
Dissertation

submitted to the

Combined Faulties for the Natural Sienes and for Mathematis

of the Ruperto{Carola University of Heidelberg, Germany

for the degree of

Dotor of Natural Sienes

presented by

Diplom{Physiker J�org J�akel

born in Darmstadt

Oral examination: May 14, 2003





Effetive Ations for Strongly

Interating Fermioni Systems

Referees: Prof. Dr. Christof Wetterih

Prof. Dr. Mihael G. Shmidt





E�ektive Wirkungen f�ur stark wehselwirkende

fermionishe Systeme

Zusammenfassung

Wir vergleihen vershiedene niht-st�orungstheoretishe Methoden zur Beshreibung fermionisher

Systeme, die gebundene bosonishe Zust�ande (BBS) und spontane Symmetriebrehung (SSB)

aufweisen. In einer rein fermionishen Sprahe erfordert das Eindringen in die SSB Phase Teh-

niken jenseits von St�orungstheorie und Renormierungsgruppengleihungen. Dazu ist eine Beshrei-

bung, die BBS und elementare Teilhen gleihberehtigt behandelt, besser geeignet. Die \Partielle

Bosonisierung" f�uhrt aber zu einer Willk�ur in der Wahl der BBS Felder, da diese durh die klassishe

Wirkung niht eindeutig festgelegt ist. Die Ergebnisse approximativer Rehnungen, z.B. mean �eld

theory, k�onnen aber von dieser Wahl abh�angen. Dies beshr�ankt die quantitative Aussagekraft.

Am Beispiel des Nambu{Jona-Lasinio-Modells zeigen wir, wie diese Abh�angigkeit durh geeignet

gew�ahlte Approximationen reduziert und manhmal sogar zum Vershwinden gebraht werden

kann.

Shwinger-Dyson-Gleihungen (SDE) erlauben eine Beshreibung von SSB ohne Hilfsfelder. Die

2PI-Wirkung erm�ogliht es uns, vershiedene L�osungen der SDE zu vergleihen und so die stabile zu

�nden. Diese Methode wenden wir auf eine sehs-Fermion Wehselwirkung an, die der drei-Flavor-

Instantonwehselwirkung der QCD �ahnelt. Wir �nden einen Phasen�ubergang erster Ordnung in

die hiral gebrohene Phase, aber keine stabile Phase mit gebrohener olor-Symmetrie.

Die Existenz eines elementaren skalaren bosonishen Teilhens im Standardmodell { dem Higgs

{ f�uhrt zu mehreren Fragen. Die mit fundamentalen Skalen (� M

GUT

) verglihen kleine Masse

erfordert ein extremes Ma� an Finetuning. Au�erdem ist das �

4

-Potential m�ogliherweise niht

renormierbar im strengen Sinne. Im Hinblik darauf diskutieren wir die M�oglihkeit, da� das Higgs

ein BBS aus Fermionen ist.

E�etive Ations for Strongly Interating Fermioni

Systems

Abstrat

We ompare di�erent non-perturbative methods for alulating the e�etive ation for fermioni

systems featuring bosoni bound states (BBS) and spontaneous symmetry breaking (SSB). In a

purely fermioni language proeeding into the SSB phase requires tehniques beyond perturbation

theory and renormalization group equations. Improvement omes from a desription with BBS

�elds and elementary �elds treated on equal footing. Yet, \partial bosonization" introdues an

arbitrariness as the hoie for the omposite �elds is usually not ompletely determined by the

lassial ation. Results of approximate alulations, e.g. mean �eld theory, may depend strongly

on this hoie, thus limiting their quantitative reliability. Using the Nambu{Jona-Lasinio model as

an example we demonstrate how this dependene an be redued, sometimes even be eliminated

by suitably hosen approximations.

Shwinger-Dyson equations (SDE) allow for a desription of SSB without auxiliary �elds. The 2PI

e�etive ation enables us to ompare di�erent solutions of the SDE and �nd the stable one. We

apply this method to a six-fermion interation resembling the three-avor instanton interation in

QCD. We �nd a �rst order hiral phase transition but no stable phase with broken olor symmetry.

The existene of an elementary salar boson in the Standard Model { the Higgs { raises several

questions. The smallness of its mass ompared to some fundamental sale (� M

GUT

) requires an

extreme amount of �ne-tuning. Moreover, its �

4

-potential may not be renormalizable in a strit

sense. In view of this we disuss the possibility of a Higgs as BBS of fermions.
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Chapter 1

Introdution

There are no eternal fats, as there are no absolute truths.

Friedrih Nietzshe

1.1 Bosons Made up of Fermions

Everything is Made of Fermions?

The searh for \fundamental" partiles is one of the most ambitious enterprizes

in physial researh. While it has been very suessful in terms of unovering new

partiles it has also led us to question over and over again what \fundamental" really

means. The notion \fundamental partile" has hanged with time. First it was atoms

then it was eletrons and nulei and later the latter ones were split into protons and

neutrons. Today, we are quite sure that even neutrons and protons are made up of

the more fundamental quarks. What one had been fundamental partiles beame

bound states.

Looking at Fig. 1.1 we an see that this evolution is simply like turning up the

resolution of a mirosope. At a low resolution we see nothing but a point (partile)

while at a higher resolution it exhibits struture, i.e. we an see that it is omposed of

other partiles. In partile physis the \mirosope" is a sattering experiment and

the resolution improves with smaller wavelength � �

~

E

, and therefore higher energy

E of the sattering partile. Consequently, with progress in aelerator physis, it

might turn out that some (or even all) of the partiles of the Standard Model are

not fundamental, but bound states.

What has all that to do with fermions? At the moment we are in a very pe-

uliar situation. Classifying partiles by spin (S) and statistis all partiles of the

1



2 Chapter 1. Introdution

Figure 1.1: With the exploration of smaller and smaller sales it often beame ap-

parent that partiles whih were thought to be fundamental are instead omposed

of even smaller partiles. Nevertheless, for a desription at a given sale it is often

useful to treat bound states as \fundamental" partiles, e.g. for a �rst desription of

water vapor it is a very good approximation to treat the water moleules as funda-

mental, i.e. we use an \e�etive theory" in whih the water moleules are pointlike

and have some kind of e�etive interation. However, if we want to desribe the

absorption and emission of eletromagneti waves it beomes neessary to onsider

the water moleule as omposed of atoms (infrared) and eventually the latter ones to

be omposed of eletrons and a nuleus (visible, ultraviolet). Corresponding to the

sale we probe, we have to onsider di�erent e�etive theories. This kind of sale

dependent desription is one of the main ideas behind the renormalization group

(RG) (f. Set. 2.1.2). The RG provides us with a means to alulate the ouplings

of an e�etive theory at a given sale from the ones of an e�etive theory valid at a

smaller length sale, and ultimately from the fundamental one.

\Standard Model" are either vetor bosons with S = 1 or fermions with S =

1

2

.

The only exeption is the Higgs as it is supposed to be a salar (S = 0) boson.

Although, reent experiments [1{5℄ at the �nal runs of LEP may have deteted a

Standard Model Higgs (or a supersymmetri extension of it), the evidene is still

quite shaky, leaving room for speulations. Being provoative we ould state that

so far we have not yet observed any fundamental salar boson. Hene, one ould

onjeture that the Higgs might be a bound state of fermions, more expliitly a

top-antitop bound state [6{10℄. In addition to this phenomenologial aspet, the

idea of \top-quark ondensation" might also be a way to irumvent some tehnial

problems, like the triviality of �

4

-theory (Higgs potential!) [11{15℄, paving the way

to a \renormalizable" Standard Model.

Spontaneous Symmetry Breaking

The phenomenon of spontaneous symmetry breaking (SSB) and the formation of

bosoni bound states in strongly interating fermioni systems are tightly onneted.
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First of all, aording to Goldstone's theorem [16; 17℄ it is inevitable to have

massless Spin-0 partiles, i.e. salar bosons, if we spontaneously break a ontinuous

global symmetry. In a purely fermioni theory these must be bound states. An exam-

ple for these bosons are the pseudosalar mesons of QCD, whih are the Goldstone

bosons of hiral symmetry breaking.

Seondly, it is impossible for a fermioni (Grassmannian) �eld to aquire a non-

vanishing vauum expetation value. Therefore, the simplest possible symmetry-

breaking term is a bosoni operator made up of two fermions. Thus, even for purely

fermioni theories, the phenomenon of SSB is haraterized by bosons.

Physially, we an imagine a Mexian-hat-type potential for the bosoni om-

posite operator. Depending on whether we have a loal or a global symmetry the

Goldstone bosons, orresponding to the angular exitations, may or may not be

eaten up by gauge bosons. But, in addition to those we always have the radial ex-

itations, orresponding to (usually) massive bosons. E.g. in the top ondensation

model this would be the Higgs boson. So, at this level, there is really no di�erene

to a model with elementary bosons.

Yet, there is a slight di�erene in the way the Mexian-hat is generated. For

elementary bosons we quite often simply hoose the potential to be a Mexian-hat,

whereas for fermions the generi ase is that the non-trivial minima are generated

dynamially by quantum utuations. That is why it is often referred to as dynamial

symmetry breaking.

Finally, we note that the ase where the desribed radial boson beomes massless

orresponds to a seond order phase transition. With features like universality these

speial ases are espeially interesting.

Last but not least, of ourse, there an be bound states not diretly linked to

SSB, e.g. the hydrogen atom or positronium.

A lot of Bound States { Some Models

Of ourse, a speulative model of the Higgs and hiral symmetry breaking are not

the only situations where we enounter the mehanisms desribed above.

Color superondutivity: At very high density it is expeted that the QCD

ground state is a olor superonduting phase [18{26℄. Depending on the spei�s

of temperature, number of avors et. there are several di�erent phases. Let us just

mention the olor avor loking phase haraterized by a non-vanishing expetation

value of

1

h 

a

Li

 

b

Lj

i � (Æ

ia

Æ

bj

�

1

N



Æ

ij

Æ

ab

) as an example. In this phase the SU(3)

olor

�

SU(3)

L

� SU(3)

R

is broken down to a vetorlike SU(3)

V

. Breaking global (hiral)

1

L refers to left handed, R to right handed.



4 Chapter 1. Introdution

as well as loal (olor) symmetries, we have Goldstone bosons as well as massive

gauge bosons (gluons).

Color symmetry breaking in the vauum: It was onjetured [27; 28℄ that

the QCD ground state at zero density might also have a broken olor symmetry.

In this ase the order parameter is h 

a

Li

 

b

Rj

i with the same type of expetation

value and symmetry breaking pattern as for the olor avor loking phase in olor

superondutivity. It is worth noting that the massive gauge bosons an then be

assoiated to the vetor mesons of QCD. We will investigate this possibility briey

in Chap. 6.

Chiral symmetry breaking: This is probably one of the most studied ases of

SSB [29℄. A vauum expetation value h 

a

Li

 

b

Ri

i � Æ

ab

gives a mass to the (nearly)

massless quarks. The pseudosalar mesons (pions et.) bear physial witness of this

proess.

Superondutivity: Yeah, just plain old ordinary superondutivity [30℄ in

ordinary matter like metals at temperatures of some Kelvin. It omes about due to

the formation of Cooper pairs and the ondensation a non-vanishing h  i where  

is now an ordinary eletron �eld. This gives us an example where we are at a sale of

some meV instead of several hundred MeV (hiral SSB) or even GeV (Higgs model).

1.2 Desribing Bound States

As there are plenty of systems featuring bosoni bound states we better start looking

for ways to alulate something useful. Interesting quantities are, of ourse, masses

and ouplings of the bosons, and a potential vauum expetation value.

A very useful tool to study suh quantities is the e�etive ation [17; 31; 32℄,

replaing the ation of lassial �eld theory, it allows for a simple desription of SSB,

yet it inludes quantum e�ets. Hene, this is the objet we would like to alulate.

The NJL model

Many of the problems assoiated with the desription of bound states an be studied

already in a very simple NJL

2

-type model (for only one fermion speies) with a

2

NJL stands for Nambu and Jona-Lasinio who used this model to study hiral symmetry break-

ing [29℄. Due to its simpliity this and similar models are still very popular, e.g. a sizable part of

the studies on olor superondutivity is based on this model [18{22; 24; 26℄.
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hirally invariant pointlike four-fermion interation:

S

F

=

Z

d

4

x

�

 i�= (1.1)

+

1

2

�

�

[(  )

2

� ( 

5

 )

2

℄�

1

2

�

V

[( 

�

 )

2

℄�

1

2

�

A

[( 

�



5

 )

2

℄

�

:

Depending on the value of

�!

� = (�

�

; �

V

; �

A

) we are in a symmetri phase or in

a phase with broken hiral symmetry. As it turns out, the ritial

�!

�

rit

separating

these two phases is an interesting but relatively easy to alulate quantity.

Arbitrary Parameters { Fierz Ambiguity

The simplest alulation whih omes into ones mind is probably a mean �eld al-

ulation. We will apply this method (well-known from statistial physis) to the

model Eq. (1.1) at the beginning of Chap. 3. We �nd that there is a basi ambiguity

onneted to the possibility to perform Fierz transformations (FT) on the initial La-

grangian { we will refer to it as Fierz ambiguity. This Fierz ambiguity an inuene

the value of the ritial oupling quite dramatially, severly limiting the appliability

of MFT [33; 34℄.

The origin of the Fierz ambiguity an be understood quite well when looking at

the model of Eq. (1.1). Due to the Fierz identity (s. App. B for our onventions on

-matries)

�

( 

�

 )

2

� ( 

�



5

 )

2

�

+ 2

�

(  )

2

� ( 

5

 )

2

�

= 0 (1.2)

only two of the quarti ouplings are independent and we write

�

�

= �

�

+ 2�

V

; �

V

= (1� )�

V

; �

A

= �

V

: (1.3)

Where  parametrizes the \symmetry", and the � are \invariant" ouplings.

In a naive way one would like to ombine the fermions in the four-fermion inter-

ation of Eq. (1.1) into pairs and interpret those as bosons, e.g. one would like to

take the term multiplying �

A

pair it into two  

�



5

 � A

�

and hene interpret this

term as an interation (mass term) for \axial vetor bosons". However, using Eq.

(1.2) we an now transform this term to zero, eliminating the \axial vetor bosons".

As this pairing is the basi idea of MFT, an ambiguity seems inevitable.

Auxiliary Fields

There are several standard methods (perturbation theory, RG equations, Shwinger-

Dyson equations (SDE)) whih allow us to alulate the ritial oupling without any
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referene to a pairing into bosons. The results are then naturally unambiguous. Yet,

these desriptions have their problems, too. Perturbation theory is unable to desribe

SSB at all, the RG alulation annot be extended into the broken phase without

onsiderable alulational diÆulty and SDE's beyond the simplest approximation

beome quite diÆult to solve, too. At least part of the problem is that we lak

an intuitive understanding of the momentum dependene of ompliated fermioni

operators.

Looking at the example of mesons again it is known that an e�etive theory

with bosoni meson �elds interating with themselves and the quarks works quite

well without having very ompliated terms in the e�etive Lagrangian. In addition,

bosoni �elds allow for a good understanding of SSB. Thus, it seems a reasonable

step to introdue auxiliary �elds to desribe the bound states. Formalizing the naive

pairing proedure, partial bosonization [35{39℄ (f. Chap. 4) leads to a model with

massive bosoni �elds and Yukawa-type interations, but no four-fermion intera-

tions,

S

B

=

Z

d

4

x

�

i �= + �

2

�

�

?

�+

�

2

V

2

V

�

V

�

+

�

2

A

2

A

�

A

�

(1.4)

+h

�

�

 

�

1 + 

5

2

�

� �  

�

1� 

5

2

�

�

?

 

�

� h

V

 

�

V

�

 � h

A

 

�



5

A

�

 

�

:

The identi�ation

�

2

�

=

h

2

�

2�

�

; �

2

V

=

h

2

V

�

V

; �

2

A

=

h

2

A

�

A

(1.5)

makes this model equivalent to the NJL-type model (1.1).

However, due to the Fierz identity (1.2) the ouplings in (1.4) are not unique,

bringing bak the ambiguity of MFT. Indeed, MFT appears as a simple approxima-

tion to this model, negleting all bosoni utuations.

This is not the only situation in physis where an arbitrary parameter (in our

ase ) appears in alulations. Prominent examples are the renormalization point �

or the gauge �xing � in gauge theories. Ultimately, in an exat alulation physial

quantities should not depend on suh a parameter. Nevertheless, approximate al-

ulations usually do. Improvement in the approximation often tends to redue the

dependene on suh parameters. Sometimes, there are even speial approximation

shemes where we an ahieve independene of suh parameters, e.g. every order of

perturbation theory provides suh a sheme for the gauge �xing parameter. Beside

the pratial advantages, �nding suh an approximation sheme also shows that

there is nothing fundamentally wrong with the method in question. From another

point of view, onsidering an approximation whih is not independent of the ar-

bitrary parameter, we an say that the spread of the results under a variation of
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the arbitrary parameter gives us an estimate of the minimal unertainty of a given

approximation.

We will �nd a very simple example of an approximation whih is independent

of the Fierz parameter [40; 41℄. Interestingly, it turns out that this introdues the

onept of sale dependent degrees of freedom. Tehnially we use the sale depen-

dene of our auxiliary �elds to keep the form of the (e�etive ation) simple [42℄.

However, on a deeper level we would like to interpret this simpliity as a �rst step

to a desription with the \right" degrees of freedom at every sale.

Unfortunately, there is a huge number of possible �eld rede�nitions and in simple

approximations, e.g. so alled loal potential approximation (LPA) [43{45℄, it is a

priori not lear whih is the \orret" one. A riterium an be obtained only by

the onsideration of terms with derivatives of the �elds. In the end this leaves us to

hoose between high algebrai (and/or numerial) diÆulty and a \physial guess".

2PI E�etive Ation

In view of the many problems onneted with auxiliary �elds it seems prudent

to look for alternatives. One possibility is the 2PI e�etive ation [46{48℄. After

the introdution of soures for the omposite operators bilinear in the �elds we

an omit the introdution of auxiliary �elds and diretly perform an additional

Legendre transformation with respet to the soures of the omposite operators.

For purely fermioni theories it turns out that this desription is redundant and

the dependene on the propagators is suÆient. Hene, we an omit the dependene

on the �elds, leaving us with a desription ompletely in terms of bosoni variables

(the propagators). Nevertheless, this method is naturally not bothered by the Fierz

ambiguity as we do not introdue auxiliary �elds. In general the soures in question

do not need to be loal. However, for an interpretation as a potential this is useful,

but even with this restritions the 2PI e�etive ation has its own problems. Simple

approximations are often unbounded from below raising serious questions about the

interpretation of the 2PI e�etive ation.

Nevertheless, we do not want to leave this model without at least one not om-

pletely trivial appliation. We will investigate an interation resembling the three-

avor three-olor instanton interation of QCD. This six-fermion interation provides

for a mehanism to have a �rst order hiral phase transition. Furthermore, it was

onjetured to have a olor-symmetry breaking vauum [27; 28; 49℄.
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Outline

As the e�etive ation is the entral objet of our interest, we will briey review its

basi de�nitions and some simple ways to alulate it in Chap. 2. In Chap. 3 we will

present some very simple alulations of the ritial oupling of the model Eq. (1.1).

In partiular, we will perform a MFT alulation and enounter the Fierz ambiguity.

Chap. 4 introdues the onept of partial bosonization, and lari�es the origin of

the Fierz ambiguity. A desription with sale-dependent bosoni degrees of freedom

allow us to ure the Fierz ambiguity for the RG alulation in Chap. 5. The following

Chap. 6 turns to the onept of the 2PI e�etive ation to irumvent the problems of

partial bosonization. As an appliation of the 2PI e�etive ation we investigate an

instanton-like interation. In partiular, we fous on hiral symmetry breaking and

a possible breaking of olor symmetry by a non-vanishing olor-otet ondensate.

Finally, in Chap. 7 we will return to the question of a possible omposite Higgs. In

partiular, we are interested in the possibility of a non-perturbative renormalizable

\Standard Model". We will only sketh some of the ideas and possible problems,

aordingly this will be more like an outlook. Chap. 8 summarizes and onludes

this work.



Chapter 2

1PI E�etive ation

The e�etive ation � [17; 31; 32℄ is a very useful tool in quantum �eld theory

(QFT). It allows us to alulate interesting quantities like vauum expetation val-

ues, propagators and orrelation funtions more or less by simply taking (funtional)

derivatives. Indeed, we an promote a lassial equation to full quantum status by

replaing the ation by the e�etive ation S ! � and the �elds by their expetation

values �! h�i. E.g. the equation of motion beomes

Æ�[h�i℄

Æh�i

= 0: (2.1)

Knowledge of the e�etive ation is equivalent to knowledge of the full quantum

theory. From this one an already dedue that alulating the e�etive ation is a

quite diÆult task and an usually be done only approximately.

Before going into more detail let us briey review the de�nition of the

(1PI) e�etive ation

1

, and some of its basi properties. In the following we will

write

~

� for the utuating quantum �eld and � = h

~

�i. We suppress all indies. In-

deed, � might also ontain fermioni degrees of freedom. A typial � might therefore

look like (�; �

?

; V

�

; A

�

; : : : ;  

i

;  

j

: : :) with several bosoni and fermioni speies. If

we keep trak of the order of �elds and di�erential operators, no problems arise from

this notation.

Moreover, we work in Eulidean spae. That is why we have a minus sign in the

path integrals instead of an i in front of the ation. The transition to Eulidean

time is usually done via a Wik rotation. We do not want to go into detail, here,

however, for fermions there are some slight diÆulties beause the ation is no longer

neessarily Hermitian [50; 51℄.

1

1PI abbreviates one partile irreduible (f. Fig. 2.1).

9
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(a) (b)

Figure 2.1: An example of a diagram whih is 1PI 2.1(a) and one whih is not 2.1(b).

The latter one an be split into two by utting the line between the two bubbles.

The generating funtional (or partition funtion if one prefers the statistial

mehanis language) of a quantum �eld theory is de�ned by the following funtional

integral

Z[j℄ =

Z

D

~

� exp(�S[

~

�℄ + j

~

�): (2.2)

Here, S[

~

�℄ is the lassial ation and j is an external soure. We reall that in our

matrix notation j

~

� =

R

d

d

xj(x)

~

�(x).

Using the generating funtional, expetation values of �elds (and produts of

�elds) an be alulated by taking derivatives with respet to j

�[j℄(q) = h

~

�(q)i =

R

D

~

�

~

�(q) exp(�S[

~

�℄ + j

~

�)

R

D

~

� exp(�S[

~

�℄ + j

~

�)

=

1

Z[j℄

ÆZ[j℄

Æj(q)

=

ÆW [j℄

Æj(q)

; (2.3)

with

W [j℄ = ln(Z[j℄): (2.4)

Physial values are obtained at vanishing external soures e.g. �[0℄.

The (1PI) e�etive ation is now the Legendre transform of W ,

�[�℄ = �W [j[�℄℄ + j[�℄� (2.5)

and depends on the expetation value of the �eld. Combining (2.2), (2.4), (2.5) and

shifting the integration variable to

^

� =

~

� � � we obtain the following very useful

formula

�[�℄ = � ln

Z

D

^

� exp

�

�S[�+

^

�℄ +

Æ�[�℄

Æ�

^

�

�

; (2.6)

sine

Æ�[�℄

Æ�

= j: (2.7)

We note that due to the shift of the integration variable h

^

�i = 0. Finally, we

would like to omment on the notion of one partile irreduibility (1PI). This is
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�[�℄ = S[�℄ + + + +

� � �

Figure 2.2: Perturbative expansion of the e�etive ation. To be expliit we hoose a

theory whih has a quarti interation. The propagators are propagators in a bak-

ground �eld �. For the example of a theory with a

�

12

~

�

4

interation the propagator

in the bakground �eld would be (p

2

+m

2

+ ��

2

)

�1

.

explained most easily in terms of Feynman diagrams. A diagram is one partile

irreduible if it is impossible to split it into two parts by utting an internal line (f.

Fig 2.1). The e�etive ation is now the generating funtional of the 1PI diagrams.

We stress this point beause later in Chap. 6.1 we will enounter a 2PI e�etive

ation. For a proof of this statement and further details about the 1PI e�etive

ation we refer to textbooks as e.g. [51{54℄.

2.1 Calulating the E�etive Ation

In the following we will shortly present some of the standard methods to alulate

the e�etive ation. Before we start let us mention that in this setion we will not

explain mean �eld theory as it will later (Chap. 4) be shown to be a one-loop

approximation of a modi�ed theory with auxiliary �elds. Instead, we will explain

by example a ommon method to obtain it in the next hapter and postpone a

somewhat more thorough disussion until we have introdued partial bosonization

in Chap. 4.

2.1.1 Loop Expansion

The loop expansion is a perturbative tehnique to alulate the e�etive ation. It

an be shown that the e�etive ation is nothing but the sum of all 1PI vauum

diagrams in a bakground �eld � as depited in Fig. 2.2 An easy way to obtain this

expansion is to make a saddle-point approximation of Eq. (2.6). In lowest non-trivial

order one obtains,

�[�℄ = S[�℄ +

1

2

STr ln(S

(2)

[�℄) + � � � ; (2.8)

where

S

(2)

[�℄ =

�!

Æ

Æ�

T

S[�℄

 �

Æ

Æ�

: (2.9)
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In the diagrammati language (Fig. 2.2) the seond term of Eq. (2.8) orresponds to

the one-loop diagram, and we have omitted the higher loop diagrams in Eq. (2.8).

The supertrae (STr) omes around due to our notation where bosoni as well as

fermioni degrees of freedom are ontained in �. However, its e�et is very simple

as it only provides a minus sign in the fermioni setor of the matrix.

