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Abstract

Abstract

New receptor-based models for pattern formation and regulation in multicellular bio-
logical systems are proposed. The test organism for the mathematical modelling is a
fresh-water polyp, hydra. Another model is applied to describe the growth of tumour

along linear or tubular structure.

Models are defined in the form of reaction-diffusion equations with zero flux boundary
conditions coupled with ordinary differential equations. Two mechanisms of pattern
formation: diffusion driven instability and hysteresis-driven mechanism are studied and
their possibilities and constraints in explanation of different aspects of pattern formation

and regulation are demonstrated.

Three-variable (describing the dynamics of ligands, free and bound receptors) and four-
variable models (including also an enzyme cleaving the ligand) are analysed and com-
pared. It is shown under which conditions they can involve diffusion driven instability
mechanism for pattern formation. It is shown that gradient in the density of bound re-
ceptors occurs if there is also a second diffusible substance, an enzyme, which degrades
ligands. The four-variable model is able to capture results from cutting experiments

and reflects de novo pattern formation from dissociated cells.

To explain the grafting experiments a new model including memory-based relation is
proposed. Production of the diffusible biochemical molecules has a hysteretic depen-
dence on the density of these molecules and is modelled by additional ordinary differen-
tial equations. The stationary and oscillatory patterns, resulting from multiple steady

states and switches in the production rates, are found.

Finally, a receptor-based approach is applied to a model of the growth of a tumour.
Mathematical model describing the population of cells distributed over a linear or tubu-
lar structure and the diffusing growth factor which regulates the proliferation is derived

and analysed.
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Introduction

This work is devoted to mathematical modelling of pattern formation. Spatial and
spatio-temporal patterns occur widely in physics, chemistry and biology. In many
cases, they seem to be generated spontaneously. These phenomena have motivated a
great deal of mathematical modelling and the analysis of the resultant systems has led

to a greater understanding of the underlying mechanisms.

Partial differential equations of diffusion type have long served as models for regulatory
feedbacks and pattern formation in aggregates of living cells. In this work, we consider
new mathematical problems arising in models of this type. In particular, the systems
describing our models are composed of both diffusion-type and ordinary differential
equations. Such systems cause some difficulty, since both existence and behaviour
of solutions are more difficult to establish. Many aspects of qualitative behaviour
have to be investigated numerically. We found qualitatively new patterns of behaviour
of solutions of our equations, including, in some cases, a strong dependence of the
emerging pattern on initial conditions, and quasi-stability followed by rapid growth of

solutions.

In this work we propose new receptor-based models for pattern formation and regulation
in multicellular biological systems. We develop the idea that patterns are controlled
by the specific cell-surface receptors, which transmit to the cells signals responsible
for their differentiation. The main aim of the work is to check which aspects of self-

organisation and regeneration can be explained within such framework.

The test organism for the mathematical models is a fresh-water polyp, hydra. We try
to answer the question what is the mechanism of formation of new structures and
regeneration of missing ones. We show also how model of a similar structure can be

applied to describe the growth and morphogenesis of a tumour.



2 Introduction

1.1 Morphogenesis: mathematical models and biological systems

Understanding the evolution of spatial patterns and the mechanisms which create
them are among the most crucial issues in developmental biology. Recent advances
made in genetic and molecular biology have led to detailed descriptions of a number
of events in embryological development. Although genes control pattern formation,
genetics alone will not be sufficient to understand which physiochemical interactions
of embryonic material produce the complex spatio-temporal signalling cues which ul-
timately determine the cell’s fate. Model mechanisms can suggest to the embryologists
possible scenarios as to how, and sometimes when, a pattern is laid down and how the

embryonic form might be created.

The role of mathematical modelling is to verify what processes are sufficient to pro-
duce the patterning. It does not prove that this is the mechanism, it only says that
this is a candidate mechanism. Modelling also allows to make experimentally testable
predictions. Another use of mathematical models is to provide alternative explanations

for the observed phenomena.

In other areas of biology, such as neurophysiology or ecology, mathematical modelling
has led to many discoveries and insights through a process of synthesis and integration
of experimental data. Also in developmental biology many different morphologies have
been the subject of mathematical modelling. Some of the biological systems have

attained the status of a paradigm in theoretical work.

One such example which shows how the study of model mechanisms can suggest real
scenarios for the process of pattern formation is the limb development, Murray [61].
Mechanochemical model describes the diffusion, haptotaxis and advection of mes-
enchymal cells which evolve in a developing limb bud and which eventually become

cartilage.

The other developmental process for studying pattern formation and different aspects
of embryogenesis is the segmentation of the insect embryo modelled by Schnell et al.
[68] and Kauffman [32].

The models based on chemotaxis and the response of cells to gradients in the chemoat-
tractant were applied to study the life cycle of the slime mould Dictyostelium dis-
coideum. The amoebae move towards regions of high concentrations of a chemical at-
tractant, cycliccAMP secreted by the amoebae themselves. The chemotaxis equations
as a model to describe the aggregation of Dictyostelium discoideum were introduced

by Keller and Segel [33, 34] and rigorously derived from an interacting stochastic many
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particle system by Stevens [73]. The kinetics involved have been modelled by several
authors e.g. Monk and Othmer [52] and all the results were recently summarized by

Horstmann [27].

Recently, models of morphogenesis have been applied to understand the growth of
tumours. They involve a wide range of biological phenomena such as cell-adhesion and
cell traction, angiogenesis, pattern formation in cancer and macrophage dynamics, see
e.g. Chaplain [9], and Murray [61]. There are even examples of applying the theoretical
results to cancer treatment by Jackson et al. [28], [29], [30].

All these models, although based on different biological hypotheses, have many com-
mon mathematical features and are mostly based on a few views of pattern genera-
tion. One is the chemical prepattern approach involving hypothetical chemicals (mor-
phogens) which diffuse and react in such a way that spatial heterogeneous patterns
can evolve from the uniform steady states. Second is the mechanochemical approach
which takes into account mechanical forces and properties of cells and tissues. An-
other class of models rely on chemotaxis and the response of cells to gradients in a

chemoatractant.

In some applications there arise systems of reaction-diffusion equations coupled with
ordinary differential equations, e.g. Hodgking-Huxley models of nerve-pulse propaga-
tion [60] or models of bacterial growth proposed by Hoppensteadt and Jéger [25], and
Hoppensteadt, Jiager and Poppe [26]. Such systems give rise to a number of interest-
ing phenomena like e.g a treshold behavior and hysteresis. Pattern formation in these
models is caused by the initial instability of the ordinary differential equations. Sys-
tems of reaction-diffusion equations coupled with the ordinary differential equations,
which lead to the spatio-temporal patterns were also applied to model heterogeneous

catalysis by Kromker in [40].

Different models are able to produce similar patterns. The question is how to distin-
guish between them so as to determine which may be the relevant mechanism. Of
course the first necessary condition is that the model must produce observed patterns.
But then it is important how consistent are predictions of the model with the results

of the different experiments.

In conclusion, growth and pattern formation provide a great source of interesting and
novel mathematical problems, while mathematics can be used as a tool to explore
different mechanisms and processes underlying these phenomena. The use of realistic

models can help to understand many complex processes.
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1.2  Outline of the thesis

This thesis is focused on systems of reaction-diffusion equations coupled with ordinary
differential equations applied to the modelling of pattern formation in biological sys-
tems. We address important issues of developmental biology such as self-organisation

and regeneration.

In Chapter 2, we introduce the model of hydra. We show the variety of questions
arising in the experimental research and motivate the usage of mathematical mod-
elling to understand the process of pattern formation in hydra. Hydra is an example
where theoretical models had much influence on experimental design, starting from
the activator-inhibitor model of Gierer and Meinhardt [19]. We discuss the differences

between our approach and existing approaches.

The model is based on the idea that both head and foot formation are controlled
by receptor-ligand binding. Positional value is determined by the density of bound
receptors. Use of receptor-based framework is motivated by the ideas presented by
Miiller in [56] and refinement of receptor-based model for hydra by Sherrat, Maini,
Jager and Miiller in [70]. It is emphasised in [56] that many external signals in animal
cells are received by specific cell surface receptors. Since the theoretical activator-
inhibitor model for pattern formation in hydra was proposed by Gierer and Meinhardt,

[19], there were many efforts to identify signal molecules but they have not yet succeed.

The model is defined in the form of reaction-diffusion equations coupled with ordinary
differential equations. Most results on pattern formation in developmental biology have
been derived for reaction-diffusion systems [60], [61] and [45] and since the famous
paper of Turing [77] the mechanism of diffusion-driven instability has been applied to

variety of pattern formation problems in biology.

Thus our first objective is to check what minimal systems are sufficient to produce
patterns in the framework of a diffusion-driven (e.g. Turing-type) instability assuming
that some of the considered substances do not diffuse and which experimental results

can be explained by such approach.

Chapter 3 concerns mathematical formulations of the receptor-based models of hy-
dra. We discuss the analytic techniques for reaction-diffusion systems which can be
applied to the models containing ordinary differential equations. We outline the idea of
bounded invariant rectangles, which is used to prove the existence of global solutions of

the receptor-based models of hydra in Section 4.2.1 as well as of the model of tumour
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growth presented in Section 6.2.6. We discuss also results on linearised stability which

justify the formal use of the linearisation techniques later on.

In Chapter 4 we analyse and compare three-variable models, describing the dynamics
of ligands, free and bound receptors and four-variable models, including also an enzyme
cleaving the ligand. Using linear stability analysis we find conditions for the kinetic sys-
tem under which the diffusion-driven instability appears. The minimal three-variable
model takes into consideration the density of free receptors, bound receptors and lig-
ands. In such model patterns can evolve only if self-enhancement of free receptors,
i.e. a positive feedback loop between the production of new free receptors and their

present density, is assumed. The final pattern strongly depends on initial conditions.

Introduction of the second diffusing biochemical species improves the performance of
the model. In the four-variable model a diffusion-driven instability occurs without the
assumption that free receptors stimulate their own synthesis. Numerical simulations
are performed to investigate the long-time behaviour oft solutions. We compare the
behaviour of solutions for the three- and four-variable systems and find out that, in the
case of only one diffusion equation, the final pattern strongly depends on the initial
condition while patterns evolving in models with two diffusion equations are more

robust.

The proposed four-variable model with diffusion-driven instability is able to simulate
some aspects of self-organisation, such as regeneration of the complete organism from
a cut piece and from randomly distributed cells. In this way we demonstrate that
a receptor-based model can explain exactly the same experiments as the activator-

inhibitor model for hydra which assumes existence of diffusing morphogens.

Our investigations suggest that the results of grafting experiments, which result in the
animals with multiple heads or feet, cannot be predicted by the models with Turing-

type mechanism of pattern formation.

To explain them it is necessary to seek a new mechanism. We propose to incorporate
into our receptor-based model a memory-based relation via a hysteretic dependence
of production of new biochemical molecules on the density of these molecules (ligands

and enzyme).

In Chapter 5 we introduce additional ordinary differential equations to model the
production of ligands and enzyme and show that the results of grafting experiments
can be simulated within such a framework. We assume that the production of the

diffusible biochemical molecules has a hysteretic dependence on the density of these
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molecules. The hysteresis term is controlled by the process. Patterns in this model do
not arise from the stationary homogeneous steady states of the kinetics system. They
result from multiple steady states and possible switches between them. We observe
patterns stationary in time and also, for some parameters, temporary oscillations. For
the simplified model, without equations describing an enzyme and a production of
enzyme, we show the existence of a stationary front connecting two stable stationary

homogeneous solutions and compare it with the solutions of the complete system.

We introduce a new concept of positional value, which allows for the interpretation
of oscillatory solutions. We show how switches in the production rates can result in
the formation of spatial patterns. Such mechanism is able to reproduce the results of
grafting experiments since it allows the coexistence of different spatially inhomoge-

neous solutions evolving from different initial conditions.

Finally, we show how a model of similar structure can be applied to different biological
system. In Chapter 6, we apply the formalism of receptor-based models to study
the growth and morphogenesis of tumour. We examine a mathematical model of a
population of cells distributed over a linear or tubular structure. Growth of cells is
regulated by a growth factor, which can diffuse over the structure. Aside from this,
production of cells and of the growth factor is governed by a pair of ordinary differential
equations. The model is derived from a description in the form of a discrete stochastic
process. Using the theory of bounded invariant rectangles and a priori estimates we

show the existence of solutions.

Using linear stability analysis we find conditions under which diffusion causes desta-
bilisation of the spatially homogeneous steady state, leading to exponential growth
and apparently chaotic spatial patterns, following a period of almost constant state.
This phenomenon may serve as a mathematical explanation of the “unexpected” rapid
growth and invasion of temporarily stable structures composed of cancer cells. We solve
the model equations numerically and demonstrate the strong dependence of the final

spatial pattern on the initial conditions as well as on the scaling parameter.

In Chapter 7 we conclude the thesis with further discussion of the challenges and
restrictions of different possible mechanisms of reaction-diffusion models for pattern
formation in hydra. Also, we stress special aspects of modelling the phenomenon of

tumour growth, which by its nature is unstable.

To improve the readability of the text we present in Appendix A the mathemati-
cal formulation of existing models for pattern formation in hydra. In Appendix B

we describe the different experimental settings in the language of proposed receptor-
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based models. Finally Appendices C and D provide details concerning numerical

investigations.
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Motivating application: pattern control in hydra

2.1 Hydra as a model organism

Hydra has been one of the most frequently discussed organisms in theoretical papers

on biological patterns formation.
What is peculiar about hydra?

Hydra, a fresh-water polyp, is one of the oldest and simplest multi-cellular organisms
equipped with typically animal cells such as sensory cells, nerve cells and muscle cells
and it plays an important role as a prototype organism for morphogenetic patterning
[56], [57], [58], [59], [80].

The body architecture is relatively simple. Polyp has a tube-like body about 5 mm
long with a whorl of tentacles surrounding the mouth at the upper end and a disk-
shaped organ for adhesis at the lower end. The longitudinal pattern is subdivided into:
a head, a gastric region, a budding zone (where new animals are generated by a process

of natural cloning), a stalk and a foot.

The function of cells is determined by their location. This can be shown by a simple
cutting experiment (Fig. 2.2): after a transverse cut cells of the gastric region of the
animal are located at the upper end of the lower fragment, with their former neighbours
at the lower end of the upper fragment. Within 2-3 days they form the head and the
foot, respectively. Moreover, overlapping cut levels show that the same cells can form
either the gastric region, or the head, or the foot, according to their position along the
body axis. Experiments of this kind suggest that the cells respond to local positional
cues that are dynamically regulated. The hypothesis is that cells differentiate according
to positional information (compare Fig. 2.3). The question is how this information is

supplied to the cells.
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Tentacles
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Figure 2.1. Hydra

Vil

Figure 2.2. Cutting experiment. Hydra regenerates after a transverse cut of cells of the
gastric region (from both upper and lower half of the body column). The experiment shows
the availability of positional cues. A hydra, as shown in the middle, is cut in two ways. In
one experiment (left hand-side) the lower body column is removed, in the second experiment
(right hand-side) the upper part is removed. The cut levels are not identical but somewhat
different to show that one and the same group of cells (marked in grey) can form a foot ( left
hand-side), or a head (right hand-side) or a gastric segment (original state in the middle).
The function of the cells depends on the position along the body column. [Courtesy of W.
Miiller]
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Positional value

Figure 2.3. The illustration of the idea of “positional value”, which is supplied to the cells
and interpreted by them. The hypothesis is that the formation of the head is determined by
the high “positional value” (which is above some threshold). The figure shows the “positional
value” for a supernumerary head structure. The animal has been treated with activators
of protein-kinase C periodically over about two weeks. This treatment caused a periodic
increase in the positional value and eventually the emergence of head structures. [Courtesy
of W. Miiller|

There exist a number of models, e.g. [60] for pattern formation and regulation based
on the idea that positional information is supplied to the cells by a diffusible biochem-
ical morphogen. For example, the Gierer-Meinhardt model for hydra is based on this
hypothesis [19], [49].

The other idea [56] is that positional value of the cell can be determined by the density
of bound receptors, which do not diffuse. Regulatory and signalling molecules (ligands)
in biology act by binding and activating receptor molecules which are located in the
cell membrane (or, with lipophilic ligands, in the cytoplasm) [59], [56]. The main aim
of this work is to show under which conditions a receptor-based model can produce
and regulate patterns. Our models do not describe cells differentiation and the process
of creating new structures. We concentrate on the dynamics of receptors and diffusing
biochemical molecules which lead to the pattern formation in the density of bound

receptors.

A classical genetic approach is very tedious [59]. Although genetic crossing is not
currently possible in hydra [59], the use of reverse genetic and molecular screening
techniques have resulted in the identification of many genes involved in the control of

body pattern development, such as homeobox genes.



12 Motivating application: pattern control in hydra

2.2 Connection to experiments

The exact molecular mechanism of pattern formation in hydra is unknown and the
proposed models are hypothetical. Experiments performed on hydra provide an op-
portunity to test the abilities and limits of the models. We investigate what kind of
mechanisms regulating the dynamics of the cell surface receptors and diffusing bio-

chemical molecules can explain the observed results of experiments.

Our research attempts to answer the following questions which are closely related to

the experiments:
e What minimal processes are sufficient to produce patterns?

We try to build a model for de novo pattern formation. It was shown [18], [62] that
normal hydra can regenerate from random cellular aggregates. Reorganisation is not
the result of a spatial rearrangement, but of concerted changes in the functional state
of the cells. The cells do not sort with respect to the positional origin along the body
axis [67], [76]. There have to exist mechanisms which define new centres of head or

foot organising activity within an initially chaotic mass of cells.
e Which models are able to capture the results of cutting and grafting experiments?

Hydra has a high capacity to regenerate any lost body part and is a subject of many
regeneration studies. Regeneration is the ability of the fully developed organism to
replace lost parts by growth or remodelling of somatic tissue. In hydra regeneration
occurs mainly by the repatterning of existing tissues. Thus the regeneration in hydra
is an example of morphallaxis and is connected with little new growth while the epi-
morphosis in e.g. newt limb is connected with a growth of new correctly patterned

structure [80].

The lack of growth requirements for regeneration is shown in heavily irradiated hydra,
no cell divisions occur in these animals, but they can still regenerate normally [80].

Thus the mechanism of pattern formation in hydra seems to be independent on growth.

The cutting experiments show that the polarity is maintained even in small pieces
of the body. A tissue piece containing 150-300 epithelial cells, i.e. about 1 percent of
normal polyp, regenerate a complete hydra. However, below this size regeneration does

not take place [71], [6]. There are also observation connected with the influence of size
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of the animal on the time of pattern formation, showing that the time required for the

regeneration decreases with the increase of the tissue size [71].
These observations can suggest the diffusion-driven mechanism for pattern formation.

The same cells can produce different structures depending on their relative position
along the body column. Experiments show (Fig. 2.2) that the head and foot regenerate
when they are cut off [78], [6]. If we cut at various levels, we will see that the entire
body column between the existing head and the foot has the potential to form both
the head and the foot. An upper half of a transversally cut hydra will regenerate a foot
at its lower end, the lower half will form a head at its upper end. By slightly varying
the cut levels, as shown in the Fig. 2.2, it can be demonstrated that one and the same
group of cells forms a head, a gastric region or a foot, depending on their position in

the body column.

Grafting experiments show how cells change their functions according to the local
cues. Pieces of tissued are grafted from one animal to another and the outcome of such
experiments depends on the change of position along the body axes. Transplantation
of tissue from parts of the body column near to the head induces head formation
while transplantation of tissue from the position near to the foot results in the foot
formation [78], [43], [44], [55] (see Figure 2.4). If the position of the tissue in host
and donor organism is similar then the piece of tissue is integrated and nothing is
observed. Grafting experiments show how the disparities between the positional value
of the transplant and the surrounding host tissue result in the head formation or the

foot formation and new organisms with multiple heads or feet.

2.3 Models proposed in this work, versus previous models of hydra

Three theoretical models for pattern formation in hydra have previously been pro-
posed. Wolpert [79] suggested a gradient model to account for head (but not foot) for-
mation, in which at the head end a morphogen S is emitted. The morphogen spreads by
diffusion and is distributed down the body. This diffusible chemical induces formation
of the head.

A different model type, proposed by Meinhardt and Gierer [19], is based on local
activation and long-range inhibition (for details see Appendix A.1). In this approach
the positional value is interpreted as the density gradient of morphogen. Gradients

of morphogens are formed by reaction-diffusion mechanism. Each of the various body
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Figure 2.4. Grafting experiment. Determination of relative positional values by transplan-
tation. Pieces of tissue are grafted from one animal to another and one of three outcomes is
observed. (1) If the tissue is transplanted from the upper position along the body column
to the lower position then a new head is formed. (2) If the former and new position is the
same then the piece is integrated and nothing is observed. (3) If the tissue is grafted to the
upper position a new foot is formed. We can see that the disparities between the positional
value of the transplant and the surrounding host tissue result in the head formation or the

foot formation respectively. [Courtesy of W. Miiller]
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parts is assumed to be under control of a separate activator-inhibitor system (for
details see [49]).

Both models mentioned above operate with long-range morphogens. The proposed
morphogens are still purely hypothetical. The recent approach proposed by Sherrat,
Maini, Jager and Miiller (the SMJM model) [70] is based on the idea that both head
and foot formation could be controlled by a receptor-ligand binding. We discuss the

basic assumptions of this model later on (for details see Appendix A.2).

The models we study, are motivated by the SMJM model and its receptor-based ap-
proach. The objective is to build a receptor-based model without imposing an initial

gradient as it is done in the model of Sherrat et al.

