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Zusammenfassung

Untersuchung strahlenbiologischer Effekte in der
intensitätsmodulierten Protonentherapie: Neue Strategien für

die inverse Bestrahlungsplanung

Zur Zeit werden Variationen der relativen biologischen Wirksamkeit (RBW) in der Be-
strahlungsplanung der intensitätsmodulierten Protonentherapie (IMPT) meist vernach-
lässigt. Um mögliche klinische Auswirkungen einer variablen RBW für gescannte Pro-
tonenstrahlen zu untersuchen, werden neue Strategien zur Beurteilung dieser strahlen-
biologischen Effekte und zur Integration der RBW in die inverse Bestrahlungsplanung
vorgestellt. Sie basieren auf einem schnellen Algorithmus zur dreidimensionalen Berech-
nung des dosis-gemittelten linearen Energietransfers (LET) als einem Maß der lokalen
Strahlenqualität und auf einem einfachen phänomenologischen Ansatz für die RBW als
Funktion der Dosis, des LET und des Gewebetyps. Es zeigte sich, dass der biologische
Effekt aufgrund unterschiedlicher LET-Verteilungen stark von der jeweils verwendeten
Scanning-Technik abhing. Neue Zielfunktionen zur Berücksichtigung von LET und RBW
wurden in ein inverses Bestrahlungsplanungsprogramm integriert, welches nun eine gleich-
zeitige Vielfelder-Optimierung des biologischen Effekts in einer akzeptablen Zeit erlaubt.
An mehreren klinischen Beispielen wird demonstriert, wie mit diesen Methoden nachteilige
RBW-Effekte erkannt und durch die direkte Optimierung des Produkts von RBW und Do-
sis kompensiert werden können. Die vorgeschlagenen Strategien sind somit eine wertvolle
Hilfe, um die Qualität von IMPT-Bestrahlungsplänen zu beurteilen und zu verbessern.

Abstract

Evaluation of Radiobiological Effects in Intensity Modulated
Proton Therapy: New Strategies for Inverse Treatment Planning

Currently, treatment planning for intensity modulated proton therapy (IMPT) usually
disregards variations of the relative biological effectiveness (RBE). To investigate the
potential clinical relevance of a variable RBE for beam scanning techniques, new strategies
for the evaluation of radiobiological effects and for the incorporation of the RBE into the
inverse planning process are presented. These strategies are based on a fast algorithm
for three-dimensional calculations of the dose averaged linear energy transfer (LET) as a
measure of the local radiation quality, and on a simple phenomenological approach for the
RBE as a function of dose, LET and tissue type. It was found that the biological effect
depended strongly on the type of scanning technique used, mainly due to differences in the
LET distributions. New objective functions that account for LET and RBE were integrated
into an inverse planning software, which now allows simultaneous multi-field optimization
of the biological effect in a reasonable time. With these methods, unfavourable RBE effects
can be identified and compensated for by direct optimization of the product of RBE and
dose, which is demonstrated for several clinical examples. The proposed strategies are
therefore valuable tools to evaluate and improve the quality of treatment plans in IMPT.
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Chapter 1

Introduction

Besides surgery and chemotherapy, radiation therapy is one of the three main options for

treating tumour patients. Over the last years, advances in research and technology led

to significant improvements in all fields of radiotherapy (for an overview see Webb 1993,

1997, 2001). While the majority of irradiations is done by high energy photons, another

promising approach is the treatment with proton beams, which enjoys rising interest and

importance with an increasing number of clinical proton therapy facilities worldwide. Due

to the different depth dose characteristic of charged particles compared to X-rays, superior

dose distributions in the patient and therefore higher tumour control and less side effects

can be anticipated for treatments with proton beams.

The most sophisticated technique in proton therapy is Intensity Modulated Proton Ther-

apy or IMPT (cf Lomax 1999), which involves narrow beam spots that are delivered to the

patient in a scanning pattern (cf Goitein and Chen 1983, Pedroni et al. 1995). The inten-

sity of the beam spots is modulated individually, and their relative weights are determined

by an optimization algorithm to obtain the best possible treatment plan. This process is

called inverse treatment planning, since it solves the problem of automatically finding the

best set of treatment parameters for a given (prescribed) dose distribution rather than the

other way round, which was the conventional approach in treatment planning systems.

Today, inverse planning for protons (cf Lomax 1999, Oelfke and Bortfeld 2001, Nill et al.

2004) is based on fast and reliable algorithms for dose calculation. However, the physical

dose is apparently not the only parameter one should look at in treatment planning for

protons, as there is experimental evidence that the biological effect caused by proton beams

does not depend on the physical dose alone (e.g. Belli et al. 1993, Wouters et al. 1996,

Skarsgard 1998, Paganetti et al. 2002), but also on the energy spectrum of the beam. In

other words: the same physical dose delivered by protons of different energy does not lead

1



1. Introduction

to the same biological results (e.g. in terms of cell survival). These radiobiological effects

need careful investigation, and their consideration in the optimization process might be

necessary to further improve the clinical results. The purpose of this work is therefore to

develop new strategies to evaluate radiobiological effects in IMPT, and to integrate them

into inverse treatment planning.

1.1 The relative biological effectiveness (RBE)

The biological effect of proton beams in comparison to a reference radiation is described by

the Relative Biological Effectiveness or RBE (cf Hall 2000, chap. 7, Wambersie and Menzel

1997, Wambersie 1999). It is defined as the ratio of the dose of the reference radiation

(Dref) and the respective proton dose (Dp) required to yield the same biological effect (e.g.

cell survival level S):

RBE(S) =
Dref(S)

Dp(S)
. (1.1)

Currently most clinical proton centres use a constant RBE of 1.1 relative to 60Co

(Gerweck and Kozin 1999, Paganetti et al. 2002), i.e. protons are assumed to be 10% more

effective than 60Co gamma-rays, although there is experimental evidence that the RBE is

not constant. In general, the RBE of protons depends on the dose or dose per fraction, the

tissue or cell type, the biological endpoint (e.g. cell survival or chromosome aberrations),

the reference radiation and the radiation quality, i.e. the local energy spectrum of the

protons (Skarsgard 1998, Hall 2000, Kraft 2000). The latter is often characterized by the

Linear Energy Transfer or LET, which can be understood as a measure of the density of

ionization events along the track of a proton. These dependencies of the RBE are most

obvious for in vitro experiments with cell cultures (e.g. Hall et al. 1978, Blomquist et al.

1993, Belli et al. 1993, Wouters et al. 1996, Tang et al. 1997). In most of these studies,

a clear increase of RBE with decreasing dose was found. Up to a certain LET maximum,

increasing LET also causes higher RBE values, which leads to variations of RBE with

depth in tissue, in particular at the end of the proton range. Beyond the LET maximum,

the RBE decreases again.

On the other hand, smaller RBE variations were found for in vivo systems (e.g. in animal

studies, cf Tepper et al. 1977, Gueulette et al. 2000, Ando et al. 2001). In particular,

the dose dependency of the RBE is less pronounced in vivo, while the increase of the

RBE at the end of the proton range can still be seen (e.g. Gueulette et al. 2001). Some

studies also evaluated the clinical experience with proton therapy (e.g. Debus et al. 1997,

Paganetti et al. 2002) and found no evidence that using a constant RBE of 1.1 significantly
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1.2 Objectives of this work

underestimated the real RBE, although this does neither prove that the RBE is constant,

nor that it is exactly 1.1 in all cases.

At the moment, the ability to determine or predict variable RBE values for clinical

applications is limited (Paganetti et al. 2002, Paganetti 2003). Therefore the use of a

constant RBE of 1.1 is continued in clinical practice of proton therapy, although the RBE

is in fact not constant. However, it is still under investigation whether the effects of a

variable RBE can be clinically significant, and there are doubts that a constant factor of

1.1 is sufficient for all cases. At least the increased effectiveness at the end of the range

of proton beams should certainly be accounted for in treatment planning (Paganetti et al.

2002). To clarify this situation, more radiobiological measurements are needed, especially

for in vivo systems and clinically relevant endpoints. Additionally, fast and robust tools

have to be developed that allow the integration of a variable RBE into the treatment

planning process in order to investigate the potential impact of RBE variations for different

irradiation conditions.

1.2 Objectives of this work

While new scanning techniques in intensity modulated proton therapy offer the possibility

to create highly conformal dose distributions for almost any desired target volume, there

are also some risks associated with them. It is therefore necessary to quantify and minimize

the impact of these potentially adverse effects, which include intra- and interfraction organ

motion, range uncertainties and the influence of a variable RBE. In this work, I will focus

on the last point and investigate radiobiological effects.

The aims of this thesis are therefore to study the potential clinical impact of a variable

RBE for various situations and compare these effects for different dose delivery techniques

(e.g. distal edge tracking and 3D modulation, see chapter 2). This question is particularly

interesting for IMPT since scanning techniques might show different biological properties

than the conventional delivery with passive beam scattering systems. Thus, it is highly

desirable to provide tools for a fast evaluation of RBE effects in treatment planning, i.e.

a method to identify situations where a constant RBE of 1.1 is not sufficient in clinical

practice. A first approach could be to take an existing model for a variable RBE (e.g.

track structure models, cf Paganetti and Goitein 2001) and apply it to the treatment

plan after the conventional optimization of the physical dose to obtain a three-dimensional

distribution of RBE× dose (sometimes also called “biological dose” or “effective dose”).

While this method could certainly be used to study the impact of a variable RBE and

to identify potentially dangerous situations, it does not offer an option to directly improve
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1. Introduction

the biological outcome, since the optimization algorithm cannot take the RBE effects into

account. Therefore we would rather like to include the RBE into the optimization process

in order to achieve an optimized distribution of the biological effect or RBE× dose, because

only this approach can answer the question if and how disadvantageous RBE effects can

be compensated for in inverse treatment planning.

To integrate the RBE calculations into the optimization loop of inverse planning, a very

efficient RBE model is required to keep the optimization times reasonable. This means

that the track structure models (which need long computing times) are not suitable for

this purpose. Instead, a phenomenological model based on experimental data for the RBE

as a function of dose, LET and tissue type will be developed and employed in this work.

Despite being simple, it has to account for the most relevant properties of the RBE, in

particular the increase of RBE at the end of the proton range.

The assessment of RBE effects for complex IMPT treatment techniques therefore re-

quires three main components: i) a fast algorithm for three-dimensional LET calculations

to characterize and quantify the physical properties of the radiation field (cf Wilkens and

Oelfke 2003, 2004), ii) a simple and reliable method to compute the corresponding RBE

distributions and iii) the integration of these models into the inverse planning process.

The material in this thesis is organized as follows:

• In chapter 2, an introduction to proton therapy with particular emphasis on IMPT,

scanning techniques and the inverse planning process is given.

• Chapter 3 describes the algorithm for three-dimensional LET calculations, which —

in addition to the dose — will provide the physical input data for the following RBE

calculations.

• In chapter 4, the phenomenological model for the RBE as a function of dose, LET

and tissue type is presented and compared to experimental results.

• Chapter 5 then introduces new optimization strategies that integrate the RBE into

the optimization process, and the effects of a variable RBE are discussed for several

clinical examples.

• As an outlook, chapter 6 addresses the potential transfer of these strategies from

protons to heavier charged particles, e.g. for radiotherapy with carbon ions.

• Finally, a summary and the main conclusions are given in chapter 7.
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Chapter 2

Intensity Modulated Proton Therapy

The therapeutical use of proton beams was proposed by Wilson in 1946, and the first

patients were irradiated in the 1950s and 1960s in the USA (Berkeley and Harvard), Sweden

(Uppsala) and the former Soviet Union (Dubna and Moscow). Since then, more than 36 000

tumour patients have been treated with protons all over the world (Sisterson 2004). The

number of proton facilities is increasing, and especially in the last few years a couple of new

hospital based proton accelerators started their operation in the USA and Japan, while

some more are under construction. Rather than the high energy physics laboratories,

where the first patients were treated, these new machines are dedicated only to medical

applications and can provide a patient friendly environment, higher patient throughput

and research facilities in the fields of oncology and medical physics.

In Germany only the Hahn-Meitner-Institute (HMI) in Berlin currently irradiates pa-

tients with protons, though their 68 MeV beam is only used for the treatment of ocular

tumours (Heese et al. 2001). However, several facilities with higher energies for deep seated

tumours are planned or under construction, in particular a centre for protons and heavier

ions at the University of Heidelberg and the Rinecker Proton Therapy Center (RPTC)

in Munich. Listings of all operating and proposed facilities can be found in the Particles

newsletter (Sisterson 2004).

Intensity modulated proton therapy (IMPT) is a special and relatively new technique of

proton therapy. One could argue that almost every kind of proton therapy involves some

degree of intensity modulation (e.g. the weighted superposition of pristine Bragg peaks

to yield a spread-out Bragg peak). However, following the argument of Lomax (1999),

IMPT is understood as a technique with several fields or beam ports that each create an

inhomogeneous dose distribution in the target; these fields are optimized in such a way

that their total dose distribution satisfies the clinical objectives, e.g. a homogeneous and
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2. Intensity Modulated Proton Therapy

conformal dose to the target volume while sparing neighbouring organs at risk. This is in

agreement with the current understanding of intensity modulated radiotherapy for photons

(IMRT, for an overview see Webb 2001). Compared to conventional techniques, intensity

modulation can yield better target coverage and improved sparing of normal tissues.

In this chapter, I will summarize the fundamentals of proton therapy in general, and in

particular of IMPT. Emphasis will be placed on those formulas and techniques that will

be needed in the subsequent chapters of this work. More detailed introductions into the

physics of proton therapy and into treatment planning for protons can be found in Bichsel

(1968), Webb (1993, chap. 4), Webb (1997, chap. 6) and Oelfke (2002). In section 2.1,

a brief review on the physical properties and therapeutical advantages of proton beams

is given. I will then describe current delivery techniques (section 2.2), with the focus on

scanning techniques that are employed in intensity modulated proton therapy. Finally, dose

calculation algorithms and optimization strategies for treatment planning will be addressed

in section 2.3.

2.1 Physical properties and therapeutical advantages

of proton beams

2.1.1 Stopping power, range and dose

In contrast to uncharged particles like photons, protons as charged particles have a dis-

tinctive range in matter. The depth dose curve shows a characteristic maximum, called

the Bragg peak (cf figure 2.1). The amount of energy that a proton looses per unit length

of its track is called the stopping power S(E), which can be obtained from Bethe’s formula

(see Johns and Cunningham 1983, ICRU 1993).

The range itself is defined as the position of the 80% dose behind the peak. The higher

the initial velocity or the kinetic energy of the protons, the greater is the range. In the

continuous slowing down approximation (CSDA), the range R for protons of energy E can

be calculated easily from the energy dependent stopping powers S(E) by

R(E) =

∫ 0

E

1

S(E ′)
dE ′. (2.1)

This range-energy relationship can be parameterized by a simple power law, which was

already given by Wilson (1946):

R = αEp. (2.2)
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2.1 Physical properties and therapeutical advantages of proton beams
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Figure 2.1: Dose (——), fluence (· · · · · ·) and dose averaged LET (– – –, right ordinate)
along the central axis for a 160 MeV proton beam. A similar figure was already given by
Larsson (1961).

Using the stopping powers given in ICRU report 49 (1993), Bortfeld (1997) gave as a best

fit α = 0.0022 cm MeV−p and p = 1.77. The dose D at a specific point x (i.e. the absorbed

energy per unit mass) can be obtained by

D(x) =
1

ρ

∫ ∞

0

S(E)φE(x)dE, (2.3)

where ρ is the density of the material and φE(x) the fluence spectrum with respect to en-

ergy. Strictly speaking, this is cema (converted energy per unit mass) rather than absorbed

dose (Kellerer et al. 1992, ICRU 1998), which can be used as a good approximation of the

dose.

The stopping power quantifies the density of ionization events along the proton track,

and is usually given in units of keV/µm. It is strongly connected to the term “linear energy

transfer” (LET), which will be discussed in more detail in chapter 3. In figure 2.1 the dose

averaged LET as a local mean of the stopping power is also shown. The LET is low in the

entrance region, and rises first slowly and then very steeply at or behind the Bragg peak.

The characteristic depth dose curve with the Bragg peak (figure 2.1) illustrates the

therapeutical advantages of protons: the dose is low in the entrance region (where the

beam passes through normal tissue to reach the tumour), and the high dose region of the

Bragg peak can be conveniently placed in the target volume. Behind the peak, the steep
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2. Intensity Modulated Proton Therapy

dose falloff leads to an almost zero exit dose. The width of the Bragg peak is given by the

range straggling of the protons and by the initial width of the energy spectrum. Analytical

expressions for the depth dose curve have been developed by Bortfeld and Schlegel (1996)

and Bortfeld (1997).

The lateral dose falloff (“penumbra”) of a proton beam can be very sharp in the entrance

region, but it becomes broader with increasing depth in the tissue due to multiple Coulomb

scattering (Gottschalk et al. 1993). The lateral penumbra is therefore roughly the same as

for mega-voltage photon beams from linear accelerators. To gain a therapeutical advantage

in comparison to photons in the penumbra region, one would have to go to heavier charged

particles like helium or carbon ions, which show less lateral scattering in tissue.

2.1.2 Coulomb and nuclear interactions

The stopping power S(E) only accounts for Coulomb interactions. While those are cer-

tainly the majority, some protons also undergo nonelastic nuclear interactions. The latter

lead to the production of secondary particles (mainly protons, neutrons and alpha particles,

Paganetti 2002) and a reduction of the primary proton fluence with depth (cf figure 2.1

and Lee et al. 1993, Bortfeld 1997). While the dose due to secondary neutrons is very

low (Agosteo et al. 1998, Schneider et al. 2002), secondary protons and alpha particles can

contribute considerably to the dose, especially in the entrance region (Paganetti 2002).

A useful application of nuclear interactions are the positron emission tomography (PET)

measurements of β+ activity produced by protons interacting with light elements like car-

bon, nitrogen and oxygen (e.g. Oelfke et al. 1996, Parodi et al. 2002), which can in principle

be used to monitor the dose delivery process.

2.2 Delivery techniques for proton beams

2.2.1 Spread-out Bragg peaks

One single Bragg peak alone is in most cases not suitable for tumour treatments, simply

because the spatial dimensions of the high dose region are too small. To irradiate larger

targets, one has to superimpose several pristine peaks in a suitable way to obtain a ho-

mogeneous dose distributions in the planning target volume (PTV, cf ICRU 1999). The

classical way to accomplish this for a single beam direction are the so-called spread-out

Bragg peaks (SOBPs). Here several pristine peaks from the same incident beam angle are

modulated in energy, i.e. their range in the tissue is shifted individually. By using appro-
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Figure 2.2: Dose distribution in a spread-out Bragg peak (SOBP, thick line) with a
modulation width of 9 cm. In this example, the SOBP is the sum of eight constituent
pristine peaks with different positions and intensities (thin lines).

priate weights for every peak, a homogeneous high dose region can be achieved (figure 2.2).

The weights are usually obtained by an optimization algorithm (e.g. Gardey et al. 1999),

so that the range and the modulation width (usually the distance between the proximal

and distal 90% isodose) match the desired values.

In practice, SOBPs are mostly generated by rotating modulator wheels in the beam

line, although in principle it could be done with active energy variation as well. Upstream

of the modulator wheel, the beam is spread-out laterally, e.g. by a double scattering system

(Koehler et al. 1977). Before the beam enters the patient, the field can be shaped to the

lateral dimensions of the PTV by a brass collimator, and to the distal PTV edge by an

acrylic compensator, as it is for example routinely done in the Northeast Proton Therapy

Center (NPTC) in Boston (cf Bussière and Adams 2003).

This technique of SOBPs in conjunction with passive field shaping gives a homogeneous

dose in the PTV for a single beam direction, and can of course be applied to several

successive beam ports with different incident beam angles. However, this technique does

not fully exploit all possible degrees of freedom, and intensity modulated proton therapy

can be expected to yield superior dose distributions. The scanning techniques employed in

IMPT will be discussed in the following section.
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2. Intensity Modulated Proton Therapy

DET 3D modulation

Figure 2.3: Illustration of two spot scanning techniques for one of potentially many beam
directions: the distal edge tracking technique (left) places the beam spots at the distal edge
of the PTV (solid line) only, while beam spots are distributed all over the PTV for the 3D
modulation technique (right).

2.2.2 Scanning techniques

Lomax (1999) described four methods of intensity modulation for proton therapy. Based

on the degrees of freedom for the modulation, they were named two-dimensional (2D),

2.5D and 3D modulation, while the fourth method was already called distal edge tracking

(Deasy et al. 1997). The 2D and 2.5D techniques both work with narrow SOBPs, which are

scanned across the field while their intensity is modulated in the two lateral dimensions.

This can be done either using SOBPs of fixed extent (2D modulation), or by simultaneously

varying the modulation width of the SOBP in order to match the respective dimensions of

the planning target volume (2.5D modulation). For the two other techniques (DET and

3D modulation), narrow beam spots consisting of a single Bragg peak rather than SOBPs

are placed in the PTV, and their individual weights are optimized to achieve the desired

dose distribution.

For the purpose of this work, the latter approaches (DET and 3D modulation) seem to

be more interesting, as we do not only want to calculate three-dimensional distributions

of the relative biological effectiveness or RBE (which would be useful for all techniques),

but we rather want to include the RBE in the optimization loop to obtain the optimal

treatment plan in terms of the biological effect instead of the physical dose. This means

that the physical dose in the PTV will not necessarily be homogeneous, which renders

pre-defined SOBPs not very useful in this context. Only by optimizing the weights of all

Bragg peaks individually, one can fully exploit all possible degrees of freedom. Therefore,

I will concentrate in the following on the DET and 3D modulation techniques and will

describe only them in more detail.
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2.2 Delivery techniques for proton beams

DET 3D modulation

integral dose ©+ ©-
optimization effort ©+ ©-
delivery effort ©+ ©-
delivery uncertainties ©- ©+
required number of beam ports ©- ©+
RBE effects ©- ? ©+ ?

