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Neue Aspekte von Eichboson-Kopplungen und dem Higgs-Sektor

Das Standard-Modell wird an zukünftigen e+e−-Linearbeschleunigern auf seine Gültigkeit
bei hohen Energien und auf mögliche Erweiterungen hin untersucht werden. Als Beispiel un-
tersuchen wir Multi-Higgs-Dublett-Modelle in Bezug auf die Stabilität ihres Potenzials und
die spontane elektroschwache Symmetriebrechung. Weiter werden zwei Zugänge zur mod-
ellunabhängigen Parametrisierung von Effekten neuer Physik im Eichboson-Sektor unter-
sucht. In einem Formfaktor-Zugang zu Drei-Eichboson-Kopplungen an Linearbeschleunigern
im Prozess e+e− → WW → 4 Fermionen werden die stärkstmöglichen Schranken an die
28 reellen Parameter mit Hilfe von optimalen Observablen bestimmt. Die Verbesserung der
Sensitivität durch longitudinale oder transversale Strahlpolarisation wird analysiert. Eine
Linearkombination von Kopplungen kann nur mit transversaler Strahlpolarisation gemessen
werden. Formeln für die Anwendung von optimalen Observablen im Falle generischer Am-
biguitäten in der Rekonstruktion der Endzustände werden angegeben. In einem Zugang
zum Eichboson-Higgs-Sektor mit einem effektiven Lagrangian werden zehn Operatoren der
Dimension sechs zum Lagrangian des Standard-Modells hinzugezogen. Nach der spontanen
elektroschwachen Symmetriebrechung tragen sie zu den Eichboson-Selbstkopplungen, den
Eichboson-Higgs-Vertizes und den Eichbosonmassen bei. Schranken von LEP-Observablen
an die anomalen Parameter werden hergeleitet. Effektive Drei-Eichboson-Kopplungen wer-
den so definiert, dass die Schranken aus dem Formfaktor-Zugang in den Zugang mit effek-
tivem Lagrangian umgerechnet werden können.

New Aspects of Gauge-Boson Couplings and the Higgs Sector

The Standard Model will be probed at future linear e+e− colliders for its validity at high
energies and for its possible extensions. As an example we investigate Multi-Higgs-Doublet
Models with respect to the stability of their potential and to spontaneous electroweak sym-
metry breaking. Further, two approaches to the model-independent parameterisation of
new-physics effects in the gauge-boson sector are studied. In a form-factor approach to
three-gauge-boson couplings at linear colliders in the process e+e− → WW → 4 fermions
the strongest possible bounds on the 28 parameters are determined by means of optimal
observables. The improvement in sensitivity by longitudinal or transverse beam polarisa-
tion is analysed. One linear combination of couplings can be measured only with transverse
polarisation. Formulae for the application of optimal observables in case of generic ambigu-
ities in the reconstruction of final states are provided. In an effective-Lagrangian approach
to the gauge-boson-Higgs sector ten dimension-six operators are added to the Lagrangian of
the Standard Model. After electroweak symmetry breaking they contribute to gauge-boson
self-couplings, gauge-boson-Higgs vertices and gauge-boson masses. Constraints from LEP
observables on the anomalous parameters are derived. Effective three-gauge-boson cou-
plings are defined such that the bounds from the form-factor approach can be translated to
the effective-Lagrangian approach.
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Chapter 1

Introduction

The Standard Model (SM)1 of particle physics has been tested in numerous aspects
with impressive success. This model2 contains a large number of particles with spin-
1/2 (fermions), whose masses comprise more than ten orders of magnitude as mea-
sured by experiment [2]. The fermions are sorted in three families. The second and
third family are copies of the first one, with increasing mass. The fundamental forces
between fermions are described by the exchange of spin-one particles (vector bosons).
The bosons that describe the electromagnetic and the strong force, photon and glu-
ons, respectively, are massless, the W and Z bosons, which describe the weak force,
have a large rest mass. Furthermore the photon, the W and Z bosons interact with
each other, the same do the gluons. The SM has one further ingredient, a spin-zero
massive particle (scalar boson), the Higgs boson, which has not been discovered yet.
Gravitational forces between elementary particles are neglected in the SM since they
are extremely weak.

The beauty of the model lies in the simple description of the fundamental forces
based on symmetries and of the mechanism that gives the particles—bosons as well
as fermions—their masses. Furthermore it is technically highly satisfactory for the
following reason: to increase the precision of the calculations quantum corrections
to observable quantities have to be included. In the framework of the SM only a
fixed number of input parameters has to be determined by experiment in order to
predict other measurable quantities, i.e. the SM is renormalisable. These predictions
including the corrections are in good agreement with experiment.

Without vector bosons the model is invariant under global, i.e. spacetime indepen-
dent, symmetry transformations that form the SU(3) × SU(2) × U(1) mathematical
group. The group SU(3) is called colour group, the groups SU(2) and U(1) are called
weak-isospin and weak-hypercharge group, respectively. Following the rationale that
two particle-physics systems that are far away from each other can be described in-
dependently it is reasonable to claim this symmetry to be local, i.e. that the model is

1For a list of abbreviations used in this thesis see Appendix A.
2For an introduction see e.g. [1].
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invariant even under symmetry transformations that may differ from one spacetime
point to another, see [3] concerning electromagnetism. Such a symmetry is called
a gauge symmetry. It implies the existence of massless vector bosons, also called
gauge bosons, whose number is the same as the number of generators of the sym-
metry group. These gauge bosons are the carriers of the fundamental forces. The
gauge group SU(3) describes the strong interactions, the gauge group SU(2) × U(1)
provides a unified description of the electromagnetic and the weak interactions [4],
also called electroweak interactions. Both SU(3) and SU(2) × U(1) are non-Abelian
groups, which naturally leads to self-interactions of the gauge bosons. Since we regard
only electroweak physics in this work we consider only the electroweak gauge group
SU(2) × U(1) from now on and leave aside the group of the strong interactions. In
the SM left-handed and right-handed fermions transform under different representa-
tions of the electroweak gauge group. For this reason also fermion masses are not
allowed by the symmetry—in contrast to experiment.

For theW and Z bosons as well as the fermions to be massive the electroweak sym-
metry has to be spontaneously broken. To this end one introduces a SU(2) × U(1)-
doublet of scalar boson fields ϕ, which interact with the gauge bosons and the
fermions. An appropriate potential is chosen such that the energy minimum is taken
for a non-zero constant value v/

√
2 of these scalar fields (

√
2 is an unimportant nor-

malisation factor here). This vacuum expectation value v is not invariant under the
full SU(2) × U(1) symmetry of the model but breaks it spontaneously; it is invariant
only under a U(1) symmetry, which corresponds to the electromagnetic interactions
and will subsequently be called U(1)em. This mechanism is called electroweak sym-
metry breaking (EWSB). Looking at the model again after EWSB and taking into
account that the scalar degrees of freedom are not ϕ now but the deviation of ϕ
from its vacuum expectation value one finds the following situation: three vector
bosons, the charged W+ and W− bosons and the electrically neutral Z boson are
now massive whereas the photon γ is massless—in agreement with experiments. The
W+, W− and Z bosons correspond to the broken symmetries whereas the photon
corresponds to the unbroken U(1)em symmetry. It is well-known that massless vector
bosons have two spin degrees of freedom whereas massive ones have three. So after
EWSB the vector bosons have altogether three more spin degrees of freedom than
before. However, after EWSB there is only one physical scalar particle, the Higgs bo-
son H, which is massive and electrically neutral. The four degrees of freedom of the
complex scalar doublet before EWSB are thus conserved as the longitudinal modes of
the massive vector bosons W+, W− and Z and as the physical scalar boson H. The
massive vector bosons receive their masses from their couplings to ϕ before EWSB.
After EWSB they still couple to the physical Higgs boson H. The strengths of these
couplings are proportional to the squared masses of the respective vector boson due
to the mechanism of EWSB. Furthermore, EWSB renders the fermions massive, too.
Before EWSB the theory contains massless fermions that couple to ϕ via so-called
Yukawa interactions, which are invariant under electroweak gauge transformations
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and therefore allowed in the model. These couplings account for the fermion masses
after EWSB. Each of the massive fermions still couples to the physical Higgs boson H
with a strength that is proportional to the respective particle’s mass. The mechanism,
by which gauge bosons and fermions acquire masses through the vacuum expectation
value of a scalar field, is called the Higgs mechanism [5]. Finally, also the mass of the
physical Higgs boson H is related to the self-coupling of ϕ before EWSB and to the
vacuum expectation value. Thus a nice feature of this mechanism is that the cou-
pling strengths of the Higgs boson to particles—including the Higgs boson itself—are
related to the respective particles’ masses in a simple manner.

The SM is experimentally very successful. A large number of electroweak observ-
ables have been measured with high precision and found to be in agreement with the
SM predictions [6], in particular at LEP3 at CERN. However, in two aspects, which
are theoretically very important, present experimental data has not yet fully con-
firmed the SM or not yet lead to results with desired precision. First, a vital feature
of the electroweak gauge group SU(2) × U(1) is that it is non-Abelian such that the
gauge bosons are self-interacting. Due to limited event statistics present experimental
errors on gauge-boson self-couplings are rather large [6]. Moreover, some couplings
have not been measured. Second, at LEP a lower bound on the mass of the Higgs
boson in the framework of the SM has been obtained by direct searches. An upper
bound has been determined indirectly from electroweak precision measurements at
LEP, SLC and from further W -boson measurements [7]. Bounds have also been ob-
tained for masses of (pseudo)scalar bosons in some extensions of the SM, namely in a
constrained Two-Higgs-doublet model (THDM) [8, 9] and in the minimal supersym-
metric model (MSSM)4 [12, 9]. However, no fundamental scalar particle has been dis-
covered yet. Both aspects remain important tasks for the future high-energy hadron
collider LHC at CERN and for a future electron-positron linear collider (LC). For the
latter there are several proposals: TESLA [13, 14, 15, 16] that uses superconducting
cavities, NLC [17] and JLC [18] both using warm technology, and the multi-TeV col-
lider CLIC [19] at CERN. For a wide mass range the Higgs boson can be discovered
at the LHC [20, 21, 22]. For precision measurements like the properties of the Higgs
boson or the gauge-boson self-interactions the clean environment of an e+e− collider
is in general more suitable. At such a machine complementary measurements can
be performed when two electrons collide instead of one electron and one positron.
As a further option laser photons can be scattered off the accelerated electrons to
generate high-energy photons [17, 23, 18, 24]. Apart from the main operation mode
with e+e− collisions this allows for high-energy electron-electron, photon-photon or
photon-electron scattering. Furthermore, at a future LC there is the possibility to
polarise the initial electrons and positrons [25, 26]. Longitudinal polarisation has
shown to give better results than unpolarised beams in many instances [27]. Only
recently interest in studies for transverse beam polarisation has grown [28, 29].

3For a list of abbreviations of the names of past and future colliders see Appendix A.
4For reviews of the MSSM see e.g. [10], for its theoretical foundations see e.g. [11].
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Although the SM is very successful in describing current experimental data, it lacks
the attributes of a truly fundamental theory since it does not predict the number
of families or the large spectrum of fermion masses. Further, it contains a large
number of parameters—viz. particle masses and couplings—that are not predicted
by the model but have to be determined by experiment. Also, the SM provides no
fundamental explanation for EWSB, although the Higgs mechanism gives a consistent
description of how particles acquire masses that is compatible with current data.
It gives no fundamental argument why left- and right-handed fermions transform
under different representations of the electroweak gauge group either. Furthermore it
would be desirable that gauge couplings become equal at high energies such that the
electroweak and the strong interactions are unified. Such a gauge-coupling unification
fails in the SM [30]. Moreover, the SM does not incorporate gravity so that ultimately,
at energies higher than the ones tested at present, a different theory has to replace
the SM. A related problem is why the Planck scale, where gravitational effects become
important at a quantum level according to our present-day understanding, is so much
higher than the EWSB scale set by the vacuum expectation value v of the Higgs boson
(hierarchy problem). And finally, as briefly explained in Section 2.4 below, a rather
unnatural cancellation of terms in the observable Higgs-boson mass at low energies
is required unless new physics exists at a scale of the order TeV. For this reason
it is very likely that new physics is encountered at future high-energy machines.
Given the large variety of proposed particle-physics models that claim to be more
fundamental extensions of the SM it is vital for experiments at a future LC to probe
new-physics effects in a rather general way. Apart from direct searches for the SM
Higgs boson or the test of specific new-physics models, one may therefore perform
precision measurements and analyse the data with respect to deviations from the SM
in a model-independent way.

In this thesis we study the two critical issues mentioned above, the Higgs sector
and the gauge-boson self-interactions. We regard them from two different angles, the
first from a theoretical point of view, the second from a purely phenomenological
one. We consider an enlarged Higgs sector as a possible extension of the SM and
analyse some theoretical properties of such models in Chapter 3. We show the pre-
requisites for EWSB and for the stability of the scalar potential [31]. However, the
phenomenological consequences of an extended Higgs sector require an extensive study
and are only briefly mentioned here. In contrast, the gauge-boson self-interactions
are predicted in the SM, and we need a framework to parameterise deviations in a
model-independent way. This in turn is done in two different approaches, a form-
factor approach and an effective-Lagrangian approach. We extensively study these
two approaches for a future LC in Chapters 4 to 6; so let us now give a more detailed
outline of our procedure there.

In one case we add to the SM after EWSB new interactions between three gauge
bosons, only restricted by Lorentz invariance [32, 33, 34, 35]. To be more precise,
we consider all couplings between a W+ boson, a W− boson and either a photon
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or a Z boson, called triple gauge couplings (TGCs). We allow these couplings to
be complex numbers such that they become form-factors parameterising the γWW
and ZWW vertices rather than being coupling constants in an effective Lagrangian.
In the other case we add to the SM before EWSB all possible gauge invariant op-
erators that either consist only of gauge bosons or of gauge bosons and the Higgs
doublet [36, 37, 38]. Performing EWSB then leads to the modification of various
quantities compared to the SM. Here not only new gauge-boson self-interactions oc-
cur, but also the fermion-gauge-boson interactions and the gauge-boson masses are
changed by the additional operators. Both in the form-factor and in the effective-
Lagrangian approach deviations from the SM that are due to effects of new physics
at high energies are absorbed in a number of constants, called anomalous couplings.
A measured significant deviation of an anomalous coupling from zero would be a
signal of physics beyond the SM. Here our work is limited in the way that we do
not explicitly calculate the values of anomalous couplings in new-physics models. A
large number of such calculations for some anomalous couplings can be found in the
literature, some of which we list in Section 2.5. Here we rather study how sensitive
various experimentally observable quantities are to the anomalous couplings.

Some couplings are constrained by already existing data, in particular from LEP.
However, we show that the anomalous couplings can be determined with much higher
precision at a future LC. To this end we apply the method of optimal observ-
ables [39, 40, 41]. This minimises the statistical errors and hence allows one to
determine the maximum achievable sensitivity in a certain reaction while taking into
account all statistical correlations. Moreover discrete-symmetry properties of the
differential cross section can be used to simplify the analysis. In the form-factor ap-
proach using optimal observables we study in detail the prospects to measure anoma-
lous TGCs in W -boson-pair production by positron-electron annihilation, i.e. in the
reaction e+e− → W+W−. We analyse the advantages of longitudinal [34] and trans-
verse [35] beam polarisation in this process. In particular, one TGC is found to be
measurable only with transverse polarisation. In many physics reactions one encoun-
ters ambiguities in the reconstruction of the final state. Then the optimal-observable
technique can be more involved, depending on the type of ambiguity. We provide
general formulae for the application of the method in this case. In the effective-
Lagrangian approach where operators are added to the SM Lagrangian before EWSB
the anomalous couplings affect also the gauge-boson-fermion interactions and the
gauge-boson masses [37]. These couplings therefore have an impact on a large num-
ber of observables measured at LEP and SLC, not only on TGCs. We derive bounds
on the anomalous couplings in this case from already existing data. Interestingly,
these bounds depend on the mass mH of the Higgs boson. A Higgs boson with
mH ≈ 120 GeV is in agreement with the data for practically vanishing anomalous
couplings. We further find that rather small values of anomalous couplings allow
for a heavy Higgs mH ≈ 500 GeV. Furthermore, for a future LC we calculate the
strongest possible bounds in the reaction e+e− →W+W− by translating the bounds
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obtained in the form-factor approach with optimal observables. Since different ver-
tices and masses are modified by anomalous couplings in the two approaches such a
translation is not straightforward. It requires the definition of new effective TGCs,
that are specific for the process e+e− →W+W−.

This work is organised as follows: In Chapter 2 we give an overview of the elec-
troweak SM, fix our notation for particle fields and parameters, and briefly review
the experimental status of the model, in particular TGCs and the Higgs boson. In
this context we mention some salient features of present and future accelerators per-
forming Higgs-boson and TGCs measurements. Further, we give an overview of the
parameterisation of new-physics effects with form-factors and effective Lagrangians.
In Chapter 3 we study models with two or more Higgs doublets. This chapter is
nearly independent of the subsequent chapters. In Chapter 4 we describe the method
of optimal observables. The form-factor approach for TGCs is considered in Chap-
ter 5, and the reaction e+e− → W+W− at a future LC is studied in this framework.
We present a detailed analysis of how longitudinal and transverse beam polarisation
can improve the sensitivity to the TGCs in this process. In Chapter 6 we analyse an
effective Lagrangian with ten dimension-six operators added to the SM Lagrangian
before EWSB. We derive bounds on the ten anomalous couplings from LEP and SLC
results. It is shown how the results obtained in the form-factor approach of Chapter 5
can be transformed into bounds on the anomalous couplings here, and we give the
corresponding constraints for the reaction e+e− →W+W−. In Chapter 7 we present
our conclusions.
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Chapter 2

Standard Model and beyond

We first give our conventions for the SM Lagrangian that are in agreement with [1] in
Section 2.1. In Section 2.2 we list different sets of parameters that are fundamental in
the SM, i.e. that are not predicted but have to be determined by experiment. Some
relations are given that connect other commonly used quantities to these parameters.
We then give an overview of the phenomenology of the SM Higgs boson at hadron
and e+e− colliders, for reviews see for instance [42, 43, 44]. We first resume the decay
properties of the SM Higgs boson in Section 2.3. In Section 2.4 we then review the
present experimental status of Higgs-boson searches. Afterwards we explain how a
Higgs boson may be found at hadron and e+e− colliders and how a more detailed
profile of the Higgs boson can be established. Although the phenomenology of the
Higgs-boson sector is not our main focus in the subsequent chapters, we discuss
the SM Higgs boson rather extensively here because today the essential topic of
electroweak phenomenology in the SM is the search and the characterisation of the
Higgs boson. Moreover in some models with extended Higgs sectors a large parameter
region corresponds to the so-called decoupling limit, where one neutral Higgs boson
is light and has the same couplings as the SM Higgs boson whereas all other Higgs
bosons are heavy and decouple. Examples are the CP conserving THDM, see e.g. [45],
and the MSSM, see e.g. [46]. It therefore behaves almost like the SM Higgs boson
in this limit. In Section 2.5 two phenomenological approaches to effects from physics
beyond the SM are considered: a form-factor approach and an effective-Lagrangian
approach. These techniques are applied in Chapters 5 and 6, respectively.

2.1 Standard Model Lagrangian

We denote the SM Lagrangian by L0. The subscript should remind of the fact that
in an effective Lagrangian with operators of dimension four and higher L0 contains
the lowest dimensional operators, see Chapter 6 below. Restricting ourselves to the
electroweak interactions and neglecting neutrino masses the Lagrangian of the SM,
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L E Q U D ϕ

y −1
2

−1 1
6

2
3

−1
3

1
2

Table 2.1: Weak hypercharge of the fermions and the Higgs doublet.

see Chapter 22 of [1], is given by

L0 = −1

4
W i

µνW
i µν − 1

4
BµνB

µν + (Dµϕ)† (Dµϕ) − VSM(ϕ) (2.1)

+ iLD/ L+ iED/ E + iQD/ Q+ iUD/ U + iDD/ D
−
(
E ΓE ϕ

†L+ U ΓU ϕ̃
†Q +D ΓD ϕ

†Q + H.c.
)
.

The 3 × 3-Yukawa matrices have the form

ΓE = diag(ce, cµ, cτ ), (2.2)

ΓU = diag(cu, cc, ct), (2.3)

ΓD = V diag(cd, cs, cb)V
†, (2.4)

where the diagonal elements all obey cf ≥ 0 and V is the CKM matrix. With these
conventions the matrices ΓE, ΓU , ΓD correspond to the matrices C`, C

′
q, Cq in [1],

respectively. The vector of the three left-handed lepton doublets is denoted by L,
of the right-handed charged leptons by E, of the left-handed quark doublets by Q,
and of the right-handed up- and down-type quarks by U and D. The Higgs field is
denoted by ϕ and we define

ϕ̃ = εϕ∗, ε =

(
0 1

−1 0

)
. (2.5)

The covariant derivative is

Dµ = ∂µ + igW i
µTi + ig′BµY, (2.6)

where Ti and Y are the generating operators of weak-isospin and weak-hypercharge
transformations. For the left-handed fermion fields and the Higgs doublet we have
Ti = σi/2, where σi (i = 1, 2, 3) are the Pauli matrices. For the right-handed fermion
fields we have Ti = 0. The hypercharges y of the fermions and the Higgs doublet are
listed in Table 2.1. The field strengths are

W i
µν = ∂µW

i
ν − ∂νW

i
µ − g εijk W

j
µW

k
ν , Bµν = ∂µBν − ∂νBµ. (2.7)

The Higgs potential is given by

VSM(ϕ) = −µ2ϕ†ϕ+ λ
(
ϕ†ϕ

)2
. (2.8)
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For λ < 0 the potential is unstable. For λ > 0 and µ2 ≤ 0 the minimum lies at
ϕ(x) ≡ 0 so that the electroweak symmetry is not broken. For λ = 0 there is no
minimum for finite non-zero field ϕ either. In order to obtain a minimum for non-
zero field we assume

µ2 > 0, λ > 0. (2.9)

The conditions (2.9) to guarantee stability and EWSB down to U(1)em are rather
simple in case of one Higgs doublet. However, they become more complicated for two
or more doublets. We consider such potentials in Chapter 3. With the conditions (2.9)
the potential has a minimum for constant field satisfying

√
2ϕ†ϕ =

√
µ2

λ
≡ v. (2.10)

After EWSB, that is in the unitary gauge, we can choose the Higgs field to have the
form

ϕ(x) =
1√
2

(
0

v +H(x)

)
, (2.11)

where H(x) is the physical Higgs field and in lowest order the vacuum expectation
value of the Higgs field, v, is given by (2.10). The physical Z-boson and photon fields
are given by

Zµ = cwW
3
µ − swBµ, (2.12)

Aµ = swW
3
µ + cwBµ. (2.13)

Here

sw ≡ sin θw =
g′√

g2 + g′ 2
, (2.14)

cw ≡ cos θw =
g√

g2 + g′ 2
(2.15)

are the sine and cosine of the weak mixing angle θw in the SM, determined by the
SU(2) and U(1)Y couplings g and g′. The positron charge is then

e ≡ gsw = g′cw. (2.16)

The charged gauge-boson fields W± are related to W 1 and W 2 by

W 1
µ =

1√
2

(
W+

µ +W−
µ

)
, (2.17)

W 2
µ =

i√
2

(
W+

µ −W−
µ

)
. (2.18)

Now in the SM Lagrangian (2.1) the fields ϕ, W i and B can be expressed in terms of
the physical fields H, W±, Z and A using (2.11) to (2.13), (2.17) and (2.18) . Then
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the third term on the right-hand side of (2.1) contains a part without H(x). These
are the gauge-boson-mass terms

m2
WW

−
µ W

+µ +
1

2
m2

ZZµZ
µ, (2.19)

where

m2
W =

g2v2

4
, m2

Z =
(g2 + g′ 2) v2

4
. (2.20)

As usual we define the ρ-parameter in terms of the gauge-boson masses and the
cosine (2.15) of the weak mixing angle

ρ ≡ mW

cw mZ
. (2.21)

In the SM we have
ρ = 1, (2.22)

or in other words

s2
w = 1 − m2

W

m2
Z

. (2.23)

After EWSB the last line of (2.1) contains the following terms without physical Higgs
field H:

−
∑

f

mfff (2.24)

with
mf = cf

v√
2
, (2.25)

where f is any charged fermion. Since cf is also the coupling of the Higgs boson H to
the fermion f, the fermion’s mass mf is proportional to its coupling to H. The terms
in the Lagrangian that come from the Higgs potential after EWSB are

−VSM(ϕ) = −1

2
m2

HH
2

(
1 +

H

v
+

1

4

H2

v2

)
, (2.26)

where
m2

H = 2µ2. (2.27)

The first term in (2.26) is the Higgs-boson-mass term, the second and third terms
describe a triple- and a quartic-Higgs-boson self-interaction, respectively.
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param. P SM
L

scheme P SM
Z scheme P SM

W scheme P SM
mass scheme

3 ew. g, g′, v α(mZ), GF, mZ α(mZ), GF, mW α(mZ), mZ , mW

Higgs mH mH mH mH

9 f.m. mu,. . . , mτ mu,. . . , mτ mu,. . . , mτ mu,. . . , mτ

4 CKM V V V V

Table 2.2: Four possible parameter sets of the electroweak SM, each containing 3
electroweak (ew.) parameters, 1 Higgs-boson mass, 9 fermion masses (f.m.) and 4
parameters in the CKM matrix.

2.2 Parameters of the Standard Model

To obtain a complete set of independent parameters for the SM one has to make
a choice from the quantities defined in the preceding section. All other parameters
shall then be expressed on terms of these input parameters. This will be particu-
larly important in Chapter 6 below, where we consider additional operators in the
Lagrangian and the transformation from one parameter set to another depends on
their coefficients, the anomalous couplings. In this section we give the SM relations
between different parameters. The Lagrangian (2.1) contains as free parameters the
gauge couplings g and g′. Apart from that it contains two parameters µ and λ in
the Higgs potential, nine fermion masses and four parameters of the CKM matrix V .
Together with the strong coupling gs the SM thus has 18 independent parameters (see
also the remark at the end of this section about additional parameters in the SM).
Using (2.10) and (2.27) we can use the parameters mH and v instead of µ and λ. The
original parameters µ and λ are then expressed as

µ =
m2

H

2
, (2.28)

λ =
m2

H

2v2
. (2.29)

We denote by P SM
L

the scheme that uses the three electroweak parameters g, g ′, v and
the Higgs-boson mass mH as input parameters. They are listed in the first column
of Table 2.2. We define three more schemes, P SM

Z , P SM
W and P SM

mass, with different
electroweak parameters, see Table 2.2. All other parameters, in particular mH , are
the same as in P SM

L
. The Fermi constant GF is determined by two charged-current

interactions at energies small compared to mW , i.e. when the W propagator is point-
like. At tree-level it depends only on the vacuum expectation value v of the Higgs
boson, and we have the following relation:

v =
(√

2GF

)−1/2

. (2.30)
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parameter measured

GF 1.16639(1) × 10−5 GeV−2

1/α(mZ) 128.95(49)
mZ 91.1876(21) GeV
mW 80.423(39) GeV

Table 2.3: Numerical values used as input in this work unless otherwise stated. Taken
from [2].

Using this equation one can take GF as input parameter instead of v as done in the
schemes P SM

Z and P SM
W . From the measured value [2] of GF, see Table 2.3, one obtains

v ≈ 246 GeV, (2.31)

which sets the energy scale of EWSB. We further use in our analyses below the fine-
structure constant at the Z scale α(mZ) rather than the more precisely known α(0),
since most of the observables that we consider below refer to a high scale of at
least mZ . In the following we will denote by e the positron charge at mZ ,

e =
√

4πα(mZ), (2.32)

and refer to e as the physical positron charge. With (2.14), (2.16), (2.20), (2.30)
and (2.32) the three electroweak parameters of the schemes P SM

Z , P SM
W and P SM

mass

can be expressed by those of the scheme P SM
L

. In terms of the electroweak input
parameters of the schemes P SM

Z and P SM
W the squared sine of the weak mixing angle

is respectively given by

s2
w =

1

2

(
1 −

√
1 − e2√

2GFm2
Z

)
, (2.33)

and by

s2
w =

e2

4
√

2GFm
2
W

. (2.34)

In the scheme P SM
mass it is given by

s2
w = 1 − m2

W

m2
Z

. (2.35)

The parameter sw is therefore a derived quantity in the schemes P SM
Z , P SM

W and P SM
mass.

The same is true in P SM
L

where sw is given by (2.14). In P SM
Z (P SM

W ) the other gauge-
boson mass mW (mZ) is then predicted through (2.23). In P SM

mass the Fermi constant
is given by

GF =
e2m2

Z

4
√

2 (m2
Z −m2

W )m2
W

. (2.36)
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The mass of the Higgs boson is not predicted by the SM but has to be measured in
experiment. It remains the only unknown parameter of the SM as long as the Higgs
boson is not found. Here we use it in all four schemes. However, there are several
theoretical constraints, as well as experimental bounds from direct searches at LEP
and indirect bounds from electroweak precision measurements performed at LEP,
SLC and further W -boson measurements. We briefly summarise these constraints in
Section 2.4 below. The couplings of fermions to the Higgs boson are predicted by
the SM according to (2.25). The Yukawa matrices ΓE, ΓU , ΓD, see (2.2) to (2.4),
are not the most general expressions that are consistent with Hermiticity, Lorentz
invariance and gauge invariance. However, they can always be put into the form
presented above by a phase redefinition of the fermion fields [1]. Also the CKM
matrix V is assumed to be in a standard form here, which is obtained in the same
manner. Thus V is not a general unitary 3 × 3 matrix but has only four independent
parameters. One possibility is to choose three mixing angles and one phase. The
matrix V is experimetally close to the 3 × 3-unit matrix, see Section 11 of [2], and
will subsequently be approximated by it. The couplings of two W or Z bosons to one
or two Higgs bosons are predicted by the SM to be proportional to the squared mass
of the respective gauge boson:

gWWH = 2m2
W/v, gZZH = 2m2

Z/v, (2.37)

gWWHH = 2m2
W/v

2, gZZHH = 2m2
Z/v

2. (2.38)

To be precise the Feynman rules for the gauge-boson-Higgs vertices in the conventions
of [1] are (igµν) times the couplings in (2.37) and (2.38). The fact that the interactions
of the Higgs boson with fermions and gauge bosons are proportional to the masses and
squared masses is a direct consequence of the model. These couplings are important
because they determine the production and decay properties of the Higgs boson. Once
the Higgs boson is discovered the relations between particle masses and their couplings
to the Higgs boson have to be checked experimentally for all particles. For a given
Higgs mass also the couplings between three and four Higgs bosons are predicted by
the model:

gHHH = 3m2
H/v, gHHHH = 3m2

H/v
2. (2.39)

To obtain the Feynman rules for the three-Higgs-boson and four-Higgs-boson vertices
these couplings have to be multiplied by (−i) [1]. Note that gHHHH is a multiple of λ.
Also the relations (2.39) have to be probed by experiment.

We remark that the set of parameters listed above is actually not complete. One
may add a term to the Lagrangian that consists of a gluon-field strength and its
dual. This term can be written as a total divergence and therefore leads only to
non-perturbative effects. Experimentally the coefficient of this term, the θ-angle, is
very small, viz., less than 10−9, see p. 334 of [2]. In the last years experiments have
shown that neutrinos have small rest masses, see pp. 380 to 418 of [2]. Therefore
we additionally have three neutrino masses and, similarly to the quark sector, three
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mixing angles and one Dirac phase. In addition to the Dirac phase the neutrino-
mixing matrix contains two Majorana phases if the neutrinos are Majorana fermions.
For the observables we consider in our calculations in Chapters 5 and 6 the neutrino
masses can be neglected. In fact, even charged-lepton and quark masses are neglected
in most cases.

2.3 Decay of the Standard Model Higgs boson

In the framework of the SM the mass of the Higgs boson mH is the only unknown
parameter since the Higgs boson has yet to be discovered. It is related to the Higgs
self-coupling λ according to (2.29) but this coupling is not known either. In Section 2.4
below we give an overview of the theoretical and experimental constraints for mH but
these bounds are rather weak. In general the production cross sections and the decay
rates of the Higgs boson depend on mH . Therefore most quantities in this and in the
following section are plotted as a function of mH and discussed for different regions
of mH .

A SM Higgs boson decays at the tree-level into any pair of massive gauge bosons
or fermions for which the decay is kinematically allowed, i.e. to any particle species
with mass mx for which 2mx . mH where one particle is virtual below threshold.
So the branching ratios strongly depend on mH . Since the coupling to the Higgs
boson increases with the respective particle’s mass decays into heavy particles are
preferred. At threshold for W -pair production the total width [47] becomes large
due to the high decay rate into gauge bosons, see Figure 2.1. It rises rapidly from a
few MeV to about 1 GeV, and then grows fast reaching about 600 GeV for a Higgs
mass of 1 TeV. At next order in perturbation theory the Higgs boson also decays
into a pair of photons (gluons) with all massive particles appearing in the loop that
are charged (strongly interacting). The dominant contribution is the one from the
heaviest particle in the loop, i.e. where the Higgs boson couples to a virtual WW pair
(tt pair). Also the decay into a photon-Z-boson pair is possible [49], which is again
mediated primarily by a W -boson loop. With the Higgs couplings to γγ and γZ the
W loop interferes destructively with the fermion loops, see Section 4.3 of [50]. The
γγH coupling is important for the Higgs discovery at the LHC, see Section 2.4, as
well as for s-channel production of SM or heavy MSSM Higgs bosons at a photon
collider [51]. The ggH coupling is important for Higgs-boson production at hadron
colliders, in particular at the LHC, see Section 2.4. The one-loop couplings are also
interesting because they can be sensitive to new heavy particles in the loop that obtain
their masses through the Higgs mechanism but are too heavy to be directly produced.
In the effective-Lagrangian approach that we study in Chapter 6 some dimension-six
operators induce a γγH coupling at tree-level. However, there we place more emphasis
on TGCs. In a future work [38] we study the reaction γγ → WW at a photon collider.
Although we consider this process far away from the Higgs resonance the anomalous
γγH coupling plays an important rôle there.
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Figure 2.1: Total width of the SM Higgs boson as a function of the Higgs-boson mass
based on results obtained with the program HDECAY [48], taken from [47].

For a Higgs mass below 135 GeV where the decay intoWW is suppressed the decay
into a bb pair dominantes with a branching ratio of more than 40%, see Figure 2.2.
In fact, for a Higgs mass below 120 GeV it becomes larger than 70%. The branching
ratios for the decays into τ+τ−, cc and gg are only a few percent for mH . 135 GeV
and very small for high mH . Though the colour factor enhances the decays into
quarks, the cc channel is suppressed with respect to the τ+τ− channel by the running
quark mass. Although occuring only at the one-loop level the branching ratio for the
decay into gg is roughly of the same size as for τ+τ− because of the large ttH coupling
and the colour factor. In contrast, the γγ and Zγ decays are rare. Their branching
ratios have maxima of about 0.2 % for Higgs masses between 120 GeV and 150 GeV.
If the Higgs boson is heavier than about 135 GeV it predominantly decays into WW
where one W is virtual below threshold. Above ZZ threshold the branching ratio for
the decay into a pair of Z bosons is considerable, but about a factor 2 smaller than
the decay into WW due to the reduced phase space for indistinguishable particles.
For a Higgs mass around tt threshold the branching ratio for the decay into tt rises
rapidly with mH and reaches a maximum of about 20 % for a Higgs mass of 450 GeV.
The decay widths into gauge bosons remain larger because they grow with the third
power of mH whereas the decay width into tt is proportional to mH , see for instance
Section 2.1 of [42].
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Figure 2.2: Branching ratios of the SM Higgs boson as a function of the Higgs-boson
mass based on results obtained with the program HDECAY [48], taken from [47].

2.4 Higgs-boson searches and -parameter measure-

ments at different machines

At LEP energies the dominant Higgs-production mechanism is radiation off a Z boson
produced in the s-channel, the so-called Higgs-strahlung process. The lower bound on
the Higgs mass from these direct searches at LEP is 114.4 GeV at 95% C.L. when the
data from the four LEP collaborations are combined [7]. Furthermore from measure-
ments of electroweak precision observables at LEP, SLC and NuTeV that depend on
the Higgs mass through radiative corrections and from other W -boson measurements,
one obtains (see Table 16.2 in [6]) the prediction mH = 81+52

−33 GeV, see Figure 2.3.
Since the one-loop corrections depend on the Higgs mass only as log(mH/mW ), see
Section 16 of [6] and [52], the errors are rather large and the upper error is larger than
the lower one. Such an indirect determination of a particle mass is very successful
in case of the top-quark, see Table 16.2 of [6]. However, there the observables have
a quadratic dependence on the mass and are therefore much more predictive. At
two-loop level there are corrections proportional to m2

H but they are “screened” by
an extra factor g2 and therefore too small to be important, for this so-called sreen-
ing theorem, see e.g. [53] and Section 2.4 of [42]. The bounds from the direct and
indirect measurements of mH are consistent although the indirect determination is
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somewhat lower; this is mainly due to the observables1 A`(SLC) and mW in the elec-
troweak fits, see Figure 16.10 in [6]. There only A0,b

FB has a significant tendency to
higher values of mH . Furthermore Figure 2.3 shows that at 95% C.L. the electroweak
precision observables lead to an upper bound on the SM Higgs mass of 193 GeV.
However, in more general models the Higgs boson can be much heavier [54], which
has to be taken into account in future searches. Even doubts have been raised that
the indirect determination of mH possesses some internal inconsistencies, for further
discussion and references see [43]. In Chapter 6 we show that dimension-six operators
in an effective Lagrangian with rather small anomalous couplings of order 10−3 that
account for new-physics effects at a high scale allow mH to be up to 500 GeV [37].
From a different point of view, in the SM or in other models a scalar boson can be
regarded as a necessary ingredient to regulate the high-energy behaviour of scattering
amplitudes, independently from its rôle in particle-mass generation, see e.g. [55] and
Section 1.3 of [42]. For this reason a warning is given in [42] not to limit searches
for a Higgs boson to a too narrow mass range. There exists a variety of theoretical
arguments in the literature of how the Higgs mass mH can be related to the scale Λ
where a new theory replaces the SM (such that at energies below Λ the SM is valid
as an effective theory). From the assumption that the SM is valid up to the scale Λ
such considerations can then derive bounds on mH . Mostly it is found that the Higgs
boson is in the energy range of the future machines mentioned in the Introduction
(or that something else will be found in this energy range). To give a comprehensive
discussion of this topic is beyond the scope of this work. So we only sketch the basic
ideas.

Two types of bounds on mH are based on renormalisation group (RG) equations,
i.e. the differential equations that describe the parameter evolution of the electroweak
sector as a function of the energy scale. The RG equations of the SM are no longer
valid above a certain scale Λ, where either new physics comes into play or where
couplings become too large to allow for a perturbative description. It has been shown
by lattice calculations that the latter is unlikely to happen, such that the perturbative
treatment is allowed, see e.g. Section 2 of [44]. Although these lattice results are less
predictive if the Higgs mass is larger than a certain fraction of the scale set by the
lattice spacing (see e.g. Section 2.5 of [42]), usually the perturbative description is
considered to be correct. Then one can assume that the RG equations are valid up to a
scale Λ where deviations from the SM become important. From the requirement that
the RG equations are valid up to Λ a lower and an upper bound on mH can be derived.
Naturally both bounds must be stronger with increasing Λ. For Λ ≈ 1019 GeV (Planck
scale) one finds [56]

130 GeV . mH . 180 GeV, (2.40)

which is slightly stronger than the current 95% C.L. experimental constraints from
direct and indirect measurements, respectively. For Λ ≈ 1 TeV one obtains a rather

1For the definition of these observables see Chapter 6 below.
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Figure 2.3: Indirect Higgs-mass determination using data from LEP, SLC and
other W -boson measurements with and without data from NuTeV. We show
∆χ2 = χ2 − χmin as a function of the Higgs-boson mass, taken from [6].
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loose upper bound [56]:
mH . 800 GeV. (2.41)

The corresponding lower bound is below the current experimental limit. The upper
bounds (triviality bounds) in (2.40) and (2.41) result from the fact that mH is related
to the self-coupling λ via (2.29); for too large mH at low scales the RG equations
show that λ grows very large at high scales [57] so that a new theory must replace
the SM there. The lower bound (vacuum-stability bound) is obtained from the fact
that the Higgs potential has a global minimum at high field ϕ if mH is too small; that
would render the theory unstable [56] and therefore new physics is required. Notice
that if mH was known the triviality and vacuum-stability bounds would provide an
upper bound on the scale Λ where new phenomena should appear on the scene.

A further argument is the one of naturalness. The observable m2
H , which we expect

to be of order v2, receives quantum corrections that depend on the high scale Λ of new
physics as Λ2. In principle, these corrections could be much larger than v2 and cancel
with the squared bare mass so that the difference gives m2

H of order v2. However,
such a fine-tuning is usually considered unnatural, see e.g. [58]. For the corrections
to be of order v2 the new-physics scale Λ is constrained to be of order TeV.

So much for already existing experimental and theoretical bounds on mH . Some
remarks on experimental constraints and future perspectives of models with an ex-
tended Higgs sector like the MSSM or the THDM can be found in the introduction
of Chapter 3 below. In the following we review the prospects to find the Higgs boson
of the SM and to measure its properties with present-day and future high-energy
machines.

