia is another dataset used to assess discourse coherence. Unlike GCDC, which consists
of real-world texts, CoheSentia contains stories generated by GPT-3 and is annotated by
humans with coherence scores ranging from 1 to 5. However, the score distribution is
highly imbalanced,1 which makes it difficult for models to converge during training (Maimon
and Tsarfaty, 2023). To address this, we group scores 1 and 2 as low coherence, scores
3 and 4 as medium coherence, and score 5 as high coherence. The TOEFL dataset was
originally created for automated essay scoring but has since been widely used to evaluate
coherence models (Burstein et al., 2010; Jeon and Strube, 2020a). See Section 2.2.1 for
detailed descriptions of GCDC and TOEFL.
Implementation Details. We implement our models using the PyTorch library. For Method
I, we experiment with two widely used text encoders (Abhishek et al., 2022; Parmar et al.,
2024): the pre-trained language model RoBERTabase (Liu et al., 2019) and the large language
model Llama-3.1-8B-Instruction (Grattafiori et al., 2024).2 Training is performed using the

1Over 50% of the data is labeled with a score of 5.
2We use the 8B LLaMA model instead of the 70B version due to memory limitations that prevent fine-tuning

larger models. However, our resources do support zero-shot experiments with the 70B model. To maintain
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AdamW optimizer with an initial learning rate of 1e-3, a batch size of 32, and a maximum of
20 epochs.

For Method II, which is specifically designed for large language models (LLMs), we
evaluate it using Llama-3.1-8B-Instruction.2 The evaluation is conducted under two settings:
zero-shot and fine-tuned. In the zero-shot setting, the model is not trained beforehand;
instead, it is directly prompted to generate labels. This setup tests whether incorporating
entity and discourse relation features can assist coherence evaluation in cold-start scenarios.
In the fine-tuned setting, we fine-tune the LLaMA model using LoRA (Hu et al., 2022) for
3 epochs with a learning rate of 5e-5 and a batch size of 2. This setup evaluates whether
instruction-tuning the LLM to consider entities and discourse relations can enhance its
performance.

To account for training variability, we perform 10-fold cross-validation on the GCDC
training dataset (Lai and Tetreault, 2018), 5-fold cross-validation on the CoheSentia corpus,
and 5-fold cross-validation on each prompt-specific dataset in the TOEFL corpus (Taghipour
and Ng, 2016). Following prior work, we use standard accuracy (Acc, %) as our primary
evaluation metric.
Baselines. To validate the importance of modeling entities and discourse relations simultane-
ously, we compare our approach with the following baselines:

• TextOnly. This baseline relies solely on textual information for coherence modeling.
In Method I, it uses a text encoder to obtain sentence representations, a sentence-level
Transformer to capture coherence patterns, and a softmax classifier for prediction. In
Method II, it prompts LLMs to evaluate coherence based only on the text.

• TextEnty. This is an ablated version of our approach in which the discourse relation
elements are removed from the sentence-entity-discourse relation graph.

• TextRel. This is another ablated version of our method, where we remove the entity
elements from the graph.

Furthermore, we compare our approaches against previous state-of-the-art models on each
corpus.

8.2.2 Overall Results

GCDC / CoheSentia. Table 8.1 presents the results on the GCDC and CoheSentia datasets.
The "Fusion" block reports the results obtained using an additional fusion module to integrate

consistency across settings, we use the 8B model throughout the main text but include zero-shot results for the
70B model in the Appendix D.2.
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Model
GCDC

CoheSentia
Clinton Enron Yahoo Yelp Avg

Jeon and Strube (2022) 64.200.4 55.300.3 58.400.2 57.300.2 58.90 -

Liu et al. (2023a) 66.200.8 57.000.8 63.650.7 58.051.2 61.23 -

Fusion

RoBERTa

TextOnly 64.550.7 57.500.9 60.050.4 58.200.8 60.10 60.641.5

TextEnty 66.200.8 58.801.1 63.150.9 59.201.1 61.83 63.132.0

TextRel 66.450.9 59.701.0 63.351.1 60.401.3 62.48 63.741.8

Our Method I 67.600.5 60.500.3 63.750.5 61.100.4 63.24 66.241.6

LLaMA

TextOnly 63.550.5 56.650.8 59.450.8 57.451.0 59.27 63.131.2

TextEnty 64.800.8 58.100.4 62.100.5 57.900.8 60.73 65.801.5

TextRel 65.100.7 58.750.4 62.850.3 59.350.5 61.51 66.651.6

Our Method I 67.250.4 60.100.3 64.100.5 61.300.5 63.18 69.121.5

Prompt

LLaMA

zero-shot

TextOnly 54.50 38.00 34.00 40.50 40.88 50.10

TextEnty 55.00 39.00 41.50 44.50 45.00 51.35

TextRel 57.50 41.00 42.00 45.50 46.50 52.17

Our Method II 56.50 41.00 42.00 48.00 46.88 53.83

LLaMA

fine-tuned

TextOnly 63.550.8 56.800.9 60.051.0 55.451.2 58.96 64.951.4

TextEnty 65.001.2 57.600.5 60.451.0 56.300.9 59.84 65.381.5

TextRel 64.550.7 59.100.5 61.100.7 57.250.5 60.50 66.421.4

Our Method II 65.150.6 60.551.2 62.051.2 57.550.5 61.33 67.281.1

Table 8.1 Mean accuracy results (with std) on GCDC and CoheSentia.

entity and discourse relation features, while the "Prompt" block shows the results based on
incorporating entity and discourse relation patterns into the input prompt of LLMs using
natural language.

For the Fusion style, we report results based on RoBERTa and LLaMA. Regardless
of which encoder is used, TextEnty and TextRel consistently outperform the TextOnly
baseline on GCDC and CoheSentia. This suggests that incorporating entity or discourse
relation features enhances coherence assessment, aligning with the findings of previous entity-
based (Jeon and Strube, 2022) and discourse relation-based studies (Wu et al., 2023). The
improvement of TextRel over TextOnly is greater than that of TextEnty over TextOnly, likely
because discourse relations are more commonly used than entity cues to connect sentences in
both GCDC and CoheSentia. For instance, discourse relations like cause and concession are
frequently employed in CoheSentia to make stories more compact and engaging (Chaturvedi
et al., 2017). Our Method I significantly outperforms both the TextEnty and TextRel baselines,
showing a 1-2% improvement on GCDC and approximately a 3% gain on CoheSentia. These
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Model P1 P2 P3 P4 P5 P6 P7 P8 Avg