Table 2.1: Summary of advantages and disadvantages of the DET and 3D modulation
techniques. While DET is superior in terms of integral dose and the effort for optimization
and delivery, it causes higher uncertainties in the delivery, can require more beam ports and
might show unfavourable biological effects. The latter will be investigated in more detail in
chapter 5.

The distal edge tracking technique was proposed by Deasy et al. (1997). For every

beam port, it uses single Bragg peaks that are placed only at the distal edge of the planning

target volume. For one beam direction, this is illustrated in figure 2.3. The modulation

is achieved by assigning individual weights to every beam spot. For a sufficient number

of beam angles, this technique can yield a homogeneous dose in the PTV. The ratio of

“energy deposited inside the target” and “energy deposited outside the target” can be

maximized for the DET technique (Deasy et al. 1997), which leads to better sparing of the

normal tissue surrounding the PTV and a reduced integral dose. This was also confirmed

in theoretical studies by Oelfke and Bortfeld (2000) for centrally located targets in rotation

therapy, especially for small target volumes.

On the other hand, the 3D modulation technique (sometimes also called 3D scanning)

employs much more beam spots. They are placed all over the PTV, and their weights

are varied independently (figure 2.3). The greater number of beam spots makes the whole

technique more complex and increases the effort required in computing and optimization

as well as for the delivery (Nill 2001). However, potential errors in the delivery process are

reduced compared to DET, since 3D modulation is less sensitive to organ movements or

to range uncertainties, which can for example be caused by errors in the calibration of the

X-ray computed tomography (CT) scanner used. The 3D modulation has more degrees of

freedom than DET and is therefore the most flexible technique. Especially when only a

small number of beam ports is used, the 3D modulation becomes superior to DET, since

it can achieve homogeneous dose distributions even for one single field (Lomax 1999).

Table 2.1 summarizes the advantages and disadvantages of the two techniques. One of

the aims of this work is to answer the interesting question about the potential effects of a
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2. Intensity Modulated Proton Therapy

variable RBE in the two cases. Elevated RBE values can be expected at the distal edge of

every single beam spot (e.g. Paganetti and Schmitz 1996, Paganetti et al. 2002). For DET,

this may lead to higher RBE values at the border of the PTV than in its centre, while a

more homogeneous RBE distribution is expected for 3D modulation (Nill 2001, p 70). This

effect will be investigated in detail in chapter 5, and we will see whether such unfavourable

effects can be compensated for by appropriate modifications in the optimization process.

For the actual delivery of narrow proton beams in a scanning pattern, several technical

realizations have been developed over the last years. High energy proton beams are usually

produced in cyclotrons or synchrotrons, and a beam line system is used to deliver the beam

to the treatment room and to the patient. While only fixed beam lines were employed in the

beginning of proton therapy, gantry systems that allow the irradiation of the patient from

many beam ports were constructed later to provide more degrees of freedom. To direct

the beam towards the patient, the gantries have to be equipped with bending magnets

with large magnetic fields. This leads to an enormous size: the gantry at the Paul Scherrer

Institute (Villigen) has a diameter of 4 m (Pedroni et al. 1995), which is even relatively small

compared to other installations. The actual beam scanning in the two lateral directions

is accomplished by magnetic deflection systems (e.g. Kanai et al. 1980). This can be

done either using two sweeping magnets (Lorin et al. 2000), or by combining one sweeping

magnet with a moveable patient couch to cover the second direction (Pedroni et al. 1995).

One can distinguish between spot scanning and raster scanning methods. While the beam

is only switched on at discrete positions in spot scanning, raster scanning involves the

continuous scanning of the beam along a predefined trajectory. Ideally, the treatment

planning software should account for the properties of the specific scanning system at the

planning stage, although it is possible to convert discrete intensity maps into continuous

scanning patterns later on (Trofimov and Bortfeld 2003).

2.3 Dose calculation and optimization

For the dose calculation in proton therapy a number of methods and algorithms are avail-

able (e.g. Hong et al. 1996, Carlsson et al. 1997, Deasy 1998, Russell et al. 2000; for an

overview see Oelfke 2002). They are either based on broad beam or pencil beam models,

or they rely on Monte Carlo techniques. Although more time consuming, Monte Carlo

simulations are superior if inhomogeneities in the patient geometry have to be taken into

account. A promising compromise are methods that involve two-dimensional scaling of

pencil beams (Szymanowski and Oelfke 2002, 2003).
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2.3 Dose calculation and optimization

Due to the increased degrees of freedom for scanning techniques, inverse treatment

planning is required in IMPT. This means that the individual weights of all beam spots

have to be optimized by a computer program using appropriate optimization algorithms.

In this work, a research version of the inverse planning tool KonRad is employed, which

provides an option for IMPT with discrete spot scanning techniques (Nill et al. 2000, Nill

2001, Nill et al. 2004). The dose calculation in KonRad is done by a finite pencil beam

algorithm using the concept of the Dij matrix (see below and Nill 2001).

2.3.1 The concept of the Dij matrix

The Dij matrix (sometimes also called influence matrix) is a computational method to

separate the dose calculation from the optimization. Let us consider a set of N beam spots

that irradiate a patient or a phantom. At a certain voxel i, several of these beam spots

will contribute to the dose Di. Now Dij shall denote the dose contribution of beam spot j

in voxel i per unit fluence of beam spot j. The total dose Di in voxel i is then given by

Di =
N∑

j=1

Dijwj, (2.4)

where wj denotes the relative fluence weight of beam spot j.

The elements of the Dij matrix can be filled by any desired dose calculation algorithm.

Even complicated or time consuming methods like Monte Carlo could be used, since the

Dij matrix has to be calculated only once for a given treatment situation. During the

iterations of the optimization loop, where the weights w = {wj} are determined, the actual

dose distribution can be updated easily and very fast by equation (2.4), which does not

need any complicated computational procedures. Another advantage of the precalculated

Dij matrix approach is the possibility for multi-modality treatment planning, since sub-

sets of the beam spots can utilize different radiation modalities, and the respective Dij

elements can be calculated by different algorithms (Nill 2001).

2.3.2 Optimization strategies

The aim of the optimization is to find a set of weights w so that the resulting dose distribu-

tion best matches the desired clinical objectives. The latter are usually given as constraints

in terms of the physical dose, e.g. minimum and maximum dose levels for the PTV (DPTV
min

and DPTV
max ) to ensure a homogeneous dose in the PTV, and maximum doses for organs at

risk (DOAR
max ). Mathematically, the optimization is done by minimizing a so-called objective
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2. Intensity Modulated Proton Therapy

function by iterative algorithms. These algorithms can be either deterministic (e.g. the

Newton gradient technique, which is implemented in KonRad), or stochastic methods like

simulated annealing. An overview of optimization techniques can be found in Webb (2001,

chap. 5.5), and a comparison of three algorithms using Newton’s method in Holmes and

Mackie (1994).

A typical example of an objective function for one PTV and one organ at risk is

F (w) = FPTV(w) + FOAR(w) (2.5a)

with

FPTV(w) = νPTV
min

∑
i∈PTV

[
C+(DPTV

min −Di(w))
]2

+νPTV
max

∑
i∈PTV

[
C+(Di(w)−DPTV

max )
]2

(2.5b)

and

FOAR(w) = νOAR
max

∑
i∈OAR

[
C+(Di(w)−DOAR

max )
]2

, (2.5c)

which is called the standard quadratic objective function. The user-defined penalty factors

ν specify the relative importance of the respective dose constraints, and the C+ operator

selects only those voxels that violate the given constraint, i.e. C+(x) = x for x > 0 and

C+(x) = 0 otherwise (Oelfke and Bortfeld 2001, Oelfke 2002). This objective function can

easily be extended to more complex situations, e.g. with more than one organ at risk.
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Chapter 3

Three-Dimensional LET Calculations

3.1 Introduction

Besides other parameters like dose, tissue type and the biological endpoint, the RBE de-

pends on the local energy spectrum (e.g. Belli et al. 1989, Skarsgard 1998, Kraft 2000).

The latter is often referred to as “radiation quality” and can be characterized in first order

by the linear energy transfer LET (ICRU 1970). Thus it is of interest to provide three-

dimensional LET distributions in addition to the dose distributions. They can help to

localize high LET regions, where the greatest variations of RBE are expected, or they can

serve as input for the estimation of three-dimensional RBE distributions (see chapter 4).

Additionally, the LET calculations also have potential applications for predicting the re-

sponse of LET dependent dosimeters, e.g. in gel dosimetry (cf Bäck et al. 1999, Heufelder

et al. 2003) or alanine detectors (cf Palmans 2003).

While the LET for monoenergetic protons is easily obtained from tables (ICRU 1993),

the calculation of the mean local LET for realistic proton spectra, e.g. in spread-out Bragg

peaks, is a more complicated task. This can in principle be accomplished by Monte Carlo

simulations (Seltzer 1993, Berger 1993, Wouters et al. 1996). However, these simulations

are still very time consuming and not well suited to iterative treatment planning, where

LET distributions have to be calculated several times until the optimum treatment plan

is found (cf chapter 5). A fast method for three-dimensional LET calculations is therefore

presented in this work. It is based on an analytical model for the LET distribution along

the central axis of broad proton beams in water and allows fast calculations of LET with

simple parameters, namely the beam energy and the width of the initial energy spectrum.

This chapter is organized as follows: first, I will recall some definitions of LET (sec-

tion 3.1.1), explain how LET distributions can be superimposed (section 3.1.2) and moti-
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3. Three-Dimensional LET Calculations

vate the use of the dose averaged LET (section 3.1.3). In section 3.2, I will then describe

the methods for three-dimensional LET calculations, before some results are presented

(section 3.3) and discussed (section 3.4).

3.1.1 Definitions of LET

The term “linear energy transfer,” which is in this work applied to protons only, is widely

used to describe radiation quality. There are currently several definitions of LET in use,

so I will first give an overview of some of these concepts.

All LET definitions are based on the stopping power. The total linear stopping power

S for a given material is the sum of the linear collision stopping power Scol and the linear

radiative stopping power Srad. As the latter can be neglected for therapeutic protons

(ICRU 1993), we get

S = Scol =

(
dE

dl

)

col

, (3.1)

where dE is the energy lost by a proton in traversing a distance dl (ICRU 1998). Sometimes

Scol denotes the electronic collision stopping power Sel only, i.e. the stopping power due to

Coulomb interactions with electrons (ICRU 1993). In our context S shall always include

the stopping power due to Coulomb interactions with nuclei (sometimes termed Snuc), i.e.

S = Sel + Snuc.

ICRU report 60 (1998) defines the linear energy transfer as the restricted linear elec-

tronic stopping power L∆, where electrons released with kinetic energies greater than ∆

are treated separately. The unrestricted linear energy transfer L∞ equals again Sel.

Besides that, the term LET is also employed to describe a mean value of the stopping

power. This mean can be calculated either along the track of a single particle (ICRU

1970, Hall 2000) or by averaging the stopping powers of all particles at a certain point in

a radiation field (ICRU 1970, Berger 1993). The latter approach will be used in this work:

LET is here defined as a local mean of the stopping power S to quantify the local radiation

quality.

Let us consider a point x in a radiation field. The protons contributing to the fluence

at x will usually not be monoenergetic and will therefore have different stopping powers.

In this situation it is useful to define an average stopping power or LET. As usual, average

values can be defined in several ways. The two most common implementations are the

track averaged LET and the dose averaged LET. The track averaged LET is the mean

value of S weighted by fluence (or particle tracks, hence the name), i.e. it is the arithmetic
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mean of S for all protons present. For the dose averaged LET the stopping power of each

individual proton is weighted by its contribution to the local dose.

The situation is further complicated, if several different species of charged particles are

present at the point x. In proton therapy this is almost always the case, as secondary

particles produced in nonelastic nuclear interactions include charged particles that are

heavier than protons (e.g. He ions). One can then calculate a mean LET for each particle

type separately, using the respective stopping powers and energy spectra, and average

them to get a total LET (Seltzer 1993, Berger 1993). However, as a simplification only

the “pure” proton LET will be considered in this work, i.e. the LET contributions of all

charged particles other than protons will be disregarded.

As shown above, the track and dose averaged LET depend on the local energy spectrum

at the point x. In the following, the spectrum will be described in terms of the particle’s

residual range rather than its energy. This is possible because there is a unique relation

between the energy and the residual range (cf equation (2.2)) in the continuous slowing

down approximation (CSDA). A respective range-energy table was published in ICRU

report 49 (1993).

Let r denote the residual range of an individual proton at a point x, and ϕr(x) the

local particle spectrum at this point, i.e. ϕr(x)dr gives the fluence of protons at x with

residual ranges between r and r + dr. The total particle fluence at x will be
∫∞

0
ϕr(x)dr.

The track averaged linear energy transfer Lt(x) at x is then given by

Lt(x) =

∫ ∞

0

ϕr(x)S(r)dr
∫ ∞

0

ϕr(x)dr

, (3.2)

where S(r) is the stopping power of protons with residual range r. Similar to the notation

used by Berger (1993), the dose averaged linear energy transfer Ld(x) at x is defined as

Ld(x) =

∫ ∞

0

ϕr(x)S2(r)dr
∫ ∞

0

ϕr(x)S(r)dr

. (3.3)

For monoenergetic protons both the track averaged and the dose averaged LET equal the

stopping power S.
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3.1.2 Superposition of LET distributions

For spread-out Bragg peaks and/or beams from more than one direction the LET distri-

butions for the superposition of several beam spots or beams have to be computed. Let

us therefore consider n beams or beam spots with local spectra ϕr,j(x) (j = 1 . . . n) at a

point x. The total spectrum ϕr(x) will just be the sum of ϕr,j(x) for all beams. As the

summation and the integration can be permuted, equations (3.2) and (3.3) become

Lt(x) =

n∑
j=1

∫ ∞

0

ϕr,j(x)S(r)dr

n∑
j=1

∫ ∞

0

ϕr,j(x)dr

(3.4)

and

Ld(x) =

n∑
j=1

∫ ∞

0

ϕr,j(x)S2(r)dr

n∑
j=1

∫ ∞

0

ϕr,j(x)S(r)dr

. (3.5)

This means that one can calculate the numerator and denominator in equations (3.2) and

(3.3) separately for each beam and add them up before performing the final division.

Let us now denote the individual LETs of all beam spots by Lt,j(x) and Ld,j(x) and

their contribution to the total absorbed dose D(x) by Dj(x). The individual fluences are

then given by Φj(x) = ρDj(x)/Lt,j(x) (cf equation (2.3)). Thus one can express the track

averaged and dose averaged LET by

Lt(x) =

n∑
j=1

Lt,j(x)Φj(x)

n∑
j=1

Φj(x)

=
ρ

Φ(x)

n∑
j=1

Dj(x) (3.6)

and

Ld(x) =

n∑
j=1

Ld,j(x)Dj(x)

n∑
j=1

Dj(x)

=
1

D(x)

n∑
j=1

Ld,j(x)Dj(x). (3.7)

So for every point x the dose averaged LET is the mean of the individual LETs Ld,j(x) of

all beam spots, weighted by their contributions Dj(x) to the total absorbed dose at x.
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D1 D2 D = D1 + D2 Φ1 Φ2 Lt Ld

(Gy) (Gy) (Gy) (109/cm2) (109/cm2) (keV/µm) (keV/µm)

1 1 2 0.62 0.042 1.9 8.0
10 1 11 6.2 0.042 1.1 2.3
1 10 11 0.62 0.42 6.6 13.7

Table 3.1: Comparison of track averaged and dose averaged LETs for mixed irradiation
with two different stopping powers (S1 = 1 keV/µm and S2 = 15 keV/µm) for three ratios
of the respective doses D1 and D2.

3.1.3 Motivation for the use of the dose averaged LET

In the previous sections, two LETs were introduced: the track averaged and the dose

averaged LET. Although both of them are currently in use, the question arises which one

of the two should be used in our context, i.e. for the estimation of RBE distributions.

For monoenergetic protons, Lt(x) and Ld(x) equal each other. Differences occur a)

if the local energy spectrum of the protons becomes broader (as it is the case in every

realistic proton beam), and b) if the protons at x come from several beam spots with

different energies (e.g. for SOBPs or scanning techniques) either from the same direction

or from multiple beam angles. We are now looking for a reasonable way to define a mean

stopping power or LET that resembles the overall situation at that point. In other words:

what is the mean stopping power 〈S(x)〉 so that a dose D(x) of monoenergetic protons

with 〈S(x)〉 has the same biological effect as the initial set of polyenergetic protons with

a total dose of D(x)?

Let us consider a brief example: a certain voxel of water (density ρ = 1 g/cm3) shall

be irradiated by two proton beams with stopping powers of S1 = 1 keV/µm and S2 =

15 keV/µm, respectively. We assume that these values do not change within the voxel.

Table 3.1 shows the resulting LETs for three scenarios with different dose weighting. The

corresponding fluences Φ1 = ρD1/S1 (cf equation (2.3)) and Φ2 as well as the total fluence

Φ are also given. Obviously, in all cases Lt and Ld lie between S1 and S2. For equal doses

(D1 = D2), one would intuitively expect 〈S〉 to be more or less in the middle between

S1 and S2, which is fulfilled by Ld, but not by Lt. For D1 = 10 × D2, the situation is

dominated by the low LET radiation, so 〈S〉 should be similar to S1. This condition is

satisfied by both Lt and Ld. In the third case, where D2 = 10×D1, 〈S〉 should be close to

S2; this is only true for the dose averaged LET (table 3.1). Intuitively, the dose averaged

LET therefore seems to be more appropriate for our purpose. This is supported by the fact
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that the dose (rather than the fluence) is used in radiotherapy as the primary indicator of

the biological effect, which makes dose weighting also reasonable for second order effects.

Another more important argument will become apparent in section 4.2.3 when the RBE

model is explained, and shall be discussed here only briefly. When the linear-quadratic

(LQ) model (Kellerer and Rossi 1978) is applied to mixed irradiations with different LET,

it is reasonable to use the dose averaged mean of the α parameter (Zaider and Rossi 1980).

In chapter 4, I will express α as a linear function of LET, and under that restriction the

dose averaged mean of α is equivalent to α calculated as a function of the dose averaged

LET.

So in this work, I will concentrate on the dose averaged LET, although I will also

provide some formulas for the track averaged LET for the sake of completeness. For the

RBE calculations in this work (chapters 4 and 5), only the dose averaged LET is used.

3.2 Methods

I will now derive an algorithm for three-dimensional LET calculations (Wilkens and Oelfke

2004) for realistic treatment plans and patient geometries, i.e. based on computed to-

mography (CT) data sets. In order to obtain the LET distribution in analogy to dose

calculations, we will need i) a model for the LET on the central axis for a single beam spot

or Bragg peak in a water phantom (section 3.2.1, see also Wilkens and Oelfke 2003), ii)

lateral LET distributions to get off-axis values (section 3.2.2), and iii) a rule for scaling the

LET with the radiological depth to account for tissue inhomogeneities (section 3.2.3). The

implementation of this algorithm in the treatment planning software KonRad is described

in section 3.2.4.

3.2.1 LET along the central axis

In this section, I will present an analytical model for the LET distribution along the

central axis of proton beams (section 3.2.1.1). After that, I will describe the Monte Carlo

simulations that were performed to validate the analytical model (section 3.2.1.2).

3.2.1.1 The analytical LET model

Protons in matter undergo Coulomb interactions (with electrons and nuclei) and nonelastic

nuclear interactions, leading to target fragmentation and secondary particles. For the

analytical LET model only Coulomb interactions of primary protons as the most frequent

interaction process are considered. Especially around the peak and at the distal edge
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of the Bragg curve, where the largest increase in LET is expected, the absorbed dose is

dominated by Coulomb interactions. The dose due to secondary particles can be neglected

at or behind the Bragg peak (Paganetti 2002). Nonelastic nuclear interactions occur mostly

in the entrance region of the Bragg curve, where the LET is generally low and varies only

slightly. However, secondary particles such as alpha particles may have high stopping

powers and therefore high LET contributions. Hence they might influence the biological

effect (Paganetti 2002), albeit experimental evidence has not yet been firmly established.

Let us now consider a single broad beam of protons in a water phantom. The derivation

of a model for the LET along the central axis (Wilkens and Oelfke 2003) can be done in very

close analogy to studies presented by Bortfeld (1997), where an analytical approximation

for the proton depth dose curve was developed. Let ϕr(z) denote the local proton spectrum

in residual range r at depth z. To calculate the LET values according to (3.2) and (3.3)

we will have to evaluate the following three integrals:

Φz :=

∫ ∞

0

ϕr(z)dr,

〈S〉z :=

∫ ∞

0

ϕr(z)S(r)dr and (3.8)

〈S2〉z :=

∫ ∞

0

ϕr(z)S2(r)dr.

The track averaged and dose averaged LET can then be calculated by

Lt(z) =
〈S〉z
Φz

and Ld(z) =
〈S2〉z
〈S〉z . (3.9)

Before solving these three integrals, we will have a closer look at the spectrum ϕr(z) and

the stopping power S(r).

Local proton spectra First an expression for the local proton spectrum ϕr(z) with

respect to residual range r is derived. Let R0 be the mean initial range of the protons

entering the water phantom with a fluence Φ0 at the phantom surface (z = 0). At depth

z ≥ 0, we will assume a Gaussian spectrum with standard deviation σ(z) around the mean

residual range R0 − z:

ϕr(z) =
Φ0√

2πσ(z)
e−(r−(R0−z))2/2σ2(z). (3.10)

The total fluence
∫∞
0

ϕr(z)dr at depth z will be Φ0 at z = 0, 1
2
Φ0 at z = R0, and 0

for z À R0. There are two contributions to σ(z): the range straggling width σmono(z) for

monoenergetic protons and the machine dependent width of the initial energy spectrum of
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the incident protons, which is usually not monoenergetic, but has a certain width σE. The

latter is usually given in MeV but can be translated into a standard deviation of range by

using the range-energy relationship.