In Run II at the pp collider Tevatron at Fermilab with a c.m. energy
√
s = 2 TeV

the strategy to find the Higgs boson is quite different for two regions of the Higgs-
boson mass [59]. As mentioned in Section 2.3 the Higgs boson decays predominantly
into bb if mH is below 135 GeV. In this mass range the most promising channels are
the ones where a virtual W or Z boson is produced by qq annihilation and the Higgs
boson is then radiated off the vector boson [60]. The sum over the cross section for
W+H and W−H production is about twice as high as that for ZH production, see
Figure 2.4. The sum over the three strahlung cross sections is about 0.5 pb to 0.2 pb
for a Higgs mass between 100 GeV and 135 GeV. The best signature for a Higgs
boson is obtained for the `νbb final state where ` is any charged lepton and ν is the
corresponding neutrino, but also the ννbb and `+`−bb final states can be included
in experimental analyses. Notice that the cross section for two-gluon fusion [62]
gg → H → bb is actually larger than the strahlung cross sections. However, these
events are covered by the much larger production of bb pairs through the strong
interaction. As discussed in Section 2.3, for a Higgs mass above 135 GeV the decays
into WW and ZZ dominate, where one gauge boson is off-shell below the respective
threshold. In this mass range the most promising production mechanisms are gluon
fusion gg → H, fusion of two virtual W or Z bosons, V V → H, and—as in the lower
mass range—radiation off a W or Z boson. Simulations have shown that the best
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Figure 2.4: Production cross sections of the SM Higgs boson at the Tevatron as a
function of the Higgs-boson mass for a c.m. energy

√
s = 2 TeV. Taken from [61].

final states are `+`−νν and `±`±jjX where j is a hadronic jet and X is a pair of
either charged or neutral leptons. There are proposals to include also the decay mode
H → τ+τ− [63] and the associated production of the Higgs boson with a tt pair [64]
in the Higgs-boson searches at the Tevatron.

The LHC is supposed to take its first data in 2007. One of its main purposes is
to find the SM Higgs boson, and two experiments, ATLAS and CMS, have optimised
their detectors to perform this task. The LHC is being constructed in the LEP tunnel
with a circumference of 26.8 km. The projected c.m. energy for pp collisions is 14 TeV.
Such a hadron collider is an ideal discovery machine since reactions between partons
take place at a full spectrum of parton energies without changing the energy of the
accelerated particles. The high design luminosity [65] of 1034 cm−2s−1 and more—
compared to 3–4 ×1031 cm−2s−1 at LEP—corresponds to an integrated luminosity of
100 fb−1 for a nominal 107 s year. With a total pp cross section of roughly 100 mbarn,
see [66] and Section 3.1 of [67], a high rate of 109 events per second is expected.
At the LHC the main production mechanisms of the Higgs boson are gg → H and
WW → H, and if the luminosity is sufficient also qq →WH, see Figure 2.5. The cross
section for ZH production is about a factor 2 smaller than that for W± production
(sum over W+ and W−) and both processes are less relevant than at the Tevatron, cf.
Figure 2.4. Moreover, the associated production of a Higgs and a tt pair is possible
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in the reactions gg → ttH and qq → ttH [69]. Depending on mH different decay
channels are best suitable for the discovery of the Higgs boson. For Higgs masses below
130 GeV the decay modeH → γγ is most promising. FormH ∼ 2mW the best channel
is H → WW → `ν`ν. In a wide mass range between 130 GeV and 700 GeV the
favourable channel is the so-called golden channel H → ZZ → 4` where one Z boson
is virtual below threshold. At higher Higgs masses from about 300 GeV or 400 GeV
up to 1 TeV there are two more channels: H →WW → `νjj and H → ZZ → ``νν.
In the full mass range up to 1 TeV the Higgs boson can be discovered at the LHC
with 10σ if the integrated luminosity is about 100 fb−1 as stated e.g. for the ATLAS
detector in [21]. FormH below 400 GeV this mass can be determined with a fractional
uncertainty of less than 0.1% assuming an integrated luminosity of 300 fb−1 [70, 71].
For mH between 400 GeV and 700 GeV it is still less than 1% as quoted by the same
references. The expected uncertainty for various partial widths of the Higgs boson as
well as for certain ratios of partial widths is expected to be 10% to 30% [72]. However
these studies are only on parton-level and considered to be “rather optimistic” by [44].
In fact, the errors on some of these quantities turn out to be larger in more recent
analyses as mentioned in the same reference. The total width has a large uncertainty
of more than 20% if mH is smaller than 120 GeV [72]. For mH between 160 GeV and
200 GeV the uncertainty is about 10%. In contrast to the Tevatron it may be possible
to observe inclusive double-Higgs production pp→ HH +X at the LHC [73]. The
cross section is about 40 fb to 10 fb for mH between 100 GeV and 200 GeV. Here
gg → HH dominates by at least one order of magnitude other contributions and
comprises two distinct classes of diagrams: production of an off-shell Higgs boson,
gg → H∗ → HH, and production of two virtual t-quarks, gg → t∗t∗ → HH. The
first class of diagrams involves gHHH whereas the second does not. The measurement
of gHHH will try the LHC’s capabilities to the limit.

This is different at future e+e− colliders. The wide c.m. energy range from 90 GeV
to 800 GeV or possibly 1 TeV at TESLA [13, 14, 15, 16] and from 500 GeV to 5 TeV
at CLIC [19], the high integrated luminosities in the inverse attobarn region, the clean
environment of e+e− collisions, and the possibility to use polarised beams allow for
a variety of precision measurements of the eletroweak interactions and of the prop-
erties of the Higgs boson. To be more precise a luminosity of 3.4 × 1034 cm−2s−1 is
projected for TESLA for a c.m. energy

√
s = 500 GeV, which corresponds to an inte-

grated luminosity of 340 fb−1 for a nominal 107 s year. At NLC and JLC one expects
about 220 fb−1 per year [17, 18]. At

√
s = 800 GeV the expected luminosity at a fu-

ture LC may be about twice as high. Conventionally physics studies for a future LC
like TESLA assume 500 fb−1 at

√
s = 500 GeV and 1 ab−1 at

√
s = 800 GeV. Then

for instance at 500 GeV without beam polarisation, almost 4 × 106 W+W−pairs and
about 7 × 104 SM Higgs bosons with mH ≈ 120 GeV can be produced. In the remain-
der of this section we refer to a TESLA like design unless otherwise stated. The main
production mechanisms of the Higgs boson are Higgs-strahlung [50], e+e− → ZH,
and WW fusion [74], e+e− → ννH. The Higgs-strahlung process decreases with the

33



σ(pp→H+X) [pb]
√s = 14 TeV

Mt = 175 GeV

CTEQ4M
gg→H

qq→Hqq
qq

_
’→HW

qq
_
→HZ

gg,qq
_
→Htt

_

gg,qq
_
→Hbb

_

MH [GeV]
0 200 400 600 800 1000

10
-4

10
-3

10
-2

10
-1

1

10

10 2

0 100 200 300 400 500 600 700 800 900 1000

Figure 2.5: Production cross sections of the SM Higgs boson at the LHC as a function
of the Higgs-boson mass for a c.m. energy of 14 TeV, taken from [68].

c.m. energy
√
s as (1/s) and therefore dominates at low energies, whereas the WW -

fusion cross section increases with log(s/m2
H) thus dominating at high energies, see

Figure 2.6. For
√
s = 500 GeV the two cross sections have the same size of about 50 fb

for a Higgs mass slightly above 150 GeV. The cross section where the Higgs boson is
produced through ZZ fusion is about ten times smaller than the one for WW fusion
due to the smaller coupling of charged leptons to the Z boson. In the e+e− mode at
a future LC a SM Higgs boson can be discovered up to the kinematical limit in the
process e+e− → ZH with Z → `+`− where ` = e or µ independent of the Higgs bo-
son decay; for instance at TESLA with 500 fb−1 of data 50 signal events or more are
expected for mH . 410 GeV (640 GeV) at

√
s = 500 GeV (800 GeV), see Chapter 2

of [14]. Higgs-strahlung is also the most suitable reaction to measure the Higgs-boson
mass [14]. In a study for TESLA [76] where 500 fb−1 of data at a c.m. energy of
350 GeV is assumed the accuracy for mH = 120 GeV (150 GeV, 180 GeV) is 40 MeV
(70 MeV, 80 MeV). This corresponds to a fractional uncertainty of 0.033% (0.047%,
0.044%). In a more recent study of the same reaction [77] assuming 500 fb−1 of data
at a c.m. energy of 500 GeV it has been shown that a relative uncertainty of 0.11%
to 0.36% is achievable for a heavier Higgs boson with a mass between 200 GeV and
320 GeV. Here the decays H → WW and H → ZZ are considered. The uncertainty
in the total width at TESLA is between 4% and 6% for a light Higgs boson with a
mass between 120 GeV and 160 GeV [14] which is more precise than at the LHC.
For a heavier Higgs boson with 200 GeV < mH < 320 GeV an uncertainty between
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Figure 2.6: Production cross sections of the SM Higgs boson at a future linear
e+e− collider as a function of the Higgs-boson mass for c.m. energies

√
s = 500 GeV

and
√
s = 800 GeV. Taken from [75].

22% and 34% is obtained in [77]. Also the couplings of the Higgs to other parti-
cles can be measured more precisely at an e+e− machine, viz., most at the per cent
level, see [14]. We give the results for the fractional uncertainties of the branching
ratios in Table 2.4. Most branching ratios and couplings can be extracted from the
production cross sections and decays explained so far. However, to determine the
Htt coupling one uses the associated production with a tt pair [78], e+e− → ttH.
With 1 ab−1 of data at a c.m. energy of 800 GeV the top-quark Yukawa coupling can
be measured with an accuracy of 5.5% [14]. The HHH coupling can be measured
in e+e− → ZHH [79] with an accuracy of about 20% for an integrated luminosity of
1 ab−1 at 500 GeV and a Higgs-boson mass of 120 GeV. The quartic Higgs coupling

WW bb cc τ+τ− µ+µ− gg γγ

δBR/BR 3.6% 1.9% 8.1% 5.0% 30% 4.8% 35%

Table 2.4: Fractional uncertainties of the branching ratios (BR) for the decay of
the Higgs boson into various particle pairs for mH = 120 GeV at a future LC, taken
from [14, 16]. In case several values from different methods are quoted in the references
the smaller one is listed here. These values are computed for an integrated luminosity
of 500 fb−1 at a c.m. energy of 350 GeV except for the rare decay into µ+µ− where
1 ab−1 of data at 800 GeV is assumed.
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cannot be measured. The spin and parity of the Higgs boson can be determined by
means of the Higgs-strahlung cross section [80].

A further option is to run a future LC at lower c.m. energies
√
s ≈ mZ and√

s ≈ 2mW , both loosely called Giga-Z mode [15]. With an integrated luminosity of
50 fb−1 each, one can produce more than 109 Z bosons and about 106 W+W− pairs,
respectively. This allows for the measurement of electroweak precision observables
with statistics improved by a factor of about 100 compared to LEP, see Table 2.1
of [6] and Table 1 of [81]. As for LEP the mass of the SM Higgs boson can be de-
termined indirectly, here with an uncertainty of about 7% [82]. Such a measurement
would be a good consistency check for a (possibly) direct observation. A deviation of
the two measured values for mH would then be a signal for new physics. As mentioned
in Chapter 1 several other options are projected at a future LC. In the e−e− mode
ZZ fusion is the dominant production mechanism for the Higgs boson [83] because
production via Higgs-strahlung or WW fusion is not possible there. A further possi-
bility is a high-energy photon collider, where the LC is run in the e−e− mode and laser
photons are scattered off the electrons by Compton backscattering. Such an option
is considered for TESLA [23], NLC [17], JLC [18] and CLIC [24]. The γγ luminosity
spectrum is peaked at about 80% of the c.m. energy of the e−e− system [84]. The
two high-energy photons produced allow to study various processes, e.g. resonant s-
channel Higgs production via the one-loop γγH coupling [51]. Here the Higgs boson
can be produced up to a mass of 0.8

√
s where

√
s is the e−e− c.m. energy and addi-

tional measurements of Higgs couplings can be performed [51, 85]. Moreover a photon
collider allows to study the CP nature of the produced Higgs boson in γγ → tt [86]
and in γγ →WW or ZZ [87]. In the SM the Higgs boson is CP even but in an
extended Higgs sector there can exist CP even as well as CP odd scalar bosons, see
e.g. Chapter 4 of [42].

2.5 Phenomenology beyond the Standard Model

The SM has been tested in numerous aspects with impressive success. However, it
has been mentioned in the Introduction that it is neither a fully satisfactory theory
nor valid at arbitrarily high energies since gravity is not included. One possibility
is that physics beyond the SM will appear at certain energy scale Λ. From current
electroweak precision fits one estimates, see for instance [88, 89], that Λ should be at
least of the order of TeV. In fact, as remarked in Section 2.4, it is often considered
to be likely that Λ is of the order of TeV, but in principle it can be also higher. The
impact of this new high-scale physics on the phenomenology at lower energies can be
taken into account in various ways. Two such possibilities for the particular case of
new-physics effects in the gauge-boson sector are discussed in this work: in Chapter 5
we study a form-factor (FF) approach to the gauge-boson vertices γWW and ZWW
while we keep all other vertices and propagators as in the SM; in Chapter 6 we
use an effective-Lagrangian approach where new operators in the gauge-boson sector
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give rise—after EWSB—to deviations from SM predictions of the gauge-boson self-
interactions and of various other observables.

In the FF approach in Chapter 5 the relevant vertices are parameterised in a
general way. For the reaction e+e− → WW this was done in [32, 33] for the three-
gauge-boson vertices γWW and ZWW . There the structure of these two vertices is
only restricted by Lorentz invariance. All other vertices and propagators are as in
the SM. Form factors can and should have imaginary parts. Anomalous contributions
to the γWW - and ZWW -form factors have been studied extensively both for LEP2
energies, see [90] and references therein, and for the energy range of future LCs, see
the study [91] for TESLA where a spin-density-matrix method is applied, the anal-
yses [40, 41] using optimal observables, the beam-polarisation studies [34, 35], the
study [92] for the γγ and the eγ mode at TESLA; see also Part 3, Chapter 2 of the
NLC report [17] and Chapter 6 of the JLC report [18]. The TGCs γWW and ZWW
are interesting observables for several reasons: Firstly, the most general parameteri-
sation to be introduced in Chapter 5 contains a large number of 28 real parameters
if we allow the form factors to have imaginary parts. The six complex parameters
gV
4 , κ̃V and λ̃V with V = γ or Z violate the combined discrete symmetry CP of

charge conjugation and parity reversal. In the SM the TGCs are predicted by the
non-Abelian gauge symmetry and only a small number of couplings is non-zero, see
Chapter 5 below. From this it is clear that a large variety of new-physics effects can
manifest itself by deviations from the SM predictions, typically through the effects of
new particles and couplings in radiative corrections. Some examples, where effects of
order 10−3 may occur, are supersymmetric models [93, 94], models containing several
Higgs doublets [95, 96], E6 vector leptons [97] or Majorana neutrinos [98] and the
minimal 3-3-1 model [99]. For left-right symmetric models [100, 101, 96] and mirror
models [101] the effects are predicted to be much smaller, whereas models containing
composite W bosons [102] or an additional gauge boson Z ′ [103] may lead to larger
effects. Also models with noncommutative spacetime contain new three-gauge-boson
interactions that may be observable at a future LC, see e.g. [104]. Secondly, in re-
actions where longitudinal W -boson states are produced via TGCs the measurement
of these couplings may provide information about the mechanism of EWSB [88, 89].
Thirdly, though no deviation from the SM has been found for the TGCs from LEP
data [105, 106, 107], the bounds obtained are comparatively weak. The tightest
bounds on the anomalous couplings are of order 0.05 for ∆gZ

1 and λγ, of order 0.1 for
∆κγ , and of order 0.1 to 0.6 for the real and imaginary parts of C and/or P violating
couplings. These numbers correspond to fits where all anomalous couplings except
one are set to zero. Thus it is worth measuring the anomalous couplings at a future LC
where the uncertainties are much smaller due to the high luminosity. Using optimal
observables it is even possible to take into account all statistical correlations between
the errors on the TGCs inspite of the large number of couplings. In Chapter 5 we
analyse in detail the sensitivity to TGCs in the reaction e+e− →WW . In particular
we show how electron- and positron-beam polarisation can improve the sensitivity

37



to the couplings in this reaction. In the context of a future LC usually longitudinal
polarisation is discussed in the literature [25, 26, 27]. However, we demonstrate that
with the help of transverse beam polarisation one coupling can be measured that is
neither measurable with unpolarised beams nor with longitudinal polarisation.

Another possibility is to use an effective Lagrangian. Here we have two options.
We can start from the SM Lagrangian after EWSB and add terms of higher dimension
to obtain an effective Lagrangian, which we call ELa approach (Effective Lagrangian
after EWSB). Alternatively we can start from the SM Lagrangian before EWSB and
add terms of higher dimension there, here called ELb approach (Effective Lagrangian
before EWSB). In Chapter 6 we study the ELb approach to new-physics effects in
the gauge-boson sector. Both in the ELa and in the ELb approaches the anomalous
coupling constants in the effective Lagrangian must be real. Anomalous imaginary
parts in form factors are generated by loop effects using the effective-Lagrangian
techniques familiar from chiral perturbation theory, see for instance [108]. The three
approaches FF, ELa and ELb are related but should not be confused with each other,
see the discussion in [109]. The ELa approach, taking the anomalous terms in leading
order, produces only real parts of anomalous form factors. In the ELb approach the
EWSB has to be performed for the SM and the anomalous parts of the Lagrangian
together. This has drastic consequences for all parts of the Lagrangian as we shall
analyse in detail in Chapter 6 for various electroweak precision observables measured
at LEP and SLC as well as for the reaction e+e− →WW at a future LC. It also has
the consequence that the counting of dimensions of anomalous terms is changed when
Higgs fields are replaced by their vacuum expectation values, see [109] where also the
question of SU(2) × U(1) gauge invariance is discussed. Anomalous couplings from
operators of dimension n in the ELb approach will generate operators of dimension
n′ ≤ n in the ELa approach.

Some advantages and disadvantages of the three approaches are as follows. The
FF approach is the most general one but it has the disadvantage of introducing
many parameters. Also, the anomalous parts of form factors for different reactions
like e+e− →WW and γγ →WW are a priori not related. The ELa and ELb ap-
proaches allow to relate anomalous effects in different reactions. Suppose now that
we restrict the anomalous coupling terms to dimension n′ ≤ 6 and n ≤ 6 in the ELa
and ELb approaches, respectively. Then the ELa approach generates more couplings
than the ELb approach. Thus, in a sense, the ELb approach is the most restrictive
framework if the dimension of the coupling terms is limited. For an application of
the FF approach to the reaction e+e− → τ+τ− see for instance [110], for an appli-
cation of the ELa approach to Z decays see [111]. In Chapter 6 we add to the SM
Lagrangian—before EWSB—operators of higher dimension that consist of SM fields.
The natural expansion parameter for this series is (v/Λ), where v ≈ 246 GeV is the
vacuum expectation value of the SM-Higgs-boson field, see (2.31). Such an approach
has been proposed in [36], where all operators up to dimension six are constructed
that respect the SM gauge symmetry SU(3) × SU(2) × U(1). The gauge-boson sec-
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tor of this Lagrangian is particularly interesting because anomalous three-, four- and
higher-gauge-boson self-interactions as well as gauge-boson-Higgs interactions are in-
duced. We have mentioned above that in the SM the structure of the gauge-boson
vertices is highly restricted. There exist triple- as well as quartic-gauge-boson cou-
plings all of which are fixed by the coupling constants of SU(2) and U(1), see for
instance [1]. At tree-level the triple couplings γWW , ZWW and only the quartic
couplings WWWW , γγWW , γZWW and ZZWW occur. Furthermore, as we have
seen in Section 2.2 in the SM the interactions of gauge bosons with the Higgs boson
are determined by the covariant derivative acting on the Higgs field.

In the ELb approach in Chapter 6 we consider the leading order operators of
dimension higher than four, that is of dimension six (cf. [36]), that are built from
electroweak gauge fields or from electroweak gauge fields plus the SM Higgs field.
There are ten such operators, four of them CP violating. This leads to ten new
coupling constants hi, which parameterise deviations from the SM. It is assumed
that the new-physics scale Λ is large enough such that operators of dimension six
already give a good description of the high-scale effects. To keep the number of
anomalous couplings within reasonable limits we exclude all non-SM operators that a
priori involve fermions. Nevertheless, the purely bosonic anomalous couplings change
the gauge-boson-fermion interactions in the following way: After EWSB the pure
boson operators contribute to the diagonal as well as off-diagonal kinetic terms of the
gauge bosons and to the mass terms of the W and Z bosons. Firstly, this requires a
renormalisation of the W -boson field. Secondly, the kinetic and the mass matrices of
the neutral gauge bosons have to be diagonalised simultaneously to obtain the physical
photon and Z-boson fields as linear combinations of the photon and Z-boson fields
of the effective Lagrangian. This in turn modifies the neutral- and charged-current
interactions. Since all fermion families are affected in the same manner no flavour-
changing neutral currents are induced.

Thus in the ELb approach purely bosonic anomalous couplings influence also the
precision observables from Z decay. In Chapter 6 we exploit this to calculate bounds
on two CP conserving anomalous couplings from measurements at LEP1 and SLC
and from W -boson measurements. To this end precision observables that are sensitive
to the modified gauge-boson-fermion interactions or to the mass of the W boson are
calculated within the framework of our effective Lagrangian. Less stringent bounds
are obtained from direct measurements of the three-gauge-boson vertices γWW and
ZWW in various processes at LEP2. However, one more CP conserving coupling
and two CP violating couplings can be constrained using this data.

In Chapter 6 we also give a detailed comparison of the FF and the ELb approaches
for e+e− →WW . In our ELb approach not only the γWW and ZWW vertices
but also the gauge-boson-fermion vertices and—depending on the scheme used—
the W or Z propagator gets anomalous contributions in this reaction. We show
that nevertheless the results computed in the FF approach in Chapter 5 can be
transformed into bounds on the anomalous couplings used here with ELb. This is
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achieved be defining new effective γWW and ZWW couplings that are specific for the
reaction e+e− →WW . Due to gauge invariance the TGCs [33] ∆gγ

1 , ∆κγ , etc. that
refer to the ELb approach and are most commonly used in the literature are related
by well-known gauge relations. These relations change when we use the effective
couplings, which are related to the FF approach.

40



Chapter 3

Extended Higgs sectors

Having explained EWSB in the SM and how to search for its essential ingredient,
the Higgs boson, in the preceding chapter we now turn to a class of more general
models, viz., the SM supplemented by one or more additional Higgs doublets. In
its most simple version the fermion content of such a model is assumed to be the
same as in the SM. The same is assumed for the gauge bosons, thereby avoiding to
introduce new fundamental interactions. In principle, EWSB works in these models in
a similar way as in the SM: The Lagrangian contains terms that consist only of scalar
fields. These terms form the scalar potential and are responsible for the symmetry
breaking pattern of the model. Further, with their covariant derivatives the scalars
possess couplings to the gauge bosons, and through Yukawa interactions they couple
to fermions. In EWSB these terms are again responsible for the generation of the
gauge boson and fermion masses, respectively. With increasing number of scalar fields
the number of parameters in the potential becomes soon very large, for instance as
we shall see in Section 3.7 below there are 14 parameters to describe the most general
potential with two Higgs doublets and 54 for three doublets—in contrast to only
two parameters for one doublet. Therefore the characterisation of the symmetry
breaking for different regions in parameter space becomes increasingly complicated,
cf. the simple conditions (2.9) in the SM. We present a formalism for the analysis
of stability and spontaneous symmetry breaking in models with n Higgs doublets
(n ≥ 2) without introducing other non-SM particles. There exists a vast amount of
literature on the THDM where typically the number of parameters of the potential
is restricted by continuous or discrete symmetries. For instance in [112] a detailed
discussion of the symmetry breaking pattern for different regions in parameter space
is given for the THDM where a

�
2 symmetry is imposed on the Higgs potential.

In contrast, we consider the most general potential here. Our results agree with
those of [112] if we impose the conditions on our parameters such that the potential
is invariant under that discrete symmetry. Moreover, our formulation of the criteria
for EWSB and stability of the potential is more stringent than usually in the literature.
Interestingly, our formalism can be applied for any n ≥ 2 without further complicacies.

41



The analyses of this chapter will be considered in a future work [31]. We remark that
the results of this chapter are not required for the subsequent chapters of this thesis.

Given the fact that theoretically the mechanism of EWSB in the SM with one
Higgs doublet is well working, and that experimentally not even one fundamental
scalar particle is known yet, what are the motivations to consider an extended Higgs
sector? Firstly, a promising candidate for a theory that solves the naturalness (or:
fine-tuning) problem, see Section 2.4, and has a higher symmetry than the SM is
the MSSM, for reviews see e.g. [10] and for its theoretical foundations see [11]. Also
the MSSM contains fundamental Higgs particles that are responsible for the gener-
ation of masses. In this model at least two scalar doublets are required to obtain
an analytic superpotential and to avoid triangle anomalies. Supersymmetry imposes
many relations between the parameters of the potential of the most general model
with two doublets. Secondly, the lower bound on the Higgs-boson mass in the SM,
mH > 114.4 GeV, is too high for the electroweak phase transition in the early uni-
verse to provide the thermal instability that is necessary [113] for baryogenesis, for
a review see [114]. Models with additional scalar particles are more promising than
the SM [114]. Thirdly, larger Higgs sectors can improve gauge-coupling unification
at high scales [115]. Last but not least, given the large spectrum of fermion masses
and the fact that the fermion-scalar interactions are responsible for their generation,
the idea does not seem too abstruse that several scalar particles are involved in this
mechanism. There are three known generations of fermions so why shall there exist
only one Higgs boson?

One may therefore consider a general representation χ of scalar fields under the
electroweak gauge group SU(2) × U(1). Such a representation may be reducible and
consist of complex unitary and real orthogonal parts. However one can show [116]
that without loss of generality it can be assumed that χ carries a real orthogonal
representation of SU(2) × U(1). For the THDM this correspondence is demonstrated
in Appendix B of [117]. The scalar potential is then assumed in [116] to have a
non-zero vacuum expectation value

v ≡ 〈0|χ|0〉 6= 0 (3.1)

and to leave the electromagnetic subgroup U(1)em unbroken as usual. We use the
boldface letter here in order to signify that v is a vector. One can then compute
particle masses and couplings for an arbitrary representation χ. However, only some
representations are allowed in order to be in agreement with experimental data. The
main restrictions originate from the absence of flavour-changing neutral currents, and
from the accurately measured ρ-parameter, which relates the masses of the W and
Z bosons to the weak mixing angle, see (2.21). The first condition is guaranteed if all
quarks of a given charge receive their masses from the vacuum expectation value of
the same Higgs boson [118]. Since we analyse only the scalar potential in this work
and do not specify the Yukawa interactions this condition is not relevant here. The
second condition has the following consequences: In the SM we have at leading order
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ρ = 1, see (2.22). For an extended Higgs sector with arbitrary representations under
the electroweak gauge group the gauge-boson masses mW and mZ can get further
contributions from other than the SM representation. It is convenient to consider
the real representation χ as a unitary representation of the same dimension and to
decompose it into representations (t, y), where t and y are the weak-isospin and weak-
hypercharge quantum numbers, respectively, cf. Appendix A of [116]. We have

t = 0,
1

2
, 1,

3

2
, . . . , y ∈ � , (3.2)

where � is the set of rational numbers. Then the squared gauge-boson masses,
see (2.43) in [116], are given by

m2
W =

1

2

(
e

sw

)2∑

t,y

[
t(t + 1) − y2

] (
vT � (t, y)v

)
, (3.3)

m2
Z =

(
e

swcw

)2∑

t,y

y2
(
vT � (t, y)v

)
, (3.4)

where � (t, y) is the projector on the subspace with representation (t, y). The positron
charge e, and the sine and cosine of the weak mixing angle sw and cw are defined in
terms of the gauge couplings g and g′ as in the SM, i.e. according to (2.14) to (2.16).
It is shown in [116] that

vT � (t, y)v 6= 0 only for y = −t,−t + 1, . . . , t. (3.5)

Inserting the expressions for mW and mZ in the definition (2.21) one obtains [116]

ρ =

∑t
y=−t[t(t + 1) − y2]

(
vT � (t, y)v

)
∑t

y=−t 2y2 (vT � (t, y)v)
, (3.6)

where v is the vector of vacuum expectation values in the product space of all repre-
sentations. To obtain ρ = 1 one can either fine-tune the parameters of the potential
in order to get the right vacuum expectation values, which seems rather unnatural.
We do not consider this option here. Or one can only allow those representations
in the sums (3.6) that separately lead to ρ = 1. There are infinitely many such rep-
resentations [119], starting with the singlet with t = 0 and y = 0, the doublet with
t = 1/2 and y = ±1/2, and the septuplet with t = 3 and y = ±2. From each of these
representations one or more copies are allowed in order to be consistent with ρ = 1.
Further, all representations with

y 6= −t,−t + 1, . . . , t (3.7)

can occur because they do not enter the sums (3.6). A rather simple possibility to
extend the Higgs sector of the SM is to include further Higgs doublets. Even in these
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models the shape of the scalar potential depends on many parameters and can be
quite complicated. As mentioned above it is the potential that is responsible for the
scalar self-interactions and—together with the interaction terms of the scalars with
the respective particle—for the generation of the masses. Therefore one is interested
in the conditions that one has to impose on these paramters in order to render the
potential stable and to guarantee symmetry breaking to U(1)em. For simplicity we
restrict ourselves to two doublets, i.e. study the THDM, in the first part of this chapter
and then generalise most of our arguments to the case of n doublets. The THDM
is possibly the simplest extension of the SM. We remark that in all cases only three
degrees of freedom re-appear as longitudinal modes of the massive gauge-bosons. All
other degrees of freedom are in general discoverable as physical Higgs bosons, i.e.
with each additional doublet four (real) scalar degrees of freedom are added to the
model. For instance in the THDM, there are altogether five Higgs particles, viz., three
neutral Higgs bosons h, H (where conventionally mh ≤ mH) and A, as well as two
charged Higgs bosons H±. If the Higgs potential is CP conserving the neutral mass
eigenstates can chosen to be also CP eigenstates, i.e. there are two scalar bosons h
and H, and one pseudoscalar A. As mentioned in the Introduction the exploration of
the phenomenology in a model with n Higgs doublets is beyond the scope of this work.
Note that for this purpose a mere study of the scalar potential is not sufficient; rather
all interactions of the Higgs bosons with gauge bosons and fermions would have to be
included in the analysis in order to determine their production and decay mechanisms.
However for the THDM there exist various studies, for instance for the rare decay
t→ cγ [120]; for an overview and further references see e.g. [121]. For the MSSM
a large number of Feynman rules involving Higgs bosons is derived in [122]. The
phenomenology of the Higgs bosons in the MSSM is further developed in [123]. We
remark that in models that possess an extended Higgs sector (and may also contain
further non-SM particles) for certain regions of the parameter space there often exists
one neutral Higgs boson that behaves somewhat similarly to the SM Higgs boson. For
this particle then many of the results in Sections 2.3 and 2.4 apply. For instance, the
MSSM Higgs sector is described by two parameters, which can chosen to be the mass
of the pseudoscalar boson mA and the ratio tanβ of the vacuum expectation values
of the two Higgs doublets. In the limit mA � mZ (decoupling limit)—in practice
mA & 200 GeV is sufficient [43]—one neutral Higgs boson h is light and has the same
couplings as the SM Higgs boson whereas the other Higgs bosons H, A and H±

are heavy and decouple. If there exist light supersymmetric particles that couple
to h it may be comparatively easy to distinguish h from the SM Higgs boson; this
is because h can decay into these particles if kinematically allowed. Further, if the
light supersymmetric particles couple to photons (gluons) the one-loop γγh (ggh)
coupling is modified by their contribution to the loop. In the first case the branching
ratios of h differ from those of the SM Higgs boson, in the second case even the
corresponding decay rates change. If all heavy Higgses are beyond kinematical reach
in the decoupling limit, such precision measurements are the only way to distinguish h
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from the SM Higgs boson. Notice that at an e+e− collider the heavy Higgs states can
only be produced pairwise in the decoupling limit so that the kinematical limit may
be the more relevant. However, at a γγ collider resonant H and A production [51]
is possible so that a direct observation is possible for mA . 0.8

√
s where

√
s is the

c.m. energy of the two-electron system.
The OPAL collaboration has performed a parameter scan for the CP conserving

THDM [8] and excluded at 95% C.L. large parts of the region where

1 GeV ≤ mh ≤ 100 GeV,

5 GeV ≤ mA ≤ 2 TeV,

−π/2 ≤ α ≤ 0,

0.4 ≤ tanβ ≤ 58.0.

Here α is a mixing angle for the two states h and H. Further, the region where

1 GeV . mh . 44 GeV,

12 GeV . mA . 56 GeV

is excluded at 95% C.L. independent of α and tanβ within the scanned parameter
space. In a combined analysis [9] of the four LEP collaborations a lower bound on
the mass of the charged Higgs in models with two Higgs doublets like the THDM or
the MSSM,

mH+ & 78.6 GeV

at 95% C.L., is determined. In another analysis [12] of the four LEP collaborations
signals for neutral Higgs bosons at different benchmark points of the MSSM were
searched for. Here the limits

mh > 91.0 GeV,

mA > 91.9 GeV

at 95% C.L. are obtained. Under the assumption that the stop-quark mixing is
maximal and with “conservative” choices for other MSSM parameters the region
0.5 < tanβ < 2.4 is excluded at 95% C.L.

In this chapter we procede as follows: In Section 3.1 we present the Lagrangian
for the THDM. We introduce our notation for the Higgs potential, which is expressed
in terms of bilinears in the fields. In Section 3.2 we analyse the conditions for the
stability of the potential. In Section 3.3 we derive expressions for the location of
the stationary points of the potential. The conditions for spontaneous symmetry
breaking down to the electromagnetic gauge group U(1)em are given in Section 3.4.
In Section 3.5 we specify the potential after EWSB in our notation. In Section 3.6 the
results are then applied to various models with two Higgs doublets in the literature,
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where the potential considered is usually not the most general one. In Section 3.7
we present the generalisation to n doublets of the criteria for stability and EWSB.
We present an outlook about the matters of this chapter in Section 3.8. In part this
chapter is based on unpublished notes by O. Nachtmann.

3.1 The general Two-Higgs-doublet model

We denote the two complex Higgs-doublet fields by

ϕj(x) =

(
ϕj,+1/2(x)
ϕj,−1/2(x)

)
(3.8)

with j = 1, 2. Hence we have eight real scalar degrees of freedom. We assume
both doublets to have weak hypercharge y = 1/2. The most general SU(2) × U(1)-
invariant Lagrangian for the THDM can be written as

LTHDM = Lϕ + LYuk + L
′, (3.9)

where the pure Higgs-boson Lagrangian is given by

Lϕ =
∑

j=1,2

(Dµϕj)
† (Dµϕj) − V (ϕ1, ϕ2). (3.10)

This term replaces the third and fourth terms in the SM Lagrangian (2.1). Further,
LYuk are the Yukawa-interaction terms of the Higgs fields with fermions. These
terms replace those of the third line in (2.1). Finally, L ′ contains the terms of the
SM Lagrangian without Higgs fields. We do not specify LYuk and L

′ here since
they are not relevant for our analysis. The Higgs potential V in the THDM will be
specified below and extensively discussed in this chapter. The covariant derivative
acts on the Higgs doublets as in (2.6). We remark that in the MSSM the two Higgs
doublets carry hypercharges y = +1/2 and y = −1/2, respectively, whereas here we
use the conventional definition of the THDM with both doublets carrying y = +1/2.
However, our analysis can be translated to the other case (see e.g. (3.1) in [122]) by
expressing

ϕ1j = εijH
i∗
1 , (3.11)

ϕ2j = Hj
2 , (3.12)

where H1 and H2 are the Higgs doublets of the MSSM, and ε is given in (2.5). The
most general gauge invariant and renormalisable potential V (ϕ1, ϕ2) for the two Higgs
doublets ϕ1 and ϕ2 is a Hermitian linear combination of the following terms:

ϕ†
iϕj,

(
ϕ†

iϕj

)(
ϕ†

kϕl

)
, (3.13)
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where i, j, k, l = 1, 2. Thus V contains 14 real parameters. To explore the properties
of the potential such as its stability and its spontaneous symmetry breaking it is
convenient to introduce the following gauge invariant expressions:

K0 = ϕ†
jrϕjr, Ka = ϕ†

jrσ
a
jkϕkr, (3.14)

where σa are the Pauli matrices and a = 1, 2, 3. Here and in the following, summation
over repeated indices is understood unless explicitly specified. We then have

K†
0 = K0, K†

a = Ka, (3.15)

and, using vector notation

K0 ≥ 0, K2
0 − K2 ≥ 0. (3.16)

These two inequalities can e.g. be shown by defining the Hermitian matrix

K =
1

2

(
K0 + KTτ

)
, (3.17)

whose components are
Kjk = ϕjrϕ

†
kr. (3.18)

The matrix Kjk is positive semi-definite, and the inequalities (3.16) follow from the
fact that trK ≥ 0 and detK ≥ 0, respectively. The terms (3.13) can be expressed
in K0 and Ka through the following relations:

ϕ†
1ϕ1 = (K0 +K3)/2, ϕ†

2ϕ2 = (K0 −K3)/2, (3.19)

ϕ†
1ϕ2 = (K1 + iK2)/2, ϕ†

2ϕ1 = (K1 − iK2)/2.

Moreover, note that for a given Hermitian and positive semi-definite matrix K jk one
always finds fields ϕj obeying (3.18). Hence for given K0 and K with K0 ≥ 0 and
K2

0 ≥ K2 there always exist fields ϕj obeying (3.14). Therefore the most general
potential can be written in terms of the four Hermitian quantities K0 and Ka as
follows:

V (ϕ1, ϕ2) = V2 + V4, (3.20)

V2 = ξ0K0 + ξTK,

V4 = η00K
2
0 + 2K0η

TK +KaηabKb,

where the 14 independent parameters ξ0, ξa, η00, ηa and ηab(= ηba) are real. We
subsequently write E := (ηab). Under a unitary transformation

(
ϕ1

ϕ2

)
−→

(
U11U12

U21U22

)(
ϕ1

ϕ2

)
(3.21)
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the bilinears (3.14) transform as

K0 −→ K0, (3.22)

Ka −→ Rab(U)Kb,

where Rab(U) is defined by U †τaU = Rab(U)τ b. The matrix R(U) has the properties

RT(U)R(U) = � , (3.23)

detR(U) = 1, (3.24)

where � denotes the 3 × 3-unit matrix. The form of the Higgs potential (3.20) remains
unchanged under the replacement (3.22) if we perform an appropriate transformation
of the parameters

ξ0 −→ ξ0, (3.25)

ξ −→ RT(U)ξ,

η00 −→ η00,

η −→ RT(U)η,

E −→ RT(U)ER(U).

Moreover, for every matrix R with the properties (3.23) and (3.24), there is a unitary
transformation (3.21). We can therefore diagonalise E, thereby reducing the number
of parameters of V by three. The Higgs potential is then determined by only 11 real
parameters.

In the following sections we derive bounds on the parameters of the potential that
result from the condition that

• the potential V is stable,

• we have spontaneous symmetry breaking of SU(2) × U(1) down to U(1)em.

3.2 Stability

According to Section 3.1 we can analyse the properties of the potential (3.20) as a
function of K0 and K on the domain determined by K0 ≥ 0 and K2

0 ≥ K2. For
K0 > 0 we define

k = K/K0. (3.26)

In fact, we have K0 = 0 only for ϕ = 0. From (3.20) and (3.26) we obtain for K0 > 0

V2 = K0

(
ξ0 + ξTk

)
, (3.27)

V4 = K2
0J(k), (3.28)

J(k) = η00 + 2ηTk + kTEk, (3.29)
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where |k| ≤ 1. For K0 = 0 we have V = 0.
The stability of the potential is determined by the behaviour of V in the limit

K0 → ∞, hence by the sign of J(k) in (3.28). If J(k) < 0 for some k the theory
is unstable. If J(k) ≥ 0 for all k and J(k) = 0 for at least one k the stability is
determined by the second order terms V2 and loop-corrections to the potential. Here
we assume that

J(k) > 0 for all |k| ≤ 1, (3.30)

which leads to V → ∞ for K0 → ∞ in all directions k and therefore guarantees the
stability of the potential. One immediate conclusion about the parameters of the
potential is

η00 > 0, (3.31)

which follows from J(0) > 0.
More generally, to assure (3.30) it is sufficient to have J(k) > 0 for all stationary

points of J(k) on the domain |k| < 1, and for all stationary points on the bound-
ary |k| = 1, because among the stationary points there are the minima of J(k). In
addition to (3.31), this leads to further bounds on η00, ηa and ηab, which parameterise
the quartic term V4 of the potential. For |k| < 1 the stationary points—if there are
any—must fulfil

Ek = −η. (3.32)

If detE 6= 0 we explicitly obtain

J(k)|stat = η00 − ηTE−1η if 1 − ηTE−2η > 0, (3.33)

where the inequality follows from the condition |k| < 1. If detE = 0 there can exist
one or more “exceptional” solutions k of (3.32). They, again, have to obey |k| < 1.
For |k| = 1 we must find the stationary points of the function

F (k, u) := J(k) + u
(
1 − k2

)
, (3.34)

where u is a Lagrange multiplier. Those are given by

(u− E)k = η, |k| = 1. (3.35)

For generic values of u such that det(u− E) 6= 0 the stationary points are given by

k(u) = (u− E)−1η, (3.36)

and the Lagrange multiplier is determined from the condition kTk = 1 after insert-
ing (3.36):

1 − ηT(u− E)−2η = 0. (3.37)

We thus obtain the (formal) solution

J(k)|stat = u+ η00 + ηT(u− E)−1η, (3.38)
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where u is a solution of (3.37). Also for |k| = 1, depending on the parameters ηa

and ηab, there can be exceptional solutions (k, u) of (3.35) where det(E − u) = 0, i.e.
where u is an eigenvalue of E.

For generic values of u the two cases |k| < 1 and |k| = 1 can be merged in the
following way: Using (3.34) and (3.36) we define a function

f(u) := F (k(u), u), (3.39)

with k(u) as in (3.36). This leads to

f(u) = u+ η00 + ηT(u− E)−1η, (3.40)

f ′(u) = 1 − ηT(u− E)−2η. (3.41)

Altogether, the statement (3.30), which guarantees the stability of the potential, is
then equivalent to the three conditions:

(I.1) f(0) > 0 if f ′(0) > 0,

(I.2) f(u) > 0 for all u where f ′(u) = 0,

(I.3) J(kexcept) > 0 for all exceptional stationary points kexcept, i.e. for all solutions k

of (3.32) if detE = 0 and for all solutions (k, u) of (3.35) with det(u− E) = 0.

