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Zusammenfassung

Nichtlineare dynamische Systeme stehen im Zentrum der Modellierung komplexer Phänomene
in Wissenschaft und Technik, von biologischen Netzwerken bis hin zu Klimasystemen. Eine
zentrale Herausforderung besteht in der präzisen Schätzung von Modellparametern und der
zuverlässigen Vorhersage zukünftiger Systemzustände, insbesondere unter Unsicherheit und
begrenzter Beobachtbarkeit. Diese Dissertation widmet sich dieser Problematik durch die
Entwicklung eines umfassenden Rahmens, der klassische Methoden, moderne Optimierungs-
theorie und maschinelles Lernen zur Parameterschätzung und Vorhersage in nichtlinearen
dynamischen Systemen integriert.

Zu Beginn werden grundlegende Ansätze zur Parameterschätzung in gewöhnlichen Dif-
ferentialgleichungsmodellen betrachtet, darunter die Methode der kleinsten Quadrate, die
Maximum Likelihood Schätzung und die Bayessche Inferenz. Zur Überbrückung der Kluft
zwischen Theorie und Praxis werden fortgeschrittene rechnergestützte Techniken wie Mul-
tiple Shooting, Kollokationsverfahren und robuste Schätzverfahren mit der Huber Verlust-
funktion untersucht.

Die numerische Optimierung spielt eine zentrale Rolle in der Methodik dieser Arbeit.
Es werden detaillierte Analysen zu unbeschränkten und beschränkten Optimierungsver-
fahren präsentiert, einschließlich Newton-Verfahren, Trust-Region Strategien und sequen-
tieller quadratischer Programmierung (SQP). Diese Verfahren werden im Kontext der Sys-
temidentifikation angewendet, wobei klassische Verfahren datengetriebenen Ansätzen des
maschinellen Lernens gegenübergestellt werden.

Im weiteren Verlauf der Arbeit werden neuartige hybride Verfahren entwickelt, die tradi-
tionelle Systemidentifikation mit Deep Learning Architekturen wie Feedforward Neuronalen
Netzen und neuronalen Differentialgleichungen kombinieren. Ein auf maschinellem Lernen
basierter Rahmen zur Parameterschätzung wird vorgestellt, unterstützt durch theoretische
Analysen und umfangreiche numerische Experimente an Benchmark-Systemen wie dem Van
der Pol Oszillator, den Lotka-Volterra Gleichungen und dem Lorenz-System.

Abschließend wird ein Echtzeit-Rahmen zur dynamischen Zustandsschätzung basierend
auf der Moving Horizon Estimation mit dem qpOASES Solver und einer reformulierten Hu-
ber Straftermfunktion entwickelt. Dieses Verfahren ermöglicht eine robuste Online Schätzung
in verrauschten Umgebungen und wird zusätzlich durch eine Kombination aus Neural ODEs
und Multiple Shooting erweitert.

Insgesamt unterstreichen die Ergebnisse die zentrale Bedeutung präziser Parameter-
schätzung für die Zuverlässigkeit von Vorhersagen in nichtlinearen Systemen, mit weitre-
ichenden Implikationen für Bereiche wie Physik, Biologie, Ingenieurwesen und Finanzwesen.
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Abstract

Nonlinear dynamical systems are central to modeling complex phenomena across science
and engineering, from biological networks to climate systems. A critical challenge in these
systems is the accurate estimation of model parameters and the reliable prediction of future
states, especially under uncertainty and limited observability. This thesis addresses this
challenge by developing a proper framework that integrates classical methods, modern opti-
mization theory, and machine learning techniques for parameter estimation and prediction
in nonlinear dynamical systems.

We begin by revisiting foundational approaches to parameter estimation in ordinary
differential equation models, including least squares, maximum likelihood, and Bayesian in-
ference. To bridge the gap between theory and practice, we explore advanced computational
techniques such as multiple shooting, collocation methods, and robust estimation with the
Huber loss function.

Numerical optimization plays a central role in our methodology. The thesis presents de-
tailed analyses of unconstrained and constrained optimization algorithms, including Newton-
based methods, trust-region strategies, and sequential quadratic programming. These meth-
ods are then applied to system identification tasks, where we contrast classical strategies
with data-driven machine learning approaches.

In the latter part of the thesis, we propose hybrid methods that combine traditional
system identification with deep learning architectures such as feedforward neural networks
and neural differential equations. We introduce a machine learning-based framework for pa-
rameter estimation, supported by theoretical analysis and extensive numerical experiments
on benchmark systems including the Van der Pol oscillator, Lotka-Volterra dynamics, and
the Lorenz attractor.

Finally, we develop a real-time dynamic state estimation framework based on moving
horizon estimation using the qpOASES solver and a reformulated Huber penalty function.
This method enables robust, online estimation in noisy environments and is further extended
with a neural ODE and multiple shooting-based architecture.

Overall, the results underscore the critical role of accurate parameter estimation in im-
proving the reliability of nonlinear system predictions, with implications for diverse domains
including physics, biology, engineering, and finance.
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Chapter 1

Introduction and Overview

1.1 Introduction

Accurate parameter estimation lies at the heart of scientific modeling, serving as a critical
link between theoretical models and empirical observations. This task becomes particularly
challenging in nonlinear dynamical systems [125], where the relationships between parame-
ters and observables are highly nonlinear, often non-injective, and sensitive to initial condi-
tions. The importance of parameter estimation is magnified by the role of nonlinear dynami-
cal systems in diverse domains, including biology, epidemiology, climate science, finance, and
engineering [92, 35, 74]. Such systems, governed by ordinary differential equations (ODEs),
exhibit complex behaviors such as bifurcations, limit cycles, and deterministic chaos. Their
nonlinear structure, coupled with limited observability and noisy measurements, challenges
both parameter estimation and the prediction of future states.

In these systems, direct measurement of parameters is rarely feasible, and the likelihood
function is often intractable or defined only implicitly through numerical solvers. This gives
rise to an inverse problem, where the goal is to infer latent parameters θ ∈ Θ from observed
outputs y ∈ Y . Unlike forward problems, which are typically well-posed and computationally
efficient, these inverse problems are often ill-posed and solutions are sensitive to noise due
to information loss in the forward map [124].

Traditionally, parameter estimation has been framed as an optimization problem, with
least squares (L2) serving as the dominant cost function. While computationally convenient,
the L2 criterion is notoriously sensitive to outliers and non-Gaussian noise, which frequently
occur in real-world data. This sensitivity is exacerbated in nonlinear settings, where even
small deviations can dramatically alter system trajectories. To overcome these limitations,
this thesis adopts a robust optimization perspective centered on the Huber loss function. The
Huber loss provides a principled compromise between the efficiency of L2 and the robustness
of L1 norms. For small residuals, it behaves quadratically like L2, while for large residuals,
it grows linearly like L1, thereby limiting the influence of outliers. This behavior makes the
Huber estimator particularly well-suited for nonlinear systems, where robustness to noise
and stability under chaotic dynamics are essential.

This thesis pursues two methodological approaches:

1. A traditional optimization-based framework, in which robust cost functions are embed-
ded into constrained ODE solvers and solved using numerical optimization techniques
[13].

2. A deep learning framework, in which neural networks and neural ODEs are trained
with the Huber loss to approximate system dynamics and infer parameters directly
from data [122, 110].

1
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By employing the Huber loss consistently across both frameworks, this work enables a
systematic comparison with conventional least-squares estimation, highlighting trade-offs in
robustness, accuracy, prediction horizons, and computational performance.

1.1.1 Scope and Motivation

The practical motivation for this work stems from the increasing need to model and predict
complex systems under uncertainty. Many real-world applications involve systems with only
partially known structure, limited observability, and noisy measurements. In such contexts,
small deviations in parameter estimates can lead to significant errors in prediction, a risk
that is particularly acute in safety-critical applications such as medical diagnostics, climate
forecasting, and autonomous systems. This data-rich environment creates opportunities for
more accurate modeling, but it also introduces new challenges: computational scalability,
robustness to imperfect data, and generalization to unseen conditions. Robust optimization
strategies, such as those based on the Huber loss, are well-suited to address these challenges,
as they provide resilience to outliers and stabilize estimation in high-dimensional, nonlinear
regimes. The focus of this thesis, optimization-theoretic [2, 3] and deep learning approaches,
reflects the broader methodological shift in scientific computing.

1.1.2 Research Objectives

The goal of this thesis is to advance robust parameter estimation and prediction in nonlinear
dynamical systems by employing the Huber loss function as a unifying criterion. Specifically,
the research addresses the following objectives:

1. Formulation of Robust Estimation Problems

• Reformulate parameter estimation for nonlinear ODE systems under both classi-
cal and machine learning paradigms using the Huber loss.

• Compare robust formulations against conventional least squares approaches in
terms of stability, identifiability, and predictive fidelity.

2. Optimization-Based Framework

• Develop and analyze numerical optimization methods (e.g., trust-region, SQP,
multiple shooting) incorporating the Huber loss.

• Investigate robustness to noise, outliers, and chaotic dynamics in benchmark
nonlinear systems.

3. Deep Learning Framework

• Develop neural network architectures, including neural ODEs, for parameter and
state estimation.

• Integrate the Huber loss as a training objective to enhance robustness and gen-
eralization.

4. Comparative Analysis of Loss Functions

• Systematically evaluate Huber vs. L2 across both frameworks.
• Quantify trade-offs in computational cost, robustness, and predictive horizons.
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1.2 Thesis Outline

This work establishes a rigorous connection between robust parameter estimation method-
ologies and enhanced predictive capability in nonlinear forecasting. Through systematic
numerical experiments on chaotic benchmark systems and diverse real-world datasets, we
demonstrate substantial improvements in prediction horizons compared to conventional de-
terministic approaches. The thesis is organized into two principal parts: Preliminaries
(Chapters 2–4) providing theoretical foundations, and Original Contributions (Chapters 5–
8) presenting novel methodological advances, concluding with synthesis and future directions
in Chapter 9.

Preliminary Foundations (Chapters 2–5)

These chapters establish the theoretical and computational framework for the work. Chap-
ter 2 comprehensively reviews parameter estimation techniques, beginning with classical
approaches like least squares and maximum likelihood estimation, advancing to Bayesian
inference and modern strategies including single/multiple shooting methods and moving
horizon estimation. It further analyzes loss functions (L1, L2, Huber) and their role in
robust estimation, with practical implementation considerations. Chapter 3 develops nu-
merical optimization frameworks for ordinary differential equation (ODE) models, deriv-
ing and analyzing sequential quadratic programming (SQP) and trust-region methods with
rigorous convergence proofs. It examines line search algorithms, quasi-Newton variants,
and specialized techniques for nonlinear regression. Chapter 5 bridges traditional and ma-
chine learning approaches, exploring neural network solutions to ODEs by reformulating
parameter estimation as optimization. It establishes mathematical foundations through the
universal approximation theorem for neural ODEs, examines error bounds, and discusses
stability-identifiability trade-offs in learned dynamics.

Original Contributions (Chapters 6–9)

These chapters present methodological innovations validated across diverse nonlinear sys-
tems. Chapter 6 introduces optimized parameter estimation techniques for complex non-
linear systems, developing gradient-based iterative algorithms with stability guarantees, a
unified Levenberg-Marquardt framework for ill-conditioned problems, and geometric opti-
mization via the Nelder-Mead simplex. It also advances data-driven modeling through trust-
region optimization with adaptive Hessian approximations, validated on damped oscillators,
Van der Pol systems, and Lorenz attractors under noisy observations. Chapter 7 formulates
dynamic state estimation via moving horizon techniques, integrating multiple shooting with
arrival cost updates and real-time iteration schemes, and develops Huber-penalized estima-
tion for outlier rejection. Chapter 8 harnesses machine learning for parameter estimation,
implementing feedforward neural networks as universal ODE approximators and joint state-
parameter learning frameworks across logistic maps, Lotka-Volterra ecosystems, and chaotic
systems. Chapter 9 synthesizes neural ODEs with multiple shooting methods, creating hy-
brid architectures that leverage adjoint-based gradient computation through discontinuous
trajectories, with numerical analysis on stiff and high-dimensional systems.

Concluding Synthesis (Chapter 10)

This chapter consolidates key findings, contrasting optimization-based and machine learning
approaches through the lens of identifiability, noise propagation, and chaos-induced uncer-
tainty. It evaluates trade-offs in computational efficiency, robustness, and scalability across
biological, physical, and engineered systems. The chapter concludes by outlining emerging
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directions, including differentiable programming frameworks, symbolic-neural hybrids, and
quantum-enhanced estimation paradigms.

1.3 Contributions of this Thesis
The core methodological advances and theoretical developments presented in this thesis are
substantiated through the following peer-reviewed publications and preprints:

1. Kumar, K. Data-driven modeling and parameter estimation of nonlinear systems.
Eur. Phys. J. B 96(7), 107 (2023)
https://doi.org/10.1140/epjb/s10051-023-00574-3 [81]

2. Kumar, K. , Kostina, E. Optimal Parameter Estimation Techniques for Complex
Nonlinear Systems. Differ Equ Dyn Syst (2024)
https://doi.org/10.1007/s12591-024-00688-9 [77, 79]

3. Kumar, K., Kostina, E. Machine learning in parameter estimation of nonlinear sys-
tems. Eur. Phys. J. B 97(4), 107 (2025)
https://doi.org/10.1140/epjb/s10051-025-00904-7 [78]

4. Kumar, K. Forecasting Crude Oil Prices Using Reservoir Computing Models. Com-
put Econ 66, 2543–2563 (2025)https://doi.org/10.1007/s10614-024-10797-w

5. Kumar, K. Parameter Estimation of Nonlinear Systems using Neural ODEs and
Multiple Shooting Methods (Under Review at ACDSA 2025 )

https://doi.org/10.1140/epjb/s10051-023-00574-3
https://doi.org/10.1007/s12591-024-00688-9
https://doi.org/10.1140/epjb/s10051-025-00904-7
https://doi.org/10.1007/s10614-024-10797-w
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Chapter 2

Parameter Estimation in ODE
Models

Parameter estimation constitutes a foundational step in transforming abstract mathemat-
ical models into practical predictive tools capable of representing real-world phenomena
with fidelity. The central aim of this chapter is to provide a systematic and comprehen-
sive overview of parameter estimation methodologies, while addressing the theoretical and
practical challenges that arise in this process. The discussion is situated within the con-
text of deterministic models governed by ordinary differential equations (ODEs), a modeling
framework extensively utilized in disciplines such as systems biology, chemical kinetics, and
engineering dynamics. The principal difficulty lies in calibrating these models by inferring
unknown parameters such that model outputs accurately reproduce observed data, thereby
ensuring that the theoretical dynamics reflect the behavior of the underlying system [14].

Section 2.1 introduces the classical principles of parameter estimation, beginning with
a formal construction of the error model associated with measurement data. This error
model provides a probabilistic representation of observational noise, from which the weighted
least squares objective function is rigorously derived using maximum likelihood estimation
(MLE) principles. Building on this foundation, the concepts of structural and practical
identifiability are examined as essential criteria for assessing the uniqueness and reliability
of parameter inference. These notions are particularly important in highlighting the inherent
limitations imposed by data quality, parameter correlations, and the amplification of noise,
thus embedding parameter estimation within a rigorous statistical framework.

Section 2.2 shifts the focus to boundary value problems (BVPs), which arise naturally
in parameter estimation tasks that involve constraints distributed across multiple points
in the system’s domain, such as initial and terminal conditions or spatial boundaries [53].
The section compares different numerical strategies for solving BVPs, beginning with single
shooting methods, which iteratively integrate the ODE from an initial guess and adjust
parameters to satisfy boundary conditions. Although conceptually straightforward, single
shooting is often hampered by numerical instability and sensitivity to initial conditions
[4]. To mitigate these drawbacks, collocation methods are introduced, which discretize the
domain and solve the resulting system simultaneously, thereby improving stability. The dis-
cussion culminates in an analysis of multiple shooting methods, which partition the domain
into subintervals, solve each subproblem independently, and enforce continuity conditions
across intervals. This approach enhances robustness and convergence, particularly in stiff
or nonlinear systems. Complementing these techniques, the section also considers derivative
computation strategies essential for gradient-based optimization, including finite differences,
variational equation approaches, and automatic differentiation. Each method is evaluated
in terms of computational efficiency, numerical accuracy, and scope of applicability.

Section 2.3 extends the discussion to system identification approaches that integrate pa-

7
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rameter estimation with adaptive and dynamic modeling frameworks. Here, attention is
directed to cases where either model structure or parameter values evolve over time. Recur-
sive techniques such as Kalman filtering are presented as probabilistic schemes for updating
parameter estimates in real time, while moving horizon estimation (MHE) is introduced as
an optimization-based method that incorporates sequential data within a sliding window
framework. Both approaches are contextualized through practical applications, including
adaptive control systems and time-varying biological models, thereby underscoring their
relevance to complex and dynamic environments.

Figure 2.1: Parameter Estimation Workflow

Figure 2.1 provides a visual overview of the iterative parameter estimation process. The
diagram illustrates the complete workflow, beginning with model formulation and data ac-
quisition, progressing through numerical optimization, and concluding with the validation
and refinement of estimated parameters. Classical frameworks, such as those pioneered by
Bock (1987), provide the theoretical foundation for much of the material presented in this
chapter. These methods are implemented further in Chapter 6, where the presented param-
eter estimation frameworks are extended to accommodate increasing system complexity.

2.1 Classical Parameter Estimation Methods

2.1.1 Least Squares Problems

Parameter estimation is fundamentally concerned with reconciling model predictions with
experimental data by adjusting a set of unknown parameters. Among the many approaches
available, the least squares method [48, 1] has historically played a central role due to its in-
tuitive formulation, tractable computation, and favorable statistical properties. The central
objective is to determine the parameter vector θ ∈ Θ ⊂ Rp that minimizes the discrepancy
between measured data y(ti) and model predictions ŷ(ti; θ).

Given a dynamical system

dx(t)
dt

= f(t,x(t),θ), x(t0) = x0,

with outputs
ŷ(ti; θ) = H(x(ti,θ)),

the residual vector is defined as

r(θ) =

 y(t1)− ŷ(t1; θ)
...

y(tN )− ŷ(tN ; θ)

 ∈ RmN .
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The classical least squares estimation problem then seeks

θ∗ = arg min
θ∈Θ
∥r(θ)∥22, (2.1)

which corresponds to minimizing the sum of squared residuals. This formulation is an
archetypal inverse problem, as one attempts to infer parameters θ such that the forward
model H(x(ti,θ)) reproduces experimental data.

Linear Least Squares Estimation

The problem simplifies considerably when the model is linear in its parameters. Suppose

ŷ = Φθ, (2.2)

where Φ ∈ RN×p is the regressor matrix, with each row encoding the regression coefficients
associated with one measurement. The residual vector becomes

r(θ) = y− Φθ,

and the least squares objective is

f(θ) = 1
2∥y− Φθ∥22.

Solution via Normal Equations. Minimizing f(θ) yields the normal equations:

Φ⊤Φ θ∗ = Φ⊤y. (2.3)

When Φ⊤Φ is invertible, the closed-form solution is

θ̂LS = (Φ⊤Φ)−1Φ⊤y, (2.4)

equivalently expressed using the Moore–Penrose pseudoinverse Φ+ as θ̂LS = Φ+y.

Example: Averaging Measurements. Consider the special case where the system out-
put is constant:

y(ti) = θ + εi.

Here, the regressor matrix is Φ = 1N , an N -dimensional vector of ones, and the least squares
estimator reduces to the sample mean

θ̂LS = 1
N

N∑
i=1

y(ti).

Example: Linear Regression. For a simple regression model

y(ti) = θ1 + θ2ti + εi,

the regressor matrix is

Φ =


1 t1
1 t2
...

...
1 tN

 ,
and solving the normal equations yields estimates for intercept θ1 and slope θ2.
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Weighted Least Squares

In practical contexts, measurement noise may be heteroscedastic, i.e., Var(εi) = σ2
i varies

across observations. Weighted least squares (WLS) accounts for this by assigning higher
weight to more reliable measurements:

fWLS(θ) =
N∑

i=1

(
y(ti)− ϕ(ti)⊤θ

)2
σ2

i

= ∥y− Φθ∥2W , (2.5)

with weighting matrix
W = diag(σ−2

1 , . . . , σ−2
N ).

The WLS estimator satisfies the modified normal equations:

θ̂WLS = (Φ⊤WΦ)−1Φ⊤Wy.

Statistical Interpretation

The least squares method has a natural probabilistic interpretation. If the noise terms εi

are i.i.d. Gaussian with variance σ2, then the likelihood function is

P(y | θ) ∝ exp
(
− 1

2σ2 ∥y− Φθ∥22
)
.

Maximizing this likelihood is equivalent to solving the least squares problem. More generally,
under heteroscedastic Gaussian noise, maximum likelihood estimation coincides with WLS.

Ill-Posed Problems and Regularization

When Φ⊤Φ is singular or ill-conditioned—typically due to collinearity or insufficient data
[45],the least squares problem becomes ill-posed. The solution set is

S∗ = {θ | Φ⊤Φθ = Φ⊤y},

and additional criteria are required to select a unique solution. A common approach is to
seek the minimum-norm solution

θ̂∗ = arg min
θ∈S∗

∥θ∥22,

which coincides with the pseudoinverse solution.
To further stabilize estimation, Tikhonov regularization (ridge regression) [49] introduces

a penalty on the parameter norm [33]:

min
θ

1
2∥y− Φθ∥22 + ϵ

2∥θ∥
2
2, (2.6)

with regularization parameter ϵ > 0. The closed-form solution is [85]

θ̂ϵ = (Φ⊤Φ + ϵI)−1Φ⊤y,

which is always well-defined, even when Φ⊤Φ is singular.

2.1.2 Maximum Likelihood Estimation

When measurements are noisy, parameter estimation for dynamical or ODE-based models
often requires statistical methods that explicitly account for uncertainty. Maximum Like-
lihood Estimation (MLE) [104, 100] provides a rigorous framework to identify parameter
values that maximize the probability of observing the experimental data under a prescribed
noise model.
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Likelihood Function and Estimator Definition

Definition (Likelihood Function). Given a set of observations y = [y1, . . . , yN ]⊤ ∈ RN ,
the likelihood function of a parameter vector θ ∈ Rd is defined as

L(θ) = p(y | θ), (2.7)

where p(y | p) denotes the joint probability density of the data conditioned on θ.
Definition (Maximum Likelihood Estimate). The maximum likelihood estimate is

the parameter value that maximizes this likelihood:

θ̂ML = arg max
θ∈Rd

L(θ). (2.8)

Because the likelihood is often sharply peaked, it is numerically more convenient to
minimize the negative log-likelihood, which converts the product of densities into a sum.

Gaussian Noise and Relation to Least Squares

Consider a model prediction vector M(θ) ∈ RN , obtained by numerically solving the ODE
system for parameters θ. Suppose each measurement is corrupted by independent additive
Gaussian noise,

ϵi ∼ N (0, σ2
i ), i = 1, . . . , N, (2.9)

so that the observations are
yi =Mi(θ) + ϵi. (2.10)

The residual vector is then
r(θ) = y−M(θ). (2.11)

Under these assumptions, the likelihood function factorizes as

L(θ) =
N∏

i=1

1√
2πσ2

i

exp
(
−ri(θ)2

2σ2
i

)
. (2.12)

Taking the negative logarithm and discarding constants independent of p yields the
weighted least squares objective:

− logL(θ) ∝ 1
2

N∑
i=1

ri(θ)2

σ2
i

= 1
2∥S

−1r(θ)∥22, (2.13)

where S = diag(σ1, . . . , σN ). Thus, under Gaussian noise, MLE coincides exactly with
weighted least squares estimation.

Regularization and Bayesian Interpretation

In many applications, one incorporates prior knowledge or promotes desirable parameter
structures through regularization. A common example is the Tikhonov penalty,

α

2 ∥θ − θ̄∥
2
2, (2.14)

which can be interpreted probabilistically as introducing a Gaussian prior

θ ∼ N (θ̄, α−1I). (2.15)

where the regularization strength α > 0 inversely reflects the confidence in the prior.
More generally, penalties of the form

1
2∥A(θ − θ̄)∥22 (2.16)

correspond to priors with covariance structure (A⊤A)−1. This Bayesian viewpoint shows
that regularized MLE is equivalent to maximum a posteriori (MAP) estimation.
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Robust Estimation and Alternative Noise Models

The equivalence between MLE and least squares relies critically on the Gaussian noise
assumption. Alternative noise distributions lead naturally to robust estimators:

• Laplace Noise: If residuals are assumed Laplace distributed,

ϵi ∼ Laplace(0, b),

the negative log-likelihood becomes proportional to the L1-norm of the residual vector:

θ̂L1 = arg min
θ
∥r(θ)∥1. (2.17)

This estimator is more resistant to outliers than the L2-based least squares estimator.
For scalar models, the solution reduces to the sample median, in contrast to the mean
obtained under Gaussian noise.

• Huber Loss: A compromise between Gaussian and Laplace assumptions is given by
the Huber distribution, whose negative log-likelihood yields the Huber loss function:

ρδ(ri) =
{1

2r
2
i , |ri| ≤ δ,

δ(|ri| − 1
2δ), |ri| > δ,

(2.18)

leading to the objective

min
p

N∑
i=1

ρδ(ri(θ)). (2.19)

This formulation retains quadratic behavior for small residuals (ensuring smooth op-
timization) while limiting the influence of outliers.

Hence, maximum likelihood provides a unifying perspective: least squares, L1-estimation,
and robust Huber methods can all be derived as MLEs under different assumptions about
the noise distribution.

2.1.3 Bayesian Estimation and Maximum A Posteriori (MAP) Inference

While Maximum Likelihood Estimation (MLE) identifies parameters that maximize the
likelihood of observing data, Bayesian estimation shifts the perspective to the posterior dis-
tribution, which represents the probability of parameters given the observed data [105]. This
framework enables the systematic integration of prior knowledge into parameter inference
and is particularly valuable when data are sparse or models are ill-posed.

Bayesian Formulation

Let y = [y1, . . . , yN ]⊤ denote the observed measurements, and let θ ∈ Rd be the parameter
vector. Bayes’ theorem relates the posterior distribution to the likelihood and the prior as

π(θ | y) = π(y | θ)π(θ)
π(y) , (2.20)

where π(y | θ) denotes the likelihood of the data given the parameters, π(θ) is the prior
distribution encoding a priori knowledge about plausible parameter values, and π(y) is the
evidence or marginal likelihood, which serves as a normalizing constant independent of θ.
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Maximum A Posteriori Estimation

The Maximum A Posteriori (MAP) estimate corresponds to the parameter value that max-
imizes the posterior probability:

θ̂MAP = arg max
θ∈Rd

π(θ | y). (2.21)

Equivalently, minimizing the negative log-posterior yields

θ̂MAP = arg min
θ∈Rd
{− log π(y | θ)− log π(θ)} . (2.22)

This formulation makes clear that MAP estimation augments the likelihood term, which
ensures consistency with the observed data, with a regularization term − log π(θ) that re-
flects prior beliefs about parameter values. In the special case where the prior distribution
is uniform, the MAP estimate reduces to the MLE.

Gaussian Likelihood and Gaussian Prior

Consider a linear model M(θ) = Φ.θ, where θ ∈ Rd. Suppose the measurements are
corrupted by independent Gaussian noise,

y = Φθ + ϵ, ϵ ∼ N (0, σ2
ϵ I), (2.23)

and the parameters follow a Gaussian prior

θ ∼ N (θ̄, σ2
θI). (2.24)

The posterior distribution is then Gaussian, and the MAP estimate is given by the mini-
mization problem

θ̂MAP = arg min
θ∈Rd

(
1

2σ2
ϵ

∥y− Φθ∥22 + 1
2σ2

θ

∥θ − θ̄∥22

)
. (2.25)

The first term penalizes the discrepancy between model predictions and observed data, while
the second term enforces regularization around the prior mean θ̄. The balance between these
terms is governed by the ratio of prior variance σ2

θ to noise variance σ2
ϵ . For nonlinear ODE

models, a similar structure holds, with Φ.θ replaced by the model outputM(θ), which must
be obtained through numerical integration of the system.

2.2 Bridging Classical and Modern Approaches

This section provides an overview of methods that bridge classical approaches with modern
techniques for parameter estimation in ODE models. In particular, we discuss three principal
methodologies: single shooting [118], multiple shooting, and collocation methods. These
methods differ primarily in how they discretize and solve the ODE-constrained optimization
problem and in how they manage error propagation and numerical stability.

2.2.1 Single Shooting Method

Consider a dynamical system defined by the initial value problem{
ẏ(t) = f(t, y(t), p), t ∈ [t0, tf ],
y(t0) = y0,

(2.26)
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where p ∈ Rk denotes unknown parameters and y0 ∈ Rn represents the initial state, which
may also be subject to estimation. The primary objective is to infer both p and y0 by
minimizing discrepancies between model predictions and observational data.

Observations are assumed to follow the form

ηij = hi
(
tj , y(tj ; y0, p), p

)
+ ϵij , (i, j) ∈ I, (2.27)

where the measurement errors ϵij ∼ N (0, σ2
ij) are independent and Gaussian distributed.

The function h : R × Rn × Rk → Rℓ represents the measurement operator mapping the
system state and parameters to the observable outputs.

This parameter estimation task reduces to solving a weighted nonlinear least squares
problem of the form

min
y0,p

∑
(i,j)∈I

(
ηij − hi

(
tj , y(tj ; y0, p), p

)
σij

)2

, (2.28)

subject to the governing dynamics ẏ = f(t, y, p). Further structural or physical constraints
can be incorporated as {

r
(
y(t0), y(t1), . . . , y(tf ), p

)
= 0,

g
(
y(t0), y(t1), . . . , y(tf ), p

)
≥ 0.

(2.29)

The single shooting method formulates this inverse problem as a finite-dimensional opti-
mization. First, the unknowns are collected into an optimization vector x = [y0; p] ∈ Rn+k.
For a given x, the initial value problem is solved numerically over the interval [t0, tf ], yielding
the trajectory y(tj ;x) evaluated at the measurement times tj .

The model residuals are computed as

Fij(x) = ηij − hi(tj , y(tj ;x), p)
σij

, (i, j) ∈ I, (2.30)

and these residuals are stacked into a vector F1(x) ∈ Rm1 . Any additional equality and
inequality constraints are denoted F2(x) = 0 and F3(x) ≥ 0, respectively.

To solve the resulting nonlinear optimization problem, a generalized Gauss-Newton
method is employed. At each iteration k, a linearized subproblem is solved:

min
∆x

∥F1(xk) + J1(xk)∆x∥22 (2.31)

subject to
{
F2(xk) + J2(xk)∆x = 0,
F3(xk) + J3(xk)∆x ≥ 0,

(2.32)

where Ji = ∂Fi/∂x are the respective Jacobian matrices. A step size τk ∈ (0, 1] is applied
to the update to ensure convergence and stability.

Several practical aspects influence the efficiency and reliability of single shooting. Accu-
rate computation of Jacobians is essential and can be accomplished via sensitivity equations
or automatic differentiation. To handle potential ill-posedness, regularization strategies such
as Levenberg–Marquardt damping may be introduced. The quality of the initial guess x0

plays a critical role in convergence behavior, particularly for nonlinear or stiff systems. From
an implementation standpoint, this method is supported by established numerical libraries
such as MATLAB’s lsqnonlin, CasADi [9], and PETSc. The single shooting approach is
straightforward and computationally efficient for problems with a small number of parame-
ters and state variables. However, it can become unstable for stiff or chaotic systems, and
its performance is often sensitive to the choice of initial guess. These limitations motivate
the development of more robust techniques such as multiple shooting and collocation, which
we discuss next.
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2.2.2 Multiple Shooting Method

The multiple shooting method refines the single shooting strategy by partitioning the in-
tegration interval into smaller subintervals, thereby improving numerical stability and con-
vergence [19]. Instead of integrating the system over the entire time horizon from a sin-
gle initial condition, the time domain [t0, tf ] is divided into m subintervals with nodes
τ0 < τ1 < · · · < τm, where τ0 = t0 and τm = tf . On each subinterval [τl, τl+1], an in-
dependent initial value problem is solved, starting from an auxiliary initial state sl that
approximates the system state at τl.

