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Zusammenfassung. Das zentrale Ziel dieser Dissertation besteht in einem
einheitlichen Losungsbegriff fiir verschiedenartige Evolutionsprobleme. Er soll die Grund-
lage schaffen, um Systeme zu losen, deren Komponenten ihren Ursprung in véllig
unterschiedlichen Anwendungen finden. Als analytischer Priifstein fiir den allgemeinen
Charakter des Losungsbegriffs wird ein System herangezogen, bestehend aus

— einer semilinearen Evolutionsgleichung in einem reflexiven Banachraum und

— einer geometrischen Evolution 1. Ordnung.

Insbesondere bei geometrischen Evolutionen richtet sich das Augenmerk auf drei weitere
Aspekte, die als Ausgangspunkt dienen sollen und einen Unterschied zu bekannten
Ansétzen bedeuten :

- Verallgemeinerung der zeitlichen Ableitung auf kompakte Teilmengen des IRY
ohne a priori-Regularitdatsbedingungen an den Rand. Insbesondere konnen
sich topologische Eigenschaften des Randes im Laufe der Zeit &ndern (z.B.

Zusammenhangskomponenten verschwinden) .

— Die Evolution des zeitabhiingigen kompakten Teilmenge K(t) C RN kann von
nicht lokalen Eigenschaften von K () und ihrer Normalkegel am Rande abhéngen.

—  Keine Beschrinkung auf das Inklusionsprinzip, d.h. ist eine Anfangsmenge in einer
zweiten enthalten, so braucht diese Inklusion nicht fiir alle Zeiten erhalten bleiben.

Die Idee einer Ableitung als Approximation 1. Ordnung verlangt eine (verallgemeinerte)
Abstandsfunktion. Sie ist im wesentlichen das einzige Mittel fiir einen abstrakten Ansatz
auflerhalb von Vektorrdumen. Motiviert durch geometrische Evolutionen 1. Ordnung,
werden sog. Scheinmetriken (ostensible metrics) betrachtet; sie erfiillen die Dreiecks-
ungleichung und haben den Wert 0 fiir den Abstand eines Punktes von sich selbst,
aber brauchen nicht symmetrisch zu sein.

Hier werden 2 Konzepte vorgestellt. Beide verallgemeinern die sog. Mutationsgleichungen
von Jean-Pierre Aubin (in metrischen Riumen) auf Mengen mit einer abzéhlbaren
Familie von Scheinmetriken. Eine analytische Schwierigkeit ergibt sich dabei aus dem
Verzicht auf Symmetrie, denn dadurch ist der Abstand zwischen glatten Kurven
im Allgemeinen nicht mehr stetig.

Das erste Konzept stiitzt sich auf den Vergleich der Zustédnde zu den Zeiten ¢ und ¢ + h
(fiir A | 0) und wird daher als “nach vorn gerichtet” bezeichnet. Es erweitert die Grund-
idee von Distributionen, indem eine wichtige Eigenschaft herausgegriffen wird und nur
noch von den Elementen einer vorgegebenen “Testmenge” erfiillt werden muss. Daraus
ergeben sich Existenz und Stabilitéit fiir milde Losungen und zeitabhingige Kompakta
in obigem Modellproblem.

Das zweite (“zuriick gerichtete”) Konzept berticksichtigt die Zustidnde zu den Zeiten t—h
und ¢ (fiir A | 0). Zwar kann es (geometrische) Anwendungen nicht im gleichen Umfang
erfassen, aber es bietet eine Alternative im Umgang mit (zeitlichen) Halbstetigkeiten.






Abstract. The primary aim of this Ph.D. thesis is to unify the definition of
“solution” for completely different types of evolutions. Such a common approach is
to lay the foundations for solving systems whose components have their origins in
diverse applications. The analytical touchstone of the general character consists of
— a semilinear evolution equation in a reflexive Banach space
— a first-order geometric evolution in IRY.
In regard to geometric evolutions, the concept is to fulfill 3 substantial conditions :
— Extending the notion of derivative to compact subsets of IRY without a priori
restrictions on the regularity of the boundary. In particular, topological
changes of the boundary are not excluded with the course of time (e.g. connected

components might disappear).

— The evolution of time-dependent compact subset K(t) C IRY might depend on

nonlocal properties of K (t) and its limiting normal cones at the boundary.

— No inclusion principle in general, i.e. if an initial set contains another one, then

this inclusion need not be preserved while evolving.

Taking up the widespread idea of derivatives as first—order approximations, distance
functions (maybe in a generalized sense) are required and essentially the only tool to
use for a general approach beyond vector spaces. Motivated by first—order geometric
evolutions, we consider so—called ostensible metrics that satisfy the triangle inequality
and are equal to 0 for identical arguments, but need not be symmetric.

Here two concepts are presented, both of which are based on generalizing the mu-
tational equations of Jean—Pierre Aubin (in metric spaces) to a set with a countable
family of ostensible metrics. A main analytical difficulty results from dispensing with
symmetry. Indeed, the distances between smooth curves might be only semicontinuous
with respect to time whereas in metric spaces, their continuity is obvious.

The first approach considers the evolution in “forward” time direction (i.e. it compares
the states at time ¢ and t+h for h | 0) and extends the basic idea of distributions in the
figurative sense that an important property has to be satisfied merely by the elements of
a given “test set” (instead of all elements). It provides existence and stability for mild
solutions and time—dependent compact sets solving the above—mentioned model system.
The second approach takes the states at time ¢ — h and ¢ (for A | 0) into account and
thus is called as “backward”. It is based on another idea of dealing with semicontinuities

in time, but is of rather less interest to (geometric) applications.
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Chapter O

Overview

0.1 Diverse evolutions come together
under the same roof

Many applications consist of diverse components so that their mathematical description
as functions often starts with long preliminaries (like basic assumptions about regularity).
However, shapes and images are basically sets, not even smooth (Jean—Pierre Aubin [2]).
So the question is posed how to specify models in which both real- or vector—valued
functions and shapes are involved. Usually the components depend on time and have

a huge amount of influence over each other. Consider, for example :

— A bacterial colony is growing in a nonhomogenous nutrient broth. For the
bacteria, both speed and direction of expansion are depending on the nutrient
concentration close to the boundary. On the other hand, the concentration of
nutrient is changing due to consumption and diffusion.

(Further applications of set-valued flows in biological modeling are presented in

(29, Demongeot, Kulesa, Murray 97].)

— A chemical reaction in a liquid is endothermic and depends strongly on the
dissolved catalyst. However, this catalyst is forming crystals due to temperature

decreasing.

— In image segmentation, a computer is to detect the region belonging one and the
same object. The example of a so—called region growing method (presented in
[45, Lorenz 2001]) is based on constructing time-dependent compact segments so
that an error functional is decreasing in the course of time. So far, smoothing
effects on the image within the current segment are not taken into account.
Basically speaking, it is an example how to extend Lyapunov method to shape

optimization. (Other examples are in [30, Demongeot, Leitner 96], [31, Doyen 95].)

1



2 CHAPTER 0. OVERVIEW

— In dynamic economic theory, the results of control theory form the mathematical
basis for important conclusions ([3, Aubin 97]). Coalitions of economic agents,
technological progress and social effects due to migration, however, have an impor-
tant impact on the dynamic process that is difficult to quantify by vector—valued
functions. So some parameters ought to be described as sets of permissible values

and, these subsets might depend on current and former states.

The primary aim of this thesis is to unify the definition of “solution” for completely

different types of evolutions. Here the following model problem is the touchstone :

For each point of time t € [0, 7], we consider a pair (u(t), K(t)) whose first component
u(t) is an element of a reflexive Banach space X whereas the second component K (t)
is a nonempty compact subset of IRY.

Roughly speaking, the “rate of change with respect to time” of each component depends
on time ¢, the vector u(t) € X and the compact set K (t) C IR" (including its limiting
normal cones Ny (+) that will be defined later). In particular, the topological boundary

of K(t) might have an explicit influence on the evolution.

For a vector-valued function wu(-) of time, specifying the “rate of change” has a long
tradition leading to several versions of the term “derivative”. So to be more precise,

here wu(-) is to satisfy a semilinear evolution equation
Qult) = Au(t) + f(t, ut), K(t), Nkw)

with the infinitesimal generator A of a strongly continuous semigroup on X.

Considering the second component K (t), it is not directly evident how to define the
“rate of change” for a compact subset of IR"Y. The widespread idea of prescribing the nor-
mal velocity, for example, has the disadvantage that much preparation is usually required
for generalizing the speed in normal direction to arbitrary compact subsets (see e.g.
[22, Chen, Giga, Goto 91], [60, Soner 93]. [9, Barles, Soner, Souganidis 93] [10, Barles,
Souganidis 98], [1, Ambrosio 2000], [19, Cardaliaguet 2000], [18, Cardaliaguet 2001]).
Many widespread concepts start with basic assumptions that restrict applications to
local effects on deformation.

So the aspect of geometric evolutions poses three additional challenges. They require
new ideas in comparison with previous approaches and provide the main starting points

for generalizing.
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e Extending the notion of derivative to time—dependent compact subsets K (t) C IRY

without any regularity conditions on its topological boundary 0 K (t).

Anticipating the overview of the next sections for a moment, the derivative of

K(-) at time ¢ is described by a set K (t) of continuous maps of deformation
0,1] x RY — RN
(time h, initial point ) +— end point of x at time h

that induce a first-order approximation of K (¢ + -) each. So a distance between
compact subsets (maybe in a generalized sense) is essential.
This thesis is to differ from many other concepts of geometric evolution in
two respects. Firstly, no regularity conditions on the topological boundaries are
supposed a priori and secondly, no subsets of the boundaries have to be neglected

as in geometric measure theory, for example (see [36, Federer 69], [15, Brakke 78]).

e Evolution of K(t) depending on nonlocal properties “up to first order”.

In regard to the model problem, a given map of deformation (on IR") depending
on time ¢, the vector u(t) € X and the compact set K(t) C RY (including its
normal cones at the boundary) is to be contained in the set [O((t) :

K(t) 2 g(t ult), K(t), New(lox)
So on the one hand, we exclude boundary properties of second order (like mean
curvature), but on the other hand nonlocal features of both K(¢) and the graph
of normal cones Ng;)(-) can be taken into consideration.
In this respect, the concept here differs from many approaches, especially from most

papers using the level set method (see [1, Ambrosio 2000] for a general survey).

e No restricting to geometric evolutions with inclusion principle.

If a compact initial set is contained in another one, then the so—called inclusion
principle states that this inclusion is preserved while the sets are evolving.
Several approaches use it as a geometric starting point for extending analytical
tools to nonsmooth subsets. An excellent example is De Giorgi’s theory of barriers
formulated in [27, De Giorgi 94] and elaborated in [14, Bellettini, Novaga 97],
(13, Bellettini, Novaga 98]. Another widespread concept is based on the level set
method using viscosity solutions. There the inclusion principle is closely related
with the corresponding partial differential equation being degenerate parabolic
and thus, it can be regarded as a geometric counterpart of the maximum principle
(see [10, Barles, Souganidis 98], [1, Ambrosio 2000], for example).
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An elegant approach to front propagation problems with nonlocal terms has been
presented in [19, Cardaliaguet 2000], [18, Cardaliaguet 2001], [20, Cardaliaguet,
Pasquignon 2001]. The inclusion principle again is the key for generalizing the

evolution from CY!' submanifolds with boundary to nonsmooth subsets of IRY.

As mentioned before, the primary aim of this thesis consists in a unified concept
for completely different types of evolutions and, geometric evolutions represent just
a typical example. So we prefer another starting point for generalizing definitions.
Basically, we use only the properties of compact subsets with respect to a given
generalized distance function (as presented in § 0.5).

In comparison with the preceding approaches, it has the advantage of covering the
very easy example that the normal velocity at the boundary is a given positive

nonincreasing function of the set diameter.

0.2 A (very) brief outline

This chapter summarizes the main steps on our way unifying the term “solution”.
In the beginning, previous approaches are sketched in § 0.3 : C° semigroups have been a
very successful concept for evolution equations in Banach spaces, but the two main pillars
(i.e. exponential series and Cauchy integral formula) cannot be used beyond vector

spaces.

The mutational equations of Jean—Pierre Aubin extend ordinary differential equations
even to metric spaces and thus provide our starting point for combining diverse types
of evolutions. In [2, Aubin 99], the primary geometric example is the set IC(IRY) of all

nonempty compact subsets of IRY supplied with the Pompeiu—Hausdorff distance d.

There is a link between mild solutions of semilinear evolution equations and muta-
tional equations — presented in § 0.4. Indeed, considering the weak topology instead
of the norm topology has the analytical interpretation that the metric is replaced by
a family of pseudo—metrics. Then appropriate assumptions about the reflexive Banach
space X and the infinitesimal generator of the semigroup imply the existence of solutions
for systems in both X and (K(R"™),d) (see Proposition 0.4.3).
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However, first—order geometric evolutions have not been covered so far because
the topological boundary and its normal cones are not taken into account. In § 0.5,
the two main obstacles due to normal cones are sketched. They motivate both the
definition of “ostensible metric” and extending the basic idea of distributions (in the
figurative sense that an important property has to be satisfied merely by the elements

of a given “test set” instead of all elements).

Then in § 0.6, this notion is formulated for a nonempty set with a countable family
of ostensible metrics. It generalizes the mutational analysis of Jean—Pierre Aubin and
provides results about existence, stability and uniqueness of so—called right—hand
forward solutions. They prove to be a special case of so—called timed right-hand forward
solutions sketched in § 0.8 and, the details are presented in chapter 2 (following the

topological preliminaries of chapter 1).

In § 0.7, right-hand forward solutions demonstrate how useful they are for first—
order geometric evolutions in IC(IRY). They apply some results about reachable sets of
differential inclusions (like the regularity at the boundary). All these tools are collected
in Appendix A and, the details are presented in chapter 4.

Theorem 0.7.14 states the existence of solutions for the model problem (consisting of

a semilinear evolution equation and a first-order geometric evolution).

In § 0.8, right-hand forward solutions are extended to their final general form.
In particular, the time direction is now taken into consideration, i.e. roughly speaking,
a “later” element is always compared with an “earlier” one or — to be more precise —
the arguments of ostensible metrics are always sorted by time. So the triangle inequality
can be replaced by the weaker condition called timed triangle inequality.

Chapter 2 contains all the details.

Finally, the second concept is sketched in § 0.9 and presented in chapter 3. Although
we cannot overcome the second obstacle mentioned in § 0.5, we pursue this “backward”
idea for two reasons : Firstly, the semicontinuity of the distance between two curves
is handled in a completely different way and secondly, the existence of solutions is also

proven as a consequence of completeness (and not just sequential compactness).
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0.3 Previous approaches : C' semigroups and

the mutational equations of J.—P. Aubin

Roughly speaking, many evolution problems have in common that the derivative of a
time—dependent state is prescribed as a function of time and current state. The ordinary
differential equation % x(t) = f(t, z(¢)) for a differentiable function  : [0, co[— R
represents a typical example and, its results about existence and uniqueness of solutions
have a very long tradition indeed. In fact, the same basic idea has proved to be very

useful in situations that are more general than finite dimensional vector spaces.

An important concept has been developed for Banach spaces since the beginning of
the 20th century. For a given linear operator A on a Banach space X, the search for
a solution wu(-): [0,00[ — X of the linear initial value problem

A{ () = Aull)
uw(0) = up € X
leads to a so—called (one-parameter) semigroup (S(t));>o on X, i.e. a family of bounded

linear operators S(t) : X — X (¢t > 0) satisfying the functional equations

S(ty+1ta) = S(t1) o S(t2) for all 1,15 > 0,
{ S(0) = Idyx

(see [51, Pazy 83|, [34, Engel, Nagel 2000], for example). Indeed, the wanted solution is

u(t) = S(t)ue forall ¢ > 0 and, the semigroup (S(t));>o is related to A according to

Auy = }li?é %-(S(h)uo—uo>

For this reason, A is called infinitesimal generator of the semigroup.
Proving the existence of (S(t));>o for a given generator A is based on two methods :

The first approach starts with the exponential series for bounded linear A: X — X

S(t) == %Aj:X—>X
j=0
and then uses approximations for generalizing as stated by the Theorem of Hille-Yosida,
for example. The second pillar of semigroup theory is Cauchy integral formula (applied
to so—called sectorial operators A: Dy — X, Dj C X).

Obviously, both methods fail beyond vector spaces because addition is required.
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An approach to evolution problems in metric spaces is the mutational analysis
of Jean—Pierre Aubin (presented in [4, Aubin 93], [2, Aubin 99]). It proves to be the more
general background of “shape derivatives” introduced by Jean Céa and Jean—Paul Zolésio

and has similarities to “quasidifferential equations” of Panasyuk (e.g. [50, Panasyuk 85]).

Roughly speaking, the starting point consists in extending the terms “direction” and
“velocity” from vector spaces to metric spaces. Then the basic idea of first—order approx-
imation leads to a definition of derivative for curves in a metric space and step by step,

we can follow the same track as for ordinary differential equations.

Let us now describe the mutational approach in more detail : In a vector space like IRY,
a velocity is usually represented by a vector v # 0. Seizing the idea of translations,
each initial point z € IRY moves in direction v for some time A > 0 and reaches the
point x + hwv. Strictly speaking, it is a continuous function
[0,00] x RN — IRY, (h,z) — x+hwv

mapping the time and the initial point to its final point — very similar to the topological
notion of a homotopy between paths. This concept does not really require addition or
scalar multiplication and thus can be applied to every metric space (M,d) instead :
According to [2, Aubin 99], a map ¥ :[0,1] x M — M is called transition on (M,d)

if it satisfies

1. 9(0,z) = VzeM,
2. limsup L - d(z?(h, I(t,2)), O+ h, x)) =0 Y oxeM, telol],

h10

: d(,&(ha l‘)a "-9(h7 y)) B d(l‘ay) +

3. «a(¥) := sup limsu < 00,

¥) :E;éI?J hwp (d o h d(z,y) )
4. (W) := sup limsup d(z, 9(h, 7)) < oo

ceEM  hlO h

with the abbreviation (r)* := max(0,r) for r € R.

Condition (1.) guarantees that the second argument x represents the initial point at
time ¢ = 0. Moreover condition (2.) can be regarded as a weakened form of the
semigroup property. Finally the parameters «(9), [(¢) imply the continuity of o
with respect to both arguments. In particular, condition (4.) together with Gronwall’s

Lemma ensures the uniform Lipschitz continuity of ¢ with respect to time :

d(ﬁ(s,x), 19(t,x)) < BW)-lt—s|  forall s,te0,1], € M.

Obviously the function [0,1] x RY — RN, (h,2) — 2+ hv mentioned before

fulfills the conditions on a transition on (IRY,|-|). Let us give some further examples :
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1. The constant velocity v of translation is replaced by a vector field, i.e. for a given
bounded Lipschitz function f : RN — IRY, every initial point z, € IRY is
moving along the trajectory z(-) : [0,00[ — RY of 4 z(t) = f(2(t)).

So, V(t,xp) := x(t) with the solution z(-) € C*([0,¢],IR") of the initial value
problem 4 x(t) = f(x(t)), x(0) =zp. The well-known Theorem of Cauchy-

Lipschitz implies that 9; : [0,1] x IRY — IR satisfies the conditions (1.)-(4.).

2. Leaving now the familiar field of points in IRY, we consider the set K(RY) of
all nonempty compact subsets of IR". The so—called Pompeiu—Hausdorff distance

between two sets K, Ky € K(IRY) is defined as

d(Ky, Ky) = max{ sup dist(z, Ky), sup dist(y,Kl)}
ze Ky ye Ko

I

It is a metric on K(RY) and has the advantage that (K(R"),d) is compact
(see e.g. [2, Aubin 99] or [55, Rockafellar, Wets 98]).
Correspondingly to the preceding example, suppose f : IRY — RN to be
bounded and Lipschitz. Now the initial points o € IR are replaced by subsets
Ky € K(RY), ie.
9p: 0,1 x K(RY) — K(R")

(t, Ko) — {:r(t) ‘ 3 2(-) € (0,4, RN) :

La() = fle(),  w(0) € Kof.

Vs (t, Ky) is called reachable set of the vector field f and the initial set Ky at time ¢.
The Theorem of Cauchy-Lipschitz about ordinary differential equations ensures
that 9y is a transition on (K(RY), d) and, «(d;) < Lip f, B(;) < ||fl|lw
(see [2, Aubin 99|, Proposition 3.5.2).

3. Our next step is to admit more than one velocity at every point of IRY, i.e.
strictly speaking, the vector field f : IRY — IRY is replaced by a set—valued map
F:IRY ~ RN and, we consider the differential inclusion 4 z(-) € F(x(-))
instead of the differential equation £ z(-) = f(z(-)).

For every bounded Lipschitz map F : RY ~» IR" with convex values in K(R"),
Ir: [0,1] x K(RY) — K(RY)
(t, Ko) — {x(t) ‘ 3 2(-) € AC((0,1], RY) :
1) € F(a() ae, a(0) € KO}
is a transition on (K(RRY), d) — as a consequence of Filippov’s Theorem A.1.2
(see [2, Aubin 99], Proposition 3.7.3). For any A > 0, LIP\(IRY,RY) abbreviates

the set of bounded A\-Lipschitz maps F : RN ~» IRY with compact convex values.
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In contrast to example (2.), the reachable set

Vp(t, Ky) of a set—valued map F might change its - T -
topological properties : ~ The simple case F(:) := ! °
e ple case 1), [N\
B, = {v]|lv] < 1} leads to the expansion with ' ky ;
. o . '\ \Ko K
constant speed 1 in all directions. Roughly speaking, . /(L Ko)
~ e F\5, 40
the “hole” of the set Ky :={z|1<|z|<2}CRY v i e ?

close to 0 disappears at time 1.

This phenomenon cannot occur in the examples of ordinary differential equations

(with Lipschitz right-hand side) since their evolutions are reversible in time.

Now this generalized form of a direction is laying the foundations for defining
the derivative of a curve x(-) : [0,7[— M. A transition o :[0,1] x M — M provides
a first-order approximation of z(-) at time t € [0,7] if

hrilfoup = d(”t?(h, x(t)), a:(t—i—h)) = 0.
Naturally ¥ need not be unique in general and so, all transitions fulfilling this condition
form the so—called mutation of z(-) at time ¢, abbreviated as  (¢).
A mutational equation is based on a given function f of time ¢t € [0,7] and state v € M
whose values are transitions on (M, d), i.e. f: M x[0,T[— O(M,d), (x,t) — f(z,1),
and we look for a Lipschitz curve z() : [0,7] — (M, d) such that f(z(t),t) belongs to
its mutation x(¢) for almost every time ¢ € [0,7] (see [2, Aubin 99], Definition 1.3.1).

The Theorem of Cauchy-Lipschitz and its proof suggest Euler method for construct-
ing solutions of mutational equations. In this context we need an upper estimate of
the distance between two points while evolving along two (different) transitions.

First of all, a distance between two transitions 9,7 : [0,1] x M — M has to be defined
and, it is based on comparing the evolution of one and the same initial point
D(,7) := sup limsup 7 - d(ﬁ(h, x), 7(h, x))
zEM h10
(see [2, Aubin 99], Definition 1.1.2).  Consider the preceding example of (K(RY),d)
and reachable sets U (-,-), Yg(-,-) of bounded Lipschitz maps F,G : IRY ~ IRN.
Then Filippov’s Theorem implies D(Vp,0¢) < sup d(F(z), G(z)) (see [2, Aubin 99],

z € RN
Proposition 3.7.3).

These definitions lead to the substantial estimate

a(9(h, ©), 7)) € dlwy) - eOh 4 b DE,T) ST ()

for arbitrary points x,y € M and time h € [0,1] (see [2, Aubin 99], Lemma 1.1.3).
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The proof of this inequality provides an excellent insight into the basic technique for
drawing global conclusions from local properties : Due to the definition of transitions,

the distance Y [0,1] — [0,00], h — d<19(h, x), 7(h, ?J))

is a Lipschitz continuous function of time and satisfies

i ) — w0

h10 h

— i 1 —

= }111% . (d d(t+h, ), T(t+h, y)) d(ﬁ(t, x), 7(t, y)))
< limsup + (d I(t+h, x), I(h, It,x))) +

h {0 _ d(ﬁ(t, z), 7(t, y)) +

)

L)
I(h, 7(t,y)), T(h )+

)

< 0 + «aW) -yt + DW,T) + 0
for almost every t € [0,1] (i.e. every t at which the limit on the left-hand side exists).

7(h, 7(t,y)), T(t+h,

(0
(0
(M, I(t, ), I(h
(
(

So the estimate results from well-known Gronwall’s Lemma about Lipschitz continuous
functions. In fact, Gronwall’s Lemma proves to be the key analytical tool for all these
conclusions of mutational analysis and, its integral version holds even for continuous

functions (see [2, Aubin 99|, Lemma 8.3.1).

Considering now mutational equations, estimate (%) is laying the foundations for
proving the convergence of Euler method. It leads to the following mutational counter-
part of the Theorem of Cauchy—Lipschitz (quoted from Theorem 1.4.2 in [2, Aubin 99]).

Theorem 0.3.1  Assume that the closed bounded balls of the metric space (M,d) are
compact. Let f be a function from M to a set of transitions on (M,d) satisfying

1. 3A>0: D(f(z), f(y) < A-d(z,y) Vx,ye M

2. A:= sup oaf(r)) < oo.

reM
Moreover suppose for y(-) : [0,T[— M that its mutation Y (t) is nonempty for each t.

Then for every initial value xo € M, there exists a unique solution x(-):[0,T][— M

of the mutational equation z(t) > f(z(t)), i.e. for almost every t € (0,77,
limsup L - d(x(t+h), F(a(8)) (h,x(t))) = 0,
hl0
satisfying x(0) = xo and the inequality (for every t € [0, 1)
A(2(0). y(1)) < dao, y(0)) - I 4
! O
/ AN (=) . ipf D(f(y(s)), 19) ds.
0 796?3(3)
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0.4 Linking semilinear evolution equations
to mutational equations

The two preceding concepts — semigroups on the one hand and mutational equations
of J.—P. Aubin on the other hand — can be linked to each other. Indeed, so—called
strongly continuous semigroups on reflexive Banach spaces induce an interesting example
of transitions in a slightly generalized sense. The basic idea here is to replace the metric

by a family of distance functions :

Let A: Dy — X (Da C X) be a closed linear operator on a Banach space X
generating a semigroup (S(t));>o. Then for every w € X and initial point uy € X,
d

the inhomogeneous equation %u(t) = Au(t) +w has a unique solution wu : [0, c0[— X

with u(0) = uy, namely
t
Yult, ug) == u(t) = S(t)up —|—/ S(t—s) w ds.
0

In particular, we obtain X, (t1, ug) =Xy (2, ug) = S(t1)ug—S(ta)ue forevery ty,t, >0
and fixed wy, we X. If ¥,(-,-) is a transition on (X, || -|lx), then the condition

B(X,) = sup limsup %-Huo — Xy(h, ug) H < 00
w€X  hlO X

implies that the infinitesimal generator A : X — X is bounded and so many important
examples of semigroup theory are excluded. Their applications often lead to only
strongly continuous semigroups or C° semigroups, i.e. in addition to the preceding

functional equation, every vector x € X induces a continuous function of time
0,00 — X, t+— S(t) .
According to the Theorems of Hille-Yosida and Feller-Miyadera—Phillips, the generator

of a CY semigroup is closed, but need not be bounded.

For applying the mutational approach to C° semigroups, we prefer the weak topology

on X to the norm ||-|x and define
Q’U’:XXX—>[OJOO[7 (xay) — |<$—y, Ul>|
for every linear form o' € X’ with ||v'||xr < 1. Each ¢, is a so—called pseudo—metric,

i.e. it is reflexive (¢, (z,2) = 0 for all z), symmetric (¢, (z,y) = qv(y,z) for all z,y)

and satisfies the triangle inequality. The family {¢, } induces the weak topology on X.

From now on, we suppose the Banach space X to be reflexive. This additional
assumption has two advantages : Firstly, closed bounded balls of X are weakly compact
(see [68, Yosida 78], for example). So any bounded sequence in X has a subsequence

converging with respect to every ¢, simultaneously.
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Secondly, the reflexivity of X guarantees that the adjoint operators S(t)": X' — X'
(t > 0) form a C° semigroup on X' with the infinitesimal generator A’ (see Lemma 4.5.4,
quoted from [34, Engel,Nagel 2000], Prop. 1.5.14). This useful consequence opens the
possibility that X, (-,-) fulfills (slightly weakened) continuity conditions on transitions

with respect to each ¢, for v’ € X' fixed : In regard to time, we obtain
@ (St w), Sultzw)) = |(S(0)u — S(t) wo, o)
= |(uo, (S(t) - S(y) ')
— 0 for t9—t; — 0
uniformly for all ug € X, ||up|lx < 1. So for every p > 0 and each v' € Dy C X',
sp limsup 3o (Tulhu), Salt+hw)) < p A4
pizg

i.e. restricting ourselves to a priori bounded subsets of X, we can follow the steps of
mutational analysis using a finite parameter [(X,) with respect to g, .

