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E�ektive Wirkungen f�ur stark we
hselwirkende

fermionis
he Systeme

Zusammenfassung

Wir verglei
hen vers
hiedene ni
ht-st�orungstheoretis
he Methoden zur Bes
hreibung fermionis
her

Systeme, die gebundene bosonis
he Zust�ande (BBS) und spontane Symmetriebre
hung (SSB)

aufweisen. In einer rein fermionis
hen Spra
he erfordert das Eindringen in die SSB Phase Te
h-

niken jenseits von St�orungstheorie und Renormierungsgruppenglei
hungen. Dazu ist eine Bes
hrei-

bung, die BBS und elementare Teil
hen glei
hbere
htigt behandelt, besser geeignet. Die \Partielle

Bosonisierung" f�uhrt aber zu einer Willk�ur in der Wahl der BBS Felder, da diese dur
h die klassis
he

Wirkung ni
ht eindeutig festgelegt ist. Die Ergebnisse approximativer Re
hnungen, z.B. mean �eld

theory, k�onnen aber von dieser Wahl abh�angen. Dies bes
hr�ankt die quantitative Aussagekraft.

Am Beispiel des Nambu{Jona-Lasinio-Modells zeigen wir, wie diese Abh�angigkeit dur
h geeignet

gew�ahlte Approximationen reduziert und man
hmal sogar zum Vers
hwinden gebra
ht werden

kann.

S
hwinger-Dyson-Glei
hungen (SDE) erlauben eine Bes
hreibung von SSB ohne Hilfsfelder. Die

2PI-Wirkung erm�ogli
ht es uns, vers
hiedene L�osungen der SDE zu verglei
hen und so die stabile zu

�nden. Diese Methode wenden wir auf eine se
hs-Fermion We
hselwirkung an, die der drei-Flavor-

Instantonwe
hselwirkung der QCD �ahnelt. Wir �nden einen Phasen�ubergang erster Ordnung in

die 
hiral gebro
hene Phase, aber keine stabile Phase mit gebro
hener 
olor-Symmetrie.

Die Existenz eines elementaren skalaren bosonis
hen Teil
hens im Standardmodell { dem Higgs

{ f�uhrt zu mehreren Fragen. Die mit fundamentalen Skalen (� M

GUT

) vergli
hen kleine Masse

erfordert ein extremes Ma� an Finetuning. Au�erdem ist das �

4

-Potential m�ogli
herweise ni
ht

renormierbar im strengen Sinne. Im Hinbli
k darauf diskutieren wir die M�ogli
hkeit, da� das Higgs

ein BBS aus Fermionen ist.

E�e
tive A
tions for Strongly Intera
ting Fermioni


Systems

Abstra
t

We 
ompare di�erent non-perturbative methods for 
al
ulating the e�e
tive a
tion for fermioni


systems featuring bosoni
 bound states (BBS) and spontaneous symmetry breaking (SSB). In a

purely fermioni
 language pro
eeding into the SSB phase requires te
hniques beyond perturbation

theory and renormalization group equations. Improvement 
omes from a des
ription with BBS

�elds and elementary �elds treated on equal footing. Yet, \partial bosonization" introdu
es an

arbitrariness as the 
hoi
e for the 
omposite �elds is usually not 
ompletely determined by the


lassi
al a
tion. Results of approximate 
al
ulations, e.g. mean �eld theory, may depend strongly

on this 
hoi
e, thus limiting their quantitative reliability. Using the Nambu{Jona-Lasinio model as

an example we demonstrate how this dependen
e 
an be redu
ed, sometimes even be eliminated

by suitably 
hosen approximations.

S
hwinger-Dyson equations (SDE) allow for a des
ription of SSB without auxiliary �elds. The 2PI

e�e
tive a
tion enables us to 
ompare di�erent solutions of the SDE and �nd the stable one. We

apply this method to a six-fermion intera
tion resembling the three-
avor instanton intera
tion in

QCD. We �nd a �rst order 
hiral phase transition but no stable phase with broken 
olor symmetry.

The existen
e of an elementary s
alar boson in the Standard Model { the Higgs { raises several

questions. The smallness of its mass 
ompared to some fundamental s
ale (� M

GUT

) requires an

extreme amount of �ne-tuning. Moreover, its �

4

-potential may not be renormalizable in a stri
t

sense. In view of this we dis
uss the possibility of a Higgs as BBS of fermions.
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Chapter 1

Introdu
tion

There are no eternal fa
ts, as there are no absolute truths.

Friedri
h Nietzs
he

1.1 Bosons Made up of Fermions

Everything is Made of Fermions?

The sear
h for \fundamental" parti
les is one of the most ambitious enterprizes

in physi
al resear
h. While it has been very su

essful in terms of un
overing new

parti
les it has also led us to question over and over again what \fundamental" really

means. The notion \fundamental parti
le" has 
hanged with time. First it was atoms

then it was ele
trons and nu
lei and later the latter ones were split into protons and

neutrons. Today, we are quite sure that even neutrons and protons are made up of

the more fundamental quarks. What on
e had been fundamental parti
les be
ame

bound states.

Looking at Fig. 1.1 we 
an see that this evolution is simply like turning up the

resolution of a mi
ros
ope. At a low resolution we see nothing but a point (parti
le)

while at a higher resolution it exhibits stru
ture, i.e. we 
an see that it is 
omposed of

other parti
les. In parti
le physi
s the \mi
ros
ope" is a s
attering experiment and

the resolution improves with smaller wavelength � �

~


E

, and therefore higher energy

E of the s
attering parti
le. Consequently, with progress in a

elerator physi
s, it

might turn out that some (or even all) of the parti
les of the Standard Model are

not fundamental, but bound states.

What has all that to do with fermions? At the moment we are in a very pe-


uliar situation. Classifying parti
les by spin (S) and statisti
s all parti
les of the

1
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Figure 1.1: With the exploration of smaller and smaller s
ales it often be
ame ap-

parent that parti
les whi
h were thought to be fundamental are instead 
omposed

of even smaller parti
les. Nevertheless, for a des
ription at a given s
ale it is often

useful to treat bound states as \fundamental" parti
les, e.g. for a �rst des
ription of

water vapor it is a very good approximation to treat the water mole
ules as funda-

mental, i.e. we use an \e�e
tive theory" in whi
h the water mole
ules are pointlike

and have some kind of e�e
tive intera
tion. However, if we want to des
ribe the

absorption and emission of ele
tromagneti
 waves it be
omes ne
essary to 
onsider

the water mole
ule as 
omposed of atoms (infrared) and eventually the latter ones to

be 
omposed of ele
trons and a nu
leus (visible, ultraviolet). Corresponding to the

s
ale we probe, we have to 
onsider di�erent e�e
tive theories. This kind of s
ale

dependent des
ription is one of the main ideas behind the renormalization group

(RG) (
f. Se
t. 2.1.2). The RG provides us with a means to 
al
ulate the 
ouplings

of an e�e
tive theory at a given s
ale from the ones of an e�e
tive theory valid at a

smaller length s
ale, and ultimately from the fundamental one.

\Standard Model" are either ve
tor bosons with S = 1 or fermions with S =

1

2

.

The only ex
eption is the Higgs as it is supposed to be a s
alar (S = 0) boson.

Although, re
ent experiments [1{5℄ at the �nal runs of LEP may have dete
ted a

Standard Model Higgs (or a supersymmetri
 extension of it), the eviden
e is still

quite shaky, leaving room for spe
ulations. Being provo
ative we 
ould state that

so far we have not yet observed any fundamental s
alar boson. Hen
e, one 
ould


onje
ture that the Higgs might be a bound state of fermions, more expli
itly a

top-antitop bound state [6{10℄. In addition to this phenomenologi
al aspe
t, the

idea of \top-quark 
ondensation" might also be a way to 
ir
umvent some te
hni
al

problems, like the triviality of �

4

-theory (Higgs potential!) [11{15℄, paving the way

to a \renormalizable" Standard Model.

Spontaneous Symmetry Breaking

The phenomenon of spontaneous symmetry breaking (SSB) and the formation of

bosoni
 bound states in strongly intera
ting fermioni
 systems are tightly 
onne
ted.
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First of all, a

ording to Goldstone's theorem [16; 17℄ it is inevitable to have

massless Spin-0 parti
les, i.e. s
alar bosons, if we spontaneously break a 
ontinuous

global symmetry. In a purely fermioni
 theory these must be bound states. An exam-

ple for these bosons are the pseudos
alar mesons of QCD, whi
h are the Goldstone

bosons of 
hiral symmetry breaking.

Se
ondly, it is impossible for a fermioni
 (Grassmannian) �eld to a
quire a non-

vanishing va
uum expe
tation value. Therefore, the simplest possible symmetry-

breaking term is a bosoni
 operator made up of two fermions. Thus, even for purely

fermioni
 theories, the phenomenon of SSB is 
hara
terized by bosons.

Physi
ally, we 
an imagine a Mexi
an-hat-type potential for the bosoni
 
om-

posite operator. Depending on whether we have a lo
al or a global symmetry the

Goldstone bosons, 
orresponding to the angular ex
itations, may or may not be

eaten up by gauge bosons. But, in addition to those we always have the radial ex-


itations, 
orresponding to (usually) massive bosons. E.g. in the top 
ondensation

model this would be the Higgs boson. So, at this level, there is really no di�eren
e

to a model with elementary bosons.

Yet, there is a slight di�eren
e in the way the Mexi
an-hat is generated. For

elementary bosons we quite often simply 
hoose the potential to be a Mexi
an-hat,

whereas for fermions the generi
 
ase is that the non-trivial minima are generated

dynami
ally by quantum 
u
tuations. That is why it is often referred to as dynami
al

symmetry breaking.

Finally, we note that the 
ase where the des
ribed radial boson be
omes massless


orresponds to a se
ond order phase transition. With features like universality these

spe
ial 
ases are espe
ially interesting.

Last but not least, of 
ourse, there 
an be bound states not dire
tly linked to

SSB, e.g. the hydrogen atom or positronium.

A lot of Bound States { Some Models

Of 
ourse, a spe
ulative model of the Higgs and 
hiral symmetry breaking are not

the only situations where we en
ounter the me
hanisms des
ribed above.

Color super
ondu
tivity: At very high density it is expe
ted that the QCD

ground state is a 
olor super
ondu
ting phase [18{26℄. Depending on the spe
i�
s

of temperature, number of 
avors et
. there are several di�erent phases. Let us just

mention the 
olor 
avor lo
king phase 
hara
terized by a non-vanishing expe
tation

value of

1

h 

a

Li

 

b

Lj

i � (Æ

ia

Æ

bj

�

1

N




Æ

ij

Æ

ab

) as an example. In this phase the SU(3)


olor

�

SU(3)

L

� SU(3)

R

is broken down to a ve
torlike SU(3)

V

. Breaking global (
hiral)

1

L refers to left handed, R to right handed.
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as well as lo
al (
olor) symmetries, we have Goldstone bosons as well as massive

gauge bosons (gluons).

Color symmetry breaking in the va
uum: It was 
onje
tured [27; 28℄ that

the QCD ground state at zero density might also have a broken 
olor symmetry.

In this 
ase the order parameter is h 

a

Li

 

b

Rj

i with the same type of expe
tation

value and symmetry breaking pattern as for the 
olor 
avor lo
king phase in 
olor

super
ondu
tivity. It is worth noting that the massive gauge bosons 
an then be

asso
iated to the ve
tor mesons of QCD. We will investigate this possibility brie
y

in Chap. 6.

Chiral symmetry breaking: This is probably one of the most studied 
ases of

SSB [29℄. A va
uum expe
tation value h 

a

Li

 

b

Ri

i � Æ

ab

gives a mass to the (nearly)

massless quarks. The pseudos
alar mesons (pions et
.) bear physi
al witness of this

pro
ess.

Super
ondu
tivity: Yeah, just plain old ordinary super
ondu
tivity [30℄ in

ordinary matter like metals at temperatures of some Kelvin. It 
omes about due to

the formation of Cooper pairs and the 
ondensation a non-vanishing h  i where  

is now an ordinary ele
tron �eld. This gives us an example where we are at a s
ale of

some meV instead of several hundred MeV (
hiral SSB) or even GeV (Higgs model).

1.2 Des
ribing Bound States

As there are plenty of systems featuring bosoni
 bound states we better start looking

for ways to 
al
ulate something useful. Interesting quantities are, of 
ourse, masses

and 
ouplings of the bosons, and a potential va
uum expe
tation value.

A very useful tool to study su
h quantities is the e�e
tive a
tion [17; 31; 32℄,

repla
ing the a
tion of 
lassi
al �eld theory, it allows for a simple des
ription of SSB,

yet it in
ludes quantum e�e
ts. Hen
e, this is the obje
t we would like to 
al
ulate.

The NJL model

Many of the problems asso
iated with the des
ription of bound states 
an be studied

already in a very simple NJL

2

-type model (for only one fermion spe
ies) with a

2

NJL stands for Nambu and Jona-Lasinio who used this model to study 
hiral symmetry break-

ing [29℄. Due to its simpli
ity this and similar models are still very popular, e.g. a sizable part of

the studies on 
olor super
ondu
tivity is based on this model [18{22; 24; 26℄.
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hirally invariant pointlike four-fermion intera
tion:

S

F

=

Z

d

4

x

�

 i�= (1.1)

+

1

2

�

�

[(  )

2

� ( 


5

 )

2

℄�

1

2

�

V

[( 


�

 )

2

℄�

1

2

�

A

[( 


�




5

 )

2

℄

�

:

Depending on the value of

�!

� = (�

�

; �

V

; �

A

) we are in a symmetri
 phase or in

a phase with broken 
hiral symmetry. As it turns out, the 
riti
al

�!

�


rit

separating

these two phases is an interesting but relatively easy to 
al
ulate quantity.

Arbitrary Parameters { Fierz Ambiguity

The simplest 
al
ulation whi
h 
omes into ones mind is probably a mean �eld 
al-


ulation. We will apply this method (well-known from statisti
al physi
s) to the

model Eq. (1.1) at the beginning of Chap. 3. We �nd that there is a basi
 ambiguity


onne
ted to the possibility to perform Fierz transformations (FT) on the initial La-

grangian { we will refer to it as Fierz ambiguity. This Fierz ambiguity 
an in
uen
e

the value of the 
riti
al 
oupling quite dramati
ally, severly limiting the appli
ability

of MFT [33; 34℄.

The origin of the Fierz ambiguity 
an be understood quite well when looking at

the model of Eq. (1.1). Due to the Fierz identity (s. App. B for our 
onventions on


-matri
es)

�

( 


�

 )

2

� ( 


�




5

 )

2

�

+ 2

�

(  )

2

� ( 


5

 )

2

�

= 0 (1.2)

only two of the quarti
 
ouplings are independent and we write

�

�

= �

�

+ 2
�

V

; �

V

= (1� 
)�

V

; �

A

= 
�

V

: (1.3)

Where 
 parametrizes the \symmetry", and the � are \invariant" 
ouplings.

In a naive way one would like to 
ombine the fermions in the four-fermion inter-

a
tion of Eq. (1.1) into pairs and interpret those as bosons, e.g. one would like to

take the term multiplying �

A

pair it into two  


�




5

 � A

�

and hen
e interpret this

term as an intera
tion (mass term) for \axial ve
tor bosons". However, using Eq.

(1.2) we 
an now transform this term to zero, eliminating the \axial ve
tor bosons".

As this pairing is the basi
 idea of MFT, an ambiguity seems inevitable.

Auxiliary Fields

There are several standard methods (perturbation theory, RG equations, S
hwinger-

Dyson equations (SDE)) whi
h allow us to 
al
ulate the 
riti
al 
oupling without any



6 Chapter 1. Introdu
tion

referen
e to a pairing into bosons. The results are then naturally unambiguous. Yet,

these des
riptions have their problems, too. Perturbation theory is unable to des
ribe

SSB at all, the RG 
al
ulation 
annot be extended into the broken phase without


onsiderable 
al
ulational diÆ
ulty and SDE's beyond the simplest approximation

be
ome quite diÆ
ult to solve, too. At least part of the problem is that we la
k

an intuitive understanding of the momentum dependen
e of 
ompli
ated fermioni


operators.

Looking at the example of mesons again it is known that an e�e
tive theory

with bosoni
 meson �elds intera
ting with themselves and the quarks works quite

well without having very 
ompli
ated terms in the e�e
tive Lagrangian. In addition,

bosoni
 �elds allow for a good understanding of SSB. Thus, it seems a reasonable

step to introdu
e auxiliary �elds to des
ribe the bound states. Formalizing the naive

pairing pro
edure, partial bosonization [35{39℄ (
f. Chap. 4) leads to a model with

massive bosoni
 �elds and Yukawa-type intera
tions, but no four-fermion intera
-

tions,

S

B

=

Z

d

4

x

�

i �= + �

2

�

�

?

�+

�

2

V

2

V

�

V

�

+

�

2

A

2

A

�

A

�

(1.4)
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�

�
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�
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V

 


�

V

�

 � h
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�




5

A

�

 

�

:

The identi�
ation

�

2

�

=

h

2

�

2�

�

; �

2

V

=

h

2

V

�

V

; �

2

A

=

h

2

A

�

A

(1.5)

makes this model equivalent to the NJL-type model (1.1).

However, due to the Fierz identity (1.2) the 
ouplings in (1.4) are not unique,

bringing ba
k the ambiguity of MFT. Indeed, MFT appears as a simple approxima-

tion to this model, negle
ting all bosoni
 
u
tuations.

This is not the only situation in physi
s where an arbitrary parameter (in our


ase 
) appears in 
al
ulations. Prominent examples are the renormalization point �

or the gauge �xing � in gauge theories. Ultimately, in an exa
t 
al
ulation physi
al

quantities should not depend on su
h a parameter. Nevertheless, approximate 
al-


ulations usually do. Improvement in the approximation often tends to redu
e the

dependen
e on su
h parameters. Sometimes, there are even spe
ial approximation

s
hemes where we 
an a
hieve independen
e of su
h parameters, e.g. every order of

perturbation theory provides su
h a s
heme for the gauge �xing parameter. Beside

the pra
ti
al advantages, �nding su
h an approximation s
heme also shows that

there is nothing fundamentally wrong with the method in question. From another

point of view, 
onsidering an approximation whi
h is not independent of the ar-

bitrary parameter, we 
an say that the spread of the results under a variation of
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the arbitrary parameter gives us an estimate of the minimal un
ertainty of a given

approximation.

We will �nd a very simple example of an approximation whi
h is independent

of the Fierz parameter [40; 41℄. Interestingly, it turns out that this introdu
es the


on
ept of s
ale dependent degrees of freedom. Te
hni
ally we use the s
ale depen-

den
e of our auxiliary �elds to keep the form of the (e�e
tive a
tion) simple [42℄.

However, on a deeper level we would like to interpret this simpli
ity as a �rst step

to a des
ription with the \right" degrees of freedom at every s
ale.

Unfortunately, there is a huge number of possible �eld rede�nitions and in simple

approximations, e.g. so 
alled lo
al potential approximation (LPA) [43{45℄, it is a

priori not 
lear whi
h is the \
orre
t" one. A 
riterium 
an be obtained only by

the 
onsideration of terms with derivatives of the �elds. In the end this leaves us to


hoose between high algebrai
 (and/or numeri
al) diÆ
ulty and a \physi
al guess".

2PI E�e
tive A
tion

In view of the many problems 
onne
ted with auxiliary �elds it seems prudent

to look for alternatives. One possibility is the 2PI e�e
tive a
tion [46{48℄. After

the introdu
tion of sour
es for the 
omposite operators bilinear in the �elds we


an omit the introdu
tion of auxiliary �elds and dire
tly perform an additional

Legendre transformation with respe
t to the sour
es of the 
omposite operators.

For purely fermioni
 theories it turns out that this des
ription is redundant and

the dependen
e on the propagators is suÆ
ient. Hen
e, we 
an omit the dependen
e

on the �elds, leaving us with a des
ription 
ompletely in terms of bosoni
 variables

(the propagators). Nevertheless, this method is naturally not bothered by the Fierz

ambiguity as we do not introdu
e auxiliary �elds. In general the sour
es in question

do not need to be lo
al. However, for an interpretation as a potential this is useful,

but even with this restri
tions the 2PI e�e
tive a
tion has its own problems. Simple

approximations are often unbounded from below raising serious questions about the

interpretation of the 2PI e�e
tive a
tion.

Nevertheless, we do not want to leave this model without at least one not 
om-

pletely trivial appli
ation. We will investigate an intera
tion resembling the three-


avor three-
olor instanton intera
tion of QCD. This six-fermion intera
tion provides

for a me
hanism to have a �rst order 
hiral phase transition. Furthermore, it was


onje
tured to have a 
olor-symmetry breaking va
uum [27; 28; 49℄.
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Outline

As the e�e
tive a
tion is the 
entral obje
t of our interest, we will brie
y review its

basi
 de�nitions and some simple ways to 
al
ulate it in Chap. 2. In Chap. 3 we will

present some very simple 
al
ulations of the 
riti
al 
oupling of the model Eq. (1.1).

In parti
ular, we will perform a MFT 
al
ulation and en
ounter the Fierz ambiguity.

Chap. 4 introdu
es the 
on
ept of partial bosonization, and 
lari�es the origin of

the Fierz ambiguity. A des
ription with s
ale-dependent bosoni
 degrees of freedom

allow us to 
ure the Fierz ambiguity for the RG 
al
ulation in Chap. 5. The following

Chap. 6 turns to the 
on
ept of the 2PI e�e
tive a
tion to 
ir
umvent the problems of

partial bosonization. As an appli
ation of the 2PI e�e
tive a
tion we investigate an

instanton-like intera
tion. In parti
ular, we fo
us on 
hiral symmetry breaking and

a possible breaking of 
olor symmetry by a non-vanishing 
olor-o
tet 
ondensate.

Finally, in Chap. 7 we will return to the question of a possible 
omposite Higgs. In

parti
ular, we are interested in the possibility of a non-perturbative renormalizable

\Standard Model". We will only sket
h some of the ideas and possible problems,

a

ordingly this will be more like an outlook. Chap. 8 summarizes and 
on
ludes

this work.



Chapter 2

1PI E�e
tive a
tion

The e�e
tive a
tion � [17; 31; 32℄ is a very useful tool in quantum �eld theory

(QFT). It allows us to 
al
ulate interesting quantities like va
uum expe
tation val-

ues, propagators and 
orrelation fun
tions more or less by simply taking (fun
tional)

derivatives. Indeed, we 
an promote a 
lassi
al equation to full quantum status by

repla
ing the a
tion by the e�e
tive a
tion S ! � and the �elds by their expe
tation

values �! h�i. E.g. the equation of motion be
omes

Æ�[h�i℄

Æh�i

= 0: (2.1)

Knowledge of the e�e
tive a
tion is equivalent to knowledge of the full quantum

theory. From this one 
an already dedu
e that 
al
ulating the e�e
tive a
tion is a

quite diÆ
ult task and 
an usually be done only approximately.

Before going into more detail let us brie
y review the de�nition of the

(1PI) e�e
tive a
tion

1

, and some of its basi
 properties. In the following we will

write

~

� for the 
u
tuating quantum �eld and � = h

~

�i. We suppress all indi
es. In-

deed, � might also 
ontain fermioni
 degrees of freedom. A typi
al � might therefore

look like (�; �

?

; V

�

; A

�

; : : : ;  

i

;  

j

: : :) with several bosoni
 and fermioni
 spe
ies. If

we keep tra
k of the order of �elds and di�erential operators, no problems arise from

this notation.

Moreover, we work in Eu
lidean spa
e. That is why we have a minus sign in the

path integrals instead of an i in front of the a
tion. The transition to Eu
lidean

time is usually done via a Wi
k rotation. We do not want to go into detail, here,

however, for fermions there are some slight diÆ
ulties be
ause the a
tion is no longer

ne
essarily Hermitian [50; 51℄.

1

1PI abbreviates one parti
le irredu
ible (
f. Fig. 2.1).

9
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(a) (b)

Figure 2.1: An example of a diagram whi
h is 1PI 2.1(a) and one whi
h is not 2.1(b).

The latter one 
an be split into two by 
utting the line between the two bubbles.

The generating fun
tional (or partition fun
tion if one prefers the statisti
al

me
hani
s language) of a quantum �eld theory is de�ned by the following fun
tional

integral

Z[j℄ =

Z

D

~

� exp(�S[

~

�℄ + j

~

�): (2.2)

Here, S[

~

�℄ is the 
lassi
al a
tion and j is an external sour
e. We re
all that in our

matrix notation j

~

� =

R

d

d

xj(x)

~

�(x).

Using the generating fun
tional, expe
tation values of �elds (and produ
ts of

�elds) 
an be 
al
ulated by taking derivatives with respe
t to j

�[j℄(q) = h

~

�(q)i =

R

D

~

�

~

�(q) exp(�S[

~

�℄ + j

~

�)

R

D

~

� exp(�S[

~

�℄ + j

~

�)

=

1

Z[j℄

ÆZ[j℄

Æj(q)

=

ÆW [j℄

Æj(q)

; (2.3)

with

W [j℄ = ln(Z[j℄): (2.4)

Physi
al values are obtained at vanishing external sour
es e.g. �[0℄.

The (1PI) e�e
tive a
tion is now the Legendre transform of W ,

�[�℄ = �W [j[�℄℄ + j[�℄� (2.5)

and depends on the expe
tation value of the �eld. Combining (2.2), (2.4), (2.5) and

shifting the integration variable to

^

� =

~

� � � we obtain the following very useful

formula

�[�℄ = � ln

Z

D

^

� exp

�

�S[�+

^

�℄ +

Æ�[�℄

Æ�

^

�

�

; (2.6)

sin
e

Æ�[�℄

Æ�

= j: (2.7)

We note that due to the shift of the integration variable h

^

�i = 0. Finally, we

would like to 
omment on the notion of one parti
le irredu
ibility (1PI). This is
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�[�℄ = S[�℄ + + + +

� � �

Figure 2.2: Perturbative expansion of the e�e
tive a
tion. To be expli
it we 
hoose a

theory whi
h has a quarti
 intera
tion. The propagators are propagators in a ba
k-

ground �eld �. For the example of a theory with a

�

12

~

�

4

intera
tion the propagator

in the ba
kground �eld would be (p

2

+m

2

+ ��

2

)

�1

.

explained most easily in terms of Feynman diagrams. A diagram is one parti
le

irredu
ible if it is impossible to split it into two parts by 
utting an internal line (
f.

Fig 2.1). The e�e
tive a
tion is now the generating fun
tional of the 1PI diagrams.

We stress this point be
ause later in Chap. 6.1 we will en
ounter a 2PI e�e
tive

a
tion. For a proof of this statement and further details about the 1PI e�e
tive

a
tion we refer to textbooks as e.g. [51{54℄.

2.1 Cal
ulating the E�e
tive A
tion

In the following we will shortly present some of the standard methods to 
al
ulate

the e�e
tive a
tion. Before we start let us mention that in this se
tion we will not

explain mean �eld theory as it will later (Chap. 4) be shown to be a one-loop

approximation of a modi�ed theory with auxiliary �elds. Instead, we will explain

by example a 
ommon method to obtain it in the next 
hapter and postpone a

somewhat more thorough dis
ussion until we have introdu
ed partial bosonization

in Chap. 4.

2.1.1 Loop Expansion

The loop expansion is a perturbative te
hnique to 
al
ulate the e�e
tive a
tion. It


an be shown that the e�e
tive a
tion is nothing but the sum of all 1PI va
uum

diagrams in a ba
kground �eld � as depi
ted in Fig. 2.2 An easy way to obtain this

expansion is to make a saddle-point approximation of Eq. (2.6). In lowest non-trivial

order one obtains,

�[�℄ = S[�℄ +

1

2

STr ln(S

(2)

[�℄) + � � � ; (2.8)

where

S

(2)

[�℄ =

�!

Æ

Æ�

T

S[�℄

 �

Æ

Æ�

: (2.9)
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In the diagrammati
 language (Fig. 2.2) the se
ond term of Eq. (2.8) 
orresponds to

the one-loop diagram, and we have omitted the higher loop diagrams in Eq. (2.8).

The supertra
e (STr) 
omes around due to our notation where bosoni
 as well as

fermioni
 degrees of freedom are 
ontained in �. However, its e�e
t is very simple

as it only provides a minus sign in the fermioni
 se
tor of the matrix.

An advantage of perturbation theory is that it 
an usually be 
onstru
ted to

preserve symmetries order by order in the expansion. However, as we will see in the

next 
hapter it has severe short
omings if we want to go into the non-perturbative

domain (hen
e the name) where the 
oupling is not small. Indeed, we will see that

it is unable to des
ribe the interesting phenomenon of SSB.

2.1.2 Renormalization Group Equations

Originally devised as a tool to hide the in�nities of quantum �eld theory the renor-

malization group has shown to give us a mu
h deeper insight into the s
ale depen-

den
e of physi
s. Espe
ially, the understanding of 
riti
al phenomena has pro�ted

immensely. In addition, in the last �fteen years or so the renormalization group

has been established as a powerful tool for doing a
tual 
al
ulations in the non-

perturbative regime. It is the latter aspe
t on whi
h we want to fo
us.

The basi
 idea of renormalization group equations is to introdu
e s
ale dependent

e�e
tive 
ouplings. Roughly speaking we look at the physi
al system of interest with

a mi
ros
ope with varying resolution. E.g. 
onsider a latti
e where a parti
le with

spin sits at ea
h latti
e site. With a very high resolution we 
an see every parti
le

and 
an measure ea
h spin independently. However, shifting to a lower resolution

things be
ome a little bit blurry and we 
an only resolve regions whi
h already


ontain several parti
les. What we then measure is something like an e�e
tive spin

(more or less the sum of the individual spins) of several parti
les 
ombined. Indeed,

the �rst papers [55{58℄ on renormalization group equations 
onsidered spin models

like the Ising model.

