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Abstract

Introduction:
Radiomics aims to extract quantitative features from medical images that capture
underlying biological and clinical characteristics. Despite its promise for precision
oncology, radiomics research continues to suffer from poor reproducibility and limited
generalization across studies, software, and imaging modalities. This thesis addresses
these fundamental limitations by systematically analyzing how methodological de-
sign choices—such as feature extraction, preprocessing, and model selection—affect
the robustness and transferability of radiomic biomarkers. To enable this large-scale
methodological investigation, I developed the Radiomics Processing Toolkit (RPTK),
a fully automated and open-source framework that standardizes radiomics experi-
mentation and benchmarking across heterogeneous datasets. Using RPTK, I con-
ducted comprehensive evaluations on seven open-source cancer imaging cohorts and
demonstrated the framework’s applicability in two clinical studies on lung cancer im-

munotherapy response prediction and colorectal neoplasia detection.

Materials and Methods:
My work integrates radiomics analyses performed on retrospective data, including
seven public datasets and two proprietary cohorts, comprising 3,189 Computer To-
mography (CT) and Magnetic Resonance (MR) scans from 3,116 patients with a
total of 3,273 segmented regions of interest (ROI). The seven open-source datasets
include retrospective MR and CT cancer imaging data concerning different tasks for
cancer classification from 931 patients. The proprietary data collection include a
multi-timepoint (prior treatment and during treatment) CT dataset for lung can-
cer immunotherapy treatment response prediction (the Predict study) consisting of
73 patients and a large-scale CT liver imaging datasets with 1,997 patients inves-
tigating in colorectal neoplasia detection (LiverCRC study). The mean patient age
was 62 + 17 years, and 53.6 % of participants were male. Radiomics features were
extracted using two independent feature-extraction tools, PyRadiomics and Medical
Image Radiomics Processor (MIRP), enabling standardized cross-extractor compar-

isons in compliance with the Image Biomarker Standardisation Initiative (IBSI). The
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RPTK framework integrates adaptive preprocessing, standardized feature extraction,
and robust feature stability filtering to enhance reproducibility and robustness for
subsequent model training. Six machine learning models were trained to predict tu-
mor malignancy, treatment response, colorectal neoplasia, or cancer subtypes based
on the selected feature sets from each extractor. The performance of RPTK was tested
against a state-of-the-art radiomics tool (AutoRadiomics) and six different deep learn-
ing models.
Results:
Across seven open-source datasets, RPTK outperformed both AutoRadiomics and
deep learning models (Residual Networks (ResNet) and Densely connected convolu-
tional Networks (DenseNet)), achieving a mean test Area Under the Receiver Op-
erating Characteristic curve (AUROC) of 0.81 4+ 0.12 compared to 0.68 £+ 0.15 and
0.60 £+ 0.16, respectively. In the Predict study, longitudinal delta-radiomics analy-
sis with RPTK improved early prediction of immunotherapy response compared to
single-timepoint analyses with RPTK, and the inclusion of clinical variables further
enhanced model performance in RPTK. RPTK achieved a test AUROC of 0.75 + 0.10
using delta radiomics, outperforming AutoRadiomics (0.51 + 0.14) and the best deep
learning model (0.56 + 0.14). In the LiverCRC study, RPTK reached a test AUROC
of 0.86 + 0.04, significantly exceeding AutoRadiomics (0.65 + 0.03) and deep learning
(0.60 + 0.03), demonstrating scalability and generalization in large multi-thousand-
sample datasets. Beyond these comparisons, RPTK also matched or outperformed
12 additional published test AUROC values reported on the integrated open-source
datasets.
Conclusion:

Collectively, the results demonstrate that RPTK provides robust, state-of-the-art pre-
dictive performance across diverse imaging datasets and clinically relevant tasks. Its
modular design enables fair cross-framework benchmarking while maintaining flex-
ibility for clinical data integration and ensuring methodological transparency. The
open-source release of RPTK fosters community-driven validation and supports future
clinical implementation. This work thus represents both a methodological advance-

ment and a step toward reliable, reproducible, and clinically translatable radiomics.



Zusammenfassung

Einleitung:
Radiomics zielt darauf ab, quantitative Merkmale aus medizinischen Bilddaten zu ex-
trahieren, die zugrunde liegende biologische und klinische Charakteristika abbilden.
Trotz des groflen Potenzials fiir die Prazisionsonkologie leidet die Radiomics-Forschung
weiterhin unter einer unzureichenden Reproduzierbarkeit und begrenzten Generalisier-
barkeit tiber verschiedenste Studien, Softwarelosungen und Bildgebungsmodalitaten
hinweg. Diese Arbeit adressiert diese grundlegenden Einschrankungen durch eine
systematische Analyse, wie methodische Designentscheidungen, etwa in der Merk-
malsextraktion, der Vorverarbeitung und der Modellauswahl, die Robustheit und
Ubertragbarkeit radiomischer Biomarker beeinflussen. Zur Ermoglichung dieser grof
angelegten methodischen Untersuchung wurde das Radiomics Processing Toolkit (RPTK)
entwickelt, ein vollstandig automatisiertes und quelloffenes Framework, das Radiomics-
Experimente und Benchmarking iiber heterogene Datensétze hinweg standardisiert.
Mit RPTK wurden umfassende Evaluierungen auf sieben o6ffentlich verfiigharen Kreb-
sbildgebungsdatensétzen durchgefithrt und die Anwendbarkeit in zwei klinischen Stu-
dien zur Vorhersage des Ansprechens auf eine Immuntherapie bei Lungenkrebs sowie

zur Detektion kolorektaler Neoplasien demonstriert.

Material und Methoden:
Die Arbeit integriert Radiomics-Analysen, die auf retrospektiven Daten basieren und
sieben oOffentliche Datensétze sowie zwei proprietare Kohorten umfassen. Insgesamt
wurden 3.189 CT- und MR-~Aufnahmen von 3.116 Patientinnen und Patienten mit
3.273 segmentierten Regionen von Interesse (ROI) ausgewertet. Die sieben Open-
Source-Datensétze enthalten retrospektive MR~ und CT-Bilddaten zu unterschiedlichen
Aufgaben der Krebs-Klassifikation von insgesamt 931 Patientinnen und Patienten.
Die proprietaren Datensdtze umfassen eine longitudinale (vor und wéhrend der Be-
handlung erhobene) CT-Kohorte zur Vorhersage des Immuntherapieansprechens bei
Lungenkrebs (Predict-Studie) mit 73 Patientinnen und Patienten sowie einen grof an-
gelegten CT-Leberdatensatz mit 1.997 Fallen zur Untersuchung der kolorektalen Neo-
plasieerkennung (LiverCRC-Studie). Das Durchschnittsalter der Patientinnen und Pa-

vii
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tienten betrug 62 &+ 17 Jahre, 53,6,% waren méannlich. Radiomics-Merkmale wurden
mit zwei unabhangigen Merkmalsextraktionswerkzeugen, PyRadiomics und MIRP,
extrahiert, um standardisierte Vergleiche zwischen Extraktoren gemafl den Richtlinien
der Image Biomarker Standardisation Initiative (IBSI) zu ermoglichen. Das RPTK-
Framework integriert adaptive Vorverarbeitung, standardisierte Merkmalsextraktion
und robuste Merkmalsstabilitéitsfilterung, um die Reproduzierbarkeit und Robustheit
fiir das anschlieBende Modelltraining zu verbessern. Sechs Machine-Learning-Modelle
wurden trainiert, um auf Basis der extrahierten Merkmale Tumormalignitét, Thera-
pieansprechen, kolorektale Neoplasien oder Krebs-Subtypen vorherzusagen. Die Leis-
tungsfihigkeit von RPTK wurde gegen ein aktuelles Radiomics-Tool (AutoRadiomics)
sowie sechs verschiedene Deep-Learning-Modelle getestet.
Ergebnisse:
Uber sieben Open-Source-Datensitze hinweg iibertraf RPTK sowohl AutoRadiomics
als auch die Deep-Learning-Modelle (ResNet und DenseNet) mit einer durchschnit-
tlichen Test-AUROC von 0,81 4+ 0,12 im Vergleich zu 0,68 + 0,15 bzw. 0,60 + 0,16. In
der Predict-Studie verbesserte die longitudinale Delta-Radiomics-Analyse mit RPTK
die frithe Vorhersage des Immuntherapieansprechens im Vergleich zu Einzelzeitpunk-
tanalysen, und die Einbeziehung klinischer Variablen steigerte die Modellleistung
weiter. Mit Delta-Radiomics erreichte RPTK eine Test-AUROC von 0,75 + 0,10
und ibertraf damit AutoRadiomics (0,51 + 0,14) sowie das beste Deep-Learning-
Modell (0,56 + 0,14). In der LiverCRC-Studie erreichte RPTK eine Test-AUROC
von 0,86 + 0,04 und ibertraf damit signifikant AutoRadiomics (0,65 + 0,03) und
Deep Learning (0,60 + 0,03), was Skalierbarkeit und Generalisierbarkeit in grofien
Datensitzen mit mehreren tausend Fallen belegt. Dariiber hinaus erreichte oder
iibertraf RPTK 12 weitere publizierte Test-AUROC-Werte, die fiir die integrierten
Open-Source-Datenséitze berichtet wurden.
Schlussfolgerung:

Insgesamt zeigen die Ergebnisse, dass RPTK eine robuste, moderne pradiktive Leis-
tung tiber verschiedene Bildgebungsdatensitze und klinisch relevante Aufgaben hin-
weg bietet. Das modulare Design ermoglicht faire Cross-Framework-Benchmarks,
gewahrleistet methodische Transparenz und bietet gleichzeitig Flexibilitat fiir die In-
tegration klinischer Daten. Die frei-verfiighare Veroffentlichung von RPTK fordert
eine gemeinschaftsgetriebene Validierung und unterstiitzt die zukiinftige klinische Im-
plementierung. Diese Arbeit stellt somit sowohl einen methodischen Fortschritt als
auch einen Beitrag zu einer verlasslichen, reproduzierbaren und klinisch iibertragharen

Radiomics dar.
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

Radiomics is a quantitative image parameterization technique and has become an
established approach in oncological radiology [1]. It enables the extraction of high-
dimensional, disease-specific characteristics from standard radiological images, pro-
viding information that extends beyond human visual perception. These quantitative
imaging biomarkers form the basis for machine learning applications that support a
wide range of radiological tasks, including tumor classification, biomarker discovery,
and treatment response prediction.

Despite its promise, the application of radiomics in diverse clinical settings re-
mains challenging. Radiological imaging modalities such as CT and MR are based on
different physical principles and therefore encode distinct information in their image
contrast and gray-value distribution (see Section 2.1). Furthermore, acquisition pa-
rameters such as contrast agent use, MR sequence selection, or reconstruction kernel
choice in CT can strongly influence image appearance and thus affect feature extrac-
tion (see Section 2.1.1 and 2.1.2). Without proper harmonization and standardiza-
tion of image preprocessing and radiomics computation, the extracted features are
not reproducible and are susceptible to such technical biases [2-4]. This sensitivity
represents a fundamental scientific challenge in radiomics research, as it limits the com-
parability and generalizability of findings derived from quantitative image analysis.
Therefore, robust radiomics pipelines must ensure feature stability and independence
from modality- or protocol-specific variations.

The quality and amount of available imaging data often represent a bottleneck for
radiomics research. Many studies rely on small, homogeneous datasets, which limits
the generalizability of developed models [5-7]. Although data sharing initiatives are

growing, issues related to data privacy, harmonization, and logistics still hinder the
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creation of large, diverse multi-center cohorts [5, 6].

While deep learning approaches have demonstrated strong predictive power in
medical image classification and segmentation [8|, their black-box nature remains a
major limitation for clinical translation. The lack of interpretability and explainabil-
ity hampers clinical trust and adoption in oncological radiology [5,9]. In addition,
the application of deep learning models on small datasets often leads to non gener-
alizable model predictions which are not applicable in clinical practice. In contrast,
radiomics offers transparent and interpretable features and shows applicability on
smaller datasets, but its inconsistent application across studies has led to poor repro-

ducibility and limited generalization.

The absence of standardized processing led to the foundation of several initia-
tives, including the Image Biomarker Standardization Initiative (IBSI) and the Ger-
man Research Foundation’s Schwerpunktprogramm 2177 (SPP2177), which aim to
define robust feature computation standards and highlight common methodological
pitfalls [10,11]. Furthermore, guideline frameworks such as Checklist for Evaluation
of Radiomics (CLEAR), Assessment for Radiomics Implementation Study Excellence
(ARISE), Checklist for Artificial Intelligence in Medical Imaging (CLAIM), and the
Radiomics Quality Score (RQS) provide criteria to assess study design, reproducibility,
and clinical applicability [12-14] (see Section 2.3.1). These developments have moti-
vated the creation of software libraries such as PyRadiomics [15] and MIRP [16], which
implement standardized feature definitions. However, these tools primarily focus on
the extraction of statistical features derived from images and differ in extraction con-
figurations, preprocessing options, and included different image transformation kernels
(see Section 2.3.6). Importantly, they do not integrate feature selection, model train-
ing, or optimization, which are essential steps for building complete and reproducible

radiomics workflows (see Section 2.3.2).

Radiomics outcomes are not only influenced by standardization but also by mul-
tiple experimental design decisions, including feature computation, post-processing,
model selection, and optimization. Traditionally, these design steps have been manu-
ally tuned for specific datasets or clinical questions, a practice referred to as manually
radiomics design [1,17]. While such approaches can achieve high task-specific per-
formance, their reliance on extensive manual parameterization and dataset-specific
optimization increases the risk of overfitting and thus hampers reproducibility and
generalizability across imaging modalities, tumor sites, and clinical endpoints.

As a response, automated radiomics frameworks such as AutoRadiomics and Work-
flow for Optimal Radiomics Classification (WORC) have been developed to provide

generalizable workflows that reduce manual effort and bias [18,19]. However, de-
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spite improving reproducibility and usability, these frameworks often show limited
predictive performance compared to expert-tuned pipelines and may not outperform
alternative machine learning or deep learning—based approaches, which can offer better
task-specific adaptability.

In summary, three major challenges characterize modern radiomics research:
First, the lack of reproducibility and generalization across imaging modalities, acqui-
sition protocols, and institutions continues to limit clinical translation.

Second, radiomics workflows often depend on extensive manual design decisions and
dataset-specific optimizations, which increase the risk of bias and overfitting.

Third, existing frameworks provide only partial standardization and rarely inte-
grate all steps of the radiomics pipeline—from feature extraction to model optimiza-

tion—into a unified and automated process.

This thesis aims to address these challenges by establishing a systematic and re-
producible foundation for radiomics experimentation and benchmarking. Instead of
designing each workflow manually for a specific clinical question, the goal is to create
an automated framework that is self-configurable and optimizes model performance
in a consistent and transparent way. To this end, the RPTK (Radiomics Processing
Toolkit) was developed as a unified, reproducible, and performance-optimized frame-
work for radiomics analysis. It integrates literature-based recommendations for opti-
mal feature computation, preprocessing, feature selection, and model training into a
standardized workflow. Furthermore, RPTK harmonizes radiomics extraction config-
urations for PyRadiomics and MIRP, ensuring comprehensive and comparable feature
coverage [15,16], and introduces an ensemble optimization strategy that enhances pre-

dictive performance and robustness across diverse datasets.

The scientific hypothesis underlying this work is that a standardized, automated,
and harmonized radiomics framework can achieve performance comparable to expert-
tuned workflows while providing higher reproducibility, transparency, and scalability.
Consequently, the Radiomics Processing ToolKit (RPTK) aims to bridge the gap
between labor-intensive, non-generalizable customized radiomics workflows and auto-
mated but often suboptimal Automated Machine Learning (AutoML)-based solutions
(see Figure 1.1). It provides an accessible, high-performance tool for reproducible bi-
nary classification tasks in oncological imaging, ultimately contributing to the clinical

translation and reliability of radiomics applications.

The RPTK framework, illustrated in Figure 1.1 summarizes the conceptual differ-
ences between traditional customized radiomics pipelines, AutoML approaches, and
the proposed RPTK framework. Each approach focuses on a Region Of Interest (ROI)

segmented in a medical image, as depicted on the left side of the figure.
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Figure 1.1. Overview of the RPTK workflow architecture, illustrating its contri-
bution to unify traditional handcrafted (customized) radiomics and automated ap-
proaches, providing high-performance radiomics analysis with minimal manual inter-
vention. Starting from the acquition of different imaging data, the different approaches
rely on a sequence of feature extraction, filtering, feature selection and different train-

ing and optimization steps (TPR=True Positive Rate, FPR= False Positive Rate).

The upper part represents a typical customized radiomics workflow. These ap-
proaches often rely on a predefined subset of radiomics features selected based on
prior knowledge or empirical experience, sometimes neglecting relevant ROI charac-
teristics such as shape, texture, or intensity. Feature filtering and model training are
manually tuned to a specific dataset, resulting in strong task-specific performance
but poor generalizability. Such pipelines are rarely benchmarked across multiple fea-
ture extraction settings or modeling configurations, limiting their reproducibility and

robustness.

The middle part illustrates AutoML-based frameworks, such as AutoRadiomics
and WORC [18,19]. These methods typically employ a standardized extractor, such
as PyRadiomics, but with a reduced feature space due to limited coverage of Im-
age Biomarker Standardization Initiative (IBSI)-defined feature classes and image
transformations [15]. They apply initial statistical feature filtering followed by auto-
mated optimization of feature selection and model combination to identify the best-
performing configuration for a given task. While these approaches improve repro-

ducibility and enable systematic performance comparisons, their restricted feature
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computation and optimization scope may limit their ultimate predictive performance.

The lower part of the figure introduces the proposed RPTK pipeline. This frame-
work extends the radiomics workflow by including both tumor and peritumoral (mar-
gin) regions during feature extraction as well as integrating two complementary feature
extractors, PyRadiomics and MIRP, to ensure comprehensive IBSI feature coverage
and it synchronize the performed image transformations [15,16]. Segmentation per-
turbations are introduced to evaluate the stability of extracted features, filtering out
those that show high variability and thereby improving generalizability. Subsequent
statistical filtering removes highly correlated and low-variance features, and a feature
selection step reduces the feature space to a compact subset of maximally informative
features (up to 20). These features are then used to train six machine learning models,
each optimized in a five-fold cross-validation setting, with their predictions ensembled
to obtain the final robust model.

Overall, the proposed RPTK pipeline bridges the gap between highly special-
ized customized workflows and generalizable but low-performing AutoML systems by
combining comprehensive feature extraction, rigorous stability analysis, and ensemble
model optimization into a unified and reproducible framework. Designed as an open-
source toolkit, RPTK aims to make optimized state-of-the-art radiomics accessible to
non-expert users while enhancing the performance and reproducibility of quantitative

imaging studies in oncological radiology.

1.2 Research Objectives and Contributions

1.2.1 Objectives

The overarching objective of this thesis is to advance the scientific foundation of ra-
diomics by improving the reproducibility, generalizability, and methodological trans-
parency of quantitative image analysis. Radiomics has shown great potential in on-
cology research, yet its clinical translation is hindered by inconsistent workflows, non-
reproducible feature definitions, and limited comparability across studies. This thesis
addresses these issues by introducing RPTK as a unifying research framework that
enables systematic, automated, and harmonized radiomics experimentation. The pro-
posed framework aims to improve radiomics applications across diverse clinical tasks

by fulfilling the following specific requirements:

« Handling real-world data heterogeneity: Processing heterogeneous imag-

ing data originating from different scanners, imaging modalities, and acquisition
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protocols. Robustly handle imaging and segmentation artifacts through stan-

dardized preprocessing and quality control procedures.

« Extraction of stable and reproducible features: Integrate IBSI-confirmed
feature extraction methods, to identify and integrate important but missing
radiomics features, and filter for feature robustness to specifically tackle inter-

rater heterogeneity.

o Performance and generalization: Achieve competitive or superior predictive
performance across multiple datasets, imaging modalities, and experimental de-
signs without labor intensive work. This includes systematic comparison with

state-of-the-art radiomics and deep learning approaches.

« Integration of clinical covariates: Facilitate seamless incorporation of addi-
tional clinical, demographic, or molecular variables into the radiomics workflow
in order to gain performance from additional information. Include support for
both purely clinical analyses and hybrid models by embedding clinical features
within the radiomics feature space, thereby enabling joint modeling and com-

parative evaluation of imaging and non-imaging biomarkers.

e Support for longitudinal analysis: Enable application of radiomics in longi-
tudinal study designs by providing dedicated functionality for the computation
of delta-radiomics features, i.e., temporal changes of imaging biomarkers across
multiple time points. This allows modeling of treatment response dynamics and

performance enhancement through the integration of temporal information.

o Accessibility for non-experts: Design the framework as an end-to-end so-
lution that can be operated without extensive knowledge of machine learning,
programming, or radiomics. RPTK should provide default optimized configura-

tions while maintaining flexibility for advanced customization.

« Applicability in the hospital: Ensure that RPTK can be executed efficiently
on standard CPU-based clinical systems without requiring dedicated GPUs or
internet connectivity, enabling potential use in routine clinical environments and

data-secure infrastructures as an end-to-end framework.

Together, these objectives aimed to establish a radiomics processing framework
that advances methodological robustness, performance, and clinical interpretability,
while supporting multimodal and longitudinal data integration to democratize access

to optimized quantitative imaging analysis within the radiomics community.
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1.2.2 Contribution

This thesis advances the field of radiomics by strengthening its methodological robust-
ness and clinical applicability across diverse oncological contexts, thereby promoting
higher predictive performance and improved generalization of radiomics models. The
contributions are organized according to the main studies presented in this work,
which together establish new insights into optimal radiomics computation, integra-
tion, and performance on real-world medical imaging data as well as my contribution

in these sections.

1. Advances in Self-Configuring Radiomics Pipelines

The first major contribution of this thesis is the development and systematic eval-
uation of an advanced self-configuring radiomics framework that extends existing
automated approaches such as AutoRadiomics and WORC [18,19]. In contrast to
these frameworks, the proposed design integrates comprehensive feature extraction,
extensive feature robustness filtering, and intensive model optimization with ensemble-
based performance calibration included in a single reproducible workflow (see Sections
4.1 and 5.1). This advancement enables better predictive performance as well as
more consistent and robust radiomics experimentation across heterogeneous imaging
datasets and clinical tasks.

This study provides detailed methodological insights into how the configuration
of feature extraction pipelines, including the selection of feature extractors and the
proportion of integrated features defined by the IBSI (see Figure 8.7), affects model
performance and reproducibility. Using multiple open-source benchmark datasets,
I demonstrated that variations in feature computation and preprocessing have a
stronger impact on prediction performance than the choice of feature selection or

automated model optimization techniques.

Data acquisition: The seven open-source datasets include the images and the
ground truth labels from the WORC radiomics benchmark database [7] and the
Lung Image Database Consortium (LIDC)-Image Database Resource Initiative (IDRI)
dataset [20] from the The Cancer Imaging Platform (TCIA) portal (see Section 4.1).
The segmentations of the ROIs from the WORC database were part of the down-
loaded data whereas for the segmentation of the LIDC-IDRI dataset an open source

available tool set was used (see Section 4.1.1).

Method development and application: This thesis introduces the Radiomics
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Processing Toolkit (RPTK), a modular and extensible framework designed to ad-
vance methodological reproducibility and performance optimization in radiomics. The
framework unifies the essential components of a radiomics workflow—image prepro-
cessing, feature extraction, feature selection, model training, and ensemble optimiza-
tion, within a single reproducible system. Building upon existing standardized li-
braries such as PyRadiomics and MIRP [15,21], RPTK harmonizes feature definitions
and integrates them with automated data curation, quality assessment, and adaptive
learning strategies. The framework further extends conventional approaches by intro-
ducing segmentation artifact filtering, peritumoral region analysis, and cross-validated
ensemble learning to enhance robustness and reduce bias.

For comparative evaluation, established frameworks such as AutoRadiomics [18]
and complementary deep learning models implemented using PyTorch and Medical
Open Network for AT (MONAI) [22,23] were applied to benchmark the proposed
pipeline. All components of RPTK were version-controlled, validated, and released as
open-source software to ensure transparency, reproducibility, and community accessi-
bility (see Section 4.1.11).

Result generation and analysis: This work contributes to the methodological
understanding of radiomics performance and reproducibility by systematically evalu-
ating the proposed RPTK framework against existing automated radiomics solutions
and deep learning approaches across seven benchmark datasets. Through quantita-
tive comparisons and statistical validation using bootstrapped performance metrics,
the study demonstrates how standardized and self-configuring radiomics workflows
can achieve competitive predictive accuracy while offering improved reproducibility
and transparency. The analyses provide empirical evidence on the trade-offs between
automation, model performance, and generalization in radiomics, offering practical
guidance for the design of reproducible imaging biomarker studies. The first proto-
type of the proposed framework and its benchmarking methodology were published
as a peer-reviewed Medical Image Computing and Computer Assisted Intervention
(MICCATI) conference paper, establishing the groundwork for this thesis [24].

2. Longitudinal and Multimodal Radiomics Integration in Immunotherapy

Response Prediction - Predict Study

The second major contribution of this thesis lies in demonstrating the potential of
radiomics to capture temporal and multimodal imaging biomarkers for predicting im-
munotherapy response in advanced-stage lung cancer (see Sections 4.2 and 5.2). Using
a longitudinal cohort from the Thoraxklinik Heidelberg, the study evaluated whether

delta-radiomics features—quantifying temporal changes in tumor phenotype—can en-
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hance predictive performance compared to conventional single time-point analyses.
The results provide empirical evidence that longitudinal radiomics modelling im-
proves early treatment response prediction, supporting adaptive and personalized im-
munotherapy strategies. Moreover, the integration of radiomics with complementary
clinical and molecular parameters highlights the benefit of multimodal data fusion for

outcome modelling in oncology

Data acquisition: Imaging and clinical data were collected and pseudonymized
by clinical collaborators at the Thoraxklinik Heidelberg under ethical approval. The
longitudinal dataset comprised multiple time points from patients undergoing im-
munotherapy for advanced-stage lung cancer. Primary lung tumors were segmented
using a pretrained no new U-Net (nnU-Net) model [25,26], and all segmentations
were reviewed and validated by expert radiologists before inclusion in the analysis
(see Section 4.2.2).

Method application: The standardized radiomics workflow implemented in the
RPTK framework (see Section 4.2.3) was applied to extract delta-radiomics features,
integrate multimodal clinical data, and perform predictive modelling. This application
demonstrates the framework’s capacity to handle complex, multi-timepoint datasets

and to model temporal changes in tumor characteristics.

Result generation and analysis: Comparative experiments were performed to
evaluate RPTK against AutoRadiomics and deep learning approaches. The results
were statistically assessed using bootstrapped performance metrics to determine the
added predictive value of longitudinal and multimodal feature integration. Findings
from this study establish the feasibility and clinical promise of longitudinal radiomics

workflows for early immunotherapy response prediction.

3. Radiomics-Based Colorectal Disease Characterization on Large-Scale
CT Data - LiverCRC Study

The third major contribution of this thesis investigates the scalability and translational
potential of radiomics in large-scale abdominal imaging datasets (see Sections 4.3
and 5.3). Using a multi-center cohort of liver CT scans, this study demonstrates
that radiomics can be effectively applied to non-primary tumor sites for indirect dis-
ease characterization. Specifically, radiomics features extracted from healthy liver
parenchyma and perihepatic regions were shown to discriminate patients with colorec-

tal neoplasia from healthy controls, suggesting that the liver may serve as a surrogate
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imaging biomarker reflecting systemic tumor processes along the gut-liver axis. Be-
yond its clinical relevance, this work establishes the robustness and adaptability of
standardized radiomics workflows for bigger datasets and complex pathophysiological
questions, underlining their potential for non-invasive disease detection and patient

stratification in precision oncology.

Data acquisition: Imaging and clinical data were collected and pseudonymized
by clinical collaborators at the Hector Cancer Institute and the Department of Radiol-
ogy and Nuclear Medicine, University Medical Center Mannheim, under institutional
ethical approval. Automatic liver segmentations were generated using the MultiTal-
ent tool [27] and reviewed for quality assurance by technicians from the Department
of Medical Image Analysis at the German Cancer Research Center Heidelberg (see
Section 4.3.2). The study leveraged a large and heterogeneous dataset, enabling an
assessment of radiomics scalability and reproducibility under real-world clinical imag-

ing conditions.

Method application: The RPTK framework was employed to perform standard-
ized feature extraction, selection, and model optimization (see Section 4.2.3). This
application illustrates the capacity of RPTK to process high-volume data efficiently
and to integrate harmonized radiomics features across imaging centers and protocols.
In contrast to the approach described in the accompanying manuscript currently un-
der submission [22], which focuses primarily on demonstrating the clinical feasibility of
liver-based colorectal disease detection, the present work emphasizes the methodolog-
ical validation of radiomics scalability and the benchmarking of standardized work-
flows. Here, RPTK is applied as a unified analytical framework to directly compare
radiomics, AutoRadiomics, and deep learning approaches under identical experimen-
tal conditions, highlighting methodological effects on generalization and predictive

performance.

Result generation and analysis: Comparative experiments were conducted
to benchmark RPTK against AutoRadiomics and deep learning—based approaches.
Model performance was evaluated using bootstrapped statistical metrics to assess
predictive accuracy and robustness. The results demonstrate that harmonized ra-
diomics workflows can generalize effectively to large-scale datasets, supporting their
use in translational imaging studies. A detailed account of the clinical findings and
their translational interpretation is included in the related publication [22], while this

thesis extends the methodological analysis and provides an integrated comparative
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evaluation across modeling paradigms.

1.3 Outline

The structure of my thesis follows a logical progression from the theoretical founda-
tions to the methodological developments, applications, and the overall discussion and
outlook.

Chapter 2 provides the scientific background necessary to understand the concepts
and data used in the thesis. It begins with an overview of medical imaging modalities,
focusing on Computed Tomography (CT) and Magnetic Resonance Imaging (MRI),
and introduces deep learning applications in medical image analysis. The following
section covers the medical background, including the biological foundations of cancer,
advances in cancer treatment, and the role of biomarkers. The chapter concludes with
a detailed introduction to the field of radiomics, explaining the complete radiomics
workflow, from image acquisition and segmentation to feature computation, model
building, and clinical integration, while also addressing current challenges such as
reproducibility, standardization, and reporting.

Chapter 3 reviews the state of the art in both deep learning and radiomics. It
discusses existing radiomics frameworks and tools, including customized radiomics
approaches, the Workflow for Optimal Radiomics Classification (WORC) [19], and
the AutoRadiomics framework [18]. The chapter highlights the methodological de-
velopments and limitations of current approaches, motivating the need for the self-
configuring and reproducible framework developed in this work.

Chapter 4 describes the data and methods used in this thesis. The first part
presents the design and implementation of the RPTK framework, including data
preprocessing, feature computation, model optimization, and integration of AutoRa-
diomics and deep learning approaches. It also introduces the concept of data fin-
gerprints, describes hardware usage, and provides source code availability for repro-
ducibility. The second and third parts of the chapter present two major applications
of RPTK: (1) the Predict Study, which investigates radiomics-based prediction of im-
munotherapy response using longitudinal imaging data; and (2) the LiverCRC Study,
which explores the prediction of colorectal neoplasia from liver CT images in a large-
scale dataset.

Chapter 5 presents the results of the three main experiments: the evaluation of
the RPTK framework, the Predict Study, and the LiverCRC Study. It details the
performance of RPTK across diverse datasets, its ability to automatically select in-

formative features and models, and its comparison to state-of-the-art tools. For each
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study, model performance, feature relevance, and clinical implications are analyzed.

Chapter 6 discusses the findings in the same structure as the results section, relat-
ing the observed outcomes to existing literature and highlighting the methodological
and clinical relevance. It reflects on the datasets, methodological advances of RPTK,
and performance outcomes in each application. The discussion also addresses limita-
tions, assumptions, and potential directions for improving reproducibility and clinical
translation.

Finally, Chapter 7 concludes the thesis by summarizing the key findings and
methodological contributions of RPTK. It discusses the clinical and translational im-
plications of the work, identifies its limitations, and provides an outlook on future

research directions to further advance reproducible and generalizable radiomics.



Chapter 2

Background

2.1 Imaging Background

Medical imaging encompasses a broad range of technologies in cancer research used to
visualize internal anatomical structures and physiological processes, playing a pivotal
role in cancer detection, diagnosis, staging, treatment planning, and monitoring. Each
imaging modality offers distinct advantages depending on the biological characteristics
of the tumor, the anatomical site, and the clinical question at hand. In my radiomics
studies I used two radiological three-dimensional imaging data modalities, MR and
CT. In addition, deep learning applications on medical images are aiming to improve
the quality of annotations like segmentations or detections of cancer and enabling fast
processing of large amounts of different medical images.

Comparing two-dimensional (2D) medical imaging techniques like microscopy, ul-
trasound, or X-Ray, to three-dimensional (3D) radiological imaging techniques like CT
and MRI highlight significant advantages of 3D Imaging techniques in cancer research
and associated radiomics studies. Non-invasive 2D imaging modalities like X-ray
radiography and ultrasound are widely available and fast applicable, they are funda-
mentally limited by overlapping anatomical structures, lower spatial resolution, and a
lack of depth information. X-ray images, for instance, compress complex anatomical
volumes into a single projection, often obscuring critical details and reducing diagnos-
tic sensitivity—particularly in regions with overlapping tissues [28,29]. These images
are stored in specific data structures for processing and documentation of imaging re-
lated parameters like the Digital Imaging and Communications in Medicine (DICOM)
or Neuroimaging Informatics Technology Initiative (NIFTT) data format including 3D
imaging data and additional information for the clinical usage as well as for technical
data curation [30]. Similarly, 2D ultrasound provides real-time imaging but is highly

operator-dependent and offers limited reproducibility and anatomical context. While
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microscopy-based imaging delivers cellular-level resolution, it is inherently invasive,
often limited to small tissue biopsies, and prone to structural distortion during prepa-
ration—factors that restrict its representativeness and clinical applicability [31]. In
contrast, 3D radiological imaging such as the most widely used techniques, Computed
Tomography (CT) and Magnetic Resonance Imaging (MRI) refers to a class of ad-
vanced medical imaging techniques that acquire non-invasive volumetric datasets, en-
abling multi-planar visualization and comprehensive quantitative analysis of anatom-
ical and pathological structures, superior tissue contrast, depict the whole-tumor, and
detailed anatomical structures [32]. These qualities are essential for accurate tumor
localization, characterization, and treatment planning and can be quantitatively an-
alyzed using radiomics to capture tumor heterogeneity, classify cancer subtypes, and
guide personalized treatment strategies [28,31,32].

In 3D radiological imaging, each modality offers unique strengths and is selected
based on the clinical question, patient conditions, and tissue characteristics. CT is
particularly well-suited for imaging bone, lungs, and calcified structures due to its
high spatial resolution and rapid acquisition [33-35]. MRI provides superior soft tis-
sue contrast, making it ideal for imaging the brain, liver, prostate, and musculoskeletal
system [28]. In oncology, 3D imaging is indispensable for tumor detection, staging,
treatment planning, and monitoring therapeutic response. It enables detailed charac-
terization of complex biological tumor features such as heterogeneity, perfusion, and
necrosis [32]. Furthermore, it supports image-guided interventions and radiotherapy
through accurate anatomical localization. Recent advances in image analysis tech-
niques, including radiomics, allow for the extraction of high-dimensional quantitative
features, offering the potential to develop novel imaging biomarkers that may enhance
personalized diagnosis and treatment strategies.

The sections that follow will provide detailed overviews of CT and MRI, the two
primary imaging modalities employed in my studies as well as deep learning applica-

tions on medical images to perform image segmentation and classification.

2.1.1 Computed Tomography

Computed Tomography (CT) is one of the most widely used non-invasive imaging
modalities in clinical practice and research. Following the discovery of X-rays by
Wilhelm Conrad Roentgen in 1895 [36], the development of the first CT scanner by
Godfrey Hounsfield in 1971 marked a significant advancement in medical imaging.
While conventional X-ray imaging provides two-dimensional projection images with
limited soft tissue contrast and overlapping anatomical structures, C'T revolutionized

the field by enabling three-dimensional visualization through the mathematical re-
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construction of multiple X-ray projections acquired from different angles [28]. This
volumetric approach significantly enhances soft tissue differentiation and spatial res-

olution, allowing for more accurate clinical interpretation.

Calculation of Grey Values in CT

Modern computed tomography (CT) systems comprise an X-ray tube and a detector
array mounted on a rotating gantry that surrounds the patient, who lies on a motorized
table that advances through the scanner. During rotation, the X-ray tube emits
a cone-shaped beam of polychromatic X-rays that traverse the patient’s body. As
these X-rays propagate through various tissues, they undergo differential attenuation
depending on the physical composition and density of the materials encountered.
This attenuation process is described by the Beer-Lambert law, which models the
exponential reduction in transmitted X-ray intensity as a function of the product of the
material thickness and its linear attenuation coefficient (1), as shown in Equation 2.1
[37]. The coefficient p itself depends on intrinsic properties of the material, including
electron density, atomic number, and the energy of the incident photons. Given
measured values of the incident and transmitted X-ray intensity and the thickness of
the material, i can be directly calculated using the logarithmic form in Equation 2.2.
As a result, tissues with higher density or atomic number, such as bone or iodine-

enhanced vasculature, exhibit greater attenuation compared to soft tissues or air.

1= IO cem T (21)
In(ly/1)
p= 2o/l 2.2
x
1 Transmitted X-ray intensity after passing through the material
Iy Incident X-ray intensity (before attenuation)
L Linear attenuation coefficient [cm™!]

Thickness of the material [cm]

The detector array opposite the X-ray source measures the transmitted radiation, con-
verting it into electrical signals that represent the cumulative attenuation along each
projection path. These signals are then processed using reconstruction algorithms
such as filtered back projection or iterative reconstruction to generate cross-sectional
images. The resulting pixel values in these images are mapped onto the Hounsfield
Unit (HU) scale (see Figure 2.1), a quantitative measure that normalizes tissue at-
tenuation relative to water (0 HU) and air (—1000 HU) [38]. This enables consistent
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tissue characterization across scans and patients, supporting accurate diagnosis, seg-
mentation, and quantitative analysis in radiology [37].

Calculating Hounsfield Units (HU) as grey scale values in CT scans:

HU(iL’, y) — 1000 - ,LL(Q?, y) — Hwater (23)

,uwater

HU(z,y) Hounsfield Units of each image pixel (x,y)
w(z,y) Physical attenuation values of each image pixel (x,y)

Hwater Physical coefficient of water
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Figure 2.1. Hounsfield scale for characteristic values related to different human body
compositions in a CT scan. HU values used for this categorization were extracted
from [28].

Effect of Reconstruction Kernels on CT Gray Values

Although the HU scale provides a standardized quantitative measure of tissue atten-
uation, the observed gray values in CT images are not solely determined by physical
attenuation coefficients. One important post-processing factor influencing HU values
is the choice of reconstruction kernel, also referred to as convolution kernel or filter.
These kernels are applied during the image reconstruction process to modulate spatial
frequency content and balance spatial resolution against image noise [37].

Reconstruction kernels in CT are routinely classified into three categories based
on their spatial frequency characteristics and clinical utility. Convolution kernels
are developed by manufacturers like Siemens, Philips, or GE and therefore different
between CT devices from these producers. Reconstruction kernels broadly classified
by [39,40]:
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« Smooth kernels (e.g., Siemens kernels B10-B30, B40f) reduce image noise by
suppressing high-frequency components, but result in lower spatial resolution.

Typically used for soft tissue evaluation.

o Medium/standard kernels (e.g., Siemens kernels B40) balance spatial reso-

lution and noise for general diagnostics.

o Sharp kernels (e.g., Siemens kernels B50-B80, B70f) accentuate edges and
high-frequency content, making them ideal for bone, lung, and vascular imaging,

albeit with increased noise.

The application of different reconstruction kernels can lead to systematic shifts in
measured HU values, even when all other scan parameters remain constant. Studies
have reported HU differences of up to 70 units between smooth and sharp kernels
in musculoskeletal and phantom imaging contexts [41,42]. This effect is particularly
relevant for applications requiring quantitative interpretation, such as radiomics, bone

mineral density assessment, and hepatic fat quantification.

The variability introduced by reconstruction kernel selection has emerged as a
significant confounder in radiomics-based analyses, where the quantitative stability of
image-derived features is essential. Several studies have shown that radiomic feature
values can vary substantially depending on the applied convolution kernel, even when

other acquisition parameters are held constant [43,44].

To address the issue of kernel heterogeneity in retrospective or multi-center datasets,
several correction strategies have been proposed. These include statistical harmoniza-
tion methods such as ComBat [45] or Reconstruction Kernel Normalization (RKN)
[46], which aim to align the statistical distributions of features across kernels, as well
as data-driven approaches like CNN-based image translation [44]. Such techniques are
particularly important when consistent kernel use cannot be guaranteed, as is often

the case in large-scale multi-institutional studies or public imaging repositories.

Given the measurable impact of reconstruction kernels on image sharpness, noise
levels, and even quantitative HU values, their selection must be carefully aligned with
the clinical objective [40]. Kernel choice is not merely a technical preference but a
critical decision that can influence diagnostic accuracy, reproducibility, and quantita-
tive interpretation [42,47]. Therefore, understanding and standardizing kernel use is
essential when translating C'T data into clinical decision-making tools or longitudinal

assessments.
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Application in clinical practice

In clinical practice, CT is widely used across a broad spectrum of diagnostic scenarios
due to its speed, accessibility, and high-resolution imaging capabilities. It is partic-
ularly valuable in emergency settings, such as trauma, stroke, or suspected internal
bleeding, where rapid and comprehensive visualization of both soft and hard tissues is
critical [48]. CT is also routinely employed in oncological imaging for tumor detection,
staging, and follow-up assessments [49]. In cases where MRI is contraindicated—such
as in patients with metallic implants, pacemakers, or severe claustrophobia, CT offers
a reliable alternative.

To enhance the visualization of vascular structures, lesions, organ perfusion, and
changes in the Tumor Micro-Environment (TME), intravenous contrast agents based
on iodine are often administered for an contrast-enhances CT [50,51]. These agents
increase the attenuation of X-rays in specific tissues, thereby improving contrast
resolution and diagnostic accuracy, especially in CT angiography or tumor delin-
eation [50,51]. Despite its reliance on ionizing radiation, the effective dose of a modern
CT scan is relatively low and often comparable to the natural background radiation
a person receives annually. Nonetheless, radiation exposure remains a concern, par-
ticularly for radiosensitive populations such as children and pregnant women, where
alternative imaging modalities should be considered when possible. Dose optimization
strategies, including automatic exposure control and iterative reconstruction algo-
rithms, are implemented to minimize unnecessary radiation while maintaining image
quality [52].