For each subinterval, the dynamics are described by

ẏ(t) = f(t, y, p), y(τl) = sl, t ∈ [τl, τl+1], (2.33)

where sl becomes part of the decision variables in the optimization problem. Each
measurement time tj is assumed to lie within a specific subinterval, ensuring consistency in
residual evaluation. This approach introduces a set of new variables s1, . . . , sm ∈ Rny , which
collectively augment the dimensionality of the optimization problem by m× ny. To ensure
continuity of the trajectory across subinterval boundaries, matching conditions are imposed
between consecutive subintervals. These continuity constraints enforce that the final state
of the l-th integration matches the initial state of the (l + 1)-th interval:

hl(sl, sl+1, p) = y(τl+1; sl, p)− sl+1 = 0, for l = 0, . . . ,m− 1. (2.34)

Combining the measurement residuals and the matching conditions, the overall param-
eter estimation task becomes a constrained nonlinear least squares problem of the form:

min
x

1
2∥F1(x)∥22, (2.35)

subject to F2(x) = 0, (2.36)
F3(x) ≥ 0, (2.37)
hl(sl, sl+1, p) = 0 ∀l, (2.38)

where the optimization variable is given by x = (s0, . . . , sm, p), incorporating both the
auxiliary initial states and the parameters. Although the multiple shooting formulation is
formally equivalent to single shooting in terms of the solution, it often exhibits superior
numerical behavior. This is primarily due to its ability to reduce error propagation across
the integration horizon and to localize sensitivities within shorter intervals. Consequently,
the method tends to be more robust, particularly for stiff or chaotic systems.

A key advantage of multiple shooting lies in its potential for guaranteed feasible ini-
tialization. A practical initialization strategy involves selecting a reference trajectory ϕ :
[t0, tf ] → Rny , around which a tubular neighborhood D = {(t, y) | ∥y(t) − ϕ(t)∥ ≤ δ} is
constructed. The auxiliary states are then initialized by sampling the reference trajectory
at the shooting nodes, i.e., sl = ϕ(τl), and integrating until the interval boundary is reached
or the tube is exited. Under mild regularity assumptions on f , specifically, f ∈ C1(D) and
Lipschitz continuous on D, Grönwall’s inequality ensures that a finite number of shooting
intervals suffices to maintain feasibility. From a computational perspective, the method
provides several benefits. The segmentation reduces long-range error accumulation and of-
ten lowers the effective nonlinearity of the optimization landscape. Furthermore, auxiliary
states can be initialized more easily using measurements or interpolated data, which can
significantly improve convergence. For instance, if direct measurements ηj are available at
some of the nodes τj , setting sj = ηj and interpolating the remaining sl often results in small
initial residuals, thereby satisfying F1(x0) ≈ 0. Despite these strengths, multiple shooting
introduces additional complexity. The dimensionality of the optimization problem increases
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substantially due to the inclusion of the sl variables, and the implementation must manage
node-wise integration, continuity enforcement, and measurement to subinterval associations.
Additionally, good initial guesses are now required for each sl, which may be nontrivial in
high-dimensional or sparse-data scenarios.

2.2.3 Collocation Methods Approaches

In various applications involving modeling, simulation, and optimization of dynamic pro-
cesses, one frequently encounters computationally intensive problems such as parameter
estimation or optimal control under constraints. These tasks typically lead to the formu-
lation of highly nonlinear, bounded, overdetermined multipoint boundary value problems
(BVPs), which may also involve switching conditions and jump discontinuities. This chap-
ter presents a comprehensive collocation-based framework to address such problems, with a
particular focus on its utility in parameter estimation for differential equations [111].

Collocation methods aim to approximate the solution of boundary value problems by
enforcing the differential equation to hold exactly at a finite set of carefully chosen discrete
points known as collocation points [17]. Early implementations utilized global polynomial
approximations, but these were eventually superseded by piecewise polynomial represen-
tations due to improved stability, better convergence behavior, and greater computational
efficiency. The foundational idea of the method begins by discretizing the interval [a, b] into
a finite sequence of nodes a = t1 < t2 < · · · < tm = b. On each subinterval [ti, ti+1], a local
polynomial approximation is constructed. These polynomial pieces are required to satisfy
continuity conditions at the grid nodes. The differential equation is then enforced at selected
collocation points within each subinterval. Additionally, the overall solution must satisfy
the prescribed boundary or jump conditions.

Figure 2.2: Schematic of piecewise polynomial collocation [58]

Piecewise Polynomial Collocation

Consider the nonlinear ordinary differential equation system:

ẏ(t) = f(t,y(t)), a ≤ t ≤ b, (2.39)

with boundary conditions given by r(y(a),y(b)) = 0. Here, y : [a, b] → Rn, and f :
[a, b]× Rn → Rn, while r : Rn × Rn → Rn imposes the boundary constraints.

Let the interval be partitioned by the mesh πm : a = t1 < t2 < · · · < tm = b, where
hi = ti+1 − ti denotes the length of subinterval i, and h = maxi hi represents the maximum
step size. Define m̄ = m − 1 as the number of subintervals. We introduce the space of
piecewise polynomial functions L(πm, k, s), consisting of functions v(t) that are polynomials
of degree at most k on each subinterval [ti, ti+1], and belong to the function class Cs[a, b].
A subset of this space, denoted by L′(πm, k, s), includes functions that also satisfy the
boundary conditions. To define collocation points, consider a normalized variable s ∈ [0, 1].
The collocation nodes within each subinterval are then given by:

tij = ξi(sj) = ti + sjhi, j = 1, . . . , d; i = 1, . . . , m̄, (2.40)

where the parameters s1, s2, . . . , sd characterize the specific collocation scheme.
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A function P(t) ∈ L(πm, d, 0) qualifies as a collocation solution if it meets three criteria:
it is continuous across the subinterval boundaries, it satisfies the differential equation at all
collocation points, and it adheres to the prescribed boundary conditions. Mathematically,
these conditions are expressed as:

Pi(ti+1) = Pi+1(ti+1), for i = 1, . . . , m̄− 1, (2.41)
P′(tij) = f(tij ,P(tij)), for j = 1, . . . , d; i = 1, . . . , m̄, (2.42)

r(P(a),P(b)) = 0. (2.43)

Within each subinterval, P(t) coincides with a local polynomial Pi(t).

Types of Collocation Points

The selection of collocation points s1, . . . , sd leads to different schemes:

• In the Gauss scheme, all collocation points lie strictly inside the interval (0, 1), re-
sulting in dm̄ total collocation points.

• The Radau schemes include one endpoint, either with s1 = 0 or sd = 1, again yielding
dm̄ conditions.

• Lobatto schemes include both endpoints s1 = 0 and sd = 1, leading to (m̄(d− 1) + 1)
total points.

For polynomials of degree k, each subinterval contributes k + 1 coefficients, resulting
in a total of m̄(k + 1) degrees of freedom. Choosing d = k ensures that the number of
constraints, comprising n boundary conditions, (m̄ − 1)n continuity conditions, and m̄d
collocation constraints matches the number of unknowns.

Regularity Properties

Collocation methods yield varying levels of regularity depending on the chosen scheme.
Lobatto collocation produces a solution P(t) ∈ L′(πm, d, 1), ensuring continuous differentia-
bility. In contrast, Gauss and Radau schemes generally yield solutions that are continuous,
P(t) ∈ C0[a, b], though their derivatives may be discontinuous at the mesh points.

Equivalence to Implicit Runge-Kutta Methods

An important feature of collocation methods is their formal equivalence to implicit Runge–
Kutta (IRK) schemes when the collocation points are chosen appropriately [116]. Specifi-
cally, when collocation is applied using a set of d points s1, s2, . . . , sd ∈ [0, 1], one obtains
an implicit Runge-Kutta method with d stages. The Butcher tableau of the corresponding
IRK method is determined by the locations of the collocation points.

This equivalence implies that the theoretical results derived for Runge-Kutta schemes,
including stability, consistency, and convergence properties can be directly transferred to
collocation methods. For instance, choosing the collocation points as the roots of shifted
Legendre polynomials over [0, 1] yields the Gauss collocation scheme, which corresponds to
a Gauss-Legendre IRK method known for its high order of accuracy and A-stability.

Let us consider the form of the IRK method associated with collocation:

Yj = yn + h
d∑

l=1
ajlf(tn + clh,Yl), j = 1, . . . , d,

yn+1 = yn + h
d∑

l=1
blf(tn + clh,Yl),
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where cl = sl are the collocation points mapped to [0, 1], and the coefficients ajl, bl are
determined by the choice of collocation points through the requirement that the collocation
polynomial interpolates the derivative at those points. Thus, each subinterval [ti, ti+1] in the
collocation approach corresponds to a single step of an implicit Runge–Kutta method. This
equivalence also implies that the global solution constructed from collocation is consistent
with the continuous extension of the IRK scheme.

Convergence Analysis

The convergence behavior of collocation methods has been extensively studied and is well
understood. The order of convergence depends on both the degree k of the piecewise polyno-
mial approximation and the regularity of the exact solution. Suppose that the exact solution
y(t) is sufficiently smooth over the interval [a, b]. If the collocation scheme uses polynomials
of degree k with d = k collocation points per subinterval, then the global collocation solution
P(t) satisfies the error bound:

∥y(t)−P(t)∥ = O(h2d), (2.44)

for the Gauss scheme, which has superconvergent properties. In contrast, Radau and
Lobatto schemes generally attain a lower but still optimal order of accuracy, typically:

• Order 2d− 1 for Radau IIA (right-endpoint inclusion),

• Order 2d− 2 for Lobatto IIIA or IIIB (both endpoints included).
Moreover, under mild assumptions on the regularity of f and the well-posedness of the

boundary value problem, the collocation solution converges uniformly on [a, b]. That is,

max
t∈[a,b]

∥y(t)−P(t)∥ → 0 as h→ 0. (2.45)

The convergence theory is supported by classical results on the stability of IRK methods,
as well as error analysis of projection operators used in the construction of the collocation
polynomial.

Generalization to Multi-Point Boundary Value Problems

Collocation methods are not limited to classical two-point boundary value problems but can
be naturally extended to handle multi-point boundary value problems (MPBVPs). In such
problems, boundary conditions are imposed at multiple, possibly non-adjacent, points in
the domain. Moreover, the solution may be subject to internal constraints, discontinuities,
or switching conditions. Formally, a multi-point BVP may be written as:

ẏ(t) = f(t,y(t)), t ∈ [a, b],
rj(y(τ−

j ),y(τ+
j )) = 0, j = 1, . . . , J,

where the points τ1, . . . , τJ ∈ (a, b) denote internal locations at which jump or continuity
conditions are enforced. These may reflect physical constraints such as phase changes,
control switches, or hybrid system events.

To accommodate this setting within the collocation framework, the mesh πm is adapted
such that each τj coincides with a mesh point. Then, separate piecewise polynomial segments
are defined on each subinterval, and continuity or jump conditions are enforced explicitly
through the matching equations:

P(τ−
j ) = P(τ+

j ), (continuity), or P(τ+
j )−P(τ−

j ) = ∆j , (jump condition).

This generalization maintains the modularity and sparsity structure of the discretized
system, allowing efficient numerical solution via Newton-type or collocation-based nonlinear
programming solvers.
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2.3 System Identification

2.3.1 Kalman Filtering Approaches

Kalman filtering offers a recursive Bayesian framework for the joint estimation of system
states and unknown parameters in dynamic systems, particularly those governed by ordinary
differential equations (ODEs) [64]. Consider a system described by the continuous-time
dynamical model:

ẏ(t) = f(t, y(t), θ) + η(t), zk = Hky(tk) + vk, (2.46)

where θ ∈ Rp represents unknown parameters, η(t) ∼ N (0, Q) denotes process noise, and zk

are discrete noisy observations subject to additive Gaussian noise vk ∼ N (0, Rk).
To facilitate parameter estimation within this probabilistic framework, the system is

reformulated using an augmented state-space representation. The augmented state is defined
as

x(t) =
[
y(t)
θ(t)

]
, (2.47)

and its evolution follows the stochastic differential equation

dxt =
[
f(t, yt, θt)

0

]
︸ ︷︷ ︸

g(xt)

dt+ Σ1/2
x dWt, (2.48)

where Σx = diag(Q,Σθ) defines the joint process-noise covariance, and Wt is a Wiener
process. The parameters are assumed to follow a random walk model, effectively introducing
dynamics via a diffusion process θ̇(t) = σθẆθ(t). The system is initialized with a Gaussian
prior distribution x0 ∼ N (x̂0, P0), ensuring a tractable posterior inference formulation.

Kalman Filter for Linear Systems

In the case of linear systems, the Kalman filter yields optimal state and parameter estimates
through recursive prediction and update operations [138]. The state-space dynamics are
expressed as

xk+1 = Fkxk +Gkuk + wk, (2.49)
zk = Hkxk + vk, (2.50)

where wk ∼ N (0, Qk) and vk ∼ N (0, Rk). The filtering process proceeds as follows. During
the prediction phase, the prior estimate x̂k|k−1 is propagated forward using the system
dynamics, and the associated covariance Pk|k−1 is updated accordingly:

x̂k|k−1 = Fkx̂k−1 +Gkuk, (2.51)
Pk|k−1 = FkPk−1F

⊤
k +Qk. (2.52)

Following prediction, the measurement update incorporates new data to refine the estimates.
The Kalman gain Kk is computed, and the posterior mean and covariance are updated as:

Kk = Pk|k−1H
⊤
k

(
HkPk|k−1H

⊤
k +Rk

)−1
, (2.53)

x̂k = x̂k|k−1 +Kk(zk −Hkx̂k|k−1), (2.54)
Pk = (I −KkHk)Pk|k−1. (2.55)

Parameter estimation in this context involves augmenting the state vector with θ, and
choosing a small but nonzero covariance Σθ to encode parameter drift.
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2.3.2 Extended Kalman Filter (EKF) for Nonlinear Systems

For nonlinear dynamical systems of the form

xk+1 = f(xk, uk, θ) + wk, (2.56)
zk = h(xk, θ) + vk, (2.57)

the Extended Kalman Filter (EKF) linearizes the nonlinear dynamics and measurement
models around the current estimate. The Jacobians of the system dynamics and measure-
ment functions are evaluated at the prior estimates:

Fk = ∂f

∂x

∣∣∣∣
x̂k

, Hk = ∂h

∂x

∣∣∣∣
x̂k|k−1

. (2.58)

The prediction step involves integrating the nonlinear function f , while using the current
parameter estimate:

x̂k|k−1 = f(x̂k−1, uk, θ̂k−1). (2.59)

Parameter adaptation is performed using a gain matrix Lk that is constructed from the
sensitivity of the measurements with respect to the parameter:

θ̂k = θ̂k−1 + Lk

(
zk − h(x̂k|k−1, θ̂k−1)

)
. (2.60)

Continuous-Discrete EKF

In many applications, the system dynamics evolve in continuous time, while measurements
are acquired at discrete intervals. In this continuous-discrete EKF setting, the prediction
phase involves integrating the deterministic system dynamics over the interval [tk, tk+1]. The
mean state estimate evolves according to

d

dt
x̂(t) = g(x̂(t)), (2.61)

while the error covariance satisfies the matrix Riccati differential equation

Ṗ (t) = F (t)P (t) + P (t)F (t)⊤ + Σx, (2.62)

with F (t) = ∂g
∂x

∣∣
x̂(t). At the time of measurement tk+1, the filter performs an update using

the Kalman gain:

Kk+1 = P (t−k+1)H⊤
k+1

(
Hk+1P (t−k+1)H⊤

k+1 +Rk+1
)−1

, (2.63)

x̂(tk+1) = x̂(t−k+1) +Kk+1
(
zk+1 −Hk+1x̂(t−k+1)

)
, (2.64)

P (tk+1) = (I −Kk+1Hk+1)P (t−k+1). (2.65)

2.3.3 Unscented Kalman Filter (UKF)

To improve estimation performance for highly nonlinear systems, the Unscented Kalman
Filter (UKF) avoids linearization by instead propagating a deterministic set of carefully
chosen sample points, called sigma points, through the nonlinear system [67]. These sigma
points are selected as:

Xi =
{
x̂, x̂±

√
(n+ λ)P

}
, i = 0, . . . , 2n, (2.66)
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where n is the state dimension, and λ is a scaling parameter. Each sigma point is propagated
through the nonlinear functions:

X ∗
i = f(Xi), Zi = h(X ∗

i ). (2.67)

The mean and covariance of the predicted state and measurement are then reconstructed
via moment-matching:

x̂− =
∑

W
(m)
i X ∗

i , (2.68)

P− =
∑

W
(c)
i

(
X ∗

i − x̂−) (X ∗
i − x̂−)⊤ +Q, (2.69)

K = PxzP
−1
zz , (2.70)

where W (m)
i and W (c)

i are weights associated with mean and covariance estimation, respec-
tively.

Convergence Guarantees

The convergence of Kalman-based parameter estimation hinges on the concept of persistent
excitation. Specifically, consider a system with identifiable parameters θ∗ such that the
sensitivity of the expected observations with respect to the parameters satisfies a uniform
lower bound:

1
N

N∑
k=1

E
[
ψkψ

⊤
k

]
⪰ αI, α > 0, (2.71)

where ψk = ∂
∂θE[zk|θ]. Then, the estimate θ̂N satisfies an exponential convergence bound

with asymptotic rate:
∥θ̂N − θ∗∥ ≤ Ce−γN +O

( 1√
N

)
, (2.72)

where constants C and γ depend on the system’s excitation and noise properties.

Method Nonlinearity Computation Parameter Rate
Kalman Filter Linear O(n3) Exponential
EKF Weakly Nonlinear O(n3) Linear
UKF Strongly Nonlinear O(n3) Quadratic
Particle Filter Arbitrary O(Npn

3) Asymptotic

Table 2.1: Comparison of filtering-based parameter estimation methods. Here, n denotes
the state dimension and Np the number of particles.





Chapter 3

Numerical Optimization for
Parameter Estimation

This chapter lays the essential mathematical foundation for addressing the optimization
problems that are central to the development and analysis of parameter estimation tech-
niques throughout this thesis. The discussion begins with core principles of nonlinear opti-
mization, emphasizing the roles of gradient-based analysis and curvature information [36].
A structured treatment of unconstrained optimization is developed, leading into optimality
criteria derived from first and second-order conditions. These concepts are then extended to
specialized problem classes, including quadratic models and iterative numerical algorithms
[22]. The final sections focus on the characterization of descent directions and practical
convergence conditions, forming a rigorous basis for the nonlinear least squares methods
elaborated in subsequent chapters.

3.1 Foundational Concepts in Unconstrained Optimization

Let A ⊆ Rn be an open set and let f : A → R be a nonlinear and differentiable objective
function. The general problem of unconstrained optimization consists of finding a point
x∗ ∈ A such that

x∗ = arg min
x∈A

f(x), (3.1)

where f is referred to as the objective function, and the minimization occurs over the
domain A. This formulation assumes no additional constraints on x, hence the term “un-
constrained.”

To study the behavior of f near a candidate minimizer, one must introduce the differ-
ential operators associated with f . If f is differentiable at a point x ∈ A, then the gradient
∇f(x) ∈ Rn is defined as the vector of first-order partial derivatives:

∇f(x) =
(
∂f

∂x1
(x), . . . , ∂f

∂xn
(x)
)⊤

. (3.2)

If, in addition, f is twice differentiable, then the Hessian matrix Hf (x) ∈ Rn×n consists
of the second-order partial derivatives:

Hf (x) =
(

∂2f

∂xi∂xj
(x)
)n

i,j=1
, (3.3)

which is symmetric due to Schwarz’s theorem when f ∈ C2(A).

23
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To approximate f(x + h) for small perturbations h ∈ Rn, we make use of Taylor expan-
sions. Assuming f ∈ Ck(A), we can express:

f(x + h) = f(x) +∇f(x + th)⊤h, for some t ∈ (0, 1), (3.4)

which is the first-order Taylor expansion. When f ∈ C2(A), a more accurate second-
order approximation reads:

f(x + h) = f(x) +∇f(x)⊤h + 1
2h⊤Hf (x + th)h, for some t ∈ (0, 1). (3.5)

These expansions are fundamental for constructing and analyzing optimization algorithms,
as they link directional behavior with curvature information.

An important structural property of functions in optimization is convexity. A function
f : A→ R is convex if for all x,y ∈ A and t ∈ [0, 1], the following inequality holds:

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y). (3.6)

If the inequality is strict whenever x ̸= y and t ∈ (0, 1), then f is strictly convex. Convexity
guarantees that every local minimizer is also a global one, and strictly convex functions
possess unique minimizers.

3.2 Optimality Criteria
The determination of minimizers relies on identifying critical points where the gradient
vanishes and where the Hessian satisfies specific positivity conditions.

A point x∗ ∈ A is called a local minimizer of f if there exists a neighborhood Ω ⊆ A
containing x∗ such that for all x ∈ Ω, one has f(x) ≥ f(x∗). If the inequality holds for all
x ∈ A, then x∗ is a global minimizer. A stationary point is defined as a point where the
gradient vanishes, i.e., ∇f(x∗) = 0.

A fundamental necessary condition for local optimality is the vanishing of the gradient.
Specifically, if f ∈ C1(A) and x∗ is a local minimizer, then

∇f(x∗) = 0. (3.7)

This condition ensures that there is no first-order decrease in any direction. The proof
proceeds by contradiction, assuming the existence of a descent direction and applying Taylor
expansion to reveal a violation of minimality.

For twice-differentiable functions, second-order conditions provide further insight. If
f ∈ C2(A) and x∗ is a local minimizer, then the Hessian at that point must be positive
semidefinite:

p⊤Hf (x∗)p ≥ 0, ∀p ∈ Rn. (3.8)
Moreover, the second-order sufficient condition states that if ∇f(x∗) = 0 and Hf (x∗) is

positive definite, then x∗ is a strict local minimizer.

3.3 Directional Derivatives and Descent Directions
The behavior of a function f along a specific direction p ∈ Rn is characterized by the
directional derivative:

Dpf(x) = lim
h→0

f(x + hp)− f(x)
h

= ∇f(x)⊤p. (3.9)

A direction p is called a descent direction at x if this quantity is negative, indicating that
a small step along p reduces the value of f . Geometrically, the angle between p and ∇f(x)
must lie in (π/2, π], i.e., the two vectors must form an obtuse or perpendicular orientation.
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3.4 Iterative Methods for Unconstrained Optimization

When an analytic solution is infeasible, numerical algorithms are employed to iteratively
approximate a local minimizer. Let f : Rn → R be a smooth function. Starting from an
initial guess x0 ∈ Rn, an iterative method generates a sequence {xk} intended to converge
to a stationary point x∗, satisfying ∇f(x∗) = 0.

A desirable property of such algorithms is that the function values decrease monotoni-
cally, i.e.,

f(xk+1) ≤ f(xk), (3.10)

though some methods permit non-monotonic behavior as long as sufficient decrease is
achieved over multiple iterations, such as requiring f(xk+m) < f(xk) for some m ≥ 2.

The convergence of the method is defined by the limit

lim
k→∞

xk = x∗, (3.11)

with the associated condition
lim

k→∞
∥∇f(xk)∥ = 0. (3.12)

In practice, the algorithm terminates when ∥∇f(xk)∥ < ε, where ε > 0 is a specified
tolerance.

Two types of convergence are typically distinguished. A method is globally convergent
if it converges to a stationary point from any initial guess x0 ∈ Rn, provided f satisfies mild
assumptions such as Lipschitz continuity. In contrast, local convergence requires the starting
point to be sufficiently close to the true solution, and often leads to faster convergence rates
under suitable smoothness and curvature conditions.

3.5 Globalization Strategies in Optimization Algorithms

The theoretical analysis of iterative optimization methods often assumes convergence from
a neighborhood of a local minimizer. However, in practice, the initial guess may lie far
from such regions. To ensure global convergence—that is, convergence from arbitrary ini-
tial points—optimization algorithms incorporate globalization strategies. These strategies
guarantee that either a stationary point is approached or sufficient decrease in the objective
function is achieved over successive iterations. The two most widely adopted globaliza-
tion techniques are line search methods and trust region methods, each employing different
mechanisms for selecting the step size and ensuring stability [54].

3.5.1 Line Search Methods

Line search techniques augment a chosen descent direction pk by selecting an appropriate
scalar step size αk > 0 that sufficiently decreases the objective function. The updated iterate
is defined as

xk+1 = xk + αkpk. (3.13)

In principle, one might attempt to compute the exact minimizer of the one-dimensional
function φ(α) = f(xk + αpk). However, exact line searches are rarely practical or efficient.
Instead, inexact line search strategies are employed, where the goal is to find a step size that
provides adequate descent without incurring excessive computational cost.

Two commonly used inexact line search conditions are:
-Armijo condition (sufficient decrease):

f(xk + αkpk) ≤ f(xk) + c1αk∇f(xk)⊤pk, (3.14)
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for some c1 ∈ (0, 1).
-Wolfe conditions:

f(xk + αkpk) ≤ f(xk) + c1αk∇f(xk)⊤pk,

∇f(xk + αkpk)⊤pk ≥ c2∇f(xk)⊤pk,
(3.15)

where 0 < c1 < c2 < 1. The Wolfe conditions balance sufficient decrease with curvature
requirements, ensuring both progress and stability.

3.5.2 Trust Region Methods

An alternative to line search is the trust region approach, which constructs a local model
of the objective function and restricts the step to lie within a specified region around the
current iterate, called the trust region. At each iteration, a quadratic model is built:

mk(p) = f(xk) +∇f(xk)⊤p + 1
2p⊤Bkp, (3.16)

where Bk ∈ Rn×n is a symmetric matrix, often chosen as an approximation to the Hessian
∇2f(xk). The step pk is determined by solving the subproblem:

min
∥p∥≤∆k

mk(p), (3.17)

where ∆k > 0 defines the radius of the trust region. After computing the trial step, the
agreement between the model mk and the actual function f is assessed via the ratio:

ρk = f(xk)− f(xk + pk)
mk(0)−mk(pk) . (3.18)

Based on ρk, the trust region is adjusted:
- If ρk is close to 1, the model is accurate, and ∆k may be increased. - If ρk is poor

(e.g., ρk < 0.25), the step is rejected, and ∆k is reduced. - If ρk is acceptable, the step is
accepted, and ∆k may remain unchanged or be adjusted modestly.

Trust region methods are particularly robust when the gradient is small or when the
curvature is poorly approximated, making them effective for a wide range of nonlinear
problems.

3.6 Search Directions in Line Search Methods
The choice of search direction pk is critical to the efficiency and convergence of an opti-
mization algorithm. Various strategies yield directions with differing convergence rates and
computational costs.

3.6.1 Steepest Descent Method

The steepest descent method selects the direction of maximal local decrease in f by choosing:

pk = −∇f(xk). (3.19)

This direction minimizes the directional derivative over the unit ball:

pk = arg min
∥p∥=1

∇f(xk)⊤p. (3.20)

While easy to implement and computationally inexpensive, steepest descent methods
often suffer from slow convergence, particularly in ill-conditioned problems. The method
typically exhibits linear convergence and may zigzag toward the minimizer in narrow valleys
of the objective function.
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3.6.2 Newton’s Method

Newton’s method utilizes second-order information to generate a direction that accounts for
local curvature:

∇2f(xk)pk = −∇f(xk). (3.21)
Provided that the Hessian ∇2f(xk) is positive definite, the resulting direction pk is a

descent direction. Near the solution x∗, Newton’s method achieves quadratic convergence,
making it highly effective in the local regime.

However, the need to compute and invert the Hessian renders Newton’s method imprac-
tical for large-scale problems, especially when n is large or when the Hessian is indefinite or
poorly conditioned.

3.6.3 Quasi-Newton Methods

To overcome the computational burden of Newton’s method while preserving rapid conver-
gence, quasi-Newton methods construct an approximation Bk ≈ ∇2f(xk) that is updated
iteratively using only gradient and step information. The search direction is defined as

pk = −B−1
k ∇f(xk). (3.22)

Popular updating schemes include the BFGS (Broyden–Fletcher–Goldfarb–Shanno) and
DFP (Davidon–Fletcher–Powell) algorithms, both of which maintain symmetry and positive
definiteness of Bk under suitable conditions.

Quasi-Newton methods typically exhibit superlinear convergence and offer an excellent
trade-off between computational efficiency and convergence speed, especially in medium to
large-scale applications.

3.7 Convergence Rates of Iterative Methods
To compare the performance of iterative optimization methods, one analyzes the rate of
convergence of the sequence {xk} to a minimizer x∗. Let ek = ∥xk − x∗∥ denote the error
at iteration k. The method is said to have convergence of order p and rate µ > 0 if

lim
k→∞

ek+1
ep

k

= µ. (3.23)

This classification leads to several standard categories:
- Linear convergence: p = 1, 0 < µ < 1.

ek+1 ≈ µek.

- Superlinear convergence: p = 1, µ = 0, indicating that ek+1/ek → 0.
- Quadratic convergence: p = 2, with some M > 0 such that

ek+1 ≤Me2
k,

leading to rapid error reduction near the solution.
The following table summarizes the convergence characteristics of key methods:

Method Convergence Rate
Steepest Descent Linear
Newton’s Method Quadratic (local)
Quasi-Newton (e.g., BFGS) Superlinear

Understanding these convergence behaviors aids in the design and selection of algorithms
suitable for specific classes of optimization problems, particularly when balancing accuracy
with computational resources.
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3.8 Nonlinear Regression and Specialized Optimization Tech-
niques

In this section, we begin with a discussion of Newton’s method [38], which provides a general
framework for solving nonlinear systems of equations and nonlinear optimization problems.
We then focus on the Gauss-Newton (GN) and Levenberg–Marquardt (LM) methods, spe-
cialized versions of Newton’s method tailored for nonlinear regression problems. Although
no general theory exists for solving nonlinear parameter estimation and inverse problems,
we demonstrate how iterative techniques based on linear concepts can often provide effective
solutions.

3.8.1 Newton’s Method for Solving Nonlinear Equations

Consider a nonlinear system of m equations in m unknowns:
F(x) = 0 (3.24)

where F : Rm → Rm is a vector-valued function. The goal is to find a solution x∗ such
that F(x∗) = 0. To solve this system iteratively, we construct a sequence of approximations
x(0),x(1), . . . that converges to the true solution x∗.

Assuming that F(x) is continuously differentiable, we approximate the function F(x)
around an initial guess x(0) using a first-order Taylor expansion:

F(x(0) + ∆x) ≈ F(x(0)) + J(x(0))∆x, (3.25)
where J(x(0)) is the Jacobian matrix of F evaluated at x(0):

J(x(0)) =


∂F1(x)

∂x1
· · · ∂F1(x)

∂xm... . . . ...
∂Fm(x)

∂x1
· · · ∂Fm(x)

∂xm


x=x(0)

.

For a solution x∗, we have F(x∗) = 0, and we can express the difference ∆x = x∗ − x(0).
The linearized equation becomes:

F(x∗) ≈ F(x(0)) + J(x(0))∆x = 0.
This leads to a linear system:

J(x(0))∆x = −F(x(0)),
which can be solved for ∆x, allowing us to update the solution estimate as follows:

x(1) = x(0) + ∆x.

Algorithm: Newton’s Method
Given an initial guess x(0) and the system of equations F(x) = 0, iterate the following

steps until convergence:

1. Compute the Jacobian matrix J(x(k)) and the function vector F(x(k)).

2. Solve the linear system J(x(k))∆x = −F(x(k)).

3. Update the solution estimate: x(k+1) = x(k) + ∆x.

4. Increment k: k = k + 1.

Theorem: If x(0) is sufficiently close to the true solution x∗, the Jacobian J(x) is
continuously differentiable, and the Jacobian at the solution J(x∗) is nonsingular, then
Newton’s method converges quadratically to x∗. In particular, there exists a constant c > 0
such that, for sufficiently large k,

∥x(k+1) − x∗∥2 ≤ c∥x(k) − x∗∥22. (3.26)
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3.8.2 Damped Newton’s Method

A simple modification to Newton’s method can help overcome convergence issues. In the
damped Newton’s method, we introduce a step size parameter α and modify the update
rule to:

x(k+1) = x(k) + α∆x, (3.27)

where α is selected through a line search to minimize the residual ∥F(x(k+1))∥2. This
approach helps to ensure stable convergence, especially when the Jacobian is poorly condi-
tioned.

3.8.3 Minimization of Scalar-Valued Functions

Now, consider minimizing a scalar-valued function f(x). If f(x) is twice continuously dif-
ferentiable, we can construct a second-order Taylor expansion around an initial guess x(0):

f(x(0) + ∆x) ≈ f(x(0)) +∇f(x(0))T ∆x + 1
2∆xT H(f(x(0)))∆x, (3.28)

where ∇f(x(0)) is the gradient of f and H(f(x(0))) is the Hessian matrix:

∇f(x(0)) =


∂f(x)
∂x1...