There is a wide variety of means for putting this intuitive pi
ture into a mathe-

mati
al form. A very 
onvenient pi
ture to do this is the path integral formulation.

For a theory with an UV 
uto� � one 
an write the partition fun
tion as

Z =

Y

p��

Z

d�(p) exp(�S[�℄); (2.10)

where the symboli
 notation shall indi
ate that we integrate only over momentum

modes with p � �.

We 
an now implement the idea of de
reasing the resolution of our mi
ros
ope by

integrating out modes in a small momentum shell [�

0

= ����;�℄. This pro
edure
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averages over the small length s
ales we do not want to see,

Z =

Y

p��

0

Z

d�(p) exp(�S

0

[�℄) (2.11)

with

exp(�S

0

[�℄) =

Y

�

0

�p��

Z

d�(p) exp(�S[�℄): (2.12)

Where the so-
alled Wilson e�e
tive a
tion S

0

is now integrated only over a smaller

range of momenta. Considering a �

0

whi
h is in�nitesimally 
lose to � one 
an derive

an evolution equation for S

0

in the form of a di�erential equation.

Following this general pro
edure (often followed by a re-s
aling p !

�

�

0

p to

re
over the initial momentum range) allows to derive a variety of equations for dif-

ferent physi
al quantities like the Hamilton operator, 
orrelation fun
tions, 
oupling


onstants et
.. In addition, we do not need to restri
t ourselves to the sharp momen-

tum 
uto� indi
ated above. Indeed, a smooth momentum 
uto� is often mu
h more


onvenient, as the sharp one has a tenden
y to introdu
e non-lo
alities in position

spa
e.

All equations derived in this way are exa
t, i.e. if they 
ould be solved exa
tly

they would give the same results for physi
al quantities. Hen
e, they are 
alled

exa
t renormalization group equations (ERGE). In prin
iple they are all equivalent.

Nevertheless, in pra
ti
al 
omputations where we have to use approximations they

usually di�er. For a review and a 
omparison s. [59℄.

Now, let us go dire
tly to a formulation for the e�e
tive a
tion or, more pre-


isely, the e�e
tive average a
tion as introdu
ed in [60{65℄. Let us begin by noting

that for the e�e
tive a
tion the running 
uto� �

0

be
omes an infrared 
uto�. This

is due to the fa
t that the e�e
tive a
tion 
ontains the modes whi
h are already

integrated out, thus those in the range [�

0

;�℄. �

0

be
omes a lower bound for the

modes in
luded in �

�

0

and therefore an infrared 
uto�. We remark that �

�

0

de-

pends both on the IR 
uto� �

0

as well as on the physi
al UV 
uto� �. The �rst is

quite 
lear sin
e �

0

simply measures how far we have progressed in integrating out

modes. The dependen
e on the UV 
uto� is a
tually more physi
al. E.g. if we want

to des
ribe intera
ting parti
les on a latti
e a 
ontinuum des
ription might be quite

good for length s
ales larger than the latti
e spa
ing. However, roughly speaking

this model does not 
ontain any momentum modes higher than the inverse latti
e

spa
ing. Pla
ing the same parti
les on latti
es with di�erent spa
ing will obviously

produ
e di�erent results. Thus, we have a dependen
e on the UV 
uto� (for some

more details s. also App. C). Indeed, only in very spe
ial theories is it possible to

send the UV 
uto� to in�nity and still obtain �nite results. These are, of 
ourse, the

renormalizable theories. In this 
ase we 
an have � =1.
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A big advantage of the formulation in terms of the e�e
tive a
tion is that �

�

0

has a dire
t physi
al interpretation. Having in
luded all quantum 
u
tuations above

�

0

we 
an now view �

�

0

as the \mi
ros
opi
 a
tion" on the s
ale �

0

where we have

averaged over volumes of a size � �

0(�d)

. Hen
e, the name e�e
tive average a
tion or


oarse-grained e�e
tive a
tion. In an ideal des
ription we would be able to observe

the 
hange of the relevant degrees of freedom from one s
ale to another, e.g. at very

small s
ales we would have quark and gluon degrees of freedom while at a larger s
ale

we observe mesons and nu
leons, and at even larger s
ales we would have atoms or

mole
ules, putting the basi
 idea of the renormalization group into full e�e
t.

Let us now get started and derive an expli
it equation. To establish more 
learly

its fun
tion as an IR 
uto� we write k instead of �

0

or use the 
onvenient t = ln(k).

In order to a
hieve a suppression of the low-momentum modes in the fun
tional

integral we add an e�e
tive momentum-dependent mass term

�S

k

[�℄ =

1

2

Z

p

�

T

(�p)R

k

(p)�(p) (2.13)

to the initial a
tion. The idea is to add a high mass to the momentum modes p � k

and a small or zero mass to those with p� k, therefore e�e
tively removing (or at

least suppressing) the low-momentum modes in the fun
tional integral. To render

this more pre
ise we demand the following 
onstraints for the fun
tion R

k

(p),

1: lim

p

2

=k

2

!0

R

k

(p) > 0; 2: lim

p

2

=k

2

!1

R

k

(p) = 0; 3: lim

k!1

R

k

(p)!1: (2.14)

The �rst 
ondition is the statement that we want to suppress the low momentum

modes by an additional mass term. Having a mass term for the zero-momentum

modes has another very ni
e e�e
t as it removes all IR divergen
es produ
ed by

massless parti
les. The se
ond 
ondition ensures that the high-momentum modes

(high 
ompared to k) are not suppressed and that the 
uto� is removed in the limit

k! 0. As we will later see when we have the expli
it expression for the 
ow equation

it is useful to 
hoose a 
uto� that vanishes suÆ
iently fast (e.g. exponentially) in

the UV to avoid UV divergen
es. The third 
ondition ensures that at k ! 1 no

modes are integrated out. However, a 
omment is in order as we want to send k to

in�nity. Originally, we wanted to suppress all modes with p < k. But, if we have a

�nite physi
al 
uto� � there are no modes with p > �. Thus, one might want to

rewrite 
ondition 3 as

3

0

: lim

k!�

R

k

(p)!1;

and indeed this is a quite 
ommon form given and used e.g. in [66{68℄. However, both


onditions are equivalent as we 
an use every bije
tive fun
tion k

0

(k) whi
h maps

[0;�℄ into [0;1℄ to re-s
ale k su
h that either 3 or 3

0

is ful�lled. Using a smooth


uto� the notion of modes being in
luded or not in
luded is anyway somewhat
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blurry. With a little bit of dis
retion in the 
hoi
e of k

0

(k) we do not distort the

pi
ture of integrating out modes down to the s
ale k very mu
h for k < �, making

the 
hoi
e between 3 and 3

0

a matter of 
onvenien
e

2

. In this work we will 
hoose

the former sin
e it makes some of the analyti
al expressions easier. More important

for the interpretation of k as the 
oarse graining with modes p . k not yet being

integrated out is that the shift between small values of R

k

and large values of R

k

o

urs roughly at p � k. This is not a ne
essary 
ondition to de�ne the 
ow equation

but useful for the interpretation. We leave it at the somewhat rough statement

4: R

k

(p) large for p < k; R

k

(p) small for p > k: (2.15)

Having talked so mu
h about the 
uto� let us �nally give an expli
it example of a

very 
onvenient one introdu
ed in [69℄,

R

k

(p) = Z

k

(1� p

2

)�

�

1�

p

2

k

2

�

: (2.16)

Here we have in
luded a fa
tor of the wave fun
tion renormalization Z

k

. This 
hoi
e

allows us to write

Z

k

p

2

+R

k

(p) = Z

k

P (p); (2.17)

and guarantees that the reparametrization invarian
e of physi
al quantities �! ��

is respe
ted.

As dis
ussed in the last few paragraphs the term (2.13) a
ts more or less like

an additional mass term. In 
onsequen
e we might get 
on
erned about violating

symmetries like 
hiral or gauge symmetry. In prin
iple there are two possible ways

to ta
kle this problem. The �rst is to 
onstru
t a 
uto� fun
tion R

k

(p) whi
h ful�lls

Eq. (2.14) but does not violate the symmetry. This is relatively simple for 
hiral

fermions [61; 70{72℄. An example is

R

k

(p) = Z

k

p=

 

s

k

2

p

2

� 1

!

�(1�

p

2

k

2

); (2.18)

whi
h is more or less (2.16) adapted to 
hiral fermions. The se
ond strategy (usually

used for gauge theories) is to a

ept the fa
t that during the 
ow the symmetry might

be violated by the 
uto� and is 
ompletely symmetri
 only at the endpoint when

the 
uto� vanishes. Nevertheless, the symmetry is only hidden during the 
ow and

reveals itself in modi�ed Ward-Takashi identities [73{77℄. Taking these into a

ount

it is possible to 
onstru
t an invariant 
ow.

Adding the 
uto� to the initial a
tion we get a set of di�erent a
tions

parametrized by the s
ale k,

S

k

[�℄ = S[�℄ + �S

k

[�℄: (2.19)

2

Some additional details 
on
erning di�erent possible UV regularizations are provided in

App. C.
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Correspondingly, we obtain

W

k

[j℄ = ln(Z

k

[j℄) =

Z

D

~

� exp(�S

k

[

~

�℄ + j

~

�) (2.20)

and

� = h

~

�i =

�!

Æ

Æj

W

k

[j℄: (2.21)

Now, we want to introdu
e the e�e
tive average a
tion by a modi�ed Legendre

transform

�

k

[�℄ = �W

k

[j[�℄℄ + j[�℄���S

k

[�℄; (2.22)

where we have substra
ted �S

k

[�℄ in order to remove the 
uto� e�e
ts from �

k

.

This is parti
ularly 
lear in the 
ase k !1. Consider the formula analogous to Eq.

(2.6),

�

k

= � ln

Z

D

^

� exp

�

�S[�+

^

�℄ +

Æ�

k

[�℄

Æ�

^

���S

k

[

^

�℄

�

: (2.23)

Due to the third 
ondition in (2.14) the additional term exp(��S

k

[

^

�℄) in the fun
-

tional integral a
ts like a fun
tional Æ(

^

�)-fun
tion for k !1 and we obtain

�

1

[�℄ = S[�℄; (2.24)

the mi
ros
opi
 a
tion without the 
uto�.

Sin
e the 
uto� vanishes for k! 0 (se
ond 
ondition) we have in addition

�

0

[�℄ = �[�℄: (2.25)

Thus, the e�e
tive average a
tion interpolates between the 
lassi
al or bare a
tion

and the full e�e
tive a
tion (
f. Fig. 2.4).

Now, let us 
ome to the �nal pie
e, the ERGE whi
h governs the evolution from

k =1 to k = 0. Taking a derivative with respe
t to k,

�

�k

(�

k

[�℄) = �(�

k

W

k

)[j℄� (�

k

j)

�!

Æ

Æj

W

k

[j℄ + (�

k

j)�� �

k

�S

k

[�℄ (2.26)

= h�

k

�S

k

[

~

�℄i � �

k

�S

k

[�℄

=

1

2

�

h

~

�

T

(�

k

R

k

)

~

�i � h

~

�

T

i(�

k

R

k

)h

~

�i

�

=

1

2

�

STr

h

(h

~

�

~

�

T

i � h

~

�ih

~

�

T

i)�

k

R

k

i�

:

Expressing this with

W

(2)

k

=

�!

Æ

Æj

�!

Æ

Æj

T

W

k

= h

~

�

~

�

T

i � h

~

�ih

~

�

T

i: (2.27)
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gives

�

k

�

k

=

1

2

STr(W

(2)

k

�

k

R

k

): (2.28)

Sin
e

j

k

= (�

k

+�S

k

)

 �

Æ

Æ�

(2.29)

we have

1 =

 

�!

Æ

Æj

�

T

! 

�!

Æ

Æ�

T

j

!

= W

(2)

k

(�

(2)

k

+R

k

) (2.30)

with

�

(2)

k

=

�!

Æ

Æ�

T

�

k

 �

Æ

Æ�

: (2.31)

Inserting this into Eq. (2.28) yields, �nally, the 
ow equation

�

k

�

k

=

1

2

STr

n

(�

(2)

k

+R

k

)

�1

�

k

R

k

o

: (2.32)

De�ning the operator

~

�

t

= (�

t

R

k

)

�

�R

k

(2.33)

we 
an obtain an even more 
ompa
t form

�

t

�

k

=

1

2

STr[

~

�

t

ln(�

(2)

k

+R

k

)℄: (2.34)

This looks quite similar to Eq. (2.8), and indeed if we negle
t the 
hange of �

k

on

the right hand side, integrate and use (2.24) at k =1; t = �1, we re
over (2.8).

In short, substituting �

(2)

k

+R

k

for S

(2)

and writing it in a di�erential form turns

the one-loop expression (2.8) into an exa
t equation. The one-loop form of Eqs.

(2.32), (2.34) is depi
ted in Fig. 2.3.

In addition to being exa
t, Eq. (2.32) has two more ni
e features. First, due to

the presen
e of R

k

the expression is IR �nite. Se
ond, for R

k

de
reasing suÆ
iently

fast in the UV, �

k

R

k

provides an UV regularization. The 
ow equation is therefore


ompletely �nite. Of 
ourse, those divergen
es must still be in
luded in some way.

While the IR divergen
es might reappear in the integration of the 
ow equation for

k ! 0, the UV divergen
es have been absorbed in the initial 
ondition for some

�nite k. Spe
ifying the initial 
onditions of the 
ow at some �nite k gives a spe
ial

regularization s
heme 
alled the ERGE s
heme (
f. App. C.3).

Having a 
ow equation is only part of the game. Sin
e it is a fun
tional di�erential

equation, it is in most 
ases impossible to solve it analyti
ally, and we remember

on
e again that this would amount to solving the quantum �eld theory in question.
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�

k

�

k

=

�

k

=

Figure 2.3: Depi
tion of the 
ow equation (2.32). The line with the shaded 
ir
le is

the full �eld dependent and IR regularized propagator �

(2)

k

+ R

k

. The dot denotes

the insertion of �

k

R

k

. Taking fun
tional derivatives with respe
t to the �eld � adds

external legs, i.e. we obtain 
ow equations for the propagators and verti
es. An

example for the 
ow of the propagator is shown on the right side. The shaded 
ir
le

denotes the full k-dependent vertex.

So, it will be impossible or at least diÆ
ult to avoid using approximations in most

of the physi
ally relevant 
ases.

A 
onsistent and systemati
 approa
h is the use of trun
ations. In a trun
ation we

restri
t the spa
e of all possible a
tions (�

k

), spanned by all possible 
ombinations of

�eld operators 
ompatible with the symmetries to a (very often �nite dimensional)

subspa
e given by a subset of operators. The approximate 
ow equation now is the

proje
tion of the 
ow onto this subspa
e (
f. Fig. 2.4). From this we 
an 
al
ulate


ow equations for the 
oeÆ
ients (generalized 
ouplings) in front of the operators.

We stress that the approximate 
ow is only driven by the operators in the subset.

An easy, nevertheless usually quite tedious, way to improve the approximation and

to 
he
k for errors is to enlarge the subspa
e. Doing this su

essively we may �nd

a \
onvergen
e" of the results, and we may be tempted to interpret this as the

approa
h to the right result. Still, we should be 
areful with this as it may well

be, that we have indeed 
onvergen
e, but 
onvergen
e to the wrong result. This is

usually the 
ase when we have missed a relevant operator. As the number of all

possible linearly independent operators is in�nite we 
an always add operators but

still miss the relevant one.

From a physi
s point of view it is 
lear that a good approximation should in
lude

all relevant degrees of freedom, i.e. the 
orresponding operators. However, as we

dis
ussed in the introdu
tion the relevant degrees of freedom 
an 
hange with s
ale,

making it ne
essary to adapt the des
ription during the 
ow. For our 
ase of interest

a step in this dire
tion was taken in [42℄ and we will dis
uss it at length in Chap. 5.

Finally, let us 
ome to the role the 
uto� plays in approximations of the 
ow

equation. By 
onstru
tion, an exa
t solution has a �

0

= � independent of the 
uto�.

But, the traje
tory �

k

is not independent of the 
uto�. As depi
ted in Fig. 2.4 it may

well be that a 
ertain 
hoi
e of IR 
uto� may bring the real traje
tory 
loser to the

subspa
e de�ning our trun
ation, therefore usually improving the approximation. A

systemati
 study to exploit this possibility has been put forward in [68; 69; 78{81℄.
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S

�

Figure 2.4: RG 
ow in the spa
e of all a
tion fun
tionals. The thi
k line is the exa
t


ow in the (here 3-dimensional) spa
e, the thin line is the approximate 
ow in the

2-dimensional trun
ation. We point out that the approximate 
ow does, of 
ourse,

not 
oin
ide with the proje
tion of the exa
t 
ow on the subspa
e of the trun
ation

(dotted line), as the latter is driven also by the operator in the third dire
tion. The

red set of lines, shows the same but for an \optimized" IR regulator. The exa
t 
ows


oin
ide only at the start- and endpoint. The optimized 
ow is generally 
loser to

the plane of the trun
ation, and the approximate 
ow is improved.

A more traditional approa
h would be to use the IR 
uto� dependen
e as a measure

of un
ertainty, s. e.g. [82℄.

2.1.3 S
hwinger-Dyson Equations

S
hwinger-Dyson equations (SDE) [83; 84℄ (for a review and some appli
ations s. [85{

87℄) were one of the �rst really non-perturbative tools in quantum �eld theory. For

a theory with polynomial intera
tions up to �

m

they provide an (in�nite) hierar
hy

of equations whi
h 
onne
t a 1PI Greens fun
tion of order n (nth derivative of the

e�e
tive a
tion) on the one hand with a set of 1PI Greens fun
tions up to order

(n+m) on the other hand.

In prin
iple they are a 
onsequen
e of the fa
t, that the fun
tional integral over

a total derivative vanishes, if the fun
tional vanishes at the boundary (like in normal


al
ulus),

0 =

Z

D�

�!

Æ

Æ�

exp(�S[�℄ + j�) (2.35)

=

Z

D�

 

�

�!

Æ S[�℄

Æ�

� j

!

exp(�S[�℄ + j�)
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=

+ +

Figure 2.5: SDE for the propagator (in �

4

-theory). Full propagators and verti
es are

depi
ted with a shaded 
ir
le while bare quantities are represented by a dot. This

equation is exa
t. However, it involves the full 4-point fun
tion whi
h is given by

another SDE. A simple approximation would be to negle
t the last diagram on the

right hand side giving us a 
losed equation.

=

 

�!

Æ S

Æ�

[

Æ

Æj

℄� j

!

Z[j℄;

where + is for bosons and � is for fermions, respe
tively. Examining the last line

in Eq. (2.35) it be
omes 
lear that the SDE's are the Euler Lagrange equations of

quantum �eld theory.

Due to the appearan
e of S on the right hand side of Eq. (2.35) we have always

exa
tly one bare vertex in every expression 
ontributing to the right hand side. A

typi
al SDE therefore looks like in Fig. 2.5.

In its basi
 form the SDE allow us to 
al
ulate only the derivatives of the e�e
tive

a
tion. At �rst sight this may not seem like a major weakness, but in situations

where we have multiple solutions for the SDE we have no way to 
ompare them

without knowledge of the value of the e�e
tive a
tion. However, the 
ase of multiple

solutions is one of the most interesting ones, as it usually signals the possibility for

spontaneous symmetry breaking. In Chap. 6 we will dis
uss the 2PI e�e
tive a
tion

[46{48℄ as a remedy to this problem.

As in the 
ase of the ERGE most of the time we are unable to solve the 
omplete

set of SDE. A popular approximation s
heme is to negle
t all 1PI Greens fun
tions

starting from a 
ertain order. This gives a 
losed set of integral equations. More

generally, similar to a trun
ation for an ERGE, one 
an restri
t the spa
e of all

possible � and hen
e its derivatives to a subspa
e.

On the exa
t level the RG and SD approa
hes are equivalent in the sense that the

propagator and higher N-point fun
tions 
al
ulated using the 
ow equation (2.32)

are also solutions of the SDE [74; 88℄. Nevertheless, on
e approximations are used

the results will, in general, di�er.



Chapter 3

A Simple Example: The NJL

Model

In this 
hapter we want to get a grasp of the problems asso
iated with the intro-

du
tion of bosoni
 
omposite �elds by studying the model, Eq. (1.1) in some very

simple approximations. In parti
ular, we use this as an opportunity to introdu
e

MFT.

3.1 Criti
al Couplings from Mean Field Theory

A mean-�eld 
al
ulation treats the fermioni
 
u
tuations in a homogenous ba
k-

ground of fermion bilinears

~

� = h 

�

1�


5

2

�

 i,

~

�

?

= �h 

�

1+


5

2

�

 i,

~

V

�

= h 


�

 i

and

~

A

�

= h 


�




5

 i. It seems straightforward to repla
e in the four-fermion inter-

a
tion in Eq. (1.1) one fa
tor by the bosoni
 mean �eld, i.e.

(  )

2

� ( 


5

 )

2

! 2

~

� (1 + 


5

) � 2

~

�

?

 (1� 


5

) ;

( 


�

 )

2

! 2

~

V

�

 


�

 ;

( 


�




5

 )

2

! 2

~

A

�

 


�




5

 : (3.1)

The partition fun
tion be
omes then a fun
tional of

~

�,

~

V

�

,

~

A

�

,

Z[

~

�;

~

V ;

~

A℄ =

Z

D D exp

�

�S[ ;  ;

~

�;

~

V ;

~

A℄

�

; (3.2)

21
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where S is given by (1.1), with the repla
ements (3.1). Self 
onsisten
y for the

expe
tation values of the fermion bilinears requires

~

� =

1

2

h (1� 


5

) i =

1

2

�

�1

�

�

�

~

�

?

lnZ; (3.3)

~

V

�

= h 


�

 i = �

�1

V

�

�

~

V

�

lnZ;

and similar for the other bilinear

~

A

�

. Chiral symmetry breaking by a nonzero

~

�

requires that the \�eld equation" (3.3) has a nontrivial solution. We note that

Z[

~

�;

~

V ;

~

A℄ 
orresponds to a one-loop expression for the fermioni
 
u
tuations in

a bosoni
 ba
kground. With �

(F)

1

= � lnZ the �eld equation is equivalent to an

extremum of

�

(F)

=

Z

d

4

x

�

2�

�

~

�

?

~

�+

1

2

�

V

~

V

�

~

V

�

+

1

2

�

A

~

A

�

~

A

�

�

+ �

(F)

1

: (3.4)

A dis
ussion of spontaneous symmetry breaking in MFT amounts therefore to a


al
ulation of the minima of �

(F)

.

As we already noted in the introdu
tion this 
al
ulation 
an be done equivalently

in the Yukawa theory (1.4), (1.5). The mapping of the bosoni
 �elds reads � =

(h

�

=�

2

�

)

~

�, V

�

= (h

V

=�

2

V

)

~

V

�

, A

�

= (h

A

=�

2

A

)

~

A

�

. Keeping the bosoni
 �elds �xed and

performing the remaining Gaussian fermioni
 fun
tional integral yields pre
isely

Eq. (3.4). Mean �eld theory therefore 
orresponds pre
isely to an evaluation of the

e�e
tive a
tion in the partially bosonized Yukawa model in a limit where the bosoni



u
tuations are negle
ted.

We want to 
ompute here the 
riti
al 
ouplings (more pre
isely, the 
riti
al line

in the plane of 
ouplings �

�

, �

V

) for whi
h a nonzero expe
tation value � 6= 0

indi
ates the onset of spontaneous symmetry breaking. For this purpose we 
al
ulate

the mass term � �

?

� in �

(F)

and look when it turns negative. This de�nes the 
riti
al


ouplings. We assume here a situation where the expe
tation values of other bosoni


�elds like V

�

or A

�

vanish in the relevant range of 
ouplings. It is then suÆ
ient to

evaluate �

(F)

for V

�

= A

�

= 0.

In a diagrammati
 language Gaussian integration over the fermioni
 variables


orresponds to evaluating the diagram of Fig. 3.1. We de�ne our model with a

�xed ultraviolet momentum 
uto� q

2

< �

2

, su
h that the MFT result be
omes

(v

4

= 1=(32�

2

), x = q

2

):

�

(F)

1

= �4v

4

Z

�

2

0

dx x ln(x + h

2

�

�

?

�): (3.5)

From this one �nds the mean �eld e�e
tive a
tion

�

(F)

= �

(F)

0

+ �

(F)

1

(3.6)

=

�

�

2

�

� 4v

4

h

2

�

�

2

�

�

?

�+ 
onst +O

�

(�

?

�)

2

�

;
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p p

Figure 3.1: Bosoni
 mass 
orre
tion due to fermion 
u
tuations. Fermioni
 lines are

solid with an arrow, bosoni
 or \mean �eld lines" � h 

�

1�


5

2

�

 i are dashed. For

use in Chap. 5 we have indi
ated an external momentum p. A MFT 
al
ulation


orresponds to an evaluation for p = 0.

where we have expanded in powers of �. The mass term turns negative if

2�

2

�

h

2

�

�

2

< 8v

4

; (3.7)

As it should be this result only depends on the ratio h

2

�

=�

2

�

= 2�

�

.

We now want to determine the 
riti
al line in the plane of invariant 
ouplings

�

�

, �

V

from the 
ondition (3.7), i.e.

�


rit

�

=

1

8v

4

�

2

: (3.8)

Using the relation (1.3) we infer a linear dependen
e of �


rit

�

on the arbitrary un-

physi
al parameter 
 whenever �

V

6= 0

�


rit

�

=

1

8v

4

�

2

� 2
�

V

: (3.9)

(For numeri
al values see Tabs. 3.1 and 3.2). This dependen
e is a major short
oming

of MFT. We will refer to it as \Fierz ambiguity". The Fierz ambiguity does not

only a�e
t the 
riti
al 
ouplings but also in
uen
es the values of masses, e�e
tive


ouplings et
..

The origin of the Fierz ambiguity 
an be tra
ed ba
k to the treatment of 
u
-

tuations. A FT of the type (1.2) 
hanges the e�e
tive mean �eld. In a symboli


language a FT maps ( 

a

 

a

)( 

b

 

b

)! ( 

a

 

b

)( 

b

 

a

) where the bra
kets denote 
on-

tra
tion over spinor indi
es and matri
es � 


�

or � 


5

are omitted. A mean �eld

 

a

 

a

, appears after the FT as  

a

 

b

. From the viewpoint of the 
u
tuations one

integrates out di�erent 
u
tuating �elds before and after the FT. It is therefore no

surprise that all results depend on 
.
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Approximation Chap. 
 = 0 0.25 0.5 0.75 1

MFT 3.1 39.48 38.48 37.48 36.48 35.48

Ferm. RG 3.3 41.54 41.54 41.54 41.54 41.54

Bos. RG 4.2 36.83 36.88 36.95 37.02 37.12

Adapted Bos. RG 5.1 41.54 41.54 41.54 41.54 41.54

SD 3.4 37.48 37.48 37.48 37.48 37.48

Table 3.1: Criti
al values �


rit

�

for �

V

= 2 and for various values of the unphysi
al

parameter 
 (with � = 1). In anti
ipation of Chaps. 4, 5 we give also results for

the (adapted) bosoni
 RG. Progressing from MFT to the bosoni
 RG and adapted

bosoni
 RG the dependen
e on 
 de
reases as more and more diagrams are in
luded.

The S
hwinger-Dyson result is independent of 
 but 
ontains no vertex 
orre
tions

in 
ontrast to the RG 
al
ulations.

Approximation Chap. 
 = 0 0.25 0.5 0.75 1

MFT 3.1 39.48 29.48 19.48 9.48 -0.52

Ferm. RG 3.3 14.62 14.62 14.62 14.62 14.62

Bos. RG 4.2 15.44 13.39 13.45 15.55 19.46

Adapted Bos. RG 5.1 14.62 14.62 14.62 14.62 14.62

SD 3.4 19.48 19.48 19.48 19.48 19.48

Table 3.2: The same

1

as in Tab. 3.1 but with �

V

= 20.

3.2 Perturbation Theory

In order to 
ure the unpleasant dependen
e of the MFT result on 
 we will in
lude

part of the bosoni
 
u
tuations in Chaps. 4 and 5. Some guidan
e for the level of

approximations needed 
an be gained from perturbation theory in the fermioni


language. Sin
e the four-fermion vertex is uniquely 
hara
terized by �

�

and �

V

the perturbative result must be independent of 
 at any given loop order. The

lowest-order 
orre
tions to the four-fermion 
ouplings are obtained by expanding

the one-loop expression for the e�e
tive a
tion Eq. (2.8)

2

��

(1-loop)

=

1

2

STr

h

ln

�

S

(2)

�i

= �Tr

h

ln

�

S

(2)

FF

�i

(3.10)

1

The negative sign for the 
riti
al 
oupling at 
 = 1 in the MFT 
al
ulation means that the

system is in the broken phase for any positive value of �

�

in this 
al
ulation.

2

We remember that in the full S

(2)

matrix we have a term from the Æ

2

=Æ Æ derivative (S

(2)

FF

)

and a term from Æ

2

=Æ Æ , a

ounting for a fa
tor of 2 in the language with the normal tra
e.

