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Abstract Frustration, bond disorder, and long-range interactions can produce novel,
highly nontrivial phases of matter. This thesis investigates a bond-disordered, dipolar-
interacting XY spin model, studied through both numerical simulations and exper-
iments on a Rydberg quantum simulator. Three major results are achieved: (i)
We analyze energetic-magnetic hysteresis in two disorder configurations, and find
pronounced hysteresis in the strongly disordered configuration for low energies. This
is a first experimental evidence of energetic-magnetic hysteresis in putative isolated
glasses. (ii) We develop an extension of the generalized Kibble-Zurek mechanism for
reverse quenches, which allows to characterize putative spin glass quantum phase
transitions by global magnetization measurements. We validate this extension numer-
ically exactly for one-dimensional systems, and subsequently experimentally extract
a critical exponent consistent with spin glass critical exponents measured in other
systems. This is a first tentative experimental evidence of a spin glass phase in an
isolated dipolar interacting spin system. (iii) We studied time reversal on a Rydberg
quantum simulator and showed numerically that, in bond-disordered power-law inter-
acting models, time-reversal-based protocols reveal a localization mechanism distinct
from conventional many-body localization at finite sizes.

Zusammenfassung Frustration, Kopplungsunordnung und langreichweitige Wech-
selwirkungen konnen neuartige, hochkomplexe Phasen der Materie erzeugen. Diese
Arbeit untersucht ein kopplungsungeordnetes, dipolares XY-Spinmodell, das sowohl
numerisch als auch experimentell auf einem Rydberg-Quantensimulator untersucht
wurde. Drei zentrale Ergebnisse wurden erzielt: (i) Wir analysieren die energetisch-
magnetische Hysterese in zwei Unordnungskonfigurationen und beobachten eine
ausgepragte Hysterese in der stark ungeordneten Konfiguration bei niedrigen En-
ergien. Dies ist ein erster experimenteller Nachweis einer energetisch-magnetischen
Hysterese in mutmaslichen isolierten Glasern. (ii) Wir entwickelen eine Erweiterung
des verallgemeinerten Kibble-Zurek-Mechanismus fiir Rickwérts-Quenches, die es
ermoOglicht, mutmafliche Spin-Glas-Quantenphaseniiberginge mittels globaler Mag-
netisierungsmessungen zu charakterisieren. Wir validieren diese Erweiterung nu-
merisch exakt fiir eindimensionale Systeme, und extrahieren anschlieSend experi-
mentell einen kritischen Exponenten, der mit den in anderen Spinglédsern gemessenen
kritischen Exponenten konsistent ist. Dies liefert erste vorlaufige experimentelle
Hinweise auf eine Spinglasphase in einem isolierten dipolaren Spin-System. (iii) Wir
untersuchten Zeitumkehr auf einer Rydberg-Quantensimulationsplattform und zeigten
numerisch, dass zeitumkehrbasierte Protokolle in kopplungsungeordneten, nach Poten-
zgesetzen wechselwirkenden Modellen einen Lokalisierungsmechanismus aufdecken,
der sich bei endlichen Systemgrofien von konventioneller Vielteilchenlokalisierung
unterscheidet.
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CHAPTER ]_

Introduction

Competing constraints shape both our everyday decisions and the behavior of complex
systems. Politicians must negotiate priorities that may conflict, financial markets
must balance risk and reward, and project management must reconcile precision
and speed. In all these cases, no solution can fully satisfy every requirement, often
resulting in multiple nearly optimal, and sometimes unexpected outcomes. This idea
that competing constraints produce rich, sometimes unexpected behavior extends also
to physical systems, where interactions between components can similarly compete,
preventing the system from finding a single energy-minimizing configuration. Under-
standing how these different configurations organize and emerge is thus of general
importance in the study of complex systems.

In magnetism, competing constraints arise when the geometry of bonds creates
spin—spin interactions that cannot all be simultaneously satisfied, a phenomenon
known as magnetic frustration [1, 2]. Frustrated systems often exhibit unusual
low-temperature behavior and complex collective phenomena that are qualitatively
distinct from those of ordered matter. For instance, classical spin liquids can host
low-energy excitations associated with emergent gauge fields [3, 4]. Beyond their
fundamental interest, their quantum mechanical counterparts, quantum spin liquids
[5, 6], feature also the possibility for topological quantum computing [7].

When magnetic frustration is combined with disorder, often an unusual magnetic
state known as the spin glass phase emerges at low temperatures [8-11]. In this phase,
individual spins freeze in a fixed but random orientation below a critical temperature.
Experimentally, spin glasses are typically identified by thermomagnetic hysteresis |10,
12| and by slow, history-dependent relaxation phenomena, commonly referred to as
aging, memory, and rejuvenation effects [13-15]. This slow relaxation, which in some
cases even exceeds a month [12], means that all investigation of the spin glass phase
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study out-of-equilibrium physics. Remarkably, they share very similar characteristics
despite this. Several theoretical frameworks have been proposed to explain these
behaviors. The most influential are the infinite-range replica-symmetry-breaking
solution [16] and the droplet model [17, |18], which differ mainly in the prediction of
the presence the absence or the absence of the spin glass phase at a finite magnetic
field. Apart from their importance for fundamental science, quantum spin glasses
have also been proposed as passive quantum memory devices [19].

As matter is typically electrically neutral and magnetic monopoles do not exist, the
strongest long-range electric or magnetic interactions naturally realized are dipolar.
As a result, dipole-dipole interactions play an important role in several quantum
simulation platforms, such as NV centers in diamond [20H22], polar molecules [23-26],
and Rydberg atoms [27-30]. In condensed matter systems, an important example
of a dipolar interacting system is the diluted rare-earth compound LiHo, Y; ,Fy,
which realizes a dipolar Ising spin glass [31]. At intermediate dilution (x = 16.7%), a
spin glass phase is experimentally well established [32]. However, at strong dilution
(x = 4.5%), the nature of the low-temperature phase remains debated, with evidence
pointing either toward a spin glass or a spin liquid-like regime [33-38]. Moreover, the
dynamics accelerate drastically in the presence of a transverse magnetic field, raising
the question of whether the spin glass phase persists at finite transverse fields [39-41].
Because such a field introduces quantum fluctuations, it is an open challenge to fully
understand the interplay of quantum fluctuations and dipolar interaction in putative
spin glass systems.

In a related direction, a strongly disordered three dimensional dipolar-interacting
Heisenberg XY model, realized on a Rydberg quantum simulation platform, was
recently shown to exhibit slow, glassy relaxation [42] and an apparent absence of
thermal equilibration on experimental timescales [43]. These findings demonstrate that
isolated dipolar-interacting quantum systems can display highly nontrivial dynamics,
similar to expectation from spin glasses. This motivates the central question of this
thesis

What is the nature of a bond-disordered, long-range interacting isolated spin system?

In this thesis, we address this question from two complementary perspectives.
First, we investigate whether the system displays signatures typically associated
with spin glass behavior. Motivated by established protocols used to characterize
thermomagnetic hysteresis in spin glasses [10, 12], we introduce analogous methods
to probe energetic-magnetic hysteresis in an isolated quantum system and implement
these protocols on our Rydberg quantum simulation platform. In addition, we develop
a theoretical framework based on the Kibble-Zurek mechanism [44] that enables the
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extraction of critical behavior using only global magnetization measurements. We
validate this framework for one-dimensional spin systems and subsequently apply it to
experimentally investigate the three-dimensional dipolar XY model on the possibility
of a magnetic-field-dependent spin glass transition.

Second, motivated by numerical studies demonstrating that spin glass phases
also feature many-body localization at finite system sizes [45-47], we explore the
emergence of localization phenomena in long-range, disordered spin systems. Building
upon our recent implementation of a time-reversal protocol on the Rydberg platform
[48], we numerically analyze how different time-reversal based protocols can be used
to experimentally detect localization in a toy model with power law interactions.

This thesis is structured as follows:

e In we review the key concepts, experimental results, and theoretical
frameworks relevant to this thesis. This chapter distills the open questions on
dipolar spin glasses and many body localization in systems with power law
interactions, setting the stage for the research presented in following chapters.

o In[Chapter 3] we investigate energetic-magnetic hysteresis in a three-dimensional
dipolar-interacting Heisenberg XY model. We first explain how this Hamiltonian
is realized on a Rydberg platform. We then introduce two new experimen-
tal protocols, zero-field annealing and field annealing, and implement them
to characterize the system’s response to different energy and magnetic field
histories.

o In[Chapter j] we extend the generalized Kibble-Zurek mechanism to reverse
quench protocols and verify it for both uniform and disordered one-dimensional
transverse-field Ising models. We then implement the reverse quench protocol
on our Rydberg simulation platform to investigate potential critical spin glass
behavior in the dipolar-disordered Heisenberg XY model.

o In|Chapter 5| we first discuss how time can be effectively reversed on our Rydberg
quantum simulation platform and how potential experimental imperfections
may be further improved. We then study three time-reversal-based protocols,
the Loschmidt echo, the fidelity OTOC, and the magnetization OTOC, to
characterize localization on a bond-disordered power law interacting toy model.
We compare our observed localization properties with those of other known
localized systems.

o In[Chapter 6], we propose two directions to further probe glassy behavior using
our Rydberg simulation platform. First, we briefly introduce the concepts of
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aging, rejuvenation, and memory effects in spin glasses, and propose experi-
mental protocols to investigate these phenomena in an isolated spin system.
In addition, we evaluate wheter such an implementation might benefit from
the measurement of ac susceptibilities. Second, we discuss how a dipolar Ising
model, rather than the XY model, could be realized on the Rydberg platform,
enabling direct comparison with results in LiHo, Y; ,Fy.

o In [Chapter 7], we conclude the work presented in this thesis, organizing the
discussion around the open questions introduced in Chapter [2|

If not stated otherwise, all fits in this thesis have been based on the library
LMFIT [49], and all plots of numerical or experimental data have been producing
using the library matplotlib. The authors acknowledge support by the state of Baden-
Wiirttemberg through bwHPC and the German Research Foundation (DFG) through
grant INST 35/1597-1 FUGG, where the cluster Helix was used for the simulations
in Chapters [4] and [f] The AI language model ChatGPT (GPT-5, mini) was used
occasionally to support textual editing and to improve grammar, clarity, and style.
Its use did not affect the scientific content, methodology, analysis, or conclusions of
this thesis.
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CHAPTER 2

Concepts in Disordered Magnetism

2.1 Phases of frustrated magnetism

Geometric frustration arises when spin interactions are mutually incompatible, pre-
venting the system from settling into a simple ordered ground state. Instead, typically
a large number of nearly degenerate low-energy configurations emerge. Understanding
the structure and dynamics between these states is an important aim of this thesis,
which focuses on a frustrated magnet with long-range interactions.

To provide the necessary theoretical background, this chapter reviews the most
relevant frustrated phases: spin liquids, spin ice, the random singlet phase, and spin
glasses. While all of these phases lack conventional long-range magnetic order, they
differ in their ground state properties and elementary excitations. This diversity
poses a significant challenge to developing a unified framework for how microscopic
frustration leads to emergent complex macroscopic behavior.

Beyond their fundamental importance, these phases are also of interest for quantum
technologies such as topological quantum computing [7] and passive quantum memories
[19], because of their potential to host robust and perturbation-resistant quantum
states.

This chapter thus sets the stage for the central question of the thesis:

What is the nature of a bond-disordered, long-range interacting isolated
spin system?
2.1.1 Spin liquids, spin ice and the random singlet phase

We begin with the simplest case of magnetic frustration: antiferromagnetically
interacting classical Ising spins on an equilateral triangle. This small system captures
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T

Figure 2.1: Frustration leading to classical spin liquids. (a) Ising spins with antiferro-
magnetic couplings at the vertices of a triangle. The red spin violates the geometric
constraints imposed by the two black ones. The violating edge is highlighted by a
red coupling constant. (b) Triangular lattice. Edges represent antiferromagnetic
coupling, vertices spin positions (¢) The pyrochlore lattice. The pyrochlore lattice
can be viewed as consisting of two sublattices (blue and green) of tetrahedrons of
equal orientation. Spins sit at the vertices of the individual tetrahedrons.

the essential physics of competing interactions. The classical Hamiltonian governing
the system is
H = J (515 + 5355 + S3951) , (2.1)

where J > 0 is the coupling constant and S; = +1 describes the classical spin state.
For every edge of the triangle, the total energy is reduced when the spins on the
same edge are antialigned. As can be seen in Fig. [2.1[a), when we choose two spins
on one edge to fulfill this condition, the third spin cannot lower the energy on both
remaining edges. In this example, the lowest energy constraint is violated on the
left edge. The total energy of this state is —J — J + J = —.J. Of the total 23 = 8
configurations, all 2-up-1-down and 2-down-1-up configurations share this energy. As
a consequence, the system hosts a sixfold degenerate ground state.

Classical Spin Liquids

When the single triangle is extended into a two-dimensional triangular lattice, the
ground state degeneracy becomes extensive, scaling exponentially in the number of
spins. This was first demonstrated by Wannier in 1950 [50] and has since become
a textbook example of geometric frustration [1, 2]. Approximately a third of the
spins necessarily always violate the local antiferromagnetic constraint, resulting in a
macroscopically large set of degenerate ground states. Most of these configurations
are highly disordered and lack long-range magnetic order despite strong local (an-
tiferromagnetic) correlations. The continuous fluctuations among these disordered

Chapter 2 ¢ CONCEPTS IN DISORDERED MAGNETISM
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Figure 2.2: Susceptibility measurements in frustrated systems. (a) Schematic of a
susceptibility measurement. Arrows indicate the applied and measured magnetic fields.
The thermal bath surrounding the sample (blue box) is represented by a red sphere.
(b) Inverse susceptibility as a function of temperature for an antiferromagnet. The
solid line shows the expected susceptibility. The dotted line extends the Curie-Weiss
law down to its intersection with the zero inverse-susceptibility line, defining the
Curie-Weiss temperature. (c¢) Inverse susceptibility as a function of temperature for a
classical spin liquid. The solid line indicates the expected susceptibility. The dotted
line represents the extension of the Curie-Weiss law to the Curie-Weiss temperature.
The red dashed line illustrates that the susceptibility continues to follow the Curie-
Weiss law below the Curie-Weiss temperature.

states, reminiscent of molecular motion in a liquid, led to the classification of the
system as a classical spin liquid (CSL). As a result, the system retains a finite en-
tropy even at zero temperature. This appears to violate Nernst’s theorem, which
requires entropy to vanish in the zero-temperature limit. In practice, however, such a
violation is avoided: real materials inevitably experience small perturbations, such as
further-neighbor interactions, that lift the degeneracy and restore consistency with
classical thermodynamics.

These classical spin liquids also share an interesting experimental phenomenology.
Typically, as depicted in Fig. [2.2] (a), the inverse equilibrium susceptibility x ! is
measured as a function of temperature. The susceptibility describes the build-up
of magnetization M in a material as a function of an applied magnetic field H, i.e.
X = %. For magnetic materials in their paramagnetic regime, mean-field theory

2.1 PHASES OF FRUSTRATED MAGNETISM
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predicts that the susceptibility follows an inverse temperature scaling:

. cC
T T —Oow’

where C' is the material-dependent Curie constant, and 6oy is the Curie-Weiss
temperature. For antiferromagnetic systems, Ocy is negative. Mean-field theory
is expected to fail at temperatures on the order of |fcw| [51]. In Figs. [2.2{(b)
and (c), we compare the susceptibilities between an antiferromagnet and a CSL.
In the antiferromagnet, the susceptibilities follow the Curie-Weiss law from high
temperatures to |dcw |, which in this case is also the critical temperature 7T, for a
phase transition. On the other hand, in the CLS, the system follows the Curie-Weiss
law well below |fcw |, and the eventual critical temperature to an ordered state is
T. < |0cw/|. In this intermediate regime T, < T' < |fcw|, the system still looks like a
paramagnet, that is, follows the Curie-Weiss law, but since the temperature is lower
than the typical spin-spin interaction energy scales in the system that determine
Ocw, local correlations arise. As a consequence, classical spin liquids are sometimes
also dubbed cooperative paramagnets. At this point, we want to emphasize that this
behavior in the susceptibility is not unique only to classical spin liquids, but commonly
found in frustrated magnetic systems. The smoking gun for classical spin liquids lies
in the existence of extensively many degenerate ground states. Despite extensive
research, classical spin liquids (CSLs) remain difficult to classify and characterize
within a single unified theoretical framework. This challenge stems from the broad
variety of lattice structures, interaction types, and the discrete nature of classcial
spins [3} |4].

X (2.2)

Spin Ice

Spin ice is a prominent example of a classical spin liquid realized in the pyrochlore
lattice, as illustrated in Fig. 2.1c) and thoroughly reviewed in Refs. [52, 53]. This
lattice geometry is notably the same as that on which protons are arranged in water
ice. Unlike lower-dimensional systems, where reduced connectivity enforces stronger
local constraints, spin ice is distinguished as one of the rare classical spin liquid phases
naturally occurring in three-dimensional materials. Under antiferromagnetic boundary
conditions, the energy of each tetrahedron in the pyrochlore lattice is minimized when
the spins point either inward toward the center of the tetrahedron or outward. If one
spin points inward, the others must point outward to minimize energy, and vice versa.
Since it is impossible for all four spins in a tetrahedron to simultaneously satisfy these
opposing orientations, the ground state is characterized by the “ice rules”: exactly
two spins point inward and two outward per tetrahedron. These local constraints give

Chapter 2 ¢ CONCEPTS IN DISORDERED MAGNETISM



the system a topological character, giving rise to emergent fractional excitations that
manifest in the spin ice as magnetic monopoles. The term "fractionalized" reflects
the fact that, although the fundamental physical excitation is a complete magnetic
dipole, the lattice constraints enable the emergence of quasiparticles that behave
as fractions of this excitation, which are isolated magnetic monopoles in this case.
Inspired by these discoveries, so-called artificial spin ice systems have been engineered,
both in two and three dimensions, at the nanoscale to implement tailored ice-rule-
like constraints. These systems similarly exhibit extensive ground-state degeneracy
and support a variety of emergent fractional excitations [54-57]. Importantly, the
local constraints that produce these fractional excitations closely resemble the gauge
conditions fundamental to lattice gauge theories, establishing a conceptual framework
that will be central in the subsequent discussion of quantum spin liquids (QSLs).

Quantum Spin Liquids

Until now, the discussion has remained within the framework of classical mechanics.
However, already in 1973, P. W. Anderson posed a pivotal question: What is the
effect of quantum fluctuations in frustrated magnetic systems? In his seminal work
[58], he proposed that for the antiferromagnetic triangular lattice, the ground state
could be a novel quantum state, namely the resonating valence bond (RVB) state,
illustrated in Fig. [2.3|(a). In this picture, the system forms singlet pairs of spins,
referred to as dimers, which locally satisfy the antiferromagnetic exchange constraint.
The true ground state, Anderson suggested, is not a static arrangement of dimers, but
rather a quantum superposition of many such configurations, giving rise to long-range
quantum entanglement.

Analogous to the CSL, where no magnetic ordering occurs even at zero tempera-
ture, the RVB state preserves full spin-rotation symmetry and no ordering due to
spontaneous symmetry breaking occurs. This absence of conventional order, com-
bined with the long-range entanglement in the ground state, defines a new phase of
matter known as a quantum spin liquid (QSL). A rigorous proof for such a state on a
triangular lattice was later provided by Moessner and Sondhi in 2001 [59).

The long-range entanglement inherent in QSLs stands in stark contrast to con-
ventional ordered magnetic phases. In the latter, the ground state is typically
characterized by a local order parameter which can be calculated from the orientation
or magnitude of individual spins. Measurement of such an order parameter thus
requires commuting local spin observables, which is incompatible with the long-range
entanglement structure of spin liquids. Consequently, QSLs represent a qualitatively
distinct class of quantum ground states [5} 6].

2.1 PHASES OF FRUSTRATED MAGNETISM
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Figure 2.3: Quantum spin liquid and random singlet phase ground states. (a) Res-
onating valence bond state. The triangular lattice is covered by nearest-neighbor
spin-singlet bonds (blue shaded ellipses). (b) Sketch of the elimination of a strongly
interacting bond to approach the ground state of the random singlet phase. Black
circles represent spins, and lines Heisenberg interaction between these spins. Bond
thickness correspond to coupling strength. Red color highlights strongest bond
Jog > Jio, Joz. Dotted line represents effective new coupling between spins 1 and
4. Spins 2 and 3 form a spin singlet. (¢) Random singlet phase ground state. The
system falls into pairs of singlets (pairs marked by blue connecting lines). Note that
the lines do not cross.

Nonetheless, as in the case of CSLs, a key challenge remains: how can quantum
spin liquids be systematically classified? What physical mechanisms give rise to
such highly entangled ground states? Despite the diverse phenomenology of QSLs,
including gapped and gapless variants, and the presence or absence of well-defined
quasiparticle excitations, many can be described in terms of emergent local gauge
fields arising from spin interactions, where local gauge constraints are reminiscent
of the “ice rules” in classical spin ice. This emergent gauge structure enables a
classification of QSLs based on the symmetry of the associated gauge field [60]. For
example, when the effective field is governed by an Ising-like interaction, the emergent
gauge symmetry is Zs, leading to the so-called Zs spin liquid. Notably, experimental
realization of such a phase was only recently achieved on a Kagome lattice system [7].
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Despite all the theoretical advances, it remains an open and active area of research
whether QSLs can be reliably identified in natural materials, and more fundamentally,
what would be a definitive diagnostic for quantum spin liquids, as most experimental
signatures are not unique and can in principle result from extrinsic or unrelated
phenomena [61}, 62].

Random Singlet Phase

Unto this point, we only discussed the effect of geometric frustration. Another

interesting phase can also arise when the system is not frustrated, but only disordered.

The initial studies of strongly disordered one-dimensional antiferromagnets were
performed by Dasgupta and Ma [63] and Bhatt and Lee [64] in the early 1980s. Fisher
later successfully applied these methods to different nearest-neighbor XXZ spin chains
[65], and by now the random singlet phase (RSP) and its properties are well known
and reviewed [66]. The RSP is often called spin-liquid like, as it shares the partition
into singlets from the RVB state known from the QSL.

To get an intuitive picture, we study the random singlet phase in a strongly
bond-disordered one-dimensional spin-1/2 Heisenberg antiferromagnet. A subsystem
of such a long range 1D chain is depicted in Fig. [2.3{(b). This subsystem follows the
Hamiltonian

H = J155,55 + J235553 + J34555,. (2.3)

Here, S, denotes the vectorial spin-1/2 operator acting on spin i. We assume that
all couplings are positive and that the system is so strongly disordered, such that
one coupling is way larger than all the other couplings. In this example, we assume
Jog > Ji9, J34. In this case, we can simplify the Hamiltonian as

H=H,+H'

= J23.5953 + (J1251S2 + J34S3S4) :
The ground state of Hy is the spin singlet of Sy + S with energy —3/4.Jo3, which can
be written as

_ M-
[Wengier) = === (2.5)

where |ab) denotes a state in the product basis such that spin 2 is in the state |a)
and spin 3 in the state |b). The states |1) and [|) on site i are the eigenstates to the
eigenvalues 1/2 and —1/2 of the z-component of S;, respectively.
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In Eq. we can interpret H' as a perturbation to Hy. As a consequence, the
ground state energy in second order perturbation theory reads

3 ’ <\Dsin let|H,‘t>|2
Egs == _ZJ23 + <\Ijsinglet‘H,|\Ijsinglet> + Z Joz _g Y s (26)
her a2~ (=5)

where 7 denotes the set of all triplet states of Sy + S;. If we treat Eq. as an
operator equation putting an identity operator on all scalar quantities, we obtain a
new form

2 2

Egs = —ijgg - 136let;’2_3&]34 + J{4515'4. (27)
As a consequence, we can assume for the detection of the ground state of the system,
that the pair 2 «+— 3 form a singlet which is now taken out of the chain, and the
1D chain connects know spins 1 and 4 with the new coupling Jj, = %‘2};’4, which is
still positive. In the limit of strong disorder, this step can now be repeated with the
strongest coupling in the remaining chain. As a consequence, the ground state will
decompose into non-interacting, fixed singlet pairs |67, as we depict in Fig. [2.3(c).
Even though most spins will pair with their nearest neighbor, there are also spins
that pair with a spin that can be arbitrarily far away. As such, disorder gives rise
to a freezing of the ground state in singlet pairs, without the fluctuations we have

reviewed in classical and quantum spin liquids.

2.1.2 Spin glasses

As discussed in the previous section, frustration alone typically induces strong fluc-
tuations and a high degree of degeneracy, whereas disorder alone can lead to the
local freezing of spin pairs. When combined, these two ingredients give rise to a new
phase: the spin glass, which has recently been reviewed in multiple publications [9-11].
Remarkably, microscopically very different systems exhibit very similar behavior,
provided both frustration and disorder are present. This observation motivates the
definition of a spin glass phase:

“A spin glass is a random mixed-interacting system characterized by a
random, yet cooperative, freezing of spins at a well-defined temperature T,
below which a highly irreversible metastable frozen state occurs without
the usual long-range spatial magnetic order.” [§]

While this definition offers a solid theoretical basis, it does not directly translate
into measurable observables. We therefore begin this review by briefly reviewing

Chapter 2 « CONCEPTS IN DISORDERED MAGNETISM



(a) (b)

- > > =  —> o=
= = o> = > o>
= o> o> = =
> o= o= == == —o=p
- = P> =  —>

P

Figure 2.4: Intuitive picture of a spin glass phase. (a) Sketch of an Ising spin glass.
Each magnetic moment points randomly either upwards or downwards. The position
is frozen due to the interaction with neighboring spins. (b) Free energy F as a
function of configuration ®. The free energy landscape is rugged, but a hierarchical
structure is visible.

the two leading theoretical frameworks proposed to explain spin glass behavior: the
replica symmetry breaking (RSB) mean-field theory and the droplet scaling
picture , . Subsequently, we summarize the key experimental signatures of spin
glasses, which are also nicely reviewed in Ref. . This sets the stage for a central
question of this work:

Does a dipolar-interacting, isolated Heisenberg spin system host a spin glass phase?

After that, we consider a dipolar Ising spin glass, which is most closely related to the
one studied in this thesis, and which reveals intriguing connections to the quantum
spin liquid phase.

Theoretical models

As mentioned earlier, in spin glasses individual magnetic moments are frozen in
a certain, fixed direction, but their direction is random, as sketched for the Ising
case in Fig. [2.4(a). Intuitively, such a freezing without long-range order should be
due to a large energy barrier preventing each single spin from flipping to a possibly
energetically better configuration that lowers the total free energy. Thinking in a

mean-field picture, this is the idea behind the Parisi mean field solution , .
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In this theory, which is proven exactly for an infinite dimensional system, the free
energy landscape is rugged, as sketched in Fig. ﬂ(b), but a hierarchy of energy
valleys is present, mathematically expressed in the notion of ultrametricity. When
the system is falls into a local minimum, it has to overcome very high energy barriers
to reach the next minimum, which leads to very slow glassy dynamics. Moreover,
in the thermodynamic limit, the Parisi mean-field solution predicts a continuum of
multiple equilibrium states, which are separated by infinitely high energy barriers.
The upper critical dimension of this solution, defined as the lowest dimension where
mean-field theory describes the system accurately up to logarithmic corrections, is
D, > 8 at zero temperature and D, > 6 for finite-temperature models [69]. As such
it is even today, more than 50 years after the initial publication, debated to which
extent it is applicable to finite dimensional systems.

Fisher and Huse challenged this picture of multiple equilibria, and proposed
instead a droplet-scaling model [17, [18]. In their model, the spin glass has only two
true equilibria, like the Ising ferromagnet, which are related by the symmetry of the
Hamiltonian. When the system falls into one of the two equilibria, its excitations
are droplets of spin clusters of size L that flip simultaneously. However, the energy
of this excitation scales as a power law in the droplet size LY, which makes large
droplets very unlikely, and thus the system adapts only slowly to perturbations.

The TNT (trivial non-trivial) model, developed by Krzakala and Martin [70] and
Palassini and Young [71] as well as the chaotic pair model [72] try to combine aspects
of these models, as is nicely reviewed in Ref. [73]. They all share the idea of only
two ground states, but they differ in the nature of the excitations. Even though
tremendous numerical progress was established, the question of which model describes
the spin glass phase best is still unresolved, as finite size effects persists even up to
large system sizes [74]. Even though ultrametricity and replica symmetry breaking
have been recently measured in a small cavity system [75], large scale simulations
suggest that replica symmetry breaking might be only an effect visible for small
system sizes [76]. So far, the most promising experimental signature to distinguish at
least the RSB and droplet-scaling picture is a measurement of a spin glass phase in
presence of a finite magnetic field.

In quantum systems on expander graphs, properties which are impossible to
produce in finite dimensional systems can emerge. Here, it was shown that even in
an isolated quantum system, an extensive number of local topologically protected
ground states exists, but similar to the droplet scaling picture, excitations from these
ground states show a strong scaling in size, relying on a finite energy density to be
excited |19, |77]. As a consequence, it is an open question whether the models so far
also well suited to describe possible quantum spin glasses at zero temperature, or
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whether a change in paradigm will be needed.

Determining the transition temperature
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Figure 2.5: Thermomagnetism in spin glasses. (a) Time-dependence of the tempera-
ture (red, left axis) and magnetic field (green, right axis) curves both in the ZFC (top)
and FC(bottom) protocols. The system is always prepared at a high temperature
T}, and cooled down to a finite temperature 7. Dependent on the protocol, at some
time a finite field H is applied. (b) ZFC and FC susceptibilities x as a function of
temperature T". Typically a bifurcation at temperature 7j is observed, which is an
estimate of the spin glass transition temperature.

One of the first experiments in spin glass systems was the measurement of
susceptibilities [78]. A susceptibility is measured by applying a magnetic field H to a
probe, which causes a build-up of a magnetization M. The linear susceptibility y is
defined as the derivative of the build-up magnetization with respect to the applied
field x = dM/dH. An outstanding result was that below the freezing transition
temperature T, the system shows strong signatures of hysteresis, in the sense that
the magnetization M measured at a temperature 7" in an applied field H depends

on the history of the system. Over time, two standard protocols, sketched in Fig.

developed to characterize thermomagnetic hysteresis in different materials. In
both protocols, the material is prepared in its paramagnetic phase at high initial
temperature Tj,, where no hysteresis effects are present. In the zero-field cooled
(ZFC) protocol, the material is cooled down to its final temperature. After that, a
magnetic field H is applied, and the magnetization is measured. In the field cooled
(FC) case, the field is first applied, and the material is cooled down in the presence of
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this field. Dividing the measured magnetizations by the applied field gives the ZFC
and FC susceptibilities. A bifurcation between them indicates hysteresis, and the
temperature at which they bifurcate gives an upper estimate for the glass transition
temperature T, and shows the onset of irreversibility in the system [79]. Initially, it
was believed that a splitting between the ZFC and FC susceptibilities, as sketched
in Fig. [2.5(b) is a hallmark of the spin glass phase [80]. This was even further
established as in terms of the Parisi mean field solution of spin glasses |16} 68], this
splitting can be related to replica symmetry breaking. However, recent progress in
the construction of high precision detectors and nanofabrication techniques showed
that such a bifurcation is also observed in ferro- and ferrimagnetic systems [81, [82]
as well as in ensembles of nanoparticles [83-85], where this phenomenon is related
to coercivity and crystalline anisotropy in the lattice structure. Also in spin glasses,
it is still an open question how accurately the onset of bifurcation is estimating the
glass transition temperature, which was only recently investigated in comparison with
other methods [86]. Nonetheless, the observation of this bifurcation effect remains a
necessary condition for spin glass behavior, and one of the most important effects
observed in these systems.

Typically, the ZFC magnetization has a strong time dependence, while the FC
magnetization is nearly constant [79, 80]. This is usually explained as the ZFC state
being quenched to a temperature below the glass transition and thus evolving to its
true equilibrium state, while the FC state could already align to the applied field
during the cooling procedure, and is thus an equilibrium state. This picture was
challenged by recent experiments [87, [88], and thus it is still an open question what
exactly is the microscopic reason for this macroscopic bifurcation. Even more so, as
cooling is a crucial ingredient in these protocols, the question arises

How can thermomagnetic hysteresis protocols be adapted to isolated quantum
systems?

Measuring critical exponents

One of the most important techniques to characterize spin glasses [12], and magnetic
systems in general [89], are AC susceptibility measurements, which will be crucial to
establish the spin glass as a thermodynamic phase, in the sense that it can be identified
by a set of critical exponents. For the measurement of an AC susceptibility at frequency
f, the magnetic field H is time dependent, i.e. H(t) = H cos(2mw ft). As a consequence,
the response of the system at this frequency is M (t) = M’ cos(2n ft) + M" sin(27 ft),
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so two different susceptibilities can be defined:

, dM’

2.8
X =— (2.8)
is the in-phase susceptibility, and
dM//
"= 2.9
X'=—% (2.9)

is the out-of-phase susceptibility, which in solids is typically related to absorption
or dissipation. The first measurement of an AC susceptibility in a spin glass was
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Figure 2.6: Sketch of AC susceptibility measurements in spin glasses. (a) In-phase
(x') and out-of phase (x”) susceptibilities as a function of temperature 7. The peak
in x’ marks the freezing temperature 7. (b) Temperature dependence of the in-phase
susceptibility x’, measured for for different frequencies fy<f1<fo<f3. Black arrow
serves as guide to the eye to indicate that the maximum of x’ moves towards higher
temperatures for higher frequencies.

conducted by Cannella and Mydosh in 1972 [90], marking the beginning of the field.

As sketched in Fig. [2.6(a), they observed a peak in the in-phase susceptibility y/,
accompanied by a sharp increase in the out-of-phase susceptibility x”. This behavior
closely resembles that of a phase transition in an antiferromagnet. However, no
evidence of long-range magnetic order was found.

At the time, it was speculated that the sharp peak at the so-called freezing
temperature Ty could be an artifact of the measurement protocol, possibly the result
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of a sharp many-body resonance excited by the AC drive. In case of a thermodynamic
phase transition, 7% is expected to be independent of the drive frequency. This was
initially confirmed with high accuracy over five decades of frequency in a 1979 study
[91].

However, subsequent and more precise measurements revealed a subtle but mea-
surable dependence of T on frequency [92], which later became one of the hallmark
signatures of spin glass behavior. This characteristic is now commonly quantified
using the Mydosh parameter [93]

g Ty, — Ty,
Ty, logy, (f2/ f1)

which is believed to be the most reliable observable to distinguishing different spin
glasses, like the canonical spin glass from the cluster spin glass, and a superparamagnet

[94], which are sketched in Fig. 2.7

(2.10)
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Figure 2.7: Sketch of different glassy-like systems. (a) Canonical spin glass. Individual
spins (black arrows) are frozen in a random direction. (b) Cluster spin glass. Spins
form magnetic clusters (blue circles). Each cluster is frozen into a fixed direction
due to random interactions. Cluster spin glasses are believed to be described by
the same theory as canonical spin glasses [80]. (c) Superparamagnet. A sample of
magnetic nanoparticles with different sizes, where each nanoparticle can host only
exactly one magnetic domain. Depending on the size of the particle, either all spins
in a single nanoparticle are tight to the crystalline easy axis (blue arrow), which is
called blocked, or they can flip collectively to a random direction, like a single spin in
a paramagnet, which is referred to as superparamagnetic behavior.

In spin glasses, the temperature dependence of the freezing transition T’ typically
follows the behavior illustrated in Fig. 2.6(b). With increasing drive frequency, the
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freezing temperature changes to higher values and the peak response decreases. This

reflects the fact that only the fastest spin dynamics can follow high-frequency drives.

Even above the critical temperature, some spins begin to freeze and thus respond only
slowly to external perturbations. As a result, they remain active under slow drives,
but cannot follow fast ones, leading to a frequency-dependent shift in 7. The reduced
peak amplitude at higher frequencies arises because fewer spins remain unaffected
by the onset of glassy freezing. In systems with long-range order, this behavior is
typically not visible, as the ordering due to spontaneous symmetry breaking happens
faster than any experimentally observable time scale. As such, in ordered systems
like ferro- and antiferromagnets, S = 0.

For canonical spin glasses, which are the magnetic alloys initially studied, S is
typically between 0.005 and 0.01. Later, so-called cluster spin glasses were studied
[95], where spins seem to form ferromagnetic clusters, and the clusters freeze into
an individual direction. In these systems, S is typically between 0.01 and 0.08. In
superparamagnetic systems, S typically exceeds 0.2. These materials consist of a

broad distribution of non-interacting or weakly interacting magnetic nanoparticles.

As a result, the system does not exhibit a genuine spin glass phase, as cooperative
effects are absent. The Mydosh parameter thus typically serves as a characteristic

tool to classify the type of spin glass, and to distinguish it from other phases [96-99).

In addition, the functional form of T as a function of frequency can shed further
light on the nature of the material. This dependence is typically rewritten in terms
of the system response time 7 = 27/ f. In order to exclude that the system consists
of individual non-interacting nanoparticles, the system’s response time is typically

fitted an Arrhenius law
U
T:ToeXp <k‘BTf> y (211)

where U is the activation energy of a typical nanoparticle, kg the Boltzmann constant,
and 7y a microscopic time scale. Both in canonical spin glasses and in cluster
spin glasses, fitting the frequency dependence of T} to this law leads to unphysical
parameters, like activation energies U/kp = 4000 K.

More reasonable values are obtained in cluster glasses from a Vogel-Fulcher law
[100, [101] which was initially developed to describe highly viscous fluids

T = Tpexp (M) ) (2.12)

where T}, corresponds to an interaction strength between the different clusters. In
spin glass physics, a finite 7y at the same order of magnitude as T is seen as an
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indication of cluster formation and a proof for a cluster spin glass [99).

In addition, the shift in frequency can also be used to determine critical behavior.
Close to a phase transition |[102] at the critical temperature T, the correlation length
¢ in a material is expected to diverge with the correlation length critical exponent v
as

E~T =T, . (2.13)

The relaxation time 7 of the system diverges with the dynamical critical exponent z
as

T~ £ (2.14)

In spin glasses, the critical temperature T, is assumed to be equal to the freezing
temperature in the limit of a DC drive, i.e. T, = lim_,o T [80]. This thus leads to a
scaling relation of the form

T,

g

T —T —Zzv
¢:m<fﬂ : (2.15)

where independent of whether the system is a canonical spin glass or a cluster glass,
combinations of zv between 4 and 12 have been measured [94].
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Figure 2.8: Nonlinear susceptibility in a spin glass. Sketch of the modulus of the
nonlinear susceptibility x3 as a function of reduced temperature (7' — T,) above
the glass transition temperature T,. Values estimated from [103]. In the double
logarithmic plot, we observe a power law divergence of the nonlinear susceptibility
toward the glass transition temperature.
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As the dynamical critical exponent is involved, this so far only establishes the
spin glass phase as a dynamical phase. In order to show the presence of a static
continuous phase transition, the exponent v need to be estimated independently in an
equilibrium setting. This is accomplished by DC susceptibility measurements above
the glass transition temperature, where no hysteresis effects are present, and thus
an equilibrium state is probed. It is noteworthy that the critical behavior is absent
in the linear susceptibility introduced above, but only present in the higher orders
of the susceptibility 80| (103}, [L04]. The magnetization M can be expanded in the
applied field H as

M(H) = xH + x3H® + xsH° + 3 xor H*. (2.16)
=3

In terms of scaling with reduced temperature 7 = (T' — T}) /T,, we find the scaling
laws

X3 ™~ ,7_—’}’7

.y (2.17)

X5~ T

This behavior was measured initially by Lévy et. al. [104] and improved to high
precision by Gunnarson et. al. [103], where we sketched their result in Fig. 2.8, We
observe a clear critical behavior of the nonlinear susceptibility following a power law,
but we also see that the nonlinear susceptibility is roughly two orders of magnitude

smaller than the linear one, and high precision measurements are needed to detect it.

Using different relations between the critical exponents, so-called scaling relations, all
other statical critical exponents can be inferred from the two exponets § and . From
the scaling relation for the correlation length critical exponent, they found, using

L 28+~

==

with d = 3 as the dimension of the material, v &~ 1.7, close to the RSB mean field
prediction v &~ 1.3. An open question that arises is

(2.18)

How can the critical exponents of a spin glass be experimentally accessed in an
isolated quantum system, where temperature scaling is absent?

2.1.3 Dipolar spin glasses

The experiments discussed so far have been conducted in materials where the magnetic
coupling is effectively nearest-neighbor, for the experimental results, or infinite-range,
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for the Parisi mean-field solution. However, an interesting question arises how the
spin glass phase changes once long-range order is introduced. As the lowest order
magnetic moment is a magnetic dipole, dipole-dipole interactions pose the strongest
long-range interacting coupling. A system that naturally realizes a dipolar Ising
Hamiltonian

1 —3¢08*(0i5) i) s
1<j )

where J is a coupling constant, r;; is the distance between magnetic dipoles at
positions ¢ and j, 0;; is the angle with respect to a preferred crystalline axis, and
S gi) denote an Ising spin at position ¢, is realized in Li Ho, Y; , F4, where x denotes
the impurity concentration of the magnetic Ho®>" ions that replace the nonmagnetic
Y?* ions in the lattice [31]. It is these Ho®" impurities that give rise to the dipolar
spin-spin interaction described in Eq. A dilution of the magnetic moments,
i.e. a reduction in z, introduces randomness in the couplings, as positions and
thus distances r;; obtain a broad distribution. Moreover, frustration arises as the
distribution in the angle §;; also broadens, leading to negative (ferromagnetic) and
positive (antiferromagnetic) couplings.

At x = 16.7%, spin glass behavior is well established, and it seems to persist
at a finite transverse field |39, more in alignment with the droplet scaling picture.
However, at very low temperatures, the critical exponents show a rather complicated
picture. Close to T' = 0, the glass phase seems to vanish, and there might not be a
quantum phase transition at 7= 0 [40], as the measured critical exponent ~ from
the nonlinear susceptibility seems to vanish for decreasing temperature. However,
the product zr from AC susceptibility measurements seems to be rather temperature
independent, and was found initially to be zv = 7.4(6) [32], and reconfirmed even at
a lower filling of z = 4.5% to be zv = 7.8(2) [33].

In the limit of this strong dilution x = 4.5%, however, there is an ongoing
controversy on the existence of a spin glass phase. From an experimental point of
view, initial experiments found that AC susceptibilities are contradicting a broad
distribution of relaxation times as found in spin glasses, but instead rather indicate
the presence of multiple independent oscillators |34} |35]. Further numerical studies
on the build-up of entanglement support the idea of the presence of a quantum spin
liquid and no spin glass phase [36].

However, a more recent experiment at the same concentration x contradicted the
previous measurements, finding even in the AC susceptibility strong glass behavior
and no spin liquid [33]. Even though also numerical simulations come to different
conclusions [37], the most recent Monte Carle simulation rather establish the existence
of a spin glass phase even in the limit of = 0, both for LiHo, Y;_, F4 [38], as well
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as in a diluted spin ice [105], where a critical exponent v = 1.27(8) is predicted.
For dipolar interacting Heisenberg glasses, the existence of a glass phase is so far

only established numerically [106], where the correlation length critical exponent is

approximated to be v ~ 1.2(1) [107]. The open question that arises is thus

Does a spin glass phase exist in the dipolar-interacting Heisenberg XY model, and if

so, s it connected to a quantum phase transition driven by an external magnetic
field?

In addition, studying the spin glass phase in isolated systems adds another layer
of complexity not present in classical systems: the effect of many-body localization,
which we will review more detailed in the next section. To conclude this section on
frustrated magnetic phases, we want to note that so far, in all numerically studied
models that show both a quantum spin glass and a many-body localized regime, the
spin glass is always fully localized [46] 47, 108, 109]. So far, one of these models was
only recently realized, and effects of both localization and spin glass ordering have been
observed on a quantum annealer |[110, |111]. However, the detailed interplay between
localization and glassiness remains an open question, and it would be interesting to
see whether long-range interacting models can show a similar behavior, and whether
clustering plays an important role in the measured localization [111].

2.2 Thermalization and localization

As mentioned in the previous section, also in an isolated quantum system, the spin
glass phase is typically linked to the phenomenon of many-body localization, a
phenomenon closely linked to thermalization. In this chapter, we we will thus set the
stage to ask

Does a finite-size dipolar interacting quantum system show indications of many-body
localization?

We begin with a brief review of thermalization in isolated quantum systems and its

connection to random matrix theory and the spectral properties of the Hamiltonian.

We then outline how these concepts relate to many-body localization, with a focus
on systems featuring long-range, algebraically decaying interactions, such as the
one examined in this thesis. Finally, we discuss how out-of-time-order correlators
have been employed to identify localization in NMR platforms dominated by dipolar
couplings.

2.2 THERMALIZATION AND LOCALIZATION
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2.2.1 ETH and quantum chaos

The concept of quantum thermalization and the eigenstate thermalization hypothesis
(ETH) is reviewed in multiple outstanding reviews [112-116]. If not stated otherwise,
we will mainly follow [112] in this introductory chapter.

In a classical system, the thermal equilibrium state is defined by being time-
translation invariant, i.e. a system in thermal equilibrium does not know about any
of its history, and will stay in the thermal equilibrium state, if not perturbed. A
system out of equilibrium is said to thermalize if after some time, the system arrives
in the thermal state, where it has lost all of its initial memory.

For a theoretical analysis of this phenomenon, we consider an isolated quantum
system that evolves unitarily under a generic Hamiltonian H. This Hamiltonian
can be diagonalized with eigenenergies E1, Fs, ..., E4 and corresponding eigenstates
11),|2),...,|d), where d is the dimension of the Hamiltonian. The Hamiltonian shall
be considered to be generic in the sense that it does not have protected symmetry
sectors by a unitary symmetry, and thus no degenerate eigenenergies. An arbitrary
state |W) will follow the time evolution

W) = (U|m)e Pt = z_:l cme Bt (2.20)

m=1

Next, we consider a general observable O = 3¢ | Oy [m)(n| where Oy, =

O, € C. The time-dependent expectation value for this observable is as a conse-
quence

d
O(t) = (T)ONU(t)) = > c;Omnci (klm) (n|l) P te 1t
k,mmn,l
d
= Y ¢,cnOppe Enm Bt

m,n=1

(2.21)

Taking the assumption of no accidental degeneracies in the Hamiltonian, the equili-
bration value of the observable will be

tmoot Jo (2.22)

As is clearly observable, this value strongly depends on the initial state |¥) and
all its overlaps with the eigenstates of the Hamiltonian ¢,,. As such, the system
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always preserves a memory of the initial state. A system is defined to thermalize
with respect to the operator O if this equilibrium value is independent of the initial
state, and its value is given by the expectation value from a thermal ensemble, for
example the microcanonical ensemble pp;c:

_ 1 rt !
O =lim - | O(t) = Tr{Opmic}- (2.23)

t—oo t Jo

Other thermodynamic ensembles like the canonical or the grand-canonical are
also possible. This cannot be true for all operators O, as for example, all projection
operators onto an eigenstate |m)(m| will fail Eq. As a consequence, an isolated
quantum system is defined as thermal, when Eq. holds for all local operators O.

Another important aspect of Eq. [2.22] is that the time until the equilibrium value
O is reached must be large compared to the Heisenberg time 75 = 27/§, where § is
the mean level spacing. As 0 is typically exponentially small in the system size, the
equilibration time would be at least exponentially large in system size, and thus one
would expect to never see equilibrium values in a real experimental setup.

Hence two problems arise: What leads to the thermalization of local operators,
and why does equilibration occur on observable timescales? In his seminal paper
[117], Deutsch solved the former of these two problems, while Srednicki solved the
second one shortly thereafter [118]. They proposed that all local operators O take
the form

Opn = O(E)0pn + e 5B f(E W) Ry, (2.24)

where O is a smooth function of the mean energy E = (F,, + E,) /2 and equals the
equilibrium value of O for initial states with energy E., and f a smooth function of
the mean energy and the energy difference w = F,,, — E,,, which determines the time
scale of the equilibration process. S(F) is the thermodynamic entropy defined by
the logarithm of the number of eigenstates in the energy windows E + 0F, i.e. the
logarithm of the density of states. R,,, is a random Hermitian matrix, where each
entry has zero mean, unit variance on off-diagonal entries, and, if the Hamiltonian
is time-reversal symmetric, variance 2 on the diagonal. What is the origin of this
random matrix?

This is nicely outlined in [114], and we will follow the derivation from there.

Consider a system governed by a random Hamiltonian H, with eigenstates |«)
and eigenergies F,, and O as above a Hermitian operator with eigenstates |i) and
eigenvalues O;. Under these assumptions, the eigenstates of O will look like random
vectors decomposed in the eigenstate basis of the Hamiltonian. As a consequence,
the expectation value of the operator averaged over all possible random Hamiltonians
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gives

Oap = 0, (2.25)

A2 3052 30
0%, —O0ne = >0 = 02
o d d

where the bar denotes an average over different Hamiltonians. In the equation above,
g =1 for real-valued Hamiltonians, i.e. the Gaussian Orthogonal Ensemble (GOE),
while g = 2 for complex-valued Hermitian Hamiltonians, i.e. the Gaussian Unitary
Ensemble (GUE). The importance of the GOE in physical systems lies in the fact that
a Hamiltonian that is time-reversal symmetric can always be written in a basis where
it is completely real, which is why time-reversal symmetric systems are typically
captured by the GOE [114]. As a consequence, up to first order in the inverse
dimension of the Hilbert space, we obtain for the matrix elements of O

3— 0=

Oap = O + || == 0% Rap. (2.26)

Comparing this to the ETH ansatz in Eq. [2.24] a direct connection becomes
apparent. Random Matrix Theory (RMT) predicts the same equilibrium value O
for observables, irrespective of the initial state’s energy. This implies that RMT
effectively captures the infinite-temperature limit of a physical system, where all
energy eigenstates contribute equally. Moreover, RMT reproduces the ETH ansatz
when the physical system is restricted to an energy shell narrow enough that both
O(FE) and f(F,w) can be considered approximately constant. Within such a narrow
energy window, E'TH gains a clear physical interpretation: the Hamiltonian, projected
onto this local subspace of the Hilbert space, behaves like a random matrix. This
connection is significant because RMT allows one to compute spectral properties
of Hamiltonians. As discussed in Eq. [2.23] ETH is sufficient for thermalization.
Therefore, any system that obeys ETH, will exhibit either GOE or GUE level spacing
statistics within a constant-energy window, and can thus be characterized by its
eigenvalue statistics. In the following section, we examine how this picture changes
in the case of many-body localized (MBL) systems, where thermalization fails, and
how this gets expressed in their level spacing statistics and other properties.
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2.2.2 Many body localization and ergodicity breaking

In his seminal paper [119], Anderson demonstrated that a single particle can become
localized in a lattice with random on-site potentials, a phenomenon now known as
Anderson localization. This result was later reinforced using scaling theory [120],
which showed that in a lattice with random on-site potentials and nearest-neighbor
hopping, a single particle cannot propagate arbitrarily far. Specifically, in one and
two dimensions, even arbitrarily weak disorder leads to complete localization. In
three dimensions, localization occurs when the disorder exceeds a certain threshold.
In all these cases, the particle becomes confined within a finite length scale, known
as the localization length.

The open question remained how this picture changes in the presence of interac-
tions, and was answered by the proposal of the many-body localized phase [121H123],
which was recently thoroughly reviewed in Ref. [45]. Tt is defined as a phase where
thermalization in the sense of Eq. is not possible. Such a system might be
described by showing emergent integrability upon the introduction of disorder, i.e.
an extensive number of quasilocal conserved quantities arise as an effect of disorder
which might be absent in the corresponding ordered model. The Hamiltonian that
models such a behavior is the so-called 1-bit model [124} |125]

Hypr = > ha® + 3 J;r 070 + N Jipr@ 7Dz 4 (2.27)
i i<j i<j<k
where the Hamiltonian is written as a sum of quasilocal integrals of motion (LIOMs)
7 which commute with each other and with the Hamiltonian. Even though any
Hamiltonian might be expressible in terms of such a sum [126], what makes the
many-body localization special is that these LIOMs are exponentially localized in
real-space operators. For any local observable A® at site i, the overlap with a
LIOM Tr{r(j )A(i)} ~ e~ 1"=1l/¢ is exponentially suppressed in their distance, where &
denotes the localization length. The couplings in the LIOM Hamiltonain thus fulfill
Jij ~ e’%, Jiji ~ e’h;k‘, where k is in general a length scale different from the
localization length [125].

In most systems, the LIOMs 7 can be adiabatically connected to number
operators onto exponentially localized single-particle orbitals of a corresponding
non-interacting Anderson localized model. In such Anderson insulators, the 1-bit
Hamiltonian contains no interaction terms. This absence of interactions is a key
feature distinguishing Anderson localization from the many-body localized (MBL)
regime, as these terms give rise to dephasing and a slow growth of entanglement [127].

However, there are cases in which MBL behavior is observed even though the
corresponding non-interacting system has fully delocalized single-particle states [12§].
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This raises the open question of whether all many-body localized systems can truly
be described within the framework of local integrals of motion (LIOMs).

GOE
T e s
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0.48
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many-body

critical .
localized

thermal
0.44 |
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Figure 2.9: The many-body localization-delocalization transitions (MBLD) in a finite
size system of length L. The mean level spacing ratio 7 is shown as a function of the
disorder strength . Following [45], the system is thermal (red shaded region) for
disorder strength below W7 (L) and many-body localized (blue shaded region) for
disorder strength above W*(L). In between, a critical region (pink region) is defined.
W*(L) is defined by the crossing of the curves for system size L (red line) and L + 1
(blue line). GOE and Poisson level statistic predictions are indicated by dashed black
lines.