An advantage of perturbation theory is that it an usually be onstruted to

preserve symmetries order by order in the expansion. However, as we will see in the

next hapter it has severe shortomings if we want to go into the non-perturbative

domain (hene the name) where the oupling is not small. Indeed, we will see that

it is unable to desribe the interesting phenomenon of SSB.

2.1.2 Renormalization Group Equations

Originally devised as a tool to hide the in�nities of quantum �eld theory the renor-

malization group has shown to give us a muh deeper insight into the sale depen-

dene of physis. Espeially, the understanding of ritial phenomena has pro�ted

immensely. In addition, in the last �fteen years or so the renormalization group

has been established as a powerful tool for doing atual alulations in the non-

perturbative regime. It is the latter aspet on whih we want to fous.

The basi idea of renormalization group equations is to introdue sale dependent

e�etive ouplings. Roughly speaking we look at the physial system of interest with

a mirosope with varying resolution. E.g. onsider a lattie where a partile with

spin sits at eah lattie site. With a very high resolution we an see every partile

and an measure eah spin independently. However, shifting to a lower resolution

things beome a little bit blurry and we an only resolve regions whih already

ontain several partiles. What we then measure is something like an e�etive spin

(more or less the sum of the individual spins) of several partiles ombined. Indeed,

the �rst papers [55{58℄ on renormalization group equations onsidered spin models

like the Ising model.

There is a wide variety of means for putting this intuitive piture into a mathe-

matial form. A very onvenient piture to do this is the path integral formulation.

For a theory with an UV uto� � one an write the partition funtion as

Z =

Y

p��

Z

d�(p) exp(�S[�℄); (2.10)

where the symboli notation shall indiate that we integrate only over momentum

modes with p � �.

We an now implement the idea of dereasing the resolution of our mirosope by

integrating out modes in a small momentum shell [�

0

= ����;�℄. This proedure
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averages over the small length sales we do not want to see,

Z =

Y

p��

0

Z

d�(p) exp(�S

0

[�℄) (2.11)

with

exp(�S

0

[�℄) =

Y

�

0

�p��

Z

d�(p) exp(�S[�℄): (2.12)

Where the so-alled Wilson e�etive ation S

0

is now integrated only over a smaller

range of momenta. Considering a �

0

whih is in�nitesimally lose to � one an derive

an evolution equation for S

0

in the form of a di�erential equation.

Following this general proedure (often followed by a re-saling p !

�

�

0

p to

reover the initial momentum range) allows to derive a variety of equations for dif-

ferent physial quantities like the Hamilton operator, orrelation funtions, oupling

onstants et.. In addition, we do not need to restrit ourselves to the sharp momen-

tum uto� indiated above. Indeed, a smooth momentum uto� is often muh more

onvenient, as the sharp one has a tendeny to introdue non-loalities in position

spae.

All equations derived in this way are exat, i.e. if they ould be solved exatly

they would give the same results for physial quantities. Hene, they are alled

exat renormalization group equations (ERGE). In priniple they are all equivalent.

Nevertheless, in pratial omputations where we have to use approximations they

usually di�er. For a review and a omparison s. [59℄.

Now, let us go diretly to a formulation for the e�etive ation or, more pre-

isely, the e�etive average ation as introdued in [60{65℄. Let us begin by noting

that for the e�etive ation the running uto� �

0

beomes an infrared uto�. This

is due to the fat that the e�etive ation ontains the modes whih are already

integrated out, thus those in the range [�

0

;�℄. �

0

beomes a lower bound for the

modes inluded in �

�

0

and therefore an infrared uto�. We remark that �

�

0

de-

pends both on the IR uto� �

0

as well as on the physial UV uto� �. The �rst is

quite lear sine �

0

simply measures how far we have progressed in integrating out

modes. The dependene on the UV uto� is atually more physial. E.g. if we want

to desribe interating partiles on a lattie a ontinuum desription might be quite

good for length sales larger than the lattie spaing. However, roughly speaking

this model does not ontain any momentum modes higher than the inverse lattie

spaing. Plaing the same partiles on latties with di�erent spaing will obviously

produe di�erent results. Thus, we have a dependene on the UV uto� (for some

more details s. also App. C). Indeed, only in very speial theories is it possible to

send the UV uto� to in�nity and still obtain �nite results. These are, of ourse, the

renormalizable theories. In this ase we an have � =1.
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A big advantage of the formulation in terms of the e�etive ation is that �

�

0

has a diret physial interpretation. Having inluded all quantum utuations above

�

0

we an now view �

�

0

as the \mirosopi ation" on the sale �

0

where we have

averaged over volumes of a size � �

0(�d)

. Hene, the name e�etive average ation or

oarse-grained e�etive ation. In an ideal desription we would be able to observe

the hange of the relevant degrees of freedom from one sale to another, e.g. at very

small sales we would have quark and gluon degrees of freedom while at a larger sale

we observe mesons and nuleons, and at even larger sales we would have atoms or

moleules, putting the basi idea of the renormalization group into full e�et.

Let us now get started and derive an expliit equation. To establish more learly

its funtion as an IR uto� we write k instead of �

0

or use the onvenient t = ln(k).

In order to ahieve a suppression of the low-momentum modes in the funtional

integral we add an e�etive momentum-dependent mass term

�S

k

[�℄ =

1

2

Z

p

�

T

(�p)R

k

(p)�(p) (2.13)

to the initial ation. The idea is to add a high mass to the momentum modes p � k

and a small or zero mass to those with p� k, therefore e�etively removing (or at

least suppressing) the low-momentum modes in the funtional integral. To render

this more preise we demand the following onstraints for the funtion R

k

(p),

1: lim

p

2

=k

2

!0

R

k

(p) > 0; 2: lim

p

2

=k

2

!1

R

k

(p) = 0; 3: lim

k!1

R

k

(p)!1: (2.14)

The �rst ondition is the statement that we want to suppress the low momentum

modes by an additional mass term. Having a mass term for the zero-momentum

modes has another very nie e�et as it removes all IR divergenes produed by

massless partiles. The seond ondition ensures that the high-momentum modes

(high ompared to k) are not suppressed and that the uto� is removed in the limit

k! 0. As we will later see when we have the expliit expression for the ow equation

it is useful to hoose a uto� that vanishes suÆiently fast (e.g. exponentially) in

the UV to avoid UV divergenes. The third ondition ensures that at k ! 1 no

modes are integrated out. However, a omment is in order as we want to send k to

in�nity. Originally, we wanted to suppress all modes with p < k. But, if we have a

�nite physial uto� � there are no modes with p > �. Thus, one might want to

rewrite ondition 3 as

3

0

: lim

k!�

R

k

(p)!1;

and indeed this is a quite ommon form given and used e.g. in [66{68℄. However, both

onditions are equivalent as we an use every bijetive funtion k

0

(k) whih maps

[0;�℄ into [0;1℄ to re-sale k suh that either 3 or 3

0

is ful�lled. Using a smooth

uto� the notion of modes being inluded or not inluded is anyway somewhat
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blurry. With a little bit of disretion in the hoie of k

0

(k) we do not distort the

piture of integrating out modes down to the sale k very muh for k < �, making

the hoie between 3 and 3

0

a matter of onveniene

2

. In this work we will hoose

the former sine it makes some of the analytial expressions easier. More important

for the interpretation of k as the oarse graining with modes p . k not yet being

integrated out is that the shift between small values of R

k

and large values of R

k

ours roughly at p � k. This is not a neessary ondition to de�ne the ow equation

but useful for the interpretation. We leave it at the somewhat rough statement

4: R

k

(p) large for p < k; R

k

(p) small for p > k: (2.15)

Having talked so muh about the uto� let us �nally give an expliit example of a

very onvenient one introdued in [69℄,

R

k

(p) = Z

k

(1� p

2

)�

�

1�

p

2

k

2

�

: (2.16)

Here we have inluded a fator of the wave funtion renormalization Z

k

. This hoie

allows us to write

Z

k

p

2

+R

k

(p) = Z

k

P (p); (2.17)

and guarantees that the reparametrization invariane of physial quantities �! ��

is respeted.

As disussed in the last few paragraphs the term (2.13) ats more or less like

an additional mass term. In onsequene we might get onerned about violating

symmetries like hiral or gauge symmetry. In priniple there are two possible ways

to takle this problem. The �rst is to onstrut a uto� funtion R

k

(p) whih ful�lls

Eq. (2.14) but does not violate the symmetry. This is relatively simple for hiral

fermions [61; 70{72℄. An example is

R

k

(p) = Z

k

p=

 

s

k

2

p

2

� 1

!

�(1�

p

2

k

2

); (2.18)

whih is more or less (2.16) adapted to hiral fermions. The seond strategy (usually

used for gauge theories) is to aept the fat that during the ow the symmetry might

be violated by the uto� and is ompletely symmetri only at the endpoint when

the uto� vanishes. Nevertheless, the symmetry is only hidden during the ow and

reveals itself in modi�ed Ward-Takashi identities [73{77℄. Taking these into aount

it is possible to onstrut an invariant ow.

Adding the uto� to the initial ation we get a set of di�erent ations

parametrized by the sale k,

S

k

[�℄ = S[�℄ + �S

k

[�℄: (2.19)

2

Some additional details onerning di�erent possible UV regularizations are provided in

App. C.
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Correspondingly, we obtain

W

k

[j℄ = ln(Z

k

[j℄) =

Z

D

~

� exp(�S

k

[

~

�℄ + j

~

�) (2.20)

and

� = h

~

�i =

�!

Æ

Æj

W

k

[j℄: (2.21)

Now, we want to introdue the e�etive average ation by a modi�ed Legendre

transform

�

k

[�℄ = �W

k

[j[�℄℄ + j[�℄���S

k

[�℄; (2.22)

where we have substrated �S

k

[�℄ in order to remove the uto� e�ets from �

k

.

This is partiularly lear in the ase k !1. Consider the formula analogous to Eq.

(2.6),

�

k

= � ln

Z

D

^

� exp

�

�S[�+

^

�℄ +

Æ�

k

[�℄

Æ�

^

���S

k

[

^

�℄

�

: (2.23)

Due to the third ondition in (2.14) the additional term exp(��S

k

[

^

�℄) in the fun-

tional integral ats like a funtional Æ(

^

�)-funtion for k !1 and we obtain

�

1

[�℄ = S[�℄; (2.24)

the mirosopi ation without the uto�.

Sine the uto� vanishes for k! 0 (seond ondition) we have in addition

�

0

[�℄ = �[�℄: (2.25)

Thus, the e�etive average ation interpolates between the lassial or bare ation

and the full e�etive ation (f. Fig. 2.4).

Now, let us ome to the �nal piee, the ERGE whih governs the evolution from

k =1 to k = 0. Taking a derivative with respet to k,

�

�k

(�

k

[�℄) = �(�

k

W

k

)[j℄� (�

k

j)

�!

Æ

Æj

W

k

[j℄ + (�

k

j)�� �

k

�S

k

[�℄ (2.26)

= h�

k

�S

k

[

~

�℄i � �

k

�S

k

[�℄

=

1

2

�

h

~

�

T

(�

k

R

k

)

~

�i � h

~

�

T

i(�

k

R

k

)h

~

�i

�

=

1

2

�

STr

h

(h

~

�

~

�

T

i � h

~

�ih

~

�

T

i)�

k

R

k

i�

:

Expressing this with

W

(2)

k

=

�!

Æ

Æj

�!

Æ

Æj

T

W

k

= h

~

�

~

�

T

i � h

~

�ih

~

�

T

i: (2.27)
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gives

�

k

�

k

=

1

2

STr(W

(2)

k

�

k

R

k

): (2.28)

Sine

j

k

= (�

k

+�S

k

)

 �

Æ

Æ�

(2.29)

we have

1 =

 

�!

Æ

Æj

�

T

! 

�!

Æ

Æ�

T

j

!

= W

(2)

k

(�

(2)

k

+R

k

) (2.30)

with

�

(2)

k

=

�!

Æ

Æ�

T

�

k

 �

Æ

Æ�

: (2.31)

Inserting this into Eq. (2.28) yields, �nally, the ow equation

�

k

�

k

=

1

2

STr

n

(�

(2)

k

+R

k

)

�1

�

k

R

k

o

: (2.32)

De�ning the operator

~

�

t

= (�

t

R

k

)

�

�R

k

(2.33)

we an obtain an even more ompat form

�

t

�

k

=

1

2

STr[

~

�

t

ln(�

(2)

k

+R

k

)℄: (2.34)

This looks quite similar to Eq. (2.8), and indeed if we neglet the hange of �

k

on

the right hand side, integrate and use (2.24) at k =1; t = �1, we reover (2.8).

In short, substituting �

(2)

k

+R

k

for S

(2)

and writing it in a di�erential form turns

the one-loop expression (2.8) into an exat equation. The one-loop form of Eqs.

(2.32), (2.34) is depited in Fig. 2.3.

In addition to being exat, Eq. (2.32) has two more nie features. First, due to

the presene of R

k

the expression is IR �nite. Seond, for R

k

dereasing suÆiently

fast in the UV, �

k

R

k

provides an UV regularization. The ow equation is therefore

ompletely �nite. Of ourse, those divergenes must still be inluded in some way.

While the IR divergenes might reappear in the integration of the ow equation for

k ! 0, the UV divergenes have been absorbed in the initial ondition for some

�nite k. Speifying the initial onditions of the ow at some �nite k gives a speial

regularization sheme alled the ERGE sheme (f. App. C.3).

Having a ow equation is only part of the game. Sine it is a funtional di�erential

equation, it is in most ases impossible to solve it analytially, and we remember

one again that this would amount to solving the quantum �eld theory in question.
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�

k

�

k

=

�

k

=

Figure 2.3: Depition of the ow equation (2.32). The line with the shaded irle is

the full �eld dependent and IR regularized propagator �

(2)

k

+ R

k

. The dot denotes

the insertion of �

k

R

k

. Taking funtional derivatives with respet to the �eld � adds

external legs, i.e. we obtain ow equations for the propagators and verties. An

example for the ow of the propagator is shown on the right side. The shaded irle

denotes the full k-dependent vertex.

So, it will be impossible or at least diÆult to avoid using approximations in most

of the physially relevant ases.

A onsistent and systemati approah is the use of trunations. In a trunation we

restrit the spae of all possible ations (�

k

), spanned by all possible ombinations of

�eld operators ompatible with the symmetries to a (very often �nite dimensional)

subspae given by a subset of operators. The approximate ow equation now is the

projetion of the ow onto this subspae (f. Fig. 2.4). From this we an alulate

ow equations for the oeÆients (generalized ouplings) in front of the operators.

We stress that the approximate ow is only driven by the operators in the subset.

An easy, nevertheless usually quite tedious, way to improve the approximation and

to hek for errors is to enlarge the subspae. Doing this suessively we may �nd

a \onvergene" of the results, and we may be tempted to interpret this as the

approah to the right result. Still, we should be areful with this as it may well

be, that we have indeed onvergene, but onvergene to the wrong result. This is

usually the ase when we have missed a relevant operator. As the number of all

possible linearly independent operators is in�nite we an always add operators but

still miss the relevant one.

From a physis point of view it is lear that a good approximation should inlude

all relevant degrees of freedom, i.e. the orresponding operators. However, as we

disussed in the introdution the relevant degrees of freedom an hange with sale,

making it neessary to adapt the desription during the ow. For our ase of interest

a step in this diretion was taken in [42℄ and we will disuss it at length in Chap. 5.

Finally, let us ome to the role the uto� plays in approximations of the ow

equation. By onstrution, an exat solution has a �

0

= � independent of the uto�.

But, the trajetory �

k

is not independent of the uto�. As depited in Fig. 2.4 it may

well be that a ertain hoie of IR uto� may bring the real trajetory loser to the

subspae de�ning our trunation, therefore usually improving the approximation. A

systemati study to exploit this possibility has been put forward in [68; 69; 78{81℄.
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S

�

Figure 2.4: RG ow in the spae of all ation funtionals. The thik line is the exat

ow in the (here 3-dimensional) spae, the thin line is the approximate ow in the

2-dimensional trunation. We point out that the approximate ow does, of ourse,

not oinide with the projetion of the exat ow on the subspae of the trunation

(dotted line), as the latter is driven also by the operator in the third diretion. The

red set of lines, shows the same but for an \optimized" IR regulator. The exat ows

oinide only at the start- and endpoint. The optimized ow is generally loser to

the plane of the trunation, and the approximate ow is improved.

A more traditional approah would be to use the IR uto� dependene as a measure

of unertainty, s. e.g. [82℄.

2.1.3 Shwinger-Dyson Equations

Shwinger-Dyson equations (SDE) [83; 84℄ (for a review and some appliations s. [85{

87℄) were one of the �rst really non-perturbative tools in quantum �eld theory. For

a theory with polynomial interations up to �

m

they provide an (in�nite) hierarhy

of equations whih onnet a 1PI Greens funtion of order n (nth derivative of the

e�etive ation) on the one hand with a set of 1PI Greens funtions up to order

(n+m) on the other hand.

In priniple they are a onsequene of the fat, that the funtional integral over

a total derivative vanishes, if the funtional vanishes at the boundary (like in normal

alulus),

0 =

Z

D�

�!

Æ

Æ�

exp(�S[�℄ + j�) (2.35)

=

Z

D�

 

�

�!

Æ S[�℄

Æ�

� j

!

exp(�S[�℄ + j�)
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=

+ +

Figure 2.5: SDE for the propagator (in �

4

-theory). Full propagators and verties are

depited with a shaded irle while bare quantities are represented by a dot. This

equation is exat. However, it involves the full 4-point funtion whih is given by

another SDE. A simple approximation would be to neglet the last diagram on the

right hand side giving us a losed equation.

=

 

�!

Æ S

Æ�

[

Æ

Æj

℄� j

!

Z[j℄;

where + is for bosons and � is for fermions, respetively. Examining the last line

in Eq. (2.35) it beomes lear that the SDE's are the Euler Lagrange equations of

quantum �eld theory.

Due to the appearane of S on the right hand side of Eq. (2.35) we have always

exatly one bare vertex in every expression ontributing to the right hand side. A

typial SDE therefore looks like in Fig. 2.5.

In its basi form the SDE allow us to alulate only the derivatives of the e�etive

ation. At �rst sight this may not seem like a major weakness, but in situations

where we have multiple solutions for the SDE we have no way to ompare them

without knowledge of the value of the e�etive ation. However, the ase of multiple

solutions is one of the most interesting ones, as it usually signals the possibility for

spontaneous symmetry breaking. In Chap. 6 we will disuss the 2PI e�etive ation

[46{48℄ as a remedy to this problem.

As in the ase of the ERGE most of the time we are unable to solve the omplete

set of SDE. A popular approximation sheme is to neglet all 1PI Greens funtions

starting from a ertain order. This gives a losed set of integral equations. More

generally, similar to a trunation for an ERGE, one an restrit the spae of all

possible � and hene its derivatives to a subspae.

On the exat level the RG and SD approahes are equivalent in the sense that the

propagator and higher N-point funtions alulated using the ow equation (2.32)

are also solutions of the SDE [74; 88℄. Nevertheless, one approximations are used

the results will, in general, di�er.



Chapter 3

A Simple Example: The NJL

Model

In this hapter we want to get a grasp of the problems assoiated with the intro-

dution of bosoni omposite �elds by studying the model, Eq. (1.1) in some very

simple approximations. In partiular, we use this as an opportunity to introdue

MFT.

3.1 Critial Couplings from Mean Field Theory

A mean-�eld alulation treats the fermioni utuations in a homogenous bak-

ground of fermion bilinears

~

� = h 

�

1�

5

2

�

 i,

~

�

?

= �h 

�

1+

5

2

�

 i,

~

V

�

= h 

�

 i

and

~

A

�

= h 

�



5

 i. It seems straightforward to replae in the four-fermion inter-

ation in Eq. (1.1) one fator by the bosoni mean �eld, i.e.

(  )

2

� ( 

5

 )

2

! 2

~

� (1 + 

5

) � 2

~

�

?

 (1� 

5

) ;

( 

�

 )

2

! 2

~

V

�

 

�

 ;

( 

�



5

 )

2

! 2

~

A

�

 

�



5

 : (3.1)

The partition funtion beomes then a funtional of

~

�,

~

V

�

,

~

A

�

,

Z[

~

�;

~

V ;

~

A℄ =

Z

D D exp

�

�S[ ;  ;

~

�;

~

V ;

~

A℄

�

; (3.2)

21
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where S is given by (1.1), with the replaements (3.1). Self onsisteny for the

expetation values of the fermion bilinears requires

~

� =

1

2

h (1� 

5

) i =

1

2

�

�1

�

�

�

~

�

?

lnZ; (3.3)

~

V

�

= h 

�

 i = �

�1

V

�

�

~

V

�

lnZ;

and similar for the other bilinear

~

A

�

. Chiral symmetry breaking by a nonzero

~

�

requires that the \�eld equation" (3.3) has a nontrivial solution. We note that

Z[

~

�;

~

V ;

~

A℄ orresponds to a one-loop expression for the fermioni utuations in

a bosoni bakground. With �

(F)

1

= � lnZ the �eld equation is equivalent to an

extremum of

�

(F)

=

Z

d

4

x

�

2�

�

~

�

?

~

�+

1

2

�

V

~

V

�

~

V

�

+

1

2

�

A

~

A

�

~

A

�

�

+ �

(F)

1

: (3.4)

A disussion of spontaneous symmetry breaking in MFT amounts therefore to a

alulation of the minima of �

(F)

.

As we already noted in the introdution this alulation an be done equivalently

in the Yukawa theory (1.4), (1.5). The mapping of the bosoni �elds reads � =

(h

�

=�

2

�

)

~

�, V

�

= (h

V

=�

2

V

)

~

V

�

, A

�

= (h

A

=�

2

A

)

~

A

�

. Keeping the bosoni �elds �xed and

performing the remaining Gaussian fermioni funtional integral yields preisely

Eq. (3.4). Mean �eld theory therefore orresponds preisely to an evaluation of the

e�etive ation in the partially bosonized Yukawa model in a limit where the bosoni

utuations are negleted.

We want to ompute here the ritial ouplings (more preisely, the ritial line

in the plane of ouplings �

�

, �

V

) for whih a nonzero expetation value � 6= 0

indiates the onset of spontaneous symmetry breaking. For this purpose we alulate

the mass term � �

?

� in �

(F)

and look when it turns negative. This de�nes the ritial

ouplings. We assume here a situation where the expetation values of other bosoni

�elds like V

�

or A

�

vanish in the relevant range of ouplings. It is then suÆient to

evaluate �

(F)

for V

�

= A

�

= 0.

In a diagrammati language Gaussian integration over the fermioni variables

orresponds to evaluating the diagram of Fig. 3.1. We de�ne our model with a

�xed ultraviolet momentum uto� q

2

< �

2

, suh that the MFT result beomes

(v

4

= 1=(32�

2

), x = q

2

):

�

(F)

1

= �4v

4

Z

�

2

0

dx x ln(x + h

2

�

�

?

�): (3.5)

From this one �nds the mean �eld e�etive ation

�

(F)

= �

(F)

0

+ �

(F)

1

(3.6)

=

�

�

2

�

� 4v

4

h

2

�

�

2

�

�

?

�+ onst +O

�

(�

?

�)

2

�

;
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p p

Figure 3.1: Bosoni mass orretion due to fermion utuations. Fermioni lines are

solid with an arrow, bosoni or \mean �eld lines" � h 

�

1�

5

2

�

 i are dashed. For

use in Chap. 5 we have indiated an external momentum p. A MFT alulation

orresponds to an evaluation for p = 0.

where we have expanded in powers of �. The mass term turns negative if

2�

2

�

h

2

�

�

2

< 8v

4

; (3.7)

As it should be this result only depends on the ratio h

2

�

=�

2

�

= 2�

�

.

We now want to determine the ritial line in the plane of invariant ouplings

�

�

, �

V

from the ondition (3.7), i.e.

�

rit

�

=

1

8v

4

�

2

: (3.8)

Using the relation (1.3) we infer a linear dependene of �

rit

�

on the arbitrary un-

physial parameter  whenever �

V

6= 0

�

rit

�

=

1

8v

4

�

2

� 2�

V

: (3.9)

(For numerial values see Tabs. 3.1 and 3.2). This dependene is a major shortoming

of MFT. We will refer to it as \Fierz ambiguity". The Fierz ambiguity does not

only a�et the ritial ouplings but also inuenes the values of masses, e�etive

ouplings et..

The origin of the Fierz ambiguity an be traed bak to the treatment of u-

tuations. A FT of the type (1.2) hanges the e�etive mean �eld. In a symboli

language a FT maps ( 

a

 

a

)( 

b

 

b

)! ( 

a

 

b

)( 

b

 

a

) where the brakets denote on-

tration over spinor indies and matries � 

�

or � 

5

are omitted. A mean �eld

 

a

 

a

, appears after the FT as  

a

 

b

. From the viewpoint of the utuations one

integrates out di�erent utuating �elds before and after the FT. It is therefore no

surprise that all results depend on .
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Approximation Chap.  = 0 0.25 0.5 0.75 1

MFT 3.1 39.48 38.48 37.48 36.48 35.48

Ferm. RG 3.3 41.54 41.54 41.54 41.54 41.54

Bos. RG 4.2 36.83 36.88 36.95 37.02 37.12

Adapted Bos. RG 5.1 41.54 41.54 41.54 41.54 41.54

SD 3.4 37.48 37.48 37.48 37.48 37.48

Table 3.1: Critial values �

rit

�

for �

V

= 2 and for various values of the unphysial

parameter  (with � = 1). In antiipation of Chaps. 4, 5 we give also results for

the (adapted) bosoni RG. Progressing from MFT to the bosoni RG and adapted

bosoni RG the dependene on  dereases as more and more diagrams are inluded.

