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Zusammenfassung

In dem Hamiltonishen Lihtkegelzugang zur QCD wird eine e�ektive Ein-Teilhen-

gleihung zur Beshreibung von Mesonen mit vershiedenen Quark- und Antiquark-

avor auf ein stark vereinfahtes Modell heruntergebrohen. Dieses Modell dient als

Ausgangspunkt, eine explizite Renormierung in einem niht-perturbativen Rahmen zu

studieren. In numerisher, sowie in konzeptioneller Hinsiht, wird dies anhand von

zwei grundvershiedenen Renormierungsverfahren demonstriert, die beide letztendlih

dieselben physikalishen Ergebnisse liefern. Das entsprehende renormierte Quarkpo-

tential kann f�ur kleine relative Distanzen dahingehend beliebig gew�ahlt werden, dass

eine gewisse Freiheit in der Auswahl der Regulierungsfunktion f�ur grosse Impulse ex-

istiert. Fernab dieses Bereihes zeigt das Potential ein universelles Coulombverhalten.

Benutzt man diese Freiheit bei kleinen Distanzen in dem man fordert, dass es zum

Beispiel wie ein harmonishes Potential beginnen soll, so bleibt ihm keine andere Wahl,

als eine Barriere in der Streuregion zu formen, um dem asymptotishen Coulombteil des

Quarkpotentials folgen zu k�onnen. Dieser Mehanismus erm�ogliht es Con�nement zu

sehen. Das renormierte Modell wird anshliessend im Impulsraum gel�ost. Das dadurh

berehnete Massenspektrum der Mesonen wird dann mit den experimentell gemessenen

Werten verglihen.

Ein grosser Teil dieser Arbeit befasst sih mit der Berehnung von Resonanzen im sta-

tion�aren Bild, sowie der Coulombstreuung im Impulsraum. Diese Problematik wird als

eigenst�andiges Kapitel im Anhang dargestellt.

Abstrat

In the Hamiltonian light-one approah to QCD an e�etive one-body equation for

desribing mesons with di�erent quark and anti-quark avor is broken down to an

oversimpli�ed model. This model serves as a platform to study expliit renormalization

in a non-perturbative ontext. Two numerially and oneptually totally di�erent

renormalization shemes are used to demonstrate this, where at the end, both yield the

same physial results. The orresponding renormalized quark potential is arbitrary for

small relative distanes, in the sense that there is a freedom in hoosing the regulating

funtions for large momenta. Far beyond this region the potential is showing a universal

Coulomb behaviour. Using the arbitrariness at small distanes, by requiring it for

example to start o� as a pure harmoni osillator potential, it inevitably forms a barrier

in the sattering region in order to ath up with the asymptoti Coulomb part of the

quark potential. This mehanism allows to see on�nement. The renormalized model

is then solved in momentum spae by alulating its mass spetrum. These are then

ompared with the experimental measured values.

A large part of this thesis is dediated to the alulation of resonanes in the stationary

piture, as well as Coulomb sattering in the troublesome representation of momentum

spae. This diÆulty is represented as a stand-alone setion in the appendix.
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1. Introdution

1 Introdution

The nature of elementary partiles alls for a synthesis of relativity and quantum me-

hanis. The neessity of a quantum treatment is quite evident in view of the miro-

sopi sales involved whih are several orders of magnitude smaller than in atomi

physis. These very sales, however, also require a relativisti formulation. A typial

hadroni sale of 1fm, for instane, orresponds to momenta of p � �h=1fm � 200MeV.

For partiles with masses M < 1GeV, this implies sizeable veloities v � p=M > 0:2.

It turns out that the task of unifying the priniples of quantum mehanis and relativity

is not a straightforward one (Appendix A). A natural solution is provided by ovariant

quantum �eld theory.

As we well know, there are two distint ways of how to approah a quantum �eld the-

ory. On the one hand, there is Feynmans ation based path-integral method whih

is a manifestly ovariant formulation. On the other hand, we have the Hamiltonian

method, whih obviously from the outset is not a manifestly ovariant formulation, as

it singles out a time t or an energy E, respetively. The onept of relativisti Hamilto-

nian dynamis needs to be properly de�ned. This leads to the famous paper by Dira

[1℄, where he introdued three distint forms of Hamiltonian dynamis. Later two more

forms of dynamis were desribed by Leutwyler and Stern [2℄, bringing the total num-

ber to �ve. So, there is a �vefold ambiguity to relativisti Hamiltonian dynamis.

Hamiltonian formulations of �eld theory are not immediately reognized as equivalent

to the Feynman way. They rather have to be seen as omplementary approahes. Af-

ter more than a half entury of development it is lear that the Feynman approah

has many advantages if one deals with problems that may be solved by perturbative

methods, while the Hamiltonian formulation represents a more natural approah to-

wards bound-states, whih need to be desribed in a non-perturbative ontext. Also,

the questions onerning the regulation of divergent integrals appearing in the naive

appliation of the Feynman rules have been answered in various ways and the program

of renormalization was suessfully arried out for almost all interesting �eld theories,

while non-perturbative problems that are to be solved by diagonalization of the Hamil-

tonian, make the renormalization program a very hard issue to deal with.

The main question we fae in the Hamiltonian approah is, whih of the �ve forms

of dynamis mentioned above is more suited to desribe the problem of bound-states.

One onsideration omes to mind immediately: the Fok-state expansion is in priniple

di�erent for the various forms of dynamis, as its terms are not invariant. Therefore

the investigation of an expansion in Fok spae must be an issue. The ones mostly

used in pratie is the usual instant form and the front form. The latter is argued to

be the most suitable as the vauum is partiularly simple in this form. (Setion 2) will

investigate further details, in order see the advantages and disadvantages of eah form

respetively.

This thesis will deal with the fundamental gauge �eld theory of QCD, the theory of

strong interations, whih has the hadrons as its physial degrees of freedom.

Like its older relative QED, QCD is a renormalizable relativisti quantum �eld theory.

Any in�nities arising from the point-like (loal) nature of the interation an therefore
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1. Introdution

be onsistently absorbed into a rede�nition of the physial parameters like masses and

ouplings. As a result, the strong oupling parameter �

s

is not a onstant but is run-

ning with the typial momentum sale of the physial proess under onsideration. The

mirosopi reason for this are vauum polarization e�ets: quarks sreen and there-

fore weaken the olor harge (analogous to QED), whereas the self-interating gluons

anti-sreen the olor harge whih is the dominating e�et. Unlike QED, therefore,

the running oupling �

s

(Q) of QCD is weak for high momentum transfer Q (small dis-

tanes). This is the realm of `asymptoti freedom' where perturbative methods work.

For small momentum transfer Q (large distanes), the oupling is large, perturbation

theory breaks down, and one has to utilize non-perturbative methods. A typial and

well-established value [3℄ for �

s

is

�

s

(M

Z

) = �

s

(91:2GeV) = 0:118; (1.1)

where M

Z

is the mass of the Z-Boson. The non-perturbative domain is generally

aepted at a maximum momentum sale of approximately 1GeV. In some loose sense

one an therefore speak of two relevant phases of QCD, the weak oupling phase or

perturbative QCD at Q > 1GeV, and the strong oupling phase or non-perturbative

QCD at Q < 1GeV.

Let us now fous on the hadrons. In priniple, it is quite lear, what a hadron is in

QCD: it is an eigenstate of the QCD Hamiltonian,

H

QCD

jHadroni =M jHadroni; (1.2)

where M denotes the hadron mass. The question, of ourse, is, whether this `QCD

Shr�odinger equation' an be solved. If we onsider a typial hadroni sale like the

nuleon radius of 1fm, the assoiated energy is of about 200MeV. This number tells us

that we are in the low-energy regime whih implies that the binding of the quarks into

hadrons is a non-perturbative phenomenon. In other words, a perturbative solution of

the `QCD Shr�odinger equation' will make no sense in general.

There are two main routes out of this dilemma. Firstly, one an try to perform brute-

fore alulations whih involve sophistiated omputer simulations on the largest ma-

hines available. Tehnially, one an make use of a spae-time disretization leading

to lattie gauge theory in the Hamiltonian instant form, or of 3-momentum disretiza-

tion leading to DLCQ (Disretized Light Cone Quantization) in the Hamiltonian front

form. Seondly, one an rely on a reputable tradition of physis, namely model build-

ing. There is an abundane of hadron models on the market, the most popular one

being the onstituent quark model of [4℄ and variants thereof. There one mostly starts

with a non-relativisti phenomenologial Hamiltonian of the form

H = H

0

+ V

onf

; (1.3)

with an ad-ho on�ning potential V

onf

whih typially is proportional to the inter-

quark distane r or sometimes even to r

2

. The Hamiltonian desribes the dynamis of

two or three onstituent quarks with their e�etive masses being treated as parameters.

The main virtue of the model onsists in its rather aurate reprodution of the hadron
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1. Introdution

masses (`spetrosopy'). However, the model has severe shortomings. Firstly, nearly

all hadrons are relativisti bound-states and therefore a non-relativisti treatment is

not appropriate. Seondly, the relation of the model with QCD is rather unlear. In

other words, it is unlear how a onstituent piture an arise in a relativisti quantum

�eld theory suh as QCD. There one expets a bound state, like for example the pion,

to be of the form

j�i �  

1

jqqi+  

2

jqqgi+  

3

jqqqqi+ � � � : (1.4)

This means that hadrons are states ontaining an in�nite number of quarks and glu-

ons, whih is onsistent with the results of DIS (Deep Inelasti Sattering) experiments

where, with growing resolution Q

2

, an inreasing number of partons is observed. This

on�rms that there are non-vanishing amplitudes  

1

;  

2

; : : : to �nd two quarks, two

quarks and a gluon, in general to �nd an arbitrary number of quarks and gluons in a

hadron.

Our basi motivation is to do better, to onstrut a model whih an avoid these short-

omings. In this thesis it leads us to the Singlet-Triplet (ST)-model [5℄ or to the more

simpli�ed "#-model [6℄ of (Setion 3). They are designed to desribe only avor o�-

diagonal mesons | mesons with di�erent avor for quark and anti-quark. Its derivation

in (Appendix B) an be summarized as follows: Outgoing from the QCD-Lagrangian

in light-one oordinates, it is possible to onstrut a frame-independent bound-state

equation for the invariant mass-squared M

2

of a meson. To solve this equation, one is

onfronted, as already mentioned, with the primer diÆulties of every �eld theory, the

many-body problem and the divergenies to be regulated and then to be renormalized.

The �rst problem is attaked by onstruting an e�etive bound-state equation having

the same eigenvalue spetrum as its original equation | the simplest one is an e�etive

one-body equation, where its Hamiltonian is ating only in the lowest Fok-spae om-

ponent, that between one quark and one anti-quark via an e�etive one gluon exhange.

The tehnique used for the derivation is alled iterated resolvents [7℄, whih does not

trunate the relevant Fok spae but rather is a ompat notation for resumming per-

turbative diagrams to all orders without double ounting, and thus maintaining all

symmetries of the QCD-Lagrangian. The e�et is a projetion of higher Fok-spae

setors to lower ones, where at the end all setors an be systematially retrieved by

iteration from the lowest one. The seond problem is solved by multiplying eah matrix

element of the Hamiltonian with a onvergene enforing vertex funtion, whih has

to drop faster than 1=Q

2

. This will regulate the ultraviolet divergenies aused by the

transverse momenta. Light front dynamis ontain additional singularities, so alled

`longitudinal' ones, aused by longitudinal momenta lose to zero. These infrared sin-

gularities are ontrolled by giving the gauge boson a small regulator mass. The result is

a regulated e�etive one-body equation [7℄ arrying unphysial parameters. As usual,

these have to be renormalized.

The renormalization program is one of the main topis of this thesis (Setion 4). Break-

ing this e�etive one-body equation down to the "#-model, by simplifying the spin-

interation as well as by making a non-relativisti simpli�ation, it is, to our knowledge,

for the �rst time possible to expliitly see how renormalization works in a Hamiltonian
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1. Introdution

formulation. This will be done by omparing two drastially di�erent renormalization

shemes, both oneptually and numerially, and verify that they agree. This strong

statement stands at the very basis of renormalization ideas, that no matter the in-

termediate steps one performs to mathematially de�ne the initial unde�ned theory,

after renormalization all of them produe the same physis. Sine both renormalization

shemes have been implemented in momentum spae, the generalization to the full rel-

ativisti ase an be easily performed. Also going from the "#-model to the ST-model

is a trivial task.

Subjet of (Setion 5) is now to solve this renormalized ST-model in momentum spae.

The orresponding equation has the struture of a loal non-relativisti Shr�odinger

equation. With the appropriate tools at hand, it is possible to solve this equation nu-

merially and to �t the data aording to the experimental mass spetrum of avor-o�

diagonal mesons. No other good reason than simpliity we will only fous on spherial

s-wave solutions. Sine the solutions are alulated in momentum spae, the generaliza-

tion to get the full relativisti solutions is not aompanied with oneptual problems,

exept maybe for some numerial diÆulties.

If we look more losely at the renormalized quark potential of the ST-model, it is pos-

sible to see on�nement. It ame as a big surprise to us, that not the renormalized

oupling onstant �

s

(Q) aounts for on�nement, but rather the arbitrariness of the

external vertex regulator. Sine the potential is of loal nature we an make us a pi-

ture in oordinate spae by Fourier transformation. The arbitrariness of the potential

then only lies within small distanes r, while asymptotially it always behaves as �1=r.

This behaviour is universal and applies to all possible regulators. It is fully in aord

with the regularization sheme given in momentum spae: the arbitrariness of regular-

izing a systems high momenta or energies leads to an arbitrariness in the behaviour at

small distanes. Inspired by [8℄, whih again was inspired by the work of [9℄, we use

this arbitrariness in the potential for small r, by requiring it to behave as a pure har-

moni osillator potential. The onnetion between the osillator behaviour for small

r and the Coulomb behaviour for large r is aomplished by a barrier as it is known

from nulear physis. The potential is thus able not only to reate pure bound-states

but also resonanes. When �xing the parameters to a physial example, the quark

potential develops a barrier of suh an extraordinary height and width, that possible

resonanes an be well treated as bound-states. This justi�es to see the barrier as part

of a on�ning potential.

A rather large part of this thesis is dediated to Coulomb sattering and the alula-

tion of resonanes in the stationary piture. The motivation was to solve the sattering

region and with it the resonane part of the above ST-potential. Furthermore, the aim

was to solve the sattering problem in momentum spae, in order to establish an easy

generalization to the full relativisti ase. But this inevitably leads to the problem of

having Coulomb sattering in momentum spae, whih is far more diÆult to realize

than in oordinate spae. There one knows how to treat the logarithmi divergent

phase-shift: one onsistently hanges the boundary onditions from pure plain waves

to distorted waves, leading then to a well de�ned spae independent phase-shift. In

6



1. Introdution

momentum spae suh a onstrution is not straightforward, or even impossible to im-

plement. Also a simple Fourier transformation from oordinate spae to momentum

spae does not do the work, sine the Coulomb sattering wave funtions in momen-

tum spae are not funtions in the usual sense, they behave more like distributions

[10℄. Furthermore, the Coulomb T-matrix in momentum spae is not well de�ned, it

an lead to anomalies [11℄.

To solve the full problem, one has to searh for alternatives, whih still is a subjet

of researh [10℄. On the other hand, I an show within s-wave sattering, that if the

Coulomb part of any potential is hanged to a more well de�ned sattering potential

in the asymptoti region, with the rest of the potential being kept unhanged, it only

has an e�et on the global bakground but not on the loal resonane struture in the

ross-setion of a sattering experiment. And sine we are at �rst only interested in the

alulation of resonanes and sine asymptotial Coulomb shielding is easy tratable

in momentum spae, this tehnique serves as a partial solution to the full Coulomb

sattering problem in momentum spae.

Regrettably, these ideas ould not be studied at a physial example of the ST-model.

As already mentioned, the orresponding potential produes resonanes of an extreme

small width, making it impossible to resolve them in a numerial sattering alulation.

One thus has to ontent oneself with more or less aademi potentials. Nevertheless,

sine these potentials allow for an analytial alulation of all relevant sattering quan-

tities, they serve as test potentials for investigating the orretness and the stability of

our numerial odes, whih have been worked out in momentum spae. These examples

were also hosen suh, that they resemble the basi strutures of any potential like that

of the ST-potential.

All this is represented onsistently and apart from the main text in (Appendix D).
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2. Basis

2 Basis

The usual way to desribe a physial system is to take a snapshot at a ertain time

t = t

0

and see how the system evolves as time goes by. Quite in general we have seen in

(Appendix A) that the Hamiltonian or energy operator H = P

0

is the operator whih

propagates the system in time

Hj	(t)i = i

�

�t

j	(t)i: (2.1)

Requiring a trivial time dependene

j	(t)i = e

�iEt

j	i; (2.2)

is asking for a stationary state

Hj	i = Ej	i; (2.3)

whih is the solution of an eigenvalue problem to the energy eigenvalue E, whih again

is a number. Thus, the Hamiltonian method seems to be a promising method for al-

ulating bound states within a quantum �eld theory, having in�nitely many degrees of

freedom. From a ovariant point of view, where the four spae-time oordinates are

treated on an equal footing, it seems a little bit arti�ial to hoose the time axis as

the zeroth omponent t = x

0

from the four spae-time dimensions as the axis whih

de�nes the diretion of evolution. One ould as well hoose one of the three spae

axes to play this role, or even some other diretion. In general one an de�ne `spae'

as that hypersphere in four-spae on whih one hooses the initial onditions. The

remaining fourth oordinate an be understood as `time'. These onepts of spae-time

parametrizations an be grasped more formally by introduing some general oordi-

nate transformation ex(x). However, one should exlude those whih are aessible

through Poinar�e transformations, that means pure Lorentz boosts, spatial rotations

and translations. Sine any oordinate transformation onserves the geometrial ar-

length ds

2

= g

��

dx

�

dx

�

= eg

��

dex

�

dex

�

, the metri tensors for two parametrizations are

then related by

eg

��

=

�

�x

�

�ex

�

�

g

��

�

�x

�

�ex

�

�

: (2.4)

Three things are important to note. First, the physial ontent of a theory an not

depend on suh re-parametrizations of spae-time, after all we are just dealing with

di�erent oordinate systems. Seond, in generalized oordinates the ovariant and

ontravariant indies an have rather di�erent interpretations, and one has to be areful

with the lowering and rising of Lorentz indies. Third, following Dira [1℄ and Leutwyler

[2℄ there are no more than �ve di�erent parametrizations of spae-time. Eah of them

thus have di�erent `times' and di�erent `Hamiltonians'. Interesting for us are only

the following two forms of Hamiltonian dynamis: the usual instant form, with its

hypersphere given by t = 0, and the front form, where the hypersphere is a tangent

plane to the light one.
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2. Basis

2.1 Instant frame

If the Hamiltonian H = P

0

was derived from a ovariant quantum �eld theory, as we

now always want to assume, it must represent a onstant of motion in that system.

Not only the Hamiltonian, but all 10 independent Poinar�e generators (Appendix A)

must be onstants of motion:

M

��

=

0

B

B

�

0 �K

1

�K

2

�K

3

K

1

0 �J

3

J

2

K

2

J

3

0 �J

1

K

3

�J

2

J

1

0

1

C

C

A

; P

�

=

�

H

�

~

P

�

; (2.5)

where P

i

are momentum, K

i

the pure Lorentz boost and J

i

the spatial rotation op-

erators. All these operators satisfy the Poinar�e algebra. Sine the Hamiltonian for-

mulation of a quantum �eld theory �xes its desription on the energy operator H, a

speial role will be played by those operators whih ommute with H. Suh operators

are said to be kinematial operators. They are onserved in the sense that they map

the initial ondition hypersurfae onto itself, that means the system stays in its initial

state. The other operators whih do not ommute with the Hamiltonian will map a

given hypersurfae into another hypersurfae, meaning that the initial state of a system

is hanged and thus are said to be dynamial operators. The ommutation relations

between the Hamiltonian H = P

0

and the remaining Poinar�e operators are

[H;P

1

℄ = 0; [H;J

1

℄ = 0; [H;K

1

℄ = iP

1

;

[H;P

2

℄ = 0; [H;J

2

℄ = 0; [H;K

2

℄ = iP

2

;

[H;P

3

℄ = 0; [H;J

3

℄ = 0; [H;K

3

℄ = iP

3

: (2.6)

We see that six operators, the spatial translation and rotation operators are kinemati

operators. While the Lorentz boosts are of dynamial nature. They are part of the

interation. Sine P

�

P

�

=M

2

is a Casimir operator ommuting with all generators of

the Poinar�e group, the stationary state ondition (2.3) in the instant form an also be

written as

Hj	i =

p

M

2

+

~

P

2

j	i; (2.7)

where M

2

is the invariant mass of the system. Lets say the stationary state was �xed

by some initial ondition j	i = j	(t

0

)i and has been determined in its rest system

(

~

P = 0). Translating or rotating this eigensolution would not have any e�et on the

previous �xed initial ondition of the state, it still represents the same stationary state.

But if we try to boost the eigensolution into a frame where

~

P 6= 0, the state is hanged

in the sense that it now represents a di�erent stationary state orresponding to a new

initial ondition j	

0

i = j	(t

1

)i. Thus determining the boosted wavefuntion is as

ompliated as diagonalizing H itself. This is also the reason, why we do not denote

quantum states in the instant from by the eigenvalues of boost operators.

10



2. Basis

2.2 Light-one frame

In the light-one frame we use the new time t = x

+

= x

0

+ x

3

in the Lepage-Brodsky

(LB) onvention [12℄ as the oordinate whih evolves the physial system to the future.

The other oordinates are hosen to ensure orthogonality. The transformation from the

instant to the light-one oordinates

(x

0

; x

1

; x

2

; x

3

) �! (x

+

; ~x

?

; x

�

); (2.8)

is then given by

x

+

= x

0

+ x

3

; ~x

?

= (x

1

; x

2

); x

�

= x

0

� x

3

: (2.9)

This transformation an also be written as

ex

�

= C

�

�

x

�

; with C

�

�

=

�

�ex

�

�x

�

�

=

0

B

B

�

1 0 0 1

0 1 0 0

0 0 1 0

1 0 0 �1

1

C

C

A

: (2.10)

The metri tensor (2.4) then beomes

eg

��

=

0

B

B

�

0 0 0

1

2

0 �1 0 0

0 0 �1 0

1

2

0 0 0

1

C

C

A

= (C

�1

)

T

� g � C

�1

; (2.11)

with its inverse given by

eg

��

=

0

B

B

�

0 0 0 2

0 �1 0 0

0 0 �1 0

2 0 0 0

1

C

C

A

= C � g � C

T

: (2.12)

The ovariant omponents of any light-one 4-vetor are then de�ned by ex

�

= eg

��

ex

�

.

The entries 1=2 in the o�-diagonal part of the metri tensor imply a slightly unusual

salar produt

a � b = eg

��

a

�

b

�

=

1

2

a

+

b

�

+

1

2

a

�

b

+

� a

i

b

i

: (2.13)

The ontravariant Poinar�e generators on the light-one an be determined as

(

e

P

�

) = C � (P

�

); (

f

M

��

) = C � (M

��

) � C

T

; (2.14)

whih give the ovariant ones as

(

e

P

�

) = eg � (

e

P

�

) (

f

M

��

) = eg � (

f

M

��

) � eg

T

(2.15)

= (C

�1

)

T

� (P

�

); = (C

�1

)

T

�M

��

� C

�1

: (2.16)

Sine all relevant quantities on the light-one have been determined, we an suppress

the tilde-symbol and simply refer to them as light-one objets.

11



2. Basis

In this sense the ovariant Poinar�e generators on the light-one are expliitly given as

M

��

=

0

B

B

�

0 �B

1

�B

2

1

2

K

3

B

1

0 �J

3

S

1

B

2

J

3

0 S

2

�

1

2

K

3

�S

1

�S

2

0

1

C

C

A

; P

�

=

0

�

1

2

(P

0

� P

3

)

�

~

P

?

1

2

(P

0

+ P

3

)

1

A

; (2.17)

where we de�ned

B

1

=

1

2

(K

1

+ J

2

); B

2

=

1

2

(K

2

� J

1

); S

1

=

1

2

(K

1

� J

2

); and S

2

=

1

2

(K

2

+ J

1

):

In analogy to the de�nition of the Hamiltonian H in the instant frame we de�ne the

Hamiltonian H in the light-one frame as that operator whose ation on the state j	(t)i

has the same e�et as taking the partial derivative with respet to the light-one time

t = x

+

Hj	(x

+

)i = i

�

�x

+

j	(x

+

)i: (2.18)

Therefore in the light-one frame the Hamiltonian is given by

H = P

+

=

1

2

P

�

: (2.19)

Using the Poinar�e algebra (Appendix A), we an derive the ommutation relations

between this Hamiltonian and the remaining generators

[H;P

1

℄ = 0; [H;S

1

℄ = iP

1

; [H;B

1

℄ = 0;

[H;P

2

℄ = 0; [H;S

2

℄ = iP

2

; [H;B

2

℄ = 0;

[H;P

�

℄ = 0; [H;J

3

℄ = 0; [H;K

3

℄ = iH: (2.20)

The obvious kinematial operators are the three light-one momenta P

1

,P

2

,P

�

, the

longitudinal rotation J

3

and the light-one boosts B

1

,B

2

. However, although K

3

does

not ommute with the Hamiltonian, its behaviour is speial beause the ommutator

[H;K

3

℄ is proportional toH. This has onsequenes. Suppose we boost the Hamiltonian

H in the longitudinal diretion

H �! e

i�K

3

He

�i�K

3

; (2.21)

then the Baker-Campbell-Hausdor� relation an be used to derive

e

i�K

3

He

�i�K

3

= H + i�[K

3

;H℄ +

1

2

(i�)

2

[K

3

; [K

3

;H℄℄ + � � �

= H + �H +

1

2

�

2

H + � � � = e

�

H: (2.22)

Obviously, appliation of the operator K

3

hanges H only by a fator. Or, in other

words, if we boost the system in the longitudinal diretion, the energy eigenvalues are

just multiplied by a onstant saling fator e

�

. Beause of this speial behaviour, K

3

is

usually alled kinematial instead of dynamial. As a result the light-one frame o�ers

7 out of 10 kinematial Poinar�e generators, ompared to 6 kinematial generators in

the instant frame. The only dynamial operators besides the Hamiltonian are the two

transverse rotations S

1

and S

2

. Therefore, by going from the instant to the light-one

frame, the problem of dynamial operators is shifted from boost to transverse rotation.
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2. Basis

2.2.1 Boost transformations

Two of the most important kinemati symmetries in light-front �eld theory are the

longitudinal and transverse boost symmetries. For this, we want to have a loser look

into the boost transformation properties of the longitudinal P

+

and transverse

~

P

?

momenta. As we will show, the longitudinal boost orresponds to a resaling on the

light-front whereas the transverse boosts simply are Galilean boosts in two dimensions

in non-relativisti dynamis. The relevant ommutation relations are given by

[B

i

; P

j

℄ = �iÆ

ij

P

+

; [K

3

; P

+

℄ = �iP

+

: (2.23)

If we boost as follows

P

+

! e

i�

3

K

3

P

+

e

�i�

3

K

3

;

~

P

?

! e

i�

i

B

i

~

P

?

e

�i�

i

B

i

; (2.24)

and use the relation as in (2.22), we obtain the fundamental result

P

+

! e

�

3

P

+

;

~

P

?

!

~

P

?

+ ~�

?

P

+

: (2.25)

We see that a general boost B

?

= �

1

B

1

+ �

2

B

2

in the transverse plane ats just like a

two dimensional Galilean boost in non-relativisti dynamis. P

+

an be interpreted as

a variable Galilei mass.

One thus expets that light-one kinematis will partly show a non-relativisti be-

haviour. This expetation is indeed realized and leads, for instane, to a separation of

enter-of-mass and relative dynamis as in non-relativisti many-body systems. This

is important for onstruting a proper sattering theory within a quantum �eld theory,

whih is impossible to do in the instant frame. But also for the alulation of bound

states, this deoupling of enter-of-mass and internal motion is of tremendous help.

We an now ask the question how to boost from one momentum set (

~

P

?

; P

+

) to another

set (

~

Q

?

; Q

+

). This an be done by �xing the boost parameters �

3

and ~�

?

as

�

3

= ln

Q

+

P

+

; ~�

?

=

~

Q

?

�

~

P

?

P

+

: (2.26)

Obviously, this is only possible for P

+

6= 0. We emphasize that in this onstrution

there is no dynamis involved. This means that we an build states of arbitrary light-

one momenta with very little e�ort. All we have to do is applying some kinematial

boost operators. The simple behavior of light-one momenta under boosts will be im-

portant for the disussion of bound states. For instane they lead to frame independene

in the Fok state wave funtions.
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2. Basis

2.2.2 Vauum

Here is another advantage of light-front dynamis: the simpliity of the vauum. The

physial vauum is de�ned as that Hilbert spae state j0i whih is invariant under

Poinar�e transformations (Appendix A)

U(�; a)j0i = j0i; (2.27)

implying

P

�

j0i = 0 and M

��

j0i = 0: (2.28)

In other words j0i is that state for whih the eigenvalues of the onserved operators

P

�

and M

��

are zero. Fousing only on positive energy states, that means on massive

physial systems with (P

2

; P

�

) > 0 the above �xing of the physial vauum turns into

P

+

j0i = 0 ;

~

P

?

j0i = 0 and M

��

j0i = 0: (2.29)

Sine the Hamiltonian H � P

�

> 0 is hosen to be a positive operator of having only

positive eigenvalues, it immediately follows from the invariant mass onditionM

2

= P

2

,

whih on the light one an be written as P

�

P

+

= M

2

+

~

P

2

?

, that the longitudinal

momentum P

+

> 0 must be a positive operator too. Furthermore, this positivity is

guaranteed for all times, sine P

+

represents a onserved quantity. Then if we exlude

P

+

= 0, the above ondition P

+

j0i = 0 fores the physial vauum to be trivial beause

it is the only state with P

+

= 0. In this ase the physial vauum is idential with

the free Fok-spae vauum. But if inlude the so alled zero modes with P

+

= 0,

whih an only exist if the system allows for M = 0, the light-one vauum starts to

get ompliated again.

Nevertheless, the overall dynamial behaviour of the physial light-one vauum is far

more simpler then its ounter part in the instant form. Only partiles with mass zero

an be reated from the light-one vauum, unlike the instant-form vauum that an

reate partiles with non-vanishing masses, if their momenta sum up to zero. The

vauum in light-front interferes with the dynami struture to a muh lesser extent

than in the instant form. In this form, there will exist zero total momentum states

with arbitrary onstituents whih will mix with zero-onstituent states to build up the

ground state, the physial vauum in the instant-frame.

So, if we are able to eliminate possible zero modes from a given system, we an say that

the physial vauum state in the light-one representation is the simple Fok vauum

without any onstituents. This is a tremendous simpli�ation. For example, it allows

a Fok expansion on this vauum state whih an be used as a basis for representing

a general physial state as that of the bound state j	i. In other words it immediately

allows for a onstituent piture in a �eld theory with in�nitely many degrees of freedom.
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2. Basis

2.2.3 Bound states and Light-one wave funtions

Sine the invariant operatorM

2

= P

�

P

�

on the light-one is given asM

2

= P

�

P

+

�

~

P

2

?

the stationary state ondition (2.3) an be written as

Hj	i =

M

2

+

~

P

2

?

2P

+

j	i: (2.30)

Furthermore, sine the boost on the light-front only depends on kinematis, we an

onsider the bound state in the rest frame (

~

P

?

; P

+

) = (

~

0

?

;M). Thus, the eigenstate

equation simply beomes

Hj	i = Ej	i; (2.31)

whih is the familiar Shr�odinger equation in ordinary quantum mehanis with the

eigenvalues E = M=2. On the light-front, boosting a bound state from the rest frame

to any other frame is dynamially independent and quite simple, as we have shown in

(Setion 2.2.1). Thus, one we �nd the bound state in the rest frame, we an ompletely

understand it in any frame. The eigensolutions of the Hamiltonian thus desribe bound

states of arbitrary four-momentum, allowing the omputation of possible sattering

amplitudes and other dynamial quantities. As we know, this does not hold in the

instant form. Although the bound state equation in the instant rest frame has the

same form, the solutions in the rest frame are not easily boosted to other Lorentz

frames due to the dynamial dependene of the boost transformations. Therefore, in

eah di�erent Lorentz frame one needs to solve the bound state equation of P

0

to

obtain the orresponding wave funtions. This is the reason why one an not establish

a reliable approah to onstrut relativisti wave funtions in instant �eld theory in

terms of the Shr�odinger piture. This obstale is obviously removed on the light-front.

As already mentioned in (Appendix A), in both the instant and the front-form the

eigenfuntions an be labeled by the eigenvalues of all ommuting observables given

from spae-time symmetry. These are the systems invariant mass M , the three spae-

like momenta P

+

,

~

P

?

, the total spin-squared S

2

and its longitudinal projetion S

z

or

alternatively its heliity �:

j	i = jM;P

+

;

~

P

?

; S

2

;�; �i: (2.32)

In addition, the eigenfuntions an be labeled by quantum numbers � whih are not

related to any spae-time symmetry, like harge or baryon number of the system. In the

following we will only maintain the momentum labels and suppress all other quantum

numbers. We already know that if possible zero modes an be exluded from the

system, the bare Fok vauum is an eigenstate of the full interating Hamiltonian. It

thus serves as an appropriate ground state on top of whih we an build a reasonable

Fok expansion. One onstruts the omplete basis of Fok states j�

n

i in the usual way

by applying produts of all possible free �eld reation operators to the vauum state

j0i. All these reated partiles of the system are on-shell (p

�

p

�

)

i

= m

2

i

.
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The number of partiles is denoted by the index i, while the various Fok-spae lasses

are onveniently labeled with a running index n. Eah Fok-state j�

n

i = jn : p

+

i

; ~p

?i

i

is an eigenstate of P

+

,

~

P

?

and the free part of the energy P

�

0

, with eigenvalues

P

+

=

X

i

p

+

i

;

~

P

?

=

X

i

~p

?i

; P

�

0

=

X

i

m

2

i

+ p

2

?i

p

+

i

: (2.33)

To set the stage for the de�nition of light-one wave funtions, we �rst introdue some

relevant kinematial variables, the relative momentum oordinates x

i

and

~

k

?i

via

p

+

i

� x

i

P

+

; ~p

?i

� x

i

~

P

?

+

~

k

?i

: (2.34)

Thus x

i

is the fration of the total longitudinal momentum that the i-th onstituent

arries, and k

?i

is its relative transverse momentum with respet to the enter-of-mass

frame. Comparing with (2.33) we note that these variables have to obey the onstraints

X

i

x

i

= 1 and

X

i

~

k

?i

= 0: (2.35)

A partiularly important property of the relative momenta is their boost invariane.

Using (2.25) we easily see that x

i

is invariant towards a boost in the longitudinal

diretion

x

0

i

= e

�

3

p

+

i

=e

�

3

P

+

= x

i

; (2.36)

while

~

k

?i

is invariant towards a general boost in the transverse plane

~

k

0

?i

= ~p

0

?i

� x

i

~

P

0

?i

= ~p

?i

+ ~�

?

p

+

i

� x

i

(

~

P

?

+ ~�

?

P

+

) =

~

k

?i

; (2.37)

whih indeed proves the frame independene of x

i

and

~

k

?i

.

Let us now alulate the total free light-one energy in terms of the relative oordinates.

Making use of the onstraints (2.35), we obtain

P

�

0

=

X

i

p

�

i

=

X

i

p

2

?i

+m

2

i

p

+

i

=

X

i

(x

i

~

P

?

+

~

k

?i

)

2

+m

2

i

x

i

P

+

=

1

P

+

 

P

2

?

+

X

i

k

2

?i

+m

2

i

x

i

!

� (P

�

0

)

m

+ (P

�

0

)

r

: (2.38)

This is another important result: the free light-one Hamiltonian P

�

0

separates into a

enter-of-mass term,

(P

�

0

)

m

= P

2

?

=P

+

; (2.39)

and a term ontaining only the relative oordinates,

(P

�

0

)

r

=

1

P

+

 

X

i

k

2

?i

+m

2

i

x

i

!

=

M

2

0

P

+

: (2.40)

16



2. Basis

The last identity, whih states that (P

�

0

)

r

is essentially the free invariant mass squared,

follows upon multiplying (2.38) by P

+

. This deoupling of enter-of-mass and internal

motion is assoiated with the transverse dimensions, and is an indiret onsequene of

the non-relativisti transformation behaviour of the transverse boosts. These results are

in omplete ontrast to instant form kinematis, where the appearane of the notorious

square root in the energy prohibits a similar separation of variables.