Jeon and Strube (2022) 78.38 75.70 76.58 76.56 79.10 76.41 75.03 74.54 76.54

Liu et al. (2023a) 75.791.1 76.251.1 74.141.2 75.810.7 77.010.9 77.081.1 73.550.8 72.910.7 75.34

Fusion

RoBERTa

TextOnly 76.360.9 75.101.0 75.290.5 75.331.5 75.901.0 75.611.9 73.760.9 73.341.1 75.08

TextEnty 79.051.4 77.151.2 77.730.8 76.981.3 77.641.6 78.321.5 76.491.3 75.791.0 77.39

TextRel 78.940.8 77.410.7 77.800.8 77.550.8 78.490.9 78.331.5 77.081.2 76.250.5 77.73

Our Method I 79.920.8 78.460.9 78.680.9 78.251.2 79.231.1 79.421.27 78.210.9 77.131.1 78.66

LLaMA

TextOnly 75.170.8 73.881.3 73.631.6 73.671.4 75.891.0 75.100.9 73.671.4 72.871.5 74.24

TextEnty 77.030.8 75.591.4 75.141.5 75.201.5 77.070.9 77.120.8 75.480.6 74.171.4 75.85

TextRel 76.350.9 76.400.7 75.980.5 75.401.2 76.641.7 76.651.6 75.181.1 75.161.3 75.97

Our Method I 78.241.7 78.111.9 77.011.1 76.591.1 79.231.3 79.471.6 77.321.1 76.501.8 77.81

Prompt

LLaMA

zero-shot

TextOnly 51.39 55.19 52.72 50.63 54.37 50.62 46.92 49.44 51.41

TextEnty 56.85 53.78 54.48 54.00 53.83 57.15 55.89 54.64 55.08

TextRel 58.51 56.45 54.73 55.59 56.43 57.19 57.41 53.72 56.25

Our Method II 59.90 57.75 56.73 56.13 57.28 58.02 58.19 55.91 57.49

LLaMA

fine-tuned

TextOnly 79.031.1 76.761.4 76.241.5 77.521.4 79.491.4 76.021.4 76.691.1 75.280.9 77.13

TextEnty 80.131.2 76.631.2 75.641.3 77.731.0 79.551.5 76.571.6 78.951.4 76.411.3 77.70

TextRel 79.351.5 77.151.6 77.161.4 76.611.2 80.151.1 75.411.5 78.291.3 76.891.4 77.63

Our Method II 80.021.6 77.921.5 77.581.2 78.131.3 81.131.5 77.291.3 77.881.0 77.181.5 78.39

Table 8.2 Mean accuracy results (with std) on TOEFL dataset.

results highlight the value of jointly modeling entity and discourse relation features for
effective coherence assessment.

For the Prompt style, we present the results of LLaMA in both zero-shot and fine-tuned
settings. In the zero-shot setting, incorporating entity and discourse relation information
enhances LLaMA’s performance in coherence assessment. On GCDC, TextEnty and TextRel
outperform the TextOnly baseline by over 4-5%. In contrast, the improvement on Cohe-
Sentia is more modest, with gains of about 1-2%. Combining these features further boosts
performance, resulting in improvements of over 6% on GCDC and 3.5% on CoheSentia,
compared to the TextOnly baseline. These results suggest that prior knowledge of entity- and
discourse relation-based coherence can be effectively leveraged for coherence assessment in
cold-start scenarios. When fine-tuning LLaMA with LoRA, the performance improvements
of TextEnty, TextRel, and EntyRel over TextOnly still exist, but the gains are smaller than
in the zero-shot setting. We speculate that this is because fine-tuning allows the model
to somewhat implicitly capture coherence-relevant signals, such as entity transitions and
discourse relations (Xiao et al., 2021), so the explicit incorporation of them leads to limited
improvement.
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Low Medium High Range

Fusion
(LLaMA)

TextOnly 66.67 78.99 77.88 12.32
TextEnty 73.24 80.44 76.79 7.20
TextRel 74.36 80.45 78.41 6.09
Our Method I 81.16 81.99 77.19 4.80

Prompt
(fine-tuned)

TextOnly 68.22 83.29 82.93 15.07
TextEnty 71.70 85.23 85.49 13.79
TextRel 70.59 84.09 84.05 13.50
Our Method II 73.47 85.39 84.71 11.92

Table 8.3 Accuracy results for each coherence level on TOEFL P5. Range indicates the
difference between the highest and lowest values.

TOEFL. Results on TOEFL are shown in Table 8.2. Similar to the findings on GCDC and
CoheSentia, both entity and discourse relation patterns contribute positively to the task in
the fusion setting. Specifically, TextEnty and TextRel outperform the TextOnly baseline by
2-3% when using RoBERTa or LLaMA as the text encoder. Combining entity and discourse
relation features further enhances performance. Our Method I, using RoBERTa as the text
encoder, achieves an average accuracy of 78.66%, significantly outperforming the previous
state-of-the-art model (Jeon and Strube, 2022). We observe similar results in the prompt
setting: in the zero-shot scenario, Method II achieves an accuracy of 6.08% higher than the
TextOnly baseline, and 1.26% higher in the fine-tuned setting.

8.2.3 Analysis

To understand how jointly modeling entities and discourse relations contributes to coher-
ence assessment, we analyze the accuracy of different models across each coherence level.
Table 8.3 presents the models’ performance on the TOEFL P5 dataset in both the Fusion
setting (with LLaMA as the text encoder) and the fine-tuned Prompt setting. TextOnly
exhibits a strong bias, achieving high accuracy on "medium" and "high" coherence labels
but significantly lower accuracy on the "low" label. We attribute this to the imbalanced label
distribution in the TOEFL P5 dataset, where over 90% of samples are annotated as "medium"
or "high" coherence. TextEnty and TextRel help mitigate this bias by incorporating entity
and discourse relation information, respectively. For example, in the Fusion setting, they
improve accuracy on low-coherence data by 6.57% and 7.69%, respectively. Our Methods I
and II go further by jointly modeling entities and discourse relations, resulting in the smallest
performance gap across all three coherence levels. These results suggest that incorporating
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Model

TextOnly

TextEnty

TextRel

Ours

Prediction

High

Low

Medium

Low

…… The reviewer's tone is conversational and informal, but their points are
clearly stated and easy to follow.

Explanation

The relation between s7 and s10 is "entity", indicating that they discuss the
same entities. However, s7 is discussing the cost-effectiveness of
prescriptions, while s10 is discussing the cost-effectiveness of Fry's and
Walmart. This lack of coherence between the entities being discussed
suggests a low coherence level.
The relations between sentences provide a clear narrative flow, but the
contrast between the customer's satisfaction with the store's prices and their
dissatisfaction with the pricing of vegetables creates a sense of inconsistency.