In order to identify thermal and localized regimes, spectral statistics which are
directly related to random matrix theory provide a natural tool. These statistics are
typically expressed in the gap ratio introduced by Oganesyan and Huse [123]

= 2000 (0n, 1) (2.28)

max (0, 0,—1)
where 9, = E,,1 — F, denotes the level spacing between two neighboring energy
levels F,.1 and F, of a given Hamiltonian. For a thermal system obeying ETH,
where random matrix theory predicts the Hamiltonian to be sampled from the GOE,
the value is roughly 7 ~ 0.531, while for the localized regime, the energy levels are
expected to have uncorrelated eigenenergies as in integrable systems like the LIOM
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model. Thus, the Poisson distribution predicts an average gap ratio 7 ~ 0.386 for
integrable systems.

The typical mean level spacing ratio as a function of disorder W for a model
with a localized and thermal ETH regime is sketched for two different system sizes
in Fig. 2.9 As long as the mean level statistics is close to the GOE prediction,
the system is believed to be thermal, as it can typically be described by ETH.
When 7(W) < 0.531 — Ar, where Ar < 1, this is no longer fulfilled, which defines
the critical disorder strength W*(L). In case of [45], they chose Ar = 0.01. In
the theory of critical scaling, the crossing point of 7(WW) for different system sizes
marks the critical transition point, as beyond this point the level spacing ration
decreases as a function of system size. This defines a second critical disorder strength
W*(L). The disorder strengths in between mark the critical region of the localization-
delocalization transition. The question of whether the many-body localized region is
now a thermodynamic phase, that is, persists in the limit L — oo, is an open and
interesting question, but not in the scope of this thesis. Instead, as this thesis deals
with a disordered dipolar interacting model, we want to ask

How can localization and ETH effects be experimentally characterized in a power law
interacting, bond-disordered system?

2.2.3 Algebraic localization

For dipolar interacting systems, where the interaction between particles at positions
i and j typically scales as |i — j|~*, the MBL picture starts changing. In principle,
as pointed out very early [129], two different kinds of disorder can arise. Diagonal
or on-site disorder means that the particles sit on a lattice and disorder arises due
to random on-site potential on top of the algebraic interactions. For this case, it
was shown that for dimension d > «a, no localization can occur, while for d < «,
localization may occur upon sufficient disorder [130, 131].

Recently, it could be shown that this phase can be described by so-called algebraic
LIOMs, where the LIOMs of Eq. are now power law or algebraically localized, i.e.
for any local observable A® at site 7, the overlap with a LIOM Tr{r(j)A(i)} ~ |Z,_1j‘5
decays in a power law [132] [133]. The idea for this model stems from algebraically
localized single-particle eigenstates in a non-interacting model ¢(z) ~ |v — x| 7,
where 1z is a position in real space and v > 0 the power law exponent of the decay. If
we think of these wavefunctions as being adiabatically connected to the eigenstates in
an interacting picture, we would expect that we arrive at the algebraic LIOM picture.
From a dynamic point of view, this algebraically localized phase is qualitatively
different from the exponentially localized standard MBL regime. This can be seen
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for example in the entanglement entropy, which grows logarithmically in time in
exponentially localized MBL, while in this power law system it grows as a power law
(132, [133].

Another type of disorder arises when the on-site potential is zero, but the particles
are placed in random positions, leading to random coupling strengths [134]. This
is typically called bond-disorder or off-diagonal disorder. For this case, it was also
established that in the interacting case, single-particle wavefunctions are algebraically
localized [135], and thus the algebraic LIOM picture might hold.

However, this picture was recently questioned [136]. Even though the Hamiltonian
under investigation

Moy J (S99 + SV + ASY ) (2-29)

Tl e

is similar in both works [134, [136], very different behavior was observed. In terms of
the model, Ref. [136] focus on the zero magnetization sector, considers only nearest-
neighbor interactions, and has A = 0.73, while Ref. [134] focuses on the sector with
magnetization —L/2 + 1, includes long-range hopping, and uses A = 0. In terms
of observables, Ref. [136] observes subpoissonian level statistics, which it describes
as incommensurate with any LIOM picture, while Ref. [134] observes algebraically
localized wavefunctions and a power law growth of entanglement entropy, which are
consistent with a LIOM picture. As a consequence, the question arises

What is the nature of the localized phase in a bond-disordered power law interacting
system?

In this thesis, we address this question from a dynamical point of view, inspired
by localization measurements in NMR systems.

2.2.4 Out-of-time-order correlators and localization

So far, we discussed thermalization and localization, i.e. properties of local observables.
For thermalization, we assume that two different initial states with the same energy
lead to the same expectation value for local observables, and thus they cannot be
distinguished locally. However, unitary dynamics implies that quantum states that are
orthogonal at initial time will remain orthogonal for all times. Thus, thermalization
and unitary dynamics imply that initial local information must spread to non-local
highly entangled subspaces of the Hilbert space. This phenomenon is known as

information scrambling and is typically measured by out-of-time-order correlators
(OTOCs), which have been recently reviewed in Ref. [137].
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The OTOC between two observables V' and W, which was initially introduced in
the context of superconducting materials [138], is given by the expression

C = (W), VI'W(©),V]), (2.30)

where the angle brackets can denote either an expectation value from a thermal
ensemble with regard to a density matrix, or an expectation value with regard to a
pure state. The time dependence of operators is understood in the Heisenberg picture.
In the case that both V' and W are both Hermitian and unitary, the expression above
simplifies to

C=2-2(WHVIW(HV) =2-2F, (2.31)

where F' as the only non-trivial part in C' is also referred to as an OTOC. Typically, V
and W are taken as local operators on different sites that commute at ¢ = 0. As can
be seen in Eq. the OTOC thus measures how the operator W grows over time
and begins to overlap with V. As W (t) is highly nonlocal, the OTOC can capture
scrambling dynamics even after thermalization and thus provides a finer tool for
characterizing non-equilibrium dynamics . For example, OTOCs can detect the
onset of chaotic dynamics, as for systems with a semiclassical limit, its initial growth
is believed to be related to the Lyapunov exponent of the corresponding classical
model [139].

As in this thesis our interest lies in possible localization and thermalization
properties, we will focus on a special OTOC known in NMR physics. This OTOC
has been used to detect the build-up of spin-spin correlations, and is called multiple

quantum coherences (MQC) [140, [141].

State
preparation

p(0) ~ S.

Magnetization
measurement

Sy(t) = Tr{S.ps(2t)}

Figure 2.10: Sketch of the MQC protocol. Prepraration and measurement are repre-
sented by orange blocks, time evolution by blue blocks, and global spin rotation by a
violet block.

Following mainly the supplemental material of Ref. [142], the MQC protocol,
schematically shown in Fig. proceeds according to the steps outlined below:

1. The initial state is prepared by heating the system to a high initial temperature
and applying a magnetic field in the z-direction, which is small compared to
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the temperature but large compared to spin-spin interactions. The initial state
is thus a density matrix, which can be approximated as p(0) = K1+ LS, in the
limit of infinite temperature. Here, 1 is the identity matrix, S, is the operator
of the global z-magnetization, and K and L are constants depending on the
temperature and Zeeman splitting due to the field. As the identity matrix has
no time evolution because it commutes with all operators, the initial state can
be approximated, up to a proportionality constant, as the S, operator.

2. After state preparation, the system follows usual Hamiltonian dynamics, where
the Hamiltonian can be engineered by pulse sequences. The evolution is thus

p(t) = e i p(0)e ", (2.32)

3. The density matrix is rotated by an angle ¢ by applying a strong field around
the z-axis

po(t) = €795 p(t) oS-, (2.33)

In this step, we see why this protocol is able to detect multiple quantum
coherences. Suppose that we write down the density matrix in the product
basis of single site z-magnetization operators. Then, for every state in the basis,
the z-magnetization M, is well defined. A coherence of order m is defined as
an off-diagonal element p;; (quantum coherence) in the density matrix that
couples product state |i) with product state |j) with magnetization difference
MY — M® = AM, = m/2, i.e. indicates a quantum coherence of multiple,
namely m, spins. As a consequence, we can expand p(t) as a sum of terms with
equal quantum coherence m, such that we obtain

polt) = €195 3 pu(D€% = 3 (1), (2.34)

4. The system is evolved backwards in time, or alternatively forwards in time
with a sign-reversed Hamiltonian —H. As such, the state after this backwards
evolution can be written as

po(28) = e py (1) (2.35)
5. The z-magnetization is measured. This leads to
Sult) = Te{S.ps(20)}. (2.36)
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The connection between MQCs and OTOCs becomes apparent by inserting Eqs.

and into Eq. [2.35], together with p(0) < S,. This yields

Sy(t) o< Tr{ S. It —i05: —iHt G iHt i6S: —iHt
—~~

o owme V. wo (2.37)

Trﬂrcl.

Te{ Wi () VI We(t)V},

which describes an OTOC between the operators S, = V and e % = W,

At this point, we want to highlight that this magnetization measurement is
equivalent, up to a prefactor, to a fidelity measurement, as the initial density
matrix is proportional to the magnetization operator S,. We now simplify this
expression

Sy(t) = Tr{S.py(2t)} ox Tr{p(O)eth%(t)e*th}

_ Tr{p(O)eth Z pm(t>€i¢m6—th}
Tr cyclic —i 3 ipm
e Tr{e Hp(0)e™ N p(t)e'® } (2.38)

_ Tr{ S () Y pp<t>}e"¢ﬁq
= "Tr{pmp-m}e®™ =3 I(m)e"™.

where in the last step we used that Tr{p,(t)p,(t)} o d,__,, and introduced the
multiple quantum coherence intensities I(m).

. Perform a Fourier transformation of the signal to obtain the multiple quantum
intensities I(m). As they are related to the modulus square of the coherences
in the density matrix, a nonzero I(m) indicates the presence of at least m
correlated spins.

So the MQC gives a lower bound on multiple spin correlations in a system at

effectively infinite temperature (this is the assumption for the initial state preparation).
In addition, unlike other OTOCs which are harder to interpret because decoherence
cannot be typically distinguished from scrambling [143], the MQC spectrum is known
to be robust against weak decoherence effects [144]. From here, two different directions
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can be followed. Is there more information contained in the distribution of the MQCs,
and what happens at finite or even zero temperature?

For the former problem, a combinatorial argument shows that for three-dimensional
systems the MQCs are Gaussian distributed, and the width corresponds to the typical
size of a cluster of correlated spins [141]. This property was used to show that
the extracted cluster size can be used to characterize a localization-delocalization
transition [142, [145| 146], where decoherence leads to localization in form of a finite
maximal cluster size. In a one-dimensional chain, this argument is not true anymore,
but even there the MQC spectrum can be used to extract a localization length for
a system with on-site disorder and nearest-neighbor interactions only, and study a
localization-delocalization transition [147].

For the latter problem, when changing from infinite temperature density matrices
to pure quantum states, the structure of the problem changes fundamentally. In
the NMR protocol discussed above, measuring the fidelity or the magnetization is
equivalent because the initial state is proportional to the magnetization operator. In
isolated quantum systems, however, this is not the case anymore, and it is possible
to define a magnetization OTOC and a fidelity OTOC separately [148 |149], which
contain different information. We therefore adopt a modified version of the sequence
shown in Fig. [2.10]

For the magnetization OTOC, the initial state is a pure state |¥) that satisfies
S, W) = M, |¥) with M, # 0. A magnetization measurement in step 5 of the protocol
then yields

L
M,

S(t) = ]\ZTr{W;(t)Szwd,Szp(O)}: (Wi S.W,8.).  (239)

Following [148], we thus define the magnetization OTOC as
1
Folt) = 355 (S.W)(t)S.W,), (2.40)

where we recover the definition from Ref. [148] in the case of |U) as the fully polarized
state in z-direction. In this case, the Fourier components of Fi(t) give the multiple
quantum amplitudes A,,. A non-zero A,, signals the presence of at least m-body
spin correlations. Furthermore, magnetization OTOCs have been shown to be robust
against decoherence at long evolution times [148].

For the fidelity OTOC, the initial density matrix is a pure state p(0) = [¥)¥|. In
step 5, measuring the fidelity gives

Fol(t) = So(t) = Tr{p(0)pas(t)} = Tr{W]()p(0)W, p(0) } = [(W(1))*,  (2.41)
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in analogy to [148]. This OTOC contains information about the full density matrix
written in terms of z-basis product states. The case ¢ = 0, which directly yields
the state’s purity, also corresponds to a Loschmidt echo, which is commonly used to
probe localization [150] or decoherence [151]. The Fourier transform of Fy(t) with
respect to ¢ yields the multiple quantum intensities [,,,, where a non-zero I,,, indicates
the presence of at least m-body coherences in the density matrix written in terms of
product states in z-basis |148].

If instead of a rotation around S, one considers a rotation generated by an
arbitrary operator A in step 3 of the protocol, the multiple quantum intensities obtain
an additional interpretation |[149]. The width of their distribution satisfies

2 > L,m* = Fg(p(t), A), (2.42)

m=—N

which yields the quantum Fisher information Fy of the density matrix p(¢) with
respect to the observable A. The quantum Fisher information provides a lower bound
on the entanglement entropy, and its temporal scaling has been used to distinguish
exponentially localized, algebraically localized, and thermal regimes both numerically
[132] and experimentally [152]. In both studies, the observable A was the staggered
magnetization and the initial state a Néel state. By contrast, the fidelity MQC
protocol employs the total magnetization as the observable A and the fully polarized
state as the initial state. This motivates the question:

Can the magnetization and fidelity MQC' protocols be used to test a power law
interacting isolated spin system for localization effects?
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CHAPTER 3

Magnetic Irreversibility in an
Isolated Spin System

Parts of this chapter are based on the following publication, from which parts
of the text have been taken verbatim and adapted for better readability:

Observation of hysteresis in an isolated quantum system of disordered
Heisenberg spins

Moritz Hornung, Eduard J. Braun, Sebastian Geier, Titus Franz, Gerhard Ziirn,
and Matthias Weidemuiller

arXiv:2508.18197 (2025)

In the previous chapter, we introduced several open questions about the behavior
of dipolar spin glasses in isolated quantum systems. This chapter addresses two of
the central questions raised there:

Does a dipolar-interacting, isolated Heisenberg spin system host a spin glass phase?

How can thermomagnetic hysteresis protocols be adapted to isolated quantum
systems?

To address these questions, we introduce two new measurement protocols that we
call zero-field annealing (ZFA) and field annealing (FA). These protocols are tailored
to characterize energetic-magnetic hysteresis in isolated quantum systems, similar to
the way ZFC and FC characterize thermomagnetic hystersis in systems coupled to
a thermal bath. While these protocols are platform-independent, we demonstrate


https://doi.org/10.48550/arXiv.2508.18197

their application using a Rydberg atom quantum simulation platform that realizes a
dipolar-interacting Heisenberg XY spin model.

The chapter is structured as follows. We begin by introducing the quantum
simulation platform and explaining how it realizes the relevant Hamiltonian in Sec.
We then introduce the newly devised ZFA and FA protocols in detail and show
their implementation on the Rydberg simulation platform in Sec. [3.2] We summarize
the findings and outline possible directions for further investigation in Sec. [3.3]

3.1 A Rydberg atom spin simulator

This chapter explores quantum effects on potential spin glass behavior in a dipolar
interacting system. While spin glass physics in low-dimensional dipolar systems with-
out thermal fluctuations is of fundamental interest, we focus on a three-dimensional
system to draw closer parallels with experiments in LiHo,Y; ,Fy4 [35, |39, |40, where
spin-1/2 degrees of freedom arise naturally. In this thesis, we extend these investiga-
tions by studying a spin-1/2 Heisenberg XY model with dipolar interactions. This
Hamiltonian is naturally implemented in the Rydberg quantum simulation platform,
as demonstrated in previous works from our group [153-157]. Beyond realizing the
relevant Hamiltonian, this platform has already been used to observe slow, glassy
relaxation dynamics [155] as well as the absence of thermalization signatures on exper-
imentally accessible timescales. It is therefore ideally suited for further exploration of
spin glass phenomena. A detailed description of the experimental setup and sequence
is provided in Chap. [A} here, we briefly summarize the aspects most relevant to the
questions addressed in this chapter.

3.1.1 Preparation of a frozen Rydberg gas with positional
disorder

To simulate the dynamics of a three-dimensional Heisenberg XY spin model, the
experimental platform must satisfy two key criteria:

o It must locally encode a pseudospin-1/2 degree of freedom, with dipolar inter-
actions between the local constituents.

o It must allow control over the spatial distribution of the individual constituents,
enabling the study of disorder effects.

The first requirement is fulfilled by encoding the spin-1/2 degree of freedom in
two Rydberg states |r1) and |ry) of an atom, which act as local constituents carrying
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spin and interacting via dipolar couplings. The effective dipolar Heisenberg XY spin
model arising from Rydberg interactions in weak electric and magnetic fields was
analyzed in previous work [42]. Here, we demonstrate that this mapping remains
valid even in the presence of strong magnetic fields. A detailed discussion is provided
in Appendix [D}

The second requirement is met by preparing a three-dimensional cloud of cold
atoms that remain stationary on experimental timescales—a regime known as a frozen
Rydberg gas |[158-160]. By varying the density of the Rydberg atom cloud, spin
Hamiltonians with tunable disorder can be realized. In the following, we describe how
such a cloud is prepared experimentally, using the setup shown in Fig. 3.1} We use
rubidium as the atomic species. Its large ground-state hyperfine splitting, combined
with the presence of an optical clock transition, enables both efficient cooling and
trapping, as well as precise preparation of the initial electronic state in individual
atoms. Further details are provided in Appendix [A]

To reach the frozen Rydberg gas regime, we require an atomic cloud that is both
sufficiently cold, such that atomic motion is negligible on experimental timescales, and
sufficiently dense, such that Rydberg—Rydberg interactions occur fast on experimental
timescales. To achieve rapid cooling of a large number of atoms and to prepare
a high-density cloud, we employ a combination of a two-dimensional (2D) and a
three-dimensional (3D) magneto-optical trap (MOT).

8"Rb atoms are initially loaded and cooled in a 2D-MOT, operating on the
780nm D2 clock transition between the states |g) = ‘581/2,]? =2, mp = 2> and

le) = ‘5P3/2, F=3mp= 3>. The 2D-MOT slows atoms to velocities below the
capture threshold of the 3D-MOT and provides a more compact alternative to a
Zeeman slower, allowing for improved optical access in the science chamber. A pusher
beam directs the atoms into the science chamber, where approximately 100 000 atoms
are collected in a 3D-MOT.

To achieve a deterministic atomic positional distribution, we transfer N, atoms
from the 3D MOT into a crossed beam optical dipole trap (ODT) at a temperature
of 12(1) pK. The trap is formed by tightly focused laser beams at a wavelength of
1064 nm, and the crossed-beam geometry provides strong confinement in all spatial
directions while maintaining a low atomic temperature. For experiments involving
Rydberg atoms, a strong magnetic field is required to induce significant Zeeman
splittings in both the ground and Rydberg states. This enables spectral selectivity
during Rydberg excitation as well as in subsequent microwave manipulations, which
will be discussed below. To generate the high field of 185G, we employ the MOT
coils, which are already equipped with an efficient cooling system. This magnetic
field also defines the quantization axis, which we identify with the z-axis, for all
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Figure 3.1: Preparation of a frozen Rydberg gas. (a) Schematic of the experimental
apparatus. Atoms are initially loaded into a three-dimensional magneto-optical trap
(3D MOT) and subsequently transferred into a crossed beam optical dipole trap

(gray region), where they adopt a Gaussian spatial distribution (yellow ellipsoid).

Excitation to Rydberg states is achieved via a two-photon transition using a 780 nm
(red) and and 480 nm (blue) excitation laser. Transitions between Rydberg states are
driven by microwave radiation (green). A strong electric field is applied using the field

plates to ionize the Rydberg atoms and detect them on a microchannel plate (MCP).

Figure taken and adapted from [161]. (b) Excitation and the Rydberg Blockade. Gray
rectangles represent the atomic energy levels: ground state |g), intermediate state |e),
and Rydberg state |r;). The two-photon excitation pathway is shown by red (780 nm)
and blue (480 nm) arrows. The single-photon detuning A from the intermediate state
le) is indicated by a black dashed line. The violet solid curve shows the Rydberg
interaction potential V (r) as a function of interatomic distance r. At short distances,
the interaction-induced energy shift of the doubly excited Rydberg state exceeds the
excitation linewidth (red shaded region). Excitation for both atoms is only possible
for distances r larger than the blockade radius ry,.

experiments presented in this thesis.

The crossed-beam optical dipole trap confines a cloud of rubidium atoms in
the ground state ‘551 2, F'=2,mp = 2>. The atomic spatial distribution follows a
Gaussian profile, with widths determined by the temperature of the trapped cloud
and the power and waist of the trapping beams. From this point, we have two options
to modify the positional distribution of Rydberg atoms:

(i) We increase the positional disorder in the ground-state atoms by allowing the
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atomic cloud to expand freely for a time t;,;. After this expansion, the spatial
distribution can be approximated by a three-dimensional Gaussian profile with
standard deviations o, and o, = 0,. Increasing t.,s leads to higher values of
these standard deviations, which enhances spatial disorder in the atomic cloud
prior to Rydberg excitation.

(ii) We reduce the positional disorder of Rydberg atoms by exciting a larger number
of atoms within a fixed volume. To this end, we control the Rydberg excitation
time fex.. During this time, atoms are excited from the ground state |g) to the
Rydberg state |r;) = ’6151/2, my = 1/2> using a two-photon excitation scheme.
A 780 nm coupling beam, blue-detuned by 97 MHz from the |g) — |e) transition,
and a 480 nm probe beam drive the excitation. The excitation time ... not only
determines the number of excited atoms N,., but also sets the minimum allowed
distance between Rydberg atoms due to the Rydberg blockade effect [162-165],
illustrated in Fig. [3.1(b). The blockade radius ry; is defined by the condition
that the Rydberg-Rydberg interaction energy is equal to the excitation line
width. To ensure precise control over the excitation linewidth, we operate
the experiment in a regime where the linewidth is dominated by the Fourier
width of the excitation pulse. In this regime, the linewidth decreases with
increasing excitation time t.... Therefore, a longer excitation time leads to a
larger blockade radius. The Rydberg blockade introduces short-range positional
correlations, as atoms within a blockade radius cannot be simultaneously excited.
As a result, a larger 7y, reduces positional disorder in the Rydberg ensemble.

In summary, the positional disorder of the Rydberg ensemble can be systematically
controlled by adjusting the excitation time t.,. and the free expansion duration #..
To quantify the degree of disorder, we estimate the mean interparticle distance rpean
using a depletion imaging technique [166]. The Rydberg blockade radius ry,; is obtained
by a calibration protocol described in [155]. This protocol involves fitting a model
that incorporates theoretical input parameters calculated with the Pairinteraction
package [167], with r, as the only free parameter in the fit. We create two regimes
of different disorder strength by choosing ¢, and t... such that the overall system
size is kept approximately constant, allowing us to isolate the role of disorder on the
dynamics and exclude possible finite-size effects in the comparison.

We emphasize that, unlike previous experiments on this platform [42, 43| 48,
155| [168], the strong magnetic field applied here induces anisotropy in the Rydberg-
Rydberg excitation responsible for the blockade radius. Specifically, the blockade
radius is approximately twice as large in the plane perpendicular to the magnetic
field compared to the axis aligned with it, as detailed in Appendix [D] This leads to
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Figure 3.2: Sketch of different disorder realizations. Rydberg atoms (dark blue circle)
exhibit the blockade effect, preventing the excitation of neighboring atoms within the
blockade radius. The extent of the blockade region (light blue ellipses) is anisotropic
due to the presence of a strong magnetic field, which is assumed in vertical direction.
(a) Weakly disordered regime. (b) Strongly disordered regime. Inspiration taken from
[155].

an anisotropic blockade radius. The two realized configurations incorporating this
anisotropy are illustrated in Fig. The calculated blockade radius, following the
method introduced in |155], is derived from a model assuming isotropic interactions.
Thus, our value for 7, represents an average over all spatial directions. The ratio
Th/Tmean SETVes as a quantitative measure of positional disorder in the Rydberg
cloud. The different times controlling the atomic ground state distribution and the
parameters characterizing the Rydberg cloud are summarized in Tab.

Tegime Ng NT texc [}18] ttof [US} (o [pm] Oy,z [llm] Tmean [pm] bl [pm}
weak disorder 10300 2250 ) 600 140 49 18.7 8.15
strong disorder 9300 2100 1 2000 137 97 26.5 7.85

Table 3.1: Comparison of parameters for the Rydberg excitation for the two different
disorder configurations. Table taken and adapted from [169].

3.1.2 Experimental realization of a disordered dipolar Heisen-
berg XY spin model

To realize an effective Heisenberg XY spin-1/2 Hamiltonian, we exploit the fact

that a spin-1/2 system is inherently a two-level system. In our implementation, this

pseudospin degree of freedom is encoded in two Rydberg states, |r1) and |rs), which are
eigenstates of the atomic Hamiltonian in the presence of a magnetic field. These states
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are coherently coupled by a microwave field at frequency w, generated using a Keysight
MB8195A arbitrary waveform generator (AWG). The choice |r;) = ‘6151/2,7”] = 1/2>
is motivated by practical considerations: transition frequencies between Rydberg
states with principal quantum number n = 61 remain below 25 GHz, and can thus
be directly accessed using the AWG. The exact transition frequencies are listed in
Tab. 3.2 As discussed above, a strong external magnetic field of 185 G is applied to
energetically isolate the relevant Zeeman sublevels, thereby justifying the validity of
the two-level approximation. Within this framework, we identify the states |r1) = |{)
and |ry) = |1) as the eigenstates of the spin-1/2 operator S,. The dipole-dipole
interaction between atoms in these Rydberg states naturally gives rise to an effective
Heisenberg XY spin model, as established in previous works [42} |48 [170-174):

Haa =Y Jij (SP189) + SS9, (3.1)
i<j
where S (()f) denotes the component « of the spin-1/2 operator acting on spin i. These
couplings J;; (h = 1) follow a dipolar interaction law

Cs
73

Jij = —(1 —3cos(8;;)%), (3.2)

where (' is the dispersion coefficient, 7;; the distance between spins ¢ and j, and 0;;
the angle between the interparticle axis and the z-axis. The dispersion coefficient Cj
usually depends only on the choice of the Rydberg states |ry) and |rq). However, since
the magnetic field is strong enough to start mixing states in the Rydberg manifold,
|r2) and thus also the Cj coefficient depend on the magnetic field as well. The
dependence of the dispersion coefficients on strong static electric and magnetic fields,
as used in this work, is derived in detail in Appendix [D]

The timescale of the system’s dynamics is primarily determined by the magnitude
of the nearest-neighbor couplings, irrespective of their sign. We therefore define
the median coupling strength Jy,eq = me(ilian mjax |Jij| as a natural reference scale

[42]. The relative standard deviation o/ Jmed, With o = std max |.J;;|, quantifies the
i

degree of bond disorder, i.e., variations in the interaction strengths across the system.
Although both Jyeq and o/ Jmeq capture key properties of the Hamiltonian, they
are not directly measurable. To estimate these quantities, we numerically sample
disorder realizations of Rydberg atom positions using the experimental parameters
listed in Tab. [3.1] following the procedure of Ref. [155]. The coefficient Cj, which
sets the overall interaction scale and is only dependent on the Rydberg states |ry)
and |ry), but not on the positional disorder configuration, is computed using the
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PairInteraction package. We then evaluate the couplings J;; for all pairs r; and r;
using Eq. and extract Jyeq and o from their distribution. To further characterize
the distribution of nearest-neighbor couplings, we define, for each spin 7, the index

*

J* = max |J;;| identifying its strongest coupling, and denote the nearest-neighbor
J

coupling as J; = J;;+. The values J; are binned into a histogram with a bin width of
1 MHz, which is smaller but comparable to Ji,.q. This ensures the histogram is smooth
without over-resolving fine details. The histogram is normalized to unity, thereby
estimating a probability density. To obtain a smooth, parameter-free estimation of
the probability distribution, we further apply a Gaussian Kernel Density Estimate

(KDE) [175} |176], with the kernel bandwidth selected according to Scott’s rule [176].

(@) (b)

—— Gaussian KDE —— Gaussian KDE
0259 @ counts ] [ counts
0.20 - i .
= 0.154 . f
=
0.10 - i
0.05 ~ .
OOO T T T 1 T T
-20 -10 0 10 20 -20 -10 0 10 20
J /27 [MHz] J /27 [MHz]

Figure 3.3: Simulated coupling probability distributions. Histogram of the coupling
strengths calculated from atom positions sampled according to the experimental
parameters in Tab. [3.1] The data are binned into histograms (blue and orange bars)
with a width of 1 MHz. The solid line shows a Gaussian kernel density estimate (KDE)
of the distribution, with the bandwidth chosen according to Scott’s rule. Panels (a)
and (b) show results for the weakly and strongly disordered regimes, respectively.

To realize two regimes with different disorder strengths while keeping all other
parameters fixed, we prepare a similar number of Rydberg atoms in two configurations
with different ground-state densities: a dense regime with weak positional disorder,
and a dilute regime with strong disorder. In the dense configuration, the reduced
mean interparticle distance leads to stronger interactions for a given pair of Rydberg
states |r1) and |rq), resulting in a larger median coupling strength. To compensate for
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this effect and ensure comparable interaction scales in both regimes, we select different
Rydberg states |ry). Specifically, the state [61P5)5,m; =1/ 2> exhibits a dispersion

coefficient Cj5 to |r1) that is approximately twice as large as that of ’61P1 s2,my =1/ 2>
to |r1). Since the mean interparticle distance in the weakly disordered regime is
smaller, we choose the state with the weaker dipolar interaction for this case to
ensure comparable values of J.q in both configurations. This strategy yields two
disorder regimes that differ in spatial distribution and interaction anisotropy, yet
exhibit similar median coupling strengths. Consequently, their dynamical behavior
can be directly compared, isolating the effect of bond disorder. The specific choices of
7o), along with the resulting values of Jyeq and o/ Jieq, are summarized in Tab.
The corresponding probability distributions of nearest-neighbor couplings, including
their signs, are shown in Fig. [3.3]

|72) w/(27) [MHz|  Jmea/(27) 05/ Jmed
weak disorder  |61P; /5, m; =1/2 15791.2 1.01 1.02
strong disorder |61P;/5,m; = 1/2 16324.4 1.63 2.24

Table 3.2: Parameters relevant for the microwave drive

For the study of energetic-magnetic hysteresis effects with the simulated spin
model, we need to measure the global magnetization. The z- and y-component of
the maqnetization can be mapped onto a measuremnt of the z-component via a
tomgraophic readout, which we discuss in more detail in Appendix [A] The measure-
ment of the z-component, on the other hand, is closely connected to a measurement
of the population in the state |ry), which corresponds to evaluating the operator
> (Sg) + %]l) To determine this population, a laser pulse at 480 nm, resonant with
the |e) — |ry) transition, is applied for a duration of 5ps. Given the short lifetime
of the intermediate state |e) (26.2ns [177]), this pulse is sufficient to depopulate the
occupancy in the state |ry) through rapid decay |178§].

Subsequently, the remaining population in |r5), as well as any atoms that may
have decayed into other Rydberg states, which are above the ionization threshold,
is detected via field ionization. A strong electric field is applied using field plates,
ionizing all atoms in the Rydberg state above the ionization threshold. The resulting
ions are deflected onto a microchannel plate (MCP) detector, where the signal from the
impacting ions generates voltage peaks. These peaks are then counted to determine
the number of detected ions N.

To extract the z-magnetization for an experimental protocol of duration ¢, two
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reference measurements are performed:

1. Calibration of the total atom number N,,: Following Rydberg excitation,
the AWG prepares all atoms in the equal superposition state % (ES)E
This accounts for the fact that the two Rydberg states |r;) and |ry) have
different lifetimes. A strong electric field is then applied after time ¢ to ionize
all atoms in a Rydberg state. The influence of finite lifetimes on magnetization
measurements is further discussed in Chap. [

2. Detection of background atom number Ny,: After excitation to the state
|r1), the system is allowed to evolve for a time ¢ before applying a down-pumping
pulse intended to depopulate all Rydberg states. However, due to black-body
radiation-induced decay, some atoms populate nearby Rydberg levels that
have negligible interaction with the states |r1) and |ry). These atoms do not
participate in the dynamics governed by the interaction Hamiltonian, but still
contribute as background ions upon field ionization.

Assuming that the ion number is proportional to the Rydberg population, we
thus obtain for the expectation value of the average z-magnetization, when N ions
are measured: N

izr <S(l)> _ 2N — Ntot - Ndp
N, N 2 (Niot — Nap)

T i=1

(3.3)

3.1.3 Experimental realization of time-dependent effective
magnetic fields

The Hamiltonian in Eq. describes a bond-disordered Heisenberg XY spin model
with dipolar interactions. This model arises naturally from Rydberg-Rydberg interac-
tions. To investigate magnetic susceptibilities, an external field coupling to individual
spins must be implemented experimentally. In this section, we show how resonant
microwave radiation can be used to engineer effective magnetic fields acting on the
spin degrees of freedom. These fields enable both energetic tuning of the spin system
and access to its magnetic response. Throughout the experiments presented in the
main text of this thesis, the applied microwave power remains sufficiently weak to
justify a perturbative treatment. Under these conditions, the two-level approximation
holds. A contrasting regime, characterized by strong microwave driving and involv-
ing multiple atomic levels, is discussed in Appendix [E] We begin by describing the
experimental implementation of the microwave coupling, and then analyze its impact
on the effective spin Hamiltonian.
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The microwave signal is generated by the AWG and emitted into free space
using a horn antenna. A wire grid polarizer ensures that the radiation is vertically
polarized, parallel to the external magnetic field. By aligning the polarizer wires
perpendicular to the magnetic field created by the MOT coils, the radiation becomes
m-polarized relative to the quantization axis. This polarization restricts the set of
allowed transitions through dipole selection rules, enabling cleaner state addressing in
combination with spectral selectivity. This polarized electromagnetic wave couples to
the electric dipole moment of the Rydberg atoms. As a consequence, the Hamiltonian
for the interaction of the atom with the microwave radiation at frequency w reads

H(t) = —E.(t)d, + H,y

E .. E . . .
= —(iiewe’“"t — ige’”ﬁe“"t)dz + H,,

where E defines the amplitude and ¢ the phase of the drive frequency, d the electric
dipole operator of the atom and Hj the atomic Hamiltonian [179]. Assuming a
dipole-allowed transition between two atomic eigenstates 1) and |]) that is resonant
with the driving field, the system Hamiltonian can be expressed in the basis of
these two states. By moving to the rotating frame and applying the rotating wave
approximation (RWA), the Hamiltonian can be further simplified to

g 0 —ife7®d\ 1,0 —iQ
— \iZed 0 T2 0

B ; (z Re(Q)O— Tm(€) - PLe(Q)o_ Im(Q))
= —Im(9), (? é) +Re(@) (? BZ)
= —Im(Q)S, + Re(Q)S,,

where d = (1|d|]) € Ris the dipole matrix element between the two atomic eigenstates,
and Q = dEe™ is the complex valued Rabi frequency. By this definition of 2, we
immediately see that the phase ¢ of the drive E,(t) = —E'sin(wt + ¢) is exactly equal
to the phase of the Rabi frequency. Identifying Im(Q2) = €2, and —Re(Q2) == Q, we
recover the paramagnetic Hamiltonian

Hpara = _Q:r: Z Sg(cl) - Qy Z SZSZ)’ (34)
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This corresponds to a spin model in which the spins couple only to an external
field, with no spin-spin interactions. The external field is effectively realized through
resonant microwave driving.

The experiments utilize a Keysight M8195A AWG, featuring an analog bandwidth
of 25 GHz and a sampling rate of 65GSas™!. This enables phase and amplitude
modulation of radiation up to 25 GHz on timescales as short as 16 ps. By controlling
both the phase and amplitude of the drive as functions of time ¢, we can dynamically
tune the phase and amplitude of the Rabi frequency, and consequently the direction
and magnitude of the effective magnetic field (Qx(t) Qy(t)).

Including the effect of microwave radiation, the total Hamiltonian of the disordered
Rydberg cloud reads

H = Hgyq + Hpara
=3 J; (Sii)sg(cj) + Sz,(/i)Sl(/j)) —Q, ZS’(j) —Q, Z S@(/i)' (3.5)

1<j

3.2 Measuring energetic-magnetic irreversibility

Drawing an analogy to thermomagnetic hysteresis, we define energetic-magnetic
hysteresis as a memory effect that depends on both the magnetic field and the energy
history of a system. To experimentally create such an energy history in an isolated
spin system, it is necessary to devise a method for tuning the system’s energy in a
controlled manner. For this purpose, we employ an annealing protocol, schematically
illustrated in Fig. [3.4)(a), which was initially introduced in [156], and further studied
in a different direcion in the context of aging in Ref. [180].

3.2.1 Annealing in an isolated dipolar-interacting spin system

The main idea of the annealing protocol is to prepare the ground state of Hpa and

then dynamically change the magnetic field to prepare a low-energy state of Hyg.

The duration of this change will make the transition more diabatic, thus introducing
more energy to the system. In detail, we prepare the fully spin-polarized state in
z-direction |0.) = [})®N" by excitation of N, atoms into the state |r1). A subsequent
application of a Rabi 7/2-pulse [179] with Rabi frequency € rotates this state into the
z-basis, yielding the fully spin-polarized state in z-direction |¥,) = |=)*"" where
Sy |=) = 3|—). In order to achieve a high fidelity in the preparation of |¥,), we
choose Q > J,eq. By application of a large field with amplitude €, > |.J;;| Vi, j in
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Figure 3.4: Annealing in an isolated spin system. (a) Sketch of the annealing protocol.
Field strength of the 7/2-pulse (green) and the annealing field (blue) as a function
of time. Initial field strength 2, o and ramp time ¢, are indicated by arrows. (b)
Numerical simulation of mean energy per particle (orange dots) and uncertainty
represented by one standard deviation (orange region) for the annealing protocol as a
function of ramp speed. The mean and standard deviation of ¢ is taken performed
over different disorder realization of the Hamiltonian. Simulation is performed in a
system with N = 12 particles, Q, o = 2.4.Jmeq and disorder o5/ Jpea = 0.33. A dashed
line indicates the average ground state energy ¢,. Figure (b) taken from [169].

the z-direction, this state is effectively the ground state of Hp,, where 2, = ),
and Q, = 0.

To modify the system’s energy, we apply a time-dependent annealing field along
the z-direction. The field amplitude follows the linear ramp

Qu(t) = Qoo —v,t, 0<t<t,, (3.6)

where ¢, is the ramp time, and v, = €, ¢/t, is the ramp speed. In order to express
the ramp speed as a dimensionless quantity related to the typical energy scale of the
Hamiltonian Jy,eq, We rescale the energy of the initial ramp field €2, g by Jiped, and
the ramp time ¢, by the duration of a typical interaction cycle 27/ Jyeq, giving the
quantity Qu.0/Jmea/ (tr/ (27 ) Jmed)) = 270,/ J2q

As stated above, because €1, is large compared to all couplings J;;, spin-spin
interactions can be neglected at ¢t = 0 and the Hamiltonian Eq. [3.5 reduces to the
paramagnetic Hamiltonian Hp,y,. In this paramagnetic regime, the ground state
configuration is the fully polarized state |¥,). The field ramp can be interpreted as
an annealing scheme from Hpa, to Haq [181]. Variation of the ramp speed v, allows
one to initialize states at different mean energies per particle ¢, as depicted in Fig.
3.4(b). Fast (diabatic) ramps leave the system in the initial polarized state |¥,),
corresponding to a high-energy state with € ~ 0. In contrast, slow (adiabatic) ramps
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allow the system to follow the instantaneous eigenstate, and thus prepare it close the
ground state of Hqq with energy e,.
[ 1.0
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Figure 3.5: Positive parity spectrum of a disordered Heisenberg XY model. Eigenener-
gies Ne in the positive parity subspace as a function of the applied magnetic field
Q. for a single disorder realization with N = 6 particles. All energies are given in
units of J,.q. The color indicates the overlap of the eigenvector corresponding to
that eigenenergy with the fully polarized state |—>>®6 in z-direction. Arrows indicate
asymptotic states for large magnetic fields, where either 0, 2, 4, or all 6 spins are
reversed. Aligned spins are depicted in black, while anti-aligned states are depicted
in red. Figure and Caption taken and adapted from [169].

To better illustrate the annealing protocol, we analyze the energy spectrum of
a disordered Heisenberg XY model with a transverse field along the z-direction.
The Hamiltonian conserves the parity operator P = [[Y, S implying that states
of different parity are not interacting. Since the annealing protocol uses the fully
polarized state |—>)®N in x—-direction as the initial state, which has even parity for
even N, the system evolves entirely within the even-parity subspace. Consequently,
we restrict our analysis to this subspace of the Hilbert space.

In Fig. [3.5, we show the energy spectrum of the even-parity eigenstates as a
function of the annealing field €2,, computed for a single disorder realization with
N = 6 spins. In the limit of strong transverse fields, |Q,| > Jyed, the spin—spin
interactions act as a perturbation to the paramagnetic limit. In this regime, the
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eigenenergies vary linearly with €2,, and each spin contributes :I:%Qx depending on
its alignment along z-direction.

Due to the parity constraint, only configurations with an even number of spins
aligned along each direction are allowed. The corresponding asymptotic energies
are thus given by —3€Q,, —Q,, ., and 3€2,, corresponding to spin configurations
with 6, 4, 2, or 0 spins anti-aligned with the field, respectively. The asymptotic spin
configurations are indicated alongside the eigenstates in Fig. [3.5]

For large positive fields, the ground state exhibits an almost perfect overlap with
the fully spin-polarized state |¥,). Infinitely slow adiabatic annealing therefore follows
the instantaneous ground state, leading to the preparation of the ground state of
Hgaq. When €, is quenched to zero, the expectation value of the energy with respect
to Hyq remains close to zero. This results from the disordered couplings J;;, which
include both positive and negative values and thus cancel in the energy expectation.
An infinitely fast quench consequently populates either eigenstates near zero energy
or a superposition of states with positive and negative energies that average to zero.
The system is therefore initialized in a high-energy state relative to the ground state
of Hyq. Due to the Zs-symmetry of Hyq, an energy € = 0 corresponds, within the
microcanonical ensemble, to an infinite-temperature state. By varying the ramp
speed between these two limits, states can be prepared with energies continuously
ranging from the ground-state energy up to zero energy. Within the microcanonical
description, these energies correspond to zero and infinite temperature, respectively,
thus spanning the full thermodynamic range of the system. Since faster ramps induce
more diabatic transitions between energy levels, the resulting state energy increases
monotonically with ramp speed.

3.2.2 Zero-field annealing and field annealing protocols

Based on this annealing scheme, we experimentally implement two protocols designed
to study energetic-magnetic hysteresis. While similar protocols have previously
been explored numerically in the context of quantum thermalization and aging, and
compared to canonical spin glass behavior [180], our work focuses on their experimental
realization using a Rydberg quantum simulator. The results are interpreted in light
of findings from both canonical and dipolar spin glasses, providing a framework to
understand magnetic irreversibility in this system.

In analogy to the well-known ZFC and FC protocols discussed in Chapter
we refer to these schemes as zero-field annealing (ZFA) and field annealing (FA).
The ZFA protocol is a variant of a similar protocol, which has been proposed and
simulated in the context of aging [156]. As illustrated in Fig. [3.6a), both protocols
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employ two time-dependent external fields: an annealing field €2, which controls the
system’s energy, and a probe field €2, which allows us to measure the magnetization
response. The magnetization is measured by the average expectation value of the
spin-1/2 operator

Mo =~ Z (S8 = (Sa), (3.7)

where M, denotes the a-component of the magnetization, and S, without superscript
denotes the average spin operator of the N spins in the system.

In both protocols, the annealing ramp is applied at the beginning of the sequence.
After that, in case of the ZFA protocol, the system is let to equilibrate at €2, = 0 for
a waiting time t,,, during which any remanent magnetization relaxes towards zero.
Subsequently, a small probe field €2, is applied and the steady-state magnetization
M, is measured in y-direction. The relaxation prior to field application ensures that
the application of the probe field does not introduce additional energy to the system,
thus allowing to study magnetic response at constant energy conditions. For the FA
protocol, the probe field €, is permanently applied from the start of the annealing
ramp. After the ramp, the system equilibrates at finite €2,,. The probe field is chosen
orthogonal to the annealing field, thus ensuring that the build-up of the measured
magnetization is caused by the probe field alone, and not by the annealing field.

Both protocols are implemented on the Rydberg simulation platform in the two dis-
order regimes. For clarity, we first discuss the time evolution in the weakly disordered
regime. To account for possible experimental imperfections, we measure not only
the y-magnetization, but all magnetization components using a tomographic readout
technique[155, [157], described in detail in Appendix . The time-dependent magne-
tization components are shown in Fig. [3.6(b), and the corresponding experimental
parameters are provided in the figure caption.

In the ZFA protocol, both M, and M, relax to zero by the end of the waiting time.
Since t,, is on the order of 27/ Jy,eq & 0.99 118, we infer that only a few interaction cycles
among the more strongly coupled spins are sufficient to equilibrate the magnetization.
This behavior was also shown in previous work in our group [42, 43|, and is consistent
with results from dipolar spin glasses [39-41], where enhanced coherent quantum
tunneling dynamics were found to accelerate otherwise slow glassy relaxation.

2 s after application of the probe field in the ZFA protocol (3 ps after the end
of the ramp in the FA protocol) M, reaches an equilibrium value, which does not
change over several interaction cycles and we call the ZFA (FA) magnetization. As
a consequence, for the following measurements, we fix t, = 1 ps and measure the
ZFA /FA magnetization 3 ps after the annealing ramp.

We also observe two unexpected phenomena arising from experimental imperfec-
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Figure 3.6: Time evolution of the ZFA and FA protocols. (a) Sketches of applied
fields in different direction in the ZFA (left) and FA (right) protocls. Black lines
indicate waiting time in the ZFA protocol. Green rectangles depict Rabi 7/2—pulses.
Blue triangle and orange rectangle depict time-dependence of the annealing and
probe field, respectively. Waiting time ¢,, and ramp time ¢, are indicate by black ar-
rows. (b) Experimental realization (/27 = 12.18 MHz, (2, /27 = 3.65 MHz, Q, /27 =
0.49MHz, ¢, = 3ps, t, = 11s) of the ZFA (left) and FA (right) protocols. Magneti-
zation components M, (blue), M, (orange) and M, (green) measured as a function of
evolution time ¢ in ps. Figure created from data in [169]. Capture taken and adapted
from [169].

tions, which we believe do not significantly affect the resulting ZFA or FA magnetiza-
tions.

1. In the ZFA protocol, oscillations in M, and M, are observed during the annealing
ramp, despite theoretical predictions that these components should remain zero
throughout the protocol [42].

2. In the FA protocol, we note that M, is less than 0.5 for the initial state and
has non-zero y- and z- components.

A possible explanation for the first observation is a time-dependent light shift
induced by the annealing ramp. As the microwave drive power decreases over
time, light shifts to nearby Rydberg states may also decrease, thereby modifying
the transition frequency between |r1) and |rq), calibrated at Rabi frequency 2, o.
Consequently, the microwave drive becomes slightly detuned from resonance. Within

Chapter 3 ¢ MAGNETIC IRREVERSIBILITY IN AN ISOLATED SPIN SYSTEM



the rotating-wave approximation, this detuning acts as an effective magnetic field
along the z-direction in the spin model, producing a time-dependent longitudinal
field component. The resulting field induces a rotation of the global magnetization in
the x —y plane, which can account for the observed build-up of y-magnetization. The
build-up of z-magnetization may be explained by a small deviation of the microwave
phase from 7/2, which introduces a y-component to the annealing field, shifting it
away from the intended orientation along the x-axis. A weak global field along y then
drives a rotation of the magnetization in the x — z plane. The second observation, on
the other hand, may be explained by power fluctuations in the microwave drive after
calibration, thus leading to an imperfect 7/2-pulse, which causes the reduction in
initial xz-magnetization.

For both effects, we assume that their impact on the measured ZFA and FA
magnetizations is negligible. Since M, > M, . throughout the annealing ramp, the
prepared energy at the end of the protocol is expected to be robust against small
oscillations of the M, and M, components. Moreover, in the ZFA protocol, both
transverse components relax during the waiting time, such that their influence on the
final magnetization after the probe field is applied is minimal. Even if the initial state
is not perfectly polarized in z-direction, a spin-polarized configuration with a large
x-magnetization still has substantial overlap with the ground state. Consequently,
imperfections in the initial state preparation are expected to have only minor effects
on both the ZFA and FA magnetizations.

3.2.3 Excursus: zero-field annealing of an isolated paramag-
net

Before discussing the dependence of ZFA and FA magnetizations on the annealing
ramp time, it is worth noting that the magnetic response in the ZFA protocol is
unexpected. For a single spin initially aligned along z, a magnetic field along y
induces rotation in the x — 2z plane but does not generate a y-component. To build
further intuition, we consider a system without spin-spin interactions, defined as a
paramagnet, in which spins couple only to an external magnetic field. We study
its magnetic response under constant energy conditions. Energy conservation is
justified because, in the ZFA protocol, the probe field is quenched when M, = 0,
so no additional energy is injected. Moreover, since the Hamiltonian remains time-
independent after the probe is applied, the total energy is conserved throughout the
subsequent evolution. We first analyze the linear response from a thermal equilibrium
state with zero magnetization using the Kubo formula [182]. This choice is to better
compare the result to the ZFA protocol, where the magnetization is let to equilibrate
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prior to application of the probe field, even though this equilibrium state must
not necessarily be a thermal equilibrium state. We then compare these results to
thermodynamic predictions, where we employ the Legendre transform of the entropy
with respect to the magnetic field as the thermodynamic potential. This choice
allows us to determine equilibrium values at fixed energy and external magnetic field,
conditions that are precisely realized in the ZFA protocol under the assumption of a
quasi-static process.

Since a paramagnet is defined as an ensemble of non-interacting spins coupled
only to an external magnetic field, its dynamics can be fully captured by analyzing a
single spin. Accordingly, we perform our analysis for a single spin—% particle. The
results can be straightforwardly generalized to a paramagnet consisting of /N spins
by interpreting the single-particle spin operators S, as collective spin operators, i.e.,
sums over the individual spins in the ensemble. We consider the Hamiltonian of
a single spin subject to a magnetic field 2 oriented along the x-direction, given
by Hy = —5,. We assume that the spin reaches thermal equilibrium under this
Hamiltonian, with the system initialized at zero total energy. To probe the system’s
response, we examine the y-component of the magnetization, M, = (S,), under the
influence of a perturbation Hpey = —£2,5,, which simulates the effect of an external
probe field applied along the y-direction.

In the interaction picture, the time evolution of the operator S, is given as

_ _iHpt —iHot __ _—iQtS, QS
Sy(t) =e"*"Sye =e Sye

—iQt)* —iQt)?

_ 5, + <1!)[sx, S, + (Q!)[Sw’ (S0, S]] + ... (3.8)
)t Qt)? .

=5y + ( 1!> S, — ( 2!) Sy + -+ = cos(2t)S, + sin(2)S,,

where we made use of the Hadamard formula in the first line and the spin algebra
commutation relation [S,, Sg| = i€4p,5, in the second line. We insert these relations
into the Kubo formula:

(5,0 (1) = =i [ (18,(0), Hoan )

~ i, | " ([cos(Q)S, + sin(Q1)S.., cos(Q')S, + sin(Qt')S.]) dt’

" (3.9)
— iQ, /0 (sin(Q1) cos(Qt') — sin(Q') cos(Q))i (S,)
1 — cos(Qt)

=0, (8 [ sin(at — ) = 0, 5 =2
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We observe that for a state with no equilibrium magnetization, i.e. where (S,) is
zero, the Kubo formula yields no response. In the limit of negligible fields in z-direction,
which is the limit at the end of the annealing ramp, we obtain limg_,o lf%s(m) =0
and also no response. Thus, for a paramagnet, we expect no ZFA response at all.

This behavior can be understood thermodynamically by using a potential with
magnetic field €2 and energy E as natural variables. In the absence of thermal
fluctuations, the temperature and, by the third law, the entropy are zero. In this
regime, £ = — M), where M is the magnetization. This thermodynamic potential
allows access to the linear susceptibility at constant energy: Xmas = (%—]g = For zero
magnetic field, £ = 0, and in a constant-energy process, E remains zero. Hence,
MSQ = E = 0 implies M = 0 also for finite 2. Since M = Xmag{? for small but finite
Q, we find Xmag = 0. Thus, due to the restricted phase space at zero energy, no
magnetic response is expected.

In spin systems that thermalize according to the eigenstate thermalization hypoth-
esis (ETH) 117, |118], high-energy eigenstates are expected to exhibit paramagnetic
behavior. Consequently, the observation of a finite magnetic ZFA response indicates
a deviation from paramagnetic behavior, suggesting that the system may instead
reside in a distinct low-energy regime.