Sine the Fok states j�

n

i form a omplete set in the sense that

X

n

Z

d[�

n

℄j�

n

ih�

n

j = 1; (2.41)

every general state j	i with momentum

~

P = (P

+

;

~

P

?

) an be alulated in terms of

these Fok states via the expansion

j	(

~

P )i =

X

n

Z

d[�

n

℄  

n

(x

i

;

~

k

?i

)

�

�

�

n : x

i

P

+

; x

i

~

P

?

+

~

k

?i

E

: (2.42)

Up to a normalization onstant the phase-spae di�erential is given as

d[�

n

℄ =

Y

i

dx

i

d

2

k

?i

Æ

�

1�

X

j

x

j

�

Æ

2

�

X

j

~

k

?i

�

: (2.43)

The most important quantities in (2.42) are the light-one wave funtions

 

n

(x

i

;

~

k

?i

) := hn : x

i

P

+

; x

i

~

P

?

+

~

k

?i

j (

~

P )i; (2.44)

whih are the amplitudes to �nd bare onstituents with momenta (x

i

P

+

; x

i

~

P

?

+

~

k

?i

)

in the state j	(P

+

;

~

P

?

)i. They are only funtions of the frame-independent variables

x

i

and

~

k

?i

and therefore an not depend on the total momentum

~

P of the system.

Thus light-one quantization o�ers the speial feature of speifying wave funtions

simultaneously in any frame. This property makes light-one wave funtions ideal for

probing the internal struture of a system [12℄.

To simplify things even more, we will in this thesis always go to the `transverse rest

frame' where

~

P

?

= 0, implying a vanishing free enter-of-mass Hamiltonian (P

�

0

)

m

.

In this frame the heliity of the system is given as the total spin along the longitudinal

diretion. The transformation to an arbitrary frame with �nite transverse momenta

~

P

?

is then trivially performed.
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3 The QCD-inspired Model

We address to the following e�etive one-body equation

M

2

 

�

1

�

2

(x;

~

k

?

) =

"

m

1

(�) +

~

k

2

?

x

+

m

2

(�) +

~

k

2

?

1� x

#

 

�

1

�

2

(x;

~

k

?

)

+

X

�

0

1

;�

0

2

Z

dx

0

d

2

~

k

0

?

U

�

1

�

2

;�

0

1

�

0

2

(x;

~

k

?

;x

0

;

~

k

0

?

; �) 

�

0

1

�

0

2

(x

0

;

~

k

0

?

); (3.1)

being an integral equation with the kernel

U

�

1

�

2

;�

0

1

�

0

2

= �

1

3�

2

�(Q;�)

Q

2

R(Q;�)

S

�

1

�

2

;�

0

1

�

0

2

(x;

~

k

?

;x

0

;

~

k

0

?

)

p

x(1� x)x

0

(1� x

0

)

: (3.2)

We will now summarize the basi ingredients of this equation, for more bakground

information one has to refer to (Appendix B).

First of all, its an e�etive light-one equation ating only in the lowest q�q Fok spae

setor via a simple one gluon exhange between e�etive verties. Its designed to

desribe avor o�-diagonal mesons, that means for mesons having a di�erent avor for

quark and anti-quark | we don't have to deal with any annihilation amplitudes. By

onstrution this e�etive equation has the same eigenvalue spetrum as the full light-

one Hamiltonian. The eigenvalue is the invariant mass squared M

2

. The assoiated

eigenfuntion  = hx;

~

k

?

;�

1

; �

2

j	

q�q

i is the probability amplitude for �nding a quark

with longitudinal momentum fration x, relative transversal momentum

~

k

?

and heliity

�

1

, and orrespondingly the anti-quark with 1� x,

~

k

?

and �

2

. It is onvenient to see

Q

2

= Q

2

(x;

~

k

?

;x

0

;

~

k

0

?

) as the mean Feynman-momentum transfer of the quarks

Q

2

= �

1

2

�

(k

1

� k

0

1

)

2

+ (k

2

� k

0

2

)

2

�

: (3.3)

The spinor fator S = S(x;

~

k

?

;x

0

;

~

k

0

?

) is the usual urrent-urrent oupling

S

�

1

�

2

;�

0

1

�

0

2

= [u(k

1

; �

1

)

�

u(k

0

1

; �

0

1

)℄[v(k

0

2

; �

0

2

)

�

v(k

2

; �

2

)℄; (3.4)

whih will aount for all �ne and hyper�ne interations. Its de�ned in terms of Lepage-

Brodsky spinors [12℄ with the matrix elements tabulated expliitly in (Appendix C).

Due to these heliity indies the above one-body equation is a set of four oupled integral

equations in the three momentum omponents x and

~

k

?

. Finally the parameters of

the equation are the physial e�etive quark masses m

1

and m

2

, and the physial

e�etive oupling onstant �. They impliitly depend on some unphysial ut-o� sale

� whih in turn demands a renormalization of these parameters. The same holds for

the regulating funtion R(Q;�) whih gives the equation an expliit dependene on

the mass sale � for having a well-de�ned integral equation, sine the kernel is not

vanishing suÆiently fast enough for

~

k

?

!1.

Important to note is that (3.1) is a fully relativisti and frame-independent bound-state

equation and we will onsider it as the `master equation'. The equation was derived
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3. The QCD-inspired Model

in an non-perturbative way from the QCD-Lagrangian L

QCD

by making a few but

well spei�ed assumptions. It was derived by the method of iterated resolvents [7℄,

that is by systematially projeting the higher Fok-spae wave funtions onto lower

ones. In doing so the Fok-spae was not trunated and all Lagrangian symmetries

were preserved. If the q�q-projetion  in (3.1) is known, all higher Fok-spae wave

funtions an be retrieved from it automatially.

The main task of this thesis is not to solve equation (3.1). This was done in full glory

by Trittmann et al. [13℄, who showed how the equation an be solved numerially with

high preision. We rather want to address the problem of renormalization. To attak

this problem in a more or less analytial way, we will simplify the `master equation'

(3.1) down to a workable model equation, the "#-model [6℄. This model is very impor-

tant in understanding how renormalization works in a non-perturbative ontext.

Before we start onstruting the model, we �rst look again at the unphysial �-

dependene of equation (3.1). We see that its e�etive Hamiltonian depends on this

regulator sale through three quantities. First, it impliitly depends on � through the

physial quark masses m

f

= m

f

(�). Seond, it also impliitly depends on � through

the physial e�etive oupling �(Q) = �(Q;�). Third, the Hamiltonian expliitly de-

pends on � through the unphysial regularization funtion R(Q;�). The dependene

on the parameter � must be removed

d

d�

H

e�

LC

�

m(�); �(�); R(�)

�

= 0; (3.5)

as required by renormalization theory, but how? The above ondition an be rewritten

as a funtional variation

ÆH

e�

LC

Æm

Æm

Æ�

+

ÆH

e�

LC

Æ�

Æ�

Æ�

+

ÆH

e�

LC

ÆR

ÆR

Æ�

= 0: (3.6)

It is not in onit with renormalization theory to vary the three terms independently

Æm

Æ�

= 0;

Æ�

Æ�

= 0;

ÆR

Æ�

= 0: (3.7)

The independent renormalization of m

f

(�) an be ahieved by interpreting the m

f

as

parameters of the theory to be determined by experiment. The independent renor-

malization of �(Q;�) has been performed in [7℄ or reently in [14℄, in terms of the

QCD-sale �, to be determined by experiment. Sine there the renormalized e�etive

oupling �(Q) varies only little for relatively small momentum transfers, like in a typi-

al bound system, the sale � will be replaed by the dimensionless and Q-independent

number �. Without avoiding to muh onfusion, we will from now on drop the `bar'-

notation on the renormalized physial oupling onstant � ! �, as well as on all

renormalized physial quark masses m

f

! m

f

. So, the full problem of renormalization

an essentially be redued to the problem of removing the expliit dependene of �

from the bound-state equation (3.1). This will be attaked in detail in the next setion.
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3. The QCD-inspired Model

The next stage towards the "#-model is the simpli�ation of the spinor fator S. Two

onstituents are at relative rest when

~

k

?

= 0 and x = x = m

1

=(m

1

+m

2

). An inspetion

of the spinor matrix elements (Appendix C) reveals that if the relative motion between

the quarks are of a small deviation from these equilibrium values, the spinor matrix is

proportional to the unit matrix

h�

1

; �

2

jSj�

0

1

; �

0

2

i � 4m

1

m

2

Æ

�

1

�

0

1

Æ

�

2

�

0

2

: (3.8)

The values of the heliity indies �

i

will be denoted by (+;�) or by ("; #). For large

deviations in the transverse plane

~

k

02

?

�

~

k

2

?

all matrix elements are vanishingly small

ompared to the only surviving element of

h"# jSj "#i � 2

~

k

02

?

: (3.9)

Sine in this far-o� equilibrium state the momentum transfer behaves as Q

2

�

~

k

02

?

, its

possible to ombine these two extremes in the Singlet-Triplet (ST)-model:

h�

1

; �

2

jSj�

0

1

; �

0

2

i = Æ

�

1

�

0

1

Æ

�

2

�

0

2

h�

1

; �

2

jSj�

1

; �

2

i;

with

h�

1

; �

2

jSj�

1

; �

2

i

Q

2

=

8

>

<

>

:

4m

1

m

2

Q

2

+ 2 for �

1

= ��

2

(singlet);

4m

1

m

2

Q

2

for �

1

= �

2

(triplet):

(3.10)

For singlets the model interpolates between two extremes: for small momentum trans-

fer Q

2

the `2' is unimportant and the dominantly Coulomb aspets of the �rst term

prevail. For large momentum transfers the Coulomb aspets beome unimportant and

the hyper�ne interation is dominant. The `2' arries the singlet triplet mass di�erene.

For the triplets the model redues to the plain Coulomb kernel. The big advantage of

this model is its simpliity in dropping the heliity summations, whih tehnially sim-

pli�es the problem enormously.

The model we will fous on, is the "#-model of [6℄ whih redues the kernel even further

h�

1

; �

2

jSj�

1

; �

2

i

Q

2

R(Q;�) =

�

4m

1

m

2

Q

2

+ 2

�

R(Q;�) �!

4m

1

m

2

Q

2

+ 2R(Q;�): (3.11)

This model emphasizes the point that the `2', or any other onstant in the kernel of

an integral equation, leads to numerially unde�ned equations and thus singularities.

Certainly this model an not be justi�ed in the sense of an approximation. It over

emphasizes many aspets of the original interation. Nevertheless, its remarkable how

the "#-model is able to predit the mass spetrum for pseudosalar and vetor mesons

within less than 5% error [6℄. In this sense it serves as a reliable model to do fast

alulations. As we will see, this model o�ers a nie platform for solving the expliit

renormalization problem.

Next, a rather dramati tehnial simpli�ation is ahieved by a transformation of

the longitudinal integration variable in (3.1) | if done orretly, suh a step is no

approximation but exat. After all we are just substituting the integration variable

x 2 [0; 1℄ by an other integration variable k

z

2 (�1;1) whih, as will be shown below,

an be interpreted as the z-omponent of a usual 3-momentum vetor

~

k = (

~

k

?

; k

z

).
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3. The QCD-inspired Model

The integration variables are hanged from x to k

z

by the following Sawiki transfor-

mation [15℄

x(k

z

) =

E

1

+ k

z

E

1

+E

2

; with E

1;2

=

q

m

1;2

+

~

k

2

?

+ k

2

z

: (3.12)

The Jaobian is

dx

x(1� x)

=

1

A(k

z

;

~

k

?

)

dk

z

m

r

; (3.13)

with the dimensionless funtion

A(k

z

;

~

k

?

) =

1

m

r

E

1

E

2

E

1

+E

2

: (3.14)

If we de�ne a new wave funtion � whih is related by the original frame-independent

light-one wave funtion  by

�(k

z

;

~

k

?

) =

s

x(1� x)

A(k

z

;

~

k

?

)

 (x;

~

k

?

); (3.15)

the `master equation' (3.1) within the "#-model an be onverted into the following

integral equation

h

M

2

�m

2

s

� C(k)

~

k

2

i

�(

~

k) = �

1

3�

2

�

m

r

Z

d

3

k

0

p

A(k)A(k

0

)

�

4m

1

m

2

Q

2

+ 2R(Q;�)

�

�(

~

k

0

);

(3.16)

with the dimensionless kinematial funtion

C(k) = (E

1

+m

1

+E

2

+m

2

)

�

1

E

1

+m

1

+

1

E

2

+m

2

�

; (3.17)

and �nally with the mass parameters

1

m

r

=

1

m

1

+

1

m

2

; m

s

= m

1

+m

2

; (3.18)

being the redued mass and the sum mass respetively. Important to note is that the

above variable transformation (x $ k

z

) has a physial meaning. Sine the transfor-

mation from front form to instant form is given by p

+

i

= p

0

i

+ p

3

i

with p

+

i

= P

+

x

i

the

longitudinal momentum frations for the two onstituents an be written as

x

i

=

p

0

i

+ p

3

i

P

+

=

p

0

i

+ p

3

i

p

+

1

+ p

+

2

=

E

i

+ k

zi

E

1

+ k

z1

+E

2

+ k

z2

; (3.19)

whih immediately yields the transformation rule (3.12), if we hoose a speial frame in

whih the total momentum of the z-omponent vanishes: P

z

= k

z1

+ k

z2

= 0. Sine we

are already in a frame where the total transversal momentum

~

P

?

is zero, the integral

equation as written in (3.16) an be interpreted as an instant form equation in the

enter-of-mass frame.
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3. The QCD-inspired Model

Furthermore, this justi�es that the transformation variable k

z

an be seen as the z-

omponent of a usual 3-momentum vetor. Although there is not a single trae of

light-one variables in equation (3.16), its still a genuine front form equation designed to

alulate frame-independent light-one wave funtions (3.15). After all, a substitution

of integration variables does not hange physis.

We ontinue to simplify the integral equation (3.16) by onstruting a more or less

non-relativisti situation with

~

k

2

i

� m

2

i

, thus

C(k) � m

s

=m

r

; A(k) � 1; Q

2

� (

~

k �

~

k

0

)

2

: (3.20)

To substitute A(k

0

) � 1 in the kernel is ertainly not justi�ed, sine the integration

variable has

~

k

0

! 1 at the upper limit. But if one does it anyway in the sense of a

non-relativisti simpli�ation, one gets

�

M

2

�m

2

s

�

m

s

m

r

~

k

2

�

�(

~

k) = �

1

3�

2

�

m

r

Z

d

3

k

0

"

4m

s

m

r

(

~

k �

~

k

0

)

2

+ 2R(Q;�)

#

�(

~

k

0

); (3.21)

with the onnetion to the light-one wave funtion given as

 (x;

~

k

?

) =

�(k

z

;

~

k

?

)

p

x(1� x)

: (3.22)

The only reason why we apply the non-relativisti simpli�ation is that (3.21) has a

loal Fourier transform, whih allows us to have a simple piture of the underlying

interation potential. De�ning the new energy variable E = (M

2

�m

2

s

)=2m

s

, whih

will behave as the onventional non-relativisti binding energy, turns equation (3.21)

into the usual momentum spae Shr�odinger equation

E�(

~

k) =

~

k

2

2m

r

+

Z

d

3

k

0

U(q

2

;�)�(

~

k

0

)

with U(q

2

;�) = �

1

6�

2

�

m

s

m

r

�

4m

s

m

r

q

2

+ 2R(q

2

;�)

�

: (3.23)

Fourier transforming gives

E (~r) =

�

~

k

2

2m

r

+ V (r;�)

�

 (~r)

with V (r;�) =

Z

d

3

q e

�i~q�~r

U(q

2

;�); (3.24)

the loal Shr�odinger equation in oordinate spae. On the other hand, the Fourier

transform of (3.16) is non-loal and mathematially diÆult.
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4. Expliit Renormalization

4 Expliit Renormalization

In this setion we are going to address solely to the "#-model equation (3.21). We �rst

look at it in the limit of �!1

h

M

2

� 4m

2

� 4

~

k

2

i

�(

~

k) = �

4

3�

2

�

m

Z

d

3

k

0

"

2m

2

(

~

k �

~

k

0

)

2

+ 1

#

�(

~

k

0

): (4.1)

It is a robust physial equation to model avor o�-diagonal mesons with equal quark

and anti-quark masses, as for example the pion (m

u

� m

d

). This is done by �xing the

parameters � and m to the experimentally available mass spetrum M . The general-

ization to di�erent quark and anti-quark masses is performed trivially. We deliberately

wrote equation (3.21) in the form of (4.1) to suggest the reader that, due to its pure

physial ontent, the equation is ready to be solved for and to be �tted to experiment.

But unfortunately this is not possible, sine equation (4.1) is mathematially not de-

�ned. It is the number `1' in the kernel, whih generates all the well known trouble.

The aim of this setion is to give (4.1) a physial meaning by renormalization. This

will be done by omparing two drastially di�erent renormalization shemes, both on-

eptually and numerially, and verify that they agree. This strong statement stands

at the very basis of renormalization ideas, that no matter the intermediate steps one

performs to mathematially de�ne the initial equation (4.1), after renormalization all

of them produe the same physis.

One sheme is to renormalize diretly at the basis of the Shr�odinger equation (4.1)

by the method of using ounter terms in a regularized interation kernel. The other

sheme is to renormalize at the basis of the omplementary Lippmann-Shwinger equa-

tion (Appendix D), by applying a well spei�ed subtration method to the equivalent

T -matrix equation. It was �rst developed by the authors of [16℄ to handle singular

interations in non-relativisti quantum mehanis. But before going there, we �rst

want to investigate the former renormalization sheme.

4.1 Renormalization by a ounterterm

If one Fourier transforms the Shr�odinger equation (4.1) to oordinate spae, the in-

teration potential onsists of a long-ranged Coulomb interation and a short-ranged

Dira-delta interation. It is this latter part whih generates trouble. In order to get

reasonable solutions one has to regulate the short-range region, whih implies the regu-

larization of high momentum transfers Q

2

= (

~

k�

~

k

0

)

2

. As expeted, we have to restore

(4.1) to its original well-de�ned integral equation (3.21) by substituting the number 1

by a regulating funtion 1! R(Q;�), for whih the soft ut-o� (B.57) is hosen

h

M

2

� 4m

2

� 4

~

k

2

i

�(

~

k) = �

4

3�

2

�

m

Z

d

3

k

0

"

2m

2

(

~

k �

~

k

0

)

2

+

�

2

�

2

+ (

~

k �

~

k

0

)

2

#

�(

~

k

0

): (4.2)

In oordinate spae the short-ranged delta is now smeared out to a Yukawa interation.

Sine the regulator � is an additional but unphysial parameter, one has to renormalize

the equation in order to restore the original problem in the limit �!1.
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4. Expliit Renormalization

Here is a general but abstrat proedure how the expliit �-dependene an be removed:

suppose we have solved equation (4.2) for a �xed value of the parameters � = �

0

and

m = m

0

, and for a �xed value of � = �

0

. Suppose further that these parameters

are hosen suh, that the alulated eigenvalues M

2

i

agree with experiment. Next, we

hange the unphysial ut-o� � = �

0

+ Æ� by a small amount Æ�. Then all alulated

eigenvalues will hange by a small amount ÆM

2

i

.

Renormalization theory is then the attempt to reformulate the underlying theory, in our

ase equation (4.2), suh, that all these hanges vanishes identially. The fundamental

renormalization group equation is thus

d

d�

M

2

i

(�) = 0; for all eigenstates i: (4.3)

No other reason than simpliity we will restrit the solutions of (4.2) to those of s-waves:

�(

~

k) = �(j

~

kj) and �x the mass parameter at the value of m = 406MeV. Being only a

funtion of � and � the spetrum of the bound-state mass squares M

2

i

(�;�) are then

alulated numerially | on numerial details see (Setion 4.3) and (Appendix E). For

the ground state (i=0) this is displayed as a ontour plot in (Fig1a). A similar graph

ould have also be given for the �rst exited state (i=1) or for any other eigenstate.

It goes without saying that suh plots an be generated easily only for a suÆiently

simple model, suh as the "#-model.

Aording to the general outline mentioned above, one must make sure that the mass

squared spetrum stays invariant, ÆM

2

i

(�;�) = 0 for in�nitesimal variations Æ�. This

an be ahieved by the following onstrution, by introduing a new funtion

R(Q;�) = R(Q;�) + C(Q;�): (4.4)

We extend the model interation by adding to the regulator funtion R a ounter term

C. We hoose this ounter term aording to three riteria. First, the new funtion R

must again be a regulator in the sense of (Appendix B.2). Seond, we require that a

zero is added for a partiular value of �, say for � = �

0

. Thus adding a ounter term

at � = �

0

will not hange the original interation at that point. Third, we require the

�rst �-derivative of R to vanish at � = �

0

. Beause a vanishing derivative of R at

� = �

0

implies vanishing derivatives of the eigenvalues M

2

i

with respet to � at this

very same point. The argument is based on the Hellmann-Feynman theorem, whih

states that an external parameter variation in the Hamiltonian has no e�et on the

orresponding wavefuntions but only on its eigenvalue spetrum. All three onditions

are met by

C(Q;�

2

) = �(�

2

� �

2

0

)

�R(Q;�

2

)

��

2

; (4.5)

where the derivative is to be taken at � = �

0

. The numerial results in (Fig1b) illustrate

this very onviningly that the Hamiltonian is partially renormalized ÆM

2

i

(�;�) = 0 in

the viinity of � � �

0

for all �.
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4. Expliit Renormalization

Figure 1: Nine ontours 0:4 � �

n

(�) � 1:0 are plotted versus 1:0 � �=� � 7:0 from bottom

to top with n = 4; 3; : : : ;�3;�4. The ontours are obtained by plotting the ground state of the

invariant mass-squared M

2

0

(�; �) = n�

2

+M

2

�

. The thik ontour n = 0 desribes the pion

with M

2

0

=M

2

�

. Masses are given in units of � = 350MeV.
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(a) The original (�; �)-ontours before a

renormalization at �

0

=� = 3:8
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(b) The (�; �)-ontours after a �rst order

renormalization at �

0

=� = 3:8

1.0 2.0 3.0 4.0 5.0 6.0 7.0
0.4

0.5

0.6

0.7

0.8

0.9

() The (�; �)-ontours after a seond or-

der renormalization at �

0

=� = 3:8
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(d) The (�; �)-ontours after a fourth or-

der renormalization at �

0

=� = 3:8

One an arry on the proedure to the next higher order

R(Q;�) = R(Q;�)� (�

2

� �

2

0

)

�R(Q;�

2

0

)

��

2

�

(�

2

� �

2

0

)

2

2!

�

2

R(Q;�

2

0

)

��

4

; (4.6)

with the result that the ontours as shown in (Fig1) beome broader. And so on. In

the limit of large order the ontours beome at, sine the renormalized regulator

R(Q;�) = R(Q;�)�

�

R(Q;�)�R(Q;�

0

)

�

= R(Q;�

0

); (4.7)

ismanifestly independent of �. One has realized the fundamental renormalization group

equation: dM

2

i

(�) = 0 for all eigenstates, sine the hoie of the above ounter terms

are universal and apply for every i. The above results represent thus a beautiful and

pedagogi example for how renormalization group works.
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4. Expliit Renormalization

The result sounds inredible: invent a regulator funtion R(Q;�) to be a funtion of

the ut-o� sale �. The same funtion but for � = �

0

is the renormalized regulator,

and the parameter �

0

is to be determined from experiment. Important to note is that

this result is only valid for regulating funtions whih have well de�ned derivatives

with respet to �. The sharp ut-o� (B.57), however, is a step funtion with ill de�ned

derivatives.

With �

0

we thus have one more parameter than the 7 bare parameters of the QCD-

Lagrangian: 6 avor quark masses and the oupling onstant. This is in full aord

with renormalization theory, sine whatever the model is, one has a sale at whih one

experiments.

4.2 T-matrix renormalization

For the purpose of presenting the subtration method of [16℄, its onvenient to onvert

the Shr�odinger equation (4.1) into the abstrat Dira-notation of quantum mehanis:

(M

2

0

+ V



+ V

Æ

)j�i =M

2

j�i; (4.8)

where the matrix elements in momentum spae of the free mass operator M

2

0

, the

Coulomb potential V



and the Dira-delta interation V

Æ

are identi�ed as

h

~

kjM

2

0

j

~

k

0

i = (4m

2

+ 4

~

k

2

) � Æ(

~

k �

~

k

0

);

h

~

kjV



j

~

k

0

i = �

8m

3�

2

�

(

~

k �

~

k

0

)

2

; h

~

kjV

Æ

j

~

k

0

i = �; (4.9)

where � is to be seen as an additional independent parameter of equation (4.1), repre-

senting the bare strength of the Dira-delta interation. Its inverse arries the dimension

of energy, as it was the ase of � in the previous subsetion. The drasti di�erene

between these two additional parameters is that � served as a regulating parameter,

while here, � will simulate arbitrary strenghts of the trouble making delta interation.

Next, we briey want to supply the essene of the subtration method, whih is per-

formed in the omplementary sattering piture of the Lippmann-Shwinger equation.

For this, let us solve equation (4.8) only with a pure delta interation, i.e. V



= 0,

whih, as said, makes (4.1) not well de�ned.

The relevant self-onsistent T -matrix equation for a sattering state of massM is given

by

T (M

2

) = V

Æ

+ V

Æ

G

+

0

(M

2

)T (M

2

); (4.10)

with

G

+

0

(M

2

) =

1

M

2

�M

2

0

+ i�

; (4.11)

as the Green funtion of the free mass operator equation with a outgoing wave boundary

ondition. The solution of the operator equation (4.10) in this simple ase is determined

by iteration and the subsequent summation of the orresponding geometrial series.
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4. Expliit Renormalization

As a result, the solution in the form of the matrix elements h

~

kjT (M

2

)j

~

k

0

i only depend

on the invariant mass squared M

2

:

h

~

kjT (M

2

)j

~

k

0

i =

1

�

�1

� I(M

2

)

� �(M

2

); (4.12)

with the funtion

I(M

2

) =

Z

d

3

k

1

M

2

� 4m

2

� 4k

2

+ i�

; (4.13)

whih diverges linearly! From a di�erent perspetive we see again that this is the

mathematial problem in (4.1) of having a delta interation in the kernel. How to give

meaning to �(M

2

)? We use the renormalization idea. Suppose �(�

2

) is known from

experiment, then we rewrite �(M

2

) using this piee of data:

�(M

2

) =

�

�

�1

(�

2

) + I(�

2

)� I(M

2

)

�

�1

; (4.14)

and now the subtration of the divergene appears! A loser look to

I(�

2

)�I(M

2

) = (M

2

��

2

)

Z

d

3

k

1

(�

2

� 4m

2

� 4k

2

+ i�)(M

2

� 4m

2

� 4k

2

+ i�)

; (4.15)

shows that it is �nite with � being the subtration point. Substituting (4.14) into (4.12)

the bare strength � an be written as a funtion

�(�

2

) =

1

�

�1

(�

2

) + I(�

2

)

=

1

1 + �(�

2

)I(�

2

)

�(�

2

); (4.16)

in whih the physial input and the ounter terms that subtrat all the in�nities in the

sattering matrix at the mass sale � are present. This is the essene of the subtration

method: the renormalized delta interation whih formally an be written as

V

Æ

R

(�

2

) = T (�

2

)

h

1 +G

+

0

(�

2

)T (�

2

)

i

�1

; (4.17)

with its matrix elements h

~

kjV

Æ

R

(�

2

)j

~

k

0

i = �(�

2

) results in a �nite T-matrix obtained by

solving the orresponding renormalized equation

T

R

(M

2

; �

2

) = V

Æ

R

(�

2

) + V

Æ

R

(�

2

)G

+

0

(M

2

)T

R

(M

2

; �

2

): (4.18)

Next, the physial input �(�

2

) = h

~

kjT (�

2

)j

~

k

0

i an be interpreted as a renormalized

Dira-delta strength �

R

(�

2

). To see this, we rewrite the above renormalized T-matrix

equation as

T

R

(M

2

; �

2

) = V

Æ

R

(�

2

)

�

1 +G

+

0

(M

2

)T

R

(M

2

; �

2

)

�

=

�

T

R

(M

2

; �

2

)G

+

0

(M

2

) + 1

�

V

Æ

R

(�

2

): (4.19)

Substituting (4.17) into the last equation, we now obtain the renormalized T-matrix

equation in the form of

T

R

(M

2

; �

2

) = T (�

2

) + T (�

2

)

�

G

+

0

(M

2

)�G

0

(�

2

)

�

T

R

(M

2

; �

2

): (4.20)
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We observe that this equation has the same operatorial form as the original renormal-

ized T-matrix equation (4.18), with the interation V

Æ

R

replaed by the physial input

at the mass sale �, and the original propagator replaed by a propagator whih has

a subtration at suh mass sale. The former allows to see the physial input as a

renormalized Dira-delta strength h

~

kjT (�

2

)j

~

k

0

i = �

R

(�

2

), while the latter manifestly

shows how the sattering equation (4.18) with the renormalized interation appears in

a subtrated form, in whih all divergent momentum integrals are expliitly removed.

Important to note is that, instead of working formally with the operator V

Æ

R

, one ould

have also used an ultraviolet momentum uto� � by de�ning in this way a regularized

interation. However, after the onstrution of the regularized T-matrix equation one

an perform the limit �!1, arriving at the same results as the ones obtained diretly

with the use of the renormalized interation.

To omplete the renormalization sheme we have to think about the renormalization

point itself, whih in this ontext is given by a subtration point �. As we know, the

subtration point is the sale at whih the sattering amplitude is known. But this point

is arbitrary in the de�nition of the renormalized interation and in priniple it an be

moved. On the other hand, a sensible theory of a singular interation, as here for the

delta interation exists only if the subtration point slides without a�eting the physis

of the renormalized theory. That means a Hamiltonian should have the property to

be stationary in the parametri spae of the subtration point. The renormalization

group method an be used to realize the invariane of physis under disloations of the

subtration point. This ondition demands the renormalized potential V

Æ

R

to be inde-

pendent on the subtration point. When applied on (4.17) the renormalization group

equation an be written as

d

d�

2

V

Æ

R

(�

2

) = 0 ()

d

d�

2

T (�

2

) = �T (�

2

)G

+

0

(�

2

)

2

T (�

2

); (4.21)

and is a presription how the renormalized oupling onstant �

R

(�

2

) has to hange as

the subtration point � moves. As long as the �rst order di�erential equation (4.21) is

satis�ed, it automatially follows from (4.18) that the renormalized T-matrix also does

not dependent on the subtration point T

R

(M

2

; �

2

) � T

R

(M

2

).

The subtration method as exempli�ed above for the pure delta interation, is now

applied to the e�etive model de�ned by the full mass operator of equation (4.8). The

orresponding sattering matrix omes from the solution of the sattering equation

T

R

(M

2

) = V

R

+ V

R

G

+

0

(M

2

)T

R

(M

2

); (4.22)

with the renormalized potential V

R

= V



+ V

Æ

R

, where the Coulomb interation is a

regular interation whih need not to be renormalized. In �nding the solution, we will

make use of the 2-potential formula as given in (D.126), where T

R

(M

2

) beomes

T

R

(M

2

) = T



(M

2

) +

�

1 + T



(M

2

)G

+

0

(M

2

)

�

� V

Æ

R

�

�

G

+

0

(M

2

)T

R

(M

2

) + 1

�

: (4.23)

The regular Coulomb T-matrix T



(M

2

) is the solution of the sattering equation (4.22)

for the pure Coulomb potential V



. Important to note is that the Coulomb T-matrix
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4. Expliit Renormalization

only shows its anomalous behaviour [11℄ in the alulation of sattering quantities, as

for example in the sattering amplitude or phase-shift, but not in its bound state region,

as we are interested in. We will see that the general proedure of identifying bound

states as poles of a T-matrix leads here to well-de�ned results.

We manipulate (4.23) further by multiplying on both sides with G

+

0

(M

2

) and solving

it we get

G

+

0

(M

2

)T

R

(M

2

) =

G

+

0

(M

2

)T



(M

2

) +G

+

(M

2

)V

Æ

R

1�G

+

(M

2

)V

Æ

R

; (4.24)

with the interating Green funtion de�ned as

G

+

(M

2

) = G

+

0

(M

2

) +G

+

0

(M

2

)T



(M

2

)G

+

0

(M

2

): (4.25)

Substituting (4.24) bak into (4.23) one �nally �nds the formal solution of the renor-

malized T-matrix as

T

R

(M

2

) = T



(M

2

) +

�

1 + T



(M

2

)G

+

0

(M

2

)

�

� t

R

(M

2

) �

�

G

+

0

(M

2

)T



(M

2

) + 1

�

; (4.26)

with the redued matrix elements

h

~

kjt

�1

R

(M

2

)j

~

k

0

i = h

~

kj(V

Æ

R

)

�1

�G

+

(M

2

)j

~

k

0

i � �

�1

R

(�

2

) + h

~

kjG

+

0

(�

2

)�G

+

(M

2

)j

~

k

0

i;

where in the last identity (4.17) has been used. Instead of using �

�1

R

(�

2

) as the physial

input, its onvenient to introdue a new input variable

�

�1

R

(�

2

) = �

�1

R

(�

2

)� h

~

kjG

+

0

(�

2

)T



(�

2

)G

+

0

(�

2

)j

~

k

0

i; (4.27)

whih leads to the more symmetrial expression of

h

~

kjt

�1

R

(M

2

)j

~

k

0

i = �

�1

R

(�

2

)� h

~

kjG

+

(M

2

)�G

+

(�

2

)j

~

k

0

i: (4.28)

The physial input is onstruted as follows: if for example we take the pion mass at

M = m

�

� 140MeV the T-matrix (4.26) should have a bound-state pole; onsequently

t

�1

R

(m

2

�

) = 0; (4.29)

and hoosing the subtration point for onveniene as � = m

�

, implies

�

�1

R

(m

2

�

) = 0: (4.30)

Finally, the invariane of the renormalized T-matrix (4.26) under disloation of the

subtration point just reads as

d

d�

2

t

R

(M

2

) = 0 ()

d

d�

2

�

�1

R

(�

2

) =

d

d�

2

h

~

kjG

+

(�

2

)j

~

k

0

i: (4.31)

The solution of this di�erential equation gives the dependene of the physial input �

R

on the subtration point �, whih must run as

�

�1

R

(�

02

) = �

�1

R

(�

2

) + h

~

kjG

+

(�

02

)�G

+

(�

2

)j

~

k

0

i: (4.32)
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4.3 Numerial evaluation

To �nd all s-wave bound-statesM

n

of the ounter-term renormalized Shr�odinger equa-

tion (4.2), we have to solve the following s-wave projeted integral equation

�

M

2

n

� 4m

2

� 4k

2

�

�

n

(k) = 2� �

Z

1

0

dk

0

k

02

� U(k; k

0

) � �

n

(k

0

); (4.33)

with the attrative kernel

U(k; k

0

) = �

4

3�

2

�

m

Z

1

�1

dos#

 

2m

2

(

~

k �

~

k

0

)

2

+

�

2

0

�

2

0

+ (

~

k �

~

k

0

)

2

!

: (4.34)

The unique �xing of the three unknown parameters to experiment will be done in the

next setion. For further numerial details on how an equation as above is solved

orretly, espeially how the trouble making momentum spae Coulomb singularity at

k = k

0

in (4.34) is properly treated, one should onsult (Appendix E).

On the other hand, in order to �nd all s-wave bound-states M

n

of the subtration

renormalized Lippmann-Shwinger equation, we have to determine the zeros of (4.28)

0 = G

+

(M

2

n

)�G

+

(M

2

); (4.35)

whereM represents the physial input, whih will be �xed in the next setion as well.