The Shwinger-Dyson result is independent of  but ontains no vertex orretions

in ontrast to the RG alulations.

Approximation Chap.  = 0 0.25 0.5 0.75 1

MFT 3.1 39.48 29.48 19.48 9.48 -0.52

Ferm. RG 3.3 14.62 14.62 14.62 14.62 14.62

Bos. RG 4.2 15.44 13.39 13.45 15.55 19.46

Adapted Bos. RG 5.1 14.62 14.62 14.62 14.62 14.62

SD 3.4 19.48 19.48 19.48 19.48 19.48

Table 3.2: The same

1

as in Tab. 3.1 but with �

V

= 20.

3.2 Perturbation Theory

In order to ure the unpleasant dependene of the MFT result on  we will inlude

part of the bosoni utuations in Chaps. 4 and 5. Some guidane for the level of

approximations needed an be gained from perturbation theory in the fermioni

language. Sine the four-fermion vertex is uniquely haraterized by �

�

and �

V

the perturbative result must be independent of  at any given loop order. The

lowest-order orretions to the four-fermion ouplings are obtained by expanding

the one-loop expression for the e�etive ation Eq. (2.8)

2

��

(1-loop)

=

1

2

STr

h

ln

�

S

(2)

�i

= �Tr

h

ln

�

S

(2)

FF

�i

(3.10)

1

The negative sign for the ritial oupling at  = 1 in the MFT alulation means that the

system is in the broken phase for any positive value of �

�

in this alulation.

2

We remember that in the full S

(2)

matrix we have a term from the Æ

2

=Æ Æ derivative (S

(2)

FF

)

and a term from Æ

2

=Æ Æ , aounting for a fator of 2 in the language with the normal trae.

Moreover, the trae inludes momentum integration and summation over internal indies.
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Figure 3.2: Perturbative orretion to the four-fermion interation. Solid lines with

an arrow denote fermioni lines. The letters in the diagrams are given to visualize

the ways in whih the fermioni operators are ontrated, e.g. the �rst diagram in

the seond row results from a term [( 

a

 

a

)( 



 



)℄[( 



 



)( 

b

 

b

)℄. Evaluating the

diagrams for k-dependent \full" verties and IR regularized propagators the above

set of diagrams gives us the ow equation of Set. 3.3.

up to order (  )

2

. For this it is useful to deompose S

(2)

aording to

S

(2)

= P + F ; (3.11)

into a �eld-independent part P (inverse popagator) and a �eld-dependent part F .

The RHS an then be expanded as follows,
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(3.12)
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�

+ � � � :

This amounts to an expansion in powers of �elds and we an ompare the oeÆients

of the four-fermion terms with the ouplings spei�ed by Eq. (1.1). Only the seond

term on the RHS ontributes to order (  )

2

. The orresponding graphs with two

verties are shown in Fig. 3.2. From

��

(1-loop)

= v

4

�

2

�
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:

we an read o� the orretions ��

�

, ��

V

and ��

A

to the oupling onstants. In

order to establish that our result is independent of  we use the freedom of FT to

bring our results into a standard form, suh that

��

A

��

V

=



1�

. Inserting next the
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invariant variables (1.3) leads us to:

��

�

= 4v

4

�

2

(�

2

�

+ 4�

�

�

V

+ 3�

2

V

); (3.14)

��

V

= 2v

4

�

2

(�

�

+ �

V

)

2

:

In ontrast to MFT the result does not depend on .

The perturbative result, Eq. (3.14), always leads to �nite orretions to the

oupling onstants. Remembering that in the fermioni language the onset of SSB is

marked by a divergene of the oupling onstants, it beomes lear that we will never

get SSB in perturbation theory. No ritial ouplings an be alulated. This is a

severe shortoming of perturbation theory whih annot be overome by alulating

higher loop orders. Only an in�nite number of loops an give SSB. In the next setion

we establish how a renormalization group treatment an overome this diÆulty

without enountering the Fierz ambiguity of MFT. A alulation of the ritial

oupling beomes feasible. Nevertheless, even this RG treatment has its limitations

one the ouplings diverge. In partiular, it does not allow us to penetrate the phase

with SSB. In Chaps. 4 and 5 this shortoming will be ured by a RG treatment in the

partially bosonized language. In partiular, we will see in Chap. 5 whih diagrams

are needed in order to maintain the independene of results on  in analogy to

perturbation theory.

3.3 Renormalization Group for Fermioni Inter-

ations

Let us now turn to an RG equation. More expliitly the ERGE for the e�etive

average ation disussed in Chap. 2. Negleting all hange on the RHS leads to the

perturbative result of the previous setion. Consequently, in this approximation we

annot observe SSB. For a better approximation we restrit �

k

to the terms spei�ed

in Eq. (1.1) but take all ouplings to be expliitly k-dependent. In the ation (1.1)

we have only loal interations. Expressed in momentum spae the four-fermion

interations have no momentum dependene. This is often referred to as the loal

potential approximation (LPA) [43{45℄.

Performing the deomposition into a �eld-dependent part and a �eld-independent

part as in the previous setion,

�

(2)

k

+R

k

= P

k

+ F

k

(3.15)
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we obtain an expansion of the ow equation (2.34)
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This is in omplete analogy to the previous setion, only written in a di�erential form

and with k-dependent verties. We obtain a set of ordinary di�erential equations for

the ouplings:

�
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= �8v

4

l

(F );4
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(s)k
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(�
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�;k

+ �
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; (3.17)

in agreement with [82℄ where the same model has been studied. The threshold fun-

tions l

(F );4

1

(for our onventions f. App. C.2 or [67℄) originate from the momentum

spae integration over the IR regulated propagators and replae the fator

�

2

2

in Eq.

(3.14). For our atual alulation we use a linear uto�

3

[78℄ and adapt the thresh-

old funtions to our setting with �xed momentum uto� q

2

< �

2

in App. C.2. The

dependene on s = k

2

=�

2

beomes relevant only for k > � whereas for k < � one

has onstants l

(F );4

1

= 1=2. Although useful for the omparison of the RG with MFT

or perturbation theory, the expliit k-dependene of the threshold funtions makes

the �xed momentum uto� somewhat umbersome. An alternative is to use the so

alled ERGE sheme for the UV regularization. The basi idea (for details s. App.

C.3) is to use standard threshold funtions without a UV uto� in the momentum

integral and implement the UV regularization by speifying the initial onditions for

�

k

at some �nite k = �. This has the advantage that threshold funtions without a

�nite UV uto� are not expliitly k-dependent, greatly simplifying numerial alu-

lations. The prie to pay is that it is in general impossible to ompare non-universal

quantities like ritial ouplings for di�erent hoies of the IR uto� funtion R

k

(p).

The fermioni ow equations

4

(3.17) do not depend on . In a diagrammati lan-

guage we again have evaluated the diagrams of Fig. 5.2 but now with k-dependent

verties. In the RG formulation we only go a tiny step �k, and reinsert the re-

sulting ouplings (one-loop diagrams) before we do the next step. This leads to a

resummation of loops. Sine Eq. (3.17) is now nonlinear (quadrati terms on the

RHS) the ouplings an and do diverge for a �nite k if the initial ouplings are large

enough. Therefore we observe the onset of SSB and �nd a ritial oupling. Sine

3

The threshold funtions depend on the preise hoie of the uto�. For the very simple trun-

ation used in this setion this dependene an atually be absorbed by a suitable resaling of k,

f. App. C.2.

4

As disussed above, the perturbative result Eq. (3.14) an be reovered from Eq. (3.17) if we

neglet the k-dependene of the ouplings on the RHS and perform the t-integration.
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Eq. (3.17) is invariant this ritial oupling does not depend on ! Values for the

ritial oupling obtained by numerially solving Eq. (3.17) an be found in Tabs.

3.1 and 3.2.

The next step in improving this alulation in the fermioni language would be

to take the momentum dependene of the ouplings into aount (e.g. [89℄) or to

inlude higher orders of the fermioni �elds into the trunation. This seems quite

ompliated and at �rst sight we have no physial guess of what is relevant. The

renormalization group treatment of the bosoni formulation in Chap. 4 seems muh

more promising in this respet.

3.4 Gap Equation

Let us �nally turn to the SDE as the last method disussed in Chap. 2. For the

model Eq. (1.1) the SDE, approximated to lowest order, is depited in Fig. 3.3. It is

a losed equation sine only the bare four-fermion vertex appears. (Only higher order

terms involve the full four-fermion vertex.) We write the full fermioni propagator

G

F

as

G

�1

F

(p) = G

�1

F0

(p) + �

F

(p) (3.18)

with the free propagator G

F0

and self energy �

F

. Using this one obtains a gap

equation for the self energy whih an be solved self onsistently. To simplify the

disussion we make an ansatz for the self energy:

�

F

=M

F



5

; (3.19)

where the e�etive fermion mass M

F

obeys the gap equation

M

F

= 8v

4

�

�

�

+ �

V

�

Z

�

2

0

dx x

M

F

x +M

2

F

: (3.20)

The onset for nontrivial solutions determines the ritial ouplings:

�

�

�

+ �

V

�

rit

=

1

8v

4

�

2

: (3.21)

This result is shown in Tabs. 3.1, 3.2 and does not depend on , as expeted for a

fermioni alulation. We observe that the MFT result for the �

rit

�

oinides with

the SD approah for a partiular hoie  = 1=2. However, in general MFT is not

equivalent to the lowest-order SDE. This an be seen by omputing also the ritial

oupling for the onset of SSB in the vetor hannel. The MFT and SD results do not

oinide for the hoie  = 1=2. This beomes evident if we use a vetorlike ansatz

instead of Eq. (3.19) for the self-energy:

�

F

= V=: (3.22)
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=

+

Figure 3.3: Diagrammati representation of the lowest order Shwinger-Dyson equa-

tions for the fermioni model Eq. (1.1). The shaded irles depit the full propagator.

Using this ansatz for the self energy we �nd for the onset of non trivial solutions

[�

�

+ 3�

V

℄

rit

V

=

1

2v

4

�

2

: (3.23)

This is di�erent from the MFT result

[�

V

℄

rit,MFT

V

=

1

4v

4

�

2

(1� )

(3.24)

obtained from Eq. (3.3) by setting

~

� =

~

A

�

= 0. Again it would be possible to �nd a

hoie for  whih makes both results equal. But, in general, this will not be  = 1=2.

We note that in this hannel the dependene of the MFT result is even worse than

in the salar hannel.

At last, let us note that MFT and the SDE gap equation share a nie feature,

both allow us to proeed into the region of broken symmetry. The self onsisteny

onditions (3.3) and (3.20) are valid for non-trivial solutions and hene �nite values

of the bosoni ondensate, whereas the simple ow equation (3.17) breaks down (the

ouplings beome in�nite) when we approah the phase with broken symmetry.



Chapter 4

Partial Bosonization I: Basi Idea

The MFT alulation introdues "mean �elds" omposed of fermion - antifermion

(or fermion - fermion) bilinears. This is motivated by the fat that in many physial

systems the fermions are not the only relevant degrees of freedom at low energies.

Bosoni bound states beome important and may ondense. Examples are Cooper

pairs in superondutivity or mesons in QCD. For a detailed desription of the

interplay between fermioni and omposite bosoni utuations it seems appropriate

to treat both on equal footing by introduing expliit �elds for the relevant omposite

bosons. This will also shed more light on the status of MFT.

4.1 Calulating the Bosonized Ation

Amethod for introduing the desired omposite �elds is partial bosonization [35{39℄,

sometimes also referred to as a Hubbard Stratonovih transformation. Regardless of

the name, in priniple it is nothing else but the insertion of a niely written fator

of unity in the funtional integral for the partition funtion.

4.1.1 A Toy Model Bosonization (d = 0)

Before going into the details, let us demonstrate the idea on a 0-dimensional toy

model. In 0 dimensions the �eld variable �(p) is replaed by a simple - or Grassmann

number x depending on whether we deal with fermions or bosons

1

. To be expliit

let us onsider an \ation"

S(x) =

1

2

x

T

Mx +

�

2

(x

T

Sx)

2

(4.1)

1

Of ourse, if x is a Grassmann number it is neessary to have several di�erent omponents x

i

in order to have non-trivial interations.

30
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where M and S are matries simulating the mass and kineti terms (M), and the

spin struture of the interations (S). Sine we live in 0 dimensions the momentum

or position spae integral is trivial, i.e. absent. This ation models a massive �eld

with an inverse propagatorM and a quarti interation with oupling strength �. In

the following we want to introdue an auxiliary \omposite" �eld y for the operator,

O

S

(x) = �

h

m

2

x

T

Sx; (4.2)

where we have introdued the for the moment arbitrary onstants h, m for later

onveniene. To study a omposite operator O

S

(x) it is useful to introdue a soure

term kO

S

(x) for this omposite operator in addition to the ordinary soure term jx.

The funtional integral over the �eld variables beomes an ordinary integral over x,

and the partition funtion reads,

Z(j; k) =

Z

dx exp(�S(x) + jx+ kO

S

(x) +

a

2

k

2

); (4.3)

where we have used the freedom to add a �eld independent term quadrati in k to

the ation.

Using the translation invariane of the integral we an obtain the following rather

trivial identity,

1 = N

Z

dy exp(�

m

2

2

y

2

) = N

Z

dy exp(�

m

2

2

(y � O

S

(x) + d)

2

); (4.4)

where N is nothing but a normalization onstant N =

�

R

dy exp(�

m

2

2

y

2

)

�

�1

and d

is for the moment arbitrary, but will be determined later. Inserting this under the

integral in (4.3) yields,

Z(j;

^

k) = N

Z

dxdy exp(�

^

S(x; y) + jx+

^

ky); (4.5)

^

S(x; y) =

1

2

x

T

Mx +

�

2

(x

T

Sx)

2

+ k

h

m

2

x

T

Sx +

a

2

k

2

+

m

2

2

y

2

+hyx

T

Sx+

1

2

h

2

m

2

(x

T

Sx)

2

+m

2

dy + hdx

T

Sx +

m

2

d

2

2

+

^

ky:

The �rst line looks promising, as it is the partition funtion for a theory with two

\�elds" x, y and an ation

^

S(x; y). The seond line is still a mess whih over and

above depends expliitly on the soures k and

^

k. However, remembering that we have

introdued several arbitrary parameters we an hoose those to our onveniene,

a = �

1

m

2

; d = �

k

m

2

;

^

k = k; (4.6)
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simplifying

^

S(x; y) =

1

2

x

T

Mx +

1

2

�

�+

h

2

m

2

�

(x

T

Sx)

2

+

m

2

2

y

2

+ hyx

T

Sx: (4.7)

Finally, employing the hoie

h

2

m

2

= ��; (4.8)

anels all quarti interations of x, leaving us with a mass term for the \omposite"

�eld y, a Yukawa-type interation between y and x in addition to the propagator

term x

T

Mx for the \elementary" �eld x,

^

S(x; y) =

1

2

x

T

Mx +

m

2

2

y

2

+ hyx

T

Sx: (4.9)

This also explains why we have introdued the onstants h and m in the normaliza-

tion of O

S

[x℄, Eq. (4.2).

Having aomplished the \partial bosonization" of our 0-dimensional model we

would like to omment on some rather tehnial points:

1. Physially it is lear that with respet to the symmetries y should have the

same transformation properties as the omposite operator O

S

(x). From a more

tehnial point of view this is neessary as we would otherwise be unable to

perform the shift in the integration variable in Eq. (4.4).

2. In the derivation given above we did not speify if x is bosoni or fermioni.

We an use the same proedure to introdue omposites made up of fermions

or bosons. However, we should be areful. If the integral in (4.3) is fermioni, it

is onvergent for all possible hoies of �, beause of the rules of Grassmannian

integration. The integral over the auxiliary �eld y, Eq. (4.4), is only onvergent

for m

2

> 0. This gives us the ondition that � < 0, in order to render every-

thing �nite. For bosons, however, a � < 0 leads to a divergene in Eq. (4.3).

So, naively our bosonization proedure works only for fermions and a ertain

region of the oupling onstant. Although it is possible to irumvent these

naive arguments by an integration along the omplex axis, any interpretation

of y as a bound state is still awkward. Therefore, we will restrit ourselves to

stable potentials of the omposite �eld (s. below), i.e. the integration over the

omposite is onvergent.

3. It is not neessary that the integration over the auxiliary �eld is Gaussian as

in Eq. (4.4). Indeed, we an replae the term �

m

2

2

y

2

by any potential �V (y)

as long as,

V (y) > ; lim

jyj!1

V (y)

(ln(y))

2

!1; (4.10)
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i.e. V (y) is bounded from below and grows suÆiently fast for y ! 1. This

allows us to absorb also higher order interation as e.g. a term ��(x

T

Sx)

4

by

a term �

m

8

h

4

y

4

in V (y). In general,

�F (O

S

(x))! �F (O

S

(x)) + F (O

S

(x)� y); (4.11)

suh that the purely fermioni terms are anelled. Of ourse, this leaves us

with non-linear Yukawa ouplings, as e.g. � y

3

x

2

and other ompliated inter-

ations � y

2

x

4

or � yx

6

.

4. As an be seen from (4.11) we an also treat terms linear in the omposite op-

erator O

S

(x), removing e.g. all parts � x

T

Sx from

1

2

x

T

Mx. A typial example

for this would be the translation of a fermioni mass term m  into a soure

term j� for a boson orresponding to   .

5. Although it is the most ommon ase, it is not neessary that the omposite

operators that we want to bosonize are made up of exatly two �eld operators.

In priniple, they an ontain an arbitrary number of �elds. The omposites

an even be fermioni.

6. Using the translation invariane of the integral as in Eq. (4.4) is the simplest

but not the only possible way to obtain an identity useful for the introdution

of omposite �elds. In general, any identity

1 = N exp(F (O

S

(x)))

Z

dy exp(�V (x; y)); (4.12)

an be used to anel a part F (O

S

(x)) in the initial ation. However, the diret

interpretation y � O

S

(x) will usually be lost. Of ourse the V (x; y) in Eq.

(4.12) is far from unique. One possibility is always V (x; y) = F (O

S

(x)� y) as

obtained in (4.11). In pratie it quite diÆult to �nd a V (x; y) with a suitably

simple form like V (x; y) � xy + V

0

(y).

7. Sometimes, it might seem useful to add some form of interation, e.g. � y

4

,

between the omposite �elds to the bosonized ation (4.9). We an then use

the argument of 6 in a bakward way to determine what kind of (higher order)

interations this would introdue into the initial unbosonized ation.

8. We an reover the initial ation by performing the integration over the aux-

iliary �eld y,

exp(�S(x)) =

Z

dy exp(�

^

S(x; y)): (4.13)
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4.1.2 The Fierz Ambiguity

Already in this simple model we an get a grasp how the Fierz ambiguity arises. Let

us take a look at the \four-fermion interation" in Eq. (4.1),

�

2

(x

T

Sx)

2

=

�

2

S

i

1

i

2

S

i

3

i

4

x

i

1

x

i

2

x

i

3

x

i

4

=

�

2

(S 
 S)

i

1

i

2

i

3

i

4

x

i

1

x

i

2

x

i

3

x

i

4

(4.14)

=

1

2

�

i

1

i

2

i

3

i

4

x

i

1

x

i

2

x

i

3

x

i

4

;

where the LHS de�nes �. We an now permute the x

i

, e.g. let us exhange x

i

2

and

x

i

4

,

�

i

1

i

2

i

3

i

4

x

i

1

x

i

2

x

i

3

x

i

4

= ��

i

1

i

2

i

3

i

4

x

i

1

x

i

4

x

i

3

x

i

2

= �

0

i

1

i

2

i

3

i

4

x

i

1

x

i

2

x

i

3

x

i

4

; (4.15)

where

�

0

i

1

i

2

i

3

i

4

= ��

i

1

i

4

i

3

i

2

; (4.16)

and the sign is + for bosons and � for fermions, respetively. Now, let us assume

that �

0

has a deomposition (this assumption is nearly always ful�lled),

�

0

= �

TT

0

(T 
 T

0

) 6= �(S 
 S): (4.17)

Aordingly, we would bosonize the RHS of Eq. (4.15) with �elds orresponding to

the operators O

T

(x) and the oupling strengths �

TT

0

. Hene, we obtain a di�erent

set of omposite �elds and oupling strengths for the idential ation. In general,

we an perform an arbitrary permutation of the x

i

, and we an obtain not only two

but several di�erent bosonized ations. This is even worse for higher order (e.g. x

6

)

interations.

Comparing Eq. (4.17) with the Fierz identity Eq. (B.5) it beomes lear that an

exhange of �elds like in Eq. (4.15) is a Fierz transformation. Sine the bosonized

ation may look quite di�erent, it is no big surprise that simple approximations

might yield di�erent results. This is what we all \Fierz Ambiguity".

One might wonder about the fat that di�erent �, �

0

desribe the same (un-

bosonized) ation. For fermions this is quite easy to understand. Due to the Grass-

mann identity x

i

x

j

= �x

j

x

i

only the ompletely antisymmetri parts of � give

non-vanishing ontributions to the ation. Hene, all

� =

^

� + � (4.18)

yield idential ation, as long as � is a sum of terms whih are symmetri in at least

two indies. If we want, we an hoose

^

� to be ompletely antisymmetri. Any Fierz

transformation desribed above an be obtained by adding a suitable hosen �. The

problem is that a non-vanishing � usually does not give a vanishing ontribution in

the partially bosonized ation. As there is great freedom in hoosing � we an get a

nearly arbitrary bosonized ation. For bosons the story is essentially the same, only

one has to replae symmetri by antisymmetri and vie versa.
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4.1.3 The Case d > 0, MFT Revisited

It is straightforward to generalize the proedure desribed in the previous setion to

the ase of d > 0. Indeed, the hange is more or less only a matter of semantis, as

we replae funtions by funtionals and integration by funtional integration,

F ( )! F [ ℄; d! D: (4.19)

To demonstrate this let us repeat the proedure for the ation (1.1)

2

. Introduing

bosoni �elds for the omposite operators orresponding to salar, vetor and axial

vetor bosons,

O

�

[ ℄ =

h

�

2�

2

�

 (1� 

5

) = O

y

�

?

[ ℄; O

V

[ ℄ =

h

V

�

2

V

 

�

 ; O

A

[ ℄ =

h

A

�

2

A

 

�



5

 

(4.20)

we obtain,

Z =

Z

D D exp (�S[ ℄) =

Z

D D D�DV

�

DA

�

N

�

N

V

N

A

exp (�S[ ℄) (4.21)

with

N

�

= exp

�

�

Z

x

�

2

�

�

�

?

+

h

�

2�

2

�

 (1 + 

5

) 

��

��

h

�

2�

2

�

 (1� 

5

) 

��

;

N

V

= exp

�

�

Z

x

�

2

V

2

�

V

�

�

h

V

�

2

V
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��

V

�

�

h

V

�

2

V

 

�

 

��

;

N

A

= exp

�

�

Z

x

�

2

A

2

�

A

�

�

h

A

�

2

A
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5
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�

�

h

A

�

2

A

 

�



5

 

��

: (4.22)

Colleting the terms in the exponentials and using Eq. (1.5) as the equivalent to Eq.

(4.8), the four-fermion interation is anelled. As expeted, it is now replaed by

mass terms for the bosons and Yukawa ouplings between bosons and fermions as

given by the expression (1.4). We note, that the bosons do not yet have a non-trivial

kineti term and the propagator is simply

1

�

2

.

Having arrived at the partially bosonized ation (1.4) for our model (1.1) we

an use it to gain new insight into MFT. The ation Eq. (1.4) is quadrati in the

fermioni �elds, hene the funtional integral over the fermioni degrees of freedom

is Gaussian and an be done in one step. As we have seen in the previous hapter

this leads exatly to the MFT results. More preisely, we understand now that for

di�erent hoies of  the MFT treatment leaves out di�erent bosoni utuations.

In this ontext we note that the ondition (4.10) restrits the possible ouplings

to �

�

; �

V

; �

A

> 0. In the invariant variables this restrition translates to �

�

; �

V

> 0

and for  it implies 0 <  < 1.

2

For simpliity we skip the introdution of bosoni soures.
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Inidentally, we note that in the ase of a four-fermion interation we have an

alternative to Eq. (4.13) to reover the initial ation from the partially bosonized

one. Instead of integrating over the bosoni auxiliary �elds we an simply solve the

lassial �eld equations for the bosoni �elds in terms of the fermioni �elds and

reinsert them in the partially bosonized ation. Starting from Eq. (1.4) this returns

us to Eq. (1.1).

The ruial advantage of the bosoni formulation is that it an easily be gener-

alized. For example, the bosoni bound states beome dynamial �elds if we allow

for appropriate kineti terms in the trunation, i.e.

��

kin

=

Z

d

4

xfZ

�

�

�

�

?

�

�

�+

Z

V

4

V

��

V

��

+

Z

A

4

A

��

A

��

+

Z

V

2�

V

(�

�

V

�

)

2

+

Z

A

2�

A

(�

�

A

�

)

2

�

(4.23)

with

V

��

= �

�

V

�

� �

�

V

�

; A

��

= �

�

A

�

� �

�

A

�

: (4.24)

Also spontaneous symmetry breaking an be expliitly studied if we replae �

2

�

�

?

�

by an e�etive potential U(�

?