Similarly, all initial points ug,u; € X and every linear form v' € Dy C X' satisfy

Qv (Ew(h; o), u(h, Ul)) — qu (o, u1) = <5(h) up — S(h) uy, v’>
= <u0—u1, S(h)' v’>

< <u0 — Uy, <S(h)’ — IdX,> U'>
0y (0 (hyu), Su(hyur)) — gy (o, ur)

. < <u0—u1, A U'>

— [{uo — w1, V)|

— [{uo — w1, V)|

lim sup
h10

If additionally v" € Dy is an eigenvector of A" (and A its eigenvalue), then it provides
an upper estimate of the parameter «(X,) with respect to g,

¢y (Zw(huo), Su(hu1)) = g, (uo, u1)
h q, (uo, u1) S |)\|

lim sup

for all wug, u; € X, qu(ug,ur) > 0.
h10

These preliminaries form the basis for proving the existence of so—called mild solutions

by means of mutational analysis :

Proposition 0.4.1 Suppose :

1. X s a reflezive Banach space.
2. The linear operator A generates a C° semigroup (S(t))i>0 on X.

3. The dual operator A" of A has a countable family of eigenvectors {U}}jej

([Villxr = 1) spanning the dual space X', ie. X' = Z R} .
JjeT
Aj abbreviates the eigenvalue of A’ belonging to v; and, q; = Qv -
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4. Let f:Xx[0,T] — X satisfy ||f|lLe < oo and for each j € J,

q; (f(wl,tl); f(%;tz)) < wj ((Ij(xlalé) + |t2 — t1|) for all zy,x9, t1,12

with a modulus w;(-) of continuity.

For each xy € X, there exists a mild solution x : [0,T[— X of the initial value problem

/\{ () = Ax(t) + flx(t),1)
z(0) = =z

i.e. x(t) = S(t)xy + /Ot S(t—s) f(z(s), s) ds (by definition).

Proof. Due to f € L*, there is an obvious a priori bound for Euler approximations
starting in a given point zy € X. Proposition 4.5.8 states the existence of z : [0, T[— X

that is uniformly continuous with respect to ¢; for each j € J and fulfills

hrilfoup Eog; (Ef(x(t),t) (h,x(t)), x(t—i—h)) = 0.
Assumption (4.) ensures the continuity of each [0,7] — (X, ¢;), t+— f(z(t), t).
So following the same steps as in Lemma 4.5.11 (4.), we obtain f(x(-),) € L*([0,T], X).
Finally Lemma 4.5.12 (quoted from [8, Ball 77]) guarantees that the mild solution

2(+) : [0,T[— X of

z2(0) =

is also a weak solution and thus, it must be identical to z(-) since

(w(t) = 2(t), vj) = /0 (w(s) = 2(s), A'v}) ds = )\j-/o (w(s) — 2(s), vj) ds. O

/\{ Lz2(t) = Az(t) + fla(t),t)

Assumptions (1.)—(3.) are formulated in a quite general way for pointing out the key

features. Basic results of functional analysis provide interesting examples like

o a compact symmetric operator A : X — X on a separable Hilbert space X,

e.g. some integral operators of Hilbert-Schmidt type on L?(O) (O C IRY open),

o an infinitesimal generator A: Dy — X of a C° semigroup on a Hilbert space X
whose resolvent is compact and normal, e.g. a strongly elliptic differential operator

(of second order) in divergence form with smooth autonomous coefficients.

Assumption (4.) of Proposition 0.4.1 is very restrictive because f: X x [0,7] — X
has to be continuous with respect to each linear form v} separately. Even easy examples
of rotation might fail to satisfy this condition. Thus, we take more than one linear form

vi (j € J =1{j1,J2,J3 ... }) into consideration simultaneously (see Proposition 4.5.10) :
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Proposition 0.4.2 In addition to assumptions (1.)—(3.) of Proposition 0.4.1,
let f:Xx[0,T] — X fulfill ||f|lLe <oo and

> 2 g (fln), flut) <a(2:2kﬁ%£7-+M—mD
k=1

for all z,y € X and ty,ty € [0,T] with a modulus ©(-) of continuity.

For each xy € X, there exists a mild solution x : [0,T] — X of the semilinear equation

A{%xw = Au(t) + f(a(0).1)
i.e. x(t) = S(t)xy + /Ot S(t—s) f(z(s), s) ds (by definition).

After replacing the metric by a family of distance functions, the main steps of muta-
tional analysis have not changed so far. So in principle, we can already deal with systems
of semilinear evolution equations in reflexive Banach spaces and mutational equations in
(K(RYN), d).  Using the abbreviations for =,y € X

o0
. i (@y) . 92—k
Poo(T,y) E S ermems : E 4. (%, ),

Proposition 0.4.3

In addition to assumptions (1.)—(3.) of Proposition 0.4.1, suppose for
[ XxXKRY)x[0,7T] — X

g: X x K(RN) x [0,T] — LIPy(RN, RN) :

4o fllpe < 00, A< o0

5. Py (f(fUl,Kl,tl); f (@2, Kz;tz)) w<poo(x1,$2) + d(Ky, K) + tZ_tl)

6. sup d(g(xl,Kl,tl)(z), g(wo, Ko, to) (Z)) < w(poo(xl,:rQ)+d(K1,K2)+t2—t1)

2€IRN
for all xy,20€ X, Ki, Ko€ K(IRY), 0 <ty <ty <T with a modulus w(-) of continuity.

IN

Then for every initial elements xy € X and Ky € K(IRY), there exists a solution
(z,K) : [0,T] — X x K(R™) of the following problem :
a) x:[0,T]— X is a mild solution of the initial value problem
A{ 4ty = Aa(t) + fz(t), K(t), t)
z(0) = xo
b) K(-):[0,T[~ K(RY) is Lipschitz with respect to d and, K(0) = K.

c) lirﬁisoup - d(ﬁg(a;(t),K(t),t) (h, K(t)), K(t—l—h)) = 0 for almost every t € [0,T].

Proof results from Proposition 2.4.6 in the same way as Proposition 4.6.1.
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0.5 Obstacles due to normal cones

Semilinear evolution equations have just exemplified the first notion of generalizing
Aubin’s mutational equations, i.e. replacing the metric (of a set) by a countable family
of distance functions. Following the same steps as before, we approach the model
problem described in § 0.1. In Proposition 0.4.3 however, the normal cones at the

topological boundary are not taken into consideration explicitly.

Applying the mutational analysis of Jean—Pierre Aubin to a metric space (M, d),

obstacles are mostly related to the continuity parameters of a transition J

Cdlean\ F
(V) = sup limsup (d(ﬂ(h"”)’ 9(hy)) — d( 7y)> < oo,

vt Bl h  d(zy)
5(19) Def. sup limsup % . d(xa 19(h: x)) < oo.
reM hl0

In regard to first—order geometric evolutions, these difficulties arise when incorporating
normal cones into a distance function of compact subsets. We are going to use reachable
sets Up(-,-) of differential inclusions @(-) € F(z(-)) a.e. as candidates for transitions
on K(IRY). So the topological properties of ¥p(t, K) may change in the course of time
(as mentioned in § 0.3). Roughly speaking, “holes” might disappear, but they cannot

occur suddenly.

Let us consider first the consequences of the boundary
for the continuity of U : [0,1] x K(RY) — K(IRY)
Txl TXZ ']‘x3 with respect to time.
y i ¢ r? The example in the left figure starts with an annulus

ime Ko expanding isotropically at a constant speed.

After a positive finite time ¢3, the “hole” in the center
has disappeared of course.

Every boundary point x3 at time t3 has close counterparts at earlier sets. To be more
precise, x3 € 0 9p(t3, Ky) is final point of a trajectory z(-) : [0,t3] — IR? of F(-) := B,
and, each x(t) belongs to the boundary of ¥p(t, Kg). The well-known Hamilton
condition (quoted in Proposition A.3.1) guarantees even the existence of an adjoint arc
connecting a normal vector at x3 to a normal vector at x(¢) (for each time ¢ € [0, ¢3]).
However, this tool results from a necessary condition in control theory and thus only
provides boundary points in backward time direction. In particular, starting at a
point y € 0K of the “hole”, there is no trajectory that belongs to the boundary of
each Up(t, Kg) up to time 3.
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This easy example illustrates that in general, the topological boundary of the reachable
set Up(, K):[0,00] ~ RN (with K € K(IRY)) is not continuous with respect to d.
Furthermore, it shows that roughly speaking, the normals of later sets find close counter-

parts among the normals of earlier sets, but usually not vice versa.

In short, the wanted distance function on K(IRY) is to combine two properties :
On the one hand, normal cones at the boundary are taken into consideration explicitly
and on the other hand, reachable sets 0z (-, K) : [0, 00[~ IRN of differential inclusions
are continuous.

For this purpose, we dispense with the symmetry condition on a metric.

So in comparison with mutational analysis, the metric on a given set E is replaced by
a generalized distance function ¢ : E X E — [0,00[. Naturally the triangle inequality
is essential for estimating the distance between two points by means of a third element.
Moreover the distance from a point to itself ought to be zero. This so—called reflexivity
is a weaker condition than the positive definiteness of a metric. The main feature here
is that ¢ need not be symmetric.

In literature on topology, this generalized form of distance is sometimes called quasi—
pseudo—metric (see e.g. [42, Kelly 63], [43, Kiinzi 92]), but just for linguistic reasons we

prefer the adjective “ostensible”.

Definition 0.5.1  Let E be a nonempty set.

q: Ex E —[0,00[ is called ostensible metric on E if it satisfies the conditions :
1. Veek: q(z,z) = 0 (reflexive)
2. Vayz€E: q(x,z) < q(z,y) + qly,z) (triangle inequality).

Then (E,q) is called ostensible metric space.

In regard to the first—order geometric evolution, we suggest the ostensible metric
gen s K(RY) x K(RY) — [0,00]
(Ki, K3) +— d(K) ) + dist(Graph Ny, Graph 'Ni, )
with  Ng(z) denoting the limiting normal cone of K CIRY at r€dK (Def. 4.1.4),
‘N (z) = Ng(x)N B.
So, qen(Ky, Ky) > 0 takes the graphical distance from the limiting normal vectors
bNKZ C BBy to bNK1 C IB; into account. Correspondingly to the example of an
annulus K expanding isotropically, the first argument K; can be regarded as earlier set
whereas the second argument K, represents the later set. In particular,
Gen(Up(s, Kg), Up(t,Ky)) < const-(t—s) forall s <t<1 (dueto Lemma 4.4.23).
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Applying now the steps of mutational analysis to an ostensible metric space (E,q),
we encounter analytical obstacles soon. In § 0.3, for example, Gronwall’s Lemma is

mentioned as key tool for proving estimate (x)

a(9(h, 2), T(h,y)) < dlz,y) - O 4 b D7) - S (%)

but the well-known versions of Gronwall’s Lemma hold only for continuous functions.
The ostensible metric space (K(IRY), gcn) exemplifies that the generalized distance

0,1 — [0,00], ¢ r—)q;C,N(ﬁF(t, Ky, 9p(t, KQ))

is not continuous in general. For example, the isotropic expansion at a speed of 1
(i.e. F(-):=IB;) and initial sets K := By, Ky:= {1 < |z] <2} C RY satisfy

> 1 for 0 <t <1
qK,N(’&F(t,Kl), "-9F(t>K2)) { : 0 for - t>1

So we cannot apply the proof of estimate (x) (given in § 0.3) to ostensible metric spaces

immediately. A more general form of Gronwall’s Lemma is needed instead — without

supposing continuity. Strictly speaking, the generalized distance between transitions
leads to a function o :[0,1] — [0,00[ fulfilling w
lim sup w < a-Yt) +b < /
hl0 p

for every t € [0,1] with constants a,b > 0.

Obviously, (t) > limsup ¢(t+ h), but it does not _/\-
h10 -

provide any information about (¢ — h) for h ] 0. 4

Thus, we need the additional assumption 1(¢) < limsup (¢t —h) for excluding a
h10

discontinuity of ¢ in upward direction. It provides a more general version of Gronwall’s

Lemma for semicontinuous functions (proven later in Lemma 1.5.1).

Lemma 0.5.2 (Lemma of Gronwall : Subdifferential version)
Let ¢ : [a,b] — R, f,g € C%a,b[,R) satisfy f(-)>0 and

() < limsup B(t - h), vt la, ]
h10

p(t) > limsup ¥(t+ h), V te€la, b,
h10

lim sup w < f(t) - limsup ¢©(t —h) + ¢(t) V t€la, b.

h10 h10
Then, for every t € [a,b], the function ¢ (-) fulfills the upper estimate

¥(t) < Yla) - e+ /t 07 g(s) ds
with  p(t) == /tf(s) ds.
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When extending estimate (x) to transitions ¢, 7 on an ostensible metric space (E,q),
the required semicontinuity of the distance t — ¢(d(t,z), 7(t,y)) will be guaranteed

by a further condition on generalized transitions.

Now we consider the consequences of the topological boundary for the continuity of
the reachable set J : [0,1] X K(IRN) — K(IRY) with respect to the second argument.
For any initial sets K, Ko € K(RY)
and a given map F € LIP,(RY, RY),
the reachable sets of the differential
inclusion @(-) € F(xz(-)) a.e. at time ¢
are compared with respect to g n.

In particular, we need an estimate of

the distance from any = € 09p(t, K»)
to the boundary of 9 (t, K1).

Due to the definition of reachable sets,

there exists an absolutely continuous s=0 ¢ time

trajectory z(-) of F linking K, to z.
Then, x(0) is in the boundary of Kj.
Furthermore, every normal vector to Vg (t, Ks) at x is connected to some py € Nk, (2(0))
by an adjoint arc (according to the extended Hamilton condition of Proposition A.3.1).
The graphical distance from "Ny, (-)|ox, to Nk, (-)|ax, is bounded by g n (K1, Ks).
Thus, we can find the closest counterpart (vo,qo) € Graph Nk, |ox, of (x(0),py) and

estimate their distance.
Filippov’s Theorem A.1.2 states the existence of a

trajectory y(-) € AC([0,t], RN) of F with y(0) = yo
and |y(t) — z(t)] < |y(0) — x(0)] - e*’. (That is
the basis for estimating the parameter «o(Jr) with
respect to d in the mutational analysis of Aubin.)

However we cannot guarantee that such a trajectory

stays in the boundary of Jg(s,K;) up to time ¢.

Roughly speaking, y, might belong to a “hole” of K
disappearing with the course of time.

For excluding this phenomenon, additional assumptions about K; are needed. Suitable
conditions on F guarantee, for example, that compact sets with C'! boundary preserve
this regularity for short times (at least) and this evolution is reversible in time (see

Corollary A.5.2). So their topological properties cannot change within this short period.
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Assuming further conditions on one of the sets K, K, € K(IRY) prevents us from
using the mutational analysis of Jean—Pierre Aubin directly. Thus, we use the basic idea
of distributions.

In an ostensible metric space, there are no obvious generalizations of linear forms or
partial integration and so, distributions in their widespread sense cannot be introduced.
More generally speaking, their basic idea 1s to select an important property and demand

it for all elements of a given “test set”.

This notion is rather easy to apply to an ostensible metric space like (K(RY), qcn) :
In the mutational analysis of a metric space (M, d), the preceding estimate () represents
the probably most important tool for constructing solutions by means of Euler method.
So it is our starting point for overcoming the recent obstacle in (K(IRY), gk n). Following

the basic idea of distributions, we are interested in how to realize the formal estimate

q/c,N<19F(h, K1), Yg(h, K2)) < <QIC,N(K1;K2) + h Q7 (I, 19(;)) e (k)

for all K, K, € K(IRY), generalized transitions Uz, Jg : [0,1] x K(RY) — K(RY)
and every time h € [0,1] such that 9z (s, K;) belongs to a fixed “test subset” of C(IRY)
for all s € [0, h].

Consider a differential inclusion #(-) € F/(z(-)) and two initial sets K, Ky € K(R").

In regard to estimate (xx), we are looking for a parameter o = o7 () > 0 with
v (900 K0), Dp(h 1)) < g (K, Ky) - o000

for sufficiently small A > 0. Suitable conditions on F : IRY ~+ IRY make such an upper
bound of gy (Vr(t, K1), 9p(t, K3)) available for every K; € K(IRY) with C*! boundary
(as we sketch in § 0.7).  So the set K1 (IRY) of all nonempty compact N-dimensional
C*! submanifolds of RY with boundary is chosen as “test set” of K(IRY).

Similarly to Aubin’s definition of the parameter a(-) in § 0.3, we want o/~ (Jp) to satisfy

Ip(h, K1), Op(h, Ky)) — K, K)\*
sup lim sup <QIC,N( F(; 1), F(; 2)) QIC,N( 1, 2)) < anF)‘
Ky €Kq11 (RY), hi0 h QIC,N(KI;K2)
Ky € K(RN)

In the special case of (K(IRY), Kcii(RY), gcn), Lemma 4.4.25 provides sufficient
conditions on F : RN ~» IRY for ensuring the existence of o (Jp).

Moreover, the formal estimate (xx) indicates how to generalize Aubin’s definition of
D(9,7) for transitions J,7 on a metric space (M,d), i.e.

DW@,7) = sup lmsup L d(V(h, @), (b 2)).

reM R10
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Indeed, the first argument of g n(Vr(t, K1), Up(t, K2)) in estimate (k) is always
supposed to be an element of the “test set” Keoii(IRY) C K(IRY) and so, Q7 (Ip,V¢g)
cannot be found just by setting K; = K,. We suggest the following definition instead

Q7 (Op,Vg) = sup lim sup
K, eKol,l(RN), hl0
Ky € K(RN)

+
<q}C,N (19F(h,K1), 75‘6‘(’%1(2)) — g (K1, Ks) e h)
h

with a parameter o™ > 0 depending merely on ¥ or 5. Under adequate assumptions
about F, G : RN ~» IRYN, Proposition 4.4.26 states a relation between Q7 (9, 9¢) and
the Hamiltonian functions of F, G : Q7 (Vp,¥g) < 4N ||[Hr — Hallormy < am)-

Here these results are just to indicate that our expectations can be realized indeed.

The gist of their proofs is presented in § 0.7 later.

This example of (K(RY), Kcii(IRY), gcn) s the starting point for a concept
generalizing mutational analysis to ostensible metric spaces. It has the substantial
advantage that it is not based on geometric properties like the inclusion principle,

but uses only the ostensible metric gy and the fixed “test set” Keui(RY).

0.6 Generalized mutational equations:
Right—hand forward solutions.

Now we specify the approach of the preceding example (K(R"), Kcii(RY), gcn)
for the more general situation of a nonempty set E (instead of KC(RY)).

Let D C E denote a fixed nonempty “test set” — corresponding to Kc1.1 (IRY) before.

As a consequence of § 0.4 (about linking semilinear evolution equations to mutational
equations), we consider more than one distance function on FE. Thus, suppose (¢.).c7
to be a countable family of ostensible metrics on FE.

Assuming J to be countable makes the Cantor diagonal construction available for proofs
of existence. Indeed, selecting converging subsequences for each ¢. (one after the other)

then leads to a subsequence converging with respect to all ¢. (simultaneously).

The above-mentioned example of (K(RY), Kcii(RY), qcn) is now generalized
leading to so—called forward transitions. Here the term “forward” and the symbol —
indicate that we usually compare the state at time ¢ with the element at time ¢+ h
for A | 0. All the definitions and results of this section are special cases of their

counterparts in chapter 2.
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Definition 0.6.1  Assume for ¥ :[0,1] x E — E and each index ¢ € J

2. limsup + - qg(ﬂ(h, U(t,z)), V(t+ h, 3:)) =0 Vxekl, tel0l]
hi0
limsup L - qg<19(t+h, z), I(h, ﬁ(t,x))) =0 VaeeE telol]
hi0
+
3. oW <oo: G%upEE hrilfoup <q£(0(h’$,)1’ ﬂ(gz’(yw)’z!; qa(w)) < a7 (9)
z€D,y

4. 3 B.(9):]0,1] — [0,00[:  [B.(V)() nondecreasing, limsup f.(9)(h) = 0,
h10

qg<19(s,x), 19(t,:r)) < B —s) Vs<t<l zck,
5. VzeD 1 To=To(W,z) €]0,1]:  I(t,x) € D vV tel0,Tel
6. limsup qg(ﬁ(t—h, z), y) > q5<19(t,w), y) V reD, yeE, te]0, 7o

R0

Then Y(-,-) is a so—called forward transition on (E, D, (¢:)ccr)-

Conditions (1.)-(4.) are quite similar to the properties of Aubin’s transitions on metric
spaces (see § 0.3). Indeed, condition (1.) states that x is the initial value of [0,1] — E,
t — J(t,x) and, condition (2.) can again be regarded as a weakened form of the
semigroup property. It consists of two demands as ¢. need not be symmetric any longer.
Condition (3.) differs from its earlier counterpart in two respects : The first argument
is restricted to elements x of the “test set” D and, «.’ () may be chosen larger than
necessary. Thus, it is easier to define aZ’(-) < oo uniformly in some applications like the
geometric example (K(RY), Ko (IRY), g y) (discussed in § 4.4, particularly § 4.4.4).
In condition (4.), the Lipschitz continuity of Aubin’s transitions is replaced by equi-
continuity with respect to time as this detail is used only for technical reasons in proofs.

Condition (5.) guarantees that every element x € D stays in the “test set” D for
short times at least. Roughly speaking, it means in the preceding geometric example
that smooth sets stay smooth shortly. This assumption is required because estimates
using the parameter a7(-) can be ensured only within this period. Further conditions
on To(v,-) > 0 are avoidable for proving existence of solutions, but they are used for
proving uniqueness (see §§ 2.3.2, 2.3.3).

Condition (6.) forms the basis for applying (generalized) Gronwall’s Lemma 0.5.2.
Indeed, every function y:[0,1] — E with ¢.(y(t—h), y(t)) — 0 (for h ] 0, each t)

satisfies q. (19(25, x), y(t)) < limsup ¢. (19(15 — h,x), y(t— h))
h10
for all elements « € D and times t € |0, To(¥,2)] (due to Lemma 2.1.3).
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In the preceding section, we mentioned the formal estimate (xx) as starting point for
the example (K(RY), Kcri(RY), qcn). Its general counterpart in (E, D, (¢.)ccr) 18

0. (90 0), 7 w) < (aloy) + b Q2 ) - et

forall € D, y e E, e € J and small t > 0. For realizing this formal inequality,

we specify the distance between forward transitions on (E, D, (¢.)) in the following way :

Definition 0.6.2
©7(E,D,(¢.):c7) denotes a set of forward transitions on (E, D, (q.)ccs) Supposing

<qgw<h,x>, 7(h,y) — g.(z,y) - ea?mh)*
h

Q- (Y, 1) ==  sup lim sup < o0

©t€D,yeE  hlO

for all 9,7 € ©7(E,D,(¢:)eer), €€ JT.

Using here the parameter o.’(7) of the second argument 7 (instead of ¢J) is just

for technical reasons. Indeed, it ensures the triangle inequality of ()" immediately, i.e.
Q7 (W1, ¥3) < Q7 (01, V) + Q7 (U2, U3)
for any transitions ¥, 95,95 on (E, D, (¢:)ccy) because forallz € D, y € E, t € [0, 1],

we conclude from ¢.(z,z) =0 and the triangle inequality of ¢.
qg<191(h,x), 193(h,y)> ~ gny) - eSO
< qg(ﬁl(h,x), 02(h,x)) _ (a3 - e
+ qg<192(h,x), 193(h,y)> — qe(z,y) - eFW)h,

Moreover, it usually does not impose serious restrictions on applications since the

parameter " (1) is often chosen as a global constant (as the examples of chapter 4 show).

These definitions are laying the foundations for proving the wanted estimate in detail :

Proposition 0.6.3 Let 9,7 € ©7(E,D,(q.)ces) be forward transitions, € € J,
zeD, yeE and 0 < h < To(¥,x).
eas’ (Hh_q

Then, qg(ﬁ(h,x), T(h,g)) < gz, y) - eDr 4 oh Q7(0,7) =TTt

Proof results from the generalized version of Gronwall’s Lemma 0.5.2 applied to

et h— q.(U(h,z), 7(h,y)). Itis a special case of Proposition 2.1.5.
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The next step is to generalize the term “mutation” to (E, D, (¢.).cs). Considering
a curve z(-) : [0,7]— M in a metric space (M, d), its mutation = (¢) at time t€[0, 7]
consists of all transitions ¥ on (M,d) satisfying

i sup %-d(ﬁ(h, (1)), x(t—f—h)) =0

according to the definition of Jean-Pierre Aubin ([2, Aubin 99|, § 1.2). It reflects
the idea of first—order approximation that most concepts of “derivative” start with.
For (E, D, (¢:)ec7) however, we prefer adapting the criterion to the key estimate of
Prop. 0.6.3. So firstly, we want to use only elements of D in the first argument of ¢.
and secondly, a first—order approximation is to have the same effect, roughly speaking,
as if the factor Q7 (-,-) was 0.

Thus, a forward transition ¢ on (E, D, (¢.)cc7) is regarded as a generalized derivative
of a curve xz(-) : [0,7[ — E at time t if for each £ € J, there is a parameter
a-’(t) > 0 with

lim sup %(q5<19(h,y), x(t-i—h)) — ¢y, (1)) - ea'?(t).h) <0
h10

for all “test elements” y € D. To minimize the risk of confusion over Aubin’s concept
and its generalization here, we dispense with a new definition of “mutation” and

introduce the term “primitive” instead (in accordance with the more general Def. 2.2.1).

Definition 0.6.4 Let 9(-) : [0,T[— O7(E, D, (¢:)ccy) be a given function and,
suppose for x(-) : [0,T] — (E, (¢:)ees)
1. 'V tel0,T], eeJ 3 a7 (t) =a (¢ x(-),9()) < oo :

limsup ¢ (a: (90) (h0), 2lt+h) = aely, 2l0)) - =O4) <0,

forall ye D and az(t) > o7 (V(t) > 0,

£

2. xz(+) is uniformly continuous in time direction with respect to each g,

i.e. there is w.(x,-) :]0,T[ — [0,00[ such that limsup w.(x,h) = 0 and
hi0

Qe(l’(S), x(t)) < welx, t—s) for 0<s<t<T.

Then x(-) is a so—called right-hand forward primitive of 9(-), abbreviated to z(-) 3 9(-).

In particular, the limit superior of first-order approximation in condition (1.) uses
the information at the current time ¢ and at a later point of time ¢t + h with A | 0.
This feature again motivates the term “forward” and is symbolized by ~— (representing
the time axis). Furthermore the expression “right—-hand” indicates that z(-) appears

in the second argument of the vanishing distances ¢. (¢ € J).
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Forward transitions induce their own primitives. To be more precise, every constant
function 9(-) : [0,1[ — ©7(E, D, (¢:)ces) with 9(-) = 9y has the right-hand forward
primitives [0,1] — E, t +~— UJy(¢t,x) with any x € E — as a consequence of

Proposition 0.6.3 in a slightly generalized form
0. (Vt+h2), r(tthy) < (@(000), T(y) + b QIOT)) - O

(see Proposition 2.1.5).  This property is easy to extend to piecewise constant functions

0,7 — ©7(E, D, (¢.)ces) and so it will be the basis for Euler approximations later.

Let us apply now this concept to mutational equations in a generalized form.
Correspondingly to ordinary differential equations, the definition of “solution” can be

formulated by means of “primitives”.

Definition 0.6.5 For f: Ex[0,17[— ©7(E, D, (¢-)) given, a map x:[0,7[— E
15 a so—called right—hand forward solution of the generalized mutational equation
£(-) > fla(),)
if () is a right-hand forward primitive of f(x(-),-):[0,T][ — ©O7(E, D, (¢:)ecs):
i.e. for each e € J,
1. Vv telo,T] 3 az(t) > o (f(x(t),) - VyeD

timsup ¢ (a: (0,0 (b w) w(t+)) = aely, w(0) - = OH) <0,

2. x(-) is uniformly continuous in time direction with respect to each g,

i.e. there is w.(x,-) :]0,T[ — [0,00[ such that limsup w.(x,h) = 0 and
h10

(]a<lv(8), x(t)> < we(x, t—s) for 0<s<t<T.

This collection of definitions is put to the test of well-posed problems, i.e. we are
interested in sufficient conditions with regard to existence, uniqueness and stability of
right—hand forward solutions.

Adapting the notions of ordinary differential equations, we are going to construct these
solutions by means of Euler methods. So we have to realize first which kind of conver-
gence preserves the solution property. An answer follows from the next special case of

Convergence Theorem 2.3.2.

Theorem 0.6.6 (of Convergence)

Suppose the following properties of
fm; f: EX[O,T[ — @H(EaDa(qE)EEJ) (mElN)
Ty T 0,7] — E :
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1. M. := sup {al (fi(z,1))} < oo,

m,t,z
2. Q?(fm(zhtl), fm(Z2;t2)) — 0 for m— o0, ta—1t1 L0, g(z1,22) =0
3. T () 3 fm(xm(), ) in [0, (according to Definition 0.6.5)

4. We(h) == sup we(xp, h) < oo (moduli of continuity w.r.t. ¢.) V¥ he€]0,T],

m

limsup @.(h) = 0,
hi0

5.V t1,t,€[0,T], t3€]0,7[ 3 (mj)jew with m; /oo and
0 limsup Q7 (f(a(t),t), fun, (w(t), 1)) = 0,
j—>00
@) 3 e 0,1+ g(olts), wa,(L+5)) —0, 8 —0,
(i) 3 (5)jen in [0, ts]: qg(xmj(tg—aj), x(t3)> 50, 6 —0
for each ¢ € J.
Then, «(-) is a right-hand forward solution of x(-) 3 f(xz(-),-) in [0,T].

In short, (z;,(+))memn is a sequence of right—hand forward solutions for (f.,(,*))men,
respectively. Assumptions (1.), (2.), (4.) exemplify common bounds of the parameter
o’ (+) and moduli of continuity for each ¢ € J. Finally condition (5.) links the sequences
(@m(-))ms (fi(-5-))m to their “limit functions” z(-), f(-,-).

It is quite obvious that z(-) has to appear in both arguments of ¢. for each ¢ € J since
its uniform continuity in time direction has to be concluded from the equicontinuity of
(@m(-))m e 1v-

Assumptions (5.ii), (5.iii) can be interpreted as graphical convergence in time direction.
We again recognize the basic idea that the first argument of ¢. refers to the earlier point
whereas the second argument of ¢. represents the later element. This notion led us to

dispensing with the symmetry of distances in § 0.5.

