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Zusammenfassung

Lebende Zelle reagieren auf verrauschte Signale aus ihrer Umgebung. Sie eignen sich daher besonders
gut, die physikalischen Prinzipien der Signalverarbeitung in weicher Materie zu untersuchen. Rédumliche
Heterogenitat von Signalen ist ein dabei noch wenig erforschter Bestandteil zelluldrer Regulierung. Motiviert
durch die responsiven Eigenschaften biologischer Membranen untersuche ich, wie die rdumliche Verteilung

von oberflichengebundenen Teilchen eine physikalische Form von Informationsverarbeitung ermoglicht.

Aufbauend auf dem Prinzip der Pfad-Entropie Maximierung, leite ich her, wie mikroskopische Nebenbedin-
gungen die Nichtgleichgewichtsdynamik von Teilchen beeinflussen. Ich untersuche sodann die rdumliche
Verteilung von Teilchen, die mit heterogenen Strukturen in der Umgebung interagieren. Teilcheninteraktionen,
die zu einer nichtlineare Abhéngigkeit der Teilchendichte fithren, ermdglichen hierbei einen Mechanismus
fiir Informationsiibertragung. Ich charakterisiere, wie hieraus eine Form der Mustererkennung entsteht,
bei der die Wechselwirkungen zwischen den Teilchen die Effizienz der Kodierung von Information bee-
influssen, die fiir nachgelagerte Aufgaben relevant ist. Ich identifiziere Parameterbereiche, in denen die
Teilchenverteilung als Schwellenwertfilter oder Kantendetektor fungiert, und quantifiziere die Information-
stibertragung. Interessanterweise fallen viele biophysikalische Systeme in Parameterbereiche mit optimalen
Ubertragungseigenschaften — darunter die Verteilung von Kernporenkomplexen in Sphaeroforma arctica, die
Anzeichen von teilchenvermittelter Schwellenwertbildung aufweisen. Weiterhin zeige ich, dass Riickkop-
plungen von Teilchenverteilungen auf die Wechselwirkungsenergien die selektive Informationsiibertragung

verbessern.

Meine Ergebnisse deuten darauf hin, dass die rdumliche Verteilung makromolekularer Komplexe in
biologischen Systemen eine Rolle bei der selektiven Informationsverarbeitung von Umwelteinfliissen spielen.
Die zugrundeliegenden Prinzipien zeigen, wie sich mithilfe physikalischer Wechselwirkungen in weicher

Materie Eigenschaften wie Mustererkennung in nicht-lebenden Systemen realisieren lassen.






Abstract

Living cells respond to environmental cues under noisy conditions, making them ideal platforms for
uncovering physical principles of computation in soft materials. Signal processing by spatial heterogeneities
remains a yet underexplored component of such cellular regulation. Motivated by the relaying of signals

across membranes, I investigate information transmission by surface-bound particle distributions.

Extending maximum caliber methods, I address how microscopic constraints influence non-equilibrium
particle dynamics, and identify a mechanism for information transmission arising from non-linear responses
of equilibrium particle densities to spatial features in adjacent structures. This permits pattern recognition,
with inter-particle interactions tuning the response function of noisy signal filters and resulting in the efficient
encoding of information relevant to downstream tasks. I identify thresholding and edge-detecting regimes,
and quantify how biophysical membrane properties affect information transmission by thresholding filters. I
discover parameter regimes with optimal transmission where many biophysical systems fall — including
nuclear pore complex distributions in Sphaeroforma arctica which show signatures of particle-mediated
thresholding. Feedback from particle distributions to interaction energies is shown to improve selective

information transmission.

These results indicate that spatial distributions of macromolecular complexes can selectively sense environ-
mental cues, with fundamental implications for how physical interactions may encode computational logic

in soft materials.
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Introduction

Living matter has many material properties that set it apart from its non-
living counterparts. Achieving such properties, including adaptability,
intelligence, and responsiveness, is a prominent aim in the design of soft
robots and smart materials [1-3]. Utilising inherent non-linearities in
physical material properties, a collection of biology-inspired soft materials
have been developed that can adapt and compute responses to changing
environmental features [4, 5]. In particular, there has been investment into
designing responsive nano and micrometer sized synthetic materials, for
applications ranging from environmental remediation to drug delivery [6].
At these scales, typical electronics-based approaches for control and
sensing are often unsuitable, requiring novel signal processing methods
to achieve desired computational functions and to permit reliable signal

transmission in the presence of noise [2, 7].

Single living cells have evolved to successfully respond to stimuli in noisy
environments, and as such have become a source of inspiration for the
design of these small-scale technologies [6, 8, 9]. Traditionally, signal
processing in biology has been addressed on the level of genetic and
biochemical signalling, whose implementation in bottom-up studies of
synthetic life has already achieved many successes [6, 10, 11]. The quan-
tification of information flow achieved in such signalling processes has
helped uncover several principles behind the robustness and complexity
of living matter, such as how chemical signals are able to reliably template
the body plan of developing embryos [12, 13]. These information-theoretic
approaches frequently neglect the important regulatory role of spatial
organisation in biological signal processing, instead treating the inner cell
as homogeneous. However, spatial variations in sub-cellular organisation
are known to store mechanical memories; control cell migration; sense
global cellular properties such as geometry; and compute responses to

external stimuli [13-16].

Motivated by the role of biological membranes in forming a regulatory
barrier surrounding otherwise isolated compartments, in this thesis I
investigate the role interface-associated particle distributions play in
the transmission of spatially resolved signals. Starting from a statistical
description of particle dynamics (Chapter 2), I demonstrate that such
distributions act as signal filters that selectively transmit information
across these interfaces (Chapter 3), and detail how noise contributes to
selective signal compression by quantifying the transmitted information

(Chapter 4 and 5). I close the thesis by demonstrating that such filters

1.1 Signal processing in
physical systems . . ... 2
1.1.1 Signal filters . . . ... .. 3
1.1.2 Physical computation
1.1.3 Biological computation . 4
1.1.4 Processing of spatial
signals in living matter . 9

1.1.5 Particle interactions ... 11

1.2 Theoretical frameworks

for particle dynamics . . . 13
1.2.1 Stochastic dynamics ... 13
1.2.2 Fokker-Planck dynamics 14
1.2.3 Caliber methods . . ... 15
1.3 Thesis objectives . . ... 17
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can accurately describe the distribution of macromolecular complexes

within an example biological system (Chapter 6).

To provide context for these investigations, in the following section I first
introduce the concept of signal filters in the context of traditional informa-
tion technologies, before discussing the limitations of such technologies
and the current biologically-inspired approaches aimed at addressing
them. This is followed with a discussion of how information processing
is achieved in living systems, introducing techniques for quantifying
information. Focusing on subcellular scales, I then discuss the role of
hierarchical protein patterning in processing sub-cellular spatial signals
using two examples from my review article on pattern formation [17].
Motivated by the importance of particle interactions in forming these pat-
terns, I also provide some examples of intra-particle interaction potentials.
Finally, I describe current methods for modelling the stochastic dynamics
that drive such processes, in particular maximum caliber methods which
have been proposed as a non-equilibrium equivalent to equilibrium
ensemble theories. I conclude this introduction, in Section 1.3, with an

outline of the thesis aims and how I address them.

1.1 Signal processing in physical systems

The period spanning the 20th and 21st centuries has been heralded as
an information-processing age, with household computers and mobile
phones now performing computations at a scale unimaginable only 100
years ago. Progresses in silicon chip design, robotics, data storage, and
communication theory have driven the development of rapid electronic
communication technologies and computational tools for applications
ranging from medical interventions to space travel. However, in many
applications computational technologies are reaching the limits of what
traditional, silicone-chip-based information processing methods are ca-
pable of achieving [4, 18]. Current work is pushing the frontier of these
technologies away from such ‘hard-matter’ methodologies, developing
soft materials capable of transmitting, storing, and computing signals
using their innate physical properties to overcome traditional information
processing limitations [1, 19-21]. These approaches require theoretical
tools for describing and quantifying the performance of soft computa-
tional materials in processing information, collating signals from various

sources, and using them to compute responses and outcomes.
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1.1.1 Signal filters

Typically, the process of transforming an input signal into an output —
called signal processing — is directional [22]. An input signal, or collection
of signals, provides an initial source of information which flows’ through
various processing steps to produce the corresponding output. In analogy
to the flow of water down a waterfall, such directional processes are
sometimes called signal processing cascades [22, 23]. Although these
cascades frequently entail complex networks of feedback loops, they are
commonly broken into individual signal processing blocks which each
perform some operation on the signal they receive [24]. The object or
function comprising an individual processing step is called a signal filter,

since it frequently enacts some selection on the input [25].

Each signal filter performs an operation on the signal it receives. The
mathematical form of this operation is called the filter’s response function,
given as an input-output relation [25]. The form of these response
functions determine the performance and application of the filter, and
much of control theory is dedicated to designing the correct topology
of signal processing networks to enact desired computational logic on
signals [26]. Filters have been, for example, designed to aid in noise
reduction, feature selection from images, and for data compression [25,
27, 28]. The successes of neural networks, such as in applications to
computer vision, are also attributed to the learning of suitable signal
filters [29].

One particularly interesting and useful response function is a sigmoidal
function, providing a non-linear mapping that amplifies changes in input
signals close to, and suppressing variations far from, a threshold value.
Despite their apparent simplicity, such filters have proven invaluable in
a variety of contexts, such as in band-pass filters; in computer vision; as
non-linear activation functions in early neural networks; and in ligand-
binding responses described by Hill functions [27, 30-33]. Taken to the
extreme, these filters describe a discrete binarisation of the input signal.
Binarising filters like these play a key role in converting analogue signals
to digital, and are also heavily used in image analysis or manipulation in
the form of thresholding filters [34].

1.1.2 Physical computation

Despite phenomenal advances in signal processing, current "hard-matter’
methods of computation have several undesirable features [1, 35, 36],
including having centralised hubs of computation and suffering from
poor resistance to extreme conditions. Furthermore, it can be especially

energy and time intensive to compute complex, non-linear response

3
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functions [37]. In contrast, many physical material properties naturally
respond non-linearly to external perturbations, and offer the oppor-
tunity to enact non-localised computations. For example, disordered
packings of grains, like sand, respond non-linearly to shear forces [38]
and curvature-inducing proteins give rise to non-linear properties in
biological membranes [39-41]. Non-linear elastic responses to perturba-
tions are also being designed in articulated materials, such as chain-mail
inspired jamming materials, for applications as smart, reconfigurable
fabrics [42, 43].

It is therefore unsurprising that interest is growing in addressing the
limitations of current computing methods using the innate physics of
materials to perform signal processing. Examples of this include the use
of the natural non-linear nature of physical systems to map inputs to a
high-dimensional space of variables in reservoir computing [37, 44]; the
use of inherent directionality of LED activation in optoelectronic neural
networks [45]; and physical learning materials with tunable internal
degrees of freedom [46]. Other approaches to develop non-centralised,
energy efficient computations consider deformable ‘soft matter’ materials,
where signal processing is achieved throughout the system [47], such
as the design of complex materials with periodic internal structures —
metamaterials — whose physical properties can be designed to perform
certain tasks and have been shown to provide computational logic for a

wide range of signal processing applications [19, 48-52].

One of the major appeals of these soft-matter approaches to signal pro-
cessing is that they are expected to interface well with biological tissues
and thus prove useful in medical applications [1]. Substantial effort is
therefore being placed in designing signal processing materials that oper-
ate on a smaller scale [53, 54]. This presents a different set of challenges, in
particular in overcoming system noise [55, 56]. Evolution appears to have
solved these problems for living systems, where computations are reli-
ably and robustly carried out at nano and micrometer scales [57]. Many
research efforts therefore draw inspiration from how biological systems
sense and respond to environmental signals [35, 58]. By uncovering how
living systems achieve adaptive, responsive, and learning behaviours, it
is hoped that synthetic materials may be constructed that exhibit these
life-like properties [1, 2, 4]. In turn, such synthetic systems may provide
a tractable means to test theories of how living systems process and

respond to signals within the noisy constraints of their environment.

1.1.3 Biological computation

It is a defining property of living matter that it can sense and respond to

conditions in its environment [59, 60], be it a plant changing its direction of
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growth in response to lighting conditions, a bacteria swimming towards
a food source, or indeed a human reading a textbook. Information stored
in the environment - such as light, chemical concentrations, or words on a
page —is received through one of various sensing mechanisms, processed,
and used to compute an outcome. This permits the organism to adapt,
respond, and learn. Uncovering the underlying principles that govern
these behaviours is an active and fruitful area of research, with efforts
typically focused on understanding the response functions involved in
drug responses and cellular signalling [22, 61-63], search strategies of
single cellular organisms [64], mechanisms for robust cell fate decisions
in organism development [12, 13, 62, 65-67], and signal processing in
neural systems [68]. Recent work has also addressed how information
processing is achieved across scales, such as how signalling between
cells can inform the formation of patterns in tissues [69-71]. Successes in
these research directions have also lead to progress in synthetic signal
processing, inspiring neural network architectures and methods for local

contrastive learning in physical learning systems [33, 72, 73].

One of the great challenges facing signal processing in these systems
is how the transmission of signals competes with innate system noise
and variability [74-77]. Thermal and active fluctuations in sensors and
information processing machinery act as a ‘channel noise” garbling the
input signal as it passes through the communication channel formed
by the filter. The signal processing filters involved in life-like response
behaviours exist in such noisy systems, and yet organisms must be
able to reliably respond to stimuli. For decision making to be robust to
fluctuations and random system variations, sufficient information must
be transmitted through the signal processing cascade [13, 74, 78]. When
studying information processing in such systems it is therefore important
to quantify the capacity of the signal filters to transmit information [79,
80].

Although the notion of information stored in a signal is in many ways
intuitive, it was not until 1948 that its treatment as a measurable quantity
with an exact mathematical definition was first achieved by Shannon [81].
This treatment was based on the fact that, in real life scenarios, a signal
will fluctuate due to stochastic processes. As such, signals can be treated
as random variables, with any a particular realisation of the signal
being sampled from the signal’s probability distribution. Considering
information as a measure of the uncertainty about a signal X — for
example a chemical concentration — distributed with the probability
density px(x), Shannon defined information as the entropy H(X) =
- f dxpx(x)In(px(x)) [82, Chapter 2]. This describes on average how
much information a measurement, or 'realisation’, x of the variable X

would provide about its distribution.

5
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In the context of the transmission of information during signal pro-
cessing, or information processing, it is informative to ask how much
information originally available in an input signal X will be mapped
to the output signal Y of a filter. This question could alternatively be
posed as how much information is gained about a signal X by taking a
measurement of Y, or how much is the uncertainty about the signal X
reduced by this measurement. Defined similarly to the information H(X)
introduced above, the Shannon entropy of X after a measurement of Y/,
HX|Y)=- f/ dxdypx (x|y)py(y) In(px(x|y)), is dependent on the con-
ditional probability of a realisation x given a measurement of y, px(x|y),
and the marginal distribution py(y) of signal Y. The transmitted informa-
tion is given by the difference between the information about the input
X, i.e. H(X), and the information about X given a measurement of Y,
ie. H(X[Y), and called the mutual information, (X;Y) = H(X) - H(X|Y).
The mutual information is more commonly written in an equivalent form
as the Kullback-Leibler divergence [82, Chapter 2],

PX,Y(x/ y) ), (1)

I(X’_Y):/dxdyPX,Y(x/y)ln(pX(x)px(]/)

where px y(x,y) = px(x|y)px(x) is the joint probability distribution of
the random variables x and y, and px(x) and py(y) = / dxpx y(x,y)are
the marginal distributions for x and y respectively. Since Equation (1.1)
is symmetrical in x and y, the direction of information flow is irrelevant
and the mutual information can be interpreted as the amount of infor-
mation that is shared between the signals x and y, i.e. I(X;Y) = I(Y; X).
Information and entropy calculations are typically done in the discrete

limit [83], in which case the mutual information becomes,

Pxx(x,y) ) (12)

106Y) = 2 Pt )n (m

In the limit where the filters are loss-less, a realisation y is directly
mappable to a realisation of x such that px y(x|y) is a delta function and
the transmitted information is equal to the entropy of the input signal,
I(X;Y) = H(X). Equations (1.1) and (1.2) give the mutual information in
units of ‘Nats’ (using a natural logarithm base of ¢), however, typically
information is measured in 'Bits’ (using a logarithm of base 2). One bit is
the information required to distinguish between binary, equiprobable

outcomes [13].

Mutual information quantifications have been used to assess the robust-
ness of signal processing in a variety of biological systems [12, 59, 67,
77, 84]. Biological regulation at the scale of both genes and biochemical
signals have been addressed from the viewpoint of information transmis-

sion, leading to productive theories of biological computation, as well
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as estimates on the maximum number of inputs that a cell has sufficient
information to distinguish [62, 75, 80, 85-88]. A particularly exciting
example of this regards body plan templating during early fly embryo
development, where stem cells make a commitment to a particular cell
fate in a process called cellular decision making. This decision is in-
formed by the concentration of different proteins, called morphogens,
which vary in concentration along the embryo tissue. These morphogen
gradients form a set of input signals that encode the position along the
embryo body axis. Individual cells can readout the local concentration
of these morphogen signals and use this to infer their position and thus
determine their position-dependent fate. Calculations of the mutual
information between these signal carrying morphogen concentrations
and cell position, i.e. "positional information’, have been used to investi-
gate how many noisy input signals are necessary to communicate the
information required for reliable cellular decision making [13, 59]. It
is important to note, however, that although the morphogen gradients
are resolved in space, the information communication is local, meaning
that an individual cell measures only a scalar value of each morphogen
concentration. In addition to other developmental processes [89], similar
information theoretic principles have also been applied in understanding
immune memory and responses [90-92], as well as to develop models of

evolutionary processes [93, 94]

Although the directionality of information flow is irrelevant for mutual
information calculations applied to a single signal filter, it becomes
important when considering information flow through a cascade. In
particular, a two-step signal processing cascade involving signals X, Y,
and Z can be denoted as a Markov chain, X — Y — Z, if the conditional
distribution of Z depends only on Y and is independent of X [82, Chapter
2]. This is the case for two filters in series, where an initial signal is first
transformed by a filter to produce Y, which is subsequently read out
by a second filter to produce Z. For this cascade, the information that
Z shares with X must be less than or equal to the information X shares

with Y. This is a statement of the data processing inequality,
I(X;Z2) < I(X;Y), (1.3)

where equality occurs when the second filter is loss-less. Similarly, the
amount of information Z has about X must be less than or equal to the

amount it has about Y, i.e.
I(Z;X) < I(Z;Y). (1.4)

Together these inequalities provide the limits of information transmission

in a system.

7
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Frequently signals contain details that are irrelevant to later processes
within an information cascade. In these cases, instead of being a limita-
tion, information loss can be beneficial in reducing the complexity of a
signal. Compressive filters are integral to the function of, for example,
radio communication, data storage, and photo sharing through social
media, where compression is used to select important information and
reduce signal complexity [95-99]. This feature may also be relevant
in biological processes to discard redundant signal features to result
in lower-complexity outputs, such as in binary cellular decision mak-
ing [100]. Both the form of a filter’s response function, and any channel
noise in the filter mechanism, can lead to this controlled information loss
and thus determine which features of a signal are amplified, and which

are suppressed or removed.

Consider a compressive information processing cascade defined by the
Markov chain X — Y — Z, where X is a signal relevant to some
downstream task, Y is a complex signal containing features of this
relevant signal, and Z is the final compressed output. A good signal
compression would maximise the information shared between X and
Z, i.e. I(X;Z), while minimising the information shared between Z
and Y, i.e. I(Z;Y) [101]. In essence this means that the cascade would
perform as close to the equality limit specified by both Equation (1.3) and
Equation (1.4) as possible. For a noisy encoding of X into Y it is impossible
for the compression to reach this equality. Instead the best performing
compression has a less efficient limit, which may be calculated using the
information bottleneck framework introduced by Tishby et al. in 2000 [101].
This framework aims to find an optimal compression algorithm and
allows an assessment of compressive filter performance against this
optimal. This has been applied — along with follow-up adjusted theories —
with great success in a variety of systems [24, 102-105]. In particular, this
framework has been suggested to explain some of the principles behind
learning in deep neural networks and used to motivate neural network

architectures for computer vision [106-109].

In a biological setting, the information bottleneck has been used to suggest
that neuronal systems perform near-optimal compression [110], and also
to infer optimal decoding schemes for the position-dependent cell fate
decisions in the early fly embryo [83]. In the later of these, the cell fate
position was treated as the relevant signal X, noisily encoded within the
morphogen signals Y, and read out to produce a cell fate decision Z. The
information bottleneck framework permitted the identification of optimal
signal filters for the readout process Y — Z and suggested that such an
optimal readout could be achieved through multiple noiseless binary
readouts [16, 76], supporting other work indicating how multiple signals

can be combined to combat information loss due to noise [80]. This work
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also demonstrated that thresholded readouts of each morphogen, when
used cooperatively across the different morphogen signals, could be
sufficient for cell fate patterning, echoing the sentiment in Section 1.1.1
that such filters, although simple, can be useful in information processing

cascades.

1.1.4 Processing of spatial signals in living matter

Spatial organisation plays an important role in sub-cellular signal pro-
cessing. Indeed, subcellular physical properties and organisation are
thought to be integral to how slime moulds compute [111-113]; pathogens
are recognised by immune cells [114-117]; and migrating cells coordinate
their motion [14, 15].

Of particular interest is the formation of inhomogeneous protein distri-
butions [17], which have been shown to facilitate the sensing of system
properties, such as boundary geometry, to inform cellular decisions [118,
119]. For example, surface contraction waves arising from mechanochem-
ical couplings act as geometry sensors in starfish oocytes [120]. In these
oocytes, information on the angle and distance of the cell membrane
from the nucleus is encoded within a temporally decaying cytosolic
protein concentration gradient and read out in a two-stage process [120].
In the first stage the initial protein gradient templates a second, sigmoidal
protein distribution, compressing the input into an approximately binary
signal demarcating surface regions above and below a threshold input
value. As the initial signal decays, the boundary between these two
regions sweeps along the cell surface at a geometry-dependent velocity,
and the location of the boundary is read out via a local surface contrac-
tion that occurs as a membrane region is swapped between the binary
regions. This second stage results in a contractile wave whose speed is
modulated by the surface geometry such that it will always converge
at the membrane location closest to the nucleus [121-123]. From the
perspective of signal processing, this process can be viewed as a two-
stage signal processing cascade. These cascades are termed hierarchical
patterning processes, where one protein distribution templates another,
which subsequentially acts as a guiding cue for further downstream

patterning processes [124].

Hierarchical patterning can be used to both sense a signal and to com-
pute a necessary response. For example, E. coli cells use a three-stage
hierarchical mechanism to identify their midpoint ahead of cellular
division [125-128]. Specifically, an initial geometry dependent process
(the "MinD’ oscillator) gives rise to standing wave oscillations in protein
concentrations at the cell membrane [129-133]. These directly template

the distribution of a second membrane associated protein, which acts
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as an inhibitor to the binding of a third, contraction-mediating protein.
Eventually this third protein forms a contractile ring at the minimum
of the time-averaged inhibitor distribution. This demonstrates explicitly
how hierarchical patterning permits subcellular computation through
particle distributions which select information from an input (in this
case the cell geometry) and compute the desired output (in this case the

location of the mid-cell plane).

Such sequential information processing systems are integral to biological
function [65, 134], and there is a growing interest in quantifying the
information stored in such particle distributions [66, 87, 135]. However,
these approaches have so far addressed either single-valued time-varying
signals [87], or the information content of self-organised patterns [66,
135]. In contrast, the information transmission through the hierarchical
templating of protein distributions is under-researched. Quantifications
of such information flows may elucidate principles of pattern-based com-
putation and aid, for example, in the design of biocompatible nanomotors
or programmable vesicles for drug delivery by providing a clearer un-
derstanding of how biological systems process spatial signals, and how

best to interface with them [6].

Comprising interacting particle species, the above signal filters are ex-
amples of reaction diffusion systems, where spatial organisation arises
due to feedback between system components. The ‘"MinD’ oscillator, in
particular, is a mass-conserving reaction diffusion system, which have
been shown to lead to complex patterning dynamics [136-138]. Although
originally described for biochemical reactions, theories describing the
emergence of spatial organisation have been extended to consider a wide
variety of feedback mechanisms, such as mechanical or mechanochemi-
cal couplings [17]. Indeed diverse self-organising patterns are observed
across biological scales, from tissue-scale patterning of whole organ-
isms [139] to symmetry breaking within single cells [126]. Both positive
and negative feedback processes contribute to the emergence of such
distributions. Positive feedback leads to the amplification of small per-
turbations, whereas negative feedback suppressing their unbounded
growth and, when coupled to time delays, the emergence of oscillations
and waves. Feedback is also known to play important roles in system
control and in ensuring processes are robust to perturbations and thermal
fluctuations, however it also introduces further system complexities in
which noise can develop [140-142]. It remains unclear how the balance
between signal robustness and additional noise constrains impacts the

flow of information in such systems.

Traditionally, investigations into the role of spatial inhomogeneities in
biological signal processing have been focused on large patterns at the

scale of tissues, or easily visible subcellular protein distributions. With
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recent improvements to high-resolution imaging, it is now possible
to observe small-scale structures and patterns, opening up the possi-
bility of understanding how spatial structures may store information
and inform cellular decisions [143, 144]. For example, high resolution
imaging techniques such as expansion microscopy imaging permit the
observation of interesting and complex distributions of particles within
subcellular membranes, such as nuclear pore complexes in the nuclear
envelope [145]. Such observations provide an opportunity to investigate
the role of protein organisation in the processing of spatially resolved
signals in subcellular systems. Membrane-associated particle distribu-
tions, in particular, provide a basis for such investigations. In living
systems, membranes form a barrier between the compartments they
enclose and their environment, posing a challenge for inter-compartment
communication. The coordination of compartment processes in response
to changes in its surroundings requires the relaying of information across
the membrane interface. Such a set-up aids in defining a direction of
signalling cascades, and as such provides a starting point for modelling

the information flow in hierarchical patterning processes.

1.1.5 Particle interactions

The response of a particle distribution to a guiding signal is controlled
by interactions between the system’s components. In reaction diffusion
systems these interactions typically take the form of chemical reactions
in which one biochemical species is converted to another. However,
physical interactions between particles may also tune the formation of
spatially-varying distributions. To characterise the ability of a distribution
to process signals, it is therefore important to understand the relations

between these physical interactions and the distributions they produce.

The most common form of particle-particle interaction is a short-range
repulsive interaction, that accounts for the volume of the particle from
which other particles are excluded. This is typically modelled as a hard-
core repulsion, in which the interaction energy is infinite for particle
separations shorter than the particle diameter, and zero elsewhere [146,
Chapter 5]. Other short-range repulsive interactions can lead to effective
particle sizes greater than is true diameter. For example, proteins em-
bedded within biological membranes can induce a curvature into the
surface [40]. Due to the resistance of the membrane to such curvature, two
embedded particles at a separation distance 4 from each other are either
attracted or repelled in order to best relax the curved membrane [147].

Typically, small induced curvatures lead to repulsion of other similar
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particles, with an interaction potential described by [147]

4

Ueurvarure (Ank) = 810> (‘21—2) : (15)
where « is the membrane bending rigidity, 0 is the angle of the mem-
brane incident to the embedded particle, dj is the true protein diameter.
Such curvature-mediated interactions determine cell shape and facilitate
geometry sensing in migrating cells, which has inspired approaches
to control the movement of synthetic vesicles [148-150]. Alternatively,
in some scenarios, charged particles may interact through electrostatic
interactions. In a dielectric buffer, this results in a shielded electrostatic

interaction potential, called the Yukawa potential [151, 152],

QZ e—d//\d
dney d

Uelectrostatic (d) = (1.6)

where Q is the charge per particle, A4 is the Debye length, and € is the

vacuum permittivity.

Extending beyond simple repulsive interactions opens the possibility of
more complex proteins patterns. Indeed, particle systems with attractive
interactions are known to phase separate [153]. For example, a mean-
field description of particles that undergo long-range attraction, along
with short-range volume exclusion, is the Van der Waals gas. In this
description, particle interaction potentials are assumed to be attractive for
particle pairs separated by more than a threshold distance, but infinite
for separations lower than this critical value. In the mean-field limit with
particle density p, the Helmholtz free energy density of this particle gas
is given by [146, Chapter 5.5]

Cp ) ] 2
vaw = p| In - 1| - Bap~, 1.7)
pf p[ (1_p/pmax pap
where pmax is the maximum density that can be achieved by the particles,
C is a constant arising from the discretisation of phase space, and a gives
the strength of the attractive interaction. Throughout this thesis, I denote

the inverse thermal (or effective thermal) energy scale by 8 = 1/kgpT.

