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Kurzfassung

Fragmentations-Studien an gespeicherten Strahlen kleiner mehratomiger Molekülionen

Die Struktur kleiner Moleküle hängt wie auch ihre Reaktionen eng mit den fundamentalen
Mechanismen zusammen, die allen chemischen Reaktionen zugrundeliegen. Experimentelle
Untersuchungen molekularer Fragmentationsprozesse liefern daher einen wichtigen Beitrag
zum detaillierten Verständnis dieser grundlegenden Mechanismen. Als geeignete Umgebung
für solche Studien an Molekülionen stehen heute Schwerionen-Speicherringe zur Verfügung,
mit denen bisher hauptsächlich zweiatomige Molekülionen unter wohldefinierten Bedingun-
gen und mit effizientem Nachweis der produzierten Fragmente untersucht wurden. Für
eine genaue Untersuchung mehratomiger Systeme müssen die in früheren Fragmentationsstu-
dien an zweiatomigen Ionen etablierten Techniken in mehreren Aspekten erweitert werden,
hauptsächlich bezüglich der Identifikation der entstehenden Fragmente und der Auswertung
der hier auftretenden multi-dimensionalen Fragmentationsgeometrien. In der vorliegenden Ar-
beit wird die Erweiterung experimenteller Methoden auf dreiatomige Moleküle für zwei Fälle
studiert: Für die Dissoziative Rekombination des H

�
� -Kations und seiner Isotopomere mit

langsamen Elektronen, mit dem Schwerpunkt auf Fragmentationsgeometrien und Isotopeffek-
ten, sowie die Fragmentation des LiH �� -Anions nach Entfernen eines Elektrons, hier mit dem
Schwerpunkt auf der chemischen Zusammensetzung der Produkte.

Abstract

Fragmentation Studies with Stored Beams of Small Polyatomic Ions

The structure of small molecules, as well as their reactions, is closely related to the funda-
mental mechanisms governing all chemical reactions. Experimental investigations of molecular
fragmentation processes thus yield important data contributing to the detailed understanding of
these basic mechanisms. As an advantageous environment for such studies on molecular ions
nowadays heavy ion storage rings are available, where so far mainly diatomic molecules were
studied under well defined conditions and with efficient detection of the fragments produced.
For a detailed investigation of polyatomic systems, the standard techniques established for pre-
vious fragmentation studies on diatomic ions have to be extended in several aspects, mainly
connected to the identification of the emerging fragments and to the analysis of the occurring
multi-dimensional breakup geometries. In this work, the extension of experimental methods on
triatomic molecules is studied for two cases: The dissociative recombination of the H

�
� cation

and its isotopomers with slow electrons, focusing on fragmentation geometries and isotope ef-
fects, and the fragmentation of the LiH �� anion following electron detachment, here focusing on
the chemical composition of the products.
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1. Introduction

Fragmentation is a fundamental phenomenon occurring in many fields of physics and chemistry.

Besides an interest in the actual fragmentation dynamics itself, in many cases the fragmenta-

tion of a system is also initiated on purpose for studying structural properties which cannot be

addressed in the undisturbed system.

Examples reach from high energy physics, where the fragments emerging from very high

energetic collisions are studied to gain insight in the properties of the particles and interactions

involved in the reaction, over nuclear physics, where the most prominent example is the large-

scale technical use of energy released in the fragmentation of heavy nuclei, to the wide field of

atomic and molecular physics with its applications in chemistry and biology. Considering larger

systems, even the phase transition of a liquid to its gaseous form, or the breakup of a macro-

scopic compound by mechanical force, revealing properties of interest in material science, can

be viewed as examples of fragmentation reactions in a most general sense.

In atomic and molecular physics, the spectrum of fragmentation reactions includes pro-

cesses like the ionisation of an atom, whose dynamics especially is investigated in modern ex-

periments capable of recording a full, energy and momentum resolved picture of fragments as

different as an atomic ion and an electron. On the other hand, fragmentation processes involving

large metal clusters or biomolecules are studied today on an event-by-event basis.

In this work, the focus is set on event-by-event studies of the fragmentation of small molec-

ular ions in a dilute environment, where an unstable excited state of the investigated system

is created in a collision with a free electron or, in some cases, might result already from the

process in which the molecular ion was previously prepared. The basic phenomenon consists

in the separation of nuclei formerly bound in a molecular system to macroscopic distances,

that is, the breaking of chemical bonds. Small molecules containing only few atoms here lend

themselves to detailed studies both experimentally and theoretically, giving insight in the fun-

damental mechanisms of chemical bonding. For many particular breakup reactions, there are

in addition applications in astrophysics or plasma physics, which increase the demand for a

detailed understanding of these systems.

Numerous studies have been performed on the most simple type of molecules, the various

diatomic species. However, a large interest exists also in small polyatomic molecules containing
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1 Introduction

three or more atoms. On the theoretical side, the multi-dimensionality of the vector space de-

scribing the arrangement of the nuclei in these systems turns their treatment into a challenging

task concerning both the quantum chemical methods and the computational resources required.

Also experimentally, careful considerations are necessary when extending the standard tech-

niques established for diatomic fragmentation studies to experiments on polyatomic systems.

In the present work, experimental investigations of the electron-induced fragmentation of sev-

eral triatomic molecular ions will be discussed. Special emphasis will be put on the new aspects

to be considered when moving from the well-known diatomic case to polyatomic fragmentation

studies. The main aspects discussed are the measurement and analysis of fragmentation geome-

tries and of partial cross sections or branching ratios for fragmentation channels with different

chemical composition of the products.

In the next chapter, the actual breakup processes to be studied will be introduced in some

more detail. The experimental apparatus employed in the present studies is that of a heavy-

ion storage ring. This technique is exceptionally suited for fragmentation studies on small

molecular ions, as will be discussed in Chapter 3.

After these preparations, Chapters 4 and 5 present the results obtained from experiments

on the electron induced fragmentation of H
�

� and LiH �� , respectively. In the case of H
�

� , the

process of dissociative recombination of the ions with low-energy electrons is studied. The

focus here lies on an investigation of the energy release and geometry of the breakup reaction,

in particular for the observed three-body fragmentation channel. For an exploration of possible

isotope effects, the same studies are repeated with the isotopomers of H
�

� , that is D
�

� , H � D
�

and

D � H
�

.

For LiH �� , the fragmentation after electron detachment was investigated. In this case, the

main topic was an identification of the exit channels and possible reaction pathways of the

breakup reaction, for which no previous experimental data were available. The results are

contrasted to existing theoretical approaches as well as new, preliminary ab initio calculations.

Chapter 6 finally gives a summary of the results obtained and an outlook on possible future

applications of the methods discussed in this work.
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2. Fragmentation of molecules

This chapter gives an overview of the molecular fragmentation processes which are subject to

the experimental investigations presented later in this work. After an introduction of the basic

concepts needed for the description of molecules and their fragmentation reactions, experimen-

tal applications are addressed in the form of some particular types of fragmentation processes.

A more detailed introduction is then given for the case of electron-induced fragmentation of

molecular ions, being the actual process studied in the following chapters.

While diatomic molecules are used as introductory examples, the principal subject of this

work is the generalisation of these concepts to polyatomic systems. As will be seen, already the

seemingly small step from diatomic to triatomic systems introduces a variety of new aspects re-

garding the physics of molecular fragmentation reactions, but also concerning the experimental

methods needed in the investigation of polyatomic systems.

2.1 General concepts

2.1.1 Molecular structure: The concept of potential energy surfaces

The structures and reactions of molecular systems are usually described based on the Born-

Oppenheimer (BO) approximation [10]. This fundamental principle makes use of the consid-

erable mass difference of the electrons and nuclei involved, which leads to a corresponding

difference in typical velocities of the electronic and nuclear motion. Approximatively, the elec-

trons can thus be assumed to immediately follow the relatively slow movement of the nuclei.

Using this assumption, the basic problem of solving the Schrödinger equation for a molecular

system can be separated into two problems of reduced dimensionality: First, the wave func-

tions describing the movement of the electrons are determined for fixed positions of the nuclei.

That is, the spatial coordinates of the nuclei enter in the description of the electronic system

only as external parameters. The electronic eigenenergies found for each nuclear arrangement

then, together with the mutual Coulomb interaction of the nuclei, are viewed as potential energy

functions which govern the movement of the nuclei. In a second step, the Schrödinger equation
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2 Fragmentation of molecules

corresponding to the nuclear motion can then be solved. The forces acting on the nuclei are thus

described here as a result of the different binding energy of the system at different geometric

arrangements of the nuclei.

The noted potential energy function in this picture plays a central role for the description of

nuclear dynamics. The equilibrium structure of a bound molecule can be found as the geometry

corresponding to the minimum of the potential energy. The vibrational motion is described

as oscillations around this minimum. Finally, also the fragmentation of a molecular system

is determined by a potential energy function, which for example can possess a minimum at a

geometry that corresponds to infinite separation of the fragments.

Depending on the number of atoms to be described, the number of coordinates varies which

is needed to parametrise the nuclear arrangement and thus the potential energy function. In

the simple case of a diatomic molecule, the system is described by one-dimensional potential

energy curves
�������

which only depend on the distance between the two nuclei. For triatomic

molecules, already a three-dimensional potential energy surface (PES) has to be considered

and the inclusion of even more atoms would introduce three more degrees of freedom with each

additional atom.

The Born-Oppenheimer approximation yields a description of good accuracy for all prob-

lems where the potential energy surfaces corresponding to different electronic states are ener-

getically well separated. In situations where the energy eigenvalues of the electronic system are

degenerate or near-degenerate, couplings of the electronic and nuclear motion, which are con-

sidered zero in the BO case, become important. As a first step, shifts of the electronic energy

levels due to the dependency of the electronic wave functions on the nuclear coordinates can

be considered (adiabatic approximation). However, for an accurate description of the system in

the case of considerable nuclear-electronic couplings, the eigenstates of the electronic system

can no longer be considered stationary states of the total system. Therefore, the simple picture

of the nuclear system moving on a single PES defined by the electronic state has to be given up.

However, the concept of potential energy surfaces can still be used for the description and

visualisation of molecular structures and processes when keeping in mind the possible occur-

rence of non-Born-Oppenheimer effects in situations involving PES of similar energy.

An important attribute of a PES, besides its energy, are the symmetry properties of the cor-

responding electronic state (see, e.g. [11]). These are defined by the behaviour of the electronic

wave function when applying symmetry operations like rotations or reflections that leave the

nuclear system unchanged. For example, in a planar molecule a reflection on this plane will not

change the nuclear arrangement. The electronic wave function can by this operation then either
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2.1 General concepts

stay unaffected or change its sign. In both cases, a second application of the same reflection

will lead back to the original system. For molecules exhibiting this simple reflection symmetry

(labelled ��� ), the electronic states thus can be classified as symmetric ( ��� ) or antisymmetric

( � � � ) with respect to the corresponding symmetry operation.

The importance of this classification, besides an easier solution of the electronic

Schrödinger equation, lies in the fact that PES of different symmetry are allowed to cross,

that is, the corresponding electronic systems can possess degenerate energy eigenvalues. For

states of the same symmetry, such degeneracies in general are lifted by electronic couplings

and an avoided crossing occurs. In the case of polyatomic molecules, the situation is further

complicated by the appearance of additional symmetry properties of the nuclear system at cer-

tain geometries. For example, the aforementioned planar molecule will in the case of a linear

arrangement of all nuclei also be symmetric under rotations about the such formed axis. The

possibly different behaviour of the electronic wave functions under the new symmetry opera-

tions then leads to a refinement of the classification scheme. Thus, two PES belonging to the

same class for planar arrangements can have different symmetry properties in the linear case

and thus are allowed to cross at these specific geometries. This phenomenon leads to the ap-

pearance of so-called conical intersections of two PES at nuclear geometries with exceptional

symmetry properties.

2.1.2 Fragmentation processes

The fragmentation of a molecule can be initiated by a variety of processes. Within the picture

of a movement on potential energy surfaces, these can be divided into three cases:

(a) The system can stay on the same PES, that is in the same electronic eigenstate, but leave

the minimum which defined the bound molecule.

(b) The electronic state of the system can change, corresponding to a transition to a different

PES which exhibits no suitable minimum.

(c) A transition to a different system can happen. This includes for example the addition or

removal of an electron, but also a temporary inclusion of one or more additional atoms.

Examples of these three types of fragmentation processes are sketched in Fig. 2.1 for the sim-

plest case of a diatomic system. Similar considerations apply also to polyatomic molecules.
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V

(r
)

r

V
(r

)

r

Ee

V
(r

)

r(a) (b) (c)

Fig. 2.1: Three types of fragmentation processes visualised by the potential energy curve ������� for
a diatomic molecule: (a) excitation to a vibrational continuum state of the same electronic PES, (b)
transition to a different, non-binding PES, (c) change to another system, e.g. through the addition of an
electron.

In case (a) only one PES is involved, corresponding for example to the ground state of the

electronic system (black curve). This PES possesses a minimum, which gives rise to several

vibrational levels of the bound molecule, that is, to discrete eigenvalues of the Hamiltonian

describing the nuclear motion (red lines). �
For the vibrational ground state, the square of the nuclear wave function is indicated in the

figure. If the molecule now gains vibrational energy, for example in a collision or by absorption

of a photon, it can either be excited to a higher-lying, bound vibrational state, or to a continuum

state as indicated by the dashed red line. In the latter case, the molecule is no longer bound and

the two atoms can separate to arbitrary distances.

Process (b) involves a change of the electronic eigenstate of the system. This transition can

again be caused e.g. by the absorption of a photon, an inelastic collision with an electron or with

some other particle. Compared to the nuclear motion, such an electronic transition takes place

very fast (it is thus also called a vertical transition) and the nuclei suddenly find themselves

on another PES with a possibly completely different shape. In other words, the nuclear spatial

wave function of the system is projected vertically into the vibrational eigenfunctions belonging

to the new PES. In the example shown in Fig. 2.1(b), these are continuum eigenfunctions of a

dissociative PES, leading to a fragmentation of the molecule.

In process (c), the new state after the transition is not another electronic state of the original

system, but instead some state of a different molecular system. The difference to the original

system can for example lie in the number of electrons, but also in the nuclear composition. In

principle, such a transition can be described as well as a transition within one system, which

1 In this overview, only electronic and vibrational degrees of freedom are considered. Rotational excitations
could be included in this picture e.g. by defining one potential energy curve for each rotational-electronical
state.
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2.2 Experimental studies of molecular fragmentation

includes all the nuclei and electrons involved, some of them as the case may be at infinite

spatial separation from the rest of the system. Thus it is possible to visualise also process (c)

employing the concept of transitions between PES, keeping in mind that some of these states

involve special properties of the system. In Fig. 2.1(c) e.g. the electronic state belonging to the

black curve exhibits one electron at rest at infinite distance from the molecule. If this electron

is accelerated to the energy ��� and brought close to the nuclei, the transition to the blue curve

can occur, where the electron is bound, but the nuclei start to separate.

The fragmentation reactions studied in the following are of type (c), where not only an

energetic excitation, but also the change to another system takes place. As the simplest form of

such a system change, the addition or detachment of an electron will be investigated.

Besides the fragmentation processes discussed here, there are for most systems also transi-

tions which lead to geometrically stable configurations. Except for the ground state of the total

system, however, these states are only metastable and will undergo a transition to a lower state

after some time. This phenomenon can lead to the observation of the spontaneous fragmentation

of a molecule, which however does not constitute an additional mechanism for a fragmentation

reaction, since some reaction that prepares the metastable state has to precede.

2.2 Experimental studies of molecular fragmentation

2.2.1 Motivation

An interesting quality of molecular fragmentation reactions is their ability to provide a link

between the microscopic world of molecular structure and interactions on one side and the

macroscopic scales accessible with experimental apparatus on the other side. This is especially

the case for reactions producing neutral fragments, where the absence of long-range interac-

tions between the fragments allows a direct ‘view’ on the dynamics of the actual fragmentation

process. Studies of such reactions can give insight in both the structure of molecular systems,

as described e.g. in terms of potential energy surfaces, and their interactions like the response

of a molecular system on the advent of an additional electron.

The motivation for performing such experimental studies usually is twofold: First, the com-

parison of experimental results and theoretical calculations can help to refine the methods ap-

plied in these calculations and to approach a full theoretical understanding of the underlying

mechanisms. Although molecular systems are governed by the well known rules of quantum

mechanics and electrodynamics, their detailed quantum chemical description can impose con-

siderable challenges already for seemingly simple systems like hydrogen molecules.

The second motive for studies of molecular fragmentation reactions is the importance of
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2 Fragmentation of molecules

many particular reactions in fields like chemistry, plasma physics or astrophysics. Astrophysical

applications for example include the modelling of interstellar clouds, in which molecules play

an essential role for processes like the formation of stars. The abundance of molecules in these

environments is often determined by their destruction in fragmentation reactions [28].

2.2.2 Methods

In order to experimentally investigate a molecular fragmentation reaction, the molecule under

study first has to be prepared in a state as well-defined as possible, regarding e.g. its electronic

or rovibrational state. In a second step, the fragmentation reaction is then initiated. Finally, the

outcome of the reaction is analysed, usually by detection of the emerging fragments.

In the experiments considered in this work, fragmentation processes are studied which are

initiated by the impact of an electron on a molecular ion. Before moving on to a more detailed

description of such electron induced processes in Sec. 2.3 and of the particular experimental

method applied (Chap. 3), two different examples of molecular fragmentation experiments are

shortly summarised:

� An important fragmentation mechanism is the process of photodissociation. Here the

interaction with an electromagnetic field, produced e.g. by a laser, causes either an ex-

citation of the molecule to a dissociative state, or even the removal of an electron. The

latter process, photoionisation in the case of cations and neutrals, or photodetachment for

anions, is in many cases also followed by dissociation. The underlying mechanisms are

quite different depending on the intensity and wavelength of the light field in use, and

range from single photon transitions, which can be studied at high spectral resolution,

over multiple photon reactions up to the very strong electromagnetic fields achieved in

intense laser pulses or, similarly, by the passage of a fast, highly charged ion (see, e.g.

[12, 27]).

� Another fragmentation reaction is the interaction of a fast molecule with a solid, as used

e.g. in the foil induced Coulomb Explosion Imaging technique [75]. The idea of this

method is the sudden removal of all binding electrons of a molecule by the impact on

a very thin foil. The remaining atomic fragments then dissociate driven by their well-

known mutual Coulomb repulsion, and the analysis of the relative velocities reached by

the fragments allows to draw conclusions on the geometrical structure of the molecule

in the instant of impact in the foil. Besides the comparison to ab initio calculations of

molecular wave functions, this technique is also used as a tool for the monitoring of

vibrational excitations of molecular ions [81, 2].
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2.3 Electron induced fragmentation reactions

Other fields of research involving the fragmentation of molecules extend up to interactions

with ‘exotic’ particles like positrons [44] or more technical applications like the fragmentation

of molecular anions in a gas target which is used in Tandem Van de Graaf accelerators for the

production of MeV beams of molecular cations.

2.3 Electron induced fragmentation reactions

In the following, some mechanisms important in the electron induced fragmentation of molec-

ular cations and anions are outlined. Special emphasis is put on reactions producing neutral

fragments, as such reactions will be studied in the following chapters.

2.3.1 Cations: Dissociative excitation and recombination

Figure 2.2 gives a schematic overview of processes important in the electron induced fragmen-

tation of a molecular cation. To start with a simple example, the potential energy curves of a

diatomic cation AB
�

(red) and its neutral counterpart AB (black) are shown, that is, the energy

of the system in a specific electronic state as a function of the distance
�

of the two nuclei. The

molecule is assumed to be in the vibrational ground state
����� � �

, the squared wave func-

A + B
+

Ee eE’

Ee

AB
+

KERDE

EeEe

σDR σDE
KERDR

E
ne

rg
y

A + B

r rInternuclear separation
0

Fig. 2.2: Dissociative recombination (DR) and dissociative excitation (DE) of a diatomic cation: Poten-
tial energy curves of the cation AB

�
(red) and the neutral AB (black) are sketched. The impact of an

electron with energy � � can lead to capture (blue) or excitation (green). In the latter case the electron is
re-emitted with the energy � �� . In the right part of the figure the cross sections � for these reactions are
outlined. The dotted blue arrow indicates a DR reaction for � ���
	 , resulting in a KER as depicted by
the dotted black arrow.
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2 Fragmentation of molecules

tion of internuclear distance ��� � � � � �

is then concentrated around the equilibrium distance
���

, as

indicated by the magenta coloured area.

The impact of an electron with the relative energy � � can then initiate two fragmentation

processes, the Dissociative Recombination (DR) and the Dissociative Excitation (DE). Disso-

ciative recombination describes a neutralisation of the cation by capture of the incoming elec-

tron into a dissociative state of the neutral AB system (indicated by the blue arrow in Fig. 2.2).

The system then propagates to higher internuclear distances gaining kinetic energy and finally

reaching a macroscopic separation of the nuclei and a kinetic energy release KER ��� . This pro-

cess has a resonant character and works efficiently only if the electron energy � � matches the

transition energy from the AB
� � � � � �

state to the A+B curve at the internuclear distance
���

of

the cation. More precisely, the cross section for electron capture is given by

	�
����� �
� � �����

� � � ��� � � � ������� ������� � �

(2.1)

where � �����
denotes the electronic transition matrix element and ����� ����� a vibrational contin-

uum eigenfunction of energy ��� belonging to the dissociative A+B potential. In the approxima-

tion of slowly variable � � � �
, 	�
��� is determined by the overlap of the bound and dissociative

wave functions (Franck-Condon principle), which peaks for an � � matching the transition en-

ergy close to the peak of ��� � � � � �

.

Once the system has reached the neutral AB state, it has a certain probability to autoionize,

that is, to re-emit the electron into the continuum before reaching a high internuclear distance,

and to descend back into the bound AB
�

state. This possibility gives rise to a survival factor  ,

which determines the DR cross section in addition to the capture process:

	 �!� � 	�
���#"  (2.2)

The resulting spectrum of 	 ��� � � � � is outlined in blue in the right part of Fig. 2.2. Similarly,

a resonant spectrum is also expected for the kinetic energy KER ��� of the atomic fragments A

and B released in this reaction. In a real molecule, the situation usually will be much more com-

plex than in this simple sketch of basic reaction mechanisms. In general, more electronic states

of both the cation and the neutral molecule, as well as several vibrational states have to be taken

into account. In many cases, the prediction of accurate cross sections by ab initio calculations

and a detailed understanding of the reaction mechanisms involved is still a challenging task and

subject to ongoing investigations. The resulting DR cross section 	 ��� � � � � usually shows an

overall ��$ � � dependence (cf. Eq. (2.1)) and a rich spectrum of additional structures depending

on the detailed situation in the specific molecule.

Also shown in Fig. 2.2 is the process of dissociative excitation (green arrows). Here, the

system is excited to a non-binding state of the cation and then dissociates in A + B
�

. The
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2.3 Electron induced fragmentation reactions

incoming electron leaves the molecule after the collision, thus capable of carrying an arbitrary

amount of energy out of the system. The DE process therefore shows a non-resonant character,

it is possible for any electron energy reaching or exceeding the transition energy to the excited

A + B
�

curve.

A special case of particular astrophysical importance is the collision with an electron of

near-zero relative energy, �����
�
. In this case, no excitation energy is available. The DE

process then is energetically excluded, while a DR reaction is still possible also in this case of

a ‘horizontal’ transition where practically no additional energy is brought into the system by

the incoming electron. The probability for a DR reaction to happen then depends on the actual

relative position of the dissociative PES of the neutral molecule and the nuclear wave function

of the original cation. Even in the example shown in Fig. 2.2, where the DR at � �
� �

would be

classically forbidden, a transition to the neutral PES would still be possible through tunnelling

(indicated by the dotted blue arrow).

Besides this direct DR mechanism, which is characterised by a direct transition to the disso-

ciative neutral state, an important additional process is the indirect mechanism, which proceeds

via intermediate steps. This mechanism is of special importance in molecules where the direct

process is inhibited by lack of a dissociative curve of the neutral system in the geometric region

accessible from the cation, in particular at ��� � � as sketched in Fig. 2.3. In this case a slow

electron can still be captured into an energetically near-degenerate high-lying Rydberg state of

the neutral molecule (blue arrows). The system then cascades down to lower electronic states

AB
+ A + B

+

A + B

AB

E
ne

rg
y

rInternuclear separation

AB*

r0

Fig. 2.3: The indirect DR process.
Black dotted potential curves rep-
resent Rydberg states of the neu-
tral system. Blue arrows again in-
dicate a transition involving elec-
tron capture (here for an electron
energy of � � � 	 ), green arrows
depict a transition to another PES
of the same system. See text for
details.
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2 Fragmentation of molecules

by transforming electronic energy into vibrational energy or by emitting photons (vertical green

arrow), until it reaches a state with high probability of a transition to a dissociative curve (hori-

zontal green arrows). Note that a crossing of the two curves is not necessarily needed, as such a

transition can proceed also through the classically forbidden region between adjacent curves by

tunnelling (left green arrow). For any molecular cation a series of Rydberg states exists, each

of which gives rise to a number of vibrational levels. It is thus very likely to find one state close

to the ground state of the ion, which makes this indirect mechanism a general phenomenon in

the DR of molecular cations. However, it is often overruled when the much stronger direct DR

process is possible.

In the example shown in Fig. 2.3, and commonly for most systems, the ground state of

the neutral molecule is binding. However the production of the neutral molecule, that is an

electron capture without dissociation, is in general not observed for molecular cations. The

reason for this behaviour lies in the large energy difference between the cationic and neutral

states, which reflects the potential energy of the free electron in the electric field of the cation.

The dissociation limit of the neutral molecule thus usually lies energetically below the ground

state of the cation, which allows for a dissociative recombination reaction even at vanishing

electron energy, but on the other hand effectively inhibits a capture of the electron into a bound

state of the neutral molecule. In other cases, like the H
�

� molecule discussed in Chap. 4, the

electronic ground state of the neutral system is dissociative and a neutral molecule does not

exist.

In the case of polyatomic cations, the same principal mechanisms govern the DR process.

However, the appearance of at least two additional degrees of freedom of the nuclear motion

vastly complicates the picture. For an understanding of a particular reaction, the structures and

possible transitions of multi-dimensional PES have to be studied here. Regarding the asymptotic

behaviour of the PES for infinite separation of the fragments, in the diatomic case a simple level

scheme corresponding to the electronic states of the two atomic fragments is obtained. For

the breakup of a polyatomic ion, the final states can include also smaller molecules including

vibrational and rotational degrees of freedom. In addition, the same PES can for large separation

of the fragments possess minima at different geometries corresponding to different atomic and

molecular compositions of the fragments.

This rich spectrum of new phenomena occurring for the DR of polyatomic cations is not

only challenging for the theoretical treatment of such processes, but also calls for advanced

experimental approaches, like for example an investigation of the dynamics on these multi-

dimensional PES through an interpretation of the occurring fragmentation geometries. In the

present work, experimental studies of the DR of the H
�

� ion and its isotopomers will be pre-

sented. This reaction is of great interest both for astrophysical applications and as a benchmark
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2.3 Electron induced fragmentation reactions

system for theoretical calculations, as will be discussed in Chap. 4. The present studies con-

centrate on the new aspects of fragmentation dynamics which come into play in the DR of

polyatomic molecules.

2.3.2 Anions: Dissociative excitation and electron detachment

Electron impact on a molecular anion can, like for a cation, either result in a dissociation of

the system without change of the total charge (dissociative excitation), or the molecule can be

neutralised, in this case by detachment of an electron. While the dissociative excitation process

has some similarities for anions and cations, the neutralisation reactions show fundamental

differences for the two types of molecular ions.

The situation for dissociative excitation of a molecular anion is outlined in Fig. 2.4. As in

the cation case, the anion is lifted to a higher electronic state and the colliding electron leaves the

system with a reduced energy � �� . This reaction can proceed either as a direct transition between

the two anionic states (green arrows) or, for some molecules, by capture of the electron (blue

arrow) into a dianionic, that is doubly negatively charged state (dotted magenta PES) [4]. In

general, such states are very short-lived and the electron is released again (red arrow), leaving

the system in a dissociative, singly anionic state. This process increases the reaction cross

eE’
eE’

σDE

Ee

Ee

Ee

KERDEA + B
−

AB
2−

Internuclear separation rr

E
ne

rg
y

AB
−

0

Fig. 2.4: Dissociative excitation (DE) of a diatomic anion: Scheme of relevant potential energy curves
of the anion AB � (blue), and of a short-lived dianionic state (dotted magenta curve), which exists for
some molecules. Green arrows show the direct transition to a dissociative PES, blue and red arrows the
transition via temporary formation of a dianion involving the capture (blue) and auto-detachment (red)
of an electron. In the right part of the figure the cross section � resulting from the two contributions is
outlined.
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2 Fragmentation of molecules

section at the energetic position of the dianion and thus adds a sharp resonant structure to the

energy spectrum 	 ��� � � � � , depicted by the magenta peak in the right part of Fig. 2.4. (In a

cationic system, a similar behaviour is possible if a bound state of the neutral molecule exists at

a favourable energetic and geometric position.)