Constructing solutions of ordinary differential equations is usually based on one of
the following principles : Firstly, we suppose the right-hand side to be smooth enough
so that the solution is fixed point of a contracting map. Then Banach’s Fixed Point
Theorem requires the assumption of completeness. The second method uses a sequence
of approximations in combination with (sequential) compactness so that the solution is
obtained as limit function.

We prefer the latter approach since the available estimates for transitions on (E, D, (¢.))
hold ounly for elements of D in the first argument of ¢. (as in Proposition 0.6.3).

So there is no obvious way of verifying the contraction property in (E,q).
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Before specifying an adequate form of sequential compactness (so—called transitional
compactness), we formulate the counterpart of Peano’s existence theorem for ordinary

differential equations. It results from Proposition 2.3.5 later.

Theorem 0.6.7 (Existence of right—hand forward solutions)
Assume that the tuple (E, (¢.)eeq, ©7(F,D,(¢-)ecr)) is transitionally compact
(in the sense of Definition 0.6.9).

Furthermore let f: E x[0,T] — ©7(E, D, (¢:)ccy) fulfill for every ¢ € J
1. M. = sup o (f(z,1)) < 00,

t,z

2. c(h) == sup B(f(%,t))(h) < oo, ¢c(h)—0 for h |0,
t,

3. 36.(): Q7 (f(21,t1)7 f(22;t2)> < @(%(21,22) + 12 —t1>
forall 0<t, <ty <T and 2,290 € E,

We(+) > 0 nondecreasing, limisoup We(s) = 0.
S

Then for every xy € E, there is a right-hand forward solution z(-) : [0,T7[— E
of the generalized mutational equation = (-) 3 f(z(-), ) in[0,T] satisfying x(0) = z,
(in the sense of Definition 0.6.5).

So an adequate form of sequential compactness is needed. In Aubin’s mutational analysis
on metric spaces, Theorem 0.3.1 supposes the bounded closed balls to be compact, i.e.
for every bounded sequence (z,),ew in (M,d), there exist a subsequence (,;)jemnw
and an element € M with d(v,;, v) — 0 (for j — o0).  Dispensing now with

the symmetry of the distance, sequential compactness is to consist of two conditions.

Definition 0.6.8 (E,(¢.)ccy) is called two—sided sequentially compact (uniformly

with respect to €) if for every z € E, r. >0 (¢ € J) and any sequence (x,)pen in E
with q(z,2,) < 71e VnelN Veed

there exist a subsequence (xn;)jc v and an element x € E such that

¢ (p,, ) — 0 _
! for 7 — o0 Veed.
g, Tn;) —> 0

Some ostensible metric spaces have this compactness property in common like
(K(RN), d) or K(IR™) supplied with the Pompeiu-Hausdorff excess e in § 4.1.1,
but in general, it is too restrictive. Indeed, (K(RY), gk n) is not two-sided sequentially

compact since, for example, K, := {=7 <|z[ <1} and

o O o . K := B, satisty d(K,,K)=qcn(Kn, K)—0 (n— c0),
K K, Kj; K but gy (K, K,) > L.
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For this reason, we coin a more general term of sequential compactness that is
particularly adapted for a sequence of Euler approximations at a fixed point of time.
The following definition is again based on the key notion that the first argument of ¢.

represents the earlier state whereas the second argument refers to the later element.

Definition 0.6.9 Let © denote a nonempty set of maps [0,1] x E — E.
The tuple (E, (qc)ccr, ©) is called transitionally compact if it has the property :

Let (zn)new, (hj)jenw be any sequences in E, 0,1[, respectively and z € E with
sup,, ¢e(z,z,) < 0o for each e € J, h; — 0.  Moreover suppose ¥, : [0,1] — ©
to be piecewise constant (n € IN) such that all curves 0,(t)(-,x) : [0,1] — E have
a common modulus of continuity (n € IN, t € [0,1], z € F).

Fach 9, induces a function y,(-) : [0,1] — E with y,(0) = x,, in the same piecewise
way as forward transitions induce their own primitives mentioned after Definition 0.6.4
(G.e. using Un(tm) (-, yn(tm)) in each interval |tm, tmy1] in which 9,(-) is constant).

Then there exist a sequence ny ~ oo of indices and x© € E satisfying for each ¢ € T,

E X o n_ 9 o
. R
limsup ¢:(zn,, ) = 0, |§‘3‘ e :
k— o0 X5 . yz(_)
lim sup sup ¢:(z, yn,(h;)) = 0. X, - _
Jj—>00 k>g — T
= O hy hy hy h

A nonempty subset F C E s called transitionally compact in (E, (¢.)cer, ©)

if the same property holds for any sequence (x,)nepn n F (but x € F is not required).

If (E,(g)ceq) is twosided sequentially compact (uniformly with respect to )
then the tuple (E, (¢.)ccr, ©) is transitionally compact for every nonempty set © of
maps [0,1] x E— E. Indeed, supposing (n)new; (7j)jen, (9n()nen, (Un())nen
as in Definition 0.6.9, there is a subsequence (,,;);en and an element x € E such that

e (T, v) — 0, e (v, Tn;) — 0 for j — oo and all € € 7.

All curves 9,(t)(-,2) : [0,1] — E (n € IN, t € [0,1], z € E) are assumed to have
a common modulus w(-) of continuity and thus,

SUP > Ge(®, Yn,(hy)) < supps; qo(x, 7p,) + w(hy) — 0 for j — 0.

Proving the existence of solutions in Theorem 0.6.7 starts with a sequence of Euler
approximations. Transitional compactness and Cantor diagonal construction provide a
subsequence that is converging to a limit function in an adequate way for each ¢ € J and
at every time of a countable dense subset of [0,7]. Due to Convergence Theorem 0.6.6,
this limit is a right-hand forward solution. Details are presented in Proposition 2.3.5.
Strictly speaking, it is sufficient to suppose that the values of all transitions f(z,t) are

in a transitionally compact subset of (E, (¢:)ecy, O7(E, D, (¢:)ecr))-
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The third aspect of well-posed problems is uniqueness of solutions.
Since the ostensible metrics (g:).cs are not supposed to be positive definite in general,
we are rather interested in estimates of the distance between solutions. As already
mentioned in this section, estimating the distance between points of forward transitions
is available only for elements of D in the first argument of ¢. (as in Proposition 0.6.3).
So essentially, we have two possibilities : Either restricting ourselves to the comparison
with elements of D (as in Proposition 0.6.10) or using an auxiliary function instead of

the distance (as in Proposition 0.6.11).

Proposition 0.6.10  Assume for the function f:E x[0,7] — ©7(E, D, (q.)) and
the curves x,y: [0, — E

1. a) 5() > f(y(),-) n [0,T] (according to Definition 0.6.5),
b) xz(t) € D for all t€[0,T7,
limsup + g. (2t +h), fle(t),) (ha(t) = 0,
h10
x(+) is uniformly continuous in time direction with respect to each g,
c) qg(x(t),y(t)) < limsup qg(a:(t—h), y(t—h)),
h10
2. M. = sup o7 (f(z,1)) < 00,
t,z
3. 3 ©.(+), Le Q?(f(zlatl); f(Zzatz)) < Lo qo(21,22) + Welta — 1)
forall 0 <ty <ty <T and z,20 € E, and  D(s) O for s{0.
Then, q. (x(t), y(t)) < q (x(()), y(O)) elletMe)t for qll € [0,T] and € € J.

Proposition 0.6.11  Assume for f : Ex[0,7] — ©7(E, D, (¢.)), z,y:[0,T[— E
LoE() 3 fe0) ), () 3 fu(), ) i [0.T],

2. M. = sup o' (f(z1)) < 00,
t,z
3. 3 (), L : Q?(f(zl,tl); f(22,t2)> < Lo - qo(21,20) + Welta — 1)
forall 0 <t; <ty <T and z,2 € E, and  O:(s) (0 for s10.

Furthermore suppose for each t € [0, T| that the infimum
po(t) = inf (.2, 2(0) + a.(z y(1)) < o0
can be approzimated by a minimizing sequence (zj)jew i D and h; | 0 with
supr>;  4-(25, 2k)
To(f(z,1), z)
Then, 0. (t) < . (0) elbetMe)-t,

— 0 (j — 00).
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Proving the last proposition, the basic idea consists in estimating both

B qe(f G ) (B zm), a(t4R))  and b g (Fam,t) (B 2m), y(t+h))
(for small A > 0) with such a minimizing sequence (z,)men. Here assumptions about
the time parameter Tg(-,) > 0 are required for the first time. Roughly speaking, we
need lower bounds of To(f(2m,t), zm) for “preserving” the information while m — ooc.
If To(f(zm,t), zm) vanishes too quickly, then the comparison with f(z,,t) (-, z,) cannot
be put into practice long enough for proving estimates that (might) imply uniqueness

of solutions.  Details and proofs are presented in § 2.3.3.

Mutational analysis of Jean-Pierre Aubin (|2, Aubin 99]) on a metric space (M,d)
was sketched in § 0.3 and proves to be a special case of this concept on (E, D, (¢:)cer)-
Indeed, define E := M, D:= M, J :={0} and ¢ :=d. Then, every transition ¢
on the metric space (M, d) (in the sense of Aubin) is a forward transition on (M, M, d)
according to Definition 0.6.1 and, we set o’ (V) := a(¥), To(V,x):=1 for all z€ M.

Furthermore the key estimate

a(9(h, 2), T(h,y)) < dlwy) - O 4 b D7) - (%)
for arbitrary points z,y € M and time h € [0,1] has already been mentioned in § 0.3
and implies now several properties : Firstly, @ (¢,7) < D(9,7) for all transitions 9, 7,
Secondly, a transition ¥ belongs to the mutation of () : [0,7]— M at timet € [0,T]

(in the sense of Aubin), i.e.

lim sup %-d(ﬁ(h, z(t)), x(t+h)) = 0,
h10

if and only if it satisfies

hrilfoup %(d(ﬁ(h, ), x(t+h)) — d(y, x(t)) - ea(ﬁ)'h> < 0,

for all y € M. Thus for a given function f from M to a set of transitions on (M, d),
a Lipschitz continuous curve z(-) : [0, 7] — M is solution of the mutational equation
z(t) > f(z(t)) in the sense of Aubin if and only if it is a right-hand forward solution
of the generalized mutational equation z () > f(x(t)) according to Definition 0.6.5.
So Aubin’s existence theorem 0.3.1 results directly from Theorem 0.6.7 in combination
with Proposition 0.6.10.
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0.7 Example : First—order geometric evolutions.

The concept of forward right-hand solutions extends mutational analysis of Jean—Pierre
Aubin to ostensible metric spaces. As an immediate consequence, we can apply it to
some geometric evolutions mentioned in § 0.3. An example consists of (K(IRY),d)
(i.e. the nonempty compact subsets of IRY supplied with Pompeiu—Hausdorff distance d)
and the reachable sets Jr : [0,1] x K(RY) — K(IRY) of differential inclusions
() € F(z(-)) a.e.

The so—called Pompeiu—Hausdorff excess is a first example of an ostensible metric on

K(IRY) that is very similar to the Pompeiu-Hausdorff distance d, but not symmetric :

e~ (K1, Ky) = sup dist(x, Ky)
x € Ky
e (K1, Ky) = sup dist(y, Ky).
ye€ Ky
for K, Ky € K(IRY). Obviously, the link to the Pompeiu-Hausdorff distance is
d(Kl,Kg) = maX{@C(Kl,Kz), (ﬁD(K]_,KQ)}

(see [2, Aubin 99|, § 3.2 and [55, Rockafellar, Wets 98], § 4.C, for example).

(K(IRY), €”) is two-sided sequentially compact since the metric space (K(RY),d)
is known to be compact (due to Corollary 4.1.2). Furthermore Filippov’s Theorem A.1.2
about trajectories of differential inclusions implies

e (19F(t,K1), Jal(t, K2)) < <@D(K1,K2) + ¢ - sup @D<F(')7G(')>> ettt
RN
for initial sets K, Ky € K(IRY) and A\-Lipschitz maps F,G : IRN ~» IRN with nonempty
convex compact values and sup e (F(), G()) < oo (according to Proposition 4.4.1).
RN
So these reachable sets induce forward transitions on the tuple (K(RY), K(IRY), €°)

(as stated in Corollary 4.4.3) and, we conclude from Theorem 0.6.7

Proposition 0.7.1 Let f be a function from K(IRYN)x[0,T] to A-Lipschitz maps
RN ~ RN with uniformly bounded, convex values in K(IRYN). Suppose

sup e (f(I0,4)(), f(K2,t)() < w(e? (K, Ky) + to —t)

RN
for all K1, Ky € K(IRYN) and 0 <t; <ty <T with the modulus w(:) of continuity.

Then for every initial set K, € K(IRY), there exists a right-hand forward solution
K :[0,T[— (K(IR"N), €2) of the generalized mutational equation [O(() > f(K(),")
in [0, 7] with K(0) = K,.



0.7 FIRST-ORDER GEOMETRIC EVOLUTIONS 31

Assuming Lipschitz continuity of f with respect to the first arguments, we obtain
even a relation between the Euler solution K(-) (that is constructed when proving
Theorem 0.6.7) and any other right-hand forward solution with the same initial value.
Roughly speaking, K (t) is the largest subset of IR among these solutions at time t.
The proof is based on a further approach to estimates that is differing slightly from
Proposition 0.6.11. We postpone the details to Proposition 2.3.10 and just state the

immediate consequence of Corollary 4.4.4 :

Corollary 0.7.2 In addition to the assumptions of Proposition 0.7.1, suppose that

there exist L >0 and a modulus w(-) of continuity with

Sﬂ‘;}y e (f(K1,t1)(-), f(Kyt2)(r) < L-e (K1, Ky) + w(ty—t)

for all K\, Ky € K(RY) and 0<t, <t, <T.
Let K(-):[0,T[ — (K(IRN), €) be an Euler solution (i.e. it is constructed by Euler
method according to the detailed proof of Proposition 0.6.7 given in Proposition 2.5.5).

Then every other solution M(-) : [0, T[ — (K(IRYN), e°) with M(0) = K(0) fulfills
limsup e (K(t), M(t+h)) = 0 for all t€[0,T].

hi0
If M(-) is continuous even with respect to d, then M(t) C K(t) forall t € [0,T].

In regard to first-order geometric evolutions, we now use the ostensible metric gx n
that has already been suggested in § 0.5 :
gen s K(RY) x K(RY) — [0,00]
(K1, ) — d(E,K) + ¢ (Graph 'Ny,, Graph bNKQ)
with  Ng(z) denoting the limiting normal cone of K CIRY at r€dK (Def. 4.1.4),
Ny (1) = Ng(x)N B.
Moreover, reachable sets of differential inclusions #(-) € F(z(-)) again form the basis

for constructing forward transitions on (K(RY), Ko (IRY), g n)-

First we focus on the evolution of limiting normal cones at the topological boundary.
In connection with the obstacles due to normal cones (in § 0.5), the Hamilton condition
has already been mentioned as a key tool.
It implies that roughly speaking, every boundary point zy of Jp(ty, K)
and normal vector v € Ny, (,x)(20) have a trajectory and an adjoint

arc linking z to some z€ 0K and v to Nk(z), respectively.
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R Furthermore the trajectory and its adjoint arc fulfill a system of
partial differential equations with the so—called Hamzltonian function

[)/O of F': RN ~s IRV,

Fi
© Hp: RN x RN — RN, (z,p) — sup p-y
y € F(x)

Although Proposition A.3.2 (2.) states this result in a very general form, we use only

the following “smooth” version — due to later regularity conditions on F' :

Proposition 0.7.3 Suppose for the set-valued map F : IRYN ~» IRY

1. F(-) has nonempty conver compact values,

2. Hp(-,-) is continuously differentiable — on RN x (RN \ {0}),

3. the derivative of Hp has linear growth on RN x (RN \ By), i.e.
|DHp(z,p)|] < const- (L+ |z|+|p]) forall z,pe€ RY, |p| > 1.

Let K € K(IRN) be any initial set and ty > 0.

For every boundary point xy € 09r(to, K) and normal vector v € Ny, x)(%0),
there exist a trajectory x(-) € C1([0, o], RN) and its adjoint p(-) € C([0,to], RY) with

i(t) = g He((t), p(t) € Fa(t), a(t) = 20, x(0) € 0K,
p(t) = — 5z He(x(t), p(t)), plte) = v, p(0) € Ni(x(0)).

In short, the graph of normal cones at time ¢, i.e. Graph Ny, x)(-)|9v.t,Kk), can be

traced back to the beginning by means of the Hamiltonian system with Hp.

These assumptions give a first hint about adequate conditions on F : RN ~» RN
for inducing forward transitions on (K(RY), Ko (RY), qcn). So the next question
is whether these features are already sufficient.

An essential demand is that smooth compact subsets of IR" stay smooth for short times,
i.e. strictly speaking, Vp(t, K) € Kcii(IRY) for each K € K1 (IRY) and all small ¢.
Considering the graph of unit normal vectors, i.e. Graph (Nﬁp(t,K)(-) N aﬂ) ‘aqu(t,K),
it is equivalent to the request that the graph of a Lipschitz continuous function is
preserving this property for a short time (at least).  In [21, Caroff, Frankowska 96] and
[37, Frankowska 2002], sufficient conditions are presented for a Hamiltonian system
with given end points. Adapting its indirect proof for initial value problems, we obtain

the autonomous version of Proposition A.4.6 :
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Lemma 0.7.4  Suppose for H : IRN x RN — IR, T > 0 and the Hamiltonian system

) { i = 2 HEW, o)
() = — g, H(y(t), a(t))

@) H(-,-) s differentiable with locally Lipschitz continuous derivative,
@) every solution (y(-),q(-)) of the Hamiltonian system can be extended to [0, T

and depends continuously on the initial data.

Let My denote the graph of a Lipschitz continuous function K — IR with K € K(IRY)
and, M, C RN x IR abbreviates the evolution of the initial set My along the Hamiltonian
system at time t € [0,T].

Then there exist & > 0 and A > 0 such that M; is the graph of a A—Lipschitz

continuous function for every t € [0,0].

So applying this lemma to unit normals to reachable sets Vp(t, K) of K € K (IRY)
requires stronger conditions on F' : IRY ~» IR than the assumptions of Proposition 0.7.3.
Indeed, the Hamiltonian #; has to be in CH(IRY x (IRN \ {0})) instead of C*.

In fact, this lemma is a reason for choosing Kcii(IRY) as “test subset” of K(RY)
— instead of compact sets with C! boundary, for example.

Motivated by recent results, we now introduce an abbreviation for these set—valued maps.

Definition 0.7.5 For A >0, LIPY?(RN,RY) contains all F: RN ~» RY with

1. F:IRYN ~ RN has compact convez values,
2. Hp(,-) € CV(Bg x (Bg\ ZB%)) for every radius R > 1,
3. ||HF||01,1(1RNX331) B ||HF||01(1RNX331) + Lip DHF|RN><8131 < M.

The key conclusion of Lemma 0.7.4 is that for all F € LIPUY (RN RYN), K €Keii (RY),
there exist a time 7= 7(F, K) > 0 and a radius p = p(F, K) > 0 such that Jp(t, K)
is in Keui(RY) for each ¢ € [0,7] and its radius of curvature has the lower bound p

(see Proposition A.4.4). Moreover Proposition A.4.10 provides a lower estimate of
7(F,K) >0 if Hp is even twice continuously differentiable on RY x (IRYN \ {0}).

The advantages of LIP{ (IR, RY) go beyond preserving regularity of K € Keii (IRY).
Considering Vg (t, K) (0 < t < 1), the lower bound p(F, K) > 0 of the radii of curvature
implies that roughly speaking, “holes” of K cannot disappear up to time 7 (due to
Proposition A.2.10). Thus, the evolution of K is reversible in time, i.e. the initial set

K can be reconstructed from each ¥ (¢, K). To be more precise, Corollary A.5.2 ensures :
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Proposition 0.7.6 Let F: RN ~ RN be a map of LIPVY(IRY, RN).
For every compact N-dimensional CY' submanifold K of IRY with boundary,
there ezist a time ™ >0 and a radius p > 0 such that for all t € [0, 7],
1. 9pt,K) € Keta(IRY)  with radius of curvature > p,
9. K = JRN\ﬁ_F(t, RN\ 9p(t, K)).

Statement (2.) provides a connection between the boundaries 0K and 09p(t, K)
— both in forward and backward time direction.

So applying Proposition 0.7.3 about
adjoint arcs to — F (instead of F),
every boundary point y, € 0K and
each normal vector v € Nk(yy) have
a trajectory y(-) in the boundary and
an adjoint arc up to time ¢.

This additional feature removes the

second obstacle mentioned in § 0.5,

i.e. we can estimate the distance

QIC,N<19F(t,K), 7-9F(t;K2))
by means of g (K, Ky) for all sets
K € /Ccl,l(BN), K, € IC(]RN) and

every time t > (0 sufficiently small.

Now we have achieved the goal of finding (nontrivial) forward transition on the tuple
(K(RY), Keui(IRY), gen).  Indeed, the reachable sets 9p of F € LIPOY (RN IRN)
prove to satisfy the conditions (of Definition 0.6.1) — as a consequence of the preceding
results in detail. In particular, the time 7 = 7(F, K) > 0 mentioned in Proposition 0.7.6
plays the role of To(Jp, K) for each K € Kcii(IRY). Lemma 4.4.23 and 4.4.25 state

Lemma 0.7.7  Assume F,G € LIP(Y(RY, RY), K, € Kcui(RY), Ky, K € K(IRY)
and 0<T < To(Ur,Ky). Then, for every 0 <s<t<T,

Gen (Vr(s,K), 9p(t,K) ) < XEeT+2) - (t—s)

aen (Vr(t, K1), 9a(t, Ky)) < elhetA) b, (q,C,N(Kl, Ky) + 4Nt |Hp —HGHcl(D))

with — Ap = 9e** ||Hplcrapy < 92 A,
D = RN x 0B C IRN x RN.
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Proposition 0.7.8 For every X\ > 0, the reachable sets of the set—valued maps in
LIPS\H) (RN, RN) induce forward transitions on (K(IRY), K1 (IRY), qcn) with
a” (W) = 10 A
BRI M = X (42 -t
Q7WrVe) < AN [[Hr—Hellormy<om,) -

Proof is given in Proposition 4.4.26.

In regard to the existence of right-hand forward solutions due to Theorem 0.6.7,
we now focus on the assumption of transitional compactness. To be more precise,
adequate subsets K, (RN) C K(RY), © C LIP{Y(IRN,IRY) are wanted such that
Ko(IRY) is transitionally compact in (K(RY), Kcui(IRY), ©).

Definition 0.6.9 provides the following condition on K,(RY), © :

Let (Kp)new, (hj)jenw be sequences in Ko (RY), 10,1, respectively with h; | 0,
sup,, qr,n(B1,K,) < oo. Suppose each G, :[0,1] — O to be piecewise constant
(n € IN) and set

G o [0,1] x BRY ~ RN, (t,2) — Go(t)(z),

o

Kau(h) = g, (h, Ky,) for h> 0. K& N —
Then there exist a sequence n; ' oo of indices and §3 T _—
K € K(IRY) satisfying 2" oK)
limsup g n (K, (0), K) = 0, Ky
k— o0 f T T T T
lim sup sup gen(K, K, (hj) = 0. 0 hy hy hy Iy
J—> k>3

The first condition, i.e. g n(Kp,, K) — 0 (kK — 00), is not difficult to guarantee.
Indeed, (K, )nemw is bounded with respect to the Pompeiu-Hausdorff distance d and
thus has a subsequence converging to a set K in (K(IRY),d). For the sake of simplicity,
we abbreviate it as (K,)n,c v again. Moreover, it is well-known in nonsmooth analysis
that every limiting normal vector of K can be approximated by normal vectors of K,
(n € IN) (see Proposition 4.1.6 and its Corollary 4.1.7).  Thus, ¢ n(K,, K) — 0.

The properties of g n(K, K,(h;)) forlarge j,n € IN are not so easy to handle.
Investigating this question, we sketch some interesting results about the regularity of
reachable sets. Probably the so—called sets of positive erosion are the the most regu-
lar subsets to be expected in general if topological changes (like “holes” disappearing)

are not excluded a priori.
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Roughly speaking, any sequence in K(/RY) might have “topological holes” disappearing.
In a figurative sense, information about the topological boundary is sometimes lost
while the index is increasing.

In regard to transitional compactness, we are interested in which “information” on the
initial boundaries 0K, (n € IN) is still relevant at a fixed time h > 0 (because only

these features have to be taken into consideration when comparing with 0K for n — o).

For h > 0 fixed and each n € IV, some of the boundary
points in 0K, can be connected with 0K, (h) by a trajectory
of Gy :10,1] x RN ~» RN. They form the closed set Ko _— o o
P, =K, N9 g ,,.)(h, J0K,(h)) C 0K,. Pz,h%.%v
Since Gy, is assumed to be piecewise constant with values in K, = K(h)
LIPE\H) (IR, IRY), Proposition 0.7.3 about adjoint arcs leads to .
e (Graph "N, P, Graph bNKn(h)) < const(A) - h,

d(K,, K,(h)) < const()\) - h.

'

O &0y i, OK (1)

n(h—

0 h

< 9

VA

So we achieve the goal of transitional compactness if we find sufficient conditions for
e (Graph "Ny, Graph "Ny,
with the fixed time h > 0 (sufficiently small).

Pn,h) — 0 (n — o)

Indeed, the triangle inequalities of d and e~ then imply
limsup  d (K, Kn(h)) < limsup (d(K, K,) + d(K,, Kn(h)))

n— o0 n— oo

IN

0 + const(A) - A,

limsup e° (Graph "Ny, Graph bNKn(h)) < 0 + const(A) - h
n— o0
and, we obtain a subsequence (K, )ren such that

ae.n (K, Ky, (h)) < z + const()\) - h.

Choosing now a sequence (h;)jen with h; N\ 0 as time h > 0, the Cantor diagonal

construction provides a subsequence again denoted by (K, )ren satistying

limsup sup gqen(K, K, (h;)) = 0.

j—>o00 k>j
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An approach to these sufficient conditions is based on an interior sphere condition.
Indeed, for h > 0 fixed and each n € IN, the points of F,; have in common that
they belong to the boundary of ¥_g ,_. . (h, 0 Ky(h)). Thus, we are interested in
further regularity properties of such reachable sets.

On the one hand, we want to use geometric criteria without analytical restrictions and,
on the other hand topological changes (like “holes” disappearing) must not be excluded
a priori. The interior sphere condition proves to be an adequate synthesis and leads to

the so—called sets of positive erosion.

Definition 0.7.9 A closed subset C C IRYN is said to have

positive erosion of radius p > 0 if there exists a closed set M C IRV

with C = {z e R"|dist(x,M) <p}

or equivalently, if it holds the interior sphere condition of radius p,

i.e. each x € OC has a ball B C IRYN of radius p with v € B C C. C

KP(IRYN) consists of all sets with positive erosion of radius p > 0
and, set Ko(IRY) = U Ke(IRYN) .
p>0

The morphological term “erosion” is motivated by the fact that a set C' = C° C IRV
has positive erosion of radius p > 0 if and only if the closure m of its complement
has positive reach in the sense of Federer ([35, Federer 59]) (proven in Corollary 4.3.3).
This relation implies a collection of interesting regularity properties summarized in § 4.3.
In fact, sets of positive erosion exemplify the most regular subsets of IRY that we can

expect in this context.

The essential tool consists in sufficient conditions on a set—valued map ensuring that
its reachable sets have positive erosion.

For every A, p > 0, LIP&H/;)(]RN,]RN) denotes the subset of LIP{Y (RN, IRN) with
two additional conditions : Each F € LIP&HQ’)(]RN ,IRY) has compact convex values
with positive erosion of radius p and, the Hamiltonian of F' is even twice continuously

differentiable.

Definition 0.7.10 Forany A >0 and p >0, the set LIPg\Hg)(IRN, IRN) consists
of all set-valued maps F : RN ~ RN

1. F: RN~ RN has compact conver values in KP(IRN).

2. Hp(-,-) € C*(Bg x (Bg\ Ii?%)) for every radius R > 1,

Det.

3. ||HF||01,1(1RNX331) = ||HF||01(1RNX331) + Lip DHF|RN><8131 < A.
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Proposition 0.7.11  For F, ... F,, € LIPE\%/;)(]RN,]RN), A, p >0 and a partition
0<T<T < ...<Tw=1 of [0,1], define the map G :[0,1[ xIRY ~» RN as

G(t,x) = Fj(x) for 11 <t <7y Furthermore choose C € K(IRN) arbitrarily.

Then there exist 0 >0 and a time T € |0,1] (depending only on A, p,C) such that
the reachable set V5(t, xo) has positive erosion of radius ot for any t € 0,7], xo € C.
As an immediate consequence, Vs (t, K1) has positive erosion of radius ot for all t €]0,7]
and each initial subset K, € K(IRY) of C.

Proof is also based on the Hamiltonian system for trajectories and their adjoint arcs
(similar to Proposition 0.7.3). The key point now is to benefit from its symmetry and
thus exchange the components (in the sense of Lemma A.7.3).

Roughly speaking, each normal vector is related with the same initial point zy € C.
So we choose the graph of a constant function as initial value and apply the tools of
Hamiltonian systems obtaining the existence of smooth solutions up to time 7 (at least).

Details are presented in Proposition A.7.2.