Following Miiller [56] we assume that the positional value is determined by the density
of bound receptors (Fig. 2.5). We assume, similarly as in the SMJM model, that a
single positional value dictates both head and foot formation. This is one of the major
differences between our approach and the Gierer-Meinhardt model. Such assumption
is in keeping with experimental evidence for the interactions between the mechanisms
of the head and the foot formation. For instance, the head assists in the foot formation,
which is considerably delayed in the absence of the head. On the other hand, additional
heads can evoke the occurrence of additional, ectopic feet [54], [57]. Our models are
based on the idea that epithelial cells secrete ligands (a regulatory biochemical), which

diffuse locally within the interstitial space and bind to free receptors on the cell surface.

Increase inﬁ 1} Decrease in

receptor density receptor density
AAAL A A A A F S S N
TYYYYY Y ¥ Y oy - f yv.v Y

Figure 2.5. Bound receptors density determining “positional value”. The hypothesis is that

a single “positional value” controls the formation of both the head and the foot: the head
is formed if the density of bound receptors is high (above some threshold) and the foot
is formed if it is low (below another threshold). Consequently, in normal development we

expect a gradient-like distribution of bound receptors. [Courtesy of W. Miiller|
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We consider the systems of reaction-diffusion equations coupled with the ordinary
differential equations and study what kind of phenomena rising from such systems (i.e.
diffusion-driven instabilities, travelling waves, hysteresis and threshold behaviour) can

explain the results observed in experiments.

A number of different receptor-based models for the evolution of spatial pattern has
already been proposed, e.g. for the formation of cAMP patterns in Dictyostelium slime
mold cells [48] and [52]. The models considered here are rather simple compared with
these detailed and complicated schemes. This is due to the absence of detailed bio-
chemical knowledge about pattern control in hydra. Using these simple and general
models we try to clarify the ideas of receptor-based mechanism of pattern control and

explore their implications.

In the first approach we consider a model without enzyme, because it is in fact the
simplest receptor-based scenario and the need for an enzyme is not so obvious for
biologists (Miiller, personal communication). Our second model includes a hypothetic
enzyme which actively degrades ligands as it is known, for instance, for the cleavage of
the morphogen chordin by the metalloprotease tolloid in the vertebrate embryo [64].
We show that in the case when the enzyme is absent the final pattern strongly depends

on initial conditions.

The SMJM model is also represented by reaction-diffusion equations. The major differ-
ence between our model and that one is that in the SMJM model the terms describing
de novo production of free receptors, ligands and enzyme depend on the position of
the tissue along the body axes. In order to achieve the required local competition
phenomenon, it is assumed in the SMJM model that kinetic functions are explicit
functions of z, where z is a position along the body axis. The functions describing the
production of new receptors and production of enzyme are linearly decreasing in z.
The production of ligands is assumed to be constant on 4/5 th of the domain and then
decrease linearly to zero. The combination of these two parallel gradients enables the
model to capture some results of grafting and cutting experiments. Thus, the SMJM
model functions not because of nonlinear interactions between receptors and ligands
but because of the assumption that cells produce new molecules depending on the
position they had in the donor organism. In conclusion, the SMJM model is not a

model for de novo pattern formation.

In this work, we verify under which conditions our receptor-based model can predict

head and foot formation in hydra. The question is what is the form of the reaction
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system operating in each cell that can produce the patterns, which are observed in

experiments.

Mathematical details of the Meinhardt-Gierer and SMJM models are provided in the
Appendix A.

2.4  Mathematical development of receptor-based models

The simplest model describing receptor-ligand binding is given in the form of three
equations. It takes into consideration the density of free receptors, of the bound re-
ceptors and of the ligands. We use a representation of ligand-receptor binding that is

as generic as possible and based on the scheme shown in Fig. 2.6.

products of products of
natural decay internalisation
Hi T Hg
. nd
lican bou
gands receptors
b
d
D
. . Pr My
epithelial free products of
cells receptors natural decay

Figure 2.6. General scheme of the simplest receptor-based model. Cells produce new re-
ceptors and ligands which diffuse along the body axis and bind to the receptors. Bound
receptors dissociate back to free receptors and ligands. All the consider molecules undergo

natural decay.

We assume that new ligands and new free receptors are produced on cell surface
through a combination of recycling (dissociation of bound receptors) and de novo
production within the cell. Then a ligand binds to a free receptor reversibly, which
results in a bound receptor that is internalised into the cell. Bound receptors also

dissociate. Both ligands and free receptors undergo natural decay.

We consider one-dimensional epithelial sheet of length L. We denote the concentration

of ligands by [(z,t), where = and ¢ are space and time coordinates, with z increasing
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from 0 to L along the body column. The bound and free receptors densities are denoted
by 74(x,t) and r(x,t) respectively. For simplicity we assume that all binding processes

are governed by the law of mass action without saturation effects.

Our mathematical model consists of the following equations

0
57 = () +pe(rg,m) = b(rg, 1) + d(r),
0
Erb = —,LLb(T'b) + b(’l“f, l) — d(T{,),
0 0?
(2.1) El = dl@l — /Ll(l) - b(?“f, l) +pl(7“f, Tb) + d(T‘b),

where

rs - density of free receptors,

rp - density of bound receptors,

[ - density of ligands,

py - rate of decay of free receptors,

iy - rate of decay of bound receptors,

;- rate of decay of ligands,

pr - rate of production of new free receptors,
p; - rate of production of ligands,

d - rate of dissociation of bound receptors,

b - rate of binding of ligands and free receptors,

d; - diffusion coefficient for ligands.

Since the seminal paper of Turing [77] the study of patterns arising through bifurca-
tion has been prevalent in the modelling literature, especially regarding morphogenesis
[60], [20], [45]. Again, we restrict our attention here to bifurcating solutions. Diffusion-
driven instability is also a mechanism of pattern formation in the activator-inhibitor
model for hydra proposed by Meinhardt and Gierer. We aim now to check whether
a receptor-based model can include such mechanism and what are the constrains re-

garding kinetics.

The results of de novo pattern formation from the dissociated cells and of the cutting
experiments (compare section 2.2) suggest that there exists an organising centre which
creates a global structure of the set of solutions. Thus a natural approach is to study

at first the diffusion-driven instabilities.
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We will show in section 4.1.2 that in model (2.1) patterns can evolve due to a diffusion-
driven instability (Turing-type instability) only when the production of free receptors is
a nonlinear, growing function of free receptors. It means that a three-variable receptor-
based model can produce diffusion-driven patterns only under assumption that the
number of free receptors increases nonlinearly by some kind of positive feedback (au-

tocatalysis). Also production of ligands must depend on free receptors.

The present literature does not provide examples of such positive feedback loops in
which receptors not occupied by a ligand would stimulate their own synthesis (W.
Miiller, personal communication). It is known from the number of other biological
contexts that there can exist a positive feedback loop between the density of bound
receptors on the cell surface and the subsequent expression of new receptors [35], [74].
It convinced us to take under consideration a second diffusible substance, function-
ing as an enzyme as in SMJM model [70]. This enzyme is secreted by cells, diffuses
along the body column and degrades the ligands. We introduce to the model a new
variable describing the density of an enzyme. The role of the enzyme is to remove the
biological regulator, i.e. ligand, before it binds to the receptors on the cell surface. It
is important to stress that this model cannot be simplified to an activator-inhibitor
system. Our model consists of two subsystems. The reaction-diffusion subsystem de-
scribing ligand and enzyme dynamics is not of the activator-inhibitor type and cannot
produce diffusion-driven patterns itself. Pattern formation in this model is caused by

the coupling with the subsystem of two ordinary differential equations.

The model has the following form

0

57 = Th(re) +pe(rp,m) = b(rg, 1) + d(ry),

0

a’f‘b = —/,I,b(T'b) + b(Tf, l) — d(’l“b),
0 0?

al = dlwl—ul(l) —b(?"f,l)—i-pl(rf,rb)-}-d(rb) —be(l,e),
0 0?

(22) a@ = deﬁe — ,U/e(e) +pe(l,7'b),

where
e - density of enzyme,
b - rate of binding of ligands and enzyme,

pe - rate of production of enzyme,
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d. - diffusion coeflicient for enzyme,
e - rate of decay of the enzyme

and the rest stays like in the three-variable model.

We will show in section 4.2.2 that in such a model patterns can evolve due to a
diffusion-driven instability, even if no self-enhancement of free receptors nor ligands is

assumed. p, is now the function of ry.

Numerical simulations also show that in the case when the enzyme is absent the final
pattern strongly depends on initial conditions (see Fig. 4.5) while the four-variable
model (with enzyme) is more robust so that the final pattern does not depend on the
spatial profile of the initial small perturbation of the spatially homogeneous state (see

Fig. 4.8) but only on the domain size.

On the other hand, grafting experiments suggest that there are a number of locally
asymptotically stable patterns depending on the past history (or initial conditions of
the system). It encouraged us to built a model with multiple steady states. The kinetics
system with hysteresis and two stable steady states allows to explain the coexistence

of different patterns for the same parameters but depending on the initial conditions.

In Chapter 5 we consider the following system showing hysteresis,

0
gt = He(re) +pe(rp,me) = b(rg, ) + d(ry),
0
a?”b = —,ub(rb) + b(Tf, l) — d(T’b),
0 0?
al = dl@l — /,Ll(l) — b(?”f, l) +p + d(rb) — be(l, 6),
0 0?
ae - dewe_lu'e(e)'i'pe:
Qp - s D " malry
8t ! ll -+ pl2 (1 -+ O'lpl2 — ﬁlpl)(l -+ am,)’
0 Pe mgle
2.3 Zpe = —6, .
( ) atp 1 +pg * (1 + Uepg - Bepe)(l + aerb)

Last two equations are proposed to describe the dynamics of production of ligands and
enzyme. Numerical simulations show that in this system different dynamic patterns
coexist for a specified value of parameters. The final shape of the spatial pattern

strongly depends on the initial conditions (on the history).
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3.1 Mathematical structure of receptor-based models

Most of the models of morphogenesis are reaction-diffusion models assuming the exis-
tence of diffusing substances. Since some of the molecules, which take part in the mor-
phogenetic processes, e.g. receptors or cells, do not diffuse, it is necessary to consider
systems of reaction-diffusion equations coupled with ordinary differential equations. In
the reaction-diffusion framework, this is equivalent to some of the diffusion coefficients

being equal to zero.

The theory of reaction-diffusion equations was developed by many authors, e.g. Britton
[7], Smoller [72], Fife [15], Rothe [65], Henry [22] and recently Fiedler and Scheel
[14]. Some of the results can also be applied in the case when some of the diffusion

coefficients are equal to zero, which is of interest to us.

As it will be seen, different authors made different assumptions on the functional
spaces of the solutions, and, in consequence, obtained differing results. However, in
the biological context, most of these diverse assumptions are satisfied. Therefore, we
include here these results, which could be applicable to the receptor-based models.

Many of them are used further on in the thesis.

All considered receptor-based models consist of two subsystems of reaction-diffusion
equations and ordinary differential equations coupled via the nonlinear kinetics func-

tions. In general, equations of our models can be represented in the form,
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ug = fi(u',u?),
u? = D, AU+ fo(u',u?),
ou? = 0 in 09,
u'(0,2) = up(z),
(3.1) u?(0,2) = ug(z),

where QO C R” is a bounded region and D, is a diagonal (m — r) x (m — r) matrix

with positive coefficients. In our models N =1 and Q = [0, 1].

ul t O x RT — R", v2 : Q x Rt — R™", r is the number of ordinary differential
equations and m — r the number of reaction-diffusion equations. f; and f, are smooth
mappings, f1 : R™ — R" and fo : R™ — R™".

For convenience we introduce the vector notation which encompasses all of our receptor-

based models,

(3.2) Uy = DAu+ f(u) in QxR*,

OnU; =0 for i=r+1,...,m in 09,

u(0,2) = uo(x),
where v = (u',u?) and D is a diagonal matrix of nonnegative diffusion coefficients.
Let di=0fori=1,..,rand d; >0fori=r+1,...,m and D = diag(di, do, ..., dp,)-

The matrix of diffusion coefficients D has the form

0 0
o o (00

where D, is a diagonal (m — r) X (m — r) matrix with positive coefficients and 0

denotes the zero matrix of the appropriate dimension.
f is a mapping, f : R™ — R™, where m is the number of equations.

In our systems the nonzero diffusion coefficients occur only in one or two equations.
However, such system can be treated in the same way as a parabolic system as far as

the existence and uniqueness of solutions are concerned [7].

In the following Sections 3.2 and 3.3 we outline the results regarding the existence and

uniqueness of different types of solutions of the reaction-diffusion equations.
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To show the global existence and uniqueness of the solution to our receptor-based
models, in Section 4, we apply the theory of bounded invariant rectangles, i.e. bounded
regions, X, in a phase space, with the property that if the initial data lie in X, then
the solution u(z,t) lies in ¥ for all z € ©Q and all ¢ > 0. Thus ¥ provides an a priori
supremum-norm bound on u. We recall elements of the theory, which can be applied
to our receptor-based models of hydra. The corresponding theorems and proofs can be
found for example in [72]. Theorems about bounded invariant rectangles are applied
in Section 4.2.1 to show the existence of global solutions to our receptor-based models
of hydra as well as to the model of the tumour growth presented in Section 6.2.6. Also
we discuss results on linearised stability (Theorem 3.26), which justify the use of the

linearisation techniques later on.

In Section 3.4 we discuss the Turing-type mechanism for pattern formation. We review

the standard results for the onset of the instability based on the linearised system.

3.2 Definitions of solutions and theorems on existence

Numerous definitions and existence theorems of classical, mild and weak solutions
to our problem are considered in the literature. These approaches differ with respect
to their hypotheses. The following review does not attempt to provide a uniform

treatment, but to show connections between different classes of solutions.

3.2.1 From mild to classical solutions

The construction of solutions of the initial-boundary problem begins with the con-

struction of mild solutions and then turns to classical solutions.
Here u is considered as a function of time ¢ with values in a Banach space X.

We define C([t1, %3], X) to be the set of continuous functions u defined on ¢; <t < to

with values in a Banach space X.
The space X must be chosen such that the domain of the operator A, D(A) C X.

Later we consider what is the regularity of the solutions depending on the regularity
of the initial conditions. Therefore, we consider different functional spaces, i.e. X =
(L=(2))" x (H*(Q))™ " (see Section 3.3.2) or X a subspace of bounded continuous
(C(Q))" x (C?*(Q))™ " - functions (see Section 3.3).
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We consider the problem in the form,

Uy = AU+f(U),
(3.4) u(0) = wg

In order to rewrite (3.2) as an abstract problem of the form (3.4) we define the operator
A = DA with the domain D(A) := {(u', u?) € (L=(Q))" x (H*(2))™ " : d,u* =0 on
oN}.

We note that A has the form, A = A; x Ay, where Ay = 0, Ay = D, A and (A4; X
Ag)(u',u?) = (Aju', Ayu?) for u'(t) € D(A;) and v?(t) € D(Ay) for u' = (uq, ..., u,)
and u? = (Ups1, -, Unn)-

Remark 3.1. Later we show that A defined above is a sectorial operator. Therefore,
A generates a C%-semigroup (see Theorem 4.6 in [12]).

We use the following notation:

Definition 3.2. Let A be the infinitesimal generator of a Cjy semigroup P(t). Let
up € X and f € L'([0,T], X). A function u € C([0,T], X) satisfying

u(.,t) = P(t)ug + /OtP(t —8)f(u(.,s))ds for all t€[0,T]

is a mild solution of the initial value problem (3.4) on [0, 7.

Definition 3.3. A function u : [0,7) — X is a classical solution of (3.4) on [0,7)
if u is continuous on [0,7"), continuously differentiable on (0,7), u(t) € D(A) for
0<t<T,(3.4) is satisfied on (0,7) and u(0) = wuy.

For f € L'(][0,T], X) the initial value problem (3.4) has a unique mild solution [63].
We are interested in imposing further conditions on f so that for uy € D(A) the mild

solution becomes a classical solution.

Rothe [65] considers systems of the form,

(3.5) uy = DAu — Du+ F(z,t,u), for all z€Q,t>0,

where D is a diagonal matrix with diagonal entries d; = 0 for ¢ = 1,...,7 and d; > 0

for i =r+1,...,m, together with the initial condition

(3.6) u(z,0) = ug(x)
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and boundary conditions

(3.7) ui(z,.) =0 for i=r+1,..,s
(3.8)  and bi(z)ui(z,t) + Opui(z,t) =0 for i=s+1,..,m on ON.

In other words, components, which do not diffuse, may occur. The boundary conditions
considered include the case of zero-flux boundary conditions if b;(z) = 0. Rothe [65]

uses the Fy, o r-mild solution, which is defined in the following way,

Definition 3.4. Let T' € (0,00) Uoo. An Ey, o 7-mild solution of the initial boundary
value problem for the initial data uy € L*(2,R™) on the time interval [0,7) is a
measurable function u : (z,t) € Q x (0,7) — R™ satisfying

u(.,t) € L*(R2) and sup{|u(.,s)|c|s € (0,t)} < oo for all t € (0,7),

u(.,t) = P(t)ug + [y P(t — s)F(., s, u(., s))ds for all ¢ € (0, T),

where the integral is an absolutely converging Bochner integral in L>®(Q). P is an
operator: P;(t) = I for i = 1,...,7 and P;(t) = S;(dit) for i = r + 1,...,m, where
I denotes the identity operator and S;(¢) denotes the semigroup generated by the
operator —A + 1 and the boundary conditions (3.7) or (3.8) for i = r +1,...,s or

1 =5+ 1,...,m respectively.

For p e N, o € (0,1) let C?(Q) and CP**(2) be the Banach spaces of continuously
p-times differentiable and a-Holder functions. A function f is Holder continuous with

exponent « € (0, 1) if there is a constant L such that
If(x) = f(y)| < Llz —y|*.

Rothe [65] formulated a theorem on the existence of mild and classical solutions of the
system of reaction-diffusion equations coupled with ordinary differential equations.
We may apply it to our models to show the existence of solutions in the spaces of

continuously differentiable and a-Holder functions.
Theorem 3.5.

Assume that:

(i) ug € L*(2, R™).

(ii) A function F(.,.,u) : (x,t) € Q x [0,00) = F(z,t,u) € R™ is measurable in (v,1t)
for all u € R™.
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(iii) For every bounded set B C Q x [0,00) x R™, there erists a constant L(B) such
that

|F(z,t,u)| L(B) for all (z,t,u) € B,
|F(z,t,u) — F(x,t,v)] < L(B)lu—v| for all (x,t,u),(x,t,v) € B.

IN

Then the following holds:
(1) For each initial function uy € L*(2, R™), there exists T € [0,00) such that the

initial-boundary value problem (3.5) has a unique Ew or-mild solution on the interval
[0,7).

(2) Consider the existence time T as a functional of the initial data ug € L*(Q2, R™).
Then this functional T = T (ug) satisfies

inf{T (up)|ug € L=, R™), |uo|oo < Uo} >0 for all ug € [0,00).

(8) The existence time T € (0,00)Uoco can be chosen mazimal, i.e. Definition 3.2 does

not hold for a larger time. In that case we let T = T,,,, and obtain

by T [U(1) o0 = 00 3f Tinas < 00

(4) Assume regular initial data ug, i.e.

ug; € C* «a€(0,1) for i=1,..,r,

ugi € C** for i=r+1,...,m,
where r is the size of the ODEs subsystem (as defined before: d; = 0 for i = 1,...,r
and d; > 0 fori=r+1,....,m) and that, for every bounded set B € Q x [0,00) x R™,
there exists a constant L(B) such that
(3.9) |F(z,t,u)] < L(B) for all (z,t,u) € B,
(3.10)  |F(z,t,u) = F(y,s,v)] < L(B)(lz —y|*+[t = s* + |u—v])

for all (z,t,u),(y,s,v) € B.

Then the mild solution is smooth, in the sense that, with u(.,0) = uy we have

u; € CO2(Q % [0,T]) for i=1,....,r all T € (0, Thag),
u; € C2F+/2(Q 5 [0,T]) for i=r+1,...m, all T € (0,Tpaz)-

Remark 3.6. In the models considered by us F' does not depend explicitly on z or .
Thus the condition (3.10) is equivalent with the assumption (iii).
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3.2.2 Weak solutions

Ball [5] defines a weak solution of the equation (3.4) in the following way
Definition 3.7. A function v € C([0, 7], X) is a weak solution of (3.4) on [0, 7] if for

every v* € D(A*) the function (u,v*) is absolutely continuous on [0, 7] and

d

(3.11) =

(u,v*) = (u, A*v*) + (f(u),v*) a.e. on [0,T].

A* is an adjoint operator of A from D(A*) C X* into X*, where X is a dual Banach
space to X and D(A*) is the set of elements u* € X* for which there is a v* € X*
such that (u*, Au) = (v*,u) for all u € D(A), and if u* € D(A*) then v* = A*u*.

Ball [5] proved that

Theorem 3.8.
There exists for each x € X a unique weak solution u of (3.4) on [0,T] satisfying
u(0) = ug if and only if A is the infinitesimal generator of a Cy semigroup P(t) of

bounded linear operators on X, and in this case u given by

(3.12) u(.,t) = P(t)up + /OtP(t —8)f(u(.,8))ds for all t€]0,T]

Remark 3.9. Relationship (3.12) implies that weak solutions are also mild solutions
of (3.4).

3.3 Invariant rectangles and stability of solutions

3.3.1 Existence and uniqueness of solutions

To show the global existence and uniqueness of solutions to our receptor-based models,
we apply the theory of a priori estimates and bounded invariant rectangles. Using
this theory we also show that the solutions of all considered receptor-based models
for positive initial conditions stay positive and that in some case they are uniformly
bounded (e.g. in the four-equation model considered in Section 4). Bounded invariant
rectangles are bounded regions, Y, in a phase space, with the property that if the
initial data lie in X, then the solution u(x,t) lies in X for all x € 2 and all ¢ > 0. Thus

Y provides an a priori supremum-norm bound on u. We recall elements of the theory,
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which can be applied to our models. The corresponding theorems and proofs can be
found e.g. in [72].