A difference to the cation system lies in the energy threshold for a DE reaction. To trigger an

excitation of an anion, that is, to reach sufficient overlap with the bound electron to be excited,

the incoming electron needs to overcome the Coulomb repulsion of the negative ion. While

this is possible to a certain amount by tunnelling into this Coulomb barrier, the probability

for a reaction strongly increases if the incoming electron has some excess energy available in

addition to the energy needed for the actual excitation process. The effective energy threshold

for any electron-induced reaction is thus shifted to higher energies for anions. In addition, the

cross section is smeared out in the threshold region due to the smooth increase of both the

probability that the incoming electron reaches a certain minimum distance to the anion, and

the probability for exciting the anion at this distance. The schematic DE spectrum in Fig. 2.4

shows this modified threshold, shifted and flattened in comparison to the cationic case shown

in Fig. 2.2.

The electron-induced neutralisation of an anionic molecule occurs by detachment of a

bound electron through the collision with the free electron, see Fig. 2.5. In contrast to the

resonant DR reaction neutralising cations, this process resembles the DE reaction. The two

electrons emitted after the collision can carry away arbitrary amounts of energy and thus the

cross section shows a threshold behaviour. Again any structure in the cross section expected

from the possible transition energies is shifted to higher energies and smeared out due to the

electronic Coulomb barrier and the quantum mechanical threshold law determining the proba-

bility for triggering a reaction. Also here, an additional resonant structure can appear due to the

temporary formation of a dianion. The detachment reaction can in principle lead to both bound

and dissociative states of the neutral molecule (see Fig. 2.5), thus a detachment with or without

dissociation is possible here, in contrast to the cationic case. An overview of electron induced

detachment from diatomic anions can be found in [58].

Like in the case of cations, moving on to polyatomic systems complicates the picture. The

dynamics of the nuclear motion then is ruled by multidimensional PES, and the number of

possible reaction products increases. The interest in molecular electron detachment reactions,

besides the desire for a theoretical understanding of these fundamental processes, and some

applications in plasma physics and astrophysics, is in the case of polyatomic molecules addi-

tionally strengthened by the possibility to access the transition regions of the PES governing

neutral chemical reactions by electron detachment from the corresponding anion (see, e.g. [55]

and references therein).
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Fig. 2.5: Electron detachment from a diatomic anion: Schematic drawing of relevant potential energy
curves of the anion AB � (blue) and the neutral AB (black). The detachment process can lead to a bound
(right arrows) or dissociative (left arrows) state of the neutral molecule. In the right part of the figure the
cross sections � for detachment only and dissociative detachment are outlined.

In this context, several experimental techniques exist, the most popular one being the prepa-

ration of the desired neutral transition state by photodetachment from the anion, in most cases

combined with photoelectron spectroscopy as the detection scheme. With this technique, it is

possible to investigate energy, population and lifetime of the accessible electronic and vibra-

tional states of the neutral system. However, for geometrically unstable states, this method does

in general not reveal the exit channel of the following dissociation process in terms of atomic

and molecular composition.

In Chap. 5, an investigation of the breakup following electron impact detachment from

LiH �� will be presented. This studies were done in a fast beam experiment, with the associated

advanced possibilities of neutral fragment detection (see the next section). Particular empha-

sis is thus set on the identification of the final product channels of the fragmentation reaction,

which was possible in this experiment.
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3. Fast beam molecular fragmentation studies

The main advantage in using fast beams is the efficiency for the detection of reaction products,

especially in the case of neutral fragments. In fast beam experiments at MeV or keV energies,

the kinetic energy release of typical molecular fragmentation reactions is small compared to

the beam energy. Thus the emerging fragments are concentrated in forward direction, which

greatly simplifies the detection setups needed to collect all fragments. In addition, the high

energy enables an efficient detection also of neutral fragments, which is usually not possible in

low energy experiments.

Another benefit from high beam energies is the low rate of interactions with the residual

gas in the vacuum system, which at low energies efficiently destroy the molecular ions. When

using fast beams in combination with modern ultrahigh vacuum systems, it is thus possible to

store molecular ions for typical time scales up to tens of seconds.

3.1 The ion storage ring technique

Heavy ion storage rings are successfully used in the field of molecular physics since about ten

years. In this technique, the ions are accelerated to form a beam of MeV energy by means

of heavy ion accelerators and confined in a closed orbit using magnetic fields. Despite some

principal limitations, this technique offers several major advantages for studies of molecular

fragmentation reactions, as summarised in the following.

In addition to the advantages offered by fast beams as given above, the use of stored beams,

compared to single-pass techniques, opens up further possibilities. First, the long time the

molecules are available for interactions strongly increases the probability that a given molecule

will indeed undergo the fragmentation process to be studied. Thus a much larger number of

reactions can be analysed for the same number of molecules produced, which offers new pos-

sibilities especially when studying processes with a low reaction rate. Second, the storage over

several seconds enables a relaxation of internal excitations of the molecular ions which are of-

ten generated during the production process. For infrared active species, vibrational excitations

decay radiatively on time scales of the order of milliseconds. A preparation of the molecules in
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3.1 The ion storage ring technique

the vibrational ground state is thus possible here without a need for special efforts in the pro-

duction and acceleration of the molecular ion beam. For relaxation processes on time scales up

to tens of seconds, still an investigation of the implications of these excitations on the molecular

properties under study is possible by time-resolved measurements.

Third, the use of an electron cooler offers further benefits. By merging an intense, co-

moving beam of electrons of precisely defined velocity with the ion beam, the spatial and ener-

getic spread of individual ion trajectories is reduced. In addition, interactions of the electrons

with the molecular ions can be studied at well defined collision energies ranging from meV up

to keV in the co-moving frame or reference. These interactions include electron-induced frag-

mentation reactions as well as a manipulation of the internal state of the molecules by electron

collisions.

The technique of fast stored beams thus offers conditions well suited for studies, in partic-

ular including fragmentation studies, of molecular ions. Unfortunately the described methods

cannot easily be extended to studies of neutral molecules. While the preparation of fast beams

of neutral molecules in some cases is possible by acceleration of molecular anions and sub-

sequent removal of an electron, the additional demand for stored beams requires the species

under investigation to be charged. Another drawback is the inability to directly study chemical

reactions in fast beams, that is, collisions of atoms or molecules at near-zero mutual velocities.

This would require the preparation of co-moving fast beams of the reactants, which is again not

possible for neutral species, and would imply a large technical effort also for ion-ion collisions

at MeV energies.

For the wide field of interactions of molecular ions with photons or electrons, however,

these limitations do not apply, and thus the advantages of the storage ring technique can be

utilised in the studies presented in this work. As already noted, even chemical reactions of

neutral molecules are indirectly accessible in fragmentation studies of molecular ions, as the

dissociation into neutral atomic or molecular fragments following a reaction that compensates

the electrical charge of a molecular ion is governed to some extend by the same mechanisms as

the chemical reaction between these neutral species.

A schematic view of the general setup for studies of molecular fragmentation reactions in a

storage ring is given in Fig. 3.1. A breakup of the stored molecular ions is induced for example

by the interaction with a photon, an electron or by the collision with a molecule of the residual

gas still present in the vacuum system. By use of detection systems mounted close to the storage

ring, which record the emerging fragments, several properties of the reactions under study then

can be analysed.
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Stored molecular ions

Detectors

Fragmentation
reaction

Fig. 3.1: Schematic view of a storage ring. The products emerging from a fragmentation reaction are
charge separated and recorded by different detectors. Three examples of specific fragmentation processes
are given: The interaction with a photon � , an electron e � , and a residual gas molecule.

3.2 Accessible properties of fragmentation reactions

In general, the fragmentation of a molecular ion can lead into several final channels. In the

following, the term channel will be used to describe the outcome of a reaction in terms of the

nuclear composition of atomic and molecular fragments, as well as the charge state of these

fragments. Different internal excitations of the fragments will be denoted as the energetics

within each channel. Using this definition, the properties of a molecular fragmentation reaction

which can be accessed experimentally can be divided in the following classes:

� The total rate of the reaction. Usually, the rate coefficient � (in cm
�

/sec) is given, which

denotes the reaction rate per molecule, divided by the density of the reactant.

� The partial rate of each chemically different product channel or the relative branching

ratios of the channels.

� The energetics of each channel. This includes any internal excitations of the fragments

and the kinetic energy released in the breakup.

� In the case of a breakup into more than two fragments, an additional field of interest are

the breakup dynamics as reflected by the geometry of the fragmentation.
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3.2 Accessible properties of fragmentation reactions

The total rate can in principle be measured by a particle counting detector without any differ-

entiation of channels. However, it might be advisable to include a certain ability of channel

separation for suppression of background events. This is especially the case if the total rate

measured would include channels that are only populated by background processes. Such pro-

cesses can for example be collisions of the molecular ions with residual gas particles, which

cannot be completely avoided even in ultrahigh vacuum systems. These background data have

to be either separated from the data originating from the physical process under study on an

event by event basis, or, if this is not possible, the ratio of background events as well as their

signature in the properties studied have to be estimated and considered in the interpretation of

the data.

Fortunately, the experimental setup at a storage ring necessarily already includes some

means of channel separation, as indicated in Fig. 3.1. The magnetic dipole fields needed to

keep the original beam on a closed orbit will geometrically separate different fragments accord-

ing to their charge to mass ratio. This implies the need for several detectors, if fragments at

all possible charge states should be detected. The reaction channels of interest often involve

only neutral fragments, while charged fragments are only produced by unwanted background

processes. In this situation, it is sufficient to use only one, but energy resolving detector for

counting of neutral fragments. By limiting the analysis to events where the whole beam energy

was deposited in this detector, breakup reactions involving charged fragments are excluded.

The measurement of partial rates or branching ratios requires a separation not only of ‘sig-

nal’ from ‘background’ channels but also of all signal channels with different product composi-

tion from each other. If charged fragments are involved, movable particle counting detectors can

be used to probe for fragments of different charge to mass ratios. However, for the separation

of different neutral channels, a dedicated detection system is required.

Next, the energetics of each channel can be investigated using an imaging detector. From

the recorded spatial pattern of impact positions on the detector, information on the relative ve-

locities of the fragments, and therefore on the kinetic energy transferred to each of the fragments

during the dissociation process can be deduced. A measurement of this kinetic energy release

often can provide information on the internal excitation of the fragments or of the incoming

molecular ion.

In the case of polyatomic fragmentation reactions, a new property to be studied is the geom-

etry of the breakup. From the fragmentation geometry, in particular the correlation of individual

fragment energies can be studied, which is connected to the shape of the multidimensional po-

tential energy surface driving the dissociation process. To shed more light on this aspect, which

is specific to the fragmentation of polyatomic molecules, is one of the goals of this work.
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3 Fast beam molecular fragmentation studies

All properties listed here can in principle be recorded as a function of the initial conditions

of the molecular reaction. This is first of all the relative kinetic energy between the reactants,

but also the internal state of the molecular ions, regarding e.g. rovibrational excitations.

As noted in Chap. 2, the specific experiments considered below focus on molecular frag-

mentation reactions induced by electron impact. The experimental techniques applied for initi-

ating such reactions in a storage ring, as well as the detection systems available for analysing the

properties of these reactions are described in the following. As seen here, important detection

techniques are (a) neutral fragment imaging, where a good sensitivity to the impact positions

of the fragments is needed, and (b) rate measurements employing an highly efficient, energy

resolving detector. In addition, a strategy for determining the partial rates of different neutral

channels is desirable.

3.3 Experimental procedures

3.3.1 The heavy ion storage ring TSR

All experiments described in this work were performed at the Test Storage Ring (TSR), which

is in operation since 1988 at the Max-Planck-Institut für Kernphysik in Heidelberg, Germany

[25]. A drawing of this heavy-ion storage ring is shown in Fig. 3.2. Various combinations of ion

sources and accelerators are available for the production of fast molecular ion beams (typical

energies � 1 MeV per nucleon), which are then injected into the TSR and stored at a vacuum of

�
� " � � � � � mbar for times ranging up to several tens of seconds.

While different types of ion sources were used for production of molecular cations and an-

ions, respectively, all experiments considered here employed the HSI system for acceleration

of the ions. The HSI (Hoch-Strom-Injektor, High Current Injector) is a modular acceleration

system consisting of two RFQ (Radio Frequency Quadrupole) resonators for simultaneous ac-

celeration, focusing and bunching of the ion beam, and eight 7-gap resonators for further accel-

eration [79]. Depending on the number of modules used, beam energies ranging from 0.24 MeV

up to 1.7 MeV per nucleon of the accelerated species can be achieved here.

After acceleration to the desired energy, the ion beam is guided to the storage ring. Using

a multiturn injection scheme [8], currents of stored molecular ions ranging up to several � A

are achieved, allowing imaging experiments even after storage times of several multiples of the

beam lifetime.

In the electron cooler device of the TSR (see Fig. 3.2), the circulating ion beam is merged

over a length of 1.5 m with a co-moving beam of cold electrons. The interaction between the

two beams serves two purposes in the experiments considered here: Firstly, by elastic collisions

of the (stored) ions with the (single-pass) electrons, a phase space cooling of the ion beam is
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Fig. 3.2: The Test Storage Ring TSR with electron cooler and fragment detectors.

achieved [7]. After a cooling time of typically few seconds, the velocity of the ion beam is

determined by that of the electron beam. Even more important, the spread of individual ion

velocities, as expressed by the temperature connected to their kinetic energy in a co-moving

frame of reference, approaches the temperature of the electron beam.

The electrons are produced by a thermal cathode, whose temperature of typically ��� 
���� �
� � � meV determines the initial electron temperature. Through the acceleration to the ion beam

velocity, the electron temperature in the longitudinal degree of freedom (that is, parallel to the

ion beam) is reduced to a typical value of ����� � ��� � meV. The transversal electron temperature

is reduced by an adiabatic expansion of the electron beam in a decreasing magnetic guiding

field to the order of ���
	 � � � meV. The electron beam typically has a radius of � � cm and an

electron density of �
� " � ��� cm �

�

.
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3 Fast beam molecular fragmentation studies

Through the phase space cooling process, the relative energy in electron-ion collisions is

reduced to values determined by the temperatures ��� and �
	 . In addition, the geometrical

extension of the ion beam is reduced, reaching a radius of below 1 mm in the electron cooler

region. As already noted, this clean preparation of the conditions in the interaction region

constitutes one of the advantages of the use of fast stored beams in fragmentation experiments.

The second purpose of the merged electron beam is to provide the electrons needed for

investigations of electron induced reactions of the molecular ions. Depending on the specific

problem under study, either electron and ion beams at matched velocities can be used, resulting

in very low collision energies, or the acceleration voltage of the electrons can be changed after

completion of the phase space cooling, allowing for a study of electron-induced fragmentation

processes as a function of the relative electron energy. A more detailed description of the

electron cooler device and its application in molecular fragmentation experiments can be found

in [39] and references therein.

The neutral atomic and molecular fragments emerging from a reaction at the electron cooler

region usually reach their asymptotic velocities � � � m downstream from the point of the disso-

ciation, after gaining mutual distances large enough to exclude further interaction between the

fragments. They then travel on straight trajectories close to the direction of the stored ion beam

until reaching the next dipole magnet, where a charge separation takes place. While undisso-

ciated molecular ions are deflected by the magnet to follow the closed orbit, neutral fragments

stay unaffected by the magnetic field and thus leave the storage ring finally arriving with macro-

scopic mutual distances at a dedicated vacuum chamber equipped with two different detection

systems. First, a multi-hit imaging detector can be used for determining the geometry of the

breakup, and second, a solid state detector is available for rate measurements. These systems

are described in detail in the following sections.

If charged fragments are produced in the dissociation reaction, they undergo further deflec-

tions in external fields and in particular different deflections in the magnetic field of the bending

dipoles depending on their charge to mass ratio. Fragments with a charge to mass ratio close

to that of the original molecular ion can be recorded using movable particle counting detectors

located after the bending dipole close to the stored beam trajectory. At the TSR, two such detec-

tors are available. In molecular fragmentation experiments, usually only one of them is used for

observation of singly charged fragments containing a large fraction of the mass of the original

molecule. Fragments with a very small mass fraction (like single protons) or fragments with

opposite charge compared to the stored molecular ions cannot be observed due to the geometry

of the present setup. In the studies described here, a charged fragment detector was only used

in the case of the experiments with LiH �� , a description is given in Sec. 5.2. Since the charged

fragments also feel the focusing fields of the storage ring quadrupole magnets, their trajecto-
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ries do only indirectly reflect the fragmentation geometries. Imaging measurements of charged

fragments thus, if feasible at all, would require very complex evaluation procedures and were

not applied here.

Drawn in Fig 3.2 is also the slow extraction facility, which allows a small fraction of ions

to be continuously extracted from the stored beam in the TSR. These extracted ions are then

guided to the Coulomb Explosion Imaging (CEI) setup, where the geometrical structure of the

molecular ions can be analysed. In combination with the slow extraction from the storage ring,

this provides a tool for the examination of vibrational excitations of the ions as a function of the

storage time. Details on the principle of the CEI method and its implementation at the TSR can

be found at [75, 81].

In the following, the detector arrangements used for the neutral fragment imaging experi-

ments and for the determination of total and partial rates will be considered.

3.3.2 Fragment imaging measurements

The principle of the neutral fragment imaging detector is visualised in Fig. 3.3. As an example,

the fragmentation of a diatomic molecular ion AB ��� � into the neutral fragments A and B is

shown. At the point of dissociation, the molecular ion is travelling at the beam velocity ���� � ���
and with an internal geometry that can be described e.g. by the distances

�
	
and

���
of the two

nuclei from the center of mass (c.m.) of the molecule. � Through the dissociation process, each

fragment gains a certain amount of kinetic energy �� ( � = A, B) corresponding to an asymptotic

velocity ��  in the co-moving c.m. frame of the molecule:

�� � ����  � ��� (3.1)

with �  the mass of fragment � and �  � ���� �� . The orientations of the velocity vectors ��  are

determined by the orientation of the original molecule and by the dynamics of the fragmentation

process. Momentum conservation here sets the restriction �  � ���  � �� .
The fragments thus move at total velocities ��  � ���� � ����� ��  in the laboratory frame of

reference until hitting the imaging detector after a flight distance � . At the impact time of the

first fragment, the distances of the fragments to the c.m. have grown to macroscopic values ��
�� �

� �
� � ��� � �
(3.2)

This results in impact positions on the detector surface described by the 2D projected distances  , as well as different impact times !" for each of the fragments. In the experiments considered

1 For the description of a diatomic molecule, the internuclear distance #%$'& would be sufficient. However, the
formalism used here is easier to extend to polyatomic molecules.

25



3 Fast beam molecular fragmentation studies

vB

rB

rA

System
Data acquisition

vbeam

vA uA

vbeam
CCD

MCP

A

B

RA
x c.m.

RB

1.5 kV 1.7 kV

L

point of dissociation

Phosphor
Screen

PMT

AD

D
B

θ

Fig. 3.3: Schematic overview of the neutral fragment imaging system.

here, the fragment distances occurring are much smaller than the total flight length, �  �

� . The relation of the 3D distances �  and the projected quantities
  and !  can thus be

approximated by a orthogonal projections of the 3D distance into the detector plane and on the

beam axis,   � � ������	� � !  � � �
����� $ ��� � ��� �
(3.3)

Typical values here are projected distances of few centimeters and impact time differences of

few nanoseconds.

As detailed in [3], the imaging detector itself consists of a multi channel plate (MCP) de-

tector with an active area of 75 mm diameter and an attached phosphor screen. On impact of

an MeV particle, an electron avalanche is created in the MCP and further accelerated to the

phosphor screen where it creates a light spot. The position of this light spot is then recorded by

a CCD camera located outside the vacuum system. Different cameras with a readout frequency

of up to 1 kHz can be used. However, the rate of fragmenting molecules arriving at the detector

can be up to the order of 10 kHz. Thus, the desired analysis of individual breakup geometries re-

quires special precautions to avoid a recording of fragments stemming from different molecules

in the same camera frame.

For this purpose, an additional photo multiplying tube (PMT) is included in the system,

which creates a fast electronic signal on the appearance of a light spot on the phosphor screen.

This signal is then used to switch down the voltage between the MCP and the phosphor screen,

thus turning the detector blind for any further incoming particles. As the switching off time is
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of the order of 1 � s, the fragments which stem from the same molecule as the one triggering

the PMT and thus arrive within some nanoseconds, are not affected by the switching. On the

other hand, fragments of the next dissociation event arrive after a time of typically hundreds of

� s and find the detector blind.

After readout of the image from the CCD camera, the phosphor screen is switched back to

high voltage. To avoid an immediate trigger signal from the PMT caused by electronic noise

connected to the fast high voltage switching, a dead time of 20 � s was implemented, where a

trigger signal from the PMT is not accepted. This dead time introduces a certain probability,

depending on the actual event rate, of recording fragments of two dissociating molecules in the

same camera frame. For the vast majority of the recorded events, however, this method allows

the determination of impact positions of the fragments on a single molecule basis.

The images taken by the CCD camera are then processed by a frame-grabber connected to a

VME computer, which analyses the table of light intensities per camera pixel obtained from the

frame grabber and produces a list of fragment positions. These positions are at first expressed

in units of camera pixels. By a dedicated calibration measurement the conversion factor to the

fragment positions in mm is then obtained. For this calibration, a beam stop is moved in front

of the imaging detector covering part of its active area. From the correlation of the measurable

position of the beam stop (in mm) and the position of the ‘shadow’ observed by the imaging

system (in pixels), the desired conversion factor is obtained.

Some important limitations of the detection system should be noted here, which have to be

taken into account in the data analysis procedure. First, the imaging detector described here is

not capable of recording the individual impact times of the fragments. Only the impact positions

in the detector plane can be determined, which puts a major restriction on the possibility of

reconstructing fragment velocity vectors. Second, the point of dissociation and thus the flight

length � is not well defined. Electron induced fragmentation reactions as considered here can

occur at any point inside the interaction region in the electron cooler. As seen in Fig. 3.2,

this region has a length of 1.5 m which puts only a weak limitation on the actual flight length

� . Third, the efficiency of the MCP is only in the order of ���
�
%. Thus, in many of the

dissociation events recorded, only a part of the fragments is seen. This limitation has to be

considered especially when dealing with polyatomic molecules, as discussed below.

In addition, it has to be kept in mind that the imaging system generally is not able to determine

the masses of the impinging fragments. As will be seen in the following, this limitation does

not affect the analysis of imaging data from the fragmentation of diatomic molecules, which

is a standard application of the detector setup available at the TSR [3]. Regarding the case of

polyatomic molecules, which will be particularly addressed in the present work, the assignment

of fragment masses is one of the problems to be solved in the analysis of imaging data.
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Analysis of imaging data

As shown by Beckert and Müller [6], even for a mass-insensitive imaging detector a complete

and accurate reconstruction of the fragment velocities ��  can in principle be performed, event

by event, for an arbitrary number of fragments, given that certain conditions are fulfilled re-

garding the measured quantities, the preparation of the molecular beam, and the initiation of

the dissociation process. These conditions include a 3D determination of both impact positions

and impact times of the fragments on the detector, an accurately known flight length � and a

good definition of the interaction region also transversal to the beam direction. In the setup

considered here, these conditions can be fulfilled in some, but not all aspects. In particular,

the use of a 2D imaging system not capable of determining the impact times of the fragments,

and the unknown position of the point of dissociation within the electron-ion interaction region,

inherent to the merged beams geometry, make it impossible to fully reconstruct the dissociation

geometry from the measured data on an event by event basis.

However, a straightforward data analysis procedure exists for the simple case of the

electron-induced fragmentation of diatomic molecules, which is able to extract considerable

information on the dissociation dynamics from the limited data available. For neutral fragment

imaging applied on the breakup of a diatomic molecule, the only channel of interest is the

production of two neutral atoms, while background processes like the dissociative excitation

through a residual gas collision in general produce at least one charged fragment. Thus, the

simple requirement of a detection of two coincident fragments efficiently suppresses a contam-

ination of the data stemming both from different fragmentation processes and from incomplete

detection of the neutral fragments.

The only reaction property to be analysed for a diatomic breakup is the total kinetic energy

release ������� ; the sharing of this energy among the two fragments is given by momentum conser-

vation. Following Eqs. (3.1)–(3.3), this energy release translates into a distance
 �  	 �  ��

of the light spots seen on the detector. As the angle � and the flight length � are not measured,

a back-calculation of ������� from the measured
 

is not possible. However, the probability dis-

tribution
� �� �

of impact distances accumulated for many individual fragmentation events can

be compared to the distribution expected for a given ������� under certain assumptions.

In particular, one assumes that the dissociation takes place (a) with equal probability over

the whole interaction region, that is
� � � � � 
 � � ��	 � for � �


 � 
 � � and (b) with an isotropic

orientation of the dissociating molecule, that is
� � 
 �� � � � 
��� ��	 � for � � 
 
 ���� 
 � . Both

assumptions are well justified especially in the case of zero energy of the colliding electron,

where no special orientation of the molecule can be defined by the relative electron velocity

vector. Using these assumptions, the
� �� �

spectrum expected for a certain energy release

������� can be expressed by an analytic function, as sketched in Fig. 3.4. The experimental
� �� �
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Fig. 3.4: Sketch of the probability distributions resulting from a diatomic fragmentation reaction. The
fixed energy release � ����� (left) translates to a rectangular distribution of 3D fragment distances

� ��� �
(center) due to the variable flight length � . The distribution of projected distances

� ��� � (right) is addi-
tionally broadened through the isotropic orientation of the molecule.

spectrum can then be fitted by a sum of these functions for different ������� , thus yielding the

probability distribution
� � � ����� � of the breakup energy. A detailed description of this method

can be found in [3].

Extension to studies of polyatomic molecules

In the last section, the standard methods used in fragmentation imaging studies with diatomic

molecular ions have been outlined. For studies of polyatomic breakup reactions, these methods

have to be modified in several aspects. A major complication in the fragmentation of poly-

atomic systems is the appearance of additional reaction channels, which require the application

of advanced methods of channel identification in both imaging experiments and also the rate

measurements discussed below, to allow a channel-resolved investigation of the properties of

the dissociation process. Another new issue is the analysis of imaging data taken for a chan-

nel employing more than two fragments. The geometric information encoded in the recorded

impact positions in this case is multi-dimensional, thus complicating the representation and

interpretation of these data.

Both the channel identification and the representation of multi-fragment imaging data are

connected to the basic problem of the assignment of masses to the fragments of each recorded

event. As will be seen, this mass assignment can be done by a careful inspection of the center

of mass of the observed fragments. Shortly, the well defined orbit of the molecular ions in a

storage ring results in a well defined ‘impact’ position of the c.m. of all dissociating molecules

on the surface of the imaging detector. Thus, the best mass assignment for an observed event

can be found by comparing the c.m. position calculated for several tentative assignments to the

known c.m. position of the beam. Together with a strict cut on the position of this best possible

c.m., this method also yields an identification of the fragmentation channel for each event, as

well as a suppression of different types of background.

The mass assignment found this way can further be used in the interpretation of imaging
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data from multi-fragment channels, where it allows a study of the kinetic energy gained by each

fragment during the breakup process. As will be shown, the sharing of kinetic energy between

the fragments represents a well suited basis for the interpretation of the observed fragmentation

geometries.

Being the simplest example of a polyatomic fragmentation process, the breakup of triatomic

molecular ions will be addressed in this work. While these reactions are still much simpler

than the fragmentation of larger systems, some important qualitative changes in the data anal-

ysis, compared to the case of diatomic fragmentation, can be investigated already in triatomic

systems. As an example for the analysis of neutral fragment imaging data from a triatomic

molecule, dissociative recombination experiments on H
�

� and its isotopomers will be studied

in Chap. 4, where the mentioned methods of channel separation and data representation will be

discussed in detail.

3.3.3 Total and partial rate measurements

For measurements of the rate of neutral fragments emerging from the electron cooler, a silicon

surface barrier detector can be positioned in front of the imaging detector described above. It

is used here to determine both the total and the partial rates of the various breakup channels, in

particular for the fragmentation studies on the LiH �� anion.

In contrast to the imaging system, this solid state detector has a 100% efficiency for the

detection of neutral particles at MeV energies and is thus suited for determining absolute count

rates. In addition, this detector is sensitive to the total energy of the impinging fragments, which

are completely stopped within the active area of the detector. As the velocities of all fragments

are in good approximation identical to the velocity of the stored beam, this energy resolution can

be used to determine the mass deposited at the neutral fragment detector for each dissociation

event. Due to the short time interval between the impact of fragments stemming from the same

molecule ( � � � ns), only the total mass of all neutral fragments can be recorded. On the other

hand, the typical time between two separate dissociation events is of the order of � � � � � s and

thus large enough for a clean separation of individual events.

A typical energy spectrum as recorded for electron-impact fragmentation of LiH �� is shown

in Fig. 3.5. The peaks corresponding to the impact of a total neutral fragment mass of 1, 2, 7, 8

and 9 a.m.u. are easily identified and well separated. The additional peak at the low-energy end

of the spectrum (ADC channel 20–30) is generated by electronic noise and could be suppressed

by setting a threshold on the signal amplitude. The small peak around ADC channel 100–

110 is an artefact stemming from the geometry of the solid state detector. The active area of

this detector is divided into seven vertical stripes with a width of ��� mm and a distance of

�
� � �

mm. These stripes can be read out individually, a feature that was not used in the present
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Fig. 3.5: Typical energy spectrum
recorded by the solid state detector.
Arrows indicate the neutral fragment
masses (in a.m.u.) assigned to events
recorded with the respective energies.
The spectrum was recorded for impact of
41.3 eV electrons on LiH �� .

experiments. For fragments hitting the small spacing between adjacent active stripes ( � � % of

all fragments), only a fraction of � � � % of the fragment energy is recorded by the detector. The

mentioned peak thus corresponds to the detection of a mass of �
� ���

a.m.u., where a Li atom

is only partly seen. In the experiments considered here, this property of the solid state detector

has to be taken into account in the data analysis as a systematic error.