Aording to (4.25) this equation expliitly reads as

0 =

Z

1

0

dk k

2

�

�

1

M

2

n

�M

2

0

(k)

�

1

M

2

�M

2

0

(k)

�

+

Z

1

0

dk

Z

1

0

dk

0

k

2

k

02

�

�

T



(k; k

0

;M

2

n

)

(M

2

n

�M

2

0

(k)) � (M

2

n

�M

2

0

(k

0

))

�

T



(k; k

0

;M

2

)

(M

2

�M

2

0

(k)) � (M

2

�M

2

0

(k

0

))

�

: (4.36)

The free invariant mass for the two quark system of equal masses isM

0

(k) = 4m

4

+4k

2

,

whereas the s-wave projeted T-matrix of the pure Coulomb potential in (4.36) is the

solution of the integral equation

T



(k; k

0

;M

2

) = V



(k; k

0

) +

Z

1

0

dq q

2

V



(k; q)

1

M

2

�M

2

0

(q)

T



(q; k

0

;M

2

); (4.37)

with V



(k; k

0

) as the s-wave projeted Coulomb potential

V



(k; k

0

) = 2� �

Z

1

�1

dos# h

~

k

0

jV



j

~

ki = �

16m�

3�

Z

1

�1

dx

1

k

2

+ k

02

� 2kk

0

� x

: (4.38)

The angle integration above is evaluated numerially. Using Gaussian quadrature this

ensures us not to run into the logarithmi momentum spae singularity of the Coulomb

potential at k = k

0

. The numerial results of the above equations turn out to be stable,
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when using about 250 integration points, in stark ontrast to a stable integration of

only about 16 points for the ounter-term renormalized integral equation (4.33). There

we perform the angle integration (4.34) analytially and then making use of so-alled

numerial ounter terms as shown in (Appendix E), whih unfortunately an not be

applied to an integral equation like (4.37). The drasti di�erene in the onvergene of

�nding a bound-state an also be understood from a more fundamental level: equation

(4.33) is a pure bound-state equation, while (4.36) is a sattering equation designed to

determine bound-states, thus being from beginning at a disadvantage.

Nevertheless, the numerial stability of �nding bound-states within the renormalized T-

matrix equation, expliitly shows that the pure Coulomb T



-matrix (4.37) will produe

no anomalies if we fous only on its bound-state part, whih is embedded into equation

(4.36). We an onlude, that we do not really need the exat trouble making diagonal

terms T



(k; k), in order to evaluate the zeros of (4.36) properly. This ertainly does not

hold for the sattering region of T



, sine here the diagonal elements must be exatly

available for alulating relevant sattering quantities, like a phase shift in (E.35).

4.4 Comparing renormalization shemes

Here we ompare the results obtained with the ounter-term renormalization, and the

T-matrix renormalization. In other words, we ompare the numerial results of (4.33)

and (4.36) respetively.

Both renormalization methods will make use of the same physial input, namely that

of the pion M

0

= M

�

� 140MeV as the lowest bound-state (ground state), and that

of the rho M

1

=M

�

� 768MeV as the seond lowest bound-state (�rst exited state).

To ensure that our equations produe the pion and rho as true bound-states, we have

to hoose a relatively large quark mass. For no good reason other than onveniene,

we will �x for the rest of this setion the quark mass at m = 406MeV, as it was used

in the alulations of [6℄. The sattering threshold is thus at M = 812MeV.

In one set of alulations, � will be varied, with �xed M = M

0

= 140MeV. In the

other set of alulations, M = M

1

= 768MeV will be kept �xed. For equation (4.33)

the value of �

0

will be �tted to that of M

0

or M

1

for a given �.

In (Fig2a), the results of M

1

as a funtion of � and �xed M

0

= 140MeV for the two

renormalization methods are shown. The agreement between these two is within few

perent, whih we relate to their rather drasti oneptual di�erene. As an be seen in

(Fig1a), the values of �

0

for � going to zero inrease towards in�nity, to keep the ground

state at the pion mass M

1

= 140MeV, while M

1

tends to the sattering threshold at

812MeV, as we observe in (Fig2a). For inreasing � the value of �

0

dereases to

keep M

0

= 140MeV �xed, implying a Coulomb dominated M

1

, whih therefore has to

derease as well.

The results forM

0

as a funtion of � for �xedM

1

= 768MeV, are presented in (Fig2b).

The threshold for zero pion mass ours for � at a value of about 0:75. The value ofM

0

inreases with �, orresponding to a dereasing binding energy, whih means that the

intensity of the short-range interation, that dominates the ground state, diminishes.

In fat, to keep onstantM

1

= 768MeV as the e�etive Coulomb interation inreases,

demands a weaker short-range interation. The alulation of M

0

with the ounter-
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Figure 2:

0.0 0.5 1.0 1.5
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(a) The �rst exited state mass M

1

(MeV)

is plotted versus � for a �xed ground

state mass of M

0

= 140MeV. The dashed

urve gives the results from the ounter-

term renormalized equation (4.33), the

empty boxes from the T-matrix renormal-

ized equation (4.36).
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(b) The ground state mass M

0

(MeV) is

plotted versus � for a �xed �rst exited

state mass of M

1

= 768MeV. The solid

urve gives the results from the ounter-

term renormalized equation (4.33), while

the empty irles give the results from

the T-matrix renormalized equation (4.36).

The upper urve with its empty boxes is

the one of (Fig2a).

term renormalized equation (4.33) does not go beyond � = 0:97 beause �

0

vanishes

and the mass of 768MeV of the exited state is reprodued with the e�etive Coulomb

interation. The T-matrix renormalized equation (4.36) does not present the same

limitation.

Conlusion: We have shown that two drastially di�erent renormalization shemes, or

even two omplementary renormalization shemes, both oneptually and numerially,

agree. Here we provide a simple example, that the physis of a renormalized theory

does not reognize the intermediate steps one performs to mathematially de�ne the

initial unde�ned theory.

34



5. The Renormalized Singlet-Triplet (ST)-model

5 The Renormalized Singlet-Triplet (ST)-model

The expliit renormalization of the "#-model (4.2) an be easily applied to the more

general ST-model (3.10), whih in the form of the `non-relativisti' Shr�odinger equation

then simply reads

�

E �

k

2

2m

r

�

�(

~

k) = �

�



2�

2

Z

d

3

k

0

V (q

2

)R(q

2

; �)�(

~

k

0

);

with V (q

2

) =

1

q

2

+ �; and � =

8

<

:

1

2m

1

m

2

for singlet;

0 for triplet:

(5.1)

As was derived in the previous setion, the renormalized regulator R(q

2

;�

0

= �) is

arbitrary in the sense that we only demand an asymptotial drop faster than 1=q

2

and

the behaviour R! 1 in the opposite limit of q

2

! 0. Up to now, the parameters to be

determined by experiment is the renormalization sale �, the six e�etive quark masses

m

f

and the e�etive olor oupling onstant �



= 4=3�.

On how good the above equation simulates the mass spetrum of avor o�-diagonal

pseudo-salar and vetor mesons, one has to alulate a onrete example by hoosing

a spei� regulator funtion. One possible hoie would be the soft ut-o�

R(q

2

; �) = R

0

(q

2

; �) =

�

2

�

2

+ q

2

; (5.2)

whih immediately implies the usage of a more general ut-o�, �rst introdued in [5℄

R(q

2

; �) =

"

1 +

N

X

n=1

(�1)

n

s

n

�

n

�

n

��

n

#

R

0

(q

2

; �) � D

N

�

R

0

(q

2

; �); (5.3)

ful�lling the requirements of a regulator as well. The arbitrary oeÆients s

1

; : : : ; s

N

are dimesionless and thus renormalization group invariants. Unsatisfatory is that

they are additional parameters, whih also need to be �tted to experiment. But by

looking more losely at the potential in oordinate spae, as well as using the fat that

lower meson states show a reasonable agreement between theory and experiment if a

pure harmoni osillator potential is used [8℄, the number of parameters given by the

oeÆients s

n

, an then be redued from N down to 2. Following the line of [5℄, this

will be shown next.

The potential in oordinate spae is given by the Fourier transform

V (r; �) = �

�



2�

2

Z

d

3

qe

�i~q�~r

V (q

2

)R(q

2

; �): (5.4)

It splits up into the triplet potential

V

t

(r; �) = �

�



2�

2

� D

N

�

Z

d

3

q

e

�i~q�~r

q

2

R

0

(q

2

; �)

�

�



r

� D

N

�

S(r; �); with S(r; �) = �

2

�

Z

1

0

dq

sin(qr)

q

R

0

(q

2

; �); (5.5)
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and into its singlet potential

V

s

(r; �) = �

�



2�

2

� D

N

�

Z

d

3

q e

�i~q�~r

�

�

1

q

2

+ �

�

�R

0

(q

2

; �)

=

�



r

� D

N

�

S(r; �)�

�



�

r

� D

N

�

�

2

S(r; �)

�r

2

= V

t

(r; �)�

�

r

�

�

2

�r

2

[r � V

t

(r; �)℄ : (5.6)

We learly see that the singlet potential is fully determined by the triplet potential. In

this sense we will investigate only the triplet potential in more detail, sine a �xing of

V

t

(r; �) automatially determines V

s

(r; �) aording to the above relation.

5.1 Triplet potential

It is onvenient to work with a dimensionless radius R = �r and a dimensionless triplet

potential by de�ning

W (r; �) :=

V

t

(r; �)

��



: (5.7)

Performing the integration and the relevant derivatives one obtains

W

N

(R) =

1

R

�

� 1 +D

N

R

e

�R

�

=

1

R

�

� 1 + e

�R

h

1 +

N

X

n=1

s

n

R

n

i�

: (5.8)

Sine the exponential deays faster than any power at large R, the asymptoti behavior

is always like W

N

� �1=R independent of the numerial value of the oeÆients s

n

.

Thus the arbitrariness of the potential only lies within small R. This behaviour is

universal and applies to all possible regulators R

0

(q

2

; �) one puts into (5.1). It is fully

in aord with the regularization sheme given in momentum spae: the arbitrariness

of regularizing a systems high momenta or energies leads to an arbitrariness in the

behaviour at small distanes.

Inspired by [8℄ we use this arbitrariness for small R of W

N

, by requiring it to be an

osillator potential up to N -th order

W

N

(R) = a+ b �R

2

+O(R

N

): (5.9)

The oeÆients s

n

are determined by a series expansion of W

N

around its regular

origin. Thus the number of parameters given by the oeÆients s

n

is now redued to

only two oeÆients a and b to be �xed by experiment: s

n

= s

n

(a; b) being

s

1

= 1 + a; s

2

=

1

2

+ a;

and s

n

=

1

n!

+

a

(n� 1)!

+

b

(n� 3)!

; for n � 3: (5.10)
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In the osillator model of [8℄ there are two universal parameters in the triplet potential

V

h.o.

(r) = 

t

+

1

2

f

t

� r

2

. Comparing with the onventions above,

V

t

(r; �) = �



� � [a+ b �R

2

℄

R=�r

; (5.11)

we �nd



t

= �



�a; f

t

= 2�



�

3

b: (5.12)

In addition to the two osillator parameters, the quark masses have to be �xed as well.

In our alulations we will exlude the top-quark, sine for suh mesons no reliable data

is available up to now [3℄. Furthermore, we put the mass of the up-quark equal the mass

of the down-quark. And sine the triplet potential should desribe avor o�-diagonal

vetor mesons, we an �x these six unknowns: m

u

,m

s

,m



,m

b

and 

t

,f

t

by using the

following six experimentally inspired (Appendix F) invariant masses in GeV

M

u

�

d

= 0:775; M

u�s

= 0:891; M

u�

= 2:010; M

u

�

b

= 5:325;

M

�

u

�

d

= 1:450; M

�

u�s

= 1:569; (5.13)

where the star represents its �rst exited state from the ground state of the relevant

avor setor. The �xing itself is now done by using the simple binding energy formula

for the harmoni osillator, whih on the light-one has the form

M

2

n

= m

2

s

+ 2m

s

�E

n

= m

2

s

+ 2m

s

�

�



t

+ (2n+

3

2

) � !

�

= (m

1

+m

2

)

2

+ 2(m

1

+m

2

) �

�



t

+ (2n+

3

2

)

r

m

1

+m

2

m

1

m

2

�

p

f

t

�

; (5.14)

where in the last line ! =

p

f

t

=m

r

has been used. For the ground state the index n = 0,

while for the �rst exited state n = 1 must be taken. As a result we have to deal with

6 non-linear equations, whih an be split up into 4 oupled equations for m

u

,m

s

,

t

,f

t

to be solved �rst, and then 2 unoupled equations for m



,m

b

. For the values as in

(5.13) the above equations have indeed a unique solution, whih numerially an be

determined as

m

u

= m

d

= 0:426; m

s

= 0:596; m



= 1:811; m

b

= 5:153 [GeV℄



t

= �0:735 GeV; f

t

= 0:0414 GeV

3

: (5.15)

Up to the N -th order, the triplet potential (5.11) is now uniquely determined, while the

asymptotial and mid-range struture of the omplete potential (5.7) is still ambiguous.

There are in�nite many ways how to hoose the parameters a, b, � and �



to satisfy the

onditions (5.12) with the values of (5.15). A great part of this ambiguity is removed

by the reent renormalization proedure found for the e�etive oupling onstant [14℄.

For given e�etive quark masses as above, and hoosing � = 0:2GeV (orresponding

roughly to an experimental sale of r = 1fm), the e�etive oupling onstant for a

typial bound-state alulation (Feynman 4-momentum transfer Q

2

� 0) takes on the

value

� � �

s

(0) = 0:1716: (5.16)
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Figure 3:
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(a) The triplet potential V

t

(r;N) is plotted

versus r for N = 8; 7; 6; 5; 4 (top to bot-

tom). All of them have the same harmoni

approximation (dashed) with the �rst �ve

eigenvalues for ud-mesons.
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(b) The singlet potential V

s

(r;N) for ud-

mesons is plotted versus r for the values of

N = 8; 7; 6; 5; 4 (top to bottom) and their

harmoni approximation (dashed) with the

�rst �ve eigenvalues.

Together with �



= 4=3�, the parameters a and b an now be nailed down unambigu-

ously to the values

a = �16:053 and b = 11:298 (5.17)

With these values (Fig3a) shows V

t

for several N together with their harmoni approx-

imation. The Figure demonstrates the harmoniity of the funtions, whih grows with

inreasing N . The funtions also have a barrier whih grows with inreasing N , after

whih they tend to their asymptoti values �1=r. The latter an almost not be seen on

the big sales of (Fig3a). The last onstraint on the barrier height is �xed, by varying

N until we have a satisfying agreement with experiment. As we will see later on,

N = 8; (5.18)

is a reasonable hoie. For N < 8 the harmoni approximation is so bad that the

lowest states whih were used to �x the parameters are to far o�. And for N > 8 we

are already nearly bak to the pure osillator model [8℄.

Now all parameters of the triplet potential are �xed, but before we turn to solving

the bound and sattering region of the full ST-potential, we �rst want to illustrate the

struture of the singlet potential.
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5. The Renormalized Singlet-Triplet (ST)-model

5.2 Singlet potential

Aording to (5.6) the singlet potential is fully determined by the knowledge of the

triplet potential, whih again was �xed uniquely in the previous setion. In other

words, we absolutely have no freedom of varying the struture of the singlet potential

independently from that of the triplet potential. The only pure singlet parameter

� = 1=2m

1

m

2

is already �xed by the mass parameters of the previous setion. Looking

at its expansion in r up to N -th order in the triplet potential

V

s

(r) = V

t

(r)�

�

r

�

�

2

�r

2

[r � V

t
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=

h
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+

1

2

f
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� r

2

+O(r

N
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r

�

�

2

�r

2

h



t

� r +

1

2

f

t

� r

3

+O(r

N+1

)

i
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s

+

1

2

f

t

� r

2

+O(r

N�2

); with 

s

= 

t

� 3� � f

t

; (5.19)

also leads to an harmoni approximation in the singlet potential, but only up to the

order of N -2. Furthermore, it has the same frequeny !

2

= f

t

=m

r

as the harmoni

triplet approximation, but starts with a deeper lying o�-set 

s

< 

t

. (Fig3b) shows the

singlet potential for ud-mesons with the same parameters as used in (Fig3a).

5.3 Numerial solution

For alulating the bound states of the omplete ST-potential with the parameters given

above, we see in (Fig3) that the attrative Coulomb part on these sales is so weak that

its nearly of no interest for us. In this sense we an asymptotially hange the Coulomb

interation by using a shielded one of a Yukawa-type. This really is a help to redue

the amount of numerial work, sine it guarantees us not to run into the numerial

Coulomb singularity (Appendix E). The same argument also holds for the sattering

region of the potential. As we have shown in (Appendix D), the asymptotial part of

an attrative Coulomb-like potential does not ontribute to the pure resonant part of

a ross-setion. Changing the troublesome Coulomb interation in the asymptotial

region to a more well-de�ned interation like a Yukawa interation, will only have an

e�et on bakground sattering but not on the determination of resonanes, as we are

interested in.

The problem we fae, is thus to hange the potential only asymptotially and not to

e�et the rest, in other words only the pure Coulomb part of the potential should

be hanged. Sine we originally work in momentum spae the hange is arranged as

follows:

V (q

2

) �R(q

2

; �) =

�

1

q

2

+ �

�

� D

N

�

R

0

(q

2

; �)

� V

t

(q

2

) �R(q

2

; �) + � � D

N

�

R

0

(q

2

; �): (5.20)
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We learly see that the entire Coulomb part of the potential an be hanged within the

pure triplet setion

V

t

(q

2

) �R(q

2

; �) =

1

q

2

� D

N

�

R

0

(q

2

; �)

�

1

q

2

�

1

q

2

h

1�D

N

�

R

0

(q

2

; �)

i

'

1

�

2

+ q

2

�

1

q

2

h

1�

e

D

N

0

�

R

0

(q

2

; �)

i

; up to N

0

-th order; (5.21)

where the last requirement for N

0

� N in oordinate spae

1

R

�

� 1 +D

N

R

e

�R

�

!

=

1

R

�

� e

��R

+

e

D

N

0

R

e

�R

�

; (5.22)

in the sense of a Taylor expansion up to N

0

-th order with � = �=�, �xes the new

oeÆients t

n

= t

n

(�)

t

1

= 1� � + a; t

2

=

1

2

(1� �)

2

+ a;

t

n

=

1

n!

(1� �)

n

+

a

(n� 1)!

+

b

(n� 3)!

; for 3 � n � N;

and t

n

=

(��)

n

n!

+

n�1

X

i=1

(�1)

n+i

s

i

� t

i

(n� i)!

; for N � n � N

0

and s

i >N

= 0: (5.23)

for the �-dependent di�erential operator

e

D

N

0

R

:= 1 +

P

N

0

n=1

(�1)

n

t

n

R

n

�

n

R

. Sine the

Coulomb shielding parameter � is dimesionless, it ats as a renormalization invariant.

Furthermore, the smaller � is hosen the less orretion terms one needs. In the follow-

ing we will �x � = 0:1, in whih ase it is suÆient to add four more orretion terms,

that means N

0

= 12 if N = 8.

If we now start a s-wave bound-state alulation of the Coulomb-shielded ST-potential,

it gives us a �nite set of possible states. By onstrution it is not able to reate the

in�nite number of Coulomb-like bound-states. Due to their nearly vanishing energy, as

an be seen in (Fig3), we were allowed to adjust the Coulomb tail by a Yukawa shield.

On the other hand, for the alulation of possible resonane states, we have prepared

the theory in (Appendix D) to do a sattering experiment in momentum spae, in

other words by alulating the relevant sattering quantities like phase-shift and ross-

setion in momentum spae. Unfortunately, when performing these alulations we

an not resolve the resonane spetrum. Due to its very broad and high barrier, the

ST-potential as in (Fig3) reates so long-lived resonanes as ompared to the hadroni

interation times of about 10

�24

se, that they nearly an be treated as bound-states.

The width and the orresponding lifetime of possible resonanes we an easily estimate

by using the semi-lassial WKB-method [32℄ for the tunneling probability, given as

T (E) � e

�S

; with S = 2

Z

r

2

r

1

dr

p

2m

r

jV (r)�Ej: (5.24)

40



5. The Renormalized Singlet-Triplet (ST)-model

Figure 4:
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(a) The triplet phase shift for ud-mesons

with the same parameter set as given in

the previous setion, is plotted in the mo-

mentum region of 1:2 � k � 1:8, orre-

sponding to the sattering energy of about

3:5 � E � 7:5. Units are given in GeV.
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(b) The triplet ross setion for ud-mesons

with the same parameter set as given in

the previous setion, is plotted in the mo-

mentum region of 1:2 � k � 1:8, orre-

sponding to the sattering energy of about

3:5 � E � 7:5. Units are given in GeV.

S will be the ation integral in units of �h =  = 1, while E � 0 is the energy of

the sattering partile and r

1

� r

2

its lassial turning points. In order to establish

a onnetion between the tunneling probability and the lifetime of the partile, we

imagine in a more lassial sense that the partile bounes bak and forth within the

potentials barrier between r

1

and r

2

and that with every boune the partile has the

probability T (E) to penetrate through the barrier. The time between two bounes is

t

0

=

2(r

2

� r

1

)

v

; (5.25)

with v =

p

2E=m

r

being the veloity of the partile. Sine the partile needs in the

mean 1=T bounes to penetrate the barrier, it makes sense to de�ne

� �

t

0

T

; (5.26)

as the lifetime of the partile, giving �nally the energy width of a resonane as � = 1=� .

For the width in momentum plane we use (D.84) to get  = �=2v. A numerial

evaluation of (5.24) shows that for a possible resonane loated at E = 7GeV in

(Fig3a), the width is �

7

= 6 � 10

�6

GeV (�

7

� 3 � 10

�11

se), while for E = 6GeV it

already shrinks down to �

6

= 1 � 10

�12

GeV (�

6

� 2 � 10

�4

se). In order to resolve

a resonane between these to two energy values in a diagram like a ross-setion one

needs at least a grid size of �

6

. But this requires a huge amount of omputational time,

making here the sattering method for alulating resonanes useless. (Fig4) shows the

phase-shift and the ross-setion for a grid size of 10

�4

GeV, and as expeted the only

struture present is bakground sattering.
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Conlusion: To �nd these resonanes one should not use sattering tehniques. More

promising would be to use bound-state tehniques.

Unfortunately the bound-state method desribed in (Appendix E) does not lead to any

suess. First of all, we are not able to determine the resonane via reading o� the

struture of a wavefuntion, sine we do not know what spei� feature a wavefuntion

in momentum spae must show in order to be a resonant wavefuntion. Seond, we an

not read it o� on the positive ontinuum eigenvalues, by looking at stable eigenvalues

when varying the dimension of the diagonalization spae, sine an inrease in spae is

diretly linked to an inrease in integration points and thus will show no other e�et

than having a better agreement on the relationship E = k

2

=2m

r

. Looking for stable

eigenvalues in the ontinuum an only work if the spae within one solves the bound-

state equation an be varied independently from the the number of integration points.

All in all one has to use alternative momentum spae bound-state tehniques. Inspired

by the alulations of [17℄, a promising tehnique is the basis funtion method. We

shall use the simplest momentum spae Shr�odinger equation, the s-state equation to

illustrate the priniples of this method. The momentum spae Shr�odinger equation is

related to an integral equation of the form

Z

1

0

dp

0

p

02

K(p

0

; p)�(p

0

) = E�(p); (5.27)

where the kernel K(p

0

; p) is symmetri under exhange of p and p

0

. The idea is now to

expand the wave funtion in a suitable set of basis funtion fg

i

g whih of ourse has

to be trunated at �nite N

�(p) =

N

X

i=1



i

g

i

(p); (5.28)

where 

i

are onstant oeÆients. Substituting this expansion into (5.27)

N

X

i=1



i

Z

1

0

dp

0

p

02

K(p

0

; p)g

i

(p

0

) = E

N

X

i=1



i

g

i

(p); (5.29)

and symmetrizing over i and j by multiplying with p

2

g

i

(p) and integrating over p

N

X

i=1



i

Z

1

0

Z

1

0

dp

0

dp p

02

p

2

K(p

0

; p)g

i

(p

0

)g

j

(p)

| {z }

A

ij

= E

N

X

i=1



i

Z

1

0

dp p

2

g

i

(p)g

j

(p)

| {z }

B

ij

; (5.30)

yields the matrix equation

N

X

i=1

A

ij



i

= E

N

X

i=1

B

ij



i

; (5.31)

whih is symmetri under the exhange of i and j. Then instead of solving for the wave

funtions, one solves for its expansion oeÆients.
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5. The Renormalized Singlet-Triplet (ST)-model

Aording to [18℄ this matrix equation is a generalized eigenproblem

A �  = EB � ; (5.32)

where  is the eigenvetor and E the same eigenvalue as the original equation (5.27).

In addition to the symmetry ondition of the matries A and B, the latter must also

be positive de�nite to ensure that the eigenvalues are all real. For more details on this

and how to solve the equation via a symmetri diagonalization one an onsult [18℄.

The matrix equation an be simpli�ed drastially if its possible to hoose suh a set of

basis funtions that B beomes the unity matrix: B

ij

= Æ

ij

. We then have an ordinary

symmetrial eigenvalue equation that an be solved as usual.

Clearly, the big advantage of this basis funtion method is that diagonalization and

integration represent two di�erent spaes whih an be varied independently in their

dimension, thus as already told, making it ideal for searhing at stable eigenvalues in

the ontinuous spetrum of an system. Furthermore, the auray of this tehnique

depends very muh on the hoie of the expansion funtions g

i

(p). Obviously, one will

be inlined to hoose funtions suitable to the physial problem being studied. In our

ase the best hoie is ertainly to take the radial s-wave harmoni osillator funtions

g

i

(p) = R

i

(p), whih in momentum spae

R

i

(p) = Z

i

� e

�

1

2

�

2

p

2

� L

(

1

2

)

i

(�

2

p

2

); with 1=�

2

= m

r

!; (5.33)

for (i=0,1,2,. . . ) are of idential struture as in oordinate spae, namely orrelated to

the generalized Laguerre funtions

u

(�)

i

(x) = N

(�)

i

� x

�=2

� e

�x=2

� L

(�)

i

(x); with N

(�)

i

=

s

�(1 + i)

�(1 + i+ �)

; (5.34)

whih form an orthonormal

Z

1

0

dxu

(�)

i

(x) � u

(�)

j

(x) = Æ

ij

; (5.35)

and omplete set

1

X

i=0

u

(�)

i

(x) � u

(�)

i

(x

0

) = Æ(x� x

0

); (5.36)

of funtions. The harmoni osillator funtions in momentum spae are given by the

speial ase � =

1

2

and x = �

2

p

2

. With these values the orthonormal ondition an be

written as

Æ

ij

= N

(

1

2

)

i

�N

(

1

2

)

j

�

Z

1

0

d(�

2

p

2

) �p � e

��

2

p

2

� L

(

1

2

)

i

(�

2

p

2

) � L

(

1

2

)

j

(�

2

p

2

);

=

e

N

i

�

e

N

j

�

Z

1

0

dp p

2

� e

��

2

p

2

L

(

1

2

)

i

(�

2

p

2

) � L

(

1

2

)

j

(�

2

p

2

); (5.37)

meaning that with the normalization hoie of Z

i

=

e

N

i

= �

p

2� � N

(

1

2

)

i

in the basis

funtions of (5.33) will lead to the simplifying result of B

ij

= Æ

ij

in (5.30).
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5. The Renormalized Singlet-Triplet (ST)-model

When testing the Basis-Funtion-ode, numerial stability within 5 digits of preision

for the �rst 4 eigenvalues is already ahieved by using eight basis funtions N = 8 and

128 gaussian integration points.

5.4 Comparing with experiment

At last we an represent the alulated energy eigenvalues and the orresponding in-

variant mass eigenvalues of the omplete renormalized ST-potential (5.1).

The following tables show a typial output in GeV for every avor ombination. The

seond and third line of eah table are the numerial alulations for the �rst eigen-

values, while the fourth line is an attempt to identify the relevant mesons with our

ST-model. Their preise experimental values are listed in (Appendix F). The lower

part of eah table shows the analytial eigenvalues of the pure harmoni osillator. The

singlet data is given on the left, triplet data on the right of eah setor.

Table 1: ud-mesons [GeV℄

n

2S+1

L

J

1

1

S

0

jj 1

3

S

1

2

1

S

0

jj 2

3

S

1

3

1

S

0

jj 3

3

S

1

4

1

S

0

jj 4

3

S

1

E

n

�0:414 jj �0:074 0:470 jj 0:803 1:351 jj 1:671 2:221 jj 2:523

M

n

0:140 jj 0:774 1:236 jj 1:447 1:740 jj 1:890 2:124 jj 2:242

Exp. �

�

jj �(770) �(1300) jj �(1450) �(1800) jj �(1900) | jj |

M

HO

n

0:134 jj 0:775 1:233 jj 1:450 1:738 jj 1:898 2:127 jj 2:260

Table 2: us-mesons [GeV℄

n

2S+1

L

J

1

1

S

0

jj 1

3

S

1

2

1

S

0

jj 2

3

S

1

3

1

S

0

jj 3

3

S

1

4

1

S

0

jj 4

3

S

1

E

n

�0:366 jj �0:123 0:451 jj 0:690 1:264 jj 1:495 2:069 jj 2:289

M

n

0:544 jj 0:891 1:402 jj 1:567 1:905 jj 2:025 2:296 jj 2:392

Exp. K

�

jjK

�

(892) K(1460) jjK

�

(1680) K(1830) jj | | jj |

M

HO

n

0:543 jj 0:891 1:401 jj 1:569 1:905 jj 2:032 2:302 jj 2:408
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5. The Renormalized Singlet-Triplet (ST)-model

Table 3: This is an illustrative presentation of the Tables 1&2. The dotted lines are the

alulated mass values whih are shown next to the experimental measured mass values. The

three vetor mesons �(1700), �(2150) and K

�

(1410) (labeled with an empty irle) might be

D-wave mesons [3℄, while the salar meson K(1630) (labeled with an empty triangle) might not

be a pseudo-salar, sine the value of J

P

is still unknown [3℄.

π ρ K K*
0

400

800

1200

1600

2000

M
 [

M
e
V

]

Table 4: u-mesons [GeV℄

n

2S+1

L

J

1

1

S

0

jj 1

3

S

1

2

1

S

0

jj 2

3

S

1

3

1

S

0

jj 3

3

S

1

E

n

�0:296 jj �0:215 0:396 jj 0:476 1:085 jj 1:163

M

n

1:919 jj 2:010 2:603 jj 2:671 3:140 jj 3:195

Exp. D

�

jjD

�

(2010) | jjD

�

(2640) | jj |

M

HO

n

1:919 jj 2:010 2:604 jj 2:672 3:143 jj 3:200
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5. The Renormalized Singlet-Triplet (ST)-model

Table 5: s-mesons [GeV℄

n

2S+1

L

J

1

1

S

0

jj 1

3

S

1

2

1

S

0

jj 2

3

S

1

3

1

S

0

jj 3

3

S

1

E

n

�0:337 jj �0:279 0:270 jj 0:327 0:875 jj 0:931

M

n

2:043 jj 2:109 2:664 jj 2:714 3:163 jj 3:205

Exp. D

�

s

jjD

�

s

D

s

(2573)jj | | jj |

M

HO

n

2:043 jj 2:110 2:664 jj 2:716 3:166 jj 3:209

Table 6: This is an illustrative presentation of the Tables 4&5. The dotted lines are the

alulated mass values whih are shown next to the experimental measured mass values.

D D* D
s

D
s
*

1500

1800

2100

2400

2700

3000

M
 [
M

e
V

]
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5. The Renormalized Singlet-Triplet (ST)-model

Table 7: ub-mesons [GeV℄

n

2S+1

L

J

1

1

S

0

jj 1

3

S

1

2

1

S

0

jj 2

3

S

1

E

n

�0:277 jj �0:248 0:371 jj 0:399

M

n

5:295 jj 5:325 5:938 jj 5:964

Exp. B

�

jjB

�

| jj |

M

HO

n

5:295 jj 5:325 5:939 jj 5:966

Table 8: sb-mesons [GeV℄

n

2S+1

L

J

1

1

S

0

jj 1

3

S

1

2

1

S

0

jj 2

3

S

1

E

n

�0:337 jj �0:317 0:218 jj 0:238

M

n

5:401 jj 5:422 5:963 jj 5:983

Exp. B

s

jjB

�

s

| jj |

M

HO

n

5:401 jj 5:423 5:964 jj 5:983

Table 9: b-mesons [GeV℄

n

2S+1

L

J

1

1

S

0

jj 1

3

S

1

2

1

S

0

jj 2

3

S

1

E

n

�0:478 jj �0:471 �0:125 jj �0:119

M

n

6:469 jj 6:476 6:838 jj 6:844

Exp. B



jj | | jj |

M

HO

n

6:469 jj 6:476 6:836 jj 6:843
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5. The Renormalized Singlet-Triplet (ST)-model

Table 10: This is an illustrative presentation of the Tables 7, 8 and 9. The dotted lines are

the alulated mass values whih are shown next to the experimental measured mass values.

B B* B
s

B
s
* B

c

5000

5400

5800

6200

6600

7000

M
 [
M

e
V

]

Disussion: We were able to alulate 22 mesons, whih ould be identi�ed to experi-

ment with an error less than 5%, exept for some us-mesons in (Table 2) with an error

of about 10%.

For a rude model like the ST-model with its 8 parameters (if m

u

= m

d

and if m

t

is exluded) this is quite remarkable. The alulated masses are very sensitive to the

initial hoie of how the parameters are �xed. It might be just possible that the error

an still be redued by using a di�erent �xing set than that given in (5.13).

The intention of this setion was not to present the best �t, it rather wanted to show

how the ST-model is able to quantitatively reprodue the mass-spetrum of avor o�-

diagonal mesons. Furthermore, looking for a best �t one should also ompare the

mass-spetrum for di�erent regulating funtions R

0

(q

2

; �). Their is no argument why

the soft regulator (5.2) is predestinated to be the ideal regulator.

When omparing the �rst three analytial eigenvalues of the pure harmoni osillator

(given in the last row of the relevant tables) with the alulated ones, we see, that

its almost unneessary to go onto the omputer, espeially for the heavy mesons. For

those, the alulated values are nearly idential with the harmoni ones. This ertainly

has to do with the rather large value of the parameter N , whih ontrols the harmoni-

ity of the ST-potential. The biggest di�erene of about 4% an be seen for the lightest

meson, the pion.
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5. The Renormalized Singlet-Triplet (ST)-model

The omparison between the ST-model and the osillator model [8℄ ertainly beomes

more interesting when hoosing N � 8, but with the parameter set (5.15) and (5.16),

whih an be hosen independently from N , the deviations to experiment are starting

to get worse the more N is dereased.

More interesting would be to keep the harmoniity as that of N = 8, but to redue

the barrier width | in other words: keeping the same overall struture as shown in

(Fig3), exept with a smaller width. This an be ahieved when hoosing for example

a gaussian funtion R

0

(q

2

; �) = e

�q

2

=�

2

as a generating regulator in (5.3). The result is

a width redution of a fator 2. This statement should only emphasize that there are

maybe many regulators out there, whih on the level of the ST-model ould improve

the osillator model of [8℄ in a promising way.
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6 Summary and Disussion

The novel aspet of this thesis, was to show how renormalization works in a non-

perturbative ontext within a Hamiltonian approah. It was exempli�ed by means

of the oversimpli�ed ST-model. Two omplementary renormalization shemes were

used, one more illustratively and the other in a more abstrat way, to show how the

renormalization program is performed and at the end leading to the same physis.

Sine both renormalization shemes have been implemented in momentum spae, the

generalization to the full relativisti ase an be easily performed. Even more, these

renormalization shemes are not restrited to any ertain Hamiltonian model but an be

applied to any Hamiltonian eigenvalue equation, for example as to our master equation

given in (3.1) or to a even more general equation.

We then tested the ST-model by trying to quantitatively reprodue the mass spetrum

of avor o�-diagonal mesons. Nearly all experimentally available mesons, from the light

� to the heavy B, ould be alulated by the simple 8-parametrial ST-model within an

error less than 5%, exept for some strange pseudo-salar mesons in (Table 2) having

an error of about 10%. Its not impossible that the error an still be redued by using

better �tting tehniques or di�erent regulators.

The mass spetrum was alulated in momentum spae by using the bound-state teh-

nique of orthogonal basis funtions. From our diploma student Harun Omer I have

learned that this tehnique is indeed suessful in �nding resonanes as stable eigen-

values in the ontinuous part of the spetrum, who alulated the mass spetrum with

a di�erent parameter set in oordinate spae [17℄. Unfortunately, the determination

of resonanes did not lead to any suess when doing a sattering alulation. In any

physial parameter set for mesons, the ST-potential produes resonanes of suh an

extreme small width that they nearly an be treated as bound-states (ompared to

typial hadroni interation times). A quark sattering alulation is thus ondemned

to fail. This justi�es to see the ST-potential as a quark-on�ning potential. A reom-

bination of quarks into new mesons is enormously muh faster (hadroni interation

time � 10

�24

se) than the proess of separation (ST-resonane lifetime � 10

�6

se).