3.2.4 Susceptibilities and the onset of hysteresis

We aim to investigate energetic-magnetic hysteresis by comparing the magnetization
response of many-body states that share the same final energy and applied magnetic
field, but originate from different dynamical protocols, each encoding a distinct
history. In the limit M, — 0, the ZFA and FA protocols become effectively equivalent,
preparing final states that are nearly indistinguishable in terms of both energy and
probe field. This regime enables a direct comparison of the magnetic response as a
function of the system’s history. To quantify this response, we measure the transverse
magnetization M, as a function of the applied probe field €2,,. Linearizing this relation
around €2, = 0 allows us to extract the linear magnetic susceptibility for each protocol:

N aMy
Xmag = 09,

The experimental realizations of the ZFA and FA protocols for the two disorder
configurations sketched in Fig. are presented in Fig. 3.7 The insets display
the measured magnetization as a function of the probe field 2, for a fixed ramp
time of 3 s, revealing a linear response regime at small probe amplitudes. In the
weakly disordered configuration, the ZFA and FA magnetization curves exhibit

(3.10)

Q,=0
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Figure 3.7: Measurements of ZFA and FA susceptibilities in two disorder configura-
tions. (a) Linear susceptibility Xmag in units of Jeq as a function of the ramp speed v,
rescaled by Jyeq = 27 x 1.01 MHz for the ZFA (red) and FA (violet) magnetization in
the weakly disordered regime. Inset shows response measurements of y-magnetization
as a function of the dimensionless probe field €,/ Jyeq. Magnetization is measured
3ps after the end of the annealing ramp, corresponding to 5 interaction cycles of the
median interaction. In both cases the equilibration time is chosen such that both
protocols have the same absolute duration when magnetization in y-direction. A
linear fit to the 5 data points centered around zero is used to extract the susceptibility
and its errorbar. (b) Linear susceptibility Xmag in units of Jeq as a function of the
ramp speed v, rescaled by Jpeqa = 27 x 1.63 MHz for the ZFA (yellow) and FA (blue)
magnetization in the strongly disordered regime. Inset shows response measurements
of y-magnetization as a function of the dimensionless probe field €,/ Jieq. A linear
fit to the 5 data points centered around zero is used to extract the susceptibility and
its errorbar. Figure and caption taken and adapted from [169].

nearly identical slopes, indicating similar magnetic susceptibilities. In contrast, for
the strongly disordered configuration, the slopes differ substantially, suggesting a
history-dependent magnetic response. As discussed above, the probe field in the ZFA
protocol does not change the energy of the system, whereas in the FA protocol it
does: since a finite y-magnetization already builds up during the annealing along
the direction of the applied field, the product M,(2, is nonzero, leading to a slight
reduction in the energy of the FA state. This behavior was also observed in Ref.
[180], where a 12-particle numerical simulation showed that for slow ramps, the FA
energy lies below the ZFA energy. Moreover, the magnetization difference between
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the two states was found to vary nonlinearly with their energy difference, inconsistent
with a paramagnetic description where energy and magnetization are negatively
correlated. This was interpreted as evidence that the splitting between ZFA and FA
magnetizations originates from history effects rather than from energy differences.
While we agree that the system is no longer in a paramagnetic regime, consistent
with the finite ZFA response, the strong nonlinear behavior inherent to the dipolar
Heisenberg-XY model does not exclude a nonlinear dependence of magnetization on
energy. Therefore, we cannot fully exclude the possibility that the observed splitting
stems from an energy difference between the ZFA and FA states. However, the
fact that the largest splitting between ZFA and FA susceptibilities in the strongly
disordered regime is almost an order of magnitude larger than the largest splitting
observed in the weakly disordered regime, makes this scenario rather unlikely.

The magnetic susceptibilities for both protocols are extracted from a linear fit
of the magnetization for small probe fields, and are shown as a function of ramp
speed in Fig. 3.7 We find a common behavior of the susceptibilities independent
of the disorder configuration and the protocol: At very fast ramps, corresponding
to final states at high energy, the susceptibilities approach zero for both disorder
configurations, consistent with the paramagnetic behavior discussed previously. As
the ramp speed decreases and the system’s energy approaches the ground state energy,
the susceptibilities increase monotonically for both ZFA and FA protocols. This trend
mirrors the behavior of thermal magnetic systems at low temperatures, where the
fluctuation-dissipation theorem links enhanced susceptibility to the emergence of spin
correlations [183].

We observe a clear distinction between the two disorder configurations. In the
weakly disordered regime, the ZFA and FA susceptibilities coincide within experimen-
tal uncertainty, whereas in the strongly disordered case a bifurcation emerges already
at comparatively fast ramps, 27v,./Jnea = 15. In the latter regime, the difference
between the two susceptibilities increases as the system energy decreases, indicating
pronounced hysteresis and, consequently, irreversible behavior. Irreversibility can be
understood in analogy with irreversible quasistatic thermodynamic processes, where
the system’s state depends on its history, such that a closed loop in the natural
variable space leads to a different final state. Using entropy as a thermodynamic
potential, the divergence between the ZFA and FA susceptibilities therefore serves
as a signature of thermodyamic irreversibility. In thermal equilibrium, the magnetic
susceptibility should depend solely on the system’s energy and not on its history,
i.e., it should be identical for both protocols. The observed deviation thus implies
that at least one of the two final states realized in the protocols does not represent a
thermal equilibrium state. The non-thermal nature of this bifurcation may indicate
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the emergence of a new phase at low energies.

3.3 Conclusion

In this chapter, we initiated our experimental investigation of the low-energy dynamics
in a disordered, dipolar-interacting Heisenberg XY spin model in three dimensions.
We first outlined how this model is realized on a Rydberg atom quantum simulation
platform, and then introduced an annealing protocol that allows controlled tuning of
an isolated system’s energy.

The capability to control the energy of an isolated quantum system enables the
exploration of non-equilibrium phenomena that are typically studied in thermally
equilibrated settings. In this context, we adapted the well-established zero-field-cooled
(ZFC) and field-cooled (FC) protocols to the regime of isolated quantum dynamics.
Specifically, we introduced and implemented quantum analogues of these procedures,
referred to as zero-field annealing (ZFA) and field annealing (FA), on our quantum
simulation platform.

In the high-energy regime, the system exhibits behavior reminiscent of the paramag-
netic phase in canonical spin glasses. In contrast, the low-energy regime, characterized
by a bifurcation between the zero-field-annealed (ZFA) and field-annealed (FA) suscep-
tibilities, remains to be fully understood. The observed energy-dependent magnetic
hysteresis qualitatively resembles thermomagnetic hysteresis phenomena reported in
canonical spin glasses [83] |184, |185], suggesting the possible emergence of a quantum
spin glass phase. This interpretation is supported by earlier observations of anoma-
lously slow relaxation and incomplete thermalization in our system [42, 43]. Moreover,
the bifurcation appears already at fast ramps, with relaxation dynamics occurring
on timescales comparable to the median interaction cycle. This is consistent with
findings in dipolar spin glasses, where unitary evolution has been shown to facilitate
the formation of a spin glass phase through quantum tunneling, more efficiently than
classical thermal fluctuations [35] |41].

Previous work has shown that the magnetization dynamics of strongly disordered,
isolated dipolar spin systems can be effectively described by the evolution of interacting
pairs of spins [42,186]. In the limiting case of purely antiferromagnetic couplings, such
a pair-based description reproduces the random singlet phase |63}, 64, |66} 187, [18§].
Conversely, when ferromagnetic couplings dominate, the model exhibits similarities to
a cluster glass or superspin glass [84], for which a bifurcation between zero-field-cooled
(ZFC) and field-cooled (FC) susceptibilities has also been observed in systems coupled
to a thermal bath, as we discussed in Chapter
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Given that our Heisenberg system incorporates both ferromagnetic and antifer-
romagnetic interactions, future studies may aim to explore potential connections
between these two distinct phases. In particular, time-reversal protocols, which
have recently been demonstrated in our platform [48], offer a promising tool: While
the random singlet phase preserves time-reversal symmetry, the spin glass phase is
characterized by spontaneous breaking of this symmetry.

The bifurcation between ZFA and FA susceptibilities suggests a spin glass phase,
motivating several potential research directions.

1. In the mean-field Parisi picture of spin glasses, the field-cooled (FA) state is
generally considered a metastable configuration that corresponds to the thermal
equilibrium expectation value [68]. However, this interpretation has been
challenged by recent experimental results [87, 88]. A deeper characterization of
the FA state, particularly through the study of time-dependent self-similarity in
the form of aging [189], could provide new insights into the nature of the FA state
and address fundamental questions about the spin glass phase. The phenomenon
of aging, along with a proposed experimental realization, is discussed further in

Chapter [6]

2. As discussed in Chapter [2| two hallmarks of the spin glass phase are the
divergence of the nonlinear susceptibility, as well as a weak frequency dependence
of the ac-susceptibility as a function of temperature. These phenomena allow
to test whether critical behavior, establishing the glass as an equilibrium phase,
are present. We propose an experimental realization in Chapter [6]

3. In the introduction, we noted that it is an open question, related to the long-
standing question of replica symmetry breaking [16] or droplet scaling model
[17, 18], whether a spin glass phase can persist at finite magnetic fields, and
whether there is a second order phase transition. This was also questioned
specifically for dipolar spin glasses [190]. In the next chapter, Chapter [4] we
devise a protocol based on the Kibble-Zurek mechanism [191-193] to study
exactly this question.

As a final remark, we note that the presented ZFA and FA protocols are interaction-
agnostic and applicable to arbitrary spin models with Z, parity symmetry, as this
symmetry ensures that |U,) corresponds to a high-energy state. Thus, they provide a
robust framework for probing thermalization in quantum systems beyond the dipolar
model studied above. In addition to advancing understanding of spin glass physics, the
protocols also offer practical relevance for benchmarking adiabaticity and performance
in annealing-based quantum computing platforms 110} 194-196).

3.3 CONCLUSION
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CHAPTER 4:

Characterizing Critical Behavior
with a Global Protocol

As discussed in the previous chapter, the onset of hysteresis constitutes a necessary,
but not sufficient condition for the emergence of a spin glass phase. A natural
progression from this observation is to investigate whether a second-order phase
transition occurs between the paramagnetic phase and the proposed spin glass phase.
As established in Chapter 2] the existence of such a transition is well supported for
known spin glasses as a function of temperature. However, whether this transition
persists down to zero temperature, as a quantum phase transition where the magnetic
field serves as a control parameter, remains a topic of significant debate.

In this chapter, we aim to contribute to the resolution of the following question:

Does a spin glass phase exist in the dipolar-interacting Heisenberg XY model, and if

so, is it connected to a quantum phase transition driven by an external magnetic
field?

Given that quantum phase transitions are characterized by critical exponents, we
also address a complementary question:

How can the critical exponents of a spin glass be experimentally accessed in an
isolated quantum system, where temperature scaling is absent?

As the experimental platform introduced in the previous chapter has only access
to global observables, we seek a protocol that characterizes the critical exponents of
a second-order quantum phase transition by global measurements only. Therefore,
we develop a theory, based on an extension of the Kibble-Zurek mechanism (KZM).



The Kibble-Zurek mechanism (KZM) originates from studies by Kibble on defect
formation in the early universe [191], and was later adapted by Zurek for quantum
systems [192] [193]. It is a general concept which relates the dynamical formation
of topological defects to the equilibrium critical exponents of a continuous phase
transition. In so called forward quenches where the control parameter is ramped
once across the critical point, the KZM predicts scaling laws for defect density and
correlation lengths based on critical exponents and the quench rate. Its validity in
the quantum realm is astonishing, as for a many-body quantum system, it couples
the physics of quantum phase transitions to the complex nonlinear dynamics of highly
correlated systems. The validity of the KZM goes far beyond the initial prediction on
equilibrium second order phase transitions, reaching from non-equilibrium transitions
[197-203] over topological phase transitions [44] to transitions through a critical
surface [204] and transitions with an inhomogenous drive [205-207].

This chapter, which further builds upon the KZM, is organized as follows. We
begin with a review of the generalized Kibble-Zurek mechanism (gKZM) in Sec. [£.1]
introduced by Adolfo del Campo [208-213]. While the KZM makes predictions about
the expected number of defects after a forward quench, the gKZM predicts the full
counting statistics including all higher order cumulants of the defects. Its main result
is that the measurement of these higher order cumulants as a function of the quench
time allows for a measurement of the KZM critical exponent, which quantifies the

phase transition. We then extend the gKZM to reverse quenches [214-217] in Sec.

4.2 where the system is driven twice across a quantum critical point. This allows
us to derive the main result of this chapter, which is a general relation between the
variance of the defect density after a forward quench and the defect density after
a reverse quench protocol for quantum spin systems. We benchmark the validity
of our extension in two model systems. First, we study the transverse field Ising
model (TFIM) in Sec. using both analytical and numerical methods. Parts of
the numerical implementation and, in particular, the analysis of the Stiickelberg
oscillations were carried out under the supervision of the author by Daniel Rubin
and were included in his Bachelor’s thesis [218]. Second, we apply the protocol to the
bond-disordered TFIM in Sec. [.4] focusing on numerical simulations.

Next, for quantum phase transitions involving a paramagnetic phase, we show in
Sec. that global magnetization measurements can serve as a reliable approximation
for the defect density, thus eliminating the need for local measurements We also
discuss the limitations and qualitative implications of this approach. The idea of using
global reverse quenches to identify a possible spin glass critical point was originally
proposed in the author’s Master’s thesis [219]. Finally, we implement the reverse
quench protocol on our experimental platform, using the two disorder configurations
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introduced in the previous chapter. We present and analyze the resulting data in Sec.
and conclude with a summary of the main findings and their broader significance

in Sec. 4.7l

4.1 The generalized Kibble-Zurek mechanism

We outline the physics of the KZM and the gKZM on the example of a spin system
that undergoes a continuous phase transition as a function of the magnetic field h at
the critical point h.. For the derivations in this section, we only rely on the universal
behavior of the system at the critical point. As such, the derivations are both valid
for a classical system in thermal equilibrium undergoing a thermal phase transition
as well as for an isolated quantum system undergoing a quantum phase transition.
Close to the critical point, the correlation length £ of the system diverges as a power
law

-V

h — h,
he
where v is the correlation length critical exponent, and &, the correlation length at

h = 0. The typical timescale of the system 7, for example a relaxation time, also
diverges close to criticality

, (4.1)

, (4.2)

where z is the dynamical critical exponent and 7y the typical timescale at h = 0 [44,
102].

We now review the system’s behavior when the field h is quenched across a phase
transition, a process known as the forward quench protocol, illustrated in Fig. [4.1f(a).
Our derivation mainly follows |209], which presents KZM and gKZM for systems of
arbitrary dimension. In this protocol, the system is initially prepared in equilibrium
far from the critical point at a field hg > h.. For spin systems in the large-field
limit, the system is paramagnetic, with the equilibrium state fully polarized along
the initial field. The control parameter h is then varied linearly in time, driving the
system across the critical point

ht) = —hg——, —rg <t <0, (4.3)
TQ

where 7¢ is the quench time and ¢ the instantaneous time. Let At(¢) denote the
remaining time to reach the critical point at a given time ¢. As the control parameter
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Figure 4.1: Schematic of the generalized and the standard Kibble-Zurek mechanism.
(a) Adiabatic impulse approximation in an Ising ferromagnet. The system is driven
from the paramagnetic phase through the critical field h.. The figure features two
anti-aligned vertical axes. The green line (lower axis) shows the linear variation of the
field h(t), with time ¢ defined so that h(t = 0) = h.. The red dashed and blue solid
lines (top axis) represent the remaining time At to the critical point and the system’s
response time 7, respectively. The cyan shaded region marks the freeze-out interval
between —t and ¢, during which the system’s dynamics effectively freeze. The inset
arrows illustrate spin configurations, with defects highlighted in red. (b) Reverse
quench protocol in the gKZM framework for an Ising ferromagnet. The system of size
L evolves through successive stages of the reverse quench, each at a different magnetic
field h. Initially, it is in a defect-free paramagnetic phase (blue). As h decreases
past the critical value h., protodomains of size £ form, separated by white dashed
boundaries. At h = 0, deep in the ferromagnetic phase, these boundaries become
domain walls (black lines) separating domains with distinct magnetizations (red
and blue). When the field increases and crosses h. again, the protodomain pattern
reappears. In the final paramagnetic phase, residual domain walls adiabatically
transform into localized spin-flip defects (red arrows).

h(t) approaches the critical value h., the correlation length ¢ and relaxation time 7
diverge according to equations and - while At(t) decreases linearly This leads

to the definition of the freeze- out time , determined by the condition 7( (—1).

Since At depends on the quench time 7¢, the freeze-out time tis hkew1se a functlon
of 7 Q-

At —%, the system can no longer evolve adiabatically and falls out of equilibrium.

4.1 THE GENERALIZED KIBBLE-ZUREK MECHANISM
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The correlation length becomes effectively frozen at ¢ = £(—%). This behavior is
described by the adiabatic impulse approximation [44], which has been experimentally
observed across various platforms [220-223].

As a result, domains form with an average size &(—t), separated by domain walls
that arise as non-equilibrium excitations, i.e., defects. After the time ¢, as the system
moves further away from the critical point, adiabatic evolution resumes. According
to the KZM, the domain walls generated at the freeze-out time become adiabatically
connected to the defects in the final phase. For this reason, we use the terms domain
wall and defect interchangeably in the following discussion.

For a d-dimensional defect in a D-dimensional system, the KZM predicts that the
defect density after a forward quench scales as

(i | e
Ndet ~~ W ~ TQ1+ — TQ'U" (44)

where p is the KZM critical exponent, which can be used to distinguish different
universality classes [44].

Equation [4.4] predicts the expected number of defects nger as a function of the
quench time 7. Intuitively, it implies that faster quenches drive the system further
out of equilibrium, resulting in a higher number of elementary excitations. However,
this prediction concerns only the expectation value of the defect density and provides
no information about the statistical properties of the defects, such as their variance
or higher-order cumulants. To access these quantities, a microscopic probabilistic
model of defect formation is required, which is precisely what the gKZM provides.

For pedagogical clarity, we introduce the gkZM in the context of a one-dimensional
system (D = 1) with point-like defects (d = 0). As shown in Fig. [4.1{(b), the gKZM
offers a stochastic reinterpretation of the scaling behavior presented in Eq. [.4]
previously derived from adiabatic and diabatic dynamics in the standard KZM.
In this formulation, the system at the critical point is divided into protodomains
[212] of fixed length £(—t), corresponding to the frozen correlation length. For a

system of length L, the number of protodomains NN is thus m. Unlike KZM

domains, which have a distribution of sizes and correspond to observable structures,
protodomains are a conceptual tool: they partition the system into equal segments of
length &(—%), within which no domain wall can arise by construction.

After the system traverses the critical point, a domain wall may form between any
two adjacent protodomains with a probability p, which depends on the microscopic
details of the system. Physical domains are then defined as regions consisting of
contiguous protodomains bounded by two domain walls.
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The generalized Kibble-Zurek mechanism (gKZM) extends the classical KZM by
modeling domain wall formation probabilistically. The simplest assumption is that
domain walls form independently at each boundary between adjacent protodomains,
with a uniform probability p. This corresponds to a Bernoulli process for defect for-
mation [208, 209]. Each of the N protodomain boundaries represents an independent
trial where a domain wall appears with probability p. In one-dimensional systems,
the number of boundaries equals the number of protodomains. In higher dimensions,
the number of boundaries is proportional to the number of protodomains by a factor
1/f, where f reflects the typical number of protodomains meeting at a boundary.

Within this stochastic framework, the average defect density at the end of the
quench follows

. 1 o 1 L Db (TQ —H —u
naet(1Q) = ZNP = me TG (7_0) ~Tg - (4.5)

As noted by Ref. [208], the scaling predicted by the gKZM matches exactly the
classical KZM scaling given in Eq. [4.4] including the correct critical exponent .
Moreover, interpreting defect formation as a Bernoulli process enables calculation
of higher-order cumulants of the defect density. In particular, the variance of the
average defect density, Var (ngef), is given by

1 IR S L _p(=p) (me\™"
Var (ngef) = ZNp(l p) = Lp(l D) : (—f(TQ)> - <To> . (4.6)

Thus, the defect variance also scales with the KZM exponent p as a function of the
quench time 7g. Furthermore, the Bernoulli-process formulation allows calculation of
higher-order cumulants of the defect distribution, which is not possible in the classical
KZM framework. This approach has been extended to higher-dimensional systems
[209, 224] and recently also to systems with long-range interactions [225].

4.2 Extending the generalized Kibble-Zurek mech-
anism to reverse quenches

Here, we extend the gKZM to analyze the dynamics along reverse quenches, which is
sketched in Fig. (b) In the reverse quench protocol, the magnetic field is quenched
forth and back over the critical field with the same speed, i.e.

h(t) = holt|/7q, —Tq <t <q. (4.7)

4.2 EXTENDING THE GENERALIZED KIBBLE-ZUREK MECHANISM TO REVERSE
QUENCHES
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We analyze the protocol regarding it as a sequence of two distinct forward quenches:
the first occurring in the time —79 <t < 0 and the second one in 0 <t < 7. Each of
these can be viewed as a distinct forward quench originating from a different original
phase. In case of the first quench, at time —t the standard gKZM applies. The
correlation length is frozen and the system can be divided in protodomains, where
the boundaries between adjacent protodomains form a domain wall with probability
p. After crossing the critical point, the domain walls adiabatically transform into the
defects of the respective phase, but the number of defects remains constant. This
follows from the adiabatic impulse approximation.

In the second quench, we use the adiabatic impulse approximation again. The
system follows the drive adiabatically, keeping the number of defects constant, until
the correlation length freezes again. Assuming equal critical components on both
sides approaching the phase transition, this correlation length will be equal to the
freezing length of the first quench & (—f(TQ)) =¢£ (f(TQ)). As such, the system can
be divided again into the same protodomains. However, unlike in the first quench,
the system is at the beginning of the second quench not in equilibrium. As a result,
domain walls, which were formed during the first quench, are already present at
the boundaries between adjacent protodomains. For each boundary, a domain wall
already exists with probability p.

At this point, we introduce the key assumption for applying the gKZM to reverse
quenches. If a domain wall is absent (present) at a given boundary, the reverse quench
creates (annihilates) a domain wall with probability p. Consequently, after the second
quench, a domain wall remains either if it was formed during the second quench or
if it was initially present and survived, in both cases with probability 1 — p. The
combined probability to find a domain wall is 2p(1 — p). This result agrees with
[226], where a single forward quench crosses two identical critical points, a scenario
mathematically equivalent to a reverse quench across a single critical point.

Using the stochastic framework of an N-trial Bernoulli process, we calculate the
expected defect density following a reverse quench:

ev _ Lo L p(L—p) (o7
Nget = 720 (L=p) N = 72p(1 p)g@—2 3 (TO) : (4.8)

At this point, we find that the reverse quench defect density shows the same scaling
behavior with the very same critical exponent p as the forward quench. This is
consistent with studies on reverse quenches from microscopic dynamics in different
1D systems [214-217], where the gKZM was not used. In addition, a comparison to
Eq. (4.6 yields

Ngor = 2Var (nget) , (4.9)
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which is our main prediction of the gKZM on reverse quench defect densities:

The variation of the defect density after a forward quench equals half of the defect
density after a reverse quench protocol.

Our extension of the gKZM thus allows fluctuations (the variance of the defect density
after a forward quench) to be inferred from an average macroscopic observable (the
average defect density). In addition, a comparison to Eq. yields

rev

Nger = 2 (1 = p) naer, (4.10)

which allows for a direct calculation of the probability p. This is also consistent
with the other studies mentioned previously [214-217]. A second method to obtain p

results from equating equations and [4.10],
Var (nget) = (1 — p) Ngef- (4.11)

Comparing the values for p obtained by Eq. and Eq. allows to validate our
extension of the gKZM.

4.3 The uniform transverse field Ising model

We benchmark our findings of the gKZM on two different paradigmatic models. We
start with reviewing the results of the 1D uniform transverse field Ising model (TFIM),
which belongs to the class of quasifree fermion models, together with others like
the 1D XY, the 1D Heisenberg and the 1D Kitaev model. For these models, the
gKZM is predicted to hold for forward quenches [208, [212]. In this section, we will
derive the defect density in the forward and reverse quenches and the defect density
variance in the forward quench scenario from a microscopic picture. The results are
then compared to our gKZM predictions. In order to simplify the mathematical and
numerical treatment, we study the dimensionless model Hamiltonian

N N
H ==Y Jioio;,  —h> of, (4.12)
i=1 i=1

where N is the number of spins, of* a Pauli-a operator acting on spin %, J; > 0

the coupling constant between spins ¢ and 7 + 1, and h an external magnetic field.

Throughout this article, we apply periodic boundary conditions, i.e. &y.1 = &1. For
J; =1, i.e. the TFIM with uniform couplings, which we call the uniform TFIM, this
model shows a quantum phase transition at h. = 1 with critical exponents z =v =1
and p = 1/2 [102]. For simplicity, we will restrict without loss of generality to the
case of an even particle number [227, 22§|.

4.3 THE UNIFORM TRANSVERSE FIELD ISING MODEL

67



Forward quench defect density

The forward quench protocol was initially studied in [227], and recently again in
[229]. We shortly review the most important steps. The basic idea is to perform
a Jordan-Wigner transform on the the Ising Hamiltonian and describe the Pauli
operators by spinless fermionic creation and annihilation operators

ol = -] — 2 rci)(ci + ¢ h (4.13)
7<t
o =1—2cl¢ (4.14)

Without loss of generality, we assume an equal number of particles. The periodic
boundary conditions of the spin Hamiltonian then translate into anti-periodic bound-
ary conditions for the fermionic annihilation operators, ¢y, = —c;. For an odd
number of spins, the treatment is analogous. The resulting Hamiltonian is:

H= Z )(civ1 + cl+1) + h(2cle; — 1). (4.15)

This Hamiltonian can be Fourler—transformed into momentum space to yield

H = 22 — cos(k))chex + sin(k)(chel , + c_rer) — he (4.16)

In momentum space, with modes

37 (N -7
k:e{iNiN iN},

the Hamiltonian decomposes into N independent two-level systems. Each pair of
modes +k undergoes a Landau-Zener crossing with gap A, = (47¢ sin? l{:)_l. For
an odd number of spins, the modes are the same, but an additional non-interacting
mode k = 7 requires separate treatment; the Landau-Zener picture still applies to all
other modes.

A defect corresponds to an excitation of a Landau-Zener system, with the excitation
probability for each mode k given by

pr=¢ . (4.17)

For slow quenches, only the long wavelength modes get excited, such that p; has a
relevant support only close to zero [229], and can be approximated for k£ =~ 0 as a

Gaussian
2
pr A e 2TTRM (4.18)

68 | Chapter 4 ¢ CHARACTERIZING CRITICAL BEHAVIOR WITH A GLOBAL PROTOCOL



In the thermodynamic limit N — oo, the defect density is given by

. 1 1 ™
Ndef = Nh_I)TlOON;pk = %/_kadk
1 1

(4.19)
~ i /OO dk = —
27 wopk 2T \/ZTQ.

This approximation is valid as long as the width of the Gaussian integral is way
smaller than 27. As p, is a Gaussian function centered around 0, if the width of
the Gaussian function is way less than 27, extending the integration boundaries
from (—m, ) to (—o0, 00) will leave the integral almost unchanged. This condition is

fulfilled for 41 <, which is true for long quench times.
7T’TQ

We also read off u = % from Eq. , as predicted both from the KZM and the
gKZM.

Reverse quench defect density

For the uniform TFIM, the reverse quench protocol was solved exactly for arbitrary
quench times in [217]. Unlike in the forward quench, interference arises between paths
where a defect forms in the first or second forward quench. This effect produces
oscillations in the defect density as a function of the quench time, known as Stiickelberg
oscillations [217, 230-232]. An approach neglecting these oscillations is discussed
in [214]. Here, we adopt an alternative approach that incorporates Stiickelberg
oscillations to approximate the defect density in the limit of large quench times.

For the treatment of the Stiickelberg oscillations, we follow mainly [232]. For a
single k-mode, the reverse quench protocol is equivalent to a double passage of a
Landau-Zener crossing. In this double passage, an interference effect occurs when
measuring the excitation probability. The path in which an excitation occurs in the
first crossing but not in the second one interferes with the path in which an excitation
occurs in the second crossing but not in the first one. The phase difference between
these two paths is the Stiickelberg phase ®g;

st = (1 + ¢s, (4.20)

where (; is the phase acquired during an adiabatic evolution and ¢g is the Stokes
phase which is acquired due to the non-adiabatic nature of a forward quench. (; can
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be calculated from the energy difference between the two Landau-Zener crossings, i.e.

1 pie
G(k) = 5/ AE(t)dt
1
. N2 | | (4.21)
:2/ — | —2—cos(k) + 1dt,
t1 TQ TQ
where t; = —7¢ cos(k) and ty = 7¢ cos(k) are the times at which the gap is minimal.

For small k < 7 which are excited for long enough quench times, cos(k) ~ 1. Making
the substitution u = %, the phase (; can be approximated by

1
k) ~ 2TQ/ Ju2 = 2| + 1du = 27, (4.22)
-1

which for small k is nearly k-independent [218]. On the other hand, for large quench
times, the Stokes phase ¢g is known to be approximately zero [232]. As such,
the Stiickelberg phase for large quench times is nearly 275. Hence, averaging the
Stiickelberg oscillations over one time period of 7/2, one obtains

™

T T 2 2
DL = 4e (1 —e QAk) - /02 sin’(27g)

(4.23)
= 267ﬁ (1 — eiﬁk)

for the average excitation probability p;. As such, the defect density after the reverse
quench n¥ averaged over one oscillation cycle in the limit of large 7, where only the
long wavelength modes are excited, is

=5 [ pk
:§Lﬂ2e 28 (1—6 Mk)dk

1 00
~ ? [m 26—27TTQ1€2 ( —27rTQk2) dk (424)

1 1 1
— 9 —
2m (\/?T Qo VAT Q)
1 1
= (2 — \/5) 7 i = (2 — \/§> Nef -
A comparison to Eq. [£.10] shows that the gKZM applies with the domain wall

formation probability p = 1/4/2. The scaling exponent is = 1/2 as predicted from
the critical exponents of the model via the KZM and gKZM.
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Forward quench variance

A detailed derivation of the defect variance after a forward quench using the moment
generating functional is given in [208, 211]. Here, we adopt a different approach,
starting from Eq. [£.16] Since the system decomposes into N independent subsystems
of modes +k, higher-order cumulants of the defect density can be computed from the
cumulants of the individual subsystems. Consequently, the defect number variance
is the sum of the variances of each subsystem, eliminating the need to compute the
moment generating functional for the entire system.

Each subsystem labeled by its mode k& comprises a 2-level system undergoing a
Landau-Zener transition. We assume that the subsystem is initialized in its ground
state |g) and undergoes a time evolution to its final state |g(tgna1)). The number

operator that counts the amount of excitations is represented by the operator i = |e)(e].

As already stated in Eq. [4.17], according to the Landau-Zener-formula, we obtain
that the expectation value of the number operator gives the excitation probability

(9(®)|nlg(t)) = pr = (g(t)]e) (elg(t)) - (4.25)

In addition, since |e)e| is a projection operator, it fulfills 2™ = |e)e|™ = |e)e|] =

n, Vm € N. As a consequence, the expectation value of higher powers of the number
operator is equal to the excitation probability

{g®)[n™g(t)) = (g@)|nlg(t)) = pr, Ym e N. (4.26)
As a consequence, the number variance for a single mode k is given by
Var (naer(k)) = (nacet(k)?) = (naet(k))* = pi — pi. (4.27)

In the continuum limit and in the limit of large quench times, such that only long
wavelength modes get excited, the variance of the number of defects in the system
normalized by the system size is thus given by

Var(ngef) = S /7r (pk — pi) dk

2m J—x
@;r/j (7% — e %) dk
L 217T /_O; (72 — emimmak?) g (4.28)
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A comparison with Eq. shows that indeed 2Var(nget) = ny in agreement with
the gKZM prediction in Eq. 4.9, Moreover, comparing to Eq. [£.11] we can read
p = 1/4/2, demonstrating the applicability of the gKZM framework to the reverse
quench.

Numerical simulation

We compare the analytic results which we derived for large quench times with a
numerically exact simulation with N = 1 x 10* particles using periodic boundary
conditions. For the forward quench protocol, we choose to start in the ground state
at h = 0 and apply the quench protocol

ht) =he—, 0<t<mg (4.29)

as the defect density is independent of the quench direction [227]. The reverse quench
protocol is as above. For better readability, we denote for both quench protocols the
initial time as tj,;; and the final time as tg,.. Conversely, the magnetic field h at
initial time is hin;; and at final time hgn,. For the numerical implementation of the
forward and reverse quenches, we extend the techniques described in [227].

As a starting point, we seek to bring the Hamiltonian in Eq. into the form

1
H = Z€k (’Y}i’Yk: - 2) ) (4.30)
k

where 74 is the annihilation of a fermionic quasiparticle, and ¢, the energy associated
to it. This can be achieved by applying the Bogoliubov transformation

cr = wevk + v (4.31)

where the prefactors u, and v, must fulfill

] <uk> B (2(h — cos(k)) 2sin(k) ) (uk> (4.32)
o) 2sin(k) —2(h —cos(k))) \vx ) ° '
This equation has a positive and a negative solution with energy +e¢,. While the
positive energy eigenvector is associated with the creation operator of the quasiparticle
%L the negative solution is associated with the creation operator of a hole, equivalent
to the annihilation of a quasiparticle v_y.

We now change to the Heisenberg picture, where operators are time-evolving and
quantum mechanical states are time-independent. In this picture, the ground state
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of the Hamiltonian is the quasiparticle vacuum |0) , defined by ~, |0) = 0 for all k,

where the 7, that annihilate the vacuum are given by the positive solution of Eq.

4.32] In the limit » — oo, the ground state is the fully polarized state |—)®", and
the 7, are obtained from (ug,v) = (1,0).
A time evolution can be achieved using the Heisenberg equation of motion

dcy,

iy = [ex, H(t)] (4.33)

together with the constraint %’“ = 0. This constraint essentially defines the v and %1
obtained at initial time as generators of the fermionic algebra. Applying Eq. [£.31] and
thus taking all the time-dependence into the u; and v, we obtain the time-dependent
Bogoliubov-de Gennes equations

i (7{7283) - (2(h(§s§f§f ) —2<h?ts>iri(12>s<k>>> (ZEED - s

Equations [4.32 and allow us to perform all calculations in terms of the
Bogoliubov coefficients u;, and v,. We first use Eq. at h = i to determine the
initial values of the negative energy eigenvectors uy (hinit) and vy (hinit), as well as the
positive energy eigenvectors ug(hinit) and vg(hinie). The positive energy eigenvectors
serve as initial values of Eq. when the system is initialized in the ground
state. Subsequently, we evolve these coefficients using Eq. to obtain the final
values ug (tgna1) = Ux and vg(tana) = 0. Additionally, equation is employed to
compute the negative eigenmode uj, (hgna1) = Uy and vy (hgpa) = U, corresponding to
a quasiparticle excitation at h = hgpa. The time evolution governed by the differential
equations is solved using the DifferentialEquations.jl package [233]. The total number
of defects is given by the total number of quasiparticles, which corresponds to the
overlap between the final states (u, %) and the negative eigenstates (ug, Uy ).

Uply,  URVL\ [ Uk
vEUy,  UkUL ) \ U (4.35)
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where Oy, represents the operator that measures the number of defects in mode £ at
the field hg, and p; thus corresponds to the expectation value of a defect creation in
mode k. To calculate the defect density variance we exploit that each k-mode, as
defined in Eq. [£.34] is independent of the other k-modes. As such, the variance of the
whole system is the sum of the variances of the individual modes. Thus, the variance
of the defect density can be calculated from the variance of the operator Oy. Note
that due to the fermionic nature of both ¢, and ~;, |ﬂk|2 + |ﬂk|2 = 1, which leads to
OA,i = Oy Thus, the defect variance is given by

Var(ndef)

The results of the numerical analysis are presented in Fig. [£.2] For quench times
much longer than unity, corresponding to the inverse spin-spin interaction, all three
observables follow a power law dependence with the KZM exponent p = 1/2. This
behavior agrees with the predictions of the KZM, the gKZM, and our extended gKZM
framework for reverse quenches. Furthermore, for quench times slightly above unity,
Stiickelberg oscillations emerge in the reverse-quench defect density. To extract the
overall trend of the oscillations for 7o > 10, we average the defect density over two
oscillation periods, as detailed in the caption of Fig. [£.2] The resulting averaged
behavior closely follows the power law scaling predicted by our extension of the
gKZM.

To assess how accurately the dynamics of the one-dimensional uniform TFIM
are described by the gKZM and its extension, we solve Eq. for the gKZM
domain-wall formation probability p

rev

p=1- ;;dff (4.37)

The same can be done for Eq. to yield

{— Var (nger)

p= (4.38)

Ndef

to show the validity of the gKZM. The gKZM is valid if in long quench time limit p
is independent of the quench time 75 and the formula used to calculate it.

74 | Chapter 4 ¢ CHARACTERIZING CRITICAL BEHAVIOR WITH A GLOBAL PROTOCOL



100 forward quench
defects, analytic
. forward quench
defects, numerics
forward quench
variance, analytic
. forward quench
variance, numerics
reverse quench
defects, analytic
- reverse quench
- defects, numerics

T T T T
107t 10° 10t 102 10°
To

Figure 4.2: Numerically exact simulation of different quenches in the uniform trans-
verse field Ising model. Defect density in the forward quench (red) and reverse quench
(gray) protocols as well as the variance of the defect density after a forward quench
(blue) are shown as a function of the quench time 75 on a double-logarithmic scale.
The analytic power law predictions from equations [4.19] |4.24] and [4.28] (solid lines)
are shown as solid lines. Error bars for the defect density after the reverse quench
for 7o > 10 stems from averaging the defect density simulated for 11 points equally
spaced in the interval [rg — 7/2, 79 + 7/2], i.e. over two Stiickelberg oscillations. The
error is defined as the standard deviation of the mean.

The numerical results for the probability as a function of the quench time 7g,
obtained from the defect densities, are shown in Fig. [£.3] For short quench times,
where the KZM scaling with exponent p does not yet hold in the defect densities,
the probability p exhibits a strong dependence on 7, independent of the calculation
method. In contrast, for long quench times, where all three observables in Fig. [£.2]
display the expected KZM power law scaling, the probability p converges to the
analytically predicted value 1/v/2 when evaluated using both equations and
This agreement confirms the validity of the gKZM and its extension.
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Figure 4.3: Numerically exact calculation of the gKZM domain wall formation
probability in the uniform transverse field Ising model. Calculated domain wall
formation probability p in the gKZM as a function of the quench time 7. The
probability is estimated both from a comparison between forward quench defect
density and forward quench variance (blue dots, Eq. [4.38]) as well as from a comparison
between the reverse quench defect density and the forward quench defect density
(orange dots, Eq. . In the latter case, error bars are propagated from the reverse
quench defect density. The gray line shows the analytic prediction p = 1//2.

4.4 The bond-disordered transverse field Ising model

Using the uniform Ising model, we tested the predictions of the gKZM in a system
that decomposes into pairs of non-interacting fermions. During a forward quench,
each fermion pair undergoes an effective Landau—Zener transition. For such quasi-free
fermionic systems, the derivations developed for the uniform Ising model can be
straightforwardly generalized. Consequently, the gKZM is expected to apply to other
related quasi-free fermion models, such as the one-dimensional Kitaev chain [215]
and the one-dimensional XY model [214], in the case of reverse quenches. In this
section, we want to test whether the predictions of the gKZM, i.e. the scaling with
the KZM exponent p and the time-independent domain wall formation probability p,
can also be found in qualitatively different system. We test these predictions for a
bond-disordered 1D TFIM. There are three reasons to use this model as a benchmark:

1. It is an integrable model that can be calculated in polynomial time as a function
of the particle number. As such, phase transition effects which are usually quite
prone to finite size effects and only exact in the thermodynamic limit, can be
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calculated efficiently on a classical computer.

2. It is a paradigmatic model that possesses an infinite randomness fixed point
(IRFP) z = oo, such that the power law predicted by the KZM only holds for
rather short times, while larger times show logarithmic corrections. It is an open
question whether these corrections are also subject to the gKZM. In addition,
it is governed by the same physics as other IRFP models, like Hubbard models
showing random singlet phases [63], 66].

3. This model does not fractionalize into subspaces of dimension two that can be
mapped onto Landau-Zener crossings. As such, it is a priori not clear whether
the gKZM predictions, even for the forward quench protocol, hold.

The model is chosen according to Eq. [£.12 where the J; are drawn from a uniform
distribution J; € (0, 2), leading to a critical field of h, = 2/e, and critical exponents
v =2 and z = oo [234} 235], and thus p = 0.

For this system, we solve the time-dependent Bogoliubov-deGennes equations
following [236] to simulate the system’s dynamics numerically exactly for a system
size of N = 128 particles.

As the J; are disordered, there is no discrete translation symmetry in this model,
and hence the Hamiltonian will not fragment into subspaces that conserve the modulus
of the momentum k. Instead, we use the most general form of the Bogoliubov
transformation, involving all possible operators

Vi = U Co VS Ch (4.39)
where the prefactors u,,, and v,,, are complex prefactors, and we used Einstein
summation convention. In order that the ~,, fulfill the fermionic commutation
relations, the prefactors are subject to the constraints

umn’l:ln + ’Umnqiln =0 (440)
Using these constraints, the reverse transformation reads
= + v (4.41)
Cn UmnYm U Ym - .

We insert this transformation into Eq. and demand that the Hamiltonian can
be represented by noninteracting Bogoliubov quasiparticles

1
H = Zem <'y;fn’ym — 2) , (4.42)
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where ¢, is the energy related to the creation of quasiparticle m. We rewrite Eq.

415 into the form

C1
1 a b CN
— (A T
H = 5 (cl .Cy .. CN) <—b* —a*) SaE (4.43)
ch

where a is a Hermitian and b an antisymmetric N x N matrix. In order for the trans-
formation Eq. to yield the Hamiltonian Eq. [4.42] we arrive at the Bogoliubov-de

Gennes equations
Unn) [ @ b U,
N CAAT ) "

We observe that the (umn v@ are eigenvectors of a Hermitian matrix, and as
such immediately fulfill Eq. 4.40l In addition, we observe another symmetry: If
gijmn vmn) is an eigenvector with positive energy ¢,,, (U:nn umn) is a solution with
the negated energy —e,,. From Eq. [£.39] this process corresponds to the annihilation
of particle m and is therefore associated with the energy of a quasihole. Hence,
positive-energy quasiparticles represent the creation of excitations, while negative-
energy quasiparticles correspond to their annihilation. This symmetry is consequently
referred to as particle-hole symmetry.

As in the case for the uniform Ising model, we can obtain the time-dependent
Bogoliubov-de Gennes equation by applying the Heisenberg equation of motion

*

dcy,

i = [cn, H] (4.45)

and applying the transformation Eq. Assuming the initial state in the Heisenberg
picture was the vacuum state annhiliated by all v,,, and using the ~,, as a time-
independent generator of the fermion algebra, i.e. d};” = 0, the time-dependent
Bogoliubov-de Gennes equations read

A (U (1) [al?) b U (1)

G <vmn(t)> = (—b* —ar (1)) \omn(t) ) (4.46)
As only the matrix a has a dependence on the magnetic field h, only a is time
dependent.
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Like in the case of the TFIM model with identical couplings discussed in the
previous section, we use Eq. to get the initial values w,,, (Ainit) and vy, (Ainig) as
the positive eigenenergy solutions at h = h;,;; We insert these initial conditions into

Eq. to obtain the time-evolved values t,, (tanal) = Umn a0d Uy (tinal) = Vpn-

We solved this differential equation using the QuantumOptics.jl package [237].

Using equations [£.39] and [£.44] we can rewrite the quasiparticle annihilation
operator at the field hgna as

N = Uy, Cr + U (4.47)

where the ,,, and v,,, are obtained from solving Eq. restricting the solutions to
positive energy eigenstates at h = hgya. In the Heisenberg picture, the operator 7,,
has a time-dependence, which can be expressed through the time-dependence of the
fermionic operators ¢, by equation [£.45] Their time-dependence can be calculated
using Eq. where now the time-dependence lies only in wy,,(t) and vy, (t), which
are given by Eq. [4.46

Thus, the quasiparticle defect density after the quench reads:

_l’b (tﬁnal);}/m (tﬁnal)
' (4.48)

Ik bt e ~
Z ( ) v lvqn 'Uqlu(]n Umn
—% — —x — ~ .
— Ui Ugn  Upylign ) \ Dmn

In order to calculate the variance of the defect density, we calculate the expectation
value of the squared number of quasiparticles

M=

Ndef =

1
Nm

1
"N

<N§ef> = (0] %, (tena1) Yom (teina) %, (Esinat) Y (Eeinan) |0)
= (UmqUaq + Umqllag) (Unmp Uk + Ui lak)
(UniDer + Vpilier) (unpvcp + vnpucp>
+ (UmgUaq + Umqlag) (unpvap + vnpuap) (4.49)
(Ut Uk + Ve Ve) (Ut Uy + Vi Uyy)
— (Umglag + Umqllag) (Unitig + Unily)
(gt + Ty (5,05, + Tl ) -
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Using Eq. we thus find for the variance of the defect number

2
Var (Ndef) = <N§ef> - <Ndef>

= (mglag + Omqllag) (W00 + Uiyl )

(U Tk + UpogeObk) (UngTiy + VngUyy) (4.50)

— (Umqlag + Umqliag) (Unilig + Unily)

(Wit + Do) (15,05, + il ) -
We now define the matrices @ = Upp, V i= Upn, A = Uy, and V = 0,,,. Using
a single product of the matrices, we construct the matrices A = vi' + @v' and
B = a*a' + v*V' and their product C := AB. With this definition, we find for
defect density variance

Var (Ny)  Tr{CC'} — Tr{CC"}

N N N '
This matrix calculation allows for a more efficient implementation than a direct
implementation of Eq. [£.50] using for-loops. In addition, we can also recast Eq. [4.4§]
into the form

Var (nqef) = (4.51)

Te{ATA}
N
Figure .4 shows the numerical results. The data were obtained by solving Eq.

for 20 different realizations of the J;, which were sampled from a uniform distribution

of the interval [0, 2] using the Statistics.jl core library of the Julia programming
language [238]. For each disorder realization, the defect density and its variance

were computed for both forward and reverse quench protocols using equations [4.5]]

and [£.52] For the forward quench protocol, we choose the initial and final fields as

hinit = 0 and hgna = 10, while for the reverse quench, hi,iw = hgna = 10, like we also

did in the uniform 1D TFIM. The resulting observables were then averaged over all

20 realizations. To quantify the associated uncertainty, the standard error of the

mean was also calculated for each observable.

For the forward quench, the defect density agrees with the findings of [236]. In
the intermediate quench time regime (2 < 7 < 20), the scaling follows a power law,

~To Y 2, consistent with an exponent u = 1/2, which is the KZM critical exponent
of the uniform TFIM discussed above. This agreement arises because, at short time
scales, the disorder acts as a weak perturbation. It does not have enough time to
significantly influence the dynamics. Consequently, the z = oo characteristic of the
bond-disordered system does not yet manifest.

(4.52)

Ndef =
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Figure 4.4: Numerically exact simulation of different quenches in the bond-disordered
transverse field Ising model. Defect density in the forward quench (red) and reverse
quench (gray) protocols as well as the variance of the defect density after a forward
quench (blue) are presented as a function of the quench time 7 on a double-logarithmic
scale. Solid lines serve as guide to the eye depicting a power law dependence

—C__ The constant C is 1.6, 0.95 and 2.25 for the forward quench defect
2wy /27¢

density (red), the forward quench defect variance (blue), and the reverse quench
defect density (gray), respectively.

Ndet =

For longer quench times, the defect density decays more slowly. It may approach
a constant value, consistent with an effective exponent y© = 0. This behavior is
attributed to logarithmic corrections, as discussed in [236].

Furthermore, we observe also for the large quench times the same scaling behavior
in the variance of the defect density after the forward quench and in the defect density
from the reverse quench. These findings provide preliminary evidence that the gKZM
remains valid in bond-disordered systems. In particular, it appears to capture the
IRFP behavior associated with z = oo.

To validate the probabilistic interpretation of the gKZM, we compute the domain
wall formation probability p using equations and [£.38] These expressions relate p

to the simulated defect densities and the variance obtained from the forward quench.

The results are shown in Fig. M For large quench times, we find p ~ 35%, consistent
across both regimes: the intermediate regime governed by the z = 1 fixed point, and
the asymptotic regime where logarithmic corrections dominate and the system flows
to the z = oo fixed point. At large quench times, the defect density becomes very
low, often approaching a single defect. This leads to enhanced fluctuations across
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Figure 4.5: Numerically exact calculation of the gKZM domain wall formation
probability in the bond-disordered transverse field Ising model. Domain wall formation
probability p is presented as a function of the quench time 7. Estimates are obtained
from two approaches: comparing defect density and variance after a forward quench
(blue dots, Eq. , and comparing defect densities between reverse and forward
quenches (orange dots, Eq. . Error bars reflect propagated uncertainties from
the defect densities and its variance. The horizontal gray line at p = 0.35 serves as a
guide to the eye.
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disorder realizations as we approach finite size effects, resulting in larger statistical
uncertainties.

For the bond-disordered TFIM, we want to highlight that the reverse quench
defect density is significantly larger than both mean defect density and defect density
variance in the forward quench protocol. This is an effect of p < 1/2, which leads
according to equations and to Nl > nger > Var (ngef). In an experimental
setup, this effect can be used to obtain a stronger signal, i.e. a higher number of
defects, to determine the gKZM coefficient 1 more accurately.

4.5 Excursus: Influence of paramagnetic approxi-
mations

As discussed at the beginning of this chapter, one objective is to develop a method to
characterize a potential spin glass—to—paramagnet quantum phase transition using

our experimental platform. The apparatus described in Chap. [3| and detailed in
Appendix [A] however, provides access only to global observables and therefore cannot
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directly resolve individual defects. We show that, in a system undergoing a continuous
transition to a paramagnetic phase, measurements of the global magnetization can
nonetheless be used to quantify the defect density. In the regime of a strong magnetic
field, the ground state is well approximated by the fully polarized state, which can be
prepared through a global pulse. In this section, we demonstrate that our extension
of the gKZM for reverse quenches enables the characterization of critical scaling
that relies only on global access to a system exhibiting a continuous quantum phase
transition to a paramagnetic phase.

As a starting point, we observe that both previously discussed models deal with
a phase transition between a paramagnetic and a different phase, and thus serve
as paradigmatic models to test our claim. In the paradigmatic limit h — oo the
spin-spin interaction is negligible. Here, Eq. essentially simplifies to v, = ¢,
thus showing that a defect corresponds to a local flip of a single spin. This also shows
that in the limit h — oo, the ground state is given by the fully polarized aligned to
h. As a consequence, the defect density can be approximated for large fields and is
exactly given for h = oo by

Paet = 1/2 = (S4) (4.53)

where S, denotes the average magnetization operator. This is precisely the magneti-
zation deviation from full magnetization. Taking the square of the previous equation,
one can also show for the variances

Var (nqef) = Var (S;) . (4.54)

Thus, in the limit where the applied field is large compared to the strongest spin-spin
interaction, both the defect density and the defect density variance can be well
approximated by a global measurement of the magnetization only, rendering an
experimental implementation with only global system access possible.

To estimate the validity of this approximation, we simulate again the quench
dynamics, both in the uniform and bond-disordered TFIM. Here, we evaluate the
defect density from the global magnetization using Eq. after forward and reverse
quenches. The defect density variance after a forward quench is approximated by the
magnetization variance, as shown in Eq. [£.54] In both forward and reverse quenches,
the final magnetic field hgna is chosen to exceed all couplings,

hﬁnal>>22<]i20, ViE{l,...,N},

ensuring that the system is initialized deep in the paramagnetic phase, where these
approximations are expected to hold.
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83



84

For the numerical simulation of the uniform TFIM, we employ the same Bogoliubov—
de Gennes equations used to obtain the coefficients 4, and 7y, as discussed in Sec.
To compute 1/2—(S,) from these values, we note that measuring the z-magnetization
corresponds to quenching the transverse field A to infinity and evaluating the resulting
number of excitations in this limit. Mathematically, this quench is equivalent to
setting all couplings J; = 0 for all i. From Eq. [£.32] this limit yields u; = 1 and
v = 0 for all k, independent of the specific finite positive value we may choose for h.
Inserting this into Eq. yields thus

1
125 = 5 Sl (4.55)
The variance of the magnetization yields

Var (S, Z |ok]” — || (4.56)

For the bond-disordered TFIM with all couplings set to zero, we compute the
matrices @1 and v by solving the time-dependent Bogoliubov—-de Gennes equations
derived in Sec. [£.4] Following the same approach as for the uniform TFIM, a
measurement of the magnetization is represented by quenching the Hamiltonian to
h = oco. In this limit, we obtain 1 = 1yxy and v = 0. Consequently, the expressions
for A and B introduced in Sec. simplify to A = ¥ and B = @'. Substituting
these into equations and yields the expressions for the magnetization and
its average fluctuation:

Tr{fﬁv}, (4.57)

Var (S,) = (4.58)

The simulation results are shown in Fig. [4.6{a) for the uniform TFIM and in
Fig. 4.6(b) for the bond-disordered TFIM. As described above, in the uniform TFIM,
the estimated defect density after a reverse quench is averaged over two Stiickelberg
oscillation periods for quench times 79 > 10. For the bond-disordered TFIM, each
data point represents an average over 20 independent disorder realizations.

We observe that in the uniform TFIM, the defect density for both forward and
reverse quenches can be accurately estimated from a magnetization measurement at
the final field A = 10 for 79 < 1 x 102. In contrast, the magnetization variance already
overestimates the defect variance for 7 > 1 x 10!, indicating that it is more sensitive

Chapter 4 ¢ CHARACTERIZING CRITICAL BEHAVIOR WITH A GLOBAL PROTOCOL



forward quench
magnetization
— 100,
8 forward quench
95! magnetization variance
~—
i:; reverse quench
>“ magnetization
— —~ N
= 8 5 s
n N irx,
~ ~ . forward quench N LAy
| | 1072 magnetization Ot
N &Nl . forward quench 4
~ ~ magnetization variance
— — - reverse quench
10-34 magnetization
T T T T T T T T T T
107! 100 10t 102 103 1071t 10° 10! 102 103
7Q TQ

Figure 4.6: Numerically exact calculation of the deviation from full magnetization and
its variance. The deviation from full magnetization is shown for the uniform (a) and
bond-disordered (b) TFIM under forward (red) and reverse (gray) quench protocols,
together with the magnetization variance following a forward quench (blue), all as
functions of the quench time 7. In panel (a), solid lines represent the analytical
predictions for the uniform TFIM, corresponding to those shown in Fig. Error
bars of the reverse-quench magnetization for 7 > 10 denote the standard error of
the mean, obtained by averaging over 11 uniformly spaced data points in the interval
(79 — /2, 7¢ + m/2]. In panel (b), solid lines serve as visual guides, identical to those
in Fig. .4l Error bars indicate the standard error of the mean, calculated from
averages over 20 disorder realizations.

to finite final-field effects. Consequently, the reverse-quench magnetization provides a
more robust means of extracting the defect-density variance after a forward quench,
using our extension of the gKZM. However, we note that the discrepancy between
the exact defect density and the estimate obtained from magnetization measurements
decreases for larger final fields A, vanishing in the limit A — oco. Consequently, this
limitation can, in principle, be overcome in experiments where a sufficiently strong
magnetic field can be applied and the coherence time of the platform is long enough
to maintain a constant ratio hgna/7q for the largest 7¢ considered.