�) whih may have a minimum for � 6= 0. This ap-

proah has been followed in previous studies [90{93℄. We remark that for those terms

to be present in the e�etive ation it is not neessary for them to be present in

the initial (bosonized) ation. They naturally reeive non-vanishing orretions by

loop diagrams. E.g. the kineti terms (4.23) get a orretion from the diagram de-

pited in Fig. 3.1 with non-zero external momentum. Nevertheless, it is instrutive

to investigate how suh terms would look like in the unbosonized language. For the

potential terms this has already been disussed in Set. 4.1.1, i.e. Eqs. (4.11), (4.12),

for the kineti (derivative) terms we will do this in the next setion.

4.1.4 Beyond Pointlike Interations

0

So far our bosonization proedure seems relatively simple, and it is. However, we

should mention that above we have bosonized only the very speial ase of a pointlike,

i.e. loal four-fermion interation

3

,

Z

x

�	(x)	(x)	(x)	(x) =

Z

p

1

;p

2

;p

3

;p

4

�	(p

1

)	(p

2

)	(p

4

)	(p

3

)Æ(p

1

+ p

2

+ p

3

+ p

4

): (4.25)

0

This setion disusses some details needed in Set. 5.4, and an also be read then.

3

In this setion we suppress all internal indies. In partiular indies distinguishing between

 and  . � is a matrix with four suh indies. All problems onneted with the internal indies

are ompletely analogous to the previous setions. Therefore, we allow ourselves to be somewhat

sloppy onerning the internal indies, simplifying the notation.
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2

Figure 4.1: Typial diagram ontributing to an e�etive four-fermion interation

like in Eq. (4.25) in QCD. The solid lines denote fermions with propagator P

�1

F

,

the wiggled lines gluons with propagator P

�1

B

. The labelled arrows denote the mo-

mentum ow. The diagram suggests that the ontribution �

R

q

P

�1

F

(q)P

�1

F

(q+ p

1

�

p

3

)P

�1

B

(q+p

1

)P

�1

B

(q�p

2

) to the e�etive four-fermion interations is not a onstant

but depends, at least on some ombination of the external momenta p

1

, p

2

, p

3

, p

4

.

This is by no means the most general form of a four-fermion interation. Giving up

loality, � an beome an arbitrary

4

funtion of the four momentum variables,

�! �(p

1

; p

2

; p

3

; p

4

): (4.26)

At �rst, giving up loality sounds like a big step not to be treated lightly. How-

ever, we should remember, that we frequently use those four- and multi-fermion

interations not as a fundamental interation but to model an e�etive interation

at some intermediate sale. An example are the four-fermion interations used to

model QCD at low energies. As an example, a diagram ontributing to lowest order

is depited in Fig. 4.1.

So, what an we do about the bosonization of those awfully ompliated inter-

ations? In the previous setion we have onsidered loal operators of the form (C

is a onstant matrix in the spae of internal indies),

O[	℄(x) = 	

T

(x)C	(x) =

Z

x;y

	

T

(y)C	(z)Æ(x� y)Æ(x� z) =

Z

p

O[	℄(p) exp(ipx);

(4.27)

with

O[	℄(p) =

Z

q

1

;q

2

	

T

(q

1

)C	(q

2

)Æ(q

1

+ q

2

� p): (4.28)

Keeping in mind our physial piture of a bound state, we �nd that (4.27) is

very restritive. Indeed, for a physial bound state we would expet that the

partiles of whih the bound state is omposed are usually not at the same

4

Of ourse, it must have the right transformation properties under Lorentz transformations.
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plae, but smeared out over a ertain region of spae. Therefore, we replae

Æ(x� y)Æ(x� z)! ~g(x� y; x� z) in Eq. (4.27), i.e. the \elementary partiles" need

no longer be loated exatly at x but they an be somewhat distributed around x.

In a momentum spae formulation we �nd,

O[	℄(p) = hG(p)

Z

p

1

;p

2

	

T

(p

1

)C	(p

2

)g(p

1

; p

2

)Æ(p

1

+ p

2

� p): (4.29)

establishing that the momentum p of the omposite operator is the sum, p = p

1

+p

2

,

of the momenta of the \elementary partiles", as it must be for a bound state. The

funtion g(p

1

; p

2

) is the so alled (amputated) Bethe-Salpeter wave funtion [66; 94℄.

The funtion hG(p) is a generalization of the fator

h

m

2

in Eq. (4.2), and it serves

the same purpose namely, to obtain a simple form with Yukawa oupling � h while

keeping the diret relation �=̂O[	℄ between the bosoni �elds � and the omposite

operator O[	℄, as we will see below.

Proeeding along the lines of the previous setions we insert a funtional integral

1 = N

Z

D� exp(�

Z

p

1

2

�

T

(�p)G

�1

(p

2

)�(p)): (4.30)

Shifting the funtional integral by the operator (4.29) we �nd that we an absorb a

four-fermion interation of the following form,

�(p

1

; p

2

; p

3

; p

4

) � h

2

g(p
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; p

2
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(4.31)

in a ontribution

S
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[	; �℄=
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2

)

�
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(4.32)

to the partially bosonized ation. It is lear that G(s) plays the role of the bosoni

propagator. Hene, G(s) should have an appropriate pole struture in the omplex

s-plane, e.g.

G(s) �

1

m

2

+ s

: (4.33)

Let us summarize this in the following properties:

1. Eq. (4.31) with the pole struture given by (4.33) is the most general momen-

tum struture for the four-fermion interation � � we an absorb in a single

bosoni �eld and an ation quadrati in the bosons. We an only bosonize

four-fermion interations fatorizing into two pairs of momenta. Usually, on-

tributions to � like the one depited in Fig. 4.1 do not fatorize ompletely,

therefore bosonization is usually only an approximation. On the other hand

fatorization of the four-fermion interation signals the onset of physial bound

states and an be heked numerially [64℄.
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2. Permutation of the �elds (orresponding to Fierz transformations) permute

the momentum variables on the RHS of Eq. (4.31). This allows us to

absorb momentum strutures with poles in the t- respetively u-hannels

(t = (p

1

� p

3

)

2

= (p

2

� p

4

)

2

, u = (p

1

� p

4

)

2

= (p

2

� p

3

)

2

, s, t, u are the Man-

delstam variables).

3. Turning the argument of 2. around, we an determine the \orret" Fierz

transformation by an examination of the momentum struture (poles!).

Sine it might help us to resolve the whole mess of the Fierz ambiguity, let

us illustrate the third point by alulating an example. In addition this will also

demonstrate how a momentum dependene of the four-fermion interation and a

wave funtion renormalization for the omposite bosons are onneted.

Starting from the ation (1.1) extended by the kineti terms (4.23) let us alulate

the orresponding purely fermioni ation. For simpliity we take Z

V

= Z

A

= h

V

=

h

A

= 0, i.e. we have no vetor and axial vetor bosons. In momentum spae we then

have,
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:

After the usual shift in the integration variable we an perform the Gaussian inte-

gration over the bosoni �elds, removing the �rst term on the RHS of Eq. (4.34).

From the seond term we an read of the four-fermion interation,

�
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:

(4.35)
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In partiular, the four-fermion interation � only depends on the Mandelstam

variable s, while it is onstant in t and u.

An FT permutes �p

2

and p

3

. After relabelling the integration indies we �nd,

�

�

(p

1

; p

2

; p

3

; p

4

) = 0; (4.36)
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:

First of all these oupling do not fatorize in funtions depending only on p

1

; p

2

and

p

3

; p

4

respetively. Seondly, they have a pole in t whih annot be diretly absorbed

by bosonization. Therefore, this is not the \right" FT. A similar alulation for the

vetor and axial vetor bosons would have resulted in four-fermion interations de-

pending on s in the vetor and axial vetor hannels, respetively. While after an FT

we would have interations in all hannels, salar, vetor and axial vetor, but again

with the \wrong" dependene on t whih annot be absorbed into bosons. Roughly

speaking we have the following reipe, if the four-fermion interation depends on s,

bosonize, else if it depends on t FT exatly one and then bosonize.

4.2 Bosoni RG ow

Having talked at length about how we an obtain the partially bosonized ation

Eq. (1.4) it is time to put it to some use. Let us start with an RG alulation in

a very simple trunation. The ow equations in the bosoni language are obtained

in omplete analogy with the fermioni formulation. In this setion we restrit the

disussion to a \pointlike" trunation as given by Eq. (1.4) with k-dependent ou-

plings. We will see (Chap. 5) that we reprodue the result of the last setion in this

approximation if we take are of the fat that new fermioni interations are gener-

ated by the ow and have to be absorbed by an appropriate k-dependent rede�nition

of the bosoni �elds.

It is instrutive to neglet in a �rst step all bosoni utuations by setting all

bosoni entries in the propagator matrix P

�1

equal to zero. This removes all di-

agrams with internal bosoni lines. Among other things this neglets the vertex

orretion Fig. 4.2 and therefore the running of the Yukawa ouplings. Indeed, Fig.

3.1 is the only ontributing diagram and we reover MFT. One obtains the ow

equations

�
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(s); (4.37)
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p
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p

3

Figure 4.2: Vertex orretion diagram in the bosonized model. Solid lines are

fermions, dashed lines are bosons. There exist several diagrams of this type sine

we have di�erent speies of bosons. The momentum on�guration indiated by the

arrows is suh that it gives a ontribution � �(�p

1

) (�p

2

) (p

3

). The pointlike limit

employed in this setion orresponds to an evaluation for p

i

= 0.

As long as we do not onsider the wave funtion renormalization (4.23) for the

bosons, the ow an ompletely be desribed in terms of the dimensionless ombi-

nations
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: (4.38)

Due to the onstant Yukawa ouplings we an integrate Eq. (4.37). We �nd

ritial ouplings:
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: (4.39)

These are, of ourse, the results of MFT, Eq. (3.7). We note that in Eq. (4.37) the

equations for the di�erent speies of bosons are ompletely deoupled. The mass

terms do not turn negative at the same sale for the di�erent speies. Indeed it

is possible that the mass of one boson speies turns negative while the others do

not. Suh a behavior is expeted for the full theory, whereas for the fermioni RG of

Set. 3.3 all ouplings diverge simultaneously due to their mutual oupling. However,

no real onlusion an be taken from Eq. (4.39) beause of the strong dependene

on the unphysial parameter .

Now, let us also take into aount the bosoni utuations. This inludes the

vertex orretion Fig. 4.2 and the ow of the Yukawa ouplings does not vanish
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anymore
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Using the dimensionless ~�'s we now �nd:
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The onset of spontaneous symmetry breaking is indiated by a vanishing of ~� for at

least one speies of bosons. Large ~� means that the orresponding bosoni speies

beomes very massive and therefore e�etively drops out of the ow.

For initial ouplings larger than the ritial values (see Tabs. 3.1 and 3.2) both

~�

�;k

and ~�

V;k

reah zero for �nite t. Due to the oupling between the di�erent hannels

they reah zero at the same t. At this point ~�

A;k

reahes in�nity and drops out of

the ow. This is quite di�erent from the ow without the bosoni utuations where

the ow equations for the di�erent speies were deoupled. The breakdown of all

equations at one point resembles

5

now the ase of the fermioni model disussed

in Set. 3.3. The -dependene of the ritial ouplings is redued onsiderably,

as ompared to MFT. This shows that the inlusion of the bosoni utuations is

ruial for any quantitatively reliable result. Nevertheless, the di�erene between

the bosoni and the fermioni ow remains of the order of 10%.

4.3 Gap equation in the Bosonized Language

Next, we turn to the SDE for the bosonized model (1.4). They are depited in Fig.

4.3. We will make here two further approximations by replaing in the last graph of

Fig. 4.3 the full fermion-fermion-boson vertex by the lassial Yukawa oupling and

the full bosoni propagator by �

�2

B

. We remain with two oupled equations.

5

This is an artefat of the pointlike approximation.
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Figure 4.3: Diagrammati representation of the lowest-order SDE for the partially

bosonized model (Eq. (1.4)). The shaded irles depit the full propagator, the irle

with the ross is the expetation value of the bosoni �eld and the empty irle is

the full Yukawa vertex.

In a �rst step we approximate this equations even further by negleting the last

diagram in Fig. 4.3 altogether. Then no fermioni propagator appears on the right

hand side of the equation for the fermioni propagator whih only reeives a mass

orretion for h�i 6= 0. Without loss of generality we take � real suh thatM

F

= h

�

�

and

G

�1

F

(q) = �q=+ h

�

�

5

: (4.42)

Inserting this into the equation for the expetation value � we �nd
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For the onset of nontrivial solutions we now �nd the ritial value
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whih is the (ambiguous) result from MFT given in Eqs. (3.7) and (3.9). This is

not surprising sine this exatly is MFT from the viewpoint of Shwinger-Dyson

equations. Indeed, Eq. (4.43) is preisely the �eld equation whih follows by di�er-

entiation of the MFT e�etive ation (6.19) with respet to �.
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� 4v
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): (4.45)

In a next step we improve our approximation and inlude the full set of diagrams

shown in Fig. 4.3. Using the same ansatz as before, the self-energy �

F

now has two

ontributions

�

F

=M

F



5

= h

�

�

5

+�m

F



5

: (4.46)

The �rst one is the ontribution from the expetation value of the bosoni �eld

whereas �m

F

is the ontribution from the last diagram in Fig. 4.3, given by an

integral whih depends on M

F

. Both in the equation for h�i and in the equation for
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the fermioni propagator only M

F

appears on the RHS. Inserting h�i in the graph

Fig. 4.3 one �nds a gap equation whih determines M

F

:

M

F

= 8v

4

�

h

2

�

2�

2

�

+

h

2

V

�

2

V

�

h

2

A

�

2

A

�

Z

�

2

0

dx x

M

F

x +M

2

F

: (4.47)

One more, this an be expressed in terms of the invariant ouplings and again we

arrive at Eq. (3.20).

We point out that, in order to reover the result of the fermioni SDE we have

started with MFT and added diagrams. Therefore, the fermioni SDE (or the bosoni

SDE with the extra ontribution from the fermioni mass shift diagram) sums over a

larger lass of diagrams whih ontains MFT as a subset. This is evident in the lan-

guage of statistial physis: MFT is the Hartree approximation, while the fermioni

SDE is Hartree-Fok.

Looking more losely at the two ontributions to M

F

we �nd that alone neither

the ontribution � � (whih amounts to MFT as we have disussed above) nor the

\fermioni ontribution" �m

F

are invariant under FT's. Only the ombinationM

F

,

whih is the fermion mass and therefore a physial quantity, is invariant. Indeed,

hanging the FT amounts to a rede�nition of the bosoni �elds. This allows us to

hoose bosoni �elds suh that �m

F

= 0. Taking  = 1=2 gives us suh a hoie of

the bosoni �elds. This explains why MFT gives the the same result as the purely

fermioni alulation in this speial ase.

In the next hapter we want to adapt this idea of a rede�nition of the bosoni

�elds to the RG alulation, i.e. we want to do it ontinuously during the ow.



Chapter 5

Partial Bosonization II: Sale

Dependent Degrees of Freedom

In the last Set. 4.3 we found that in the SDE formulation we an omplete MFT by

adding the mass-shift diagram for the fermions (f. Fig. 4.3). The mass-shift diagram

is a ontribution to the purely fermioni part of the e�etive ation. Therefore, it

makes sense to look for purely fermioni ontributions in the RG, too.

5.1 New Four-Fermion Interations

In our trunation of Chap. 4 the bosoni propagators are approximated by onstants

�

�2

k

. The exhange of bosons therefore produes e�etive pointlike four-fermion in-

terations. One would therefore suspet that this approximation should ontain the

same information as the fermioni formulation with pointlike four-fermion intera-

tions. An inspetion of the results in Tabs. 3.1, 3.2 shows, however, that this is

not the ase for the formulation in the RG ontext. In partiular, in ontrast to

the fermioni language the results of the bosoni ow equations still depend on the

unphysial parameter .

In fat, even for small ouplings � the bosoni ow equations of set. 4.2 do

not reprodue the perturbative result. The reason is that at the one-loop level new

quarti fermion interations are generated by the box diagrams shown in Fig. 5.1.

A straightforward inspetion shows that they ontribute to the same order �

2

as

the diagrams in Figs. 3.1 and 4.2. Even if we start from vanishing quarti ouplings

after partial bosonization, suh ouplings are generated by the ow. The diagrams

45
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Figure 5.1: Box diagrams for the bosonized model. Again, solid lines are fermions,

dashed lines bosons and verties are marked with a dot. The diagrams generate

new four-fermion �  (�p

1

) (p

2

) (p

4

) (�p

3

) interations even for the model (1.4)

without diret four-fermion interations.

in Fig. 5.1 yield

�
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= �
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l
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1

(s)k

2

h

2

�;k

�

2

�;k

h

2
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�
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+ 4k
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~(k); (5.1)
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= 24v
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�
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h
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�

2

A;k

� 2k

�2

~(k);

�

t

�
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= �
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4
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(s)k

2
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h

4
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�
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�;k
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h

4

V;k

�

4

V;k

� 12

h

4

A;k

�

4

A;k

#

+ 2k

�2

~(k):

Here, ~(k) is an in priniple arbitrary funtion of sale determining the hoie of FT

for the generated four-fermion interations. In other words, ~(k) allows for the fat

that we an hoose a di�erent Fierz representation at every sale. We will make a

speial hoie of this funtion (similar to the one made in sets. 3.2 and 3.3) namely

we require

~�

V;k

~�

A;k

=



1� 

8 k; (5.2)

with ~� given in Eq. (4.38). The resulting equation �

t

(~�

V;k

=~�

A;k

) = 0 �xes ~(k). An

improved hoie of ~(k) an be obtained one the momentum dependene of verties

is onsidered more arefully (f. [42℄ and Sets. 4.1.4, 5.4).
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5.2 Adapted Flow Equation: Solving the Ambi-

guity

An inlusion of the ouplings �

k

into the trunation of the e�etive average ation

does not seem very attrative. Despite the partial bosonization we would still have

to deal with multi-fermion interations and the bosoni formulation would be of

even higher algebrai omplexity than the fermioni formulation. A way out of this

has been proposed in [42℄. There, it has been shown that it is possible to reabsorb all

four-fermion interations generated during the ow by a rede�nition of the bosoni

�elds. In the following brief desription of this method we use a very symboli

notation

1

. In Set. 5.4 we will add some details on the momentum dependene of

�eld rede�nitions.

Introduing an expliit k-dependene for the de�nition of the bosoni �elds in

terms of fermion bilinears, the ow equation Eq. (2.32) is modi�ed

2

:

�

t

�

k

= �

t

�

k

j

�

k

+

Æ�

k

Æ�

k

�

t

�

k

: (5.3)

Here �

t

�

k

j

�

k

� �

t

�

k

j is the ow of the e�etive average ation at �xed �elds. Shifting

� by

�

t

�

k

=

�

  

�

�

t

!

k

(5.4)

we �nd

�

t

�

2

= �

t

�

2

j; �

t

h = �

t

hj+ �

2

�

t

!

k

; �

t

� = �

t

�j � h�

t

!

k

(5.5)

and we an hoose !

k

to establish:

�

t

� = 0: (5.6)

Instead of inluding running four-fermion ouplings expliitly we therefore have to

use only adapted ow equations for the ouplings ontained in Eq. (1.4).

Let us now apply this method expliitly to our model. Shifting

�

t

� = � 

�

1� 

5

2

�

 �

t

!

�;k

; �

t

�

?

=  

�

1 + 

5

2
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 �
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!

�;k

; (5.7)

�

t

V

�

= � 

�

 �

t

!

V;k

; �

t

A

�

= � 

�



5

 �

t

!

A;k

1

We refrain from expliitly returning to the 0-dimensional toy model of Set. 4.1.1, as we hope

it is lear from Set. 4.1.3 that for pointlike interations the ase d > 0 involves no additional

diÆulties. Nevertheless, let us note for ompleteness, that the replaements Æ ! �, �

k

! y

k

,

  ! x

T

Sx would bring us bak to the toy model.

2

It has been pointed out by Jan Pawlowski that after the appropriate modi�ation of the infrared

uto� for the sale-dependent �elds [42℄, the ow equation Eq. (2.32) does not give the exat ow

for �

t

�

k

j. However, in the simple approximation of this setion the bosoni �elds do not yet have

an infrared uto�. Therefore, we an still use (2.32).
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we have

�

t

�

�;k

= �

t

�

�;k

j � h

�;k

�

t

!

�;k

; (5.8)
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:

Requiring �

t

� = 0 for all �'s we an determine the funtions !:

�
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!
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�
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�;k

; �
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�
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A

2h

A;k

(5.9)

with the �-funtions given in Eq. (5.1). This yields the adapted ow equations for

the Yukawa ouplings

�

t

h

�;k

= �

t

h

�;k
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2

�;k

�

t
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�;k

; (5.10)
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:

Combining Eqs. (4.41), (5.1), (5.2), (5.9), (5.10) determines ~(k)

~(k) = 2v
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: (5.11)

Having �xed the ratio between ~�

V;k

and ~�

A;k

we only need two equations to

desribe the ow. We will use the ones for ~�

�;k

and �

V;k

= (1� )~�

V;k

�

t
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(s)v

4

: (5.12)

These equations are ompletely equivalent to the fermioni ow Eq. (3.17). In order

to see this we reall that the simple trunation of the form (1.4) is at most quadrati

in the bosoni �elds. We an therefore easily solve the bosoni �eld equations as a

funtional of the fermion �elds. Reinserting the solution into the e�etive average

ation we obtain the form (1.1) with the k-dependent quarti ouplings

�

�;k

=

1

2k

2

~�

�;k

� 2

1

k

2

�

V;k

; �

V;k

=

1

k

2

�

V;k

: (5.13)

Inserting this into Eq. (5.12) we �nd Eq. (3.17), establishing both the exat equiv-

alene to the fermioni model and the -independene of physial quantities. On

a numerial level, we an see the equivalene from the ritial ouplings listed in

Tabs. 3.1, 3.2.

On this level of trunation the equivalene between the fermioni and the adapted

bosoni ow an also be seen on a diagrammati level. As long as we do not have a

kineti term for the bosons the internal bosoni lines shrink to points. On the one-

loop level we �nd an exat orrespondene between the diagrams for the bosonized

and the purely fermioni model summarized in Fig. 5.2. This demonstrates again

that one-loop auray annot be obtained without adaption of the ow.
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Figure 5.2: Summary of all diagrams enountered in the previous setions. There

is a one to one orrespondene between the diagrams of the bosonized model (�rst

row) and the purely fermioni model (seond row). Solid lines with an arrow denote

fermioni lines. The letters in the diagrams are given for visualizing the ways in

whih the fermioni operators are ontrated, e.g. the �rst diagram in the seond row

results from a term [( 

a

 

a

)( 
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)℄. Shrinking bosoni lines (dashed)

to points maps the diagrams in the �rst row to the seond row. In the approximations

of set. 4.2 only the �rst or the �rst two diagrams are taken into aount.

5.3 Trouble With the LPA, an Example

So far, everything seems quite satisfatory. In our simple trunation we have been

able to solve the problem of the Fierz ambiguity for the partially bosonized language.

Moreover, the adaption of the bosoni ow is quite intuitive as it implements the idea

of sale dependent degrees of freedom. But, not everything is as rosy as it seems.

Looking a little bit more losely we notie, that although the ritial oupling is

independent of , the values of the individual bosoni ouplings ~�

�

, ~�

V

, ~�

A

are not.

Only two of them are �xed by the ow equation (5.12), while the third one an

be hosen freely. In partiular, we annot determine from this trunation whih

type of boson will ondense. This is ompletely analogous to the purely fermioni

desription, and in view of the equivalene of both desriptions not too surprising.

It seems evident that this is a shortoming of our present trunation.

Thinking about enlarging the trunation, two possibilities ome to mind imme-

diately, a more ompliated bosoni potential and a non-zero kineti terms for the

bosons. In this setion we will onsider the �rst possibility. As it turns out this does

not solve the problem, i.e. we still annot deide whih type of bosons will ondense.

Hene, we turn to the alternative of kineti terms for the bosons in Set. 5.4.
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5.3.1 The Gross-Neveu Model

To get a �rst impression it is instrutive to study an even simpler model than Eq.

(1.1), the so alled N = 1

3

Gross Neveu model [95℄ in three spaetime dimensions,

S

F

[ ;  ℄ =

Z

d

3

x

�

i �= +

G

2

(  )

2

�

(5.14)

Atually, it is indeed the same model, only the number of spaetime dimensions has

been redued by one. The simpli�ation as ompared to Eq. (1.1) lies in the fat

that in three dimensions we an use spinors with only two omponents (s. App. B).

Despite its simpliity it is still interesting in its own right. In partiular it has

a parity-like symmetry  (x) ! � (�x),  (x) !  (�x) whih is expeted to be

spontaneously broken by a non-vanishing vauum expetation value h  i for large

enough G [96℄.

Following the lines of Chap. 4 it is straightforward to obtain the equivalent

partially bosonized ation,

S
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[ ;  ℄ =

Z

d

3

x

�

i �= + ih�  +

m

2

2

�

2

�

; G =

h

2

m

2

: (5.15)

We now want to study this model in a trunation whih inludes an arbitrary loal

potential V (�) but no kineti term � �

�

��

�

� (in the following we will suppress the

integration over the spaetime oordinates),

�

k

= i �= + ih

k

�  + V

k

(�): (5.16)

The parity like symmetry translates into �(x) ! ��(�x) in the bosoni language,

restriting any bosoni potential V (�) to even powers of �.