Overall, CT remains a cornerstone in diagnostic radiology, offering unparalleled
speed, anatomical detail, and versatility for evaluating a wide range of pathologies

throughout the human body.

2.1.2 Magnetic Resonance Imaging

Magnetic Resonance (MR) imaging is a medical imaging modality that has seen con-
tinuous development since its first applications in 1973 [53]. It exploits the fact
that the human body is approximately 50-62% composed of water, depending on
the age [54] and thus contains a high density of hydrogen atoms [54]. The nuclei of
the hydrogen atoms (protons) are embedded within different molecular environments
respond differently to magnetic fields and radiofrequency excitation [53,55], enabling
MRI to generate highly detailed images without relying on ionizing radiation [55].
MRI effectively generates grayscale maps of proton density and interactions within

tissues [55] and therefore generates soft-tissue contrast and versatility stem from the
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numerous contrast mechanisms available, most notably Ty, Ty, flow, diffusion, and

fat /water separation, as well as physiological parametrization [53].

Clinically, MR Imaging is widely applied in cancer research and patient care, sup-
porting diagnostic imaging, therapy monitoring, and screening efforts. Its non-ionizing
nature makes it especially suitable for pediatric imaging, where minimizing radiation
exposure is crucial; this, coupled with motion-reduction techniques, enhances image
quality in young patients [56]. Additional advances, such as parallel imaging, com-
pressed sensing, higher-field strengths, improved workflow, and Al integration have

significantly reduced scan times and improved sensitivity and usability [53].

The MRI process begins with placing the patient within a strong static magnetic
field. An electromagnetic pulse in the range of radio-frequencies is then applied. This
exposed energy gets absorbed by the hydrogen protons, effecting a rise of the energetic
state resulting in the spin changes of the protons which try to return to the natural
state (Bp) by so called relaxation. Two different types of relaxations are known as
Spin-Lattice (T4) and Spin-Spin relaxations (Ts) which are occurring simultaneously

at the same time:

1. T; Relaxation (Spin—Lattice Relaxation):
The time it takes for longitudinal magnetization to recover to about 63% of its
equilibrium state. This process involves energy exchange between protons and

surrounding molecular structures [55].

2. Ty Relaxation (Spin—Spin Relaxation):
The time over which transverse magnetization decays to approximately 37%,

due to loss of phase coherence among the protons is called Ty [57].

Fat and protein molecules are large molecules and effective in absorbing energy result-
ing in a short T and Ty. Smaller molecules like H,O move quicker, which makes them
more inefficient in absorbing the energy and result in a longer T; and Ty. However,
Ty relaxations are very much faster than 7T as T} relaxation need to transfer energy
to surrounding molecules, whereas T relaxation is based on nearby spin interactions
in the local magnetic field tending to faster energy transfer.

Signal timing is controlled via two key parameters:

« Repetition Time (RT): The interval between successive radiofrequency pulses
targeting the same slice. A shorter TR emphasizes T effects, while a longer TR

reduces T weighting and enables T or proton-density contrasts [58].
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o Echo Time (ET): The elapsed time between the radiofrequency pulse and the
peak of the detected signal ("echo”). A longer TE accentuates Ty contrast by

allowing more dephasing, while a shorter TE minimizes it [57].

T-Weighted MRI

Ti-weighted MRI sequences are optimized to highlight differences in how quickly tis-
sues recover their longitudinal magnetization after being disturbed by a radiofrequency
pulse. These sequences use short Repetition Time (RT) and short Echo Times (ET),
which emphasize tissues that recover quickly, like fat, which appears bright, while
water-containing tissues like Cerebrospinal Fluid (CSF) appear dark due to their
slower relaxation.

This imaging mode is particularly well-suited for visualizing anatomical structures
and is widely used in clinical practice to evaluate normal tissue contrast and detect
enhancing lesions, especially after the administration of gadolinium-based contrast
agents, which selectively shorten T, values and increase signal intensity in abnormal
tissues [55]. Ti-weighted images are considered reliable “baseline” structural refer-
ences in deep learning—based image synthesis due to their stable anatomical represen-

tation and low variability [53].

Ty-Weighted MRI

Ty-weighted MRI sequences focus on how quickly tissues lose coherence (i.e., phase
alignment) in the transverse plane after radiofrequency excitation, a process known
as Ty (spin—spin) relaxation. These sequences use long RT and long ET to allow the
transverse signal to decay, making it possible to distinguish tissues based on their
water content.

Tissues rich in free water, such as edema, inflammation, or CSF, retain signal
longer and thus appear bright, while fat and denser structures lose signal more quickly
and appear darker [57]. This makes Ty-weighted MRI particularly effective in iden-
tifying pathological processes involving increased fluid, such as tumors, infections, or
white matter lesions. Ty-weighted images are especially valuable for detecting disease
activity in the brain, as many conditions—including multiple sclerosis and gliomas

present as Ty hyper-intensities [53].

2.1.3 Deep Learning Applications

Deep learning has revolutionized the field of medical imaging by improving diagnostic

accuracy and workflow efficiency. The rising trend in deep learning applications began
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with the breakthrough success of Convolutional Neural Network (CNN), particularly
following the ImageNet competition [59]. Early models like the Massive-Training Ar-
tificial Neural Network (MTANN) demonstrated promising results in tasks such as
lesion detection and false positive reduction [59]. Since then, deep learning archi-
tectures have evolved rapidly, incorporating deeper, more complex models such as
ResNet and DenseNet, which have set new standards for accuracy in diverse medi-
cal imaging tasks [60,61]. State-of-the-art deep learning models in medical imaging
have advanced significantly, incorporating Fully Convolutional Networks (FCNs) and
their variants to enable high-resolution and precise image segmentation tasks [62].
Additionally, attention mechanisms have been increasingly adopted to enhance fea-
ture representation and model interpretability, while Generative Adversarial Networks
(GANSs) play a critical role in synthetic data augmentation, image-to-image transla-
tion, and modality synthesis, addressing data scarcity issues pervasive in medical
imaging [63,64]. These architectural innovations have expanded the reach of deep
learning techniques beyond segmentation to include image classification, registration,
and synthesis, thereby establishing deep learning as an indispensable framework for
contemporary medical image analysis [64,65].

In my thesis image segmentation and image classification were performed using
deep learning models. Image segmentation was done to generate segmentations of the
primary lung tumor in section 4.2 and generating segmentation of the liver in section
4.3. Image classification was done in order to compare the performance of trained
models from RPTK based on radiomics features to the performance of deep learning

models, on all datasets included in this thesis.

Medical Image Segmentation

Medical image segmentation is a fundamental annotation process in a radiomics work-
flow which aims to generate a mask with labels to differentiate specific objects or struc-
tures from the rest of the image (see Figure 2.2). This annotation is essential to define
the ROI for extracting quantitative features in various medical imaging modalities.
Segmentation facilitates precise diagnosis, treatment planning, and disease monitoring
by enabling detailed analysis of anatomical structures and pathological regions [8,66].

Depending on the clinical objective and the level of detail required, various seg-
mentation approaches are employed to address varying clinical and analytical needs,
such as identifying general tissue classes or distinguishing between multiple occur-
rences of the same anatomical structure. Therefore, different segmentation strategies

are used depending on the clinical task and imaging modality.

« Semantic Segmentation: Labels every pixel in an image according to class
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(e.g., tumor with label 1 vs background with label 0). All pixels of the same

class share the same label, but individual instances are not distinguished.

o Instance Segmentation: Distinguishes and labels each separate instance of
a structure, even if instances are the same class (e.g., differentiating multiple

nodules in the lung with labels 1 to 10), providing object-specific masks

Manual segmentation in 3D imaging is traditionally performed by radiologists or clin-
ical experts iteratively on 2D slices, to segment the entire tumor in the 3D space,
using specialized software tools such as the Medical Imaging Interaction Toolkit
(MITK) [67]. This process, while accurate and informed by clinical knowledge, is
labor-intensive, time-consuming, and subject to inter- and intra-observer variabil-
ity [25]. Manual segmentations are often considered the "gold standard” or ground
truth for training and validating automated methods.

In contrast, automated segmentation leverages machine learning, especially deep
learning models like CNN, to generate segmentations with none to minimal human
intervention. A notable example is the nnU-Net framework, which automatically
configures its architecture and preprocessing steps to adapt to a given dataset [8].
More recently, foundation models like the Segment Anything Model (SAM) have
shown promising generalizability across domains, although their effectiveness in med-
ical imaging tasks still requires domain-specific fine-tuning and validation [66].

In order to provide quantitative evaluations of segmentation quality—such as
comparing automated segmentations to expert-annotated ground truths, or assess-
ing inter-annotator variability—several statistical metrics are commonly used. The
Dice Similarity Coefficient (DSC) is the most frequently applied metric in this context,
measuring the degree of spatial overlap between two segmentations (see equation 2.4).
Other commonly used metrics include the Jaccard Index (also known as Intersection
over Union) [68], the Hausdorff Distance for evaluating boundary discrepancies [69],
and the Average Surface Distance (ASD), which quantifies the mean distance between
corresponding surface points of two segmentation masks. These complementary met-
rics provide a more comprehensive assessment of segmentation performance by cap-

turing different aspects such as overlap, boundary alignment, and surface agreement.

Calculating the Dice Similarity Coefficient (DSC) in order to compare different seg-

mentations:
2-]AN B

Al + B
DSC(A, B) Dice Similarity Coefficient between segmentation masks A and B

DSC(A, B) = (2.4)

|AN B Number of overlapping pixels (or voxels) in both segmentations
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|Al, |B| Number of pixels (or voxels) in each segmentation mask

The quality of image segmentation is critical for accurately capturing the full extent,
shape, and internal heterogeneity of the ROI, which directly influences the reliability
of radiomics feature extraction [21,70]. Inaccurate or inconsistent segmentations can
lead to biased or non-reproducible features, ultimately affecting the validity of down-
stream analyses and the clinical conclusions drawn from them [21]. Therefore, robust
and precise segmentation is essential to ensure meaningful and trustworthy results in

radiomics-based decision support.

Medical Image Classification

Deep learning has advanced the field of medical image classification, by offering im-
provements over traditional machine learning algorithms in terms of accuracy on big
datasets in cancer research [71]. Among deep learning architectures, ResNet and
DenseNet have become widely adopted due to their ability to extract hierarchical and
complex patterns from medical imaging data [71-73]. In comparison, traditional ma-
chine learning models like random forest need image segmentation and extraction of
radiomics features for training, whereas deep learning models can be applied directly
on the images.

The depth (number of layers) of deep learning models plays a crucial role in de-
termining their predictive performance for medical image classification. Deeper archi-
tectures (more layers) are generally capable of learning more abstract and complex
features, which can improve classification accuracy on challenging medical imaging
tasks [74]. However, increasing depth also raises the risk of overfitting, especially
when training data are limited, making it essential to balance model complexity with
generalization capability [75]. Architectures such as ResNet and DenseNet have been
pivotal in addressing these challenges by introducing innovative connectivity patterns
that facilitate training of deep models while mitigating issues like vanishing gradients
and redundant feature learning [73,76]. ResNet introduces residual connections that
allow for effective gradient flow across many layers, enabling very deep networks to
be trained successfully and yielding strong performance across various medical image
classification tasks [73]. DenseNet enhances feature reuse via dense connections be-
tween all layers, reducing the number of parameters and encouraging richer feature
propagation, which is especially advantageous in medical imaging where data can be
limited [76]. Studies have also demonstrated that these architectures can achieve supe-
rior accuracy and robustness when compared to other convolutional neural networks,

making them mainstays in current medical image analysis applications [72,74,76].
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Deep learning models in medical imaging are often criticized as "black boxes” be-
cause their decision-making processes are not inherently transparent, limiting clinical
trust and adoption. To address this, there has been significant research dedicated to
developing Explainable AT (XAI) techniques aimed at unveiling how models arrive at
predictions, thereby improving interpretability. Popular methods such as Gradient-
weighted Class Activation Mapping (Grad-CAM) generate heatmaps or saliency maps
that highlight image regions influential to the model’s decision, making it easier to
verify clinical relevance [77,78]. However, deep learning explainability methods are fac-
ing several limitations. One major limitation is that many explainability approaches
only provide post hoc interpretations, which may not fully reflect the actual decision-
making process of the model, leading to potential misleading explanations [79]. Fur-
thermore, interpretability methods often suffer from lack of consistency, where expla-
nations generated for similar inputs may vary, reducing trust in model behavior [80].
Explainability techniques, such as saliency maps and heatmaps, can also be sensitive
to noise and perturbations, making them sometimes unstable or hard to reproduce
reliably [81]. Additionally, these methods generally do not guarantee clinical rele-
vance, as highlighted regions might not correspond to medically meaningful features,
which complicates validation by experts [80,82]. Finally, deep learning models still
pose a risk of bias and overfitting, and explainability alone cannot fully address these
fundamental issues without careful model and data design. These limitations under-
line ongoing research needs to develop more reliable, stable, and clinically grounded

explainability tools to support widespread adoption in medical imaging workflows.

2.1.4 Conclusion

The accurate selection and application of medical imaging modalities, along with
rigorous image acquisition and reconstruction methods, form the cornerstone of quan-
titative imaging and subsequent radiomics analysis. In this chapter, key physical and
technical principles underlying CT and MRI were presented, emphasizing their dis-
tinct strengths and limitations in clinical oncology. CT imaging offers exceptional
spatial resolution and rapid volumetric acquisition, ideal for anatomical delineation of
bone and calcified structures, yet it introduces inherent considerations such as ionizing
radiation exposure and sensitivity to reconstruction kernel choices. As demonstrated,
the choice of convolution kernel significantly impacts quantitative Hounsfield Unit val-
ues and derived radiomic features, necessitating careful harmonization strategies in
multi-center studies or retrospective analyses. MRI, on the other hand, provides su-
perior soft-tissue contrast without radiation exposure, leveraging tissue-specific mag-

netic resonance properties (T; and Ty relaxations) to reveal tumor biology and tissue
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heterogeneity.

Critically, the reliability and reproducibility of quantitative imaging features ex-
tracted for radiomics heavily depend on consistent imaging protocols, standardized
reconstruction parameters, and robust image segmentation methods. Kernel hetero-
geneity, image noise, and reconstruction settings can introduce substantial variability
in quantitative metrics. Recent methodological advances, including deep learning-
based image normalization and statistical harmonization, offer promising solutions to
mitigate these confounding factors.

Finally, the fundamental process of medical image segmentation, whether manual
or automated, directly influences radiomic analyses. Automated methods leverag-
ing convolutional neural networks, such as nnU-Net, enhance consistency and reduce
observer variability, yet their accuracy depends strongly on robust validation using
metrics such as the Dice Similarity Coefficient, Jaccard Index, and Hausdorff Distance.
Thus, precise image acquisition, standardized processing pipelines, and accurate seg-
mentation are indispensable for ensuring clinically meaningful radiomics features that

support personalized oncology.

2.2 Medical Background

There are several clinical tasks where radiomics can get applied on like diagnosis,
treatment decisions, and prognosis depend on a complex interplay of histological,
molecular, and anatomical factors. The addressed classification tasks in this thesis
reflect common clinical challenges where radiomics-based tumor characterization can

contribute to patient care.

2.2.1 Foundations of Cancer Biology

Globally, one of five individuals will develop cancer between the ages of 0 and 74 [83].
In 2019 alone, there were an estimated 18 million new cancer cases, with lung (~2.09
million), breast (~2.09 million), and prostate (~1.28 million) cancers being the most
commonly diagnosed mortality [83]. Cancer is a complex group of diseases character-
ized by uncontrolled cell growth, the invasion of surrounding tissues, and the potential
to metastasize to distant organs [84]. It originates from normal cells that have under-
gone genetic and epigenetic alterations, disrupting critical regulatory processes such
as cell cycle control, apoptosis, and DNA repair. These disruptions typically accumu-
late over time and may result from environmental exposures, inherited mutations, or

stochastic errors in DNA replication. Mortality varies substantially by cancer type.
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Pancreatic, liver, esophageal, and lung cancers are among the most lethal, often due
to late diagnosis, fast tumor evolution, treatment resistance, spreading to different
locations in the human body, and high cell proliferation activity. Pancreatic cancer,
for instance, is typically diagnosed at advanced stages and exhibits rapid progression
and resistance to therapy [85]. Similarly, hepatocellular carcinoma is known for its
aggressive course, particularly in regions with a high prevalence of hepatitis infec-
tions [86].

At the molecular level, cancer arises through the activation of oncogenes, which
promote proliferative signaling, and the inactivation of tumor suppressor genes, which
normally function to restrain growth or trigger cell death in damaged cells [84, 87].
Epigenetic modifications, such as DNA methylation and histone acetylation, can also
silence tumor suppressors or activate oncogenes without changing the DNA sequence.
These molecular events contribute to genomic instability, a key enabling factor in

tumorigenesis.

To understand the biological underpinnings of cancer, Hanahan and Weinberg
proposed a conceptual framework known as the “Hallmarks of Cancer”, describing
the functional capabilities acquired during tumor development [88]. These include
sustaining proliferative signaling, evading growth suppressors, resisting cell death, en-
abling replicative immortality, inducing angiogenesis, activating invasion and metasta-
sis, reprogramming energy metabolism, and avoiding immune destruction [88]. These
hallmarks are not isolated but interdependent and shaped by the TME, which in-
cludes stromal cells, immune infiltrates, and extracellular matrix components that

collectively support tumor progression and therapeutic resistance [88].

Cancers are traditionally classified by their tissue of origin—such as carcinomas
from epithelial cells, sarcomas from connective tissue, or hematological malignancies
like leukemia and lymphoma—and increasingly by their molecular and histopatho-
logical subtypes [84]. This classification is crucial for prognosis and treatment. For
example, lung cancers are divided into Small-Cell Lung Cancer (SCLC), an aggressive
subtype with early metastatic potential (accounting for about 15% of lung cancers),
and Non-Small-Cell Lung Cancer (NSCLC), which is more common (85%) and gen-

erally progresses more slowly [89,90].

The lethality of cancer is often associated with its ability to metastasize, a multi-
step process involving local invasion, entry into the bloodstream (intravasation), sur-
vival in circulation, exit into distant tissues (extravasation), and colonization of sec-
ondary sites. This process is facilitated by epithelial-to-mesenchymal transition (EMT),
enabling cancer cells to become motile and invasive. Furthermore, tumors evolve dy-

namically through clonal selection and adaptation, giving rise to intratumoral hetero-
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geneity [91]. This heterogeneity spans genetic, epigenetic, and phenotypic differences
between subclones and is a major obstacle to effective therapy [84].

The biological complexity of cancer spans multiple layers of the molecular land-
scape, from genomic and epigenomic alterations to transcriptomic shifts, proteomic
remodeling, and metabolic reprogramming [92]. Each of these layers contributes
uniquely to tumor initiation, progression, and therapy resistance. Considering only
one molecular data layer limits the findings, can lead to wrong interpretations, or
unseen effects in cancer research [92]. Capturing the complexity on cancer requires
the integration of multi-omics data, which enables a more comprehensive and high-
resolution characterization of cancer biology, identification of regulatory functions,
and supports the identification of novel therapeutic targets and biomarkers [93]. Re-
sulting multi omics profiles can be used for different tasks like patient stratification,
biomarker discovers, pathway analysis, drug analysis, cancer subtype classification, or
multi-omics data discovery [93].

Modern oncology aims to address these complexities by integrating insights from
cancer biology into clinical practice. This includes refining diagnostic criteria, strati-
fying tumors by molecular features, and developing personalized treatment strategies.
Therapies now extend beyond traditional surgery and chemotherapy to include tar-
geted therapies, immune checkpoint inhibitors, and epigenetic drugs, many of which
exploit vulnerabilities arising from the cancer’s molecular makeup. A deep under-
standing of tumor biology, especially the interplay between genetic mutations, TME,
and evolutionary dynamics—is essential to improve patient outcomes and guide future

research directions [84,94].

2.2.2 Advances in Cancer Treatment

Cancer remains a highly heterogeneous disease, characterized by diverse molecular
and cellular alterations that enable immune evasion, tissue invasion, and therapeutic
resistance. Over the past decades, cancer treatment has evolved significantly, from
non-specific, broadly cytotoxic strategies to personalized and molecularly targeted
approaches.

Historically, surgical resection was among the earliest and most effective interven-
tions, especially for localized tumors [95]. Surgery remains a cornerstone in oncology
for tumor removal, staging, and histopathological classification [95]. Radiation ther-
apy and chemotherapy soon followed as systemic therapies. Radiation induces DNA
damage to kill rapidly dividing cells but also damages surrounding normal tissue [95].
Chemotherapy involves low-molecular-weight cytotoxic agents targeting rapidly pro-

liferating cells but also lacks specificity and can cause significant toxicity to normal
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organs [95].

In hormone-sensitive malignancies such as certain breast and prostate cancers, hor-
mone therapies like estrogen receptor blockers or androgen deprivation, have become
standard-of-care [95]. These treatments block hormonal pathways that are critical for
tumor progression.

More recently, precision oncology has shifted the focus toward minimizing systemic
toxicity and maximizing tumor-specific efficacy. Targeted therapies have been devel-
oped to inhibit oncogene-driven pathways that are frequently mutated in cancer sub-
types (e.g., genes like Epidermal Growth Factor Receptor (EGFR), Anaplastic Lym-
phoma Kinase (ALK), B-Raf proto-oncogene serine/threonine kinase (BRAF)) [96].
These therapies are tailored based on molecular profiling and are often more effective
in tumors with specific actionable alterations [95].

Among the most transformative advances in recent years has been the development
of immunotherapy, particularly Immune Checkpoint Inhibitor (ICI). These agents
work by blocking regulatory pathways that suppress immune activation, thereby en-
abling cytotoxic T cells to recognize and destroy cancer cells. The most clinically
successful ICIs target the Anti-Programmed cell Death protein-1 (PD-1) or its lig-
and Anti-Programmed cell Death Ligand-1 (PD-L1), and Cytotoxic T Lymphocyte-
associated Antigen 4 (CTLA-4). Therapies targeting the PD-1/PD-L1 axis have
demonstrated durable responses in multiple cancer types, including melanoma, Non-
Small Cell Lung Cancer (NSCLC), and urothelial carcinoma but can also cause
specifically immune system induced complications like hyper-progression or pseudo-
progression [88,97].

PD-L1 expression, as detected by immunohistochemistry, has emerged as a key
biomarker for predicting response to these agents, although it remains imperfect due
to tumor heterogeneity and dynamic expression. As such, efforts are underway to
develop multi-dimensional predictive models that integrate PD-L1 status with Tumor
Mutational Burden (TMB), immune infiltration, and other immune-oncology markers
[98,99].

Beyond checkpoint inhibition, novel immunotherapeutic strategies are being ex-
plored. These include Bispecific T-cell Engagers (BiTEs) that link Cluster of Differ-
entiation 3 (CD3) on T cells to tumor-associated antigens, antibody-drug conjugates
(ADC) that deliver cytotoxins to cancer cells via antigen-specific antibodies, and on-
colytic virus therapies designed to selectively lyse tumor cells and stimulate anti-tumor
immunity [95]. Photodynamic therapy, while niche, offers localized tumor destruction

via photosensitizer activation [95].

In addition to molecular predictors, patient-related and systemic factors substan-
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tially influence immunotherapy outcomes. The Eastern Cooperative Oncology Group
(ECOG) Performance Status provides a concise measure of functional capacity and
treatment tolerance, and remains a cornerstone parameter guiding prognosis and
therapeutic decision-making in oncology [100]. Likewise, the serum concentration
of C-Reactive Protein (CRP) reflects systemic inflammation and has been associated
with both prognosis and treatment response in patients receiving PD-L1-directed im-
munotherapy [101].

In the context of immunotherapy, treatment response assessment is complicated
by atypical tumor growth patterns that are not adequately captured by conventional
criteria. Therefore, clinical trial design and response evaluation methods have also
adapted to unique immunotherapy characteristics. Traditional criteria such as Re-
sponse Evaluation Criteria In Solid Tumors (RECIST) focus on tumor size reduction
as an indicator of efficacy. However, ICIs can induce atypical response patterns such
as Pseudo-progression, where tumors appear to grow before shrinking due to immune
cell infiltration [102]. On the other side immunotherapy is also known to cause Hyper-
progression which indeed refers to a detrimental increase in tumor burden following
therapy initiation. This necessitated the development of immune Response Evalu-
ation Criteria In Solid Tumors (iIRECIST), a modified guideline that accounts for
immune-related responses and progression [102-104].

These developments underscore a paradigm shift in oncology—from a one-size-fits-
all model to a nuanced approach incorporating genomics, immunology, and dynamic
treatment adaptation. Within this context, evaluating and predicting patient response
to PD-L1-targeted therapies has become a critical research priority [98]. The work
presented in this thesis aims to contribute to this field by assessing outcome metrics

and response predictors in the setting of PD-L1 immunotherapy.

2.2.3 Biomarker

Biomarkers are measurable indicators of normal biological processes, pathological
conditions, or responses to therapeutic interventions and ideally anticipate clinically
meaningful outcomes or endpoints that are otherwise challenging to directly assess
[105]. They may originate from a wide range of biological and physiological sources,
including nucleic acids, proteins, cells, metabolites, or imaging-derived features [106].
They play a central role in early disease detection, diagnosis, prognosis, risk stratifi-
cation, therapeutic selection, and monitoring of treatment response [14,106]. Their
importance is especially evident in oncology and neuro-oncology, where disease het-
erogeneity necessitates individualized clinical approaches [107,108].

Biomarkers can be categorized based on the biological level at which they are ex-
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pressed. These include molecular biomarkers (e.g., enzyme activity), cellular biomark-
ers (e.g., serum electrolytes), tissue-level biomarkers (e.g., Glycated Hemoglobin (HbA;¢)),
organ-level biomarkers (e.g., blood pressure, echocardiographic findings), and whole-
body biomarkers (e.g., body weight, body size) [105]. From a functional perspective,
biomarkers are commonly classified into three major categories: diagnostic, prognos-

tic, and predictive biomarkers [106]:

» Diagnostic biomarkers are used to detect or confirm the presence of a spe-
cific disease or pathological condition (e.g. Circulating long non-coding RNAs

(IncRNAs) in blood for early cancer detection) [109].

o Prognostic biomarkers provide information about the likely progression or
outcome of a disease, regardless of treatment (e.g. increased Circulating Tumour

Cells (CTC) expression in squamous cell carcinoma of the head and neck) [110].

o Predictive biomarkers help identify individuals who are more likely to benefit
from or respond to a specific therapeutic intervention (e.g. PD-L1 expression

for predicting the response to ICI) [111].

Ideal biomarkers are characterized by high sensitivity and specificity, reproducibility,
and robust clinical relevance. In addition, they should ideally be accessible, cost-
effective, and minimally invasive to facilitate widespread clinical implementation [106,
108].

Recent research emphasizes the integration of multiple biomarker types, especially
combining molecular and imaging biomarkers as a promising strategy to enhance di-
agnostic precision and therapeutic decision-making [107,108]. This multidimensional
approach aligns with the goals of precision medicine by supporting more tailored and
effective patient management [14].

In oncology, most biomarkers are acting on the molecular level, as cancer arises
based on changes on this level. Molecular biomarkers typically encompass genomic,
transcriptomic, proteomic, or metabolomic indicators obtained from biological speci-
mens. In contrast, imaging-based biomarkers are derived from non-invasive modalities
such as MRI, CT, PET, or ultrasound and provide spatial, morphological, or func-

tional information about tissue and disease processes [107,108].

2.2.4 Conclusion

In summary, cancer represents a biologically and clinically complex disease driven

by multilayered genomic, epigenomic, transcriptomic, proteomic, and metabolic al-
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terations. This heterogeneity poses significant challenges for diagnosis, prognosis,
and treatment, necessitating precision strategies grounded in comprehensive molec-
ular understanding. Over time, oncology has transitioned from broadly applied cy-
totoxic treatments toward personalized approaches leveraging targeted therapies and
immunotherapies, particularly immune checkpoint inhibitors such as PD-1/PD-L1
blockade. These therapeutic innovations are underpinned by the identification and
integration of molecular and imaging biomarkers that offer predictive and prognostic
value. The interplay between tumor microenvironment, mutational landscape, and
therapy response continues to fuel the need for high-resolution, non-invasive meth-
ods for patient stratification and response monitoring. Radiomics, a field focused on
extracting quantitative imaging features, has emerged as a promising tool to bridge
molecular biology and clinical imaging, offering novel insights for tumor characteriza-
tion and treatment outcome prediction. This thesis builds upon these developments
by exploring how radiomics can support clinically relevant classification tasks in on-

cology.

2.3 Radiomics

Radiomics is an emerging field at the intersection of medical imaging and compu-
tational analysis, where a large number of quantitative features are extracted from
standard medical images using data-characterization algorithms [14,112]. These fea-
tures ranging from shape descriptors to texture patterns and statistical summaries
aim to capture underlying tissue characteristics that are often imperceptible to the
human eye. The fundamental idea behind radiomics is to convert images into mineable
data and apply machine learning or statistical modeling to uncover relationships be-
tween image features and clinical outcomes to support comprehensive data integration
(e.g. integration of genetic sequencing results, or clinical parameters like blood pres-
sure) and explainability (showing explicit radiomics features describing reproducible
characteristics of the tumor) [113,114]. A typical radiomics workflow includes image
acquisition, segmentation of regions of interest (ROIs), feature extraction, and mod-
eling [1]. Radiomics thereby enables a non-invasive means of phenotyping disease,
which can enhance diagnosis, predict prognosis, and guide treatment decisions. Al-
though initially developed within the context of oncology, radiomics has been applied
to a variety of medical domains. These include neurology, cardiology, pulmonology,
and infectious diseases [115]. In neurology, radiomics has been extensively applied in
glioma research, analyzing tumor heterogeneity, TME and molecular subtypes using

MRI-derived features combined with advanced modeling approaches [116]. Beyond
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oncology, radiomics is also investigating non-oncologic neurological conditions like
stroke, aneurysms and demyelinating disease [117]. Radiomics has found its impact
in widespread application in medicine and oncology. It has been used to character-
ize tumor heterogeneity, predict treatment response, assess prognosis, and even infer
underlying genetic mutations, commonly referred to as Radiogenomics [14,113]. In
lung and head-and-neck cancers, radiomics features have demonstrated strong prog-
nostic value independent of clinical factors, often outperforming them in predictive
models [113]. Additionally, in radiotherapy, radiomics supports adaptive planning and
early toxicity prediction [118]. Radiomics offers several advantages. It is non-invasive,
leverages already available imaging data, and can provide high-dimensional insights
without the need for biopsy or additional procedures [14]. Moreover, it enables per-
sonalized medicine by uncovering patient-specific imaging biomarkers, the ability to
incorporate multi-domain information for more precise and comprehensive analysis,
as well as explainable and reproducible features [1,119]. Radiomics ultimately aims
for prospective clinical application by establishing standardized processing of routine
clinical care data, enabling complex and comprehensive analyses that integrate in-
formation from multiple domains. Integration of radiomics workflow into the clinic
for prospective use needs proper evaluation but can increase quality and reduce labor
intensive radiological evaluations (see Figure 2.5).

However, radiomics faces notable limitations. These include lack of standardiza-
tion of radiomics terms, imaging protocols, variability in feature extraction across
platforms, and insufficient external validation [1,11]. Many studies remain retrospec-
tive and lack clinical integration, leading to a gap between research and real-world
application. Systematic reviews have shown that only a limited number of radiomics

approaches currently meet the threshold for high-quality clinical evidence [120].

2.3.1 Standardization in Radiomics

While radiomics promises non-invasive phenotyping and personalized treatment guid-
ance, its clinical implementation remains impeded by variability and insufficient method-
ological transparency. Quantitative Radiomics imaging biomarkers are highly sensitive
to variations in image acquisition, reconstruction, and preprocessing protocols. The
multi-stage radiomics workflow is particularly susceptible to inconsistencies across
institutions, software, and practices. Standardization is thus crucial to enable re-
producibility, data comparability, and real-world deployment of imaging biomark-
ers [119,121,122].

Standardization ensures comparable radiomics features regardless of imaging pro-

tocols, vendors, or computational pipelines between studies. It enhances scientific
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rigor, facilitates multi-center research, and builds confidence in radiomics-derived
biomarkers for regulatory and clinical use. This need is especially urgent given the
heterogeneity in current practices and the tendency for subtle technical differences to
significantly impact results [122,123].

Several expert-developed guidelines and checklists which are used in the radiomics
community provide structured recommendations to improve quality, transparency,

and clinical relevance of radiomics study consistencies:

« IBSI (Image Biomarker Standardization Initiative): Aims to standardize
the definition and calculation of radiomic features to enhance reproducibility and

comparability across studies and software platforms. [119].

« TRIPOD (Transparent Reporting of a multivariable prediction model
for Individual Prognosis or Diagnosis): Provides a structured framework
for transparent reporting of multivariable prediction models, including those

based on radiomics. [124].

« RQS (Radiomics Quality Score): A semi-quantitative scoring system to
assess methodological rigor in radiomics studies including TRIPOD criteria, with

the goal of encouraging reproducibility, transparency, and clinical relevance [14].

o« CLAIM (Checklist for Artificial Intelligence in Medical Imaging): Of-
fers structured guidance for reporting standards for Al-driven medical imaging

studies, especially those using deep learning. [125].

« CLEAR (CheckList for EvaluAtion of Radiomics): A guideline designed
specifically for the evaluation and reporting of radiomics studies, focusing on

reproducibility, transparency, and interpretability [12].

« ARISE (Assessment for Radiomics Implementation Study Excellence):
A harmonized framework assessing radiomics studies from the perspective of

clinical applicability and methodological integrity [13].

These guidelines and checklists have been introduced to improve the methodolog-
ical rigor, transparency, and clinical relevance of radiomics studies. While some of
these guidelines are domain-specific to radiomics (e.g., IBSI, RQS, CLEAR, ARISE),
others originate from broader methodological domains (e.g., Transparent Reporting
of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD)
for prediction models, CLAIM for Artificial Intelligence (Al) in imaging). The IBSI
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provides standardized definitions of reproducible radiomics feature extraction, in-
cluding formula, as well as general recommendations on the radiomics workflow de-
sign, and validate feature reproducibility using CT, Positron Emission Tomography
(PET), and T; MR images of 51 patients [119]. It is the only guideline offering con-
crete implementation-level specifications for radiomics pipelines. The RQS attempts
to quantitatively evaluate radiomics studies through a point-based system reflect-
ing various methodological aspects—many of which are informed by general princi-
ples from the TRIPOD checklist, which itself offers a structured framework with 22
items for transparent reporting of multi-variable prediction models [14]. CLAIM pro-
vides a publication-focused checklist for Al applications in medical imaging, guiding
researchers on proper terminology, dataset documentation, and evaluation report-
ing [125]. CLEAR is a domain-specific checklist for radiomics, aiming to promote
transparency and reproducibility through 58 reporting items covering image process-
ing, feature extraction, modeling, and interpretation [12]. ARISE contributes a trans-
lational lens by providing 13 high-level recommendations to evaluate whether a ra-
diomics study adequately addresses clinical applicability, regulatory relevance, and
workflow integration [13]. Although these frameworks differ in scope and granular-
ity, many share overlapping reporting criteria particularly concerning data curation,

validation, and reproducibility which may lead to partial redundancy across checklists.

Despite the growing number of guidelines, several practical and conceptual limita-
tions remain. IBSI, while rigorous in its mathematical formalism, was validated using
only 51 patient cases across CT, PET, and T;-weighted MRI, its generalizability to
other modalities like To-weighted MRI or advanced multi-parametric sequences and
other entities remains uncertain and may require further harmonization or adapta-
tion [119]. RQS, though widely cited, is constrained by its arbitrary and uneven point
allocation: for instance, prospective data collection yields disproportionately high
scores (+7), whereas critical methodological aspects such as feature selection or valida-
tion only yield marginal gains (+1), thereby distorting overall quality assessments [14].
Moreover, these weights lack empirical justification and can overemphasize study de-
sign over reproducibility. TRIPOD, being model-agnostic and domain-independent,
does not address imaging-specific challenges (e.g., segmentation variability, acquisi-
tion harmonization), and is intended primarily for reporting purposes, not for guiding
the methodological development of radiomics workflows [124]. CLAIM, similarly, of-
fers little radiomics-specific guidance, and remains primarily focused on deep learning
models rather than handcrafted radiomics features [125]. While CLEAR provides a
comprehensive list of transparency criteria, it is based on limited consensus and offers

no prescriptive guidance on best practices, challenging interpretation and implemen-
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tation largely up to the authors [12]. ARISE, although innovative in its translational
focus, operates at a high level of abstraction; it provides no concrete instructions for
methodology, and is currently confined to documentation guidance rather than influ-
encing the analytical pipeline itself [13]. As such, most guidelines except for IBSI are
aiming for a better suited structuring and evaluating publications than for actively
informing radiomics pipeline design or implementation.

Beyond the structural and conceptual limitations of current radiomics guidelines,
reproducibility in radiomics is further challenged by a number of well-documented
technical factors along the processing pipeline which are hindering clinical transla-
tion. Multiple studies have demonstrated that image acquisition and reconstruction
parameters, such as slice thickness, dose, and reconstruction algorithm, have a sig-
nificant impact on the stability of radiomics features—particularly for texture- and
shape-based metrics [10,126]. In addition, preprocessing steps such as voxel resam-
pling, pixel discretization, intensity normalization, and filtering (e.g., wavelet or Lapla-
cian of Gaussian) can drastically alter feature values and thus affect both intra- and
inter-study reproducibility [119,127,128]. While some filtering strategies may improve
predictive performance, they may also reduce reproducibility if not harmonized appro-
priately [129]. Moreover, segmentation variability, although generally less impactful
than acquisition-related factors, remains a critical source of uncertainty, especially
for smaller lesions or irregular structures [21,130]. Differences in feature extraction
software also contribute to inconsistencies, even when nominally compliant with stan-
dardized definitions [119]. These findings underscore the pressing need for not only
reporting standards but also pipeline harmonization and empirical benchmarking of

reproducibility across modalities, software environments, and clinical contexts.

2.3.2 The Radiomics Workflow

Radiomics has rapidly transitioned from a purely research-oriented concept to a valu-
able tool in clinical oncology, offering non—invasive, quantitative insights into tumor
phenotypes that can enhance diagnosis, prognostication, and treatment planning. A
typical radiomics pipeline encompasses sequential steps of study design, image ac-
quisition, preprocessing (e.g., denoising, normalization), tumor segmentation, feature
extraction, feature selection, model development, and validation [11,119]. However,
significant heterogeneity exists in how these phases are defined and executed across
the literature. In response, the IBSI has proposed detailed guidelines for radiomics
studies with the focus on feature computation [119], and the SPP2177 consensus state-
ment has delineated a seven-phase workflow with 37 aspects to harmonize radiomics

studies [11]. In the following sections, I introduce the general radiomics workflow and
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then discuss the key differences observed among published protocols.

The General Radiomics Workflow
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Figure 2.2. Overview on the general sequence of procedures covered by radiomics
studies as the general radiomics workflow, starting at study design and data acquisition
and ending with the integration of the models into the clinical setting. The clinical
setting and image acquisition in the beginning is related to the circumstances and the
starting point of the radiomics study and therefore not always necessary. The main
part of radiomics processing in highlighted in the middle of the figure. This workflow

is based on the consensus workflow previously defined by Floca et al. [11].

Whereas the IBSI workflow focuses narrowly on the steps leading up to feature
calculation namely data conversion, post-acquisition processing, segmentation, in-
terpolation, re-segmentation, ROI extraction and intensity discretisation [119], the
SPP2177 consensus extends this pipeline through feature extraction into dedicated
modeling and reporting phases based on consensus voting coming from a Delphi pro-
cess of radiomics experts [11]. However, neither framework explicitly addresses the
ultimate goal of clinical deployment: applying a validated radiomics model back onto
new imaging studies to support real-time decision making. In routine practice, the
completed radiomics pipeline is run on external patient cohorts, and the resulting risk
scores or phenotypic biomarkers are integrated with clinical and pathological data to
guide diagnosis, prognosis, or treatment selection. The actual goal of using the model
which learns on selected features is to apply it in the clinics without redoing the en-
tire validation and feature selection process. To capture this end-to-end continuum,

Figure 2.2 presents my generalized radiomics workflow covering important aspects in
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my thesis, which not only aligns with the IBSI and SPP2177 recommendations but
also closes the loop by showing how model outputs are fed back into the clinical envi-
ronment as decision support tools. However, prospective use of pretrained radiomics
models on new data should be handled carefully to ensure the reliable application
of the radiomics model to the predefined selected feature set. The model must be
rigorously trained, tested and calibrated via validation on heterogeneous datasets to
quantify and mitigate the effects of imaging-protocol variability, segmentation differ-
ences and technical noise on the feature selection and on the model performance in
order to have trustworthy predictions on prospective data [131,132]. Moreover, per-
missible clinical use cases should be explicitly defined by the original study design
and patient recruitment criteria for the training, validation and test cohorts, and any
subsequent alteration of the radiomics pipeline or feature space should prompt a full

re-evaluation to confirm feature stability and clinical validity [131,132].

2.3.3 Study Design & Image Acquisition

A robust radiomics study begins with a clearly articulated clinical question and
testable hypotheses, such as predicting treatment response or patient survival, that
guide all downstream decisions [11]. Prior to data collection, ethical approval must
be secured, detailing patient consent procedures and data-protection measures. Key
outcome measures (e.g., overall survival, recurrence-free interval) and strict inclu-
sion/exclusion criteria (tumor size thresholds, prior therapies) are defined to minimize
bias and confounding. Recognizing the impact of scanner and protocol variability, one
should plan for data clustering and heterogeneity mitigation—either through stratified
sampling or harmonization algorithms. The choice of imaging modality (CT, MRI,
PET) must reflect the underlying biology of interest, and imaging parameters (slice
thickness, reconstruction kernels, field of view) should be recorded meticulously as
metadata. Finally, DICOM images are retrieved via secure pipelines, pseudonymized
at import, and converted to standardized formats (e.g., NIfTT or DICOM-RT) to
enable reproducible batch processing [114].

The study design is inherently tied to the primary aim and should balance tech-
nical feasibility with clinical applicability. In personalized oncology, careful design
is vital for refining patient stratification and guiding treatment selection, with the
ultimate goal of improving survival. In the context of the Predict approach, this
means identifying non-responders at the earliest treatment stage to avoid ineffective
and potentially harmful therapies, thereby preventing unnecessary tumor progression.
Anticipating and addressing technical limitations—such as imaging quality or algo-

rithm generalizability and clinical constraints, including cohort representativeness and



38 Radiomics

follow-up duration, is essential to ensure meaningful and clinically relevant outcomes.
An illustrative example of patient stratification for treatment selection, and its role

in advancing personalized oncology, is shown in Figure 2.3.
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Figure 2.3. Conceptual overview of patient stratification for optimizing personalized
oncological treatment design. The upper section illustrated the traditional sequential
application of multiple treatments where non-responding patients of first line treat-
ment get assigned to another treatment. The lower section illustrates the aim of of the
Predict study (Section 4.2) as a decision support system for early patient treatment
response stratification enabling timely therapy adjustments to avoid unnecessary tu-

mor progression for increased patients survival in an earlier stage of the disease.