For the �rst time, the simple ST-model let us understand how expliit renormalization

works in a Hamiltonian formulation. Furthermore, it is able to show the essential mass

splitting between the pseudo-salar mesons and the vetor mesons by the hyper�ne

interation in the triplet part of the potential. Finally, it gives us on�nement, in the

sense that a forever rising potential is not neessary. But at foremost, the ST-model

has the great advantage of showing a well-de�ned relation to QCD. Certainly, the ST-

model is an oversimpli�ed model, but there are no oneptual problems to relax the

relevant simpli�ations in order to reate a more general model. Restoring the full

relativisti ase and in the next step inluding the full spinor struture are well de�ned

presriptions.

First attempts were made by our postdotorate Shan-Gui Zhou who started to alulate

the relativisti ST-model. Great progress was made in the work of [19℄, where the

authors showed how in general the singlet part an be deoupled from the triplet part
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6. Summary and Disussion

within the full spinor interation, by making use of unitary transformations. The last

important step to omplete the meson model would be to inlude the annihilation

graph. This allows us to determine the mass spetrum for mesons of equal avor in

quark and anti-quark. This big projet is now under the hand of our diploma student

Christian Krahl.

Certainly, in order to have a serious meson model it must go beyond a simple mass

spetrum �tting. It must also be able to probe the internal struture of mesons as

well. For this the orresponding wave funtions have to be investigated. Sine we

are in possession of the frame-independent light-one wave funtions, we are able to

predit hadroni properties like form fators and distribution amplitudes [20℄. We are

luky to ompare our results with the experiments of [21℄. To �t the ST-model wave

funtion aording to Asherys experimentally measured pion wave funtion over a large

momentum range, is the present work of Harun Omer.

We see that there is still a lot of work to be done in the future. Up to now, we an say

that we understand better the proess of how to start from a quantum �eld theory like

QCD, deriving an e�etive onstituent quark model having the shape of a Shr�odinger

equation, performing a non-perturbative renormalization sheme and �nally to ompare

it with the experimentally available hadron world.
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A Relativisti Dynamis

Aording to the priniple of relativity there are ertain frames of referene, alled

inertial frames, whih are equivalent. This means that oordinates x

�

in one inertial

frame and x

0�

in another inertial frame must leave the salar produt invariant by

satisfying the ondition

g

��

dx

�

dx

�

= g

��

dx

0�

dx

0�

; (A.1)

where g

��

= g

��

is the metri tensor. A oordinate transformation x

�

! x

0�

between

inertial frames an only be of a linear form

x

0�

= �

�

�

x

�

+ a

�

; (A.2)

where a

�

is a onstant four-vetor and �

�

�

is a onstant 4� 4-matrix, whih aording

to (A.1) must satisfy the following pseudo-orthogonality relation

g

��

�

�

�

�

�

�

= g

��

or �

T

g� = g; (A.3)

whih in turn implies the following struture for its inverse

(�

�1

)

�

�

= g

��

�

�

�

g

��

� �

�

�

: (A.4)

The linear transformations (�; a) form a group, known as the Poinar�e group. An

important subgroup is the Lorentz group with no spae-time translations a = 0. In

the following we will only onsider proper (det� = 1) and orthohronous (�

0

0

� 1)

Lorentz transformations, that means we exlude spae and time reetions. From the

16 matrix elements � only 6 are independent, due to the symmetri ondition (A.3). So,

every Poinar�e transformation is spei�ed by 10 real parameters whih an be varied

independently: 4 translations a

�

, 3 Euler angles �

k

, and 3 boosts or rapidity angles �

k

,

whih de�ne relative to the speed of light, the veloity ~v = tanh ~� between the inertial

frames.

Furthermore, the transformations (�; a) indue unitary operators U

�1

(�; a) = U

y

(�; a)

in a Hilbert spae, where its vetors and operators transform as

j�

0

i = U(�; a)j�i ; O

0

= U(�; a)OU

y

(�; a): (A.5)

The operators U satisfy a omposition rule for two suessive transformations

U(�

0

; a

0

)U(�; a) = U(�

0

�;�

0

a+ a

0

); (A.6)

whih easily follows from (A.2). Using the idential transformation U(1; 0) the inverse

of U(�; a) an be expressed as

U

�1

(�; a) = U(�

�1

;��

�1

a): (A.7)

53



A. Relativisti Dynamis

U(�; a) is a loal operator whih transforms funtions and oordinates simultaneously

about a �xed point in spae-time. Sine a state vetor � in the Shr�odinger piture

transforms in the same way as an operator O in the Heisenberg piture [22℄,[23℄, we

will olletively all them �elds 	. In the oordinate representation they transform

aording to the following ovariant rule

	

0

(x

0

) =

passive

D(�) �	(x) = D(�) �	(�

�1

(x

0

� a))

	

0

(x) =

ative

D(�

�1

) �	(�x+ a); (A.8)

where we have olleted the �elds in a olumn vetor on whih the matrix D(�) an

at, whih again is a �nite dimensional matrix representation of the Lorentz group.

Translations an be exluded for pure �eld transformations, sine all �elds will behave

as a salar. There are many suh representations, inluding the salar D(�) = 1, the 4-

vetorD(�) = �, the Dira-spinorD(�) = S(�) or the 2-rank tensorD(�) = �
�, just

to name a few. Furthermore, this ovariant transformation for �elds is not restrited

to oordinate spae (x

�

) only. For example, doing a ovariant Fourier transformation

one immediately gets the orresponding rules for the onjugate energy-momentum rep-

resentation (p

�

).

Under a passive transformation rule we in general understand, that one physial sys-

tem is being desribed from two di�erent frames whih are separated by a Poinar�e

transformation. Thus 	

0

and 	 represent the same �eld only evaluated in two di�erent

frames. While under an ative transformation rule we look at two physial systems,

whih are also separated by a Poinar�e transformation, but only from one frame. This

transformation is thus ideal for investigating the property of invariane on �elds, sine

here 	

0

and 	 in general represent di�erent �elds. We an talk of an Poinar�e-invariant

�eld 	 if its atively transformed �eld stays invariant 	

0

= 	.

We now return to the oordinate transformation (A.2) by looking at the transformation

near the identity

�

�

�

= Æ

�

�

+ !

�

�

; a

�

= �

�

(A.9)

where !

�

�

and �

�

are 20 suÆiently small real parameters. Plugging this transformation

into (A.3) we get up to linear order in ! the antisymmetry ondition !

�

�

= �!

�

�

,

leaving again as already known, all together 10 transformation parameters independent.

Sine U(1; 0) is the identity operator and sine the parameters ! and � an be varied

independently, the unitary operator U(1 + !; �) near its identity up to �rst order an

be written as

U(1 + !; �) = 1 + i �G(!; �) = 1 +

1

2

i!

��

M

��

+ i�

�

P

�

; (A.10)

This expansion de�nes 10 parameter independent operatorsM

��

= �M

��

and P

�

, also

known as the generators of the Poinar�e group, whih are of fundamental importane

in any relativisti theory. They are Hermitian operators in all indies and represent

observable physial quantities.
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Due to its orrelation with the 4 translation parameters, P

�

an be identi�ed as

the total energy-momentum 4-vetor of the �eld system. The pure spatial 3-vetor

~

J = (M

23

;M

31

;M

12

), being orrelated with the 3 spatial rotation parameters, an be

identi�ed as the total angular momentum of the �eld, while the remaining spae-time

generators

~

K = (M

10

;M

20

;M

30

), form what is alled the Boost 3-vetor.

By working out the produt U(�; a)U(1 + !; �)U

�1

(�; a) via (A.6),(A.7) and (A.10),

where (�; a) are the parameters of a new full transformation, will give after a ompar-

ison of the independent oeÆients ! and � up to �rst order the following result

U(�; a)M

��

U

�1

(�; a) = �

�

�

�

�

�

(M

��

+ a

�

P

�

� a

�

P

�

)

U(�; a)P

�

U

�1

(�; a) = �

�

�

P

�

: (A.11)

For pure Lorentz transformations with a

�

= 0, these transformation rules simply say

that M

��

is a tensor and P

�

is a vetor. For pure translations with �

�

�

= Æ

�

�

, they tell

us that P

�

is translation-invariant, but M

��

not.

Next, lets apply the rules (A.11) to a transformation that is itself in�nitesimal, that

means �

�

�

= Æ

�

�

+ !

�

�

and a

�

= �

�

, with in�nitesimals !

�

�

and �

�

unrelated to the

previous ! and �. Keeping only terms of �rst order in these independent parameters

and then equating their oeÆients on both sides, we �nd the following ommutations

i[M

��

;M

��

℄ = g

��

M

��

� g

��

M

��

� g

��

M

��

+ g

��

M

��

i[P

�

;M

��

℄ = g

��

P

�

� g

��

P

�

[P

�

; P

�

℄ = 0: (A.12)

This is the Lie algebra of the Poinar�e group, whih is shortly alled Poinar�e algebra.

The Poinar�e algebra alone does not tell us anything about ovariane. For this, we

look again at the transformation rules (A.8) to study in whih way the generators G

have to at on the �elds 	, in order to guarantee ovariane.

a): First we look at the state-vetors j�i in the Shr�odinger piture, for whih aording

to (A.5), we an de�ne the following total in�nitesimal variation around a �xed spae-

time point

Æj�i := j�

0

i � j�i = iG(!; �) � j�i; (A.13)

where G(!; �) =

1

2

!

��

M

��

+ �

�

P

�

. Sine ! and � an be varied independently the total

variation within a passive transformation in oordinate spae will read

Æ�

r

(x) = D(1 + !)

rs

�

s

(x+ !

�1

x� �)� �

r

(x)

=

�

Æ

rs

+

1

2

i!

��

[�

rs

℄

��

�

� �

s

(x

�

+ !

�

�

x

�

� �

�

)� �

r

(x)

=

1

2

i!

��

[�

rs

℄

��

�

s

(x) +

1

2

!

��

(x

�

�

�

� x

�

�

�

)�

r

(x)� �

�

�

�

�

r

(x): (A.14)

Comparing (A.14) with (A.13), will give the ovariant identities

iM

��

�

r

(x) = i[�

rs

℄

��

�

s

(x) + (x

�

�

�

� x

�

�

�

)�

r

(x)

iP

�

�

r

(x) = ��

�

�

r

(x): (A.15)
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In oordinate spae P

�

has the well known operator representation i�

�

, while the

representation of M

��

an be split up into two parts: M

��

= S

��

+ L

��

. Ating only

on the oordinates of a �eld, the operator L

��

= �i(x

�

�

�

� x

�

�

�

) depends expliitly

on the hoie of the origin of the oordinate system. Furthermore, it vanishes if �(x)

is spherially symmetri in its spae-time dependene. For these reasons, we identify

this term with the orbital angular momentum. In ontrast, the other term being a

�nite dimensional matrix representation ating only on disrete omponents of the

�eld, does not depend on the origin of the oordinate frame and is determined solely

by the transformation properties of the �eld funtions. Hene, we identify it with the

spin angular momentum S

��

= �

��

of the �eld system. The expliit struture of the

spin part ertainly depends on the �eld representation one uses, for example

[S

��

℄

��

= �

1

4

i[

�

; 

�

℄

��

or [S

��

℄

��

= �i[g

�

�

g

�

�

� g

�

�

g

�

�

℄; (A.16)

depending on whether �(x) refers to a spinor or to vetor �eld, respetively. We

observe here that a separate deomposition of angular momentum into orbital and

spin part is, of ourse, not a ovariant proedure. Also, if M

��

represents a onserved

quantity, neither of its deomposed parts are onserved separately. Furthermore, all

these oordinate spae representations must ertainly satisfy the same ommutation

relations as their general operators in (A.12) do.

b): Now we look at Hilbert spae operators O in the Heisenberg piture. The total

variation as given in (A.13) must now be adjusted aordingly to the transformation

property of operators

ÆO := O

0

�O = i[G;O℄; (A.17)

whih immediately yields the following ovariant identities in oordinate spae

i[M

��

;O

r

(x)℄ = i[�

rs

℄

��

O

s

(x) + (x

�

�

�

� x

�

�

�

)O

r

(x)

i[P

�

;O

r

(x)℄ = ��

�

O

r

(x): (A.18)

Summary: A orret relativisti treatment of a any physial system is only given, if

the orresponding Poinar�e generators are not only onsistent with the ommutation

relations (A.12), but also respet the ovariant relations (A.15) and (A.18). A realiza-

tion of the Poinar�e algebra alone is not suÆient, as for ertain systems it an happen

that their Poinar�e generators ful�ll the ommutation relations but spoil ovariane.

Aording to [2℄ "ovariane is an additional requirement, whih in ontrast to the

Poinar�e algebra strongly restrits possible relativisti dynamis". It is not surprising

that ovariane imposes so severe restritions, beause on top of the general group prop-

erties (A.6), (A.10), whih suÆes to derive the Poinar�e algebra, ovariane requires

an additional transformation rule (A.8) whih inludes a �nite representation of the

Lorentz group.

But we observe that nothing up to this point gives us any indiation as to how these

fundamental operators (M

��

; P

�

) an be expliitly onstruted. Indeed, this onstru-

tion will depend entirely on the dynamial harateristis of the system we want to

impose, whih we have so far not even onsidered. One onstruted and satisfying
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all requirements disussed above, the relations (A.15) and (A.18) turn into generalized

ovariant Shr�odinger and Heisenberg equations, respetively.

We will now address this problem of onstruting the generators (M

��

; P

�

), by �rstly

onsidering the most simplest ase, namely that of a free one-partile state j�

0

i in the

Heisenberg piture, being totally independent of any dynamial development. If the

partile is a salar, we an identify

P

�

= p

�

; M

��

= L

��

= x

�

p

�

� x

�

p

�

; (A.19)

where x

�

is the usual spae-time point, with p

�

= d(mx

�

)=d� as its onjugate momen-

tum; d� being the proper time inrement and m the rest mass of the partile. Sine

they must satisfy the quantization ondition [x

�

; p

�

℄ = ig

��

, it is easily on�rmed that

this identi�ation of the generators lead to the orret requirements for a relativisti

quantum mehanial system as stated above. This is ertainly also true, if we inlude a

spin operatorM

��

= S

��

+L

��

, where S

��

satis�es the Poinar�e algebra and for whih

a �nite dimensional matrix representation of the Lorentz group exists. Furthermore,

the 10 independent generators P

�

,

~

J =

~

S +

~

L and

~

K must be onstants of motion.

Sine they are Hermitean operators with real eigenvalues, it is advantageous to on-

strut representations in whih the onstants of motion are diagonal. This allows a

labeling of the state vetors with quantum numbers. But one annot diagonalize all

ten onstants of motion simultaneously beause they do not ommute. One has to

make a hoie.

Sine P

0

and P

k

ommute, we shall use energy and momentum eigenvalues as labels,

and thus selet the energy-momentum representation, whih in this ontext is a more

natural one than the oordinate spae representation. As momentum and angular

momentum do not ommute, it is onvenient to introdue the Pauli-Lubanski vetor,

de�ned as

W

�

= �

1

2

�

����

P

�

M

��

= �

1

2

�

����

P

�

S

��

; (A.20)

where �

����

is the totally antisymmetri symbol in four dimensions. W

�

is orthogonal

to the generalized momenta, W

�

P

�

= 0, and obeys the algebra

[P

�

;W

�

℄ = 0

[W

�

;M

��

℄ = i(g

��

W

�

� g

��

W

�

)

[W

�

;W

�

℄ = i�

����

W

�

P

�

: (A.21)

As a further label we an use the eigenvalue of one omponent of the Pauli-Lubanski

vetor, but only one omponent, sine [W

�

;W

�

℄ 6= 0. The omponents of W have a

simple interpretation; the zeroth omponent is proportional to heliity W

0

=

~

P �

~

S and

the spatial omponents are proportional to the intrinsi spin

~

W = P

0

�

~

S. This explains

why, even in a relativisti theory, it makes sense to talk about a spin omponent,

although it is neither onserved nor ovariantly de�ned. Next we note that

P

�

P

�

= m

2

; W

�

W

�

= �m

2

~

S

2

(A.22)

are invariant (Casimir) operators, ommuting with all 10 generators (M

��

; P

�

).

57



A. Relativisti Dynamis

If we hoose a �eld representation where m

2

6= 0, the spatial matrix

~

S

2

is a represen-

tation of the SO(3) rotation group, with eigenvalues s(s + 1), where s is any positive

integer or half-integer inluding zero. These eigenvalues an be used to haraterize a

massive partile by two �xed properties, its rest mass m and its spin s. If the mass is

determined as the square root of the eigenvalue of P

2

, then the spin an be alulated

by dividing the eigenvalue of �W

2

by m

2

.

For massless partiles the situation is ompletely di�erent. The property spin for mass-

less partiles is not what it is for massive ones. This an be immediately seen by putting

in the above expressions m

2

= 0, leading to P

2

= 0 and W

2

= 0. Sine W and P are

orthogonal P �W = 0, it an only mean that they must be proportional W = �P in

all omponents. Thus � an be alulated as � = W

0

=P

0

, being proportional to the

heliity � = W

0

=j

~

P j. Instead of two invariant numbers (m; s), a massless partile is

haraterized by only one number �. The values whih � an take, is beyond the sope

of this setion and will not be disussed here.

Finally, we an inlude observables into our labeling sheme that are not related to

spae-time symmetries, like the harge q of a partile. Its orresponding operator Q

anonially ommutes with all generators of the Poinar�e group.

Hene, the free one-partile Heisenberg state an be labeled as

j�

0

i = j~p; �;m; s; qi; (A.23)

where the energy eigenvalue p

0

is not inluded, sine it an be determined from the

on-shell ondition p

�

p

�

= m

2

.

Up to now, we onsidered only the simplest ovariant realization of the Poinar�e alge-

bra, that of a free elementary partile, being a state of de�nite mass and spin. Next

one may onsider a olletion of non-interating partiles of di�erent masses and spins

and onstrut ovariant realizations for them. This task is almost trivial as the gener-

ators are simply the sum of the single partile generators. Muh more diÆult is the

onstrution of representations in the ase of a �xed number of interating partiles.

This is atually the topi of relativisti dynamis proper.

In non-relativisti dynamis only one unique way is allowed: the interation must be

inluded in the Hamiltonian. The evolution of a non-relativisti system is governed

fully by the Hamiltonian. All other generators, in this ase of the Galilei group are

independent of the interation, and are said to be kinemati.

For systems that are governed by Einstein relativity, more possibilities are open as how

to inlude interations. One expets that ertain Poinar�e generators will di�er from

their free ounterpart by some `potential' term V . But how does one onstrut these

generators in a ovariant way? This problem has already been partially pointed out

by Dira [1℄, who stated that �nding potentials whih are onsistent with the ommu-

tation relations of the Poinar�e algebra "provide the real diÆulty in the problem of

onstruting a theory of a relativisti dynamial system" with a �xed number of par-

tiles. The diÆulty is even inreased if we require on top of that the ovariane for

wavefuntions. The physial reason for these problems is that potentials imply an in-

stantaneous interation whih is in onit with the existene of a limiting veloity and

retardation e�ets. Relativisti ausality is thus violated. Furthermore, a �xed number
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of partiles is in onit with the neessity of partile reation and annihilation and

the appearane of antipartiles. Nevertheless, with onsiderable e�ort, it is possible to

onstrut dynamial quantum systems with a �xed number of onstituents whih are

onsistent with the requirements of the Poinar�e algebra and relativisti ovariane [2℄,

with the reason to improve or to have proper theory-based alternatives for the rather

suessful phenomelogial onstituent quark model.

A natural solution to all these problems stated above is the framework of a loal o-

variant quantum �eld theory, with in�nitely many degrees of freedom. These theories

are usually spei�ed by demanding a relativistially invariant Lagrangian.

For the onstrution of the Poinar�e generators we naively an let us guide by lassial

�eld theory using Noethers Theorem. The Poinar�e generators, all being onstants of

motion, are then expressed in terms of integrals of the energy-momentum tensor. The

transition to quantum �eld theory is then imposed by the orret anonial quantization

onditions onto the lassial �elds whih will turn them into operators. Unfortunately

suh a onstrution does not allow for a simple veri�ation of the requirements (A.12).

Furthermore, for an arbitrary Lagrangian one annot prove that its manifestly ovari-

ant Lagrangian equation of motion for a �eld operator will give idential results as the

ovariant Heisenberg equations (A.18). For every new ase they have to be veri�ed

from srath, whih ertainly is not straightforward. A bad way out is to simply postu-

late that a relativistially invariant Lagrangian ful�lls all requirements of a relativisti

system.

But there are better ways to see this orrespondene manifestly. Probably the easiest

way is provided by Shwingers variational ation priniple [24℄. First, it is an ation

priniple for a quantized �eld. It is thus the quantum-mehanial analogue of the orre-

sponding lassial variational priniple. Seond, it goes beyond this lassial priniple

by inluding variations at the boundary whih an be interpreted as the generator of

�eld transformations. By this extension we obtain additional information regarding

the dynamial harateristis of the �eld, whih in the lassial orrespondene prin-

iple had to be postulated separately. This is a onsiderable simpli�ation, sine now

the Lagrangian equations of motion, the form of the rules of quantization, the on-

servation laws, the Poinar�e algebra with its ovariant onditions, all that will follow

manifestly from a relativistially invariant Lagrangian. This �nally proves that a o-

variant quantum �eld theory o�ers a natural desription for relativisti systems on a

quantum-mehanial sale.

For a quantum �eld theory we adopt the Heisenberg piture as the framework of de-

sription. By this we mean that we speify a state vetor as the simultaneous eigenket

of all ommuting observables at some �xed point in spae-time, and express all dynam-

ial developments of the system as the hange of observables as we proeed in spae

and time. The natural Hilbert spae of quantized �elds, also alled Fok spae onsists

of subspaes, eah having a basis of one-partile states j�

0

i = j~p; �;m; s; qi as already

disussed above, where for eah subspae the eigenvalues of the Casimir operators are

�xed.
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B Light-front QCD

�

The SU(3) gauge invariant Lagrangian density for QCD is

L =

1

2

Tr(F

��

F

��

) +

1

2

�

	(i

�

D

�

�m)	 + h..

�

; (B.1)

where the olor-eletro-magneti �elds and the ovariant derivative are given as

F

��

= �

�

A

�

� �

�

A

�

+ ig[A

�

; A

�

℄;

D

�



0

= Æ



0

�

�

+ igA

�



0

; with A

�



0

= T

a



0

A

�

a

: (B.2)

T

a



0

are the 8 generators of the SU(3) group. Thus the gluon index a runs from 1 to 8.

The physial 3 � 3-matrix representation will let the olor index run from 1 to 3. No

distintion will be made between lower and upper gluon and olor indies.

Independent variation of the gluon �elds A

�

will yield the olor-Maxwell equations

�

�

F

��

= gJ

�

; with J

�

= 	

�

T

a

	T

a

� i[F

��

; A

�

℄; (B.3)

and the variation with respet to the quark �elds give orrespondingly the olor-Dira

equations

(i

�

D

�

�m)	 = 0: (B.4)

Sine the manifestly ovariant QCD-Lagrangian shows no expliit spae-time depen-

dene, the Poinar�e generators will be onstants of motion. We are only interested in

the 4-momentum operator, whih an be determined as manifestly gauge invariant [12℄

P

�

=

Z

d

3

x

�

F

0�

a

F

a

��

+

1

4

g

0

�

F

��

a

F

a

��

+

1

2

[i	

0

T

a

D

a

�

	+ h::℄

�

: (B.5)

In the transition from instant- to front-form all 4-vetors inluding 

�

are treated in

the same way as the spae-time oordinates x

�

. Aording to [12℄ the orresponding

ovariant expression in the light-front formalism reads

P

�

=

Z

dx

+

d

2

x

?

�

F

+�

a

F

a

��

+

1

4

g

+

�

F

��

a

F

a

��

+

1

2

[i	

+

T

a

D

a

�

	+ h::℄

�

; (B.6)

whih still maintains manifest gauge invariane.

The Hamiltonian H = P

+

as well as the other omponents of the energy-momentum

4-vetor are highly non-trivial operators. Nevertheless, its possible to redue them into

workable expressions, sine they ontain time-derivatives and other onstraint �eld

omponents whih an be eliminated by using the above equations of motion. The goal

is to express P

�

in terms of free �elds

e

A

�

and

e

	 and to isolate the dependene on the

oupling onstant. For this, the natural light-one gauge A

+

= 0 is hosen, in whih

the gluons only have the two physial transverse degrees of freedom. The result for the

Hamiltonian an be written as a sum of �ve terms [12℄

H = T + V +W

1

+W

2

+W

3

: (B.7)

�

This omplete setion is a ompat summary from the work of [7℄,[12℄,[25℄.
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Only the �rst term survives the limit g ! 0, and therefore is alled the free part of the

Hamiltonian, or its 'kineti energy'

T =

1

2

Z

dx

+

d

2

x

?

�

e

	

+
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+ (ir

?
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+

e

	+
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�

�

: (B.8)

The vertex interation

V = g
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dx

+
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e
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; (B.9)

is linear in the oupling onstant and is the light-one analogue of the onventional

J

�

A

�

-strutures in the instant form. Note that the urrent

e

J

�

a

has ontributions from

both quarks and gluons, with f

ab

being the struture onstants of the SU(3) group.

The interation term
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; (B.10)

desribes the four-point gluon-verties whih is quadrati in g. The remaining are

the `instantaneous interations'. The instantaneous gluon interation arises from the

Coulomb equation �

�

F

�+

a

= gJ

+

a

,

W

2

=

g

2

2

Z

dx

+
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e
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1
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2

e
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a

; (B.11)

and is the light-one analogue of the Coulomb energy. The instantaneous fermion

interation originates from the light-one spei� deomposition of Dira's equation

W

3

=

g

2

2

Z

dx

+

d

2

x

?

e

	

�

T

a

e

A

a

�



+

i�

+

�



�

T

b

e

A

b

�

e

	

�

: (B.12)

It has no analogue in the instant form.

Most remarkable is that the fully relativisti Hamiltonian is additive in the `kineti'

and the `potential' energy, very muh like a non-relativisti Hamiltonian H = T + U .

The symboli notation (i�

+

)

�1

and (i�

+

)

�2

in the above expressions represent Green

funtions. Sine they depend only on x

�

, they are omparatively simple, muh simpler

than in the instant form where �

�1

depends on all three spae-like oordinates. Using

this notation one has to be areful, there are many subtleties involved. For example

looking at the Green funtion G(x

�

) = (�

+

)

�1

de�ned via

�

+

G(x

�

) = Æ(x

�

); (B.13)

is learly only determined up to a homogeneous solution Z satisfying

�

+

Z = 0; (B.14)

that means up to a zero mode Z = Z(x

�

) of the operator �

+

. Thus, in order to

uniquely speify the Green funtion (�

+

)

�1

, we have to provide additional information
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in terms of boundary onditions. To see the physial impat of suh zero modes, we

briey go to momentum spae where we an replae �

+

by ip

+

. The equation for the

Green funtion (B.13) beomes ip

+

G(p

+

) = 1, whih has the general solution

G(p

+

) = �i=p

+

+ Z(p

+

)Æ(p

+

): (B.15)

Thus the zero modes will only ontribute if p

+

= 0, that means if all partiles in the

system have zero longitudinal momentum. But as we know from (Setion 2.2.2) these

are exatly the momenta that will give rise to a ompliated light-one vauum. No

other reasons than simpliity we will put suh zero modes equal to zero Z = 0, and

therefore neglet possible boundary onditions. This will lead to a trivial light-one

QCD-vauum being idential to the free Fok-spae vauum.

The next task is to bring the Hamiltonian (B.7) into its natural �eld theory repre-

sentation, the momentum spae representation. As usual we do a ovariant Fourier

transformation of the free quark and gluon �elds, whih in the front form are given as

e

	

�f

(x) =

X

�

Z

dp

+

d

2

p

?

p

2p

+

(2�)

3

�

b(q)u

�

(p; �)e

�ipx

+ d

y

(q)v

�

(p; �)e

+ipx

�

;

e

A

a

�

(x) =

X

�

Z

dp

+

d

2

p

?

p

2p

+

(2�)

3

�

a(q)�

�

(p; �)e

�ipx

+ a

y

(q)�

�

�

(p; �)e

+ipx

�

: (B.16)

The properties of the Dira spinors u

�

, v

�

, and of the polarization vetors �

�

are given

in [12℄. The single partile states are spei�ed by string of quantum numbers q. A quark

is haraterized in general by 6 quantum numbers q = (p

+

; ~p

?

; �; ; f), the three spatial

momenta, the heliity �, the olor index  and the avor index f . The knowledge of

(p

+

; ~p

?

) �xes the energy p

�

= (m

2

+ ~p

2

?

)=p

+

. A gluon is haraterized by 5 quantum

numbers q = (p

+

; ~p

?

; �; a) with a as the glue index. Sine they are massless, their

energy is p

�

= ~p

2

?

=p

+

. Furthermore, sine a quark is a fermion and the gluon a gauge

boson, their reation and destrution operators are subjet to the usual relations

�

a(q); a

y

(q

0

)

�

=

�

b(q); b

y

(q

0

)

	

=

�

d(q); d

y

(q

0

)

	

= (2�)

3

� 2p

+

� Æ(p

+

� p

0+

)Æ

2

(~p

?

� ~p

0

?

)Æ

a

0

a

Æ

�

0

�

Æ



0



Æ

f

0

f

; (B.17)

whih arry the operator struture and statistis of the theory.

When inserting the free �elds (B.16) into the Hamiltonian (B.7) its possible to integrate

over x

�

, produing essentially delta funtions in the single partile momenta, whih

reet momentum onservation. To note is that terms onsisting only of reation or

only of destrution operators as for example in

b

y

(q

1

)d

y

(q

2

)a

y

(q

3

)Æ(p

+

1

+ p

+

2

+ p

+

3

); (B.18)

have a vanishing ontribution, sine the light-one longitudinal momenta p

+

are all

positive (Setion 2.2.2) and an not add to zero. As a onsequene, all energy diagrams

whih generate the vauum utuations in the usual formulation of quantum �eld theory

are absent in the front form.
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The �nal result of this evaluation will give a Hamiltonian whih purely ats as a Fok-

spae operator H = T +(V +F +S), expliitly given in [12℄. The kineti energy T is a

sum of 3 diagonal operators. The interation terms are distinguished aording to the

number of partiles hanged. The vertex interation V is a sum of four operators, whih

onnets Fok states whose partile number di�er by 1. The four-point interations are

separated into fork F and seagull S interations, depending on whether they have

an odd or even number of reation operators. The fork interation F is a sum of 6

operators, whih hange the partile number by 2. And the seagull interation S an

be written as a sum of 7 operators, whih at only between Fok states with the same

partile number. The remaining spae-like omponents (P

+

;

~

P

?

) of the momentum

operator (B.6) are aording to their kinematial behaviour diagonal operators in Fok-

spae.

We now aim at solving the Hamiltonian eigenvalue problem

Hj	i =

M

2

+

~

P

2

?

2P

+

j	i; (B.19)

whih is for several reasons, as disussed in (Setion 2.2.3) easier to handle than its

ounter part equation in instant-form. If one disregards possible zero modes, the

light-one QCD-vauum beomes trivial whih has the onsequene that the light-front

bound states j	i for various hadrons an be expanded in terms of the free Fok states.

As usual, the Fok basis is onstruted by applying produts of the free �eld reation

operators to the vauum state j0i:

n = 0 : j0i;

n = 1 : jq�q : p

+

i

; ~p

?i

; �

i

i = b

y

(q

1

)d

y

(q

2

)j0i;

n = 2 : jgg : p

+

i

; ~p

?i

; �

i

i = a

y

(q

1

)a

y

(q

2

)j0i;

n = 3 : jq�qg : p

+

i

; ~p

?i

; �

i

i = b

y

(q

1

)d

y

(q

2

)a

y

(q

3

)j0i;

.

.

. (B.20)

where all disrete quantum numbers were suppressed exept the heliities. We now

speialize to the hadroni state of a meson (Fig5), whih in a ondensed notation an

be desribed by the following expansion in Fok-spae

j	

meson

i =

P

i

 

q�q

(x

i

;

~

k

?i

; �

i

)jq�qi

+

P

i

 

gg

(x

i

;

~

k

?i

; �

i

)jggi

+

P

i

 

q�qg

(x

i

;

~

k

?i

; �

i

)jq�qgi

+

P

i

 

q�qq�q

(x

i

;

~

k

?i

; �

i

)jq�qq�qi

+ � � � (B.21)
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Figure 5: The Hamiltonian matrix for a meson, taken from [12℄. The matrix elements are

represented by energy diagrams. Within eah blok they are all of the same type: either vertex,

fork or seagull diagrams. Zero matries are denoted by a dot (�). The singlet gluon is absent

sine it annot be olor neutral.

The generalized sum in (B.21) also inludes the phase-spae integrations of the relative

frame independent oordinates x

i

and

~

k

?i

respeting the onstraints

P

i

x

i

= 1 and

P

i

~

k

?i

= 0: (B.22)

The light-one wavefuntions  

n

do not depend on the total momentum (P

+

;

~

P

?

)

arried by the meson, sine x

i

is the longitudinal momentum fration arried by the i-th

onstituent and

~

k

?i

is its relative transverse momentum with respet to the enter-of-

mass frame; both of these are frame-independent quantities. They are the probability

amplitudes to �nd a Fok state of bare partiles in the physial meson. If all wave

funtions are available, one an analyze any hadroni struture in terms of quarks and

gluons [12℄.

In this Fok basis the eigenvalue equation (B.19) stands for an in�nite set of oupled

integral equations

1

X

m=1

Z

[d�

0

m

℄hn :x

i

;

~

k

?i

; �

i

jHjm :x

0

i

;

~

k

0

?i

; �

0

i

i 

m

(x

0

i

;

~

k

0

?i

; �

0

i

) =

M

2

+

~

P

2

?

2P

+

 

n

(x

i

;

~

k

?i

; �

i

):
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Sine P

+

and

~

P

?

are diagonal operators in momentum spae one an equivalently

rewrite this equation as

1

X

m=1

Z

[d�

0

m

℄hn :x

i

;

~

k

?i

; �

i

jP

�

P

+

�

~

P

2

?

jm :x

0

i

;

~

k

0

?i

; �

0

i

i 

m

(x

0

i

;

~

k

0

?i

; �

0

i

) =M

2

 

n

(x

i

;

~

k

?i

; �

i

):

(B.23)

It is therefore possible to de�ne a `light-one Hamiltonian' as the operator

H

LC

= P

�

P

+

�

~

P

2

?

= P

�

P

�

; (B.24)

so that its eigenvalues orrespond to the invariant mass-squared spetrumM

2

. On the

light-one its therefore possible to formulate the bound-state problem frame indepen-

dently, in the sense that the operator H

LC

is Lorentz invariant and the wavefuntions

boost invariant. This reets the fat that the boost operators on the light-one are

kinematial. To simplify things one an boost the system to an `intrinsi frame' in

whih the transversal momentum

~

P

?

vanishes, thus H

LC

= P

�

P

+

. The transforma-

tion to an arbitrary frame with �nite values of

~

P

?

is then trivially performed.

In addressing to solve equation (B.23) by diagonalization one faes two major diÆul-

ties as in every �eld theory. First, we are dealing with a many body problem with an

in�nite number of onstituents. There is no other hoie than to onstrut an e�etive

equation. The reliability of an e�etive interation ertainly depends on how strong

the higher Fok states ontribute. If a onstituent piture for the meson were true, the

valene state would dominate,

j 

2

j

2

� j 

n

j

2

; n > 2; (B.25)

and, in the extreme ase, the meson wave funtion would be entirely given by the proje-

tion hq�qj	

meson

i onto the valene state. Seond, we are faing all kinds of divergenies

whih have to be regularized and then renormalized.

B.1 E�etive Hamiltonian

The eigenvalue equation (B.19) stands for an in�nite set of oupled integral equations

whih are extremely diÆult to handle. It is useful to onvert it to the muh more

transparent ase of a �nite set of oupled matrix equations, namely by the tehnial

trik of putting the system L

QCD

into a �nite box of size L and imposing periodi

boundary onditions on the vetor �elds A

�

and anti-periodi boundary onditions on

the spinor �elds 	

�

beause L

QCD

is bilinear in the latter. The boundary onditions are

satis�ed by disretizing the momenta in the plane wave expansion of the orresponding

free �elds (B.16). This formalism is also known as Disretized Light-Cone Quantization

(DLCQ) [12℄,[25℄. Why is this set �nite? The longitudinal light-one momentum p

+

is a positive number. For periodi boundary onditions the lowest possible value is

(p

+

)

min

= �=L | zero modes with p

+

= 0 are disregarded here, as already mentioned.