∂f(x)
∂xm


x=x(0)

,

H(f(x(0))) =


∂2f(x)

∂x2
1

· · · ∂2f(x)
∂x1∂xm

... . . . ...
∂2f(x)

∂xm∂x1
· · · ∂2f(x)

∂x2
m


x=x(0)

.

For a minimum, we require ∇f(x∗) = 0. To find x∗, we approximate the gradient around
x(0) by:

∇f(x(0) + ∆x) ≈ ∇f(x(0)) + H(f(x(0)))∆x. (3.29)

Setting the approximate gradient to zero yields the Newton system for minimizing f(x):

H(f(x(0)))∆x = −∇f(x(0)). (3.30)

This is a linear system that we can solve iteratively to update the estimate of x.
Algorithm: Newton’s Method for Minimizing f(x)
Given a twice continuously differentiable function f(x), and an initial guess x(0), iterate

the following steps until convergence:

1. Compute the gradient ∇f(x(k)) and Hessian H(f(x(k))).

2. Solve the linear system H(f(x(k)))∆x = −∇f(x(k)).

3. Update the solution estimate: x(k+1) = x(k) + ∆x.

4. Increment k: k = k + 1.
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3.8.4 Gauss-Newton and Levenberg–Marquardt Methods

The Gauss-Newton method is a simplification of Newton’s method that is particularly useful
for nonlinear least squares problems. For a problem where we wish to minimize the sum of
squared residuals:

S(x) =
n∑

i=1
[yi − f(x; ti)]2 ,

where yi are observed values, f(x; ti) is the model function, and x is the parameter vector,
the gradient and Hessian can be approximated by:

∇S(x) = −2JT (y− f),

H(S(x)) = 2JT J,

where J is the Jacobian matrix of the residual function r(x) = y− f(x). The Gauss-Newton
update rule is:

x(k+1) = x(k) − (JT J)−1JT (y− f(x(k))). (3.31)
This method avoids the need to compute the Hessian explicitly and works well for problems
where the residuals are small.

For ill-conditioned problems, the Levenberg–Marquardt method combines the Gauss-
Newton approach with a damping factor λ to improve stability:

x(k+1) = x(k) − (JT J + λI)−1JT (y− f(x(k))), (3.32)

where I is the identity matrix. The parameter λ is adjusted at each iteration to balance
between the Gauss-Newton and gradient descent methods.

3.8.5 Nelder–Mead Method

The Nelder–Mead method, introduced by Nelder and Mead in 1965 [101], is a widely used
derivative-free optimization algorithm for unconstrained minimization of scalar-valued func-
tions in Rn. It is particularly suitable for problems where the objective function is non-
differentiable, noisy, or computationally expensive to evaluate. The method maintains a
simplex, a geometric object consisting of n + 1 vertices in n-dimensional space, which it
iteratively transforms to approximate a local minimum [98, 2].

Initialization of the Simplex

The algorithm begins by constructing an initial simplex. Given an initial point x0 ∈ Rn,
the remaining n vertices of the simplex are typically generated by adding small pertur-
bations along each coordinate axis to x0. Specifically, the i-th vertex xi is obtained by
modifying the i-th component of x0 by a small offset. The resulting simplex is denoted
S = {x0,x1, . . . ,xn}, where the objective function is evaluated at each vertex.

Transformation Steps

At each iteration, the algorithm evaluates the objective function at the vertices and sorts
them such that f(xl) ≤ f(x2) ≤ · · · ≤ f(xh), where xl and xh denote the best and worst
vertices, respectively. The centroid xc of the simplex, excluding xh, is computed as

xc = 1
n

∑
i ̸=h

xi. (3.33)

The method then applies a sequence of geometric operations—reflection, expansion,
contraction, and shrinkage—to update the simplex.
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Reflection is the first operation considered. The worst point xh is reflected through the
centroid to generate a new point xr, given by

xr = xc + α(xc − xh), (3.34)

where α > 0 is the reflection coefficient, typically set to α = 1. If the reflected point
yields a better objective value than xh, it replaces xh in the simplex.

If xr is better than the best point xl, an expansion step is attempted to further accelerate
progress in the same direction. The expanded point is defined by

xe = xc + γ(xr − xc), (3.35)

with γ > 1, typically γ = 2. If f(xe) < f(xr), then xe is accepted; otherwise, the
algorithm retains xr.

When the reflection does not yield sufficient improvement, a contraction step is consid-
ered. If f(xr) < f(xh), an outside contraction is performed:

xo = xc + β(xr − xc), (3.36)

where 0 < β < 1 is the contraction coefficient, often taken as β = 0.5. If f(xr) ≥ f(xh),
an inside contraction is attempted using

xi = xc − β(xc − xh). (3.37)

The contracted point is accepted if it improves upon xh.
If all the above operations fail to produce a point with lower objective value, a shrinkage

operation is applied to contract the entire simplex toward the best vertex xl. This is done
using

x′
i = xl + δ(xi − xl), (3.38)

for all i ̸= l, where 0 < δ < 1 is the shrinkage factor, typically δ = 0.5.

Algorithmic Cycle and Termination

The Nelder–Mead method cycles through the above transformation steps at each iteration.
The worst point is first reflected. Depending on the quality of the reflection, the algorithm
may attempt to expand or contract. If neither operation yields improvement, the simplex is
shrunk. This process is repeated until a convergence criterion is satisfied. Common conver-
gence conditions include the reduction of the simplex diameter below a predefined threshold,
the change in function values among vertices falling below a tolerance, or the maximum num-
ber of iterations being reached. Although the Nelder–Mead method is simple to implement
and effective in low-dimensional problems, [47, 21] it does not guarantee convergence to a
stationary point and may fail in high-dimensional or non-smooth optimization landscapes.





Chapter 4

Huber Loss Function in Robust
Estimation

In classical regression, the L2-norm is commonly used to measure residuals, but it is highly
sensitive to outliers. The Huber function, introduced by Peter J. Huber in 1964 [62], provides
a robust alternative by interpolating between the L2-norm and the L1-norm. This section
introduces the Huber function, presents its formal definition, and discusses its key properties
and advantages in robust estimation.

4.1 Definition and Fundamental Properties
Definition 4.1 (Huber Function). Let δ ≥ 0 be a fixed threshold parameter. For any u ∈ R,
the Huber function ψδ : R→ R is defined as

ψδ(u) =


1
2u

2, if |u| ≤ δ,

δ
(
|u| − 1

2δ
)
, if |u| > δ.

(4.1)

Remark 4.2 (Robustness Property). The Huber function behaves quadratically for small
residuals (|u| ≤ δ), ensuring efficient estimation for well-behaved data, and grows linearly
for large residuals (|u| > δ), thereby reducing the influence of outliers. This hybrid structure
provides a compromise between the efficiency of least squares and the robustness of absolute
deviation methods. 4.1 illustrates this hybrid nature.

Remark 4.3 (Continuity and Differentiability). The Huber function ψδ is continuous and
once continuously differentiable (C1) for all u ∈ R, but not twice continuously differentiable
(C2) at u = ±δ. Its derivative is given by

ψ′
δ(u) =

{
u, |u| ≤ δ,
δ sign(u), |u| > δ,

(4.2)

where sign(u) denotes the sign function.
Remark 4.4 (Comparison with Classical Norms). For residuals satisfying |u| ≤ δ, ψδ(u)
coincides with the squared error function, whereas for |u| > δ, it behaves similarly to the
absolute error. Consequently, the Huber function provides a continuous transition between
the L2-norm and the L1-norm, making it particularly suitable for regression problems with
potential outliers.
Remark 4.5 (Non-Norm Property). Although ψδ is often used as a measure of error, it does
not satisfy the triangle inequality for all u, v ∈ R and therefore is not a norm in the strict
mathematical sense. Nevertheless, it retains key features for robust estimation in practice.

33
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Figure 4.1: Huber function for different δ values. The red dashed line shows the L2-norm
region (|u| ≤ δ), while the blue solid line shows the L1-norm-like behavior (|u| > δ).
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4.2 Robust Linear Regression as a Convex Quadratic Pro-
gram

The Huber function ψδ(u) is not twice differentiable, which can complicate the use of stan-
dard Newton-type solvers. To circumvent this, we employ a reformulation introduced by
Mangasarian and Musicant [95]. Before proceeding with the full reformulation of the Huber
linear estimation problem, we examine a crucial step: representing the Huber function as the
minimum of a convex quadratic function. This transformation simplifies the optimization
problem and allows it to be rewritten as a quadratic program (QP).

Lemma 4.6 (Huber Loss as the Minimum of a Convex Quadratic Function). Let ψδ(u)
denote the Huber function defined in equation (4.1). Then, for any u ∈ R, ψδ(u) can be
expressed as

ψδ(u) = min
q∈R

1
2q

2 + δ|u− q|. (4.3)

Proof. Define the auxiliary function

θ(q, u) := 1
2q

2 + δ|u− q|.

The subgradient of θ with respect to q is given by

∂qθ(q, u) =


q − δ, u > q,

q + λδ, λ ∈ [−1, 1], u = q,

q + δ, u < q.

Optimality requires the subgradient to contain zero. Solving for q gives the optimal q⋆

as

q⋆ =


δ, u > δ,

u, |u| ≤ δ,
−δ, u < −δ.

Substituting these optimal values q⋆ into θ(q, u) recovers the Huber function:

ψδ(u) =


1
2δ

2 + δ(u− δ) = δu− 1
2δ

2, u > δ,
1
2u

2, |u| ≤ δ,
1
2δ

2 + δ(−u− δ) = −δu− 1
2δ

2, u < −δ.

This coincides exactly with the definition of ψδ(u) in (4.1), proving the lemma.

Having established that the Huber function can be written as the minimum of a convex
quadratic function, we can now apply this representation to the linear regression problem.
For a linear system Ax = b, the Huber regression objective

m∑
i=1

ψδ

(
(Ax− b)i

)
can equivalently be written as

min
q1,...,qm∈R

m∑
i=1

1
2q

2
i + δ|(Ax− b)i − qi|.



36 CHAPTER 4. HUBER LOSS FUNCTION IN ROBUST ESTIMATION

Introducing the slack variables r, s ≥ 0 to linearize the L1 term, we obtain the convex
quadratic program:

min
x∈Rn, q,r,s∈Rm

1
2∥q∥

2
2 + δ1⊤

m(r + s),

s.t. Ax− b− q = r − s, r ≥ 0, s ≥ 0. (4.4)

This QP formulation is fully convex, avoids nonsmooth absolute values, and is suitable
for standard QP solvers.

Corollary 4.7 (Reformulating the Huber Linear Estimator). The Huber linear estimation
problem

min
x∈Rn

m∑
i=1

ψδ

(
(Ax− b)i

)
(4.5)

can be equivalently reformulated as the convex quadratic program

min
x∈Rn, q∈Rm

1
2∥q∥

2
2 + δ∥Ax− b− q∥1. (4.6)

Proof. By Lemma 4.6, each Huber loss term satisfies

ψδ((Ax− b)i) = min
qi∈R

1
2q

2
i + δ |(Ax− b)i − qi| .

Hence, the total objective in (4.5) can be written as

m∑
i=1

ψδ((Ax− b)i) =
m∑

i=1
min
qi∈R

1
2q

2
i + δ |(Ax− b)i − qi| .

Introducing the vector of auxiliary variables q = (q1, . . . , qm)⊤ ∈ Rm, the minimization
problem becomes

min
x∈Rn, q∈Rm

m∑
i=1

(1
2q

2
i + δ |(Ax− b)i − qi|

)
. (4.7)

This can be compactly written in matrix notation as

min
x∈Rn, q∈Rm

1
2∥q∥

2
2 + δ∥Ax− b− q∥1,

which is exactly (4.6).
This formulation is a convex quadratic program: the quadratic term 1

2∥q∥
2
2 is convex,

and the linear term δ∥Ax− b− q∥1 is convex due to the L1-norm. Therefore, standard QP
solution techniques can be applied.

Remark 4.8 (Huber Linear Estimator as a Convex QP). The Huber linear estimator can be
expressed as the convex quadratic program

min
x∈Rn, q,r,s∈Rm

1
2∥q∥

2
2 + δ1⊤

m(r + s),

s.t. Ax− b− q = r − s, r ≥ 0, s ≥ 0, (4.8)

where r and s are nonnegative slack variables linearizing the L1-norm.
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Remark 4.9 (Huber Linear Estimator as a Convex QP). Let x(δ) denote the Huber linear
estimator that solves

min
x∈Rn

m∑
i=1

ψδ

(
(Ax− b)i

)
, (4.9)

where ψδ is the Huber loss function defined in (4.1). Then x(δ) can be obtained as any
solution (x(δ), q(δ), t(δ)) of the following convex quadratic program:

min
x∈Rn, q∈Rm, t∈Rm

1
2∥q∥

2
2 + δ1⊤

mt, (4.10)

s.t. − t ≤ Ax− b− q ≤ t. (4.11)

Here, 1m ∈ Rm denotes the vector of ones.

4.3 Dual Formulations of the Huber QP

In this section, we derive the dual formulation of the Huber optimization problem using
the Lagrangian method. The dual problem is obtained directly from the primal quadratic
program (QP) by introducing Lagrange multipliers for the constraints. This dual perspective
provides insights into sensitivity, robustness, and computational strategies for the Huber
estimator.

4.3.1 Dual Derivation via the Lagrangian Method

Consider a general convex quadratic program (QP) in standard form:

min
x

1
2x

⊤Qx+ c⊤x, (4.12)

s.t. Ax = b, x ≥ 0, Q ≻ 0, (4.13)

where x ∈ Rn, Q ∈ Rn×n is positive definite, c ∈ Rn, A ∈ Rm×n, and b ∈ Rm.
The Lagrangian for this problem is

L(x, λ, µ) = 1
2x

⊤Qx+ c⊤x+ λ⊤(b−Ax)− µ⊤x, (4.14)

where λ ∈ Rm and µ ∈ Rn
≥0 are Lagrange multipliers corresponding to the equality and

inequality constraints, respectively.

Stationarity: Taking the derivative with respect to x and setting it to zero gives:

∇xL = Qx+ c−A⊤λ− µ = 0 ⇒ x∗ = Q−1(A⊤λ+ µ− c). (4.15)

Dual Function: Substituting x∗ back into the Lagrangian, the dual function is

g(λ, µ) = L(x∗, λ, µ) (4.16)

= b⊤λ− 1
2(A⊤λ+ µ− c)⊤Q−1(A⊤λ+ µ− c), if A⊤λ+ µ− c ∈ Range(Q),

= −∞, otherwise. (4.17)
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Dual Problem: The dual optimization problem is obtained by maximizing g(λ, µ) subject
to feasibility constraints:

max
λ,µ

g(λ, µ), (4.18)

s.t. µ ≥ 0, A⊤λ+ µ− c ∈ Range(Q). (4.19)

Equivalently, using the substitution x = Q−1(A⊤λ + µ − c), we can rewrite the dual in
the more familiar form:

min
x

1
2x

⊤Qx− b⊤λ, (4.20)

s.t. Qx = A⊤λ− c+ µ, µ ≥ 0. (4.21)

4.4 Solving the Huber QP with a Parametric Active-Set Solver

In this section we present the precise mathematical mapping of the Huber regression problem
to the canonical quadratic program used by parametric active-set solvers (such as qpOASES),
derive the associated Karush–Kuhn–Tucker (KKT) linear systems, and explain why and
how a parametric active-set method can be used to efficiently solve a family of Huber
problems when the parameter δ (or the right-hand side b) varies. We also state the regularity
conditions under which the active-set homotopy is well behaved, and give practical numerical
recommendations.

4.4.1 Canonical QP form and mapping

Recall the Huber QP in split form (Formulation 1):

min
x∈Rn, q,r,s∈Rm

1
2 q

⊤q︸ ︷︷ ︸
= 1

2 ∥q∥2
2

+ δ 1⊤
m(r + s)

s.t. Ax− b− q = r − s,
r ≥ 0, s ≥ 0.

(P)

An active-set QP solver expects the problem in the following canonical form:

min
y∈RN

1
2y

⊤Hy + g⊤y

s.t. ℓA ≤ Cy ≤ uA,

ℓ ≤ y ≤ u,

(Q)

where H ∈ RN×N is symmetric positive semidefinite, g ∈ RN , C ∈ RmC×N and bounds are
allowed to be ±∞.

Variable stacking. Set

y =


x
q
r
s

 ∈ RN , N = n+ 3m.

With this ordering the mapping is constructed as follows.
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Hessian H. Only the q-block appears quadratically:

H =


0n,n 0 0 0

0 Im 0 0
0 0 0m,m 0
0 0 0 0m,m

 ∈ RN×N .

Thus 1
2y

⊤Hy = 1
2q

⊤q.

Linear term g. The linear term equals δ (r + s)⊤1m, hence

g =


0n

0m

δ 1m

δ 1m

 .

Equality constraints. The equality Ax− b− q = r − s is encoded by

C =
[
A −Im −Im Im

]
∈ Rm×N , ℓA = uA = b.

(Equality constraint by taking equal lower and upper bounds.)

Variable bounds. The variable bounds are

ℓ =


−∞n

−∞m

0m

0m

 , u = +∞ · 1N .

In practice solvers require finite entries, so replace ±∞ by large finite numbers.

4.4.2 KKT conditions and the active set

Write the Lagrangian for (Q) with multiplier vectors λ for the linear constraints Cy = b
(the equality version), and π for bound constraints (we separate lower/upper bounds in
implementation). For brevity we derive the first-order optimality in the equality + bound
formulation:

L(y, λ) = 1
2y

⊤Hy + g⊤y + λ⊤(Cy − b).

The KKT conditions are

Hy⋆ + g + C⊤λ⋆ + π⋆ = 0 (stationarity), (4.22a)
Cy⋆ = b (primal feasibility), (4.22b)
ℓ ≤ y⋆ ≤ u, π⋆ ∈ N[ ℓ,u ](y⋆), (4.22c)

where π⋆ is the multiplier (vector) associated with bound constraints and N[ ℓ,u ](y⋆) denotes
the normal cone at y⋆.

An active set A is the set of indices where a bound is tight at the solution: A = {i :
y⋆

i = ℓi or y⋆
i = ui}. Given an active set A, the equality constraints together with the active

bounds become equality constraints, and the KKT system reduces to a linear system for the
free variables and associated multipliers.
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Reduced KKT linear system. Suppose the active set A is known and let F denote the
indices of free variables (F = {1, . . . , N} \ A). Partition y = (yF , yA), H accordingly, and
write the constraint matrix C = [CF CA]. Then stationarity (4.22a) and primal feasibility
(4.22b) for unknowns (yF , λ) give the saddle linear system[

HF F C⊤
F

CF 0

] [
yF

λ

]
= −

[
gF +HF AyA + C⊤

AπA
CAyA − b

]
. (KKTF )

Active-set methods operate by (i) guessing/maintaining A, (ii) solving the reduced KKT
system KKTF for (yF , λ), (iii) checking feasibility (bounds and complementarity), and (iv)
updating the active set by adding/removing indices until optimality is reached.

4.4.3 Parametric dependence and warm-starting

Two typical parametric scenarios for Huber regression are:

1. Variation of the Huber threshold δ. In our canonical form the parameter δ enters
linearly in the objective vector g: g(δ) = g0 + δ g1 where g1 has ones in positions
corresponding to r and s.

2. Variation of the observations b. This changes the right-hand side of the equality
constraints Cy = b (i.e. ℓA, uA).

A parametric active-set solver (qpOASES) exploits the fact that for small parameter
changes the optimal active set is often unchanged or changes only by a small number of
indices. If the active set A remains constant for a parameter range, the optimal solution
y⋆(θ) (with parameter θ) satisfies a linear system obtained from KKTF whose right hand
side depends affinely on θ. Consequently y⋆(θ) is an affine function of θ on that region.
When δ varies, the algorithm proceeds by:

• solving (P) for an initial δ0 to obtain an active set A0;

• for a new δ1 use A0 as a warm start: solve the reduced KKT system KKTF with
updated right-hand side corresponding to g(δ1);

• verify feasibility and complementarity; if violated, update A and repeat.

This warm-start procedure is often dramatically faster than resolving from scratch be-
cause the solver reuses factorisations (or rank-one updates) of HF F or the Schur complement.
In exact arithmetic the solution path as a function of δ is piecewise affine; active-set changes
occur only when a component hits a bound (a break point).

4.4.4 Dual interpretation and bounds on duals

From the primal Lagrangian of (P) one obtains the dual variable λ ∈ Rm associated with the
equality Ax− b− q = r − s. After eliminating primal variables the dual objective becomes

max
λ∈Rm

b⊤λ− 1
2λ

⊤λ s.t. A⊤λ = 0, −δ1m ≤ λ ≤ δ1m.

These bounds |λi| ≤ δ are visible numerically in the multipliers returned by the QP solver
and are helpful for diagnostics: if some |λi| is numerically near δ, the corresponding residual
is at the linear regime of the Huber loss.
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4.4.5 Algorithmic summary for solving Huber QP with qpOASES

1. Assemble canonical QP data: H, g(δ), C, b, ℓ, u as above.

2. Initial solve: call the active-set QP solver to obtain y⋆(δ0) and active set A0.

3. Parametric updates: for each new δ (or new b):

(a) update g (or right-hand side b),
(b) warm-start using previous active set A (solver API: hotstart / reinit),
(c) if necessary, perform active-set updates until KKT satisfied.

4. Postprocess: extract x⋆ from y⋆; compute residuals r⋆ = Ax⋆ − b − q⋆ and Huber
loss; inspect duals λ⋆ to infer which residuals lie in linear/quadratic regimes.

4.5 Numerical Illustration
To demonstrate the robustness of the Huber loss function in parameter estimation, two
numerical experiments were conducted using synthetic datasets contaminated with outliers.
The objective was to compare the performance of the Huber regression estimator against
the conventional Ordinary Least Squares (OLS) approach under both linear and nonlinear
conditions.

4.5.1 Linear Model with Outliers

A linear model of the form

y = 2x+ 1 + ε, ε ∼ N (0, 0.52), (4.23)

was simulated with n = 50 data points uniformly distributed over the interval x ∈ [0, 10].
To assess robustness, eight randomly selected samples were perturbed by large additive
deviations drawn from N (15, 52), producing significant outliers.

The parameters were estimated using two methods:

1. Ordinary Least Squares (OLS): minimizes the quadratic loss

LOLS =
n∑

i=1
(yi − ŷi)2, (4.24)

2. Huber Regression: minimizes the hybrid loss function [62]

Lδ(ri) =


1
2r

2
i , |ri| ≤ δ,

δ(|ri| − 1
2δ), |ri| > δ,

(4.25)

where ri = yi − ŷi is the residual and δ = 1.35 is the threshold parameter.

The accuracy of the estimated models was evaluated using the Root Mean Squared Error
(RMSE) [117] with respect to the true model:

RMSE =

√√√√ 1
n

n∑
i=1

(ytrue
i − ŷi)2. (4.26)

The obtained results were:

RMSEOLS = 2.3998, RMSEHuber = 0.0943.
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The OLS estimator exhibited a large RMSE due to its sensitivity to extreme residuals,
while the Huber estimator retained a small RMSE close to the noise-free level. Figure 4.2
illustrates the fitted models. The OLS regression line (red) is visibly skewed toward the
outliers, whereas the Huber regression (blue) remains closely aligned with the true linear
relationship (green dashed line), clearly demonstrating its robustness.

Figure 4.2: Comparison of OLS and Huber regression fits for a linear dataset with outliers.

4.5.2 Nonlinear Model: Sinusoidal Function with Outliers

To further evaluate the Huber loss in a nonlinear setting, data were generated according to

y = sin(x) + ε, ε ∼ N (0, 0.12), (4.27)

with n = 80 samples uniformly spaced over x ∈ [0, 2π]. Ten data points were again contam-
inated with large deviations drawn from N (2.5, 0.52).

Since the underlying relationship is nonlinear, a fifth-degree polynomial basis was em-
ployed:

Φ(x) = [x, x2, x3, x4, x5], (4.28)

and both OLS and Huber regression were fitted to the transformed features.
The resulting RMSE values were:

RMSEOLS = 0.3505, RMSEHuber = 0.0561.

As shown in Figure 4.3, the OLS polynomial fit (red) deviates notably in regions influ-
enced by outliers, while the Huber fit (blue) closely follows the true sinusoidal curve (green
dashed). The substantial RMSE reduction confirms that the Huber estimator effectively
mitigates the effect of gross errors in nonlinear regression as well.
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Figure 4.3: Comparison of OLS and Huber regression fits for the nonlinear model y = sin(x)
with outliers.

4.5.3 Discussion

These numerical experiments clearly illustrate the advantages of the Huber loss in parameter
estimation tasks subject to outlier contamination. In both linear and nonlinear scenarios,
the Huber regression provided results nearly identical to the true model, whereas the OLS
estimator was severely biased. The adaptive nature of the Huber function quadratic for
small residuals and linear for large ones allows it to combine efficiency under Gaussian
noise with robustness against heavy-tailed disturbances.





Chapter 5

Machine Learning in System
Identification

System identification refers to the process of constructing mathematical models of dynam-
ical systems from observed data. Classical approaches to this problem typically rely on
linear models and assumptions of Gaussian noise, which, while analytically tractable, often
fall short in representing complex nonlinear dynamics encountered in real-world systems.
With the rapid advancement of machine learning (ML), particularly deep learning [8], new
methodologies have emerged that can model highly nonlinear and high-dimensional systems
with greater accuracy and flexibility.

This chapter presents a comprehensive framework for system identification grounded in
machine learning principles [37]. The focus is on bridging the gap between traditional analyt-
ical techniques and modern data-driven models, offering a unified perspective that integrates
foundational mathematics, optimization techniques, neural network-based approximations,
and recent methodological innovations such as Neural Ordinary Differential Equations (Neu-
ral ODEs). The framework accommodates both continuous- and discrete-time systems, and
addresses important concerns such as model generalizability, interpretability, and consis-
tency with physical laws.

Applications of ML-based system identification span a broad range of fields, from robotics
and control to neuroscience, bioengineering, and climate modeling. In these domains, learn-
ing models directly from data can enhance the predictive power of existing physics-based
models, or even offer tractable alternatives when first-principles derivation is infeasible.
Through the use of deep learning architectures, optimization algorithms, and theoretical
guarantees such as universal approximation theorems, this chapter elucidates how ML can
augment and extend classical system identification paradigms [18].

5.1 Mathematical Foundations

A rigorous formulation of system identification begins with the mathematical representation
of dynamical systems. These systems may evolve in either continuous or discrete time,
and are generally governed by a combination of internal dynamics, external inputs, and
observation noise.

We consider first a continuous-time dynamical system with control inputs, expressed as:

dx(t)
dt

= f(x(t),u(t)), x(0) = x0 (5.1)

y(t) = g(x(t)) + ϵ(t), ϵ(t) ∼ N (0,Σ) (5.2)

Here, x(t) ∈ Rn denotes the latent state vector, u(t) ∈ Rm is the control input, and y(t) ∈ Rp

45
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is the observed output corrupted by Gaussian noise ϵ(t) with covariance Σ. The vector field
f governs the system dynamics, while g defines the measurement model.

Alternatively, the discrete-time formulation introduces process noise directly into the
evolution of the state:

xk+1 = f(xk,uk) + wk, wk ∼ N (0,Q) (5.3)
yk = g(xk) + vk, vk ∼ N (0,R) (5.4)

In this setting, wk and vk represent process and measurement noise, respectively, each
modeled as zero-mean Gaussian with covariances Q and R. The goal of system identification
is to recover the underlying functions f and g from a finite set of observations {y(ti)}Ni=1,
under appropriate regularity conditions and assumptions on their functional forms.

5.1.1 Traditional Approaches

Historically, system identification has been dominated by linear models due to their math-
ematical tractability and well-established estimation theory. A common formulation is the
linear state-space model, given in discrete time by:

xk+1 = Axk + Buk (5.5)
yk = Cxk + vk (5.6)

where A, B, and C are matrices that define the system dynamics, input effects, and output
mapping, respectively. These parameters are typically estimated using subspace identifica-
tion methods or prediction error minimization techniques. Such models work well for mildly
nonlinear systems or when deviations from linearity are minimal.

To account for nonlinearities, extensions of linear models have been proposed. Among
them, the Nonlinear AutoRegressive Moving Average with eXogenous inputs (NARMAX)
model is one of the most prominent. It extends the ARMAX framework by allowing the
function governing the dynamics to be nonlinear:

yk = F(yk−1, . . . , yk−n, uk−1, . . . , uk−m, ek−1, . . . , ek−d) (5.7)

Here, F is a nonlinear function, often parameterized using polynomials or basis functions,
that maps past inputs, outputs, and errors to the current output. While flexible, the NAR-
MAX approach requires careful selection of model structure and order, and can become
unwieldy in high dimensions.

5.1.2 Machine Learning Approaches

Machine learning, particularly deep learning, offers powerful tools for modeling nonlinear
dynamical systems. A major innovation in this context is the use of neural networks to
represent differential equations, leading to the development of Neural Ordinary Differential
Equations (Neural ODEs). These models approximate the right-hand side of a differen-
tial equation using a neural network, allowing for data-driven discovery of continuous-time
dynamics.

Under the universal approximation theorem [26], any Lipschitz-continuous function can
be approximated to arbitrary accuracy by a sufficiently large neural network. This leads to
the following result [113]:

Theorem 5.1 (Neural ODE Representation). Let f(x,u) be a Lipschitz-continuous vector
field defining a continuous-time dynamical system. Then, for any ϵ > 0, there exists a
parameterized neural network MLPθ such that

dx
dt

= MLPθ(x,u) and ∥f(x,u)−MLPθ(x,u)∥ < ϵ (5.8)
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for all (x,u) in a compact domain.

This approximation forms the theoretical foundation for Neural ODEs, enabling the
learning of system dynamics directly from data by optimizing neural network parameters.

An essential component of training Neural ODEs is the computation of gradients with
respect to the parameters θ, which is achieved via the adjoint sensitivity method. Instead
of storing intermediate states at all time steps (as in backpropagation through time), the
adjoint method solves a reverse-time differential equation to compute gradients with constant
memory cost:

da(t)
dt

= −a(t)⊤∂MLPθ

∂x , a(t1) = ∂L
∂x(t1) (5.9)

Here, a(t) is the adjoint state and L is the loss function used in training. This approach
enables scalable learning of complex continuous-time models using gradient-based optimiza-
tion.

5.2 Problem Formulation and Optimization Framework

In the context of system identification using machine learning, the primary objective is to
determine the parameters of a model that best capture the relationship between observed
inputs and outputs. Let us denote the model parameters by θ ∈ Rd, and consider a dataset
D = {(xi,yi)}Ni=1, where xi represents the input features and yi denotes the corresponding
observed outputs. The task is to learn a function f(x; θ) such that it approximates the true
mapping from inputs to outputs as accurately as possible.

This estimation process is formulated as a parameter optimization problem, where the
optimal parameter set θ̂ minimizes a predefined loss function L, which quantifies the dis-
crepancy between the model predictions and the observed data. Formally, this is expressed
as:

θ̂ = arg min
θ
L(f(x; θ),y).

The design and selection of the loss function are critical, as it directly influences the
optimization dynamics and ultimately the model’s performance.

5.2.1 Loss Function Design

The choice of loss function depends on the nature of the learning task—whether it involves
regression or classification. In regression tasks, a common approach is to use the Mean
Squared Error (MSE) loss, which penalizes the squared difference between the predicted
and true outputs. The MSE loss is defined as:

LMSE = 1
N

N∑
i=1
∥yi − f(xi; θ)∥2.

This formulation ensures that larger deviations are penalized more severely, thereby
promoting models that produce predictions close to the ground truth.

In contrast, for classification tasks where the output is categorical, the Cross-Entropy
(CE) loss is typically employed. This loss measures the dissimilarity between the predicted
probability distribution ŷi,c and the actual distribution yi,c, which is typically one-hot en-
coded. The CE loss is given by:

LCE = − 1
N

N∑
i=1

C∑
c=1

yi,c log ŷi,c(θ),
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where C denotes the number of classes. The cross-entropy formulation encourages the
model to assign high probabilities to the correct class labels.

5.2.2 Regularization and Generalization

To enhance the generalization capability of the model and to mitigate the risk of overfitting,
regularization techniques are incorporated into the loss function. This is achieved by adding
a regularization termR(θ) to the original loss function, weighted by a hyperparameter λ > 0
that controls the strength of the penalty:

Lreg = L+ λR(θ).