As seen here, the detector is able to identify the total mass of the impinging fragments,

but it is not sensitive to their chemical composition. In the case of LiH �� , e.g., a total mass of

9 a.m.u. could be made up by the fragments Li + H + H, LiH + H, Li +H � or LiH � . To distinguish

between these channels, additional efforts are required, as discussed below.

Beside the neutral fragment detectors, an additional detector sensitive to charged fragments

is available. As detailed in Sec. 5.2, this device is capable of measuring count rates for several

types of charged fragments. An imaging setup for charged fragments is not available, as noted

above.

Determination of branching ratios: The grid method

To separate dissociation channels which exhibit the same total mass of neutral fragments, a

special approach is necessary. In many cases, the grid method described in the following can

be used to determine the branching ratios of such channels, as demonstrated already in 1971

by Morgan et al. [52] and applied also in [77, 58, 19, 18]. The detector setup at the TSR was

thus equipped with a ladder holding various grids for the experiments on LiH �� . Details of the

particular setup used will be given in Sec. 5.2.

For an overview of the grid method, the simple case of the fragmentation of a diatomic

molecular ion AB � � � is again chosen as an example here. Assuming that the observed frag-

mentation can lead to two channels, AB and A + B, the mass spectrum recorded by the solid
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Fig. 3.6: Visualisation of the two processes contributing to Eq. (3.4a).

state detector will exhibit a single peak corresponding to an impact of the total mass � 	 �
of

the molecule. The aim of the measurement is to determine the fractions �
	 �

and �
	

�
�

of the

two channels, which are normalised e.g. to �
	 � � �

	
�
� � � . The idea of the grid method

is now to put a metal grid in front of the solid state detector which reduces in a well defined

way the detection probability for each individual fragment. To achieve this, a material is chosen

which can completely stop all types of fragments emerging from the reaction under study. The

transmission probability � of the grid is given by the size and the distance of microscopic holes.

The length scale of this pattern has to be smaller than the expected distances of the fragments

to ensure an independent stopping probability for each fragment.

The mass spectrum recorded by the detector with this grid in place will then show a reduc-

tion of the full mass peak, and at he same time an appearance of additional peaks corresponding

to the masses � 	
and � �

of the individual fragments. The resulting count rates
���

in the peaks

of mass � are given by

��� ��� � � � � �

�
	

�
� � � �

	 �	�
(3.4a)

��� � � ��� � � � � � � � � � �
	

�
�

(3.4b)

with a normalisation factor
�

. (See also the schematic drawing in Fig. 3.6.) Using the the

known transmission factor of the grid, these equations can easily be solved yielding the desired

branching factors �
	 �

and �
	

�
�

.

The accuracy of the resulting � values can in some cases sensitively depend on the exact

value of the transmission � . In particular, the method is based on the assumption, that the same

transmission factor � is valid for all types of fragments impinging on the grid. However, in [77]

transmission measurements on grids of similar type as the ones used in the present work were

reported to show small variations of the transmission factor dependent on the type of atoms used

as projectiles. As the reason for these variations is unclear at present, this observation has to be

taken into account as a possible source of systematic errors in the reconstruction of branching

factors.
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Extension to studies of polyatomic molecules

When extending these measurements of partial rates to polyatomic molecules, the increased

number of dissociation channels in such systems bears an increased number of unknown vari-

ables �  in the equations which correspond to Eq. (3.4) in the diatomic case. Thus, additional

independent data in general are required for a determination of these �  .
In the measurements of the DR of H

�
� described in [19], Datz and coworkers collected

additional data by using a ‘translucent barrier’. Here the particles hitting the grid material were

not completely stopped (due to the high beam energy applied), but rather lost part of their energy

giving rise to a number of additional peaks in the fragment energy spectrum. Still, this method

could not be used in the case of LiH �� , which will be considered here, since these additional

peaks, which are also broadened due to inhomogeneities of the grid thickness, could not be

resolved in a reaction involving fragments of too different masses.

Instead, another extension of the grid method was applied, which was not reported so far,

namely the combination of several measurements using grids of different transmission factors

� . However, an algebraic solution of the resulting extended system of equations, which would

yield exact values for the branching factors �  , is not in all cases possible, even when using

several different grids. This is especially the case for molecular anions, where the situation is

further complicated by a considerable background contribution in several channels originating

from residual gas collisions. In this situation, additional considerations are necessary to gain

information on the branching factors. For example, the fact that all �  have to be non-negative

can be used to obtain at least upper and lower limits for all channels.

In Chapter 5, experimental results on the fragmentation of the LiH �� anion are presented.

For this system, the focus is set on the investigation of branching ratios. Even though a straight-

forward derivation is not possible here, approximative values could be obtained, which allow a

clear identification of dominant channels.
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4. Dissociative recombination of H
�

� and its

isotopomers

4.1 General background

The simplest polyatomic molecule is the triatomic hydrogen ion H
�

� . Its breakup into neutral

fragments following dissociative recombination (DR) with low-energy electrons is therefore a

natural test case for studying polyatomic fragmentation. In addition, the H
�

� DR is of great inter-

est in many fields ranging from fundamental quantum chemistry to applications in astrophysics

and plasma physics, as will be briefly outlined in the following.

4.1.1 Properties and interactions of H ��

The triatomic molecular hydrogen cation H
�

� was discovered 1911 by J.J. Thomson in a labora-

tory hydrogen discharge. While viewed as an exotic molecule with completely unclear binding

mechanism for many years, the structure of H
�

� is nowadays well investigated. Theoretical

calculations of the ground-state potential energy surface (which is the only binding one) have

reached a high level of accuracy [63, 13, 31] and the resulting spectroscopic properties are in

very good agreement with laboratory spectroscopy measurements [54, 47]. The geometrical

equilibrium structure, an equilateral triangle with a side length of 1.65 bohr, was in addition

confirmed directly applying the Coulomb Explosion Imaging (CEI) technique [22], which was

also used recently to study the relaxation of vibrational excitations of H
�

� [38].

Since the early 1960’s, H
�

� was expected to be abundant in the hydrogen-dominated medium

in interstellar space. Starting 1973 [29], it gained a central position in models of interstel-

lar clouds. As an efficient proton-donator, it plays an essential role in the formation of larger

molecules. The first observation of H
�

� in interstellar space however took until 1996 [24]. Be-

cause of the lack of both electronically excited states and a permanent dipole moment which

could give rise to allowed rotational transitions, a detection was possible only through a search

for vibrational transition lines in the infrared range. Today, H
�

� is known as an important con-

stituent not only of both dense and diffuse interstellar clouds but also in different environments
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like the ionosphere of Jupiter and other planets or the periphery of nuclear fusion plasmas [30].

The molecule is produced in the reaction� �
� � �

��� � �
� � � � � ������� �

(4.1)

The destruction mechanism depends on the actual environment. While in dense interstellar

clouds reactive collisions with other molecules like CO dominate, the main destruction mecha-

nism in diffuse interstellar clouds, and thus the reaction crucially determining the abundance of

H
�
� in these environments, is the dissociative recombination with low-energy electrons: �

� �
� � �

�
� ��
	 � � � � � � � � � � �

(4.2a)� � �
� � � � � � � �

(4.2b)

The study of this reaction is therefore motivated – besides the desire to gain a full theoret-

ical understanding of the underlying quantum chemical mechanisms – by a great astrophysical

interest in its rate coefficient � . This quantity is defined as

�
� � 	 ��� � (4.3)

with 	 denoting the cross section for electron collisions leading to a dissociative recombination

(4.2), and
�

the mutual velocity of the reactants. The averaging is done taking into account the

probability distribution of
�
, which in interstellar clouds corresponds to a temperature of a few

Kelvin. For comparison of laboratory results usually the thermal rate coefficient at 300 K is

extracted from the data, which corresponds to the thermal distribution of electron velocities at

a temperature of 300 K.

The lifetime � ��� of a molecular ion vs. dissociative recombination is then given by the

density  � of free electrons, � �!� � �
�� � � � � � (4.4)

Because of its astrophysical importance, the rate coefficient � of the DR of H
�

� has been

extensively studied in many experiments as well as theoretical approaches. For an overview, see

e.g. [45, 57] and references therein. Despite the apparent simplicity of the system and the well-

known potential energy surface of the ion, the DR process, consisting of the capture of a free

electron followed by a fast dissociation of the neutral system, turned out to be challenging for

both experiment and theory. During the last decades, the results obtained for the rate coefficient

� disagreed by up to four orders of magnitude.

The two most important experimental techniques to measure � nowadays are heavy-ion

storage rings with the possibility to merge the stored molecular ion beam with a co-moving

1 The energy release ��� of this exothermic reaction will be discussed in the next section.
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electron beam, and afterglow experiments, where the decay of a microwave-induced plasma is

analysed. Today, all results from storage ring experiments are consistent with a thermal rate

coefficient of � � � " � � ��� cm
�

s � � at 300 K [73, 32, 20]. Recent afterglow experiments, in

contrast, found ��� � " � � �

�
cm

�

s � � [60]. On the theoretical side, a new calculation which for

the first time is able to treat this fragmentation reaction in its full dimensionality is supporting

the storage ring results [35, 36].

However, to gain a full understanding of the process, the reason for the large difference

between the experimental results has to be found. On this background, it is interesting to study

not only the value of � (300 K), but also other aspects of the DR reaction, as revealed by the

fragmentation dynamics. The results of these extended experimental investigations can then be

used for a more detailed comparison with theoretical calculations. In addition, a good control

of all experimental conditions is desirable, including e.g. possible rovibrational excitations of

the H
�
� ions. As these excitations are believed to increase the DR rate, a possible reason for

the different � values measured in storage ring and afterglow experiments might be a differ-

ent distribution of rovibrational excitations in both types of experiments. As will be seen in

Sec. 4.1.3, studies of the fragmentation dynamics can contribute also in this context to a better

understanding of the DR process.

4.1.2 Fragmentation studies of the H �� / H � system

In a storage ring, the rate coefficient � is usually measured as a function of the relative energy

� between the molecules and the incident electrons. The thermal rate coefficient at 300 K is

then obtained by a folding of �
� � � with the desired distribution of electron energies. The full

energy dependence of �
� � � can already be used for a more detailed comparison of experiment

and theory [36].

Another interesting property of the DR reaction is the branching ratio between the two

reaction channels (4.2a and b). This ratio was investigated at CRYRING for H
�

� [19] and found

to be 3:1 in favour of the three-body channel at low electron energies ( � � � meV). At higher

energies an increase of the two-body fraction was observed. This behaviour can be explained by

means of a statistical model based on simple phase-space assumptions [70]. Similar branching

fractions were measured also for the H � D
�

isotopomer [18].

In another series of experiments, U. Müller et al. [53, 50, 23] investigated the fragmenta-

tion of single Rydberg states of neutral H � . These states were prepared by the neutralisation of

keV H
�
� ions in a cesium cell, followed by a laser-induced transition from the metastable

��� � � ��
Rydberg state to the state to be studied. By the measurement of the fragmentation geometries,

the kinetic energy release and the dependency of transition rates and fragmentation patterns on

the laser frequency, the dynamics of the fragmentation of the neutral H � system when starting
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H
�

� D
�

� H � D
�

D � H
�

� ��� � �
4.76 4.63 4.67 4.72

H � D � HD

� �
4.48 4.55 4.51

Tab. 4.1: Chemical energy release � � � � �
for the three-body decay of the isotopomers of H

�
� following

DR. For the two-body channels, the binding energy �
�

of the emerging neutral molecule has to be added,
� � � � � � � � � � ���

�
�
. All energies are given in eV.

in well defined electronic and rovibronic states then was investigated. These experiments illu-

minate processes which play a role also in the DR of H
�

� with low-energy electrons. However,

instead of the metastable electronic state which makes it possible to investigate dissociation

reactions starting from a specific state of the neutral system, the DR reaction can proceed via a

variety of high-lying Rydberg states
�

of H � , which complicates the theoretical treatment [36].

In the experiments presented here, new aspects were studied for the DR of H
�

� . In particular,

the breakup dynamics in both channels were investigated using fragment imaging techniques.

Moreover, new results on the rovibrational excitation of the stored ions could be obtained. As

an additional benchmark for theoretical calculations, the same studies were performed on all

four stable isotopomers of the triatomic hydrogen ion, that is on H
�

� , D
�

� , H � D
�

and D � H
�

,

revealing interesting isotope effects, as described in detail in the following sections.

4.1.3 Energy considerations for the H �� DR

As noted before, the DR of H
�

� is an exothermic reaction, that can lead to two final channels (see

Eq. (4.2)). The energies � � � � �
and � ��� � �

, which are set free by the reaction in the two-body

and three-body breakup channel, respectively, reflect the change in binding energy during the

transition from the initial to the final channel. As sketched in Fig. 4.1, the energy release � � � � �
in the two-body channel can be calculated from the binding energy ������ ����� � �

eV of the H
�
�

molecular ion [16] and the ionisation potential 	 � � � � ��
 � eV of the hydrogen atom:
�

� � � � � � 	 � � ��� �� � � � � � � �
(4.5)

In the three-body channel, the energy release is reduced by the binding energy � �� ��������� eV

of the neutral hydrogen molecule [21]:

� � � � � � 	 � � ������ � � �  � � ����
 ���
(4.6)

For the reactions of the three heavier isotopomers, slightly different values are obtained, as

summarised in Tab. 4.1.

2 The ������� �� metastable state is not populated here due to its energetic position far below the H �� ground state.
3 All energies are defined positive here.
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vant for the DR of H

�
� . ��� de-

scribes the adiabatic binding energy
�
�

of the molecule X with respect
to the energetically lowest fragmen-
tation channel, that is H � + H

�
in the

case of � � �� .
� � denotes the ionisa-

tion potential of the hydrogen atom,
� � � � �

and � � � � �
the chemical en-

ergy set free by the DR reaction in
the three-body and two-body chan-
nel, respectively. The term internu-
clear separation here describes qual-
itatively the transition from the H

�
�

equilibrium geometry to a geometry
where all reaction products have infi-
nite mutual distances. The scheme is
given for the electronic and rovibra-
tional ground state of all atoms and
molecules involved.

To conserve the total energy, this reduction of the energy stored in chemical bonds has to be

compensated by an increase of the energy available for internal excitations and relative motion

of the fragments. In the most general case, this can be written as

� � � � � � � ������� � � �
���
�

�
� � � � � ���� � � �� � � � � ��	� � � (4.7a)� � � � � � � � � � �

����� � � �
��� � � �

� �
� � � �

�	� � �

 �� � ������� 
 � � � � �	� � ���

�
� � � � � ���� � � �� � � � � ��	� � �

 �� �

� � ��
 � � � � � � � �	� � ���
�

(4.7b)

������� here describes the total kinetic energy of all fragments produced, measured in the co-

moving center-of-mass frame of the molecule. This quantity is also referred to as the kinetic

energy release (KER) of the reaction, and can be addressed in fragment imaging experiments,

as shown in Sec. 3.3.2.

�
�
��� is the total energy of any electronic excitations of the fragments produced. Here, the

lowest electronically excited fragment state is the  � �
state of the H atom with an excitation

energy of 10.2 eV. The small energy � � available thus inhibits an electronic excitation of reac-

tion products in the three-body channel, and in most cases also in the two-body channel. �
�
� �
�

and �
�
��� � denote vibrational and rotational excitation energies, respectively, in the final channel.

These excitations are possible only in the two-body channel, where a molecular fragment is
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produced.

For the energetic situation prior to the reaction, � � describes the relative energy of the

colliding electron. In the experiments considered here, a velocity-matched electron beam was

used; � � is thus determined by the electron temperature of roughly 10 meV. The term � �� � in this

general consideration denotes the energy of electronic excitations of the incoming molecular

ion. However, as the H
�

� ion possesses no stable, electronically excited state, this quantity can

be considered zero. Vibrational excitations of the H
�

� ions are radiatively cooled during the first

seconds of storage, as was confirmed in a CEI experiment [38, 37]. The energy � �� �
�

can thus

also be neglected, provided that only data taken after several seconds of storage are used in the

analysis, as was done in the experiments described here.

The rotational excitation energy � ��	� � of the H
�

� ions cannot be measured with the CEI

method. As the molecular ions are likely to be produced in the ion source in rotational excited

states, and these can have rather long lifetimes especially for the infrared inactive homonuclear

species, a considerable rotational excitation of the reacting molecules has to be expected. An

estimation of � ���� � is thus one of the goals of the investigations presented here.

Given these considerations, the energy balance for the two channels can be summarised as

������� � � � � � � � � � � � ��	� � (4.8a)

� � � �
�����

� � � � � � � � � � � ��	� � � � �
� �
� � � �

��� � � � �
��� (4.8b)

Because of the known total energy release � � � � �
and the small electron energy � � , a measure-

ment of the kinetic energy release � ����� in the three-body channel can yield information on the

rotational excitation � ��	� � of the stored H
�

� molecules.

For the two-body channel, the dominant contribution to the measured kinetic energy release

� � � �
����� is, besides the well-known � � � � �

, the vibrational excitation of the molecular fragment

�
�
� �
�
. Nevertheless, rotational excitations of H

�
� and H � have to be considered also. However, a

measurement of � � � �
����� can still yield an approximative picture of the vibrational state distribution

in the molecular fragment.

Because of the large energy release � � � � �
, an electronic excitation of the atomic H fragment

cannot be completely excluded for the two-body channel. As can be seen from Eq. (4.8b), and

the value of �
�
���
� � ��� � � eV for H(  � �

), an initial rotational or kinetic energy of at least 0.97 eV

is needed to produce an H � molecule in its rovibrational ground state together with an excited

H(  =2) atom. The very low kinetic energy release � � � �
����� resulting from this process can be used

as an efficient probe for high rotational excitations of the H
�

� ions.

The main focus of the experiments presented in the following lies on the fragmentation

patterns and the KER in the three-body dissociation channel. Results for the two-body channel

were also obtained [69], but are summarised only shortly here.
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Ion type H
�

� D
�

� H � D
�

D � H
�

Beam energy [MeV] 1.43 1.44 1.92 1.20

Storage time [sec] 10 80 15 60

Precooling time [sec] 3 10 5 10

Tab. 4.2: Beam energies and storage
times used in the imaging experiments on
H

�
� and its isotopomers.

4.2 Experimental setup and procedures

For the experiments on H
�

� and its isotopomers, the experimental apparatus described in Sec. 3.3

was used, including in particular the heavy ion storage ring TSR, with the electron cooler device

and the neutral fragment imaging detector setup. For production of the ion beam, a standard

CHORDIS ion source was used. The CHORDIS (Cold or HOt Reflex Discharge Ion Source)

is a hot filament source that produces molecular cations in a gas discharge driven by electrons

emitted by the filaments [33]. Acceleration was achieved employing the high current injector.

For each of the isotopomers, a beam energy was selected such that the fragments emerging

from a DR reaction gained mutual distances of several centimeters until reaching the imaging

detector, thus enabling a determination of fragmentation geometries at high resolution. The

beam energies used are given in Tab. 4.2.

For each molecule, measurements were done during a beamtime of one week. Imaging data

were accumulated by repeatedly injecting ions into the storage ring and recording fragmentation

events during a storage time ranging up to 80 sec (see Tab. 4.2) for each injection. With this

procedure, a total number of imaging events in the order of one million was collected for each

molecule. On this raw data, several cuts had to be applied. For example, data taken in the

precooling time in the first seconds after injection, when the phase space cooling process was

not completed, have been discarded. As described below, a strict c.m. cut was additionally

applied for background suppression. The number of fully identified three-body events resulting

from this procedure was then in the order of 100,000 for each isotopomer.

4.3 Handling and representation of imaging data

The first step in the analysis of imaging data recorded for the breakup of a polyatomic molecule

is the separation of the possible reaction channels. In the case of the DR of H
�

� and its iso-

topomers considered here, these are the full fragmentation channel yielding three atomic frag-

ments (4.2a) and the two-body breakup channel (4.2b), which in case of the heteronuclear iso-

topomers H � D
�

and D � H
�

consists again of two subchannels with different isotopic compo-

sition of the molecular and the atomic fragments, respectively. For each fragmentation event

recorded by the imaging system, it is now necessary to identify the reaction channel which pro-
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duced this event. In addition, recorded events which do not represent a single fragmentation

reaction with all fragments detected have to be recognised and excluded from further analy-

sis. In Sec. 4.3.1, the method of channel identification and background suppression applied in

the present experiment will be described, which is based on an analysis of the center of mass

(c.m.) position of the recorded events. This method implies an identification of the mass of each

observed fragment, which will be needed also in later stages of the data analysis procedure.

After the preparation of one separate set of imaging data for each reaction channel, with

each set consisting only of completely recorded fragmentation patterns for a large number of

single molecules, the fragmentation dynamics in each channel can be investigated by the anal-

ysis of the corresponding set of imaging data. Regarding the two-body fragmentation channels,

this analysis follows the standard procedures applied also in fragmentation experiments on di-

atomic molecules. An overview of the results obtained here will be given in Sec. 4.4.3.

For the analysis of the three-body fragmentation data, new considerations are necessary

regarding the representation and interpretation of these multi-dimensional imaging data. In

Sec. 4.3.2, a method will be described which allows the extraction of interesting physical prop-

erties of three-body breakup reactions from the recorded data.

As described in Sec. 3.3.2, important limitations of the experimental setup employed here

are the use of a 2D imaging detector and the unknown point of dissociation within the inter-

action region. For the interpretation of three-body imaging data recorded with such a system,

an important tool is a Monte-Carlo forward simulation algorithm which models the physical

breakup process and the detection system in use, as will be described in Sec. 4.3.3. Using these

simulated data, the sensitivity of the experiment to different properties of the physical process

and of the experimental setup can be tested. In addition, the simulated data can be compared

to data obtained in a real experiment, revealing information on the process studied even in sit-

uations where a direct reconstruction of the event kinematics on an event by event basis is not

possible.

4.3.1 Separation of reaction channels and assignment of fragment masses

In an ideal imaging experiment, reaction channels with different fragment multiplicities could

easily be separated through the number of fragments seen on the detector for each event. How-

ever, the MCP detector used in the present experiment has a limited detection efficiency for each

impinging fragment (see Sec. 3.3.2). Therefore the number of fragments observed for a given

event is here no sufficient criterion for an identification of the reaction channel which produced

the event. For example, an event consisting of two detected fragments could well have its origin

in a three-body breakup, with one of the fragments staying undetected. On the other hand, there

is a small chance for event-mixing: If two dissociating molecules arrive in coincidence at the
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Fig. 4.2: Distribution of the vertical center-of-mass position of three-fragment events observed for the
DR of H

�
� : (a) evolution with storage time (b) distribution for

�
� � � � ����� sec. A Gaussian fit (red) yields

a width of ��� � 	��
	�� mm here. The background contribution (green) is estimated to be ���� within the
c.m. cut indicated by the vertical lines; see text for details.

detector, and some of the fragments are not detected, this can produce a two- or (more likely)

three-body event with fragments mixed from different molecules.

To separate these various background events from ‘good’ events, where all the fragments

produced in one breakup reaction are recorded, a convenient method is to put restrictions on

the center of mass of the observed fragments. This method profits from the good beam quality

usually achieved in a storage ring. After a few seconds of phase space cooling (see Sec. 3.3.1),

the spatial extension as well as the divergence of the ion beam are small enough to confine the

‘impact’ positions of the center of mass of the fragmenting molecules on the detector to an area

of � � mm diameter, as shown in Fig. 4.2.

For the three-body breakup of a homonuclear molecule, the individual c.m. of a ‘good’

event stemming from a single, completely recorded fragmentation reaction is given by the aver-

age of the three fragment positions and will be located close to the mean c.m. of the beam. For

background events resulting from event-mixing, on the other hand, the average of the fragment

positions has no physical meaning and will be scattered statistically over a much bigger area

on the detector. A cut for the separation of ‘good’ events from event-mixing background can

thus be applied by evaluation of the distance between the calculated individual c.m. position of

each event and the mean c.m. position of all recorded events. Only events where this distance

is small enough are considered ‘good’ events and further analysed.

The mean c.m. position is determined by a Gaussian fit of the distribution of a large number

of individual c.m. positions, as shown in Fig. 4.2(b) for the vertical component. Similarly,

mean position and sigma width of the horizontal c.m. distribution are determined. Using these

data, the evaluation of the individual c.m. position of each recorded event can be performed
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4.3 Handling and representation of imaging data

by comparing its horizontal and vertical distance ( ��� , ��� ) from the mean c.m. position to the

sigma widths ( 	�� , 	 � ) of the c.m. distribution. The quality of each observed event is therefore

estimated by calculating � � � � ���	��
	 �

� � ���	 � 	
�

� (4.9)

Thus, � measures the distance of the individual c.m. from the mean c.m. in units of its standard

deviation.

In the present experiments, only events with � 
 � are considered good events and further

analysed. This means that the individual c.m. position of a good event is required to lie within

an ellipse around the mean c.m. position with the radii 	
� and 	 � . In Fig. 4.2(b), the maximal

extension of this region in the vertical direction is indicated by the dotted lines.

For the interpretation of imaging data, it will be important to estimate the relative amount

of background events still present within the chosen c.m. cut, as well as the physical properties

deduced from these events. To estimate the number of background events passing the c.m. cut,

the fit shown in Fig. 4.2(b) is performed employing a sum of two Gaussian functions. While the

red line in the figure describes this sum, the green line gives the contribution of the very broad

second Gaussian component. The quantitative contribution of background events can now be

estimated by comparing the number of events (integrated over the region of the c.m. cut) in the

Gaussian describing the background and in the total distribution.

To estimate the properties of these background events, that is, their qualitative contribution

to the experimental results, an additional set of data is prepared where the factor � defined in

(4.9) is required to fulfil � 
 � 
 � � . At this large distance from the mean c.m., the contribution

of ‘good’ events can be assumed to be negligible, therefore a set of pure background data is

prepared. In the analysis of breakup energetics and geometries, the contribution of background

events can then be estimated by performing the same analysis steps on both the ‘good’ and

the background data sets and taking into account the relative number of background events as

deduced above.

The value of � � � used as the limit in the present c.m. cut is a compromise between the

need for high statistics and the desire for a background-free data set. As will be seen later, a

good background suppression is essential in the analysis of certain properties of the fragment

geometry distributions; therefore a rather strict c.m. cut was applied.

In principle, the same method can be used also on three-fragment events observed for the

DR of one of the heteronuclear isotopomers to separate good events, which stem from the three-

body breakup channel, from event-mixing background. However, in this case the masses of the

three fragments are not equal and thus a mass assignment has to be done for the fragments of

each observed event in order to calculate the individual center of mass. As sketched in Fig. 4.3,

this is done by calculating the individual c.m. position for each possible assignment of masses,
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Fig. 4.3: Center of mass analysis for D � H
�

: schematic
view of a three-body event as seen on the imaging de-
tector. A, B and C denote particle impact positions, a,
b and c the three possible positions of the individual
c.m. of this event, which result from the tentative iden-
tification of particle A, B or C, respectively, as the hy-
drogen atom. The mean c.m. position of the beam is
denoted by � , the dotted line indicates the acceptance
of the c.m. cut.

and then selecting the most probable assignment as the one with the smallest distance of the

calculated c.m. to the mean c.m. of the beam. On this distance the usual cut is then applied. The

assignment of masses is important not only for application of the c.m. cut, but will also be used

in the subsequent analysis of breakup geometries and energetics.

With this method, an unambiguous assignment of fragment masses is possible only if the

mutual separation of the different c.m. candidates is larger than the extension of the mean

c.m. region described by ( 	�� , 	 � ). For too small fragment distances and correspondingly small

distances of the three c.m. candidates, a misassignment of fragment masses is possible. Al-

though always the ‘best’ c.m. candidate is chosen, that is the one with the highest probability

of a correct mass assignment, in such cases where another candidate is of similar quality within

the resolution of the method (being the 	 width of the mean c.m. distribution), the resulting

mass assignment has some probability to be wrong. This introduces a background contribution

that adds to the event-mixing background. However, the described procedure for estimating

the background contribution covers also these events, allowing to take them into account in the

interpretation of the data.

To prepare a data set for analysis of the two-body fragmentation channel, the same method

is applied on the observed two-fragment events. An assignment of fragment masses is neces-

sary here in the case of all four isotopomers in order to calculate the individual c.m. positions.