The relations between sentences provide a clear narrative flow, but the
content of the sentences are often abrupt and lack cohesion, indicating a low
level of coherence.

[There’s two older men here that are always in a lousy mood.]1 [They can’t wait for 62.]2 [Andrea M.
is correct about the cart corrals.]3 …[Really saves us money in that dept.]7 [But I can only give 3
stars on account that their pricing for vegetables and other items is a ripoff.]8 [Why is there only one
dollar sign showing above?]9 [People are SOOOO brainwashed into thinking that Fry’s and Walmart
save you money.]10…

(s1, cause, s2), (s2, norel, s3), (s3, level-of-detail, s4), (s4, norel, s5), (s5, norel, s6), (s6, cause, s7), (s7,
norel, s8), (s7, entity, s10), …

TextOnly

TextEnty

TextRel

Ours

Medium

Medium

Low

Low

… seemingly unrelated statements, …. the presence of a few cohesive
elements, … indicates some level of coherence.

… various unrelated topics… s5 and s6 discuss the same entities, which is a
positive sign of coherence.

The text discusses various unrelated topics … The relations between
sentences are mostly conjunctions and sometimes norel, which indicate a
simple sequence of ideas rather than a deeper connection between them.

The text discusses various unrelated topics… The relations between
sentences are mostly conjunctions, indicating a lack of strong logical
connections between the ideas.

[Look at you...such a hoax spreader...ha]1 [Anyway, i was so busy yesterday i didn’t have a chance to
do anything about it anyway.]2 [so no harm, no foul.]3 [how are you doing?]4 [as for Enron, as you
well know our stock’s not doing so great these days, but i‘m not overly stressed.]5…[Can’t wait to
hear how your preparations are coming along...for the wedding and the move.]7 [btw, have you set a
firm date yet?]8

(s1, norel, s2), (s2, cause, s3), (s3, norel, s4), (s4, conjunction, s5), (s5, conjunction, s6), (s5, entity, s6),
(s6, conjunction, s7), (s7, conjunction, s8)

Fig. 8.5 Two examples (truncated) showing how entities and discourse relations aid coherence
assessment. Both texts are labeled as low coherence. We use a zero-shot prompt setting, and
the "explanation" refers to LLaMA’s brief justification for its prediction.
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entities and discourse relations helps the model learn more effective coherence patterns and
improves its robustness to imbalanced data distributions.

To better understand how entities and discourse relations influence model behavior, we
present two case studies in Figure 8.5. The two examples are from the GCDC corpus
and annotated as low coherence. In both cases, we use a zero-shot prompt setting, asking
LLaMA to evaluate the coherence level of a given text and provide a brief explanation3 for
its assessment (see Appendix D.1 for details). As shown in the first example, without entity
and discourse relation information (i.e., TextOnly), LLaMA evaluates the text as having high
coherence. TextRel identifies some inconsistencies but still fails to classify it as medium
coherence. In contrast, TextEnty and Our Method II correctly assess the text as having low
coherence, due to the lack of cohesion, specifically, missing entity-based signals. In the
second example, all models recognize that the sentences in the text cover various unrelated
topics. However, TextOnly and TextEnty are slightly influenced by the presence of cohesive
elements, leading them to predict the text as medium coherence. In contrast, TextRel and Our
Method II correctly and confidently classify it as low coherence, due to the lack of logical
connections between the sentences. These two cases effectively illustrate the importance of
modeling both entity and discourse relation patterns for accurate coherence assessment.

Enron→ Others TOEFL P1→ Others

Fusion
(LLaMA)

TextOnly 47.48 68.79
TextEnty 50.62 (+3.14) 72.02 (+3.23)
TextRel 50.98 (+3.55) 72.87 (+4.08)
Our Method I 53.82 (+6.34) 74.40 (+5.61)

Prompt
(fine-tuned)

TextOnly 52.50 76.72
TextEnty 53.67 (+1.17) 78.42 (+1.70)
TextRel 54.75 (+2.25) 78.15 (+1.43)
Our Method II 56.00 (+3.50) 78.60 (+1.88)

Table 8.4 Accuracy of models in a cross-domain setting.

To assess whether our models have truly learned more robust coherence patterns, we
further evaluate their transferability in cross-domain settings. Specifically, we train TextOnly,
TextEnty, TextRel, and Our Method in both the Fusion and Prompt settings on the Enron
subset of GCDC (or Prompt 5 of TOEFL) and test their performance on other subsets of
GCDC (or other TOEFL prompts). Table 8.4 presents the results. Both TextEnty and TextRel

3While LLMs can generate plausible rationales for their outputs, these explanations should not be assumed
to faithfully reflect the underlying mechanisms driving their decisions.
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consistently outperform the TextOnly baseline in cross-domain settings, indicating that
entity and discourse relation patterns are effective domain-agnostic features for coherence
assessment. Moreover, our methods achieve the best performance across all cross-domain
experiments, demonstrating the effectiveness of jointly modeling entities and discourse
relations.

8.3 Summary

In this chapter, we explore whether combining entity and discourse relation information
improves coherence modeling. We propose two novel methods that jointly model entities
and discourse relations for coherence assessment. Experiments on three benchmark datasets
demonstrate that our approaches consistently outperform strong baselines, emphasizing the
value of integrating both features. Additionally, we demonstrate that these features enhance
model robustness in scenarios with imbalanced labels and across different domains.



Chapter 9

Conclusions & Future Work

9.1 Conclusions

This thesis explores various linguistically inspired features for coherence modeling from
three perspectives: (i) entity-based features (Chapter 4), (ii) discourse relation-based patterns
(Chapters 5, 6, and 7), and (iii) a combination of both (Chapter 8).

Part I focuses on entity-based features. We begin by illustrating, through an example, how
structural similarity between documents can be potentially useful for coherence modeling. To
explicitly model this similarity, we propose a graph-based approach that connects structurally
similar documents and leverages Graph Neural Networks to model their connectivity for
coherence assessment. Experimental results demonstrate that our method significantly
outperforms baselines that do not incorporate such structural information, highlighting its
effectiveness. Further analysis reveals that in highly coherent texts, sentences tend to be
more densely connected, whereas in less coherent texts, sentences are more isolated.

Part II centers on discourse relation-based patterns. This part comprises three contribu-
tions: (1) a novel model to improve implicit discourse relation classification; (2) a detailed
analysis of the poor performance of explicit to implicit discourse classification; and (3) a
discourse relation-enhanced approach for coherence assessment.