In a basis where E = diag(µ1, µ2, µ3) we obtain:

f(u) = u+ η00 +
∑

a=1

η2
a

u− µa
, (3.42)

f ′(u) = 1 −
∑

a=1

η2
a

(u− µa)2
. (3.43)

The derivative f ′(u) has at least 2 and at most 6 zeros. The shape of f(u) and f ′(u)
for a set of parameters where it has 6 zeros can be seen in Figure 3.1. Notice that in
this basis there are no exceptional solutions if all three components of η are different
from zero.

From the three conditions (I.1) to (I.3) we implicitly obtain bounds on the pa-
rameters η00, ηa and ηab. However, for the most general quartic term V4 of the
potential (3.20) it is not straightforward to write down these bounds explicitly. Nev-
ertheless, for more specific models this can be done. As an example we consider
the THDM of [42] with the Higgs potential

V (ϕ1, ϕ2) = λ1

(
ϕ†

1ϕ1 − v2
1

)2
+ λ2

(
ϕ†

2ϕ2 − v2
2

)2
(3.44)

+ λ3

(
ϕ†

1ϕ1 − v2
1 + ϕ†

2ϕ2 − v2
2

)2

+ λ4

((
ϕ†

1ϕ1

)(
ϕ†

2ϕ2

)
−
(
ϕ†

1ϕ2

)(
ϕ†

2ϕ1

))

+ λ5

(
Re
(
ϕ†

1ϕ2

)
− v1v2 cos ξ

)2

+ λ6

(
Im
(
ϕ†

1ϕ2

)
− v1v2 sin ξ

)2

+ λ7

(
Re
(
ϕ†

1ϕ2

)
− v1v2 cos ξ

)(
Im
(
ϕ†

1ϕ2

)
− v1v2 sin ξ

)
,
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Figure 3.1: Functions (3.42) and (3.43) with η00 = 1, (µ1, µ2, µ3) = (1, 2, 3) and
(η1, η2, η3) = (0.2, 0.2, 0.2).
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which contains nine real parameters if we do not count the constant. It is the most
general potential that breaks the discrete symmetry

ϕ1 −→ −ϕ1, ϕ2 −→ ϕ2 (3.45)

only softly. In the specific case where ξ = 0 CP is conserved in the Higgs sector. If
λ5 = λ6 and λ7 = 0 the phase ξ can be eliminated by phase transformations of the
doublets such that CP is conserved as well. For various restrictions on the THDM
by symmetries see e.g. [121]. Dropping the constant term, we put the potential into
the form (3.20) using the relations (3.19). Then,

η00 =
1

4
(λ1 + λ2 + 4λ3 + λ4), (3.46)

η =
1

4




0
0

λ1 − λ2


 ,

E =
1

8




2(λ5 − λ4) λ7 0

λ7 2(λ6 − λ4) 0
0 0 2(λ1 + λ2 − λ4)



 .

From (3.40) and (3.41) we obtain

f(u) = u+
1

4
(λ1 + λ2 + 4λ3 + λ4) +

(λ1 − λ2)
2

16u− 4(λ1 + λ2 − λ4)
, (3.47)

f ′(u) = 1 − (λ1 − λ2)
2

(4u− (λ1 + λ2 − λ4))
2 . (3.48)

We introduce the abbreviations

κ1,2 :=
1

2

(
λ5 + λ6 ±

√
(λ5 − λ6)2 + λ2

7

)
. (3.49)

Applying the three conditions (I.1) to (I.3) after (3.41) to the functions f(u) and f ′(u)
and to the exceptional stationary points we obtain the following conditions for the
stability of the potential:

λ1 + λ3 > 0, λ2 + λ3 > 0, (3.50)

and, for x = λ4, κ1, κ2, either

2 min(λ1, λ2) ≤ x, (3.51)

or
x < 2 min(λ1, λ2),
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−2λ3 − 2
√

(λ1 + λ3)(λ2 + λ3) < x < −2λ3 + 2
√

(λ1 + λ3)(λ2 + λ3). (3.52)

In particular, if λ1, λ2, λ3, λ4, κ1, κ2 > 0 these conditions are fulfilled. They can then
be rewritten as:

λ1, λ2, λ3, λ4 > 0, 4λ5λ6 > λ2
7. (3.53)

That means, if (3.53) holds the conditions (3.50) to (3.52) are fulfilled and the po-
tential is stable. For the case λ7 = 0 we can replace κ1 and κ2 by λ5 and λ6 in (3.50)
to (3.52). Then (3.50) to (3.52) are in particular fulfilled if λi > 0 for i = 1, . . . , 6.

The potential in [112] is even more specific since it is invariant under (3.45). Ap-
plying the stability conditions (I.1) to (I.3) after (3.41) to their potential we reproduce
their result, equation (2).

3.3 Location of stationary points

After our stability analysis in the preceding section we now determine the location
of the stationary points of the potential, since among these points there are the local
and global minima. To this end we define

K̃ =

(
K0

K

)
, ξ̃ =

(
ξ0
ξ

)
, Ẽ =

(
η00 ηT

η E

)
. (3.54)

In this notation the potential (3.20) reads

V = K̃
T
ξ̃ + K̃

T
ẼK̃, (3.55)

and is defined on the domain
K̃

T
g̃K̃ ≥ 0, (3.56)

with

g̃ =

(
1 0
0 − �

)
. (3.57)

The stability condition (3.30) is equivalent to V4 > 0 for all allowed K and K0 6= 0,
i.e. it is equivalent to

K̃
T
ẼK̃ > 0 (3.58)

for all K̃ with K̃
T
g̃K̃ ≥ 0 and K0 6= 0.

The stationary points of V for |k| < 1 are given by

ẼK̃ = −1

2
ξ̃, K̃

T
g̃K̃ > 0. (3.59)

For det Ẽ 6= 0 we obtain the unique solution

K̃ = −1

2
Ẽ−1ξ̃, (3.60)
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provided that

ξ̃
T
Ẽ−1g̃Ẽ−1ξ̃ > 0, (3.61)

and no solution if (3.61) does not hold. The potential at the stationary point is

V |stat = −1

4
ξ̃

T
Ẽ−1ξ̃. (3.62)

This does not change if we make the replacement (3.25). The second derivative

∂2V
(
∂K̃

)2 = 2Ẽ (3.63)

determines whether (3.60) is a local minimum, a local maximum or a saddle. In the
case det Ẽ = 0 we may have exceptional solutions of (3.59).

The stationary points of V on the boundary |k| = 1 are stationary points of the
function

F̃
(
K̃, u

)
:= V − uK̃

T
g̃K̃, (3.64)

where u is a Lagrange multiplier. The stationary points of F̃ are given by

(
ug̃ − Ẽ

)
K̃ =

1

2
ξ̃, K̃

T
g̃K̃ = 0. (3.65)

For generic values of u with det(ug̃ − Ẽ) 6= 0 we obtain

K̃(u) =
1

2

(
ug̃ − Ẽ

)−1
ξ̃. (3.66)

The Lagrange multiplier is determined from the second equation of (3.65) by insert-
ing (3.66):

ξ̃
T(
ug̃ − Ẽ

)−1
g̃
(
ug̃ − Ẽ

)−1
ξ̃ = 0. (3.67)

Note that the solutions to this equation do not change if we make the replace-
ment (3.25) and leave g̃ unchanged.

There may be up to 4 values u = µ̃a with a = 1, . . . , 4 for which det(ug̃ − Ẽ) = 0.
Depending on the potential some or all of them may lead to exceptional solutions
K̃except of (3.65).

Also for the more general case, viz., det(ug̃ − Ẽ) = 0 or det(ug̃ − Ẽ) 6= 0, we find
that under the replacement (3.25) the Lagrangian multipliers u belonging to solutions
(u, K̃) of (3.65) remain unchanged. Moreover, the same Lagrangian multipliers belong
to the same values of the potential before and after such a replacement.

For all stationary points K̃ with |k| < 1 (whether det Ẽ = 0 or det Ẽ 6= 0) and all
stationary points (u, K̃) with |k| = 1 (whether det(ug̃ − Ẽ) = 0 or det(ug̃ − Ẽ) 6= 0)
the potential at the stationary point is given by

V |stat =
1

2
K̃

T
ξ̃ = −K̃

T
ẼK̃. (3.68)
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From the stability condition (3.58) we therefore have for all stationary points withK0 6= 0:

V |stat < 0. (3.69)

Similarly to the stability analysis in Section 3.2 we can reformulate the criteria for
the extrema of V for both |k| < 1 and |k| = 1 in terms of one function

f̃(u) := F̃
(
K̃(u), u

)
, (3.70)

where K̃(u) is the solution (3.66). It follows:

f̃(u) =
1

4
ξ̃

T(
ug̃ − Ẽ

)−1
ξ̃, (3.71)

f̃ ′(u) = −1

4
ξ̃

T(
ug̃ − Ẽ

)−1
g̃
(
ug̃ − Ẽ

)−1
ξ̃. (3.72)

Then we have for the stationary points of V :

(II.1) V |stat = f̃(0) if f̃ ′(0) < 0 and det Ẽ 6= 0,

(II.2) V |stat = f̃(u) for all u for which f̃ ′(u) = 0 and det(ug̃ − Ẽ) 6= 0,

(II.3) there may exist exceptional solutions K̃except of (3.59) if det Ẽ = 0, and of (3.65)
with u = µ̃a.

If all values µ̃1, . . . , µ̃4 are different we can diagonalise the matrix g̃Ẽ in the following
way:

g̃Ẽ =
∑

a

µ̃a
˜�

a, (3.73)

where ˜�
a are quasi-projectors. They obey

tr ˜�
a = 1, ˜�

a
˜�

b =

{
˜�

a for a = b
0 for a 6= 0,

(3.74)

where a, b = 1, . . . , 4. In terms of the ˜�
a (3.71) and (3.72) read

f̃(u) =
1

4

∑

a

ξ̃
T ˜�

a g̃ ξ̃

u− µ̃a
, (3.75)

f̃ ′(u) = −1

4

∑

a

ξ̃
T ˜�

a g̃ ξ̃

(u− µ̃a)2
. (3.76)
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3.4 Criteria for electroweak symmetry breaking

Here we assume J(k) > 0 to guarantee that the potential is stable, see Section 3.2.
We now distinguish two different cases. First consider the case ξ0 ≥ |ξ|. From (3.27)
we get V = V2 + V4 > 0 for K0 > 0. Hence the global minimum is V (K0 = 0) = 0.
Since K0 = 0 corresponds to ϕ = 0 no symmetry is spontaneously broken. Second
consider

ξ0 < |ξ|. (3.77)

Here we obtain
∂V

∂K0

∣∣∣∣ k fixed,
K0 = 0

= ξ0 + ξTk < 0 (3.78)

for some k, i.e. the global minimum of V lies at ϕ 6= 0. Therefore the full gauge group
or a subgroup is spontaneously broken.

In the following we impose the condition (3.77). However, to obtain spontaneous
symmetry breaking down to U(1)em leads to further conditions to be investigated
now. We denote the vacuum expectation values, i.e. the fields at the global minimum
of the potential V , by

vjr = 〈ϕjr〉. (3.79)

In general the vjr are complex numbers. To exhibit the consequences of electromag-
netic gauge invariance we consider the matrix (3.18) at the global minimum:

Kjk

∣∣
min

= vjrv
∗
kr. (3.80)

Now we distiguish two cases: First let the global minimum of V occur at K0 > |K|.
Then detK|min > 0, see Section 3.1. Since we have

detK|min =
(
v1,+1/2 v2,−1/2 − v1,−1/2 v2,+1/2

)2
, (3.81)

the vectors (
v1,+1/2

v2,+1/2

)
,

(
v1,−1/2

v2,−1/2

)
(3.82)

are linearly independent. Then there is no transformation (3.21) such that both
v1,+1/2 and v2,+1/2 become zero. This means that the full gauge group SU(2) × U(1) is
broken. Second consider the case where the global minimum of V occurs at K0 = |K|.
Then the rank of the matrix K|min is 1 and the vectors (3.82) are linearly dependent.
After performing a global SU(2) × U(1) transformation we achieve

(
v1,+1/2

v2,+1/2

)
= 0,

(
v1,−1/2

v2,−1/2

)
6= 0, (3.83)

and identify the unbroken U(1) gauge group with the electromagnetic one. By a
transformation (3.21) we can achieve that

(
v1,−1/2

v2,−1/2

)
=

(
v0/

√
2

0

)
, v0 > 0. (3.84)
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In a basis where (3.84) holds the matrix E is in general not diagonal.
In short, the assumption of spontaneous symmetry breaking of SU(2) × U(1)

down to U(1)em in an arbitrary basis of the scalar fields leads to the conditions

(III.1) ξ0 < |ξ| and

(III.2) K0 = |K| for the global minimum of V .

The first condition is a direct constraint on the parameters in the quadratic term V2 of
the potential. In the following we want to investigate the bounds on the parameters
in V2 and V4 that result from the second condition. We consider this problem in a
more general way and derive various statements involving two stationary points.

Assume that each of the two points

p̃ =

(
p0

p

)
, q̃ =

(
q0
q

)
(3.85)

with p0 ≥ |p| and q0 ≥ |q| is either a solution of (3.59), i.e. a stationary point of V ,
or, together with an appropriate Lagrange multiplier, a solution of (3.65). We define

s̃ := p̃ − q̃. (3.86)

From (3.68) we then find the following implication:

V (p̃) < V (q̃) =⇒ s̃Tξ̃ < 0. (3.87)

Assuming p0 ≥ |p| and q0 > |q| we further find, using (3.59) and (3.68),

V (p̃) <
> V (q̃) =⇒ s̃TẼs̃ <

> 0. (3.88)

In particular, the upper inequalities hold if p̃ is the global minimum of V . Thus, if
there is a stationary point of V (K̃) on the domain |k| < 1, the matrix Ẽ and therefore
the second derivative (3.63) of V must have at least one negative eigenvalue. This is
true whether or not det Ẽ = 0. Therefore a stationary point of V for |k| < 1 must
be a local maximum or a saddle but it cannot be a local minimum. Furthermore, for
p0 > |p| and q0 > |q| we have

s̃Tξ̃ = 0. (3.89)

Therefore at two stationary points of V with |k| < 1 the potential takes the same
value. For p0 = |p| and q0 > |q| we find

s̃Tξ̃ = −2up̃Tg̃q̃, (3.90)

where u is the Lagrangian multiplier for p̃. Relation (3.90) holds in particular if p̃

is the global minimum. Let u0 be the corresponding Lagrangian multiplier. In the
following subsection we will see that in a particular basis for the scalar fields the
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positivity of the charged Higgs mass implies a positive Lagrangian multiplier u0 for
the global minimum. However, as we have seen in Section 3.3, u0 is the Lagrangian
parameter for the global minimum in any basis. We thus have from (3.87) and (3.90)

p̃Tg̃q̃ > 0, (3.91)

where p0 = |p| is the global minimum and q0 > |q| is a stationary point of V . Ac-
cording to our above argument this stationary point cannot be a local minimum.

3.5 Potential after electroweak symmetry break-

ing

Now consider a potential which fulfils the stability conditions (I.1) to (I.3) (see after
(3.41))—and therefore (3.30)—and leads to the desired symmetry breaking pattern,
i.e. obeys (III.1) and (III.2) (see after (3.84)). We choose a basis for the scalar fields
such that for the vacuum expectation values relations (3.83) and (3.84) hold. We use
a unitary gauge with the gauge conditions

ϕ1,1/2(x) = 0, (3.92)

Imϕ1,−1/2(x) = 0, (3.93)

Reϕ1,−1/2(x) ≥ 0. (3.94)

Similarly as in the SM, see (2.11), we introduce a shifted Higgs field

ρ′(x) :=
√

2 Reϕ1,−1/2(x) − v0. (3.95)

Then the two Higgs doublets are

ϕ1(x) =
1√
2

(
0

v0 + ρ′(x)

)
, ϕ2(x) =

(
ϕ2,+1/2(x)
ϕ2,−1/2(x)

)
. (3.96)

In addition to ρ′ there are two more neutral Higgs fields

h′ :=
√

2Reϕ2,−1/2, h′′ :=
√

2 Imϕ2,−1/2, (3.97)

and the charged fields

H+ := ϕ2,+1/2, H− := H†
+. (3.98)

It is convenient to decompose K̃ according to the power of the physical fields they
contain

K̃ = K̃0 + K̃1 + K̃2, (3.99)
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with

K̃0 =




v2
0/2
0
0

v2
0/2


 , K̃1 = v0




ρ′

h′0
h′′0
ρ′


 , K̃2 =

1

2




ρ′ 2 + 2H−H+ + h′ 2 + h′′ 2

2ρ′h′

2ρ′h′′

ρ′ 2 − 2H−H+ − h′ 2 − h′′ 2


 .

(3.100)
By u0 we denote again the Lagrange multiplier corresponding to the global minimum
of V . From (3.65) we have

ẼK̃0 = u0g̃K̃0 −
1

2
ξ̃. (3.101)

From the explicit expressions (3.100) we further have

K̃
T

0 g̃K̃0 = 0, K̃
T

0 g̃K̃1 = 0. (3.102)

Using (3.99) to (3.102) we obtain for the potential (3.55)

V = V(0) + V(2) + V(3) + V(4), (3.103)

where V(k) are the terms of kth order in the physical Higgs fields

V(0) = (ξ0 + ξ3)v
2
0/4, (3.104)

V(2) = K̃
T

1 ẼK̃1 + 2u0K̃
T

0 g̃K̃2, (3.105)

V(3) = 2K̃
T

1 ẼK̃2, (3.106)

V(4) = K̃
T

2 ẼK̃2. (3.107)

From (3.104) and the requirement V(0) < 0 we obtain

ξ0 + ξ3 < 0, (3.108)

to supplement the condition (3.77). From (3.101) and v2
0 > 0 we obtain the condition

η00 + η33 + 2η3 > 0. (3.109)

Two of the four equations (3.101) give the vacuum expectation value and the Lagrange
multiplier in terms of the potential parameters:

v2
0 = − ξ0 + ξ3

η00 + η33 + 2η3

, u0 =
ξ3(η3 + η00) − ξ0(η3 + η33)

ξ0 + ξ3
. (3.110)

The remaining two equations can be written:

ξ1 = −v2
0(η1 + η13), ξ2 = −v2

0(η2 + η23). (3.111)
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In general there is more than one solution of (3.67) for the Lagrange multiplier. Here
we have assumed that u0 corresponds to the global minimum of V and chosen the
basis of the Higgs fields accordingly, cf. (3.84). Therefore u0 can be uniquely expressed
in terms of the potential parameters as done in (3.110).

The second order terms (3.105) determine the masses of the physical Higgs fields:

V(2) =
1

2
(ρ′, h′, h′′)M2

neutral




ρ′

h′

h′′



+m2
chargedH−H+, (3.112)

with

M2
neutral = 2




−ξ0 − ξ3 −ξ1 −ξ2
−ξ1 v2

0(u0 + η11) v2
0η12

−ξ2 v2
0η12 v2

0(u0 + η22)


 , (3.113)

m2
charged = 2u0v

2
0. (3.114)

Generically the mass terms (3.112) contain 7 real parameters. From (3.113) and (3.114)
we see that all 7 parameters are in fact independent in this model. From the condition
that m2

charged is positive we obtain, using (3.108) and (3.110),

ξ0(η3 + η33) − ξ3(η3 + η00) > 0. (3.115)

From the fact that the masses of the neutral Higgs particles are all positive we have
three conditions one of which can be chosen to be (3.108). The other two are then

w := (u0 + η11)(u0 + η22) − η2
12 > 0, (3.116)

(ξ1, ξ2)

(
(η11 + u0) η12

η12 (η22 + u0)

)(
ξ1
ξ2

)
> v2

0w(ξ0 + ξ3). (3.117)

3.6 Examples

Here we apply the general considerations of Sections 3.3 to 3.5 to some specific models.

3.6.1 Higgs potential of Gunion et al.

We first look again at the potential (3.44) from [42]. Assuming λ7 = 0 the potential V
can be written in the form (3.55) apart from constant terms:

V = λ1v
4
1+λ2v

4
2+λ3

(
v2
1+v2

2

)2
+λ5v

2
1v

2
2 cos2 ξ+λ6v

2
1v

2
2 sin2 ξ+K̃

T
ξ̃+K̃

T
ẼK̃. (3.118)
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Here we have

ξ̃ =




−λ1v
2
1 − λ2v

2
2 − 2λ3

(
v2
1 + v2

2

)

−λ5v1v2 cos ξ
−λ6v1v2 sin ξ
−λ1v

2
1 + λ2v

2
2


 , Ẽ =

(
η00 ηT

η E

)
, (3.119)

with η00, η and E as in (3.46) with λ7 = 0. For the particular case where λi > 0 for
i = 1, . . . , 6, we find ξ0 < |ξ|. Then we have spontaneous symmetry breaking.

The four values of u for which det(ug̃ − Ẽ) = 0 are

µ̃1 = (λ4 − λ5)/4, (3.120)

µ̃2 = (λ4 − λ6)/4,

µ̃3,4 =
1

4
(2λ3 + λ4) ±

1

2

√
(λ1 + λ3)(λ2 + λ3),

A solution of (3.65) and (3.67) is given by

(vjr) =

(
0 v1

0 v2e
iξ

)
, u =

1

4
λ4. (3.121)

To have a vacuum expectation value of the form (3.84) we perform a transformation

(
ϕ′

1

ϕ′
2

)
= U

(
ϕ1

ϕ2

)
, U =

(
cos β sin βe−iξ

− sin eiξ cos β

)
, (3.122)

with tanβ = v2/v1, and thereby obtain

v0 =
√

2(v2
1 + v2

2). (3.123)

After this transformation we have

ξ̃′ =

(
ξ0

R(U)ξ

)
(3.124)

=
v2
0

4




−2(λ1 cos2 β + λ2 sin2 β) − 4λ3

sin 2β cos ξ
[
2α + λ5(2 sin2 β cos2 ξ − 1) + 2λ6 sin2 β sin2 ξ

]

sin 2β sin ξ
[
2α+ 2λ5 sin2 β cos2 ξ + λ6(2 sin2 β sin2 ξ − 1)

]

−2α cos 2β − sin2 2β(λ5 cos2 ξ + λ6 sin2 ξ)


 ,

E ′ = R(U)ERT(U),

where α ≡ λ1 cos2 β − λ2 sin2 β. For the entries of the neutral mass matrix (3.113) we
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obtain

(
M2

)
11

=
v2
0

2

[
4(λ1 cos4 β + λ2 sin4 β) + 4λ3 + sin2 2β(λ5 cos2 ξ + λ6 sin2 ξ)

]
,(3.125)

(
M2

)
12

=
v2
0

2
sin 2β cos ξ

[
−2α− λ5(2 sin2 β cos2 ξ − 1) − 2λ6 sin2 β sin2 ξ

]
,

(
M2

)
13

=
v2
0

2
sin 2β sin ξ

[
−2α− 2λ5 sin2 β cos2 ξ − λ6(2 sin2 β sin2 ξ − 1)

]
,

(
M2

)
22

=
v2
0

2

[
(λ1 + λ2) sin2 2β cos2 ξ + λ5(2 sin2 β cos2 ξ − 1)2 + λ6 sin4 β sin2 2ξ

]
,

(
M2

)
23

=
v2
0

2
sin 2ξ

[
1

2
(λ1 + λ2) sin2 2β + λ5 sin2 β(2 sin2 β cos2 ξ − 1)

+ λ6 sin2 β(2 sin2 β sin2 ξ − 1)

]
,

(
M2

)
33

=
v2
0

2

[
(λ1 + λ2) sin2 2β sin2 ξ + λ5 sin4 β sin2 2ξ + λ6(2 sin2 β sin2 ξ − 1)2

]
.

For the special case ξ = 0, (3.124) simplify to

ξ̃′ =
v2
0

4




−2(λ1 cos2 β + λ2 sin2 β) − 4λ3

sin 2β(2α− λ5 cos 2β)
0

−2α cos 2β − λ5 sin2 2β


 , E ′ =




E ′

11 0 E ′
13

0 E ′
22 0

E ′
13 0 E ′

33



 ,

(3.126)
with

E ′
11 =

1

4

[
sin2 2β(λ1 + λ2 − λ4) + (λ5 − λ4) cos2 2β

]
, (3.127)

E ′
13 = −1

8
sin 4β(λ1 + λ2 − λ5),

E ′
22 =

1

4
(λ6 − λ4),

E ′
33 =

1

4

[
sin2 2β(λ5 − λ4) + cos2 2β(λ1 + λ2 − λ4)

]
.

This results in the mass matrix

M2
neutral =




(M2)11 (M2)12 0
(M2)12 (M2)22 0

0 0 (M2)33


 , (3.128)
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with

(
M2

)
11

=
v2
0

2

[
4(λ1 cos4 β + λ2 sin4 β) + 4λ3 + λ5 sin2 2β

]
, (3.129)

(
M2

)
12

=
v2
0

2
sin 2β(−2α + λ5 cos 2β),

(
M2

)
22

=
v2
0

2

[
(λ1 + λ2) sin2 2β + λ5 cos2 2β

]
,

(
M2

)
33

=
v2
0

2
λ6,

where again α ≡ λ1 cos2 β − λ2 sin2 β.

3.6.2 Higgs potential of Bernreuther et al.

In [124] the potential is

V = V0 +
(
κϕ†

1ϕ2 + h
(
ϕ†

1ϕ2

)2
+ H.c.

)
, (3.130)

where V0 is the potential (3.44) with λ7 = 0 and ξ = 0 (rendering it CP conserving),
and κ and h are complex parameters in the notation of the authors. We thus have

V = λ1v
4
1 + λ2v

4
2 + λ3

(
v2
1 + v2

2

)2
+ λ5v

2
1v

2
2 + K̃

T
ξ̃ + K̃

T
ẼK̃, (3.131)

ξ̃ =




−λ1v
2
1 − λ2v

2
2 − 2λ3

(
v2
1 + v2

2

)

−λ5v1v2 + Re κ
−Im κ

−λ1v
2
1 + λ2v

2
2


 ,

Ẽ =
1

4




λ1 + λ2 + 4λ3 + λ4 0 0 λ1 − λ2

0 λ5 − λ4 + 2 Re h −2 Im h 0
0 −2 Im h λ6 − λ4 − 2 Reh 0

λ1 − λ2 0 0 λ1 + λ2 − λ4


 .

Apart from constant terms the potential is now in the form (3.55) and can be further
analysed similarly to Section 3.6.1.

3.6.3 Higgs potential of Denner et al.

As a third example we consider the model of [125] where the Higgs potential is

V = −µ2
1ϕ

†
1ϕ1 − µ2

2ϕ
†
2ϕ2 + λ2

1

(
ϕ†

1ϕ1

)2
+ λ2

2

(
ϕ†

2ϕ2

)2
(3.132)

+ λ3

(
ϕ†

1ϕ1

)(
ϕ†

2ϕ2

)
+ λ4

(
ϕ†

1ϕ2

)(
ϕ†

2ϕ1

)
+

1

2
λ5

(
ϕ†

1ϕ2

)2
+

1

2
λ∗5
(
ϕ†

2ϕ1

)2
.

63



In this case we obtain

V = K̃
T
ξ̃ + K̃

T
ẼK̃, (3.133)

ξ̃ =




−
(
µ2

1 + µ2
2

)
/2

0
0

−
(
µ2

1 − µ2
2

)
/2


 ,

Ẽ =
1

4




λ2
1 + λ2

2 + λ3 0 0 λ2
1 − λ2

2

0 λ4 + Reλ5 −Im λ5 0
0 −Im λ5 λ4 − Reλ5 0

λ2
1 − λ2

2 0 0 λ2
1 + λ2

2 − λ3


 .

Again, having obtained the form (3.55) the potential can now be studied along the
lines of Sections 3.3 to 3.5.

3.7 Generalisation to n Higgs doublets

We now generalise some of the arguments of Sections 3.1 to 3.4 to n complex scalar
doublet fields

ϕj(x) =

(
ϕj,+1/2(x)
ϕj,−1/2(x)

)
(3.134)

with j = 1, . . . , n. To define quantities similar to those in (3.14) we need an ap-
propriate basis of Hermitian traceless matrices. We call this basis matrices λa with
a = 1, . . . , n2 − 1. Let the λa be defined in the following way: Consider the n× n ”ma-
trix” 



1, 2 4, 5 9, 10 16, 17 · · ·
3 6, 7 11, 12 18, 19

8 13, 14 20, 21
15 22, 23

24
. . .




. (3.135)

If a is the first (second) number in a non-diagonal element in (3.135), λa con-
tains 1 (−i) in this element, 1 (i) in the transposed element and 0 in all other elements.
If a is a diagonal element, i.e. if a = k2 − 1 with k = 2, 3, . . . , n, we define the diagonal
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matrices

λa =

√
2

k(k − 1)




1
. . .

1
(1 − k)

0
. . .

0




. (3.136)

The upper left block contains (k − 1) diagonal entries 1. For the λa we have the usual
normalisation condition

tr
(
λaλb

)
= 2δab. (3.137)

We define a second set of basis matrices λ̂a that differ from the λa only by a normal-
isation factor:

λ̂a = Aλa, A > 0. (3.138)

For this basis matrices we have

tr
(
λ̂aλ̂b

)
= 2A2δab. (3.139)

We shall specify A only below. Similarly to (3.14) we define the gauge invariant
expressions

K0 = ϕ†
jrϕjr, Ka = ϕ†

jrλ̂
a
jkϕkr, (3.140)

with a = 1, . . . , n2 − 1. Of course, (3.15) remains valid also for n scalar doublets.
Analogous to (3.21) we can perform a unitary transformation on the first index of the
scalars

ϕ −→ (U ⊗ � )ϕ (3.141)

with U ∈ U(n). Then defining Rab(U) by

U †λ̂aU = Rab(U)λ̂b (3.142)

we find that the bilinears K0 and Ka transform as in the case n = 2, see (3.22).
Moreover, (3.23) is still valid for n > 2. Similar to (3.17) we may define a Hermitian
n× n matrix

K =
1

n

(
K0 + KTλ̂

)
, (3.143)

whose components are

Kjk =
1

n

(
δjkϕ

†
irϕir + ϕ†

irλ̂
a
ilϕlrλ̂

a
jk

)
. (3.144)

From the definition (3.140) we see that

K0 ≥ 0. (3.145)
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Because of the transformation properties (3.22), the quantites K0, K2 and therefore
K2

0 − K2 are invariant under (3.141). In contrast to n = 2, for n > 2 not for all R with
the properties (3.23) there exists a matrix U such that (3.142) is fulfilled. However,
we can perform a transformation such that only diagonal generators contribute to K2:

K2 =

n∑

k=2

(Kk2−1)
2 . (3.146)

We obtain (in any basis)

K2 =
2A2

n

(
(n− 1)

n∑

j=1

(
ϕ†

jrϕjr

)2

− 2
n∑

j<k

(
ϕ†

jrϕjr

)(
ϕ†

krϕkr

))
. (3.147)

From this it follows

K2
0 − K2 =

n∑

j,k=1

(
ϕ†

jrϕjr

)
Mjk

(
ϕ†

krϕkr

)
, (3.148)

with

Mjk = 1 + 2A2

(
1

n
− δjk

)
. (3.149)

We have
trM = n+ 2A2(1 − n). (3.150)

This trace is zero for

A =

√
n

2(n− 1)
. (3.151)

A necessary condition for K2
0 − K2 ≥ 0 is thus given by

A ≤
√

n

2(n− 1)
. (3.152)

Setting

A ≡
√

n

2(n− 1)
, (3.153)

for n ≥ 2 (such that A = 1 for n = 2) we find

K2
0 − K2 =

(
1 +

1

n

) n∑

j 6=k

(
ϕ†

jrϕjr

)(
ϕ†

krϕkr

)
≥ 0. (3.154)

Hence the “minimal” definition (3.153) of the normalisation factor is also sufficient to
obtain K2

0 − K2 ≥ 0. In the following we therefore apply (3.153) because the inequal-
ity K2

0 − K2 ≥ 0 is an important ingredient of our analysis of the scalar potential.
Then we have with (3.139)

tr(λ̂aλ̂b) =
n

n− 1
δab. (3.155)
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The general potential for n ≥ 2 can be written

V (ϕ1, . . . , ϕn) = V2 + V4, (3.156)

V2 = ξ0K0 + ξTK,

V4 = η00K
2
0 + 2K0η

TK +KaηabKb,

where a and b range from 1 to (n2 − 1). The number of real parameters is

P(n) =
n2 (n2 + 3)

2
. (3.157)

Notice that the number of parameters rises rapidly, e.g. from P(2) = 14 to P(3) = 54.
Under a transformation (3.141) the parameters of the potential transform according
to (3.25) for all n ≥ 2. Therefore we can diagonalise the matrix ηab by such a trans-
formation. Then the potential is specified by

P̂(n) = 3n2 − 1 (3.158)

parameters. We have e.g. P̂(2) = 11 and P̂(3) = 26. Now it is straightforward to
extend the arguments of Sections 3.2 and 3.3 to the case n > 2 by consistently let all
vector and matrix indices run from 1 to n. Also regarding the symmetry-breaking
pattern we find that for ξ0 ≥ |ξ| the absolute minimum of V is at K0 = 0 such that
no symmetry is spontaneously broken. In the case ξ0 < |ξ| the full gauge group or a
subgroup is broken.

3.8 Outlook

Let us now give a brief outlook regarding the topic of this chapter. The conditions
for the stability of the Higgs potential and for EWSB are comparatively compact
when the potential is written down in terms of the field bilinears (3.140) with a
normalisation factor as in (3.153). Furthermore, in contrast to many examples in
the literature, they hold for the most general potential with n Higgs doublets where
n ≥ 2.

A very interesting aspect of the phenomenology of such models are sum rules
for the Higgs-boson couplings. Since the component fields of a scalar multiplet in
general have to be transformed by unitary or orthogonal transformations to obtain
the mass eigenstates, the couplings of these states are not arbitrary. Rather there
are restrictions arising from the fact that the transformation matrices are unitary
or orthogonal. Such sum rules are for instance given in [126] for the CP violating
THDM. There also the implications of these sum rules for Higgs-boson searches at
a future LC and the impact of an extra Higgs singlet on the sum rules are studied.
A sum rule for Higgs boson masses in more general models is derived in [127]. From
unitarity constraints of scattering amplitudes the authors of [128] have calculated sum
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rules for Higgs-boson couplings. Unitarity constraints of partial-wave amplitudes lead
to various sum rules for general representations under the electroweak gauge group
as derived in [129].

Further, apart from the experimentally negligible θ-angle, the only CP violating
parameter in the SM, the Jarlskog invariant [130], is measured to be less than 10−4,
see e.g. Section 11 of [2]. Extended scalar sectors can lead to additional explicit or to
spontaneous CP violation [131], for an introduction and a review see also [132]. For
a concise treatment the interplay between the Higgs potential and the Yukawa terms
has to be studied, see e.g. Chapter 22 of [132].

We also remark that in a more detailed study quantum corrections to the Higgs
potential in a Multi-Higgs-Doublet Model should be taken into account. For the
resulting effective Higgs potential the conditions for stability and symmetry breaking
are then in general modified. Some aspects of radiative corrections for the Higgs
potential in constrained n-Higgs-doublet models are discussed in [133]. A careful
study of these effects as well as a detailed analysis of the phenomenology of Multi-
Higgs-Doublet Models require substantial work on their own and are beyond the scope
of this thesis.
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Chapter 4

Optimal observables

To compute the maximum sensitivity of the normalised event distribution to a set of
parameters in a given process optimal observables are a useful tool. In Section 4.1
we give the definition of optimal observables and explain their properties in case
of a linear approximation in the parameters. Some difficulties can arise using this
method if the final state of the reaction cannot be determined without ambiguities.
The general formulae of how optimal observables behave under a transformation of
the phase-space variables that describe the final state are provided in Section 4.2. It
is then explained how to handle final-state ambiguities. With optimal observables
the errors on the extracted parameters are in general correlated. Moreover, in some
reactions the errors may differ by several orders of magnitudes. For these reasons
one may search for a more suitable parameterisation. In Section 4.3 it is shown how,
by a linear but not orthogonal transformation of the old parameters, a complete set
of new parameters is obtained where the errors are uncorrelated and the parame-
ters are appropriately normalised. This transformation is defined in the following
way: one diagonalises the covariance matrix of the original observables and simulta-
neously transforms the part of the integrated cross section that is quadratic in the
anomalous couplings into the unit matrix. In the new parameterisation one can still
use optimal observables to minimise the statistical errors. Finally, in Section 4.4 we
rather extensively discuss how the simultaneous diagonalisation can be implemented
numerically. We will apply this method in Chapter 5 for the analysis of the sensi-
tivity in the process e+e− →WW to anomalous TGCs at a future LC. There the
optimal-observable technique turns out to be particularly useful when studying the
advantages of longitudinal and transverse beam polarisation.

4.1 Definition

In an experiment one measures the differential cross section

S(φ) = dσ/dφ, (4.1)
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where φ denotes the set of all measured phase space variables, e.g. the five angles that
are needed to describe the final state of the process e+e− →WW without transverse
beam polarisation or the final state of γγ → WW with fixed photon energies. We
distinguish between the information from the total cross section σ =

∫
dσ and from

the normalised distribution S/σ of the events. We first investigate how well anoma-
lous TGCs can be extracted from the latter, and then, at the end of Section 4.3
use σ to get constraints on those directions in the space of couplings to which the
normalised distribution is not sensitive. Although it might be convenient to have a
specific example in mind, the considerations in this chapter are, of course, not re-
stricted to anomalous TGCs. The optimal-observable method can be used to any
reaction where the differential cross section S(φ) depends on a certain number of
small parameters, which we generically denote by hi in this chapter and which shall
parameterise deviations from the SM cross section. Furthermore, the method can be
generalised to the case where the parameters to extract are not necessarily small [41].

Expanding S in the anomalous couplings one can write

S(φ) = S0(φ) +
∑

i

S1i(φ)hi +
∑

ij

S2ij(φ)hihj + O(h3), (4.2)

where S0(φ) is the tree-level cross section in the SM. In this section we assume that
the final state can be fully reconstructed. Note that for our analysis of e+e− → WW
in Chapter 5 and of γγ → WW with fixed photon energies in [38] we, however, assume
that the jet charges cannot be identified, which results in a two-fold ambiguity. In
addition, if the photons obey a Compton spectrum another ambiguitiy arises due to
the reconstruction of the neutrino momentum in the final state. To take into account
these final-state ambiguities in the framework of optimal observables one can use the
procedure explained in Section 4.2.

One way to extract the anomalous couplings from the measured distribution (4.2)
is to look for a suitable set of observables Oi(φ) whose expectation values

E[Oi] =
1

σ

∫
dφSOi (4.3)

are sensitive to the dependence of S on the couplings hi. To first order in the anoma-
lous couplings we have

E[Oi] = E0[Oi] +
∑

j

cijhj +O(h2), (4.4)
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with

E0[Oi] =
1

σ0

∫
dφS0Oi , (4.5)

cij =
1

σ0

∫
dφOiS1j −

σ1j

σ2
0

∫
dφS0Oi , (4.6)

σ0 =

∫
dφS0 , (4.7)

σ1j =

∫
dφS1j . (4.8)

Here E0[Oi] is the expectation value for zero anomalous couplings, and cij gives the
sensitivity of E[Oi] to hj. Solving (4.4) for the set of the hj we get estimators for the
anomalous couplings, whose covariance matrix is given by

V (h) =
1

N
c−1V (O) (c−1)T, (4.9)

where we use matrix notation. Here N is the number of events, and

V (O)ij =
1

σ0

∫
dφS0OiOj − E0[Oi]E0[Oj] + O(h) (4.10)

is the covariance matrix of the observables, which we have expanded around its value
in the SM. As observables for the case where the final-state variables φ can be fully
reconstructed we choose

Oi =
S1i(φ)

S0(φ)
. (4.11)

From (4.6) and (4.10) one obtains for this specific choice of observables

V (O) = c +O(h), (4.12)

and therefore

V (h) =
1

N
c−1 +O(h). (4.13)

The observables (4.11) are “optimal” in the sense that for hi → 0 the errors (4.13) on
the couplings are as small as they can be for a given probability distribution, see [40].
For details on this so-called Rao-Cramér-Fréchet bound, see e.g. [134]. Apart from
being useful for actual experimental analyses, the observables (4.11) thus provide
insight into the sensitivity that is at best attainable by any method, given a certain
process and specified experimental conditions. In case of one parameter this type
of observable was first proposed in [39], the generalisation to several parameters was
made in [40]. Moreover, it has been shown that optimal observables are unique
up to a linear reparameterisation [41]. We further note that phase-space cuts, as
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well as detector efficiency and acceptance have no influence on the observables being
“optimal” in the above sense, since their effects drop out in the ratio (4.11). This is
not the case for detector-resolution effects, but the observables (4.11) are still close
to optimal if such effects do not significantly distort the differential distributions S1i

and S0 (or tend to cancel in their ratio). To the extent that they are taken into account
in the data analysis, none of these experimental effects will bias the estimators.

In the present work we use the method of optimal observables in the linear approx-
imation valid for small anomalous couplings. But we emphasise that the method has
been extended to the fully non-linear case where one makes no a priori assumptions
on the size of anomalous couplings in [41].