In regard to transitional compactness, let us now return to the sequences (K,),c n,
(Gulnewv and thesets  Poy = K, N0 g . (h, 0K, (h) C 0K, (n€ )
for time h €]0,1] fixed. ~ We have already found K € K(RY) with gc y(K,, K) — 0
(n — 00) and thus d(K,, K) — 0, in particular. So there exists C € K(R")
large enough such that K, (s) C C forall n € IN and s € [0, 1].
Suppose that én has all values in LIP&Hg)(]RN, R"N) with A, p > 0.
Proposition 0.7.11 provides o > 0, 7 €0,1] depending only

on A p,C and, we assume 0 < h < 7 in addition. Then,
V_G,n., . (h OKy(h)) has positive erosion of radius o h and
thus, K, satisfies the exterior sphere condition (of radius o h

not depending on n) at every point of P, , C 0K,. Bon

If in addition, each K, has positive erosion of arbitrary radius, we can show indirectly

e (Graph "Ny, Graph "Ny,

Pn,h.) — 0 (n — o)

and finally, we obtain the result whose detailed proof is presented in Proposition 4.4.28.

Proposition 0.7.12 For any A\, p >0, the sets of positive erosion, K,(IRY), are
transitionally compact in (lC(]RN), qK.N, LIPg\Hg)(]RN, ]RN)>.
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So let us draw the main conclusion about first-order geometric evolution :
The set-valued maps of LIP&HQ’)(]RN ,IRY) induce forward transitions according to
Proposition 0.7.8 and, together with the transitional compactness of Proposition 0.7.12,
it implies the existence of right-hand forward solution due to Theorem 0.6.7 (and the

remarks about its proof).

Theorem 0.7.13 Let f:K(RY)x|[0,T] — LIPE\Hg)(IRN,IRN) satisfy

HHf(Khtl) - Hf(Kz,tz)Hcl(RNxazBl) < wlgen (K, Ko) + ty — 1)
for all K, Ky € K(IRY) and 0 <t <ty < T with a modulus w(-) of continuity

and consider the reachable sets of maps in LIPE\Hg)(IRN, IRY) as forward transitions on
(K(RY), Kcra(RY), qcn) according to Proposition 0.7.8.

Then for every initial set Ky, € K(IRYN), there exists a right-hand forward solution
K :[0,T[— K(IRY) of the generalized mutational equation lo(() > f(K(-),-) with
K(0) = Ko, ie. K:[0,T[— (K(R™),qcn) is Lipschitz continuous in time direction
(with Lipschitz constant depending only on \) and, it satisfies

fim sup %(‘Hc,N(ﬁf(K(t),t) (h, M), K(t+h)) — aen(M, K(t)) - el“h) <0

forall t€[0,T[, M € Kcri(IRY).

It is not obvious how to prove uniqueness results by means of Proposition 0.6.11.
Although a lower estimate of To(f(M,t),M) >0 for M € Kcui(IRY) is presented in
Proposition A.4.10, it might vanish too quickly for a minimizing sequence in K1 (IRY)

(in the sense of Proposition 0.6.11).

Similarly to Proposition 0.4.3, we also obtain existence of solutions for systems

of semilinear evolution equations and first-order geometric evolutions (see Prop. 4.6.1).

Theorem 0.7.14 Suppose :

1. X s a reflezive Banach space.
2. The linear operator A generates a C° semigroup (S(t))i>0 on X.

3. The dual operator A" of A has a countable family of eigenvectors {U}}jej

([v5llxr = 1) spanning the dual space X', i.e. X' = Z R ;.
JjeET
and, gq; = Q! -

I.
J

o0
_ i () _
4o poalmyy) == ) 2P R Pa(wy) = ) 27 qi(a,y)  for my € X
= k=1

Aj abbreviates the eigenvalue of A" belonging to v
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Furthermore assume for
[ X xK(R")x[0,T] — X
g: X x K(RN)x [0,T] — LIPV*) (RN, RY) :
J. ||f||L°° < o9, 0 < AJ p < 090,
0. Poo(f(xlaKlatl)a f(ff2;K2;t2)) < W<poo(x1;x2)+q}C,N(K1;K2)+t2_t1)
T | Hyrscn) = Hoatcownlor v comy < W(Poo(xl:@)+qlc,N(K1,Kz)+tz—t1)

for all zy,79€X, K|, Kbe K(RY), 0 <t, <ty <T with a modulus w(-) of continuity.

Then for every xo € X and Ky € K(IRY), there exists a right-hand forward solution
(7, K) : [0,T] — X x K(IRY)  of the generalized mutational equations
/\{ () 3 Dp), K0, )
K() 2 g(l‘()a K(): )
with x(0) = xzo, K(0) =Ky and, it fulfills

a) x:[0,T[— X is a mild solution of the initial value problem

/\{ da(t) = Ax(t) + fla(t), K(t), 1)
z(0) =

Lo
t
i.e. xz(t) = S(t)xy + / S(t—s) f(z(s), K(s), s) ds.
0
b) K :[0,T[— (K(RY),qc.n) is Lipschitz continuous in time direction,

i.e. aen(K(s), K(t) < const(A,T)-(t—s) forall 0 <s<t<T.

¢) limsup ;- (QK,N(ﬁg(xu),K(t),t) (h, M), K(t+h)) — ax,n (M, K(t))-e“’“) <0
hl0

for every M € Keri(IRN), te[0,T].
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0.8 Generalized mutational equations :
Timed right—hand forward solutions.

The concept of right—-hand forward solutions has two further aspects of generalization.
They are sketched in this section although they might be less relevant to applications

discussed in this thesis.

The first aspect is related to the triangle inequality. Obviously it plays the key rule
whenever the distance between two points has to be estimated by means of a third
element. 'Thus, it has been incorporated in Definition 0.5.1 of an “ostensible metric”.
In the preceding sections, the same feature of an ostensible metric space (E,q) occurred
for several times : Considering ¢(x,y), the first argument x refers to the state at an

earlier point of time whereas the second argument y represents the later element.

In fact, this rule can be extended to the entire concept of right—hand forward solutions.
We only need the possibility of distinguishing between the “earlier” and “later” element
of E. For this reason, the product E := IR x E with an additional time component
is regarded instead of the nonempty set FE.

The tilde usually symbolizes that a separate time component is taken into consideration.

So a function  §:Ex E —» [0,00], (F1,%2) — §(Z1,72)
is to play the role of a distance. Then with respect to Z; = (t1,21), Ty = (t2,x2) € E,
we usually consider the case t; < ty. In this time-directed situation, the principle of
triangle inequality affects only points 2 = (s, 2) € E whose time component s is between
t; and ty (t; < s < ) and, it is motivating the so—called timed triangle inequality.
The term “timed” indicates that the (forward) time direction is taken into consideration

by means of a separate time component.

Definition 0.8.1 Set E = Rx E. §:ExE — [0,00 fulfills the so—called
timed triangle inequality if for every (r,z), (s,y), (¢,2) € E with r<s<t,

i((ro), 19) < @((no), ) + @) 12).

§: Ex E—[0,00[ is called timed ostensible metric on E if it satisfies
i((t2), (t2)) = 0 (reflezive)
G((r, ), (t, Z)) < @V((T, x), (S,y)) + q((s,y), (¢, z)) (timed triangle inequality)

for all (r,z), (s,y), (t,2) € E with r < s<t.

(E,q) is then called timed ostensible metric space.
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Every ostensible metric ¢ on E induces a timed ostensible metric ¢ on EZ RxE
according to §<(s,x), (t,y)) = |t—s| + q(z,y). As a consequence, all statements
about ostensible metric spaces result immediately from their more general counterparts

about timed ostensible metric spaces.

Forward transitions are easy to adapt to timed ostensible metric spaces since there
are only two new features to take into account (in comparison with Definition 0.6.1) :
The arguments of each ¢. are sorted by time and, we have to specify the evolution of
the time component. Condition (7.) of linear growth is mainly for the sake of simplicity.

As a global abbreviation, define the projection m : E— R, 7= (t,x) — t.

Definition 0.8.2 Let E be a nonempty set, D C E and E% Rx £, D% RxD.

Moreover, (G:)ecy denotes a countable family of timed ostensible metrics on E.

Assume for the map J: 0, 1] x E—E andeach e € J
1. 9(0,)) = Idg,

2. limsup %(L(&(h, 5(75,5)); 5(t—|—h, 5)) =0 VZieEE, te [0, 1],
h10
lim sup %@(5@%, %), I(h, 5(75,5))) ~ 0 VFieh telol],
R10
o~ ~ + ~
3. Ja7(W)<oo: sup limsup <q5(ﬂ( ,)1 (h’(j).)_ =&y j) < a7 (9)
i€?<§€€ h10 qe\T,
4. 3 B.(9):10,1] —[0,00[:  B.(9)(-) nondecreasing,  limsup B.(9)(h) = 0,
h10
@(5(5@), 5@,5)) < B.D)t—s) Vs<t<l ek,
5. YieD 3To=To0,3) €l0,1]: dti)eD VY teloTo
6. limsup @(5(1&—}1, 7), g) > 68(5(75,5), g) V 7eD, jeE, telo, To)
h10

with t+mx <m v,
7. 5<h, (t,x)) € {t+h} x E Y (t,x) € E, he[0,1].

Then U is a so—called timed forward transition on (E, D, (¢.).cz).
éH(E, 13, (G-):c7) denotes a set of timed forward transitions on (E, 5, (g=)) assuming

9 ~ o\ Tt
0~ (9. g-(0(h, ), T(h QT ]) - e @
Q- (9, 7) == sup limsup (q( (h,z), 7(h,y)) g=(T,y) - e ) c

€D, E h10 h
15 ¥

5 8

for all 9,7 € ©7(E, ( Dees), c€ .
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As a next step, the definitions of primitives and solutions are extended in exactly the
same way. It is just to point out that roughly speaking, the “test elements” of D always
refer to earlier points of time.

Here we mention only “timed right-hand forward solutions” on (F, D, (¢-)cc7) explicitly

before discussing the second aspect of generalization soon.

Definition 0.8.3  For f : Ex[0,T[— O~ (E, D, (q.)) given, a map % : [0,T[— E

15 a so—called timed right—hand forward solution of the generalized mutational equation

i) > f@),)
if () is timed right-hand forward primitive of f(Z(-), -): [0, T[ — @);’(E,E, (g:)),
i.e. for each e € J,

1.V telo,T] 3 arw) > o (J@EW),L) :

£

fiwsup (7 (70,0 (1,5), T+1) = T3 70) - =) <0,

forall 5 € D with my<m z(t),

2. Z():[0,T[— (E,q.) is uniformly continuous in time direction,

i.e. there is w.(x,-):]0,T[ — [0,00[ such that limsup w.(Z,h) = 0,
hi0

@(5(3), f(t)) < w (T, t—s) for 0<s<t<T,

3. ma(t) = t+ mx(0) for all t € 0,T7.

Indeed, all steps of section § 0.6 can be repeated with the timed triangle inequality
(instead of the triangle inequality).
From the topological point of view, there is only one additional condition to suppose,
i.e. the convergence with respect to the timed ostensible metric implies the convergence

of the time components. It is the motivation for the following definition :

Definition 0.8.4 Let E be a nonempty set, EEZRxE, §:ExE—s [0, ool

(E,q) is called time continuous if every sequence (T, = (tn, Tn))ne v in E and element
i=(tx)€E with 7,7 —0 (n— o) fulfill ty — t (n — o)
(i.e. the projection m(+) : E—R, 7= (t,x) — t s right-sequentially continuous

with respect to q).

In this chapter, all timed ostensible metric spaces are supposed to be time continuous.
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The second aspect of generalization is related to the modified semigroup condition
on transitions, i.e. condition (2.) of Definition 0.8.2. Using the Landau symbol of:),
it demands for every 7 € F, t € [0,1] and e € J

@ (U(h, U(t,3), t+h B) = oh)
(0t +h, B, b, IED)) = o(h)
In short, the main idea now is to replace o(h) with the other Landau symbol O(h).

A for h ] 0.

Strictly speaking, each J has a parameter yg(g) € [0,00[ (depending only on £) with

limsup ;- T (00, 9(47), I(e+h T) < ()

A ~ ~ ~ ~
limsup & - G (J(t+h B, Ih 05)) < 7.00)
hl0

for all = € E, t € [0,1] and each ¢ € J. So the challenge is to incorporate this
parameter in the concept of timed right-hand forward solutions.

The dependence of 75(5) on ¢ € J exemplifies an additional feature for characterizing
J. Assuming 0 € J, we choose the asymptotic behavior of ~.(d) (for ¢ —» 0)
as a further criterion and formulate now the most general definition of “timed forward
transition” on (E,ﬁ, (Gc)ecr) -

Definition 0.8.5  Let E be a nonempty set, D C E and E™ Rx B, D= RxD.
(Gc)eer denotes a countable family of timed ostensible metrics on E and, 0 € J.

A map e 0, 1] x E — E is a so—called timed forward transition of order peEIR on
(E, D, (Gc)eer) if it fulfills the following conditions (for each € € J)

1. 9(0,-) = Idg,

2. 3 7.(0)>0: limsup £”-7.(9) = 0 and
e—0
lim sup %@(5(/1, I(t, 7)), O(t+h, 55)) < () VYFeE tel]
R0
lim sup %@(%m, %), 9(h, 5(15,5))) < () VFeE telol]
R0

o 5 ~ o\t
3. 4 aH(ﬁ) < 00 sup lim sup g (9(n, @), 9(h. 7)) — @@y (D) h < a,_)({;)
) ek h{0 h (%(5,‘) + 7:(9) h) — €
1y

4. 3 B.(0):]0,1] —[0,00[: B.(0)(-) nondecreasing, limsup S.(9)(h) = 0,

R10
56(5(3,5), J(t, 55)) < B.D)(t—s) Vs<t<l ek,

5. VieD 3ATo=To(®,7)€l0,1]: Itz eD Vtelo,Tol

6. limsup Zje(@(t—h, 7), g) > qg(ﬁ(t,a), g) V 7D, JeE, te]0, To]

hi0 with t+m x < my,

7. 5(h, (t,:r)) € {t+h} xE YV (t,z) € E, heo,1].
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@);(E,B, (Gc)eer) denotes a set of timed forward transitions of order p on (E, D, (q.))

assuming

@':(5,?) ;= sup limsup
geD,j hl0

T T

('q;@m,%), D) - TED ea?“’h>+ < x
h

<

(aE)EEJ)a ceeJ.

for all 0,7 € @*’(E D,
In comparison with the preceding Definition 0.8.2, the new parameter 75(5) occurs
in only two conditions so far, i.e. condition (2.), of course, and condition (3.) on o (¥)),
~ ~ ~ o\t
"’Eﬁh,"’,,&h’ _~5~7 _Eﬁh 9
(q< (b, ), 90 ) = @(7,5) — 7:(9) ) < o (@) < oo,
h (¢:(%,9) + 7e(0) h)

As a consequence, we have to modify the substantial estimate that provided our starting

sup lim sup
FeD,jeE hl0
m T Ty
point for generalizing Aubin’s mutational analysis in § 0.6. So the more general counter-

part of Proposition 0.6.3 is

Proposition 0.8.6 Let {91? € @);’(E,ﬁ, (Gc)eer) be timed forward transitions,
ceJ, T€D, j€E with mZ<my and 0§h<7'@(5,f). Then,

i (03), 70i) < (@@ D) + b (QED) +70) +7(7))) e O

Its proof is presented in Proposition 2.1.5.
Following basically the same track as in § 0.6 leads directly to the subsequent definitions

of primitive and solution (formulated also in §§ 2.2, 2.3) :

Definition 0.8.7  The function 7 : [0,T][— (E,(q.)ecs) is called timed r1ght hand
forward primitive of a map 9 : [0, 7] — é;’(ﬁ, D,(q.)), abbreviated to :r( ) 3 U(),
if for each ¢ € J,

LoV te0T 3 arE) =ar(ta(),90) 20, 7o) = %6,5(), () 2 0 -

£

T 2 OO, A0 2 W)l <A = o
imsup + ( q. 9 — ¢y, - 8T (Oh < Fe(t),
fimsup ¢ (7 (90) (7). Fe+m) — @@ 370) ) <50

forall 5 € D with my < m I z(t),

2. F():[0,T[— (E,q) is uniformly continuous in time direction,

i.e. there is w.(T,-) :]0,T7] — [0,00[ such that limsup w.(z,h) = 0,
hi0

@(5(5), i(t)) < w(x, t—s) for 0<s<t<T.

3. ma(t) = t+ mx(0) for all t € [0,T7].
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Definition 0.8.8  For [ : Ex[0,T[— é;’(E, D, () given, amap T :[0,7[— E

15 a timed right—hand forward solution of the generalized mutational equation

i) 3 f@0),)
if () is timed right-hand forward primitive of f(Z(-), -) : [0, T[ — @);’(E,ﬁ, (g:)),
i.e. for each e € J,

LY te0T  Fare = al(f@en, ), 30 = w(f@0,0)

limsup 4 (% (FE0,0 (D), T+0) = @@ 70) - OM) < 50),

forall § € D with m §<m z(t) and anlf(l)lp e” - F.(t) = 0,

2. F():[0,7[— (E.q) is uniformly continuous in time direction,

3. ma(t) = t+ mx(0) for all t € [0,T7.

In regard to existence and stability of solutions, the former results of § 0.6 indicate
how to deal with the new parameter v.(-). Uniform bounds are supposed in the same
way as for the parameter o_"(+). Taking also the time direction into account, we obtain
the following theorems about convergence and existence.Their detailed proofs are shown

in Proposition 2.3.2 and 2.3.5, respectively.

Theorem 0.8.9 (of Convergence)

For each € € J, suppose the following properties of
fm; f: EX[O,T[ — épH(Eaﬁa(aE)EEJ) (mElN)

Ty I 0,7 — E :
LM, = swp (a2 (Fa(E0)} < .
R, > ;utpi{%(t, s Fn(@ms )y e(Fn(Eo1)), = (F(Z0)) }
with li;r’l sup € R, = 0,
e 10

2. limsup @?(fm(glatl)a fm(zzah)) < R. for m—o0, ty—1t |0,

§-(Z1,72) > 0 (m 21 < Z0),

4. We(h) == sup we(Tp, h) < oo  (moduli of continuity w.r.t. g.) V h€]0,T],
limsup @.(h) = 0,
h10
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5. Y t,t, € [0,T], t3€]0,7[ 3 (mj)jew with m; /oo and
@) timsup Q7 (F(@t),t), fu,(@(0). 1)) < R (G — )
@) 3 @en 01 @ (E(t), Fny(b+6)) — 0, & —0,
T Z(ty) < My T, (t2+0%).
@) 3 Gjer (0,60 (T, (ts=05), (k) —0, 85— 0,
71 T, (t5—0j) < 1 F(1s),

Then, z(-) is a timed right-hand forward solution of z(-) 2 f(z(-), ) in [0,T].

Theorem 0.8.10 (Existence of timed right—hand forward solutions
due to timed transitional compactness)
Assume that the tuple (E, (§.)ecs, ég’(ﬁ, D, (¢.))) is timed transitionally compact.
Furthermore let f: E x [0,7] — é;(ﬁ, D, (q.)ecy) fulfill for every e € J

1. M. = sup o' (f(z,t)) < oo,
17

2. c.(h) = sup B.(f(Z,1))(h) < oo, c:(h) — 0 for h 10,
17

3. AR, : sup 7(f(Z1)) < R. < o0, e’ Ry — 0 for & 10,
1,7

4o 30.0: @ (fEn), fEut) < R+ 0305 +1—h)
fOT’ all 0 S tl S t2 S T and 31,22 € E with 1 31 S VB 32,

W:(+) > 0 nondecreasing, limisoup W.(s) = 0.
S

Then for every xo € E, there is a timed right-hand forward solution = :[0,T[— E

of the generalized mutational equation z(-) > f(z(-), ) n[0,T with z(0) = Zo.

Due to the general assumption of time continuity in this chapter, Definition 0.6.9 of
transitional compactness can be applied literally to (E, (G)eer @)';(E, D, (q)))

providing the term “timed transitionally compact” (see Definition 2.3.4 in detail).

Obviously these results can also be applied to systems with 2 components. Indeed,
timed forward transitions éj(ﬁl,ﬁl, (@})ceq,) and éj(ﬁz,ﬁg, (@3)ees,) induce
timed forward transitions of order max {p,p’} on (Elxﬁz, Dyx Dy, (G24G2)ecr. crem
(according to Lemma 2.4.2) and, the timed transitional compactness of each component

(Br @)eenr (B, D1 (@) and  (Boy (@)ecss Oy (Br, Da, (@)
implies the same compactness property of the corresponding product (Lemma 2.4.3).
For the sake of simplicity, we consider only elements (Z,Z5) € El X Eg with identical

time component 7w, T1 = m Zo.
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So under adequate assumptions about the right—hand side of the system, existence
theorem 0.8.10 provides a timed right-hand forward solution
(@1, T2) ¢ [0,T[ — By x By
of the generalized mutational equations
@O, B0r 3 (@), BO), ), BE), B), ).
In this context, only one asymptotic demand (for h | 0) has to be fulfilled by both

components Z(-), To(-) simultaneously, i.e. for each e € Jy, ¢’ € Jo and t € (0,77,

there exist parameters @, 7.~ > 0 such that

A= @ (R@EO B0, (hG). Bleh) — @, B)
+ @ RE0), B0, 1) (L), B+h) — G B) -
satisfies lim sup %-Ah < e, limsup (¢ + g’)maxirs} . Veer = 0
hl0 g,e/ — 0

for all ?71 € 51, gZ € 52 with T ?71 = 71 gZ S 1 gl(t) = 71 52(2‘;)
It is not obvious that (Z(+), To(+)) is a timed right—-hand forward solution of the system
71(-) > ful@i(e), T2(-), -)
22() 2 fo@1(), B2(4), +)
(i.e. separately with respect to each component).
The main step is to adapt the convergence theorem to systems (as in Proposition 2.4.5).
Then the tuples of Euler approximations in El, Ez, respectively, provide a curve

0,T[ — E, x E, whose components solve the generalized mutational equations

separately. Details are given in Proposition 2.4.6.

Finally, we make some remarks about the role of ~.(-) > 0.
Analytically speaking, this parameter gives the opportunity to introduce an additional
limit process that follows the process of first—order approximation. This might be useful

for multi-scale problems, for example, although they are not considered in this thesis.

However, 7.(-) > 0 and its upper bounds (usually abbreviated as R.) are also of
direct use for semilinear evolution equations here. Indeed, consider Proposition 0.4.2.

Its continuity assumption about the right—hand side

> 2t g (flasn), fnt) < w(z 2k gy )
k=1

(for all =,y € X and ty,ty € [0,7] with a modulus &(-) of continuity) was to take

more than one pseudo—metric g; = Qv (€T =1{41,J2,J5 .--}) into account.
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The corresponding parameters o (-) are closely related with the eigenvalues of the
infinitesimal generator A (as shown in Proposition 4.5.3 and Lemma 4.5.9). For this
technical reason, we consider only a finite number of pseudo-metrics ¢; simultaneously

and define for all x yEX ne N

n
L YR
k=1

Obviously, each p, is a pseudo metric on the reflexive Banach space X, but the preceding
continuity assumption (of Proposition 0.4.2) implies merely

Pn(f(l‘atl)a f(yatQ)) S (pn X ?J Z 2- k lf,;]k,y) ) + |t2 _t1|)

k=n+1
< o(paloy) + 2 + [t —h]),
i.e. the continuity of the right-hand side (with respect to P,, p,) is not really guaranteed
in the way we need before introducing the parameter ~,,(-).
Correspondingly, (timed) forward transitions with . > 0 are also used for proving

Proposition 0.4.3 and 0.7.14 (dealing with semilinear evolution equations) in detail.
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0.9 Generalized mutational equations :
Timed right—hand backward solutions.

A second concept generalizing Aubin’s mutational analysis is presented in chapter 3.
It is motivated by the observation that roughly speaking, information about the evolving
state might be lost in the course of time. Considering the geometric example of time—

dependent sets, topological “holes” can disappear.

So the starting point is now to benefit from the information of the past as long as possible
and basically, we take the states at time ¢t — h and ¢ into consideration (for h | 0).
This notion is indicated by the term “backward” and is symbolized by — (representing

the time axis).

An immediate disadvantage of this approach is that
we cannot overcome the second obstacle mentioned
in § 0.5. Indeed, the figure on the right illustrates
for any fixed time t that there might be a “hole”
disappearing — no matter how small ¢ —s > 0 is
or how smooth the sets are at time t.

For this reason, we do not use the idea of distri-

butions again (basically for defining the continuity s t

parameter « in an adequate way). In particular,

a “test set” D C E is not required any longer.

Although this concept might be of less interest to (geometric) applications, we pursue
this “backward” idea and present another analytical tool for dealing with the semi-

continuity of (generalized) distance functions.

Local properties like subdifferentials can provide global information by means of
Gronwall’s Lemma (maybe in a modified form). This has already been essential in
Aubin’s mutational analysis and, we have extended this technique to (timed) ostensible
metric spaces (in §§ 0.5, 0.6).

/g / Now the states at time ¢t —h and ¢ are considered
(for h | 0). Correspondingly to Lemma 0.5.2,
we again need a version of Gronwall’s Lemma for

/ semicontinuous functions — but in backward time

7 direction. Indeed, Lemma 1.5.3 states :
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Proposition 0.9.1
Let ¢ : [a,b] — R, f,g € C%[a,b[,IR) satisfy f(-)>0 and

Y(t) > limsup ¥(t+ h), V tela, b,
h10
limn inf YOV < f() 1ir21¢s(}1p Yt —h) + g(t) <oco ¥V t€]a,b).

Then, for every t € [a,b], the function 1(-) fulfills the upper estimate
t
R I O

with p(t) = /tf(s) ds.

When applying this estimate to the distance between two points evolving along
transitions, all these distances have to be finite of course. That is guaranteed by a
general assumption (abbreviated as (BUC™)) about any two curves that are uniformly
continuous in time direction.

Furthermore we have to verify the first assumption of semicontinuity. In § 0.6, we
overcame the corresponding difficulty by means of an additional condition on forward
transitions (i.e. condition (6.) in Definition 0.6.1).

Now we prefer an alternative representing the second main difference in comparison with
the “forward” concept : For two curves 7,y : [0,7] — (E,@E) in a timed ostensible

metric space, we consider the upper limit

qg(i(ﬁ), g(t++)) = limsup Z]}(i(t+k), g(t+l))

instead of the distance ¢.(z(t), y(t)) because in regard to Proposition 0.9.1,

@ (0. 907) = tmswp (7 (@+n)), (@407
is obvious then. Moreover, the assuirgption 0 < k < [ about the limit superior is
to facilitate incorporating the time direction and applying the timed triangle inequality.

General relations between ¢.(z(t%), y(t*")) and ¢.(z(¢),y(¢)) (in form of an inequality)

are proven merely under additional conditions on (E,q.) (as in Corollary 3.4.2).

These two modifications (i.e. the preceding limit superior and the “backward”
notion without “test elements”) lead, for example, to the following condition on a

timed backward transition 0 :[0,1] x E — (E, (¢.)ecs) of order p

3 7% (W) >0 : limsup e’ 7.(J) = 0 and forallte]0,1],

e—0
limsup 3 (901°, 9= 7)), TET) < )
limsup - (9(,7), IR, Gt -05)) < ().

R10
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In fact, considering the upper limit with respect to time (abbreviated as “+7.)"4++")
requires an additional feature of “backward” transitions that provide a “forward” link
with the initial values (roughly speaking), i.e
(007, 9.7), d¢t5) =0, @ (I, 90, 47)) = o
From now on, UC™(]0, 1], E, ¢-) denotes the set of all functions ]0,1[ — E that

are uniformly continuous in time direction with respect to ¢. and, we define

Definition 0.9.2 Let E be a nonempty set, B2 RxE and (.).cs a countable
family of timed ostensible metrics on E such that each (E, g.) is time continuous.
9:00,1] x E — E s called timed backward transition of order p € R on (E, (¢.)ccs)
if it satisfies for every e € J,

1. 0(0,) = Id,

2. 3 7.(0)>0: limsup £”-7.(J) = 0 and
e—0
lmsup -G (9(h%, Dt —h@), UE,5)) < @) Vel
h10
lim sup %@(5(#,55), I(hH, 5(t—h,§))) < (@) ¥ telo],
R10
(= ~ ~ — o~ - ~ +
3 (D) — I @ (T, 3(tn)), IW+,5(tn))) — (36, 56) (D) b
oz (0) oxi51 R0 < h (@@, 5G) +7:0)h)
U0—>Zc]’0?1[, B,qe)
< 00 (with ty :=1t—h)
4. 3 8.(0):10,1] — [0,00[:  B.(9)(-) nondecreasing, limsup S.(9)(h) = 0,
h10
(19 ), Ot x)) < B.()(t—s) VO<s<t i€FE,
5 qe(ﬁ ), (T, 5)) =0 v telo,1],
qg(ﬁ %, 0++ (, x))) =0 v telo,1],
6. ﬁ(h, t:r) € {t+h) x E Y (t,x)eE, helo,1].

Define for any timed backward transitions 0,7 : 0, 1] x E—F andce J,

0(9,7) = sup limsup %@(5(/#, 7(t— h, 7)), %(t++,§)).
T

ép_”(E, (Gc)ecs) denotes a set of timed backward transitions of order p on (E, (Gc)eer)
supposing for all {91 T E ép_”(E, (Ge)ecr), T € E, e € J in addition

Q7(9,7) < oo,

(0073, 7075) % tmsup (k7). 71D = 0.

k110 (k<1)
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As mentioned before, we do not incorporate the general idea of distributions here and
thus dispense with a “test set” D C E. So any points of E evolving along timed backward

transitions can be compared directly. As a consequence of Gronwall’s Lemma 0.9.1,

Proposition 0.9.3 Every timed backward transitions 9,7 € é;”(E, (¢:)ees) and
initial points 7,7 € E (with m & < m y), t€]0,1], € € J satisfy

(005, 7 0) < @000 DF00) e O
+ (G207 + 270:0))
The detailed proof is given in Proposition 3.1.4. Here the parameter a2*(J) of the first

argument is used — as in Aubin’s mutational analysis in metric spaces (see § 0.3).