Although the range straggling width σmono(z) strongly depends on z, as straggling

increases with depth, it is a good approximation to use a constant σ instead of σ(z)

(Bortfeld 1997). Then (3.10) becomes

ϕr(z) =
Φ0√
2πσ

e−(r−R0+z)2/2σ2

. (3.11)

For σmono, Bortfeld (1997) derived the expression 0.012 · R0.935
0 , where σ and R0 are given

in cm. To transform σE from energy to range, he linearized the range-energy relationship

r = αEp (2.2) around the mean initial energy E0. This yields

σr = σE
dr

dE

∣∣∣∣
E=E0

= σEαpEp−1
0 = σEα1/ppR

1−1/p
0 . (3.12)

The total σ can then be calculated from σmono and σr:

σ2 = σ2
mono + σ2

r . (3.13)

A more precise model of the initial energy spectrum would not only consider the main

peak but also the so-called tail towards lower energies, which can be found in many treat-

ment machines. This relatively small tail is neglected because the protons of the tail will

not reach the depth of R0 due to their lower energy, i.e. they only affect the entrance region

of the Bragg curve, where LET variations are small. However, they will increase the LET

in this region slightly without influencing it at or behind the Bragg peak.

Fluence reduction Equation (3.10) does not take into account any absorption of pro-

tons. But the proton fluence decreases with increasing depth due to nonelastic nuclear

interactions. As one can assume a linear reduction with depth (Lee et al. 1993, Bortfeld

1997), a better approximation for the local proton spectra than (3.10) would be

ϕr(z) =
Φ0√
2πσ

1 + βr

1 + βR0

e−(r−(R0−z))2/2σ2

, (3.14)

with β = 0.012 cm−1.

The analytical LET calculations can be performed with these improved spectra without

extraordinary mathematical effort. However, it turned out that β did not have any relevant
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Figure 3.1: Proton stopping powers in water as a function of residual range. The circles
represent the values published in ICRU report 49 (1993). The solid and dotted lines are
the basic parametrization by Bortfeld (1997) using a single power law and the result of the
regularization with R = 2 µm, respectively.

impact on the resulting LET distributions. This can be understood by the mathematical

structure of equations (3.2) and (3.3): due to the definitions of LET as a ratio the absolute

number of particles is not very important but rather the relative spectra. Although the β

terms do not completely cancel mathematically, it is obvious that reducing the number of

particles will not affect the LET values much. Therefore β was neglected in all other LET

calculations presented in this work.

Stopping power Proton stopping powers were published in ICRU report 49 (1993). The

total stopping power due to Coulomb interactions with electrons and with nuclei is plotted

in figure 3.1. According to a fit by Bortfeld (1997), a simple power law can be used as an

analytical expression for the stopping power:

S̃(r) =
1

pα1/p
r1/p−1, (3.15)

with p = 1.77 and α = 0.0022 cm·MeV−p (cf section 2.1.1).

This is a good fit for residual ranges between approximately 2 µm and 50 cm (see

figure 3.1). Ranges above 50 cm in water are not needed in radiation therapy, but the

deviations below 2 µm can become important for LET calculations. As protons with

ranges around 2 µm and smaller (corresponding to energies well below 1 MeV) do not
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3. Three-Dimensional LET Calculations

contribute much to the absorbed dose, this fit works well for dose calculations. However,

such low-energy protons have an impact on the LET calculations, especially due to the

singularity of S̃(r) at r → 0, which has no physical counterpart in reality. To avoid this

singularity, the stopping powers for low ranges have to be modeled more precisely. To

keep the formula simple and in the mathematical form of power laws, a regularization is

performed: S̃(r) is substituted by SR(r), which is the mean stopping power along the last

bit of length R of the path, i.e. the mean of S̃ in the interval [r, r + R]:

SR(r) =
1

R

∫ r+R

r

S̃(r′)dr′ =
1

Rα1/p

[
(r + R)1/p − r1/p

]
. (3.16)

The result for R = 2 µm is shown in figure 3.1. The value of R was adjusted by comparing

our analytical model to Monte Carlo simulations (see section 3.3.1.2). For S2(r), which is

needed for the calculation of the dose averaged LET, a similar regularization is performed:

S2
R(r) =

1

R

∫ r+R

r

S̃2(r′)dr′ =
1

Rα2/pp(2− p)

[
(r + R)2/p−1 − r2/p−1

]
. (3.17)

For the following calculations, SR(r) and S2
R(r) are used for S(r) and S2(r).

Calculation of LET By employing our expressions for ϕr(z) and the stopping power in

(3.8), a short calculation presented in appendix A leads to the following results:

Φz =
Φ0√
2π

e−ζ2/4D−1(ζ),

〈S〉z =
Φ0√

2πσRα1/p

[
σ1+1/pΓ(1 + 1

p
)D̃1+1/p(ξ, ζ)−R( 1

2
R)1/pe−(ζ+ξ)2/8

]
, (3.18)

〈S2〉z =
Φ0√

2πσRα2/pp(2− p)

[
σ2/pΓ( 2

p
)D̃2/p(ξ, ζ)− 2( 1

2
R)2/pe−(ζ+ξ)2/8

]
,

with D̃ν(ξ, ζ) = e−ξ2/4D−ν(ξ)−e−ζ2/4D−ν(ζ) and ζ = (z−R0)/σ, ξ = (z−R0−R)/σ. Here

Γ(x) is the gamma function and Dν(x) are the parabolic cylinder functions (Gradshteyn

and Ryzhik 1994). These functions are tabulated (Abramowitz and Stegun 1972) or can

be easily computed by computer programs. The track averaged and dose averaged LET

can now be calculated by inserting these results into (3.9). If z, R0, R and σ are given in

cm, Lt and Ld will have units of MeV/cm. Multiplying these values by 0.1 yields units of

keV/µm.

Although the introduction of the parabolic cylinder functions seems to be quite elegant

from a mathematical point of view, it must be noted that this is certainly not the only way
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to approach these integrals. They can as well be evaluated numerically, which would allow

for even more complicated integrands, as they were no longer restricted to power laws.

The calculations presented above can be performed similarly without the regularization

of S̃(r), i.e. by using S̃(r) and S̃2(r) in (3.8) instead of SR(r) and S2
R(r). For the dose

averaged LET, this would yield

Ld(z) =
σ1/p−1Γ( 2

p
− 1)D1−2/p(ζ)

pα1/pΓ( 1
p
)D−1/p(ζ)

. (3.19)

However, this simplified approach would significantly overestimate the LET (see sec-

tion 3.3.1.2) and can therefore not be used for LET calculations.

3.2.1.2 Monte Carlo simulations of LET

Although LET and related quantities can be measured by microdosimetric procedures

(ICRU 1983, Coutrakon et al. 1997), Monte Carlo simulations are used in this work for the

evaluation of the proposed analytical model. They offer a simple way to obtain local energy

spectra in a given geometry, which can then be used to calculate LET distributions. The

Monte Carlo code GEANT 3.21 (CERN 1994) and the hadron generator FLUKA (Fassò

et al. 1993, 1994) are well suited for this problem (Gottschalk et al. 1999, Paganetti and

Gottschalk 2003).

A broad beam of protons with a field size of 5×5 cm2 was simulated in a homogeneous

water phantom (20×20×50 cm3). The initial energy spectrum of the protons was Gaussian

with a mean of E0 and a standard deviation of σE. The initial momentum of the protons

was perpendicular to the phantom surface. Further studies were performed with different

field sizes, even down to an infinitely thin pencil beam.

Electronic and hadronic interactions were considered, and all secondary particles pro-

duced in primary and subsequent interactions were tracked. All protons (regardless whether

they were primary protons or produced in any nuclear reaction) were scored for the local

proton spectra. An important parameter for the Monte Carlo simulations was the cutoff

energy for protons, as the low-energy protons have a significant influence on the LET due

to their high stopping powers. Especially with a cutoff of 1 MeV, which is sufficient in

dose calculation (Szymanowski and Oelfke 2002), the LET is underestimated compared to

simulations with lower cutoffs. Several values were tested and it turned out that a reduc-

tion of the cutoff energy further than 0.25 MeV did not cause any further changes in the

LET. Therefore a cutoff energy of 0.25 MeV was used for the comparison of LET values

with the analytical model. To obtain the local energy spectrum at depth z on the central

25



3. Three-Dimensional LET Calculations

axis of the beam, the energies of all those protons were registered that traversed a plane

of 1×1 cm2 perpendicular to the central axis at depth z. For the pencil beam, this scoring

area was reduced to 1×1 mm2. The resolution of the energy bins was 0.25 MeV.

If φi(z) denotes the number of protons in energy bin i (i = 1 . . . N) and the stopping

powers Si (corresponding to the mean energy of bin i) are taken from ICRU report 49

(1993), the track averaged and dose averaged LET are calculated by

LMC
t (z) =

N∑
i=1

φi(z)Si

N∑
i=1

φi(z)

and LMC
d (z) =

N∑
i=1

φi(z)S2
i

N∑
i=1

φi(z)Si

. (3.20)

3.2.2 Lateral LET distributions

In general, the LET increases at the field border because there are more scattered protons

that have less energy and therefore higher stopping powers than the protons on the central

axis. To quantify this effect, Monte Carlo simulations were done in the same geometry

as described in the last section. Now protons were also scored at off-axis positions in a

1 mm grid, and proton spectra were obtained to get lateral LET distributions. This was

also done for different field sizes, i.e. for broad beams and for pencil beams. As expected,

both the track averaged and the dose averaged LET increased outside of the field with

increasing lateral distance to the central axis. These results are shown in section 3.3.2 and

in Wilkens and Oelfke (2004).

It was found that this increase is relatively small compared to the steep rise of LET along

the central axis. As it was seen in cell survival experiments (e.g. Belli et al. 1993, Wouters

et al. 1996), small variations in LET are not expected to affect the RBE significantly. The

important effect that has to be considered in treatment planning is certainly the steep rise

of LET along the central axis, while the lateral variations might be neglected. Therefore

it is a good approximation to use a laterally constant LET, i.e. to assume that the LET

in water (Lw) at depth z and lateral distance d to the central axis depends only on the

depth:

Lw(z, d) = Lw
cax(z). (3.21)

This approximation can be made for the track averaged as well as for the dose averaged

LET, and it makes three-dimensional LET calculations very simple (cf section 3.2.4).
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3.2.3 LET in inhomogeneous media

The LET calculations described above are valid for water phantoms only. In the next

step we will therefore consider tissue inhomogeneities given by CT data sets. For a single

beam, the LET at a given voxel in the CT cube can be obtained from the LET in water

by substituting the depth with the water equivalent depth η(z), i.e. the radiological path

length. The latter is computed by a raytracing algorithm through the CT cube. This

requires the relative stopping powers Srel for each voxel, which can be obtained from CT

Hounsfield units by appropriate calibration curves (Schneider et al. 1996, Schaffner and

Pedroni 1998). Together with (3.21) we then get

L(z, d) = Lw
cax(η(z)). (3.22)

Note that this is still “LET in water” and not “LET in medium”, corresponding to the

dose which is usually reported as dose to water rather than dose to medium (Liu et al.

2002). However, while dose to water and dose to medium are fairly similar for biological

tissues, LET in water and LET in medium can differ significantly. LET in medium can be

calculated from L(z, d) by multiplying with Srel for the respective voxel media (as long as

Srel is assumed to be independent of the energy).

The greatest deviations between LET in water and LET in medium will be in high

density materials, i.e. in bone. But the RBE of protons in bone has not been investigated

much yet, and we are primarily interested in more water-like tissues like most tumours

and organs at risk. For those tissues, LET in water and LET in medium are more similar.

Therefore it is justifiable to use only LET in water, as long as we keep in mind that we

underestimate the LET in high density tissues. Consequently, only LET in water will be

used throughout this work in analogy to the common practice for the dose.

3.2.4 Integration into KonRad

The combination of all aspects mentioned in the sections above yields a fast algorithm for

three-dimensional LET calculations, which is very similar to currently implemented finite

pencil beam dose calculation algorithms. This LET calculation algorithm was integrated

into a research version of the inverse treatment planning tool KonRad, which already

provided an option for intensity modulated proton therapy (Nill et al. 2000, Nill 2001,

Oelfke and Bortfeld 2001). In the following, I will describe how the dose averaged LET is

calculated in KonRad. The track averaged LET was also implemented in a similar way.

27



3. Three-Dimensional LET Calculations

Energy Range R0 Initial width σE of energy spectrum
(MeV) (cm) (MeV)

160 17.63 0.0
200 26.2 2.0
250 37.9 1.0

Table 3.2: Parameters for the analytical LET model (range R0 and width σE of the initial
energy spectrum) that were used to obtain the LET distributions for three proton energies as
input data for KonRad. All calculations were done with the regularization of the stopping
power using R = 2 µm.

For the LET calculations, a matrix named Lij is used in analogy to the influence

matrix Dij for the dose (see section 2.3.1, and Nill 2001, p 7). The values in the Lij matrix

represent the LET that one would see in voxel i if only the j-th beam spot were present.

To calculate the entries in the Lij matrix (section 3.2.4.2), look-up tables for the LET are

required that correspond to the given depth dose curves for the dose (section 3.2.4.1). The

three-dimensional LET distribution (i.e. Li for every voxel i) can then be obtained from Lij

using the weights wj of all beam spots (and the Dij matrix, see below in section 3.2.4.3).

Finally, the LET cube is written to a file (in analogy to the dose cube files), and a

normalization value is given to translate the numbers in the file into units of keV/µm. The

LET cube can be further processed as desired, e.g. to get “LET-volume-histograms” (like

dose-volume-histograms, cf Webb 1993, pp 17–20).

3.2.4.1 Input data for KonRad

The dose calculation in KonRad is a finite pencil beam algorithm (Nill 2001, p 30), which

uses precalculated depth-dose curves for various proton energies. For every depth-dose

curve, a corresponding curve for the LET along the central axis in water (Lw
cax(z)) is now

read into KonRad. In principle, the results for Lw
cax(z) from either the analytical model or

Monte Carlo simulations can be used as input data. In the current work, LET distributions

computed with the analytical model are used. The respective parameters for the range and

the width of the initial energy spectrum are given in table 3.2. They were obtained by

fitting the dose from the analytical model (cf Bortfeld 1997) to the existing depth-dose

curves in KonRad. One has to note that this set of input data does not correspond to any

existing proton accelerator in particular. It just resembles a fictitious machine with three

energies (160, 200 and 250 MeV) and a continuous range shifter. For each beam spot,

KonRad chooses the best energy to match the desired range.
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voxel i

central axis of beam spot j

patient surface

beam spot j
z

Figure 3.2: Geometric setup for LET calculations: The LET from beam spot j at voxel i
(Lij) is computed using the radiological path length η(z) along the central axis of the beam
spot j at the geometric depth z.

3.2.4.2 Calculation of the Lij matrix

The Lij matrix is calculated and stored exactly parallel to the Dij matrix. This saves

time, as many computational procedures like the raytracing through the CT cube have

to be done only once for both matrices. The following steps must be performed for every

voxel i and beam spot j to calculate Lij:

• Calculate Dij as usual (see section 2.3.1, and Nill 2001, p 34). During this process,

the radiological path length η(z) along the central axis at the geometric depth z is

already computed (figure 3.2, cf section 3.2.3).

• If Dij > 0, then Lij = Lw
cax(η(z)). This is done by interpolating the LET values

of the input data (section 3.2.4.1) for the energy of beam spot j, taking the range

shifter setting for beam spot j into account. This formula is so simple because of the

assumption of a laterally constant LET.

• If Dij = 0, then Lij = 0, i.e. the Lij matrix is only calculated for non-zero Dij

elements.

To save memory space, the Lij matrix is stored as a compact matrix L̃ij. The two

matrices are connected by

Lij = l · L̃ij, (3.23)

where l is a calibration factor, which is set to 0.01 keV/µm. The entries of L̃ij are stored as

two byte variables (range 0–32 767). This corresponds to LET values from 0 to 328 keV/µm

with a resolution of 0.01 keV/µm. As the Dij matrix needs six bytes per entry (four for the

voxel index and two for a similarly compressed dose value, Nill 2001, p 15), the introduction
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of the Lij matrix requires only 33% more memory space than the Dij matrix alone. Modern

personal computers can easily handle that requirement.

3.2.4.3 Calculation of the three-dimensional LET distribution

Once the weights wj of the beam spot are established in the optimization process, three-

dimensional LET calculations can be made. Let Li denote the product of the dose averaged

LET (Li) and the dose (Di) at voxel i. According to equation (3.7), Li can be written as

Li =
∑

j

LijDijwj. (3.24)

This sum can be computed easily in the same way as the dose distribution Di =
∑

j Dijwj

(cf equation (2.4)). Due to the precalculated values of Lij and Dij, this operation can

be done very fast, which will be useful when LET calculations are integrated into the

optimization loop in chapter 5. There one will often need only the product of LET and

dose, which is now easily accessible as Li. If the actual LET distribution is desired, Li can

be obtained as

Li =

{Li/Di for Di > 0,

0 for Di = 0.
(3.25)

3.3 Results

Now analytical LET distributions for several beam configurations are presented and com-

pared to Monte Carlo simulations, first on the central axis and later also for lateral LET

distributions. After that, I will compare three-dimensional LET distributions for spot

scanning techniques in IMPT, in particular for the full 3D modulation and for the distal

edge tracking (DET).

3.3.1 LET along the central axis

The analytical LET model was compared with the results of the Monte Carlo simulations

for a variety of cases, including energies up to 250 MeV. In the following, I will show

the results for several exemplary proton energies (mostly 160 MeV and 70 MeV), and

the impact of the width of the initial energy spectrum is investigated. Eventually, LET

distributions will also be calculated for a spread-out Bragg peak.
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Figure 3.3: LET distributions for broad beams of 160 MeV (a) and 250 MeV (b) protons
in water. Track averaged and dose averaged LET obtained by Monte Carlo simulations
(squares and triangles) are compared with the analytical model (lower and upper solid lines,
respectively). The relative dose distributions are given in arbitrary units (dotted lines).

3.3.1.1 LET for high energy beams

First some results for high energy proton beams with initial energies of 160 and 250 MeV are

presented, as those are typical values for the treatment of deep seated tumours. Figure 3.3a

shows the depth dependence of the track averaged and dose averaged LET along the

central axis of a broad proton beam (160 MeV) in a water phantom, both calculated with

the analytical model as well as with Monte Carlo simulations (with 3.2×107 simulated

incident protons). The energy spectrum at the phantom surface was Gaussian with a width

of σE = 0.5 MeV around the mean energy of 160 MeV. The Monte Carlo simulations for

this energy yielded a mean range (given by the 80% dose at the distal edge) of 17.36 cm,

which does not agree exactly with the range of 17.65 cm given in ICRU report 49 (1993).

This is due to the fact that GEANT 3.21 uses slightly different stopping powers than those

in ICRU report 49 (Szymanowski and Oelfke 2002). To be in accordance with the Monte

Carlo simulations, a value of R0 = 17.36 cm was used in the analytical model instead of

17.65 cm. The relative dose distribution obtained by Monte Carlo simulations is given by

the dotted line in arbitrary units. In figure 3.3b, the same situation is shown for a 250 MeV

proton beam (R0 = 37.4 cm, σE = 0.5 MeV, simulation with 2×107 incident protons).

As expected the LET increases very slowly in the entrance region of the beam, but

rises steeply at the end of the range. In the entrance region the track averaged and dose

31



3. Three-Dimensional LET Calculations

averaged LET are almost equal, but at greater depths the dose averaged LET exceeds the

track averaged LET considerably. The analytical model agrees well with the Monte Carlo

simulations. The maximum deviations were around 0.5 keV/µm.

Let us have a closer look at the entrance region of the 160 MeV beam: In the first 10 cm

of depth, where the LETs range between 0.5 and 1.0 keV/µm, the dose averaged LET ob-

tained by the Monte Carlo method was slightly higher than the predictions of the analytical

model (up to 0.2 keV/µm). This is due to a high LET contribution from secondary protons

produced by nonelastic nuclear interactions, which are included in the Monte Carlo simu-

lations but neglected in the analytical model: by switching off the production of secondary

particles in the Monte Carlo code, these differences completely vanished. Consequently,

this effect is more pronounced for higher energies (differences up to 0.5 keV/µm were ob-

served for a 250 MeV beam, figure 3.3b), whereas it is reduced for smaller energies (cf

section 3.3.1.3).

In figure 3.3 and in all following figures, the Monte Carlo LET is given only at depths

where the dose is at least 0.1% of the maximum dose. Further beyond the peak, the number

of particles becomes so small that Monte Carlo simulations need an enormous amount of

incident protons to yield sufficient statistics. However, in some of the figures one can still

see deviations due to poor statistics at the last two or three data points, although the dose

is above 0.1% of the peak value. The analytical model is in principle able to calculate LET

at any depth, and the analytical LET is therefore plotted up to slightly greater depths than

the last Monte Carlo points. For practical purposes this will probably never be needed, as

the number of particles at depths far beyond the peak reaches almost zero, and the term

LET becomes meaningless for practical applications.

3.3.1.2 Impact of the regularization

The LET distributions in figure 3.3 were calculated with R = 2 µm. To illustrate the impact

of this parameter in the regularization of S̃(r) described in section 3.2.1.1 (cf equations

(3.16) and (3.17)), dose averaged LET distributions for several values of R are shown in

figure 3.4 in comparison to the Monte Carlo simulations with an initial energy of 160 MeV,

R0 = 17.36 cm and σE = 0.5 MeV as above.