Consequently, any total momentum P

+

= K�=L (K 2 N) an be distributed over

at most K bosons, or over K fermion pairs sine these are subjeted to anti-periodi

boundary onditions.
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Figure 6: The Hamiltonian matrix for a meson, taken from [25℄. The matrix elements are

represented by the letters S, V, and F, orresponding to seagull, vertex, and fork-interations,

respetively. For better orientation, the diagonal blos are marked by D=T+S and the zero

matries by (�).

K N

p

Setor n 1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 q�q 1 D S V F � F � � � � � � �

2 2 g g 2 S D V � V F � � F � � � �

2 3 q�q g 3 V V D V S V F � � F � � �

2 4 q�q q�q 4 F � V D � S V F � � F � �

3 3 g g g 5 � V S � D V � � V F � � �

3 4 q�q g g 6 F F V S V D V � S V F � �

3 5 q�q q�q g 7 � � F V � V D V � S V F �

3 6 q�q q�q q�q 8 � � � F � � V D � � S V F

4 4 g g g g 9 � F � � V S � � D V � � �

4 5 q�q g g g 10 � � F � F V S � V D V � �

4 6 q�q q�q g g 11 � � � F � F V S � V D V �

4 7 q�q q�q q�q g 12 � � � � � � F V � � V D V

4 8 q�q q�q q�q q�q 13 � � � � � � � F � � � V D

As illustrated in (Fig6) for the Fok spae of a meson, the harmoni resolution K

governs the number of Fok spae setors. The lowest possible value K = 1 allows only

for one Fok-spae setor with a single q�q-pair | a single gluon an not be in a olor

singlet and thus its exluded. For K = 2, the Fok spae ontains two gluons, a q�q-pair

plus a gluon, and two q�q-pairs. For K = 4 the Fok spae ontains at most 8 partiles.

One an label the Fok spae setors aording to the quark-gluon ontent, or one an

enumerate them, whih is less transparent but more simple. In (Fig6) the Fok-spae

setors for K � 4 are enumerated n = 1; :::; 13. With inreasing K more Fok-spae

setors are added. Their total number grows like N(K) = (K + 1)(K + 2)=2� 2.

Introduing a box size L as a �nite and additional length parameter, however, an be

at most an intermediate step. Latest at the end of the alulations, it must be removed

by a limiting proedure like L!1, K !1, but K=L �nite, sine only the ontinuum

an be the full ovariant theory. The lassi�ation sheme of the Fok spae setors as

used in the ontinuum appears in the disrete formalism in the most natural way. In

this sense we will keep on working in the ontinuum by dividing the Fok spae into

its natural subspaes

E

i

hnj	

i

i =

1

X

m=1

hnjHjmihmj	

i

i = lim

K!1

N(K)

X

m=1

hnjHjmihmj	

i

i: (B.26)
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In the sense of the DLCQ presription one an solve the above eigenvalue equation by

realizing the limit K ! 1 as a proess whih solves the eigenvalue equation in eah

harmoni subspae of dimension N(K). One selets a partiular value of the harmoni

resolutionK and diagonalizes the orresponding �nite dimensional Hamiltonian matrix.

But as one has to inrease K in order to get loser to the original eigenvalue equation,

the dimension of the Hamiltonian matrix grows quadratially with K, with the result

that one has to diagonalize �nite matries of inoneivable large dimensions. What one

needs is an e�etive Hamiltonian whih ats in smaller matrix spaes and whih has

a well de�ned relation to the full interation. The requirements for suh an e�etive

interation is to preserve all Lagrangian symmetries and not to trunate the Fok

spae. Furthermore, it should make use of the fat that due to the nature of the

Hamiltonian, more than half of the matrix elements are zero. Suh a onstrution is

given by the method of iterated resolvents [7℄, inspired by the well known Tamm-Dano�

[26℄ approah in many-body physis. For a �xed harmoni resolution K the dimension

N(K) of the Hamiltonian matrix is redued step by step until it the dimension 1 is

reahed. This e�etive Hamiltonian then only ats in the lowest setor of the theory,

here in the Fok spae of one quark and one anti-quark. Furthermore, it has the same

eigenvalue spetrum as the full problem. The whole proedure is summarized in a

reursion relation, whih desribes all intermediate steps. Beause of this reursive

harater any higher setor wave funtion hnj	i with n � N(K) an be systematially

retrieved by matrix multipliation from the wave funtion h1j	i in the lowest setor.

No additional matrix diagonalization or inversions are required.

For gaining more insight into the method of iterated resolvents we want to study it

expliitly at the example of K = 2. The Hamiltonian matrix is then given by a 4� 4-

matrix ating in the following subspae

hnjHjmi =

0

B

B

B

B

�

h1jT + Sj1i h1jSj2i h1jV j3i h1jF j4i

h2jSj1i h2jT + Sj2i h2jV j3i 0

h3jV j1i h3jV j2i h3jT + Sj3i h3jV j4i

h4jF j1i 0 h4jV j3i h4jT + Sj4i

1

C

C

C

C

A

: (B.27)

As we know, the instantaneous interations F and S arise as a onsequene of working

in the light-one gauge A

+

= 0. They are gauge artefats. We shall now use a trik

whih will simplify the onstrution of an e�etive Hamiltonian enormously. Prati-

tioners in Light-Cone Time-Ordered Perturbation Theory know that they an omit

the instantaneous interations until they atually ompute a partiular diagram. Then,

every intrinsi line in a graph must be ombined with the instantaneous partner line

assoiated with the gauge artefats. Only then, the sum of all time ordered diagrams

beomes manifestly idential with the gauge invariant Feynman sattering amplitudes.

There is no exeption known to this rule, thus far, in all graphs omputed expliitly. In

the sequel, this `gauge trik' [25℄ will be adopted to method of iterated resolvents, sine

as we will see is nothing else than a ompat notation for resumming all perturbative

diagrams without double ounting.
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First, we will violate gauge invariane by setting all instantaneous matrix elements to

zero. Then at the end of alulations we restore gauge invariane by the rule: replae

every internal line in a graph by the sum of a dynami and an instantaneous line. One

then gets a Hamiltonian blok matrix of extreme sparseness. For the above ase K = 2

we will have the workable matrix of

hnjHjmi =

0

B

B

B

B

�

h1jT j1i 0 h1jV j3i 0

0 h2jT j2i h2jV j3i 0

h3jV j1i h3jV j2i h3jT j3i h3jV j4i

0 0 h4jV j3i h4jT j4i

1

C

C

C

C

A

; (B.28)

whih is subjet to 4-spae diagonalization

4

X

m=1

hnjHjmihmj	

i

i = E

i

hnj	

i

i; n = 1; 2; 3; 4: (B.29)

Our aim is �rstly to onstrut an e�etive matrix whih only ats in 3-spae. For this

the above eigenvalue equation is equivalently split up into two parts

3

X

m=1

hnjHjmihmj	

i

i+ hnjHj4ih4j	

i

i = E

i

hnj	

i

i; n = 1; 2; 3 (B.30)

3

X

m=1

h4jHjmihmj	

i

i+ h4jHj4ih4j	

i

i = E

i

h4j	

i

i: (B.31)

Rewriting the seond equation as

h4jE

i

�Hj4ih4j	

i

i =

3

X

m=1

h4jHjmihmj	

i

i; (B.32)

and observe that the quadrati matrix E

i

� H ould be inverted to express the 4-

spae wavefuntion h4j	

i

i in terms of the 3-spae wavefuntions hnj	

i

i, with n � 3.

But here is a problem: the eigenvalues E

i

are unknown at this point. One therefore

solves �rst another problem: one introdues the starting point energy ! as redundant

parameter at disposal, and de�nes the 4-spae resolvent as the inverse of the matrix

element h4j! �Hj4i

G

4

(!) =

1

h4j! �Hj4i

; (B.33)

whih in the ontinuum limit K !1 turn into well-de�ned propagators. Inserting the

solution h4j	

i

i into (B.30) gives an eigenvalue equation whih is ompletely de�ned in

3-spae

3

X

m=1

hnjH

3

(!)jmihmj	

i

i = E

i

(!)hnj	

i

i; n = 1; 2; 3 (B.34)
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with the following e�etive Hamiltonian ating only in 3-spae

H

3

(!) = H +Hj4iG

4

(!)h4jH (B.35)

In addition to the original Hamiltonian in 3-spae, the e�etive Hamiltonian aquires a

piee where the system is sattered virtually into the higher 4-spae setor, propagating

there via G

4

by impat of the true interation, and sattered bak into 3-spae. Every

value of ! de�nes a di�erent Hamiltonian and a di�erent spetrum. Varying ! one

generates a set of energy funtions E

i

(!), by solving the eigenvalue equation (B.34).

Whenever one �nds a solution to the �x-point equation

E

i

(!) = !; (B.36)

one has found one of the true eigenvalues and eigenfuntions of H, by onstrution. It

should be emphasized that one an �nd all eigen-solutions of the full Hamiltonian H.

The e�etive 3-spae matrix to diagonalize is given as

hnjH

3

(!)jmi =

0

B

B

�

h1jT j1i 0 h1jV j3i

0 h2jT j2i h2jV j3i

h3jV j1i h3jV j2i h3jfT + V j4iG

4

(!)h4jV gj3i

1

C

C

A

; (B.37)

What do we have ahieved so far? It looks as if one has mapped a more diÆult

problem, the diagonalization of a 4-dimensional matrix onto a more simpler problem,

the diagonalization of a 3-dimensional matrix. But this is ertainly only true in a

restrited sense. Sine one has to vary ! one has to diagonalize several 3-dimensional

matries and not only one. The numerial work is thus rather larger than smaller as

ompared to a diret diagonalization in 4-spae. The advantage of working with an

e�etive interation is of analytial nature, as we will see if we keep on reduing the

dimensions up to an e�etive matrix ating solely in 1-spae.

It is easy to see that the e�etive Hamiltonians ating in di�erent spaes are generated

by the reursion relation

H

n�1

(!) = H

n

(!) +H

n

(!)jniG

n

(!)hnjH

n

(!); n � 4; (B.38)

where H

4

(!) is de�ned to be the original Hamiltonian H. The wavefuntions in eah

setor an be alulated as

hnj	

i

(!)i =

n�1

X

m=1

G

n

(!)hnjH

n

(!)jmihmj	

i

(!)i; n � 4: (B.39)

The e�etive Hamiltonian ating in the lowest setor an thus be alulated as

H

1

= T + V G

3

V + V G

3

V G

2

V G

3

V; (B.40)

where we have dropped the Dira-braket-notation between and the !-notation in the

propagators for more transpareny.
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Figure 7: The dressed propagators [27℄

The eigenvalues of the original Hamiltonian H are now determined by omputing the

matrix element h1jH

1

(!)j1i = E

i

(!) for di�erent ! in order to �nd a solution of the

�x-point equation E

i

(!) = !. The wave funtions in all setors an be systematially

retrieved from the lowest one h1j	

i

i expliitly given as

h2j	

i

i = h2jV G

3

V j1ih1j	

i

i;

h3j	

i

i = h3jG

3

V +G

3

V G

2

V G

3

V j1ih1j	

i

i;

h4j	

i

i = h4jG

4

V G

3

V +G

4

V G

3

V G

2

V G

3

V j1ih1j	

i

i: (B.41)

All the above alulations refer to the ase of K = 2. To get the e�etive Hamiltonians

for harmoni resolutions K = 3; 4; ::: is not repeated here expliitly. Important is

the general feature that the e�etive setor Hamiltonians are separable in the kineti

energies T and the e�etive interations U(!)

H

n

(!) = T + U(!): (B.42)

Important is also that the e�etive Hamiltonians in the lower setors beome indepen-

dent of K | the Hamiltonian H

1

as given in (B.40) stays ompletely unhanged [7℄.

The transition to the ontinuum K !1 is then rather trivial for the lower setors and

will hene forward be assumed.

The most important result of this setion is that QCD has only two struturally di�er-

ent ontributions to the e�etive interation in the lowest q�q-spae. The �rst term in

(B.40) is the e�etive one-gluon exhange

U

1

= V G

3

V; (B.43)

whih onserves the avor along the quark line and desribes all �ne and hyper�ne

interations. As illustrated in the �rst line of (Fig7) the vertex interation V reates

a gluon and satters the system virtually into the q�qg-spae. As indiated by the box

G

3

, the three partiles propagate there under the impat of the full Hamiltonian before
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B. Light-front QCD

the gluon is absorbed. The gluon an be absorbed either by the antiquark or by the

quark. If it is absorbed by the quark, it ontributes to the e�etive quark mass m. The

seond term in (B.40), the e�etive two-gluon-annihilation interation

U

2

= V G

3

V G

2

V G

3

V; (B.44)

shown in the seond line of (Fig7), an generate an interation between di�erent quark

avors.

This ompletes the derivation for an e�etive Hamiltonian ating in the lowest Fok

spae setor q�q. Its e�etive one-body eigenvalue equation

H

e�

LC

j	

i

i =M

2

i

j	

i

i; with H

e�

LC

= 2P

+

H

1

; (B.45)

beomes an integral equation, but a very simple one in only three ontinuous variables

(x;

~

k

?

). The struture is rather transparent

M

2

i

hx;

~

k

?

; �

q

; �

�q

j	

i

i =

"

m

2

q

+

~

k

2

?

x

+

m

2

�q

+

~

k

2

?

1� x

#

hx;

~
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?

; �

q

; �

�q
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i

i

+

X

�

0

q

;�

0

�q

Z

dx

0

d

2

k

0

?

hx;

~

k

?

; �

q

; �

�q

jV G

3

V

+V G

3

V G

2

V G

3

V jx

0

;

~

k

0

?

; �

0

q

; �

0

�q

ihx

0

;

~

k

0

?

; �

0

q

; �

0

�q

j	

i

i: (B.46)

The eigenvalues refer to the invariant mass M

i

of a physial state. The wavefuntion

hx;

~

k

?

; �

q

; �

�q

j	

i

i gives the probability amplitude for �nding in the q�q-state a avored

quark with momentum fration x, intrinsi transverse momentum

~

k

?

and heliity �

q

,

and orrespondingly an anti-quark with 1 � x, �

~

k

?

and �

�q

. Both the mass and the

wavefuntions are boost-invariant.

For solving the above eigenvalue equation one has to know the propagators G

3

and

G

2

. For that one needs the relevant matrix elements h3jH

3

j3i and h2jH

2

j2i whih are

expliitly [7℄ given as

h2jH

2

j2i = h2jT + V G

3

V + V G

5

V j2i

h3jH

3

j3i = h3jT + V G

4

V + V G

6

V + V G

6

V G

5

V G

6

V j3i; (B.47)

whih again requires the knowledge of G

4

, G

5

and G

6

, and so on. Having suh dressed

propagators is ertainly the onsequene of the iterated resolvents method used, whih

resums perturbative diagrams to all orders without double ounting. In order to make

expliit alulations one ertainly has to break the propagator hierarhy somewhere.

But before thinking of any approximation in the dressed propagators we �rst want to

look at the propagator G

3

more losely, whih in a ertain sense turns out to be speial.

As already mentioned above, the relevant matrix element to be alulated is h3jH

3

j3i.

Its orresponding diagrams an be grouped into two topologially di�erent lasses.

Some of them are displayed in (Fig8). In (Fig8a) the gluon does not hange quantum
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B. Light-front QCD

Figure 8: Taken from [25℄

(a) Three possible graphs of the spetator

interation in the q�qg-spae. Note the role

of the gluon as a spetator

(b) Some six graphs of the partiipant in-

teration in the q�qg-spae.

numbers under the impat of the interation and ats as a spetator. Therefore, these

graphs will be referred to as the `spetator interation' U

3

. In the graphs of (Fig8b)

the gluons are sattered by the interation, and orrespondingly these graphs will be

referred to as the `partiipant interation'

e

U

3

. We thus have a unique separation into

spetators and partiipants in the quark-pair-gluon setor

H

3

= T + U

3

= T + U

3

+

e

U

3

; (B.48)

with

U

3

= V G

6

V + V G

6

V G

5

V G

6

V; and

e

U

3

= V G

4

V + V G

6

V: (B.49)

Sine the Hamiltonian is additive in spetator and partiipant interations, the dressed

3-spae propagator an be written as

G

3

=

1

! �H

3

=

1

! � T � U

3

�

e

U

3

=

1

(! � T � U

3

) �

 

1�

e

U

3

! � T � U

3

!

� G

3

�

1

1�

e

U

3

�G

3

= G

3

+G

3

e

U

3

G

3

+G

3

e

U

3

G

3

e

U

3

G

3

+ � � � (B.50)

The above series looks like as if one would do plain perturbation theory in the oupling

onstant. This is only partially true, sine G

3

is not a free propagator but whih

ontains an interation in the well de�ned form of U

3

. The e�etive setor Hamiltonian

H

3

= T + U

3

desribes a bound state of one q�q-pair whih is aompanied by one

free gluon. One therefore deals here with a perturbation theory in medium [7℄. The

advantage of formulating suh a series, it that the system is not sattered into other
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B. Light-front QCD

Figure 9: The free propagators with e�etive verties [27℄

setors, it stays in setor 3. The above series an be identially rearranged to

G

3

=

h

1 +

1

2

G

3

e

U

3

+

3

8

G

3

e

U

3

G

3

e

U

3

+ � � �

i

G

3

h

1 +

1

2

e

U

3

G

3

+

3

8

e

U

3

G

3

e

U

3

G

3

+ � � �

i

� R

3

G

3

R

y

3

; (B.51)

whih an be veri�ed order by order. The operator R

3

an now be sandwihed between

the quark-pair-gluon propagator G

3

and two vertex interations V , for whih reason it

is onvenient to introdue V as an abbreviation, de�ned by

V G

3

V = V G

3

V

y

= V R

3

G

3

R

y

3

V

y

= V G

3

V

y

= V G

3

V : (B.52)

One an show that R

3

is essentially diagonal and independent of the spin [7℄, suh

that eah vertex element is multiplied with a number, atually with a number whih

depends on the momentum transfer Q aross the vertex. Thus a very natural and

physial interpretation is given to the operator R

3

, as being the vertex funtion. The

transition V ! V is realized by de�ning an e�etive oupling onstant g

g �! g(Q) = gR

3

(Q): (B.53)

The e�etive one-body eigenvalue equation an now be written as

M

2

i

hx;

~

k

?

; �

q

; �

�q

j	

i

i =

"

m

2

q

+

~

k

2

?

x

+

m

2

�q

+

~

k

2

?

1� x

#

hx;

~

k

?

; �

q

; �

�q

j	

i

i

+

X

�

0

q

;�

0

�q

Z

dx

0

d

2

k

0

?

hx;

~

k

?

; �

q

; �

�q

jV G

3

V

+V G

3

V G

2

V G

3

V jx

0

;

~

k

0

?

; �

0

q

; �

0

�q

ihx

0

;

~

k

0

?

; �

0

q

; �

0

�q

j	

i

i: (B.54)

Up to now all results are exat. We have seen how the method of iterated resolvents

o�ers a ompat notation of systematially resuming all perturbative diagrams with-

out double ounting. But when oming down to pratial alulations one has to make
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B. Light-front QCD

Figure 10: Taken from [25℄. The vertial lines denote the free propagators. The oupling

funtion at the verties is symbolized by graphs as they would appear in a perturbative analysis.

approximations by breaking the propagator hierarhy. The reason for have written

the e�etive equation (B.46) as (B.54) is that latter o�ers a better platform for do-

ing approximations in propagators. Compared to the full dressed propagator G

3

, the

propagator G

3

is only partially dressed with the rest of its impat being shifted to

the verties. Thus approximating G

3

by a free propagator in the q�qg-spae would be

ertainly less rude than it would be for G

3

. Unfortunately we do not have a similar

onstrution for the full dressed propagator G

2

. To be onsistent we are fored to

approximate it by a free propagator in gg-spae. As a net result, all what now has to

be done is to update (Fig7) by replaing the dressed propagator G

2

and the partially

dressed propagator G

3

by free propagators and eah point-like vertex by an e�etive

vertex, indiated by little round irles as in (Fig9) or (Fig10).
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B. Light-front QCD

B.2 Regularization

Before proeeding to solve the eigenvalue equation (B.54) the regularization of the

theory need to be spei�ed. As in every quantum �eld theory we are onfronted with

all kind of divergenies. In general the alulation of light-one vertex matrix elements

is seriously ompliated by ultraviolet singularities ouring at very large values of the

transverse momenta, and infrared singularities aused by longitudinal momenta lose

zero. If at eah vertex a partile with four-momentum p

�

= (p

+

; ~p

?

; p

�

) is sattered

into the momenta p

0�

= (zp

+

; z~p

?

+

~

l

?

; p

0�

) and q

�

= ((1 � z)p

+

; (1 � z)~p

?

�

~

l

?

; q

�

)

of a seond partile, the orresponding vertex matrix elements [12℄ are proportional

to

~

l

2

?

=z. They tend to diverge for l

?

! 1 and/or z ! 0. Those diÆulties demand

the introdution of unphysial ut-o� sales to regulate the theory, whih in turn have

to be removed by a renormalization sheme. Experiene has shown [7℄ that a reliable

method for treating the ultraviolet divergenies is to use the loal vertex regularization

sheme. Eah matrix element is multiplied with a onvergene enforing form fator

hpjV jp

0

; qi ! hpjV jp

0

; qiR(�; p; p

0

; q): (B.55)

There are three ways how to perform the regularization

R(�; p; p

0

; q) =

8

>

<

>

:

R

Q

(�; p; p

0

);

R

M

0

(�; p

0

; q);

R

Q

(�; p; p

0

)R

M

0

(�; p

0

; q);

(B.56)

either by regulating the Feynman four-momentum transfer Q

2

= �(p� p

0

)

2

aross the

vertex, or by regulating the free invariant mass M

2

0

= (p

0

+ q)

2

after eah vertex inter-

ation, or if neessary both of them an be used. The regularization will be ontrolled

by some sale parameter �. Sine theory does not give us any hint on how to hoose

the regulating funtion R there will be an in�nite number of suh hoies. The only

requirement is that they have to drop at least quadratially for large values of Q orM

0

,

while for small values the regulating funtion should tend to R! 1, leaving the theory

in this region unhanged. If not mentioned otherwise, we will fous on the following

two struturally totally di�erent funtions

R(�) =

8

<

:

sharp ut-o�: �(Q

2

� �

2

); or �(M

2

0

� �

2

);

soft ut-o�:

�

2

�

2

+Q

2

; or

�

2

�

2

+M

2

0

:

(B.57)

On the other hand the infrared singularities are taken are of by endorsing the gluon

with a small regulator mass m

g

. Both sale parameters � and m

g

regulate then all

divergenies on the light-one.

Now everything is settled for alulating the relevant vertex matrix elements in equation

(B.54). But before starting the alulations one �rst has to restore gauge invariane

by resubstituting the instantaneous interations W , whih were omitted so far. As

mentioned in the previous setion one now makes use of the `gauge-trik', where every
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internal line has to be replaed by a dynamial and an instantaneous line. Having all

this in mind and fousing only on the avor onserving part of the interation, the

e�etive one-body equation takes on the form [12℄, [7℄
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; �
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)℄; (B.58)

where it is onvenient to see Q

2

as the mean Feynman 4-momentum transfer along the

quark and the anti-quark line respetively

Q

2

(x;

~
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�q

� k

0

�q

)

2

�

: (B.59)

The e�etive masses and the e�etive oupling onstant � = g

2

=4� have been alulated

via the sharp ut-o� �(M

2

0

� �

2

):

� m

2

f

(�) = m

2

f

 

1 +

4�
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; (B.60)

� �(Q;�) =

12�

1=�� (33� 2N
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) ln(�
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;

with b(Q) = 33 ln
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; (B.61)

� m

2
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(�) = m
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g

�

�

4�

N

f

X

f=1

m

2

f

ln

�

2

4m

2

f

: (B.62)

As mentioned, a kinematial gluon mass m

g

is introdued to ontrol the infrared sin-

gularities. This is not in onit with gauge theory: only the physial gluon mass must

vanish due to gauge invariane. Thus m

g

= 0, whih will express m

g

in terms of the

quark masses m

f

. The arbitrary but �xed mass sale � an be identi�ed as the so

alled QCD-sale �

QCD

whih has to be determined by experiment.

All arguments and expliit alulations to get the above results are listed in detail in

[28℄ and [7℄ and will be not repeated here.
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C Spinor Matrix

The Lorentz invariant spinor fator
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(C.1)

is alulated expliitly [29℄. In heliity spae it an be understood as a 4 � 4 matrix
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It is often useful to arrange S or T as a matrix in heliity spae,
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With y � 1� x the diagonal elements are
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where

~

k

?

�

~

k

0

?

= k

?x

k

0

?x

+k

?y

k

0

?y

and

~

k

?

^

~

k

0

?

= k

?x

k

0

?y

�k

?y

k

0

?x

. The o�-diagonal matrix

elements beome

T

12

= �m

1

m

2

(x� x

0

)

2

xyx

0

y

0

; T

21

= �m

1

m

2

(x� x

0

)

2

xyx

0

y

0

;

T

13

=

m

2

yy

0

x

�

k

?

(")

x

�

k

0

?

(")

x

0

�

; T

31

=

m

2

yy

0

x

0

�

k

?

(#)

x

�

k

0

?

(#)

x

0

�

;

T

14

=

m

1

xx

0

y

�

k

?

(#)

y

�

k

0

?

(#)

y

0

�

; T

41

=

m

1

xx

0

y

0

�

k

?

(")

y

�

k

0

?

(")

y

0

�

;

T

23

=

m

1

xx

0

y

�

k

?

(")

y

�

k

0

?

(")

y

0

�

; T

32

=

m

1

xx

0

y

0

�

k

?

(#)

y

�

k

0

?

(#)

y

0

�

;

T

24

=

m

2

yy

0

x

�

k

?

(#)

x

�

k

0

?

(#)

x

0

�

; T

42

=

m

2

yy

0

x

0

�

k

?

(")

x

�

k

0

?

(")

x

0

�

;

T

34

= 0; T

43

= 0; (C.5)

where k

?

(") = �k

?x

� ik

?y

and k

?

(#) = k

?x

� ik

?y

.
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D Potential Sattering

The theory of stationary sattering in oordinate spae, espeially for potentials of �-

nite range as well as for Coulomb potentials has been well studied and an be found in

nearly any standard text book about quantum mehanis [31℄,[32℄,[33℄.

This is ertainly not the ase in momentum spae. It is often advantageous to solve the

sattering problem also in momentum spae, beause from a �eld-theoretial point of

view momentum spae represents a more natural desription of physis. Unfortunately

the momentum spae representation su�ers more on fundamental problems than its

ounter part representation. Espeially the sattering problem for Coulomb-like poten-

tials is far from being well understood | the sattering boundary onditions, namely

to have an inoming and an outgoing sattered wave, are in momentum spae far more

diÆult to implement than in oordinate spae. But exatly these are neessary to

formulate well de�ned quantities within Coulomb sattering. Up to now the general

problem of repulsive Coulomb-like potentials an be regarded as solved [10℄. But the

sattering on attrative Coulomb-like potentials still seems to be terra inognita. The

main problem, ompared to its repulsive ounter part lies in the fat that every attra-

tive Coulomb-like potential has besides the sattering region also a bound-state region

with an in�nite range, whih makes it nearly impossible to work with it numerially

in momentum spae. In our ase of the ST-model we are onfronted with this prob-

lem of having an attrative Coulomb-like potential in momentum spae. At the very

end of this setion, a partial solution to this problem is proposed. Furthermore, our

ST-potential will give rise to so alled resonanes. The word resonane is given many

meanings in the literature, whih leads to muh onfusion. I shall try to avoid this

onfusion by being as spei� and illustrative as possible, and show how a resonane

state an be ompletely desribed in the stationary piture, by approahing it from

three di�erent perspetives.

To attak all this, it is useful to give a brief but omplete overview on stationary

sattering in order to have a unique notation and to larify still existing problems. Fur-

thermore, it is helpful not to use a spei� representation of the stationary Shr�odinger

equation, but rather look for a formal solution in the sattering region, whih will lead

us to the Lippmann-Shwinger equation.

This whole setion will only deal with elasti non-relativisti one-partile sattering.

Sattering of a physial partile is a dynamial proess, and is treated orretly when

solving the time-dependent Shr�odinger equation using loalized wave pakets as an

initial ondition. A sattering experiment onsists of an inident and a sattered beam,

whih are well separated in time. The aessible quantity for the experiment is the

onept of the ross-setion, whih in di�erential form is de�ned as

d� =

number of events in d
 per time unit

inident partile ux

=

~

j

s

� d

~

F

j

~

j

0

j

; (D.1)

where we assumed that the detetor, loated in the asymptoti sattering region, opens

a one of a solid angle d
 from the origin of the target. The quantity

~

j

s

� d

~

F is then
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the measured ux of the sattered partiles within the area d

~

F = r

2

d
 � ê

r

overed by

the detetor. Clearly, d� has the dimension of an area.

The big disadvantage of the time-dependent piture using wave pakets is its mathe-

matial inaessibility. But sine our main interest in sattering proesses lies in the

determination of (D.1), it is not neessary to work all the way in the time-dependent

piture. Probability urrent densities as

~

j

s

and

~

j

0

are also well de�ned expressions in

the time-independent piture. Although this stationary piture o�ers a mathematially

muh easier approah for alulating the ross-setion (D.1), general alulations and

physial interpretations have to be done with great are. As we know, funtions in the

stationary piture are energy eigenstates, and aording to the unertainty priniple

the inident and the sattered state are totally unloalized and begin to oinide in

time. Furthermore, sine we are fousing only on elasti sattering, the inident and

the sattered state must have the same energy, thus they are both solutions of the same

stationary Shr�odinger equation. For this, its of utmost importane in this piture, to

always have a strit separation of what is the inident and what is the sattered part

of the stationary wave, in order to avoid unphysial interferenes.

D.1 Potentials of �nite range

This ase will restrit potentials to have a limited range, or more preisely, the potentials

have to fall o� faster than a Coulomb potential does. Coulomb sattering is thus

exluded in this setion and has to be treated separately.

D.1.1 Formal stationary sattering solution

Our problem onsists in �nding the sattering solution of

Hj	i = Ej	i; (D.2)

where the Hamiltonian is given by

H = H

0

+H

1

: (D.3)

H

0

should represent that part of H, for whih the eigenvalue problem is solved

H

0

j'i = E

0

j'i; (D.4)

and we all the auxiliary system with energy eigenvalues E

0i

and its orresponding

orthonormal state vetors j '

i

i the referene system| the index i represents a olletion

of all relevant quantum numbers haraterizing this energy state.

We now must make ertain assumptions as to the struture of the H- and H

0

-spetrum:

� We allow that H

0

an have, besides the ontinuum part of its spetrum, a disrete

bound state part. The property that the eigenstates of H

0

form a omplete set

has the general form

1 =

X

i

j'

i

ih'

i

j+

Z

dj j'

j

ih'

j

j: (D.5)
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� As is always possible, we shall adjust the energy sale in H

0

in suh a way that

the ontinuum starts at E

0

= 0 and all states in the ontinuous spetrum have

E

0

� 0. On the other hand if disrete bound states exists, they are supposed to

lie lower than any state in the ontinuum.

� Furthermore we make the nontrivial assumption, namely, that the energies of the

ontinuum states of H

0

are not hanged by swithing on H

1

. In other words, we

assume that the ontinuum of both H

0

and H starts at E = E

0

= 0 and that to

eah state j'i in the ontinuous part of the H

0

spetrum, whih has an energy

E

0

, there belongs a orresponding state j	i in the ontinuum of the H-spetrum,

whih has the same energy E = E

0

.

Thus, so long as we onsider only states in the ontinuum one an write (D.4) as

(E �H

0

)j'i = 0; (D.6)

and see it as a homogeneous solution of the omplete equation (D.2)

(E �H

0

)j	i = H

1

j	i: (D.7)

Solving for j	i will give the formal self-onsistent solution

j	

�

i = j'i+G

�

0

�H

1

� j	

�

i; (D.8)

where G

�

0

stands for the Greens-funtion of the referene operator H

0

G

�

0

=

1

E �H

0

� i � �

; (D.9)

whih aording to (D.5) has the bilinear expansion

G

�

0

=

X

n

j'

n

ih'

n

j

E �E

n

+

Z

1

0

dE

0

j'

E

0

ih'

E

0

j

E �E

0

� i � �

: (D.10)

Equation (D.8) is a mathematially well de�ned equation for j	

�

i as long H

0

as well as

H

1

only ontain short-ranged potentials. It is alled the Lippmann-Shwinger equation

and is a omplementary desription of the Shr�odinger equation in the sattering re-

gion. As one an regard the Shr�odinger equation as a loal desription of the system,

the Lippmann-Shwinger equation serves more as a global desription, sine the need

for implementing boundary onditions appears automatially.

The solution j	

+

i is properly alled an outgoing eigenstate of the full Hamiltonian,

while the other linear independent solution j	

�

i has the meaning of an inoming eigen-

state ofH. Both the out-states and the in-states have a physial ontent | both ontain

inoming and outgoing wave omponents, whih have to be mathed to given boundary

onditions.
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The ultimate goal of sattering theory is the onnetion to experiment. A entral

onept is the sattering or S-matrix, whih is de�ned as

j	

+

i = Sj	

�

i: (D.11)

Normalization or probability onservation immediately yields the unitarity ondition

for the sattering matrix

S

y

S = 1: (D.12)

Other postulates on S involve invariane properties and analytiity requirements, but

I will not disuss it here in further detail.

Aording to our previous made assumptions, the in- and out-states an be expanded

in terms of eigenfuntions of the referene operator H

0

j	

�

i =

X

�



�

j'

�

i ; j	

+

i =

X

f



f

j'

f

i: (D.13)

The sum has to be seen as a generalized sum, whih turns into an integral if the quantum

numbers lie in a ontinuum. Substituting the expansion into the de�nition (D.11) and

inserting on the right-hand side the ompleteness relation

P

f

j'

f

ih'

f

j = 1, yields



f

=

X

�



�

S

f�

; where S

f�

= h'

f

jSj'

�

i: (D.14)

Sine our potential in H

1

is of �nite range, it is possible to prepare the in-state into a

de�nite state of the referene system j	

�

i

i = j'

i

i, that means if 

�

= Æ

�i

then 

f

= S

fi

and the general out-state j	

+

i turns into a prepared out-state with quantum numbers i

j	

+

i

i =

X

f

S

fi

j'

f

i: (D.15)

The oeÆient 

f

of the expansion (D.13) desribes the probability of �nding the system

in that state having the quantum numbers f . Thus the sattering matrix 

f

= S

fi

is

the probability amplitude for a proess in whih the system makes a transition from an

initial state j'

i

i to a �nal state j'

f

i under the inuene of an interation. As follows

from the unitary ondition (D.12) for the sattering matrix,

X

f

jS

fi

j

2

= 1; (D.16)

the sum of all probabilities is equal to one. This makes the sattering matrix aessible

for experiments. However, the squared magnitude of the amplitude S

fi

is not a mean-

ingful quantity in the funtional sense. Sine strit energy onservation is ertainly

guaranteed between initial and �nal states, we have to split o� an energy-onservation

fator, whih is a delta funtion. For this we want to rewrite the sattering matrix by

de�ning a new operator, the transition or T -matrix.
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To get there, we �rst look at the adjunated form of the de�nition (D.11)

h	

+

j = h	

�

jS

y

() h	

�

j = h	

+

jS: (D.17)

For the bra-kets an analog expansion (D.13) an be done, whih results in

h	

�

f

j =

X

i

S

fi

h'

i

j; (D.18)

where we prepared the out-state to a spei� state of the referene system h	

+

f

j = h'

f

j.

The amplitude of suh a prepared in-state with quantum numbers f with the previously

prepared out-state with quantum numbers i, will give

h	

�

f

j	

+

i

i =

X

n;m

S

fn

S

mi

h'

n

j'

m

i = S

fi

: (D.19)

Thus the elements of the S-matrix between initial and �nal states of the referene

system an also be expressed simply as the amplitude of the orrespondingly spei�ed

in- and out-states, whih are solutions of the Lippmann-Shwinger equation (D.8).