Now the terms “primitive” and “solution” are defined in a quite natural way — on
the basis of first—order approximation.
The possibility of estimating the distance between any two evolving points motivates us
to distinguish between “right—hand” and “left-hand backward primitive” and then state
a corresponding estimate for primitives in Proposition 0.9.5 (proven in Proposition 3.2.3).
This distinction, however, is only relevant for estimates, but not for existence results

and so, we do not extend it to backward solutions explicitly.

Definition 0.9.4 7 : [0,7] — (E,(¢:)ccs) is called timed right-hand backward
primitive of a map J 0,7 — @);”(E, q:)) if for each €€ J,

1. Vie ]OaT[ 3 /’?E(t) = /’?a(ta i‘/()aﬁ()) : 75(19(15)) < /’?a(t) < 00,
lim sup 2 () (h+’i(t7h))’ H) < (), limsup &% -7.(t) = 0,
R10 €10

2. #() € UC([0,T,E,q.), i.ec. thereis w.(%,-):]0,T[— [0,00[ such that

@;(%(s), 5(t)) < wl(x, t—s) for 0<s<t<T, limsup w.(Z,h) = 0,
h10

3. @(5(1&) (0F, 7(1)), §(t++)) ~ 0 VY telo,T],
4. ma(t) =t + m z(0) V telo,T].

7:00,T[— (E, (§.)ecs) is called timed left—hand backward primitive of 9(-)
if it satisfies conditions (2.), (3.), (4.) and

1. Vi E]O,T[ = /’?e(t) :/’?e(tai(')vﬁ(')): 78(19(t)) < /’?e(t) < 00,

lim sup 7 (3, ﬁ(t_hlz st D)) 7 (1), limsup &% -75.(t) = 0,
hi0 £'10
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Timed backward transitions induce their own right-hand and left—-hand primitives
due to condition (2.) of Definition 0.9.2. This result is easy to extend to piecewise
constant functions [0,7] — @);”(E, (¢-)) (according to Lemma 3.2.2) and thus forms

the basis of Euler approximations.

Proposition 0.9.5

Let 7:[0,T[— E  be a timed left-hand primitive of 0 : [0,T] — ©,*(F, (q.))
and y:[0,T[— E a timed right-hand primitive of 7: [0,T[ — ©,"(E, (¢-))
such that for each ¢ € J,

o) < M() € C([0, ], ]0, 0D,
A /’)\’s( 7’5719)7 /rjﬁ('aga?) < Rs() < CO([O,T[, [0,00D,
J00), 7() < () < CO([OaT[a [0, 00]),
m z(0) = m y(0).
Moreover, set p.(t) := t M. (s) ds.

Then, for every e € J and t €0,T[, these backward primitives fulfill the estimate

66(56'(15+), ﬂ(ﬁ*)) < ag(%(m), ’g(o++)) ehs(t) 4

+ / eh=(D=n=(s) (ce(s) + 5RE(5)> ds.

0

Definition 0.9.6
For given f : E x [0,T] — é;‘(ﬁ, (@), amap T :[0,7[— E is a timed

[e]

right—hand backward solution of the generalized mutational equation = (1) > f(z(-),")
if () is timed right—hand backward primitive of f(i(), )0, T — é;“(E, (Ge)ecr),
i.e. for each e € J,

1.V telo,T[ 37:(): :(f(@(),1) < F:(t) < oo, limsup &% -F.(t) = 0,

]
tmsup & - @ (F@—h), t-h) (b7, 3-h)), F6) < R0)
h10
2. () € UC([0,T[,E,q.), i.e. thereis w.(%,):]0,T[— [0,00[ such that
@;(5(5), f(t)) < w(T,t—s) for 0<s<t<T, limsup w.(Z,h) = 0,
hi0
5. & (F@w,0 0%, 71), #t) =0 v te0,T],

4. mz(t) = t+ m z2(0) vV telo,T].
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The first existence result is obtained in exactly the same way as for timed right—
hand forward solutions in § 0.8. Indeed, Convergence Theorem 0.8.9 can be adapted
to a sequence of timed right-hand backward solutions (as shown in Proposition 3.3.2)
and then, Euler approximations in combination with timed transitional compactness

lead to Proposition 3.3.3 stating

Theorem 0.9.7 (Existence of timed right—hand backward solutions
due to timed transitional compactness)

Assume that the tuple (E, (G)eer, @);”(E, (g=))) is timed transitionally compact.
Moreover let the function f: E x 0,7] — é;“(E, (Ge)eer) satisfy for every e € J

1. M. = sup o '(f(z,1)) < 00,
17

2. c.(h) = sup B.(f(Z,1))(h) < oo, c:(h) — 0 for h 10,
1,7

3. AR : sup 7(f(Z1)) < R. < o0, e R — 0 for & 10,
1,7

4300 G (fEn), fGat) < R+ 0.(2(%) + -h)
fOT’ all 0 S tl S t2 S T and 31,22 € E with 1 31 S VN 32,

We(+) > 0 nondecreasing, limisoup We(s) = 0.
S

Then for every initial point Ty € E, there is a timed right-hand backward solution
7:00,T[— E of () 3 f(&(),") n[0,T] with Z(0)= .
If assumption (4.) is replaced by
4. 3 W(), L >0 @?(f(gl,tl); f(gzytz)) < R+ Lo q.(z1,22) + We(ta — 1)
fOT’ all 0 S tl S t2 S T and 51,52 € E with 1 51 S 1 32,

:(+) > 0 nondecreasing, limisoup G.(s) = 0.
S

then any other timed right-hand backward solution Z(-) (with Z(0) = Ty) fulfills
@(%(ﬁ), Z(t++)) < 6R.teMt (1 + L, elbe e THMT t) Vte[0,T], e J.

In particular, this theorem implies that a timed right—-hand backward primitive with
given initial value exists for every function o : [0, 7] —s @);”(E, (G:):eg) satisfying
1. M. :=sup o’(J(t)) < oo
t

2. c(h) = sup B.(0)(h) < 0o,  c(h) — 0 for h |0

3. 3 R.: sup 1(0(t)) < R, ¢" R.—0 for ¢ —0,
¢

limsup  Q-(9(1), U(t2)) < R..

0<ta—t1 =0
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So far all the existence results have been based on (timed) transitional compactness.
Proposition 0.9.3 about the distance between any two evolving points opens up the
possibility of supposing a weaker condition that is corresponding to completeness.
Then, we need the preceding estimates for verifying even the Cauchy property of
approximating sequences. So the assumption R.(-) = 0 is obviously unavoidable.
Moreover if a sequence fulfills the Cauchy condition with respect to every ¢. (¢ € J),
then its limit has to be the same for each e.

For these reasons, we restrict ourselves to merely one timed ostensible metric ¢ on
E™ RxE and consider timed backward transitions ¥ on (E,q) with ~(J) = 0.
For the sake of simplicity, all transitions are also supposed to be wuniformly Lipschitz

continuous in time direction, i.e. there exists a constant [“»(J) > 0 with
7(9(s,3), 9(t,7)) < F00) - (t—s)

forall 0<s<t<1, T€E.

Corollary 3.3.8 exemplifies the existence results due to completeness presented in § 3.3.3 :

Theorem 0.9.8 (Timed backward solutions in one-sided complete (E, 7))

Suppose that the timed ostensible metric space (E,Ef) 15 one-sided complete, i.e.
for any sequence (Z,), in E satisfying 4(Zm,2n) — 0 form,n — oo (m < n),

there is an element z € E such that  q(z, z,) — 0,  q(Zp, 2) — 0 (n — 00).

Furthermore suppose for any element § € E and all sequences (Un), (Zn) in E that
a@; gn) — 07 a@m gn) —0 (TL — OO), T gn S 1 gn
always imply q(y,z,) — 0.
Assume for f : E x [0,T] — ©;7(E, q)

1. there exists L > 0 such that for any T,,7o € E, 0<t; <ty <2T

with m T, < T Ty Qv_ﬂ(f(flytl); f(fz,tz)) < L- (6(51, Ty) + t2_t1):
2. M := sup a(f(Z,1)) < oo,
i
3. ¢ = sup BYP(f(T,t)) < oo,
i

J. ALTe*MT < 1.

For every point xy € E, there is a timed right—hand backward solution T :[0,T] — E

of the generalized mutational equation z (-) > f(z(-),-) n [0,T] with z(0) = Ty
such that any other timed right-hand backward solution Z(-) € Lip~([0,T[, E, §) with
20) = Ty fulfills Zj(i(ﬁ), z(t++)) =0 for all € [0,T].
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There is no general inequality comparing q(z(¢), y(¢t)) with q(z(t"), y(t™1))
for two curves z,y : [0,T] — E. 1In this context, the triangle inequality has an
advantage over its timed counterpart because a general assumption about converging

sequences implies equality in ostensible metric spaces.

Lemma 0.9.9 Assume for the ostensible metric space (E,q) that left—convergence
of a sequence (zp)nemw, i.e. q(z,2,) — 0, always implies right—convergence of a subse-

quence (Zn;)jenv, i-€ q(zn;,2) — 0 (j — 00).

Then, q(z(t), y(t)) = q(@(t7), y(t™"))  for every x(-), y(-) € UCT([0,T], E, q)
and t€l0,T7.

The proof is a consequence of Lemma 1.4.7 (2.) and Corollary 3.4.2.

In short, the hypothesis of Lemma 0.9.9 for a (not timed) ostensible metric space (E,q)
implies that upper limits (abbreviated as “+”7,“++") are dispensable. As a consequence,
we obtain the existence without time restrictions (like condition (4.) of Theorem 0.9.8).

Indeed, Proposition 3.4.5 states

Theorem 0.9.10 (Long—time existence of backward solutions
in ostensible metric spaces)
In addition to the assumptions of Lemma 0.9.9, let the ostensible metric space (E,q)

be one-sided complete (as in Theorem 0.9.8)

Suppose for f: E x[0,T] — O,"(E,q)
1. there exists L >0 such that for any x1,29 € £, 0<t, <t <T,
Q™ (f(l'latl); f($2,t2)) < L- (CI(xl, Tp) + to —tl);
2. M := sup o '(f(z,t)) < oo,
x,t
3. ¢ = sup BY°(f(z,t)) < oo,

x,t

For every point xy € E there exists a right-hand backward solution z :[0,T[— E

of the generalized mutational equation z (-) > f(z(-), ) in [0,T] with z(0) = z
such that any other right-hand backward solution z(-) (with z(0) = xo) fulfills

q(x(t), z(t)) =0 for all t € [0,T7.
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Chapter 1

The triangle inequality in time

direction and other preliminaries

The symmetry of a metric (on a nonempty set E) might prove to be an essential obstacle
when describing evolutions that are not reversible in time. In this context, the interesting
question arises which properties are relevant to a distance function on F.

The triangle inequality is necessary for estimating the distance between two elements
by means of a third point. For this reason we cannot develop an approach completely
without it. However there is an opportunity of weakening it by taking the time direction
into consideration. Strictly speaking, the set E # () is replaced by the product

E:=RxE={Z=(tz)|tcR z€cFE)}
with the first component ¢ representing the time of the second component x € F.
Now a function

GiExE — [0,00] (21,T) > (71, T)
is to play the role of a distance. Then in a figurative sense, the first argument z; = (¢, 1)
refers to the earlier point whereas the second argument 7, = (f9,2,) represents the
later element of E, i.e. we usually consider the case t; < t,. In this time-directed
situation, the principle of triangle inequality affects only points 2 = (s, z) € E whose
time component s is between ¢; and ¢, (t; < s < t3) and, it is motivating the so—called
timed triangle inequality in Definition 1.1.2.

This chapter provides the preliminaries for describing evolutions in E% Rx E,
supplied with a countable family (g.).cs of distance functions ¢ : ExE—» [0, ool.

It contains adjustments of topological terms, such as compactness and completeness, and
it introduces the so-called standard hypotheses (L=), (R), (R¥) on E that consist
in sequential properties of closed spheres in (E,(}) All of them are obvious in metric

spaces, but they cannot be proven without the symmetry of ¢ in general.

29
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Dispensing with symmetry (of ¢ : E x E —s [0,00[) has the analytical consequence
that the distance

[0, T[ — [0,00[, ¢ +— q(z(t), y(1))
between two curves Z(-),7(-) : [0,7] — E might not be continuous any longer
— even if both z(-) and y(-) are quite “smooth” with respect to ¢. For this reason,
the last section provides generalized versions of Gronwall’s Lemma for semicontinuous

functions.

1.1 Definition of ostensible metric

Due to the well-known definition, a metric d : M x M — [0, 00] on a nonempty set M
has to fulfill three properties : positive definite, symmetric, triangle inequality. Now we
introduce weakened terms for distance functions. It leads to so—called ostensible metrics
that are mainly based on the triangle inequality. In topology, these generalized forms
of distances are called quasi-pseudo—-metrics (see e.g. [42, Kelly 63], [43, Kiinzi 92]),

but for merely linguistic reasons we prefer the adjective “ostensible”.

Definition 1.1.1  Let E be a nonempty set.
q: Ex E — 0,00 fulfills the so—called triangle inequality if for all x,y,z € E,

q(z,z) < qlz,y) + q(y,2).
q: Ex E—[0,00[ is called ostensible metric on E if it satisfies the conditions :
1. Veek: q(z,z) = 0 (reflezive)
2. Vayz€E: q(x,z) < q(z,y) + qly,z) (triangle inequality).
Then (E,q) is called ostensible metric space. O

Definition 1.1.2 Furthermore set E = IR x E. q: ExE —» [0, 00[ fulfills the
so—called timed triangle inequality if for every (r,z), (s,y), ( ) €FE with r<s<t,

i((na), (2) < @((na), (59) + @((s): (2).
. E x — [0, 00[ is called timed ostensible metric on E if it satisfies
( (2 ) =0 (reflezive)
7( (), (t,z)) < (o), (s0) + @((s:), (42))  (timed triangle inequality)

for all (r,z), (s,y), (t,2) € E with r <s<t.

(E,q) is then called timed ostensible metric space.
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Remark. 1. In the literature on topology (e.g. [67, Wilson 31], [42, Kelly 63],

[62, Stoltenberg 69], [43, Kiinzi 92]) a so—called quasi-metric p : E x E — [0,00] on
a set E satisfies the triangle inequality and is positive definite, i.e.

p(r,y) =0 <= z=y for every x,y € E.

A so-called pseudo-metric p: E X E — [0,00[ onaset E # () is characterized by

the properties : reflexive (i.e. p(x,z) =0 for all z), symmetric (i.e. p(z,y) = p(y, )

for all z,y) and the triangle inequality. O

2. Each ¢: E x E — [0,00[ satisfying the triangle inequality induces a function
(: Ex E—[0,00] in the way
Z]V((s,:r), (t,y)) = |s—t|+q(z,v) for all (s, ), (t,y) € E
such that ¢ fulfills the (timed) triangle inequality.
So the results about timed ostensible metric spaces (E, ¢) can be applied to ostensible

metric spaces (E, q).

Now some abbreviations for continuous functions of time are introduced. Here the

symbol — is to remind us of considering the forward time direction :

Definition 1.1.3 Let J C IR be nonempty, D C E#0, q: Ex E — [0,00].
1. Lip~(J, E,q) denotes the set of f:J — E for which there is L > 0 with
vV os,teld: s<t = q(f(s), f(t)) < L(t—s).

2. UC™(J,E,q) abbreviates the set of uniformly continuous maps f : J — E

in the sense that there is some nondecreasing w(f,-) :]0, co[ — [0, 00|

with limsup w(f,h) =0
h10
and vV os,telJ: s<t = q(f(s),f(t) < w(f,t—2s).

Such function w(f,-) is called modulus of continuity (of f(-)).

3. The pair (E,q) satisfies the condition (BUC™) if and only if all functions
x,y e UCT([0,T], E,q) (with T < oo) fulfill sup q(z(-),y(:)) < oc.
[0,77]

Remark. Ifq: E x E — [0,00[ satisfies the triangle inequality then property
(BUC™) is trivial for (E, q) since for any z,y € UC7([0,T], E,q) and t € [0,T] C [0, o0],
q(z(t),y(t) < q(@(t),2(T) + q@(T),y0)) + q¢(y(0),y(t))

< w@(), T)  + q@(T),y(0) + w(y(), T).
However, this conclusion does not hold for the timed triangle inequality in general.
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1.2 One-sided and two—sided compactness

As a first step, we need a relationship between the convergence of a sequence in (E, q)

and the asymptotic behavior of the time components.

Definition 1.2.1  Let E be a nonempty set, EXY RxE, G:ExE—» [0, ool

(E,q) is called time continuous if every sequence (T, = (tn, Tn))ne v in E and element
i=(xz)€E with 7,7 —0 (n— o) fulfill ty — t (n — o)
(i.e. the projection m () : E — R, T = (t,x) —> t is right-sequentially continuous

with respect to q).

Generally speaking, constructing solutions (of evolution systems) by approximation is
usually based on compactness or completeness. In this section, we are adapting the
term of sequential compactness to (E, (¢.).cs) and distinguish between the order of
arguments I, T in the vanishing distance ¢ :

Ge(Ty;, T) — 0 (j —> o0) is regarded as right — convergence of (Z,,;)jenv to ¥ and
¢:(T, Tp;) — 0 as left - convergence.

The following definitions can be extended to tuples (F, (¢:)cc7) without time component
in a canonical way. In the case of ostensible metrics ¢. (¢ € J), it proves to be equivalent

to Definition 0.6.8.

Definition 1.2.2  Let E#0 be a set, E 2 RxE, G :ExE —[0,00] (¢ €.J).
1. (E , (¢)ee7) s called one-sided sequentially compact (uniformly with respect to €)
if for every 2 € E, 1. >0 (e € J) and any sequence (Tp)pen, in E satisfying

(2, @n) < 7o VnelN Veed
there exist a subsequence (Tn;)jcw and an element T € E such that

’q‘;(in‘ﬂi)_>0 fO?"j—>oo VSEJ

2. (E,(¢.)ecs) is called timed two-sided sequentially compact (uniformly with respect
to ) if for every zZ € E, r.>0 (e € J) and any sequences (Tp)nemnw, (Un)nemw in E

satisfying
0 (T, Un) — 0 for n — oo VeeJd
¢(%,%0), ¢(Z,9) < 7. ¥V nelN Veed
T Ty < T Yn VnelN

there exist subsequences (Tn,)jem, (Un;)jemw and an element ¥ € E such that

4 (T, T) — 0 _
o for j — o0 Veed.
QE(xa ynj) — 0
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1.3 One-sided and two—sided completeness

Now the notion of completeness is specified for a tuple (E, q).

In contrast to the preceding definitions of sequential compactness (in § 1.2), both left—
and right—convergence are always demanded, i.e. the limiting point is to appear at both
arguments of the vanishing distance gq. The difference between “one-sided complete”

and “two-sided complete” refers to the number of approximating sequences :

Definition 1.3.1 Let E be a nonempty set and q: E x E — [0, 00].

(E,q) is called one—sided complete if for every sequence () in E with q(Ty,, x,) — 0
for m,n — oo (m < n), there is some element x € E such that

q(z, x,) — 0 q(zp, ) — 0 (n — ).

(E,q) is called two—sided complete if for any (x,)nen, (Yn)new in E satisfying

q(zm,x,) — O
for mn — o0 (m < n),
q(Yn» Ym) —> 0
Q(xna yn) — 0 fO’/’ n —oo
there exists x € E such that
oz, ) —
for n — o0.
q(z, yn) — 0
Remark. 1.  Every one-sided complete (FE,q) with ¢ satisfying the triangle

inequality is also two—sided complete. Indeed, for every sequences (x)nen, (Yn)new in
E fulfilling

¢(Tm, x,) — 0 for m,n — o0 (m < n),

q(Tn, yn) — O for n — oo

the triangle inequality implies for the limit = of (z,)nen

q(,yn) < g, 20) + q(Tn,yn) — 0 (n — 00).

2. If (F,q) is one-sided complete and ¢ fulfills the triangle inequality, any of these

limits x,y of (x,)nenv are equivalent in terms of ¢(z,y) = 0.
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1.4 Standard hypotheses (L™), (R™), (R%)

Roughly speaking, standard hypotheses (L7), (R™), (R<) on (E,q) are to provide
sequential continuity for the distance from any fixed point.

To be more precise, we consider a sequence (Zy)nen in E and its limiting point x. Then
for any element z € E, the distance between x and z is supposed to be approximated by
the distance between x,, and z. This leads to different conditions on (£, ¢) depending on
the left— or right—convergence of (z,),en and on the consideration of ¢(z,z) or ¢(z, 2).
For a metric, all this properties are obvious consequences of symmetry and triangle

inequality. However they do not hold for ostensible metrics in general.

Definition 1.4.1  Let E be a nonempty set and q: E x E — [0, 00].

The left-hand spheres of (E,q) are said to be right—sequentially closed if (and only if)

every sequence (Tp)pen in E and v € E with  q(v,,x) — 0 (n — 00) also fulfill
nli_r)noo q(z,x,) = q(z2) for every z € E.

This property is abbreviated as standard hypothesis (L™) for (E,q).

Remark. The name of this property is due to the following restatement : For any
z € E, the left-hand sphere at z with radius r > 0 is defined as

Skt(z) == {x € Elq(z,x)=r}.
Let (2,)nemw be a sequence in Se%(z) right—converging to z € E, i.e. ¢(z,,2) — 0
(n — o0). Then z is contained in S¥%(2) as well.

(Roughly speaking the limit = cannot be a better approximation of z than the sequence.)

Lemma 1.4.2 1. For any timed ostensible metric space (E, q) with standard
hypothesis (L™), the right-convergence q(Z,,T) — 0 always implies q(z,z,) — 0.

2. Letq: ExE — [0,00[ satisfy the triangle inequality. If the right-convergence

of any sequence (Tp)nenv, i.e. q(xn,2) —> 0, always guarantees q(x,r,;) — 0
(j — 00) for a subsequence (xy,;)jenv, then (E,q) fulfills standard hypothesis (L7).

|



1.4. STANDARD HYPOTHESES (L7), (R™), (R¥) 65

Definition 1.4.3  Let E be a nonempty set and q: E x E — [0, 00].

The right-hand spheres of (E,q) are said to be right—sequentially closed if (and only if)

every sequence (Ty)nen in E and x € E with  q(x,,z) — 0 (n —> 00)  also fulfill
lim q(z,,2) = q(z,2) for every z € E.

n— o0

This feature is abbreviated as standard hypothesis (R™) for (E,q).

Remark. Correspondingly to the preceding Def. 1.4.1, the name of this property
results from the following notion : The right-hand sphere at z € E with radius r > 0 is
defined as sueht()y = {z € E|q(z,2) =7}

Now suppose the sequence (z,),cn in SH8(2) to be right—converging to z € E, i.e.

q(7,,x) — 0 (n —> 00). Then x is contained in ST eM(z) as well.

Lemma 1.4.4 Let q: E x E — [0,00[ satisfy the triangle inequality.

If the right—convergence of any sequence (p)new, i.e. q(zp,x) —> 0, always implies
q(x,1,;) — 0 (j —> o0) for a subsequence (xy,)jenv, then (E,q) fulfills standard
hypothesis (R™).

So in particular, every ostensible metric ¢ on E satisfying standard hypothesis (L™)
also fulfills standard hypothesis (R™). O

The substantial benefit of standard hypothesis (R™) affects right—convergent sequences
of functions [0,7] — E : If they are equi—continuous (in positive time direction)

then so is the limit function, i.e. strictly speaking,

Proposition 1.4.5  Suppose standard hypothesis (R™) for (E, q) and let the functions
i [0,T] — E (ne N) and T:J — E (J C [0,T]) satisfy for any s €]0,T],
ted, helo,T —1
1. 5(%}1(3), in(s+h)) < wh®) = limsup w(k)
kih
2. 3 (6)ner : a(zgn(t —4,), 5(75)) 5 0, S L0 (n— o0),
3. mT,() < mz(y) nondecreasing for everyn € IN

with the modulus w(-) of continuity (i.e. w(-) is nondecreasing and lgg)l w(h) = 0).

Then q(i(t), z(t + h)) < w(h™) for every t € J, h >0 with t+heJ
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Proof. Assume that there exist >0, t € J, h >0 such that t+h € J and
a(i(t), F(t+ h)) > w(h*) +21.
Choose the sequences 6,, | 0, 6/ | 0 satisfying
a(fgn(t — ), 5(15)) 0, a(%n(t +h—6,), F(t+ h)) 50 (m— o).

Since the right-hand spheres of (E,q) are right—sequentially closed, we conclude

for every n € IN sufficiently large
wh+0,)+n < wht)+2n

< §<5n(t 8y, B+ h))
< a(in(t —8), Tt +h— 5n)) + a(in(t Y h—4,), F(t+ h))
< w((h =8, +6)%) + 1
< w(h+4d)) + 3
— a contradiction. O

Definition 1.4.6  Let E be a nonempty set and q: E x E — [0, 00].

The right—hand spheres of (E,q) are said to be left—sequentially closed if (and only if)

every sequence (Tp)pen in E and v € E with  q(v,x,) — 0 (n — 00) also fulfill
nli_r}rloo q¢(Tn,2) = q(z,2) for every z € E.

This property is abbreviated as standard hypothesis (R<) for (E,q).

Lemma 1.4.7 1. For any timed ostensible metric space (E,Ef) with standard
hypothesis (R<), the left—convergence q(x,z,) — 0 always implies q(T,,T) — 0.

2. Letq: EXE — [0,00] satisfy the triangle inequality. If the left—convergence of
any sequence (Tp)new, i-e. q(z,7,) —> 0, always guarantees q(x,,,xr) — 0 (j — o0)
for a subsequence (zn;)jewv, then (E,q) fulfills standard hypothesis (R<). a

As a final remark for one-sided sequentially compact (FE,q) given, we suggest a
way of constructing a function gqg=) : £ x E — [0,00[ that satisfies standard
hypothesis (R<).

Proposition 1.4.8 Let q: EXE — [0,00[ be an ostensible metric on the nonempty
set E that is one—sided sequentially compact and set for xi,x9 € E,

q(r=) (w1, 22) = sup {(1(91,352) ‘ € E, gz, ) = 0}
Then (E,qr=y) fulfills standard hypothesis (R<).
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Proof.  For showing the triangle inequality of gr=), consider any i, x9,23,y1 € E

with g(z1,y1) = 0.

Since ¢ is an ostensible metric on E, we obtain ¢(-,-) < qr=)(-,-) and thus,
q(y1,73) < q(y1,w2) + q(2, 73)
< qre)(T1,22) + qre) (T2, 13),
Le. qr=)(@1,23) < qre)(r1,m2) + qre) (@, v3).

Let (2,)nemw be asequence in E' and x € £ with qg=(z, z,) — 0.

For any z € E chosen arbitrarily, there exists a sequence (y,)n,en such that for all n,
A ‘I(yn; Z) > ‘J(R<=)(3’5n; Z) - %7
Dueto g(-,") < qu=)(-,+) on ExE, q(v,y,) < q(x,20) +q(Tn,ys) — 0 (n — 00).

As (E,q) is one-sided sequentially compact, there exist a sequence n; " oo of indices

and y € E satisfying q(Yn;,y) — 0 (j — 00). In particular, g¢(z,y) = 0.
So, liminf gge)(wn, 2) < liminf g(yn,2) < 1infgop q(WYn;»y) 4y, 2) < qur=)(, 2).
O

Remark. However, gr=) does not satisfy qr=)(z,z) =0 for all # € E in general.
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1.5 Gronwall’s Lemma for semicontinuous functions

Gronwall’s Lemma provides a very useful tool for an upper estimate of a function
Y : [a,b] — IR by means of its derivative. However the widespread versions suppose
Y to be continuous (at least).

In this section, the assumptions for ¢ are weakened. Firstly, we demand an upper
estimate only for a one-sided difference quotient (as its denominator tends to 0),
but then 1 might still have a discontinuity in W
upward direction and of arbitrary height. So secondly, /
© has to be semicontinuous is a sense that is speci- .

fied in the following three statements. Their indirect _/.

proofs follow all the same track. z

Lemma 1.5.1 (Lemma of Gronwall : Subdifferential version I)
Let ¢ : [a,b] — IR, f,g € C°([a,b], R) satisfy f(-)>0 and

() < limsup B(t - h), vt la, ]
hi0
Y(t) > limsup ¥(t+ h), V tela, b,
hi0
lim sup Yl +h) = $i) < f(t) - limsup ©(t —h) + g¢(t) V tela, b
hi0 h hi0

Then, for every t € [a,b], the function 1(-) fulfills the upper estimate

¥(t) < Yla) - e+ / 00 () ds

with p(t) == /tf(s) ds.

Proof. Let 0 > 0 be arbitrarily small. The proof is based on comparing ¢ with the
auxiliary function ¢y : [a,b] — IR that uses ¢(a) +9, g(-) + 9 instead of ¥ (a), g(-) :

¢
ps(t) = (w(a) —|—6) etV 4 / et D-1) (g(s) + 6) ds.

Then, o5(t) = f(t) s(t) +9(t)+d ona,b],
ws(t) > (1) for all ¢ € [a,b] sufficiently close to a.