Phase separation is known to contribute to signal processing in subcellular
systems. Many works have indicated the role such processes can play in
noise reduction and rapid sensing [154-156]. Furthermore, the spatially-
variant nature of phase separating particle systems plays a key role in
cellular regulation. In particular, phase separation is thought to influence
nuclear processes by controlling transcription [157-159], identifying DNA
double-stranded breaks [160], and identifying genetic crossover points
during meiosis [161]. Outside of biological systems, such guided phase

separating systems have also been implemented in the construction of
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patterned materials [162-164], and in the design of controllable synthetic
vesicles [165].

In summary, despite a wealth of evidence showing the importance of
guided particle distributions in subcellular signalling, the effectiveness
of these distributions to select and transmit information has been under-
explored. Uncovering the capabilities and limitations of this signal
processing modality, and how particle interactions tune such processes
may extend the repertoire of biocompatible signalling modalities by
which small-scale soft robots maybe be programmed, controlled, and

interfaced with living matter.

1.2 Theoretical frameworks for particle

dynamics

To understand how various signal-processing particle distributions occur
and function, it is important to understand how particle interactions influ-
ence the resultant distributions. In the following, I outline the theoretical
frameworks for particle dynamics and, in particular, how interactions

influence the fluctuations or noise in these particle distributions.

1.2.1 Stochastic dynamics

One particularly important theory for modelling particle dynamics is
stochastic thermodynamics — the study of non-equilibrium, mesoscopic
systems that connects to macroscopic thermodynamics [166]. In this
framework the evolution of a probability distribution P(X) of system
states X is described using stochastic jump rates kx_,x’ which give the
Poissonian rate of the system transitioning from state X to state X’. Typi-

cally such dynamics are written in the form of a master equation [166],

dP(X)

Franie > lkxroxP(X") = kxxP(X)], (1.8)

X'#X

where the mesostates X can represent any distinguishing mesoscopic
property of the microscopic system, for example the set of occupation
numbers n; of different boxes in a discrete-lattice description. Equa-
tion (1.8) describes how the uncertainty of an initial system configuration,
as determined by the distribution P(X), is propagated via the exact rates
kx—x’. As such, this provides a model for how noise propagates in time
in stochastic systems, providing an important tool in understanding the

limitations of information transmission using particle distributions.

Local detailed balance

13
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In thermodynamically consistent theories, the jump rates are known
to obey the generalized detailed balance — or local detailed balance — rela-
tion [166],

M = ePax-x (1.9)

kx —x
where gx_ x is the amount of energy released to the environment due to
the state transition. In the absence of external forces, this energy released
is simply the difference in energy between the two states gx_x =
E(X’) — E(X). This relation allows stochastic thermodynamics to relate
the system dynamics to the microscopic features of a physical system
of interest. The justification of the local detailed balance relation stems
from comparisons to equilibrium systems, were the rates can be shown to
obey detailed balance through equilibrium ensemble approaches. Local
detailed balance is then generalized to non-equilibrium systems through

time-scale separation arguments [166].

Fluctuation theorems

On the scale of full trajectories, additional relations — called fluctuation
theorems — are attainable [167]. These relations constrain fluctuations in
the system according to thermodynamic quantities. One particularly
famous form of these relations is the Crook’s fluctuation theorem [168].
This states that, for out of equilibrium systems, the probability ratio of
forward Pr and correspond time-reversed Py transitions is equal to the

exponential of the entropy production [166, Chapter 4][168],
(1.10)

where ArS = (Wp — AF)/T is the entropy production caused by the
forward transition, and where F is the Helmholtz free energy and Wy
is the work done on the system. Such fluctuation relations are powerful
theoretical tools for detailing how system fluctuations are constrained by

thermodynamic quantities.

1.2.2 Fokker-Planck dynamics

Another important description of stochastic particle dynamics is given by
the Fokker-Planck equation. This ubiquitous equation has been used in a
diverse range of applications, from bacteria chemotaxis [169] to quantum
electrodynamics [170], to describe how distributions of particles respond

to external forces. The general Fokker-Planck equation takes the form [171,
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Chapter 1.2.2],
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where W is a probability distribution over the variables x; € {x}, indexed
byi€1,..,,N,and where Dlw is a drift vector and Dl(.jz) is a diffusion ten-
sor. The drift term accounts for the deterministic movement of particles,
whereas the diffusion term accounts for fluctuations. These coefficients
should be derived from microscopic equations however, in cases where
this is intractable, they are commonly obtained using heuristic argu-
ments [171]. Typically for continuous systems this is achieved using
a Langevin or Markov formalism, using a master-equation similar to
Equation (1.8) [172, Chapters 3, 4, and 13].

In many applications, where fluctuations in the particle distribution
are irrelevant, it is sufficient to address particle dynamics in the mean-
field approximation. In this case the Fokker-Planck equation is often
combined with an additional term %Ry accounting for reactions that add
or remove particles from particle species k, resulting in the dynamical

reaction-diffusion equation for particle density px of the form

dpi(r)
ot

= V- [DWBpWEX) + VDWp) | + e (112)

where f(r) = VU is the external force applied to each particle by a
potential U, and r is a position vector. In this case, it is typical to ignore
cross-diffusion terms, which are frequently negligible compared to the

rates of the reactions and self-diffusion.

There are several "special cases’ of the Fokker-Planck equation. One of
which is the Smoluchowski equation, which was originally derived for
particles with spatially invariant diffusion coefficients. In this equation,
the diffusion coefficient is to the left of the gradient operation [171, Chapter
1.2.6]. However, as shown in [173], in the case of spatially varying diffusion
coefficients, Equation (1.12) may also be written in Smoluchowski form
by defining an adjusted force f(r) = £(r) — kgTV[In(D(r)/Dy)], where Dy

is a reference diffusion constant.

1.2.3 Caliber methods

Although current non-equilibrium methods such as those described
above are highly effective and have been successful in a broad range of
applications, their derivations are often complex, and frequently arise
from phenomenological arguments. Indeed, it has been noted that non-

equilibrium methods lack a unifying statistically founded variational

15



16

1 Introduction

method akin to the equilibrium ensemble methods first founded by Boltz-
mann and Gibbs [174, 175]. In such equilibrium methods, the probability
distribution over an ensemble of possible system states is identified by
maximising the system’s state-entropy subject to constraints in known
system parameters [176]. Since this variational method provides an ele-
gant justification for how well-known phenomenological relations arise
from system constraints (such as conservation laws) in equilibrium, there
has been a substantial drive to develop an equivalent non-equilibrium
variational theory [174, 175]. In particular, maximum path entropy — also
called maximum caliber — formalisms have been suggested to fill this
role [174]. In these approaches, probability distributions of system state
transitions are identified by maximising the path entropy — a process
called the Principle of Maximum Caliber — rather than finding the proba-
bility distributions of system states, as done in the equilibrium ensemble
methods [177, 178].

In brief, maximum caliber methods work as follows. Inspired by the
equilibrium methods, the probability of a system transitioning from an
initial state to a final state is related to the number of different "paths’ or
combinations of particle exchanges a system could take to move between
the states. This number is called the caliber of the transition [174], and is
directly related to the path entropy Spaw associated with the change in
mesoscopic states. The probability distribution of paths is then found as

the extremum of the objective function
f = Spath + > AnBu. (1.13)
n

where the sum is over various system constraints B;,, which are enforced
by their corresponding Lagrange multipliers A,,. This approach offers a
means of deriving non-equilibrium dynamics motivated by a dynamical
transition ensemble that mirrors the function of state ensembles in
equilibrium approaches. The maximum caliber principle is particularly
suited to memory-less systems, in which sequences of transitions form
Markov chains described by the conditional probability relation [179,
Chapter 5.4],

p(xa, t xo, to; |y, T Y2, T2 L) = plxn, b xo, by, 1), (L14)

where the systems history is denoted by the state variable y; and time 7;
where 7; > 7;11, and the future is denoted by the state variable x; and
time t; where t; < t;;1. Indeed, it has been shown that Markov chains

arise naturally from the maximum caliber principle [180].

In recent years, research efforts have focused on developing the general
maximum caliber method, in particular showing how it recovers well-

known non-equilibrium relations such as fluctuation theorems and



reaction diffusion equations [181-190]. In these approaches, the path
entropy is typically given by [175]

Spah = > PrIn(Pr) (115)
I

where Pr is the probability distribution of the trajectory I', and the
sum is over all possible trajectory. In comparison, substantially less
work has been undertaken connecting calibre approaches to discrete,
microscopic toy models, where the path entropy can be directly related
to microscopic model parameters. To the best of my knowledge, attempts
at this have been limited to non-interacting particles in two-state systems,
see [191]. One notable example has been made by Ghosh et al. [192],
who implement a path entropy for non-interacting particles jumping
between two degenerate particle states using a combinatorics argument.
By nature of the path entropy construction, maximum caliber approaches
are sensitive to the topology of the particle transition network, as briefly
outlined in [193]. However, by limiting the treatments of microscopic
toy models to only two particle states, works to date have been unable
explore this feature of the dynamics. Similarly, microscopic models offer
the opportunity investigate the impact of short-range particle interactions
through constraints on arrangement statistics. Indeed, in equilibrium
ensemble methods these arrangement statistics lead to, for example,
the distinction between Boltzmann and Fermi-Dirac distributions [194,
Chapters 4 and 5]. Yet by treating only non-interacting particles, caliber
approaches so far have not addressed how such interactions influence

particle dynamics.

1.3 Thesis objectives

In this thesis, I address the formation of membrane-associated protein
distributions from an information-theoretic perspective, extending theo-
retical frameworks for biological signal processing to spatially-resolved
signals and quantifying the information transfer achieved by such noisy

pattering processes.

In Chapter 2, I present a framework for modelling particle dynamics that
extends the maximum caliber principle to microscopic particle transition
models on discrete lattices, with the aim of providing a clear statistical
physics basis on which to address the formation of guided particle
distributions. I demonstrate that this approach recovers known features
of diffusion in both discrete graphs and continuous physical systems and
close the chapter by showing that this method recovers the Fokker-Planck

equation for mean-field particle dynamics, explicitly detailing how the

Thesis objectives
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maximum caliber treatment of particle interactions maps to the drift

dynamics in Equation (1.12).

Using this mean-field description, in Chapter 3 I address the impact of
particle interactions on the formation of membrane-associated protein
distributions. Considering particles diffusing within two-dimensional
interfaces and interacting with structures in their environment, I de-
rive analytical solutions for equilibrium particle distributions. Treating
particle-environment interaction energy fields as input signals, the pat-
terning of these particles is interpreted as a signal filter which permits the
selective transmission of the input energy signals into resultant particle
density fields. I show how inter-particle interactions give rise to non-linear
filter response functions, which may be tuned by biophysical system
parameters, and explicitly identify both binarising and edge-detecting

regimes.

Accounting for noise in these guided particle patterning processes, in
Chapter 41 quantify the information transmission achieved by the particle-
mediated binarising signal filters. Calculating the mutual information
between entire input energy and output density fields, I identify an opti-
mal information transmission regime for these filters, and demonstrate
through comparisons with system parameter measurements from litera-
ture that these regimes are attainable by biological systems. I further find
that input signals stored in filamentous, rather than surface-like, struc-
tures have optimal regimes with lower particle number requirements.
With the aim of addressing how effective these filters are at binary signal
compression, I compute the transmitted information relevant to desired
binary input compressions and compare the results to the ideal filter
limits defined by the data processing limit to find regimes of effective
selective information transmission by filters where the tuning of physi-
cal system parameters allows selection of information for downstream

tasks.

Extending these information theoretic approaches to systems with feed-
back on the input signal, in Chapter 5 I demonstrate a trade-off between
noise arising from additional fluctuating degrees of freedom and im-
provements in filter response functions. I find that feedback leads to better
selectivity of binarised input features but similar overall information

transmission.

In Chapter 6, I conclude my investigations by demonstrating the appli-
cability of these signal filters to information processing in living cells,
showing that distributions of nuclear pore complexes in the nuclei of
single cell protists Sphearoforma arctica exhibit signatures of the binarising
filters, and that the these systems exist within the optimal information

transmission parameter regime.



Overall these findings suggest a mechanism for sub-cellular pattern
recognition through sequential noisy particle distributions, and provide
a framework for quantifying the transmission of spatial information in
sub-cellular systems. As such, these results have the potential to impact
how physical interactions are used to encode computational logic in
synthetic soft materials, as applicable to bottom-up nanorobot design

and the development of synthetic living vesicles.

Thesis objectives
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particles

To understand how the guided formation of particle distributions may
be tuned to perform signal processing behaviours, it is important to
understand how the dynamics is influenced by particle interactions. In
this chapter, I implement a maximum caliber method to derive a non-
equilibrium description of particle dynamics under such interactions.
As introduced in Chapter 1, maximum caliber theories are variational
approaches for calculating probable system trajectories by maximising
the path entropy, and as such provide a statistical basis for modelling
non-equilibrium processes [174]. These frameworks offer a dynamical
equivalent to free energy minimization methods for predicting equilib-
rium states [192], however, in their current form they lack an explicit
link to the microscopic structure of discrete modelled systems, and little
progress has been made linking the caliber frameworks to microscopic

models of interacting particles.

In this chapter, I provide a step towards overcoming these limitations in
the form of a general microscopic caliber theory, through which system
dynamics can be directly derived from state-transition statistics. Extend-
ing the approach of Ghosh et al. [192] to general interacting particles, 1
consider the dynamics of diffusive particles in a discrete limit, account-
ing for short range interactions though general constraints on particle
arrangements. This results in a caliber formalism that highlights the role
of network topology in particle dynamics and forms a bridge between
graph theoretic models for diffusion on discrete networks and stochastic
thermodynamics. Throughout this chapter, I illustrate key parts of the
method through the specific example of particles that obey Fermi-Dirac

state occupation statistics.

The general microcaliber theory presented in the beginning of Section 2.1 was
developed in collaboration with Roman Belousov, who introduced me to caliber
methods. I subsequently independently developed the contextualisation of this
method to graph diffusion and stochastic mechanics (Sections 2.1.1and 2.1.2), and

the following recovery of mean-field reaction diffusion equations (Section 2.2).

2.1 A general microcaliber theory

I am grateful to Roman Belousov, who collaborated with me in the development
of this general microcaliber method. My use of the pronouns ‘we/our’ indicates

this collaboration.

2.1 A general microcaliber

2.1.1 Connectivity-dependent
steady-states . . ...... 26

2.1.2 Continuous physical
systems ........... 28

2.2 Mean-field dynamics . . . 33

2.3 Concluding remarks . .. 37
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Figure 2.1: A mesoscopic particle system,
with particles distributed over M particle
states, evolves from state {n;} at time t
to state {7i;} at time f + Af, through the
movement of 11;_,] particles from particle
state i to particle state [ € WN(i). The
remaining 7} particle stay in their initial
particle state i.

In this section, a discrete, lattice-based model of particle diffusion is
introduced, and the principle of maximum caliber is implemented to
identify the most likely trajectory the model system will take through
state-space, starting from a known initial state. Although caliber methods
are typically used to describe the evolution of probability distributions,
studying the evolution of an exact system state permits a clear demon-
stration of how constraints on microscopic systems influence the state

trajectory.

Consider a model system in which particles are confined to degenerate
particle states i and permitted to jump to states | € N (i) within the
neighbourhood N (i) of their original state. The mesoscopic state of the
whole system, neglecting the microscopic details of particles within each
degenerate state, is then described by the set of occupation numbers {#;}

of each particle state.

The time-evolution of these occupation numbers marks out the system’s
trajectory through configuration space. In the discrete-time limit, this
trajectory can be decomposed into individual system state transitions,
where the number of particles that move from state 7 to [ in a time-step
At is given by n,_,;, and the number of particles that remain in the same
state is denoted nl?, see Figure 2.1. A transition from one mesoscopic
state {n;} to another {7i;} is then fully described by the sets of numbers,

{ni—} and {n}} , spanning all pairs of states and all states respectively.

As introduced in Chapter 1, the probability of a particular transition is
related to the number of different “paths’ — or combinations of particle
exchanges — a system could take to move from its initial state to its final
state. Indeed, in most cases more than one path could produce the same

outcome. The caliber of a system is then defined as

Definition 2.1.1 The “caliber’ of a transition Q({n;—}, {nj}) is the number
of paths a system may take to transfer n;_,; particles from state i to state I,

whilst leaving n; particles in state i, for all permitted pairs of states i, 1.

The principle of maximum caliber then states that the most probable

trajectory is the one that maximises this caliber [174].

How would one construct a general caliber for this model system?
Without specifying the underlying constraints on particle transitions, we
first note that the total number of paths, ), is composed of the number
of ways, w({i;}), to arrange distinguishable particles into their final
configuration {7i;}, divided by the relevant Boltzmann factors to account
for the indistinguishability of the particles that either did not move, or

moved from the same initial state to the same final state [195, 196]. This



results in a caliber of

w({7i})

= 7
[Ti ! T 10 nisi!

where w({#;}) is a function of only the final states.

Why ‘micro’-caliber? Models that treat particle dynamics using a
coarse-grained construction of degenerate particle states, as presented
here, are mesoscopic models. In these constructions, the microscopic
details of the particle configurations are discarded, and instead the
only degrees of freedom considered relevant to the dynamics are the
state occupation numbers. Our construction is therefore a mesoscopic
framework. However, by introducing a means of counting the different
possible arrangements of the particles within the degenerate particle
states (via w) we are able to describe a level of detail that is typically lost
to mesoscopic models. We have therefore chosen to call the approach
‘microcaliber’ to distinguish it from other approaches which neglect

these smaller-scale degrees of freedom.

A system’s dynamics depends on constraints to its particle occupation
numbers, which lead to a reduction in the number of possible paths the
system can traverse. In particular, we impose a global constraint on the
total system energy E and local constraints on the particle movements,

which account for particle conservation. These constraints take the form

E=U({f;}), ni—-ni= >, nis. (2.2)
1EN )

where U({n;}) is a generic energy function that may account for energy
differences between the particle states, as well as interactions between the
particles themselves, and depends on the particle distribution through
the set of occupation numbers {7;}. The particle arrangement statistics
introduced using w in Equation (2.1) could have alternatively been
introduced here as a constraint to the particle arrangements, using an

additional Lagrange multiplier.

Invoking the principle of maximum caliber, the most probable trajectory
is found by extremising the caliber subject to these constraints, while
treating the initial state {n;} and the number of remaining particles 7]
for each state as fixed, independently determined system parameters.
Fixing the initial state {n;} implies that the system starts in a known
state, and we are only interested in the particle transitions from this
state. In contrast, the number of particles 7} that remain in a state is
determined by the size of the time-step At under consideration and, for

small time-steps, defines the escape rate R; and corresponding from state

A general microcaliber theory
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i, such that
Tlf = (1= AtRj)n;. (2.3)

Therefore, 1} is determined by the choice of time-discretisation and other
microscopic modelling parameters, as discussed further in Sections 2.1.1
and 2.1.2, rather than through entropy maximisation. Alternative methods
for introducing a similar time-step dependence, through either further
constraints in the objective function or by taking small time-step limits,

are discussed in [187, 191]. We therefore optimize the objective function

f=IQ+B(E -U{A}) + > 6 (ni —ni—- > ni_>z) , (24
i 1eN (i)
in which we use the Lagrange multipliers  and 0; to constrain the
total energy and the initial occupation numbers respectively. Taking the
extremum of f for n;_,;, using equation (2.1) and applying Stirling’s
approximation, yields the most probable number of particles jumping
from i to !

ni-; = 6911—9," (2.5)
where we have introduced the general statistical weight

dlnw B 8_11
ofi; on;”

dp = (2.6)
Since d; is dimensionless, we can identify the Lagrange multiplier § with

the inverse energy scale, § = 1/kgT.

To fully evaluate equation (2.5) we must impose the constraints associated
with the Lagrange multipliers 0;. Evaluating the constraint on 1;_,; from

Equation (2.2), the most probable system trajectory is described by the

particle jumps
o
nis = —(n; —nj), (2.7)
Si
with the dynamical partition function,
&= >, e (2.8)
IeN (i)

Interestingly, we find a dependence on the state i via &; which arises due to
the restriction of particle movements to those within the neighbourhood
of the particle’s initial state. Such neighbourhood dependence accounts
for how network topology influences the particle dynamics, as briefly
discussed in [193].

By construction, our result for #;_,; is provides an out-of-equilibrium

description of the system dynamics in form of a weighted graph Markov



A general microcaliber theory

chain [197, Chapter 3]

n(t +dt) =1 = Yllr + Z nisl, (2.9)
ieN(l)

In fact, treating each state i as a vertex, we can frame the particle
dynamics as a random walk on a weighted, undirected (i.e. both forward
and back transitions exist at all edges) graph with asymmetric transition
probabilities [197, Chapter 3]. The transition rate for a particle moving
from vertex i to a neighbouring vertex / is then

ni—] el R;

ki = Aln; = 5 (2.10)

Formulating the particle dynamics through the transition rates in Equa-
tion (2.10) highlights how the microcaliber approach bridges between
microscopic system statistics and descriptions of random walks on graphs,
as such providing a basis for system dynamics that depends on the fun-
damental properties of the chosen model system, such as the energy

function H, arrangement statistics, w, and escape rates R;.

Example: Particles obeying Fermi-Dirac statistics

Although quantum systems are beyond the focus of this thesis, I
illustrate the microcaliber framework with the example of particles
that obey Fermi-Dirac statistics, such that each particle state can
accommodate up to a maximum number of particles g; > n;, called
the degeneracy of the state. These particles form a paradigmatic model
for particles exhibiting volume exclusion — i.e via steric interparticle
interactions — in classical thermodynamic systems. It is important to
note that the degeneracy is system specific and in other systems it
may be pertinent to introduce a degeneracy that combines several

particle states (see the example in Section 2.2).

To construct €, I first count the number of ways distinguishable
particles can be arranged into the lattices, w. Starting with considering
state [, there are w; = §;!/(g1 — 7i;)! ways to arrange 7i; particles within
the g; of the state. The total number of ways to arrange all the particles

is then given by the product

w:l—[a)l=1_[g—l! (2.11)

1 1 (gl _ﬁl)!.

As discussed in the preceding section, the path count is corrected for

indistinguishable particles by dividing by ['1; ;! [11;, i 1i—1!, leading
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to the caliber

81!
= Zien () Mio)M) ! Tz nist!

Q= (2.12)
L=
An alternative method of deriving () for volume-excluding particles

is available in appendix A.1.

Considering the case where each particle state i contributes an en-
ergy €; per particle, the system energy becomes U ({7i;}) = X; €;7i;.
Substituting the forms of () and U into equation (2.6), results in the
general chemical potential of; = In(g; — 7i;) — f€;. From which, using
equation (2.5), the most probable number of particles jumping from i
to [ is

nim1 = (g1 —firje PO,

Applying the constraints associated with the Lagrange multipliers 6;

result in
n; — n; = Z Nj_s] = 6—91‘((:1, = Z ﬁle_ﬁel)
leN (i) leN (i)
in which C; = Xjen(i) &1 exp(—per) is a local partition function.

Therefore, for the case of particles undergoing volume exclusion,
&i = Ci— Zieni) fijeP€l accounts for the influence of the connectivity

of the system through the dependence on box index i.

The most probable paths are then found to be

(g1 —fiy)ePer

3 (ni —n;). (2.13)

Nni-] =
Here it is interesting to note that the number of particles jumping
from i to / depends not only on the number of particle in the initial
state n; but also on the number of particles in the final state of the

system, 7ij.

2.1.1 Connectivity-dependent steady-states

My use of the pronouns 'I/my’ in the remainder of the chapter indicates that the

remainder of this work was completed independently.

As previously mentioned, the microcaliber approach finds a dependence
of the particle dynamics on particle state neighbourhoods. Such depen-
dencies have previously been observed by Dixit et al. [193] on the scale
of whole-system state topologies. In contrast, by detailing the possible
transitions of individual particles, the microcaliber framework describes
the dependence of the system’s trajectory on the topology of permitted

individual particle transitions. As such, this permits a direct link to
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models of particle diffusion on graphs, where the network topology is a
key feature of the physical system being modelled. For such systems free
energy minimisation methods are unsuitable for finding the equilibrium
particle distribution, since they cannot account for inhibited transitions
between non-neighbouring particle states. In the following section, I illus-
trate this compatibility by recovering known steady-state distributions of

particles undergoing random walks on weighted graphs.

The principle of detailed balance states that, at steady state, there exists a
particle distribution {7i;} such that [172, Chapter 6.3.1]

Atk = fijAtk;_;, (2.14)

which, in the caliber-framework notation, can also be written as n;_,; =

n;—i. Upon substitution of equation (2.7), the principle of detailed balance

becomes . &qu . m"R
—Rfi; = —Ryfiy. 2.15
g i & mn ( )
Which is satisfied by the steady-state distribution
_ et
fij & R; -, (2.16)

This steady state depends on the network topology through &;, and
the choice of R; sets the edge weight of self-loops within the network.
In contrast, free energy minimization would result in the steady state

solution 71; « e¥ which does not account for the network connectivity.

For example, diffusion on symmetric weighted graphs with no self-loops
implies that in each time-step all particles must leave their initial state (i.e.
R; = 1/At V). Considering a case where the particle states and statistics
are state invariant such that A; = A = constant, the particle dynamics
are known to resultant in steady state particle distributions where the
occupation numbers at each vertex are proportional to the vertex degree,
fi; o< d; [197, Chapter 3]. I indeed recover this steady state by first noting
that, from equation (2.8), & = Jjey; € = ed; and further substituting

into equation (2.15) to find the steady state condition
= (2.17)

which is satisfied by n; o« d;.

The microcaliber results for the equilibrium particle distribution therefore
encompass dependencies on both particle jump statistics, through the
system-dependent choice of R;, and graph connectivity, through ¢;.
The principle of maximum caliber thus provides a microscopically-
motivated method for constructing system trajectories via Markov chains,

which encompasses a broader range of system dynamics than achievable
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C

Figure 2.2: Diffusion on this example
network of degenerate particle states
i € {A,B,C,D} depends on the state
escape rates. Arrows indicate possible
state transitions to neighbouring particle
states, and circles indicate the steady-
state distribution for R; = RVi.

1: In contrast, in continuous systems
where network topology is a conse-
quence of simplifying modelling assump-
tions, the escape rates are proportional
to the vertex degree (as seen in the next
section), such that R; o 3}jc vj) e o d;,
which recovers the uniform particle dis-
tribution as expected from the free en-

ergy minimisation, n; = n; Vil.

through free energy minimisation.

Example: Explicit network topology To further illustrate the dif-
ference between random walks on networks and continuum systems,
to which free energy minimisation is applicable, I consider a simple
example of four vertices {A, B, C, D} with one degenerate particle state
each, and with neighbourhoods organised as represented by the graph
in Figure 2.2. Assuming all the states are energetically identical, each
configuration of particles within the four boxes has the same statistical
weight (such that free energy minimisation would give a uniform
distribution), however the true steady state would differ depending
on the accessibility of these configurations. If all the states had equal
escape rates R; = R, the probability of a particle moving along an
edge is inversely proportional to the degree of the vertex the parti-
cle is leaving (including self-loop edges). The transition rates would
therefore be given by Atk;—,; = 1/2Vi € {A,C,D}, j € {A,B,C,D}
and Atkg_,j = 1/4Vj € {A,B,C, D}, and the steady state distribution
would satisfy ng = 2na and na = nc = np rather than a uniform

distribution?.

2.1.2 Continuous physical systems

It is frequently informative to use discrete toy models, such as those
described above, to model continuous physical systems. Under these
modelling scenarios, the time discretisation and network topology are a
modelling choice, and as such not relevant to the dynamics of the true
physical system. Having demonstrated how microcaliber captures the
network-topology dependence of particle dynamics in discrete systems,
in this section I explore how such discrete modelling approaches may
also be used to address continuous systems though consideration of how
escape rates depend on the choice of model discretisation. Using this, I
then recover ensemble-theoretic results for the steady-state distributions
of continuum processes, and provide an independent derivation of the

local detailed balance condition and a fluctuation theorem.