Moreover, the tra
e in
ludes momentum integration and summation over internal indi
es.
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Figure 3.2: Perturbative 
orre
tion to the four-fermion intera
tion. Solid lines with

an arrow denote fermioni
 lines. The letters in the diagrams are given to visualize

the ways in whi
h the fermioni
 operators are 
ontra
ted, e.g. the �rst diagram in

the se
ond row results from a term [( 

a

 

a

)( 




 




)℄[( 




 




)( 

b

 

b

)℄. Evaluating the

diagrams for k-dependent \full" verti
es and IR regularized propagators the above

set of diagrams gives us the 
ow equation of Se
t. 3.3.

up to order (  )

2

. For this it is useful to de
ompose S

(2)

a

ording to

S

(2)

= P + F ; (3.11)

into a �eld-independent part P (inverse popagator) and a �eld-dependent part F .

The RHS 
an then be expanded as follows,

�� =

1

2

STr

��

1

P

F

��

�

1

4

STr

��

1

P

F

�

2

�

+

1

6

STr

��

1

P

F

�

3

�

(3.12)

�

1

8

STr

��

1

P

F

�

4

�

+ � � � :

This amounts to an expansion in powers of �elds and we 
an 
ompare the 
oeÆ
ients

of the four-fermion terms with the 
ouplings spe
i�ed by Eq. (1.1). Only the se
ond

term on the RHS 
ontributes to order (  )

2

. The 
orresponding graphs with two

verti
es are shown in Fig. 3.2. From

��

(1-loop)

= v

4

�

2

�

[4�

2

�

� 4�

�

(�

A

� 2�

V

)℄

h

�

  

�

2

�

�

 


5

 

�

2

i

(3.13)

+ [�2�

�

�

V

+ 4(�

A

� �

V

)�

V

℄

h

�

 


�

 

�

2

i

+

�

��

2

�

+ 2�

�

�

A

+ 3�

2

V

� 2�

A

�

V

� �

2

A

�

h

�

 


�




5

 

�

2

i

�

:

we 
an read o� the 
orre
tions ��

�

, ��

V

and ��

A

to the 
oupling 
onstants. In

order to establish that our result is independent of 
 we use the freedom of FT to

bring our results into a standard form, su
h that

��

A

��

V

=




1�


. Inserting next the
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invariant variables (1.3) leads us to:

��

�

= 4v

4

�

2

(�

2

�

+ 4�

�

�

V

+ 3�

2

V

); (3.14)

��

V

= 2v

4

�

2

(�

�

+ �

V

)

2

:

In 
ontrast to MFT the result does not depend on 
.

The perturbative result, Eq. (3.14), always leads to �nite 
orre
tions to the


oupling 
onstants. Remembering that in the fermioni
 language the onset of SSB is

marked by a divergen
e of the 
oupling 
onstants, it be
omes 
lear that we will never

get SSB in perturbation theory. No 
riti
al 
ouplings 
an be 
al
ulated. This is a

severe short
oming of perturbation theory whi
h 
annot be over
ome by 
al
ulating

higher loop orders. Only an in�nite number of loops 
an give SSB. In the next se
tion

we establish how a renormalization group treatment 
an over
ome this diÆ
ulty

without en
ountering the Fierz ambiguity of MFT. A 
al
ulation of the 
riti
al


oupling be
omes feasible. Nevertheless, even this RG treatment has its limitations

on
e the 
ouplings diverge. In parti
ular, it does not allow us to penetrate the phase

with SSB. In Chaps. 4 and 5 this short
oming will be 
ured by a RG treatment in the

partially bosonized language. In parti
ular, we will see in Chap. 5 whi
h diagrams

are needed in order to maintain the independen
e of results on 
 in analogy to

perturbation theory.

3.3 Renormalization Group for Fermioni
 Inter-

a
tions

Let us now turn to an RG equation. More expli
itly the ERGE for the e�e
tive

average a
tion dis
ussed in Chap. 2. Negle
ting all 
hange on the RHS leads to the

perturbative result of the previous se
tion. Consequently, in this approximation we


annot observe SSB. For a better approximation we restri
t �

k

to the terms spe
i�ed

in Eq. (1.1) but take all 
ouplings to be expli
itly k-dependent. In the a
tion (1.1)

we have only lo
al intera
tions. Expressed in momentum spa
e the four-fermion

intera
tions have no momentum dependen
e. This is often referred to as the lo
al

potential approximation (LPA) [43{45℄.

Performing the de
omposition into a �eld-dependent part and a �eld-independent

part as in the previous se
tion,

�

(2)

k

+R

k

= P

k

+ F

k

(3.15)
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we obtain an expansion of the 
ow equation (2.34)

�

t

�

k

=

1

2

STr

�

~

�

t

�

1

P

k

F

k

��

�

1

4

STr

�

~

�

t

�

1

P

k

F

k

�

2

�

+

1

6

STr

�

~

�

t

�

1

P

k

F

k

�

3

�

(3.16)

�

1

8

STr

�

~

�

t

�

1

P

k

F

k

�

4

�

+ � � � :

This is in 
omplete analogy to the previous se
tion, only written in a di�erential form

and with k-dependent verti
es. We obtain a set of ordinary di�erential equations for

the 
ouplings:

�

t

�

�;k

= �8v

4

l

(F );4

1

(s)k

2

(�

2

�;k

+ 4�

�;k

�

V;k

+ 3�

2

V;k

);

�

t

�

V;k

= �4v

4

l

(F );4

1

(s)k

2

(�

�;k

+ �

V;k

)

2

; (3.17)

in agreement with [82℄ where the same model has been studied. The threshold fun
-

tions l

(F );4

1

(for our 
onventions 
f. App. C.2 or [67℄) originate from the momentum

spa
e integration over the IR regulated propagators and repla
e the fa
tor

�

2

2

in Eq.

(3.14). For our a
tual 
al
ulation we use a linear 
uto�

3

[78℄ and adapt the thresh-

old fun
tions to our setting with �xed momentum 
uto� q

2

< �

2

in App. C.2. The

dependen
e on s = k

2

=�

2

be
omes relevant only for k > � whereas for k < � one

has 
onstants l

(F );4

1

= 1=2. Although useful for the 
omparison of the RG with MFT

or perturbation theory, the expli
it k-dependen
e of the threshold fun
tions makes

the �xed momentum 
uto� somewhat 
umbersome. An alternative is to use the so


alled ERGE s
heme for the UV regularization. The basi
 idea (for details s. App.

C.3) is to use standard threshold fun
tions without a UV 
uto� in the momentum

integral and implement the UV regularization by spe
ifying the initial 
onditions for

�

k

at some �nite k = �. This has the advantage that threshold fun
tions without a

�nite UV 
uto� are not expli
itly k-dependent, greatly simplifying numeri
al 
al
u-

lations. The pri
e to pay is that it is in general impossible to 
ompare non-universal

quantities like 
riti
al 
ouplings for di�erent 
hoi
es of the IR 
uto� fun
tion R

k

(p).

The fermioni
 
ow equations

4

(3.17) do not depend on 
. In a diagrammati
 lan-

guage we again have evaluated the diagrams of Fig. 5.2 but now with k-dependent

verti
es. In the RG formulation we only go a tiny step �k, and reinsert the re-

sulting 
ouplings (one-loop diagrams) before we do the next step. This leads to a

resummation of loops. Sin
e Eq. (3.17) is now nonlinear (quadrati
 terms on the

RHS) the 
ouplings 
an and do diverge for a �nite k if the initial 
ouplings are large

enough. Therefore we observe the onset of SSB and �nd a 
riti
al 
oupling. Sin
e

3

The threshold fun
tions depend on the pre
ise 
hoi
e of the 
uto�. For the very simple trun-


ation used in this se
tion this dependen
e 
an a
tually be absorbed by a suitable res
aling of k,


f. App. C.2.

4

As dis
ussed above, the perturbative result Eq. (3.14) 
an be re
overed from Eq. (3.17) if we

negle
t the k-dependen
e of the 
ouplings on the RHS and perform the t-integration.
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Eq. (3.17) is invariant this 
riti
al 
oupling does not depend on 
! Values for the


riti
al 
oupling obtained by numeri
ally solving Eq. (3.17) 
an be found in Tabs.

3.1 and 3.2.

The next step in improving this 
al
ulation in the fermioni
 language would be

to take the momentum dependen
e of the 
ouplings into a

ount (e.g. [89℄) or to

in
lude higher orders of the fermioni
 �elds into the trun
ation. This seems quite


ompli
ated and at �rst sight we have no physi
al guess of what is relevant. The

renormalization group treatment of the bosoni
 formulation in Chap. 4 seems mu
h

more promising in this respe
t.

3.4 Gap Equation

Let us �nally turn to the SDE as the last method dis
ussed in Chap. 2. For the

model Eq. (1.1) the SDE, approximated to lowest order, is depi
ted in Fig. 3.3. It is

a 
losed equation sin
e only the bare four-fermion vertex appears. (Only higher order

terms involve the full four-fermion vertex.) We write the full fermioni
 propagator

G

F

as

G

�1

F

(p) = G

�1

F0

(p) + �

F

(p) (3.18)

with the free propagator G

F0

and self energy �

F

. Using this one obtains a gap

equation for the self energy whi
h 
an be solved self 
onsistently. To simplify the

dis
ussion we make an ansatz for the self energy:

�

F

=M

F




5

; (3.19)

where the e�e
tive fermion mass M

F

obeys the gap equation

M

F

= 8v

4

�

�

�

+ �

V

�

Z

�

2

0

dx x

M

F

x +M

2

F

: (3.20)

The onset for nontrivial solutions determines the 
riti
al 
ouplings:

�

�

�

+ �

V

�


rit

=

1

8v

4

�

2

: (3.21)

This result is shown in Tabs. 3.1, 3.2 and does not depend on 
, as expe
ted for a

fermioni
 
al
ulation. We observe that the MFT result for the �


rit

�


oin
ides with

the SD approa
h for a parti
ular 
hoi
e 
 = 1=2. However, in general MFT is not

equivalent to the lowest-order SDE. This 
an be seen by 
omputing also the 
riti
al


oupling for the onset of SSB in the ve
tor 
hannel. The MFT and SD results do not


oin
ide for the 
hoi
e 
 = 1=2. This be
omes evident if we use a ve
torlike ansatz

instead of Eq. (3.19) for the self-energy:

�

F

= V=: (3.22)
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=

+

Figure 3.3: Diagrammati
 representation of the lowest order S
hwinger-Dyson equa-

tions for the fermioni
 model Eq. (1.1). The shaded 
ir
les depi
t the full propagator.

Using this ansatz for the self energy we �nd for the onset of non trivial solutions

[�

�

+ 3�

V

℄


rit

V

=

1

2v

4

�

2

: (3.23)

This is di�erent from the MFT result

[�

V

℄


rit,MFT

V

=

1

4v

4

�

2

(1� 
)

(3.24)

obtained from Eq. (3.3) by setting

~

� =

~

A

�

= 0. Again it would be possible to �nd a


hoi
e for 
 whi
h makes both results equal. But, in general, this will not be 
 = 1=2.

We note that in this 
hannel the dependen
e of the MFT result is even worse than

in the s
alar 
hannel.

At last, let us note that MFT and the SDE gap equation share a ni
e feature,

both allow us to pro
eed into the region of broken symmetry. The self 
onsisten
y


onditions (3.3) and (3.20) are valid for non-trivial solutions and hen
e �nite values

of the bosoni
 
ondensate, whereas the simple 
ow equation (3.17) breaks down (the


ouplings be
ome in�nite) when we approa
h the phase with broken symmetry.



Chapter 4

Partial Bosonization I: Basi
 Idea

The MFT 
al
ulation introdu
es "mean �elds" 
omposed of fermion - antifermion

(or fermion - fermion) bilinears. This is motivated by the fa
t that in many physi
al

systems the fermions are not the only relevant degrees of freedom at low energies.

Bosoni
 bound states be
ome important and may 
ondense. Examples are Cooper

pairs in super
ondu
tivity or mesons in QCD. For a detailed des
ription of the

interplay between fermioni
 and 
omposite bosoni
 
u
tuations it seems appropriate

to treat both on equal footing by introdu
ing expli
it �elds for the relevant 
omposite

bosons. This will also shed more light on the status of MFT.

4.1 Cal
ulating the Bosonized A
tion

Amethod for introdu
ing the desired 
omposite �elds is partial bosonization [35{39℄,

sometimes also referred to as a Hubbard Stratonovi
h transformation. Regardless of

the name, in prin
iple it is nothing else but the insertion of a ni
ely written fa
tor

of unity in the fun
tional integral for the partition fun
tion.

4.1.1 A Toy Model Bosonization (d = 0)

Before going into the details, let us demonstrate the idea on a 0-dimensional toy

model. In 0 dimensions the �eld variable �(p) is repla
ed by a simple 
- or Grassmann

number x depending on whether we deal with fermions or bosons

1

. To be expli
it

let us 
onsider an \a
tion"

S(x) =

1

2

x

T

Mx +

�

2

(x

T

Sx)

2

(4.1)

1

Of 
ourse, if x is a Grassmann number it is ne
essary to have several di�erent 
omponents x

i

in order to have non-trivial intera
tions.

30
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where M and S are matri
es simulating the mass and kineti
 terms (M), and the

spin stru
ture of the intera
tions (S). Sin
e we live in 0 dimensions the momentum

or position spa
e integral is trivial, i.e. absent. This a
tion models a massive �eld

with an inverse propagatorM and a quarti
 intera
tion with 
oupling strength �. In

the following we want to introdu
e an auxiliary \
omposite" �eld y for the operator,

O

S

(x) = �

h

m

2

x

T

Sx; (4.2)

where we have introdu
ed the for the moment arbitrary 
onstants h, m for later


onvenien
e. To study a 
omposite operator O

S

(x) it is useful to introdu
e a sour
e

term kO

S

(x) for this 
omposite operator in addition to the ordinary sour
e term jx.

The fun
tional integral over the �eld variables be
omes an ordinary integral over x,

and the partition fun
tion reads,

Z(j; k) =

Z

dx exp(�S(x) + jx+ kO

S

(x) +

a

2

k

2

); (4.3)

where we have used the freedom to add a �eld independent term quadrati
 in k to

the a
tion.

Using the translation invarian
e of the integral we 
an obtain the following rather

trivial identity,

1 = N

Z

dy exp(�

m

2

2

y

2

) = N

Z

dy exp(�

m

2

2

(y � O

S

(x) + d)

2

); (4.4)

where N is nothing but a normalization 
onstant N =

�

R

dy exp(�

m

2

2

y

2

)

�

�1

and d

is for the moment arbitrary, but will be determined later. Inserting this under the

integral in (4.3) yields,

Z(j;

^

k) = N

Z

dxdy exp(�

^

S(x; y) + jx+

^

ky); (4.5)

^

S(x; y) =

1

2

x

T

Mx +

�

2

(x

T

Sx)

2

+ k

h

m

2

x

T

Sx +

a

2

k

2

+

m

2

2

y

2

+hyx

T

Sx+

1

2

h

2

m

2

(x

T

Sx)

2

+m

2

dy + hdx

T

Sx +

m

2

d

2

2

+

^

ky:

The �rst line looks promising, as it is the partition fun
tion for a theory with two

\�elds" x, y and an a
tion

^

S(x; y). The se
ond line is still a mess whi
h over and

above depends expli
itly on the sour
es k and

^

k. However, remembering that we have

introdu
ed several arbitrary parameters we 
an 
hoose those to our 
onvenien
e,

a = �

1

m

2

; d = �

k

m

2

;

^

k = k; (4.6)
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simplifying

^

S(x; y) =

1

2

x

T

Mx +

1

2

�

�+

h

2

m

2

�

(x

T

Sx)

2

+

m

2

2

y

2

+ hyx

T

Sx: (4.7)

Finally, employing the 
hoi
e

h

2

m

2

= ��; (4.8)


an
els all quarti
 intera
tions of x, leaving us with a mass term for the \
omposite"

�eld y, a Yukawa-type intera
tion between y and x in addition to the propagator

term x

T

Mx for the \elementary" �eld x,

^

S(x; y) =

1

2

x

T

Mx +

m

2

2

y

2

+ hyx

T

Sx: (4.9)

This also explains why we have introdu
ed the 
onstants h and m in the normaliza-

tion of O

S

[x℄, Eq. (4.2).

Having a

omplished the \partial bosonization" of our 0-dimensional model we

would like to 
omment on some rather te
hni
al points:

1. Physi
ally it is 
lear that with respe
t to the symmetries y should have the

same transformation properties as the 
omposite operator O

S

(x). From a more

te
hni
al point of view this is ne
essary as we would otherwise be unable to

perform the shift in the integration variable in Eq. (4.4).

2. In the derivation given above we did not spe
ify if x is bosoni
 or fermioni
.

We 
an use the same pro
edure to introdu
e 
omposites made up of fermions

or bosons. However, we should be 
areful. If the integral in (4.3) is fermioni
, it

is 
onvergent for all possible 
hoi
es of �, be
ause of the rules of Grassmannian

integration. The integral over the auxiliary �eld y, Eq. (4.4), is only 
onvergent

for m

2

> 0. This gives us the 
ondition that � < 0, in order to render every-

thing �nite. For bosons, however, a � < 0 leads to a divergen
e in Eq. (4.3).

So, naively our bosonization pro
edure works only for fermions and a 
ertain

region of the 
oupling 
onstant. Although it is possible to 
ir
umvent these

naive arguments by an integration along the 
omplex axis, any interpretation

of y as a bound state is still awkward. Therefore, we will restri
t ourselves to

stable potentials of the 
omposite �eld (s. below), i.e. the integration over the


omposite is 
onvergent.

3. It is not ne
essary that the integration over the auxiliary �eld is Gaussian as

in Eq. (4.4). Indeed, we 
an repla
e the term �

m

2

2

y

2

by any potential �V (y)

as long as,

V (y) > 
; lim

jyj!1

V (y)

(ln(y))

2

!1; (4.10)
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i.e. V (y) is bounded from below and grows suÆ
iently fast for y ! 1. This

allows us to absorb also higher order intera
tion as e.g. a term ��(x

T

Sx)

4

by

a term �

m

8

h

4

y

4

in V (y). In general,

�F (O

S

(x))! �F (O

S

(x)) + F (O

S

(x)� y); (4.11)

su
h that the purely fermioni
 terms are 
an
elled. Of 
ourse, this leaves us

with non-linear Yukawa 
ouplings, as e.g. � y

3

x

2

and other 
ompli
ated inter-

a
tions � y

2

x

4

or � yx

6

.

4. As 
an be seen from (4.11) we 
an also treat terms linear in the 
omposite op-

erator O

S

(x), removing e.g. all parts � x

T

Sx from

1

2

x

T

Mx. A typi
al example

for this would be the translation of a fermioni
 mass term m  into a sour
e

term j� for a boson 
orresponding to   .

5. Although it is the most 
ommon 
ase, it is not ne
essary that the 
omposite

operators that we want to bosonize are made up of exa
tly two �eld operators.

In prin
iple, they 
an 
ontain an arbitrary number of �elds. The 
omposites


an even be fermioni
.

6. Using the translation invarian
e of the integral as in Eq. (4.4) is the simplest

but not the only possible way to obtain an identity useful for the introdu
tion

of 
omposite �elds. In general, any identity

1 = N exp(F (O

S

(x)))

Z

dy exp(�V (x; y)); (4.12)


an be used to 
an
el a part F (O

S

(x)) in the initial a
tion. However, the dire
t

interpretation y � O

S

(x) will usually be lost. Of 
ourse the V (x; y) in Eq.

(4.12) is far from unique. One possibility is always V (x; y) = F (O

S

(x)� y) as

obtained in (4.11). In pra
ti
e it quite diÆ
ult to �nd a V (x; y) with a suitably

simple form like V (x; y) � xy + V

0

(y).

7. Sometimes, it might seem useful to add some form of intera
tion, e.g. � y

4

,

between the 
omposite �elds to the bosonized a
tion (4.9). We 
an then use

the argument of 6 in a ba
kward way to determine what kind of (higher order)

intera
tions this would introdu
e into the initial unbosonized a
tion.

8. We 
an re
over the initial a
tion by performing the integration over the aux-

iliary �eld y,

exp(�S(x)) =

Z

dy exp(�

^

S(x; y)): (4.13)
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4.1.2 The Fierz Ambiguity

Already in this simple model we 
an get a grasp how the Fierz ambiguity arises. Let

us take a look at the \four-fermion intera
tion" in Eq. (4.1),

�
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T

Sx)

2
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=

�
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 S)
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3
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i

4

(4.14)

=

1

2

�

i

1

i

2

i

3

i

4

x

i

1

x

i

2

x

i

3

x

i

4

;

where the LHS de�nes �. We 
an now permute the x

i

, e.g. let us ex
hange x

i

2

and

x

i

4

,

�

i

1

i

2

i

3

i

4

x

i

1

x

i

2

x

i

3

x

i

4

= ��

i

1

i

2

i

3

i

4

x

i

1

x

i

4

x

i

3

x

i

2

= �

0

i

1

i

2

i

3

i

4

x

i

1

x

i

2

x

i

3

x

i

4

; (4.15)

where

�

0

i

1

i

2

i

3

i

4

= ��

i

1

i

4

i

3

i

2

; (4.16)

and the sign is + for bosons and � for fermions, respe
tively. Now, let us assume

that �

0

has a de
omposition (this assumption is nearly always ful�lled),

�

0

= �

TT

0

(T 
 T

0

) 6= �(S 
 S): (4.17)

A

ordingly, we would bosonize the RHS of Eq. (4.15) with �elds 
orresponding to

the operators O

T

(x) and the 
oupling strengths �

TT

0

. Hen
e, we obtain a di�erent

set of 
omposite �elds and 
oupling strengths for the identi
al a
tion. In general,

we 
an perform an arbitrary permutation of the x

i

, and we 
an obtain not only two

but several di�erent bosonized a
tions. This is even worse for higher order (e.g. x

6

)

intera
tions.

Comparing Eq. (4.17) with the Fierz identity Eq. (B.5) it be
omes 
lear that an

ex
hange of �elds like in Eq. (4.15) is a Fierz transformation. Sin
e the bosonized

a
tion may look quite di�erent, it is no big surprise that simple approximations

might yield di�erent results. This is what we 
all \Fierz Ambiguity".

One might wonder about the fa
t that di�erent �, �

0

des
ribe the same (un-

bosonized) a
tion. For fermions this is quite easy to understand. Due to the Grass-

mann identity x

i

x

j

= �x

j

x

i

only the 
ompletely antisymmetri
 parts of � give

non-vanishing 
ontributions to the a
tion. Hen
e, all

� =

^

� + � (4.18)

yield identi
al a
tion, as long as � is a sum of terms whi
h are symmetri
 in at least

two indi
es. If we want, we 
an 
hoose

^

� to be 
ompletely antisymmetri
. Any Fierz

transformation des
ribed above 
an be obtained by adding a suitable 
hosen �. The

problem is that a non-vanishing � usually does not give a vanishing 
ontribution in

the partially bosonized a
tion. As there is great freedom in 
hoosing � we 
an get a

nearly arbitrary bosonized a
tion. For bosons the story is essentially the same, only

one has to repla
e symmetri
 by antisymmetri
 and vi
e versa.
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4.1.3 The Case d > 0, MFT Revisited

It is straightforward to generalize the pro
edure des
ribed in the previous se
tion to

the 
ase of d > 0. Indeed, the 
hange is more or less only a matter of semanti
s, as

we repla
e fun
tions by fun
tionals and integration by fun
tional integration,

F ( )! F [ ℄; d! D: (4.19)

To demonstrate this let us repeat the pro
edure for the a
tion (1.1)

2

. Introdu
ing

bosoni
 �elds for the 
omposite operators 
orresponding to s
alar, ve
tor and axial

ve
tor bosons,

O

�

[ ℄ =
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(4.20)

we obtain,

Z =

Z

D D exp (�S[ ℄) =

Z

D D D�DV

�

DA

�

N

�

N

V

N

A

exp (�S[ ℄) (4.21)

with

N

�

= exp

�

�

Z

x

�

2

�

�

�

?

+

h

�

2�

2

�

 (1 + 


5

) 

��

��

h

�

2�

2

�

 (1� 


5

) 

��

;

N

V

= exp

�
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: (4.22)

Colle
ting the terms in the exponentials and using Eq. (1.5) as the equivalent to Eq.

(4.8), the four-fermion intera
tion is 
an
elled. As expe
ted, it is now repla
ed by

mass terms for the bosons and Yukawa 
ouplings between bosons and fermions as

given by the expression (1.4). We note, that the bosons do not yet have a non-trivial

kineti
 term and the propagator is simply

1

�

2

.

Having arrived at the partially bosonized a
tion (1.4) for our model (1.1) we


an use it to gain new insight into MFT. The a
tion Eq. (1.4) is quadrati
 in the

fermioni
 �elds, hen
e the fun
tional integral over the fermioni
 degrees of freedom

is Gaussian and 
an be done in one step. As we have seen in the previous 
hapter

this leads exa
tly to the MFT results. More pre
isely, we understand now that for

di�erent 
hoi
es of 
 the MFT treatment leaves out di�erent bosoni
 
u
tuations.

In this 
ontext we note that the 
ondition (4.10) restri
ts the possible 
ouplings

to �

�

; �

V

; �

A

> 0. In the invariant variables this restri
tion translates to �

�

; �

V

> 0

and for 
 it implies 0 < 
 < 1.

2

For simpli
ity we skip the introdu
tion of bosoni
 sour
es.
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In
identally, we note that in the 
ase of a four-fermion intera
tion we have an

alternative to Eq. (4.13) to re
over the initial a
tion from the partially bosonized

one. Instead of integrating over the bosoni
 auxiliary �elds we 
an simply solve the


lassi
al �eld equations for the bosoni
 �elds in terms of the fermioni
 �elds and

reinsert them in the partially bosonized a
tion. Starting from Eq. (1.4) this returns

us to Eq. (1.1).

The 
ru
ial advantage of the bosoni
 formulation is that it 
an easily be gener-

alized. For example, the bosoni
 bound states be
ome dynami
al �elds if we allow

for appropriate kineti
 terms in the trun
ation, i.e.

��
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(4.23)

with

V

��

= �

�

V

�

� �

�

V

�

; A

��

= �

�

A

�

� �

�

A

�

: (4.24)

Also spontaneous symmetry breaking 
an be expli
itly studied if we repla
e �

2

�

�

?

�

by an e�e
tive potential U(�

?

�) whi
h may have a minimum for � 6= 0. This ap-

proa
h has been followed in previous studies [90{93℄. We remark that for those terms

to be present in the e�e
tive a
tion it is not ne
essary for them to be present in

the initial (bosonized) a
tion. They naturally re
eive non-vanishing 
orre
tions by

loop diagrams. E.g. the kineti
 terms (4.23) get a 
orre
tion from the diagram de-

pi
ted in Fig. 3.1 with non-zero external momentum. Nevertheless, it is instru
tive

to investigate how su
h terms would look like in the unbosonized language. For the

potential terms this has already been dis
ussed in Se
t. 4.1.1, i.e. Eqs. (4.11), (4.12),

for the kineti
 (derivative) terms we will do this in the next se
tion.

4.1.4 Beyond Pointlike Intera
tions

0

So far our bosonization pro
edure seems relatively simple, and it is. However, we

should mention that above we have bosonized only the very spe
ial 
ase of a pointlike,

i.e. lo
al four-fermion intera
tion

3

,

Z

x

�	(x)	(x)	(x)	(x) =

Z

p

1

;p

2

;p

3

;p

4

�	(p

1

)	(p

2

)	(p

4

)	(p

3

)Æ(p

1

+ p

2

+ p

3

+ p

4

): (4.25)

0

This se
tion dis
usses some details needed in Se
t. 5.4, and 
an also be read then.

3

In this se
tion we suppress all internal indi
es. In parti
ular indi
es distinguishing between

 and  . � is a matrix with four su
h indi
es. All problems 
onne
ted with the internal indi
es

are 
ompletely analogous to the previous se
tions. Therefore, we allow ourselves to be somewhat

sloppy 
on
erning the internal indi
es, simplifying the notation.
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p
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p
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p

3

p

4

q

q + p

1

q + p

1

� p

3

q � p

2

Figure 4.1: Typi
al diagram 
ontributing to an e�e
tive four-fermion intera
tion

like in Eq. (4.25) in QCD. The solid lines denote fermions with propagator P

�1

F

,

the wiggled lines gluons with propagator P

�1

B

. The labelled arrows denote the mo-

mentum 
ow. The diagram suggests that the 
ontribution �

R

q

P

�1

F

(q)P

�1

F

(q+ p

1

�

p

3

)P

�1

B

(q+p

1

)P

�1

B

(q�p

2

) to the e�e
tive four-fermion intera
tions is not a 
onstant

but depends, at least on some 
ombination of the external momenta p

1

, p

2

, p

3

, p

4

.

This is by no means the most general form of a four-fermion intera
tion. Giving up

lo
ality, � 
an be
ome an arbitrary

4

fun
tion of the four momentum variables,

�! �(p

1

; p

2

; p

3

; p

4

): (4.26)

At �rst, giving up lo
ality sounds like a big step not to be treated lightly. How-

ever, we should remember, that we frequently use those four- and multi-fermion

intera
tions not as a fundamental intera
tion but to model an e�e
tive intera
tion

at some intermediate s
ale. An example are the four-fermion intera
tions used to

model QCD at low energies. As an example, a diagram 
ontributing to lowest order

is depi
ted in Fig. 4.1.

So, what 
an we do about the bosonization of those awfully 
ompli
ated inter-

a
tions? In the previous se
tion we have 
onsidered lo
al operators of the form (C

is a 
onstant matrix in the spa
e of internal indi
es),

O[	℄(x) = 	

T

(x)C	(x) =

Z

x;y

	

T

(y)C	(z)Æ(x� y)Æ(x� z) =

Z

p

O[	℄(p) exp(ipx);

(4.27)

with

O[	℄(p) =

Z

q

1

;q

2

	

T

(q

1

)C	(q

2

)Æ(q

1

+ q

2

� p): (4.28)

Keeping in mind our physi
al pi
ture of a bound state, we �nd that (4.27) is

very restri
tive. Indeed, for a physi
al bound state we would expe
t that the

parti
les of whi
h the bound state is 
omposed are usually not at the same

4

Of 
ourse, it must have the right transformation properties under Lorentz transformations.