Let us, for the moment, assume that during the ow we generate fermioni

� (  )

n

, bosoni � �

n

and mixed � �

n

(  )

m

interations. We neglet all other

ontributions as they lie outside of our present trunation. Hene, we write for the

ow at �xed �elds,
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j � �
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V
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)
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k

�

n

; (5.17)

where we have expanded the RHS in powers of   about the point �

V

0

(�)

ih

, and

3

N is the number of di�erent fermion speies.
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. Allowing for a sale dependene of the �eld �
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Now, let us make a non-linear �eld rede�nition
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Inserting this into Eq. (5.18) yields a simpli�ed ow whih only a�ets the potential

in �

k

,
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At this point one might wonder why h

k

does not reeive any orretions as in (5.10).

The reason for this is that we have used the additional freedom to resale � with a

ontribution � � in �

t

�, transforming any hange in h

k

into a hange of V (�).

So far this looks quite appealing, as we sueeded in inluding all the ompliated

interations ontained in �

t

U

k

(�;   ) into a simple trunation whih inludes a

potential depending only on �. However, let us now show that we an simplify

our result even further by adding a suitably written 0 to �

t

U

k

(�

k

;   ). Indeed,

starting from the ation (5.15) it is possible to redue V

k
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) to a mass term
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, and the ow of the

potential reads,
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: (5.21)

Sine we do not onsider gravity, �eld independent terms in the e�etive ation are

of no physial signi�ane. Dropping those and remembering that V (�) an ontain

only even powers of �, it is no restrition to write

�

t

U

k

�

�; i

m

2

k

h

�

k

�

=

X

n�1

b

2n

k

�
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: (5.22)

4

One may wonder if suh a �eld rede�nition has the right symmetry properties. A thorough

inspetion tells us that the given �eld rede�nition is of the type �

t

�

k

=

�X(�

k

;  ;:::)

��

k

, where X

is a singlet under all symmetries (the dots denote any type of additional �elds). A derivative of

this type belongs to the onjugate representation of �

k

and thereby to the same as �

k

sine �

k

is

self-onjugate. This also provides us with a reipe how we an obtain �eld rede�nitions respeting

the symmetries for more ompliated �elds, e.g. vetor �elds.
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Now, let us use that the spinors have only two omponents, i.e. at any given point

x we have only four di�erent Grassmann variables,  

1;2

(x),  

1;2

(x). Consequently,

we obtain

( (x) (x))

n

= 0; 8n � 3; (5.23)

by use of the antiommutation relations. In partiular, we have,
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Performing �eld rede�nitions as above, but for �

t

^

U instead of �

t

U yields,
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i.e. our potential remains a mass term for all k as we have laimed above.

At �rst, this seems very strange. Yet, as we know from Chap. 4 we an, at least

formally, remove the bosoni �elds by performing the appropriate funtional integral.

Sine we have no kineti term for the bosons, and V (�) is loal, this results in a

ompletely loal fermioni interation. However, Eq. (5.23) tells us that the highest

order loal and purely fermioni interation is (  )

2

. Therefore, any ation of the

form (5.16) is equivalent to (5.14) and in onsequene also to Eq. (5.15), as long as

we hoose G and

h

2

m

2

orretly. In other words, if we do not onsider a non-vanishing

kineti term for the bosons, an inlusion of a full bosoni potential does not give us

any more physial information than a simple trunation to a mass term or a purely

fermioni alulation with a loal four-fermion interation. In partiular, we annot

proeed into the SSB regime.

5.3.2 General Disussion

It is straightforward to extend Eq. (5.21) to more general ases with several di�er-

ent bosoni omposite operators and orresponding bosoni �elds, e.g., indued by

fermions with more omponents. In fat, using our symboli notation of Chap. 2

the generalization looks like Eq. (5.21). The disussion leading to Eq. (5.25) an be

generalized, too, but it is somewhat more ompliated, as we have to use the inverse

funtion V

0 �1

of V

0

to write down �

t

^

U . Assuming the existene of V

0 �1

we �nd,

�

t

^

U

k

(�;  O ) = �

t

U

k

(�;  O )�

X

jnj>N

b

n

k

�

V

0�1

(�ih

k

 O )

�

n

; (5.26)

where, for simpliity, we have employed a symboli notation with the omponents

�

i

orresponding to the operators O

i

. The b's are de�ned as in Eq. (5.24), but
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n = (n

1

; : : :) is now a multi index. N is the number of omponents of the spinor

 and determines the highest-order monomial in  whih does not vanish by the

antiommutation relations. E.g. for a Dira fermion in four dimensions (four spin

indies) with three olors we have N = 4 � 3 = 12. Using �

t

^

U to de�ne the �eld

rede�nitions we an fore all ontributions �

n

, jnj > N to vanish as in Eq. (5.25).

Typially, a potential up to order �

4

is suÆient to desribe at least the basi

features of SSB. As most models have N � 4 we might be tempted to onlude that,

with the exeption of some speial ases, the LPA works. However, this is not the

ase. We have already seen that we an modify �

t

V

k

(�) by adding a onveniently

written zero to �

t

U(�;   ). But, Eq. (5.23) and its generalizations to the ase of

more spinor omponents are not the only way we an write a zero. Fierz identities

like Eq. (1.2) provide another one. As we an see from the example of Eq. (1.2) they

allow us to �nd non-vanishing 

n

suh that

X

jnj=m



n

( O )

n

= 0; m � N: (5.27)

An addition of this to �

t

U(�;  O ) an be used to eliminate terms with �

n

and

jnj � N in the potential. The 

n

in Eq. (5.27) are not all independent, but typially

we an eliminate at least one speies of bosons ompletely from the potential. In

our model and trunation this freedom is reeted by the arbitrariness of ~(k) in

Eq. (5.1) and  in Eq. (5.12), respetively, e.g. hoosing  = 0 in Eq. (5.12) yields

h

A

= 0 and e�etively removes the axial vetor bosons.

Physially, our �ndings in this setion tell us that in the LPA without any kineti

terms for the bosons we simply annot deide whih type of boson will ondense.

To do this we need additional information. Therefore, we will investigate (simple)

momentum dependent terms in the e�etive ation in the next setion.

5.4 Going beyond the LPA

In Set. 4.1.4 we have seen that a simple kineti term in the bosonized ation gives

a momentum dependent four-fermion interation in the purely fermioni language.

Moreover, we ould absorb this momentum dependent four-fermion interation into

a boson only if we hose a ertain Fierz transformation. This provided us with the

information to deide whih FT is the \right" one. Therefore, let us add the kineti

terms spei�ed in Eq. (4.23) to our pointlike ation (1.4). Finally, let us impose for

simpliity one more restrition, �

V

= �

A

= 1 on our e�etive ation. This simpli�es

the expressions for the vetor-boson propagators, similar to Feynman gauge in gauge

theories.
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Let us �rst outline the following ompliated alulation, using a symboli no-

tation. In a next step we then disuss some points hidden in the notation and some

details of the employed approximations. Finally, we omment on a few properties

and give numerial results, while the whole set of equations and a more expliit and

step-by-step alulation is given in App. D.

5.4.1 Adapting the Flow

We restrit our trunation to lowest non-trivial order in p

2

, and expand all ouplings

up to this order. We write,

�

2

(p) = �

2

+ p

2

Z +O(p

4

); �

t

�

2

(p) = �

t

�

2

+ p

2

�

t

Z + : : : ; (5.28)

h(p) = h + p

2

h

(2)

+O(p

4

); �

t

h(p) = �

(0)

h

+ p

2

k

�2

�

(2)

h

+ : : : ;

�(p) = �

(0)

+ p

2

�

(2)

+O(p

4

); �

t

�(p) = k

�2

�

(0)

�

+ p

2

k

�4

�

(2)

�

+ : : : :

At �rst sight, in the partially bosonized language it seems reasonable to take

�

2

(p) as in (5.28) but restrit h(p) = h and �(p) = 0. However, in Set. 5.2 we have

seen that at least the latter is not a good approximation beause the term �

(0)

is

ruial for restoring the invariane under FT of the initial (pointlike) interation.

Furthermore, we found that the ows of �

2

, h and �

(0)

all ontribute to the same

order to the e�etive four-fermion interation (after integrating out the bosons). It

seems natural that this is also true for the terms of order p

2

: Z, h

(2)

, �

(2)

. Hene,

we onsider all these terms on equal footing.

Having hosen our trunation, we an alulate the ow equations. Sine we

did not add higher powers of �eld operators, the remaining task is to evaluate

the diagrams depited in Figs. 3.1, 4.2, 5.1. The only di�erene to our previous

alulations is that we have to onsider non-trivial external momenta.

As in Set. 5.2 we want to keep the desired simple form of the e�etive ation,

i.e. h(p) = h and �(p) = 0, by hoosing appropriate �eld rede�nitions and negleting

terms of order O(p

4

). To do so, we shift

�

t

�

k

(q) = (  )(q)�

t

!

k

(q) + �

t

�

k

(q)�

k

(q); (5.29)

and, as in Set. 5.2, we employ

5

,

�

t

�

k

= �

t

�

k

j+

Z

q

Æ�

k

Æ�

k

(q)

�

t

�

k

(q): (5.30)

5

As mentioned in Set. 5.2, after the appropriate modi�ation of the uto�, the ow equation

(2.32) does not give the exat ow �

t

�

k

j. Sine we now have a uto� for the bosoni �elds, the use

of Eq. (2.32) is really an approximation. However, numerial tests performed in the appendix of

[42℄ for a very similar ase suggest that it is a very good approximation. So we will use it without

further omment.
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This results in the following hanges of the ow equations,

�

t

�

2

(q) = �

t

�

2

(q)j+ 2�

2

(q)�

t

�

k

(q); (5.31)

�

t

h(q) = �

t

h(q)j+ h(q)�

t

�

k

(q) + �

2

(q)�

t

!

k

(q);

�

t

�(q) = �

t

�(q)j � h(q)�

t

!

k

(q):

We an now use the freedom in hoosing the �eld rede�nitions to enfore,

�

t

�(q) = 0; �

t

h(q) = �

t

h

(0)

; �

t

�

2

(q) = �

t

�

2

+O(p

4

): (5.32)

Roughly speaking we absorb the four-fermion interations in the masses and Yukawa-

ouplings, and the momentum dependene of the latter ones in the wave funtion

renormalizations for the bosoni �elds (�

t

Z = 0). In partiular, we keep the simple

form with a momentum independent Yukawa oupling and no four-fermion intera-

tion.

Using the fat that we start with a onstant Yukawa oupling and � = 0 we an

solve the equations (5.32) and �nd,

� � 2�

t

�(0) = �

�

t

Zj

Z

+

2�

2

h

�

�

t

h

(2)

j+ �

2

�

t

�

(2)

j+ Z�

t

�

(0)

j

�

: (5.33)

We use this equation to de�ne the anomalous dimension. From Eq. (5.29) it is

lear that �

t

�(0) modi�es the overall normalization of �, hene the wave funtion

renormalization. Moreover, setting �

t

h

(2)

j = 0, �

t

�(q)j = 0, it oinides with the

original de�nition � = �

�

t

Z

Z

. Using this, we get pretty muh the standard equations

for the ow of the mass and Yukawa oupling,

�

t

�

2

= ��

2

+ �

t

�

2

j; (5.34)

�

t

h =

1

2

�h+ �

t

hj+

�

2

h

�

t

�

(0)

j:

We remark that together with the initial ondition Z = 1 the onditions (5.32)

automatially guarantee that the ouplings are renormalized.

5.4.2 Choosing the Momentum Con�gurations

So far everything seemed relatively straightforward. However, looking more losely,

we soon �nd that �

t

h(p) an atually depend on two and �

t

�(p) even on three

momentum variables. This is in ontrast to �

2

(p) whih depends only on p

2

. As we

ultimately want to absorb those momentum dependenies in �

t

�

2

(p) it is lear that

we have to make an approximation suh that �

t

h(p) and �

t

�(p) depend only on one

momentum squared. To deide whih of the possible momenta to hoose, we look
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at our example of Set. 4.1.4, in partiular at Eq. (4.34). From this we an read of,

that the bosons have the form,

�(q) = f(q)

Z

p

1

;p

2

 (p

1

) (�p

2

)Æ(q � p

1

� p

2

): (5.35)

Sine we want to keep the simple form of the e�etive ation, it is lear that the

bosons have to keep this form, too.

�

t

�

k

(q) = �

t

�(q)�

k

(q) + �

t

!

k

(q)

Z

p

1

;p

2

 (p

1

) (�p

2

)Æ(q � p

1

� p

2

); (5.36)

is the most general form that aomplishes this. With Eq. (5.36) we an give meaning

to our notation,

(  )(q) =

Z

p

1

;p

2

 (p

1

) (�p

2

)Æ(q � p

1

� p

2

): (5.37)

Inserting this into Eq. (5.30) we �nd that the most general strutures we an absorb

are,

Z

p

1

;p

2

;p

3

F (p

2

1

) �(�p

1

) (p

2

) (�p

3

)Æ(p

1

+ p

2

+ p

3

); (5.38)

Z

p

1

;p

2

;p

3

;p

4

G((p

1

+ p

2

)

2

)  (�p

1

) (p

2

) (p

3

) (�p

4

)Æ(p

1

+ p

2

� p

3

� p

4

); (5.39)

where F and G are arbitrary funtions whih an then be expressed in terms of �

t

�

k

and �

t

!

k

.

Comparing the vertex orretion � �(�p

1

) (�p

2

) (p

3

) depited in Fig. 4.2 with

(5.38) it is lear that we have to restrit the momentum dependene to p

1

. A suitable

on�guration for the evaluation then is, (p

1

; p

2

; p

3

) = (p;

1

2

p;

1

2

p).

Realling that a Fierz transformation for the four-fermion interation ex-

hanges p

2

and �p

3

we an absorb either a dependene on s = (p

1

+ p

2

)

2

or one on t = (p

1

� p

3

)

2

(orresponding momentum on�gurations would be e.g.

(p

1

; p

2

; p

3

; p

4

) =

1

2

(p; p; p; p) and (p

1

; p

2

; p

3

; p

4

) =

1

2

(p;�p;�p; p), respetively,

f. Fig. 5.1). Therefore, we have to ask whih gives the better approximation. In

priniple, we would have to alulate �

t

�(s; t) (or even better �

t

�(p

1

; p

2

; p

3

; p

4

)) and

test at every sale whether �

t

�(s; t) � �

t

�(t) or �

t

�(s; t) � �

t

�(s) is a better approx-

imation. Analytially as well as numerially this is rather ompliated. Therefore, we

have adapted a muh simpler sheme: we have always absorbed the dependene on t,

i.e. we have evaluated the diagrams in Fig. 5.1 and Fierz transformed the resulting

interation one. There are two reasons why we believe that this is a reasonable

approximation. First of all, in the pointlike limit (at the beginning of the ow), i.e.

�

2

!1; h

2

!1;

h

2

�

2

= onst; (5.40)
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one �nds �

t

�(s; t) = �

t

�(t) exatly. Seondly, we have heked for various ombina-

tions of h and � that in the viinity of (s; t) = (0; 0) the dependene on t is usually

(but not always) stronger than the dependene on s.

5.4.3 Initial Flow and Numerial Results

To get an impression of what we have ahieved by all this let us take a look at the

e�etive four-fermion interation at the beginning of the ow

6

.

As we want to start with ation (1.1) where the four-fermion interation is point-

like, the kineti terms in the partially bosonized ation vanish and the renormalized

ouplings obey Eq. (5.40) where the onstants are given by Eq. (1.5).

In Set. 4.1.4 we have already alulated,

�(p) =

h

2

�

2

+ p

2

=

h

2

�

2

�

h

2

�

4

p

2

+ � � � ; (5.41)

where �

2

and h

2

are onstants in momentum spae. Using our ow equations given

in App. D and using the properties of the threshold funtions given in C.2.3 we

�nd (after some algebra) Eq. (5.12) for the ow of the p

0

-terms. For the ow of the

p

2

-term in �

�

we �nd,

�

t

�

h

2

�

�

4

�

�

= 16v

4



(F );4

2

(0)(�

�

+ �

V

)

2

; (5.42)

and similar expressions for �

V

and �

A

whih are invariant under Fierz transforma-

tions, too. This shows that at least at the beginning we have no Fierz ambiguity up

to order p

2

.

Now, let us ome to the numerial results. Numerially it is impossible to employ

the pointlike limit exatly, therefore we have started with large values of �

2

� 10

5

.

In addition to the results of the full set of ow equations we have given some results

for more simple approximations in Tabs. 5.1, 5.2. The �rst approximation, (1)+(3),

orresponds to the naive approah to the bosonized model, where all ontributions

from the four-fermion interations and the momentum dependene of the Yukawa

oupling are negleted. In the next step, (1)�(3), we have inluded the box diagrams,

but only its onstant parts, not the terms of order p

2

. However, indiretly we have

inluded some knowledge of the momentum dependene as we have hosen the same

FT as for the trunation (1)� (4) where we have inluded all terms of order p

2

.

6

Atually, in this setion we make one more approximation: we have ignored the anomalous

dimensions in the arguments of the threshold funtions. In the pointlike limit this neglets terms

of order �

3

. The ow equations in App. D inlude those terms, but they make the evaluation muh

more diÆult.
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Approximation Chap.  = 0:1 0.25 0.5 0.75 0.9

MFT 3.1 78.56 77.96 76.96 75.96 75.36

SD 3.4 76.96 76.96 76.96 76.96 76.96

(1) 4.2 76.32 76.36 76.42 76.49 75.54

Ferm. RG = (1) + (2) 3.3 86.15 86.15 86.15 86.15 86.15

(1) + (3) 5.4 76.43 76.45 76.49 76.55 76.58

(1) { (3) 5.4 83.97 83.95 83.92 83.89 83.87

(1) { (4) 5.4 86.17 86.18 86.20 86.21 86.22

Table 5.1: Critial values �

rit

�

for �

V

= 2 and for various values of the unphysial

parameter  (with � = 1). To keep the table of manageable size we have abbreviated:

(1) the pointlike ontibutions to the mass and the Yukawa oupling (Figs. 3.1, 4.2),

(2) the pointlike ontributions from the box diagrams (Fig. 5.1), (3) the ontribution

to the WFR from the purely bosoni diagram (Fig. 3.1) and (4) the ontribution to

the WFR from the momentum dependene of the diagrams 4.2 and 5.1. We point

out that di�ering from Tabs. 3.1, 3.2 we have employed a UV regularization by

the ERGE sheme (f. App. C.3) with the linear uto� Eq. (C.3) whih is better

suited for numerial omputations. This is why the values for the ritial oupling

are roughly twie of those given in Tabs. 3.1, 3.2, sine the ritial oupling is not a

universal quantity, and therefore sheme dependent.

Approximation Chap.  = 0:1 0.25 0.5 0.75 0.9

MFT 3.1 74.96 68.96 58.96 48.96 42.96

SD 3.4 58.96 58.96 58.96 58.96 58.96

(1) 4.2 53.16 52.93 53.32 54.64 55.88

Ferm. RG = (1) + (2) 3.3 58.83 58.83 58.83 58.83 58.83

(1) + (3) 5.4 53.89 53.66 54.00 55.23 56.37

(1) { (3) 5.4 58.14 58.04 57.88 57.73 57.64

(1) { (4) 5.4 61.60 61.69 61.82 61.91 61.94

Table 5.2: The same as in Tab. 5.1 but with �

V

= 20.

Moreover, we notie that the values for the ritial oupling in the pointlike

approximations are roughly twie of those given in Tabs. 3.1, 3.2. This is due to

a di�erene in the UV regularization. In this setion we have employed the ERGE

sheme desribed in App. C.3. Non-universal quantities an and do depend on the

hoie of UV regularization. In the pointlike approximation this yields exatly a

fator of two in our ase (for the pair of ouplings (�

�

; �

V

)). In the more involved

approximations this is not neessarily so, but the fator will still be somewhere

around two.
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Aside from this, there is nothing new in the �rst four lines of Tabs. 5.1, 5.2.

Comparing the pointlike trunations for the RG with the improved approximations

of this setion we �nd that the e�et is of the order of 10%. Moreover, omparing the

di�erent non-pointlike approximations we �nd that the di�erenes between them are

of the order of 5%� 10%, too. While most of the Fierz ambiguity (more important

for large values of �

V

, Tab. 5.2) is eliminated by inluding the pointlike ontributions

of the boxes (in the \right" FT), (2), for the absolute values of the ritial oupling,

the momentum dependene of the Yukawa oupling and the box diagrams is not

negligible.

On the more qualitative side we have heked for various values that for all

trunations whih inlude kineti terms (last three lines in the tables) and values

of �

�

slightly larger than the ritial �

rit

�

only the renormalized salar boson mass

turns negative, while the renormalized vetor and axial vetor boson masses remain

positive. This allows the onlusion that the salar boson will ondense �rst, and we

have a phase where only hiral symmetry is broken (at least in our approximation).



Chapter 6

Bosoni E�etive Ation (2PI)

In the last two hapters we have mainly worked on improving the RG desription

in the partially bosonized language. It turned out, that it is neessary to inlude a

wave funtion renormalization (WFR) for the bosons. Without a WFR we annot

determine the type of the bosoni ondensate (e.g. if it is a vetor or salar onden-

sate). Yet, onsistent inlusion of a WFR leads to high algebrai omplexity. This

might be appropriate for a quantitative desription. However, if we want to get a

�rst, more qualitative, overview of a physial system this seems to be a little bit

exessive. For this purposes the SDE or MFT approahes seem muh more suitable.

Both methods allow for a omputation of the order parameter in systems whih

exhibit spontaneous symmetry breaking (SSB). However, while the SDE approah

leads diretly to the gap equation the MFT approah provides naturally a free-

energy funtional for the bosoni omposite degrees of freedom introdued by partial

bosonization via a Hubbard Stratonovih transformation (s. Chap. 4). The �eld

equation for this funtional orresponds to the gap equation. Knowledge of the free-

energy funtional beomes neessary if the gap (or �eld) equation allows for solutions

with di�erent order parameters and the free energy for the di�erent solutions has to

be ompared. The reonstrution of the free-energy funtional from the gap equation

is not trivial and the method used in [97℄ for the ase of olor superondutivity may

not always work.

From this it seems that MFT is superior to SDE. Unfortunately, as we have seen

in Chaps. 3, 4, it has a severe disadvantage: partial bosonization is not unique and

the results of the MFT alulation depend strongly on the hoie of the mean �eld.

Moreover, MFT only inludes a subset of the SDE diagrams.

Hene, we want to �nd a funtional whih has the SDE as its equation of motion,

and whih an be interpreted as a free energy. Suh a funtional is given by the 2PI

e�etive ation [46{48℄.

60
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In general, the 2PI e�etive ation is a funtional of �elds and propagators

�

(2PI)

[�;G℄. However, for a purely fermioni system, all the information is already

ontained in �

(2PI)

[0; G℄. �

(2PI)

[0; G℄ depends only on the bosoni variable G, and

therefore we will all it Bosoni E�etive Ation (BEA) [98℄.

In this hapter, we want to alulate a simple approximation of the BEA for a

general loal multi-fermion interation. Already for a four-fermion interation the

lowest non-trivial ontribution to the BEA is of two-loop order. For a general n-

fermion interation we have an

n

2

-loop struture. However, we will show that this

an be redued to a one-loop expression at the solution of the SDE, allowing for a

omparison to MFT.

As an appliation we want to study an interation resembling the six-fermion

interation generated by instantons in the ase of three avors and three olors [99{

103℄. In QCD this interation is of speial interest as it is U(1)-anomalous and solves

the famous U(1)-problem [104℄. In the simpler ase of two avors instantons mediate

a four-fermion interation whih has been investigated in works on hiral symmetry

breaking [105{107℄ and olor superondutivity e.g. [19; 20℄.

The e�etive interation generated by the instantons does not only lead to inter-

ations between olor singlet e�etive quark-antiquark degrees of freedom (! hiral

symmetry breaking) but also between otets leading to the possibility of otet on-

densation and spontaneous olor symmetry breaking [27; 28; 49℄. In the following

we will onsider both possibilities.

6.1 Bosoni E�etive Ation (2PI)

To simplify the presentation we summarize all indies of the fermioni �eld in

~

 

�

.

The index alpha ontains all internal indies (spin, olor, avor et.) as well as

position or momentum. Furthermore it also di�erentiates between  and  .

The partition funtion reads

Z[�; j℄ =

Z

D

~

 exp(�

�

~

 

�

+

1

2

j

��

~

 

�

~

 

�

� S

int

[

~

 ℄) (6.1)

where we treat all quadrati terms as a bosoni soure term.

We speify the interation as

S

int

[

~

 ℄ =

X

n

1

n!

�

(n)

�

1

:::�

n

~

 

�

1

� � �

~

 

�

n

: (6.2)
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The usual generating funtional of 1PI Greens funtions in presene of the bosoni

soures j is de�ned by a Legendre transform with respet to the fermioni soure

term �:

�

F

[ ; j℄ = �W [�; j℄ + �

�

 

�

(6.3)

where

W = lnZ[�; j℄;  

�

= h

~

 

�

i =

�W

��

�

: (6.4)

�

F

an also be obtained by the following funtional integral

1

:

�

F

[ ; j℄ = � ln

Z

D

~

 exp(�

�

~

 

�

� S

j

[

~

 +  ℄); (6.5)

S

j
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~

 ℄ = �

1

2

j

��

~

 

�

~

 

�

+ S

int

[

~

 ℄:

This form is espeially useful to derive the SDE. Taking a derivative with respet

to  we �nd

��

F

� 

�

= �j

��

2

 

�

2

(6.6)

+

X
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(n)

��
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+O( 

2

)

�

where

F

n

= (n� 2)(n� 4) � � �2 (6.7)

and Z summarizes all terms ontaining third and higher derivatives of �. These are

terms whih have at least two verties. Taking another derivative with respet to  

�

and evaluating at  = 0 we �nd the SDE:

(�

(2)

F

)

��

= �j

��

+

X

n

�

(n)

���
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(2)

F
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�

n

+ Z

0

�

3

:::�

n

�

: (6.8)

In this hapter we are only interested in the lowest order. Therefore, from now on,

we neglet Z, i.e. terms with at least two verties.