The dotted line shows the LET one would get without the regularization, i.e. by using

S̃(r) from (3.15) directly for the LET calculations. The derivation of the analytical LET

becomes then a bit easier than with the regularization, but leads to similar formulas with

different indices of the parabolic cylinder functions (equation (3.19)). However one would

significantly overestimate the LET at the distal edge as compared with the Monte Carlo
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Figure 3.4: Influence of the parameter R of the regularization of the power law fit for the
stopping power: analytical distributions for the dose averaged LET for 160 MeV protons
without regularization (dotted line) and with R = 1 µm, 10 µm and 100 µm (solid lines A,
B and C) in comparison to the Monte Carlo simulations (triangles).

simulations (figure 3.4), because of the purely mathematical singularity of S̃(r) at very low

residual ranges.

By introducing the regularization, the stopping power is modeled more precisely to

correspond to the “real” stopping powers given in ICRU report 49. For increasing values

of R the increase in LET at the distal dose edge becomes less and less pronounced. This

behaviour is shown in figure 3.4 for R = 1 µm, 10 µm and 100 µm. For depths smaller

than about 16.5 cm, the regularization does not have any effects on the LET. It turned out

that a value of R = 2 µm agreed best with the Monte Carlo simulations, both for the dose

averaged and for the track averaged LET. Such a “range cutoff” of 2 µm corresponds to a

proton energy of 0.13 MeV, which is fairly similar to the Monte Carlo cutoff of 0.25 MeV.

Still having in mind that the first fit S̃(r) agreed with ICRU 49 for residual ranges down

to approximately 2 µm (see section 3.2.1.1), the use of R = 2 µm seems to be reasonable.

3.3.1.3 LET for low energy beams

In figure 3.5 LET distributions for a proton beam with an initial energy of 70 MeV are

shown, which is a typical energy used for the treatment of intraocular tumours. The LET

is calculated in water with R = 2 µm and σE = 0.5 MeV. R0 was set to 4.02 cm to fit the

mean range of protons in the Monte Carlo simulations, which were done for 2×107 incident
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Figure 3.5: LET distributions for a broad beam of 70 MeV protons in water (σE =
0.5 MeV). Track averaged and dose averaged LET obtained by Monte Carlo simulations
(squares and triangles) are compared with the analytical model (lower and upper solid line,
respectively). The relative dose distribution is given in arbitrary units (dotted line).

protons in this case. The general behaviour of the LETs is quite similar to the LETs for

160 MeV. However, the absolute LET values at the distal edge are higher compared to

the 160 MeV beam. The deviations between the analytical model and the Monte Carlo

simulations in the entrance region, which were discussed for 160 MeV, are much smaller

for 70 MeV, as secondary protons are less important at lower energies. The maximum

deviations were around 0.5 keV/µm at depths greater than 4 cm.

3.3.1.4 Variation of the initial energy spectrum

Next we will investigate the impact of the width σE of the initial energy spectrum. We will

use the situation of the 70 MeV beam above (σE = 0.5 MeV), and compare it with two

other values of σE: 0 and 2 MeV. These LET distributions are shown in figure 3.6. Again

the relative dose distributions are shown in arbitrary units. As σE gets larger, the shape of

the Bragg peak becomes broader and the maximum is shifted towards smaller depths. The

range, i.e. the 80% dose at the distal edge, was always 4.02 cm. The dose averaged LETs

for all three values of σE are displayed together in figure 3.7. The LETs are the same at

depths smaller than 3 cm and agree well with the Monte Carlo simulations, therefore these

depths were not included in figures 3.6 and 3.7. The higher σE, the lower the maximum

LET values become, and the less steep is its increase at the end of the range. However, the
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Figure 3.6: LET distributions for 70 MeV protons in water with σE = 0 MeV (a) and
σE = 2 MeV (b). Track averaged and dose averaged LET obtained by Monte Carlo sim-
ulations (squares and triangles) are compared with the analytical model (lower and upper
solid lines, respectively). The relative dose distributions are given in arbitrary units (dotted
lines).

increase starts earlier, so the region with an LET higher than 5 keV/µm is considerably

bigger for σE = 2 MeV than for 0 or 0.5 MeV. Nevertheless the monoenergetic limit σE = 0

can be used to estimate the maximum LET for a given beam energy.

3.3.1.5 LET for a spread-out Bragg peak

As soon as the analytical model was established and validated for a single Bragg peak, it

is easy to superimpose several Bragg peaks for more complex situations. In figure 3.8 an

example for a 6 cm spread-out Bragg peak (SOBP) is given, which consists of 13 single

peaks of 160 MeV that were modulated by a passive range shifter. The positions of the

peaks (i.e. the maxima of the dose) are indicated by small vertical lines. The weights of

the peaks were obtained by an optimization algorithm presented by Gardey et al. (1999).

The dose was computed with the analytical model developed by Bortfeld (1997). The LET

distributions for every peak were calculated with the analytical LET model (R = 2 µm)

and the final LET distributions are obtained according to equations (3.4) and (3.5).

The dose averaged LET is again always greater than the track averaged LET, as it

was observed for single beams. At the beginning of the SOBP plateau at around 7 cm

depth, there is an increase of the dose averaged LET due to slow protons originating from

the Bragg peak at 7.2 cm. On the other hand the track averaged LET does not show
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Figure 3.7: Dose averaged LET calculated with the analytical model (solid lines) in com-
parison to Monte Carlo simulations (triangles) for 70 MeV beams in water with varying
width of the initial energy spectrum (σE = 0, 0.5 and 2 MeV for curves A, B and C,
respectively). The range (4.02 cm) is indicated by the vertical line.

a significant increase at the beginning of the plateau. Along the SOBP plateau, both

track averaged and dose averaged LET keep increasing, because the fraction of low-energy

protons with high stopping powers rises. At the distal edge of the SOBP the LET shows

a similar behaviour as for a single peak, because this region is dominated by the protons

of the peak at 13.2 cm only.

3.3.1.6 LET dependence on field size

Additional Monte Carlo simulations were performed for different field sizes, and in particu-

lar for an infinitely narrow pencil beam. In the Bragg peak region, no significant deviations

of the LET on the central axis as a function of the field size were seen. While the track

averaged LET did not change in the entrance region either, there were small but systematic

differences in the dose averaged LET in that region. Here Ld was slightly lower (within

±0.5 keV/µm) for the pencil beam than for broad beams (cf exemplary data for Lcax in

table 3.3). This is again (cf section 3.3.1.1) an effect due to secondary protons. These

low energy secondaries are less frequent on the central axis of the pencil beam, because

they are scattered away in different directions. In broad beams, this is compensated by

secondaries that are scattered onto the central axis from neighbouring parts of the field.

Therefore the dose averaged LET on the central axis is slightly higher for broad beams
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Figure 3.8: LET distributions for a spread-out Bragg peak, which consists of 13 single
peaks. The positions of the peaks are indicated by the small vertical lines. The track
averaged and dose averaged LET (lower and upper solid line, respectively) are calculated
with the analytical LET model. The dotted line shows the dose distribution in arbitrary
units.

than for the pencil beam. In total, the LET distribution along the central axis was more

or less independent of the field size (within ±0.5 keV/µm), even for pencil beams. The

analytical LET model can therefore be used for beam spots of any size, i.e. for SOBPs as

well as for scanning techniques with narrow beams.

3.3.2 Lateral LET distributions

In further Monte Carlo studies, lateral LET distributions for proton beams with different

field sizes in water were obtained. Within the treatment field, a constant LET was observed

(figure 3.9). This is in agreement with a study by Paganetti (1998), where no lateral RBE

variations within a spread-out Bragg peak field for the treatment of ocular tumours were

found (beam energy 68 MeV). The LET increases outside of the field, because there are

more scattered and therefore slower protons with higher stopping powers. However, this

increase is very moderate in terms of absolute values: table 3.3a gives numbers for the dose

averaged LET on the central axis (Lcax) and at the lateral positions of 50%, 20% and 5%

of the central axis dose (L50, L20 and L5, respectively) for a broad 160 MeV beam (peak

position at 17.2 cm depth, beam width 5 cm). The difference between L5 and Lcax was well

below 2 keV/µm for all depths. Again, this behaviour was investigated for different field

sizes, and no qualitative differences as a function of the field size were found. Even for a
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a) Broad beam b) Pencil beam

Depth Lcax L50 L20 L5 Lcax L50 L20 L5

(cm) (keV/µm) (keV/µm)

5.0 0.8 0.9 1.0 2.1 0.6 0.7 0.7 0.7
10.0 0.9 0.9 1.0 1.2 0.8 0.8 0.8 0.9
17.0 4.3 4.3 4.7 5.9 3.9 4.0 4.1 4.7
17.5 10.7 10.7 11.1 11.3 10.4 10.6 10.9 11.0

Table 3.3: Lateral values of the dose averaged LET at several depths for a broad beam (a)
and a pencil beam (b) of 160 MeV protons, obtained by Monte Carlo simulations (2×108

incident protons each). LET values are given for the central axis (Lcax) and for the lateral
positions of 50%, 20% and 5% of the central axis dose.
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Figure 3.9: Lateral LET profiles (solid lines) for a broad 160 MeV proton beam of 5 cm
width in water. The relative dose profiles (dotted lines) are given in arbitrary units for
comparison. Both LET and dose were obtained by Monte Carlo simulations (with 2×108

incident protons) and are given for depths of z = 10 cm (green) and z = 17 cm (red)
slightly before the Bragg peak at 17.2 cm.
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Figure 3.10: Distributions of dose (left) and LET (right) in a transversal slice through
the isocentre for distal edge tracking. The colour scales are normalized to the median PTV
dose (100%) and to 100% = 5 keV/µm, respectively.

pencil beam (table 3.3b), the increase at the field border was very similar or even smaller

than for broad beams. This means that only small errors are introduced if a laterally

constant LET is used instead of the “real” lateral LET distributions as seen in the Monte

Carlo studies. This justifies the assumption of a laterally constant LET, which was made

in section 3.2.2.

3.3.3 Three-dimensional LET distributions

Three-dimensional LET distributions were calculated for a variety of clinical cases and for

different dose delivery techniques (Wilkens and Oelfke 2004). Here the focus will be on the

comparison of LET distributions for two spot scanning techniques for intensity modulated

proton therapy: the 3D modulation, where beam spots are placed over the entire target

volume, and distal edge tracking (DET), where only beam spots whose Bragg peak is

positioned directly on the distal edge of the target are considered (Lomax 1999). Due to

the substantially reduced number of beam spots, the DET technique offers advantages in

both computing time and delivery effort compared to the 3D modulation (Nill 2001, Nill

et al. 2004).

As an example of the LET calculations, two treatment plans are shown for a patient with

a clivus chordoma. The patient geometry and the optimization constraints are described in

more detail in chapter 5, where an extensive study on this case including RBE calculations
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Figure 3.11: Dose (left) and LET distribution (right) in a transversal slice through the
isocentre for the full 3D modulation technique. The colour scales are normalized to the
median PTV dose (100%) and to 100% = 5 keV/µm, respectively.

is presented. Here, I will just demonstrate the LET algorithm and the differences in

LET for the two scanning techniques, i.e. for distal edge tracking (figure 3.10) and for

the 3D modulation (figure 3.11). In both cases five coplanar beams were chosen for the

treatment of the planning target volume (PTV, thick red line). For every field, beam spots

with initial energies up to 200 MeV were placed with a lateral distance of 6 mm. Their

individual weights were optimized with the inverse planning tool KonRad using its standard

quadratic objective function and an iterative gradient method. The objectives were to

deliver a homogeneous dose to the PTV, and to spare the brainstem (thick green line) as

the most important organ at risk as much as possible. The physical dose distributions (left

side in figures 3.10 and 3.11) were very similar for both techniques. The high dose region

was highly conformal to the PTV, while the brainstem was mostly spared from dose.

The corresponding distributions of the dose averaged LET are shown on the right sides

of figures 3.10 and 3.11 (colour scales normalized to 100% = 5 keV/µm). The LET values

within the PTV varied considerably for DET, with high LET regions at the border of

the PTV. The highest values were even outside of the PTV in the normal tissue. For

the 3D modulation technique, a more homogeneous distribution on a higher LET level

was found. This is also apparent in the LET-volume-histograms (figure 3.12, in analogy

to dose-volume-histograms). The mean LET in the PTV was 2.1 keV/µm for DET and

3.5 keV/µm for the 3D modulation, with a maximum LET in the PTV of 7.3 keV/µm and
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Figure 3.12: LET-volume-histograms for PTV (red) and brainstem (green) for the two
treatment plans shown in figures 3.10 and 3.11, i.e. for the DET technique (solid lines)
and for 3D modulation (dotted lines).

5.1 keV/µm, respectively. The brainstem as the primary organ at risk received substantially

higher LET values for DET compared to the 3D modulation (figure 3.12).

3.4 Discussion

3.4.1 LET along the central axis

The presented analytical model for the proton LET along the central axis is able to calculate

LET distributions for clinical proton energies, taking range straggling and the machine

dependent initial energy spectrum into account. The predictions of the model agree within

±0.5 keV/µm with the Monte Carlo simulations. The main assumptions of the model were

thereby justified, particularly the restriction to Coulomb interactions, the neglect of the

fluence reduction, and the use of a depth independent σ. The Gaussian approximation of

the proton spectra was successful even at depths greater than the CSDA range.

The observed LET distributions showed a slow increase along the entrance region of the

beam, and then a very steep increase at the Bragg peak. As expected (ICRU 1970), the

dose averaged LET always exceeded the track averaged LET. The absolute LET values at

the distal edge were higher for 70 MeV than for 160 MeV, so one would expect a greater

effect of this high LET region for the low energy beams, as it was already pointed out

41



3. Three-Dimensional LET Calculations

by other authors (Paganetti and Schmitz 1996, Skarsgard 1998). The narrower the initial

energy spectrum, the higher LET values were observed at the distal edge. However, for

broader spectra the increase of LET starts at smaller depths, resulting in an extended

region of increased LET.

With the analytical model it was further possible to calculate LET distributions for

spread-out Bragg peaks. The LET increases along the SOBP plateau, leading to an

increased relative biological effectiveness at the end of the SOBP, which was found in

experimental and theoretical studies (Wouters et al. 1996, Paganetti and Schmitz 1996,

Biaggi et al. 1999, Paganetti and Goitein 2000). Dose averaged LET distributions for

SOBPs were also calculated by Seltzer (1993) using Monte Carlo techniques, giving sep-

arate curves for “primary-protons-only” and “primaries-plus-nuclear-secondaries.” While

the former agreed very well with our LET model as well as with Monte Carlo simulations by

Wouters et al. (1996), there were significant differences compared to the latter, namely in

the entrance region and in the SOBP plateau, where the total LET including all secondary

particles was considerably higher than the LET of primary protons only.

One has to note that the LET distributions presented in this work do not fully account

for secondary particles due to nonelastic nuclear interactions. These are completely ne-

glected in the analytical model, and even in the Monte Carlo simulations only secondary

protons (which have the highest contribution to the dose of all secondaries) are taken into

account. Heavier secondary particles like He ions are not considered, although they can

have considerably higher stopping powers than protons. However, these secondaries are

most important in the entrance region, where the energy is high enough to produce a sig-

nificant number of nonelastic nuclear interactions. At or behind the Bragg peak, secondary

particles can be neglected (Paganetti 2002). The role of these secondaries in assessing the

biological effect is a question of the respective RBE model rather than LET — and for

exact RBE calculations alpha particles might have to be included.

Furthermore, the tail of the initial energy spectrum towards low energies was considered

neither in the analytical model nor in the Monte Carlo simulations. This might affect the

LET in the entrance region as well, but not the LET around the peak, as the protons of

the tail have smaller ranges. The LET distributions calculated with the analytical model

should therefore correspond well to the reality in the region around the Bragg peak, whereas

the LET in the entrance region might be underestimated.
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3.4.2 Three-dimensional LET calculations

By combining the analytical model for the LET along the central axis and our studies to

lateral LET distributions, a method for fast three-dimensional LET calculations on CT

data sets has been developed. It accounts for tissue inhomogeneities and can be applied to

state-of-the-art proton dose delivery techniques, as it works for broad beams as well as for

thin pencil beams. However, one must be aware that due to the assumption of a laterally

constant LET, the LET distributions might be slightly underestimated.

In particular, the LET algorithm was used to compare LET distributions for distal

edge tracking (DET) and for the full 3D modulation in intensity modulated proton ther-

apy. While very similar dose distributions can be accomplished with both techniques,

considerable differences in the LET distributions were observed. Whereas the 3D modula-

tion yielded more or less homogeneous LET distributions in the PTV, elevated LET values

were found at the border of the PTV for DET.

From cell survival experiments it is known that the RBE for protons increases with LET

up to an LET value around 30 keV/µm, and decreases for higher LETs (see chapter 4).

As the maximum LET values found in our study were around 15 keV/µm, we are in the

increasing branch only and can therefore expect elevated RBE values in the high LET

regions. For distal edge tracking, this might result in an inhomogeneous biological effect

in the PTV as well as in increased damage to organs at risk or normal tissue outside of

the PTV. From this point of view, DET seems to be unfavourable compared to the full

3D modulation. However, in chapter 5 optimization methods that compensate this effect

will be presented.

At the current point it is still under investigation whether the observed differences in

LET are clinically significant, i.e. whether the potential variations in RBE are big enough

to be observable in clinical studies. One has to keep in mind that even extreme LET values

in normal tissue or organs at risk may be meaningless on the scale of clinical observations,

especially if the dose is very low. Moreover, the RBE is certainly not a function of LET

alone, but depends as well on other parameters like the dose and the tissue type. Finally

it is the product of RBE and dose that matters, so high RBE values might be tolerated

well as long as the corresponding dose values are relatively small. With the RBE model

that will be described in chapter 4, we can address this question again in chapter 5.

Nevertheless, the choice of the dose delivery technique obviously influences the LET

distribution and therefore the expected biological effect. Thus, the physical dose should not

be the only criterion for comparing treatment plans or different spot scanning techniques

in proton therapy. For this purpose, our algorithm for LET calculations is a useful tool to
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locate regions of high or low LET, which might in particular help to avoid the exposure of

organs at risk to high LET values. The application of three-dimensional LET distributions

for fast RBE calculations and even for the optimization of the biological effect will be

discussed in the following chapters.
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Chapter 4

The Phenomenological RBE Model

4.1 Introduction

While the physical properties of therapeutic proton beams are well known (cf chapter 2),

there are still some unsolved questions regarding the biological effect of protons, which is

often expressed in terms of the so-called relative biological effectiveness (RBE). Today,

most clinical centres use a constant RBE of 1.1 although there is experimental evidence

that the RBE is not constant, but depends on dose and on the radiation quality, i.e. the

local proton energy distribution. This is very obvious for in vitro experiments with cell

cultures (e.g. Belli et al. 1993, Wouters et al. 1996, Skarsgard 1998). On the other hand,

the observed RBE variations for in vivo systems are much smaller, and in most cases a

constant RBE of 1.1 seems to be clinically acceptable (Paganetti et al. 2002). But even

in vivo there is an increase in RBE at the end of the proton range (Gueulette et al. 2001)

that should be accounted for in treatment planning (Paganetti et al. 2002).

In this thesis, the potential clinical impact of a variable RBE for different treatment

techniques in intensity modulated proton therapy is investigated. This requires a reliable

RBE model that is simple enough to allow very fast calculations of three-dimensional RBE

distributions. Especially for the integration of the RBE model into the optimization loop,

the calculation speed becomes a very important issue. Existing RBE models based on track

structure theory (Butts and Katz 1967, Katz et al. 1971, Scholz and Kraft 1994, Scholz

et al. 1997, Paganetti and Goitein 2001) are quite elaborate and need long computing times,

which renders them not particularly well suited for inverse planning. The aim of this work

is therefore to develop a simple and fast method for approximative RBE calculations,

which can still reproduce the basic effects of a variable RBE as observed in radiobiological

experiments.
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It is not our goal to design a new mechanistic theory of RBE, since such theories can

still only be a crude approximation to the whole complexity of the radiobiological effects

of ionizing radiation. At the current point, we therefore see our only chance in using a

phenomenological model based on experimental results, mainly from in vitro studies with

cell cultures. Thus we propose a simplified RBE model based on the linear-quadratic

model, which describes the RBE as a function of dose, linear energy transfer (LET) and

phenomenological tissue parameters. In its current form, the model is intended only for

protons and not for heavier charged particles. For the latter, the radiobiology becomes more

complex and it will thus be more difficult to find a simple phenomenological approach (see

chapter 6).

In this work I will concentrate — as an example — on in vitro experiments for V79

Chinese hamster fibroblasts, as there are many data available in the literature for this cell

line. After the presentation of the RBE model (section 4.2), RBE values obtained with

the new model will be compared to published results (section 4.3) and implications for the

shape of spread-out Bragg peaks (SOBPs) will be discussed.

4.2 Methods

The most important dependencies of the RBE of proton beams are those on depth, dose

and tissue type or cell line, which have been investigated experimentally and theoretically

by many authors (e.g. Hall et al. 1978, Bettega et al. 1979, Blomquist et al. 1993, Wouters

et al. 1996, Denekamp et al. 1997, Tang et al. 1997, Paganetti 1998, Gerweck and Kozin

1999, Kraft 2000). For the dependence on depth it is of course not the depth itself that

matters, but rather the energy or the energy spectrum of the protons, which changes with

depth. This is often described with the term “radiation quality” and quantified by the

linear energy transfer (LET). Accordingly, the LET will be used in addition to the dose

to characterize the radiation field. Methods for three-dimensional calculations of the dose

averaged LET were already presented in chapter 3. Goodhead et al. (1992) showed that

in general the radiation quality cannot be described by the LET alone, as they found

different RBE values for protons and alpha particles with the same LET. However, since

we consider only protons, the LET concept can be used for our purpose. While the dose

dependency of RBE is clearly seen in vitro (e.g. Hall et al. 1978, Wouters et al. 1996), it

seems to be less pronounced in vivo (e.g. Tepper et al. 1977, Gueulette et al. 2001). Among

other reasons, this might be due to the fact that most in vivo studies were done at low

LET (e.g. in the entrance region or in mid SOBP), whereas the greatest effects of the dose

dependency (and of a variable RBE in general) can be expected for higher LET values, i.e.
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in the distal dose falloff. The RBE further depends on the choice of the reference radiation

(section 4.2.2.3) and on the biological endpoint (e.g. cell survival). Therefore the endpoint

needs to be specified when tissue specific parameters for the RBE model are derived.