We emphasize that, qualitatively, all curves obtained from magnetization estimates
in the uniform Ising model exhibit the same behavior: a slower decay than a power
law, similar to the exact defect density curves in the bond-disordered Ising model,
which features a z = oo IRFP. Consequently, deviations from power law behavior may
arise from finite final fields, and one should exercise caution when inferring z = oo
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from magnetization measurements. Nevertheless, on intermediate timescales, all
curves follow a power law with g = 1/2, allowing the KZM exponent of the uniform
model to be directly extracted from the data.

In the bond-disordered TFIM, the magnetization and defect density measurements,
both in the forward and reverse quench, lie essentially on top of each other for all
times, such that the KZM exponent ;1 = 0 for late times, and g = 1/2 for intermediate
times can be read off. Surprisingly, in the bond-disordered model, the magnetization
variance follows a power law scaling over a wider range of quench times than the exact
defect density variance and underestimates it. This indicates that estimating the
reverse quench defect density from magnetization measurements is more reliable than
inferring the defect density variance after a forward quench from the magnetization
variance. Although both quantities would coincide in the limit of an infinitely large
final magnetic field hg,. = 0o, at finite final fields the magnetization variance deviates
more significantly from the defect density variance than the magnetization does from
the defect density.

In summary, approximating the defect density via magnetization measurements
introduces only small errors at late times, which can be controlled by increasing
the final magnetic field. As long as a power law scaling is observed, the Kibble-
Zurek exponent p can be reliably determined. Deviations from a power law should be
interpreted with caution, since both experimental imperfections and the approximation
itself can produce behavior resembling that of an infinite-randomness fixed point.

4.6 Experimental implementation on a disordered
dipolar Heisenberg XY model

In Chap. [3, we demonstrated energetic-magnetic hysteresis in a disordered dipolar XY
model. This raises the question of whether a quantum phase transition is associated
with this phenomenon, analogous to the spin glass transition, which is linked to
thermomagnetic hysteresis effects [86]. To investigate this, we present complementary
measurements performed in the same weakly and strongly disordered regimes as the
experiments in Chap.

The aim is to test for a continuous quantum phase transition as a function of a
transverse magnetic field. Studying such a transition is crucial for understanding the
dipolar spin glass phase:

o The Parisi mean-field solution for Ising spins predicts no spin glass transition
under a transverse field, while the droplet-scaling model by Fisher and Huse
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predicts a second-order phase transition. Establishing the presence or absence
of such a transition is therefore critical for developing theoretical models of spin
glasses.

o Experimental evidence for a prospective dipolar Ising spin glass under a finite
transverse field is inconclusive [40, 239, 240]. Because the transverse field does
not commute with the Ising spins, it induces strong quantum fluctuations,
leaving the nature of a dipolar quantum spin glass an open question.

A continuous phase transition is characterized by a set of critical exponents. In
LiHo, Y, ., F4, typical measurements of these exponents rely on either the nonlinear
susceptibility, which yields weak signals, particularly at finite transverse fields [40], or
ac-susceptibility analysis, which provides inconclusive results in strongly disordered
systems [33, |35].

Here, we apply our extension of the generalized Kibble-Zurek mechanism (gKZM)

to a system that may host a spin glass phase: a bond-disordered Heisenberg XY model.

To our knowledge, no Kibble-Zurek experiment has previously been performed on
spin glasses due to the absence of locally characterizable defects. However, dynamical
finite-size scaling of relaxation times, based on the KZM, has been studied numerically
[241] and on a quantum annealing platform [110]. Complementing these approaches,
we present the first Kibble-Zurek-based analysis at fixed system size in an isolated
system with potential spin glass behavior.

Experimental Protocols

We experimentally implement the reverse quench protocol introduced above, as
illustrated in Fig. [4.7. First, we prepare the system in the ground state of the
putative paramagnetic phase. This is achieved by initializing the fully spin-polarized
state |¥,) along the x-direction and applying a strong initial magnetic field €2, g
that exceeds all spin-spin interactions. We prepare the fully spin-polarized state
in negative z-direction for the weakly and strongly disordered regimes exactly as
described in Chap. 3| From there, |V, ) is prepared using a Rabi 7/2-pulse with Rabi
frequencies 27 x 12.18(4) MHz and 27 x 15.71(4) MHz in the weakly and strongly
disordered regimes, respectively. These values are significantly larger than the median
interaction energy Jyeq < 27 X 1.7 MHz, ensuring high-fidelity state preparation of
).

To realize the reverse quench, resonant microwave radiation with initial amplitude
2,0 is applied. The amplitude is linearly decreased to zero over a time 7 and then
linearly increased back to 2, using an arbitrary waveform generator. The initial
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Figure 4.7: Sketch of the experimental implementation of the reverse quench and
spinlock protocol. (a) Reverse quench protocol. Rabi m/2-pulses are indicated by
green bars, while the microwave Rabi frequency €2, corresponding to the linear quench
is indicated by the blue area as a function of evolution time ¢. Initial field €2, and
quench time 7¢ are indicated by arrows. (b) Spinlock protocol. Colored regions have
the same correspondence as in (a). The microwave drive is applied with constant
Rabi frequency €2, for time 27g.

amplitudes are €2, o = 27 x 4.872(16) MHz and 2, o = 27 x 4.713(12) MHz for the
weakly and strongly disordered regimes, respectively. The choice of €2, g & 5Jpeq in
the weakly disordered regime and €2, g ~ 3.Jeq in the strongly disordered regime is
motivated by two considerations. First, the ramp slope, €2, ¢/7g, should be small so
that the system spends sufficient time near h = 0, allowing the adiabatic-impulse
approximation to hold. This is limited by the condition that 274 should be small
compared to the Rydberg lifetime of the states encoding the spin, in order to observe
isolated dynamics. Second, €2, must exceed Jyeq to ensure significant overlap of
the initial state with the ground state. A final Rabi 7 /2-pulse with adjustable phase
enables tomographic readout of the magnetization.

We experimentally quantify how close the ground state of the Hamiltonian is
described by |¥,) by the use of a spinlock protocol [43, 156, 242]. In the spinlock
protocol, we prepare the system in [¥,). In contrast to the reverse quench protocol,
we keep the microwave drive at constant amplitude, resulting into a constant Rabi
frequency Q(t) = Q0. A final 7/2-pulse with adjustable phase is applied for
tomographic magnetization readout. If the field €2, is stronger than almost all
spin-spin couplings J;;, the fully polarized state |VU,) is effectively the ground state
of the Hamiltonian and no dynamics is expected. Conversely, a strong magnetization
decay over time signals that spin-spin interactions, as perturbations to the interaction
with the drive field, gain importance.
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Figure 4.8: Magnetization measurements for the reverse quench protocol. Magnetiza-
tion measurements for the reverse quench (blue) and spinlock protocol (orange) for
the weakly (left) and strongly (right) disordered regime as a function of quench time
7@, rescaled with the median interaction strength Jyeq to show median interaction
cycles. Error bars are calculated as standard deviation of the mean from averaging
over repeated measurements.

We measure both spinlock and reverse-quench magnetizations as functions of the
quench time 7. In the weakly disordered regime, 7o ranges from 300ns to 10 ps,
while in the strongly disordered regime it ranges from 300ns to 8 pus. The lower limit
lies below the interaction cycle of the median interaction strength, allowing us to
probe the fastest system dynamics. The upper limit is set below the Rydberg lifetime,
such that black-body radiation effects remain perturbative. The experimental results
are presented in Fig. [4.8f We emphasize that, despite Fig. suggesting a longer
experimental duration in the strongly disordered regime, the experiment was in fact

performed on shorter absolute timescales compared to the weakly disordered regime.

A comparison of the two experiments as a function of evolution time in microseconds
is provided in Appendix [B]

We find that, despite a larger ratio €2, 0/ Jmed in the weakly disordered regime
the spinlock magnetization decreases from approximately 0.45 to below 0.35. In

contrast, it remains nearly constant around 0.45 in the strongly disordered regime.

This behavior is attributed to the higher connectivity of spins in the weakly disordered

regime, which enhances spin-spin interactions relative to the strongly disordered case.

For the reverse quench protocol, in both regimes the magnetization first decreases
to a minimal value close to 0.25. Although in the weakly disordered regime, this
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value remains largely constant, it increases significantly above 0.3 in the strongly
disordered regime, which may indicate the presence of KZM defects.
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Figure 4.9: Power law fit to the estimated defect density. The deviation from full
magnetization (blue) is plotted as a function of the quench time 7¢, with both axes
displayed on a logarithmic scale. A corresponding plot using linear axes, which more
clearly reveals the nonlinearity of the fit function, is provided in Appendix [B] The
error bars result from the propagation of uncertainties in the measured magnetization.
In the weakly disordered regime (left), the last nine data points are fitted with a
power law (orange), whereas in the strongly disordered regime (right), the fit includes
only the last six points.

To quantify the increase, we calculate the deviation from full magnetization,
% —(S,), from the measured magnetization. This quantity serves as an approximation
of the reverse-quench defect density and is expected, according to our extension of
the gKZM, to follow a power law:
! S.) = ATy"
9 (Sz) = ATg",
with A and p as free parameters. We fit this power law to the calculated deviation
using a least-squares method. The resulting fits are shown in Fig. [£.9 In the
weakly disordered regime, we include the last nine data points, while in the strongly
disordered regime, we use the last six, corresponding to the region where power law
scaling becomes apparent.

To assess the stability of the fitted Kibble-Zurek exponent u, we vary the number
of data points included in the fit and compute p as a function of this number. In
the weakly disordered regime, p is indistinguishable from zero when only the last few
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points are considered. Including more points yields a small finite value, reflecting
a slight increase of magnetization over time. As shown in the next section, this
increase is not due to critical dynamics but arises from black-body radiation effects.
In contrast, in the strongly disordered regime, p remains significantly different from
zero across all fitting ranges, which may indicate the presence of critical behavior.
This will be analyzed in section following the discussion on black-body radiation
effects.

0.4r r
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. 0.2f -

0.1f 1 ] -

0.0
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Figure 4.10: Fitted KZM exponent . Power law fit to of the KZM exponent u for
the weakly (left) and strongly (right) disordered regimes fitted with a least-square fit
using the last "# points" from the latest times in the experiment for the fit. Error
bars indicate standard deviation of the mean calculated from the covariance matrix.
Value zero, marking either the absence of criticality or an infinite randomness fixed
point, is indicated by a gray dashed line.

Black-body radiation

Using the ARC' package [243], we calculate the lifetime of the state ‘6151/2, my = 1/2>

as 7, = 103.6 pus, and of the states ‘61P1/2,mj = 1/2> and ‘61P3/2,mj = 1/2> as
7, = 138.4 ps. These correspond to decay rates on the order of 10 kHz, which is two
orders of magnitude smaller than the median interaction strength J,.q. Consequently,
due to separation of timescales, black-body radiation effects may be treated indepen-
dently from the unitary evolution. This approximation is further supported by the
experimental timescale. For the weakly disordered regime, the total experimental
duration, comprising the Rydberg excitation time plus twice the maximal quench
time, is 5 ps+2 x 10 ps = 25 ps. For the strongly disordered regime, the corresponding
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time is 1 ps+ 2 x 8 ps = 17 ps. Therefore, the maximum time an atom remains in the
Rydberg state is at most t,,.x = 25 ps, which is small compared to the lifetimes.

We now examine the impact of black-body radiation-induced decay on the mag-
netization dynamics. For clarity, we begin with the z-component before addressing
the experimentally measured x-component. The z-component is determined by the
population imbalance between atoms in the p- and s-states. Since the p-states ex-
hibit longer lifetimes than the s-states, this imbalance gradually shifts toward an
excess of atoms in the p-state. Let N, and Ny denote the number of atoms in the
p- and s-states, respectively, and define the population ratio as x = Ng/N,. The
corresponding magnetization is then given by

_ll—x
2142

(S2) (4.59)

This equation can be inverted to estimate the population ratio from the magnetization

C1-2(S.)

R YA (4.60)

As can be seen from Eq. [£.59] any time dependence of the Rydberg population ratio
will eventually affect all magnetization measurements. We will show that this time
dependence can lead to an effective increase in magnetization. The ratio x decays as

z(t) = Ny(£)/Np(t) = Ns(0)e ™™ /(N (0)e™"™ = z(0)e~"/, (4.61)
where we define the lifetime of the population ratio © = N, /N, as

1
Te =1 1 = 4121_18

Ts Tp

This ratio, and consequently the inferred magnetization, is generally more robust
than the individual population measurements of Ny and N,. Experimentally, x(t) is
determined by measuring the spin imbalance N,(t) — N(¢) via tomographic readout
and normalizing it to the total population Ny (t) = Ns(t) + N,(1).

The evolution of the z-component of the magnetization due to black-body-induced
decay is then given by

— 2(0)e~t/= 7. —Inx
(S.(8) = ;”Eg;et/ _ ;tanh (t/;@)) | (4.62)

The tanh function exhibits its steepest positive slope near zero. Thus, the effect
of black-body radiation is strongest at short times when In 2(0) = 0, corresponding to
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x(0) =1 or N4(0) = N,(0), i.e., vanishing initial magnetization. This condition is met
in our experiment, where the initial state is |¥,). In this regime, the magnetization
evolves as

1 tmax
(S (tmax)) = 5 tanh 5 = 0.01516 ... (4.63)

2 Ty

As the z-component of the magnetization builds up in the presence of a constant
effective magnetic field along the z-direction, generated by the microwave drive during
the reverse qeunch or the spin lock protocol, it undergoes coherent rotation in the
y-z plane over time. Our tomographic readout accurately captures the modulus of
the magnetization in the x-y plane, but has limited sensitivity in distinguishing small
y-components from the z-component. As a result, an emerging y-component may
be partially misinterpreted as an apparent increase in the measured z-component.
As shown in Fig. [4.8] this increase is approximately 0.01, which is smaller than the
value expected from black-body radiation alone and can therefore be attributed to
it. Moreover, this estimate represents a worst-case scenario. In practice, black-body
radiation also introduces dephasing, which drives the system toward thermalization
and reduces the magnetization. Additionally, the y-magnetization of the system under
the pure dipolar XY Hamiltonian naturally relaxes toward zero [155]. This effect
counteracts the increase in y-magnetization and further supports the interpretation
that the observed rise is x-magnetization may not be related to critical dynamics.

Comparison to spin glass exponents

In the strongly disordered regime, the observed increase in magnetization is ap-
proximately 0.05, about three times larger than our worst-case estimate based on
black-body radiation decay. This suggests that the effect cannot be attributed solely
to this experimental imperfection. Additionally, the total experimental timescale
in this regime is shorter: the maximum quench time is limited to 8 us, compared
to 10 ps in the weakly disordered case. This difference is further reinforced by the
shorter Rydberg excitation time, which is only 1 ps in the strongly disordered regime,
as opposed to 5ps in the weakly disordered one.

For all tested numbers of fitting points, the KZM exponent p remains larger than
0.15 within one standard deviation. Moreover, all values of u obtained for different
numbers of fitting points agree within one sigma, suggesting that u converges toward
a stable value. The most accurate estimate, derived from the fit using six data points,
is = 0.21(5). From the definition of the Kibble-Zurek critical exponent, we know
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We define K = D — d as the difference between the physical dimension of the system,
D, and the topological dimension of the defect, d. In the droplet model, these defects
correspond to localized excitations, or “droplets”, which are expected to have an
effective dimension d = 0 in the thermodynamic limit, yielding K = 3. In contrast,
according to the TNT model [71] and the chaotic pair model [72], domain-wall-like
excitations may occur, corresponding to K = 1. To compare our result for the KZM
exponent p with previous experimental studies of critical spin glass behavior, where
the product zv is typically extracted from ac-susceptibility measurements [94], we
determine zv for different assumed values of K. For comparison, we also perform
this analysis in the weakly disordered regime, using the most accurately fitted value
i = 0.05(2), calculated from nine data points.

We use literature values for the correlation-length critical exponent v. Specifically,
we take Vigng = 1.27(8) from recent simulations of a three-dimensional dipolar Ising
spin glass [105] and Vyeisenberg = 1.2(1) from simulations of a three-dimensional dipolar
Heisenberg spin glass [107]. Due to the extremely long relaxation times characteristic
of spin glasses [240], the exponent v has not yet been experimentally determined
for the dipolar spin glass LiHo,Y; ,F4. A Monte Carlo study of a possible dipolar
XY spin glass, which is still lacking, would be of particular interest for a comparison
with our experimentally obtained values of u. The literature values of v are used to
extract the dynamical critical exponent

K
z=——
I

p=K (4.64)

(4.65)

N =

first. A direct calculation of zv from p and v using Gaussian error propagation is not
applicable, as v and zv are statistically correlated. The error dz is given via Gaussian

error propagation as
dv\® ([ Kdp\®
dz = | — . 4.66
) J(V2>+<u2> (4.66)

We use these values to calculate the product zr and its error

d(zv) = J (‘f)Q + <d:>2. (4.67)

The results are summarized in Table 4.1l We first note that the choice of the
critical exponent v, whether taken from the dipolar Ising or Heisenberg spin glass
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Disorder Regime
K Model Weakly Disordered Strongly Disordered

Ising z=19(8), zv = 24(10) 2 =3.9(11), zv = 5.0(11)
Heisenberg 2z =19(8), zv = 23(10) 2z =3.9(11), zv = 4.6(13)

Ising z =39(16), zv = 49( ) 2z =28.6(21), zv = 10.9(28)
Heisenberg z = 39(16) (19) =z =28.6(21), zv = 10.3(27)

Ising z =59(24), zv = 74(30) 2z =13(3), zv = 17(4)
Heisenberg z = 59(24), zv = 70(29) z = 13(3), zv = 16(4)

Table 4.1: C'ritical exponent calculations. Exponents z and zv are extracted, using the
measured exponent p in both disordered regimes as a function of K. The exponent
v is taken from literature values for both a dipolar Heisenberg |107] and Ising spin
glass [105].

universality class, has negligible impact on the outcome. This is expected, as both
values agree within their respective uncertainties.

In the weakly disordered regime, for defect dimensions d = 1 or d = 0 corresponding
to K = 2 and K = 3, the extracted values of z and zv significantly exceed those
observed in known spin glass systems. To our knowledge, the highest reported value of
zv = 19.2 to date was found in LiFeSnO,—LT [94]. Such a large dynamical exponent
could suggest the presence of an infinite-randomness fixed point. However, this
scenario is typically associated with systems at strong disorder, where the dynamics
slow down dramatically. It is therefore unphysical to attribute such behavior to a
weakly disordered system, where the value of z does not increase towards oo, but
instead decreases at stronger disorder. The only seemingly reasonable values of z and
zv occur for K = 1. Yet even here, the mean value of zrv ~ 24 remains unphysically
large. Furthermore, the large uncertainty renders this value statistically insignificant
within a three-sigma confidence interval.

These findings further support our earlier conclusion: the observed slight increase
in magnetization over time is better explained by black-body radiation effects rather
than critical slowing down. No evidence of genuine critical behavior is found.

In contrast, in the strongly disordered regime the extracted values of zv are
significantly greater than zero, with confidence intervals exceeding three standard
deviations. Furthermore, the estimated values are consistent with those reported in
other glassy systems [94]. Notably, the value zv = 7.8(2) measured in the dipolar
Ising spin glass LiHog 045 Yo.055F4 [33] lies within one standard deviation of our results
for both K =1 and K = 2.

4.6 EXPERIMENTAL IMPLEMENTATION ON A DISORDERED DIPOLAR HEISENBERG XY
MODEL
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This consistency supports the interpretation that the observed increase in magne-
tization may be linked to critical dynamics characteristic of a spin glass phase. The
large dynamical cricital exponents z extracted from the data are in line with values
typically found in spin glasses and are uncommon in other ordered magnetic systems.
However, this interpretation is constrained by the uncertainties in the magnetization
measurements, which permit alternative functional interpretations beyond a simple
power law scaling, for example exponential or logarithmic scaling. However, from a
physical perspective, the increase in magnetization for large quench times after an
initial loss from magnetization is most easily explained by the onset of critical dy-
namics. Another constraint is that at late times, the system can no longer be treated
fully isolated. This raises the possibility that the observed behavior does not reflect
a true quantum phase transition, but rather a finite-energy or finite-energy-density
CTOSSOVer.

Several approaches may be pursued to improve the present results. One possibility
is to ensure that the system remains effectively isolated for longer quench times,
for example by exciting to higher Rydberg states. The state ‘7651 s2,my =1/ 2>
has a lifetime of 7, = 179 ps, nearly twice that of the state used in the previous
experiment. Based on the ratio of dipole matrix elements, the interaction strength
between ’7651/2, my = 1/2> and L76P1/2, my = 1/2> is expected to increase by a factor
of approximately 2.5 relative to the Jyeq in the current experiment, extending Jyea 7o
by about half a decade. However, caution is required, as achieving spectral selectivity
with the microwave drive becomes more challenging for higher-lying Rydberg states,
particularly under strong driving conditions. An additional improvement would
be to reduce the standard deviation of the magnetization measurements, thereby
strengthening the evidence for a power law dependence of the magnetization on the
quench time. This could be achieved by increasing the number of measurements,
for example, by extending the measurement time from 10 hours to one week, or by
reducing detection noise. Implementing fluorescence detection with high-resolution
imaging capabilities would be a promising approach in this direction.

This experiment is also well suited for other platforms, such as NV centers in
diamond. In white diamonds, the product of the median interaction strength and
the coherence time can reach Jyea7g ~ 10* [244]. Furthermore, the weak coupling of
these systems to a phonon bath allows the study of potential spin glass transitions at
small finite temperatures in the presence of a transverse field.
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4.7 Conclusion

This chapter began with the question of whether a disordered dipolar XY model
can host a spin glass phase transition, typically characterized by a set of critical
exponents. Our goal was to detect this critical behavior using only global access to
the system, since accurately measuring spin—spin correlations in a three-dimensional
system is experimentally challenging. Additionally, we explored the possibility of
a quantum phase transition in the absence of thermal fluctuations. This regime is
of particular interest for two reasons. First, in Ising spin glasses, the presence of
a phase transition as a function of a transverse magnetic field can help distinguish
between different paradigmatic models, such as the Parisi mean-field solution [16] and
the droplet scaling model by Fisher and Huse |17} [18]. Second, in dipolar Ising spin
glasses, the existence of a spin glass phase under a transverse magnetic field remains
debated [40, 239| |240]. To address these questions, we developed an extension of
the generalized Kibble-Zurek mechanism (gKZM) that enables the observation of
critical behavior via global magnetization measurements. Our extension treats defect
formation as a stochastic process during reverse quenches. Building on the work of
[227], we derived analytical expressions for the defect density after both forward and
reverse quenches, as well as for the defect density variance following a forward quench,
in the uniform transverse-field Ising model in the limit of large quench times. These
predictions were confirmed through exact numerical simulations with N = 10,000
spins, validating our extension of the gKZM and accurately reproducing the predicted
probability of domain-wall formation, p = 1/v/2.

We then extended our analysis to the bond-disordered transverse field Ising model,
building on [236]. Using numerically exact simulations with N = 128 spins, we
computed the defect density and its variance after both forward and reverse quenches.
This model, governed by an infinite-randomness fixed point with dynamical exponent
z = 00, presents a regime where critical scaling is controlled by logarithmic corrections
and the applicability of the gKZM had remained an open question. Our numerical
results demonstrate that the gKZM and our extension accurately describes the
behavior in this disordered regime as well, with a domain wall formation probability
of p ~ 0.35.

In both the uniform and the bond-disordered model, we showed numerically
that the defect density can be closely approximated by a measurement of global
magnetization in the paramagnetic phase. This observation enables direct experi-
mental implementation. We therefore applied the reverse quench protocol on the
Rydberg platform introduced in Chapter [3| to study putative critical behavior in a
disordered dipolar XY model. The experiments were performed complementary to
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the experiments in Chap. [3| to test whether the observation of energetic-magnetic
hysteresis may be connected to the presence of a new magnetic phase. In the weakly
disordered regime, were no energetic-magnetic hysteresis was found, we also observed
no signatures of critical behavior. In contrast, in the strongly disordered regime, where
energetic-magnetic hysteresis effects are strong, we extracted a finite Kibble-Zurek
exponent p = 0.21(5). Assuming the droplet picture of Fisher and Huse and that
the system shares the same correlation length exponent as dipolar Ising spin glasses,
we obtained an estimate zv = 17(4), consistent with values reported for different
spin glass materials [94]. The fact that such scaling behavior is observable on short
experimental timescales supports previous predictions that quantum fluctuations can
significantly accelerate spin glass dynamics [39-41].

These results establish the reverse quench protocol as a robust, versatile, and
experimentally accessible method for dynamically probing criticality using only global
control and measurements. This is particularly significant for disordered systems such
as spin glasses, where local observables are difficult to access and no practical protocol
has previously existed to extract dynamical critical exponents for large system sizes
in the absence of thermal fluctuations, where temperature scaling is not available.
By enabling such measurements through simple and scalable means, our method
addresses a long-standing gap in the experimental toolkit for spin glass physics.

Moreover, the protocol is readily adaptable to a wide range of systems. In
experimental realizations of the Edwards—Anderson model |110} 245|, it enables the
extraction of zv from a static magnetization measurement following a reverse quench.
This allows a direct comparison with dynamic finite-size scaling estimates on the
same platform, providing further validation of the protocol, whose exact applicability
has so far only been proven for quasi-free fermion systems. However, as for the KZM
and gKZM, we expect our extension to be applicable to a broader class of systems
[44, 224, |225]. Additionally, ac-susceptibility measurements, discussed in Chapter |§|7
offer a complementary probe of spin glass criticality on the same platform and may
be used to corroborate this initial signature of critical scaling.

In the strongly disordered regime of the dipolar XY model, we observed both
energetic-magnetic hysteresis and signatures of possible critical scaling. As discussed
in Chapter [2| theoretical studies of systems exhibiting both many-body localization
and spin glass behavior indicate that the spin glass phase is also many-body localized.
This observation motivates a detailed investigation of potential many-body localization
effects in disordered dipolar systems, which will be addressed in the next chapter.
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CHAPTER 5

Probing Localization Effects with
Time-Reversal Based Protocols

Parts of this chapter are based on the following publication

Time-reversal in a dipolar quantum many-body spin system[’]
Sebastian Geier, Adrian Braemer, Eduard Braun, Maximilian Miillenbach,
Titus Franz, Martin Géarttner, Gerhard Ziirn, and Matthias Weidemiiller
Phys. Rev. Research 6, 033197 (2024)

“Parts of this manuscript also appear in the dissertation of Sebastian Geier [157]. While
Geier concentrates on the experimental realization within a specific set of spin states and
on imperfections arising from atomic motion, this chapter focuses on identifying state
configurations that enable an accurate experimental implementation. In addition, it examines
how higher-order terms in the Rydberg interaction contribute to residual imperfections and
how the time-reversal protocol may be extended to characterize localization effects.

In the previous chapters, we have shown that a three-dimensional disordered
dipolar Heisenberg XY model exhibits energetic magnetic hysteresis and, assuming
the applicability of our extension of the generalized Kibble-Zurek mechanism, a
dynamical critical exponent consistent with glassy behavior. Together, these results
indicate that the system displays characteristic signatures of a spin glass. Numerical
studies of models with both a spin glass phase and a many-body localized phase

suggest that the spin glass phase is typically fully localized [46, |47, [108|, (109} 111].

This motivates the following question:

Does a finite-size dipolar-interacting quantum system show indications of many-body
localization?
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Dipolar-interacting systems naturally feature long-range power law couplings.
For such systems, recent numerical work suggests that the mechanisms leading to
localization may differ from the established picture of exponentially localized many-
body localization 132, [133]. Instead, an alternative form of localization, algebraic
localization, has been proposed. Moreover, in bond-disordered systems with power
law interactions, the localized phase appears to differ qualitatively from all previously
studied cases [136]. This leads us to a second question addressed in this chapter:

What is the nature of the localized phase in a bond-disordered, power law interacting
system?

While the spectral methods discussed in Chap. [2| provide a robust framework
for probing localization, we also seek protocols that can be implemented on the
experimental platform described in Appendix [A]l As outlined in Chap. [2] multiple
quantum coherence (MQC) protocols have proven to be effective tools for detecting
localization effects, and rely only on global system access. This motivates us to ask:

Can the magnetization and fidelity MQC' protocols be used to test a power law
interacting isolated spin system for localization effects?

However, these protocols rely on the possibility to accurately revert the arrow of
time, or equivalently, to change the sign of the Hamiltonian. As a consequence, this
chapter is structured as follows:

In Sec. [p.1] we describe the time-reversal protocol from Ref. [48], with partic-
ular attention to experimental imperfections inherent to the platform and possible
optimizations. In Sec. [5.2] we then study localization in a one-dimensional bond-
disordered, power law interacting toy model, where numerically accessible system
sizes allow for larger bulk-to-boundary ratios than in three dimensions, enabling
a clearer observation of intrinsic bulk dynamics. In this section, we focus on the
time-dependent behavior of the Loschmidt echo, as well as fidelity and magnetization
MQCs, in both thermalizing and localized regimes of the model. Finally, Sec.
summarizes our main findings and proposes directions for further investigation.

5.1 Time-Reversal in a Rydberg quantum simula-
tor

5.1.1 Experimental realization of a time-reversal protocol
In this section, we discuss a protocol designed to reverse the time evolution of an

effective spin Hamiltonian employing the experimental platform described in the
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previous chapters. To outline this protocol, we will follow mainly [48]. The Rydberg
platform realizes a dipolar Heisenberg XY Hamiltonian

Hig = Jij (SPS9) + 8059 | (5.1)

i<j

where S, gf) denotes the a-component of the spin—% operator acting on site ¢, and J;;
are the interaction coefficients. We seek to invert the global sign of this Hamiltonian,
which is mathematically equivalent to time-reversal. This Hamiltonian is implemented
by encoding a pseudospin degree of freedom in two Rydberg states, |}), and 1),
which feature a dipole-allowed transition. The coupling strengths thus obey a dipolar
interaction law,

C (1 — 3cos?6;,
Jij _ 3 ( - cos J)’ (52)

as detailed in Appendix E Here, 0;; is the angle between the interatomic axis
and the quantization axis set by the applied magnetic field, and r;; is the distance
between atoms ¢ and j. In Ref. [48], a different convention is used, with J;; =
C’él) (1 —3cos6;;)/ (27“%) As a result, the Cs-coeflicients reported in that work is
twice as large as the values used here. The convention in this chapter is, however,
consistent with the other chapters of this thesis.

This description holds when the atomic separation is large enough that dipole-
dipole interactions dominate, and the magnetic field lifts the degeneracy of other
atomic eigenstates. Under these conditions, the only resonant pair state coupled
to 1), ®[4); is [{); ® [1),. The coupling coefficient C{" is then determined by the
choice of Rydberg states and reads

1 - - -
(1) (@) 4(7) (@) 4(7) (@) 4(7)
C3’' = S <2d0 dg’ +dydY +ddY >, (5.3)

where the angle brackets denote the matrix element evaluated between |1), ® []),
and [1); ® |1);, and d{) denotes the ¢-th component of the dipole operator acting on
atom ¢ in the spherical basis. Since the spin degree of freedom is encoded identically
for all atoms, the coefficient C'?El) is uniform across all spin pairs. Consequently, the

interaction Hamiltonian is proportional to C’?El), ie.
Hipe o C8V. (5.4)

To realize effective time reversal, it suffices to invert the sign of the Cs-coefficient,
as this consequently also inverts the sign of the Hamiltonian. Because C3 depends
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only on the choice of Rydberg states defining the pseudospin, this inversion can be
achieved by encoding the spin degree of freedom in an alternative pair of Rydberg
states, |}), and |1),. We will show that the sign of the coefficient C3 depends only
on the difference Am; between the states encoding the spin. For a dipole-allowed
transition, the change in the magnetic quantum number satisfies Am; € {0, +1}.

When the states |1), and |}), differ by Am; =0, Eq. gives

oV (], do [4),]7 > 0, (5.5)

1
N 47reg
where we used (1|, do |4)] = (|, do [1),. Here, d, (without an upper index) denotes
the dipole operator acting on a single Rydberg atom.

Conversely, if Am; = +1, Eq. yields

o5V = (1], ds 40,7 < 0, (5.6)

L
8meg

where we used (1], di [1)] = — (U] ds [1),.

In summary, the Cs-coefficient is positive when the spin is encoded in states with
identical magnetic quantum numbers, and negative otherwise. Since a magnetic field
does not mix states with different magnetic quantum numbers when the quantization
axis is aligned with the field, this conclusion remains valid for atomic eigenstates in
the presence of a magnetic field.

Therefore, time-reversal may be achieved as sketched in Fig. [5.1{(a). Without loss
of generality, we choose an initial spin encoding where 1), and ||), have identical

magnetic quantum numbers. Thus, they realize the Hamiltonian Hj,; with Cél) > 0.
Then, applying coherent Rabi 7-pulses, state |1), is transferred to state |1), and
[}), to state ||),. The states are chosen such that |1), and ||), differ in their
magnetic quantum number. Therefore, the interaction is now described by the dipolar
Hamiltonian with C}EQ) < 0. The inverse encoding, leading to C’él) < 0 and C’éQ >0
is also possible. In both cases, according to equations and after the coherent
transfer pusles, the system evolves under the Hamiltonian —k H;,;, where

cy?

k =
s

. (5.7)

Note that in Ref. [48], k was defined as the inverse of this quantity, emphasizing
the relative duration required in the second encoding step to achieve full time
reversal. In this thesis, we instead define k as the proportionality factor of the
reverted Hamiltonian, as illustrated in Fig. [5.1] This choice ensures a consistent and
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unambiguous definition of k throughout the thesis. We now seek to interpret the
rescaling of H;,; by a dimensionless factor of —k. For a time-independent Hamiltonian
Hiye, the time evolution operator is U(t) = e~*inet - After the coherent transfer pulses,
the evolution can be expressed as U(t) = e*Hunt = o=iHu(=kt) " This describes a time
evolution with reversed time, where the effective time scale is multiplied by k: it
proceeds faster for £ > 1 and slower for £ < 1. Consequently, if the system evolves
first under Hj, for a time ¢, and then under —kHy,, for a time ¢/k, it should return
to its initial state. Consequently, even very small deviations from the ideal evolution
become quickly visible by comparing the final state to the initial state. This high
sensitivity to imperfections is precisely what makes time-reversal based protocols
powerful tools for metrology and quantum sensing [246-248].

To evaluate the accuracy of the time-reversal protocol, we employ the experimental
sequence shown in Fig. [5.1{(b). The system is first initialized in the spin encoding
l4); and |1),, and prepared in the fully polarized state along the z-direction, |¥)_.
It then evolves under the interaction Hamiltonian H;,; for a duration ¢;. Next, two
coherent transfer pulses convert the spin encoding to the states |}), and [1),. In
this basis, the system evolves under the reversed Hamiltonian —kH;j,; for a time t,.
The sequence concludes with a tomographic magnetization readout, as described in
the previous chapters. If the reversal is ideal and t; = ¢, /k, the evolution should
perfectly retrace its trajectory, restoring the initial fully polarized state |¥) with full
magnetization along x. However, the derivation of Hj, and the state transfer rely on
several approximations. Consequently, we expect deviations from perfect reversal in
the experimental realization of this protocol:

e The two-level approximation assumes that the system dynamics are restricted
to the pair states [1), ® ||), and |]); ® 1), in the first spin encoding, and to
1), @ |4), and [{), ® |1), in the second. This assumption neglects off-resonant
couplings to other pair states induced by the dipole-dipole interaction, which
generate higher-order effects like van-der-Waals interactions which are not time-
reverted. Moreover, higher-order multipole interactions, like dipole-quadrupole
interactions, are disregarded. The approximation is valid only for dilute Rydberg
ensembles, where the interatomic separation is large enough that observable
dynamics on experimental timescales arise only from resonant dipole-dipole
interactions.

+ The preparation of the fully polarized state |U)  is achieved by driving a resonant
transition between |1), and ||}, at frequency fi. The subsequent state transfer
employs two Rabi m-pulses: one resonant with the transition []), <> |]), at
frequency f>, and another resonant with [1), <> |1), at frequency f;. For the
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Figure 5.1: Time reversal in a dipolar Rydberg spin system. (a) Time reversal protocol.
The spin (gray arrow) is initially encoded in the states |1), and |]),, evolving under
Hip (red lines). Coherent transfer to the states |1), and ||), reverses the interaction to
—kHiye (blue lines). (b) Experimental protocol used to characterize the time-reversal
efficiency. Different steps are indicated by colored boxes. (¢) Top: Measurements
of the z- (diamond), y- (triangle), and z-magnetization (hexagon) in the first spin
encoding (red) and after transfer to the second spin encoding (blue) as a function
of evolution time ¢. Bottom: Measurement of magnetization in the equatorial plane
My as a function of evolution time ¢. The blue dashed line indicates the transfer

efficiency. Figure taken from with permission.

tomographic readout, Rabi oscillations are driven on the transition ||), <> |1),
at frequency fs. The selected states [1),, [{);, [T)5, and []),, together with the
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applied magnetic field, must be chosen such that no near-resonant transitions
occur close to the driving frequencies f1, fo, f3, f4. This condition enables fast
driving without unwanted population transfer to other states. A short drive
duration also ensures that Rydberg-Rydberg interactions remain negligible
during the pulses, thus maximizing pulse fidelity.

We experimentally realize this protocol on the Rydberg quantum simulation
platform described in the previous chapters, at a magnetic field of 78 G, with the
state encoding defined as ||), = ‘6181/2,mj = 1/2>, 1, = ’61P1/2,mj = 1/2>,

1), = ‘61P1/2,mJ =—1/2), and 1), = \6251/2,% =1/2). For clarity, we first
present the experimental sequence and the results obtained with this configuration,
and subsequently discuss the rationale for selecting these specific states and conditions.

First, a cloud of 332 Rydberg atoms with a median nearest-neighbor distance of
Tmed = 8.11m is prepared in the Rydberg state |1),. A subsequent Rabi 7/2-pulse
initializes the system in the fully polarized state |¥) . The state then evolves under
the interaction Hamiltonian Hj,;, during which a slow relaxation of the magnetization
is observed. The top panel of Fig. |5.1{c) shows the time evolution of all magnetization
components, while the lower panel presents the magnetization M, = /M2 + M2
in the equatorial plane. We use M, as a robust measure of the z-magnetization,
since phase errors in the tomographic readout can misidentify z-magnetization as
y-magnetization. As expected, the magnetization decays over approximately 0.7 js,
consistent with previous observations [42].

To test the time-reversal protocol, a state transfer is applied after 0.4ps. We
observe a subsequent increase of the magnetization, reaching a maximum at 0.81 us.
From this measurement, we estimate £ = 0.97(2). In Ref. [4§], the interaction
coefficients were estimated as C§" = 1.6 GHzpum? and C{¥) = —1.4 GHz pm?, cor-
responding to k = 0.88. This calculation assumed a negligible effect of the 78 G
magnetic field. Using the perturbative code we developed in Appendix [D] we recalcu-
late the coefficients including the magnetic field and obtain C?El) = 1.200 GHz pm?
and C’é2) = —1.148 GHzpm?, yielding k¥ = 0.96, in excellent agreement with the
experiment.

The maximal magnetization My observed after reversal, defined as the reversal
efficiency, is slightly below the expected value of 1/2 for a fully polarized state,
indicating imperfect time reversal. A likely cause is the finite Rydberg interaction
during the transfer pulses. To quantify this effect, we define the state transfer efficiency
as the magnetization measured when the transfer pulses are applied immediately after
preparing |¥) . The reversal efficiency matches this transfer efficiency, suggesting
that finite interactions during the transfer pulses primarily limit the reversal efficiency.
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Additional experiments, presented in Fig. 2a) of Ref. [48], show that the reversal
efficiency decreases when the reversal pulses are applied later. A likely explanation,
discussed in Ref. [48], is that atomic motion gradually changes the interatomic
distances, which in turn modifies H;,; over time. As a result, the system’s evolution
cannot be described simply by time-independent Hamiltonians H;j, in the first
encoding and —kHjy; in the second. Instead, the evolution follows Hiy(¢) in the first
encoding and —kH| (') in the second, with Hj,(t1) = H[,(0), reflecting that the
atomic positions are approximately the same before and after the transfer pulses.
Consequently, the Hamiltonian governing the reversed evolution is not identical to
that of the unreversed evolution, even up to a global prefactor, so the system does
not retrace its original trajectory perfectly. In the next section, we show that even
for static atoms, higher-order terms in the Rydberg-Rydberg interaction generate
contributions that are not inverted by the time-reversal protocol, further reducing
the reversal efficiency, and we discuss how experimental parameters may be chosen
to improve it.

5.1.2 Imperfections in the time-reversal protocol

For short evolution times, the reversal efficiency is primarily limited by the transfer
efficiency. We therefore seek two pairs of Rydberg states in which Rabi oscillations
can be driven several orders of magnitude faster than the corresponding Rydberg
interaction timescale, while ensuring that no non-targeted Rydberg states are popu-
lated during the drive. In the following, we justify why, for a magnetic field of 78 G,
the experimental choice of states is optimal.

As detailed in Appendix [A] the experimental apparatus is designed to excite
Rydberg states with quantum numbers L = 0, J = 1/2 and m; = 1/2. Dipole-
allowed transitions between states with principal quantum numbers 48 < n < 70 are
accessible with our microwave setup, and the corresponding states exhibit lifetimes
of 80us < 7 < 200ps. To observe significant dynamics on timescales well below
these lifetimes, we encode the spin in the |61S5), |61P), and |[62S) manifolds. In
this regime, microwave-driven state transfer is readily achievable with our Keysight
MS8195a arbitrary waveform generator without requiring frequency up-conversion,
and Rydberg interactions in a dilute system occur on MHz timescales.

For this magnetic field of 78 G, the level diagram within the specified manifolds
is shown in Fig. [5.2] with the transitions used in the previous experimental im-
plementation indicated. The magnetic sublevels of ‘61P3 /2> are not evenly spaced
with the magnetic quantum number, as expected from a linear Zeeman effect. This
arises because, even at this modest magnetic field, the eigenstate adiabatically con-
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Figure 5.2: Level diagram of the relevant Rydberg states for the time-reversal protocol.
Energy levels of atomic eigenstates in a magnetic field of 78 G along the quantization
axis are shown as horizontal lines, sorted by their magnetic quantum numbers m.
Levels with total angular momentum J = 1/2 are shown in yellow, and those
with J = 3/2 in blue. Energies (h = 1) are indicated above each level relative
to a reference. Within each |nL) submanifold, the same energy scale is used. For
Rydberg [nS) states, the reference is the energy of the state adiabatically connected

to ‘n51/2,mj = —1/2>; for |nP) states, it is the energy of the state adiabatically

connected to ‘nPl s2,my = —1/ 2>. Black arrows indicate the transfer pulse transitions,
while green arrows represent the transitions used for spin rotations in each encoding.

nected to ’61P3/2,mj = 1/2> contains a 1% admixture of ’61P1/2,mj = 1/2>, and
’61P3/2, my = —1/2> includes a 2 % admixture of (61P; 5, m; = —1/2>. Consequently,
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the expected Rabi frequencies are modified at the percent level compared to the
zero-field values. Within this diagram, we aim to identify four states suitable for
implementing the time-reversal protocol described in the previous section. There-
fore, we first focus on identifying four states that allow fast driving while avoiding
off-resonant coupling to other, non-targeted states.

To recall, for a two-level system driven with an on-resonant Rabi frequency {2 and
detuned by A from resonance, the population p.(¢) in the excited state |1), assuming
the system is initially in ||), is given by

2
pe(t) = QZ?—N sin? <;\/ Q2 + A2 t> ) (5.8)
The time-averaged population exhibits a Lorentzian dependence on the detuning,
with a resonance linewidth of © [179]. Accordingly, we demand any non-targeted
transition with an on-resonant Rabi frequency €2 to be detuned by at least A = 52
to remain effectively off-resonant. As the Rydberg lifetime is small compared to the
drive Rabi frequency, it can be neglected.

In addition, the polarization of the microwave drive must be considered. In one
spin encoding, the two states have the same magnetic quantum number, whereas
in the other encoding, they differ in magnetic quantum number. Consequently, one
encoding requires m-polarized radiation, while the other requires circularly polarized
radiation with respect to the quantization axis.

In the current setup, the horn antenna produces only linearly polarized light. To
generate all required polarization components, a wire grid polarizer is placed at an
angle of 135° with respect to the quantization axis. This ensures that a linearly
polarized field of amplitude E enters the vacuum chamber at 45° relative to the
quantization axis. The resulting field can be decomposed into two components: a
field of amplitude Ey = E/+/2 linearly polarized along the quantization axis, and
a field of amplitude £, = F/ v/2 linearly polarized in the plane perpendicular to
it. The latter can be further decomposed into an equal superposition of o™ and o~
components, each with amplitude Fy = FE/2.

Since the Rabi frequency for a drive with amplitude E; is given by 2 = —dFy,
where d denotes the dipole matrix element, the effective field driving the o transitions
is reduced by a factor of 1/4/2 compared to that driving a 7-transition for the same
input electric field E. To enable a direct comparison of on-resonant Rabi frequencies
across different transitions, we define a weighted dipole matrix element d,,, which
equals dy for a m-transition and d../ V2 for a o*-transition. This definition allows
a unified comparison of transition strengths independent of the magnetic quantum
number change, as d,, accounts for the different field amplitudes associated with each

108 | Chapter 5 ¢ PROBING LOCALIZATION EFFECTS WITH TIME-REVERSAL BASED
PROTOCOLS



|r1) |r2) dw  Ap/2m Ap /2w Ap/2m Ay /27
(¢S] [MHz] [MHz  [MHz]  [MHz]

Vem—1

‘6181/2, —1/2> 61P s, —1/2> 1.65 143 219  -1159  -1235
61Py,1/2) 1.65 219 205  -1083  -1159
61Ps )5, —3/2 1.99 409 485 892 -968
61Ps)5, —1 /2§ 2.3 556 632 745 821
61P;)2,1/2) 1.15 698 774 603 -679
6181/2,1/2)  [61Pyp,—1/2) 165 76 0 1377 -1453
61P, s, 1/2> 1.65 0 76 1301 -1377
61Ps/q, —1 /2> 1.15 337 413 964 -1040
61Ps/2,1/2 2.3 480 556 822 -898
61Ps)5,3 /2§ 1.99 628 704 674 -T50

‘6251/2, —1/2> 61P s, —1/2> 1.56 1159 1235  -143 219
61P s, 1/2> 1.56 1083 1159  -219  -295
61Ps)5, —3/2 1.94 892 968 409 -485
61Ps)5, —1 /2§ 2.24 745 821 556 -632
61Py )9, 1 /2> 1.12 603 679 698  -T74
6281/2,1/2)  [61Pyp,—1/2) 156 1377 1453 76 0
)

61Py/2,1/2) 1.56 1301 1377 0 76
61Psj, —1/2)  1.12 964 1040  -337  -413
61Ps/2,1/2 2.24 822 898  -480  -556
61Py)5, 3 /25 1.94 674 750 628 -704

Table 5.1: Dipole-allowed transitions in the time-reversal protocol. The weighted
dipole matrix element d,, and the detunings Ay, for each drive frequency f; are
presented for all combinations of Rydberg states |r1) and |ry). Eigenstates of the
Hamiltonian are labeled using the shorthand |nL;, m;). Transitions of the 1/2-system
and the 3/2-system are highlighted in yellow and orange, respectively.

polarization component in the drive. For all dipole-allowed transitions within the
relevant Rydberg manifolds, Table lists the corresponding weighted dipole matrix

5.1 TIME-REVERSAL IN A RYDBERG QUANTUM SIMULATOR

109



elements d,, and the detunings from the four transitions used in the experimental
implementation.

Experimentally, the system is initialized in a state with magnetic quantum number
my = 1/2. We therefore choose [|); = ’6131/2,mJ = 1/2> as the initial state,
eliminating the need for additional microwave pulses for state preparation and
reducing pulse-induced errors. In order to choose other states, they must satisfy the
following requirements:

1. Transfer pulses should have a large d,,, enabling high Rabi frequencies with
the experimental microwave setup. Ideally, the Rabi frequency is orders of
magnitude larger than the typical Rydberg-Rydberg interaction strength.

2. To maintain the validity of the two-level approximation while driving the system
rapidly, transfer pulses must be far detuned from all other nearby transitions.

From this analysis, the states used in the experiment appear suboptimal. Both
the transfer pulses and the pulses within each spin-encoding manifold are detuned
from nearby resonances by only A = 27 x 76 MHz, corresponding to the Zeeman
splitting in the ‘61P1 /2> manifold. Requiring clean pulses with /A < 1/5 limits the
Rabi frequency to 2 < 27 x 15 MHz, only about an order of magnitude larger than
the median interaction Jyeq = 27 x 0.86 MHz.

A better choice is the encoding |}), = ‘6181/2, my = 1/2>, 1), = ’61P3/2,mj = 1/2>,
1), = \6251/2,mj =1/2), [1), = \61133/2, my = —1/2), which omits the small split-
ting in the ‘61]31 /2> manifold. We refer to this as the 3/2-system, since all P-states
lie in the P3/, manifold, in contrast to the 1/2-system used in the experiment. In

addition to a larger minimum detuning of 27 x 140 MHz, the 3/2-system also features
larger d,, for the transfer pulses, making it an optimal choice.

However, so far we neglected the effects of higher-order terms in the Rydberg-
Rydberg interaction. Apart from the direct dipole-dipole interaction, which scales
as ~ 1/r3 for a distance r between two Rydberg states, treating the dipole-dipole
interaction up to second order in perturbation theory leads to additional terms scaling
as 1/r®. Including these additional terms within the two-level approximation, the
effective Hamiltonian reads

Hiyy = Z jz(ij) (Sii)Sg(Ej) + S?Si)sl(lj)) + Jz(ij)Sg)Sij) + hz(ij) (Sgi) + ng)> : (5.9)
1<)
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where the coupling constants fulfill

i) _ G603, [11)) + C6 (05, N4)) — 2C6(03, 1))

1
5 a 7 (5.10)
. 2(0..
g0 = g L3 ), (5.11)
ij
1) _ Cs(05, 111)) _606(91']" H@)' (5.12)
z 2r

ij

Here, we introduce Cg(|ab)) as the energy shift that the pair state |ab) experiences
due to off-resonant coupling of the dipole-dipole interaction to other pair states, as
detailed in Appendix

A detailed analysis of the Cj coefficients for the 1/2-system was previously carried
out in the Bachelor’s thesis of Matthias Lotze [249] under the supervision of the
author. In that work, an early implementation of the code described in Appendix
was provided, and the study concentrated on the angular dependence for the
terms in the two distinct spin encodings. In the following, we extend this analysis
by comparing the 1/2- and 3/2-systems. We further demonstrate why, when the
initial encoding is defined as ||), = [nS) and |1); = |n'P), the corresponding reversed
encoding should take the form |}), = [n"”P) and [1), = |n"'S), which we will denote
as a parity flip encoding, rather than ||), = [n"S) and [1), = |n""P).

Therefore, we start by calculating the terms J,, J, and h, for two Rydberg atoms
at a distance r = 16 pm as a function of the angle 6 between the interatomic axis
and the quantization axis set by the applied magnetic field of 78 G. The distance is
chosen at 16 nm, as this is often a typical median atom-atom distance realized with
the Rydberg platform. We begin by discussing the results for the 1/2-system, where
these terms are depicted in Fig. [5.4]

We first note the characteristic 1 — 3 cos?*(6) dependence in the J, terms. From
this, we extract C'g(,l) = 1.2GHzpm? and 03(,2) = —1.148 GHz pm?3, yielding k =
0.96 =~ 1. Consequently, for complete time reversal, the system must evolve for
approximately the same duration in both spin encodings. The mean local fields are
h() = 27 x —0.004 MHz and h{®) = 27 x 0.008 MHz, resulting in an average field over
a time-reversal protocol

hY + (1/k)h

— 27 x 0.002 MHz.
1+ 1/k ie g

Here, the superscript indicates the spin encoding used. As will be shown later, the
suppression of the h, terms arises directly from the parity flip encoding. The main
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Figure 5.3: Angular dependence of interaction terms in the 1/2-system. From top to
bottom, the Hamiltonian coupling terms J,, J., and h, are plotted as functions of the
angle 6 between the interatomic axis and the magnetic field defining the quantization
axis. Results are shown for the spin encoding |}),, |1), on the left, and for |}),, |1),
on the right. The interatomic distance is fixed at » = 16 pm.

limitation of the 1/2-encoding is the relatively large Ising interaction term, with
J? =27 x —0.007 MHz and a maximum strength of J(? = 27 x —0.02 MHz, while
‘Jz(l)(e)’ < 27 x 0.005 MHz. This residual Ising contribution is the dominant source
of time-dependent imperfections in the time-reversal protocol in the 1/2-system.
The results for the 3/2-system are shown in Fig. . As in the 1/2-system, we
observe the characteristic 1 — 3 cos?(6) dependence of J,. From this, we determine
OV = 3.574 GHz pm? and C{? = —1.048 GHz im?, yvielding k = 0.293. Consequently,
to reverse the dynamics driven by direct dipole-dipole interactions, the system must
evolve for approximately three times longer in the second spin encoding than in
the first. However, the higher-order correction terms J, and h, are substantially
larger in the second encoding, where the system evolves for a longer time, than in
the first encoding. Averaging the Ising interaction over all directions, we obtain
JM) = 27 x —0.009 MHz and J = 27 x —0.011 MHz, thus resulting in an Ising
interaction which is about twice as large in the first encoding compared to the
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Figure 5.4: Angular dependence of interaction terms in the 3/2-system. From top to
bottom, the Hamiltonian coupling terms J,, J., and h, are plotted as functions of the
angle 6 between the interatomic axis and the magnetic field defining the quantization
axis. Results are shown for the spin encoding |}),, |1), on the left, and for |}),, |1),
on the right. The interatomic distance is fixed at r = 16 pm.