Given the projected accuracy at a future LC, it will in general be necessary to
take into account radiative corrections to the process e−e+ → f1f2f3f4 within the
SM, which have been worked out in detail in the literature [135]. One possibility to
include them in searches for non-standard TGCs would be to “deconvolute” these
corrections. For this write the one-loop corrected differential cross section in the SM
as

SSM, corr(φ) =

∫
dφ′ S0(φ

′)F (φ′, φ), (4.14)

where S0 is the tree-level expression, and the integral kernel can e.g. be obtained
from an event generator by generating events according to both SSM, corr and S0.
Approximating the true physical cross section as

Sphys(φ) =

∫
dφ′ S(φ′)F (φ′, φ), (4.15)

with S given as in (4.2), one could invert this convolution bin by bin, and then extract
the couplings hi from the deconvoluted Born-level cross section S as described before.
The error made in (4.15) is that the SM radiative corrections encoded in F do of course
not apply to the anomalous part (S − S0) of the cross section, but this error is of order
hi times the weak coupling constant αw. Should effects beyond the SM be found in
such an analysis, one would in a second step have to consider more sophisticated
methods to quantitatively disentangle them from SM radiative corrections.

4.2 Ambiguities of the final state

In principle there are plenty of possibilities to parameterise a final state in a differential
cross section uniquely, e.g. the usage of angles or Cartesian coordinates, different
choices of reference frames etc. In an experiment one may either be able to specify
a final state uniquely or only with certain ambiguities, i.e. for each event one either
knows from the measured coordinates uniquely which final state it is or one only knows
that it belongs to a group of two or more final states. One example is the two-fold
ambiguity of the semileptonic final states in e+e− →WW or in γγ →WW with fixed
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c.m. energy of the two-photon system. Here one usually assumes that the two hadronic
jets cannot be associated unambiguously to the quark and antiquark. Another more
involved one is the reaction γγ →WW where the photons each obey a Compton
spectrum. Here, in addition to the ambiguitiy above, another two-fold one arises
from the reconstruction of the neutrino momentum. This case is considered in [38].
The optimal observables (4.11) are the right choice in case of unique reconstruction.
However, in case of ambiguities the definition (4.11) must be carefully refined. We
now show how the optimal observables behave under change of final-state phase-space
variables and how this definition must be modified in the presence of ambiguities.

We start from a particular set of phase-space variables χ that specify the final
state uniquely. The differential cross section in terms of these variables we denote
by S(χ). The cross section for another choice of variables ξ is then given by

T (ξ) =

∫
dχ δ(F (χ) − ξ)S(χ). (4.16)

The function F may take the same value for different χ, i.e. for a given ξ there may
be several solutions χk with k = 1, 2, . . . to the equation

F (χk) = ξ. (4.17)

In general, the number of solutions to (4.17) may vary with ξ. If ξ are the coordinates
that can be measured of an event χ, the set of final states χk consists of χ itself as
well as all final states that cannot be distinguished from χ. From (4.16) we have

T (ξ) =
∑

k

|Jk|−1S(χk(ξ)) (4.18)

where

Jk ≡ det
∂F

∂χ
(χk(ξ)) (4.19)

is the Jacobian determinant taken at point χk. If F is invertible, there is only one
term in the sum for all ξ and (4.18) simplifies to

T (ξ) =

∣∣∣∣
∂F

∂χ

(
F−1(ξ)

)∣∣∣∣
−1

S
(
F−1(ξ)

)
. (4.20)

We expand the differential cross section:

S(χ) = S0(χ) +
∑

i

S1i(χ)hi + O(h2). (4.21)

It follows
T (ξ) = T0(ξ) +

∑

i

T1i(ξ)hi + O(h2), (4.22)
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where

T0(ξ) =
∑

k

|Jk|−1S0(χk(ξ)), (4.23)

T1i(ξ) =
∑

k

|Jk|−1S1i(χk(ξ)). (4.24)

Note, again, that the number of terms in the sums (4.23) and (4.24) can vary with ξ.
If ξ—but not necessarily χ—are coordinates that can be uniquely measured we define
optimal observables from the expansion of T (ξ):

Oi(ξ) =
T1i(ξ)

T0(ξ)
. (4.25)

In the specific case where F is invertible this is a mere change of coordinates and we
obtain the same observables as in (4.11) but expressed in terms of the new variables:

Oi(ξ) =
S1i (F

−1(ξ))

S0 (F−1(ξ))
. (4.26)

However, (4.26) only holds if all final states can be uniquely reconstructed. If there
are ambiguities in the reconstruction but if we have the same Jacobian J ≡ Jk for all k
(which may nevertheless depend on ξ), J cancels in the numerator and denominator
of the observables (4.25):

Oi(ξ) =

∑
k S1i (χk(ξ))∑
k S0 (χk(ξ))

. (4.27)

If this is not the case we must use the general expressions (4.23) to (4.25).
The covariance matrix of the observables (4.25) is now

V (O)ij =
1

σ0

∫

A

dξ T0OiOj −
σ1iσ1j

σ2
0

+ O(h), (4.28)

where

σ0 :=

∫

A

dξ T0(ξ) =

∫

B

dχ S0(χ), (4.29)

σ1i :=

∫

A

dξ T1i(ξ) =

∫

B

dχ S1i(χ), (4.30)

and the full kinematically allowed integration regions in the coordinates ξ and χ are
denoted by A and B, respectively. The two integrals σ0 and σi can be performed in
either coordinates. Using χ no knowledge about ambiguities in the reconstruction is
necessary. The first term in the expression of V (O) needs special care. We divide the
integration region A into parts An with n = 1, 2, . . ., such that for ξ ∈ An there are n
solutions χk to (4.17). The domains of B corresponding to the An we denote by Bn,
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Figure 4.1: Definition of integration areas.

see Figure 4.1. We subdivide Bn into n appropriate regions Bnk with k = 1, 2, . . . , n,
such that χk ∈ Bnk. Note that this subdivision is certainly not unique. We have

∫

A

dξ T0(ξ)Oi(ξ)Oj(ξ) =

∫

A

dξ
T1i(ξ)T1j(ξ)

T0(ξ)
=
∑

n≥1

∫

An

dξ
T1i(ξ)T1j(ξ)

T0(ξ)

=

∫

B1

dχ
S1i(χ)S1j(χ)

S0(χ)
+
∑

n≥2

∫

Bnpn

dχ |J(χ)|T1i (F (χ))T1j (F (χ))

T0 (F (χ))
(4.31)

=

∫

B1

dχ
S1i(χ)S1j(χ)

S0(χ)
+
∑

n≥2

1

n

∫

Bn

dχ |J(χ)|T1i (F (χ))T1j (F (χ))

T0 (F (χ))
, (4.32)

where

T0 (F (χ)) =
n∑

k

|J (χk(F (χ)))|−1 S0 (χk(F (χ))) , (4.33)

T1i (F (χ)) =

n∑

k

|J (χk(F (χ)))|−1 S1i (χk(F (χ))) (4.34)

with J(χ) = det ∂F/∂χ. In (4.31) one can choose for each n a number pn with
1 ≤ pn ≤ n. One of the values χk(F (χ)) is, of course, identical to χ. This integral
may be calculated either in the form (4.31) or (4.32). Notice that the form (4.32) has
the advantage that one only has to know where in the integration region for χ there
are how many solutions, but one does not have to specify Bn1, Bn2, etc. In certain
cases the integrals for n ≥ 2 in (4.31) or (4.32) may be simplified. E.g. let A′

n with
n ≥ 2 be the part of An where the Jacobians J(χk(ξ)) are the same for all k. The
Jacobian in this region may nevertheless depend on ξ. The region of An where they
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are not the same for all k we call A′′
n. The corresponding regions of Bn are denoted

by B′
n and B′′

n. We write the integrals in (4.32) as

∫

Bn

dχ =

∫

B′

n

dχ+

∫

B′′

n

dχ. (4.35)

Then, in the integrals over B ′
n the Jacobian cancels and we obtain the following

expression for the integral in the covariance matrix (4.28):

∫

A

dξ T0OiOj =

∫

B1

dχ
S1i(χ)S1j(χ)

S0(χ)
(4.36)

+
∑

n≥2

1

n

∫

B′

n

dχ

∑n
k S1i (χk(F (χ)))

∑n
l S1j (χl(F (χ)))∑n

m S0 (χm(F (χ)))

+
∑

n≥2

1

n

∫

B′′

n

dχ |J(χ)|T1i (F (χ))T1j (F (χ))

T0 (F (χ))

with T0(F (χ)) and T1i(F (χ)) as in (4.33) and (4.34), respectively.

4.3 Simultaneous diagonalisation

Although the observables (4.11) and (4.25) minimise the statistical errors in the limit
of small anomalous couplings there is no particular restriction on their correlations.
For a large number of couplings with high correlations it is often difficult to get a
feeling for the sensitivity of the measurement to these couplings. In particular, if
there is a parameter that one can vary freely in the experiment as e.g. the polarisa-
tion parameter P defined in Section 5.4 one needs to know for which setting of the
parameter which coupling can be determined best. In the case of the TGCs in our
form-factor approach, see Chapter 5 below, we have 28 real parameters. Although
discrete symmetry properties reduce the 28×28 matrices V (h), c, etc. to blocks of
8×8 and 6×6 matrices as shown in Section 5.3, these blocks still contain many non-
negligible off-diagonal entries. To make explicit how sensitive the process is to each
direction in the space of couplings and to identify the role of polarisation we need
to know directions and lengths of the principal axes of the error ellipsoid defined
by (4.9), i.e. we have to know the eigenvalues and eigenvectors of V (h). Using opti-
mal observables, to leading order in the hi, the three matrices V (h), c and V (O) are
automatically diagonalised simultaneously due to (4.12) and (4.13). This means that
after such a transformation each observable is sensitive to exactly one coupling, and
the observables as well as the estimators of the couplings are statistically indepen-
dent. Since V (h) is symmetric the diagonalisation could be achieved by an orthogonal
transformation. Following the proposal of [41] we take however a different choice and
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transform simultaneously V (h) into diagonal form and the normalised second-order
part of the total cross section into the unit matrix:

σ̂2ij ≡
1

σ0

∫
dφS2ij → δij . (4.37)

This can always be done since σ̂2 is symmetric and positive definite. We therefore
arrive at the following prescription for the transformation of the couplings (using
vector and matrix notation):

h → h′ = A−1h, (4.38)

V (h)−1 → V (h′)−1 = ATV (h)−1A = diag
(
(δh′1)

−2, (δh′2)
−2, . . . , (δh′28)

−2
)
, (4.39)

σ̂2 → σ̂′
2 = AT σ̂2 A = � , (4.40)

where δh′i are the one-sigma errors on the new couplings. This transformation exists
and is unique up to permutations and a sign ambiguity for each h′

i. Note that the ma-
trix A is in general not orthogonal. From (4.2), (4.11) and (4.38) the transformation
of all other quantities follows as

S1 → S′

1
= AT S1,

O → O
′ = AT

O,

c → c′ = AT cA,

V (O) → V (O′) = ATV (O)A. (4.41)

The meaning of (4.40) is that all quadratic terms contribute to the total cross section
with equal strength:

σ = σ0

(
1 +

8∑

i=1

σ̂′
1ih

′
i +

28∑

i=1

(h′i)
2

)
, (4.42)

where σ̂′
1i = σ−1

0

∫
dφS ′

1i. Thus the anomalous couplings do not mix in σ and are
“naturally” normalised for the process which we consider. This is not true in the
conventional basis, where changing different anomalous couplings by the same amount
has completely different effects on the total cross section (see Figure 5.6 in Section 5.2
below).

Moreover, the particularly simple form (4.42) of σ easily allows one to use the
information from the total rate: it constrains the couplings to lie between two hyper-
spheres in the space of the h′i, whose difference in radius depends on the measurement
error on σ. Making in addition use of the sign ambiguity in (4.38), one can for all
σ̂′

1i 6= 0 choose the sign of h′i such that σ̂′
1i > 0. This choice is however not relevant

for the analysis.
We finally note that the presented method of simultaneous diagonalisation is quite

similar to the way one analyses the normal modes of a multi-dimensional harmonic
oscillator in classical mechanics [136]. There the harmonic potential (corresponding
to V ) is diagonalised with respect to the scalar product defined by the kinetic energy
(corresponding to σ̂2).
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4.4 Numerical realisation

We now give some details of how the simultaneous diagonalisation can be carried out
numerically. Although the procedure finally aims at the disentanglement of the cou-
plings as achieved in (4.39), the numerical computation of V (h) or V (h)−1 from (4.9)
needs the inverse of the matrix c or V (O) and might therefore be unstable, because
before the diagonalisation one cannot single out those directions in parameter space
where the errors are large. However, as V (h′) and V (O′) are simultaneously diagonal
for our observables, we can according to (4.12) equally well compute the diagonal
entries of

V (O′) = c′ = diag(c′1, c
′
2, . . . , c

′
28), (4.43)

and extract the errors on the couplings using (4.13):

δh′i =
1√
Nc′i

. (4.44)

Hence, using the shorthand notation V = V (O) and V ′ = V (O′), we have to solve
the n2 + n equations

AT σ̂2A = � ,
ATV A = V ′ (4.45)

for the n2 entries of A and the n diagonal elements of V ′. Since the multiplication
of S(φ) of (4.2) by a constant changes neither the observables (4.11) nor V nor σ̂2,
the matrices A and V ′ only depend on the normalised distribution of the events but
not on the total rate N . The latter enters the errors on the transformed couplings
only through the statistical factor N−1/2 in (4.44). From (4.45) it follows that

V A = σ̂2 AV
′. (4.46)

This is a generalised eigenvalue problem, with the c′i being the generalised eigenvalues
and the columns of A being the generalised eigenvectors. The pair (V ′, A) is called
the “eigensystem” of (4.45). A standard method for solving (4.46) is to first perform
a Cholesky decomposition [137, 138]

σ̂2 = MMT, (4.47)

where M is a lower triangular matrix, i.e. Mij = 0 for j > i. Algorithms for the
computation of M can be found in the same references. Then (4.46) is equivalent to

CX = XV ′, (4.48)

where

C = M−1V (M−1)T, (4.49)

X = MTA. (4.50)
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Equation (4.48) denotes a (usual) eigenvalue problem for the matrix C, whose eigen-
values are the same as the original ones and whose eigenvectors are the columns of X.
Since C is symmetric, (4.48) can be solved and the eigenvectors are orthogonal with
respect to the standard scalar product (assuming non-degeneracy of the eigenvalues).
Requiring the eigenvectors to be normalised to 1, we have n conditions

XTX = � , (4.51)

which together with the n2 equations (4.48) are equivalent to (4.45). The generalised
eigenvectors are obtained by solving (4.50) for A. For a certain high-energy reaction
the procedure has to be followed for each initial-state polarisation and c.m. energy
separately, leading in general to different eigenvalues and transformation matrices;
the dependence of those quantities on polarisation for the process e+e− →WW is
investigated in Section 5.4. For our numerical results we use the procedure itera-
tively for each polarisation setting, i.e. once A is obtained, we compute V and σ̂2

for the transformed observables and couplings, and then diagonalise these—already
approximately diagonal—matrices again. We found this to be essential to assure the
numerical stability of the results. A stable value was reached in most cases by the
second evaluation and at the latest by the fourth. In all cases at least five evaluation
steps were carried out. The numbers presented in Section 5.6 were obtained by aver-
aging over the results of several subsequent steps where the stable value had already
been reached.

We note that for situations where σ̂2 and V have the same block diagonal structure,
the diagonalisation can of course be carried out for each block separately. This is
relevant in the presence of discrete symmetries and is further studied in Section 5.3.
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Chapter 5

Anomalous triple-gauge-boson

couplings

In this chapter we study the process e+e− →WW → 4 fermions at a future LC in
the FF approach for the γWW and ZWW couplings. We use the Feynman rules
of the SM where the γWW and ZWW vertices are replaced by the most general
vertices that are consistent with Lorentz invariance. For these vertices we use the
parameterisation of [33] which we give in Section 5.1. Gauge-boson couplings can e.g.
be studied at the LHC [139]. Given the intricacies of a multi-dimensional parameter
space, the full covariance matrix for the errors on the couplings should best be studied.
The high statistics needed for this will for instance be available at TESLA, where the
integrated luminosity is projected to be several hundred fb−1 per year at a c.m. energy√
s = 500 GeV. For unpolarised beams an integrated luminosity of 500 fb−1 amounts

to about 3.7 million produced W pairs (without cuts). For a run at
√
s = 800 GeV

the luminosity is expected to be twice as high, leading to 3.9 million W pairs. In
Section 5.2 we calculate the helicity amplitudes and the differential cross section for
W -pair production with anomalous couplings for generic polarisation. In order to
determine the sensitivity of the differential cross section to the anomalous couplings
we use the optimal-observable technique explained in Chapter 4. To simplify this
analysis one can use the discrete-symmetry properties of the cross section, which is
surveyed in Section 5.3. Regarding the large number of parameters to describe the
three-gauge-boson vertices the simultanous diagonalisation explained in Section 4.3
is necessary to get insight into the sensitivity to different directions in parameter
space. The usefulness of the method becomes particularly evident when considering
imaginary parts of CP conserving TGCs. In this subspace of couplings we find
one direction to which—in the linear approximation and for longitudinally polarised
beams—there is no sensitivity in the process e+e− →WW . In [41] this was not taken
into account and led to numerical instabilities. It is therefore essential to disentangle
this measurable TGCs from the hardly measurable one. As a historical motivation one
may think of the electromagnetic nucleon-form-factors F1 and F2, where the choice of
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linear combinations GE and GM leads to a simplification of the Rosenbluth formula
for the differential cross section of electron-nucleon scattering, see e.g. [140]. Since
we deal with 28 couplings here, an appropriate choice of parameters is essential.

For various measurements at a future LC, longitudinal polarisation of one or both
beams is expected to significantly improve the sensitivity, see for instance [27]. Po-
larised beams will be particularly useful to disentangle different TGCs. In fact, certain
directions in the parameter space, the so-called right-handed couplings, are difficult to
measure in W -pair production with unpolarised beams [40]. In this case their effects
are masked by the large contribution from the neutrino exchange. With longitudi-
nal polarisation the strength of the neutrino-exchange contribution can in essence be
varied freely. In Section 5.4 a systematic analysis is performed of how the sensitivity
to different directions in coupling space depends on the degrees of longitudinal beam
polarisation. To this end a suitable polarisation parameter P is introduced. We
then give an analysis of hardly measurable couplings with longitudinal polarisation
in Section 5.5. In particular, we show analytically why the imaginary part of the
CP conserving coupling mentioned above is not measurable with longitudinal beams.
We then show that this TGC can be measured with transverse beam polarisation. In
Section 5.6 we present our numerical results for the sensitivity of e+e− →WW with
unpolarised beams and with longitudinal polarisation using optimal observables. At
present the physics case for transverse beam polarisation at a future LC is being
discussed [28, 29]. Once the planned degree of longitudinal polarisation is realised in
experiment, viz., about P−

l = ±80% for the electron and about P+
l = ±60% for the

positron beam, the same degrees of transverse polarisation P±
t are considered to be

feasible. A precise definition of these parameters is given in Section 5.2. Then the im-
portant question arises of how to distribute the available total luminosity among the
different beam-polarisation modes. Thus, the physics cases for the various modes must
be compared. In Section 5.7 we do this for the TGCs in our form-factor approach.
We determine the gain or loss in sensitivity to all 28 TGCs using transverse instead
of longitudinal beam polarisation in the reaction e−e+ → W−W+ → 4 fermions. To
this end we again consider the full normalised event distribution. This part of our
work is complementary to [141], where the total cross section for different W -boson
helicities as well as the left-right and transverse asymmetries—both integrated and
as a function of the W -production angle—were calculated for the same reaction, in-
cluding order-α corrections and bremsstrahlung. The sensitivity of the cross section
and of various angular distributions in the final state was investigated in an early
study of polarisation for LEP2 [142]. Only a restricted number of CP conserving
form factors without imaginary parts was considered in these works. Here, in con-
trast, we determine the maximum sensitivity to the full set of parameters by means
of optimal observables. The differential cross section for arbitrary polarisation can be
written as a sum where the first term depends on P±

l and the second is proportional
to the product (P−

t · P+
t ), see Section 5.2 below. Hence, there can be only effects

of transverse polarisation if both beams are polarised and if both the electron- and
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the positron-spin-vectors have a transverse component. In this work we consider only
longitudinal or transverse polarisation, but no hybrid, though it is in general not
excluded that the sensitivity of the differential cross section to some parameters can
improve by considering more generic directions of the electron- and positron-spin-
vectors. Furthermore, in Section 5.7 we quantify the statement of Section 5.5 that
the coupling Im(gR

1 + κR) is measurable with transverse polarisation.
In our analysis we always restrict ourselves to the semileptonic decays of the

W pair, where one W boson decays into a quark-antiquark pair and the other decays
leptonically, but leave aside the decay into τντ since these events have a completely
different experimental signature. The selected channels have a branching ratio of
altogether 8/27, which is six times larger than that of both W s decaying into eνe

or µνµ. On the other hand, the channels where both W s decay hadronically are
difficult to reconstruct [143]. The semileptonic channels have only one ambiguity in
the kinematical reconstruction if the charges of the two jets from the hadronically
decaying W are not tagged. Then one cannot associate the jets to the up- and down-
type (anti)quark of the W decay, and therefore has access only to the sum of the
distributions corresponding to the two final states, cf. Section 4.2.

5.1 Parameterisation

In the FF approach all propagators and vertices apart from the γWW and ZWW ver-
tices are as in the SM. This means that all relations between SM quantities, in par-
ticular those involving the gauge-boson masses and the weak mixing angle θw, of
Sections 2.1 and 2.2 remain valid here. We now define our parameterisation of the
most general γWW and ZWW vertices consistent with Lorentz invariance and Her-
miticity. In general these form-factors have imaginary parts. One can nevertheless
start from an effective Lagrangian with operators of dimension four or higher added
to the SM Lagrangian after EWSB. Naturally the coupling parameters are real in a
Lagrangian. To obtain the complex form-factors one can then in the Feynman rules
derived from that Lagrangian allow these parameters to be complex. A common
parameterisation following this approach is the one of Hagiwara, Peccei, Zeppenfeld
and Hikasa [33]. There the operators of the lowest possible dimension are chosen that
exhaust all possible Lorentz structures of the γWW and ZWW vertices. The TGCs
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part of their Lagrangian is

L HPZH
V WW

igV WW

= gV
1 (W+

µνW
−µ −W−

µνW
+µ)V ν + κVW

+
µ W

−
ν V

µν (5.1)

+
λV

m2
W

W+
λµW

−µ
νV

νλ + igV
4 W

+
µ W

−
ν (∂µV ν + ∂νV µ)

− igV
5 ε

µνρσ
(
W+

µ (∂ρW
−
ν ) −W−

ν (∂ρW
+
µ )
)
Vσ

+ κ̃VW
+
µ W

−
ν Ṽ

µν +
λ̃V

m2
W

W+
λµW

−µ
νṼ

νλ

with V = γ or Z. The following abbreviations are used in (5.1):

W±
µν = ∂µW

±
ν − ∂νW

±
µ , (5.2)

Vµν = ∂µVν − ∂νVµ, (5.3)

Ṽµν =
1

2
εµνρσV

ρσ. (5.4)

The sign of the totally antisymmetric tensor is

ε0123 = +1. (5.5)

The overall constants for the photon and Z vertices are defined as follows:

gγWW = −e, gZWW = −e cot θw, (5.6)

where e is the positron charge. Then we have in the SM

gV
1 = 1, κV = 1, (5.7)

and all other couplings equal to zero. We use the conventional notation ∆gV
1 = gV

1 − 1
and ∆κV = κV − 1. Furthermore in (5.1) mW is the W -boson mass in the SM and
in (5.6) θw is the weak mixing angle of the SM, given in terms of the gauge-boson
masses in (2.35). The Lagrangian (5.1) contains operators of dimension four and six.
Factors of i have been adjusted such that L HPZH

V WW is Hermitian for real couplings. We
nevertheless allow the 14 parameters to be complex in Feynman rules.

5.2 Cross section for e+e−
→ WW

First we briefly recall the differential cross section of the process

e−e+ −→W−W+ −→ (f1f 2)(f3f 4) (5.8)

for arbitrary initial-beam polarisations, where the final-state fermions are leptons or
quarks. Our notation for particle momenta and helicities is shown in Figure 5.1.
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Figure 5.1: Momenta and helicities of the particles in the e+e−-c.m. frame.

Our coordinate axes are chosen such that the e− momentum points in the positive
z-direction and the y-unit vector is given by êy = (k × q)/|k× q|.

In the e+e−-c.m. frame and at a given c.m. energy
√
s, a pure initial state of

longitudinally polarised e− and e+ is uniquely specified by the e− and e+ helicities:

|ττ 〉 = |e−(k, τ)e+(k, τ)〉 (τ, τ = ±1). (5.9)

Note that fermion-helicity indices are normalised to 1 throughout this work. A mixed
initial state of arbitrary polarisation is given by a spin-density matrix

ρ =
∑

(τ)

|ττ 〉ρ(ττ )(τ ′τ ′)〈τ ′τ ′|, (5.10)

where (τ) denotes summation over τ , τ , τ ′ and τ ′, and the matrix elements satisfy
ρ∗(ττ )(τ ′τ ′) = ρ(τ ′τ ′)(ττ ) and

∑
τ,τ ρ(ττ)(ττ ) = 1. We define the cross-section operator

dσ =
∑

(τ)

|τ ′τ ′〉dσ(τ ′τ ′)(ττ )〈ττ | (5.11)

by requiring the differential cross section for arbitrary ρ to be

dσ|ρ = tr(dσρ) =
∑

(τ)

dσ(τ ′τ ′)(ττ ) ρ(ττ)(τ ′τ ′). (5.12)

The matrix dσ(τ ′τ ′)(ττ ) is given by

dσ(τ ′τ ′)(ττ ) =
1

2s

∫
dΓ 〈f |T |ττ 〉 〈f |T |τ ′τ ′〉∗, (5.13)
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where we neglect the electron mass in the flux factor. Here T is the transition
operator, |f〉 = |f1 (p1, τ1) f2 (p2, τ2) f3 (p3, τ3) f4 (p4, τ4)〉 the final state and

dΓ =

(
4∏

i=1

d3pi

(2π)32p0
i

)
(2π)4δ(4)(k + k −

∑

i

pi) (5.14)

the usual phase-space measure for final states. Using the narrow-width approximation
for the W s the result is

dσ(τ ′τ ′)(ττ ) = R
∑

(λ)

dP(λλ)(λ′λ′)
(τ ′τ ′)(ττ ) dDλ′λ dDλ′λ , (5.15)

R =
β

218π6(mW ΓW )2s
. (5.16)

Here mW is the W -boson mass, ΓW its width and β =
√

1 − 4m2
W/s its velocity in

the e+e− c.m. frame. The sum (λ) runs over λ, λ′, λ and λ′. Furthermore

dP(λλ)(λ′λ′)
(τ ′τ ′)(ττ ) = d(cosΘ) dΦ 〈λλ,Θ|T |ττ 〉 〈λ′λ′,Θ|T |τ ′τ ′〉∗ (5.17)

is the differential production tensor for the W pair and

dDλ′λ = d(cosϑ) dϕ 〈f1f2|T |λ〉 〈f1f2|T |λ′〉∗,
dDλ′λ = d(cosϑ) dϕ 〈f3f4|T |λ〉 〈f3f4|T |λ′〉∗ (5.18)

are the tensors of the W− and W+ decays in their respective c.m. frames. Note
that in the narrow-width approximation the intermediate W s are treated as on-shell.
We define the W helicity states which occur on the right hand side of (5.17) in the
frame of Figure 5.1, i.e. we choose the e−e+ →W−W+ scattering plane as the x-z-
plane and define Θ to be the polar angle between the W− and e− momenta. We
choose a fixed direction transverse to the beams in the laboratory. By Φ we denote
the azimuthal angle between this fixed direction and the e−e+ → W−W+ scattering
plane, see Figure 5.2(a). The respective frames for the decay tensors (5.18) are
defined by a rotation by Θ about the y-axis of the frame in Figure 5.1 (such that
the W− momentum points in the positive z-direction) and a subsequent rotation-free
boost into the c.m. system of the corresponding W . The spherical coordinates are
those of the f1- and f4-momentum directions, respectively. In its rest frame, the
quantum state of a W boson is determined by its polarisation. For real W s we take
as basis the eigenstates of the spin operator Sz with the three eigenvalues λ = ±1, 0.
For off-shell W s a fourth, scalar polarisation occurs but is suppressed by mf/mW in
the decay amplitude.

Neglecting the electron mass we have in the SM

dσ(τ ′τ ′)(ττ ) = 0 for τ = τ or τ ′ = τ ′, (5.19)
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Figure 5.2: Definition of azimuthal angles.

which we will use in the following (this point is further discussed in Section 5.3). At
a linear collider the initial beams are uncorrelated so that their spin-density matrix
factorises, i.e.

ρ(ττ )(τ ′τ ′) = ρττ ′ρ τ τ ′ , (5.20)

where ρττ ′ and ρτ τ ′ are the two Hermitian and normalised spin-density matrices of
e− and e+, respectively. We parameterise these matrices by

ρττ ′ =
1

2

(
� + ~p − · ~σ

)
ττ ′

, ρ τ τ ′ =
1

2

(
� − ~p + · ~σ ∗

)
τ τ ′

, (5.21)

with

~p ± = P±
t




cosϕ±

sinϕ±

0


+ P±

l




0
0
∓1


 , (5.22)

where 0 ≤ ϕ± < 2π, and the vector components of ~σ are the Pauli matrices. The
degrees P±

t of transverse and P±
l of longitudinal polarisation obey the relations

(P±
t )2 + (P±

l )2 ≤ 1 and P±
t ≥ 0. The components of ~p ± in (5.22) refer to the frame

of Figure 5.1. Note that choosing the same reference frame for ~p − and ~p + while
specifying each spinor in its respective helicity basis results in different forms of the
density matrices in (5.21). The relative azimuthal angle ψ = ϕ− − ϕ+ between ~p −

and ~p + is fixed by the experimental conditions, whereas the azimuthal angle ϕ− of
~p− in the system of Figure 5.1 depends on the final state, see Figure 5.2(b). For the
case where P−

t 6= 0 we choose the transverse part of the vector ~p − as fixed direction
in the laboratory. Then we have Φ = −ϕ−. Using (5.12) and (5.19) to (5.22), we
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Figure 5.3: Feynman diagrams for the process e−e+ → W−W+ with anomalous TGCs
in the FF approach.

obtain the differential cross section for arbitrary polarisation:

dσ|ρ =
1

4

{
(1 + P−

l )(1 − P+
l ) dσ(+−)(+−)

+ (1 − P−
l )(1 + P+

l ) dσ(−+)(−+)

− 2P−
t P

+
t

[
Re dσ(+−)(−+) cos (ψ + 2Φ)

+ Im dσ(+−)(−+) sin (ψ + 2Φ)
]}
. (5.23)

In the absence of transverse polarisation, (5.23) is independent of Φ due to rotational
invariance.

In our analysis we evaluate the matrix elements in (5.17) at tree-level in the SM,
replacing the γWW and ZWW vertices after EWSB by their most general forms
allowed by Lorentz invariance. The corresponding Feynman diagrams are shown in
Figure 5.3. New physics may also lead to deviations from the SM values at the
fermion-boson vertices [144]. For these vertices we however retain the SM expressions
in this chapter. We remark that there are scenarios of physics beyond the SM where
such a treatment is not adequate, since the process e−e+ → W−W+ can receive non-
standard contributions that cannot be expressed in terms of anomalous fermion-boson
or three-boson couplings (an example are box graph contributions in supersymmetric
theories [145, 93]). Such effects can still be parameterised within a more general form-
factor ansatz [146]. If they are important, an analysis in terms of only TGCs will
not give a correct picture of the underlying physics, but it will still correctly signal
a deviation from the SM. We finally recall that radiative corrections in the SM itself
can be included in the analysis procedure we develop here as explained at the end
of Section 4.1. However, in this chapter we are mainly interested in the pattern of
sensitivity to TGCs and its dependence on beam polarisation, and for this purpose
it should be sufficient to take the SM prediction at tree-level. In Chapter 6 below
where we use the ELb approach, cf. Section 2.5, also anomalous fermion-gauge-boson
and gauge-boson-Higgs couplings occur as well as anomalous contributions to the
gauge-boson masses.

88



For the three-boson vertices we use the parameterisation (5.1) introduced in [33]
with the coupling parameters gV

1 , κV , λV , gV
4 , gV

5 , κ̃V and λ̃V , where V = γ, Z. Al-
though introduced in terms of an effective Lagrangian we understand these parameters
as form-factors of the three-boson vertices, which depend on the boson virtualities
and can take complex values, and not as coupling constants in a Lagrangian, which
by definition are energy independent and real-valued. Thus the approach taken here
is different in two ways from that of Chapter 6 below where we consider an effective
Lagrangian (with real anomalous couplings), and moreover the additional operators
are added to the SM Lagrangian before EWSB.

Since the amplitudes where the electron and the positron have the same helicity
vanish in the SM in the limit me → 0, see (5.19), we can specify the initial state of a
(non-vanishing) helicity amplitude by giving the electron helicity τ . In the remainder
of this chapter we assume the positron to carry the opposite helicity unless otherwise
stated. For a given e−-beam helicity τ the process (5.8) is not sensitive to all couplings,
but only to the linear combinations gL

1 , κL, etc. for left-handed (τ = −1) and gR
1 , κR,

etc. for right-handed (τ = 1) electrons, where

gL
1 = 4 sin2 θw g

γ
1 + (2 − 4 sin2θw) z gZ

1 ,

gR
1 = 4 sin2 θw g

γ
1 − 4 sin2θw z g

Z
1 , (5.24)

and similarly for the other couplings [33, 40]. Here z = s/(s−m2
Z) denotes the ratio

of the Z and photon propagators. The parameterisation (5.24) will in the following
be called the L(eft)-R(ight)-basis.

The expressions of the helicity amplitudes for the reaction (5.8) can be found
in [33]. For convenience of the reader we rewrite the W−W+-production part in
terms of the L-R-basis. The matrix element of (5.17) is given by

〈λλ,Θ|T |ττ 〉 = −
√

2e2M(τ ;λ, λ; Θ) η dJ0

∆τ,∆λ(Θ), (5.25)

where η = ∆τ(−1)λ, ∆τ = 1
2
(τ − τ), ∆λ = λ− λ, and J0 = max(|∆τ |, |∆λ|). The

definition of the d-functions and our spinor conventions, as well as the SM-matrix
elements for the W decays in (5.18) are listed in Appendix B. The production am-
plitude M = MTGC + Mν consists of two terms given by

MTGC(τ ;λ, λ; Θ) = − β

4 sin2 θw
Aτ

λλ
, (5.26)

Mν(τ ;λ, λ; Θ) =
1

2 sin2 θwβ
δτ,−1

(
Bλλ − 1

1 + β2 − 2β cos Θ
Cλλ

)
. (5.27)

The expressions for Aτ
λλ

(which contains the left-handed couplings for τ = −1 and
the right-handed ones for τ = +1) and for Bλλ and Cλλ are listed in Table 5.1. In
the amplitude MTGC an off-shell photon or an off-shell Z boson is produced. The
component of its angular momentum along the beam axis is ±1 in the SM in the limit
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Table 5.1: Coefficients Aτ
λλ

, Bλλ and Cλλ of the matrix elements (5.26) and (5.27). The
indices of the couplings are a = L for τ = −1 and a = R for τ = +1. The relativistic
factors are defined by γ =

√
s/2mW and β = (1 − 4m2

W/s)
1/2.

(λλ) Aτ
λλ

Bλλ Cλλ

(+−), (−+) 0 0 2
√

2 β

(+0) γ [ga
1 + κa + λa − iga

4 + βga
5 + iβ−1(κ̃a − λ̃a)] 2γ 2(1 + β)/γ

(0−) γ [ga
1 + κa + λa + iga

4 + βga
5 − iβ−1(κ̃a − λ̃a)] 2γ 2(1 + β)/γ

(0+) γ [ga
1 + κa + λa + iga

4 − βga
5 + iβ−1(κ̃a − λ̃a)] 2γ 2(1 − β)/γ

(−0) γ [ga
1 + κa + λa − iga

4 − βga
5 − iβ−1(κ̃a − λ̃a)] 2γ 2(1 − β)/γ

(++) ga
1 + 2γ2λa + iβ−1κ̃a − i(β−1 + 2γ2β)λ̃a 1 1/γ2

(−−) ga
1 + 2γ2λa − iβ−1κ̃a + i(β−1 + 2γ2β)λ̃a 1 1/γ2

(00) ga
1 + 2γ2κa 2γ2 2/γ2

of vanishing electron mass, because the electron and positron helicities in the initial
state are opposite in the non-zero helicity amplitudes. In any case the TGCs do not
contribute to the WW -helicity combinations (+−) and (−+) because this requires a
total angular momentum of at least 2 and is not possible to be produced from a vector
boson. For the other helicity amplitudes, the largest power of γ in the coefficients
Aτ

λλ
coincides with the number of longitudinal W s. An exception are the couplings λa

and λ̃a, which correspond to dimension-six operators in the effective Lagrangian (5.1)
and occur with an additional factor of γ2. Note that the largest kinematical factors
in Aτ

λλ
behave like γ2 at high energies, in contrast to the basis of form-factors fi used

in Table 4 of [33], where huge factors of γ4 appear.
Figure 5.4 shows the differential cross sections for the production of a W pair with

fixed helicities at different c.m. energies without polarisation of the initial beams in
the SM. The sum over all W helicities has first been calculated in [147]. There special
emphasis has been put on the gauge cancellations in the SM. For our calculations in
this chapter we use the P SM

mass scheme, see Table 2.2. For all curves we choose the
numerical values mW = 80.42 GeV and mZ = 91.19 GeV from [148], α(mZ) = 1/128,
and sin2 θw according to (2.35). A detailed discussion of the differential cross section
for different W -boson helicities can be found in [33] for the cases

√
s = 190 GeV and√

s = 500 GeV.1 Here we only note that the cross sections with W helicities (+−)
and (−+)—which do not contain TGCs—dominate, in particular at high energies.
Among the cross sections containing TGCs the one of two longitudinally polarised

1The (small) deviation of our curves stems from the slightly different choice for the values of mW

and mZ .
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W s, written as (00) in the figures, dominates more and more with rising energy the
ones containing only one longitudinal W , whereas the (−−)- and (++)-amplitudes
are strongly suppressed. This stems from the fact that, in the amplitudes we have one
extra factor γ =

√
s/2mW for each longitudinal W , see Table 5.1. Figure 5.5 shows

the differential cross sections for typical—see [25, 26]—initial beam polarisations at
a future LC.
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Figure 5.4: Differential cross sections of e+e− →WW in the SM with unpolarised
beams and fixed helicities (λλ) of W− and W+ at various c.m. energies. The sum
is plotted for those helicity states whose cross sections are equal in the SM (though
they are not for all anomalous couplings). The boldface curves give the cross section
summed over all W helicities.
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Figure 5.5: Differential cross sections of e+e− →WW at
√
s = 500 GeV for different

longitudinal beam polarisations and fixed W helicities (λλ). The numbers in the
brackets denote the degrees of polarisation (P−, P+) for e− and e+.



We now point out some salient features of the total cross section in the high-
energy limit. In Figure 5.6 we show the total cross section for unpolarised beams as
a function of

√
s. It rises rapidly from threshold up to a maximum of about 20 pb

at
√
s ≈ 200 GeV, and in the SM decreases for higher c.m. energies. In the SM each

Z coupling is equal to the corresponding photon coupling. Since z = 1 +O(γ−2) the
L-couplings are then of order 1 and the R-couplings of order γ−2. For τ = +1 this leads
to a high-energy behaviour of at most M ∼ O(1). For τ = −1 we have gL

1 = κL = 2z
in the SM, and the coefficients Aλλ and Bλλ only differ by a factor 2 +O(γ−2) ac-
cording to Table 5.1. As they occur with different sign in (5.26) and (5.27) this again
results in a high-energy behaviour M ∼ O(1), except for very forward W − momen-
tum where there is an enhancement by the propagator factor (1 + β2 − 2β cos Θ)−1.
Altogether, these gauge cancellations preserve the unitarity of the SM. We also plot in
Figure 5.6 the total cross section for one anomalous coupling differing from zero. At
high energies each coupling mainly contributes via the W -helicity amplitude where
it occurs with the highest power of γ, i.e. either linearly or quadratically according
to Table 5.1. At sufficiently high energy, the square of an anomalous term dominates
over its interference term with the SM amplitude. In the limit β → 1 the couplings
g1, g4, g5 and κ̃ enter with a factor γ, whereas κ, λ, λ̃ enter with a factor γ2, which
explains their different behaviour in Figure 5.6. Some couplings have equal coeffi-
cients in this limit, which leads to a degeneracy of the curves. We also remark that
even if more than one anomalous coupling differs from zero, anomalous amplitudes
belonging to couplings of different C or P eigenvalue do not interfere in the total
cross section with unpolarised beams, see Section 5.3.

The measurement of the total cross section of e+e− → WW is an important task
for future LCs. The strong deviation of the SM prediction in the presence of anoma-
lous couplings as shown in Figure 5.6 is a consequence of the non-renormalisable
interaction terms. In the remainder of this chapter we will mainly investigate the
sensitivy of the normalised event distribution to TGCs. To this end we apply the
optimal-observable method. However, after the simultaneous diagonalisation, see
Section 4.3, the total cross section is in a particular convenient form to extract infor-
mation on the anomalous couplings also from there.

5.3 Discrete symmetries

Let us now discuss the special role of the combined symmetry operations CP and
CPT̃ in the context of our reaction [33, 40, 41]. Here C denotes charge conjugation, P

parity reversal, and T̃ “näıve time reversal”, i.e. the reversal of all particle momenta
and spins without the interchange of initial and final state. Under the condition that
the initial state, as well as phase-space cuts and detector acceptance are invariant
under a CP transformation, a CP odd observable gets a non-zero expectation value
only if CP is violated in the interaction. Similarly, if the initial state, phase-space cuts
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Figure 5.6: Total cross section with unpolarised beams as a function of the c.m. energy
in the SM and for one anomalous coupling differing from zero. Some curves coincide
as explained in the text.
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and acceptance are invariant under CP T̃ followed by a rotation by 180◦ around an
axis perpendicular to the beam momenta, a non-zero expectation value of a CP T̃ odd
observable implies the interference between absorptive and nonabsorptive amplitudes
in the cross section. In terms of the three-boson couplings one finds that to O(h)
the expectation values of CP even (odd) observables only involve the CP conserving

(violating) couplings g1, κ, λ, g5 (g4, κ̃, λ̃). Similarly, CP T̃ even (odd) observables are
to first order only sensitive to the real (imaginary) parts of the coupling parameters.
The coefficient matrix c is thus block diagonal in the following groups of observables:

(a): CP and CP T̃ even,

(b): CP even and CP T̃ odd,

(c): CP odd and CP T̃ even,

(d): CP and CP T̃ odd.