• First, we identify one major reason for the limited use of discourse relations in coher-
ence modeling: the poor performance of previous discourse parsers, particularly for
implicit relations. To address this, we propose a novel connective-enhanced model
inspired by the annotation process of implicit relations in the Penn Discourse Treebank.
Our model significantly improves classification performance, achieving over 76%
accuracy on top-level relations in PDTB 3.0.
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• Next, we systematically investigate an unanswered question in the discourse commu-
nity: why classifiers trained on explicit examples (with connectives removed) perform
poorly in real implicit scenarios. We show that a key reason is a label shift introduced
during the construction of the implicit-like dataset. Through both manual and empirical
analysis, we demonstrate the existence of such a shift and investigate several factors
that lead to the occurrence of label shift. We then propose two strategies to mitigate
the effects of label shift, showing consistent improvements not only on PDTB data but
also on corpora annotated with RST relations.

• Building on the improved discourse relation classifier, we extract discourse relation
sequences from coherence corpora and conduct a correlation analysis between relation
n-grams and coherence levels. Based on this insight, we propose a fusion Transformer
model that integrates both text-based and discourse relation-based features. Our
model significantly outperforms competitive baselines, and further analysis shows that
discourse relation features enhance model robustness, especially on long documents.

Part III investigates the joint modeling of entities and discourse relations, motivated
by the observation that these cues often co-occur and interact in complex ways to establish
textual coherence. We propose two approaches: a fusion model and a prompt-based method.
Experiments on three benchmark datasets show that both approaches significantly outperform
strong baselines, demonstrating the effectiveness of modeling these features jointly. Further
analysis indicates that integrating entities and discourse relations facilitates better learning
of coherence patterns, mitigates the impact of data imbalance, and improves generalization
across domains.

9.2 Future Work

In this section, we outline two potential directions for future research:

• Designing Linguistically-Inspired Prompts to Guide Large Language Models
(LLMs).

Recent advancements in large language models (LLMs), such as GPT-4 (OpenAI
et al., 2024) and DeepSeek (DeepSeek-AI et al., 2025), have demonstrated remarkable
capabilities and fundamentally reshaped the landscape of natural language processing
(NLP). The field is witnessing a paradigm shift from training task-specific models
to leveraging general-purpose LLMs via inference through prompt design. Instead
of fine-tuning a model for individual tasks, researchers are increasingly focused on
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how to formulate effective prompts that can elicit the desired reasoning behavior from
LLMs without additional training.

The most prominent approach in LLM prompting is chain-of-thought reasoning (Wei
et al., 2022), where complex problems are decomposed into a sequence of simpler
reasoning steps. For instance, when asked how much food an adult should consume
daily without gaining weight, an LLM might first estimate the average daily energy
expenditure, then retrieve the caloric content of various foods per 100 grams, and
finally calculate appropriate food portions to remain within the caloric limit.

In this thesis, we have demonstrated that entity-based and discourse relation-based
features are highly beneficial for coherence assessment. A promising direction for
future research is to design chain-of-thought prompts that guide LLMs to first analyze
entity-based connectivity patterns within a document, then examine inter-sentential
discourse relations, and finally integrate these cues, along with the document content,
to assess overall coherence. This linguistically-informed reasoning process could
enhance the interpretability and effectiveness of LLM-based coherence evaluation.

• Investigating the Benefits of Linguistically-Inspired Features in Extremely Long
Documents

Our experimental results show that models jointly modeling entities and discourse
relations perform particularly well on long documents. However, current LLMs often
struggle with very long texts due to input length limitations and degraded performance
over extended contexts (Wang et al., 2024; Li et al., 2025). This opens up an interesting
avenue for future work: exploring whether linguistically inspired features can help
improve the performance of LLMs when handling extremely long documents.

By explicitly modeling structural and semantic cues, such as entity salience and dis-
course structure, it may be possible to augment LLMs’ capabilities on long-document
tasks, either by pre-processing documents into more coherent segments or by designing
specialized prompting strategies that incorporate these linguistic signals.





Appendix

A Structural-similarity Enhanced Coherence Modeling

A.1 Subgraph Examples

We show several text pieces with their corresponding constructed subgraphs in Figure 1 (from
the GCDC Clinton dataset) and Figure 2 (from the TOEFL P1 dataset). In each example, the
corresponding subgraph is shown on the left. Blue boxes indicate the recognized nouns in
each sentence, and semantically related nouns across different sentences are connected by
directed edges between the boxes. Two sentences are connected if they contain semantically
related nouns.

B Annotation-Inspired Implicit Relation Classification

B.1 Experimental Settings

Connectives. For PDTB 2.0, PDTB 3.0, and PCC, we retain only connectives whose
frequencies exceed 100, 100, and 5, respectively. In addition, we introduce a default
connective, <unk>, into the connective inventory. Any instance containing a connective
whose frequency falls below the corresponding threshold is mapped to this default value. As
a result, the resulting dataset size is consistent with that used in previous work.

Baselines. We primarily compare our approach with the following baselines:

• RoBERTa. This baseline fine-tunes RoBERTa using only the two discourse arguments,
(Arg1, Arg2), as input to predict discourse relations. At inference time, the model similarly
takes (Arg1, Arg2) as input and outputs a relation prediction.

• RoBERTaConn. In this setting, RoBERTa is fine-tuned with both discourse arguments
and the explicit connective, i.e., (Arg1, Connective, Arg2), to predict the discourse relation.



144 Appendix

We seem to make the same mistakes over and over and over.

I have decided to call The Gambia “The Best Little Embassy in Africa ”.

Our instructor is one of the drivers who was a former language teacher at Peace Corps so there are no
costs involved .

Also we will start community projects next month — again 100% participation .

𝑆!

𝑆"

𝑆#

𝑆$

USUN/NY is working on a short paper laying out the issues and background , as well as factoring in 
conversations Elizabeth Cousens has had with the UK .

At the July 2 9:15am senior staff meeting , the Secretary said that Ban had asked her when would 
the U.S. provide a name for the high level panel .

(They were both at the June 30 Geneva meeting on Syria . )

I responded that we would move ahead with interagency conversations and recommend a name .

𝑆!

𝑆"

𝑆#

𝑆$

As Administrator, I have made it a central goal to improve oversight of all USAID activities world-wide.

I have directed the implementation of the Accountable Assistance for Afghanistan Initiative in order to
ensure more stringent control and oversight of USG funds .

I am gravely concerned about the findings of the USAID/OIG and have directed our General Counsel 
to work closely with the USAID .

I will keep you updated on this and as we move our assistance program in Afghanistan toward 
transition goals .

𝑆!