1/2-system, and by a factor of 1.6 larger in the second encoding. As far as the h,

terms are regarded, even though the sign of the meadian interaction is reversed, i.e.

h() = 27 x —0.003 MHz and h{®) = 27 x 0.01 MHz, yielding to an average h, over
the duration of a reversal protocol of

h{) + (1/k)h
1+ 1/k

= 27 x 0.007 MHz,

which is three times larger than in the 1/2-system. As a result of the larger J, and
h, terms, the 3/2-system exhibits stronger time-dependent deviations from an ideal
time-reversal protocol. These become especially for the angles where the dipolar
interaction almost vanishes, and for pairs with a short distance close to the blockade
radius. Consequently, the 1/2-system is less affected by errors arising from van
der Waals correction terms, making it better suited for high-precision time-reversal
protocols.
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Figure 5.5: Dependence of the Cg coefficients on the principal quantum number
n. The Cjg coefficient at zero magnetic field is shown as a function of the princi-
pal quantum number n for the pair states ‘TLS]_/Q,mJ = 1/2> ® ’TLS:L/Q,WLJ = 1/2>

(blue), ’nP1/27mJ = 1/2> ® ‘nPl/Q,mJ = 1/2> (orange), ‘nPg/g,mJ = 1/2> ®

‘nPg/g,mJ = 1/2> (green), and ’TLPg/Q,'fﬂJ = S/ZC} ® ‘nPg/g,mJ = 3/2> (red). To
account for the slight angular dependence of the Cjy coefficient, results are shown for
two orientations of the interatomic axis with respect to the quantization axis: (a)
0 =0 and (b) 0 = 7/2. States with negative m; are omitted, as the Cg coefficients
are identical to those for positive m;. The simulation was performed using the ARC
package [243], where we took into account that ARC uses a different sign convention
than this thesis.

So far, we have excluded spin encodings which are not parity flip encodings, i.e.
spin encodings in which both []), and ||), correspond to a Rydberg S or a Rydberg
P-state, respectively. For one such encoding, Ref. [249] showed that the h, term does
not change sign and is therefore enhanced. In the following, we briefly show that the
sign inversion of h, is a general feature of parity flip encodings.

We recall from Eq. that h, is proportional to the difference between the Cy
coefficients of the two encoding states. Figure [5.5 shows that, in the absence of a
magnetic field, the Cy coefficient of Rydberg nP states is always smaller than that of
Rydberg nS states. Consequently, we obtain h, < 0 for [|) = |nS) and |1) = |[n'P),
and h, > 0 for [{) = [nP) and |T) = |n'S). Since the Cy coefficient depends only
weakly on the magnetic field below 100 G, this relation also holds for finite fields,
consistent with our findings for the 1/2- and 3/2-systems.

To summarize, we have shown that the 1/2-encoding at a magnetic field of 78 G
provides optimal conditions for implementing a time-reversal protocol with high
reversal efficiency. The main limitation arises from the residual Rydberg interaction
during the transfer pulses, whose minimal duration is constrained by the small Zeeman
splitting of A = 27 x 76 MHz in the ‘61P1/2> manifold.
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Two strategies can be employed to further enhance the reversal efficiency. Increas-
ing the magnetic field to 185 G would raise the Zeeman splitting to A = 27 x 180 MHz,
enabling the use of transfer pulses with Rabi frequencies up to 2 = 27 x 30 MHz
without populating unwanted Rydberg states.

Alternatively, even higher Rabi frequencies could be achieved by employing a
quadrupole horn antenna, as described in Appendix [E] This setup generates radiation
with the correct polarization only, thereby exploiting additional selection rules. Under
these conditions, and even at a magnetic field of 78 GG, the nearest transition remains
detuned by approximately A ~ 27 x480 MHz, allowing Rabi cycles at {2 = 27 x80 MHz
without populating neighboring states.

5.2 Studying Localization effects through time-
reversal protocols

So far, we have introduced a protocol to invert the dipole-dipole interactions between
Rydberg atoms and discussed its limitations. We now address whether this protocol
can be used to probe potential localization effects. This question is also motivated
by numerical studies of models in which both spin glass behavior and many-body
localization occur in isolated quantum systems. In these models, the spin glass phase
also exhibits, at finite sizes, a many-body localized regime [46, 47 108, 109, 111].
As we found glassy behavior in a three dimensional disordered dipolar interacting
spin model, we also seek to test whether it exhibits signatures of localization. As
discussed in Chap. [2] the Hamiltonian spectral statistics provide a reliable method
for detecting localization effects in finite system sizes. However, the properties are
typically not experimentally measurable. Therefore, we want to test whether time-
reversal based methods might also provide a promising tool to distinguish localized
regimes in a power law interacting system. In detail, we will numerically analyze
whether Loschmidt echos and multiple quantum coherence (MQC) protocols allow
to characterize localization effects in a power law interacting model. The simulation
code for generating Hamiltonian spectral statistics, as well as for the time evolution
underlying the Loschmidt echo and multiple quantum coherence protocols, was
implemented by Matthias Lotze under the supervision of the author, building upon
the SpinModels.jl library by Adrian Braemer [250].
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5.2.1 Spectral statistics of a bond-disordered Heisenberg
model with power law interactions

Here, we will further examine a toy model which was shown to feature both a
thermalizing and a localized regime [136] |186]. The model is described by the
Hamiltonian
N izl 1 N N N
Hy=Y> = T (S99 + ST + ASDSW) (5.13)

i=1j=1 |z —

which corresponds to an anisotropic spin-1/2 Heisenberg XXZ model with N spins
located on positions x;. The interaction has a long range and decays with a power
law with exponent «. Additionally, the spin-spin interaction in the z-direction is
anisotropic and described with an anisotropy parameter A # 1. To compare our
results to Refs. [136], [186] we choose v = 6 and A = —0.73, a regime which in three
spatial dimensions was also realized with our Rydberg simulation platform [155| |168],
and may in principle be realized in one dimension in Rydberg tweezer arrays.

The spin-spin couplings J;; = 1/ |; — x;|* depend on the distance between spins.
Thus, we quantify disorder in the model through positional disorder, similar to
Ref. [136]. The N spins are assumed to occupy a one-dimensional line of length
L—(N+1)/2, and we define the ratio p = N/L. Disorder is introduced by imposing a
minimal distance of 1/2 between spins, generating positional correlations. For p = 1,
the spins are forced onto a uniform lattice with spacing 1/2; leaving only a single
configuration. In contrast, for small p (large L), multiple positional configurations
become possible, leading to significant disorder. Following [136], we introduce the

disorder .
W=--—1. (5.14)
p

Different disorder realizations can be generated following the scheme introduced in Ref.
[186]. For a given disorder strength W, the corresponding density p is obtained from
Eq. [5.14] which in turn yields L for a fixed system size N. The particle positions z; are
then drawn from a uniform distribution within the interval z; € [0, L — (N +1)/2]. To
ensure that W = 0 corresponds to a perfect lattice configuration, only configurations
where all particles are separated by at least 1/2 are retained. However, as pointed
out in Ref. [186], this procedure becomes highly inefficient for W < 1 due to the
constraints imposed by the Rényi parking constant [251]. To overcome this limitation,
we employ the sampling method devised in Ref. [136], which also efficiently generates
nearly ordered positional configurations. The key idea is to enforce the distance
constraints directly during sampling, thereby avoiding probabilistic post-selection.
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For this purpose, we introduce a reduced length L = L — N and draw N sorted
positions x; (1 < i < N) from a uniform distribution within [0, i]. The subsequent
mapping x; — z; +i/2 — 1/2 ensures that all distance constraints are satisfied. As
an illustrative example, for W = 0 and p = 1, we have L. = N, which implies L=0.
In this case, x; = 0 for all i, and the mapping yields x; =0, zy = 1/2, 23 =2/2, ...,
xy = (N —1)/2, corresponding to a perfect lattice configuration with spacing 1/2.
To minimize finite-size effects, we implement the periodic boundary conditions
introduced in Ref. [186]. Since power law interactions are, in principle, infinite-ranged,
each spin would interact with every other spin an infinite number of times. To avoid
this, we truncate the periodic boundary conditions by retaining, for each pair of spins
(i,7), only the strongest interaction. Consequently, the distance |z; — x;| is replaced

by the distance function

|z — 4] |zi — ;| < L/2

5.15

d(l’i, l’j) = {

Using this model, we first analyze typical signatures of many-body localization to
characterize the system as a function of the disorder W. Therefore, we employ two
common methods: The mean level spacing ratio 7, which we discussed in detail in
Chap. , and the Thouless parameter G [252]. The mean level spacing ratio quantifies
how closely a Hamiltonian follows random matrix statistics. In contrast, the Thouless

parameter measures the sensitivity of eigenstates to a local perturbation V. It is
defined as

_ n|[Vin+ 1)
o o Al e N
w1 — B,

(5.16)
where |n) denotes an eigenstate of the unperturbed Hamiltonian Hy with eigenenergy
E,, and E!, = E, + (n|V|n) is the corrected energy of |n) in first order perturbation
theory. The overline indicates an average within a symmetry sector, since symmetries
partition the spectrum into independent sectors and modify the spectral statistics.

Within the framework of the eigenstate thermalization hypothesis (ETH), eigen-
states behave as random vectors. A local perturbation V' then couples each eigenstate
to an extensive number of others at a similar energy, resulting in G o< L. Conversely,
for an 1-bit Hamiltonian, where the eigenstates of the local integrals of motion 7 are
exponentially localized, the coupling between distinct eigenstates of Hy with similar
energy is exponentially suppressed with system size, leading to G o —L. Hence, in
a thermalizing (ETH) regime, G increases with system size, whereas in a localized
regime it decreases [252).

The Hamiltonian defined in Eq. features two symmetries: A continuous
U(1) symmetry considering rotations of the spins around the z-axis, and a discrete
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Zs spin-flip symmetry [|) <> [1). The U(1) symmetry leads to a conserved total
z-magnetization, and thus the different symmetry sectors can be labeled by the
total z-magnetization M,. As the Z, spin-flip symmetry couples only states with
magnetization +M, to those with magnetization —M,, it is explicitly broken in a
sector of M, # 0, and thus we may apply Hamiltonian spectral statistics methods.
To calculate 7 and G, we thus choose for even N the sector with M, = 1 and for odd
N the sector with M, = 1/2. For even N, this is the magnetization sector containing
the largest number of states and M, # 0, and for odd N, it is the sector containing
the largest number of states.

05 —]0o o —m — S - ~—~ GOE
Poisson
0.4 —+—N =10
I N =11
034 —+N=12
' N\+HN=13
=N =14
0.2 ~==
T T T T T T T
0_
_5 -
\tm_lo_
_15 -
T T T T T T T
0.01 0.05 0.1 0.5 1 2 3

Figure 5.6: Spectral statistics indicating localization. For different system sizes, we
present the mean level spacing ratio 7 (top) and Thouless parameter G (bottom) as a
function of disorder W. A logarithmic scale is used for the disorder axis to resolve
the rapid crossover at small W values, which would appear compressed on a linear
scale. The values are calculated from averaging over 2000 disorder samples. Error
bars indicate the standard deviation of the mean. For the mean level spacing ratio,
the values expected for a Gaussian orthogonal ensemble (GOE, dark gray) and for a
Poisson level distribution (Poisson, light gray) are indicated as dashed lines.

The results for the numerical simulation of 7 and G are presented in Fig. |5.6]
For each particle number N from 10 to 14, we sample for 66 disorder strengths W
from 0.01 to 3 two thousand different positional distributions. For each positional
distribution, we construct the Hamiltonian according to Eq. and project it
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onto the magnetization sector with magnetization M, = 1 (M, = 1/2) for even
(odd) N. In this subspace, we diagonalize the Hamiltonian, which allows us to
immediately calculate 7. To calculate the Thouless parameter, we choose as our
perturbation a local magnetic field of V' = ¢gS®, where g = 10 denotes the strength
of the perturbation.

For weak disorder W < 0.01, the mean level spacing ration 7 increases as a
function N, approaching the GOE prediction of approximately 0.53, indicating an
ETH thermalizing regime. On the other hand, for intermediate disorder strengths
0.1 < W < 0.3, the level spacing ratio decreases as a function of particle number, and
for strong disorder W > 0.3 reaches values lower than expected for Poissonian level
statistics. This sub-Poissonian behavior, also reported in Refs. [136, |186], suggests a
non-thermalizing regime distinct from the integrable I-bit scenarios typically associated

with Poissonian statistics [136], and thus might present a distinct type of localization.

—+W =0.1
W =0.125
—+W =0.15
27 W =0.175
—+W =02

10 11 12 13 14
N

Figure 5.7: Critical disorder from the Thouless parameter. The Thouless parameter
is shown as a function of system size N for 5 different disorder strengths. Error bars
represent the standard error from the mean, taken over 2000 disorder realizations.
Connecting lines serve as guide to the eye.

On the other hand, the Thouless parameter behaves similarly to what is known
from exponentially localized MBL models. For small disorder, it increases with system
size, while for large disorder, it decreases with system size. Following [252], we may
determine a critical disorder W, by presenting the Thouless parameter as a function of
system size N for different fixed disorder W, shown in Fig. [5.7. We observe that for
W < 0.15, the Thouless parameter decreases linearly with N, while for W > 0.15, it
increases linearly with V. For the simulated system sizes, at W = 0.15, we observe no
significant change in G, thus determining a critical disorder strength W, = 0.150(25).
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Taking the behavior of both the mean level spacing ratio, as well as the Thouless
parameter into account, we arrive at the conclusion that for W = 0.03, the system
is in an ETH thermalizing regime, while for W = 2.0, it is a localized, but not
exponentially many-body localized regime, for system sizes N < 14. Therefore, in
the following, we will analyze dynamical properties at these two disorder strengths.

5.2.2 Loschmidt Echo

For the considered finite system sizes, we aim to test whether dynamical observables,
which may be experimentally accessible, also capture localization properties. Ref.
[150] demonstrated that the time-dependent scaling of Loschmidt echoes provides a
reliable probe for distinguishing exponentially localized from thermalizing behavior
in finite systems. The Loschmidt echo, intrinsically linked to time-reversal protocols,
has been discussed from a general perspective in Refs. [253, [254]. Tt consists of
preparing an initial state | W), evolving it forward in time under a Hamiltonian H,
and subsequently backward in time under a perturbed Hamiltonian H, = Hy + 2.
The fidelity with respect to the initial state defines the Loschmidt echo

2

Fue(t) = | (Wole™te 0| wo) ", (5.17)

which is highly sensitive to the perturbation . Because of this sensitivity, Loschmidt
echoes have been employed for characterizing decoherence in many-body systems
[151], and as probes of dynamical phase transitions [255].

Following Ref. [150], we analyze the Loschmidt echo through the overlap function

S(t) = <\1;0|6i(Ho+V/2)t€—i(Ho—V/2)t|\I/0> 7 (5.18)

where the perturbation V = ¢S acts symmetrically during forward and backward
evolution. We choose g = 20 to study the effect of a strong but local perturbation on
the system. Since the operator V' here is proportional to the one used in the Thouless
parameter analysis, spectral properties can be directly linked to the dynamical
behavior discussed below.

Comparing Eq. [5.17 and Eq. shows that the Loschmidt echo can be written
as the modulus squared of the overlap function Fig(t) = |S(¢)|*. In thermalizing
systems, the Loschmidt echo typically decays exponentially in time toward the
equilibrium value, whereas in many-body localized systems it follows a power law
decay, |S(t)]* ~ ¢~ with § > 0. Nevertheless, exceptions to the exponential decay in
thermalizing systems exists. For example, a decay of the form |S(¢)|* = 1 — at” with

v,a > 0 has been reported for an ordered, non-integrable spin system [256]. Thus,
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to our knowledge, a power law decay |S (t)|2 ~ t7° is a characteristic signature of a
many-body localized phase and can be derived from the assumption of exponentially
localized LIOMs [150].

As a bond-disordered localized model differs in many characteristics both from
an exponentially localized MBL system, as well as from an ergodic ETH system
[136], we examine whether the Loschmidt echo also behaves uniquely in such a
system. Therefore, we simulate the overlap S(t) defined in Eq. for a perturbation
V = 20S) and two disorder strengths, W = 0.03 and W = 2.0. For the initial
state |Wg), we choose the Néel state [1/71 ...), which allows first of all for a direct
comparison with Ref. [150], where the Loschmidt echo for a Néel state was determined
for an exponentially localized model. Furthermore, for spin models with Z, spin-flip
symmetry, the Loschmidt echo initiated from a Néel state is believed to reflect the
high-energy dynamics of the Hamiltonian itself. This means it captures the generic
behavior dictated by the Hamiltonian rather than the peculiar dynamics that might
arise from a very specific or fine-tuned initial state [257]. For each value of W,
we generate 2000 spatial disorder configurations and construct the corresponding
Hamiltonian H, according to Eq. [5.13] For each realization (1), we compute the
median interaction strength

%

—6
J(lid = 27 X median <max ON mgl)’ > ‘
J

m
(2

We then rescale the Hamiltonian using the average value Jyeq = m(el.;:m Jr(rgd obtained

by averaging over all sampled disorder realizations at fixed W.
This normalization enables a meaningful comparison across different disorder
strengths, as strong disorder lowers the particle density and thereby weakens the

typical interaction scale. The rescaling compensates for this density-dependent effect.

After computing S(t) for each Hamiltonian, we average its modulus squared over all

disorder realizations, obtaining |S(¢)|*, which represents the mean Loschmidt echo.

The results are shown in Fig. [5.8
We first analyze the weakly disordered thermalizing regime (W = 0.03). For early
times with tJyeq/(27) < 1, we find a decay

tt]med>4

21

1S(H)2 ~ 1 — 150 ( (5.19)

A detailed discussion of the fit is provided in Appendix [C] This quartic decay in
time is in contrast to theoretical predictions that the Loschmidt echo typically shows

a quadratic decay for short times [253]. We conjecture that the dominant ¢*-term
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Figure 5.8: Loschmidt echo in a thermalizing and in a localized regime. The Loschmidt
echo is shown as a function of evolution time for system sizes N = 8,10,12,14 on a
double-logarithmic scale. The upper panel corresponds to the thermalizing regime
(W = 0.03), while the lower panel depicts the localized regime (/W = 2.0). For
t > 1 x 10", the thermalizing case displays strong oscillations after reaching a plateau.
We attribute this behavior to finite numerical precision. Because the calculation
involves the time-evolution operator e~*#*, numerical errors in the product Jmeqt on
the order of 2w generate random phases, which then lead to large numerical deviations
in the calculation of S(¢) and consequently |S(t)|*.

vanishes in the ordered model (W = 0) due to our specific choice of V. A systematic
analysis of this behavior is left for future work. For intermediate times, tJyea/(27) > 2,
the weakly disordered system exhibits an exponential relaxation, as shown in Appendix
[Cl After a transient drop below the equilibrium value, the Loschmidt echo reaches a
size-dependent plateau that remains stable over several decades in interaction cycles.
This behavior indicates that the weakly disorder thermalizing regime shows the same
dynamics as ETH thermal systems in the Loschmidt echo.

In contrast, the strongly disordered localized regime (W = 2.0) does not reach
a plateau equilibrium before numerical errors become significant, and thus from
our numerical analysis, the Loschmidt echo does not seem to equilibrate at all. In
addition, over 11 different orders of magnitude, we observe no significant finite size
effects, and the system dynamics seems to be independent of the system size. To
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further investigate this unexpected behavior, we will separately analyze the early
transient dynamics and the long-time behavior. For very early times tJyeq/(27) < 1,
we find a quadratic decrease of the Loschmidt echo

tTmea \ 2
t2z1—4( me)
ISP ~ 1340 (<

(5.20)
in agreement with general expectations for a Loschmidt echo at short times [253]. A
power law fit for early times is provided in Appendix [C] For long times, unlike the
behavior in the exponentially many-body localized regime discussed in Ref. [150],
the Loschmidt echo does not decay according to a power law, which would manifest
as a linear trend on a double logarithmic plot. Instead, the decay appears faster than
exponential and is almost independent of system size N. This behavior is reminiscent
of the disorder-averaged modulus of the Loschmidt echo |S(t)| for an exponentially
localized model, which can be explained by dephasing of exponentially localized
integrals of motion [150]. In this case, the modulus follows

_ W2(t0'i2 <ci>+2w(t‘7i2<ci>)
_ 12[ e 2]
1S(8)] =
BT W ()

(5.21)

where W denotes the Lambert W function, and (¢;) and o; are related to the energy
distribution of different LIOMs. We will test whether the averaged Loschmidt echo

|S(t)]* in the bond-disordered Hamiltonian of Eq. [5.13| follows this dependency.
Additionally, we propose an alternative model for the decay of the Loschmidt echo:
a stretched exponential function. This model, often used to describe relaxation
dynamics in glassy systems, was also applied to magnetization relaxation in a power
law interacting 3D Heisenberg spin system [155]. In detail, we will fit the data the
stretched exponential function

S = Ae™ /0", (5.22)

where A is the amplitude of the function, t, describes the typical decay timescale,
and [ is the stretched exponent. For § = 0, an exponential decay is recovered, while
for § — 0, the decay becomes significantly slower than exponential. We analyze the
long-time interval 5 x 10? < t.Jyeq/(27) < 1 x 10*°. The lower bound ensures that we
are examining data far from any transient initial dynamics, while the upper bound
is chosen to be at least one order of magnitude smaller than tJyq/(27) < 1 x 1011,
where finite-size effects in the N = 8 data become visible. To further minimize these
effects, we focus on fitting the dependence of the N = 14 data in this interval.
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Figure 5.9: Loschmidt echo as a function of evolution time. The negative logarithm
of the Loschmidt echo (blue dots) is shown as a function of evolution time in a double
logarithmic graph. Error bars are calculated from the standard error of the mean of
the disorder average. A stretched exponential function (green solid line), as well as
the 1-bit expectation value involving the Lambert W function (orange solid line) are
fitted to the data using a least square fit method.

To reveal a possible stretched exponential behavior, we assume that the data
follows a stretched exponential function with amplitude A =~ 1, consistent with
|S(t = 0)|> = 1. Taking the negative logarithm of both sides of Eq. yields

—In (|S()?) = —In(A) + (f)ﬁ ~ 15, (5.23)

0
~0

Hence, plotting — In (|S (t)\2) versus ¢ on a double logarithmic plot will yield a straight
line, where the slope corresponds to the stretched exponent f.

We present the Loschmidt echo data for N = 14 and W = 2.0 in a double-
logarithmic plot in Fig. where a linear behavior is observed, strongly suggesting
a stretched exponential decay. A fit based on Lambert W functions according to
Eq. results in dynamics faster than a stretched exponential, and thus cannot
accurately describe the observed data. In contrast, a stretched exponential fit yields
the following parameters: A = 1.05(2), to = 1.01(15) x 10°, and 8 = 0.100(3). This
stretched exponential has a reduced x? = 0.47 < 1, thus indicating that the simulated
Loschmidt echo data is well described by the fit.

In summary, the observed stretched exponential behavior represents a new scaling
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regime that is incompatible with the Loschmidt echo decay observed in both thermal-
izing and exponentially many-body localized regimes, where the decay follows either
exponential or power law forms. This discrepancy is consistent with the findings of
Ref. [136], which also suggested that bond-disordered, power law interacting systems
introduce a qualitatively new localization mechanism. For future studies, it would be
intriguing to explore how the stretched exponent S depends on the strength of disorder
and the power law exponent «, further establishing these systems as a distinct class
of localization. In the following section, we aim to test whether such an anomalous
behavior can also be found by analyzing out-of-time-order correlators (OTOCs).

5.2.3 Multiple Quantum Coherences

As discussed in Chap. [2, OTOCs provide a tool that is sensitive not only to
thermalization dynamics but also to operator scrambling [137]. However, OTOCs
are typically formulated in terms of local observables, which are not accessible in the
experimental apparatus described in Appendix [A] A notable exception, where global
OTOCs are directly interpretable, is provided by multiple quantum coherence (MQC)
protocols, as outlined in Chap. 2]

In this section, we study the time-dependent scaling of the fidelity OTOC F,(t)
and the magnetization OTOC Fy(t) for the power law interacting Hamiltonian Hy of
Eq. p.13 In detail, we will look at their MQC spectrum, characterized by the multiple
quantum intensities I,,, and the multiple quantum amplitudes A,,. We compare their
time evolution in a thermalizing regime at weak disorder W = 0.04 and in a localized
regime at strong disorder W = 2.0. Our aim is to identify qualitative differences in
their scaling that reflect the respective localization properties.

Magnetization dynamics of a Heisenberg XXZ model

Before presenting the results for the OTOC and MQC protocols, we briefly justify
the choice of the initial state used in both cases and outline the dynamical behavior
that can be expected from this choice. As detailed in Chap. [2] the magnetization
and fidelity MQCs provide information on the emergence of spin correlations and on
coherences between product states in the z-basis with AM, # 0 during the evolution
of an initial state |¥) under the Hamiltonian Hy. If we choose, as in the previous
chapters, the fully polarized state in the z-direction |¥,) as the initial state, the
fidelity MQC attains its maximal values, since |¥,) is an equal superposition of all
product states in the z-basis. As a result, the MQC width is already maximal and
cannot increase further. In contrast, if we select the fully polarized state in the
z-direction |W,), then |¥,) is an eigenstate of Hy, and no MQC dynamics is expected.
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To generate nontrivial MQC dynamics, we rotate the coordinate system such
that the z-axis maps onto the z-axis of Hy. In this rotated frame, |¥,) is no longer
an eigenstate of the Hamiltonian. As it is a product state in the z-basis, both the
fidelity and magnetization MQCs initially exhibit vanishing width, as we will see later.
This initial state thus allows to extract meaningful information on the dynamical
properties of Hy.

In the following, we derive the form of Hy in this rotated basis. As the coordinate
system can be viewed by being rotated by 7/2 around the y-axis, the Hamiltonian
thus can be viewed as transformed by the rotation matrix

R=e'2% (5.24)
As a consequence, we obtain for the rotated Hamiltonian
H' =RHR' =3 J; (S989) + 5050 + AS ) (5.25)
i<j

For the following simulations in this chapter, we will use this form of the Hamiltonian.

In order to further understand the dynamics on the z-magnetization that this

Hamiltonian induces, we rewrite the S, and .S, operators in terms of spherical basis
ladder operators '

S =50 +450 (5.26)

as defined in standard textbooks [258]. Rewriting the Hamiltonian in terms of these

operators yields
S 5D g g4 g9 Yy g
. . +A
21 2i 2 2

H =3 J; (Sf)sﬁj) +

1<j

o UA T e AT
-3 Uy (SQ)SQ) + = (s¥8¢) + 598 4 i (5989 + S@SE’))
1<J
A—1
:HXXZ“‘T DQ>
(5.27)
where we immediately identify a different XXZ Hamiltonian
(A+1)Jy (1 () o) | oli) o) 2 g
Hyxg = S0 D25 (1 (gl g0 4 g gU S(”S(J)) 5.8
XXZ; 5 2(+ + +)+A_'_lzz 7 (5.28)

which couples only states with AM, = 0, and the double quantum Hamiltonian
Jii 1)t NG
Hpq =3} (s¥8¢) + 598V, (5.29)
i<j
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which couples only states with AM, = +1. Therefore, the MQC protocols yield
non-zero amplitudes A,, or intensities I, only for even m, as |¥,) is a product state
in z-basis, Hxxz couples only states with the same total z-magnetization, and Hpq
couples only states where exactly two spins are flipped, thus preserving the parity of
the number of flipped spins. Moreover, magnetization changes only when spin pairs
flip simultaneously, consistent with the observation that magnetization relaxation
for short time-scales in Heisenberg XXZ models can be effectively described by the
dynamics of pairs of spins [42].

Density matrix OTOC

We begin by simulating the fidelity OTOC Fy(t) for H' in Eq. . As shown in Chap.
this quantity allows for a direct calculation of the quantum Fisher information of
the magnetization. The quantum Fisher information of staggered magnetization has
previously been used to probe localization in a power law interacting system [132],
which motivates examining whether the fidelity OTOC can also serve as an indicator
of localization behavior.

For the numerical implementation, we choose a system size of N = 12, which
allows for a sufficient fast calculation of the required time evolution of the Hamiltonian.
We take 2000 disorder realizations, where in each disorder realization, positions are
drawn for disorders W = 0.04 and W = 2.0, corresponding to a thermalizing and a
localized regime, respectively. From the positions, we calculate the corresponding
couplings J;; as discussed above. For each disorder realization, we evaluate

2

Folt) = | (W]t temioS ey )| (5.30)

as a function of the rotation angle ¢ applied in the MQC protocol and the evolu-
tion time t. Like in our implementation of the Loschmidt echo, evolution times
for a given W are specified in units of mean median interaction cycles, tJyeq/(27).
Here, the rescaled evolution times are logarithmically spaced between 1 x 107°/(27)
and 1 x 10°/(2w). Using a logarithmic spacing of time over several orders of mag-
nitude allows us to identify whether MQC-related quantities may exhibit a slow,
logarithmic growth. The rotation angles are sampled uniformly over one period,
¢; =0, 27/40, 47/40, ..., 27w - 39/40, which allows for an accurate discrete Fourier
transformation.

In a system of N spins, at most N spins may flip, implying that the multiple
quantum intensities I,, may occupy the full range m € [—N, N]. Consequently,
at least 2N + 1 = 25 sampling angles are required to resolve the MQC spectrum.
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Our choice of 40 angles satisfies this requirement and provides additional spectral
resolution.
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Figure 5.10: Fidelity OTOC and multiple quantum intensitities. The plot in each
column represents data taken at time ¢Jpeqa/(27) equal to 1.59 x 107¢ (left), 1.59 x
1073 (center) and 1.59 x 10* (right). The top row presents the fidelity OTOC Fy(¢)
as a function of the angle ¢ for the thermalizing (blue, W = 0.04) and localized
(orange, W = 2) regimes. The center and bottom row present the multiple quantum
intensities for the thermalizing and localized regime, respectively.

The MQC spectrum is obtained by applying a fast Fourier transformation (FFT)
to Fy(t) with respect to the rotation angle ¢. The multiple quantum intensities are
therefore given by

Lo(t) = — > Fy(t)e ™%, (5.31)

where N, = 40 denotes the number of different angles ¢. Because uncertainty
propagation through an FFT is nontrivial and remains an active research topic [259],
we compute I,,(t) for each disorder realization individually and perform the disorder
averaging only afterwards. This procedure allows us to estimate the uncertainty of
I,,,(t) via the standard error of the mean over all disorder realizations.
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The simulation results are shown in Fig. At times much shorter than ¢.Jed,
F,(t) remains essentially constant. Consequently, the MQC spectrum contains only
a single nonzero multiple quantum intensity I,,—o, consistent with the expectations
outlined above.

For short times, the thermalizing regime exhibits almost no visible dynamics,
whereas the localized regime develops pair correlations rapidly. We attribute this
behavior to the strong disorder strength in the localized regime: the largest couplings
Jij can exceed Jpeq by up to an order of magnitude, producing dynamics on time
scales shorter than a median interaction cycle. Such strong couplings are absent in
the thermalizing regime, where the positional disorder is weak and the couplings J;;
are approximately uniform for equal distances |i — j|.

At long times, the situation reverses. The thermalizing regime evolves more
rapidly, which is reflected in the broader distribution of I,, at the latest simulated
time. In order to further quantify the width of the I,,, as a function of the evolution
time, we compute the quantum Fisher information of the magnetization operator
following [149], which reads

Fo(p(t),S:) =2 Ln(t)m?*. (5.32)

Figure [5.11] shows the quantum Fisher information Fg. In the thermalizing regime,
Fy increases slowly at short times and then rapidly reaches an equilibrium plateau
around tJpeq/(2m) ~ 0.1. Since Fy also serves as an entanglement witness for k-
partite entanglement [260-262], the minimal k-partite entanglement can be inferred
from its equilibrium value. Here, Féq ~ 27.4 > 24, indicating that the thermalizing
system exhibits at least two-body entanglement.

In the localized regime, the quantum Fisher information initially grows logarith-
mically for times 1 x 1073 < t.Jy04/(27) < 5 x 10%, appearing as a straight line when
plotted against a logarithmic time axis. A least-squares fit within this interval yields

tJme
) d) : (5.33)

Fo(t) = Aln ( -

with A = 1.107(10), b = (2.82 £ 0.22) x 107*, and a reduced x* = 1 x 107? < 1,
indicating that the data is well captured by a logarithmic growth.

For longer times, tJyeq/(27) 2 1 x 103, the growth slows below logarithmic.
Fitting the last four data points with a double-logarithmic function

Fo(t) = fo+Alnln (tJmed>

.34
21b (5.34)
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Figure 5.11: Quantum Fisher information of the magnetization. The quantum Fisher
information of the time-evolved density matrix of the fully polarized state is shown
as a function of evolution time. The scale of the abscissa axis is logarithmic, such
that a logarithmic growth will be visible as a straight line. Data is shown both in
a thermalizing (blue) and a localized (orange) regime. In the localized regimes, the
times le — 3 < tJyea/(27) < 5e2 are fitted a logarithmic behavior (red line). The last
four data points are fitted a loglog growth behavior (green line). Error bars, which
are smaller than the marker size, are calculated as the standard deviation from the
mean over 2000 disorder samples.

using least-squares regression gives A = 3.7+ 0.4, b =1.4+0.7, and f, = 8.8 + 1.1,
with a reduced x? = 5 x 1073 < 1, showing that the double-logarithmic function
provides a good description of the late time behavior.

This behavior is striking compared to that reported in Ref. |[132]. In that work, a
bond-disordered XY model was shown to exhibit algebraically localized single-particle
wavefunctions [134], and it is generally expected that power law interacting models
displaying localization cannot support exponentially localized single-particle states,
but instead feature algebraically localized wavefunctions [132]. The same reasoning
would apply to the XXZ model of Eq. [5.25] In Ref. [132], the quantum Fisher
information of the staggered magnetization grows logarithmically for algebraically
localized systems, in contrast to double-logarithmic growth for exponentially localized
ones.

In the bond-disordered XXZ model studied here, Fy shows logarithmic growth
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at intermediate times, consistent with algebraic localization, but crosses over to
double-logarithmic growth at long times, suggesting a tendency toward exponential
localization. This behavior reinforces the conclusions drawn from the Loschmidt
echo, indicating that bond-disordered, power law interacting systems may exhibit a
qualitatively distinct form of localization.

However, this interpretation should be considered with caution. First, the slow
double-logarithmic growth may be a finite-size effect that reflects an eventual satura-
tion of Fp. Examining Fy for different system sizes, such as N = 10 and N = 14,
and extending the simulations to tJyeq/(27) = 1 x 10'2) as in Ref. [132], would
help to clarify the nature of this apparent double-logarithmic behavior. Furthermore,
since the multiple quantum intensities provide access only to the quantum Fisher
information of the magnetization, it would be valuable to compare the quantum
Fisher information of the staggered magnetization directly with the scaling behaviors
reported in Ref. |132].

Magnetization OTOC

Both the Loschmidt echo and the fidelity OTOC rely on measuring a many-body
wavefunction fidelity, which remains experimentally challenging on current quantum
simulation platforms for system sizes exceeding roughly ten particles, as full state
tomography scales exponentially with system size [148]. For this reason, we focus
here on the scaling of a magnetization OTOC and the corresponding MQC protocol
in the disorder regimes discussed above. These quantities can be easily accessed
experimentally, both on trapped-ion platforms [148] and, using the time-reversal
protocol of Ref. [48] discussed in Sec. , on our Rydberg platform described in
Appendix [A]
To numerically simulate the magnetization OTOC, we evaluate

4 . - e -
Fo(t) = N2 (W, | t6395: o =iH't g (iH'tg=i6S: =it g |y ) (5.35)

using the same system size N = 12, discrete time steps t, rotation angles ¢;, and
disorder strengths W = 0.04 and W = 2.0 as in the fidelity OTOC simulations.
Again, the two disorder strengths correspond to a thermalizing and a localized regime,
respectively. We sample 2000 disorder realizations of H' and compute the disorder-
averaged F,(t), with the standard error of the mean across realizations used as an
estimate of the uncertainty.

In addition, for each disorder realization of H’, we compute the multiple quantum
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amplitudes applying a fast Fourier transform algorithm

Ap = —> Fy(t)e ™, (5.36)

in analogy to the calculation of the I,,,. Again, we first perform the Fourier transform
for every disorder realization, and take the disorder average in a second step to omit
error propagation through a Fourier transform.
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Figure 5.12: Magnetization OTOC and multiple quantum amplitudes. The plot in
each column represents data taken at time tJpea/(27) equal to 1.59 x 107° (left),
1.59 x 1073(center) and 1.59 x 10% (right). The top row presents the magnetization
OTOC F,(t) as a function of the angle ¢ for the thermalizing (blue, W = 0.04) and
localized (orange, W = 2) regimes. The center and bottom row present the multiple
quantum amplitudes for the thermalizing and localized regime, respectively.

We present the results of this simulation in Fig. .12} By definition, the I,,
correspond to the sum of the squared moduli of all matrix elements of p(t) connecting
z-basis states that differ in z-magnetization by AM, = m/2 , and are therefore
always real and non-negative. In contrast, the A,, are not necessarily real or positive.
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Following Ref. [148], we plot |A,,| to represent the MQC spectrum. We observe
qualitatively the same dynamics as in the fidelity OTOC depicted in Fig. [5.10] At
times much shorter than t.Jieq, Fys(t) remains essentially constant. Consequently, the
MQC spectrum contains only a single nonzero multiple quantum amplitude A,,—o,
consistent with the expectations outlined above.

For short times, the thermalizing regime exhibits almost no visible dynamics,

whereas the localized regime develops spin-spin magnetization correlations rapidly.

Again, we attribute this behavior to the strong disorder strength in the localized
regime. At long times, the situation reverses. The thermalizing regime evolves more
rapidly, which is reflected in the broader distribution of A,, at the latest simulated
time. To compare with the quantum Fisher information, we aim to further quantify
the width of the A,,. However, the A,, lack a second property that is guaranteed
for the I,,. For a given density matrix p(t), summing over all I, is equivalent to
summing over all entries of p(t), yielding

Y Inlt) = X ol = Te{p() p(t)} 21, (5.37)

so that the quantum Fisher information corresponds to the doubled width of a

normalized distribution [,,. This normalization does not necessarily hold for the A,,.

For the A,,, we can define the doubled variance in analogy to Eq. as

2

OVar(A,,) = 2M7
where g denotes either the modulus or the real part of A,,. The imaginary part cannot
be used, since A,, is the Fourier transform of a real-valued function and thus satisfies
Im(A,,) = —Im(A_,,). Using the imaginary part would make Eq. ill-defined, as
both the numerator and denominator on the left side would vanish.

We present the doubled variance of both the real part and the modulus of the
A, in Fig. [5.13] Qualitatively, the doubled variance is largely insensitive to this
choice. In the thermalizing regime, the doubled variance shows a rapid increase at
tJmea/(2m) = 0.1, saturating at 27.7 when g is taken as the modulus and 27.3 when ¢
is taken as the real part, in close agreement with the equilibrium value of the quantum
Fisher information. This indicates that, in the thermalizing regime, the late-time
doubled variance of A,, provides a reliable estimate of the equilibrium Fj,.

In the localized regime, we observe that the doubled variance of the A,, increases
more slowly than Fy. In addition, we do not find a logarithmic or a double-logarithmic
growth, but instead, at late times we find the data is well described by a power law
model

(5.38)

2Var(A,,) = At7, (5.39)
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Figure 5.13: Doubled variance of the multiple quantum amplitudes. Doubled variance
of the multiple quantum amplitudes is presented as a function of evolution time. The
scale of the abscissa axis is logarithmic, such that a logarithmic growth will be visible
as a straight line. The doubled variance is calculated both for the modulus (triangles)
as well as for the real part (squares) of the multiple quantum amplitudes. Data is
shown both in a thermalizing (blue) and a localized (orange) regime. For the last 5
data points in the localized regime, a power law model (black line) is fitted to the
values obtained from the amplitude.

for which a least-squares fit yields A = 3.50(14) and v = 0.128(5). The reduced
x? = 0.05 < 1 indicates that this model provides an accurate description of the data
in this regime.

This power law behavior differs qualitatively from the dynamics of Fy. Nonetheless,
the evolution is substantially slower than in the thermalizing regime, suggesting the
presence of two distinct dynamical regimes. For future work, it would be instructive
to compute the doubled variance of the A,, also for exponentially localized models to
determine whether they exhibit similar or qualitatively different behavior. We further
note that the observed power law scaling may represent a slow, transient regime
that eventually crosses over to logarithmic or double-logarithmic growth. Again,
examining the doubled variance of the A, for different system sizes, such as N = 10
and N = 14, and extending the simulations to tJyeq/(27) = 1 x 10'? would help to
clarify the nature of this apparent power law behavior.
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5.3 Conclusion

In this chapter, we started by asking whether localization properties could appear in an
isolated three-dimensional dipolar-interacting Heisenberg XY model, and whether such
behavior could, in principle, be observed with the experimental platform described
in Appendix [A] To address this question, we proposed using Loschmidt echo and
multiple quantum coherence (MQC) protocols, which only require global access to
the system. A key challenge, however, is that these protocols rely on the ability to
effectively reverse the system’s time evolution.

To implement a time-reversal protocol on the Rydberg simulation platform, we
explored how coherent transfer pulses between different spin-encoding Rydberg states
can be used to effectively reverse dipole-dipole interactions between atoms. Two
candidate encodings were considered, both robust against unwanted population of
non-targeted Rydberg states during the transfer. The experimentally chosen encoding
further minimizes errors from van-der-Waals interactions in the time-reversed Hamilto-
nian. Increasing the magnetic field strength enables faster spin-state transfer, reducing
the dominant errors caused by Rydberg interactions during the pulses. Overall, this
provides a practical route to improve the efficiency of the protocol. Additionally, our
analysis emphasized that flipping the parity of the spin-encoding states is crucial to
suppress effective local magnetic fields in the realized spin Hamiltonian.

This protocol enables the implementation of time reversal in an isolated dipolar
spin system, while allowing the imperfections of the reversal to be quantified. It
therefore provides a framework for exploring localization effects in such systems. To
build intuition for how localization might manifest in time-reversal based protocols
in a disordered model with power law interactions, we first analyze representative
time-reversal based protocols in a simplified toy model. This model has previously
been shown to host both thermalizing and localized regimes [136, [186].

In this toy model, we analyzed the time evolution of the Loschmidt echo. As
expected, in the thermalizing regime it relaxes rapidly and exponentially toward
equilibrium. In contrast, in the strongly disordered regime we identify a novel behavior:
the Loschmidt echo decays as a stretched exponential with a small exponent, 5~ 1/10.
This behavior is distinct from the exponential relaxation typical of thermal systems
and the power law decay characteristic of conventional many-body localized systems.
The observation of stretched exponential decay reveals a distinctive dynamical feature
of strongly bond-disordered, power law interacting systems, consistent with Ref. [136],
where such systems were also shown to exhibit behavior different from conventional
many-body localized systems. For an experimental implementation, it would be
valuable to test whether the Loschmidt echo scales also as a stretched exponential if
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instead of a fidelity, a global magnetization is measured.

In addition, we numerically investigated two different MQC protocols. First, we
analyzed the time-dependent behavior of the fidelity MQC, which provides a direct
measure of the quantum Fisher information of the magnetization. We find that the
observed dynamics are incompatible with thermalizing, exponential, or algebraically
localized behavior. Specifically, at short times, the quantum Fisher information grows
logarithmically, consistent with algebraically localized systems, whereas at late times,
it exhibits double-logarithmic growth, as expected for exponentially localized systems.
This crossover behavior further supports the finding in Ref. [136] that bond-disordered
localized systems display dynamics distinct from both conventional algebraic and
exponential localization. It should be noted, however, that these simulations were
performed for a single system size and for timescales up to approximately 1 x 10°
interaction cycles; future studies should extend these analyses to larger systems and
longer times to fully characterize the observed behavior.

Since measuring the fidelity required for the fidelity MQC is experimentally
challenging in large many-body systems, we also investigated the time dependence of
the magnetization MQC and the variance of the multiple quantum amplitudes, as
magnetization measurements are experimentally more accessible. In the thermalizing
regime, this variance rapidly reaches an equilibrium value that closely approximates
the equilibrium quantum Fisher information. In contrast, in the localized regime,
the variance grows significantly more slowly, following a power law with an exponent
v = 0.12. This suggests that the main distinction between thermalizing and localized
dynamics lies in the timescale required to reach equilibrium. These findings raise
intriguing questions for future studies, including how the exponent v depends on the
disorder strength W or the system size, and whether it exhibits universal behavior.
Moreover, it would be valuable to compare these results to exponentially many-body
localized systems, as the variance of multiple quantum amplitudes could potentially
be measured in both trapped ion experiments [148] and in our Rydberg atom quantum
simulator. However, just like the fidelity OTOC, the simulations were performed for
a single system size and for timescales up to approximately 1 x 10° interaction cycles;
future studies should extend these analyses to larger systems and longer times to
fully characterize the observed behavior.

To summarize, the results of this chapter demonstrate that bond-disordered, power
law interacting systems exhibit an unconventional dynamical behavior under time-
reversal based protocols, which is distinct from both thermalizing and conventional
exponentially many-body localized systems. The observation of stretched exponential
decay in the Loschmidt echo, alongside the nontrivial time dependence of the fidelity
and magnetization MQCs, points to new forms of localization dynamics that merit
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further investigation. Future studies exploring different system sizes, longer timescales,
and different disorder strengths will be essential to fully characterize the emergent
dynamics and to determine whether universal features govern these bond-disordered
localized phases. In addition, we have shown that a magnetization OTOC, which is
experimentally implementable in current quantum simulation platforms, can at least
quantitatively distinguish a localized from a thermal regime. This study thus opens
new avenues for identifying localized regimes in finite-size systems.
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CHAPTER 6

Perspectives in Disordered Dipolar
Quantum Simulators

In the preceding chapters, we investigated spin glass and localization phenomena in
a three-dimensional dipolar XY model. In Chap. |3 we studied energetic-magnetic
hysteresis, characterized via protocol-dependent steady-state DC magnetization mea-
surements. In Chap. we developed and implemented a protocol to determine
putative critical exponents. In both cases, we analyzed equilibrium properties, includ-
ing linear response from metastable quasi-equilibrium states and the measurement of
a combination of equilibrium critical exponents.

However, the spin glass phase is typically out-of-equilibrium and exhibits rich
dynamical behavior. Therefore, in Sec. [6.1} we propose methods to characterize
dynamical effects typical of spin glasses using the experimental platform described
above. We also outline approaches to measure AC susceptibilities, which typically
exhibit faster dynamics [12].

As noted, all previous experiments were conducted in a three-dimensional XY spin
model, for which no complete theoretical description currently exists. In Sec. [6.2], we
demonstrate how the experimental platform can be used to study three-dimensional
dipolar Ising models, enabling direct comparison with state-of-the-art theoretical
predictions [105].

6.1 Aging, rejuvenation, and memory

Spin glasses are generally considered to remain out-of-equilibrium, which gives rise
to rich non-equilibrium dynamics. This section briefly reviews the main out-of-
equilibrium phenomena observed in spin glasses and discusses how these may be



probed using the previously discussed Rydberg platform.

Due to their intrinsically slow dynamics, spin glasses provide a convenient setting
for studying non-equilibrium processes in the time domain. Since formulating universal
predictions for non-equilibrium systems is challenging, it is often instructive to examine
situations close to equilibrium. In equilibrium, fluctuations can be related to the
dissipation resulting from small perturbations. This relationship is formalized by the
fluctuation—dissipation theorem (FDT), which has also been examined in the context
of a characteristic non-equilibrium phenomenon in spin glasses, namely aging |263].

The fluctuation-dissipation theorem is typically studied in terms of the two-time
autocorrelator C'(t,,t) and the two-time linear response function R(t,,t), which are
for arbitrary spin models given as

Clty + t,tyw) = (M(t, +t)M (1)) (6.1)
Rt + 1, 1) = W (6.2)

where the two-time autocorrelator C(t,,t) studies the correlation of the global
magnetization M of a system after an observation time ¢ after the waiting time t,,,
while the linear response function R(t,,t) studies how the system’s magnetization
M responds to a field H applied at an observation time t after it has been prepared
in equilibrium for a waiting time ¢,,. C(t,t,) is typically hard to measure, as very

sensitive noise measurements are required in spin glasses to determine this value [79).

The linear response function, on the other hand, is straight forward to measure by
the so-called thermoremanent magnetization, which was initially determined in spin
glasses in Ref. [189]. To that end, the system is cooled down in the already introduced
field-cooled protocol, sketched in Fig. ﬂ(a). After the cooling is finished, the system
is left for a waiting time t,, in the field cooled state. After t,,, the magnetization is
quenched to zero, and the magnetization is observed as a function of the observation
time ¢. If the system were in equilibrium in the FC state, the magnetization and thus
the susceptibility should only depend on the time difference t +t,, — t,, =, i.e.

R(ty +t,ty) = R(1) (6.3)

as the thermal equilibrium state is defined by being time-translation invariant, i.e.

it has no time-dependence. If this time-translation symmetry is fulfilled, the FDT
holds:

_1oC(t)
T ot
i.e. the linear response is proportional to the change of the fluctuations in a system
with time. The higher the temperature, the smaller the response.

R(t) (6.4)

6.1 AGING, REJUVENATION, AND MEMORY

139



(a) (b)

10°

S
3

1071 .E‘,
N\ t1 to t

107! 10° 10t

t/tw ttot

Figure 6.1: Aging, rejuvenation and memory effects in spin glasses. (a) Sketch of full
aging. The magnetization M is plotted as a function of the ratio t/t,, for different
waiting times t¢,,. By plotting M as a function of the ratio, all curves collapse onto a
single curve. (b) Rejuvenation and memory effects. The magnetization M (blue solid
line) is plotted as a function of time. The system is first aged at temperature 77 for
time ¢, during which M slowly decays. The temperature is then lowered to 75 < T7,
and a renewed decay of M is observed, indicating rejuvenation. The system appears
to “reset” and starts aging as if it was quenched to 75 from the high temperature
paramagnetic phase. After time ¢9, the temperature is returned to 77, and the system
resumes its previous aging trajectory, demonstrating memory. It recalls its prior state
at T} as though there was no time evolution in the temperature bath at T, (black
dashed line).

In spin glasses, however, below the glass transition temperature, it is believed
that the equilibrium is never reached on experimentally accessible timescales. As a
consequence, a more generalized FDT is introduced

X(t,ty,) 0C(t,ty)
T Oty

where X (t,t,,) is the fluctuation-dissipation ratio (FDR)[264} 265], which defines an
effective temperature Tog = T/ X (¢, t,). Spin glasses are of special interest, as from a
mean-field prediction, it is expected that the FDR is only a function of the two-time
correlator X (t,t,) = f(C(t,t,)) and has no other explicit time-dependence on ¢ or
tw, which is a consequence of the famous Cugliandolo-Kurchan equations|264}, 266].

In addition, in spin glasses, but also in other systems featuring a continuous phase
transition, already the response function or the correlation function alone show an

R(t,t,) = (6.5)
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unexpected behavior: They do not scale with the time difference, but rather with the
ratio of the observation and waiting times

Ot ty) ~ f (;) (6.6)

w

R(t,tw) ~ g (t> (6.7)
tw

where f and g are scaling functions, which is called full aging. For continuous phase
transitions, aging is expected when a system is quenched across its critical point.
Below the critical temperature, domains form whose typical size depends on the
waiting time ¢,, through the critical exponents v and z we introduced in Chap. [2
Energy barriers arise between these domains, with heights determined by the domain
sizes. Aging is therefore governed by thermal activation of these barriers.

As a result, such systems exhibit full aging, characterized by scale invariance
and the absence of an intrinsic time scale [267-271]. In the two-time functions, this
manifests as dependence only on the ratio ¢/t,,, rather than on absolute times such
as t, t + ty, or t,.

However, most spin glasses show subaging, which was initially proposed in studies
on amorphous polymers [272]. In subaging, the two-time functions introduced above
scale as

C(t,tw) ~ f (éz) (6.8)
R(t,tw) ~ g (;;U) (6.9)

where p < 1, and typical values are p ~ 0.97[13, 79]. Even though multiple
explanations have been considered, so far the mechanism leading to subaging in spin
glasses is still an unresolved problem [273] 274].

Two important observations were made in spin glasses which are, unlike the
ZFC/FC bifurcation and aging, absent in ordered systems. These effects are rejuve-
nation and memory[10, [79, 80|, which are sketched in Fig. [6.1(b). We will briefly
review them, following mainly [12].

The system is first quenched from a temperature well above the glass transition
T, to Th < T, and allowed to age for a time ¢;. It is then quenched to a second
temperature 7, < T}, which can be either significantly higher or lower than 7;. The
magnetic response is measured after a time t,. If 75, differs substantially from T,
the response after ¢t resembles that of a system quenched directly from the initial
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high temperature to 75, appearing as an additional rise in magnetization. This is
the rejuvenation effect. If 77 and T3 are close together, the aging process continues
without interruption, a behavior called cumulative aging [275, 276].

Alternatively, after aging at T, for a time ¢4, the system can be quenched back
to Ti. In this case, the magnetic response at T}, measured at a time ¢ after the
last quench, appears as if no dynamics occurred at T5. Specifically, it matches the
magnetization observed in a reference measurement where the system is quenched
directly from above T}, to T} and allowed to age for a time ¢; + ¢. The system thus
retains the memory of its prior aging at 7T}, a phenomenon referred to as the memory
effect.