One further finds that the first-order terms σ1i in the integrated cross section can
only be non-zero for couplings of class (a).

Since the interactions are invariant under rotations we can, instead of a pure
CPT̃ transformation, equally well consider RCP T̃ , i.e. CPT̃ followed by a rotation
R by 180 degrees around êy. More detail is given in Appendices C and D. From
Figure 5.7 we see that the e+e− states where the beam helicities are aligned are CP
eigenstates. But the antialigned (∆τ = 0) states are interchanged under CP and
therefore are not eigenstates. On the other hand, the amplitudes for these helicity
combinations are proportional to the electron mass in the SM (supplemented by the
most general TGCs). They are thus generically suppressed by me/mW compared
with the amplitudes for aligned beam helicities (∆τ = ±1).2 With transverse beam
polarisation, the two types of amplitudes can interfere, giving small me/mW effects in
the cross section. With purely longitudinally polarised beams they do not interfere, so
that effects due to the ∆τ = 0 combinations of e+e− are of order (me/mW )2 and thus
beyond experimental accuracy. We remark that the same holds e.g. in the MSSM,
where left- and right-handed leptons as well as their superpartners only mix with a
strength proportional to the lepton mass. To investigate what can happen in more
generic models is beyond the scope of this work.

With our effective Lagrangian CP and RCP T̃ violating effects vanish in the limit
me → 0 for an arbitrary spin-density matrix ρ. This means that, although the initial
state is not invariant under CP and RCP T̃ , it is effectively invariant for our reaction
in the me → 0 limit. Let us make this more explicit.

Both the CP and the RCP T̃ transformation of the initial state leave the parti-
cle momenta unchanged and correspond to the following transformation of the spin
density matrix:

ρ(ττ )(τ ′τ ′)
CP, R CP T̃−−−−−−→ ρ(σσ)(σ′σ′) εσ τ εστ εσ′τ ′ εσ′τ ′ , (5.28)

2To be precise, one must exclude final states e+νe e−ν̄e, where nonresonant graphs contribute in
which the initial e+ and e− do not annihilate.

97



�
���

� �

���

�

�
	 �

�
�

� �

���

�

�
	 �

���

� �

�
�

�

�
���


 �

���

�

�
	 �

�
�

� �

���




�
	 �

���

� �

�
�




Figure 5.7: Effect of a CP transformation on an e+e− state with helicities aligned
(top) or antialigned (bottom).

where

ε =

(
0 1

−1 0

)
. (5.29)

This transformation rule is derived in Appendix D. Thus invariance of the spin
density matrix under either of the two symmetries requires

ρ(ττ )(τ ′τ ′) = ρ(σσ)(σ′σ′) εσ τ εστ εσ′τ ′ εσ′τ ′ . (5.30)

If the spin density matrix factorises as in (5.20) we find

ρττ ′ =
(
εTρ ε

)
ττ ′
. (5.31)

In our parameterisation the spin density matrices are explicitly given by

ρττ ′ =
1

2

(
(1 + P−

l ) P−
t e

−iϕ−

P−
t e

iϕ−

(1 − P−
l )

)

ττ ′

, (5.32)

ρ τ τ ′ =
1

2

(
(1 + P+

l ) −P+
t e

iϕ+

−P+
t e

−iϕ+

(1 − P+
l )

)

τ τ ′

. (5.33)

The requirement (5.31) thus reads

ρττ ′ =
1

2

(
(1 − P+

l ) P+
t e

−iϕ+

P+
t e

iϕ+

(1 + P+
l )

)

ττ ′

, (5.34)

which leads to the following conditions on the polarisation parameters:

P−
l = −P+

l , P−
t = P+

t , ϕ− = ϕ+. (5.35)

If we do not demand CP or RCP T̃ invariance of the full spin density matrix but only
consider those matrix entries that give non-vanishing amplitudes we find, instead
of (5.30):

ρ̃(ττ )(τ ′τ ′) = ρ̃(σσ)(σ′σ′) εσ τ εστ εσ′τ ′ εσ′τ ′ , (5.36)
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with a “reduced” spin density matrix

ρ̃(ττ )(τ ′τ ′) =

{
ρ(ττ )(τ ′τ ′) for τ = −τ and τ ′ = −τ ′

0 else.
(5.37)

Inserting this definition into (5.36) we find that the condition for CP or RCP T̃
invariance is trivially fulfilled. Under the assumption that only amplitudes with
τ = −τ contribute to the differential cross section and that the factorisation (5.20)
is possible, no condition has therefore to be imposed on P±

l , P±
t or ϕ± to guarantee

absence of CP or RCP T̃ violation in the initial state. Any violation of CP or CP T̃
is then due to the interaction in the limit me → 0.

For general beam polarisation, a non-zero mean value of a CP odd observable
can be generated by genuine CP violation in the reaction, or by the CP odd part
of the spin density matrix in the initial state. According to the above estimate, the
latter would require nonstandard physics to be experimentally visible, especially for
longitudinal beam polarisation, and thus be interesting in its own right. Similarly, a
non-zero result for a CP T̃ odd observable can originate from absorptive parts in the
process, or from effects of the amplitudes with zero total helicity of the initial beams.
If any such effects were observed, one could in a next step investigate their dynamical
origin, using their different dependences on the beam polarisation. One possibility is
to use that in the absence of ∆τ = 0 amplitudes the cross section depends on trans-
verse beam polarisation only via the product (P−

t · P+
t ), as seen in (5.23). If P+

t = 0,
the cross section is then independent of P−

t and ϕ−, whereas the interference between
∆τ = 0 and ∆τ = ±1 amplitudes leads to terms with (P−

t cosϕ−) and (P−
t sinϕ−)

to the cross section, which can experimentally be identified via their angular depen-
dence on ϕ−. A possibility to search for the presence of ∆τ = 0 amplitudes with only
longitudinal beam polarisation will be discussed at the end of Section 5.4.

Returning to purely longitudinal beam polarisation and the assumption that
∆τ = 0 amplitudes are negligible, we remark that constraints similar to the ones
discussed above cannot be derived for C and P separately, since neutrino exchange
maximally violates both symmetries. One can however classify the TGCs according
to their C and P behaviour as shown in Table 5.2. As can be seen from the ampli-
tudes in Section 5.2, terms of distinct P or C do not mix in the quadratic part of the
total cross section

σ2ij =

∫
dφS2ij , (5.38)

provided that phase-space cuts are separately invariant under P and C. Under the
same conditions the linear terms σ1i in the integrated cross section for the couplings
gR
4 , gR

5 , κ̃R and λ̃R vanish. This is due to the absence of the neutrino-exchange graph
for right-handed electrons and the fact that those couplings differ in their P or C
eigenvalues from the TGCs in the SM. Finally, real and imaginary parts of couplings
do not mix in σ2ij .
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Table 5.2: Properties of TGCs under
parity and charge conjugation.

g1, κ, λ g4 g5 κ̃, λ̃

C + − − +

P + + − −
CP + − + −

In the L-R-basis, σ2ij has an additional block diagonality, with two separate blocks
for the R- and the L-couplings, which cannot mix in the total cross section. Any block
diagonality of σ2ij means that already before the simultaneous diagonalisation (4.41)
the subspaces corresponding to these blocks are perpendicular to each other with re-
spect to the scalar product (a, b) =

∑
ij ai σ̂2ij bj. As a consequence, two row vectors

of A or two column vectors of A−1 which correspond to different blocks are perpen-
dicular with respect to the standard scalar product. In the case of A−1 this follows
from the first equation of (4.45) by solving for σ̂2, and in the case of A by solving
for σ̂−1

2 . The comparison of the matrix products AAT and (A−1)TA−1 with this ex-
pected orthogonality thus provides a good way to test the numerical results for A
and A−1. Note however that the transformation described in Section 4.3 cannot be
carried out on smaller blocks than those given by the four classes (a) to (d) because
the left-handed couplings mix with the right-handed ones in V (O), c and V (h).

5.4 Longitudinal polarisation

In this section we explore how the sensitivity of our process to anomalous TGCs
in the reaction e+e− →WW depends on the longitudinal polarisation of the initial
beams. To this end we will introduce an appropriate polarisation parameter P and
analyse how the eigensystem determined by (4.45) depends on it. This may be seen
as a preparation for interpreting the numerical results in Section 5.6, which will be
given in terms of the same parameter.

To start with, we introduce a convenient notation to make explicit the polarisation
dependence of the matrices σ̂2 and V , which have to be diagonalised simultaneously
according to (4.45). In the following we restrict ourselves to the case of longitudinally
polarised beams. Since in the limit me → 0 only two beam-helicity combinations
contribute to the amplitudes, we can use (5.23) to write the differential cross section
S = dσ|ρ/dφ in terms of the cross sections SL and SR for purely left- and right-handed
e− beams (and opposite e+ helicities),

S = PLSL + PRSR, (5.39)

where

PL =
1

4
(1 − P−)(1 + P+), PR =

1

4
(1 + P−)(1 − P+), (5.40)

SL = dσ(−+)(−+)/dφ, SR = dσ(+−)(+−)/dφ (5.41)
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and dφ = d(cosΘ) d(cosϑ) dϕ d(cosϑ) dϕ. Since we only deal with longitudinal polar-
isation in this section we drop the subscript ’l’ in the polarisation parameters. Note
that 0 ≤ PL, PR ≤ 1. Integrating over dφ one obtains the total cross section as

σ = PLσL + PRσR. (5.42)

In the L-R-basis we have

Sa = Sa
0 +

∑

i

Sa
1ih

a
i +

∑

i,j

Sa
2ijh

a
i h

a
j , (5.43)

σa = σa
0 +

∑

i

σa
1ih

a
i +

∑

i,j

σa
2ijh

a
i h

a
j . (5.44)

We denote again the real or imaginary parts of the anomalous TGCs by ha
i , but in

contrast to (4.2) we now explicitly write an index a = L,R, so that i and j only run
from 1 to 14. Using vector and matrix notation we can rewrite the total cross section
as

σ = σ0(1 + hTσ̂1 + hTσ̂2h), (5.45)

where

σ0 = PLσL
0 + PRσR

0 ,

σ̂1 =
1

σ0

(
PLσL

1

PRσR
1

)
, h =

(
hL

hR

)
,

σ̂2 =
1

σ0

(
PLσ2 0

0 PRσ2

)
, (5.46)

with vectors (ha)i = ha
i and (σa

1
)i = σa

1i and the matrix (σ2)ij = σL
2ij = σR

2ij . In the
L-R-basis and for longitudinal polarisation we thus obtain the following expression
for the covariance matrix (4.10):

V ab
ij = P aP b

(
1

σ0

∫
dφ
Sa

1iS
b
1j

S0
−
σa

1iσ
b
1j

σ2
0

)
, (5.47)

with a, b = L,R. Let us now investigate in detail how the eigensystem of σ̂2 and V
depends on PL and PR. It is useful to express P L and PR by new variables r and P
(to be specified below), so that σ̂2, V and hence also their eigensystem only depend
on P . For this purpose we introduce P̂L and P̂R through

PL,R = rP̂L,R(P ) (5.48)

for some well-behaved rescaling function r(P L, PR), and define the “r-normalised”
quantities

σr
0 = P̂LσL

0 + P̂RσR
0 , (5.49)

Sr
0 = P̂LSL

0 + P̂RSR
0 . (5.50)
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We then have from (5.46) and (5.47):

σ̂2 =
1

σr
0(P )

(
P̂L(P ) σ2 0

0 P̂R(P ) σ2

)
, (5.51)

V ab
ij = P̂ a(P ) P̂ b(P )

(
1

σr
0(P )

∫
dφ

Sa
1i S

b
1j

Sr
0(P )

−
σa

1i σ
b
1j

[ σr
0(P )]2

)
, (5.52)

where we have made the dependence on P explicit. Note that the left-hand sides
of (5.51) and (5.52) depend on P but not on r, since σ̂2 and V do not change when
S is multiplied by a constant. For the matrix M in (4.47) we get

M =
1√
σr

0(P )

( √
P̂LM 0

0
√
P̂RM

)
, (5.53)

where σ2 = MM
T

is the Cholesky decomposition of the P independent submatrix
of σ̂2. Then the result for the transformation (4.38) is

h′ = A−1h = X−1MTh

= X−1(P )
1√
σr

0(P )

( √
P̂LM 0

0
√
P̂RM

)
h. (5.54)

The factors
√
P̂L and

√
P̂R in the rightmost matrix determine the mutual normalisa-

tion of the blocks of left- and right-handed couplings. They let A−1 become singular
in the limits P̂L or P̂R → 0. This is not surprising because with beams of purely
longitudinal polarisation one is sensitive to only half of the couplings. The coefficient
(σr

0(P ))−1/2 in (5.54) leads to an overall normalisation which strongly depends on the
polarisation. At

√
s = 500 GeV we have for instance

tLR ≡
√
σL

0 /σ
R
0 ≈ 17, σr

0 ≈ σL
0 (P̂L + P̂R/172), (5.55)

whereas at
√
s = 3 TeV the ratio tLR is about 30. From (4.51) we see that the matrix

X−1 is orthogonal for any P . In case of pure polarisation it is block diagonal in the left-
and right-handed couplings. This is however not the case for general (longitudinal)
polarisation since the diagonalisation cannot be reduced to smaller blocks than those
given by the four discrete symmetry classes introduced in Section 5.3.

We now specify the transformation (5.48) by choosing

r =
1

4

(√
PR +

√
PL
)2

, (5.56)

and defining a polarisation parameter

P =

√
PR −

√
PL

√
PR +

√
PL

, (5.57)
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with values −1 ≤ P ≤ +1. We then have

P̂R,L = (1 ± P )2 . (5.58)

In terms of the individual beam polarisations P− and P+ the parameters r and P
are given as

r =
1

8

(
1 − P+P− +

√
(1 − P+P−)2 − (P+ − P−)2

)
, (5.59)

P =
P− − P+

1 − P+P− +
√

(1 − P+P−)2 − (P+ − P−)2
. (5.60)

The reason for this particular choice is as follows. For electron polarisation P −
0 and

positron polarisation P+
0 = −P−

0 one simply has P = P−
0 . For general polarisations

P is between P− and −P+, and the differential cross section S for (P−, P+) equals
the one for (P−

0 =P, P+
0 =−P ) up to a constant. The eigenvalues c′i, see (4.43), are

hence the same for (P−, P+) and for (P−
0 , P

+
0 ).

To develop some intuition of how the generalised eigenvalues of (5.51) and (5.52)
depend on P , we consider the case of only one left- and one right-handed coupling.
Moreover, we neglect the second term in (5.52), which appears only in symmetry
class (a). The matrix σ2 in (5.46) then reduces to a single number (σ2)11, the vector
(S1)

a
i has only one component sa ≡ (S1)

a
1, and the 2×2 matrices which have to be

diagonalised according to (4.45) can be written as

σ̂2 =
(σ2)11

σr
0(P )

(
P̂L 0

0 P̂R

)
, (5.61)

V =
1

σr
0(P )

(
P̂L 0

0 P̂R

)(
vLL vLR

vLR vRR

)(
P̂L 0

0 P̂R

)
, (5.62)

where

vLL =

∫
dφ

(sL)2

Sr
0(P )

, vLR =

∫
dφ

sLsR

Sr
0(P )

, vRR =

∫
dφ

(sR)2

Sr
0(P )

. (5.63)

As in (4.49) we construct a symmetric matrix

C =
1

(σ2)11

( √
P̂L 0

0
√
P̂R

)(
vLL vLR

vLR vRR

)( √
P̂L 0

0
√
P̂R

)
, (5.64)

whose usual eigenvalues are equal to the generalised eigenvalues of V , i.e. to the
diagonal entries of the transformed matrix V ′ in (4.45). They are given by

c± =
1

2 (σ2)11

(
P̂LvLL + P̂R vRR ±

√(
P̂LvLL − P̂R vRR

)2

+ 4P̂LP̂R
(
vLR
)2
)
.

(5.65)
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We approximate the matrix entries (5.63) by

vab(P ) =
ṽab

P̂LσL
0 + P̂RσR

0

, a, b = L,R, (5.66)

with constants ṽab, which should take into account their P dependence sufficiently
well for a qualitative model. In Figure 5.8 we plot the eigenvalues c± in arbitrary
units for σL

0 = 1, and σR
0 = σL

0 /t
2
LR = (1/17)2, with the last number taken from (5.55).

The ratios ṽLL/ṽLR ≈ ṽLR/ṽRR ≈ tLR in our choice of parameters are motivated by
the power of sL in (5.63), which corresponds to the power of the neutrino-exchange
amplitude in the cross section. One can show analytically that the slopes of the
curves for c±(P ) tend to zero for P → ±1. For P = 1 this cannot be seen in the
plot, since for large tLR (i.e. σL

0 � σR
0 ) the eigenvalues change rapidly as the e− beam

becomes purely right-handed. To see the horizontal tangent we plot a second example
in Figure 5.9 with a more moderate value of tLR. Notice that for non-zero vLR the
two curves for c+ and c− do not touch. If P̂R or P̂L is zero the matrix σ̂2 in (5.61)
and hence C in (5.64) is singular, which leads to a zero eigenvalue c− at P = ±1.

As in Section 4.4 let

X = (x−,x+) =

(
x11 x12

x21 x22

)
(5.67)

be the matrix whose columns are the normalised eigenvectors of C. We can see from
Figures 5.8 and 5.9 that for P = −1 the vector x+ with large eigenvalue has only an
upper component (corresponding to hL), whereas the vector x− with zero eigenvalue
has only a lower component (corresponding to hR). For P = +1 the situation is
reversed. This reflects the fact that one is only sensitive to the left-handed couplings
for P = −1 and to the right handed ones for P = +1. We finally plot the elements
of the transformation matrix A−1 in (5.54) using the notation

A−1 =

(
a11 a12

a21 a22

)
. (5.68)

Writing the transformed couplings as

h′ =

(
h′−
h′+

)
= A−1

(
hL

hR

)
, (5.69)

we can see that for P = −1 the right-handed contributions to both h′
− and h′+ vanish,

whereas for P = +1 the same happens to the left-handed ones. This behaviour of
A−1 has to be taken into account when carrying out the simultaneous diagonalisation
for high degrees of longitudinal polarisation, because it leads to a singularity of its
inverse in the limit P → ±1.

We have seen that under the condition that only beam helicity combinations
with ∆τ = ±1 contribute to the cross section, the expectation values of normalised
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Figure 5.8: Eigenvalues (5.65) and entries of the matrices (5.67) and (5.68) for σL
0 = 1,

σR
0 = (1/17)2, ṽLL = 1, ṽLR = 0.01, ṽRR = 0.0025 and (σ2)11 = 1.
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Figure 5.9: Same as Figure 5.8 but using σL
0 = 1, σR

0 = 1/10, ṽLL = 1, ṽLR = 0.15,
ṽRR = 0.1 and (σ2)11 = 1.
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observables only depend on the polarisation parameter P . Such a statement no longer
holds if beams with helicities coupled to ∆τ = 0 contribute as well. This provides a
possibility to disentangle effects from genuine CP violation or absorptive parts from
those due to non-zero ∆τ = 0 amplitudes. In particular, the CP odd part of the spin
density matrix for longitudinally polarised e+e− beams is proportional to (P+ + P−)
and will give different contributions to normalised observables if (P+ + P−) is varied
for fixed P .

5.5 Hardly measurable couplings

The particular form of the SM amplitudes for the process e−e+ →W−W+ has con-
sequences on its sensitivity to the couplings in the CP conserving sector, which we
shall now discuss. To this end we write the TGC part of the transition operator as

T TGC =
∑

a=L,R

7∑

i=1

(ha
0,i +Ha

i ) T a
i , (5.70)

where for simplicity of notation we label the respective couplings g1, κ, λ, g4, g5,
κ̃, λ̃ by an index i = 1, . . . , 7. Here ha

0,i are the SM couplings in the L-R-basis and
Ha

i = ReHa
i + i ImHa

i are the complex anomalous couplings (which we write in up-
percase to distinguish them from the real-valued parameters ha

i ). The non-zero SM
couplings are, see (5.7) and (5.24),

hL
0,1 = hL

0,2 = 2z + 4 sin2 θw(1 − z) , hR
0,1 = hR

0,2 = 4 sin2 θw(1 − z) . (5.71)

We first consider longitudinal polarisation where the differential cross section S,
see (4.1), is given by (5.39). For SR there is no neutrino-exchange contribution, so
that we have from (5.13), (5.41) and (5.70)

SR ∝
∑

i,j

〈f |T R
i |+−〉 〈f |T R

j |+−〉∗

× (hR
0,i + ReHR

i + i ImHR
i )(hR

0,j + ReHR
j − i ImHR

j ). (5.72)

Consider now the following direction in the space of right-handed anomalous cou-
plings: (

ReHR

Im HR

)
=

(
0

ωhR
0

)
, (5.73)

where we assume ω � 1 and use the vector notation

HR =




HR
1
...

HR
7


 , hR

0
=




hR
0,1
...

hR
0,7


 . (5.74)
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With (5.73) the second line of (5.72) equals

(hR
0,i + iωhR

0,i) (hR
0,j − iωhR

0,j) = (1 + ω2) hR
0,i h

R
0,j . (5.75)

In the space of the imaginary parts of right-handed couplings there is hence a direction
in which the differential cross section for unpolarised or longitudinally polarised beams
has no linear term in ω, but is only sensitive to order ω2. This direction is determined
by the real SM couplings as given by (5.71). Therefore, one of the functions S ′

1i and
the corresponding observable O ′

i in (4.41) are identically zero, and V (O) contains
one (usual as well as generalised) eigenvalue in symmetry class (b) that is zero for all
values of P . This is confirmed by our numerical results shown in Figures 5.12, 5.16
and 5.20. In the tables in Section 5.6 below, the eigenvalues of symmetry class (b),
c′9, . . . , c

′
16, are given in decreasing order. Using this notation we have

S ′
1,16(φ) ≡ 0, c′16 = 0. (5.76)

From the total rate one can derive constraints on this coupling as explained in Sec-
tion 4.3.

Now consider (
ReHR

Im HR

)
=

(
ωhR

0

0

)
, (5.77)

which merely “stretches” the right-handed SM couplings by a factor (1 + ω). Then
the last line of (5.72) becomes

(1 + ω)2 hR
0,i h

R
0,j . (5.78)

In case of purely right-handed electrons or left-handed positrons, i.e. for P L = 0, we
have S ∝ SR from (5.39), so that the anomalous coupling (5.77) only increases the
total rate but does not affect the normalised distribution σ−1S. This holds both to
order ω and to order ω2. Symmetry class (a) therefore contains a fifth zero eigenvalue
for P = +1, in addition to the four zero eigenvalues from the left-handed couplings
Re gL

1 , Re κL, ReλL and Re gL
5 , which cannot be measured for P L = 0. This is again

confirmed by our numerical results (cf. Figures 5.11, 5.15, 5.19). For P L 6= 0, however,
SL also contributes to S. Since the functions σ−1Sa are not identical for a = L and
a = R, the enhancement of SR due to (5.78) will not just change S by an overall
factor, but also modify the normalised distribution σ−1S. The latter is sensitive to
the anomalous TGC in (5.77) in the linear approximation, since (5.78) contains a
term linear in ω. In contrast to symmetry (b), there is thus no eigenvalue which
is identical to zero for all values of P . Note that SL contains interference terms of
the left-handed anomalous amplitudes and the SM neutrino exchange, so that the
arguments above do not apply to the subspace of the left-handed couplings. Also for
the symmetries (c) and (d) there is no similar argument because CP violating TGCs
are absent in the SM at tree-level.
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The direction (5.73) in coupling space becomes measurable in the linear approxi-
mation with e+e− beams of transverse polarisation. In fact, abbreviating

Aτ=+1
0 = 〈f |T0|+−〉, Aτ=−1

0 = 〈f |T0| −+〉,
Aτ=+1

i = 〈f |T R
i |+−〉, Aτ=−1

i = 〈f |T L
i | −+〉, (5.79)

where T0 is the transition operator in the SM at tree-level and T a
i is defined in (5.70),

we can write the part of the differential cross section (5.23) that is linear in the
anomalous TGCs as

dσ|linρ ∝
∑

i,a

(
P a
[
Re (Aτ∗

0 Aτ
i ) ReHa

i − Im (Aτ∗
0 Aτ

i ) ImHa
i

]
(5.80)

− P−
t P

+
t

4

{
cos(ψ + 2Φ)

[
Re
(
A−τ∗

0 Aτ
i

)
ReHa

i − Im
(
A−τ∗

0 Aτ
i

)
ImHa

i

]

− τ sin(ψ + 2Φ)
[
Im
(
A−τ∗

0 Aτ
i

)
ReHa

i + Re
(
A−τ∗

0 Aτ
i

)
ImHa

i

]})
,

where of course a = R implies τ = 1 and a = L implies τ = −1. As in Section 5.2 we
denote the degrees longitudinal and transverse polarisation of the e+ and e− beams
by P±

l and P±
t , and as in Section 5.4 we abbreviate P L = (1 − P−

l )(1 + P+
l )/4 and

PR = (1 + P−
l )(1 − P+

l )/4. Note that dσ|linρ depends on the W− azimuthal angle Φ
only via the explicit trigonometric functions in (5.80). One thus only has dσ|linρ ≡ 0 if
the three lines of (5.80) vanish separately. The first line is however the same as what
we had for purely longitudinal polarisation, so that it vanishes for generic polarisations
P a only if condition (5.73) is fulfilled and HL = 0. Then relation (5.80) becomes:

dσ|linρ ∝ ω
∑

i

hR
0,i

(
− PR Im

(
A+1∗

0 A+1
i

)
(5.81)

+
P−

t P
+
t

4

{
cos(ψ + 2Φ) Im

(
A−1∗

0 A+1
i

)
+ sin(ψ + 2Φ) Re

(
A−1∗

0 A+1
i

)})

= ω
P−

t P
+
t

4

{
cos(ψ + 2Φ) Im

(
A−1∗

0 A+1
0

)
+ sin(ψ + 2Φ) Re

(
A−1∗

0 A+1
0

)}
,

where for the equality we have used the fact that A+1
0 =

∑
i h

R
0,i A+1

i . Since A−1
0

contains the neutrino-exchange graph, dσ|linρ no longer vanishes. Transverse beam
polarisation thus allows for the measurement of the anomalous coupling (5.73), which
is hardly possible using only longitudinal polarisation. We will come back to trans-
verse polarisation in Section 5.7 where we compare the numerical results with different
types of beam polarisation and with unpolarised beams.

Before presenting our numerical results for unpolarised and longitudinally po-
larised beams, we must explain how to take into account the zero eigenvector (5.73)
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Figure 5.10: Schematic view of the constraints in case of symmetry class (b).

of V (O) in the analysis. From (4.13) and (4.41) we obtain for the inverse covariance
matrix of the couplings h

V (h)−1 = N(A−1)Tc′A−1, (5.82)

where the hi are again 28 real parameters, viz., the real and imaginary parts of gR
1 , gL

1 ,
κR, κL, etc. We number the couplings in the order of their symmetry class (a) to (d),
and within each symmetry class take the L-couplings first. We then have h13 = Im gR

1

and h14 = Im κR. Note that V (h)−1 always exists, even in our case where one param-
eter is unmeasurable. In this case V (h)−1 is a singular matrix with a one-dimensional
zero eigenspace coming from c′16 = 0. Geometrically speaking, the error ellipsoid de-
fined by V (h)−1 is degenerate in such a way that the length of one principal axis is
infinite. Instead of an ellipsoid we have a cylinder whose axis corresponds to the di-
rection of the unmeasurable coupling and whose cross-section (orthogonal to the axis)
is an ellipsoid giving the errors on the couplings in the orthogonal space. We know
from (5.71) and (5.73) that the unmeasurable direction is given by Im gR

1 = Im κR 6= 0
with all other couplings being zero. Therefore the projection of the cylinder onto the
(Im gR

1 )-(ImκR)-plane is a band in the Im(gR
1 + κR)-direction, see Figure 5.10(a).

This shows that we cannot obtain any constraint on Im gR
1 or Im κR unless one of

them is known. We can however choose coordinate axes parallel and orthogonal to
the band shown in Figure 5.10(a). In other words, we perform a rotation by −45◦ in
the (Im gR

1 )-(ImκR)-plane,
h̃ = Rh, (5.83)

where R is the identity matrix except for the (Im gR
1 )-(ImκR)-block, which reads

1√
2

(
1 −1
1 1

)
. (5.84)
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The new couplings h̃i are the same as the hi, except for h̃13 = Im(gR
1 − κR)/

√
2 and

h̃14 = Im(gR
1 + κR)/

√
2, which replace Im gR

1 and Im κR. The inverse covariance ma-
trix of the new couplings is

V (h̃)−1 = RV (h)−1RT. (5.85)

All entries in the 14th row and in the 14th column of V (h̃)−1 are equal to zero: there
is no correlation between the unmeasurable Im(gR

1 + κR)/
√

2-direction and the cou-
plings h̃i with i 6= 14. These couplings are hence constrained by a 27-dimensional
ellipsoid, which is drawn schematically in Figure 5.10(b) for one further coupling,
taken to be ImλR. This ellipsoid is determined by the “reduced” 27 × 27 matrix
V −1

red (h̃) obtained from V (h̃)−1 by deleting the 14th row and the 14th column. Its
inverse Vred(h̃) is the covariance matrix of Im(gR

1 − κR)/
√

2 and the other 26 measur-
able couplings. In particular, the width of the band in Figure 5.10(a) gives the error
on Im(gR

1 − κR)/
√

2 in the presence of all other 27 couplings h̃i, cf. Figure 5.10(b).
We finally mention that because of the discrete symmetries explained in Section 5.3,
the matrix V (h)−1 is block diagonal with one block for each symmetry class (a) to
(d), so that the errors on the couplings of class (a), (c) and (d) are entirely unaffected
by the previous discussion.

5.6 Sensitivity with unpolarised beams and longi-

tudinal polarisation

In this section we present the results for the generalised eigenvalues c′i of the covari-
ance matrix V (O) and the corresponding errors δh′

i = (Nc′i)
−1/2 on the transformed

couplings. The covariance matrix for the couplings in any other parameterisation
is then obtained by conventional error propagation. We discuss its most important
properties in the L-R-basis for

√
s = 500 GeV and unpolarised beams in Section 5.6.1.

In Section 5.6.2 we investigate the gain in sensitivity by longitudinal e− as well as
additional e+ polarisation. The results for higher c.m. energies are reported in Sec-
tion 5.6.3. In Section 5.6.4 we finally give the constraints which can be obtained from
the total rate according to (4.42). Numerical rounding errors on the results presented
in this section are typically of order 1%.

We apply the P SM
mass scheme and use the values mW = 80.42 GeV, mZ = 91.19 GeV

from [148], and the definition sin2 θw = 1 − m2
W/m

2
Z for the weak mixing angle,

see (2.35). For the total event rate N of the semileptonic channels with e and µ
summed over we use the values listed in Table 5.3. They correspond to an effec-
tive electromagnetic coupling constant α(mZ) = 1/128 and integrated luminosities of
500 fb−1, 1 ab−1 and 3 ab−1 at

√
s = 500 GeV, 800 GeV and 3 TeV, respectively. We

assume full kinematical reconstruction of the final state, except that the jet charges
are not tagged. Due to this two-fold ambiguity we cannot take the zeroth- and first-
order parts of the differential cross section S as the denominator and the numerator of
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Table 5.3: Total event rate N in units of 103 for the semileptonic channels with e
and µ summed over. Corresponding luminosities are given in the text. P− and P+

respectively denote the degrees of longitudinal polarisation of the e− and e+ beams,
and P is given in (5.60).

polarisation
√
s [GeV]

P− P+ P 500 800 3000

−80% +60% −71% 3280 3410 1280
−80% 0 −50% 2050 2130 799

0 0 0 1140 1190 444
+80% 0 +50% 235 242 89.7
+80% −60% +71% 103 103 37

the optimal observables O, but use their respective sums over the two experimentally
undistinguished final states, cf. [40]. This corresponds to the case (4.27) where the
absolute values of the Jacobians at corresponding phase space points are identical
and two terms appear in the sums.

5.6.1 Unpolarised beams at 500 GeV

We first consider the sensitivity at
√
s = 500 GeV with unpolarised beams. In Ta-

bles 5.4 to 5.7 we list the standard-deviation δhi = [V (h)ii]
1/2 for each coupling hi,

which gives its error in the presence of all other couplings. Notice the difference of
this to (Ncii)

−1/2, which corresponds to the error on hi when all other couplings are
assumed to be zero. We also give the correlation matrix

W (h)ij =
V (h)ij√

V (h)ii V (h)jj

(5.86)

of the couplings for each symmetry class (a) to (d). In case of symmetry (b) we
use the reduced matrix Vred(h̃) introduced at the end of Section 5.5. Since W (h) is
symmetric we only list its upper triangular part.

The values of δh range from about 5 × 10−4 to 10−2 within each symmetry class.
The smallest are those for λL, κL and λ̃L since at high energies the corresponding
terms in the helicity amplitudes contain a factor 2γ2, see Table 5.1. In all cases the
errors on the R-couplings are larger than those on the respective L-couplings, viz., by
a factor 1.5 to 3.4 for Im κ, Re ∆κ and Re g5, and by a factor between 4 and 7 for the
other couplings. This is because (for unpolarised or longitudinally polarised beams)
the ν-exchange interferes with the amplitudes containing the hL, but not with those
containing the hR. In general, the sensitivity to the real part of a specific coupling
is roughly of the same size as the sensitivity to its imaginary part, the errors on the
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latter being rather larger for CP conserving couplings and smaller for the CP violating
ones. To get an accurate picture of the sensitivities, correlations have to be taken into
account. Looking at the 2×2 blocks corresponding to hL

i and hR
i for a given index i,

i.e. at the diagonal entries of the right upper block in the correlation matrices, we
see that the absolute values of the correlations are smaller than about 0.2, except
for Re ∆κ, Im κ and Im g5, where they are still smaller than 0.6. The corresponding
correlations would be substantial in the basis of the γ- and Z-form factors, which is
hence not a very suitable parameterisation for the present reaction, compared with
the L-R-basis, see [40]. Considering the matrix blocks of correlations among different
L-couplings or among different R-couplings, we find that about half of them have an
absolute value larger than 0.4. Note that there are correlations of order 0.5 between
couplings with different C or P eigenvalues.

By simultaneous diagonalisation, see Section 4.3, we determine the generalised
eigenvalues c′i and corresponding errors δh′i given in Tables 5.8 and 5.9. For symme-
try class (b) we give the transformation matrix A and its inverse in Tables 5.10
and 5.11. Further numerical results for unpolarised and longitudinally polarised
beams at various c.m. energies are given in [149]. In our numerical calculation we
find the smallest eigenvalue in symmetry class (b) to be c′16 ∼ 10−14. We can however
use the result of our analytical considerations in Section 5.5 and set c′16 to zero. The
same holds for the last column of A except for its Im gR

1 - and Im κR-components,
which determine the corresponding “blind” direction in the L-R-basis. As explained
in Section 5.3 the P odd coupling g5 does not mix with the other couplings in σ̂2, and
the same is true for the left- and right-handed couplings. From this block structure of
σ̂2 and the relation σ̂2A = (A−1)T it follows that in the last row of A−1 we can set all
entries to zero, except for the Im gR

1 -, Im κR- and ImλR-components. Numerically we
find that the absolute values of those matrix entries which we set to zero are smaller
than 10−8 for A and smaller than 10−4 for A−1. We remark that we have computed
the matrix A−1 by inverting A using singular-value decomposition [138]. As men-
tioned at the end of Section 5.3 we have as a further check evaluated the products
AAT and (A−1)TA−1.

5.6.2 Polarised beams

At future e+e−-colliders longitudinal polarisation of both initial beams is envis-
aged [25, 26]. An electron polarisation of P− = ±80% and a positron polarisation
of P+ = ±60% is considered to be achievable.

In Tables 5.12 and 5.13 we give the errors δh on the real couplings (in the presence
of all couplings) for

√
s = 500 GeV and various combinations of beam polarisations.

For all couplings hL and all couplings hR we find roughly the following gain or loss
in sensitivity using always the event rates of Table 5.3. Turning on e− polarisation
of −80% we gain a factor of 1.4 for hL and loose a factor of 6 for hR. If in addition
P+ = +60% we gain a factor of 1.8 for hL and loose a factor of 17 for hR compared to
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unpolarised beams. For P− = +80% we loose a factor of 2.6 for hL and gain a factor
of 3.0 for hR. If furthermore P+ = −60% we loose a factor of 5 for hL and gain a
factor of 5.5 for hR compared to unpolarised beams. Especially for the right-handed
couplings the gain from having both beams polarised is thus appreciable.

The behaviour of the generalised eigenvalues as a function of the parameter P
introduced in Section 5.4 is shown in Figures 5.11 to 5.22. Although the four largest
eigenvalues are more or less constant for P < 0, the transformation matrix A−1 is not.
This can be seen from Tables 5.14, 5.15 and 5.16. For the largest eigenvalue c′1 of sym-
metry (a) we find that the smaller P is, the more the R-components are suppressed,
i.e. the more one purely measures the hL. Going from P = 0 to P = 1 we become
more and more sensitive to the hR. For the fourth lowest curve in Figure 5.11, corre-
sponding to c′5, as well as for the smallest eigenvalue c′8 of symmetry (a) we find the
opposite tendency. Note that in case of ±100% electron or positron polarisation we
can only be sensitive to at most half of the couplings. This is seen for symmetries (c)
and (d) in Figures 5.13, 5.14, 5.17, 5.18, 5.21 and 5.22: half of the curves go to zero at
P = ±1. For class (a) (cf. Figures 5.11, 5.15 and 5.19) we find one additional eigen-
value going to zero at P = +1 and for class (b) (cf. Figures 5.12, 5.16 and 5.20) there
is a zero eigenvalue for all P , as explained in Section 5.5. Comparing with Figure 5.8
we see that for symmetries (b) to (d) the shape of the curves is qualitatively well
described by the simple model of Section 5.4. Although the lower and upper curves
for c± do not intersect in our examples there, an intersection like in Figure 5.13 is not
excluded. In general, it is however not possible to associate a certain pair of couplings
to a pair of curves in Figures 5.11 to 5.22 for the full range of P . This is particularly
obvious from the eigenvalues of symmetry (c) at

√
s = 3 TeV (Figure 5.21), where

some curves alternately play the role of the lower-type and upper-type curves in the
simplified model. Moreover, for symmetry class (a) the description of the shape of
the eigenvalue curves is less obvious due to the second term in the brackets of (5.47).

5.6.3 Energy dependence

The gain in sensitivity when going up from 500 GeV to 800 GeV—using always the
event rates of Table 5.3—lies between 1.4 and 2.7 for all couplings except for Im κR,
where it is 3.6. At 3 TeV we gain a factor of about 25 compared to 800 GeV for this
coupling, and of 1.5 to 8 for all others. For symmetries (a) and (c) we give δh in
Tables 5.17 and 5.18.

Note that this gain is not due to the the total rate, which actually decreases with
energy, see Table 5.3. The largest gains are achieved for κ, λ and λ̃, which have a
prefactor 2γ2 in the amplitude. We remark that both for real and imaginary parts the
gains in sensitivity for an L-coupling and the corresponding R-coupling are of the same
size, except for Im κR. Furthermore, except for ∆κL, gL

4 , gR
4 and κ̃R, the gain is slightly

larger for the imaginary than for the real parts. For the real parts of the couplings we
also give the errors on the transformed couplings δh′

i in Tables 5.19 and 5.20. Note
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that the transformations (4.38) are not identical at the various c.m. energies, and
neither are the couplings h′i. Due to the different normalisation of the h′

i achieved
by (4.38) their errors δh′i may well increase with rising energy although the errors in
a fixed basis as in Tables 5.17 and 5.18 decrease.

5.6.4 Constraints from the total rate

As explained in Section 4.3 the measurement of the total cross section restricts the
anomalous TGCs in the h′i-basis to a shell between two hyperspheres in the multi-
dimensional parameter space. For the couplings given in a basis before the transfor-
mation we have hyperellipsoids instead of hyperspheres. With

√
s = 500 GeV and

unpolarised beams the expansion of the total cross section (4.42) is numerically

σ/σ0 = 1 − 0.026 (5.87)

+ (h′1 + 0.16)2 + (h′2 + 0.026)2 + (h′3 + 0.0042)2 + (h′4 + 0.0061)2

+ (h′5 − 0.013)2 + (h′6 − 0.022)2 + (h′7 − 0.0093)2 + (h′8 + 0.00013)2 +
28∑

i=9

(h′i)
2.

At 800 GeV we obtain

σ/σ0 = 1 − 0.016 (5.88)

+ (h′1 + 0.13)2 + (h′2 + 0.0078)2 + (h′3 + 0.0025)2 + (h′4 + 0.0027)2

+ (h′5 − 0.0066)2 + (h′6 − 0.013)2 + (h′7 − 0.0062)2 + (h′8 − 0.00023)2 +

28∑

i=9

(h′i)
2,

and at 3 TeV

σ/σ0 = 1 − 0.0071 (5.89)

+ (h′1 + 0.084)2 + (h′2 + 0.00083)2 + (h′3 + 4.3 · 10−6)2 + (h′4 + 0.00060)2

+ (h′5 + 0.0030)2 + (h′6 − 0.0052)2 + (h′7 − 0.0017)2 + (h′8 + 3.2 · 10−5)2 +

28∑

i=9

(h′i)
2.