Returning to the markov chain description of the particle dynamics, de-
scribed by Equation (2.9), and using Equation (2.3), the particle dynamics
can be written in terms of the transition rates k;_,; and escape rates R;
as

fi; = (1= AtR))n; + Z Atkj_ing.
leN (i)

(2.18)

Through the constraint on particle number in Equation (2.2), the escape

rate for particle state i is simply the sum of all the transition rates out of
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state i,

Ri= > ks (2.19)
leN (i)

Substituting this into Equation (2.18) and taking the small time-step
limit, At — 0, results in the deterministic dynamical equation for the

occupation number of state i,

dni _

dt - Z (k1—>inl - ki—)lni)- (220)

leN (i)

It has been noted that taking such continuum-time limits in caliber
frameworks can lead to poorly-defined path entropies if not compared
to a reference entropy due to explicit dependencies of the transition
probabilities on the discrete time scale, see [187] for a brief discussion.
Here, however, the limit is taken purely for the Markov chain construction
with time-step-independent transition rates, where this discussion is
irrelevant. Equation (2.20) describes how the occupation number of
a particular particle state, given a known initial value, is expected to
evolve over time according to the rates derived from microcaliber. For
a mesoscopic system-state described by the set of occupation numbers
{n;}, the system dynamics can be described through a set of coupled
equations of the form of Equation (2.20) for each of the particle state

occupation numbers ;.

Extending Equation (2.20) to consider a distribution of initial states, the
dynamics can be described by a master equation of the form given by
Equation (1.8) [166, Chapter 3],

4

dtP(”i) = > [kimiP(n1) = ki P(ny)). (2.21)

leN (i)

In this master equation, the uncertainty in initial system configuration
(as determined by the distribution P(#;)) is propagated via the meso-
scopic rates k;_,;. By mapping this stochastic system to the microcaliber
formalism, I am positing that these mesoscopic rates arise as the most
likely transition rates of the underlying microscopic system, subject to
energy and particle number constraints, and as such may be found using

the microcaliber framework.

As previously mentioned, discrete toy models are frequently constructed
to model continuous processes, where the choice of network topology
is irrelevant to the true system dynamics. As such, a good toy model
would permit the inference of likely system dynamics independent of the
arbitrary choice of model topology. Since in the microcaliber framework

the dynamical partition function &; depends on the network topology,
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imposing the requirement of network independence implies that
R oc &, (2.22)

as seen using the definition of the transition rates given in Equation (2.10).
Imposing such proportionality factorises out any dependence on the
network topology from the dynamics, and although justified heuristically,
such arguments of network independence are valid far from equilibrium.
In fact, such an equation would be expected to arise from rigorous
coarse-graining of continuum systems into such discrete model systems,
and it would be a pertinent extension of the work presented in this
chapter to explicitly derive such a relation. Furthermore, assuming all
relevant system constraints were applied in Equation (2.4), all other state-
dependent contributions to the jump rates are expected be contained
within the general statistical weights ¢;. As such, there is no further state
dependence to the proportionality between R; and &;, resulting in the
transition rates

kj_yj oc e (2.23)

Recovering Gibbs-ensemble distributions

Incorporating the definition of k;_,; from equation (2.23) into the detailed

balance relation (2.14), I recover the steady state particle distribution
ilj oc e (2.24)

as expected from minimization of the free energy. In particular, for
particles obeying Boltzmann statistics and which each contribute an
energy €; to the total system energy, the general chemical potential
d; = —e€; and Equation (2.24) recovers the Boltzmann distribution of

particles.

Local detailed balance

On the scale of individual particle transitions, the ratio of the forward

and backwards transition rates, in general using Equation (2.10), takes

the form L g
. 1 .
inl _ egq‘ i&l (2.25)
kimi e®iRi&;
which, in the case of continuum-time jump processes where R; o &;,
becomes r
—ol st (2.26)
kl—)i

Here we have derived the local detailed balance condition for the individual
rates [179, 198, Chapter 5.4.1]. Although commonly justified through
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arguments that local particle exchanges must be independent of whether
the global system has equilibrated [166, Chapter 3], I have shown that
the microcaliber approach provides an independent justification of this
relation using the maximisation of transition probabilities and without

reference to equilibrium states.

Fluctuation Theorems

How does Equation (2.26) generalise to a system trajectory comprising a
sequence of several particle transitions? Following a similar approach
to the above, I address this explicitly for the discrete particle-transition
model introduced above considering the ratio of forward and backward
probabilities for the transition of a system from an initial state {n;} to a

final state {7i;}.

Denoting the number of particles that move from state i to state [
over the course of the transition as An;_,;, the final state occupation
numbers are given by 7i; = n; + X;(An;_,; — An;_;). For a single particle
transition of duration f, the probability that one of the n; particles
initially in state i moves to state [ is Pi—,; = (1 — e kietyn; ~ kimt.
Decomposing the system transition into individual particle transitions
indexed by k, and of duration f;, and assuming that the number of
exchanged particles is small compared to the occupation numbers of
these states, An;_,; << n;, fi;, the probability of the full state transition is
then given by P,y (s} & [1i12i[(kimimi)2"=1 [Tk tc]. In the backwards
transition, the exchanged particles return to their original state following
the time-reversed order of the original transition sequence, resulting in

the probability ratio

P i ki |\ A .
Pty (i) = e SuslBoEoAns (5 57
Piiyoiny e \Kisifll

where in the second step I have introduced f¢;(n;) = —d; + In(R;) —
ln(éi) + ln(ni).

Equation (2.27) resembles a fluctuation theorem which, valid far from
equilibrium, relate the ratio of transition probabilities to the exponential
of the change in a global quantity. Inspired by this I introduce a quantity,
®, such that

Apmy—(iy® = D [pu(ir) — ini)|Aniy. (2.28)
il#i

Defining ®({n;}) as a functional of the set of occupation numbers, I

approximate the change in this quantity by expanding for small numbers
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of exchanged particles An;_,;. This expansion gives

NASELEDY

(aq> aq>) An? An?
il#i

= T AR+ 6(=— , = ). .
o7 o, | (ni ni) (2.29)

Therefore, through comparison of Equations (2.29) and (2.28), I identify
od/dn; = ¢;. Taking the integral with respect to #;, and substituting the

Equation (2.6) for d;, results in the functional

BO({n}) = (—lnw+ﬁU—Z nl[ln (1‘3—’1)—1n(n,)+1

1

)+constant. (2.30)

Interestingly, the In w and n; In n; terms in Equation (2.30) combine to
give the Boltzmann entropy of the system, S = kg In(w/T1; n;!), under
the Stirling approximation. Upon substitution into the above, this results

in

O{#;})=-TSg+ U - Z kgTn;In (%) + const.
: : (2.31)

=F- Zl: kgTn;In (152_11) + const..

where F is the Helmholtz free energy. The quantity @ is therefore iden-
tified as a grand potential, in which each particle state I contributes a
thermodynamic chemical potential, uw; = kgIn(&;/R;), that accounts for
the accessibility of the particle state [ [146, Chapter 1]. Equation (2.27)
therefore relates mesoscopic transition probabilities to changes in the
constrained free energy, resulting from changes in the Helmholtz free
energy and the additional contribution that takes into account the con-

nectivity of the states (i.e. the spatial dependence on the neighbourhoods

N(i)).

In contrast to local detailed balance, which regards state changes on
the scale of individual particle exchanges, fluctuation theorems provide
relationships between the forward and backward probabilities of system-
state transitions at the mesoscopic scale [199], as discussed in Chapter 1.
General maximum caliber approaches have been shown to recover such
relations [175, 184, 191]. To put Equation (2.27) into the form of a true
fluctuation theorem, one must account for a probability of being initially
in the {n} state, P({n}), for the forward transition, and in the 7 state,

p({7i}), for the backwards transition. Accounting for these terms I find
P{n}—>{ﬁ} — e—ﬁACIH-AS/ (232)
Piiiy—ny

where As is the additional entropy change arising from changes in the
probability distribution As = In P({n}) — In P({7i}) [167]. For continuous

systems, where R; o« &;, the thermodynamic chemical potential is a



constant and I recover the Crooke’s fluctuation theorem (see Chapter 1)
for an isolated system (i.e. no work done, Wy = 0), where the free energy,
F’ = F —Ts, also includes the stochastic entropy contribution from the
particle distribution, s = In(P({n})) [167, 168].

Outside of maximum caliber methods, such fluctuation theorems are
typically derived from solutions to dynamical equations such as the
Fokker-Planck equation [199]. However, the construction of such equa-
tions commonly rely of equilibrium frameworks, or have a circular
element by which a fluctuation theorem is required to fully define the
dynamical equations (see discussion in [167]). As demonstrated here, and
elsewhere, maximum caliber methods permit independent derivations
of such fluctuation theorems that do not suffer such limitations [184].
Here, in particular, I have demonstrated how both underlying network
topology and particle arrangement statistics contribute to the fluctuation
relations, which may provide a basis by which to assess the influence
of such microscopic properties on fluctuations in particle patterning

systems.

2.2 Mean-field dynamics

In many modelling applications, it is sufficient to address purely mean-
field particle dynamics. As introduced in Chapter 1, the mean-field
Fokker-Planck equation provides a description of such systems, and it’s
derivation from a Markov-chain system description is widely available
in physics textbooks, e.g. [166, 171]. Following such approaches, it has
been confirmed that maximum caliber methods recover this particle
description [178]. In this section, I present a brief derivation of the
mean-field Fokker-Planck equation from the microcaliber framework,
starting from the Markov chain for the system, Equation (2.9). In doing
so I demonstrate explicitly how the particle statistics captured by the

microcaliber approach are mapped into the mean-field description.

Since the generalisation to higher dimensions should be straightforward,
I present this derivation for a one-dimensional system, where space is
discretised into a lattice of boxes with length dx, indexed by i, such that
box i is at position x; (see the sketch in Figure 2.3). Each box contains
several particle states, each of which may contain particles. The particle
distribution can then be described by the set of occupation numbers
{nij} of each state j in each of the lattice sites i. Here an additional state
index has been included to clearly distinguish between the particle states
and positions. Assuming the particles can jump to all states in either its
initial box i, or in neighbouring boxes i — 1, i + 1, and using the Markov

chain in Equation (2.9), the change in state occupation number after a
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Figure 2.3: Simplified, one-dimensional
model for interacting particles on a lat-
tice of length-scale dx (top). Particles are
distributed between the M degenerate
particle states within each box (bottom),
and — within a time-step dt — are per-
mitted to jump to another state, either
within their own box or in an adjacent
box.
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time-step dt is given by

nij(t+dt) — nij(t) = Z(nz’k—n'j = Mijsik)
i (2.33)

+ D it kosij F Mist foij — (Mijosict k + Mijoint k)-
k

In the limit of small dx and dt, I define continuous particle density
fields p;j(x) = limgy—on;j/a and — following similar logic as used in
Equation (2.10) - transition probabilities Py;(x) = limgx07ik—ij/nix and

Py kj(x) = imgyonik—iz1j/Mik-

Taking this limit of Equation (2.33), and expanding in small dx results in
the Fokker-Planck equation [171]

dtdrpj(x) = > [(P+kj + Pij + P—kj)px — (P—jk + Pji + Py ji)pj
ki
dx? ,
+ > |dxdx([P- kj = Py jjlpi) + Tax([P+,kj +P_iilpr)],
r

(2.34)

where the diffusion coefficient tensor can be identified as Dy; = Py xj +
P_ xj. The first two terms in this equation are reaction rates, whereas the
latter two describe directed motion and diffusive motion respectively.
Here I have included the possibility of transitions where particles change
both position and state within the same jump, which give rise to cross
diffusion terms. Although commonly discarded in typical Fokker-Planck
derivations, these jumps have been shown to give rise to interesting
phenomena in biological systems [200], and as such I have included them

for completeness in the following derivation.

Expanding in terms of Poissonian rates

In Belousov et al. [173], the authors demonstrate the equivalence of
the Smoluchowski and Fokker-Planck equations by formulating the
transition rates as Poissonian rates using a directing function. Here, I

extend this formalism to allow for multiple particle energy states.

As discussed in Section 2.1.2, continuous systems, when modelled in a
lattice-gas framework, have an escape rate proportional to the connectivity
of the imposed lattice, R; j o &i i Under these conditions, the probability of
a transition - given by equation (2.10) - takes the form p;;;, = dtR’ jegq”” ,
where dtR;j. = dtR;j/&;j is a connectivity-independent probability of
escaping state ij in time dt. Although this would typically be state-
independent in systems where the free energy captures all non-network
topology dynamics (as discussed in Chapter 1), including an additional

state and position dependence here allows, for example, for the inclusion



of spatially varying diffusion coefficients arising from variations in
particle jump rates. I therefore include such state dependence. Writing
the connectivity-independent escape probability as an exponential of the

form dtR;j = ¢71ii, the continuum probabilities are found to be
P. ik = e—Fj(x)+/\k(xidx) and P]k — e—r]'(x)Jr/\k(x)’ (235)

where Ag(x + dx) = limgy 0 Hjz1k, and T'j(x) = limgy 0 [';j. Expanding
these probabilities to first order in dx and substituting into the dynamical

equation (2.34), the Fokker-Planck equation takes the form,

3
91pj(x) = 2 [ 7 (Dxjpi = Djkp;)]
k%

+ ; [ - 9:(Dxjprd+(2A(x))) + &(Dxipi)],

(2.36)

where

d 2
Dyj = e—rk(x)mj(x)d_xt. (2.37)

Relating diffusive dynamics to fluctuation theorems

It now remains to relate the diffusion coefficients D to global thermody-
namic properties. Taking the ratio of the number of particles P jxp;(x)
jumping from state j at x to state k at x + dx with the number jumping
back P_ jxpx(x + dx), using equation (2.35), and expanding in x to first

order gives,

P+,/'k(X)Pj(x) ~ eak—aj+dX(9xf¥k, (238)
P_kj(x + dx)pg(x + dx)

where a = I'r(x)dt + Ar(x) — In pr(x) is defined up to a constant. This
resembles Equation (2.27) in the case that only one particle transition
from state ij to state i + 1, k which, in the limit of small boxes, can be

written in the form

P+/]‘k(X)p]'(.X) — e—ﬁyk(x+dx)+ﬁyj(x))
P_j(x + dx)pi(x + dx) (2.39)
~ o Buk()~Bxdy (i) +Bu;(x))

where p1;(x) = =limgy—00®/dn;j and p;j(x + dx) = —limg,00®/In;1,
are generalised chemical potentials. It is important to highlight that these
chemical potentials are different from the thermodynamic chemical
potential pg, | defined in Section 2.1.2. In the case where there are no state-
dependent contributions to the escape probabilities, such that dtR;j =
constant (see Section 2.1.2), the thermodynamic chemical potential is a
constant, and the generalised chemical potentials become the gradient

of the free energy (up to a constant). Comparing equations (2.38) and

Mean-field dynamics
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(2.39), I find
—Bur(x) = ar = Tr(x)dt + Ax(x) — In pr(x), (2.40)

with = denoting equality up to a constant. This comparison relates
the parameters of the Fokker-Planck description to the underlying mi-
croscopic dynamics encapsulated in the grand potential. Combining
Equation (2.40) and (2.37) results in the relation,

Dj(x)

—2Aj(x) = Bur(x) +1In D;;(0)

—In Dyj(x)pk(x) + constant,  (2.41)

which completes the link between the microcaliber results and the
Fokker-Planck dynamical description. Substituting Equation (2.41) into
Equation (2.36) and generalising to arbitrary spatial dimensions results

in

Dir(x
07tpj(x) = Qi](x) + Z V- [ij(x)pk(x)V(ﬁyk(x) +1In ]k( ))], (2.42)
k Djj(x)

where we have defined the reaction rates

_ i
Rj= Zk] 3ij(Pk — g HETH In 5 p]-)/dxz. (2.43)

As previously discussed, it is common practise to neglect cross-diffusive
transitions in derivations of the Fokker-Planck equation. Neglecting such
contributions, I recover Fick’s law, ] = —DpfVu, and the dynamical

equation for particle conservation,
dpj = Rj + BV - (Djjp;Vuy). (2.44)

Typically, Equation (2.44) is given in the form of the Smoluchowski

equation of reaction-diffusion dynamics [173],
8tp,~ = 9{7 +V. (D//pjﬁVﬁj + D]'/'V(pj)), (2.45)

where

fij = uj — kgT In p;j + constant (2.46)

is an adjusted chemical potential that accounts for corrections to the chemical
potential of the ideal gas — which is described by the term D;;V(p;). The
drift terms in the Fokker-Planck and Smoluchowski formalisms therefore
describe how particle interactions with either their environment or
with other particles influence particle dynamics. Using the microcaliber
framework, I have provided a non-equilibrium derivation of how these
interactions contribute to the dynamics through both density-dependent

system energy U contributions and the microscopic particle arrangement



statistics included in w. Overall, by deriving the mean-field Fokker-Planck
equations using the microcaliber framework, I have demonstrated the
consistency of the microcaliber method with well-known non-equilibrium
modelling approaches and identified how microscopic properties of
modelled systems may contribute to particle dynamics. Maximum caliber
approaches have also been used to derive Langevin equations, and the
dynamical equation (2.44) could have been derived from this starting

point instead.

Particles obeying volume exclusion

For volume-excluding particles arranged on a lattice, such that the
particle state degeneracy takes the form g; > > njx and the state-
independent escape rate is constant dtR’, = constant, the grand

potential is equal ® = F to the Helmholtz free energy,

gi!
(gi — ki) T nix!”

F=U-TS= > [>] exni]+ksTIn (2.47)
ik

up to a constant. Applying the Stirling approximation, and taking

the partial derivative with respect to n;; gives the chemical potential

Uik = €ik — kT ln(g’n;tknl) which, in the limit of vanishing boxes,

becomes the chemical potential field

PmaX(x) - P(x)

e ). (2.48)

pr(x) = Im pi = ex(x) — kgT In(
Ax—0
Substitution into equation (2.45) results in the typical Smoluchowski

reaction-diffusion equation
9rpj(x) = 9 Dj;dx(pj) + BDjjpjdx(€j(x) + E(x)) | + Rj, (2.49)

where E(x) = —kgT In(pmax(x) — p(x)) is the adjustment to the chem-
ical potential due to the volume exclusion interactions. In this exam-
ple, short-range, repulsive particle-particle interactions introduced
through constraints in particle rearrangement statistics are shown to

result in a density-dependent contribution to the chemical potential.

2.3 Concluding remarks

Aiming to provide a foundation on which to investigate the role particle

interactions play in out-of-equilibrium particle dynamics, in this chapter I

have extended caliber methods to address microscopic system constraints.

As discussed in Jaynes et al. [174], who first proposed caliber methods

in 1980, it is desirable to have a non-equilibrium equivalent to Gibbs

Concluding remarks
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ensemble methods, where conservation laws are imposed and from which
correct phenomenological relations follow. Through my microcaliber
framework, I recover the local detailed balance relation, fluctuation
theorems, and expected mean-field dynamics, all of which lend support
to the suggestion that caliber methods achieve this goal. Introduced either
as energetic contributions to the system energy or via constraints on
particle statistics, the microscopic caliber method directly addresses how
particle interactions influence system state transitions and contribute to
mean-field dynamics. Although the remainder of this thesis will focus on
addressing equilibrium particle distributions, these detailed dynamics —
and the unified, non-equilibrium view of their origins — may facilitate
studies on particle pattering and organisation in living and soft robotic
systems by providing a concrete foundation on which to build model

systems.



Spatial signal transmission at

cellular surfaces

Patterning — the emergence of spatial order —is ubiquitous in biology, and
recent years have seen considerable progress in uncovering how such
patterns contribute to sensing and signalling [17, 135, 201-204]. Many
of these efforts are motivated by the expectation that understanding
signal processing in living systems may help guide designs of synthetic
soft signal processing materials. Key to these approaches is the idea
that information relevant to some biological function may be encoded
within the spatial organisation of a system, and subsequently ‘read out’
by particle distributions that use these heterogeneities as a template [124].
Most of the work in understanding these signal transmission cascades has
focused on molecular and gene circuits, for which a wealth of theoretical
tools have been developed [32, 61, 80, 84, 85, 205, 206]. Yet, the role
that physical interactions and mechanical system properties play in how
living materials process signals has been less explored, contrary to the
vast array of observational evidence that biology does indeed use these
properties [148, 207-211].

In this chapter, I investigate how physical interactions at interfaces
shape the encoding and transmission of spatially-resolved mechanical
signals. Focusing on the special case of particles diffusing within a
two-dimensional membrane and interacting with their environment
through binding to external structures, I derive analytical equations
for the equilibrium distributions of particles, and identify how particle-
particle interactions give rise to non-linear relations that control signal
transmission across the interface. Membrane-enclosed systems provide
a particularly interesting opportunity to study pattern-mediated signal
transduction because the membrane forms a regulatory barrier to the
material that it encloses, through which information must be relayed in

order to coordinate responses to external stimuli [212].

A paper containing part of the results presented in this chapter is accepted at
PRL [213]. The notebooks and scripts used to produce the results of this chapter
are provided in the repositories [214] and [215].

3.1 Particle distributions guided by binding

Consider a set of diffusive particles situated on a two-dimensional
membrane of area A, and interacting with their surroundings by attaching

to and detaching from binding sites in their local environment (see Figure

3.1 Particle distributions
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response functions . . .. 43
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functions . ......... 48
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distributions . . . ... .. 52

3.3 Concluding remarks . .. 54

Figure 3.1: A membrane enclosed com-
partment (green shading) is populated
with particles which may either be bound
(light green circles) or unbound (dark
green circles) from binding sites in the
compartment’s environment (pink shad-
ing), with binding rates determined by
the binding energy field e(#). The par-
ticles diffuse with a diffusion coeffi-
cient D and undergo particle-particle
interaction accounted for by a density-
dependent interaction potential E(p). Ad-
justed from [213], licenced under CC BY
4.0.
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3.1). Using a mean-field approximation, the distribution of these particles
can be described by their densities p; in the bound (i = b) and unbound
(i = u) states, and the time-evolution of these densities is given by

mass-conserving reaction-diffusion equations [137, 138, 172],
atpi =V. [D,’Vpi + ‘BD,'in(ai] + R (3.1)

with the inverse thermal energy scale § = (kgT)™! and, in general,
density-dependent diffusion coefficients D;. Dynamical equations such
as Equation (3.1) were derived in Chapter 2 and can also be routinely
derived from Langevin equations of the particle dynamics as detailed
in [172]. The adjusted chemical potentials ﬂi(pu, Pb, r), which depend on
the particle densities and the position r, capture the energetic difference
between the bound and unbound particle states, along with any particle-
particle interactions (see also Chapter 2, Equation (2.42)), and the reaction
terms R; account for fluxes between the bound and unbound particle
states according to Ry = —Rp = f(Pu, Pb, fu)(Pb — e‘ﬁAﬁpu), where
Afi = fip — fiy and f(pu, po, fiu) is a density dependent prefactor that has

no effect on the equilibrium densities.

The equilibrium solution to the coupled dynamical equations given
by Equation (3.1) can be found by imposing the condition of vanishing
fluxes — including particles state fluxes such that &; = 0 and spatial fluxes
such that J] = D;Vp; + BD;p;Vii; = 0. Assuming no-flux boundaries,
integrating the latter of these conditions and substituting into the former

finds the formal solution for the equilibrium particle densities,
pu=pooe P, py = ppoe AR, (3.2)

where p; o is an integration constant. Combined, these solutions yield

the total particle density
p = putpp = pooe (1 + e PR, (3.3)

in which fi, captures the influence of particle-particle interactions ex-
perienced by unbound particles, and Afi = fiy, — iy accounts both for
differences in energy between the bound and unbound particle states, as
well as any differences in the particle-particle interactions between the

particle states.

How do particle interactions influence the equilibrium distribution?

Using Equation (2.46) from Chapter 2, the adjusted chemical potential is

found to be

fj= % — kpT In pj + constant (3.4)
]

where F = U — TS is the Helmholtz free energy, with Boltzmann entropy

S, temperature T, and system energy U. Decomposing the system energy
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into an energetic contribution Ui(py, pp) arising from particle-particle
interactions, and an additional contribution / (€upu + €bpb) dA account-
ing for the energy €; contributed by each particle according to its state i,

the resulting adjusted chemical potential is given, up to a constant, by

ﬂ] = Ei(pur ‘Ob,l‘)+€]'(l'). (35)

The interactions of the particles with their environment are therefore
encapsulated by the binding energy fields €;(r) that describes the energy

associated with particles in state 7, and an interaction-potential field

Ei(pu, po, 1) = aip] —kgTInw + Ui(pu, pv) |, (3.6)
that provides a correction to the chemical potential of an ideal gas to
account for particle-particle interactions. These corrections may arise
either from particle arrangement constraints — described by the number
of ways w of arranging distinguishable particles (see Chapter 2) — and/or
from the energetic contributions of the particle-particle interactions

described by Ui(py, pb)-

Assuming that the particle-particle interactions and arrangement con-
straints are independent of the binding status of the particles, the inter-
action potentials for both bound and unbound particles are equal and
dependent only on the total density, E;(pu, pb, t) = E (p)l. Furthermore,
to investigate how spatial heterogeneities in the environment influence
the particle distribution, I consider a non-uniform particle-environment
binding energy field e(r) = ep(r) — €, and assume that €, is spatially ho-
mogeneous in order to focus on only one guiding field. With the constants
Pb,0 and €, incorporated into the normalization factor [ -2 = pb,oe_ﬁ":”,

these assumptions result in the equilibrium total particle density
—lfﬁﬂmm+e$ﬂ (3.7)
P=n . .

The integration constant / is a length-scale set by the conservation of the

total particle number N over the whole membrane area according to

N:/ﬁAp (3.8)
A

This constraint determines the average separation distance between
particles across the whole surface d = \JA/N, and makes Equation (3.7)
a non-local mapping of the binding energy field to the density field.

Recovery of expected distributions If the energetic cost of binding

is constant, Equation (3.7) recovers a homogeneous distribution of

1: This assumption breaks down when
the particle binding sites are inhomo-
geneous, or at a lower density than the
maximum particle density. I explore the
impact of relaxing this assumption in
Section 3.2.4
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particles as expected from unbiased diffusion. Conversely, if there is no
particle repulsion, and as such no limit to the density of the particles,
E(p) is a constant, and we recover the density of particles obeying

Boltzmann statistics.

3.1.1 Signal filters from guided particle distributions

As shown by Equation (3.7), the equilibrium distribution of the diffusive
particles is ‘guided” by the spatially heterogeneous binding energy
field. As such the patterning process acts as a signal filter, for which
Equation (3.7) details a non-linear, non-local, response function that maps
spatial features of the input binding energy field € into the output density
field p.

Such a signal filter is particularly relevant for the case of membrane-
enclosed biological compartments, where information must be processed
and relayed from outside to within the compartment, or vice versa, to
regulate biological functions such as cell migration or cell differentia-
tion [212]. By reflecting symmetry-broken features of the compartment’s
environment, the binding energy field may act as an initial store of this
information. The mapping of input energy signals to the output particle
densities then permits the transmission of this input signal into the plane
of the membrane, from which processes within the compartment may

‘read’ the stored information.

In general, either through noise or due to non-linear features of the
response function, the response functions of the filter may be non-
invertible, such that several input values would result in the same output
density. In these cases, the output density signal is a compressed version
of the input, where some of information in the original signal has been

lost, or filtered, from the transmitted signal.

Signal filters for proximity sensing

Spatial heterogeneities in the binding energy field could arise, for
example, from a non-homogeneous separation distance /(r) of binding
sites from the membrane surface. By converting this variation in
separation to a spatially dependent binding energy field through an

effective Hookean interaction,

k
e(r) = Sh(®)’ + e, (3.9)
the non-uniform interaction energy would capture spatial variations in
binding site proximity. The response function given by Equation (3.7)
would therefore constitute a signal filter for binding site proximity.

Heterogeneities in the chemical or elastic properties of the environ-
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ment might furthermore introduce a non-uniform chemical binding
energy €. and/or effective spring constant k, whose heterogeneities

would also be sensed by this mechanism.

3.2 Interaction potentials tune response

functions

The exact form of the signal filter produced through the guided particle
patterning process described in Equation (3.7) is determined by the inter-
particle interactions comprising the interaction potential E(p). Although
this potential could take a limitless array of forms, in the interest of
space I limit this section to detailing general filter features of the most

relevant —i.e. repulsive and attractive — interaction types.

3.2.1 Repulsive interactions

A common category of inter-particle interactions are short-range repul-
sions. As shown in Equation (3.6), the impact of these interactions can
be modelled by a potential that accounts for particle repulsion either
via a density-dependent system energy or as a constraint on particle
arrangements. In this section, I first derive expressions for E(p) for steric
interactions (i.e. ‘Hard-core repulsion’) in a lattice gas framework, and
then similarly address continuous repulsive interactions (i.e ‘Soft-core’
repulsion), before investigating the response function of the resultant

filter.