2.3.4 Data Annotation & Image Segmentation

Accurate delineation of the region of interest (ROI) is critical, as segmentation vari-
ability can substantially affect feature reproducibility (see section 2.1.3) [119]. De-
pending on resources and task complexity, expert radiologists may perform manual
annotations on 2D slices or 3D volumes, which is labor intensive but remain the gold

standard. Alternatively, automated methods ranging from classical thresholding and
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region growing to modern deep-learning models (e.g. U-Net, nnU-Net) can accelerate
this process, provided they are trained and validated on representative datasets [8,25].
All manual- and automatic segmentations should undergo quality checks against ex-
pert references using metrics such as Dice similarity coefficient, Jaccard index, or
Hausdorff distance, supplemented by visual review and inter-observer concordance
studies to ensure clinical plausibility [119]. The type (instance segmentation, or se-
mantic segmentation) and meaning of the performed segmentation (e.g. label for
tumor, label for background, label for organs) should be clearly defined. The la-
bel of the target object in the segmentation should be correctly documented as this

influences the further processing of the data and helps to identify the correct ROI.

2.3.5 Data Preprocessing

Before feature computation, images and masks must be rendered comparable across
patients and scanners. Volumetric resampling is performed to achieve isotropic voxel
spacing [133,134], and segmentation artifacts (small disconnected components) are
corrected algorithmically. These segmentation artifacts occur after automated as well
as manual segmentation and should be verified before extracting features. Intensity
normalization (via z-score scaling or N4 bias field correction) is applied to mitigate
scanner-specific variations, with MR data often requiring additional normalization,
whereas CT scanners output calibrated Hounsfield units. When multi-modal data are
used (e.g. CT or Ty/Ty MRI), rigid or deformable registration aligns sequences to a
common coordinate space. To assess feature robustness, it is recommended to apply
image filters (Laplacian of Gaussian, wavelets) [10] and segmentation perturbations
[21], while clinical covariates undergo imputation for missing values and removal of

constant or highly correlated variables [119].

2.3.6 Radiomics Feature Computation

Radiomic features quantify tumor characteristics beyond human perception, cate-
gorised across shape, intensity, and texture, as defined by the Image Biomarker Stan-
dardization Initiative (IBSI), which specifies 11 feature classes and 169 benchmarked
features [119].

o Shape features: Features about the segmentation and geometric descriptors

(e.g. volume, surface area, sphericity).

« First-order intensity (histogram) features: Features describing general

statistics about grey value distributions within the ROI (e.g. mean, variance,
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skewness, percentiles, etc.).

» Texture features: Features describing spatial distribution of Grey-values within

the ROI including different metrics capturing Grey-level patterns.

Radiomics Feature Extraction

Radiomic features fall into two broad categories: those standardized and validated
by the IBSI, and non-IBSI descriptors which, although widely used, often lack cross-
platform reproducibility and formal benchmarking [119]. IBSI features are grouped
into 11 families, morphological, first-order intensity, and nine texture matrices to
describe specific image properties without prescribing every individual metric. For
example, shape features quantify geometric properties (volume, surface-to-volume ra-
tio), first-order features summarize the overall intensity distribution (mean, variance,
skewness), and texture families capture spatial grey-level patterns at varying scales
(e.g. coarseness in NGTDM, zone size in GLSZM) [119].

The IBSI categorizes 169 radiomic features into 11 distinct families, each capturing

a specific aspect of the image phenotype [119]:

« Morphologic characteristics (26 features): Geometric descriptors of the
ROI—volume, surface area, compactness, sphericity, elongation, flatness—that

quantify three-dimensional shape and size.

« Local intensity (LI) (2 features): Statistics computed from each voxel’s
immediate neighborhood (e.g. local mean and variance), reflecting fine-scale

intensity variations.

 Intensity-based statistics (IS) (18 features): First-order descriptors sum-
marizing the grey-level distribution within the ROI (mean, median, variance,

skewness, kurtosis, percentiles).

 Intensity histogram (IH) (23 features): Histogram-derived metrics (energy,
entropy, uniformity, histogram variance, percentile thresholds) capturing the

overall grey-level frequency distribution.

 Intensity—volume histogram (IVH) (5 features): Features relating inten-
sity thresholds to volumetric fractions (e.g. volume above threshold, area under

the cumulative histogram), describing intensity—volume relationships.

« Gray-level co-occurrence matrix (GLCM) (25 features): Second-order
texture features quantifying pairwise grey-level spatial dependencies at specified

offsets (contrast, dissimilarity, homogeneity, energy, correlation, cluster metrics).
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« Gray-level run-length matrix (GLRLM) (16 features): Texture metrics
measuring the length of consecutive runs of identical grey-levels along given

directions (short-run/long-run emphasis, run-length variance).

« Gray-level size-zone matrix (GLSZM) (16 features): Features quantify-
ing the size distribution of connected zones of constant intensity in 3D (small-

zone/large-zone emphasis, zone size variance).

« Gray-level distance-zone matrix (GLDZM) (16 features): Similar to
size-zone but incorporating spatial distance between voxels, capturing texture

scale and distance-dependent zone characteristics.

« Neighborhood gray-tone difference matrix (NGTDM) (5 features):
Metrics that compare each voxel’s intensity to the average of its neighborhood,

capturing local texture coarseness, contrast, and busyness.

« Neighboring gray-level dependence matrix (NGLDM) (17 features):
Measures of how a voxel’s intensity depends on its neighbors at specified dis-

tances (low-dependence/high-dependence emphasis, dependence variance).

Second or higher order features are features describing matrices which are cal-
culated based on the discretizised image. Pixel discretization is a crucial process in
radiomics feature extraction which effects the signal to noise ratio (see Figure 2.4. It is
important to find a good balance between the reduction of Grey values to compensate
technical bias from the Grey values in the scan, but not losing important informa-
tion which support predictive performance. Two major methods are applied in this
regard depending on the influencing binning parameter of the Grey value discretiza-
tion (number of bins or size/width of bins). The IBSI recommends pixel intensity
discretizations prior to not all feature classes (e.g. local intensity features are based
on non-discretizised images) which impacts features directly [119].

The configuration of the discretization process (fixed number of bins or fixed bin
width) can therefore be fundamentally impact about 83 % of the IBSI features de-
scribing the textures of the tumor using the descritizied images shown in Table 2.2 and
2.1. In contrast, the most commonly used tool, PyRadiomics, implements pixel inten-
sity discretization for all feature classes besides the shape features but is also missing
about 37% of IBSI features [15,24,119]. This divergence not only affects feature
values but also downstream model performance, underscoring the need to document
and, where possible, harmonize discretization methods in any radiomics study. My
recent work demonstrated that applying different extractors (like PyRadiomics [15]

and MIRP [21]) with default configuration parameters can yield superior outcome
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prediction compared to state-of-the-art pipelines that rely on a single toolkit [24].
Non-IBSI features include statistical features describing the dataset can enrich phe-
notypic characterization but suffer from inconsistent definitions and limited validation

across sites.

Furthermore, the configuration of the extraction process should also be verified to
consider on how to perform radiomics extraction and further processing on multiple
ROIs per patients. Radiomics studies routinely extract hundreds to thousands of fea-
tures per lesion, often exceeding the number of available patient samples. This high
dimensionality greatly increases the risk of overfitting and degrades model generaliza-
tion. [135,136].

The Effect of Pixel Discretization
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Table 2.1. IBSI applied pixel discretization with Fixed Bin Size (FBS) on ROI
extracted from CT and MR images to show the impact of the configuration of FBS
discretization for both modalities. The CT Image comes from the CRLM dataset and

the MR image comes from the Desmoid dataset.

Bin width: Bin width: Bin width:
100

Original

Table 2.2. IBSI applied pixel discretization with Fixed Bin Number (FBN) on ROI
extracted from CT and MR images to show the impact of the configuration of FBN
discretization for both modalities. The CT Image comes from the CRLM dataset and

the MR image comes from the Desmoid dataset.

Bin number: Bin number: Bin number:

Original
& 10

100

Feature Filtering

Before any model is trained, statistical filters remove features unlikely to contribute

useful signal:

¢« Low-variance removal: Exclude features with near-zero variance across the

cohort.
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o Correlation thresholding: For any pair of features with Pearson |r| > 0.9,

drop one to mitigate multicollinearity.

« Stability assessment: Retain only features with high intraclass correlation

coefficients (ICC) under segmentation perturbations or phantom studies.

These steps are model-agnostic and efficiently prune gross redundancies and noise

before machine learning models get applied [136].

Feature Selection

The feature selection step is a very critical step in the radiomics workflow, as it
reduces the feature space very much to get only most informative radiomics features
but also losing information which might harm the performance in the end. The feature
selection is an optimization process and should therefore define a training and testing
data. The same train and test data sets from the feature selection should also be used
in the model training to avoid potential information leakage between the train and
test sets [137]. Subsequent selection methods leverage model performance to identify

the most predictive subset [135]:

o Wrapper methods: Recursive Feature Elimination (RFE) or Sequential Fea-
ture Selection (SFS) iteratively fits a classifier (e.g. random forest or Support

Vector Machine (SVM)) and removes the least important features.

« Embedded methods: Regularized algorithms (e.g. LASSO) incorporate penalty

terms during training to shrink irrelevant feature coefficients to zero.

« Hybrid approaches: Combine filtering and wrapper stages to balance com-

putational cost with predictive accuracy.

By integrating feature importance into the selection process, these techniques yield
parsimonious feature sets that improve prediction and reduce overfitting [135].
These steps for feature reduction are essential and very important as they define the
information where the predictions are based on and which parameters are important
for the specific clinical task. Each method comes with specific limitations. These
processes can trigger model overfitting as well as underfitting and should be defined
also in regard to the data size (not more features as samples) to overcome these

problems and not overrate potential important features [136].
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2.3.7 Machine Learning (Modeling)

Within the radiomics workflow, machine learning (ML) plays a central role in trans-
forming extracted imaging features into clinically meaningful predictions. After care-
ful preprocessing and feature selection, the resulting radiomic signature is modeled
to capture associations with biological characteristics, treatment outcomes, or clinical
endpoints. ML methods are particularly well suited for radiomics because of the typi-
cally high-dimensional but limited sample size settings, where conventional statistical
approaches often fail to provide robust generalization [136,138]. By systematically
learning patterns from the data, ML enables both classification tasks (e.g. tumor
subtyping, mutation status prediction) and regression tasks (e.g. survival estimation,
biomarker quantification) [139, 140].

The design of ML experiments in radiomics must carefully balance model complex-
ity with the risk of overfitting and should integrate strategies for rigorous validation.
Overfitting occurs when models adapt too closely to training data, leading to over
interpretation of data specific technical bias (imaging parameters like convolution
kernel or contrast agent) and poor generalization to unseen and external data (e.g.
data acquired from a different institute or hospital as the training data) [141]. This
challenge is particularly pronounced in radiomics due to the imbalance between fea-
ture dimensionality and cohort size. Experimental design therefore typically involves
splitting data into training, validation, and test sets, or applying cross-validation to
ensure that performance estimates reflect true generalizability [142]. Importantly, ML
is not only a predictive tool but also a methodological framework that structures how
models are trained, tuned, and evaluated in a reproducible way [143,144]. Properly
designed modeling therefore provides the bridge between abstract radiomic features
and clinically actionable insights, ensuring that reported models are both technically
sound and clinically interpretable.

Subsequent sections detail the two main pillars of this process: the choice and

training of models, and the strategies for their evaluation.

Models and Training

The training of predictive models in radiomics must follow a carefully designed ex-
perimental setup to ensure valid and reproducible results. Importantly, models must
be trained and validated using the same data partitions that were defined during fea-
ture selection, so that all steps of the pipeline are consistently applied on identical
train—test splits [137]. This consistency guarantees that performance estimates are

not biased by differences in data usage.
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Cross-validation is one of the most widely applied strategies to maximize data
efficiency and obtain robust estimates of generalizability. In k-fold cross-validation,
the training data are split into k subsets (folds), and the model is trained iteratively
on k — 1 folds while being validated on the remaining fold. Variants such as stratified
k-fold (maintaining class proportions), shuffle-split, or repeated random subsampling
introduce different trade-offs between bias, variance, and computational cost [142].
Nested cross-validation is a more rigorous extension, designed to avoid information
leakage during hyperparameter optimization. In this approach, an outer loop is used
to split the data into training and test folds, while an independent inner loop is
applied within each training fold to tune hyperparameters and select models. This
design ensures that the test data in the outer loop remain completely unseen dur-
ing model selection and optimization, thereby providing an unbiased estimate of the
true generalization error [142,143]. Nested cross-validation further reduces the risk
of information leakage when hyperparameters are optimized, providing a less biased
estimate of the true model performance [143]. However, recent studies have cautioned
that nested CV is not always the optimal choice for small sample sizes [145-148].
The repeated partitioning of limited data can result in unstable estimates, inflated
variance, and poor hyperparameter tuning due to the small number of training ex-
amples available in inner folds [145-148]. In such scenarios, repeated stratified k-fold
cross-validation or carefully designed resampling (e.g., bootstrapping) may offer more
stable and interpretable performance estimates than single split validation, especially
in small datasets [149, 150].

Hyperparameter optimization has a major impact on model performance. The
selection of hyperparameters, the definition of their search ranges, and the number of
iterations tested all influence final results. Classical optimization strategies such as
grid search and random search are widely used; however, more advanced techniques
like Bayesian optimization or the Tree-structured Parzen Estimator (TPE) often allow
more efficient exploration of large hyperparameter spaces, particularly when many
hyperparameters exist, or when computational cost must be constrained [151-153].
The chosen optimization procedure must be integrated within the cross-validation
loop to avoid overfitting, as tuning hyperparameters outside of the validation folds

can lead to optimistic bias [141].

The selection of train/test splits is particularly critical for small datasets (n < 100).
In such scenarios, a single patient included or excluded from the test set may sub-
stantially change the measured performance, underlining the importance of repeated
cross-validation or resampling to achieve stable estimates [142]. To ensure repro-

ducibility, randomness in all steps of training (e.g., fold assignment, initialization of
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optimization routines) should be controlled, and identical data splits should be reused
for all models under comparison.

Different cross-validation strategies can be employed depending on the data char-
acteristics. Standard k-fold splits respect the natural order of the data, while shuffle
splits randomize sample allocation, and repeated random splits allow samples to ap-
pear in different validation sets across iterations. Illustrations of these schemes are
often provided to clarify their differences and to justify the chosen validation design.

Overfitting remains one of the most important risks in radiomics modeling. It oc-
curs when the model adapts too closely to the peculiarities of the training or validation
data, thereby losing the ability to generalize to unseen data [141]. This problem is
exacerbated in situations with imbalanced class distributions, where the model may
achieve deceptively high accuracy by preferentially predicting the majority class. Mit-
igation strategies include careful resampling, oversampling methods such as Synthetic
Minority Over-sampling Technique (SMOTE), or penalization techniques that adjust
decision thresholds for minority classes.

Finally, ensemble methods can further improve robustness and reduce variance by
aggregating predictions from multiple models. In hard voting ensembles, the major-
ity prediction across models determines the output, whereas in soft ensembles, class
probabilities are averaged or combined through softmax operations, often leading to
improved calibration and smoother decision boundaries. By combining complemen-
tary learners, ensemble strategies help counteract instability caused by small data

sizes and heterogeneous imaging cohorts [143].

Evaluation

The evaluation of predictive models is a critical step in the radiomics workflow and de-
termines whether a developed model is likely to generalize to unseen data and provide
clinically useful information. Model evaluation is closely linked to the study design and
must be performed with methods that are statistically rigorous and clinically mean-
ingful. Recently, initiatives such as Metrics Reloaded have provided comprehensive
recommendations for selecting problem-aware metrics and reporting them consistently
in image analysis studies [144]. These guidelines stress that no single metric is uni-
versally appropriate, but instead the evaluation strategy must be aligned with the
clinical use case and the characteristics of the prediction task.

In practice, statistical methods such as permutation testing or bootstrapping are
commonly applied to assess whether model performance exceeds what would be ex-
pected by chance, thereby providing statistical significance testing of the results [154].

Beyond significance testing, it is increasingly recognized that clinically relevant eval-
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uation goes beyond global metrics such as accuracy or Area Under the Receiver Op-
erating Characteristic curve (AUROC). For threshold-based clinical decision making,
sensitivity (true positive rate) and specificity (true negative rate) are of particular
importance because they directly reflect the trade-off between detecting disease and
avoiding false alarms. Several studies highlight that reporting these values together
with 95% confidence intervals is crucial for assessing the robustness and reproducibility
of model predictions in clinical contexts [154, 155].

Optimizing threshold-based metrics often involves the use of the Youden Index,
which defines the threshold that maximizes the sum of sensitivity and specificity. The
Youden Index has been widely adopted in biomedical research as a principled way of
identifying clinically optimal decision thresholds [156,157]. In radiomics, it provides
an interpretable and reproducible strategy for threshold selection when the balance
between sensitivity and specificity is critical.

Finally, evaluation practices differ somewhat between radiomics and deep learn-
ing. Radiomics studies typically emphasize a broad set of metrics (e.g., AUROC,
sensitivity, specificity, concordance index) to characterize performance across tasks
such as classification and survival prediction. Deep learning studies, in contrast,
often prioritize AUROC or accuracy as headline results, although calibration curves,
decision-curve analysis, and external validation are increasingly recommended for both
paradigms to assess clinical utility [144, 154]. Regardless of the modeling approach,
careful selection and transparent reporting of evaluation metrics are essential to en-
sure that models can be meaningfully compared and eventually integrated into clinical

workflows.

2.3.8 Clinical Integration & Reporting

The final phase of the radiomics workflow involves the integration of radiomics signa-
tures with clinical and pathological data, aiming to provide comprehensive decision
support and risk stratification. This integration seeks to bridge the translational gap
between promising computational biomarkers and their adoption in routine clinical
practice [158,159].

Reliable clinical integration necessitates robust validation, ideally via prospective
trials, multi-center cohorts, and reader studies, which collectively help ascertain gen-
eralizability and real-world efficacy [158,159]. Integrating radiomics into prospective
clinical application enables standardized processing of routine clinical care data for
complex and comprehensive analyses with information from multiple domains (see
Figure 2.5). Before a radiomics workflow can be integrated for a specific clinical

task, it must first be rigorously validated for that purpose to identify the most rele-
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vant information, distinguish true signal from bias, and enhance both the quality and
quantity of data processing. Selected radiomics features and trained models can be
used after validation for the prospective use case but might need constant reevaluation
as the clinical setting develops and data quality and data size change over time. More-
over, strong emphasis is placed on harmonization of image acquisition, standardized
analysis pipelines, and transparent model sharing, all of which accelerate regulatory

acceptance and clinical translation [12,160].

Prospective Clinical Workflow
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Figure 2.5. Integration of radiomics in a prospective clinical setting to handle live
data processing. The standard clinical workflow includes the radiologist, who eval-
uates the tumor based on the radiological images and sub sequential integrates the
findings into the clinical reportings. The radiomics pipeline needs to be validated on
retrospective data to select informative radiomics features and integrate additional
clinical parameters for the subsequent machine learning training and validation. The
optimized radiomics workflow can be integrated into the prospective radiomics work-

flow for fast and precise data processing.

Reporting radiomics studies according to comprehensive guidelines such as the
RQS, TRIPOD, or CLEAR (see section 2.3.1) is currently considered best practice
[12,160]. Adherence to these frameworks improves reporting quality, facilitates critical

appraisal, and expedites integration into clinical workflows and regulatory pathways
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[12,161].

Recent systematic reviews, however, highlight ongoing challenges in reporting con-
sistency and methodological rigor, underscoring the importance of continued commu-
nity adoption of such guidelines for radiomics to have a measurable impact at the
bedside [120,159]. However, the integration of Al tailored system for decision making
or decision support in the clinical practice remains doubts about who is responsible
if the integrated model does not give the correct suggestion and could harm the pa-
tient [162]. Therefore, the clinician who applies these models need to stay responsible
and check critically any outcome from these models where the models need to be
understandable for the users, which is true for radiomics features and models trained

on these features (see Section 2.3).

2.3.9 Radiomics Limitations & Future Directions

Radiomics offers considerable promise for the extraction of high-dimensional quanti-
tative features from medical images, enabling non-invasive assessment of tissue het-
erogeneity and supporting clinical decision-making. However, substantial limitations
remain, many of which restrict its current clinical application.

First, radiomics features are fundamentally phenotype-descriptive and do not replace
molecular measurements for biological characteristics that are not expressed phenotyp-
ically. Therefore, radiomics alone cannot capture all relevant (molecular or cellular)
tumor or tissue biomarker [161,163].

Second, the majority of radiomic features, while numerically standardized by initia-
tives such as IBSI [119], are not always directly interpretable or descriptive for the
diverse range of clinical and research problems in which they are applied. Their clin-
ical significance may thus vary, and many features remain mathematically abstract
rather than biologically meaningful [163,164].

Third, the defined set of features were defined through incremental attempts to capture
ever more known phenotypic characteristics but may leak some important informa-
tion and thus could not be seen as the final set of features to capture all important
information as the definition of important information remains a challenge itself and
might be different for every clinical application. There is a lack of systematic as-
sessment regarding the added value or redundancy of many features within different
imaging and clinical contexts [164]. The application and selection of different imag-
ing filters like Wavelet, Laplacian of Gaussian (LoG), Square, or Logarithm are not
standardized [10]. The feature extraction on these filtered images multiply the feature
space [138] and could support redundant and non-informative feature inclusion but

also serve as an augmentation technique or highlight substantial information in the
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image for more comprehensive and stable feature calculations [138].

Fourth, radiomics is highly sensitive to variations in imaging protocols, scanner pa-
rameters, and segmentation practices [138]. Even minor changes in image acquisition
or reconstruction can dramatically affect measured feature values, and aggressive cor-
rection or normalization approaches, while intended to enhance reproducibility, may
inadvertently obscure or eliminate meaningful biological signals [138,161].

Best practice for feature calculation should further be investigated for reliable and
reproducible radiomics studies. It should further be determined by consensus for each
imaging modality, grounded in evaluations across large, heterogeneous datasets with

a wide spectrum of pathologies, imaging settings, and research aims [161, 164].



Chapter 3

State of the Art

State of the Art in Medical Image Classification
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Figure 3.1. Domains of state of the art methods for 3D medical image classification
include deep learning approaches as well as radiomics based approaches. Radiomics
based approaches are either customized which is lacking in generalization whereas
the automated radiomics applies a comprehensive optimization and aims to achieve

generalizable and reproducible results.

This chapter gives an overview of the related state of the art methods for medical
3D image classification and the role of radiomics in this context. In general state
of the art methods for medical 3D image classification can be clustered in 3 classes
(see Figure 3.1): deep learning approaches, customized radiomics approaches, and
AutoML Radiomics approaches. The selection of the method relays on several factors
and requirements. For training deep learning models high amounts of data (10004
samples) and GPU hardware support are required to get good performing models
for the specific task [165]. In contrast, radiomics approaches can be applied on less

data but sufficient data size is related to the task and the data heterogeneity [166].

o2
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Radiomics approaches have showed good performance on phenotypic related tasks like
tumor subtype classification or tumor malignancy classification, but also for prognosis

and treatment response prediction [1].

The domain of 3D medical image classification has been dominated by methods
based on deep learning, in particular customized CNN models are dominating the
literature but also more standardized model architectures like ResNet, Visual Geom-
etry Group (VGG)-16 , EfficientNet and DenseNet have been very frequently applied
to different medical image datasets for classification [167]. These networks are ca-
pable of exploiting spatial context in all three dimensions and have consistently out-
performed slice-based or customized approaches when sufficient annotated data are
available [165,167].

At the same time, radiomics remain widely applied, especially in settings with lim-
ited data, heterogeneous acquisition protocols, or when interpretability is prioritized.
The landmark work of Aerts et al. introduced the concept of the radiomic signature,
demonstrating prognostic value in lung and head-and-neck cancer and establishing
radiomics as a methodology for quantitative imaging research [113]. Customized ra-
diomics approaches process radiomics features for a specific task on a specific dataset
which can be seen in several studies like [168-170]. In such pipelines, quantitative
features describing tumor shape, texture, or intensity are extracted and modeled with
classical machine learning classifiers such as support vector machines or random forests

solving this specific task mostly very accurate [171,172].

Building customized designs is very labor intensive and fails for generalization
on other datasets, more recent frameworks automate preprocessing, feature selec-
tion, model training, and evaluation to improve reproducibility and generalizabil-
ity. AutoML-based pipelines such as AutoRadiomics [18] and WORC [19] have been
applied successfully across multiple heterogeneous datasets. These automated ra-
diomics approaches are increasingly considered the state of the art within the Au-
toML Radiomics paradigm but remain underperformed customized radiomics on some

datasets [18].

In this chapter, Section 3.2 reviews radiomics methods, from customized feature
pipelines to automated frameworks, with particular focus on reproducibility and gen-
eralizability. Section 3.1 surveys deep learning models for 3D classification, including
CNN-based architectures and recent extensions. Together, these subsections provide

the context against which the proposed RPTK framework is positioned.
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3.1 Deep Learning

Deep learning (DL) has become a cornerstone of medical imaging, consistently sur-
passing traditional machine-learning pipelines based on handcrafted features and clas-
sifiers such as Random Forest or XGBoost [61,64,173]. Core application areas include
image segmentation, with U-Net and its derivatives as the canonical architectures [61];
image generation and phantom/synthetic data creation, where diffusion models have
recently demonstrated strong performance for augmentation, reconstruction, and sim-
ulation [174-177]; image classification, where residual and densely connected convo-
lutional networks are widely applied in clinical tasks [178,179]; and image regression,
in which CNNs predict continuous outcomes such as biological age or mortality risk
directly from radiographs [180-183].

Residual and densely connected CNNs have become standard backbones in medical
imaging reviews and benchmarks [61,173]. Comparative analyses in chest radiography
report competitive performance across variants of ResNet and DenseNet, with smaller
models often offering favorable accuracy—efficiency trade-offs [178,179]. In our work,
multiple configurations (ResNet-18/200; DenseNet-121/169/201/264) were assessed
to characterize this balance empirically.

Segmentation remains the most mature area, where encoder-decoder CNNs un-
derpin radiological and histopathological pipelines [61]. In parallel, diffusion models
have emerged as generative priors for medical imaging. Surveys demonstrate their ap-
plications in modality translation, denoising, and synthetic CT generation [174-177],
which in turn facilitate phantom data creation for algorithm development.

Deep Learning (DL) regression models extend beyond classification by estimating
continuous variables directly from images. Chest X-ray-based age estimation and
mortality risk prediction exemplify how image-derived quantitative phenotypes can
provide clinically actionable biomarkers [180-182].

All deep learning experiments in this work relied on the MONAT framework [23],
an open-source PyTorch-based ecosystem specifically designed for healthcare imaging.
MONAI provides standardized data loaders, preprocessing pipelines, and reference
implementations of widely used architectures such as ResNet and DenseNet, which
were adopted in our classification experiments. In addition, MONAI includes modules
for model evaluation, reproducibility, and deployment, as well as extensions such as
MONATI Label for interactive annotation and integration into clinical workflows [184].
The use of MONATI ensures that our implementation adheres to community standards
and facilitates reproducibility and future extension of our work.

Medical imaging is undergoing a paradigm shift toward foundation models trained
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with large-scale self-supervision or multimodal objectives. For example, self-supervised
chest X-ray models achieve radiologist-level pathology detection without manual la-
bels [185], and RETFound leverages 1.6 million unlabeled retinal images for general-
izable ocular disease detection [186]. Vision-language models trained on millions of
biomedical image-text pairs, such as BiomedCLIP, further expand adaptation capa-
bilities [187]. Domain-specific pretraining sets like RadlmageNet highlight the value

of radiology-focused initialization for downstream tasks [188].

3.2 Radiomics

It is difficult to define the state of the art method for radiomics as the field is very
broad and there are no benchmarks with sufficient sample size to systematically eval-
uate the state-of-the-art radiomics tool [115]. It is very common in radiomics that
pipelines for radiomics processing get created and designed for a single study on a
specific research question and therefore are not generalizable to be applied to other
clinical tasks (customized/ahdncrafted approaches). Anyhow, according to the litera-
ture we can see commonly used techniques and tools in the field of radiomics applied in
radio-oncology like PyRadiomics for feature extraction [19]. Designing frameworks for
optimizing radiomics workflows to be generalizable and adaptable to different clinical
tasks require extensive evaluations on diverse datasets. In the literature, two notable
frameworks for optimizing the radiomics workflow AutoRadiomics [18] and WORC [19]

aim to improve predictive performance and have been evaluated on diverse datasets.

3.2.1 Customized Radiomics

Customized radiomics approaches refer to pipelines that are specifically designed and
tuned for a single clinical question or dataset. In these studies, researchers typically
construct an end-to-end workflow comprising image preprocessing, feature extraction,
feature selection, and machine learning classification. The design is usually highly
task-specific, including human knowledge on feature extraction (extracting only pre-
defined feature classes) or feature selection (select features which are hypothesized
to be very relevant), reflecting the clinical endpoint and modality at hand, but as a
result such pipelines often lack generalizability to external datasets or other clinical
problems.

Several clinical use cases illustrate the potential of customized radiomics. For ex-
ample, Aerts et al. demonstrated that handcrafted quantitative descriptors of tumor

shape, intensity, and texture could be combined into a radiomic signature predictive of
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patient survival in lung and head-and-neck cancer, establishing radiomics as a quan-
titative imaging biomarker paradigm [113]. Since then, numerous single-application
studies have appeared, such as the differentiation of low- from high-grade gliomas on
MRI [169], prediction of treatment response in non-small cell lung cancer [168], or
gastric cancer characterization based on CT imaging [170]. These studies typically
employ conventional classifiers such as support vector machines, random forests, or
gradient boosting, trained on a tailored feature set chosen for the specific imaging
task [171,172].

A notable limitation of many customized pipelines is the lack of standardized
feature extraction. Prior to the introduction of the Image Biomarker Standardisation
Initiative (IBSI) guidelines [115,119], radiomics features were often computed with
in-house or non-standardized software, raising concerns about reproducibility across
institutions. Even widely used tools such as PyRadiomics, while representing the
de facto standard for feature extraction, do not yet cover the complete IBSI feature
set [119]. Other packages like MIRP address a more complete implementation of the
IBSI-defined features, but require integration into custom pipelines. Consequently,
differences in feature definitions, discretization schemes, or image filters across studies
complicate direct comparison of results and limit clinical translation.

Despite these challenges, customized radiomics studies have played a crucial role
in demonstrating the feasibility and clinical potential of radiomics across diverse ap-
plications. They provide evidence that carefully engineered features, coupled with
classical machine learning models, can yield accurate predictions for highly specific
tasks. However, their bespoke nature highlights the need for more standardized and
generalizable frameworks, which motivates the development of AutoML radiomics ap-

proaches discussed in the subsequent section.

3.2.2 WORC

The WORC tool optimizes radiomics workflows aiming to replace the common la-
bor intensive trial-and-error construction of radiomics pipelines—where researchers
manually choose among many preprocessing, feature extraction, selection, and learn-
ing options with a reproducible, application-specific AutoML procedure that jointly
selects algorithms and hyperparameters across the full workflow and validates this
end-to-end strategy across diverse clinical problems [19]. WORC formalizes the con-
struction of a radiomics workflow as a Combined Algorithm Selection and Hyper-
parameter (CASH) problem, aiming to (i) reduce researcher degrees of freedom and
overfitting to validation quirks, (ii) standardize and automate per-dataset choices (in-

cluding modality-aware defaults) to improve generalizability, and (iii) provide open
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software + released data so that results are auditable and repeatable rather than be-
spoke to a single study [19]. The WORC tool tries to streamline and de-bias biomarker
discovery by automating the search for an optimal radiomics workflow, demonstrating
competitive or superior performance to handcrafted baselines and Bayesian optimizers
while emphasizing reproducibility [19].

WORC optimizes a weighted F'1 objective on the training folds, sampling complete
pipelines via random search and then forming a simple top-N ensemble by averaging
posterior probabilities of the best pipelines; this design was benchmarked against Se-
quential Model-based Algorithm Configuration (SMAC) Bayesian optimization [189]
and more elaborate ensembling, with top-/N chosen for robustness on test sets [19].
Concretely, model selection and tuning occur inside a ktaining=5 random-split CV on
the training data; final performance is reported from repeated random-split evaluation
(typically 80/20, kest=100) or bootstrap on a held-out test set [19].

The search space is modular and standardized. A light fingerprinting step uses
prior knowledge to (i) enable z-score normalization only for qualitative modalities (e.g.,
T1-w MRI, US) but not for quantitative ones (e.g., CT, T1-mapping), (ii) choose fixed
bin count (qualitative) versus fixed bin width (quantitative) discretization for texture
computation, (iii) decide between 2D/2.5D/3D features from voxel spacing and slice

thickness, and (iv) omit resampling when classes are near-balanced (<=60/40) [19].

For feature extraction, WORC uses PyRadiomics [15] and PREDICT [190] in
combination to compute 564 radiomics features for each sample. Scale-dependent
filters (e.g., LoG, Gabor) are precomputed over predefined ranges; the downstream

selection stages decide which instances survive [15].

WORC processes features in a fixed, “safe” order. Optional steps are controlled
by a simple on/off switch (an activator) that is tuned during optimization. The
sequence is: (i) a group-wise filter that can keep or drop entire families (intensity,
shape, texture) and a small variance threshold filter (threshold j 0.01; both always
applied); (ii) robust z-scaling; (iii) optionally RELIEF; (iv) optionally model-based
selection (LASSO, logistic regression, or random forest as selectors); (v) optionally
Principal Component Analysis (PCA) (retain 95% variance or a fixed number of com-
ponents variance or n € 10,50, 100; (vi) optionally a univariate Mann—Whitney U
filter with a tunable p-value cut-off; and (vii) class-imbalance handling via resampling
methods (e.g., random under/over-sampling, SMOTE, Adaptive Synthetic Sampling
(ADASYN)), with the method and its settings included in the search. During WORC'’s
default random search, each optional selector (RELIEF, model-based, PCA, univari-
ate) is included with probability 0.275, which encourages diversity without letting

combinations explode [15].
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The classifier is chosen jointly with the selection settings from a curated set: logis-
tic regression, SVM (linear/polynomial /RBF), random forest, Gaussian naive Bayes,
Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Ad-
aBoost, and XGBoost. For each, WORC tunes the standard hyperparameters (e.g.,
SVM kernel; random-forest trees and depth; logistic-regression penalty; AdaBoost
estimators and learning rate; XGBoost rounds, depth, learning rate), alongside the
on/off activators of the upstream steps so that the entire pipeline is optimized as one
unit [15].

On the six public datasets released with the WORC study [7,15], AutoRadiomics
[18] reported higher test AUROCs on most of these datasets, indicating that WORC
is not the top performer on most of these datasets. More broadly, WORC’s own
multi-application evaluation shows substantial variability (AUROCs from 0.45 to 0.87
across 12 tasks), underscoring that performance is highly dataset-dependent rather

than uniformly strong [15].

3.2.3 AutoRadiomics

The AutoRadiomics framework was developed as a modular, intuitive, and repro-
ducible AutoML platform to address persistent challenges in radiomics research, par-
ticularly the lack of standardization and reproducibility across studies [18]. Built on
top of PyRadiomics and scikit-learn [15,191], AutoRadiomics automates all essen-
tial steps of a radiomics workflow, including feature preprocessing, feature selection,
model training, and evaluation, within a single end-to-end pipeline. By design, the
framework targets usability for both technical researchers and clinicians, offering a
streamlined web interface for non-programmers while ensuring reproducibility and
transparency.

AutoRadiomics formalizes the pipeline optimization problem as a categorical hy-
perparameter search, embedding multiple workflow components directly into the op-
timization space. Specifically, preprocessing employs Min—-Max scaling of radiomics
features, while optional data balancing methods (SMOTE or ADASYN) are included
as tunable categorical variables. Feature selection is performed prior to model train-
ing using one of several supported algorithms (Analysis of Variance (ANOVA), Least
Absolute Shrinkage and Selection Operator (LASSO), or Boruta), with the choice of
selector added to the search space. Classifier selection is similarly treated as a categor-
ical hyperparameter, drawn from a curated set of models (logistic regression, support
vector machines, random forest, and Extreme Gradient Boost (XGBoost)). The joint
space of preprocessing, feature selection, oversampling, and classifier hyperparameters

is explored using Optuna’s Tree-structured Parzen Estimator (TPE) algorithm [153],
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with up to 200 optimization iterations per run. Each candidate pipeline is evaluated
using stratified 5-fold cross-validation, and final model performance is assessed with
95% confidence intervals estimated from 1000 bootstrap replicates of the held-out
test set [18]. At present, AutoRadiomics is restricted to binary classification tasks,
although it has been benchmarked across diverse clinical applications.

In contrast to WORC, which tackles a broader and more complex CASH formula-
tion with modality-aware defaults, extensive fingerprinting, and a large search space
spanning many optional selectors, AutoRadiomics deliberately simplifies the workflow
into a smaller but more structured optimization problem. Rather than employing ran-
dom search with on/off activators for optional steps, AutoRadiomics exposes key cate-
gorical design choices directly to the optimizer, which increases the degrees of freedom
in a controlled manner. This design yields a more accessible and reproducible pipeline
while reducing the barrier for non-expert users. Furthermore, AutoRadiomics inte-
grates a voxel-based feature map generator using PyRadiomics, enabling voxel-wise
feature extraction for improved interpretability in the imaging context [15,18].

Empirical results show that AutoRadiomics achieves superior performance to WORC
on most benchmark datasets. On the six public datasets included in the WORC re-
lease, the AutoRadiomics study reported higher test AUROCs in the majority of
tasks, demonstrating that despite its more compact search space, AutoRadiomics is
more effective across typical radiomics applications [18]. This suggests that a leaner
and modular optimization strategy, coupled with strong defaults and a transparent
implementation, may be preferable to a broader but more complex search. While Au-
toRadiomics is currently limited to binary tasks and applies PyRadiomics for feature
extraction which does not extract the entire IBSI feature space [119], it represents the
current state of the art in reproducible and accessible AutoML for radiomics classifi-

cation.

3.3 Conclusion and Outlook

This chapter surveyed contemporary methods for 3D medical image classification
across three paradigms: deep learning, customized radiomics, and AutoML radiomics.
Deep learning models—particularly residual and densely connected CNNs—have be-
come the default choice when large, well-annotated datasets and suitable compute
are available, delivering strong performance by leveraging end-to-end representation
learning. At the same time, radiomics remains widely used in settings with limited
data, heterogeneous acquisition, or heightened interpretability requirements. Cus-

tomized (handcrafted) pipelines can achieve high task-specific accuracy but are time-
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consuming to design and difficult to generalize beyond the originating study. To
address these issues, AutoML radiomics frameworks have emerged, standardizing pre-
processing, feature selection, model training, and evaluation in reproducible, end-to-

end workflows.

Within AutoML radiomics, WORC and utoRadiomics exemplify two complemen-
tary design philosophies. WORC tackles a broad CASH formulation with modality-
aware defaults and a rich search space spanning multiple optional selectors and classi-
fiers, emphasizing standardization and robustness across diverse clinical problems. Au-
toRadiomics adopts a leaner, more structured optimization space (categorical choices
for selector, oversampling, and classifier) explored via modern hyperparameter opti-
mization, with an emphasis on usability and reproducibility. Empirically, AutoRa-
diomics reports higher test AUROC on most of the public datasets released with
the WORC study, indicating that a compact yet well-curated search space can be
competitive or superior in typical radiomics settings. Nonetheless, both approaches
inherit limitations of handcrafted features and, in practice, show dataset-dependent

performance.

Beyond the broad paradigms, it is important to note that radiomics tools vary
substantially in scope. Specialized tools such as PyRadiomics and MIRP focus pri-
marily on feature extraction, leaving users to design their own preprocessing and
modeling frameworks. PyRadiomics in particular has become the de facto standard
for radiomics feature extraction but remains incomplete with respect to the IBSI stan-
dard, currently omitting roughly one-third of defined features. Other tools provide
end-to-end pipelines from acquisition to prediction, but these are often validated only
on synthetic data or tailored to narrow use cases, limiting their generalizability. In
contrast, AutoML frameworks such as WORC and AutoRadiomics aim for broader
applicability by automating end-to-end workflow construction and validating across

diverse datasets without dataset-specific tailoring.

Deep learning methods continue to dominate medical image classification, offer-
ing strong predictive performance when sufficient annotated data and computational
resources are available. Their limitations—high GPU demands, large data require-
ments, and restricted interpretability—have spurred increasing use of transfer learning
and fine-tuning, which allow pretrained networks to be adapted to smaller datasets.
While this mitigates overfitting, challenges remain in achieving interpretability and
in matching radiomics approaches on small, heterogeneous cohorts. Hybrid pipelines
combining handcrafted radiomics features with deep learning representations, as well
as self-supervised and multimodal foundation models, represent promising directions

to bridge the gap between interpretability, efficiency, and scalability.
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Taken together, the literature suggests a set of persistent challenges that shape

current practice:

o Data scale and heterogeneity: Deep models excel with abundant, consistent
data; radiomics is more forgiving at smaller scales but sensitive to acquisition

variability.

o Generalizability and reproducibility: Customized pipelines often overfit
study-specific quirks; AutoML frameworks mitigate this but still show variable

transfer across tasks and centers.

e Search design and complexity: Rich search spaces increase flexibility but
complicate optimization and reproducibility; leaner spaces improve usability but

may miss beneficial configurations.

e Scope of tasks: Many automated radiomics evaluations focus on binary classi-
fication and handcrafted descriptors, leaving multi-class and multimodal prob-

lems comparatively underexplored.

« Evaluation rigor: Fair, transparent comparisons (fixed data splits, nested
Cross Validation (CV), calibrated uncertainty, and confidence intervals) remain

essential yet inconsistently applied.

Overall, the state of the art demonstrates a spectrum of solutions, from special-
ized radiomics feature extractors to general-purpose AutoML frameworks and data-
intensive deep learning approaches. Each class of methods offers strengths and weak-
nesses depending on data scale, task heterogeneity, and interpretability requirements.
This landscape motivates the development of new frameworks that combine repro-
ducibility and accessibility with broader feature completeness, flexible algorithmic
scope, and transparent evaluation—goals pursued in the RPTK framework presented

in the following chapter.