4.2.1 The relevant LET range in proton therapy

A brief overview over LET definitions and methods for three-dimensional LET calculations

were given in chapter 3. Since the RBE model has to cover only therapeutically relevant

LET values, this range in LET will now be specified. Protons of 250 MeV (the highest

energy used in therapy) have a stopping power of 0.39 keV/µm, and for decreasing energy

the stopping power rises to a maximum of 83 keV/µm at 0.08 MeV, before it drops down

again (ICRU 1993). However, in therapeutic beams one will rarely find voxels exposed

to monoenergetic protons of 0.08 MeV only, as range straggling broadens the spectrum

even for initially monoenergetic beams. For E0 = 70 MeV and σE = 0, data in figure 3.7

show that the dose averaged LET does not exceed 30 keV/µm, at least for those depths

where the dose is above 0.1% of the maximum dose. And this is even an extreme case:

the LET values at the distal edge decrease for higher initial energies (due to increased

range straggling), as well as for greater values of σE (cf section 3.3). Of course there are

single protons with higher stopping powers, but they do not contribute much to the dose

averaged LET. Since a laterally constant LET is assumed (cf section 3.2.2), the off-axis

LET values will not be higher than on the central axis. For therapeutic proton fields with

initial beam energies between ∼70–250 MeV, we can safely restrict our RBE model to dose

averaged LETs in the range 0.3–30 keV/µm.

4.2.2 The phenomenological RBE model

The biological response to radiation is often described by the linear-quadratic (LQ) model

(Kellerer and Rossi 1978), which characterizes the biological system by two parameters α

and β. The surviving fraction SF of cells at a certain dose D is then given by

SF = exp(−αD − βD2). (4.1)

There are other models as well, but in many cases the LQ model reproduces the exper-

imental results fairly well. It is therefore reasonable to use the LQ model, at least in a

phenomenological rather than in a mechanistic way. Let us now consider two survival

curves as a function of dose for the same biological system, but for two different radiations:

a reference radiation with parameters αx and βx, and a proton beam with αp and βp. The
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RBE can then be calculated easily, as RBE is just defined as the ratio of the doses required

to yield the same survival level. The RBE at a certain proton dose Dp is then given by

RBE(Dp, αx, βx, αp, βp) =

√
α2

x + 4βxDp(αp + βpDp)− αx

2βxDp

. (4.2)

In the limits of very low and very high doses, this can be simplified to

lim
Dp→0

RBE(Dp, αx, βx, αp, βp) =
αp

αx

and lim
Dp→∞

RBE(Dp, αx, βx, αp, βp) =

√
βp

βx

. (4.3)

Of course one can also express the RBE as a function of the reference dose Dx or the

corresponding biological effect (i.e. SF ) instead of the proton dose Dp. These formulas are

all equivalent and can be used as desired. Similar expressions were also presented by other

authors (e.g. Joiner and Field 1988, Hawkins 1998, Dale and Jones 1999). The RBE in

(4.2) depends on dose, which has to be the dose per fraction in a multifraction regime. The

tissue and endpoint dependence is determined by the α and β parameters for the reference

radiation and for protons. However, the values of αp and βp are not fixed, but they depend

on the radiation quality or LET of the respective proton beam. This was investigated in

many experiments, so we can now look at the dependencies of αp and βp on LET.

4.2.2.1 The dependence of αp on LET

Figure 4.1 shows data for αp as a function of the dose averaged LET for the survival of

V79 Chinese hamster cells in vitro from many different experiments with protons. Up to

∼30 keV/µm, αp increases with LET, and decreases for higher LETs. But as LET values

above 30 keV/µm are not needed for practical purposes in clinical proton therapy (cf

section 4.2.1), we can concentrate on the low LET region and assume a linear dependence

of αp on the LET L:

αp(L) = α0 + λL. (4.4)

Fur further simplification, one could even set α0 := αx, although we do not employ this

restriction at this point. Unfortunately, there are no studies in the low LET region below

∼3 keV/µm that report both αp and the LET at the point of the measurement. The best

fit to the data for V79 cells was obtained for α0 = 0.1 Gy−1 and λ = 0.02 µm keV−1 Gy−1.

If — for any reason — the LET region above 30 keV/µm also had to be modeled, one

solution could be to use the linear function below the maximum at Lmax, and a 1/L de-
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Figure 4.1: Experimental results for the LQ parameters αp and βp as a function of
LET for the survival of V79 Chinese hamster cells in vitro: (a) αp vs. LET, (b) βp vs.
LET (◦ Perris et al. 1986; M Goodhead et al. 1992; O Blomquist et al. 1993; ¥ Belli
et al. 1993; ¤ Folkard et al. 1996; •Wouters et al. 1996; N Waheed et al. 1997; ♦ Belli
et al. 1998; ¨ Schettino et al. 2001). Error bars in LET are included as far as they
were reported. In (a), a linear fit according to equation (4.4) with α0 = 0.1 Gy−1 and
λ = 0.02 µm keV−1 Gy−1 was added, while the dotted line in (b) corresponds to a constant
βp according to equation (4.6) using βx = 0.0298 Gy−2 (Tilly et al. 1999).

pendence above Lmax, corresponding to a constant value of the “inactivation cross section”

αp(L)× L:

αp(L) =

{
α0 + λL for L ≤ Lmax,

(α0 + λLmax)Lmax/L for L > Lmax.
(4.5)

Hawkins (1998) also suggested a linear dependence like in (4.4), and found good agree-

ment with experimental data for several cell lines in the LET region below 50 keV/µm

(Hawkins 2003). Tilly et al. (2002) used a similar expression for tissues with αx/βx below

5 Gy, and an exponential dependence of αp on LET for higher αx/βx. A linear dependence

on LET was also predicted and discussed by Neary (1965) and Schmid et al. (1997) for

chromosome aberrations. Tang et al. (1997) reported an increasing αp with depth and

therefore with LET for the survival of CHO cells in a 65 MeV SOBP. Chapman et al.

(1977) also saw an increasing αp with LET for V79 cells under irradiation with heavier

ions (He, C, Ne, Ar).

4.2.2.2 The dependence of βp on LET

The LET dependence of βp (figure 4.1b) is not as clear as the situation for αp. While

Belli et al. (1998) found an increasing βp for LET from 7.7 to 20 keV/µm, Folkard et al.
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(1996) reported decreasing values. Also for other experimental situations, many different

opinions on this question can be found in the literature: Courdi et al. (1994) saw an

increasing βp with LET for human melanoma cells, and Chapman et al. (1977) reported a

slightly increasing βp for increasing LET with heavy ions. Barendsen performed extensive

studies on the LET dependence of the LQ parameters (1994, 1997) and finally suggested

a value of approximately 1.5–2.0×βx for βp at high LET (2000). On the other hand, Tang

et al. (1997) did not see an increase of βp with LET in their study, and a constant βp is

frequently discussed (Neary 1965, ICRP 1989, Hawkins 1998, Dale and Jones 1999, Jones

and Dale 2003). Tilly et al. (2002) used a constant βp for L≤20 keV/µm, and a linear

decrease for higher LETs. No significant variations in βp at L≤6 keV/µm were observed

for chromosome aberrations (Schmid et al. 1997).

Unfortunately, there are not much data for βp at high LET values (above ∼20 keV/µm).

This is because the measured survival data at these LET values usually do not show a

distinct shoulder, so many authors fitted the survival data just to a pure exponential curve

(exp(−αD)). However, this does not necessarily mean that βp is zero. At these high LET

values, where αp is large, one would need to go to very high doses (even above 10 Gy) to

determine a small βp component accurately. But at these doses, the number of surviving

cells becomes very small, which makes measurements of βp at high LET extremely difficult.

But this also means that βp has not much influence at high LET, especially at thera-

peutic levels for the dose per fraction (well below 10 Gy), where the variations in αp are

much more important. We therefore think that it is justified to use a constant βp, which

for simplicity shall be the βx of the reference radiation, i.e.

βp(L) := βx. (4.6)

At least at low LET, this seems to be in agreement with the data in figure 4.1.

By inserting equations (4.4) and (4.6) into (4.2) we finally get

RBE(Dp, L, α0, λ, αx, βx) =

√
α2

x + 4βxDp(α0 + λL + βxDp)− αx

2βxDp

. (4.7)

Again, similar formulas can be obtained for RBE as a function of Dx or of the biological

effect rather than Dp. In particular, the RBE for a given surviving fraction SF is

RBE(SF, L, α0, λ, αx, βx) =

√
α2

x − 4βx ln SF − αx√
(α0 + λL)2 − 4βx ln SF − α0 − λL

. (4.8)

50



4.3 Results

4.2.2.3 Reference radiation

The RBE obviously depends on the choice of the reference radiation. Cell experiments for

the determination of RBE values were mostly done either with 200 or 250 kVp X-rays, or

with 60Co gamma-rays as reference. In the following, I will give all RBE values relative

to 60Co gamma-rays, since they are similar to high energy photons from clinical linear

accelerators, which are commonly used in conventional radiation therapy. For V79 cells,

we will therefore use αx = 0.112 Gy−1 and βx = 0.0298 Gy−2 (Tilly et al. 1999). However,

one must be aware that errors in αx and βx lead to considerable uncertainties in the RBE

values, although the biological effect in terms of the surviving fraction SF in a proton

beam is determined by α0, λ, βp, D and L only.

4.2.3 Mixed LET irradiations

Most of the data in figure 4.1 are for monoenergetic protons (apart from Blomquist et al.

1993 and Wouters et al. 1996). However, in clinical practice of proton therapy, one will

almost always find polyenergetic beams (as in SOBPs) and/or the superposition of differ-

ent beam spots from different directions. This makes mixed irradiation experiments very

interesting in this context. Tilly et al. (1999) compared several cell survival models for a

mixed LET experiment with V79 cells irradiated with nitrogen ions and 60Co gamma-rays.

They found that the track structure model (Katz et al. 1971), the microdosimetric (LQ)

model (Kellerer and Rossi 1978, Zaider and Rossi 1980) and the lesion additivity model

(Lam 1987) could all predict the experimental results within the uncertainties of the mea-

surement. The approach of Zaider and Rossi (1980) was also used by Belli et al. (1997)

for protons and was successfully applied to carbon beams (e.g. Kanai et al. 1997, Schaffner

et al. 2000). It describes the effect of two (or more) irradiations with different LET by

“dose averaged” means of the respective α and
√

β values. In the region below 30 keV/µm,

this is equivalent to our model, where the total αp is calculated as a linear function of the

dose averaged LET. This indicates that mixed irradiation effects for protons of different

LET are reasonably modeled in our approach.

4.3 Results

4.3.1 Comparison with experimental RBE values

In figure 4.2, RBE values for the survival of V79 cells calculated with our model are com-

pared to experimental data from the literature (Blomquist et al. 1993, Folkard et al. 1996,
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Figure 4.2: RBE values (relative to 60Co) for the survival of V79 cells, irradiated with
protons of different LET. The experimental data for two survival levels (◦ 10%, • 50%) are
from Blomquist et al. (1993), Folkard et al. (1996), Wouters et al. (1996) and Belli et al.
(1998). RBE values that were reported relative to 200 kVp (Belli et al. 1998) or 240 kVp
X-rays (Folkard et al. 1996) were corrected to 60Co by applying a dose independent factor
of 1.1 (Spadinger and Palcic 1992). The RBE values from equation (4.8) for the 10% and
50% survival level are given by the dotted and solid lines, respectively.

Wouters et al. 1996, Belli et al. 1998) for two survival levels (10% and 50%), corresponding

to doses of 7.1 and 3.3 Gy 60Co gamma-rays. For the phenomenological RBE model, the

values for αx, βx, α0 and λ that were given in the previous section were employed. The

experimental data are either as stated in the original publications, or they were derived

from the α and β values for protons and the reference radiation given in the respective

papers. Where no error bars for the RBE were reported, they were calculated from the

errors in α and β, as far as those were given. For LETs below 30 keV/µm, the RBE

increases with LET for a given survival level. Independently of LET, the RBE is higher

for higher survival levels, i.e. for lower doses.

4.3.2 Application of the RBE model to SOBPs

The RBE model was applied to two SOBPs with maximum energies of 70 MeV and

160 MeV (figure 4.3). Both SOBPs consisted of 15 weighted pristine peaks that were

shifted by different thicknesses of absorbing material. The pristine peaks had an initial

energy spread σE of 0.5 MeV in both cases. The ranges were 4.02 cm (70 MeV) and 17.6 cm

(160 MeV), and the modulation widths (measured between the 90% dose levels) were 2.2 cm

and 7.8 cm, respectively. The physical dose distributions along the central axis (with 2 Gy
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Figure 4.3: (a): Dose (——), RBE (· · · · · ·) and RBE× dose (– – –) for a SOBP with
a maximum energy of 70 MeV (range 4.02 cm), with the corresponding LET in (c). In
panels (b) and (d) on the right, the same distributions are given for a 160 MeV SOBP with
a range of 17.6 cm. RBE values (relative to 60Co) are for the survival of V79 cells and
were calculated with the RBE model described in section 4.2.2.

in the SOBP) are shown in figure 4.3a and b, and the corresponding distributions of the

dose averaged LET in figure 4.3c and d. The LET is low in the entrance region, rises along

the SOBP plateau and increases very steeply at the distal edge. In the 160 MeV beam, the

LET values are lower than for the 70 MeV beam. This is due to the lower stopping power

at high energies in the entrance region, and to increased range straggling in the SOBP

region, which broadens the energy spectrum of the beam, leading to lower values of the

dose averaged LET (cf chapter 3). At every depth, the RBE for the survival of V79 cells

relative to 60Co was calculated according to equation (4.7), using the actual dose and LET

values and the cell parameters (α0, λ, αx and βx) given in section 4.2.2. The RBE and the

product of RBE and dose are shown in figure 4.3a and b for both SOBPs. For RBE× dose,

units of “Cobalt Gray Equivalent” (CGE) were used to indicate that it is a proton dose

which has already been multiplied by the RBE relative to 60Co. The RBE starts around

1 at the beam entrance, increases slowly along the SOBP, and shows a steep increase at

the distal edge. This means that RBE× dose is not flat in the SOBP plateau, but it is
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70 MeV 160 MeV
SOBP
dose RBE RBE Distal shift RBE RBE Distal shift
(Gy) proximal distal (mm) proximal distal (mm)

1 1.24±0.14 1.93±0.18 0.90±0.06 1.11±0.13 1.60±0.16 2.2±0.2
2 1.18±0.10 1.75±0.13 0.83±0.06 1.08±0.10 1.44±0.11 1.9±0.2
4 1.12±0.07 1.46±0.09 0.70±0.07 1.05±0.06 1.29±0.08 1.6±0.2
8 1.07±0.04 1.28±0.06 0.53±0.06 1.03±0.04 1.18±0.05 1.1±0.2

Table 4.1: RBE values (survival of V79 cells relative to 60Co) at the proximal and distal
edge of the SOBPs shown in figure 4.3 for several dose levels of the SOBP plateau. The
resulting shift in depth of the distal edge between the physical dose and RBE× dose is also
given (evaluated at 80% of the physical dose). The error intervals account for uncertainties
in the parameters α0 and λ.

inclined and shows a clear region of increased effectiveness at the distal edge. Moreover,

the “high dose” region of RBE× dose is extended to slightly greater depths compared to

the physical dose.

The main features of the RBE× dose curve, i.e. the incline of the SOBP and the shift

of the distal edge, were further evaluated for several dose levels (table 4.1). For doses of

1, 2, 4 and 8 Gy, RBE values are given at the proximal and distal edge of the SOBP (at

depths of 1.98 and 3.94 cm for the 70 MeV beam and at 10.5 and 17.4 cm for 160 MeV).

For both energies, the RBE values decrease with increasing dose, and the values at the

distal edge are higher than at the proximal edge. Due to the higher LET values in the low

energy beam, the RBE values are generally higher in that case.

Table 4.1 also quantifies the extension of the high dose region to greater depths, i.e. the

shift of the distal edge of RBE× dose compared to the physical dose. The reported values

are the distance between the two curves measured at the 80% level of the physical dose

given to the SOBP plateau. A constant RBE of 1.1 would result in a dose independent

shift of 0.13 mm (70 MeV) and 0.39 mm (160 MeV) and would clearly underestimate the

values from table 4.1. The effect becomes smaller for greater doses, as the RBE values

decrease with dose. For the 160 MeV case, the absolute values of the shift are more than

twice as high as for the 70 MeV beam, despite of the lower LET and RBE values in the

high energy beam. This is due to the fact that the distal falloff of the physical dose is

much shallower in the 160 MeV beam: the distance between the 80% and 20% levels of

the physical dose in the SOBP is 0.98 mm for the 70 MeV beam compared to 2.9 mm in

the 160 MeV beam, which is due to increased range straggling in the latter case.
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Figure 4.4: Lateral profiles of RBE× dose for a broad 160 MeV proton beam of 5 cm
width at a depth of 17 cm (slightly before the peak at 17.2 cm). The RBE was calculated
using a laterally constant LET (red solid line) as well as using the lateral LET distribution
obtained by Monte Carlo simulations (green), cf figure 3.9. The physical dose is given by
the dotted line.

To estimate the effects of uncertainties in the tissue parameters, potential errors in α0

(±0.02 Gy−1) and λ (±0.002 µm keV−1 Gy−1) were derived from the data in figure 4.1.

The consequences of these errors in a worst case scenario are given in table 4.1. However,

we did not take any possible errors in dose, LET, αx and βx into account, so the real error

will be even larger.

4.3.3 Three-dimensional RBE calculations

The phenomenological RBE model described above can be applied to any point in a radi-

ation field as long as the dose, the dose averaged LET and the relevant tissue parameters

for that point (or voxel) are known. Since three-dimensional distributions of dose and LET

can be calculated (cf section 3.3.3), RBE and RBE× dose can also be obtained in three

dimensions. Such distributions will be shown and discussed for realistic planning studies

in the next chapter.

Here, I will just present an example of lateral profiles for RBE× dose in order to test

the assumption of a laterally constant LET made in section 3.2.2. For a broad beam of

160 MeV (same configuration as described in section 3.3.2, with a peak dose of 4 Gy), lateral

distributions of dose and RBE× dose are given in figure 4.4. The RBE was calculated in

two ways, using i) a laterally constant LET and ii) the lateral LET values obtained by
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Monte Carlo simulations (as shown in figure 3.9). When comparing RBE× dose for the

two methods, only small differences can be seen. The greatest deviations are found in

the low dose region far away from the central axis, where the biological effect is slightly

underestimated when using the constant LET. However, the RBE values at doses below

1 Gy have to be considered with great care since the LQ model might not be valid in that

dose region (see discussion below).

4.4 Discussion

RBE values as a function of the LET were calculated with our model and compared to

experimental results (figure 4.2). In the LET region below 30 keV/µm, our model agreed

with the measurements within the experimental uncertainties. Above ∼15 keV/µm we

overestimate the experimental values slightly, but this is probably acceptable since LET

values below 15 keV/µm are much more common in therapeutic proton beams (cf fig-

ure 4.3). One might argue that the good agreement is not surprising, as the experimental

data in figure 4.2 are basically from the same studies as the data that were used to fit

the tissue parameters (figure 4.1). However, it indicates that the assumptions made in the

derivation of the RBE model are reasonable, in particular the use of a linear function for

αp(L) and a constant βp.

Paganetti and Goitein (2001) gave a very similar figure to figure 4.2, where they com-

pared the experimental RBE data for V79 cells with the predictions of two track structure

models for RBE, namely the Amorphous Track Partition (ATP) model (Butts and Katz

1967, Katz et al. 1971) and the Local Effect Model (LEM, Scholz and Kraft 1994, Scholz

et al. 1997). While the LEM significantly overestimated the RBE for low LET values at

the 50% survival level, the ATP model underestimated the RBE for almost the entire LET

range. For LETs below 30 keV/µm, our model seems to agree better with the experimental

values than the LEM or the ATP model. However, both the LEM and the ATP model

can predict the decrease of RBE at higher LET values, which is beyond the scope of our

model.

Since most of the experimental data in figure 4.2 are from monoenergetic proton beams,

our RBE model is also compared to experiments for more realistic situations like SOBPs.

The main RBE effects for SOBPs, i.e. the increase of the RBE along the SOBP plateau

and the shift of the distal edge, have already been observed by other authors and could

be reproduced by our model. The increasing RBE along the plateau was experimentally

reported for low energy beams (e.g. Wouters et al. 1996, Tang et al. 1997) and for high

energy beams (e.g. Ando et al. 2001), showing a qualitatively similar behaviour to the
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RBE in figure 4.3. Experimental values of the shift of the distal falloff to greater depths

are ∼1 mm for human tumour cells in a 65 MeV SOBP (Bettega et al. 2000), and ∼2 mm

for rat hepatoma H4 cells in a 160 MeV SOBP (Robertson et al. 1975). These values agree

well with those given in table 4.1. In a theoretical study, Paganetti and Goitein (2000)

calculated RBE distributions for the survival of V79 cells in SOBPs with 70 and 120 MeV

beams. For 2 Gy SOBP dose, they found an extension of the SOBP in depth (measured

at the 90% dose level) of 1.2 mm in the 120 MeV beam and 0.8 mm for the low energy

beam, which again corresponds well to the values in table 4.1. They reported that both the

rise of RBE with depth as well as the shift to greater depths is less pronounced for higher

doses, which is also consistent with our observations. This indicates that the dose averaged

LET could successfully be applied as a measure for the radiation quality in polyenergetic

beams. As another test of the RBE model, it would be very interesting to design and

evaluate cell survival measurements for simple cases of mixed radiation fields with protons

of different LET, e.g. to irradiate cells with two well defined proton beams of high and low

LET simultaneously.