38 Chapter 4. Partial Bosonization I: Basi
 Idea

pla
e, but smeared out over a 
ertain region of spa
e. Therefore, we repla
e

Æ(x� y)Æ(x� z)! ~g(x� y; x� z) in Eq. (4.27), i.e. the \elementary parti
les" need

no longer be lo
ated exa
tly at x but they 
an be somewhat distributed around x.

In a momentum spa
e formulation we �nd,

O[	℄(p) = hG(p)

Z

p

1

;p

2

	

T

(p

1

)C	(p

2

)g(p

1

; p

2

)Æ(p

1

+ p

2

� p): (4.29)

establishing that the momentum p of the 
omposite operator is the sum, p = p

1

+p

2

,

of the momenta of the \elementary parti
les", as it must be for a bound state. The

fun
tion g(p

1

; p

2

) is the so 
alled (amputated) Bethe-Salpeter wave fun
tion [66; 94℄.

The fun
tion hG(p) is a generalization of the fa
tor

h

m

2

in Eq. (4.2), and it serves

the same purpose namely, to obtain a simple form with Yukawa 
oupling � h while

keeping the dire
t relation �=̂O[	℄ between the bosoni
 �elds � and the 
omposite

operator O[	℄, as we will see below.

Pro
eeding along the lines of the previous se
tions we insert a fun
tional integral

1 = N

Z

D� exp(�

Z

p
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2

�

T

(�p)G

�1

(p

2

)�(p)): (4.30)

Shifting the fun
tional integral by the operator (4.29) we �nd that we 
an absorb a

four-fermion intera
tion of the following form,
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(4.31)

in a 
ontribution

S

�

[	; �℄=
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(4.32)

to the partially bosonized a
tion. It is 
lear that G(s) plays the role of the bosoni


propagator. Hen
e, G(s) should have an appropriate pole stru
ture in the 
omplex

s-plane, e.g.

G(s) �

1

m

2

+ s

: (4.33)

Let us summarize this in the following properties:

1. Eq. (4.31) with the pole stru
ture given by (4.33) is the most general momen-

tum stru
ture for the four-fermion intera
tion � � we 
an absorb in a single

bosoni
 �eld and an a
tion quadrati
 in the bosons. We 
an only bosonize

four-fermion intera
tions fa
torizing into two pairs of momenta. Usually, 
on-

tributions to � like the one depi
ted in Fig. 4.1 do not fa
torize 
ompletely,

therefore bosonization is usually only an approximation. On the other hand

fa
torization of the four-fermion intera
tion signals the onset of physi
al bound

states and 
an be 
he
ked numeri
ally [64℄.
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2. Permutation of the �elds (
orresponding to Fierz transformations) permute

the momentum variables on the RHS of Eq. (4.31). This allows us to

absorb momentum stru
tures with poles in the t- respe
tively u-
hannels

(t = (p

1

� p

3

)

2

= (p

2

� p

4

)

2

, u = (p

1

� p

4

)

2

= (p

2

� p

3

)

2

, s, t, u are the Man-

delstam variables).

3. Turning the argument of 2. around, we 
an determine the \
orre
t" Fierz

transformation by an examination of the momentum stru
ture (poles!).

Sin
e it might help us to resolve the whole mess of the Fierz ambiguity, let

us illustrate the third point by 
al
ulating an example. In addition this will also

demonstrate how a momentum dependen
e of the four-fermion intera
tion and a

wave fun
tion renormalization for the 
omposite bosons are 
onne
ted.

Starting from the a
tion (1.1) extended by the kineti
 terms (4.23) let us 
al
ulate

the 
orresponding purely fermioni
 a
tion. For simpli
ity we take Z

V

= Z

A

= h

V

=

h

A

= 0, i.e. we have no ve
tor and axial ve
tor bosons. In momentum spa
e we then

have,
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:

After the usual shift in the integration variable we 
an perform the Gaussian inte-

gration over the bosoni
 �elds, removing the �rst term on the RHS of Eq. (4.34).

From the se
ond term we 
an read of the four-fermion intera
tion,
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(4.35)
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In parti
ular, the four-fermion intera
tion � only depends on the Mandelstam

variable s, while it is 
onstant in t and u.

An FT permutes �p

2

and p

3

. After relabelling the integration indi
es we �nd,

�

�

(p

1

; p

2

; p

3

; p

4

) = 0; (4.36)
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:

First of all these 
oupling do not fa
torize in fun
tions depending only on p

1

; p

2

and

p

3

; p

4

respe
tively. Se
ondly, they have a pole in t whi
h 
annot be dire
tly absorbed

by bosonization. Therefore, this is not the \right" FT. A similar 
al
ulation for the

ve
tor and axial ve
tor bosons would have resulted in four-fermion intera
tions de-

pending on s in the ve
tor and axial ve
tor 
hannels, respe
tively. While after an FT

we would have intera
tions in all 
hannels, s
alar, ve
tor and axial ve
tor, but again

with the \wrong" dependen
e on t whi
h 
annot be absorbed into bosons. Roughly

speaking we have the following re
ipe, if the four-fermion intera
tion depends on s,

bosonize, else if it depends on t FT exa
tly on
e and then bosonize.

4.2 Bosoni
 RG 
ow

Having talked at length about how we 
an obtain the partially bosonized a
tion

Eq. (1.4) it is time to put it to some use. Let us start with an RG 
al
ulation in

a very simple trun
ation. The 
ow equations in the bosoni
 language are obtained

in 
omplete analogy with the fermioni
 formulation. In this se
tion we restri
t the

dis
ussion to a \pointlike" trun
ation as given by Eq. (1.4) with k-dependent 
ou-

plings. We will see (Chap. 5) that we reprodu
e the result of the last se
tion in this

approximation if we take 
are of the fa
t that new fermioni
 intera
tions are gener-

ated by the 
ow and have to be absorbed by an appropriate k-dependent rede�nition

of the bosoni
 �elds.

It is instru
tive to negle
t in a �rst step all bosoni
 
u
tuations by setting all

bosoni
 entries in the propagator matrix P

�1

equal to zero. This removes all di-

agrams with internal bosoni
 lines. Among other things this negle
ts the vertex


orre
tion Fig. 4.2 and therefore the running of the Yukawa 
ouplings. Indeed, Fig.

3.1 is the only 
ontributing diagram and we re
over MFT. One obtains the 
ow

equations

�

t

�

2

�;k

= 8h

2

�;k

v

4

k

2

l

(F );4

1

(s); �

t

�

2

V;k

= 8h

2

V;k

v

4

k

2

l

(F );4

1

(s); (4.37)

�
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�

2

A;k

= 8h

2

A;k

v

4

k

2

l

(F );4

1

(s);

�

t

h

�;k

= 0; �

t

h

V;k

= 0; �

t

h

A;k

= 0:
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p

1

p

2

p

3

Figure 4.2: Vertex 
orre
tion diagram in the bosonized model. Solid lines are

fermions, dashed lines are bosons. There exist several diagrams of this type sin
e

we have di�erent spe
ies of bosons. The momentum 
on�guration indi
ated by the

arrows is su
h that it gives a 
ontribution � �(�p

1

) (�p

2

) (p

3

). The pointlike limit

employed in this se
tion 
orresponds to an evaluation for p

i

= 0.

As long as we do not 
onsider the wave fun
tion renormalization (4.23) for the

bosons, the 
ow 
an 
ompletely be des
ribed in terms of the dimensionless 
ombi-

nations

~�

�;k

=

�

2

�;k

h

2

�;k

k

2

; ~�

V;k

=

�

2

V;k

h

2

V;k

k

2

; ~�

A;k

=

�

2

A;k

h

2

A;k

k

2

: (4.38)

Due to the 
onstant Yukawa 
ouplings we 
an integrate Eq. (4.37). We �nd


riti
al 
ouplings:

�

2

�

h

2

�

�

2

j


rit

= 4v

4

;

�

2

V

h

2

V

�

2

j


rit

= 4v

4

;

�

2

A

h

2

A

�

2

j


rit

= 4v

4

: (4.39)

These are, of 
ourse, the results of MFT, Eq. (3.7). We note that in Eq. (4.37) the

equations for the di�erent spe
ies of bosons are 
ompletely de
oupled. The mass

terms do not turn negative at the same s
ale for the di�erent spe
ies. Indeed it

is possible that the mass of one boson spe
ies turns negative while the others do

not. Su
h a behavior is expe
ted for the full theory, whereas for the fermioni
 RG of

Se
t. 3.3 all 
ouplings diverge simultaneously due to their mutual 
oupling. However,

no real 
on
lusion 
an be taken from Eq. (4.39) be
ause of the strong dependen
e

on the unphysi
al parameter 
.

Now, let us also take into a

ount the bosoni
 
u
tuations. This in
ludes the

vertex 
orre
tion Fig. 4.2 and the 
ow of the Yukawa 
ouplings does not vanish
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anymore
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:

Using the dimensionless ~�'s we now �nd:
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t
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The onset of spontaneous symmetry breaking is indi
ated by a vanishing of ~� for at

least one spe
ies of bosons. Large ~� means that the 
orresponding bosoni
 spe
ies

be
omes very massive and therefore e�e
tively drops out of the 
ow.

For initial 
ouplings larger than the 
riti
al values (see Tabs. 3.1 and 3.2) both

~�

�;k

and ~�

V;k

rea
h zero for �nite t. Due to the 
oupling between the di�erent 
hannels

they rea
h zero at the same t. At this point ~�

A;k

rea
hes in�nity and drops out of

the 
ow. This is quite di�erent from the 
ow without the bosoni
 
u
tuations where

the 
ow equations for the di�erent spe
ies were de
oupled. The breakdown of all

equations at one point resembles

5

now the 
ase of the fermioni
 model dis
ussed

in Se
t. 3.3. The 
-dependen
e of the 
riti
al 
ouplings is redu
ed 
onsiderably,

as 
ompared to MFT. This shows that the in
lusion of the bosoni
 
u
tuations is


ru
ial for any quantitatively reliable result. Nevertheless, the di�eren
e between

the bosoni
 and the fermioni
 
ow remains of the order of 10%.

4.3 Gap equation in the Bosonized Language

Next, we turn to the SDE for the bosonized model (1.4). They are depi
ted in Fig.

4.3. We will make here two further approximations by repla
ing in the last graph of

Fig. 4.3 the full fermion-fermion-boson vertex by the 
lassi
al Yukawa 
oupling and

the full bosoni
 propagator by �

�2

B

. We remain with two 
oupled equations.

5

This is an artefa
t of the pointlike approximation.
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=

h�i

=

;

=
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Figure 4.3: Diagrammati
 representation of the lowest-order SDE for the partially

bosonized model (Eq. (1.4)). The shaded 
ir
les depi
t the full propagator, the 
ir
le

with the 
ross is the expe
tation value of the bosoni
 �eld and the empty 
ir
le is

the full Yukawa vertex.

In a �rst step we approximate this equations even further by negle
ting the last

diagram in Fig. 4.3 altogether. Then no fermioni
 propagator appears on the right

hand side of the equation for the fermioni
 propagator whi
h only re
eives a mass


orre
tion for h�i 6= 0. Without loss of generality we take � real su
h thatM

F

= h

�

�

and

G

�1

F

(q) = �q=+ h

�

�


5

: (4.42)

Inserting this into the equation for the expe
tation value � we �nd

� =
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x+ h

2

�

�

2

: (4.43)

For the onset of nontrivial solutions we now �nd the 
riti
al value

�

h

2

�

2�

2

�

�


rit

=

1

8v

4

�

2

=

�

�

�

+ 2
�

V

�


rit

(4.44)

whi
h is the (ambiguous) result from MFT given in Eqs. (3.7) and (3.9). This is

not surprising sin
e this exa
tly is MFT from the viewpoint of S
hwinger-Dyson

equations. Indeed, Eq. (4.43) is pre
isely the �eld equation whi
h follows by di�er-

entiation of the MFT e�e
tive a
tion (6.19) with respe
t to �.

�

(F)

= �

2

�

�

2

� 4v

4

Z

�

2

0

dx x ln(x + h

2

�

�

2

): (4.45)

In a next step we improve our approximation and in
lude the full set of diagrams

shown in Fig. 4.3. Using the same ansatz as before, the self-energy �

F

now has two


ontributions

�

F

=M

F




5

= h

�

�


5

+�m

F




5

: (4.46)

The �rst one is the 
ontribution from the expe
tation value of the bosoni
 �eld

whereas �m

F

is the 
ontribution from the last diagram in Fig. 4.3, given by an

integral whi
h depends on M

F

. Both in the equation for h�i and in the equation for
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the fermioni
 propagator only M

F

appears on the RHS. Inserting h�i in the graph

Fig. 4.3 one �nds a gap equation whi
h determines M

F

:

M

F

= 8v

4

�

h

2

�

2�

2

�

+

h

2

V
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2

V
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h

2
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�

2

A

�

Z

�

2

0

dx x

M

F

x +M

2

F

: (4.47)

On
e more, this 
an be expressed in terms of the invariant 
ouplings and again we

arrive at Eq. (3.20).

We point out that, in order to re
over the result of the fermioni
 SDE we have

started with MFT and added diagrams. Therefore, the fermioni
 SDE (or the bosoni


SDE with the extra 
ontribution from the fermioni
 mass shift diagram) sums over a

larger 
lass of diagrams whi
h 
ontains MFT as a subset. This is evident in the lan-

guage of statisti
al physi
s: MFT is the Hartree approximation, while the fermioni


SDE is Hartree-Fo
k.

Looking more 
losely at the two 
ontributions to M

F

we �nd that alone neither

the 
ontribution � � (whi
h amounts to MFT as we have dis
ussed above) nor the

\fermioni
 
ontribution" �m

F

are invariant under FT's. Only the 
ombinationM

F

,

whi
h is the fermion mass and therefore a physi
al quantity, is invariant. Indeed,


hanging the FT amounts to a rede�nition of the bosoni
 �elds. This allows us to


hoose bosoni
 �elds su
h that �m

F

= 0. Taking 
 = 1=2 gives us su
h a 
hoi
e of

the bosoni
 �elds. This explains why MFT gives the the same result as the purely

fermioni
 
al
ulation in this spe
ial 
ase.

In the next 
hapter we want to adapt this idea of a rede�nition of the bosoni


�elds to the RG 
al
ulation, i.e. we want to do it 
ontinuously during the 
ow.



Chapter 5

Partial Bosonization II: S
ale

Dependent Degrees of Freedom

In the last Se
t. 4.3 we found that in the SDE formulation we 
an 
omplete MFT by

adding the mass-shift diagram for the fermions (
f. Fig. 4.3). The mass-shift diagram

is a 
ontribution to the purely fermioni
 part of the e�e
tive a
tion. Therefore, it

makes sense to look for purely fermioni
 
ontributions in the RG, too.

5.1 New Four-Fermion Intera
tions

In our trun
ation of Chap. 4 the bosoni
 propagators are approximated by 
onstants

�

�2

k

. The ex
hange of bosons therefore produ
es e�e
tive pointlike four-fermion in-

tera
tions. One would therefore suspe
t that this approximation should 
ontain the

same information as the fermioni
 formulation with pointlike four-fermion intera
-

tions. An inspe
tion of the results in Tabs. 3.1, 3.2 shows, however, that this is

not the 
ase for the formulation in the RG 
ontext. In parti
ular, in 
ontrast to

the fermioni
 language the results of the bosoni
 
ow equations still depend on the

unphysi
al parameter 
.

In fa
t, even for small 
ouplings � the bosoni
 
ow equations of se
t. 4.2 do

not reprodu
e the perturbative result. The reason is that at the one-loop level new

quarti
 fermion intera
tions are generated by the box diagrams shown in Fig. 5.1.

A straightforward inspe
tion shows that they 
ontribute to the same order �

2

as

the diagrams in Figs. 3.1 and 4.2. Even if we start from vanishing quarti
 
ouplings

after partial bosonization, su
h 
ouplings are generated by the 
ow. The diagrams

45



46 Chapter 5. Partial Bosonization II: S
ale Dependent Degrees of Freedom

p

2

p

1

p

3

p

4

(a)

p

2

p

1

p

3

p

4

(b)

Figure 5.1: Box diagrams for the bosonized model. Again, solid lines are fermions,

dashed lines bosons and verti
es are marked with a dot. The diagrams generate

new four-fermion �  (�p

1

) (p

2

) (p

4

) (�p

3

) intera
tions even for the model (1.4)

without dire
t four-fermion intera
tions.

in Fig. 5.1 yield
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(k):

Here, ~
(k) is an in prin
iple arbitrary fun
tion of s
ale determining the 
hoi
e of FT

for the generated four-fermion intera
tions. In other words, ~
(k) allows for the fa
t

that we 
an 
hoose a di�erent Fierz representation at every s
ale. We will make a

spe
ial 
hoi
e of this fun
tion (similar to the one made in se
ts. 3.2 and 3.3) namely

we require

~�

V;k

~�

A;k

=




1� 


8 k; (5.2)

with ~� given in Eq. (4.38). The resulting equation �

t

(~�

V;k

=~�

A;k

) = 0 �xes ~
(k). An

improved 
hoi
e of ~
(k) 
an be obtained on
e the momentum dependen
e of verti
es

is 
onsidered more 
arefully (
f. [42℄ and Se
ts. 4.1.4, 5.4).
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5.2 Adapted Flow Equation: Solving the Ambi-

guity

An in
lusion of the 
ouplings �

k

into the trun
ation of the e�e
tive average a
tion

does not seem very attra
tive. Despite the partial bosonization we would still have

to deal with multi-fermion intera
tions and the bosoni
 formulation would be of

even higher algebrai
 
omplexity than the fermioni
 formulation. A way out of this

has been proposed in [42℄. There, it has been shown that it is possible to reabsorb all

four-fermion intera
tions generated during the 
ow by a rede�nition of the bosoni


�elds. In the following brief des
ription of this method we use a very symboli


notation

1

. In Se
t. 5.4 we will add some details on the momentum dependen
e of

�eld rede�nitions.

Introdu
ing an expli
it k-dependen
e for the de�nition of the bosoni
 �elds in

terms of fermion bilinears, the 
ow equation Eq. (2.32) is modi�ed

2

:
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: (5.3)

Here �
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� �

t
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j is the 
ow of the e�e
tive average a
tion at �xed �elds. Shifting
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(5.4)

we �nd
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(5.5)

and we 
an 
hoose !

k

to establish:

�

t

� = 0: (5.6)

Instead of in
luding running four-fermion 
ouplings expli
itly we therefore have to

use only adapted 
ow equations for the 
ouplings 
ontained in Eq. (1.4).

Let us now apply this method expli
itly to our model. Shifting

�
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 �

t

!

A;k

1

We refrain from expli
itly returning to the 0-dimensional toy model of Se
t. 4.1.1, as we hope

it is 
lear from Se
t. 4.1.3 that for pointlike intera
tions the 
ase d > 0 involves no additional

diÆ
ulties. Nevertheless, let us note for 
ompleteness, that the repla
ements Æ ! �, �

k

! y

k

,

  ! x

T

Sx would bring us ba
k to the toy model.

2

It has been pointed out by Jan Pawlowski that after the appropriate modi�
ation of the infrared


uto� for the s
ale-dependent �elds [42℄, the 
ow equation Eq. (2.32) does not give the exa
t 
ow

for �

t

�

k

j. However, in the simple approximation of this se
tion the bosoni
 �elds do not yet have

an infrared 
uto�. Therefore, we 
an still use (2.32).
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we have
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Requiring �

t

� = 0 for all �'s we 
an determine the fun
tions !:
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with the �-fun
tions given in Eq. (5.1). This yields the adapted 
ow equations for

the Yukawa 
ouplings
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Combining Eqs. (4.41), (5.1), (5.2), (5.9), (5.10) determines ~
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Having �xed the ratio between ~�

V;k

and ~�

A;k

we only need two equations to

des
ribe the 
ow. We will use the ones for ~�
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2

�;k

�

2

V;k

�

l

(F );4

1

(s)v

4

;

�

t

�

V;k

=�2�

V;k

+4

�

�

V;k

2~�

�;k

� (2
 � 1)

�

2

l

(F );4

1

(s)v

4

: (5.12)

These equations are 
ompletely equivalent to the fermioni
 
ow Eq. (3.17). In order

to see this we re
all that the simple trun
ation of the form (1.4) is at most quadrati


in the bosoni
 �elds. We 
an therefore easily solve the bosoni
 �eld equations as a

fun
tional of the fermion �elds. Reinserting the solution into the e�e
tive average

a
tion we obtain the form (1.1) with the k-dependent quarti
 
ouplings

�

�;k

=

1

2k

2

~�

�;k

� 2


1

k

2

�

V;k

; �

V;k

=

1

k

2

�

V;k

: (5.13)

Inserting this into Eq. (5.12) we �nd Eq. (3.17), establishing both the exa
t equiv-

alen
e to the fermioni
 model and the 
-independen
e of physi
al quantities. On

a numeri
al level, we 
an see the equivalen
e from the 
riti
al 
ouplings listed in

Tabs. 3.1, 3.2.

On this level of trun
ation the equivalen
e between the fermioni
 and the adapted

bosoni
 
ow 
an also be seen on a diagrammati
 level. As long as we do not have a

kineti
 term for the bosons the internal bosoni
 lines shrink to points. On the one-

loop level we �nd an exa
t 
orresponden
e between the diagrams for the bosonized

and the purely fermioni
 model summarized in Fig. 5.2. This demonstrates again

that one-loop a

ura
y 
annot be obtained without adaption of the 
ow.
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Figure 5.2: Summary of all diagrams en
ountered in the previous se
tions. There

is a one to one 
orresponden
e between the diagrams of the bosonized model (�rst

row) and the purely fermioni
 model (se
ond row). Solid lines with an arrow denote

fermioni
 lines. The letters in the diagrams are given for visualizing the ways in

whi
h the fermioni
 operators are 
ontra
ted, e.g. the �rst diagram in the se
ond row

results from a term [( 

a

 

a

)( 




 




)℄[( 




 




)( 

b

 

b

)℄. Shrinking bosoni
 lines (dashed)

to points maps the diagrams in the �rst row to the se
ond row. In the approximations

of se
t. 4.2 only the �rst or the �rst two diagrams are taken into a

ount.

5.3 Trouble With the LPA, an Example

So far, everything seems quite satisfa
tory. In our simple trun
ation we have been

able to solve the problem of the Fierz ambiguity for the partially bosonized language.

Moreover, the adaption of the bosoni
 
ow is quite intuitive as it implements the idea

of s
ale dependent degrees of freedom. But, not everything is as rosy as it seems.

Looking a little bit more 
losely we noti
e, that although the 
riti
al 
oupling is

independent of 
, the values of the individual bosoni
 
ouplings ~�

�

, ~�

V

, ~�

A

are not.

Only two of them are �xed by the 
ow equation (5.12), while the third one 
an

be 
hosen freely. In parti
ular, we 
annot determine from this trun
ation whi
h

type of boson will 
ondense. This is 
ompletely analogous to the purely fermioni


des
ription, and in view of the equivalen
e of both des
riptions not too surprising.

It seems evident that this is a short
oming of our present trun
ation.

Thinking about enlarging the trun
ation, two possibilities 
ome to mind imme-

diately, a more 
ompli
ated bosoni
 potential and a non-zero kineti
 terms for the

bosons. In this se
tion we will 
onsider the �rst possibility. As it turns out this does

not solve the problem, i.e. we still 
annot de
ide whi
h type of bosons will 
ondense.

Hen
e, we turn to the alternative of kineti
 terms for the bosons in Se
t. 5.4.
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5.3.1 The Gross-Neveu Model

To get a �rst impression it is instru
tive to study an even simpler model than Eq.

(1.1), the so 
alled N = 1

3

Gross Neveu model [95℄ in three spa
etime dimensions,

S

F

[ ;  ℄ =

Z

d

3

x

�

i �= +

G

2

(  )

2

�

(5.14)

A
tually, it is indeed the same model, only the number of spa
etime dimensions has

been redu
ed by one. The simpli�
ation as 
ompared to Eq. (1.1) lies in the fa
t

that in three dimensions we 
an use spinors with only two 
omponents (s. App. B).

Despite its simpli
ity it is still interesting in its own right. In parti
ular it has

a parity-like symmetry  (x) ! � (�x),  (x) !  (�x) whi
h is expe
ted to be

spontaneously broken by a non-vanishing va
uum expe
tation value h  i for large

enough G [96℄.

Following the lines of Chap. 4 it is straightforward to obtain the equivalent

partially bosonized a
tion,

S

B

[ ;  ℄ =

Z

d

3

x

�

i �= + ih�  +

m

2

2

�

2

�

; G =

h

2

m

2

: (5.15)

We now want to study this model in a trun
ation whi
h in
ludes an arbitrary lo
al

potential V (�) but no kineti
 term � �

�

��

�

� (in the following we will suppress the

integration over the spa
etime 
oordinates),

�

k

= i �= + ih

k

�  + V

k

(�): (5.16)

The parity like symmetry translates into �(x) ! ��(�x) in the bosoni
 language,

restri
ting any bosoni
 potential V (�) to even powers of �.

Let us, for the moment, assume that during the 
ow we generate fermioni


� (  )

n

, bosoni
 � �

n

and mixed � �

n

(  )

m

intera
tions. We negle
t all other


ontributions as they lie outside of our present trun
ation. Hen
e, we write for the


ow at �xed �elds,

�

t

�

k

j � �

t

U

k

(�

k

;   ) =

X

n

a

n

k

(�

k

)

�

  +

V

0

k

(�

k

)

ih

k

�

n

; (5.17)

where we have expanded the RHS in powers of   about the point �

V

0

(�)

ih

, and

3

N is the number of di�erent fermion spe
ies.
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V

0

k

(�

k

) =

�V

k

(�

k

)

��

k

. Allowing for a s
ale dependen
e of the �eld �

k

we obtain,

�

t

�

k

= �

t

�

k

j+

Æ�

k

Æ�

k

�

t

�

k

(5.18)

= �

t

U

k

(�

k

;   ) + (ih

k

  + V

0

k

(�

k

))�

t

�

k

= a

0

k

(�

k

) +

X

n�1

a

n

k

(�

k

)

�

  +

V

0

k

(�

k

)

ih

k

�

n

+ (ih

k

  + V

0

k

(�

k

))�

t

�

k

:

Now, let us make a non-linear �eld rede�nition

4

,

�

t

�

k

= �

1

ih

k

X

n�1

a

n

k

(�

k

)

�

  +

V

0

k

(�

k

)

ih

k

�

n�1

: (5.19)

Inserting this into Eq. (5.18) yields a simpli�ed 
ow whi
h only a�e
ts the potential

in �

k

,

�

t

�

k

= a

0

k

(�

k

) = �

t

U

k

�

�

k

; i

V

0

k

(�

k

)

h

k

�

: (5.20)

At this point one might wonder why h

k

does not re
eive any 
orre
tions as in (5.10).

The reason for this is that we have used the additional freedom to res
ale � with a


ontribution � � in �

t

�, transforming any 
hange in h

k

into a 
hange of V (�).

So far this looks quite appealing, as we su

eeded in in
luding all the 
ompli
ated

intera
tions 
ontained in �

t

U

k

(�;   ) into a simple trun
ation whi
h in
ludes a

potential depending only on �. However, let us now show that we 
an simplify

our result even further by adding a suitably written 0 to �

t

U

k

(�

k

;   ). Indeed,

starting from the a
tion (5.15) it is possible to redu
e V

k

(�

k

) to a mass term

m

2

k

2

�

2

k

.

If V

k

(�

k

) =

m

2

k

2

�

2

k

at a given point, we have V

0

(�

k

) = m

2

k

�

k

, and the 
ow of the

potential reads,

�

t

V

k

(�

k

) = a

0

k

(�

k

) = �

t

U

k

�

�

k

; i

m

2

k

h

k

�

k

�

=

X

n

b

n

k

�

n

: (5.21)

Sin
e we do not 
onsider gravity, �eld independent terms in the e�e
tive a
tion are

of no physi
al signi�
an
e. Dropping those and remembering that V (�) 
an 
ontain

only even powers of �, it is no restri
tion to write

�

t

U

k

�

�; i

m

2

k

h

�

k

�

=

X

n�1

b

2n

k

�

2n

: (5.22)

4

One may wonder if su
h a �eld rede�nition has the right symmetry properties. A thorough

inspe
tion tells us that the given �eld rede�nition is of the type �

t

�

k

=

�X(�

k

;  ;:::)

��

k

, where X

is a singlet under all symmetries (the dots denote any type of additional �elds). A derivative of

this type belongs to the 
onjugate representation of �

k

and thereby to the same as �

k

sin
e �

k

is

self-
onjugate. This also provides us with a re
ipe how we 
an obtain �eld rede�nitions respe
ting

the symmetries for more 
ompli
ated �elds, e.g. ve
tor �elds.



52 Chapter 5. Partial Bosonization II: S
ale Dependent Degrees of Freedom

Now, let us use that the spinors have only two 
omponents, i.e. at any given point

x we have only four di�erent Grassmann variables,  

1;2

(x),  

1;2

(x). Consequently,

we obtain

( (x) (x))

n

= 0; 8n � 3; (5.23)

by use of the anti
ommutation relations. In parti
ular, we have,

�

t

^

U

k

(�

k

;   ) = �

t

U

k

(�

k

;   )�

X

n�2

b

2n

k

�

ih

m

2

k

�

2n

(  )

2n

= �

t

U

k

(�

k

;   ): (5.24)

Performing �eld rede�nitions as above, but for �

t

^

U instead of �

t

U yields,

�

t

V

k

(�

k

) = �

t

^

U

�

�

k

; i

m

2

k

h

k

�

k

�

= b

2

k

�

2

k

; (5.25)

i.e. our potential remains a mass term for all k as we have 
laimed above.