Chapter 4

Data & Methods

The Data and Methods chapter outlines the datasets, computational frameworks, and
experimental setups that form the foundation of my thesis. The central objective is
to advance radiomics analysis by developing and validating RPTK, a self-configuring
framework designed to address challenges of data heterogeneity, pipeline variability,

lack of reproducibility and performance in current radiomics workflows.

To this end, RPTK was applied across nine diverse datasets in total (see Table 4.1),
comprising 3,116 patients, 2,685 CT and 504 MR scans, and 3,273 segmented three-
dimensional regions of interest. From the total amount of CT scans, 1,997 originated
from the large-scale LiverCRC project (see Section 4.3). In addition, two datasets
(Desmoid and Lipo) contributed 318 T1-weighted MRI scans and one dataset (Liver)
provided 186 T2-weighted MRI scans (see Table 4.1). Demographically, approximately
75% of patients were older than 50 years, while age information was unavailable for
115 patients (see Figure 8.1). Around 54% of patients were male, with sex information
missing in about 4% (see Figure 8.3b). From a technical perspective, roughly 80%
of the scans were acquired on Siemens scanners, complemented by data from Philips,
GE Healthcare, and Toshiba systems (see Figure 8.2), and 84% of the imaging data
consisted of CT (see Figure 8.3a).

Six of the nine datasets, including Colorectal Liver Metastasis (CRLM), Melanoma,
Gastro-Intestinal Stroma Tumor (GIST), Desmoid, Liver, Lipo, and LIDC-IDRI, are
open-source and were used for systematic adaptation and evaluation of the pipeline
(see Section 4.1). The remaining two datasets demonstrate specific clinical applica-
tions of RPTK: the Predict dataset for immunotherapy response prediction in NSCLC
patinets (see Section 4.2), and the large-scale LiverCRC project for colorectal cancer

risk stratification from liver imaging (see Section 4.3).

62
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Table 4.1. Overview of datasets used in this thesis and their respective classification

tasks.

Dataset | Patients | Images | ROIs | Modality Task
CRLM - - 93 oT Classification of desmoplastic (n=37) against replacement
growth pattern (n=40) in colorectal liver metastases [192]
lassificati f BRAF-mutated (n=51) against
Melanoma . L 5 oT Classification of BRAF-mutated (n=>51) agains
BRAF-wild type (n=52) in lung metastases of melanoma [193]
Classification of gastrointestinal stromal tumor (GIST)
GIST 247 247 248 CT
(n=125) against intra-abdominal gastrointestinal tumors (n=121) [194]
Desmoid 203 203 203 | T1iw MR Classification of desmoid-type fibromatosis (n=72) against
extremely soft-tissue sarcoma (n=131) [195]
. . Classification of malignant (n=94) against
Liver 186 186 186 | T2w MR
benign (n=93) primary solid liver tumor [196]
. Classification of well-differentiated liposarcoma (n=58)
Lipo 115 115 116 | Tlw MR
against lipoma (n=>58) [197]
LIDC.IDRI 115 115 15 oT Classification of malignant (n= 79) against
benignant (n=36) lung nodules [20]
i X Longitudinal prediction of PD-L1 treatment response (n=38)
Predict 73 146 146 CT
against non-response (n=35) on primary NSCLC tumor
LiverCRC 1997 1097 | 1997 oT Classification of patients with colorectal neoplasia (n= 808)
or liver pathology against healthy colon (n= 1189) [22]

This chapter is organized as follows:

Section 4.1 introduces the RPTK framework, its self-configuring principles, and its
evaluation across multiple datasets. Section 4.2 presents an clinical application of
RPTK, the Predict Study for immunotherapy response prediction in advanced stage
lung cancer patients. Section 4.3 details the second clinical application of RPTK,
the LiverCRC study on colorectal cancer prediction using liver imaging. Each sec-
tion highlights the datasets, preprocessing, radiomics calculation procedures, model
training and optimization strategies, and evaluation procedures specific to the respec-
tive application. For all the following sections, we show the comparison of RPTK
performance to State-Of-The-Art (SOTA) radiomics tool (AutoRadiomics) and deep
learning models (DenseNet and ResNet).

4.1 Self-Configuring Radiomics Framework

The development of RPTK was guided by general challenges known in the community
as well as encountered in the analysis of the WORC database [7,11,24]. The WORC
database includes six publicly available datasets: CRLM, Melanoma, GIST, Desmoid,
Liver, and Lipo [7]. These datasets revealed a variety of data-related issues that
motivated the integration of adaptive preprocessing, feature extraction, and feature
filtering strategies into the framework. After configuring the framework on the WORC
datasets, RPTK was applied to the LIDC-IDRI dataset to assess its generalizability
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beyond the initial development cohort [198].

The following subsections detail the methodological components, covering dataset
and study design, preprocessing, feature extraction and filtering, feature selection,
model training and optimization, and the comparative evaluation of RPTK against

AutoRadiomics and deep learning baselines (DenseNet and ResNet).

4.1.1 Data & Study Design

The evaluation of the RPTK was based on seven open-source datasets. Six datasets
from the WORC database (CRLM, Melanoma, GIST, Desmoid, Liver, and Lipo) were
used to identify and address data-related challenges and to configure the framework.
The LIDC-IDRI dataset was subsequently employed as an external test case to assess

the generalizability of the configured pipeline.

Population Demographics
of the Open-Source Data

B Male
I Female
I Unknown

80-89 57

177

70-79
60-69
50-59
40-49
30-39

Age Group

20-29
10-19

0-9
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0 25 50 75 100 125 150 175 200 225 250
Number of Patients

Figure 4.1. Age and Sex distribution of the seven datasets (WORC database +
LIDC-IDRI) used in this section. Unknown refers to the patients either having no sex

parameter or having no age parameter.

These datasets represent a broad spectrum of clinical indications, imaging modal-
ities, and classification tasks (Table 4.1). Their heterogeneity is reflected not only
in the sample size, which ranges from 77 patients in the CRLM dataset to 247 pa-
tients in the GIST dataset, but also in the mix of imaging modalities (CT, Tlw
MRI, T2w MRI) and segmentation entities (see Table 4.2). This diversity makes the
WORC datasets particularly suited for methodological development, and they have
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been widely used as benchmarks for AutoRadiomics, WORC, and other published

radiomics approaches.

Table 4.2. Visual examples of the open-source datasets used in this study, illustrating the

class labels image examples (Gastro-Intestinal Stroma Tumor (GIST), Desmoid Type Fibro-
matosis (DTF), B-Raf proto-oncogene serine/threonine kinase (BRAF), Well Differentiated

Lipo-Sarcoma (WDLPS)).
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A summary of patient demographics across the seven datasets used in this section
is provided in Figure 4.1. Approximately, 54% of patients were older than 50 years,
within the annotated population of 927 patients, a close to equal sex distribution is
recognizable (52% male, 48% female), although sex or age information was missing for
about 14% of cases. Such demographic and imaging heterogeneity provided a realistic
test bed for building a framework that can adapt to varying conditions without manual

reconfiguration.

The WORC Data Collection

The WORC data collection was developed as an open-source resource to benchmark
and compare radiomics pipelines in a reproducible manner [7]. It combines six ra-
diomics studies from the Erasmus Medical Center, covering a total of 930 patients
across CT and MR imaging. Unlike many radiomics datasets, WORC was specifi-
cally curated to reflect the heterogeneity of clinical practice and imaging was acquired
across multiple centers on different scanners, with varying voxel sizes, protocols, and
modalities (CT, T1lw MRI, and T2w MRI).

Each dataset addresses a clinically relevant binary classification problem (see Table
4.2): growth pattern prediction in colorectal liver metastases (CRLM), BRAF muta-
tion status (Wild Type (WT) vs BRAF mutated) in lung metastases of melanoma
(Melanoma), differentiation of gastrointestinal stromal tumors (GIST), distinction be-
tween Desmoid Type Fibromatosis (DTF) and extremity soft-tissue sarcomas (Desmoid),
diagnosis of benign versus malignant primary liver tumors (Liver), and discrimina-
tion of lipoma versus Well Differentiated Lipo-Sarcoma (WDLPS) (Lipo). Together,
these tasks span mutation status prediction, tumor subtype classification, and be-
nign—malignant differentiation, thereby covering a broad spectrum of oncological use
cases. For the CRLM dataset multiple segmentation’s from different raters were pro-
vided. we used the segmentation’s from the radiologist with the highest experience as
the ground truth segmentation.

All tumor segmentations were obtained semi-automatically and subsequently re-
viewed and corrected by trained observers under radiological supervision to ensure
high-quality reference regions [7]. Ground truth labels were primarily derived from
pathology or biopsy; for a subset of benign cases (e.g., focal nodular hyperplasia in the
Liver dataset), diagnosis was based on radiologically typical appearances, reflecting
common clinical practice [7].

The WORC datasets were accessed from the Health-RI XNAT repository*. Their

*WORC datasets available at https://xnat.health-ri.nl/data/projects/worc (accessed
May 2023)
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open availability, heterogeneous nature, and prior use in benchmark studies such as
AutoRadiomics make them particularly suitable for the methodological development
and evaluation of the RPTK.

The LIDC-IDRI Dataset

The Lung Image Database Consortium and Image Database Resource Initiative (LIDC-
IDRI) was used in order to validate performance of RPTK without any adaptation
to the framework configuration. This dataset is one of the mostly used publicly avail-
able repositories for thoracic CT imaging, hosted by TCIA [198]. However, previous
studies have shown that the malignancy annotations in LIDC-IDRI are largely based
on subjective radiologist assessments rather than pathological confirmation, which
introduces ambiguity and label noise [20,199,200]. Inter-observer variability and in-
consistent ratings have repeatedly been reported, and in some cases radiologist-derived
malignancy scores were found to deviate substantially from pathological ground truth.

The clinical diagnosis labels provided directly within the TCIA repository were
used in this thesis instead of external malignancy scores [198]. These labels are based
on explicit diagnostic procedures, including biopsy, surgical resection, radiological
review of two-year stability, and evidence of progression or treatment response [201].
In the benign cases, the majority were confirmed by long-term radiological stability,
with a smaller number validated by biopsy or resection. Malignant cases, both primary
lung cancers and metastatic lesions, were predominantly confirmed histologically by
biopsy or surgical resection, with some additional confirmation through progression
or response during follow-up. This reliance on established clinical diagnostic methods
ensures that the labels are less ambiguous and more clinically meaningful than the
subjective radiologist malignancy scores. Although this restricted the dataset to a
smaller subset, the use of unambiguous clinical diagnoses was preferred over extended
radiologist-derived labels from external resources, thereby reducing label uncertainty
and improving the reliability of the external validation for the RPTK. The malignancy
annotations were available for a subset of 157 patients. From these, 17 patients were
excluded because images or segmentations were missing or empty, and an additional
25 patients were excluded due to an unknown diagnosis of the lung nodules. This
resulted in a final cohort of 115 patients.

Segmentations were processed using the E2MIP repository, which provides au-
tomated pipelines for the preprocessing and conversion of LIDC-IDRI images and
masks [202]. The final patient cohort included CT scans acquired on scanners from
three different manufacturers (GE Healthcare, Philips, and Siemens). Based on the

TCIA clinical annotations, 79 cases labeled as “malignant primary lung cancer” or
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“malignant metastatic” were classified as malignant, while 36 cases labeled as “benign
or non-malignant disease” were classified as benign.

The LIDC-IDRI dataset was accessed via TCIAT. Its combination of multi-vendor
acquisition, curated clinical diagnoses, and detailed radiological annotations provides

a heterogeneous external test set to evaluate the generalizability of the RPTK.

4.1.2 The first RPTK Prototype

This part is based on the development and application of the first RPTK prototype on
the WORC datasets at the Medical Image Computing and Computer Assisted Inter-
vention (MICCAI) Conference and has been published in the Conference Proceedings
2023 at Springer Nature [24]. The methodological design of RPTK evolved from this
initial prototype to the extended version of RPTK presented in this thesis. The initial
implementation was conceived as a simplified and robust framework to investigate the
influence of missing IBSI-defined features in the widely used PyRadiomics library [15]
discovered and evaluated by [119]. For this purpose, I compared the predictive per-
formance of features extracted with PyRadiomics against those obtained from MIRP,
which implements the complete IBSI feature space [21]. Both feature extractors were
applied with their full range of image transformations to avoid constraining the po-
tential feature space and to ensure that all relevant sources of image information were
included.

The feature extraction outputs were subjected to standardized preprocessing, sta-
tistical filtering, and feature selection before training and optimizing a Random Forest
classifier for binary classification tasks on the six WORC datasets. To ensure repro-
ducible and efficient model performance, a pre-training stage was introduced to esti-
mate the optimal model capacity prior to hyperparameter optimization. The model
size was incrementally increased, and validation performance was monitored until
convergence, defined as a plateau over at least three iterations. Fixing the model
size at this stage prevents the optimization routine from producing excessively large
or over-parameterized models, which can increase computational cost and risk over-
fitting without improving generalisation. By decoupling model capacity estimation
from hyperparameter optimization, this procedure ensures a more stable, efficient,
and interpretable model development process. Similar effects have been observed
in ensemble learning, where increasing the number of base learners yields diminish-
ing improvements once a performance plateau is reached. Empirical studies have

demonstrated that reducing ensemble size can maintain accuracy while improving

TLIDC-IDRI dataset available at https://www.cancerimagingarchive.net/collection/
lidc-idri/ (accessed May 2024)
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computational efficiency and generalization stability [203,204]. As the evaluation of
the prototype was limited to the WORC datasets, the prototype was also applied to
the LIDC-IDRI dataset to establish a reference for external generalization for this
thesis. While this initial study demonstrated promising predictive performance, its
design relied on a single classifier and non-harmonized configurations between the two
feature extractors. Differences in the number of image filters, parameterization, and
feature definitions between PyRadiomics and MIRP limited the comparability of the
extracted feature spaces. As a result, the prototype served primarily as a feasibility
study for automated feature extraction and selection rather than a comprehensive

framework for robust radiomics evaluation.
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Figure 4.2. Overview of the experimental design of the first RPTK Prototype (up-
per) comparing to the proposed version of RPTK (lower) highlighting common struc-
tures of the workflow (in blue) and added functionalities (in green) (this Figure is
partially based on my MICCALI conference paper [24]). (ICC = Intraclass Correlation
Coefficient )

The prototype RPTK tool was deliberately kept simple (see Figure 4.2): (i) feature
extraction with PyRadiomics (v. 3.0.1) and MIRP (v. 1.3.0), (ii) correlation filtering
and variance thresholding were applied to reduce redundancy, (iii) sequential feature
selection with a random forest classifier (with n_estimators=100 and default model
configuration from sklearn v. 1.2.2) was performed to identify informative features,
and (iiii) model training used a reduced hyperparameter space optimized (including
the hyperparameters: ccp_alpha, max_depth, max_samples, max_features, and crite-
rion) via 5 fold cross validated randomized grid search (from sklearn v. 1.2.2). This
configuration allowed for a first assessment of whether differences in feature extrac-
tion (PyRadiomics vs. MIRP) translate into measurable performance differences when

evaluated under a standardized yet lightweight radiomics workflow.
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4.1.3 TUpdates of the Proposed Approach

The current proposed version of RPTK presented in this thesis extends the foundation
of the prototype (see Section 4.1.2) with several methodological enhancements (see
Figure 4.2). This Framework follows a structured workflow, adapted from the general
radiomics framework (Figure 2.2), and consists of four main stages: data prepro-
cessing, data augmentation, radiomics feature computation, and model training and
optimization. Each stage integrates methodological extensions to improve robustness,
reproducibility, and clinical relevance.

Updates to the current propose RPTK tool are: First, the framework incorporates
further data preprocessing including the addition segmentation artifact filtering by
detection and deletion of connected components. In addition, a perturbation-based
stability assessment of features extracted from slightly modified segmentation similarly
performed in [21] as well as the generation of the peritumoral margin for extracting
additional radiomics features from the surrounding region of the ROI. This allows the
identification and removal of features that are sensitive to small artifacts of the ROI,
reducing segmentation-related bias as well as using information of the TME or poten-
tial related information which is not included in the segmentation directly. Second, the
configurations between the extractors where synchronized in the way that both tools
use the same image transformations and pixel discretizations settings. In addition,
the framework integrates a broad range of six different machine-learning algorithm,
each combined with a per-fold hyperparameter optimization routine, applying a TPE
optimization technique (see Section 4.1.8). Finally, the optimization is resulting in
a model ensemble classifier for each machine learning algorithm containing the five
optimized fold-models. This expansion moves beyond the single Random Forest ap-
proach and provides a systematic comparison of model families while maintaining a

consistent preprocessing and feature-selection pipeline.

4.1.4 Data Fingerprint

A first requirement for a self-configuring radiomics pipeline is the ability to process
heterogeneous data sources in a reproducible manner. To evaluate this, I applied
RPTK to seven openly available 3D imaging datasets covering a wide spectrum of
clinical applications and imaging characteristics (see Table 4.1). These datasets rep-
resent typical challenges encountered in radiomics research, such as small sample
sizes, class imbalance, varying imaging protocols (e.g. reconstruction kernels, slice
thickness), and data quality (e.g. segmentation artifacts). Demonstrating consistent

applicability across such diverse conditions establishes the foundation for subsequent
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analyses of the pipeline.

The data fingerprint step provides a systematic overview of the imaging and seg-
mentation characteristics of the datasets. It summarizes technical descriptors that
capture the heterogeneity of acquisition protocols, image geometry, intensity distri-
butions, and segmentation properties. This overview enables transparent reporting
of data variability and supports the interpretation of downstream preprocessing and
modeling steps.

For each scan and its corresponding ROIs, the following descriptors are extracted:

e Acquisition geometry: number of slices per scan, slice thickness and in-plane
resolution.

« ROI size and topology: voxel count (ROI volume), number of ROIs per scan,
number of connected components for each segmentation per scan.

e ROI intensity profile: number of gray values present in the ROI, minimum,
maximum, and mean intensity values.

o Discretization summary: number of bins obtained when applying fixed bin
width discretization (25 bin width).

o Radiomics fingerprint: all first-order, shape, and texture features computed
with PyRadiomics on the original images (without image transformations, feature

filtering, or perturbations).

Together, these descriptors provide a compact yet comprehensive “fingerprint”
of the imaging and segmentation data, enabling a reproducible characterization of

dataset heterogeneity at the technical level.

4.1.5 Data Preprocessing

RPTK can process tabulated clinical data within the input csv file. Missing clini-
cal data were handled using a robust imputation strategy implemented in sklearn (v.
1.5.0), applying a K-nearest-neighbor imputer (KNNImputer with n_neighbors=2, us-
ing the euclidean matrix) for continuous variables and a most-frequent-value imputer
(SimpleImputer with the most_frequent strategy) for categorical or ordinal variables.
These clinical features will then be handed into the feature selection process together
with the radiomics data in order to investigate into the predictive power of the con-
stellation by including clinical data into the radiomics feature space.

The preprocessing pipeline in the RPTK is designed to standardize and harmonize
imaging data and segmentation masks, ensuring consistency and robustness prior to
radiomics feature extraction. This pipeline addresses inter-scanner variability, seg-

mentation inconsistencies, and the impact of heterogeneous acquisition protocols on
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feature reproducibility. By implementing these standardized steps, the RPTK pro-

vides a reliable foundation for reproducible and generalizable radiomics analyses.

The first step, resampling of images and segmentations, ensures that all scans are
standardized to isotropic voxel spacing and aligned to a uniform orientation which
effects radiomics features and therefore also the final model performance [133, 134].
Segmentations were resampled with K-Nearest Neighbor (sitkNearestNeighbor) and
images were resampled with the B-Spline (sitkBSpline) algorithm from Simplel TK
(v. 2.5.2) to 1 mm? isotropic voxel spacing [205]. This guarantees comparability of
radiomics features across heterogeneous datasets. Next, z-score image normalization
is performed on MR data to compensate for non-normalized intensity inhomogeneities
this has been done inside the feature extraction procedure included in PyRadiomics (v.
3.0.1) and MIRP (v. 1.3.0) (see Section 2.1.2). Image normalization is not performed
on CT images based on their standardized calibration (see Section 2.1.1). According
to influencing factors in C'T scan protocol variations, z-score normalization might also
get applied for high variations in convolution kernels, or contrast agent applications

(see Section 2.1.1), but this was not done within this thesis.

Segmentation filtering is then applied to refine the ROIs. Segmentations that do
not span multiple slices in any orientation are excluded, as well as masks which are
smaller than three voxels. Connected component filtering has been performed by using
the label function from the scitkit-image library (v. 0.25.2) with a connectivity of 1
voxel performing a direct connectivity filtering (components need to be connected by
direct neighboring voxels) [206]. For multi-component segmentations, only the largest
connected component is retained, while small isolated regions are removed (Figure
4.3). This connected component filtering step ensures that only the clinically relevant
lesion is preserved. RPTK can be set up to process multiple ROIs within a single

sample.

For each ROI a surrounding segmentation is additionally generated in order to
add the peritumoral region of a tumor or the surrounding region of the ROI. The
surrounding region has been generated by morphological dilation using the dilation
function from scikit-image (v. 0.25.2). The peritumoral region involves the TME
which has been identified as containing important information for several clinical
tasks [207-209]. Therefore, a surrounding region of 3 voxels around the ROI has
been defined to additionally compute features from this region and further extend the

radiomics analysis and gain additional information.
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(a) Connected component segmentation fil- (b) 3D View of filtered connected compo-
tering to remove segmentation artifacts (red) nent segmentation in top down view with
and use a filtered segmentation for further pro- segmentation artifacts (red circled) and fil-

cessing (green). tered segmentation (green).

Figure 4.3. Connected component segmentation filtering applied across all datasets
to filter segmentation artifacts (pictures are generated with MITK v. 2024.12) [67].

Examples display a T2w MRI from a liver tumor from the Liver dataset.

4.1.6 Image and Segmentation Data Augmentation

Radiomics features are sensitive to variations in both segmentation definitions and
imaging protocols. Even subtle changes in region delineation can substantially alter
feature values, leading to reduced reproducibility and generalization. Prior work has
demonstrated that segmentation variability among raters can strongly influence ra-
diomics signatures, with especially pronounced effects for texture features [70,210].
Similarly, systematic reviews highlight that inter-rater segmentation differences re-

main a major source of instability across radiomics studies [121].

To address this, segmentation perturbation strategies were introduced in this study
to mimic inter-observer variability and thereby filter out unstable features. Three

perturbation strategies are employed:

« Random contour change perturbation - randomly added/removed voxels at
the mask boundary from [191]

« Random Supervoxel perturbation - randomly added /removed voxels based on
supervoxels from [21]

« Morphological Dilation perturbation - add voxels by morphological dilation
from [206]
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Segmentation Perturbation in RPTK

Manual
Image Segmentation

. 4

|
! ' !

Connected Random
Pil:tr:ﬁ"l‘a‘;?i(grt Component Contour
Perturbation Perturbation

. .

Figure 4.4. Simulation of interrater segmentation variability. Controlled pertur-

bations are generated from the original mask to mimic real-world segmentation dif-
ferences between segmentators, which are then used to identify unstable features.

Randomized supervoxel change has been used from the MIRP implementation [21]

Data Augmentation in RPTK
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Figure 4.5. Implementation of data augmentation in RPTK includes image trans-
formation and Segmentation perturbations. The data augmentation multiplies the

extracted feature space.

In comparison to labor intensive and expensive generation of multiple manual seg-
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mentations, segmentation perturbation generations arbitration from one single manual
segmentations (see Figure 4.4). To ensure that only realistic segmentation perturba-
tions were included in the feature robustness analysis, the spatial overlap between
each perturbed and the corresponding manual segmentation was evaluated using the
Dice similarity coefficient (cf. Eq. 2.4). Only perturbations with a Dice value greater
than 0.85 were retained for subsequent instability filtering. This threshold was cho-
sen to exclude unrealistic or artifact-prone segmentations while preserving minor,
anatomically plausible variations. The Dice computation was implemented in Python
(v. 3.10) using NumPy (v. 1.26.4) for voxel-wise logical operations. The Features
that consistently showed instability across perturbations were excluded from further
analysis. Feature robustness can be systematically evaluated under segmentation vari-
ability [70].

In addition to segmentation variability, imaging protocol heterogeneity—such as
differences in convolution kernels, voxel sizes, and contrast administration—also im-
pacts feature distributions. Radiomics features can vary significantly across CT re-
construction kernels [43], while acquisition-related variability, particularly voxel size
and slice thickness, is a dominant factor influencing feature stability [211]. To account
for such heterogeneity, a set of image transformations either from PyRadiomics [15]
or form the MIRP [21] tool were applied in this work:

« 3D wavelets including High or Low pass filter in different combinations (LLL, LLH,
LHH, HHH, HLH, HHL, HHH, LHL, HLL) from PyRadiomics (v. 3.0.1) [15]

» Laplacian-of-Gaussian (LoG) filters from PyRadiomics (v. 3.0.1) [15]

+ Local Binary Pattern from 2D (LBP2D) from PyRadiomics (v. 3.0.1) [15]

e Mean from MIRP (v. 1.3.0) [21]

» Expotential from PyRadiomics (v. 3.0.1) [15]

o Gradient from PyRadiomics (v. 3.0.1) [15]

« Gaussian smoothing filters from MIRP (v. 1.3.0) [21]

» Laws’ texture filter from MIRP (v. 1.3.0) [21]

« Gabor filters from MIRP (v. 1.3.0) [21]

» Logarithmic from PyRadiomics (v. 3.0.1) [15]

 Polynomial transforms (square, square-root) from PyRadiomics (v. 3.0.1) [15]

These transformations emulate protocol-related differences in intensity distribu-
tions and texture characteristics, thereby improving robustness against acquisition
variability.

Together, segmentation perturbations and image transformations form a comple-
mentary augmentation pipeline (see Figure 4.5), designed to systematically expose the

feature space to realistic variability during preprocessing. Radiomics features for every
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transformed image as well as for every perturbated segmentation in combination need
to get extracted. This generated a up to 63 times bigger input data handed to the fea-
ture extraction. However, this added information increases the needed computational
resources and also comes with additional bias and redundancy. Therefore, filtering of
non necessary, repetitive, or non-beneficial information reduces the amount of needed
computational resources for model training. By filtering unstable features and train-
ing models on data augmented for both segmentation and imaging heterogeneity, the
resulting radiomics signatures are expected to achieve higher reproducibility, stability,

and ultimately clinical transferability.

4.1.7 Radiomics Feature Computation and Reduction

Radiomics features were extracted using both PyRadiomics (v. 3.0.1) and MIRP
(v. 1.3.0). Harmonized extractor settings were applied to maximize overlap with
IBSI definitions while exploiting complementary feature spaces. Feature computation
included intensity, shape, and texture features derived from original and transformed
images.

Although both extractors follow IBSI conventions, they differ in their feature cover-
age and composition. MIRP provides a complete set of IBSI-defined features, whereas
PyRadiomics lacks a subset of IBSI features and includes additional non-IBSI features.
Moreover, the relative distribution of feature classes (e.g. Grey Level Co-occurrence
Matrix (GLCM), Grey Level Run Length Matrix (GLRLM), Grey Level Size Zone
Matrix (GLSZM), morphological features) varies between the two extractors. These
differences are illustrated in Appendix 8.7 and Appendix 8.8. In addition, RPTK
does not extract morphological radiomics features from the peritumoral margin as
the morphology characteristic of the surrounding region does not related to the mor-
phological constitution of the ROI itself and should concentrate on structural and
intensity features. Therefore, the resulting initial feature space extracted by these
tools differ including feature augmentations from Section 4.1.6. For MIRP the ini-
tial feature space result in about 6,766 features, whereas the initial feature space of
PyRadiomics results in about 3,546 features.

After feature extraction, all features were standardized using z-score normalization,
subtracting the mean and dividing by the standard deviation using the Pandas library
(v. 2.2.1) with Python (v. 3.10). Afterwards, duplicated features were removed in
order to remove redundant information.

To reduce dimensionality and enhance robustness, several filtering steps were ap-
plied: (i) variance filtering to discard near-constant features, (ii) correlation filtering

to eliminate redundant features, and (iii) instability filtering with perturbation based
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Intraclass Correlation Coefficient (ICC) calculations. This procedure is motivated
from repetitively, successfully performed approaches for radiomics feature reduction
in the literature [212-214].

To remove non-informative features which are showing very small variance across
the dataset, variance filtering was applied (i). This step was performed using the
Variance Threshold function from the scikit-learn library (v. 1.5.0) [191], which ex-
cludes all features with a variance below a specified threshold. A threshold of 0.1
was applied, resulting in the removal of features exhibiting minimal variability across

samples, thereby reducing noise and improving the stability of subsequent analyses.

To identify and remove highly correlated features (ii), a correlation-based filtering
procedure was applied prior to model training. Pairwise Pearson correlation coeffi-
cients were computed between all numeric features using the corr function from the
Pandas library (v. 2.2.1), which internally relies on NumPy (v. 1.26.4) for numerical
operations. Absolute correlation values (|r|) were considered to detect both positive
and negative dependencies. From each pair of features with an absolute correlation
exceeding the threshold of |r| > 0.90, only the one feature was retained, while the
other was excluded from the dataset. This deterministic filtering approach reduces
feature redundancy and mitigates potential multicollinearity effects, ensuring a more

stable and interpretable feature set for subsequent modeling steps.

To assess the robustness of radiomics features with respect to segmentation vari-
ability, an intraclass correlation analysis was performed across all perturbed segmen-
tations of the dataset (iii). For each feature individually, the one-way random-effects,
single-measurement model ICC(1,1) was computed [215,216], treating the subjects
as fixed targets and the segmentation perturbations as random raters. This formula-
tion quantifies the proportion of total variance in feature values that is attributable
to inter-subject differences relative to variance induced by segmentation perturba-
tions. The ICC(1,1) statistic was derived from an ANOVA model using the ratio of
between-subject to within-subject mean squares, and a one-sided F-test (Hy: ICC = 0;
Hy4: ICC > 0) was used to test for nonzero reliability. Approximate 95% confidence
intervals were obtained using the F-distribution—based transformation proposed by
McGraw and Wong [216]. All computations were implemented in Python using Pan-
das (v. 2.2.1) for data handling, NumPy (v. 1.26.4) for numerical operations, and
SciPy (v. 1.13.1) for statistical calculations. Features showing low reliability, i.e.
an ICC below the threshold 0f 0.9, were excluded from subsequent modeling steps
to ensure that only stable and reproducible features were retained. This approach
follows established radiomics robustness analyses, where ICC(1,1) is commonly used

to evaluate feature stability across image or segmentation perturbations [21,70].
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From the remaining feature set, a Sequential Feature Selection (SFS) procedure
was applied to identify the most informative subset of predictors. The implementation
followed the SequentialFeatureSelector from the mliztend library (v. 0.23.4) [217],
using a random forest classifier from scikit-learn (v. 1.5.0) with 100 estimators and
default hyperparameters as the applied model. SFS was executed in both forward and
backward directions: the forward selection iteratively added features that maximized
the model performance, while the backward selection iteratively removed the least
informative features. In each direction, feature subsets were evaluated based on the
AUROC using fivefold cross-validation, and the ten best-performing features were
retained per direction. Features selected in both forward and backward passes were
merged into a final candidate set which consists of up to 20 radiomics features. The use
of the SFS algorithm showed promising performance in published radiomics studies

such as [218,219] and was therefore implemented in the RPTK workflow.

4.1.8 Model Training and Optimization

Before model training, the dataset was examined for class imbalance, a common chal-
lenge in radiomics where unequal representation of clinical outcomes can bias learning
toward the majority class and impair model generalization [220]. To mitigate this ef-
fect, the Synthetic Minority Over-sampling Technique (SMOTE) [221] was applied to
the training data whenever one class comprised > 65% of the samples. SMOTE gen-
erates synthetic minority samples by interpolating between each minority observation
and its k-nearest neighbors (k = 5 by default), thereby balancing class frequencies in
feature space without simple duplication. This oversampling strategy has been suc-
cessfully adopted in several recent radiomics studies, demonstrating improved classifi-
cation performance and more stable model behavior in imbalanced datasets [220,222].
In this work, oversampling was implemented in Python using the SMOTE function
from the imbalanced-learn library (v. 0.12.3) [223], applied exclusively to the training
split to prevent information leakage into validation or test data. Newly generated
synthetic samples were flagged with an identifier prefix (simu-) to ensure full trace-
ability. Table 4.3 represent the distribution of the binary classification labels across
the open-source datasets.

Selected features were used to train six different classifiers, covering a diverse
spectrum of modeling paradigms for binary classification tasks:
(i) Random Forest Classifier from scikit-learn (v. 1.5.0) [191],
(ii) Gradient Boosting Classifier from scikit-learn (v. 1.5.0) [191],
(iii) XGBoost Classifier from zgboost (v. 2.0.3) [224],
(iv) Light Gradient-Boosting Model (LGBM) Classifier from lightgbm (v. 4.6.0) [225],
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(v) TabNet, a deep learning architecture for tabular data from pytorch-tabnet (v.
4.1.0) [226],

(vi) Support Vector Classifier (SVC) with a linear kernel for linear decision boundaries
from scikit-learn (v. 1.5.0) [191]

This set of models was deliberately chosen to ensure high heterogeneity in performance
comparison, spanning ensemble tree-based methods, gradient boosting approaches,

deep learning, and linear margin-based classification.

Table 4.3. Label distributions of the training and test splits of the open-source
datasets across imaging modalities and tumor types. The table reports the number

of patients (and percentages) per class.

Dataset Label Training (n, %) | Test (n, %)

Lipo (T1w MRI) Well-differentiated liposarcoma 46 (49%) 11 (48%)
Lipo (T1w MRI) Lipoma 45 (51%) 12 (52%)
Desmoid (T1w MRI) Desmoid-type fibromatosis 57 (35%) 15 (37%)
Desmoid (T1w MRI) Extremity soft-tissue sarcoma 105 (65%) 26 (63%)
Liver (T2w MRI) | Malignant primary solid liver tumor 75 (51%) 19 (50%)
Liver (T2w MRI) Benign primary solid liver tumor 73 (49%) 19 (50%)
GIST (CT) Gastrointestinal stromal tumor 98 (51%) 25 (51%)
GIST (CT) Other intra-abdominal tumors 97 (49%) 24 (49%)
CLRM (CT) Colorectal liver metastases 29 (48%) 7 (50%)
CLRM (CT) Other colorectal tumors 32 (52%) 7 (50%)
Melanoma (CT) Lung metastases of melanoma 38 (50%) 9 (47%)
Melanoma (CT) Other lung tumors 38 (50%) 10 (53%)
LIDC-IDRI (CT) Benign lesion 29 (32%) 7 (30%)
LIDC-IDRI (CT) Malignant lesion 63 (68%) 16 (70%)

Each model underwent a pre-training step to calibrate its complexity (e.g., num-
ber of estimators for tree-based models (i - v), margin parameters for SVM) to ensure
stable convergence (see Section 4.1.2 for details). Hyperparameter optimization was
then performed within a five-fold stratified cross-validation framework, with 200 opti-
mization iterations per fold. Optimization was guided by the Tree-structured Parzen
Estimator (TPE) algorithm as implemented in optuna (v. 3.6.1) [153]. The cross-
validation algorithm selects randomly samples from the training set and assigns them
into five equally sized parts, whereas one part gets left out and used for validation
of the model trained on the other four parts. This procedure get applied 5 times
where the validation part is always another fold and the training folds are always the
remaining data in the training set.

The best configuration for each fold was selected based on validation AUROC, and
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fold-specific models were ensembled using the EnsembleVoteClassifier with soft voting
from mlztend (v. 0.23.4) to generate the final predictions. Final performance was
evaluated by the ensemble model on the held-out test sets, reporting mean AUROC
with bootstrapped 95% confidence intervals. Bootstrapping has been performed on
the prediction outcomes and then subsequent calculation of the evaluation matrix
(AUROC, F1, Sensitivity, or Specificity) from the models on the respective data split
1,000 times (this procedure has been also applied in [18] and [19] to compute the
Confidence Interval (CI)95). In addition, threshold-based metrics optimized with the
Youden Index, including sensitivity and specificity, were reported to provide clinically

relevant model evaluation.

4.1.9 Application of AutoRadiomics

AutoRadiomics was applied following the default configuration provided in the official
repositoryt. With this setup, I was able to reproduce the published results on the
WORC database [18], confirming that the default pipeline yields consistent perfor-
mance across datasets (see Figure 8.10).

After completing the AutoRadiomics runs, the training—testing splits generated
by AutoRadiomics were reused for the evaluation and training of RPTK and Deep
Learning. Specifically, the same sample identifiers were selected for training (80%
of the data) and testing (20%) to ensure a fair comparison. In the RPTK pipeline,
these splits were introduced after the feature filtering stage and were subsequently
applied for both feature selection and model training/optimization, and finally model
evaluation and testing.

It should be noted that while the outer train—test splits were synchronized be-
tween AutoRadiomics and RPTK, the internal cross-validation procedures were not.
AutoRadiomics uses its own internal cross-validation strategy, while RPTK applies a
five-fold stratified cross-validation with hyperparameter optimization as described in
Section 4.1.8. Preserving this independence ensures that the performance of RPTK
reflects its original configuration, while still allowing a fair comparison on identical
held-out test sets.

4.1.10 Application of Deep Learning Models

To benchmark radiomics-based classification against deep learning, several 3D convo-
lutional neural networks were trained using the MONAI framework [23], specifically
ResNet18, ResNet200, DenseNet121, DenseNet169, DenseNet201, and DenseNet264.

‘https://github.com/pwoznicki/AutoRadiomics/tree/main, accessed April 2024
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All models were implemented in Python (v. 3.10) using PyTorch (v. 2.2.2), MONAI
(v. 1.3.0), and TorchIO (v. 0.19.6). Experiment tracking was performed via Weights
¢ Biases (wandb (v. 0.16.6)), and medical image 1/O relied on SimpleI TK (v. 2.5.2)
and NiBabel (v. 5.2.1).

All models were trained on single-channel volumetric images to ensure compara-
bility with the RPTK and AutoRadiomics experiments. Training and test splits were
kept identical across all approaches to enable a fair performance comparison.

Preprocessing: Each image was cropped around the segmentation mask (if avail-
able), resampled to isotropic 1 mm? voxel spacing, and resized to 32 x 32 x 32 voxels
when cropping was applied (otherwise 96%). Intensities were scaled to the range [0, 1]
and optionally normalized via z-score standardization.

Training setup: Models were trained for up to 200 epochs with a batch size
of 15 using the Adam optimizer from PyTorch (v. 2.2.2) (initial learning rate 1074,
minimum learning rate 107%) and a cosine annealing learning rate schedule with warm
restarts [227]. The cross-entropy loss function was minimized. Early stopping with
a patience of 3 epochs and A, = 0.1 was enabled to prevent overfitting. Batch
normalization layers were included in all models. Random seeds were fixed (seed =
1234) to ensure deterministic and reproducible results across runs.

Data augmentation: To increase robustness, random flips along all three spatial
axes, random 90° rotations, and random intensity scaling were applied for training
samples with a probability of p = 0.2 for each transform from the MONAI (v. 1.3.0)
transforms collection, the Compose function was applied.

Validation and model selection. A five-fold cross-validation was performed
using the same predefined splits as in the AutoRadiomics experiments. For each
fold, the model checkpoint with the highest validation AUROC was retained. Test
set predictions were ensembled by averaging class probabilities across folds to obtain
final test scores.

Evaluation: Independent test sets were used for the final evaluation. Model
performance was quantified using the area under the receiver operating characteris-
tic curve (AUROC), reported alongside AutoRadiomics and RPTK results for direct
comparison (see Section 4.1.9). All experiments were executed on NVIDIA GPUs
using CUDA acceleration, and the training pipeline was made fully reproducible by

saving preprocessing metadata, model weights, and experiment configurations.

4.1.11 Source Code Availability

The RPTK framework has been developed as an open-source project and is made pub-

licly available for reproducibility and further research. The source code, configuration
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files, and scripts for all experiments described in this thesis can be accessed via the
Zenodo reference [228] or via GitHub®. The Zenodo reference shows the exact version
of the release of the software used in this thesis whereas the GitHub repository can
be viewed in addition for documentation purposes.

The repository includes the complete RPTK pipeline, including data preprocess-
ing, feature extraction, feature filtering and selection, model training and optimiza-
tion, and evaluation modules. In addition, the source code and configurations for the
deep learning experiments (ResNet, DenseNet) are provided. All dependencies and
library versions are documented in the repository.

For user convenience, a Docker container has been prepared, enabling direct de-
ployment of RPTK on arbitrary datasets without requiring manual installation or
environment configuration. This container includes all required libraries, and precon-
figured workflows, thereby lowering the barrier for application in both research and

clinical settings.

4.1.12 Used Computational Hardware

All experiments were performed on a machine with Intel(R) Xeon(R) W-2145 CPU
@ 3.70GHz CPU including 16 Cores with 125 GB of Memory and 9 TB of disk space.
Calculation time for RPTK applications took around 72 hours for the smaller datasets
and up to 96 hours for the larger datasets. Application of AutoRadiomics needed 28

until 42 hours for calculation with the same hardware.

4.1.13 Statistical Testing

To evaluate whether differences in model performance were statistically significant,
the AUROC values obtained on the test set were compared using the nonparamet-
ric DeLong test for paired and correlated receiver operating characteristic (ROC)
curves [229]. As both models were evaluated on the same test samples, a paired for-
mulation of the test was used. The analysis was performed in R using the pROC (v.
1.19.0.1) package in R (v. 4.5.1) [230]. A two-sided hypothesis test was used to assess
whether the observed difference in AUROC values deviated significantly from zero
(Ho:AUC; = AUC,, H4:AUC; # AUC,). The corresponding p-value was computed
at a significance level of a = 0.05.

Overall survival was analysed with Kaplan-Meier (KM) estimators [231] for the

Predict study in order to show survival differences stratified by response groups. To

SAccess the RPTK GitHub Repository: https://github.com/MIC-DKFZ/RPTK
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test for differences between the group-specific survival functions, I used the (multi-
sample) log-rank test [232,233] with a two-sided alternative and significance level
a = 0.05. KM curves (with 95% confidence intervals from Greenwood’s variance)
and the global log-rank p-value were computed in Python using lifelines (v. 0.27.8;

multivariate_logrank_test) and KaplanMeierFitter.

4.2 Predict Study — Predicting Immunotherapy Treat-

ment Response in Lung Cancer Patients

This section documents how the Predict cohort was used to evaluate our radiomics
pipeline. First, we summarize the dataset (patients, imaging, and clinical variables
used in modeling). Second, we specify the retrospective study design, including eligi-
bility, imaging time points, and the training—testing protocol; for comparability, the
train/test splits are synchronized with AutoRadiomics. Third, we detail the RPTK
application to this cohort, covering image/ROI handling and preprocessing, feature
extraction and parameterization, model selection and hyperparameter search, and the
evaluation metrics used. Together, these elements define a reproducible setup for a fair
comparison between RPTK, AutoRadiomics, and the deep learning baselines. Each

patient contributed two CT scans from the earliest time points of the treatment.