We consider the system (3.2) with zero flux boundary conditions in a single space
variable, ) = [0, 1], where D = diag(dy, ..., d,,) with d; > 0 for all 4, and f is a smooth
mapping from an open set U € R™ to R™. Solutions of (3.2) are continuous functions

of time with values in a Banach space, B.

Let us suppose that B is a Banach space of functions on Q with values in R™; | - |5

denotes the B-norm and | - | the L*-norm.

Smoller introduces the following notation of an admissible Banach space

Definition 3.10. B is admissible if the following conditions hold:

(1) B is a subset of the space of bounded continuous functions on Q € R, and if

w € B, [w|p 2 |w]e.

(2) If f:R™ — R™ is smooth and f(0) = 0 then f(w) € B for every w € B, and for
any M > 0, there is a constant k(M) such that

[f(w) = f(w')]s < k(M)|w —u'|,

for all w, w' in B with |w|eo, [0 |0 < M.
And, additionally, for unbounded 2 = R:

(3) B is translation-invariant, i.e. w o7 € B for every w € B and every translate

7: R — R. In addition |w o 7|5 < |w|5-

(4) If 7, : R — R denotes translation by A (i.e. 7,(z) = x + h), then for each w € B,

|wor, —w|g— 0 as h— 0.

We define C([0,T], B) to be the Banach space of continuous functions on [0, 7] with

values in the admissible Banach space B, normed by
|wl = supo<icr|w(®)] 5-

First we recall the concept of an invariant region, which allows to prove global existence

theorems. Our formulations are taken from the book of Smoller [72].
Definition 3.11. A closed subset ¥ € R™ is called a (positively) invariant region for

the local solution of (3.2), if any solution u(z,t) having all of its boundary and initial
values in ¥, satisfies u(z,t) € ¥ for all z € 2 and for all ¢ € [0, 6).
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We consider regions Y of the form

(3.13) Y=n"{ueU:Gi(u) <0}

where, for each 7, GG; are smooth real-valued functions defined on open subsets of U,

and the gradient dG; never vanishes.

To show the existence of invariant rectangles for the system (3.2) we can use the
following Theorem being a modified version of the Theorem 14.7 in [72].

Theorem 3.12.

Any region of the form ¥ = N, {u € U : G;(u) < 0} is invariant for (3.2) provided
that f points strictly into ¥ on 6%, i.e. provided that for every vy € 0% (so G;(vg) =0

for some i), the following condition holds,

(3.14) dGi(f) <0 at wy, for all teR".

Remark 3.13. Since D in (3.2) is a diagonal matrix with nonnegative coefficients,
then any region of the form ¥ = N, {u : a; < u < b;} is invariant provided that the
condition (3.14) is fulfilled (see Corollary 14.8 in [72]).

Suppose we can prove the existence of such a bounded invariant rectangle for the
system (3.2) for a particular choice of the function f. Then, to show the existence of

a global solution, we can use the following result in [72].

Corollary 3.14.
Consider the system (3.2) with data ug € B. If the system admits a bounded invariant
region X, and ug(z) € ¥ for all x € R, then the solution ezists for all t > 0.

It can happen that the vector field f satisfies the weaker condition: dG;(f) < 0 at v,
i.e. f is tangent to dX at certain places. If the system (3.2) is f-stable, we can replace
the condition (3.14) in the Theorem 3.12 by

(3.15) dGi(f) <0 at vy, for all teR™.

Definition 3.15. The system (3.2) is called f-stable if, whenever f is the limit of
functions f, in the C'-topology on compacta, for all ¢ > 0, then any solution of (3.2)
is the limit in the compact-open topology of solutions of (3.2) (i.e. u, converges to u

uniformly on compact subsets of 2 x R), where f is replaced by f,.

We can formulate the following:
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Theorem 3.16.

Any region of the form ¥ =N {u € U : G;(u) < 0}, where for each i, G; are smooth
real-valued functions defined on open subsets of U, and the gradients dG; never vanish,
is invariant for the system (3.2), provided that for every vy € 0¥ (so Gi(vg) = 0 for

some i) the system is f-stable and the following condition holds,

(3.16) dGi(f) <0 at vy, for all t€R™.

For many choices of the kinetics function f the bounded invariant set does not exist
but we can find an a priori bound; namely, there is a constant ¢ > 0, depending only
on |up|e such that if u is any solution of (3.2) in 0 <t < T, for all time ¢, 0 <t < T,
then |u(-,%)|o < c. Then the solution of this problem exists for times ¢t € [0, 7] (see
[72], Theorem 14.4).

Theorem 3.17.

Let B be an admissible Banach space, and let ug € B. If the solution is a prior:
bounded in the L*®°-norm on 0 < t < T < oo, then the solution of (3.2) exists for all
t,0<t<T andu(,t) e B,0<t<T.

Remark 3.18. In the systems containing ordinary differential equations jumps may

occur at t = oo, i.e. one may loose regularity at ¢ = oo and solutions for continuous

initial conditions may become asymptotically discontinuous.

It is of interest to note that invariant sets exist for many systems of reaction-diffusion
equations modelling biological phenomena, for example the Fitzhugh-Nagumo system,

Hodgkin-Huxley equation, Field-Noyes or Belousov-Zhabotinski model (see [72]).

The uniqueness and the contiuous dependece of the solution on the initial data follows

from the following theorem (for the proof see [72])

Theorem 3.19.
Let u,v € C([0,T], B) be solutions of (3.2) on 0 < t < T, where ||, [V < M.
Then there is a constant k = k(M) such that

lu(t) —v(®)|5 < e[u(0) —v(0)|5, 0<t<T.

3.3.2  Stationary solutions and their stability

It is a well-known phenomenon in nonlinear reaction-diffusion system that several
static or dynamic patterns may coexist. If we change parameters, the number of pat-
terns may change due to, for example, a bifurcation. For these reasons it is important

to investigate the asymptotic behavior of solutions as ¢ — 4o00.
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Let %(x) be a stationary solution to Eq. (3.2).

We define the stability and asymptotic stability of the stationary solution in the terms

of the norm of some Banach space B(2).

Definition 3.20. %(x) is a stable solution if, for every € > 0, there exists J such that
for every initial function u%(z), |u’(-) — @°(-)| ) < d the solution u for this initial

function exists for all t > 0 and |u(-,t) — u(-)| ) < € for all £ > 0.

Definition 3.21. A stationary solution @(z) of (3.2) is asymptotically stable if it is
stable and there exists a neighbourhood N of @ such that if u is a solution to Eq. (3.2)
with ©(0,-) € N then u exists for all # > 0 and limy_,o |u(-, ) — u(-)| po) = 0.

The stability of smooth stationary solutions of reaction-diffusion equations may be
analysed by considering the eigenvalues of the linearised system (compare [7], [72]).
The stability problem of the stationary discontinuous solutions is more subtle. The
reason is that the spectral criterion on linearised stability cannot be applied since the
system cannot be linearised at a discontinuous solution. As an example, in [21] Heinze
and Schweizer consider the system of one reaction-diffusion equation coupled with one
ODE describing the dynamics of two competing species. They show the instability of
discontinuous solutions for a particular class of small perturbations which cannot be

obtained from a linearisation argument.

Let us now consider functions (u;(t),u;(t)) € L®(Q) x H*(Q), where i = 1,...,r,
j =r+1,...,m. It means that first r equations (ODE) hold almost everywhere in Q
while the next m — r equations (reaction-diffusion equations) hold in the usual weak

sense.

We consider continuous maps
(3.17) fo (L) x (H' Q)™ — (L))" x (L))"

Remark 3.22. Since in considered models 2 = [0, 1] is one-dimensional, from embed-
ding theorems (see e.g. [22]) we obtain that H'(Q2) < L°°(€). Therefore (3.17) holds

for all the nonlinear functions f considered in receptor-based models.

To study the stability of the smooth stationary solutions we can apply the theorem
about stability and instability by the linear approximation, which is a modified version
of the theorem of Henry [22] (Theorem 5.1.1). This criterion is formulated for the
equations with sectorial operators. It justifies the usage of the linear stability analysis

in the next sections.
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Definition 3.23. [22] We call a linear operator A in a Banach space X a sectorial
operator if it is a closed densely defined operator such that, for some ¢ in (0,7/2) and

some M > 1 and real a, the sector

Sus = {A: 6 < larg(r—a)l <7, A+#a}

is in the resolvent set of A and

(A=A~ <

h—a for all A€ Sgy.

Definition 3.24. Suppose A is a sectorial operator and Reo(A) > 0; then for any
a >0,

A® is the inverse of A=%; A® = Id on X.

Definition 3.25. If A is a sectorial operator in a Banach space X, define for each
a>0

X*=D(A})
with the norm |u|, = [Au|, u € X*

where A; = A + al with a chosen so Re o(A4;) > 0, where o is the spectrum of the
operator Aj.

Theorem 3.26.

Let -A be a sectorial linear operator in a Banach space X and let f : U — X where U
is a cylindrical neighborhood in X (for some a < 1) of (1,00) X ug and let uy be the
equilibrium point of

ug = Au + f(t)u)’
i.e. ug € D(A) and Aug + f(t,uy) = 0.

Suppose that f(t,ug + z) = f(t,u) + Bz + g(t, z), where B is a bounded linear map
from X* to X and |g(t, 2)| = o(|z]a) as |2]|a — 0, uniformly int > 7, and f is locally

Holder continuous in t, locally Lipschitzian in u, on U.

(1) If the spectrum A+ B lies in Re\ < —f for some 8 > 0, then the original equation

has the solution uy asymptotically stable in X°.
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(2) If the spectrum A + B intersects {Re\ > 0}, then the equilibrium solution ug is

unstable.

We may apply the above theorem to the systems of reaction-diffusion equations coupled

with ordinary differential equations while studying the stability of a smooth solution.

Let us note that

0 0
o ae(r )

is a sectorial operator. To show this we use the statement from [22] saying

Corollary 3.27.
If Ay 1s sectorial in X and Ay is sectorial in'Y, then A; x Ag s sectorial in X XY,
where (A1 x Ay)(ut,u?) = (Ajul, Ayu?) for ul(t) € D(A;) and v*(t) € D(A,).

We consider X = (L®(Q))", Y = (L%(Q))™ " and Yz = (H'(Q))™ " (for details see
[22]).

Ay := —A is a sectorial operator in Y (see e.g. [22]). A; = 0 is also a sectorial operator.
Hence —A defined by (3.18) is also sectorial. All the kinetics functions f used in
receptor-based models considered in this thesis satisfy f(u) € (L®(Q))" x (L*(Q))™"
for u(t) € (L®(Q))" x (H'(Q))™ " (see Remark 3.22).

Remark 3.28. Another theorem about the linearised stability of the spatially homo-
geneous solutions of the reaction-diffusion system coupled with ODEs is given in [8].
The authors formulate sufficient conditions for the stability of a constant stationary

solution.

In the following sections we apply the linear stability analysis to find the conditions for
the destabilisation of the spatially homogeneous steady state (e.g. to find conditions

for the diffusion-driven instability).

We are also interested in studying the inhomogeneous stationary solutions. For m =1
it can be shown (compare [60], [72]) that

Theorem 3.29.
There exists no stable spatial pattern (i.e. spatially inhomogeneous solution) for a
scalar reaction-diffusion equation in one dimension with Neumann boundary condi-

tions.

Proof : We consider the system (3.2) for m = 1 in one-dimensional space, i.e. 2 = [0, 1]

and
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ug = u" + f(u),
(3.19) u'(0) = /(1) =0,

where u’ denotes the derivative of u in respect to x and u,; derivative in respect to t.

Stationary spatially inhomogeneous solution U satisfies

U"+ f(U) =0,
(3.20) U'(0)=U'(1) = 0.

We will show that if U is a spatially nonuniform solution of (3.20) then U is unstable.

The linearisation of (3.19) is

(3.21) y(0) = /(1) = 0.

We realistically assume that f'(U) is bounded by K > 0, which implies that the
discrete eigenvalues A of (3.21) must be bounded above so there must exist the largest
eigenvalue, Ay (see [72]). We have Ay > A\ >Xg... >N > ..

Now consider the eigenvalue problem with fixed boundary values,

pwy =y" + f(U(x))y,
(3-22) y(0) = y(1) =0.

with eigenvalues g > p1>po...

From (3.20) we obtain

U+ fUU =0,
U'(0) = U'(1) = 0,

Now we notice that z = U'(x) is an eigenfunction of (3.22) if u = 0.

This implies that g = 0 is an eigenvalue of (3.22). Thus, we obtain that the largest

eigenvalue g > 0.

Now, consider the two eigenvalue problems defined by (3.21) and (3.22), that is with

zero flux and zero boundary conditions on y. Using the Sturm comparison principle
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(see e.g. [31]) we can show that Ay > po. In fact, if Ay < po, then we would have
f/(U)—u < f'(U) — A. So, from the Sturm comparison principle (see e.g. [31]) we
obtain that the principal eigenfunction corresponding to A has a zero in (0,1). This
is impossible since the principal eigenfunction is of one sign (see [72]). Now, since
o > 0, we obtain also A\g > 0. It means that the largest eigenvalue of (3.21) is positive
and so w grows exponentially with time and hence U(z) is linearly unstable. Thus
there are no stable spatially patterned solutions of (3.2) for m = 1, and consequently
the only stable solutions u(z,t) of (3.20) are homogeneous steady states and satisfy
f(U)=0. W

3.4 Turing-type patterns in reaction-diffusion systems

Diffusion-driven instability (Turing-type instability) arises in a reaction-diffusion sys-
tem. It occurs when there exists a spatially homogeneous solution, which is asymptot-
ically stable in the sense of linearised stability in the space of constant functions, but

it is unstable with respect to spatially inhomogeneous perturbation.

We study the linear instabilities of the homogeneous steady state to classify the pat-

terns, which may grow, in terms of their wavenumber.

We consider a dimensionless reaction-diffusion system with zero-flux boundary condi-
tions of the form (3.2). For such a system, we consider a bifurcation from the homo-
geneous (spatially uniform) steady state by examining the response of the system to

an initially small perturbation @ from the steady state @, |u;] < 1.

Setting
(3.23) u=u+ 1,

we linearise (3.2) in the variable @ (substituting (3.23) into (3.2), using a Taylor ex-

pansion and ignoring quadratic and higher order terms).
We obtain
Py
(3.24) % = DA+ Bil
ot
with zero-flux boundary conditions, where B is the Jacobian matrix of the kinetics
system f evaluated at the homogeneous state .

We seek solutions to the system (3.24) of the the form,

o = exp(At)P(x),
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where ® is a vector.

Substituting into equation (3.24) we obtain

(3.25) DA® + (B — A)® = 0.

Eigenfunctions of the spatial eigenvalue problem (3.25) can be written as ®,;, = Y dm,

where y,, is a constant vector and ¢,, are eigenfunctions of the Laplacian

Amd’m = _,u'm2¢m m Qa
Ohu = 0 on 00

and p,, is a wavenumber associated with ¢,,.

For nontrivial solutions of (3.25) we require
(3.26) det(B — pimD — M um®)I) = 0.

This condition yields the dispersion relation A = \(j,,?) which is an algebraic equation

for the growth rate.

The solution of the linear stability problem is then given by

(3.27) (@, t) = S oexp(Apm”)t)Ymbm (@)

with y,, being vectors determined by the initial data. The label m is called the mode
number. For certain nonlinearities in the reaction term it can be shown that the

amplitudes of growing modes are bounded by a finite value.

The linear stability of the homogeneous steady state to spatially heterogeneous per-
turbation of mode m is determined by the sign of the real part of A\(u,,%) (see The-
orem 3.26 about linearised stability). The steady state is stable (asymptotically) for
ReA(p,m?) < 0 for all m and unstable for Re(ji,,%) > 0 for some m. When it is unsta-
ble a perturbing mode of appropriate wavenumber may grow. The requirement about
the stability of the steady state in the absence of diffusion is equivalent to the nonex-
istence of growing modes for the wavenumbers with j,,2 = 0. This provides conditions

on the Jacobian matrix B.

There are two kinds of Turing-type patterns (depending on the imaginary part of the

eigenvalue with positive real part).

e Stationary patterns, when a single eigenvalue of the Jacobian matrix B becomes
positive and the bifurcating solution is a nonconstant steady state. In such case long-

time solutions are stationary and spatially heterogeneous structures.
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e Wave patterns [40], when 2 complex conjugate eigenvalues of B cross the imaginary
axis. It is a supercritical Hopf bifurcation from a homogeneous solution to a stable

periodic and nonconstant solution. The result is a pattern which oscillates in time.

The majority of theoretical studies in theory of pattern formation due to the diffusion-
driven instability focus on the analysis of the systems of only 2 reaction-diffusion
equations. They are activator-inhibitor systems and involve kinetics chosen in the
way necessary for a diffusion-driven instability. One variable describes the density of
chemical (activator) which activates its own production and the production of the
other one (inhibitor) which in turns inhibits the production of activator. In a recent
paper [66] the Turing’s theory was extended to the systems of n reacting and diffusing

chemicals.

The simplest model we consider here consists of three equations but only one with non-
zero diffusion. It seems interesting to check whether in such models patterns can arise

due to the diffusion-driven instability and how they depend on the initial conditions.

Models (2.1) and (2.2) are not activator-inhibitor models. We analyse the possible
diffusion-driven instabilities, which can arise in both models and show the necessary

restrictions regarding kinetics.






Receptor-based models with diffusion-driven
instability for pattern formation in hydra

4.1 Three-variable model

4.1.1 Dimensionless system

First let us consider the model (2.1). We aim to find out whether in this model any
patterns can evolve due to a diffusion-driven instability. We convert the model (2.1)
into a dimensionless form using the following rescaling z* = 7, where L is a domain
length and v = {“1—12. Symbol z* denotes the dimensionless version of x. It will be called

x throughout.

We obtain
0
5 = —ps(ry) +pr(r,m8) — b(rs, 1) + d(7s),
0
arb = _Hb(rb) + b(T‘f, l) — d(T‘b),
0 1 0?
(41) al = ;wl - /,Ll(l) - b(’f'f, l) +pl(7'f, 'f'b) + d(Tb),

re:[0,1] x RY — R™,
1 [0,1] x RY — R,
1:[0,1] x R* — R™.
For ligands we assume zero flux boundary conditions. All the functions used in the
reaction terms are nonnegative for nonnegative arguments. The model has biological
interpretation for such functions. For simplicity we use a notation
Fro= —pgrg) +pp(rg,m) = b(rg, 1) + d(ry),
f2o= =) +b(ry, 1) — d(ry),
2= —m(l) =b(rs, 1) +pilrs, ) +d(ry).
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For further analysis we consider the following functions

) = Wy,
) = bryl,

d(ry) = dry,
) = wrs,
)

The proposed functions are the simplest functions usually used to describe decay or
binding processes (compare models described in [60]), modelled by the law of mass

action. As a simplest case scenario they seem biologically reasonable.

4.1.2  Linear stability analysis

For a dimensionless reaction-diffusion system with zero-flux boundary conditions we
consider bifurcation from the steady state by examining the response of the system to
an initially small perturbation from the steady value (7, 7s,). The analytical inves-
tigation proceeds by identifying a control parameter in the system (here the scaling
parameter y) which may be varied until the homogeneous steady state loses stability
and bifurcates to a particular heterogeneous solution. We consider a nontrivial steady
state. The trivial one is always stable and there is no bifurcation possible from the
trivial steady state for any positive value of . Considering a bifurcation from nontriv-
ial, nonnegative steady state is biologically reasonable. We consider our model in the

parameter space, in which there exists such nontrivial steady state.

The formation of a spatial pattern is a nonlinear phenomenon. However, a good in-
dication of the pattern in one dimension can be obtained by a simple linear analysis.
We carry out a linear stability analysis to derive the conditions under which instabil-
ity can arise (for details see i.e [60], [61] [72], [20]). We consider stationary solutions
7r € L=([0,1]), 7 € L*®([0,1]), I € H?([0,1]) of the system (4.1) and apply spectral

criterion on linearised stability, i.e. Theorem 3.26 formulated in Section 3.3.2.

4.1.2.1 Notations

A is the Jacobian matrix of kinetics system of (4.1) evaluated at the spatially homo-

geneous state (7, 7, [).
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The submatrix of A consisting of the 7;-th and i5-th column and 7;-th and #,-th row
will be denoted A;,;,. We have

trAillé = Qiyiy T Gy,
[Aivia| = @iy Qigiy — Qigiy Qi
The tilde “ 7 ” always denotes the PDE system. A is then linearisation of the full
system (4.1) at a constant solution,
~ 1
(4.3) A(pim) = A = =Dy,
Y
where D, the matrix of diffusion coefficients has the form
0 00
(4.4) D=1000
0 01

From the linear stability analysis we obtain the dispersion relation A = A(u,,,%) as a

solution of the characteristic polynomial,
(4.5) det(A — \I) = 0.

Note that v occurs in the system in such way that we may consider A = /\(“T’"Z) with
7 appearing nowhere explicitly. The function \(i,?,) as a function of v for different
U2 is simply scaled along the v axis. We call A = /\(“T’”z) the dispersion relation
throughout.
Jacobian A has the form
a1 a12 G13
(4.6) A= Q21 G2 Q23 | >
31 Gz2 0as3
where
an = Op, f' = =0y, py (Fs) + Or, 0y (Fy, ) — Op,b(Fy, 1),
12 = O f1 = 0p, 0, (T, 7) + Op, d(T),
13 = 5lf1 = —ayb(7y, 1),
ag = O, f* = 8,,b(Fy, 1),
az = 0Oy, f? = — rb,U'b(Tb) Or,d(73),
ags = O f* = Oyb(7y, ),
agy = Oy, f* = —0,,b(Ts, 1) + Op,pu(Ty, T),
asy = Op, f* = O, pu(Ty,Tp) + Op, d(7s),
ags = O f* = —Oyu(l) — Ob(Fy, 1).
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Guided by biological interpretation we assume that all the constants in (4.2) are pos-

itive, so for all 7}, 7,1 > 0 we have the following signs for some of these derivatives

ayz > 0,
as > 0,
a3 <0,
a9 < 0,
agz > 0,
azy > 0,

(47) asz < 0.