We remark again that the couplings h′
i are not the same at different energies. For

a measurement of the rate N with a (purely statistical) error
√
N the thickness of

the shell is 5.8 × 10−3 at 500 GeV, 7.2 × 10−3 at 800 GeV and 18 × 10−3 at 3 TeV,
see Table 5.3. Systematic errors could be more important. The results (5.87) agree
quite well with those of [41] for all couplings except for the smallest term h′

8 and
for h′3. Note that these results strongly depend on a reliable transformation matrix
A. In [41] numerical instabilities occurred in the diagonalisation procedure, whereas
here A is obtained iteratively as explained in Section 4.4 and was found to be stable.
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It has been pointed out [41] that the constraints from the total rate are in general
of the same size as the largest error on the couplings determined from the normalised
distribution, which we confirm.
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Table 5.4: Errors δh in the presence of all other couplings and correlation matrix
W (h) at

√
s = 500 GeV with unpolarised beams for the couplings of symmetry (a)

(see Section 5.3), i.e. for the real parts of the CP even couplings.

h δh×103 Re ∆gL
1 Re ∆κL Re λL Re gL

5 Re ∆gR
1 Re ∆κR Re λR Re gR

5

Re ∆gL
1 2.6 1 −0.60 −0.35 0.21 −0.070 0.25 −0.054 0.15

Re ∆κL 0.85 1 0.096 −0.054 0.20 −0.59 0.13 0.019

Re λL 0.59 1 −0.034 0.099 −0.080 0.030 0.10

Re gL
5 2.0 1 −0.084 0.11 −0.13 0.075

Re ∆gR
1 10 1 −0.70 −0.56 0.65

Re ∆κR 2.4 1 0.023 −0.34

Re λR 3.6 1 −0.25

Re gR
5 6.7 1

Table 5.5: Same as Table 5.4, but for symmetry (b), i.e. the imaginary parts of
the CP even couplings. As explained in Section 5.5 we have δ Im(gR

1 + κR) = ∞
and no correlation of this coupling with the others. Thus we only give the reduced
7 × 7 matrix here.

h δh×103 Im gL
1 Im κL Im λL Im gL

5
1√
2
Im(gR

1 − κR) Im λR Im gR
5

Im gL
1 2.7 1 −0.47 −0.50 −0.12 0.028 0.16 0.038

Im κL 1.7 1 0.0070 0.41 0.33 −0.10 0.68

Im λL 0.48 1 −0.15 −0.00069 −0.21 −0.22

Im gL
5 2.5 1 0.081 0.22 0.50

1√
2
Im(gR

1 − κR) 11 1 −0.53 0.60

Im λR 3.1 1 −0.11

Im gR
5 17 1

Table 5.6: Same as Table 5.4, but for symmetry (c), i.e. the real parts of the CP
violating couplings.

h δh×103 Re gL
4 Re λ̃L Re κ̃L Re gR

4 Re λ̃R Re κ̃R

Re gL
4 2.5 1 −0.055 −0.49 −0.091 −0.18 0.073

Re λ̃L 0.60 1 0.27 0.073 0.0088 −0.16

Re κ̃L 2.7 1 0.036 0.11 0.14

Re gR
4 10 1 −0.24 −0.47

Re λ̃R 3.8 1 0.65

Re κ̃R 11 1
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Table 5.7: Same as Table 5.4, but for symmetry (d), i.e. the imaginary parts of the
CP violating couplings.

h δh×103 Im gL
4 Im λ̃L Im κ̃L Im gR

4 Im λ̃R Im κ̃R

Im gL
4 1.9 1 −0.059 0.092 0.20 0.22 −0.017

Im λ̃L 0.46 1 0.53 −0.15 −0.18 −0.015

Im κ̃L 2.0 1 −0.33 −0.099 0.14

Im gR
4 7.7 1 −0.12 −0.68

Im λ̃R 2.9 1 0.56

Im κ̃R 8.6 1

Table 5.8: Generalised eigenvalues c′i of the covariance matrix V (O) and the corre-
sponding errors δh′i on the transformed couplings, obtained from (4.44) and Table 5.3
at 500 GeV with unpolarised beams for symmetries (a) and (b).

i c′i δh′
i×103 i c′i δh′

i×103

1 1.44 0.780 9 1.27 0.831

2 1.17 0.866 10 1.01 0.931

3 0.751 1.08 11 0.791 1.05

4 0.557 1.25 12 0.287 1.75

5 0.318 1.66 13 0.0584 3.88

6 0.108 2.85 14 0.0221 6.30

7 0.0366 4.90 15 0.0102 9.29

8 0.0147 7.72 16 0 ∞

Table 5.9: Same as Table 5.8 but for symmetries (c) and (d).

i c′i δh′
i×103 i c′i δh′

i×103

17 1.17 0.868 23 1.40 0.792

18 0.585 1.23 24 1.02 0.929

19 0.320 1.66 25 0.829 1.03

20 0.0645 3.69 26 0.219 2.00

21 0.0262 5.78 27 0.0316 5.27

22 0.0131 8.18 28 0.0241 6.04
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Table 5.10: Coefficient matrix A× 102 for symmetry (b).

h′
9 h′

10 h′
11 h′

12 h′
13 h′

14 h′
15 h′

16

Im gL
1 140 −85 −130 97 12 7.1 0.86 0

Im κL −4.3 3.4 −1.3 −64 −15 0.80 12 0

Im λL 6.6 46 10 −6.1 0.87 −1.9 −0.94 0

Im gL
5 120 −52 150 −7.9 −16 13 12 0

Im gR
1 6.3 −11 8.2 −23 170 −91 110 −50

Im κR −0.89 1.7 −1.4 5.1 −37 7.6 −21 −50

Im λR −1.8 2.3 −1.2 −0.50 0.62 47 −6.5 0

Im gR
5 −22 16 1.4 55 −86 24 170 0

Table 5.11: Coefficient matrix A−1 × 102 for symmetry (b).

i Im gL
1 Im κL Im λL Im gL

5 Im gR
1 Im κR Im λR Im gR

5

9 42 45 110 29 0.49 −0.49 −6.7 −5.3

10 1.5 −12 210 −12 −1.2 1.2 7.3 3.9

11 −33 −54 −15 37 1.1 −1.1 −2.6 0.35

12 −0.73 −140 2.0 −1.9 −5.0 5.0 −14 13

13 −2.1 −38 7.2 −4.0 36 −36 87 −21

14 1.3 4.6 −6.6 3.1 2.2 −2.2 210 5.7

15 4.5 34 −1.5 2.8 19 −19 17 41

16 0 0 0 0 −35 −160 −40 0

Table 5.12: Errors δh×103 on the couplings of symmetry (a) at 500 GeV for different
initial beam polarisations.

P− P+ Re ∆gL
1 Re ∆κL Re λL Re gL

5 Re ∆gR
1 Re ∆κR Re λR Re gR

5

−80% +60% 1.5 0.47 0.34 1.1 169 40 57 112

−80% 0 1.9 0.60 0.43 1.5 62 14 21 41

0 0 2.6 0.85 0.59 2.0 10 2.4 3.6 6.7

+80% 0 6.9 2.3 1.5 5.3 3.5 0.83 1.2 2.3

+80% −60% 13 4.5 2.8 10 2.0 0.47 0.67 1.3
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Table 5.13: Same as Table 5.12, but for symmetry (c).

P− P+ Re gL
4 Re λ̃L Re κ̃L Re gR

4 Re λ̃R Re κ̃R

−80% +60% 1.4 0.34 1.5 174 61 193

−80% 0 1.8 0.43 1.9 62 22 69

0 0 2.5 0.60 2.7 10 3.8 11

+80% 0 6.5 1.5 6.9 3.2 1.3 3.7

+80% −60% 13 2.9 13 1.8 0.70 2.0

Table 5.14: Vector components belonging to the largest eigenvalue c′1 of symmetry (a)
at 500 GeV for different longitudinal polarisations (two digits precision). Each line is
the first row of A−1 × 102 in the L-R-basis.

P− P+ Re ∆gL
1 Re ∆κL Re λL Re gL

5 Re ∆gR
1 Re ∆κR Re λR Re gR

5

−80% +60% −34 −150 −33 18 −0.19 −1.2 −0.089 0.11

−80% 0 −34 −150 −33 17 −0.72 −4.5 −0.36 0.41

0 0 −32 −150 −29 11 −9.0 −48 −7.1 4.8

+80% 0 −13 −84 −10 −3.9 −91 −390 −110 41

+80% −60% −5.5 −42 −4.9 −2.6 −190 −840 −240 79

Table 5.15: Same as Table 5.14, but for the eigenvalue c′5 of symmetry (a).

P− P+ Re ∆gL
1 Re ∆κL Re λL Re gL

5 Re ∆gR
1 Re ∆κR Re λR Re gR

5

−80% +60% −1.5 −7.9 1.1 −2.1 7.0 14 8.3 −5.6

−80% 0 −2.9 −16 2.1 −4.1 13 28 16 −10

0 0 −9.5 −50 6.9 −14 37 82 44 −27

+80% 0 −13 −41 150 −20 14 42 −9.6 −39

+80% −60% −20 −72 100 −24 26 120 −28 −18

Table 5.16: Same as Table 5.14, but for the smallest eigenvalue c′8 of symmetry (a).

P− P+ Re ∆gL
1 Re ∆κL Re λL Re gL

5 Re ∆gR
1 Re ∆κR Re λR Re gR

5

−80% +60% 0.029 1.0 0.071 −0.16 0.81 − 4.1 38 −0.91

−80% 0 0.054 1.8 0.17 −0.31 1.6 −7.5 73 −1.7

0 0 0.15 4.8 0.64 −1.0 5.4 −21 220 −4.8

+80% 0 0.26 14 1.2 −3.2 17 −61 650 −13

+80% −60% −3.2 47 −5.1 −8.5 38 −170 1100 −24
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Table 5.17: Errors δh×103 on the couplings of symmetry (a) for different c.m. ener-
gies.

√
s [GeV] Re ∆gL

1 Re ∆κL Re λL Re gL
5 Re ∆gR

1 Re ∆κR Re λR Re gR
5

500 2.6 0.85 0.59 2.0 10 2.4 3.6 6.7

800 1.6 0.35 0.24 1.4 6.2 0.92 1.8 4.8

3000 0.93 0.051 0.036 0.88 3.1 0.12 0.36 3.2

Table 5.18: Same as Table 5.17 but for symmetry (c).

√
s [GeV] Re gL

4 Re λ̃L Re κ̃L Re gR
4 Re λ̃R Re κ̃R

500 2.5 0.60 2.7 10 3.8 11

800 1.7 0.24 1.8 6.5 1.8 6.8

3000 0.90 0.036 0.97 3.4 0.36 3.2

Table 5.19: Errors δh′i×103 on the transformed couplings of symmetry (a) at different
c.m. energies.

i 500 GeV 800 GeV 3 TeV

1 0.780 0.765 1.26

2 0.866 0.841 1.35

3 1.08 1.16 2.02

4 1.25 1.26 2.39

5 1.66 1.83 4.18

6 2.85 3.07 5.29

7 4.90 4.96 8.54

8 7.72 9.27 20.8

Table 5.20: Same as Table 5.19 but for symmetry (c).

i 500 GeV 800 GeV 3 TeV

17 0.868 0.832 1.35

18 1.23 1.22 2.03

19 1.66 1.58 2.52

20 3.69 3.39 5.12

21 5.78 5.54 8.74

22 8.18 9.53 20.9

120



� �
��
� �
��	�
�

�
�

�
��� ������� �

�

�����

�����

�

�

�����

�

� ���

Figure 5.11: Generalised eigenvalues c′i of the correlation matrix V (O) for the cou-
plings of symmetry class (a) (cf. Section 5.3) at

√
s = 500 GeV. The c′i do not de-

pend on the total rate N . Errors on the transformed couplings h′
i (4.38) are ob-

tained as δh′i = (Nc′i)
−1/2. Vertical lines mark the five cases investigated in detail

in Section 5.6.2, i.e. from left to right (P−, P+) = (−80%,+60%), (−80%, 0), (0, 0),
(+80%, 0), (+80%,−60%). P is given in terms of P− and P+ by (5.60).
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Figure 5.12: Same as Figure 5.11 for symmetry class (b).
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Figure 5.13: Same as Figure 5.11 for symmetry class (c).
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Figure 5.14: Same as Figure 5.11 for symmetry class (d).
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Figure 5.15: Same as Figure 5.11 for
√
s = 800 GeV (symmetry class (a)).
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Figure 5.16: Same as Figure 5.11 for
√
s = 800 GeV and symmetry class (b).
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Figure 5.17: Same as Figure 5.11 for
√
s = 800 GeV and symmetry class (c).
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Figure 5.18: Same as Figure 5.11 for
√
s = 800 GeV and symmetry class (d).
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Figure 5.19: Same as Figure 5.11 for
√
s = 3 TeV (symmetry class (a)).
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Figure 5.20: Same as Figure 5.11 for
√
s = 3 TeV and symmetry class (b).
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Figure 5.21: Same as Figure 5.11 for
√
s = 3 TeV and symmetry class (c).
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Figure 5.22: Same as Figure 5.11 for
√
s = 3 TeV and symmetry class (d).
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5.7 Transverse polarisation

If the polarisation vectors of both beams have a non-zero transverse component P ±
t the

last term of the differential cross section for e+e− →WW comes into play, see (5.23).
From this formula we see that a change in ψ by ∆ψ is equivalent to a rotation of
the whole event distribution about the beam axis by ∆Φ = ∆ψ/2. It neither changes
the shape of the distribution nor the total event rate. The sensitivity to the TGCs
thus does not depend on ψ. Integrating the differential cross section over Φ, the
terms proportional to cos (ψ + 2Φ) and sin (ψ + 2Φ) in (5.23) vanish. The total cross
section is hence independent of P−

t , P+
t and ψ. Therefore, in absence of longitudinal

polarisation, the total cross section with transversely polarised beams equals that with
unpolarised beams. This cross section is shown in Figure 5.6 for the SM and with
various anomalous TGCs. Some other quantities required for the optimal-observable
method are also the same for pure transverse polarisation and for unpolarised beams.
These are in particular the total cross section in the SM σ0, the expectation values
of the optimal observables in the SM E0[Oi], and the normalised second-order part
of the total cross section σ̂2ij , see (4.5) and (4.37).

As seen in Section 5.3, the initial state is not invariant under the discrete symme-
tries CP and RCP T̃ for generic beam polarisation. It is however effectively invariant
if the electron mass is neglected, because then only a subset of helicity amplitudes is
non-zero. Hence a given optimal observable is sensitive only to couplings of the same
symmetry class (a), (b), (c), or (d), see Section 5.3. Measurement errors on couplings
of different symmetry classes are not correlated to leading order in the anomalous
couplings. Furthermore, the first-order terms in the integrated cross section vanish
except for symmetry (a), where only the gR

5 -term is zero.
We now present our results for the sensitivity to anomalous TGCs in the reac-

tion (5.8) with transverse beam polarisations P−
t = 80% of the electron and P+

t = 60%
of the positron beam. As in Section 5.6 for our analysis with longitudinal polarisation
we consider only events where one W boson decays into a quark-antiquark pair and
the other one into eν and µν with a branching ratio of altogether 8/27. As before we
assume that the two jets of the hadronic W decay cannot be identified as originating
from the up- and down-type (anti)quark, which has to be taken into account in the
definition of the optimal observables as noted above. For our numerical input values
we use the same numbers as in Section 5.6. For the total event rate N with trans-
verse beam polarisation we use the values listed in Table 5.3, viz., 1.14 × 106 for a
c.m. energy of 500 GeV and 1.19 × 106 for 800 GeV, because the total cross section
is the same as with unpolarised beams.

In Tables 5.21 to 5.24 we give the standard deviations δhi for the couplings of sym-
metry classes (a) to (d), as well as the correlation matrices W (h)ij of the couplings in
the L-R-parameterisation (5.24). W (h) is evaluated with zero anomalous couplings,
and errors on couplings in different symmetry classes are uncorrelated to this accu-
racy. The δhi are the errors obtained without assuming any other anomalous coupling
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to be zero. For symmetry (b) we use the linear combinations h̃± = Im(gR
1 ± κR)/

√
2

instead of Im gR
1 and Im κR to allow for better comparison with the results for unpo-

larised beams and longitudinal polarisation, where the normalised event distribution
is sensitive to h̃−, but not to h̃+. The range of the δhi within each symmetry class is
from about 5 × 10−4 to about 5 × 10−3. Notice that both h̃+ and h̃− are measurable
with an error of about 3.5 × 10−3 using transverse polarisation. This confirms and
makes quantitive the result of Section 5.5 that one is indeed sensitive to h̃+ with
transverse polarisation. Also the sensitivity to h̃− is significantly better than with
unpolarised beams, where the error is about 10−2. The high correlation between h̃+

and h̃− however suggests that the parameterisation with Im gR
1 and Im κR is prefer-

able in an analysis of the data from transverse polarisation (whereas it is inadequate
with longitudinal polarisation or unpolarised beams).

5.8 Comparison of different kinds of polarisation

As mentioned in the introduction of this chapter the question should be clarified
which beam-polarisation modes are required for the various physics cases and what
fractions of the total available luminosity should be spent on each mode in order to
obtain the best results. Here we consider this question in the context of TGCs. The
gain by different types of polarisation compared to unpolarised beams at a c.m. energy
of 500 GeV can be seen from Tables 5.25 to 5.28 for the four symmetry classes. In
Tables 5.29 to 5.32 the same is shown for 800 GeV. To allow for better comparison
with other studies we use the photon- and Z-couplings for the results of symmetries
(a), (c) and (d) instead of the L- and R-couplings, although the latter are in general
less correlated as discussed before. We use however the L-R-couplings for symmetry
(b), where only one coupling is unmeasurable without transverse beam polarisation.
In the γ-Z-parameterisation, four couplings, Im gγ

1 , Im gZ
1 , Im κγ and Im κZ, are not

measurable in the absence of transverse polarisation, because their linear combination
h̃+ is not. In the unpolarised case the assumed luminosity is 500 fb−1 at 500 GeV
and 1 ab−1 at 800 GeV. The same values are used for the results with transverse
polarisation in the fourth row of each table. For the results with longitudinal e−

polarisation in the second row we assume that one half of the luminosity is used
for P−

l = +80% and the other half for P−
l = −80%. Similarly, for the results in

the third row with additional longitudinal e+ polarisation we assume that the total
luminosity is equally distributed among the settings with (P−

l , P
+
l ) = (+80%,−60%)

and (−80%,+60%). For each of rows number two and three, the results from the
two settings are combined in the conventional way, i.e. we take the two covariance
matrices V1 and V2, and compute the matrix

V =
(
V −1

1 + V −1
2

)−1
. (5.90)

This is the covariance matrix on the couplings if they are determined by a weighted
average from two individual measurements. V1, V2 and V are 8×8 matrices for sym-
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metry class (a) and 6×6 matrices for symmetry classes (c) and (d), whereas in case
of symmetry class (b) they are 7×7 matrices since the coupling h̃+ is excluded. The
square roots of the diagonal elements of V are then the 1σ-errors, which we list in
the second and third rows of Tables 5.25 to 5.32.

For a c.m. energy of 500 GeV the errors with unpolarised beams are between
10−3 and 10−2 in the γ-Z-parameterisation, see Tables 5.25, 5.27, and 5.28. All errors
(with or without polarisation) are smaller at 800 GeV, see Tables 5.29 to 5.32, notably
for Re∆κγ and ImλR. For both c.m. energies the errors on all couplings in the γ-
Z-parameterisation are about a factor 2 smaller with longitudinal e− polarisation
and unpolarised e+ beam compared to the case where both beams are unpolarised.
With additional longitudinal e+ polarisation this factor is between 3 and 4 for all
couplings, except for Re ∆κZ at 800 GeV where it is 4.7. If both beams have transverse
polarisation, the errors on most couplings are approximately of the same size as in
the situation where only the e− beam has longitudinal polarisation. Only for Reλγ ,
ReλZ, Re λ̃γ and Re λ̃Z are they smaller, viz., they are of the same size as with both
beams longitudinally polarised. This is true for both energies. If electron as well as
positron polarisation is available we thus conclude that, regarding the 1σ-standard
deviations on the TGCs (without assuming any coupling to be zero) longitudinal
polarisation is the preferable choice, except for h̃+. We emphasize that we are better
with longitudinal polarisation also for the CP violating couplings Re gV

4 , Re λ̃V and
Re κ̃V with V = γ or Z.

Furthermore, we analyse how correlations between couplings depend on beam
polarisation. Given the large number of parameters, small correlations are highly
desirable. For brevity we do not present the full correlation matrices here for all
different types of polarisation but only give the average over the absolute values of
the off-diagonal elements in the correlation matrices, see Table 5.33. Furthermore,
we restrict ourselves to symmetry (a) and a c.m. energy of 500 GeV.

Apart from the average over all 28 matrix entries we list the averages over the
correlations between L-couplings, between R-couplings and those between one L-
and one R-coupling. We see that no type of polarisation changes the average cor-
relation between two L-couplings significantly. The average correlation between the
R-couplings is most advantageous for transverse polarisation (26%), whereas in the
other cases it ranges from 37% to 42%. On the other hand the L-couplings are hardly
correlated with the R-couplings for longitudinal polarisation of e− and e+ (2%). This
deteriorates with transverse polarisation, but the correlations remain very small (8%).
Altogether, regarding the size of the correlations there is no strong argument to prefer
one type of polarisation or the other.

Finally, we remark that the sensitivity to TGCs in our reaction has been analysed
in [91] for unpolarised beams and for longitudinal polarisation. A maximum number of
five CP conserving and four CP violating couplings was considered, but no imaginary
parts were included, see Tables 5 and 6 of [91]. The author used a spin-density-matrix
method where statistical errors are not necessarily optimal. A direct comparison with
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Table 5.21: Errors δh in units of 10−3 on the couplings of symmetry (a) (see Sec-
tion 5.3) in the presence of all anomalous couplings, and correlation matrix W (h) at√
s = 500 GeV with transverse beam polarisation (P−

t , P
+
t ) = (80%, 60%).

h δh × 103 Re ∆gL
1 Re ∆κL Re λL Re gL

5 Re ∆gR
1 Re ∆κR Re λR Re gR

5

Re ∆gL
1 2.5 1 −0.58 −0.36 0.17 −0.068 0.18 −0.011 0.11

Re ∆κL 0.72 1 0.077 0.013 0.075 −0.46 0.023 −0.014

Re λL 0.58 1 −0.011 0.053 −0.0040 0.029 0.045

Re gL
5 2.0 1 −0.14 −0.0027 −0.038 0.085

Re ∆gR
1 4.2 1 −0.56 −0.41 0.35

Re ∆κR 1.2 1 0.075 −0.086

Re λR 0.99 1 −0.066

Re gR
5 3.5 1

Table 5.22: Same as Table 5.21, but for symmetry (b). We use the abbreviations
h̃± = Im(gR

1 ± κR)/
√

2.

h δh × 103 Im gL
1 Im κL Im λL Im gL

5 h̃− h̃+ Im λR Im gR
5

Im gL
1 2.6 1 −0.63 −0.49 −0.20 0.050 −0.037 0.061 0.028

Im κL 1.2 1 0.19 0.14 −0.072 0.051 −0.029 0.22

Im λL 0.46 1 0.015 0.024 0.048 −0.063 −0.089

Im gL
5 2.0 1 −0.063 −0.053 0.10 0.18

h̃− 3.7 1 0.81 −0.39 0.16

h̃+ 3.2 1 −0.39 0.11

Im λR 0.98 1 −0.0041

Im gR
5 4.4 1

our results is however not possible. On the one hand the multi-parameter analysis
of [91] includes beamstrahlung, initial-state radiation and non-resonant diagrams.
For the single-parameter fits the full background calculated with PYTHIA and also
detector acceptance is included. On the other hand only a restricted number of
couplings is considered. An analysis using optimal observables with a full detector
simulation and all 28 couplings would be desirable for unpolarised beams and both
types of polarisation. This is however beyond the scope of our present work.
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Table 5.23: Same as Table 5.21, but for symmetry (c).

h δh × 103 Re gL
4 Re λ̃L Re κ̃L Re gR

4 Re λ̃R Re κ̃R

Re gL
4 2.4 1 −0.0082 −0.50 −0.072 −0.079 0.084

Re λ̃L 0.58 1 0.30 0.022 0.030 −0.074

Re κ̃L 2.6 1 0.090 0.056 0.063

Re gR
4 3.9 1 −0.013 −0.11

Re λ̃R 0.99 1 0.41

Re κ̃R 4.1 1

Table 5.24: Same as Table 5.21, but for symmetry (d).

h δh × 103 Im gL
4 Im λ̃L Im κ̃L Im gR

4 Im λ̃R Im κ̃R

Im gL
4 1.8 1 0.0044 0.19 0.11 0.086 −0.0072

Im λ̃L 0.45 1 0.51 −0.10 −0.056 −0.022

Im κ̃L 1.9 1 −0.18 −0.047 0.0037

Im gR
4 3.6 1 −0.021 −0.32

Im λ̃R 0.97 1 0.43

Im κ̃R 3.7 1

Table 5.25: Errors δh in units of 10−3 on the couplings of symmetry (a) in the
presence of all anomalous couplings at

√
s = 500 GeV, with unpolarised beams and

with different beam polarisations.

Re ∆g
γ
1 Re ∆gZ

1 Re ∆κγ Re ∆κZ Re λγ Re λZ Re g
γ
5 Re gZ

5

no polarisation 6.5 5.2 1.3 1.4 2.3 1.8 4.4 3.3

(P−
l , P+

l ) = (∓80%, 0) 3.2 2.6 0.61 0.58 1.1 0.86 2.2 1.7

(P−
l , P+

l ) = (∓80%,±60%) 1.9 1.6 0.40 0.36 0.62 0.50 1.4 1.1

(P−
t , P+

t ) = (80%, 60%) 2.8 2.4 0.69 0.82 0.69 0.55 2.5 1.9
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Table 5.26: Same as Table 5.25, but for symmetry (b) and with the L-R-
parameterisation. We write again h̃± = Im(gR

1 ± κR)/
√

2. Using this parameteri-
sation, a maximum number of couplings can be measured without transverse beam
polarisation. In the γ-Z-parameterisation, the four couplings Im gγ

1 , Im gZ
1 , Im κγ and

Im κZ are not measurable without transverse polarisation.

Im gL
1 Im κL Im λL Im gL

5 h̃− h̃+ Im λR Im gR
5

no polarisation 2.7 1.7 0.48 2.5 11 — 3.1 17

(P−
l , P+

l ) = (∓80%, 0) 2.6 1.2 0.45 2.0 4.5 — 1.4 4.3

(P−
l , P+

l ) = (∓80%,±60%) 2.1 0.95 0.37 1.6 2.5 — 0.75 2.3

(P−
t , P+

t ) = (80%, 60%) 2.6 1.2 0.46 2.0 3.7 3.2 0.98 4.4

Table 5.27: Same as Table 5.25, but for symmetry (c).

Re g
γ
4 Re gZ

4 Re λ̃γ Re λ̃Z Re κ̃γ Re κ̃Z

no polarisation 6.2 5.1 2.4 1.9 7.3 5.4

(P−
l , P+

l ) = (∓80%, 0) 3.0 2.5 1.1 0.90 3.4 2.7

(P−
l , P+

l ) = (∓80%,±60%) 1.8 1.5 0.64 0.52 2.1 1.7

(P−
t , P+

t ) = (80%, 60%) 2.7 2.3 0.69 0.55 2.9 2.3

Table 5.28: Same as Table 5.25, but for symmetry (d).

Im g
γ
4 Im gZ

4 Im λ̃γ Im λ̃Z Im κ̃γ Im κ̃Z

no polarisation 5.1 3.6 1.8 1.4 5.6 4.2

(P−
l , P+

l ) = (∓80%, 0) 2.3 1.8 0.84 0.68 2.7 2.1

(P−
l , P+

l ) = (∓80%,±60%) 1.4 1.1 0.48 0.39 1.6 1.3

(P−
t , P+

t ) = (80%, 60%) 2.5 1.8 0.63 0.53 2.5 2.0

Table 5.29: Same as Table 5.25, but for
√
s = 800 GeV.

Re ∆g
γ
1 Re ∆gZ

1 Re ∆κγ Re ∆κZ Re λγ Re λZ Re g
γ
5 Re gZ

5

no polarisation 4.0 3.2 0.47 0.58 1.1 0.90 3.1 2.5

(P−
l , P+

l ) = (∓80%, 0) 1.9 1.6 0.21 0.21 0.53 0.43 1.6 1.3

(P−
l , P+

l ) = (∓80%,±60%) 1.1 0.97 0.14 0.13 0.29 0.24 0.97 0.82

(P−
t , P+

t ) = (80%, 60%) 1.8 1.5 0.27 0.35 0.28 0.23 1.7 1.3
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Table 5.30: Same as Table 5.26, but for
√
s = 800 GeV.

Im gL
1 Im κL Im λL Im gL

5 h̃− h̃+ Im λR Im gR
5

no polarisation 1.5 0.74 0.18 1.5 6.0 — 1.2 9.0

(P−
l , P+

l ) = (∓80%, 0) 1.5 0.60 0.17 1.3 2.4 — 0.54 2.7

(P−
l , P+

l ) = (∓80%,±60%) 1.2 0.48 0.14 1.0 1.3 — 0.29 1.4

(P−
t , P+

t ) = (80%, 60%) 1.5 0.60 0.17 1.3 2.1 2.0 0.39 2.8

Table 5.31: Same as Table 5.25, but for
√
s = 800 GeV and symmetry (c).

Re g
γ
4 Re gZ

4 Re λ̃γ Re λ̃Z Re κ̃γ Re κ̃Z

no polarisation 4.1 3.4 1.1 0.92 4.5 3.3

(P−
l , P+

l ) = (∓80%, 0) 2.0 1.7 0.54 0.44 2.1 1.6

(P−
l , P+

l ) = (∓80%,±60%) 1.2 1.0 0.30 0.24 1.2 1.0

(P−
t , P+

t ) = (80%, 60%) 1.8 1.6 0.28 0.23 1.9 1.5

Table 5.32: Same as Table 5.25, but for
√
s = 800 GeV and symmetry (d).

Im g
γ
4 Im gZ

4 Im λ̃γ Im λ̃Z Im κ̃γ Im κ̃Z

no polarisation 3.8 2.8 0.72 0.60 4.0 2.9

(P−
l , P+

l ) = (∓80%, 0) 1.6 1.3 0.34 0.28 1.8 1.4

(P−
l , P+

l ) = (∓80%,±60%) 0.93 0.79 0.19 0.16 1.1 0.86

(P−
t , P+

t ) = (80%, 60%) 1.7 1.3 0.25 0.21 1.7 1.4

Table 5.33: Averages over the absolute values of the off-diagonal elements in the
correlation matrices (5.86) in %, for symmetry (a) with

√
s = 500 GeV and different

beam polarisations. Apart from the average over all 28 couplings (last column) we
list the averages over the correlations between L-couplings (LL), between R-couplings
(RR) and those between one L- and one R-coupling (LR).

LL RR LR all

no polarisation 22 42 14 22

(P−
l , P

+
l ) = (∓80%, 0) 22 41 4 16

(P−
l , P

+
l ) = (∓80%,±60%) 22 37 2 13

(P−
t , P

+
t ) = (80%, 60%) 20 26 8 15
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Chapter 6

Effective-Lagrangian approach to

gauge-boson couplings

As announced in Section 2.5 we now study an effective Lagrangian, where gauge in-
variant operators of dimension six are added to the SM Lagrangian before EWSB—the
ELb approach in the nomenclature of Section 2.5. This chapter is organised as follows:
In Section 6.1 we give an overview of the operators in our effective Lagrangian and
explain which operators contribute to the kinetic and mass terms of gauge bosons and
to the three- and four-gauge-boson couplings. In Section 6.2 we perform the simulta-
neous diagonalisation of the gauge-boson kinetic and mass terms. We then consider
the interactions of gauge bosons with fermions in Section 6.3 and define two different
sets of electroweak parameters, that we use to calculate the observables: one set, PZ ,
containing the Z mass, the other one, PW , containing the W mass. Although these
schemes are identical to the SM schemes P SM

Z and P SM
W , see Section 2.2, supplemented

by the anomalous couplings hi, the transformation of parameters between different
schemes here depends on the anomalous couplings and is therefore not as simple
as in the SM. We also give reasons for the introduction of more than one scheme
there. In Section 6.4 we present the bounds on the anomalous couplings from elec-
troweak precision measurements at LEP and SLC, except for direct measurements of
the three-gauge-boson vertices. In this context we use the scheme PZ. In Section 6.5
we give the relations of the standard couplings ∆gγ

1 , ∆κγ , etc. for the γWW and
ZWW vertices (see Chapter 5) to the couplings hi using PZ and, alternatively, us-
ing PW as input parameters. We derive bounds on the anomalous couplings of the
effective Lagrangian from measurements of TGCs at LEP2 using PZ. We analyse in
detail the reaction e+e− → WW at a future LC where we define effective γWW and
ZWW couplings using PW . We calculate the bounds obtainable on the anomalous
couplings using the results of Chapter 5 for this reaction. In Section 6.5 we also
mention some properties of the γγWW and γγH vertices that do not occur in the
observables that we consider in this work but play an important rôle in the reaction
γγ →WW at a collider with two high-energy photons in the initial state. The process
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γγ →WW will be studied in a forthcoming work [38]. Clearly, for a comparison of
the reactions e+e− →WW and γγ →WW the ELb framework is the most suitable
one. This is another motivation for treating e+e− →WW in the ELb approach in this
chapter, since our results here are required for the discussion of γγ →WW in [38].
In Section 6.6 we summarise the results of this chapter and give a brief overview of
the advantages of different modes at a future LC for the measurement of anomalous
gauge-boson couplings.

6.1 Effective Lagrangian

Our starting point is a gauge invariant effective Lagrange density Leff containing all
lepton- and baryon-number-conserving operators that can be built from SM fields,
see [36]. Let Λ be the scale of new physics and v ≈ 246 GeV again be the vacuum
expectation value of the Higgs field. Throughout this paper we assume

Λ � v. (6.1)

Then Leff can be expanded as

Leff = L0 + L1 + L2 + . . . , (6.2)

where L0 contains operators of dimension four, L1 of dimension five, L2 of dimension
six etc. The terms L1, L2, . . . give contributions of order (v/Λ), (v/Λ)2, . . . in the
amplitudes, thus (6.2) represents effectively an expansion in powers of (v/Λ).

Given the SM particle content, the general form of L0 is fixed as that of the
SM Lagrangian by gauge invariance. In the conventions of [1] it is given in (2.1),
where we have neglected neutrino masses and restricted ourselves to the electroweak
interactions.

The higher-dimensional operators in L1, L2 etc. in (6.2) describe the effects of
new physics at the scale Λ on the phenomenology at the weak scale v. Following [36],
we assume SU(3) × SU(2) × U(1) gauge invariance also for the new interactions. The
only Lorentz and gauge invariant operator of dimension five that can be constructed
from SM fields violates lepton-number conservation, see [36], and hence is not consid-
ered here. Thus, the leading-order addition to the SM Lagrangian is L2, which should
therefore lead to a good description of the new-physics effects at energies sufficiently
below Λ.

Out of the 80 dimension-six operators listed in [36] we consider all operators that
either consist only of electroweak gauge-boson fields, or that consist of gauge-boson
and Higgs fields. These are the following operators, see (3.5), (3.6) and (3.41) to
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(3.44) in [36]:

OW = εijk W
i ν
µ W j λ

ν W k µ
λ , OW̃ = εijk W̃

i ν
µ W j λ

ν W k µ
λ , (6.3)

OϕW =
1

2

(
ϕ†ϕ

)
W i

µνW
i µν , OϕW̃ =

(
ϕ†ϕ

)
W̃ i

µνW
i µν , (6.4)

OϕB =
1

2

(
ϕ†ϕ

)
BµνB

µν , OϕB̃ =
(
ϕ†ϕ

)
B̃µνB

µν , (6.5)

OWB =
(
ϕ†τ iϕ

)
W i

µνB
µν , OW̃B =

(
ϕ†τ iϕ

)
W̃ i

µνB
µν , (6.6)

O(1)
ϕ =

(
ϕ†ϕ

)
(Dµϕ)† (Dµϕ) , O(3)

ϕ =
(
ϕ†Dµϕ

)† (
ϕ†Dµϕ

)
. (6.7)

The field strengths W i
µν and Bµν are defined in (2.7). The covariant derivative Dµ is

defined in (2.6). Note that the signs in front of the gauge couplings in (2.6) and (2.7)
differ from the conventions of [36]. This leads to sign changes in some terms of the
operators (6.3) to (6.7) compared to [36]. Also our definition of the physical Higgs-
boson field in (2.11) differs from that of (4.21) in [36] by a factor of

√
2. The dual

field strengths are

W̃ i
µν =

1

2
εµνρσW

i ρσ, B̃µν =
1

2
εµνρσB

ρσ, (6.8)

with the sign definition ε0123 = +1 as in (5.5). The calculations in this chapter are
therefore based on the effective Lagrangian

Leff = L0 + L2, (6.9)

where L0 is the SM Lagrangian (2.1). The non-SM part with the dimension-six
operators is

L2 =
(
hWOW + hW̃OW̃ + hϕWOϕW + hϕW̃OϕW̃ + hϕBOϕB + hϕB̃OϕB̃

+ hWBOWB + hW̃BOW̃B + h(1)
ϕ O(1)

ϕ + h(3)
ϕ O(3)

ϕ

)
/v2, (6.10)

where we have devided by v2 in order to obtain dimensionless coupling constants
hi, with i = W, W̃ , ϕW, . . .. The hi are subsequently called anomalous couplings.
Nominally we have

hi = O(v2/Λ2). (6.11)

As in the SM, see Section 2.2, v is given in terms of the parameters from the La-
grangian as follows:

v =

√
µ2

λ
, (6.12)

because the anomalous operators (6.3) to (6.7) do not contribute to the Higgs-boson
potential.
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6.2 Symmetry breaking and diagonalisation in the

gauge-boson sector

Starting from the Lagrangian (6.9) we go now to the unitary gauge, that is we replace
the Higgs field everywhere by the expression (2.11) involving only the Higgs-vacuum-
expectation value v and the physical Higgs field H(x). If this is done for L0 we arrive
at the SM Lagrangian in unitary gauge, see (22.123) of [1]. It is convenient to take
this as starting point and consider the necessary changes due to the L2 term in (6.9)
subsequently. Let us, therefore, introduce boson fields A′

µ, Z ′
µ and W ′±

µ which would
be the physical gauge-boson fields if we considered only the SM Lagrangian L0. The
original W i

µ and Bµ fields are expressed in terms of these fields as follows:

W 1
µ =

1√
2

(
W ′+

µ +W ′−
µ

)
, W 3

µ = c′w Z
′
µ + s′w A

′
µ , (6.13)

W 2
µ =

i√
2

(
W ′+

µ −W ′−
µ

)
, Bµ = −s′w Z ′

µ + c′wA
′
µ , (6.14)

where

s′w ≡ sin θ′w =
g′√

g2 + g′ 2
, (6.15)

c′w ≡ cos θ′w =
g√

g2 + g′ 2
(6.16)

are the sine and cosine of the weak mixing angle in the SM, determined by the SU(2)
and U(1)Y couplings of L0. Without loss of generality we can assume g and g ′ to be
greater than zero and therefore have 0 ≤ θ′w ≤ π/2. The positron charge e′ of L0 is
given by

e′ = gs′w. (6.17)

Relations (6.13) to (6.17) completely agree with (2.12) to (2.18), except for the fact
that we have here primed the fields Z, A, W± and the constants sw, cw, e from
there. Here we write Z ′, A′, W

′± and e′ because in the framework of Leff these are
the physical fields and the physical positron charge only in the limit of vanishing
anomalous couplings hi. For non-zero hi the physical quantities Z, A, W± and e are
modified and (2.12) to (2.18) are no longer valid. The definitions of these physical
quantities in the framework of our effective Lagrangian here are given subsequently in
this chapter. Thus the unprimed quantities are defined such that they denote physical
quantites in both cases; however their relations to the quantities of the Lagrangians L0

in Chapter 2 and Leff here differ.
Now the next step is to consider the term L2 in (6.9), (6.10), and insert for the

Higgs field ϕ(x) everywhere (2.11) and for the gauge-boson fields (6.13), (6.14). We
see then easily that the original dimension-six operators in L2 give now contributions
to dimension-two, -three, -four, -five and -six terms.
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SM hW hW̃ hϕW hϕW̃ hϕB hϕB̃ hWB hW̃B h
(1)
ϕ h

(3)
ϕ

kinetic term
√ √ √ √

mass term
√ √ √

V ′W ′+W ′−
√ √ √ √ √ √

A′A′W ′+W ′−
√ √ √ √

A′A′H
√ √ √ √ √ √

Table 6.1: Contributions from SM Lagrangian and from operators (6.3) to (6.7) to
terms of the form V ′W ′+W ′−, A′A′W ′+W ′− and A′A′H with V ′ = A′ or Z ′, as well
as to kinetic and mass terms of the gauge bosons. Note that the contributions to the
physical γWW , ZWW and γγH vertices after the simultaneous diagonalisation are
different, see Table 6.5 below.