At �rst, this seems very strange. Yet, as we know from Chap. 4 we 
an, at least

formally, remove the bosoni
 �elds by performing the appropriate fun
tional integral.

Sin
e we have no kineti
 term for the bosons, and V (�) is lo
al, this results in a


ompletely lo
al fermioni
 intera
tion. However, Eq. (5.23) tells us that the highest

order lo
al and purely fermioni
 intera
tion is (  )

2

. Therefore, any a
tion of the

form (5.16) is equivalent to (5.14) and in 
onsequen
e also to Eq. (5.15), as long as

we 
hoose G and

h

2

m

2


orre
tly. In other words, if we do not 
onsider a non-vanishing

kineti
 term for the bosons, an in
lusion of a full bosoni
 potential does not give us

any more physi
al information than a simple trun
ation to a mass term or a purely

fermioni
 
al
ulation with a lo
al four-fermion intera
tion. In parti
ular, we 
annot

pro
eed into the SSB regime.

5.3.2 General Dis
ussion

It is straightforward to extend Eq. (5.21) to more general 
ases with several di�er-

ent bosoni
 
omposite operators and 
orresponding bosoni
 �elds, e.g., indu
ed by

fermions with more 
omponents. In fa
t, using our symboli
 notation of Chap. 2

the generalization looks like Eq. (5.21). The dis
ussion leading to Eq. (5.25) 
an be

generalized, too, but it is somewhat more 
ompli
ated, as we have to use the inverse

fun
tion V

0 �1

of V

0

to write down �

t

^

U . Assuming the existen
e of V

0 �1

we �nd,

�

t

^

U

k

(�;  O ) = �

t

U

k

(�;  O )�

X

jnj>N

b

n

k

�

V

0�1

(�ih

k

 O )

�

n

; (5.26)

where, for simpli
ity, we have employed a symboli
 notation with the 
omponents

�

i


orresponding to the operators O

i

. The b's are de�ned as in Eq. (5.24), but
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n = (n

1

; : : :) is now a multi index. N is the number of 
omponents of the spinor

 and determines the highest-order monomial in  whi
h does not vanish by the

anti
ommutation relations. E.g. for a Dira
 fermion in four dimensions (four spin

indi
es) with three 
olors we have N = 4 � 3 = 12. Using �

t

^

U to de�ne the �eld

rede�nitions we 
an for
e all 
ontributions �

n

, jnj > N to vanish as in Eq. (5.25).

Typi
ally, a potential up to order �

4

is suÆ
ient to des
ribe at least the basi


features of SSB. As most models have N � 4 we might be tempted to 
on
lude that,

with the ex
eption of some spe
ial 
ases, the LPA works. However, this is not the


ase. We have already seen that we 
an modify �

t

V

k

(�) by adding a 
onveniently

written zero to �

t

U(�;   ). But, Eq. (5.23) and its generalizations to the 
ase of

more spinor 
omponents are not the only way we 
an write a zero. Fierz identities

like Eq. (1.2) provide another one. As we 
an see from the example of Eq. (1.2) they

allow us to �nd non-vanishing 


n

su
h that

X

jnj=m




n

( O )

n

= 0; m � N: (5.27)

An addition of this to �

t

U(�;  O ) 
an be used to eliminate terms with �

n

and

jnj � N in the potential. The 


n

in Eq. (5.27) are not all independent, but typi
ally

we 
an eliminate at least one spe
ies of bosons 
ompletely from the potential. In

our model and trun
ation this freedom is re
e
ted by the arbitrariness of ~
(k) in

Eq. (5.1) and 
 in Eq. (5.12), respe
tively, e.g. 
hoosing 
 = 0 in Eq. (5.12) yields

h

A

= 0 and e�e
tively removes the axial ve
tor bosons.

Physi
ally, our �ndings in this se
tion tell us that in the LPA without any kineti


terms for the bosons we simply 
annot de
ide whi
h type of boson will 
ondense.

To do this we need additional information. Therefore, we will investigate (simple)

momentum dependent terms in the e�e
tive a
tion in the next se
tion.

5.4 Going beyond the LPA

In Se
t. 4.1.4 we have seen that a simple kineti
 term in the bosonized a
tion gives

a momentum dependent four-fermion intera
tion in the purely fermioni
 language.

Moreover, we 
ould absorb this momentum dependent four-fermion intera
tion into

a boson only if we 
hose a 
ertain Fierz transformation. This provided us with the

information to de
ide whi
h FT is the \right" one. Therefore, let us add the kineti


terms spe
i�ed in Eq. (4.23) to our pointlike a
tion (1.4). Finally, let us impose for

simpli
ity one more restri
tion, �

V

= �

A

= 1 on our e�e
tive a
tion. This simpli�es

the expressions for the ve
tor-boson propagators, similar to Feynman gauge in gauge

theories.
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Let us �rst outline the following 
ompli
ated 
al
ulation, using a symboli
 no-

tation. In a next step we then dis
uss some points hidden in the notation and some

details of the employed approximations. Finally, we 
omment on a few properties

and give numeri
al results, while the whole set of equations and a more expli
it and

step-by-step 
al
ulation is given in App. D.

5.4.1 Adapting the Flow

We restri
t our trun
ation to lowest non-trivial order in p

2

, and expand all 
ouplings

up to this order. We write,

�

2

(p) = �

2

+ p

2

Z +O(p

4

); �

t

�

2

(p) = �

t

�

2

+ p

2

�

t

Z + : : : ; (5.28)

h(p) = h + p

2

h

(2)

+O(p

4

); �

t

h(p) = �

(0)

h

+ p

2

k

�2

�

(2)

h

+ : : : ;

�(p) = �

(0)

+ p

2

�

(2)

+O(p

4

); �

t

�(p) = k

�2

�

(0)

�

+ p

2

k

�4

�

(2)

�

+ : : : :

At �rst sight, in the partially bosonized language it seems reasonable to take

�

2

(p) as in (5.28) but restri
t h(p) = h and �(p) = 0. However, in Se
t. 5.2 we have

seen that at least the latter is not a good approximation be
ause the term �

(0)

is


ru
ial for restoring the invarian
e under FT of the initial (pointlike) intera
tion.

Furthermore, we found that the 
ows of �

2

, h and �

(0)

all 
ontribute to the same

order to the e�e
tive four-fermion intera
tion (after integrating out the bosons). It

seems natural that this is also true for the terms of order p

2

: Z, h

(2)

, �

(2)

. Hen
e,

we 
onsider all these terms on equal footing.

Having 
hosen our trun
ation, we 
an 
al
ulate the 
ow equations. Sin
e we

did not add higher powers of �eld operators, the remaining task is to evaluate

the diagrams depi
ted in Figs. 3.1, 4.2, 5.1. The only di�eren
e to our previous


al
ulations is that we have to 
onsider non-trivial external momenta.

As in Se
t. 5.2 we want to keep the desired simple form of the e�e
tive a
tion,

i.e. h(p) = h and �(p) = 0, by 
hoosing appropriate �eld rede�nitions and negle
ting

terms of order O(p

4

). To do so, we shift

�

t

�

k

(q) = (  )(q)�

t

!

k

(q) + �

t

�

k

(q)�

k

(q); (5.29)

and, as in Se
t. 5.2, we employ

5

,

�

t

�

k

= �

t

�

k

j+

Z

q

Æ�

k

Æ�

k

(q)

�

t

�

k

(q): (5.30)

5

As mentioned in Se
t. 5.2, after the appropriate modi�
ation of the 
uto�, the 
ow equation

(2.32) does not give the exa
t 
ow �

t

�

k

j. Sin
e we now have a 
uto� for the bosoni
 �elds, the use

of Eq. (2.32) is really an approximation. However, numeri
al tests performed in the appendix of

[42℄ for a very similar 
ase suggest that it is a very good approximation. So we will use it without

further 
omment.
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This results in the following 
hanges of the 
ow equations,

�

t

�

2

(q) = �

t

�

2

(q)j+ 2�

2

(q)�

t

�

k

(q); (5.31)

�

t

h(q) = �

t

h(q)j+ h(q)�

t

�

k

(q) + �

2

(q)�

t

!

k

(q);

�

t

�(q) = �

t

�(q)j � h(q)�

t

!

k

(q):

We 
an now use the freedom in 
hoosing the �eld rede�nitions to enfor
e,

�

t

�(q) = 0; �

t

h(q) = �

t

h

(0)

; �

t

�

2

(q) = �

t

�

2

+O(p

4

): (5.32)

Roughly speaking we absorb the four-fermion intera
tions in the masses and Yukawa-


ouplings, and the momentum dependen
e of the latter ones in the wave fun
tion

renormalizations for the bosoni
 �elds (�

t

Z = 0). In parti
ular, we keep the simple

form with a momentum independent Yukawa 
oupling and no four-fermion intera
-

tion.

Using the fa
t that we start with a 
onstant Yukawa 
oupling and � = 0 we 
an

solve the equations (5.32) and �nd,

� � 2�

t

�(0) = �

�

t

Zj

Z

+

2�

2

h

�

�

t

h

(2)

j+ �

2

�

t

�

(2)

j+ Z�

t

�

(0)

j

�

: (5.33)

We use this equation to de�ne the anomalous dimension. From Eq. (5.29) it is


lear that �

t

�(0) modi�es the overall normalization of �, hen
e the wave fun
tion

renormalization. Moreover, setting �

t

h

(2)

j = 0, �

t

�(q)j = 0, it 
oin
ides with the

original de�nition � = �

�

t

Z

Z

. Using this, we get pretty mu
h the standard equations

for the 
ow of the mass and Yukawa 
oupling,

�

t

�

2

= ��

2

+ �

t

�

2

j; (5.34)

�

t

h =

1

2

�h+ �

t

hj+

�

2

h

�

t

�

(0)

j:

We remark that together with the initial 
ondition Z = 1 the 
onditions (5.32)

automati
ally guarantee that the 
ouplings are renormalized.

5.4.2 Choosing the Momentum Con�gurations

So far everything seemed relatively straightforward. However, looking more 
losely,

we soon �nd that �

t

h(p) 
an a
tually depend on two and �

t

�(p) even on three

momentum variables. This is in 
ontrast to �

2

(p) whi
h depends only on p

2

. As we

ultimately want to absorb those momentum dependen
ies in �

t

�

2

(p) it is 
lear that

we have to make an approximation su
h that �

t

h(p) and �

t

�(p) depend only on one

momentum squared. To de
ide whi
h of the possible momenta to 
hoose, we look
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at our example of Se
t. 4.1.4, in parti
ular at Eq. (4.34). From this we 
an read of,

that the bosons have the form,

�(q) = f(q)

Z

p

1

;p

2

 (p

1

) (�p

2

)Æ(q � p

1

� p

2

): (5.35)

Sin
e we want to keep the simple form of the e�e
tive a
tion, it is 
lear that the

bosons have to keep this form, too.

�

t

�

k

(q) = �

t

�(q)�

k

(q) + �

t

!

k

(q)

Z

p

1

;p

2

 (p

1

) (�p

2

)Æ(q � p

1

� p

2

); (5.36)

is the most general form that a

omplishes this. With Eq. (5.36) we 
an give meaning

to our notation,

(  )(q) =

Z

p

1

;p

2

 (p

1

) (�p

2

)Æ(q � p

1

� p

2

): (5.37)

Inserting this into Eq. (5.30) we �nd that the most general stru
tures we 
an absorb

are,

Z

p

1

;p

2

;p

3

F (p

2

1

) �(�p

1

) (p

2

) (�p

3

)Æ(p

1

+ p

2

+ p

3

); (5.38)

Z

p

1

;p

2

;p

3

;p

4

G((p

1

+ p

2

)

2

)  (�p

1

) (p

2

) (p

3

) (�p

4

)Æ(p

1

+ p

2

� p

3

� p

4

); (5.39)

where F and G are arbitrary fun
tions whi
h 
an then be expressed in terms of �

t

�

k

and �

t

!

k

.

Comparing the vertex 
orre
tion � �(�p

1

) (�p

2

) (p

3

) depi
ted in Fig. 4.2 with

(5.38) it is 
lear that we have to restri
t the momentum dependen
e to p

1

. A suitable


on�guration for the evaluation then is, (p

1

; p

2

; p

3

) = (p;

1

2

p;

1

2

p).

Re
alling that a Fierz transformation for the four-fermion intera
tion ex-


hanges p

2

and �p

3

we 
an absorb either a dependen
e on s = (p

1

+ p

2

)

2

or one on t = (p

1

� p

3

)

2

(
orresponding momentum 
on�gurations would be e.g.

(p

1

; p

2

; p

3

; p

4

) =

1

2

(p; p; p; p) and (p

1

; p

2

; p

3

; p

4

) =

1

2

(p;�p;�p; p), respe
tively,


f. Fig. 5.1). Therefore, we have to ask whi
h gives the better approximation. In

prin
iple, we would have to 
al
ulate �

t

�(s; t) (or even better �

t

�(p

1

; p

2

; p

3

; p

4

)) and

test at every s
ale whether �

t

�(s; t) � �

t

�(t) or �

t

�(s; t) � �

t

�(s) is a better approx-

imation. Analyti
ally as well as numeri
ally this is rather 
ompli
ated. Therefore, we

have adapted a mu
h simpler s
heme: we have always absorbed the dependen
e on t,

i.e. we have evaluated the diagrams in Fig. 5.1 and Fierz transformed the resulting

intera
tion on
e. There are two reasons why we believe that this is a reasonable

approximation. First of all, in the pointlike limit (at the beginning of the 
ow), i.e.

�

2

!1; h

2

!1;

h

2

�

2

= 
onst; (5.40)
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one �nds �

t

�(s; t) = �

t

�(t) exa
tly. Se
ondly, we have 
he
ked for various 
ombina-

tions of h and � that in the vi
inity of (s; t) = (0; 0) the dependen
e on t is usually

(but not always) stronger than the dependen
e on s.

5.4.3 Initial Flow and Numeri
al Results

To get an impression of what we have a
hieved by all this let us take a look at the

e�e
tive four-fermion intera
tion at the beginning of the 
ow

6

.

As we want to start with a
tion (1.1) where the four-fermion intera
tion is point-

like, the kineti
 terms in the partially bosonized a
tion vanish and the renormalized


ouplings obey Eq. (5.40) where the 
onstants are given by Eq. (1.5).

In Se
t. 4.1.4 we have already 
al
ulated,

�(p) =

h

2

�

2

+ p

2

=

h

2

�

2

�

h

2

�

4

p

2

+ � � � ; (5.41)

where �

2

and h

2

are 
onstants in momentum spa
e. Using our 
ow equations given

in App. D and using the properties of the threshold fun
tions given in C.2.3 we

�nd (after some algebra) Eq. (5.12) for the 
ow of the p

0

-terms. For the 
ow of the

p

2

-term in �

�

we �nd,

�

t

�

h

2

�

�

4

�

�

= 16v

4




(F );4

2

(0)(�

�

+ �

V

)

2

; (5.42)

and similar expressions for �

V

and �

A

whi
h are invariant under Fierz transforma-

tions, too. This shows that at least at the beginning we have no Fierz ambiguity up

to order p

2

.

Now, let us 
ome to the numeri
al results. Numeri
ally it is impossible to employ

the pointlike limit exa
tly, therefore we have started with large values of �

2

� 10

5

.

In addition to the results of the full set of 
ow equations we have given some results

for more simple approximations in Tabs. 5.1, 5.2. The �rst approximation, (1)+(3),


orresponds to the naive approa
h to the bosonized model, where all 
ontributions

from the four-fermion intera
tions and the momentum dependen
e of the Yukawa


oupling are negle
ted. In the next step, (1)�(3), we have in
luded the box diagrams,

but only its 
onstant parts, not the terms of order p

2

. However, indire
tly we have

in
luded some knowledge of the momentum dependen
e as we have 
hosen the same

FT as for the trun
ation (1)� (4) where we have in
luded all terms of order p

2

.

6

A
tually, in this se
tion we make one more approximation: we have ignored the anomalous

dimensions in the arguments of the threshold fun
tions. In the pointlike limit this negle
ts terms

of order �

3

. The 
ow equations in App. D in
lude those terms, but they make the evaluation mu
h

more diÆ
ult.
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Approximation Chap. 
 = 0:1 0.25 0.5 0.75 0.9

MFT 3.1 78.56 77.96 76.96 75.96 75.36

SD 3.4 76.96 76.96 76.96 76.96 76.96

(1) 4.2 76.32 76.36 76.42 76.49 75.54

Ferm. RG = (1) + (2) 3.3 86.15 86.15 86.15 86.15 86.15

(1) + (3) 5.4 76.43 76.45 76.49 76.55 76.58

(1) { (3) 5.4 83.97 83.95 83.92 83.89 83.87

(1) { (4) 5.4 86.17 86.18 86.20 86.21 86.22

Table 5.1: Criti
al values �


rit

�

for �

V

= 2 and for various values of the unphysi
al

parameter 
 (with � = 1). To keep the table of manageable size we have abbreviated:

(1) the pointlike 
ontibutions to the mass and the Yukawa 
oupling (Figs. 3.1, 4.2),

(2) the pointlike 
ontributions from the box diagrams (Fig. 5.1), (3) the 
ontribution

to the WFR from the purely bosoni
 diagram (Fig. 3.1) and (4) the 
ontribution to

the WFR from the momentum dependen
e of the diagrams 4.2 and 5.1. We point

out that di�ering from Tabs. 3.1, 3.2 we have employed a UV regularization by

the ERGE s
heme (
f. App. C.3) with the linear 
uto� Eq. (C.3) whi
h is better

suited for numeri
al 
omputations. This is why the values for the 
riti
al 
oupling

are roughly twi
e of those given in Tabs. 3.1, 3.2, sin
e the 
riti
al 
oupling is not a

universal quantity, and therefore s
heme dependent.

Approximation Chap. 
 = 0:1 0.25 0.5 0.75 0.9

MFT 3.1 74.96 68.96 58.96 48.96 42.96

SD 3.4 58.96 58.96 58.96 58.96 58.96

(1) 4.2 53.16 52.93 53.32 54.64 55.88

Ferm. RG = (1) + (2) 3.3 58.83 58.83 58.83 58.83 58.83

(1) + (3) 5.4 53.89 53.66 54.00 55.23 56.37

(1) { (3) 5.4 58.14 58.04 57.88 57.73 57.64

(1) { (4) 5.4 61.60 61.69 61.82 61.91 61.94

Table 5.2: The same as in Tab. 5.1 but with �

V

= 20.

Moreover, we noti
e that the values for the 
riti
al 
oupling in the pointlike

approximations are roughly twi
e of those given in Tabs. 3.1, 3.2. This is due to

a di�eren
e in the UV regularization. In this se
tion we have employed the ERGE

s
heme des
ribed in App. C.3. Non-universal quantities 
an and do depend on the


hoi
e of UV regularization. In the pointlike approximation this yields exa
tly a

fa
tor of two in our 
ase (for the pair of 
ouplings (�

�

; �

V

)). In the more involved

approximations this is not ne
essarily so, but the fa
tor will still be somewhere

around two.
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Aside from this, there is nothing new in the �rst four lines of Tabs. 5.1, 5.2.

Comparing the pointlike trun
ations for the RG with the improved approximations

of this se
tion we �nd that the e�e
t is of the order of 10%. Moreover, 
omparing the

di�erent non-pointlike approximations we �nd that the di�eren
es between them are

of the order of 5%� 10%, too. While most of the Fierz ambiguity (more important

for large values of �

V

, Tab. 5.2) is eliminated by in
luding the pointlike 
ontributions

of the boxes (in the \right" FT), (2), for the absolute values of the 
riti
al 
oupling,

the momentum dependen
e of the Yukawa 
oupling and the box diagrams is not

negligible.

On the more qualitative side we have 
he
ked for various values that for all

trun
ations whi
h in
lude kineti
 terms (last three lines in the tables) and values

of �

�

slightly larger than the 
riti
al �


rit

�

only the renormalized s
alar boson mass

turns negative, while the renormalized ve
tor and axial ve
tor boson masses remain

positive. This allows the 
on
lusion that the s
alar boson will 
ondense �rst, and we

have a phase where only 
hiral symmetry is broken (at least in our approximation).



Chapter 6

Bosoni
 E�e
tive A
tion (2PI)

In the last two 
hapters we have mainly worked on improving the RG des
ription

in the partially bosonized language. It turned out, that it is ne
essary to in
lude a

wave fun
tion renormalization (WFR) for the bosons. Without a WFR we 
annot

determine the type of the bosoni
 
ondensate (e.g. if it is a ve
tor or s
alar 
onden-

sate). Yet, 
onsistent in
lusion of a WFR leads to high algebrai
 
omplexity. This

might be appropriate for a quantitative des
ription. However, if we want to get a

�rst, more qualitative, overview of a physi
al system this seems to be a little bit

ex
essive. For this purposes the SDE or MFT approa
hes seem mu
h more suitable.

Both methods allow for a 
omputation of the order parameter in systems whi
h

exhibit spontaneous symmetry breaking (SSB). However, while the SDE approa
h

leads dire
tly to the gap equation the MFT approa
h provides naturally a free-

energy fun
tional for the bosoni
 
omposite degrees of freedom introdu
ed by partial

bosonization via a Hubbard Stratonovi
h transformation (s. Chap. 4). The �eld

equation for this fun
tional 
orresponds to the gap equation. Knowledge of the free-

energy fun
tional be
omes ne
essary if the gap (or �eld) equation allows for solutions

with di�erent order parameters and the free energy for the di�erent solutions has to

be 
ompared. The re
onstru
tion of the free-energy fun
tional from the gap equation

is not trivial and the method used in [97℄ for the 
ase of 
olor super
ondu
tivity may

not always work.

From this it seems that MFT is superior to SDE. Unfortunately, as we have seen

in Chaps. 3, 4, it has a severe disadvantage: partial bosonization is not unique and

the results of the MFT 
al
ulation depend strongly on the 
hoi
e of the mean �eld.

Moreover, MFT only in
ludes a subset of the SDE diagrams.

Hen
e, we want to �nd a fun
tional whi
h has the SDE as its equation of motion,

and whi
h 
an be interpreted as a free energy. Su
h a fun
tional is given by the 2PI

e�e
tive a
tion [46{48℄.

60
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In general, the 2PI e�e
tive a
tion is a fun
tional of �elds and propagators

�

(2PI)

[�;G℄. However, for a purely fermioni
 system, all the information is already


ontained in �

(2PI)

[0; G℄. �

(2PI)

[0; G℄ depends only on the bosoni
 variable G, and

therefore we will 
all it Bosoni
 E�e
tive A
tion (BEA) [98℄.

In this 
hapter, we want to 
al
ulate a simple approximation of the BEA for a

general lo
al multi-fermion intera
tion. Already for a four-fermion intera
tion the

lowest non-trivial 
ontribution to the BEA is of two-loop order. For a general n-

fermion intera
tion we have an

n

2

-loop stru
ture. However, we will show that this


an be redu
ed to a one-loop expression at the solution of the SDE, allowing for a


omparison to MFT.

As an appli
ation we want to study an intera
tion resembling the six-fermion

intera
tion generated by instantons in the 
ase of three 
avors and three 
olors [99{

103℄. In QCD this intera
tion is of spe
ial interest as it is U(1)-anomalous and solves

the famous U(1)-problem [104℄. In the simpler 
ase of two 
avors instantons mediate

a four-fermion intera
tion whi
h has been investigated in works on 
hiral symmetry

breaking [105{107℄ and 
olor super
ondu
tivity e.g. [19; 20℄.

The e�e
tive intera
tion generated by the instantons does not only lead to inter-

a
tions between 
olor singlet e�e
tive quark-antiquark degrees of freedom (! 
hiral

symmetry breaking) but also between o
tets leading to the possibility of o
tet 
on-

densation and spontaneous 
olor symmetry breaking [27; 28; 49℄. In the following

we will 
onsider both possibilities.

6.1 Bosoni
 E�e
tive A
tion (2PI)

To simplify the presentation we summarize all indi
es of the fermioni
 �eld in

~

 

�

.

The index alpha 
ontains all internal indi
es (spin, 
olor, 
avor et
.) as well as

position or momentum. Furthermore it also di�erentiates between  and  .

The partition fun
tion reads

Z[�; j℄ =

Z

D

~

 exp(�

�

~

 

�

+

1

2

j

��

~

 

�

~

 

�

� S

int

[

~

 ℄) (6.1)

where we treat all quadrati
 terms as a bosoni
 sour
e term.

We spe
ify the intera
tion as

S

int

[

~

 ℄ =

X

n

1

n!

�

(n)

�

1

:::�

n

~

 

�

1

� � �

~

 

�

n

: (6.2)



62 Chapter 6. Bosoni
 E�e
tive A
tion (2PI)

The usual generating fun
tional of 1PI Greens fun
tions in presen
e of the bosoni


sour
es j is de�ned by a Legendre transform with respe
t to the fermioni
 sour
e

term �:

�

F

[ ; j℄ = �W [�; j℄ + �

�

 

�

(6.3)

where

W = lnZ[�; j℄;  

�

= h

~

 

�

i =

�W

��

�

: (6.4)

�

F


an also be obtained by the following fun
tional integral

1

:

�

F

[ ; j℄ = � ln

Z

D

~

 exp(�

�

~

 

�

� S

j

[

~

 +  ℄); (6.5)

S

j

[

~

 ℄ = �

1

2

j

��

~

 

�

~

 

�

+ S

int

[

~

 ℄:

This form is espe
ially useful to derive the SDE. Taking a derivative with respe
t

to  we �nd

��

F

� 

�

= �j

��

2

 

�

2

(6.6)

+

X

n

�

(n)

��

2

:::�

n

F

n

 

�

2

�

(�

(2)

F

)

�1

�

3

�

4

� � � (�

(2)

F

)

�1

�

n�1

�

n

+ Z

�

3

:::�

n

+O( 

2

)

�

where

F

n

= (n� 2)(n� 4) � � �2 (6.7)

and Z summarizes all terms 
ontaining third and higher derivatives of �. These are

terms whi
h have at least two verti
es. Taking another derivative with respe
t to  

�

and evaluating at  = 0 we �nd the SDE:

(�

(2)

F

)

��

= �j

��

+

X

n

�

(n)

���

3

:::�

n

F

n

�

(�

(2)

F

)

�1

�

3

�

4

� � � (�

(2)

F

)

�1

�

n�1

�

n

+ Z

0

�

3

:::�

n

�

: (6.8)

In this 
hapter we are only interested in the lowest order. Therefore, from now on,

we negle
t Z, i.e. terms with at least two verti
es.

The \Bosoni
 E�e
tive A
tion" (BEA) [98℄, is de�ned by another Legendre trans-

form with respe
t to j:

�

B

[G℄ = �W [0; j℄ + jG; (6.9)

G

��

=

�W

�j

��

= (�

(2)

F

)

�1

��

;

��

B

�G

��

= j

��

: (6.10)

1

Note that in this formula

~

 is shifted su
h that h

~

 i = 0.
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Sin
e �

F

is an even fun
tional of  the BEA 
ontains the same information as �

F

.

Indeed it is related to �

F

by means of fun
tional di�erential equations like Eq. (6.10).

Using this relation we 
an 
onveniently write the SDE (6.8) as

G

�1

��

= �j

��

+

X

n

�

(n)

���

3

:::�

n

F

n

G

�

3

�

4

� � �G

�

n�1

�

n

: (6.11)

Using (6.10) we obtain a di�erential equation for �

B

��

B

�G

��

= �G

�1

��

+

X

n

�

(n)

���

3

:::�

n

F

n

G

�

3

�

4

� � �G

�

n�1

�

n

: (6.12)

whi
h we 
an integrate

2

to obtain

�

B

=

1

2

Tr lnG+

X

n

�

(n)

�

1

:::�

n

nF

n

G

�

1

�

2

� � �G

�

n�1

�

n

; (6.13)

the BEA at \one-vertex order".

It is sometimes 
onvenient to introdu
e an auxiliary e�e
tive a
tion

^

�[G; j℄ = �

B

�

1

2

j

��

G

��

(6.14)

su
h that the physi
al propagator 
orresponds to the minimum of

^

� (
f. Eq. (6.10)).

6.2 BEA for Lo
al Intera
tions

In the following we want to 
onsider lo
al intera
tions. For 
larity we now write

x (or momentum p) expli
itly and use latin letters for the remaining indi
es. The

standard pro
edure would be the insertion of the ansatz G

�1

ab

(x; y) = �j

ab

(x; y) +

�

ab

(x)Æ(x � y) into Eq. (6.11) to obtain the SDE for the lo
al gap �. Sin
e the

BEA Eq. (6.13) is related to the SDE (6.11) by di�erentiation with respe
t to G it

is not 
lear that an e�e
tive a
tion fun
tional depending on � 
an be obtained by

integration with respe
t to �. Instead we want to follow the 
onstru
tion presented

in [98℄ and start dire
tly from the approximate BEA Eq. (6.13). With

g

ab

(x) = G

ab

(x; x) (6.15)

2

Note that in our notation

�G

��

�G


Æ

= Æ

�


Æ

�Æ

� Æ

�Æ

Æ

�


.
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we have

^

� =

1

2

Tr lnG+

1

2

Tr(Gj) +

Z

x

X

n

�

(n)

a

1

:::a

n

nF

n

g

a

1

a

2

(x) � � � g

a

n�1

a

n

(x): (6.16)

For this relation it is essential that the intera
tion is stri
tly lo
al. Furthermore,

we 
an use the lo
ality of the intera
tion to write (6.11) in the form of a lo
al gap

equation

G

�1

ab

(x; y) = �j

ab

(x; y) + �

ab

(x)Æ(x� y): (6.17)

We will evaluate the fun
tional �[G℄ for G

��


orresponding to Eq. (6.17). This is

a
tually a restri
tion to a subspa
e of all possible G. However, lo
ality tells us that

the extremum (solution of the SDE) is 
ontained in this subspa
e.