𝑆"

𝑆#

𝑆$

Fig. 1 Three text examples with their corresponding constructed subgraphs from the GCDC
Clinton dataset. The subgraph for each text example is displayed to the left of the example.

During evaluation, however, only the two arguments (Arg1, Arg2) are provided as input
for relation prediction.

• Adversarial. This baseline consists of two RoBERTa-based encoders. The first encoder
takes only the two arguments (Arg1, Arg2) as input, while the second encoder additionally
incorporates the connective (Arg1, Connective, Arg2). Both encoders are trained to predict
discourse relations. An adversarial loss is further introduced to encourage the represen-
tations produced by the two encoders to be indistinguishable, such that a discriminator
cannot determine which encoder generated a given representation (see Figure 3.7). At test
time, only the first encoder is used to predict discourse relations based on (Arg1, Arg2).
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• Multitask. This baseline uses the two arguments (Arg1, Arg2) as input and employs two
classification heads: one for discourse relation prediction and the other for connective
prediction (as shown in Figure 3.8). During evaluation, only the discourse relation classifier
is used to predict relations from (Arg1, Arg2).

• Pipeline. This baseline is a variant of our approach in which the connective generation
module and the relation prediction module are trained separately. The connective generation
module takes (Arg1, Arg2) as input and generates a plausible connective, while the relation
prediction module uses (Arg1, Generated_Connective, Arg2) to predict the discourse
relation.

C Explicit to Implicit Discourse Relation Classification

C.1 Manual Analysis

We sample 100 examples from the explicit corpus of PDTB 2.0 and remove connectives
from these instances. Then two students1 familiar with discourse relations are asked to
independently annotate these 100 examples with the connective removed, separately. They
annotate each instance with one of 12 relations, including Comparison.Concession, Compar-
ison.Contrast, Contingency.Cause, Contingency.Pragmatic cause, Expansion.Conjunction,
Expansion.Instantiation, Expansion.Alternative, Expansion.List, Expansion.Restatement,
Temporal.Asynchronous, Temporal.Synchrony, and NonRel. If there is disagreement in the
annotation of any example, we ask them to discuss and provide a final annotation. The final
result can be either just one relation or two different ones (indicating ambiguous examples).

D Joint Modeling of Entities and Discourse Relations

D.1 Prompt with Explanation

In the case studies presented in Section 8.2.3 of Chapter 8, we prompt LLaMA not only to
evaluate the coherence level of a given text but also to provide a brief explanation for its
judgment. This is achieved by modifying the instruction template used with LLaMA. Figure
3 shows the prompt used in these case studies for Our Method II. Similar prompts are used
for TextOnly, TextEnty, and TextRel.

1Both students are from the Computational Linguistics department.
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Model
GCDC

CoheSentia
Clinton Enron Yahoo Yelp Avg

Prompt
LLaMA

zero-shot

TextOnly 56.50 51.00 43.50 47.50 49.63 55.07

TextEnty 57.50 51.50 45.50 52.00 51.63 56.11

TextRel 59.50 52.50 49.50 52.50 53.50 56.73

Our Method II 60.00 53.50 52.50 53.00 54.75 57.56

Table 1 Mean accuracy results of Llama-3.3-70B on GCDC and CoheSentia in the zero-shot
setting.

Models P1 P2 P3 P4 P5 P6 P7 P8 Avg

Prompt
LLaMA

zero-shot

TextOnly 57.25 58.51 54.58 54.67 57.95 56.46 53.62 54.37 55.93

TextEnty 60.51 58.26 56.30 58.05 58.25 60.42 60.26 56.80 58.61

TextRel 61.05 59.35 56.88 58.45 59.83 60.21 61.33 56.51 59.20

Our Method II 62.56 60.24 59.74 59.91 61.35 62.19 61.80 58.23 60.75

Table 2 Mean accuracy results of Llama-3.3-70B on TOEFL dataset in the zero-shot setting.

D.2 Zero-shot Results Using Llama-3.3-70B

Coherence assessment involves processing entire documents as input, which are typically
quite lengthy (see Table 2.6). As a result, training and inference require GPUs with substantial
memory capacity. Due to hardware limitations, we employ Llama-3.1-8B as the language
model for implementing Method II in Section 8.2 of Chapter 8. We also experimented
with the more advanced Llama-3.3-70B model, but it caused out-of-memory errors during
fine-tuning. However, our GPU can run Llama-3.3-70B in a zero-shot setting for Method II.
Accordingly, we report zero-shot results using Llama-3.3-70B in Tables 1 and 2. As shown,
the results are consistent with those obtained using Llama-3.1-8B: incorporating entity and
discourse relations improves the model’s performance in coherence assessment, and jointly
modeling both types of information yields the best results.
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Your knowledge have to be more specialized than ordinary people .

Honestly broad knowledge is an asset for an academic career but it is not enough .

In academic subjects you have to your own thesis , hypothesis , researchs and also stastistical results 
on your subject to promote .

Academicians are the people who leads to the society .

𝑆!

𝑆"

𝑆#

𝑆$

For that reason they have to be specialized in one spesific subject .𝑆%

First, with the bloom of the information development , it is mostly impossible the obtain all the
knowledge of one specific.

What was the use of a person who spend all his life in learning all the knowledge , but doing nothing 
to use what he learn to contribute to society ?

Sometime it could be a waste of time .

This may lead to a person difficult to live in a world that most, if not all , of the works are specificly
cassify .

𝑆!

𝑆"

𝑆#

𝑆$

Why don‘t we use the time we spend on the knowledge that may never be used in our life to 
something more related to ourself?

𝑆%

As we know leaders are not born as leaders , they are the people coming from different fields .

A leader may be a doctor , engineer , farmer etc .

So the individual as a leader has to be aware of all the happenings going around him and also his
region , province , country etc .

Thus here in this case we can say that a mere confined knowledge is not enough to be a perfect individual.

𝑆!

𝑆"

𝑆#

𝑆$

So we can say that the method of having a broad knowledge of academic subjects depends upon how
an individual approaches it, rather than making it a controversial methodology .

𝑆%

Fig. 2 Three text examples with their corresponding constructed subgraphs from the TOEFL
P1 dataset.
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You are an AI assistant tasked with coherence assessment. You will be given a set of 
sentences from a text, along with parsed relations between some sentence pairs. Each 
relation is represented as a triple in the form (si, r, sj), where si and sj denote the i-th and 
j-th sentences from the text and r is the relation between them. The relation r can be one 
of the following: (1) “entity”: indicates that the two sentences discuss the same entities;
(2) a discourse relation, such as “reason” and “contrast”: indicates there is a discourse
relation between the two sentences. Your task is to evaluate the overall coherence level 
of the text by considering the content of the sentences and the relations between 
them. Please assign one of the following coherence levels to the text: {low, medium,
high}.