4.2.1 Data & Study Design

The ethics application for this this retrospective study was approved by the ethics
committee of the Heidelberg University Hospital based on the national laws and the
Declaration of Helsinki (S-145/2017). This section specifies (i) the data used from
the Predict cohort, (ii) the retrospective study design and outcome definition, and
(iii) how these data were prepared for analysis with RPTK and compared against
AutoRadiomics and deep learning models. An overview of the workflow and timeline
is shown in Figure 4.6.

Clinical response at the first on treatment evaluation followed iRECIST categories
(partial response, stable disease, progressive disease). For modeling, we defined a
binary endpoint: responders = partial response or stable disease; non-responders =
progressive disease (n=38 vs. n=35). Overall survival differed significantly between
responders and non-responders (log-rank p < 0.01), see Figure 4.7. The Predict
dataset was split into training and testing subsets, the training set contains 28 non
responders (48 %) and 30 responders (52 %), where the test set includes 7 non-
responders (47 %) and 8 responders (53 %). This splitting was done by AutoRadiomics
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and has been used by RPTK to select the features and train predictive models for
this study.

The Predict Study - Clinical Setting and Study Design

Delta Radiomics
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Figure 4.6. Experimental design of the Predict study for immunotherapy treatment
response prediction. Included are patients with diagnosed NSCLC lung cancer, where
a CT image was acquired at the start of the treatment and 28 - 140 days afterwards.
RPTK was applied on the baseline and the 1. follow-up CT scans. The treatment
response was evaluated during the treatment by multiple experts based on compre-
hensive data (see Table 8.4).

The Predict data comprises additional 28 clinical parameters (see Table 8.4),
including demographic information, laboratory values, tumor staging, and therapy-
related descriptors. This extensive clinical setting equals to a real clinical evaluation
of patients for immunotherapy treatment response and therefore include a compre-
hensice clinical evaluation of the patients. Among these parameters, 14 variables are
continuous (e.g., PD-L1 expression, Neutrophil over Lymphocyte Ratio (NLR), CRP,
Albumin, Hemoglobin, Age, Weight, and Tumor size), 9 are categorical (e.g., Sex,
Smoking status, Contrast phase, Therapy class, Pleural effusion), and 5 are ordinal
or staging-related (e.g., Eastern Cooperative Oncology Group Performance Status
(ECOG) performance state, T-, N-, and M-staging, and overall disease stage). Most
parameters describe macroscopic or physiological conditions rather than molecular
biomarkers; PD-L1 represents the only molecular parameter directly linked to im-

munotherapy response.
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Figure 4.7. Kaplan—Meier plot for survival including binary treatment response
evaluation where stable disease and partial response are handled as response with Log-
rank test for significance evaluation (log-rank p-value = 0.0057) . The y axis shows
the overall survival probability and the x axis the time in days after immunotherapy
treatment start. This plot was generated by using the KaplanMeierFitter from lifelines

(v. 0.30.0) with alpha = 0.05

4.2.2 Image Segmentation

Initial primary tumor masks were generated semi-automatically with a pretrained
nnU-Net¥ (version 2.1) [8] (see Figure 4.8), using the 3D full-resolution configuration
trained on the Medical Segmentation Decathlon (MSD) Lung task (MSD Task06)

(Creative Commons Attribution Non Commercial 4.0 International) [25,26].

nnU-net pretrained model download available at https://zenodo.org/records/3734294 (ac-
cessed June 2023)
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Figure 4.8. Semi-automatic segmentation workflow for reviewing and correcting
automated generated segmentations by pretrained nnU-Net segmentation model for
lung cancer segmentation in the Predict data [8]. This workflow generated the seg-

mentations of the primary tumor included in this study.

(a) Not accepted nnU-Net segmentation (b) Accepted automated nnU-Net seg-
(red) and manually performed segmenta- mentation without manually performed
tion (yellow). segmentation correction.

Figure 4.9. Re-segmentation performed by a radiologist based on an automated

generated nnU-Net segmentation for lung cancer in the predict data (see Figure 4.8).

Inference followed the nnU-Net defaults defined by the model plans (spacing/orientation

harmonization, intensity normalization, sliding-window inference with mirrored test
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time augmentation, and post-processing). A radiologist (> 5 years experience) veri-
fied the primary tumor in all cases and corrected or fully resegmented 71/146 studies
using MITK (v. 2022.04) [67]. A second radiologist (> 8 years experience) reviewed
the full set and introduced 4 additional corrections. Representative examples of an
unaccepted nnU-Net mask with manual re-segmentation and an accepted automated
mask are shown in Figures 4.9a and 4.9b. All accepted (automated or corrected)
masks were used for subsequent application of RPTK and AutoRadiomics.

Correct segmentation examples which got integrated into the radiomics diagnostics

can be reviewed in Figure 4.10 for responding and non-responding labels.

(a) CT slice image with segmentation of (b) CT slice image with segmentation of
a primary NSCLC not responding to im- a primary NSCLC responding to imm-
munotherapy. munotherapy.

Figure 4.10. CT images of segmented responding and not responding lung cancer
in the Predict study. a. Example of an non-responding primary lung tumor. b.

Example of an responding primary lung tumor.

4.2.3 RPTK Configuration in the Predict Study

The RPTK framework has been applied in the same configuration as described in Sec-
tion 4.1, with the adaptation to logitudinal data. Beyond single time point radiomics,
we leveraged the longitudinal design to compute delta radiomics, i.e., changes in
image-derived features between the two longitudinal scans, providing a within patient
readout of early therapy effects.

Delta features were computed inside the feature-extraction pipeline in three steps:
(i) extract the full radiomics feature set separately at each time point (baseline t, and
first on-treatment ¢;)
(ii) normalize features for each time point individually

(iii) subtract the normalized features per sample to obtain the delta feature vector



88 LiverCRC Study — Colorectal Neoplasia Prediction via Liver CT

following the formula 4.1

Concretely, for patient ¢ and feature k we define:

Afie = £ — fi%or t € {to,t1} (4.1)
fz(g Radiomic feature k for patient i at time point ¢ (baseline ¢, on-treatment
t1).
Afik Delta (change) of feature k used for modeling.

As AutoRadiomics does not include delta radiomics calculations, the same proce-
dure has been applied to AutoRadiomics features after extraction following the formula
4.1. RPTK was then compared to the performance of AutoRadiomics and the deep
learning baselines (see Section 4.1.9 and 4.1.10). The training set includes 28 non-
responding patients and 30 responding patients, the test set includes 7 non-responding

and 8 responding patients.

4.3 LiverCRC Study — Colorectal Neoplasia Pre-

diction via Liver CT

The LiverCRC project investigates whether liver-derived radiomic features can serve
as non-invasive biomarkers for colorectal neoplasia, thereby exploiting the biological
link of the gut—liver axis. This retrospective proof-of-concept study was motivated by
persistently low Colorectal Cancer (CRC) screening participation rates and aimed to
explore abdominal CT scans as an opportunistic screening tool to identify patients at

risk.

4.3.1 Data & Study Design

The ethics application for this retrospective study was approved by a local ethics
committee based on the national laws and the Declaration of Helsinki (EK IT 2023-
887-AF 11) [22]. The study cohort consisted of 1,997 patients who had undergone
both colonoscopy and contrast-enhanced abdominal CT. Based on colonoscopy re-
sults, 1,189 patients had no colorectal neoplasia (CRN), while 808 patients had con-
firmed neoplasia (adenomas, n = 423; CRC, n = 385). The liver was automatically
segmented in all cases using the MultiTalent framework [27], and three-dimensional

liver segmentations were processed with the RPTK.
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colonoscopy + abdominal CT within 5
years
n=6331

Excluded:

incomplete colonoscopy and/or
— incomplete CT scan (n=2039)

_________________________________

— (n=1551)

liver abscess, acute cholangitis E
or transplanted liver (n=439)

_________________________________

——’ 1997 patient included

RPTK training set RPTK test set
(n=1598) (n=399)

CRN no CRN CRN no CRN
(n=646) (n=952) (n=162) (n=237)

Figure 4.11. Standards for The Reporting of Diagnostic accuracy flow-chart of the
LiverCRC cohort. Out of 6,331 patients with colonoscopy and abdominal CT within
5 years, 1,997 were included after excluding patients with incomplete data, additional
oncological diagnosis and liver related diseases. The dataset was split into a training
set (n = 1,598) and an independent test set (n = 399), with Colorectal Neoplasia
confirmed by colonoscopy serving as the reference standard. (We adapted this figure

from the manuscript [22]).

The dataset was randomly divided into a training set (n = 1,598) and an indepen-
dent test set (n = 399) by AutoRadiomics. The same train/test split was also used
by the feature selection procedure. Five different machine learning classifiers were
trained using five-fold cross-validation on the training data, restricted to the 20 most
informative features selected by the RPTK. Ensemble models were generated from the
cross-validation folds. The final models were evaluated on the held-out test set using
AUROC with bootstrapped 95% confidence intervals. In addition, threshold-based
performance metrics, including sensitivity and specificity, were optimized using the
Youden Index to provide clinically interpretable results. In addition to that we also
compared the performance of RPTK with AutoRadiomics and deep learning models
(see Section 4.1.9 and 4.1.10) (non-published results).

This design provides a technical foundation for investigating liver-derived radiomics

as biomarkers for colorectal neoplasia. While the single-center and retrospective na-
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ture of the study limits generalizability, the setup demonstrates feasibility and informs

subsequent validation in prospective, multi-center cohorts.

4.3.2 Image Segmentation

Liver segmentations for this study were not manually generated but were obtained

using the MultiTalent framework |, which is based on the nnU-Net architecture [27].

(a) CT slice image with segmentation of (b) CT slice image with segmentation of

a the liver without colorectal neoplasia. a the liver with colorectal neoplasia.

Figure 4.12. CT images of segmented liver with or without colorectal neoplasia in
the Predict study. a. Example CT slice of a liver with no colorectal neoplasia. b.

Example CT slice of a liver with colorectal neoplasia.

MultiTalent was trained on 13 publicly available abdominal CT datasets compris-
ing more then 1,000 images and about 50 different anatomical classes [22,27]. The
pretrained model was applied to generate binary liver masks [22]. The resulting seg-
metations were used for the prediction of colorectal neoplasia (see Figure 4.12). The
application of the tool as well as the generation of the segmentations were done by a

colleague in the division of Medical Image Computing at the DKFZ, Heidelberg.

4.3.3 RPTK Configuration in the LiverCRC Study

The LiverCRC data were processed using the RPTK framework. In contrast to the
smaller open-source datasets, no additional data augmentation techniques were ap-
plied, as the sample size of 1,997 patients was sufficiently large to support robust
model training.

All images and corresponding liver segmentations were resampled to isotropic voxel

spacing. Radiomics features were extracted with both PyRadiomics and MIRP, ensur-

IMultiTalent available at https://github.com/MIC-DKFZ/MultiTalent (accessed May 2024)
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ing coverage of IBSI-compliant and extended feature sets. Standard feature filtering
steps were applied, including variance filtering and correlation filtering, followed by se-
quential feature selection using a random forest classifier to select up to 20 informative
features.

Instability filtering based on segmentation perturbations was not performed in
this study, as no perturbation masks were generated for the LiverCRC cohort. The
resulting feature sets were subsequently used for model training and optimization as
described in Section 4.1.8.

In addition, RPTK was applied to allow a direct performance comparison with
AutoRadiomics (non-published data). For this purpose, the extracted and filtered
radiomics features were used, while feature selection and model training/optimization
were performed on the training sets (80%) defined by AutoRadiomics. Final predic-
tions were then obtained on the corresponding AutoRadiomics-defined test sets (20%),

ensuring a synchronized evaluation protocol (see Section 4.1.9).



Chapter 5

Results

This chapter presents the results obtained in this thesis, organized into three inter-
connected parts that follow the methodological structure described in Chapter 4.

The first part, Self-Configuring Radiomics Pipeline, reports on the benchmarking
of the Radiomics Pipeline Toolkit (RPTK) across seven publicly available datasets.
These experiments demonstrate the reproducibility and robustness of RPTK on het-
erogeneous imaging data and enable direct comparisons against established frame-
works such as WORC and AutoRadiomics (see Section 4.1).

The second part, Predict Study — Predict Immunotherapy Response in Lung Cancer
Patients, evaluates the clinical applicability of RPTK in a retrospective setting. Here,
RPTK is applied to the longitudinal Predict study to forecast treatment response in
patients undergoing immunotherapy for primary lung cancer. The study demonstrates
how temporal radiomics features can contribute to early stratification of responders
and non-responders, supporting clinical decision-making in advanced-stage cases (see
Section 4.2).

The third part, LiverCRC Study — Colorectal Neoplasia Detection on the Liver,
explores the scalability of RPTK when applied to a large dataset of nearly 2,000 pa-
tients. In this setting, radiomics features of the liver are investigated for their potential
to non-invasively detect colorectal neoplasia, thereby addressing challenges related to
colon segmentation and small-lesion detection. RPTK has been applied to the data
in an non-syncronized way in a mansucript which is currently in submission [22]. My
contribution in [22] lies in the application of RPTK, as well as the analysis and pre-
sentation of the results. In contrast to the manuscript, I focus on the comparison of
the RPTK performance to AutoRadiomics and deep learning models on the imaging
data from [22] in my thesis (see Section 4.3).

Across all three sections, RPTK is systematically compared to the SOTA Au-
toRadiomics framework (see Section 4.1.9 and 3.2.3) and SOTA deep learning models

92
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(DenseNet, ResNet) (see Section 4.1.10 and 3.1), providing a comprehensive evalua-
tion of its methodological advances, clinical relevance, and scalability.

The following sections present quantitative and qualitative results for each com-
ponent, accompanied by comparisons to established methods and statistical analyses

of performance differences.

5.1 Self-Configuring Radiomics Pipeline

This section presents the results of applying the RPTK framework to seven publicly
available imaging datasets (see Table 4.1 and Section 4.1 for dataset details).

To ensure comparability with published methods and reproducibility on open-
access data, the experiments evaluate how RPTK performs across heterogeneous 3D
datasets that represent clinically relevant tasks and challenging small-sample size sce-
narios.

My specific contributions to this work include data acquisition and preprocessing,
the development and implementation of the RPTK framework, and the quantitative
analysis of the benchmarking results. The datasets and their characteristics are sum-
marized in Chapter 4 and Table 4.1.

The following subsections present the results in four parts:

(i) an analysis of dataset heterogeneity captured by the automatically generated
RPTK fingerprint

(ii) an overview of feature selection outcomes, including the number and origin of
selected features from intra- and peritumoral regions and the distribution of feature
classes

(iii) the automated selection of the best-performing models trained on these selected
features and their corresponding predictive performance

(iv) a comparison of RPTK with the current state-of-the-art radiomics frameworks,

deep learning models, and published benchmark approaches

Together, these results illustrate the adaptability, robustness, and benchmarking

performance of RPTK across diverse imaging datasets.

5.1.1 RPTK Handles a Variety of Different 3D Imaging Datasets

To systematically capture heterogeneity across datasets, an exploratory data finger-
print was implemented in RPTK. The fingerprint provides descriptive metrics of imag-

ing protocols, segmentation characteristics, and ROI properties that may influence ra-
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diomics analyses. These metrics serve as an overview of dataset-specific characteristics
and support quality assessment and pipeline adaptation.

One representative acquisition parameter included in the fingerprint is the slice
thickness, which showed substantial variation across datasets (Figure 5.1). The dis-
tributions of slice thickness differ both in shape and in the median among the datasets.
The GIST dataset exhibits a categorical distribution of slice thickness, whereas the
remaining datasets display broader or more continuous distributions. In Desmoid and

CRLM, a small number of scans with higher slice thickness values are visible.

Comparison of Slice Thickness Across Datasets
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Figure 5.1. Comparison of slice thickness distributions across datasets. Each vio-
lin plot represents the slice thickness variability within each dataset, illustrating the
heterogeneity in acquisition protocols. In the center of each violin is a small box plot,
showing the ends of the first and third quartiles and a horizontal line showing the
median. The plot was generated with the Seaborn (v. 0.13.2) python library by using

the violinplot function.

The fingerprint also quantifies the number of connected components detected
within each segmentation mask (Figure 5.2). This parameter serves as an internal
quality indicator for segmentation integrity. Ideally, a single connected component
corresponds to one contiguous lesion, whereas a higher number of components often
reflects small isolated regions, noise, or annotation artifacts that require filtering (often

coming from automated generated segmentations). In RPTK, connected component
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filtering is applied systematically to all segmentations to remove such spurious regions
before feature extraction. Importantly, the framework can differentiate between cases
with multiple user-defined ROI (for example, patients with several lung lesions) and
performs connected component filtering separately for each instance. When multiple
semantic or instance segmentations are provided, each segmentation mask is processed
individually to preserve user-defined structures. An example of this procedure is il-
lustrated in Figure 4.3 in Section 4.1.5. The distribution of connected components
across datasets (Figure 5.2) thus provides an overview of segmentation complexity
and potential artifact prevalence prior to filtering. The GIST dataset as well as the
Lipo dataset show more and higher fragmented segmentations compared to the other

datasets.
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Figure 5.2. Distribution of connected components across all segmentations in the
datasets. Datasets with larger variance indicate higher occurrence of multiple or
fragmented segmentations. Shown is a violin plot generated with the Seaborn (v.
0.13.2) python library by using the violinplot function. The dots represent the number

of connected components of each sample from the datasets.

Additional parameters captured by the fingerprint include the ROI size, num-
ber of bins, and number of slices. ROI size provides an overview of the tumor-
volume distribution within each dataset and enables detection of atypical or artifi-

cially large and small segmentations (see Appendix 8.2.1 Figure 8.4). The ROIs from
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the datasets CRLM, Melanoma, and LIDC-IDRI contain less voxels compared to the
others, whereas the Lipo dataset contains the most voxels on average. The number of
bins, computed using a fixed bin width of 25, reflects the image intensity distribution
and serves as a measure of grey-level heterogeneity, indicating whether the standard
discretization setting is appropriate (e.g., avoiding very few bins < 10 or excessively
many bins > 100) (see Figure 8.5). The segmentations from the CRLM dataset con-
tain less then 10 bins on average whereas the segmentations from the other dataset
contain bins between 10 and 100. The number of slices describes the axial extent
of each 3D volume and is influenced by the underlying clinical acquisition protocol
(e.g., whole-body versus regional scans). It is important to consider the number of
slices parameters together with the slice thickness, as it serves an an indicator for the
ROI resolution and can be used to get details from the radiological phenotype and
morphology (see Figure 8.6). The number of slices for the datasets CRLM, GIST,
Melanoma, and LIDC-IDRI are on average above 100 whereas Desmoid, Liver, and
Lipo do have less then 100 slices.

Beyond acquisition and segmentation descriptors, the fingerprint also includes dis-
tributions of extracted radiomics features. These allow the exploration of potential
covariations between features, clinical parameters, and acquisition-related variables.
Such information can serve as a quality control step to identify technical or clinical
biases prior to downstream modeling. In this way, the fingerprint extends beyond
simple descriptive metrics and establishes a first-level assessment of how radiomics
features interact with dataset-specific conditions.

The descriptive results presented in this subsection demonstrate that RPTK ac-
commodates datasets with pronounced heterogeneity in acquisition and segmentation
properties. Their implications for harmonization, segmentation filtering, and down-

stream analyses are discussed in Section 6.1.

5.1.2 RPTK Selects the Most Informative Radiomics Fea-

tures

In the following feature selection part, I want to show that RPTK identifies the
most informative radiomics features for each dataset and extractor. The selection
process reduces the dimensionality of the feature space to a subset that optimally
contributes to model performance while minimizing overfitting, particularly important
in small-sample scenarios where the number of features exceeds the number of available
cases [10,122]. These selected features serve as the final input for subsequent model

training and evaluation.
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The composition of the selected feature space differs across datasets and between
the two feature extractors, PyRadiomics and MIRP. Figures 5.3 and 5.4 illustrate
the distribution of selected features by IBSI feature class and by Origin of Informa-
tion (OOI), distinguishing between features derived from the intratumoral and the

peritumoral regions.

RPTK Selected Features - PyRadiomics
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Figure 5.3. Summary of selected features extracted with PyRadiomics across all
datasets. Bars indicate the number of selected features per IBSI feature class and the
corresponding region of origin (OOI: intratumoral vs. peritumoral). The distribution
highlights dataset-specific differences and the relative importance of different feature

categories.

Across both extractors, texture-based feature classes such as GLCM, GLRLM, and
GLSZM were most frequently represented in the final feature sets, followed by first-
order intensity-based and morphological descriptors. These feature classes include
texture information.

The peritumoral margin, was implemented as it represents the tissue surrounding
the annotated lesion, capturing contextual tissue information related to tumor—host
interactions [234,235]. Features from the peritumoral regions are present in about
70% of the datasets in the selected feature space from Pyradiomics and inabout 60%
of datasets in the selected feature space from MIRP. The majority of selected features
extracted by MIRP for the Lipo dataset come from the peritumoral region. In other

datasets, the intratumoral region dominated.
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RPTK Selected Features - MIRP
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Figure 5.4. Summary of selected features extracted with MIRP across all datasets.
Bars indicate the number of selected features per IBSI feature class and the corre-
sponding region of origin (OOI: intratumoral vs. peritumoral). Compared to PyRa-
diomics, MIRP exhibits a broader feature-class composition due to its additional sup-

port for three-dimensional texture features and non IBSI extensions.

In total, RPTK selected up to 20 features per extraction, representing less than
5% of the initially extracted features. This drastic reduction ensures model generaliz-
ability and computational efficiency while preserving predictive signal. The resulting
feature subsets form the basis for automated model selection and benchmarking pre-

sented in the next subsection.

5.1.3 RPTK Selects the Best Performing Models

The performance of radiomics pipelines is strongly influenced by both the extracted
features and the configuration of the feature extraction process as well as the data size
and quality. To illustrate this, RPTK integrates two widely used feature extractors,
PyRadiomics and MIRP, to evaluate the effect of feature definitions and implemen-
tation details on downstream predictive performance (see Section 4.1.7 for extractor
details). For smaller datasets, the train/test splitting makes also a great effect and
was therefore synchronized to the AutoRadiomics splits (see Table 4.3).

To estimate the relationship between dataset size, task complexity, and the influ-

ence on model performance variance, a learning curve analysis was performed using
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the LearningCurveDisplay function from scikit-learn. Each dataset was randomly sub-
sampled in increasing proportions, and model performance was evaluated in a 5-fold
cross-validation setting (see Appendix, Figure 8.11 - 8.17). The resulting curves il-
lustrate how the AUROC evolves with increasing training size for a representative
random forest classifier. The validation AUROC variances for the datasets CRLM,
Lipo, Melanoma, and LIDC-IDRI are more wide and do not reach a plateau compared
to the learning curves of Liver, GIST, and Desmoid where the performance variation
between the iterations are not as high.

For model optimization, RPTK trains and validates six different machine learn-
ing algorithms using a five-fold cross-validation strategy (see Section 4.1.8). In each
round, models are trained on four folds and validated on the remaining fold, resulting
in one optimized model per fold. This setup allows performance assessment during
training (validation folds) to determine whether models effectively learn from the data.
Subsequently, the optimized models are evaluated on the independent test set, which
remains unseen during training, to assess generalization capability. The final ensem-

ble model is derived by aggregating predictions from the five optimized models per

algorithm.
10 RPTK Performance Across Datasets
' Feature Extractors
0.9 34 . MIRP
i % @ % 8 z g (&) f I PyRadiomics
0.8 X @ = ®
= g [¢] ‘ @ g 5 g : : é Models
0.7 ® ™ g ® ® B % ® A GradientBoostingClassifier
] @ <& LGBMClassifier
9] 0.6 % O RandomForestClassifier
2 g $ SV
) 05 === - O TabNetClassifier
i: % V  XGBClassifier
L0.4
0.3 == Chance
0.2
0.1
0.0
S & A & & ° EN
66\0\ 6}, 0\% & N (\o@ O\Q
(4 “Q
Q ﬁ@ Y
Dataset

Figure 5.5. Validation performance (AUROC) of all models trained by RPTK across
datasets. Each point represents the mean validation AUROC from five-fold cross-
validation for one model-extractor combination. The red dashed line indicates random
classification performance (AUROC = 0.5). Substantial differences between extractors
and algorithms highlight the influence of feature definitions and model choice on

overall performance.
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Figure 5.5 summarizes the validation performance of all trained models across
datasets. Each point represents the mean AUROC from the five-fold cross-validation
for one model-extractor combination. Substantial variation in performance can be ob-
served between the feature extractors, particularly for datasets such as GIST, where
models based on MIRP features achieved markedly higher AUROC values compared
to those based on PyRadiomics features. This highlights that the choice of feature
extractor and corresponding feature definitions has a considerable impact on down-

stream model performance.

Across all datasets, ensemble-based tree models, specifically the XGBoost and
LGBM, achieved the highest validation AUROC scores, consistently ranking among
the best-performing models. In contrast, the Support Vector Machine (SVC) clas-
sifier showed the lowest and most variable performance across datasets, confirming
its limited suitability for high-dimensional radiomics feature spaces. Overall, the
best-performing models for each dataset achieved mean AUROC values between 0.8
and 0.9, indicating robust predictive discrimination despite the heterogeneity of the

datasets.

To enhance clinical interpretability, threshold-based performance metrics were also
computed. While AUROC provides a threshold-independent measure of discrimina-
tion, clinical decision-making typically depends on specific cutoff values. Therefore,
sensitivity and specificity were calculated after applying the Youden correction to
identify the optimal decision threshold. Table 5.1 summarizes the validation and test
performance of all models across datasets and feature extractors, highlighting the

best-performing configurations in bold.

Across all datasets, RPTK consistently selected ensemble-based gradient boost-
ing models, such as LGBM and XGBoost, as the top-performing approaches. These
models outperformed other evaluated architectures in most cases. Models trained on
MIRP-derived features achieved the highest validation performance in four datasets,
whereas models based on PyRadiomics features performed best in three datasets. The
largest discrepancy between the two feature extractors was observed for the GIST
dataset, with a validation AUROC difference of 0.096. Smaller differences were found
for Melanoma (0.05), LIDC-IDRI (0.03), and the remaining datasets (=~ 0.02). No-
tably, the models trained on features from CRLM and Melanoma exhibited higher
performance standard deviations compared to the others, indicating greater variabil-
ity in these datasets.

The trained and optimized models identified in this section form the basis for the
comparative benchmarking of RPTK against state-of-the-art frameworks presented in

the next subsection.



Self-Configuring Radiomics Pipeline 101

Table 5.1. Performance metrics of best performing models in bold across datasets
and feature extractors based on the mean validation AUROC metric. Best perform-

ing approach per dataset is bold. Test AUROC, F1, Sensitivity and Specificity are

displayed with 95% ClIs after 1000x bootstrapping as described in Section 4.1.8.

Dataset Extractor Model | Val AUROC | Test AUROC | Youden Test F1 Test Sensitivity | Test Specificity
874 941 .95 .94 981
Desmoid MIRP LGBM 087 09 0.928 0-956 0949 0.98
(£ 0.056) [0.867, 0.994] [0.913, 0.991] [0.883, 1.000] [0.951, 1.000]
i L. 0.901 0.936 0.939 0.965 0.952
Desmoid | PyRadiomics | XGBoost 0.917
(& 0.070) | [0.849, 0.994] [0.891, 0.981] | [0.912, 1.000] | [0.908, 0.990]
0.853 0.893 0.769 0.882 0.574
CRLM MIRP LGBM 0.868
(% 0.070) | [0.679, 1.000] [0.500, 0.952] | [0.625, 1.000] | [0.200, 1.000]
L. 0.834 0.842 0.812 1.000 0.574
CRLM PyRadiomics LGBM 0.934
(£ 0.122) [0.600, 1.000] [0.545, 1.000] [1.000, 1.000] [0.167, 1.000]
0.782 0.780 0.751 0.680 0.877
GIST MIRP XGBoost 0.897
(£ 0.047) [0.640, 0.915] [0.594, 0.880] [0.476, 0.857) [0.739, 1.000]
0.878 0.835 0.717 0.677 0.791
GIST PyRadiomics | LGBM 0.826
(£ 0.021) | [0.709, 0.948] [0.565, 0.850] | [0.500, 0.857] | [0.615, 0.947]
. . 765 .792 NE
Liver MIRP LGBM 0883 0-509 0.770 0765 0-79 0739
(£ 0.056) [0.663, 0.937] [0.592, 0.894] [0.588, 0.950] [0.538, 0.923]
i L. 0.891 0.859 0.805 0.789 0.842
Liver PyRadiomics | LGBM 0.906
(% 0.051) | [0.729, 0.970] [0.647, 0.927] | [0.600, 0.947] | [0.667, 1.000]
. 0.920 0.886 0.686 0.730 0.666
Lipo MIRP LGBM 0.890
(+ 0.033) | [0.712, 1.000] [0.421, 0.880] | [0.444, 1.000] | [0.400, 0.917]
. L 0.891 0.909 0.793 0.728 0.919
Lipo PyRadiomics LGBM 0.759
(= 0.024) [0.746, 1.000] [0.533, 0.960] [0.429, 1.000] [0.727, 1.000]
0.777 0.611 0.987 0.974 1.000
Melanoma MIRP LGBM 0.973
(+ 0.048) | [0.318, 0.881] [0.957, 1.000] | [0.917, 1.000] | [1.000, 1.000]
L. 0.727 0.622 0.760 0.973 0.420
Melanoma | PyRadiomics TabNet 0.395
(£ 0.082) [0.333, 0.885] [0.652, 0.852] [0.913, 1.000] [0.267, 0.581]
.804 . 732 .622 .
LIDC-IDRI MIRP LGBM 0-80 0.705 0.936 0.73 0.6 0-863
(£ 0.074) [0.421, 0.950] [0.500, 0.903] [0.350, 0.846] [0.500, 1.000]
b . .82 b .42
LIDC-IDRI | PyRadiomics | XGBoost 0776 0750 0.949 0820 0876 0429
(£ 0.056) [0.500, 0.960] [0.667, 0.944] [0.687, 1.000] [0.000, 0.833]

5.1.4 RPTK Outperforms Current State of the Art Methods

To assess its relative performance, RPTK was compared with the automated radiomics
framework AutoRadiomics, a deep learning model trained on the same data splits,
and results from previously published studies. All approaches were evaluated on
synchronized dataset partitions to ensure a consistent comparison (see Section 4.1.9
for details). Performance was evaluated on both validation and test sets using AUROC
as the primary metric, supplemented by confidence intervals to illustrate performance
variability.

Figure 5.6 shows the validation performance across datasets for RPTK, AutoRa-
diomics, and the deep learning models. RPTK consistently achieved higher validation
AUROC scores than AutoRadiomics, while deep learning models frequently exhibited
much higher validation than test performance, indicating overfitting to the training

data. This effect is particularly visible for datasets with limited sample size, where

the variance in validation AUROC is large. In contrast, RPTK demonstrates sta-
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ble and reproducible performance across folds, reflecting its effective regularization
and feature-selection strategy. AutoRadiomics validation AUROC performance for
LIDC-IDRI goes below the 0.5 AUROC.
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Figure 5.6. Validation AUROC across datasets using five-fold cross-validation for
the best-performing models from RPTK (see Table 5.1), AutoRadiomics, and the
trained deep learning model. The horizintal dotted line inside the boxplot refers to
the mean whereas the solid line refers to the median. RPTK consistently outperforms
AutoRadiomics, while the deep learning approach shows signs of overfitting, achiev-
ing higher validation AUROC but poor generalization on test data (see Figure 5.7).

The red dotted line shows the threshold for performance with random guessing (0.5

AUROQ).

Test performance is shown in Figure 5.7, where the 95% confidence intervals (CI)
illustrate variability due to small dataset sizes. RPTK achieves the highest or near-
highest test AUROC values across most datasets, outperforming AutoRadiomics in
all but one case (Lipo) and clearly exceeding the deep learning models on every
dataset. While deep learning occasionally surpasses AutoRadiomics on individual
datasets (Liver and LIDC-IDRI), three deep learning models perform worse than ran-
dom classification (AUROC < 0.5), further highlighting the limited generalization
ability of these models in small, heterogeneous datasets. AutoRadiomics performs

equal or worse then random guessing (Test AUROC = 0.5) on the Melanoma and the
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LIDC-IDRI datasets.
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Figure 5.7. Test AUROC comparison of the best models from RPTK, AutoRa-
diomics, and deep learning approaches, with 95% confidence intervals. RPTK con-
sistently achieves higher test AUROC across datasets and demonstrates more stable
generalization compared to AutoRadiomics and deep learning. The red dotted line

shows the performance by random guessing (AUROC = 0.5).

Finally, RPTK was benchmarked against results from the literature, including
classical radiomics studies, deep learning publications, and radiologist assessments
(Figure 5.8). Across all datasets, RPTK ranked among the best-performing frame-
works and often achieved the highest AUROC values. In addition to outperforming
AutoRadiomics and most deep learning approaches, RPTK also exceeded or matched
the diagnostic accuracy reported for radiologists performing the same classification
tasks. The distance of the Test AUROC performance compared to other approaches
is especially visible on the Melanoma and the LIDC-IDRI datasets. This demon-
strates the framework’s potential to achieve expert-level or superior performance in
quantitative image analysis.

In summary, RPTK demonstrates robust and generalizable performance across

heterogeneous datasets, outperforming existing automated radiomics frameworks and

deep learning models.
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RPTK Outperforms Approaches from Literature
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Figure 5.8. Comparison of RPTK test AUROC with published results from the
literature, including radiomics frameworks, deep learning models, and radiologist as-
sessments. RPTK consistently ranks among the top-performing approaches across
datasets, surpassing human-level performance in several tasks. The red dashed hori-

zontal line indicates random classification performance (AUROC = 0.5).

5.2 Predict Study — Predicting Immunotherapy Treat-

ment Response in Lung Cancer Patients

This part of my thesis reflects one of two clinical applications where I used RPTK
for applying the framework in a non open source context on real world clinical data
how they would be used in the clinics to tackle the problem at hand. This section of
my thesis is about the longitudinal prediction of early Immunotherapy response from
advanced stage lung cancer patients treated at the thorax clinic Heidelberg. The image
acquisition as well as the acquisition of the clinical data was done by clinicians of the
thorax clinic Heidelberg. My contribution starts at the data curation and includes
the application of an pretrained nnU-net model for automated segmentation. The
review of the automated segmentations as well as the correction of these were done
by two radiologists of the thorax clinic. The sub-sequential analysis of the data, the
application of my tool (RPTK) as well as the experimental design and the analysis of
the results were done by me.

Here I apply RPTK on real-world, non-public, retrospective, longitudinal, radio-
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logical and clinical data. The Predict Study investigates the longitudinal prediction
of early immunotherapy response in patients with advanced-stage lung cancer treated

at the Thoraxklinik Heidelberg. This section presents unpublished results.

Table 5.2. Imaging fingerprint characteristics of the Predict dataset. Median, mean,

and standard deviation (std) values are shown for key image properties.

Parameter Median Mean Std
Number of slices 280.5 294.16 46.18
Slice thickness (mm) 3.00 2.85 0.52
ROI size (voxels) 56480.0 | 136 765.51 | 272 559.57
Number of connected components 1.00 1.78 2.12
Number of bins 50.00 52.45 14.58

To assess the imaging characteristics of the Predict dataset in relation to the previ-
ously analyzed open-source datasets, the data fingerprint data descriptive parameters
(see Table 5.2). Compared to the open-source datasets, the Predict dataset has a
relative big mean ROI size with 136,765 and a very high std. The number of bins and
the number of connected components are within the distributions of the open-source
datasets. The mean slice thickness for the Predict study is 3 mm with a small std.
of 0.52. Consistent with the results presented in Section 5.1.1, the Predict dataset
displays moderate variability in imaging parameters. Specifically, the slice thickness
tends to be lower, reflecting higher-resolution clinical acquisition, while the number of
slices is higher due to extended volumetric coverage. The number of bins, ROI size,
and connected components remain close to the overall mean across datasets.

Having established the imaging characteristics and overall data quality of the Pre-
dict cohort, the following subsections present the radiomics-based analysis of longitu-
dinal imaging data and clinical variables for early immunotherapy treatment response

prediction.

5.2.1 Longitudinal Imaging Improves RPTK Predictive Per-

formance

The Predict dataset was split into training and testing subsets, this splits were gen-
erated by AutoRadiomics beforehand and used in the RPTK framework for feature
selection and model training (see Section 4.2.1). To determine the optimal use of
longitudinal imaging data for treatment response prediction, RPTK was applied to
three different dataset configurations:

(i) features extracted from baseline CT images only (T0)
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(ii) features extracted from the first follow-up CT images after treatment initiation
(T1)

(iii) delta radiomics features computed as the difference between T1 and TO feature
values according to Equation 4.1 in Section 4.2.3

Independent evaluation of all dataset configurations was performed on the same held-

out test set.
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Figure 5.9. Comparison of RPTK performance across longitudinal data configura-
tions for the Predict study. The boxplots on the left show validation AUROC values
obtained from five-fold cross-validation with standard deviation, while the points with
error bars on the right show test AUROC performance with 95% confidence intervals
estimated from 1,000 bootstrap iterations. TO corresponds to baseline CT scans, T1
to first follow-up scans, and Delta to radiomics features derived as the difference be-
tween T1 and TO feature values (Equation 4.1). The horizontal dashed line within
the boxplot represents the mean validation AUROC, and the solid line indicates the
median validation AUROC. For performance values see Table 8.5. The red dashed

horizontal line indicates random classification performance (AUROC = 0.5)

As shown in Figure 5.9, RPTK performance was compared across the three longi-
tudinal configurations. The boxplots illustrate the distribution of validation AUROC
values across cross-validation folds, while the markers with vertical error bars repre-

sent the test AUROC values together with the corresponding 95% confidence intervals
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derived from bootstrap resampling. Across all configurations, validation AUROC val-
ues were consistently above the chance level. The delta configuration yielded the
highest validation and test AUROC values, followed by the T1 and T0 configurations.
Validation performance variability was lowest for the T1 and delta configurations,
whereas T0 showed a wider spread. Test AUROC confidence intervals overlapped
between T'1 and delta, while T0 exhibited the largest uncertainty.

A complementary analysis including models based on clinical parameters and com-

bined clinical-radiomics data is presented in Section 5.2.3.

5.2.2 RPTK Selects Important Features for Treatment Re-

sponse Prediction

To characterize the image-derived biomarkers contributing to the predictive perfor-
mance on the longitudinal Predict dataset, the selected delta radiomics feature spaces
were examined for both extraction frameworks, PyRadiomics and MIRP. Figures 5.10
and 5.11 display heatmaps of the selected features, where each row corresponds to one
selected feature and each column to one patient. Feature values are z-score normal-
ized across patients, with higher and lower values shown in red and blue, respectively.
Rows are grouped by IBSI feature class (color bar on the right), and patients are
ordered by treatment response (non-responders to the left, responders to the right).
This visualization allows the inspection of value distributions across feature classes
and response groups.

The selected feature space from PyRadiomics extraction comprises 19 features.
More than half of these belong to the Grey Level Distance Zone Matrix (GLDZM) and
GLCM feature classes. With respect to image transformations, six features originate
from different kernel combinations of 3D wavelet transformations, and one feature was
derived from the peritumoral margin. Repeated occurrences of the GLDZM feature
Low dependence low grey level emphasis (LDLGE) were observed under different
image transformations. Among the texture features, the GLCM Inverse Difference
Moment Normalized (IDMN) and the first-order Root Mean Squared feature showed
distinct value patterns between the treatment response groups.

The MIRP-based feature space comprises 20 selected features. The most fre-
quently represented feature classes are GLSZM, GLCM, and Intensity histogram (IH).
Approximately half of the features were computed from 3D wavelet transformations.
One feature originated from the peritumoral margin, eight were computed directly in

3D, and five were derived from 2D slice-wise computations averaged across the region
of interest. The Neighbourhood Grey Tone Difference Matrix (NGTDM) Complex-
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ity and Zone Size Entropy (ZSEntr) features appeared multiple times across distinct
image transformations or dimensions. Pronounced value variations between response
groups can be observed for the GLCM IDMN (Gabor-transformed) and GLRLM Long
Run High Grey level Emphasis (LRHGE) features.
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Figure 5.10. Selected delta radiomics features (PyRadiomics) from RPTK. Rows

correspond to features ordered by IBSI class (color bar at right), and columns corre-

spond to patients ordered by treatment response. Cell colors represent z-score nor-
malized feature values. The plot visualizes the distribution of selected features across

feature classes and treatment response groups.

Several feature types occur in both PyRadiomics and MIRP extractions. Both
extraction frameworks included the GLCM IDMN feature and the morphological de-
scriptor Sphericity. Differences between the two frameworks are primarily related
to implementation: PyRadiomics computes most texture features (GLCM, GLSZM,
GLDZM, NGTDM, GLRLM) in 3D, whereas MIRP includes additional 2D imple-
mentations. Furthermore, MIRP provides features from the Neighbouring Grey Level
Dependence Matrix (NGLDM) class, which is not available in PyRadiomics (see Fig-
ure 8.7 in Section 8.2.2).

In addition to the RPTK feature selection, I analyzed the feature selection gener-
ated by AutoRadiomics for comparison (see Figure 8.20). The heatmap of the selected

features from AutoRadiomics displays a total of ten selected features, all derived from
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wavelet-transformed images. Only two IBSI feature classes are represented, namely
GLDZM and GLRLM. Within these classes, features such as Large Dependence Em-
phasis and Run Variance appear multiple times under different wavelet filter combina-
tions. Despite the limited diversity of selected feature types, the AutoRadiomics fea-
ture matrix shows a recognizable separation between responders and non-responders,

indicating distinct value distributions between treatment response groups.
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Figure 5.11. Selected delta radiomics features (MIRP) from RPTK. Rows corre-

spond to features ordered by IBSI class (color bar at right), and columns correspond

to patients ordered by treatment response. Cell colors represent z-score normalized
feature values. The plot visualizes the distribution of selected features across feature

classes and treatment response groups.

No direct overlap in specific features was observed between the AutoRadiomics
and RPTK-selected feature spaces. However, both methods emphasize similar texture-
based feature classes, with GLDZM and GLRLM being highly represented across both
approaches. This overlap at the feature class level suggests that these texture fami-
lies consistently contribute to treatment response modeling, regardless of the feature
selection strategy applied.