In Table 6.1 we list from which coupling constants in (6.10) corresponding to the
operators (6.3) to (6.7) we get contributions to the kinetic, the mass and coupling
terms of the gauge bosons in the basis W ′±, Z ′, A′. The kinetic terms receive con-
tributions only from OϕW , OϕB and OWB. The operators OϕW̃ , OϕB̃ or OW̃B do not
contribute there since their terms of second order in the boson fields vanish after par-
tial integration. The operators O

(1)
ϕ and O

(3)
ϕ contribute only to the gauge-boson-mass

terms.
In Table 6.1 we also show how the dimension-six operators contribute to those

gauge-boson and gauge-boson-Higgs vertices that are required for our studies. Note
that in Table 6.1 we show the contributions to the vertices where the operators are
still written in terms of the primed fields W ′±, Z ′, A′. The operators OW and OW̃

contribute both to the three- and to the four-gauge-boson couplings. The operators
OϕW , OWB and OW̃B contribute to the three-gauge-boson vertices with terms propor-
tional to v2. In addition, the operator OϕW also induces a four-gauge-boson vertex.
The operator OϕW̃ contributes neither to the TGCs, since the corresponding term
can be written as a total divergence, nor to the four-gauge-boson couplings because
the term of the form

εµνρσεijkεilmW
j
µW

k
ν W

l
ρW

m
σ (6.18)

vanishes for symmetry reasons. In addition, six operators give rise to a A′A′H vertex.
The dimension-six operators of L2 induce further vertices, e.g. Z ′Z ′H and W ′+W ′−H,
which are however not relevant for our calculations.

We see that with the inclusion of L2, the kinetic and the mass terms of the gauge
bosons do not have standard form any more due to additional contributions arising ac-
cording to Table 6.1. We have now to diagonalise the mass matrix and simultaneously
transform the kinetic matrix to the unit matrix to identify the physical gauge-boson
fields. The gauge-boson kinetic and mass terms of the effective Lagrangian (6.9) are
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given by
L

(2)
V + L

(2)
W , (6.19)

where

L
(2)
V = −1

4
V ′T

µν T
′ V ′µν +

1

2
V ′T

µ M ′ V ′µ , (6.20)

L
(2)
W = −1

2
(1 − hϕW )W ′+

µνW
′−µν +m′ 2

W

(
1 + h(1)

ϕ /2
)
W ′+

µ W ′−µ , (6.21)

V ′
µν = ∂µV ′

ν − ∂νV
′
µ , V ′

µ =
(
Z ′

µ, A
′
µ

)T
, (6.22)

W ′±
µν = ∂µW

′±
ν − ∂νW

′±
µ . (6.23)

Here we have introduced vector notation for the neutral primed gauge fields, and T ′

and M ′ are given by

T ′ =

(
a b

b d

)
, M ′ = m′ 2

Z

(
1 +

1

2

(
h(1)

ϕ + h(3)
ϕ

) )( 1 0

0 0

)
(6.24)

with

a = 1 − 2c′ws
′
whWB − c′ 2w hϕW − s′ 2w hϕB , (6.25)

b =
(
c′ 2w − s′ 2w

)
hWB + c′ws

′
w (hϕB − hϕW ) , (6.26)

d = 1 + 2c′ws
′
whWB − s′ 2w hϕW − c′ 2w hϕB . (6.27)

Further, we have defined

m′ 2
W =

g2v2

4
, (6.28)

m′ 2
Z =

(g2 + g′ 2)v2

4
. (6.29)

We see from (2.20) that m′
W and m′

Z would be the gauge-boson masses after EWSB
if we considered only the SM Lagrangian L0. Definitions (6.28) and (6.29) are in
accordance with our guideline to prime those quantities that are formally abbrevia-
tions of quantities from L0 but whose physical significance changes in the presence
of anomalous couplings, i.e. in the framework of Leff . In fact, we see below that the
physical gauge-boson masses mW and mZ differ from m′

W and m′
Z , respectively, for

non-zero anomalous couplings. Because of charge conservation there is no mixing
between charged and neutral gauge-boson fields in (6.19). Moreover, the matrix M ′

has only one non-zero entry (corresponding to Z ′Z ′) since terms of second order in
the gauge fields without derivatives can only come from operators with two covariant
derivatives of Higgs fields, that is from those of (6.7). There, due to (2.11), only the
massive gauge bosons contribute.
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We would like to find a basis in the fields such that (6.19) takes the standard form:

L
(2)
V = −1

4
(ZµνZ

µν + AµνA
µν) +

1

2
m2

ZZµZ
µ, (6.30)

L
(2)
W = −1

2
W+

µνW
−µν +m2

WW
+
µ W

−µ, (6.31)

where

Zµν = ∂µZν − ∂νZµ, (6.32)

Aµν = ∂µAν − ∂νAµ, (6.33)

W±
µν = ∂µW

±
ν − ∂νW

±
µ , (6.34)

are the field strengths of the physical gauge-bosons Z, A and W±, and mZ and mW

are (in lowest order) the physical masses of the Z and W bosons, respectively. For
the charged fields this can be easily achieved by a rescaling

m2
W =

(
1 + h

(1)
ϕ /2

1 − hϕW

)
m′ 2

W =

(
1 + h

(1)
ϕ /2

1 − hϕW

)
g2v2

4
, (6.35)

W±
µ =

√
1 − hϕW W ′±

µ . (6.36)

In the case of the neutral fields we perform a linear transformation

V ′
µ = C V µ, (6.37)

where
V µ = (Zµ, Aµ)

T. (6.38)

Choosing the non-orthogonal matrix

C =

( √
d/t 0

−b/
√
dt 1/

√
d

)
(6.39)

with t = ad− b2, we obtain the desired form

T = CTT ′C = � , M = CTM ′C =

(
m2

Z 0

0 0

)
, (6.40)

where � denotes the 2×2 unit matrix and the squared physical mass of the Z boson
is

m2
Z =

d

t

(
1 +

1

2

(
h(1)

ϕ + h(3)
ϕ

) )
m′ 2

Z =
d

t

(
1 +

1

2

(
h(1)

ϕ + h(3)
ϕ

) )g2 + g′ 2

4
v2. (6.41)
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We remark that this kind of diagonalisation has been done in [150], where the mix-
ing term of a W3 and a photon field is studied. A similar procedure is performed
in [151] where operators up to dimension five are considered. We see that the ex-
pressions (2.20) for the squared gauge-boson masses are again obtained in the limit
of vanishing anomalous couplings hi.

To analyse the phenomenology of the effective Lagrangian (6.9) we also have to
express the dimension-six operators (6.3) to (6.7) in terms of the physical fields W ±,
Z and A, and substitute the Higgs field according to (2.11). Due to (6.36), (6.37)
and (6.39) the Lagrangian (6.9), and in particular the γWW , ZWW , γγWW and
γγH vertices depend then on the anomalous couplings in a non-linear way. We list
these vertices in Section 6.5 where we treat the triple- and quartic-gauge couplings in
detail.

The diagonalisation has an important consequence concerning the operators OϕW

and OϕB. Notice that the v2-terms of these operators are proportional to the gauge
invariant kinetic terms of the SM Lagrangian, see the first two terms of (2.1). There-
fore, after the substitution of the physical fields, these operators do not give rise
to anomalous three- or four-gauge-boson couplings, see Section 6.5. However, these
operators contribute to the γγH vertex.

In the next section we shall analyse the consequences of the effective Lagrangian (6.9)
and of the diagonalisation (6.30)ff for the gauge-boson-fermion interactions.

6.3 Gauge-boson-fermion interactions and

electroweak parameters

The Lagrangian (6.9) contains the gauge couplings g and g ′, and the two parameters µ
and λ from the Higgs potential. Similarly to the SM µ and λ can be expressed in
terms of v and mH . We further have nine fermion masses, four parameters of the
CKM matrix V , and ten anomalous couplings hi. We denote the scheme that uses
these parameters as input by PL , see first column of Table 6.2. It contains the same
parameters as the SM scheme P SM

L
, see Section 2.2, plus the anomalous couplings hi.

The quantities s′w, c′w and e′, which are the sine and cosine of the weak mixing angle
and the positron charge if we set all anomalous couplings to zero, are given in terms
of the electroweak parameters in (6.15), (6.16) and (6.17). This leads to the standard
relations for the electroweak observables, in particular

s′ 2w = 1 − m′ 2
W

m′ 2
Z

, (6.42)

analogous to (2.23). However, with non-zero anomalous couplings, that is with the
full Lagrangian (6.9), the relations of the three parameters g, g ′ and v to observables
depend on the anomalous couplings.
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parameters PL scheme PZ scheme PW scheme

electroweak g, g′, v α(mZ), GF, mZ α(mZ), GF, mW

Higgs-boson mass mH mH mH

9 fermion masses mu,. . . , mτ mu,. . . , mτ mu,. . . , mτ

4 CKM parameters V V V

10 anomalous couplings hW ,. . . , h
(3)
ϕ hW ,. . . , h

(3)
ϕ hW ,. . . , h

(3)
ϕ

Table 6.2: Three parameter sets used in the analysis: original ones in Leff (6.9), and
those in the PZ and PW schemes.

In this section we take a look at the gauge-boson-fermion interactions and intro-
duce in addition to the original one two more sets of electroweak input parameters,
see Table 6.2. In these schemes, that we call PZ and PW , we choose in place of g, g′

and v as free parameters the fine structure constant at the Z scale, α(mZ), Fermi’s
constant GF, and the mass of the Z or W boson, respectively. Regarding the choice
of parameters the schemes PZ and PW are identical to the schemes P SM

Z and P SM
W ,

respectively, plus the anomalous couplings. However, the relations between PL , PZ

and PW involve the anomalous couplings hi and are therefore more complicated than
the relations between P SM

L
, P SM

Z and P SM
W . They are derived in this section below.

For our numerics in this chapter we again use the values from [2], which are listed in
Table 2.3. The small errors on these quantities are negligible for our purposes and
will be neglected below. We again use as input parameter α(mZ) and not the more
precisely known α(0), since most of the observables which we consider below refer
to a high scale of at least mZ . We recall that e denotes the positron charge at mZ ,
see (2.32). This is legitimate in tree-level calculations. How we include radiative
corrections in our calculations will be discussed in Section 6.4 below.

We use the scheme PZ for all LEP and SLC observables that we consider in
Section 6.4. In the scheme PZ, one can calculate the SM W -boson mass with a
certain theoretical accuracy. Using the effective Lagrangian (6.9) instead of the SM
Lagrangian gives a different prediction, mW . Indeed, as we will see in Section 6.4,
two anomalous couplings have an impact on mW in the PZ scheme. However, for our
analysis of e+e− →WW in Section 6.5.2 the use of the PZ scheme with mW depending
on the anomalous couplings is very inconvenient. In [34, 35] mW is assumed to be
a fixed parameter—as is legitimate and usually done in the FF approach—and not
expanded in anomalous couplings. This is for good reason: a change of mW changes
the kinematics of e+e− →WW and the reconstruction of the final state. Therefore,
in Section 6.5.2 we use the PW scheme with mW instead of mZ as input. In this case
the Z mass is a derived quantity that depends on the anomalous couplings hi.

In order to define the input parameters of the two schemes PZ and PW we con-
sider the fermion-gauge-boson-interaction part Lint of the Lagrangian (6.9). Since
we have not explicitly added any gauge-boson-fermion operators we get—in the orig-
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inal parameters—the SM expression. In terms of the fields A′
µ, Z ′

µ and W ′±
µ , (6.13)

and (6.14), we have thus—see (22.77), (22.123) of [1]—

Lint = −e′
(
A′

µJ µ
em +

1

s′wc
′
w

Z ′
µJ ′µ

NC +
1√
2s′w

(
W ′+

µ J µ
CC + H.c.

))
(6.43)

with the SM currents

J µ
em = ψγµ(T3 + Y)ψ, (6.44)

J ′µ
NC = ψγµT3ψ − s′ 2w J µ

em, (6.45)

J µ
CC = ψγµ(T1 + iT2)ψ. (6.46)

Here ψ is the spinor for all lepton and quark fields. With the mere SM Lagrangian, e′

is the physical positron charge. Including the dimension-six operators we can express
the interaction terms through the physical fields using (6.36) to (6.39):

Lint = −e
(
AµJ µ

em +GNCZµJ µ
NC +GCC

(
W+

µ J µ
CC + H.c.

))
, (6.47)

where the physical positron charge (at the Z scale) is given by

e =
√

4πα(mZ) =
e′√
d
, (6.48)

and the physical neutral current by

J µ
NC = ψγµT3ψ − s2

effJ µ
em (6.49)

with

s2
eff ≡ sin2 θlept

eff = s′ 2w +
b

d
s′wc

′
w. (6.50)

The neutral- and charged-current couplings are

GNC =
1

s′wc
′
w

d√
t
, GCC =

1√
2s′w

√
d√

1 − hϕW

. (6.51)

The electromagnetic, the neutral- and the charged-current interactions are modi-
fied by the anomalous couplings in a universal way for fermions with the same quan-
tum numbers. With our definition (6.50) of the effective leptonic weak mixing angle
the neutral current (6.49) has the same form as in the SM, cf. (6.45). We write the
neutral current as

J µ
NC =

∑

f

1

2
f
(
gf
Vγ

µ − gf
Aγ

µγ5

)
f, (6.52)

where f denotes any fermion. Then we find for the vector and axial-vector neutral-
current couplings of leptons

g`
V = 2s2

eff − 1

2
, g`

A = −1

2
, (6.53)
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with ` = e, µ, τ . Using (6.53), we find the usual expression for s2
eff [152]

sin2 θlept
eff =

1

4

(
1 − g`

V

g`
A

)
. (6.54)

Fermi’s constant is given by two charged-current interactions in the low energy
limit where the W -boson propagator becomes point-like, see e.g. Section 22.3 of [1]:

GF =

√
2e2

4m2
W

G2
CC. (6.55)

It is related to the vacuum expectation value of the Higgs field through

v =
(√

2GF

)−1/2 (
1 + h(1)

ϕ /2
)−1/2

. (6.56)

This is obtained by inserting in (6.55) for e, GCC and mW the expressions following

from (6.48), (6.51) and (6.35), respectively. For h
(1)
ϕ = 0, (6.56) becomes the tree-level

SM relation (2.30). Using (6.56) and (2.29) the Higgs-boson self-coupling λ is given
by

λ =
GFm

2
H√

2

(
1 +

1

2
h(1)

ϕ

)(
1 +

1

2

(
h(1)

ϕ + h(3)
ϕ

))
. (6.57)

The last factor on the right hand side stems from the renormalisation of the Higgs-
boson field, which is necessary because the two operators (6.7) contribute to the
kinetic terms of the Higgs-boson. This renormalisation can be performed similarly to
that of the W± bosons but has no further consequences for the observables considered
in this thesis. In the following two subsections we determine how the remaining
original parameters of the Lagrangian (6.9) are related to our input parameters in
the PZ and PW schemes. Knowing these relations one can express all constants in
the Lagrangian by the anomalous couplings hi and by either of the two electroweak
parameter sets.

6.3.1 PZ scheme

We now show how the original parameters in the effective Lagrangian (6.9), are
expressed by the input parameters of the PZ scheme, see Table 6.2. The physical
Z mass mZ and α(mZ) are given in terms of the PL parameters in (6.41) and (6.48),
respectively. In the PZ scheme the W mass mW is a derived quantity. The relation of
mW to the PL parameters is given in (6.35). We use (6.35), the relation (6.42) and
express m′

Z by means of (6.41) to obtain the tree-level result for the squared W mass
in the framework of the effective Lagrangian (6.9):

m2
W =

t

d

1 + h
(1)
ϕ /2(

1 − hϕW

)(
1 +

(
h

(1)
ϕ + h

(3)
ϕ

)
/2
)c′ 2wm2

Z , (6.58)
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Inserting (6.51) and (6.58) in (6.55) we obtain an equation for s′w:

s′ 2w =
1

2



1 −

√√√√1 − e2√
2GFm

2
Z

d2

t

1 + (h
(1)
ϕ + h

(3)
ϕ )/2

1 + h
(1)
ϕ /2



 . (6.59)

Note that d and t contain s′w and c′w, see (6.25) to (6.27). Therefore (6.59) is only an
implicit equation for s′w, which is not easy to solve exactly. We denote the right-hand
side of (6.59) for the case where all anomalous couplings are set to zero by s2

0:

s2
0 ≡

1

2

(
1 −

√
1 − e2√

2GFm
2
Z

)
, c20 ≡ 1 − s2

0. (6.60)

Hence s0 and c0 are not independent parameters but combinations of input parameters
in the PZ scheme. In the SM, they are identical to the sine and cosine of the weak
mixing angle. To linear order in the anomalous couplings we obtain from (6.59) in
the PZ scheme

s′ 2w = s2
0

(
1 + c20 (hϕW − hϕB) +

4s0c
3
0

c20 − s2
0

hWB +
c20

2 (c20 − s2
0)
h(3)

ϕ

)
. (6.61)

Expanding (6.50) to first order in the couplings we find in the PZ scheme

s2
eff = s2

0

(
1 +

c0
s0(c20 − s2

0)
hWB +

c20
2(c20 − s2

0)
h(3)

ϕ

)
. (6.62)

Using (6.61) and (6.62) the quantities s′w, c′w and s2
eff in (6.49) and (6.51) can be

expressed as functions of s0 and anomalous couplings in the linear approximation.
The neutral- and charged-current couplings (6.51) read to first order in the anomalous
couplings in the PZ scheme

GNC =
1

s0c0

(
1 − 1

4
h(3)

ϕ

)
, (6.63)

GCC =
1√
2s0

(
1 +

s0c0
s2
0 − c20

hWB +
c20

4(s2
0 − c20)

h(3)
ϕ

)
. (6.64)

For non-zero anomalous couplings an exact result for the W -boson mass is, in prin-
ciple, obtained by inserting the solution for s′w from (6.59) into (6.58). Expanding to
first order in the anomalous couplings we obtain in the PZ scheme

mW = c0mZ

(
1 +

s0c0
s2
0 − c20

hWB +
c20

4 (s2
0 − c20)

h(3)
ϕ

)
. (6.65)

This equation is a relation at tree-level. The way in which radiative corrections are
taken into account in our analysis is explained at the beginning of Section 6.4. For
the vacuum expectation value v of the Higgs field we obtain to linear order in the
anomalous couplings in the PZ scheme, expanding in (6.56)

v =
(√

2GF

)−1/2 (
1 − h(1)

ϕ /4
)
. (6.66)
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6.3.2 PW scheme

Similarly as in the preceding subsection we now express various quantities in the
PW scheme, see Table 6.2. Inserting (6.51) into (6.55) and solving for s′ 2w we obtain

s′ 2w =
e2

4
√

2GFm
2
W

d

1 − hϕW

. (6.67)

Notice that in this equation d contains s′w and c′w. Therefore it is only an implicit
equation for s′ 2w like (6.59). For the case where all hi are zero the right-hand side
of (6.67) is given by

s2
1 ≡

e2

4
√

2GFm2
W

, c21 ≡ 1 − s2
1. (6.68)

Here s1 and c1 are combinations of input parameters of PW . Expanding (6.67) to
linear order in the anomalous couplings we obtain in the PW scheme

s′ 2w = s2
1

(
1 + c21 (hϕW − hϕB) + 2s1c1hWB

)
. (6.69)

We expand (6.50) to first order in the hi:

s2
eff = s2

1

(
1 +

c1
s1

hWB

)
. (6.70)

For the neutral-current coupling (6.51) we find to first order in the anomalous cou-
plings in PW

GNC =
1

s1c1

(
1 +

s1

c1
hWB

)
. (6.71)

Here due to (6.55) and (6.68) the charged-current coupling is given exactly by

GCC =
1√
2s1

, (6.72)

and not modified by anomalous couplings. Using the relationm′
Z = m′

W/c
′
w, cf. (6.42),

as well as (6.35) and (6.41) we find for the squared Z mass in PW

m2
Z =

d

t

(
1 +

(
h

(1)
ϕ + h

(3)
ϕ

)
/2
)(

1 − hϕW

)

1 + h
(1)
ϕ /2

m2
W

c′ 2w
, (6.73)

where for s′w in d and t the solution to (6.67) has to be inserted, and c′w =
√

1 − s′ 2w .
So far this is an exact expression for mZ . To first order in the hi the Z mass is

mZ =
mW

c1

(
1 +

s1

c1
hWB +

1

4
h(3)

ϕ

)
. (6.74)

For the vacuum expectation value v to linear order in the hi we have the same
expression as in the PZ scheme, (6.66).
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6.4 Limits from LEP and SLC

In this section we discuss the impact of the additional operators on precision ob-
servables measured at LEP and SLC. As mentioned before we use the PZ scheme
in the entire Section 6.4. Our procedure is as follows: We calculate the tree-level
prediction Xtree of an observable in the framework of the effective Lagrangian (6.9).
Then Xtree can be expanded to first order in hi

Xtree = XSM
tree

(
1 +

∑

i

hiX̂i

)
, (6.75)

where XSM
tree is the result if we set all anomalous couplings to zero, that is the result

one obtains from the tree-level calculation with the mere SM Lagrangian. At higher
loop-order both Xtree and XSM

tree receive corrections. We expand the complete result
X as

X = XSM

(
1 +

∑

i

hiX̂i

)
+ ∆X̃, (6.76)

where XSM is the complete SM result and the X̂i are the same expressions as in (6.75).

The term ∆X̃ contains radiative corrections times anomalous couplings and quadratic
terms in anomalous couplings and will be neglected in the following. To get bounds
on the hi we insert the experimental values for X and use the well-known higher-order
results for XSM. The linear parts X̂i are obtained from the tree-level expansion (6.75).
The experimental errors δX together with the theoretical uncertainties δXSM of the
SM calculation allow us then to derive bounds on the hi. The theoretical values XSM

depend on the unknown Higgs mass mH and we shall discuss the bounds as functions
of mH .

As first observable we consider the leptonic mixing angle (6.50) for which we get
in the PZ scheme (6.62). There we can identify s0 from (6.60) as the tree-level SM
result

sSM
eff

∣∣
tree

= s0. (6.77)

According to (6.76) and (6.62) we set now

s2
eff =

(
sSM
eff

)2
(

1 +
c0

s0(c20 − s2
0)
hWB +

c20
2(c20 − s2

0)
h(3)

ϕ

)

=
(
sSM
eff

)2 (
1 + 3.39hWB + 0.71h(3)

ϕ

)
. (6.78)

Here sSM
eff is the leptonic mixing angle in the SM, including radiative corrections, and

the numerical values are obtained with the numbers from Table 2.3.
The partial widths of the Z into a pair of fermions calculated from the La-

grangian (6.9) on tree-level are

Γff|tree =
e2mZ

48π
G2

NCN
f
cχf , χf =

(
gf
V

)2
+
(
gf
A

)2
, (6.79)
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where N f
c = 1 for leptons and N f

c = 3 for quarks. For neutrinos, charged leptons, up-
and down-type quarks we get, respectively,

χν =
1

2
, χ` =

1

2
− 2s2

eff + 4s4
eff , (6.80)

χu =
1

2
− 4

3
s2
eff +

16

9
s4
eff , χd =

1

2
− 2

3
s2
eff +

4

9
s4
eff . (6.81)

In (6.79) we have neglected all fermion masses. Setting all anomalous couplings to
zero we find expressions for the tree-level partial widths in the SM as in Chapter 25
of [1]. The partial widths in (6.79) depend on the anomalous couplings through
GNC (6.63) and through s2

eff in χf . Expanding (6.79) to first order in the anomalous
couplings and using our prescription (6.76), we obtain the following results for the
invisible partial width, the width into one pair of charged leptons e+e−, µ+µ− or
τ+τ−, the hadronic and the total widths:

Γinv = ΓSM
inv

(
1 − h

(3)
ϕ

2

)
, (6.82)

Γ`` = ΓSM
``

(
1 +

4s0c0(4s
2
0 − 1)hWB

1 − 6s2
0 + 16s4

0 − 16s6
0

+
(−1 + 2s2

0 + 4s4
0) h

(3)
ϕ

2 − 4s2
0(3 − 8s2

0 + 8s4
0)

)
, (6.83)

Γhad = ΓSM
had

(
1 +

4s0c0(44s2
0 − 21)hWB

45 − 174s2
0 + 256s4

0 − 176s6
0

+
(−45 + 90s2

0 + 4s4
0) h

(3)
ϕ

90 − 348s2
0 + 512s4

0 − 352s6
0

)
,

(6.84)

ΓZ = ΓSM
Z

(
1 +

40s0c0(8s
2
0 − 3)hWB

63 − 246s2
0 + 400s4

0 − 320s6
0

+
(−63 + 126s2

0 + 40s4
0)h

(3)
ϕ

126 − 492s2
0 + 800s4

0 − 640s6
0

)
.

(6.85)

Using (6.60) and the numbers from Table 2.3 we get numerically

Γinv = ΓSM
inv (1 − 0.50h(3)

ϕ ), (6.86)

Γ`` = ΓSM
`` (1 − 0.47hWB − 0.60h(3)

ϕ ), (6.87)

Γhad = ΓSM
had(1 − 1.12hWB − 0.74h(3)

ϕ ), (6.88)

ΓZ = ΓSM
Z (1 − 0.82hWB − 0.67h(3)

ϕ ). (6.89)

Notice that s2
eff , Γ``, Γhad and ΓZ all depend on the couplings hWB and h

(3)
ϕ in a

different way. In contrast, the hadronic pole cross section σ0
had as well as R0

` , R
0
b and

R0
c [6] depend only on s2

eff since they are defined in terms of ratios of the partial and
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total widths, such that the anomalous couplings enter only through the quantities χf ,
see (6.79) to (6.81):

σ0
had =

12π

m2
Z

ΓeeΓhad

Γ2
Z

, (6.90)

R0
` = Γhad/Γ``, R0

b = Γbb/Γhad, R0
c = Γcc/Γhad. (6.91)

Note the deviating definition of the leptonic ratio where Γhad appears in the numer-
ator. Also another group of observables, the quantities

Af = 2gf
Vg

f
A/χf , (6.92)

and the forward-backward asymmetries

A0,f
FB =

3

4
AeAf , (6.93)

are solely functions of s2
eff :

Aν = 1, A` =

(
1

2
− 2s2

eff

)
/χ`, (6.94)

Au =

(
1

2
− 4

3
s2
eff

)
/χu, Ad =

(
1

2
− 2

3
s2
eff

)
/χd. (6.95)

We thus find that a large number of the observables listed in the summary table 16.1
of [6] with the combined results from LEP1, SLC, LEP2 and further W -boson mea-
surements depend only on the anomalous couplings through s2

eff , that is in the linear
combination (6.78). These are the observables

A`(Pτ ), A`(SLD), A0,`
FB, s

2
eff(〈QFB〉), A0,b

FB, A
0,c
FB, (6.96)

Γinv/Γ``, R
0
b, R

0
c , Ab, Ac, (6.97)

σ0
had, R

0
` . (6.98)

Their functional dependence on s2
eff is the same as in the SM. From the six observ-

ables (6.96) the following value for s2
eff is extracted in Table 15.4 of [6]:

s2
eff = 0.23148 ± 0.00017. (6.99)

The errors of the observables (6.97) are much larger than those of the observables (6.96)
and therefore do not affect this result within rounding errors, which we have checked
explicitly using the tree-level expressions of the observables (6.97). Among the ob-
servables (6.96) the leptonic ones tend to give smaller values for s2

eff than the hadronic
ones. This has recently been mentioned in [153]. We note that this discrepancy can-
not be cured by the anomalous couplings that we consider in this chapter since any
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s2
eff , ΓZ , σ0

had, R
0
`

mH 120 GeV 200 GeV 500 GeV δh× 103

hWB ×103 −0.26 −0.44 −0.68 0.81

h
(3)
ϕ ×103 0.38 −0.24 −2.08 2.81

Table 6.3: Prediction of CP conserving couplings in units of 10−3 from the observables
listed in the first row. For s2

eff the result (6.99) from the observables (6.96) is used.
The results are computed for a Higgs mass of 120 GeV, 200 GeV and 500 GeV,
respectively. The errors δh on the couplings and the correlation between the two
errors are independent of the Higgs mass within rounding errors. The correlation
is −86%.

choice for hWB and h
(3)
ϕ leads to one particular value of s2

eff and the observables de-
pend on s2

eff as in the SM. For the two observables (6.98) results are given in Table 2.3
(“with lepton universality”) of [6], where they are correlated with mZ , ΓZ and A0,`

FB.
In our scheme PZ the Z mass is an input parameter. The forward-backward asym-
metry A0,`

FB is already included in the result for s2
eff in (6.99). We thus exclude mZ

and A0,`
FB from the predictions in Table 2.3 of [6] by projecting the error ellipsoid onto

the subspace of ΓZ, σ0
had and R0

` . Since ΓZ depends on the couplings hWB and h
(3)
ϕ

in a different way than s2
eff we can in this way extract values on these two couplings

from (6.99) and Table 2.3 of [6]. The SM predictions for σ0
had, R

0
` and in particular

for ΓZ and s2
eff depend on mH . Their numerical values are taken from Figures 15.4

and 16.6 of [6]. In Table 6.3 we list the results for the anomalous couplings extracted
from (6.99), ΓZ, σ0

had and R0
` for a Higgs mass of 120 GeV, 200 GeV and 500 GeV,

respectively. The errors include the uncertainties in the SM predictions, which are
mainly due to the uncertainties in ∆α

(5)
had(m

2
Z), αs(m

2
Z) and mt.

We now want to include in the analysis of the anomalous couplings the data of
W -mass and -width measurements. The expansion of mW has already been given
in (6.65). For the total width of the W boson we get from (6.47), (6.64) and (6.65)
at tree-level, neglecting fermion masses,

ΓW |tree =
3e2mW

8π
G2

CC (6.100)

= ΓSM
W

∣∣
tree

(
1 +

3s0c0
s2
0 − c20

hWB +
3c20

4 (s2
0 − c20)

h(3)
ϕ

)
, (6.101)

where ΓSM
W

∣∣
tree

= 3e2c0mZ/(16πs2
0). In the PZ scheme the total width ΓW depends

on the same linear combination of anomalous couplings as mW , see (6.65), and is

three times more sensitive to changes of hWB and h
(3)
ϕ . Now we use again our general

prescription (6.76) and insert numerical values for s0 and c0 following from Table 2.3.
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s2
eff , ΓZ , σ0

had, R
0
` , mW , ΓW

mH 120 GeV 200 GeV 500 GeV δh× 103

hWB ×103 −0.04 −0.20 −0.43 0.79

h
(3)
ϕ ×103 −1.17 −1.88 −3.81 2.39

Table 6.4: Same as Table 6.3, but here mW and ΓW are included as observables. The
correlation of the errors is −88%.

We obtain then

mW = mSM
W (1 − 0.78hWB − 0.36h(3)

ϕ ), (6.102)

ΓW = ΓSM
W (1 − 2.35hWB − 1.07h(3)

ϕ ). (6.103)

We recall that in the presence of anomalous couplings all charged-current interactions
are modified in a universal way. Consequently, we obtain the same relation (6.101)
for all partial widths of the W boson. The branching ratios of the W boson are
therefore not changed by anomalous effects, in contrast to those of the Z boson. We
use the experimental values given in (16.1) and (16.2) of [6] derived from LEP, SLC
and Tevatron data

mW = 80.449 ± 0.034, (6.104)

ΓW = 2.136 ± 0.069, (6.105)

where the error correlation is −6.7%. Using the SM values shown in Figure 16.9 of [6]
as function of the Higgs mass and combining the bounds from mW and ΓW with the
results from Table 6.3 we get the bounds on the couplings hWB and h

(3)
ϕ as listed in

Table 6.4.

6.5 Three- and four-gauge-boson couplings

We now turn to the bounds on the anomalous couplings hi from measurements of
γWW and ZWW couplings at LEP2 [6] and the prospects to measure these couplings
at a future LC. The former is done in Section 6.5.1 using the scheme PZ, the latter
in Sections 6.5.2 and 6.5.3 using PW and suitably defined effective TGCs. A general
parameterisation of the two triple-gauge-boson vertices by an effective Lagrangian in
the ELa approach (see Section 5.1) requiring only Lorentz invariance and Hermiticity
consists of 14 real parameters. The parameterisation of Hagiwara et al. is given
in (5.1). The ZWW couplings involve the mixing angle θw of the SM. In the ELa
approach this θw is well defined. It is also unique at least at tree-level.
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We recall that in the FF approach the same expression (5.1) is usually written
down but allowing the coupling constants to be complex numbers, as done in Chap-
ter 5. Then L

HPZH
V WW should not be considered as an effective Lagrangian but only as a

convenient shorthand description for the γWW - and ZWW - form factors generated
by using (5.1) in Feynman rules to first order.

Here we want to compare the parameters hi of our Lagrangian (6.9)—which is
in the ELb approach—to the parameters in (5.1). From the outset we must make it
clear that such a comparison raises problems. In the ELa approach the dimension ≤ 4
terms in the Lagrangian are exactly the SM ones. In the ELb approach investigated
in this chapter on the other hand the dimension ≤ 4 terms receive anomalous contri-
butions. The relations between the hi and the couplings gV

1 ,. . . , λ̃V of (5.1) which we
shall derive below are thus only valid supposing that the anomalous contributions to
dimension ≤ 4 terms are negligible. For a specific process one can take into account
these contributions by defining effective TGCs, as we shall do in Section 6.5.2 below
for the reaction e+e− →WW .

We now derive the relations of the parameters of (5.1) to the hi in the approxima-
tion where terms of the Lagrangian (6.9) that are of second or higher order in hi are
neglected. The sine of the angle θw in (5.6) will be identified with s0 in the PZ scheme
and with s1 in the PW scheme. The fact that we have an ambiguity here reflects again
the differences of the ELa and ELb approaches.

We denote by LγWW and LZWW the parts of the Lagrangian (6.9)—expressed in
terms of the physical fields W±, A and Z—that consist of two W boson fields and one
photon or Z-boson field, respectively. Without any approximation the γWW part is
given by

LγWW

(−ie) =
(
W+

µνW
−µ −W−

µνW
+µ
)
Aν +

(
1 +

c′w
s′w

hWB

(1 − hϕW )

)
W+

µ W
−
ν A

µν

+
6
√

2GFs
′
w

e
√
d

(1 + h
(1)
ϕ /2)

(1 − hϕW )
W+

λµW
−µ

ν

(
hWA

νλ + hW̃ Ã
νλ
)

+
c′w
s′w

hW̃B

(1 − hϕW )
W+

µ W
−
ν Ã

µν, (6.106)

where Ãµν = (1/2)εµνρσA
ρσ, and d is defined in (6.27). To obtain the term propor-

tional to hW̃ in (6.106) we have used the Shouten identity. Depending on whether we
are in the scheme PZ or PW , s′w is a solution to (6.59) or (6.67), respectively. The
ZWW part reads

LZWW

(−ie) = f−
(
W+

µνW
−µ −W−

µνW
+µ
)
Zν +

(
f− − f+

hWB

1 − hϕW

)
W+

µ W
−
ν Z

µν (6.107)

+ f̂
(1 + h

(1)
ϕ /2)

(1 − hϕW )
W+

λµW
−µ

ν

(
hWZ

νλ + hW̃ Z̃
νλ
)
− f+

hW̃B

1 − hϕW
W+

µ W
−
ν Z̃

µν,
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where Z̃µν = (1/2)εµνρσZ
ρσ and

f+ =
1√
t

(
d+

bc′w
s′w

)
, f− =

1√
t

(
dc′w
s′w

− b

)
, (6.108)

f̂ =
6
√

2GFs
′
w

e
√
d

f−. (6.109)

Again, for the term in (6.107) proportional to hW̃ the Shouten identity is applied.
Expanding the coefficients of the operators in (6.106) and (6.107) to first order in the
anomalous couplings and comparing with the Lagrangian (5.1) we find the following
relations between the two sets of couplings, in the PZ scheme:

∆gZ
1 =

s0

c0 (s2
0 − c20)

hWB +
h

(3)
ϕ

4 (s2
0 − c20)

, ∆gγ
1 = 0, (6.110)

∆κZ =
2s0c0
s2
0 − c20

hWB +
h

(3)
ϕ

4 (s2
0 − c20)

, ∆κγ =
c0
s0
hWB, (6.111)

λZ = 6s0c
2
0

√
2GFm

2
ZhW/e, λγ = 6s0c

2
0

√
2GFm

2
ZhW/e, (6.112)

κ̃Z = −s0

c0
hW̃B, κ̃γ =

c0
s0

hW̃B, (6.113)

λ̃Z = 6s0c
2
0

√
2GFm

2
ZhW̃/e, λ̃γ = 6s0c

2
0

√
2GFm

2
ZhW̃/e, (6.114)

gγ
4 = gZ

4 = gγ
5 = gZ

5 = 0. (6.115)

Equations (6.110) to (6.112) relate CP conserving couplings whereas (6.113) and (6.114)
relate CP violating ones. The couplings gγ

4 and gZ
4 are CP violating whereas gγ

5 and
gZ
5 are CP conserving. From (6.110) to (6.115) we see that in our ELb framework

the anomalous γWW and ZWW vertices depend only on five anomalous parameters,
three of them CP conserving (hW , hWB , h

(3)
ϕ ), two of them CP violating (hW̃ , hW̃B).

The 14 anomalous couplings in (5.1) thus obey 9 relations. These well known gauge
relations are

∆gγ
1 = 0, (6.116)

∆κZ = ∆gZ
1 − s2

0

c20
∆κγ , (6.117)

λZ = λγ, (6.118)

κ̃γ = −c
2
0

s2
0

κ̃Z , (6.119)

λ̃γ = λ̃Z, (6.120)

gγ
4 = gZ

4 = gγ
5 = gZ

5 = 0. (6.121)

However, one has to keep in mind that although the number of TGCs is reduced
in the ELb approach compared to the ELa approach anomalous effects can occur at
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other vertices or propagators, see e.g. our treatment of the reaction e+e− →WW in
Section 6.5.2 below.

Using the scheme PW , we find in the linear approximation instead of (6.110)
to (6.115)

∆gZ
1 = 0, ∆gγ

1 = 0, (6.122)

∆κZ = −s1

c1
hWB , ∆κγ =

c1
s1
hWB, (6.123)

λZ = 6s1

√
2GFm

2
WhW/e, λγ = 6s1

√
2GFm

2
WhW/e, (6.124)

κ̃Z = −s1

c1
hW̃B , κ̃γ =

c1
s1
hW̃B, (6.125)

λ̃Z = 6s1

√
2GFm

2
WhW̃/e, λ̃γ = 6s1

√
2GFm

2
WhW̃/e, (6.126)

gγ
4 = gZ

4 = gγ
5 = gZ

5 = 0. (6.127)

Notice that h
(3)
ϕ does not enter here in PW such that the number of couplings to

describe the anomalous γWW and ZWW vertices in the PW scheme is one less than
in the PZ scheme. We have here two CP conserving couplings (hW , hWB) and two
CP violating ones (hW̃ , hW̃B). The gauge relations (6.116) to (6.121) also hold in
the scheme PW if we substitute s0 and c0 by s1 and c1. In the PW scheme we have a
further gauge relation

∆gZ
1 = 0. (6.128)

Thus we find in our locally SU(2) × U(1) symmetric theory that the number of in-
dependent CP conserving TGCs is three if we choose the PZ scheme. This agrees
with the results of [154]. However, if we choose PW , which is actually the convenient
scheme for the direct measurement of TGCs in W -boson-pair production there is one
TGC less. However, the hi also enter in fermion-boson vertices, Higgs-boson vertices
and boson masses. In fact, we shall see in Section 6.5.2 that the coupling h

(3)
ϕ affects

the differential cross section of e+e− →WW although we use the scheme PW .
Without approximation the γγWW part of (6.9) is

LγγWW

(−e2)
=

(
W+

µ W
−µAνA

ν −W+
µ W

−
ν A

µAν
)

(6.129)

− 6s′w

ev2
√
d

hWAλµ + hW̃ Ãλµ

(1 − hϕW )

( (
AµW+

ν − AνW
+µ
)
W−νλ + H.c.

)

Using the formulae of Section 6.3 it is straightforward to calculate the linear approx-
imation of (6.129) for the two schemes.

The terms containing two photon fields and one Higgs field in the effective La-
grangian (6.9) after diagonalisation are

vd LγγH =
1

2

(
s′ 2w hϕW + c′ 2w hϕB − 2c′ws

′
whWB

)
AµνA

µνH (6.130)

+
(
s′ 2w hϕW̃ + c′ 2w hϕB̃ − c′ws

′
whW̃B

)
ÃµνA

µνH.
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SM hW hW̃ hϕW hϕW̃ hϕB hϕB̃ hWB hW̃B h
(1)
ϕ h

(3)
ϕ

γWW
√ √ √ √ √

ZWW
√ √ √ √ √

PZ

γγWW
√ √ √

γγH
√ √ √ √ √ √

Table 6.5: Contributions of the SM Lagrangian and of the anomalous operators to
different vertices in linear order in the hi after the simultaneous diagonalisation. Only
those vertices are listed that are relevant for our observables. This does not coincide
with the contributions to operators of the respective structure before the simultaneous
diagonalisation, see Table 6.1. The coupling h

(3)
ϕ contributes to the ZWW vertex in

the scheme PZ but not in PW .

Here we have neglected an additional factor that arises due to the renormalisation
of the Higgs-boson field—see the remark below (6.57)—because this gives no con-
tributions to linear order in the hi. In the linear approximation we simply have to
substitute the factor vd on the left hand side by (

√
2GF)−1/2 and s′w (c′w) on the right

hand side by s0 (c0) in the PZ scheme, and by s1 (c1) in the PW scheme.
We summarise in Table 6.5 which couplings contribute to the γWW , ZWW ,

γγWW and γγH vertices if we consider only terms that are linear in the hi.

6.5.1 Bounds from LEP2

For the CP conserving couplings we use the values from Table 11.7 in [6]

∆gZ
1 = 0.051 ± 0.032, (6.131)

∆κγ = −0.067 ± 0.061,

λγ = −0.067 ± 0.038.