Hard-core repulsion

Steric interactions are a specific, analytically tractable case of short-
range potentials. Such "hard-core repulsions’ describe particles with
volume exclusion, where the particle-particle interaction potential is
infinite at particle separations less than the particle diameter, and zero
otherwise [146, Chapter 5].

Following a similar process to Section 2.2, I discretise the membrane
surface into B boxes of size dx, indexed by j (see Figure 3.2). Within each
box the steric interactions are modelled using a lattice gas approximation,
where particles are confined to a lattice of () single-occupancy sites of
size dp, which imposes an effective particle size. For generality, I assume
that binding sites are accessible on only a subset Q; of the lattice sites in

any box.

Assuming that all particle-particle interactions are hard-core, the system

energy is given by U = 3; € uKj + €j,M;, where M; and K; are the

Figure 3.2: In a lattice model of hard-
core repulsion, particles are distributed
between square lattices of total size dx,
which have single occupancy sites of size
do and are indexed by j. Q; of the lattice
sites (pink shading) permit particles to
be in either a bound (light green circles)
or unbound (dark green circles) state,
whereas the remaining lattice sites per-
mit only unbound particles.



44

3 Spatial signal transmission at cellular surfaces

numbers of bound and unbound particles respectively in each box. In

contrast, the entropy

. QUQ - M;)!
§ == 2k I G G - M, - KK

(3.10)

is found from the number of microstates that make up the macrostate
defined the values of M; and K; in all of the boxes. This is found by
treating the particles as indistinguishable but the sites distinguishable
and counting the number of distinct arrangements of the bound particles
in the Q; binding spaces, followed by the arrangements for the free

particles in the remaining (2 — M; spaces, for each box j .

From the Helmbholts free energy, F = U — TS, using Stirling’s approxima-
tion and taking the limit of small boxes, dx — 0, the chemical potentials

for the bound and unbound particles are found to be

() = lim gy, = () ~ kyTn (”mp—;;;(x)) 3.1)
and
() = Jim 1 = () = kT In (%) e

where I have used py(x) = limyy—0 K; and pp(x) = limgy—o M;, and
where the maximum density and the external binding site density are de-
fined as pmax = limax—0 Q/dx? = 1/d2, and pexe(x) = limax—o Q;/dx? re-
spectively. By comparison of Equations (3.11) and (3.12) to Equation (3.5),

I find the interaction potentials for hard-core repulsion

Eu(p) = —kBTln(—p max — P ) (3.13)
and
AE(p) = En(p) - Eu(p) = —kpT In (H) . (1)

The same result can also be recovered by deriving the equilibrium distri-
bution directly through entropy maximisation (see Appendix A.2.2) and
comparing to the equilibrium distribution in Equation (3.7). Under the
further constraint that the binding site density is equal to the maximum
particle density, pmax = pext, the change in interaction potential becomes

AE(p) = 0, and I recover the expected result that E;(py, pb, ) = E(p).

Soft-core repulsion

An alternative option for modelling short-range repulsive interactions is

to detail the energetic contribution explicitly. In this section, I outline this
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approach, where there are no constraints on particle arrangements — such
that the particles obey Boltzmann statistics — and instead soft-core particle
interactions are introduced through continuous, repulsive, pairwise

interaction potentials.

Assuming state-agnostic particle-particle interactions, the system energy
contribution from all the pairwise interactions takes the form Ui(py, pb) =
Ui(p). Since for particles obeying Boltzmann statistics the w term in
Equation (3.6) has no density dependence, we find that inter-particle
interactions give rise to a density-dependent mean-field potential E(p) =
dp;Ux(p)?. For pairwise additive potentials, the system interaction energy
is given by the sum over each inter-particle potential u(d), between
particles indexed by m and k and separated by a distance d,,x. Neglecting
non-nearest neighbour interactions, and assuming a locally uniform
distribution of particles, the separation distances between the particles
can be approximated by the average local separation of particles —i.e.

dmk = d = 4/1/p. The interaction energy is then approximated as

&
o)~ [ pgu@da, (315)
where & denotes the number of nearest neighbours. From this energy,
the interaction potential is found to be

_ oUilp) &

E(p) = T ~ 5wt

du(d) dd) _ %u (d) - & du (d)d. (3.16)

dd dp 4 dd

This approach is, in principle, similar to the virial expansion, which is
used to determine contributions to equations of state arising from particle
interactions for low particle densities [146, Chapter 5.2], however it is, in
contrast, suited to higher density systems where the assumed crystal-like

particle distribution is more applicable.

Soft-core repulsion examples

Although Equation (3.16) holds for any short-range interaction, soft-
core repulsive interactions are particularly interesting in the context of
biological systems. As introduced in Chapter 1, examples of repulsive
interactions include those arising from membrane-curvature, and
shielded electrostatic interactions. Here, to demonstrate the validity
of the approximations made above, I compare these two soft-core
interaction types with the results of hard-core repulsion derived

previously.

Although curvature mediated interactions are not pairwise additive,

they can be approximated as such at low particle densities. Under

2: This relation is also derived in the
discrete limit in Appendix A.2, where I
obtain E(p) = limgy0 81(]. Ey(Kj + M/)
from the local many-body interaction
E/(Kj + Mj) in the continuum limit of

the coarse-graining box size dx — 0.

Particle interaction potential E(d)

— Mean-field
— Electrostatic
-- Curvature

Separation d/dy

Figure 3.3: The hard-core interaction po-
tential E(p) from Equation (3.13) (green
line) that accounts for steric interactions
between particles of diameter dg takes
a similar form to the potentials aris-
ing from soft-core repulsive curvature-
mediated (solid black line) and shielded
electrostatic interactions (dashed black
line). Reproduced from [213], licenced
under CC BY 4.0.
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Equilibrium particle density p/py.x

Repulsion /

9 —No repulsion

I N 1
0 € 10ky T
Environment interaction energy -€

Figure 3.4: The response function result-
ing from short-range particle repulsion
is a sigmoidal mapping (green line) be-
tween the binding energy field € and the
particle density p, which approaches a
maximum density pmax for favourable
binding energies in comparison to non-
interacting particles (black curve). The
gain y and threshold of the filter ey, are
annotated by the shaded triangle and
vertical line respectively. Reproduced
from [213], licenced under CC BY 4.0.

these conditions, the pairwise interaction potential is given by [147]

4
ucurvat’ure(dmk) = 87-(K62 (250 k) ’ (317)
m

where 0 is the membrane contact angle, and x denotes the membrane
bending rigidity [216]. Using Equation (3.16), this results in the mean-
field potential

& (do)*
Ecurvature(d) = 24711{825 (ﬁ) ° (3.18)
Described by the Yukawa potential [151, 152], shielded electrostatic

interactions similarly lead to an interaction energy

2 —duk/A
Q #, (3.19)

Uelectrostatic (Amk) = FEO dor
with vacuum permittivity eg = 55.2e?eV ™! um~!, which can be written
in units of K, T as €y = 2.14 x 10°%eZkp, T'nm !, for T = 300K. The

corresponding interaction potential then reads

Eelectrostatic (d) = (3-20)

£ Qe (é " i)
2 4me d 2 2A4)°
I compare these short-range soft-core repulsive interactions to hard-
core repulsion (Equation (3.13)) in Figure 3.3, using dy = Inm as the
typical order of magnitude for protein size [217, 218], and assuming
the number of nearest neighbours to be & = 6. For the curvature-
mediated interactions I further use a membrane bending rigidity
of ¥ = 20kgT and membrane contact angle 6 ~ 7/24, and for the
electrostatic interactions I consider particles with four elementary
charges, Q = 4e and use a Debye length A; =0.8 nm [219, 220].

From this comparison I recover the expected result that such soft-core
repulsive interactions can be well approximated by the hard-core
lattice gas approximation. Given the suitability of the lattice frame-
work for approximating soft-core short-range repulsion, I use Equa-
tion (3.13) to approximate all short-range repulsion in the remainder

of this work.

Repulsion leads to sigmoidal filter

Having derived the form of the interaction potential for short range
repulsion, it remains to determine the form of the resultant signal filter.
Substituting the interaction potential from Equation (3.13), and using

Pmax = 1/d2, the equilibrium particle distribution given by Equation (3.7)
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becomes
14 e Pe®

12+ d2(1 + e~Pe)’

p(r) = (3.21)

This corresponds to a sigmoidal mapping between the binding energy
field and the density field, as shown in Figure 3.4. At low density, the
particles are distributed between the different positions according to €.
However, at high particle density, the volume-excluding nature of the
particle-particle interactions limits the density, resulting in a plateaux for
high input energy values. This is, in fact, akin to a Fermi-Dirac distribution
where energy levels are spatially separated and the occupation numbers
of these levels corresponds to the particle density distribution [146,
Chapter 7].

The gain y and the threshold ey, that characterise this sigmoidal relation

are given by

o P (3.22)
=max |||=—||| = ————, .
y dell) ~ ad2(d + 2)
and
= L] 3.23
e := argmax | | —- || = kT In e L (3.23)

and depend on two length scales: the effective particle size dy, and
the average particle separation across the whole surface d = \/A/_N ,
see the annotations in Figure 3.4. The second of these length scales
is introduced through the integration constant [, which is set by the
membrane area and the total number of embedded particles via the
constraint in Equation (3.8). The explicit expression for [ — for uniform

€ —follows [ o< /c_lz - dé in the hard-core interaction case.

The square-ratio of the two length-scales, dé /d?, gives the fraction of the
membrane surface covered by the particles —i.e. the membrane saturation.
By tuning this saturation, the response function can be adjusted. As
presented in Figure 3.5, using as an example a linear input binding
energy field of e(x) = kpT(20x/L — 10) on a domain of length L, varying
the membrane saturation shifts both the threshold and gain3. For small,
or few, particles in the membrane the threshold energy is low, leading
to small high particle density regions. In comparison large, plentiful,
particles lead to an almost saturated membrane where the high and low
density regions differ only slightly in particle density, leading to response

functions with a low gain.

In the context of signal processing, the particle distributions resulting
from repulsive particle interactions can be understood to sigmoidally filter
external heterogeneities, effectively providing a physical mechanism for
binarising the binding-energy field. This is reminiscent of "thresholding
filters’ in image analysis and computer vision algorithms, which calculate

a binary compression of an initial input and are used to select features of

Equilibrium particle density p/p,.,

1

Position x/L

Figure 3.5: For an input binding energy
field e(x) = kgT(20x/L — 10) on a do-
main of length L the distribution of short-
range repulsive particles takes the form
of a sigmoid that depends on the ratio
of the effective particle size dp and the
average particle separation d.

3: This choice of example input permits
clear visualisation and considers a bio-
logically achievable energy range, since
typical chemical-interaction potentials
between biological proteins are on the
order of —10kgT [221].
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- Jps=1.00

Equilibrium particle density p/py.x
— f35=0.75
— f1s=0.50

1 -
& fs=0.25

—

Position x/L

Figure 3.6: Decreasing the area fraction
fes of the membrane covered by uni-
formly distributed binding sites leads
to a reduction in the gain of the re-
sponse function resulting from repul-
sive particle interactions, as visualised
here for an example input energy field of
e(x) = (20x/L — 10)kp T over a domain
of length L, and length scales satisfy-
ing d% = 0.5d4%. The fgs = 1 condition
corresponds to the medium green line
in Figure 3.5. Reproduced from [213],
licenced under CC BY 4.0.

the input image for further downstream processing [34]. As discussed
in Chapter 1, such sigmoidal filters are useful and common both in
biological systems and in synthetic signal-filtering applications [27, 33,
34].

3.2.2 Binding site distributions influence response

functions

In addition to the length scales dg and d, the sigmoidal response function
given by Equation (3.21) also depends on the spatial organisation of the
interaction sites, which in biological systems are commonly distributed
non-uniformly. How would the thresholding capability of the filter
described above be influenced by such changes in the binding site

organisation?

Low-density uniform binding sites

The previous section detailed the sigmoidal signal filter that results from
repulsive interactions when binding sites are uniformly distributed with
the same density as the maximum density of the particles, such that
each particle can exist in either a bound or unbound state (using the
assumption pext = Pmax in Section 3.2.1). One clear generalisation is to
therefore relax this constraint, and consider uniformly distributed, but

lower density, binding sites.

Introducing a uniform area fraction of binding sites fgs = Pext/Pmax,
the substitution of Equations (3.14) and (3.13) into (3.2) yields the total

general equilibrium particle density

Pmax €a+ﬁ€“

p(x) =

1+ eatBeu 1+ fos

eBe(®) 4 1 4 pa+Beutpe(x) ’ (3'24)

Comparing this result to Equation (3.21), again using a linear example
input field for visualisation purposes, I find that reducing the binding
site area fraction results in a smaller difference between the maximum
and minimum densities, and a correspondingly smaller gain (Figure
3.6).

Linear distributions of binding sites

Living systems rarely have uniform binding sites. Indeed, membrane-
bound proteins often interact with slender polymers such as cytoskeletal
filaments [222]. To identify, how signal transmission is influenced when

particles bind to such filamentous structures, I consider binding sites
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confined to  parallel lines of length L that cover a fraction ¢p = CLdy/A =
Cdp/L of the total membrane surface, where dj is the width of a single

particle.

The line densities p1p along these parallel strips of membrane are the

one-dimensional equivalents to Equation (3.21),

1+ e~Pel)
I+ do(1 + ePe))’

pip(x) = (3.25)

where the integration constant / is obtained, as before, by enforcing the

particle conservation condition from Equation (3.8). Assuming the input

energy is the same for all filaments, this condition takes the form

o /L 1-¢ 1
Ldo \Jo Axpo(x) +12+dg_[i2’

in which x parametrizes the coordinates along the C lines, and the

(3.26)

interaction energy along the binding lines is given by € = €(x) and is
infinite elsewhere. When ¢ = 1, I therefore recover the same results as in

the uniform binding site case discussed in Section 3.2.1.

Assuming the line densities will be later read out along their respective
binding filaments, I can compare the signal filters for input signals en-
coded in filamentous binding site distributions with the two-dimensional
case by normalising by the maximum densities pmax1p = 1/dp and
Pmax = 1/ d(z) respectively. In Figure 3.7, I make this comparison using, as
before, a linear input binding energy field to aid visualisation. I find that
lowering ¢ has a similar impact as decreasing d, and as such results in
a signal filter that is only achievable with more particles in the case of
uniform binding sites. This occurs because the non-binding membrane
region acts as a particle bath that buffers the particles used in the binding
regions. Interestingly, these results imply that —in systems where there is
a high cost to creating extra particles, as is the case for proteins in living
systems — filaments should be favoured over surfaces for transmitting
spatial information across interfaces due to the lower particle number

requirement [223, 224].

3.2.3 Attractive interactions

In the preceding sections, I have detailed how purely repulsive particle-
particle interactions lead to sigmoidal signal filters, which binarise input
binding energy fields. A natural extension to this is to ask how non-

repulsive interactions influence particle-mediated signal filters.

Intuitively, attractive interactions between particles lead to their enhanced

accumulation in high-density regions. Indeed, I demonstrate this en-

Equilibrium particle density p/p.x

Position x/L

Figure 3.7: Filamentous binding site dis-
tributions enable similar response func-
tions to be produced with a lower num-
ber of membrane-associated particles
than for two-dimensional (¢ = 1) dis-
tributions. Shown, as before, using an
example input energy field of e(x) =
(20x/L—10)k, T over a domain of length
L, and with length scales satisfying d(z] =
0.1d2, reducing the fraction ¢ of the sur-
face covered by lines of binding sites has
the same effect as decreasing d or increas-
ing do. The ¢ = 1 condition corresponds
to the dark green line in Figure 3.5, the
dg = 0.5d2 line from the same figure is
shown here for comparison (dashed grey
line).
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a) Free energy density ffyaw
 e=1kT

10r"~“‘

Density dZp,

d) Free energy density fifyaw

05
Density djp

Figure 3.8: The free energy density of Van
der Waals particles at any given point in
the membrane domain depends on the
binding energy at that location. a) Free
energy densities for binding energies
e = —1kgT, 0, 1kT [top to bottom] —
which depend on both the bound py,
and unbound py, particle densities — and
their projections onto the pp-py plane.
The pink dashed lines indicate the equi-
librium ratio of bound to unbound par-
ticles for each energy condition. b) The
free energy density for rapidly equilibrat-
ing binding dynamics depends on the
total density p = pp, +py and the binding
energy. The line colours indicate match
the dashed lines in the (a) corresponding
to the same binding energy. Parameters:
a =5d2ksT, C = 5043

hancement by considering a system of particles undergoing short-range
attraction coupled to shorter-range repulsion or volume exclusion. This
shorter range repulsion prevents the unphysical divergence of particle
density in energetically favourable regimes. Since introducing such inter-
actions opens a wide field of possibilities, I will not attempt to address
these in their full generality but will instead provide an illustrative exam-
ple. Suppose that I have a set of Van der Waals particles [225, Chapter
17] that undergo particle-particle interactions as introduced in Chapter 1.
Permitting the particles to also bind to an external structure with the
binding energy field e(r), the Van der Waals free energy density given by
Equation (1.7) can be extended to account for free energy contributions
from both the bound and unbound particle distributions, described by
the densities py and py respectively. This results in a free energy density
of the form [146, Chapter 5.5],

Cpu Cpo
‘BdeW = pu[ln (W) -1 + Pb In (W) —1} —ﬁap2+ﬁ€(r)pb,

(3.27)
as shown in Figure 3.8(a). As described in Chapter 1, in the Van der
Waals description, dy defines the length scale of the repulsive interaction,
and thus the maximum particle density pmax = 1/ d% as before, and
a defines the magnitude of the attractive interaction. The constant C
arises due to the discretisation of phase space, and does not effect the
subsequent particle distributions considered here [146, Chapter 5.5]. The
corresponding chemical potentials for the bound and unbound particles

are given respectively by

Cpu op
Brivaw,u = [ln (1 - ) 1 Od2 - 2ﬁaP]
P - oP (3.28)
Buvawp = [ln( Cpbz ) + dopz —2Bap| + e(r).
1-dip) 1-dgp

As shown in Equation (3.3), the equilibrium ratio of bound to unbound
particles is set by the difference in the adjusted chemical potentials

Afi = €(r) such that p,, = p,e P,

Assuming that the binding and unbinding rates are much faster than
particle diffusion, such that the ratio of bound and unbound particles
is given by the equilibrium condition, the free energy can be given in
terms of the total density p and e(r) (see Figure 3.8(b)). Taking the partial
derivative of this free energy with respect to the total particle density p

is then governed by the effective chemical potential

Bvaw,p = In (& —In (1+ eﬁe(’))+dg—p—2ﬁap+ﬁe(r) = constant
? 1-djp 1-djp ’

(3.29)
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Short-range attractive interactions are known to result, under certain
parameter configurations, in the phase separation of particle systems into
high- and low-density regions. The conditions for phase separation can
be found by determining high- and low-density values that satisfy the
coexistence requirements pvaw,p(p1) = pvaw,p(p2) and p(p1) = p(p2),
where
22
P==puvaPUﬂ-f0ﬁ=:EE?ZB—— 2 L)

ap” =
dsp 1-dgp

(3.30)

is the pressure of the particle gas [146, Chapter 5.5]. These conditions trace
out the ‘binodal’ curve (sold line, Figure 3.9(a)), which encloses the region
in which two phases are permitted in the system. Similarly, the region
of bi-stability, where spontaneous phase separation occurs, is enclosed
within the ‘spinodal’ curve (dashed line, Figure 3.9(a)), defined by the
extrema of the chemical potential [226]. Systems starting with a uniform
particle density, puniform, that fall within the phase-separating region
of parameter space will automatically separate into two regions with
densities on the binodal curve. This uniform density corresponds to the
number of particles in the membrane divided by the membrane area, and
is therefore determined by the length-scale d giving the average particle
separation in the membrane, i.e. Puniform = N/A =1/ d2. Therefore, as
in the previous sections, the length-scale d plays an important role in

determining the form of the particle-mediated signal filter.

Interestingly, the pressure given by Equation (3.30) is independent of
the binding energy, and changes in the binding energy only changes the
chemical potential by a magnitude shift. Therefore, both the binodal and
spinodal curves are unaffected by the binding energy field. This means
that the conditions for phase separation are not affected by the guiding of
the phase separation by €(r). Indeed, without particle binding (i.e taking
the limit € — oo) results in identical binodal and spinodal curves to those
presented in Figure Figure 3.10. Furthermore, the size of the resulting
phase regions is also unchanged by the binding energy field, since it
is determined by the number of particles in the system (as shown in
Figure 3.9 (b)) — similar to how the integration constant [ is determined by
total particle number in Section 3.1. In contrast, the binding interactions
do influence the positions of the phase regions. Numerically solving
Buvaw,p = 0 for the equilibrium particle density field given various input
interaction energy fields e(r), I find that the high- and low-density phases
coincide with the low-and-high binding energy regions respectively, see
Figure 3.10. Compared to the results of Section 3.2.1 (Figure 3.5), I find
that the attractive particle interactions in this system result in a higher
gain, which would enable a more effective binarisation of the input
field.

a) Temperature kT

0 0.4 0.8
Uniform particle density dZ/d*

b) Particle density p(x)d?

| Energy fe(x)
0.8 -
05— 1
0.4
0.0 —
0 1

Position x/L

Figure 3.9: In the presence of bind-
ing interactions, Van der Waals parti-
cles phase separate into a high density
and low density region, with the po-
sition of the high density region de-
termined by the input binding energy
field. a) Binodal (solid line) and spin-
odal (dashed line) curves for the Van
der Waals gas. The stars indicate the
locations for the example systems ex-
plored in (b). b) Example equilibrium
particle distributions for a quadratic in-
put of € = (20(x/L — 0.5)%> — 10)kgT
(shown in inset) and initial uniform parti-
cle densities of 1/d% = 0.075/d2,0.33/d2,
0.63/d2, and 0.9/d§ at a thermal energy
of 1kgT, and 1/d? = 0.33/d(2] at a ther-
mal energy of 2kgT, indicated by colours
ranging from black to light green respec-
tively. Phase separation occurs below the
binodal curve and the size of the high-
density region is determined by the total
particle density. Parameters: a = Sd(%kBT,

C =50d2
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a) Interaction Energy fe(x)
10

-10+

Position x/L
b) Particle density p(x)d{
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Figure 3.10: Guided phase separation
thresholds various input binding energy
fields a) Example input binding ener-
gies of liner fe = 20x/L — 10 (dark
green), sinusoidal fe = 10sin(20x/L)
(medium green), and quadratic fe =
20(x/L - 0.5)% — 10 (light green) used to
explore guided phase separation of Van
der Waals gas, on a domain of length L. b)
Output density profiles resulting from
the inputs in (a), with corresponding
line colours, for the total domain parti-
cle density 1/d> = 0.33/d5. Parameters:

a =5d2ksT, C = 5043

Without binding interactions, attractive particles are known to sponta-
neously separate into these two phases, with the initial locations of the
phases determined by the random fluctuations that drive the initial phase
separation. Over time, these phases undergo Ostwald ripening until only
one high- and one low-density region are left [227], whose location de-
pends on both the random initial patterning and the boundary conditions
of the system. In contrast, when binding interactions are present, the
phases are positioned to minimise the system free energy, and as such
the translational symmetry of the system is broken with the high-density
phase pinned to the energetically favourable regions. This process arrests
the Ostwald ripening of the phases when the effective surface tension
from particle attraction is combatted by the effective attraction of parti-
cles to energetically favourable regions. This phase separating process,
when coupled to heterogeneous features in the environment, is called
controlled or guided phase separation, and has been discussed both in the
context of small-scale pattern design and in regards to understanding
phase-separation mediated biological processes including DNA strand
repair and cellular division [160, 162, 163, 228]. My results suggest that
such phase separating systems could act as a binarising surface filter
in spatially-resolved signal processing cascades, and would perform
better than filters arising from purely repulsive interactions. However, 1
find that guided phase separating systems arising from the inclusion of
attractive interactions do not produce more complex particle-mediated

response functions than purely-repulsive ones discussed above.

3.2.4 Edge detection by particle distributions

I have demonstrated that particle interactions can lead to sigmoidal
signal filters, but is it possible to design particle-density mappings that
are non-monotonic in binding energy such that we could select other
features of the input binding energy signal? Such a mechanism would be

crucial in the design of useful particle-mediated signal processors.

Total density measurements result in monotonic response functions

To have non-monotonic filters, it is required that two values of the binding
energy € result in the same density value. Assuming that only the total
particle density is accessible by downstream processes, and also that the
inter-particle interactions depend only on the total density, I return to

Equation (3.3) and, using Equation (3.5), find that

eﬁAE(p)(peﬁEu(P) —1) =e7Fe, (3.31)
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where the right-hand-side is a monotonic function of the binding en-

ergy.

As defined in Chapter 2, Equation (2.46), the adjusted chemical potential
fi is the functional derivative of the system free energy minus kT log(p).
As such, the contributions E;(p) must be single-valued for any value of
the density p. This means that the left hand side of equation (3.31) is
single valued for any particular value of p. Combined with the monotonic
form of the right-hand-side, this implies that the mapping from € to
p will always be monotonic, and as such could at most only provide a
thresholding-like filter.

Distinguishing p, and p;, allows for edge detection

However, when relaxing the condition that the bound and unbound
particles are indistinguishable to downstream processes, it is possible to
form non-monotonic filters. The downstream differentiation of bound
and unbound particles is in fact common in biological systems, where
molecules frequently exhibit allosteric properties, whereby the process
of binding leads to a conformational change in the molecule and alters
other molecule properties [229]. This allosteric regulation can lead to
bound and unbound particles exhibiting different interaction properties
with other molecules that could constitute the readout mechanism for

the signal filter.

From Equation (3.2), the equilibrium particle distributions for the bound
and unbound particles in equilibrium are

p p

pu:1+e‘ﬁe' pb:1+eﬁe'

(3.32)

Therefore, even though species-agnostic interaction potentials lead to
a monotonic mapping of the input energy e to total particle density p,
the mappings to the unbound particle density p, are not necessarily
monotonic. For instance, the examples in Figure 3.10 result in — albeit
small — peaks of unbound particles at the edges of the high-density
region, see Figure 3.11. This constitutes a form of edge detection. The
peaks of unbound particles have a larger density, although with less
prominent peaks, when considering less favourable binding dynamics
where particles spend more time in their unbound states (Figure 3.12).
This edge detection filter is therefore most suited to situations in which
the edges have interaction energies close to zero. Other biologically
inspired edge detection methods —including an algorithm using multiple
genetic circuits in ecoil [230], and light-sensitive neuronal networks [231-
233] - have focused on mechanisms to identify image boundaries at the

multi-cell scale. However, at the sub-cellular level this has been less well

a) Unbound density p,(x)dZ/10™
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Figure 3.11: Distinguishing between
bound and unbound particles permits
edge detection. a) The unbound particle
densities resulting from the same exam-
ple conditions as in Figure 3.10 (colours
indicating the same input energy pro-
files) display peaks at the edges of the
high particle density regions. b) Due to
small magnitudes of unbound particles,
the bound particle densities closely re-
semble the total particle densities in Fig-
ure 3.10(b).
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a) Interaction Energy fe(x)

Position x/L
b) Particle density p;(x)d¢
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0.4
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Position x/L 1

Figure 3.12: The density of edge-
detecting unbound particles is larger
for less favourable binding energies. a)
Various examples of quadratic bind-
ing energy inputs of the form fe =
20(x/L — 0.5)%> — Bep where ey =
-10, -5, 0, 5, 10, coloured from dark
to light green respectively. b) Unbound
(solid) and bound (dashed) particle den-
sities resulting from these input energy
profiles, with corresponding colours, for
a total membrane density of 1/d? =
0.33/d(2]. Parameters: a = 5d(2]kBT, C =
5043

explored. Such a mechanism therefore provides a possible means for

spatially-resolved signal computation at subcellular scales.

It would be interesting to ask if more complicated or more tunable filters
arise when considering other particle-particle interactions, and it would
be an exciting future project to investigate how edge-detecting, and other
complex filter systems, could arise from species-dependent interactions

that further couple p, and py, through E;(pu, pb).

3.3 Concluding remarks

In summary, I have detailed how simple interactions between membrane-
associated particles and binding sites in their surroundings can form
signal filters that permit the selective transmission of environmental
heterogeneities into particle density distributions, and have explored
how the non-linear amplification of the transmitted signals is controlled

by the interactions between particles in the plane of the interface.

In particular, I find that short-range repulsive particle interactions pro-
duce sigmoidal mappings between non-uniform binding energy fields
and the particle densities that form in response — providing a physical
mechanism for the binary thresholding of the input energy field. These
filters are shown to depend on the effective interaction range of the
particles and the number of particles relative to interface size. Such filters
may play key roles in the subcellular processing of spatial signals, akin
to how similar thresholding filters are used in control circuits and neural

networks to introduce non-linearities and compress outputs [30, 31].