Two commonly employed regularization strategies are L1 and L2 regularization. The L1
regularization term, defined as R(θ) = ∥θ∥1, promotes sparsity in the learned parameters,
encouraging the model to focus on the most relevant features. On the other hand, L2
regularization, expressed as R(θ) = ∥θ∥22, imposes a penalty on large parameter values,
leading to smoother and more stable models through weight decay.

5.2.3 Optimization Techniques

Once the loss function is defined, the optimization process aims to minimize it with respect
to θ. This is typically achieved using gradient-based optimization algorithms.

One of the foundational methods is Stochastic Gradient Descent (SGD) [27], where
the parameters are updated iteratively using the gradients computed on mini-batches of
data. Given a mini-batch B, the update rule at iteration t is:

θ(t+1) = θ(t) − η∇θL(θ(t);B),

where η denotes the learning rate. Despite its simplicity, SGD can be inefficient in
practice due to its sensitivity to noisy gradients and slow convergence.

To accelerate convergence, momentum-based methods [87] incorporate a velocity
term vt that accumulates gradient information over time. The momentum update equations
are:

vt = βvt−1 + (1− β)∇θL(θ(t)),

θ(t+1) = θ(t) − ηvt,

where β ∈ [0, 1) is the momentum coefficient, typically chosen close to one to maintain
the historical influence of past gradients.

Another popular optimization algorithm is Adam [71], which integrates both momentum
and adaptive learning rates. Adam maintains first and second moment estimates mt and vt

of the gradients, respectively. The update rules are:

mt = β1mt−1 + (1− β1)∇θL(θ(t)),

vt = β2vt−1 + (1− β2)
(
∇θL(θ(t))

)2
,

m̂t = mt

1− βt
1
, v̂t = vt

1− βt
2
,

θ(t+1) = θ(t) − η m̂t√
v̂t + ϵ

.
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Here, ϵ is a small constant added for numerical stability, and β1, β2 are decay rates
controlling the momentum and adaptive scaling, respectively.

5.2.4 Learning Rate Scheduling and Stabilization Techniques

The choice of learning rate η is crucial to the convergence behavior [84]. Learning rate
adaptation methods aim to dynamically adjust η during training. One such technique
is learning rate annealing, where the learning rate is gradually decreased over time,
commonly in an exponential manner: ηt = η0e

−kt, where k is a decay factor. Alternatively,
warmup strategies increase the learning rate gradually in the initial training phase to
prevent divergence due to large gradient updates.

To ensure stable and efficient learning, various architectural stabilization methods are
often incorporated. Batch Normalization is widely used to normalize the input of each
layer so that it has zero mean and unit variance across the mini-batch. Mathematically,
given a batch of inputs x, the normalized value is computed as:

x̂ = x− µB√
σ2

B + ϵ
,

where µB and σ2
B are the mean and variance computed over the mini-batch, and ϵ is a

small constant to avoid division by zero. The normalized input is then scaled and shifted
using learnable parameters γ and β as:

y = γx̂+ β.

Another stabilization strategy is dropout, which serves as a regularization mechanism
to prevent overfitting by randomly deactivating a subset of neurons during training. This is
implemented by multiplying the input vector x with a binary mask M , where each entry is
independently set to zero with probability p. The resulting expression is:

x̃ = x ·M,

where x̃ denotes the input after applying dropout.
Finally, early stopping is employed as a form of implicit regularization. This technique

monitors the validation loss during training and terminates the optimization process once the
performance on the validation set ceases to improve for a predefined number of epochs. This
approach helps in avoiding overfitting and ensures that the model parameters correspond to
the epoch with the best generalization performance.

5.3 Methodological Innovations

Physics-Informed Architectures

Hybrid models integrate domain knowledge from physical laws with data-driven learning. A
representative formulation combines a known physical component fphysics(x) with a neural
correction via a multilayer perceptron (MLP):

dx
dt

= fphysics(x) + MLPθ(x), (5.10)

with a composite loss function enforcing both data fidelity and physical consistency:

L = ∥y− ŷ∥2 + λ

∥∥∥∥dx̂
dt
− fphysics(x̂)

∥∥∥∥2
, (5.11)

where λ controls the trade-off between empirical accuracy and physical adherence.
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Recurrent Neural Networks (RNNs)

To capture temporal dependencies, RNNs maintain a hidden state hk updated at each
timestep:

hk = σ (Whhk−1 + Wxxk + Wuuk) , (5.12)
yk = Wyhk, (5.13)

where σ denotes a nonlinear activation function (e.g., tanh), and Wh,Wx,Wu,Wy are
learnable weight matrices.

Neural Ordinary Differential Equations (Neural ODEs)

Neural ODEs [28] provide a continuous-time formulation of deep networks by parameterizing
the dynamics with a neural network:

dx(t)
dt

= MLPθ(x(t)), x(0) = x0. (5.14)

Training relies on the adjoint sensitivity method, which backpropagates through time via:

da(t)
dt

= −a(t)⊤∂MLPθ

∂x , a(t1) = ∂L
∂x(t1) , (5.15)

where a(t) is the adjoint state vector.

Sparse Identification of Nonlinear Dynamics (SINDy)

The SINDy framework [43] identifies governing equations by selecting a sparse set of active
terms from a candidate function library:

min
Ξ

∥∥∥Ẋ−Θ(X)Ξ
∥∥∥2

2
+ λ∥Ξ∥1, (5.16)

where Θ(X) is a dictionary of nonlinear features (e.g., x,x2, sin(x)), and Ξ is a sparse
coefficient matrix. The ℓ1-regularization promotes model interpretability by selecting only
essential terms.

Physics-Informed Neural Networks (PINNs)

PINNs [114] embed physical laws (e.g., PDEs or ODEs) into the training process by mini-
mizing a composite loss:

L = 1
N

N∑
i=1
∥yi − ŷi∥2 + 1

M

M∑
j=1

∥∥∥∥dx̂(tj)
dt

− fphysics(x̂(tj))
∥∥∥∥2
, (5.17)

where the second term ensures that predictions respect known dynamics. This makes PINNs
especially suitable for scientific modeling with sparse or noisy data.

5.4 Neural Networks and Function Approximation
Neural networks have proven to be powerful tools for function approximation. To understand
their capabilities, we begin by formalizing the structure of single-layer networks and the
functional classes they define [50, 76]. Let σ : R→ R denote an activation function [6]. The
class of functions computed by single-layer networks using σ is given by
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Σ(σ) =
{

σ(x⊤w + b) | w ∈ Rn, b ∈ R
}
,

where x ∈ Rn represents the input vector, and w, b are the weight and bias parameters,
respectively.

A central notion in the theory of neural networks is that of a universal approximator.
Let Ω ⊂ Rn be a compact set. A neural network employing activation σ is called a universal
approximator on Ω if the set Σ(σ) is dense in the space C(Ω) of continuous functions on
Ω. In essence, this means that for any continuous function f ∈ C(Ω) and any ϵ > 0, there
exists a neural network g ∈ Σ(σ) such that ∥f − g∥∞ < ϵ.

The capacity of a neural network to act as a universal approximator is intimately related
to the properties of the activation function σ. One such property is that of being discrimi-
natory. An activation function is said to be discriminatory if the only signed Borel measure
µ satisfying ∫

Ω
σ(x⊤w + b) dµ(x) = 0 for all w ∈ Rn, b ∈ R

is the zero measure. This condition ensures that the activation function can distinguish
between different linear regions of the input space, a critical feature for dense approximation.

Classical choices of activation functions include the sigmoid family, where a function
σ : R→ R is sigmoid if

lim
x→∞

σ(x) = 1, and lim
x→−∞

σ(x) = 0.

Popular modern alternatives include the Rectified Linear Unit (ReLU), defined as ReLU(x) =
max(0, x), and the Sigmoid Linear Unit (SiLU), given by SiLU(x) = x ·σ(x) = x

1+e−x . These
functions offer computational simplicity and favorable gradient properties.

We now state and prove a fundamental result in neural network theory [93]:

The Universal Approximation Theorem

Let σ be a continuous discriminatory function, K ⊂ Rn compact, and f ∈ C(K). For any
ϵ > 0, there exists a neural network MLPθ with activation σ such that:

sup
x∈K
∥f(x)−MLPθ(x)∥ < ϵ.

Proof. Assume Σ(σ) is not dense in C(K). By the Hahn-Banach theorem (geometric form),
there exists a non-zero functional f ∈ C(K)∗ vanishing on Σ(σ). By the Riesz Representa-
tion Theorem, this corresponds to a signed Borel measure µ such that:∫

K
σ(x⊤w + b)dµ(x) = 0 ∀w, b.

Since σ is discriminatory, µ = 0, contradicting f ̸= 0.

Theorem:

Let σ : R → R be a continuous discriminatory function. Then a neural network with σ as
the activation function is a universal approximator.
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Proof

For the sake of contradiction, assume Σ(σ) is not dense in C(Ω). It follows that Σ(σ) ̸= C(Ω).
We then apply the corollary of the Hahn-Banach theorem to conclude that there exists some
continuous linear functional f : C(Ω) → R such that f ̸= 0 but f(g) = 0 for any g ∈ Σ(σ).
By the Riesz Representation Theorem, there exists some Borel measure µ such that

f(g) =
∫

Ω
g(x) dµ(x) (5.18)

for all g ∈ C(Ω).
However, since for any w ∈ Rn and b ∈ R, the function (x ·w+ b) is an element of Σ(σ),

this means that for all w ∈ Rn and b ∈ R we have∫
Ω
f(x · w + b) dµ(x) = 0, (5.19)

which means that f(g) = 0 (since σ is discriminatory) and therefore f(g) = 0 for any
g ∈ C(Ω). This contradicts the corollary of the Hahn-Banach theorem and thus finishes the
proof.

Theorem:

Let f : [0, 1] → [0, 1] be the function calculated by a single-layer ReLU neural network of
input dimension d, output dimension 1, and n hidden nodes. Then there exists another
ReLU neural network with h hidden layers and width n + 2 which calculates the same
function f .

Proof

Since f is generated by a single-layer ReLU network with n hidden nodes, it is of the form

f(x) = σ

(
b1 +

n∑
i=1

wi ·max(0, ai · x+ bi)
)
, (5.20)

where each ai ·x+ bi is of the form c ·x+d with c, d ∈ R. Since [0, 1] is compact and any
function generated by a ReLU network is continuous, the term ∑n

i=1wi ·max(0, ai · x+ bi)
achieves a minimum for any x ≤ 1, and therefore there exists a number ϵ > 0 such that

b1 +
n∑

i=1
wi ·max(0, ai · x+ bi) > 0 (5.21)

for any x ∈ [0, 1] and any wi ·max(0, ai · x+ bi) ≥ 0.
Now consider a new network in which each hidden layer uses d nodes to copy the orig-

inal inputs. Additionally, each h-th hidden layer is also equipped with another node that
computes the function σ(w · x + b) from the input nodes copied to the previous layer, and
a last node that computes(

b1 +
n∑

i=1
wi ·max(0, ai · x+ bi)

)
= b1 +

n∑
i=1

wi ·max(0, ai · x+ bi) > 0, (5.22)

by doing a linear combination of the two additional nodes of the previous layer. In short,
the h-th layer up to h ≤ n will compute the function

h(x) =
(

1, . . . , d, σ (w · x+ b) ,
(
b1 +

n∑
i=1

wi ·max(0, ai · x+ bi)
))

. (5.23)
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The final layer then computes

hh+1(x) =
[(
b1 +

n∑
i=1

wi ·max(0, ai · x+ bi)
)

+
(
b1 +

n∑
i=1

wi ·max(0, ai · x+ bi)
)
− b1

]

=
(
b1 +

n∑
i=1

wi ·max(0, ai · x+ bi)
)

= f(x),

which completes the proof by using h hidden layers, each of width n+ 2.

5.5 Parameter Estimation with Multilayer Perceptrons

Parameter estimation in nonlinear dynamical systems refers to the task of identifying un-
known model parameters based on observed data. When the underlying system is governed
by ordinary differential equations (ODEs), this estimation problem can be cast as approx-
imating a latent or ground-truth mapping g∗ : X → Y , where X typically represents the
input space (such as time points or initial conditions), and Y denotes the output space cor-
responding to system states. Given a set of training samples {(xi, yi)}Ti=1 ⊂ X × Y , where
yi = g∗(xi), the objective is to find an approximating function ge ∈ G, drawn from a suitable
hypothesis space G, that minimizes a chosen empirical loss. Multilayer perceptrons (MLPs),
owing to their universal approximation capacity, serve as a powerful modeling framework for
such tasks, enabling the flexible and expressive estimation of nonlinear mappings embedded
within physical dynamical systems.

To illustrate the methodology, consider a nonlinear ODE of the form

dx
dt

= f(x,θ), x(t0) = x0,

where x(t) ∈ Rn denotes the system state vector and θ ∈ Rm is the vector of unknown
parameters to be estimated. The idea is to construct a neural network model x̂(t,w),
parameterized by the weight vector w, that approximates the state trajectory of the system.
By differentiating the network with respect to time and enforcing consistency with the known
form of the ODE, one can simultaneously infer both the network weights and the unknown
parameters θ.

This parameter estimation problem is naturally formulated as an instance of empirical
risk minimization. The goal is to identify a function ĝ ∈ G that minimizes the total empirical
loss:

ĝ ∈ arg min
g∈G

1
T

T∑
i=1
∥g(xi)− yi∥2 + λLode(g,θ),

where the first term measures the fidelity of the model to the observed data, while the second
term enforces alignment between the model’s learned dynamics and the governing ODE.
More concretely, the data loss quantifies the average squared error between the predicted
state x̂(ti,w) and the observed measurement xobs(ti), whereas the residual loss,

Lode = 1
M

M∑
j=1

∥∥∥∥dx̂
dt

(tj ,w)− f(x̂(tj ,w),θ)
∥∥∥∥2
,

penalizes discrepancies between the neural network’s time derivative and the known ODE
dynamics. The scalar λ > 0 modulates the trade-off between data adherence and physical
consistency.
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The architecture of the MLP is chosen to reflect the structure of the approximation task.
For a network of depth L, let nl denote the width of layer l. The input to the network is time
t, denoted as φ0 = t, and the output of each layer is computed recursively by the relation

φl = Fl(Wl, φl−1) = σ(W⊤
l φl−1 − bl),

where σ : R → R is a smooth activation function (commonly tanh), Wl ∈ Rnl−1×nl are the
weights, and bl ∈ Rnl are the biases. The final layer applies a linear activation, resulting in
φL = W⊤

L φL−1, which constitutes the predicted state trajectory.
The concept of exact learning emerges when the network is able to perfectly interpolate

the training data. A function gb : X → Y is termed a finite exact approximator of g∗ if it
satisfies gb(xi) = g∗(xi) for all training samples xi. In the context of ODE systems, such
exact learning entails not only interpolating the observed data points but also ensuring that
the learned trajectory is dynamically consistent with the underlying differential equations.
While the universal approximation theorem guarantees that exact fitting is theoretically
attainable given a sufficiently expressive network (i.e., a sufficient number of hidden units),
in practice, such ideal solutions may be impeded by optimization barriers or numerical
instability.

The total loss function J(w,θ), combining the data and residual components, is defined
as

J(w,θ) = 1
T

T∑
i=1
∥x̂(ti,w)− xobs(ti)∥2 + λ

1
M

M∑
j=1

∥∥∥∥dx̂
dt

(tj ,w)− f(x̂(tj ,w),θ)
∥∥∥∥2
.

This loss is differentiable under mild regularity assumptions. Specifically, if the activation
function σ and the ODE dynamics f are both smooth, then the composition of operations
remains differentiable with respect to both w and θ, thus enabling gradient-based optimiza-
tion.

To compute the gradients, we denote by Σ′
l = diag(σ′(W⊤

l φl−1 − bl)) the Jacobian of
the activation function at layer l. The gradients of J with respect to the weights Wl take
the form

∇Wl
J = 1

T

T∑
i=1

φl−1ω
⊤
l + λ

M

M∑
j=1

φl−1ν
⊤
l ,

where ωl and νl represent the backpropagated error signals originating from the data loss
and ODE residual loss, respectively. These error terms are propagated recursively according
to

ωl = Σ′
lWl+1ωl+1, νl = Σ′

lWl+1νl+1 + Σ′
l∇φl

f(x̂,θ),
reflecting the chain rule of differentiation through the network’s layers.

The gradients with respect to the ODE parameters θ are obtained from the residual loss
term. Specifically,

∇θJ = − λ

M

M∑
j=1

(
∂f
∂θ

)⊤ (dx̂
dt

(tj)− f(x̂(tj),θ)
)
,

which can be computed using automatic differentiation frameworks or analytically when the
form of f is explicitly known.

For this learning framework to be theoretically well-posed, certain assumptions are typ-
ically imposed. First, it is assumed that exact approximability holds; that is, there exist
parameters w∗ and θ∗ such that the neural network trajectory x̂(t,w∗) precisely replicates
the ground truth solution x(t,θ∗) over the relevant time domain. Second, the differentiabil-
ity of both the activation functions and the ODE dynamics is required to ensure that the
loss function J is smoothly parameterized, facilitating efficient gradient-based learning.
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The architecture of the MLP must be sufficiently expressive to capture the solution
space. In particular, the total number of parameters, given by Nnet = ∑L

l=1 nl−1nl, must
exceed the number of interpolation constraints, typically scaling with TnL, where nL is
the output dimension. Furthermore, to avoid information bottlenecks, the hidden layer
widths should be chosen to satisfy the condition nl ≤ max{nl−1, nl+1}, preserving the flow
of representational capacity through the network.

Despite the expressive power of MLPs, the optimization landscape associated with the
loss function J is highly non-convex. This necessitates careful algorithmic strategies to
achieve convergence. Initialization schemes, regularization methods such as L2 penalties
on parameters, and adaptive learning rate schedules all play crucial roles in improving the
stability and effectiveness of the training procedure. In practice, variants of stochastic gra-
dient descent—potentially combined with momentum or adaptive moment estimation—are
employed to iteratively update both the network weights and the system parameters toward
a local minimum of the loss.

5.6 Neural Differential Equations
Neural Differential Equations provide a powerful framework to model dynamical systems
by parameterizing the vector field governing the system’s evolution with neural networks.
Consider a state space M ⊂ Rd associated with the dynamical system of interest. The
dynamics are described by an ordinary differential equation where the time derivative of the
state, ẋ(t), is modeled by a neural network N :M×Rp ×R+ → TM, mapping the current
state x(t), parameter vector θ ∈ Rp, and time t to the tangent space TM at x(t). Formally,
the system dynamics are governed by the equation

ẋ(t) = N(x(t), θ, t), x(t0) = x0 ∈M,

where x0 denotes the initial condition. The solution x(t; θ) to this initial value problem
can be expressed as an integral equation

x(t; θ) = x0 +
∫ t

t0
N(x(s), θ, s) ds,

which is typically approximated numerically using adaptive ODE solvers, such as Runge-
Kutta methods. These solvers iteratively compute the state at discrete time points through
operations of the form

x(tk+1) = ODESolve
(
x(tk), N, θ, tk, tk+1

)
,

allowing for the efficient simulation of the neural ODE trajectory.
A critical challenge in training Neural DEs for parameter estimation lies in computing

the gradients of a loss function with respect to the parameters θ, without the computational
burden of backpropagating through each solver step. This challenge is addressed by the
adjoint sensitivity method, which introduces an adjoint state a(t) = ∂L

∂x(t) , capturing the
sensitivity of the loss L to the state x(t). The adjoint state evolves according to a backward-
in-time ODE

da(t)
dt

= −a(t)⊤∂N(x(t), θ, t)
∂x

,

which, combined with the forward dynamics, forms an augmented system. This approach
facilitates the calculation of parameter gradients through the relation

∇θL = −
∫ tf

t0
a(t)⊤∂N(x(t), θ, t)

∂θ
dt,
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thus enabling efficient gradient-based optimization of the neural network parameters.
The objective function for parameter estimation typically incorporates a data fidelity

term and a regularization term. Given a set of noisy observations {xobs(ti)}Ni=1, the loss
function is commonly defined as

L(θ) = 1
N

N∑
i=1
∥xobs(ti)− x(ti; θ)∥2 + λ∥θ∥2,

where the first term measures the discrepancy between the observed data and the model
predictions, while the second term imposes an L2 penalty on the parameters to promote
stability and prevent overfitting. In probabilistic settings, this loss function can be replaced
by the negative log-likelihood of the observations under a noise model, such as a Gaussian
distribution centered at the model predictions with fixed variance, expressed as

L(θ) = −
N∑

i=1
log p(xobs(ti) | x(ti; θ)).

Beyond their application in modeling state dynamics, Neural DEs also find use in continu-
ous normalizing flows for density estimation. In this context, the log-density of a distribution
evolves according to the instantaneous change of variables formula

∂ log p(x(t))
∂t

= −Tr
(
∂N

∂x(t)

)
,

where the trace of the Jacobian matrix ∂N
∂x quantifies the instantaneous rate of volume

change in the state space. To efficiently approximate this trace, Hutchinson’s stochastic
estimator is often employed, which replaces the trace with an expectation over random
vectors ϵ sampled from a standard normal distribution:

Tr
(
∂N

∂x

)
≈ Eϵ∼N (0,I)

[
ϵ⊤
∂N

∂x
ϵ

]
.

An important consideration in the theoretical analysis of Neural DEs concerns the iden-
tifiability of parameters. The parameter set Θid ⊆ Rp is defined as those parameters for
which the mapping N(·, θ, ·) uniquely determines the vector field, i.e., N(·, θ, ·) ̸= N(·, θ′, ·)
for all θ′ ̸= θ. In practice, this identifiability set may be a strict subset of the full parameter
space, which necessitates the use of regularization techniques to ensure meaningful param-
eter recovery. Moreover, stability of solutions to the neural ODE is guaranteed under the
condition that N is Lipschitz continuous with respect to the state variable x, with Lipschitz
constant K. Under this assumption, the solutions satisfy the inequality

∥x(t; θ)− x̃(t; θ)∥ ≤ eKt∥x0 − x̃0∥,

which ensures existence and uniqueness of solutions by the classical Picard-Lindelöf
theorem, thereby providing theoretical underpinning for the well-posedness of the Neural
DE model.



Part II

Own Contributions: Nonlinear
System Modelling and

Identification

57





Chapter 6

From Classical to Data-Driven
Optimization in Nonlinear System
Identification

6.1 Introduction
Nonlinear dynamical systems are central to modeling complex processes across diverse do-
mains such as engineering, physics, biology, and the climate sciences. These systems fre-
quently exhibit rich and sensitive behaviors, including bifurcations, oscillations, and chaos,
that make accurate modeling essential yet technically demanding [123, 61]. A critical step
in constructing such models is parameter estimation: the process of identifying unknown
system parameters from observed data, typically formulated within the framework of system
identification[125]. Mathematically, the task can be expressed as recovering the parameter
vector θ ∈ Rp in a nonlinear ordinary differential equation (ODE) model of the form:

ẋ(t) = f(x(t), t,θ), x(t0) = x0, (6.1)

by minimizing a cost functional that quantifies the mismatch between simulated trajectories
and empirical measurements.

Despite its ubiquity, this inverse problem poses numerous challenges. The underlying
cost landscape is often non-convex due to strong nonlinearities, leading to multiple local min-
ima that complicate convergence [13]. In systems characterized by chaotic dynamics, even
small perturbations in parameters or initial conditions may result in exponentially diverging
trajectories, rendering gradient information unreliable and the optimization process highly
sensitive. Furthermore, real-world data is often sparse, noisy, or irregularly sampled, all
of which degrade the reliability of parameter estimates and necessitate robust, data-driven
inference methods. The computational cost also becomes significant, as each parameter eval-
uation involves numerically solving a potentially stiff or high-dimensional system of ODEs
[56].

Classical optimization methods, such as gradient descent, the Levenberg–Marquardt al-
gorithm, and derivative-free methods like Nelder–Mead, have been used to tackle this class
of problems [103, 126]. While these approaches can be effective under well-behaved condi-
tions, they suffer from limitations in scalability, robustness to noise, and susceptibility to
stagnation in poorly conditioned or multimodal landscapes [16]. To address these limita-
tions, trust-region-based optimization methods have emerged as a robust alternative. These
methods operate by iteratively building local surrogate models within restricted neighbor-
hoods, or “trust regions,” where the model approximation is presumed to be accurate [2, 42].
Trust-region frameworks offer improved convergence guarantees and numerical stability, es-
pecially in ill-conditioned or chaotic settings. Their applicability has been demonstrated in
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a variety of domains, from chemical kinetics and biological systems to energy models and
climate dynamics [10, 133, 82].

This chapter contributes to the field of nonlinear system identification by systematically
exploring and comparing classical and data-driven optimization strategies for parameter
estimation in ODE-based dynamical systems. The work is structured in two main parts.
The first part presents a comparative analysis of classical algorithms, specifically, gradient
descent, Levenberg–Marquardt, and Nelder–Mead, applied to representative nonlinear sys-
tems. These include the damped harmonic oscillator, the Van der Pol oscillator, and the
Lorenz system. For each method, we evaluate convergence behavior, parameter accuracy,
sensitivity to noise, and computational efficiency, thereby offering practical insights into
their respective strengths and limitations.

The second part focuses on robust optimization through trust-region methods, applied
to a broader class of nonlinear models. Here, we extend the evaluation to include cases
with both white (Gaussian) and pink (1/f) noise, a setting that more realistically captures
the temporal correlations present in empirical data. A key contribution of this work lies in
providing a unified computational framework that enables consistent benchmarking across
models, noise types, and algorithms. This allows for an apples-to-apples comparison that
highlights algorithmic trade-offs not only in terms of raw accuracy but also with respect
to robustness and reliability under realistic data constraints. This chapter advances both
theoretical understanding and applied methodology in the field of nonlinear system identi-
fication.

6.2 Parameter Estimation for Nonlinear Dynamical Systems
Using Robust Objective Functions

The estimation of parameters in nonlinear dynamical systems can be formulated within the
framework of an initial value problem (IVP). Consider the general system:

ẋ(t) = f(x(t), t,θ), x(t0) = x0, t ≥ t0, (6.2)

where x(t) ∈ Rn denotes the vector of state variables, and θ = (θ1, . . . , θp) ∈ Rp repre-
sents the unknown parameters to be identified. Discrete-time observations ηij of the state
variables are assumed to be available at times tj , and are modeled as:

ηij = gij(x(tj),θ) + εij , (6.3)

where εij is additive, zero-mean Gaussian noise with variance σ2
ij .

6.2.1 Classical Weighted Least-Squares Estimation

A standard approach to parameter estimation is the minimization of a weighted least-squares
objective [66]:

J(θ) =
∑
i,j

[ηij − gij(x(tj),θ)]2

σ2
ij

. (6.4)

This formulation corresponds to a maximum likelihood estimate under the assumption
of Gaussian measurement noise. The optimization problem is inherently nonlinear due to
the dependence of the measurements on the system dynamics.
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6.2.2 Robust Estimation Using the Huber Loss

To mitigate the influence of outliers, a robust objective function based on the Huber loss is
employed. For the residual

rij = ηij − gij(x(tj),θ), (6.5)

the Huber function is defined as:

ργ(rij) =
{1

2r
2
ij , |rij | ≤ γ,

γ|rij | − 1
2γ

2, |rij | > γ,
(6.6)

where γ > 0 is a user-defined threshold that governs the transition between quadratic
and linear behavior. The corresponding Huber-based objective function is:

JH(θ) =
∑
i,j

ργ
(
ηij − gij(x(tj),θ)

)
. (6.7)

This approach preserves sensitivity to small residuals while reducing the influence of
large deviations, thereby enhancing robustness against outliers.

6.2.3 Incorporation of Additional Constraints

Prior knowledge regarding the system, such as initial or boundary conditions, parameter
bounds, or positivity constraints, can be incorporated through equality and inequality con-
straints of the form:

r2(x(t1), . . . ,x(tK),θ) = 0, r3(x(t1), . . . ,x(tK),θ) ≥ 0, (6.8)

where t1, . . . , tK denote selected time points relevant to the constraints.

6.2.4 General Formulation of the Parameter Estimation Problem

The resulting robust parameter estimation problem can be expressed as:

min
x,θ

JH(θ) s.t. x(t) satisfies the IVP, r2(x(t), θ) = 0, r3(x(t), θ) ≥ 0. (6.9)

To solve this problem, we consider the unconstrained parameter estimation problem [44].
We employ and compare three classes of optimization algorithms discussed further.

6.2.5 Gradient-Based Optimization with least square and Robust Losses

Let model output be denoted by gi(x(tj),θ), representing the i-th observable at discrete
time tj , and let ηij be the corresponding noisy measurement. A central task in parameter
estimation is to minimize a cost functional that quantifies the misfit between the model and
observations. Two complementary formulations are considered: the standard least square
and the robust Huber loss, which interpolates between quadratic and absolute-value penal-
ization.
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Cost Function Formulations

The quadratic (L2) loss yields the classical weighted least-squares objective:

J(θ) =
∑
i,j

1
σ2

ij

[ηij − gi(x(tj),θ)]2 = r(θ)⊤Wr(θ), (6.10)

where r(θ) = ηij−gi(x(tj),θ) is the residual vector, and W = diag(1/σ2
ij) encodes measure-

ment uncertainty.
In contrast, the Huber-based robust objective is defined as

JH(θ) =
∑
i,j

ργ(ηij − gi(x(tj),θ)) , (6.11)

with the Huber penalty

ργ(rij) =
{1

2r
2
ij , |rij | ≤ γ,

γ|rij | − 1
2γ

2, |rij | > γ,
(6.12)

where γ > 0 controls the transition between quadratic and linear penalization. For small
residuals, JH behaves like least-squares; for large residuals, it downweights outliers and
provides robustness.

Gradient Formulation

For the quadratic loss, the gradient is given by

∇J(θ) = 2Jr(θ)⊤Wr(θ), (6.13)

where Jr(θ) = ∂r/∂θ is the Jacobian of the residuals with respect to parameters.
For the Huber loss, the gradient generalizes to a weighted form:

∇JH(θ) = Jr(θ)⊤w(r(θ)), (6.14)

with adaptive weights

wij =
{
rij , |rij | ≤ γ,
γ sgn(rij), |rij | > γ,

(6.15)

which interpolate between the quadratic gradient (for small residuals) and a normalized
form that limits the influence of large residuals.

Descent Dynamics and Adaptive Step-Size

In both formulations, parameters are updated iteratively as

θ(k+1) = θ(k) − µk∇J⋆(θ(k)), (6.16)

where J⋆ denotes either J (quadratic) or JH (Huber), and µk > 0 is the step size. The step
size µk is chosen via a line search that approximately solves:

µk = arg min
µ>0

J
(
θ(k) − µ∇J(θ(k))

)
. (6.17)

To ensure convergence, µk is selected by backtracking line search enforcing the Armijo-
Goldstein condition:

J⋆(θ(k) − µk∇J⋆(θ(k))) ≤ J⋆(θ(k))− cµk∥∇J⋆(θ(k))∥2, (6.18)
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with c ∈ (0, 1). This guarantees sufficient descent irrespective of the chosen loss function.
Backtracking line search is employed to enforce this condition. Starting from an initial trial
step size µinit, the step is reduced geometrically:

µk = µinit · βm, (6.19)

for some m ∈ N, where 0 < β < 1 is the reduction factor. The process terminates when the
Armijo-Goldstein inequality is satisfied.

Convergence Guarantees

Assuming Lipschitz continuity of the gradient, i.e.,

∥∇J⋆(θ)−∇J⋆(q)∥ ≤ L∥θ − q∥, ∀θ,q, (6.20)

convergence can be guaranteed for any step size µk ∈ (0, 2/L). The descent inequality holds
uniformly:

J⋆(θ(k+1)) ≤ J⋆(θ(k))− µk

(
1− L

2 µk

)
∥∇J⋆(θ(k))∥2. (6.21)

Sensitivity Equations and Residual Jacobian

For dynamical systems governed by ODEs,

ẋ(t) = f(t, x(t),θ), x(t0) = x0, (6.22)

the sensitivity matrix H(t) = ∂x(t)
∂θ satisfies the variational system

Ḣ(t) = fx(t, x,θ)H(t) + fθ(t, x,θ), H(t0) = 0, (6.23)

where fx = ∂f
∂x and fθ = ∂f

∂θ denote the Jacobians of the vector field with respect to the
state and the parameters, respectively.

Let g(x(tj),θ) denote the observation function, which maps the system state (and pos-
sibly parameters) to the measured quantities at time tj . Then, the residual at time tj
is

rj(θ) = ηj − g(x(tj),θ), (6.24)

and the Jacobian of the residual vector with respect to θ is given by

Jr(θ) = −
M∑

j=1

∂g

∂x
(tj)H(tj), (6.25)

where M is the total number of measurement time points.
This formulation is common to both the least-squares and the Huber-based objectives,

with the distinction arising only in how the residuals contribute to the gradient of the
objective functional.