Assume now that there exists some ¢, € Ja,b] such that ¢s(ty) < 1(ty). Setting
b= inf {t € lat] | wslt) <) .

we obtain  @s(t;) = ¥(t;) and a <t <ty because
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es(t1) = lm @s(ty —h) > limsup (i —h) > (),
h{0 h 10

ws(t1) = lim ps(ti+h) < 111}{18111) Yt +h) < P(t).
= -0
h 20 h>0

Thus, we conclude from the definition of ¢;

¢ @s(tL +h) — ps(t1) Y(ty +h) —P(t)

lir]ﬁion N < lir}rllfoup N
ps(t) < f(t) - ﬁf}llf(}lp bt —h) + g(h)
ft) @s(t) +g(t) +0 < f(t) - hlilfoup ws(tr —h) + g(t1)
< flt) - es(ty) + g(t1)
— a contradiction.  So ¢s(-) > 9(-) for any § > 0. O

Remark. 1. If limsup ¢(t —h) < oo for all ¢ €]a,b] then the second
h10
assumption in |a, b[ results from the third condition on .

2. This and the following subdifferential versions of Gronwall’s Lemma also hold if
the functions f, ¢ : [a,b] — IR are only upper semicontinuous (instead of continuous).

The proof is based on upper approximations of f(-), g(-) by continuous functions.

3. The condition limsup w < f(t)-¥(t) + g(t) (supposed in the
h10
widespread forms of Gronwall’s Lemma) is stronger than the third assumption of this

lemma due to the semicontinuity condition 1 (¢) < limsup (¢t — h).
h10

Lemma 1.5.2 (Lemma of Gronwall : Subdifferential version II)
Let ¢ : [a,b] — R, f,g € C%a,b[,IR) satisfy f(-)>0 and

P(t) < li%l¢i()nf »(t—h), V tela, b,
p(t) > liglnfonf Y(t+ h), V tela, b,
i it w(”hi)l_wt) < 7 - lmint o= ) + o) Y relo,

Then, for every t € [a,b], the function 1(-) fulfills the upper estimate

o) < dla) - O 4 / b O o(s) ds

with u(t) ::/ f(s) ds.
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Proof  differs from the preceding one in the point of time ¢; leading to a contradiction :

For § > 0 arbitrarily small, set o5 : [a,b] — IR,
¢
oilt) = () +9) O 1 / HO=1E) (g(s) + 5) ds.
Then, o5(t) = f(t) ps(t) +g(t) +6  onla,b],
©s(sn) > U(sn) for some sequence s, | a.

Assume now that there exists some ¢, € Ja,b] such that ¢s(ty) < 1(ty). Setting
toi= inf {telot] | () <v() nltt]} > a
we conclude ¢, < tp  from the condition (ty) < lir]ﬂionf Y(to — h) and the

continuity of ;s(-). Moreover, ¢s(t;) = (t1) is a consequence of
ps(t1) = }Zlfg @s(ti —h) > li%liionf Pte—h) = p(t),
o < Tmi < ‘
es(t1) }}f% ps(ti+h) < hfgliloﬂf bt +h) < Y(h)

Thus, the definition of ¢; implies

f @s(tL +h) — ps(t) Yty +h) —P(t)

hri?fon Y < hglnfonf Y
p5(t) < flt) - liminf o (6 —h) + g(t)
ft) es(t) +g(t) +0 < f(t) - hlilfoup ps(tr —h) + g(t1)
< f(t) - es(t) + 9(t)
— a contradiction.  So ¢s(-) > (-) for any § > 0. O

Lemma 1.5.3 (Lemma of Gronwall : Subdifferential version III)
Let ¢ : [a,b] — IR, f,g € C°([a,b], R) satisfy f(-)>0 and

Y(t) > limsup ¥(t+ h), V tela, b,
hi0
lim inf Yo = vl = 1) < f(t) - limsup ¢(t —h) + g(t) <oco VYV t€la, b].
R0 h R0

Then, for every t € [a,b], the function 1(-) fulfills the upper estimate

Y(t) < Y(a) - et /t () —h(s) g(s) ds

with p(t / (s
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Proof.  For any small 6 > 0, we consider again the auxiliary function ¢; : [a, )[— IR,

s(t) = (w(a) +§) et 4 /at eH 1) (g(s) +6) ds.

Then, w5(t) = f{t) ws(t) +g(t)+0  onla,b],
ws(t) > () for all t € [a, b] sufficiently close to a
and Y(t) < limsup 9(t — h) for all t € ]a, b).
hi0

Assume now that there exists some ¢, € Ja,b] such that ¢s(ty) < 1(ty). Setting

es(t) < v(0) .

tl := inf {t S [a,to]

we obtain  @s(t) = (t;) and a <t <ty since
os(t1) = lim @s(t; —h) > limsup ¥(t, —h) > (t),
h— 0t h— 0+
ws(t) = lim os(ti+h) < liff{l sup ¥(ti +h) < (t).
N —0
R>0 h>0

This implies for all k€ 0, t;—a]

pslt) sl =) _ () = wlt = h)

h h
f(t) ws(t) +9(t) +0 < f(ta) - lifilfglp Ut —h) + g(t1)
< f(t1) - limsup @s(ty — h) + g(t1)
hi0
< f(t) - es(ty) + g(t)
— a contradiction.  So ¢s(-) > ¢(-) for any § > 0. O

Remark. If the function v : [a,b] — IR satisfies

li inf YO =B < f(4) (t) + g(t) V t €la, 0]
then it is lower semicontinuous in terms of ¢ (¢) < limsup (¢ — h) and thus it
hi0

fulfills the last assumption of Lemma 1.5.3.

Finally we present a modification with an integral assumption. Here the regularity
condition on both (-) and g(-) are weaker than in most of the widespread versions of
Gronwall’s Lemma since these functions need not be continuous (see e.g. [2, Aubin 99],
Lemma 8.3.1). The proof is based on the same ideas that can be found in the literature,

but it just takes advantage of them in a more detailed way.
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Lemma 1.5.4 (Lemma of Gronwall : Integral version)
Let <, g € L'([a, b, IR), f € C®([a,b]) satisfy ¢(-), f(-) =0 and

P(t) < g(t) + /t f(s) ¥(s) ds for almost every t € [a,b].

Then, for almost every t € [a, b],

G0 < o0+ [ 1) o) s

t

with  u(t) ::/ f(s) ds.
a
Assuming in addition that g(-) is upper semicontinuous and that 1(-) is lower semi-

continuous or monotone, then this inequality holds for any t € |a, b|.

¢
Proof. The function ¢ : [a,b] — R, t+— / f(s) ¥(s) ds 1is absolutely

continuous and satisfies for almost every ¢ € [a, b] (singe f(-) >0)
Pt) = fO ) < Ft)gt) + f() @(t).
Thus, t+— e ™ p(t) is also absolutely continuous and has the weak derivative
L (e o) = e () = 1) w) < e O f) gl).

So we obtain for any ¢ € [a, 0]

e p(t) < e pla) + / e () g(s) ds

t
olt) < 0+ / OO f(s) g(s) ds

and this estimate implies the assertion for almost every t.

Now suppose that g(-) is upper semicontinuous and that v (-) is lower semicontinuous
or monotone. Then for every ¢ € Ja,b[, there exists a sequence (¢,)n,eny in Ja,b] such

that ¢, —t (n — 00),

p(t) < limsup ¥(t,),

vt < o) + [ ") () g(s) ds Ve,

As an easy consequence,

o0 < twsw (o) + | ") f(s) g(s) ds)

n— o0

< o) 4 [ e g9 60s) ds



Chapter 2

Timed right—hand forward solutions

of mutational equations

Extending evolution equations to geometric shapes motivated Jean—Pierre Aubin
to develop the concept of mutational equations for metric spaces (M, d) in the nineties
([4, Aubin 93], [2, Aubin 99]).

For defining a derivative of a curve = : [0,7] — (M,d), the idea of a velocity (or
direction) has to be introduced for metric spaces (M,d). In a vector space X, every
vector v induces a direction shifting each element x € X to the point x+h v after some
“time” h > 0. So it exemplifies a continuous map [0,1] x X — X, (h,z) — x + hv.
Extending this notion to a metric space (M,d) leads to a so—called transition
¥ :]0,1]xM — M that is demanded to fulfill 4 conditions (in [2, Aubin 99|, Def. 1.1.2) :

1. J(0,2) = z V reM,
2. limsup 1 - d(ﬁ(h, I(t,2)), O(t+h, x)) =0 VozeM, telol],
hi0
_ +

3. «(¥) := sup limsup (d(ﬂ(h, z), Y y)) d(x,y)) < 00,

TEY hl0 p 9(h h d(l‘ay)
4. (W) = sup limsup d(z, 9(h, 7)) < oo

ceM  hlO h
with the abbreviation (r)* := max(0,r) for every r € IR.

In general, the derivative of a function plays the role of its first-order approximation.
So considering now a curve z : [0,7] — (M,d), a transition 9 on (M,d) can be

interpreted as a derivative of x(-) at time ¢ € [0, T if it satisfies

limsup 7 - d(x(t—i—h), J(h, :r(t))) = 0.
h10
However this transition ¢ need not be unique. All transitions fulfilling this condition

form the so-—called mutation of z(-) at time ¢, abbreviated as z ().

73
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The distance between transitions 0,7 : [0,1] x M — M affects the first—order

approximation of each point of M evolving along v, 7 respectively :

D(@,7) := sup limsup d(0(h, x), 7(h, x))

zeM R10 h

These definitions form the basis of Jean—Pierre Aubin for an existence and uniqueness
theorem of evolution equations in metric spaces (M, d) (Theorem 1.4.2 in [2, Aubin 99]).

It generalizes the Cauchy-Lipschitz theorem for ordinary differential equations in IRY :

Theorem Assume that the closed bounded balls of the metric space (M,d) are

compact. Let f be a function from M to a set of transitions on (M, d) satisfying

1. 3A>0: D(f(z), f(y) < A-d(z,y) Vx,ye M
2. A= SS% a(f(z)) < oc.

Moreover suppose for y(-) : [0,T[— M that its mutation Zj(t) is nonempty for each t.
Then for every initial value xy € M, there exists a unique solution z(-) : [0, 7] — M
of the mutational equation z(t) > f(z(t) for all te€ [0, T, i.e
limsup £ - d(a(t+h), f@@®) (ha®)) = 0,
h10
satisfying x(0) = xo and the inequality (for every t € [0, 1)
d(w®), () < dlwo, y(0) e 4

t
AN =) inf D f(y(s)), 19) ds.

0 VRS Zj(s)

In fact, this last inequality implies the Lipschitz dependence of the solution z(-) on
both the initial value and the right-hand side. The proof in [2, Aubin 99] is based
on a combination of Euler method and fixed point argument. Essentially it uses an
upper bound for the distance between two points z,y € M evolving along transitions

Y, 7 for some time h € [0, 1]

AV, ), 7(hy) < dley) - OF 4 b D) S ()

(see [2, Aubin 99|, Lemma 1.1.3).
This key estimate (x) results from Gronwall’s Lemma applied to the Lipschitz continuous
function 0,1 — [0,00[,  h +— d(ﬂ(h, x), 7(h, y)).
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Now the concept of mutational equations (according to [2, Aubin 99]) is generalized

in several respects :

e In contrast to a nonempty set £, the product E " IR x F takes the time direction
into consideration. Regarding these pairs with a separate time component is always
abbreviated by a tilde.

e For quantifying distances between points, the metric d is replaced by a countable
family of timed ostensible metrics (g:).cs on E. Here the timed triangle inequality
plays an important role and so, further assumptions about ¢. (like reflexivity)
might be weakened even more.

In fact, we prefer EZ RXE to E only because the timed triangle inequality
is a weaker condition than its counterpart without time component.
Finally, supposing the index set J C [0,1]" (k€ IN) to be countable makes

the Cantor diagonal construction available for proofs of existence.

e The basic notion of distributions is extended to timed ostensible metric spaces in
a figurative sense : The first-order approximation of a curve 7 : [0,T] — E
at time ¢ by a (generalized timed) transition o : [0,1] x E — E is replaced by
the demand for preserving a key property when considering all elements of a given
“test set” D C E.

When proving the existence theorem in [2, Aubin 99], the substantial feature is
the preceding estimate (k). So we want it to be preserved principally for all points
jekE (as before), but only for every “test element” T € D. In particular for one

and the same transition 5, this basic idea leads to the demand
(kB I G)) < Q@5 et
for all elements 7 € D, Y € E. It forms a basis for generalizing the mutation of

Z(-): [0,T] — E at time ¢. Indeed, it motivates the condition

limsup - (ag(m,z), 5(t+h)) ~ 4G fg(t))-eah) <0 VZieD eeJd
R0

with a parameter & = a(t, 9, (-)) < co.

Applying this concept to examples, the adapted parameter a(@) of a generalized
timed transition ¢ has an important advantage. It will be much easier to find
suitable upper bounds if only “test elements” =z, 5(11, T) € D are considered in the
first arguments of ¢..

For this reason, we demand in addition that every “test point” = € D is staying

in D for some short time 7'@(5, z) > 0 while evolving along J.
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e In the concept of [2, Aubin 99], a transition ¥ on a metric space (M, d) has to fulfill

the condition (comparable to a “first—order semigroup property”) for each x € M, t
d(z?(h, I(t,x)), O(t+h, x)) — o(h).

Now we replace the Landau symbol o(h) by O(h), i.e. for characterizing a transition

J on a tuple (E, D, (¢.).cs), there has to be a parameter ~.(9) € [0, 00[ with

limsup L - ag(&(h, I(t, 7)), It +h, i)) < (@) VFeE telo]]
R10
VAN ~ ~ ~ ~ ~
limsup L - ag(ﬁ(t+h, ), J(h, 19(75,%))) <) Viek telol]
R10

because ¢. need not be symmetric. In general, 76({?) > 0 also depends on € € J.
So if 0€ J, a further characteristic of J is the asymptotic behavior of yg(g) as € /0.
It is described by the order p € IR of U on the basis of limsup &” - 78(5) = 0.

e—0

Analytically speaking, this parameter ~.(J) > 0 gives the opportunity to
introduce an additional limit process that follows the process of first—order
approximation. This might be useful for multi-scale problems, for example.

Here we present a way how to take 7.(-) into consideration properly.

e For each (generalized) timed transition ¢ on a tuple (E, D, (¢.).cs), the curves
J(-,%): [0,1] — E (Z € E) have to be merely equi-continuous in positive time
direction (and not uniformly Lipschitz) because this feature is used explicitly only

in proofs.

In particular, each limit superior for first-order approximation still uses the information
at the current time ¢ and at a later point of time ¢t + h with h > 0 tending to O.
This aspect motivates the expression “forward” and is symbolized by + (representing
the time axis).
Furthermore the phrase “right-hand” comes from the following detail : When defining
terms like “primitive” and “solution” for 7 : [0,7][ — E, the function Z(-) always
appears in the second argument of the vanishing distances ¢. (¢ € J) (see Def. 2.2.1,2.3.1).
Now so—called timed forward transitions 9 of order p on (E, D, (q.).cs) are defined
precisely in § 2.1.
Then the key estimate (x) (in a generalized form) is still fulfilled in (E, D, (.)cc)-
Principally the proof is based on Gronwall’s Lemma 1.5.1 for the semicontinuous function
h —s @.(0(h,%), 7(h,7)) with arbitrary 7 € D, j € E. Many of the following

conclusions have this technique in common.
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In § 2.2, the definition of timed right-hand forward primitive is formulated and,
we present three ways for estimating the distance between a transition and a primitive.
§ 2.3 deals with timed right-hand forward solutions of generalized mutational equations :

definition, stability, existence and estimates.

General assumptions for chapter 2. Let E be a nonempty set, D C E, p € IR

andset E:= RxE, D:=RxD, m:E— R, (t,x) —> t.

J C [0,1]* abbreviates a countable index set with x € IV, 0 € J.

Furthermore we assume for each function ¢. : E x E — [0,00[ (¢ € J)

1. timed triangle inequality,

2. time continuity, i.e. every sequence (%, = (tn,Zn))new in B and T = (t,2) € E
with ¢(z,,2) — 0 (n — oco) fulfill t, — ¢t (n — o0) (due to Def. 1.2.1).

3. reflexivity on D, ie. ¢:(2,2) =0 forall z € D.
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2.1 Timed forward transitions

Definition 2.1.1 A map U : [0,1] x E — E is a so—called timed forward transition
of order p on (E, D, (Ge)eer) if it fulfills the following timed conditions (for each € € [J)

1. 9(0,)) = Idg,

2. 3 7)) >0: limsup ¥ -~.(9) = 0 and
e—0
lim sup %@(5(@ I(t,7)), It +h, 5)) < (@) VFeE telol]
h10
lim sup %@(%m, %), I(h, 5(15,5))) < 7)) Viek teol]
h10

- - N
—(F : : @ (9(h,7), I(h. 7)) — @ (@EF) —7=(0) h =9
3. oW <oo: su1y~) lim sup < (2 )7 ) < o (v)

ie?&wfg h{0
4. 3 B.(0):10,1] — [0,00[:  B.(9)(-) nondecreasing,  limsup S.(9)(h) = 0,
h10
56(5(3,5), 5(15,55)) < B.D)(t—s) Vs<t<l ek,

5. VieD 3ITo=To(0,7)€l0,1]: Itz eD Vtelo,Tol
6. limsup ag({é(t—h, 7), g) > 56(5(1:,55), g) V 7€D, JeE, telo, To]
R0
with t+mx <m v,
7. 5<h, (t,x)) € {t+h} x E Y (t,x) € E, he[0,1].

O (E, D, (q¢.)-c7) denotes a set of timed forward transitions on (E, D, (g=)) assuming

p
. (0(h, ), 7 _aG) e\ "
20(h,7), 7(h.7) ~ T(T7) - e ) -

é?(&,?) ;= sup limsup <
'y" h

eb e hl0
18<m ¥
)

for all 9,7 € é;’(E,ﬁ

5 ®

(@:)eea), €€ T

Remark. 1. A set F # () supplied with only one function ¢ : ExE — [0, oo
can be regarded as easy (but important) example by setting J = {0}, Qo = ¢.
Considering a timed forward transitions 9 : [0,1] x E —» E of order 0, the condition
limsup €% 7.(9) =0 means 0 = 0°-~o() = () — due to the definition 00 = 1.

e—0

So it leads to the key property for all x € E, t e [0, 1]

limsup 1 a(&(h, I(t, 7)), O(t+h, 5)) =0
R10

A ~ ~ ~
limsup 1 Z](q?(tJrh, %), d(h, 19(75,%))) =0

R10
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Then many of the following results do not depend on ¢ or 7.(-) (and its upper bounds)
explicitly. So we do not mention the index ¢ there any longer and abbreviate the
corresponding set of timed transitions (of order 0) as @)*’(E, D, ¢). In particular, the

analogy to transitions in metric spaces (introduced by Aubin in [2], [4]) is more apparent.

2. Foraset E#(, afamily ¢. : Ex E — [0,00[ (¢ € J) and p € IR given,
let ¢.: E x E —>[0,00] be defined similarly to remark (2.) after Def. 1.1.2 :
ag((s,x), (t,y)) = Fe) |s —t| + q.(a,y) for all (s, ), (t,y) € E.
with a function f(e) = o0(eP) >0 for € |0,
Then every ¥ : [0,1] x E — E satisfying the conditions (1.)-(6.) for (E, D, (¢:)ccr)
induces a timed forward transition 9 : [0,1] x E —s E of order p on (E, D, (¢.).cs) by

5<h, (t,x)) = (t—l— h, 19(h,x)) for all (t,2) € E, h € [0,1].

As a consequence, the following statements about ég’(ﬁ, D, (Gc)eer) can be applied to
their counterparts without separate time component very easily. Correspondingly these
functions 9 : [0,1]x B — F are called forward transitions of order p on (E, D, (¢.)cc7)
and abbreviated as O (£, D, (¢:)ces)-

3. Condition (4.) on a timed forward transition ¥ : [0,1] x E —» E states its

uniform continuity (in positive time direction) with respect to ¢. for each € € J, i.e.
9(-,7) e UC([0,1], E, ¢.) for any 7 € E.

Considering the inequality  ¢. (5(5, 7), (¢, 5)) < B0 ((t—s)t) forall s<t
instead has the merely technical advantage that the nondecreasing modulus of continuity

h— B.(0)(h*) 2 limsup B.(J)(k) is upper semicontinuous in addition.
kih

4. Condition (6.), the timed triangle inequality and the continuity of 9(-, %) imply

limsup (9t —h7), §) = @(03), 7)
h10
for all ¥ € ©(E,D,(¢)ecs), T €D, yeE, 0<t<ToWz), c¢€J with
t+m = < m y. In particular, this property is weaker than standard hypothesis (R™)

because only elements g(t — hy, ), g(t, z) of D appear in the first argument of ¢.

5. Q- - éj(ﬁ,ﬁ, (G=)) x éj(ﬁ, D,(3.)) —> [0,00] satisfies the triangle

inequality. Indeed, for any U1, 09,05 € é';(E, D, (¢z)) and T € D, y € E, he [0, 1],
the general assumption ¢.(z,7) =0 guarantees

(03, Gs(hB) -

< aa 51(h7i‘/)7 {9}(}%%) -

+ ae 52(}1755)7 53(}17@ -

2
™
=
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D
Q
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<
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>
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™
=
\H/R
]

=Y
™
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So after dividing by h, the limit superior for h | 0 leads to

@?(51, ;) < é?(§1; 0s) + é?(‘%; J3).
This triangle inequality motivates us to use the parameter o.’(d;) in the definition of
Q= (U,,0,) whereas the corresponding result for metric spaces (M, d) (according to [2])

takes the parameter «(-) of the first argument v; into consideration :
D(1917192) < Sup hmsup i (d(ﬁl(ha .’L’), 192(}17 y)) - d(l’,y) ' ea(ﬂl)h)

h
eyeM  hlO
When applying the right-hand forward generalization to examples like the nonempty

compact subsets of IRY, we suppose uniform bounds of o (+) for all transitions anyway.

The next lemma gives sufficient conditions for a timed forward transition J on
(E,D,(q.)) that is even Lipschitz continuous in positive time direction. To be more
precise, it implies that the uniform continuity in (4.) of Definition 2.1.1 can be replaced

by Lipschitz continuity if for every € € 7,

Lie({)) := sup limsu (%, 70.) 00
Brr(9) p p p :
A sl hlo
ltn inf ag(ﬁ(t—h,i), z9(t,§:’)> =0 Vtelol], Tck.

Lemma 2.1.2  For every timed forward transition 0 on (E, D, (.)ecs) with

BER(d) := sup limsup M < 00, Veed
A Teh  hio
l1rg1¢10nf q- (19(15 — h,z), 19(t,:v)) =0 Veed,tel0,1]

and T € E, the map g(,E) belongs to Lip~ (][0, 1],@,2}6), i.e. forany 0 <s<t<1,
(06, I(67) < (B) +7.00) - (¢ = s).

Proof.  For ¢, :]s,1] — R, t —> @(19(5,5), 19(75,%)) (with ¢.(s) := 0) and

t > s, we conclude

pelt) < @(Us,7), Dt — 7)) + Z.(0—n,7), 0(1,7))
o.(t) < limsup @.(t—h) + liminf q:(ﬁ(t—h,fg), 5(15,%))
hl0 hi0
= limsup ¢.(t —h)
R0

and due to the timed triangle inequality,
pelt+h) =) < @(I(7), It +n,7))
< @ (93, I, de,7)) + @ (9h, It 7)), I+ D))
< BE(Y) - h+o(h) + 7%(0) - h+o(h)
So the assertion is a consequence of Gronwall’s Lemma 1.5.1. O
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Here Gronwall’s Lemma 1.5.1 for semicontinuous functions proves to be the main tool.
For applying the same notion to other distances like e.g. 9, : t — 68(5(75, z), y(t))
(with a function §(-) : [0,7] — E), we have to ensure the semicontinuity property
(1) < lirilf(}lp Y (t — h). It is the key point for using condition (6.) of Def. 2.1.1.

Lemma 2.1.3
Let U € ©,'(E,D,(@)ees), c€J, T€D, 0<t<To(d1), §(-):[0,t] — E

satisfy T 5(,?5) < my(-) increasing
and ql(ﬂ(t—h), ﬂ(t)) — 0 for hl]DO.
Then,
(00,7, 5(0) < tmsup @ (9t —h,7), Gt —h)).
h10
Proof. According to condition (6.) of Def. 2.1.1 and the timed triangle inequality,
7(9.7), ) < timsup @ (9 - b, ), 5(0))
h10
< limsu it —h,z), yt—h)) + qly(t—nh), y(t
< timsw (7(90¢—h 2, 7¢=h) + @ (7-h), 70))
< limsup qg(ﬁ(t h, %), g(t—h)) + 0. 0
h10

As a first easy application of Gronwall’s Lemma, we consider Qv:’(g, 5) for any J.
Although Q7 : @);(E, D, (q.)) x é';(ﬁ,ﬁ, (g:)) — [0,00[ satisfies the triangle
inequality, it need not be reflexive, i.e. we cannot expect é': (5, 5) =0 for every
J e éj(ﬁ,ﬁ, (Ge)ecs) in general. The parameter 75(5) provides an upper bound

as stated by the following lemma :

Lemma 2.1.4 Every timed transition U € @);(E, D, (¢.)ecy) fulfills
Q2(0.9) < 37.(9).
Proof is based on Gronwall’s Lemma 1.5.1 applied to
oo 10,1] — (.00, b o— @ (9(h,7), I(h7))
withany €D, j€E (m @ < m y). The preceding Lemma 2.1.3 guarantees
w:(h) < limsup ¢.(h—k).
kL0
Now choose h € [0,1[, 6 > 0 arbitrarily and we obtain for any £ > 0 small enough
Ihtk,7), Ok 9(hE) < () +a)k

ag(z%k I, D(h+k, ) < (.0) +o)k
g ((k, zwwc)) Ik, I(h @')))qu( I(h,E), D(hg)) — (D) k o (T
T ) T )k} < oY) + 0.
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So the timed triangle inequality leads to

pohtk) = @btk 3), J(h+k,7))
< ¢\ V(h+k, 7), Ik, I(h,T))
+ qg§5(k, I(h, 7)), Ik, I(h,7))
+ @ (I, I, Itk 7))
< 2 (v.(9) +90) k
+ @@ +0) k(e + @) k) + (b)) + (D) -k,
ie.  limsup 2R el < (02() 16) - o (h) + 3 (7(0) +9).

k10
Since ¢ > 0 is arbitrarily small, we conclude from Gronwall’s Lemma 1.5.1

p.(h) < @ (0) - TR 4 34.(d)
hrhnfoup pe(h) — %(}?) . exe’ (D)-h < 3, (5)

e (9)h _
az (9)

The final result of this section is the upper estimate of the distance between two
points while evolving along different timed transitions. In comparison with transitions
on metric spaces (M,d) (according to [2, Aubin 99]), it generalizes the key estimate (x)
mentioned in the introduction of this chapter. So we continue this approach and use the

inequality as a motivation for defining “primitives” and “solutions” in the next sections.

Proposition 2.1.5 Let 0,7 € é;’(E,E, (Ge)ecr) be timed forward transitions,
eeJ, Te€D, JeE and 0<t, <t, <1, h>0 (withm < my, ti+h < To(J,7)).
Then the following estimate holds

@(5(t1+h,5), ?(tg—i-h,@)) < @(5(1&1,5), %(tQ,@) o () h
+ 1 Q@07+ (0) + (7)) St

Proof. The auxiliary function ¢. : h — @ (I(t; + h,Z), 7(t2 + h,y)) has the
semicontinuity property ¢.(h) < limsup ¢.(h — k) due to the assumptions of
k10

@);(E, 15, (¢e)ec7) and the preceding Lemma 2.1.3.
Moreover it fulfills for any h € [0, 1] with t; + < To (9, 7)

fimsup EHE < 02 () ph) + QD7) +9:0) + (7).
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Indeed, for all £ > 0 sufficiently small, the timed triangle inequality leads to
pehtk) < @ (Dtarh+k, B, Ok Ot+h, 7))
+ ag(m, I(t1+h, 7)), 7k, T(tath, “))
+ ae(?(k, T(ta+h,y)), T(t2+h+k, )
< @k + QPWO,T) k4 p(h) e DE 4 (F)k 4+ o(k)

since ¢, +h+k < To(9,%) implies J(t,+h, %), I(t,+h+k 7)€ D.

Thus the claim results from Gronwall’s Lemma 1.5.1. O

Remark. If o’(7) = 0, then the corresponding inequality is
T (It+h,3), F+h D) < TOGD), 7(t2,3) + (@0 +70) +7:() -t
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2.2 Timed right—hand forward primitives

Definition 2.2.1  The function T :[0,T]— (E, (G:)ccr) is called timed right—hand
forward primitive of a map 9 : [0, 7] — ég’(ﬁ, D.(¢.), abbreviated to T(-) 3 U(-),
iof for each ¢ € J,

LoV ted, Tl 3 ar() =ar{t,z(),0() 20, 7%(t) =7 2(-),0()) 20 :

£

a’(t) =z o7 (0(),  7:(t) = %=(0(),  limsup €”-Fu(t) = 0,
|0

timsup (7 (90) (0,), Fe+0) = @@ T0) - FOM) < 50,

forall 5 € D with my < m z(t),

2. %) e UCT([0,T,E,q), i.e. thereis w.(Z,-):]0,T[—> [0,00[ such that

@3(5(5), i(t)) < we(z,t—s) for 0<s<t<T, limsup w.(z,h) = 0,
hi0

3. ma(t) = t+ mz(0) for allt € [0,T7.

Remark. Let Z(-) : [0,7] — E be a timed right-hand forward primitive of
0:[0,T[— ©(E, D, (¢):es). Foranyt €]0,T, the map Z(t+):[0,7—~t[— E
is a timed right-hand forward primitive of J(¢ + -).

From now on we skip the attributes 'timed’, 'right—hand’, ’forward’ of primitives in this

chapter.

Timed transitions induce their own primitives — as an immediate consequence of
Def. 2.1.1 and Prop. 2.1.5. This result is formulated in the following Lemma 2.2.2
so that we can use it explicitly later. Correspondingly, each piecewise constant function

J 0, T[] — é;)(ﬁ, D, (Gc)ec7r) has a primitive that is defined piecewise as well.