The \Bosoni E�etive Ation" (BEA) [98℄, is de�ned by another Legendre trans-

form with respet to j:

�

B

[G℄ = �W [0; j℄ + jG; (6.9)

G

��

=

�W

�j

��

= (�

(2)

F

)

�1

��

;

��

B

�G

��

= j

��

: (6.10)

1

Note that in this formula

~

 is shifted suh that h

~

 i = 0.
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Sine �

F

is an even funtional of  the BEA ontains the same information as �

F

.

Indeed it is related to �

F

by means of funtional di�erential equations like Eq. (6.10).

Using this relation we an onveniently write the SDE (6.8) as

G

�1

��

= �j

��

+

X

n
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(n)

���

3

:::�

n

F

n
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3
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n�1

�

n

: (6.11)

Using (6.10) we obtain a di�erential equation for �

B
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B
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: (6.12)

whih we an integrate

2

to obtain

�

B

=

1

2

Tr lnG+

X

n

�

(n)

�

1

:::�

n

nF

n

G

�

1

�

2

� � �G

�

n�1

�

n

; (6.13)

the BEA at \one-vertex order".

It is sometimes onvenient to introdue an auxiliary e�etive ation

^

�[G; j℄ = �

B

�

1

2

j

��

G

��

(6.14)

suh that the physial propagator orresponds to the minimum of

^

� (f. Eq. (6.10)).

6.2 BEA for Loal Interations

In the following we want to onsider loal interations. For larity we now write

x (or momentum p) expliitly and use latin letters for the remaining indies. The

standard proedure would be the insertion of the ansatz G

�1

ab

(x; y) = �j

ab

(x; y) +

�

ab

(x)Æ(x � y) into Eq. (6.11) to obtain the SDE for the loal gap �. Sine the

BEA Eq. (6.13) is related to the SDE (6.11) by di�erentiation with respet to G it

is not lear that an e�etive ation funtional depending on � an be obtained by

integration with respet to �. Instead we want to follow the onstrution presented

in [98℄ and start diretly from the approximate BEA Eq. (6.13). With

g

ab

(x) = G

ab

(x; x) (6.15)

2

Note that in our notation

�G

��

�G

Æ

= Æ

�

Æ

�Æ

� Æ

�Æ

Æ

�

.



64 Chapter 6. Bosoni E�etive Ation (2PI)

we have

^

� =

1

2

Tr lnG+

1

2

Tr(Gj) +

Z

x

X

n

�

(n)

a

1

:::a

n

nF

n

g

a

1

a

2

(x) � � � g

a

n�1

a

n

(x): (6.16)

For this relation it is essential that the interation is stritly loal. Furthermore,

we an use the loality of the interation to write (6.11) in the form of a loal gap

equation

G

�1

ab

(x; y) = �j

ab

(x; y) + �

ab

(x)Æ(x� y): (6.17)

We will evaluate the funtional �[G℄ for G

��

orresponding to Eq. (6.17). This is

atually a restrition to a subspae of all possible G. However, loality tells us that

the extremum (solution of the SDE) is ontained in this subspae.

Using j = �G

�1

+� we �nd (up to a shift in the irrelevant onstant and using

�

ab

(x; y) = �

ab

(x)Æ(x� y))

^

�[g;�℄ = �

1

2

Tr ln(�j +�)�
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(x) � � � g
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n�1

a

n

(x): (6.18)

For the searh of extrema of

^

� it is atually onvenient to treat � and g as inde-

pendent variables. The extremum of

^

�[g;�℄ then obeys

�

^

�[g;�℄

��

= 0;

�

^

�[g;�℄

�g

= 0: (6.19)

Evaluating the derivative with respet to � we reover the inverse of Eq. (6.17) for

x = y,

g

ab

(x) = (�j +�)

�1

ab

(x; x) = g[�(x)℄ (6.20)

Inserting this funtional relation into Eq. (6.11) leads to a gap equation for �. In

ase of a six-fermion interation this takes, however, the form of a two-loop equation.

For n-fermion interations with n > 4 it is more appropriate to go the other way

around and �rst take a derivative with respet to g. We obtain

�

ab

(x) =

X

n

�

(n)

aba

3

:::a

n

F

n

g

a

3

a

4

(x) � � � g

a

n�1

a

n

(x)

= �

ab

[g(x)℄; (6.21)
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whih is preisely the value of the gap in Eq. (6.11). Inserting �[g℄ into (6.18) we

�nd the e�etive ation depending on g

^

�[g℄ = �

1

2

Tr ln(�j +�[g℄)�
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�
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n
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n
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a

1

a
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(x) � � � g

a

n�1

a

n

(x): (6.22)

Searhing for an extremum yields

�

^

�[g℄

�g

=

�

(�j +�[g℄)

�1

� g

	

d�[g℄

dg

= 0: (6.23)

For

d�

dg

6= 0 Eq. (6.23) indeed orresponds to the SDE (6.11), i.e.

g

ab

(x) = (�j +�[g℄)

�1

ab

(x; x) (6.24)

This will be our entral gap equation. We should point out that possible extrema

of

^

�[g℄ orresponding to

d�

dg

= 0 are not solutions of the gap equation (6.11) and

should be disarded. Finally, we also have

d

^

�[g℄

dg

=

d

^

�[g;�[g℄℄

dg

=

��[g;�[g℄℄

�g

+

�

^

�[g;�[g℄℄

��

d�[g℄

dg

=

�

^

�[g;�[g℄℄

��

d�[g℄

dg

: (6.25)

Only as long as

d�[g℄

dg

6= 0 is ful�lled we an onlude that a solution of (6.23) ful�lls

both extremum onditions (6.19).

Our proedure is quite powerful if Tr ln(�j + �) an be expliitly evaluated as

a funtional of �. Then

^

�[g℄ allows not only a searh for the extremum (disarding

those with

d�

dg

= 0) but also a simple diret omparison of the relative free energy

of di�erent loal extrema. This is ruial for the determination of the ground state

in the ase of several \ompeting gaps".

This \one-loop" form of the equation of motion but also of the e�etive ation

itself (6.22) is very lose to what we would expet from MFT (f. also the next

setion). In ontrast to the standard SDE, whih is an equation of motion, we an

use Eq. (6.22) to ompare the values for the e�etive ation at di�erent solutions of

the equation of motion (6.23), providing us with information about the stability.

Nevertheless, we have to be areful when onsidering Eq. (6.22) at points whih

are not solutions of Eq. (6.23). Going step by step through the proedure above,

we �nd that if we are not at a solution of (6.23) we do not neessarily ful�ll the
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ansatz (6.17). Therefore, at these points we are mathematially not allowed to insert

the ansatz into Eq. (6.13). So, stritly speaking (6.22) only gives the value of the

e�etive ation at the solution of the equation of motion

3

. Although, this is already

more than we get from the standard SDE we would like to interpret (6.22) as a

reasonable approximation in a small neighborhood of the solution to the equation of

motion. Remembering g(x) = h

~

 (x)

~

 (x)i it is suggestive to interpret g as a bosoni

�eld. Eq. (6.21) gives the (non-linear) \Yukawa oupling" of g to the fermions, i.e. the

relation between the gap and the bosoni �eld. The Tr ln is the ontribution from the

fermioni loop in a bakground �eld g. The remaining terms an then be interpreted

as the ost in energy to generate the bakground �eld g. This interpretation allows

us to use (6.22) to alulate the mass and the ouplings of the bosoni �eld g.

6.3 Comparison with MFT

From Chap. 4 we know that partial bosonization is not restrited to four-fermion

interations. In partiular Eq. (4.11) provides us with the means to alulate a par-

tially bosonized ation for an arbitrary loal multi-fermion interation. Assoiating

�

��

(x) = h

~

 

�

(x)

~

 

�

(x)i, the partially bosonized form of Eq. (6.2) beomes
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: (6.27)

Where � is a sum of terms whih are symmetri in at least one pair of indies

(f. Set. 4.1.2). The ondition (6.27) ensures that the partially bosonized ation is

equivalent to the original fermioni one.

Negleting the terms O(

~

 

3

) and performing the funtional integral over the

fermions provides us with the MF e�etive ation:

�
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3

An alternative would be to hoose the gap � as the \bosoni �eld". Inserting Eq. (6.17) into

Eq. (6.13) we ould alulate a funtional �[�℄. However, as one an hek there are two drawbaks.

First, even for four-fermion interations, �[�℄ is usually unbounded from below when onsidering

� ! 1. Seond, in the ase of a large four-fermion oupling the \stable" solution of the �eld

equation is usually a loal maximum.
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By onstrution this is a one-loop result. Moreover, it is strikingly similar to Eq.

(6.22). However, the oeÆients di�er. As disussed in Set. 4.1.2 the Fierz ambiguity

is reeted by the presene of a nearly arbitrary � in Eq. (6.27). Results usually

depend on the hoie of �. Of ourse, further onsiderations as e.g. the stability of the

initial bosoni potential might redue the freedom of � somewhat. But, sometimes

this is not even enough to get qualitatively unambiguous results [33; 34℄.

Eqs. (6.18), (6.22), (6.23) do not su�er from suh an ambiguity sine in the

derivation of the SDE (6.8) the oeÆients beome antisymmetrized and symmetri

terms drop out. In Set. 4.3 we demonstrated that the inlusions of ertain diagrams

ures the Fierz ambiguity for four-fermion interations and leads to the SD result.

We believe that this holds for higher fermion interations, too. Thus, we propose

(6.22) as a natural generalization of (6.28).

Finally, let us stress the similarity of both approahes by noting that g(x) =

h

~

 (x)

~

 (x)i is exatly what we had in mind as a \mean �eld".

6.4 Wave Funtion Renormalization

In the partially bosonized language (f. set. 6.3) it is possible to alulate a wave

funtion renormalization for the bosons. Allowing not only for onstant but also for

a slightly varying � (p small)

�(x) = �(0) + Æ� exp(ipx): (6.29)

Using this � it is still possible to perform the fermioni integral. Expanding in

powers of the momentum up to the p

2

-term we an read o� the wave funtion

renormalization.

The same an be done for Eq. (6.18)

g(x) = g(0) + Æg exp(ipx): (6.30)

Expanding again in powers of momentum we interpret the p

2

-term as the wave

funtion renormalization for the boson orresponding to the �eld g. As in MFT the

only ontribution to the wave funtion renormalization omes from the Tr ln and

therefore from a simple one-loop expression.

Knowledge of the wave funtion renormalization together with the seond deriva-

tive of the e�etive ation for onstant �elds allows us to ompute the mass of the

boson.

Again, this alulation is unambiguous. This is in ontrast to a alulation in

the partially bosonized language where we again have the problems with the Fierz
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ambiguity. On the other hand we do not want to hide the fat that by onsidering

values of g whih do not oinide with the solution of the SDE we have left the solid

ground of a diret omputation from the BEA given in Eq. (6.16).

6.5 Chiral Symmetry Breaking from a 3-Flavor

Instanton Interation

In this setion we want to use the method desribed above to study hiral symmetry

breaking in an NJL-type model with a six-fermion interation modelling the QCD-

instanton interation with three olors and three avors [99{103℄. The three avor

instanton vertex an be written in the following onvenient form [49℄
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(6.31)

where �

z

are the Gell-Mann matries orresponding to the SU(3)



olor group and

the brakets ( ) indiate ontrations over olor and spinor indies.

The oupling onstant � an be alulated in terms of the gauge oupling. How-

ever, it involves an IR divergent integral over the instanton size. Therefore, one

needs to provide a physial uto� mehanism. To avoid this diÆulty we treat � as

a parameter.

Inspetion of (6.31) tells us that this interation is U(1) anomalous with a resid-

ual Z

3

-symmetry. This is important beause we annot restrit ourselves to real

ondensates from the start.

In order to extrat the interation matrix � we have to antisymmetrize over

avor indies (a = 1 : : : 3), olor indies (i = 1 : : : 3) Weyl spinor indies (� = 1; 2),

hirality indies (� = 1; 2 = L;R) and the indies distinguishing between  and  
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(s = 1; 2).
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Here P denotes the sum over all 6! permutations of the multiindies m

j

=

(a

j

; i

j

; �

j

; �

j

; s

j

), j = 1 : : : 6, with minus signs appropriate for total antisymmetriza-

tion.

As a �rst example we onsider a avor singlet, olor singlet salar hiral bilinear

(� =

1

3

 

a

L

 

a

R

, �

?

= �

1
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a

R

 

a

L

)

g
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We evaluate

�[g℄

mn

= �

�

(n)

mm

2

m

3
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5

m

6
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g

m

3
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(6.34)
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; (6.35)

where we have used the fat that

~

� is symmetri under permutations of the three

  bilinears. Exploiting the avor, spin and olor struture for (6.34) yields
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and

U [�℄ =

20

9

�(�

3

+ �

?3

): (6.37)

Evaluating for a � onstant in spae and pulling out a volume fator we obtain the

e�etive potential and the relation between ondensate and fermion mass,

^

�[�℄ = �36v

4

Z

dx x[ln(x + jmj

2

�

)℄ + U [�℄;

m

�

=

10

9

��

2

+m

0

�

: (6.38)

Here m

0

�

is a urrent quark mass whih we take to be equal for all quarks. The

integral in (6.38) is, of ourse, divergent. Our UV regularization is simply to ut it

o� at �

2

. Measuring all quantities in units of � we an put � = 1.

6.5.1 The hiral limit m

0

�

= 0

Let us now look at the �eld equation or equivalently searh for extrema of

^

�[�℄.

Sine

d�[�℄

d�

6= 0 for all � 6= 0 we do not need to worry for non-trivial solutions to be

spurious. In addition � = 0 is always a solution in the hiral limit.

Inspetion of

^

�[�℄ tells us that it is invariant under the ombined operation

� ! ��, � ! ��. This allows us to restrit our analysis to positive �.

In the hiral limit it is useful to parametrize

� = j�j exp(i�): (6.39)

Form this one �nds

^

�[j�j; �℄ =

40

9

�j�j

3

os(3�) + f(j�j); (6.40)

where f is a funtion determined by the integral in Eq. (6.38). We an see that the

only �-dependene omes from os(3�) whih is the expliit manifestation of the

Z

3

-symmetry.

It is lear that extrema an only our at � =

n�

3

, n 2 Z. Using the Z

3

-symmetry

we an restrit ourselves to � = 0; � or restrit ourselves simply to real �.

Taking all this into aount we �nd up to three solutions (f. Fig. 6.1). As already

mentioned � = 0 is a solution for all values of the oupling. Going to larger ouplings

we enounter a point �

rit

where we have two solutions. For even larger ouplings

there are three solutions 0 = �

0

< �

1

� �

2

. We know that

^

�[�

1

℄ >

^

�[�

0

= 0℄
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Figure 6.1: Plot of the BEA for various values of the oupling onstant inreasing

from the topmost line � = 3000 to the lowest line � = 4200. The seond line

(long dashed) is for �

rit

� 3350, the ritial oupling for the onset of non-vanishing

solutions. The third is for � = 3600 while the fourth (short dashed) is the for the

onset of SSB

~

�

SSB

� 3900. The horizontal line indiates the value of �[�℄ at the

trivial solution � = 0.

therefore �

1

is not the stable solution. As an be seen from Figs. 6.1, 6.2 there is a

�

rit

� � � �

SSB

where there exist non-trivial solutions to the SDE but there is still

no SSB beause

^

�[�

2

℄ �

^

�[�

0

= 0℄. We point out that in order to alulate �

SSB

we

need to know the value of

^

�, i.e. information beyond the SDE.

In Fig. 6.2 we have plotted the mass gap versus the six-fermion oupling strength.

Looking at Fig. 6.2 we observe a �rst order phase transition. From Eq. (6.22) we

atually expet this quite generially as long as we have only n-fermion interations

with n � 6. However, this might also be an artifat of the \one-vertex" approxima-

tion.

Finally, we would like to remark that in general it is not enough to simply inte-

grate the SDE with respet to the gap � reonstrut the e�etive ation funtional.

This funtional, let us all it

~

�[�℄ is in general not equal to the the BEA

^

�[G℄, not

even at solutions of the SDE. Indeed, as an be seen from Fig. 6.2, the results for

physial quantities like the e�etive fermion mass an di�er. The underlying rea-

son for this is that the gap � is not the orret integration variable. The SDE is

obtained by a G-derivative of the BEA funtional

^

�[G℄. Therefore, in order to reon-

strut

^

�[G℄, we have to integrate with respet to G. As an be seen from Eq. (6.21)

� is, in general, not even a linear funtion of G. Simple integration with respet

to � therefore neglets the Jaobi matrix, whih is a non-trivial funtion of � for

interations more ompliated than a four-fermion interation.
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Figure 6.2: Fermion mass jmj

�

(gap) versus the strength of the six-fermion inter-

ation � in the hiral limit m

0

�

= 0. The thik line orresponds to the solution

with smallest ation. The dashed line is the largest non-trivial solution. Finally, the

thin line is obtained by minimizing an \e�etive ation"

~

�[�℄ obtained by diret

integration of the SDE with respet to the gap �. We �nd three speial ouplings,

�

rit

for the onset of non-trivial solutions to the SDE, �

SSB

for the onset of SSB,

i.e. a non-trivial solution has lower ation than the trivial solution and

~

�

SSB

where

the lowest extremum of

~

�[�℄ beomes non-trivial. We point out that these three

\ritial" ouplings di�er. Moreover, to alulate �

SSB

we need to know the e�etive

ation. In our approximation we obtain a �rst order phase transition.

6.5.2 Non-vanishing urrent quark masses m

0

�

6= 0

The non-vanishing urrent quark mass expliitly breaks the residual Z

3

-symmetry.

^

�[j�j; �℄ does no longer depend on os(3�) only, and we have to look at the omplete

omplex �-plane for possible extrema.

Moreover, for m

0

�

= 0,

^

�[�℄ is ompletely symmetri under � ! ��; � ! ��.

Therefore, we ould restrit ourselves to � � 0. For m

0

�

6= 0 we need to add the

transformation m

0

�

! �m

0

�

. We an still restrit ourselves to positive � but we need

to onsider both positive and negative m

0

�

.

In the ase of m

0

�

6= 0 we still enounter an extremum of

^

�[�℄ at � = 0. However,

in this ase it is not a solution of the SDE. It is a spurious solution due to

d�[�℄

d�

= 0.

The di�erene to the hiral limit is that the derivative of the e�etive potential

^

�[�℄

now has only a simple zero while in the hiral limit it is a twofold zero. After dividing

the �eld equation by

d�[�℄

d�

a simple zero remains, giving a solution of the SDE in

the hiral limit.

Although, hiral symmetry is now broken expliitly we an still observe a �rst-

order phase transition signaled by a jump in the fermion mass. The ritial oupling
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Figure 6.3: Dependene of the ritial oupling on the urrent quark mass m

0

�

(thik

solid line). Jump in the fermion mass at the phase transition (thik dashed line).

We observe that there exists a ritial m

0

�

� 0:076 above whih there is no phase

transition.

for the phase transition depends on m

0

�

as depited in Fig. 6.3. The ritial line ends

at m

0

�

= m

0

�;rit

� 0:076, i.e. for m

0

�

> m

0

�;rit

we have no �rst order phase transition

in our approximation.

6.6 Color-Otet Condensation

In the last setion we have onsidered only one diretion in the spae of all possible

g resulting in a phase diagram for hiral symmetry breaking. Let us now onsider

the more general ase where we also allow for a non-vanishing expetation value in

the olor-otet hannel, more expliitly in the olor-avor loking diretion.

g
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Following the outline of the previous setion we obtain
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and

U [�; �℄ = �

�
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�

3

�

5
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��

2

�
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�

3

+ ::

�

: (6.42)

^

�[�; �℄ = �4v

4

Z

x

dx x[8 ln(x + jmj

2

�

) + ln(x+ jmj

2

�

)℄ + U [�; �℄

m

�

=

5

1296

�(288�

2

+ 6��� 7�

2

) +m

0

�

m

�

=

5
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�(18�

2

� 3��� �

2

) +m

0

�

: (6.43)

In the hiral limit every point on the line � = �6� (m

�

= 0 and m

�

= 0) has

the same value of

^

�, and both derivatives with respet to � and � vanish. But, in

this diretion the derivative of � with respet to the ondensates vanishes, too, and

is indeed the null funtion in this diretion. Therefore, on this line only the point

(�; �) = (0; 0) is a true solution to the SDE.

Restriting both � and � to be real we have not found a solution with � 6= 0.

Thus, we have not identi�ed a solution whih breaks olor symmetry but not parity.

For the most general ase of omplex � and � things are onsiderably more

diÆult sine we now have to searh for an extremum of a potential whih depends

on four real parameters. We heked several values of the oupling onstant. So far

we have not found a solution whih has lower ation than the lowest one with � = 0.

Still, we would like to point out that the potential is unbounded from below. In

various diretions inluding those with � 6= 0,

^

�! �1. Therefore, a physial uto�

mehanism like the one disussed in [49℄ or a better approximation whih makes the

potential bounded from below may provide additional solutions.



Chapter 7

Outlook: Quest for a

Renormalizable Standard Model

0

The \Standard Model" (SM) of partile physis is probably one of the most widely

studied physial theories. It desribes a wide range of physial situations with a

satisfatory amount of auray. Yet, there are still open questions. In partiular,

we want to onentrate on \Renormalizability" and the \Hierarhy Problem", as

those are problems tightly onneted to the existene of an elementary salar boson

{ the Higgs { in the SM. This returns us to the speulation of a omposite Higgs

whih we mentioned in the introdution.

Before going into details, let us briey outline those two problems.

Renormalizability: If asked whether the SM is renormalizable many physiists

1

would answer this question positively. So, why searh for something we have already

found? Well, while this answer is ertainly orret for most pratial purposes, i.e.

when the UV-uto� sale is of a reasonable size � . 1TeV, it is not ertain that this

is so if we send the uto� to in�nity.

To get a grasp of the problem let us look at the example of �

4

-theory (a model

for the Higgs potential). Roughly speaking renormalizability means that the physis

at short distanes does not really matter, and therefore we an send the uto� to

in�nity without hanging the results. Yet, a straightforward alulation gives the

(1-loop) running four-boson oupling as follows,

�

e�

(q

2

) =

�

1�

3�

4�

2

ln

�

q

2

�

2

�

; (7.1)

0

This is work in progress in ollaboration with Holger Gies and Christof Wetterih.

1

A (not representative) survey in the \Graduiertenkolleg: Physial Systems with many Degrees

of Freedom" of the university of Heidelberg resulted in � 70% positive answers.

75
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0

where q

2

is the (Eulidean) momentum sale and � is the oupling at the sale �

2

.

From this we an read o�, that the oupling onstant grows with inreasing momen-

tum sale. It is plausible that this does not �t into our piture that long distane

physis (small momenta) deouples from short distane physis (large momenta), as

the oupling is strong in the latter regime.

This gives us an intuitive understanding that problems might arise when we

want to send the UV uto� to in�nity. Those theories are not renormalizable in a

strit sense. Requiring that a \fundamental" theory should be renormalizable suh

theories annot be \fundamental", i.e. valid at all sales. They are valid only as

e�etive theories up to a ertain uto� sale � where \new" physis will set in.

This [11{15℄ and a similar problem in QED (Landau pole!) [108; 109℄, hint to

serious trouble in the Higgs respetively U(1)-setor of the SM. This is often referred

to as \triviality" beause when starting with some bare interations and sending the

uto� to in�nity, the renormalized oupling will be stritly zero.

Hierarhy Problem: In ontrast to hiral fermions, where hiral symmetry

prevents the fermion mass from aquiring large quantum orretion, the mass of a

salar boson is not proteted against suh orretions. Thus, assuming that the RG

ow of the SM is \released" at, say, the GUT

2

sale, enormous �ne-tuning of the

salar initial onditions is required to separate the eletroweak sale from the GUT

sale by many orders of magnitude.

To illustrate this let us do a very simpli�ed alulation. In a rude approximation

the Higgs mass runs as follows (

2

= onst. = O(1)),

m

2

H

(q

2

1

)�m

2

H

(q

2

2

) = 

2

(q

2

1

� q

2

2

): (7.2)

De�ning the dimensionless Higgs mass �

2

(q

2

) =

m

2

H

(q

2

)

q

2

this an be rewritten as,

�

2

(q

2

1

) = 

2

�

q

2

2

q

2

1

�



2

+ �

2

(q

2

2

)

�

: (7.3)

So far so good, but let us now onsider two very di�erent sales, e.g. the GUT

sale q

2

1

= M

2

GUT

� 10

30

(GeV)

2

and the eletroweak symmetry breaking sale

q

2

2

� 10

4

(GeV)

2

. Inserting values for the Higgs mass at the eletroweak sale we

�nd that the brakets on the RHS are of order O(1). Hene,

�

2

(M

P

) = 

2

�O(10

�26

); (7.4)

the dimensionless mass at the GUT sale must be �ne-tuned to 

2

by an inredible

amount. Although not exluded, suh an amount of �ne-tuning seems unnatural.

2

Grand Uni�ed Theory.
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7.1 UV Fixed Points and Renormalizability

Let us now address the problem of renormalizability on a more formal level.