We now return to these solutions by doing one omplete iteration

j	

�

i = j'i+G

�

0

H

1

j'i+G

�

0

H

1

G

�

0

H

1

j	

�

i: (D.20)

Multiplying with the inverse of G

�

0

(E �H

0

� i�)j	

�

i = (E �H

0

� i�)j'i+H

1

j'i+H

1

G

�

0

H

1

j	

�

i

= �i�j'i+H

1

j	

�

i; (D.21)

the Lippmann-Shwinger solutions an be written in an alternative way as

j	

�

i =

�i�

E �H

0

�H

1

� i�

j'i

� j'i+G

�

H

1

j'i; (D.22)

where G

�

stands for the Greens-funtion of the full Hamiltonian H. This new form

helps us to write the sattering matrix (D.19) as

h	

�

f

j	

+

i

i = h'

f

j	

+

i

i+ h'

f

jH

1

G

+

f

	

+

i

i

= h'

f

j	

+

i

i+ h'

f

jH

1

	

+

i

i

1

E

f

�E

i

+ i�

= Æ

fi

+

�

1

E

f

�E

i

+ i�

�

1

E

f

�E

i

� i�

�

h'

f

jH

1

	

+

i

i

= Æ

fi

+

�2i�

�

2

+ (E

f

�E

i

)

2

h'

f

jH

1

	

+

i

i

=

�!0

Æ

fi

� 2�i � Æ(E

f

�E

i

)h'

f

jH

1

	

+

i

i: (D.23)
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By de�ning the new transition or T -matrix as

H

1

j	

+

i

i = T j'

i

i; (D.24)

the sattering matrix takes the form

S

fi

= Æ

fi

� 2�i � Æ(E

f

�E

i

)T

fi

; (D.25)

where S

fi

= h'

f

jSj'

i

i and T

fi

= h'

f

jT j'

i

i. It should be learly visualized that there

is a signi�ant di�erene between the roles of Æ

fi

and Æ(E

f

�E

i

) | the symbol E

f

for

example represents the ontinuum sattering energy E whih is haraterized through

the quantum numbers f .

With the above identity, the determination of the S-matrix is now redued to the

problem of alulating the T -matrix. By de�ning a more general transition operator

T

�

j'i = H

1

j	

�

i; (D.26)

it is possible to write the Lippmann-Shwinger equation as a pure operator equation

T

�

= H

1

+H

1

�G

�

0

� T

�

: (D.27)

A hallenging task is not to �nd approximate solutions through iteration but to alulate

the full solution

T

�

= (1�H

1

�G

�

0

)

�1

�H

1

: (D.28)

In the ase where G

�

0

is the free-partile Greens-funtion this an easily be ahieved

numerially, as in (Appendix E).

Although the S-matrix is related to the T -matrix by means of the identity (D.25),

sattering theory an be viewed from two di�erent perspetives when working either

with the T -operator or the S-operator. As the de�nition (D.26) reveals, the transition

matrix is a onnetion between the full system and the referene system | in other

words in (D.24) it onnets an inident state with the orrespondingly prepared out-

state. In ontrary to that, the sattering matrix (D.11) loses the system on itself: an

inoming state is sattered to an outgoing state | it serves as a relation between the

initial and �nal eigenstates of the full system.

If H

0

is hosen to be the free-partile Hamiltonian and H

1

to be a rotational invariant

potential, the S- and T -matrix an be easily simpli�ed into workable expressions, still

without being restrited to any spei� representation. The set of eigenvetors of H

0

are plane waves, or more preisely, they are momentum eigenstates haraterized by

the quantum number

~

k. In this ase the S-matrix (D.25) is given as

S

~

k

0

~

k

= h

~

k

0

jSj

~

ki = Æ(

~

k

0

�

~

k)� 2�i � Æ(E

k

0

�E

k

)T

~

k

0

~

k

= Æ(

~

k

0

�

~

k)� 2�i �

m

k

� Æ(k

0

� k)T

~

k

0

~

k

: (D.29)
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Sine the total interation is rotation invariant, the sattering matrix will be the same

before and after a rotation U

R

hU

R

~

k

0

jSjU

R

~

ki = h

~

k

0

jSj

~

ki: (D.30)

Hene, the sattering matrix annot depend on the absolute orientation of the vetors

~

k and

~

k

0

. It an be only a funtion of the energy and the angle between the initial and

�nal momenta. Thus the sattering matrix an be expanded into Legendre polynomials

S

~

k

0

~

k

= h

~

k

0

jSj

~

ki =

Æ(k

0

� k)

4�k

2

1

X

l=0

(2l + 1)S

l

(k)P

l

(os#): (D.31)

The delta funtion has been inluded as a separate fator, beause we already know

that the S-matrix has nonvanishing elements only on the energy shell. The unknown

oeÆients S

l

(k) an be determined by invoking the unitarity of the sattering matrix

Z

d

3

k

00

h

~

k

0

jSj

~

k

00

ih

~

k

00

jS

y

j

~

ki = Æ(

~

k

0

�

~

k): (D.32)

Substituting here (D.31) and arrying out the integration, we obtain

Æ(k

0

� k)

4�k

2

1

X

l=0

(2l + 1)jS

l

(k)j

2

P

l

(os#) = Æ(

~

k

0

�

~

k) (D.33)

From the ompleteness relation of the Legendre polynomials, the above equation will

only be ful�lled if jS

l

(k)j

2

= 1, that means if S

l

(k) = e

2iÆ

l

(k)

, where the Æ

l

(k) are real

funtions of the momentum. An analog expansion of the T -matrix

T

~

k

0

~

k

= h

~

k

0

jT j

~

ki = �

1

4�

2

mk

1

X

l=0

(2l + 1)T

l

(k

0

; k)P

l

(os#); (D.34)

together with (D.29), will yield T

l

(k; k) = e

iÆ

l

(k)

sin Æ

l

(k). The interpretation and im-

portane of the funtions Æ

l

(k) will be disussed next.

D.1.2 Stationary sattering in the oordinate spae piture

To give sattering theory a more illustrative meaning, we will now translate the previous

results to oordinate spae. For that, the hoie of the referene system will be the

free-partile Hamiltonian H

0

=

~

k

2

=2m, while for the potential H

1

= V we only want

to demand loality. The eigenstates of H

0

are normalized to h

~

kj

~

k

0

i = Æ(

~

k �

~

k

0

), while

for the oordinate eigenstates we require h~r j~r

0

i = Æ(~r � ~r

0

).

We start o� with the Lippmann-Shwinger solution (D.8)

h~r j	

�

~

k

i = h~r j'

~

k

i+

Z

d

3

r

0

d

3

r

00

h~r jG

�

0

j~r

0

ih~r

0

jV j~r

00

ih~r

00

j	

�

~

k

i

= h~r j'

~

k

i+

Z

d

3

r

0

h~r jG

�

0

j~r

0

i � V (~r

0

) � h~r

0

j	

�

~

k

i: (D.35)
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Inserting the omplete set of eigenstates of H

0

h~r jG

�

0

j~r

0

i =

Z

d

3

k

0

d

3

k

00

h~r j'

~

k

0

ih'

~

k

0

jG

�

0

j'

~

k

00

ih'

~

k

00

j~r

0

i

=

1

(2�)

3

Z

d

3

k

0

e

�i

~

k

0

(~r�~r

0

)

E �

k

02

2m

� i�

; E = k

2

=2m

= �

2m � e

�i

j

~

k

j

�j~r�~r

0

j

4� j~r � ~r

0

j

; (D.36)

equation (D.35) an be written as

	

�

~

k

(~r) =

1

(2�)

3=2

e

�i

~

k�~r

�

m

2�

Z

d

3

r

0

e

�i

j

~

k

j

�j~r�~r

0

j

j~r � ~r

0

j

V (~r

0

)	

�

~

k

(~r

0

)

=

r!1

1

(2�)

3=2

�

e

�i

~

k�~r

+ f

~

k

('; #) �

e

�ikr

r

�

; (D.37)

where f

~

k

('; #) is alled the sattering amplitude, depending only on the momentum

parameter

~

k and the diretion of ~r

f

~

k

('; #) = �

m

2�

(2�)

3=2

Z

d

3

r

0

e

�i

j

~

k

j

r̂�~r

0

V (~r

0

)	

�

~

k

(~r

0

) ; jr̂j = j~r=rj = 1: (D.38)

The last step in equation (D.37) is allowed for all potentials V falling o� faster than

a Coulomb potential. So the sattering amplitude as given in (D.38) is a well de�ned

expression only for short-ranged potentials.

The asymptoti solution in (D.37) is a superposition of a plane wave and a spherial

wave. To adjust this solution to the boundary onditions of a sattering problem,

namely having an inident beam and an outgoing sattered beam, the only reasonable

solution is 	

+

~

k

(~r). This solution is alled the physial solution and will simply be

denoted by 	

~

k

(~r). Its asymptoti struture makes it possible to stritly separate the

inident ux from the sattered ux, neessary for alulating the ross-setion (D.1).

For this alulation, the preise value of the overall asymptoti normalization onstant,

here N = (2�)

�3=2

is unimportant. The wave funtion 	

~

k

(~r) an also be normalized to

unit inident ux by hoosing N = (j

~

kj=m)

�1=2

, or by requiring

R

d

3

r	

�

~

k

0

	

~

k

= Æ(

~

k

0

�

~

k).

But ertainly the simplest normalization is that where the inident amplitude is of unity.

Performing the alulation (D.1), the di�erential ross-setion per unit angle is

d�

d


=

�

�

f

~

k

('; #)

�

�

2

: (D.39)

For knowing the ross-setion one has to know the sattering amplitude, whih again

is determined from the asymptoti behaviour of the full wavefuntion.
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From (D.38) and the de�nition of the T -matrix (D.24), the sattering amplitude an

also be written as

f

~

k

('; #) = �4m�

2

h'

^

k

jV j	

~

k

i ;

^

k = j

~

kj � r̂

� �4m�

2

h'

~

k

0

jT j'

~

k

i ; k

02

= k

2

: (D.40)

Due to its representation independene the above relationship between the sattering

amplitude and the T -matrix is of great importane, sine it opens the possibility to

alulate sattering amplitudes and with it ross-setions in a representation di�erent

than that of oordinate spae, as for example in momentum spae.

The asymptoti wavefuntion in (D.37) an be simpli�ed tremendously, if we restrit

ourselves on inident beams that propagate in the z-diretion with momentum k and

potentials that are spherially symmetri V (~r) = V (j~rj). The whole sattering prob-

lem beomes symmetri around the z-axis and thus independent of the polar angle '.

Choosing the overall normalization for the amplitude of the inident beam as unity, the

physial axial-symmetri solution reads

	

k

(r; #) =

r!1

e

ikz

+ f

k

(#) �

e

ikr

r

;

with f

k

(#) = �

m

2�

Z

d

3

r

0

e

�ikr

0

�os�

V (r

0

)	

k

(r

0

; #

0

); (D.41)

where � is the angle between ~r and ~r

0

. The underlying symmetry now allows for a

partial wave analysis in oordinate spae

	

k

(r; #) =

1

X

l=0

a

l;k

u

l;k

(r)

r

P

l

(os#); (D.42)

where the wavefuntion u

l;k

(r) an be related to the solutions of the radial Shr�odinger

equation

d

2

dr

2

u

l;k

(r) +

�

k

2

� 2mV (r)�

l(l + 1)

r

2

�

u

l;k

(r) = 0: (D.43)

For large r, terms of the order smaller than 1=r an be negleted and the general

asymptoti solution for �nite range potentials is

u

l;k

(r) =

r!1

B

l;k

sin(kr) + C

l;k

os(kr)

� A

l;k

sin(kr �

l�

2

+ Æ

l;k

): (D.44)

When �xing the normalization onstant of u

l;k

in the asymptoti region as A

l;k

= e

iÆ

l;k

,

it is possible to make an idential omparison between the wavefuntions (D.41) and

(D.42).
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This an be seen when using the following identity

e

iÆ

l;k

sin(kr �

l�

2

+ Æ

l;k

) � sin(kr �

l�

2

) + e

iÆ

l;k

sin Æ

l;k

� e

i(kr�

l�

2

)

: (D.45)

For large r this will fore the expansion (D.42) to have the struture

	

k

(r; #) =

r!1

1

X

l=0

a

l;k

sin(kr �

l�

2

)

r

P

l

(os#)

+

"

1

X
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(�i)

l

a

l;k

e

iÆ

l;k

sin Æ

l;k

P

l

(os#)

#

e

ikr

r

: (D.46)

The above expression has to be equal to the right hand side of (D.41), and together

with the next identity

e

ikz

= e

ikr os#

=

1

X

l=0

i

l

(2l + 1)j

l

(kr)P

l

(os#)

=

r!1

1

X

l=0

i

l

(2l + 1)

sin(kr �

l�

2

)

kr

P

l

(os#); (D.47)

where j

l

stand for the at the origin regular spherial Bessel-funtions, will �x the

oeÆients a

l;k

= i

l

(2l + 1)=k and the sattering amplitude an be identi�ed as

f

k

(#) =

1

k

1

X

l=0

(2l + 1)e

iÆ

l;k

sin Æ

l;k

P

l

(os#): (D.48)

As we learly an see, all the information of the sattering proess within spherial

symmetri potentials is hidden in the asymptoti parameter Æ

l;k

, whih is alled the

phase-shift. This is the well known result f

k

(#) = �4m�

2

h

~

k

0

jT j

~

ki

�

�

k

0

=k

of (D.34), and

was to be expeted. The total ross-setion of (D.39) an be alulated as

�

k

=

Z

d


d�

k

d


=

Z

d
jf

k

(#)j

2

=

4�

k

2

1

X

l=0

(2l + 1) sin

2

Æ

l;k

�

4�

k

2

1

X

l=0

�

l;k

: (D.49)

The more important point is, the way how we manipulated the radial Shr�odinger

solution, by using the freedom of the normalization onstant to get the asymptoti

form

u

l;k

(r) =

r!1

sin(kr �

l�

2

) + T

l

(k) � e

i(kr�

l�

2

)

; (D.50)

with T

l;k

= e

iÆ

l;k

sin Æ

l;k

. As stated before in the abstrat formalism, we learly see

here how the T -matrix, or more preise the diagonal elements of the T -matrix onnets

two di�erent wave-types. The �rst term represents the inident beam, having here

the properties of a standing wave, while the seond term is the sattered outgoing

wave. The sattering proess adds to the free-partile plane wave funtion an outgoing

spherial wave whose amplitude is T

l

. This representation is thus also alled the T -

matrix solution of the radial Shr�odinger equation.
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On the other hand, the identity (D.45) may also be written as

e

iÆ

l;k

sin(kr �

l�

2

+ Æ

l;k

) �

i

2

h

e

�i(kr�

l�

2

)

� e

2iÆ

l;k

� e

i(kr�

l�

2

)

i

: (D.51)

The same is true for the inident beam in (D.47), whih an be split up into inoming

and outgoing wave omponents. Sine the hoie of our boundary ondition only allows

for inoming waves for the inident beam, the sattering amplitude an again be iden-

ti�ed as in (D.48), as expeted. But now the asymptoti radial Shr�odinger solution

has the struture

u

l;k

(r) =

r!1

i

2

h

e

�i(kr�

l�

2

)

� S

l

(k) � e

i(kr�

l�

2

)

i

; (D.52)

with the S-matrix S

l;k

= e

2iÆ

l;k

, or more preise the diagonal elements of the S-matrix

whih onnets two similar wave-types. Here we an see that the inoming spherial

wave is una�eted by the sattering proess, while the outgoing wave is multiplied by

the quantity S

l

. Only the phase, and not the amplitude of the outgoing spherial wave

is a�eted by the presene of the potential. This solution is alled the S-matrix solution

of the radial Shr�odinger equation, and from now on we simply all S

l

(k) the sattering

funtion.

The S-matrix representation in general is very onvenient for investigating ertain

strutures, like minima, maxima or sharp peaks in the ross-setion.

The reason of a vanishing ross-setion for a partiular energy an immediately be

understood, if one looks at (D.52). For all momenta k where the sattering fun-

tion S

l

(k) = 1, the outgoing wave e

i(kr�

l�

2

)

and the inoming wave e

�i(kr�

l�

2

)

an be

ombined to give the standing wave sin(kr �

l�

2

), whih looks like a omponent of an

inident plane wave with no sattered portion. Classially speaking, there is zero sat-

tering when the �nal trajetory is in the same diretion as the initial one.

The e�ets whih ause sharp peaks in the sattering ross-setion, are alled reso-

nanes, and are not so easy to understand. They are linked to partiular properties of

the sattering funtion S

l

(k). For this we rewrite (D.52) as follows

u

l;k

(r) =

r!1

i

2

S

l

(k)

�

1

S

l

(k)

e

�i(kr�

l�

2

)

� e

i(kr�

l�

2

)

�

: (D.53)

Aording to Gamow [34℄ we obtain a resonane, if we postulate that the above asymp-

toti solution onsists of outgoing waves only. This is equivalent to the ondition

1=S

l

(k) = 0. But the resulting equation e

�2iÆ

l

(k)

= 0 has no solution for real k. Thus

our only hoie is to go into the omplex momentum plane k ! q = k+ i�, with k � 0,

and study the e�ets of the omplex zeros of 1=S

l

(q) upon its behaviour on the real

k-axis | beause all the above results on a sattering wave funtion stritly apply only

for real momenta. It an be shown that the loser the omplex zero q lies toward the

real k-axis, the more it beomes to a physially observed e�et in the ross-setion.

Before going into the omplex momentum plane q, it is helpful to rewrite the sattering

funtion S

l

(k) as

S

l

(k) = e

2iÆ

l

(k)

�

F

l

(k)

F

�

l

(k)

; with Æ

l

(k) = arg[F

l

(k)℄ and k 2 R; (D.54)
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where F

l

(k) is a omplex funtion of a real argument, whih is alled the Jost-funtion.

Now for �nding the zeros of 1=S

l

(k), or equivalently the poles of the sattering funtion

S

l

(k), we have to do an analytial ontinuation into the omplex momentum plane for

the Jost-funtion F (k)! F (q). For the analyti properties of the Jost-funtion one an

refer to [33℄ | just important to note is that its analytial ontinuation in the omplex

momentum plane is di�erent from that being done in the omplex energy plane, due of

having the problem of double mapping E � k

2

.

The reason why this postulate of having only outgoing waves auses sharp peaks or rapid

hanges in the ross-setion and what the physial interpretations and impliations of

omplex momenta and energies are, will be disussed in detail in the next setion under

the more simpli�ed ondition of s-wave sattering on potentials with a strit range R.

Before ending this �rst disussion on resonanes, it is interesting to see how bound

states and resonanes are embedded in the stationary formalism. Bound states are

obtained when requiring in the energy region E < 0 the boundary ondition of having

a vanishing wave in the asymptoti region. Sine this boundary ondition is real, it

will only allow for ertain disrete real and negative energy eigenvalues, whih are

haraterized by one parameter, namely the energy value itself. On the other hand,

resonanes are obtained when requiring in the sattering region E > 0 the boundary

ondition of having a pure outgoing wave in the asymptoti region. As in the ase of the

bound state ondition, this resonane ondition will also only allow for ertain disrete

values, but sine the boundary ondition is omplex, these disrete energy eigenvalues

are also expeted to be omplex, and thus must be haraterized by two parameters,

their energy and width (E

R

;�) | in the sattering region it is justi�ed to talk of an

energy width, sine the relevant energy spetrum is lying in a ontinuum.

An interesting appliation of the analytial ontinued Jost-funtion F

l

(q) is the so alled

Levinson Theorem. It onnets the real sattering phase-shift to existing bound states

in that system. I state it here without proof [33℄

Æ

l

(0)� Æ

l

(1) =

(

(N

B

l

+

1

2

)� for l = 0 if F

0

(0) = 0;

N

B

l

� for all l if F

0

(0) 6= 0;

(D.55)

where N

B

l

stands for the number of bound states in the relevant l-wave setor. An

important requirement for the above relation, is that the real phase-shift Æ

l

(k) has to

be a ontinuous funtion. This an always be ahieved, sine the phase-shift is no

physial quantity and therefore not unique. It an be hanged into any desired form,

as long as the ross-setion via �

l;k

� sin

2

Æ

l;k

stays unhanged | it is invariant under

the substitution Æ

l

(k)!

e

Æ

l

(k) = Æ

l

(k) + � � n(k); n(k) 2 Z.

Only for those potentials whih reate a phase shift Æ(k) that is hanging monotoni

over the whole range of k, the Levinson Theorem helps to understand the last important

struture in a ross setion, the maxima. Every time when an additional bound state

appears, the phase goes through �=2 and inreases by �. At �=2 the ross-setion

�

l;k

� sin

2

Æ

l;k

takes on a maximum value. So under the assumption of a monotonous

phase shift, the number of maxima in a l-wave ross-setion is diretly linked to the

number of bound states in that system. We will see that this is realized by potentials

whih annot reate resonanes.
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D.1.3 S-wave sattering on potentials with a strit range R

Before starting, we �rst want to fous on the probability interpretation of a wave

funtion whih lies in a ontinuous energy spetrum. The reason is, if we have a proper

probability interpretation in the ontinuum part of the spetrum, it is possible to fully

understand and interpret resonanes in the stationary piture | there is no need to

go into the to time-dependent piture. For this we have to take a loser look at the

proedure of normalization in the ontinuum.

The full energy eigensolutions 	

E

(~r) of the stationary Shr�odinger equation, as we well

know, form an orthonormal set

Z

d

3

r	

�

E

0

(~r)	

E

(~r) =

(

Æ

EE

0

if E disrete;

Æ(E �E

0

) if E ontinuous:

(D.56)

Thus it is always possible to normalize a wavefuntion in the bound state region to

R

d

3

rj	

E

(~r)j

2

= 1, implying that the probability of �nding a partile somewhere in

spae must be unity. The quantity j	

E

(~r)j

2

d

3

r is then the probability of �nding the

partile with a disrete energy E in its volume element d

3

r. The squared wave funtion

itself j	

E

(~r)j

2

has therefore the meaning of a position probability density.

Looking at the ontinuous part of the spetrum, a wavefuntion in the sattering region

an always be normalized to

R

dE

R

d

3

rj	

E

(~r)j

2

= 1. Sine a probability interpretation

must be also valid within a sattering region, the quantity j	

E

(~r)j

2

d

3

rdE must be

the probability of �nding the partile in its volume element d

3

r within the ontinuous

energy interval dE. Due to the smeared energy distribution, the squared sattering wave

funtion j	

E

(~r)j

2

an not represent an absolute position probability density, as in the

ase of the bound-state wave funtion. But the ratio of j	

E

(~r)j

2

in two di�erent points

of spae determines a unique relative position probability density. In the sattering

region it is not possible to have an absolute position probability interpretation, one

rather has to work with relative probabilities, sine a sattering partile is not bound

to a ertain region in spae.

For spherially symmetri potentials V (r) and axial symmetri boundary onditions,

the general sattering wave funtion 	

E

(~r) is given by (D.42). Fousing only on s-wave

sattering, the radial wave funtion u

k

(r) satis�es the radial Shr�odinger equation

u

00

k

(r) + [k

2

� 2mV (r)℄ = 0; with k

2

= 2mE � 0: (D.57)

Sine this is a real equation, the general solution an be given in a real form. For a

potential of a strit range R, the general radial s-wave solution is given by

u

k

(r) =

(

u

<

k

(r) for 0 � r � R with u

<

k

(0) = 0;

A(k) sin[kr + Æ(k)℄ for r � R:

(D.58)

First we want to normalize this s-wave funtion to unity, in the sense

Æ(E �E

0

) =

Z

d

3

r	

�

E

0

(~r)	

E

(~r)

=

axialsym

Z

d

3
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�

k

0

(r; ')	

k

(r; ') =

s-wave

4�

Z

1

0

dr u

�

k

0

(r)u

k

(r): (D.59)
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The unity normalization for the real radial wave funtion (D.58) is thus given by

Z

1

0

dr u

k

(r)u

k

0

(r) =

1

4�

m

k

Æ(k � k

0

): (D.60)

Without having any spei� knowledge on u

<

k

(r) the above ondition an be used to �x

the asymptoti normalization onstant A(k) in (D.58). The proedure goes as follows:

multiplying the radial s-wave Shr�odinger equation for u

k

with u

k

0

and vie versa,

subtrating these two equations and then integrating over the range [0;L℄ with L � R,

will result in the equation

Z

L

0

dr u

k

(r)u

k

0

(r) =

1

k

02

� k

2

h

u
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(r)� u
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(r)u
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(r)

i

L

0

=

A(k)A(k

0

)

2

�
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� Æ
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0

+

sin [(k + k

0

)L+ (Æ

k

+ Æ

k
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)℄

k + k

0

�

:

(D.61)

For the limit L!1, we make use of the following funtional identities

lim

a!1

sin(ax)

x

= �Æ(x) ; lim

a!1

os(ax)

x

= 0: (D.62)

With these we have
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Æ(k � k
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); beause k; k

0

> 0: (D.63)

When identifying the above equation with (D.60) the normalization onstant must take

on the value

A

2

(k) =

1

2�

2

m

k

: (D.64)

Sine the normalization onstant A(k) an be �xed as being positive or negative for any

value k, the phase shift funtion Æ(k) in (D.58) an therefore be hosen as a funtion

whih is only unique within modulo �, without hanging the wave funtion. As we

already know, this ambiguity in the phase shift within modulo � an also be seen

when looking at the ross-setion (D.49) | the ross-setion as given in (D.49) is also

valid for the normalization given here, sine every general ross-setion (D.39), being

determined from the asymptotial behaviour of the wave funtion, is independent of

an overall asymptoti normalization onstant. The di�erential and total s-wave ross-

setion, whih are isotropi in their angular distribution are given as

d�

s;k

d


=

1

k

2

sin

2

Æ(k) ; �

s;k

=

4�

k

2

sin

2

Æ(k): (D.65)
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Now our aim is to determine the phase shift Æ(k) in (D.58) from the ontinuity require-

ments of u

k

(r) and its �rst derivative at r = R. For this we de�ne the dimensionless

logarithmi derivative of the inner region r < R

�(k) =

�

r

d

dr

lnu

<

k

(r)

�

r=R

=

R � u

< 0

k

(R)

u

<

k

(R)

; (D.66)

whih must be equal to the logarithmi derivative of the outer region r > R

�(k) = kR � ot [kR+ Æ(k)℄ () Æ(k) = �kR+ artan

�

kR

�(k)

�

+ � � n(k); (D.67)

where the integer values n(k) 2 Z for every k, are hosen suh that the phase shift Æ(k)

is a ontinuous funtion. Before alulating the ross-setion we �rst want to look at

will happen to the phase shift Æ(k) if the potential V (r) turns into the following two

extremes:

� if the potential goes to zero, or equivalently if the inident energy of the partile

is far more larger ompared to the energy range of the potential, the partile will

behave as a free partile, that means u

<

k

(r)! sin(kr) or Æ(k)! 0 (mod�).

� if the potential turns into an in�nitely hard-sphere potential at r = R, there

will be no penetration of the partile into the inside region r < R, that means

u

<

k

(r) = 0 for all 0 � r � R. Furthermore the outside wave funtion must take on

the form u

>

k

(r) = A(k) sin(kr�kR) in order to satisfy the ontinuity requirement

u

<

k

(R) = u

>

k

(R). This gives the hard-sphere phase shift denoted by �(k) = �kR.

So for having pure full range hard-sphere sattering, the orresponding potential

must imply the behaviour j�(k)j ! 1 for all k.

The phase shift funtion Æ(k) in (D.67) an thus be written as

Æ(k) = �(k) + artan

�

�

�(k)

�(k)

�

+ � � n(k); (D.68)

where the hard-sphere phase shift �(k) an be seen as a bakground sattering term,

while �(k) arrying all the information of the potential ats as the atual potential

sattering term. As already mentioned, if �(k) hanges onstantly over a wide range

where j�(k)j � 1, the overall sattering behaviour will be that of a hard-sphere. On

the other hand, if it tends to the opposite extreme by going rapidly through a region

where �(k) � 0, the overall sattering behaviour must be ertainly di�erent than that

of a hard-sphere. This will be studied next.

Let the funtion �(k) hange rapidly j�

0

(k)j � 1 within a suÆiently small region

j�kj = jk � k

0

j � 1 around k

0

, where �(k

0

) = 0. Making a Taylor-expansion up to

�rst order in �k

�(k) = (k � k

0

) � �

0

(k

0

); (D.69)
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and assuming furthermore that the hange of �(k) over this region �k is so drasti, that

when ompared to the linear hange of the pure bakground phase shift �(k) it would

be justi�ed to approximate it by the onstant �(k) ! �

0

= �k

0

R, the orresponding

ontinuous phase shift funtion has the approximation

Æ(k) = �

0

+ artan

�

�

�

0

�

0

(k

0

) � (k � k

0

)

�

+ � � n(k): (D.70)

That the approximation of Æ(k) by the approximation of �(k) is reasonable, one has

to be sure that the artan-funtion is a slow varying funtion, so that Æ(k) is more

or less insensitive in a variation of �(k). In the above approximation this is ertainly

guaranteed, sine the approximation region is where �(k) � 0, that means in the asymp-

toti region of the artan-funtion where it shows a very slow or nearly no variation

at all. De�ning the parameter 

0

= �

0

=�

0

(k

0

) the phase shift and the orresponding

ross-setion have the following 3-parameter struture in the region �k around k

0

Æ(k) = �

0

+ artan

�

�



0

k � k

0

�

+ � � n(k);

�

s

(k) � sin

2

Æ(k) =



2

0

(k � k

0

)

2

+ 

2

0

+ sin

2

�

0

�



2

0

(k � k

0

)

2

+ 

2

0

�

2 sin

2

�

0

+

k � k

0



0

sin 2�

0

�

: (D.71)

The �rst term in the above ross-setion is the pure potential term, also alled the

Breit-Wigner resonane term. The seond term is the pure hard-sphere or bakground

term, being totally independent of the sattering potential, while the last term is the

ompliated interferene term.

(Fig11) on the next page shows two harateristi plots of the phase shift and the ross-

setion for a �xed parameter set (k

0

; 

0

) but with a di�erent bakground parameter �

0

.

The plots show that when the sattering partile has a momentum lose to k

0

, its

wave funtion phase shift hanges rapidly, in the ideal ase even by the amount of �

and implies a sharp peak in the orresponding ross-setion. In every ase a sharp

hange of the phase shift Æ(k) by � auses a sharp struture in the ross-setion �

s

(k).

Experimentally, resonanes are usually assoiated with a sharp variation of the ross-

setion as a funtion of energy. We therefore want to take as the preliminary de�nition

of a resonane at the energy E

0

� k

2

0

that Æ(E) hanges rapidly by approximately �

when E passes through E

0

ausing manifestly a sharp struture hange in the ross-

setion relative to a slow varying bakground. A resonane is haraterized by the two

parameters (k

0

; 

0

), where 

0

an be seen as the width of the resonane.

To summarize, there are two striking behaviours in a sattering proess, whih an be

well separated, if the following onditions on the inner logarithmi derivative �(k) are

ful�lled: �

0

(k) � 0 and j�(k)j � 1 over a wide momentum range leads to hard-sphere

or bakground sattering, while j�

0

(k

0

)j � 1 where �(k

0

) � 0 leads to the ontrary

resonant sattering around k

0

. If these onditions are not met, there will be subtle

interplay between hard-sphere and resonane sattering, whih then is no longer so

easy to disentangle as before.
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k
0

sin
2
δ(k)

nπ-π/2

nπ

δ(k)

k
0

sin
2
δ’(k)

n’π

n’π+π/2

δ’(k)

Figure 11: Resonane pro�les for the phase shift and ross-setion

To study the feature resonane more thoroughly, we now want to go beyond the ross-

setion and look at the next physial quantity, the relative position probability density

of the radial sattering wave funtion (D.58) in the inside and outside region of a

potential with strit range R

P

k

(r

1

; r

2

) =

ju

k

(r

1

)j

2

ju

k

(r

2

)j

2

; with 0 � r

1

� R and r

2

� R: (D.72)

We will gain more insight if we only fous on average values of the wave funtion

squared in the inside and outside region respetively

P (k) =

j�u

<

k

j

2

j�u

>

k

j

2

=

1

R

R

R

0

drju

<

k

(r)j

2

1

2

A

2

(k)

: (D.73)

Aording to (D.61) the above integral an be determined as

1

R

Z

R

0

drju

<

k

(r)j

2

=

1

R

lim

k

0

!k

u

0

k

(R)u

k

0

(R)� u

k

(R)u

0

k

0

(R)

k

02

� k

2

=

A

2

(k)

2R

�

dÆ(k)

dk

+R�

sin [2(kR+ Æ

k

)℄

2k

�

; (D.74)

without knowing the preise wave funtion in the inner region. Sine the left-hand

side of the above relation is a positive quantity, we get as an intermediate result the

following striking inequality

dÆ(k)

dk

� �R+

sin [2(kR+ Æ

k

)℄

2k

� �R�

1

2k

: (D.75)
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It states that the phase shift annot derease faster than at a ertain rate. Thus if the

phase hanges rapidly, then it must be inreasing. This relation was �rst alulated

by Wigner [35℄ in the more ompliated time-dependent piture and is alled Wigner's

ausality priniple. The priniple of ausality states, that a sattered wave annot

leave the satterer before the inident wave has reahed it. Wigner onnets the above

energy derivative of the sattering phase shift with the time delay, that an inident wave

experienes inside the range of the potential before it is being sattered. Furthermore

Wigner gives the following simple physial interpretation: when dÆ=dk assumes large

positive values, the inident partile is in fat aptured and retained for some time by

the sattering enter and is therefore in a state of resonane; on the other hand if dÆ=dk

will be lose to (�R) or its minimum (�R � 1=2k) the inident partile hardly enters

the satterer.

For the moment we aknowledge Wigner's time-dependent result and keep on working

in the stationary piture, by inserting the phase shift funtion (D.67) into (D.74). After

some alulations we get

1

R

Z

R

0

drju

<

k

(r)j

2

=

1

2

A

2

(k) � k �

��

0

(k)

(kR)

2

+ �

2

(k)

: (D.76)

Sine again the left-hand side is a positive quantity, �

0

(k) � 0 for all values k, that

means the inner logarithmi derivative �(k) is a monotoni dereasing funtion. In-

serting the above relation into (D.73) we �nally have the average relative position

probability for the inside and outside region

P (k) = k �

��

0

(k)

�

2

(k) + �

2

(k)

�

k

>

k

<

�

�

�

; (D.77)

where k

>

= k is the inident momentum given in the outside region, while k

<

an be

seen as an average momentum in the inside region. If we de�ne � = 2Rm=k as the time

a partile stays within the region of 2R without any potential, then � = 2Rm=k

<

an

be seen as the average time the partile would spend in this region in the presene of a

potential of strit range R. Thus the average relative position probability P not only

gives a spaial partile pro�le but also represents a pro�le in time.

When now applying the well de�ned onditions for hard-sphere and resonane satter-

ing we ome to the same physial onlusions in the stationary piture as Wigner [35℄

does in the time-dependent piture, due of having a proper probability interpretation

in the sattering region. The hard-sphere ondition �

0

� 0 and j�j � 1 over a wide mo-

mentum range implies dÆ=dk � �R and P � 0, meaning that the probability of �nding

the partile inside the potential region relative to the outside region is zero. This is

onsistent with the fat, that during hard-sphere sattering there is no penetration into

the inside region. For the resonane ondition j�

0

j � 1 where � � 0 around some k

0

, we

have dÆ=dk � ��

0

� 1. If now a very narrow energy region j�kj = jk�k

0

j � 1 around

suh a speial value k

0

is taken, we an perform the same Taylor expansion for the log-

arithmi derivative as in (D.69), and obtain the following 3-parametri approximation

for P around k

0

:
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P (k) = k

0

�

��

0

(k

0

)

�

2

0

+ [�

0

(k

0

)(k � k

0

)℄

2

�

1



0

R

�



2

0



2

0

+ (k � k

0

)

2

; (D.78)

where the amplitude of P sales with 1=R. The parameter 

0

= �

0

=�

0

(k

0

) > 0 is the

very same as de�ned in (D.71). For a partile with momentum k � k

0

we will have

P (k

0

)� 1. Physially this implies that the partile at this ertain energy aumulates

in the inside region of the potential, or equivalently when the partile enters this region,

it remains there for some time before being allowed to esape again to the outside |

the partile is thus in a resonane state and is haraterized by the very same two

independent parameters (k

0

; 

0

) whih imply a rapid struture hange in the ross-

setion. This ertainly only holds if the resonane ondition is ful�lled. If not, a subtle

interplay between bakground and resonane sattering will emerge again, resulting in

a ompliated struture of maxima and minima in P , whih no longer an be orrelated

so easily to signi�ant strutures in a ross-setion.