So far, we described protocols for measuring rejuvenation and memory using
DC magnetization. However, aging is typically slow in DC measurements. To
accelerate experiments, especially for aging and rejuvenation studies, the out-of-phase
component x” of the AC susceptibility is measured. This quantity exhibits the fastest
time-dependent decay, allowing for shorter experimental durations. Consequently,
rejuvenation and memory effects are typically probed using AC susceptibility protocols
[12].

The mechanisms underlying rejuvenation and memory effects remain unresolved.
Interestingly, such effects can also emerge, depending on the experimental protocol, in
superparamagnetic systems of noninteracting nanoparticles with a broad distribution
of activation energies [277]. In contrast, memory effects in zero-field-cooled magneti-
zation appear only in interacting nanoparticle assemblies, referred to as superspin
glasses [277, 278]. Their behavior aligns well with the droplet model of spin glasses,
where each nanoparticle acts as a droplet of characteristic size, and larger droplets
require higher thermal activation energies. In conventional spin glasses, however, both
memory and rejuvenation phenomena can also be described by a hierarchy of energy
scales rather than by droplet or cluster formation alone [12]. This raises an open
question about the interplay between droplet or cluster dynamics and hierarchical
energy landscapes. Numerical simulations further suggest that temperature chaos [14]
and multiscale dynamical processes play a central role in the emergence of memory
and aging effects [15, 279].

We now briefly discuss how these protocols can be implemented in our quantum
simulation platform. Similar to the ZFC and FC protocols described in Chap.
direct temperature control in an isolated quantum system following unitary dynamics
is not feasible. Instead, an annealing scheme is employed to tune the system’s energy,
allowing the investigation of rejuvenation and memory effects as a function of energy.
Consequently, these protocols may probe energy-dependent dynamics possibly acting
across different length scales.
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As outlined in Chap. [3], the system is initially prepared in the fully polarized
z-state. A Rabi 7/2-pulse then rotates the state into full polarization along . An
annealing ramp 2, (¢) is subsequently applied to reach a low-energy state. For aging
studies, it is advantageous to ramp the annealing down to zero field, while the ramp
velocity controls the final energy. This also eliminates any remanent x-field, allowing
the Heisenberg spin model to be probed without external magnetic fields.

Once the final field is reached, two protocols are considered:

Aging Protocols

1. FA magnetization protocol: A small probe field €2, is applied throughout
the annealing ramp. After reaching the final field, the system ages for a waiting
time ¢; in the presence of €2,. The probe field is then turned off, and the
resulting magnetization M, is measured after an additional time ¢.

2. ZFA magnetization protocol: After the annealing ramp reaches the final
field, the system ages for a waiting time ¢; without a probe field. The small
probe field €, is applied afterward, and M, is measured after a time ¢. This
protocol was studied in [180], however on experimental timescales, no significant
aging effect was found.

(a) (b)
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Figure 6.2: Sketch of the protocol for probing memory effects. Initialization and
detection pulses (green), the annealing field (blue), and the probe field (brown) are
shown against time. Field amplitudes are represented by height (not to scale). Time
intervals are indicated by black arrows. The protocols are sketched both for the
measurement of an FA magnetization (a) and a ZFA magnetization (b). See main
text for details.

Although this protocol allows the study of aging, a challenge arises: the energy of
the system must be tuned for the second time in a controlled manner to investigate
rejuvenation and memory effects. To address this, we propose ending the annealing

ramp at a finite field Q(Y) £ 0, as sketched in Fig. . Although this introduces a
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finite z-field during application of the probe field, it ensures that the system always
exhibits a nonzero z-magnetization M(Y. When Q! is subsequently changed to a
new value ng), the system is subject to an energy change

AE =MD (@) - o), (6.10)

providing controlled tunability of the energy. This tunability of the energy thus
enables us to devise the following protocols to study rejuvenation, based on either
ZFA or FA magnetization measurements:

Rejuvenation Protocols

1. FA magnetization protocol: A small probe field €2, is applied during the
entire annealing ramp and maintained afterward. Once the finite field Q( is
reached, the system ages for a time ¢;. The annealing field is then changed
to a new value Q2. If Q2 > QM) the system’s energy decreases; otherwise,
it increases. The system then ages for a time 5, after which the resulting
magnetization is measured.

2. ZFA magnetization protocol: The system is first annealed down to a finite
field QY and ages there for a time ¢;. The annealing field is then changed to
Q) where the system ages for a time 5. Finally, the probe field (1, is applied,
and the resulting y-magnetization is measured.

These protocols exhibit a limitation compared to studies on magnetic alloys,
superparamagnetic nanoparticles, and superspin glasses: the magnetic field and the
system’s energy are intrinsically coupled. For a meaningful comparison between the
described rejuvenation protocol, and an aging protocol where the annealing ramp
ends immediately at Q(?), the system energies at the end of protocols must be similar.
Consequently, Q) and Q2 should not differ substantially. At the same time, they
must be significantly distinct to prevent cumulative aging. Whether these analogies
from canonical spin glasses remain valid in an isolated system where the energy can
be directly tuned is an open question.

We now focus on the study of memory effects by extending the rejuvenation
protocol introduced above. A discussed above, after an initial aging period of
duration ¢, under an annealing field Q(V, the field is quenched to a new value Q2.
This quench changes the system’s energy by AE; = M(V(QL — Q?)), The system
then continues aging under Q%) for a time ¢,. To probe memory, the energy must
subsequently be restored to its value corresponding to the field QY after ¢;. For
nearly identical fields, Q! =~ Q{2 the steady-state magnetizations M} and M(? are
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expected to be comparable. Previous work on the disordered dipolar Heisenberg spin
model [43] showed that, for small external fields €2, the steady-state magnetization
scales linearly with the field, M,  €2,. Consequently, a small variation in €2, induces
a proportional change in M.

Under this assumption, the corresponding energy variation after the second quench
is

AE, — M(Q) (Q(2) . Q(l)> My xS Qg(c?) M(l) (Q(Q) _ Q(l)) _ —@AE (6 11)
2 T T T Qa(vl) T x T Q&l) 1- .

Restoring the annealing field to its initial value Q(}) after ¢, prepares the system in
a state subjected to the same field and nearly the same energy as after ¢;, immediately
before the quench to Q2.

Alternatively, after t5, the field can be quenched to

QW?
0B =@ _ 4 ﬁ (6.12)

which guarantees that the system’s energies at Q(V) (after ¢;) and at Q) (after t,)
are identical, although the corresponding external fields differ. For experimental
simplicity, and under the assumption Q{3 ~ Q| the following protocols to study
memory effects, sketched in Fig. [6.2] consider quenches where the magnetic field is
returned to its initial value Q(:

Memory protocols

1. FA magnetization protocol: A small probe field €, is applied continuously

throughout the annealing ramp and maintained afterward, as illustrated in Fig.

(a). When the annealing field reaches Q{1 the system is allowed to age for
a duration ¢;. The field is then changed to Q{?), where it ages for an additional
time t,. Subsequently, the annealing field is restored to its initial value Q(,
and the magnetization in direction of the probe field is measured after a waiting
time ¢.

2. ZFA magnetization protocol: The system is first annealed to a finite field
Q) and aged for a time t;, as shown in Fig. (b) The annealing field is
then changed to Q(2), where the system ages for t,. The field is subsequently
quenched back to Q). After a time ¢, a small probe field 2, is applied, and
the resulting y-component of the magnetization is recorded.
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The measured magnetization is compared with that obtained from a reference
protocol in which the annealing ramp ends at Q() and the system ages there for a
total duration ¢; +¢. A memory effect is identified when the magnetization curves as
functions of ¢ coincide for both protocols.

The total duration of the proposed protocol for probing memory effects is ¢, +
t1 + to + t, where t, denotes the ramp time. Following the ZFA and FA protocols
discussed in Chap. 3], ¢, should be at least 0.75 pis to ensure a measurable splitting
between the ZFA and FA magnetizations. In a putative spin-glass state, memory and
rejuvenation effects are not expected to emerge unless such a splitting is observed.
To reach a regime where this separation becomes significant, indicating dynamics
deep within the putative spin-glass phase, the ramp time should exceed 3 ps.

The times 1, t5, and ¢t need to exceed a typical interaction cycle, ensuring that
measurements reflect slow, quasi-steady-state dynamics rather than transient behavior.
For Jpeq = 2m x 1.64 MHz, which was experimentally realized in the experiments in
Chaps. [3land [ this requires t1, t2, ¢ > 0.6 ps. Since aging processes occur over several
interaction cycles, it is advisable to probe at least five such cycles, corresponding
to about 3 ps. This choice leads to a total experimental duration of approximately
tT—Ftl +t2+t = 12118.

After applying the probe field, we aim to extract an approximate steady-state
magnetization value, similar to the procedure used for the ZFA and FA protocols
in Chap. [l In ZFA-based protocols, the additional probe duration before the
tomographic readout pulse extends the total protocol time by 3 s, bringing the total
protocol duration to about 10 % of the lifetime of the Rydberg states encoding the
pseudospin degree of freedom.

Even on longer timescales, where black-body radiation leads to noticeable decay;,
previous experiments reported negligible influence on the observed ZFA aging behavior
[180]. Therefore, exploring AC susceptibilities instead of DC susceptibilities may
be advantageous, as dynamical effects are enhanced compared to DC susceptibility
based protocols [12]. When studying AC susceptibilities, as discussed in Chap.
two components must be distinguished: the in-phase susceptibility x’ and the out-
of-phase susceptibility x”. In this work, we focus on measuring x”, as it exhibits
a pronounced acceleration of aging, rejuvenation, and memory dynamics. The
choice of drive frequency is constrained by two opposing requirements. It must
be low enough to encompass several interaction cycles, ensuring that the response
reflects slow rather than transient dynamics. At the same time, it must be high
enough to allow accurate measurements of the magnetic response of the system
within the finite lifetime of the constituent elements. For a system interacting with
Jmed = 21 x 1.64 MHz, the drive frequency should not exceed 1 MHz. On the other
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hand, given the Rydberg lifetime of at most 100 ps, the drive frequency should be
larger than 100 kHz. Therefore, we suggest using AC susceptibility measurements
with a drive frequency of 1 MHz. This drive frequency of an AC magnetic field can
be implemented using the arbitrary waveform generator (AWG), by employing an
amplitude modulation of 1 MHz frequency. In order to study the linear regime of the
AC susceptibility, the drive amplitude needs to be small. The drive amplitude can be
accurately tuned to very low amplitudes owing to the 8-bit modulation resolution of
the Keysight M8195A AWG.

Next, we assess the precision required for AC magnetization measurements. In Ref.
[180], the aging ZFA magnetization signal decreased by only 0.06 over two decades in t;.
Resolving such small changes requires a measurement uncertainty below 0.02. However,
as discussed in previous chapters and detailed in Appendix [A] each measurement
probes a Rydberg population, of which only about 10 % is detected. This limited
detection efficiency introduces significant shot-to-shot fluctuations, yielding a standard
deviation of the mean of approximately 0.03 for a single measurement, as observed in
the ZFA and FA data of Chap. [3] obtained by averaging 50 outcomes per data point.
Maintaining this precision, a faster decay of the out-of-phase magnetization would
produce a stronger signal decrease over the same t; interval, allowing a more reliable
characterization of aging dynamics.

We focus on the AC magnetization and its associated uncertainty. To evaluate
the expected accuracy of data processing, we numerically sample two representative
datasets, recording the magnetization at discrete time steps. Fitting the data then
allows extraction of the in-phase and out-of-phase components of the susceptibility.
We assume a sinusoidal drive at 2 MHz and consider two scenarios. According to
the Kubo formula [182], within the linear-response regime the system responds at
the same frequency as the applied drive, so the magnetization can be treated as a
sinusoidal function at this frequency.

In the first, idealized case, the system undergoes a full magnetization oscillation
that remains in phase with the drive. The magnetization is then described by

1
M(t) = 5 sin(2m x 2MHz - t). (6.13)

This scenario is used to assess the sensitivity of the measurement to a purely in-phase
response, corresponding to a vanishing out-of-phase component.

In the second case, we test the ability to measure an AC magnetization with
a reduced amplitude 3/10 < 1/2 compared to a full amplitude oscillation, as we
expect for small drive amplitudes. We also assume a nonzero out-of-phase component,
which may occur in a putative spin glass. For this purpose, we model the sample’s
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magnetization

3
M(t) = Esin(?w x 2MHz -t 4+ 7/6)

3V3 3
= 2\3_ sin(2m x 2MHz - t) + 20 cos(2m x 2MHz - t) (6.14)

= 0.260sin(2m x 2MHz - t) + 0.15 cos(2m x 2 MHz - t)

such that the out-of-phase magnetization has approximately half the amplitude of
the in-phase magnetization. To emulate experimental conditions, we sample 30
data points linearly spaced from Ops to 0.5p1s. For each time step, a simulated
measurement value is generated by drawing from a Gaussian distribution with a mean
given by the expressions above and a standard deviation of 0.06, which would be
readily achievable with the current experimental platform. For each data point, we
assume an uncertainty of 0.06. The sampled data is presented in Fig. [6.3]

(a)

(b)

0.5 1 bt fit fit
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Figure 6.3: Numerically sampled magnetization data for a simulated AC response
measurement. (a) Pure high-amplitude in-phase response. (b) Response including
an additional smaller out-of-phase component. Error bars indicate statistical uncer-
tainties. The orange line represents the best-fit curve obtained via a least-squares fit.
Further details are provided in the main text.

To extract the in-phase and out-of-phase components, we fit the simulated data
using a least-squares method to the function

M(t) = M'sin(2r x 2MHz - t) + M" cos(2m x 2MHz - t), (6.15)

where M’ and M" are free fit parameters.
For the pure in-phase scenario, the fit yields M’ = 0.490(14) and M" = —0.012(14),
which are consistent with the corresponding ground-truth values within one standard
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deviation. Similarly, for the scenario including a small out-of-phase component, we
obtain M’ = 0.255(15) and M"” = 0.135(15). Notably, the uncertainty, which is
independent of the amplitude, remains approximately 0.015 in all cases. We will
show that this value may be immediately obtained from the number of sampled data
points and the uncertainty of a single magnetization measurement.

Therefore, we will make use of the discrete Fourier transformation [280]. We
assume we have a dataset of N points, equally spaced by a time interval At. The
magnetization signal is a discrete function M (mAt) for 0 < m < N. The discrete
Fourier transformation is then defined as

N—-1
M(f) =Y M(mAt)e 2mmaf (6.16)

J=0

where f, = k/(NAt) are the discrete Fourier frequencies. For simplicity, we will
restrict to even N, such that —N/2 < k < N/2. The inverse Fourier transformation

yields
N/2

1
M(mAt) = — > M(fy)e*rimans (6.17)
k=—N/2+1
As M(mAt) as a sampled magnetization is real valued, M(f_x) = M(fy)* for
—N/2 <k < N/2,and M(fn2) = >, (=1)™M(mAt) is as an alternating sum of
real values and therefore real by construction, we may thus rewrite

o9 N/2-1
M(mAt) = — Z Re(M(fi)) Re (€27 ma05) — Tm(M(f)) Im (e>imans)
+ M(fN/Q) cos(mm)
N/2—1 o m
S QR(NWCOS(ZM'(mAt) f,f)—ﬂ(]vwsin(zm(mm) )
k=0
+ M (fny2) cos(mm).

(6.18)

Assuming M (mAt) is a noisy signal which follows a drive of frequency f = 1/(NAt),
i.e. assuming that the data points are sampled within one oscillation period, we find
for the in-phase and out-of-phase response at frequency f:

, 2
M= = (M(f) (6.19)
M = ZRe(M(f1)). (6.20)
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We are now interested in the standard deviation of the mean of these quantities.
We now assume that each data point M (At) shows the same uncertainty o, and
that these uncertainties are statistically uncorrelated. As a consequence, we may use
Gaussian error propagation to estimate the uncertainty of Re (M (f1)) and Im (M (f1)):

7(Re (M(£1))) = J > Lo

m=0

_ Y
- 20M7

and similarly

- O—MJ 3 sin(2mm /N)[? (6.22)

As a consequence, we obtain for the uncertainties of the in-phase and out-of-phase

magnetizations
2
o(M')=o(M") = \/NO'M. (6.23)

In the data simulated in Fig. [6.3] we used N = 30 and o), = 0.06, resulting
to an error of approximately 0.015 for the AC magnetization components. Thus,
this represents the reliable lower bound that may be obtained for a given realization
of a measured magnetization curve. Thus, AC susceptibilities with an amplitude
above 0.045 may be correctly distinguished from zero within a three sigma confidence
interval.

We now compare the measurement time between AC and DC susceptibility
experiments. In the DC experiment, four magnetization data points were recorded as
a function of the probe field amplitude €2,. The magnetization for each point in time
was averaged over 50 repeated measurements, resulting in a magnetization uncertainty
below 0.03. A linear fit using a least-squares method was then performed to extract
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the linear susceptibility. For a linear fit, the least-squares method is equivalent to
linear regression, where the error of the slope scales as 1/v/N — 2 = 1/4/2 with N = 4
points [281]. Therefore, the error of the slope is approximately

0.03
V2%,

The total duration required to obtain a DC susceptibility value is 4 x 50 = 200
experimental cycles. For the experiments described in Chap. [3] the probe fielded
needs to be applied for 3 ps.

In an AC magnetization experiment, we propose measuring the magnetization at
N = 16 equally spaced time points over one oscillation period. Each magnetization
value for each point in time is averaged over 10 repeated measurements, resulting
in a magnetization uncertainty of 0.06. From the Fourier transform estimate, the
corresponding uncertainty in the AC susceptibilities is

2 0.06 0.03

NW:4ﬂ9y7

which is identical to the uncertainty obtained in the DC susceptibility measurement.

However, only 16 x 10 = 160 measurement cycles are required, reducing the total
experimental time by 20 %.

Moreover, the probe field needs to be applied for only 2 ps, corresponding to two
oscillation periods for a 1 MHz drive. We expect transient effects to decay within

one period, since the drive frequency is lower than the typical interaction strength.

The validity of the linear-response approximation can be verified by computing the
Fourier transform of the measured data and confirming that only the drive frequency
exhibits a significant amplitude in the Fourier spectrum.

To summarize, AC susceptibilities can be measured with comparable precision
and in even less experimental time than DC susceptibilities. Consequently, AC
susceptibility—based protocols may provide an efficient approach to study aging,
rejuvenation, and memory effects. Furthermore, they could reinforce the interpretation
of our ZFA and FA measurements if the in-phase susceptibility exhibits a peak at the
energy where the ZFA and FA susceptibilities diverge. In addition, measuring the
AC susceptibility as a function of frequency may enable a direct determination of the
dynamical critical exponent z, as discussed in Chap.
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6.2 Studying a dipolar Ising Hamiltonian in a Ry-
dberg platform

As discussed in Chap. [2], several open questions concern the nature of a possible Ising
spin glass (35, 39, 40, 240, where experimental results can be directly compared with
theoretical predictions [105] 282) 283]. The purpose of this section is to demonstrate
that the experiments presented and proposed in Chaps. [3] [, and [f| for the XY model
can be straightforwardly extended to a dipolar Ising model, using the very same
platform detailed in Appendix [A] To this end, we combine the Hamiltonian microwave
engineering method previously developed in our group [168] with the time-reversal
technique described in Chap. [5

The realization of various XYZ-Heisenberg spin Hamiltonians with Rydberg atoms,
based on an extension of the well-known WaHuHa sequence [284], was first explored
in Ref. [16§], which we briefly review here. The starting point is the dipolar XY
Hamiltonian,

Hyy =Y Jiy (S99 4+ 5050)) | (6.24)
i<j
where the coupling coefficients J;; = (1 — 3cos?(6;;)) Cs/r}; arise from the dipolar
interactions between Rydberg atoms, discussed in previous chapters and detailed in
Appendix D]

The proposed sequence employs a series of 7/2-pulses to rotate the spin frame
during the system’s evolution. In each rotated frame, the Hamiltonian H yy transforms
into

Hap = Ji (SVSY + 55785 , (6.25)
i<j
where «, 5 € {X,Y, Z} depend on the applied pulse sequence. If the pulse duration is
negligible compared to an interaction cycle 27/.J;;, the dynamics can be described by
a piecewise constant Hamiltonian. In the following, the operator e=*"/2% represents a
Rabi 7/2-pulse around the a-axis, while ¢™/2% corresponds to a rotation around —a.
Ref. [168] introduces the following sequence:

1. Evolve under Hxy for 7.
2. Apply a 7/2-pulse around z to obtain Hx.
3. Evolve under Hxz for 7.

4. Apply a w/2-pulse around —y to obtain Hy .

Chapter 6 ¢ PERSPECTIVES IN DISORDERED DIPOLAR QUANTUM SIMULATORS



@/ R

z
Ny, + +
T
!
Y Hxyn —kHxyzm —2kHyz1m3 —kHxzme  Hyym HZZ/
) ™
<+ + + +
—S,T1 ) —285,73 -5, —S,7 x S,

N Y,
©( N
vy oo+ + + + Yy

—SyTl _SyTQ —QS;,/Tg —SyTQ _S;I/TI X S(/
N Y,
<
(d) e i1 to t1 1o
5|\ || ™ & 5 Zlm |l
m T2 273 P gl
- Y,

Figure 6.4: Floquet cycle for the experimental realization of a dipolar Ising model
with Rydberg atoms. (a) Hlustration of individual spins on the Bloch sphere. The
coordinate system in each sphere represents the current spin frame, while the dark
blue sphere also depicts the laboratory frame, which coincides with the spin frame
in this case. The expressions below the Bloch spheres denote the product of the

instantaneous Hamiltonian and the corresponding evolution time in the spin frame.

(b, ¢) Protocols for applying magnetic fields along the z- and y-axes, respectively. The
fields are shown as arrows in the laboratory frame, while the corresponding effective
fields in the spin frame are indicated below. We propose to vary the field directions in
the laboratory frame, such that the resulting Hamiltonians in the spin frame always
align with the x- and y-axes, respectively. (d) Pulse sequence used to implement the
averaged Hamiltonians. Green pulses represent the WaHuHa sequence, and violet
pulses indicate the transfers required for the time-reversal protocol.

5. Evolve under Hy 5 for 275.

6. Apply a 7/2-pulse around y to return to Hx.
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7. Evolve under Hxz for 7.
8. Apply a 7/2-pulse around —x to return to Hyy.
9. Evolve under Hxy for 7.

The total duration of this sequence is the cycle time t. = 2(7; + 72 + 73). Using
average Hamiltonian theory [285] in the limit J;;7. < 2m, this sequence effectively
realizes the Hamiltonian

S Jij (88989 + 6,898 + 6,808 | (6.26)
i<j
with coefficients 0, = 2(7 + 7)/t., 0, = 2(m1 + 73)/tc, and 0, = 2(75 + 73)/t.. An
ideal Ising model would correspond to d, = ¢, = 0 and 9, # 0. However, since all
evolution times must be positive, the condition d, = 6, = 0 implies 77 = 75 = 73 = 0,
leading to the absence of dynamics.

To achieve a dipolar Ising model, we extend the previous scheme by introducing
additional time-reversal pulses, as discussed in Chap. [5] The spin states are initially
encoded in ||), and [1),, for which the Cs-coeflicient determining the couplings J;; is
positive. Two coherent pulses, labeled t; and 5, transfer |), — |{), and [1); = [1),.
In the second encoding, with spins in |]), and [1),, the Cs-coefficient is rescaled by a
factor —k. This sign change in the Hamiltonian effectively implements a time-reversal.
Using this technique, we devise the following protocol to realize an effective Ising
model:

1. Evolve under Hxy for 7.

2. Apply a 7/2-pulse around z to obtain Hxz, followed by the transfer pulses to
realize —kHx 5.

3. Evolve under —kH x5 for 7.
4. Apply a 7/2-pulse around —y to obtain —kHy .
5. Evolve under —kHy 5 for 273.

Apply a 7/2-pulse around y to return to —kHy .

~No

Evolve under —kH x5 for 7.

8. Apply a 7/2-pulse around —z to obtain —kH xy, followed by the transfer pulses
to return to Hyz .

Chapter 6 ¢ PERSPECTIVES IN DISORDERED DIPOLAR QUANTUM SIMULATORS



9. Evolve under Hxy for 7.

This modified scheme also realizes the Hamiltonian [6.26] but with coefficients
0y = 2(m — km)/te, 8y = 2(m1 — k73)/t., and 6, = —2k(7y + 73)/t.. Imposing the
condition ¢, = d, = 0 yields 7» = 73 = 71/k. The resulting effective Hamiltonian is
therefore

Higns = — 1 3 J 8050 (6.27)
ki<j
For the system realized in Ref. [48], k &~ 1 leads to a reduction of the effective median
interaction strength in the Ising model by a factor of 2/3, thus still realizing a strongly
interacting dipolar Ising model.

To extend this model also to the application of external fields, as indicated in Fig.
(b) and (c), different fields in the lab frame need to be realized in order to achieve
a field in the desired direction in the x- or y-direction in the spin frame. The fields
in the lab frame are realized by adjusting the microwave drive coupling the states
1)y and |1) ;) for @ € {1,2}. As we have shown in Chap. , different fields in -
and y-directions in the lab frame may be realized by applying a resonant microwave
drive, where the phase is adjusted according to the targeted field direction. The same
derivation we applied there for resonant microwave drive can also be extended to
near-resonant drives. Here, the detuning A from resonance realizes an effective field
in the z-direction, i.e. a term —A Y; S in the Hamiltonian. Table summarizes
the detunings and phases of the microwave drive to realize the fields 2,5, and ©Q,.S,
in the spin frame.

To experimentally realize the dipolar Ising model, we may employ the same
Rydberg states where time-reversal was initially demonstrated [48]. For a system
of N = 332 spins, the median interaction strength Jyeq, defined as in Chap. [3 was
reported to be Jyeq = 27 X 0.86 MHz. As discussed in Chap. [5] this weakly interacting
regime was chosen because all Rabi frequencies must remain below 27 x 10 MHz
to avoid populating near-resonant, non-targeted Rydberg states. Consequently, the
pulse duration of four 7 /2- and two 7-pulses is bounded from below by 200 ns.

According to the supplemental material of Ref. |16§], the pulse duration should
remain small compared to the cycle time t., since the leading correction due to
finite-duration pulses scales with the ratio of the pulse duration to t.. Importantly,
t. is defined assuming infinitely fast pulses. In addition, corrections arising from
higher-order terms in the Rydberg-Rydberg interactions, which are discussed in
Chap. [f] are negligible in this Floquet scheme. The median coupling of the average
Hamiltonian assuming only resonant dipole-dipole approximation remains comparable
to its value in the absence of Floquet driving, while higher-order contributions do not
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Evolution time T To 273

Q, Detuning A 0 0 Q,
Amplitude Q@ Q, Q. 0
Phase ¢ 0 0 0
Q, Detuning A o Q, 0
Amplitude @ @, 0 Q,
Phase ¢ /2 0

Table 6.1: Ezxperimental parameters for the microwave drive used in the Floquet
sequence. For the transition between the states [|) ) and [1); with i € {1,2}, a

microwave field is applied with resonant Rabi frequency Qe where 2 and ¢ denote
the amplitude and phase of the drive, respectively. The field is detuned from the
resonance by A. The parameters listed for each evolution time 7; for j € {1, 2,3},
shown in Fig. [6.4{d), are chosen to generate effective fields €2, along x and (2, along
y in the spin frame.

increase by orders of magnitude, and thus remain small compared to the dipole-dipole
interaction term. Furthermore, the total cycle duration, i.e., the sum of ¢, and the
pulse duration, should remain small compared to a typical interaction cycle duration,
27/ Jmea = 1.16 11s, to ensure the validity of average Hamiltonian theory. For a total
cycle duration of 600 ns, this corresponds to t. = 400 ns and 7 = 65ns. Pulses on
these timescales can be readily generated with the AWG used in our setup. While
the pulse duration is small compared to t., it should be noted that ¢. is approaching
the same order of magnitude as 27/ Jyeq-

The accuracy of the engineered Hamiltonian can be further improved by reducing
the pulse durations. This requires increasing the Rabi frequencies while avoiding
population of non-targeted Rydberg states. One approach is to shift these other
Rydberg states out of resonance by increasing the magnetic field, as implemented in
the experiments described in Chapters 3] and [4 In addition, specific transitions can
be selectively addressed using a quadrupole horn antenna, as described in Appendix
[El which allows circularly polarized light to illuminate the atoms. This ensures that
only o or ¢~ transitions are driven, while the currently used horn antenna remains
suitable for driving m-transitions. In this configuration, only one of the o™, 0=, or
7 transitions can be driven at a time, with the other two being forbidden by dipole
selection rules.
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Repeating this cycle enables the study of long-time dynamics of a dipolar Ising
model. To perform the hysteresis experiments described in Chap. [3| or the reverse
quench protocol detailed in Chap. [ it is necessary to implement time-dependent
effective magnetic fields along the x- and y-directions. These fields are generated using
the parameters listed in Tab. for the microwave drive. The AWG allows precise
tuning of the microwave amplitude, frequency, and phase on picosecond timescales,
enabling €2, and €2, to be made time-dependent at each stage of the sequence. To
implement time-reversal-based protocols, the effective Ising model can be reversed
by applying the transfer pulses ¢; and ¢, prior to a cycle and adjusting the pulse
durations 7y, 79, 73 according to the transformation k£ — 1/k.
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CHAPTER 7

Conclusion

Central to the field of disordered quantum spin systems with power law interactions,
we have based this thesis on the question

What is the nature of a bond-disordered, long-range interacting isolated
spin system?

To that end, we started addressing the following questions: Does a dipolar-
interacting, isolated Heisenberg spin system host a spin glass phase? How can
thermomagnetic hysteresis protocols be adapted to isolated quantum systems? To
investigate these questions, we introduced the zero-field annealing (ZFA) and field
annealing (FA) protocols, in analogy to the commonly used ZFC and FC protocols in
spin glass physics [12, 80], and implemented them in our Rydberg quantum simulation
[169]. We studied energetic-magnetic hysteresis in a disordered dipolar XY model
under two disorder configurations. At high energies, the system showed no response,
consistent with the linear response of an isolated paramagnet at constant energy. In the
weakly disordered configuration, ZFA and FA responses were indistinguishable within
experimental uncertainties. In contrast, the strongly disordered regime displayed
a pronounced bifurcation at low energies, resembling the magnetic irreversibility
observed in canonical spin glasses. This splitting, which grows at lower energies,
demonstrates a strong dependence on magnetic and energetic history, indicating
the absence of thermalization on experimental timescales. Importantly, the ZFA
and FA protocols are interaction-agnostic and applicable to arbitrary spin models
with Z, parity symmetry. They thus provide a versatile framework for probing
thermalization in quantum systems beyond the dipolar model studied here. Future
investigations could explore whether the energy at which ZFA and FA susceptibilities
split corresponds to a glass transition. Numerical studies in one-dimensional toy
models suggest that spin glass order is energy-dependent [46]. It would therefore be



valuable to test experimentally and numerically whether the onset of hysteresis we
observe is generally linked to the emergence of a spin glass phase. On other quantum
simulation platforms, where spin glass order can be directly measured in systems with
all-to-all interactions [75] 110, [245], our protocols could be applied to test whether
hysteresis indeed signals the emergence of a spin glass phase, complementing our
analysis of the putative dipolar glass.

To complement the hysteresis studies, we asked the questions: How can the critical
exponents of a spin glass be experimentally accessed in an isolated quantum system,
where temperature scaling is absent? Does a spin glass phase exist in the dipolar-
interacting Heisenberg XY model, and if so, is it connected to a quantum phase
transition driven by an external magnetic field? To address them, we analyzed the
critical behavior of a dipolar-interacting Heisenberg XY model. Determining whether
a spin glass transition occurs is central to advancing the theoretical understanding of
spin glasses. The two dominant frameworks, the Parisi replica-symmetry-breaking
mean-field solution |16} 68|, recently recognized with a Nobel Prize, and the droplet
scaling model by Fisher and Huse |17} 18], make contrasting predictions about the
existence of an Ising spin glass phase in the presence of a finite transverse magnetic field.
In conventional spin glasses, critical exponents are measured through susceptibility
scalings as a function of temperature (see Chap. . These protocols cannot be
applied to isolated spin glasses, where tuning of a bath temperature is not available.
Moreover, we aim to identify a quantum phase transition as a function of magnetic
field rather than a thermal phase transition. For experimental feasibility, the protocol
must rely solely on global measurements, as local spin-spin correlations are difficult
to access in three-dimensional systems. These constraints motivated the development
of a robust and scalable method applicable to three-dimensional spin glasses.

We therefore extended the generalized Kibble-Zurek mechanism to reverse quench
protocols and showed analytically that, under suitable assumptions, the resulting
defect density follows the same scaling as in forward-quench Kibble-Zurek dynamics.
This implies that, whenever a system undergoes a continuous quantum phase transition
into a paramagnetic phase, global magnetization measurements can approximate the
Kibble-Zurek defect density. We verified these predictions using exact numerical
simulations of the one-dimensional uniform and bond-disordered transverse-field Ising
models. We then applied the reverse-quench protocol to the disordered dipolar XY
model, complementing the hysteresis measurements. In the weakly disordered regime,
where no bifurcation between the ZFA and FA magnetization was observed, we found
no signatures of criticality. By contrast, in the strongly disordered regime, where
energetic-magnetic hysteresis is pronounced, the reverse quench magnetization showed
behavior consistent with a continuous quantum phase transition. Assuming point-like
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Kibble-Zurek defects and using the literature value of the correlation length exponent
v from a disordered dipolar Ising system [105], we obtain zv = 17(4). Such an
anomalously large critical exponent product is absent in magnetically ordered phases
but typical of spin glass materials, where comparable values were measured using AC
susceptibilities [94].

Taken together, our measurements provide, within experimental uncertainties,
tentative evidence that a spin glass may exist as a genuine quantum thermodynamic
phase exhibiting a quantum phase transition as a function of magnetic field. Future
studies using Hamiltonian engineering (Chap. @ could apply this on our Rydberg
quantum simulation platform to further investigate the role of a transverse magnetic
field in dipolar Ising spin glasses [39-41]. Finally, the reverse-quench approach offers
a versatile and experimentally accessible way to extract dynamical critical exponents
using only global control. This is especially useful in disordered three-dimensional
systems, where local observables are inaccessible and no prior protocol enabled probing
criticality in large isolated systems. To further validate the theoretical analysis, it
would be highly interesting to apply this protocol on an annealed quantum computing
platform and compare the resulting KZM exponent with the one obtained from
dynamical finite-size scaling [110].

Complementing our studies on glassy behavior, we asked the questions: Does
a finite-size dipolar interacting quantum system show indications of many-body
localization? How can localization and ETH effects be experimentally characterized
in a power law interacting, bond-disordered system? What is the nature of the
localized phase in a bond-disordered power law interacting system? To adress these
questions, we explored the possibility of characterizing localization in a putative
dipolar spin glass. While spin glasses |11, 80] and many-body localization (MBL) [45]
have been extensively studied individually, much less is known about their interplay.
To contribute to this open question, we focused on studying localization using time
reversal based protocols, which offer high sensitivity.

To assess experimental realizability, we first examined how coherent transfer
pulses in different spin encodings could effectively reverse time evolution in a dipolar-
interacting XY model implemented on our Rydberg platform [48]. The efficiency of
the transfer pulse constituted the primary experimental limitation at short times, and
we developed strategies to enhance it and to minimize undesired interaction terms
that reduced reversal fidelity at longer times.

To build a theoretical foundation for how localization manifests in time-reversal
based protocols, we numerically investigated a small finite-size toy model, examin-
ing the interplay between many-body localization and bond-disordered power law
interactions. We first analyzed the time decay of the Loschmidt echo. In contrast to
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exponentially localized MBL systems, where the Loschmidt echo is expected to decay
as a power law [252], we observed a stretched exponential decay—slower than the
exponential decay in thermalizing systems, but faster than the power law decay of
exponentially localized MBL systems. We additionally studied the width of the multi-
ple quantum coherence (MQC) spectra for both final fidelity and final magnetization
measurements. For the fidelity MQC width, which is proportional to the quantum
Fisher information of the magnetization operator, we observed logarithmic growth at
intermediate times, as in algebraically localized MBL systems, and double-logarithmic
growth at longer times, similar to exponentially localized MBL systems. Together,
these findings indicate that bond-disordered power-law interacting systems exhibit
a qualitatively distinct localization mechanism compared to other MBL systems,
consistent with Ref. [136]. These protocols could, in principle, be implemented on
small system-size optical lattices, where fidelity can be experimentally measured [286,
287|. This approach is particularly promising for studies of two-dimensional systems,
where numerical evaluation is more costly and the bulk-to-boundary ratio is less
favorable for finite system sizes.

We also simulated the time evolution of the magnetization MQC and observed
a very slow, yet algebraic, increase of the MQC spectral width on the simulated
timescales. While the magnetization MQC is directly experimentally implementable,
its behavior in the localized regime differs from the thermalizing regime primarily in its
slower growth. It would therefore be instructive to simulate the magnetization MQC
width in exponentially localized MBL systems as well, to determine whether it exhibits
qualitatively distinct behavior and thereby deepen the understanding of different
localization mechanisms at finite system sizes. Another avenue of investigation is
to explore whether a universal power law growth exists in the magnetization MQC,
similar to the universal power law growth of entanglement entropy in power law
interacting systems with onsite disorder |[133]. These studies could potentially allow
different types of localization to be characterized using only global magnetization
measurements.

In summary, we have experimentally and theoretically extended the study of bond-
disordered, dipolar-interacting isolated spin systems. We showed that such a bond-
disordered XY model exhibits strong energetic-magnetic hysteresis at low energies
and high disorder, providing a first indication of glassy behavior. This observation
was further supported by tentative evidence of quantum critical behavior, consistent
with typical spin glass critical exponents. Finally, from a broader perspective, we
demonstrated that time-reversal based protocols can reveal that bond-disordered,
power-law interacting models exhibit a qualitatively distinct form of many-body
localization at finite size.
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CHAPTER A.

Preparation and State Population
Detection in a Frozen Rydberg Gas

In the main body of this thesis, Chap. [3] and [4] we used a Rydberg simulation
platform, to implement disordered Heisenberg spin models and study their behavior.
Where this platform was briefly introduced in Chap. |3| to explain the experimental
results, the aim of this chapter is to explain and motivate the platform in full detail.

The aim of the platform is to implement disordered Heisenberg spin Hamiltonians of
interacting 2-level pseudospin systems with tunable disorder. The spin-spin interaction
is encoded by the dipole-dipole interaction of Rydberg atoms, as introduced in Chap.
D] and we are interested in the unitary dynamics under these Hamiltonians. As a
consequence, the platform must fulfill several conditions.

1. We want to study unitary dynamics under a model with quenched disorder.
As a consequence, atoms may not move during experimental timescales. As
a consequence, the atoms need to be cooled down to low temperatures such
that their motional energy is negligible compared to the Rydberg-Rydberg
interaction. This is the regime of a frozen Rydberg gas. In addition, the
Rydberg-Rydberg interaction should be large compared to the black-body decay
rate of the participating Rydberg states. As the Rydberg-Rydberg interaction
decreases with distance, the cold atomic cloud must be prepared at a high
density.

2. The platform needs to allow for the implementation of a pseudospin. Thus, it
needs to be able to excite a well-defined Rydberg state, which may be coupled
to only one more Rydberg state.

3. After mapping the Rydberg states to a spin model, we want to measure different



magnetization components. As a consequence, the platform must allow for a
tomographic readout of different Rydberg state coherences.

4. To precisely determine the magnetization in the realized spin models, the
platform must be able to extract ion numbers after a given protocol, averaged
over different disorder realizations. Achieving high accuracy requires averaging
over many realizations. Consequently, shot-to-shot fluctuations in the prepared
atom number must be minimized.

In the following, we will show that the platform that has already been described
in different works [153, |154} (156, 157, |161], [178] 288, 289] is well suited to achieve
these points. The experimental sequence, which serves as an outline for this chapter,
is sketched in Fig. [A1]

( atomic cloud preparation ) ( ground state preparation ) ( Rydberg experiment )
MCP
l 2D Mot electrodes
=
atomic cloud c
N
WO
N
T 30‘6
repumper pumping  micro-
s wave
trap beam 'blue beam |
MOT Coils (Antihelmholtz) Coil in x-direction red beam microwave | blue beam|
MOT Coils (Helmholtz)
red beam
Pl MOT loading compressed dipole optical  Landau magnetic field free Rydberg Rydberg Rydberg
stabilization MOT/ dark trap pumping  Zener rotation expansion excitation state detection
MOT loading Sweep manipulation
(75ms) (0.5-1.5s) (40ms (300ms) | (20ms) (20ms) (100+2ms) (0.6-2 ms) (1-5ps) (0-20ps)
+40ms) >

Figure A.1: Schematic experimental sequence. A cold and dense atomic cloud is
prepared by pre-cooling atoms in a 2D MOT, followed by cooling a 3D MOT and
loading into a dipole trap. Applying an optical pumping scheme and potentially also
a Landau-Zener sweep, followed by rotation of the magnetic field, prepares all atoms
in a single hyperfine ground state that serves as a starting point for the Rydberg
experiments performed in the main part of this thesis. The vertical bars below the
sketch indicate the presence of laser and magnetic fields, while the lowest row indicates
the timing of the sequence. For details of the sequence see the text in this chapter.

Figure inspired by [289].
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First, the atoms are cooled using a magneto-optical trap [290] and loaded into
an optical dipole trap [291], enabling the preparation of a dense thermal cloud with
adjustable density (see Sec. [A.I). Optical pumping [292] is then used to prepare
a specific hyperfine ground state, which can be further refined using Landau-Zener
sweeps [293] (see Sec. [A.2). This procedure allows the excitation of a well-defined
Rydberg state from this hyperfine ground state using dipole transition rules and large
magnetic fields to separate magnetic sublevels. The strong Zeeman splitting ensures
that this state can couple to only a single other Rydberg state, even under large Rabi
frequencies. A tomographic readout pulse then detects coherences between Rydberg
states, enabling magnetization readout (see Sec. [A.3)).

A.1 Preparation of a cold dense atomic cloud

To produce a cold and dense cloud of rubidium atoms, we employ established laser
cooling and trapping techniques widely used in ultracold atom experiments [294].
The atoms are first precooled in a two-dimensional magneto-optical trap (2D MOT)
before being transferred into a three-dimensional MOT (3D MOT) for final cooling.
The high atomic mass of rubidium, combined with a strong dipole matrix element on
the cooling transition and the large excited-state decay rate I'. = 27 x 6.065 MHz,
enables rapid and efficient trapping. This two-stage cooling scheme yields atomic
samples containing several hundred thousand atoms at temperatures of a few tens of
microkelvin, with peak densities reaching 2 x 10'' cm™3. After cooling, the atoms are
loaded into an optical dipole trap [295] where they are allowed to thermalize. Where
the MOT stages ensure a fast loading of many atoms and fast cooling, the dipole
trap allows for a deterministic trap geometry, which will be crucial in tuning and
characterizing the positional disorder of the atoms. Both the MOT stages and the
dipole trap have been well characterized in prior work [153} 154, 161, 296], and most
recently in [157, 289]. In the following, I will present the experimental sequence and
the key aspects of these traps, closely following Refs. [289] and [157].

Power stabilization

To minimize shot-to-shot fluctuations in the number of excited atoms, we stabilize
the power of the Rydberg excitation lasers before atom loading. A small portion of
the beam power of both the red and blue excitation laser (1 mW) is coupled out from
the excitation path and directed onto a photodiode. A PID controller regulates the
RF power driving the acousto-optical modulator (AOM) that controls the excitation
beams, ensuring the photodiode current matches a predefined setpoint. This feedback
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loop reduces fluctuations in the number of excited Rydberg atoms and enables more
consistent initial conditions with respect to atom number. During atom loading, the
excitation beams are turned off again.

2D MOT

Our objective is to load a larger number of atoms into a 3D MOT and cool them
to microkelvin temperatures. However, a 3D MOT typically captures only atoms
with velocities below approximately 10ms™" [294]. Atoms emitted from a dispenser
generally have velocities of several hundred meters per second, far exceeding this
capture threshold. For the experiments presented in the main body of this thesis,
no dispenser was used, as repeated use in previous studies [43] 157, 161}, 289] caused
Rubidium adsorption on the glass cell enclosing the 2D MOT. To conserve dispenser
material while maintaining sufficient atom loading, we employ a UV lamp to induce
photodesorption of Rubidium atoms from the glass surface. Since the cell is at
room temperature, the desorbed atoms also exhibit velocities on the order of several
hundred meters per second. To enable capture by the 3D MOT, these atoms must be
decelerated. One possible approach is a Zeeman slower, which cools atoms along a
spatially varying magnetic field using a laser that propagates in opposite direction to
the atoms [294]. However, Zeeman slowers are typically large and impose significant
geometric constraints. Additionally, they offer no cooling in directions transverse to
the laser beam.

To address these limitations, we employ a 2D MOT [161, 297], where atoms
are transversely laser-cooled in a magnetic quadrupole field. An additional pushing

beam, aligned along the desired propagation direction, generates a slow atomic beam.

This cold beam enters the main vacuum chamber through a differential pumping
stage. A careful alignment of the atomic beam on the pumping stage ensures that
predominantly *'Rb atoms reach the main chamber.

3D MOT

In the main chamber, atoms are cooled using six laser beams intersecting along three
orthogonal directions, as illustrated in Fig. [A.I] A magnetic quadrupole field is
generated by a pair of coils in anti-Helmholtz configuration. Additional compensation
coils allow precise adjustment of the field center, thereby enabling control over the
MOT position. As shown in Fig. [A.2] the cooling laser is red-detuned by A. = 3,
from the ‘55’1 12, F = 2> — ’5P3 12, F = 2> transition. To prevent optical pumping into

the dark state

5512, F' = 1>, an additional repumper laser is applied, resonant with
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the |55} )2, F' = 1> — ‘5P3/2, F= 2> transition. This efficient laser cooling is enabled

by the large hyperfine splittings in both the ’5P3 /2> and \581 /2> manifolds, on the
order of several hundred MHz and several GHz, respectively, allowing for individual
addressing of the relevant states. Once the 3D MOT is loaded with a high number
of atoms, the density is further increased and the temperature further reduced by
employing a compressed MOT phase [298], followed by a dark MOT phase [299, 300].
These steps also ensure that the atoms accumulate in the ‘55’1 12, B = 1> ground state,
providing a well-defined initial state for preparing a specific ground state with a
defined magnetic sublevel.

267 MHz

|5p>3/2> 157 MHz

~Z 384.230 THz

[551/2)
X 6.83 GHz

=1

Figure A.2: Level diagram of Rubidium during 3D MOT cooling. At the center of the
MOT, all different magnetic sublevels are degenerate and thus not depicted. Different
hyperfine levels in the ground state and the excited ‘5P3 /2> excited state are depicted
as vertical lines. The repumper transition is indicated by a cyan arrow, while the
cooler transition is indicated by a brown arrow. The cooler is detuned from resonance
by a detuning A.. Black arrows indicate energy differences between levels given in
units of Planck’s constant times frequency.
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Optical Dipole Trap

To achieve high atomic densities and a well-defined, deterministic spatial distribution,
atoms are loaded into an optical dipole trap [291} [295, |301]. We use a high-power
1064 nm laser beam, red-detuned from both the D1 and D2 lines of Rubidium, which
attracts atoms toward regions of high intensity.

Although a single focused Gaussian beam can, in principle, confine atoms in all
three dimensions, the radial confinement is typically weak. To improve trapping
efficiency, we implement a crossed optical dipole trap [301]. It is formed by retro-
reflecting the initial high-intensity Gaussian beam back into the chamber through
the same viewport. This configuration results in two beams with orthogonal linear
polarizations intersecting at an angle of 9°, where the angle is limited by the retro-
reflection geometry. The beam waist was optimized to maximize the spatial overlap
with the 3D MOT, ensuring efficient transfer of atoms into the trap [302]. The
resulting atomic distribution is thus a 3D Gaussian distribution, where the width is
proportional to the waist of the dipole trap.

A.2 Ground state preparation

To study long-range magnetism with Rydberg atoms, we aim to prepare a gas in
which long-range interactions are significant on experimental timescales. This requires
rapidly exciting many closely spaced ground-state atoms to a Rydberg state, such that
the excitation time remains negligible compared to the Rydberg state lifetime, and
the interatomic distance between Rydberg atoms is small. This process is facilitated
by the collective enhancement of the Rabi frequency within a Rydberg blockade
radius [162]. To exploit this effect, it is essential to create a dense ensemble of atoms
prepared in an identical ground state. To lift the degeneracy of the magnetic sublevels,
a weak magnetic field is first applied to define the quantization axis. The atoms
are then prepared in the |55),2, F' = 2,mp = 2> state using optical pumping [292].
Additional atoms can be transferred to this state using Landau-Zener sweeps [293].
Due to geometric constraints, the magnetic field, and thus the quantization axis, is
subsequently rotated onto the axis defined by the MOT coils. In this configuration,
ground-state atoms can be resonantly excited to a single Rydberg state. Furthermore,
excitation along this axis allows for spectral isolation of the target Rydberg states, as
the MOT coils operated in Helmholtz configuration can generate a strong magnetic
field, resulting in a large Zeeman splitting of the states in the Rydberg manifold. The
preparation of ground-state atoms in a single hyperfine sublevel has been discussed
in detail in Refs. [157, 288, 289], while the magnetic field rotation was briefly
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addressed in Ref. [157]. In the following, I summarize the main elements of the
sequence, following primarily Ref. [289], with a particular focus on the experimental
implementation.

Optical Pumping

The goal of the optical pumping scheme is to deterministically transfer all atoms
initially in the F' = 1 manifold of the ‘551 /2> ground state into the single Zeeman

sublevel ’551/2,}7 =2, mp = 2>. Therefore, we couple 200 pW of repumper light,
originally used in the 2D MO'T, into the path of the Rydberg excitation laser via an
optical fiber. As shown in Fig. |A.3| the repumper, which is o polarized, drives the
transition ‘551/2,17 = 1,mF> — |5 P30, F' = 2,mp + 1>, for mp € {0, £1}.

From the excited state ’5P3 12, B =2, mF>, atoms can decay via dipole-allowed
transitions to ground-state sublevels with magnetic quantum numbers mpg, mg + 1,
or mp + 2, populating either the F' = 1 or F' = 2 manifold of the ‘5SI/Q> ground state.
As a result, continued cycling with the repumper laser accumulates population in the
5512, F =2, mp> states with mp € {—1,0,1,2}. To further drive the population
into a single Zeeman sublevel, we simultaneously couple approximately 2.1 pW of
the cooling laser, originally used in the 2D MOT, into the excitation path. The
frequency of this laser is shifted using an acousto-optic modulator (AOM) driven
by a direct digital synthesizer (DDS), such that it is red-detuned by A, ~ I', from
the ’551/2,}7 = 2,mp> — ‘5P3/2,F =2, mp+ 1> transition. This combined optical

umping scheme ensures that nearly all atoms are transferred to the target state
F‘SSI/% F=2mp= 2>, which is a dark state to this pumping scheme.

Landau-Zener Sweep

Imperfections in the optical pumping process, such as finite ¢~ and 7 polarization,
can lead to some remanent population in non-targeted magnetic sublevels of the
‘551 12, F = 2> manifold. To remove these atoms, it is possible to apply an adiabatic
Landau—Zener passage [293] on the ‘551/2, F=1mp= 1> — ‘55’1/2, F=2mp= 2>
transition, which transters all atoms in the desired target state to the state

‘55‘1/2,]7 =1, mp= 1>. A subsequent pulse of 3D MOT cooling light, resonant

with the ‘551/2, F=2mrp= 2> — J5P3/2, F=3mr= 3> transition, removes the
remaining atoms in the F' = 2 manifold. A second Landau—Zener passage transfers
the atoms back to the ‘551 2, F=2,mp = 2> state. This procedure allows to prepare
approximately 95% of the atoms in the desired target state. By reducing the
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Figure A.3: Level diagram of Rubidium during optical pumping. The relevant energy
levels of the Rubidium D2 line are represented by horizontal lines. Levels with
the same total angular momentum F' are shown in the same color. Black arrows
indicate energy differences between levels, expressed in units of Planck’s constant
times frequency. Laser-driven transitions from the 2D repumper and 2D cooler are
indicated by cyan and brown dashed arrows, respectively. The green wavy arrow
represents the transition used for the Landau-Zener sweep.

duration of the second passage, the transfer becomes more diabatic, thus lowering
the population in the target state. This allows for tunable preparation of the atom
density in the target state.

The ’551/2,F =1, mp= 1> — ’551/2,F =2, mp = 2> transition has a resonance
frequency of 6.8 GHz, placing it in the microwave regime. As this transition is electric

dipole forbidden but allowed via magnetic dipole coupling, it is intrinsically weak.

The required microwave signal is generated using a signal generator and delivered via
a coaxial cable to an antenna positioned inside the vacuum chamber. The antenna’s
proximity to the atomic cloud and its directivity enable a Rabi frequency of 27 x
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5.3(6) kHz. The Landau—Zener passage is implemented by initially applying microwave
radiation blue-detuned from the transition, such that ’551 2, F=2,mp = 2> is the
system’s ground state. As the detuning is swept adiabatically to the red side,
the ground state evolves into ‘551 2, =1, mp = 1>. The achieved Rabi frequency
ensures adiabaticity over a sweep duration of 10 ms.

Magnetic field rotation

Efficient optical pumping requires a magnetic field that is sufficiently small to keep
all magnetic sublevels near-resonant with the pumping light, and aligned along the
propagation direction of the optical pumping beams, such that circularly polarized
light may drive only o transitions. To generate such a field, we use the compensation
coils originally employed to control the position of the 3D MOT. These coils are
designed to produce stable magnetic fields up to 30 G, making them well-suited for
this purpose. Furthermore, their alignment with the optical pumping beams is fixed
by design, eliminating the need for additional alignment.