By considering how changes in the distribution of binding sites influence
the thresholding nature of these mappings, I demonstrate that a reduction
of the dimension of the input from a two-dimensional distribution of
binding sites to filamentous input structures improves the feasibility of
these filters in a biological context. The thresholding nature of these
filters is further shown to be improved by additional attractive particle

interactions that lead to phase separating systems.

Extending beyond monotonic response functions, I demonstrate that the
allosteric nature of typical biological molecules further permits edge
detection by facilitating the distinction between bound and unbound

particle states.

These results hint at the possibility of diverse particle-mediated signal
filters, which, when coupled to further downstream signal processing
layers may permit subcellular systems to undertake complex computa-
tions in order to respond to external stimuli. The investigation of such

downstream cellular processes would be an interesting extension of this



work, perhaps leading to the development of pattern recognition-like
functions at compartment interfaces. With the advent of methods for
developing synthetic vesicle systems, and progress in creating increas-
ingly small soft-robotic systems, these subcellular signalling pathways
may aid in the design of synthetic pattern-based computation and in the

bottom up study of natural signal processing mechanisms [234].

Concluding remarks
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Quantifying selective

information processing

As introduced in the previous chapter, the formation of inhomogeneous
protein distributions — guided by the interactions of the particles with
structures in their surroundings — gives rise to signal filters that selectively
transmit signals encoded within particle-environment interaction energy
fields into particle density distributions. These signal filters are described
by the mean-field mappings, i.e. the filter response functions, between the
input energy and output density fields. However, it is important to assess
how effectively these particle-mediated signal filters transmit information
when accounting for the noise in the innate particle dynamics. In this
chapter I therefore quantify the information that output densities carry
about their input interaction energies, given both noisy particle dynamics
and the compression resulting from the filter’s response function. In
particular, I focus on the repulsion-mediated signal filter derived in
Section 3, whose response function, Equation (3.21), I provide here for

reference:
1+ e Pel®

12+ d2(1 + e~Pe®)’

p(r) =

where d is the effective particle size due to repulsion and determines
the maximum particle density pmax = 1/d3, and [ is an integration
constant set by the average particle separation in the membrane d through
Equation (3.8). The fraction of membrane covered by particles is given
by the ratio dé /d?, which can therefore be interpreted as a measure for

how saturated the membrane is.

Part of the results presented in this chapter are included in a paper accepted
at PRL [213]. The computations for in this chapter were implemented in
Mathematica [235] and Python, the notebooks and scripts for which are provided
in the repositories [214] and [215].

4.1 Mutual Information

The thresholding filter introduced in Chapter 3 is a non-local response
function, such that the output field depends on the input signal over
the whole membrane domain. Therefore, to evaluate the level of signal
compression by the particle-mediated sigmoidal filter, it is informative to
ask how much of the information in the whole input signal is transmitted
to the whole output field. As discussed in Chapter 1, the amount of
information transmitted by a filter is given by the mutual information,

Equation (1.1), which for the continuous fields p and € is defined as:
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Figure 4.1: A membrane surface (grey
shading) is discretised into B boxes of
area a indexed by j. In each box, the
interaction energy and particle density
may take any value from a finite set of
possible values, € and & for energy and
particle densities respectively.

Definition 4.1.1 (Continuous mutual information) The continuous

mutual information between two random fields € and p is given by

plp, €)

Popie) @D

I :/ DeDpp(p, €)In
where the integral is a functional integral over all possible input and output
fields, and p(p, €) is the joint probability density of observing an output
field p and an input field e from which the marginal probability densities
plp) = / Dep(p,€)and p(e) = f Dp p(p, €) may be calculated.

This ‘whole-field” quantification differs from many common information
quantification approaches in, for example, biological pattern-forming
systems where studies have focused on the information transmitted by
biochemical signals at singular locations in the field [16]. Such single-
location quantifications are relevant in the context of cell fate signalling,
where chemical gradients on the tissue scale inform individual cells
of their position in the tissue through only a local measurement of the
chemical signal. In contrast, the signal filters described in Chapter 3 output
particle distributions that depend on the whole of the input interaction
field, rather than at one location. The whole-field mutual information
therefore provides a means to assess the information transmission in

these non-local cases.

4.1.1 Membrane discretisation

Although the continuous mutual information in Equation (4.1) provides a
means of quantifying information transmission, the functional integrals —
in combination with the constraint on particle number in Equation (3.8) —
present an analytical challenge. This is overcome by discretising both the

spatial domain and the possible values of the input and output fields.

Discretising the two-dimensional membrane into boxes indexed by
j =1,2,..., B, I represent the particle density and interaction energy
fields as random vectors which take the realizations {p;} and {¢;},
whose elements are sampled from finite sets of density values & and
energy states €, see Figure 4.1. The mutual information between the
random vectors is then given by the discrete mutual information [82,
Chapter 2] .

Definition 4.1.2 (Discrete mutual information) The discrete mutual
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information between random vectors {€x} and {p;} is given by

_ . o PUpi erd)
- {ezk}{ngp({p i Ae D B (e’

(4.2)

where (e} = e Qey - 2uep And Z{Pi} = Zm sz...ZpB are the
equivalent of the functional integrals in Equation (4.1) and denote sums
over all possible realizations of the input and output random vectors re-
spectively. The marginal probabilities P({p;}) = Xe,y P({pj}, {€x}) and
P({ex}) = Zp;y P({pj}, {€x}), are given by the sum of the joint probability

over all possible input or output vectors respectively.

Equation (4.2) gives the information that is gained about the input field
by observing the output density field, providing a clear measure for

signal filter performance.

4.2 Probability distributions describe filter

noise

Since the mutual information quantifies the ability of a system to dis-
tinguish between different inputs by measuring the output {p;}, the
event space of possible inputs must be the same as the support of the
input distribution P({€x}) which spans all the possible input signals
that the system may receive. This distribution would therefore take a
system-specific form. For example — in the context of biological signal
processing — a cell may need to distinguish between different polarity
directions in which case both directions must be included within the

support of P({ex}).

In the following, I confine the input values € to a finite, discrete set
of interaction energies €. To remain as system-agnostic as possible, I
then consider a uniform distribution of the input vectors, such that
P({ex}) = T1x P(ex) with the local values € independently sampled
from a uniform distribution P(ex) = 1/|%| over the set € of possible
energy values. This allows me to assess the capability of the filter to

transmit information, without bias for a particular input form.

Thermal input noise It is important to note that the distribution
of inputs is not accounting for thermal fluctuations of the input, but
rather differences in scenarios a system may experience. Thermal
fluctuations would be expected to lead to slight deviations about
the inputs considered here, and may be mapped into an additional

‘channel noise’ of the filter. This extension is not addressed here.

{€k}= [EDEZ]
P({ed)
€min EMM
- 1 A
{p,-} = [pi.p.]
P({Pj}HeI?})

pec))
ped)) Lt P2

P1

Figure 4.2: To calculate the mutual in-
formation, the realisations of the input
random vector of interaction energies
{ek} are distributed uniformly over the
space of all possible inputs, given the set
of energy values [pink, shown here for
B = 2]. The corresponding conditional
distribution of particle density vector re-
alisations P({p]-}|{62}) takes the form
of a multi-dimensional Gaussian distri-
bution about the density expected for
the particular input realisation { eg}of
the energy vector [green]. Reproduced
from [213], licenced under CC BY 4.0.
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4.2.1 Particle-density noise

The mean-field signal-filter models in Chapter 3 provide the expected
output density profile for a given input. In the discrete framework
outlined above, this may be denoted {p;} = {p(ej,[)}, where p(e;, I)
is given by Equation (3.21) and the integration constant / introduces a
dependence on the full vector {€;} through the particle conservation
constraint, Equation (3.8). In the discrete limit this constraint takes the

form

| =

= (4.3)

INH]
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where, as before, d = \/A/_N sets the number N of particles present in
the whole membrane surface of area A. However, the observed particle
distribution will vary from this expected value due to, for example, the
thermally driven rearrangements of particles. In the context of signal
transmission, these particle density fluctuations act as a ‘channel noise’
that limits the capacity of the filter to transmit information. Measured
realisations of the density vector can then be considered as having been

sampled form a distribution with a mean density profile {p;}.

In this section, I first derive an approximate conditional probability
distribution for the density vectors given an input vector {€x}, and then
assess the validity of my results by estimating particle distributions using

Metropolis Hastings sampling.

Gaussian approximation of particle fluctuations

Denoting the number of particles in each box by N; = p;a, where a is
the coarse-graining area, the system-dependent conditional probability
P({p;}{ej}) = P({N]-}|{I\_lj}) is given by the probability of having box
occupation numbers {N;} given expected occupation numbers {Nj},
where N; = apj and Nj = ap;. In this section, I derive this conditional
probability, starting from the distribution of occupation number P({N;}).
In the microcanonical ensemble, the distribution of occupation numbers
P({N;}) o« 5/ks is given by the total - system and reservoir — entropy
S = kgInW [146, Chapter 4]. As in Chapter 3, the entropy is given by

the number of microstates W that make up the macrostate defined by
{N;}.

Assuming the ‘readout’ process that follows downstream of the particle
patterning does not distinguish between bound and unbound particles,
the difference between the particle species may be neglected and the

number of microstates given by

Q!

W= 1]7 QNN (A4
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where Q = a/ dé is the number of spaces a particle can occupy in the
box. Applying the Stirling approximation, this results in the conditional

probability

P({Nj}) e l—[ QN Q-1)~(Q-N;)(In (Q-N;)~1)~N;(In N;~1) (4.5)
i

The conditional distribution may then be found by applying a saddle-
point approximation, in the limit of large occupation numbers, about
the expected occupation number. By imposing that the extrema of
Equation (4.5) is given by {N;}, this expansion effectively accounts for
the interaction energy contributions which were introduced explicitly in
Chapter 3, and allows for the estimation of the fluctuations about this

expected valuel. This results in the conditional distribution obeys [236]

1[d*InP
InP({N;}) = Zj] 5 ( 8sz

i (Nj - Nj)Z) , (4.6)
Nj=N;

in which the first-order derivatives vanish, as well as the cross-term
8lnP({Nj})/(8Nj8Nk¢j).

Evaluating the partial derivatives of Equation (4.5) with respect to N;
and recalling that Q) = a/dg, Nj = apj, and I\_l]- = apj, results in the
conditional probability

P({pj}l{ex}) « [ [ P(pjl{ex}) (4.7)

]

where the local conditional probability, P (pj|{ex}), of a density p; in box
j is independent of the other boxes, and takes the form of a Gaussian
distribution, )

(pj = Pj)
—T} , (4.8)

P

P(pjl{ex}) < exp

with mean j; = p(ej, I), given by Eq. (3.21), and standard deviation

1-d2p)p;
07 =\ P @9

It is important to note that the introduction of spatial couplings between
particles at different positions would further modulate the probability
given by Equation (4.8) and introduce correlations that we have neglected
here. In particular, during this derivation we have neglected the constraint
on total particle number, which would introduce correlations between
the density fluctuations at different positions. In the low noise limit, this
would have little influence on the resultant distribution. However, for
noisy systems where the fluctuations are large relative to the mean particle

density, this —and higher order expansion terms in Equation (4.6) — would

1: Indeed, in later Chapter 5, I present a
more involved derivation of density prob-
ability that does include both bound and
unbound particles, and indeed recovers
the results of this section in the correct

limit.
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be expected to contribute significantly to the density probabilities.

Continuum limit For completeness, I note that in the continuum limit

a — 0and B — oo Equation (4.7) yields a functional

(p-p)°
p(p, €) o exp l— ‘/A dA —2(1 — df,p)ﬁ

where the integral is taken over the area A of the domain, € and p are
the input and output fields, and the mean output field p is defined by
Equation (3.21).

Metropolis sampling

To assess the validity of Equation (4.8), I compare predictions of the
conditional probability P (pj|{ex}) to estimations made by performing
Metropolis-Hastings sampling of particle distributions for fixed input

energy profiles.

In brief, Metropolis-Hastings sampling permits the estimation of a
probability distribution, P(X), through the construction of a Markov
chain with a steady state given by the "target’ probability distribution [237-
239]. Applicable to cases where the target distribution is proportional to
a known function of the system state, the Markov chain is constructed
by proposing a new system state Y, with probability g(Y|X) of being
proposed, given the current state X. The proposed sample of the system
is accepted if a randomly generated number, between 0 and 1, is smaller

than the acceptance ratio, given by

_ §XJY)P(Y)

“= VNP’ (*10)

If the proposed change is not accepted, the current state is recounted.
Since the target distribution is proportional to a known function, @ may
be calculated even if the full form of P(X) is unknown. As such, each
successive element in the chain — after an initial sampling period needed
to converge to the steady state — resembles a sample from the target
distribution. Such methods enable the efficient counting of the statistical
weights between sampled states without having to generate many sam-
ples, and are therefore often used to estimate probability distributions

when other sampling methods are deemed inefficient [240].

For my system, the sampling was performed on a 100-by-100 lattice,
where each site could hold a maximum of one particle. The particles
were assumed to interact with some external structure with possible

interaction energies discretised into 241 evenly-spaced values between
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—12kgT and 12kgT. The sampling process then consisted of iteratively
choosing two lattice points: one occupied by a particle, and the other
unoccupied; and proposing a new state with the particle swapped from
the occupied to free lattice site and randomly allocated to either the

bound or unbound state.

Identifying the initially occupied and unoccupied sites with the index
j € 1,2 respectively, and corresponding lattice coordinates r; = (v}, w;),
the original state X was described by the interaction energies €1,x and
€3,x, and the binding status of the particle at position 1 - which had an
energy €particle,x = €1,x if bound and €particte, x = 0 if unbound. Similarly,
the proposed state Y was described by the interaction energies €,y and
€2,y, and the binding status of the particle, now in position 2, with energy

€particle,y = €2,y if bound and €particte,y = 0 if unbound.

To account for thermal fluctuations, the interaction energies for the
proposed state, at both sites, were sampled anew from a discrete Gaussian

energy distribution

(Ej,X 7E(vj,w]'))2

pe(ejx|vj, wj) = Ne 20¢ , (4.11)

with a linear mean energy profile €(v;, w;) = (2v;/10 — 10)kT and stan-
dard deviation o = 1KpT, where N is a normalisation factor. Effectively,
by including this, I introduce minor fluctuations in the interaction energy
over time. This allowed me to assess how much the thermal fluctuations
influence the conditional particle-density distribution. The probability of
having proposed state Y given a current state X was then given by the
product of the probabilities of the new interaction energies at these two

locations

g(YIX) = pelerx

r1,x)pe(€2,x172,x). (4.12)

In comparison, the probability that this proposed state was sampled from
the target distribution was proportional to the product of the probabilities
of the interaction energies at these two locations, and the Boltzmann

weight of the state according to the particle energy, taking the form

p(Y) < pe(er,ylri,y)pe(ez,ylra,y)e crarticey, (4.13)

The acceptance ratio therefore became the Boltzmann weight of the

transition from X to Y, @ = ¢~ (€particie,y ~€particle x)

Following an initial ‘cool-down’ sequence of samples to allow for conver-
gence to a steady state, I took 10000 samples of the particle distribution.
Since the example input was independent of the index w, I averaged the
occupation boolean, where a value of 1 indicated an occupied site and
0 and unoccupied site, over this coordinate to find the density in each

coarse-grained column of area @ = 100d3. This provided a discrete set
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Figure 4.3: The conditional probability
P(pjl{ex}) is well characterised by Equa-
tion (4.9), for an input energy €y =
(20v/L—-10)kgT. a) The Gaussian approx-
imation (right) of P ( va|{€z;w}) is com-
pared to the distribution estimated using
Metropolis-Hastings sampling on a L-by-
L lattice (left) for L = 100, a membrane
saturation of (dg/d)? = 0.5. Coloured
dashed lines show the coordinates plot-
ted in (b), and white shading indicates
values above 0.8. b) Estimated condi-
tional distribution compared to the Equa-
tion (4.8). c) The estimated mean density
profiles sampled for 1000, 5000, and 9000
particles recover the sigmoidal form ex-
pected from Equation (3.21) (and pre-
sented in Figure 3.5) for the correspond-
ing membrane saturations d(z) /d? =01,
0.5, and 0.9 for an interaction energy
€(x) = kgT(20x/L — 10) on a domain of
length L. Shading indicates two standard
deviations given by Equation (4.9). Re-
produced from [213], licenced under CC
BY 4.0.
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of possible densities & = {0,0.01, ...,0.99, 1}. The conditional probabil-
ity of a density given a particular v index (and therefore input energy
€yw) was identified by finding the fraction of the samples that have this
density for each of the v coordinates. The accuracy of this estimated
distribution was improved by repeating the sampling process twelve

times and averaging the results.

Using this set-up, I sampled the particle distributions for 1000, 5000,
and 9000 particles, which in terms of (do/d)? corresponded to the values
0.1, 0.5, and 0.9 respectively. The resulting mean density at position
x = doyv, found by taking the weighted mean p, = X, pP(p|x) over all
possible density values, accurately reflected the mean density expected
from Equation (3.21), see Figure 4.3(c). Comparing the sampled local
conditional probability for the (do/d)*> = 0.5 case with Equation (4.8)
(Fig. Figure 4.3(a) and (b)), the high-density region is found to have a
narrower density distribution than the low-density region. Although
discrepancies between the analytical and sampled distributions within
the intermediate density region are apparent — most likely due the impact
of particle conservation on the density noise profile, which has been
neglected —, I find that Equation (4.9) adequately approximates the noise

profile in the density in the low noise limit of input energy fluctuations.
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4.2.2 Joint probability

Having derived and verified the form of the local conditional probability
P(pjl{ek}), the joint probability

B
PUpit Aech) = - [ [ Plol{enh). (4:14)
]

of observing a particular set of density values {p;} together with an
input energy vector {€x} may be found as the product of the conditional
probability P({p;}|{ex}) = I1; P(pjl{ex}) and the marginal probability
of the input energy vector P({€x}).

4.3 Transmitted information depends on

membrane parameters

Given the channel noise described above, how well can the repulsion-
mediated sigmoidal filter described by Equation (3.21) transfer informa-
tion into a membrane particle-density field? Using the joint probability,
Equation (4.14), I quantify the achievable information transmission by
evaluating the discrete mutual information over a range of length-scale
ratios, d/dy. This is a computationally expensive process in which the
probabilities for each possible output density set given each possible in-
put energy set must be calculated. I therefore limit the evaluation to small
systems discretised into B = 5 boxes of coarse-graining area a = 1042, re-
sulting in the set of all possible density values 9 = {0, d3/a,2d2/a, ..., 1}.
Similarly, to define the set of possible energy values, I assume a minimum
interaction energy of —10kgT (a typical energy for the chemical binding
of biological proteins) and an upper cutoff of +10kgT. Discretising the
possible energy levels to integer values in units of 2kgT then gives the
set of possible input energies € = {-10kgT, —8kgT, ..., 10kgT}.

Numerically evaluating the mutual information under this discretisation
results in an optimal membrane particle saturation for particle-mediated
information transmission [Fig. Figure 4.4(b)]. This optimal saturation
corresponds to filters that achieve a balance between having threshold
energies close to the middle of the input range (i.e. €min < €th < Emax)
and gains large enough to overcome the channel noise. Specifically, the
mutual information achievable by a sigmoidal filter can be understood
as a measure of how well the filter can distinguish between different
inputs [13]. Approximating the sigmoidal filters as perfectly binarising
filters, this is best done by filters that separate the inputs into two
equally-sized groups [13]. Therefore, sigmoidal filter systems with a

low membrane saturation, i.e. with d >> dy, result in poor information

Mutual information I [bits]

6

0+ T T
1 10 20
Average particle separation d/d
Figure 4.4: The mutual information [
shared between the random vectors of
input energy {ex} and output density
{pr} exhibits a peak as a function of
d/dy where the membrane saturation
is sufficient to maintain the threshold
energy within the input range while also
low enough to ensure a large difference
in densities between the high and low
density plateaux. This was computed
for a discrete system of B = 5 boxes
of area a = 10d§. The diamond, circle,
and square icons indicate the parameter
values used in Figure 4.3(c), dé Jd? =
0.1, 0.5, and 0.9 respectively. Adjusted
from [213], licenced under CC BY 4.0.
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Mutual information I [bits]
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Figure 4.5: The mutual information be-
tween the input energy and output den-
sity vectors is reduced when the density
of uniform binding sites is reduced from
Pext = Pmax (fBs = 1, black, repeat from
Figure 4.4) to pext = 0.50max (fss = 0.5,
green). The trends were computed, as in
the previous figure, for a system discre-
tised into B = 5 boxes of area a = 10d5.
Reproduced from [213], licenced under
CCBY 4.0.

transmission because they have very low threshold energies and as such
cannot effectively distinguish between a large range of inputs (e.g. dark
green diamond in Figure 4.4). In comparison, systems with a saturated
membrane, i.e. with d ~ dp, suffer from a rapidly reducing gain upon
increases in membrane saturation (e.g. light green square in Figure 4.4).
This leads to the high- and low-density particle regions that are closer
in density value, and as such more susceptible to the particle density

noise.

Notably, the magnitude of the mutual information at the peak is higher
than values reported in other biological contexts [13, 67, 88, 241]. The
primary reason for this is that I consider the information stored in the
full energy and density fields, rather than the more common approach of
considering the value at only one location. As such, the signals contain
more information. Indeed, mutual information is limited by the entropy of
the input, which in this system is approximately 17 bits. A further reason
for the high magnitude of mutual information is my choice of energy and
density discretisation. Specifically, the magnitude of these results is set by
the size of sets € and &, in addition to the coarse-graining length-scale,
because the magnitude of discrete mutual information depends on the

number of possible inputs and outputs.

4.3.1 Binding site distributions influence information

transmission

In the biological context, the membrane-adjacent structures that encode
the initial input signal may take a variety of forms. Indeed, in the
experimental context, quantifications of the structure and distribution
of a variety of subcellular objects — including lipid bilayers, cytoskeletal
filaments, the extracellular matrix and many others [242] — have been
used as observational proxies for cellular and system states. As shown
in Chapter 3 Section 3.2.2, such diversity in binding site arrangements
leads to variations in the response functions of the corresponding signal
filters. How do such differences in binding site density influence the

information transmission by the resulting signal filters?

Low-density uniform binding sites

In Chapter 3 Section 3.2.2 I found that lowering the uniform density
of binding sites leads to a reduction in the gain of the signal filter,
and causes the high- and low-density plateaux of the filter to be closer
in absolute density value. By evaluating Equation (4.2) using a mean
density profile determined by Equation (3.26), I find that these changes

leads to a reduction in the information transfer achieved by the filter
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(see Figure 4.5). One can intuitively understand that this arises because
the distinction between the maximum and minimum density values is
reduced relative to the channel noise. Indeed this is why the influence
of the reduction in binding site density is more apparent for saturated

membranes, where — as previously discussed — the gain is already low.

Linear binding site distributions

In comparison, how is information transmission influenced by input
energy fields arising from particles binding to filamentous structures?
Considering systems where the potential only varies along one axis (see
Figure 4.6(a)) permits a comparison between the mutual information
transmitted in the case of uniform binding sites and the case of fila-
mentous binding site distributions. Discretising the axis over which the
potential varies into 5 boxes to permit a comparison to the 2D case above
and introducing — as in Section 3.2.2 — parallel lines of binding sites
covering a fraction ¢ of the total membrane surface, I find that effective
information transfer is achievable with fewer membrane particles in the
case of filamentous inputs compared to the case of uniform binding sites,
as seen in Figure 4.6(b) where reducing ¢ leads to a wider peak in the

mutual information at higher d/dy.

Specifically, in the case of filamentous binding site distributions, the
binding-free membrane region acts as a particle bath that buffers the
particles used in the binding region. This particle buffering reduces the
influence of particle number limits on the formation of the sigmoidal
mapping, and leads to larger threshold values for the same number of
particles in the membrane domain. This therefore increases the mutual
information for low membrane saturation, i.e. d >> do, by improving

how well the filter can distinguish between all the possible inputs.

Figure 4.6: Lowering the area fraction
of filaments, ¢, leads to an increase in
the optimal information transmission
regime of the filter (I > 0.8Imax). a) The
system was discretised into 5 boxes of
area a = 1042 per line, either with (pur-
ple shading) or without (no shading)
binding sites, with ¢ the area fraction
of the binding region. b) Comparing the
mutual information for ¢ = 1073, 1072,
1071, and 1 - corresponding to the light
orange, dark orange, pink, and dark pur-
ple lines respectively — shows that opti-
mal information transfer for lower mem-
brane saturations (i.e. larger d/do) for
filamentous input structures compared
to uniform-binding-site surfaces. Repro-
duced from [213], licenced under CC BY
4.0.
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Importance of readout mechanism It is, however, important to note
that this quantification of mutual information implies the mechanism
that reads out the particle distribution is able to readout the particle
line-densities, rather than the two-dimensional membrane density. If
the latter is done, the line densities would be averaged with the low
particle densities in the adjacent non-binding regions, leading to a
reduction in the net gain of the sigmoid filter and subsequently a
further loss of information. Such line-density readouts are indeed
achievable in cellular contexts, where protein distributions along quasi-
1D structures influence many subcellular processes such as the tension
generation by motor proteins along filaments, or molecular events at
cell-cell contact lines [243-247].

4.3.2 Optimal information transmission regimes

Membrane saturations close to the value for peak information transmis-
sion trace out regions in do-d parameter space where the filter can be
considered to operate optimally. Using a limit of 80% of the uniform
binding site case for illustration processes, I compare how these optimal
regimes depend on the microscopic system parameters captured in the
length-scales d and d, by plotting the zones corresponding to the optimal
regimes for different filament area fractions ¢ in Figure 4.7. As expected
from the result of the previous section, this shows that lower filament
densities lead to larger optimal regions, in a more accessible region of

the particle space.

Do real surface-associated protein complexes and other macromolecular
structures in biological cells fall within these optimal regions? With the
challenges associated with visualising nm-scale spatial arrangements
of proteins along interfaces starting to be overcome by bioimaging
technologies, the effective particle sizes and typical cellular concentrations
of particles in several systems have been reported or can be inferred
from other measurements [143, 144]. Aiming to compile an exhaustive
list of proteins and subcellular structures for which this data is currently
available, I identified values for d and do, which had been measured or or
could be estimated from literature. Making no selection beyond restricting
the search to membrane-bound particle-like structures, this was achieved for
a range of protein complexes and macromolecular complexes, provided

together with the corresponding sources in Appendix A.3, Table A.1.

Overlaying these values on the optimal information processing regimes
in Figure 4.7, I find that several proteins that are known to interact
with neighbouring cell membranes (connexons [248, 249]) or subcellular

membraneous structures (ERMES [250, 251]) have sizes and surface
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densities that position them within the optimal region for uniform
binding sites. In contrast, other particles fall within the lower filament
area fraction regions. In particular, several proteins that to associate
with actin fibers or bundles (AChR [252-254], E-Cadherin [255], TCR
[256], ICAM-1 [257, 258]) fall within the region where ¢ = 1072. This
area fraction is indeed approximately the fraction of actin-filaments,
as estimated using measurements of cortical actin filament densities
obtained from high-resolution cryo-ET tomograms in fibroblasts [259].
These results therefore support the idea that particle-mediated signal
filters are a plausible mechanism for information transfer in biological,

subcellular, membrane systems.
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4.4 Selective information transmission

A key question when considering how information is passed through a
filter is to ask how much of the permitted information is relevant to the
downstream task. Indeed, in many cases signal filters are used, not only
to transmit information, but to select particular information from the

input.

To quantify the performance of selective signal filters, one must specify the
relevant signal s that will be needed in downstream processes, and which
is encoded within the input signal. A good filter acts as a ‘bottleneck’
to the flow of information, compressing the input to produce an output
that contains the specific task-relevant signal, and little other information
from the input [76, 83,101, 110]. This permits the output to encapsulate the
information that the input carried about s while discarding information
that is irrelevant to the downstream task. In this section I quantify how

effective the repulsion-mediated signal filter is at selectively transmitting

Figure 4.7: Macromolecular complexes in
living cells fall within the optimal infor-
mation transmission regions of do-d pa-
rameter space traced out by the regimes
presented in Figure 4.6 (coloured accord-
ingly). In particular, complexes known
to associate to filamentous structures in
the actin cytoskeleton (e.g., AChR, E-
Cadherin, TCR) fall within the regime for
an actin-like area fraction ¢ = 1072 (dark
orange), which is much larger than for
the case of uniform binding sites (dark
purple). Reproduced from [213], licenced
under CC BY 4.0.
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information, with a focus on downstream readout mechanisms for which

a binarising filter would be suitable.