7.1.1 Non-perturbative Renormalizability

Commonly, theories are onsidered to be renormalizable if they have a (small ou-

pling) perturbative expansion and we an absorb the in�nities by a �nite number of

ounterterms. In onsequene, they only have a �nite number of ouplings (masses

et.) sine it requires physial information to �x a ounterterm unambiguously. For

instane, the value of a oupling or mass at some sale annot be determined in

the theory itself, but must be measured. All other quantities an be alulated from

these ouplings. From this renormalizable theories derive their preditive power. In

partiular, the renormalization proedure allows us to take the ontinuum limit,

i.e. to send the UV uto� to in�nity. In this sense we an onsider renormalizable

theories as fundamental. A prominent example of suh a theory is QCD.

It omes as no surprise that not all theories have this property of \perturba-

tive renormalizability" (PR). Gravity is probably the most well known example,

but there are many more: as theories whih ontain a oupling of negative mass

dimension are usually not PR. The NJL model (1.1) has a oupling � (mass)

�2

and onsequently is not PR, either. Moreover, naively renormalizable theories with

dimensionless oupling onstants may also fae diÆulties spoiling PR, as disussed

at the beginning of this hapter. Usually, theories whih are not PR are thought to

be e�etive �eld theories valid only up to a �nite UV sale �.

Yet, PR is not the end of the game. Using a little bit of imagination it is obvious

that a logial alternative is a \non-perturbative" renormalizable (NPR) [110{116℄

theory. So far so good, but does suh a thing exist and what is it? Fortunately, the

answer to the �rst question is yes. Among the examples are various versions of the

Gross-Neveu model. More reently, it has been proposed that gravity is NPR, too

[117; 118℄. But now, let us �nd out what hides behind NPR

3

.

The spae of all possible ation funtionals an be parametrized by an in�nite

number of dimensionless ouplings (if neessary we use a suitable resaling with the

sale k). As disussed in Set. 2.1.2 the RG desribes a trajetory in this spae (it

is parametrized by the sale t = ln(k=k

0

)),

�

t

g

i

t

= �

i

(g

1

; g

2

; : : :): (7.5)

Starting point for the onstrution of a NPR is the existene of a non-Gaussian �xed

point (FP) g

?

= (g

1

?

; g

2

?

; : : :) with at least one g

i

?

6= 0, in the RG ow,

�

i

(g

1

?

; g

2

?

; : : :) = 0 8i: (7.6)

3

In this brief desription of NPR we follow [118℄.
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0

In the setting of statistial physis suh a FP is exatly what we would assoiate

with a seond order phase transition. The dimensionless onstants do not hange

with the sale (typially the sale an be assoiated with the di�erene from the

ritial temperature � jT �T



j), aordingly the dimensionful quantities are simply

powers of the sale

4

. This gives the typial power laws of the ritial behavior near

a seond order phase transition. Moreover, we would like to remark that in this

ontext a PR is just the speial ase of a Gaussian, i.e. g

?

= 0, FP.

In the viinity of this FP we an linearize the RG equations,

�

t

g

i

=

X

j

B

ij

(g

j

?

� g

j

t

) (7.7)

where

B

ij

=

��

i

�g

j

�

�

�

�

g

?

(7.8)

is the Jaobi matrix of the �-funtions. This is a linear di�erential equation and the

general solution reads,

g

i

t

= g

i

?

+

X

I

C

I

V

I

i

�

k

0

k

�

�

I

; (7.9)

where the V

I

are right eigenvetors of B with orresponding eigenvalues

5

��

I

,

BV

I

= ��

I

V

I

, and the C

I

are onstants determined by the initial onditions. Set-

ting C

I

= 0 if the orresponding eigenvalue

6

�

I

< 0 we an safely take the UV limit

k!1. In other words this gives us an RG trajetory whih ends in g

?

for k !1.

Any suh trajetory de�nes a theory with a meaningful UV limit. The spae of all

suh trajetories is a submanifold S of dimensionality �, given by the number of

eigenvalues �

I

> 0. We an speify a trajetory in this spae by giving the values of

integration onstants C

I

. Thus our theory has � \renormalizable ouplings", whih

have to be taken from experiment. In partiular, � must be �nite (and preferably

small) in order for our theory to have preditive power.

Stated di�erently, all trajetories in the submanifold S are attrated toward g

?

for inreasing sale k, onsequently, for dereasing k they are repelled. Therefore,

the � parameters speifying the trajetory are the relevant parameters to desribe

4

It is often useful to inlude the wave funtion renormalization into the ouplings. This modi�es

the naive power laws by anomalous dimensions.

5

The �

I

are not neessarily real as B is not neessarily symmetri. For simpliity let us pretend

that they are real, anyway. The general ase an be reovered by replaing, � > 0 ! Re(�) > 0

et. in our argumentation.

6

For �

I

= 0 it depends on the details if the UV limit is �nite or not. Correspondingly, it might

or might not be neessary to set C

I

= 0. Prominent examples for both ases are the �

4

-theory

where the UV limit is not �nite, and QCD where the limit is �nite and whih is therefore stritly

renormalizable.
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physis in the �xed point regime. The remaining \non-renormalizable ouplings"

orresponding to �

I

< 0 are irrelevant in the sense that starting with a �nite value

at some sale k <1 they are attrated toward the submanifold S for dereasing k.

Thus it does not really matter if we give them some �nite value at a large sale

7

k.

Finally, let us give a naive argument why the submanifold S should be �nite di-

mensional. To obtain the dimensionless oupling we have to resale the dimensionful

oupling onstant G

i

by an appropriate power of k, g

i

= k

�d

i

G. The �-funtion has

now the form �

i

= �d

i

g

i

+ � � � where the dots denote the loop orretions. In the

Jaobi matrix this gives a ontribution B

ij

= �d

i

Æ

ij

+ � � � . The eigenvalues get a

ontribution �

i

= d

i

+ � � � . Construting a higher order operator, we usually add

derivatives or �eld operators, thus dereasing d

i

. Therefore, we should only have a

�nite number of �

i

< 0. Yet, this argument is based on the assumption that the loop

orretions are small. Hene, it might be not valid in the non-perturbative regime

with strong oupling and large loop orretions. Still, it seems reasonable to �rst

look for a possible FP and establish that it is not an artifat of the approximation,

and then worry about the dimensionality of S.

7.1.2 A Toy Model

Let us illustrate this idea for a simple NJL model in d-dimensions, a four-fermion

interation with dimensionless (positive) oupling onstant

^

� = k

d�2

�, and the ow

equation (whih, for the moment, is assumed to be exat),

�

t

^

� = (d� 2)

^

�� C

^

�

2

: (7.10)

For d > 2 the Gaussian FP

^

� = 0 is UV repulsive, i.e.

^

� is an eigenvetor with

eigenvalue �� = (d�2) > 0. The model is not PR for a non-vanishing

^

�. Moreover,

for any value

^

� <

d�2

C

we approah the Gaussian FP in the IR,

^

� is \irrelevant". By

ontrast, for

^

� �

d�2

C

the oupling

^

� grows and eventually diverges. This typially

signals some kind of symmetry breaking,

^

� is not so irrelevant any more. Looking a

little bit more losely we notie that

^

�



=

d�2

C

is a FP. The eigenvetor (

^

��

^

�



) has

an eigenvalue ��

0

= �(d� 2) < 0, i.e. it is a relevant parameter in the �xed point

regime. On the other hand, the FP is UV attrative and we have a meaningful UV

limit even for a (small) non-vanishing (

^

� �

^

�



). The theory with this parameter is

NPR.

Finally, let us remark that the ad ho ow equation of our toy model resem-

bled a typial ow equation for an NJL-type model in a trunation to four-fermion

interations, e.g. with C = 4(N � 2)v

3

l

(F);4

1

and d = 3 the ow equation for the

Gross-Neveu model in three dimensions.

7

We will see below that this statement should be taken with some are. More preisely, this is

true only if we are lose enough to the �xed point.
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0

7.1.3 Manifestation of the Hierarhy Problem

In this setting we also have the tools available for disussing the hierarhy problem.

So far we have already seen that a renormalizable oupling is relevant in the infrared,

i.e. starting with a small deviation from the �xed point in the far UV this deviation

soon grows large. This is quanti�ed in Eq. (7.9). Taking k

0

to be some large UV

sale k

0

= � � M

P

and � � O(1), the deviation grows very fast with (

�

k

)

�

when k

is lowered. Turning the argument around, we have to �ne tune the initial onditions

(hoose the initialC very small) at the sale � in order to ahieve a value omparable

to some sale k � � for the oupling at the sale k.

From this it may seem that renormalizability and a solution to the hierarhy

problem more or less exlude eah other. However, there is a way out, we simply

need to make � small or zero. At �rst this may sound simply like another type of

�ne-tuning, but it is not neessarily so, as the eigenvalues are a predition of our

�xed point solution and not a parameter. To understand this we an one more

look at our simple toy model. For d = 2 we have exatly the ase of a vanishing

eigenvalue. Solving the ow equation (7.10), we �nd

^

�(t = ln(k)) =

^

�

0

1 + C

^

�

0

ln

k

�

; (7.11)

where

^

�

0

=

^

�(t

0

= ln(�). As

^

� depends only logarithmi on the sale we an have

very di�erent sales without �ne-tuning.

Finally, let us remark, that Eq. (7.11) also gives us an understanding of what

an happen when � = 0. Only for C > 0 we approah the �xed point

^

�

?

= 0 in the

far ultraviolet. Only in this ase our simple toy model is renormalizable. Moreover,

our d = 2 ow equation for our toy model has the same form as the lowest order

terms of the d = 4 ow in QED and QCD around their Gaussian �xed points. In

this language QCD has C > 0 and is renormalizable while QED has C < 0 and is

not stritly renormalizable.

7.2 One more NJL Model

Inspired by our toy model let us one again investigate an NJL model but now with

N

f

fermion speies and an SU(N



)-gauge interation.
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7.2.1 Trunation and Flow Equations

A simple trunation inluding all possible pointlike the four-fermion interation

reads,

�

k

=

Z

 iD= +

1

4

F

��

F

��

+

1

2

h

�

�

(S{P) + �

�

(V{A) + �

+

(V+A) (7.12)

+�

f

�

(S{P)

N

+ �



�

(S{P)

N

+ �

VA

(V{A)

N

i

;

with the ovariant derivative,

D= = �=� igA=: (7.13)

The olor and avor singlets are

(S{P) = (  )

2

� ( 

5

 )

2

;

(V{A) = ( 

�

 )

2

+ ( 

�



5

 )

2

;

(V+A) = ( 

�

 )

2

� ( 

�



5

 )

2

;

where olor (i; j; : : : ) and avor (a; b; : : : ) indies are pairwise ontrated, e.g.,

(  ) � ( 

a

i

 

a

i

). The operators of non-trivial olor or avor struture are denoted

by,

(S{P)

N

= ( 

i

 

j

)

2

� ( 

i



5

 

j

)

2

� ( 

a

i

 

a

j

)

2

� ( 

a

i



5

 

a

j

)

2

;

(S{P)

N

= ( 

a

 

b

)

2

� ( 

a



5

 

b

)

2

� ( 

a

i

 

b

i

)

2

� ( 

a

i



5

 

b

i

)

2

;

(V{A)

N

= ( 

i



�

 

j

)

2

+ ( 

i



�



5

 

j

)

2

� (V{A)

N

:

The last equation holds beause of a Dira Fierz identity (f. App. B.3). The trun-

ation (7.12) is symmetri under a simultaneous exhange of N



$ N

f

, �

f

�

$ �



�

,

(: : : )

N

$ (: : : )

N

. However, it is not invariant under SU(N

f

)

L

�SU(N

f

)

R

. We an ob-

tain the part invariant under this additional symmetry by setting

^

�

�

=

^

�



�

= 0. The

full ation Eq. (7.12) is invariant only under the subgroup SU(N

f

)

V

of simultaneous

right and left handed rotations.

Following along the lines of Set. 3.3, in partiular using Eq. (3.16), the al-

ulation of the ow equations is straightforward. Using the dimensionless oupling
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0

onstants

^

� = k

2

� we �nd,

�

t

^

�

�

=

�

2

^

�

�

� 12g

2

�

N

2



� 1

N



^

�

�

+

^

�



�

�

v

4

�

(7.14)
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where the gauge �xing parameter is denoted by �.

7.2.2 Many Fixed Points but no Solution to the Hierarhy

Problem { the Case of Vanishing Gauge Coupling

To get a �rst insight we have numerially solved the FP equation,

�

t

^

� = 0; (7.15)

for vanishing gauge oupling g and N



= N

f

= 3. It turns out that not only do we

�nd a solution, but quite a few, 64 = 2

6

to be exat (one is always the Gaussian

FP). Looking more losely, only 44 are real.
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Let us, for the moment postpone the question, if the FP are physial or an artifat

of the trunation. Having found so many FP we ould beome kind of greedy and

ask if among all those 44 FP there is one whih in addition to providing us with a

renormalizable theory, ould solve the hierarhy problem. However, alulating the

eigenvalues of the stability matrix we �nd, that the largest eigenvalue �

max

� 2 for

all non-trivial �xed points. Or, stated more physially, one diretion is at least as

unstable as a salar boson mass.

Is this a very speial property of our hoie of N

f

and N



? No, but it is a property

of our trunation to pointlike four-fermion interations and vanishing gauge oupling.

More preisely, in this trunation there is always an eigenvalue � = (d � 2). This

an be seen by the following argument. In a four-fermion trunation we an write

the ow equations in the form,

�

t

�

i

= (d� 2)�

i

+ �

k

A

i

kl

�

l

; (7.16)

where A

i

is a symmetri matrix i.e. A

i

kl

= A

i

lk

. The stability matrix is then given by,

B

ij

=

�(�

t

�

i

)

��

j

= (d� 2)Æ

ij

+ 2�

k

A

i

kj

: (7.17)

Let �

?

be a solution of the �xed point equation,

�

t

�

?

i

= (d� 2)�

?

i

+ �

?

k

A

i

kl

�

?

l

= 0 8i: (7.18)

Ating with B

ij

j

�

?

on �

?

j

6= 0 we have,
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ij
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j
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(7.19)

= �(d� 2)�

?

i

+ 2(d� 2)�

?

i

+ 2�
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j

A

i
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?

k

= �(d� 2)�

?

i

+ 2((d� 2)�

?

i

+ �

?

j

A

i

jk

�

?

k

)

= �(d� 2)�

?

i

;

where we have used the �xed point equation (7.18) in the last step.

This shows that �

?

itself is an eigenvetor of the stability matrix with the eigen-

value �(d� 2), hene � = (d� 2). Therefore, in this trunation there annot be an

infrared stable �xed point beside � = 0.

7.2.3 Non-vanishing Gauge Coupling

Having not found the desired properties for the eigenvalues of the �xed point, let us

look if a non-vanishing gauge oupling an stabilize the �xed point.
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Figure 7.1: Largest eigenvalue �

max

<

for the most \stable" �xed point (f. Eq. (7.20))

depending on the gauge oupling. At a realisti value g � 1 for the gauge oupling

�

max

<

> 1:5. Giving us no solution to the hierarhy problem.

A measure for the stability of a �xed point

^

�

?

x

, x = 1 : : : 44 is the size of its

largest eigenvalue �

max

x

. When �

max

x

is smaller the �xed point

^

�

?

x

is more stable.

Thus, we have searhed for the smallest,

�

max

<

= min

x

�

max

x

: (7.20)

We have plotted this eigenvalue as a funtion of the gauge oupling in Fig. 7.1. To

get an impression of a reasonable value of the gauge oupling, let us take the strong

gauge oupling. At a sale of � 100GeV we have g

s

� 1. At larger sales the gauge

oupling is even smaller. As an be seen from Fig. 7.1 �

max

<

> 1:5 in this range,

bringing us nowhere near the desired � � 0.

7.3 The Future

So far the results of our toy model an be summarized as follows. It looks as if there

are many possibilities to have �xed points, but it seems diÆult to �nd one whih

has very small positive eigenvalues �. But, as we have already seen in Set. 7.2.2

this may be an artifat of our trunation to four-fermion interations. Therefore, a

next step is ertainly to enlarge the trunation.

However, there is another interesting diretion we an take. So far, in our simple

approximations we have negleted the inuene of the four-fermion interation on

the running of the gauge oupling. Instead we have treated the gauge oupling as

oming from the outside. Yet, at a strong-oupling non-Gaussian �xed point the

ow of the gauge-boson{fermion vertex is ertainly inuened by the presene of the
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Figure 7.2: Corretion to the gauge-boson{fermion vertex (fermions solid with arrow,

gauge boson wiggled) in the presene of a four-fermion interation.

four-fermion interation. The lowest order ontribution is depited in Fig. 7.2. If we

de�ne the gauge oupling by this vertex, the running is modi�ed by a ontribution

� g
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with

�

0

=

1

2

�

11

3

N



�

2

3

N

f

�

: (7.22)

First of all this may have interesting onsequenes for properties like asymptoti

freedom, beause at a non-Gaussian �xed point the terms � g

2

^

� will dominate for

very small gauge oupling. Therefore, the �xed point in

^

� determines if the gauge

interation is asymptotially free or not

8

.

Seondly, in Fig. 7.2 we have onentrated on the gauge-boson{fermion vertex.

But, in non-abelian gauge theories alternative de�nitions of the gauge oupling are

by the three- and four-gauge-boson verties. Some thought reveals that those do not

get a diret ontribution from the four-fermion interation. This raises the question

how this an be reoniled with the fat that, at least naively, gauge invariane tells

us that both de�nitions agree. These interesting possibilities are subjet to future

investigations.

8

As �

0

> 0 it is suÆient for asymptoti freedom that the sum of the four-fermion ouplings

in the brakets is positive. First numerial heks indiate that regardless of whih of the 44 �xed

points (N



= N

f

= 3) we hoose, asymptoti freedom is ensured. This even seems to apply to

various other ombinations of N

f

, N



.



Chapter 8

Summary and Conlusions

We enounter strongly interating fermions in many situations, ranging from olor

superondutivity and hiral symmetry breaking (� 100MeV) to ordinary superon-

dutivity (� meV). Typial features of suh systems are the formation of bosoni

bound states and spontaneous symmetry breaking (SSB). Non-perturbative teh-

niques are essential as SSB annot be desribed by (standard) perturbation theory

in these systems (f. Set. 3.2). Therefore, all methods disussed in the following

orrespond to non-perturbative resummations of perturbative diagrams.

We have started this work with a omparison of various standard methods used

for non-perturbative alulations in this kind of systems. We have alulated the

ritial oupling for the onset of spontaneous hiral symmetry breaking in a simple

NJL model. In partiular, we have used mean �eld theory (MFT), a renormalization

group (RG) equation with a trunation to pointlike four-fermion interations (from

now on referred to as fermioni RG) and the lowest-order Shwinger-Dyson equation

(SDE). The results for the ritial oupling �

rit

�

and two di�erent values of �

V

an

be found in Tabs. 5.1, 5.2. Sine the most harateristi features and problems of

the di�erent methods are most learly seen when the ouplings �

�

and �

V

are of

similar size we onentrate on Tab. 5.2.

Both MFT and the lowest order SDE sum only over fermioni utuations in

presene of a bosoni bakground. They inlude, in priniple the same type of dia-

grams, Fig. 3.1. The MFT result depends strongly on the hoie of the bakground

�eld. This "Fierz ambiguity" (FA) is expressed by the dependene on the unphys-

ial parameter  in the tables. No suh ambiguity appears in the SDE approah

whih therefore seems more reliable. We note that for a partiular hoie of  the

MFT and the SD approahes give idential results - in our ase  = 1=2. This has

led to widespread belief that MFT and SD are equivalent if the basis for the Fierz

ordering is appropriately hosen. However, this is not the ase, as an be seen by

alulating also the ritial oupling where spontaneous symmetry breaking sets in
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in the vetor hannel (in absene of other order parameters). There is again a value

 = �(�

�

+�

V

)=(2�

V

) where MFT and SD give idential results, but it di�ers from

 = 1=2 as enountered in the salar hannel

1

. We onlude that there is no possible

hoie of  where both ritial ouplings for SSB in the salar and vetor hannels

are idential in the MFT and SD approahes.

For a better understanding of the FA of MFT it is instrutive to onsider MFT

on a more formal basis as a simple approximation, taking into aount only the

fermioni utuations, in a \partially bosonized" language. Partial bosonization is a

powerful tool for an understanding of strongly interating fermioni systems beyond

the level of MFT or SDE. It allows us to treat the bosoni utuations in an expliit

manner, treating them on equal footing with those of the elementary partiles, and

provides for a rather simple framework for the disussion of SSB. Most importantly,

it permits the diret exploration of the ordered phase whih is, in pratie, almost

inaessible for the fermioni RG. Yet, already on the level of the lassial ation

we an get a grasp of the origin of the FA. Partial bosonization is not unique. From

one fermioni ation we an obtain a whole family of equivalent bosonized ations,

related to eah other by rede�nitions of the bosoni �elds.

In order to permit a simple omparison with the fermioni RG we have used a

rather rude approximation for the purely bosoni setor by retaining only a mass

term and negleting bosoni interations as well as the momentum dependene of

the bosoni propagator. In this approximation the e�et of the boson exhange

between fermions does not go beyond pointlike fermioni interations. Taking into

aount only the running of the Yukawa ouplings (Fig. 4.2) in the bosoni RG of

Set. 4.2, we observe already a very substantial improvement as ompared to MFT.

The dependene on  is greatly redued and the numerial value of the ritial

oupling omes already lose to the result of the fermioni RG. These features an

be ompared to the inlusion of higher loop e�ets in perturbation theory in partile

physis: they often redue the dependene of the results on unphysial parameters,

like the hoie of the renormalization sale.

Using SDE in a partially bosonized language we fared even better. Again, MFT

appears as the approximation whih inludes only the fermioni utuations in a

bosoni bakground. Adding the mass-shift diagram (f. Fig. 4.3) we reover the

unambiguous result of the fermioni SDE { MFT sums only over a subset of the

diagrams ontained in the fermioni SDE.

The mass-shift diagram in the partially bosonized language has only fermioni

external legs. This has prompted us to look for similar purely fermioni ontributions

in our partially bosonized RG desription. The box diagrams (Fig. 5.1) generate

new four-fermion interations and ontribute to the same order as the mass-shift

and vertex orretions. Those four-fermion interations are inluded in the adapted

1

Atually,  is negative and therefore outside the range of strit validity of MFT.
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bosoni RG disussed in Set. 5.2. Here the relation between the bosoni omposite

�elds and the fermion bilinears beomes sale dependent. This formulation is well

adapted to the basi idea of renormalization where only e�etive degrees of freedom

at a ertain sale k and their e�etive ouplings should matter for physis assoiated

to momenta q

2

. k

2

. The system should loose all memory of the detailed mirosopi

physis. In partiular, the hoie of an optimal bosoni �eld for the long distane

physis should not involve the parameters of the mirosopi theory, but rather

the renormalized parameters at the sale k. In this formulation it has also beome

apparent that the distintion between "fundamental degrees of freedom" and "bound

states" beomes a matter of sale [42℄. The adapted bosoni RG reprodues in our

rude approximation the results of the fermioni RG. We argue that for preision

estimates in the partially bosonized approah the "adaption" of the de�nition of the

omposite �eld seems mandatory.

For an improvement of the trunation two possibilities ome to mind immedi-

ately. One is to enlarge the bosoni potential beyond the mass term, the other is to

add kineti terms for the bosons. Yet, our disussion of Set. 5.3 shows that inlud-

ing only a bosoni potential without kineti terms for the bosons does not help us

in deiding whih type of boson will ondense in the SSB phase. The basi reason

for this is, that the orresponding interations in the fermioni language are still

pointlike and an be Fierz transformed in many ways. Kineti terms orrespond to

a momentum dependene of the interations in the fermioni language, greatly re-

duing the freedom to Fierz transform. For this reason we have turned to the seond

possibility. To ut a long story short, for a onsequent inlusion of all terms with

up to two derivatives on the bosoni �elds, we have to take into aount not only

the momentum dependene of the mass-shift diagram (f. Fig. 3.1), but in addition

part of the momentum dependene of the vertex orretion and the box diagrams

(f. Figs. 4.2, 5.1).

Comparing the numerial values (f. Tabs. 5.1, 5.2) with those of the pointlike

approximations, we �nd that the inlusion of the kineti terms a�ets the ritial

oupling on a 10% level. Moreover, the ontributions from the di�erent diagrams

are of similar size, on�rming one more that an adaption of the ow is neessary to

ahieve a high preision. The  dependene is small, as we would expet for a sys-

temati enlargement of the trunation. Nevertheless, it does not ompletely vanish

sine we have been fored to make approximations when inluding the momentum

dependene of the vertex orretions and box diagrams. Moreover, if the \right"

FT is known, inlusion of the pointlike ontributions seems already suÆient for

reduing the  dependene (f. the seond to last line in Tab. 5.2). In view of the

high algebrai omplexity involved with inluding the full momentum dependene

we would like to suggest this approximation for more moderate demands on au-

ray. Finally, let us point out the following important feature (shared by all of the

three onsidered approximations whih inlude kineti terms): with kineti terms for
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the bosons we an deide whih boson will ondense. For values �

�

(slightly) larger

than �

rit

�

, only the renormalized mass of the salar boson turns negative, while the

renormalized masses of the vetor and axial vetor bosons remain positive. This

on�rms that we have a phase where hiral symmetry (and nothing else) is broken.

In summary, the FA an be used as one possible test of approximation errors for

some of the methods proposed to deal with strongly interating fermioni systems.