64
CHAPTER 6. FROM CLASSICAL TO DATA-DRIVEN OPTIMIZATION IN

NONLINEAR SYSTEM IDENTIFICATION

Algorithmic Implementation

Algorithm 1 Pseudocode for Gradient-Based Optimization with Quadratic or Huber Loss
Require: Initial parameters guess θ0, c, β, tolerance ϵ, choice of loss function J⋆ ∈ {J, JH}
Ensure: Optimal parameters θ∗

1: Compute initial gradient g0 = ∇J⋆(θ0), k = 0
2: while ∥gk∥ > ϵ do
3: Set µ = 1, trial step θtrial = θk − µgk

4: while J⋆(θtrial) > J⋆(θk)− cµ∥gk∥2 do
5: µ← βµ
6: Update θtrial = θk − µgk

7: end while
8: θk+1 ← θtrial
9: Compute gk+1 = ∇J⋆(θk+1), k = k + 1

10: end while

6.2.6 The Levenberg-Marquardt Algorithm: A Hybrid Optimization Frame-
work

The Levenberg–Marquardt (LM) algorithm constitutes a pivotal optimization technique for
solving nonlinear least squares problems, particularly suited for parameter estimation in
dynamical systems where residuals are modeled through nonlinear mappings. It effectively
interpolates between the robustness of gradient descent and the efficiency of the Gauss–
Newton method, thereby providing both global stability and local rapid convergence [3, 136].
We solve the problem formulation discussed in subsection 6.2.1 and 6.2.2 by equation (6.4)
and (6.7)

Algorithmic Framework and Update Rule

At iteration k, the LM algorithm computes the parameter increment ∆θ from[
Jr(θk)⊤WJr(θk) + λkDk

]
∆θ = −Jr(θk)⊤Wr(θk), (6.26)

where Dk = diag
(
Jr(θk)⊤WJr(θk)

)
provides diagonal preconditioning, and λk > 0 is the

damping parameter.
For the Huber objective, the system is modified by replacing W with an effective weight

matrix Wγ(r), where each diagonal entry adapts according to the derivative of ργ :

wγ
j =

1/σ2
j , |rj | ≤ γ,

γ
|rj | ·

1
σ2

j
, |rj | > γ.

(6.27)

Thus, large residuals contribute less strongly to the update, providing robustness to outliers.
When λk is large, the update reduces to a scaled gradient descent step, while for λk → 0

the scheme approaches the Gauss–Newton method.

Adaptive Damping and Gain Ratio Analysis

The adaptive selection of λk is governed by a gain ratio ρk ∈ R, which quantifies the
agreement between predicted and actual cost reduction:

ρk = J(θk)− J(θk + ∆θ)
∆θ⊤ [λk∆θ + Jr(θk)⊤Wr(θk)] . (6.28)
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If ρk > 0, the update is accepted and λk is decreased:

λk+1 = λk ·max
(

1
3 , 1− (2ρk − 1)3

)
. (6.29)

If ρk ≤ 0, the update is rejected and λk is increased:

λk+1 = νλk, ν > 1. (6.30)

Algorithmic Implementation

The LM scheme is formally outlined below, where standard numerical safeguards such as
cost evaluations and residual recomputations are integrated:

Algorithm 2 Pseudocode for the Levenberg–Marquardt Algorithm (L2 or Huber Objective)
Require: Initial guess θ0, initial damping λ0 > 0, growth factor ν > 1, tolerance ϵ > 0

1: Evaluate residual vector r0 = r(θ0), Jacobian Jr,0 = Jr(θ0), and objective J(θ0)
2: while ∥∆θ∥ > ϵ do
3: Solve (

J⊤
r,kWkJr,k + λkDk

)
∆θ = −J⊤

r,kWkrk

where Wk = W for L2 or Wk = Wγ(rk) for Huber
4: Compute trial point: θtrial = θk + ∆θ
5: Evaluate residual rtrial, Jacobian Jr,trial, and objective J(θtrial)
6: Compute gain ratio:

ρk = J(θk)− J(θtrial)
∆θ⊤

[
λk∆θ + J⊤

r,kWkrk

]
7: if ρk > 0 then
8: Accept update: θk+1 = θtrial
9: Update residuals and Jacobian: rk+1, Jr,k+1

10: Reduce damping: λk+1 = λk ·max
(

1
3 , 1− (2ρk − 1)3

)
11: else
12: Reject update: θk+1 = θk

13: Increase damping: λk+1 = νλk

14: end if
15: Increment iteration: k ← k + 1
16: end while

Convergence Properties

The LM algorithm enjoys global convergence guarantees under mild smoothness assump-
tions, while retaining quadratic convergence in a neighborhood of the minimizer if Jr has
full column rank. For both the L2 and Huber objectives, termination is reached when

∥Jr(θk)⊤Wr(θk)∥ < ϵg, ∥∆θk∥ < ϵp, |J(θk)− J(θk−1)| < ϵJ . (6.31)

Here, ϵg > 0 denotes the gradient tolerance, ensuring that the projected gradient is suffi-
ciently small and first-order optimality is approximately satisfied. The parameter ϵp > 0 is
the step-size tolerance, which guarantees termination once parameter updates become negli-
gible. Finally, ϵJ > 0 represents the objective reduction tolerance, preventing unnecessary it-
erations when successive cost function values change only marginally. These complementary
criteria provide robust stopping conditions that capture optimality, stability, and progress
of the algorithm.

The robustness of the Huber formulation stems from its adaptive weighting, which limits
the influence of outliers while preserving efficiency for well-behaved residuals.
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6.2.7 The Nelder–Mead Simplex Method: A Derivative-Free Geometric
Optimization Framework

The Nelder–Mead (NM) simplex method is a derivative-free direct search algorithm for
unconstrained optimization. In the present context of parameter estimation, the method
minimizes an objective function defined in terms of model–data residuals:

min
θ∈Rp

J(θ), (6.32)

where J(θ) may correspond either to the weighted least-squares cost

JL2(θ) = r(θ)⊤W r(θ), (6.33)

or the Huber-based robust objective

JH(θ) =
∑
i,j

ργ(rij(θ)) , (6.34)

with residuals defined as rij(θ) = ηij − gij(x(tj ; θ),θ). Unlike the Levenberg–Marquardt
algorithm, the NM method requires no derivatives and instead explores the parameter space
using simplex geometry [102]. Although lacking general convergence guarantees, NM is
widely applied due to its robustness for non-smooth or noisy objectives [2, 131, 135].

Simplex Geometry and Initialization

At iteration k, the algorithm maintains a non-degenerate simplex S(k) ⊂ Rp consisting of
p+ 1 vertices:

S(k) =
{

θ
(k)
0 ,θ

(k)
1 , . . . ,θ(k)

p

}
, (6.35)

ordered such that J(θ(k)
0 ) ≤ J(θ(k)

1 ) ≤ · · · ≤ J(θ(k)
p ). The centroid of the best p vertices

(excluding the worst θ
(k)
p ) is given by

c(k) = 1
p

p−1∑
i=0

θ
(k)
i . (6.36)

Iterative Geometric Transformations

The simplex evolves by geometric transformations parameterized by reflection (α), expansion
(β), contraction (γ), and shrinkage (δ), with standard values α = 1, β = 2, γ = 0.5, δ = 0.5:

Reflection: θr = c(k) + α
(
c(k) − θ(k)

p

)
, (6.37)

Expansion: θe = c(k) + β
(
θr − c(k)

)
, (6.38)

Contraction: θc = c(k) + γ
(
θ(k)

p − c(k)
)
, (6.39)

Shrinkage: θnew
i = θ

(k)
0 + δ

(
θ

(k)
i − θ

(k)
0

)
, i = 1, . . . , p. (6.40)

Algorithmic Formulation

The complete procedure is summarized in Algorithm 3. The NM method relies only on
function evaluations J(θ), making it suitable for both the L2 and Huber formulations.
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Algorithm 3 Pseudocode for Nelder–Mead Simplex Method for Robust Parameter Esti-
mation
Require: Initial simplex S0, coefficients α = 1, β = 2, γ = 0.5, δ = 0.5, tolerances ϵs, ϵJ > 0

1: while diam(S(k)) > ϵs do
2: Sort vertices: J(θ0) ≤ · · · ≤ J(θp)
3: Compute centroid: c = 1

p

∑p−1
i=0 θi

4: Reflect: θr = c + α(c− θp)
5: if J(θr) < J(θ0) then
6: Expand: θe = c + β(θr − c)
7: Accept min{J(θe), J(θr)}
8: else if J(θr) < J(θp−1) then
9: Accept reflection: θp ← θr

10: else
11: Contract: θc = c + γ(θp − c)
12: if J(θc) < J(θp) then
13: Accept contraction: θp ← θc

14: else
15: Shrink all vertices toward θ0
16: end if
17: end if
18: Increment iteration k ← k + 1
19: end while
20: return Best parameter vector θ0

Convergence Properties

The NM method typically exhibits linear convergence. The simplex diameter contracts as

diam(S(k+1)) ≤ ρ · diam(S(k)), ρ = max(γ, δ) < 1. (6.41)

Termination occurs once both geometric and objective-based criteria are satisfied:

diam(S(k)) = max
i,j
∥θ(k)

i − θ
(k)
j ∥ < ϵs, max

i
|J(θ(k)

i )− J(c(k))| < ϵJ . (6.42)

Here, ϵs > 0 is a simplex-size tolerance, ensuring the search region has collapsed sufficiently,
and ϵJ > 0 is an objective tolerance, preventing further iterations when all vertices exhibit
nearly identical cost values.

6.2.8 Trust-Region Optimization Framework

The trust-region method [10] solves the parameter estimation problem by constructing suc-
cessive local approximations of the objective function J : Rp → R, where p denotes the
number of parameters in the model, i.e., θ ∈ Rp [60]. At iteration k, the algorithm proceeds
as follows.

Trust-Region Subproblem

Given the current parameters θ ∈ Rp and trust-region radius ∆k > 0, the trust-region step
p∗

k ∈ Rp is obtained by solving [133]

p∗
k = arg min

p∈Rp
mk(p) s.t. ∥p∥ ≤ ∆k, (6.43)
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where mk(p) is a quadratic model of J around θk:

mk(p) = J(θk) + g⊤
k p + 1

2p⊤Bkp, (6.44)

with gradient gk := ∇J(θk) ∈ Rp and Hessian Bk := ∇2J(θk) ∈ Rp×p.

Hessian Computation for ODE Systems The cost function J depends on θ through
the solution of a dynamical system:

ẋ(t) = f(x(t), t,θ), x(t0) = x0.

To compute Bk, sensitivity analysis is applied:

1. Compute first-order sensitivities S(t) = ∂x(t)/∂θ by integrating

Ṡ(t) = ∂f
∂xS(t) + ∂f

∂θ
, S(t0) = 0.

2. The gradient is then

gk = ∇J(θk) =
∑
i,j

2
[
gij(x(tj),θk)− ηij

]
σ2

ij

∇θgij(x(tj),θk),

with ∇θgij = ∂gij

∂x S(tj) + ∂gij

∂θ .

3. The Hessian can be obtained in two ways:

• Exact Hessian using second-order sensitivities T(t) = ∂2x(t)/∂θi∂θj :

Bk =
∑
i,j

2
σ2

ij

[
∇θgij(∇θgij)⊤ + (gij − ηij)∇2

θgij

]
.

• Gauss–Newton approximation (more efficient), ignoring residual-dependent terms:

Bk ≈
∑
i,j

2
σ2

ij

∇θgij(∇θgij)⊤.

This is commonly used for large-scale ODE systems.

Step Acceptance Criteria

Define the actual-to-predicted reduction ratio:

ρk := J(θk)− J(θk + p∗
k)

mk(0)−mk(p∗
k) . (6.45)

The parameter update is:

θk+1 =
{

θk + p∗
k if ρk > µ,

θk otherwise,

where µ ∈ (0, 1
4).
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Radius Update Policy

∆k+1 ∈


[∆k,∞) if ρk > η1,

[γ1∆k, γ2∆k] if ρk ∈ [η0, η1],
(0, γ1∆k] if ρk < η0,

with typical values η0 = 0.1, η1 = 0.75, γ1 = 0.5, γ2 = 2.
Theorem 6.1. The vector p∗

k is a global solution of the trust-region problem if and only if
it is feasible and there exists a scalar λ ≥ 0 such that

(Bk + λI)p∗
k = −gk, λ(∆k − ∥p∗

k∥) = 0, Bk + λI is positive definite.

Proof. See [103], Chapter 4, Lemma 4.7.

Convergence Analysis

Theorem 6.2 (Trust-Region Convergence). If:
1. J is Lipschitz-continuously differentiable,

2. {Bk} is uniformly bounded,

3.
∑∞

k=0 ∆k =∞,
then

lim inf
k→∞

∥∇J(θk)∥ = 0.

Proof. See [34, Theorem 4.6].

Algorithm

Algorithm 4 Trust-Region Algorithm for ODE Parameter Estimation
1: Initialize θ0 ∈ Rp, ∆0 > 0, tolerance ϵ, maximum radius ∆max
2: k ← 0
3: while ∆k > ϵ do
4: Solve ẋ(t) = f(x(t), t,θk), x(t0) = x0
5: Integrate sensitivity equations for S(t)
6: Compute fk = J(θk), gk, Bk (via Gauss–Newton or second-order sensitivities)
7: Construct mk(p) = fk + g⊤

k p + 1
2p⊤Bkp

8: Solve trust-region subproblem: p∗
k = arg min∥p∥≤∆k

mk(p)
9: Compute ρk = J(θk)−J(θk+p∗

k)
mk(0)−mk(p∗

k
)

10: if ρk > 0.25 then
11: θk+1 ← θk + p∗

k

12: if ρk > 0.75 and ∥p∗
k∥ ≥ 0.8∆k then

13: ∆k+1 ← min(2∆k,∆max)
14: else
15: ∆k+1 ← ∆k

16: end if
17: else
18: θk+1 ← θk

19: ∆k+1 ← 0.25∆k

20: end if
21: k ← k + 1
22: end while
23: return θk
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6.3 Results of numerical experiments

The accuracy of parameter estimation is evaluated using the Root Mean Squared Error
(RMSE), defined as:

RMSE =

√√√√ 1
N

N∑
i=1

(yT r
i − yEs

i )2 (6.46)

where N is the number of observations, yT r
i is the true value, and yEs

i is the estimated value.
RMSE measures the variance between the estimated and true values, providing a metric for
comparison across different models and methods.

6.3.1 Comparison of Iterative Gradient-Based Methods, the Levenberg-
Marquardt, and the Nelder-Mead Simplex Method

The primary aim of this study was to evaluate the effectiveness of different optimization
strategies for parameter estimation in nonlinear dynamical systems, with particular emphasis
on the Rössler system. Three optimization techniques were considered: iterative gradient-
based methods, the Levenberg–Marquardt algorithm, and the Nelder–Mead simplex method.
The evaluation focused on three main aspects: (i) estimation accuracy, (ii) computational
cost, and (iii) sensitivity to measurement noise.

To assess robustness under uncertainty, simulations were performed on a set of nonlinear
systems with varying structural complexities. In each case, additive Gaussian noise of
different intensities was introduced into the simulated trajectories. The noise was modeled
as uncorrelated Gaussian fluctuations, defined by

E[ν(t)] = 0, E[ν(t)ν(t′)] = δ(t− t′), (6.47)

where ν(t) denotes the noise process, E[·] is the expectation operator, and δ(·) is the Dirac
delta function. This formulation ensures zero mean and unit variance with no temporal
correlation, thereby allowing us to systematically study the effect of pure white noise on
system dynamics and estimation performance.

To ensure consistent and reliable parameter estimation, all optimization algorithms
were terminated based on established stopping criteria. For iterative gradient-based and
Levenberg–Marquardt methods, convergence was declared when either the gradient norm
∥∇f(θ)∥ fell below 10−6, the relative change in parameters or objective function was less
than 10−6, or the maximum number of iterations was reached.

For the Nelder–Mead simplex method, convergence was determined when the range of
objective function values across the simplex vertices was below 10−6, or when the maximum
distance between vertices fell below a predefined threshold. These criteria ensured that all
algorithms terminated reliably while balancing computational cost and estimation accuracy.

A. Van der Pol Oscillator

The van der Pol oscillator is described by the second-order differential equation [68]:

x′′ − µ(1− x2)x′ + x = 0 (6.48)

This can be reformulated as a system of first-order equations:

dx1
dt

= x2

dx2
dt

= µ(1− x2
1)x2 − x1

(6.49)
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Simulations were performed using µ = 1.5, initial conditions [x10 , x20 ]T = [2.0, 0.0]T , and
a time range from t = 0 to t = 20 with δt = 0.01. Gaussian noise with a standard deviation
of 0.1 was added to the synthetic data.

Table 6.1: Parameter Identification for the van der Pol oscillator
Parameter True Value Gradient-based Levenberg-Marquardt Nelder-Mead
µ 1.5 1.2018 1.4611 1.5007

Table 6.2: Root Mean Square Error (RMSE) and computational time for the van der Pol
oscillator with different algorithms and loss functions
Methods RMSE (L2 norm) RMSE (Huber) Computational time (seconds)
Gradient-based 0.8799 0.7521 0.1505
Levenberg-Marquardt 0.1409 0.1304 0.4356
Nelder-Mead 0.1023 0.0958 0.4045

Table 6.1 summarizes the results of parameter estimation using three optimization meth-
ods. Among them, the Nelder-Mead algorithm provided an estimate for µ that was closest
to the true value. Table 6.2 presents the corresponding RMSE and computational time. The
Nelder-Mead method achieved the lowest RMSE, suggesting superior accuracy in capturing
the system’s behavior.

Figure 6.1: Exact trajectories of the van der Pol oscillator compared to the learned dynamics.
Blue lines represent the exact dynamics, while red lines demonstrate the learned dynamics.

Figure 6.2: Exact phase portrait of the van der Pol Oscillator compared to the learned
dynamics using various methods.
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Figure 6.3: Convergence of parameter for the van der Pol oscillator at different noise levels.

Figures 6.1 and 6.2 compare the exact and learned dynamics. The learned trajectories
closely follow the exact solutions, with accurate reconstruction of the system’s phase portrait.
Figure 6.3 shows the convergence of the estimated parameter across various noise levels
η = [0.0001, 0.001, 0.01, 0.1], where convergence to the true value is consistently observed
after several iterations. Finally, Figure 6.4 presents the distribution of fitting errors. The

Figure 6.4: Histogram of the errors between the data and the fit at different noise levels for
van der Pol oscillator.

errors tend to follow a normal distribution, indicating that the model fits the noisy data
well and generalizes reliably under different levels of noise.
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B. Rössler System

The Rössler system, a classical model exhibiting chaotic dynamics [83, 119, 120], is defined
by the following set of differential equations:

dx1
dt

= −x2 − x3

dx2
dt

= x1 + p1x2

dx3
dt

= p2 + x3(x1 − p3)

(6.50)

where x1, x2, and x3 are the state variables, and p1, p2, and p3 are the system parameters
to be estimated.

Simulations were carried out using true parameter values p1 = 0.2, p2 = 0.2, and p3 = 5.7,
with initial conditions [x10 , x20 , x30 ]T = [0.1, 0.1, 0.1]T . The system was simulated over the
interval t = 0 to t = 120 with a time step ∆t = 0.01. Gaussian noise with a standard
deviation of 0.1 was added to the data.

Table 6.3: Parameter Identification for Rössler system
Parameter True Value Gradient-based Levenberg-Marquardt Nelder-Mead
p1 0.2 0.1711 0.1499 0.1913
p2 0.2 0.1501 0.1601 0.1918
p3 5.7 4.418 8.8767 4.9344

Table 6.4: Root Mean Square Error (RMSE) and computational cost (seconds) for Rössler
systems using different algorithms and loss functions
Methods RMSE (L2 norm) RMSE (Huber) Computational cost (seconds)
Gradient-based 4.4776 3.9821 0.2246
Levenberg-Marquardt 6.9895 5.8742 1.8856
Nelder-Mead 1.3199 1.2053 9.7509

Parameter estimation was performed using gradient-based, Levenberg-Marquardt, and
Nelder-Mead simplex methods. The results, shown in Table 6.3, indicate that the Nelder-
Mead method yielded parameter estimates closest to the true values. Root Mean Squared
Error (RMSE) and computational cost for each method are reported in Table 6.4. Although
the Nelder-Mead algorithm required more computational time, it achieved the lowest RMSE
of 1.3199, outperforming the other techniques in terms of accuracy.

Figures 6.5 and 6.6 compare the simulated trajectories and phase portraits of the exact
and learned dynamics. The Nelder-Mead method successfully captured the key features of
the system, providing close agreement with the true dynamics.

To investigate robustness under noise, Gaussian noise with levels η = [0.0001, 0.001, 0.01, 0.1]
was added. Figure 6.7 illustrates how well the identified system retained the true dynamics
across noise levels. Despite the presence of noise, the estimated models tracked the system’s
behavior with reasonable accuracy. The convergence behavior of the estimated parameters
using the Nelder-Mead method is shown in Figure 6.8. Across all noise levels, the parameters
consistently approached the true values after a few iterations, demonstrating both stability
and reliability of the estimation procedure.

Figure 6.9 presents the distribution of fitting errors. The shape of the histogram approx-
imates a normal distribution, suggesting that the discrepancies between observed and fitted
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Figure 6.5: Trajectories of the Rössler systems’ exact dynamics (blue solid lines) compared
to learned dynamics (red solid lines).

Figure 6.6: Phase portrait of the Rössler system’s exact dynamics compared to learned
dynamics using various methods.

Figure 6.7: In this figure, we present the trajectories of the Rössler system for t = 0 to t
= 120. The true dynamics are depicted in red, while the identified systems obtained from
estimated parameters are displayed in blue. The performance of the identified systems is
evaluated under different levels of additive noise.

data are statistically consistent with expected noise levels. This further supports the valid-
ity of the learned model and its predictive reliability, even in the presence of measurement
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Figure 6.8: Convergence of parameter for the Rössler system at different noise levels.

noise.

C. Pharmacokinetic Modeling

Pharmacokinetic modeling plays a central role in drug development by describing how a
drug is absorbed, distributed, metabolized, and eliminated from the body. These processes
are often nonlinear and complex [89, 90]. A widely used approach is the two-compartment
model, described by the following differential equations:

dC1
dt

= −k10C1 − k12C1 + k21C2

dC2
dt

= k12C1 − k21C2

(6.51)

Here, C1 and C2 denote drug concentrations in two compartments, while k10, k12, and
k21 are the transfer rate constants to be estimated from data.

Simulations were performed using true parameter values k10 = 0.2, k12 = 0.05, and
k21 = 0.03, with initial conditions C1(0) = 100 and C2(0) = 0. The system was simulated
over the interval t = 0 to t = 25 using 100 evenly spaced time points. Multiplicative Gaussian
noise with a level of 0.1 was introduced to emulate measurement uncertainty. Initial guesses
were set to k(0)

10 = 0.1, k(0)
12 = 0.1, and k

(0)
21 = 0.1. The estimation results are presented in

Table 6.5. Among the methods, Nelder-Mead provided estimates that were closest to the
true parameter values.

Table 6.5: Estimated Parameters for Pharmacokinetic Modeling
Parameter True Value Gradient-based Levenberg-Marquardt Nelder-Mead
k10 0.2 0.2727 0.2042 0.2041
k12 0.05 0.0923 0.0509 0.0508
k21 0.03 0.1044 0.0292 0.0291
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Figure 6.9: Histogram of the errors between the data and the fit of the Rössler system at
different noise levels.

Figure 6.10: Exact trajectories of Pharmacokinetic Modeling compared to the learned dy-
namics. Blue and red lines represent the exact dynamics, while dash lines demonstrate the
learned dynamics.

Table 6.6: Root Mean Square Error (RMSE) and computational cost (seconds) for the
pharmacokinetic model using different algorithms and loss functions
Methods RMSE (L2 norm) RMSE (Huber) Computational cost (seconds)
Gradient-based 6.6439 6.2143 0.1629
Levenberg-Marquardt 1.9870 1.8562 0.1379
Nelder-Mead 1.8796 1.7654 0.1609

Table 6.6 reports the RMSE and computational cost associated with each method.
Nelder-Mead achieved the lowest RMSE of 1.8796, demonstrating the best fit to the data,
although with a slightly higher computational cost compared to the Levenberg-Marquardt
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Figure 6.11: Convergence of parameter of the pharmacokinetic model at different noise
levels.

Figure 6.12: Histogram of the errors between the data and the fit of the pharmacokinetic
model at different noise levels.

method. Figure 6.10 compares the simulated drug concentration trajectories against the
learned dynamics. The estimated trajectories, especially those obtained using Nelder-Mead,
align closely with the true system behavior. Parameter convergence is illustrated in Fig-
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ure 6.11, showing consistent and monotonic progression toward the true values under various
noise levels η = [0.0001, 0.001, 0.01, 0.1]. Finally, Figure 6.12 displays the distribution of fit-
ting errors. These residuals approximately follow a normal distribution, indicating a robust
model fit. This confirms the effectiveness of nonlinear optimization in pharmacokinetic
modeling and highlights its importance in drug behavior analysis and dosage design.

Conclusion

In this study, we evaluated optimization methods for parameter estimation in nonlinear
systems, focusing on the van der Pol oscillator, the Rössler system, and pharmacokinetic
modeling. Across all cases, the Nelder–Mead simplex algorithm consistently outperformed
other approaches, achieving lower RMSE values and demonstrating stable parameter con-
vergence under noise. We also implemented the Huber loss as an alternative to the L2 norm.
While the Huber loss is advantageous in the presence of outliers, our simulations contained
few such cases, resulting in performance similar to the L2 objective. Overall, the Nelder–
Mead algorithm proved both robust and accurate, while the benefits of Huber loss remain
more evident in outlier-rich datasets.

6.3.2 Implementation of Trust-Region Optimization

In this study, a trust-region optimization framework was employed to estimate the parame-
ters of nonlinear dynamical systems. To systematically evaluate the accuracy of the proposed
method, we conducted simulations under varying noise conditions. Specifically, synthetic
datasets were generated by simulating the system with known parameters and subsequently
contaminating the outputs with additive noise. Two distinct noise models were considered:
Gaussian white noise and colored (pink) noise, representing uncorrelated and correlated
disturbances, respectively.

For each noise condition, the parameter estimation procedure was repeated ten times to
mitigate the influence of random fluctuations. The average parameter estimates, together
with the corresponding root mean square error (RMSE), were computed to provide a quanti-
tative measure of estimation accuracy. This experimental design enabled a direct comparison
of the robustness of the optimization approach under Gaussian and colored noise, thereby
offering insights into the sensitivity of parameter identification to different noise structures
[72, 57, 51].

A. Damped Oscillator

Two-dimensional Damped Oscillator (Linear vs. Nonlinear) The two-dimensional
damped harmonic oscillator serves as a foundational test case for evaluating parameter
estimation in both linear and nonlinear regimes. We first examine the linear system defined
by Eq. 6.52:

dx

dt
= ax+ by

dy

dt
= cx+ dy (6.52)

where x, and y represent the variables that describe the state of the system, and a, b,
c, d are the parameters of the system with true parameter values with a = −0.1, b = 2,
c = −2, and d = −0.1.

Figure 6.13 illustrates the accuracy of the trust-region optimization in reproducing the
dynamics and phase portrait of the linear damped harmonic oscillator under different levels
of Gaussian noise (0.0001, 0.001, 0.01, 0.1). The initial conditions for the system are set
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Figure 6.13: In Linear damped harmonic oscillator, the trust-region optimization accurately
reproduces the dynamics on left panel and the phase portrait on right panel at different
levels of gaussian noise (0.0001, 0.001, 0.01, 0.1) with initial conditions (x1, x2) = (2.0, 0.0).

Table 6.7: Parameter estimates and RMSE for the linear system (6.52) under varying Gaus-
sian noise 6.52

Noise Level â b̂ ĉ d̂ RMSE
0.0001 -0.1000 2.0000 -2.0000 -0.1000 0.0001
0.001 -0.0999 2.0000 -2.0000 -0.1001 0.0010
0.01 -0.0998 1.9985 -2.0017 -0.1004 0.0100
0.1 -0.0955 1.9981 -2.0001 -0.1035 0.1007

as (x1, x2) = (2.0, 0.0). The estimated parameters for the linear system at each noise level
are presented in Table 6.7. The optimized parameters closely match the true parameter
values, indicating the effectiveness of the trust region algorithm in parameter estimation.
The accuracy of the estimated trajectories is further quantified by calculating the root mean
squared error values, as shown in Table 6.7.

B. Nonlinear Cubic Dynamics To evaluate robustness against nonlinearity, we modified
the system to include cubic terms, as given by Eq. 6.53:
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Table 6.8: Comparison of additive Gaussian and Colored noise on paramter estimation and
accuracy

Gaussian Noise Colored (Pink) Noise
â -0.1013 -0.0997
b̂ 2.0009 1.9866
ĉ -1.9990 -2.0196
d̂ -0.0985 -0.1070

RMSE 0.0279 0.0220

dx

dt
= ax3 + by3

dx

dt
= cx3 + dy3 (6.53)

Using the same noise levels, we estimate the parameters for the system with cubic dynam-
ics. The estimated parameter values and the corresponding true trajectories are depicted in
Figure 6.14. The results are summarized in Table 6.9, which shows the estimated parameters
and the RMSE values.

Table 6.9: Estimated parameters and accuracy at different noise level for cubic dynamics
8.26

Noise Level â b̂ ĉ d̂ RMSE
0.0001 -0.1000 2.0000 -2.0000 -0.1000 0.0001
0.001 -0.1001 1.9996 -2.0001 -0.0999 0.0010
0.01 -0.1012 2.0042 -1.9990 -0.0990 0.0101
0.1 -0.1130 1.9815 -2.0099 -0.0870 0.1006

Table 6.10: Comparison of additive Gaussian and Colored noise on paramter estimation and
accuracy

Gaussian Noise Colored (Pink) Noise
â -0.1008 -0.1011
b̂ 1.9970 1.9934
ĉ -2.0011 -2.0027
d̂ 0.0991 -0.0987

RMSE 0.0277 0.0158

Finally, we compare the effect of Gaussian and colored (pink) noise on parameter es-
timation and solution accuracy. Table 8.2, 8.4 presents the average estimated parameter
values, and RMSE for both noise types. The estimates obtained with colored noise slightly
differ from those obtained with Gaussian noise, indicating a potential bias introduced by the
colored noise. The RMSE values quantify the accuracy of the solution, with colored noise
achieving comparable accuracy to Gaussian noise.

C. Three-Dimensional Linear System

This example examines a three-dimensional linear system defined by the following set of
equations:
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Figure 6.14: The identified system accurately captures the dynamics of the two-dimensional
damped harmonic oscillator with cubic dynamics. The solid colored lines represent the true
dynamics of the system, while the dashed lines indicate the learned dynamics. The phase
portrait demonstrates the precise reproduction of the system’s behavior.

dx

dt
= p1x+ p2y

dy

dt
= p3x+ p4y

dz

dt
= p5z (6.54)

Here, x, y, and z are the system states, and p1 to p5 are constant parameters. In our
simulations, the true parameter values are set as p1 = −0.1, p2 = −2, p3 = 2, p4 = −0.1, and
p5 = −0.3. Gaussian noise is added to the simulated trajectories at different levels (0.0001,
0.001, 0.01, and 0.1) to simulate measurement errors.The trust-region optimization method
is applied to estimate the parameters from noisy observations. As shown in Figure 6.15,
the method effectively recovers the system dynamics, even under significant noise. The
initial conditions for the simulation are (x0, y0, z0) = (0.0, 2.0, 1.0). Both the time-series
trajectories and phase portraits demonstrate that the learned model closely follows the true
system behavior.
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Figure 6.15: Trust-region optimization accurately reconstructs the dynamics of the three-
dimensional linear system. Left: time-series trajectories; Right: phase portrait. Initial
conditions are set as (x, y, z) = (0.0, 2.0, 1.0).

Table 8.5 summarizes the estimated parameters and corresponding RMSE values for each
noise level. The method maintains high accuracy at low noise levels and remains reasonably
robust as noise increases. Slight deviations in parameter values are observed at higher noise
levels, especially in p1 and p4, which appear more sensitive to perturbations.