Here are the sentences in the given text:
s1: Did you know that John is still in Germany?
s2: He was planning to leave Berlin today but ran into a citywide strike.
s3: All the roads were blocked, and buses and trains were cancelled.
s4: So, he couldn’t get to the airport and now has to stay in the city for a few more days.

Here are the relations between sentences: (s1, entity, s2), (s1, reason, s2), (s1, entity, s4),
(s2, instantiation, s3), (s2, entity, s4), (s3, result, s4)

Please format your outputs as follows:
<justification>[Explain how you arrived at the result, using at most one or two 
sentences, keeping it as concise as possible]</justification>
<answer>[your evaluation result]</answer>

Large Language Models high

input

generate

Fig. 3 Prompt with explanation.
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E Code and Data Used in this Thesis

The code and data used in this thesis has been published with the following digital object
identifiers:

• Wei Liu (2025). Source code and data for the PhD Thesis "Linguistically-Inspired
Neural Coherence Modeling". DOI: 10.11588/data/ZBNUCG, URL: https:
//doi.org/10.11588/data/ZBNUCG

10.11588/data/ZBNUCG
https://doi.org/10.11588/data/ZBNUCG
https://doi.org/10.11588/data/ZBNUCG
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G., editors, Proceedings of the 7th Workshop on Challenges and Applications of Automated
Extraction of Socio-political Events from Text (CASE 2024), pages 118–124, St. Julians,
Malta. Association for Computational Linguistics.

Rohde, H., Johnson, A., Schneider, N., and Webber, B. (2018). Discourse coherence: Con-
current explicit and implicit relations. In Gurevych, I. and Miyao, Y., editors, Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 2257–2267, Melbourne, Australia. Association for Computational
Linguistics.

Rutherford, A. and Xue, N. (2014). Discovering implicit discourse relations through brown
cluster pair representation and coreference patterns. In Wintner, S., Goldwater, S., and
Riezler, S., editors, Proceedings of the 14th Conference of the European Chapter of
the Association for Computational Linguistics, pages 645–654, Gothenburg, Sweden.
Association for Computational Linguistics.

Saito, M., Yamamoto, K., and Sekine, S. (2006). Using phrasal patterns to identify discourse
relations. In Moore, R. C., Bilmes, J., Chu-Carroll, J., and Sanderson, M., editors, Proceed-
ings of the Human Language Technology Conference of the NAACL, Companion Volume:
Short Papers, pages 133–136, New York City, USA. Association for Computational
Linguistics.

Salle, A. and Villavicencio, A. (2019). Why so down? The role of negative (and
positive) pointwise mutual information in distributional semantics. arXiv preprint
arXiv:1908.06941.

Sanders, T. J., Demberg, V., Hoek, J., Scholman, M. C., Asr, F. T., Zufferey, S., and Evers-
Vermeul, J. (2021). Unifying dimensions in coherence relations: How various annotation
frameworks are related. Corpus Linguistics and Linguistic Theory, 17(1):1–71.

Sanders, T. J. M., Spooren, W. P. M., and Noordman, L. G. M. (1992). Toward a taxonomy
of coherence relations. Discourse Processes, 15(1):1–35.

Sarzhoska-Georgievska, E. (2016). Coherence: Implications for teaching writing. English
Studies at NBU, 2(1):17–30.



Schwarz, M. (2001). Establishing coherence in text. conceptual continuity and text-world
models. Logos and Language, 2(1):15–24.

Shang, E., Liu, X., Wang, H., Rong, Y., and Liu, Y. (2019). Research on the application
of artificial intelligence and distributed parallel computing in archives classification. In
2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control
Conference (IAEAC), pages 1267–1271.

Shen, A., Mistica, M., Salehi, B., Li, H., Baldwin, T., and Qi, J. (2021). Evaluating document
coherence modeling. Transactions of the Association for Computational Linguistics,
9:621–640.

Sheng, Z., Zhang, T., Jiang, C., and Kang, D. (2024). Bbscore: A brownian bridge based
metric for assessing text coherence. Proceedings of the AAAI Conference on Artificial
Intelligence, 38(13):14937–14945.

Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., and Borgwardt, K. (2009).
Efficient graphlet kernels for large graph comparison. In Artificial intelligence and
statistics, pages 488–495. PMLR.

Shi, J., Ding, X., Du, L., Liu, T., and Qin, B. (2021). Neural natural logic inference for
interpretable question answering. In Moens, M.-F., Huang, X., Specia, L., and Yih, S. W.-t.,
editors, Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 3673–3684, Online and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Shi, W. and Demberg, V. (2019a). Learning to explicitate connectives with Seq2Seq network
for implicit discourse relation classification. In Dobnik, S., Chatzikyriakidis, S., and
Demberg, V., editors, Proceedings of the 13th International Conference on Computa-
tional Semantics - Long Papers, pages 188–199, Gothenburg, Sweden. Association for
Computational Linguistics.

Shi, W. and Demberg, V. (2019b). Next sentence prediction helps implicit discourse relation
classification within and across domains. In Inui, K., Jiang, J., Ng, V., and Wan, X.,
editors, Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5790–5796, Hong Kong, China. Association for Computational
Linguistics.

Sileo, D., Van De Cruys, T., Pradel, C., and Muller, P. (2019). Mining discourse markers
for unsupervised sentence representation learning. In Burstein, J., Doran, C., and Solorio,
T., editors, Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 3477–3486, Minneapolis, Minnesota. Association for
Computational Linguistics.

Sporleder, C. and Lascarides, A. (2005). Exploiting linguistic cues to classify rhetorical
relations. In Proceedings of Recent Advances in Natural Language Processing (RANLP-
05), pages 532–539. Unknown Publisher. Pagination: 8.



Sporleder, C. and Lascarides, A. (2008a). Using automatically labelled examples to classify
rhetorical relations: An assessment. Natural Language Engineering, 14(3):369–416.

Sporleder, C. and Lascarides, A. (2008b). Using automatically labelled examples to classify
rhetorical relations: an assessment. Natural Language Engineering, 14(3):369–416.

Strube, M. and Ponzetto, S. P. (2006). Wikirelate! computing semantic relatedness using
wikipedia. In Proceedings of the 21st National Conference on Artificial Intelligence -
Volume 2, AAAI’06, pages 1419–1424. AAAI Press.

Taghipour, K. and Ng, H. T. (2016). A neural approach to automated essay scoring. In Su,
J., Duh, K., and Carreras, X., editors, Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 1882–1891, Austin, Texas. Association
for Computational Linguistics.