The cut on � then suppresses background events which here mainly stem from three-body

breakup reactions where only two fragments are detected. For the heteronuclear species, the

mass assignment in the two-body channel includes not only the identification of the atomic and

molecular fragments, but also the assignment of each event to one of the two subchannels. This

complicates the preparation of background-free data sets for the two-body reaction channels of

these species (see Sec. 4.4.3).
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4.3.2 Representation of three-body fragmentation data

As seen in Sec. 3.3.2, in the simple case of a diatomic molecule, only one internal degree of

freedom exists. In the description of the original molecule, this corresponds to the internuclear

distance
�
. When a fragmentation occurs, the system evolves according to a one-dimensional

potential energy curve
� � � �

. Finally, a certain amount of energy is transformed to kinetic energy

related to the relative motion of the two atoms. These reach asymptotically a relative velocity
�
,

which correlates to the observed (2D) distance
 

of the impact positions of the two fragments

on the imaging detector.

For a three-body fragmentation process, this simple picture is complicated by the appear-

ance of additional degrees of freedom. The geometry of a triatomic molecule is at first described

by the positions of the three atoms in space, which represent nine degrees of freedom. Three

of these describe the overall translational position of the system as a whole, given e.g. by the

position of the c.m. of the molecule. Another three coordinates define the overall orientation of

the molecule, as described e.g. by the three Euler angles. These six external degrees of freedom

are not of interest here. The three remaining, internal degrees of freedom define the geometry

of the molecule, corresponding to the internuclear distance in the diatomic case.

The fragmentation of a triatomic molecule is thus described within this three-dimensional

space of internal coordinates. The potential energy surface governing the dissociation process is

a function of these three coordinates, and subsequently also the asymptotic velocities reached by

the fragments and the resulting pattern of impact positions on the imaging detector are described

by three parameters.

This three-dimensional internal configuration space can be parametrised in various ways,

depending on the specific problem under study. In the present case, an interesting physical

property of the breakup reaction to be extracted from the recorded imaging data is the total

kinetic energy release ������� of the reaction. As shown in Sec. 4.1.3, this energy is connected to

the rotational excitations of the molecular ions, whose investigation is one of the goals of the

present experiments.

The total kinetic energy release � ����� is calculated as the sum of the kinetic energies � 
carried by the three fragments in the co-moving c.m. frame of the molecule

������� �
�

�

�� �
�� � �� � � � � � � (4.10)

where �  describes the mass of fragment � , and �  its velocity relative to the c.m. of the system.

The velocities �  are, with some important restrictions discussed later, accessible in an imaging

measurement, while the fragment masses �  are determined during the identification of three-

body fragmentation events as described in Sec. 4.3.1. Thus the energies �  can be used to

parametrise the observed fragmentation patterns.
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After selecting ������� as one of the three coordinates to be used in this parametrisation, two

internal coordinates remain, which describe the sharing of this kinetic energy among the three

fragments, or the shape of the breakup pattern. The method of representation of these two-

dimensional data has to be carefully chosen in order to avoid artificial structures created by the

properties of the chosen coordinates instead of the physical process.

Dalitz plots

A method that proves efficient for this task is the use of Dalitz plots. As will be shown below,

an uncorrelated three-body breakup would result in an uniform density of events within the

kinematically allowed region of a plot of this type. Therefore, these coordinates are well suited

for an unbiased representation of experimental data on the geometry in three-body breakup

reactions, allowing a direct identification of fragmentation geometries preferred or avoided in

the breakup process. Dalitz coordinates have already been used for representation of H � frag-

mentation data by Helm and coworkers [53]. However, the specific conditions of the present

experiment demand a detailed consideration of their properties, especially because of the use of

2D imaging data and unsymmetric isotopes.

Hence, basing on the derivations by Dalitz [17] and Perkins [59] and starting from simple

phase space considerations, the definition and important properties of Dalitz plots are presented

in the following, before adapting them to the specific case of interest here.

For a single particle, the number of states in a phase space cell delimited by the momenta
�

and
� ��� � as well as the solid angle d � is (up to a normalisation factor � )

� � � � � �
� � � � � �

For three particles, which are independent except for momentum and energy conservation re-

stricting (in the center of mass frame of reference) the total momentum to zero and the total

kinetic energy to � ����� , the number of states is

� � � � �
� � �

�
� �

�
� � �

� �
� � � � � � �

� �
� � � � � � � � � � � � � � � � � � ������� � � � �� � � �� � � �� �

�

where �� � � � $ � �  is the non-relativistic kinetic energy of particle � , which has a mass of �  .
Momentum conservation allows one to integrate over the coordinates of one of the particles,

thus fixing e.g. �� ��� � �� � � �� � . For an isotropic overall orientation of the three-particle system

in space, the integrals over all directions of the remaining two particles can be expressed as��� � � �
� ���

and
� � � �

� � � � 
����� � � , where � �
� denotes the angle between �� � and �� � , thus

yielding
� � � � �	� �

�
� � �

�
� �

�
� �

� � � � � 
��� � � � � � � � � � � � � � � ������� � (4.11)

for the number of states in the phase space cell spanned by d
�
� , d

�
� and d 
����� �

� .
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Using the non-relativistic energy-momentum relations

� �
� � �

�� � �
� � �

� � �
�� � � � � �

� � �
�� � �

� �� � �

� � �

�
� � �

� � � �
�
�

� 
 � ��� �
�
� �

one obtains � � �� �
�
� �

�� �
�

� � �

� � �

� �
�

� � �
� � �

� 
��� � � �

� �
�
�

�

� �

�

Thus, (4.11) can be written as

� � � � � � � � � �� �
�
	 � � � � � � �

� � � 	 � � �
� � � �

� 
��� � � � 	 � 
 � ��� � � � � � � � � � � � � � �������
�

� � � � � �
� � � � � � � � � � � � � � � � � �������

� �
with the constant factor � � � �	� �

�
� � � � � � � . Integration over the energy of the arbitrarily

chosen particle
�

then yields
� � � � � � � � �

� � �
�

(4.12)

Thus, if the kinetic energies of two of the three fragments are chosen as coordinates of a

two-dimensional plot, a random breakup will lead to a uniform event density in the kinemati-

cally allowed region of this plot. In other words, the phase space density
� ��

� ��� � �  is constant in

this region. Obviously, this property stays conserved also for linear combinations of fragment

energies, but is not valid e.g. for a plot of fragment momenta or velocities.

In order to select particular linear combinations of fragment energies as the coordinates to

be used, it is advantageous to consider the symmetry of the molecular system with respect to

permutations of the three atoms. For the homonuclear species H
�

� and D
�

� , all three fragments

are identical. Thus, the result of a fragmentation experiment will be symmetric under any

permutation of these three fragments. Therefore, a type of representation is chosen where the

sixfold symmetry corresponding to the permutation group  � is reflected by simple geometric

symmetry properties in the two-dimensional coordinate plane. Such a representation simplifies

the interpretation of experimental data, as for any structure observed it is here easy to distinguish

between features which result from the trivial permutation symmetry of the system, and features

that reflect physical properties of the breakup reaction.

As shown in Appendix A.1, these basic requirements lead directly (up to an arbitrary overall

normalisation factor) to the Dalitz coordinates

�
�
� � � � � �� � �������

� � �
� � �

�������
� �� (4.13)

These coordinates were first introduced in 1953 by R.H. Dalitz [17] in order to analyse cor-

relations of fragment energies in the three-body decay of � -leptons � into
�

-mesons. Unlike

4 at that time considered to be ‘ � -mesons’
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Fig. 4.4: Dalitz plot for a fragmentation into three particles of equal mass. (a) kinematically allowed
region and energetic interpretation (b) interpretation in terms of fragmentation geometries.

the application in particle physics, the aim of this representation in the present experiments is

not the finding of resonant structures corresponding to the formation of intermediate particles,

but a more general investigation of preferred and avoided fragmentation geometries, which are

connected to the shape of the potential energy surface driving the dissociation.

Through the normalisation to the total energy � ����� , the Dalitz plot becomes dimensionless

and the geometry of any breakup into three fragments of equal mass can be represented by the

same kind of plot, independent of the total energy. It is easy to show (see App. A.2) that the

energetically allowed region in this plot ( � �� �
for � � � � � � �

) is delimited by a triangle as

drawn in Fig 4.4a. Momentum conservation further restricts the allowed region to the interior

of a circle with radius �� centered at the origin � of the coordinate frame (App. A.3). An inter-

pretation of such a plot in terms of fragment energies is that for any point
�

inside the allowed

region, the distances �� from
�

to the three sides of the triangle represent the relative energies

of the three fragments, �  � �  $ ������� .
The geometric meaning of the Dalitz coordinates in terms of the shape of fragmentation

patterns is visualised in Fig. 4.4b. Each pictogram represents the arrangement of fragment ve-

locities (and therefore the shape as seen on an ideal detector) corresponding to one point in the

Dalitz plot. The dotted lines depict symmetry axes. A reflection at one of these axes describes

the exchange of two of the three identical fragments. The overall sixfold symmetry thus reflects

the six possible permutations of the fragments.
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4.3 Handling and representation of imaging data

In terms of polar coordinates, the radius (or distance from the origin) in a Dalitz plot can

be viewed as a measure of the linearity of the fragmentation pattern. An equilateral triangular

shape corresponds to the origin of the plot, while the various linear arrangements are represented

at the edge of the circular allowed region. The polar angle of a point in the plot is connected to

the symmetry of the corresponding fragmentation pattern, with isosceles triangles situated along

the dotted lines and asymmetric shapes in between.

If the molecule studied has a lower symmetry, like D � H
�

or H � D
�

, the Dalitz plot loses

some of its symmetry properties, but still can be used as a valuable tool for displaying geometry

data and for comparison of this data between different isotopomers. A plot of the standard Dalitz

coordinates (4.13) still has the property of equal phase space density within the kinematically

allowed region. However, the boundary of this region is stretched to an elliptical shape when

the masses of the three fragments are not equal. Similarly, the geometrical interpretation of the

points inside the allowed region changes.

For an easier comparison of different isotopomers, a modified Dalitz plot is used, where this

stretching of the kinematically allowed region is compensated by a rescaling of the coordinates.

In the molecular systems studied here, a twofold symmetry remains as two of the fragments

still have equal mass ( � �
� � � ). For this case, the derivation in App. A.3 shows that the

same circular shape of the kinematically allowed region is maintained when using the following

generalised Dalitz coordinates:

�
�
��� �

� � �

� � � � �� � �
� � �

� �
� �

� �

� � �� (4.14)

with � � � �
� � � and � � � �  � � � � � � . Obviously these definitions are equivalent to

the standard Dalitz coordinates (4.13) in case of the symmetric isotopomers H
�

� and D
�

� , where

� � � � . As also these generalised Dalitz coordinates are linear combinations of single frag-

ment energies, they keep the advantage of uniform phase space density over the kinematically

allowed region. The boundary of this region is again a circle of radius �� centered at the origin

of the
� �
� � � �

�
plane. However, the correlation between specific points in the Dalitz plot and the

geometry of the breakup is slightly changed, as can be seen in Fig. 4.5.

In summary, the three-dimensional space of internal coordinates which describes the

breakup of a molecule into three fragments is chosen to be parametrised by the total kinetic

energy release � ����� of the breakup reaction and the two dimensionless generalised Dalitz coor-

dinates �
� ,
� � describing the sharing of this energy among the fragments. Before continuing to

the implementation of these coordinates in the present experiment, a brief comparison to other

types of coordinates used in similar situations is given.
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Fig. 4.5: Geometrical interpretation of Dalitz plots for (a) H � D
�

and (b) D � H
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. The tangents indicate
the energetically allowed region.

Comparison to other types of coordinates

To describe the geometry and the vibrational modes of the original, bound molecular ion, a

convenient choice is the use of normal coordinates. These coordinates have the advantage to

diagonalise the Hamiltonian of nuclear motion. It is always possible to find such coordinates

in regions of the configuration space where the potential energy hypersurface is harmonic in

all three dimensions, which is approximatively the case in the proximity of the minimum of

any binding PES, that is, for molecular geometries only slightly distorted from the equilibrium

geometry. Thus, for low-lying vibrational excitations, the vibrational modes connected to the

normal coordinates can be treated as separate, one-dimensional problems. For high levels of vi-

bration implying large deviations from the equilibrium geometry, the PES can usually no longer

be treated as harmonic and couplings between the vibrational modes have to be considered.

To find the normal coordinates for a given molecular geometry, it is helpful to consider the

nuclear symmetry group of the molecule: The choice of symmetry coordinates which transform

according to irreducible representations of the symmetry group, already yields a blockwise

diagonal form of the Hamiltonian, reducing the diagonalisation problem to subspaces spanned

by coordinates of the same symmetry. The normal coordinates finally found are a special (not

always unambiguous) case of these symmetry coordinates.
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4.3 Handling and representation of imaging data

In the case of H
�

� , the equilibrium geometry has C � � symmetry � . A possible choice of

corresponding normal coordinates is

��� � �
�

� � �
� � � �

�

� � � � � �� �
� � �

�
� �

�
� � �

�
�

�
� � � � � �

� � �
�

�

� � (4.15)

with
� �� the distance between the � th and � th nucleus. All three coordinates can be scaled by

an arbitrary normalisation factor. � � and � � correspond to a two-dimensional representation of

the C � � group, and can thus be replaced by any two independent linear combinations of � � and
� � . More details on the normal coordinates of H

�
� and their application in the description of

vibrational motion can be found in [37, 36]. For the breakup reactions considered here, the PES

involved consequentially are dissociative, that is, they do not possess a minimum that would

allow the development of normal coordinates. A treatment of the dissociation dynamics using

three independent coordinates is thus not possible.

It is interesting to note that the normal coordinates
� ��� � � � � � � � , which are obtained as an ex-

pansion of the geometry around the well defined equilibrium geometry of the H
�

� molecule, have

considerable similarities with the set
� � ����� � � � � � �

�
that was obtained for an unbiased represen-

tation of fragmentation patterns, that is, explicitly without a preference of any special geometry.

The origin of this parallelism is the equilibrium geometry of H
�

� , with its � �	� symmetry. The

particular graphical representation of the  � permutation group chosen in the derivation of the

Dalitz coordinates also exhibits this � �	� symmetry, which explains the structural similarity of

the two sets of coordinates.

A general class of coordinates widely used in the description of molecular potential energy

surfaces are hyperspherical coordinates. Similar to spherical coordinates which parametrise

the common three-dimensional space, the generalised hyperspherical coordinates consist of one

hyperradius describing the length of a vector and several hyperangles defining its orientation in

a possibly multidimensional vector space.

A variety of different sets of hyperspherical coordinates has been used in theoretical treat-

ments of the H � system. One example is the set used by Varandas et. al [74, 76], which is

similar to the �
� , � � , � � coordinates (4.15). After defining� � � �

�
� � � �

� � � � �
�

� � � � � � �

�
� �

� �
� � �

� �
�

� � � �
� � ��� �

� � �
� �

�

�
� � (4.16)

the hyperradius � and the hyperangles � ,  are chosen as

� ��� � $ � � � � � � � � � �� � 	�� �� � �
�
�

(4.17)

5 The full molecular point group is D ����������� C ��� . However, for studying vibrational modes, which are
restricted to the molecular plane and thus invariant under the ��� operation, it is sufficient to consider the C ���
subgroup.
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This set of coordinates is found to be convenient for the fitting of analytical PES functions to ab

initio calculated energies, especially in the vicinity of critical geometries like equilateral ( � � � )
or collinear ( � � � ) arrangements of the nuclei [74]. Hyperspherical coordinates of similar type

were used in recent calculations of the DR of H
�

� by Kokoouline and Greene [35, 36].

The coordinate set
�
� ����� � � � � � �

�
chosen for the representation of fragmentation data in the

present experiment can also be viewed as a set of hyperspherical coordinates. Even though the

definition of these coordinates was based on kinetic energies, as opposed to positions, these

energies are closely connected to the fragments velocities and thus to their mutual distances.

The various sets of coordinates used in the description of the H
�

� /H � system thus, despite their

apparent distinctions, show very similar structures, which are mainly introduced by symmetry

considerations. The detailed definitions of the coordinate sets then are adapted to the specific

problems to be studied.

The experimental determination of the parameters � ����� , � � and � � chosen here for the de-

scription of three-body fragmentation reactions in view of the limited capabilities of the avail-

able detection system is discussed in the following.

Handling of 2D imaging data

The discussion of the representation of kinetic energy release and geometry data so far did not

take into account any detector efficiencies or other limitations of the experiment. As noted in

Sec. 3.3.2, two major effects have to be considered here: The unknown position of the breakup

reaction within the interaction region, and the fact that only the fragment positions transversal to

the beam direction are recorded by the imaging detector. These restrictions make it impossible

to calculate for each recorded event the kinetic energies �  of the fragments and thus the desired

quantities ������� , � � and � � .

However, similar to the diatomic case, an investigation of these quantities is still possible by

comparing the fragmentation patterns observed on the detector to the patterns expected under

certain assumptions regarding � ����� , � � and � � . In the diatomic case, the projected distance
 

between the two impinging fragments on the detector surface was used to describe the observed

fragmentation pattern. Its expected distribution
� �  �

could be given as an analytical function,

using the kinetic energy release of the breakup reaction as a parameter.

In analogy to this, the coordinates �
	 ,

�

� and
�

� are chosen to describe the observed

fragmentation patterns in the case of a three-body fragmentation as follows: The fragment

velocities �  in the c.m. frame, which are needed for the calculation of �� (Eq. (4.10)) and

therefore also of ������� , � � and � � , are replaced by the measurable quantities
  , which denote the

distance of the impact position of fragment � to the impact position of the c.m. of the molecule
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4.3 Handling and representation of imaging data

(cf. Sec. 3.3.2). We thus define
�

�
	 � �   � � (4.18)

the mass-weighted squared projected distances, with the fragment masses �  given in atomic

mass units. Subsequently, we get

�
	 �

�
�

�� �
�
	 � �

�
� � �

� � �

�
	

� � �
	
�� �

� 	 � �
�
� �

� �
�
	

�

� 	 � �� �
(4.19)

The �
	 are thus proportional to the transverse fragment energy: With the beam energy �

�
� ��� ,

the total molecular mass � � � �  in a.m.u. and the (not accurately known) flight distance � ,

one would get the transverse fragment energies

� 	 � � � � ���
� � � �

	 � (4.20)

that is, the kinetic energies corresponding to the movement of the fragments transversal to the

beam axis. Because of this close relation, �
	 will be denoted transversal KER in the following.

The
�

� �
�

� coordinates are dimensionless and can be viewed as projected Dalitz coordinates,

as they describe the shape of the two-dimensional projected fragmentation pattern visible on

the detector surface.

The ‘missing link’ between the observables �
	 ,

�

� ,
�

� and the properties � ����� , � � ,
� � of

the fragmentation reaction is – as in the diatomic case – the correlation of the relative fragment

velocities �  and the projected distances
  . Again, a direct reconstruction of the �  from the

measured
  following Eqs. (3.1) and (3.2) is not possible, as the flight distance � and the

orientation of the fragmenting system with respect to the detector plane cannot be determined

on an event by event basis. On the other hand, the probability distributions also here are known

for both the flight distance, which is given by position and size of the electron-ion interaction

region, and the orientation angles, which can be considered isotopic. Thus, the probability

distributions of the observables �
	 ,

�

� and
�

� can be determined, which are expected under

certain assumptions on � ����� , � � and � � . By comparison to the experimentally found �
	 ,

�

� and
�

� distributions, these assumptions can then be tested.

In particular, the probability distribution
� �

�
	 � of the transversal KER �

	 will be compared

to the distributions expected for several assumptions on the distribution of the actual � ����� . Fol-

lowing Eq. (4.8a), the latter will be constructed out of the given release of chemical energy� � � � �
in the three-body channel, and different assumptions on the rotational energy � ��	� � of the

incoming molecular ions.

Regarding the shape of the fragmentation pattern, the experimentally found projected Dalitz

plot, that is the probability distribution
� � �

� �
�

�
�

of the projected Dalitz coordinates, will be

6 also arbitrarily omitting the factor
�� for simplicity
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compared to the distribution expected for an uncorrelated breakup reaction. While the distri-

bution expected in this case for the 3D Dalitz coordinates
� �
� � � �

�
would be uniform, this is no

longer valid in case of the projected coordinates
� �

� �
�

�
�
.

This comparison can in the case of the two-dimensional distribution
� � �

� �
�

�
�

not be done

just by plotting the experimental and expected distributions together in one figure, as it is done

for the one-dimensional
� �

�
	 � distribution. Instead, the experimentally found

� � �

� �
�

�
�

distri-

bution will be divided by the one expected for an uncorrelated breakup process. The deviations

of the resulting weighted Dalitz plot from uniformity then make clear for which projected ge-

ometries the number of events observed on the imaging detector is higher or lower than expected

in the uncorrelated case.

The expected probability distributions are in the present case of a three-body fragmentation

process not constructed as analytical functions like in the diatomic case. Instead, a Monte-Carlo

simulation algorithm was developed, which produces a set of simulated events, similar to the

experimental data, by taking into account the desired physical properties of the fragmentation

process regarding � ����� , � � and � � , the known probability distributions of flight length and over-

all orientation, as well as other properties of the experimental setup like the resolution of the

imaging system.

This simulation algorithm will be described in the next section. In Sec. 4.3.4, some prob-

ability distributions
� �

�
	 � and

� � �

� �
�

�
�

resulting from the simulation code will be shown,

and the sensitivity of these distributions to changes of several experimental parameters will be

tested. In particular, to enable an interpretation of weighted Dalitz plots, the correlation between

the actual dissociation geometries ( � � � � � ) and the observed projected geometries (
�

� �
�

� ) will

be investigated. Section 4.4 finally presents experimental results, analysed and interpreted ac-

cording to the present considerations.

4.3.3 Monte-Carlo simulation

For the interpretation of experimental data which are strongly affected by detector effects such

as the projection of a three-dimensional fragmentation pattern onto the two-dimensional de-

tector plane, a powerful tool usually is a Monte-Carlo forward simulation algorithm. Such an

algorithm first models the physical process under study and then takes into account all properties

of the experimental setup, in particular the efficiency and sensitivity of the detector used.

In the present case of a three-body fragmentation reaction, the fragmentation dynamics

can be described, as seen in Sec. 4.3.2, by the three coordinates � ����� , � � and � � . The physical

breakup process studied here is thus modelled in the simulation by choosing these coordinates

according to certain probability distributions.
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4.3 Handling and representation of imaging data

Selection of the breakup energy

For the breakup energy � ����� , in the simplest case just the release of chemical energy � � � � �
in

the three-body channel is taken according to Tab. 4.1. To enable an investigation of rotational

excitations of the molecular ions, a mechanism generating an additional rotational energy � ���� �
for each simulated event was included following a simple thermal model for the probability

distribution of � ���� � . Each rotational state is described by the quantum numbers
�

of the total

angular momentum and � for its projection on the axis normal to the molecular plane. The

energy of this state is taken from the approximative formula

� ��	� � ��� � � �
��� � � ��� � � � � �� � ���

(4.21)

with the rotational constant � �
�
� � �

meV for H
�

� . Possible � values for each
�

range from

�
�

to
�

, and each of these states exhibits a
� � � � � � multiplicity due to the possible orientations

of the rotating molecule in the laboratory frame of reference. In the case of 	 �
� , states with� � �

and even
�

are spin-forbidden. This simplified treatment based on a symmetric top

formula [41] reproduces the rotational levels found in a high-level ab initio calculation [61]

within �
��


(for the states up to
� �
� considered there), an accuracy much higher than needed

here. A more detailed consideration can be found in [80].

The probability of each state is now determined using a Boltzmann distribution for a given

rotational temperature � �	� � , taking into account the multiplicity of each state. The energy distri-

bution generated according to this model can only be used for a rough estimation of the amount

of rotational excitation in the experiment because of some strongly simplifying assumptions:

Firstly, the distribution of rotational states produced in the ion source does not have to be ther-

mal and a subsequent thermalisation in the storage ring is not expected for the infrared-inactive

species H
�

� and D
�

� . Secondly, the DR rate coefficient might differ depending on the rotational

state, leading to a rotational distribution in the observed breakup events which is different from

the population in the original beam. However, to get an estimate of the order of magnitude of

the rotational excitation energy carried by the molecular ions, the present model is well suited.

Selection of the fragmentation geometry

As a second step, the shape of the fragmentation pattern is defined by selecting the values

of the Dalitz coordinates �
� ,

� � . For the simulation of an uncorrelated breakup, these values

are chosen randomly within the kinematically allowed, circular region. To test the signature

of specific dissociation geometries in the resulting probability distribution of the observables
�

� �
�

� , it is also possible to select at this point fixed values of � � and � � .

After modelling the result of the physical breakup process by selecting the triple of internal

coordinates
� ������� � � � � � �

�
, we now have to define the six external coordinates of the system.
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Selection of the external coordinates

The external coordinates of the fragmenting molecular system are given by the three-

dimensional position of the point of dissociation in space, and by the overall orientation of

the system, which also accounts for three coordinates.

In case of the spatial position, only the distance � between the point of dissociation and the

detector surface is of interest here, as the position of the point of dissociation transversal to the

beam direction has no influence on the observed internal coordinates �
	 ,

�

� and
�

� . This flight

length � is, following the geometry of the experimental setup (see Fig. 3.2), randomly chosen

from the interval � � � � ��� � � � � � � � ��� .
Regarding the overall orientation of the system, an isotropic distribution can be assumed,

as the molecular ions are randomly oriented, and the reacting electrons are captured out of a

co-moving beam of the same velocity, that is, with no preference of a specific direction. For

description of the overall orientation, we thus choose a set of three Euler angles according to a

random orientation.

Propagation to the detector position

After defining all coordinates relevant for description of the dissociating system, the three frag-

ments can now be propagated to the imaging detector, that is, their impact positions can be

calculated. In a first step, the individual fragment energies � � , �
� and � � are calculated from

the two Dalitz coordinates �
� ,

� � and the total energy � ����� . Using these values and the re-

striction of momentum conservation, the relative fragment velocity vectors ��  can be calculated

for a certain overall orientation of the system. This orientation is then randomised by a three-

dimensional rotation of the velocity vectors using the chosen Euler angles.

Next, the time of flight ! is calculated using the known beam velocity
�'�
� ��� and the chosen

flight distance � yielding ! � � $ � � � ��� . Subsequently, the three-dimensional position ��  of each

fragment in the c.m. frame of the molecule in the moment the c.m. reaches the detector plane

can be determined as ��  � ! ��  .
Modelling of the imaging detector

To simulate the 2D imaging detector, the � -component of each ��  which is parallel to the beam

direction and normal to the detector plane is discarded now, and only the � - and � -components

are used to describe the impact positions. �

7 The small transversal movement during the time between the impact of the c.m. and the impact of each fragment
can be neglected here.
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4.3 Handling and representation of imaging data

Finally, additional properties of the imaging detector are taken into account: The limited

spatial resolution of the detector is included by adding to each position component a random

number taken from a Gaussian distribution centered at
�

and with a sigma width adapted to the

respective camera system in use at each of the four experiments. This width was found to be in

the range of 0.1–0.3 mm.

Another property of the detector to be considered is the minimum distance at which two

impinging fragments can be separated. This cutoff distance was found to be in the range of

1–3 mm in the experiments considered here. To include this efficiency of particle separation

into the simulation, a minimum tolerable distance � � ��� is calculated for each event following a

Gaussian distribution with the center at �
�

mm and a sigma width of � � mm (adapted to the

setup in each of the four experiments). If the distance between any two of the three fragments

of an event is smaller than � � ��� , the event is discarded.

The simulation algorithm does not model the background contribution due to event mixing

and misassigned fragment masses. For each simulated event all three fragments are assumed

to be detected, and their masses are assumed to be known (that is, assigned correctly). As de-

scribed in Sec. 4.3.1, the contribution of this background in the experimental results can be de-

rived directly from the data recorded experimentally, which renders unnecessary a background

modelling in the simulation algorithm.

From this point on, the simulated data is further transformed in the same way as the exper-

imental data: For each event, the transversal distances
  of each fragment from the center of

mass are calculated, followed by the transversal KER �
	 and the projected Dalitz coordinates

�

� and
�

� .

4.3.4 Simulation results

In the following, probability distributions of the observables �
	 ,

�

� and
�

� which result from

the simulation algorithm will be discussed regarding their sensitivity to various parameters of

the experimental setup and the physical breakup process.

Simulated distributions of the transversal KER

As noted before, the distribution
� �

�
	 � will be used to estimate the amount of rotational exci-

tations in the ion beam through a comparison of experimental data with simulation results for

different assumptions on the rotational excitation (see Sec. 4.4.1). To evaluate the significance

of this comparison, it is important to consider the effect of other experimental parameters, be-

sides the rotational energy, on the shape of the �
	 distribution. In this section, a simulation

of the three-body breakup following the DR of H
�

� is used as an example. The beam energy
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Fig. 4.6: Simulated transversal KER in the three-body breakup of H
�

� . Black: Assuming an ideal 2D
detector, and a point-like interaction region. Red: For a realistic extension of the interaction region.

was set to 1.4 MeV, which is, as the other parameters used in the following, a typical value for

experiments at the TSR.

Figure 4.6 (black curve) shows the result of a simulation assuming an ideal 2D detector

(that is, infinite resolution and � � ��� � �
) and a well defined point of dissociation (zero length

of the interaction region). The breakup process is described here by a fixed energy release

������� � � ����
 eV and a random dissociation geometry. The projection effect of the 2D detector is

clearly visible: While an ideal 3D detector would yield a constant value for the corresponding

sum of the squared 3D distances of 420 mm
�

for each event, the transversal KER recorded by

the 2D detector follows a broad distribution extending from �
	 � � to �

	 � � � �
mm

�

.