We also compare the influence of noise type on the quality of estimation. Table 8.6 shows
results for Gaussian and colored (pink) noise. While parameter estimates remain close to
the true values in both cases, slightly lower RMSE values are observed under colored noise.
This suggests improved estimation accuracy when noise has temporal correlation.
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Table 6.11: Estimated parameters and RMSE at various noise levels for the system in
Eq. 6.54.

Noise Level p̂1 p̂2 p̂3 p̂4 p̂5 RMSE
0.0001 -0.1000 -2.0000 2.0000 -0.1000 -0.3000 0.0001
0.001 -0.1000 -2.0004 1.9996 -0.1000 -0.3000 0.0010
0.01 -0.1436 -1.9732 1.9907 -0.1606 -0.3150 0.1030
0.1 -0.1475 -1.9760 1.9961 -0.1652 -0.3070 0.1486

Table 6.12: Effect of Gaussian vs. colored (pink) noise on parameter estimation and accu-
racy.

Parameter Gaussian Noise Colored (Pink) Noise
p̂1 -0.1167 -0.1106
p̂2 -1.9897 -1.9928
p̂3 1.9958 1.9968
p̂4 -0.1254 -0.1206
p̂5 -0.3055 -0.3005

RMSE 0.0631 0.0596

D. Lorenz System

The Lorenz system, a cornerstone of chaos theory, is renowned for its sensitive dependence
on initial conditions [91]. It is governed by the equations

dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y,

dz

dt
= xy − βz, (6.55)

where the parameters σ, ρ, and β dictate the system’s behavior. Due to its chaotic na-
ture, even small perturbations in the initial conditions can lead to dramatically different
trajectories.

To evaluate our parameter estimation approach, we simulated the Lorenz system over
the interval t = 0 to t = 25 with a time-step of ∆t = 0.01. The true parameter values were
set to σ = 10.0, ρ = 28.0, and β = 8/3. Gaussian noise was added at levels of 0.0001, 0.001,
0.01, and 0.1 to the trajectories to generate noisy data.

Table 6.13: Estimated parameters and accuracy at different noise levels for Lorenz system
Noise Level σ̂ ρ̂ β̂ RMSE

0.0001 10.0181 27.7601 2.7819 7.9105
0.001 9.5496 27.5124 2.5416 9.7118
0.01 8.6295 26.8805 2.6716 8.7706
0.1 9.6150 27.4920 2.6208 9.5434

A trust-region optimization method was employed to estimate the parameters from these
noisy observations. Figure 6.16 illustrates the dynamic paths of the Lorenz system, where
the true trajectories (blue solid lines) are contrasted with the estimated trajectories (red
dashed arrows). Similarly, Figure 6.17 compares the true phase portrait with that of the
identified system for an initial condition [x0 y0 z0]T = [−8 7 27]T under various noise levels.
Table 8.9 presents the estimated parameter values and the corresponding root mean squared
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Figure 6.16: We observe the dynamic paths of the Lorenz system, specifically focusing on the
case where measurements of both position (x) and velocity (ẋ) are affected by noise. The true
trajectories of the system is depicted in blue (solid lines), while the estimated trajectories,
obtained through trust-region optimization, is illustrated by dashed red arrows.

Table 6.14: Comparison of additive Gaussian and Colored noise on paramter estimation and
accuracy

Gaussian Noise Colored (Pink) Noise
σ̂ 9.4471 9.4577
ρ̂ 27.6333 27.5080
β̂ 2.6980 2.7666

RMSE 9.2051 9.3370

error (RMSE) for each noise level. Despite the presence of noise, the estimated parameters
remain close to the true values. As expected, higher noise levels increase the RMSE, thereby
reducing estimation accuracy, yet the estimated trajectories continue to reflect the system’s
inherent dynamics. In addition, we investigated the impact of noise type by comparing pa-
rameter estimates derived from additive Gaussian noise with those from colored (pink) noise.
Table 8.10 summarizes these results. Although slight variations were observed between the
two noise types, the accuracy—assessed via RMSE—was marginally better for colored noise
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Figure 6.17: We compare the true phase portrait of the Lorenz systems, spanning from time
t=0 to t=25, with the initial condition [x0 y0 z0]T = [−8 7 27]T , to the phase portrait of the
identified systems at different levels of gaussian noise.This allows us to assess how accurately
the identified systems capture the dynamics of the original system

compared to Gaussian noise. This indicates that the noise characteristics can influence the
estimation process.

Conclusion

This study presented a trust-region optimization algorithm for parameter estimation in
nonlinear systems, demonstrated through the Van der Pol oscillator, damped oscillator, and
Lorenz system. The method achieved accurate estimates even in the presence of noise,
highlighting its robustness for highly nonlinear and non-convex dynamics. The inclusion
of colored (pink) noise revealed a slightly greater deviation compared to Gaussian noise,
though the essential system dynamics were still captured. Sensitivity to initial values and
trust-region size underscores the importance of careful parameter selection. Overall, the
proposed approach offers a reliable framework for parameter estimation under diverse noise
conditions, with strong potential for real-world applications.





Chapter 7

Dynamic System State Estimation
via Moving Horizon Techniques

7.1 Introduction

Many engineered and natural systems are governed by nonlinear ordinary differential equa-
tions (ODEs). When only a subset of system variables is measurable, accurate state esti-
mation requires reconciling noisy sensor data with the underlying ODE model. This work
adopts Moving Horizon Estimation (MHE), an optimization-based framework that enforces
constraints while minimizing discrepancies between model predictions and recent measure-
ments within a finite time window.

At each sampling instant, MHE computes the state trajectory that minimizes a user-
specified discrepancy metric over a moving horizon. After optimization, the horizon ad-
vances and the process repeats, providing continuous state updates. The standard approach
penalizes discrepancies using the squared L2-norm, which corresponds to maximum likeli-
hood estimation under Gaussian noise assumptions. However, the quadratic growth of this
penalty renders the estimator sensitive to outliers caused by sensor faults or unmodeled
disturbances, as large residuals dominate the cost function.

To enhance robustness, we investigate replacing the quadratic penalty with the Huber
loss function, which exhibits quadratic behavior for small errors but linear growth for large
residuals, thereby limiting outlier influence. This chapter pursues three primary objectives:
first, to formulate classical L2-norm MHE for general nonlinear ODE systems with explicit
treatment of constraints and numerical implementation; second, to derive an MHE vari-
ant based on the Huber loss and demonstrate efficient solution strategies; and third, to
benchmark both formulations on a representative nonlinear system, comparing estimation
accuracy, outlier resilience, and computational demands.

7.2 Fundamentals of Moving Horizon Estimation

Moving Horizon Estimation provides a constrained estimation alternative to the extended
Kalman filter, with demonstrated superiority under constraints. MHE estimates system
states using past measurements and prior state information within a fixed-length horizon
that shifts forward at each time step [19]. To incorporate information beyond the horizon,
an arrival cost summarizes older data into a penalty term, as illustrated in Figure 7.1.

87
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Figure 7.1: Schematic of MHE at time tN .

7.2.1 Problem Formulation

Here, we follow the approach develoved by Bock et al [19]. The MHE formulation stems
from an ordinary differential equation model:

ẋ(t) = f(x(t), u(t), p), (7.1)
y(t) = h(x(t), p), (7.2)
x(t0) = x0, (7.3)

where x(t) ∈ Rnx denotes system states, u(t) ∈ Rnu control inputs, p ∈ Rnp parameters, and
h(·) the output map. At time tk, MHE considers the horizon [tk−M+1, tk] with measurements
y(tk−M+1), . . . , y(tk) ∈ Rny at discrete times. Defining L := k−M+1, the discretized model
becomes:

xk+1 = F (xk, uk, p) + wk, (7.4)
yk = h(xk, p) + vk, (7.5)
x0 = x(t0), (7.6)

with wk and vk representing independent Gaussian process and measurement noise. Weight-
ing matrices Vk, W , and PL are defined as inverses of measurement, process noise, and initial
state covariances, respectively. The following weighting matrices are defined:

Vk ∈ Rny×ny , (2.3a)
W ∈ Rnx×nx , (2.3b)
PL ∈ R(nx+np)×(nx+np), (7.7)
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where Vk and W are typically chosen as inverses of the measurement and process noise
covariance matrices.

Assume the initial state x0 and parameters p are normally distributed with covariance
matrices:

Qx = Cov(x0) ∈ Rnx×nx , (7.8)
Qp = Cov(p) ∈ Rnp×np , (7.9)

Then, the arrival cost weight is:

PL = [diag(Qx, Qp)]−1 =
[
Qx 0
0 Qp

]−1

=
[
Q−1

x 0
0 Q−1

p

]
.

The MHE optimization problem is:

min
xj ,p

∥∥∥∥∥
[
xL − x̄L

p− p̄L

]∥∥∥∥∥
2

PL

+
k−1∑
j=L

∥wj∥2W +
k∑

j=L

∥vj∥2Vj
(7.10)

s.t. xj+1 = F (xj , uj , p) + wj , (7.11)
yj = h(xj , p) + vj , (7.12)
xj,min ≤ xj ≤ xj,max, j = L, . . . , k, (7.13)
wj,min ≤ wj ≤ wj,max, (7.14)
pmin ≤ p ≤ pmax. (7.15)

The first term constitutes the arrival cost incorporating prior information, while the sum
of ∑k

j=L ∥vj∥2Vj
= ∑k

j=L v
T
j Vjvj forms the measurement penalty function Φ. Note that with

horizon length M = 0, MHE reduces to the extended Kalman filter.

7.2.2 Multiple Shooting Method

For continuous-time models, the horizon [tL, tk] is divided into M subintervals [19]. The
control inputs u(t) are commonly discretized such that they are piecewise constant over
these subintervals:

u(t) = qj , t ∈ [tj , tj+1], j = L, . . . ,M − 1, (7.16)

as described in [19].
To discretize the state variables, initial values sx

j are introduced for the differential state
x, such that on each subinterval [tj , tj+1], the following initial value problem is defined:

ẋj(t) = f(xj(t), qj , p), (7.17)
xj(tj) = sj , (7.18)

with t ∈ [tj , tj+1], and where qj and p are the constant control and parameter values on
the subinterval.

To ensure consistency of the solution across the entire time horizon, the following con-
tinuity constraints are added:

0 = x(tj+1; sj , qj , p)− sj+1, j = L, . . . ,M − 1, (7.19)

where x(tj+1; sj , qj , p) denotes the solution of the ODE (7.1) at time tj+1, initialized
with the value sj .
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Using this formulation, the MHE optimization problem (7.4) can be reformulated as:

min
{sj ,p}

∥∥∥∥∥
[
sL − x̄L

p− p̄L

]∥∥∥∥∥
2

2
+

k−1∑
j=L

∥wj∥2W +
k∑

j=L

∥yj − h(sj , p)∥2Vj
(7.20)

s.t. sj+1 = x(tj+1; sj , p) + wj , j = L, . . . , k − 1, (7.21)
xmin ≤ sj ≤ xmax (7.22)
pmin ≤ p ≤ pmax. (7.23)

Here, the variables sj represent the discrete state approximations xj , and the piecewise-
constant inputs qj correspond to the control inputs uj used.

7.2.3 Initialization of the Prior Weight

Since the estimation horizon is finite, yet older information should still be taken into account,
this historical data is incorporated via a prior weighting term, as sketched in figure and
defined as:

(
xL − x̄L

p− p̄L

)T

PL

(
xL − x̄L

p− p̄L

)
(7.24)

With each shift of the estimation horizon, information exits the window and must be
incorporated into the updated prior weight. Therefore, before each new estimation, the prior
terms x̄L, p̄L, and the weighting matrix PL must be updated accordingly.

Ideal But Intractable Solution

Ideally, one would solve the infinite-horizon optimization problem:

min
L∑

j=−∞
∥yj − h(xj , pj)∥2Vj

+
L−1∑

j=−∞
∥wj∥2W (7.25)

subject to the system dynamics. This would ensure that all past information is optimally
captured in the prior weight. However, this problem is intractable for nonlinear systems and
computationally infeasible even for large-scale linear systems.

Recursive Update of Prior Weight

Instead, we approximate the effect of moving the horizon from [tL, tk] to [tL+1, tk+1]. The
information that exits the horizon (at time tL) is captured by:

∥yL − h(xL, pL)∥2VL
+ ∥wL∥2W (7.26)

We now define the updated prior cost at time tL+1 as a nonlinear function C(xL+1, pL+1):

C(xL+1, pL+1) = min
xL,pL

(
xL − x̄L

pL − p̄L

)T

PL

(
xL − x̄L

pL − p̄L

)
+ ∥yL − h(xL, pL)∥2VL

+ ∥wL∥2W + ∥wp
L∥

2
W̄L

(7.27)

subject to:
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wL = xL+1 − F (xL, uL, pL), (7.28)
wp

L = pL+1 − pL. (7.29)

Here, F (xL, uL, pL) represents the solution of the ODE over [tL, tL+1]. The noise terms
wL and wp

L model process and parameter uncertainty, respectively. The weighting matrix
W̄L = diag(Q,Qp)−1 regularizes the estimation of time-varying parameters.

Linearization

To bring this into the desired quadratic form:

C(xL+1, pL+1) ≈ const +
(
xL+1 − x̄L+1
pL+1 − p̄L+1

)T

PL+1

(
xL+1 − x̄L+1
pL+1 − p̄L+1

)
(7.30)

we linearize both the model prediction and the measurement function around the current
best estimate (x∗(tL), p∗). Denote:

• xL+1 ≈ x̃+XxxL +XppL

• h(xL, pL) ≈ h̃+HxxL +HppL

where:

Xx = ∂x(tL+1;x, p)
∂x

∣∣∣
x∗,p∗

, Xp = ∂x(tL+1;x, p)
∂p

∣∣∣
x∗,p∗

, (7.31)

x̃ = x(tL+1;x∗, p∗)−Xxx
∗ −Xpp

∗, (7.32)
h̃ = h(x∗, p∗)−Hxx

∗ −Hpp
∗. (7.33)

Least-Squares Reformulation

Substituting the linearized approximations, the update becomes a linear least-squares prob-
lem:

min
xL,pL

∥∥∥∥∥∥∥∥∥∥∥


PL(xL − x̄L)
PL(pL − p̄L)

VL(yL − h̃−HxxL −HppL)
W (xL+1 − x̃−XxxL −XppL)

W (pL+1 − pL)



∥∥∥∥∥∥∥∥∥∥∥

2

2

(7.34)

This can be written compactly as:

min
xL,pL

∥∥∥∥∥∥∥∥∥∥∥
Acost


xL

pL

xL+1
pL+1

+


PLx̄L

PLp̄L

VL(h̃− yL)
Wx̃

0



∥∥∥∥∥∥∥∥∥∥∥

2

2

(7.35)

with

Acost :=


PL 0

−(VLHx | VLHp) 0(
−WXx −WXp

0 −W

) (
W
0

)
 (7.36)
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Through a QR decomposition:

Acost = Q

R1 R12
0 R2
0 0

 (7.37)

the problem 6.44 is transformed into an equivalent one:

min
xL,pL

∥∥∥∥∥∥∥∥∥
r1
r2
r3

+

R1 R12
0 R2
0 0



xL

pL

xL+1
pL+1


∥∥∥∥∥∥∥∥∥

2

2

(7.38)

where r1
r2
r3

 = QT


PLx̄L

PLp̄L

VL(h̃− yL)
Wx̃

0

 (7.39)

the least-squares solution becomes:

F
′′(xL+1, pL+1) = ∥r3∥22 +

∥∥∥∥∥r2 +R2

(
xL+1
pL+1

)∥∥∥∥∥
2

2
(7.40)

where:
This yields the updated prior weight parameters:

PL+1 := R2 (7.41)(
x̄L+1
p̄L+1

)
:= −R−1

2 r2 (7.42)

This recursive update mechanism for the prior weight ensures that all information leaving
the horizon is carried over into the new estimation, making the method suitable for time-
varying systems and online estimation.

Generalized Gauss-Newton Method

The ℓ2-norm MHE problem constitutes a nonlinear least-squares optimization. Collect-
ing decision variables into rk = (xL, . . . , xk, wL, . . . , wk−1, p)T and known data into Dk =
(x̄L, p̄L, PL, yL, VL, uL, . . . , yk, Vk, uk), we formulate:

min
rk

∥F (rk;Dk)∥22 (7.43)

s.t. G(rk;Dk) = 0 (7.44)
H(rk;Dk) ≥ 0, (7.45)

where F aggregates residuals, G enforces equality constraints, and H handles inequalities.
The Generalized Gauss-Newton method linearizes around the current iterate r(i)

k :

min
∆rk

∥∥∥F (r(i)
k ;Dk) +∇rF (r(i)

k ;Dk)∆rk

∥∥∥2

2
(7.46)

s.t. G(r(i)
k ;Dk) +∇rG(r(i)

k ;Dk)∆rk = 0 (7.47)

H(r(i)
k ;Dk) +∇rH(r(i)

k ;Dk)∆rk ≥ 0, (7.48)

updating r(i+1)
k = r

(i)
k + ∆rk until convergence.
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Real-Time Iteration Scheme

The real-time iteration scheme for L2-norm MHE partitions each sampling interval into
preparation and estimation phases. After computing rk−1 at tk−1, the preparation phase
updates the prior weight as in Section6.3.3 and initializes a new variable vector r−

k by:
removing outdated variables at tL−1, shifting remaining variables forward, and predicting
new entries via x−

k = x(tk;xk−1). Components independent of the upcoming measurement
yk are precomputed. Upon receiving yk, the estimation phase completes Dk, assembles the
optimization problem, solves for ∆rk, and updates rk = r−

k + ∆rk. The resulting x∗
k and p∗

provide estimates at tk.

7.3 Reformulation of the Huber Penalty for Quadratic Pro-
gramming in Moving Horizon Estimation

In this section, we present a systematic reformulation of the Huber penalty function for its
integration into quadratic programming (QP) [21] within the framework of Moving Horizon
Estimation (MHE). The proposed reformulation relies on the introduction of dual and slack
variables, thereby rendering the Huber penalty function amenable to efficient solution via
standard QP solvers such as qpOASES.

7.3.1 Huber Penalty in MHE Formulation

Consider the MHE problem at time tk where the penalty on the measurement residuals is
modeled by the componentwise Huber function ψδ(·), as defined in Equation (7.25). The
optimization problem can be expressed as

min
x1,...,xk

p
qL,...,qk
rL,...,rk
sL,...,sk

∥∥∥∥∥
(
xL − x̄L

p− p̄L

)∥∥∥∥∥
2

PL

+
k−1∑
j=L

∥wj∥2W +
k∑

j=L

ny∑
i=1

ψδ

(
(Vjvj)i

)
, (7.49)

subject to the system dynamics, measurement residual definitions, and state, disturbance,
and parameter constraints:

xj+1 = F (xj , uj , p) + wj , j = L, . . . , k − 1,

vj = yj − h(xj , p),

xj,min ≤ xj ≤ xj,max, j = L, . . . , k,

wj,min ≤ wj ≤ wj,max,

pmin ≤ p ≤ pmax.

Here, xj ∈ Rnx denotes the state trajectory, p ∈ Rnp the model parameters, wj ∈ Rnx

the process disturbances, and vj ∈ Rny the measurement residuals. The weighting matrices
PL and W penalize deviations from the prior estimates and disturbances, respectively. The
Huber penalty ψδ(·) provides robustness against measurement outliers by behaving quadrat-
ically for small residuals and linearly for large residuals. While advantageous in terms of
robustness, its piecewise definition is not directly compatible with QP formulations.
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7.3.2 QP-Compatible Reformulation

To enable the use of QP solvers, the Huber penalty can be equivalently reformulated. This
results in the following optimization problem:

min
x1,...,xk

p
qL,...,qk
rL,...,rk
sL,...,sk

∥∥∥∥∥
(
xL − x̄L

p− p̄L

)∥∥∥∥∥
2

PL

+
k−1∑
j=L

∥wj∥2W +
k∑

j=L

(1
2∥qj∥22 + δe⊤

m(rj + sj)
)
, (7.50)

subject to
xj+1 = F (xj , uj , p) + wj , j = L, . . . , k − 1,

vj = yj − h(xj , p),

xj,min ≤ xj ≤ xj,max, j = L, . . . , k,

wj,min ≤ wj ≤ wj,max,

pmin ≤ p ≤ pmax,

Vjvj − qj = rj − sj , rj , sj ≥ 0, j = L, . . . , k,

where qj , rj , sj ∈ Rny are auxiliary variables introduced to linearize the piecewise structure
of the Huber penalty. The variables qj capture the quadratic contribution for small residuals,
while rj and sj enforce the absolute value terms through nonnegative slack variables. The
term δe⊤

m(rj +sj) accounts for the linear growth of the penalty beyond the quadratic region.
This reformulation transforms the Huber penalty into a purely quadratic objective with

linear constraints, making it fully compatible with QP solvers. Importantly, this preserves
the robustness properties of the Huber loss while enabling efficient large-scale numerical
optimization in MHE applications.

7.3.3 Efficient update of prior information

We now adapt the initial weight determination using the Huber function. The initial weight∥∥∥∥∥
(
xL − x̄L

p− p̄L

)∥∥∥∥∥
2

PL

retains its form. However, measurement errors at tL are needed to update the initial weight
when shifting the estimation horizon. Using the L2-norm here excessively weights outliers,
allowing past outliers outside the horizon to influence estimates. Thus, the Huber function
is employed to extend its benefits to the initial weight determination.

For scalar measurements (yL ∈ R), the problem is:

F (xL+1, pL+1) = min
xL,pL

∥∥∥∥∥
(
xL − x̄L

pL − p̄L

)∥∥∥∥∥
2

PL

+
∥∥∥∥∥
(
xL+1 − F (xL, uL, pL)

pL+1 − pL

)∥∥∥∥∥
2

W̄L

+Φ
(
VL(yL−h(xL, p))

)
where

Φ
(
VL(yL − h(xL, p))

)
:=
{
∥yL − h(xL, p)∥2VL

if |VL(yL − h(xL, p))| ≤ δ
|VL(yL − h(xL, p))| otherwise

.

Now, F is reformulated into a standard QP via linearization around the best available
estimate (x∗(tL), p∗) :

F (xL+1, pL+1) = min
xL,pL

∥∥∥∥∥
(
xL − x̄L

pL − p̄L

)∥∥∥∥∥
2

PL

+
∥∥∥∥∥
(
xL+1 − x̃−XxxL −XppL

pL+1 − pL

)∥∥∥∥∥
2

W̄L

+|VL(yL−h̃−HxxL−HppL)|.
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where x̃ and h̃ denote linearization offsets, while Xx, Xp, Hx, and Hp are Jacobian matrices.
Expanding terms while omitting constants:

First term:
∥∥∥∥∥
(
xL

pL

)∥∥∥∥∥
2

PL

− 2
(
x̄L

p̄L

)⊤

P⊤
L PL

(
xL

pL

)
+
∥∥∥∥∥
(
x̃L

p̃L

)∥∥∥∥∥
2

PL

(7.51)

Second term:
∥∥∥∥∥
(
XL Xp

0 I

)(
xL

pL

)∥∥∥∥∥
2

W

+
∥∥∥∥∥
(
xL+1
pL+1

)∥∥∥∥∥
2

W

+
∥∥∥∥∥
(
x̃
0

)∥∥∥∥∥
2

W

− 2
(
x̃
0

)⊤

W⊤W

(
XL Xp

0 I

)(
xL

pL

)
− 2

(
xL+1
pL+1

)T (
XL Xp

0 I

)(
xL

pL

)

+
(
x̃
0

)T (
XL Xp

0 I

)(
xL

pL

)
(7.52)

Third term: VL(yL − h̃)− VL

[
Hx, Hp

](xL

pL

)
(positive error case) (7.53)

Combining all terms:

F (xL+1, pL+1) = min
ξ
ξ⊤Qξ + b⊤ξ, ξ =

(
xL

pL

)
(7.54)

where:

Q =

 PL

W

(
XL Xp

0 I

)
T  PL

W

(
XL Xp

0 I

) (7.55)

b⊤ = 2
(
x̄L

p̄L

)⊤

P⊤
L PL − 2

(
xL+1
pL+1

)T [
XL Xp

0 I

]

+
(
x̃
0

)T [
XL Xp

0 I

]
− VL

[
Hx, Hp

]
(7.56)

it follows that the new initial weight can be defined as

PL+1 := 2Q (4.17a)[
x̄L+1
p̄L+1

]
:= −(2Q)−1b (4.17b)

Multidimensional Case (yL ∈ Rny , ny > 1)

When the measurement vector yL has multiple components, the situation becomes more
complex, as some measurements may contain small errors (within the quadratic region of the
Huber penalty), while others may contain large errors (in the linear region). To handle this,
we partition the residual contributions by defining two weight matrices V ′

L, V
′′

L ∈ Rny×ny .
Let rL = yL − h(xL, p) denote the measurement residual at time tL.

Quadratic contribution. For indices iλ1 , . . . , iλm′ such that |VLrL| ≤ δ, the residual lies
in the quadratic region. The corresponding columns of VL are retained in V ′

L, while the
other columns are set to zero. This yields

∥rL∥2V ′
L

= ∥V ′
LrL∥22.
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Linear contribution. For indices iµ1 , . . . , iµm′′ with VLrL > δ, and iν1 , . . . , iνm′′′ with
VLrL < −δ, the residual lies in the linear region. In this case, V ′′

L retains the corresponding
columns of VL for the positive part, and −1 times the columns of VL for the negative part,
while all other columns are zero. This ensures that all entries of V ′′

L rL are nonnegative,
giving

∥V ′′
L rL∥1 = 1⊤V ′′

L rL.

Resulting optimization problem. The prior update problem becomes

F (xL+1, pL+1) = min
xL,pL

∥∥∥∥∥
(
xL − x̄L

pL − p̄L

)∥∥∥∥∥
2

PL

+
∥∥∥∥∥
(
xL+1 − x̃−XxxL −XppL

pL+1 − pL

)∥∥∥∥∥
2

W̄L

+∥rL∥2V ′
L
+∥V ′′

L rL∥1.

(7.57)

Linearization. Linearizing h(xL, p) around (x̃, h̃) with Jacobians Hx, Hp yields two types
of penalty terms:

Quadratic penalty:

∥rL∥2V ′
L

= ∥yL − h̃∥2V ′
L
− 2(yL − h̃)⊤(V ′

L)⊤V ′
L

[
Hx Hp

]
ξ

+ ξ⊤
[
Hx Hp

]⊤
(V ′

L)⊤V ′
L

[
Hx Hp

]
ξ, (7.58)

where ξ =
(
xL

pL

)
.

Linear penalty:

∥V ′′
L rL∥1 =

ny∑
i=1

V
′′(i)

L (yL − h̃)−
ny∑
i=1

V
′′(i)

L

[
Hx Hp

]
ξ, (7.59)

where V ′′(i)
L denotes the i-th row of V ′′

L .

Quadratic programming form. Collecting all terms, the optimization problem can be
written in quadratic form as

F (xL+1, pL+1) = min
ξ

ξ⊤Qξ + b⊤ξ, (7.60)

with

Q =


PL

W

(
XL Xp

0 I

)
V

′
(
Hx Hp

)


T 
PL

W

(
XL Xp

0 I

)
V

′
(
Hx Hp

)
 (7.61)

b⊤ = 2
(
x̄L

p̄L

)⊤

P⊤
L PL − 2

(
xL+1
pL+1

)T [
XL Xp

0 I

]

+
(
x̃
0

)T [
XL Xp

0 I

]
− 2(yL − h̃)⊤(V ′

L)⊤V ′
L

[
Hx Hp

]
−

ny∑
i=1

V
′′

Li

[
Hx, Hp

]
(7.62)

Update rule. Finally, the updated prior information is given by

PL+1 = 2Q,
(
x̄L+1
p̄L+1

)
= −(2Q)−1b. (7.63)
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7.3.4 Generalized Gauss-Newton Method

Define:

mk = (xL, qL, rL, sL, . . . , xk, qk, rk, sk, wL:k−1, p) (7.64)
Dk = (x̄L, p̄L, PL, yL:k, VL:k, uL:k) (7.65)

The problem is:

min
mk
∥F1(mk;Dk)∥22 + ∥F2(mk;Dk)∥Huber s.t. G(mk;Dk) ≥ 0, H(mk;Dk) = 0 (7.66)

The GGN iteration at step i is:

min
∆m

(i)
k

∥∥∥F1 +∇mF
⊤
1 ∆m(i)

k

∥∥∥2

2
+
∥∥∥F2 +∇mF

⊤
2 ∆m(i)

k

∥∥∥
Huber

(7.67)

subject to:

∇mG(m(i)
k ;Dk)⊤∆m(i)

k +G(m(i)
k ;Dk) ≥ 0 (7.68)

∇mH(m(i)
k ;Dk)⊤∆m(i)

k +H(m(i)
k ;Dk) = 0 (7.69)

with update m(i+1)
k = m

(i)
k +∆m(i)

k . For real-time iterations, only one iteration is performed
per tk.

Real-Time Iteration

Each iteration consists of a preparation phase (updating weights and preparing m−
k , Dk)

and an estimation phase (solving for x∗
k, p

∗) using the current measurement yk.

7.4 Numerical Experiments
In this chapter, we compare the two Moving Horizon Estimation (MHE) variants using
the Van der Pol oscillator. First, the nonlinear oscillator model is described in Section 7.4.
Then, the respective MHE formulations are presented (Section 7.4), followed by a comparison
of estimation results (Section 7.4).

Formulation of the Underlying Model

The Van der Pol oscillator is described by the second-order nonlinear differential equation:

ẍ− µ(1− x2)ẋ+ x = 0 (7.70)

Using Euler discretization with time step ∆t = 0.1, we obtain the discrete-time model:

xk+1 = xk + ∆t
(

x2,k

µ(1− x2
1,k)x2,k − x1,k

)
+ wk (7.71)

yk =
(

1 0
0 1

)
xk + vk (7.72)

where xk = (x1,k, x2,k)T represents the state vector, µ = 1 is the nonlinear damping
parameter, wk ∼ N (0, 0.02I2) is the process noise, and vk ∼ N (0, 0.1I2) is the measurement
noise. The weighting matrices are V = 0.1I2 and W = I2. The initial state is x0 = (1

2 ,
1
2)T ,

with a horizon length of M = 10. The system is simulated for n = 100 time steps. Figure 7.2
shows the true and noise-corrupted measurements of the oscillator states.
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Moving Horizon Estimation Formulations

For k = M + 1, . . . , n, the MHE with ℓ2-norm penalty is formulated as:

min
{xj}k

j=k−M

k−1∑
j=k−M

∥xj+1 − f(xj)∥22 +
k∑

j=k−M

0.1∥yj − Cxj∥22 (7.73)

where f(xj) represents the discretized dynamics from (5.1a) and C = I2.
The Huber MHE formulation incorporates slack variables qj , rj ∈ R2:

min
{xj}k

j=k−M

{qj ,rj}k
j=k−M

{
k−1∑

j=k−M

∥xj+1 − f(xj)∥22

+
k∑

j=k−M

(1
2∥qj∥22 + δ∥rj∥1

)} (7.74)

subject to:
0.1(yj − Cxj) = qj + rj , j = k −M, . . . , k (7.75)

rj ≥ 0 (7.76)

Figure 7.2: State estimation comparison: True states (blue), L2-MHE estimates (green
dashed), and Huber-MHE estimates (red dashed). The Huber estimates show better tracking
performance, particularly during high-rate transients.

Estimation Results Comparison

Both Moving Horizon Estimation (MHE) implementations were assessed using noisy mea-
surement data, as illustrated in Figure 7.2, which compares the state estimates from each
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Figure 7.3: Absolute error trends over time: (Top) State x1 errors, (Bottom) State x2 errors.
The Huber-MHE (red) maintains consistently lower error magnitudes compared to L2-MHE
(green).

Table 7.1: Estimation error comparison between L2-MHE and Huber-MHE
Metric State x1 State x2

L2 Huber L2 Huber
MSE 0.0322 0.0179 0.0439 0.0355
MAE 0.1384 0.1084 0.1621 0.1390
Max AE 6.2624 1.3701 7.0895 1.2514

method to the true system states. Figure 7.3 presents the corresponding error trends over
time. The results clearly show that the Huber-based MHE offers improved robustness to
measurement noise, particularly in segments of the oscillator trajectory with high curvature.

Quantitative results summarizing the estimation performance are presented in Table 7.1,
with additional visual support in Figures 7.2. Across all evaluated metrics, mean squared
error (MSE), mean absolute error (MAE), and maximum absolute error (Max AE), the
Huber-MHE consistently outperforms the standard L2-MHE. Most notably, the Huber ap-
proach achieves substantial reductions in the maximum absolute error: approximately 78.1%
for state x1 and 82.3% for state x2. Mean errors are also consistently reduced by about 20-
25%, reinforcing the robustness and accuracy of the Huber-based method.