After Rydberg excitation, we aim to drive microwave transitions between Rydberg
states with Rabi frequencies exceeding 30 MHz. This requires a large energy separation
between states in the Rydberg manifold, which can be achieved by applying a strong
magnetic field to induce significant Zeeman splitting. To generate such fields, we use
the MOT coils, which are designed to carry currents up to 200 A and can produce
magnetic fields exceeding 200 G. However, two limitations arise when repurposing
the MOT coils for this task:

1. During MOT loading, the coils operate in an anti-Helmholtz configuration. To
generate a homogeneous field, the current in one coil must be reversed to switch
to a Helmholtz configuration.

2. The magnetic field generated by the MOT coils is oriented perpendicular to the
field used during optical pumping. Since the quantization axis is defined by the
magnetic field, applying the MOT field effectively rotates this axis.

To switch to a Helmholtz configuration, two approaches are possible. One option is to
use separate power supplies for each coil, connected via a common ground. However,
this requires an additional power supply and introduces potential error sources due to
the need for a stable shared ground reference. Instead, we adopt a second approach,
in which the current passing through the first MOT coil is routed to the second
coil via an H-bridge. The H-bridge allows precise control over the current direction,
enabling a seamless switch between Helmholtz and anti-Helmholtz configurations.
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This setup eliminates the need to match currents manually and simplifies the overall
operation.

We begin the magnetic field rotation by operating the H-bridge such that the
MOT coils are in Helmholtz configuration. The current through the MOT coils is
then increased to generate a magnetic field aligned with the axis defined by the MOT
coils. If the field was instantaneously quenched to its final value, the quantization axis

would be quenched to a direction perpendicular to that used during optical pumping.

In this case, the atomic state |F' = 2, mp = 2), initially defined with respect to the
optical pumping axis, is projected onto an angular momentum basis defined with
respect to the new quantization axis. The resulting state is

1 1 1 3
2,2 =—12,-2 -12,2) — = 2,1 -12,0 Al
’ ’ >quenched 4| ’ >+4| ) > 2| ’ >+\/g’ ’ >7 ( )

where we use the shorthand |F,mp) = ’551/2, F=Fmp= mF>, where the mp are
defined with respect to the quantization axis defined by the MOT coils, and the

coefficients are determined by the corresponding Wigner d-matrix elements [179].

As a result, only 6.25 % of the population remains in the target state |2,2) when
expressed in the new basis. To prevent this substantial reduction, we ramp the MOT
field to its final value of 185G over 100 ms. During this ramp, the 2 G compensation
field in direction of the optical pumping beams remains active to maintain a finite
Zeeman splitting, ensuring adiabatic following of the eigenstates. After the ramp, the
compensation field is quenched to zero within 2ms. Since the MOT field dominates,
this fast quench remains adiabatic and preserves the state transfer.

In the current setup, direct optical pumping along the quantization axis defined
by the MOT coils is not possible, as optical access is obstructed by one of the MOT
beams. In a possible future implementation, this beam, currently entering from the

top of the vacuum chamber, could be redirected to enter at an angle into the chamber.

While this adjustment may reduce the MOT cooling efficiency, it provides access
along the quantization axis and thereby makes direct optical pumping along the MOT
coil axis possible. This would eliminate the need to rotate the magnetic field during
state preparation.

A.3 Rydberg excitation and detection
The aim of the Rydberg excitation is to generate a cloud of Rydberg atoms with

tunable spatial disorder. This can be achieved by two complementary methods:
modifying the disorder of the ground-state atoms prior to excitation, or adjusting
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the number of Rydberg atoms during the excitation process. Both approaches are
employed in this work. To tune the initial ground-state configuration, the optical
dipole trap is switched off before excitation, allowing the cloud to expand freely for
600 ps to 2000 ps. Owing to the anisotropic shape of the initial cloud, this thermal
expansion can, in principle, alter its geometry. However, the Rydberg excitation is
defined by the spatial profile of the laser beams, whose waists are smaller than the size
of the expanded cloud. As a result, the geometry of the Rydberg atom distribution is
mainly determined by the laser beam profiles, not by the overall atomic cloud.

Several methods are available for Rydberg excitation. A direct single-photon
excitation from the state ‘551/2, F=2mp= 2> to a Rydberg level is, in principle,
feasible. However, the dipole matrix element is extremely small, requiring a high-
power laser. In addition, such transitions demand ultraviolet wavelengths; for instance,
reaching the |40.S) state necessitates UV light at 297 nm. At these wavelengths, optical
components are prone to damage, and frequency modulation, which is required to
excite different Rydberg states, becomes technically demanding. Moreover, generating
UV light typically involves multiple frequency conversion stages, which increases
sensitivity to amplitude and phase noise. Dipole selection rules further restrict direct
excitation to Rydberg p-states, whose strongly anisotropic interactions hinder the
study of weakly disordered systems. In contrast, when the blockade determines
the interparticle distance, isotropic interactions are preferable to ensure uniform
excitation spacing. To overcome these constraints, we employ a two-photon transition
via the D2-line, using lasers in the optical regime. This allows direct excitation to a
Rydberg S-state, which exhibits isotropic interactions and thus a nearly spherical
blockade radius at low magnetic fields. The Rydberg excitation process and the
subsequent detection schemes have been already discussed in detail in prvious works
[156, [157]. In the following, I will summarize the main techniques, and adapt the
discussion to the experiments performed in the main part of this thesis. During the
summary, I will mainly follow [157].

Rydberg excitation

To excite the Rydberg state, as illustrated in Fig. we use a two-photon
scheme. A red beam at 780nm, blue-detuned by A = 27 x 97 MHz from the
‘551/2,F =2, mp = 2> — ‘5P3/2,F =3, mp = 3> transition, provides the first ex-
citation step. A counter-propagating blue beam at 480nm is simultaneously ap-
plied, red-detuned by the same amount A from the ’5P3/2,F =3, mp = 3§ —

‘615’1 s2my =1 / 2> transition. This configuration ensures two-photon resonance with
the Rydberg state. The large detuning A minimizes population in the intermediate
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level, allowing for its adiabatic elimination and reducing the system to an effective
two-level model. The counter-propagating geometry leads to minimal momentum
transfer, adding a velocity of only 3.7 nmps™! to the Rydberg atoms—significantly
lower than the 15.5nmps~! imparted in a co-propagating setup.

Figure shows that, due to the experimental geometry, the excitation beams
enter the vacuum chamber perpendicular to the quantization axis, which is defined
by the magnetic field of the MOT coils. As a result, circular polarization along
the quantization axis cannot be achieved. Instead, we use linearly polarized light
in the transverse plane, which decomposes equally into ¢t and ¢~ components.
Consequently, only half of the laser power contributes to the Rydberg excitation
scheme shown in Fig. [A.4] As discussed in the section on magnetic field rotation,
enabling optical access along the quantization axis from the top of the chamber would
allow the use of circularly polarized excitation light. This would increase the effective
two-photon Rabi frequency and additionally enhance state selectivity in the Rydberg
manifold through polarization-dependent selection rules.

Microwave manipulation

Microwave control within the Rydberg manifold is achieved using a Keysight M8195A
arbitrary waveform generator (AWG), which offers a digital sampling rate of 64 GSa,
an analog bandwidth of 25 GHz, and a typical rise time of 18 ps. These parameters
allow precise amplitude and phase modulation on picosecond timescales at gigahertz
frequencies. As discussed in Chapter [3] the pseudospin is encoded in the states
6151 /2, my = 1/2> and ‘61P1i1/2, my = 1/2>, which are coupled by a transition near
16 GHz. This frequency lies within the analog bandwidth of the AWG and can
therefore be generated and modulated directly, without the need for frequency up-
conversion. Avoiding conversion suppresses spurious sidebands that could induce
Rydberg light shifts or unwanted couplings, thus maintaining the validity of the two-
level approximation. The microwave signal is delivered to a Pasternack PE9852/2F-20
horn antenna with a nominal gain of 20dB. Although this antenna is specified for
the 18 GHz to 26.5 GHz range, we operate it slightly below specification at 16 GHz,
where we expect a reduced gain. This can be compensated by increasing the output
power of the AWG. Due to the long microwave wavelength, the antenna’s near field
is spatially inhomogeneous and lacks a well-defined polarization, while the far field
is divergent, causing rapid power loss over distance. To generate a uniform, high-
intensity microwave field inside the vacuum chamber, the radiation is refocused using
a parabolic mirror. A wire grid polarizer is placed in the beam path to enforce
m-polarization relative to the quantization axis, ensuring selective excitation of 7-
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Figure A.4: Level diagram of rubidium during Rydberg excitation and detection.
Horizontal lines represent energy levels at a magnetic field of 185 G. The ground state
’551 s2) and the excited state 5P/, are color-coded by their total angular momentum
F', and horizontally shifted according to the magnetic quantum number mg. In the
Rydberg manifold, hyperfine splitting is negligible; levels are therefore color-coded by
their total angular momentum J, and arranged by their magnetic quantum number
my. Black arrows indicate transition frequencies at zero magnetic field. Red and
blue arrows show the transitions for excitation and detection. The green wavy line
illustrates a typical microwave transition between Rydberg states. Further details are
provided in the main text.
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transitions only. Within the Rydberg manifold, the application of a strong magnetic
field enables the splitting of magnetic sublevels by more than 300 G. This Zeeman
splitting exceeds even strong Rabi frequencies of more than 27 x 100 MHz, thus
allowing for state-selective addressing even under strong driving conditions.

Rydberg atom detection

To study Heisenberg spin systems using the Rydberg platform, we aim to measure
the magnetization in the effective spin model. As discussed below, this corresponds
to determining the population in the two Rydberg states that encode the pseudospin.
In principle, state-selective field ionization could be employed for this purpose, as
detailed in Ref. [156]. However, this technique relies on a large energy separation
between the involved Rydberg states, which is not present between ‘6151 s2,my =1/ 2>

and ‘61P1i1 j2,my =1/ 2>. Consequently, we detect only the population in one of

the Rydberg states, specifically ‘61P1i1 s2,my =1/ 2>. This is achieved by applying a
strong laser pulse using the blue excitation beam, whose frequency is shifted via a
combination of a DDS and an AOM, to be resonant with the ‘5P3/2, F=3mp= 3> —

’615’1 s2,my =1/ 2> transition. As is outlined in Ref. |178|, a downpumping pulse of
5Py2, F = 3,mp = 3) —

‘6181/2, my = 1/2>. The remaining population in ‘61P1:|:1/2,mj = 1/2> is ionized by
applying a strong electric field generated by electrodes inside the vacuum chamber.
The resulting ions are steered onto a microchannel plate (MCP) detector using
deflection electrodes. The geometric acceptance of the MCP limits its theoretical
detection efficiency to 40 % [161]. However, the experimentally measured efficiency,
determined via comparison with depletion imaging [166], is approximately 10 %. This
reduced efficiency is attributed primarily to incomplete ionization of the Rydberg
atoms.

5 ps is sufficient to completely depopulate the Rydberg state

Tomographic magnetization readout

While the population in the state ’61P1i1 s2,my =1/ 2> can be directly accessed via

field ionization, inferring the population in ‘6151 s2,my =1/ 2> requires additional
reference measurements. These are also necessary to convert ion counts into quanti-
tative magnetization values. To reconstruct the full magnetization vector, including
the x- and y-components, we perform a tomographic readout, following the protocols
described in Refs. [155-157]. For clarity, we define the state (6152, m; = 1/2> as
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l}), and ’61P1:|:1/2,mj = 1/2> as |[1). The populations in these Rydberg states are
denoted as N and N;, respectively.

o To determine the total number of Rydberg atoms Ny, we proceed as follows.
After Rydberg excitation to the state [|), a microwave 7/2-pulse creates the
superposition state 1/v/2 (|1) 4 |1)). After a delay ¢, all Rydberg atoms are
field-ionized. The resulting signal Ny (t) serves as a reference for the sum
Ny(t) + N, (t), accounting for decay due to black-body radiation. This process
is discussed in detail in Chap. [4]

« To isolate background contributions, we excite all atom in the Rydberg state |{),
wait for a time ¢, apply the downpumping pulse, and perform field ionization.
Ideally, all Rydberg atoms are depopulated, leaving no ions. In practice, a
residual signal Ng, remains due to imperfections like black-body induced decay
to nearby Rydberg states. These states are treated as a background, since their
interaction with atoms in the states |[1) and |[{) is typically negligible.

» To obtain a reference for the ion number associated with the z-magnetization,
we apply a downpumping pulse at the end of an experimental sequence and
subsequently field-ionize the remaining Rydberg atoms. The resulting ion
number N, serves as a reference for the z-magnetization.

After an experimental sequence, all magnetization components are determined
using the tomographic readout scheme described in [157]. At the end of the sequence,
a Rabi m/2-pulse with adjustable phase ¢ is applied, where ¢ is varied over the discrete
set {0,7/3,27/3, 7,47 /3,57/3,27}. After this readout pulse, a downpumping pulse
is applied, followed by field ionization to measure the population in the state |1),
denoted as Nf )

The measured Nf (¢) is fitted to the oscillatory function Nygser + N, cos(¢ + ¢o),
as shown in Fig. [A.5] From this fit, the magnetization components are extracted
using the reference measurements Ny, and Ngp,.

The z-component of the magnetization is calculated from N gyt as

2N0{fset - Ntot - Ndp

M, =
2(Ntot - Ndp)

(A.2)

We verify consistency by confirming Nygst = IN, within the experimental error bars.

The z- and y-components are given by

2Na - Ntot - Ndp
2(-thot - Ndp)

o 2Na - Ntot - Ndp

M, = cos(¢p), M, = 2 Now — Na)
0 P

sin(¢yp). (A.3)
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Figure A.5: Tomographic readout of the magnetization. Ion numbers are shown for
a relaxation experiment as a function of the phase ¢ of the readout pulse. In (a),
the system is initialized in the fully spin polarized state, while (b) shows the ion
measurement after the magnetization has decayed. The fit line fits a sine function to
the experimentally obtained data Nf . Different reference measurements are indicated
by color horizontal dashed horizontal lines. Their standard deviations is shown as
colored vertical bars. Data were taken in the characterization of the experiments
in Chap. [3 See details of the protocol and interpretation in the main text. Figure
layout inspired by Ref. [157].

Since the individual ion number measurements are randomized within each ex-
perimental sequence, the extracted magnetization components are robust against
slow environmental drifts. Furthermore, using six phase points reduces statistical
uncertainty, enabling more precise magnetization detection.

A.3 RYDBERG EXCITATION AND DETECTION
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CHAPTER B

Additional Plots for the Reverse
Quench Experiment

This short chapter provides a clearer illustration of the experiment presented in
Chap. [l The study focuses on a reverse quench protocol, in which the spin-lock and
reverse-quench magnetizations are measured as functions of the quench time 7g. The
experiment is conducted in both weakly and strongly disordered regimes. The full
experimental protocol is detailed in Chap.

L —&— reverse quench El:!
0.45F o . d C étpn':‘ g P -a M
EOE 'ﬂfpﬂ & & - spinlock E o] = a
u &-& & u
0.40F o P .
L = —¢— reverse quench
g 0.35F &- spinlock
0.30F 3
0.25F -
0 4 8 10 O 4 10
Qlpus] TQlpus]

Figure B.1: Magnetization measurements for the reverse quench protocol. Magnetiza-
tion measurements for the reverse quench (blue) and spinlock protocol (orange) for
the weakly (left) and strongly (right) disordered regime as a function of quench time
7o in ps. Error bars are calculated from averaging over repeated measurements, and
taking the standard deviation from the mean.



In the main body of this thesis, data are presented as a function of interaction
cycles per quench, represented by the dimensionless parameter Jyea7g/2m. This
normalization facilitates comparison across regimes with different median interaction
strengths J,e.q. However, rescaling by Jy,.q does not provide information about the
total experimental duration, which is important for assessing the system’s validity
as an isolated quantum system. When the experimental timescale approaches the

Rydberg state lifetime, effects induced by black-body radiation must be considered.

Figure shows that the total experimental duration in the strongly disordered
regime is significantly shorter than in the weakly disordered regime. Despite this, the
reverse quench magnetization increases more markedly at long quench times in the
strongly disordered regime. Therefore, this increase cannot be attributed solely to
dynamics induced by black-body radiation decay.

0.275F
0.250
0.225F

0.200

1/2 - (S,)

0.175f

power law fit power law fit
0.150r —— experimental data i —— experimental data

0.0 2.5 5.0 7.5 10.0 125 0.0 2.5 5.0 7.5 10.0 125
Jnu‘dTQ/ 2m ']mchQ/ 2m

Figure B.2: Power law fit to the estimated defect density. Measured magnetization
is converted via Eq. into an estimated defect density (blue). Error bars are
propagated from the magnetization measurement. In the weakly disordered regime
(left), the last 9 points are fitted a power law (orange). In the strongly disordered
regime (right), only the last 6 points are used to fit a power law. The plot is presented
as a linear-linear plot, in order to highlight the nonlinearity of the fit-function, and
directly present the experimental data as they were taken.

To illustrate the accuracy of the power law description of defect densities derived

from magnetization measurements, we present the data on linear axes in Fig. [B.2

Although the power law decay fits well within the measured range, a linear decay
cannot be excluded.
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CHAPTER C

Additional Plots for the Loschmidt
Echo

As discussed in Chap. 5 the aim of this section is to serve as a supplemental comment
on the short time-behavior in a bond-disordered power law interacting spin-1/2
model. The first section concentrates on early initial times where time-dependent
perturbation theory may still be applied.

C.1 Power law behavior for short times

Here, we will shortly compare very early timescales of the Loschmidt echo as a
function of time. As outlined in [253], the Loschmidt echo is expected to deviate
quadratically from its initial value, i.e.

1IS)]? ~ 1 —ct? (C.1)

where ¢ is a constant depending on the Hamiltonian and the perturbation during the
time reversal in the Loschmidt echo protocol. Therefore, we expect that 1 — |S(t)|?
increases according to a power law in time, with exponent 2. As for early times,
there is no significant dependence of the Loschmidt echo on system size, we will fit

a power law to 1 — [S(t)|? for Jueat/(27) < le — 2, i.e. for time-scales where the
median spin-spin coupling Jy,.q does not induce a full interaction cycle.

The results are shown in Fig. [C.I] We fit the data with the function At”, where
A is the amplitude and v the exponent. In the thermalizing regime at weak disorder
W = 0.03, we obtain v = 3.992(2), which is very close to 4. This suggests that, in
the fully ordered case at W = 0, a symmetry of the power-law Hamiltonian may
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Figure C.1: Short-time behavior of the Loschmidt echo. Simulated values of 1 —|S(t)[”
(blue dots) are shown against the evolution time in terms of median interaction cycles
on a log-log scale. Error bars are calculated from the standard deviation of the mean
for a disorder average. Values are shown both for a thermalizing (a) and localized (b)
regime. The data is fitted a power law (orange line).

force the quadratic prefactor ¢ in Eq. [C.1] to vanish. Since the Loschmidt echo has a
local maximum at t = 0, the leading-order term must then be at least quartic. The
extracted exponent v ~ 4 indicates that this quartic term dominates the short-time
dynamics. The fit yields a reduced x? = 0.18, demonstrating very good agreement
with the data.

In contrast to the quartic behavior observed in the thermalizing regime with weak
disorder, we find a nearly quadratic decay of the Loschmidt echo in the strongly
localized regime with W = 2.0. A power law fit yields v = 2.14(7), which is consistent
with the predicted value of 2 within a two-sigma confidence interval. However, the
fit gives a reduced x? = 1.62, which we attribute to the fact that, in the strongly
disordered regime, several spin-spin interaction couplings exceed Jyeq, leading to the
emergence of few-body dynamics that disturb the ¢? behavior.

C.2 Exponential decay in the weakly disordered
model

In Chapter [f] the long-time behavior is discussed in detail. Here, we focus on the
intermediate time scales within the thermalizing regime. It is generally assumed that,
in this regime, the Loschmidt echo reaches equilibrium exponentially fast [150]. As
demonstrated in Chapter [ the system eventually reaches an equilibrium plateau
that remains constant over all numerically accessible time scales. Therefore, we use

C.2 EXPONENTIAL DECAY IN THE WEAKLY DISORDERED MODEL
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the value of the Loschmidt echo at tJpeq/(27) &~ 1.23 x 10°, which lies within the
plateau, as an estimate of the equilibrium value, i.e.,

|Seq|” = |S(t = 1.23 x 106)|*. (C.2)

In Chapter [5, we observe that shortly before the plateau is reached, the Loschmidt
echo drops below its equilibrium value. Consequently, we expect the Loschmidt echo
to decay to this equilibrium value only prior to the drop. To illustrate this, we present
the deviation of the Loschmidt echo for times where this deviation is positive in Fig.
C.2l Furthermore, we restrict our analysis to times where t.Ji,0q4/(27) > 1 to focus on
the many-body dynamics.

T T T T
0 5 10 15 20 25

tJmed/ (27T)

Figure C.2: Ezponential decay of the Loschmidt echo. Deviation of the Loschmidt
echo from its equilibrium value is shown as a function of evolution time for four
different system sizes N. Error bars are propagated from the values of the Loschmidt
echo and its equilibrium value. The ordinate axis is logarithmically scaled.

As the ordinate axis is logarithmically scaled, a linear behavior of the Loschmidt
echo indicates an exponential decay. A linear trend is observed for all simulated particle
numbers. Furthermore, with increasing particle number, the decay increasingly
resembles an exponential, and the fit improves over longer time scales. This suggests
that, in the thermodynamic limit, the decay might be exponential, further confirming
the weakly disordered regime as thermalizing.
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CHAPTER D

Perturbative Rydberg Calculations
in Arbitrary Field Configurations

In the main part of this thesis, we consider a frozen Rydberg gas, where atoms are
sufficiently separated such that their thermal deBroglie wavelength is much smaller
than the interatomic distance. Under these conditions, atoms are distinguishable by
their spatial position.

For the parameters relevant to this work, the temperature of the cloud of Rubidium
atoms is 11 K, corresponding to a thermal deBroglie wavelength of 56 nm. This
is significantly smaller than the typical blockade radius of 8 pm. A similar regime
occurs in Rydberg tweezer arrays [303-305]. Here, individual atoms can be cooled
down to 3 pK via Raman sideband techniques [306], such that they have a deBroglie
wavelength of 109 nm, which is still much smaller than the typical tweezer spacing of
2.5 pm.

This spatial separation offers two key advantages:

1. Distinguishability of atoms: Since the atoms are well separated, the total
wavefunction need not be fully anti-symmetrized as in a molecule.

2. Non-overlapping charge distributions: A very large separation compared to
the atomic radii of each atom ensures that Rydberg atoms behave as spatially
distinct charge distributions. This allows the Rydberg-Rydberg interaction to
be expanded in a multipole series, enabling truncation of the full Hilbert space
to a few relevant states driving the dynamics.

In many experimental settings involving pairs of atoms, only a finite number

of states are significantly populated. These states define a reduced model space.

Choosing this model space carefully is essential: states within it must couple only
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weakly and off-resonantly to states outside, referred to as the outer space, ensuring
that population remains confined to the model space.

A central goal is to determine an effective Hamiltonian H.g that accurately
captures the dynamics within this space. A naive approach would be a simple
projection of the Hamiltonian on to the model space. This typically fails, as it
neglects off-resonant couplings that can shift energy levels and modify effective
interactions within the model space. A notable example in Rydberg physics is the
Forster resonance [307], where two near-resonant pair states become strongly coupled
through virtual transitions to a far-detuned intermediate state.

To account for couplings between the model space and the full Hilbert space,
we use a perturbative method based on the Bloch expansion. This approach offers
a simpler structure and lower computational cost compared to the more general
Schrieffer-Wolff transformation [308]. While the Schrieffer-Wolff transformation
generally produces an effective Hermitian Hamiltonian, the Bloch expansion, derived
from Rayleigh-Schrédinger perturbation theory, typically yields a non-Hermitian
effective Hamiltonian [309]. To obtain a Hermitian effective Hamiltonian H.g, we
decompose the Bloch operator into its Hermitian and anti-Hermitian parts and retain
only the Hermitian component H.g = % Up to third order in perturbation
theory, this procedure preserves the eigenvalues and eigenvectors of the original Bloch
operator [310].

The algorithm presented in this appendix was developed by the author and has
since been implemented as part of a dedicated software package, Pairlnteraction
[167], which is maintained by Sebastian Weber and Johannes Mégerle. During the
development phase, an early version of the algorithm was made available to Matthias
Lotze, who applied it to selected examples as part of his bachelor thesis [249], which
was supervised by the author. The bachelor thesis includes an application and a partial
description of the algorithm based on this early code version. This appendix provides
a complete and updated description of the algorithm, incorporating refinements and
implementation improvements made since its original conception. After describing
the algorithm, we show how it can be used in two prototypical experimental examples,
namely in strong magnetic fields and in strong electric fields.

D.1 Modeling Alkali Rydberg atoms

For clarity, we restrict our discussion in this chapter to alkali atoms. However, the
perturbative treatment of Rydberg-Rydberg interactions—central to this chapter—is
equally applicable to alkaline-earth atoms. The only requirement for the construction
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of the interaction matrix is the ability to efficiently evaluate electric multipole and
magnetic dipole operators.

The numerical construction of the Hamiltonian for a single Rydberg atom follows
the procedure outlined in [167], which we adopt here. The underlying theoretical
framework is well established and can be found in standard references such as [27].

In alkali Rydberg atoms, the outermost electron is excited to a high-lying state,
where its wavefunction overlaps only weakly with the nuclear region. As a result,
the atom is effectively hydrogen-like: the core electrons shield the nuclear charge,
and the outer electron behaves similarly to the single electron in hydrogen. The
effective potential is spherical, allowing separation of the wavefunction into radial and
angular parts. The angular part is described by spin spherical harmonics, which can
be calculated analytically. The radial part is treated as hydrogenic at large distances
and modeled using a core potential at short distances, where the finite extent of the
nuclear charge distribution becomes relevant.

Consequently, the eigenstates can be labeled using the same quantum numbers as
in hydrogen. The energy levels are given by

Ry”*

(n - 5nLJ)2’

where Ry™ denotes the modified Rydberg constant, corrected for the finite nuclear
mass, and &, is the quantum defect. The quantum defect primarily depends on
the orbital angular momentum L and accounts for deviations from the hydrogenic
spectrum due to the finite size and structure of the nucleus. Since the nuclear
potential is difficult to calculate from first principles, quantum defects are determined
from spectroscopic measurements [311-314]. These values can then be used to infer
the radial Rydberg wavefunction, either via Coulomb wavefunctions [27] or a model
potential [315H317]. In both approaches, the Coulomb wavefunction or model potential
is optimized to reproduce the observed energy levels corresponding to the measured
quantum defects. Once the radial and angular parts of the eigenstates are known,
calculations of operator matrix elements and interactions between atoms and external
fields become possible.

The interaction with a static, homogeneous electric field E , discussed in more

detail in Chapter [E] is described by

E, =— (D.1)

—

Hy=—d-E, (D.2)

where d = e is the electric dipole operator of the Rydberg electron in position
space. Electric field interactions are typically strong in Rydberg atoms due to

D.1 MODELING ALKALI RYDBERG ATOMS
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their large polarizability. For instance, even a weak field of 20mV em™! induces a
coupling of 32 MHz (in units where h = 1) between the states ’6151/2, my = 1/2> and

61Py /9, my = 1/2>.

The interaction of a Rydberg atom with a static, homogeneous magnetic field B
is given by

Hiog = B (gS§+ gLE> B+ (afx 5)2 , (D.3)

me
where gs = 2 is the Landé g-factor for the electron spin, and gy ~ 1 is the g-factor for
the orbital angular momentum. The exact value of gy, is given by g, = 1/(14+m./m,,),
but the correction due to the finite nuclear mass is typically negligible.

The first, linear term describes the Zeeman interaction, coupling the magnetic
field to the spin and orbital angular momentum of the Rydberg electron. The second,
quadratic term describes the diamagnetic interaction, which couples to the electric
dipole operator d. This contribution becomes relevant at large magnetic fields or
when electric and magnetic fields are both present. For a typical weak field of 30 G,
the diamagnetic shift is negligible, while the Zeeman term induces an energy shift of
42 MHz.

For comparison, the fine-structure splitting between the L61P1 /2> and ’61P3 /2>
states is 437 MHz. This indicates that, in the presence of weak fields, the dominant
energy scale arises from the interaction between the Rydberg electron and the ionic
core, with external electric and magnetic fields treated perturbatively. However,
in the experiments considered in the main body of this thesis, this assumption
does not hold: the interaction with an external magnetic field can be comparable
to the fine-structure splitting, inducing strong mixing between the unperturbed
atomic eigenstates. Consequently, the relevant excited states are not the unperturbed
eigenstates, but the eigenstates of the full single-atom Hamiltonian including the
external fields. To account for this, we first diagonalize the single-atom Rydberg
Hamiltonian in the presence of electric and magnetic fields. This choice of basis forms
the starting point for the perturbative treatment of the Rydberg-Rydberg interaction.
It also allows the method to remain valid even in regimes where external fields induce
energy shifts comparable to, or larger than, the fine-structure splitting.

The bare atomic Hamiltonians, diagonalized in the presence of static electric and
magnetic fields, which may differ for each atom, can be represented by the diagonal
operators H; and Hjy. The total Hamiltonian for two non-interacting Rydberg atoms
is then given by

Hy=H ®1+1® H,, (D.4)

where the system basis is the product basis of the individual atomic states. This
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Hamiltonian H serves as the unperturbed starting point for the perturbative treat-
ment.

D.2 Perturbative treatment of the atom-atom in-
teraction

As discussed above, when the separation between two Rydberg atoms is sufficiently
large, they can be treated as non-overlapping charge distributions. This separation is
quantified by the Leroy radius,

ey =2 (/1) +/09)). (D5)

where r and r, denote the distances of the Rydberg electrons from their respective
atomic centers, and the expectation values are taken with respect to the populated
Rydberg states. For states with principal quantum numbers below 100, the Leroy
radius is typically less than 4 pm, justifying the approximation of treating the atoms
as non-overlapping charge distributions. The Rydberg-Rydberg interaction can be
expressed as a multipole expansion in terms of the vector R separating the two atoms,

[e]
vl@l K2

1+r1+k2

Hint(é) = (D6)

—

r1,k2=1 4T€g ‘

where the z-axis is chosen as the quantization axis. The matrix elements V.,
are proportional to the multipole moments of order k; and ko in atoms 1 and 2,
respectively. The parameter p = 1 4+ k1 + Ko determines the interaction’s multipole
order and spatial decay.

At p = 3, the interaction corresponds to dipole-dipole coupling. Dipole-quadrupole
interactions (p = 4) can typically be neglected for low-angular-momentum states,
except at very short interatomic distances below the blockade radius, a regime dis-
cussed in Chapter [E] Higher-order multipole interactions, including dipole—quadrupole
terms, also become significant in the context of Rydberg macrodimers [318)319]. The
constructed Rydberg-Rydberg interaction Hamiltonian Hint(ﬁ), evaluated at a fixed
interatomic separation E, will serve as the perturbation V' in our perturbative treat-
ment. Consequently, the effective Hamiltonian we will construct provides information
on how the instantaneous eigenstates, defined in the presence of finite external fields,
interact through the Rydberg—Rydberg interaction.

D.2 PERTURBATIVE TREATMENT OF THE ATOM-ATOM INTERACTION
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D.2.1 The Bloch expansion

The Bloch expansion, grounded in Rayleigh-Schrodinger perturbation theory, was
originally developed as an extension of perturbation theory to the Hamiltonian
operator [309} 310]. A comprehensive derivation, including higher-order terms and
various diagrammatic techniques, is presented in [320]. In this work, we primarily
follow the pedagogical approach outlined in [321].

We assume that the full Hilbert space H can be partitioned into a model space
M and an outer space O, which contains all states not included in M. The total
Hamiltonian is written as H = Hy + V, where Hj is diagonal and V introduces
couplings between M and O. Let P denote the projection operator onto the model
space, and () = 1 — P the projection onto the outer space.

Our goal is to construct an effective Hamiltonian H.g that acts entirely within the
model space, such that for any eigenstate |¥U) € H with eigenvalue E, the Schrodinger
equation takes the form:

HgP |V) = EP|V). (D.7)

Since Hj is diagonal by construction, it commutes with both projectors, i.e., [Hy, P] =

[H07 Q] =0
A crucial step in the construction of the effective Hamiltonian is the introduction
of the wave operator €2, which is defined by the relation

QP |U) = |0, (D.8)

where |U) is an eigenstate of the full Hamiltonian H. While such a relation would not
uniquely define Q for arbitrary vectors, the requirement that |W) is an eigenstate of
H imposes sufficient constraints to define {2 uniquely. Moreover, this operator allows
us to write down the effective Hamiltonian immediately as

Hy = PHQP, (D.9)

which naturally fulfills Eq. [D.7] The problem to define an effective Hamiltonian has
thus become equivalent to the problem of finding an expression for 2. We plug Eq.
into the Schrodinger equation H |¥) = E |¥) to obtain

(E— Hy)|V) =E|V) — HQP|V) =VQP|V). (D.10)
Multiplying QP from the left we obtain

QP (E — Hy) P|¥) = EQP |¥) — QPHP|¥) = E|¥) — QH,P? | V)

(D.11)
= E|U) — QH P |¥) = QPVQP ) .
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Subtracting Eq. [D.11] from [D.10] leads to the identity
[Q, Hy| P |¥) = (1 — QP)VQP|¥). (D.12)

This is a self-consistent equation for the wave operator €2, depending only on the
unperturbed Hamiltonian H, and the perturbation V.
To develop a perturbation theory in powers of V', we expand {2 as a power series,

Q=> 1, (D.13)
k=0

where each term Q is of order V*. We choose €y = 1, since the identity operator
commutes with Hy, and the right-hand side of Eq. contains at least one factor
of V', implying that €y captures the unperturbed limit.

Expanding Eq. [D.9 we thus obtain

Heg = P(Hy+ V)QP = PHyP+ PVP+ PV P+ PVQL,P+...,  (D.14)
—_—— N
HY A e e

where H's denotes the i-th order in perturbation of the effective Hamiltonian. H

and H; are the projections of H onto the model space. Corrections due to couplings

between M and O start from second order processes quadratic in V. These are

exactly the processes leading to van-der-waals interactions in Rydberg atoms, where

V is the dipole-dipole coupling. Expanding Eq. returns the recursive formula
n—1

[, Ho] = QV Qo1 — > QPVQ,_;1. (D.15)

J=1

This allows calculate the matrix elements for two states |a) , [b) € M. We thus obtain

1
g2 = S . D.1
(@HG ) = (0] V= QV ) (D.16)
Introducing an identiy matrix 1 = 3= ;¢ |s) (s| yields
1
(al HF b)) = > (alV]s) - (s| V [b). (D.17)
|s)eO Ly — E,

The third order in perturbation theory reads

& 1 1
(al Hoit [b) = {al V o QV o QV 1)
1 1 (D.18)

S Vg VIO V).
|c)yeM ¢

D.2 PERTURBATIVE TREATMENT OF THE ATOM-ATOM INTERACTION
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This equation can also be brought into a more compact form by summing over states
in the outer space

@R = S (alvis oV V)

|r)e0,|s)eO

Vis) (s[V]e) (D-19)

(a
B, _E.E _E. {(c|V]b) .

leyeM,|s)eO

D.2.2 Perturbed Eigenvectors

The effective Hamiltonians H's reproduce the eigenvalues within the model space
1ncorporat1ng corrections up to order V¢, When symmetrized to ensure Hermiticity,
Hig (H e+ Hig ) /2, they retain the same eigenstates and eigenvectors up to order
i = 3 [310]. However, the Bloch expansion does not assess how accurately the system
dynamics remains confined to the model space. It provides no criterion for the quality
of this approximation, and contributions from states outside the model space may
still play a significant role in the full dynamics.

As a quality check, we also construct the eigenstates in the model space using
standard Rayleigh-Schrodinger perturbation theory, as detailed in classical references
[322] 323]. The summations are defined such that each term sums only over the states
involved in that specific term. The perturbed eigenstate |m) € M is given by

H() m0> — Em ‘m0> 7
1 (r|V|m)
my)= ",
) m>¢z|r:>ea Ly — By (D.20)
m?) = (r|Vis) (slVIm) — (m|[V]m) <T|V|m>> r
> m#%:S)EH <Em — by B — B (Em — E,)? "

2<< (! !><!‘)/!m>>|m>.

We simplify these expressions by first noting that, by construction, (m|V|m) = 0.
Moreover, since the effective Hamiltonian theory accounts for all couplings within
the model space, we retain only those terms involving at least one coupling to a state
in the outer space. Consequently, the perturbed eigenstates arising from interactions
with states in O are given by
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1 _ {r[Vm)
‘m > =) . _E, ). (D.21)

[rye© —m

At the next order, the perturbed eigenstate [m?) decomposes as |m?) = |m3,) + |md).

Here, |m3,) represents corrections to the amplitudes within the model space, while
|m%) corresponds to contributions in the outer space. Those contributions are given
as

m2) = (Vi) (rVim)\, L mlVir) ¢Vim)
‘ M> |m>7’5|n)§4,|r)e(9 (Em—En Em—ET>’ ) 2( (B, — E,) >! )

m2 ) = (r|Vin) (n|V|m>> , ( (r|V]s) (S|V|m>> o
"5) |m>¢|n>§4,|r>eo <Em—Er B — By | >+Ir>,§s;e(9 Ep — E, Ey — E, I

(D.22)

To evaluate the validity of the assumption that the dynamics remain confined to

the model space, we compute the perturbed eigenstate at order i as [m) = >>'—{ [m7).

If this state overlaps with |m°) by less than 90 %, we identify and report all outer
space states with populations exceeding 0.5 %, as these may become significantly
populated through the dynamics induced by V', and thus should be included in the
model space.

D.2.3 Numerical implementation

We numerically implement the construction of the effective Hamiltonian by allowing
the following inputs:

o A Hamiltonian H = Hy + V as a sparse matrix, where H is assumed to be the
diagonal of the Hamiltonian, and V' is assumed to be purely off-diagonal.

o A list m_inds of the indexes spanning up the model space
o The order of perturbation theory, which may be chosen between 0 and 3.

In a first step, we resort the basis states of the Hamiltonian, such that the first
d = dim(M) states are exactly the states defined by the list m_ inds. As we will
see later, this allows for an efficient matrix product formulation of the perturbation
theory.

We extract the following quantities:

D.2 PERTURBATIVE TREATMENT OF THE ATOM-ATOM INTERACTION
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e Hj as the diagonal of H, which is a one-dimensional array, and V = H — H,,
which is a NV x N matrix, , where N = dim(H).

o The projections of Hy onto the model and outer spaces: H,, = Hy[l : d] and
H.= Hyld+1:NJ.

o The components of V' coupling states within the model space V,,,, = V[1 :d,1:
d], within the outer space V.. = V[d+1: N,d+1: N], and between model and
outer spaces Ve = V[1:d,d+1: NJ. Consequently, V' has the block structure

me Vme
) o2

where the hermiticity of V' is used.

o An empty sparse array of size d x N is initialized to store the perturbed
eigenvectors.

At second order, energy differences between model space and outer space states
must be considered. We construct the matrix AE,, = 1/(H,[new axis,:] —
H.[new axis,:]). If any entry in AE,,, is infinite, a warning is raised indicating the
presence of a resonance. To identify the resonance location, the normalized eigenstate
is computed, where the infinite value occurs at the index of the resonant state.

At third order, constructing perturbed eigenvectors requires accounting for energy
differences within the model space. We define the matrix AE,,,, by (AE,.,)ij =
1/ ((Hm)i — (Hm);), where ¢ and j denote the row and column indices, respectively.
To construct this matrix efficiently, we employ the numpy.newaxis method, which
replicates rows and columns as needed before applying matrix operations. This
yields the compact expression AE,,,, = 1/ (H,,[np.newaxis, :] — H,,[:, np.newaxis]).
Elements that diverge to infinity are replaced by zero. Consequently, terms of the
form (n|V|m) /(E,, — E,) vanish when E,, = E,,. This is consistent with degenerate
perturbation theory, where the states |m) and |n) are replaced by linear combinations
|m/) and |n') such that (n/|V|m’) = 0. After this transformation, V,,,, = 0, and
these terms no longer contribute to the expansion of the perturbed eigenvectors.
However, this does not guarantee that the new states |m’) and |n') maintain the same
couplings to other model-space or outer-space states, which may affect the perturbed
eigenstates. Therefore, a warning is currently issued: the third-order eigenstates are
accurate under this method only if the model space contains a single state. In future
versions, an algorithm will be needed to construct |m’) and |n’) efficiently, calculate
the eigenstates, and then transform back to the original |m) and |n) basis.
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Using these matrices, both the effective Hamiltonian at all perturbation orders
and the perturbed eigenvectors can be constructed via matrix multiplication or
element-wise multiplication. For instance,

HY = Hy, HY =V, HF =Vine (Vi © AEep) . (D.24)
Similarly, He(?f) and the perturbed eigenvectors can be expressed as matrix products
in an analogous way. To optimize performance, all matrices are stored in compressed
sparse row format, allowing efficient transformation to compressed sparse column
format for matrix multiplications.

At each perturbative order, the effective eigenvectors are summed directly, while
the effective Hamiltonians at each order are stored separately. This separation is
essential for extracting dispersion coefficients, as discussed in the next section. We
will demonstrate experimentally relevant examples where this algorithm is applied
to obtain key insights into Rydberg interactions under strong magnetic and electric

fields.

D.3 Example 1: Rydberg excitation in strong mag-
netic fields

In this first example, which is partially based on the supplemental material of [169]
and from which parts of the text have been taken verbatim, we consider strong
magnetic fields, relevant for the experiments discussed in Chapters [3] and [4 We
truncate the multipole interaction from Eq. at 1 4+ k1 + Ky = 3, resulting in the
dipole-dipole Hamiltonian

1 |1—3cos?d
47eq 2r3

3sinf cosf — _ _ i
T ((dfdg +didf)e™ — (didy + dy dy)e ¢)

Hppy = (203 + di dy + dy df )

: 20 . .
_382”13 (dfdfe™ + dydy e*) ] : (D.25)
r

Here, 6 denotes the angle between the interatomic axis and the quantization axis,
which is chosen along a magnetic field of B = 185 G. The azimuthal angle ¢ describes
the orientation of the interatomic axis around this quantization axis, and r is the
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interatomic distance. The quantities d?’i represent the spherical components of the
dipole moment of atom 1.
In the absence of a magnetic field, we select the model space as either:

o The resonant pair states (used in the weakly disordered regime):

(61812, = 1/2) [61Pyya,my = 1/2),  [61Pyja,my = 1/2) [61S1/2,m, = 1/2)

 Or the resonant pair states (used in the strongly disordered regime):
\6151/2,mj - 1/2> ‘61P3/2,mj - 1/2>, ‘61P3/2,mj — 1/2> ’6151/2,mj — 1/2>

However, the large magnetic field leads to a strong admixing between the states
‘61131/2, my = 1/2> and EilP;;/g, my = 1/2>, such that the above mentioned pairstates
need to be replaced by the adiabatically connected eigenstates at large magnetic field.
We thus want to study the influence of this admixture on the dispersion coefficients,
which can be obtained by first and second-order perturbation theory. For an atom in
the [nS) and an atom in the [nP) states, the two-atom states [nS,nP) and |nP,nsS)
are degenerate. If we set the energy level of these two states to zero by gauge freedom,
the Hamiltonian in this basis reads

1—3cos(0)® 1 2d0d9 + dfdy +dydf

H= D.26
r3 4d7eq 2 ( )
C1-3cos(0)? 1 (2d0dS +dfdy +didf) (o 1 D7)
N r3 4reg 2 10 '
C3
1 —3cos(h)? 0 1
s (01) oo

where the angle brackets denote the matrix element evaluated between the states
|nS,nP) and [nP,nS). This defines the dispersion coefficient Cj5. It is obtained from
the first-order contribution to the effective Hamiltonian, H, éflf), where the perturbation
corresponds to the dipole-dipole interaction at a distance r and polar angle 6. The
coefficient (5 is then extracted by multiplying the off-diagonal matrix element by the
factor 3/ (1 — 3 cos?(0)).

At strong magnetic fields, the atomic eigenstates in the P-manifold become
superpositions of the states |61P /2, m; = 1/2> and r11611[’3/2, my = 1/2>. As a result,
the coefficient C's becomes magnetic-field dependent. This is because the electric dipole
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matrix elements between the bare states ‘6151/2,mj = 1/2> and ’61P1/2,mJ = 1/2>
differ from those between the corresponding eigenstates in the presence of the field.

For a magnetic field of 185 G, this leads to a reduction of the Cj5 coefficient to
Cs = 875 MHz pm? (from 1626 MHz pm? at B = 0) for the eigenstates adiabati-

cally connected to ’6131/2,mJ = 1/2> and ’61P1/2,mJ = 1/2>. Conversely, for the

eigenstates connected to ’6151/2, my = 1/2> and ’61P3/2, my = 1/2>, the coefficient
increases to Cs = 3876 MHz pm? (from 3151 MHz pum? at B = 0) (h = 1).

For two atoms in the same Rydberg state, exemplified by the state ‘6151 s2,my =1/ 2>,
the first-order perturbative energy shift vanishes, since the electric dipole matrix
element between states of equal parity is zero. As a result, the interaction energy
arises only at second order in perturbation theory:

<TLS, nS]I:]DDﬂoz,B) (a,ﬁ]]:[DDﬂnS, nS) 06
AFE = = —. D.2
% 2E,s — Eo — Ep r6 (D-29)

This defines the van der Waals coefficient Cg. It is obtained from multiplying the
second-order contribution H, éfzf) by 7%, where the perturbation is again the dipole-dipole
interaction, and the model space consists of a single pairstate.

In the absence of a magnetic field, all magnetic sublevels m; within a given
|nL ;) manifold are degenerate. Consequently, the sum over all contribution from
intermediate pair states |af), with fixed n, L, and J, is isotropic. The resulting energy
shift is thus direction-independent. Furthermore, since the dipole-dipole interaction
scales as 73, the second-order shift scales as 5.

In a finite magnetic field, the energies I, and Eg are magnetic field dependent,
and different m; states are not degenerate anymore. This leads to an anisotropy in
the energy shift
Cs(0)

6
being dependent on the angle 6 of the interatomic axis with the magnetic field.

Numerically evaluating equation and using our algorithm for the effective
Hamiltonian at » = 16 pm for different 6, we found convergence including states
laB) = [nLymy) |n'L' pm/;) for n,n’ € {57,...,65}, L, L’ € {0,1,2,3}, all possible
values of J, J' for these states, and m s, m/; € {—0.5,0.5,1.5}. The results are shown
in figure [D.I} Unlike at zero magnetic field, where the Cg coefficient is isotropic, we
observe a strong increase of the energy shift in the direction perpendicular to the
magnetic field. This anisotropy in the Rydberg interaction introduces a positional
anisotropy during excitation of atoms to the Rydberg state ‘6151/2, my = 1/2> due
to the Rydberg blockade effect discussed in Chap. [3

AFE =

, (D.30)
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(b) 0° 0

Figure D.1: Angular dependence of the Cg coefficient in strong magnetic fields. Polar
plot of the Cg coefficient in GHz pm® as a function of the angle 6 between interatomic
axis and magnetic field direction for the state ‘6151 s2,my =1/ 2> in Rubidium. (a)
No magnetic field is present, Cg represented by orange dashed line. (b) Magnetic
field of 185 G is present, Cg represented by blue solid line.

D.4 Example 2: Rydberg excitation and interac-
tion in strong electric fields

In my bachelor thesis, I devised a protocol based on strong electric fields for generating
spiral spin states with Rubidium Rydberg atoms [324]. In my subsequent master
thesis [219], I extended this work by analyzing how the protocol duration can be
minimized, assuming non-interacting atoms. I found that an optimal spin encoding
is realized in the states )48P3/2,mJ = 1/2> = |{) and )47D5/2,mj = 1/2> = 1.

These states are not the bare atomic eigenstates, but rather the eigenstates at
a finite electric field of 3.3 Vem™!, adiabatically connected to the corresponding
zero-field states.

To better control positional disorder in the Rydberg state, we propose initializing
the system in the state ‘4851 s2,my =1/ 2>, which allows for a direct excitation and
results in an isotropic blockade radius. Microwave radiation can then be used to
coherently transfer all atoms into the |]) state.

The strong electric field induces permanent electric dipole moments in the eigen-
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states, significantly modifying both the Rydberg-Rydberg interactions and the energy
levels. In the first part of this section, we analyze how the electric field alters the
interaction-induced energy shift of the state ’4851 s2,my =1/ 2>, which in turn affects
the Rydberg blockade radius.

In the second part, we show how an effective four-level Hamiltonian can be mapped
onto a pseudospin model, enabling a description of Rydberg-Rydberg interactions in
terms of effective spin couplings.

Building on this framework, the third part is devoted to computing the effective
Hamiltonian in the model space spanned by [11), 1)), [41), [{{), where the dipole-
dipole interaction is treated as a perturbation. We then analyze how the presence of
the electric field modifies the pseudospin couplings in the resulting spin Hamiltonian.

D.4.1 Rydberg excitation in strong electric fields

In order to calculate the Cy coefficient, we again calculate Cy = Hé?f)rﬁ at distance
r = 16 pm as a function of the angle 6 at a smaller magnetic field of 70 G that lifts
the magnetic quantum number degeneracy, but does not introduce anisotropies in
the Cg coefficient. The results are presented in Fig. [D.2]

We observe that, unlike a strong magnetic field, a strong electric field does not
modify the anisotropy of the Cy coefficient. However, in the case considered here, it
shifts off-resonant intermediate states further away from resonance. As a result, the
magnitude of the Cg coefficient decreases, leading to a reduced Rydberg blockade

radius. This, in turn, allows atoms to be excited in closer proximity to one another.

D.4.2 Mapping the effective Hamiltonian to a spin Hamilto-
nian

In the main body of this thesis, the Rydberg-Rydberg interaction is typically described
using spin Hamiltonians. This approach is justified by demonstrating how an effective
Rydberg-Rydberg Hamiltonian, restricted to the model space spanned by the four
pair states |[11), [14), [41) , [{4), can be mapped onto a pseudospin Hamiltonian. This
methodology is also described in other theses from our group [157, [249].

We begin by assuming a Hermitian effective Hamiltonian of the form

Hll H12 HlS H14
Hi((Q H22 H23 H24
Hiy Hjy Hy Hzi|’
Hf4 H54 H§4 H44

(D.31)
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90° 270°

Figure D.2: Angular dependence of the Cg coefficient in strong electric fields. Polar
plot of the Cg coefficient in GHz pm® as a function of the angle 6 between interatomic
axis and magnetic field direction for the state ‘6151 s2,my =1/ 2> in Rubidium. (a)
No electric field is present, Cg, represented by orange dashed line, averaged over all
directions is given as 9.542(12) GHz pm®. (b) Electric field of 3.3 V. em ™! is present, Cg
represented by blue solid line, averaged over all directions is given as 5.689(7) GHz um®.

where we assume that the states |1]) and |[|1) are degenerate. This assumption
is justified, as these are symmetric product states of individual atoms, and their
non-interacting energies are simply additive. Furthermore, interaction-induced energy
shifts arising from couplings to states outside the model space respect exchange
symmetry and thus contribute equally to both states. As a result, the degeneracy
between |1) and [{1) is preserved.

In this Hamiltonian, the off-diagonal terms represent dipole-dipole coupling el-
ements, typically on the order of a few MHz. In contrast, the diagonal entries
correspond to the pairstate energies, which differ by several tens of GHz. Let w
denote the energy difference between the single-particle states |1) and |]).

To proceed, we transform the Hamiltonian into a frame rotating at frequency w.
In this rotating frame, the Hamiltonian reads

}I11 — 2w H12€iwt ngeiwt Hl4€2iwt
Hoorntod = H}?ejwi Hy —w Hoys H24efwz

H13€ w H§3 H22 —w H34€7'w

Hik4672iwt H§467iwt H§<4€fiwt H44

(D.32)

198 | Chapter D ¢ PERTURBATIVE RYDBERG CALCULATIONS IN ARBITRARY FIELD
CONFIGURATIONS



Since the off-diagonal elements H;; are small compared to w, we apply the rotating
wave approximation (RWA), neglecting all fast-oscillating terms proportional to e
and e*2“!  This yields the simplified Hamiltonian

H11 — 20.; 0 0 O
. 0 HQQ — W Hgg 0
Hpwa = 0 Hy  Hym—w 0 (D.33)
0 0 0 Hyy

The trace of this Hamiltonian contributes only a global phase and can be neglected.
Moreover, by appropriately redefining the phases of the basis states [1) and |{), we
can take Hs3 to be real without loss of generality.

We define the traceless effective Hamiltonian as H = Hrwa — i Tr(Hgwa )1, which
yields

: . (D.34)

This Hamiltonian corresponds to a Heisenberg XXZ spin model with a magnetic
field oriented along the z-axis. Additional spin—spin interaction terms are neglected
because they are either far off-resonant—such as terms proportional to S*TS* +
S~ S~—or they break the U(1) symmetry intrinsic to the Rydberg—Rydberg interaction
Hamiltonian

Hyxz = Ju (S5 + 5§

DS + 18IS + b, (S + SP)

‘]\\/4 + h, 0 0 0
3 0 —Jy/4 T2 0 (D.35)
- 0 J 2 —Jy/4 0 '
0 0 0 Jy/4—h.

A comparison of coefficients thus leads to

‘]H = ]jhl + H44 — 2.H22, (D.36)
Ji = Ho;, (D.37)
h. = (Hi — Hu) /2. (D.38)
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Figure D.3: Angular dependence of effective Hamiltonian couplings in strong electric
fields as a polar plot. The couplings J, (blue dashed line), .J; (orange solid line) and
h, (green dotted line) in MHz are shown as a function of the angle 6 both (a) without
electric field and (b) in the presence of an electric field of 3.3V em™'. In order to
plot the full range of J, the center of the polar plot does not coincide with zero, but
with the strongest negative interaction.