Tang, L. and Liu, H. (2009). Relational learning via latent social dimensions. In Proceedings
of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 817–826.

Tien Nguyen, D. and Joty, S. (2017). A neural local coherence model. In Barzilay, R.
and Kan, M.-Y., editors, Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 1320–1330, Vancouver,
Canada. Association for Computational Linguistics.

Torabi Asr, F. and Demberg, V. (2012). Implicitness of discourse relations. In Kay, M. and
Boitet, C., editors, Proceedings of COLING 2012, pages 2669–2684, Mumbai, India. The
COLING 2012 Organizing Committee.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra,
S., Bhargava, P., Bhosale, S., et al. (2023). Llama 2: Open foundation and fine-tuned chat
models. arXiv preprint arXiv:2307.09288.

van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine
Learning Research, 9:2579–2605.

van Dijk, T. A. and Kintsch, W. (1983). Strategies of Discourse Comprehension. Academic
Press, New York.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u.,
and Polosukhin, I. (2017). Attention is all you need. In Guyon, I., Luxburg, U. V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc.

Wang, M., Chen, L., Cheng, F., Liao, S., Zhang, X., Wu, B., Yu, H., Xu, N., Zhang,
L., Luo, R., Li, Y., Yang, M., Huang, F., and Li, Y. (2024). Leave no document behind:
Benchmarking long-context LLMs with extended multi-doc QA. In Al-Onaizan, Y., Bansal,
M., and Chen, Y.-N., editors, Proceedings of the 2024 Conference on Empirical Methods
in Natural Language Processing, pages 5627–5646, Miami, Florida, USA. Association for
Computational Linguistics.



Wang, X., Li, S., Li, J., and Li, W. (2012). Implicit discourse relation recognition by selecting
typical training examples. In Kay, M. and Boitet, C., editors, Proceedings of COLING
2012, pages 2757–2772, Mumbai, India. The COLING 2012 Organizing Committee.

Webber, B. (2009). Genre distinctions for discourse in the Penn TreeBank. In Su, K.-
Y., Su, J., Wiebe, J., and Li, H., editors, Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP, pages 674–682, Suntec, Singapore. Association for
Computational Linguistics.

Webber, B., Prasad, R., and Lee, A. (2019a). Ambiguity in explicit discourse connectives.
In Dobnik, S., Chatzikyriakidis, S., and Demberg, V., editors, Proceedings of the 13th
International Conference on Computational Semantics - Long Papers, pages 134–141,
Gothenburg, Sweden. Association for Computational Linguistics.

Webber, B., Prasad, R., Lee, A., and Joshi, A. (2019b). The penn discourse treebank 3.0
annotation manual. Philadelphia, University of Pennsylvania, 35:108.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., ichter, b., Xia, F., Chi, E., Le, Q. V., and
Zhou, D. (2022). Chain-of-thought prompting elicits reasoning in large language models.
In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A., editors,
Advances in Neural Information Processing Systems, volume 35, pages 24824–24837.
Curran Associates, Inc.

Wu, C., Cao, L., Ge, Y., Liu, Y., Zhang, M., and Su, J. (2022). A label dependence-
aware sequence generation model for multi-level implicit discourse relation recognition.
Proceedings of the AAAI Conference on Artificial Intelligence, 36(10):11486–11494.

Wu, H., Shen, X., Lan, M., Mao, S., Bai, X., and Wu, Y. (2023). A multi-task dataset for
assessing discourse coherence in Chinese essays: Structure, theme, and logic analysis.
In Bouamor, H., Pino, J., and Bali, K., editors, Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pages 6673–6688, Singapore.
Association for Computational Linguistics.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S. (2021a). A comprehensive
survey on graph neural networks. IEEE Transactions on Neural Networks and Learning
Systems, 32(1):4–24.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S. (2021b). A comprehensive
survey on graph neural networks. IEEE Transactions on Neural Networks and Learning
Systems, 32(1):4–24.

Xiang, W. and Wang, B. (2023). A survey of implicit discourse relation recognition. ACM
Comput. Surv., 55(12).

Xiang, W., Wang, Z., Dai, L., and Wang, B. (2022). ConnPrompt: Connective-cloze prompt
learning for implicit discourse relation recognition. In Calzolari, N., Huang, C.-R., Kim,
H., Pustejovsky, J., Wanner, L., Choi, K.-S., Ryu, P.-M., Chen, H.-H., Donatelli, L., Ji,
H., Kurohashi, S., Paggio, P., Xue, N., Kim, S., Hahm, Y., He, Z., Lee, T. K., Santus, E.,
Bond, F., and Na, S.-H., editors, Proceedings of the 29th International Conference on
Computational Linguistics, pages 902–911, Gyeongju, Republic of Korea. International
Committee on Computational Linguistics.



Xiao, W., Huber, P., and Carenini, G. (2021). Predicting discourse trees from transformer-
based neural summarizers. In Toutanova, K., Rumshisky, A., Zettlemoyer, L., Hakkani-
Tur, D., Beltagy, I., Bethard, S., Cotterell, R., Chakraborty, T., and Zhou, Y., editors,
Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 4139–4152, Online.
Association for Computational Linguistics.

Xu, P., Saghir, H., Kang, J. S., Long, T., Bose, A. J., Cao, Y., and Cheung, J. C. K. (2019).
A cross-domain transferable neural coherence model. In Korhonen, A., Traum, D., and
Màrquez, L., editors, Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 678–687, Florence, Italy. Association for Computational
Linguistics.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., and Le, Q. V. (2019).
Xlnet: Generalized autoregressive pretraining for language understanding. In Wallach,
H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors,
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.

Yao, L., Mao, C., and Luo, Y. (2019). Graph convolutional networks for text classification.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pages 7370–
7377.

Ye, R., Zhang, C., Wang, R., Xu, S., and Zhang, Y. (2024). Language is all a graph needs. In
Graham, Y. and Purver, M., editors, Findings of the Association for Computational Linguis-
tics: EACL 2024, pages 1955–1973, St. Julian’s, Malta. Association for Computational
Linguistics.

Yin, W., Radev, D., and Xiong, C. (2021). DocNLI: A large-scale dataset for document-level
natural language inference. In Zong, C., Xia, F., Li, W., and Navigli, R., editors, Findings
of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 4913–4922,
Online. Association for Computational Linguistics.

Yu, C., Zhang, H., Song, Y., and Ng, W. (2022a). CoCoLM: Complex commonsense enhanced
language model with discourse relations. In Muresan, S., Nakov, P., and Villavicencio,
A., editors, Findings of the Association for Computational Linguistics: ACL 2022, pages
1175–1187, Dublin, Ireland. Association for Computational Linguistics.