Let us note that the sign of a;; depends on the form of p, and the sign of as; on
the form of p;. We will derive formal conditions on functions p, and p; that make it
possible to destabilise the constant solution. Let us recall now that for the system of

three linearised ODEs the characteristic polynomial has the form

(4.8) Xa(A) =X —trAN + > " [Aj;|A — detA = 0.

1<j

The Hurwitz matrix is

—01 —O03 0 —trA —detA 0
0 -0 —o03 0 —trA —detA

Let A; be the successive principal minors of matrix H. We have

N = —trA=—oq,

Ny = —trA(Z |Aij|) + detA = —oy09 + 03,
1<j

A3 = —Agd@tA = —(—0'10'2 + 0'3)0'3.

From the Routh-Hurwitz theorem [17]: The number £ of roots of the real polynomial

which lie in the right half-plane is given by the formula
k - V(]_, Al) + V(Al, A3) + V(]., AQ),

where V' is the number of changes of sign of adjacent numbers in a sequence.
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For the ODE system, k£ = 0, the equilibrium is asymptotically stable, if and only if all
A; > 0.

For the full reaction-diffusion system we obtain

(4.10) XA(A) =X —trAN* + " Ajj|\ — detA = 0.

i<j

1 1
Al = —trA—+ —pn? =D+ = pm?,
v v

~ 1 1 1
AQ = (_tTA + ;,Ume)(Z ‘AZ]| - tTAu;[l,mZ) + (detA — |A12‘;;j,m2) =

1<J
1 1
= —tTAlg(;)%umll —+ (|A23| + |A13| + tT‘AlgtT‘A);IMmQ + AQ,
L L 1
Ag = —AgdetA = Az(—detA + |A12|;,L6m2).

So for a diffusion-driven instability we require firstly that ReA(u,,?) < 0 for > =0,

that is, the uniform steady state is stable in the absence of diffusion.

We have

(4.11) ReA(p2, =0) <0 = —trA >0,

(4.12) N —trA() |Aij]) + detA > 0,
1<j

(4.13) A — detA > 0.

Secondly we require that there exists a positive j,,? for which \(u,,?) has a positive

real part. Using the Routh-Hurwitz conditions we obtain,

(4.14) ReA(p2) >0 = A; <0,
(4.15) vV Ay <0,
(4.16) vV As<0.

Adding diffusive terms to the trace can only decrease the trace and therefore increase
Ai. Hence A, is always positive if A; is positive. We analyse the above conditions
(4.11)-(4.16) and obtain that a steady state which is stable in the absence of diffusion
can be destabilised due to the diffusion if and only if |A4;5| < 0.

Theorem 4.1.

For the system (4.1) a steady state which is stable in the absence of diffusion (condi-

tions (4.11)-(4.13) are fulfiled), is destabilised when diffusion is introduced if and only
if |A2] < 0.
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Proof :
(Suf ficiency)

If |Aj2| < 0 then there exists ”’1;—2 > 0 such that

~ 1
—detA = —detA + |A12‘—/,Lm2 < 0.
Y

If Ay > 0 then A~3 < 0 and if Ay < 0 then A~3 > 0, i.e. in both cases k£ = 1.

(Necessity) Assume that [Ajp] > 0. Then a;; < 0 (|A12| = a11a22 — aipa91) and also
trA <0 and trd;5 < 0.

We can show that Ay > 0.
~ 1 1
AQ = —157“1412(;)2#"14 + (|A23| + |A13| + tTAlgtTA);,U/mZ + AQ <0

only if (|A23‘ + ‘A13| + t’I“Algt’I“A) < 0.

From this condition we obtain
2
aszazs > (a11 + age)” + 2(a11 + ag)ass — a13a3;.

On the other hand if Ay > 0, then )

condition

i<j|4ijl > 0. And we obtain the following

Q23032 < 11022 + Q11033 + Q22033 — (13031 — Q12021 -
Combining the two above inequalities we obtain
afl + a§2 + @11092 + Q11033 + Q22033 < —G12021
which cannot be verified considering inequalities in (4.7) and the fact that aq; < 0.

If [A15| > 0 then also Az > 0 for every fi,.

So for |Aj| > 0, A; > 0,47 = 1,2,3 and the destabilisation of the steady state is
impossible. This concludes the proof. W

Now we can formulate necessary and sufficient conditions for Turing-type patterns in

the three-variable model with one diffusion operator in third equation

(4.17) —trA >0,

(4.18) —trA() " |Ayj) + detA > 0,
i<j

(4.19) —detA > 0,

(420) |A12‘ < 0.

Analysing these conditions we can show how they determine production functions.
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Theorem 4.2.
There is a diffusion-driven instability for the system (4.1) only if

o 0 o
pr(Tf,Tb) < Tfa—rfpr(Tf,Tb)-

Proof : It follows directly from the calculation of |A;5| using (4.2) and steady states

equations. We obtain

From Theorem 4.1 |Aj5| < 0is a necessary condition for the diffusion-driven instability

for the system (4.1). Hence

is a condition for the diffusion-driven instability. B

Conclusion 4.3. For the Turing-type instability, the function describing de novo
production of free receptors must depend on the density of free receptors and this
dependence must be a power function of the order ao + 1, where a > 0.

Hence Turing-type patterns can occur if

pr(ry) = mlrf”‘+1, a > 0.

This function can depend also on the density of bound receptors, but it is crucial here
that it depends on the density of free receptors. For the numerical simulations we use

the simplest function fulfiling the above condition, namely p,(r;) = myr>.

To model the production rate of ligands p; we also take a function of the concentration

of free receptors.

In numerical simulations we use a function similar to p,
i(ry) = mar®.
Remark 4.4. It appears that model (4.1) cannot exhibit a wave bifurcation.

We can show that

Lemma 4.5.

For the wave bifurcation to arise in system (4.1) we need:

detA
(421) Z |AZ]| — tTAle—IQ <0

= | A
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Proof : For a wave bifurcation we need that £ = 2. So, from Routh-Hurwitz theorem
we need: A~1 > 0, A~2 < 0 and Ag > 0, while A~1, A~2, A~3 > 0,

This is equivalent to: Ay < 0 and —detA > 0. From Theorem (4.1) we have |A;5| < 0. If
—trAiy > 0 then Ag > 0 for every “%2 So for a wave bifurcation we need —trA;5 < 0.
Since Ay < 0, we have A3 < 0 if and only if —detA > 0, which is possible if and only

~ 2
3 bm” __ detA
if Ay < 0 for o = Al

Hence after some algebraic calculations we obtain the condition (4.21). W

Under condition (4.19), i.e. —detA > 0, no parameter values were found for which
(4.21) could be satisfied in system (4.1).

4.1.83  Discussion of pattern selection

The mechanism of pattern selection, by which one mode is chosen to grow to het-
erogeneous steady state from many admissible modes, is an important issue. The
dispersion relation, algebraic equation for the growth rate, indicates which modes can
grow to determine the final long term pattern. All wavenumbers in the region where
ReX(p?) > 0 are linearly unstable. The best-known dispersion relation (i.e. known
from activator-inhibitor system) determines the bounded range of unstable modes the
size of which depends on the bifurcation parameter . Then a certain range of v can be
determined for which there exists only one unstable mode. This feature of the Turing-
type systems is usually used in the applications [60], [61]. It allows to select (changing
the scaling parameter ) the mode which grows to the long-term heterogeneous pat-
tern. If the range of unstable modes is finite but includes more values then there is a
competition between patterning modes. Murray [61] suggests that the mechanism of

initiation of pattern formation may determine the mode selected.

Let us have a closer look at the dispersion relation, which we obtain for the model (4.1).
From the proof of Theorem 4.1 we observe that the destabilisation of the homogeneous

steady state is possible if and only if

2

(4.22) detA = detA — |A12|“% > 0.

Fig. 4.1 shows detA as a function of “T'"z

We can see that for every v there exist infinitely many different integer u,, for which

inequality (4.22) is fulfiled. It means that there is an infinite range of unstable modes.
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detA 298
0.06

0.04

0.02

—-0.02
0

Figure 4.1. detA as a function of % for three-variable model (4.1). It shows that condition
detA > 0 (4.22) for the destabilisation of the homogeneous steady state is fulfiled for infinitely
many wavenumbers j,,%2. The values of Jacobian matrix A are calculated for the parameters
for which the conditions (4.17)-(4.20) are satisfied (m; = 1.466, mo = 2, uy = 0.2, up = 0.02,
d = 0.02672, b = 0.7, g; = 0.2). The value of the smallest integer pu,, for which detA > 0
depends on 7.

The dispersion relation A = )\(“T’"z) is showed in Fig. 4.2. It is fundamentally differ-
ent than the typical (so called ’vanilla’) dispersion relation, obtained among other in

activator-inhibitor models (compare [60]).
Asymptotic analysis for the systems with such dispersion relation is still lacking.

In the model with such dispersion relation we cannot select a single unstable mode.
There even does not exist a wavenumber with maximal Re(\). Re()) grows monotonously
with “%2 However, we can show that Re()) is bounded from above. From the disper-
sion relation we cannot decide which eigenfunctions, that is, which spatial patterns,
are linearly unstable and grow with time. We could conjecture that the number of

growing mode depends on initial conditions as it is also suggested by Murray [60] and
[61].

However, simulations show that for a given domain size (given scaling parameter 7),
the ultimate spatial structure depends on the initial data (initial perturbation) but
only with regard to the place of peak formation (see the results of simulations shown
in Fig. 4.5). The wavenumber of the growing pattern does not depend on the initial
data. It seems that the solution which survives is related to the minimum possible
wavenumber admitted by the dispersion relation, i.e., that the wavenumber which

determines the final pattern corresponds to the smallest possible Re(]).
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Figure 4.2. Dispersion relation A = )‘(HTM) for the model (4.1) with parameters as in Fig.
4. Real part of linear growth rate A plotted as a function of ”’f;—2 It shows that for a given
7y there exists an infinite range of unstable modes, i.e. Re(\) > 0 for infinitely many pm,2. A

single unstable mode cannot be selected.

We perform simulations for different initial conditions and they always lead to the
same number of peaks which, however, are situated in different positions. By changing
v we can change the position of the peak and for v big enough also the number of
the peaks (Fig. 4.4b). It means that for a problem of a given scale (given the domain
size and diffusion coefficient) a specific number of pattern units (peaks) is reliably

reproduced.

4.1.4  Numerical investigations

For the model (4.1) we found the stable steady state 7,7,/ with the help of the
computer algebra program MAPLE. The diagrams (4.3) show the dependence of equi-
librium of kinetics system on the production coefficient m;. For m; < 1.465 there is
only one steady state (0,0, 0). So our model makes sense only for the m; > 1.465. For
such m; there are 2 nontrivial steady states: one, which is always unstable and one,
which satisfies conditions (4.17)-(4.20). Further numerical values used do not represent
a systematic review of the parameter space. This requires a separate exhaustive study.
Rather, it is our purpose to establish, numerically, the capabilities of the models to

display the desired types of behaviour (see Discussion).

We carry out simulations for the following set of parameters:

my =1.466, my=2, pu; =02, p=0.02, d=0.02672, b=0.7, =02
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The equilibrium point (7; = 1.259, 7 = 103.642, | = 5.493) satisfies conditions (4.17)-
(4.20). The discretised system of ODEs is numerically solved using the CVODE pack-
age and numerical estimates of the Jacobian matrix. Space discretisation is a gridpoint
on a unit interval. Time discretisation is performed implicitly. Homogeneous Neumann
boundary conditions (zero flux) are implemented as a reflection at the boundary. Sim-
ulations are in agreement with the analysis and show that one-dimensional spatially
uniform initial data evolve into a spatially inhomogeneous pattern, which is station-
ary in time. Simulations are performed for different initial values of the perturbation
and different scaling parameter 7. Let us remind that v = Z—j and the model (4.1) is
nondimensionalised and defined on the interval [0, 1] with diffusion coefficient d; = 1.
It means that an increasing ~y corresponds to the increase of a domain size or decrease

of diffusion coefficient of the initial problem (2.1).
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Figure 4.3. Bifurcation diagrams for the steady states of 7, r; and I. We plot the steady
states of the system (4.1) as functions of the parameter m;. The other parameters: mo = 2,
pr=0.2, up = 0.02, d = 0.02672, b = 0.7, p; = 0.2.
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Simulations show that (compare with the discussion in Section 4.1.3):

e The number of peaks in the final pattern depends on the domain size but not on the
initial perturbation. For v small enough (which can be calculated from the dispersion

relation) the final pattern consists of only one "hump” as shown in Figs. 4.4a and 4.5.

Figs. 4.4a and 4.5 depict the space profile of the solution after a long time. The profile

is stationary in time. The scaling parameter v = 1.

e When v is growing, new peaks appear (the number of peaks always increases by

one). Fig. 4.4b shows the space profile after a long time for the parameter v = 60.

e If the parameter v is small enough, the final solution strongly resembles initial

condition. This behaviour is not implied by the dispersion relation.

e Even for a given v the location of the peak strongly depends on initial condition. It
is illustrated by Fig. 4.5. The figures show that the peak is formed at the coordinate
of the largest gradient in initial function. For a symmetric initial perturbation at first

two peaks are formed but finally only one of them persists.

In summary, we showed that for the simplest receptor-based model consisting of 3 equa-
tions, Turing-type patterns can arise only if there is a self-enhancement (autocatalysis)

of free receptors. The final pattern strongly depends on the initial perturbation.

@

ry _x10*

(b)
Figure 4.4. (a) Spatial profile of solution r, of the model (4.1) after a long time. Simulations
are performed for parameters: m; = 1.466, mo = 2, uy = 0.2, up = 0.02, d = 0.02672, b = 0.7,
# = 0.2 and v = 1. In the density bound receptors we observe formation of a single peak
(spike solution). (b) Spatial profile of 7, for the scaling parameter v = 60 and the other

parameters as above. We observe formation of two peaks.
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Figure 4.5. Spatial profile of r; for different initial perturbations and v = 1 and the other

parameters as in Fig. 6. On the left hand-side we present the initial condition and on the
right-hand side the final pattern originating from such initial condition. The perturbation
in initial data is of order 1072 (it can be arbitrarily small) while the final peak is of height
8 x 10*. We observe that the number of the peaks in the final pattern does not depend
on initial perturbation of the homogeneous steady state. (a) Different initial conditions and
corresponding solutions depicted using matching line styles. The location of the peak strongly
depends on the initial condition. The peak is formed at the coordinate of the largest gradient
in the initial function. (b) The results for the initial conditions with two maxima or two

minima - the result is always one peak (depicted using matching line styles).
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4.2 Four-variable model

4.2.1 Invariant sets and ezistence of solutions

Now we analyse the model defined by equation system (2.2). We convert the system
into a dimensionless form in a manner similar as for the three-variable model. We use

rescaling z* = 7, where L is the domain length, v = (Li_j and dy = ‘;—; and obtain the

system
0
571 = —h(re) +pe(rpym) = b(rg, 1) + d(r),
0
%" = —pp(re) + b(ry, 1) — d(ry),
0 1 02
al = ;@l — () = b(rg, 1) + pu(ry, m) + d(rs) — be(l, €),
o dy
(4.23) 2" = ot tie(€) + Pe(T, 1)

We show the global existence and uniqueness of solutions to the four-variable model
of hydra (4.23) with initial conditions,

(4.24) e(0,z) = eg(x)

and boundary conditions,

ol

~lz=0,1 = 0,
8x| 0.1
Oe
4.25 —|z=0.1 = 0.
(4.25) 8:1:‘ 0,1

First we consider production functions defined in (4.44), i.e.

Ty

= m y
Dr 11+7'b
Ty
=m ,
Y 21+7°b
Ty
DPe = M3

1—{-7“(,.
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Now u = [rg, b, L, €]” and f(u) = [—pr;+pr(rs) —br gl +dry, —ppry+brpl — dry, —pl +
pi(re) — brpl + dry — beel, — pee + pe(rp)] "

Note that f : R* — R* is Lipschitz continuous on R*. Solution on Q7 = [0, 1] x [0, T
for any T > 0 is a function v : Qpy — R* which is continuous in {7 and suitably
differentiable in Q7 = [0, 1]x (0, 7). In addition u = [rf, 4, [, €] must satisfy conditions
(4.24) and (4.25)

We introduce the set

(4.26) E={(rs,re,0,e) :0<r;<a,0<1,<0a;,0<1<0,0<e<a}

Then we show that the vector field generated by f(u) (V = [—usry + pr(re) — brpl +
dry, —pry + br gl — dry, —ul + py(rp) — bryl + dry — beel, —pee + pe(r3)]) does not point

out of ¥ (X is invariant for the four-variable system).

Theorem 4.6.

Let (r¢(z,t),mp(z, 1), l(x, 1), e(x, 1)) be a solution to (4.23) on Qr (for anyT > 0. Then
there exist a bounded invariant rectangle ¥ = {(rp,1p,0,€) : 0 < rp < a7,0 < 1, <
ap, 0 <1< a;,0<e<a} onQr.

Proof: First we show that all the solutions are nonnegative for the nonnegative initial
conditions. Then we show that the solutions for ry + 7, and 7, +{ and e are bounded
from above. Hence we can conclude that the solutions for r¢, r, and [ are also bounded

and there exist the invariant bounded rectangle for the model (4.23).

The first claim is that 3o = {(rf,7,,€) : 7y, 75,1, > 0} is an invariant set. To see it

we apply Theorem (3.16).

We set G = —r; (note that (—1,0,0,0) is a left eigenvector of D).
VG(V)|r;=0 = —(pr +drp) <0in X, so 7y > 0.

If G = —ry then VG(V)|p,—0 = —bryl < 0in 3. Hence r, > 0.

If G = -1 then VG(V)|j=0 = —dry — p; < 0 in X. Hence [ > 0.

If G = —e then VG(V)|e=0 = —pe < 0 in 3. Hence e > 0.

Thus, we obtain that all the solutions of model (4.23) are nonnegative for nonnegative

initial conditions.
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To show that the solutions are bounded from above we add two first equations and

obtain,
o(ry + rp)
(4.27) %7t = pr(rs) — HfTF — 7.
Let us calculate it in r¢ + r, = a;. Since p, = TJ::: < my for every r,, we obtain

Pr(re) — pgry — mery < mq — min(ug, p)a; < 0 for every rs,1p,le € ¥ if a1 >
ma/min(py, piy)-

Thus, we obtain that 7y +7, < a;. Since 7y > 0 and r, > 0, we can conclude that both

ry and 7, are bounded from above, 7y < ay and 7, < .

If G(ry,mp,l,e) = e — a then VG(V)|e—q, = Pe — fete < M3 — peae < 0 for a, > %
mary

1+Tb) Hence e < a,.

(since p, =

If G(ry,mp,1,e) = l—a; then VG(V)|i—q, = pr — brfl — pul — bele +dry < mo+dry — pay

for every 1,7y, 1, e € X, because p; = %:s and e and r; are nonnegative. Now since 7y
is bounded from above by a;, we can choose a; > %ld“b.

Then VG(V)|i=o, <0 and hence [ < ¢;. W

The existence of solutions for all ¢ > 0 comes from the Theorem 3.12 and the Corollary

3.14. Uniqueness then follows from Theorem 3.19.

To show the existence of solutions of model (4.23) with the production functions (4.45),

Pr = 11+7'b,
P = mary’,
{
= mg——o-.
DPe 31+l

we use the same methods and notice that, if r, is bounded from above by a;, then
P = Moy is also bounded from above and we can choose a; such that p; — brel — pyl —
bele + dry, < 0in X.

We obtained the nonnegativity of solutions which is important for biological applica-
tions of the model.

Conclusion 4.7. For the nonnegative initial data the solutions of the system (4.23)

stay nonnegative.
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4.2.2  Conditions for diffusion-driven instability

For the system (4.23) we also perform linear stability analysis and consider the char-

acteristic polynomial

Xa(A) = A —tr AN+ AN = > Akl A + detA,
i<j i<j<k
where |A;jx| is a determinant of submatrix A;jx. A;j is a submatrix of A consisting of

the i-th, j-th and k-th column and :-th, j-th and k-th row.

The Hurwitz matrix has the form

—01 —O03 0 0
1 (o) (op) 0

—01 —O03 0

where

—01 = —tTA,

Oy = Z |A2]|:

1<j

—oy = — Y |Aiul,

1<j<k
O4 = detA.

We have

Al = —01 = —tT'A,
Ny = —0,09+ 03,
A3 = AQ(—Ug) - 04012 =
= 01(0203 — 0104) — 03,

A4 = A30'4.

From the Routh-Hurwitz theorem [17] we obtain that
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k == V(l, Al) + V(Al, Ag) + V(l, Ag) + V(AQ, A4)

For the full reaction-diffusion system we have

[

~ M 2 Mm4
(429) 09 = Z ‘AZ]‘ = Z |AU‘ — l[tTAm(l + d2) + a33d2 + a44] + —2d25
1<J 1<j v v
2
(43065 = — > Ayl =— ) Ayl + B (1 Ase] + | Ass] + [Ass])do
1<j<k 1<j<k v
4
(431) +‘A12| + a44t7“A12] - MthTAlgdg,
Y

5 2
(432) 074 = detA = detA + “%(—|A12|a44 - d2|A123|)

4
(4.33) +%d2\An\.

From the Routh-Hurwitz theorem we obtain necessary and sufficient conditions for a

diffusion-driven instability of the system (4.23),

(4.34) Ay >0,
(4.35) Ny >0,
(4.36) Az >0,
(4.37) Ay > 0.
(4.38) There exist integers pn, and i such that A; < 0.

Conditions (4.34)-(4.37) guarantee a stable constant equilibrium of the kinetic system,

while condition (4.38) is necessary for the spatial pattern to grow.

Now we assume that the production of free receptors depends only on the density
of bound receptors so that a;; < 0 (now a; < 0 for every i.) It follows from the

requirement of no self-enhancement of free receptors.