Lemma 2.2.2  For every timed forward transition Vg € é?(E, D, (q.)ecys) and % € E,

the function T : [0,1] — E, t — Uy(t,2) is a primitive of 9(-) := V. O

Now three ideas are presented how to estimate the distance between a primitive and
a point evolving along a timed transition. An obstacle here is the common property of
all preceding definitions that only points of D usually appear in the first argument of ¢..
So essentially, we have two possibilities : Either restricting ourselves to the comparison
with elements of D (as in Prop. 2.2.3) or using auxiliary functions for the distance

(as in Propositions 2.2.4, 2.2.5).
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Proposition 2.2.3  Suppose 1) € é;’(ﬁ,ﬁ, (@2)ecs), JED, t,€0,1], to €[0,T].
Let T :[0,7[— E be a timed primitive of () : [0, 1] — é;’(ﬁ,ﬁ, (¢:)eeg) such
that for each ¢ € J,

a?(-,f, g) < Me(')a
7:(-,%,9) < Re(),
Qe 9() < el
ti+my < ma(t)
ta+h
with upper semicontinuous M., R., c. : [0,T[— [0,00[. Set p.(h):= M. (s) ds.

to
Then, for every = € J and h €]0,T[ with t, +h < To(¥,7),
(Ot ), Bbrn) < G (D00,9), 3(t) e=® 4

h ~
+ / e,ug(h)*uz(s) <Cg(t2+8) + 2 Rg(t2+5) + 76(77/})> ds.
0

Proof. We follow the same track as in the proof of Prop. 2.1.5, consider the

function . : h — @ (¥(t1+h,y), T(t2+h)). The semicontinuity property
¢:(h) < limsup ¢.(h—k) results from Lemma 2.1.3.
k10

Furthermore we prove for any h € [0, 7] with t; + h < 7'@({5, v),

limsup LR e < Ap (4 4h) - () + co(toth) +2 Ro(ta+h) +7.(1).
kL0

In particular, this inequality implies @.(h) > limsup @.(h+ k) since its right—hand
k10
side is finite. Thus, the claim results from Gronwall’s Lemma 1.5.1 and its remark (2.).

For all £ > 0 sufficiently small, the timed triangle inequality and Prop. 2.1.5 lead to

bt k) = @(d(t+h+E, 9, Wt +h+ )
< ag(i(t1+h+k, ), D(ty+h) (k U(ty+h, @)))
+ @(5(t2+h) (k- {E(tﬁh,@))), i(t2+h+k~)))
< (@@ Fath) + D) + Feltath, T 0) ) L
+ p(h) - OBk S b T, D) - k + o(k)
< el R e @)+ 2RO)| kol

since ¢, +h+k < To(1h, ) implies (t,+h, ), ¥(ti+h+k,J) € D.
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The next proposition provides an upper bound of the auxiliary function

o) =l (@G DY) + @l )

TeD,m i<t
for describing the distance between (¢, y) and a timed primitive Z(¢) without restricting

to ¥(t,7) € D. The basic idea consists in estimating both
o @ (D5, Gt+h,D)  and ko G (005, EE+h))

(for small A > 0) with a minimizing sequence (Z,)men in D. Here assumptions about
the time parameter ’T@(@, ) > 0 are required for the first time. Roughly speaking,
we need lower bounds of To(1,%,) for “preserving” the information while m — oco.
If 7'@(12, Zm) vanishes too quickly, then the comparison with 1;(, Zm) cannot be put into

practice long enough for proving estimates that (might) imply uniqueness of primitives.

Proposition 2.2.4  Assume for a timed forward transition J € @);’(E, 5, (Gc)ecr),
amap U(-):[0,1]— é';(E, D, (), acurve T:[0,1[— E and j€E, \.>0

1. %) is a timed primitive of U(-) with m T(0) =m § =0,

2. aZ(y), ar(-,z,9) < M. < o©

/’)75(';%;19) < RE(')
<

@?(LZ, g()) ce(+), with upper semicontinuous R., c. :[0,1] — [0, 0o].
3. foreach t€[0,1], .(t) :=  inf ((75(’27, Ot ) + (3, i(t)))
zeD,mz<t

can be approzimated by a minimizing sequence (Zp)pemn in D and h, L 0 with

Tom < T2 <t GeCmrZn) < Ac-hmy hm < To(th,Zn)  for all m < n,

t o~
Then, .(t) < ©.(0) Mt + / eMe - (t=5) <ce(t) +2R(t)+2A+7 ’ye(t/))) ds.
0

Remark. If the above mentioned minimizing sequence (%,) in D fulfills

Supn>m (};(zmagn) - 0 (m—>oo)

To(f(%:1), %)

then the estimate is fulfilled with A, = 0. This provides a way to uniqueness results

in the case of R.(-) = 0, 7.(¢)) = 0. The additional assumption (for m — o0) is
fulfilled particularly if ¢. is symmetric and D is dense (E,(YE) O
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Proof is based on the second subdifferential version of Gronwall’s Lemma 1.5.2 :

The timed triangle inequality implies for any 0 <t; <ty <1, z € D with mz <t

¢-(Z, v(t2,9) < @(2, ¥(t,y) + B(¥) (ta—t1),
(2, Z(t2)) < (3 7(t) + w(T(), ta—ta),

As a consequence, ¢ (t) < lir’fliionf w:(t —h) forevery t€]0,1].

Now we prove for any ¢ € [0,1]

lim inf et ee@ < Mo (t) + () + 2 R(t) +2 A + T 7. ().

Let (Zn)nenw denote a minimizing sequence in D and h, 1 0 according to cond. (3.),
i.e.
TZm < T <t G@GmZn) < Aehm, hm < To(,Z,)  forall m < n,

AN ~
G (Zn, 0(t,9)) + €e(Zn, T(1)) — @e(?) (n — o0)

Due to Prop. 2.2.3 and Lemma 2.1.4, we obtain for every 0 < h < h,, < 7{9(1;, Zm)
@ ((h,Zn), Dlt+h.7))

< @(a“&ujﬁ-e@@w-+/hw?@*h@(@:@h@+3mMB)ds
0
< @ (B 00D+ = 6 )

and
T (0(h,Z0), F(t+n))
< @(Em, Ec“(t)) - gMeh +/0 eMe - (h=s) (cg(t+s)+2Rg(t+s)+%(J)) ds.

Firstly, ¢.(t+h) < ¢. (J(h,?m), J(t-i—h,@) + @(@(h, Zm), 5(t+h)> results directly

from its definition. Secondly, the timed triangle inequality implies for any n > m
(% 99) < @G ) + @(5 06D) <€ Ahn + & (G0 269),
(2 70) < TEE) + (30 F0) < Ak + 3 (G T0)

and n — oo leads to the estimate

@ (Zns 0(D) + @ (2 7))

As a consequence,

pellthn) < (2 Ae h’”wf(t)) ettt /hm M=) (cg(-)+2Rg(-)+7%(@) ds.
0

IN

2 by + @c(2).

t+s

So finally,  lim inf gt — el < Mo (t) + 2A+e(t) F2R(H) +TH(¥). O
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Finally, the auxiliary function ¢.(-) is modified with regard to the transition {/;(, ) :

P =l (B (3) + @3 3()

Here . : EX E —> [0, 0o represents a generalized distance function on E that has the
additional advantage of symmetry (by assumption) and satisfies the triangle inequality
(not just the timed one).  Roughly speaking, p. might not take all the properties of
elements T,y € E into consideration — compared with ¢.. Anticipating the definitions
of § 4.1 for a moment, the nonempty compact subsets of IRY give an example with
p. = d (Pompeiu-Hausdorff distance) and ¢. := gg,n-.

In regard to timed transitions, the assumptions about p. have the advantage that
they do not consider the comparison of two transitions. Instead we suppose continuity
properties and that the distance p.(z1,22) between arbitrary points 2,z € E may

grow exponentially at the most while evolving along {/}v

Proposition 2.2.5  Let p.,q.: ExE —» [0,00[ (e € J), p€ R, D™ RxDCE
and~1/} S @pH(EJDJ(i]vE)EGJ)J 19() : [071[—> @;(E,D, ((76))7 T [071[—> EJ
ye E, A\. >0 satisfy the following conditions :

1. Fach q. fulfills the timed triangle inequality and ¢.(z,2) =0 for all Z € D,
2. p. is symmetric and satisfies the triangle inequality,

3. Z()) is a timed primitive of U(-) with m #(0) > m 7,

4. 3 M.<oo: aZ(y), a7 (-,7,90) < M,
5 (. 7), B(h, %)) < B3, B) MY F B
= RE(') >0: 'Ye({pv)a :V\E( z, 5) < RE(-),
lim sup 7 (9, w(t*» berh.§) R.(1)
h1o =~ € )
b (Blt=h5), U(7) — 0 for hi0,
@?({E, 5()) < c(+), with upper semicontinuous R., c. :[0,1] — [0, 00,
5. foreach t€[01  gu(r) = nf (@@emﬁw+mzam)
7r12<72w(t) _
can be approzimated by a minimizing sequence (Zp)n e m D and hy, | 0 with
TMzm < Mz, < ma(t), Pe(Zm,2n) < A
h < Tolt,Zm), @G Z) < A

“hu
“hm for allm < n.
R,

t
Then, 0e(t) < @ (0) M=t 4 / eMe - (t=9) (c (1) +4 R(t) +2 A, ) ds.
0
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Proof is based on the same version of Gronwall’s Lemma 1.5.2 as the preceding
Prop. 2.24 : . (t) < li?¢i()nf @e(t — h)  results from cond. (1.), (2.) because

for any z € D with 1, 7 < m x(t — h),

P03, 7) < @y@,@, J(th,@g - @E&ah,@, 2
< p(vt=h9), v(t.9) + p(d—h7y), 2
¢(z, T(t) < @(z T(t—h)) + we(z(), h).
For showing i inf pellthl w0 < M. () + co(t) + 4 R(t) +2 A,

let (Z,)nemw denote a minimizing sequence in D and h, 4 0 such that
T 2m < T Zn < m z(t),

A PG Z)y @Gy Z) € Acvhny B < To(0), Zn)

P-((t,9), Z0) + @G, (1)) — @e(t) (n — o0).

for all m < n,

According to cond. (2.), (4.), we obtain for all m <n, 0<h < hy,
P (V(t+h, ), (b, 5n))
P (V(h,Z0), Dlt+h, )

< (D0 Zn), Db, 9 7) + 5 (90 D), D+, D)
< 5 (B V(ED)) S M (R(1) +o(1)) b
< (A b+ BelF, $03) - P+ (B8) +o(1) b

Furthermore Prop. 2.2.3 implies for any 0 < h < h,, < 729(1;, Zm), m>m
& (0(h,Zn), F(t+0))
< G(Zm, T(t)) ceMeh 4 /Oh eMe(h=s) ( c(t+5)+2 R, (t+s)+%({/?)) ds
< </\g Pon + G- (Zn, 5(15))) Ml 4 /Oh Me(h=s) (Cg(t—l—s) +3Rg(t+s)> ds
and n — oo leads to
o:(t+ hy) < @ (t) - eMelm 4 2N\ eMehm b+ (R.(t) +0(1)) hp

hm
[ s s o
0

So finally, lipn inf et — 00 < Mo (t) + co(t) +4R(E) + 2 A O
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2.3 Timed right—hand forward solutions

2.3.1 Definition and convergence theorems

The term “primitive” (of a function 9 : [0, 7] — é;’(E, D, (g.))) is closely related to

the expression “solution” Z(:) of a generalized mutational equation z (-) > f(z(), -).

Definition 2.3.1  For [ : Ex[0,T[— é;’(E, D, () given, amap T :[0,T[— E

s @ timed right—hand forward solution of the generalized mutational equation

i) > @),
if () is timed right-hand forward primitive of f(Z(-), -) : [0, T[ — @);’(E,ﬁ, (g:)),
i.e. for each e € J,

LV otelo, 1T 3 ar®) =z o (f2),1), 7)) = 2(f(2(?),1)) :

limsup & (@ (F@ED,0) (h9), 3¢+h) — @G 3@) - ¥ OF) < 5.,

h10
forall y € D withm g <m z(t) and limsup £”-7.(t) = 0,
€10
2. %) e UCT([0,T,E,q), i.e. thereis w.(Z,-):]0,T[—> [0,00[ such that
@3(5(5), i(t)) < we(z, t—s) for 0<s<t<T, limsup w(z,h) = 0,

h10
3. ma(t) = t+ mx(0) for all t € 0,T7.

Generally speaking, the existence of a solution can often be concluded from approx-
imation. Seizing this well-tried notion here, we use Euler method in the next section.
As a first step in this direction, the relevant kind of convergence has to be specified.
It is to guarantee that the limit function of approximating solutions is a solution (in

other words, it is to preserve the solution property).

Assumptions (5.ii), (5.iii) of the next proposition formulate a suitable form of convergence
that might be subsumed under the generic term “two-sided graphically convergent”.
Obviously, it is weaker than pointwise convergence (with respect to time) and consists
of two conditions with the limit function appearing in both arguments of ¢..

Admitting vanishing “time perturbations” d;,d; > 0 exemplifies the basic idea that the
first argument of ¢. usually refers to the earlier element whereas the second argument

mostly represents the later point.
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Proposition 2.3.2 (Convergence Theorem I)

Suppose the following properties of
fm; f: EX[O,T[ — épH(Eaﬁa(aE)EEJ) (mElN)

Ty Tt 0,T] — E :
1. M, = Sgg{a?(fm(%t))} < oo,
R. > ;utpi{%(t, Fs fn(Fms )y Ye(Fm(Z1)), % (F(Z1) }
with li;r’l sup €7 R, = 0,
€10

2. limsup @?(fm(glatl)a fm(zzah)) < R. for m—o0, ty—1 |0,

0-(Z1,22) > 0 (m1 21 < 29),

4. We(h) == sup we(Tp, h) < oo  (moduli of continuity w.r.t. g.) YV he]0,T],

m

limsup @.(h) = 0,

5. vhtf@e[o,T[, ts €10,T[ 3 (my)jemw with m; Soo and
() tmsup @ (F@1), 1), fu, (F(0), 1)) < R (G — )
i) 3 (5)jen i [0,1] : @(5(152), 5mj(t2+5;)) 0, 5 — 0,
T E(t2) < T Ty (12 +6)).
@) 3 O)sew i [0,ts]: G (T, (ts—8), F(ts)) —0, 5; — 0,

1 imj(tg,—&j) S 1 i'/(tg),

for each ¢ € J.

o ~

Then, z(-) is a timed right—hand forward solution of =(-) > f(z(:), ) in[0,T].

Proof. The claimed uniform continuity of Z(-) results from assumption (4.)

Each z,,(-) satisfies @;(%m(tl), im(tg)) < Wty — 1) for 0 <ty <ty <T.
Let e€J, 0 <t <ty <T be arbitrary and choose (0%)jerv, (9;)jen, for ty, to
(according to cond. (5.ii), (5.iii)). For all j € IV large enough, #, +d} <t —4; and so,

@ (#(n), ()
< G (1), Ty (01 +8)) ) 4G (T, (11400, Ton, (82=85) )+ (T, (12=05), F(22) )

S ag(tg — tl) +0(].)
for j — o0.
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Nowlet eeJ, €D and t € [0,7], 0< h < To(f(@(t),t), §) be chosen
arbitrarily. Condition (6.) of Def. 2.1.1 ensures for all k£ €]0, h[ sufficiently small
©(FE®.0 (G, #e+h) < @(F@D.0 =k G), Fe+h) + b2
According to cond. (5.1) — (5.iii), there exist sequences (m;)jen, (9j)jenv, (6})jen
satisfying m; oo, 6;10, &;10, §;+0; <k and
Qr(F@®,0,  Jan@®.0) < Ro+r
A ag(%mj(tJrh—éj), Ec’(t+h)) — 0,
AE0) Ty (t45))  — 0,

Thus, Proposition 2.2.3 implies for all j € IV large enough (depending on ¢, 7y, t, h, k),

@ (7@ (), 3¢ +n)

< @(F@W.0) =k, D), T, (146, + h))
G (T, (10, A=), T (10— )
+ @ (T R =0, FEHR) o+ A
< ﬁg(ﬂ, 5mj(t+6;)) eME'(h—k) +
i Me-(h—k—s) ~ ~
’ 0 ‘ ( : (f(x(t)’t)’ fmi(xmj(')’ )t+53'+s) + SRE) ds
+ W.(k —d; —65)
+ G\ T, (D —05), 5(t+h)) Lop2

< (@(?J, z(t) + @(5(15), 5mj(t+6;-)>) . Melhek)

+ /Oh () (@j(f(%(t),t), Fons Gy (), ) )+3R5) i

t+0%+s
+ (k) + 2h2
< G E) - Mt + 3K 4+ O.(k)
h
M.-(h—s) B2 = ars (T ().t le le D . ‘ 3R.)d
o [T (R @ (GO0 FuG (00, )+ 3R ds

i.e. for every j € IN sufficiently large
@ (FG@0),0) (h, 3), #e+n)

< @y, #(t) - eM P + const- h (R +h) + Dc(k)

+ /Oh oM=+(h—s) @?(fmj(:%’(t),t), fmj(imj(-),-)

) ds
t+5;+s
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@ (7@, (), Fe+ )
< Q- (7, 2(t)) - eM" + const- h (R. +h) + @.(k)

+ h eM:h Qvg'—) (}ij(g(t)7t)7 fmj(%mj ()’)
+ /Oh M= (h=s) (fmj(gmj(')f)

t+6;.)

) ds.
t+5§- +s

) fmj (i‘/mj ()7 )

1
t+0;

Now j — oo and then & — 0 provide the estimate
2 (7@, 1) (0, 3), 7+ n)
< a-(y, T(t)) - €M=" + const- h (R.+h) + 0 + 0

4 heMh Limsup  sup é?<fm](5m](),)‘ , fm](fm](),)‘

j—o00 0<s<h 40} t+5§+s)

So finally convergence assumption (2.) together with the equi-continuity of (Z,,) ensures

limsup £ - (@ (F@E0,0) (), Fe+n) — @@ 3(1) - eMt)

h 10

< limsup (Const - (R.+h) +limsup sup Q ( fm; (imj,-)‘  Fony (T ) ))
h{0 j—o0 0<s<h t+0] t+8+s

= const - R, + R.. 0

The supposed form of convergence can be weakened slightly — but then stronger assump-
tions about (E , (¢-)ce7) are usually required. The next proposition gives an example :
On the one hand we dispense with the left-convergence of a subsequence (Z,,;) in
assumption (5.iii), but on the other hand we use the standard hypotheses (L™), (R™) and
modify condition (2.) on the equi-continuity of (f,,) (in a generalized sense). Here
the two standard hypotheses do not imply the general equivalence of right— and left—
convergence because §. need not be reflexive on E (but merely on D).

Moreover the approximating solutions Z,,(-) are now defined on [a,,,T’| with a,, — 0.

Proposition 2.3.3 (Convergence Theorem II)

For each e € J, let §.: Ex E —» [0,00[ satisfy standard hypotheses (L™), (R™)
(i.e. left-hand and right-hand spheres are right-sequentially closed) and q.(Z,z) =0
for all z € D. Furthermore suppose the following properties of

fus f1 Ex[0,T[ — ©,(E,D,(@).cs) (m€ NN)
Ty lam, T — E (m e IN)
T: [0, 7| — E :
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1. M. = sup {7 (fm(Z,1)} < oo,
m,t,z
R > 811tp~{%(t, Tms fm(Tm, ), ve(fm(Z,1), 1(f(2,1) }
with limsup €% - R, = 0,
"0

2’.  limsup @:’(}vm(%,tl), fm(Ez,tQ)) < R. for m — o0, |ty —t1| — 0,
min { ¢. (21, 22), ¢:(22,21) } — 0,

5. ) 3 ul@nl), ) in fam, 17,

4. ©:(h) := sup w.(Tpm,h) < oo (moduli of continuity w.r.t. ¢-) V h€]0,T],

limsup @.(h) = 0,

5. Vhttoe [0, T[], ta,t3€]0,T[ 3 (Mmy)jewv  with m; /oo and

0) timsup Q7 (F@(t) 1), Fu, (F(0), 1)) < R (G — o0)

@) 3 O nl0ta[: @ (T, (t2=05), F(t2)) — 0, 5; — 0,
T Ty, (t2—05) < w1 Z(t2),

(i) 3 ())en i [0, 8] : ag(fmj(tg—(s;), 5(153)) 0, 5 — 0,
T T (t3—05) < 1 Z(t3),

() 3 Ojen 0, s G (7(0), Ty () — 0, 51— 0,
T Tm; (07) > m 2(0), 0] > ap,

for each ¢ € J.
Then, F(-) is a timed right-hand forward solution of %(-) 3 f(Z(-), ) n [0,T].

Proof.  Here the main benefit of standard hypothesis (R™) is the uniform continuity
of Z(-). Indeed assumption (4.) provides a uniform modulus of continuity for all Z,,(-)

that is upper semicontinuous in addition :

55 («afm(tl)a «%Jm(t2)) S @e(t2 - tl) for any apm S 1 <ty < T.
So considering adequate subsequences according to cond. (5.), Prop. 1.4.5 guarantees
i (55(7;1), 5(152)) < Gults — 1) forany 0 <t <ty <T.

The corresponding result for ¢, =0 and any 0 < ¢y <7 results from cond. (5’.iv) and
the timed triangle inequality immediately.

Nowlet e€J, 7€ D and ¢t € ]0,T[, 0 < h < To(f(Z(t),t), §) be chosen
arbitrarily with my < mz(¢). Condition (6.) of Def. 2.1.1 ensures for all k£ € ]0,h[

sufficiently small

(7@, 1y, 3t+h) < @(FE@.0 (h-kp, Ft+h) + A2
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According to cond. (5’.i) — (5’.iii) and standard hypothesis (L™), there exist sequences

(mj)je]N, (6j)jeﬂv, 5‘;)jeﬂv S&tiSfinlg my; /‘ o0, 53' \l/ 0, 5; \l/ 0, (S]—F&; <k and

(
(=~ (7~ ~
Q2 (Fam.n,  fu@0.0) <
(En, (t+h=05), T(t+n)  —
T (100, 7)) — 0 (j — )
| (s Tnyt=0)) < @(3 7)) + BV el
So the timed triangle inequality and Prop. 2.2.3 imply for all j € IV sufficiently large,

@ (F@0.0 (b 9, #t+n)

R. + h? V jeIN

0 (j — 00)
ANK

< (f (1), t) (h=k+3,, ), imj(tJrh—k))
<xmj(t+h k), Ty (L + 1 = )
(:rm](t—i—h 5;) i(t+h)) + B2
< (s xm] (t— 5/) Ml ktd) +
b [T e (2 (0.0, T (00, ) 3R
+ B.(k—5))
+ G (T, (t+h = 05), (t+h)) + h?
< (@@ a@) + h2) - MOy
'
S A CA CECR R MO L) AR d
+ @.(k) + 2h?
<R T - et ©3R2 M 4 Ou(k)
+ /0 ) (R5+h2+@:’(fmj(§(t),t), Py Fom, (), ) M;_+S)+ SRE) ds
< (g, x(t)) - eM:t + const- h (R.+h) + (k)
+ b (0 Qr (Fu @), 1), Fy @y (1,9)| ) +
+ 0 0 (FEn, 0] FnEn 0], )

Due to assumption (2’.), j — oo and then k& — 0 lead to

@ (F@ED.0) (b, §), #t+h))

< (g, x(t)) - Mt + const- h (Re+h) + 0 + 0
+ heet limsup sup Q7 (fu, Gy (0)| o Fony o (,0)
J

j—o0 0<s<h

t63-+s>
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So in combination with the equi-continuity of (z,,) due to assumption (4.), the uniform
convergence of assumption (2'.) guarantees for any ¢ € ]0, 7]
timsup £ - (@ (F@0,0 (0,9, F+1) — @G 3(0) - )
h10
< limsup (const (R.+h) +limsup sup Q° (fm] (Trm; » )‘ : fmj ()
hi0 j—ro0 0<s<h t=9;
= const - R, + R..

==

tf(S;- +s) )

Correspondingly for ¢ =0, condition (5’.iv) implies for all j € IN large enough
@ (F(@(0),0) (n, §), #(n))
< @ (F@0),0) (h=k=5, ). Fn,(h—F))

+ G\ T (h = k), Ty (h = 05) )
+ ¢ (fmj (h =), 5(]1)) + B2
S L) B

. /h_k_a;’ oMe-(h—k=87—s) (~;>(f(5(0),0), Py G, (), ) ) L3 RE) s
+ 0.k —5))
A R

and we can repeat the same steps as for ¢ > 0. O
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2.3.2 Existence due to compactness

Roughly speaking, Convergence Theorem I (Prop. 2.3.2) provides sufficient conditions on
a sequence (T,,(-))memn of approximating solutions for converging to a timed right—hand
forward solution z(-) of %() > f(Z(-), -). The relevant form of convergence is given
in its assumption (5.) :

5. VY tl,tge[O,T[, tQE]O,T[ 3 (mj)jew with mj/‘oo and
0 tmsup Q2 (F@(t), 1), fu,@(),0) < R (G — o)

i) 3 Oenw i [0,tl: @ (Fm, (la—0y), T(t)) — 0, 35— 0,

T 5,”](252—6]) S T ,fl\‘/(tg),
(i) 3 (O)jen n[0,1] G (7(ts), T, (ts+0))) — 0, 8 —0,
1 i(tg) S 1 fm](tg—i-(%)

Our intention is to construct a timed right-hand forward solution of a generalized
mutational equation by means of Euler method. For considering the family of (q.).c7,
we prefer some form of compactness to a version of completeness. Thus in view of

Convergence Theorem I (Prop. 2.3.2), we coin the following term :

Definition 2.3.4 Let © denote a nonempty set of maps [0, 1] x E—E.

The tuple (E, (Ge)eer, é) is called timed transitionally compact if it has the
following property :
Let (Ty)new, (hj)jenw be any sequences in E, 10,1], respectively and Z € E with
sup,, G-(z,T,) < oo for each e € J, h; — 0. Moreover suppose Dy : 0,1] — )
to be piecewise constant (n € IN) such that all curves U,(t)(-, %) : [0,1] — E have
a common modulus of continuity (n € IN, t €[0,1], 7 € E).
Each 9y induces a function §,(-) : [0,1] — E with §,(0) = T, in the same (piecewise)
way as timed forward transitions induce their own primitives according to Lemma 2.2.2
(i.e. using Un(tw) (-, Uu(tm)) in each interval |tm, tmi1] in which O,(-) is constant).

Then there exist a sequence ny /' oo of indices and T € E satisfying for each ¢ € J,

~ o

lim 1 T, = mx, %, g, S
k — o0 §3 . - . -
limsup ¢.(Zy,, ) = 0, Xy .o 50O
k— 00 ~
. ~ o~ ~ xl -
limsup  sup ¢, Yn,(hy)) = 0. — ——
J—>0 k 2 J 0 h4 h3 h2 hl

A nonempty subset F C E is called timed transitionally compact in (E, (G)eer, é)

if the same property holds for any sequence (T,)ne N n F (but T € F s not required).



98 CHAPTER 2. TIMED RIGHT-HAND FORWARD SOLUTIONS

Remark. 1. The timed transitional compactness of (E, (4)ecs, @)';(E, D, (.)))

implies that (E, (¢.).c7) is one-sided sequentially compact (uniformly with respect to ¢)
if @);’(E,ﬁ, (¢=)) #0 (see Def. 1.2.2).

Indeed, for any sequence (Z,)n,ecn in E and Z € E with sup, ¢.(z,7,) < o (¢ € J),
we choose some U € é;’(ﬁ,ﬁ, (@) and set gp(-) := 9(-,7,). Then timed transi-
tional compactness provides a sequence ny, " oo of indices and some x € E satistying

¢-(Tp,, T) — 0 (kK —> o0) for each € € J.

2. Suppose that (E , (G-)ees) is timed two-sided sequentially compact (uniformly
with respect to ). Then (E, (4.)ecs, ég’(ﬁ, D, (g.))) is timed transitionally compact
since any sequences (Z,), (h;), (9,(+)), (yn) as in the preceding Def. 2.3.4 fulfill

G=(Tn, Yn(hn)) < ce(hn) — 0 for n — oo and every ¢ € J.
So there exist a sequence n; oo of indices and x € E with

4= (T, , T) — 0, 4:(Z, Yn, (hy,)) — 0 for k — oo
and finally, 0T, Yn,(hy)) < @(T, Yn,(hn,)) + c:(hy) for hy, < h;.

Proposition 2.3.5 (Existence of timed right—hand forward solutions
due to timed transitional compactness)
Assume that the tuple (E, (§.)ecs, ég’(ﬁ, D, (q.))) is timed transitionally compact.
Furthermore let f : E x [0,T] — é';(ﬁ, D, (3.)ecy) fulfill for every e € J

1. M. = sup o' (f(z,1)) < 00,
17

2. c.(h) = sup B.(f(Z,1))(h) < oo, c:(h) — 0 for h 10,
1,7

5. IR+ sup (f(%1)) < R. < o0, e Ry — 0 for & 10,

t,z
4o 30.0: @ (fEn), fEut) < R+ 0@ +1—h)
fOT’ all 0 S tl S t2 S T and 31,22 € E with 1 31 S VN 32,

We(+) > 0 nondecreasing, limisoup We(s) = 0.
S

Then for every Ty € E, there is a timed right-hand forward solution z :[0,T[— E

o ~

of the generalized mutational equation z(-) > f(z(-), ) in[0,T] with z(0) = Zo.