As soon as three-dimensional dose and LET distributions are available, the RBE can

be computed at any point in the radiation field. Since the differences in RBE for a laterally

constant or variable LET were small (figure 4.4), the use of a laterally constant LET is

also justified from a radiobiological point of view. However, there is one point that has to

be kept in mind when applying the RBE model to realistic patient geometries: compared

to water phantoms, the distal falloff of the dose can become shallower in inhomogeneous

media due to increased straggling and scattering of the beam when passing through high

density materials like bone (cf Urie et al. 1986). This effect is not included in our dose

calculations, although it might influence the LET and the RBE in the distal part of the

Bragg curve.

It must also be noted that our RBE model has some more limitations. Apart from the

restricted LET range (cf section 4.2.1), the dose range of our model is also limited: since it

is based on the LQ model, we are confined to the validity of the LQ model, which is about

1–10 Gy. Below 1 Gy, the so-called low dose hypersensitivity (Joiner et al. 2001, Schettino

et al. 2001) can cause severe deviations. As typical doses per fraction in proton therapy

are above 1 Gy for the target, this effect is not critical, at least for the optimization of the

dose in the target volume. For organs at risk, where the dose might well be below 1 Gy,

one has to keep this limitation in mind. A special case are treatments of ocular tumours,

where the dose per fraction is often higher than 10 Gy. Here the LQ model must be used

with great care, and small uncertainties especially in the β parameter can lead to large

errors in RBE.
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Another important point is the consideration of secondary particles produced in non-

elastic nuclear interactions, as they can significantly influence the total RBE due to their

high biological effectiveness (Paganetti 2002). Our LET model in its current form can

account for primary and secondary protons only (Wilkens and Oelfke 2003), and heavier

secondaries like alpha particles are not included. This means we are underestimating the

total LET, especially in the entrance region of high energy beams, where most nuclear

interactions occur. However, the RBE model can implicitly account for all secondary par-

ticles, since these secondaries are certainly present in the cell survival experiments that are

used to fit the parameters α0 and λ, even if only a proton LET is reported. Unfortunately,

due to the lack of data for V79 cells in the low LET region below ∼3 keV/µm, this does

not work satisfactorily for the present parameter set. The RBE in the entrance region of

the 160 MeV beam (figure 4.3) is therefore unexpectedly low (below 1.1). On the other

hand, secondary particles can be neglected in the Bragg peak region, which is dominated

by Coulomb interactions. Both LET and RBE are here determined by primary protons

only (Paganetti 2002). In particular, the shift of the distal edge of SOBPs is therefore not

affected by secondary particles.

In this work, tissue parameters for our model were only derived for the survival of

V79 cells in vitro, mainly because there are extensive data in the literature about this cell

line. One must be aware that V79 cells often show higher RBE values than other cell lines

(Paganetti et al. 2002), which makes them a suitable system to study RBE effects. But this

also means that it is difficult to transfer these results to other cell lines or systems, which

can show significantly different behaviour. Especially in in vivo situations, RBE values

closer to 1.1 can be expected. More biological data are therefore required to validate RBE

models in in vivo systems and for clinically relevant endpoints. For practical applications,

great care has to be taken that sufficient and appropriate biological data are used in the

derivation of the tissue parameters. For tissue types other than V79 cells, the parameters

of our RBE model can be derived directly from measurements, ideally for αp(L). While

such data are easily available for various cell lines in vitro (e.g. Bettega et al. 1998, Belli

et al. 2000), it becomes more difficult for in vivo tissues and endpoints, where often not

even the photon response parameters αx and βx are precisely known. Another approach to

obtain the tissue parameters is to fit them to simulations with other (e.g. track structure)

models, provided the tissue parameters for those models have already been determined (cf

the listing in Katz et al. 1994).

In summary, a phenomenological model for the RBE of protons as a function of the

dose, the dose averaged LET and tissue specific parameters was proposed. Although it

consists only of a few simple formulas, it reproduces the basic dependencies of RBE on
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dose and LET as observed by in vitro experiments. Despite being much simpler, our RBE

model was at least comparable to track structure models in the therapeutically relevant

LET region below 30 keV/µm.

The main advantage of the model is its ability to calculate three-dimensional RBE dis-

tributions extremely fast. All it needs are the tissue parameters and three-dimensional LET

calculations, which can be done as fast as common dose calculation algorithms (Wilkens

and Oelfke 2004). This makes it a useful tool to study the effects of a variable RBE even

in inverse treatment planning, which will be investigated in the following chapter.

On the other hand, the model has several limitations, and it is only a phenomenological

way to describe the RBE on the basis of experimental data. More experiments are required

to obtain the tissue parameters for more clinical tissue types and endpoints. However, if

one considers a constant RBE of 1.1 as the 0th order approximation of the RBE problem,

this model can certainly serve as a feasible approach for the derivation of first order effects.

59





Chapter 5

New Optimization Strategies

5.1 Introduction

We can now take the methods for three-dimensional LET calculations and the phenomeno-

logical RBE model, which were developed in chapters 3 and 4, and apply them to the

treatment planning process in proton therapy. After calculating both dose and LET distri-

butions, the model for RBE as a function of dose, LET and tissue type allows us to obtain

RBE distributions for any given treatment situation. But rather than just executing a final

three-dimensional RBE calculation after the optimization of the physical dose, it would be

more interesting and useful to use the LET and RBE information during the optimization,

to come up with a treatment plan that is optimized in terms of the biological effect instead

of the physical dose. For this purpose, new optimization strategies are required that can

take these new issues into account.

The optimization is usually done by minimizing a so-called objective function using

iterative algorithms (cf section 2.3.2). We will see that we can use the same optimization

algorithm as before, although we have to change the objective function and add constraints

in terms of LET or the biological effect. These new objective functions and some details

on the implementation in KonRad are described in section 5.2.

In section 5.3, results for these new optimization strategies are presented. They are first

applied to spread-out Bragg peaks in water as a simple example to demonstrate the poten-

tial and the limitations of the new objective functions. After that, we will consider realistic

patient geometries given by computed tomography data sets, and scanning techniques for

intensity modulated proton therapy. Obviously, these studies can be of exemplary nature

only, although some general trends can be identified, which are discussed in section 5.4.
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5.2 Methods

In inverse treatment planning one usually aims for a homogeneous physical dose in the

planning target volume, leading to simple objective functions of the form

FD(w) =
∑

i∈PTV

(Di(w)−DPTV)2 , (5.1)

where the quadratic deviations between the actual dose Di in voxel i and the prescribed

dose DPTV are summed up for all voxels of the PTV. In practice, this objective function is

often modified to account for minimum and maximum dose constraints in the target and for

maximum dose constraints in organs at risk, which are weighted by so-called penalty factors

(cf section 2.3.2 and equation (2.5)). In the following, I will describe how this objective

function can be modified to account for the LET (section 5.2.1) and (more promising) for

the biological effect (section 5.2.2).

5.2.1 Objective function for LET constraints

As the RBE depends on dose, LET and tissue type, one new optimization strategy could

be to aim not only for a homogeneous dose, but also for a homogeneous LET distribution

in the target, as this would yield a homogeneous biological effect (RBE× dose). The

corresponding objective function (which will be called “LET objective function” in the

following) would be

FD,L(w) = νDFD(w) + νLFL(w) (5.2)

with

FL(w) =
∑

i∈PTV

(
Li(w)− L(w)

)2
, (5.3)

where νD and νL are penalty factors, Li is the dose averaged LET at voxel i and L is the

mean LET in the PTV:

L(w) =
1

NPTV

∑
i∈PTV

Li(w), (5.4)

where NPTV is the number of voxels in the PTV.

Note that we did not prescribe a certain LET value to the target volume (as such a

constraint would be extremely difficult to meet in the optimization), but we rather minimize

the variance of the LET in the target. However, it is still difficult to satisfy the constraints

of homogeneous dose and LET at the same time. To use this LET objective function in

62



5.2 Methods

a simple gradient optimization algorithm, the first partial derivatives of FL have to be

known. As
∂Di(w)

∂wk

=
∂

∂wk

∑
j

wjDij = Dik and (5.5)

∂Li(w)

∂wk

=
∂

∂wk

1

Di(w)

∑
j

wjLijDij =
Dik

Di(w)
(Lik − Li(w)), (5.6)

they are

∂FL(w)

∂wk

=
∑

i∈PTV

2 · (Li − L) ·
[

Dik

Di

(Lik − Li)− 1

NPTV

∑
j∈PTV

Djk

Dj

(Ljk − Lj)

]
. (5.7)

The advantage of this approach would be that there are only physical parameters (dose

and LET) involved in the objective function, i.e. no tissue dependent biological parameters

have to be determined. But even for homogeneous dose and LET in the PTV, one would

still need one global (biological) RBE value for the whole PTV.

Another option for LET based objective functions would be to include maximum LET

constraints in organs at risk, which could be done in close analogy to the commonly used

maximum dose constraints (cf equation (2.5)). Again, this might be very difficult to ac-

complish due to the physical properties of the proton depth dose curve, which shows very

high LET at low doses in the region behind the Bragg peak. There is probably no reason

to penalize high LET values in a voxel that is exposed to very low doses only.

5.2.2 Objective function for the biological effect

A second, more general approach is the direct optimization of the biological outcome

(i.e. the product of RBE and dose). This will provide more degrees of freedom than the

objective function in the previous section, as dose and LET may vary within the PTV,

as long as the biological effect is constant. Rather than explicitly integrating the RBE

formula (4.7) from chapter 4 in the objective function, we will use the biological effect

E = − ln S = αD +βD2 from the linear quadratic model, as this offers some practical and

computational advantages. To get a homogeneous biological effect in the PTV, we just

have to change the objective function to

FE(w) =
∑

i∈PTV

(Ei(w)− EPTV)2 . (5.8)
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By applying equations (4.4) and (4.6) for the dependencies of the proton response param-

eters αPTV
p and βPTV

p on LET for the tissue of the PTV, we get

FE(w) =
∑

i∈PTV

(
αPTV

p (Li(w))Di(w) + βPTV
p D2

i (w)− EPTV

)2

=
∑

i∈PTV

(
(αPTV

0 + λPTVLi(w))Di(w) + βPTV
p D2

i (w)− EPTV

)2

=
∑

i∈PTV

(
αPTV

0 Di(w) + λPTVLi(w) + βPTV
p D2

i (w)− EPTV

)2
, (5.9)

where Li(w) = Li(w)Di(w) is the product of LET and dose (cf section 3.2.4.3). Minimizing

this objective function will lead to a homogeneous biological effect and therefore to a homo-

geneous distribution of the product of RBE and dose in the PTV. The “prescribed effect”

EPTV can be connected to the prescribed X-ray dose DPTV by EPTV = αxDPTV + βxD
2
PTV.

In the following, this new objective function will be called “RBE objective function”. In

this context I will even speak of “RBE optimization”, although it is certainly not the RBE

itself that is optimized, but rather the biological effect or the product of RBE and dose.

In equation (5.9), both Di and Li depend on the beam weights w, but the Newton

gradient method for the optimization still works. For this algorithm, the partial derivatives

of FE(w) have to be calculated. As

∂Li(w)

∂wk

=
∂

∂wk

Li(w)Di(w) =
∂

∂wk

∑
j

LijDijwj = LikDik, (5.10)

we get

∂FE(w)

∂wk

=
∑

i∈PTV

2
(
αPTV

0 Di(w) + λPTVLi(w) + βPTV
p D2

i (w)− EPTV

)

× (
αPTV

0 Dik + λPTVLikDik + 2βPTV
p Di(w)Dik

)
. (5.11)

For the Newton gradient approach as it is implemented in KonRad (cf Nill 2001, p 12),

the second partial derivatives are also needed:

∂2FE(w)

∂w2
k

=
∑

i∈PTV

[
4
(
αPTV

0 Di(w) + λPTVLi(w) + βPTV
p D2

i (w)− EPTV

)
βPTV

p D2
ik

+2
(
αPTV

0 Dik + λPTVLikDik + 2βPTV
p Di(w)Dik

)2
]
. (5.12)

Note that in equations (5.9), (5.11) and (5.12) the LET Li never appears “alone”, but

only in products with Di, i.e. as Li. The latter can be calculated easily as
∑

j LijDijwj
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(cf section 3.2.4.3), which simplifies the computational effort required for evaluating these

equations.

If a minimum and a maximum constraint for the PTV are given (DPTV
min and DPTV

max ),

they can be converted to minimum and maximum effect levels by

EPTV
min = αxD

PTV
min + βxD

PTV
min

2
and EPTV

max = αxD
PTV
max + βxD

PTV
max

2
(5.13)

and the corresponding objective function (cf equation (2.5b)) will be

F̃E(w) = νPTV
min

∑
i∈PTV

[C+(EPTV
min − Ei)]

2 + νPTV
max

∑
i∈PTV

[C+(Ei − EPTV
max )]2. (5.14)

This objective function can be extended easily to include maximum effect constraints in

organs at risk in the usual way as given in equations (2.5a) – (2.5c). While the respective

penalty factors keep the same meaning, all constraints that were given as an X-ray or

photon dose have to be translated to constraints in terms of the biological effect using

E = αxD + βxD
2. The tissue parameters αx, βx, α0, λ and βp are then needed for every

organ under consideration.

5.2.3 Implementation in KonRad

The new objective functions were integrated into our research version of the inverse plan-

ning tool KonRad (cf section 2.3). However, at the current point the implementation of

the LET objective function in KonRad is still work in progress, and I will therefore con-

centrate on the RBE objective function in the following. The methods for calculating and

accessing the Lij matrix and for obtaining three-dimensional LET distributions in KonRad

were already described in section 3.2.4. Now some additional input data are required for

the RBE objective function, and I will also describe what kind of output data is produced

by KonRad.

5.2.3.1 Input data for KonRad

Besides the usual functionality of the KonRad system (cf Nill 2001), the user can now choose

between either the “normal” optimization of the physical dose, or the new optimization of

the biological effect, i.e. using objective function (5.9). In any case, the user can request a

final calculation of three-dimensional LET or RBE distributions after the optimization to

study the LET and RBE effects for the normal optimization of the physical dose as well.
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If RBE calculations or the optimization of the biological effect are chosen, it is further

necessary to provide the biological tissue parameters αx, βx, α0, λ and βp for each classified

tissue volume or organ (PTV, organs at risk, normal tissue). If more than one organ at

risk are given, the parameters have to be specified for every OAR separately. They are

read into KonRad from a patient-specific configuration file. Internally, KonRad assigns a

set of tissue parameters to every voxel within the patient, depending on the (unique) organ

classification of the respective voxel.

Another point that has to be noted is that RBE calculations have to be done for the

dose per fraction rather than the total dose (cf chapter 4). To take this into account, the

user has to specify the number of fractions. The constraints for the optimization are given

as usual in terms of the total dose and they are then internally converted to doses per

fraction by dividing them by the number of fractions.

When optimizing the physical dose, the constraints are interpreted as physical proton

doses. In the case of optimizing the biological effect, the constraints specified by the user

are considered to be physical photon doses, i.e. they are the same as one would use for a

photon optimization. They are then translated internally to constraints in terms of the

biological effect as described above.

5.2.3.2 Output data from KonRad

After the optimization, the results are written to files: besides the dose cube, three-

dimensional distributions of dose averaged LET, RBE, RBE× dose and the surviving

fraction can be exported as requested by the user. Additionally, a file providing statis-

tical information of these cubes is created. It states the minimum and maximum values

of the respective distributions and the normalization values. These cubes can be further

processed and visualized as desired, e.g. to obtain dose-volume-histograms (DVHs) or to

compare different plans.

5.3 Results

The new objective functions that were introduced in the last section can be used either in

KonRad or in any other optimization program, e.g. for spread-out Bragg peaks. As the

latter are a simple example for the demonstration of the new optimization strategies, I

will first show some results for SOBPs (section 5.3.1). After that, the effects of the new

objective functions for several clinical cases with IMPT plans in KonRad are presented in

section 5.3.2.
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Parameter Value Unit

αx 0.112 Gy−1

βx 0.0298 Gy−2

α0 0.1 Gy−1

λ 0.02 µm keV−1 Gy−1

βp 0.0298 Gy−2

Table 5.1: Tissue parameters used in all calculations of the biological effect in this work.
They are the values for the survival of V79 Chinese hamster cells in vitro as derived in
chapter 4.

For the calculation of the biological effect with the phenomenological RBE model, a

set of biological parameters for every tissue under consideration is required. However, it

is not the aim of this work to derive exact parameter sets for clinically relevant tissue

types. We rather want to investigate the effects of a variable RBE in IMPT in general, and

therefore just one set of parameters is used for all organs or tissue types in all following

RBE calculations. For simplicity, we will use the values derived in section 4.2.2 for V79

Chinese hamster cells relative to 60Co gamma-rays, which are summarized in table 5.1.

5.3.1 Optimization of spread-out Bragg peaks

Spread-out Bragg peaks were optimized using a simple gradient algorithm and the objec-

tive functions given in section 5.2. A predefined number of pristine peaks was placed in

equidistant steps along the intended modulation width of the SOBP.

5.3.1.1 LET optimization

Let us first investigate the LET objective function (5.2), which aims at a homogeneous dose

and a homogeneous LET simultaneously. The relative importance of these two objectives

is given by the penalty factors νD and νL. Figure 5.1 shows an example for SOBPs with

three different penalty settings (νD = 1; νL = 0), (0; 1) and (0.5; 0.5), corresponding to

“pure dose”, “pure LET” and equally weighted optimization of both. All SOBPs consist

of 15 peaks with an initial energy of 70 MeV (range 40 mm), which are modulated in range

to cover the depth interval 11–31 mm. This energy in conjunction with SOBPs is typically

used for the treatment of ocular tumours.

The configuration given in figure 5.1a is of course just the usual SOBP with a homoge-

neous dose in the SOBP plateau. But here the LET increases along the plateau, as it was
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Figure 5.1: Dose (——) and LET (· · · · · ·, right ordinate) distributions for spread-out
Bragg peaks that were optimized for three different penalty settings in the LET objective
function: (a) pure dose optimization (νD = 1; νL = 0), (b) pure LET optimization (0; 1)
and (c) equal weighting of both objectives (0.5; 0.5). The red vertical lines indicate the
positions and the relative weights of the constituent pristine peaks.
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Figure 5.2: Total dose (——) and LET (· · · · · ·, right ordinate) distributions for two
opposing beam ports with a maximum energy of 160 MeV. The weights of the pristine
peaks were optimized to yield homogeneous dose and LET distributions in the depth interval
11.5–17.5 cm, using νD = 0.5 and νL = 0.5. The dose contributions of the two fields are
given by the broken lines.

already pointed out in chapter 3. If one aims for a homogeneous LET only (figure 5.1b),

this can be achieved by a modified dose profile: the dose is now much lower in the distal

part of the SOBP to compensate the increase in LET. In figure 5.1c, both objectives

are weighted equally, which apparently does not lead to a good compromise. While the

LET is not much better than in figure 5.1a, the dose distribution is considerably worse.

However, these results show that the new objective function works in principle. The unac-

ceptable results of figure 5.1c are due to the physical properties in terms of dose and LET

of the pristine Bragg peaks - it is simply not possible to have homogeneous dose and LET

simultaneously in a SOBP.

To get flat distributions of both dose and LET, one needs more degrees of freedom

in the optimization. This can be accomplished for example by two opposing beams for

the treatment of deep seated tumours (figure 5.2). Now there are several possibilities for

obtaining a flat total dose, and among them is also a solution that gives a homogeneous

LET distribution in the region of interest. For two opposing beam directions, each with 15

pristine peaks with a maximum energy of 160 MeV, the total dose and LET distributions

were optimized using νD = 0.5 and νL = 0.5. While the two beam ports both deliver a

non-uniform dose, the total dose and LET showed good uniformity in the “target” region

(figure 5.2). This means that although the LET optimization did not work satisfactorily
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Figure 5.3: Dose (——) and RBE× dose (– – –) distributions for spread-out Bragg peaks
that were optimized to yield a homogeneous dose (left) and a homogeneous biological effect
(right) for the survival of V79 cells in vitro relative to 60Co. The red vertical lines indicate
the positions and the relative weights of the constituent pristine peaks. The corresponding
cell survival levels are given in panels (c) and (d).
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for one beam direction, it might have applications for more than one beam port, e.g. in

IMPT with the 3D modulation technique. However, this approach will not be pursued any

further in this work.

5.3.1.2 Optimization of the biological effect

Next, I will give an example for an SOBP that was optimized with the RBE objective

function (5.9). Now dose and LET are allowed to vary within the modulation region,

as long as the biological effect (RBE× dose) is uniform in the desired depth interval.

Figure 5.3 illustrates a typical result for a SOBP with 15 pristine peaks and a maximum

energy of 70 MeV (same configuration as in figure 5.1). On the left hand side (figure 5.3a)

is again the usual optimization of the physical dose (with 2 Gy in the SOBP), while the

graph on the right hand side (figure 5.3b) corresponds to the new objective function. In

both cases, the biological effect in terms of RBE× dose is also given. While RBE× dose

did not show a uniform plateau for the dose optimization (cf section 4.3), it became flat

for the RBE objective function. This was accomplished by reducing the dose in the distal

part of the SOBP and thereby compensating for the increasing RBE. In figures 5.3c and

5.3d, the surviving fraction of V79 cells as a function of depth is given for both cases. For

the dose optimization, there is a distinctive dip to smaller survival levels at the distal edge

of the SOBP, while this effect almost vanished for the RBE objective function.

5.3.2 Optimization of IMPT

In this section, the effects of a variable RBE for several clinical examples with IMPT

scanning techniques will be investigated. However, it is not the aim of this work to present

the best clinical plan for these cases, but rather to demonstrate the RBE effects and

optimization strategies for scanning techniques using typical patient geometries.