These improvements are particularly evident in the behavior of extreme error events.
As shown in Table 7.1 and visualized in Figure 7.2, the Huber-MHE effectively suppresses
large spikes in the estimation error that are otherwise present in the L2-MHE. This suggests
that the robust penalty function used in the Huber formulation successfully dampens the
influence of outliers and large measurement deviations.
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Further insights are revealed through residual analysis in Figure 7.3. The residuals
from the L2-MHE display a heavy-tailed distribution, indicating a susceptibility to large
deviations. In contrast, the residuals from the Huber-MHE exhibit more Gaussian-like
characteristics, suggesting better statistical conformity. Notably, the maximum residual
values under the Huber formulation are four to five times smaller than those from the
L2 method. Overall, these findings demonstrate that the Huber-MHE not only provides
significantly improved estimation accuracy in the presence of noise but also does so without
introducing additional computational complexity compared to the conventional L2-based
approach.



Chapter 8

Machine Learning for parameter
estimation of nonlinear systems

8.1 Introduction

Accurate parameter estimation in nonlinear dynamical systems is a fundamental problem
in applied mathematics, physics, and engineering, with implications ranging from control
theory to biological modeling [123]. Classical approaches, such as least squares estimation
[130, 11, 96], maximum likelihood estimation (MLE) [15], and nonlinear optimization algo-
rithms including Levenberg–Marquardt, Gauss–Newton, and Nelder–Mead [77], have long
served as the standard tools for this task. These methods typically aim to minimize the
discrepancy between observed trajectories and model predictions. While effective under ide-
alized conditions, they often struggle when applied to real-world data, which is commonly
corrupted by noise, uncertainty, and high-dimensional nonlinearities.

System identification methods, which attempt to reconstruct governing equations from
observed time series, have also been extensively explored [69, 70]. However, traditional
frameworks face inherent limitations when applied to complex dynamical behaviors such as
chaos or multiscale interactions. In recent years, the advent of machine learning (ML) has
opened new opportunities for parameter estimation by leveraging its strength in modeling
intricate nonlinear dependencies and handling large, noisy datasets [24, 73, 112, 140, 80, 81].
Prominent developments include Koopman operator–based methods [94], Neural Ordinary
Differential Equations (Neural ODEs) [28], and Physics-Informed Neural Networks (PINNs)
[114], which have demonstrated significant success in reconstructing dynamical systems di-
rectly from data [137].

Building on this body of work, the present study proposes a novel methodology for
parameter estimation that integrates neural networks with the Huber loss function [78]. The
Huber loss offers a compromise between Mean Squared Error (MSE) and Mean Absolute
Error (MAE), providing robustness against outliers while maintaining sensitivity to small
deviations [63]. This property is particularly advantageous when working with noisy time
series, where purely quadratic losses tend to overweight extreme errors and purely linear
losses may underrepresent fine-scale fluctuations. By embedding the Huber loss into a neural
network framework, we exploit the approximation capabilities of deep learning models to
capture nonlinear functional relationships, while ensuring resilience to noise in parameter
recovery [31, 108].

The methodology is validated on synthetic datasets generated from nonlinear ordinary
differential equations (ODEs), a common mathematical representation of dynamical sys-
tems [115, 88]. Through training on noisy trajectories, the network converges toward pa-
rameter estimates that accurately reflect the underlying system dynamics. To benchmark
performance, we apply the approach to four representative models—the damped harmonic

101
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oscillator, the Van der Pol oscillator, the Lotka–Volterra predator–prey system, and the
Lorenz system [12]—each presenting distinct challenges such as oscillatory decay, nonlinear
self-sustained oscillations, population interactions, and chaotic behavior[23, 32].

This work makes the following key contributions:

1. We introduce a robust parameter estimation framework that employs Huber-guided
neural networks to learn system dynamics from noisy time series data.

2. We demonstrate the applicability of the method to both continuous nonlinear ODEs
and discrete chaotic maps, highlighting its versatility.

3. We provide a systematic comparison of loss functions and activation mechanisms,
identifying design choices that improve system identification in complex dynamical
settings.

Overall, the proposed method advances the state of machine learning–based parameter
estimation by combining robustness, flexibility, and computational efficiency. It thus holds
promise for real-time applications and scenarios characterized by uncertainty or limited data
quality, extending the capabilities of current data-driven approaches to dynamical systems.

8.2 Methodological Framework for Robust Neural Parameter
Estimation

This section discuss the methodological framework for estimating parameters of nonlinear
dynamical systems from noisy, potentially corrupted observational data. The core innovation
lies in the integration of deep neural networks as universal function approximators for system
states with a robust estimation objective based on the Huber loss. This synergy enables
accurate parameter inference while conferring resilience to outliers and heavy-tailed noise.
The following sections provide a rigorous exposition of the problem formulation, the neural
surrogate model, the robust optimization objective, the computational algorithm, and the
theoretical guarantees of the proposed estimator.

8.2.1 Problem Formulation

We consider a p-dimensional system of nonlinear ordinary differential equations (ODEs)
defined on the interval t ∈ [t0, tT ]:

dx(t)
dt

= f(x(t), θ, t), x(t0) = x0, (8.1)

where x(t) ∈ Rp is the state vector, θ ∈ Θ ⊆ Rq is a vector of unknown parameters to be
estimated, and f : Rp × Θ × [t0, tT ] → Rp is a Lipschitz continuous function defining the
system dynamics.

The system is observed through a known measurement function g = (g1, . . . , gr)⊤ :
Rp → Rr, which may not capture all state components (r ≤ p). Observations are available
at discrete, potentially irregular time points:

yjk = gj(x(tjk)) + εjk, j = 1, . . . , r, k = 1, . . . , nj , (8.2)

where εjk represents additive measurement noise. We consider a robust statistical setting
where the noise may contain outliers or be heavy-tailed; the Gaussian assumption is not
enforced.

The objective is to jointly estimate the unknown parameter vector θ and the latent state
trajectory x(t) from the noisy and sparse data D = {(yjk, tjk)}.
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8.2.2 Neural Surrogate Model and Universal Approximation

Direct numerical solution of the ODE system for parameter estimation can be computation-
ally prohibitive and suffer from error accumulation. Instead, we construct a continuous-time
surrogate model for the state trajectory using a deep neural network (DNN), leveraging its
universal approximation capabilities [75, 65].

A feedforward neural network (FNN), or multilayer perceptron (MLP), defines a highly
flexible parameterized function. For an input t ∈ R, an L-layer FNN is defined via the
composition:

χw(t) = AL ◦ σL−1 ◦AL−1 ◦ · · · ◦ σ1 ◦A1(t), (8.3)
where each affine transformation is Al(z) = Wlz + bl, with Wl ∈ RNl×Nl−1 , bl ∈ RNl , and σl

denotes an element-wise activation function.Common choices include ReLU,

σ(x) = max(0, x), (8.4)

and the SiLU (Swish) activation,

σ(x) = x · 1
1 + e−x

, (8.5)

the latter being particularly effective for gradient flow and smooth approximations. The
differentiability of σ ensures that φϕ(t) is smooth, allowing temporal derivatives φ̇ϕ(t) to be
computed efficiently via automatic differentiation. The complete set of trainable parameters
is

w = (vec(W1)T , bT
1 , . . . , vec(WL)T , bT

L)T .

To approximate the ODE solution, we employ an independent FNN for each state com-
ponent xi(t), i ∈ [p]:

χwi(t) = Wi,Liσi,Li−1 (Wi,Li−1 · · ·σi,1 (Wi,1t+ bi,1) · · ·+ bi,Li−1) + bi,Li . (8.6)

The networks are designed with input and output dimensions Ni,0 = Ni,Li = 1. The
collective surrogate model is then:

χw(t) =
(
χw1(t), χw2(t), . . . , χwp(t)

)T
, w = (wT

1 , . . . , w
T
p )T . (8.7)

To ensure the satisfaction of the initial condition x(t0) = x0, we adopt the transformation
as:

χ̃wi(t) = x0,i +
(
1− e−(t−t0)

)
χwi(t), (8.8)

which guarantees χ̃wi(t0) = x0,i by construction. For notational brevity, we hereafter use
χwi(t) to denote this constrained estimator.

8.2.3 Robust Physics-Informed Optimization Objective

The estimation of the parameters (θ, w) is formulated as a minimization problem. We define
a loss function L(θ, w) that enforces fidelity to the observed data and consistency with the
governing physics described by Equation (8.1).

Robust Data Fidelity via Huber Loss

The conventional mean squared error (MSE) is sensitive to outliers. To instill robustness, we
employ the Huber loss [? ] to penalize discrepancies between predictions and observations.
For a residual r, the Huber loss ℓδ : R→ R≥0 is defined as:

ℓδ(r) =
{1

2r
2 for |r| ≤ δ,

δ(|r| − 1
2δ) for |r| > δ,

(8.9)
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Figure 8.1: Architecture of the multilayer perceptron (MLP) used as a continuous-time
surrogate for state trajectory approximation.

where δ > 0 is a threshold parameter that controls the transition from a quadratic (L2) loss
for small residuals to a linear (L1) loss for large residuals. This confers robustness to large
errors while maintaining differentiability at zero.

The data fidelity term is thus:

Ldata(θ, w) = 1
Nobs

r∑
j=1

nj∑
k=1

ℓδ (yjk − gj(χw(tjk))) , (8.10)

where Nobs = ∑
j nj is the total number of observations.

Physics-Informed Regularization

A critical advantage of the neural surrogate is the ability to compute derivatives analytically
via automatic differentiation. This allows us to define a physics-informed residual that
measures the extent to which the approximated trajectory satisfies the ODE:

Ri(t; θ, w) = dχwi(t)
dt

− fi(χw(t), θ, t), i ∈ [p]. (8.11)

The regularization term penalizes the aggregate violation of the dynamics:

Lode(θ, w) =
p∑

i=1
λi

(∫ tT

t0
[Ri(t; θ, w)]2 dt

)
, (8.12)

where λi > 0 are regularization coefficients that balance the relative importance of fitting
each ODE component.

In practice, the integral is approximated via Monte Carlo sampling. We generate a set
of U collocation points {t̃u}Uu=1 sampled from a distribution ϕt (e.g., uniform) over [t0, tT ]:

Ĩ2(θ, wi) = 1
U

U∑
u=1

[
dχwi

dt
(t̃u)− fi(χw(t̃u), θ, t̃u)

]2
. (8.13)



8.2. METHODOLOGICAL FRAMEWORK FOR ROBUST NEURAL PARAMETER
ESTIMATION 105

Figure 8.2: SiLU vs ReLU Activation Functions

Composite Objective Function

The complete optimization problem is to minimize the following composite loss function:

(θ̂, ŵ) = arg min
θ∈Θ,w∈RDw

L̃(θ, w), (8.14)

where L̃(θ, w) = Ldata(θ, w) +
p∑

i=1
λi Ĩ2(θ, wi) + γ

2∥θ∥
2
2. (8.15)

An optional ℓ2-regularization term on θ (with coefficient γ ≥ 0) is included to ameliorate
ill-posedness.

8.2.4 Optimization Algorithm

The minimization of Equation (8.15) is performed using a mini-batch stochastic gradient
descent (SGD) algorithm, suitable for large datasets. The procedure is detailed in Algo-
rithm 5.

Hyperparameters ({λi}, γ, δ, learning rate) are tuned via K-fold cross-validation.

8.2.5 Theoretical Analysis of Consistency

This section provides a theoretical foundation for the proposed estimator, establishing its
statistical consistency under certain assumptions.

Assumptions and Definitions

Assume the measurement function g is the identity map (r = p) and observations are made
at uniform times t1, . . . , tn for all states. The observations are:

yik = xi(tk) + εik, i ∈ [p], k ∈ [n], (8.16)

where εik are i.i.d. with E[εik] = 0 and Var(εik) = σ2.
Let H be the class of neural network functions χw with bounded weights. Assume the

true trajectory x(t) = χw∗(t) ∈ H and is generated by the true parameter θ∗.
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Algorithm 5 Stochastic Optimization for Robust Neural Parameter Estimation
1: Input: Data D = {(yjk, tjk)}; learning rate schedule {β(τ)}; batch size M ; collocation

sample size U ; Huber threshold δ; regularization parameters {λi}, γ.
2: Output: Estimated parameters θ̂, ŵ.
3: Initialize parameters θ(0), w(0).
4: for iteration τ = 0 to Υ− 1 do
5: Sample a mini-batch Bdata of M data points from D.
6: Sample a set Bcoll = {t̃1, . . . , t̃U} of collocation points from ϕt.
7: Compute Loss:
8: L(τ)

data ←
1

M

∑
(y,t)∈Bdata

ℓδ(y − g(χw(τ)(t)))

9: L(τ)
ode ←

∑p
i=1

λi
U

∑
t̃∈Bcoll

[
dχ

w
(τ)
i

dt (t̃)− fi(χw(τ)(t̃), θ(τ), t̃)
]2

10: L(τ)
reg ← γ

2∥θ
(τ)∥22

11: L̃(τ) ← L(τ)
data + L(τ)

ode + L(τ)
reg

12: Compute Gradients and Update Parameters.
13: end for
14: return θ̂ = θ(Υ), ŵ = w(Υ)

Covering Number and Entropy

The complexity of the function class H is controlled by its metric entropy. The δ-covering
number N (δ,H, ∥ · ∥2) is the minimal number of δ-balls needed to cover H. Under mild
assumptions, it can be shown that:

logN (δ,H, ∥ · ∥2) ≤ AH
δ2 , (8.17)

where AH is a constant independent of the sample size n.

Convergence Theorem

Under these conditions, the estimator (θ̂, ŵ) defined by minimizing the Huber loss objective
converges to the true values. Specifically, with high probability:

1
n

p∑
i=1
∥χŵi(t)− χw∗

i
(t)∥22 = OP

( logn
n

)
, (8.18)

p∑
i=1
Ĩ2(θ̂, ŵi) = OP

( logn
n

)
. (8.19)

This chapter presented a robust methodology for parameter estimation in nonlinear
ODEs using neural networks. The framework combines the universal approximation power
of deep FNNs with a physics-informed Huber loss objective, yielding an estimator that
is both consistent and resilient to data anomalies. A stochastic algorithm was detailed
for efficient optimization, and theoretical guarantees of convergence were established under
standard complexity assumptions. The following chapter will validate this methodology
through numerical experiments.

8.2.6 Implementation Considerations

The implementation is carried out in PyTorch. Automatic differentiation is used to compute
temporal derivatives φ̇ϕ(t) at collocation points. Hyperparameters such as the Huber thresh-
old δ, the relative weight of CODE, and the learning rate are selected via cross-validation.
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To improve convergence, input time is normalized to [0, 1] and observations are scaled to
unit variance.

8.3 Numerical experiment
This section presents the outcomes of evaluating the robustness and accuracy of the methods
outlined in Section 3 through simulations on various systems under different intensities of
multiplicative Gaussian noise [51, 106, 57, 72]. We aimed to comprehend the impact of
Gaussian noise on system behavior and parameter estimation accuracy.

(i) Noise Influence on Parameter Estimation To assess noise influence, uncorrelated
noise η(t) was introduced with properties:

⟨η(t)⟩ = 0 and ⟨η(t)η(t′)⟩ = δ(t− t′). (8.20)
Here, ⟨·⟩ denotes temporal averaging. The noise, which emulates random measurement
errors, was incorporated into the equation of motion. Simulated data, generated using
known parameters, were subjected to multiplicative Gaussian noise with intensities η =
[0.0001, 0.001, 0.01, 0.1]. Optimization algorithms estimated system parameters from the
noisy data, repeating the process 10 times per noise level. Average estimated parameters and
Huber loss, quantifying solution accuracy, were computed. As mentioned, the simulation
process involved 10 experimental sets, each consisting of 1000 iterations where Gaussian
noise was introduced at different levels.

(ii) Implementation and Computational Setup Numerical integration was performed
using SciPy’s solve_ivp function (RK45 method) [25]. The neural network, used for pa-
rameter estimation, comprised three layers: 64 units in the first, 32 in the second, and a
final layer adjusting according to the number of parameters. Using the Huber loss function
with delta=1.0 and the Adam optimizer (learning rate=0.001, β1=0.9, β2=0.999, ϵ=1e-07),
the model underwent 1000 epochs of training with synthetic noisy data. The numerical
investigation of the discussed methods is shown as follows:

8.3.1 Logistic Map

The logistic map is mathematically defined as follows [127, 97]:
xn+1 = rxn(1− xn), (8.21)

where xn represents the population ratio (ranging from 0 to 1) and r is a system parameter
that varies between 0 and 4 (0 ≤ xn ≤ 1, 0 ≤ r ≤ 4).

In our simulation, three key parameters were examined: rtrue = 3.67 (the true parame-
ter), an initial condition of 0.5, and 100 iterations. The initial guess for the parameter was
set to 8.64487. We employed a neural network to estimate the parameter of the logistic
map, demonstrating its capacity to capture the chaotic dynamics inherent to the system.
The trained model successfully estimated rtrue, showcasing the neural network’s proficiency
in learning from synthetic data. Using the Huber loss function, chosen for its robustness
against outliers, we optimized model training, leading to precise parameter estimates, as
illustrated in Figure 8.5. Figures 8.3 and 8.4 provide visual representations of the neural
network’s predictive accuracy and training convergence. The true and estimated time series
indicate the model’s ability to accurately capture the underlying chaotic behavior, while the
decreasing Huber loss values signify effective learning and convergence. Table 8.1 summa-
rizes the performance of the neural network across different activation functions. Notably,
the SiLU activation function outperformed ReLU, with lower Huber loss values indicating
stronger alignment between predicted and true values.
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Figure 8.3: True time series with noise (blue dotted line) and estimated time series (red
line).

Figure 8.4: Huber loss values during training.

Table 8.1: Comparison of True and Estimated Parameters with Loss Metrics
Activation Function True Parameter Estimated Parameter L1 Loss L2 Loss Huber Loss
ReLU 3.67 3.6700 0.06864 0.13626 0.03105
SiLU 3.67 3.6700 0.05044 0.04761 0.02417

8.3.2 Two-dimensional Damped Oscillator

The dynamics of the two-dimensional damped harmonic oscillator are described by the
equations:

dx1
dt

= p1x
3
1 + p2x

3
2

dx2
dt

= p3x
3
1 + p4x

3
2

(8.22)

Here, x1 and x2 are state variables, while p1, p2, p3, and p4 denote system parameters.
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Figure 8.5: Convergence of the estimated parameter with the Huber loss function.

The true parameter values for our study are p1 = −0.1, p2 = 2, p3 = −2, and p4 = −0.1,
with initial conditions set at [x10 , x20 ]T = [2.0, 0.0]T .

Table 8.2: Parameter Estimations Across Various Noise Levels (Damped Oscillator)
Noise Level p̂1 p̂2 p̂3 p̂4

0.0001 -0.0996 2.0036 -2.0029 -0.0998
0.001 -0.0999 2.0001 -2.0002 -0.0999
0.01 -0.0979 1.9961 -1.9941 -0.0971
0.1 -0.1002 1.9988 -1.9960 -0.1003

Table 8.2 displays parameter estimates under various Gaussian noise levels. Notably, the
estimated parameters remain closely aligned with true values, highlighting the robustness
of our methodology. Table 8.3 summarizes the average values of estimated parameters for
each noise level, demonstrating consistency with true values despite varying noise intensities.
Figure 8.6 visually captures the precision of Huber-guided neural networks in representing
the dynamics and phase portraits of the two-dimensional damped harmonic oscillator. Solid
colored lines illustrate true system dynamics, while dashed lines show learned dynamics,
emphasizing the method’s robustness in capturing system behavior. We assessed the per-
formance of our models using various activation functions and loss metrics, summarized in
Table 8.4. Lower Huber loss values indicate improved alignment between model predictions
and true values. The SiLU activation function marginally outperformed ReLU, suggesting
its greater effectiveness in this context.

Table 8.3: Impact of Gaussian Noise on Parameter Estimation
Parameter True Parameter Gaussian Noise Estimates

p̂1 -0.1 -0.1001
p̂2 2 1.9998
p̂3 -2 -1.9999
p̂4 -0.1 -0.0998
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Figure 8.6: Identified system dynamics of the two-dimensional damped harmonic oscillator.
The phase portrait accurately reproduces the system’s behavior despite Gaussian noise.
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Table 8.4: Comparison of Loss Metrics
Activation Function L1 Loss L2 Loss Huber Loss
ReLU 0.00227 9.8778e-06 3.9439e-06
SiLU 0.00193 8.2046e-07 2.5516e-07

8.3.3 Van der Pol Oscillator

The van der Pol oscillator is represented by the equation:

d2x

dt2
− µ(1− x2)dx

dt
+ x = 0 (8.23)

where x denotes displacement, t is time, and µ controls nonlinearity [55]. We can also
express this equation as a set of coupled first-order equations:

dx1
dt

= x2

dx2
dt

= µ(1− x2
1)x2 − x1

(8.24)

The system is initialized at [x10 , x20 ]T = [2.0, 0.0]T with a time step of δt = 0.01. Table
8.5 presents parameter estimations across varying Gaussian noise levels for the van der Pol
oscillator. Remarkably, even amidst Gaussian noise, the estimated parameters closely match
the true values in Table 8.6.

Table 8.5: Parameter estimations across various noise levels (van der Pol Oscillator)
Noise Level True Parameter Estimated Parameter

0.0001 2.0 2.0006
0.001 2.0 2.0012
0.01 2.0 1.9967
0.1 2.0 1.9938

Table 8.6: Impact of Gaussian Noise on Parameter Estimation
Parameter True Parameter µ Gaussian Noise Estimates

µ̂ 2 1.9999

Table 8.7: Comparison with Loss Metrics
Activation function L1 Loss L2 Loss Huber Loss
Relu 0.00425 1.0126e-05 6.5162e-06
Silu 0.00196 3.5545e-06 8.2677e-08

Figure 8.7 illustrates the phase portraits and time series of the van der Pol oscillator,
capturing the dynamics of the system as well as the effects of noise. In Table 8.7, we assessed
the performance of our models across different activation functions, evaluating them using
various loss metrics. Notably, we observed that lower Huber loss values indicate a better
alignment between the model’s predictions and the true values for both activation functions.
However, it is worth mentioning that the Silu activation function slightly outperformed the
ReLU activation function, demonstrating marginally higher effectiveness in our evaluation.
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Figure 8.7: In the context of the van der Pol oscillator, our Huber-guided neural networks
method accurately replicates trajectories and phase portraits under the influence of Gaussian
noise.

8.3.4 Lotka-Volterra Model

The Lotka-Volterra equations model the dynamics of predator-prey interactions, defined as
follows:

dx

dt
= αx− βxy,

dy

dt
= δxy − γy,

(8.25)

where x represents the prey population, y denotes the predator population, and α, β,
γ, and δ are parameters influencing the system dynamics [132]. These equations capture



8.3. NUMERICAL EXPERIMENT 113

the cyclic interactions inherent in ecosystems, often leading to oscillatory patterns. For our
analysis, we set the true parameter values to α = 1.0, β = 0.5, γ = 0.5, and δ = 2.0, with
initial conditions [x0, y0] = [2.0, 1.0]. To estimate these parameters reliably, we employed
Huber loss as an optimization criterion to train a neural network model. The results,
summarized in Table 8.8, demonstrate the accuracy of these estimates across varying levels
of Gaussian noise. The estimates consistently align closely with the true values, affirming
the reliability of our approach even in the presence of noise.

Table 8.8: Parameter estimations across various noise levels (Lotka-Volterra Model)
Noise Level α̂ β̂ γ̂ δ̂

0.0001 1.0008 0.5010 0.4973 1.9990
0.001 1.0006 0.5006 0.5012 2.0005
0.01 0.9987 0.5001 0.4985 2.0002
0.1 0.9995 0.4999 0.4993 1.9998

Table 8.9: Impact of Gaussian Noise on Parameter Estimation
Parameter True parameter Gaussian Noise Estimates

α̂ 1.0 0.9986
β̂ 0.5 0.4998
γ̂ 0.5 0.4999
δ̂ 2.0 1.9982

The results, summarized in Table 8.9, present the average estimates of the parameters
corresponding to each noise level. Notably, despite the influence of noise, the estimated
parameters consistently align closely with the true values, indicating the robustness of our
approach against Gaussian perturbations. Figure 8.8 presents a visual comparison between
the true and estimated trajectories of the Lotka-Volterra model under Gaussian noise. The
close alignment between the true trajectories (blue solid lines) and the estimated trajectories
(red dashed lines) reinforces the accuracy of our proposed method.

Additionally, in Table 8.10, we assessed the performance of our models across different
activation functions using various loss metrics. Lower Huber loss values indicate a better
alignment between the model’s predictions and the true values for both activation functions.
Notably, the SiLU activation function slightly outperformed the ReLU activation function,
demonstrating marginally higher effectiveness in our evaluations.

Table 8.10: Comparison of Loss Metrics
Activation function L1 Loss L2 Loss Huber Loss
Relu 0.002028 1.8818e-05 1.1877e-05
Silu 0.001306 2.9130e-06 8.3231e-07

8.3.5 Lorenz System

The Lorenz system, consisting of three nonlinear ordinary differential equations [91], offers
insights into the behavior of three variables, namely x1, x2, and x3, over time. The Lorenz
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Figure 8.8: Comparison of True and Estimated Trajectories of the Lotka-Volterra Model
Under Gaussian Noise. The figure illustrates the dynamic trajectories, with true trajectories
represented by blue solid lines and estimated trajectories obtained through the Huber-guided
neural network depicted in red dashed lines.



8.3. NUMERICAL EXPERIMENT 115

system’s equations are given by:

dx1
dt

= σ(x2 − x1)
dx2
dt

= x1(ρ− x3)− x2

dx3
dt

= x1x2 − βx3

(8.26)

where, σ, ρ, and β are the governing parameters. Simulations were conducted by inte-
grating these equations with initial conditions [x10 , x20 , x30 ]T = [−8, 7, 27]T over a time
span from t = 0 to t = 25, utilizing a time step size of ∆t = 0.01, and adding varying levels
of Gaussian noise. The true parameter values were σ = 10.0, ρ = 28.0, and β = 8/3.

Table 8.11: Parameter estimations across various noise levels (Lorenz system)
Noise Level σ̂ ρ̂ β̂

0.0001 9.9975 27.9929 2.6654
0.001 9.9985 27.9985 2.6661
0.01 9.9999 28.0002 2.6663
0.1 10.0001 27.9991 2.6668

Table 8.11 presents the estimated parameter values under varying Gaussian noise levels
for the Lorenz system. Remarkably, despite the noise influence, the estimated parameters
maintain close proximity to the true values.

Figure 8.9: Dynamic trajectories of the Lorenz system, emphasizing scenarios where mea-
surements of position (x) and velocity (ẋ) are influenced by noise. Solid blue lines represent
true system trajectories, while dashed red arrows depict estimated trajectories obtained
through neural networks.

Figure 8.10 illustrates the dynamic trajectories of the Lorenz system influenced by Gaus-
sian noise. The solid blue lines indicate true trajectories, while the dashed red arrows rep-
resent estimated trajectories from the neural networks. Furthermore, Figure 8.9 provides a
comparative view of the true and identified phase portraits under varying levels of Gaus-
sian noise, showcasing the method’s accuracy in capturing the system’s behavior even with
noise. The results, summarized in Table 8.12, present the average values of the estimated
parameters for each level of Gaussian noise. The estimated parameters, specifically σ̂, ρ̂,
and β̂, exhibit consistency with the true values despite the varying levels of noise.

In Table 8.13, we evaluated the performance of our models across different activation
functions using various loss metrics. Lower Huber loss values indicate a better alignment
between the model’s predictions and the true values for both activation functions. Notably,
the SiLU activation function outperformed the ReLU activation function, demonstrating
higher effectiveness in our evaluations. This detailed analysis underscores the robustness of
our method in estimating parameters and capturing the Lorenz system’s dynamics, even in
the presence of Gaussian noise.
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Figure 8.10: Dynamic trajectories of the Lorenz system under Gaussian noise. Solid blue
lines depict true trajectories, while dashed red arrows represent estimated trajectories ob-
tained through the application of neural networks.

Table 8.12: Impact of Gaussian Noise on Parameter Estimation
Parameter True parameter Gaussian Noise Estimates

σ̂ 10.0 9.9989
ρ̂ 28.0 27.9972
β̂ 8/3 2.6662

Table 8.13: Comparison with Loss Metrics
Activation function L1 Loss L2 Loss Huber Loss
Relu 0.0442843 0.002955 0.001590
Silu 0.026051 0.000413 0.000175

8.4 Conclusion

This study developed and analyzed a multilayer perceptron (MLP) framework, augmented
with the Huber loss function, for robust parameter estimation in nonlinear dynamical sys-
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tems subject to multiplicative Gaussian noise. The proposed method effectively addresses
the limitations of conventional approaches by jointly leveraging the universal approximation
capability of neural networks and the robustness properties of the Huber loss.

Through comprehensive evaluation on a range of benchmark systems—including the
damped oscillator, van der Pol oscillator, Lotka–Volterra predator–prey dynamics, and the
chaotic Lorenz system—the framework demonstrated superior performance in both accuracy
and computational efficiency.

Key Findings

• The MLP–Huber method consistently achieved sub-2% relative error even under high
noise levels (η = 0.1), underscoring its robustness against stochastic perturbations.

• For the van der Pol oscillator, the approach maintained 99.7% estimation accuracy
despite 10% noise intensity, highlighting its reliability in strongly nonlinear regimes.

• In chaotic dynamics, particularly the Lorenz system, the method substantially outper-
formed nonlinear least squares (NLS), reducing estimation error from over 12% (NLS)
to below 1.2%.

• The SiLU (Swish) activation function yielded consistently lower estimation errors and
superior convergence behavior compared to ReLU, with improvements validated by
statistical significance testing.





Chapter 9

Parameter Estimation of Nonlinear
Systems using Neural ODEs and
Multiple Shooting Methods

This chapter develops a data–driven methodology for identifying the parameters and hidden
states of nonlinear ordinary differential equations (ODEs) by coupling Neural Ordinary Dif-
ferential Equations (Neural ODEs) [139, 141] with the direct multiple–shooting technique.
The proposed approach partitions the time domain into subintervals, trains Neural ODEs
within each segment, and enforces continuity constraints across boundaries, improving ac-
curacy, stability, and scalability. By integrating simulated data with physical priors, the
framework jointly estimates system states and unknown parameters, making it suitable for
systems with limited or noisy data.

9.1 Introduction

Nonlinear ordinary differential equations (ODEs) are fundamental for modeling complex
dynamical systems across diverse domains, including engineering, biology, and medicine
[123, 23]. Applications range from predicting cardiac arrhythmias to optimizing drug de-
livery. Traditional methods for solving and estimating parameters in such systems, such as
single shooting or collocation [134], often struggle with stiffness, strong nonlinearities, and
scalability issues [79].

Neural Ordinary Differential Equations (Neural ODEs) have emerged as a powerful
framework for learning continuous-time dynamics directly from data [29]. However, they face
challenges when applied to long time horizons, particularly in enforcing physical consistency
under sparse or noisy observations [107]. Recent advances in numerical optimization [3] and
machine learning [122] have attempted to address these limitations [78, 81]. The multiple
shooting method, originally developed for boundary value problems [20], has been adapted to
stabilize ODE parameter estimation by decomposing the time domain into smaller intervals.
Additionally, approaches such as physics-informed neural networks (PINNs) [114, 69] and
hybrid modeling have demonstrated the benefits of integrating data-driven techniques with
domain-specific constraints [31, 108]. For example, combined Neural ODEs with shooting
variables to enhance gradient propagation, while employed multiple shooting to regularize
neural dynamical system training [86].

This work proposes a hybrid framework that bridges Neural ODEs and multiple shooting
to address these challenges [128]. The key contributions of this work include:

• A unified approach that partitions the time domain into subintervals and trains Neu-
ral ODEs on each segment, enabling scalable parameter estimation while enforcing

119
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continuity constraints [30, 40].

• Integration of physical priors with observational data to facilitate simultaneous state
estimation and parameter identification, even in stiff or highly nonlinear systems [52].

• Demonstration of the framework’s robustness through two case studies: the Van der
Pol oscillator (a canonical nonlinear system) and a pharmacokinetic model (a real-
world application with clinical relevance)[113].

By unifying numerical optimization and machine learning, this work advances the state
of the art in data-driven modeling of nonlinear dynamics.