Remark 4.8. In the model with self-enhancement of free receptors we obtain patterns
similar to those in the three-variable model previously considered (see discussion in
Section 4.2.4).
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Now we can formulate the conditions for pattern formation in model (4.23).

Theorem 4.9.
Necessary and sufficient conditions for diffusion-driven pattern formation in model
(4.23) are

(4.39) —trA >0,

(4.40) > A >0,
i<j

(4.41) — > Ayl >0,
i<j<k

(4.42) detA > 0.

2
(4.43) There exists ™™ such that detA < 0.
Y

Proof : Conditions (4.39)-(4.42) guarantee that the steady state (7,75, [, €) is stable

in the absence of diffusion (i.e. for the spatially homogeneous perturbation).
We show that the above conditions are equivalent to conditions (4.34)-(4.38).

(4.39) follows directly from (4.34). (4.42) follows from (4.36) and (4.37), which is
satisfied if and only if detA > 0.

Ay > 0and Az > 0 if and only if —o3 > 0 and we obtain the condition (4.41). Since
—o3 > 0 then Ay > 0 if and only if g5 > 0 what is equivalent to the condition (4.40).

Now we analyse the condition (4.38). We can show that it is fulfiled if and only if
detA < 0. Analogically as in the three-variable model, Ay > 0if Ay > 0. It is easy to
check that if o9 > 0 then also 63 > 05 > 0. And analysing the formula for Ag we can
show that in every point “%2 AQ > ANs. Then Ag stays positive. So only Ag or A4 can
change the sign.

4 < 0 guarantees that A4 < 0 or Ag < 0. It means that £ = 1 and we have a
stationary pattern. &, < 0 is equivalent to detA < 0 and we obtain condition (4.43).
Analysing the formula (4.31) and (4.33) we notice that 3 cannot change sign unless
&4 does not. —G3 < 0 only if |Ass| < 0 what is possible only for the special choice of
function p; and then also 64 < 0. It means that condition (4.43) is also necessary for
diffusion-driven instability in model (4.23). W

The last condition guarantees that a spatially homogeneous steady state is unstable
for a spatially heterogeneous perturbation if v is such that detA < 0 for some integer

fim- Analysing the formula (4.33) we see that detA < 0 is possible only if | Ajg3| > 0 or
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|A12| < 0. The last condition is fulfiled if and only if p,.(7) < 7 a%,pr(’ 7). In numerical
simulations we consider kinetics for which this condition is not fulfiled (see (4.44) and

(4.45)). Then the necessary condition is |A;23| > 0.

The dependence of 6, = detA on “T’"Z is shown in Fig. 4.6.

We can see that detA changes sign in some interval of “%2 and for every v we have a
finite range of unstable modes which can grow. We can isolate a specific mode to be
excited by choosing v (for details see [40]). For hydra modelling we select y,,?> =1 to

be driven unstable. In this way we obtain a gradient-like solution.

Figure 4.6. detA as a function of “Wi calculated for the four-variable model (4.23). The
figure illustrates that for a certain range of -y the single mode (equal 1) can be selected that

becomes unstable.

4.2.3 Numerical results
4.2.8.1 Pattern formation from a randomly perturbed homogeneous steady state

We assumed that functions describing production of free receptors and production
of ligands depend on the density of bound receptors. It means that there is no self-
enhancement of free receptors. In fact the model cannot be simplified to one with
autocatalysis of free receptors without assuming that the changes in the density of
bound receptors are much faster than the other processes what would be highly unre-

alistic. We consider two different cases of model (4.23).
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(1) We assume, in addition, that the function describing the production of enzyme (p,)
depends on the density of bound receptors. It seems to be biologically reasonable that
all the de novo productions are regulated by bound receptors which give the signal to

the cells. Consequently we assume that the production functions have the following

form
Tp
r =M ;
p 11+7°b
Ty
=m ,
b 21+7”b
Tp
4.44 =m .
( ) De 31+Tb

(2) It is also possible that the production of enzyme depends on the density of ligands.
It could be regulated via some other receptors not considered in our model. Thus we
assume that the production of enzyme depends on the density of ligands and is a

Michaelis-Menten function. We can consider the following production functions

br = 11 +Tb,
P = mary’,
{
4.45 = )

In both cases functions describing decay, binding and dissociation have the form as in

the three-variable model (see (4.2)), also pe(€) = pee, be(l,e) = bele.

In fact, the particular form of p. (whether it is a function of r, or ) has no influence on
our previous analysis. In both cases we find the parameter space and nontrivial homo-
geneous steady state for which the conditions (4.39)-(4.43) are fulfiled (see bifurcation
diagrams in Fig. 4.7).

Similarly as previously, further particular numerical values are chosen to establish,

numerically, the capabilities of the model to display the desired types of behaviour.

In case (1) we perform simulations for the following parameters:

my = 093, mo = 3, ms = 12,
pr=02, ppy=03, =01, p =0.1,
d=0.9, b=20, b, =D0.7.

and homogeneous steady state: 7y = 0.787, 7, = 1.095, [ = 0.834, & = 5.458.
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In case (2) we perform simulations for the same parameters as before, only m; is
changed and equal 1.0. Homogeneous steady state: 7y = 0.842, 7, = 0.413, [ = 0.294,
e = 3.513.

The diagrams (4.7) show the dependence of the equilibrium of kinetics system on
the production coefficient m,. Similarly as in the three-variable model there exists
such value my* that for m; < my* there is only one steady state (0,0,0,0), while for
my > mq* there are two additional steady states: one, which is always unstable and

one, which satisfies conditions for diffusion-driven instability (4.39)-(4.43).

Simulations show that in both cases one-dimensional spatially uniform initial data
evolves into a gradient pattern (we do not distinguish between the two polarities). The
model turns out to be robust against changes in the initial conditions. It means that the
final pattern does no depend on the way we perturbed initially the homogeneous steady
state. Different spatially nonuniform perturbations lead to the same final pattern. We
perform simulations for the random initial perturbation, i.e. the initial value in every
discretisation point is the value of the spatially uniform steady state perturbed by a

small value which is randomly generated.

The results for both cases are shown in parallel in the Fig. 4.8. On the left-hand side
- the plots for the case (1), on the right-hand side for the case (2).

The formation of the gradient pattern depends only on the scaling parameter + which
means on the domain size and diffusion coefficient of the original problem. It is the
intrinsic property of Turing-type mechanism that the complexity of pattern depends
on the scaling parameters. The question is only how large is the space of parameter
v such that a gradient like solution can be obtained. In our model, v can be changed
even 2 orders of magnitude without changing the complexity of the pattern. It seems
to be reasonable for hydra. It was shown in experiments that the minimum tissue size
for reorganisation of the whole organism is 0.2 mm only, while the grown up hydra is

5 mm long.
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Figure 4.7. Bifurcation diagrams for the steady states of ¢, 74, [ and e. We plot the steady

states of the system (4.23) as functions of the parameter m. On the left-hand side we present

the plots for the case (1), with the kinetics (4.44), on the right-hand side for the case (2),

with the kinetics (4.45) with parameters: mo = 3, m3 = 1.2, uy = 0.2, up = 0.3, p; = 0.1,

pe = 0.

1,d=0.9,b=2.0, b, =0.7.
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Figure 4.8. Solutions of the four-variable model (4.23). Time evolution of r,. On the
left-hand side we present the plots for the case (1), with the kinetics (4.44), on the right-hand
side for the case (2), with the kinetics (4.45). In both cases we observe the formation of a
gradient-like structure in the density of bound receptors. Simulations are performed for a
random perturbation of the homogeneous steady state 7y = 0.787, 7, = 1.095, [ = 0.834,
€ = 5.458 in case (1) and 7y = 0.842, 7, = 0.413, [ =0.294, & = 3.513 in case (2) and 7 equal
to 1 with parameters: mg = 3, m3 = 1.2, uy = 0.2, pp = 0.3, py = 0.1, pe = 0.1, d = 0.9,
b=2.0, bo = 0.7 and m; = 0.93 for the kinetics (4.44) and m; = 1 for the kinetics (4.45).

4.2.3.2  Simulation of cutting and grafting experiments

We have solved numerically the model equations for initial conditions corresponding
to the cutting and grafting experiments. The mathematical formulation of considered

models of cutting and grafting experiments is presented in Appendix B.

Simulations of this model predict outcome of some cutting experiments, what is shown
in Figs. 4.9 and 4.10. In the experiments a head and a foot regenerate when they are
cut off, even after cutting the half of the animal as it is shown in the Fig. 2.2. This is
reflected by our model. To simulate cutting experiments we take as an initial conditions
the data corresponding to the normal development (which we obtained as a solution
of the model for the perturbed homogeneous steady state) and consider only these
which correspond to the part of the body column. We perform simulations with the
parameter 7 corresponding to the new size of the domain. Regeneration of the initial

structure is observed.
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-0.2

Figure 4.9. The solution of the model (4.23) with the kinetics (4.44) and initial data cor-
responding to a surgical removal of the lower part (half) of the body column. We perform
simulations for the initial data obtained from the data corresponding to the normal develop-
ment and cutted to the upper part (half) of the domain. With a dashed line we plot initial
conditions corresponding to the normal development on the whole domain and with a solid
line the result of simulations performed for initial conditions limited to a half of domain.
Vertical line shows the place of cutting. We observe reorganisation of the “gradient” on a

smaller domain. It corresponds to the formation of a new “foot”.

Figure 4.10. The solution of the model (4.23) corresponding to a surgical removal of the
upper part (half) of the body column. We perform simulations for the initial data obtained
from the data corresponding to the normal development and cutted to the lower part (half) of
the domain and observe reorganisation of the “gradient” on a smaller domain. It corresponds

to the formation of a new “head”.
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New “foot” is formed even if the initial data are close to those describing the head in
both models. However new “head” cannot be formed if we take as initial data values
too close to zero. Fig. 4.10 shows that for the model with kinetics (4.44) after removal
of the upper half of body column the regeneration of the pattern is observed. In the
model with kinetics (4.45) the removed part of domain must be smaller than a half

(or the remained fragment should not include the “foot” end of domain).

Results of the grafting experiments cannot be simulated using the model as it is shown
in the fig.(4.12) and (4.11).

The mathematical formulation of the model of grafting experiments is given in the
Appendix B. Numerical simulations suggest that the final pattern is stable for spatial
perturbation. We can see that a transplantation is nothing but such perturbation.
Simulations show that e.g. if in initial conditions we have two peaks (like grafting new
head to the lower part of body column), second peak will disappear in short time and

we get the gradient pattern.

See Discussion for further comments.

. . . .
(o] 0.2 0.4 0.6 0.8 1

Figure 4.11. The solution of the model corresponding to the transplantation of the tissue
from the upper to the lower position along body column. We observe decay in the density of
bound receptors in the transplant - there is no formation of a new structure. With a dashed
line we plot initial conditions corresponding to the grafting experiment and with a solid line

- the density of r, after some time.
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Figure 4.12. The solution of the model corresponding to the transplantation of the tissue
from the lower to the upper position along the body column. We observe increase in the
density of bound receptors in the transplant - there is no formation of a new structure. With
a dashed line we plot initial conditions corresponding to the grafting experiment and with a

solid line - the density of r}, after some time.

4.2.4 Four-variable model with autocatalysis of free receptors

Analysing the condition (4.38) and the form of &, we notice that if |A;5| < 0 then
there exists “%2 such that oy < 0 and still Az > 0. Therefore, if A5 < 0, then (4.38)
is fulfiled. As in the three-variable model |A5| < 0 only if the function describing de
novo production of free receptors depends on the density of free receptors (is a power

function of the order 1 + «, a > 0).

It means that in the four-variable model (4.23) with self-enhancement of free receptors
there is a destabilisation of the homogeneous steady state. It occurs if and only if
04 < 0. The dependence of o, on “T”P is shown in the Fig. 4.13. From this we see that
for every ~ there is an infinite range of unstable modes. Fig. 4.13 is plotted for v = 1.

However we can always choose the v for which o4 is negative already for u,, = 1.

Simulations show that the model usually behaves similarly to the three-variable model.
The final pattern strongly depends on the initial condition and is a spike solution. The
number of peaks depends on the domain size. However, for certain domain size it does

not depend on the initial function.

The model (4.23) without autocatalysis of free receptors is more robust than the one
with autocatalysis in the sense that, for a given scaling parameter vy, the long-time
pattern does not depend on the initial perturbation of the homogeneous steady state

and the wavelength of the final pattern can be reliably predicted.
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Figure 4.13. 04 as a function of “VLZ for four-variable model with autocatalysis of free
receptors. It shows that condition for the destabilisation of the homogeneous steady state is

fulfiled for infinitely many wavenumbers 1,2 as it is in three-variable model.

4.3 Discussion

We showed that Turing-type patterns can be obtained in a receptor-based model for
hydra. Because of the same mechanism (diffusion-driven instability), a receptor-based

model can have properties of solutions similar to an activator-inhibitor model.

The three-variable model requires autocatalysis of free receptors, for the Turing-type
patterns to arise. However, in the four-variable model, such patterns arise without
autocatalysis. Both de novo productions of free receptors and ligands depend only on

the density of bound receptors.

In the model based on four equations, the shape of the final pattern does not depend on
the initial conditions, i.e. on the way we perturb initially the spatially homogeneous
steady state. The values in each point of the domain can be randomly distributed.
The range of such values should be between the minimum and the maximum value
of the final pattern. It means that simulations of the model resemble de novo pattern

formation from dissociated cells.

The Turing-type mechanism is one of the simplest theories for the biological pattern
formation. In models with such mechanism patterns can arise spontaneously. However,
there are several general properties of Turing-type systems that limit their applicabil-
ity. The parameters must be tightly controlled to obtain the instability at the desired
point in parameter space. In particular, the scaling parameter (corresponding to the
domain size and diffusion coefficient) and in the model with two diffusion equations

also the diffusion coefficients must have the proper relative magnitudes. It is difficult to
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obtain a scale-invariance of the degree which is observed in biological systems. Another
important problem is that of pattern selection. It arises in the models with multiple
stable solutions. Tight control of the initial conditions is needed to select the desired

pattern.

The receptor-based models with a Turing-type mechanism can predict the outcome of
some cutting experiments but to explain the grafting experiments it is necessary to
seek a new mechanism. The reason for this is that the final pattern is stable for spatial
perturbation and transplantation is nothing but such perturbation. Simulations show
that e.g. if in the initial conditions two peaks are present (corresponding to grafting a
new head to the lower part of body column), the second peak will disappear in a short
time and we obtain the gradient pattern. The result is valid for three- and four-variable
models with both considered kinetics (4.44) and (4.45).

Stable solutions with 2 peaks can be achieved only by an increase, at the same time, of
the size of domain. This is precisely how such solutions were obtained in the model of
Meinhardt. It is a very important feature of models with the Turing-type mechanism
of pattern formation. It encourages us to look for another mechanism, which could

explain the results of grafting experiments.



Receptor-based model with hysteresis for pattern
formation in hydra

5.1 Additional equations modelling the production terms

Let us recall the four-variable model for pattern formation in hydra,

0
(5.1) arf = —,Uf(rf,Tb) + pr(rs) — b(T'f; 1) + d(rs),
0
(5.2) 5 = —up(rp, ) + (s, 1) — d(rp),
0 1 02
(53) al = ;@l — /,Ll(l) - b(’f'f, l) +p + d(Tb) - be(l, 6),
0 dy 0?
(5.4) ¢ = 72@6 — pte(€) + Pe-

As stated above (Section 4.3) the results of grafting experiments suggest that the

model should involve a memory-based relation.

So far we modelled the p; and p, with nonlinear functions depending on r, and [ in case
of p. showing for which nonlinearities system allows Turing type pattern formation.
It seems appropriate to consider p; and p, as a function determined by the system of
ordinary differential equations (modelling the metabolic processes of the cells).
One option would be to consider differential equations for p, and p, of the following
type,

0
(5.5) 6@1%’ = gi(rs, 76,1, Pi)-

“Small” number € means that the process of de novo production of ligands, receptors

or enzyme is much faster than the other processes (binding, dissociation, decay).
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For ordinary differential equations the singular perturbation limit ¢ — 0 is analytically
well studied. There is not much known in case of reaction-diffusion systems controlled
by the solution to an equation of type (5.5). A van der Pol oscillator with diffusion

shows difficulties arising in such a system for small € (see e.g. [60]).

As in many other cases the complexity of the biological process makes it difficult to
give a rigorous derivation of these equations. We can only use heuristic reaction terms

to depict and investigate the patterning process.

It is very often for the system functioning far from the equilibrium that the uniqueness
of the fix point is not guaranteed. It can also happen that the only equilibrium is trivial
but the system shows pattern formation (as it is in the model for bacteria growth in
[25] and [26]). Here, we consider the mechanism of pattern formation which results

from existence of multiple steady states.

5.2 Modelling hysteresis

Hysteresis enters the problem due to the fact that the production of a new biochemical
may depend on the history. Hysteresis seems to be important in modelling biological
development since according to the observation, inductive signals are present only
in the certain time interval of the development. It triggers the changes in the cell’s
nucleus and evokes differentiation, which does not revert when signal is stopped. The

developmental process is irreversible.

Hysteresis results from multiple steady states (see Fig. 5.1). Suppose we have three
steady states: the two outer states stable and the inner state unstable. The system
may jump from the first stable state to the second when parameters are changed. If
parameters are changed back the system remains in the second state till parameters

reach another critical value.

Some theories and related bibliography on hysteresis are given in the survey by Macki
et al. [42]. It is known that hysteretic kinetics can lead to spatial patterns in chemical

systems, such as the Liesegang rings formed by precipitating colloids [53].

A reaction-diffusion model involving a hysteretic functional was proposed by Hoppen-
steadt and Jager [25] and Hoppensteadt, Jager and Poppe [26] for bacterial growth
patterns. They assumed that the cell’s growth had a hysteretic dependence on the
amount of nutrients and acid present. Pattern formation in this model is caused by

the initial instability of the ordinary differential equations. However, as the solution
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Figure 5.1. Nullclines of g; - hysteretic dependence of p; on [. The two outer branches are
stable, the inner branch is unstable. If the system evolves on the stable branch AB, the
density of ligands [ increases and it reaches the value ls, the system becomes unstable and
it jumps to the other stable branch CD. Decreasing the value of [ below l» does not cause
any change, the system remains on the upper stable branch till the value of [ approaches [
from above. The [ value needs to drop below [ to shift the system back to the lower stable
branch AB.

evolves, nonlinear effects modify the coefficients of these equations so that they become
stable [10].

Models based on hysteresis-type bistability were also used in chemistry to describe
enzymatic reactions. Seeling and Denzel [69] have deduced a differential equation based

on monosubstrate kinetics with substrate inhibition.
Babloyantz and Sanglier [4] developed a model for the regulation of the lac operon.

Klein [39] proposed a model for bisubstrate enzymatic reactions when embedded in a
metabolic network. He showed how the description of five enzymatic reactions, under
the assumption of a partial steady state for the fast variables, can lead to the model of 2
equations with hysteretic nonlinearities. This shows that models with very complicated

nonlinear kinetics can be macroscopic descriptions for much larger dynamical networks.

Much of the complexity of such networks usually can be reduced by time-separation
arguments, i.e. by reducing the equations for fast variables to algebraic constraints and
incorporating slow variables as in the derivation of Michaelis-Menten kinetics, see e.g.
[60]. Much work in this respect has been done for chemical reactions but the kinetics
for biological interactions are still highly heuristic. There is not enough information

about exact rules satisfied by biomolecular processes.
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We propose to model the production of ligands and of an enzyme using additional
ODEs with hysteresis. We consider

b molry
5.6 g = —9 + ,
( ) ! ll +pl2 (1 + O'lpl2 — Blpl)(l + (l/ﬂ“b)
(5.7 g = 0 male

_ + .
‘ 1+ pg (1 + O-epz - ﬁepe)(l + aerb)

Since real biological signal transduction mechanisms are complicated cascades of differ-
ent enzyme reactions, which are not known so far, we can only consider some particular
reaction kinetics which allow to test the possibilities and restrictions of such model.

Such functions should be biologically realistic and fulfil some basic assumptions.

We assume that the production of ligands (and enzyme) in a steady state has a hys-
teretic dependence on the amount of ligands (enzyme) present. It depends also on the
density of bound receptors. We assume that the bound receptors trigger the produc-
tion of ligands and the enzyme. To model the hysteretic dependence of p; on [ we
assume that in a steady state the density of ligands [ is a third order polynomial of
production p; divided by a second order polynomial. Fig. 5.2 shows nullclines of g,
(5.6) crossing nullclines of the kinetic system of equation (5.3). We show it in the
coordinate system [, p;. The plot is drawn for r, = 1 but it remains qualitatively the
same for all r,. We choose the parameters to obtain three solutions of the subsystem
(%pl =0, %l = 0). The third order dependence of I and p; is involved in the kinetics
function. This function also depends on the density of bound receptors since it seems
that bound receptors give to cells the signal to produce new molecules (W. Miiller,
personal communication). The production is controlled by its own size, which is re-
flected by the form of g; function. To model the production of enzyme we use a similar
function. It exhibits a hysteretic dependence between the density of enzyme e and the
production of enzyme p.. We assume that the production of enzyme also depends on
the density of ligands. The more ligands there are in the system the more enzyme
is produced. Numerical simulations show that the dependence on [ is necessary for
pattern formation in this model. We also assume a dependence on 75, but based on

the simulations we conclude that it is not as crucial.
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Figure 5.2. Nullclines %pl = 0 and %l = 0 in the absence of diffusion. The curves cross
in three points. This corresponds to the existence of three steady states of the system, two

stable and one unstable.