Using j = �G

�1

+� we �nd (up to a shift in the irrelevant 
onstant and using

�

ab

(x; y) = �

ab

(x)Æ(x� y))

^

�[g;�℄ = �

1

2

Tr ln(�j +�)�
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(x)g
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:::a

n
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n
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(x) � � � g
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n�1

a

n

(x): (6.18)

For the sear
h of extrema of

^

� it is a
tually 
onvenient to treat � and g as inde-

pendent variables. The extremum of

^

�[g;�℄ then obeys

�

^

�[g;�℄

��

= 0;

�

^

�[g;�℄

�g

= 0: (6.19)

Evaluating the derivative with respe
t to � we re
over the inverse of Eq. (6.17) for

x = y,

g

ab

(x) = (�j +�)

�1

ab

(x; x) = g[�(x)℄ (6.20)

Inserting this fun
tional relation into Eq. (6.11) leads to a gap equation for �. In


ase of a six-fermion intera
tion this takes, however, the form of a two-loop equation.

For n-fermion intera
tions with n > 4 it is more appropriate to go the other way

around and �rst take a derivative with respe
t to g. We obtain

�

ab

(x) =

X

n

�

(n)

aba

3

:::a

n

F

n

g

a

3

a

4

(x) � � � g

a

n�1

a

n

(x)

= �

ab

[g(x)℄; (6.21)
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whi
h is pre
isely the value of the gap in Eq. (6.11). Inserting �[g℄ into (6.18) we

�nd the e�e
tive a
tion depending on g

^

�[g℄ = �

1

2

Tr ln(�j +�[g℄)�

1

2

Z

x

�

ab

[g℄(x)g
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+

Z

x

X

n

�

(n)

a

1

:::a

n

nF

n

g

a

1

a

2

(x) � � � g

a

n�1

a

n

(x): (6.22)

Sear
hing for an extremum yields

�

^

�[g℄

�g

=

�

(�j +�[g℄)

�1

� g

	

d�[g℄

dg

= 0: (6.23)

For

d�

dg

6= 0 Eq. (6.23) indeed 
orresponds to the SDE (6.11), i.e.

g

ab

(x) = (�j +�[g℄)

�1

ab

(x; x) (6.24)

This will be our 
entral gap equation. We should point out that possible extrema

of

^

�[g℄ 
orresponding to

d�

dg

= 0 are not solutions of the gap equation (6.11) and

should be dis
arded. Finally, we also have

d

^

�[g℄

dg

=

d

^

�[g;�[g℄℄

dg

=

��[g;�[g℄℄

�g

+

�

^

�[g;�[g℄℄

��

d�[g℄

dg

=

�

^

�[g;�[g℄℄

��

d�[g℄

dg

: (6.25)

Only as long as

d�[g℄

dg

6= 0 is ful�lled we 
an 
on
lude that a solution of (6.23) ful�lls

both extremum 
onditions (6.19).

Our pro
edure is quite powerful if Tr ln(�j + �) 
an be expli
itly evaluated as

a fun
tional of �. Then

^

�[g℄ allows not only a sear
h for the extremum (dis
arding

those with

d�

dg

= 0) but also a simple dire
t 
omparison of the relative free energy

of di�erent lo
al extrema. This is 
ru
ial for the determination of the ground state

in the 
ase of several \
ompeting gaps".

This \one-loop" form of the equation of motion but also of the e�e
tive a
tion

itself (6.22) is very 
lose to what we would expe
t from MFT (
f. also the next

se
tion). In 
ontrast to the standard SDE, whi
h is an equation of motion, we 
an

use Eq. (6.22) to 
ompare the values for the e�e
tive a
tion at di�erent solutions of

the equation of motion (6.23), providing us with information about the stability.

Nevertheless, we have to be 
areful when 
onsidering Eq. (6.22) at points whi
h

are not solutions of Eq. (6.23). Going step by step through the pro
edure above,

we �nd that if we are not at a solution of (6.23) we do not ne
essarily ful�ll the
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ansatz (6.17). Therefore, at these points we are mathemati
ally not allowed to insert

the ansatz into Eq. (6.13). So, stri
tly speaking (6.22) only gives the value of the

e�e
tive a
tion at the solution of the equation of motion

3

. Although, this is already

more than we get from the standard SDE we would like to interpret (6.22) as a

reasonable approximation in a small neighborhood of the solution to the equation of

motion. Remembering g(x) = h

~

 (x)

~

 (x)i it is suggestive to interpret g as a bosoni


�eld. Eq. (6.21) gives the (non-linear) \Yukawa 
oupling" of g to the fermions, i.e. the

relation between the gap and the bosoni
 �eld. The Tr ln is the 
ontribution from the

fermioni
 loop in a ba
kground �eld g. The remaining terms 
an then be interpreted

as the 
ost in energy to generate the ba
kground �eld g. This interpretation allows

us to use (6.22) to 
al
ulate the mass and the 
ouplings of the bosoni
 �eld g.

6.3 Comparison with MFT

From Chap. 4 we know that partial bosonization is not restri
ted to four-fermion

intera
tions. In parti
ular Eq. (4.11) provides us with the means to 
al
ulate a par-

tially bosonized a
tion for an arbitrary lo
al multi-fermion intera
tion. Asso
iating

�

��

(x) = h

~

 

�

(x)

~

 

�

(x)i, the partially bosonized form of Eq. (6.2) be
omes
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: (6.27)

Where � is a sum of terms whi
h are symmetri
 in at least one pair of indi
es

(
f. Se
t. 4.1.2). The 
ondition (6.27) ensures that the partially bosonized a
tion is

equivalent to the original fermioni
 one.

Negle
ting the terms O(

~

 

3

) and performing the fun
tional integral over the

fermions provides us with the MF e�e
tive a
tion:

�

MF

[�℄ = �

1

2

Tr ln(�j + g[�℄) +
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a
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; (6.28)

g[�℄

a

1

b

1

=

1

(

n

2

� 1)!

h

m

(n)

a

1

:::b
n

2

�

a

2

b

2

� � ��

a
n

2

b
n

2

+ perm.

�

1; : : : ;

n

2

	

i

:

3

An alternative would be to 
hoose the gap � as the \bosoni
 �eld". Inserting Eq. (6.17) into

Eq. (6.13) we 
ould 
al
ulate a fun
tional �[�℄. However, as one 
an 
he
k there are two drawba
ks.

First, even for four-fermion intera
tions, �[�℄ is usually unbounded from below when 
onsidering

� ! 1. Se
ond, in the 
ase of a large four-fermion 
oupling the \stable" solution of the �eld

equation is usually a lo
al maximum.
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By 
onstru
tion this is a one-loop result. Moreover, it is strikingly similar to Eq.

(6.22). However, the 
oeÆ
ients di�er. As dis
ussed in Se
t. 4.1.2 the Fierz ambiguity

is re
e
ted by the presen
e of a nearly arbitrary � in Eq. (6.27). Results usually

depend on the 
hoi
e of �. Of 
ourse, further 
onsiderations as e.g. the stability of the

initial bosoni
 potential might redu
e the freedom of � somewhat. But, sometimes

this is not even enough to get qualitatively unambiguous results [33; 34℄.

Eqs. (6.18), (6.22), (6.23) do not su�er from su
h an ambiguity sin
e in the

derivation of the SDE (6.8) the 
oeÆ
ients be
ome antisymmetrized and symmetri


terms drop out. In Se
t. 4.3 we demonstrated that the in
lusions of 
ertain diagrams


ures the Fierz ambiguity for four-fermion intera
tions and leads to the SD result.

We believe that this holds for higher fermion intera
tions, too. Thus, we propose

(6.22) as a natural generalization of (6.28).

Finally, let us stress the similarity of both approa
hes by noting that g(x) =

h

~

 (x)

~

 (x)i is exa
tly what we had in mind as a \mean �eld".

6.4 Wave Fun
tion Renormalization

In the partially bosonized language (
f. se
t. 6.3) it is possible to 
al
ulate a wave

fun
tion renormalization for the bosons. Allowing not only for 
onstant but also for

a slightly varying � (p small)

�(x) = �(0) + Æ� exp(ipx): (6.29)

Using this � it is still possible to perform the fermioni
 integral. Expanding in

powers of the momentum up to the p

2

-term we 
an read o� the wave fun
tion

renormalization.

The same 
an be done for Eq. (6.18)

g(x) = g(0) + Æg exp(ipx): (6.30)

Expanding again in powers of momentum we interpret the p

2

-term as the wave

fun
tion renormalization for the boson 
orresponding to the �eld g. As in MFT the

only 
ontribution to the wave fun
tion renormalization 
omes from the Tr ln and

therefore from a simple one-loop expression.

Knowledge of the wave fun
tion renormalization together with the se
ond deriva-

tive of the e�e
tive a
tion for 
onstant �elds allows us to 
ompute the mass of the

boson.

Again, this 
al
ulation is unambiguous. This is in 
ontrast to a 
al
ulation in

the partially bosonized language where we again have the problems with the Fierz



68 Chapter 6. Bosoni
 E�e
tive A
tion (2PI)

ambiguity. On the other hand we do not want to hide the fa
t that by 
onsidering

values of g whi
h do not 
oin
ide with the solution of the SDE we have left the solid

ground of a dire
t 
omputation from the BEA given in Eq. (6.16).

6.5 Chiral Symmetry Breaking from a 3-Flavor

Instanton Intera
tion

In this se
tion we want to use the method des
ribed above to study 
hiral symmetry

breaking in an NJL-type model with a six-fermion intera
tion modelling the QCD-

instanton intera
tion with three 
olors and three 
avors [99{103℄. The three 
avor

instanton vertex 
an be written in the following 
onvenient form [49℄
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(6.31)

where �

z

are the Gell-Mann matri
es 
orresponding to the SU(3)





olor group and

the bra
kets ( ) indi
ate 
ontra
tions over 
olor and spinor indi
es.

The 
oupling 
onstant � 
an be 
al
ulated in terms of the gauge 
oupling. How-

ever, it involves an IR divergent integral over the instanton size. Therefore, one

needs to provide a physi
al 
uto� me
hanism. To avoid this diÆ
ulty we treat � as

a parameter.

Inspe
tion of (6.31) tells us that this intera
tion is U(1) anomalous with a resid-

ual Z

3

-symmetry. This is important be
ause we 
annot restri
t ourselves to real


ondensates from the start.

In order to extra
t the intera
tion matrix � we have to antisymmetrize over


avor indi
es (a = 1 : : : 3), 
olor indi
es (i = 1 : : : 3) Weyl spinor indi
es (� = 1; 2),


hirality indi
es (� = 1; 2 = L;R) and the indi
es distinguishing between  and  
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(s = 1; 2).
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Here P denotes the sum over all 6! permutations of the multiindi
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), j = 1 : : : 6, with minus signs appropriate for total antisymmetriza-
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As a �rst example we 
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avor singlet, 
olor singlet s
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where we have used the fa
t that

~

� is symmetri
 under permutations of the three

  bilinears. Exploiting the 
avor, spin and 
olor stru
ture for (6.34) yields

�[g℄

mn

= �

10

9

�Æ

ab

Æ

ij

Æ

��

�

�

2

(Æ

�1

Æ

�2

Æ

s2

Æ

t1

� Æ

�2

Æ

�1

Æ

s1

Æ

t2

)

��

?2

(Æ

�2

Æ

�1

Æ

s2

Æ

t1

� Æ

�1

Æ

�2

Æ

s1

Æ

�2

)

�

(6.36)



70 Chapter 6. Bosoni
 E�e
tive A
tion (2PI)

and

U [�℄ =

20

9

�(�

3

+ �

?3

): (6.37)

Evaluating for a � 
onstant in spa
e and pulling out a volume fa
tor we obtain the

e�e
tive potential and the relation between 
ondensate and fermion mass,

^

�[�℄ = �36v

4

Z

dx x[ln(x + jmj
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)℄ + U [�℄;
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: (6.38)

Here m

0

�

is a 
urrent quark mass whi
h we take to be equal for all quarks. The

integral in (6.38) is, of 
ourse, divergent. Our UV regularization is simply to 
ut it

o� at �

2

. Measuring all quantities in units of � we 
an put � = 1.

6.5.1 The 
hiral limit m

0

�

= 0

Let us now look at the �eld equation or equivalently sear
h for extrema of

^

�[�℄.

Sin
e

d�[�℄

d�

6= 0 for all � 6= 0 we do not need to worry for non-trivial solutions to be

spurious. In addition � = 0 is always a solution in the 
hiral limit.

Inspe
tion of

^

�[�℄ tells us that it is invariant under the 
ombined operation

� ! ��, � ! ��. This allows us to restri
t our analysis to positive �.

In the 
hiral limit it is useful to parametrize

� = j�j exp(i�): (6.39)

Form this one �nds

^

�[j�j; �℄ =

40

9

�j�j

3


os(3�) + f(j�j); (6.40)

where f is a fun
tion determined by the integral in Eq. (6.38). We 
an see that the

only �-dependen
e 
omes from 
os(3�) whi
h is the expli
it manifestation of the

Z

3

-symmetry.

It is 
lear that extrema 
an only o

ur at � =

n�

3

, n 2 Z. Using the Z

3

-symmetry

we 
an restri
t ourselves to � = 0; � or restri
t ourselves simply to real �.

Taking all this into a

ount we �nd up to three solutions (
f. Fig. 6.1). As already

mentioned � = 0 is a solution for all values of the 
oupling. Going to larger 
ouplings

we en
ounter a point �


rit

where we have two solutions. For even larger 
ouplings

there are three solutions 0 = �

0

< �

1

� �

2

. We know that

^

�[�

1

℄ >

^

�[�

0

= 0℄
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Figure 6.1: Plot of the BEA for various values of the 
oupling 
onstant in
reasing

from the topmost line � = 3000 to the lowest line � = 4200. The se
ond line

(long dashed) is for �


rit

� 3350, the 
riti
al 
oupling for the onset of non-vanishing

solutions. The third is for � = 3600 while the fourth (short dashed) is the for the

onset of SSB

~

�

SSB

� 3900. The horizontal line indi
ates the value of �[�℄ at the

trivial solution � = 0.

therefore �

1

is not the stable solution. As 
an be seen from Figs. 6.1, 6.2 there is a

�


rit

� � � �

SSB

where there exist non-trivial solutions to the SDE but there is still

no SSB be
ause

^

�[�

2

℄ �

^

�[�

0

= 0℄. We point out that in order to 
al
ulate �

SSB

we

need to know the value of

^

�, i.e. information beyond the SDE.

In Fig. 6.2 we have plotted the mass gap versus the six-fermion 
oupling strength.

Looking at Fig. 6.2 we observe a �rst order phase transition. From Eq. (6.22) we

a
tually expe
t this quite generi
ally as long as we have only n-fermion intera
tions

with n � 6. However, this might also be an artifa
t of the \one-vertex" approxima-

tion.

Finally, we would like to remark that in general it is not enough to simply inte-

grate the SDE with respe
t to the gap � re
onstru
t the e�e
tive a
tion fun
tional.

This fun
tional, let us 
all it

~

�[�℄ is in general not equal to the the BEA

^

�[G℄, not

even at solutions of the SDE. Indeed, as 
an be seen from Fig. 6.2, the results for

physi
al quantities like the e�e
tive fermion mass 
an di�er. The underlying rea-

son for this is that the gap � is not the 
orre
t integration variable. The SDE is

obtained by a G-derivative of the BEA fun
tional

^

�[G℄. Therefore, in order to re
on-

stru
t

^

�[G℄, we have to integrate with respe
t to G. As 
an be seen from Eq. (6.21)

� is, in general, not even a linear fun
tion of G. Simple integration with respe
t

to � therefore negle
ts the Ja
obi matrix, whi
h is a non-trivial fun
tion of � for

intera
tions more 
ompli
ated than a four-fermion intera
tion.
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Figure 6.2: Fermion mass jmj

�

(gap) versus the strength of the six-fermion inter-

a
tion � in the 
hiral limit m

0

�

= 0. The thi
k line 
orresponds to the solution

with smallest a
tion. The dashed line is the largest non-trivial solution. Finally, the

thin line is obtained by minimizing an \e�e
tive a
tion"

~

�[�℄ obtained by dire
t

integration of the SDE with respe
t to the gap �. We �nd three spe
ial 
ouplings,

�


rit

for the onset of non-trivial solutions to the SDE, �

SSB

for the onset of SSB,

i.e. a non-trivial solution has lower a
tion than the trivial solution and

~

�

SSB

where

the lowest extremum of

~

�[�℄ be
omes non-trivial. We point out that these three

\
riti
al" 
ouplings di�er. Moreover, to 
al
ulate �

SSB

we need to know the e�e
tive

a
tion. In our approximation we obtain a �rst order phase transition.

6.5.2 Non-vanishing 
urrent quark masses m

0

�

6= 0

The non-vanishing 
urrent quark mass expli
itly breaks the residual Z

3

-symmetry.

^

�[j�j; �℄ does no longer depend on 
os(3�) only, and we have to look at the 
omplete


omplex �-plane for possible extrema.

Moreover, for m

0

�

= 0,

^

�[�℄ is 
ompletely symmetri
 under � ! ��; � ! ��.

Therefore, we 
ould restri
t ourselves to � � 0. For m

0

�

6= 0 we need to add the

transformation m

0

�

! �m

0

�

. We 
an still restri
t ourselves to positive � but we need

to 
onsider both positive and negative m

0

�

.

In the 
ase of m

0

�

6= 0 we still en
ounter an extremum of

^

�[�℄ at � = 0. However,

in this 
ase it is not a solution of the SDE. It is a spurious solution due to

d�[�℄

d�

= 0.

The di�eren
e to the 
hiral limit is that the derivative of the e�e
tive potential

^

�[�℄

now has only a simple zero while in the 
hiral limit it is a twofold zero. After dividing

the �eld equation by

d�[�℄

d�

a simple zero remains, giving a solution of the SDE in

the 
hiral limit.

Although, 
hiral symmetry is now broken expli
itly we 
an still observe a �rst-

order phase transition signaled by a jump in the fermion mass. The 
riti
al 
oupling
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Figure 6.3: Dependen
e of the 
riti
al 
oupling on the 
urrent quark mass m

0

�

(thi
k

solid line). Jump in the fermion mass at the phase transition (thi
k dashed line).

We observe that there exists a 
riti
al m

0

�

� 0:076 above whi
h there is no phase

transition.

for the phase transition depends on m

0

�

as depi
ted in Fig. 6.3. The 
riti
al line ends

at m

0

�

= m

0

�;
rit

� 0:076, i.e. for m

0

�

> m

0

�;
rit

we have no �rst order phase transition

in our approximation.

6.6 Color-O
tet Condensation

In the last se
tion we have 
onsidered only one dire
tion in the spa
e of all possible

g resulting in a phase diagram for 
hiral symmetry breaking. Let us now 
onsider

the more general 
ase where we also allow for a non-vanishing expe
tation value in

the 
olor-o
tet 
hannel, more expli
itly in the 
olor-
avor lo
king dire
tion.

g

mn

= g

ai��s;bj��t

(6.41)

=

1

6
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Æ
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Following the outline of the previous se
tion we obtain

�[g℄

mn

= ��

�

5

1296

(288�

2

+ 6��� 7�

2

)Æ
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�
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and

U [�; �℄ = �

�

20

9

�

3

�

5

27

��

2

�

5

243

�

3

+ 
:
:

�

: (6.42)

^

�[�; �℄ = �4v

4

Z

x

dx x[8 ln(x + jmj

2

�

) + ln(x+ jmj

2

�

)℄ + U [�; �℄

m

�

=

5

1296

�(288�

2

+ 6��� 7�

2

) +m

0

�

m

�

=

5

81

�(18�

2

� 3��� �

2

) +m

0

�

: (6.43)

In the 
hiral limit every point on the line � = �6� (m

�

= 0 and m

�

= 0) has

the same value of

^

�, and both derivatives with respe
t to � and � vanish. But, in

this dire
tion the derivative of � with respe
t to the 
ondensates vanishes, too, and

is indeed the null fun
tion in this dire
tion. Therefore, on this line only the point

(�; �) = (0; 0) is a true solution to the SDE.

Restri
ting both � and � to be real we have not found a solution with � 6= 0.

Thus, we have not identi�ed a solution whi
h breaks 
olor symmetry but not parity.

For the most general 
ase of 
omplex � and � things are 
onsiderably more

diÆ
ult sin
e we now have to sear
h for an extremum of a potential whi
h depends

on four real parameters. We 
he
ked several values of the 
oupling 
onstant. So far

we have not found a solution whi
h has lower a
tion than the lowest one with � = 0.

Still, we would like to point out that the potential is unbounded from below. In

various dire
tions in
luding those with � 6= 0,

^

�! �1. Therefore, a physi
al 
uto�

me
hanism like the one dis
ussed in [49℄ or a better approximation whi
h makes the

potential bounded from below may provide additional solutions.



Chapter 7

Outlook: Quest for a

Renormalizable Standard Model

0

The \Standard Model" (SM) of parti
le physi
s is probably one of the most widely

studied physi
al theories. It des
ribes a wide range of physi
al situations with a

satisfa
tory amount of a

ura
y. Yet, there are still open questions. In parti
ular,

we want to 
on
entrate on \Renormalizability" and the \Hierar
hy Problem", as

those are problems tightly 
onne
ted to the existen
e of an elementary s
alar boson

{ the Higgs { in the SM. This returns us to the spe
ulation of a 
omposite Higgs

whi
h we mentioned in the introdu
tion.

Before going into details, let us brie
y outline those two problems.

Renormalizability: If asked whether the SM is renormalizable many physi
ists

1

would answer this question positively. So, why sear
h for something we have already

found? Well, while this answer is 
ertainly 
orre
t for most pra
ti
al purposes, i.e.

when the UV-
uto� s
ale is of a reasonable size � . 1TeV, it is not 
ertain that this

is so if we send the 
uto� to in�nity.

To get a grasp of the problem let us look at the example of �

4

-theory (a model

for the Higgs potential). Roughly speaking renormalizability means that the physi
s

at short distan
es does not really matter, and therefore we 
an send the 
uto� to

in�nity without 
hanging the results. Yet, a straightforward 
al
ulation gives the

(1-loop) running four-boson 
oupling as follows,

�

e�

(q

2

) =

�

1�

3�

4�

2

ln

�

q

2

�

2

�

; (7.1)

0

This is work in progress in 
ollaboration with Holger Gies and Christof Wetteri
h.

1

A (not representative) survey in the \Graduiertenkolleg: Physi
al Systems with many Degrees

of Freedom" of the university of Heidelberg resulted in � 70% positive answers.

75
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0

where q

2

is the (Eu
lidean) momentum s
ale and � is the 
oupling at the s
ale �

2

.

From this we 
an read o�, that the 
oupling 
onstant grows with in
reasing momen-

tum s
ale. It is plausible that this does not �t into our pi
ture that long distan
e

physi
s (small momenta) de
ouples from short distan
e physi
s (large momenta), as

the 
oupling is strong in the latter regime.

This gives us an intuitive understanding that problems might arise when we

want to send the UV 
uto� to in�nity. Those theories are not renormalizable in a

stri
t sense. Requiring that a \fundamental" theory should be renormalizable su
h

theories 
annot be \fundamental", i.e. valid at all s
ales. They are valid only as

e�e
tive theories up to a 
ertain 
uto� s
ale � where \new" physi
s will set in.

This [11{15℄ and a similar problem in QED (Landau pole!) [108; 109℄, hint to

serious trouble in the Higgs respe
tively U(1)-se
tor of the SM. This is often referred

to as \triviality" be
ause when starting with some bare intera
tions and sending the


uto� to in�nity, the renormalized 
oupling will be stri
tly zero.

Hierar
hy Problem: In 
ontrast to 
hiral fermions, where 
hiral symmetry

prevents the fermion mass from a
quiring large quantum 
orre
tion, the mass of a

s
alar boson is not prote
ted against su
h 
orre
tions. Thus, assuming that the RG


ow of the SM is \released" at, say, the GUT

2

s
ale, enormous �ne-tuning of the

s
alar initial 
onditions is required to separate the ele
troweak s
ale from the GUT

s
ale by many orders of magnitude.

To illustrate this let us do a very simpli�ed 
al
ulation. In a 
rude approximation

the Higgs mass runs as follows (


2

= 
onst. = O(1)),

m

2

H

(q

2

1

)�m

2

H

(q

2

2

) = 


2

(q

2

1

� q

2

2

): (7.2)

De�ning the dimensionless Higgs mass �

2

(q

2

) =

m

2

H

(q

2

)

q

2

this 
an be rewritten as,

�

2

(q

2

1

) = 


2

�

q

2

2

q

2

1

�




2

+ �

2

(q

2

2

)

�

: (7.3)

So far so good, but let us now 
onsider two very di�erent s
ales, e.g. the GUT

s
ale q

2

1

= M

2

GUT

� 10

30

(GeV)

2

and the ele
troweak symmetry breaking s
ale

q

2

2

� 10

4

(GeV)

2

. Inserting values for the Higgs mass at the ele
troweak s
ale we

�nd that the bra
kets on the RHS are of order O(1). Hen
e,

�

2

(M

P

) = 


2

�O(10

�26

); (7.4)

the dimensionless mass at the GUT s
ale must be �ne-tuned to 


2

by an in
redible

amount. Although not ex
luded, su
h an amount of �ne-tuning seems unnatural.

2

Grand Uni�ed Theory.
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7.1 UV Fixed Points and Renormalizability

Let us now address the problem of renormalizability on a more formal level.

7.1.1 Non-perturbative Renormalizability

Commonly, theories are 
onsidered to be renormalizable if they have a (small 
ou-

pling) perturbative expansion and we 
an absorb the in�nities by a �nite number of


ounterterms. In 
onsequen
e, they only have a �nite number of 
ouplings (masses

et
.) sin
e it requires physi
al information to �x a 
ounterterm unambiguously. For

instan
e, the value of a 
oupling or mass at some s
ale 
annot be determined in

the theory itself, but must be measured. All other quantities 
an be 
al
ulated from

these 
ouplings. From this renormalizable theories derive their predi
tive power. In

parti
ular, the renormalization pro
edure allows us to take the 
ontinuum limit,

i.e. to send the UV 
uto� to in�nity. In this sense we 
an 
onsider renormalizable

theories as fundamental. A prominent example of su
h a theory is QCD.

It 
omes as no surprise that not all theories have this property of \perturba-

tive renormalizability" (PR). Gravity is probably the most well known example,

but there are many more: as theories whi
h 
ontain a 
oupling of negative mass

dimension are usually not PR. The NJL model (1.1) has a 
oupling � (mass)

�2

and 
onsequently is not PR, either. Moreover, naively renormalizable theories with

dimensionless 
oupling 
onstants may also fa
e diÆ
ulties spoiling PR, as dis
ussed

at the beginning of this 
hapter. Usually, theories whi
h are not PR are thought to

be e�e
tive �eld theories valid only up to a �nite UV s
ale �.

Yet, PR is not the end of the game. Using a little bit of imagination it is obvious

that a logi
al alternative is a \non-perturbative" renormalizable (NPR) [110{116℄

theory. So far so good, but does su
h a thing exist and what is it? Fortunately, the

answer to the �rst question is yes. Among the examples are various versions of the

Gross-Neveu model. More re
ently, it has been proposed that gravity is NPR, too

[117; 118℄. But now, let us �nd out what hides behind NPR

3

.

The spa
e of all possible a
tion fun
tionals 
an be parametrized by an in�nite

number of dimensionless 
ouplings (if ne
essary we use a suitable res
aling with the

s
ale k). As dis
ussed in Se
t. 2.1.2 the RG des
ribes a traje
tory in this spa
e (it

is parametrized by the s
ale t = ln(k=k

0

)),

�

t

g

i

t

= �

i

(g

1

; g

2

; : : :): (7.5)

Starting point for the 
onstru
tion of a NPR is the existen
e of a non-Gaussian �xed

point (FP) g

?

= (g

1

?

; g

2

?

; : : :) with at least one g

i

?

6= 0, in the RG 
ow,

�

i

(g

1

?

; g

2

?

; : : :) = 0 8i: (7.6)

3

In this brief des
ription of NPR we follow [118℄.



78 Chapter 7. Outlook: Quest for a Renormalizable Standard Model

0

In the setting of statisti
al physi
s su
h a FP is exa
tly what we would asso
iate

with a se
ond order phase transition. The dimensionless 
onstants do not 
hange

with the s
ale (typi
ally the s
ale 
an be asso
iated with the di�eren
e from the


riti
al temperature � jT �T




j), a

ordingly the dimensionful quantities are simply

powers of the s
ale

4

. This gives the typi
al power laws of the 
riti
al behavior near

a se
ond order phase transition. Moreover, we would like to remark that in this


ontext a PR is just the spe
ial 
ase of a Gaussian, i.e. g

?

= 0, FP.

In the vi
inity of this FP we 
an linearize the RG equations,

�

t

g

i

=

X

j

B

ij

(g

j

?

� g

j

t

) (7.7)

where

B

ij

=

��

i

�g

j

�

�

�

�

g

?