The next parameter to be considered is the finite length of the interaction region of electron

beam and ion beam. The inclusion of this length into the simulation corresponds to a folding

of the �
	 distribution with the nearly rectangular-shaped probability distribution of the squared

flight length � �

between the point of dissociation and the detector; the resulting
� �

�
	 � is shown

in Fig 4.6 (red curve). It should be noted that the end-point of the distribution is shifted to higher

�
	 , but still well defined, as visible in the semi-logarithmic representation.

In Fig. 4.7 (green curve), a typical value for the particle separation efficiency ( � � ��� � �
mm,	������ � � � mm) is included in the simulation. As expected,

� �
�
	 � is reduced for small �

	 , while

the overall shape as well as the end-point of the distribution remain unaffected. As a last step,

the camera resolution is included (Fig. 4.8, blue curve) with a typical value of 0.3 mm. This

causes a slight smearing of the whole �
	 distribution, visible mainly at the maximum and near

the end-point which is again shifted to higher �
	 and exhibits a considerable slope now.

Finally, the influence of the dissociation geometry on the observed transversal KER is
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Fig. 4.7: Simulated KER in the three-body breakup of H
�

� . Red: As in Fig. 4.6. Green: After inclusion
of the particle separation efficiency.
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Fig. 4.8: Simulated transversal KER in the three-body breakup of H
�

� . Green: As in Fig. 4.7. Blue: After
inclusion of a typical value for the camera resolution.

shown in Fig. 4.9. Simulation results are compared for three different fixed geometries (red,

green, blue) and for the uncorrelated breakup as assumed before (black). In the overall shape of

the
� �

�
	 � distribution, huge differences are visible between different breakup geometries. For

the equilateral-triangular shape (green), there exists no orientation of the fragmenting system

which would allow all fragments to hit the same spot on the detector. Thus, �
	 � �

is not

possible for this geometry and the corresponding
� �

�
	 � distribution starts at higher values of

�
	 . Similarly, the distributions obtained for other geometries can be explained.

Despite the strong sensitivity of the overall shape of
� �

�
	 � on the dissociation geometry,

the semilogarithmic plot reveals that the end-points of all distributions are close together and
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Fig. 4.9: Simulated transversal KER in the three-body breakup of H
�

� for different breakup geometries.
Black: Random geometries (as in Fig. 4.8). Red, green, blue: Assuming a fixed geometry as indicated
by the pictograms.

also the slopes of the
� �

�
	 � curves are comparable in this region. This opens up the opportunity

to investigate rotational excitations of the H
�

� molecules even without detailed knowledge of the

breakup geometry. The most important signature of rotational energy is found in the end-point

region of the
� �

�
	 � distribution, as will be shown in Sec. 4.4.1 together with the experimental

results.

Simulated distributions of the projected Dalitz coordinates

For the geometry information as displayed by Dalitz plots, the uncertainty in the flight length

� is irrelevant, as � only affects the overall size of the fragmentation pattern as expressed by

�
	 . However, the use of a 2D detector at first destroys the advantageous property of the Dalitz

type representation to show a uniform event density in case of an uncorrelated breakup. This

circumstance is visualised by simulation results for an uncorrelated breakup of 	 �
� in Fig. 4.10.

For a hypothetical 3D detector capable of recording the
� � �

� � � �
�

distribution, the expected

result is shown in Fig. 4.10(a). The detector was assumed here to be able to determine the

exact impact times of all fragments. The circular area of the Dalitz plot is then uniformly

filled except for small statistical fluctuations and a reduction of the event density close to the

geometries where the impact positions of two fragments are very close together (marked by the

arrows), an effect of the assumed particle separation efficiency of the detector.

Figure 4.10(b) shows the same uncorrelated breakup reaction, but now simulated for the

existing 2D detector system and thus displayed in a projected Dalitz plot. Obviously, the
� � �

� �
�

�
�

distribution is far from being uniform. Along the edge of the circle, correspond-
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Fig. 4.10: Dalitz plots for the simulation of an uncorrelated breakup of
� �

� . (a)
� ��� ��� �

� � distribution
as it would be obtained from a 3D detector, (b) projected Dalitz plot as expected from the 2D detector
used in the experiment. Arrows mark the three points along the edge of the circle, which correspond to a
geometry with two fragments at the same position. Both plots are normalised such that a uniform filling
would yield a constant value of 1.

ing to a linear shape of the projected fragmentation pattern (cf. Fig. 4.4(b)) the event density

obtained is up to a factor 3.5 higher than expected for a uniform filling of the phase space. On

the other hand, in the center of the projected Dalitz plot, corresponding to an equilateral shape

of the projected fragmentation pattern, the density is reduced by a factor of 2.

While this constitutes a significant deviation from uniformity, an analysis of experimentally

observed fragmentation patterns using the
� �

� �
�

�
�

coordinates can still be performed by the use

of weighted Dalitz plots as introduced in Sec. 4.3.2. Through the division of the projected Dalitz

plot representing the experimental data by the same distribution obtained from a simulation of

uncorrelated breakup events, it is possible to identify projected geometries which are preferred

or avoided due to the physical breakup process.

The last step necessary for an interpretation of these weighted Dalitz plots is now an anal-

ysis of the correlation between the
� �
� � � �

�
and

� �

� �
�

�
�

coordinates for specific geometries.

Some examples are shown in Fig. 4.11. In the left column, the
� �
� � � �

�
geometries used in the

simulation are marked in a standard 3D Dalitz plot. The right column shows the corresponding

simulation results in the form of weighted Dalitz plots. The small pictograms visualise the 3D

fragmentation geometry corresponding to the
� �
� � � �

�
values used.

As expected, the weighted Dalitz plots show a certain smearing around the position of

the actual 3D geometry due to the fact that a fixed 3D geometry can lead to several projected

geometries, depending on the orientation of the system. However, it is noteworthy that the

weighted 2D distributions all show clear peaks at the original 3D geometries. Thus, a preference
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Fig. 4.11: Simulated fragmentation patterns for specific geometries of H
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� � values
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or avoidance of a certain geometry by the physical fragmentation process would manifest itself

in an increased or decreased event density around this geometry also in the weighted Dalitz

plot.

Strictly speaking, for an unambiguous interpretation of weighted Dalitz plots some more

information is needed. In particular, for any geometry observed in the weighted Dalitz plot, it

would be interesting to know the probability of each
� �
� � � �

�
geometry for being the origin of the

observed events. However, this would imply an inversion of the response function describing

the transition from
� �
� � � �

�
to

� �

� �
�

�
�
, which would represent a huge computational effort

when aiming at a considerable resolution.

Another possibility to test the significance of weighted Dalitz plots is given by the Monte-

Carlo image restoration technique described in [69]. With this method, an unfolding of the

experimental projected geometry distributions is achieved for H
�

� and D
�

� , yielding basically the

same results as the weighting scheme presented here. However, the image restoration technique

bears some risk of creating artefacts in the restored 3D Dalitz plots, especially in the case of the

heteronuclear isotopomers H � D
�

and D � H
�

. Therefore, weighted Dalitz plots will be used in

this work for the presentation of experimental data on all four isotopomers.

4.4 Experimental Results

After developing appropriate methods regarding the data analysis and representation, in this

section the experimental results obtained by application of the described techniques will be

shown. The presentation concentrates on the results of the fragment imaging experiments re-

garding the three-body fragmentation channel, as here new techniques were required exceeding

the standard analysis procedures applied in fragmentation experiments on diatomic molecules.

Other experimental results obtained for the four isotopomers of the H
�

� ion will be shortly sum-

marised.

4.4.1 Kinetic energy release in the three-body channel

The transversal kinetic energy release �
	 observed experimentally for each of the isotopomers

H
�
� , D

�
� , H � D

�
and D � H

�
is now compared to the results of simulations adapted to the re-

spective experimental conditions. To estimate the rotational energy present in the experiment,

simulations were done assuming three different rotational temperatures: ��� �	� � � �
eV (that is,

� �	� � � � ), ��� �	� � � � � �
meV and ��� ��� � � � � � meV.

Figure 4.12 shows the comparison for H
�

� . The experimental data are reasonably well

described by the simulation assuming ��� �	� � � � � �
meV, revealing a considerable rotational

excitation of the ion beam. Small differences in the overall shape of the �
	 distributions can
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Fig. 4.12: Kinetic energy release in the three-body breakup of H
�

� . The distribution
� ��� 	 � is plotted for

experimental data taken after 3–10 s of storage (full circles). The lines represent simulations assuming a
rotational temperature of

��� ��� � =0 eV (blue), 230 meV (green) and 500 meV (red). Open triangles depict
the estimated background contribution in the experiment.

be attributed to the distribution of dissociation geometries. As will be seen in Sec. 4.4.2, linear

symmetric geometries are preferred for a certain fraction of events. Thus, a deviation from

the simulation result for random geometries can be expected, as indicated by the red curve in

Fig. 4.9.

In the end-point region of the �
	 distribution, which was shown to be barely sensitive to

the breakup geometry, a very good agreement is found between the experimental data and the

simulation for ��� �	� � � � � �
meV. However, keeping in mind the very simple model of a thermal

distribution of rotational excitations and a DR rate coefficient independent of rotations, the

resulting value of 230 meV can be viewed only as a rough estimate of the rotational energy in

the H
�
� beam.

An additional uncertainty comes from the transformation of the measured fragment dis-

tances from camera pixels to mm. While statistical fluctuations of the measured distances (i.e.

the resolution of the camera) are included in the simulation, an error in this transformation factor

would lead to a systematic stretching of the whole �
	 distribution. In the present experiments,

this factor could be determined with an accuracy of � � %, which corresponds to a change of

� � ��� � of roughly 25 meV.

The comparison for D
�

� (Fig. 4.13) gives basically the same result as found for H
�

� . Also

here, the molecular ions carry a strong rotational excitation. In this experiment, data taken

at very long storage times of up to 80 sec are available. The comparison of �
	 distributions

recorded at two different ranges of storage time shows indications for a slight cooling of the

rotational excitations: For long storage times (open circles in Fig. 4.13), the peak of the �
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Fig. 4.13: Kinetic energy release in the three-body breakup of D
�

� . The distribution
� ��� 	 � is plotted for

experimental data taken after 10–25 s of storage (full circles) and 45–80 s of storage (blue open circles).
The lines represent simulations assuming a rotational temperature of

��� ��� � =0 eV (blue), 230 meV (green)
and 500 meV (red). Open triangles depict the estimated background contribution in the experiment.
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Fig. 4.14: Kinetic energy release in the three-body breakup of H � D
�

. The distribution
� ��� 	 � is plotted

for experimental data taken after 5–15 s of storage (full circles). The lines represent simulations assuming
a rotational temperature of

��� ��� � =0 eV (blue), 230 meV (green) and 500 meV (red). Open triangles depict
the estimated background contribution in the experiment.

distribution is sharper and the slope in the end-point region is steeper, both indicating a slightly

lower rotational temperature than for the short storage times (full circles).

For the two heteronuclear isotopomers H � D
�

and D � H
�

, a completely different behaviour

is observed (Figs. 4.14 and 4.15). The experimental data (full circles) here are consistent within

the uncertainties with a rotationless simulation (blue curve). The dissociation events observed at

�
	 values higher than the end-point of this simulated data set can well be explained taking into

account the background in the experimental data due to event-mixing or misassignment of the
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Fig. 4.15: Kinetic energy release in the three-body breakup of D � H
�

. The distribution
� ��� 	 � is plotted

for experimental data taken after 10–60 s of storage (full circles). The lines represent simulations assum-
ing a rotational temperature of

��� �	� � =0 eV (blue), 230 meV (green) and 500 meV (red). Open triangles
depict the estimated background contribution in the experiment.

H and D fragments. As described in Sec. 4.3.1, this background contribution can be estimated

from the experimental data (open triangles). The data recorded in the high- �
	 region obviously

has its origin in this misassignment background.

Because of the uncertainties in the experiment, a rotational excitation of the ions cannot

be completely excluded. Taking into account especially the uncertainties in the calibration of

camera pixels per mm and in the spatial resolution of the camera, an upper limit on the order of

� � ��� � � �
� meV can be deduced from the present experiments for the rotational temperatures of

H � D
�

and D � H
�

. For both molecules, no storage time dependence of the �
	 distribution could

be observed.

Additional evidence for rotational excitations of the ion beam was found in the analysis

of two-body breakup events for the homonuclear isotopomers H
�

� and D
�

� (Sec. 4.4.3) and in

measurements of the DR rate coefficient � (Sec. 4.4.4). An interpretation of the experimental

findings presented here in the light of recent theoretical calculations will be given in Sec. 4.5.

4.4.2 Breakup geometry in the three-body channel

The geometry distribution of the three-body breakup for the four isotopomers is shown in

Figs. 4.16 and 4.17 represented by weighted transversal Dalitz plots as introduced in Sec. 4.3.2.

After assignment of the fragment masses as described in Sec. 4.3.1, the data set for each

molecule was here additionally symmetrised with respect to permutations of identical frag-

ments, to avoid artificial structures introduced by the arbitrary numbering of these fragments

during the processing of the CCD camera image. A consideration of the shape of background
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Fig. 4.16: Weighted Dalitz plots, as introduced in Sec. 4.3.2, for the experimentally observed three-body
breakup of the homonuclear isotopomers H

�
� (a) and D

�
� (b). The plots are normalised to yield a value

of 1 for an uncorrelated breakup. Black lines denote symmetry axes.
The small pictograms give the projected geometry of the breakup as seen on the detector, for selected
points of the Dalitz plot. The arrows mark special linear geometries at the circumference of the circle:
White: The two-body breakup geometry, where two of the three fragments have zero distance. Red: The
linear symmetric case, where the central fragment stays at rest, while the two outer fragments have equal
absolute velocities, momenta and energies in the c.m. frame of the system.

events, as was done for the KER results, is not needed here, since the small ( � � 
 ) contribution

of background events has a significant influence on the experimental results only when consid-

ering structures represented by only a small fraction of the experimental data. This was the case

when analysing the high-energy tails of the
� �

�
	 � distributions, but as will be seen does not

apply for the geometry distributions discussed here.

In all four plots, a clear preference of linear symmetric breakup geometries is visible, with

the central particle preferably being a D atom for the heteronuclear isotopomers.

For the homonuclear species, the Dalitz plots shown in Fig. 4.16 exhibit a sixfold sym-

metry reflecting the six possible permutations of the three identical particles. In both cases,

a tendency to linear breakup geometries (plotted along the circumference of the circle) is ob-

served in strong contrast to the shape of the molecular ion before the breakup, which is that

of an equilateral triangle for all isotopomers (corresponding to the origin of the Dalitz plot).

In addition, configurations close to the symmetric case where one fragment stays at rest in the

co-moving c.m. frame, while the other two have momenta of equal magnitude and opposite

direction (indicated by the red arrows), are in favour compared to geometries where two of the

fragments are close together (that is, near the two-body fragmentation geometry indicated by
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Fig. 4.17: Weighted Dalitz plots for the experimentally observed three-body breakup of the heteronuclear
isotopomers H � D

�
(a) and D � H

�
(b). The small pictograms give the projected geometry of the breakup

as seen on the detector, for selected points of the Dalitz plot. Open circles represent H, full circles D
atoms.
The arrows mark special linear geometries at the circumference of the circle: White: The two-body
breakup geometry, where two of the three fragments have zero distance. Red: The linear symmetric
case, where the two outer fragments have equal absolute velocities in the c.m. frame. Yellow: The case
of equal momenta of the two outer fragments; here the center fragment stays at the c.m. position. Green:
Equal energies of the two outer fragments.

the white arrows).

It has to be pointed out that this avoidance of small fragment distances is not an artefact

introduced by the detector efficiency. The limited ability of the camera to separate fragments

impinging at small mutual distances is reducing the acceptance of the detector only for geome-

tries very close to the two-body geometry. In addition, the weighting procedure provides a

first-order correction of any geometry-dependent detector efficiencies. As was seen in Fig. 4.11

(second and third row), geometries in the vicinity of the two-body configuration on one hand,

and close to the linear geometry on the other hand, are equally well represented by a weighted

Dalitz plot.

Comparing the results for H
�

� and D
�

� , the overall anisotropies of the breakup geometry

appear to be weaker in the case of D
�

� (the same colour scale was chosen for these two molecules

for easier comparison). Interesting details are found for two geometries: Firstly, close to the

two-body geometries, the reduction of the observed event rate is much stronger for D
�

� than for

all other isotopomers. Secondly, for equilateral geometries, a slightly increased event rate is

observed for D
�
� in contrast to H

�
� , where the distribution exhibits a small dip at this geometry.
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The latter effect is not very pronounced in the weighted transversal Dalitz plots presented here,

but was observed also when using the Monte Carlo restoration method [69].

In case of the heteronuclear species, the symmetry of the system is reduced to the exchange

of the two identical fragments manifesting itself in a single symmetry axis along
�

� =0 in the

weighted Dalitz plots, Fig. 4.17. According to the generalised definition of the Dalitz coordi-

nates for ���� � � (4.14), also the geometrical interpretation of points in the plots changes. This

is taken into account in the positioning of the pictograms and arrows in the figures. In the case

of a linear breakup geometry with the two outer fragments being of different mass, there are

now three possible definitions of a symmetric breakup: The outer fragments can be required to

possess equal absolute values of velocity, momentum or energy with respect to the center of

mass. These geometries are indicated now by red, green and yellow arrows, respectively.

The experimental data again show a preference of linear, symmetric geometries. For H � D
�

,

the H-D-H configuration with the D fragment at rest is most likely, while only a small increase of

the probability distribution is found at other linear geometries, including the various symmetric

H-H-D configurations. Compared to the case of H
�

� , the trend to a linear breakup appears more

pronounced here than the trend to a symmetric breakup. The distribution for D � H
�

peaks close

to the linear D-D-H configuration with symmetric energies of the outer fragments, which is also

close to the symmetric velocity case, but clearly different from symmetric momenta. At the

D-H-D configuration, only a much smaller increase of the event rate is observed.

The preference of linear symmetric dissociation geometries thus appears to be a general

feature shown by all four isotopomers. For the heteronuclear species, a quantitative difference

of this preference for geometries exhibiting a central H or D atom could be expected. However,

the complete absence of such a peak for linear symmetric geometries with a central H atom is

surprising.

The observed deviations from an uncorrelated breakup geometry have some effect on the

transversal KER distributions
� �

�
	 � discussed in Sec. 4.4.1. The simulation results shown

there for comparison with the experimental data were obtained assuming uncorrelated breakup

geometries, which turns out to be different from the experimental situation. On the other hand,

the use of correlated 3D geometries in the simulation, which are adapted to the experimental

findings would imply a quantitative analysis of the structures observed in the experimental

Dalitz plots, which is not provided in a reliable way by the weighting method.

However, the conclusions reached in Sec. 4.4.1 concerning the rotational excitation still

hold, as they are based especially on the behaviour of the
� �

�
	 � distribution at large �

	 , where

the influence of the breakup geometry was shown to be only a minor perturbation.
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Fig. 4.18: Distributions of observed
fragment distances � in the two-
body breakup of H

�
� (a) and D

�
�

(b). Dashed lines show the expec-
tation for a single vibrational state
of the molecular fragment, solid
lines are a fit to the experimental
data which are shown as histograms.
The dashed histogram in (b) repre-
sents data taken after a longer stor-
age time. (c) and (d) show the vi-
brational state population resulting
from the fit. Figure taken from [42].

4.4.3 Kinetic energy release in the two-body channel

The KER in the two-body breakup channel can in principle be analysed with standard tech-

niques usually applied for fragmentation experiments with diatomic molecules [3]. In the case

of the two-body breakup of a triatomic molecule, however, as an additional step each event

used in the analysis has to be verified to origin indeed in the two-body breakup process rather

then in the three-body process with one of the fragments remaining undetected. This channel

identification is done by a cut on the c.m. position of each event as described in Sec. 4.3.1.

For the homonuclear isotopomers, the KER in the two-body channel could thus be analysed

(see Fig. 4.18). From the observed spectrum of fragment distances, the vibrational excitation

distribution of the emerging molecular fragments could be deduced. In addition, an increased

event rate at very small KER values was found for both H
�

� and D
�

� . These events could be

attributed again to a substantial rotational excitation of the molecular ion beam. Ions with a very

high rotational energy of � � eV have the possibility to dissociate into H � + H
�  � � �

, leaving

the atomic fragment in an electronically excited state. For rotational excitation energies close

to the threshold for this process, the resulting KER is very small, as observed in the experiment.

For the case of D
�

� , the dashed histogram in Fig. 4.18(b) again indicates a slight cooling of the

rotational excitations. A detailed description of the analysis of the two-body channel for H
�

�

and D
�
� is given in [69].

For the heteronuclear isotopomers, the separation of the two-body channel from background

in the form of partly detected three-body events becomes much more difficult. In each of these

cases, two two-body channels with different composition of the molecular fragment exist. This

leads to up to four possible c.m. positions for each pair of fragments detected and thus to a much

higher chance for a background event to accidentally pass the c.m. cut. For these reasons, a clean

channel separation was not possible for the heteronuclear species and no further information
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could be gained from an analysis of two-body events.

4.4.4 Rate coefficient measurements

For a further investigation of rotational excitations, a separate series of experiments was per-

formed where the DR rate coefficient � was monitored over long storage times for H
�

� and

D � H
�

. In both cases, a dependence of � on the storage time was observed, which could be in-

terpreted as the result of a storage time dependent distribution of rotational excitations in com-

bination with a dependence of � on these rotational excitations. For D � H
�

, some indications

for a thermalisation to the ambient 300 K blackbody radiation were found [43]. In addition,

measurements performed after a long time of interaction with a strong beam of cold electrons

suggest the preparation of a subthermal rotational state distribution. In the case of H
�

� , similar

effects of electron interactions were observed, suggesting also here the possibility of a rota-

tional cooling of the ensemble by low-energy electron collisions. The influence of collisions

with higher energetic electrons as well as residual gas particles on the rotational distribution is

currently under investigation. More details on these rate coefficient measurements can be found

in [43, 83].

4.5 Comparison to theory

4.5.1 Rotational excitations

The different behaviour of the homonuclear vs. the heteronuclear isotopomers concerning ro-

tational excitations can be understood taking into account the different symmetry properties of

these molecules. The strongly exothermic formation reaction (4.1) can be expected to produce

all isotopomers in highly rovibrationally excited states. The level of excitations found in storage

ring experiments then depends on the lifetime of the excited states compared to typical storage

times ranging from few seconds up to several tens of seconds.

For the homonuclear species H
�

� and D
�

� , the center of mass coincides with the center

of charge of the molecule. These molecules therefore do not possess a permanent electrical

dipole moment which would allow for the de-excitation of rovibrational excitations via emission

of electrical dipole radiation. The resulting high lifetimes of rovibrational excitations can be

modelled in the case of H
�

� [38] using ab initio calculations of transition rates [54]; a similar

behaviour can be expected for D
�

� . This model predicts the relaxation of vibrational excitations

within the first seconds of storage, which was confirmed in a Coulomb Explosion Imaging

experiment [38]. For the rotational excitations, a significant population of high-lying states

(average energy 260 meV) was calculated to remain even after a hypothetical, very large storage
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time of 30 min [37].

A certain effect on the rotational distribution might be expected also from the constant in-

teractions with the electron beam, on one hand by selective depletion of strongly recombining

states and on the other hand by inelastic electron scattering processes, which were e.g. found

to dominate the vibrational cooling of H
�

� and D
�

� [40]. Indeed, a small reduction of the con-

tribution from rotationally excited states is observed in the data taken after long storage times

for D
�
� . However, a considerable excitation involving even high-lying states is still found even

after more than one minute of storage.

For the heteronuclear species H � D
�

and D � H
�

, the situation is different. While the geomet-

ric structure including the electronic wave functions is similar for all isotopomers, the center of

mass is shifted for these species due to the different nuclear masses. This results in an perma-

nent electrical dipole moment and thus allowed transitions between rovibrational states exist.

The transition rates calculated e.g. for D � H
�

indicate typical decay times in the order of 10 ms

for vibrational excitations, while rotational lifetimes are expected to be � � sec at excitation

energies � � � � meV, and � � � sec at � 
 � meV [49]. The observation of a rotational tempera-

ture below 50 meV (corresponding to an average excitation energy of

 �
� meV) after several

seconds of storage is thus in good agreement with the theoretical expectations.

4.5.2 Breakup dynamics

The observed preference of linear symmetric breakup geometries in the three-body channel

can tentatively be connected to the potential energy surfaces of the neutral H � system as used

by Kokoouline and Greene [36]. Figure 4.19 shows the lowest of these PES using normal

coordinates similar to Eq. (4.15). The origin of the plot represents the equilateral equilibrium

geometry of H
�
� , which is the starting point of the dissociation process. Similar to Dalitz plots,

linear configurations would be represented along the edge of the kinematically allowed region in

the
� � � � � � � plane, which in this case corresponds to a triangular shaped area slightly exceeding

the range shown in Fig. 4.19. Isosceles geometries in this plot correspond to  values of � ��� ,
�

� ���
and � � � ��� . A linear symmetric geometry would for example be represented by the point

� � � � � � � � � � � � � � � � .
The DR process is described here as follows: After the incoming electron is captured into

a Rydberg state of H � which is geometrically and energetically close to the H
�

� ground state,

the system is believed to descend down to the 2p
�

surface, which is energetically open for

dissociation, by transferring energy into the vibrational degrees of freedom.

Remarkably, the lowest 2p
�
� surface has, at the initial value of � � (which can be viewed

as a hyperradius), its minima at the geometry of an isosceles triangle with the largest angle

measuring �
� ���

. A similar behaviour is observed for the 3p
�
� Rydberg state (see [36]), which
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Fig. 4.19: The three lowest PESs of H � in
dimensionless normal coordinates describing the
shape of the triangular arrangement of the nuclei.
� � �

�
� � � � ����� �

�
����� � with � ��	 ����� bohr � � and

the � � , � � defined in Eq. (4.15). The third coor-
dinate � � which describes the overall size of the
system was fixed at � � � � � � � � with the equilibrium
internuclear distance � � � � =1.65 bohr of the H

�
� ion.

Picture taken from [36].

is probably an intermediate state during the descent. The final breakup geometry reached at

macroscopic separation of the fragments of course depends not only on the shape of this two-

dimensional cut of the PES at the initial value of � � , but also on the development of the 2p
�

surface for higher hyperradii. However, from the theoretical data available now, the kinetic

energy available for the nuclei at least in this part of the surface seems to be higher for deformed

shapes, which break the original symmetry of an equilateral triangle but maintain an isosceles

shape while moving to a more obtuse angled triangle. In this light, the experimental observation

of a tendency towards linear symmetric geometries may appear not too surprising.

For the heteronuclear species, besides the same preference of linear symmetric breakup

geometries, a breakdown of the symmetry under permutation of the fragments was observed in

the experiment, with the central position in the linear arrangement being preferably assumed by

a D atom. In first approximation (that is, in the Born-Oppenheimer case), the electronic surfaces

of the anionic as well as the neutral system should be identical for all isotopomers. On the other

hand, the non-Born-Oppenheimer Jahn-Teller coupling was found to play a crucial role in the

theoretical treatment of the DR process for H
�

� [36]. Thus the appearance of asymmetries in the

PES seems possible for H � D
�

and D � H
�

, which could be connected to the observed symmetry

breaking. Another possible explanation is that, even when assuming a completely symmetric

PES, the force driving the breakup, which is initially equal for all fragments, will cause a much

smaller acceleration when acting on a heavy D fragment than for a H fragment, thus breaking the
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fragment permutation symmetry. Depending on the behaviour of the PES at the slightly changed

geometry, this effect could be amplified, finally leading to a strong preference of arrangements

with a D fragment at the central position and possibly even to the complete disappearance of

any peak at linear-symmetric shapes with a central H atom, as observed in the experiment.

For a more instructive comparison with theory, concerning both the preference of linear

symmetric geometries and the symmetry breaking in the heteronuclear isotopomers, detailed

calculations of the fully three-dimensional wave packet propagation would be needed for all

four isotopomers on their respective PES.

4.6 Conclusions

The dissociative recombination of the four isotopomers of the H
�

� molecular ion was inves-

tigated in a series of experiments employing fast, stored beams of these ions. The breakup

energetics and geometries in the two- and three-body dissociation channels were investigated

using neutral fragment imaging techniques. With the help of advanced methods of data analysis

which are necessary in the present case of fragmentation experiments on polyatomic ions, new

results could be obtained regarding the internal excitation of the stored molecular ions and the

dynamics of the fragmentation process.

Through a detailed analysis of the kinetic energy release in the three-body fragmentation

channel, a significant rotational excitation was revealed for the homonuclear species H
�

� and

D
�
� but not in case of the heteronuclear H � D

�
and D � H

�
molecules. This excitation can have a

substantial influence on storage ring measurements of the rate coefficient � of this astrophysi-

cally important DR reaction. Therefore the diagnostics and the control of rotational excitations

has become an important issue in storage ring experiments on H
�

� , concerning the production

of the ions, the evolution of such excitations during the time of storage, and the consequences

regarding DR reactions studied with these ions (see, e.g. [37, 38, 43, 48]).