The selected features from RPTK on the Predict dataset correspond to those
ranked as most important by the best selected predictive models (XGBoost model fro

MIRP and PyRadiomics) in subsequent SHAP analyses (see Figure 5.12). Features
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displaying strong value differentiation between response groups in the heatmaps, such
as GLCM IDMN and GLRLM LRHGE, are among the top-ranking features in model-
based importance estimates.

As shown in Figure 5.12, the SHAP value summary plots visualize the relative
contribution of each selected feature to the output of the best-performing RPTK
models for both extraction frameworks. The bar lengths correspond to the mean
absolute SHAP value, representing the average feature impact on model predictions
across all training samples.

For the PyRadiomics-based model (Figure 5.12a), feature SHAP values are dis-
tributed across multiple feature classes, with the GLCM IDMN feature extracted from
the Gabor-transformed image showing the highest SHAP value. Other features with
noticeable contributions include first-order (Root Mean Square) and texture-based
features from the GLDZM class (Dependence Entropy (DepEntropy), LDLGE), as
well as additional GLCM descriptors.

The MIRP-based model (Figure 5.12b) exhibits a similar distribution of feature
importance, with the GLCM IDMN feature from the Gabor-transformed image again
showing the highest contribution. Additional features with comparatively high SHAP
values belong to the GLRLM (LRHGE), morphological (Sphericity, Integrated inten-
sity (Integlnt)), and GLDZM feature classes.
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(a) SHAP values summary bar plot of best (b) SHAP values summary bar plot of best
model from RPTK based on PyRadiomics model based from RPTK based on MIRP fea-
features of the Predict dataset. tures of the Predict dataset.

Figure 5.12. SHAP values plots from best model on the Predict dataset to show
feature impact on model performance. a. The SHAP values displaying the feature
impact of the best performing model based on PyRadiomics features. b. The SHAP
values displaying the feature impact of the best performing model based on MIRP

features.

Across both extraction frameworks, the overall distribution of SHAP values shows
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that a few dominant features contribute most strongly to the model predictions, while
the remaining features have smaller but cumulative effects. The overlap in top-ranked
features, particularly the GLCM IDMN descriptor, indicates that both extraction

pipelines highlight similar feature types among the most influential predictors.

5.2.3 RPTK Gains Performance with Additional Clinical In-

formation

In addition to imaging-based radiomics features, RPTK was extended to incorporate
structured clinical data routinely collected in daily clinical practice. These parameters
go beyond patient demographics and include disease-specific characteristics, such as
tumor staging, laboratory values, and radiological assessments, reflecting both sys-
temic and morphological aspects of disease status. Together, they provide comple-
mentary information to the imaging-derived radiomics features used in the Predict
study.

To evaluate the contribution of these data sources, RPTK was trained and vali-
dated on three dataset configurations: (i) delta radiomics features only, (ii) clinical
features only, and (iii) a combined dataset containing both clinical and delta ra-
diomics parameters. All models were trained and evaluated on identical training and
test partitions to ensure comparability. Table 5.3 summarizes the validation and test
performance of the best-performing models for each configuration, including the mean
validation AUROC, test AUROC with 95% confidence intervals, and threshold-based

metrics (F1l-score, Sensitivity, and Specificity) after Youden correction.

Table 5.3. Performance metrics across datasets, feature extractors, and models on
the Predict dataset. The metrices on the test set like AUROC, F1, Sensitivity and
Specificity are represented as mean and CI95 range. Displayed threshold dependent

matrices (F1, Sensitivity and Specificity) have been optimized via Youden beforehand.

Predict Val Test Test Test Test
Extractor Model Youden
data AUROC AUROC F1 Sensitivity | Specificity
971 . .64 621 .
Delta Radiomics MIRP XGBoost 0.97 0-750 0.798 0647 0.6 0707
(+/- 0.017) | [0.536, 0.982] [0.286, 0.889] | [0.222, 0.900] | [0.333, 1.000]
0.817 0.786 0.731 0.740 0.710
Clinical Clinical LGBM 0.967
(+/- 0.085)  [0.518, 1.0] [0.429, 0.941]  [0.400, 1.000] | [0.333, 1.000]
Clinical and Clinical and 0.948 0.767 0.743 0.760 0.712
Random Forest 0.833
Delta Radiomics | MIRP (+/- 0.055) | [0.464, 0.964] [0.461, 0.941] | [0.429, 1.000] | [0.333, 1.000]

As shown in Table 5.3, the performance of RPTK was evaluated across three
configurations: delta radiomics features only, clinical features only, and a combined

dataset containing both feature types. All models achieved validation AUROC values



112 Predict Study - Predicting Immunotherapy Response

above 0.80, with test AUROC values ranging from 0.75 to 0.79. The model trained
on delta radiomics features reached the highest validation AUROC (0.97), followed
by the combined configuration (0.95) and the clinical model (0.82).

In the test evaluation, the combined configuration achieved the highest F1-score
(0.74) together with the highest sensitivity (0.76) and specificity (0.71). The clinical
model showed comparable AUROC but slightly lower F1 and sensitivity values, while
the delta radiomics model reached the lowest threshold-based metrics. Across all
configurations, the 95% confidence intervals of the test AUROC overlapped, suggesting
similar performance ranges.

Model interpretability based on Shapley Additive exPlanations (SHAP) values is
illustrated in Figures 5.13a and 5.13b, which display the ranked feature contributions
for the clinical-only and combined models, respectively. The bar lengths correspond
to the mean absolute SHAP values, representing the average impact of each feature

on the model output.
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Figure 5.13. SHAP values plots from best model on the Predict dataset to show
feature impact on model performance on clinical and delta radiomics features. a. The
SHAP values displaying the feature impact of the best performing model based on
clinical features (see Table 8.4). b. The SHAP values displaying the feature impact

of the best performing model based on clinical and delta radiomics features.

In the clinical-only model (Figure 5.13a), PD-L1 expression showed the highest
contribution, followed by tumor size, CRP level, patient age, and metastatic stage
(¢cM). Additional clinical factors, including smoking status, presence of other tumor
manifestations, and lymphatic invasion (Ly), also contributed to the model predictions
but with lower mean SHAP values.

In the combined clinical-radiomics model (Figure 5.13b), radiomics features were
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among the top-ranked predictors. The most prominent contributors included texture-
based descriptors such as GLRLM Grey level non-uniformity (GLNU), GLCM IDMN,
and GLRLM LRHGE. Clinical parameters such as ECOG performance status and
smoking status were also present in the overall feature set but were ranked below the
top ten by mean SHAP value.

To further examine the selected features of the clinical-only and combined models,
the corresponding feature value distributions are visualized in Figures 8.19 and 8.18
in the Appendix. Each heatmap displays the z-score-normalized feature values for all
patients (columns) and selected features (rows). Patients are ordered by treatment
response (non-responders to the left, responders to the right). In both figures, the
color scale indicates relative feature intensity, with higher and lower values represented
by red and blue, respectively.

The clinical feature heatmap (Figure 8.19) shows that several variables, including
PD-L1 expression, tumor size, and CRP levels, exhibit visible value shifts between
response groups. Features such as ECOG performance status, age, and smoking sta-
tus show weaker but consistent variation across patients, suggesting a heterogeneous
contribution of clinical parameters to treatment response representation.

The combined clinical-radiomics heatmap (Figure 8.18) includes both MIRP-
derived radiomics descriptors and clinical variables. Radiomics features from texture-
based classes (GLCM, GLRLM, GLSZM) dominate the upper rows of the heatmap,
displaying structured intensity differences between non-responders and responders.
Among the clinical variables, ECOG performance status, smoking status, and pack-
years are visible within the lower section of the feature matrix. The distribution of
values across both feature domains demonstrates that the selected clinical and ra-
diomics features capture distinct but complementary signal patterns related to treat-

ment response.

5.2.4 Clinical Potential and Decision Evaluation

To evaluate the clinical potential of the predictions generated by the delta radiomics
model, I analyzed whether the predicted treatment response groups show a similar
survival distribution to the ground truth response labels. The survival data used for
this analysis were provided by the Thoraxklinik Heidelberg and were not part of the
clinical data included in the clinical performance evaluation of RPTK. I performed the
survival analysis using the ground truth and model-predicted classifications to assess
their correspondence on a cohort level.

For this purpose, I calculated Kaplan—Meier survival curves for both the ground

truth and the model-based classifications across the Predict cohort (see Figure 5.14).
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The plot displays the survival distributions for responders and non-responders accord-
ing to the true clinical labels and the classifications predicted by the delta radiomics

model.
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Figure 5.14. Kaplan—Meier survival curves comparing the ground truth (log-rank
p-value = 0.0057) (see Figure 4.7) and delta radiomics—based predicted response (log-
rank p-value = 0.0058) groups in the Predict cohort. The curves show the survival
distributions for the responder and non-responder classes according to the true clinical
labels and the model predictions in CI 95 distribution. The plot was generated by
using the KaplanMeierFitter and the log-rank p-value was generated with alpha =
0.05 from the lifelines (v. 0.30.0) library (see Section 4.1.13).

Within the test set, I observed five misclassified patients, of which three were false
positives (predicted as non-responders but were responders) and two were false neg-
atives (predicted as responders but were non-responders) (see Figure 8.21b) showing

very similar results to the clinical model performance (see Figure 8.21a).

When applying the trained delta radiomics model to the complete cohort, 40 pa-
tients were classified as responders and 33 as non-responders (see Figure 5.14). These
numbers represent the model output across all available cases and are included here
to provide an overview of the overall classification distribution, but the independent
evaluation and performance assessment are based solely on the test set results. The
corresponding Kaplan—Meier survival plot and confusion matrices summarize these

classification outcomes.
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5.2.5 Comparing RPTK Prediction Performance on Longi-
tudinal Data

In order to compare the prediction performance of RPTK on longitudinal data to
other approaches, I evaluated three methods using the same training and test splits
of the Predict dataset: RPTK on delta radiomics features, AutoRadiomics on delta
radiomics features, and a deep learning model trained on cropped CT images (see
Section 4.2.3 for details). For comparability, I generated the delta radiomics features
for AutoRadiomics in the same way as for RPTK by extracting features from both
time-points and calculating the difference between the follow-up and baseline features

per patient.
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Figure 5.15. Validation and test AUROC performance of the Predict dataset ob-
tained from three approaches: RPTK on delta radiomics, AutoRadiomics on delta
radiomics, and Deep Learning on cropped CT images. The bars represent the mean
validation AUROC, and the points indicate the test AUROC. All models were trained
and evaluated on identical train/test splits. For performance values see Tables 8.5,

8.6, and 8.7.

Among all tested deep learning architectures, the ResNet-18 model achieved the
best performance with a mean validation AUROC of 0.80 and a test AUROC of 0.55.

For AutoRadiomics, the best-performing configuration was a random forest classifier
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trained on delta radiomics features, reaching a validation AUROC of 0.88 and a test
AUROC of 0.52. For RPTK, the best-performing model was an XGBoost classifier
trained on delta radiomics features, achieving a validation AUROC of 0.97 and a test
AUROC of 0.76. Figure 5.15 summarizes the validation AUROC and test AUROC

performance for all three approaches on the Predict data.

5.3 LiverCRC Study — Colorectal Cancer Predic-

tion via Liver CT

The results presented in this section are part of the LiverCRC project, which has
been submitted as a manuscript entitled Gut decisions based on the liver: A radiomics
approach to boost colorectal cancer screening [22]. 1 contributed to the project as a
shared first author, being responsible for the data analysis, framework application, and
evaluation of results. I performed the data preprocessing, radiomics feature extraction,
and the subsequent analysis and interpretation of the results. The liver segmentation
was performed by colleagues at the German Cancer Research Center (DKFZ), while
data acquisition, pseudonymization, ethics approval, and data transfer were handled
by the clinical partners at the University Medical Center Mannheim.

The results presented in this section were generated using synchronized exper-
imental settings and data splits to ensure a fair comparison between RPTK, Au-
toRadiomics, and deep learning approaches. These experiments were performed inde-
pendently of the submitted manuscript and are therefore unpublished. While the
manuscript primarily focused on the feasibility and clinical implications of liver-
based radiomics for colorectal cancer screening, the results shown here emphasize the
methodological evaluation of RPTK under harmonized and reproducible conditions.

This section presents the second clinical application of my developed framework,
RPTK. The study was designed to investigate whether liver-derived radiomics features
can provide non-invasive biomarkers for colorectal neoplasia by exploiting biological
relationships along the gut-liver axis. The approach also addresses current limitations
of direct colorectal lesion segmentation, which is often constrained by the limited
resolution of routine CT imaging and the anatomical variability of the colon. By
focusing on the liver as a systemic organ, I aimed to identify radiomics patterns
indirectly associated with colorectal tumorigenesis.

In the following subsections, I first present the radiomics features selected by
RPTK from the liver segmentations, providing an overview of the feature composition

and distribution across feature classes. Subsequently, I describe the performance of



LiverCRC Study — Colorectal Neoplasia Prediction via Liver CT 117

the best-performing RPTK model and its evaluation on the independent test set. Fi-
nally, I compare the performance of RPTK to other automated radiomics frameworks

and deep learning approaches to assess its relative performance and generalizability.

Table 5.4. Imaging fingerprint characteristics of the LiverCRC. Median, mean, and
standard deviation (std) values are shown for key image properties. The mean and

std values are copied from [22].

Parameter Median Mean Std
Number of slices 99.0 111.27 53.26
Slice thickness (mm) 5.00 4.56 0.78
ROI size (voxels) 513046.0 | 602858.49 | 441907.66
Number of connected components 1.00 1.43 2.14
Number of bins 12.00 12.89 6.53

5.3.1 The Selected Informative Features for Colorectal Noe-

plasia Prediction

The selected radiomics features provide insight into which image-derived characteris-
tics contributed most to model performance. They reflect informative patterns within
the liver that are associated with colorectal neoplasia and indicate how both intrahep-
atic and perihepatic signal variations influence classification. Examining these features
helps to understand the image-based representation learned by RPTK and highlights
which texture and intensity measures are most predictive within this cohort.

In the MIRP-based feature space, 19 features were selected (see Figure 5.17). Most
of these belong to the GLCM, GLRLM, IH, and NGLDM feature classes. A large
proportion of the selected features originate from 2D computations and margin-based
extractions, indicating that both intrahepatic and perihepatic regions contributed
relevant information to the classification. Recognizable clustering of feature values
between patients with and without colorectal neoplasia is visible for the GLCM Joint-
Max_Std feature extracted from the 2D space, as well as for the IH Median feature
derived from the perihepatic region. Additional separation between neoplasia and
non-neoplasia groups can be observed for features such as Joint Energy 2D, GLNU
2D Std from the margin, and High dependence emphasis (HDE) 3D from margin,
where higher z-score—normalized values tend to correspond to neoplasia cases. In
contrast, diagnostic and volume-related features, including V50_margin, V75 _margin,
Bounding Box Dimension Y, Low Grey Level Run Emphasis (LGLRE) 2D Mean from

the margin, and Cluster Prominence 2D Mean, show less class-specific variation and
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appear more uniformly distributed across the cohort.

The PyRadiomics-based model selected 15 features in total, with a higher rep-
resentation of Diagnostics, GLRLM, Firstorder, and GLCM feature classes. A no-
table portion of the selected features originated from the perihepatic margin, such
as Short runs emphasis (SRE), LRHGE, Dependence Non-Uniformity Normalized
(DNUNorm), and Inter-quartile Range (IQR), indicating that textural heterogeneity
around the liver boundary contributes to the classification of colorectal neoplasia.
Among the texture-related features, Low Gray Level Zone Emphasis (LGZE) from
the perihepatic region and Grey Value minimum feature show very few variance and
less separation between patient groups, with increased normalized feature values in

patients with colorectal neoplasia.
Selected PyRadiomics Features Clustering on the LiverCRC Dataset
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Figure 5.16. Heatmap of selected PyRadiomics features showing z-score-normalized

\\H HHH I

Mask-CenterOfMassindex_y H

Mask-CenterOfMass, y

feature values across patients of the LiverCRC cohort. Columns correspond to patients
ordered by colorectal neoplasia label (non-neoplasia on the left, neoplasia on the right),
and rows represent the selected features grouped by IBSI feature class (color bar on the
right). Higher and lower normalized values are represented by warm and cool colors,
respectively. The plot highlights clustering of the Firstorder Root Mean Squared
feature and texture features such as GLCM Maximum Correlation Coefficient (MCC)

between the two patient groups.

A pronounced clustering pattern is visible for the Firstorder Root Mean Squared
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feature, which also achieved the highest SHAP importance in the model, underlining
its strong impact on the overall prediction performance (see Figure 5.18). This feature
reflects the overall magnitude of voxel intensities within the region of interest and may

capture general differences in tissue composition or contrast uptake within the liver.
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Figure 5.17. Heatmap of selected MIRP features showing z-score—normalized fea-

ture values across patients of the LiverCRC cohort. Columns represent patients or-
dered by colorectal neoplasia label (non-neoplasia on the left, neoplasia on the right),
and rows represent selected features grouped by IBSI feature class (color bar on the
right). Warm and cool colors indicate higher and lower normalized feature values,
respectively. Visible clustering patterns can be observed for texture features such as
GLCM JointMax_Std and IH Median, illustrating differences between neoplasia and

non-neoplasia groups.

As a volume-confounded feature, its value partially depends on the size of the
segmented region, which should be considered when comparing across subjects with
heterogeneous liver volumes. Other first-order features, including Energy and Range,
and texture features such as the GLCM Maximum Correlation Coefficient (MCC)
and GLRLM Run-Entropy, further contributed to the model output with lower but
consistent relevance scores. Additionally, several diagnostic features related to seg-
mentation geometry and image characteristics, such as Mask-Center-of-Mass on the

vertical dimension and Image-Maximum, were included in the selected feature space.
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Comparing the feature spaces extracted by MIRP and PyRadiomics shows that
both frameworks identified texture-related features, particularly from the GLCM and
GLRLM classes, as most informative for the classification of colorectal neoplasia.
However, differences in feature composition reflect the methodological design of each

extractor. MIRP produced a higher proportion of 2D and margin-based features,

emphasizing perihepatic and surface-related texture characteristics, whereas PyRa-
diomics selected a more diverse set of first-order and diagnostic features in addition
to texture descriptors. PyRadiomics was able to capture clustering patterns between
neoplasia and non-neoplasia cases, whereas MIRP features do not show such clear
patterns.
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Figure 5.18. SHAP values plots from best model on the LiverCRC dataset to show
feature impact on model performance. a. The SHAP values displaying the feature
impact of the best performing model based on PyRadiomics features. b. The SHAP
values displaying the feature impact of the best performing model based on MIRP

features.

In addition to the RPTK-derived feature spaces, the feature selection from Au-
toRadiomics was analyzed on the LiverCRC dataset for comparison (see Figure 8.24).
In contrast to RPTK, which was applied to features extracted from the original im-
ages, AutoRadiomics was used in its default configuration without modification to
the extraction settings. AutoRadiomics selected 35 features, whereas RPTK based on
PyRadiomics identified 15 features. The AutoRadiomics feature space is dominated
by first-order statistics and GLSZM features, with the majority of features derived
from image transformations such as wavelet or Laplacian-of-Gaussian filters. Only
two features originate from the original image domain.

The AutoRadiomics heatmap shows that most selected features originate from

first-order and the GLSZM classs, including RootMeanSquared, ZoneEntropy, and
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GLNU. Features are repeated whereas they roiginate from different image transfor-
matins (e.g. first-order features Minimum, Maximum, RootMeanSquared are included
from wavelet and logarthmic image transformations). No distinct clustering structure
is visible between patients with and without colorectal neoplasia, although localized
intensity differences can be observed within subgroups of patients. Several features,
such as RootMeanSquared, occur in both AutoRadiomics and RPTK selections, but
AutoRadiomics selected the transformed versions (e.g., wavelet-based) rather than
those from the original image. Overall, AutoRadiomics produced a broader feature
set with greater emphasis on transformed intensity statistics, while RPTK selected a
more compact and diverse set of features emphasizing both texture and margin-related

descriptors.

5.3.2 RPTK Internal Model Performance Evaluation

LiverCRC Model Performance Evaluation on PyRadiomics Features
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Figure 5.19. Summary of validation and test AUROC performance for all models
trained on PyRadiomics-derived features. Boxplots represent validation and test AU-
ROC distributions from five-fold cross-validation with one standard deviation, while
the green dots and error bars indicate the ensemble model test AUROC performance
and its 95% confidence interval. The boxplots represent the performance distribution
of the five fold models (not ensembled). The horizontal dotted line in the boxplot

refer to the mean, the solid line refer to the median.
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This section summarizes the internal performance evaluation of the models trained
with RPTK on the LiverCRC dataset using selected features extracted with PyRa-
diomics and MIRP shown in Section 5.3.1. Each plot displays the validation AUROC
distributions obtained during five-fold cross-validation, the corresponding test AU-
ROC values for each fold model, and the ensemble test AUROC with 95% confidence
intervals based on bootstrap resampling of the ensemble of all fold models. This
setup allows for a direct comparison of model generalization performance between

folds, model types, and feature extraction configurations.

Table 5.5. Performance metrics across datasets, feature extractors, and models on
the LiverCRC dataset. The metrices Test-AUROC, F1, Sensitivity and Specificity are
represented as mean and CI95 range. Displayed threshold dependent matrices (F1,

Sensitivity and Specificity) have been optimized via Youden beforehand.

Dataset | Extractor Model Val AUROC | Test AUROC | Youden Test F1 Test Sensitivity | Test Specificity
662 . 551 584 634
LiverCRC | MIRP XGBoost 0.6 0638 0.673 055 058 063
(+/- 0.020) [0.584, 0.689] [0.490, 0.611] [0.503, 0.659] [0.571, 0.694]
0.815 0.859 0.757 0.780 0.807

LiverCRC | PyRadiomics | Random Forest .
(+/-0.016) | [0.819,0.893] (0.704, 0.806] |  [0.716, 0.844] [0.756, 0.858]

Across all models and both feature extraction frameworks from RPTK, validation
and test performances were relatively stable on the LiverCRC dataset, indicating con-
sistent training behavior across folds (see Figure 5.19 and 5.20). Detailed values of
the best RPTK model performance are integrated in Table 5.5, best performance of
AutoRadiomics models on the LiverCRC data are integrated in Table 8.8 and the per-
formance of the best deep learning model are in Table 8.9. However, clear differences
were observed between the two extractors. Models trained on PyRadiomics features
achieved higher AUROC values on both validation and test data compared to those
trained on MIRP features. For PyRadiomics, mean validation AUROC values were
consistently around 0.80, while mean test AUROC values ranged between 0.83 and
0.86 across the applied classifiers. In contrast, MIRP-based models reached validation
AUROC values between 0.60 and 0.70 and slightly lower test values, with most models

performing around 0.63.

For both extractors, the ensemble test performance closely matched the average
test results from the individual fold models, as visualized by the overlapping 95% con-
fidence intervals. Among the MIRP-based models, the XGBoost classifier achieved the
highest validation performance (AUROC = 0.66), while for PyRadiomics, the random
forest classifier achieved the highest validation and test performance (AUROC = 0.82
and 0.86, respectively; see Table 5.5). Threshold-based evaluation metrics followed
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the same trend, with higher F1-scores, sensitivities, and specificities observed for the

PyRadiomics-based configurations compared to those derived from MIRP features.

LiverCRC Model Performance Evaluation on MIRP Features
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Figure 5.20. Summary of validation and test AUROC performance for all models
trained on MIRP-derived features. Boxplots represent validation and test AUROC
distributions from five-fold cross-validation with one standard deviation, while the
green dots and error bars indicate the ensemble test AUROC and its 95% confidence
interval. The boxplots represent the performance distribution of the five fold models
(not ensembled). The horizontal dotted line in the boxplot refer to the mean, the

solid line refer to the median.

5.3.3 RPTK Outperforms Other Tools Significantly on Larger

Datasets

To evaluate the generalization performance of RPTK on large datasets, I collected the
results and compared them against the best-performing AutoRadiomics configuration
and the optimized deep learning model. Figure 5.21 summarizes validation and test
AUROC values, including statistical comparisons based on the paired DeLong test
(see Section 4.1.13).
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Figure 5.21. AUROC performance on validation folds (with standard deviation) and
test set (with CI 95) of the LiverCRC dataset from the models out of the three ap-
proaches: RPTK, AutoRadiomcis and deep learning. The paired DeLong significance
test was performed on the test predictions to compare the approaches (RPTK vs. Au-
toRadiomics p-value=1.751 - 10713, RPTK vs. deep learning p-value= 4.441 - 10716).
For detailed performance values on AutoRadiomics performance see Table 8.8 and for

deep learning performance see Table 8.9.

The resulting p-values for comparing RPTK with AutoRadiomics on the test AU-
ROC performance is 1.751-107' and the p-value comparing between RPTK and deep
learning equals 4.44 - 1071 whereas the p-value between the best deep learning model
and the best AutoRadiomics model is not significant with a p-value of 0.106. Addi-
tionally, the corresponding Receiver Operating Characteristic curve (ROC) curves on

the test set are shown in Figure 5.22.

Across all evaluated approaches, the RPTK framework achieved the highest test
performance (Figure 5.21). The mean test AUROC reached 0.859 for RPTK using
a Random Forest classifier, compared to 0.654 for AutoRadiomics (Random Forest)
and 0.598 for the deep learning model (ResNet18). Validation AUROC values showed
a compact distribution across folds for RPTK, AutoRadiomics and the deep learning

approach. The validation—test performance difference was smallest for AutoRadiomics
(AAUROC = 0.02) and RPTK (AAUROC = 0.04), while the deep learning model
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showed the largest drop between validation and test AUROC (AAUROC = 0.35). All
three approaches performed above random classification level (AUROC = 0.5).

The paired DeLong test confirmed statistically significant differences between
RPTK and the other applied approaches, with p < 0.001 for RPTK versus AutoRa-
diomics and as well as for RPTK versus deep learning. The performance difference
between AutoRadiomics and deep learning was not significant (p = 0.078). The test
ROC curves shown in Figure 5.22 visualize these differences in predictive performance,
where RPTK exhibits the steepest ascent and the highest area under the curve, fol-

lowed by AutoRadiomics and deep learning.
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Figure 5.22. ROC on test set of the LiverCRC dataset from the best models out of
the three approaches: RPTK, AutoRadiomcis and Deep Learning.

The corresponding Test ROC curves (Figure 5.22) illustrate the classification be-
havior of all approaches. For RPTK, a sensitivity of 0.90 was achieved at a false
positive rate of 0.35. For AutoRadiomics and deep learning, sensitivities and specifici-
ties at their respective optimal thresholds were lower, consistent with overall AUROC

values.



Chapter 6
Discussion

This thesis investigates the development, validation, and clinical application of a self-
configuring radiomics pipeline for automated and reproducible quantitative imaging
analysis. The work is structured around three major parts that together demonstrate
the methodological advancements, generalization capacity, and translational potential
of the proposed approach.

In the first part, the Self-Configuring Radiomics Pipeline introduced the RPTK,
an open and modular framework enabling standardized and automated radiomics
experiments. In the second part, the Predict Study — Immunotherapy Response in
Lung Cancer illustrated how RPTK can be applied to longitudinal imaging and com-
prehensive clinical data to predict response to immunotherapy. The third part, the
LiverCRC' Study — Colorectal Neoplasia Prediction via Liver CT, explored the appli-
cation of RPTK to large-scale cohorts and evaluates how imaging-derived features
from the liver can reveal systemic disease patterns.

Across all studies, RPTK was systematically compared to AutoRadiomic, an au-
tomated radiomics pipeline, and to multiple deep learning models, highlighting dif-
ferences in performance, interpretability, and generalization. Together, these inves-
tigations provide a comprehensive perspective on the potential and limitations of

automated radiomics frameworks in medical imaging research.

6.1 Self-Configuring Radiomics Pipeline

6.1.1 The Datasets

The evaluation of the RPTK framework was based on seven open-source datasets
originating from the WORC collection (CRLM, Melanoma, GIST, Desmoid, Liver, and
Lipo) and the LIDC-IDRI dataset accessed via TCIA. Together, these datasets span

126
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a broad spectrum of oncological tasks, imaging modalities, and acquisition protocols
(see Table 4.1). Their heterogeneity provided a suitable benchmark for testing the self-
configuring properties of RPTK, but also introduced several data-related limitations

that affect generalization, interpretability, and statistical power.

The datasets included in the WORC database originate from multiple clinical stud-
ies conducted across several institutions, imaging centers, and scanner manufacturers,
and were subsequently curated and standardized under the coordination of Erasmus
MC [7]. This multi-institutional composition introduces substantial heterogeneity in
acquisition protocols, reconstruction kernels, field strengths, and imaging vendors,
further amplified by the diversity of underlying disease types. While such variability
complicates preprocessing and harmonization, it provides an essential test basis for
evaluating the robustness of self-configuring radiomics workflows such as RPTK. The
inclusion of the LIDC-IDRI dataset further extends the level of heterogeneity, as it
encompasses CT scans from numerous hospitals and scanner types worldwide. The
combination of multi-center MRI and CT data from WORC and globally sourced tho-
racic C'T data from LIDC-IDRI thus offers a broad spectrum of acquisition conditions.
This diversity strengthens the assessment of the generalization capability of RPTK,
demonstrating that its adaptive preprocessing and configuration principles can handle

data from heterogeneous origins without manual adjustment.

While the combined dataset covers more than 1,000 patients, most individual
cohorts are relatively small (n < 250), which restricts the effective training size for
cross-validation and independent testing. Consequently, model evaluation suffers from
limited statistical power, and small differences between methods do not reach signifi-
cance. The wide confidence intervals observed in several test results (see Figure 5.7)
reflect this uncertainty. Small sample sizes also increase the risk of data-partition bias,
where individual cases can disproportionately influence validation results, particularly

in heterogeneous imaging settings.

To overcome these sensitive data bias, I used the same data from training and
testing in order to provide models which are trained and tested on the same data across
the performed approaches (RPTK, AutoRadiomics, and Deep Learning; see Section
4.2.1). However, I used the splitting technique from AutoRadimics to synchronize
the train and test sets but did not adapt the five fold cross validation algorithm of
RPTK to the cross-validation technique from AutoRadiomics. To control random
splitting in the cross-validation subsets, I used a seed, as done in AutoRadiomics.
However, as the seeds between RPTK and AutoRadiomics differ, resulting splits also
vary. Experiments are designed like this in order to show the performance of RPTK

"as is” without further adaptation of the framework to reduce the impact of small
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sample size to performance variance influenced by adaptations to the AutoRadiomics

algorithm.

To assess the relationship between dataset size, task complexity, and model vari-
ance, | performed a learning-curve analysis using the LearningCurveDisplay function
from scikit-learn. Each dataset was randomly subsampled in increasing proportions,
and model performance was evaluated in a five-fold cross-validation setting (see Ap-
pendix, Figure 8.11 - 8.17). This analysis quantifies how the area under the AUROC
evolves with growing training size and provides an estimate of the variance and sta-

bility of model performance.

The results confirm that smaller datasets exhibit higher variance in validation
performance, indicating greater instability due to limited data (see Appendix, Figure
8.11 —8.17). The variance decreased as the proportion of training samples increased,
reflecting the expected convergence of the learning process. Pronounced fluctuations
were observed for the CRLM (n=77), Lipo(n=115), Melanoma(n=103), and LIDC-
IDRI (n=115) datasets, where standard deviations remained large even at full data
utilization compared to the larger LiverCRC (n=1,997) dataset (see Figure 8.25). This
behavior illustrates that the available sample size was not always sufficient to fully
stabilize model performance, consistent with the limited number of cases. For every
machine learning project it should be notable that not the entire data can be used for
training the model, as I also need to evaluate the models ability to predict the target
label on unseen data which reflects the actual use case of machine learning models
and needs to be evaluated. The effective learning data is usually, 70 - 80 % of the
data where respectively 30 - 20 % are the testing data. This limitation increases the
cross-validation performance variance especially for small datasets like CRLM, Lipo,
Melanoma, and LIDC-IDRI (see Appendix, Figure 8.12, 8.15, 8.16, 8.17). In addition,
I could only perform an internal validation and testing of the data (splitting the data
into training and testing from the same data source) instead an external testing of the
data from a different institute would increase the confidence of the model to perform
on data which is independent from the training data source to get a better estimate of
the models generalization to different data sources as well as technical (related to the
image acquisition and applications of MR and CT) and clinical (including different

treatment effects and interventions which are viable in the images) bias.

The Melanoma dataset, in particular, demonstrated a typical signature of high task
difficulty—low and unstable validation AUROC that improved only marginally with
additional training data, suggesting that the underlying imaging phenotype is either
weakly discriminative or masked by label noise. As stated in the dataset description

the BRAF mutation status of the lung metastasis was assumed to be the same for all
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segmented lung metastasis on a patient level whereas I included multiple segmented
lung metastases which might not all follow the same BRAF mutation status [7,193].
Therefore, the model might recognize radiomics patterns in the data where the label is
incorrectly assigned, which reduces the predictive power of the radiomics approach for
classification between BRAF mutated lung metastasis. RPTK extracted features from
multiple ROIs per sample and averaged the radiomics features afterwards for further
filtering. Together, these findings highlight that adequate dataset size relative to task

complexity and precise label evaluation is crucial for reliable radiomics benchmarking.

All open-source datasets used in this section are purely imaging-based, provid-
ing no additional clinical information such as comorbidities, treatment regimens, or
laboratory values. This deliberate focus on radiological information strengthens com-
parability between frameworks and isolates the performance of imaging biomarkers.
However, it limits the assessment of multimodal integration, as real-world clinical
decision-making typically relies on both imaging and clinical context. Hence, the
imaging-only results presented here reflect a technically controlled evaluation scenario,

but they likely underestimate the complexity of clinical application.

Although the WORC database provides high-quality, expert-reviewed segmenta-
tion masks, visual inspection and quantitative analysis revealed pronounced segmenta-
tion fragmentation in several datasets. Figure 5.2 shows the number of connected com-
ponents across datasets in the segmentations. GIST and Lipo exhibited the highest
occurrence of small, disconnected components, while CRLM and Melanoma showed
compact, single-lesion segmentations. These findings indicate considerable hetero-
geneity in segmentation integrity and lesion morphology across datasets and tumor

biology.
The high number of disconnected components in GIST and Lipo likely reflects

segmentation challenges rather than annotation errors. Lipo contains liposarcomas,
which often have diffuse boundaries and inhomogeneous textures, making precise
delineation difficult even for experts. GIST lesions show similar variability in size
and shape and often present low contrast against adjacent soft tissue. In contrast,
CRLM (liver metastases) and Melanoma (lung metastases) lesions are typically well
circumscribed, leading to fewer segmentation artifacts. Importantly, all WORC seg-
mentations were manually or semi-automatically generated under radiological super-
vision [7]. Thus, fragmentation likely stems from manual variability, morphological
complexity, or algorithmic artifacts. While RPTK mitigates these effects through sys-
tematic connected-component filtering and quality control, segmentation heterogene-
ity remains a potential confounder. Future work should evaluate how segmentation

uncertainty and automated contouring affect downstream model performance.
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The datasets also differ substantially in slice thickness (Figure 5.1), ranging from
sub-millimeter slices in Melanoma and LIDC-IDRI to slices above 10 mm in Desmoid
and CRLM. These differences reflect distinct acquisition protocols and lesion char-
acteristics. Small lung metastases and nodules in Melanoma and LIDC-IDRI require
fine-resolution protocols to capture detail, whereas abdominal or soft-tissue lesions are
often scanned with thicker slices for full-organ coverage. All images were resampled
to isotropic spacing of 1 x 1 x 1 mm to standardize voxel geometry across datasets.
Although the chosen resampling method minimizes interpolation artifacts according
to prior literature, residual effects are unavoidable. In datasets with coarse original
spacing, resampling introduces artificial smoothness and may alter textural or mor-
phological features. Consequently, radiomic feature distributions can vary not only

due to biological differences but also due to technical interpolation effects.

The LIDC-IDRI dataset served as an extension of the open-source data cohort to
test the generalizability of RPTK. However, its use required substantial preprocessing
and curation. Previous studies have shown that the standard LIDC-IDRI malignancy
annotations are based on subjective radiologist scores rather than pathological con-
firmation [20,199,200]. To reduce label noise, I restricted the dataset to cases with
explicit clinical diagnostic confirmation (biopsy, resection, or long-term radiological
stability). This decision improved label confidence but reduced the dataset size from
the commonly reported 1,018 scans to 115 scans. Although this restriction enhances
reliability, it limits comparability with literature. The smaller sample size therefore
improves label precision at the expense of statistical power and benchmarking consis-

tency.

The age and sex distributions of the combined open-source datasets (see Figure
4.1) closely resemble those of the entire cohort analyzed in this thesis (see Figure
8.3b and Figure 8.1). Both distributions are dominated by older patients, particularly
males above the age of 60, who constitute the majority of cases in these popula-
tions. This predominance reflects the typical risk group for the studied diseases and
thus represents the most clinically relevant patient population. However, the under-
representation of younger individuals limits the model’s ability to generalize across
diverse demographic subgroups. Future studies would benefit from a more balanced
inclusion of younger patients and female participants to enhance model robustness,
incorporate age- and sex-related biological variability, and reduce demographic bias
in predictive performance. Additionally, the presence of missing demographic infor-
mation (e.g., age or sex) introduces further uncertainty and should be minimized to

strengthen the interpretability of future analyses.

Together, these data characteristics and limitations define the context in which
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the RPTK results should be interpreted. Small sample sizes and missing clinical
metadata restrict statistical inference, while segmentation fragmentation, limitation
to internal evaluation, and resampling heterogeneity introduce potential bias. Never-
theless, these same challenges underline the necessity of a self-configuring framework:
RPTK is specifically designed to adapt to variable input conditions and to ensure
consistent preprocessing and feature extraction without manual reconfiguration. The
systematic characterization of these data limitations through automated fingerprint-
ing and harmonization steps represents one of the core advantages of RPTK over

conventional radiomics workflows.

6.1.2 Methodological Advances of the RPTK Framework

The underlying design philosophy of RPTK differs from that of AutoRadiomics.
Whereas AutoRadiomics explores combinations of multiple feature selection methods
and predictive models, RPTK emphasizes exhaustive feature extraction, data prepro-
cessing, and stability-based feature filtering, followed by a uniform feature-selection
strategy and extensive model optimization. This simplified and controlled design min-
imizes the methodological bias introduced by varying feature-selection methods and
isolates model performance as a relevant factor (see inter model performance varia-
tions on different datasets in Figure 5.5). Each predictive model in RPTK is optimized
for each fold using 200 iterations, whereas AutoRadiomics uses 200 iterations for op-
timization of the best configuration and selection of the feature selection algorithm in
combination to the predictive model and the optimization. This addition of AutoRa-
diomics includes further parameters to optimize and may need more iterations for a
better performance. This also results in a very reduced calculation time of AutoRa-
diomics compared to RPTK. RPTK needed 72 to 96 computation hours on the same
datasets AutoRadiomics needed 28 until 42 hours (see Section 4.1.12).

A further improvement implemented in the current version is the inclusion of a
pre-training stage to determine model capacity. By analyzing performance satura-
tion with respect to model size, RPTK prevents unnecessary model complexity and
reduces overfitting risk, especially in small datasets. Together, these enhancements
align with recommendations from the radiomics literature for improving reproducibil-
ity and model interpretability.

A direct comparison between the prototype introduced at the MICCAI Conference
and the extended version presented here shows higher or similar test AUROC values
across the benchmark datasets (see Figure 5.8). The improvement can be attributed to
the combination of feature stability filtering, expanded model diversity, and ensemble-

based aggregation. However, these results should be interpreted with caution, as
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they may also partially reflect dataset-specific factors or random variation in cross-
validation rather than intrinsic methodological superiority.

Overall, the RPTK framework represents a structured and transparent method-
ological design that focuses on reproducibility, systematic evaluation, and control of
bias. Its modular structure enables consistent preprocessing, comprehensive feature
assessment, and standardized model optimization, providing a reproducible founda-
tion for benchmarking radiomics workflows. Nevertheless, further work could explore
the integration of additional feature-selection techniques or automated model-selection
strategies to potentially enhance predictive performance while maintaining method-

ological transparency.

RPTK Radiomics Feature Extraction

The configuration of the feature extraction step represents one of the most critical
components in radiomics workflows. A key parameter influencing feature stability
and interpretability is the pixel discretization of image intensities prior to texture
computation. Asintroduced in Section 2.3.6, discretization reduces the number of grey
levels in the radiological image and thereby lowers the noise-to-signal ratio. However,
the choice of discretization parameters also constrains the information available to
texture-based feature classes such as GLCM, GLRLM, GLSZM, GLDZM, NGTDM,
and NGLDM, which rely on grey-level co-occurrence or dependency statistics. The
recommended fixed bin width of 25, as proposed by [1], provides a balance between
noise suppression and signal preservation. Nevertheless, the optimal discretization
may vary between modalities and datasets, and future extensions of RPTK could
include adaptive discretization based on dataset-specific intensity statistics captured
in the data fingerprint.

The number of bins calculated from the fixed bin width discretization is included
as a quantitative fingerprint parameter. This parameter reflects the granularity of
grey-level encoding within the region of interest (ROI) and therefore provides indirect
information on image contrast and texture richness. As shown in Figure 8.5, substan-
tial variation in the number of bins was observed across datasets. MRI-based datasets
such as Desmoid, Liver, and Lipo exhibited higher variability due to the absence of
grey-value normalization, whereas CT-based datasets (CRLM, GIST, Melanoma, and
LIDC-IDRI) displayed more homogeneous distributions. For CRLM in particular, the
number of bins occasionally fell below 10, suggesting that the applied discretization
might have been too coarse to capture fine texture variations. Consequently, imple-
menting an adaptive discretization strategy that maintains at least 10 bins per ROI

could improve the information content of texture matrices and potentially enhance
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model performance.

Both feature extraction backends integrated in RPTK, PyRadiomics and MIRP,
adhere to the feature definitions of the BSI, which promotes reproducibility and cross-
platform comparability. However, PyRadiomics currently lacks 63 IBSI-defined fea-
tures (see Appendix Figures 8.7 and 8.8), including the entire NGLDM class describing
texture coarseness. While some missing features have been reported as mathematically
redundant by the PyRadiomics developers, others represent morphological descriptors
such as volume and area density that may carry complementary information about
lesion geometry. The absence of these features alters the relative weighting of fea-
ture classes within the extracted space and increases the proportional contribution of
well-represented classes such as GLCM and GLDZM. This may explain the stronger
influence of texture-based features observed in the PyRadiomics-derived feature sub-
sets (see Figures 5.3 and 5.4).