4.4.1 What is a typical readout?

What would be a suitable signal s with which to assess performance of the
repulsion-mediated sigmoidal filters? In biological contexts, the relevant
signals would of course be system specific, and may take the form of a
spatially resolved field — written as a vector {s} in the discrete limit - or
may alternatively be a scalar variable describing a global property of
the system. To keep the following computations and analysis tractable,
I take — as an example — the relevant information to be a scalar that
quantifies the fraction of the membrane area where interaction energy is

greater than a threshold value €, such that
5 = Z O(e; — €5) (4.15)
i

where O(¢) is a Heaviside function. Such a signal would be relevant,
for example, in the case of buckling-mediated readout mechanisms, as
used in computational soft materials [51, 260], where a transition from a
non-buckled to buckled state provides a binary output that depends on
the size of the high particle density region.

As previously discussed, the repulsion-mediated sigmoidal filters trans-
mit an approximately binarised version of their input signal, where
the noisy particle response to the input interaction energy amplifies
energetic differences close to the sigmoid’s threshold, but neglects small
energy variations far from the threshold value. These filters are therefore
especially suited to selectively transmit the relevant signal defined in
Equation (4.15), allowing me to quantify the signal performance for cases

where the mechanism is likely to be useful.

It is important to note that, by defining the relevant signal to be a
deterministic many-to-one function of the input s = f({€}), I impose
that the input signal {e} perfectly captures the relevant signal. As such,
the conditional probability P(s|{e}) € {0, 1} of a relevant signal s given
a particular input {€} is binary. Although common in, for example,
machine learning classification tasks, this is contrary to other treatments
of selective information transmission in biological contexts, where the
input signal is considered a noisy, and thus imperfect, representation of
the relevant signal [83, 261]. Such approaches are useful when considering
a specific, well-quantified biological system. However, in this thesis, the
deterministic mapping permits me to address how well certain features of
the input signal are transmitted, without specifying the noise-profile of

the steps preceding the signal filter.
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4.4.2 Limits to information transmission

In analogy to the definition of mutual information in Equation (4.2), the
amount of relevant information that is transmitted to the output field by

the filter is given by the discrete mutual information

({P]} s)
({5 = DX PAph o) n g nss @6)

s {pj}

Here, the sum }; is over all possible values of the relevant signal;
the joint probability of a relevant signal s and an output p is given
by P({pj},5) = Siey) P{p}, {ex))P(sl{e})P({ex)); and the marginal
probabilities P({p;}) = 35 P({p;},s) and P(s) = X(¢,} P(s, {€x}) may be

found from the joint probabilities P({p;}, s) and P(s, {€x}) = P(s|{ex})P({€x})

respectively [101]. By construction, all the information that {p;} contains
about s must come from {€,}. This is a statement of the data processing
inequality, which constrains the information I({p;}, s) to be less than or

equal to the information the output shares with the input,

Ir({pj};s) < I({pj};{ex}), (4.17)

with equality when only relevant information is transmitted by the filter.

Similarly, the data processing inequality also implies that the information

the input signal carries about the relevant signal,

W({e)is) = 3 ST P, fer)) In o €kd) (418)

14 P)P({ei))’

must be greater than or equal to the information the output has about

the relevant signal

Ir({pj};s) < i({ex};s). (4.19)

Equality in Equation (4.19) occurs when all the relevant information

initially stored in the input signal is transmitted to the output signal.

Comparing the performance of a filter in the information plane, where
the mutual information I({p;};{€x}) is shown against Ir({p;},s), to
the limits of ideal selective filters given by Equations (4.17) and (4.19)
therefore permits the assessment of the effectiveness of the filter in

selecting the relevant signal s.

Information Bottleneck Method As discussed in Chapter 1, in many
systems — and particularly in biological contexts — the input is an
intermediary signal in a larger computational process, and therefore
a noisy encoding of the relevant signal. In these cases, the data pro-
cessing inequality does not adequately reflect the true constraints on

information transmission. Instead, the ideal bound for the optimal
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Figure 4.8: Relevant transmitted infor-
mation shows an optimum regime for in-
put binarisation. a) Relevant transmitted
information, calculated for the same con-
ditions as Figure 4.6 and for the desired
output defined in Equation (4.15) with
€5 = 0, exhibits an optimal information
transmission regime (Ir > 0.8Irmax) that
is increased in size as the filamentous
area fraction ¢ is decreased. b) The filter
with filamentous distributions of bind-
ing sites, ¢ = 1072 (dark orange), out-
performs the uniform-binding-site filter
(dark purple). Dashed lines indicate lim-
its from the data processing inequality
and line thickness indicates d/dg value,
corresponding to following the trends in

(a).
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encoding of the signal into the output lies within the inequality regime
of constraints (4.17) and (4.19). As introduced by Tishby et al. [101]
under the name "Information Bottleneck Method’, this true bound may
be found by identifying the mapping of input to output that transmits
the most relevant information possible, for the smallest transmission

total information. Such mappings maximise the Lagrangian,

U = Ir({pj};s) = Aml({pj}; {ex}), (4.20)
where A1p is a Lagrange multiplier that limits the overall transmitted
information during the optimisation process, and may be calculated

using an iterative algorithm introduced in the same paper.

The information bottleneck bound, however, as been shown by Kolchin-
sky et al. [261] to saturate to the DPI inequality bounds when the
relevant signal is a deterministic function of the input. This is indeed
the case considered in this chapter, and therefore the true limits of the
filter, for the relevant signal defined by Equation (4.15), are given by
Equations (4.17) and (4.19).

4.4.3 Where does this signal filter fall?

Using the discretised framework introduced in Section 4.3, I assess
how effective the repulsion-mediated signal filters are at transmitting
the relevant signal defined by Equation (4.15), for €, = 0. Calculating
Ir({pj},s) under the same conditions used in Figure 4.6, I find that
the filters exhibit a peak in the transmitted relevant information at an
optimal membrane saturation (see Figure 4.8) similar that observed for
general information transmission in Section 4.3 (c.f. Figure 4.6). In the
case of filamentous binding site distributions (see Section 4.3.1), reducing
the area fraction of filaments, ¢, leads to a larger optimal value of the

length-scale ratio d/dy than in the uniform binding site case.
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Mirroring the approach in Section 4.3, I define the optimal relevant
information transmission regime as being where the relevant information
is within 80% of the maximum relevant information in the uniform
binding site case (i.e. the black dashed line in Figure 4.8(a)). Although
the optimal regime for relevant information transmission increases in
size as ¢ is reduced, it remains smaller and confined to lower d/dy values
than the optimal general information transmission regime in Figure
4.6 — a difference which is exacerbated as ¢ is reduced. This means that,
although reducing the line density of the filaments relaxes the need for
large numbers of membrane bound particles for adequate information
transmission, the best transmission of relevant information for €5 = 0

still occurs at reasonably high membrane saturations.

Focusing, for ease of visual comparison, on the uniform case and the
filamentous case where ¢ = 1072, I compare the performance of the
filter to the ideal performance limits in the information plane (see Figure
4.8(b)). I find that neither filter achieves an optimal transmission of
relevant information, however, the filter with filamentous binding site
distributions performs better than the one with uniform distributions —
both overall and for the same amount of total transmitted information
(i.e. for the same value of I({p;}; {€r})). This further supports the result
that filamentous structures give rise to better binarising signal filters
than uniform structures. The imperfect nature of these filters has several
origins. Most intuitively, these filters enact noisy compressions, and as
such will be limited in their signal transmission by to the noisy nature
of the particle dynamics. Furthermore, the response functions of the
filters, as clearly seen in Figure 4.3(c), are not perfect binary mappings
but are instead sigmoidal, with a finite gain. As such, they are not able
resolve the boundary between inputs just above and just below the filter’s
threshold perfectly. Finally, there is the more nuanced feature of the
filters that the threshold of the filter is set by the particle number and
the input field, and is therefore not necessarily equal to €;. One must
therefore tune the membrane saturation, i.e. tune d /do, to best match the
filter threshold with the desired threshold for as many of the inputs as
possible. The filters therefore selectively transmit information close to
their threshold, and may be tuned by varying the particle size or number
of particles, similar to how how resistors may be tuned to shape non-
linear mappings between voltages in electronic audio processing [262].
Even when optimally tuned, however, the threshold will not be the same
for all inputs, and the filter would therefore not able to enact the desired
threshold specified by Equation (4.15) perfectly across the full range of

possible inputs.

This dependence of optimal information transmission on the membrane

saturation can be further illustrated by considering different desired
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Figure 4.9: Tuning d/dy selects transmit-
ted information for uniform binding sites.
a) Good relevant information transmis-
sion by the uniform-binding-site filter is
achieved for both €5 = 0 (grey, from Fig-
ure 4.8) and €5 = -5 (dark purple) but
not €; = 5 (light purple). Shading indi-
cates optimal relevant information trans-
mission (IR > IRmax, as defined in Figure
4.8(a)) b) Although the horizontal data
processing limit given by Equation (4.19)
for e; = £5 (light and dark pink dashed
line) is reduced compared to €5 = 0 (hor-
izontal black dashed line). The limit from
Equation (4.17) is unchanged (diagonal
dashed line).
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signal thresholds. Taking as an example the thresholds €; = {-5,0, 5}
I repeat the quantifications of Ir({p;},s) and Ir({p;};{€x}) for both
uniform binding sites and filamentous distributions of binding sites
with ¢ = 1072, presented in Figure 4.9 and Figure 4.10 respectively. It is
important to note that when changing the desired threshold €;, one also
changes the information that the inputs contain about the relevant signal,
Ii({ex}; s), and as such the limit given by Equation (4.19). I;({ex}; s) is
maximal for a desired threshold equal to the median value of the possible
interaction energies —in this case €; = 0 —as indicated with a gray dashed
line in Figure 4.9(a) and Figure 4.10(a). The cases of €, = —=5and €, =5
both have lower, and equal, values of I1({€x};s), as indicated by the

coloured dashed lines in Figure 4.9(a) and Figure 4.10(a)

In the uniform case, Figure 4.9(a), I find that the filters can be tuned
to adequately select the relevant information if the desired thresholds
are close to, or less than, zero. For desired threshold much larger than
zero, the filter does not effectively transmit the desired information, even
though the general transmitted information is unchanged. This can be
understood through comparisons to Figure 3.5, where the filter threshold
is shown to be unable be set significantly higher than the median possible
input energy. Instead, attempts to tune the length-scales d and dy for
large, positive desired thresholds results in filter thresholds only slightly

over the median value, and small filter gains.

These results are more striking when considering filamentous structures.
Similar to the uniform case, the filters perform poorly for large positive
desired thresholds. However, for both the €, = =5 and €; = 0 cases
the filter perform well. The value of d/dy for which a relevant signal
threshold of €; = —5 is selectively transmitted is significantly larger than
for €; = 0. This highlights how the tuning of d/dy determines which
features of the input signal are selected by the filters. Interestingly, for
the €; = 0 case, increasing the ratio d /do leads to a regime in which the
transmitted relevant information decreases while the total transmitted

information increases. This means that the filter loses effectiveness in
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distinguishing the desired signal while still appearing to increase the
information it transmits about the input signal in general. In comparison,
for a desired threshold of €5 = =5 the general transmitted information
starts to decrease at the same value of d /dy as the relevant information,
implying that the optimal membrane saturation for general information
transmission, and relevant information transmission, are the same in this

case.

Opverall, I find that the repulsion-mediated sigmoidal filters introduced
in Chapter 3 selectively transmit binarised information about their input,
with the threshold specified by the physical parameters of the membrane-

particle system.

4.5 Concluding remarks

In this chapter I have assessed the effectiveness of particle-mediated
sigmoidal filters in selectively transmitting information encoded within
input interaction energy fields. Using a biophysically motivated noise
profile — verified with Metropolis-Hastings sampling — I introduced
a discrete mutual information framework to account for information
transfer by spatially resolved fields, and identified an optimal information
transmission regime determined by the average separation and effective
size of the particles in the membrane. Extending the framework to treat
inputs encoded in filamentous structures, I built on the results of Chapter 3
to show that a reduction in the dimension of the structure leads to more
effective and less metabolically costly filters, and demonstrated that these
optimal regions are biologically attainable through the comparison with
example protein-membrane systems. By specifying which features of
the input signal should be selected by the filter, I further showed that
these sigmoidal filters selectively amplify features in the input signal,
and may be tuned by varying effective particle size and average particle
separation. Such findings may help in the design of synthetic filters, or

to guide investigations into the role of that spatial particle distributions
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Figure 4.10: Tuning d/dy selects trans-
mitted information for inputs filamen-
tous distributions of binding sites with
¢ = 1072. a) Optimal relevant informa-
tion transmission for €5 = 0 (grey, from
Figure 4.8) and € = -5 (dark orange) is
achieved by tuning d/dy. The filter per-
forms poorly for €; = 5 (light orange).
Shading indicates the optimal transmis-
sion regime (IR > Irmax, as defined in
Figure 4.9(a)). b) The optimal regimes are
close to the ideal data processing limit
(dashed lines). The coloured dashed line
indicates the reduced horizontal data
processing limit for €5 = +5.
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play in biological subcellular signalling systems, by providing an outline

of the capabilities and limitations to these signalling modalities.

An important caveat to the results presented here is that I have assumed
throughout this chapter that the probability distribution of possible
inputs is uniform. If the inputs are known to be sampled from some other
distribution, the conclusions drawn may differ. In particular, the optimal
values of the length-scale ratio required to select different input features
would depend on the distribution of possible inputs between which
the filter is intended to distinguish. Nevertheless, the overall finding
that distributions of repulsive particles can act as sigmoidal filters of
input interaction energy fields, and may be tuned by varying the average

particle separation and effective particle size, would still hold.
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The sensing achieved by the particle-mediated signal filters addressed
in this thesis requires direct interactions between particles and their
surroundings. However, these interactions can affect the environmental
signal that the filter is supposed to be sensing. In soft systems, this
‘observer effect” introduces a feedback from the particle distributions
onto the interaction energies, changing how the input signal is processed.
Although in typical experimental scenarios such measurement effects
are considered a nuisance, they can also provide great benefit under the
correct circumstance [141]. Indeed, in control theory feedback loops are
used to maintain and manipulate complex system processes [30, 263, 264].
Similarly, in living systems feedback is integral to innumerable functions,
including giving rise to biochemical waves, switching behaviours, and
ensuring cellular processes are robust to perturbations [142, 265, 266]. It is
therefore important how such feedbacks affect information transmission,
and how they may be utilised in the design of desired filters. Feedback
loops pose a challenge for information theoretic approaches, since it can
be difficult to define a direction to the flow of information. However,
in many cases if the feedback is reasonably local in the information
processing cascade, it can be treated as part of the signal filter and be

incorporated when calculating the corresponding response function.

Previous studies including feedback in information processing cascades
have focused on system robustness or spontaneous organisation, and
have shown that feedback can facilitate information both through the
formation of information-carrying patterns and by minimising the impact
of noise [69, 121, 202, 267-272]. However, less work has focused on
quantifying the information transmission in these systems [23, 80, 273].
Inspired by how particle distributions can affect changes on membrane
and environment shapes, I consider how feedback from the particle
distributions onto the interaction energy field influences the response
function of the repulsion-mediated sigmoidal filter (Equation (3.21)).
Assessing how the feedback influences the noise in the filter, I then
compare the information transmission to the results for the no-feedback

presented in the previous chapter.

The notebooks and scripts used to produce the results of this chapter are provided

in repository [215].
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5.1 Feedback on input energy

Feedback from the distribution of particles onto the input interaction
energy could have several origins, for example perhaps the most intuitive
feedback mechanism is where the binding of the particles leads to a
local reduction in interaction energy, forming a positive feedback loop.
The binding of a particle could cause a deformation in the environment,
bringing the particle’s binding site — and others in the local vicinity —
closer to the membrane. Such a change in proximity would lower the
energetic barrier for other particles to bind to the neighbouring sites,
and would therefore constitute a positive feedback loop, whereby high-
density regions promote lower interaction energies, which in turn favour

even higher densities.

To keep my approach broadly applicable, I model this feedback through
perturbations to the interaction energy, without directly specifying the
underlying feedback mechanism. I assume that, free from particle bind-
ing, the environment surrounding the sensing membrane has a minimum
free energy configuration that gives rise to an initial (i.e before feed-
back) interaction energy field €o(r). This constitutes the initial store of
information in the environment, acting as an input signal that deter-
mines the post-feedback density and energy fields. Assuming a stiff
environment, such that perturbations to the interaction energy are small,
I use a saddle-point approximation to describe the energetic penalty
arising from perturbations to the environment. This results in a quadratic
contribution to the system free energy, f dAA(Beo — Be)? /2, where e(r) is
the resulting — "true’ — interaction energy following the binding-induced
changes to the environment. The environmental stiffness is parametrised
by the elastic coefficient A, which has units of energy density and de-
scribes the energetic cost per area for perturbations to the interaction
energy field. Under this construction, the output equilibrium density

and interaction energy fields are functions of the input interaction energy

60(1‘).

Considering, as before, a signal filter operating at equilibrium, the output

fields minimise the system free energy,
2
€9 — Pe
F = / dA [/\w + UpPo + HupPu | + const. (5.1)

where pp(r) and py(r) describe the bound and unbound particle densities
respectively. The free energy considered in Chapter 4 is recovered in the
limit of stiff environments, i.e. large A. The chemical potentials for the
bound and unbound particles are given in Section 3.1, Equations (3.4)
and (3.5), as i = E; + €; + kT Inp; for i € {b,u} where e, = € + €,

and € is a constant. Assuming the particles experience only short-range
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repulsive interactions, with effective particle size dy and uniform binding
sites at the maximum particle density pext = 1/ dg, Equations (3.13) from
Section 3.2.1 give Ep, = Ey = —kpT In(1 - d%p), where p = pp + py is the

total particle density. The conditions for equilibrium then become

2

(5.2)

tp(x) =€ — kBTln( P) + const. = 0

Pb

and
2

(5.3)

Hu(x) = —kBTln( ) + const. = 0,

u

from which the equilibrium total particle density is found to be the
same as in Section 3.2.2, given by Equation (3.21) (repeated here for

convenience),
14 e Pe®

12+ d2(1 + e~Pe)’

p(r) =

As before, the integration constant [ is set by the total number of particles
N within the whole membrane area A, through Equation (3.8). This intro-
duces a dependence on the average particle separation in the membrane,
d= \/A/_N . This equilibirum density field could, of course, have been
derived from the particle dynamics as presented in Chapter 3. Conversely,
the equilibrium true interaction energy field, found by minimising the

free energy, Equation (5.1), takes the form

P

BA(L + ePe)’ (5-4)

pe = peo -
where I have used the relation p, = p/(1+¢f€) found from Equations (5.2)
and (5.3).

Equations (3.21) and (5.4) give the output of the signal filter determined
by the input field €y and system parameters dy, d, and A. Comparing
to the results of Chapter 3, and using as an example a one-dimensional
linear input profile €yp(x) = (20x/L — 10)kgT, I find that feedback from
the particle distribution to the interaction energy leads to an increase in
the gain of the signal filter (see Figure 5.1). This is expected for such a
positive feedback loop, where more particles are able to bind where there
are already bound particles — since their presence lowers the interaction
energy in their neighbourhood. Due to particle conservation, this leads
to fewer particles in the low density region, and a correspondingly lower

reduction in the interaction energy.

5.2 Feedback increases filter noise

Introducing feedback into the particle-pattering mechanism introduces

another degree of freedom that may fluctuate in the system, contributing

a) Equilibrium density d,%p

—No Feedback
—$A=0.9/d,?
~pA=0.7/dy}

A=0.5/d,?

BA=0.3/d,’

1_

0 Position

b) Equilibrium Interaction energy fe

—No Feedback

—A=0.9/d,?

—pA=0.7/dy’
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BA=0.3/d,*

Position x/L 1

Figure 5.1: Resultant particle density
distributions (a) and interaction energy
fields (b) for an initial input interaction
energy feg = 20x/L — 10 show that
feedback between particle density and
particle-environment interaction energy
leads to an increased filter gain relative to
the no feedback case (black line). Softer
environments (small A, light green) lead
to a greater increases in the gain, and
larger perturbations in the interaction
energy away from the initial input value.
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to amore noisy signal filter. Following an approach similar to Section 4.2.1,
in this section I quantify the channel noise for the sigmoidal signal filter
in the presence of feedback. In contrast to the previous chapter, here the
fluctuations in the bound and unbound particles are treated directly, as

well as the fluctuations in the true energy field €.

Operating in the discrete limit with coarse graining area a, as defined in

Section 4.1.1, the conditional probability,

P({pvj}, {pj}, {€j}{eoj}) o e PF, (5.5)

of the random vector realisations {py;}, {p;}, {€;} given an input {€o;} -
for the bound particle density, unbound particle density, and interaction
energy respectively — is proportional to the exponential of the discrete

system free energy,
(Beoj — pej)’
F = Z a )\% + UbjPbj + HujpPuj | + const.. (5.6)
j

By applying a saddle-point approximation about the equilibrium fields
{pvj}, {pj} and {&;}, the probability distribution at each site j is found
to be independent of the other sites, such that

P({pvj} {pj} {ej}l{ea}) = [ [ P(pvj, pj. €jl{eq}) (5.7)
i
where the local conditional probability is given by

_B _X)\Y-Y
P(pvj, pj, €jl{€oj}) = N; | Je 2 Axr(X=X0r=1) (5.8)
XY

with normalization constants N;. Here the partial derivatives for the
fields X,Y € {pj, pvj, €j} — whose equilibrium values are denoted by
X,Y €{pj, pvj, €} — are denoted by

J*F

Axy = oxay o

(5.9

with |eq. indicating that the function is evaluated at the equilibrium

system state.

Focusing on the cases where downstream mechanisms only read out the
total density profile, the local conditional probability P(p;|{€o;}) for the
total density is found by integrating Equation (5.8) over the fluctuations
in ppj and €;. For small fluctuations relative to the equilibrium values,
the tails of the distribution can be neglected and the integrals taken to

span an infinite domain. This results in Gaussian integrals, leading to
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the local probability

1 )

2 lT2.
P(pjl{€oj}) = Poje v, (5.10)

where I have incorporated the non-exponential factors into a single
normalization constant Py ;. Here, the inverse of the variance — after
evaluating the partial derivatives of the free energy (see Appendix A.4),
and using the relation py; = p;/(1 + eF) —is given by

-2 _ a a

ol T o= d2p)  (BACL+ PR = preF)’ (5.11)

The Gaussian integrals are valid only in the stiff environment, small
fluctuations, limit where A > ppj(pj — pvj)/pj (see Appendix A.4). As
such, I constrain the following analysis to parameter regimes where
BA > pmax/4.

The standard deviation given by Equation (5.11) over all possible density
values, is shown for various environment stiffnesses in Figure 5.2. 1 find
that the inclusion of feedback leads to an increase in the particle density
noise relative to the no feedback case. In the context of a signal filter, this
implies a trade-off between the increased gain provided by the inclusion
of feedback in the filter mechanism, and the increased noise that arises

as a consequence.

The magnitude of the increase in standard deviation is influenced by
the environmental stiffness, the local particle density, and the input
interaction energy. Specifically, low —i.e. favourable — input interaction
energies lead to larger density fluctuations than high interaction energies.
This can be understood by noting that at higher interaction energies,
fewer particles are in the bound state, and therefore the coupling to the
now-variable true interaction energy ¢ is less significant. Similarly, a low
environment stiffness leads to greater density fluctuations because a soft
environment permits more variations in €, which may then influence the
local particle density. For very soft inputs the standard deviation diverges
because the approximation of assuming the integral domain is infinite
breaks down, but it is expected that in this regime the environment is
too malleable for the initial input interaction energy to influence the
output fields. In contrast, the feedback becomes negligible in the stiff

limit A — oo and Equation (5.11) recovers the results from Section 4.2.1.

The standard deviation also tends to zero in the limits of maximum
or vanishing density. Intuitively, this arises as a consequence of the
saddle-point approximation, where it is assumed that the noise profile
is symmetric about the mean density. Since there are hard limits to the
density fluctuations in the extreme density limits, this constraint sets

the fluctuations to zero in this model. In a true system, the density
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Figure 5.2: Feedback causes a density-
dependent increase in the density dis-
tribution noise. Decreasing the interac-
tion energy (a), i.e. making binding more
favourable, or the environment stiffness
(b) leads to an increase in the noise for
intermediate density values.
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Mutual information I [bits]

-+80% Loy
No Feedback
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Average particle separation d/d,

Figure 5.3: Feedback has little effect on
the mutual information between the in-
putenergy field {€p; } and output density
field {p)j}. Shown for a feedback system
with uniform binding sites and environ-
mental stiffness A = 0.5/ dg (purple)
and compared to the no feedback case
from Figure 4.6 and Figure 4.8 (grey).
Shading indicates the optimal informa-
tion transmission regimes — where [ is
within 80% of the maximum for the no
feedback case — which are almost un-
changed by the inclusion of feedback.

distribution is likely to be non-symmetric at these limits, which may lead
to a worse communication channel than presented here. This framework
therefore allows me to calculate an upper bound for the performance of

the signal filters with feedback.

5.3 Feedback improves selective information

transmission

In the presence of feedback, how does the balance between increased
filter noise and increased gain influence the capability of the sigmoidal
filters to transmit information? In the previous chapter, I showed that
such signal filters — without feedback — selectively transmit information
from the input signal, and are tuned by varying d and dy. In this section,
the signal is encoded within the initial energy {€o;} and I use the discrete
mutual information between this input and the output density {p;}, and
relevant information between the density and a desired signal s, — as
defined in Chapter 4 Sections 4.3 and 4.4 respectively — to quantify the

influence of feedback on this information transmission.

Uniform binding sites

Starting with the case of uniform binding sites, and choosing an interme-
diate environmental stiffness of A = 0.5/ dg for visualisation purposes, 1
find that introducing feedback produces negligible changes to the mutual
information between {p;} and {€¢;}, Figure 5.3. Under these conditions,
the benefit to information transmission that arises through the increased
separation between the density magnitudes in the high and low density
regions is mostly balanced by the increased noise in the system. Fur-
thermore, there is an additional penalty to information transmission
arising due to the increased gain, which not only increases the distinction
between high and low densities, but also reduces the capacity of the filter
to transmit non-binary information (such as to distinguish between input

energy values that reside on the same side of the sigmoid’s threshold).

In comparison, assuming that the desired readout of the filter is the
fraction of the membrane area in which the input energy is greater
than a threshold €; = 0 (as introduced in Section 4.4.1), I find that the
filter with feedback transmits a significantly larger proportion of relevant
information than without feedback (see Figure 5.4(a)). This difference is
particularly pronounced within the optimal information transmission
regime (which, as defined in Section 4.3.2, contains all systems with
length-scale parameters d and dy for which the information transmission

is within 80% of the maximum achieved with uniform binding sites).
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A natural explanation of this observation is that feedback results in
a sigmoidal filter with larger gain, which acts more accurately like a
binarising filter. Since the desired output is indeed a function of the
binarised input field, the feedback makes the filter more suitable to this
particular readout. However, even with feedback, this filter does not

achieve optimality for this desired readout, Figure 5.4(b).

Linear binding site distributions

Considering sigmoidal filters applied to filamentous structures, I find the
mutual information between the output density and input interaction
energy is also unchanged by feedback. Since the magnitudes of the
densities in the high and low density regions are already well separated in
the filamentous case, the further improvement coming from the feedback
does not provide a sufficient improvement to information transmission
to overcome the reduction in information caused by the more effective
input binarisation and increased noise. The bumps visible in the mutual
information in Figure 5.5 - particularly the fA = 0.5/dj case — are likely
an artifact arising from the discretisation chosen for the possible energy

and density values.

On the other hand, the transmission of relevant information (defined
equivalently to the uniform binding sites case above), is increased with
feedback. In fact, for sufficiently soft environments, the filter perfectly
transmits the desired information, assuming an adequately tuned value
of d/dy, while discarding a large portion of the irrelevant signal (see
Figure 5.6). Under these conditions, the near-perfect binarisation of the
input signal achievable with feedback, accompanied with sufficiently
distinct high- and low-density values, greatly outweighs the impact of

increased noise in the filter.