The last perspetive to understand the feature resonane, is to look at it from the

sattering funtion S(k), being the diagonal elements of the S-matrix as disussed in

the previous setions.

Besides the solution (D.58), the general solution of the radial s-wave Shr�odinger equa-

tion (D.57) an also be given in the form

u

k

(r) =

(

u

<

k

(r) for 0 � r � R with u

<

k

(0) = 0;

B(k)e

�ikr

+ C(k)e

ikr

for r � R:

(D.79)

If we hoose u

<

k

(r) to be a real funtion, the omplex amplitudes A(k) and B(k) with

k 2 R, an be determined by the ontinuity requirements of u

k

(r) and its �rst derivative

at r = R as

B(k) = C

�

(k) =

1

2

e

ikR

�

u

<

k

(R) +

i

k

� u

< 0

k

(R)

�

: (D.80)

When omparing (D.79) with (D.52) irrespetive of some overall asymptoti normal-

ization onstant, the sattering funtion is given by

S(k) = �

C(k)

B(k)

=

e

�ikR

[�(k) + ikR℄

e

ikR

[�(k)� ikR℄

�

F (k)

F

�

(k)

= e

2iÆ(k)

; (D.81)

with the same notations as used in (D.54). Within this speial ondition of s-wave

sattering in a potential with strit rangeR, it is easy to verify and understand Gamow's

more general statement [34℄, that a resonane struture in a ross-setion is diretly

linked to the pole struture of the S-matrix. For �nding the poles of S(k) one has to do

an analytial ontinuation into the omplex momentum q-plane. It an be shown that

S(q) is a meromorphi funtion and that its poles are either loated on the positive

imaginary axis (bound state region) or in the lower half-plane (sattering region) [33℄.

In the following we are only interested in �nding the sattering poles of S(k), and for

that one has to determine the omplex zeros of the equation �(k)� ikR = 0. Lets say

the omplex momentum q

0

= k

0

� i

0

(

0

> 0) is suh a solution.
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Next, we will fous only on a speial lass of omplex zeros, namely on those for whih

the real part of q

0

satis�es the real ondition �(k

0

) = 0. If we now assume that the

omplex zero q

0

is lying very lose to the real axis, that means 

0

� 1, then �(q

0

) an

be expressed by the �rst order Taylor expansion around the real point k

0

�(q

0

) = (q

0

� k

0

)�

0

(k

0

); with jq

0

� k

0

j = 

0

� 1: (D.82)

In the region k � k

0

where jq

0

� k

0

j � 1 one an thus approximate the sattering

funtion (D.81) by

S(k) = e

2iÆ(k)

= e

�2ik

0

R

�

(k � k

0

)�

0

(k

0

) + ik

0

R

(k � k

0

)�

0

(k

0

)� ik

0

R

= e

2i�

0

�

k � [k

0

+ i � �

0

=�

0

(k

0

)℄

k � [k

0

� i � �

0

=�

0

(k

0

)℄

; (D.83)

and the imaginary part of the sattering pole q

0

= k

0

� i

0

an be identi�ed as the

positive quantity 

0

= �

0

=�

0

(k

0

) with the ondition 

0

� 1. When solving for Æ(k) we

get the very same resonane phase shift funtion as in (D.71) with the same onditions

and parameters, meaning that only if a sattering pole is suÆiently lose to the real

k-axis, the pole turns into a physially observed resonane-e�et in the ross-setion.

A sattering pole at the point q = k� i ( > 0) is assoiated with the omplex energy

E = q

2

=2m = (1=2m)(k

2

� 

2

� 2ik)

� E � i(�=2); with � > 0: (D.84)

Manifest physially meaningless sattering poles are those whih are loated in the

region of the omplex q-plane where the real part E of the omplex energy E is negative,

that means in the region where k < .

We now may well ask what is the physial meaning of a omplex energy. Doing an

analyti ontinuation of the Shr�odinger equation to omplex energies E , the time

dependene of the sattering solution will be

	

E

(t) = 	

E

(0)e

�iEt

; (D.85)

whih gives a time dependene for the probability density of

j	

E

(t)j

2

= j	

E

(0)j

2

e

��t

: (D.86)

This steady derease of probability means that the state is ontinually deaying away

with a lifetime 1=�. This exponential derease of probability with time is a diret

onsequene of our assumption in the previous setion of having outgoing waves only.

A pole in the S-funtion is equivalent to the ondition B = 0 in (D.79). When looking

more losely at the outside wavefuntion (r > R)

u

q

(r) = C(q) � e

ikr

e

r

; (D.87)

it ertainly represents a pure outgoing wave but with an exponentially growing am-

plitude. This inrease is an expression of the fat that the parts of the wave funtion

farther away from the potential well orrespond to emissions at a time when the inten-

sity inside the well was stronger.
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The problem with suh waves are, that they annot be normalized at all. This diÆulty

is usually irumvented by saying that the requirement of only outgoing waves does

not orrespond preisely to any physially realizable situation [36℄. Before the state

an deay by emitting outgoing waves, it must �rst be formed. During the period

of formation of the state, inoming waves must be present, whereas our requirement

B = 0 exludes inoming waves altogether at all times. However, we an obtain an

approximate physial realization of a deaying state, B = 0, by onsidering a system

formed a very long time T before we start observation. The wave funtion u

k

(r) for

r > R is then a purely outgoing wave for values of r � vT and is zero for r > vT , where

v = k=m is the speed of the partile in the outside region. This new wave funtion

di�ers from the wave funtion of a pure deaying state only for very large values of

r > vT , where it is zero and thus normalizable.

Summary: If a potential with a strit range R allows for a resonane, we have seen that

there are three ways to determine the resonane parameters (k

0

; 

0

) within a stationary

sattering piture. All three methods are omparable and give the same results, if and

only if the resonane ondition j�

0

(k

0

)j � 1 with �(k

0

) � 0 is ful�lled. But for a

sattering problem whih an not be approahed in an analytial sense, the veri�ation

of the resonane ondition will be very diÆult or sometimes even not possible. The

problem then of establishing the best method to determine the resonane parameters

by �tting is a rather aademi one. In pratie, at a sharp peak in a ross-setion

all three methods give an energy inside the width of the peak. Only for very broad

peaks the methods an give di�erent energies. When this ours, it is a warning that

the interpretation in terms of a resonane is then not a suitable one. It still is very

diÆult to give a preise and general formulation of the sattering problem in the ase

of short-lived deaying states.

The remaining part of this setion will be devoted to the sattering problem on spei�

examples. These are seleted in suh a way, that they an be treated not only numer-

ially but also analytially. This is neessary for heking the stability of numeris,

as well as having a reliable interpretation of possible resonanes. Furthermore, these

examples an be seen as little building bloks for onstruting at the end a simpli�ed �-

nite range potential, having the same basi strutures as our model-potential in (Fig3).

The main task is to alulate phase-shifts. For the numerial alulation the T -matrix

relationship (D.40) in momentum spae is used (Appendix E), while for the analytial

alulation the orresponding radial Shr�odinger equation in oordinate spae is solved.
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D.1.3.1 Square-well potential

r

V(r)

R

-V0

V (r) =

(

�V

0

for 0 � r � R, V

0

� 0;

0 for r > R:

(D.88)

Aording to (D.58) the radial s-wave sattering solution for the above potential is

0 � r � R : u

k

(r) = N sin(Kr) ; K =

p

k

2

+ 2mV

0

r > R : u

k

(r) = A sin(kr + Æ); (D.89)

where A is given by (D.64). By requiring the ontinuity of u

k

(r) and its �rst derivative

at r = R will �x the remaining two parameters

N(k) = A(k)

sin[kR+ Æ(k)℄

sin(KR)

Æ(k) = �kR+ artan

�

kR

�(k)

�

+ � � n(k); with �(k) = KR ot(KR) : (D.90)

When trying to plot the phase shift funtion Æ(k) for di�erent depths and widths

of the potential V (r), it is reasonable to ombine these parameters and introdue the

following dimensionless sale � = R

p

2mV

0

. The phase shift then takes on the following

one parametrial form

Æ(x) = �x+ artan

�

x

�(x)

�

+ � � n(x); �(x) =

p

x

2

+ �

2

ot

p

x

2

+ �

2

; (D.91)

where x = kR. Then other relevant funtions as the sattering funtion and the relative

probability, whih here an be well approximated as the ratio N=A due to a onstant

amplitude in the inner region, are also dimensionless one parametrial funtions

P (x) = �

x � �

0

(x)

x

2

+ �

2

�

N

2

(x)

A

2

(x)

; S(k) = e

�2ix

�

�(x) + ix

�(x)� ix

: (D.92)

(Fig12a) shows the phase-shift funtion for various values of �. All funtions are mono-

toni dereasing and show no rapid struture hange over a wide energy range. One

striking e�et although is that all funtions onverge towards a multiple of � and for

ertain � they even jump asymptotially about �. This e�et is a pure realization of the

Levinson Theorem (D.55). For example if � = 7 the phase-shift onverges towards 2�,

meaning that the system must have two bound states. If the sale � is then inreased

to � = 8 the phase-shift jumps by �, whih now an only mean that the sale has a

suÆient size to allow for another bound state. Sine the phase-shifts are monotoni,

the number of maxima in the orresponding ross-setions are diretly linked to the

number of bound states in that system, whih an seen in (Fig12).
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Figure 12: Square-well potential
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(a) The phase-shift funtion Æ is plotted

versus x = kR for di�erent �. From bot-

tom to top the solid lines are showing

� = 2; 3; 4, the long-dashed lines � = 5; 6; 7

and the dashed line displays � = 8. All

lines are onverging towards mod�.

0.0 4.0 8.0 12.0 16.0 20.0
-30.0

-15.0

0.0

15.0

(b) This �gure shows in solid the inner

logarithmi derivative �(x) and in long-

dashed its �rst derivative �

0

(x) for � = 7.

The thin vertial lines go through the poles

of �(x).
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() The ross-setion �

s

(x) � sin

2

(x) is

plotted for � = 7. The solid line represents

the analytial alulation, while the single

points were alulated numerially via the

T-matrix in momentum spae. For x > 20

the ross-setion is steadily dereasing, go-

ing to zero for x!1.
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(d) The top part of the �gure shows the

phase-shift funtion Æ(x) for � = 7. The

solid line represents the analytial alu-

lation, while the single points were alu-

lated numerially via the T-matrix in mo-

mentum spae. The bottom part of the

�gure shows the average relative position

probability P (x) for � = 7. The thin verti-

al lines go through the maxima of P (x).
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When looking more losely at one representative phase-shift in (Fig12d), we see that

for small x the phase-shift starts o� as that of a hard-sphere, sine its slope is more or

less a onstant. Then as x inreases up to x � 4, we see how the phase-shift hanges its

behaviour in the sense that it turns away from the hard-sphere behaviour by gaining

a less steeper slope. And as x grows beyond x � 4 it reats ontrary to its previous

behaviour by turning again towards a hard-sphere slope. But as x inreases more and

more there is no hane for the phase-shift to restore its struture as to that of a hard

sphere. The phase-shift deviates more and more from a hard-sphere as x grows.

This behaviour an be ompared in the bottom part of (Fig12d), where the maxima

P � 1, representing a transparent potential, oinide with the region of sattering

whih is di�erent than that of a hard-sphere. For large x the square well potential

beomes more and more transparent, sine P ! 1. This is onsistent with the fat,

that for very large inident energy values, where the energy range of the potential is

negligible, the partile behaves as a free partile.

In summary we see in (Fig12d) and even in the ross-setion (Fig12) the subtle in-

terplay between bakground sattering and resonane sattering. We learly see the

attempt of forming a resonane out of the bakground sattering. But the attrative

square-well potential is to weak to produe proper resonanes, it an not ful�ll the

ondition j�

0

(x

0

)j � 1 with �(x

0

) � 0 in order to produe rapid struture hanges in

the sattering funtions Æ; �

s

and P .

This an also be seen if we alulate the poles of sattering funtion (D.81), for whih

we have to solve the omplex equation

p

z

2

+ �

2

ot

p

z

2

+ �

2

� iz = 0: (D.93)

A very nie and thorough treatment on the general behaviour of the above solutions

z = x

0

� iy

0

, x

0

; y

0

� 0 an be found in the paper [37℄. The result is that for all

sales � the imaginary part y

0

of the solution is always larger than 1. The ondition

for observing a proper resonane is that a sattering pole must be suÆiently lose to

the real x-axis, but for a square-well sattering pole this is not possible. Up to two

signi�ant digits the �rst three sattering poles for � = 7 are

(x

0

; y

0

) = (3:38;�1:07) ; (8:36;�1:32) ; (12:18;�1:52): (D.94)

The next examples will not be investigated in suh detail, sine all the above disussed

properties are very similar to those of the square well potential. Important results will

still be the plots of the funtions �(x), Æ(x) and P (x).
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D.1.3.2 Osillator-well potential

r

V(r)

R

-V0

V (r) =

(

�V

0

+

1

2

m!

2

r

2

for 0 � r � R;

0 for r > R;

(D.95)

with !R =

p

2V

0

=m and V

0

� 0:

The general real sattering solution of the osillator well is

0 � r � R : u

k

(r) = N �Kr � e

�

m!

2

r

2

F

1 1

h

3

4

�

K

2

4m!

;

3

2

;m!r

2

i

r > R : u

k

(r) = A sin(kr + Æ); (D.96)

where A is given by (D.64), K =

p

k

2

+ 2m� and F

1 1

is the Kummer-funtion or the

onuent hypergeometri funtion whih is regular at the origin [30℄.

Continuity requirements of u

k

(r) and its �rst derivative at r = R, will �x the two

parameters Æ and N . When doing plots, it is also possible to redue the above funtions

down to one parametrial ones with the same dimensionless sale � = R

p

2mV

0

as

used in the ase of the square-well potential. (Fig13) shows a plot of �(x) and the

orresponding funtions Æ(x) and P (x) versus x = kR for the same sale � = 7 as

in (Fig12). One learly sees that the strutures in (Fig13b) for the osillator-well are

muh weaker than in the square-well potential. Otherwise (Fig12b,d) and (Fig13) are

nearly of similar struture. This also holds for the ross-setion whih is not plotted

here.

Figure 13: � = 7
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(b)
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D.1.3.3 Coulomb-well potential

r

V(r)

R

V (r) =

(

��=r for 0 � r � R, � � 0;

0 for r > R:

(D.97)

The general real sattering solution of the Coulomb-well is

0 � r � R : u

k

(r) = N � F (�m�=k; kr)

r > R : u

k

(r) = A sin(kr + Æ); (D.98)

where A is given by (D.64) and F the dimensionless at the origin regular s-wave

Coulomb funtion [30℄. After requiring ontinuity at r = R, and introduing the

dimensionless sale �



= R �m� the resulting one parametrial funtions �(x), Æ(x) and

P (x) an be plotted versus x = kR, and are shown in (Fig14) for the sale �



= 7.

What surprises is that the Coulomb singularity at r � 0 apparently does not e�et the

sattering behaviour to muh, sine �(x) whih arries all information of the sattering

potential, is nearly alike with that of the square-well potential.

Figure 14: �



= 7
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D.1.3.4 Step-well potential

r

V(r)

-V1

V2

r1 r2=R
V (r) =

8

>

<

>

:

�V

1

for 0 � r � r

1

, V

1

� 0;

V

2

for r

1

< r � r

2

, V

2

� 0;

0 for r > r

2

, r

2

� r

1

:

(D.99)

The general real sattering solution of the step well is divided into two separate energy

regions. The �rst region is 0 � E � V

2

with its orresponding solution

0 � r � r

1

: u

k

(r) = N sin(K

1

r) ; K

1

=

p

k

2

+ 2mV

1

r

1

< r � r

2

: u

k

(r) = Be

K

2

r

+ Ce

�K

2

r

; K

2

=

p

�(k

2

� 2mV

2

) 2 R

r > r

2

: u

k

(r) = A sin(kr + Æ); (D.100)

while the solution of the seond region E � V

2

is given by

0 � r � r

1

: u

k

(r) = N sin(K

1

r) ; K

1

=

p

k

2

+ 2mV

1

r

1

< r � r

2

: u

k

(r) = B sin(K

2

r) + C os(K

2

r) ; K

2

=

p

k

2

� 2mV

2

2 R

r > r

2

: u

k

(r) = A sin(kr + Æ): (D.101)

The step-well sattering problem an be haraterized by three dimensionless sales:

the depth sale �

1

= R

p

2mV

1

, the height sale �

2

= R

p

2mV

2

and the relative width

sale a = R=r1 � 1. All relevant funtions for this problem are plotted in (Fig15)

versus x = kR. First of all, we see that in all �gures the step-well potential, under

ertain sale on�gurations is apable of produing resonanes, as expeted, due to

rapid struture hanges over a small region.

Starting with (Fig15a), it shows a representable phase-shift with �xed height and width

sales but for di�erent depth sales. The thin vertial line displays the energy threshold

of the step-well potential. As the depth of the potential inreases the more the resonane

moves towards lower energies. At a ertain depth the resonane disappears and the

phase-shift jumps asymptotially about �, whih aording to the Levinson Theorem

an only imply that the resonane swithed into a bound-state.

(Fig15b) shows the phase-shift at �xed depth and width but for di�erent heights. The

thin vertial lines show the orresponding energy thresholds. As the height inreases

the struture of the resonane beomes sharper until it makes the ideal jump of �.

Furthermore, the higher the barrier of the potential the more resonanes an prevail.

We see how a seond resonane is reated as the height sale tends to the value �

2

= 10.
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Figure 15: Step-well potential
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(Fig15) shows the phase-shift at �xed depth and height but for di�erent widths. We

start with the top solid line a = 1 whih represents the phase-shift for the pure square-

well potential with no barrier. As the width inreases from the bottom solid line to

the top dashed line, we learly see how a resonane is formed from the region above

the energy threshold given by the thin vertial line. During this proess the phase-

shift made an asymptotial jump about � to zero, implying that the system looses

its last bound-state. As the width inreases even more, it will beome impossible for

the system to prevail or reate a resonane. That the system looses its bound- and

resonane-states for a = R=r

1

� 1 is reasonable, sine the barrier width relative to

the attrative square-well width is so large, that the total potential ats e�etively as

a pure repulsive square-well of strength �

2

with no bound- and resonane-states.

(Fig15d) shows in solid the inner logarithmi derivative �(x) and in dashed its �rst

derivative �

0

(x) for a �xed parameter set. This set is also used for the ross-setion

�

s

(x) � sin

2

Æ(x) in (Fig15e) and for the relative probability funtion P (x) in the

bottom part of (Fig15f).

Finally we want to determine the dimensionless resonane parameters (x

0

; y

0

), where

x

0

= Rk

0

and y

0

= R

0

with the set (�

1

; �

2

; a) = (4; 4; 2) as used in (Fig15d,e,f).

Compared to the previous examples we see in (Fig15d) that the resonane ondition

j�

0

(x

0

)j � 1 with �(x

0

) � 0 is more or less ful�lled at x � 2. Thus y

0

an be

alulated as y

0

= �x

0

=�

0

(x

0

). Up to two signi�ant digits the resonant parameters

are (x

0

; y

0

) = (1:90; 0:08).

Although everything is settled we still want to ompare these resonane parameters by

those when alulating the exat sattering poles of the sattering funtion S(x) and

doing a �t in a small region around x � 2 to the exat funtions given in (Fig15f). The

�ts of the phase-shift (D.71) as well as the relative probability funtion (D.78), are in

the dimensionless formalism 2-parametri funtions

Æ(x) = �x

0

+ artan

�

�

y

0

x� x

0

�

+ � � n(x)

P (x) =

1

y

0

�

y

2

0

y

2

0

+ (x� x

0

)

2

: (D.102)

The resulting resonane parameters up to two signi�ant digits are

(x

0

; y

0

) = S-pole: (1:93; 0:07) ; Æ-�t: (1:90; 0:08) ; P -�t: (1:93; 0:07): (D.103)

These results onvine us, that for the parameter set (�

1

; �

2

; a) = (4; 4; 2) we really have

a resonane-state at x � 2 with a width y � 0:1.
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D.1.3.5 Step+Coulomb-well potential

r

V(r)

-V1

V2

r1 r2 R
V (r) =

8

>

>

>

>

<

>

>

>

>

:

�V

1

for 0 � r � r

1

, V

1

� 0;

V

2

for r

1

< r � r

2

, V

2

� 0;

��=r for r

2

< r � R, � � 0;

0 for r > R, R � r

2

� r

1

:

(D.104)

The sattering solution of this potential is the same as in the previous ase, exept in

r

2

< r � R : u

k

(r) = D

1

� F (�; �) +D

2

�G(�; �) ; � = �m�=k; � = kr; (D.105)

where F is the regular and G the linear independent irregular s-wave Coulomb wave-

funtion [32℄,[30℄. In this problem we want to �x the step parameters (V

1

; V

2

; r

1

; r

2

)

and tune the Coulomb parameters (�;R), in order to study the pure inuene of a

Coulomb interation on possible resonane-states in the step-well. For this we turn

away from the dimensionless formalism of the previous examples and transform the

step parameters (�

1

; �

2

; a) = (4; 4; 2) as used in (Fig15d,e,f) into the following physial

example: m = 0:5MeV, V

1

= V

2

= 1MeV and r

1

= 2=MeV, r

2

= 4=MeV.

(Fig16) then shows the phase-shift versus the inident sattering momentum k, for

�xed � and di�erent Coulomb ranges R. The range R = 4=MeV, whih represents the

pure step-well part, serves as a referene and is displayed at the top of eah sub�g-

ure. For the orresponding resonane parameters, we get up to two signi�ant digits

(k

0

; 

0

) = (0:48; 0:02)MeV for R = 4=MeV as already known from the previous exam-

ple. If the Coulomb interation is now swithed on, we get (0:49; 0:02)MeV for (Fig16a)

and (0:52; 0:03)MeV for (Fig16b). All these results I will leave without omments until

we deal with the problem of full range Coulomb interation.

Figure 16:
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(b) � = 2 ; R=MeV= 4; 6
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D.1.4 S-wave sattering on potentials with an e�etive range R

e�

In order to have an illustrative piture of stationary sattering theory and to keep

mathematis as simple as possible, we foused in the previous setion on potentials with

a strit range R. Unfortunately suh potentials do not exist in nature. In the worst

ase, if they an not be used even for modeling, they are rather arti�ial onstruts.

More physial potentials are those of a Yukawa-type

V (r) = �� �

e

��r

r

; (D.106)

where � is the strength and where R

e�

� 1=� an be seen as the e�etive range of the

potential. The speial ase � = 0 gives the Coulomb potential, and is still exluded in

this setion, sine no e�etive range an be de�ned. Otherwise all previous de�nitions

and results of sattering on potentials with a strit range R an be transferred to

Yukawa-like potentials by working with the approximation R � R

e�

. A more preise

treatment on this is given in [38℄. There it is also shown how R

e�

an be determined

from the low-energy sattering phase-shift, even for potentials di�erent than Yukawa.

For the rest of this setion we fous on the following Step+Yukawa-potential:

r

V(r)

-V1

V2

r1 r2

V (r) =

8

>

<

>

:

�V

1

for 0 � r � r

1

, V

1

� 0;

V

2

for r

1

< r � r

2

, V

2

� 0;

�� � e

��r

=r for r > r

2

, r

2

� r

1

, � � 0:

(D.107)

Up to now there exists no analytial sattering solution for any kind of potential whih

ontains a Yukawa-potential. So the above sattering problem is aessible only by

numerial means. Sine our numerial methods (Appendix E) are onstruted for

alulating phase-shifts and not the full sattering wavefuntions, the only way to

alulate possible resonane parameters is to �t the numerial phase-shift funtion by

Æ(k) = �

0

+ artan

�

�



0

k � k

0

�

+ � � n(k); (D.108)

as given in (D.71), but where now �

0

has to be seen as an e�etive bakground parameter

whih an be well approximated by �

0

� �k

0

R

e�

. The orresponding ross-setion is

given as usual �

s

(k) � sin

2

Æ(k).

For the same reason as in the ase of the Step+Coulomb-well (D.1.3.5) we again want

to �x the step parameters (V

1

; V

2

; r

1

; r

2

) and only tune the Yukawa parameters (�; �).

To have omparable results we take the same step parameters as before: m = 0:5MeV

and V

1

= V

2

= 1MeV, r

1

= 2=MeV, r

2

= 4=MeV.
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Figure 17: Step+Yukawa potential
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(Fig17a,) show in the top part of eah sub�gure the phase-shift and in the bottom

part the ross-setion versus the inident sattering momentum k for di�erent Yukawa

parameters (�; �). (Fig17b,d) are the orresponding zoomed �gures where the thin lines

show the best �t around the resonane region. The resulting resonane parameters up

to two signi�ant digits are (k

0

; 

0

) = (0:49; 0:02)MeV for (Fig17b) and (0:50; 0:03)MeV

for (Fig17d). The interpretation of these results I also want to postpone until we treat

the problem of full range sattering via a Coulomb potential.

We learly see that the �t for R

e�

� 12=MeV is rather poor ompared to the one of

R

e�

� 6=MeV. This is more or less a fundamental problem and has to do with the

bakground approximation in (D.71). Its approximation by a onstant is only justi�ed

if the bakground hange is suÆiently weak within a resonane region | an important

ondition in approximating the phase-shift (D.68) to the 3-parametri funtion (D.71),

otherwise the parameters �

0

and 

0

must be treated as k-dependent funtions. So, the

larger R

e�

gets, the less is (D.108) suited to �t the phase-shift near a resonane. The

problem of �nding a better �tting funtion is beyond the sope of this setion.
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D.2 Coulomb sattering

The problem of having potentials whih behave asymptotially as a Coulomb potential,

i.e. whih are of in�nite range, is that general abstrat sattering equations and de�-

nitions, like (D.8) and (D.24), are not well de�ned expressions anymore [11℄. Coulomb

sattering an not be treated in an abstrat way. Every representation has its own

problems and must be interpreted di�erently. For example in oordinate spae the

problem of sattering by Coulomb-like potentials is theoretially well understood [32℄,

while the same problem in momentum spae still seems to be inaessible. It may

appear strange that a problem whih has a well de�ned solution in oordinate spae

should oasion diÆulty in momentum spae. The fat is twofold [10℄, as we will see

in more detail later on. Firstly, the logarithmi singularity in the sattering phase,

whih an be treated easily in oordinate spae, is far more intratable in momentum

spae. Seondly, Coulomb-like wavefuntions in momentum spae are ill-de�ned. Both

prevent a numerial alulation in momentum spae.

For the moment we look at the pure Coulomb potential in oordinate spae, where the

sattering solution an be alulated analytially [32℄. From this we will see that the

asymptotial behaviour of the Coulomb wavefuntion is a totally di�erent one than

(D.41) for potentials of �nite range. But it is still possible to de�ne a r-independent

phase shift parameter, at the expense that the inident waves an no longer be repre-

sented by pure plane waves, one rather has to work with distorted waves. Sine the

Coulomb potential is of in�nite range, the partiles will always feel sattering even if

they are in�nitely far away from the ore of the potential | in a Coulomb potential

there is no region where free partiles an exists.

D.2.1 Pure Coulomb potential

The pure sattering Coulomb Shr�odinger equation with the Hamiltonian H = H

0

+V ,

H

0

= k

2

=2m and V = ��=r, in oordinate spae

(� +

~

k

2

)	

~

k

(~r) = U(r)	

~

k

(~r) ; U(r) = 2mV (r); (D.109)

an be solved analytially in two di�erent ways, either by solving it in spherial o-

ordinates, as usual, or by using paraboli oordinates [32℄. The latter one being a

representation whih is independent of angular momenta.

Treating the above Shr�odinger equation in paraboli oordinates is very useful, sine

these oordinates prefer a ertain diretion in spae and thus suits the sattering prob-

lem perfetly. We know that a unique sattering solution only exists if ertain boundary

onditions have been implemented before. The most simplest boundary ondition is to

put the basis of H

0

, that means plane waves, along the in�nite negative z-axis, whih

then move along the positive diretion with momentum k.

When using paraboli oordinates, the general physial axial-symmetri solution is

given by

	

k

(r; z) = C(�) � e

ikz

F

1 1

[�i� ; 1 ; ik(r � z)℄ ; � = �m�=k; (D.110)

where F

1 1

is the at the origin regular onuent hypergeometri funtion [30℄. In the

above solution the sign of � is not �xed. If � � 0 it is the general physial solution for
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an attrative Coulomb potential, otherwise for a repulsive Coulomb potential. When

alulating ross setions, only the asymptoti behaviour of the wavefuntion (D.110)

is relevant. Following the asymptoti behaviour of the hypergeometri funtion [30℄

F

1 1

(a ; b ; z) =

jzj!1

�(b)

�(b� a)

(�z)

�a

+

�(b)

�(a)

e

z

z

a�b

; (D.111)

will give

	

k

(r; z) =

jr�zj!1

C(�) �

e

��=2

�(1 + i�)

8

<

:

e

i

�

kz+� ln[k(r�z)℄

�

+ f



k

(#) �

e

i

�

kr�� ln(2kr)

�

r

9

=

;

with f



k

(#) = �

�(1 + i�)

�(1� i�)

�

�e

�i� ln[(1�os#)=2℄

k(1� os#)

; z = r os#: (D.112)

We see that both the inident and outgoing sattered waves are modi�ed from there

usual form (D.41) by logarithmi phase distortion fators. The overall normalization

onstant C an be �xed suh that the inident beam has an amplitude of one. It an

now be shown that when alulating the ratio of the outgoing ux and the ux of the

inident beam, whih will give the di�erential ross setion, these r-dependent phase

fators do not ontribute. This allows us to identify the oeÆient f



k

of the outgoing

wave as the sattering amplitude with the same relation as given in (D.39).

This gives us the Rutherford formula for the di�erential elasti sattering ross setion

in a Coulomb �eld

d�



d


=

�

�

f



k

(#)

�

�

2

=

�

2

4k

2

sin

4

(#=2)

: (D.113)

As is well known, the total Coulomb ross setion diverges.

Now we try to solve the pure Coulomb problem in spherial oordinates, or equivalently

we try to make a partial wave analysis. Using the same boundary ondition as before,

our sattering problem is axial-symmetri and therefore allows the following expansion

in Legendre polynomials

	

k

(r; #) =

1

X

l=0

a

l;k

u

l;k

r

P

l

(os#); (D.114)

where the wave funtion u

l;k

satis�es the radial Shr�odinger equation with the general

solution [32℄

u

l;k

(r) = A

l;k

�

l+1

e

i�

F

1 1

[l + 1 + i� ; 2l + 2 ; �2i�℄ � B

l;k

F (�; �); (D.115)

where F (�; �) is the regular Coulomb wave funtion [32℄,[30℄ and � = �m�=k, � = kr.
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Using again (D.111), the asymptoti radial wave funtion reads

u

l;k

(r) =

r!1

A

l;k

�

�(2l + 2)e

��=2

2

l

j�(l + 1 + i�)j

� sin(�� l�=2 + �

l;k

� � ln 2�)

�

e

A

l;k

� sin(�� l�=2 + �

l;k

� � ln 2�); (D.116)

where �

l;k

= arg�(l+1+ i�) is the pure Coulomb phase-shift. Fixing the normalization

onstant as

e

A

l;k

= e

i�

l;k

and using the identity (D.45), the full wave funtion will have

the following asymptoti struture

	

k

(r; #) =

r!1

1

X

l=0

a

l;k

sin(kr � l�=2� � ln 2kr)

r

P

l

(os#)

+

"

1

X

l=0

(�i)

l

a

l;k

sin�

l;k

P

l

(os#)

#

e

i[kr�� ln 2kr℄

r

: (D.117)

The above expression must be equal to (D.112). Furthermore, they must also oinide

when the Coulomb potential is absent, that means if � = � = 0. When �xing the

normalization onstant C suh that the inident wave has an amplitude of one, the

oeÆients a

l;k

an be identi�ed as a

l;k

= i

l

(2l + 1)=k, whih are independent of �.

Thus the identi�ation is also valid for � 6= 0 and makes it possible to identify the

Coulomb sattering amplitude as follows

f



k

(#) =

1

k

1

X

l=0

(2l + 1)e

i�

l;k

sin�

l;k

P

l

(os#): (D.118)

All the information of a Coulomb sattering proess is also hidden here in an asymptoti

phase-shift parameter �

l;k

. Although we an now alulate ross setions in the same

manner as before by adjusting the sattering boundary ondition in the above way from

plane waves to distorted waves, it is, as already stated in the beginning of this setion,

not possible to onstrut an abstrat relationship between the sattering amplitude and

the T -matrix as in (D.40). Rakishly speaking it is not lear how to adjust the boundary

ondition in an abstrat spae, in order to have well-de�ned sattering objets. In

the next setion it will be shown how at least under ertain onditions, the abstrat

formalism in Coulomb sattering an be maintained.

But before going there, we quikly want to look again at the s-wave Coulomb-well

solution (D.98) in the limit R ! 1. Sine the asymptotial regular s-wave Coulomb

funtion is given by [32℄,[30℄

F (�; �) =

�!1

sin(�+ � � � ln 2�); (D.119)

the orret asymptotial behaviour of (D.98) in the limit R!1 an only be ahieved if

(D.98) oinides with (D.116), i.e. if the ontinuity requirements at r = R are organized

suh that it �xes the parameters as follows: N = A = e

i�

and Æ = � � � ln 2kR, where

� = arg�(1 + i�) is the partial s-wave Coulomb phase shift. We learly see that its

numerially impossible to alulate the Coulomb-well phase-shift Æ in the limit R!1

within the sattering boundary ondition of inident plane waves.
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D.2.2 Coulomb-like potentials

This setion wants to show a possible way, how the problem of Coulomb sattering in

momentum spae an be attaked, at least in a numerial sense. At the end, only a

solution for repulsive Coulomb-like potentials is given. The basi ideas of this setion

are taken from [10℄.

Lets say our Hamiltonian is given as follows: H = K + V , where K is the kineti part,

or free Hamiltonian and V is an arbitrary spherial symmetri Coulomb-like potential.

When adding and subtrating the pure Coulomb potential, our Hamiltonian an be

written as

H = K + V = K + V



+ V � V



� H



0

+ V

s

; (D.120)

where V

s

is now a short ranged potential and H



0

is the Coulomb referene system, for

whih the eigenvalue problem H



0

j�



i = E



0

j�



i is already known.

The �rst guess how to solve the orresponding sattering problem would be to write

down the Lippmann-Shwinger equation as in (D.8). Although the potential V

s

is of

�nite range, one has to be areful when working with this abstrat equation, sine the

Coulomb Greens-funtion G



0

of the referene system is not a well de�ned operator

in this abstrat notation. For example if one hooses momentum representation, the

eigenfuntions h

~

kj�



i of G



0

, whih must be Fourier transforms of the oordinate spae

Coulomb funtions h~rj�



i, do not exist in a funtional sense [10℄.

Sine our numerial alulations are done in momentum spae and sine we have some

analytial information in oordinate spae, it is essential to work out a way, suh that

Coulomb sattering an be treated in a formal manner. The easiest possible way would

be to onstrut a referene Hamiltonian of �nite range, either by introduing a Coulomb

shielding parameter, or by utting the Coulomb potential at some distane. By intro-

duing these ut-o� parameters, everything is of �nite range and therefore well-de�ned.

Thus the sattering problem an be solved as usual. But when restoring the original

problem by letting the ut-o�s go into their orresponding limits, we run again into

problems. On the one hand, this restoring is numerially very ineÆient, in the worst

ase even numerially unstable. On the other hand, if it is possible to work analyti-

ally, this limiting proess an sometimes not be aomplished, or leads to the same

ill-de�ned expressions as before. So this proedure alone is not neessarily suessful,

but together with the following 2-potential formula we are in a better situation [10℄.