Regarding the fragmentation geometry in the three-body channel, a clear preference of lin-

ear symmetric fragmentation patterns was observed for all four isotopomers. For both heteronu-

clear molecules, an additional symmetry breaking was found in the preference of a D atom at

the central position in this linear arrangement. These results are expected to serve as additional

benchmark tests for detailed theoretical models of the DR process.

The picture is completed by the data obtained from the two-body fragmentation channel for

H
�
� and D

�
� . These support the finding of high rotational excitations of the homonuclear ions

and, with the vibrational excitation spectrum of the emerging molecular fragments, provide an

additional detail of the studied reaction for comparison with theory.
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5.1 Introduction

As a second example for the fragmentation of a triatomic molecular ion, the dissociative

electron-impact detachment from LiH �� is studied. As described in Chap. 2, the electron de-

tachment process is in many aspects different from the dissociative recombination reaction as

investigated for H
�

� in Chap. 4. However, also in this case the electron collision results in a

change of the charge state of the molecular system. Thus, the potential energy surfaces (PES)

which determine the evolution of the molecular geometry are abruptly changed from the anionic

ground state PES, on which the system had relaxed to a state close to the equilibrium geometry,

to a neutral PES, which then drives a dissociation of the system, as will be seen.

Although, similar to H
�

� , LiH �� is a very fundamental small molecule (it is the simplest

heteronuclear triatomic system apart from the isotopic variants of H
�

� ), the prior knowledge on

the specific reaction under study is much more limited here than in the H
�

� case. For H
�

� , the

new investigations concentrated on a detailed analysis of the fragmentation dynamics within

the known final channels and on the diagnostics of excitations of the original molecular ion.

In contrast to that, the fragmentation of the LiH � system after electron detachment from the

LiH �� anion was studied experimentally for the first time here. Even though some theoretical

work is available, no conclusive prediction was possible as to which exit channels (in terms of

charge states and molecular compositions of the fragments) would occur in the experiment. The

studies on LiH �� thus focus on the determination of possible exit channels of the electron detach-

ment process, as well as measurements of their relative contribution under various experimental

conditions.

5.1.1 Previous studies of the LiH �� system

The LiH �� ion has raised interest in theoretical and experimental fields for various reasons. Be-

cause of its relatively simple structure, it served as an example in studies of the structure and

the reactions of several classes of molecules. Senekowitsch and Rosmus [65] studied the struc-

ture of LiH �� as an example of a molecular anion which is formed in a reaction of a molecule
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exhibiting a permanent electrical dipole moment (LiH) with an anion (H � ). For the first time,

they calculated (in 1987) the molecular anion to be stable, with a linear H-Li-H equilibrium

structure. Earlier calculations by Preuss and Diercksen in 1967 had resulted in a metastable

structure [62].

Another point of view was adopted by Boldyrev and Simons [9], who investigated molec-

ular anions of MH �� � � type, where M is a nontransition atom (e.g. Li, Na, Be, Mg) with a

maximal formal valence of � . The corresponding neutral species MH � � � thus are hypervalent

and, in general, unstable. The additional electron of the anionic species was found to be bound

by as much as several eV and to stabilise the system against dissociation. This behaviour is at-

tributed to the insertion of the electron into a binding HOMO � distributed over several hydrogen

atoms.

The instability of the neutral LiH � system makes not only the structure of LiH �� , but es-

pecially also the electron detachment from the anion an interesting test case, as the dynamics

of the subsequent dissociation process are determined by the same potential energy surfaces

which govern the neutral reaction LiH + H � Li + H � . This reaction plays an important role

in the chemistry of the early universe [68], where a considerable abundance of LiH could have

far-reaching consequences up to the erasure of anisotropies in the cosmic background radiation

through Thomson scattering. As one of the simplest chemical reactions, it has also some bench-

mark character and is subject of ongoing experimental [15] and theoretical [46, 34] studies.

In a recent calculation, Sharp and Gellene [66] studied the LiH �� ion in the context of the

reaction of up to three hydrogen molecules with Li � as well as the isoelectronic B
�

. Besides the

known structure of the covalently bound anion, another minimum of the anionic ground state

PES was found, giving rise to the very weakly bound electrostatic complex Li � (H � ) [14].

This variety of theoretical approaches reveals a large interest in the LiH �� / LiH � system. On

the other hand, experimental results available up to now are limited to the mass-spectroscopic

detection of the anion [26] and very recent studies of the neutral reaction Li(
���

) + H �
� � � � � �

LiH(
� ��� �

) + H [15]. Therefore an experimental study of the electron detachment from the

anion is expected to yield valuable new results for comparison and addition to the theoretical

work.

5.1.2 Energy levels of the LiH �� / LiH � system

A schematic overview of some energy levels relevant for the LiH � and LiH �� system is given

in Fig. 5.1, using the energies listed in Tab. 5.1. The covalently bound LiH �� molecule is sta-

ble against both autodetachment of an electron and dissociation into smaller fragments. The

1 Highest Occupied Molecular Orbital
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Fig. 5.1: Energy levels in the LiH �� anion (blue) and the LiH � neutral system (black). All energies are
given relative to the LiH �� molecule assuming the rovibrational ground state for all molecules and infinite
separation of unbound fragments, using the values listed in Tab. 5.1. The pictograms visualise the nuclear
geometries of some configurations, with the filled circle denoting the Li atom. For unbound fragments,
the mutual orientation is arbitrary. VIP denotes the vertical ionisation potential at the LiH �� equilibrium
geometry. The dotted lines schematically indicate important properties of some calculated PES.

equilibrium geometry was found to be linear symmetric with a Li-H bond length of 3.3 bohr

[66].

The adiabatic dissociation energy � �
of LiH �� into Li � + H � is calculated to be only 0.26 eV.

However, to reach this dissociation channel, a significant barrier in the potential energy surface

has to be overcome. On this three-dimensional PES, the minimum energy pathway which con-

nects the LiH �� and Li � + H � geometries follows the � �	� symmetry of an isosceles triangle and

reaches a maximum energy of 2.11 eV at a conical intersection of the two lowest electronic

surfaces of the anionic system [66]. While these two surfaces have the same symmetry ( � � )
with respect to the � � group corresponding to a general triangular arrangement of the nuclei,

and thus avoid any crossing, in the special case of isosceles geometries considered here, which

is described by the � �	� group, the symmetry properties of the two PES are different ( � � and� � ) and thus a crossing is allowed. Interestingly, this crossing takes place at the geometry of

an equilateral triangle, which – apart from the symmetry breaking by the additional inner elec-

tronic shell of the Li atom – corresponds to the same � �	� symmetry which also governs the

crossing of the two lowest PES of H � (cf. Fig. 4.19).
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Quantity Species Value [eV] Reference

Electron affinity H 0.754 [5]

Li 0.618 [5]

LiH 0.34(1) [64]

Dissociation energy
� � �

H � 4.478 [21]

LiH 2.429 [72]

LiH �� 0.262 � [66]

Li �
�
H �

�
0.0028 � [14]

Vertical ionisation potential (VIP) LiH �� 3.0(1) [9]

a Including any zero-point energies.
b With respect to the Li ��� H � channel.

Tab. 5.1: Energies relevant for the LiH � and LiH �� system.

At a linear geometry close to the Li � + H � configuration, the electrostatic complex Li � (H � )

is predicted, which has a dissociation energy as low as 3 meV [14]. For the separation of one of

the hydrogen atoms from the LiH �� molecule, leading to the LiH + H � asymptotic channel, an

adiabatic dissociation energy of � � � � � �
eV can be deduced from the values given in Tab. 5.1.

For this transition no energy barrier was reported. Facing these energetic constraints, the LiH ��

molecule can thus expected to be stable, with an excitation energy of more than 2 eV needed to

initiate a fragmentation.

A neutralisation of this anionic system can be achieved through the detachment of an elec-

tron from one of the two valence orbitals, labelled � 	 � and � 	 � in the ����� symmetry corre-

sponding to the linear symmetric geometry of the anion. Through this electron detachment, the

wave function describing the nuclear conformation of the anion is vertically projected on a PES

of the neutral LiH � system, eventually starting to propagate to one of the dissociative channels.

The vertical ionisation potential (VIP) of LiH �� describes the energy needed for a transition,

at the geometry of the anion, to the lowest lying neutral PES (corresponding to the detachment

of a � 	 � electron), and was calculated to 3.0 � 0.1 eV [9]. The neutral PES reached by this tran-

sition has no minimum at the anion geometry, and the system is expected [9] to dissociate into

the Li + H � channel. Again, an intersection of the two lowest states is involved, as schematically

shown in Fig. 5.1. The second two-body dissociation channel, LiH + H, has an energy very close

to the VIP. Here a more detailed description of the neutral PES would be necessary to estimate

the possibility of a dissociation into this channel.

The detachment of an electron from the � 	 � orbital needs the slightly higher energy of

3.35 eV [9] and leads to a neutral PES which exhibits a local minimum at the anion geometry.
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However, the lifetime of such an electronically excited state can be expected to be at most in

the nanosecond range. Thus, a transition to the neutral ground state PES and a subsequent frag-

mentation of the system will take place shortly after the detachment process and an observation

of this bound, exited LiH � state in the experiment is not expected.

The three-body fragmentation channel Li + H + H has an asymptotic energy of 5.4 eV.

Therefore a dissociation into this channel would require a transition into a highly excited PES

of the neutral system, which would have to allow the nuclear wave packet to reach large sepa-

rations of all three fragments before changing to a lower lying electronic PES. Such a situation

cannot be achieved in the simple picture of the sudden removal of one electron, but needs a

more complicated interaction involving more than one of the electrons of the anion.

In summary, the dissociative electron detachment of LiH �� is expected to lead mainly to

the Li + H � dissociative channel. However, taking into account the limited a priori knowledge

on the interaction process and the neutral potential energy surfaces involved, other dissociation

channels cannot be excluded. Moreover, the role of dissociative excitation reactions which

could produce negative fragments is difficult to estimate. Senekowitsch and Rosmus [65] give

a vertical excitation energy of 2.4 eV for the transition to the first electronically excited anion

state from the LiH �� ground state. Depending on the structure of this excited PES, this transition

could then give rise to a dissociation into neutral and negative fragments.
�

An important goal of the present experimental investigation of this reaction therefore will

be the identification of the channels mainly contributing to the dissociation process.

5.2 Experimental setup

For the experiments on LiH �� presented here, the setup at the TSR as described in Sec. 3.3.1

was used. A major change compared to the standard setup was the reversal of the polarity of all

magnetic and electrostatic steering and focusing devices, which was necessary for acceleration

and storage of the negative ions.

The LiH �� ions were produced using a standard cesium sputtering negative ion source of

MISS type which was modified for operation with the high current injector. Acceleration was

achieved again using only the two RFQ modules, reaching a final energy of 4.5 MeV for this

ion. The ions were then stored in the TSR for up to 15 sec and overlapped with a co-moving

electron beam at the electron cooler (see Sec. 3.3.1).

Regarding the fine tuning of the settings of the storage ring and the electron cooler, some

technical difficulties had to be overcome. Usually, the exact positioning and focusing of the ion

2 New calculations (see Sec. 5.4.1) yield an excitation energy of 3.3 eV. The excited anionic PES is found above
the first neutral PES, thus auto-detachment of an electron and the breakup into neutral fragments is possible.
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LiH−
2 −LiH

Li−

−
H
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HLi

+

Negative fragment
Detector

Detectors
Neutral fragment

Dipole magnet

Fig. 5.2: Sketch of the detec-
tor region at the TSR. Trajectories
of negative (blue), neutral (black)
and positive (red) species are plot-
ted. The negative fragment detec-
tor can be moved to be sensitive to
either LiH � or Li � ions.

beam as well as the mutual alignment of ion and electron beam is done employing a high ion

current of several � A to get a clear signal from the various diagnostic devices which monitor

position and energy of the ion beam. As such strong beams are in general difficult to produce

for molecular ions, a customary workaround is the use of a so-called pilot beam of atomic ions

of the same charge to mass ratio as the desired molecules. Atomic beams can be produced at

high currents and thus the settings of the storage ring can be optimised using this beam. After

this, the molecular ions are injected into the such prepared storage ring.

In case of the present experiment on LiH �� , no atomic ion beam of the same charge to

mass ratio was available. Therefore, a beam of Li � was used as a pilot beam. The momentum

of this beam was set as close as possible to the momentum of the planned LiH �� beam by

selecting the number of 7-gap RF cavities used during the acceleration (cf. Sec. 3.3.1). Thus

the magnetic steering and focusing fields had basically the same effect on both the pilot beam

and the molecular beam, and only the few electrostatic steering elements had to be changed

when moving to the molecular beam after optimising all settings with the pilot beam.

With this procedure, it was possible to store the LiH �� beam and to achieve some phase

space cooling by the overlapped electron beam. However, because of the exceptionally low ion

current in the order of few nA, it was not possible to monitor or optimise the beam quality in

terms of energy spread or spatial extension. Therefore it has to be expected that the alignment of

the molecular ion momenta inside the electron cooler is less well-defined than it was found e.g.

in the case of H
�

� . Hence it should be kept in mind that the flight paths of fragments stemming

from electron-induced dissociation reactions and the resulting impact positions of the c.m. at

the detector setup might show a broader distribution in the present experiment.
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Neutral fragments

Solid state detector
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Imaging detector

Fig. 5.3: Detector setup for measurements of neutral
fragment rates and branching ratios. A solid state
detector and two different metal grids can be moved
in the pathway of the neutral fragments.

In addition to the neutral fragment detectors, an additional negative fragment detector was

used here, which is located inside the storage ring after the first dipole magnet downstream from

the electron cooler (see Fig. 5.2). At this position fragments emerging from the electron cooler

region with negative charge and lower mass than the stored ions could be detected. The movable

detector could be adjusted to be sensitive to Li � or LiH � fragments, while the detection of H �

fragments was not possible due to their strong deflection in the magnetic field. Similarly, no

positive fragments could be recorded, as the currently available setup includes no detectors for

reaction products of opposite charge compared to the stored beam. The anion detector used

here is a combination of scintillator crystal, light guide and photo-multiplier and is described in

detail in [82].

For the determination of branching ratios (cf. Sec. 3.3.3), two different grids were imple-

mented in the neutral detector setup which can be moved directly in front of the solid state

detector, as shown in Fig. 5.3. The correct position of the desired grid and of the solid state de-

tector with respect to the pathway of neutral fragments coming from the electron cooler region

can be confirmed by observing the ’shadow’ of these devices on the imaging detector.

Important parameters of the grids used are summarised in Tab. 5.2. A small size and dis-

tance of the holes was chosen for both grids to ensure a reliable separation of fragments also

at small mutual distances. In the present experiment, a spatial fragment separation in the order

of the grid hole size would correspond to a kinetic energy release of only � � � � � eV. Thus, for

any realistic fragmentation reaction the fragments will be spread over a region of the grid large

enough to ensure an independent stopping probability for each fragment.

The thickness of both grids was chosen large enough to completely stop any fragment hit-

ting the grid structure. The most critical point here is the stopping of the 3.5 MeV lithium
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5 Electron-impact detachment from LiH ��

Grid no. #1 #2

Nominal transmission 0.7 0.23

Measured transmission 0.641(6) 0.274(6)

Material nickel stainless steel

Thickness 5 � m 51 � m

Hole diameter 64 � m 76 � m

Hole distance 12 � m 76 � m

Tab. 5.2: Relevant parameters of the
two grids used for the determination of
branching ratios

atoms. However, with a maximum range of 3.5 � m in nickel [56], these are safely stopped also

by the thinner grid. The transmission factors for both grids were determined by measuring over

several hours the count rate of alpha particles emitted from a standard americium alpha source,

and comparing the results obtained with the solid state detector alone to the results with one of

the grids in front of the detector.

Operation of the electron cooler

In contrast to the DR experiments presented in Chap. 4, where electron and ion beams at

matched velocities were used only, the reactions to be studied here require significant relative

energies of the electrons. To provide these energetic electrons, and at the same time maintain

the phase space cooling which is provided by a velocity-matched electron beam (cf. Sec. 3.3.1),

the following timing scheme was applied regarding the relative electron energies (also called

wobbling of the electron cooler).

During the first 2 sec after injection of the ion beam into the storage ring (the so-called

precooling phase), the electron beam is kept at the same velocity as the ion beam to achieve

phase space cooling. After this, the acceleration voltage of the electrons is switched in a fast,

repeating cycle between three different values, corresponding to three different relative energies

of the electrons in the c.m. frame of the ions.

Regarding this relative electron energy, two terms have to be differentiated: First, the de-

tuning energy � � , which is defined as the kinetic energy which corresponds to the average of

the electron velocities �� in the c.m. frame of the ions

� �
� �� � � � �� � � �

(5.1)

The averaging is performed according to the thermal distribution of electron velocities. The

case of matched velocities is defined by � ���� � � and thus � �
� �

. On the other hand, the

average electron energy in the ion c.m. frame is given by

� � � � �� � � � �� ��� � (5.2)
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which is different from zero even in the case of matched velocities. However, the average

electron energy in this situation is very close to zero, given by the electron temperature of

��� � � � ��� � . In the following, the detuning energy is used to describe the setting of the

electron cooler, keeping in mind that the actual energies for single electrons can slightly differ

from that value.

In the measurement step of each wobbling cycle, the detuning energy is set for 25 msec to

the value � � at which a study of fragmentation reactions is desired. During this step, the relevant

absolute and channel-resolved fragmentation rates are measured. The energy � � applied during

the measurement steps is usually changed for each new injection of ions into the ring, resulting

in the accumulation of a complete energy spectrum of the measured quantities.

During the reference step following each measurement step, a fixed detuning energy � � is

applied over 25 msec. The main purpose of this step in the present experiment is to provide a

signal which is proportional to the number of ions stored in the ring. At the very small beam

currents used during measurements with molecular ions to prevent saturation effects or even

damage in the detector system, the standard devices for monitoring the beam current in general

are not sensitive. Thus, the neutral fragment count rate at a fixed electron energy is used as

a reference signal. However, this yields only a relative measurement of the ion beam current.

An absolute calibration would require the determination of the constant factor between this

signal and the beam current, which was not possible in the present experiment. The reference

energy for all measurements considered in this chapter was set to the arbitrarily chosen value of

� �
� � � � �

eV.

Finally, a cooling step is applied with electron and ion beam again at matched velocities.

This step ensures that the good definition of orbit and energy of the ion beam is maintained,

and corrects for any disturbing influence of the electrons at the two other steps, especially when

applying electrons at low, but non-zero relative energy in the measurement step. As will be seen,

in the case of negative ions the fragmentation rate measured during this step can additionally

be used for an estimation of the background rate due to residual gas induced fragmentation

reactions.

These three steps are repeated continuously, with a time span of 25 msec each, up to a

maximum storage time of 15 sec in the present experiment.

5.3 Experimental results

Using the neutral and negative fragment detectors available at the TSR, the production of both

types of fragments in collisions of LiH �� ions with electrons was investigated under various

experimental conditions. At the negative fragment detector, a signal was found only in the very
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5 Electron-impact detachment from LiH ��

first milliseconds after injection of the molecules into the storage ring. In particular, a rate of

several kHz was measured that could be attributed to the impact of Li � ions. These short-time

phenomena will be described in Sec, 5.3.3.

At longer storage times, ranging from some msec up to several seconds, only neutral frag-

ments were observed. Typical count rates again were in the order of few kHz. The detailed

investigation of this production of neutral fragments will be described in the following.

5.3.1 Total cross section for production of neutral fragments

As discussed in Sec. 2.3.2, the reaction of a molecular anion on the impact of an electron should

strongly depend on the relative energy of this electron. Below a threshold energy somewhat

higher than the VIP (in the present case 3 eV), no effect of the electron impact is expected.

At higher energies, detachment and excitation processes become possible which can produce

neutral fragments.

An inspection of the energy dependence of the total cross section for production of neutral

fragments by electron impact thus yields first informations on the processes involved: The

opening of each new reaction pathway should manifest itself in an increase of this cross section,

while the observation of resonant structures would indicate a temporary capture of the free

electron, that is, the formation of a dianion [58].

The count rate of neutral fragments as measured by the solid state detector of course not

only depends on the probability of each molecular ion to undergo a dissociation into neutral

fragments, but also on the number of ions available in the storage ring. This number can exhibit

considerable variations from injection to injection and thus for the measurement at different

� � . As a first step in the derivation of the desired cross section, the neutral fragment rate thus

has to be normalised to the ion current. As seen above, a measurement of the ion current on

an absolute scale is not available; the normalisation is therefore done by calculating the ratio
�

of the neutral fragment count rate
 � � � � at the measurement steps of the electron cooler cycle

(that is, with the electron energy set to � � ) and the corresponding rate
 
� � � at the reference steps

(electron energy � �
� � � � �

eV):

� � � � � �
 � � � � � � � � 

� � �
�

(5.3)

This ratio describes the yield of neutral fragments per molecular ion. Its natural dimension

would be sec � � , but here it is expressed in units of the yield
� � � �

�
at reference energy. The

experimentally measured energy spectrum
� � � � � of this neutral fragment yield is shown in

Fig. 5.4 for moderate electron energies ��� .
As visible in the Figure, a certain neutral fragment yield is observed already for � �

� �
,

staying constant up to an electron energy of � � eV. This constant level suggests that electrons
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Fig. 5.4: Total yield � of neutral frag-
ments per molecular ion, as a function
of the electron energy � � . The absolute
scale of � was arbitrarily chosen to fulfil
� � � � � � � .

at low energy, as expected, do not contribute to the dissociation of LiH �� molecules into neutral

fragments. The yield observed at these low ��� can be attributed to collisions of the molecular

ions with residual gas molecules still present in the ultrahigh vacuum of the storage ring. At

the MeV beam energies considered here, such collisions can easily remove an electron from the

anion leading to the production of one or more neutral products.

In the measurement shown in Fig. 5.4, the contribution of residual gas background

amounted to
� ��


of the yield at the reference energy � � . To account for variations in the

residual gas pressure, this background contribution can be continuously monitored during the

measurement using the rate
 
 ��� � recorded during the cooling step of the electron cooler cycle.

To further analyse the effect of electron impact on the anion, the background rate
� � �
�
� �

is now subtracted from the total rate
� � ��� � . The resulting electron induced rate can then be

normalised to the electron density  � (in cm �

�

), yielding the rate coefficient � (in cm
�

/sec) for

the production of neutral fragments by electron impact:

�
�
� �
� � � � � � � � � � � ��� �

 � (5.4)

This quantity is connected to the cross section 	 through the relation

�
� � � � � � 	 ��� � � (5.5)

with the averaging according to the distribution of relative electron velocities
�

at the given

detuning energy ��� . At the detuning energies of several eV considered here, the effect of the

electron temperature is small, and the cross section 	 can be approximated by the average cross

section 	�� � :
	�� � � � � � � � 	 ��� ���

� ��� ���
� �

� � � �

� ��� ���
� �

� � � ��
� �

�
(5.6)
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Fig. 5.5: Average cross section
� � � for the production of neutral
fragments by electron impact as
a function of the electron energy
� � . Circles: Experimental data
(two independent sets of data are
shown in black and blue), Red
line: Fit to a classical reaction
model, Eq. (5.7).

The measured shape of 	 � � � � � � is shown in Fig. 5.5. Again an arbitrary normalisation

( �
� � �

� � � ) was chosen, as the absolute cross section could not be determined. From the

threshold at � � � � eV, the cross section rises without further structure up to a maximum at

� � � � �
eV, and then decreases towards higher electron energies.

The behaviour near the threshold energy is compared to a classical reaction model [78]

developed for the description of the electron-impact detachment of electrons from atomic an-

ions. This model assumes a constant probability
�

for a detachment reaction, given that the

electron gets closer to the anion than a reaction radius
 

, which (in atomic units) corresponds

to a threshold energy � ��� � ��$  . The model thus predicts a cross section of

	 � � � �
� � �  � � � � ������ � � ��� � �	� �
� � � 
 � �	� �

�
(5.7)

The red line in Fig. 5.5 represents a fit of this model to the experimental data in the region � � �
�
�
� �

eV, using the threshold energy � �	� and an overall normalisation factor as fit parameters.

Despite the fact that this model is strongly simplifying the situation in a polyatomic molecule,

the quality of the fit is comparable with that obtained for atomic [78] and diatomic [58] anions

and a reasonable threshold energy of � ��� � � � � eV is found.

For the deviation between the experimental data and the fitted curve in the threshold region,

several reasons are possible:

� The observed structure could result from quantum phenomena like tunnelling, which are

not covered by the classical reaction model.
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� Because of the extended geometrical structure of the LiH �� molecule with the negative

charge mainly located at the terminal H atoms [65], the cross section near the threshold

can be expected to depend on the orientation of the molecule with respect to the incoming

electron, an effect which would smear out any sharp structures in the cross section in a

measurement employing an unpolarised ion beam.

� Another perturbing effect could be changes in the geometry due to vibrational motion,

which was suspected to play a role already for diatomic anions [58]. In the case of LiH ��

a radiative decay of vibrational excitations is possible via electrical dipole transitions,

allowing a fast thermalisation to the surrounding temperature of 300 K. However, the

different nuclear conformations possible in the remaining lowest vibrational states could

possibly still cause a smearing of the threshold energy for electron detachment.

� An experimental effect which is likely to produce artificially structures like the one ob-

served here is the so-called toroid contribution to the cross section. In the two regions of

the electron cooler, where the electron beam and the ion beam are merged and separated

by a bending of the electron beam in a magnetic toroid field, the electrons possess an in-

creased energy in the c.m. frame of the ions due to the angle between the two beams. This

leads to a contamination of the signal measured at low � � by fragmentation events stem-

ming from higher energetic collisions in the toroid regions, which can cause a smearing

of sharp structures in the cross section and thus explain the observed behaviour.

� Finally, the observed structure could have its origin in the contribution of different poten-

tial energy surfaces to the dissociation process. As shown in Sec. 5.1.2, the removal of a

valence electron from LiH �� can lead to two different electronic states of the LiH � system

with an energy difference of only 0.35 eV.

Facing the various effects listed here, the threshold energies for these two possible detachment

processes cannot be resolved by the present cross section measurement. Thus, both processes

have to be considered possible pathways in the observed detachment reaction. However, further

steps or resonances in the cross section are not observed. This suggests that higher PES do not

contribute significantly to the observed fragmentation reaction, and that no intermediate dianion

are formed.

The deviation of reaction model and experimental data at high energies is expected, as here

the assumption of constant reaction probability
�

is no longer valid.
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5.3.2 Branching ratios between different channels

The total mass of neutral fragments

After the investigation of the total cross section for reactions producing any neutral fragments,

the next step in the characterisation of the processes involved now is a closer study of the types

of fragments emerging from the breakup.

The absence of any charged fragments at the negative fragment detector for storage times

longer than some msec, as well as the observed dependence of the cross section for production

of neutral fragments on the electron energy suggest that the main reaction mechanism is the

detachment of an electron from one of the two valence orbitals, followed by a dissociation into

neutral fragments. Thus, the complete mass of the LiH �� molecule summing up to 9 a.m.u.
�

is

expected to reach the neutral fragment detector for each fragmentation event. However, an ex-

perimental verification of this expectation is advisable. As will be seen below, some disturbing

effects are thinkable which can reduce the number of fragments that reach the detector. Consid-

ering the atomic composition of the LiH �� molecule, an observation of neutral fragment events

with a total mass of 1, 2, 7 or 8 thus in principle also appears possible.

As described in Sec. 3.3.3, the solid state detector used in the measurement of neutral frag-

ment rates is capable of determining also the total mass of neutral fragments for each recorded

event. Already in the exemplary spectrum of Fig. 3.5, a clear dominance of mass 9 was ob-

served, confirming the above expectation, but a certain contribution was found also for lower

masses. In Fig. 5.6, the fraction of each of these masses in the total neutral event rate is now

followed as a function of the electron energy � � . The strong dominance of mass 9 is obvious

over the whole energy range investigated, reaching values up to
� �

�
��� � for high electron

energies. Thus, for a large majority of breakup events all emerging fragments are neutral. This

observation provides further evidence that detachment, as opposed to dissociative excitation, is

governing the electron-induced fragmentation of LiH �� .

The energy dependence of the mass fractions
� �

can be approximatively described by two

plateau-like structures for ��� � � eV and � � � � � eV, respectively. The transition between these

plateaus is correlated to the change in the total yield of neutral fragments as observed in Fig. 5.4

and can be interpreted as a transition from pure residual gas background at � � � � eV to a

predominantly electron induced signal at higher energies. The increased � � � fraction for the

electron dominated signal could reflect different breakup processes for electron and residual gas

collisions. On the other hand, before drawing this conclusion, a number of phenomena have to

be considered, which can reduce the mass observed at the neutral fragment detector.

First, the design of the solid state detector available at the neutral fragment chamber causes

3 All masses here and in the following are given in atomic mass units (a.m.u.).
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Fig. 5.6: Fraction
� �

of the observed neutral events, for which a total mass of � = 1, 2, 7, 8 a.m.u. (left)
and � = 9 a.m.u. (right) was detected, as a function of the electron energy � � .

a slightly reduced efficiency, as described in Sec. 3.3.3. In the present study, this results in a

certain probability for each fragment of mass 1 or 2 to be neglected by the detector. In the same

way, fragments of mass 7, 8 and 9 can be mistaken for mass 1, if they hit an area of reduced

sensitivity. The probability for such a false detection is difficult to determine, as it depends

on the exact impact position of a fragment, which in turn can be correlated to several other

experimental parameters. From experiments on other molecules, however, this probability can

be estimated to be in the order of � 1%.