In addition to the IBSI-defined features, both extractors include a set of image-
descriptive and metadata-related parameters that capture technical and contextual
properties of the ROI but also of the image, such as voxel spacing, mask interpo-
lation, bounding box geometry, and tool version information. While certain spatial
descriptors can contain useful information about acquisition characteristics or lesion
position within the image volume, others—such as software version or configuration
identifiers—are not biologically meaningful. RPTK systematically filters these non-
relevant descriptors during feature preselection to ensure that only biologically and
technically interpretable features contribute to downstream analysis.

The comparison between the two extractors underscores the methodological im-
portance of feature-space completeness and harmonization in radiomics. Features that
are absent in one extractor cannot be recovered through feature selection or model
optimization, which could limit the predictive power of the derived models. Conse-
quently, RPTK emphasizes comprehensive feature extraction rather than extensive
feature-selection diversity, ensuring that the full range of potentially informative de-
scriptors is represented prior to dimensionality reduction. These design choices high-
light the significance of extractor configuration as a primary determinant of radiomics

model performance and reproducibility.

RPTK Radiomics Feature Filtering and Selection

The reduction of the feature space is a necessary step in RPTK based on the fact
that I do not reduce the initial extracted feature space in order to not limit the
number of potentially informative features. This step needs to follow a systematic

procedure. Therefore, I implemented several steps which are applied in a specific
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order to reduce the amount of uninformative features and potential bias as well as
reduce the calculation time for the feature selection. The feature filtering is the step
of reducing the feature space from the feature extraction based on heuristic rules and
statistical characteristics of the features to remove non-informative and redundant
features (see Section 4.1.7). As these procedures have been widely applied in radiomics
studies but with slightly differences, there is no common recommendation for defining
the variation nor correlation thresholds for feature filtering [212-214]. Therefore, I
decided to use thresholds to filter for features showing very low variance (threshold
= 0.1) and very high correlation (threshold = 0.9) in order to minimize the risk of
dropping important features which can not get selected anymore for the predictive
task.

Feature selection plays a crucial role in radiomics workflows, as it determines which
information is retained for model training and directly affects the balance between
predictive power and overfitting. In most radiomics datasets, the number of extracted
features greatly exceeds the number of available samples, increasing the risk of spurious
correlations and loss of generalizability. Therefore, an effective selection process must
condense the feature space to its most informative components while maintaining

sufficient diversity to capture relevant image-derived information.

The feature selection results shown in Figures 5.3 and 5.4 illustrate the distribution
of selected features across IBSI feature classes and their respective origins of informa-
tion, distinguishing between intra- and peritumoral regions. For each dataset, up to
20 features were retained, 10 from forward sequential selection and 10 from backward
selection. Features appearing in both subsets were counted only once, resulting in
final feature spaces of fewer than 20 features in some cases. In addition, previous
performed correlation- and variance-based filtering ensured that highly redundant or

invariant features were excluded prior to the selection process.

Across datasets and both extractors, texture-based feature classes dominated the
selected feature sets, particularly the GLCM features. In the PyRadiomics-derived
selections, GLCM features accounted for roughly half of the total selected features in
the Desmoid dataset and about 20% in the Lipo dataset. For MIRP, GLCM features
represented between 50% (LIDC-IDRI) and 10% (Liver). This dominance is partly
attributable to the high representation of GLCM features in the original extracted
feature space of both tools (see Appendix, Figure 8.7 and 8.8) and is consistent with
findings from previous studies that highlight their relevance in diverse clinical appli-
cations [236]. Nevertheless, other texture-based feature classes such as NGTDM and
Intensity-based statistic (IS) were also recurrently selected across datasets, despite

their comparatively smaller representation in the initial feature space. This indicates
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that even less frequent feature types can carry complementary predictive information

and get selected during feature selection.

Overall, texture-describing feature classes form the majority of selected features,
suggesting that spatial intensity relationships and heterogeneity metrics are consis-
tently informative across datasets and modalities. The presence of non-IBSI features
in several PyRadiomics-selected subsets (five out of seven datasets) and the increased
occurrence of these features in the Lipo dataset for both extractors indicate that fea-
tures outside the current IBSI definition may contribute additional relevant informa-
tion. However, the reproducibility and generalizability of these non-standard features
require further validation, particularly since they may depend on specific algorithmic

implementations.

The inclusion of the peritumoral region as an additional origin of information
extends the radiomics analysis beyond the lesion boundary. Previous studies have re-
ported that peritumoral tissue characteristics may carry prognostic information, par-
ticularly in the context of treatment response and tumor—host interactions [207-209].
In the present results, MIRP-derived features included peritumoral descriptors in
four datasets, whereas PyRadiomics selected them in five datasets. The extent and
composition of selected peritumoral features varied between extractors and datasets,
reflecting both segmentation definitions and feature extraction strategies. Notably,
for the MIRP feature extraction in the Lipo dataset, peritumoral features were se-
lected more frequently than intratumoral ones, while PyRadiomics selected exclusively

intratumoral features for the same dataset.

These differences demonstrate that the selection outcome is strongly influenced by
the underlying feature extractor and its implementation details. MIRP, for example,
computes texture features in both two and three dimensions, whereas PyRadiomics
limits certain feature classes to 3D, leading to divergent representations of spatial rela-
tionships. Consequently, differences in feature-space coverage and extraction method-
ology contribute directly to performance variations observed in the trained classifiers

(see Figure 5.5).

In summary, the feature selection procedure within RPTK effectively reduces fea-
ture dimensionality while retaining a balanced set of texture- and intensity-based
and also includes morphological descriptors. The resulting feature profiles highlight
both commonalities and divergences between extractors and confirm that the most
predictive information in the examined datasets arises from texture heterogeneity
metrics. At the same time, the observed differences between intra- and peritumoral
contributions, and between IBSI and non-IBSI features, emphasize the importance of

standardized and comprehensive feature definitions for reproducible radiomics mod-
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eling.

6.1.3 RPTK Model Prediction Performance

To identify the most suitable predictive model for each dataset, the RPTK frame-
work trains six distinct machine learning algorithms and automatically selects the
configuration with the highest validation AUROC (see Figure 5.5). This model se-
lection strategy ensures consistent evaluation across extractors and datasets, relying
on the same validation criterion used in AutoRadiomics and WORC benchmarking
studies [18,19].

The performance comparison between models trained on features extracted by
PyRadiomics and MIRP revealed notable dataset-dependent differences. Substantial
performance gaps were observed for GIST, Melanoma, and LIDC-IDRI (delta Val
AUROC about 0.05-0.10), while results for Desmoid, Liver, and CRLM were highly
similar (delta Val AUROC <= 0.03) (see Table 5.1). These differences reflect the
influence of extractor-specific feature definitions and dimensional computation strate-
gies. Nevertheless, considering the standard deviations across folds, most AUROC
differences between extractors fall within the expected variability range and are not
statistically significant. On the LIDC-IDRI dataset, RPTK applied the SMOTE over-
sampling on the training data to to compensate the class imbalance, which reached
the SMOTE activation threshold (see Section 4.1.8, see Table 4.3).

The exclusive reliance on validation AUROC as the model selection criterion in
RPTK may not always yield the most robust or generalizable model. Small differences
in validation AUROC can lead to the selection of suboptimal configurations when
evaluated across other performance metrics or on the test set. For instance, in the
Lipo dataset, the best-performing RPTK model during validation did not outperform
AutoRadiomics on the test data (delta AUROC 0.036), the only dataset where this
occurred. Nevertheless, as the model trained on PyRadiomics features achieved a test
performance nearly equivalent to that of AutoRadiomics, with only a 0.013 AUROC
difference, this discrepancy is likely attributable to the internal model selection process
within RPTK rather than to the framework’s overall capability.

To assess the contribution of the additional procedures implemented in the current
RPTK version compared to the previously developed RPTK prototype, I included a
direct comparison under identical best-model selection criteria (see Table 8.1). As
shown in Figure 5.8, the enhanced RPTK consistently improved test performance
across all datasets, except for CRLM, where it performed equally to the prototype.
This observation indicates that the newly integrated components of the RPTK frame-

work, as described in Section 4.1.3, contribute to improved model performance and
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robustness in most studies.

It is important to note that model selection based solely on validation AUROC does
not guarantee the best test-set performance, as this metric does not directly capture
generalization capability. For several datasets (Desmoid, Lipo, Melanoma, and LIDC-
IDRI), the best-performing model on the test set originated from the alternative
extractor. This finding underscores the sensitivity of small-sample datasets to cross-
validation variance and highlights the necessity of independent testing for reliable

performance assessment.

Across all datasets, RPTK achieved test AUROC values above 0.70, except for
Melanoma, which has been consistently challenging for both classical and deep learn-
ing approaches (see Figure 5.7). Threshold-based performance metrics, calculated
using the Youden correction, further support these findings (Table 5.1). The average
test Fl-score across datasets was 0.805, with mean sensitivity and specificity of 0.805
and 0.813, respectively. According to the performance scale proposed by [237], these
values correspond to a “good” or “useful” level of predictive accuracy, indicating reli-
able discrimination for most tasks. Only isolated cases, such as the Lipo dataset (F1 =
0.686) or datasets with low sensitivity or specificity (GIST, LIDC-IDRI, CRLM, and
Lipo), fall below thresholds considered clinically relevant. Future versions of RPTK
may incorporate threshold-dependent optimization criteria during training to mini-
mize the gap between AUROC and clinically interpretable metrics such as sensitivity
and specificity.

To contextualize these results, RPTK was benchmarked against two alternative
approaches AutoRadiomics and deep learning models on synchronized data splits.
Validation AUROC comparisons (Figure 5.6) show that RPTK consistently outper-
forms AutoRadiomics and achieves similar or higher scores than deep learning models
across most datasets. The only exceptions occur for Liver and Melanoma, where deep
learning exhibits slightly higher validation AUROC but fails to generalize on the test
set, indicating overfitting. AutoRadiomics, in contrast, produced consistently lower
validation and test AUROC scores, with the single exception of the Lipo dataset,
where it slightly outperformed RPTK (delta Test AUROC =0.02). The performance
differences between AutoRadiomics and RPTK are also viable by comparing the ROC

curves of both approaches across the open-source datasets (see Figures 8.9).

The analysis of model frequencies across datasets (see Tables 8.2 and 8.3) reveals
distinct selection patterns between the deep learning and AutoRadiomics approaches.
Among the deep learning models, DenseNet-based architectures were most frequently
selected as best performers compared to the ResNets. The validation AUROC of the
deep learning models ranged from 0.724 (CRLM) to 0.938 (Liver), with corresponding
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test AUROC values between 0.422 and 0.841, resulting in a mean validation AUROC
of approximately 0.83 and a mean test AUROC of around 0.61 across all open-source
datasets. The test AUROC performance decrease compared to the validation AUROC

reflects the weak generalization performance of the approached deep learning models.

In contrast, the AutoRadiomics optimization framework selected a broader va-
riety of model-feature selection combinations, reflecting its search across multiple
pipeline configurations (see Section 3.2.3 for details). Logistic Regression was most
frequently chosen (2x), followed by SVM (2x), XGBoost (2x), and Random Forest
(1x). Regarding feature selection, ANOVA dominated (4x) followed by Boruta (2x).
The AutoRadiomics models exhibited validation AUROC values ranging from 0.456
(LIDC-IDRI) to 0.862 (Lipo) and test AUROC values between 0.392 and 0.922, with
a mean validation AUROC of approximately 0.67 and a mean test AUROC of about
0.70.

Overall, while deep learning models achieved higher validation performance on
average, AutoRadiomics demonstrated more consistent and often superior general-
ization on the test sets, suggesting that the integrated feature selection and model
optimization pipeline may better capture dataset-specific radiomic patterns under

limited sample conditions.

In some datasets, notably Melanoma and LIDC-IDRI, both deep learning and Au-
toRadiomics achieved near-chance or below-chance AUROC values (AUROC < 0.5).
Such below-chance results for AutoRadiomics indicate unstable or misaligned feature
selection, likely due to excessive automation and the limited size of the datasets.
This effect was particularly pronounced in LIDC-IDRI, where AutoRadiomics val-
idation AUROC ranged between 0.38 and 0.53, consistent with underfitting and
class-imbalance sensitivity despite the use of internal SMOTE balancing. Inverting
predictions would mathematically yield AUROC > 0.5 but would constitute post-hoc
bias and was therefore avoided. These results instead indicate a lack of a generaliz-
able signal, as the same dataset yielded AUROC > 0.7 under RPTK, confirming that
its adaptive preprocessing and feature extraction more effectively captured relevant
imaging information. Deep learning models, conversely, achieved moderate validation
performance but exhibited substantial performance collapse on test data, a typical

manifestation of overfitting in small and heterogeneous cohorts.

When compared to published literature (Figure 5.8), RPTK consistently ranked
among the top-performing approaches across all datasets, matching or exceeding the
AUROC values reported for radiologists performing the same classification tasks. The
most pronounced performance differences were observed in the Melanoma and LIDC-

IDRI datasets, where many prior approaches struggled to surpass random perfor-
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mance. RPTK clearly outperformed these baselines, further supporting its ability to
generalize across diverse and complex imaging conditions.

Across datasets, the width of the 95% confidence intervals (CI) provides addi-
tional insight into performance stability. Datasets with larger sample sizes, such as
Desmoid (n=200) and GIST (n~247), exhibited narrower Cls, reflecting more consis-
tent model estimates. In contrast, datasets with fewer cases (CRLM, Lipo, Melanoma,
LIDC-IDRI; n <120) showed broader confidence intervals, indicating greater variabil-
ity. These patterns align with the learning curve analyses (see Appendix, Figures
8.11-8.17), which demonstrate that CRLM, Melanoma, and LIDC-IDRI exhibit con-
tinuing performance gains with increased data, whereas Desmoid, GIST, and Liver
appear to approach a performance plateau.

On average, RPTK achieved 0.818 test AUROC, 0.805 test F1, 0.805 sensitivity,
and 0.813 specificity across the seven datasets, representing robust performance and
effective generalization. The comparative evaluation against AutoRadiomics, deep
learning, and previously published literature establishes RPTK as a reliable and high-
performing self-configuring radiomics framework capable of handling heterogeneous

datasets and achieving expert-level or superior predictive accuracy.

6.2 Predict Study - Predicting Immunotherapy Treat-

ment Response in Lung Cancer Patients

6.2.1 Data

The Predict study cohort consists of 73 patients with advanced non-small cell lung
cancer (NSCLC) treated at the Thoraxklinik Heidelberg with immunotherapy as a
mono therapy. For each patient, two thoracic C'T scans were acquired—one at treat-
ment initiation and a follow-up scan after the first administration cycle—capturing
the early response to immunotherapy. All patients received the same anti-PD-L1
drug, Pembrolizumab, administered at a standard dose of 200mg in a continues in-
terval of about three weeks. This uniform therapeutic protocol ensures consistency
of treatment-related factors across the cohort and minimizes variability in systemic
exposure that could confound imaging-based outcome modeling.

Despite this controlled treatment setting, the dataset size remains a central limita-
tion. With only 73 patients and two imaging time-points per case, the cohort provides
a valuable but statistically constrained sample for training data-driven models. Small
sample sizes restrict the stability of cross-validation and limit the ability to perform

independent testing, which may result in high variance of model estimates and lower
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statistical power for detecting true predictive signals. Performed learning curve anal-
ysis underlay this limitation (see Figure 8.23). Increasing usage of the data shows
high variation in the cross-validation performance, even using the total dataset for
training, this suggests an increase of the data size would benefit further prediction

quality and model certainty.

Clinically, this cohort represents a population with advanced disease burden: over
50% of patients presented with stage IV NSCLC at inclusion (Table 8.4). Furthermore,
88% exhibited metastatic disease, either local or distant resulting from previously
applied treatments which did not reduce the tumor progression or got a relapse. As a
result, radiomics features may be influenced by cumulative treatment effects, such as
post-therapeutic inflammation or fibrosis, which are difficult to disentangle from true
tumor response patterns. Pleural effusion, reported in 30% of patients, exemplifies
such secondary effects that may alter image characteristics without directly reflecting
tumor burden. Hence, confounding from prior treatments and disease progression
must be considered when interpreting radiomics-based response predictions in this

cohort.

Demographically, the cohort shows a pronounced predominance of older male pa-
tients with a history of heavy smoking. The mean age was approximately 66 years,
62% were male, and 92% were current or former smokers with an average exposure
of 37 pack-years. This demographic profile aligns with established epidemiologi-
cal risk patterns for NSCLC , where older male smokers represent the highest-risk
subgroup [238]. However, such homogeneity limits generalizability, as the under-
representation of younger women and non-smokers may lead to demographic bias in
trained models. Consequently, predictive performance for underrepresented subgroups

should be interpreted with caution and validated on more diverse populations.

From a radiological perspective, all scans were acquired using thoracic CT proto-
cols with limited protocol variability. The main acquisition difference relates to con-
trast administration, encompassing arterial, venous, and non-contrast phases. The
imaging fingerprint (Table 5.2) shows that slice thickness, number of slices, and
discretizations-related parameters are comparable to those of other thoracic CT datasets
used in this thesis, such as Melanoma and LIDC-IDRI. The mean ROI size, how-
ever, was substantially larger—exceeding 100,000 voxels on average and approximately
36,000 voxels more than the largest open-source dataset (see Figure 8.4). This large
ROI variation corresponds to the high variability in tumor volumes expected for late-
stage lung cancer. The standard deviation of ROI sizes was also the highest among all

datasets, reflecting the clinical heterogeneity of tumor burden within this population.

Segmentation characteristics were generally consistent and of high quality. The
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number of connected components per segmentation was close to one for all cases, simi-
lar to the thoracic open-source datasets (Melanoma and LIDC-IDRI). This consistency
indicates minimal segmentation fragmentation, an important factor for ensuring stable
radiomics feature extraction.

Another limitation arises from the restriction to the primary tumor as the sole
region of interest. Given that most patients had metastatic disease, secondary lesions
were excluded from analysis to maintain consistency. While this decision simplifies
the modeling setup, it likely under-represents the systemic disease state and spa-
tial heterogeneity of the tumor burden. Future work could address this limitation
by incorporating multi-lesion or whole-body imaging data to capture global disease
dynamics.

In summary, the Predict dataset offers a clinically well-characterized but statisti-
cally limited cohort with homogeneous treatment, high disease stage, and restricted
demographic diversity. These characteristics provide a controlled environment for
exploring radiomics-based response prediction but also impose constraints on gener-
alization. The strong demographic and clinical bias toward older male smokers with
advanced NSCLC, combined with small sample size and prior treatment heterogeneity,
represents a key challenge for robust model development. Nevertheless, the dataset’s
consistent imaging protocol, controlled therapy regimen, and well-defined clinical end-
points make it a valuable foundation for investigating radiomics-based biomarkers of

immunotherapy response in a real-world clinical context.

6.2.2 The Performance impact of longitudinal Data and Delta

Radiomics

To evaluate the potential benefit of longitudinal image analysis for predicting treat-
ment response, RPTK was applied to three different input configurations of the Pre-
dict dataset: baseline CT scans only, follow-up CT scans only, and the combination
of both time points using delta radiomics. The corresponding validation and test
performances are summarized in Figure 5.9. Across all configurations, a consistent
performance gain was observed from the baseline to the follow-up setting, with the
highest predictive accuracy achieved when both time points were combined through
delta feature computation.

This result aligns with previous studies demonstrating that delta radiomics, cap-
turing changes in quantitative image features over time, can enhance the sensitivity
of predictive models to therapy-related alterations [239,240]. By explicitly modeling

temporal feature differences, delta radiomics highlights changes in radiomics features
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as treatment effects that may remain obscured in static single-time-point analyses.
In contrast, radiomics models trained solely on baseline images rely exclusively on
pre-treatment morphology and texture, which can not contain information to predict
treatment response before therapy onset as the effect of treatment initiation did not
occur. Consequently, the lower performance observed for baseline-only models is likely
attributable to the absence of early treatment-induced changes in tumor phenotype
(see Figure 5.9, and Table 8.5).

The performance improvement from baseline to follow-up and ultimately to delta
radiomics configurations suggests that the discriminative signal related to treatment
response becomes more pronounced over time and is best captured by quantifying fea-
ture differences between time-points. Although the small cohort size limits statistical
power and prevents the demonstration of significance—reflected by wide 95% confi-
dence intervals, the observed increasing performance trend in both validation and test
AUROC supports the added value of longitudinal modeling. This improvement was
consistent across model folds, indicating that the observed gain is systematic rather
than random variation.

Overall, the findings confirm that delta radiomics provides a valuable means of in-
tegrating temporal information into radiomics-based prediction frameworks. Within
the context of RPTK, the implementation of delta feature computation enables the
detection of early imaging-based treatment response patterns, even in small and het-
erogeneous datasets. These results highlight the importance of incorporating longitu-
dinal feature representations in radiomics studies addressing therapeutic response, and
they justify the continued use of delta radiomics in the subsequent analyses presented

in this study.

Radiomics Feature Processing on the Predict Dataset

Radiomics feature extraction in the Predict study was conducted using two indepen-
dent extraction frameworks, PyRadiomics and MIRP, integrated within the RPTK
framework. Both extractors produced a comparable number of selected features (19
and 20, respectively), with strong overlap in the types of image characteristics identi-
fied as predictive. Texture-related feature classes dominated both selections, confirm-
ing that spatial grey-level heterogeneity remains the most informative image descriptor
for assessing immunotherapy response in advanced-stage lung cancer.

For the PyRadiomics-based feature set, more than half of the selected features orig-
inated from the GLDZM and GLCM classes, reflecting the importance of distance- and
co-occurrence—based grey-level dependencies. Several features, including GLCMIDMN

and the first-order RootMeanSquared, exhibited a separation between responders and
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non-responders in feature-value distributions. These features displayed higher normal-
ized values in responders, suggesting increased textural uniformity associated with
effective treatment response. The repeated selection of features such as GLDZM
LDLGE under multiple wavelet transformations indicates that similar structural infor-
mation was consistently captured across different filtered representations, highlighting

the robustness of these textural patterns.

The MIRP-derived feature space showed a comparable dominance of texture-based
metrics, with the highest representation from GLSZM, GLCM, and intensity his-
togram (IH) classes. Approximately half of the selected MIRP features originated from
3D wavelet transformations, while the remainder included both 2D slice-aggregated
and 3D-computed descriptors. The NGTDM Complexity and ZSEntr features re-
curred under different transformation settings, suggesting that MIRP’s inclusion of
2D and 3D feature variants enhances the capture of complementary spatial infor-
mation. Similar to PyRadiomics, distinct response-related clustering was observed
for the GLCM IDMN feature and the GLRLM LRHGE feature, where higher values

corresponded to treatment responders, further underscoring their predictive potential.

Cross-extractor comparison revealed notable methodological but not conceptual
differences. PyRadiomics computes texture features primarily in 3D, whereas MIRP
includes additional 2D implementations and the NGLDM feature class, which is not
available in PyRadiomics (see Appendix Figure 8.7). MIRP also extracts a larger
fraction of intensity-based descriptors, while PyRadiomics places greater emphasis
on co-occurrence and zone-based metrics. Despite these structural differences, both
frameworks converged on key predictive features, most prominently the GLCM IDMN
and morphological Sphericity, which were independently selected and ranked as highly
important in the SHAP feature importance analysis (see Figures 5.12a and 5.12b).

The agreement between independent extraction pipelines in identifying overlapping
predictive features highlights the reproducibility and robustness of RPTK’s feature
selection process. The observed consistency in the predictive relevance of GLCM-
, GLDZM-, and GLSZM-based features across extractors indicates that radiomics
biomarkers derived from tumor texture heterogeneity may generalize across different
software implementations. At the same time, extractor-specific variations in dimen-
sionality and feature coverage emphasize the importance of methodological trans-
parency and standardized feature definitions in radiomics. Together, these results
demonstrate that RPTK effectively integrates distinct feature extraction strategies
and yields stable, biologically interpretable feature representations for treatment-

response prediction.

A comparison between the feature spaces derived by RPTK and AutoRadiomics on
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the Predict dataset further illustrates the influence of feature selection strategy on the
resulting model characteristics. Although both approaches rely on the same extraction
backend (PyRadiomics), the composition and diversity of the selected features differed
markedly. AutoRadiomics identified a compact subset of ten features, all originating
from wavelet-transformed representations and restricted to two IBSI feature classes
(GLDZM and GLRLM). In contrast, RPTK selected a broader and more heteroge-
neous feature set encompassing multiple texture families, first-order descriptors, and
morphological parameters. Despite this methodological difference, both approaches
converged on similar feature classes—particularly GLDZM and GLRLM—which were
consistently found to be associated with treatment-response prediction. However,
no direct overlap in specific features was observed between the two methods, re-
flecting that AutoRadiomics tends to favor transformed versions of texture features,
while RPTK selects a more diverse combination of untransformed and transformed
descriptors. The stronger response-related clustering observed in the RPTK feature
heatmap suggests that its sequential feature selection procedure may better preserve
complementary information across multiple feature domains, whereas AutoRadiomics
optimization routine emphasizes compactness and redundancy reduction within single
feature families. The absence of reparative clusters in the radiomics heatmap is based
on the intense statistical feature filtering of RPTK which eliminates highly correlat-
ing features before feature selection and impacts the available features handed to the

selection process in RPTK.

Integration of Clinical and Radiomics Features

The Predict dataset provides a comprehensive collection of clinical and demographic
parameters in addition to imaging data, enabling the evaluation of whether radiomics
can contribute added predictive value within an already information-rich clinical con-
text. To systematically assess this, three models were trained: a clinical-only model,
a delta radiomics model, and a combined clinical-radiomics model. Their compara-
tive test performances are summarized in Table 5.3. The combined model achieved
the highest overall performance, particularly for threshold-based metrics such as F1-
score, sensitivity, and specificity, followed by the clinical-only model and then the
delta radiomics model. This trend indicates that clinical and radiomics features pro-
vide complementary rather than redundant information. While clinical data encode
established prognostic and demographic factors, radiomics captures quantitative imag-
ing dynamics related to therapy response, thereby improving individualized prediction
when combined.

Model interpretability based on SHAP values supports this conclusion (see Figures
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5.13a and 5.13b). In the clinical-only model, PD-L1 expression—known to be a strong
predictive biomarker for immunotherapy response—was ranked as the most influential
variable, followed by tumor size, CRP level, age, and smoking status. These findings
align with current clinical evidence for prognostic biomarkers in NSCLC immunother-
apy [97,241,242]. The clinical model thus reflects real-world decision-making, where
PD-L1, inflammatory markers, and patient performance metrics are the primary indi-
cators of likely response to anti-PD-L1 therapy. This parameter also generates a clear
pattern viable in the heatmap of the clinical feature selection for training a model only

on the most informative clinical features (see Figure 8.19).

The combined model, by contrast, demonstrated a more balanced distribution of
feature importance across radiomics and clinical predictors. Among the ten most
important features, radiomics-based descriptors such as GLCM IDMN and GLRLM
LRHGE ranked highest, while clinical features such as ECOG performance status,
smoking behavior, and pack-years contributed complementary information (see Figure
8.18). This integration highlights that radiomics features provide orthogonal, image-
derived information that refines predictions beyond traditional clinical variables. In
particular, the inclusion of radiomics features allowed the model to capture subtle

treatment-related changes not directly visible in aggregate clinical descriptors.

The performance advantage of the combined model compared to the clinical model
was moderate but consistent, reflecting the strong baseline predictive power of the
clinical data. The clinical dataset itself is inherently multimodal, integrating demo-
graphic, laboratory, and radiological information such as tumor size and location.
Nonetheless, the improvement in test performance and the redistribution of feature
importance toward radiomics descriptors suggest that quantitative image information

adds fine-grained complementary value to existing clinical predictors.

Missing clinical data were handled using a robust imputation strategy implemented
in SimplelTK, applying a K-nearest-neighbor imputer for continuous variables and
a most-frequent-value imputer for categorical or ordinal variables (see Section 4.1.5).
Missingness did not exceed 50% for any feature. The variable with the highest missing
rate was serum albumin (42%), followed by metastasis manifestation (12%), whereas
all other parameters exhibited less than 10% missingness (Table 8.4). Whereas, data
imputation includes data-related bias by simulating data, given these small propor-
tions of values and missingness, the impact of imputation on model bias is expected
to be minimal, and the retained variables maintain sufficient integrity for reliable

modeling.

To explore the potential clinical relevance of the model predictions, a Kaplan—Meier

survival analysis was performed based on the predicted responder and non-responder
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classifications (Figure 5.14). The stratified survival curves revealed a significant sur-
vival benefit for patients predicted as responders by the combined model. Although
five patients were misclassified as responders, the model’s early response predic-
tion—performed within the first 28 to 140 days of treatment—could still provide
actionable clinical insight. If used prospectively, such predictions could help iden-
tify non-responding patients early, potentially allowing therapeutic reassignment at
a stage when survival probability remains around 0.75, compared to approximately
0.15 after 1,000 days of continued ineffective treatment. This result demonstrates
that integrating radiomics features into clinical prediction frameworks may not only
improve quantitative accuracy but could also enhance clinical decision-making and
patient outcomes through earlier identification of non-responders.

To further assess the reliability and clinical applicability of the predictive mod-
els, a confidence-based evaluation was performed using the confusion matrices shown
in Figures 8.21a, 8.21b, and 8.22. These matrices illustrate the number of correctly
and incorrectly classified patients with respect to their true treatment response. The
model based solely on clinical variables and the model integrating both clinical and
radiomics features each misclassified two responders as non-responders and two non-
responders as responders, whereas the model relying exclusively on radiomics features
misclassified one additional responder as a non-responder. The detailed performance
metrics corresponding to these models are summarized in Table 5.3. Notably, the
inclusion of clinical data affected only a single patient prediction in the test set,
suggesting that while clinical variables already provide substantial prognostic infor-
mation, larger datasets are needed to further explore these subtle differences, uncover
potential imaging-related biases, and better quantify model uncertainty.

In summary, integrating delta radiomics with clinical parameters improved pre-
dictive performance and interpretability in a dataset already rich in prognostic infor-
mation. While the incremental improvement was modest due to the strong baseline
informativeness of the clinical data, the complementary role of radiomics features was
evident. Radiomics contributed fine-grained, image-based descriptors of treatment-
related heterogeneity that strengthened individualized response prediction. Overall,
these results support the combined use of clinical and quantitative imaging data as a
viable strategy for developing robust, explainable, and clinically meaningful prediction

models in the context of immunotherapy response assessment.

RPTK Performance Comparison for Immunotherapy Response Prediction

To ensure a fair comparison across frameworks, all experiments were conducted on

synchronized training and test partitions, identical to those used in the AutoRadiomics
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evaluation. Delta radiomics features were computed for AutoRadiomics using the
same procedure applied in RPTK, thereby eliminating potential biases arising from
differing preprocessing or data split configurations. This alignment allows a direct

assessment of methodological rather than data-related performance differences.

Across both validation and test sets, RPTK achieved the highest overall perfor-
mance among the compared approaches. The best RPTK configuration based on
MIRP extracted delta radiomics features—employed an XGBoost classifier, while
the AutoRadiomics framework identified a Random Forest model combined with an
ANOVA feature-selection scheme as its optimal pipeline (see Table 8.6). Despite this,
the RPTK model consistently outperformed AutoRadiomics, achieving superior AU-
ROC values in both cross-validation and held-out testing. The improvement was most
evident on the test set, underscoring the greater generalization stability of RPTK’s

self-configuring optimization procedure.

In addition to the performance comparison, the feature selection behavior of Au-
toRadiomics was further examined to identify potential causes for its limited general-
ization (see Figure 8.20). The heatmap of the selected features shows that AutoRa-
diomics primarily relied on ten wavelet-transformed features, belonging exclusively
to the GLDZM and GLRLM feature classes. Within these classes, descriptors such
as LargeDependenceEmphasis and RunVariance were repeatedly selected under dif-
ferent wavelet decompositions. While this feature composition produced discernible
response-related patterns in the training data, it also introduced high redundancy, as
multiple correlated versions of the same texture measures were included. In contrast,
RPTK explicitly filters correlated features, thereby preventing the inclusion of redun-
dant transformations that contribute little new information. This decorrelation step

promotes a more compact and generalizable feature representation.

Consequently, these observations suggest that AutoRadiomics captures meaningful
but repetitive texture characteristics, which appear insufficient to sustain predictive
performance on unseen data. The improved generalization of RPTK therefore likely
arises from its stricter feature filtering and optimization strategy, which balances
the inclusion of informative radiomics descriptors with the exclusion of redundant

patterns.

Deep learning models were also trained on the same synchronized data splits for
comparison. Among the tested architectures, ResNet-18 achieved the best valida-
tion performance with a mean AUROC of 0.80; however, its test AUROC dropped
markedly to 0.56, indicating substantial overfitting (see Table 8.7). Similar valida-
tion—test performance gaps were observed in other small-sample datasets, reflecting

the disproportionate impact that individual misclassified samples can exert on evalu-
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ation metrics when cohort size is limited. The wide confidence intervals obtained in
these experiments are therefore not indicative of methodological instability but rather
of inherent statistical variance associated with small-sample machine learning [145].
Increasing dataset size or using larger multi-institutional cohorts remains the most
effective strategy to reduce this uncertainty.

To prevent any form of data leakage, feature selection and model optimization in
all approaches were strictly confined to the training folds, using the identical split
definitions for both RPTK and AutoRadiomics. This ensured that performance dif-
ferences arose exclusively from differences in pipeline design, not from discrepancies
in data handling.

Overall, the results demonstrate that the self-configuring RPTK framework achieves
higher robustness and generalization than both the AutoRadiomics and deep learning
baselines when applied to longitudinal immunotherapy response prediction.

When comparing the Predict cohort to recently published studies on radiomics-
based immunotherapy response prediction, it becomes evident that most external in-
vestigations relied on substantially larger and often multi-institutional datasets. For
instance, Han et al. (2024) analyzed 179 patients from two hospitals in their longitu-
dinal NSCLC study [243], while other single- and multi-center investigations typically
included between 100 and 200 patients [244,245]. These larger and more heteroge-
neous cohorts provide stronger statistical power, more stable performance estimation,
and improved generalization across clinical environments.

Although the Predict dataset used in this thesis comprises only 73 patients, the
consistent performance improvements achieved with RPTK—particularly when in-
corporating delta radiomics and clinical variables—suggest that the framework scales
well with increasing data diversity and size. Given its self-configuring design and
robust preprocessing, applying RPTK to multi-institutional immunotherapy cohorts
could further enhance prediction accuracy and reduce variance. Future work should
therefore focus on external validation in larger, independent datasets to assess the
reproducibility and clinical transferability of the developed models across scanners,

institutions, and treatment regimens.

6.3 LiverCRC Study — Colorectal Cancer Predic-

tion via Liver CT

The LiverCRC study presented in this thesis is based on results that are also included

in the joint manuscript currently under review [22]. However, the objectives and
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methodological scope differ between the two works. In the manuscript, the primary
focus lies on the clinical interpretation and validation of RPTK in the context of col-
orectal neoplasia prediction, whereas the present thesis emphasizes a methodological
comparison between RPTK, AutoRadiomics, and deep learning approaches.

Accordingly, the dataset and experimental configuration used in this thesis were
adapted to enable a standardized comparison across all frameworks. Specifically, the
AutoRadiomics-defined data splits were applied for both training and testing, whereas
the manuscript used the default RPTK split configuration. In the thesis experiments,
1,598 CT scans (80%) were allocated for training and 399 CT scans (20%) for testing.
In contrast, the manuscript employed a 70/30 split, resulting in 1,397 training and 600
test scans. The larger training proportion used here increases the number of samples
available for model optimization but slightly reduces the statistical confidence of the
generalization estimate due to the smaller test set. Both strategies are valid and
commonly used in machine learning research, reflecting a trade-off between training
stability and evaluation robustness.

Another key difference concerns the inclusion of clinical covariates. While the
manuscript incorporated selected clinical parameters alongside imaging data, the
present thesis intentionally restricts the analysis to CT-based radiomics features only.
This design isolates the contribution of image-derived biomarkers and facilitates a fair
methodological comparison to other purely imaging-based frameworks. As reported
in the manuscript, the inclusion of additional clinical variables did not substantially
improve predictive performance for colorectal neoplasia detection, suggesting that
radiomics features capture the dominant discriminative signal in this context. The re-
sults presented in this thesis are therefore fully consistent with the manuscript findings
while reflecting a distinct experimental focus on the technical evaluation of framework

performance.

6.3.1 Data

The LiverCRC dataset represents the largest cohort analyzed within this thesis and
forms the basis for investigating the potential of RPTK to detect colorectal neoplasia
using liver imaging. The study aims to identify colorectal neoplasia encompassing
the spectrum from benign adenomatous polyps to malignant colorectal carcinomas
through quantitative features extracted from liver CT scans. The rationale for this
approach builds on the established clinical understanding that most colorectal can-
cers originate from benign polyps and can be prevented through early detection and
removal during screening colonoscopy [246]. However, colonoscopy participation rates

among high-risk populations remain suboptimal due to procedural anxiety, discomfort,
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and logistical barriers [247]. By leveraging routinely acquired abdominal CT imaging
as a non-invasive alternative or adjunct, the LiverCRC study aims to improve early

risk assessment and promote screening adherence.

The initial cohort comprised 6,331 patients who had undergone both CT imaging
and colonoscopy within the same clinical setting ( see Figure 4.11). A series of rigor-
ous inclusion and exclusion criteria were applied to ensure data integrity and clinical
relevance. Patients were excluded if their colonoscopy was incomplete or missing,
resulting in the absence of a definitive diagnostic label for colorectal neoplasia, or
if the corresponding CT scan was unavailable or did not sufficiently cover the liver
region. Additional exclusions were made for patients with oncological diseases unre-
lated to the colon, prior liver transplantation, or liver pathologies secondary to alcohol
abuse or systemic treatments, which could confound hepatic texture and morphology.
These criteria eliminated 2,295 patients, resulting in a final study population of 1,997
patients, 808 with confirmed colorectal neoplasia and 1,189 without. This sample
size represents an order of magnitude increase compared to the smaller open-source
datasets analyzed earlier in this thesis (ranging from 73 to 247 patients), providing a

substantially stronger statistical basis for model training and evaluation.

The unique design of this study introduces an inherent cross-organ modeling chal-
lenge: the ROI for radiomics feature extraction is the liver, whereas the target con-
dition—the presence or absence of colorectal neoplasia—originates in the colon. This
indirect relationship introduces potential bias, as hepatic characteristics are influenced
by a wide range of systemic, metabolic, and inflammatory factors not exclusively linked
to colorectal pathology. Nonetheless, emerging evidence supports the relevance of the
gut-liver axis in colorectal cancer pathophysiology. Studies have demonstrated that
hepatic necrosis, metabolic dysfunction, and microenvironmental alterations are asso-
ciated with increased risk of colorectal carcinoma and preferential metastatic spread
to the liver [248]. Therefore, the liver provides a plausible systemic biomarker site for

non-invasive colorectal disease risk assessment.

Segmentation of the liver was performed by colleagues using the MultiTalent seg-
mentation tool [27], which yielded high-quality, organ-level masks with minimal frag-
mentation. The number of connected components was close to one across all cases,
indicating a low prevalence of segmentation artifacts (see Table 5.4). The mean slice
thickness was 5 mm, with low standard deviation, reflecting the use of a standardized
abdominal CT protocol. The mean ROI size was approximately 602,858 voxels, sub-
stantially larger than the tumor-based ROIs in the open-source datasets, as expected
for a whole-organ segmentation. High variance in liver volume was observed, con-

sistent with physiological variability and pathological enlargement (hepatomegaly),
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which can occur as a secondary manifestation of systemic or colorectal disease [249].
The average number of discretization bins after applying the fixed bin width of 25
was 13 (standard deviation 6.5), following the bin width recommendations from [1].
This distribution suggests sufficient grey-level diversity for texture analysis without
excessive discretization noise.

In contrast to conventional liver imaging studies that typically employ magnetic
resonance imaging (MRI), the LiverCRC dataset is based entirely on CT scans. While
this choice improves grey-level standardization and harmonization across patients (see
Section 2.1.1), it may reduce sensitivity to soft-tissue contrast variations that are
better captured via MRI [15]. Nevertheless, the consistent CT acquisition protocol
ensures high reproducibility of radiomic features and supports cross-patient compa-
rability:.

Feature extraction for this dataset was intentionally limited to the original CT
images without additional image transformations or segmentation perturbation for
feature-stability filtering. This decision was made for two main reasons: (i) the large
dataset already provides substantial statistical power, reducing the necessity for data
augmentation, and (ii) the computational cost of performing full feature extraction
with multiple transformations and perturbations would exceed practical resource lim-
its (estimated to require over twenty times more CPU hours and thirty times more
storage). While the omission of feature-stability filtering may slightly reduce robust-
ness, the extensive sample size compensates by providing a strong empirical basis for
model training. Future iterations of the framework could incorporate more efficient
processing of data augmentations for application to big datasets like the LiverCRC
dataset.

In summary, the LiverCRC dataset provides a large, high-quality foundation for
evaluating the generalizability of RPTK. Its design bridges radiomics and clinical
screening by linking liver imaging to colorectal neoplasia risk, a task that is both
unconventional and clinically relevant within the context of preventive oncology. The
combination of large sample size, standardized imaging, and organ-level segmentation
establishes this dataset as a valuable resource for assessing scalability, reproducibility,

and clinical applicability of radiomics-based prediction frameworks.

Radiomics Feature Processing on the LiverCRC Dataset

The analysis of the selected feature spaces from PyRadiomics and MIRP in the Liver-
CRC study reveals a consistent dominance of texture-related descriptors, particularly
from the GLCM and GLRLM feature classes. These feature families quantify spatial

relationships between grey levels and are commonly associated with tissue hetero-
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geneity, fibrosis, or microstructural irregularities—factors that may indirectly reflect
systemic alterations linked to colorectal neoplasia. The convergence of both extraction
frameworks on texture-based features therefore supports their biological plausibility
for this task.

Despite this agreement, distinct methodological differences between the extrac-
tors influence the specific feature composition. MIRP produced a larger fraction of
2D and margin-based features, highlighting perihepatic and surface-related intensity
variations, whereas PyRadiomics yielded a broader spectrum of texture, first-order,
and shape descriptors. The higher concentration of high-impact SHAP values within
a small subset of PyRadiomics features indicates a more compact but stronger predic-
tive signal, whereas MIRP showed a more distributed importance pattern, suggesting
a wider but less focused representation of relevant image characteristics. These differ-
ences reflect not only extractor implementation choices—such as the inclusion of 2D
versus 3D feature formulations—but also potential differences in how each framework
handles discretization, normalization, and ROI boundary effects.

Among all selected features, the first-order Root Mean Square (RMS) feature
emerged as the most influential predictor across both frameworks (see Equation 6.1).
RMS measures the average magnitude of voxel intensities within the ROI, corrected
for negative Hounsfield Unit (HU) values, and can thus be interpreted as a proxy for
the mean tissue density of the liver. Its consistent selection across multiple models
and datasets indicates that overall hepatic intensity levels, rather than higher-order
texture patterns, may carry significant diagnostic information in detecting systemic
effects of colorectal neoplasia. This aligns with findings from the joint manuscript [22],
where RMS and related first-order features were also among the top-ranked predictors.