(7.8)

is the Ja
obi matrix of the �-fun
tions. This is a linear di�erential equation and the

general solution reads,

g

i

t

= g

i

?

+

X

I

C

I

V

I

i

�

k

0

k

�

�

I

; (7.9)

where the V

I

are right eigenve
tors of B with 
orresponding eigenvalues

5

��

I

,

BV

I

= ��

I

V

I

, and the C

I

are 
onstants determined by the initial 
onditions. Set-

ting C

I

= 0 if the 
orresponding eigenvalue

6

�

I

< 0 we 
an safely take the UV limit

k!1. In other words this gives us an RG traje
tory whi
h ends in g

?

for k !1.

Any su
h traje
tory de�nes a theory with a meaningful UV limit. The spa
e of all

su
h traje
tories is a submanifold S of dimensionality �, given by the number of

eigenvalues �

I

> 0. We 
an spe
ify a traje
tory in this spa
e by giving the values of

integration 
onstants C

I

. Thus our theory has � \renormalizable 
ouplings", whi
h

have to be taken from experiment. In parti
ular, � must be �nite (and preferably

small) in order for our theory to have predi
tive power.

Stated di�erently, all traje
tories in the submanifold S are attra
ted toward g

?

for in
reasing s
ale k, 
onsequently, for de
reasing k they are repelled. Therefore,

the � parameters spe
ifying the traje
tory are the relevant parameters to des
ribe

4

It is often useful to in
lude the wave fun
tion renormalization into the 
ouplings. This modi�es

the naive power laws by anomalous dimensions.

5

The �

I

are not ne
essarily real as B is not ne
essarily symmetri
. For simpli
ity let us pretend

that they are real, anyway. The general 
ase 
an be re
overed by repla
ing, � > 0 ! Re(�) > 0

et
. in our argumentation.

6

For �

I

= 0 it depends on the details if the UV limit is �nite or not. Correspondingly, it might

or might not be ne
essary to set C

I

= 0. Prominent examples for both 
ases are the �

4

-theory

where the UV limit is not �nite, and QCD where the limit is �nite and whi
h is therefore stri
tly

renormalizable.
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physi
s in the �xed point regime. The remaining \non-renormalizable 
ouplings"


orresponding to �

I

< 0 are irrelevant in the sense that starting with a �nite value

at some s
ale k <1 they are attra
ted toward the submanifold S for de
reasing k.

Thus it does not really matter if we give them some �nite value at a large s
ale

7

k.

Finally, let us give a naive argument why the submanifold S should be �nite di-

mensional. To obtain the dimensionless 
oupling we have to res
ale the dimensionful


oupling 
onstant G

i

by an appropriate power of k, g

i

= k

�d

i

G. The �-fun
tion has

now the form �

i

= �d

i

g

i

+ � � � where the dots denote the loop 
orre
tions. In the

Ja
obi matrix this gives a 
ontribution B

ij

= �d

i

Æ

ij

+ � � � . The eigenvalues get a


ontribution �

i

= d

i

+ � � � . Constru
ting a higher order operator, we usually add

derivatives or �eld operators, thus de
reasing d

i

. Therefore, we should only have a

�nite number of �

i

< 0. Yet, this argument is based on the assumption that the loop


orre
tions are small. Hen
e, it might be not valid in the non-perturbative regime

with strong 
oupling and large loop 
orre
tions. Still, it seems reasonable to �rst

look for a possible FP and establish that it is not an artifa
t of the approximation,

and then worry about the dimensionality of S.

7.1.2 A Toy Model

Let us illustrate this idea for a simple NJL model in d-dimensions, a four-fermion

intera
tion with dimensionless (positive) 
oupling 
onstant

^

� = k

d�2

�, and the 
ow

equation (whi
h, for the moment, is assumed to be exa
t),

�

t

^

� = (d� 2)

^

�� C

^

�

2

: (7.10)

For d > 2 the Gaussian FP

^

� = 0 is UV repulsive, i.e.

^

� is an eigenve
tor with

eigenvalue �� = (d�2) > 0. The model is not PR for a non-vanishing

^

�. Moreover,

for any value

^

� <

d�2

C

we approa
h the Gaussian FP in the IR,

^

� is \irrelevant". By


ontrast, for

^

� �

d�2

C

the 
oupling

^

� grows and eventually diverges. This typi
ally

signals some kind of symmetry breaking,

^

� is not so irrelevant any more. Looking a

little bit more 
losely we noti
e that

^

�




=

d�2

C

is a FP. The eigenve
tor (

^

��

^

�




) has

an eigenvalue ��

0

= �(d� 2) < 0, i.e. it is a relevant parameter in the �xed point

regime. On the other hand, the FP is UV attra
tive and we have a meaningful UV

limit even for a (small) non-vanishing (

^

� �

^

�




). The theory with this parameter is

NPR.

Finally, let us remark that the ad ho
 
ow equation of our toy model resem-

bled a typi
al 
ow equation for an NJL-type model in a trun
ation to four-fermion

intera
tions, e.g. with C = 4(N � 2)v

3

l

(F);4

1

and d = 3 the 
ow equation for the

Gross-Neveu model in three dimensions.

7

We will see below that this statement should be taken with some 
are. More pre
isely, this is

true only if we are 
lose enough to the �xed point.
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0

7.1.3 Manifestation of the Hierar
hy Problem

In this setting we also have the tools available for dis
ussing the hierar
hy problem.

So far we have already seen that a renormalizable 
oupling is relevant in the infrared,

i.e. starting with a small deviation from the �xed point in the far UV this deviation

soon grows large. This is quanti�ed in Eq. (7.9). Taking k

0

to be some large UV

s
ale k

0

= � � M

P

and � � O(1), the deviation grows very fast with (

�

k

)

�

when k

is lowered. Turning the argument around, we have to �ne tune the initial 
onditions

(
hoose the initialC very small) at the s
ale � in order to a
hieve a value 
omparable

to some s
ale k � � for the 
oupling at the s
ale k.

From this it may seem that renormalizability and a solution to the hierar
hy

problem more or less ex
lude ea
h other. However, there is a way out, we simply

need to make � small or zero. At �rst this may sound simply like another type of

�ne-tuning, but it is not ne
essarily so, as the eigenvalues are a predi
tion of our

�xed point solution and not a parameter. To understand this we 
an on
e more

look at our simple toy model. For d = 2 we have exa
tly the 
ase of a vanishing

eigenvalue. Solving the 
ow equation (7.10), we �nd

^

�(t = ln(k)) =

^

�

0

1 + C

^

�

0

ln

k

�

; (7.11)

where

^

�

0

=

^

�(t

0

= ln(�). As

^

� depends only logarithmi
 on the s
ale we 
an have

very di�erent s
ales without �ne-tuning.

Finally, let us remark, that Eq. (7.11) also gives us an understanding of what


an happen when � = 0. Only for C > 0 we approa
h the �xed point

^

�

?

= 0 in the

far ultraviolet. Only in this 
ase our simple toy model is renormalizable. Moreover,

our d = 2 
ow equation for our toy model has the same form as the lowest order

terms of the d = 4 
ow in QED and QCD around their Gaussian �xed points. In

this language QCD has C > 0 and is renormalizable while QED has C < 0 and is

not stri
tly renormalizable.

7.2 One more NJL Model

Inspired by our toy model let us on
e again investigate an NJL model but now with

N

f

fermion spe
ies and an SU(N




)-gauge intera
tion.
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7.2.1 Trun
ation and Flow Equations

A simple trun
ation in
luding all possible pointlike the four-fermion intera
tion

reads,

�

k

=

Z

 iD= +

1

4

F

��

F

��

+

1

2

h

�

�

(S{P) + �

�

(V{A) + �

+

(V+A) (7.12)

+�

f

�

(S{P)

N

+ �




�

(S{P)

N

+ �

VA

(V{A)

N

i

;

with the 
ovariant derivative,

D= = �=� igA=: (7.13)

The 
olor and 
avor singlets are

(S{P) = (  )

2

� ( 


5

 )

2

;

(V{A) = ( 


�

 )

2

+ ( 


�




5

 )

2

;

(V+A) = ( 


�

 )

2

� ( 


�




5

 )

2

;

where 
olor (i; j; : : : ) and 
avor (a; b; : : : ) indi
es are pairwise 
ontra
ted, e.g.,

(  ) � ( 

a

i

 

a

i

). The operators of non-trivial 
olor or 
avor stru
ture are denoted

by,

(S{P)

N

= ( 

i

 

j

)

2

� ( 

i




5

 

j

)

2

� ( 

a

i

 

a

j

)

2

� ( 

a

i




5

 

a

j

)

2

;

(S{P)

N

= ( 

a

 

b

)

2

� ( 

a




5

 

b

)

2

� ( 

a

i

 

b

i

)

2

� ( 

a

i




5

 

b

i

)

2

;

(V{A)

N

= ( 

i




�

 

j

)

2

+ ( 

i




�




5

 

j

)

2

� (V{A)

N

:

The last equation holds be
ause of a Dira
 Fierz identity (
f. App. B.3). The trun-


ation (7.12) is symmetri
 under a simultaneous ex
hange of N




$ N

f

, �

f

�

$ �




�

,

(: : : )

N

$ (: : : )

N

. However, it is not invariant under SU(N

f

)

L

�SU(N

f

)

R

. We 
an ob-

tain the part invariant under this additional symmetry by setting

^

�

�

=

^

�




�

= 0. The

full a
tion Eq. (7.12) is invariant only under the subgroup SU(N

f

)

V

of simultaneous

right and left handed rotations.

Following along the lines of Se
t. 3.3, in parti
ular using Eq. (3.16), the 
al-


ulation of the 
ow equations is straightforward. Using the dimensionless 
oupling
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0


onstants

^

� = k

2

� we �nd,

�

t

^

�

�

=

�

2

^

�

�

� 12g

2

�

N

2




� 1

N




^

�

�

+

^

�




�

�

v

4

�

(7.14)
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^

�

+
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^
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^
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�
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(3� �(6 + �))
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12
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^
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+
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+
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f
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+
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+
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^
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�
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^
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4

�

^
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�
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^
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^
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;

�
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^

�
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1
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24� N
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^
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;

where the gauge �xing parameter is denoted by �.

7.2.2 Many Fixed Points but no Solution to the Hierar
hy

Problem { the Case of Vanishing Gauge Coupling

To get a �rst insight we have numeri
ally solved the FP equation,

�

t

^

� = 0; (7.15)

for vanishing gauge 
oupling g and N




= N

f

= 3. It turns out that not only do we

�nd a solution, but quite a few, 64 = 2

6

to be exa
t (one is always the Gaussian

FP). Looking more 
losely, only 44 are real.
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Let us, for the moment postpone the question, if the FP are physi
al or an artifa
t

of the trun
ation. Having found so many FP we 
ould be
ome kind of greedy and

ask if among all those 44 FP there is one whi
h in addition to providing us with a

renormalizable theory, 
ould solve the hierar
hy problem. However, 
al
ulating the

eigenvalues of the stability matrix we �nd, that the largest eigenvalue �

max

� 2 for

all non-trivial �xed points. Or, stated more physi
ally, one dire
tion is at least as

unstable as a s
alar boson mass.

Is this a very spe
ial property of our 
hoi
e of N

f

and N




? No, but it is a property

of our trun
ation to pointlike four-fermion intera
tions and vanishing gauge 
oupling.

More pre
isely, in this trun
ation there is always an eigenvalue � = (d � 2). This


an be seen by the following argument. In a four-fermion trun
ation we 
an write

the 
ow equations in the form,

�

t

�

i

= (d� 2)�

i

+ �

k

A

i

kl

�

l

; (7.16)

where A

i

is a symmetri
 matrix i.e. A

i

kl

= A

i

lk

. The stability matrix is then given by,

B

ij

=

�(�

t

�

i

)

��

j

= (d� 2)Æ

ij

+ 2�

k

A

i

kj

: (7.17)

Let �

?

be a solution of the �xed point equation,

�

t

�

?

i

= (d� 2)�

?

i

+ �

?

k

A

i

kl

�

?

l

= 0 8i: (7.18)

A
ting with B

ij

j

�

?

on �

?

j

6= 0 we have,

B

ij

j

�

?

�

?

j

= (d� 2)�

?

i

+ 2�

?

j

A

i

jk

�

?

k

(7.19)

= �(d� 2)�

?

i

+ 2(d� 2)�

?

i

+ 2�

?

j

A

i

jk

�

?

k

= �(d� 2)�

?

i

+ 2((d� 2)�

?

i

+ �

?

j

A

i

jk

�

?

k

)

= �(d� 2)�

?

i

;

where we have used the �xed point equation (7.18) in the last step.

This shows that �

?

itself is an eigenve
tor of the stability matrix with the eigen-

value �(d� 2), hen
e � = (d� 2). Therefore, in this trun
ation there 
annot be an

infrared stable �xed point beside � = 0.

7.2.3 Non-vanishing Gauge Coupling

Having not found the desired properties for the eigenvalues of the �xed point, let us

look if a non-vanishing gauge 
oupling 
an stabilize the �xed point.
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Figure 7.1: Largest eigenvalue �

max

<

for the most \stable" �xed point (
f. Eq. (7.20))

depending on the gauge 
oupling. At a realisti
 value g � 1 for the gauge 
oupling

�

max

<

> 1:5. Giving us no solution to the hierar
hy problem.

A measure for the stability of a �xed point

^

�

?

x

, x = 1 : : : 44 is the size of its

largest eigenvalue �

max

x

. When �

max

x

is smaller the �xed point

^

�

?

x

is more stable.

Thus, we have sear
hed for the smallest,

�

max

<

= min

x

�

max

x

: (7.20)

We have plotted this eigenvalue as a fun
tion of the gauge 
oupling in Fig. 7.1. To

get an impression of a reasonable value of the gauge 
oupling, let us take the strong

gauge 
oupling. At a s
ale of � 100GeV we have g

s

� 1. At larger s
ales the gauge


oupling is even smaller. As 
an be seen from Fig. 7.1 �

max

<

> 1:5 in this range,

bringing us nowhere near the desired � � 0.

7.3 The Future

So far the results of our toy model 
an be summarized as follows. It looks as if there

are many possibilities to have �xed points, but it seems diÆ
ult to �nd one whi
h

has very small positive eigenvalues �. But, as we have already seen in Se
t. 7.2.2

this may be an artifa
t of our trun
ation to four-fermion intera
tions. Therefore, a

next step is 
ertainly to enlarge the trun
ation.

However, there is another interesting dire
tion we 
an take. So far, in our simple

approximations we have negle
ted the in
uen
e of the four-fermion intera
tion on

the running of the gauge 
oupling. Instead we have treated the gauge 
oupling as


oming from the outside. Yet, at a strong-
oupling non-Gaussian �xed point the


ow of the gauge-boson{fermion vertex is 
ertainly in
uen
ed by the presen
e of the
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Figure 7.2: Corre
tion to the gauge-boson{fermion vertex (fermions solid with arrow,

gauge boson wiggled) in the presen
e of a four-fermion intera
tion.

four-fermion intera
tion. The lowest order 
ontribution is depi
ted in Fig. 7.2. If we

de�ne the gauge 
oupling by this vertex, the running is modi�ed by a 
ontribution

� g

2
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; (7.21)

with

�

0

=

1

2

�

11

3

N




�

2

3

N

f

�

: (7.22)

First of all this may have interesting 
onsequen
es for properties like asymptoti


freedom, be
ause at a non-Gaussian �xed point the terms � g

2

^

� will dominate for

very small gauge 
oupling. Therefore, the �xed point in

^

� determines if the gauge

intera
tion is asymptoti
ally free or not

8

.

Se
ondly, in Fig. 7.2 we have 
on
entrated on the gauge-boson{fermion vertex.

But, in non-abelian gauge theories alternative de�nitions of the gauge 
oupling are

by the three- and four-gauge-boson verti
es. Some thought reveals that those do not

get a dire
t 
ontribution from the four-fermion intera
tion. This raises the question

how this 
an be re
on
iled with the fa
t that, at least naively, gauge invarian
e tells

us that both de�nitions agree. These interesting possibilities are subje
t to future

investigations.

8

As �

0

> 0 it is suÆ
ient for asymptoti
 freedom that the sum of the four-fermion 
ouplings

in the bra
kets is positive. First numeri
al 
he
ks indi
ate that regardless of whi
h of the 44 �xed

points (N




= N

f

= 3) we 
hoose, asymptoti
 freedom is ensured. This even seems to apply to

various other 
ombinations of N

f

, N




.



Chapter 8

Summary and Con
lusions

We en
ounter strongly intera
ting fermions in many situations, ranging from 
olor

super
ondu
tivity and 
hiral symmetry breaking (� 100MeV) to ordinary super
on-

du
tivity (� meV). Typi
al features of su
h systems are the formation of bosoni


bound states and spontaneous symmetry breaking (SSB). Non-perturbative te
h-

niques are essential as SSB 
annot be des
ribed by (standard) perturbation theory

in these systems (
f. Se
t. 3.2). Therefore, all methods dis
ussed in the following


orrespond to non-perturbative resummations of perturbative diagrams.

We have started this work with a 
omparison of various standard methods used

for non-perturbative 
al
ulations in this kind of systems. We have 
al
ulated the


riti
al 
oupling for the onset of spontaneous 
hiral symmetry breaking in a simple

NJL model. In parti
ular, we have used mean �eld theory (MFT), a renormalization

group (RG) equation with a trun
ation to pointlike four-fermion intera
tions (from

now on referred to as fermioni
 RG) and the lowest-order S
hwinger-Dyson equation

(SDE). The results for the 
riti
al 
oupling �


rit

�

and two di�erent values of �

V


an

be found in Tabs. 5.1, 5.2. Sin
e the most 
hara
teristi
 features and problems of

the di�erent methods are most 
learly seen when the 
ouplings �

�

and �

V

are of

similar size we 
on
entrate on Tab. 5.2.

Both MFT and the lowest order SDE sum only over fermioni
 
u
tuations in

presen
e of a bosoni
 ba
kground. They in
lude, in prin
iple the same type of dia-

grams, Fig. 3.1. The MFT result depends strongly on the 
hoi
e of the ba
kground

�eld. This "Fierz ambiguity" (FA) is expressed by the dependen
e on the unphys-

i
al parameter 
 in the tables. No su
h ambiguity appears in the SDE approa
h

whi
h therefore seems more reliable. We note that for a parti
ular 
hoi
e of 
 the

MFT and the SD approa
hes give identi
al results - in our 
ase 
 = 1=2. This has

led to widespread belief that MFT and SD are equivalent if the basis for the Fierz

ordering is appropriately 
hosen. However, this is not the 
ase, as 
an be seen by


al
ulating also the 
riti
al 
oupling where spontaneous symmetry breaking sets in

86



87

in the ve
tor 
hannel (in absen
e of other order parameters). There is again a value


 = �(�

�

+�

V

)=(2�

V

) where MFT and SD give identi
al results, but it di�ers from


 = 1=2 as en
ountered in the s
alar 
hannel

1

. We 
on
lude that there is no possible


hoi
e of 
 where both 
riti
al 
ouplings for SSB in the s
alar and ve
tor 
hannels

are identi
al in the MFT and SD approa
hes.

For a better understanding of the FA of MFT it is instru
tive to 
onsider MFT

on a more formal basis as a simple approximation, taking into a

ount only the

fermioni
 
u
tuations, in a \partially bosonized" language. Partial bosonization is a

powerful tool for an understanding of strongly intera
ting fermioni
 systems beyond

the level of MFT or SDE. It allows us to treat the bosoni
 
u
tuations in an expli
it

manner, treating them on equal footing with those of the elementary parti
les, and

provides for a rather simple framework for the dis
ussion of SSB. Most importantly,

it permits the dire
t exploration of the ordered phase whi
h is, in pra
ti
e, almost

ina

essible for the fermioni
 RG. Yet, already on the level of the 
lassi
al a
tion

we 
an get a grasp of the origin of the FA. Partial bosonization is not unique. From

one fermioni
 a
tion we 
an obtain a whole family of equivalent bosonized a
tions,

related to ea
h other by rede�nitions of the bosoni
 �elds.

In order to permit a simple 
omparison with the fermioni
 RG we have used a

rather 
rude approximation for the purely bosoni
 se
tor by retaining only a mass

term and negle
ting bosoni
 intera
tions as well as the momentum dependen
e of

the bosoni
 propagator. In this approximation the e�e
t of the boson ex
hange

between fermions does not go beyond pointlike fermioni
 intera
tions. Taking into

a

ount only the running of the Yukawa 
ouplings (Fig. 4.2) in the bosoni
 RG of

Se
t. 4.2, we observe already a very substantial improvement as 
ompared to MFT.

The dependen
e on 
 is greatly redu
ed and the numeri
al value of the 
riti
al


oupling 
omes already 
lose to the result of the fermioni
 RG. These features 
an

be 
ompared to the in
lusion of higher loop e�e
ts in perturbation theory in parti
le

physi
s: they often redu
e the dependen
e of the results on unphysi
al parameters,

like the 
hoi
e of the renormalization s
ale.

Using SDE in a partially bosonized language we fared even better. Again, MFT

appears as the approximation whi
h in
ludes only the fermioni
 
u
tuations in a

bosoni
 ba
kground. Adding the mass-shift diagram (
f. Fig. 4.3) we re
over the

unambiguous result of the fermioni
 SDE { MFT sums only over a subset of the

diagrams 
ontained in the fermioni
 SDE.

The mass-shift diagram in the partially bosonized language has only fermioni


external legs. This has prompted us to look for similar purely fermioni
 
ontributions

in our partially bosonized RG des
ription. The box diagrams (Fig. 5.1) generate

new four-fermion intera
tions and 
ontribute to the same order as the mass-shift

and vertex 
orre
tions. Those four-fermion intera
tions are in
luded in the adapted

1

A
tually, 
 is negative and therefore outside the range of stri
t validity of MFT.
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bosoni
 RG dis
ussed in Se
t. 5.2. Here the relation between the bosoni
 
omposite

�elds and the fermion bilinears be
omes s
ale dependent. This formulation is well

adapted to the basi
 idea of renormalization where only e�e
tive degrees of freedom

at a 
ertain s
ale k and their e�e
tive 
ouplings should matter for physi
s asso
iated

to momenta q

2

. k

2

. The system should loose all memory of the detailed mi
ros
opi


physi
s. In parti
ular, the 
hoi
e of an optimal bosoni
 �eld for the long distan
e

physi
s should not involve the parameters of the mi
ros
opi
 theory, but rather

the renormalized parameters at the s
ale k. In this formulation it has also be
ome

apparent that the distin
tion between "fundamental degrees of freedom" and "bound

states" be
omes a matter of s
ale [42℄. The adapted bosoni
 RG reprodu
es in our


rude approximation the results of the fermioni
 RG. We argue that for pre
ision

estimates in the partially bosonized approa
h the "adaption" of the de�nition of the


omposite �eld seems mandatory.

For an improvement of the trun
ation two possibilities 
ome to mind immedi-

ately. One is to enlarge the bosoni
 potential beyond the mass term, the other is to

add kineti
 terms for the bosons. Yet, our dis
ussion of Se
t. 5.3 shows that in
lud-

ing only a bosoni
 potential without kineti
 terms for the bosons does not help us

in de
iding whi
h type of boson will 
ondense in the SSB phase. The basi
 reason

for this is, that the 
orresponding intera
tions in the fermioni
 language are still

pointlike and 
an be Fierz transformed in many ways. Kineti
 terms 
orrespond to

a momentum dependen
e of the intera
tions in the fermioni
 language, greatly re-

du
ing the freedom to Fierz transform. For this reason we have turned to the se
ond

possibility. To 
ut a long story short, for a 
onsequent in
lusion of all terms with

up to two derivatives on the bosoni
 �elds, we have to take into a

ount not only

the momentum dependen
e of the mass-shift diagram (
f. Fig. 3.1), but in addition

part of the momentum dependen
e of the vertex 
orre
tion and the box diagrams

(
f. Figs. 4.2, 5.1).

Comparing the numeri
al values (
f. Tabs. 5.1, 5.2) with those of the pointlike

approximations, we �nd that the in
lusion of the kineti
 terms a�e
ts the 
riti
al


oupling on a 10% level. Moreover, the 
ontributions from the di�erent diagrams

are of similar size, 
on�rming on
e more that an adaption of the 
ow is ne
essary to

a
hieve a high pre
ision. The 
 dependen
e is small, as we would expe
t for a sys-

temati
 enlargement of the trun
ation. Nevertheless, it does not 
ompletely vanish

sin
e we have been for
ed to make approximations when in
luding the momentum

dependen
e of the vertex 
orre
tions and box diagrams. Moreover, if the \right"

FT is known, in
lusion of the pointlike 
ontributions seems already suÆ
ient for

redu
ing the 
 dependen
e (
f. the se
ond to last line in Tab. 5.2). In view of the

high algebrai
 
omplexity involved with in
luding the full momentum dependen
e

we would like to suggest this approximation for more moderate demands on a

u-

ra
y. Finally, let us point out the following important feature (shared by all of the

three 
onsidered approximations whi
h in
lude kineti
 terms): with kineti
 terms for
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the bosons we 
an de
ide whi
h boson will 
ondense. For values �

�

(slightly) larger

than �


rit

�

, only the renormalized mass of the s
alar boson turns negative, while the

renormalized masses of the ve
tor and axial ve
tor bosons remain positive. This


on�rms that we have a phase where 
hiral symmetry (and nothing else) is broken.

In summary, the FA 
an be used as one possible test of approximation errors for

some of the methods proposed to deal with strongly intera
ting fermioni
 systems.

The spread of the results within an a

eptable range of the unphysi
al parameter 


should be 
onsidered as a lower bound for the systemati
 un
ertainty within a given

approximation. We �nd that MFT 
an have a very substantial ambiguity whi
h

should then be redu
ed by systemati
 improvements. On the other hand, the FA is,

of 
ourse, not the only sour
e of error. Several methods su
h as SDE or the fermioni


RG have no su
h ambiguity by 
onstru
tion. This holds similarly for the adapted

bosoni
 RG (with or without kineti
 terms) whi
h is 
onstru
ted to redu
e the Fierz

ambiguity. Hen
e, in this 
ases the un
ertainty due to the Fierz ambiguity is small


ompared to other un
ertainties whi
h 
an roughly be estimated from the spread of

the results between the di�erent approximations. However, improving the trun
ation

we should keep an eye on the FA as it is likely to in
rease, when our \improvement"

negle
ts something essential. Comparing the RG and SD approa
hes the adapted

bosoni
 RG sums over a larger 
lass of diagrams and therefore seems more reliable.

Moreover, the RG a

ounts for the fa
t that physi
s at the s
ale k should involve only

renormalized parameters at this s
ale, while the SDE involves \bare" 
ouplings. We

think that with the adapted bosoni
 RG we have rea
hed a promising starting point

for future investigations along the lines of [39; 90℄. In parti
ular, a more elaborate

bosoni
 potential would allow us to pro
eed into the SSB phase.

Removing the FA in a partially bosonized setting has turned out to be quite

tedious. For a �rst investigation of the phase diagram, lowest order SDE seem to

be a viable alternative whi
h allow for a des
ription of the SSB phase without

auxiliary �elds. However, at �rst sight there is one drawba
k: SDE determine only

the derivatives of the a
tion, not the a
tion itself, making it diÆ
ult to 
ompare

di�erent solutions with regard to stability. This short
oming is 
ured by the use of

the 2PI e�e
tive a
tion, or its simpli�ed form at vanishing fermioni
 sour
es, the

bosoni
 e�e
tive a
tion (BEA). In this 
ontext the SDE is the �eld equation of the

BEA.

Integrating the lowest-order SDE for a multi-fermion intera
tion we have ob-

tained the bosoni
 e�e
tive a
tion at \one-vertex" level. Within this approximation

we 
omputed a simple \one-loop" expression for the BEA and the SDE. In this form

the BEA appears very similar to MFT but does not su�er from its ambiguities and,

as we have already seen, sums over a larger 
lass of diagrams.

We have applied the BEA at one-vertex level to a six-fermion intera
tion resem-

bling the instanton vertex for three 
olors and 
avors. For vanishing 
urrent quark
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masses we �nd a �rst-order phase transition. It turns out that the value �


rit

for

the onset of non-trivial solutions for the SDE is not ne
essarily equal to the value

�

SSB

for the onset of SSB. To 
al
ulate the latter we need the value of the e�e
tive

a
tion in addition to the solution of the SDE. For nonzero 
urrent quark masses and

positive a 
oupling 
onstant we �nd a phase transition only for 
urrent quark masses

below a m

0


rit

� 0:076. At this point the gap in the e�e
tive mass vanishes and we

expe
t a se
ond-order phase transition. We have also sear
hed for solutions with a

non-vanishing 
olor-o
tet 
ondensate. Although they are not ex
luded by symme-

try we have not found a stable solution of the �eld equations with non-vanishing

o
tet 
ondensate � 6= 0. Nevertheless, we would like to point out that in our simple

approximation the BEA is unbounded from below in several dire
tions in
luding

some with � 6= 0. Hen
e, some sort of 
uto� me
hanism whi
h renders the potential

bounded might yield additional solutions. Therefore, a more detailed investigation

of the instanton intera
tion in a 
olor-o
tet ba
kground would be of great value.