Second, neutral fragments produced in a dissociation reaction might geometrically miss the

detector. This in turn can have several reasons:

� A high kinetic energy release of the fragmentation reaction might result in a large separa-

tion of the fragments which exceeds the size of the active area of the detector.

� The fragmenting molecule cold possess an initial momentum vector that is not pointing

exactly at the neutral fragment detector. Because of the limited beam quality achieved

in the present experiment (see Sec. 5.2) the observation of dissociation events stemming

from such molecules cannot be excluded.

� In addition, a considerable amount of misaligned dissociation events has to be expected

from residual gas collisions. These are possible not only inside the interaction region in

the electron cooler, but in principle along the whole ion beam orbit. In the sections of

the storage ring which are adjacent to the electron cooler, the ion beam is aligned similar,

but not exactly in the same way as inside the interaction region. Therefore, fragmentation

events originating from these sections have a high probability for depositing some, but

not all of the neutral fragments at the designated detector.
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Finally, the physical process under study might indeed produce also charged fragments,

which are deflected by the TSR dipole magnet before reaching the neutral fragment detector,

as sketched in Fig. 5.2. The production of Li � and LiH � fragments can be excluded, as the

negative fragment detector was sensitive to these species and no contribution was found at the

long storage times considered here. Other types of charged fragments (that is, H � ions or any

cations) could not be studied in the experimental setup available.

In summary, the total mass of neutral fragments observed for a dissociation event can be

reduced by several experimental effects. Therefore, the observed mass fractions are still consis-

tent with the assumption that electron impact on LiH �� does not produce any charged fragments.

On the other hand, a certain contribution of processes which do produce charged fragments

cannot be excluded. However, as none of the experimental effects listed above is capable of

increasing the detected mass of neutral fragments, an upper limit of � � � % can be given for the

contribution of such processes.

The observed energy dependence of the neutral mass fractions can be interpreted as a tran-

sition from residual gas background to an electron dominated signal. No evidence for an energy

dependence of the electron induced fragmentation reaction itself is found.

After discussion of the total mass of all neutral fragments, the next question to be addressed

now is the atomic composition of these fragments, which will reveal the contribution of different

exit channels in the electron-induced fragmentation of LiH �� .

Atomic composition of the neutral fragments

In Sec. 3.3.3, the grid method for the determination of branching ratios in the fragmentation of

molecules was introduced. This method is mainly used in the DR of molecular cations [77] and

in fragmentation reactions of diatomic anions [58]. In all these cases, the number of channels

which have to be considered as possible outcome of the fragmentation reaction is limited to 3–4.

The desired branching ratios can then be calculated from the measured data in a straightforward

manner.

In the present experiment, as seen above, a number of experimental effects can reduce the

number of fragments observed at the detector and thus induce the detection of artificial channels

which are not produced by the breakup reaction studied. On the other hand, the limited a priori

knowledge on the fragmentation process does not allow a reliable prediction of possible physical

channels.

Thus, all combinatorially possible configurations of free atoms and bound molecules, con-

sisting of up to one Li and two H atoms have to be considered as possible channels that might
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contribute to the rate observed by the neutral fragment detector. These are in total ten channels:

� � � �
�

� �
� � � � �

� �
� �

�
�

��� �
� � � � � �

� �
� � � � � �

� � � � � � �
� � �

� � � �
�

�
� �
� � � �

� �
� � �

� �
� �

� � � � � � �
� �
�

(5.8)

with the coefficients �� denoting the branching fraction of each channel ( � � � � � � � ), that is, its

relative contribution to the rate of neutral fragments. The goal of the grid method is now to de-

termine each of these branching factors �  . This is done here by comparison of the neutral mass

fractions � ����� measured under application of several different grids. In this case, special care

has to be taken to achieve a consistent normalisation of the � � ��� for all grids. The algorithm

used for this reconstruction is described in App. B. In short, the data available turn out to pro-

vide insufficient independent information to enable an algebraic solution of the involved system

of equations, even when combining the measurements with several grids. The reconstruction

algorithm thus additionally makes use of the fact that all �  have to be non-negative. That way

it is able to derive upper and lower limits for all branching factors.

The measurement of the energy-dependent mass fractions shown in Fig. 5.6 was thus re-

peated for each of the two grids, that were moved in front of the solid state detector. The

branching factors �� obtained by the reconstruction algorithm from these data are shown in

Fig. 5.7 in the energy range ��� � � –60 eV.

The by far dominating channel in the background- as well as the electron-dominated energy

range is the breakup into LiH + H with a fraction around 75% at high energies. The contributions

of all other channels are of the order of few percent and in most cases even consistent with zero.

The energy dependence of the �  , where visible at all, can again be interpreted as result of

the transition from pure background to predominantly electron induced breakup reactions. For

example, the decrease observed in � � (LiH) and � �
�

(H) when going to higher electron energies

can be explained by the assumption that these channels are observed due to an incomplete

detection of a fragmentation into the LiH + H channel, which is more likely in the background-

dominated energy region. The energy dependence of the observed branching factors thus again

is in agreement with the assumption that the relative contribution of fragmentation channels to

the electron-induced dissociation reaction does not depend on the electron energy.

To get a more quantitative picture, the same reconstruction was done using the mass fraction

data collected during the cooling and reference steps of the electron cooler cycle, that is at two

fixed electron energies of � � =0 and 41.3 eV. Because of the large number of events recorded

at these energies, statistical errors are much smaller here. In addition, a tentative background

correction can be performed. The observed �  values can be expressed as a composition of
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Fig. 5.7: Branching factors �  obtained using the grid method as a function of the electron energy � � .
The error bars given include statistical errors as well as the systematic uncertainty of the reconstruction
process. The �

��� values cited describe the branching factors for electron-induced processes only, as
obtained from Eq. (5.11). See text for a discussion of additional sources of errors.
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contributions from residual gas background (bgr) and electron induced processes (el) as follows:

�  �
 
��� �
��� �  �

� � �

�
� � 

��� �  �
� �

(5.9)

Assuming now that at cooling energy only background induced fragmentation is observed

(
 
 ��� � �  �

� � and � �

 ��� � � �

�

�
� � ), and that the signal at reference energy is composed of back-

ground plus electron induced processes (
 
� � �
�  �

� � �  
��� ), we obtain for the branching factors

measured at reference energy

� � � � � � � �� 
� � � �

 
 � � � � �
��� �  
 � � � � �


 � � � � 
� � � � (5.10)

and thus for the electron induced process

�
��� � �

� � � � � � �
 
 ��� � 

� � � � �

 � � � � 	 $ � � �  
 � � � 

� � � 	 �
(5.11)

The total contribution of background events
���������
�	� ��
 can be obtained only from a measurement

without grid. Assuming this value of 22% (see Sec. 5.3.1) to be valid in all measurements, an

approximative background subtraction is possible using Eq. (5.11).

The background corrected branching factors �
� � found using this method are also given in

Fig. 5.7. Despite the small statistical and reconstruction errors for some of the channels, several

other sources of errors have to be taken into account. Besides the already noted sensitivity

properties of the solid state detector, these are mainly the uncertainty in the measurement of the

transmission factors of the two grids, and in particular the transferability of these measurements

employing alpha particles to the present experiment. As noted in Sec. 3.3.3, small variations

of the transmission factor dependent on the type of projectiles might be possible, which could

result in errors in the order of few percent in the reconstruction of branching factors.

For the interpretation of the results obtained here regarding the physical breakup process,

an additional uncertainty that has to be taken into account are the various effects which can

reduce the number of fragments detected for a fragmentation reaction, as discussed already for

the interpretation of the total neutral mass spectra.

In spite of these uncertainties, the present experiment allows the derivation of approximative

branching factors for the electron induced fragmentation of LiH �� . In particular, an important

result is the clear dominance of the LiH + H channel which rejects the theoretical prediction.

All other channels, both for the production of only neutral and charged fragments, are consis-

tent with zero within the uncertainties of the experiment, albeit small contributions from these

channels cannot be excluded completely.

As already noted, direct evidence for the production of charged fragments was found only

at very short storage times. These observations will be discussed in the following section.

93



5 Electron-impact detachment from LiH ��

tstore [ms]

Fr
ac

tio
n 

  P
m

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 4 6 8 10 12 14 16

Fig. 5.8: Fraction
� �

of events with
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total neutral event rate) as a function of
the storage time

�
� � � � � . The electron en-

ergy � � was fixed to 41.3 eV.

5.3.3 Observations at short storage times

In the fist milliseconds after injection of the molecular ions into the storage ring, the impact of

Li � ions was observed at the negative fragment detector. To further investigate these special

fragmentation events after very short storage times, a series of specific experiments was per-

formed, where data from both the neutral and the negative fragment detectors were recorded

with a microsecond time resolution.

As the phase space cooling of the ion beam (see Sec. 4.2) is finished only after several

seconds, experiments during the first milliseconds of storage have to be performed with an

translationally hot ion beam. Besides a higher relative energy between the colliding ions and

electrons, this also causes a larger spread of the momentum vectors of the molecular ions,

leading to a higher probability of geometrical particle losses, that is, the recording of events

where one or more fragments miss the neutral fragment detector even though they are neutral.

The accuracy of a measurement of branching factors will thus be even lower here than for

the experiments at longer storage times described so far, especially for the � � � channels.

Nevertheless, it is interesting to observe qualitatively the behaviour at short storage times.

At the very short time scales to be considered here, the usual wobbling scheme regarding

the electron energies (see Sec. 5.2), which works on a time scale of several tens of milliseconds,

could not be applied. Instead, two separate measurements were performed, keeping the electron

cooler at a constant detuning energy of 0 eV and 41.3 eV, respectively.

Neutral mass fractions

The fractional contribution of events with different total masses of neutral fragments, observed

for � � � � � � �
eV, are shown in Fig. 5.8. In addition to the neutral mass fractions

� �
, the count
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rate at the negative ion detector is plotted, normalised also to the sum of all events involving

neutral fractions. From the position of the anion detector, the negative fragments could clearly

be identified as mass 7, that is Li � ions. At the position corresponding to mass 8 (LiH � ), no

ions were detected at any storage time.

The negative ion rate
� �

� � , even though normalised to the total neutral rate, can only ten-

tatively be compared to the neutral mass fractions
� �

regarding the absolute scale, as the two

detectors in use can have different detection efficiencies, and no coincidence condition was set.

While the surface barrier detector used for neutral fragment detection is assumed to have a

100% detection efficiency, a lower value has to be expected for the anion detector, due to tech-

nical problems found in the operation of this new detection system [82]. On the other hand, Li �

ions react to some extend on the magnetic steering and focusing elements of the storage ring.

Therefore, the probability to collect fragments of dissociation reactions that took place outside

the electron cooler is much higher for the anion detector than for the neutral fragment detector,

thus increasing the anion count rate. Despite this uncertainties in the absolute count rate, the

temporal evolution of the Li � signal can still be analysed and gives a valuable addition to the

neutral fragment data.

After � � � msec of storage, the fractions observed in Fig. 5.8 approach constant values. No

further changes were found for storage times up to 80 msec. Taking into account the increased

probability of geometrical losses, these asymptotic values are comparable to the distribution at

long storage times (Fig. 5.6). In the first few msec after injection, however, the neutral mass

fractions significantly differ from this distribution, showing now a strong contribution of � � �
and a considerable increase of the very small � � �

signal. At the same time, a high count rate

of Li � fragments is observed.

For the very first 1–2 msec after injection of the ion beam, no clear interpretation of the

recorded data is possible, as here the so-called injection flash, consisting of a large number of

ions which did not reach stable orbits in the storage ring, is saturating the detectors.

Branching ratios

To clarify which dissociation channels contribute to the observed neutral mass fractions, the

grid method was used as described in Sec. 5.3.2 and branching factors �  were determined as

a function of storage time. For better visibility of the count rate variation of each channel, the

obtained branching factors �� are multiplied with the strongly time dependent total neutral rate 
, yielding the partial rates

  � �   . These partial rates are shown in Fig. 5.9 for the dominant

neutral channels, together with the count rate of Li � ions. Channels with low contribution are

not shown, their maximum partial rate is indicated by the dashed lines. Two different electron

energies were used, ��� � �
eV and � � � � � � �

eV, as indicated in the figure. Error bars are
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Fig. 5.9: Partial rates �  � �  � of
the dominant neutral breakup channels
and Li � rate as a function of the stor-
age time

�
� � � � � . The electron energy

� � was kept at a fixed value as indi-
cated. Dashed lines symbolise the con-
tribution of neutral channels not shown
here.

omitted here for clarity, the different uncertainties again sum up to errors of several percent.

For both electron energies, the partial rate of the LiH + H channel, which is dominating at

long storage times, is basically constant even in the first milliseconds after injection. An ad-

ditional contribution to the neutral signal at very short storage times comes from the Li + H �

and H � channels. Their count rates are initially up to a factor of 10 higher than for the LiH + H

channel, but decrease very rapidly following a roughly exponential decay with a lifetime of� � � � ��� � msec. The same behaviour is exhibited by the Li � ion rate, which strongly sug-

gests that the observed H � and Li � fragments originate from the same dissociation channel

LiH �� � Li �
� H � . Remarkably, the same lifetime for the decay of the partial rate was ob-

served not only for H � and Li � , but also for the Li + H � channel.

The experiment thus shows a complete change of the dominant dissociation channel in the

first milliseconds of storage, which can only be attributed to changes in the internal state dis-

tribution of the molecular ion beam. The only external condition that could introduce a storage
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time dependence of the branching factors is the phase space cooling of the ion beam. This

process, however, acts on the much longer time scale of few seconds and furthermore can only

change (by focusing the ion momenta to the neutral fragment detector) the detailed branching

factors especially when comparing � � � to � � � channels. The observed appearance of an ad-

ditional � � � channel at short storage times, in combination with a constant rate at the channel

dominating for longer times, cannot be explained by changes in the alignment or focusing of the

ion beam. Hence it is obvious that a transient state of the LiH �� ion is the origin of the observed

decay into the Li �
� H � and Li � H � channels (called transient channels in the following).

Characterisation of the transient state

A remarkable property of the two transient channels is the fact that they exhibit the same ab-

solute count rate � as well as the same decay time, suggesting that both channels stem from the

same transient state of the anion, and that this state can dissociate via both the anionic and the

neutral channel with equal probability.

Some more characterisation of the transient state can be deduced from the comparison of

the decay time of the count rate in the transient channels to the overall beam lifetime, which was

measured to be � ��
 � ��� � sec at ���
� �

. Thus, the decay rate of the transient state is found to be a

factor of �
� �
�
� �

higher than the rate of residual gas induced dissociation the molecule exhibits

at longer storage times, in a condition that will be called the stable state in the following for

distinction from the short-lived transient state. �
However, the observed decay of the transient state might occur via two processes, the frag-

mentation of the molecule or a transition to the stable state. While the total decay rate is given

just by the observed 2.8 msec lifetime of the fragmentation signal in the transient channels, an

estimation of the relative contribution of the two decay modes requires a more detailed analysis

of the fragmentation count rates, as described in App. C.

Based on the experimental data available, it can be concluded that at least 25% of the

transient state population decays via fragmentation of the molecule rather than a transition to

the stable state. An upper limit cannot be given here, thus also the complete absence of a

transition to the stable state would be in agreement with the experimental findings.

From this follows the remarkable observation that the fragmentation of the molecule is at

least two orders of magnitude faster for the transient state than for the stable state. For the initial

4 Even though the Li � rate cannot be compared directly to the neutral fragment rates, the agreement of the
Li � H � and H � rates allows this observation.

5 The term state used here does not stand for a state in the sense of quantum mechanics. The internal properties
of a molecule which might determine its possible fragmentation channels and thus its attribution to one of the
two states will be discussed later.
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population of the transient state, the same estimation yields a fraction in the order of 5–25% of

the total ion beam (see App. C).

Effect of electron impact

To estimate the influence of electron interactions on the decay of these transient state ions, it is

now interesting to compare the partial rates in the transient channels for the two measurements

at � �
���

, where the electrons cannot approach the anion due to the mutual Coulomb repul-

sion, and at � �
� � � � �

eV, where a dominance of electron-induced fragmentation reactions was

observed for the stable state.

For a direct comparison of the two situations, the dissociation rates per molecular ion would

be needed instead of the absolute count rates observed here. However, this would require a

determination of the number of ions present in the storage ring during the measurement. As

for the experiments at long storage times, this ion current is too low to be accessible for an

absolute measurement. In the present case, even a relative calibration for comparison of the

two measurements at different ��� is difficult. The dissociation rate at a common reference

electron energy � � , which is usually used as a measure of the ion current, can only be recorded

in experiments working at longer time scales, where a wobbling of the electron cooler energy

during the measurement is possible (see Sec. 5.2). Nevertheless, the behaviour at � � � �
and

� � � � � � �
eV can tentatively be compared assuming that the yield of dissociation events in

the LiH + H channel depends on � � in the same way for the measurements at long and short

storage times. In particular, the yield of LiH + H at � � � � is assumed to be
�'��


of the yield at

� � � � � � �
eV as found in Sec. 5.3.1. The normalisation of the two data sets shown in Fig. 5.9

is thus chosen such that the partial rate of LiH + H at � � � �
amounts to

�'��

of the rate at

� � � � � � �
eV.

Comparing now the partial rates in the transient channels for the two electron energies,

only a relatively small increase of the order of � � � � � 

is found for � � � � � � �

eV, indicating a

minor, possibly even zero contribution of electron-impact to the fragmentation of the transient

state of LiH �� .

Furthermore, the same lifetime of 2.8 msec is found for the signal from the transient chan-

nels, independent of the electron energy. Thus, the total decay rate of the transient state (in-

cluding also transitions to the stable state) turns out to be unaffected by the presence of high-

energetic electrons. Combining these two observations, the transition rate from the transient to

the stable state can also be concluded to be only weakly influenced by electron-impact, provided

that such a transition exists.

In conclusion, a transient state of the LiH �� molecule was found to be present in the first
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Transient state Stable state

Fragmentation channels Li + H � and Li � + H � LiH + H

Total decay rate � ( � �
� �

)
� 
 �

� � � sec � � � � 
 �
�
� � ���

sec � �
transition rate � � � � � � to the stable state � � � �

sec � � —

fragmentation rate � � � � � � � � sec � � � � 
 �
�
� � ���

sec � �
Result of electron impact ( ���

� � � � �
eV) none observed increase of � ( �

���
� )

Initial population � 5–25% � 75–95%

Tab. 5.3: Observed properties of the transient and stable states of LiH �� .

milliseconds after injection of the ions into the storage ring. While the nature of this state, as

well as its decay mechanisms are yet unclear, a tentative characterisation can be given based on

the experimental data, as summarised in Tab. 5.3.3. A discussion of possible interpretations of

this state will be given in Sec. 5.4.

5.4 Comparison to theory

5.4.1 Calculation of potential energy surfaces

To clarify the processes underlying the breakup reactions observed experimentally, preliminary

ab initio calculations of the potential energies of the neutral and anionic systems were done

at selected geometries, in addition to the existing theoretical work (see, e.g. [65, 66, 14]).

The calculations have been performed in collaboration with the group of R. Schinke, Max-

Planck-Institut für Strömungsforschung, Göttingen, Germany. The quantum chemistry code

MOLPRO [51] was employed, running on a cluster of IBM-RS6000 machines located at the

GWDG (Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen). Calculations

of MRCI
�

type were done with the standard basis set AVTZ for hydrogen, and VTZ+2(SPD)

for lithium.

To parametrise the three-dimensional space of nuclear geometries, the coordinates  ,
�

and � are chosen as follows:  describes the H-Li-H bond angle (see Fig. 5.11), while the

hyperradius
�

and the symmetry coordinate � are defined by

� � �
�
� �

�� and � � �
� �

�
�

�
�
� �

� � (5.12)

with the Li-H bond lengths
�
� and

�
� . While

�
denotes the overall size of the atomic system,� and  are dimensionless and have the function of hyperangles describing the shape of the

6 Multiconfiguration Reference internally contracted Configuration Interaction

99



5 Electron-impact detachment from LiH ��
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Fig. 5.10: Calculated poten-
tial energy surfaces for the neu-
tral LiH � (black) and the an-
ionic LiH �� system (blue). En-
ergies of the two lowest states
are given as a function of � ,
with  set to 0 and � optimised
for each point.
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system. Phase space considerations like for the three-body breakup of H
�

� are not necessary

here, as the coordinates used here serve only for representation of the potential energy surfaces,

not for a detailed study of three-body fragmentation dynamics.

To visualise now the behaviour of these three-dimensional PESs, two-dimensional subsets

of the coordinate space are defined by setting one of the hyperangles to a fixed value. The

potential energy is then plotted as a function of the second hyperangle with the hyperradius
�

optimised for minimum energy at each point (separately for each plotted PES). In particular, two

such subsets are discussed, which describe the transition from the LiH �� equilibrium geometry to

the geometries of the two asymptotic channels which were observed in the experiment, namely

LiH + H and Li + H � .

Figure 5.10 shows a cut relevant for the transition to the LiH + H asymptote. The bond angle

 is fixed to 180
�

here, thus restricting the parameter space to linear geometries, corresponding

to � � � symmetry. The LiH �� equilibrium geometry is described by � � �
, as visualised at

H
H

Li

φ r2r1

Fig. 5.11: Definition of the bond lengths � � , �
� and the

bond angle  used in the description of the LiH � geometry.
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Fig. 5.12: Calculated poten-
tial energy surfaces for the neu-
tral LiH � (black) and the an-
ionic LiH �� system (blue). En-
ergies of the two lowest states
are given as a function of  ,
with � set to 0 and � optimised
for each point.

the top of the figure. For � � � � � , one of the Li-H distances diverges, corresponding to the

LiH + H asymptote. As the two hydrogen atoms are identical, the whole system is symmetric

with respect to a change of the sign of � . In Fig. 5.10, only the � � � part is shown, following

up the general arrangement of Fig. 5.1. For both the neutral and the anionic system, the two

lowest states are plotted. The asymptotic energy levels given here are taken from Tab. 5.1, but

with the small corrections due to zero-point energies removed. The
�

values resulting from the

optimisation are close to the LiH �� bond length of 3.3 a.u. near � � � and diverge for � � � � ,
corresponding to the separation of the two fragments. The Li-H bond length

�
� calculated from� and

�
is found to approach (for � � � � ) the expected values of 3.0 a.u. for LiH and 3.25

a.u. for LiH � .

In Fig. 5.12, the transition to the Li + H � asymptote is shown. Here, the parameter space

is restricted to the � �	� symmetry of isosceles triangles by setting � � � . Again two states of

both the neutral and the anionic system are shown. Here the optimised
�

values stay in the

range of 3 a.u. for  between 180
�

and 30
�

, and diverge for smaller  , while the H-H distance

approaches the H � equilibrium value of 1.4 a.u. . Although the
�
-optimisation was done for each

state separately, the three curve crossings observed in Fig. 5.12 are not a projection effect due

to different
�

values of these curves, but represent real intersections of the PES involved. An

interpretation of these calculations regarding the main results of the experiment is given in the

following.
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5.4.2 The dominance of the LiH + H channel

An important experimental result at long storage times is the unexpected dominance of the

LiH + H dissociation channel. Following the calculations presented here, both the LiH + H chan-

nel as well as the Li + H � channel are energetically open after a vertical transition from the anion

geometry to the first neutral PES (indicated by the arrow in Figs. 5.10 and 5.12). However, the

neutral ground state potential energy at the LiH + H asymptotic geometry is calculated to be

only 20 meV lower than at the LiH �� geometry.

Facing this very small energy difference, corrections due to the vibrational zero-point os-

cillations of both the LiH �� and the LiH molecule become important. While the kinetic energy

stored in the vibrations of LiH �� is available to enlarge the kinetic energy release of a breakup

reaction, the corresponding spatial extension of the vibrational wave function can both increase

or decrease the potential energy available, depending on the exact shape of the neutral PES

in the region covered by this nuclear wave function. In the final channel, the vibrational zero

point energy of the LiH molecule has to be provided. To calculate these contributions, a more

detailed investigation of the contributing PESs and the resulting vibrational states would be

necessary, which is not available at present. As a rough estimate for this energy correction, the

kinetic energy stored in the vibrational asymmetric stretching mode of the LiH �� molecule might

serve, which corresponds to an oscillation of the � coordinate. This energy is semi-classically

estimated to be half of the vibrational ground state energy amounting to 68 meV [66]. There-

fore, an additional contribution to the energy release in the LiH + H channel of about 34 meV is

expected.

The Li + H � channel, which was anticipated as the result of electron detachment in recent

theoretical approaches [9], is found open also in the present calculation, with an energy release

of more than 2 eV. Moreover, the minimum energy pathway leading to this channel along the � �	�
symmetry turns out to be stable against distortions of this symmetry. That is, the introduction of

small deviations from � �
� i.e. differences between the bond lengths
�
� and

�
� would raise the

energy of the neutral system in the electronic ground state. In contrast to that the pathway to the

LiH + H channel along the � � � symmetry is instable against symmetry breaking perturbations.

However, the � � � geometries correspond to a flat maximum of the neutral ground state PES

which might allow a fragmentation along this path. Similarly, the gradient of this PES with

respect to changes of the bond angle is very small close to the LiH �� geometry, which might be

unfavourable for a fragmentation into the Li + H � channel.

An additional process to be taken into account here is the detachment leading to the first

excited state of the neutral system, which has a minimum at the anion equilibrium geometry.

A transition to this state is expected to be favoured [9] by the good Franck-Condon overlap

of the vibrational wave functions of the anion and the electronically excited neutral molecule.
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This excited state will then undergo a rapid transition to the neutral ground state, which can be

accompanied by a transfer of energy from electronic to vibrational degrees of freedom. The

detailed processes governing the transitions between these three PES and in particular the in-

terplay of electronic and vibrational energy might bear the physical reason for the observed

dominance of the LiH + H channel.

In summary, a dissociation into the LiH + H channel after electron detachment appears pos-

sible from the present ab initio calculations. However, the clear dominance of this channel ob-

served in the experiment in contrast to the negligible flux going to the Li + H � channel appears

to contradict intuition. A more detailed investigation of the PES involved as well as the vibra-

tional dynamics of the system here would be desirable to gain a full theoretical understanding

of the observed process.

5.4.3 Possible nature of the transient channel

Another open question is the nature of the transient state of the anion dissociating into the

Li + H � (+ e � ) and Li � + H � channels, which was observed experimentally at short storage times.

In principle, this transient state could differ from the usual, stable LiH �� state in three ways: It

could exhibit an exceptional vibrational excitation, an alternative geometry corresponding to a

displaced, local minimum of the electronic ground state PES, or belong to another, excited PES.

Vibrational excitation

To access the observed dissociation channels from a vibrationally excited state of the LiH �� ion,

the system has to overcome an energy barrier of 2.1 eV [66] as confirmed in the present calcu-

lations (Fig. 5.12). Without additional energy gained e.g. in a residual gas collision, this would

require an excitation of the order of
� � � �

in the vibrational bending mode, estimated from

the harmonic frequency of this mode, which corresponds to an energy of 55 meV [65]. Exci-

tations of the symmetric and asymmetric stretching modes (energies 128 meV and 135 meV)

would even increase the height of the barrier by changing the geometry of the system. How-

ever, assuming the presence of such high excitations in the first milliseconds of storage, many

vibrational states with lower, but still considerable excitation would have to be expected to be

even more populated and to live even longer. For these states, a detachment reaction induced

by an electron or residual gas collision would have to lead mainly to the Li + H � or Li � + H �

channel, as the LiH + H channel is energetically closed at the bent geometries connected to high

excitations of the vibrational bending modes. Thus, a significant contribution of the Li + H � and

Li � + H � channels would be expected on a much longer time scale, connected with an increase

of the rate in the LiH + H channel. As seen in Fig. 5.9, the experimental data clearly contradicts
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this expectation. Thus, the hypothesis of high vibrational excitations being the nature of the

transient state appears not very likely.

If one takes into account the possibility of an excitation induced by a residual gas collision

to initiate the dissociation process, less high vibrational levels would be needed for the transient

state. However, a vibrational excitation of about 1 eV would still be necessary: For lower vi-

brational levels, and the corresponding bond angles of  ��� � � , a collision induced transition

to the first excited anion state would take place at a geometry where the first neutral PES is

lower in energy (see Fig. 5.12). In such a case, the observed equal population of both the anion

and the neutral dissociation channel would not be expected. For the remaining possibility of a

vibrational excitation of � � eV, the same argument still holds as given above for a
�

eV exci-

tation: Such a model cannot explain the observed fast transition from an electron-independent,

very rapid dissociation into the Li + H � and Li � + H � channels, to a dissociation which leads

exclusively to the LiH + H channel and can be induced by electron-impact.