The errors given in [6] are not symmetric. Here we make the conservative choice to
take the larger of the lower and upper errors. The correlations, in the order ∆gZ

1 ,
∆κγ , λγ from the same reference are




1 0.23 −0.30

1 −0.27

1


 . (6.132)

The remaining two non-zero CP conserving couplings ∆κZ and λZ are not considered
as independent in [6], but are assumed to be given by the gauge relations (6.117)
and (6.118). From the values (6.131) and (6.132) we therefore obtain, using (6.110)
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to (6.112), the following values and errors for our anomalous couplings

hW = −0.069 ± 0.039, (6.133)

hWB = −0.037 ± 0.033,

h(3)
ϕ = −0.029 ± 0.112,

and the correlations, in the order hW , hWB, h
(3)
ϕ ,




1 −0.27 0.36

1 −0.80

1


 . (6.134)

We repeat that these constraints are only approximate as in our ELb framework non-
SM effects do not only occur at the three-boson vertices, but also at the fermion-boson
vertices and through mW . The bounds (6.133) on the hi are thus only valid to the

approximation that these effects are negligible.1 The constraints on hWB and h
(3)
ϕ de-

rived from TGC measurements are much weaker than the constraints from Table 6.4.
Combining the results from Table 6.4 with (6.133) and (6.134) we find the values
and errors as listed in Table 6.6. These are the final values for the CP conserving
couplings that we can derive from LEP1, SLC, LEP2 and further W -boson measure-
ments. The value and error of hW is almost independent of mH . Electroweak data
predicts a value for hW of about −0.06. Since the errors on hWB and h

(3)
ϕ are almost

uncorrelated with the error on hW , we can consider the bounds on hWB and h
(3)
ϕ sep-

arately. Their error ellipses are shown in Figure 6.1. Interestingly, a large Higgs mass
is allowed by the data if hWB and h

(3)
ϕ are of order ∼ 10−3.

For the CP violating couplings we use the weighted average of the single parameter
measurements given in [106] and [107]

λ̃Z = 0.067 ± 0.080, κ̃Z = −0.018 ± 0.046. (6.135)

In these analyses the relations (6.119) and (6.120) of the CP violating photon cou-
plings with the CP violating Z couplings are assumed to hold. Using the val-
ues (6.135) we get from (6.113) and (6.114) the results listed in Table 6.7. These
results are independent of mH . Since—in contrast to the CP conserving couplings—
the CP violating couplings do not affect the boson-fermion couplings or the W mass
these bounds are accurate in the sense that no such effects are neglected.

As mentioned above, see (6.11), a natural choice for the coefficients hi in (6.10) is
hi = αiv

2/Λ2 where Λ is the new-physics scale and the αi are of order one. Setting

1In the following subsection we show that one can take into account the effects from anomalous
fermion-boson couplings and anomalous boson masses by defining effective TGCs. However, to this
end each physics reaction must be considered separately. Here we use the combined results from
various processes and one cannot easily avoid this simplification.
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s2
eff , ΓZ , σ0

had, R
0
` , mW , ΓW , TGCs

mH 120 GeV 200 GeV 500 GeV δh× 103

hW ×103 −62.4 −62.5 −62.8 36.3 1 −0.007 0.008

hWB ×103 −0.06 −0.22 −0.45 0.79 1 −0.88

h
(3)
ϕ ×103 −1.15 −1.86 −3.79 2.39 1

Table 6.6: Final results from already existing data for CP conserving couplings in
units of 10−3 for a Higgs mass of 120 GeV, 200 GeV and 500 GeV. The anomalous
couplings are extracted from the observables listed in the first row using (6.99). The
errors δh and the correlations of the errors are independent of the Higgs mass with
the accuracy given here. The correlation matrix is given on the right.

TGCs

h δh

hW̃ 0.068 0.081

hW̃B 0.033 0.084

Table 6.7: Final results from already existing data for CP violating couplings. The
anomalous couplings are extracted from TGC measurements at LEP2 in various pro-
cesses.
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Figure 6.1: Error ellipses of hWB and h
(3)
ϕ for different Higgs masses.
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mH [GeV] 120 200 500

hW 0.78 0.78 0.78

hWB 8.4 7.7 7.0

h
(3)
ϕ 4.1 3.8 3.1

hW̃ 0.64 0.64 0.64

hW̃B 0.72 0.72 0.72

Table 6.8: Lower bounds Λi on the new-physics scale Λ in TeV from the values
of different anomalous couplings hi obtained from the results in Tables 6.6 and 6.7
according to (6.136). The numbers are given for a Higgs mass of 120 GeV, 200 GeV
and 500 GeV, respectively.

αi = 1 and using the numbers from Tables 6.6 and 6.7 we find lower bounds Λi on
the scale of new physics according to

Λi =
v√

|hi| + δhi

. (6.136)

These bounds are listed in Table 6.8. New physics that give rise to non-zero hW , hW̃

or hW̃B may be seen at a LC in the one-TeV-range. Those affecting h
(3)
ϕ can lead to

visible effects at a multi-TeV machine like CLIC, whereas hWB will probably be out
of reach in the near future.

To first order in the anomalous couplings none of the observables considered so
far depends on hϕW , hϕW̃ , hϕB , hϕB̃ or h

(1)
ϕ . This does not change when taking into

account optimal observables for e+e− →WW with the effective couplings, see the fol-
lowing Section 6.5.2. However, four couplings that cannot be determined with present
data or in e+e− →WW at a future LC have an impact on the differential cross section
for W -pair production at a photon collider, which we will study in a future work [38].
To be precise, one linear combination of hϕW and hϕB and one linear combination of
hϕW̃ and hϕB̃ can be measured including data from this reaction. Then only three
anomalous-coupling combinations, that is the other two linear combinations of these
four couplings as well as h

(1)
ϕ , cannot be determined. We summarise this result in

Table 6.9 where we show which coupling combinations can be measured by means
of which observables. In the right column we list all observables that we use in this
work or in [38].

6.5.2 Effective couplings for e+e− → WW

Here we would like to derive bounds on the anomalous couplings hi from results calcu-
lated for the reaction e+e− → WW in Chapter 5. There all 14 complex parameters to
describe the general γWW and ZWW vertices are taken into account, see (5.1), but
the fermion-boson vertices, mZ and mW are supposed to be as in the SM. Therefore
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PZ scheme

hWB , h
(3)
ϕ s2

eff , ΓZ , σ
0
had, R

0
` , mW , ΓW

hW , hWB , h
(3)
ϕ 3 CP conserving TGCs

hW̃ , hW̃B 2 CP violating TGCs

PW scheme

hW , hWB , h
(3)
ϕ , hW̃ , hW̃B effective couplings in e+e− →WW

hW , hWB, hW̃ , hW̃B ,

(s2
1hϕW + c21hϕB), (s2

1hϕW̃ + c21hϕB̃)

}
optimal observables for γγ →WW

Table 6.9: Anomalous couplings and observables for their measurement in the respec-
tive schemes, in which they are considered in our studies. With the ensemble of all
these observables five couplings can be measured independently. In addition, of the
two couplings hϕW and hϕB one linear combination can be extracted. The same is
true for hϕW̃ and hϕB̃.

we have to analyse carefully to which extent bounds on our anomalous couplings hi

can be obtained from the numbers of Chapter 5. Consider the two cases, the ELb
framework using the Lagrangian (6.9) with all anomalous couplings and the ELa
framework of the Lagrangian (5.1) with only anomalous TGCs. In both cases the
process e+e− →WW has to be calculated at tree-level from three sorts of diagrams,
t-channel neutrino exchange, s-channel photon and s-channel Z exchange, see Fig-
ures 6.2 to 6.4. The various anomalous contributions in each figure are explained
below. In Chapter 5 to linear order in the anomalous TGCs the errors on their imag-
inary parts are not correlated with the errors on their real parts. This is because
integrated observables are used and the respective anomalous amplitudes obtain dif-
ferent signs under the combined discrete symmetry CP T̃ of CP and a näıve time
reversal T̃ , that is the simultaneous flip of all spins and momenta without interchang-
ing initial and final state. Thus, whether or not the imaginary parts are included in
the analyses of Chapter 5 plays no rôle when we look at the sensitivity to the real
parts. For the real parts, the errors on the CP conserving couplings are not corre-
lated with the ones on the CP violating couplings in the linear approximation, and
the two groups of couplings can be considered separately, see Chapter 5. In principle,
the derivation of the bounds on the hi would require a complete calculation of the
process e+e− →WW → 4 fermions in the framework of the Lagrangian (6.9) using
optimal observables. To first order in the couplings the errors on CP conserving
and CP violating couplings are not correlated also in this case. However, in such an
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Figure 6.2: Neutrino-exchange diagram.
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Figure 6.3: Photon-exchange diagrams. SM diagram (a) and diagram with anomalous
γWW couplings (b).

analysis also anomalous effects from the couplings of the Z boson to fermions, which
modify the s-channel Z exchange as well as anomalous contributions to mW (mZ)
must be taken into account if we use the scheme PZ (PW ), see (6.65) and (6.74). Fur-
thermore, in the scheme PZ the anomalous couplings have an impact on the couplings
of the W boson to fermions, whereas in PW they have not due to (6.72). Since mW is
treated as a fixed parameter in Chapter 5 it is convenient to choose the PW scheme
for the analysis in this section. Moreover this simplifies the analysis because in PW

the neutrino-exchange amplitude contains no anomalous effects. The CP violating
couplings appear in the reaction e+e− →WW only at the three-gauge-boson vertices.
Thus the errors and correlations of these couplings can be obtained directly from the
results in Chapter 5 by using (6.125) to (6.127). In contrast, in the CP conserving
case we obtain anomalous contributions to the vertices eeZ, γWW and ZWW and to
mZ from the Lagrangian (6.9). Therefore in the framework of the Lagrangian (6.9),
all diagrams of Figures 6.2 to 6.4 contribute to e+e− →WW in zeroth or linear order
in the hi. The blob denotes anomalous couplings (without the SM contribution to the
respective vertex), and the diagram (b) in Figure 6.4 with the box denotes s-channel
Z-boson exchange with a modified Z mass in the propagator minus the SM diagram,
which is the diagram (a). Notice that the W -decay amplitudes remain unchanged by
the hi in the PW scheme.

After this discussion of the calculation of the amplitudes for e+e− →WW in our
present ELb approach we compare it to the FF calculation of Chapter 5 which can
be considered as an ELa approach if we set all imaginary parts of coupling constants
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Figure 6.4: Z-boson-exchange diagrams. SM diagram (a) and anomalous contribu-
tions from the modification of the Z mass (b), from anomalous eeZ couplings (c) and
anomalous ZWW couplings (d).

there to zero. In the ELa framework of Chapter 5 the diagrams of Figures 6.2 and 6.3
and only (a) and (d) of Figure 6.4 occur. We will now show that the diagrams
(b) and (c) of Figure 6.4, that is the anomalous effects at the eeZ coupling and
in mZ , can be completely shifted to diagram (b) in Figure 6.3 and diagram (d) in
Figure 6.4 by defining new effective γWW and ZWW couplings. For given values of
the couplings hi, which modify the TGCs, the fermion-boson couplings and mZ in the
ELb framework of the Lagrangian (6.9), one can compute values for these effective
anomalous TGCs. Then calculating the process e+e− → WW in the ELa framework
using (5.1) with merely (effective) anomalous TGCs leads to the same differential
cross section as calculating it with all anomalous vertices in ELb. This means the
amplitudes for the process are only computed from the diagram in Figure 6.2, both
diagrams in Figure 6.3 and diagrams (a) and (d) in Figure 6.4, but with suitably
defined effective γWW and ZWW couplings.

We start from the Lagrangian (6.9) and denote the parts of the amplitudes for
e+e− →WW obtained from the tree-level diagrams for t-channel neutrino exchange,
and s-channel photon and Z exchange by Aν, Aγ and AZ, respectively. First we
assume that these amplitudes are the full expressions without linearisation in the hi.
Thus these amplitudes do not correspond to the sum of the diagrams in Figures 6.2
to 6.4, where we have assumed that all terms of second or higher order in the anoma-
lous couplings are neglected and the diagrams with the various anomalous contribu-
tions can therefore be summed linearly. The linearisation is done in a second step be-
low. The amplitude Aν is identical to the neutrino t-channel exchange in the SM. The
amplitude Aγ is affected by the anomalous couplings only at the γWW vertex. How-
ever, we will define effective γWW couplings below because some contributions from
the Z exchange will be carried over to the photon exchange. The amplitude AZ is af-
fected by anomalous couplings at the eeZ and ZWW vertices, as well as through mZ .
Now consider the currents (6.44) and (6.49) for a certain charged lepton species ` (in
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our case ` is the electron):

J µ
em(`) = `γµ(T3 + Y)`, (6.137)

J µ
NC(`) = `γµT3`− s2

effJ µ
em(`). (6.138)

Further, we denote the vertex functions for the γWW and ZWW vertices obtained
from the Lagrangian terms LγWW and LZWW , see (6.106) and (6.107), by ΓγWW and
ΓZWW , respectively. They include SM as well as anomalous contributions, and no
linear approximation in the hi is performed yet. We have then for the sum of the
amplitudes for photon and Z exchange in the PW scheme:

Aγ + AZ ∝ J µ
em(`)

1

s
ΓγWW +GNCJ µ

NC(`)
1

s−m2
Z

ΓZWW (6.139)

= J µ
em(`)

1

s
ΓγWW |eff +GSM

NC

(
`γµT3`− s2

1J µ
em(`)

) 1

s− (mSM
Z )

2 ΓZWW |eff ,

where we have defined

GSM
NC =

1

s1c1
, mSM

Z =
mW

c1
, (6.140)

and the effective vertex functions

ΓγWW |eff = ΓγWW +
s

s−m2
Z

GNC

(
s2
1 − s2

eff

)
ΓZWW , (6.141)

ΓZWW |eff =
GNC

GSM
NC

s−
(
mSM

Z

)2

s−m2
Z

ΓZWW . (6.142)

The squared c.m. energy of the electron-positron system is denoted by s. From (6.139)
we see that the sum of Aγ and AZ can be calculated from the diagrams in Fig-
ure 6.3 and diagrams (a) and (d) in Figure 6.4 if we use the vertex functions ΓγWW |eff
and ΓZWW |eff instead of ΓγWW and ΓZWW . Expanding the coefficients of ΓZWW

in (6.141) and (6.142) to linear order in the hi we have, using (6.70),

ΓγWW |eff = ΓγWW − s

s−m2
W/c

2
1

hWBΓZWW , (6.143)

ΓZWW |eff =

{
1 +

s1

c1
(1 + 4P (s))hWB + P (s)h(3)

ϕ

}
ΓZWW (6.144)

with

P (s) =
m2

W/2

c21s−m2
W

. (6.145)

We can now think of ΓγWW |eff and ΓZWW |eff as vertex functions emerging from the
Lagrangian terms (6.106), (6.107) and containing couplings ∆gγ

1 |eff , ∆gZ
1

∣∣
eff

, etc.

instead of ∆gγ
1 , ∆gZ

1 , etc. Taking into account the additional factor of (c1/s1) in the
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SM couplings of ΓZWW compared to the SM couplings of ΓγWW we obtain to linear
order in the hi from (6.122) and (6.123)

∆gγ
1 |eff = −c

3
1

s1

2s

m2
W

P (s)hWB, (6.146)

∆κγ |eff = −2c1
s1

P (s)hWB, (6.147)

∆gZ
1

∣∣
eff

=
s1

c1
(1 + 4P (s))hWB + P (s)h(3)

ϕ , (6.148)

∆κZ |eff = P (s)

(
4s1

c1
hWB + h(3)

ϕ

)
. (6.149)

With all other couplings λγ|eff , λZ |eff , etc. of the vertex functions ΓγWW |eff and
ΓZWW |eff we drop the subscript “eff” and write λγ, λZ , etc. as usual since they
are related to the hi as before according to (6.124) to (6.127). In the high-energy
limit s� m2

W we obtain from (6.146) to (6.149)

∆gγ
1 |eff ≈ −c1

s1
hWB , (6.150)

∆κγ |eff ≈ 0, (6.151)

∆gZ
1

∣∣
eff

≈ s1

c1
hWB, (6.152)

∆κZ |eff ≈ 0. (6.153)

The effective couplings do therefore not depend on h
(3)
ϕ in this limit. We recall that

three of the gauge relations in the PW scheme are

∆gγ
1 = 0, (6.154)

∆gZ
1 = 0, (6.155)

∆κZ = ∆gZ
1 − s2

1

c21
∆κγ , (6.156)

see (6.116), (6.117) with s0 → s1 and c0 → c1, and (6.128). Here, instead of these
three relations we obtain two relations among the effective couplings

∆gγ
1 |eff = c21

s

m2
W

∆κγ|eff , (6.157)

∆κZ |eff = ∆gZ
1

∣∣
eff

− s2
1

c21
∆κγ |eff (−2P (s))−1 . (6.158)

Notice the extra factor in the brackets in (6.158) compared to the conventional rela-
tion (6.156). Instead of (6.158) one can also choose a relation, whose coefficients are
energy independent:

∆κZ |eff = ∆gZ
1

∣∣
eff

− s2
1

c21

(
∆κγ |eff − ∆gγ

1 |eff
)
. (6.159)
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However, not both gauge relations between the effective couplings ∆gγ
1 |eff , ∆κγ |eff ,

∆gZ
1

∣∣
eff

and ∆κZ |eff can be chosen with energy independent coefficients. This can be
seen in the following way: Assume that in addition to (6.159) there is a gauge relation

A ∆gγ
1 |eff +B ∆gZ

1

∣∣
eff

+ C ∆κγ|eff +D ∆κZ |eff = 0, (6.160)

where A, B, C and D are constants. In the limit s� m2
W , cf. (6.150) to (6.153), we

obtain from (6.160)
Bs2

1 = Ac21. (6.161)

Now, assuming (6.160) to be independent from (6.159), we can without loss of gen-
erality set A = 0. Due to (6.161) we then have also B = 0. The relation (6.160)
is then a relation solely between ∆κγ |eff and ∆κZ |eff , which is not possible because
these couplings are obviously independent, see (6.147) and (6.149). Thus no such re-
lation (6.160) with energy independent coefficients exists. Instead at least one gauge
relation, e.g. (6.157), depends on s. To summarise we obtain the following gauge
relations among the effective couplings (as mentioned above for all but four couplings
we drop the subscript “eff”):

∆gγ
1 |eff = c21

s

m2
W

∆κγ |eff , (6.162)

∆κZ |eff = ∆gZ
1

∣∣
eff

− s2
1

c21
∆κγ|eff (−2P (s))−1 , (6.163)

λZ = λγ, (6.164)

κ̃γ = −c
2
1

s2
1

κ̃Z , (6.165)

λ̃γ = λ̃Z, (6.166)

gγ
4 = gZ

4 = gγ
5 = gZ

5 = 0. (6.167)

Instead of (6.163) one may take the relation (6.159) with energy independent coeffi-
cients.

Numerically, using again the numbers from Table 2.3, we find from (6.124) to (6.127)
that the couplings λZ ,. . . , gZ

5 are expressed as linear combinations of the parameters hi

in the following way:

λZ = 0.980hW , λγ = 0.980hW , (6.168)

κ̃Z = −0.544hW̃B , κ̃γ = 1.84hW̃B, (6.169)

λ̃Z = 0.980hW̃ , λ̃γ = 0.980hW̃ , (6.170)

gγ
4 = gZ

4 = gγ
5 = gZ

5 = 0. (6.171)
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For
√
s = 500 GeV we further obtain with (6.146) to (6.149)

∆gγ
1 |eff = −1.90hWB, (6.172)

∆κγ |eff = −0.064hWB, (6.173)

∆gZ
1

∣∣
eff

= 0.582hWB + 0.017h(3)
ϕ , (6.174)

∆κZ |eff = 0.038hWB + 0.017h(3)
ϕ . (6.175)

For
√
s = 800 GeV, we have instead of (6.172) to (6.175)

∆gγ
1 |eff = −1.86hWB, (6.176)

∆κγ |eff = −0.024hWB, (6.177)

∆gZ
1

∣∣
eff

= 0.558hWB + 0.007h(3)
ϕ , (6.178)

∆κZ |eff = 0.014hWB + 0.007h(3)
ϕ . (6.179)

In the high-energy limit s� m2
W we obtain from (6.150) to (6.153)

∆gγ
1 |eff ≈ −1.84hWB , (6.180)

∆κγ |eff ≈ 0, (6.181)

∆gZ
1

∣∣
eff

≈ 0.544hWB, (6.182)

∆κZ |eff ≈ 0. (6.183)

From the measurements of ∆gγ
1 |eff , ∆κγ |eff ,. . . , gZ

5 in the reaction e+e− →WW at a

future LC, see [34, 35], we can thus get bounds on hW , hWB, h
(3)
ϕ , hW̃ and hW̃B if s

is not too large. In the high-energy limit s� m2
W the CP conserving coupling h

(3)
ϕ

cannot be measured in this way.

6.5.3 Bounds from e+e− → WW at a linear collider

In this section we discuss the reaction e+e− →WW , to be measured at a future LC,
in view of its sensitivity to the anomalous couplings hi. We assume unpolarised e+

and e− beams and standard expected values for the integrated luminosities [14, 19]
500 fb−1 at

√
s = 500 GeV, 1 ab−1 at

√
s = 800 GeV and 3 ab−1 at

√
s = 3 TeV. We

use the errors for all TGCs in the parameterisation (5.1), as given for
√
s = 500 GeV

and
√
s = 800 GeV in Tables 5.25 and 5.29, respectively, and take into account their

correlations (which are not listed there). We further use the corresponding results
calculated for

√
s = 3 TeV. From these values we can extract the errors obtainable

for the hi using (6.168) to (6.179) by conventional error propagation. We give the
errors and correlations at c.m. energies of 500 GeV, 800 GeV and 3 TeV for the
CP conserving couplings in Tables 6.10 to 6.12 and for the CP violating ones in
Table 6.13. The errors of hW , hWB, hW̃ and hW̃B at 500 GeV are considerably smaller

than the one on h
(3)
ϕ . Notice that h

(3)
ϕ becomes unmeasurable in the high-energy limit,
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h δh× 103 hW hWB h
(3)
ϕ

hW 0.28 1 0.09 −0.23

hWB 1.05 1 0.37

h
(3)
ϕ 26.8 1

Table 6.10: Errors in units of 10−3 and correlations of the CP conserving couplings
at c.m. energy

√
s = 500 GeV.

h δh× 103 hW hWB h
(3)
ϕ

hW 0.12 1 0.06 −0.10

hWB 0.90 1 0.40

h
(3)
ϕ 35.8 1

Table 6.11: Same as Table 6.10 but for
√
s = 800 GeV.

cf. (6.180) to (6.183). At
√
s = 3 TeV we thus obtain no bound on h

(3)
ϕ . For all other

measurable couplings the errors become much smaller with rising energy. Notice that
the error correlations decrease with rising energy and the four measurable couplings
are almost uncorrelated at

√
s = 3 TeV.

6.6 Comparison of different linear-collider modes

Now we would like to summarise the results of this chapter and compare the various
modes of a future LC with respect to the sensitivity to the anomalous couplings hi

in the ELb framework. In this chapter we have analysed the phenomenology of
the gauge-boson sector of an electroweak locally SU(2) × U(1) invariant effective
Lagrangian. In addition to the SM Lagrangian we took into account anomalous
coupling terms from the ten operators of dimension six that consist either only of
the SM gauge fields or of SM gauge fields and the SM Higgs-doublet field. We found
that after EWSB some anomalous terms contribute to the diagonal and off-diagonal
kinetic terms of the neutral gauge bosons and to the mass terms of the W and the
Z boson. This made necessary to first identify the physical gauge-boson fields as

h δh× 103 hW hWB

hW 0.018 1 0.02

hWB 0.69 1

Table 6.12: Errors in units of 10−3 and correlations of the CP conserving couplings
in the high-energy limit at c.m. energy

√
s = 3 TeV.
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√
s δhW̃ × 103 δhW̃B × 103 corr.

500 GeV 0.28 2.2 17%

800 GeV 0.12 1.4 9%

3 TeV 0.018 0.77 2%

Table 6.13: Errors in units of 10−3 and correlations of the CP violating couplings at
different c.m. energies.

linear combinations of the fields that originally occur in the Lagrangian. In this way,
in addition to the gauge-boson self-interactions, also the neutral- and charged-current
interactions were modified. We have studied the impact of anomalous couplings onto
LEP and SLC observables. For a large class of observables the anomalous effects only
show up through a modified effective leptonic weak mixing angle, see Section 6.4.
The functional dependence of these observables on the effective mixing angle is the
same as in the SM. Thus the discrepancy between the predictions for this angle
from hadronic and leptonic observables cannot be obtained by non-zero anomalous
couplings from our boson operators. The observables ΓZ , mW and ΓW , depend on the
anomalous couplings in a different way and therefore lead to further constraints. From
all these observables we obtain bounds of order 10−3 for the dimensionless couplings
hWB and h

(3)
ϕ . These bounds depend on mH .

Turning then to the TGCs we found that in addition to the two couplings hWB

and h
(3)
ϕ one more CP conserving coupling, hW , and the two CP violating cou-

plings hW̃ and hW̃B modify the γWW and ZWW vertices in the scheme PZ . In the
scheme PW the triple-gauge-boson vertices are parameterised by one coupling less
than in PZ. In other words there is an additional gauge relation in the scheme PW .
However, both with PZ and with PW some CP conserving couplings also change
the boson-fermion interactions. For the specific reaction e+e− →WW and using PW

we have defined effective TGCs such that all anomalous effects are absorbed into
the three-gauge-boson vertices. The anomalous gauge-boson-fermion interactions are
thus fully taken into account here (in the approximation linear in the hi) though
in the explicit calculation of the differential cross section everything apart from the
TGCs is assumed to be SM like. With the effective couplings one more parameter
re-enters the differential cross-section in the scheme PW . The gauge relations between
the effective couplings are different from those between standard TGCs. At least one
gauge relation contains the squared c.m. energy s of the electron-positron system, the
other relation can chosen to be energy independent.

For the bounds derived from LEP2 data that include various processes and not
only W -boson-pair production we have used PZ and only considered the conventional
TGCs. This gives exact results for the CP violating couplings, but only approximate
results for the CP conserving ones, since we have neglected the modified W mass and
boson-fermion interactions there. For the couplings hWB and h

(3)
ϕ the direct LEP2
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measurements do not give tighter bounds than the other LEP and SLC observables.
However, we obtain in addition bounds on hW , hW̃ and hW̃B of order 0.1.

Our summary of the presently available information on the anomalous couplings hi

is presented in Tables 6.6 and 6.7 and in Figure 6.1. We find that the data is consis-
tent with a light Higgs boson, mH = 120 GeV and practically vanishing anomalous
couplings. But also a heavy Higgs boson, mH ≈ 500 GeV, is in accordance with the
present data if only small anomalous couplings hWB and h

(3)
ϕ of order 10−3 are intro-

duced in the gauge-boson sector, see Figure 6.1. Moreover the data prefers a value
for hW of −0.06 over hW = 0 at the 2σ level, see Table 6.6.

We have investigated in detail the effects of our effective Lagrangian on the reac-
tion e+e− →WW at a future LC. To this end we have used the results from Chapter 5
obtained for solely TGCs in the most general parameterisation. These analyses have
been done with optimal observables and the derived constraints on the hi therefore
give the optimal bounds that one can obtain in this reaction from the normalised
event distribution. Here we have used the scheme PW and our technique with the
effective vertices ΓγWW |eff and ΓZWW |eff . For most couplings the bounds obtainable
with standard expected values for the integrated luminosities are δhi around a few
10−4 to 10−3 at a c.m. energy

√
s = 500 GeV and are greatly improved with rising

energy. Only one coupling, h
(3)
ϕ , is not measurable in the high-energy limit.

The Giga-Z mode at TESLA, see Section 5.1.4 of [15], will be particularly inter-

esting to accurately measure hWB and h
(3)
ϕ . A measurement at the Z pole with an

event rate that is about 100 times that of LEP1, should in essence reduce the errors δh
given in Table 6.3 by a factor 10. Thus hWB and h

(3)
ϕ can then be measured with an

accuracy of some 10−4. However, systematical errors can become more important
there [89].

A very interesting opportunity for the exploration of the electroweak gauge-boson
sector is the measurement of the differential cross section of γγ →WW at a photon
collider, which we shall explore in a future work [38]. Here two new coupling combi-
nations can be determined that cannot be measured with the other options that we
have considered.

We have seen that experiments performed in the past as well as the Giga-Z-,
the e+e−- and the γγ-options at a future LC all provide and will provide useful and
complementary information on the gauge-boson sector. At present a non-zero value
is preferred for hW at the 2σ level, while small hWB and h

(3)
ϕ can make a heavy SM

Higgs boson with mH ≈ 500 GeV compatible with the data. The present bounds on
the CP violating couplings are rather loose. In the future, with data from all three
mentioned LC modes seven out of ten anomalous coupling combinations can be mea-
sured. Our study in this thesis and in the paper to follow on the reaction γγ → WW
should make it clear that exploring the electroweak gauge structure needs a compre-
hensive study at a future LC, where all running modes are needed and will reveal
interesting complementary aspects.
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Chapter 7

Conclusions

Now we summarise the results of this thesis and give an outlook. Since a number
of concluding remarks are given at the end of Chapters 3, 5 and 6 these conclusions
are rather brief. As mentioned in the Introduction the SM provides a theoretically
consistent and experimentally successful description of the known particles and their
electroweak interactions. An important ingredient for spontaneous symmetry break-
ing of the electroweak gauge group SU(2) × U(1) down to the electromagnetic gauge
group U(1)em is the Higgs boson, which has yet to be found. In Chapter 2 we have
given a compact overview of Higgs-boson search strategies and of ways to determine
its properties. Further we have presented some common arguments why a discovery
of (at least) one Higgs boson or some alternative scenario is likely at the future hadron
collider LHC and at electron-positron colliders like TESLA, NLC, JLC and CLIC.
Finally, at a high energy scale Λ the SM is likely to be replaced by a different theory,
of which the SM is a low-energy effective theory valid at energies tested at present.
Going to scales of order TeV at the future accelerators, one may therefore encounter
deviations from the SM. A class of models with comparatively little modifications
of the SM are those with two or more Higgs doublets while no further particles or
fundamental forces are introduced. We have studied some aspects of such a model
in Chapter 3, viz., the conditions that have to be imposed on the parameters of the
Higgs potential in order to result in a stable theory with correct EWSB. These criteria
can be written in terms of rather implicit but very elegant formulae. We have applied
these conditions to different examples of more specific models from the literature.
Within this thesis however we could not attempt the vast field of how to produce and
detect the corresponding Higgs bosons. Certainly, to predict the production and de-
cay rates of these particles one has to take a look at the full Lagrangian, in particular
at the Higgs-gauge-boson couplings and the Yukawa interactions which is beyond the
scope of the present work. As mentioned at the end of Chapter 3 sum rules can help
to relate different vertices to each other. Furthermore, for such models CP violation
in the Higgs sector is an interesting topic as mentioned in the Introduction.

In Chapters 4 to 6 we have presented two approaches for the parameterisation of
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new physics at a high energy scale Λ in a model-independent way; a form-factor ap-
proach and an effective-Lagrangian approach. We have thereby restricted ouselves to
the gauge-boson sector and explored observable consequences of anomalous, i.e. non-
SM, interactions at a future LC both in the one-TeV and in the multi-TeV range.
In the effective-Lagrangian approach bounds were also obtained from various LEP
observables. In order to determine the strongest bounds that can be obtained in a
certain reaction at a future LC we applied the optimal-observable technique. Chap-
ter 4 was dedicated to an explanation of this method.

In Chapter 5 we applied a form-factor approach for the γWW and ZWW vertices
to the reaction e+e− →WW at a future LC. We considered all 28 real parameters
and the correlations of their errors. Using optimal observables the correlations ap-
pear to lowest order in the anomalous couplings only within four different symmetry
classes; these classes are defined according to the behaviour of the different couplings
under CP and CP T̃ . However, up to eight anomalous couplings are still correlated.
A simultaneous diagonalisation allowed to get an insight in the sensitivity to different
directions in coupling-constant space. We studied extensively the dependence of the
sensitivity on longitudinal beam polarisation, where the diagonalisation clarified the
situation. We further found one coupling combination that cannot be measured with
unpolarised or longitudinally polarised beams, which was shown from the analytic ex-
pressions of the differential cross section and confirmed numerically using the optimal
observables. To determine this coupling combination it is necessary to spend some
fraction of the total luminosity at a future LC also on the transverse polarisation
mode. Our comparison shows that for the other couplings longitudinal polarisation
is advantageous.

In Chapter 6 a second way was presented of how new physics can be taken into
account in a model-independent study at a future LC. Ten dimension-six operators
were added to the SM Lagrangian before EWSB. Their ten coefficients, the anomalous
couplings, parameterise the new-physics effects. After EWSB also new dimension-two
terms occur such that first the physical gauge-bosons had to be identified. They were
found to be linear combinations of the gauge-boson fields that occur in the effective
Lagrangian. As a result—in addition to the gauge-boson self-interactions—also gauge-
boson-fermion interactions and gauge-boson masses are modified. Thus, in fact, also
measurements at LEP1, SLC and further W -boson measurements deliver constraints
on the anomalous couplings. We reproduced the well-known result that for zero-
anomalous couplings the electroweak measurements are consistent with a light Higgs
boson, mH ≈ 120 GeV. Interestingly, turning on anomalous couplings of order 10−3

allows a heavy Higgs with mH ≈ 500 GeV. Furthermore a careful translation of the
bounds from the form-factor approach in Chapter 5 to the effective-Lagrangian ap-
proach in Chapter 6 was performed. We found that different modes, e+e−, γγ and
Giga-Z, at a future LC all provide complementary information on the anomalous
couplings and are indispensable for a comprehensive study.

Therefore it will be an important and challenging task for experiments at future

178



high-energy colliders to precisely determine the interactions among gauge bosons and
to explore in detail the structure of the Higgs sector, both being key issues of the
electroweak Standard Model and certainly both giving rise to plenty of open questions
to date.
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Appendix A

Abbreviations

We use the following abbreviations in this thesis:

ATLAS A toroidal LHC apparatus

CMS Compact muon solenoid

ELa Effective Lagrangian after electroweak symmetry breaking

ELb Effective Lagrangian before electroweak symmetry breaking

EWSB Electroweak symmetry breaking

FF Form-factor

LC Linear collider

MSSM Minimal supersymmetric model

POWER Polarization at work in energetic reactions

RG Renormalisation group

SM Standard Model

TGCs Triple gauge couplings

THDM Two-Higgs-doublet model

Here a list of the various abbreviations for past and future accelerators referred
to in this work:

CLIC Compact Linear Collider

JLC Japanese Linear Collider

LEP Large Electron Positron Collider

LHC Large Hadron Collider

NLC Next Linear Collider

SLC Slac Linear Collider

TESLA TeV-Energy Superconducting Linear Accelerator
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Appendix B

Conventions for e+e−
→ WW

This and the following two appendices refer to Chapter 5. Momenta and helicities
of incoming and outgoing particles are denoted as in Figure 5.1. We evaluate the
production amplitude in the frame obtained from the one in Figure 5.1 by a rotation
of Θ around the y-axis, so that the new z′-axis points along the W− momentum. For
the respective polarisation vectors ελ and ελ of W− and W+ we choose in this frame

ε± =
1√
2

(0,∓1,−i, 0),

ε0 =
1

mW
(q3, 0, 0, q0),

ε± =
1√
2

(0,∓1, i, 0),

ε0 =
1

mW

(−q3, 0, 0, q0).

The four-spinors for the initial leptons are expressed through two-spinors χ in the
usual way [1], with

χτ=+1 =

(
cos

Θ

2
,− sin

Θ

2

)
, χτ=−1 =

(
sin

Θ

2
, cos

Θ

2

)
(B.1)

for the electron and

χ τ=+1 =

(
sin

Θ

2
, cos

Θ

2

)
, χ τ=−1 =

(
− cos

Θ

2
, sin

Θ

2

)
(B.2)

for the positron. The evaluation of the diagrams in Figure 5.3 then leads to (5.25),
where the d-functions are defined in the usual fashion:

d1
τ,0 = − τ√

2
sin Θ, (B.3)

d1
τ,±1 =

1

2
(1 ± τ cos Θ), (B.4)

d2
τ,±2 = ±1

2
(1 ± τ cos Θ) sinΘ. (B.5)
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For the W -decay tensors (5.18) one has

dDλ′λ = 24πmW Γ(W− → f1f2) lλ′ l∗λ d(cosϑ) dϕ ,

dDλ′λ = 24πmW Γ(W+ → f3f4) lλ′ l
∗

λ d(cosϑ) dϕ , (B.6)

where

l− = d+(ϑ) e−iϕ, l− = d+(ϑ) eiϕ,

l0 = −d0(ϑ), l0 = −d0(ϑ),

l+ = d−(ϑ) eiϕ, l+ = d−(ϑ) e−iϕ (B.7)

with d±(x) = (1 ± cos x)/
√

2 and d0(x) = sin x.
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Appendix C

Phase conventions of the helicity

states

To make the discrete-symmetry properties of the initial state (cf. Section 5.3) more
apparent, we present in detail our phase conventions of the helicity states in this
appendix. The resulting criteria for CP and RCP T̃ invariance of the spin-density
matrix are shown in Appendix D. Our starting point is a Wigner basis of electron
and positron states, see Chapter 16 of [1], defined in the e−e+ c.m. system:

|e−(p, σ)〉W, |e+(p, σ)〉W (σ = ±1). (C.1)

Here p is an arbitrary three-momentum in the e−e+ c.m., given in the coordinate
system fixed by the e−e+ →W−W+ scattering plane (cf. Figure 5.1), and σ/2 is the
spin component along the positive z-axis (we recall that all spin and helicity indices
are normalised to 1). We set

k± := (0, 0,±|k|), |k| =
1

2

√
s− 4m2

e , (C.2)

where
√
s is the c.m. energy of e−e+. We define the helicity states with momentum

k+ to be the Wigner states

|e±(k+, τ)〉H = |e±(k+, τ)〉W. (C.3)

We define the helicity states with momentum k− by a rotation of +π around the
y-axis, i.e. we set

R = exp(−iπJy), |e±(k−, τ)〉H = U(R)|e±(k+, τ)〉H, (C.4)

where Jy is the angular momentum along y. The transformation formulae for the
Wigner states (see Appendix J, 16.3 of [1]) give

|e±(k−, τ)〉H = −|e±(k−, σ)〉W εστ (C.5)
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with

ε =

(
0 1

−1 0

)
(C.6)

Here and in the following summation over repeated indices is understood. Our sign
convention in the exponent of (C.4) together with the prescription to rotate around êy

by +180 degrees is consistent with the spinors (B.1) and (B.2). For the spin-density
matrix ρ of the e−e+ system in the helicity and Wigner bases we obtain the relation

H

〈
e−(k+, τ)e

+(k−, τ)
∣∣∣ρ
∣∣∣e−(k+, τ

′)e+(k−, τ
′)
〉

H

=
W

〈
e−(k+, τ)e

+(k−, σ)
∣∣∣ρ
∣∣∣e−(k+, τ

′)e+(k−, σ
′)
〉

W
εσ τ εσ′τ ′ , (C.7)

or, in shorthand notation,

ρH
(ττ )(τ ′τ ′) = ρW

(τσ)(τ ′σ′) εσ τ εσ′τ ′ , (C.8)

where ρH is the spin-density matrix in the helicity basis and ρW is the one in the
Wigner basis. The matrix ρH is therefore the same as ρ in (5.10). If the spin-density
matrix in the Wigner basis factorises, i.e. if

ρW
(ττ )(τ ′τ ′) = ρW

ττ ′ ρW
τ τ ′ , (C.9)

it also factorises in the helicity basis, with factors

ρH
ττ ′ = ρW

ττ ′ , ρH
τ τ ′ = ρW

σ σ′ εσ τ εσ′τ ′ . (C.10)

We parameterise ρW and ρW as usual:

ρW
ττ ′ =

1

2

(
� + ~p − · ~σ

)
ττ ′

, ρW
τ τ ′ =

1

2

(
� + ~p+ · ~σ

)
τ τ ′

, (C.11)

where ~p ± are the vectors defined in (5.22). This results in the following form of the
spin-density matrices in the helicity basis:

ρH
ττ ′ =

1

2

(
� + ~p − · ~σ

)
ττ ′
, ρH

τ τ ′ =
1

2

(
� − ~p+ · ~σ∗

)
τ τ ′

, (C.12)

as given in (5.21).
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Appendix D

CP and R CPT̃ invariance of the

initial state

For a symmetry operation that is defined by a unitary operator U acting on the space
of state vectors, invariance of ρ under this symmetry is expressed as

ρ = U †ρ U. (D.1)

We have to reformulate this matrix equation in component notation in the helicity
basis for the symmetries CP and RCP T̃ . The transformation of the Wigner states
under CP is defined by the unitary operator [1]

U(CP )|e±(p, σ)〉W = ∓|e∓(−p, σ)〉W. (D.2)

Hence, for an e−e+ state in the helicity basis we have

U(CP )|e−(k+, τ)e
+(k−, τ)〉H = −|e−(k+, σ)e+(k−, σ)〉H εσ τ εστ , (D.3)

where the sign due to the interchange of fermions is taken into account. Invariance
of ρ under CP then corresponds to:

ρH
(ττ )(τ ′τ ′) = ρH

(σσ)(σ′σ′) εσ τ εστ εσ′τ ′ εσ′τ ′ , (D.4)

which leads to the conditions (5.35) on the polarisation parameters.
We define the discrete symmetry T̃ by a unitary operator that acts on the Wigner

states as follows:
U(T̃ )|e±(p, σ)〉W = −|e±(−p, σ′)〉W εσ′σ . (D.5)

For the combined symmetry U(CP T̃ ) = U(CP )U(T̃ ) we then obtain

U(CPT̃ )|e±(k∓, τ)〉H = ±|e∓(k∓, τ
′)〉H ετ ′τ . (D.6)

Together with a subsequent rotation around the y-axis by +180 degrees (C.4) we have

U(RCPT̃ )|e±(k∓, τ)〉H = −|e∓(k±, τ
′)〉H ετ ′τ . (D.7)
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The transformation of the combined e−e+ state is then

U(RCPT̃ )|e−(k+, τ)e
+(k−, τ)〉H = −|e−(k+, σ)e+(k−, σ)〉H εσ τ εστ , (D.8)

where again the interchange of two fermions is taken into account. Invariance of ρ un-
der RCPT̃ then again leads to (D.4). So, as for CP , full invariance of ρ requires (5.35),
whereas invariance of the reduced matrix ρ̃ (5.37) is trivially fulfilled.
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