Leaving aside the more te
hni
al aspe
ts of this work, we have turned to an

intriguing spe
ulation, namely that the Higgs is not an elementary s
alar boson,

but a bound state of fermions, more pre
isely a top-antitop bound state [6{9℄. To

motivate a thorough investigation we have brie
y reviewed the \Hierar
hy Problem"

and the \Triviality" of the �

4

-theory whi
h 
ause trouble for the Standard Model

(SM) with its elementary s
alar boson. In parti
ular, the latter problem may prevent

the SM from being renormalizable in a stri
t sense. In a model with a bound state

Higgs, renormalizabilitymay be provided by a non-Gaussian �xed point in the RG. A

toy model with N

f

fermions intera
ting via a four-fermion intera
tion and a SU(N




)

gauge intera
tion implied that there might be plenty of those. On the other hand

it be
ame apparent that a solution to the hierar
hy problem is beyond a simple

approximation to a pointlike four-fermion intera
tion, as in this setting the required

�ne-tuning to a
hieve a separation of s
ales is more or less as bad as for an elementary

s
alar. However, already in this simple trun
ation another interesting e�e
t turned

up: at a non-Gaussian �xed point, the 
ow of the gauge 
oupling might be 
ru
ially

in
uen
ed by the four-fermion-intera
tions. In parti
ular, this aspe
t seems to be

interesting for future investigations.

It may well be that there are fundamental s
alar �elds, most 
andidates for

unifying theories have plenty of them, but so far not even one has been dete
ted

with 
ertainty. Hen
e, it might also be that nature has simulated on
e more an

elementary s
alar with a bound state. Up
oming experiments (e.g. at Tevatron and

LHC) will help de
iding this issue. But, independent of this, bound states of fermions

are still abundant in nature and we hope that our formalism with s
ale-dependent

degrees of freedom may be of help in understanding some of them.



Appendix A

Conventions, Abbreviations and

Symbols

A.1 Conventions

� We use Eu
lidean 
onventions in 
at spa
etime, i.e. the metri
 is the d dimen-

sional unit matrix.

� Greek indi
es �; � : : : = 0; : : : ; d denote spa
etime indi
es.

� Latin indi
es a; b : : : = 1; : : : ;N

f

are 
avor indi
es, i; j; : : : = 1; : : : ;N





olor

indi
es.

� Our 
onventions for the Fourier transform are

�(x) =

Z

d

d

q

(2�)

d

�(q) exp(ipx) (A.1)

 (x) =

Z

d

d

q

(2�)

d

 (q) exp(ipx);  (x) =

Z

d

d

q

(2�)

d

 (q) exp(�ipx):

91



92 Chapter A. Conventions, Abbreviations and Symbols

A.2 Mathemati
al Symbols

� Proportional to

� approximately equal to


 Tensor produ
t

y Hermitian 
onjugation

C Charge Conjugation (operator)

P Parity (operator)

R Re
e
tion (operator) in Eu
lidean spa
etime

T Time Reversal (operator)

A.3 Abbreviations

Ad. Adapted

BBS Bosoni
 Bound State

BEA Bosoni
 E�e
tive A
tion


f. 
onfer

Chap. Chapter

ERGE Exa
t Renormalization Group Equation(s)

Eq. Equation

FA Fierz Ambiguity

FP Fixed Point

FT Fierz Transformation

IR Infrared

LHS Left Hand Side

LPA Lo
al Potential Approximation

MF Mean Field

MFT Mean Field Theory

RG Renormalization Group

RHS Right Hand Side

s. see

SD S
hwinger-Dyson

SDE S
hwinger-Dyson Equation(s)

Se
t. Se
tion

SSB Spontaneous Symmetry Breaking

UV Ultraviolet

WFR Wave Fun
tion Renormalization(s)



Appendix B

Fermion Conventions, Fierz

Identities

B.1 Dira
-Algebra in 4 Dimensions

Throughout this work we use an Eu
lidean metri
, g

��

= Æ

��

and

jxj

2

= x

2

0

+ x

2

1

+ � � �+ x

2

d�1

. With the ex
eption of one tiny ex
ursion in Chap. 5

the number of spa
etime dimensions will be d = 4.

A

ordingly the Dira
-algebra is

f


�

; 


�

g = 


�




�

+ 


�




�

= 2Æ

��

1; (B.1)

(


�

)

y

= 


�

;




5

= 


1




2




3




0

;

�

��

=

i

2

[


�

; 


�

℄ =

i

2

(


�




�

� 


�




�

):

We use a 
hiral basis  =

�

 

L

 

R

�

,  = ( 

R

;  

L

), with the proje
tion operators

P

L,R

=

1�


5

2

on the 
hiral 
omponents. An expli
it representation is then given by,




�

=

�

0 �i�

�

i�

�

0

�

; 


5

=

�

1 0

0 �1

�

; (B.2)

with �

�

= (i1; �

i

). �

i

are the standard Pauli-matri
es

�

1

=

�

0 1

1 0

�

; �

2

=

�

0 �i

i o

�

; �

3

=

�

1 0

0 �1

�

; (B.3)

and 1 is here the 2� 2 unit matrix.
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Using Eq. (B.1) it is quite easy to derive relations to simplify expressions 
on-

taining several 
 matri
es, e.g. 


�




�




�

= �2


�

. This 
an be automated and we use

the Tra
er -pa
kage [119℄ for Mathemati
a to do this.

B.2 Dira
-Algebra in 3 Dimensions

In Chap. 5 we use the Gross-Neveu model in 3 dimensions to demonstrate a short-


oming of partial bosonization. The Dira
-algebra in odd dimensions is somewhat

di�erent from the 
ase of even dimensions.

Nevertheless, it is quite easy to �nd an expli
it realization as the Pauli matri
es

already ful�ll the requirements for the Dira
-algebra,

�

�

i

; �

j

	

= 2Æ

ij

: (B.4)

Consequently, we 
an use spinors with only two 
omponents. Sin
e we do not need

any more subtle properties, let us leave it at that and return to the 
ase of four

dimensions.

B.3 Fierz Identities

De�ning O

S

= 1, O

P

= 


5

, O

V

= 


�

, O

A

= 


�




5

and O

T

= �

��

we obtain the

following Fierz identities,

( 

a

O

X

 

d

)( 




O

X

 

a

) =

X

Y

C

XY

( 

a

O

Y

 

b

)( 




O

Y

 

d

); (B.5)

with

C

XY

=

1

4

0

B

B

B

B

�

�1 �1 �1 1 �1

�1 �1 1 �1 �1

�4 4 2 2 0

4 �4 2 2 0

�6 �6 0 0 2

1

C

C

C

C

A

: (B.6)

From the indi
es a; b; 
; d whi
h 
ombine all but spin-indi
es we 
an see that we have

done nothing but ex
hanged the two  's appearing in the four-fermion term.

For the spe
ial 
ase of only one fermioni
 spe
ies we �nd that the stru
ture

( O

V

 )

2

+ ( O

A

 )

2

is invariant. Moreover, we 
an use Eqs. (B.5), (B.6) to obtain

the identity (a
tually this is exa
tly Eq. (1.2)),

( O

V

 )

2

� ( O

A

 )

2

= �2[( O

S

 )

2

� ( O

P

 )℄; (B.7)
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whi
h allows us to transform ( O

V

 )

2

� ( O

A

 )

2


ompletely into s
alar and pseu-

dos
alar 
hannels.

If we have more than one fermion spe
ies, e.g. several 
avors and/or 
olors, the

Fierz transformations turns singlets into non-singlets and vi
e versa. This 
an be

used to redu
e the number of possible 
ouplings as we do in Chap. 7.

Finally, let us mention two possible generalizations of the above. First, the same

idea of permuting the  's 
an, of 
ourse, also be applied to higher order intera
tions

like a 6- or 8-fermion intera
tion. Se
ond, the four-fermion operators 
onsidered

above are invariant under the dis
rete transformations C, P and T (
harge 
onjuga-

tion, parity and time reversal). However, as we know the weak intera
tions violate

parity. Therefore, we might also want to 
onsider intera
tions whi
h are only invari-

ant under CP and T . The set of parity violating operators 
an be obtained by mul-

tiplying one O

X

in the four-fermion operator by 


5

. This yields ( O

X

 )( O

X




5

 ).

Of 
ourse there is a set of equations similar to Eqs. (B.5), (B.6).



Appendix C

Infrared and Ultraviolet

Regularization

One of the 
entral building blo
ks of the 
ow equation Eqs. (2.32), (2.34) is the IR


uto� R

k

. In this appendix we want to give expli
it examples of the 
uto� fun
tions

and de�ne the threshold fun
tions whi
h appear in expli
it 
al
ulations as a 
onse-

quen
e of the tra
e over momentum spa
e. Furthermore, we brie
y 
omment on some

te
hni
al points 
on
erning the 
orresponden
e between UV and IR regularization.

C.1 Cuto� Fun
tions

To derive the 
ow equation (2.34) in Chap. 2 we added an additional term to the

e�e
tive a
tion providing for an IR regularization,

�S

k

[�℄ =

1

2

Z

p

�

T

(�p)R

k

(p)�(p): (C.1)

The inverse massless average (i.e. regularized) propagator P

B

for bosons and the


orresponding squared quantity P

F

for fermions are given by (
f. Se
t. 2.1.2, Eqs.

(2.16), (2.18)),

P

B

= q

2

+ Z

�1

�;k

R

k

(q) = q

2

(1 + r

B

(q

2

)); (C.2)

P

F

= q

2

(1 + r

F

(q

2

))

2

;

where r

B

and r

F

re
e
t the presen
e of the IR 
uto�. The dimensionless fun
tions

r

B

and r

F

depend only on y = q

2

=k

2

.
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Expressed in terms of the r's the linear 
uto�, Eqs. (2.16), (2.18)) is as follows,

r

B

(y) =

�

1

y

� 1

�

�(1� y); (C.3)

r

F

(y) =

�

1

p

y

� 1

�

�(1� y):

Other typi
al examples are the sharp momentum 
uto�,

r

B

(y) =

�(1� y)

1��(1� y)

; (C.4)

r

F

(y) =

�(1� y)

1��(1� y)

;

and the popular exponential 
uto�

r

B

(y) =

1

1� exp(�y)

� 1; (C.5)

r

F

(y) =

s

1

1� exp(�y)

� 1:

C.2 Threshold Fun
tions

The (super-)tra
e in the 
ow equations (2.32), (2.34) in
ludes a momentum spa
e

integral, reminis
ent of a one-loop expression. Typi
ally, the integral kernels are

produ
ts of the IR regularized propagators and their derivatives. In most parts of

this work, we use standard threshold fun
tions as de�ned in [67℄, whi
h we evaluate

below expli
itly for a �nite UV 
uto� � and for the linear 
uto� (C.3). In Se
t. 5.4 we

need several additional threshold fun
tions, not de�ned in the standard literature.

To fa
ilitate the notation we de�ne a new, enlarged set of threshold fun
tions in

Se
t. C.2.3, and label the threshold fun
tions somewhat di�erently.

C.2.1 Evaluation with Finite UV Cuto�

To adapt the IR regulator to a �nite UV 
uto� one 
an modify the 
uto� fun
tions

by a term whi
h be
omes in�nite for all y �

�

2

k

2

. For our purposes it is simpler to

restri
t the range of x to [0;�

2

℄. This has the same e�e
t. In absen
e of mass terms

the threshold fun
tions 
an only depend on the ratio s = k

2

=�

2

. With

~

�

t

=

q

2

Z

�;k

�[Z

�;k

r

B

℄

�t

�

�P

B

+

2

Z

 ;k

P

F

1 + r

F

�[Z

 ;k

r

F

℄

�t

�

�P

F

(C.6)
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we �nd for bosons (x = q

2

)

l

(B);d

0

(!; �

�

; s) =

1

2

k

�d

Z

�

2

0

dx x

d

2

�1

~

�

t

ln(P

B

(x) + !k

2

) (C.7)

=

2

d

�

1�

�

�

d+ 2

�

1

1 + !

�(1� s)

+

2

d

s

�

d

2

�

1�

(2 + d(1� s

�1

)) �

�

2(d+ 2)

�

1

1 + !

�(s� 1)

and for fermions

l

(F );d

0

(!; �

 

; s) =

1

2

k

�d

Z

�

2

0

dx x

d

2

�1

~

�

t

ln(P

F

(x) + !k

2

) (C.8)

=

2

d

�

1�

�

 

d+ 1

�

1

1 + !

�(1� s)

+

2

d

s

�

d

2

�

1�

(d+ 1� ds

�1

)�

 

d+ 1

�

1

1 + !

�(s� 1):

Higher threshold fun
tions 
an be obtained simply by di�erentiating with respe
t

to !:

l

d

n+1

(!; �; s) = �

1

n+ Æ

n;0

d

d!

l

d

n

(!; �; s): (C.9)

For a �nite value of the UV 
uto� � the threshold fun
tions are expli
itly s- and

therefore k-dependent. Taking �!1 we have s = 0 for any value of k. This renders

the threshold fun
tions k-independent.

In the pointlike trun
ations of Chaps. 3-5 we negle
t the anomalous dimensions

�

�

, �

 

and e�e
tively only 
onsider a fermioni
 
uto� sin
e Z

�;k

= 0. Moreover, the

fermions are massless and we abbreviate for ! = 0

l

d

n

(0; 0; s) = l

d

n

(s): (C.10)

This yields expli
itly

l

(F );4

1

(s) =

1

2

�

�(1� s) + s

�2

�(s� 1)

�

: (C.11)

To obtain the perturbative result from the fermioni
 RG equation we used

Z

1

�1

dtk

2

l

(F );4

1

(s) =

Z

1

0

dk kl

(F );4

1

(s) =

�

2

2

: (C.12)

As long as we keep the sharp momentum 
uto� at q = � this integral is universal,

i.e. it does not depend on the pre
ise 
hoi
e of the IR 
uto�. Indeed the universality

is ne
essary to reprodu
e perturbation theory for every 
hoi
e of the IR 
uto�.
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C.2.2 Cuto� Independen
e for Pointlike Trun
ations

We have also used other 
uto� fun
tions R

k

di�erent from the linear 
uto�. Within

the lo
al intera
tion approximation we have found that the value of the 
riti
al


oupling 
omes out independent of the 
hoi
e of R

k

. The basi
 reason is that a

multipli
ative 
hange of l

(F );4

1

due to the use of another threshold fun
tion 
an be


ompensated by a res
aling of k (
f. Eq. (3.17)). The res
aling is simply multipli
a-

tive for s < 1, with a suitable generalization for s > 1. Criti
al values of the 
ow

whi
h are de�ned for k !1 are not a�e
ted by the res
aling. Let us demonstrate

this for �

V

. Writing Eq. (3.17) in the s
ale variable k we have

�

k

�

V;k

= �4v

4

l

(F );4

1

(s)k(�

�;k

+ �

V;k

)

2

: (C.13)

Res
aling to

~

k(k) =

Z

k

0

dk kl

(F );4

1

(s) (C.14)

we �nd

�

~

k

�

V;

~

k

= �4v

4

(�

�;

~

k

+ �

V;

~

k

)

2

: (C.15)

Due to the universality of Eq. (C.12) the domain for k, [0;1℄, is now mapped

to [0;

�

2

2

℄, giving the domain for

~

k independent of the IR 
uto�. Having obtained

identi
al di�erential equations for every 
hoi
e of IR 
uto� without any res
aling of

� establishes the above 
laim for the 
riti
al 
ouplings.

Note however, that this would not hold if we would start the integration of the


ow equation at k = �. In this 
ase the domain [0;�℄ for k is mapped into an

interval for

~

k that depends on the threshold fun
tion and therefore on R

k

. A
tually,

the R

k

dependen
e in this 
ase is not very surprising be
ause di�erent IR 
uto�s

then 
orrespond to di�erent UV regularizations. Sin
e our model is naively non-

renormalizable results 
an depend on the 
hoi
e of UV regularization (
f. Se
t. C.3).

C.2.3 Threshold Fun
tions for Se
t. 5.4

Similar to Eq. (C.7), (C.8) we de�ne our modi�ed threshold fun
tions by integrals

over x = q

2

. Threshold fun
tions with derivatives of the fermion propagator are

denoted by a Greek letter, all others by Latin letters. With

F

�1

(x) =

1 + r

F

(x)

P

F

(x)

; (C.16)
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and suppressing the arguments (!

F

; �

F

; !

1

; �

1

; !

2

; �

2

) = (F; 1; 2) of the threshold

fun
tions and the argument (x) of the inverse propagators we write,

a

(FBB);d

n;m

1

;m

2

= �

1

2

k

2(n+m

1

+m

2

�1)�d

~

�

t

Z

dxx

d

2

F

�n

P

�m

1

1

P

�m

2

2

; (C.17)

�

(FBB);d
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1
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2

= �

1

2

k
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1
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2

)�d
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�

t

Z
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d

2

_

FF
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P
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1

1

P

�m

2

2

; (C.18)

b
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1
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= �

1

2

k

2(n+m

1

+m

2

)�d
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�
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d

2

F

�n

_

P

1

P

�(m

1

+1)

1

P

�m

2

2

; (C.19)
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Z
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; (C.20)
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2
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; (C.21)

Æ
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d
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P
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; (C.24)
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2(n+m

1
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)�d
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+1

F
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�
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�(m

1
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P
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: (C.25)

If possible, i.e. if in the threshold fun
tion t no x-derivatives a
t on P

2

, respe
tively

P

1

and P

2

, we abbreviate

t

(FBB);d

n;m;0

= t

(FB);d

n;m

and t

(FB);d

n;0

= t

(F );d

n

: (C.26)

For the linear 
uto� Eq. (C.3) the integrals 
an be done expli
itly as in Se
t.

C.2.1. This is useful for numeri
al 
omputations but not very enlightening.

Some of the threshold fun
tions de�ned above are straightforwardly related to

the standard threshold fun
tions used in the literature. Parti
ularly noteworthy are

the following relations,

l

(F );d

n

(0; �

F

) = a

(F );d+2(n�1)

2n

(0; �

F

) (C.27)

l

(B);d

n

(!; �) = a

(FB);d�2

0;n

(0; 0; !; �)

l

(FB);d

n;m

(0; �

F

; !; �) = a

(FB);d+2(n�1)

n;m

(0; �

F

; !; �)

m

(F );d

4

(!

F

; �

F

) = 


(F );d

2

(!

F

; �

F

):

The threshold fun
tions de�ned above are not mutually independent. By partial

integration one 
an obtain relations linking some of the threshold fun
tions above.
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Let us 
ontent ourselves with two examples whi
h are useful for a 
omparison with

results in the literature,

�

(FBB);d

n;m

1

;m

2

(F; 1; 2) =

d

2n

a

(FBB);d�2

n;m

1

;m

2

(F; 1; 2)�

m

1

n

b

(FBB);d

n;m

1

;m

2

(F; 1; 2)�

m

2

n

b

(FBB);d

n;m

2

;m

1

(F; 2; 1):

(C.28)

In the spe
ial 
ase m

1

= m

2

= 0, d = 2n = 4 this redu
es to

�

(F );4

2

(F ) = a

(F );2

2

(F ): (C.29)

Moreover,

�

(FBB);d

n;m

1

;m

2

(F; 1; 2) = �

d+ 2

2

�

(FBB);d

n;m

1

;m

2

(F; 1; 2) + (n + 1)


(FBB);d

n;m

1
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2

(F; 1; 2) (C.30)

+ m

1

Æ
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;m

2

(F; 1; 2) +m

2

Æ

(FBB);d

n;m

1

;m

2

(F; 2; 1);


onsidering the same 
ase as above and using relation (C.29) we �nd

�

(F );d

2

(F ) + xa

(F );2

2

(F ) + y�

(F );4

2

(F ) = 3


(F );4

2

(F ) = 3m

(F );4

4

(F ); for (x+ y) = 3:

(C.31)

Finally, let us 
ome to a property we need when studying the pointlike limit for

the bosons. For large boson masses the inverse propagator a
ts like !

2

. This gives

us the asymptoti
 properties

1

,

a

(FBB);d

n;m

1

;m

2

= �

1

2
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2

2

b

(F );d

n

;

and similar for all other threshold fun
tions.

C.3 UV Regularization { ERGE S
heme

C.3.1 E�e
t of UV Regularization

UV regularization 
an be implemented by a sharp 
uto� in all integrals over mo-

mentum spa
e

2

. Yet, this is not the only possibility. Indeed, it is often not the most

1

This argument and the 
orresponding properties are only valid at �xed anomalous dimension.

2

When 
hoosing a UV regularization one has to be 
areful to take one 
ompatible with the

symmetries of the theory in question. E.g. for gauge theories the sharp momentum 
uto� violates

gauge symmetry and is therefore not a suitable 
hoi
e.
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1

Figure C.1: In a UV regularized theory not all modes 
ontribute 
ompletely. This

plot s
hemati
ally depi
ts \how mu
h" ea
h mode 
ontributes. The thi
k line is

for the sharp momentum 
uto�. All modes with q

2

� �

2

are in
luded 
ompletely.

Other UV regularizations (dashed, thin dashed and thin solid line) typi
ally not

only in
lude a small fra
tion of the high momentum modes, q

2

> �

2

, but in addition

leave out a small fra
tion of the low momentum modes.

pra
ti
al regularization. E.g. in perturbation theory dimensional regularization is

often mu
h more 
onvenient. But, even at �xed spa
etime dimension there are other

regularization methods. Prominent examples are the Pauli-Villars and S
hwinger

proper time regularization (for details s. e.g. [120℄). More or less any modi�
ation

(
ompatible with the symmetries) of the short distan
e behavior of the propagators

whi
h renders all Feynman diagrams �nite, 
an be 
alled a UV regularization. In

general, the modes with q

2

> �

2

are not 
ompletely left out, only suppressed, as

depi
ted in Fig. C.1.

From another point of view, a modi�
ation of the propagator 
an be implemented

in the a
tion. This gives then an \UV regularized 
lassi
al a
tion". The fun
tion

des
ribing the suppression of the UV modes (
f. Fig. C.1) in some way appears in this

UV regularized a
tion, e.g. the sharp 
uto� limit 
an be implemented by multiplying

all terms in the a
tion by appropriate �(1 �

q

2

�

2

)-fun
tions. Hen
e, di�erent UV

regularizations usually 
orrespond to di�erent \
lassi
al a
tions". Therefore, it is

no surprise, that di�erent UV regularizations give di�erent results. In parti
ular,

this is true for the 
riti
al 
oupling in our NJL model Eq. (1.1), as one 
an see by


omparing Tabs. 3.1, 3.2 with Tabs. 5.1, 5.2, 
al
ulated using a sharp UV 
uto� at

� and a UV regularization by the ERGE s
heme (s. below) with the linear 
uto�

Eq. (C.3), respe
tively. Only in renormalizable theories

3

we 
an remove the 
uto�

and obtain results independent of the spe
i�
s of the UV regularization.

3

This in
ludes 
riti
al behavior at se
ond-order phase transitions (
f. Chap. 7), in parti
ular


riti
al exponents and other universal quantities.
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C.3.2 ERGE S
heme

In Se
t. C.2.1 we have evaluated the threshold fun
tions for a theory whi
h is UV

regularized by a sharp 
uto� in momentum spa
e. It turned out that the threshold

fun
tions depended on the ratio s =

k

2

�

2

in a rather 
ompli
ated way. Constant

threshold fun
tions would be desirable, among other things to simplify numeri
al


al
ulations.

We already noted, that for � = 1 the 
uto� fun
tions are indeed 
onstant for

all k, be
ause s = 0 for all �nite k. Moreover, for an IR 
uto� de
reasing suÆ
iently

fast in the UV all threshold fun
tions are �nite, even for � =1. The 
ow equation

(2.32), (2.34) is UV �nite. Now, let us remember that we have 
hosen the IR 
uto�

su
h that only the modes around q

2

= k

2

e�e
tively 
ontribute to the 
ow (Eq.

(2.15)). Starting the 
ow at k

0

= � and integrating to k = 0 we have in
luded

only modes with q

2

. �

2

. This is exa
tly what we expe
t for an UV regularization.

More pre
isely, the UV regularization is now implemented in the �nite 
hoi
e for

the initial 
onditions at k = k

0

= �. This is the so 
alled ERGE s
heme for the UV

regularization.

As 
ow equations are mu
h simpler with 
onstant threshold fun
tions, this is

the method of 
hoi
e to implement UV regularization in ERGE. Nevertheless, this

is bought at the prize that we 
annot any longer 
ompare non-universal quantities

between di�erent IR regularizations, as they automati
ally lead to di�erent UV

regularizations.

Although it is usually not the simplest method, we 
an invoke UV regularization

by the ERGE s
heme also in the 
ontext of perturbation theory or SDE. This fol-

lows along the lines indi
ated in Se
t. 2.1.2 for perturbation theory. Typi
ally any

expression 
an be written in terms of inverse propagators P , internal momenta q we

integrate over, and external momenta p we do not integrate over,

Z

q

F (P; q; p): (C.33)

A spe
i�
 ERGE s
heme is spe
i�ed by the 
hoi
e of the IR regulator R

k

. Repla
ing

the inverse propagator P by the IR regularized inverse propagator P + R

k

we 
an


al
ulate the 
ontribution from ea
h s
ale k, k

�1

~

�

t

F (P +R

k

; q; p). Integrating over

all s
ales from k

0

= � to k = 0 we obtain the UV regularized expression,

Z

0

k

0

=�

dk k

�1

~

�

t

�

Z

q

F (P +R

k

; q; p)

�

: (C.34)



Appendix D

Flow Equations for Se
t. 5.4

In this appendix we list the 
ow equations for the e�e
tive a
tion (1.4) generalized

to in
lude kineti
 terms (4.23). Moreover, we 
al
ulate the (momentum-dependent)

�eld rede�nitions ne
essary to keep a simple form of the a
tion with Yukawa 
ou-

plings 
onstant in momentum spa
e and no four-fermion intera
tions.

D.1 Flow Equations at Fixed Fields

The �rst diagram that we have to evaluate is Fig. 3.1, giving the self-energy �

2

(p).

Momentum 
onservation implies that it depends only on one momentum variable p.

Expanding for small values of p

2

and abbreviating the arguments of the threshold

fun
tions (
f. App. C.2.3) as F = (!

F

; �

F

) we �nd,
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(F ):

In general, the vertex 
orre
tion depi
ted in Fig. 4.2 depends on two momentum

variables. As dis
ussed in Se
t. 5.4.2 we perform the evaluation for the 
on�guration

104
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(p
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; p
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) = (p;
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) this yields,

�

(0)

h

�

= �16v

4

h

�

�

h

2

V

a

(FB);4

2;1

(F; V )� h

2

A

a

(FB);4

2;1

(F;A)

�

; (D.3)

�

(0)

h

V

= �2v

4

h

V

�

h

2

�

a

(FB);4

2;1

(F; �) + 2h

2

V

a

(FB);4

2;1

(F; V ) + 2h

2

A

a

(FB);4

2;1

(F;A)

�

;

�

(0)

h

A

= 2v

4

h

A

�

h

2

�

a

(FB);4

2;1

(F; �)� 2h

2

V

a

(FB);4

2;1

(F; V )� 2h

2

A

a

(FB);4

2;1

(F;A)

�

;

and

�

(2)

h

�

= 4v

4

h

�

�

h

2

V

(a

(FB);2

2;1

(F; V ) + 2�

(FB);4

2;1

(F; V )� 


(FB);4

2;1

(F; V ) + �

(FB);4

2;1

(F; V )) (D.4)

�(V ! A)

�

;

�

(2)

h

V

=

1

3

v

4

h

V

�

h

2

�

(3a

(FB);2

2;1

(F; �) + 3�

(FB);4

2;1

(F; �)� 2


(FB);4

2;1

(F; �) + 2�

(FB);4

2;1

(F; �))

+2h

2

V

(3a

(FB);2

2;1

(F; V ) + 3�

(FB);4

2;1

(F; V )� 2


(FB);4

2;1

(F; V ) + 2�

(FB);4

2;1

(F; V ))

+(V ! A)

�

;

�

(2)

h

A

=

1

3

v

4

h

A

�

� h

2

�

(3a

(FB);2

2;1

(F; �) + 3�

(FB);4

2;1

(F; �)� 2


(FB);4

2;1

(F; �) + 2�

(FB);4

2;1

(F; �))

+2h

2

V

(3a

(FB);2

2;1

(F; V ) + 3�

(FB);4

2;1

(F; V )� 2


(FB);4

2;1

(F; V ) + 2�

(FB);4

2;1

(F; V )))

+(V ! A)

�

:

In order to 
ompare the momentum dependen
e on s and t in the vi
inity of

(s; t) = (0; 0) we have evaluated both momentum 
on�gurations dis
ussed in Se
t.

5.4.2.

For the 
on�guration (p

1

; p

2

; p

3

; p

4

) =

1

2

(p; p; p; p) with t = 0 and s = p

2

we �nd
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:

After the appropriate Fierz transformation the 
on�guration (p

1

; p

2

; p

3

; p

4

) =

1

2

(p;�p;�p; p) with s = 0 and t = p

2
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:

D.2 Field Rede�nitions

Before we start, let us remark that in this se
tion we write down expli
it fa
tors of

the wave fun
tion renormalization Z. To obtain the expressions in the renormalized


ouplings we simply have to set Z = 1. To keep the form of the e�e
tive a
tion

simple (more pre
isely to retain Yukawa 
ouplings 
onstant in momentum spa
e

and �(p) = 0) we allow for momentum-dependent �eld rede�nitions,
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we �nd
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and an analogous equation with (V ! A). As the expressions for the axial ve
tor

boson 
an always be obtained by this repla
ement, we write in the following only

the expression for the ve
tor boson.

Imposing the 
ondition

�

t

�(q) = 0; (D.13)
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The requirement for a 
onstant Yukawa 
oupling reads,
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This �xes the fun
tions �

t

�(q) up to a 
onstant in q,
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The remaining 
onstant 
an be �xed by requiring that our �elds are always renor-

malized if they are so at the beginning, i.e.
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Using our de�nition of the anomalous dimension, � = 2�
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Inserting this into Eqs. (D.11), (D.12) we obtain our �nal form for the 
ow equations,
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