The spread of the results within an aeptable range of the unphysial parameter 

should be onsidered as a lower bound for the systemati unertainty within a given

approximation. We �nd that MFT an have a very substantial ambiguity whih

should then be redued by systemati improvements. On the other hand, the FA is,

of ourse, not the only soure of error. Several methods suh as SDE or the fermioni

RG have no suh ambiguity by onstrution. This holds similarly for the adapted

bosoni RG (with or without kineti terms) whih is onstruted to redue the Fierz

ambiguity. Hene, in this ases the unertainty due to the Fierz ambiguity is small

ompared to other unertainties whih an roughly be estimated from the spread of

the results between the di�erent approximations. However, improving the trunation

we should keep an eye on the FA as it is likely to inrease, when our \improvement"

neglets something essential. Comparing the RG and SD approahes the adapted

bosoni RG sums over a larger lass of diagrams and therefore seems more reliable.

Moreover, the RG aounts for the fat that physis at the sale k should involve only

renormalized parameters at this sale, while the SDE involves \bare" ouplings. We

think that with the adapted bosoni RG we have reahed a promising starting point

for future investigations along the lines of [39; 90℄. In partiular, a more elaborate

bosoni potential would allow us to proeed into the SSB phase.

Removing the FA in a partially bosonized setting has turned out to be quite

tedious. For a �rst investigation of the phase diagram, lowest order SDE seem to

be a viable alternative whih allow for a desription of the SSB phase without

auxiliary �elds. However, at �rst sight there is one drawbak: SDE determine only

the derivatives of the ation, not the ation itself, making it diÆult to ompare

di�erent solutions with regard to stability. This shortoming is ured by the use of

the 2PI e�etive ation, or its simpli�ed form at vanishing fermioni soures, the

bosoni e�etive ation (BEA). In this ontext the SDE is the �eld equation of the

BEA.

Integrating the lowest-order SDE for a multi-fermion interation we have ob-

tained the bosoni e�etive ation at \one-vertex" level. Within this approximation

we omputed a simple \one-loop" expression for the BEA and the SDE. In this form

the BEA appears very similar to MFT but does not su�er from its ambiguities and,

as we have already seen, sums over a larger lass of diagrams.

We have applied the BEA at one-vertex level to a six-fermion interation resem-

bling the instanton vertex for three olors and avors. For vanishing urrent quark
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masses we �nd a �rst-order phase transition. It turns out that the value �

rit

for

the onset of non-trivial solutions for the SDE is not neessarily equal to the value

�

SSB

for the onset of SSB. To alulate the latter we need the value of the e�etive

ation in addition to the solution of the SDE. For nonzero urrent quark masses and

positive a oupling onstant we �nd a phase transition only for urrent quark masses

below a m

0

rit

� 0:076. At this point the gap in the e�etive mass vanishes and we

expet a seond-order phase transition. We have also searhed for solutions with a

non-vanishing olor-otet ondensate. Although they are not exluded by symme-

try we have not found a stable solution of the �eld equations with non-vanishing

otet ondensate � 6= 0. Nevertheless, we would like to point out that in our simple

approximation the BEA is unbounded from below in several diretions inluding

some with � 6= 0. Hene, some sort of uto� mehanism whih renders the potential

bounded might yield additional solutions. Therefore, a more detailed investigation

of the instanton interation in a olor-otet bakground would be of great value.

Leaving aside the more tehnial aspets of this work, we have turned to an

intriguing speulation, namely that the Higgs is not an elementary salar boson,

but a bound state of fermions, more preisely a top-antitop bound state [6{9℄. To

motivate a thorough investigation we have briey reviewed the \Hierarhy Problem"

and the \Triviality" of the �

4

-theory whih ause trouble for the Standard Model

(SM) with its elementary salar boson. In partiular, the latter problem may prevent

the SM from being renormalizable in a strit sense. In a model with a bound state

Higgs, renormalizabilitymay be provided by a non-Gaussian �xed point in the RG. A

toy model with N

f

fermions interating via a four-fermion interation and a SU(N



)

gauge interation implied that there might be plenty of those. On the other hand

it beame apparent that a solution to the hierarhy problem is beyond a simple

approximation to a pointlike four-fermion interation, as in this setting the required

�ne-tuning to ahieve a separation of sales is more or less as bad as for an elementary

salar. However, already in this simple trunation another interesting e�et turned

up: at a non-Gaussian �xed point, the ow of the gauge oupling might be ruially

inuened by the four-fermion-interations. In partiular, this aspet seems to be

interesting for future investigations.

It may well be that there are fundamental salar �elds, most andidates for

unifying theories have plenty of them, but so far not even one has been deteted

with ertainty. Hene, it might also be that nature has simulated one more an

elementary salar with a bound state. Upoming experiments (e.g. at Tevatron and

LHC) will help deiding this issue. But, independent of this, bound states of fermions

are still abundant in nature and we hope that our formalism with sale-dependent

degrees of freedom may be of help in understanding some of them.



Appendix A

Conventions, Abbreviations and

Symbols

A.1 Conventions

� We use Eulidean onventions in at spaetime, i.e. the metri is the d dimen-

sional unit matrix.

� Greek indies �; � : : : = 0; : : : ; d denote spaetime indies.

� Latin indies a; b : : : = 1; : : : ;N

f

are avor indies, i; j; : : : = 1; : : : ;N



olor

indies.

� Our onventions for the Fourier transform are

�(x) =

Z

d

d

q

(2�)

d

�(q) exp(ipx) (A.1)

 (x) =

Z

d

d

q

(2�)

d

 (q) exp(ipx);  (x) =

Z

d

d

q

(2�)

d

 (q) exp(�ipx):
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A.2 Mathematial Symbols

� Proportional to

� approximately equal to


 Tensor produt

y Hermitian onjugation

C Charge Conjugation (operator)

P Parity (operator)

R Reetion (operator) in Eulidean spaetime

T Time Reversal (operator)

A.3 Abbreviations

Ad. Adapted

BBS Bosoni Bound State

BEA Bosoni E�etive Ation

f. onfer

Chap. Chapter

ERGE Exat Renormalization Group Equation(s)

Eq. Equation

FA Fierz Ambiguity

FP Fixed Point

FT Fierz Transformation

IR Infrared

LHS Left Hand Side

LPA Loal Potential Approximation

MF Mean Field

MFT Mean Field Theory

RG Renormalization Group

RHS Right Hand Side

s. see

SD Shwinger-Dyson

SDE Shwinger-Dyson Equation(s)

Set. Setion

SSB Spontaneous Symmetry Breaking

UV Ultraviolet

WFR Wave Funtion Renormalization(s)



Appendix B

Fermion Conventions, Fierz

Identities

B.1 Dira-Algebra in 4 Dimensions

Throughout this work we use an Eulidean metri, g

��

= Æ

��

and

jxj

2

= x

2

0

+ x

2

1

+ � � �+ x

2

d�1

. With the exeption of one tiny exursion in Chap. 5

the number of spaetime dimensions will be d = 4.

Aordingly the Dira-algebra is

f

�

; 

�

g = 

�



�

+ 

�



�

= 2Æ

��

1; (B.1)

(

�

)

y

= 

�

;



5

= 

1



2



3



0

;

�

��

=

i

2

[

�

; 

�

℄ =

i

2

(

�



�

� 

�



�

):

We use a hiral basis  =

�

 

L

 

R

�

,  = ( 

R

;  

L

), with the projetion operators

P

L,R

=

1�

5

2

on the hiral omponents. An expliit representation is then given by,



�

=

�

0 �i�

�

i�

�

0

�

; 

5

=

�

1 0

0 �1

�

; (B.2)

with �

�

= (i1; �

i

). �

i

are the standard Pauli-matries

�

1

=

�

0 1

1 0

�

; �

2

=

�

0 �i

i o

�

; �

3

=

�

1 0

0 �1

�

; (B.3)

and 1 is here the 2� 2 unit matrix.
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Using Eq. (B.1) it is quite easy to derive relations to simplify expressions on-

taining several  matries, e.g. 

�



�



�

= �2

�

. This an be automated and we use

the Traer -pakage [119℄ for Mathematia to do this.

B.2 Dira-Algebra in 3 Dimensions

In Chap. 5 we use the Gross-Neveu model in 3 dimensions to demonstrate a short-

oming of partial bosonization. The Dira-algebra in odd dimensions is somewhat

di�erent from the ase of even dimensions.

Nevertheless, it is quite easy to �nd an expliit realization as the Pauli matries

already ful�ll the requirements for the Dira-algebra,

�

�

i

; �

j

	

= 2Æ

ij

: (B.4)

Consequently, we an use spinors with only two omponents. Sine we do not need

any more subtle properties, let us leave it at that and return to the ase of four

dimensions.

B.3 Fierz Identities

De�ning O

S

= 1, O

P

= 

5

, O

V

= 

�

, O

A

= 

�



5

and O

T

= �

��

we obtain the

following Fierz identities,

( 

a

O

X

 

d

)( 



O

X

 

a

) =

X

Y

C

XY

( 

a

O

Y

 

b

)( 



O

Y

 

d

); (B.5)

with

C

XY

=

1

4

0

B

B

B

B

�

�1 �1 �1 1 �1

�1 �1 1 �1 �1

�4 4 2 2 0

4 �4 2 2 0

�6 �6 0 0 2

1

C

C

C

C

A

: (B.6)

From the indies a; b; ; d whih ombine all but spin-indies we an see that we have

done nothing but exhanged the two  's appearing in the four-fermion term.

For the speial ase of only one fermioni speies we �nd that the struture

( O

V

 )

2

+ ( O

A

 )

2

is invariant. Moreover, we an use Eqs. (B.5), (B.6) to obtain

the identity (atually this is exatly Eq. (1.2)),

( O

V

 )

2

� ( O

A

 )

2

= �2[( O

S

 )

2

� ( O

P

 )℄; (B.7)
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whih allows us to transform ( O

V

 )

2

� ( O

A

 )

2

ompletely into salar and pseu-

dosalar hannels.

If we have more than one fermion speies, e.g. several avors and/or olors, the

Fierz transformations turns singlets into non-singlets and vie versa. This an be

used to redue the number of possible ouplings as we do in Chap. 7.

Finally, let us mention two possible generalizations of the above. First, the same

idea of permuting the  's an, of ourse, also be applied to higher order interations

like a 6- or 8-fermion interation. Seond, the four-fermion operators onsidered

above are invariant under the disrete transformations C, P and T (harge onjuga-

tion, parity and time reversal). However, as we know the weak interations violate

parity. Therefore, we might also want to onsider interations whih are only invari-

ant under CP and T . The set of parity violating operators an be obtained by mul-

tiplying one O

X

in the four-fermion operator by 

5

. This yields ( O

X

 )( O

X



5

 ).

Of ourse there is a set of equations similar to Eqs. (B.5), (B.6).



Appendix C

Infrared and Ultraviolet

Regularization

One of the entral building bloks of the ow equation Eqs. (2.32), (2.34) is the IR

uto� R

k

. In this appendix we want to give expliit examples of the uto� funtions

and de�ne the threshold funtions whih appear in expliit alulations as a onse-

quene of the trae over momentum spae. Furthermore, we briey omment on some

tehnial points onerning the orrespondene between UV and IR regularization.

C.1 Cuto� Funtions

To derive the ow equation (2.34) in Chap. 2 we added an additional term to the

e�etive ation providing for an IR regularization,

�S

k

[�℄ =

1

2

Z

p

�

T

(�p)R

k

(p)�(p): (C.1)

The inverse massless average (i.e. regularized) propagator P

B

for bosons and the

orresponding squared quantity P

F

for fermions are given by (f. Set. 2.1.2, Eqs.

(2.16), (2.18)),

P

B

= q

2

+ Z

�1

�;k

R

k

(q) = q

2

(1 + r

B

(q

2

)); (C.2)

P

F

= q

2

(1 + r

F

(q

2

))

2

;

where r

B

and r

F

reet the presene of the IR uto�. The dimensionless funtions

r

B

and r

F

depend only on y = q

2

=k

2

.
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Expressed in terms of the r's the linear uto�, Eqs. (2.16), (2.18)) is as follows,

r

B

(y) =

�

1

y

� 1

�

�(1� y); (C.3)

r

F

(y) =

�

1

p

y

� 1

�

�(1� y):

Other typial examples are the sharp momentum uto�,

r

B

(y) =

�(1� y)

1��(1� y)

; (C.4)

r

F

(y) =

�(1� y)

1��(1� y)

;

and the popular exponential uto�

r

B

(y) =

1

1� exp(�y)

� 1; (C.5)

r

F

(y) =

s

1

1� exp(�y)

� 1:

C.2 Threshold Funtions

The (super-)trae in the ow equations (2.32), (2.34) inludes a momentum spae

integral, reminisent of a one-loop expression. Typially, the integral kernels are

produts of the IR regularized propagators and their derivatives. In most parts of

this work, we use standard threshold funtions as de�ned in [67℄, whih we evaluate

below expliitly for a �nite UV uto� � and for the linear uto� (C.3). In Set. 5.4 we

need several additional threshold funtions, not de�ned in the standard literature.

To failitate the notation we de�ne a new, enlarged set of threshold funtions in

Set. C.2.3, and label the threshold funtions somewhat di�erently.

C.2.1 Evaluation with Finite UV Cuto�

To adapt the IR regulator to a �nite UV uto� one an modify the uto� funtions

by a term whih beomes in�nite for all y �

�

2

k

2

. For our purposes it is simpler to

restrit the range of x to [0;�

2

℄. This has the same e�et. In absene of mass terms

the threshold funtions an only depend on the ratio s = k

2

=�

2

. With

~

�

t

=

q

2

Z

�;k

�[Z

�;k

r

B

℄

�t

�

�P

B

+

2

Z

 ;k

P

F

1 + r

F

�[Z

 ;k

r

F

℄

�t

�

�P

F

(C.6)
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we �nd for bosons (x = q

2

)

l

(B);d

0

(!; �

�

; s) =

1

2

k

�d

Z

�

2

0

dx x

d

2

�1

~

�

t

ln(P

B

(x) + !k

2

) (C.7)

=

2

d

�

1�

�

�

d+ 2

�

1
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and for fermions
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+
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�

1

1 + !

�(s� 1):

Higher threshold funtions an be obtained simply by di�erentiating with respet

to !:

l

d

n+1

(!; �; s) = �

1

n+ Æ

n;0

d

d!

l

d

n

(!; �; s): (C.9)

For a �nite value of the UV uto� � the threshold funtions are expliitly s- and

therefore k-dependent. Taking �!1 we have s = 0 for any value of k. This renders

the threshold funtions k-independent.

In the pointlike trunations of Chaps. 3-5 we neglet the anomalous dimensions

�

�

, �

 

and e�etively only onsider a fermioni uto� sine Z

�;k

= 0. Moreover, the

fermions are massless and we abbreviate for ! = 0

l

d

n

(0; 0; s) = l

d

n

(s): (C.10)

This yields expliitly

l

(F );4

1

(s) =

1

2

�

�(1� s) + s

�2

�(s� 1)

�

: (C.11)

To obtain the perturbative result from the fermioni RG equation we used

Z

1

�1

dtk

2

l

(F );4

1

(s) =

Z

1

0

dk kl

(F );4

1

(s) =

�

2

2

: (C.12)

As long as we keep the sharp momentum uto� at q = � this integral is universal,

i.e. it does not depend on the preise hoie of the IR uto�. Indeed the universality

is neessary to reprodue perturbation theory for every hoie of the IR uto�.
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C.2.2 Cuto� Independene for Pointlike Trunations

We have also used other uto� funtions R

k

di�erent from the linear uto�. Within

the loal interation approximation we have found that the value of the ritial

oupling omes out independent of the hoie of R

k

. The basi reason is that a

multipliative hange of l

(F );4

1

due to the use of another threshold funtion an be

ompensated by a resaling of k (f. Eq. (3.17)). The resaling is simply multiplia-

tive for s < 1, with a suitable generalization for s > 1. Critial values of the ow

whih are de�ned for k !1 are not a�eted by the resaling. Let us demonstrate

this for �

V

. Writing Eq. (3.17) in the sale variable k we have

�

k

�

V;k

= �4v

4

l

(F );4

1

(s)k(�

�;k

+ �

V;k

)

2

: (C.13)

Resaling to

~

k(k) =

Z

k

0

dk kl

(F );4

1

(s) (C.14)

we �nd

�

~

k

�

V;

~

k

= �4v

4

(�

�;

~

k

+ �

V;

~

k

)

2

: (C.15)

Due to the universality of Eq. (C.12) the domain for k, [0;1℄, is now mapped

to [0;

�

2

2

℄, giving the domain for

~

k independent of the IR uto�. Having obtained

idential di�erential equations for every hoie of IR uto� without any resaling of

� establishes the above laim for the ritial ouplings.

Note however, that this would not hold if we would start the integration of the

ow equation at k = �. In this ase the domain [0;�℄ for k is mapped into an

interval for

~

k that depends on the threshold funtion and therefore on R

k

. Atually,

the R

k

dependene in this ase is not very surprising beause di�erent IR uto�s

then orrespond to di�erent UV regularizations. Sine our model is naively non-

renormalizable results an depend on the hoie of UV regularization (f. Set. C.3).

C.2.3 Threshold Funtions for Set. 5.4

Similar to Eq. (C.7), (C.8) we de�ne our modi�ed threshold funtions by integrals

over x = q

2

. Threshold funtions with derivatives of the fermion propagator are

denoted by a Greek letter, all others by Latin letters. With

F

�1

(x) =

1 + r

F

(x)

P

F

(x)

; (C.16)
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and suppressing the arguments (!

F

; �

F

; !

1

; �

1

; !

2

; �

2

) = (F; 1; 2) of the threshold

funtions and the argument (x) of the inverse propagators we write,
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If possible, i.e. if in the threshold funtion t no x-derivatives at on P

2

, respetively

P

1

and P

2

, we abbreviate

t

(FBB);d

n;m;0

= t

(FB);d

n;m

and t

(FB);d

n;0

= t

(F );d

n

: (C.26)

For the linear uto� Eq. (C.3) the integrals an be done expliitly as in Set.

C.2.1. This is useful for numerial omputations but not very enlightening.

Some of the threshold funtions de�ned above are straightforwardly related to

the standard threshold funtions used in the literature. Partiularly noteworthy are

the following relations,

l

(F );d

n

(0; �

F

) = a

(F );d+2(n�1)

2n

(0; �

F

) (C.27)
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(F );d

2

(!
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; �

F

):

The threshold funtions de�ned above are not mutually independent. By partial

integration one an obtain relations linking some of the threshold funtions above.
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Let us ontent ourselves with two examples whih are useful for a omparison with

results in the literature,
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In the speial ase m

1

= m

2

= 0, d = 2n = 4 this redues to
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Moreover,
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Finally, let us ome to a property we need when studying the pointlike limit for

the bosons. For large boson masses the inverse propagator ats like !

2

. This gives

us the asymptoti properties

1

,
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and similar for all other threshold funtions.

C.3 UV Regularization { ERGE Sheme

C.3.1 E�et of UV Regularization

UV regularization an be implemented by a sharp uto� in all integrals over mo-

mentum spae

2

. Yet, this is not the only possibility. Indeed, it is often not the most

1

This argument and the orresponding properties are only valid at �xed anomalous dimension.

2

When hoosing a UV regularization one has to be areful to take one ompatible with the

symmetries of the theory in question. E.g. for gauge theories the sharp momentum uto� violates

gauge symmetry and is therefore not a suitable hoie.
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1

Figure C.1: In a UV regularized theory not all modes ontribute ompletely. This

plot shematially depits \how muh" eah mode ontributes. The thik line is

for the sharp momentum uto�. All modes with q

2

� �

2

are inluded ompletely.

Other UV regularizations (dashed, thin dashed and thin solid line) typially not

only inlude a small fration of the high momentum modes, q

2

> �

2

, but in addition

leave out a small fration of the low momentum modes.

pratial regularization. E.g. in perturbation theory dimensional regularization is

often muh more onvenient. But, even at �xed spaetime dimension there are other

regularization methods. Prominent examples are the Pauli-Villars and Shwinger

proper time regularization (for details s. e.g. [120℄). More or less any modi�ation

(ompatible with the symmetries) of the short distane behavior of the propagators

whih renders all Feynman diagrams �nite, an be alled a UV regularization. In

general, the modes with q

2

> �

2

are not ompletely left out, only suppressed, as

depited in Fig. C.1.

From another point of view, a modi�ation of the propagator an be implemented

in the ation. This gives then an \UV regularized lassial ation". The funtion

desribing the suppression of the UV modes (f. Fig. C.1) in some way appears in this

UV regularized ation, e.g. the sharp uto� limit an be implemented by multiplying

all terms in the ation by appropriate �(1 �

q

2

�

2

)-funtions. Hene, di�erent UV

regularizations usually orrespond to di�erent \lassial ations". Therefore, it is

no surprise, that di�erent UV regularizations give di�erent results. In partiular,

this is true for the ritial oupling in our NJL model Eq. (1.1), as one an see by

omparing Tabs. 3.1, 3.2 with Tabs. 5.1, 5.2, alulated using a sharp UV uto� at

� and a UV regularization by the ERGE sheme (s. below) with the linear uto�

Eq. (C.3), respetively. Only in renormalizable theories

3

we an remove the uto�

and obtain results independent of the spei�s of the UV regularization.

3

This inludes ritial behavior at seond-order phase transitions (f. Chap. 7), in partiular

ritial exponents and other universal quantities.
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C.3.2 ERGE Sheme

In Set. C.2.1 we have evaluated the threshold funtions for a theory whih is UV

regularized by a sharp uto� in momentum spae. It turned out that the threshold

funtions depended on the ratio s =

k

2

�

2

in a rather ompliated way. Constant

threshold funtions would be desirable, among other things to simplify numerial

alulations.

We already noted, that for � = 1 the uto� funtions are indeed onstant for

all k, beause s = 0 for all �nite k. Moreover, for an IR uto� dereasing suÆiently

fast in the UV all threshold funtions are �nite, even for � =1. The ow equation

(2.32), (2.34) is UV �nite. Now, let us remember that we have hosen the IR uto�

suh that only the modes around q

2

= k

2

e�etively ontribute to the ow (Eq.

(2.15)). Starting the ow at k

0

= � and integrating to k = 0 we have inluded

only modes with q

2

. �

2

. This is exatly what we expet for an UV regularization.

More preisely, the UV regularization is now implemented in the �nite hoie for

the initial onditions at k = k

0

= �. This is the so alled ERGE sheme for the UV

regularization.

As ow equations are muh simpler with onstant threshold funtions, this is

the method of hoie to implement UV regularization in ERGE. Nevertheless, this

is bought at the prize that we annot any longer ompare non-universal quantities

between di�erent IR regularizations, as they automatially lead to di�erent UV

regularizations.

Although it is usually not the simplest method, we an invoke UV regularization

by the ERGE sheme also in the ontext of perturbation theory or SDE. This fol-

lows along the lines indiated in Set. 2.1.2 for perturbation theory. Typially any

expression an be written in terms of inverse propagators P , internal momenta q we

integrate over, and external momenta p we do not integrate over,

Z

q

F (P; q; p): (C.33)

A spei� ERGE sheme is spei�ed by the hoie of the IR regulator R

k

. Replaing

the inverse propagator P by the IR regularized inverse propagator P + R

k

we an

alulate the ontribution from eah sale k, k

�1

~

�

t

F (P +R

k

; q; p). Integrating over

all sales from k

0

= � to k = 0 we obtain the UV regularized expression,

Z

0

k

0

=�

dk k

�1

~

�

t

�

Z

q

F (P +R

k

; q; p)

�

: (C.34)



Appendix D

Flow Equations for Set. 5.4

In this appendix we list the ow equations for the e�etive ation (1.4) generalized

to inlude kineti terms (4.23). Moreover, we alulate the (momentum-dependent)

�eld rede�nitions neessary to keep a simple form of the ation with Yukawa ou-

plings onstant in momentum spae and no four-fermion interations.

D.1 Flow Equations at Fixed Fields

The �rst diagram that we have to evaluate is Fig. 3.1, giving the self-energy �

2

(p).

Momentum onservation implies that it depends only on one momentum variable p.

Expanding for small values of p

2

and abbreviating the arguments of the threshold

funtions (f. App. C.2.3) as F = (!

F

; �

F

) we �nd,
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In general, the vertex orretion depited in Fig. 4.2 depends on two momentum

variables. As disussed in Set. 5.4.2 we perform the evaluation for the on�guration

104
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:

In order to ompare the momentum dependene on s and t in the viinity of

(s; t) = (0; 0) we have evaluated both momentum on�gurations disussed in Set.

5.4.2.

For the on�guration (p

1
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3
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4
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:

After the appropriate Fierz transformation the on�guration (p

1

; p

2

; p

3

; p

4

) =

1
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2

yields,
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:

D.2 Field Rede�nitions

Before we start, let us remark that in this setion we write down expliit fators of

the wave funtion renormalization Z. To obtain the expressions in the renormalized

ouplings we simply have to set Z = 1. To keep the form of the e�etive ation

simple (more preisely to retain Yukawa ouplings onstant in momentum spae

and �(p) = 0) we allow for momentum-dependent �eld rede�nitions,
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we �nd
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and an analogous equation with (V ! A). As the expressions for the axial vetor

boson an always be obtained by this replaement, we write in the following only

the expression for the vetor boson.

Imposing the ondition

�

t

�(q) = 0; (D.13)
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The requirement for a onstant Yukawa oupling reads,

�

t

�

h

�

(q)� h

�

(0)

q

2

�

= 0; �

t

�

h

V

(q)� h

V

(0)

q

2

�

= 0: (D.15)

This �xes the funtions �
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�(q) up to a onstant in q,
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The remaining onstant an be �xed by requiring that our �elds are always renor-

malized if they are so at the beginning, i.e.
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Using our de�nition of the anomalous dimension, � = 2�
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Inserting this into Eqs. (D.11), (D.12) we obtain our �nal form for the ow equations,
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