In particular, two cases will be studied in detail: a patient with a clivus chordoma,

and a patient with a carcinoma of the prostate. The chordoma was chosen because its

concave shape and its close location to the brainstem make it very difficult to treat with

conventional photon radiotherapy. It is therefore an ideal candidate for more sophisticated

techniques like intensity modulated radiotherapy (IMRT) with photons or IMPT. Fur-

thermore, chordomas are a standard tumour site in clinical proton therapy (e.g. Debus

et al. 1997, Noël et al. 2001). Proton therapy is also used for prostate carcinomas (e.g.

Rossi 1999), although many of these tumours are treated with different modalities as well.

Due to their high rate of incidence, prostate carcinomas are frequently studied, and many

people could benefit from therapeutical improvements.
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Figure 5.4: Left: Transversal CT slice through the isocentre for the patient with the
clivus chordoma. The planning target volume (PTV) and the brainstem as organ at risk
are indicated by the red and green lines, respectively. The five incident beam directions
are given by the yellow lines. Right: Three-dimensional view of the PTV (red) and the
brainstem (green) as seen from the patient’s back. The eyes, the optical nerves and the
chiasm are also outlined.

For every case I will first describe the geometry of the anatomy and the planning objec-

tives. After that, several treatment plans using different scanning techniques (distal edge

tracking and 3D modulation) and different objective functions (dose or RBE optimization)

will be presented. All plans were optimized in KonRad using five coplanar, equally spaced

beam ports. For all plans a final calculation of three-dimensional LET and RBE distribu-

tions was performed, so that they can be evaluated and compared in terms of dose, LET

and RBE× dose.

5.3.2.1 Clinical case 1: clivus chordoma

Anatomy and clinical objectives The anatomy of the patient with the clivus chor-

doma is shown in figure 5.4. The planning target volume is situated in the centre of the

patient’s head and wraps closely around the brainstem as the primary organ at risk. The

five coplanar, equally spaced beam directions are indicated in figure 5.4. The maximum

beam energy used was 200 MeV for the anterior-posterior beam, and 160 MeV for all

other beams. The lateral distance between beam spots was set to 6 mm. This led to a
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Organ Dmin νmin Dmax νmax

PTV 68 CGE 99 71.5 CGE 20
brainstem — — 0 CGE 6
normal tissue — — 70 CGE 3

Table 5.2: Optimization constraints (minimum dose, maximum dose and the respective
penalty factors, cf equation (2.5)) for the clivus chordoma case. While the maximum dose
constraint for the brainstem is rather tight to spare the brainstem as much as possible, the
constraints for the PTV allow for small inhomogeneities in the dose distribution.

total number of 690 beam spots for distal edge tracking and 10 066 beam spots for 3D

modulation.

The objectives of the planning process were to deliver a homogeneous dose of 70 CGE

in 35 fractions to the PTV (i.e. with a dose per fraction of 2 CGE), while sparing the

brainstem as much as possible. The dose constraints used for the optimization are listed

in table 5.2 and were taken from Nill (2001), where an extensive planning comparison

for this patient using intensity modulated photon, electron, proton and carbon beams was

presented. Besides the brainstem, the “normal tissue” consisting of all patient voxels except

the PTV and brainstem was considered as an organ at risk in the optimization. The eyes,

the optical nerves and the chiasm were far enough away from the PTV not to be included

as separate organs at risk.

Note that the constraints are given here in units of CGE, i.e. in terms of “photon dose”.

For the RBE optimization, these values can be used directly to calculate the “prescribed

effect” (cf section 5.2.2). To compare the new RBE optimization with treatment plans ob-

tained by the usual optimization of the physical dose, the constraints have to be converted

to appropriate proton doses. This was done by dividing the constraints from table 5.2

by the mean RBE in the PTV, which was 1.14 for distal edge tracking and 1.25 for the

3D modulation (see below). This procedure ensured that the final (dose dependent) RBE

calculation after the dose optimization was done with the correct values for the proton

dose per fraction to yield the desired CGE level.

Treatment plans for distal edge tracking Let us first consider treatment plans using

the distal edge tracking technique. For the optimization constraints given above, two plans

were generated: the first plan was optimized using the “normal” objective function, i.e.

aiming for a homogeneous physical dose in the planning target volume. Dose and LET

distributions for this plan were already displayed in figure 3.10. Applying the RBE model
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Figure 5.5: Dose (left) and LET (right) distributions in a transversal slice through the
isocentre for the new RBE optimization using the distal edge tracking technique. The colour
scales are normalized to 100% = 1.75 Gy per fraction and 100% = 5 keV/µm, respectively.

in a final step after the optimization yielded the distribution of RBE× dose shown on the

left side of figure 5.6. For the second plan, the new RBE objective function was employed

to obtain a homogeneous biological effect. The corresponding distributions of dose, LET

and RBE× dose are given in figure 5.5 and on the right hand side of figure 5.6.

As expected, the dose optimized plan gave a uniform physical dose distribution that

was highly conformal to the PTV (left side in figure 3.10). However, as already seen in

chapter 3, the LET values were low in the centre of the PTV and much higher at the

border and outside of the PTV. This led to an inhomogeneous distribution of the RBE

and therefore also of RBE× dose, which becomes apparent in figure 5.6 (left hand side).

In particular, there are some regions of considerable overdosage, e.g. at the left and right

lateral edges of the PTV in the slice shown in figure 5.6 where RBE× dose exceeds 130%

(white isodose line) of the desired 2 CGE. Note that the highest LET values in the normal

tissue (e.g. in the region posterior of the PTV) do not have a significant impact on the

biological effect, since the dose is very low in this region due to the steep physical dose

gradient. This means that although the RBE is high, the product of RBE and dose is

still low. For this plan, the RBE in the PTV ranged between 1.0 and 1.6 with a mean

of 1.14, which is in agreement with the underlying cell survival experiments. The overall

RBE maximum in this plan was 2.8 in the normal tissue surrounding the PTV.
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Figure 5.6: Distributions of the product of RBE and dose in a transversal slice through
the isocentre for the normal dose optimization (left) and for the new RBE optimization
(right), both for the distal edge tracking technique. The colour scales are normalized to
100% = 2 CGE per fraction.
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Figure 5.7: Dose-volume-histograms for the two distal edge tracking plans for the clivus
chordoma. The DVHs of the PTV (red) and the brainstem (green) are given for the physical
dose (a) and for the product of RBE and dose (b). The solid lines correspond to the dose
optimization (optimized to yield 1.75 Gy per fraction), while the dotted lines show the DVHs
for the RBE optimization (optimized to 2 CGE per fraction).
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Statistical analysis for the PTV Min Max Mean σ

DET dose (Gy) 0.63 2.30 1.78 0.14
dose optimized LET (keV/µm) 1.0 7.3 2.1 1.1

RBE× dose (CGE) 0.73 2.97 2.02 0.23

DET dose (Gy) 0.40 2.17 1.78 0.17
RBE optimized LET (keV/µm) 1.0 8.3 2.1 1.1

RBE× dose (CGE) 0.55 2.77 2.01 0.15

3D dose (Gy) 0.53 2.07 1.61 0.11
dose optimized LET (keV/µm) 1.4 5.1 3.5 0.4

RBE× dose (CGE) 0.84 2.58 2.03 0.14

3D dose (Gy) 0.53 1.92 1.58 0.10
RBE optimized LET (keV/µm) 1.7 5.3 3.6 0.4

RBE× dose (CGE) 0.77 2.47 2.00 0.11

Table 5.3: Statistical analysis of dose, LET and RBE× dose distributions per fraction in
the PTV for four different treatment plans for the clivus chordoma: for both the distal edge
tracking technique and the 3D modulation, plans were considered using either the normal
dose optimization (“dose optimized”) or the optimization of the biological effect (“RBE
optimized”). For every case, the minimum and maximum values as well as the mean and
the standard deviation are given.

Let us now look at the RBE optimized plan (figure 5.5 and right hand side in figure 5.6),

which was optimized to yield a homogeneous biological effect in the PTV. Indeed, the prod-

uct of the variable RBE and the dose was now more homogeneous in the PTV (figure 5.6),

while the brainstem was mostly spared from dose. As the LET did not change much (cf

figures 3.10 and 5.5), this improvement in RBE× dose was achieved by varying the physi-

cal dose in the PTV: the dose is higher in the middle of the PTV, where the LET is low,

while the dose is lowered in the high LET regions at the PTV border, where the RBE

gets higher. While this effect is difficult to see in the “colourwash” displays of figures 3.10

and 5.5, it will become apparent for the prostate case in section 5.3.2.2, where profiles

through the dose distributions will be presented. These observations are also evident in

the dose-volume-histograms (figure 5.7): the DVH of the PTV for RBE× dose is steeper

for the RBE optimization than for the dose optimization, but the physical dose is less

homogeneous. A detailed comparison of the two plans is also given in table 5.3, where

minimum and maximum values as well as the mean and the standard deviation are listed

for physical dose, LET and RBE× dose.
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Figure 5.8: Distributions of dose (left) and LET (right) in a transversal slice through the
isocentre for the new RBE optimization using the 3D modulation technique. The colour
scales are normalized to 100% = 1.6 Gy per fraction and 100% = 5 keV/µm, respectively.

Treatment plans for 3D modulation I will now present treatment plans for the same

patient but with the 3D modulation technique instead of distal edge tracking. Again, one

plan was done with the normal dose optimization, and a second plan was obtained using

the RBE objective function. Dose and LET distributions for the normal optimization were

already displayed in figure 3.11. The corresponding distributions for the RBE optimiza-

tion are shown in figure 5.8, and the resulting distributions of RBE× dose are shown in

figure 5.9.

As we already saw in chapter 3, the 3D modulation technique shows a much more

homogeneous LET distribution in the PTV than the distal edge tracking technique. This

means that there are not much RBE variations in the PTV, and RBE× dose is more or

less uniform, even for the normal optimization of the physical dose (left side in figure 5.9).

Here the RBE in the PTV ranged between 1.1 and 1.6 with a mean of 1.25. If the RBE

optimization is activated, a slight improvement of the homogeneity of RBE× dose can also

be achieved in this case, although it is difficult to see in the colourwash displays (figure 5.9).

Only the DVHs reveal that RBE× dose in the PTV is better for the new optimization

method (figure 5.10). However, these differences are relatively small for the 3D modulation

technique. A numerical analysis of the respective dose, LET and RBE× dose distributions

can be found in table 5.3.
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Figure 5.9: Distributions of the product of RBE and dose in a transversal slice through the
isocentre for the normal dose optimization (left) and for the new RBE optimization (right),
both for the 3D modulation technique. The colour scales are normalized to 100% = 2 CGE
per fraction.
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Figure 5.10: Dose-volume-histograms for the two 3D modulation plans for the clivus
chordoma. The DVHs of the PTV (red) and the brainstem (green) are given for the physical
dose (a) and for the product of RBE and dose (b). The solid lines correspond to the dose
optimization (optimized to yield 1.6 Gy per fraction), while the dotted lines show the DVHs
for the RBE optimization (optimized to 2 CGE per fraction).
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Figure 5.11: Left: Transversal CT slice through the isocentre for the patient with the
prostate carcinoma. The planning target volume (PTV) and the rectum are given by the
red and yellow lines, while the bladder and the heads of the femoral bones are outlined in
blue and violet, respectively. The five incident beam directions are given by the yellow lines.
Right: Three-dimensional view of the PTV (red) and the surrounding organs at risk.

Organ Dmin νmin Dmax νmax

PTV 66 CGE 40 66 CGE 10
rectum — — 45 CGE 4
bladder — — 45 CGE 4
femoral heads — — 30 CGE 2
normal tissue — — 35 CGE 3

Table 5.4: Optimization constraints (minimum dose, maximum dose and the respective
penalty factors, cf equation (2.5)) for the prostate carcinoma case.

5.3.2.2 Clinical case 2: prostate carcinoma

Anatomy and clinical objectives As a second example, I will present a patient with a

carcinoma of the prostate. The anatomy of this case is shown in figure 5.11. The planning

target volume (PTV) is situated in the pelvis and is closely surrounded by rectum and

bladder as the most important organs at risk. The heads of the femoral bones are also

outlined as organs at risk. Again, five coplanar equally spaced beam directions were chosen

as indicated in figure 5.11. Here the beam energies ranged from 160 MeV up to 250 MeV.

Using a lateral distance of 5 mm between the individual beam spots led to a total of 1183

beams spots for the DET technique.

The objectives of the planning process were to deliver a homogeneous dose of 66 CGE in

35 fractions to the PTV (i.e. with a dose per fraction of 1.9 CGE, which is a reasonable value
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5. New Optimization Strategies

Figure 5.12: Dose (left) and LET (right) distributions in a transversal slice through the
isocentre for the new RBE optimization using the distal edge tracking technique. The colour
scales are normalized to 100% = 1.7 Gy per fraction and 100% = 5 keV/µm, respectively.
Profiles along the white horizontal line between the two femoral heads (left side) will be
shown in figure 5.15.

for prostate treatment, cf Rossi 1999). At the same time, the dose to rectum, bladder and

femoral heads as well as to the normal tissue had to be limited. In the case of overlapping

structures (e.g. PTV and rectum), priority was given to the PTV. The dose constraints

used for this case are listed in table 5.4. Again, the constraints are given in units of CGE,

i.e. in terms of “photon dose”, which can be directly used for the RBE optimization. For

the normal dose optimization, the constraints were converted to proton doses by dividing

them by the mean RBE in the PTV, which was in this case 1.11 for distal edge tracking

(see below).

As many RBE effects will be similar to those that we already saw for the clivus chordoma

case, I will shorten the presentation for the prostate case. In particular, I will show results

for the more interesting DET technique only. However, as an additional way of displaying

dose, LET and RBE× dose one-dimensional profiles through the three-dimensional cubes

will be given, as they are in this case very well suited to elucidate the differences between

normal and RBE optimization.

Treatment plans for distal edge tracking Two plans were generated for the opti-

mization constraints given above: one for the normal dose optimization, and a second one
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Figure 5.13: Distribution of RBE× dose in a transversal slice through the isocentre for
the new RBE optimization using the distal edge tracking technique. The colour scale is
normalized to 100% = 1.9 CGE per fraction.
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Figure 5.14: Dose-volume-histograms for the two distal edge tracking plans for the
prostate carcinoma. The DVHs of the PTV (red), bladder (blue) and the rectum (green)
are given for the physical dose (a) and for the product of RBE and dose (b). The solid
lines correspond to the dose optimization (optimized to yield 1.7 Gy per fraction), while the
dotted lines show the DVHs for the RBE optimization (optimized to 1.9 CGE per fraction).
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Statistical analysis for the PTV Min Max Mean σ

DET dose (Gy) 1.17 1.97 1.71 0.06
dose optimized LET (keV/µm) 0.9 4.8 1.8 0.8

RBE× dose (CGE) 1.42 2.39 1.90 0.13

DET dose (Gy) 1.01 1.97 1.71 0.12
RBE optimized LET (keV/µm) 0.9 5.3 1.8 0.8

RBE× dose (CGE) 1.31 2.26 1.90 0.07

Table 5.5: Statistical analysis of dose, LET and RBE× dose distributions per fraction
in the PTV for the two treatment plans for the prostate carcinoma. For every case, the
minimum and maximum values as well as the mean and the standard deviation are given.

for the RBE optimization. Two-dimensional distributions of dose, LET and RBE× dose

are given in figures 5.12 and 5.13 for the RBE optimization only. The respective distribu-

tions for the normal dose optimization look very similar on colourwash displays and are

therefore not shown separately. The differences between the two plans can be observed

better in dose-volume-histograms and in one-dimensional profiles (see below).

As already seen for the clivus chordoma case, the LET distribution for the DET tech-

nique shows low LET values in the middle of the PTV and higher LET values at the edges

and outside of the PTV (right hand side in figure 5.12). This behaviour does not change

much if one uses either normal or RBE optimization. The distribution of RBE× dose (fig-

ure 5.13) was homogeneous in the PTV and well shaped to its contour. The mean RBE in

the PTV was 1.11 in this case.

By comparing the dose optimized and the RBE optimized plans in dose-volume-histo-

grams (figure 5.14), it becomes apparent that RBE× dose in the PTV is more homogeneous

for the RBE optimization than for the dose optimization, as is was also observed in the

clivus chordoma case. The DVHs for RBE× dose of bladder and rectum are also slightly

better for the RBE optimization (figure 5.14b). On the other hand, the physical dose

distribution in the PTV becomes less uniform (figure 5.14a), because the RBE optimization

algorithm gives more dose in the middle of the PTV, where LET and RBE are low, and

less dose at the PTV edge, where LET and RBE increase. This can be clearly seen in

the dose profiles through the PTV given in figures 5.15a and 5.15c. It leads to a more

homogeneous profile of RBE× dose and survival as depicted in figures 5.15b and 5.15d.

A further comparison of the two plans can be found in table 5.5, where minimum and

maximum values as well as the mean and the standard deviation are given for physical

dose, LET and RBE× dose.
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Figure 5.15: One-dimensional profiles of dose (a), RBE× dose (b), LET (c) and the
surviving fraction (d) for the normal dose optimization (——) and the RBE optimization
(· · · · · ·). The profiles were measured along the white line indicated in figure 5.12; the
position of the PTV is marked by the dashed vertical lines. All values are given per fraction.
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Technique Objective function Optimization time
clivus chordoma prostate carcinoma

DET normal dose optimization 170 s 320 s
DET RBE optimization 370 s 870 s

3D normal dose optimization 930 s —
3D RBE optimization 2600 s —

Table 5.6: Optimization times for all treatment plans for the clivus chordoma case and
the prostate carcinoma case presented in the previous sections. The calculations were done
on a DEC Alpha workstation (500 MHz).

5.3.2.3 Calculation times

Table 5.6 gives the calculation times that were needed for the optimization of the treat-

ment plans given in the previous sections. All calculations were done on a DEC Alpha

workstation (500 MHz) and will be faster on modern GHz computers. These times are

for the pure optimization, i.e. excluding the time needed to create and fill the Dij and

Lij matrices. This took another 50 (940) seconds for the DET (3D modulation) plans for

the clivus chordoma, and 250 seconds for the prostate DET plans. Depending on the case

and the scanning technique, the RBE optimization therefore takes roughly a factor of 2–3

longer than the conventional dose optimization.

5.4 Discussion

In this chapter, new objective functions were developed that can account for LET and RBE

effects in the optimization process. They were applied to the optimization of SOBPs, and

to inverse planning for intensity modulated proton therapy with scanning techniques. The

proposed method for “RBE optimization” allows simultaneous multi-field optimization of

the biological effect, i.e. of the product of a variable RBE and dose in a reasonable time,

and is therefore well suited for studying the influence of a variable RBE in IMPT.

5.4.1 The effects of a variable RBE in SOBPs and IMPT

For the chosen tissue parameters (i.e. for cell survival in vitro), the RBE strongly depends

on the LET. The most important differences between dose and RBE× dose were therefore

found in regions that were exposed to a) high LET (leading to elevated RBE values) and at

the same time to b) high or at least intermediate doses (as otherwise the product of RBE
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and dose would still be low). These conditions can be found in the distal parts of SOBPs,

and for scanning techniques at the PTV border and in the region of the dose gradient

surrounding the PTV. To compensate for this effect, it is in most cases not possible to

change the LET distributions for a given irradiation technique, as the LET of a single

beam spot does not (unlike the dose) depend on its weight. It is therefore the physical

dose that has to be modified if a uniform biological effect is desired.

5.4.1.1 Optimization of spread-out Bragg peaks

While homogeneous dose and LET distributions simultaneously can be achieved for two

opposing SOBPs (figure 5.2), this is not possible for a single SOBP (cf figure 5.1). However,

the biological effect in a single SOBP can be made uniform by lowering the dose in the

distal part of the SOBP, as shown in figure 5.3. This effect has been known for a long

time (e.g. Blakely 1994, Paganetti and Schmitz 1996, Paganetti 1998), although in most

clinical applications it is only exploited for heavier charged particles (e.g. Chen et al. 1979,

Kanai et al. 1999, Schaffner et al. 2000, Krämer and Scholz 2000). The RBE model and

the objective function presented in this work provide for an easy method to obtain these

isoeffective SOBPs for protons.

5.4.1.2 Optimization of IMPT

It was found that the effects of a variable RBE in IMPT depend on the type of scanning

technique used. As it was expected from the different LET distributions (cf chapter 3), the

impact of a variable RBE is much smaller for 3D modulation than for the DET technique.

The 3D modulation technique shows a more or less homogeneous LET within the PTV,

which leads to a relatively uniform RBE distribution. Applying the new RBE optimization

instead of the dose optimization can still improve the homogeneity of RBE× dose slightly

(figure 5.10). On the other hand, the LET distribution for DET is far less homogeneous in

the PTV. This leads to considerable RBE variations and to elevated levels of the biological

effect at the border of the PTV when using the normal dose optimization (cf figure 5.6).

The mean RBE in the PTV was smaller than for the 3D modulation, and the homogeneity

of RBE× dose was much worse than one would expect from the variations of the physical

dose using a constant RBE of 1.1. However, these unfavourable effects can be overcome

by the new RBE optimization, where the physical dose is modulated depending on the

local LET to yield a uniform biological effect and survival level across the PTV (as in

figure 5.15). Nevertheless, for the chordoma case the dose optimized 3D modulation plan

was still slightly better in RBE× dose than the RBE optimized DET plan (table 5.3).
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For both scanning techniques, the differences between the two optimization methods

were mainly found in the PTV, whereas organs at risk were not much affected when switch-

ing from dose optimization to the RBE optimization. This can be understood qualitatively

because it is the PTV region where the optimization algorithm has most degrees of freedom

in increasing or decreasing the dose depending on the local LET. In organs at risk, one

would always want to keep the physical dose as low as possible anyway, and there is not

much room for the RBE optimization to reduce the dose further.