Yu, N., Zhang, M., Fu, G., and Zhang, M. (2022b). RST discourse parsing with second-stage
EDU-level pre-training. In Muresan, S., Nakov, P., and Villavicencio, A., editors, Proceed-
ings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 4269–4280, Dublin, Ireland. Association for Computational
Linguistics.

Zeldes, A. (2017a). The GUM corpus: Creating multilayer resources in the classroom.
Language Resources and Evaluation, 51(3):581–612.

Zeldes, A. (2017b). The GUM corpus: Creating multilayer resources in the classroom.
Language Resources and Evaluation, 51(3):581–612.



Zhang, B., Su, J., Xiong, D., Lu, Y., Duan, H., and Yao, J. (2015). Shallow convolutional
neural network for implicit discourse relation recognition. In Màrquez, L., Callison-
Burch, C., and Su, J., editors, Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 2230–2235, Lisbon, Portugal. Association for
Computational Linguistics.

Zhang, L., Xing, Y., Kong, F., Li, P., and Zhou, G. (2020). A top-down neural architecture
towards text-level parsing of discourse rhetorical structure. In Jurafsky, D., Chai, J.,
Schluter, N., and Tetreault, J., editors, Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 6386–6395, Online. Association for
Computational Linguistics.

Zhou, H., Lan, M., Wu, Y., Chen, Y., and Ma, M. (2022). Prompt-based connective prediction
method for fine-grained implicit discourse relation recognition. In Goldberg, Y., Kozareva,
Z., and Zhang, Y., editors, Findings of the Association for Computational Linguistics:
EMNLP 2022, pages 3848–3858, Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Zhou, W., Huang, K., Ma, T., and Huang, J. (2021). Document-level relation extraction
with adaptive thresholding and localized context pooling. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages 14612–14620.

Zhou, Z. M., Lan, M., Niu, Z. Y., Xu, Y., and Su, J. (2010). The effects of discourse
connectives prediction on implicit discourse relation recognition. In Katagiri, Y. and
Nakano, M., editors, Proceedings of the SIGDIAL 2010 Conference, pages 139–146,
Tokyo, Japan. Association for Computational Linguistics.


	Table of Contents
	1 Introduction
	1.1 Motivation
	1.2 Research Questions
	1.3 Contributions
	1.4 Thesis Overview
	1.5 Published Work

	2 Background
	2.1 Coherence
	2.1.1 Entity-based Coherence
	2.1.2 Topic-based Coherence
	2.1.3 Discourse Relation-based Coherence

	2.2 Tasks and Corpora
	2.2.1 Coherence Modeling
	2.2.2 Discourse Relation Classification

	2.3 Deep Learning in NLP
	2.3.1 Transformer
	2.3.2 Graph Neural Networks
	2.3.3 Pre-trained Language Models & Large Language Models
	2.3.4 Model Adaptation
	2.3.5 MASK Stragegy in Transformers


	3 Related Work
	3.1 Coherence Modeling
	3.1.1 Entity-based Methods
	3.1.2 Discourse Relation-based Methods

	3.2 Discourse Relation Classfication

	4 Document Structure Similarity-Enhanced Coherence Modeling
	4.1 Why Consider the Structural Similarity?
	4.2 Graph-based Method
	4.2.1 Sentence Graph
	4.2.2 Subgraph Set
	4.2.3 Doc-subgraph Graph
	4.2.4 GCN Encoder

	4.3 Experiments
	4.3.1 Datasets
	4.3.2 Experimental Settings
	4.3.3 Overall Results
	4.3.4 Performance Analysis
	4.3.5 Ablation Study
	4.3.6 Subgraph Analysis

	4.4 Summary

	5 Annotation-inspired Implicit Discourse Relation Classification
	5.1 Why Is Implicit Relation Classification Challenging?
	5.2 The Annotation Process of Implicit Relations
	5.3 An Annotation-inspired Model
	5.3.1 Connective Generation
	5.3.2 Relation Classification
	5.3.3 Training and Evaluation

	5.4 Experiments
	5.4.1 Experimental Settings
	5.4.2 Overall Results
	5.4.3 Performance Analysis
	5.4.4 Relation Analysis
	5.4.5 Ablation Study

	5.5 Summary

	6 Explicit to Implicit Discourse Relation Classification
	6.1 Background
	6.1.1 Task
	6.1.2 Datasets
	6.1.3 The Performance Gap

	6.2 Label Shift in Discourse Relations
	6.2.1 What Is Label Shift?
	6.2.2 Do Explicit Examples Suffer from Label Shift?
	6.2.3 Does Label Shift Exist at the Corpus Level?
	6.2.4 Can Label Shift Be Measured?
	6.2.5 Why Does Label Shift Happen?

	6.3 Strategies to Alleviate Label Shift
	6.3.1 Filter Out Noisy Examples
	6.3.2 Joint Learning with Connectives

	6.4 Experiments
	6.4.1 Baselines and Upper Bounds
	6.4.2 Overall Results
	6.4.3 Results on the GUM Dataset

	6.5 Summary

	7 Discourse Relation-Enhanced Coherence Modeling
	7.1 Discourse Relation and Coherence
	7.1.1 Discourse Relations
	7.1.2 Correlation Analysis
	7.1.3 Text vs. Relations

	7.2 Discourse Relation-Enhanced Fusion Model
	7.2.1 Flat Structure with Positions
	7.2.2 Position-aware Attention
	7.2.3 Visibility Matrix

	7.3 Experiments
	7.3.1 Experimental Settings
	7.3.2 Overall Results
	7.3.3 Performance Analysis
	7.3.4 Ablation Study

	7.4 Summary

	8 Coherence Modeling Using Entities and Discourse Relations
	8.1 Method
	8.1.1 Method I: Fusion
	8.1.2 Method II: Prompt

	8.2 Experiments
	8.2.1 Experimental Settings
	8.2.2 Overall Results
	8.2.3 Analysis

	8.3 Summary

	9 Conclusions & Future Work
	9.1 Conclusions
	9.2 Future Work

	Appendix
	A Structural-similarity Enhanced Coherence Modeling
	A.1 Subgraph Examples

	B Annotation-Inspired Implicit Relation Classification
	B.1 Experimental Settings

	C Explicit to Implicit Discourse Relation Classification
	C.1 Manual Analysis

	D Joint Modeling of Entities and Discourse Relations
	D.1 Prompt with Explanation
	D.2 Zero-shot Results Using Llama-3.3-70B

	E Code and Data Used in this Thesis

	List of Figures
	List of Tables
	References