The fact that this greater transmission of relevant information occurs
alongside a lack of change in overall information transmission may at first

appear unintuitive. However, such a trend can be understood by noting

Figure 5.4: Feedback improves the fil-
ter’s ability to binarise input interaction
energies with uniform binding sites. a)
Comparing a feedback system withenvi-
ronmental stiffness BA = 0.5/ dg (purple)
to the no feedback case from Figure 4.6
and Figure 4.8, the transmission of rel-
evant information for a desired binary
signal with a threshold energy of €, = 0
is increased. Shading indicates that the
optimal regime (80% of the maximum
relevant information, Ixmax, in the no
feedback case) is larger with feedback.
b) This feedback filter remains far from
the ideal specified by the data processing
inequality (dashed lines).
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Figure 5.5: Similar to Figure 5.3, the mu-
tual information is mostly unaffected by
feedback. Apparent artifacts due to en-
ergy space discretisation appear as waves
near the maximum I, and are particu-
larly visible for soft materials. Shown for
three environmental stiffnesses (light to
dark orange indicating stiff to soft en-
vironments) and the no feedback case
presented in Figure 4.6 and Figure 4.8
(grey). Shading indicates the optimal in-
formation transmission regime defined
as the region with I within 80% of the
maximum for uniform binding sites and
no feedback (i.e. 80% of Imax from Figure
5.3).
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Figure 5.6: Feedback improves transmis-
sion of information relevant to signal bi-
narisation for filamentous inputs. a) De-
creasing environmental stiffnesses (light
to dark orange indicating stiff to soft
environments) leads to increases in rele-
vant information transmission, relative
to the no feedback case presented in Fig-
ure 4.6 and Figure 4.8 (grey). Shading
indicates the optimal region defined by
80% of the uniform no-feedback case
(IR max from Figure 5.4). b) For a stiffness
of A = 0.3/ d%, the relevant transmitted
information reaches the data process-
ing limit (black dashed lines, and grey
dashed line in (a)).
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that the improvements to the capability of the filter to binarise the input
is responsible for both of these consequences: improving the binarising
nature of the filter makes it particularly suitable for selecting thesholded
information, however by necessity this same adjustment makes the filter
worse at distinguishing between intermediate energy values, resulting in

a worse over all information transmission.

5.4 Feedback-facilitated garbage disposal

I have had the pleasure to co-supervise a master’s student at the University
of Heidelberg, Johannes Jung, whose project on particle sorting I detail briefly
below. A manuscript presenting the results of this project is currently under

preparation.

Feedback processes in signal filters need not necessarily loop back onto
the input signal. Instead they may form a link between the output signal
and internal features of the filter. This is the case for the garbage disposal

mechanism addressed by Johannes Jung in his master’s thesis [274].

Garbage disposal is the process of removing unnecessary or malfunction-
ing objects from a system. In living organisms, this homeostatic process
is important for the maintenance of correct cellular function [275, 276].
Focusing on the maintenance of membrane composition, this project
set out to investigate how vesiculation — the process of removing a
section of membrane via a topological transition — could be used to
sort dysfunctional from functional particles, and remove them from the
surface of the original — or “parent’ — compartment. We defined functional
particles as ones that can bind to an adjacent structure within the parent
compartment, and dysfunctional particles as those that cannot. A key
feature of the signal processing mechanism is that this bindable structure
is absent from the vesicle, breaking the symmetry between the parent
and vesicle surfaces. The binding affinity of the particles then acts as a

sorting cue by which to distinguish the two particle species. From a signal
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processing perspective, this binding affinity constitutes an input signal,
which is processed by the sorting mechanism to output the distribution

of particles between the parent and the vesicle compartments.

Considering a vesiculation process driven by an active contractile ring,
Johannes found that particles were sorted primarily due to the differ-
ence in binding affinity. However, entropic effects from particle sorting
introduced positive feedback between particle retention in the parent
compartment and the compartment’s resulting size. This meant that,
compared to processes in the absence of entropic effects, a greater pro-
portion of the possible initial membrane conditions would result in good
particle sorting with large particle-rich parent compartments and small
particle-poor vesicles. This therefore provides an effective mechanism for
selectively disposing of dysfunctional particles while retaining as much

of the the membrane surface in the parent compartment as possible.

A further feedback contribution from particle distribution to cell shape
was then considered through the introduction of curvature-inducing
particles. We considered particles that favour tightly curved membranes,
described via a density-dependent spontaneous membrane curvature.
Requiring that both functional and dysfunctional particles induced the
same membrane curvature, this permitted the investigation into the
role that feedback between particle distributions and membrane shape
plays in particle sorting. Johannes found that, in addition to promoting
vesiculation, this feedback led to larger discarded vesicles, compared
to in the absence of curvature effects, and the retention of a are greater
fraction of the functional particles in the parent compartment. As such,
curvature-inducing particles were found to facilitate garbage disposal, at
the cost of requiring larger portions of the original membrane to be lost

to the discarded vesicle.

Through the identification of a sorting score, Johannes identified an
optimal procedure for particle sorting. Interestingly, it was also found
that the strength of the curvature-mediated feedback by the particles
could be used to tune the sorting between desired outcomes. For low
feedback strength, the sorting mechanism favours particle retention,
with only a small number of dysfunctional particles being successfully
discarded. Whereas, for large curvatures the removal of dysfunctional
particles is prioritised, at the cost of losing some functional particles and
a larger proportion of the membrane. The feedback therefore permits
the tuning between the selective removal of dysfunctional particles, and

their broad disposal.

Opverall, this project identified a physical mechanism for particle garbage
disposal in deformable membranes, and demonstrated how membrane

shape dynamics can aid the removal of unwanted particles. Its treatment
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5 Signal filters with feedback

of feedback from output signals to internal components of signal filters
highlights how feedback can be used to tune signal filter response

functions according to specific application priorities.

5.5 Concluding remarks

In summary, in this chapter I have outlined how feedback can be beneficial
to signal processing systems, both as a means of improving signal

selection and as a means of tuning filter performance.

Focusing on feedback between particle distributions and input energy
signals for the sigmoidal signal filter, I found that feedback leads to
increases in the filter gain, the separation between the density plateaux,
and the filter’s noise. Surprisingly the effects of these changes on gen-
eral information transmission were found to cancel out, leading to a
similar mutual information between input energy and output density
fields as in the no feedback case discussed in the previous chapter. In
contrast, I find that feedback improves the performance of binarising
filters, with a greater transmission of information relevant to this task.
For soft environments and filamentous binding site distributions, this
improvement was shown to result in ideal relevant information trans-
mission. In comparison to this input-directed feedback, I briefly outlined
the work of Johannes Jung, which showed how feedback from output
signals to internal components of a signal filter provides a mechanism

for tuning signal filters according to different system priorities.

In both of the systems discussed here, it is important to note that although
feedback can be beneficial, very large feedbacks (e.g. soft environments)
may decouple the input and output signals entirely, leading to poor
information transmission where the output signal is dominated by the
feedback dynamics rather than the original input signal. Furthermore,
I have confined this section to address feedback within directional
information cascades. It is an ongoing area of research to address how
interconnected feedback systems may be treated within an information

processing framework when such directions are not clear.

Overall, these finding support the growing literature detailing the var-
ious benefits of feedback, and explicitly link these to an information
theoretic framework in which such improvements may be assessed. Such
findings may prove beneficial in informing how feedback may be used
to facilitate information processing during the design of synthetic soft

signal processing systems [264].
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Sphearoforma arctica

Are there any examples of particle-mediated signal filters known to play
a role in real biological systems? In Chapter 4, sigmoidal filters arising
from repulsive particles were shown to exhibit an optimal parameter
regime for information transmission, with large particles interacting
with filamentous structures presenting the most metabolically accessible
regime due to the low number of particles required. One biological
particle species that falls within this range are nuclear pore complexes
(NPCs)[277]. These large protein structures, each composed of more
than 550 proteins [278], are embedded within the nuclear envelope
(NE) - an intracellular membrane that forms the physical and regulatory
interface between the cytoplasm and the nuclear interior [279, 280]. With
a diameter of approximately 100 nm, these protein complexes are well
suited to forming the sigmoidal signal filters described in the preceding
chapters [278].

In this chapter I compare the predicted sigmoidal filters to distributions
of these protein complexes in the single cellular organism Sphearoforma
arctica, where NPCs have been observed to interact with biological
filaments called microtubules (MTs), that comprise the extranuclear

cytoskeleton.

The work presented in this chapter was completed in collaboration with Hiral
Shah and Gautam Dey, who carried out expansion microscopy and electron
tomography imaging of S. arctica nuclei. The results of this chapter are included
in the paper accepted at PRL [213].

6.1 NPCs form aster distributions in S. arctica

NPCs are large protein assemblies that act as protein-scaffolds for pores
in the NE, allowing the selective transport of molecules into and out of the
nucleus [278]. With diameters that are orders of magnitude larger than
typical membrane-bound proteins (100 nm compared to typical sizes of
1nm [217, pg. 45]) — and with turnover timescales longer than the nuclear
division cycle [281-283], such that particle conservation over the course
of a cell cycle period may be assumed [145, 284] - NPCs are an interesting
and observationally tractable particle species to consider for evidence of
particle-distribution mediated information transfer. Indeed, in addition
to controlling nucleocytoplasmic transport, NPCs are known to play key

roles in regulating internuclear states such as gene expression [285-288]
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Figure 6.1: The S. arctica coenocytic (i.e.
multi-nucleate) cell cycle. a) Representa-
tive images (left, blue labels nuclear con-
tent) and sketches (right) of cell life cycle
stages of S. arctica starting from newborn
single cell (row 1) which undergoes mul-
tiple nuclear divisions to result in a multi-
nuclear ‘coenocyte’ (row 2) before cellu-
larising (row 3), and eventually bursting
to produce many daughter cells (row 4).
Scale bar for first to third row: 10 um, for
fourth row: 20 um b) Maximum intensity
projection of an ultrastructure expansion
microscopy image an S. arctica nucleus,
with immunofluorescently labelled MTs
(purple) and NPCs (green). (a) and (b)
are reproduced from [295] and [213] re-
spectively, licenced under CC BY 4.0.

through interactions with the extranuclear cytoskeleton. However, the
role of the spatial distribution of NPCs in information transfer remains
unclear [289-294].

The regulatory role of NPCs distributions has typically been overlooked,
since in many species — including humans — NPCs are known to bind
strongly to a fixed polymer network within the nucleus called the 'nuclear
lamina” which prevents NPC diffusion. However, in species were lamina
is not present, NPCs are able to diffuse in the membrane and can form
interesting patterns [296, 297]. An example of such patterning has been
observed in the nuclei of the species Sphaeroforma arctica. This single-
cellular, multi-nucleate species from the protist clade Ichthyosporea is the
subject of much interest in the study of the evolution of mitosis (nuclear
division) and its driving factors [295], Figure 6.1(a). In this species, NPCs
have been observed by Hiral Shah of the Dey group in EMBL Heidelberg
interact with an external microtubular array to form high-density lines in
an aster-like configuration, coinciding with microtubules emanating from
microtubule organising centers (MTOCsS) located on the outer nuclear
surface [145], see Figure 6.1(b).

6.1.1 Input and output signals

The NPC patterns in S. arctica provide an interesting example case for
the processing of spatial information in biology. The asters have been
suggested to play a role in coordinating nuclear division and appear
to segment the nuclear surface into three distinct regions: two caps
deliniated by the high-density prongs of NPCs, and a middle region of
low density and apparently uncoordinated NPCS [145]. Focusing on how
the structure of the MT network influences the formation of these caps, I
consider the separation distance between the NE and an adjacent MT as
the input of the particle patterning process. Modelling the interaction as
mediated by a Hookean elastic spring, this proximity may be mapped to
an input interaction energy,

e(r) = g(h(r) — ho)* + €c, (6.1)
in which h is the shortest distance — at the surface coordinate r — between
the NE and the MT, €. is the energy required to bind an NPC to the
MT, and k and hg are the spring constant and resting length of the
effective spring. This effective interaction represents the combined elastic
contributions arising from local deformations of the NE, stretching of
the linker complex, and deflection of the MT. It is important to note
that by assuming the input interaction energy takes the form given in
Equation (6.1), I imply that the spatial variations in the interaction energy

arise primarily due to differences in the proximity of filaments to the



NE, and neglect any contributions that may arise from heterogeneities in

chemical binding or system deformability.

Under this construction, the separation / stores the original input signal,
which may encode information on the status of the cytoplasm (and
the other nuclei), and be subsequently transcribed into the NPC dis-
tribution to be later read off by processes within the nucleus. Indeed,
the proximity of such biological filaments regulate nuclear processes in
other systems, for example by influencing mitosis [298, 299] and nuclear
import [300, 301], as well as causing the rearrangement of chromatin,
leading to changes in gene expression [302, 303]. In particular, in S. arctica
extranuclear MTs have been shown to influence nuclear positioning and

morphology, including during mitosis [145, 304].

By measuring the separation distance / from immunostained expansion
microscopy images of S. arctica nuclei, in this chapter I test the predictions
of output NPC densities made by substituting Equation (6.1) into the
filter response function given by Equation (3.21), and assess whether
the arrangement of NPCs corresponds to the output of a filter for the
proximity of the adjacent MTs through comparisons of this prediction
to the probability of having an NPC located in the NE at that point

measured along the input MTs.

6.2 Image analysis pipeline

The MT-NE distance, and the NPC coordinates, were estimated from
expansion microscopy images with fluorescent labelling of the MTs,
NPCs, and membranes. The imaging was carried out by Hiral Shah,
following the experimental setup and data acquisition protocol described
in [145]. This section focuses on the theoretical and computational analysis
of these images. Expansion microscopy is an imaging method that
combines optical and physical sample magnification, using a swellable
hydrogel [305], to provide higher resolution static 3D image stacks than
achievable using conventional confocal microscopy. This permitted the
identification of individual NPCs and MTs in the imaged nuclei (Figure
6.2), from which the separation distance & and NPC distribution were
extracted using a custom image analysis pipeline that I developed, briefly
detail below and available in [306]. The original expansion microscopy
data used in this chapter, and the corresponding post-processed image
data is available at [307].

Nuclear Envelope segmentation

Image analysis pipeline
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Figure 6.2: (Right) the custom im-
age analysis pipeline accurately traces
MTs (purple) and identifies NPC coor-
dinates (green) from ultrastructure ex-
pansion microscopy images of S. arctica
nuceli, shown here for an example image
stack (left, 3D rendering). Reproduced
from [213], licenced under CC BY 4.0.

Figure 6.3: The nuclear volume is iden-
tified from the membrane channel sig-
nal (top) using a Hessian filter to iden-
tify surface-like structures (middle) from
which the nuclear volume may be seg-
mented (bottom), shown for an single
mid-nucleus image slice.

Traced

The MT-NE separation distance was measured by first forming a binary
image mask of the nuclear volume. This was performed using the fluores-
cent membrane marker, which labelled all phospholipid membranes in
the expanded sample (Figure 6.3 top). Due to the variable intensity of this
fluorescence labelling, I used a Hessian filter that amplified surface-like
structures in the image to identify the nuclear surface, following the
approach laid out by Frangi et al. in [28] (Figure 6.3 middle). This filter
amplified image regions with one large and two small eigenvalues of
the image Hessian, identifying surface-like regions where the image
intensity remains approximately constant in two orthogonal directions,
and changes rapidly in another. Similar image processing filters based
on [28] exist both within standard imaging tools such as Fiji [308] and
within image analysis packages such as SciKitlmage [309]. However,
these implementations focus on segmenting filamentous structures, and
discard the other conclusions of the paper highlighting how similar
algorithms may be used to amplify surface-like features in an image.
I therefore produced a custom implementation of this surface filter.
This was beneficial over simple thresholding methods in correcting for
patchy and grainy labelling, and artifacts from inhomogeneous lighting

conditions.

Following the identification of membrane surfaces, a sequence of thresh-
olding and morphological operations on the resultant binary image
permitted the segmentation of the inner nuclear volume, and from which
the nuclear surface was identified (Figure 6.3 bottom). These follow-up
procedures corrected for small Hessian-filter artifacts that protruded
into and out of the NE. As such this protocol was well suited to the
smooth surface of the S. arctica NE, but may struggle if applied to rough

membrane topologies in other cellular environments.

MT Tracing

To overcome the challenges in data extraction presented by the patchy

and uneven labelling in expansion microscopy data (Figure 6.4 top), the



positions of MTs in the three-dimensional image stacks were identified

using the following custom pipeline.

Firstly, irrelevant microtubular signals from within the nuclear volume
were removed from the analysis by masking the nuclear interior. These
signals arise because, during nuclear division, a network of MT polymers
called the mitotic spindle forms within the nucleus and, although in this
study we considered only interphase (non-dividing) nuclei, some low-
level MT signal occasionally appear within the nuclear volume [145]. Next,
following standard noise-reduction treatments, filamentous structures
were identified using skimage.filters’s Sato and Frangi "tubeness’ filters.
Although — similar to the surface filter described above — both filters
utilise the image Hessian, they have different competencies [310], and I
found that the sequential use of the Sato filter followed by Frangi filter
was most affective in identifying filaments in the MT data (Figure 6.4
middle).

Having identified tube-like regions in the images, MT "skeletons’ — single
pixel width traces of objects in a binary image — were formed by taking a
threshold of the amplified signal and applying skimage.morphology’s
skeletonize_3d function. Due to patchy labelling and as a consequence
of the tubeness filters, this skeletonizing process resulted in a collection
of skeleton branches broken into slightly separated parts. A custom
algorithm was then used to identify proximal, well-aligned branch ends,
and join them by tracing the highest signal intensity path through the
original image between the two end points using skimage.graph’s route_-
through_array function. Having connected the disjointed branches, full
MTs were traced by combining connected, aligned branches into single
paths with preferential order determined by the alignment at the branch
joint. This permitted the identification of individual MTs in the case

where two branches crossed one another.

Finally, to reduce the influence of errors arising in the high MT density
region around the MTOCSs, which were identified manually, traces of
MTs within a radius of 0.6 um from either MTOC were discarded and
replaced with the highest signal intensity path from the end of each MT
trace to the MTOC coordinate. This identified the most likely path of the
MT, given it originates from the MTOC, and resulted in a collection of
MT coordinates that traced out the path of the MTs connected to each of
the MTOCs in the 3D image stack (Figure 6.4 bottom). Having proved
particularly successful in treating the patchy nature of MT labelling in
expansion microscopy, this tracing protocol is now being applied to trace

MTs in other systems.

Neglecting MTs from all nuclei with major segmentation or tracing errors,

the separation distance & for each MT was calculated by identifying, for
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Figure 6.4: The MTs were traced from
the MT image channel (top) using Sato
and Frangi filters to identify tube-like
structures (middle) from which the MT
traces were identified (bottom), shown
as a 3D rendering for an example image.
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Figure 6.5: The NPC coordinates were
identified from the NPC-labelled image
channel (top) by first masking the non-
nuclear signals (middle) and then iden-
tifying the NPCs using a Difference-of-
Gaussian method (bottom), shown here
as a 3D rendering of an example image.

each coordinate in the MT’s trace, the closest point on the nuclear surface
resulting in a MT "shortest projection line” on the nuclear surface. The
separation between these coordinate pairs gave the value of h. Since
this chapter concerns MTs that influence NPC distributions, I discarded
MTs that were either too short, or did not pass along the nuclear surface.
This was achieved by applying a selection criteria on the total length
of the filaments (>1.1 um) and their proximity to the NE (<0.3 um over
the nearest 1.1 um to the MTOC). The remaining filaments were used to
estimate the average area-fraction of NE-proximal MT filaments on the
NE, ¢ = (0.21 + 0.03) (used in Figure 6.9).

NPC point extraction

The coordinates of approximately all the NPCs on the nuclear surfaces
were identified by first masking the NPC signal (Figure 6.5 top) to
keep only signals pertaining to NPCs at the nuclear surface (Figure 6.5
middle). This prevented erroneous contributions from artifacts in the
cytoplasm and nuclear volume. Following noise reduction treatments,
the coordinates of the NPCs were then identified using ski.features’s
blob_dog function, which implements a Difference-of-Gaussian method
to identify peaks in signal intensity greater than 5% of the maximum
intensity (Figure 6.5 bottom). Calculating the nuclear surface area from
the segmented nuclear volume, the average spacing of NPCs over all of
the nuclei was then found to be d = (440 + 50) nm. To measure the one-
dimensional distribution of NPCs along the MT filaments, NPCs within
a distance of 160nm from each filament’s shortest-distance projection
line were treated as occupying the closest coordinate along this line.
The NPC line-density along the length of each MT was then found by

coarse-graining each filament to boxes of size 0.26 ym.

6.3 Sigmoidal NPC distributions

Using the extracted MT-NE separation distances, I compare predictions
of NPC line-density to the measured one-dimensional NPC distributions.
In this section, I describe how the MTs were grouped into clusters with
similar separation distance profiles, across which average NPC densities
could be found, and used to fit predicted NPC distributions to the
measured values to find estimates of the effective particle size dy and

effective spring constant k.



6.3.1 MT-NE separation increases along filament length

The accuracy of the NPC density measurements was improved by aver-
aging over clusters of MTs with similar MT-NE separation profiles. The
clusters were identified by first discarding all filaments of lengths less
than 3.4 um, so that the remaining filaments were of similar lengths. This
resulted in 110 individual separation profiles. Using a region of interest
(ROI) defined as the MT segments between 0.2 um and 3.8 um from the
MTOC, the similarity between pairs ij of MTs was quantified using a
dissimilarity score,

S Ve = )

Min(Ny;, Np;)

Dissimilarity Score = (6.2)
where k indexes the pixels and Nj; denotes the total length of the
ith profile h;. Computing a dissimilarity matrix of these scores, the
MTs were sorted into nine groups using an agglomerative clustering
algorithm. Clusters containing fewer than five filaments, or with a
combined dissimilarity score larger than 4000, were considered too
dissimilar to be appropriate for further analysis and were therefore

discarded, resulting in five suitable filament clusters.

This process revealed that the MTs had increasing separation distances
from the NE from their anchor point at their respective MTOC to to-
wards the nuclear equator (Figure 6.6, pale lines). Performing a rational-
exponential re-parametrization of the measured height profiles in each
cluster resulted in a differentiable representation of the typical separation
profile h for each cluster (Figure 6.6, dark lines), which could then be
used to make a prediction of the NPC line density along the filaments
in the cluster using Equations (6.1) and (3.21). The corresponding aver-
age NPC line-density for the cluster was found by averaging over the
different filaments in the cluster. Similarly, the average NPC separation d
and average number of filaments per nuclear area (/A (see Chapter 3
Section 3.2.2) were also found independently for each cluster, as pre-
sented in Table 6.1, by averaging the values for each nucleus weighted
by the number of MTs that each nucleus contributed to the cluster. The
existence of five distinct clusters, and thus five distinct pairs of MT-NE
separation profiles and NPC line-densities, permitted a perturbative
study of the sigmiodal signal filter applicability to the S. arctica system
by assessing the performance of the NPC line-density predictions made

by Equation (3.21) for a variety of different inputs.
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NE-MT separation h [pm]

24 -

1 2 3
Arclength s [pm]

Figure 6.6: The individual tracks
(light colours) making up the distinct
MT clusters, and rational-exponential
reparametrisation of the tracks in each
cluster (dark colours), show that the MT-
NE shortest separation distance increases
as a function of the arc-length s away
from the MTOC. Top: Clusters 1 (yel-
low) and 2 (blue), Bottom: Clusters 3
(green) and 4 (lilac), Cluster 5 shown in
Figure 6.7). Inset reproduced from [213],
licenced under CC BY 4.0.
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a) NE-MT separation h [pm]
2-

0 1 2 3
Arclength s [pm]

b) NPC density pypc [pm™]
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Figure 6.7: NPCs form sigmoidal line
densities along MT filaments. a) MT-NE
shortest separation distance for cluster 5,
with individual MT traces in light pur-
ple, and the rational-exponential repa-
rameterization of these tracks in dark
purple. b) Fitting (solid green line) the
NPC density predicted from the repa-
rameterisation of the separation distance
yielded parameter estimates for the ef-
fective spring constant k and the effec-
tive NPC size dy (see Table 6.1). Shaded
area: 95% confidence interval. Fitted pro-
files for clusters 1 to 4 are available in
Appendix A.5. Reproduced from [213],
licenced under CC BY 4.0.

6.3.2 Binarizing filter describes NPC line densities

Predictions of NPC line-densities were made by substituting the re-
parametrized height profiles for each cluster into Equation (6.1) and
using (3.21). I approximated the chemical interaction energy between
an NPC and its binding site by a chemical interaction energy enpc =
25kgT [311]. Hiral Shah provided independent measurements for the
resting spring length /1y = (84 + 15) nm from electron microscopy images
by measuring the minimum NPC-MT separation distance within high-
density regions of our ROIs from electron microscopy images from Shah et
al.[145], using the image processing software Fiji [308], see Appendix A.5
Table A.2.

Estimates of the effective spring constant k and the effective particle size
dy for each cluster were found by fitting the line-density predictions to the
measured line-densities, using the average NPC separation d and average
number of filaments per nuclear area /A found for the corresponding
cluster. Indexing each coarse-grained location by i, the fit was achieved

independently for each cluster by minimizing the objective function

J(p, pik, do) = > 5(pi = p(Gi k, do))?, (6:3)
i
in which p denotes the measured density at the arc-length position §;,
and p was computed by evaluating Equation (3.21) with re-parametrized
separation distance /(3;). Averaging the results of these fits, and taking the
standard deviation as an estimate of the error, I thereby obtain estimates
for the effective NPC size dgnpc = (260 +50) nm, and the spring constant
characterizing the elastic interaction between NPCs and microtubule
filaments knpc = (0.04 + 0.03) pNnm™!. An example of the fit results for
cluster 5 is presented in Figure 6.7, and the remaining four are available
in Appendix A.5. The fit results for each cluster are summarized, along

with the corresponding d and (/A values, in Table 6.1.

Table 6.1: Estimates of S. arctica nuclear parameter estimates found from measurement or through minimisation of the objective function
Equation (6.3) for the five distinct MT clusters. Reproduced from [213], licenced under CC BY 4.0.

Average | Average number . . . .
partic%e of filaments per | Fitted effective | g5, ;| Fitted effective 95% CI
Cluster . particle size spring constant -1
separation nuclear area do [nm] do [nm] k [pN nm-1] k [pPNnm™]

d [nm] C/A [um™] 0 p
1 443 0.27 310 {350, 260} 0.036, {0.029, >0.109}
2 451 0.27 310 {340, 280} 0.024 {0.020, >0.109}
3 437 0.30 230 {260, 200} 0.090 {0.084, >0.109}
4 452 0.30 200 {240, 180} 0.030 {0.028, 0.032}
5 466 0.28 240 {250, 220} 0.026 {0.025, 0.059}
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Effective particle size, dy

While Equation (3.21) captures the sigmoidal relationship between the
input separation and output density profiles of each cluster effectively,
the resultant estimate of the minimal NPC separation distance is larger
than the known NPC diameter (approximately 100 nm [278]). To assess
the validity of the estimate for the effective particle size, I compared the
result to independent measurements, made by Hiral Shah, of minimum
NPC separations in the high-density regions of electron microscopy
images from [145], see Figure 6.8 and Appendix A.5 Table A.2. These
measurements provided an independent effective particle size estimate,
dp ~ (190 + 40) nm (mean * standard deviation, Table A.2), close to the
fitted estimates attained above. The larger effective particle sizes from
both of these approaches suggest that the NPCs experience additional,
non-steric repulsion effects, perhaps due to interactions mediated by
NPC-induced curvature of the nuclear-envelope, or alternatively from

additional proteins binding to the outer edge of the NPCs.

Effective spring constant, k

In comparison to the effective particle size, for which the fits were well-
constrained, for some clusters the cost functions of the fit exhibited
shallow regions that extended in the direction of the effective spring
constant, implying that — over the explored range - the fit was of limited
sensitivity to variations in this parameter. Despite this, the resulting
estimates for the spring constants are consistent across the five distinct
MT datasets (see Table 6.1).

Opverall, I find that the sigmoidal signal filter model describes the observed
NPC patterns well across all five of the MT clusters. Since each cluster
has a distinct input separation profile, these results lend strong support
to the interpretation that this particle pattern is guided by the spatially-
varying separation between the nuclear envelope surface and the MTs
that pass adjacent to it, and controlled by repulsive interactions between
the NPCs.