The complete model has the form:

0
5 = —pgry — brel + dry + pr(7p),
0
arb = —UpTp + b?”fl — d?”b,
1 2
%l = ;%l — wl — brel + dry + p; — bele,
0  dy 0?
5 = Fwe_ﬂee"‘pea
gpz — g P malry
ot 1 +pl2 (1 + O'lpl2 — ﬂlpl)(l + Ofﬂ“b)’
0 Pe mgle
5.8 —p. = —0, + .
(58) at” L4+p2 (14 0ep? — Bepe) (1 + aerp)

where p,(ry) = my or p,(rs) = mi - . The form of p, is chosen for simplicity.

I+
We also tried to model p, in a similar way as p; and p. but it only makes model more

complicated and does not give any qualitatively new results.

5.3 Properties of the system

Similarly as for the four-variable model in Section 4.2.1 using the framework of invari-
ant rectangles and the Theorem 3.12 in Section 3.3, we can show that the solutions of

system (5.8) remain positive for positive initial conditions.
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The time-behaviour of the solutions depends on parameters. First of all we assume

that all the parameters are positive.

To guarantee global existence of the solutions we must assume that o;, 5;, o, and S,
are chosen in such way that polynomials 1 4+ o.p? — Bepe and 1 + oyp? — B;p; have no

roots. Otherwise, the solutions might blow up.

Thus we can formulate the following restriction on parameters,

ﬁlQ - 40’[ < Oa
(5.9) B.2 — 4o, < 0.

These conditions are automatically satisfied for our system since we investigate only
parameters which allow the hysteretic relation in equations (5.6) - (5.7) and for such

parameters conditions (5.9) are fulfilled.

The existence of global solutions for parameters satisfying (5.9) results from of the

theory of bounded invariant rectangles and a priori estimates (Theorem 3.17).

Since the model has a very complicated structure, we investigate the behaviour of
solutions numerically. However, in a slightly simplified case, a little more can be ac-

complished.

5.4 Spatially inhomogeneous stationary solutions in a simplified case

The system of similar type but consisting of one reaction-diffusion equation and one

ordinary differential equation, i.e.

u = Au+ f(u,v),
(5.10) vy = g(u,v),

such that 0, f(u,v) < 0 and 0y,g(u,v) < 0 hold, is currently considered by Heinze
and Schweizer [21]. They show the existence of stationary and travelling fronts and

investigate the stability of these solutions.

Model (5.8) has the form (5.10) for u being a vector of dimension 2 and v a vector
of dimension 4. However, in our case, the kinetics system does not define a monotone

dynamical system.
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Numerical solutions of the model (5.8) with zero flux boundary conditions show sim-
ilar behaviour. They have the form of stationary or moving fronts depending on the
parameters. However, for the model (5.8), analytical results would be difficult to ob-

tain.

We perform analysis proposed in [21] for the system with only one reaction-diffusion
equation. We consider u : R x [0,00) = R and v : R x [0,00) — R". If the equation
g(u,v) = 0 has multiple solutions, then we may find many stationary solutions of the
system (5.10). Now we assume that there exist two solutions, ho(u) and hi(u) and
that there exist stationary solutions, (ug,vy) and (u1,v;), of the kinetics system, i.e.
(f,9)(u,v) =0, which are stable.

Stationary solutions of of the system (5.10) satisfy,

0 = Au+f(u,v),
(5.11) v(z) = he@)(u(z))

for ¢ : R — {0, 1}.

We are looking for the solutions of the system satisfying,

Therefore the u must satisfy the following ,

u> u u(—L)

3“” +/ f(s, ho(s))ds = const = / f(s,ho(s))ds, =<z,
0 0

uz

2

U u(+L)
+/0 f(s,hl(s))d3:const:/0 ' f(s,hi(s))ds, = >z,

where —L and +L are the ends of the domain.

In u* = u(Z) we obtain,
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Since we are looking for the solutions connecting uy and u; we may take u(—L) = ug
and u(+L) = u;.
Therefore, there exists a stationary spatially inhomogeneous solution if and only if

there exists u*, such that the equation,

(5.12) Alu) = / F(s, ho(s))ds — / F (5, ha(s))ds =

is satisfied [21].

We consider a model with hysteresis but without an enzyme, i.e.

0

arf = —MHfTy— b'rfl +drb +pr(rb)a

0

Tt = THT + bryl — dry,

0 1 0?

—l = ——=l—wl—>bril+d

5 ~ 92 Ha Tyl +are + pi,

0 yoi malry
5.13 —=p = -0 +
(5.13) 8tpl ol +p?  (L+op? — Bip) (1 + oyry)

with p,(ry) =mq or p,(ry) = mi 3.

Stationary solutions of the system (5.13) satisfy

0 = —pgry—bril+dry+ p(rp),
0 = —[LbTb-}‘bel—d?”b,
1 02
0 = ;@l wl — brel + dry + py,
l
(5.14) 0 = i M2ty

—0; + .

L+p;  (1+opi — Bip)(1 + cury)
Solving the first two equations we reduce the system (5.14) to the system of one
reaction-diffusion equation coupled with one ordinary differential equation, i.e. of the

form (5.10) with u := [ and v := p;.

We obtain
b d bd
Flu,v) =v— (y + d)myu — o+ miu
bpwu + pugpppipd bupu + gy + ppd’
v momy bu?

(5.15) g(u,v) = =6

+ .
1+ ’02 (b/J,bU + Mfﬂbﬂfd)(l + 0[1}2 — 51’0)(1 + lmﬁi&%)
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The solutions of the algebraic equations g(u,v) = 0 and f(u,v) = 0 for the parameter
set b=1.0,d =09, gy =12, py =01, gy =001, my =2, my=1, 0, =9, B = 0.8,
0y = 0.2 and §; = 1 are presented in Fig. 5.3.
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Figure 5.3. Solutions of the algebraic equations g(u,v) = 0 and f(u,v) =0 (u =1, v := p;)
for the parameter set: b = 1.0, d = 0.9, y; = 1.2, py = 0.1, pp = 0.01, m; = 2, my = 1,
o =09, 08 =08, 0, =0.2and § = 1. (ug,v9) and (u1,v1) are stable steady states of the
kinetics system, u_ is u-coordinate of the lower turning point (71), u4 is u-coordinate of the
upper turning point (75), v_ is v-coordinate of the point of the curve g(u_,v) = 0 laying on
the lower branch (hg(u)), v+ is v-coordinate of the point of the curve g(u,,v) = 0 laying on
the upper branch (hq(u)).

We find that there are two positive, stable stationary solutions of the kinetic system
and that there are two stable branches, hq(u) and h;(u) of solutions of the equation
g(u,v) = 0. We look for the value of u* such (5.12) can be satisfied. Since we cannot
explicitly obtain the functions h; we change the variables in the integrals in (5.12) and

consider the equation,

(5.16)  A@w)= [ F(H(0).0HOd— [ FOHL(), OH @)
ho(u) hi(u)

where H;oh; = Id, 1 =0, 1.
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We can explicitly find H and calculate A for a given u. u* is from the interval [u_, u |
such that for u € [u_,u,] there exist both hg(u) and hs(u). Thus we can calculate
A(u_) and A(uy) and if they are of different signs, then there exists u* such that

A(u*) = 0. Numerical calculations show that A(u) = 0 exactly in the point u_.

Numerical simulations performed for the system (5.13) with parameters used above
(b=1.0,d=09, 5y =12, py =01, sy =0.01, my =2, my =1,y =9, B = 0.8,

o, = 0.2 and §; = 1) are in agreement with the analysis.

For small enough diffusion coefficients (what is equivalent to the large enough domain
size) we observe formation of spatially inhomogeneous solutions (fronts) which are

stationary in time (see Fig. 5.4).

FreeRec \BoundRec

ProdLig

Figure 5.4. The solution of the system (5.13) for parameters b = 1.0, d = 0.9, y; = 1.2,
pr =01, up =001, m =2, me=1 =9, § = 0.8, 0y = 0.2 and diffusion coefficient
d = 0.01. Simulations are performed for the initial conditions: r¢(z) = 10 for z € [0,1],
rp(z) = 10 for z € [0,1], I(z) = 10 for z € [0,1] and p;(z) =1 for = € [0,0.3], p;(z) = 0.1 for
z € (0.3,1].
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The spatial profile of the solution depends on the diffusion coefficient and it is smoother

when the diffusion coeflicient is larger (compare Figs. 5.5).

BoundRec BoundRec

Figure 5.5. The solution of the system (5.13) for different diffusion coefficients. On the left
hand-side d = 0.1 on the right hand-side d = 0.0001. We observe that the profile for the

bigger diffusion coefficient is smoother.

miTy
1+7y

Remark 5.1. Considering p, = leads qualitatively the same results.

For the complete system we cannot perform similar analysis. Even assuming that
one of the diffusion coefficients is equal to zero, we obtain the subsystem of ordinary

differential equations which is difficult to reduce to one equation.

5.5 Results of simulations for the complete model with hysteresis

5.5.1 Basic settings

We performed simulations for the model (5.8) with zero flux boundary conditions for

[ and e.

As initial conditions we chose the homogeneous state, rp =1, 1, =1, | =1, e =
1, pp = 1 and p. = 1 and then perturbed the density of ligands at one end of the
domain setting [ = 10. We set [ = 10 on the interval of the length 1/10th or 2/10th of

the domain.

Simulations show that for the model (5.8) we can have a gradient-like solution for the
density of bound receptors (standing wave), which is stationary in time (see Fig. 5.8

or Fig. 5.6) or a spatio-temporal solution oscillating in time (see Fig. 5.7).
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Parameters involved in the equations describing production dynamic are chosen in the
way allowing the hysteretic dependence of p; on [. Of course, it is only one particular

choice.

Further numerical values used do not represent a systematic review of the parameter
space. Rather, it is our purpose to establish, numerically, the capabilities of the models

to display the desired types of behaviour.
The diffusion coefficient for the ligands should be smaller than for the enzyme.

For the parameters b = 2.0, d = 0.5, iy = 0.1, puy = 0.1, pp = 0.1, pe = 0.3 b = 0.1,
m =mpg=m3=1,o=0a =9, 8=8 =08 0, =0,=02and § =6, =1
we observe the formation of the stationary pattern (standing wave) (see Fig. 5.6). We
performed further simulations for different parameters sets, usually changing the d, b

and b, coefficients.

For the parameters b = 1.0, d = 0.9, yy = 0.01, puy = 0.1, pp = 0.1, po = 0.3 b, = 0.8,
m=mp=m3=10 =0=9, 5 =08 =08, 0 =0.=0.2and ) =06, =1, we
observe two different behaviours depending on the form of the p, function. Constant p,
results in a spatio-temporal pattern (see Fig. 5.7), while the Michaelis-Menten function

for p, results in a stationary pattern (see Fig. 5.8).

Figure 5.6. Time evolution of ry for the parameters: b = 2.0, d = 0.5, y; = 0.1, py = 0.1,
ub:0.1,ue:O.3be:O.1,m1:m2:m3=1, al:ae:Q,ﬁl:BeZO.S, Ul:Ue:O-Q

and 5lzée:1andprzm1£;—b
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Figure 5.7. Time evolution of r; for the parameters: b = 1.0, d = 0.9, p; = 0.01, py = 0.1,

wp =01, ue =03 b, =08, mi=ma=ms=1, oqy=a.=9, 8 =6 =08, 0y =0, =0.2
and §; = d. = 1 and constant p, = m1.
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Figure 5.8. Time evolution of 7, for the parameters: b = 1.0, d = 0.9, y; = 0.01, py = 0.1,

b

ubZO.l,ue=O.3be:O.8,m1:m2:m3=1, al:ae:Q,ﬁl:ﬂeZO.S, O'l:O'eZO.2,
6l:<5€:1andpr:m11:_m.
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5.5.2  Simulations of cutting and grafting experiments

Simulations can be interpreted as predicting the outcome of grafting experiments. Fig.
5.9 shows the spatio-temporal evolution of the density of bound receptors for initial
conditions corresponding to the transplantation of the tissue from the upper part of the
body column to the lower one. Mathematical description of the simulated experiments

is given in the Appendix B.

We observe the formation of a second peak corresponding to a second head. The forma-
tion and persistence of the second maximum is the result of bistability of the reaction
terms. For such model we can have various stable solutions, which are transitions

between such two stable steady states.

Figure 5.9. The solutions of the model for initial condition corresponding to different trans-

plantations of a head.

We have numerically solved the model equations for initial conditions corresponding
to various cutting experiments. If we simulate the cutting of the head end then we can
observe the reorganisation. But it happens only in the case when the density of ligands
is high enough for the size of production (p;) to stay in the basin of attraction of the
higher steady state. Similarly if we simulate cutting of the foot, we observe formation
of the gradient-like solution if the lower end values of the initial state are close enough
to the lower steady state. Results of simulations showed that the cutting experiment,
in which the body column is cut in half cannot be modelled using such approach. In

experiments, cutting in half gives rise to formation of two complete organisms.

The model with hysteresis cannot be used to explain all cutting experiments. Similar
observation holds for the SMJM model [70]. The results of the simulations described
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by these authors only concern cutting and regeneration of the head or foot. Simula-
tions of the cutting experiments described in [70] concern the cutting of the upper
or lower 1/4 of the body column. It means that new simulations are performed for
the initial conditions corresponding to the 3/4 of the gradient-like solution. For such

initial conditions model (5.8) also reproduces results of experiments.

However, it seems to be meaningful that there is experimental evidence that after
cutting hydra in a half, both parts simultaneously regenerate. It means that to model
this experiment we should obtain gradient-like pattern formation for the initial con-
ditions corresponding to both parts of the initial domain (as it is for the models with
diffusion-driven instability described in Section 4.2.3.2). It is an open problem whether
such behaviour can be obtained in model of the form (5.8) for any set of parameters

and production kinetics.

5.6 Stationary homogeneous steady states

One of the questions arising is whether it is also possible to obtain, in the model (5.8)
diffusion-driven instabilities, and how the corresponding parameter values are related

to the parameter space for which we obtained the wave solutions.

Stationary homogeneous steady states satisfy the system,

Ty
0 = — —brel+d
,U,f’l”f T’f + rb+m11+7'b’
0 = —,ubTb-i-bel—dTb,
0 1 82[ [ —bri+dry,+ bl
= ———]—yl—br r — bele,
~ 072 H f b T Dl
dy 02
0 = 7@6—/@64-%,
i malry
0 = -6 + |
"1 +p} A+ ow?— Bip)(1+ o)
3 l
(5.17) 0 = P Mae

—Ue + .
1+ pg (1 + Uepg - /Bepe)(l + Ole'rb)

We solve the 1st, 2nd and 4th equation with respect to rf, [ and e. Assuming that

ry # 0 we obtain,
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De
5.18 e = —,
( ) e
(5.19) re = —7p (o + po7s — ml)’
pp(1+7p)

b(pe + pere — my)

For r, = 0 we can calculate that the steady states are (0,0, 0,0,0,0) and

Hede (bg+0'el‘gﬂl2_ﬂelieul be)
(0,0,

B () _ Hept ‘ol i 4
G , =50, — & ), the second of which is nonpositive.

Substituting (5.18)-(5.20) in (5.17) we reduce system (5.17) to the following system of

three equations,

pa(py + d) gy (1 + 1) be(pp + d)pp (1 + 75)pe

0 = n=rilmt+d)+ b(ps + pTy — ™M1) Tnt b + oo — M) e
0 = _ opt mary (s + d)pgp (1 + 1)
(1+p3)  bus + pers — my) (1 + cure) (1 + op? — Bipr)’
(521) 0= — (5epe . m3(ub + d):uf(l + Tb)

(1 + pg) b(lj'b + MpTy — ml)peﬂe(l + a’erb)(l + Gepg - ﬂepe) .

We solve the first of the above equations with respect to p; and obtain,

pr= (—beptsPetty — bettfPed — befifDetivTh — beftfDedry
+7obpte iy + T bpiefty — Tobite isTL — Hifig fhe iy
(5.22) — i fhpted — pifig e fboTs — ffbpitedrs) /(s + poTs — M) fhe.
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Finally we obtain two equations,

(5.23) 0= —0i(—beprgpepin — bepigped — bepigpepisrs — bepippedry + Tobpefsy
+7blie ty — TobHe M — Haklp ety — Hiflsed
— g e loTy — Mty thedrs) [0/ (o + Ty — 1)/ e/ (1 + (—beftsDe o
—bejigped — beppesTy — beprpedry + Tobjiepty + Tabiepty — Tobjiepsm
—pupp ety — Pappiled — ifiphefisTs — Hufhsedrs)? /b
/(o + pors — ma)?/p2) — mary(py + d) g (1 + 76) /b/ (16 + pors — ma)
[(L+aury) /(1 + 01(—befifpetty — beftfPed — beftfDettoTs — beftfpedrs
+rpbptepts + TEbey — Toble Ly
—fbfHelty — Hftf e — pyfis e [Ty
—pupu g piedrs)? /0 [ (o + pors — ma)?/ 2 — Bi(—beptspessy
—beptpPed — bepiyDeivTs — befiyPedrs + Tubiteity + Thbhtelty
—TpDphefi — Hufhf ety — [fbffed — ffbpfle T — HafhfHedTs)

/b (py + ppry — my)/ e),
5epe mg3 (:ub + d)lu’f(l + Tb)pe
524) 0= — + .
(5.24) (07 b= piors & )il + aar) (1 + 0202 — Bope)

Second equation is satisfied for p, = 0. Subsequently, 7} is calculated from (5.23).

It is interesting to find the steady states for the values of the parameters used in
simulations for which we obtained spatial patterns, i.e. we consider the parameter set
b=1.0,d=0.9, yy =0.01, pur = 0.1, p = 0.1, pe = 0.3 b = 0.8, my = my = m3 =1,
ag=0,=9 6=0=038,0,=0.=0.2, =0 = 1. In case p, = 0 only one real
positive ry, satisfies Eq. (5.23).

Now we assume that p, # 0. We solve (5.23) and (5.24) for the parameter set b = 1.0,
d = 09, My = 001, My = 0]_, My = 0]_, Me = 0.3 be = 08, m; = Mg = M3 = ]_,
al:ae:9, ﬂl:ﬁe=0.8, O'l=0'e=0.2, (5[2(5621.

Equation (5.23) has two solutions, r, = 9, and second solution which is illustrated in

Fig. 5.10. Solution of equation (5.24) is shown in Fig. 5.11.
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rb

Figure 5.10. Nonconstant solution of (5.23) for the parameters b = 1.0, d = 0.9, p; = 0.01,
pr =01 pp =01, p.=03b, =08 mi =mo=m3=10=0,=9, f = B = 0.8,
o=0.=02,6q=6=1.

rb

Figure 5.11. Solution of (5.24) for the parameters b = 1.0, d = 0.9, y; = 0.01, py = 0.1,
wp =01, pe =03b.=08 mi=mo=m3=1, aqy=0a.=9, 6, =F.=0.8, oy =0 =0.2,
p=0.=1.
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rb 30
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Figure 5.12. Solutions of (5.24) crossing the nonconstant solution of (5.23) for the param-
eters b=1.0, d = 0.9, py = 0.01, pyp = 0.1, pp = 0.1, pe = 0.3 be = 0.8, m1 = My = m3 = 1,
oq=a,=9 06 =08=08,0, =0, =02, 6 =3 =1. We can see that there is only one

common point.

In summary, we can say that for this set of parameters there is only one positive real
solution #; = (0.486, 8.456,17.383, 0.876, 13.208, 0.262). There is also one real solution
with p. = 0 (e = (2.538,6.041,2.379,0,0.627,0)). For the complete system we have
also the trivial solution (u3 = (0,0,0,0,0,0))

We perform linear stability analysis of the system (5.17) and obtain that the trivial
solution, us, is stable, and the solution u; is also stable. Solution us is unstable. We
investigate whether #; steady state can be destabilised by diffusion. Thus, we study
the eigenvalues of the matrix A—D%, where A is a linearisation of the kinetics system
at the state @; (compare Section 3.4), and obtain that there exist diffusion coefficients

and v for which we can select an unstable mode p,,.

The simulations performed for such values show that the steady state is destabilised.
However the solution tends to the trivial equilibrium and no spatially inhomogeneous
spatial pattern is obtained. We stress here that for the values of diffusion coefficients
(and 7y) for which we obtained spatially inhomogeneous pattern (used in previous

simulations) the steady state #; is always stable.

For the parameters set b = 2.0, d = 0.5, yyy = 0.1, uy = 0.1, pp = 0.1, pe = 0.3 b, = 0.1,
m=meg=mz=1,o4=0a,=9, 5 =06 =08, 0, =0, =0.2and § =9, =1 used
in simulations presented in Fig. 5.6 we observe qualitatively the same situation (see
Fig. 5.14). We did not find numerically any parameters set, for which the number of
positive solutions of the system (5.23)-(5.24) would be greater than one.
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pe
Figure 5.13. Solutions of (5.24) crossing the nonconstant solution of (5.23) for the param-
eters b = 1.0, d = 0.9, py = 0.01, py = 0.1, pp = 0.1, pe = 0.3 be = 0.8, m1 = my = m3 = 1,
ap=0,=9, 06 =8 =08, 00 =0, =02, 6§ = 6 = 1 and constant production of free

receptors p, = m1. We can see that there is only one common point.

16
14

12

rb

o 2 a 6 8

pe
Figure 5.14. Solutions of (5.24) crossing the nonconstant solution of (5.23) for the param-
eters b = 2.0, d = 0.5, gy = 0.1, py = 0.1, pp = 0.1, pe = 0.3 be = 0.1, m; = my = m3 = 1,
oq=0.=9,06=0=08,0,=0.=0.2and § =, = 1.
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5.7 Another look at the “positional value”

Observing spatio-temporal patterns growing in model (5.8) we arrive at the question of
whether such dynamics is possible for the mechanism of pattern formation in hydra. Is
it possible that there is no stationary pattern and the density of bound receptors (posi-
tional value) oscillates in time? How, then, can cells read such signal and differentiate
accordingly?