Alternative geometry

A second possible explanation for a transient state would be the population of a local minimum

of the electronic ground state PES at a geometry different from that of the stable state. A good

candidate appears to be the electrostatic complex configuration Li � (H � ) found in recent ab

initio calculations [14]. The geometry of this complex is close to the Li � + H � asymptote with

an equilibrium distance of 11.6 a.u. between the Li � ion and the center of the electrostatically

attached H � molecule. The complex is very weakly bound, with an adiabatic dissociation energy

� �
with respect to the Li � + H � asymptote of only 0.9 meV (2.7 meV) for the para (ortho)

nuclear spin configuration of the H � molecule.

Such a state, if produced in the ion source, would be dissociated by interactions with the sur-

rounding 300 K blackbody radiation, with the observed lifetime of �
�

msec being a reasonable

order of magnitude. On the other hand, infrared transitions cannot explain the equal observation

of the neutral Li + H � channel, which requires an additional energy of 0.62 eV. Thus, the dis-

sociation of the electrostatic complex would have to be dominated by residual gas interactions.

The observed large fragmentation rate compared to the stable state might in this case be ex-

plained by the geometry and binding energy of the electrostatic complex which could result in a

large cross section for dissociative residual gas collisions. However, this model of the transient

state cannot explain the equal rate in both the anionic and the neutral fragmentation channel.

In addition, a large cross section also for electron induced dissociation would be expected here,

which is not observed.
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5.5 Conclusions

Electronically excited state

The third possibility to be taken into account as a transient state is a metastable state belonging

to a electronically excited PES of the anion. This would require a local minimum of an excited

PES at a geometry that allows for the breakup into Li + H � , as well as Li � + H � . In addition,

the energy of this state would have to be below the energy of the neutral system at the same

geometry. Otherwise, a rapid autodetachment would inhibit the fragmentation into Li � + H � .

A good candidate for such a situation might be the conical intersection of the two lowest

electronic states of the anion which appears at the geometry of an equilateral triangle (  � 
 � � ,� � � ). A vibrational ground state wave function constructed in this conical shaped valley of

the second PES would be expected to allow for a much faster transition to the lower surface

than the lifetime observed, because of the strong coupling at the intersection point. However,

a vibrationally excited state would exhibit a much lower probability density at this geometry.

This might explain the observed lifetime of 3 ms.

Following this speculation, the transition to the lower PES would be followed either by

an opening of the bond angle and successive vibrational relaxation to the anionic ground state

configuration. On the other hand, a further reduction of  is possible, finally leading to the

separation of an H � molecule. This transition would proceed via a second intersection of the two

anionic PESs at �� � �
�

, a geometry where also the two lowest neutral PESs are energetically

very close. Thus, the transition to a neutral PES by autodetachment of an electron appears well

possible, and the equal contribution of the Li + H � and Li � + H � channels in the experiment are

in good agreement with this model.

5.5 Conclusions

From the fragmentation experiments on the LiH �� molecular ion described in this chapter, to-

gether with the existing theoretical work and new preliminary calculations, the following con-

clusions can be drawn:

After some milliseconds of internal relaxation following the production of the anion, the

electron-induced fragmentation of LiH �� is dominated by the detachment of an electron and the

subsequent dissociation into the neutral LiH + H channel. The fragmentation proceeds in the

geometrically unstable electronic ground state of the neutral system, whereas the first excited

neutral state is likely to play an important role as an intermediate state. The strong dominance of

the LiH + H channel over the Li + H � channel, which was clearly observed in the experiment, is

at present not understood theoretically. A breakup into a channel containing a negative fragment

via a dissociative excitation reaction was not observed, which is in agreement with the new

calculations.
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5 Electron-impact detachment from LiH ��

The second and just as much unexpected result is the finding of a transient state of the

anion with a lifetime of 2.8 ms which was estimated to have a population of � 5–25% directly

after production of the molecular ions. This state was found to decay rapidly, and basically

independent of electron impact, by fragmentation into both the Li + H � and Li � + H � channels

(at equal rate). Additionally a transition to the stable LiH �� ground state is possible.

A tentative interpretation of this state as a metastable bound state located at a conical in-

tersection of the two lowest anionic PES appears thinkable. Detailed theoretical calculations

are desirable here to study the lifetime expected for such a complex (taking into account also

vibrational and rotational excitations which might inhibit a fast decay) and thus verify or reject

this explanation of the experimental findings. On the other hand, a high excitation of the vibra-

tional bending mode in the electronic ground state can, while seeming unlikely, not be excluded

completely. Also here, theoretical calculations, e.g. of radiative lifetimes could shed more light

on the possible nature of the transient state.

On the experimental side, the next steps now could be investigations of the short-time

breakup in an environment where the residual gas pressure or the surrounding temperature can

be changed. Thus the influence of residual gas collisions as well as blackbody radiation on the

breakup process could be tested.
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6. Discussion and outlook

In the present work, the fragmentation of several triatomic molecular ions after electron impact

has been studied. For the analysis and interpretation of the data recorded in different types

of experiments, standard fragment detection and imaging methods established for studies of

diatomic molecules had to be reconsidered and extended in several aspects for the application

on these polyatomic systems.

The dissociative recombination of H
�

� and its isotopomers was studied using neutral frag-

ment imaging techniques aiming at the disclosure of breakup dynamics in the two fragmentation

channels. Due to the appearance of more than one channel, a basic problem here is the identifi-

cation of the breakup channel corresponding to each observed event, which is connected to the

problem of an assignment of masses to all recorded fragments. Both problems could be solved

by a careful analysis of the center of mass (c.m.) for each observed event, even in the cases of

the asymmetric isotopomers of H
�

� , in which one or two protons are replaced by deuterons. Be-

sides the identification of fragment masses and breakup channels, suitable cuts on the c.m. also

provide an efficient suppression of background data stemming from incompletely detected or

erroneously assigned fragmentation events. The influence of remaining background events on

the final results, both quantitatively and qualitatively, could be estimated directly from the mea-

sured data. This procedure can in principle be applied also on larger systems containing more

atoms and exhibiting more possible breakup channels, provided that a good collimation of the

molecular ion beam is given, which results in a good definition of the true c.m. position of all

dissociation events.

For the representation of the imaging data in the three-body full breakup channel, a method

yielding an unbiased view on the distribution of fragmentation geometries was derived. While

applied here on the relatively simple case of a triatomic system containing two identical atoms,

this method can easily be further extended to cover the case of three different species. For an

extension to larger systems, additional considerations would be necessary regarding the repre-

sentation of the higher-dimensional data. However, the derivation of a suitable method of data

representation would in this case follow the same general procedures as applied for the triatomic

case.

The interpretation of imaging data taken in these experiments implies a thorough consider-
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6 Discussion and outlook

ation of quantities that cannot be measured by the present data acquisition system. These are

in particular the exact location of a fragmentation event within the electron interaction region,

and the orientation of the fragmenting system with respect to the surface of the 2D imaging

detector. These uncertainties were taken into account by modelling the fragmentation reaction

and the detection system employing a Monte Carlo simulation algorithm. Through the compar-

ison of simulated and experimental data, interesting details of the dissociation process could be

revealed from both the total energy release and the correlation between the kinetic energies of

the emerging fragments.

In another experiment the dissociation of the LiH �� system following electron detachment

induced by the impact of a free electron was investigated. Here the branching ratios of the oc-

curring exit channels were studied through an application and extension of the well established

grid method. To get an estimate of the contribution of each of the ten channels that had to be

taken into account here, the grid method was advanced in two aspects. First, several different

grids were employed. Using a suitable normalisation to the total rate, which could not be mea-

sured directly, the results for the different grids could then be combined. Second, the algebraic

calculation of branching ratios from the measured rates was replaced by an algorithm which

takes into account additional boundary conditions like the restriction to non-negative contribu-

tions of all channels.

Because of the limited a priori knowledge on the reaction studied, a rather large number

of fragmentation channels had to be considered. With the extended grid method, it was never-

theless possible to obtain approximative branching ratios for all these channels. In particular,

the dominating channels could be identified under different experimental conditions. The accu-

racy of this method in general depends on the actual conditions in the particular system studied.

However, in all cases the results obtained contain additional information when compared to the

standard grid method, which often cannot resolve individual channels. The application of the

refined method is thus advantageous also for studies of larger molecular systems, or in cases

where a large number of channels have to be considered because of strong background contri-

butions.

By application of these techniques, new results could be obtained regarding the physical

properties of the fragmentation reactions studied. In particular, for the DR of H
�

� and its iso-

topomers the analysis of fragmentation patterns in the three-body channel revealed a prefer-

ence of linear symmetric breakup geometries. For the heteronuclear isotopomers, an additional

strong preference of geometries involving a central D atom, when compared to those with a

central H atom, was found. Through the study of the total KER in the three-body channel, a
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considerable rotational excitation was found for the stored H
�

� and D
�

� ions, but not for H � D
�

or D � H
�

. The same method was recently applied in the development of a hollow cathode ion

source as a diagnostics for monitoring rotational excitations as a function of several parameters

describing the source conditions [1].

In the case of LiH �� , a dominance of the LiH + H channel in the fragmentation following

electron detachment could be observed, as was not expected from theoretical treatments of

the system. In addition, a short-lived transient state of the anion with different fragmentation

behaviour was found, and some characterisation of this state could be obtained from the exper-

imental data. The variety of results summarised here, which shed new light on several aspects

of fragmentation processes of molecular systems, could be achieved only through the described

extension of experimental techniques to the situation of polyatomic systems.

Outlook

Having paved the way to more detailed studies of polyatomic systems, several improvements

can now be considered regarding the experimental apparatus applied in this work. In particular,

for neutral fragment imaging experiments, a 3D detector capable of measuring the impact time

difference of the impinging fragments would be desirable. Moreover, a reduction of the relative

uncertainty in the flight length from the interaction region to the detector would additionally

improve the resolution of KER measurements. Regarding the determination of branching ratios,

a considerable improvement of the experimental situation would follow from a change of the

geometry of the detector arrangement concerning the recording of charged fragments. Here,

a detection system capable of detecting also very light fragments such as H
�

, or fragments of

opposite charge compared to the stored beam would be desirable.

The technical developments presently being undertaken at the TSR aim at major improve-

ments concerning all these points. In addition to the existing electron cooler device, which was

used in the studies discussed here, a new electron target was installed in a different section of

the storage ring [67]. Beside the advantageous properties of this new electron target, and the

new possibilities opening up through the use of two independent electron beams, an impor-

tant innovation regarding the type of experiments considered here lies in the new detectors for

recording fragments of molecular breakup reactions. These detectors in principle are similar to

the ones used in this work in connection with the electron cooler, but include several consid-

erable improvements. First, a dedicated new beamline of several meters extends the average

flight length � between the electron interaction region and the neutral fragment detector to as

much as 12 m. With the length of the interaction region being again � � � � � � m, this reduces

the relative uncertainty of the flight length � � $ � from 23% in case of the electron cooler to

13% for the new setup. Second, the neutral fragment imaging detector installed at the new
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beamline was designed to be able of recording 3D fragmentation patterns, including the impact

time differences of the fragments, through a newly developed two-camera system [71]. With

this setup, measurements of both the total kinetic energy release and the breakup geometry of

molecular fragmentation reactions will greatly increase in resolution. For example, the weight-

ing procedure in the processing of Dalitz plots then will only represent a minor correction for

detector efficiencies, in contrast to the present situation, where the unweighted plots can barely

be used in the interpretation of experimental results. The third important innovation will be

a detector dedicated for recording fragments of opposite charge compared to the stored beam,

which opens up new possibilities in the investigation of branching ratios. The same detector

can alternatively be mounted in a position which allows the detection of very light fragments.

In addition to these new technical developments concerning the initiation and detection of

fragmentation reactions, new techniques are currently being tested also regarding the produc-

tion of molecular ions and in particular the control of their internal excitations. As seen in the

case of H
�
� , these internal excitations can play an important role in molecular fragmentation pro-

cesses. While the already noted new hollow cathode ion source was shown to produce already

less rotational excitations [1] than the standard CHORDIS sources, a new source including a

radio frequency ion trap for cooling and manipulation of the molecular ions is now about to be

connected to the accelerator setup [37].

The technical innovations shortly listed here together with the methods of data analysis

presented in this work are anticipated to provide new insight in a variety of molecular fragmen-

tation reactions in the near future. In addition to the molecular systems considered here, for

which high-resolution measurements could reveal even more detailed information, new studies

of various other systems can be considered, among them e.g. the dissociative recombination of

CH
�
� , NH

�
� , H � O

�
or the even larger species H � O

�
, HNCH

�
or HCOH

�
. Within the permanent

process of improvements and extensions of both the experimental techniques and the methods

applied in the data analysis, the considerations for polyatomic systems presented in this work

represent an important step towards new studies employing these larger systems.
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Appendix

A Properties of Dalitz plots

A.1 Derivation of the Dalitz coordinates

As seen in Sec. 4.3.2, a pair of coordinates
� �
� � � �

�
which describes the shape of the fragmen-

tation pattern resulting from a three-body breakup reaction should be a linear combination of

single fragment energies in order to ensure a constant phase space density in the kinematically

allowed region of the coordinate space. In addition, the graphical representation should reflect

the given permutation symmetry of the three identical fragments in terms of simple geometric

symmetries.

All permutations of three objects, that is all operations belonging to the  � group can be

written as the product of two operations: The transposition � � � describing the exchange of

object 1 and 2, and the cycle � �
� � , which replaces object 1 by 2, 2 by 3 and 3 by 1. Obviously, a

double application of � � � as well as a triple application of � �
� � will leave the system unchanged.

A graphical equivalent of these operations in a two-dimensional plane (as it is spanned by the

desired set of two coordinates), is given as follows: The transposition � � � corresponds to the

reflection about a given mirror axis, while the cycle � �
� � is represented by a rotation through

� � ��� about a point contained by the mirror axis.

Following these considerations, an unbiased representation of fragmentation geometries is

achieved by choosing two coordinates which are linear combinations of fragment energies and

whose transformation under permutations of the fragments is given by the mentioned geometric

operations.

We therefore start with the ansatz

�
�
� � � � � � � � �

� � �
� � �

���
� �

� ���
� �

� (A.1a)
� �
� � � � � � � � �

� � �
� � �

��� � � � ��� � � �
�

(A.1b)

As the center of the rotation mediated by the � �
� � operation we choose the origin

� �
� � � �

� �
� � � � � . Furthermore, the mirror axis corresponding to the � � � operation is chosen to be the line
�
�
� �

. A reflection about this axis is thus performed by a change of the sign of �
� . The
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condition that this reflection should represent the operation � � � is thus formulated as

�
�
�
� � � � � � � �

� �
� �

�
�
� � � � � � � �

�
(A.2a)

� �
�
� � � � � � � �

� � � �
�
� � � � � � � �

� �
(A.2b)

From (A.2a) follows with (A.1a)

�
� �

� ���
� � �

���
� �

�
�

�
�
� � � �

�
� �

� � � � �
�
�� � �

�
���

�
� �
� �

� � �
� � � �

� �
�
� � �

As this has to hold for all
�
� � � � � � � �

�
, we get

�
�
�

� � � and �
�
� � �

and therefore
�
�
� � � � � � � � �

� � �
�
� � � � �

�
� �

(A.3)

As the second symmetry condition we demand that the operation � �
� � corresponds to a

rotation through � � � � about the origin, that is� �
�
� � � � � � � � �

�

� �
� � � � � � � � �

��� �
�

� �� ��
� �

� ��
� �

� �� � � �
�
� � � � � � � � �

�

� �
� � � � � � � � �

��� �
(A.4)

This means in particular

�
�
� � � � � � � � �

� � ���� � �
�
� � � � � � � � �

� � � � � �
� � � � � � � � �

��� �
and with (A.3) and � ����� � � �

� � � � � � follows

� �
�
� � � � � � � �

� � �
� �
�
�
�
� � � � �

� � �� �
�
�
�
� � � �

�
�

� �
�� �
� � �

� � � �
� � �

�

� �
�� �
� ������� � � � �

� �
(A.5)

The remaining coefficient
�
� defines the overall normalisation of the

� �
� � � �

�
coordinates

without affecting the symmetry properties. We chose arbitrarily
�
�
� �

�
� � ������� � � � and finally

get from (A.3) and (A.5) the dimensionless Dalitz coordinates:

�
�
� � � � � � � � �

� � � � � � �� � �������
(A.6a)

� �
� � � � � � � � �

� � � �

������� � �� �
(A.6b)
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A Properties of Dalitz plots

A.2 Energetically allowed region

The allowed region in the
� �
� � � �

�
plane is firstly constrained by the requirement that all frag-

ment energies have to be non-negative. To calculate the consequences of this requirement, the

generalised form (4.14) of the Dalitz coordinates
� �
� � � �

�
is directly used here, which is equiva-

lent to the standard Dalitz coordinates (4.13) in case of the homonuclear species.

The coordinates (4.14) can be written as

�
�
� � �

� �

� � � � �� ������� � � �
� � � � �

� � �
�

� �
� �

� � �

������� � (A.7)

with � � � �
� � � and � � � �  � � � � � � . The requirement of non-negative energies

then leads to

� � �
� � � � � � � � �

� ������� � �� � �

 � � � �

� � �
� � � �

�
�
� (A.8)

� � � � � � � � �
� � � �

� ������� � �� � �

 � � � �

� �
� � � � �

�
�
� (A.9)

� � � � � � � � � �� �
(A.10)

This defines a triangular area in the �
�
� � plane (see Fig. 4.5). In the case of homonuclear

molecules, � � � � , these results simplify to

� � 
 � � �
�

�

 � � � �

� � � (A.11)

as indicated by the triangle in Fig. 4.4a.

A.3 Restrictions through momentum conservation

To conserve the total momentum of the fragmenting molecule, the momenta ��  of the three

fragments in the co-moving c.m. frame have to add to zero:

�
�

 � �
��  � �� �

The absolute values
�  of the fragment momenta then have to obey

� � � � � � � 
 �
�

 � � � � � � � �
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From this follows

� �
� �

�
�
� � 
 � �

�

 � �

�
� � �

� �� �
���
�
�

�

 � �

� �
� �

� �
� �

�

 ���

�
�

�� � � �
� �

� �

� �
� �

� � 
 ���
�
�

�
�

Using �� � � � $ � �  and ��� � � �
� � � (but retaining the possibility that � �� � � as in case

of the heteronuclear isotopomers of H
�

� ), we get
�
�
�
� �

� � � � � � � � �
�
�
�

 � � � � � �� � � �

� � � � � � � � �
� �


 � � � � �� � � � � �
�
� �

�
� � �

� � �
� � � � � �

� � � � � � � � �
� �


 �� � � � � �
�
� � � � � �

� � �
� � � �

� � � �
� � � �

� � �
� 
 �

and thus, with ������� � � �
� � � � � � and � � � � � � � ,

� � � � �
�
� � � � � �

� � �
� � �

� � � �
� ������� 	 
 �

� � � � � �
�
� � � � � �

� � �
�

� �
� � �

� ������� � �

 �

� � � � � �
�
� � � � � � � �

� � � �
� � �

� ������� 	 �


 � �

� �
�

�����

� � � �
� � �

� � � � �� � ������� �
�

� � �
� �

� �

������� � �� 	 �


 � �� 	 � �
(A.12)

In the case of the homonuclear isotopomers, where � �
� � � � $ �

, we can write (A.12)

using the Dalitz coordinates (4.13) as

� �

�
� � �

�

 � �� 	 � �

Therefore the area in the
� �
� � � �

�
-plane, which is allowed by momentum conservation, is defined

by a circle around the origin with a radius of �� . Moreover, the form of (A.12) suggests a more

general definition of the Dalitz coordinates:

�
�
� � �

� � �

� � � � �� � �������
� � �

� �
� �

� �

�������
� �� (A.13)

This definition is equivalent to (4.13) for the homonuclear case, and results in the same circular

area as the momentum allowed region for all four isotopomers.
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B Reconstruction of branching ratios in the fragmentation of LiH ��

B Reconstruction of branching ratios in the fragmentation of LiH ��

When employing a grid with transmission probability � in front of the neutral fragment detector,

the probabilities
� �

to detect an event with a total neutral fragment mass � are connected to

the branching fractions �� of the possible channels � listed in Eq. (5.8) by the equation

�� � � �� (B.1)

with �� � � �
� �
�

� � � � �
� � � � � ��� , ��

� �
� � �

� � � � � �
� ���

and

� �

��������
�

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � �

���������
�

(B.2)

The matrix � is obviously not invertible. Even when using several grids with different � ,

that is, adding observables to �� and thus adding rows to � , a direct calculation of �� from ��
turns out to be impossible. Nevertheless, a lot of information on �� can be deduced from �� .

Using the reconstruction algorithm described in the following, at least upper and lower limits

can be given for all �  , with the range between these limits depending on the actual values of

the
� �

. For the studies of LiH �� considered here, all �  can be determined with an uncertainty

of some percent.

The reconstruction algorithm uses as input the mass ratios �� �
measured without application

of any grid (that is, with a transmission factor of � � = 1), the ratios ��
	
measured with grid # � in

place ( � = 1,2), and the transmission factors � 	 of the grids which were determined in a separate

experiment (see Sec. 5.2).

The total number of dissociation events reaching the detection setup cannot be measured,

as for an unknown fraction
� 	�

of these events all fragments are stopped by the grid. Thus, the

rates
���

for different masses can be given only relative to each other, but not in the form of

absolute detection probabilities (which would require the normalisation � � � �� � � �
�
�
� � � � ��� � � ).

However, a consistent normalisation of the vectors �� 	
is necessary to enable a comparison of

the mass fractions observed with different grids. Inspection of the matrix � here yields the

useful relation � � � �
� � � � ��� � � " � �� ����� � �  . Thus, a normalisation of the mass fractions such

that � � � �
� � � � � 	� � � 	 results in a normalisation of the branching factors �  corresponding to

� �� ����� � �  � � , which is independent of the grid in use.

(In other words, by setting the probability � � � �
� � � � � � for the detection of a fragment with

� � �
to the transmission of the grid, the branching factors of all channels are expressed in units
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of the total branching factor for events which include a neutral Li atom, that is � �� ����� � �  � � .
This can be done for each grid individually, and thus the measured

� 	�
values can be expressed

in the same units for all � and all � .)

After the determination of all �� , the vector �� can be re-normalised to fulfil � �
�
�� � �  � � .

To simplify the algebraic expressions used in the following, both sides of Eq. (B.1) are

divided by � . Thus, the equation

�� � � � �� (B.3)

is used with �� � �� $ � and � � � � $ � . Obviously, �� is now normalised such that � � � �
� � � � � � �

� , while � � is simplified by factoring out of the factor � common to each entry of � .

From the relative count rates for � � � one then obtains

� 	 � �
� �

� � 	 � � � � � �
� � � �	 � �

�
(B.4)

This equation contains the only information accessible for � � , as the last row of � (correspond-

ing to � � � ) is the only one with a nonzero entry in the first column (connected to � � ). As

(B.4) constitutes a second order polynomial in � 	 , the mass fraction
� 	 � has to be known for three

different values of � 	 in order to determine the three parameters � � ,
�

� � � � �
�

and � � . At this

point, the use of two different grids (in addition to one measurement without grid) is crucial in

the reconstruction of branching factors. The three parameters are then obtained, together with

their statistical errors, by fitting a second order polynomial to the three measured values of the

function
� 	 � � � 	 � . For the remaining calculations described in the following the use of one grid

is sufficient, and the second measurement can be used as a check of consistency.

Inspection of the rate of � � �
events (third row of � ) directly yields

� �
� � �

� � (B.5)

and, using the � � obtained above,

� � � � � �
� 	
� �

�
�� � � 	 �

� � � � 	 � � � � (B.6)

for either grid � � � � � .

Similarly, one gets from the � � �
channel

� � � � � � �
� � � 	 � 	 �
� � � 	 � � 	 � � (B.7)

� � � � � � �
� �

� 	
�

� � � 	 � � 	 � � � (B.8)
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from the � � �
channel

� � � � �
� � 	 � � � 	 � �

� � � 	 �
� � 	 � � (B.9)

� � � � � � � 	 � � � �
� � � 	 �

� � 	 � � � (B.10)

and finally, from � � �
� �

� � � �
�
�

(B.11)

Taking into account that all �� have to be non-negative, one can deduce from this an upper

limit �
� �

�
� and a lower limit �

� ���
� for � � :

�
� �

�
�

� � ��� � � � � � ��� � � � � � � � � � � � � � � � �
� �

(B.12)

�
� ���
�

� � � � � � � � � � � � � � � � � � �
�
�
�

� � � � �
� � � � � (B.13)

As an estimated value, � � is then set to

� �
� �

�
� �

�
� � �

� ���
�

� $ � (B.14)

with the well-known systematic error

� �
� �

�
� �

�
� � �

� ���
�

� $ � � (B.15)

Using this estimation, � � , � � , � � , � � and � � can now easily be calculated from (B.4)–(B.10)

with the same systematic uncertainty of � � � .

In addition, statistical errors originating from the measurement of the
� 	�

can be calculated

for each �  using standard Gaussian error propagation. The total error typically amounts to few

percent in the experiments considered here, which for some channels is in the same order of

magnitude as the �  value obtained. However, using the algorithm described here, it is possible

to clearly identify dominant and secondary channels of the fragmentation reaction, as seen in

Sec. 5.3.

For some channels, data obtained with either grid #1 or #2 can be used to calculate �  . In

these cases, the deviation of the two results is typically also in the order of few percent. As the

final value, the average of the two results is taken with their difference considered an additional

contribution to the error.

Finally, the reconstructed vector �� is normalised to fulfil � �
�
�� � �  � � .
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C Decay modes of the transient state of LiH ��

As observed in Sec. 5.3.3, LiH �� molecules in the transient state, as identified by a fragmentation

into Li + H � or Li � + H � , show a much faster decay than in the stable state, which fragments

into the LiH + H channel. At ���
� �

eV, the decay rates per molecule were found as the inverse

of the 1/e lifetime of the observed fragmentation signal as

�
� � � 
 �

� � � � � 
 � � � �
� � ����
 �

�
��� ��� � � 
 � � � (C.1)

with T and S denoting the transient and stable state, respectively. While for the stable state, the

observed decay is caused only by residual-gas induced fragmentation of the molecule, for the

transient state both a fragmentation and a transition to the stable state has to be considered:

�
� � �

�

� � � � � �
�� � � ��� (C.2)

�
� � �

�

� � � �
To estimate the relative size of these two contributions, not only the decay rates per molecule

� have to be taken into account, but also the absolute count rates of fragmentation events
 

.

These are connected to the decay rates � by the number of ions
�

present in both states:

 �

� � � � � � �

� � � �
�

� � � � (C.3) �

� � � � � � �

� � � �
�

� � � �
with ! the time after injection and � a common factor describing the probability for a fragmen-

tation event to be detected.

Considering the fragmentation rates shown in Fig. 5.9 for � � � � eV, especially the situation

at a storage time of ! � �
� �

msec, where the largest contribution of the transient state can be

analysed, two observations can be made: Firstly, the total rate in the two transient channels,

calculated as
 � �  �

� � �  �  �� , is found to be about a factor of 20 higher than the rate in

the stable channel
 � �  �

� � � � , that is

 �

� �  � � � �  �

� �  � (C.4)

Secondly, an increase of the stable rate
 �

at short storage times, as would be expected for a

strong transition from the transient state, is not observed. For example, out of the
� �

� �  � transient

state molecules present in the beam at ! � ! � , a fraction of �
�� � � ��� $ �

�

will transform to the

stable state, thus increasing the number
� �

and the observed rate of fragmentation events
 �

.

The time scale for this transition is in the order of a few lifetimes of the transient state, that is,

several milliseconds. For the increase of
 �

in the milliseconds following ! � , an upper limit of
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the order of 10% can be estimated from the experimental data, thus setting an upper limit to the

number of transient state ions present at ! � :

� �

� �  � " �
�� � � � �

�
� � ��� � � �

� �  � (C.5)

From (C.4) and (C.3) follows

� �

� �  � �
�

� � � � � � � � �

� �  � �
�

� � � � � (C.6)

The division of (C.5) by (C.6) then yields

�
�� � � � �

�
�

� � � � �
��� � �
� �

�

�
�

� � � � �� �
(C.7)

The estimates performed here thus result in an upper limit of �
�
� 
 for the contribution

�
�� � � ��� $ �

�

of a transition to the stable state in the total decay rate of the transient state. A lower

limit higher than 0% cannot be given here as no lower limit for an increase of
 �

was found in

the experimental data. From these boundaries, some conclusions can be drawn on the absolute

rates of transition and fragmentation:

� 
 �
�� � � ��� � � � � � � 
 � � (C.8)

� � � � 
 � � � �
�

� � � � � � 
 � � � 
 � �

It should be noted again that these numbers are not more than very rough estimates, as no exact

values can be extracted from the data available. However, an important conclusion still possible

is that the fragmentation rate �
�
� � � � found for the transient state is about two orders of magnitude

higher than �
�

� � � � for the stable state. Even without knowledge of more accurate numbers, this

gives already an important clue for a possible interpretation of the nature of the transient state.

Following this result, also the relative population  �

of the transient state in the ion beam

can be estimated. Using (C.8) and (C.6) one obtains

 �

� �  � � �
� �

� �  �� �

� �  � � � �

� �  � �
� � � 


� � ��
 � (C.9)

which can be extrapolated using (C.1) to the population at the time of injection ! � � � �
msec,

yielding  �

� ��� � � � 

�
� � 
 �

(C.10)
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ermöglicht haben.