6.4 NPCs fall within optimal information

transmission regime

Having identified the MT-guided NPC patterns in S. arctica as a possible
biological example of particle-mediated signal filtering, it is informative
to ask whether sufficient information could be transmitted by these

filters. I address this by comparing the measured values of the effective

a) Electron Microscopy Image
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Figure 6.8: Fit values for the effective
NPC size dy are supported by indepen-
dent measurements of minimum NPC-
NPC separation distances from electron
microscopy (EM) images. a) EM images
showing NPCs in the high-density re-
gion of the filament close to the MTOC.
The separation distance was measured as
centre-to-centre distance between adja-
cent NPCs along the filament. b) Compar-
ison between the fit and EM-measured
values for dy. Dashed line indicates the
diameter of the NPC (120nm). Repro-
duced from [213], licenced under CC BY
4.0.
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Figure 6.9: The fitted effective NPC size
do, combined with the measured average
NPC separation distance d, indicate that
the NPC distributions can binarise the
MT proximity signal effectively, given the
measured filament density ¢ = 0.21 +
0.03. Reproduced from [213], licenced
under CC BY 4.0.

Figure 6.10: S. arctica nuclei undergo a
“closed mitosis’ nuclear division cycle.
Sketches (right) and maximum intensity
projection expansion microscopy images
(left, NPCs in blue, MTs in red) of this di-
vision process show that this cycle starts
with the buckling of the MTOCs towards
the nuclear centre. Images reproduced
from [145], licenced under CC BY 4.0.
Scale bars, 5 um.
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particle size, dy, and average NPC separation, d, to the predicted region
of optimal information transmission, calculated as described in Chapter 4
for filamentous inputs with an area fraction of ¢ = 0.21 as measured
for the S. arctica system (see Section 6.2). As shown in Figure 6.9, this
reveals that the biophysical parameters of the S. arctica system allow
the NPC pattern to efficiently transmit thresholded information about
the MT proximity profiles into the NE, close to the optimal information
transfer possible for this filter. Inspired by observations that MT-nucleus
interactions can influence nuclear functions such as gene expression, mi-
totic remodelling, and chromatin organisation, this compressed filament
proximity signal could be expected to coordinate subsequent processes
within the nucleus [145, 298-304].

6.5 A possible readout mechanism

Throughout this thesis, it has been assumed that particle distribu-
tions facilitate information transmission by permitting processes within
membrane-enclosed compartments to access information from the mate-
rial surrounding the compartment. A key remaining question is therefore
how such particle distributions could be read out by down stream tasks,
the answer of which is likely to be system specific. While the following
discussion is purely speculative, the NPC patterns discussed in this
chapter may point towards a possible mechanism for reading out the

information that they encode.

It has been observed that during the nuclear division cycle in S. arctica,
the MTOCs dimple towards the centre of the nucleus, countering an
outward force produced by the formation of the mitotic spindle (Figure
6.10) [145]. Occurring at approximately the same time in all of the nuclei
of the cell, this dimpling may act as a trigger coordinating the subsequent
nuclear division, perhaps by initialising the formation of the mitotic

spindle. I suggest that such dimpling may be caused by a buckling



transition actuated by active stress imbalance between the MT and NPC
layers of the pattern. In various species, interactions between NPCs
and MTs are facilitated by the molecular motor dynein, or one of its
homologues, which drive the active motion of cargo towards the minus
end of MTs [312-315]. If the interaction presented in this chapter is
mediated by a molecular motor like dynein, there would be an active
force pulling the NPCs along the MT towards the MTOC. It is the subject
of ongoing and future research to uncover the consequences of such
active processes, however, it can be expected that this would lead to an
increased gain of the filter and — more importantly in this case — produce
a bi-layered system with one contractive layer of MT-associated dynein

connected to an incompressible layer of high-density NPCs.

In brief, the NPCs would be stochastically pulled by the molecular motor,
but their motion would eventually become arrested by their repulsion
and result in maximum-density rods of NPCs. However, adjacent to the
NPCs, the molecular motor may continue to walk along the microtubule,
resulting in an effective active contraction. The resulting stress imbalance
between the incompressible NPC rod on the nuclear surface and the
MT-motor complex attached to it may lead to a buckling transition, akin
to buckling in epithelial layers [316], causing a dimple to form when the
stress imbalance is enough to overcome the surface tension and bending
resistance of the membrane. Assuming this critical strain depends on
the size of the high-density regions, this would permit the buckling
transition to enact a binary readout of the size of the NPC asters. Such
stress imbalance buckling transitions have indeed been observed in
several biological systems, and have also been implemented in many
synthetic systems, such as dome-patterned mechanical sensors and
memory-storing hysteretic spring networks, to perform computations
and binary readouts of continuous signals [19, 20, 51, 260, 316-324].
It would be an exciting future direction to investigate whether such a

mechanism is at play in this biological system.

6.6 Concluding remarks

In summary, in this chapter  have presented an example biological system
in which protein distributions may act as sigmoidal signal filters. Treating
the structure of the microtubule cyctoskeleton as a fixed store of initial
information in S. arctica cells, I demonstrated that distributions of NPCs
embedded within the nuclear surface provide a thresholded readout of
microtubule proximity to processes that occur within the nucleus, as
such providing a means to coordinate intranuclear functions. Although I
discussed briefly a possible mechanism for how such processes are read

out, it remains an open question to determine whether this is truly a

Concluding remarks
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mechanism of control in this system. As previously noted, the assumption
of an effective elastic interaction and fixed input structure neglects any
changes to the input that may be caused by the binding of the NPCs. It
is, however, likely that such binding would influence the position of the
microtubules, leading to a positive feedback loop between microtubule
morphology and NPC distribution. Extending the approaches presented
in this chapter to investigate the influence of feedback between the
NPC distribution and the separation profile would be an interesting
and pertinent extension of this work. As discussed in Section 5, such
feedback is expected to lead to a sharper transition between the high
and low density regions of the NPC distribution, although the resolution
at which it is currently possible to estimate the NPC densities likely
prevents observation of this difference. Overall, this chapter provides
supporting evidence of pattern-based information transmission in real,
living systems, and suggests a possible scenario in which to further test

the implications of such signalling processes.



Summary and outlook

The development of responsive smart materials which mimic the life-like
properties of biological systems, such adaptivity and responsivity, is
expected to solve several of the challenges facing current information and
computation technologies [1]. For the benefits of computation in such
soft systems to be realised, several key constraints need to be overcome.
For small-scale applications, the role of noise is expected to be particu-
larly important [7]. Living cells provide a good inspiration for physical
principles of computation in such noisy environments. In particular, the
development of bottom-up synthetic cells and soft nanorobots has been
facilitated by the understanding of biochemical and genetic signalling
cascades [6]. However, despite evidence of their relevance in sensing and
regulation in cells, spatially resolved particle distributions form a yet
under-explored means of signal processing in noisy, soft, living materials.
In this thesis, I have evaluated the performance of particle distributions
in transmitting information across membrane compartment boundaries
through the emergence of non-linear mappings which act as sigmoidal

filters that can binarize heterogeneities in the environment.

Inter-particle interactions are known to play important roles in the
emergence of protein patterns. Extending beyond chemical interactions, I
therefore addressed how physical interactions between particles influence
their spatial distribution. To place interaction-modulated particle distri-
butions in a statistically supported non-equilibrium framework, I first
presented an extension to current maximum caliber methods to address
the impact that microscopic constraints on particle arrangements have on
system dynamics. By considering state-transition statistics, I derived the
local detailed balance and fluctuation theorem for continuous-time jump
processes, as such providing further support for caliber approaches as the
non-equilibrium equivalent to equilibrium ensemble methods. Through
this approach, I accounted for general interacting particles, arising from
both constraints on particle arrangements and from density-dependent
interaction potentials, and showed how such interactions contribute to
mean-field particle dynamics as density-dependent potentials. Currently,
the microscopic caliber approach presented in this thesis is limited due
to its heuristic argument for the network scaling dependence of discrete
state escape rates, and a lack of treatment of particle-mediated energy
fluxes. A future research direction could be to address these limitations,
perhaps by explicitly accounting for ballistic movements in an approach

that addresses both potential and kinetic energy.
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Following the identification of contributions to mean field particle dy-
namics from physical particle interactions, I assessed the role of these
interactions in determining equilibrium membrane-associated particle
distributions, and controlling the transmission of spatially-resolved sig-
nals across biological interfaces. Considering input signals encoded
within a particle-environment interaction energy field, I showed that
inter-particle interactions lead to signal filters with non-linear response
functions that map input signals to output particle density fields. Taking
— as a key example — short range repulsive interactions, I identified a
non-local sigmoidal filter mechanism, which enacts a binarisation of
the input signal across a membrane and, using a van der Waals gas
model, I further showed how such thresholding filters may be improved
by longer-range attractive interactions. By considering these systems
through the lens of signal processing, it may be possible to understand
more about how patterns contribute to robust biological functions. It is
exciting to think about whether such processes may also be utilized in

synthetic cells.

Inspired by the diversity of structures in living cells, I further inves-
tigated how the shape of the input structure influences the response
function of the particle-mediated thresholding filter. I found that this
function depends on the distribution of interaction sites within the en-
vironment, with regions with no binding sites acting as a particle bath.
Considering, in particular, linear output densities along filaments of
binding sites, I found that a reduction in the area fraction of the mem-
brane covered by the filaments leads to a reduction in the number of
particles required to achieve the same form of response function. As
such, encoding input signals in filamentous structures provides a key
benefit over two-dimensional surfaces by reducing the need for large
membrane particle saturations. Filaments are ubiquitous in subcellular
biology, and are implicated in a wide range of signalling and regulatory
processes [222]. My results suggest an explicit mechanism by which
they may, when coupled to surface-mediated signal processing, pro-
vide a means of storing and communicating spatially resolved signals.
Such ‘dimension reduction” has been shown to be beneficial in other
systems — including centriole formation and pattern emergence — and
my results join this growing list of literature highlighting the importance
of multi-dimensional interactions [137, 325]. Beyond these binarising
filters, I further demonstrated that it is possible to develop more complex
signal filters through allosteric mechanisms for distinguishing bound
and unbound particles, specifically edge-detecting filters. This is exciting
as it illustrates how complex calculations and pattern recognition may

be achieved by guided particle distributions.

These results emphasise the role that hierarchical pattern forming systems



may play in signal transduction in living cells, suggesting a mechanism
for signal processing that could be instigated to enact control in synthetic
vesicles [6]. The integration of time-varying signals might allow additional
signal processing modalities [87]. Addressing the forms of response
functions in a dynamical setting would be an interesting and pertinent
extension to this work, clarifying how actively driven systems transmit

spatial signals.

The signal filter response functions describe the mean-field particle
distributions resulting from input interaction energy fields. However,
in a real system the density fluctuates about this value, impacting how
well information can be transferred through the filter. The number
of bits of transferred information is important for determining how
reliably decisions can be made using the output signal. I therefore
assessed the sensitivity of the binarising filters to particle noise by
quantifying the information transmission that they achieve. Introducing
a discrete mutual information that accounts for whole-field signals,
I extend the existing mutual information formalisms to permit the
quantification of information transmitted by non-local response functions.
Although similar to the approach used in [16] to address information
content in multiple genes, this is distinct in its application to non-
local response functions. I identified optimal information transmission
regimes, for both uniform and filamentous binding site distributions.
This confirms my mean-field results that filaments provide an improved
signal transmission compared to surfaces. By comparing with biological
examples I demonstrated that these regimes are achievable in living
systems. These results indicate that information transmission by particle
distributions is plausible, and could be suitable for implementation
in synthetic vesicle control. Unfortunately, computational capabilities
limit my quantifications of information to small, discrete systems. More
computational capacity would be needed to address this in a larger
system where contributions from discretisation-induced artifacts would

be less impactful.

By defining relevant features in the input signal, I also computed the
transmission of relevant information, and in doing so assessed the level
of signal compression resulting from both non-linear mappings and
inherent channel noise. The resultant parameter regimes for relevant
information transmission were found to approximately coincide with op-
timal regimes for general information transmission, with inputs encoded
in filamentous structures performing better than those with uniform
binding site distributions over a wider range of parameters. This process
emphasised the tunability of the filter, with relevant signal features se-
lected by tuning membrane saturation. Typically the selectivity of a filter

would be assessed using the Fisher information [82, Chapter 11]. However,
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this proves unwieldy and challenging for the case of spatially-resolved
input signals, where the resultant matrix is multi-dimensional. The ap-
proach presented here provides an alternative option, albeit with the
drawback of requiring the identification of a relevant signal. This desired
readout, and the probability distribution of input signals used in the
mutual information calculation, are system specific. Despite efforts made
here to remain as general as possible, in applications to any particular
system the analysis should be repeated with suitably chosen distributions

and readouts.

Feedback is an important and unavoidable part of soft matter systems,
and extensive work has shown that it can provide a means of system
control, and aid in producing robust signalling cascades [140, 142, 265,
266]. By introducing feedback from the output density field back to the
input energy fields, I found that particle-mediated signal filters also
follow this trend, producing highly selective filters. This was shown to
be particularly beneficial when combined with filamentous binding site
distributions. However, interestingly, the total amount of information
remained approximately constant, with the increased distinction between
high and low density regions balanced by an increase in channel noise.
These findings may help in the design process for particle-mediated
signal filters by guiding the design of feedback-based control systems for

sensing and signal transmission.

One of the best ways to know if a signal processing mechanism is practical
is to see it in action. I therefore closed this thesis by presenting a biological
system where this sensing mechanism may be at play. In collaboration
with Hiral Shah and Gautam Dey, I used expansion microscopy data
to investigate the origins of nuclear pore complex (NPC) asters in S.
arctica, and showed that the NPC distributions followed the sigmoidal
form expected for particle distributions acting as a binarising filter.
Using parameter results found by fitting these distributions — verified by
independent measurements — I showed that this system falls within the
optimal information transmission regime. Although not a proof, these
results lend weight to the interpretation of particle distributions as a
signal processing medium. To address if this is indeed the case in S. arctica,
future work is needed to identify the downstream consequences of these
distributions, as well as to investigate what happens when information
flow is interrupted or perturbed. In a step towards addressing this, I have
suggested a possible readout mechanism for this system in the form of a
buckling transition, by which the density-stored signal may contribute to

coordinating the timing of the nuclear division.

While this thesis focused primarily on binarising filters, spatial infor-
mation processing is likely at play in many subcellular contexts and it

would be interesting to investigate how the guided formation of more



complex particle distributions may permit higher-level pattern recogni-
tion and information selection in these systems. Future work addressing
how downstream processes read out particle densities and how larger
feedback networks influence signal transmission are likely to shed light
on such complex signal filters. A particularly interesting direction would
be to extend the framework to consider input and output signals en-
coded in other spatially-varying system properties. Specifically, in this
thesis the output signal was encoded within the particle density field,
however, as indicated in the discussion of buckling, information can also
be stored in other fields such as heterogeneous tensions. By extending
the information-theoretic approaches here to the development of spatial
order in other fields, a general principle for spatial signal processing
may emerge. In the context of designing computational, small-scale
metamaterials, the signal processing mechanism presented in this thesis
may be enhanced through coupling to a memory-storage mechanism,
which I have partially addressed by imposing a distinct fixed input and
directionality of information cascade. Indeed, the geometry of subcellular
structures, such as the cytoskeleton, have been suggested to store cellular
memories [14]. However, true learning and complex communication
may need a more explicit store of signals and a means of integrating
signals from several sources. It is an interesting future research direc-
tion to consider how input information is stored and updated in such

structures.

Overall, I present the formation of guided protein distributions along
membranes as a signal filter mechanism and show that these distributions
may be used to transmit information across membrane-enclosed com-
partment boundaries. This signal processing framework could aid the
design of programmable synthetic vesicles or bio-compatible sensors by
providing a new way for nanoscopic computational logic to be encoded

in synthetic materials.
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Appendices

A.1 Alternative derivation of the caliber for volume excluding particles

In compliment to the approach presented in the example of Section 2.1, here I provide an alternative method
for constructing the caliber Q for volume excluding particles, by iteratively addressing the particles entering
a state from each of the possible origin states indexed by i € {1, ..., L}. Starting with the n] particles that

remain in the same state, given that the particles cannot occupy the same lattice site, there are

8!

Q= — —
T (=

ways of arranging the remaining particles into the lattice sites. Similarly, given n; sites are now occupied,

there are

(g1 —np)!
(g1 —nj — i)y

Qi =

possible paths by which particles starting in state i = 1 can move into the new state /. Continuing this for all
the initial states in the neighbourhood N (I) of state /, I find that the total number of paths to move all the

particles into / is given by

8! (81 —n))!
T - n)nlt (g — ) — )it
(g1 — 1)) = Ziwr nims1)!
T (g - n7) = Ziew() Him)—!

Q

By symmetry, that it doesn’t matter which order I chose to address the initial states i. Finally, this is repeated

for all the final states /, giving the total path count as

81!
7
= Zien(y Nim)M! Tz nisst!

Q=
m@vﬂ

as given in Equation (2.12).

A.2 Equilibrium interaction potentials from entropy maximization

This appendix section details methods and approaches included within the published article [213]

In the main text, I present a derivation of the contributions to the chemical potential arising from short-range
inter-particle repulsion, first using a hard-core lattice gas model and second from a soft-core potential. In this

appendix section I present an alternative approach for finding the chemical potential at equilibrium.
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A.2.1 Soft-core interactions

Starting with the soft-core interactions, I re-derive the equilibrium solution through entropy maximization,
which provides insight into the origins of the interaction potentials E;(py, pp). Consider a system of
indistinguishable particles with continuous, pairwise-additive interactions, which are distributed amongst B
multi-occupancy boxes of size dx (i.e. area dx?) indexed by j > 0. For simplicity, I consider a one-dimensional
system where these boxes are arranged in a line. The j = 0 box is considered as a reservoir, acting as a heat
bath exchanging energy, but not particles, with the system. The particles are able to enter a bound state
in any of the boxes. Identifying the number of unbound K; and bound M; particles in each box, I assign
box degeneracies gk and gy for the unbound and bound particles — with energies €, (constant) and €;,
(box-dependent) — respectively. In addition to the single-particle energy contributions €y, and €, arising from
the particle state, I also introduce an energy term E, (K i»M ]-) to account for local interactions between the

particles within a box.

Working in the microcanonical framework, I count the number of microstates W which share the macrostate
defined by {K;j, M;}. This is given by W = [1;5oW;, where W; is given by the Maxwell-Boltzmann

statistics [326, Chapter 13]
Kj M;

8k &m
Imposing constraints on the total energy U and total number of particles N, and the is number Ny of particles
in bath, the equilibrium state is found by maximising the Boltzmann entropy Sg/kg = In W. Using the

Lagrange multipliers «, a, B to apply the constraints on N, Ny, and U, respectively, the objective function

FUK}AM}Y) = InW+a| N=No— D> (Kj+M;) | +ao(No—Ko—Mo)+B| U= D (Kjeu+Mjep, j+E-(Kj+M;)) |,

>0 j=0
(A2)
is extremised by requiring that its derivatives are equal to zero,
) JE,(Kj + M;)
a_1j<rj = Ingx — InK;j = oja0 — (1 = Soj)ar = Bey — ﬁ% =0, (A-3)
d JE,(Kj + M;)
_aA]:Ij = Ingm —InM; — dojag — (1 — doj)ax — Be,j — ﬁ#j] =0. (A4)

Here, I apply the Stirling approximation, and use the Kronecker 6 x. From Equations (A.3) and (A.4), the
equilibrium box occupation numbers are found to be give by the Boltzmann distribution of particles over

energy levels with the chemical potentials of the bath iy = —a/f and of the system ps = —a /B, i.e.

aEr(K() + Mo) aEr(K() + MO)
ﬁ#o—eu—T ﬁ#o—eb,o—T

Ko =gxke 0 My =gme 0 (A.5)
JE,(K; + M) JE,(K; + M)

Kjso =gxe ] Miso =gme ] (A.6)

The reservoir part of the solution, Equation (A.5)—which I keep for completeness, plays no role in the

following.

I next divide Equation (A.6) by the box area dx?, and take the continuum limit dx — 0 as the number of
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boxes increases to infinity, yielding the particle densities at x = limgy— j dx:

dl;r_r}o d_x]2 = pu(x) = gugﬁﬂs—ﬁfu—ﬁE(P), (A7)
M

dhmod_xé = pp(x) = gbeﬁys—ﬁeb(x)—ﬁE(P), (A.8)

X—>

with p = py, + pp and the implied limits lim g, €p,j = €p(x),

im K _ - AR S Y SREUA | B _ 9p 9Ee(p)

dliglo A2 Sw dliglo d(K;/dx?) dx? Er »dx (dx2 - dx? || _8puEp(pu tpp) = dou dp Elp),
(A.9)

im SM _ A S PR Y SR | B _ 90 9E,(p) _
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(A10)

Through comparison with Equations (3.2), I identify p; o = guebts, fiu = €x + E(p), and fipep + E(p) +
kpT In(g./gp)- Assuming, as equivalently assumed in the main text, that the degeneracy of the boxes is the
same for bound and unbound particles, I recover the expected relation E;(p,, ps, x) = E(p), where E(p) is

defined through the limit in Equation (A.9).

A.2.2 Hard-core repulsion

Now considering the hard-core interactions, I derive the corrections to the chemical potential at equilibrium
arising from particle exclusion through maximum entropy calculations using a lattice gas framework. Treating,
as before, a system of particles distributed along a one-dimensional set of B boxes of area dx* and indexed
by j, I now introduce a lattice within each box with a total of Q) sites, of which a subset Q permit the
binding of particles. These sites are considered to be distinguishable. I then compute the entropy of the
particles by counting the the number of microstates W that make up the macrostate defined by {K;, M;},
starting by counting the arrangements of the bound particles. Since these can only be in one of the Q
binding-permitting sites, and no site can have more than one particle, the resulting number of combinations

of the M; indistinguishable particles is given by

Q!

Wyi= ———.
M.j (Q —M]‘)!M]‘!

(A.11)

Next, the possible arrangements for the free particles are counted. These particles can be in any of the

remaining () — M; unoccupied sites, and therefore the number of arrangements for the free particles is given

by

W, Q- M) (A12)
K,j= . .
Q- M; - Kj)IK;!
The number of microstates for one box is then the product of Equations (A.11) and (A.12), giving
Q- M;)!
Wj = WK,]'WM,]' = oAl ]) (A13)

(Q - M)NQ - M;j - K;)IK;!M;!

The equilibrium distribution of particles is found by extremizing InW = 3’5o In W; subject to the same
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energy and particle number constraints as before, yielding

K = (Q-Mj—Kje 0@ = (1=doj)afpey (A14)
-M; v — (1 — Sn: )y — )
My = QM- K2 =boja0 = (1= 00))a = v, (A15)
Q- M;

Taking the continuum limit dx — 0, following the process applied for Equations (A.7) and (A.8), I obtain the
densities

Pu(x) = (Pmax - Pb(x) - pu(x))e_a_ﬁeu (A16)

Pext — Pb(X) e—a—Ben(x)

Al17
Pmax — Pb(x) ( )

Pb(x) = (pmax - Pb(x) - pu(x))

where pmax = 1/ dé = limgy—0 Q/dx and pext = limgy—0 Q/dx are the maximum-packing and binding-site
densities respectively. Using equations (3.2) and (3.5), the I recover the results for the interaction potential
fields in Equations (3.13) and (3.14),

Eu(p) = —ksT In (1 - pp ) (A18)
and
AE(p) = Eu(p) — Ev(p) = —kgT In (;e“—_i;;) , (A.19)

for pp,0 = 7% Pmax-

A.3 Biological system parameters for comparison to optimal regimes

Table A.1: Parameters reported in or estimated from literature for particle-like proteins and macromolecular structures at cellular and
subcellular membrane surfaces, compared to optimal regimes for information transfer in Figure 4.7. Reproduced from [213], licenced

under CC BY 4.0.

Protein structure | Average density 1/ d? [um~2] Average separation d [nm] | Interaction length dp [nm]
Integrin LFA-1 120 [327] 91 10 [328]

Integrin VLA-4 | 75 [327] 115 10 [328]

E-Cadherin 630 [329] 40 7 [329]

TCR 42.4 [330, 331, BNID 103567]" | 154 10 [332] ©

ICAM-1 900 [333] 33 3[334]"

Connexons 5000 [335] 14 9.5 [336]

Piezo-1 0.52 [337] 1387 24 [338]

Caveolae 0.04 [339] 5000 75 [340]

VDAC 5000 [341] 14 3.8 [342]

ERMES 1200 [250] 29 15 [250]

Lipid GM1 17000 [343]" 8 3[344]

AChR 55 [345, 346] 135 10 [347, 348]

Fey-1 11 [349, 3501 302 2.7 [351, BNID 117058]
EGFR 636 [352] 40 17 [353]

Focal adhesions 0.14 [354, 355]" 2673 700 [354]

NPCs - 440 ™ 260

*dy = 2rmin With #min calculated from molecular mass value using [356]. * Calculated as number of protein complexes
per area of a spherical cell of a given diameter. ™ Measured in our study.
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A.4 Fluctuation calculations for particles densities with feedback

In Chapter 4, I derived the fluctuations in particle density expected in the presence of feedback. In this
appendix section, I give the partial derivatives required to evaluate this probability, and show how the limit

in A arises from the integral process.

The non-zero partial derivatives of the free energy in Equation (5.6) are given by

J%F aﬁj
A = A i = T P e ——
e Bpileq‘ Bov;(pj ~ Py
(’921: a(ﬁmax - ,517])
B = A 0 = T leq. = — — — —,
Piei ap2| 1 ‘B(p] - pbj)(pmax - P])
con.. =%E _en (A.20)
€j€j e 2| aﬁ
FInP
D =Ape; = _qu' =4,
E= B J%F oo = a
PP 9pdpy T T B(py — i)’

Recalling the local conditional probability in Equation (5.8),

P(py,j, pj, €jl{€oj}) = l—le A0 (X-R)-Y)

(A.21)
the probability distribution for particle densities p; can be found by integrating over the other variables py
and €;. Making the assumption that the fluctuations are small compared to the mean values p ; and €;, the
integral limits are approximated as spanning an infinite domain, resulting in Gaussian integrals. Taking at

first the integral over pj ; results in the conditional probability for p; and €;,

p p p € BApyiei Apip,
Apipi— A o (pj=pj* =5 |Acje; # (ej—&j)*+ M(P/ —pj)(ej—€j)
i7" Apyjppj i Appjppj PbjPbj
P(P//ijl{EO]})— e ’
PbJPb]

(A.22)

with the constraint that A, ., - > 0. Comparing to the results for the partial differentials in Equation (A.20)
this is shown to hold.

Repeating this approach and integrating over €; gives the local conditional probability distribution for the

densities,
A2 2
Abien; Aowjej0jpbj (-5
PiPi~ Zpp pp 3 i=Pi
P(pjl{eq}) =N o e R (A.23)
2
\/APb,berjAefef ~ Abije;

Collecting the non-exponential terms in a single normalization constant Py; = N 21 , and

N
substituting the partial differentials from Equation (A.20) results in the local conditional probability,

1 (P]'—ﬁ]')z

2 172.
P(pjl{eoj}) = Poje o, (A.24)
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where, using pj = pj/(1 + F4),

-2 _ a _ a
% pi(l- déﬁj) (BA(1 + eféiy2 — ﬁ]«gﬁéj)’

as given in Equations (5.10) and (5.11).

(A.25)

The second Gaussian integral, over €, is valid for A¢e; > A%bj ¢ /Ap, ;py,;- Substituting into this constraint the

results of the partial differentials in Equation (A.20), I find that this integral is only valid if A > py;(pj—pb;)/pj,

and as such I constrain the subsequent analysis to the stiff limit in which A > pax/4 > poi(p; — Pvj)/Pj-

A.5 Parameters and fits for sigmoidal NPC distributions

Table A.2: Parameter estimates for the effective spring rest length /19 and the effective particle size do for the NPC-MT system attained
by Hiral Shah from electron tomograms of S. arctica nuclei available in [145]. Reproduced from [213], licenced under CC BY 4.0.

| Values measured from electron tomography images [nm]

A|71 9 8 10 75 8 8 8 71 8 85 8 65 70 94 83 8 88 91 83 110 91 108 57 66
B | 266 236 222 183 156 161 163 141 224 249 235 186 228 178 187 135 151 169 177 229 200 162 190 170 184

A: Effective spring rest length ho
B: Effective particle size do
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Figure A.1: NPC distributions form sigmoidal line densities along MT filaments. Independent fits of the response function (3.21) (solid
green line) to measured NPC line densities (green dots with 95% confidence interval indicated by shaded area) shown here for clusters 1
to 4, with the fifth shown in the main text. The fits were made using the differentiable reparametrization of the separation distance h
between the NE and the microtubules (dark purple) of the tracks (light purple) in each cluster. Each fit resulted in an estimate of the

separation dy and the effective spring constant k. Reproduced from [213], licenced under CC BY 4.0.
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