As a regularized referene Hamiltonian

b

H



0

= K +

b

V



we will hoose

b

V



to be the

Coulomb-well potential, with the �nite range of 0 � r � R. The full Hamiltonian

b

H = K +

b

V



+ V

s

is then also of �nite range and we an write down the well de�ned

formal outgoing Lippmann-Shwinger equation in two equivalent ways

j	

~

k

i =

8

>

<

>

:

j'

~

k

i+G

0

� (

b

V



+ V

s

) � j	

~

k

i with G

0

=

1

E �K + i�

;

jb�



~

k

i+

b

G



0

� V

s

� j	

~

k

i with

b

G



0

=

1

E �

b

H



0

+ i�

;

(D.121)

where j'

~

k

i are the eigenfuntions of K =

~

k

2

=2m and jb�



~

k

i the eigenfuntions of the

Coulomb-well Hamiltonian

b

H



0

.
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The 2-potential formula an be derived very easily, if one hanges to the equivalent

T-operator equation

T = (

b

V



+ V

s

) + (

b

V



+ V

s

) �G

0

� T: (D.122)

This equation an be rewritten as

T = (1�

b

V



�G

0

)

�1

(

b

V



+ V

s

+ V

s

�G

0

� T ): (D.123)

When writing down the T-operator equation for the single potential

b

V



b

T



=

b

V



+

b

V



�G

0

�

b

T



; (D.124)

and studying the expression

(1�

b

V



�G

0

)(1+

b

T



�G

0

) = 1+ (

b

T



�

b

V



�

b

V



�G

0

�

b

T



) �G

0

� 1; (D.125)

then (D.123) is equivalent to

T = (1+

b

T



�G

0

)(

b

V



+ V

s

+ V

s

�G

0

� T )

�

b

T



+ (1+

b

T



�G

0

) � V

s

� (1+G

0

� T ): (D.126)

If two operators are multiplied to give unity, then the order of multipliation is irrele-

vant. Thus (D.125) gives the identity

b

V



� G

0

�

b

T



=

b

T



� G

0

�

b

V



, and (D.126) an be

written as

T =

b

T



+

b

T



�

�

(

b

V



)

�1

� V

s

� (

b

V



+ V

s

)

�1

�

� T: (D.127)

Using the de�nition (D.24), the above equation takes the �nal form

h'

~

k

0

jT j'

~

k

i = h'

~

k

0

j

b

T



j'

~

k

i+ hb�



~

k

0

jV

s

j	

~

k

i ; k

0

= k: (D.128)

or equivalently in the form of (D.40)

f

~

k

('; #) =

b

f



~

k

('; #)� 4m�

2

hb�



~

k

0

jV

s

j	

~

k

i ; k

0

= k (D.129)

where f

~

k

is the sattering amplitude of the full problem, while

b

f



~

k

is the sattering

amplitude of the Coulomb-well.

The above formula is the elebrated 2-potential formula. Although the full Hamiltonian

is additive in

b

V



and V

s

, the full sattering amplitude f

~

k

is not simply the sum of the

sattering amplitude due to

b

V



in the absene of V

s

and the sattering amplitude due

to V

s

in the absene of

b

V



but, instead, involves the sattering amplitude due to V

s

in

the presene of

b

V



.

The problem of alulating the full sattering amplitude is redued to the determination

of the matrix element hb�



jV

s

j	i. We know that the eigenfuntions of the Coulomb-

well Hamiltonian

b

H



0

form a omplete set. For numerial alulations it is now essential

if the pure Coulomb-well potential

b

V



is attrative or repulsive. The ompleteness

relation of an attrative Coulomb potential is nasty due to its additional bound state

part and therefore makes it impossible to work with it numerially.

1 =

8

>

>

<

>

>

:

X

E�0

jb�



~

k

ihb�



~

k

j+

Z

d

3

kjb�



~

k

ihb�



~

k

j if

b

V



is attrative;

Z

d

3

kjb�



~

k

ihb�



~

k

j if

b

V



is repulsive:

(D.130)
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For a repulsive Coulomb potential it is easy to evaluate the above matrix element. In-

serting the seond form of the Lippmann-Shwinger equation (D.121) and sandwihing

the relevant ompleteness relation between

b

G



0

will give

hb�



~

k

0

jV

s

j	

~

k

i = hb�



~

k

0

jV

s

jb�



~

k

i

+

Z

d

3

k

00

hb�



~

k

0

jV

s

jb�



~

k

00

i

1

E �

b

E



0

+ i�

hb�



~

k

00

jV

s

j	

~

k

i ; k

0

= k:

(D.131)

The strutures of (D.129) and (D.131) allow us now to take the limit R!1 from the

pure Coulomb-well to full Coulomb potential in an analytial way. If the limit is taken

in oordinate spae as in (D.119), it is a well de�ned proedure, sine we know how the

wavefuntion and the sattering amplitude for a pure Coulomb potential are de�ned in

oordinate spae. For the axial symmetri boundary ondition, they are

h~rjb�



~

k

i =

R!1

hr; #j�



k

i =

1

X

l=0

i

l

(2l + 1)e

i�

l;k

F (�; kr)

kr

P

l

(os#);

b

f



k

(#) =

R!1

f



k

(#) =

1

k

1

X

l=0

(2l + 1)e

i�

l;k

sin�

l;k

P

l

(os#); (D.132)

where �

l;k

= arg�(l + 1 + i�) is the Coulomb phase shift and � = �m�=k the harge

parameter. Consequently in the oordinate spae limit the hat-symbol in (D.129) and

(D.131) may be removed, and the �nal solution for the full sattering amplitude of a

Coulomb-like potential V with the short range part V

s

= V � V



is

f

~

k

('; #) = f



~

k

('; #) + h�

~

k

0

jV

s

j	

~

k

i ; k

0

= k: (D.133)

If V

s

is loal and if the pure Coulomb potential V



is repulsive, then the matrix element

h�



~

k

0

jV

s

j	

k

i =

Z

d

3

r�



~

k

0

(~r)V

s

(r)�



~

k

(~r)

+

Z

d

3

k

00

Z

d

3

r�



~

k

0

(~r)

V

s

(r)

E �E



0

+ i�

�



~

k

00

(~r) � h�



~

k

00

jV

s

j	

k

i; (D.134)

is of an form that is numerially easy aessible. Even if V

s

is non-loal, the numerial

evaluation of this self onsistent equation works as usual (Appendix E), exept that

now Coulomb basis funtions has to be used instead of plane waves as in former alu-

lations. This integration is numerially stable beause the oordinate spae Coulomb

wavefuntions are well de�ned and the relevant potential V

s

is short ranged. If V

s

is

known initially in momentum spae, the above presription for alulating the matrix

element involves another step, that is we must �rst �nd V

s

in oordinate spae by

Fourier-transforming V

s

from momentum spae into oordinate spae. Those Fourier

transforms do exist beause of the �nite range of V

s

.

This ompletes the proof. It shows that a onsiderable amount of numerial e�ort is

neessary in order to treat Coulomb sattering in momentum spae properly. To note

again, this overall proedure only holds for repulsive Coulomb-like potentials, whih do

not have a disrete spetrum.
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D.2.3 Step-well plus attrative Coulomb potential

In the previous setion we have seen that attrative Coulomb-like potentials are still

numerially inaessible. But sine we are onfronted with this problem in our ST-

model and no numerial tehniques are at hand, we have to work analytially. For this,

the ST-potential as in (Fig3) is broken down to the following over-simpli�ed potential:

r

V(r)

-V1

V2

r1 r2
V (r) =

8

>

<

>

:

�V

1

for 0 � r � r

1

, V

1

� 0;

V

2

for r

1

< r � r

2

, V

2

� 0;

��=r for r > r

2

, r

2

� r

1

, � � 0;

(D.135)

The general real s-wave sattering solution of the above potential is the same as given

in (D.100) and (D.101), exept in the region r > r

2

where now the free solution has to

be exhanged by the general Coulomb wavefuntions

r > r

2

: u

k

(r) = D

1

� F (�; �) +D

2

�G(�; �) ; � = �m�=k; � = kr; (D.136)

with their asymptoti behaviour [32℄

F (�; �) =

�!1

sin(�+ � � � ln 2�)

G(�; �) =

�!1

os(�+ � � � ln 2�); (D.137)

where � = arg�(1+ i�) is the s-wave Coulomb phase shift. To alulate the phase shift

Æ of the full problem, we will rewrite the asymptoti wavefuntion (D.136) as follows

u

k

(r) =

r!1

sin(�� � ln 2�) � [D

1

os� �D

2

sin�℄

+ os(�� � ln 2�) � [D

1

sin� +D

2

os�℄: (D.138)

If we now put X := D

1

os� �D

2

sin� and Y := D

1

sin� +D

2

os�, then beause of

X

2

+ Y

2

= D

2

1

+D

2

2

, the parameters X and Y an be represented as

X =

q

D

2

1

+D

2

2

os Æ �

q

D

2

1

+D

2

2

os(� + )

Y =

q

D

2

1

+D

2

2

sin Æ �

q

D

2

1

+D

2

2

sin(� + ); (D.139)

with tan  = D

2

=D

1

. Then (D.138) takes the form

u

k

(r) =

r!1

q

D

2

1

+D

2

2

� sin(�+ Æ � � ln 2�): (D.140)
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This on�rms, aording to (D.116) that Æ is the full phase shift funtion that om-

pletely haraterizes this s-wave sattering problem. Consequently the sattering am-

plitude and the ross-setion for the s-wave omponent are given by

f(k) =

1

k

e

iÆ(k)

sin Æ(k) ; jf(k)j

2

� sin

2

Æ(k)

with Æ(k) = �(k) + artan(D

2

=D

1

) + � � n(k): (D.141)

This phase-shift reminds us strongly at the one given in (D.68). We an draw the

following analog, and see �(k), sine it arries only the information of the pure Coulomb

potential as the bakground phase-shift, while the last term arrying all the information

of the omplete potential an be seen as the atual potential sattering term whih give

rise to possible resonanes. The deisive di�erene between the bakground �(k) and

the bakground �(k) in (D.68) is that the latter is hanging onstantly over the whole

momentum range k, while the behaviour of �(k) an be divided into two separate

regions: strong osillations for suÆiently small momenta while relatively slow hanges

and a onvergene towards zero for suÆiently large momenta. So, only if a resonane

(k

0

; �

0

) is embedded into region of a slow varying bakground �(k), it is justi�ed to

approximate the omplete phase-shift Æ(k) similar as in (D.71), by

Æ(k) = �

0

+ artan

�

�

�

0

k � k

0

�

+ � � n(k): (D.142)

Otherwise the parameters �

0

and �

0

must be treated as k-dependent funtions within

a small region around the resonane point k

0

.

To study this problem, we will take up the same physial step-parameters as in setions

(D.1.3.4/5) and (D.1.4), where the results still need to be interpreted. Then (Fig18a,)

show the ross-setion versus the inident sattering momentum k for di�erent Coulomb

strenghts �. For this parameter set we see that up to � � 1 the resonane at k � 0:5

lies well outside the rapid hanging bakground region, for � = 0:5 even better than

for � = 1. This allows us to �t the resonane by the 3-parametri funtion (D.142).

(Fig 18b,d) are the orresponding zoomed graphs where the thin lines show again the

best �t around the resonane region. As expeted, the �t for � = 0:5 is better than

that for the stronger � = 1. The resulting resonane parameters up to two signi�ant

digits are the same (k

0

; �

0

) = (0:49; 0:02)MeV for both (Fig18b,d). These values are

idential with those for a pure step-potential, where � = 0 as in setion (D.1.3.4).

This is a surprising e�et, sine it tells us that for a �xed step potential the Coulomb

potential an be swithed on or o�, in both ases we get the same resonane | the

global struture of the ross-setion is ertainly a omplete di�erent one in eah ase.

Now, one has to be very areful to onlude suh a behaviour for all Coulomb strengths

�, sine we have only shown it for � � 1. For stronger � the bakground sattering gets

predominant and our tehnique for alulating the resonane width �

0

via (D.142) fails.

On the other hand the parameter k

0

is ertainly independent of bakground sattering,

whih expliitly an be seen in (Fig18e), where only the pure resonant term in the

ross-setion� sin

2

(k) with (k) = artan(D

2

=D

1

) is plotted for various strenghts �,

all giving the same result k

0

� 0:5 over a wide range. The solid line displays � = 1,

the long-dashed � = 5 while the dashed line shows � = 25.
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D. Potential Sattering

Figure 18: Step+(attrative)Coulomb potential
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D. Potential Sattering

Is it maybe true that bakground sattering behaves in suh a ompliated way that it

leaves the width �

0

, and therefore the omplete resonane state (k

0

; �

0

) invariant, but

an not be deteted by the methods we use up to now? For moderate bakgrounds

this is true as I have shown in a numerial sense not only for the pure full range

Coulomb potential but also when using instead of it a Coulomb-well (D.1.3.5) or a

Yukawa potential (D.1.4). All of them yield the same resonane whether the potential

is resaled or even turned on or o�.

If its possible to prove this e�et in general, there would be immediately a reasonable

explanation at hand: sine all potentials whih have no overshoot into the positive

energy region show no resonane struture, they will also show no inuene on possible

resonane states. This statement would be extremely helpful, when we have to deal

with more general attrative Coulomb-like potentials. If we only look at the resonant

part in a s-wave ross-setion, its irrelevant whether we work in the asymptoti region

with the full attrative Coulomb potential or with any other short-range potential,

having only ontributions in the negative energy region. All of them give the same

resonane values (k

0

; �

0

).

Certainly a lear-ut proof of this general statement still needs to be worked out. But

anyhow, for moderate Coulomb strenghts �, I have shown that this statement an

be veri�ed. After all this implies an important result for this setion, namely that

this tehnique o�ers an easy implementation in momentum spae, sine asymptotial

Coulomb shielding in oordinate spae an be easily transferred to momentum spae

and vie versa. This tehnique is ertainly only to be seen as a �rst step towards solving

the full problem of Coulomb sattering in momentum spae.
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E. Numeris in Momentum Spae

E Numeris in Momentum Spae

The theory and equations of quantum mehanis are represented equally well in o-

ordinate and momentum spae. Bound state problems, whih by de�nition deal with

normalizable wavefuntions, an atually be solved without any oneptual problems

in either spae, while sattering problems, whih deal with non-normalizable states,

are more of a hallenge in momentum spae. This hallenge arises, as we have seen

in (Appendix D), in part, beause boundary onditions are more naturally imposed in

oordinate spae, and in part, beause non-normalizable states in general annot be

Fourier transformed.

In spite of these diÆulties, there is a onsiderable interest in momentum spae meth-

ods. First of all momentum spae o�ers a more natural desription of many-body and

�eld theories. Dealing with nonloal potentials or the extension to relativisti equations

an be handled more easily in momentum spae than in oordinate spae.

In oordinate spae the equations of motion are mostly di�erential equations, while in

momentum spae they are mostly integral equations. These integral equations an be

represented as matrix equations, where the problem of solving the equation is either

redued to a diagonalization (bound state problem) or to the determination of an in-

verse matrix (sattering problem). In both ases one has to be areful of the so alled

fundamental singularities in momentum spae. In the bound state region for example,

the Coulomb potential is showing a q

2

(single-pole) and the linear potential even a q

4

(double-pole) singularity. We will show that the Coulomb singularity an be ompletely

ontrolled by using the numerial tehnique of ounter terms, while the linear singu-

larity an only be redued to a single-pole singularity. The sattering region will not

su�er from these singularities if the potentials are restrited to have a �nite range, but

rather shows its fundamental singularity only one in the free-partile Greens funtion,

whih also an be ontrolled by a numerial ounter term.

For showing the basi strutures of a numerial ode in momentum spae, it is suÆient

to restrit ourselves to the simplest ase, namely working non-relativisti and with loal

spherial symmetri potentials.

E.1 Bound state domain

To treat as a many potentials simultaneously, we will study the following ompat

potential fousing on three parameter sets

V (r) = ��

n

� r

n

� e

��r

=

8

>

<

>

:

Yukawa potential if n = �1, � > 0;

Coulomb potential if n = �1, � = 0;

Linear potential if n = 1, � = 0:

(E.1)

The advantage of introduing an exponential funtion or sreening funtion for the

Coulomb and Linear potential is twofold. First of all it serves as a onverging fator

in the relevant Fourier transformations and seondly it makes it possible to treat the

fundamental singularities of the Coulomb and Linear potential in the very same way.
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E. Numeris in Momentum Spae

The Shr�odinger equation in oordinate spae is given as

�

�

2m

 (~r) + V (r) (~r) = E (~r): (E.2)

By Fourier transforming the oordinate wavefuntions, we get the Shr�odinger equation

in momentum spae

p

2

2m

�(~p) +

Z

d

3

p

0

V (~q)�(~p

0

) = E�(~p); (E.3)

with the same eigenvalues E as in oordinate spae and ~q = ~p � ~p

0

. The momentum

spae potential V (~q) is the Fourier transform of the oordinate spae potential (E.1)

V (~q) =

1

(2�)

3

Z

d

3

r e

i~q�~r

� V (r)

= (�1)

n

�

�

n

2�

2

�

�

n+1

��

n+1

�

1

�

2

+ q

2

�

�

1

2�

� D

n+1

�

�

1

�

2

+ q

2

�

: (E.4)

This representation gives well de�ned momentum spae potentials for the three param-

eter sets given in (E.1). If I rakishly speak of putting � = 0, we have to understand

the following proess: �rst the derivatives after whih the limit �! 0 has to be taken.

We see that V (~q) � V (j~qj), and beause j~qj = p

2

+p

02

�2pp

0

os �, the momentum spae

potential an therefore only depend on the magnitudes p, p

0

and the relative angle �

between the momentum vetors ~p and ~p

0

. This allows us to expand the potential into

the omplete set of Legendre polynomials

V (q) = V (p; p

0

; �) =

1

X

l=0

2l + 1

4�

V

l

(p; p

0

)P

l

(os �): (E.5)

The expansion oeÆients an be determined by integrating over the above equation

by weighting the integral with a Legendre polynomial in the range of os � 2 [�1; 1℄.

Using then the orthogonality relation of Legendre polynomials will give

V

l

(p; p

0

) = 2�

Z

1

�1

V (q)P

l

(os �)d os �: (E.6)

With the potential (E.4) the above integral is not one of the easiest to alulate. Now

that we have deomposed the potential into its partial waves, the orresponding l-wave

Shr�odinger equation should be found. For this we expand the momentum wavefun-

tions into the omplete set of spherial harmonis

�(~p) = �(p; '; #) =

1

X

l=0

l

X

m=�l

�

lm

(p)Y

lm

('; #)

�(~p

0

) = �(p

0

; '

0

; #

0

) =

1

X

l=0

l

X

m=�l

�

lm

(p

0

)Y

lm

('

0

; #

0

): (E.7)
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Inserting (E.5) and (E.7) into the Shr�odinger equation (E.3) and using the identity

P

l

(os �) =

4�

2l + 1

l

X

m=�l

Y

lm

('; #)Y

�

lm

('

0

; #

0

); (E.8)

and keeping the orthogonality and ompleteness relations of the spherial harmonis in

mind, will �nally give the one dimensional radial Shr�odinger equation in momentum

spae

p

2

2m

�

l

(p) +

Z

1

0

dp

0

p

02

V

l

(p; p

0

)�

l

(p

0

) = E�

l

(p); (E.9)

whih is now subjet to numerial investigations. Sine we restrited ourselves to

spherial symmetri potentials, the wavefuntions will show no dependene on the

quantum number m.

For solving the eigenvalue equation (E.9) numerially, we need to know the l-wave

omponent of the momentum spae potential (E.6). This integral an be alulated

numerially | the only problem is to have possible fundamental singularities at the

end-points of the integrand. When using Gaussian integration methods these points

are never reahed within a disrete spae, but at the expense of having extremely bad

onvergenes. Anyhow our speial potential (E.4) allows for an analytial treatment

of this integral, whih o�ers a lot of insight into these fundamental momentum spae

singularities. Sine the Rodrigues formula, whih writes all Legendre polynomials into

one ompat notation, an also be written as

P

l

(x) =

1

2

l

l!

d

l

dx

l

(x

2

� 1)

l

�

l

X

k=0

1

2

k

�

l

k

��

l + k

k

�

(x� 1)

k

; (E.10)

the integral (E.6) is of the form

V

l

(p; p

0

) =

l

X

k=0

1

2

k

�

l

k

��

l + k

k

�

� D

n+1

�

Z

1

�1

dx

(x� 1)

k

a

2

� b

2

� x

; (E.11)

where the onstants in the integrand are given by a

2

= �

2

+ p

2

+ p

02

and b

2

= 2pp

0

.

Doing the following manipulation in the integrand

(x� 1)

k

a

2

� b

2

� x

= �

(x� 1)

k

b

2

� (x� 1)� (a

2

� b

2

)

� �

1

b

2

�

y

k

(x� 1)� y

+

(x� 1)

k

� y

k

(x� 1)� y

�

(E.12)

where y = a

2

=b

2

� 1, the �rst term an be integrated easily and the seond term has

no ontribution for k = 0, so (E.11) an be written as

V

l

(p; p

0

) = �

1

b

2

D

n+1

�

P

l

(a

2

=b

2

) ln

a

2

� b

2

a

2

+ b

2

�

1

b

2

l

X

k=1

1

2

k

�

l

k

��

l + k

k

�

� D

n+1

�

Z

1

�1

dx

(x� 1)

k

� y

k

(x� 1)� y

� �

1

b

2

h

I

l

(p; p

0

) +R

l

(p; p

0

)

i

: (E.13)
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In the last form we an learly see that when p = p

0

in the limit � ! 0, i.e. a = b

and y = 0, this speial potential onsists of two parts. The �rst term I

l

is the irregular

term, whih will give singularities due to a logarithmi behaviour of the integral. This

holds for all angular momenta, sine P

l

(1) = 1. The seond term R

l

is the regular term,

sine the integral gives well de�ned (x � 1)-polynomials with oeÆients proportional

to y, whih an be alulated expliitly by doing a polynomial division.

Before implementing the radial Shr�odinger equation (E.9) numerially, we have to

treat the singularity of I

l

, i.e. we need to ontrol the logarithmi singularity and its

derivatives at p = p

0

in the limit �! 0. The proedure whih now follows is alled the

Nystrom method. Its main task is to onvert the integral equation into an equivalent

one whih anels the singularity through a subtration. The �rst step is to think about

whih power in the integration variable p

0

makes the integral over the logarithmi part

onvergent. A possible andidate is for example

Z

1

0

dp

0

1

p

0

ln

�

2

+ (p

0

� p)

2

�

2

+ (p

0

+ p)

2

= �2� � artan

p

�

=

�!0

+

��

2

(E.14)

In omparison with other possible integrals, the above integral is privileged, sine it

has the big advantage of being independent of any further parameters. To note is that

for higher powers in 1=p

0

the integral is divergent beause the singularity at the origin

p

0

= 0 beomes to strong. Putting this relation as a zero into the singular part I

l

of

(E.13), the Shr�odinger equation (E.9) an be written as

E�

l

(p) =

p

2

2m

�

l

(p) + �p�

l

(p) � D

n+1

�

h

P

l

(

2

) � artan

p

�

i

�

Z

1

0

dp

0

R

l

(p; p

0

)

2pp

0

p

02

�

l

(p

0

)

�

1

2p

� D

n+1

�

Z

1

0

dp

0

p

0

ln

�

2

+ (p

0

� p)

2

�

2

+ (p

0

+ p)

2

h

P

l

(a

2

=b

2

) � p

02

�

l

(p

0

)� P

l

(

2

) � p

2

�

l

(p)

i

(E.15)

where 

2

= 1+�

2

=4p

2

. To note again, for parameter values � 6= 0 it is not neessary to

inlude these numerial ounter terms, sine all integrands in the above equation are

well de�ned for all p and p

0

. They are only relevant in the limiting proess �! 0.

With this new form (E.15), it seems that when p = p

0

, i.e. a

2

=b

2

= 

2

, the integrand of

the logarithmi singular part I

l

is identially zero irrespetive of the value �, even in

the limit �! 0, and therefore not ontributing to the integral. For � 6= 0 this ertainly

is true, but for � ! 0 its only true for the Coulomb potential, while for the Linear

potential this argumentation is no longer valid. To see this, we will disuss for the sake

of simpliity only the s-wave equation | for higher l-waves the arguments are idential.

For the Coulomb potential, where no derivatives need to be taken, the relevant part of

the singular integrand in the limit �! 0 an be written as

ln

(p

0

� p)

2

(p

0

+ p)

2

h

F (p

02

)� F (p

2

)

i

= (p

02

� p

2

) ln

(p

0

� p)

2

(p

0

+ p)

2

�

F (p

02

)� F (p

2

)

p

02

� p

2

�

; (E.16)

where F is proportional to the wavefuntion �. In this ase we learly see how the

above integrand in the limit p

0

! p goes to zero, sine the term in the square braket

is proportional to the derivative of the wavefuntion, whih must be a well de�ned

expression for all momenta.
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However, for the Linear potential, where seond order derivatives must be taken, the

same integrand in the limit �! 0 has the struture

1

(p

02

� p

2

)

2

h

F (p

02

)� F (p

2

)

i

=

1

p

02

� p

2

�

F (p

02

)� F (p

2

)

p

02

� p

2

�

; (E.17)

whih makes it impossible to take the limit p

0

! p. Therefore the p

0

= p term an not

be negleted, it will give a ontribution whih is proportional to the derivative of the

funtion F � �. To alulate this ontribution, we have to know the wavefuntion �, but

our original aim was to solve for �. Thus for the Linear potential the subtration method

(E.15) does not work. The subtration zero is to weak for the double-pole singularity of

the Linear potential | even after the subtration a single-pole singularity is still left. It

is not wrong to start implementing the Linear potential for � 6= 0, where the p

0

= p term

ertainly is a zero ontribution, and then taking the limit � ! 0 numerially, but the

result is an extremely slow onverging ode and therefore numerially ineÆient. For

a proper numerial alulation of the Linear potential in momentum spae, we have to

seek for alternative ways than the Nystrom method. In this sense we ontinue treating

the Linear potential with the Nystrom method, but we will see it as an approximation.

Every integral equation of the type

�f(x) = G(x)f(x) +

Z

dx

0

K(x; x

0

)f(x

0

); (E.18)

when embedding into a disrete spae x; x

0

! x

i

; x

j

, with i; j = 1:::N , an be approxi-

mated by a matrix equation

�f

i

=

N

X

j=1

h

Æ

ij

G

j

+�x

j

K

ij

i

f

j

�

N

X

j=1

A

ij

f

j

() A � f = �f ; (E.19)

whih now represents a �nite dimensional eigenvalue problem.

As a disretization proess for equation (E.15) we will hoose the Gaussian integration

method via Legendre polynomials. As an intermediate step the in�nite interval [0;1[

must be mapped into the Legendre interval of [�1; 1℄. There are several mapping

funtions, eah of whih will give a di�erent distribution of the integration points. The

most ommonly used are

y

1

(x) = 1� 2e

�x=z

; y

2

(x) = �

1� x=z

1 + x=z

; y

3

(x) =

4

�

artan(x=z)� 1; (E.20)

where the parameter z is used as numerial stability fator within a speial mapping

funtion, i.e. it an be hosen in suh a way until the distribution of the integration

points perfetly suits the problem. Whereas if one wants to work with a �xed z � 1,

the mapping funtion y

3

is a good hoie. Its distribution of integration points has a

wide range, being dense in the inner region and more sparse in the asymptoti region.

This makes it ideal even for integrands with a relatively slow asymptoti fall-o�.
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Writing (E.15) in a disretized form, and keeping in mind that negleting the p = p

0

term in the singular part I

l

is exat for the Coulomb while approximative for the Linear

potential, will give
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(E.21)

where !

i

and p

i

are the already transformed weights and absissas of the Gauss-

Legendre integration in the ordered interval [�1; 1℄. Sine our numerial diagonal-

ization ode an only treat symmetrial matries, it is important to have symmetrial

o�-diagonal matrix elements. Although R

ij

l

, a

ij

and b

ij

are symmetrial in i $ j, the

above matrix equation still needs to be symmetrized in the o�-diagonal terms, due of

not having symmetrial weightings. If multiplying the whole equation with

p

!

i

� p

i

,

and de�ning new eigenvetors u

i

l

=

p

!

i

� p

i

��

i

l

, as well as using the notation of (E.19),

the diagonal and symmetri o�-diagonal matrix elements are given as
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For alulating the matrix elements for small � or even for �! 0 it is helpful to make

use of the following behaviour of the Legendre polynomials up to �rst order, whih an

be derived from (E.10)

P

l

(

2

i

) = P

l

(1 + �

2

=2p

2

i

) =

�!0

1 + l(l + 1)

�

2

4p

2

i

: (E.23)

For alulating the expliit matrix elements for the Yukawa, Coulomb and Linear poten-

tial, we have to proeed as given in (E.1). Being reasonable only the s-wave omponents,

i.e. with no ontributions of the regular term R

l

will be determined expliitly for all

three potentials.
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The simplest one is ertainly the Yukawa potential for whih no numerial ounter

terms and no derivatives need to be taken. The s-wave matrix elements are

A

Y

ii
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p

2

i

2m

A

Y

ij

=
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: (E.24)

The s-wave Coulomb matrix elements are exatly given as
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Finally the s-wave Linear matrix elements, with �

L

� 0 have the Nystrom approxima-

tion of

A

L
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E.2 Sattering domain

A sattering problem is regarded as solved if the phase shift and the orresponding

sattering wavefuntion have been determined. This setion will not investigate the

wavefuntion itself, but will rather work out a numerial method for alulating sat-

tering phases, whih are diretly linked to ross setions. The basi ideas given here are

based on the original paper of Haftel & Tabakin on Nuleon-Nuleon potentials [39℄. If

we only fous on potentials V whih have a �nite range in oordinate spae, then the

T -operator equation (D.27) is a well de�ned equation in momentum spae. If G

0

is the

kineti Greens funtion, whih is diagonal in the momentum eigenstates, the outgoing

T -matrix equation turns into the following integral equation

h

~

k

0

jT j

~

ki = h

~

k

0
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ki+

Z

d

3
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k

00

ih

~

k

00

j
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E � k

002

=2m+ i�

T j

~

ki; (E.27)

where E = k

2

=2m and h

~

k

0

jV j

~

ki is the momentum spae potential, whih is also given

as a Fourier transformation of the oordinate spae potential

h

~

k

0

jV j

~

ki � V (j

~

k

0

�

~

kj) = V (q) =

1

(2�)

3

Z

d

3

re

i~q�~r

� V (r): (E.28)
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Aording to the partial wave analysis of h

~

k

0

jT j

~

ki in (D.34) and of h

~

k

0

jV j

~

ki in (E.5), and

when using the identity (E.8) as well as the orthogonality and ompleteness relations

of the spherial harmonis, the integration over the angles will give for every angular

momentum l the one dimensional integral equation

T

l

(k

0

; k) = V

l

(k

0

; k) +

Z

1

0

dk

00

k

002
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00

; k); (E.29)

where a rede�nition of T

l

has been performed: �T

l

(k

0

; k)=�mk ! T

l

(k

0

; k). Thus the

diagonal element of T

l

is given as

T

l

(k; k) = �

1

�mk

e

iÆ

l

(k)

sin Æ

l

(k): (E.30)

In order to alulate the phase shift funtion we need to know the diagonal element

of equation (E.29). Sine the momentum spae potentials are well de�ned, the only

numerial diÆulty that we will enounter is the singularity of the Greens funtion.

But before dealing with this singularity, we notie that the slight imaginary shift will

fore (E.29) into a omplex equation. But using the following relation helps to separate

real and imaginary parts:

Z

1

0

dx

f(x)

+ i�� x

= P

Z

1

0

dx

f(x)

� x

� i�f() ;  � 0; (E.31)

whih follows from the residue theorem and some ontour distortions, if f an be

ontinued analytially into a omplex half-plane, is everywhere regular and vanishes

asymptotially in that half-plane. The symbol P stands for the Cauhy prinipal-value

presription. Making a hange of variables will give the equivalent relation

Z

1

0

dx

F (x)



2

� x

2

+ i�

= P

Z

1

0

dx

F (x)
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� x
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� i�
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: (E.32)

This allows us now to de�ne a real R-matrix, whih satis�es the relation
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; k): (E.33)

A short alulation shows that the omplex T -matrix an be determined from the real

R-matrix as

T

l

(k

0

; k) =

R

l

(k

0

; k)

1 + i�mkR

l

(k

0

; k)

: (E.34)

Thus the sattering phase an now be determined diretly from the diagonal elements

of the R-matrix

Æ

l

(k) = � artan

�

�mkR

l

(k; k)

�

+ � � n(k): (E.35)

To solve (E.33) numerially we have to do a numerial prinipal value limit, whih is

impossible to take in a stable way due to the limited preision of omputers.
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A better presription for omputers follows by introduing again a numerial ounter

term, whih has its origin in the de�nition of P itself

P
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�1

dx

� x

= 0 () P
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0
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2

� x

2

= 0: (E.36)

Adding this zero to (E.33) the singularity an be removed expliitly
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Important to note, is that the k = k

00

term in the above integrand gives a ontribution,

whih is proportional to derivative of the funtion in the square braket, and thus an

not be negleted. The integral equation is now ready to be alulated numerially

by using �nite dimensional matrix methods. As a disretization proess we will again

hoose the Gaussian integration method via Legendre polynomials
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(E.38)

where !

n

and k

n

are the already transformed weights and absissas of the Gauss-

Legendre integration in the ordered interval [�1; 1℄. The above equation represents one

linear equation with N+1 unknowns: R

l

(k

n

; k) for n = 1:::N , and R

l

(k; k).

To get a workable equation, we ontinue the disretization proess by turning this one

equation into N+1 simultaneously linear equations by evaluating it for N+1 momentum

values on a grid onsisting of the observable and integration points

k

0

= k

i

=

(

quadrature points k

i

for i = 1:::N

observable point k for i = N+1.

(E.39)

The momentum variable k, whih �xes the energy of the sattering system, is not

disretized, sine it serves as an observable parameter and must be given from the

outset. This fat allows us now to irumvent the unknown but �nite ontribution of

the singularity, sine the ontinuous k an always be hosen suh that k 6= k

n

.

There are now N+1 unknowns R

l

(k

i

; k) = R

i

l

, and N+1 linear equations whih now an

be solved uniquely
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(E.40)
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If we now ombine the denominators and weights into a single vetor u

j
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(E.41)

equation (E.40) an be expressed as the following matrix equation

R
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= V
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l

+

N+1

X

j=1

u

j

V

ij

l

R

j

l

() A �R = V; (E.42)

where the matrix elements of A are given as A

ij

= Æ

ij

� u

j

V

ij

l

, and the partial wave

omponents of the potential V

ij

l

are alulated by (E.6). The unknown vetor R an

now be solved by the usual inverse matrix routines. The last element of this vetor will

then give the sattering phase (E.35) at the energy E � k

2

.
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F Meson Summary Tables

The following table serves as a reminder for the physial nomenlature of mesons.

Pseudo-salar mesons are given on the left, vetor mesons on the right of eah setor.
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Next we want to look loser into avor o�-diagonal mesons, sine only they are subjet

of this thesis. It is suÆient to sort these mesons as follows: if the orbital angular mo-

mentum of a qq system is L, the parity P of its wave funtion is (�1)

L+1

. Furthermore,

it also is an eigenstate of harge onjugation, with C = (�1)

L+S

, where the spin S an

be 0 or 1. Finally we will make use of the total angular momentum J , whih an take

on the values J = jL� Sj; : : : ; jL+ Sj.

States with S = 0 and J

P

= 0

�

are alled the pseudo-salars, while S = 1 and J

P

= 1

�

are the vetors. Important to note is that pseudo-salar mesons an only have L = 0,

in other words all pseudo-salars are singlet s-wave mesons. On the other hand, the

vetors an be triplet s-wave or triplet d-wave mesons. Every possible quark model that

is able to desribe mesons should deide on its own, whether a spei� vetor meson is

to be seen as an L = 0 or an L = 2 state.

Setor J

PC

= 0

�+

J

PC

= 1

��

�

�

: 139:6 �(770): 775� 1

�(1300): 1300� 100 �(1450): 1465� 25

�(1800): 1812� 14 �(1700): 1700� 20

�(1900)

y

: 1900� 40

(u;d)

�(2150)

y

: 2149� 17
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Setor J

P

= 0
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J
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K(1460)

y

: 1460� 60 K

�

(1410): 1414� 15

K(1630)

yy

: 1629� 7 K

�

(1680): 1717� 27

(u,d;s)

K(1830)

y

: 1830

D

�

: 1869� 1 D

�

(2010): 2010� 1

(u,d;)

D

�

(2640)

yy

: 2637� 6

D

�

s

: 1968� 1 D

�yy

s

: 2112� 1

(s;)

D

s

(2573)

yy

: 2572� 2

(u,d;b) B

�

: 5279� 1 B

�

: 5325� 1

(s;b) B

s

: 5370� 3 B

�

s
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(;b) B



: 6400� 400

The above table ollets all pseudo-salar and vetor mesons that have been experi-

mentally measured up to now, taken from the Partile Data Group [3℄. The value next

to the meson represents its mass given in MeV.

The partiles assigned with the symbol y are regarded as not yet being established.

The symbol yy indiates that the value of J

P

is still unknown.
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