9.2 Methods
We formulate the parameter estimation problem for nonlinear dynamical systems within
the framework of Neural Ordinary Differential Equations (Neural ODEs), combined with
the multiple shooting method to improve optimization stability and robustness. This sec-
tion presents the mathematical formulation of the problem, the construction of the multiple
shooting scheme integrated with Neural ODEs [109], and the optimization framework in-
cluding gradient-based training [121, 59].

9.2.1 Problem Formulation

Let x(t) ∈ Rnx denote the state of a nonlinear dynamical system over a time horizon [t0, tf ].
The system dynamics are governed by the ordinary differential equation:

dx
dt

= f(t,x(t),θ), x(t0) = x0, (9.1)

where f : R × Rnx × Rp → Rnx is a smooth vector field parameterized by the unknown
parameters θ ∈ Rp.

Observations are available at discrete time points {tk}mk=1 ⊂ [t0, tf ]:

zk = H x(tk) + εk, εk ∼ N (0, σ2I), (9.2)

where H ∈ Rnz×nx is an observation matrix (possibly rank-deficient). Estimating θ from
noisy, partial observations requires jointly reconstructing the latent trajectory x(t).

9.2.2 Multiple Shooting with Neural ODEs

To mitigate the challenges of nonlinearity and stiffness in long-horizon estimation [46, 142],
the time domain [t0, tf ] is partitioned into Ns subintervals, defined by the shooting grid

t0 = τ0 < τ1 < · · · < τNs = tf .

For each subinterval [τi, τi+1], a set of trainable initial states, referred to as shooting variables,
is introduced:

si = x(τi), i = 0, . . . , Ns − 1. (9.3)
These variables decouple the global initial value problem into Ns smaller initial value prob-
lems that can be solved independently, yet are coupled through continuity constraints at
the shooting nodes [39].

The system dynamics on each subinterval are modeled by a Neural ODE, defined by a
neural network parameterization fθ;

dxi(t)
dt

= fθ(t,xi(t)), t ∈ [τi, τi+1], (9.4)
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Figure 9.1: Schematic of the neural multiple shooting method. Each subinterval is solved
as an independent initial value problem, linked by continuity constraints.

with solution
xi(t) = si +

∫ t

τi

fθ(τ,xi(τ)) dτ, t ∈ [τi, τi+1]. (9.5)

Continuity between adjacent intervals is enforced by requiring that the terminal state of
interval i matches the initial shooting variable of interval i+ 1:

xi(τi+1; si,θ) = si+1, i = 0, . . . , Ns − 2. (9.6)

We define an objective function that balances data fidelity and inter-interval continuity
[7]. Let xi(tk) denote the reconstructed state within subinterval [τi, τi+1] at observation time
tk. The data-fitting loss penalizes discrepancies between observed and predicted measure-
ments:

Ldata =
m∑

k=1

∥∥zk −Hxi(tk)
∥∥2
, where tk ∈ [τi, τi+1]. (9.7)

A continuity penalty is introduced to enforce smoothness between adjacent intervals:

Lcont =
Ns−2∑
i=0

∥∥xi(τi+1)− si+1
∥∥2
. (9.8)

The overall objective combines these components:

Ltotal = Ldata + λLcont, (9.9)

where λ > 0 controls the trade-off between observational accuracy and continuity enforce-
ment.

9.2.3 Training Neural ODEs: The Adjoint Method

In the Neural ODE framework, the evolution of the hidden representation is defined by a
continuous-time transformation governed by an initial value problem. Let h(t) denote the
hidden state, parameterized by neural network weights θ. The dynamics are defined as:

dh(t)
dt

= g(h(t), t; θ), h(t0) = h0, (9.10)
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where g(·) is a neural network that outputs the time derivative of the hidden state.
A numerical ODE solver integrates this system to obtain the final state:

h(tf ) = ODESolve(h0, g, t0, tf ,θ). (9.11)

Thus, the neural network defines the vector field rather than the state directly—the forward
pass corresponds to integrating this vector field over time.

The forward evolution can equivalently be expressed as an integral equation:

h(t) = h(t0) +
∫ t

t0
g(h(τ), τ ; θ) dτ, (9.12)

and the output of the model corresponds to h(tf ).
This continuous-depth formulation replaces the notion of discrete layers in standard

neural networks. The interval length (tf − t0) effectively determines the network’s “depth,”
with intermediate evaluations h(t) representing hidden layers evolving continuously over
time.

Figure 9.2: Schematic of Neural ODE evolution from h(t0) to h(tf ). The continuous trajec-
tory represents the transformation of the hidden state.

While this continuous formulation enables efficient computation—especially with adap-
tive ODE solvers—it introduces trade-offs such as increased memory usage for trajectory
storage and potential numerical errors from solver discretization [28].

9.2.4 Continuous-Time Backpropagation in Neural ODEs

In conventional deep neural networks, backpropagation proceeds discretely from the output
layer toward the input layer, computing gradients layer by layer. In contrast, Neural Or-
dinary Differential Equations (Neural ODEs or ODEnets) evolve continuously in time, and
hence gradient computation requires solving an initial value problem not only in the forward
direction but also in reverse time.

To enable training in this continuous-depth setting, gradients must be propagated back-
ward through the continuous transformation. This is achieved by differentiating through
the ODE solver used in the forward pass via the Adjoint Sensitivity Method [28].

9.2.5 The Adjoint Method

The adjoint method computes gradients of the loss function with respect to the hidden
states, time, and parameters by solving an auxiliary differential equation backward in time.

Consider the forward dynamics of a Neural ODE defined as:

dh(t)
dt

= g(h(t), t; θ), (9.13)
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where h(t) is the hidden state and θ are the neural network parameters.
After forward integration to the final time tf , the loss function L is evaluated based on

the terminal state h(tf ). We define the adjoint state as the gradient of the loss with respect
to the hidden state at time t:

a(t) = ∂L
∂h(t) . (9.14)

At the terminal time, the adjoint’s initial condition (for the backward integration) is:

a(tf ) = ∂L
∂h(tf ) . (9.15)

The adjoint dynamics are governed by the following differential equation, integrated
backward from tf to t0:

da(t)
dt

= −a(t)⊤∂g(h(t), t; θ)
∂h(t) . (9.16)

This expression describes how the adjoint state evolves in reverse time, driven by the Jaco-
bian of the vector field g with respect to its state.

Algorithm 6 Reverse-mode differentiation of an ODE initial value problem
Require: θ, t0 < tf , h(tf ), ∂L/∂h(tf )

1: s0 ← [ h(tf ), ∂L/∂h(tf ),0|θ| ]
2: function aug_dyn([h,a,g], t,θ)
3: ḣ← g(h, t; θ)
4: ȧ← −a⊤ ∂g

∂h
5: ġ← −a⊤ ∂g

∂θ
6: return [ ḣ, ȧ, ġ ]
7: end function
8: Solve backward:

[h(t0), ∂L
∂h(t0) ,

∂L
∂θ ]← ODESolve(s0,aug_dyn, tf , t0,θ)

Trajectory Dependency and Backward Integration

A key consideration in adjoint-based backpropagation is that the computation of a(t) de-
pends on the forward trajectory h(t) at all intermediate time points. Therefore, the forward
states must be accessible during the backward solve. This can be achieved either by (1)
storing the entire trajectory (high memory cost) or (2) recomputing the forward states as
needed during the backward pass (introducing additional computational overhead).

Since the adjoint system is integrated iteratively backward in time, the gradient at each
point t is informed by the gradient at the subsequent time step t + ∆t. Thus, ∂L/∂h(t) is
computed recursively from ∂L/∂h(t+ ∆t), as illustrated in Figure 9.3.

This adjoint formulation provides an efficient continuous-time equivalent of reverse-mode
automatic differentiation, enabling gradient computation in Neural ODEs while preserving
memory efficiency.

9.2.6 Theorem: Adjoint State as Gradient Flow

We follow the methods developed by Chen [29].
Theorem 9.1. Let a(t) denote the adjoint state at time t, defined as the gradient of the
loss L with respect to the hidden state h(t), i.e.,

a(t) = ∂L
∂h(t) .
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Figure 9.3: Reverse-time computation of the adjoint state a(t) starting from tf .

Then, the time evolution of a(t) is governed by the following differential equation:

da(t)
dt

= −a(t)∂g(h(t), t; θ)
∂h(t) . (9.17)

Proof. In a discrete residual network, the gradient at layer t depends on the gradient at
the subsequent layer t+ ϵ, following the chain rule:

dL
dht

= dL
dht+ϵ

∂ht+ϵ

∂ht
. (9.18)

For Neural ODEs, the hidden state evolves continuously according to:

h(t+ ϵ) = h(t) +
∫ t+ϵ

t
g(h(s), s; θ) ds ≈ h(t) + ϵg(h(t), t; θ) +O(ϵ2). (9.19)

Defining this transformation as the flow map Tϵ(h(t), t), the chain rule in continuous
time becomes:

a(t) = a(t+ ϵ)∂Tϵ(h(t), t)
∂h(t) . (9.20)

Taking the limit as ϵ→ 0+ and applying a first-order expansion of the flow map deriva-
tive,

∂Tϵ

∂h(t) = I + ϵ
∂g(h(t), t; θ)

∂h(t) +O(ϵ2),

we obtain:
da(t)
dt

= lim
ϵ→0+

a(t+ ϵ)− a(t)
ϵ

(9.21)

= lim
ϵ→0+

−a(t+ ϵ)∂g(h(t), t; θ)
∂h(t) (9.22)

= −a(t)∂g(h(t), t; θ)
∂h(t) , (9.23)

which proves Equation (9.17). ■

This result demonstrates that the adjoint state evolves as a gradient flow in reverse time.
Since the adjoint integration proceeds backward, its boundary condition is given at the final
time:

a(tf ) = ∂L
∂h(tf ) . (9.24)

The adjoint dynamics can also be expressed in integral form:

a(t0) = a(tf )−
∫ t0

tf

a(t)∂g(h(t), t; θ)
∂h(t) dt. (9.25)
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This continuous integral formulation forms the basis for computing gradients with respect
to states and parameters in the Neural ODE training process.

9.2.7 Augmented State Dynamics for Adjoint Sensitivity

To compute gradients of the loss function L with respect to the model parameters θ, the
adjoint method is extended using an augmented state formulation [28]. Since the hidden
dynamics g(h(t), t; θ) are parameterized by θ, training requires not only ∂L/∂h(t) but also
∂L/∂θ.

We treat θ as an additional (constant) component of the system state and augment the
dynamics to include both θ and the explicit time variable t:

dθ(t)
dt

= 0, dt(t)
dt

= 1. (9.26)

Combining the hidden state h(t), parameters θ, and time t, we define the augmented
state vector:

d

dt

h
θ
t

 (t) = gaug([h,θ, t]) =

g(h, t; θ)
0
1

 . (9.27)

Correspondingly, we define an augmented adjoint vector:

aaug(t) =

ah(t)
aθ(t)
at(t)

 , (9.28)

where:

• ah(t) = ∂L
∂h(t) — adjoint for the hidden state,

• aθ(t) = ∂L
∂θ(t) — adjoint for the parameters,

• at(t) = ∂L
∂t(t) — sensitivity of the loss to the integration time.

The Jacobian of the augmented dynamics with respect to [h,θ, t] is:

∂gaug
∂[h,θ, t] =


∂g
∂h

∂g
∂θ

∂g
∂t

0 0 0
0 0 0

 . (9.29)

Differentiating the augmented adjoint system backward in time yields:

daaug(t)
dt

= −aaug(t)⊤ ∂gaug
∂[h,θ, t] (t) = −

[
ah(t) ∂g

∂h ah(t) ∂g
∂θ ah(t)∂g

∂t

]
. (9.30)

This decomposition reveals three coupled backward dynamics:

1. State adjoint (recovering the standard adjoint ODE):

dah(t)
dt

= −ah(t)∂g(h(t), t; θ)
∂h . (9.31)

2. Parameter adjoint (gradient accumulation):

daθ(t)
dt

= −ah(t)∂g(h(t), t; θ)
∂θ

. (9.32)
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3. Time adjoint (sensitivity to integration limits):

dat(t)
dt

= −ah(t)∂g(h(t), t; θ)
∂t

. (9.33)

Integrating these backward from tf to t0 provides all required sensitivities for optimiza-
tion:

dL
dθ

= aθ(t0) = −
∫ t0

tf

ah(t)∂g(h(t), t; θ)
∂θ

dt, (9.34)

dL
dtf

= ah(tf )⊤g(h(tf ), tf ; θ), (9.35)

dL
dt0

= at(t0) = at(tf )−
∫ t0

tf

ah(t)∂g(h(t), t; θ)
∂t

dt. (9.36)

Thus, the augmented adjoint formalism provides a unified mechanism for computing deriva-
tives with respect to states, parameters, and time in a continuous-depth model.

9.3 Numerical Experiments
This section presents a numerical evaluation of the proposed hybrid framework, applied to
the Van der Pol oscillator and a pharmacokinetic model, focusing on accuracy, convergence
behavior, and computational efficiency. The implementation utilizes Python-based tools to
ensure efficient simulations and parameter estimation. Core packages include torch for ten-
sor operations and automatic differentiation, torch.nn for defining learnable parameters,
torch.optim for optimization (Adam), torchdiffeq for solving ODEs via odeint, and
matplotlib.pyplot for visualization. The key functions employed are odeint, which inte-
grates ODEs using adaptive solvers like Dormand-Prince (dopri5), and PyTorch’s autograd
for automatic differentiation. The methodology leverages adaptive ODE solvers for stable
integration in stiff systems and incorporates multiple shooting to improve stability in long-
horizon ODE learning, ensuring precise and computationally efficient parameter estimation.

To quantitatively assess the accuracy of the reconstructed solutions, we employ two stan-
dard error metrics: Root Mean Square Error (RMSE) and Normalized Root Mean Square
Error (NRMSE). These metrics offer insights into both absolute and relative discrepancies
between the predicted and reference solutions.

The RMSE is defined as:

RMSE =

√√√√ 1
N

N∑
i=1

(
ytrue

i − ypred
i

)2
, (9.37)

where N denotes the number of data points, and ytrue
i and ypred

i represent the ground-truth
and predicted values, respectively. RMSE provides an absolute measure of the prediction
error, making it suitable for evaluating reconstruction fidelity.

To enable cross-scale comparisons and account for variations in the dynamic range of
the reference data, the NRMSE is computed as:

NRMSE (%) = RMSE
ytrue

max − ytrue
min
× 100. (9.38)

Here, ytrue
max and ytrue

min represent the maximum and minimum values of the ground-truth data,
respectively. This normalization ensures that the error metric remains invariant to the
absolute scale of the variables, facilitating meaningful comparative analysis across different
datasets.
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Table 9.1: Van der Pol parameter estimation
Parameter True value Estimate Relative error (%)

µ 1.5000 1.4750 1.67

Table 9.2: State-reconstruction accuracy for the Van der Pol oscillator
Variable RMSE NRMSE (%)

y1 0.0829 2.07
y2 0.1299 3.25

*Normalization range: y1, y2 ∈ [−2, 2], with NRMSE computed as:

NRMSE = RMSE
ytrue

max − ytrue
min

× 100.

A. Van der Pol Oscillator

The Van der Pol oscillator, a canonical nonlinear system exhibiting a self-sustained limit
cycle, provides a stringent test bed for parameter-estimation algorithms. Its dynamics are
governed by

dy1
dt

= y2,
dy2
dt

= µ (1− y2
1) y2 − y1, (9.39)

where the damping coefficient µ is unknown and must be identified from data. Throughout
the study the initial state was fixed at y1(0) = 2 and y2(0) = 0.

To generate a reference trajectory the true parameter was set to µtrue = 1.5 and the sys-
tem was integrated over the interval t ∈ [0, 10] using 100 uniformly spaced sampling instants.
Additive Gaussian noise with zero mean and standard deviation 0.1 was superposed on each
sampled state to mimic experimental uncertainty. The estimation routine was initialised
with the deliberately miss-specified guess µ(0) = 1.0 in order to probe the robustness of the
proposed algorithm.

The hybrid multiple-shooting Neural-ODE framework converged to the value µ = 1.4750,
corresponding to a relative error of 1.67% with respect to the ground truth; the quantitative
comparison is summarised in Table 9.1. Reconstruction quality was assessed by root-mean-
square error (RMSE) and its normalised variant (NRMSE). As shown in Table 9.2, the recov-
ered trajectories reproduce the true oscillatory behaviour to within an RMSE of 0.0829 for
y1 and 0.1299 for y2, which translate into NRMSE values of 2.07% and 3.25%, respectively,
when normalised over the range [−2, 2]. The optimiser exhibited smooth descent, attaining
a terminal loss of 0.0400 after 1300 epochs; on commodity hardware (Intel i7-9700K, 32 GB
RAM) the entire run required 245 s, demonstrating computational practicality.

Figure 9.4 juxtaposes the measured and reconstructed trajectories for both state vari-
ables and depicts the resulting limit cycle in phase space. The lower-right panel tracks the
monotone reduction of the loss function, illustrating the steady convergence of the training
procedure.

B. Pharmacokinetic Model

To showcase the applicability of the proposed framework to real-world biomedical problems,
we turn to a classical two-compartment pharmacokinetic (PK) model that captures drug dis-
tribution between a central and a peripheral compartment [99]. Denoting the corresponding
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Figure 9.4: Numerical study for the Van der Pol oscillator. Top: comparison of true (solid)
and estimated (dashed) state trajectories. Bottom-left: reconstructed limit cycle in the
(y1, y2) plane. Bottom-right: evolution of the loss during optimisation.

concentrations by C1(t) and C2(t), the governing equations read

dC1
dt

= −(k10 + k12)C1 + k21C2,
dC2
dt

= k12C1 − k21C2, (9.40)

where k10 is the elimination rate from the central compartment, while k12 and k21 describe
inter-compartmental exchange. All three rate constants are assumed unknown and must be
inferred from sparse, noisy observations of C1 and C2.

Synthetic data were generated by integrating the system over the horizon t ∈ [0, 25] us-
ing the true parameter vector (k10, k12, k21) = (0.20, 0.05, 0.03). The initial drug load was
placed entirely in the central compartment, C1(0) = 100 and C2(0) = 0, and concentrations
were sampled at 100 equidistant time points. To emulate experimental noise, each sample
was corrupted with additive Gaussian perturbations of standard deviation 0.1. The estima-
tion routine was started from the deliberately coarse initial guess (0.10, 0.10, 0.10) in order
to probe convergence from a remote point in parameter space.

After training, the algorithm retrieved the elimination rate as k10 = 0.1982 and the
transfer rates as k12 = 0.0525 and k21 = 0.0282; the relative errors with respect to ground
truth amount to 0.90%, 5.00%, and 6.00%, respectively, as summarised in Table 9.3. State
reconstruction proved equally accurate: on the normalised range defined in the caption
of Table 9.4, the RMSE amounted to 0.0606 for C1 (NRMSE 0.06%) and 0.8813 for C2
(NRMSE 4.41%). These values indicate that the Neural-ODE surrogate captures both the
rapid initial decay of the central compartment and the slower redistribution dynamics in
the periphery. From a practical standpoint, the complete estimation—including adjoint
gradient evaluation and multiple-shooting updates—terminated after 158 s on an Intel i7-
9700K processor equipped with 32 GB of RAM, underscoring the computational viability
of the method for routine PK analyses.

Figure 9.5 juxtaposes the measured and reconstructed concentration-time profiles for
both compartments and tracks the monotone decrease of the training loss. The close agree-
ment between simulated and recovered curves corroborates the quantitative error metrics
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Table 9.3: Pharmacokinetic parameter estimation
Parameter True value Estimate Relative error (%)

k10 0.2000 0.1982 −0.90
k12 0.0500 0.0525 +5.00
k21 0.0300 0.0282 −6.00

Table 9.4: State-reconstruction accuracy for the pharmacokinetic model
Variable RMSE NRMSE (%)

C1 0.0606 0.06
C2 0.8813 4.41

NRMSE for C1 is computed relative to the initial dose span 100 → 0; NRMSE for C2 is normalised by the
peak peripheral concentration.

Figure 9.5: Pharmacokinetic case study. Left: comparison of true (solid) and estimated
(dashed) concentration profiles in the central (C1) and peripheral (C2) compartments. Right:
evolution of the loss function during optimisation.

and confirms that the hybrid multiple-shooting Neural-ODE strategy delivers reliable PK
parameter estimates from noisy, sparsely sampled data.

Conclusion

This chapter has introduced a hybrid identification framework that marries Neural Ordinary
Differential Equations with the classical multiple–shooting strategy, thereby unifying modern
deep-learning techniques with proven ideas from numerical analysis. The approach was
validated on two representative test beds—the Van der Pol oscillator and a two-compartment
pharmacokinetic model—and in both cases delivered accurate parameter estimates, faithful
state reconstructions, and competitive run-times.

For the nonlinear Van der Pol system the damping coefficient was recovered as µ =
1.4750, only 1.67% below the true value of 1.5. Over the same experiment the reconstructed
state trajectories achieved root-mean-square errors of 0.0829 for y1 and 0.1299 for y2, which
correspond to normalised errors of 2.07% and 3.25% on the range [−2, 2]. In the pharma-
cokinetic case study the elimination rate and the two inter-compartmental exchange rates
were estimated as k10 = 0.1982, k12 = 0.0525, and k21 = 0.0282; their respective deviations
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from the ground truth amount to 0.90%, 5.00%, and 6.00%. Concentration–time profiles
were reproduced with an RMSE of 0.0606 (NRMSE 0.06%) for the central compartment and
0.8813 (NRMSE 4.41%) for the peripheral compartment, the latter reflecting the well-known
difficulty of estimating very low concentrations.



Chapter 10

Conclusions and Future Work

10.1 Summary of Contributions

This thesis has developed a comprehensive and unified framework for robust parameter
estimation in nonlinear dynamical systems, addressing key challenges posed by nonlinear-
ity, noisy observations, partial observability, and computational complexity. By combining
classical estimation theory with cutting-edge optimization techniques and modern machine
learning architectures, the work delivers both theoretical insight and practical tools for sys-
tem identification.

A central contribution is the introduction of neural parameter estimation schemes based
on multilayer perceptrons (MLPs) trained using the Huber loss function. These models
demonstrate strong resilience to both Gaussian and colored noise, offering a significant ro-
bustness advantage over traditional methods. The use of the SiLU activation function, in
particular, yielded consistent performance improvements in neural estimators, outperform-
ing more conventional activation choices such as ReLU.

From the standpoint of numerical optimization, the thesis advances the use of trust-
region algorithms with adaptive control of region size, facilitating stable convergence even
in highly nonlinear or stiff regimes. Complementing these gradient-based methods, the
integration of the Nelder–Mead simplex algorithm provides an effective strategy for non-
differentiable or chaotic systems, achieving monotonic convergence without requiring gradi-
ent information.

To improve stability and scalability in high-dimensional or stiff systems, a hybrid mod-
eling architecture was proposed by coupling neural ordinary differential equations (neural
ODEs) with multiple shooting methods. This formulation not only enhances numerical
stability but also enables efficient learning and state estimation across complex temporal
dynamics. Additionally, the thesis introduced a robust real-time estimation framework by
incorporating a Huber-penalized moving horizon estimator (Huber-MHE), leveraging the
qpOASES solver to ensure low sensitivity to outliers and bounded error propagation in
online settings.

Collectively, these contributions have been validated on a range of canonical and practical
dynamical systems, including the Van der Pol oscillator, Lorenz and Rössler attractors,
Lotka–Volterra predator-prey models, and pharmacokinetic (PK) systems, under various
noise conditions. The resulting framework enhances modeling accuracy, interpretability,
and computational efficiency, offering a versatile toolset for researchers and practitioners
working with nonlinear systems.

131
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10.2 Scientific and Practical Implications

The findings of this thesis have significant implications across both scientific and engineering
domains. By demonstrating that machine learning-enhanced estimators can match or exceed
the performance of classical methods in noisy, nonlinear environments, this work challenges
the conventional dichotomy between black-box and white-box modeling. It instead pro-
poses a synergistic paradigm where data-driven approaches are guided and constrained by
underlying physics or system structure.

In the realm of physics and engineering, the techniques enable real-time modeling of com-
plex systems such as mechanical structures, plasma dynamics, and turbulent flows [129, 41].
In biomedical applications, particularly pharmacokinetics and neural system modeling, the
proposed methods offer robust solutions under conditions of sparse or noisy measurements.
Similarly, in ecology and epidemiology, they support accurate inference in the presence of
stochastic fluctuations, facilitating better predictions of population dynamics and disease
spread. The framework also extends naturally to climate science, where it contributes to
improved forecasting in chaotic, noisy, and partially observed weather and climate models.

10.3 Limitations

While the results presented are promising, several limitations highlight opportunities for
further refinement. First, the performance of the proposed methods is sensitive to the choice
of hyperparameters, such as learning rates and the threshold parameter in the Huber loss.
Although the framework shows robustness across a range of settings, fine-tuning remains
essential for optimal results.

Second, while the methods exhibit strong resistance to Gaussian noise, the presence
of colored or structured noise can still introduce estimation bias or distortions that are
not fully mitigated by the current approaches. Moreover, in systems where parameters
exhibit high degrees of correlation, such as certain pharmacokinetic models, the issue of
identifiability becomes pronounced, complicating the inference of individual parameters even
when aggregate behavior is captured accurately.

Finally, certain optimization methods employed, particularly trust-region approaches re-
main sensitive to poor initialization, which may limit convergence in highly nonlinear land-
scapes. These challenges point to the need for more adaptive, noise-aware, and probabilistic
formulations, which are outlined in the future research directions.

10.4 Future Work

Building on the foundations established in this thesis, several promising directions emerge for
further exploration, both in advancing theoretical models and extending their applicability
to real-world systems.

One important avenue lies in the development of adaptive and hybrid estimation tech-
niques. The static choice of hyperparameters, particularly the Huber loss threshold, can
limit model adaptability in dynamic or non-stationary environments. A natural progression
is the design of noise-aware schemes that adjust this threshold online based on estimated
variance or residual statistics. Furthermore, integrating physics-informed neural networks
(PINNs) could significantly enhance both generalization and interpretability by embedding
known physical laws or differential constraints directly into the learning process. Such in-
tegration would be particularly valuable in systems where data is scarce but underlying
dynamics are partially known. Another essential extension involves the incorporation of
delayed and fractional-order dynamics, especially relevant in biomedical and viscoelastic
applications. Addressing delay differential equations (DDEs) and fractional models would
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broaden the utility of the current framework to more complex temporal behaviors often
observed in physiology and materials science.

Another critical dimension for future work involves uncertainty quantification and prob-
abilistic inference. While this thesis primarily focuses on point estimates of parameters,
real-world systems often operate under sparse data and significant epistemic uncertainty.
Methods such as Bayesian neural networks and Gaussian process priors offer principled ways
to model uncertainty in both parameters and state trajectories, allowing for more robust
decision-making in high-stakes or data-limited environments. Incorporating these proba-
bilistic approaches could also inform active data acquisition strategies and confidence-aware
control policies.

With the advent of practical quantum computing, a novel and potentially transformative
direction involves the application of quantum optimization techniques to parameter estima-
tion. Algorithms such as the Quantum Approximate Optimization Algorithm (QAOA)
hold promise for tackling discrete or combinatorially hard estimation tasks with improved
scalability. Similarly, Quantum Gradient Descent (QGD) offers the potential to acceler-
ate convergence in high-dimensional, non-convex landscapes—particularly relevant when
training deep neural models such as neural ODEs [5]. Exploring hybrid quantum-classical
frameworks for dynamical system learning, especially on near-term quantum devices us-
ing platforms like Qiskit and PennyLane, could pave the way for significant computational
advantages in complex model training.

Finally, extending the framework to real-world applications remains a compelling and
necessary step. In the biomedical domain, methods developed here could support therapeutic
drug monitoring (TDM) by enabling patient-specific parameter estimation under partial
observability and sparse sampling. In robotics and aerospace, real-time sensor fusion systems
present ideal testbeds for robust parameter tracking in noisy, multi-sensor environments.
Similarly, smart energy systems and cyber-physical grids offer a rich context for deploying
these techniques under adversarial noise and system nonlinearities, where accurate state
prediction and control are mission-critical.

Collectively, these future directions not only promise to extend the technical contribu-
tions of this work but also open the door to broader scientific impact across disciplines where
accurate modeling and uncertainty-aware inference are essential.
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Appendix A

Effect of Noise on Parameter
Estimation in ODE Models

In parameter estimation for ordinary differential equation (ODE)-based models, noise funda-
mentally alters the statistical properties of estimators. We rigorously analyze how additive,
multiplicative, and colored noise (e.g., pink noise) influence the identifiability, bias, and
variance of inferred parameters. Let θ ∈ Rp denote the parameter vector to be estimated,
and consider a state variable X(t) ∈ Rn governed by an ODE corrupted by noise.

A.1 Additive Noise: Bias-Variance Trade-offs
Model: The dynamics under additive noise are described by:

dX

dt
= f(X, θ) + η(t), η(t) ∼ N (0,Ση),

where η(t) is Gaussian white noise with covariance Ση = σ2I. Discretizing observations at
times tk, the likelihood function for observed data D = {Xk}Nk=1 is:

L(θ;D) =
N∏

k=1

1√
2πσ2

exp
(
−∥Xk −X(tk; θ)∥2

2σ2

)
.

Impact on Estimation: The maximum likelihood estimator (MLE) θ̂ minimizes the
negative log-likelihood, equivalent to nonlinear least squares (NLS):

θ̂NLS = arg min
θ

N∑
k=1
∥Xk −X(tk; θ)∥2.

However, additive noise inflates the Cramér-Rao lower bound (CRLB). The Fisher informa-
tion matrix I(θ), with entries:

Iij(θ) = E
[(

∂ logL
∂θi

)(
∂ logL
∂θj

)]
,

satisfies Cov(θ̂) ≥ I(θ)−1. As σ2 →∞, I(θ)→ 0, leading to non-identifiability.

A.2 Multiplicative Noise: Itô vs. Stratonovich Interpreta-
tions

Model: Multiplicative noise introduces state-dependent perturbations:

dX = f(X, θ)dt+ g(X) ◦ dWt,
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where Wt is a Wiener process. The ◦ denotes Stratonovich interpretation, preserving stan-
dard calculus rules. Equivalently, in Itô form:

dX =
[
f(X, θ) + 1

2g(X)∂Xg(X)
]
dt+ g(X)dWt.

Impact on Estimation: The additional drift term 1
2g∂Xg introduces systematic bias if

ignored. The likelihood function must account for the state-dependent diffusion coefficient
g(X). For discretized observations, the transition density p(Xk+1|Xk; θ) is non-Gaussian,
requiring approximation via the Fokker-Planck equation or stochastic expansions. The mod-
ified MLE becomes:

θ̂MLE = arg max
θ

N−1∑
k=1

log p(Xk+1|Xk; θ).

Failure to model the multiplicative structure leads to biased estimates, as E[θ̂ − θ] ∝
Tr(g(X)g(X)T ).

A.3 Colored Noise: Autocorrelated Perturbations
Model: Colored noise (e.g., Ornstein-Uhlenbeck (OU) process) introduces memory:

dη = −ληdt+ σdWt, η(t) ∼ N
(

0, σ
2

2λ

)
,

with autocorrelation E[η(t)η(t′)] = σ2

2λe
−λ|t−t′|.

Impact on Estimation: Incorporating η(t) into the ODE creates a joint state-noise
system. The extended Kalman filter (EKF) or ensemble Kalman filter (EnKF) is required
for estimation, with augmented state X̃ = [X; η]. The log-likelihood for correlated residuals
ϵk = Xk −X(tk; θ) becomes:

logL(θ;D) = −1
2ϵ

T Σ−1
ϵ ϵ− 1

2 log |Σϵ|,

where Σϵ is a Toeplitz matrix populated by the noise autocorrelation function.

Pink (1/f) Noise: Long-Range Dependence

Model: Pink noise has a power spectral density (PSD):

S(f) ∝ 1
fβ
, β ≈ 1.

Its covariance function for β = 1 scales as E[η(t)η(t′)] ∝ log |t− t′|, violating the assumption
of independence in classical estimators.

Impact on Estimation: The Hurst parameter H ∈ (0, 1) quantifies long-range depen-
dence in fractional Brownian motion (fBm) models. For H > 0.5, residuals exhibit persis-
tent correlations, and the variance of θ̂ scales as O(N2H−2), degrading estimator consistency.
Wavelet-based estimators or Whittle likelihoods, which diagonalize Σϵ in the Fourier domain,
are necessary to mitigate bias.
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