D.4.3 Effective spin Hamiltonian in the presence of strong
electric fields

We thus construct the different components of the spin Hamiltonian as described
above. The results are presented as polar plots in Fig. and as linear plots in
Fig. [D.4 We observe that the angular dependence of J, is strongly connected to
the Cj coefficient and thus shares the 1 — 3 cos?(f) angular dependence. The terms
J) and h, arise from second order contribution, and are thus smaller. This beomes
especially apparent at zero field when the interaction strengths are plotted linearly in
Fig. D.3(a).

The finite electric field, leading to permanent electric dipole moments in the
eigenstates, reduces the strength of J,, as electric dipole moments tend to align with
the electric field and a dipole moment flip, corresponding to a spin flip induced by
J1 becomes energetically less favorable. On the other hand, the electric field favor
spin alignment towards the electric field, thus leading to an increase of J and h,. As
a consequence, the terms .J, and h,, which we typically neglected in the thesis in the
absence of electric fields, need to be taken into account once electric fields are applied.
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Figure D.4: Angular dependence of effective Hamiltonian couplings strength in strong
electric fields as linear plots. The couplings J, (blue), J; (orange) and h. (green) in
MHz are shown as a function of the angle 6 in degree both (a) without electric field
and (b) in the presence of an electric field of 3.3V em™.

Another interesting regime where these terms become essential, is the application
of time-reversal, where J, can be completely flipped, but the terms J, and h, are
typically rather unaffected. This effect was further studied under the supervision of
the author in [249].
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CHAPTER E

Microwave Engineering of Ultrafast
Rydberg Interactions

In the main body of this thesis, we explored a regime in which the Rydberg-Rydberg
interaction is typically weaker than or comparable to the coupling between Rydberg
atoms and the applied microwave drive. In contrast, during a research internship at
the Institute for Molecular Science (IMS) in Japan, I investigated a complementary
regime where the Rydberg-Rydberg interaction dominates the energy scale. When
two Rydberg atoms are sufficiently close together, the dipole-dipole approximation,
discussed in Appendix [D] breaks down and higher-order processes, such as dipole-
quadrupole interactions, become relevant. Consequently, the two-level approximation
that underpinned much of the analysis in this thesis is no longer valid, and the system
must instead be described as a genuine multilevel atom.

An important feature of this strongly interacting regime is its fast dynamics:
interaction strengths can reach hundreds of MHz, leading to interaction cycles on the
order of nanoseconds. This rapid timescale is particularly attractive for quantum
information processing, as it offers the potential for implementing ultrafast entangling
gates. However, achieving high-fidelity gate operations in this context requires precise
control over the multilevel atomic structure. In this work, we analyze in detail how
spatial uncertainties and microwave coupling affect the performance and robustness
of such entangling gates.

E.1 Realization of an ultrafast Rydberg gate

This subsection focuses on the numerical analysis of the entangling gate. Therefore,
we omit a detailed description of the experimental setup for Rydberg excitation,



which can be found in [306]. Instead, we provide a brief summary of the experimental
concept before discussing the dynamics within the Rydberg manifold. The atomic
Hamiltonian is constructed using the Pairlnteraction library [167], and the time
evolution is simulated with the QuTiP library [325]. Throughout this chapter, we
will give all units of energy as frequencies, not as angular frequencies, following the
unit convention of the Pairlnteraction package.

(a) (b)

|43D |43D
0.4 MHz
2.4 GHz
|[41G, 45P, 15)
202 MHz
A le) A le) 30 MHZI |41F, 45P> 6.8 MHz
I(l)i |1> 8.1 MHz |43D,43D>
10) :

67 MHz

Figure E.1: Realization of an ultrafast Rydberg entanglement gate. (a) Idea behind
the CZ gate: The 780 nm-pulse is only resonant if both atoms are in the logical
state |1). After excitation to |e), which is metastable on a nanosecond timescale,
the atoms are excited to the Rydberg state |43D). In the Rydberg manifold due to
Forster resonance, the pairstate [43D,43D) undergoes an oscillation to the pairstate
|45P,41F"), where in a 2-level approximation a phase of 7 would accumulate. (b)
Level diagram of Rydberg states with a buildup of more than 1% during the gate.
Energy differences are indicate by black arrows, dipole-dipole interaction energies by
violet arrows and dipole-quadrupole interactions by green arrows.

Figure [E.Ij(a) illustrates the concept of implementing an ultrafast entangling
gate. The platform is based on Rubidium, which features a large ground-state
hyperfine splitting of 6.8 GHz [177]. This allows qubit encoding in the two hyperfine
levels |0) = ‘551/2,F =1,mp= 1> and |1) = ‘551/2,]7 =2, mp = 2>, which remain
effectively stable over a typical experimental cycle of 1s.

An ultrashort laser pulse at 780 nm with a duration of 2 ps excites atoms from state
|1) to the intermediate state |e) = ‘5P3/2, F=3mp= 3>. A second pulse at 480 nm,

lasting 17 ps, then drives the excitation to the Rydberg level ’43D5 /2,y =5/ 2>.
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To implement a CZ gate, the spectral bandwidth of both pulses must be precisely
controlled to ensure that only the |1) — |e) — |r) transition is resonant, isolating
this excitation pathway. In the current setup, this condition is met for the |e) — |r)
transition. However, the 2 ps laser pulse used for the |1) — |e) transition is too short
to resolve the hyperfine splitting in Rubidium. To address this limitation, a new
laser source is being prepared, capable of producing pulses tunable between 100 ps
to 1000 ps. Due to the large hyperfine splitting in Rubidium, a pulse duration of
200 ps is sufficient to resolve the 6.8 GHz splitting [177]. The ultrashort 480 nm pulse
is tailored to a spectral bandwidth of approximately 100 GHz, which exceeds the
energy shifts due to Rydberg interactions. As a result, the Rydberg blockade effect
(see Chapter [3]) ceases to apply, allowing simultaneous excitation of two atoms to the
Rydberg state even at short distances.

We introduce the following notation conventions for atomic finestructure states to
improve clarity:

1. When only the principal quantum number n and orbital angular momentum
L are specified, |nL) denotes the state within that manifold with the highest
total angular momentum J and magnetic quantum number my, i.e.,|nL) =

TZL(L+1)/2, my = (L + 1)/2>

2. If the total angular momentum .J is given, the state |[nL;) corresponds to the
substate with the maximal magnetic quantum number, |nL;) = [nL,;, m; = J).

3. For two-atom states, the notation |S1,.52) lists the state of atom 1 followed by
that of atom 2. For example, [43D,43D) indicates both atoms are in the [43D)
state.

4. The two-atom state |S1,S52) in the case |S1) # |S2) is identified with the
symmetric superposition |S1, 52) = % (1S1,52) +152,51)). Since the Hamil-
tonian is symmetric under particle exchange (atom 1 <> atom 2) and the initial
state is the symmetric state |11), only these symmetric states are populated.

Within the Rydberg manifold, a Forster resonance occurs between the states
|43D,43D) and [45P,41F). By restricting the dynamics to these two pair states, one
interaction cycle transforms the initial state |43D,43D) into — |43D,43D). Reapply-
ing the pulses with adjusted phases then coherently deexcites the system from the
Rydberg state to — |11). If both atoms are initially in |0), no evolution occurs. For the
case where one atom is in |0) and the other in |1), the atom in |0) remains unchanged,
while the atom in |1) is excited to the Rydberg state and subsequently deexcited back
to |1) without phase alteration. This sequence implements a controlled-Z (CZ) gate.
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However, as illustrated in Fig. (b), additional near-resonant pair states perturb
the otherwise isolated Forster resonance at an interatomic distance of » = 2.5 nm.
This specific distance is chosen because it enables the entangling gate to operate on
nanosecond timescales, while only two perturbing states acquire populations exceeding
0.1 % during the evolution.

The state |42F, 44P) is detuned by A = 2.4 GHz and couples to |43D,43D) with
an interaction strength of V' = 202 MHz. Additionally, the state ‘41G,45P1 /2> is
detuned by only A = 30 MHz and is weakly coupled to [41F,45P) via a dipole-
quadrupole interaction with a coupling strength of V = 6.8 MHz.

This chapter aims to examine how the interaction between relevant Rydberg pair
states depends on interatomic distance and orientation. It also investigates whether
microwave radiation, previously shown to reduce perturbations from residual electric
fields [326, 327], can stabilize the Forster resonance against nearby off-resonant states.
Stabilizing the resonance in this way could improve the fidelity of the intended CZ
gate.

E.1.1 The effect of positional uncertainty

For entanglement gates applied in neutral atom platforms based on tweezer arrays|29,
304], the atoms typically suffer from positional uncertainty due to the Heisenberg
uncertainty of the motional ground state. This leads to uncertainty both in the
distance of the atoms, as well as in the orientation. We study first the case of
positional uncertainty. When tightly trapped and cooled to the motional ground
state, positional uncertainties as low as 35 nm have been experimentally achieved[306].
For a worst-case scenario, we assume a positional uncertainty of 50 nm. We analyze
the time evolution of a two-atom system initialized in the state [43D,43D) for
entanglement gates at distances of 2.451m and 2.55 um. The overlap between the
instantaneous eigenstates and all states populated above 0.1 % during the evolution
is plotted. Additionally, the total population of these states is plotted and remains
close to 1, as expected. This confirms the numerical accuracy of the code.

The populations of the four relevant states identified in Fig. [E.I(b) remain stable.
However, the dynamics slow down as the distance increases. Consequently, the gate
duration extends from 7ns at r = 2.45 pm to nearly 8ns at r = 2.55 pm.

If the Rydberg states are transferred back to the ground state at 7.7ns at
r = 2.5um, a phase error arises and some population is lost within the Rydberg
manifold. This error can be mitigated by reducing the positional uncertainty, for
example by employing tighter traps. In the current setup, Raman sideband cooling
is employed so that the positional uncertainty is dominated by the spatial extent
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Figure E.2: Effect of positional uncertainty. Time evolution of state popoulations
of pairstates with a population build-up of more than 1% and the sum of their
populations as a function of evolution time ¢. The minimum of the popoulation in
|41F, 45P), which marks the gate duration, is indicated by a black dotted line. (a)
Distance set at r = 2.45 pm. (b) Distance set at r = 2.55 pm.

of the motional ground state, given by o, = \/h/(mw,) [306]. Here, w, denotes the

trap frequency, which scales proportional to v/P, where P is the trap laser power
[301]. Consequently, the positional uncertainty scales as P~*/4. A reduction of the
positional uncertainty by a factor of two therefore requires an increase in trap power
by a factor of sixteen. One alternative would be the use of motional squeezed states,
where a reduction in positional uncertainty is treated for increased momentum uncer-
tainty [328]. Alternatively, the experiment may be performed at a larger interatomic
distance, where the mentioned phase error may be reduced at the cost of a longer
gate duration.

E.1.2 The effect of orientational uncertainty

To investigate the effect of orientational uncertainty, we again assume a positional
uncertainty of 50 nm. If atom 1 is displaced by 50 nm perpendicular to the interatomic
axis, and atom 2 is shifted by the same amount in the opposite direction, the resulting
tilt of the interatomic axis is § = 2 x 25%1;131 = 40 mrad.

In experiments, the quantization axis is defined by a magnetic field with a fixed
direction. This tilt thus corresponds to a shift in the quantization axis. By rotating
the coordinate system by 6 around the axis perpendicular to both the quantization
and interatomic axes, the system becomes equivalent to atoms aligned along the

quantization axis, but with a magnetic field component perpendicular to it.
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Figure E.3: Effect of orientational uncertainty. Time evolution of state popoulations
of pairstates with a population build-up of more than 1% and the sum of their
populations as a function of evolution time ¢. (a) Angle between interatomic axes and
quantization axis at § = Omrad. (b) Angle between interatomic axes and quantization
axis at § = 50 mrad.

In Fig. [E.3] we simulate the time evolution of two atoms initialized in the state
|43D,43D). We plot the populations of all states that exceed a maximum occupation
of 0.1 % during evolution, for two angles between the interatomic and quantization
axis: # = 0mrad and 6 = 50 mrad, representing the best- and worst-case scenarios.

As the angle between the interatomic and quantization axes increases, the overall

dynamics remains largely unchanged, and the gate duration stays close to 7.7 ns.

However, states with different magnetic quantum numbers m; become admixed due to
the magnetic field component perpendicular to the quantization axis. This admixture
reduces the gate fidelity.

To quantify this effect, we define a relevant fidelity F. It assumes that any error
within the four relevant states identified in Fig. can be perfectly corrected. The
quantity F therefore measures the fidelity loss due solely to orientational errors.

F can be understood as the overlap between the system’s state and its state after
a rotation by an angle 6. Geometrically, the overlap of a vector with itself after
rotation scales as cos(f) ~ 1 — 6%/2 for small angles.

For angular momentum states, a rotation by an angle 6 transforms the eigenstate
|7,m) into a superposition of other |j, m’) states, governed by the Wigner d-matrices:

Rla, B,7) . m) = > d), o (B) ™™™ ,m). (E.1)

Here, «, 3, are the Euler angles, and R denotes the rotation operator. A
rotation of the quantization axis by an angle 6 corresponds to the specific choice
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(o, B,7) = (0,0,0). In this case, the overlap between the rotated and original states
becomes:

J

2m
(4, m| R(0,0,0) |j,m) = (cos Z) P'(E’m)(cos 0), (E.2)

where Pj(g’;m) are Jacobi polynomials, and we assume m > 0 [329).
Since this expression depends only on 62, the fidelity F can be approximated for
small 0 as

F~1-—ab (E.3)

1.000+ —— quadratic fit
® numerics

0.998
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Figure E.4: Influence of the angle on relevant fidelity. Population contribution F of
the four relevant pairstates shown in Fig. [E.1(b) as a function of angle 6 between
interatomic axes and magnetic field. Errorbars of are estimated from standard error
of the mean when averaging F in the interval 6 ns < ¢ < 8ns. The admixture of other
states due to the component of the magnetic field perpendicular to quantization axis
is fitted by a quadratic function (solid red line).

We simulate F for angles # = 0,10, 20,30,50] mrad and observe excellent
agreement with a quadratic dependence. From the fit, we extract the coefficient
a = 3.849(5) x 10~% mrad 2

To maintain a fidelity above 99.9 %, which is commonly considered sufficient for
fault tolerance below the surface code threshold of 1%]330], the rotation angle must
satisfy # < 16 mrad. This corresponds to a positional uncertainty of less than 20 nm.
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E.2 A microwave setup for the creation of mi-
crowave radiation with arbitrary polarization

This chapter aims to estimate how microwave radiation can stabilize the previously
introduced CZ gate. To this end, we consider microwave-driven transitions between
the relevant states shown in Fig. [E.1(b), with typical transition frequencies in the
tens of gigahertz. Since several transitions in this frequency range are important,
I briefly present a setup capable of generating such radiation. The focus lies on
achieving high control over both frequency and polarization. We present a setup
capable to generate both o*- and o~ -, as well as linearly polarized radiation, ranging
from 24 GHz to 50 GHz.

To generate circularly polarized microwave radiation, we use the QRH67E horn
antenna from RF-Spin. This antenna features two input channels, with polarization
determined by their relative phase. Circular polarization requires equal power at
both input ports.

The initial part of the setup, illustrated in Fig. [E.5] is designed to produce these
two coherent channels. We employ the Signal Core SC5511B signal generator, which
covers frequencies from 100 MHz to 20 000 MHz, with a maximum output power of
13dBm For optimal signal quality, we operate it at a low power of 0 dBm, where
sideband noise is small. Further amplification is performed at a later stage using a
low-noise amplifier.

Power
@ supply

-

Signal
generator Isolator Amplifier
Wilkinson
Power divider
Connectors:
SMA female  BEE 2.92mm female 8 2.4mm female B 1.85mm female HE  BNC female
SMA male  -mm 2.92mmmale  -mm 2.4mm male - 1.85mmmale -l BNCmale

Figure E.5: Setup for the generation of two phase-stable output channels. Individual
components are marked by gray boxes, while there connectors and cables by colore
bars. Connector legend is shown below the setup.

To protect the signal generator from potentially damaging reflections, it is con-
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nected to the DMI6018 isolator from DiTOM Microwave, which provides more than
13 dB of isolation over the full frequency range from 6 GHz to 18 GHz, thereby support-
ing broad frequency tunability. The output is then amplified using the DR-AN-20-MO
amplifier from Exail, offering an adjustable gain between 28 dB to 30 dB. We operate
it at 28 dB, where the output remains stable even at high amplitudes and frequencies.

The total output power of 28 dBm is split into two equal-power channels with
identical phase. As no passive power divider is both lossless and phase-coherent, one
of these conditions must be relaxed. To prioritize low noise and phase coherence, we
use a Wilkinson divider, which introduces an insertion loss between 2dB to 5dB,
depending on the input frequency. Since we operate below 20 GHz, the expected loss
is 2dB. The resulting output consists of two phase-matched channels, tunable from
0.1 GHz to 20 GHz, each with an amplitude of 13dBm.

Single Sideband
Modulator 4f multiplier

e

Single Sideband

Modulator IF
-
IF 4f multiplier
l AD quadropule horn

antenna

Two-channel waveform
generator

Figure E.6: Setup for the generation of microwave radiation with tunable polarization.
Individual components are marked by gray boxes, while there connectors and cables
by colore bars. Connector legend is shown below the setup.

In order to achieve microwave radiation at arbitrary polarization, we need to adjust
the phases of the individual channels, or in the case of linear polarization, switch each
channel separately on and off. Therefore, we employ single-sideband mixers (SSBs).
A SSB has three connection ports: One input port at high frequency v, which is
called the local oscillator (LO), one input port at an intermediate frequency vy (IF)
and an output port for a radio frequency vi (RF). What the SSB does is it takes the
IF input signal and mixes it with IF signal to produce a new signal at the RF port of
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vr = v + vr. The SSB has in our setup two main purposes:

1. The output power of the RF port is proportional to the IF input power. So by
switching on and off the IF signal, the SSB works as a switch for microwave
radiation.

2. The SSB is phase additive, i.e. the output port adds the phases of the LO and
IF signals.

As shown in Fig. [E.6] each output of the Wilkinson divider is connected to the
LO port of a single-sideband (SSB) mixer, ensuring a common LO phase across both
mixers. The IF inputs are driven by a dual-channel waveform generator, configured
to introduce a constant phase offset A® between its two outputs. Since the LO
phase is identical for both SSBs and the IF signals differ by A®, the resulting RF
outputs also exhibit a stable phase difference of A®. The setup employs the SSB-
0618LXW-1 mixer from Marki Microwave, selected for its broad LO frequency range
from 6 GHz to 18 GHz and low conversion loss of 7.5dB. This mixer uses internal
double-balanced mixers and therefore requires a high LO drive, which is provided
by the Wilkinson divider outputs. The IF signals are generated using a Keysight
33600A waveform generator, chosen for its fine frequency resolution in the MHz
range and its phase-stabilized dual-channel mode, which maintains both a constant
phase offset and equal output power between the channels. Both the SSB mixers and
the isolator limit the maximum RF output frequency to 18 GHz. To reach higher
frequencies, we employ a x4 frequency multiplier, enabling outputs up to 50 GHz.
These frequencies are essential for driving specific transitions within the Rydberg
manifold, as discussed later. The AQA-2156 amplifier from Marki Microwave is used,
as it supports frequencies beyond 50 GHz and offers a broad tuning range from 21 GHz
to 56 GHz. It delivers a stable output power of 20 dBm and strongly suppresses the
frequency-doubled signal by 26 dBc relative to the carrier at the fourth harmonic.
The output is transmitted via a TMM cable from Thorlabs to the quadrupole horn
antenna.

To estimate a typical Rabi frequency achievable in this setup, we consider the
Rydberg transition T;L3D5/2, my = 5/2> — ‘42F7/2, my = 7/2>, which has a transition
frequency of 30 GHz and a dipole matrix element of 1.97 GHz/(V/cm). At this
frequency, the antenna provides a gain of G = 9 dBi, corresponding to 9 dB relative to
isotropic radiation for an input power of P = 20dBm. Assuming the microwave source
is positioned at a distance of d = 1 m from the atoms, the electric field amplitude E
at the atomic position is

E = 26D 0.069 Vem ™. (E.4)

4eged?
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This field corresponds to a Rabi frequency of 136 MHz, expressed in units of frequency
rather than angular frequency. Higher Rabi frequencies can be achieved by placing the
antenna closer to the atoms. Since the electric field amplitude is inversely proportional
to the distance, the Rabi frequency, being proportional to the electric field amplitude,
scales equally. For instance, positioning the antenna at 50 cm increases the Rabi
frequency to 272 MHz, whereas a distance of 2m reduces it to 68 MHz.

In summary, the setup enables frequency generation in the range from 24 GHz to
50 GHz. The lower bound is determined by the minimum frequency at which the SSB
mixers operate reliably. The upper limit is set by the maximum frequency the TMM
cable can transmit effectively. Coarse frequency tuning is achieved by adjusting the
signal generator directly. Fine tuning is performed via the two-channel waveform
generator, which also serves as a computer-controlled switch. The polarization of the
emitted radiation depends on the configuration of the waveform generator outputs.
Linearly polarized radiation is generated when one channel is turned off and the other
delivers finite power. Circular polarization occurs when both channels are active with
a phase difference of £7/2.

E.3 An algorithm to construct an effective time-
independent atom-light Hamiltonian

In the previous section, we presented a setup for generating microwave radiation with
tunable polarization. We now turn to its interaction with Rydberg atoms. For clarity,
we first consider the case of a single atom exposed to microwave radiation. We then
extend the analysis to a pair of interacting Rydberg atoms.

For our analysis, we consider an atom described by an internal Hamiltonian H,
where the energy eigenstates are labelled by |[nL;mj). The atom is exposed to an
electromagnetic wave with a time- and space-dependent electric field, a monochromatic
plane wave given by

E(rit)=| E, | exp (z (/;: ST — wt)) + c.c., (E.5)

where k is the wavevector, w the angular frequency, and the components F,, I, I,
determine the polarization and amplitude of the field. We will follow from here the
standard approach of linear electrodynamics, where for the calculations we neglect
the complex conjugation part, and reintroduce it only at a final step. This yields the
same math as long as only linear operations are performed on the electric field.
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E.3.1 Electric dipole and quadrupole transitions

As the interaction of atoms with electromagnetic radiation is textbook knowledge
[179], here we will shortly review the most important assumptions and approximations
relevant for the numerical simulations we want to implement. For most parts, we
will follow [179]. In the semiclassical framework, the atom is modeled as a charge
distribution p(7) interacting with the electric potential ®(7) of the electromagnetic
wave introduced above. The interaction energy is given by the integral

/ &r p(7)D(7). (E.6)

Expanding ®(7) in a Taylor series around the origin yields a multipole expansion:

= [ o) (9(0) ~ 7 B(0) = 3rir0iEi(0) + O(7F) )

where we used E = —V®.
Evaluating the integrals defines the multipole moments:

Q= [drp®, d=[dro@r Qu= [drp (3rir g%, (B)

Thus, the interaction energy approximates to

U =Qd(0)— E0)-d— éaiEj(o)Qij. (E.8)

Since the atom is neutral, ) = 0 by definition. The leading term is therefore
the dipole interaction —FE (0) - d. The next significant contribution arises from the
quadrupole interaction involving the quadrupole moment ();;. We include this term
explicitly, as it plays a crucial role in the analysis of the Rydberg gate, particularly
influencing the state [41G).

To gain deeper insight into these terms, we express them in the spherical basis. This
representation offers an intuitive interpretation: the dipole moment corresponds to
the absorption of a single photon from the electromagnetic field, while the quadrupole
interaction can be viewed as a two-photon process, involving one photon from the
oscillating electric field E and another associated with its momentum .

We first note that as the atomic Hamiltonian Hj is isotropic, the angular mo-
mentum eigenstates are also energy eigenstates. For this reason, it is convenient to
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describe both the atomic wavefunctions and the electric field using spherical basis

vectors, defined as follows:

. 1 ,
é_=—|—1
V2o
0
éo=10
1
and the components are given by
1
E, =——F(FE,
+ \/5(
1
E =—(FE,+1
\/5(
Ey

(E.10)

(E.11)

(E.12)

(E.13)

(E.14)
(E.15)

The same can also be applied for the electric dipole operator d= er, where e denotes

the electron charge

d,y = (d +1id,) = em/?Yll
4

(d —id,) = em/%Y}l

=d, = ery| 47TY1
3

aw %\

(E.16)
(E.17)

(E.18)

This framework reveals the connection between spherical harmonics Y2 and the dipole
operator expressed in the spherical basis. Since angular momentum eigenstates are
described by spherical harmonics, an operator proportional to Y, induces transitions
changing the orbital angular momentum quantum number L by ¢ and the magnetic
quantum number m; by m. In the semiclassical picture, the dipole operator in the
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spherical basis corresponds to the absorption or emission of a single photon, where the
photon’s polarization determines the selection rules and the direction of the angular
momentum change.

Because the quadrupole and higher-order terms involve spatial derivatives of the
electric field, the dipole term is the sole contributor in the multipole expansion when
the electric field is spatially homogeneous. This assumption, known as the "dipole
approximation" [179], is generally well justified for optical-wavelength laser radiation,
since the wavelength is much larger than the atomic charge distribution.

In the spherical basis, the interaction thus reads

Udipole = —dE(0) = — (Eydy + E_d_ + Eydy) exp(—iwt) (E.19)

In the spherical basis, all polarization components of the electric field do clearly couple
to only one respective component of the dipole operator. To perform calculations
at higher accuracy where perturbations due to electric quadrupole transitions may
become significant, we extend the same framework to the quadrupole interaction. We
first calculate the spatial derivative of the electric field as 0;E;(0) = ik; £;(0). This
leads yields the quadrupole interaction energy

Uquadrupole = —Z/6I€IEJ(O)QU exp(—iwt) (EQO)
in the cartesian basis, and
Uguadrupote = —1/6kg, By (0)Qgyq exp(—iwt) (E.21)

where we use the Einstein summation convention. Expressing the quadrupole moment
tensor Q;; in the spherical basis yields the matrix

V6R: R: /3R
Quuar = R(2) \/GRQ_Q \/332_1 , (E.22)
V3R? \3R?*, 2R?

where the regular solid harmonics are defined as

41
R) =[5y 170, 0). (.23)

This form highlights that a quadrupole transition can be interpreted as a "two-
photon" excitation process: one unit of angular momentum is contributed by the
polarization of the electric field, and another by the momentum of the propagating
wave. This momentum from the propagating wave is proportional to ’/;‘ = w/ec, where

the factor of 1/c ~ «, where « is the finestructure constant, shows that quadrupole
transitions are weaker than dipole transitions.
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E.3.2 Magnetic dipole transitions

According to Maxwell’s equations, every electromagnetic wave consists of both an
oscillating electric field and a corresponding magnetic field. Applying Faraday’s law
to the plane wave introduced above yields the magnetic field as

s =

B(7,t) = = x E(F,t) (E.24)

S

This expression shows that the magnetic field is in phase with the electric field but
lies in a plane perpendicular to it. As a consequence, when the the electric field is
circular polarized, the magnetic field is so as well. When the electric field is linearly
polarized, the magnetic field is also linearly polarized, but in a plane perpendicular
to the electric field.

A similar approach as above for the electric interaction energy, replacing the
charge distribution with a current distribution and the scalar potential & with the
vector potential A, leads to the magnetic interaction energy [179]. In the dipole
approximation, this contribution is given by

Umag = — (Bypy + B_pi— + Bopig) exp(—iwt) (E.25)

where fi denotes the atomic magnetic dipole moment, and again, each component
in the spherical basis corresponds to a polarization of the magnetic field. As the
amplitude of the magnetic field is proportional to |k| /w = 1/¢ ~ «, the strength of the
magnetic dipole transitions is also suppressed by a factor of o, and thus the magnetic
dipole transitions have a strength similar to the electric quadrupole transitions.

E.3.3 The Floquet Hamiltonian

The complete Hamiltonian that describes the atom-light interaction is thus given as

1 1
W 1 )
Hy = — Z (quEqE + Z& Z T S C#q}qu}s) exp(—iwt) + h.c.

gp=-1 qr=-1

(E.26)

where ¢g takes into account that for ¢g = 0, the magnetic field is linear polarized
orthogonal to the m-polarized direction, and thus for ¢g = 0, we define pig;—0Eg—0 =
i By + p_FE_. In the circular polarized cases, g = qg = £1. The Hermitian
conjugate stems from reintroducing the complex conjugate part of the electric field.
In a complex multi-level system, multiple near-resonant transitions can generally

be present, as illustrated later in Fig. [E.7 Consequently, counter-rotating terms may
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induce dynamics on other near-resonant transitions, and multiphoton processes may
occur. Therefore, in such systems, the rotating wave approximation is typically not
valid [179]. Instead, we apply the Floquet theorem, which solves the dynamics of a
periodically driven system exactly, and which is reviewed in the context of many-body
physics in 331} 332], and in the case for a two-level system in [333]. For the following
discussion, we will mainly follow [332]. The idea behind the Floquet theorem is that a
periodic Hamiltonian that satisfies H(t) = H(t 4+ T'), where T is the period time, can
be replaced by a time-independent Floquet Hamiltonian Hp such that the dynamics
for the multiple integers of the period time, the time evolution can be replaced by an
evolution with the Floquet Hamiltonian, i.e.

T exp (- / ' H(t)dt) — exp (—iHT), (E.27)

where 7 denotes the time-ordering operator. Our goal is to find a numerical expression
of Hp, as it accurately covers the dynamics on every integer multiple of T. For
radiation at 24 GHz, which is the lowest frequency we can generate with the apparatus
presented above, T' &~ 4 ps, which is three orders of magnitude smaller compared
to the the experimental timescales of 4ns to 8ns. The Floquet-Hamiltonian thus
captures the, compared to T', slow dynamics, which are relevant for the gate fidelity,
while fast oscillations on timescales shorter than 7' are averaged out.
To numerically calculate Hp, we proceed by rewriting the Hamiltonian [E.26] as

H = Hy+ Hy, = Hy + V exp(—iwt) + VT exp(iwt) (E.28)

The Hamiltonian is of the form H(t) = H(t +T') with T'= 27 /w. According to
the Floquet theorem, due to this discrete time-translation symmetry, the eigenstates
|W,,) follow

(W, (1) = e [@u(1)) s | Du(t +T)) = |Du(1)) (E.29)

where €, is the quasienergy of the Floquetstate ®,,. Plugging this back into the
Schrédinger equation, we find

(en + Zi) 1®,(1)) = H(t)®, (1) (E.30)

Performing a Fourier series both on the Floquet states |®,(t)) = 300 e~ imwt ‘¢£Zm)>

and on the Hamiltonian H(t) = >°_ e~ (™ and plugging the results into the
Schrodinger equation yields

(n -+ ) |6f) = S H 0 |ofm) (E:31)
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By expanding the Hilbert space by "stacking up" the ‘¢$lm)> for all m at a fixed n and
subtracting the mw contribution for each block, we obtain an eigenvalue equation
[332]

- HED H(2) . : :
HO HO —my HEY @) ™)
HO  HO  HO _ (i .| e | T ] g | (E32)

In our case of Eq. [E.28] the only non-vanishing components of H™ are found for
m = 0, =1, leading to a tri-diagonal matrix, which we truncate at m = £npnoton

Hy + Nphotonw |4 0
Vi Hy+ (nohoton — 1wV
H= , 0+ ( phot ) , (E.33)
0 L. %4l Hy— MphotonW

It becomes apparent why we chose the name nppoton. The atom-light interaction term
V' can be interpreted as the term where one virtual photon of energy w is absorbed
from the drive, thus increasing the energy of the bare hamiltonian by w. The states
we obtain by diagonalizing this Hamiltonian are the ’qbglm)>, where we write down H
by taking 2npneton + 1 exact copies of the basis of Hy. This allows us to extract the
exact time-tependence of a single Floquet state approximately:

Mphoton

@) ()= > e o) (E.34)

M=—Nphoton

This summation is possible because for every copy of the Hamiltonian, we used an
identical basis. As we are not interested on the dynamics faster than T, it is sufficient

to calculate
M photon

|(I)n> = |¢)n<t = O)> = Z ’Qb?) (E'35)

M=—Nphoton

However, from the dimension of the Hamiltonian, it becomes evident that by this
construction, we obtain (2nphoton + 1) dim(H) eigenvectors, where we expect only
dim(H). This redundant information comes from the definition of the |®,(¢)), and is
an artifact of the discrete time-translation symmetry.
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Taking the Floquet theorem [E.29 and shifting the quasienergy ¢, by a multiple
integer of w, we find

WD) = e 3T e gl

emlen § gy e
— e ilentm/w)t i e*imwt‘¢7(1m+m’)>

Thus, eigenvectors with the same eigenenergy ¢, up to multiple integers of the drive
frequency represent the same Floquet eigenstate. As such, these states are not linear
independent, and at time ¢ = 0, even identical, as >~

We thus devise the following method to numerically extract the physical F
eigenstates:

oquet

1. We create the expanded Hilbert space and the diagonalize the Hamiltonian
and obtain (2nppeton + 1) dim(H) eigenvectors with (2nphoton + 1) dim(H)
entries each. For each eigenvector, we store the corresponding eigenenergy.

2. We numerically calculate the Floquet eigenvector at time zero, which corresponds

to a block-wise summation of components within each individual eigenvector.

This leads to (2nphoton + 1) dim(H) eigenvectors with dim(H ) entries each. Each
eigenvector is now presented in the basis of Hy and V.

3. For each eigenenergy, we add or subtract multiple integers of w until the
eigenenergy is in an energy window of range w. As the procedure is independent

of the choice of the window, for convenience we use the window (—w/2,w/2).

We thus obtain an array of quasienergies for each of the (2npnoton + 1) dim(H)
states.

4. We sort the quasienergies in increasing order, and group them in packages of
2Nphoton + 1. In the limit of nppeton — 00, the quasienergies in each of these
windows should be exactly identical. Due to truncation, the exact quasienergy
may vary slightly. We thus keep only a fraction p of the quasienergies in the
center of each of the 2n,n0t0n + 1 package, as these values are almost identical
and do not suffer from the truncation, while the highest and lowest value are
stronger affected by truncation. For each package containing p (2nphoton + 1), We
take the mean and standard deviation of the mean as the numerically estimated
value of the Floquet quasienergy e¢,.
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5. We sort the eigenvectors in the exact same way as the quasienergies, and obtain
packages of p (2npnoton + 1) eigenvectors. All of these vectors should be identical.
We test this assumption by grouping these column vectors into a matrix and
perform a singular value decomposition (SVD) on this matrix. We test that this
matrix has rank zero, and the basis of this space is returned by the one-column
matrix v in the SVD. This value u is the Floquet state to the quasienergy e.

We thus arrive at dim(H) quasienergies €, with corresponding Floquet states |u,,),
given in the basis specified for H and V. The Floquet Hamiltonian is thus the
diagonal matrix containing all quasienergies ¢, on the diagonal, and the basis of the
matrix is given by the corresponding Floquet states u,. This procedure is applicable
to all Hamiltonians of the form [E.28 with one caveat: If there are | degenerate
quasienergies, the eigenvectors in the p (2nphoton + 1) package are not identical, as
they are linear combinations of the [ basisvectors spanning the degenerate subspace.
We thus need to adjust the algorithm in order to be able to detect these degeneracies.
Therefore, we devise the following procedure after step 3.:

1. Sort the quasienergies in increasing order, and group them in packages of
2nphoton + 1.

2. Setl=1

3. Take the next package of [ (2nphoton + 1) quasienergies. Keep only the pl(2npnoton—+
1) central values.

4. Construct a matrix of the eigenvectors corresponding to these values. Perform
an SVD on this matrix. If the rank of the matrix is larger than [: Increase
I — 141 and go to 2.

5. If the rank equals [, the matrix U from the SVD contains in each column one
eigenvector in the degenerate subspace. The corresponding Floquet energy is
calculated by the mean of the pl(2nphoton + 1) quasienergy values.

This method thus enables the construction of the Floquet Hamiltonian. However, the
SVD numerically needs to distinguish the value zero from numerical errors. In the
SVD, we say a value if zero if its modulus is below the tolerance. The effectivity of
the algorithm thus depends on an elaborate choice of the tolerance. If we take for
example as tolerance the machine precision, the matrix will always have full rank,
and the algorithm will not work.

In a best case scenario, there should be no quasienergy degeneracies. The problem
of degeneracies arises in two cases:
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o Two levels of Hy differ numerically exactly (close to machine precision!) by the
drive frequency w and are not! coupled by V. This case is extremely rare.

» Two levels of Hy are numerically exactly (close to machine precision!) degenerate
and are not! coupled by V. In the case of a single atom, this is also almost
never the case, while in the two-atom case, this happens multiple times, as will
be discussed later. We will discuss how the validity of the numerics are verified
in this case later.

If the incident radiation is weak, its effect on the system remains perturbative. In
this regime, each Floquet eigenvector can be uniquely associated with the bare atomic
eigenstate to which it has the largest overlap. This identification provides a natural
labeling scheme for the dressed states. The corresponding Floquet eigenenergies then
represent the energy shifts of these dressed states.

E.4 Numerical calculation of Rydberg atoms in
the presence of a microwave drive

E.4.1 The effect of microwave radiation on a single multi-
level Rydberg atom

We begin by validating our algorithm on a single Rubidium atom. This analysis
focuses on the four relevant states introduced in Fig. [E.I[b). Based on that level
diagram, we define two main objectives:

1. Detune the two-level state ‘41G,45P1 /2> from resonance. Since the |41G) state
has negligible dipole-coupling to low L states, the microwave drive primarily
affects the ’45P1 /2> component.

2. Tune the interaction dynamics between the Forster resonances |43D,43D) <«
|41F,45P) and [43D,43D) <> |42F,44P). These processes occur on a megahertz
interaction scale, and thus require light shifts of comparable magnitude on the
participating states to significantly alter their dynamics.

We now shift our focus from the two-atom level diagram in Fig. (b) to the
single-atom level structure shown in Fig. [E.7] The pair states relevant for the Rydberg
interaction are marked by green arrows. To strongly influence the dynamics between
the two Forster resonances, we propose applying microwave radiation near-resonant
with the |43D) <> |42F) transition. This approach allows simultaneous tuning of the
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detuning for both resonances. The microwave field is assumed to be o -polarized,
as required by selection rules. To suppress quadrupole coupling to the [41G) state,
we consider light propagating along the z-axis, i.e., k= ko€o, which restricts allowed
quadrupole transitions to those with Am; = +1. Moreover, both the |41F) state
and all states in the 45 manifold exhibit strong electric dipole couplings to nearby
levels. As a result, these states are expected to experience large lightshifts.

—-18501 42G

—1900 A

FE[GHz]

—1950 A

44S

42D

—2000 ~
43P

-1/2 1}2 3}2 5}2 7}2 9}2 1i/2

mj

Figure E.7: Level diagram of the most relevant states for a single atom. P-states are
shown as blue, D-states as gray, F-states as orange, G-states as red, and H-states as
black bars. Green arrows denote the transitions to the pair states as shown in Fig.
E.1|(b). Red lines indicate transitions nearly resonant to the targeted transition.

All near-resonant transitions that couple to single-atom states populated during
the entanglement gate are indicated by red arrows. In Tab. [E.I] we list all the
transition frequencies we calculated for a single Rubidium atom at an external field
of 3G, along which we choose to be aligned to the z-axis.

We observe that all these transitions are, up to a range from 1GHz to 4 GHz,
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Initial State Final State Transition Frequency Dipole Moment

[GHZ] GHz/V /cm
43 P) |42D) 29.28 1.82
|42D) 41F) 31.89 1.87
|44P) |43D) 27.22 1.91
|43D) 42F) 29.66 1.97
|45 P) |44D) 25.34 2.00
|44 D) 43 F) 27.63 2.06
45P, ) [44Ds5 ) 26.34 1.81
45D35) 43 F%)) 27.77 1.99

Table E.1: Transition properties between the adressed single-particle states.

resonant with one-another, and that the dipole moments, relevant for coupling
strength, is similar, thus leading to similar on-resonance Rabi frequencies on all these
transitions.

We first want to test that our algorithm works on a single atoms. Therefore, we
construct a Hamiltonian including the states depicted in the leveldiagram in Fig.
We then extract the electric dipole and quadrupole moments as well as the magnetic
dipole moments to calculate

L
V=_E <d+ 4 Cmék%) (E.37)

where E is the strength of the electric field. We take the transition [43D) <> |42F)
as a reference and define the detuning as the difference of the microwave frequency
with respect to that transition. We also characterize the electric field strength by the
on-resonance Rabi frequency (2 on that transition. As a consequence, we calculate the
free parameters E and k in the construction of V' in Eq. as a function of ) and
A. For the algorithm to calculate the Floquet Hamiltonian, we choose nppoton = 5 and
p = 0.2. As for the single atom we are mainly interested in the spectrum, we omit
the full construction of the Hamiltonian, and construct only the Floquet energies.
The light shift of a certain state is calculated by subtracting the obtained Floquet
energy from the Floquet energy at A = = 0.

Before discussing the results, we consider the general expectation that the relevant
atomic states may either couple resonantly to a single nearby state or far off-resonantly
to a few distant states, depending on the drive frequency. In such cases, a two-level
approximation is often valid.
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Figure E.8: Lightshift of different staes in Rubidium. The lightshift is shown as a
function of detuning A and Rabi frequency € on the [43D) <> |42F) transition. (a)
The lighshift of the state [43D). (b) The lightshift of the state |42G).

Within this approximation, and under the rotating wave approximation (RWA),
the light shift AFE of a state coupled to another by a microwave field detuned by A
from resonance is given by

QQ
AE = — E.38
A (E.38)

provided that the detuning satisfies A > €2, where 2 is the on-resonance Rabi
frequency.

The results are presented in Fig. [E.8, For the level shift of the state [43D), we
observe the expected i scaling predicted by the RWA . Furthermore, the light
shift exhibits a quadratic dependence on the Rabi frequency €2 for sufficiently small
). Two resonances appear where the sign of the light shift changes. The first, at
A = 0, corresponds to the |43D) <> |42F) transition. The second, near A ~ —2 GHz,
is associated with the [43D) <» |44P) transition. Between these two resonances, the
|43D) state experiences negligible light shift, while the |[42F) and |44P) states show
increasing light shifts with €2. This regime provides an optimal point for tuning
the energy of the |42F, 44 P) two-level system without significantly perturbing the
|43D,43D) state.

As a reference for a weakly interacting state, we chose the state |42G). Here, we
observe that the lightshift is almost independent of the detuning, and shows only
a weak linear increase, which signals in the light of the RWA a coupling to a far
off-resonant state. The fact that even at high drive amplitudes, corresponding to a
200 MHz Rabi frequency on the [43D) <« |42F') transition, the light shift increases
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quadratically with the electric field, further corroborates this.

A brief analysis confirms that the observed light shift originates primarily from
far off-resonant electric dipole transitions, rather than from electric quadrupole
or magnetic dipole couplings. For an electric field strength of £ = 0.1Vem™!,
corresponding to §2 = 200 MHz on the [43D) <+ |[42F) transition, the Rabi frequency
of the dipole transition between [42G) and [42F) is 224 MHz. At a detuning of
27.5 GHz, this results in a light shift of 0.5 MHz, which constitutes the dominant
contribution to the total light shift of 1.5 MHz. A comparable contribution arises
from the transition to ‘42]—[11/2, my = 11/2>.

In contrast, the strongest electric quadrupole transition, to ’42G9/2, my = 7/2>,
yields a Rabi frequency of only 3.0kHz. Given a detuning of 28.6 GHz, the resulting
light shift is merely 0.08 mHz, and thus negligible. The strongest magnetic dipole
coupling to [42F") produces an even smaller light shift of 0.03 mHz. This demonstrates
that both magnetic dipole and electric quadrupole contributions are of the same
negligible order of magnitude.

E.4.2 The effect of off-resonant microwave radiation on an
ultrafast Rydberg gate

As the Floquet energies are accurately described by the Floquet quasienergies we
constructed, we now apply the same method to the case of two interacting Rydberg
atoms. We construct the two-atom Hilbert space as the product space of two single-
atom Hilbert spaces. In order to reduce computational complexity, we truncate the
single-atom Hilbert space to the 12 states listed in Tab. [E.1] together with the state
|41G). In order to be at the optimal point where the pairstate [43D,43D) experiences
a negligible light shift, while the pairstate [42F, 44 P) shifts strongly, we choose to
operate at a detuning of A = —1 GHz, corresponding to a microwave frequency of
27.66 GHz. At this point, we examine the influence of the power of the microwave
radiation. Therefore, we construct V' according to Eq. for both 2 = 1Hz and
) = 1 MHz. The construction for 2 = 1 Hz serves as a reference case to check that,
at negligible field, the dynamics without field, as seen in Fig. [E.3|a), is reproduced.
We choose 2 = 1 MHz to test the behavior of the two-atom system at moderate drive
power.

We construct the two-atom Hamiltonian including all pairstate combinations from
the single-atom Hamiltonian, and take multipole interactions up to dipole-quadrupole
interactions into account. We choose a distance of r = 2.5 pm and assume a perfect
alignment of # = 0 with the external magnetic field of 3 G. This constructed two-
atom Hamiltonian Hiyo_atom serves as the time-independent Hamiltonian for the

E.4 NUMERICAL CALCULATION OF RYDBERG ATOMS IN THE PRESENCE OF A
MICROWAVE DRIVE

225



Floquet algorithm. The time-dependent part arises solely due to the individual atoms
interacting with the microwave drive. We thus obtain for the time-dependent part of

the Hamiltonian
%Wo—atom =V RITI+1IQ® V (E39)

From here, we can apply our algorithm that we used to calculate Floquet quasienergies
and Floquet States. For the algorithm, we truncate at nppoton = 3, and use only a
fraction of p = 0.45 of the quasienergies in a package. In order to test the consistency
of the algorithm, we apply two sanity checks:

1. We test the orthogonality of the obtain Floquet states. We can group the Floquet
states to a quadratic matrix B of dimension dim(Hiwo—atom) X dim(Hiwo—atom)
and varify for both values of {2 that

max |(B'B—1) |<1E -5 (E.40)

,J ij

2. We test the independence of the results on the tolerance. In both cases, we
obtain the same Hamiltonian if we vary the tolerance from 5 x 107 to 1 x 107!,
which are all orders of magnitude higher than the machine precision.

—— |Rb, 41 F_7/2, mj=7/2>|Rb, 45 P_3/2, mj=3/2> ( b) —— |Rb, 41 F_7/2, mj=7/2>|Rb, 45 P_3/2, mj=3/2>

IRb, 42 F_7/2, mj=7/2>|Rb, 44 P_3/2, mj=3/2> 1.0 |Rb, 42 D_5/2, mj=5/2>|Rb, 43 F_7/2, mj=7/2>
— IRb, 43 D_5/2, mj=5/2>|Rb, 43 D_5/2, mj=5/2> —— |Rb, 42 F_7/2, mj=7/2>|Rb, 42 F_7/2, mj=7/2>
— |Rb, 41 G_9/2, mj=9/2>|Rb, 45 P_1/2, mj=1/2> —— |Rb, 42 F_7/2, mj=7/2>|Rb, 43 D_5/2, mj=5/2>
0.8 —— |Rb, 42 F_7/2, mj=7/2>|Rb, 45 P_3/2, mj=3/2>
—— |Rb, 43 P_3/2, mj=3/2>|Rb, 44 D_5/2, mj=5/2>
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Figure E.9: The effect of microwave radiation. Population of all states with a
contribution of more than 1% are shown as a function of evolution time. (a). The
Rabi frequency is set to {2 = 1 Hz to test for the consistency of the simulation method.
(b). The Rabi frequency is set to {2 = 1 MHz.

For the time evolution, the system is assumed to be initially in the state |[43D,43D),
rather than in the dressed state with the largest overlap. This choice is justified
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because the excitation pulse has a Rabi frequency of 60 GHz, which significantly
exceeds any Rydberg-Rydberg or Rydberg-microwave interaction energy scale. At a
microwave Rabi frequency of 1Hz, Fig. [E.9(a) shows that the time evolution of the
Rydberg states in the entanglement gate remains unchanged, as expected.

At a moderate resonant Rabi frequency of 1 MHz on the [43D) <> |42F’) transition,
detuned by 1 GHz, the numerical calculation suggests that multiple additional levels
become off-resonantly populated, as shown in Fig. [E.9(b). Remarkably, these levels
exhibit significant dynamics on sub-nanosecond timescales, even though Rydberg
interactions are on the order of 100 MHz and the drive frequency is detuned by at
least 1 GHz from all single-photon transitions in the Hamiltonian of a single atom.

On possible explanation might already be found in the highly nonlinear dynamics
of multilevel atomic systems. To further illuicated on this interpretation, we focus
on the dynamics of the state ‘41G, 45P; /2> in the absence of microwave radiation.
As shown in Fig. [E.1|(b), this pair state is only weakly off-resonantly coupled, with
a coupling strength of 6.8 MHz, to [41F,45P), which in turn is strongly coupled to
|43D,43D). Assuming the states [43D,43D) and |[41F,45P) are nearly degenerate, a
simple Rabi model predicts that the population build-up over 8 ns, given a detuning of
30 MHz, is approximately 0.3 %. This prediction overestimates the actual population,
since not all population is initially in |[41F,45P). However, in our simulation we
observe the population exceeding even 2 %.

We conjecture that the unexpectedly large amplitude may stem from an inter-
ference between two Rydberg interaction coupling pathways. The first pathway
is

143D, 43D) + |41F, 45P) > ‘41G,45P1/2>,

and the second is
[43D,43D) «» [42F,44P) <> [41G, 45Py)5) .

We thus may conjecture that in the presence of microwave radiation, similar
effects may arise from multiple coupling paths connecting states such as [43D,43D)
and |42F,42F). The Rydberg interaction strongly couples |43D,43D) to |42F,44P),
which is near two-photon resonance with |[42F,42F") via the microwave drive. Ad-
ditionally, the microwave off-resonantly couples |43D,43D) directly to |42F,42F),
detuned by 2 GHz. We hypothesize that this complex multi-level structure, combined
with GHz detunings, might be able to produce fast dynamics and unexpectedly large
amplitudes, analogous to the population growth observed in ‘41G, 45 P, /2> on short
timescales in the absence of microwave radiation. However, the dynamics exhibit large
population variations exceeding 40 % on sub-nanosecond timescales. Therefore, it is
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possible that, in the calculation of the Floquet eigenstates, some eigenvectors were
numerically miscalculated due to the mentioned problem of degenerate subspaces,
which could explain the observed strong dynamics.

We summarize that the [43D) <» [42F') transition is the most effective for shifting
the pair state |42F, 44 P) relative to |43D,43D), which is already visible from a single
atom calculation. However, this transition is near-resonant to many other transitions.
As a result, and suggested by the two-atom numerics, the system’s dynamics cannot
be accurately described by a model involving only three pairstates, making this
transition unsuitable for realizing a high-fidelity CZ gate.

To improve the fidelity of a potential CZ gate, it is advantageous to minimize the
number of involved states. One promising approach is to near-resonantly drive the
|455) <> |45P) transition, which has a frequency of 43.12 GHz, and is nearly resonant
with the ’455',1 /2> <~ ’45]31 /2> transition at 41.98 GHz. This enables selective shifting

of the pair states ’41G, 45P1/2> and |41F,45P).
An optimal light shift occurs when the frequency is slightly red-detuned from
the ‘455_1/2> — ‘45P1/2> transition, for instance at 41.5 GHz. At this detuning,

the pair state ‘41G, 45P1/2> is shifted out of resonance, while [41F,45P) is only
slightly affected. Alternatively, blue-detuning the frequency above the [455) < [45P)
transition, for example at 43.7 GHz, enhances the lightshift on |[41F,45P), while
still shifting ’41G, 45 P, /2> out of resonance. This stronger lightshift may also give
a further possibility to change the Forster detunings of the two Forster resonances
depicted in Fig. |[E.1|(b).

However, this blue-detuned approach also increases the admixture of the state
|455,41F) in the gate dynamics. Since |45S5,41F) experiences only weak dipole-
quadrupole interactions to [43D,43D) and has a larger Forster detuning from
|43D,43D), it might be treated as approximately non-interacting during the gate
operation. Therefore, dressing this transition may improve gate fidelity without
significant admixture of other states.

E.4.3 Conclusion

In summary, complementing the main body of this thesis, we investigated the in-
teraction between two strongly interacting Rydberg atoms beyond the two-level
approximation, treating the atoms as multilevel systems. We explored how these
interactions can be harnessed to implement a CZ gate on a nanosecond timescale.
First, we studied the impact of positional uncertainties, finding that at a separation
of 2.5 um, the positional uncertainty must remain below 16 nm to limit gate fidelity
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loss to less than 1 x 1073.
Next, we examined tuning Rydberg interactions via microwave radiation, aiming

to modify the Forster defects between different pair states in the Rydberg manifold.

To calculate light shifts affecting these defects, we developed an algorithm to construct
the Floquet Hamiltonian and devised a method to overcome challenges posed by
accidental degeneracies. This algorithm can be further improved by separately
treating the two symmetry sectors arising from particle exchange, thereby avoiding
most degeneracies.

Testing the algorithm on single-atom light shifts, we identified that driving the
143D, 42F) transition with a detuning of A = —1 GHz optimally tunes the Forster
resonance between pair states relevant for the CZ gate. We analyzed how this drive
influences gate fidelity: small microwave amplitudes leave the Rydberg dynamics
largely unaffected, whereas the numerics suggest that already moderate amplitudes
might induce population admixture of many additional Rydberg states, which would
further reduce instead of improve the overall gate fidelity.

To improve gate stability, we proposed microwave dressing blue-detuned from
the [45S) <+ |45P) transition, arguing that this approach may avoid the couplings
to many untargeted Rydberg states as is likely the case for the [43D) < [42F)
transition.
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