The idea is that the positional value is not determined by the density of bound recep-
tors at a certain time but by the amount of these receptors over some time period. It
can happen that after a ligand binds a receptor, a signal cascade is triggered only if
the signal is strong enough and lasts for time long enough (certain number of genes
must be activated). Following this idea the positional value might be described by the

integral,

(5.25) Pu(t) == /Ot ry(s)ds

or maybe even more appropriately by

(5.26) Po(t) == /th ry(s)ds

(5.27) Pu(t) := /0 ro(s)f(t — s)ds, where f(u) =e *".

Then, regardless of whether the solution for the bound receptors is a stationary wave
or it oscillates in time, the solution for so defined positional value Puv is gradient-like
(see Fig. 5.15).

Positional value defined by (5.25) could also retain and transmit information about
position along the body axes even if the bound receptors dissappear after some time.
In simulations of cutting experiments we observe reorganisation of the pattern for Pv,
even if there is no pattern formation for r;, provided we use the definition of Pv such
that it “remembers” initial conditions (defined by (5.25)).

Simulating cutting experiments we start from initial conditions, which correspond to
the solution, after a long time, of the original problem, truncated to the part of the do-

main. It means that these are always monotone increasing functions in the coordinate
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Figure 5.15. Time evolution of Pv corresponding to Fig. 5.8 and 5.7. We can see that even

if the solution for 7, is oscillating we get gradient solution for Pv.

Figure 5.16. Time evolution of Pv for initial conditions corresponding to the grafting

experiment
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x. Solution for such initial conditions either decays to zero, or it converges to a positive
stable homogenous state or it evolves into a gradient-like solution, depending on the
initial values. If we look at the integral of the form (5.25), it will stay inhomogeneous
but the diversity in the values at both ends of the domain does not increase, it just
retains in the form of the initial conditions. This is not satisfactory as an explanation

of the regeneration following the cutting experiments.

5.8 Discussion - Turing type model vs model with hysteresis

There are essentially two ways in which a system of identical cells can start to differ-

entiate:

e There is a critical number of cells (size of domain), above which the spatially
homogeneous attractor loses stability, which leads to “spontaneous” spatial pat-
terning. It is the case for the models with a Turing-type instability. Such models
can explain the de novo pattern formation since for some set of parameters and
the domain size value, the final pattern is the same and does not depend on the

initial perturbation.

e There is an external inducing signal which drives the system into a new, spa-
tially inhomogeneous state. Such signal originates from another group of already
differentiated cells. In such case the signal must be strong enough to trigger
differentiation. It corresponds to a sufficiently strong initial perturbation of the
homogeneous steady state. This type of the initialisation of the pattern-forming

mechanism is involved in the model with hysteresis.

The experiments showing de novo formation of hydra from the dissociated cells could
suggest a Turing-type mechanism. However, usually, in such experiments a few new
organisms are formed and then they split and live separately [56]. This means that
we do not have to expect the formation of the pattern with a maximum at one end
and a minimum at the other end if we start from really random initial distribution. It
is rather that initial disturbances lead to the formation of a spatially inhomogeneous
solution. Thus, it seems that these kinds of experiments do not exclude models with

multiple steady states.

The work shows that the model with multiple steady states can explain the results
of grafting experiments, because in such a model many spatially inhomogeneous solu-

tions can coexist. The solution depends on the initial condition similarly as the hydra
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resulting from the grafting experiment depends on the graft position and not on the

size of the animal.

We showed that stationary fronts can arise already in the simplified model, not includ-
ing the equations describing the dynamics of an enzyme and its production. For the
complete model, we found numerically similar stationary fronts. However, the dynam-
ics of the complete system is more complicated and we observe also spatio-temporal

patterns (oscillating in time).

Numerical simulations show that the model cannot fully reproduce the results of cut-
ting experiments. We can simulate only this kind of experiments which shows just the
regeneration of head or foot (as in [70]). However, such experiments are modelled by

the receptor-based system showing Turing-type instability.

The question is whether these two kinds of experiments can be explained using the
same mechanism and whether it could be the combination of the already considered
mechanisms. We checked that in the model (5.8) diffusion-driven instabilities does
not lead to the formation of the gradient-like pattern. However, the behaviour of the
system for different parameter sets and different kinetics describing the production of

ligands and enzyme is still an open problem.



Models of morphogenesis applied to
understand invasion of cancer

6.1 Tumour invasion along a linear or tubular structure

In previous chapters we applied systems of reaction-diffusion equations coupled with
ordinary differential equations for studying morphogenesis of hydra. For studying this
phenomenon we applied systems with linear structure. It is important to stress that
reaction-diffusion models could be applied to model other receptor-ligand systems or

the interactions between cells and biochemical molecules.

Growth and morphogenesis in nodular tumours was already studied using the for-
malism of reaction-diffusion systems. Notably, Chaplain et al. [9] examined spatio-
temporal pattern formation in reaction-diffusion systems on the surface of the unit

sphere in 3D.

Some human tumours involve tubular or linear structures. For example, some cases
of Ductal Carcinoma In Situ (DCIS) show tumour cells spreading amongst normal
epithelial cells in the breast ducts away from the primary lesion [11]. The growth
pattern is not always contiguous. This histological entity is known as pagetoid spread.
A cell automata model of DCIS was developed to study pagetoid spread and to predict
its effect on recurrence of DCIS following surgery [11]. In the lung, early lesions, the so-
called Ground Glass Opacities, frequently have the form of intertwined linear shadows
visible on Computed Tomography (CT) scans [23]. It seems that this type of growth
may be present in the vascular and pre-vascular stage of lung cancer development.
Since this type of growth does not produce nodular structures in Xray or CT images,
its interpretation is ambiguous. It is an interesting question how such structures arise

and what are their further invasion paths.
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A related mathematical problem has been considered by Gandolfi, Fasano and Bertuzzi
[16],[13] who considered the growth of the tumour cord, a cylindrical structure repre-

senting a pre-vascular stage of tumour growth.

Motivated by these observations we consider two simple models of the spatial growth
of proliferating cells sensitive to a hormonal regulator (called further on “the growth
factor”): In the first model, we assume a tubular sheet geometry of the cell population.
In the second model, cells are distributed along a straight-line interval. In both models,
in the absence of diffusion, the growth factor maintains a stable equilibrium of the
number of cells. If the growth factor is allowed to diffuse, the equilibrium, as we
will demonstrate, may become unstable to perturbations. Simulations show that the
instabilities result in increased growth rates of cells at certain spots of the sheet.
Moreover some of the simulations indicate the possibility of chaotic behaviour of the

solutions of the model.

Our model attempts to describe a population of cancer cells along linear and tubular
structures such as blood vessels, ducts in the breast, or small bronchi in the lungs.
Destabilisation of the steady state is interpreted as leading to further growth and

invasion of the tumour beyond its original location.

A simplified version of the model was considered by us in [47].

6.2 Model assumptions

6.2.1 Tubular geometry

The first model is defined on a thin sheet of cells, occupying the unit square (z,y) €
[0,1] %[0, 1], rolled to form a cylindrical tube such that the intervals [z, 0] and [z, 1], x €
[0, 1], coincide. There are two substances distributed over the cylinder’s surface, cells
and growth factor molecules, with surface densities ¢(z, y, t) and g(z, y, t), respectively.

The kinetics equations have the form,

(6.1) ¢ = f(c,g),
g = h’(cag)'

Existing cells produce new cells, so df/dc > 0. Similarly, the more of growth factor
is present, the more vigorous is cell proliferation, i.e., df/0g > 0. On the other hand,
the concentration of the growth factor is inhibited both by an increase in cell count

and by an increase in growth factor levels, i.e., 9h/0c < 0 and dh/0g < 0.
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In addition, the growth factor diffuses over the surface of the cylinder, so that the

complete set of equations has the form,

(6.2) ¢ = fleyg),
_ 1
g = ;A(x,y)ngh(c,g)-

where A,y = 02, + 0>

;> With homogeneous Neumann (zero flux) boundary conditions

in z,
(6.3) 0z9(0,y,t) = 0:9(1,y,t) = 0; y € [0,1],
and periodic conditions in y,

(6.4) 9(z,0,t) =g(x,1,t); z€]0,1], t>0.

Coefficient 1/+ is a composite parameter including the diffusion constant and scaling
parameters. We are interested in the conditions for diffusion-driven instability for this
problem (compare Section 3.4). Conditions for the linearised stability of the kinetics

system of two equations around the spatially homogeneous steady state,

(65) trA=a;; + a9 < 0,
det(4) > 0,

where Ala;;], a11 = 0f/0¢, a1s = 0f/0g, axy = Oh/Oc, asy = Oh/0g (derivatives
computed at the steady state), can be satisfied under the sign conditions for the

partial derivatives of f and h. For the diffusion-driven instability, it is sufficient that

(6.6) tr(A) < 0,
det(A) < 0,
where
A=A-6D,
D = 8 is the diffusion matrix, and 6 = p? /7. The wavenumbers y , are

obtained from the eigenproblem for the Laplacian on the cylinder’s surface

A(w,y)(bn,k(x, y) + Ni,k(ﬁn,k(ma y) =0,

(6.7) Opbni(0,y) = 0Opdni(1l,y) =0; y € [0,1],
Gnp(7,0) = Gnp(z,1); = €[0,1].
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We obtain,

On(z,y) = cos(nmz) cos(2kmy),

n, k>0, (n,k 0,0).
b = (n? + 4R, } 07 0.0

Now, the conditions (6.6) can be written as

a1 +axp—90 < 0,
det(A) —day; < 0,

which, considering that a;; > 0, are verified if § is large enough.

The condition (6.8) is fulfilled for infinitely many 0, i.e. there is an infinite range
of unstable modes. As we already mentioned in Section 4.1.3 a complete asymptotic

analysis for such systems is still lacking.

6.2.2 Linear geometry

We will also consider a one-dimensional model, in which the tube is replaced by the
unit interval, i.e., x € [0,1]. In such model, cells and growth factor molecules have
linear densities c(z,t) and g(z,t), respectively. The kinetics equations have the same

form as in Eq. (6.1).

The growth factor now diffuses over the unit interval, so that the complete set of

equations has the form,

(6.8) ¢ = fleg),
§ = %Azgm(c,g),

where A, = 0?

T

with homogeneous Neumann (zero flux) boundary conditions

(69) awg(oat) = azg(lat) =0; t>0.

The conditions for diffusion-driven (Turing-type) instability for this problem are for-
mally the same as in the two dimensional problem, and given by expressions (6.5) and
(6.6). The only difference is that the wavenumbers u7 , are now obtained from the

eigenproblem for the Laplacian on the unit interval
(6.10) Ayn(2) + pi2dn(z) = 0,

8ac¢n(0) = am¢n(1) = 0.



6.2 Model assumptions 97

We obtain,
x) = cos(nmx),
nle) = costuma), |
fi, = 1T,
This linear geometry model has been introduced since it is easier to simulate and

interpret.

6.2.3 Kinetics of cell proliferation and growth factor production

The philosophy of building a model of the cell cycle is explained in Fig. 6.1.

d

Figure 6.1. Model of the cell cycle of proliferating cells. A newborn cell enters the cell
cycle at point A. Cell cycle is treated as a well-mixed tank, from which cells may either
enter division at rate a(t), or death at rate d considered constant in time. As a result, if the
number of cells present in the cycle at time ¢ is equal to ¢(t), the flux to mitosis (M) is equal
to a(t)c(t), while the flux to death is equal to dc(t). Cells divide with efficiency p € [0, 1]
constant in time. Therefore, the flux of just divided cells from mitosis (point K) is equal to
2pa(t)c(t). These cells constitute the influx at point A of one of progeny cells. In summary,

the rate of change of ¢(t) is equal to dc/dt = 2pa(t)c(t) — a(t)c(t) — de(t).

Let us denote by c¢(t) the number of cells and by g(¢) the level of growth factor bound

to an average cell, at time ¢. Equation of cell cycle kinetics has the form

(6.11) % = [(2p— Vyalt) ~ del®),

where function a(t) is the rate of cells flux towards division. We consider it a function
of the total amount of bound growth factor present, ¢(t)g(t),

Gok(CQ)b

(6.12) = Tt keg)"
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This function is increasing in cg and then saturating at the level ag, the pattern of
increase adjusted by constants k£ and b (k,b > 0). As a consequence,

aok(CQ)b

1+ k(cg)b dle.

(6.13) fle,g)=1[(2p—1)

6.2.4 Derivation of models of growth factor kinetics

In this Section, we derive a model of growth factor kinetics. The form of the equation
for growth factor kinetics is implied by the following considerations: The growth factor
is supplied by a hormonal mechanism extraneous with respect to the sheet of tumour
cells. Its supply remains constant. However, its availability to the tumour cells is
inversely related with the number of cells. One possible mechanism leading to the
inverse relation is that the molecules of the growth factor are bound to receptors on

the cell’s membrane and therefore are not available to other cells.
We use the formalism of time-continuous Markov chains [2].

We assume that cells are embedded in a “field” of growth factor particles and consider

probabilities,

(6.14) P,j(t) = Pr[F(t) =i, B(t) = j],

where F'(t) is a number of free growth factor particles and B(t) is a number of bound

growth factor particles. Pair (7, j) is the state of the process.

We assume that in a short time interval (¢, + At) a transition from state (i,7) to
state (k,[) occurs with probability g(; j)— () At + 0(At). For our model, we specify the

following non-zero transition intensities:

4(i,j)—(i—1,+1) = @C' - binding of free growth factor particles,
(i,j)—(i+1,j) = B - constant influx of free growth factor particles,
(i,j)—(i—1,j) = 0% - loss of free growth factor particles,

(i, j)—(i,j—1) = uj - loss of bound growth factor particles.

Factor C' = C(c) depends on cell density.

The loss and binding intensities are proportional to the number of existing particles
of the free or bound growth factor and we assume that they are linear functions.
The influx of the free growth particles is constant. A model specified in this way is a

time-continuous Markov chain.
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Figure 6.2. Transition intensities, for the numbers of growth factor particles, free (i) and

bound (j) in the growth factor state space.

The chain dynamics are described by the following infinite system of Chapmann-

Kolmogorov ordinary differential equations for probabilities P;;:

Py= B{i>1}P 1 +u(j+1)Pyj
+8(i + 1) Py j+ aC(i + 1){j > 1}Piy1j 1
(6.15) —(B+u(j) +6(2) + aC(2)) Py,

where {s} = 0 or 1 is the logical value of a statement.

6.2.5 FEzxpected-value kinetics

Let us define expected counts of free and bound receptor particles as,

(6.16) E[F(t)] = Sy j>0iP5(1),
(6.17) E[B(t)] = %5505 Py (1))-
Combining equations in (6.15), we obtain

(6.18) F(t) = B—6F—aCF,
(6.19) B(t) = aCF —uB,

where, by an abuse of notations, F(t) and B(t) denote expectations E[F(t)] and

E[B(t)], respectively.
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We assume that the total number of growth factor particles is constant and so we

obtain,
F(t)+ B(t) = —0F —uB =0.
Hence, 8
U
F = 5 EB'
and
: B u 15} «
(6.20) B(t) = ozC’(g = SB) —uB = aC’g - BU(EC +1).

Since we are interested in the number of particles of bound growth factor per cell, we

define g(t) = f((: ’;)) and from (6.20) we obtain,

B it Do + 4

(6.21) gt = 2= ) i

We assume also that C(c) initially grows but then is affected by a crowding effect, i.e.,

e

C(c) s>e>0.

T ltre’ T

Using (6.11) and (6.12) we can rewrite (6.21) and obtain the kinetics model for the

growth factor.

af ¢t au  c° (2p — 1)aok(cg)®

5 1+4rcs _g(t)[uﬁLTl+rcs+ 1+ k(cg)® —d.

(6.22) g(t) =

6.2.6 Model analysis

To reduce the number of parameters we perform the following rescaling,

a; = (2p — 1)ay,
¢ = ck'?®,
ro=rk=*/",

Q
ho = —k ¢/
0 5 )
By = Bk

and dropping the superscript “*”, for clarity, we obtain the following equations,
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dc | ai(cg)
ot (1 + (cg)® d)e,
dg 1 ! ct ay(cg)®
23) Y _ Ia, - —d.
(6 3) ot v g + hO/Bl 1+ e g(t) [U + hou]_ Tt 1+ (Cg)b ]

We assume that in the absence of cells the density of growth factor cannot increase,

hence u > d. For the solution of the system (6.23) we can prove the following:

Proposition 6.1.
For nonnegative initial conditions, the solutions of the system (6.23) stay nonnegative

and g stays bounded.

Proof : Let ¥ = (¢,g9) :c(t,x) >0 and g1 > g(t,z) > 0. Then we show that the

vector field V' = [(fjr((‘;‘;); —d)c, hoﬁl% —g(t)[u+ hou 1+c:163 + fi((cc?; — dJ] does not

point outwards of ¥ (so that ¥ is invariant for the system (6.23) ).

Our results follow from Corollary 3.16 in Section 3.3.
We set G(¢,g) = —c. VG(V)|c=0 =0 in X. Hence ¢ > 0.
If G(c,g) = —g then VG(V)|y=0 = —hoﬁlﬁ < 01in X. Hence g > 0.

Also if we set G(c,g) = g — g1 then VG(V)|4=g, = hof — g1[u — d]] < 0 for g; > 3%%
since u > d. Hence g < ¢g;. N
Thus, we obtain a bounded invariant set for g and nonnegativity of c. For the solution

¢ the bounded invariant set does not exist but we can find an a priori bound. Since

8 < (a1 — d)c we have an a priori bound for solution ¢, ¢ < ¢(0)e(@ 9.

As a consequence, the solution of the whole problem exists for all times ¢ > 0 (Corollary
3.17).

We calculate that the homogeneous positive steady state (c;, g;) must fulfil the follow-

ing implicit relationship,

(6.24) ho(B —uX)c = uX +uXrc;, cgi =X,
where
4 M
6.25 X = .
(6.25) {m = d}

Conclusion 6.2. The model has positive steady states only if a; > d and 8 >

u(ﬁ)l/b
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Figure 6.3. Bifurcation diagrams for the steady states of ¢ and ¢ in case s =2 and e = 1.

The kinetics system can have 1, 2 or 3 positive steady states (Fig. 6.3). First of all,
(co,90) = (0,hoB/(u — d)) for e =1 and (0,0) for e > 1 is a steady state. This steady
state is always stable. Further steady states (c;, g;) satisfy the relationship (6.24).

The number of (¢;, g;) fulfilling the condition (6.24) is equal to the number of roots of

the function,

c)=c—————c+—, s>e>0

/() uXr ¢ =€

If s = e then f has one positive root for uXr < ho(8 — uX). Otherwise it has no real
positive roots. Now assume that s > e. Studying the first and second order derivative

of f we find out that f can have zero, one or at most two roots.

Now we consider the special case when e = 1. It can be demonstrated that Eq. (6.24)
has a pair of solutions, a single solution, or no solution at all, if » < ry, 7 = ry and
r > o, respectively, where

o (i)

ro =

6.3 Numerical results

6.3.1 Data
6.3.1.1 Cell kinetics

For preliminary computations, we assume that the expected interdivision time of cells

is equal to 1/ap = 12 hours similar to the estimates in [37]. Further, we assume a
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perfect efficiency of divisions, p = 1, and a low death rate d = 0.04. Other coefficients
are set arbitrarily at b =2 and k£ = 1.

6.3.1.2 Growth factor kinetics

We use the expected turnover time equal to 1/u = 10 hours. Also, we use arbitrary
values of hg = 1 and s = 2 and e = 1. The coefficient r is adjusted to ensure existence

of three steady states.

6.3.2 Simulations for the one-dimensional model

The discretised system of ODEs is numerically solved using the CVODE package and
numerical estimates of the Jacobian matrix. Space discretisation is a grid on the unit
interval. Time discretisation is performed implicitly. Homogeneous Neumann (zero

flux) boundary conditions are implemented as a reflection at the boundary.

The spatially homogeneous steady state was perturbed with a small cosinusoidal ad-
ditive term with different frequencies (for parameter values and further details, cf. the
legend to the figures). As evident from Figs. 6.4 and 6.5 cell density c(x,t) remains
close to ¢(z,0) until a threshold time at which it starts exponentially increasing at
some z-coordinates and exponentially decreasing at other. The rate of the exponential
growth read from the graph is consistent with the saturation rate (2p — 1)ag — d of
Eq. (6.11) when the flux a(t) reaches its maximum value ag. At the same time, g(x,t)

gradually reaches a constant value.

Further figures depict ¢(z,t;) as a function of z € [0,1] (i.e., at discrete points iAz,
i=0,1,...100, Az = 0.01), for several times ¢;. Series of simulations, depicted in Figs.
6.6 - 6.9 and 6.11 - 6.14 - illustrates the dependence of solutions on parameter 7,
the inverse of the diffusion coefficient. As « increases, i.e., as the diffusion coefficient
decreases, the solution profile loses similarity to the initial condition and displays
an increasing number of local maxima. For « large enough, after some time, c(z,t)
loses resemblance to ¢(x,0), which first manifests itself in phase inversion and then
appearance of a chaotic-like profile. The transition occurs precisely at the same time

when the saturation-rate exponential growth at some x-coordinates commences.

In Figs. 6.15 - 6.18 we present spatial profiles of the numerical simulations for a different

parameter set.
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Figure 6.4. Time evolution of the solutions with parameters, a; = 1/12, hy = 1, r = 10,
s=2,b=2,e=1,d=0.04,u=0.1, 51 =1 for y = 1 (top row )and y = 1000 (bottom row).
On the left-hand side we present solution ¢ and on the right-hand side g. Initial perturbation

of the steady state value is cosine function with frequency 4 and amplitude 10~
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Figure 6.5. Simulated solutions of the one-dimensional model. Parameters, a; = 1/12

ho=1,1r=10,s=2,b=2,d=0.04, e =1, vy = 10%, u = 0.1, B; = 1. Discrete step in z

equal to 0.01, time sampled each 10 units - graph of ¢(z,t) in the semi-logarithmic scale
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Figure 6.6. Spatial profile of the solution ¢ with parameters, a; = 1/12, hg = 1, r = 10

s=2,b=2,e=1,d=0.04, u = 0.1, By =1 v = 1. Initial perturbation with cosine function
with frequency 4 and amplitude 1074
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Figure 6.7. Spatial profile of the solution ¢ with parameters and initial condition as in Fig.
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Figure 6.8. Spatial profile of the solution ¢ with parameters and initial condition as in Fig.
6.6 and v = 103.
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and initial condition as in Fig.