5.4.2 Limitations of the RBE optimization

Although the RBE variations observed in the previous sections qualitatively agree with the

current knowledge of radiobiology, the resulting RBE distributions have to be considered

with great care. In particular, they should not be interpreted as absolute RBE values

for the respective clinical case, but rather as a study of relative effects. This is mainly

due to the fact that tissue parameters for V79 cells in vitro were used instead of any

more relevant data sets for clinical tissue types in vivo. Thus the RBE values given in

this work almost certainly overestimate the real situation (cf section 4.4), at least in the

PTV. This might not hold for organs at risk, where non-lethal endpoints like mutations

or chromosome aberrations can be more important than survival. The problem how to

obtain better parameter sets was already discussed in section 4.4. A next step towards

more realistic situations could be to use three sets of tissue parameters, i.e. one for the

PTV, one for all organs at risk and one set for normal tissue. In that case, the distribution

of RBE× dose would not be “smooth” anymore, instead there would be discontinuities at

the boundary between different tissue types — and one would need to carefully address

the question what parameters to assign in “overlapping” regions.

One also has to keep in mind the other limitations of the models for LET and RBE

that were already discussed in section 3.4 and 4.4, in particular the dose range of the RBE

model. It probably does not hold for doses below 1 Gy, where hypersensitivity can occur

(Joiner et al. 2001, Schettino et al. 2001). However, the RBE optimization is not affected

by this as the dose per fraction in the PTV will in most cases be well above 1 Gy.

Furthermore, the dependency of RBE effects in IMPT on machine specific parameters

like the spot size or the energy spectrum of the beam spots was not investigated in this

chapter and leaves room for further research. With the methods given in chapter 3, it

will be very easy to obtain the required three-dimensional LET distributions for realistic

treatment situations in any particular proton facility under consideration.
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Chapter 6

Outlook on RBE for Heavy Charged

Particles

While the effects of a variable RBE are relatively small in proton beams, they become

essential in hadrontherapy with heavier particles, e.g. for carbon beams. For the latter,

clinical RBE values are of the order of 2–3 rather than 1.1, and neglecting their spatial

variation would lead to unacceptable results. Therefore the question arises whether the

methods presented in this work for protons can be applied to other ions as well, where the

clinical need for biologically optimized treatment plans is much higher.

Although light ions like helium, lithium or beryllium also promise therapeutical advan-

tages (e.g. Brahme 2004) and require careful RBE calculations (cf Tilly 2002), I will focus

on carbon beams, because they are clinically used at several centres. At the carbon ion fa-

cility of the Gesellschaft für Schwerionenforschung (GSI) in Darmstadt, three-dimensional

RBE distributions calculated with the local effect model (Scholz and Kraft 1994, Scholz

et al. 1997) are taken into account during treatment planning and optimization (Jäkel and

Krämer 1998, Jäkel et al. 1999, Krämer and Scholz 2000). However, besides requiring long

optimization times their system does not allow for real multi-field optimization. Instead,

every field has to be optimized individually, before they are added up in a final nonlinear

calculation step (Krämer 2001). Somewhat easier methods of determining the RBE (e.g.

Kanai et al. 1997, 1999, Schaffner et al. 2000) are employed in Japan, where patients are

also treated with carbon beams.

If the algorithms for LET and RBE calculations (cf chapters 3 and 4) could be success-

fully transferred to heavier ions, the optimization strategies presented in chapter 5 would

offer a very fast method for simultaneous multi-field optimization of the biological effect

in heavy ion beams. In this chapter, I will therefore briefly describe how LET and RBE
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could be obtained for carbon ions, and I will illustrate in particular the problems that are

encountered and have to be solved in this approach.

6.1 LET calculations for carbon beams

As far as Coulomb interactions are concerned, the LET calculations can be transferred

easily from protons to carbon ions by appropriate scaling of the stopping powers. In first

approximation, the range Rion of an ion with atomic number Z and mass number A is A/Z2

times the range of a proton of the same velocity, i.e. with the same energy per nucleon

(Raju 1980, p 195). Using the range energy relation Rproton = αEp from equation (2.2),

we get

Rion(E) =
A

Z2
·Rproton(E/A)

(2.2)
=

A

Z2
· α(E/A)p =

A1−p

Z2
·Rproton(E). (6.1)

This means the analytical expressions for dose (cf Bortfeld 1997) and LET (chapter 3)

can be used for other particles than protons if α is substituted by αA1−p/Z2, i.e. by

9.02×10−6 cm MeV−p for carbon ions (Z = 6, A = 12).

Using this modified α parameter and appropriate values for the width σE of the energy

spectrum (taking into account beam modifying devices like ripple filters, cf Weber and Kraft

1999), depth dose curves for pristine carbon Bragg peaks can be obtained which compare

well to experimental data in the entrance region as well as in the Bragg peak. However,

this model can obviously not describe the dose due to nuclear fragments originating in

nonelastic nuclear interactions and projectile fragmentation. As these secondaries can have

greater ranges than the primary carbon ions, they cause considerable dose values behind

the primary peak, the so-called “tail”. For any practical applications, this tail needs to be

modeled adequately.

The resulting distribution of the dose averaged linear energy transfer for carbon ions

looks qualitatively very similar to the proton LET curve (cf figure 2.1), although the

absolute values are approximately a factor of Z2 = 36 higher. For depths up to the Bragg

peak, these values agree reasonably well with the measured LET distribution for a carbon

beam given by Kanai et al. (1997). However, behind the peak the total LET over all

particles is (like the dose) dominated by the nuclear fragments. As the latter are lighter

than carbon, their stopping powers are smaller than those from the stopping primary

particles in the peak. Therefore the measured LET shows a steep falloff behind the Bragg

peak, which cannot be obtained by scaling the proton LET. This means that one either

has to include the fragments into the analytical LET model, or that the LET distributions

have to be taken from Monte Carlo simulations that account for hadronic interactions.
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Figure 6.1: Experimental results for the LQ parameters αC and βC as a function of
LET for the survival of V79 Chinese hamster cells in vitro under irradiation with carbon
ions (cf figure 4.1): (a) αC vs. LET, (b) βC vs. LET (• Kanai et al. 1997, ¤ Weyrather
et al. 1999). In (a), a linear fit according to equation (6.2) with αC,0 = 0.1 Gy−1 and
λC = 0.004 µm keV−1 Gy−1 was added, while the dotted line in (b) corresponds to a
constant βC of 0.0298 Gy−2 .

In principle, the LET distributions could be precalculated with Monte Carlo techniques

for any desired beam energy, although the high number of possible beam energies for

synchrotron installations with active energy variation makes an analytical approach more

desirable.

Nevertheless, it certainly requires further investigation whether it makes sense to use

a dose averaged LET for different particle species, i.e. averaging the stopping powers of

primary carbon ions with secondary fragments like protons or alpha particles. For the

RBE calculations it might be necessary to keep separate LETs for every particle type, or

to use LET spectra instead of the dose averaged mean. Furthermore, the lateral behaviour

of the LET as described in section 3.2.2 for protons has to be studied for carbon ions as

well.

6.2 RBE modeling for carbon beams

To apply the phenomenological RBE model to carbon beams, experimental data for the

LQ parameters αC and βC as a function of LET are needed (cf chapter 4). Again, I will

concentrate on V79 cells, although there are also extensive data for human cell lines (e.g.
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Suzuki et al. 2000). From the data shown in figure 6.1, it seems that a linear function for

the dependence of αC on LET can be used for carbon as well, i.e.

αC(L) = αC,0 + λCL. (6.2)

The best fit parameters were αC,0 = 0.1 Gy−1 and λC = 0.004 µm keV−1 Gy−1, while a

constant value for βC = βx = 0.0298 Gy−2 can be assumed. Using these parameters and

αx = 0.112 Gy−1 as in the previous chapters results in RBE values between 2 and 3 (at

2 Gy carbon dose) in the LET region found in SOBPs (∼75–150 keV/µm, Kanai et al.

1997), which are reasonable values for carbon ions.

An important issue that needs further clarification is the maximum LET value that

is relevant in therapeutical carbon beams, i.e. whether it is enough to model the linear

increasing part of the αC vs. LET relation, as it was the case for protons (cf section 4.2).

If, on the other hand, the decreasing part beyond the maximum becomes important, then

the argument from section 4.2.3 does no longer hold that α as a linear function of the dose

averaged LET is equivalent to the established model of a dose averaged α for mixed LET

irradiations (Zaider and Rossi 1980, Kanai et al. 1997).

The most critical point is certainly the influence of the nuclear fragments on the RBE,

which cannot be neglected. Therefore the relative contributions of all individual particle

species to dose and LET have to be known (from Monte Carlo simulations or measurements,

cf Matsufuji et al. 2003), and their effect on RBE× dose needs to be investigated similarly to

a study by Paganetti (2002), where the influence of secondary particles in proton beams was

examined. This could help to identify the biologically most important particle types, which

subsequently have to be integrated into the LET calculations and the phenomenological

RBE model.

Nevertheless, this will require a concept to describe how the biological effects of different

particles add up nonlinearly in a mixed radiation field, and the total dose averaged LET

alone might not be sufficient for this approach, for example because the measured α(LET )

curves are in most cases particle specific. However, if a relatively simple model for the RBE

in carbon beams can be found, then the optimization strategies presented in chapter 5 will

offer a fast tool to study RBE effects in inverse planning for carbon ions.
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Chapter 7

Summary and Conclusions

Before some final conclusions are drawn, I will briefly recapitulate the main parts of this

work. In order to study and to optimize the biological effects of a variable RBE in intensity

modulated proton therapy, fast models for three-dimensional LET and RBE calculations

were developed, and a new strategy was presented to utilize this information in inverse

therapy planning.

In chapter 3, a fast algorithm for three-dimensional calculations of the dose averaged

LET as a measure of the local radiation quality was derived, which offers the possibility

of obtaining LET distributions on computed tomography (CT) data sets for any desired

irradiation geometry (Wilkens and Oelfke 2004). It is based on an analytical expression

for the LET along the central axis of a single beam spot (Wilkens and Oelfke 2003) and

on the assumption of a laterally constant LET, which was motivated by Monte Carlo sim-

ulations. The algorithm was applied to clinical treatment plans and revealed considerable

differences in the LET distributions depending on the chosen scanning technique, even if

the dose distributions were very similar. Besides being used for RBE calculations, the

LET distributions might have applications in predicting the response of LET dependent

dosimetry systems (e.g. gel dosimetry or alanine detectors).

In a second step, a phenomenological model for the RBE in therapeutical proton beams

was developed in chapter 4. It describes the RBE as a function of dose, LET and tissue

specific parameters in the framework of the linear-quadratic model of radiobiology, and it

can reproduce the basic experimental results from cell survival measurements. The model

was applied to spread-out Bragg peaks (SOBPs), where the main effects of a variable RBE

are an increase of the RBE along the SOBP plateau and a shift in depth of the distal

falloff. The new method allows fast RBE estimations and is therefore well suited for the

purpose of this work, i.e. for the evaluation of RBE effects in inverse treatment planning.
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In chapter 5, new objective functions were presented that utilize the LET and RBE

information within the optimization loop of the inverse planning process. Instead of the

“normal” optimization of the physical dose, they allow the optimization of dose and LET, or

— most promising — the direct optimization of the biological effect in terms of RBE× dose

(“RBE optimization”). These new optimization strategies were applied to SOBPs as well as

to treatment plans for scanning techniques, where they provide a method for simultaneous

multi-field optimization of the biological effect in intensity modulated proton therapy. In

its current form, the RBE optimization takes approximately two to three times longer than

the conventional optimization of the physical dose, which makes it still feasible for practical

applications.

Finally, a brief outlook on the transferability of these concepts from protons to heavier

ions like carbon was given in chapter 6. For the latter, the consideration of a variable RBE

is essential for treatment planning, which makes a fast method for biological optimization

very desirable. However, this requires further investigation as the biological effects in such

beams are more complicated, mainly due to the fragmentation of the projectiles.

In short, the main conclusions can be summarized in four major points: (1) The LET

distributions for IMPT treatment plans can vary significantly depending on the chosen

scanning technique. (2) This influences the biological effect, which in certain situations

(e.g. for distal edge tracking) can become considerably worse than one would expect using

a constant RBE. (3) To evaluate these effects for a given treatment plan, the methods for

LET and RBE calculations presented in this work provide tools for fast identification of

potentially dangerous situations, e.g. regions of elevated or depleted LET. (4) Additionally,

unfavourable RBE effects can be compensated for by direct optimization of the product of

RBE and dose using new strategies that integrate the RBE into the optimization loop.

(1) LET variations The LET within a proton beam shows a steep increase at the end

of its range. This leads to significant differences of the LET distributions depending on

the scanning technique, although the corresponding dose distributions are very similar.

While the 3D modulation shows a more or less homogeneous LET within the planning

target volume (PTV), lower LET values are found in the centre of the PTV for distal edge

tracking. At the same time, the border of the PTV and the surrounding tissue are exposed

to much higher LET levels.

(2) Influence on the biological effect The LET variations lead to variations in the

biological effect, i.e. in the distribution of RBE× dose. The consequences of a variable
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RBE are therefore most important in the regions of elevated LET. This means that in

some situations — depending on the individual case and the scanning technique — the

deviations from a constant RBE can become potentially dangerous, for example at the

PTV border for the distal edge tracking technique or if Bragg peaks are placed very close

to critical structures. In other situations, however, the effects of a variable RBE are small,

and the use of a constant RBE is sufficient. Consequently, it is not possible to give a

general answer regarding the impact of RBE variations in proton therapy, as it depends on

the patient and the individual treatment plan. Nevertheless, if distal edge tracking shall

be employed, one should certainly be more concerned about RBE issues than for the 3D

modulation. The latter is definitely the safer option if no reliable RBE calculations are

available. In any case, the physical dose should not be the only criterion for comparing

treatment plans for different scanning techniques with protons.

(3) Evaluation tools To clarify the situation, tools were developed that allow the fast

evaluation of potential RBE effects for a treatment plan under consideration. First, three-

dimensional LET calculations can locate high and low LET regions, which are physical

properties of the radiation field. Secondly, if appropriate biological parameters are avail-

able, one can employ the phenomenological RBE model to compute a three-dimensional

distribution of RBE× dose to estimate the biological effects of the observed LET varia-

tions. Even if the tissue parameters are not precisely known, one can obtain qualitative

statements, e.g. where RBE effects are important, or simulate a worst case scenario.

(4) Optimization strategies If the evaluation of RBE effects reveals that a certain

treatment plan is not satisfactory from the biological point of view, one can either change

the setup for the plan, i.e. modify the beam directions or the scanning technique, or one can

employ the objective functions from chapter 5 to obtain an optimized distribution of the

biological effect. As the LET distribution for a given irradiation setup cannot be changed

extensively in most cases, the physical dose in the PTV must become inhomogeneous

in order to achieve a uniform biological outcome. The methods presented in this work

provide a feasible solution for such biological optimization, which can be implemented in

clinical practice as soon as reliable and appropriate tissue parameters have been derived.

Especially for DET, there seems to be a high potential in this approach, which can combine

the technical advantages of DET with an optimized distribution of the biological effect. On

the other hand, only slight improvements may be gained for the 3D modulation technique,

because its biological properties can be satisfying even for the normal optimization of the

physical dose.
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The points mentioned above include some implications for practical treatment planning.

If a variable RBE shall be used, the prescribed dose per fraction has to be known before

the RBE calculations or the RBE optimization are carried out, as the RBE model is based

on dose per fraction. Nonlinear effects prohibit a simple rescaling of RBE× dose to a new

prescription later on. Moreover, appropriate visualization tools are required to display the

distributions of LET, RBE or RBE× dose in addition to the physical dose. If two (or

more) different biological endpoints are of interest for the same organ at risk, one would

need even more than one distribution of RBE× dose for that region.

However, one has to keep in mind that the RBE model used in this work has several

limitations, and the accurate prediction of absolute RBE values for clinically relevant situ-

ations is very difficult. Since it is a phenomenological model, it cannot be better than the

experimental data that are used to derive its tissue parameters. Currently such data for

the relevant endpoints are scarce and there is certainly a clear need for more radiobiolog-

ical measurements in proton beams, especially for in vivo systems (Paganetti et al. 2002,

Paganetti 2003). Preferably, such studies should use realistic doses (1–3 Gy per fraction)

and explore several positions along the Bragg curve or the SOBP including the high LET

region at the distal edge in order to determine the LET dependence. Till then, data from

in vitro measurements as used in this work can be employed to estimate the potential

effects of a variable RBE, in particular the elevated RBE values in the distal part of the

Bragg curve. Independently of the tissue parameters, the calculation or even optimization

of three-dimensional LET distributions can help to identify and avoid unfavourable effects

in high LET regions.

In this work, radiobiological uncertainties of intensity modulated proton therapy were

investigated. It was shown that in some cases RBE effects can become potentially danger-

ous, which justifies the effort required to detect and compensate for these effects in order

to deliver the best possible treatment to the patient. Besides this radiobiological aspect,

there are still more challenges for IMPT. Among others, they include the development of

adaptive techniques that account for both intra- and interfraction organ motion, methods

for quantifying and minimizing adverse effects due to range uncertainties and last but not

least further advances in hardware components and quality assurance procedures. Nev-

ertheless, intensity modulated proton therapy — if carefully administered — carries high

potential for improved clinical results for tumour patients in radiotherapy.
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Appendix A

Derivation of the Analytical LET

Model

In this appendix, analytical expressions for LET distributions along the central axis of

proton beams in water are derived (cf section 3.2.1.1). The derivation follows closely the

work by Bortfeld (1997), in which an analytical approximation for the depth dose curve

was developed.

To work out the track averaged and dose averaged LET at depth z, we will need the

local proton spectrum ϕr(z) with respect to the residual range r and the stopping powers

SR(r) and S2
R(r) (cf section 3.2.1.1). Expressions for these terms were already given in

equations (3.11), (3.16) and (3.17), respectively. They can now be used to evaluate the

three integrals (cf (3.8))

Φz =

∫ ∞

0

ϕr(z)dr, 〈S〉z =

∫ ∞

0

ϕr(z)SR(r)dr and 〈S2〉z =

∫ ∞

0

ϕr(z)S2
R(r)dr. (A.1)

To solve these integrals we employ the parabolic cylinder functions Dν(x) (Gradshteyn and

Ryzhik 1994, Abramowitz and Stegun 1972). They obey the equation

∫ ∞

0

r−ν−1e−(r−s)2/2σ2

dr = e−s2/4σ2

σ−νΓ(−ν)Dν(−s/σ) (ν < 0), (A.2)

where Γ(x) is the gamma function.

Let us first consider Φz. Inserting ϕr(z) from (3.11) yields

Φz =

∫ ∞

0

ϕr(z)dr =
Φ0√
2πσ

∫ ∞

0

e−(r−R0+z)2/2σ2

dr. (A.3)
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A. Derivation of the Analytical LET Model

By using (A.2) and ζ := (z −R0)/σ we get

Φz =
Φ0√
2πσ

e−ζ2/4σΓ(1)D−1(ζ) =
Φ0√
2π

e−ζ2/4D−1(ζ), (A.4)

as Γ(1) = 1. For 〈S〉z, the stopping power from (3.16) is inserted into (A.1):

〈S〉z =
Φ0√

2πσRα1/p

∫ ∞

0

e−(r−R0+z)2/2σ2 [
(r + R)1/p − r1/p

]
dr (A.5)

=
Φ0√

2πσRα1/p

[ ∫ ∞

0

e−(r−R0+z)2/2σ2

(r + R)1/pdr −
∫ ∞

0

e−(r−R0+z)2/2σ2

r1/pdr
]
.

With (A.2), the second integral yields e−ζ2/4σ1+1/pΓ(1+1/p)D−1−1/p(ζ). In the first integral

we can substitute u := r + R:

∫ ∞

0

e−(r−R0+z)2/2σ2

(r + R)1/pdr =

∫ ∞

R

e−(u−R−R0+z)2/2σ2

u1/pdu

=

∫ ∞

0

f(u)du−
∫ R

0

f(u)du (A.6)

with f(u) = e−(u−R−R0+z)2/2σ2
u1/p. As R is small and f(u) is not divergent for u → 0, we

can approximate
∫ R

0
f(u)du by Rf( 1

2
R). With (A.2) and ξ := (z −R0 −R)/σ we get

∫ ∞

0

e−(r−R0+z)2/2σ2

(r + R)1/pdr ≈
∫ ∞

0

f(u)du−Rf( 1
2
R)

= e−ξ2/4σ1+1/pΓ(1 + 1
p
)D−1−1/p(ξ)−R( 1

2
R)1/pe−(ζ+ξ)2/8. (A.7)

Using D̃ν(ξ, ζ) = e−ξ2/4D−ν(ξ)− e−ζ2/4D−ν(ζ), we therefore obtain

〈S〉z ≈ Φ0√
2πσRα1/p

[
σ1+1/pΓ(1 + 1

p
)D̃1+1/p(ξ, ζ)−R( 1

2
R)1/pe−(ζ+ξ)2/8

]
(A.8)

To calculate 〈S2〉z, equations (3.17) and (3.11) are inserted into (A.1):

〈S2〉z =
Φ0√

2πσRα2/pp(2− p)

∫ ∞

0

e−(r−R0+z)2/2σ2 [
(r + R)2/p−1 − r2/p−1

]
dr. (A.9)

This expression can be evaluated in exactly the same way as (A.5) and leads to

〈S2〉z ≈ Φ0√
2πσRα2/pp(2− p)

[
σ2/pΓ( 2

p
)D̃2/p(ξ, ζ)− 2( 1

2
R)2/pe−(ζ+ξ)2/8

]
. (A.10)

The track averaged and dose averaged LET can now be calculated by simply inserting

equations (A.4), (A.8) and (A.10) into (3.9).
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