Following the definition from the official PyRadiomics documentation [15], the

RMS feature is calculated as:

RMS = J € %j (X (i) + ¢)? (6.1)
Ny io
X (1) Intensity value of voxel ¢ within the ROI, expressed in HU for CT images.
N, Total number of voxels within the ROL.
c Intensity correction factor added to handle negative HU values (applied

by PyRadiomics when enabled for CT data).

RMS Root Mean Squared intensity value, representing the mean energy or mag-

nitude of voxel intensities within the ROI.

Notably, approximately half of the selected features overlap between the present

analysis and the manuscript results, despite differences in training and test splits. This
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overlap demonstrates the reproducibility of feature selection in RPTK and indicates
that the observed feature relevance is not purely data-partition dependent. At the
same time, the remaining variation between feature subsets highlights the sensitivity of
wrapper-based selection methods to data sampling, an inherent limitation in radiomics

analyses that rely on small or imbalanced datasets.

A direct comparison between the feature spaces identified by RPTK and AutoRa-
diomics on the LiverCRC dataset highlights the influence of optimization strategy and
extraction settings on the resulting feature composition. While both approaches were
based on PyRadiomics features, RPTK was applied to untransformed images, whereas
AutoRadiomics used the default extraction configuration including multiple image fil-
ters and transformations. Consequently, AutoRadiomics selected a considerably larger
and more transformation-dominated feature space, comprising 35 features, primarily
first-order and GLSZM descriptors derived from wavelet and Laplacian-of-Gaussian
filtered images. In contrast, RPTK identified only 15 features from the original images,
mainly texture descriptors from first-order, GLCM and GLRLM classes. The overlap
between both feature spaces was limited to a small number of shared feature concepts
such as RootMeanSquared, which AutoRadiomics selected in its wavelet-transformed
form. In addition, RPTK includes features from the surrounding region which are
substantially included in the selected PyRadiomics feature space from RPTK and

therefore also extents the source of information compared to AutpRadiomics.

Despite the differing feature selection breadth, both methods converged on texture-
and first-order-related image descriptors as the dominant predictive factors. The
broader and transformation-rich selection of AutoRadiomics may reflect its built-in
hyperparameter search strategy, which explores redundant variants of similar image
patterns, whereas RPTK’s sequential selection procedure yields a more compact fea-
ture subset emphasizing complementary and non-redundant characteristics, based on
intensive feature filtering prior to the selection step. The absence of distinct cluster-
ing patterns in the AutoRadiomics heatmap compared to the clearer class separation
observed for the RPTK PyRadiomics feature matrix further supports that the lat-
ter approach captures a more discriminative but less redundant representation of the
underlying radiomic signal. Together, these findings underline that the choice of fea-
ture selection framework substantially affects the balance between feature diversity,

redundancy, and interpretability, even when identical extraction libraries are used.

Overall, the selected features from RPTK emphasize the diagnostic importance of
both global intensity measures and fine-grained texture characteristics for capturing
systemic alterations of the liver associated with colorectal neoplasia. Their repro-

ducibility across independent extraction tools and experiments supports the method-
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ological robustness of the RPTK framework in identifying stable and interpretable

imaging biomarkers.

6.3.2 RPTK Performance on the LiverCRC Dataset

The evaluation of the RPTK framework on the LiverCRC dataset demonstrates the
scalability and stability of the self-configuring radiomics pipeline when applied to a
large clinical cohort. Figure 5.19 and Figure 5.20 display the validation and test
AUROC distributions across all trained models for both PyRadiomics and MIRP
feature extractors, based on the synchronized AutoRadiomics train/test splits. Each
point represents the average performance from five cross-validation folds, while the
final ensemble model performance on the independent test set is indicated as a single
aggregated measure.

Overall, the ensemble model predictions exhibit narrow confidence intervals for
both validation and test performance, indicating robust model convergence and sta-
ble predictions across folds. This stability suggests that the available training data
are sufficient to capture the variance within the dataset and to achieve consistent gen-
eralization. The corresponding learning curve (see Figure 8.25) confirms this interpre-
tation, showing that the model performance plateaus as the training data proportion
increases, with minimal variance across repetitions.

Across the six model architectures evaluated within RPTK, the validation AU-
ROC for PyRadiomics-based features reached approximately 0.80, with the Random
Forest classifier achieving the highest mean validation score of 0.815 £ 0.016, slightly
outperforming the other models. The MIRP-based models yielded similar validation
results, although their variance across folds was marginally higher, consistent with the
broader feature space composition of MIRP.

Interestingly, for both extractors, the test AUROC values exceeded the validation
scores, with the best-performing PyRadiomics model achieving a mean test AUROC
of 0.859 compared to a validation score of 0.815. This finding contrasts with the
corresponding results reported in the LiverCRC manuscript, where the best model,
an XGBoost classifier trained using the default RPTK split, achieved a slightly lower
test performance of 0.805 against a validation score of 0.831 £ 0.014. The difference
arises primarily from the proportion of data allocated to training and testing: the
AutoRadiomics setting applies an 80/20 split, providing more training samples but a
smaller and potentially less representative test set, whereas the RPTK default uses a
70/30 split that better captures population heterogeneity in the test data.

In practical terms, this indicates that the AutoRadiomics splitting strategy may

underestimate model performance on unseen data due to reduced test-set variance,
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while the RPTK setting offers a more conservative but realistic generalization esti-
mate. These differences are consistent with known effects of train/test proportion
on performance metrics: larger test sets yield more reliable generalization estimates,
whereas larger training sets reduce bias but increase the risk of optimistic performance
evaluation [145]. Given the large sample size of the LiverCRC cohort, both strate-
gies remain statistically valid, but the RPTK split provides better alignment between
validation and test results, suggesting stronger internal consistency.

A comparison of sensitivity and specificity metrics supports this interpretation.
Using the AutoRadiomics split, the best-performing RPTK model achieved a sensi-
tivity of 0.780 and a specificity of 0.807 (see Table 5.5), outperforming the RPTK-
trained model based on its native split configuration, which achieved 0.741 and 0.723,
respectively. This corresponds to a delta of 40.039 in sensitivity and +0.084 in speci-
ficity, demonstrating that the additional training samples from the AutoRadiomics
split improved the model’s discriminative ability. Taken together, these findings un-
derline the robustness of RPTK in large-scale clinical data applications and its ca-
pacity to maintain stable performance across different train/test partition strategies.
The consistent validation-to-test agreement, narrow confidence intervals, and high
reproducibility across feature extractors indicate that the framework can generalize
effectively while remaining resilient to data-split variability, a critical property for

future multi-institutional extensions of this study.

6.3.3 RPTK Performance Comparison on the LiverCRC Dataset

Performance comparison of the best RPTK model to the best AutoRadiomics and deep
learning models is shown in Figure 5.21. Both RPTK and AutoRadiomics demonstrate
consistent performance between the validation and test sets, with RPTK achieving
slightly higher AUROC values as discussed above. In contrast, the best deep learning
model shows strong overfitting, achieving a validation performance of approximately
0.95 AUROC but dropping to 0.6 on the test set. RPTK outperformed both Au-
toRadiomics and deep learning significantly according to the paired DeLong test (p
<0.001), while the difference between AutoRadiomics and deep learning was not sig-
nificant (p = 0.106).

Figure 5.22 illustrates the corresponding ROC curves for the best-performing mod-
els on the LiverCRC test set, highlighting characteristic differences in classification
behavior between RPTK, AutoRadiomics, and the deep learning baseline. While the
quantitative AUROC values already demonstrate a clear performance advantage of
RPTK (0.859 + 0.02) compared to AutoRadiomics (0.654 4 0.03) and deep learning
(0.598 + 0.04), the qualitative shape of the ROC curves provides further insight into
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model behavior.

Across all operating points, the RPTK ROC curve consistently lies above those
of AutoRadiomics and deep learning, indicating improved sensitivity for nearly all
false-positive rates. At low false-positive regions (< 0.2), RPTK achieves a consider-
ably higher true-positive rate, demonstrating its ability to detect positive cases with
minimal false alarms—a key advantage in clinical screening tasks where specificity is
critical (see also Tables 8.8 and 8.9). Moreover, the RPTK curve exhibits a steeper
initial rise near the origin, reflecting superior discriminative power for highly confi-
dent predictions. In contrast, the flatter slopes observed for AutoRadiomics and deep
learning suggest less distinct class separation. Finally, the RPTK curve approaches
the ideal upper-left corner (0,1) more closely than the alternatives, visually confirming
a better balance between sensitivity and specificity.

Taken together, these results emphasize that RPTK not only achieves higher over-
all discrimination as measured by AUROC, but also maintains a more favorable bal-
ance between true- and false-positive rates across clinically relevant thresholds. This
robustness suggests that the combination of feature selection, model optimization,
and ensemble aggregation implemented in RPTK contributes to more stable and gen-
eralizable predictions compared to conventional automated radiomics or deep learning
baselines.

To contextualize these findings within the current literature, it is noteworthy that
no peer-reviewed study was identified that applies radiomics on liver imaging to pre-
dict colorectal disease in the reverse (liver-to-colon) direction. Existing research in-
stead focuses on the opposite relationship—predicting liver metastases or liver-specific
outcomes based on colorectal cancer data. For example, studies by Yu et al. [250],
Tang et al. [251], and Devoto et al. [252] investigate radiomics-based prediction of
metachronous or synchronous liver metastases from colorectal primaries, typically us-
ing CT or MRI imaging of the primary tumor or existing liver lesions, with dataset
sizes ranging from 80 to 250 patients and target labels linked to metastatic progression.
These works differ fundamentally in both the region of interest (focusing on colorectal
lesions or liver metastases rather than the healthy liver) and the prediction objective
(metastatic risk or treatment outcome rather than initial colorectal pathology).

In contrast, the LiverCRC study employs a substantially larger cohort (n = 1,997)
and investigates systemic image-derived biomarkers from the liver parenchyma to infer
colorectal neoplasia risk. This approach has, to the best of current knowledge, not been
previously reported in the literature. This further underscores the methodological
novelty and translational potential of using liver-based radiomics as a non-invasive

biomarker source for colorectal disease screening.
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Conclusion and Outlook

7.1 Summary of Key Findings

The results of this thesis demonstrate that the developed RPTK (Radiomics Pipeline
Toolkit) constitutes a robust, self-configuring, and task-agnostic framework for auto-
mated radiomics analysis. RPTK was designed to improve the reproducibility and
generalizability of radiomics workflows while maintaining high predictive performance
across diverse clinical applications.

RPTK was successfully applied to seven heterogeneous open-source datasets, cov-
ering both CT and MRI modalities and a wide range of oncological classification
tasks. Across these datasets, RPTK consistently outperformed or matched both
AutoRadiomics and deep learning baselines, with particularly major advantages in
small-sample and heterogeneous imaging settings. This emphasizes its capability to
generalize effectively even under conditions of data scarcity and domain variability.

Overall, the framework bridges an important methodological gap between highly
customized radiomics pipelines, often tailored for specific studies and therefore diffi-
cult to reproduce, and generalized AutoML approaches such as AutoRadiomics, which
prioritize automation at the expense of optimization. By combining adaptive prepro-
cessing, standardized feature extraction, and automated model optimization, RPTK
achieves a balance between generalizability and methodological transparency (see Sec-
tion 1.1 and Figure 1.1).

The feature extraction and selection mechanisms of RPTK consistently identified
robust and biologically meaningful radiomic descriptors, particularly texture-based
classes such as GLCM and GLSZM features. These findings demonstrate that RPTK
captures reproducible imaging biomarkers across datasets and imaging modalities.

A comprehensive cross-validation and ensemble learning strategy ensured stabil-

ity and generalization of the trained models, minimizing variance between validation
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and test performance. In contrast, the learning-curve analysis revealed that several
datasets were too small to reach performance plateaus or highly variable performance,
highlighting the inherent data limitations of current radiomics benchmarks rather than
weaknesses of the framework itself.

The integration of delta radiomics in the longitudinal Predict study confirmed
the predictive benefit of modeling temporal feature changes over static single-time-
point features in RPTK. Furthermore, combining clinical covariates with radiomics
features yielded additional performance improvements, underscoring the complemen-
tary nature of quantitative imaging and clinical information in treatment-response
prediction.

Finally, the large-scale LiverCRC study extended RPTK’s application to a dataset
of approximately 2,000 CT scans, demonstrating the scalability and transferability of
the framework to real-world clinical imaging cohorts. In this study, RPTK achieved
significantly higher performance than both AutoRadiomics and deep learning ap-

proaches, confirming its robustness and adaptability in large, heterogeneous datasets.

7.2 Methodological Contributions of RPTK

The methodological innovations of this thesis are consolidated in the development of
RPTK (Radiomics Pipeline Toolkit), a modular and reproducible framework designed
for automated radiomics experimentation across diverse imaging modalities and clini-
cal tasks. RPTK combines adaptive preprocessing and feature extraction with robust
feature filtering and ensemble-based modeling in a transparent and extensible archi-
tecture.

A key contribution is the introduction of a self-configuring feature extraction and
preprocessing system. Rather than applying a static configuration across all studies,
RPTK automatically adapts feature-extraction parameters and preprocessing settings
to the image modality (e.g., CT vs. MRI) and uses literature based recommendations
for robust data processing. This includes modality-specific resampling, normalization
as well as feature extraction tool recommendation for re-segmentation and Grey value
correction (see e.g. Equation 6.1), which are selected according to modality-dependent
best practices collected from the literature (see Section 4.1.5). This targeted form of
self-configuration ensures optimal use of modality-specific information while maintain-
ing comparability and reproducibility across datasets.

To quantitatively describe the imaging data and support these adaptive steps,
RPTK integrates a data fingerprinting module that automatically computes descrip-

tive metrics of the input data, including voxel spacing, slice thickness, number of bins
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after pixel discretizations, and segmentation properties. These fingerprints serve as
quality indicators and allow objective assessment of dataset heterogeneity, supporting
reproducible preprocessing decisions and model interpretation.

Another major methodological contribution is the implementation of a robust
feature stability filtering mechanism designed to mitigate segmentation-related bias.
RPTK simulates inter-rater variability by introducing controlled perturbations to seg-
mentation masks and evaluating feature stability across these perturbations. Features
that show high sensitivity to small segmentation variations are excluded from down-
stream modeling, thereby improving feature reproducibility and reducing dependence
on specific segmentation practices or annotators.

In addition, RPTK provides a standardized feature-extractor integration layer
that supports two different existing feature extraction tools called PyRadiomics and
MIRP. This dual integration enables systematic cross-tool benchmarking and facili-
tates evaluation of feature completeness and consistency with the Image Biomarker
Standardisation Initiative (IBST) recommendations. By comparing the outputs of both
extractors within the same preprocessing and modeling framework, RPTK enables re-
producible feature-space analyses and enhances methodological transparency as well
as incorporates performance benefits by the inclusion of different feature aggregation
strategies.

For predictive modeling, RPTK implements a cross-validation model optimization
and ensemble strategy. Multiple machine learning algorithms are independently op-
timized on features from both integrated extractors through cross-validation. The
fold models are ensembled for each machine learning algorithm to improve robust-
ness and minimize overfitting. Subsequently, the best performing machine learning
algorithm was selected for final performance evaluation. This design leads to more
stable and generalizable models compared to single-model approaches, particularly in
heterogeneous or small-sample datasets.

All components of RPTK follow transparent and reproducible design principles
aligned with current radiomics reporting and methodological guidelines. Every pre-
processing, feature extraction, and modeling step is explicitly logged and reproducible,
ensuring methodological traceability across studies.

The framework further facilitates controlled cross-framework benchmarking, en-
abling fair comparisons with alternative pipelines such as AutoRadiomics and deep
learning models using identical data splits and evaluation metrics.

Finally, RPTK is open-source and publicly available via a dedicated GitHub repos-
itory (see Section 4.1.11). This open-access release promotes transparency, repro-

ducibility, and collaborative extension by the wider research community.
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7.3 Clinical and Translational Implications

The results presented in this thesis demonstrate that the RPTK framework provides
a robust foundation for the clinical translation of radiomics-based decision-support
systems. Its reproducible processing design, optimized preprocessing, and robust fea-
ture engineering collectively support the development of predictive models that are

not only statistically sound but also potentially deployable in clinical workflows.

RPTK has shown the ability to extract quantitative imaging biomarkers that cor-
relate with disease characteristics and treatment response, thereby supporting the
concept of imaging as a non-invasive biomarker source. By standardizing the feature
extraction and selection process across heterogeneous datasets and imaging modali-
ties, the framework minimizes methodological bias and enhances reproducibility which

is a prerequisite for clinical implementation.

The Predict study demonstrated the potential of radiomics to provide early indica-
tors of immunotherapy response in patients with non-small cell lung cancer. Through
the integration of delta radiomics, temporal changes in radiomic features between
baseline and follow-up CT scans were successfully modeled, allowing the prediction
of therapy response at an early treatment stage. Such early response assessment
could enable timely therapy adaptation, reducing unnecessary exposure to ineffective

treatments and improving patient outcomes and quality of live.

The LiverCRC study extended this concept to a large-scale screening scenario
and illustrated the feasibility of using systemic imaging biomarkers from non-disease-
target organs to detect remote pathologies. By leveraging liver CT scans to predict
colorectal neoplasia, the study demonstrated that radiomics information from sec-
ondary or indirectly affected organs can reflect systemic disease manifestations. This
approach offers a promising path toward non-invasive and opportunistic cancer screen-
ing strategies, potentially complementing or guiding standard diagnostic procedures

such as colonoscopy.

Furthermore, the integration of radiomics features with clinical variables improved
both model interpretability and predictive performance, as demonstrated in the Pre-
dict study. The combination of quantitative imaging biomarkers with established
clinical indicators provides a more comprehensive representation of disease status and
enhances the clinical utility of radiomics-based models. In this regard, RPTK sup-
ports the integration of radiomics into multimodal clinical decision-making by enabling

reproducible model development, validation, and interpretation.
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7.4 Limitations

Despite the promising results and methodological advances presented in this thesis,
several limitations have to be acknowledged. These limitations, however, not only
define areas for improvement but also highlight the robustness and adaptability of
the RPTK framework and the opportunities it create for future research and clinical
translation.

A key limitation lies in the restricted size of some datasets, particularly in the
Predict study focusing on immunotherapy response prediction. The acquisition of
longitudinal imaging data is inherently expensive, time-consuming, and suitable open-
source datasets are scarce. As a result, the statistical power for detecting small but
clinically relevant effects is limited, and model generalization may be constrained.
Nonetheless, this limitation underscores one of RPTK’s core strengths, its ability to
operate robustly and deliver stable results even under data-scarce conditions, where
deep learning and traditional radiomics pipelines often fail to generalize.

Another important limitation concerns the lack of external multi-center valida-
tion. All datasets used in this thesis were derived from open-source repositories or
single-institution sources. External, multi-center testing would provide stronger evi-
dence for generalizability and ensure that the developed models are not biased toward
specific institutional imaging characteristics or clinical practices. Integrating RPTK
into future multi-center collaborations would therefore be a critical step toward clin-
ical translation and the development of radiomics models applicable across diverse
imaging environments.

Variability in segmentation quality and acquisition protocols represents an addi-
tional challenge, as it introduces technical bias that can influence feature stability and
model performance. However, this variability also demonstrates RPTK’s capability
to handle heterogeneous data sources. Through systematic data fingerprinting and
segmentation-perturbation-based feature stability filtering, the framework actively de-
tects and mitigates these artifacts, ensuring that the extracted features remain robust
to segmentation and acquisition differences.

A further methodological limitation arises from the dependence on the Image
Biomarker Standardisation Initiative (IBSI)-defined feature space. While this ensures
high reproducibility and standardization, the results also indicate that certain non-
IBSI features may carry task-specific predictive value. However, their reproducibility
remains uncertain. Future work should therefore include a systematic extension of
the feature stability analysis to these non-IBSI features to evaluate their robustness

and potential inclusion in standardized radiomics feature sets.



162 Outlook and Future Work

Finally, while the current implementation of RPTK focuses on computationally
efficient batch processing and large-scale benchmarking, its prospective clinical appli-
cation will require additional optimization for integration into routine workflows. As
outlined in Section 2.3.8, RPTK could be applied in a pre-optimized form to individ-
ual patient cases after task-specific model training and validation. This would enable
real-time or near-real-time decision support in clinical environments without requiring
extensive retraining.

In summary, while these limitations outline areas for improvement, they simulta-
neously illustrate the flexibility, methodological rigor, and clinical readiness of RPTK.
Future research should focus on large-scale multi-institutional validation, prospective
clinical deployment, and the expansion of feature-space reproducibility testing to fur-

ther advance radiomics toward routine clinical utility.

7.5 Outlook and Future Work

The results of this thesis establish the RPTK framework as a robust foundation for re-
producible, interpretable, and clinically relevant radiomics research. Building on these
developments, several avenues for future work can further enhance its methodological
scope, generalizability, and translational applicability.

A primary objective for future studies is the multi-center validation of RPTK on
large-scale, multi-institutional datasets. Such validation would confirm the frame-
work’s robustness across different scanner types, acquisition protocols, and patient
populations, providing essential evidence for clinical generalization. This step is cru-
cial for regulatory acceptance and real-world deployment of radiomics-based decision-
support models.

Further progress should focus on multimodal integration. Diseases such as can-
cer are complex and acting on multiple different molecular layers such as genomics,
proteomics, and transcriptomics. By extending the framework to incorporate com-
plementary data sources from genomic, transcriptomic, or proteomic features, as well
as structured clinical data, RPTK could support holistic modeling of such complex
disease phenotypes and improve the personalization of predictive models. Such inte-
gration could bridge the gap between image-derived and molecular biomarkers, con-
tributing to precision medicine.

An additional direction is the development of automated parameter adaptation
mechanisms. Currently, discretizations and resampling parameters are determined
based on best-practice recommendations from literature. Future work could employ

data-driven optimization strategies to automatically infer optimal parameter settings
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from dataset characteristics. However, this should avoid over-automation, as demon-
strated by performance declines in fully AutoML-based workflows, which can overfit
combined decision layers and reduce performance across datasets.

From a methodological standpoint, deep learning hybridization represents an ex-
citing opportunity. Combining RPTK’s interpretable, feature-based approach with
learned representations from convolutional neural networks (CNNs) or transformer
architectures could leverage the strengths of both paradigms interpretability and non-
linear pattern recognition, while preserving robustness and transparency.

For clinical implementation, future efforts should focus on integrating RPTK into
prospective studies and clinical infrastructures. The framework is conceptualized for
non-specialists by incorporating a standardized workflow application without manual
intervention and therefore, it is suited for clinical application by non-experts. Devel-
oping intuitive user interfaces for radiologists and oncologists would facilitate practical
adoption in daily workflows even more. In particular, technical integration with the
Kaapana platform for federated learning [253] would enable deployment within clinical
networks such as RACOON [254], supporting privacy-preserving distributed analysis.
The containerized design of RPTK, distributed via Docker through its GitHub repos-
itory, already provides a straightforward path for such integration.

Additional optimization of feature selection strategies could further simplify model
architectures by reducing the inclusion of marginally contributing features, thereby
improving interpretability and computational efficiency.

RPTK will continue to contribute to the principles of open science and repro-
ducibility. The open-source release of the framework encourages community partic-
ipation, benchmarking collaborations, and transparent methodological comparison.
Ongoing collaborative efforts can help establish community-wide standards for ra-
diomics evaluation and foster collective progress toward clinically validated, repro-
ducible imaging biomarkers.

In summary, RPTK provides a scalable and extensible foundation for future devel-
opments in radiomics research and clinical translation. Its continued methodological
refinement, clinical integration, and community-driven validation will be key to real-

izing the full potential of radiomics in precision oncology.
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Appendix

8.1 Overview of all Datasets in this Thesis

Age Distribution Across Datasets

Unknown 115 (3.7%)

90-99 ]35 (1.1%)

80-89 383 (12.3%)

70-79 709 (22.8%)

60-69 702 (22.5%)

50-59 520 (16.7%)

Age Group

40-49 290 (9.3%)

30-39 202 (6.5%)

20-29 109 (3.5%)

10-19 ]33 (1.1%)

0-9 ]17 (0.5%)
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Figure 8.1. Distribution of patient age at the time point of imaging over all datasets

included in this thesis.
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Manufacturer Distribution Across Datasets

Siemens 2,506 (80.4%)
Philips 262 (8.4%)
GE Healthcare 256 (8.2%)
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Unknown (|31 (1.0%)
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Figure 8.2. Distribution of imaging manufacturers of the scanners used to generate

the 3D imaging data across all datasets.

Modalities Across Datasets
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(a) Distribution of imaging modalities across (b) Distribution of patient sex across all

all datasets. datasets.

Figure 8.3. Overview of imaging modalities as well as patient sex distribution across

all used datasets in this thesis.
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8.2 Self-Configuring Radiomics Pipeline

8.2.1 Data Fingerprint
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Figure 8.4. Size of the ROI measured by the number of voxels in the scans, displayed
in logarithmic scale. This parameter shows how much the size of the ROI varies within
the dataset in order to investigate artificially big or small ROIs but also investigate

the biological heterogeneity.
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Number of Bins Comparison
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Figure 8.5. Boxplot showing the number of bins calculated with default pixel dis-

cretization settings (fixed bin width = 25) recommended by Timmeren et al. [1] in

logarithmic scale. This gives a hint to the user of how heterogen the region of interest

is (tumor heterogeneity) and if the standard pixel discretization setting is applicable

(not very few bins (< 10) but also not too many (> 200).
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Number of Slices Comparison
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Figure 8.6. Boxplot showing the number slices in logarithmic scale between the open
source datasets applied in the section for self-configuring radiomics framework. This
parameter can be systematically dependent on clinical settings for different diagnostic

purposes (whole body Scan vs. specifically regional scan).
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8.2.2 RPTK Feature Extraction

PyRadiomics IBSI Feature Profile

IBSI Feature Completeness Feature Distribution in Data
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Figure 8.7. This plot shows the IBSI feature composition of the PyRadiomics fea-
tures space after extraction in RPTK. The IBSI feature completeness plot (left) shows
the amount of missing IBSI features in the PyRadiomics feature space with the num-
ber of features in brackets. The feature distribution plot (right) shows the detailed
composition of the extracted features and the representation of IBSI feature classes

in the feature space with the number of features in brackets.
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MIRP IBSI Feature Profile
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Figure 8.8. This plot shows the IBSI feature composition of the MIRP features space
after extraction in RPTK. The IBSI feature completeness plot (left) shows the amount
of missing IBSI features in the MIRP feature space with the number of features in
brackets. The feature distribution plot (right) shows the detailed composition of the
extracted features and the representation of IBSI feature classes in the feature space

with the number of features in brackets.



Self-Configuring Radiomics Pipeline

171

8.2.3 The RPTK Prototype

Table 8.1. Validation AUROC performance to select the best performing models

across datasets and feature extractors for the baseline RPTK approach. Bold values

demonstrate better performance on validation folds for each dataset, across extractors

(the validation AUROC values include unpublished data). This data was copied from

my previous conference paper [24].

Dataset Extractor Val AUROC Test AUROC
Desmoid MIRP 0.695 (+/- 0.072) | 0.93 [0.82-1.00]
Desmoid | PyRadiomics | 0.827 (+/- 0.053) | 0.92 [0.82-0.99]
CRLM MIRP | 0.772 (+/- 0.096) | 0.89 [0.66-1.00]
CRLM | PyRadiomics | 0.738 (+/- 0.077) | 0.61 [0.28-0.89)]
GIST MIRP 0.768 (+/- 0.087) | 0.79 [0.65-0.91]
GIST | PyRadiomics | 0.835 (+/- 0.021) | 0.82 [0.69-0.92]
Liver MIRP | 0.805 (+/- 0.046) | 0.79 [0.63-0.92]
Liver PyRadiomics | 0.782 (+/- 0.027) 0.89 [0.75-0.98]
Lipo MIRP 0.853 (+/- 0.091) | 0.95 [0.82-1.00]
Lipo PyRadiomics | 0.880 (4 /- 0.106) | 0.86 [0.67-1.00]
Melanoma MIRP 0.615(+/- 0.095) | 0.63 [0.36-0.87]
Melanoma | PyRadiomics | 0.693 (+/- 0.116) | 0.46 [0.18-0.73]
LIDC-IDRI | MIRP | 0.589 (+/- 0.133) | 0.41 [0.12-0.76]
LIDC-IDRI | PyRadiomics | 0.518 (4/- 0.190) | 0.55 [0.22-0.82]
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8.3 Prediction Performance
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Figure 8.9. Receiver operating characteristic (ROC) comparisons between AutoRa-

diomics and RPTK across all seven datasets applied in section 5.1.
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Table 8.2. Performance metrics of best performing deep learning models across
datasets, selected based on the best mean validation AUROC (with std). Test AU-
ROC, F1, Sensitivity and Specificity are displayed with 95% CIs after 1000x boot-
strapping as described in Section 4.1.8.

Dataset | Best Model Val AUROC | Test AUROC | Youden Test F1 Test Sensitivity | Test Specificity
0.898 0.709 0.356 0.269 0.885
Desmoid ResNet18 0.828 ° °
(£ 0.022) [0.538, 0.865] [0.095, 0.600] [0.059, 0.500] [0.750, 1.000]
0.724 0.422 0.357 0.373 0.369
CRLM DenseNet201 0.747
(£ 0.061) [0.143, 0.727] [0.000, 0.632] [0.000, 0.750] [0.000, 0.728]
0.84. 0.614 0.5 0.4 0.792
GIST | DenseNet169 845 6 0.580 509 8
(£ 0.020) [0.451, 0.778] [0.368, 0.741] [0.276, 0.667] [0.619, 0.952]
0.938 0.841 0.715 0.946 0.314
Liver ResNet18 0.795 ’
(£ 0.021) [0.690, 0.949] [0.545, 0.840] [0.818, 1.000] [0.111, 0.529]
. B 0.766 0.723 0.627 0.551 0.842
Lipo DenseNet121 0.823
(£ 0.047) [0.492, 0.931] [0.333, 0.842] [0.250, 0.846] [0.600, 1.000]
K 0.447 .492 0. .104
Melanoma | DenseNet264 0863 0.658 049 069 0-10
(£ 0.020) [0.155, 0.756] [0.222, 0.714] [0.364, 1.000] [0.000, 0.333]
0.769 0.473 0.617 0.623 0.141
LIDC-IDRI | DenseNet201 0.833
(£ 0.039) [0.196, 0.769] [0.414, 0.800] [0.375, 0.857] [0.000, 0.500]

Table 8.3. Performance metrics of best performing AutoRadiomics models across
datasets, selected based on the best mean validation AUROC (with std). Test AU-
ROC, F1, Sensitivity and Specificity are displayed with 95% Cls after 1000x boot-
strapping as described in Section 4.1.8. Included is also the selected feature selection

methods.

Dataset Best Model Feature Selection | Val AUROC | Test AUROC Test F1 Test Sensitivity Test Specificity
0.782 0.902 0.731 0.664 0.922
Desmoid | Logistic Regression Boruta
(= 0.054) [0.799, 0.979] | [0.526, 0.897] |  [0.421, 0.875] [0.808, 1.000]
0.678 0.753 0.000 0.000 1.000
CRLM | Logistic Regression ANOVA ?
(= 0.143) [0.429, 1.000] | [0.000, 0.000] |  [0.000, 0.000] [1.000, 1.000]
72 72! 731 721 752
CIST SVM ANOVA 0.727 0.729 0.73 0.7 0.75
(£ 0.022) [0.577, 0.862] | [0.571, 0.857] [0.535, 0.897] [0.565, 0.923]
594 o1l 701 y .84.
Liver XGBoost ANOVA 059 0713 0-70 0.633 0845
(£ 0.105) [0.526, 0.883] | [0.485, 0.870] [0.400, 0.833] [0.667, 1.000]
. 0.862 0.922 0.840 0.735 1.000
Lipo Random Forest Boruta
(£ 0.123) [0.785, 1.000] | [0.615, 1.000] |  [0.444, 1.000] [1.000, 1.000]
0.638 0.501 0.602 0.890 0.097
Melanoma SVM ANOVA
(£ 0.165) [0.292, 0.722] | [0.348, 0.800] [0.625, 1.000] [0.000, 0.333]
4 392 .81 1. .
LIDC-IDRI XGBoost ANOVA 0456 039 0817 000 0000
(= 0.050) [0.076, 0.728] | [0.647, 0.930] |  [1.000, 1.000] [0.000, 0.500]
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AutoRadiomics Results are Reproducible
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Figure 8.10. Performance comparison between published results from AutoRa-
diomics [18] and my reproduced results by applying AutoRadiomics on the same test
set samples (the br represents the mean and the error bars are showing one standard

deviation).
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Figure 8.11. Learning curve on selected PyRadiomics Features (a) and selected
MIRP Features (b) from RPTK run. I trained a random forest classifier with 5 fold
cv on the Desmoid data. I generated this figure by using the LearningCurveDisplay
function from scikit-learn (v 1.5.0) [191]. This figures show the predictive model

performance variances related to training size.
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Figure 8.12. Learning curve on selected PyRadiomics Features (a) and selected
MIRP Features (b) from RPTK run. I trained a random forest classifier with 5 fold
cv on the CRLM data. I generated this figure by using the LearningCurveDisplay
function from scikit-learn (v 1.5.0) [191]. This figures show the predictive model

performance variances related to training size.
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Figure 8.13. Learning curve on selected PyRadiomics Features (a) and selected
MIRP Features (b) from RPTK run. I trained a random forest classifier with 5 fold
cv on the GIST data. I generated this figure by using the LearningCurveDisplay
function from scikit-learn (v 1.5.0) [191]. This figures show the predictive model

performance variances related to training size.
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Figure 8.14. Learning curve on selected PyRadiomics Features (a) and selected
MIRP Features (b) from RPTK run. I trained a random forest classifier with 5 fold cv
on the Liver data. I generated this figure by using the LearningCurveDisplay function
from scikit-learn (v 1.5.0) [191]. This figures show the predictive model performance

variances related to training size.
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Figure 8.15. Learning curve on selected PyRadiomics Features (a) and selected
MIRP Features (b) from RPTK run. I trained a random forest classifier with 5 fold cv
on the Lipo data. I generated this figure by using the LearningCurveDisplay function
from scikit-learn (v 1.5.0) [191]. This figures show the predictive model performance

variances related to training size.
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Figure 8.16. Learning curve on selected PyRadiomics Features (a) and selected
MIRP Features (b) from RPTK run. I trained a random forest classifier with 5 fold
cv on the Melanoma data. I generated this figure by using the LearningCurveDisplay
function from scikit-learn (v 1.5.0) [191]. This figures show the predictive model

performance variances related to training size.
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Figure 8.17. Learning curve on selected PyRadiomics Features (a) and selected
MIRP Features (b) from RPTK run. I trained a random forest classifier with 5 fold cv
on the LIDC-IDRI data. I generated this figure by using the LearningCurveDisplay
function from scikit-learn (v 1.5.0) [191]. This figures show the predictive model

performance variances related to training size.
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Predict Study - Predicting Immunotherapy Response

8.4 Predict Study — Predicting Immunotherapy Treat-

ment Response in Lung Cancer Patients

Table 8.4. Clinical parameters and description of the Predict cohort including the

parameter type as well as the percentage of how often this parameter was miss-

ing from the treatment start (RFA=Radiofrequenzablation, Radio.=Radiotherapy,

Chemo.=Chemotherapy, Immuno.=Immunotherapy).

Parameter Description Type Distribution Missing Rate
Sex Sex categorical male (62%), female (38%) ‘ 0%
Smoking Smoking category categorical ex (52%), current (40%), never (8%) 0%
How many packs of cigarettes §
Packyears OW MY PACKS OF CIEarettes continuous Mean: 36.87, Std: 22.66, Median: 40.00 2.74 %
were smoked per year
PD-L1 PD-L1 expression [%)] continuous Mean: 79.84, Std: 13.19, Median: 80.00 0 %
Neutrophil over Lymphocyt
NLR eutrophut over Lymphoeyte continuous Mean: 6.28, Std: 8.20, Median: 4.79 0%
ratio at therapy start
Neutrophil granulocytes
Neut concentration at therapy continuous Mean: 7.45, Std: 4.44, Median: 6.42 0%
start [cell/nl|
Lymphocyte concentration i X o
Ly continuous Mean: 1.67, Std: 1.99, Median: 1.33 0%
at therapy start [cell/nl]
ECOG ECOG Performance State ordinal 0 (42%), 1 (55%), 2 (3%) 0%
KM-Phase Contrast Agent Application categorical arterial (89%), native (8%), venous (3%) ‘ 0 %
il Tt of T1 (1%), T1b (3%), T1c (5%)
T-initial m' o :’ Rk ordinal T2 (1%), T2a (7%), T2b (7%), T2c (1%) 0%
rimary tumor
BRIy T3 (16%), T4 (51%), TX (7%)
Upper lobe right (27%), Lower lobe right (23%)
Primary tumor . . . Lower lobe left (18%), Upper lobe left (12%) .
Location of primary tumor categorical 0%
location Central right (10%), Lingula (4%), Middle lobe (3%)
Central left (3%)
Max. Diameter Maximum diameter of . o O
continuous Mean: 53.86, Std: 32.51, Median: 46.00 1.37 %
Primary tumor pulmonal primary tumor [mm]
Other tumor Other tumor manifestations at . Pulmonary (19%), Breast (11%), Lymph nodes (5%) o o
categorical 12.33 %
manifestations initially the initial stage Breast & Pulmonary (3%), other (62%)
Pleural effusion Binary pleural effusion status categorical no (70%), yes (30%) 0 %
TA (3%), TIA1 (1%), IB (3%), IIIA (3%)
Stage General disease stage ordinal IVB (45%), I1IB (3%), IVA (38%) 0 %
VIA (3%), VIB (1%)
Age at diagnosis Age at diagnosis continuous Mean: 65.82, Std: 10.99, Median: 67.00 0%
Tla (1%), T1b (8%), Tlc (4%
cT Clinical T-staging ordinal a (1%), > (8%), »C (%) 0%
T2a (10%), T2b (7%), T3 (11%), T4 (59%)
cN Clinical N-staging ordinal NO (16%), N1 (12%), N2 (37%), N3 (34%) 0%
MO (12%), M1 (4%), Mla (22%), ,
cM Clinical M-staging ordinal (12%) (4%), a (22%), 0%
Mib (26%), Mlc (36%)
Weight Weight [kg] continuous Mean: 74.64, Std: 16.06, Median: 72.00 0 %
Size Size [m] continuous Mean: 170.86, Std: 8.27, Median: 170.00 ‘ 0 %
C-reacti tein (CRP
CRP_wert_pre reactive protein ( ) continuous Mean: 35.79, Std: 55.51, Median: 15.05 1.37 %
measured pre-therapeutic [mg/L]
Hemoglobin measured . o
HB_pre continuous Mean: 13.15, Std: 1.79, Median: 13.30 0%
pre-therapeutic [g/dl]
Albumin measured i @
ALBQ_pre continuous Mean: 38.63, Std: 4.96, Median: 39.50 42.47 %
pre-therapeutic [g/L]
Lymphocytes measured .
LYMPHOA pre VHIDROCYLEs measure continuous Mean: 1.57, Std: 0.57, Median: 1.47 6.85 %
pre-therapeutic [cell/nl]
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Table 8.5. Performance comparison of radiomics, clinical, and delta features across
Tha validation AUROC is displayed as the mean of
the five fold validation AUROC plus standart deviation, the Test AUROC is the

performance of the Ensembled model from the five fold models displayed as the mean

time-points and modalities.

and CI 95% range after 1000x bootstrapping as described in Section 4.1.8. Bold are
the best performing models based on the mean validation AUROC.

Data Framework Extractor Best Model Mean Val AUROC | CI 95% Test AUROC
0.804 0.339
Timepoint 0 - Radiomics RPTK MIRP LGBM
(+/- 0.102) [0.068 — 0.629]
. . - - 0.749 0.440
Timepoint 0 - Radiomics RPTK PyRadiomics TabNet
(+/- 0.095) [0.115 - 0.796]
. . A 0.833 0.513
Timepoint 1 - Radiomics RPTK MIRP LGBM
(+/- 0.042) [0.196 — 0.818]
0.857 0.696
Timepoint 1 - Radiomics RPTK PyRadiomics LGBM
(+/- 0.047) [0.360 — 0.960]
o 0.971 0.750
Delta - Radiomics RPTK MIRP XGBoost
(4/- 0.017) [0.536 — 0.983]
Delta - Radiomics RPTK PyRadiomics XGBoost 0927 0-729
(+/- 0.049) [0.519 — 0.963]
o i 0.817 0.786
Clinical RPTK Clinical LGBM
(+/- 0.085) [0.518 — 1.000]
0.949 0.768
Delta Radiomics & Clinical RPTK MIRP & Clinical Random Forest
(+/- 0.055) [0.464 — 0.964]
0.942 0.588
Delta Radiomics & Clinical RPTK PyRadiomics & Clinical | Random Forest ?
(+/- 0.047) [0.273 — 0.889]

Table 8.6. Performance metrics of best performing AutoRadiomics models for the
Predict dataset, selected based on the best mean validation AUROC (with std). Test
AUROC, F1, Sensitivity and Specificity are displayed with 95% Cls after 1000x boot-
strapping as described in Section 4.1.8. Included is also the selected feature selection
method.

Dataset | Best Model | Feature Selection Val AUROC Test AUROC Test F1 Test Sensitivity Test Specificity
0.851 0.526 0.378 0.371 0.426
Predict | Random Forest ANOVA °
(£ 0.088) [0.204, 0.822] | [0.000, 0.667] [0.000, 0.700] [0.000, 0.800]

Table 8.7. Performance metrics of best performing deep learning models for the
Predict dataset, selected based on the best mean validation AUROC (with std). Test
AUROC, F1, Sensitivity and Specificity are displayed with 95% CIs after 1000x boot-
strapping as described in Section 4.1.8.

Dataset Best Model Val AUROC | Test AUROC | Youden Test F1 Test Sensitivity | Test Specificity
0.799 0.563 0.310 0.245 0.711
Predict ResNet18 ° 0.833
(< 0.068) [0.260, 0.880] [0.000, 0.625] |  [0.000, 0.571] [0.333, 1.000]
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Predict - Selected MIRP and Clinical Features Clustering
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features. Rows are features ordered by IBSI feature class (color bar at right); columns
are patients ordered by treatment response. Cell colors show z-score—normalized fea-
ture values. This plot should give an impression on the feature clusters from the

selected feature space which show separation of the treatment response label.
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Predict - Selected Clinical Features Clustering
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