Figure 6.10. Spatial profile of the solution ¢ with parameters and initial condition as in

Fig. 6.6 and v = 1. Random initial perturbation with amplitude 0.0001.
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Figure 6.11. Spatial profile of the solution ¢ with parameters and initial condition as in

Fig. 6.6 and v = 1. Initial perturbation with cosine function with frequency 8.
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Figure 6.12. Spatial profile of the solution ¢ with parameters and initial condition as in
Fig. 6.6 and vy = 102.
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Figure 6.13. Spatial profile of the solution ¢ with parameters and initial condition as in
Fig. 6.6 and v = 103.
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Figure 6.14. Spatial profile of the solution ¢ with parameters and initial condition as in
Fig. 6.6 and vy = 10*.
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Figure 6.15. Spatial profile of the solution ¢ with parameters, a1 = 0.2, hg = 1, r = 10,

s=2,b=2,e=1,d=0.09, u = 0.1, 5, = 1 v = 1. Initial perturbation with cosine function

with frequency 4.
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solution ¢ with parameters and initial condition as in
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Figure 6.17. Spatial profile of the solution ¢ with parameters and initial condition as in
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Figure 6.18. Spatial profile of the solution ¢ with parameters and initial condition as in
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Figure 6.19. Spatial profile of the solution g of the model (6.2) in two dimensional space
representing tubular geometry. On the left-hand side, we present the initial function g(x, y, 0)

on the right-hand side, the g(z,y,680). Simulations are performed for a regular perturbation
(with function cosine) of the homogeneous steady state (¢ = 1.86, g = 0.28,) and v equal
to 10* with parameters: ag = 0.2, hg =1, r =10, s =2, b=2,d =0.09, k =3, p = 1,
u = 0.1. We implemented the zero flux boundary conditions on the boundaries (0,y) and
(1,y), y € [0,1] and periodic conditions on the boundaries (z,0) and (z,1), z € [0,1]. We
observe that regular initial conditions lead to the “chaotic” profile. Similarly like in the

one-dimensional case the solution profile loses similarity to the initial condition and displays
an increasing number of local maxima.

6.3.3 Simulations for the two-dimensional model

We discretise the system (6.2) on the unit square [0, 1] x [0, 1] with the zero flux bound-

ary conditions on the boundaries (0,y) and (1,y), vy € [0,1] and periodic conditions
on the boundaries (z,0) and (z, 1), z € [0, 1].

We observe behaviour similar to the linear case, i.e. after some time patterns grow
rapidly. For certain range of scaling parameter ~, the shape of the ultimate spatial
pattern resembles the initial function. However, when + is growing the solution looses
this initial shape, solutions of the smaller wavelength appear and finally solution be-

comes “chaotic”. An example of system’s behaviour is depicted in Fig. 6.19.
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6.4 Discussion

Behaviour of the model in the one-dimensional case can be interpreted as a period of
tumour dormancy, followed by an “unexpected” onset of rapid growth. This is exactly
the behaviour, which one finds puzzling in human tumours. However, since it has been

obtained by purely numerical methods it should be further verified.

The growth observed is a purely nonlinear phenomenon. Indeed, its rate is much faster
than in the linearised system. As evident from simulations in Fig. 6.9, the ¢(z, t) profiles
for higher values of ¢ become irregular in shape. Whether this phenomenon should be

considered chaotic, is an open question.

One other puzzling feature of the model is that, as illustrated by Figs. 6.6 - 6.9 and
6.11 - 6.14, the solution profiles become less regular as v increases. However, if y=! = 0,
the system becomes a continuum of decoupled ODE systems (indexed by x), each of
which is asymptotically stable. This indicates that there might exist a discontinuity

in system’s behaviour at v~! = 0. Further investigation is needed.

Based on the limited number of simulations, it seems that the two-dimensional sys-
tem qualitatively behaves similarly as the one-dimensional system. Again a complete

verification is pending.
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It has been our aim in the thesis to check under which conditions receptor-based
models can describe formation and regulation of patterns in multicellular biological

systems.

For the motivating biological example of hydra, we considered models of reaction-
diffusion equations with zero flux boundary conditions coupled with ordinary differ-
ential equations. We studied two mechanisms of pattern formation: diffusion-driven
instabilities and hysteresis-driven mechanism and demonstrated their possibilities and
constraints in explanation of different aspects of pattern formation and regulation,

such as self-organisation and regeneration.

For proposed models we considered the problems of existence of solutions, their pos-
itiveness and boundedness and also stability properties. We showed how the theoret-
ical results concerning existence and uniqueness of solutions of evolution equations
can be applied to such models. Existing qualitative theory of reaction-diffusion sys-
tems is mainly focused on stability conditions for homogeneous steady states (e.g. [7],
[72]), which is only of supporting value for this work. The importance of such con-
ditions is that they help exclude some regions of parameter space from consideration
of diffusion-driven instability. Classical conditions for diffusion-driven instability use
linearised stability conditions and give us only results regarding the destabilisation of
the spatially homogeneous steady state. About asymptotic behaviour of the solutions
we can decide only in some special cases when for example the Lyapunov function can
be found for the FitzHugh-Nagumo system (e.g. [7], [72]).

For this reason, it is necessary to rely on numerical computations. These computations
display complicated behaviour, particularly in the model of cancer progression, which

is not covered by the existing theory (see further on).
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We proposed two different approaches to model the pattern formation for fresh-water
polyp hydra, both in the receptor-based framework. The first model uses special fea-
tures of diffusion, which results in the destabilisation of the spatially homogeneous
steady state and spatial patterns that are eigenfunctions of the Laplacian operator
with zero flux boundary conditions. We showed that such diffusion-driven mechanism
(Turing-type) for pattern formation can be involved in a receptor-based model, i.e.
a model describing the dynamics of receptors and ligands and eventually also an en-
zyme which degrades ligands and is not of activator-inhibitor type. We investigated
the performance of the simplest three-variable receptor-based model and showed what

are the consequences of considering only one diffusing substance in such model.

We showed that already the simplest receptor-based model describing the dynamics
of free and bound receptors and diffusing ligands allows, for some parameter space,
the diffusion-driven instabilities (Turing-type patterns). However, analysis of the con-
ditions for such pattern formation mechanism together with numerical simulations
shows that such a model is not the best candidate for hydra patterning. The shape of
the final pattern strongly depends on the initial conditions and since peaks are cre-
ated just in one domain point, the biological interpretation is difficult. In this model
diffusion-driven patterns can evolve only if we assume self-enhancement of free recep-
tors, i.e. a positive feedback loop between the production of new free receptors and

their present density.

This shows that such models can be applied only to some special biological systems
(like proliferating cells). It is necessary to stress that such models lead to an infinite
range of unstable wavenumbers, i.e. disturbances with very large and very small wave-
lenghts are all unstable. The final spatial pattern in this situation critically depends
on the initial conditions. However, we observed different dependence of the solution on
the initial perturbation in three-variable model for hydra and in the model of tumour
growth. It shows again that the ultimate pattern is a strictly nonlinear phenomenon

(compare [61]).

Introduction of a second diffusing biochemical species improved performance of the
model. We showed that a four-variable model can produce diffusion-driven instabili-
ties without any assumption of autocatalysis. In four-variable receptor-based model,
similarly as in the activator-inhibitor model, the spatially homogeneous steady state
bifurcates into the spatially inhomogeneous solution which has a maximum at the one
end and a minimum at the other end for some range of the domain size. This model is

robust and the final pattern does not depend on small perturbation of initial conditions.
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The four-variable system with diffusion-driven instability models self-organisation of

hydra cells and is able to simulate the cutting experiments.

We showed that such model can explain at least as much as activator-inhibitor model
regarding de novo pattern formation and basic experiments. Numerical studies of the
four-variable model developed as well as of the activator-inhibitor model proposed in
[49] (see Appendix A) showed that the grafting experiments could not be explained
within such approach without changing the size of domain (or diffusion coefficient),

which does not reflect experimental conditions.

Since the diffusion-driven model fails to reproduce the grafting experiments, we pro-
posed another model, based on the idea that, to explain the grafting experiments,
cells should be equipped with memory. We introduce memory to the model adding
two equations showing hysteresis, i.e. having multiple steady states and allowing the
system to jump from one stable steady state to another, when the density of receptors
and ligands is varied. Assuming small values of the diffusion coefficient we obtained
spatial heterogeneity in the densities of substances considered. Due to the existence
of multiple steady states such model can simulate the results of grafting experiments.
We showed that in systems with hysteresis many inhomogeneous steady states can
coexist. Such solutions depend on the initial conditions, which is in agreement with
the outcome of grafting experiments. However, this model can simulate only some of
the cutting experiments, in which the head or foot end of the body column is removed
and it regenerates. The gradient-like solution recovers if the difference between values
of the initial state on both ends of the domain is high enough. Thus, we can explain
the kind of experiments, which show just the regeneration of head or foot (as in [70]).
However, it is evident from experiments that hydra can also regenerate the whole
organism from the half body column and from both halfs simultaneously. Proposed

model with hysteresis is not able to reproduce such results.

Each model has shed light on different but overlapping aspects of the self-organisation
and regeneration. Now, it is possible to state which conceptual elements have to be
present in a complete model, although modelling hydra regeneration still involves quite
a few unsolved problems. It is clear that the mechanism must involve some intracellular
communication since the cells at the cut surface need to know what structures are in
their vicinity in order to know whether to form a head or a foot. Grafting experiments
suggest coexistence of different spatially inhomogeneous stationary patterns which
grow up for different initial conditions. Experiments show that large perturbations (but

within the range of the values of the solution itself) of the gradient-like solution should
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lead to another solution. From the cutting experiments we conclude that gradient-like

initial state should evolve into gradient like pattern.

Further biological discoveries are needed to gain insight into molecular nature of cell
communication and of the positional value. To understand the morphogenesis in hydra
it is necessary to bridge the gap between experimental observations at the cellular level
and those at the genetic and biochemical levels. Also the role of cell division and very
specific growth can be important in this process. It might be relevant to incorporate
cell differentiation, coordination of cell movement and cell positioning. Also one should
take under consideration that the communication over distance may involve cell-to-cell
signalling mechanisms rather than simple diffusion. We tried to model this mechanism
by building complicated kinetics system which describes interactions between receptors
and diffusible molecules and includes also the dependence of the production of new

molecules on the history of the whole system.

As mentioned by Kirkilionis in [38], the theoretical modelling should have a larger
influence on the experimental work. “ Models should be tested by the predictions they
make, and predictions must be coupled to something measurable in laboratory” ([38]).
While for some developmental problems the knowledge of the molecular and genetic
mechanisms is already more detailed, for hydra almost all such information needed
to design models, testable rather than conceptual, is still lacking [56]. Such models
can only help to understand what could be the possible scenario and how complicated
nonlinear interactions between biological molecules together with spatial signalling

and movement result in the shape and properties of the ultimate pattern.

In models of hydra, as in many other classical papers on pattern formation, the ulti-
mate goal is to achieve stability of the emerging pattern. It is clear that the shape of
the organ developed during morphogenesis cannot be sensitive for the small perturba-
tion of the system. It is also evident from experiments that in many systems there is
a remarkable robustness of developmental mechanisms against perturbations, for ex-
ample against variations of initial conditions or parameters. For example the number
of pattern segments is crucial and should not depend on the domain size or geometry

(as in the case of Drosophila, [32]).

The model of cancer progression addresses a phenomenon, which by its nature is
unstable. Therefore, the model with single diffusion seems appropriate for this purpose,
as the emerging pattern should strongly depend on slight changes in initial conditions.
In a way, requirements for this model are complementary to those for the model of
hydra.
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The model’s point of departure is a time-continuous Markov chain mechanism, describ-
ing proliferation of cells and propagation of a growth factor along tubular or linear

structures. This setup is meant to represent observed instances of such growth, [23].

The model constitutes a metaphor of the physical and biological reality, in that it
does not represent flows and transport phenomena in the surrounding tissue, but
replaces them by a single diffusion mechanism. On the other hand, given the diffusion
mechanism, classical and well-accepted models of cell proliferation are used, [36] and
(37].

The most interesting feature of the model seems to be its ability to reproduce a long
period of quasi-stability, followed by a rapid growth at saturation rate. This phe-
nomenon closely mimics the transition from the in-situ phase of early tumour growth,
followed by rapid invasion into surrounding tissues, [23]. At the same time, spatial-
coordinate profiles become more and more complex. The complexity of the spatial
pattern depends on the scaling parameter v which includes the diffusion coefficient
and the length of the domain. The ultimate pattern strongly depends on the initial
condition. It is a model with an infinite range of unstable modes, and from the linear
analysis we cannot decide which mode will grow to give the ultimate pattern. The
simulations show that for certain range of v the shape of the final pattern resembles
the initial function. However, when ~ is growing the solution looses this initial shape,
more unstable modes appear and finally the pattern becomes apparently chaotic. It is
an interesting feature that the complicated behaviour appears when diffusion coeffi-
cient becomes very small, while the system is stable when there is no diffusion at all.

This seems to be an effect of the change in equation type

As shown in Appendix D, the wavenumbers corresponding to the discretised Lapla-
cian with zero-flux boundary conditions are damped with respect to the wavenumbers
of the original problem. This might eliminate some of the higher-frequency spatial

oscillations.

To conclude, in the thesis, we addressed a range of issues concerning mechanisms of
pattern formation inspired by two biological phenomena. In the case of hydra, we were
looking for orderly patterns. In the case of cancer, we were looking for emerging un-
predictability and growth. It is interesting that a set of related mathematical systems
can lead to both types of behaviour. The problems we considered lead to many math-
ematical and modelling open problems, which will be subject of future research. Many
uncertainties exist regarding the biological foundations of the models. Progress in cell

biology and genetics will help resolve them in the future.






Appendix A

Existing models for pattern formation in hydra

Here we give mathematical formulation of the existing models of pattern formation in

hydra which are discussed in Section 2.3.

A.1 Gierer-Meinhardt activator-inhibitor model

Gierer and Meinhardt proposed that biological pattern formation is based on local
activation and long-range inhibition. They formulated the following system of reaction-

diffusion equation [19].

0, - p & i W%

aa = aax2a+pah + 0q — UaQ,
(Al) gh = Dha—Zh + ,oha2 + 0op — Mhh.

ot 0x?

Here a and h are the concentrations of two substances, which are usually called acti-

vator and inhibitor.

The model and several its modifications were applied in the study of various topics

from developmental biology (see e.g. [50]).

Meinhardt developed this idea further and proposed the model for pattern formation
in hydra, in which head and foot formation are controlled by the density of different
morphogens. Separate activator and inhibitor for head and foot are coupled by the

influence of so called source density [49].
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The model has the form

0 0? ap? + Po
a = D,, 52 + ,UhﬂTh — UnGp,
) o2 ,
ahh = Dy, @hh + pppap” — v, by + p1,
0 0? G,f2 + Poy
5% = Dazmert HEp=g T T
0 0?
ahf = th@hf_*_ﬂfpan—Vh,fhf'i_plf’
0 0?
(A.2) 5:7 = Dogzp + Hth = 1P = Ypas + po.

A.2 SMJM receptor-based model

The model proposed by Sherrat, Maini, Jiger an Miiller in [70] has the following form,

0 0?
Y4 = D2 _ _ _
510 5,20 + 84(x) — pga — keae — kqaf + kgb,
0
af = kgb— keaf + ki[a(x) + B — f],
0
&b = kaa'f - (kd + kl)ba
0 0?
A. —e = D,— —
(A.3) 5 e5p2° + 8¢(T) — et

with zero-flux boundary conditions for a and e.

f, b, a and e denotes respectively the density of free receptors, bound receptors, bio-

chemical (ligands) and enzyme.

It is crucial here that the production functions depend on the spatial variable z € [0, L]
(the position along the body column) and also on y(x), which denotes position from

which the tissue at location z originates.

a(z) = ar[l —y(2)/L] + azy(z)/L,
se(x) = s1[l —y(x)/L] + s2y(z)/L.

4L

L] and decrease linearly to zero for y(z) € [%£, 1].

Sq() is constant for y(z) € [0,



Appendix B

Mathematical settings for modelling of cutting and
grafting experiments

In this chapter we give our mathematical formulation of the models corresponding
to the experiments performed on hydra in laboratory. The two basic types of such
experiments, i.e. cutting and grafting experiments, are connected with the changes
of the initial state of hydra. Thus, we consider the models studied before for the
normal development with different initial conditions. We formulate these conditions

and explain how they are related to the experimental setting.

B.1 Cutting experiments

Assume that v(z) is a vector of considered densities corresponding to the normal
development and we cut a piece of the body column in z; and z,. The initial conditions

for the cutting experiment are,

(B.1) uo(z) = v(x1 + (e — 1)) for x € [x1, 23],

0<z1 <z < 1.

Since we assume that x = 0 corresponds to the upper end of the body column (head)
and z = 1 to the lower end (foot), the case 1 = 0, 2 < 1 simulates a surgical removal

of the foot, while the case 1 > 0, 9 = 1 — removal of the head.

Let us recall that for the dimensionless models the domain size equals 1 and v = (Li—f

is a scaling coefficient depending on the domain size of the original problem. Cutting

experiment changes the domain size of the problem. The “new” domain is smaller.
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Thus, to get a model corresponding to the cutting experiments, one has to rescale also

the coefficient . Since v = Z—f, we obtain Yy, = v|Te — 1|2

As we already mentioned in Section 2.2, the regeneration in hydra is morphallaxis
(not involving the domain growth), thus, we model the cutting experiments with the

constant domain size (constant 7).

For the numerical simulations as v(x) we take the values obtained from the model in

the simulations of normal development (gradient-like solutions).

B.2 Grafting experiments

Now we formulate the initial conditions describing grafting experiments. Assuming

again that v(z) is a solution corresponding to the normal development we put,
up(z) = wv(z) for z €0,21] U [xg,1],

(B.2) V(T — 21 + Zgrape) for x € [z1,24].

It means that, instead of the tissue with coordinates [z, x2], we transplant the tissue

of the same length from the position starting in x4,y



Appendix C

Numerical tools

The computer algebra program MAPLE is used to solve the stationary problem, since
in contrast to iterative methods, e.g. Newton method, it uses Grobner bases for the

description of the solution manifold and is able to find multiple zeros.

To solve numerically the considered systems we used the method of lines and thus the
system of nonlinear partial differential equations was converted to a large system of
ordinary differential equations by discretisation of Laplacian in three coordinates in

one-dimensional case and five coordinates in two-dimensional case.

The discretised system of ordinary differential equations is numerically solved using
the CVODE package and numerical estimates of the Jacobian matrix. This program

offers an implicit method for time discretisation, originally developed for stiff problems
of ODEs.

Space discretisation is a gridpoint on a unit interval. The size of the spatial grid
is adjusted according to the value of the diffusion coefficient (value of the scaling

parameter . Time discretisation is performed implicitly.

Homogeneous Neumann boundary conditions (zero flux) are implemented as a reflec-

tion at the boundary (see e.g. [1]).

The graphical visualisation of the numerical solutions in space and time is realized

with the program Onom 2.0 and the space-profiles are shown using MATLAB.






Appendix D

Wavenumbers and wavefunctions for the discretised
diffusion operator (one-dimensional model)

In the simulations, the Laplace operator has been replaced by a discrete difference
scheme, incorporating the boundary conditions. Since discretisation may lead to desta-
bilisation as it is the case, for example, for the logistic equation, it seems to make sense

to investigate the spectrum of the discretised system.
Discretisation is equivalent to replacing the function g(z,t) by a vector

G(t) = (90(t), g1(t), - - -, gn-1(t)), and the continuous Laplacian A, by a discrete Lapla-

cian D,

[DG(#t)]lo = a[29:(t) — 290(2)],

[DGt)]: = algizi(t) —2g:;(t) + g1 (®)], i=1,...,n—2,
(D.1) [DG()]ln1 = a[2gn-2(t) — 2g,-1(1)],

where a = (7)7!n2. The first and the last equation model the zero-flux boundary con-

dition. The eigenproblem (6.10) is now replaced by the following matrix eigenproblem

Ty v

1 -2 1

+wl| ® =0,

\ 2 -2/

2

where ® is a column n-vector and w = pu?yn =2, u being the wavenumber corresponding

to the now discrete wavefunction ®. Tedious but straightforward computations prove
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that the problem has n distinct eigenvalues

_ 4(fz'2 +1) + sgn(f,-)(4v fz'2 +1)
2(f2+1) ’

where _
i

fi = tg( ),i=0,1,...,n—1,

corresponding to discrete wavefunction

n—1

®; = [1,cos(B;),co8(26;), - - ., cos((n —1)5;)],

where 3; = 7. Since the continuous wavenumbers and wavefunctions have the form

,u%c)i =i’1?, ¢;(z) = cos(inz),

we see that the discrete problem not only reduces the number of distinct wavefunc-
tions from infinity to n, but the discrete wavenumbers are somewhat different from
their continuous counterparts. Figure D.1 presents a graph comparing the discrete
wavenumbers w; to their continuous counterparts v; = ,u%c) (yn=2), for the case vy = 1.

We see that the higher-order wavenumbers are damped in the discretised system.

1! T T

=
==
|
]

Lo

0z

] 100 20 anmn an
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Figure D.1. Graph comparing the discrete wavenumbers w; = p2(yn~2) to their continuous
counterparts v; = u%c)i(yn”), for the case v = 1. Initial condition (perturbation) is a

cosinusoid with period 1/2.
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