Proof is based on Euler method for an approximating sequence (Z,(-)),en and

Cantor diagonal construction for its limit z(-).
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For n € IN (with 2" > T) set

hy = o, th =7 hy for j=0...2",
Z,(0) = Ty, To() == o,
alt) = F@), 6) (t—t, Ta))  for te lu, 41, j <o
The uniform modulus of continuity ¢.(-) can be replaced by a nondecreasing convex
function [0,7+1] — [0,00[ such that all z,(-) are equi—continuous in the sense of

ﬁg(%n(s), 5,1(15)) < . (t—s) forany 0 <s<t<T+h, and ¢ € J.

Since J is countable there is a sequence (ji)repn with {j1,72 ...} = J C [0,1]".
Now for every ¢ € ]0, T, choose a decreasing sequence (0x(t))ren in @ -7 satisfying
0 < 6(t) < L, t+ 6 < T,
ce; (0k(t)) < M for any j € {ji...jk}-
Then, ., (5n(t), Falt + 6k(t))) < hy foranyj€ {ji... gk}, koneN
and so ¢. (in(t), T (t + 5k(t))) — 0 (k — o0) for every ¢ € J, uniformly in n.
Thus for each t €]0,7 and any fixed ¢ € J, the timed transitional compactness of
(E, (G:), @);’(E, D, (g=))) provides sequences my 0o, ny oo (my < ng) of indices
and an element Z(t) € E satisfying for every k € IV

sup Gg(inl(t), %(t)) < i
NEEL

sup G (7(t), T (t+0n,(1) < -

1>k

(In particular, each my, ny may be replaced by larger indices preserving the properties.)
For arbitrary K € IN, these sequences my, n, /* oo can even be chosen in such a way
that the estimates are fulfilled for the finite set of parameters ¢t € Qx :=10,T[ N IN -hy

and ¢ € Jx = {ej,, €j, ... €j} C J simultaneously.

Now the Cantor diagonal construction (with respect to the index K) provides

subsequences (again denoted by) my,ny oo such that my < np and

sup G (T, (1), 3(0)) <
NEEL

sup G (7(s), T (5 +0m,(5))) < %

1>k

forevery K € IN and all ¢ € Jk, s,t€Qg, k> K.

In particular, @.(Z(s), T(t)) < c.(t—s) forany s,t € Qn := Jgr Qx with s < ¢ and
every ¢ € J. Moreover, the sequence (Z,, (-))re v fulfillsforall e € J, K € IN, t € Qg
and sufficiently large k,l € IN (depending merely on ¢, K)

@ (T (0), Fu(t+0n 1) < F+1.
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For extending z(-) to t €]0,7[\ @, we apply the timed transitional compactness
to ((Zn, (t))renv and obtain a subsequences 7, ,* oo of indices (depending on ) and

an element z(t) € E satisfying for every ¢ € 7,

ACMONEC) — 0,

A ~ [~ ~ for j — o0.
SUp - Ge L(t), T, (t+ O, (t))) — 0
i>j

This implies the following convergence even uniformly in ¢ (but not necessarily in ¢)

limsup limsup ¢. (ink (t—2hg), z(t) ) = 0,

A K — o0 k— o0
limsup limsup ¢. (f(t), Ty, (t+2hg) ) = 0.
K — k— o0

Indeed, for K € IN fixed arbitrarily, there are s = s(t, K) € Qi and K' = K'(¢, K) € IN

with t—2hg < 5 < t— hg, K' > K,
zje(ink(s), im(s+5m,(s))) < 141 for all k,1> K'.
So for any k,l; > K', we conclude from 0 < 5mzj(') < %hmzj < %hlj < %hK
T (Tn(t=2hi), 50) < G (Fn (= 20), T, ()
+ (T, (9) T, (5 + 8, ()
@ (54 0y (), F, (1))
+ (3} (), (1)

< alhe) + bi o+ @b + T (T, 0), 70)

and j — oo leads to the uniform estimate g, (fnk (t —2hg), 5(25)) < 2¢.(2hk) + 2.

The proof of  limsup limsup ¢. (%(t), Tp, (t+2hg) ) = 0 is analogous (with
K—o k—o

s'=4¢'(t,K) € Qg satisfying t+hx < s <t+2hg)

(30, Tt+200) < @ F), T, (4 0, (1))
(4 00, (1), T ()
+ . (T, (), o (5 + 0, (5)))
(s (

S
@ (T (54 Gy (), F (420
< @(f(t), T, (t+5mj(t))> + c:(2hk) + ¢ +5 + chi)

and j — oo provides the uniform estimate g (5(7&), Ty, (t+2 hK)) < 2¢.(2hk)+ 2.
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Now we summarize the construction of z(-) in the following notation : For each ¢ € J
and j € IN, there exist &K; € IN (depending on ¢, j) and N; € IN (depending on ¢, 7, K;)
such that N; > K; > N;_; and

T (T, (s = 2hrg), E(s) )
( )

g:\7(t), zn;(t+2hg;)

IN

A\

A
L= S

for every s,t € [0,77].

Convergence Theorem I (Prop. 2.3.2) states that z(-) is a timed right—hand forward
solution of the generalized mutational equation Z(-) 3 f(Z(-), ) in [0,T[.
Indeed, set g;: (%,1) — [ <5Nj (17 + 2 b)), 1352 + 2 th) for #4, <t<t3" and
regard the sequence ¢t —— 5N]. (t+2 hy; +2 th) of solutions.
Obviously conditions (1.), (3.), (4.) of Prop. 2.3.2 result from the assumptions here.
Furthermore, we obtain for any 0 < ¢ <t <T (with tf, <1< t‘}vtl, tl]’\,j <t < t?;;l)
and je N, e e J

Q- (30, 3(.1))

Qo (T (i, (1802 4 2hue)), 1802 20y ), T (3, (52 + 2 ), 6452+ 2 ) )

< R + @5<§E(§:“Nj(t‘}vt2+2h;(j), a’Nj(t’;;;Mthj)) + (b—a) th)
< R. + @g<cg(t’—t+2th) + t’—t+2th)
— R, for j — o0, ' —t ] 0 and all Z,7’,

i.e. condition (2.) of Prop. 2.3.2 is also satisfied by (g;) emn-

Finally for proving assumption (5.) of the Convergence Theorem I, we benefit from the

convergence properties of the subsequence (T Nj) jemn mentioned before. It ensures that
. a 1

for every t € [0,7[ (with #§ <t <t{"),

Q- (F@E@. 1. 5@, 1)
Qo (F@@, 0, F(aw 087+ 2hug), 1577+ 2, ) )
+ @g(qNE(f(t), 5Nj(tgg2+2hm))) + 2hy, +t‘;vﬂ;2_t)

< R. + ag<ag<§(t), iNj(t+2th))> + c(2hy;) + 2hg; +2th)

IN
&

— R, for j —00. O

Remark. 1. Assumption (2.) is only to guarantee the uniform continuity of the
Euler approximations ,(-). If this property results from other arguments, then we can

dispense with this assumption and even with condition (4.) of Def. 2.1.1.
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2. The proof shows that the compactness assumption can be weakened slightly.
We only need that all Z,(t) (0 <t < T, n e IN) are contained in a subset F C E
that is transitionally compact in (E, (Ge)eer, éj(ﬁ, 15, (G:)))-

This modification is very useful if each transition 9 € éj(ﬁ, D, (q.)) has all values in
F after any positive time, i.e. 5(75, T) € F forall 0<t<1, € E. In particular,
it does not require any additional assumptions about the initial value zy € E (see e.g.

Prop. 4.4.28 and Corollary 4.4.29 for nonempty compact subsets of IRY).

Corollary 2.3.6 (Existence of timed right—hand forward solutions

due to timed two—sided sequential compactness)

Suppose that (E,(q:)ecy) s timed two-sided sequentially compact (uniformly with
respect to ), Moreover let [ : E x [0,T] —» é;’(ﬁ, D, (q.)ecr) satisfy for all e € J

1. M. = sup o' (f(z,t)) < oo,
4z

2. c.(h) = sup BFE1)(h) < oo, c.(h) — 0 for h 0,
1,7

5. IR sup (f(%1)) < R. < o0, e’ Ry — 0 for & 10,

t,z
4o 30.0: @ (FGun), fEnt) < R+ 0@ E) +1—h)
fOT’ all 0 S tl S t2 S T and 31,22 € E with 1 31 S VB 32,

We(+) > 0 nondecreasing, limisoup We(s) = 0.

Then for every Ty € E, there is a timed right-hand forward solution z : [0,T[— E

of the generalized mutational equation z(-) > f(z(:), ) in[0,T] with z(0) = .

Proof results from Prop. 2.3.5 and remark (2.) after Def. 2.3.4 immediately. O

Proposition 2.3.7 (Existence of timed right—hand forward solutions
due to one—sided sequential compactness and (L7), (R™))
Assume standard hypotheses (L), (R™) for each (E,@;) (i.e. dueto Def. 1.4.1, 1.4.5,

left-hand and right—hand spheres are right—sequentially closed) and suppose (E, (q:)ecs)
to be one—sided sequentially compact (uniformly with respect to ) (see Def. 1.2.2).
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Moreover let f: E x [0,T] — ég’(ﬁ, D, (q.)ecy) satisfy for every e € J

LM.o= swp a?(FEY) <
2 el = sp ATEDW < o c.(h) — 0 for h L0,
. IR s;; 1 (f(Z,1)) < R. < o0, e Re — 0 for &' 10,
po30.0: @ (fEn), Faw) < R+ o (nnlg6m), 265

+ It — 1]
for all t,, t, € [0,T] and z,,z; € E,
We(+) > 0 nondecreasing, ©.(s) — 0 fors | 0.

Then for every xo € E, there is a timed right-hand forward solution = :[0,T[— E

o ~

of the generalized mutational equation z(-) > f(z(:), ) in[0,T] with z(0) = .

Proof is based on Convergence Theorem II (Prop. 2.3.3) : Correspondingly to the
preceding Proposition 2.3.5, we consider the Euler approximation for each n € IN (with
2" > T) setting

hy = £, = j hy for j=0...2",
gn(O) = ,fl\‘/o, %0() = ,fl\‘/o,

Balt) = F@), 6) (-4, Z@))  for te i, 6], j<
The uniform modulus of continuity ¢.(-) is again supposed to be a nondecreasing convex

function [0,7+1] — [0,00[ and so all Z,(-) are equi-continuous in the sense of
@(5,1(5), 5n(t)) < . (t—s) forany 0 <s<t<T+h, and ¢ € J.

Due to the one—sided compactness of (E ,¢-) uniformly with respect to ¢, the Can-
tor diagonal construction (with respect to the subsequent index [) leads to a sequence
ng /oo such that for every 1 € IN andt € @, :=]0,7[ NN - by, thereis Z(t) € E

satistying sup @(ink(s), 5(5)) — 0  (l—o00) forall e € J.
ENS Ql
k>
According to Prop. 1.4.5, standard hypothesis (R™) ensures ¢.(z(s), 2(t)) < c.(t—s)
for every s,t € |J, @ (s < t). In contrast to Prop. 2.3.5, we cannot use any
form of left—convergence here (because ¢. need not be an ostensible metric on E and
thus, standard hypotheses (L™), (R™) do not imply the equivalence of right— and left—

convergence).
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For extending z(-) to [0,7"], we approximate each ¢t € [0,T]\|J, @ by s, := [hil]-hl.
As another consequence of assuming one—sided compactness, there exist a subsequence
(s1,)jev and some (t) € E such that for all ¢ € 7, @(5(51].), 5(t)) — 0 (j — o0).
So we obtain an estimate (that is uniform in ¢, but not necessarily in ¢) for every [ € IV

(760, F(0) < tmswp (¢ (760, 7)) + & (), 7))
j—r 00

< limsup (cg(hl) + ¢ (i(slj)a i(t)) )
j—>r 00

= Ce(hl)

and thus, (L(inl(sl), i(t)) — 0 (I — o00)  uniformly in ¢ for each € € J.

Convergence Theorem II (Prop. 2.3.3) implies that z(-) is a timed right-hand
forward solution of the generalized mutational equation %() > f(Z()),-) in[0,T[.
Indeed, set g, : (2,t) — f(%nl (t, —h), t], —hl> for tJ <t <t (t—h >0) and
regard the sequence ¢t —— 1z, (t — h;) of solutions (on [hy, T7).

Obviously conditions (1.), (3.), (4.) of Prop. 2.3.3 result from the hypotheses here.
Moreover, we obtain for any ¢, € [h,T[ (with ¢} <t < &F, th <t < tht!) and
leN,:€J, 3,7 €E

Q2 (a0, G2 )) = Q2 (F@u(th, = b, = ), T (th, = ho), 15, — )
< R + @g<cg(|t’—t|+2hnl) + |t'—t|+2hm)
— R, for n — o0, [t' —t| — 0,

i.e. condition (2’.) of Prop. 2.3.3 is also satisfied by (gn,)nem-
Finally condition (5’.) of Convergence Theorem II results from the construction of z(-)

and continuity assumption (4'.) for f In particular, cond. (5'.i) is a consequence of

Q- (F@E, . @@, )

= Q7 (FE®, 0, T o — )y (5] B — )

< R+ 0@ (Tl b — k), 30)  + = [k + )
< Rt ofetn) + @@L, 70) + + h)
< R+ @e(ce(hz) + sup ﬁe(fn,([h—,] h), 55(5)) + + hl)
— R,

for | — oo and any t € |k, T|. O
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2.3.3 Estimates

Finally we extend the estimates of § 2.2 to timed right—-hand forward solutions. To be
more precise, Propositions 2.2.3, 2.2.4 and 2.2.5 find their counterparts here and the
proofs are based on the same notions.

So the same obstacles as before keep us from estimates that are easy to apply : Due
to the definitions, only elements of D usually appear in the first argument of ¢..
Furthermore a solution z(-) of x( ) > f(Z(-), -) is required to fulfill the condition

tmsup 3 (T (FEO0 (D), F¢+0) = @7 FO) - O )< A0

with Z(t + h) and z(¢) merely in the second arguments of ¢.. So we cannot expect
an explicit estimate of ¢.(z(¢), y(t)) for timed right—hand forward solutions z(-), y(+)

in general.

Proposition 2.3.8 Assume for the function f: Ex[0,T] —s é;’(ﬁ, D, (g-)) and
curves I, € UC'_’([O,T[,E,(YE)

(e}

1a) §() > f@), ) in [0,T],

b) F(t) € D for all t € [0,T7,
limsup 3 ((¢-+ 1), J@7(0),1) (h %(t))) < A (fE®), 1),
¢) @(5(7&),@(7&)) < hrilis(}lp (:r y(t— h)) m z(0) = m y(0) = 0,
2. M., = sup o (f(Z,1)) < 00,
3. JR. < : sup Ye(f ( t)) < R., e? Ry — 0 for €10,

47. 3 (), Le é? (f(glatl)a f(%ﬂb)) < Re + Lo g(21,2) + Geta — 1)
fOT all O§t1 StQST and 31,5265' with 7T131§7T1 gg,
() > 0 nondecreasing, limsup ©.(s) = 0.

540
e(LF_’f‘ME)'t 1

Then, @(5@), g(t)) < 55(55(0), ’g(())) CelbetMat g 5 R L o gl g,

Proof is a consequence of Gronwall’s Lemma 1.5.1 :
The auxiliary function ¢ (t) = @(5(1&),&(75)) satisfies the semicontinuity property
©:(t) < limsup @.(t—h) according to assumption (1.c).

h10

Moreover, lim sup M < (Le+M.) o-(t) + 5R. for all t € [0, T7.
h0
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Indeed, the timed triangle inequality and Prop. 2.2.3 guarantee for all small 4 > 0

< (), F(@ ), 1) (b, #1)))

+ @ (F@0.0 (0, 7). Glt+h)
< @ (f@, 0 (b 30, e+n) + Roh o+ ofh)
< o(t) M g /0 " M) (5 R5+L5-§g(5(t), g(t+s)) +a5(s)) ds + o(h)
< ety Mo /0 " ot (5 B+ Lo (9:(8) + w2(59)) +:(s)) ds + o(n)
< p) et v sl (SR L (1)) + ofh)

Proposition 2.3.9
Assume for f:E x 0, 7] — @);(E,ﬁ, (¢:)) and z,y:[0,T] — E

LF() 3 @, ). §6) 3 @0, i 0.1 mE0) = T §(0) = 0,
2. M. := sup o (f(Z,1)) < 00,
3. JdR <oo: Sl;.P yg(f(%', t)) < R, e’ Ry — 0 for €10,

t,2
23000, L @ (FEn), fBh) < R+ Lo @(3,5) + Gt —t)

forall 0<t, <ty <T and z,z € E with T 21 < T 2o,

We(+) > 0 nondecreasing, limsup ©.(s) = 0.

540
Furthermore suppose the existence of Ac > 0 such that for each t € [0,T[, the infimum
pu(t) = inf_(@(E F0) + TG 1) < oo
zeD,mz<t

can be approzimated by a minimizing sequence (Zj)jen i D and h; | 0 with

71—1,5]' S m gk; S t: ag(gjagk) S )\E'hja h] < 7-@(f(g]7t)7 gj) fOT’ all j< k.

e(Let+Me)-t _ 1

Then, pelt) < @0) B 2 (L) A AR -

Remark. If the above-mentioned minimizing sequence (z;) in D satisfies
su - q.(Z, Z
pk>~]~q(]~ QN 0 (j — o0)
%(f(zjvt)7 Zj)

then, @:(t) < ¢.(0) elbetMIt 4 BR, .

e(Let+Me)-t _q
Le+Me

So in the case of symmetric ¢. and D dense in (E, g:), we obtain that R. =0, ¢.(0) =0
imply ¢.(-) =0.
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Proof follows the same track as for Prop. 2.2.4 and is based on the second subdif-
ferential version of Gronwall’s Lemma 1.5.2 :

. (-) satisfies @ (t) < lirgliionf w.(t —h) for every t €]0,T[ due to the timed
triangle inequality and z,y € UC([0,T7, E, ¢:). For showing

lim inf geltthl o) < (L. +M,.) ¢.(t) + 2(L4+1) A + S8R,

let (Zj)jen denote a minimizing sequence in D and h; 1 0 such that
mz; < mz <t
A &GRS Ay by < Te(f(30), %)
Gz, (1) + ¢:(z, §(t) — () (j — o)
Due to Prop. 2.2.3, we obtain for every 0 < h < h; < To(f(%),1), Z;), 7 <k

@ (G0 (h3), F(t+h)

h
< @5 70) et +/
< 0

< @Zﬁﬂﬂ) eMeh 4

=

Ea
+/0 eMe-(h (
-

!

for all j <k,

R.+ L. qg(zj, (t+s)> + We(s) +3R5> ds
L. q@ﬁ§@)+4RQ

&~

€ 'We(jfa 5) —|—@5(S)> ds
L@@bm»+@&m+4m)

IN

Q- 2, T(t)) - eM=h 4
o 70)-
+ A b eMeh —i—/ eMe-(h L. - w.(Z,s) +@5(S)) ds.

The corresponding estimate for ¢, (f(%-,t) (h, %), g(t+h)) and k — oo provide
foreach 0 < h < By

QOg(t'f'h) < %(t) . eMeh + 2\ hj eM:h
h
" / M) (Lo (we(@s) + welfis) + 20u(9)) ds,
0

So finally h := h; and j — oo lead to

h%?fﬁ@%iﬂﬁ < (Lo+M) ¢.(t) + 2(L.+1) N\ + 8R.. O

In the following counterpart of Prop. 2.2.5, it is a relevant point that the assumptions
about p. do not consist in the comparison of two transitions of f, i.e. regularity
condition (9.) on f(¥1,t1), f(Ta,t2) is used only with Q7 (induced by g.).
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Proposition 2.3.10 Suppose for pe,G.: E x E —» 0,00[ (€ J), p,A\e >0 and
f: E x 0,7] — @);(E,B, (¢2)), z,y:[0,7[— E the following properties :

1.

2.

10.

Then,

(E, (¢:)ee7, éj(ﬁ, 5, (G=))) s timed transitionally compact,

each p. is symmetric and satisfies the triangle inequality,

Aoy, @) = inf (B, 2) + @5 ) <oo for any B,% € E,
zeD,

<mp U

z(-) is a timed mghtfhand forward solution of T(-) > f(@(-),-) in [0,T]
constructed by Fuler approximations according to the proof of Prop. 2.5.5,

Nzez

[e]

J() is a timed right-hand forward solution of y(-) > f(H(), ) in [0,T]
with T %(0) =T ?j(()) = 0,

IN

= ME<OOZ a?(afjv f(iv))v &;’(,g, f(ga)) ME;
(302, (h,%) AR SR
for all z,%z, € E, h € 10,77, 1;6 {f(?,s) ‘ ZEE, 0<s< T},

3Re<00: 78(77 ( ) /’)\/( Nf(ga))

lim sup 7 (6(h, w(mh) G(t+h, 7))

hi0
foriall ZEE, te 0,77, Y€ {f(?,s) ZER 0<s< T},
Fe() P-(0(t,2), ¥(t+h, ) + B.() () < c(h)
forall 5€E, te 0,77, V€ {f(E,s) EF,0<s <T},
c.(h) — 0 for h |0,
3000 L Q@ (Fun), fot) £ R+ LB i) + 8.t — )
forall 0<t; <ty <T and v1,v0 € E with m 17 < m Vs,

R,
R

INIA

() > 0 nondecreasing, limsup @.(s) = 0,
510

for each ’ﬁEE, 0>0, 0<s<t<T, O<h<1l with t+h+4d6d<T,
the infimum A, (f(’??, s) (h,v), g(t-l-h-i-é)) can be approrimated by

a minimizing sequence (Z)pemn in D and h, 1 0 such that for all m < n,

lem S ngn S m g(t+h+6)> ﬁe(gmagn) S )\a'hma
hn < To(f(3,5), Zm), GCmiZn) < A b,
0:(t) = limsup A, (f(t), g(t—i-(S)) fulfills
510

p(t) < (ﬁpg(O) + BGRA42\) t) (1+L.t) e2Mt,
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Proof. Let (Z,(-))nen denote the sequence of Euler approximations according to
the proof of Prop. 2.3.5, i.e. for each n € IN (with 2" > T') set

b, = =, th = jb, for j=0...2",

gn(O) = Xy, %0() = X2y,
Falt) = F@), 6) (t—t, Ta@))  for te |y, 571, j <2

Then the Cantor diagonal construction provided a subsequence (7, (-))ren Wwith the

additional property q. (f(t), T, (T + 2 bk)) — 0 (k—>00) foreveryte[0,T],

Proposition 2.2.5 and condition (9.) imply for any § >0 and k € IN (with 2 b, < 0)
S Za (gnk(2 bk)? g(é)) : eMEt
t ~
w [ (Rt L B (5 (] ). G40)) + 50)

+ 4R +2).) ds
The triangle inequality of p. ensures A (01,73) < pe(T1,0) + Ac(To,T3)

for any ;,0,03 € E and so A, fulfills the triangle inequality. As a consequence,
A(Fn(200), 50)) - €Mt
t ~
+ / eMe-(t=s) (L‘E Ce(bn,) + L:- A (xnk(s+2 b)), (S—i—é))
0
+5R 42N +@8(5)) ds

IA
<

VAN

ﬁg(ink(Qbk), g(a)) Mt 4 (5R5+2)\5+@g(6)+L5 cg(bnk)) Mt ¢

t
+ Mt / e Mes L. AL (xnk(s+2 br), (5+(5)> ds.
0
Now the integral version of Gronwall’s Lemma 1.5.4 provides an explicit upper bound

A (et +200), ’g(t+5)) L eMet

(20k), y(6)) +
+/0 e M= ( c

B, (@

(@
(:vn (20x), T(0
(

B (@

(

VAN

5 Ro+2 \e+3.(6)+Le cg(bnk)) ;

T (201), (6 5 Ro+2 A\t 0.(0)+ L. ce(bnk)) 5) ds

VAN
g

Met _
1+ L. %)
t + Lg CMEt—]VIlg—Mst>
<

Tn, (201), (0 1+ L. t ert)

)) +
)
n (5R +2 A +3:(6) + Le ce(by,)
(6)
) t+LE§eMEt).

— N e N N N
N N T N NN TN

+ (5R + 20 +5.(8) + Lo c.(by,
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So finally we obtain

A (), g(t+9))

< limsup (;’o}(i’(t), T, (42 bk)) + A, (%nk(t—f—Q be), g(t+5)))

< 0 + Timsup &6(5,%(2 be), g(a)) (14 L.t) e2Met
+(5RE+2>\5+@5(5))> t (1+L.t) e*Met

< (35(5(0), 7)) + (5R. + 2\ +5.(9) t) C (L4 Lot) e2Met

because &E(ink@ bi), g(a)) < ﬁe(ink(Z bi), i(o)) + AE(:?:’(O), g(&)). 0
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2.4 Systems of generalized mutational equations

Generalizing mutational equations in the presented way has the useful advantage that
components of a system can come from different applications. In § 4.6 later, we give
an example consisting of two components, namely a first—order geometric evolution and
a C° semigroup on a reflexive Banach space.

To be more precise now, let (Ey, Dy, (G )ecs,) and  (Ey, Dy, (§2)ees,) satisfy the
general assumptions of this chapter. Furthermore @); (Ev, D1, (§)ecs,) abbreviates
timed right-hand forward transitions of order p and, é;’ (Ey, Dy, (¢3)ocs,)  denotes

timed right—hand forward transitions of order p'.

Convention in § 2.4.  For the sake of simplicity, we always restrict ourselves to tuples
(T1,29) € E, x By withm i, = m To, 1l.e. the components 7; € El, Ty € Ey
refer to the same point of time.

Strictly speaking, we consider elements (t,z1,23) € IR x Ey x Ey with sets Ey, Ey # ()

and prefer the notation (T, To) = ((t,21), (t,x3)) in the style of preceding sections.

Definition 2.4.1 For ¥, € @);’(El, Dy, (3})ecs) and 9 € @);(EQ, Dy, (§3)ere ),
deﬁne 51 X 52 . [0, 1] X El X EQ — El X EQ,
(h, %1, %2) — (gl(h,il), 52(]1, %2))

These maps U, x Uy induce timed forward transitions of order max {p,p'} on
<E1 X E2, 51 X 52; (@' +47)eem, 6’6.72)
(according to the following Lemma 2.4.2).

So assuming transitional compactness of both components and suitable conditions on
(]71; Jg) 0 [0,77 x E1 X E2 — é?(ﬁhﬁh (@ )eea) x é?(ﬁzaﬁm @3)5’6.72)
the results of § 2.3.2 guarantee the existence of a timed right-hand forward solution

(F1, T3) : [0,T] — Ey x E, of the generalized mutational equations
@O, 20 2 (AEO, B0, ), REE, B, )
in the sense of Proposition 2.4.4. In this context, only one asymptotic demand (for A | 0)

has to be fulfilled by both components z;(-), Z2(-) simultaneously. For this reason, it

is not obvious that (z1(-), Z2(+)) is a timed right—-hand forward solution of the system

553(.) 5 f@ (), T, +)

B() 3 L@(), B0), )

(i.e. separately with respect to each component).
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Lemma 2.4.2 The tuples of @);(El,ﬁl, (@)eeq,) X é?(ﬁg,ﬁm (@) erem)

induce timed right—hand forward transitions on <E1 x Ey, Dyx D, (2437 eceq, 5’6J2>
with o (U1 x 05) = (d)) + oy ()
B gf( ) = B(0h) + fa(Da)
Yeor (U X 2) E (0h) + 9 (V)

To(0y x 0y, (T1,%2)) = min{ To(th, T1), To(Us, T2)} for Ty€Dy, Ty€ Dy,

Qve e’(ﬁl X ,"927 Tl X 7_2) < Qv;'—}({gla 771) + Qvg"—}({g?: ?2)

foreach € € Ji,¢" € Jo. In particular, these transitions 91 X9y are of order max{p,p'}.

Proof. (01 x 95) (0, ) = Idg 5, 1s obvious. So are the statements about
68,5/(51 X1§2), 7'@(”51 X&Q, ) and T (51 X&Q) (h,%):h+7r1fz7 for all z € El XEQ.
Thus, 9 := 0y x U, fulfills conditions (1.), (4.), (5.), (7.) on timed forward transitions

stated in Definition 2.1.1.  Condition (2.) with 7. (9) 2 7.(0,) + 7 () results from

limsup 1 - ((Ll—i-aﬁ)(@(h, I(t, (xl,xg))) 0 (t+h, (xl,xQ)))

hi0
= limsup 7 ((Ll—i-aﬁ)(i?(h, (91 (t, 1), Da(t, 7)) ) ( (t+h, 1), Oa(t+h, xg)))

hi0
— limsup 1 ( a;(m(h, 0y (4,7)), 191(t+h,:v1))

hi0

+ (75%(7‘92(h7 192(257%2))7 "-92(t+h752)))

< Y1) + (D)

for every 7, € By, To € By, t€[0,1], c € T, € € To.

Furthermore we obtain for all elements z; € 51, U € El and Iy € 52, Uz € EQ

(Wlth 1 51'/1 = m §2 < m gl = m gQ)

((a;+a;?) (3(h, @1,72)), O(h, (G1,52) — @4TD(EF2), G1,52) — vs,sf(ﬂ>h)+
h (@432)(E0E), §1.92) + vew @) h)

(@ (Fu(n@0), Bi(hin) + @2 (Fa(h,@), Balh2) — @@L G) — §2G52) — (@) +7F2) h)"
he (@@ + Q2@)  + (01470 (02) h)
, i@, ) — =(01)h )*
h (@2@05) + v=(01) h) *
(a%(vzw,’fz), ﬂg(h,@w) — G232, 52) — 70 (P2)h )+
2(@2,72) + 7o (D2) h)

>
—~
‘QZ

A

So, a(9) = o (h) + o (U,) satisfies condition (3.) of Definition 2.1.1.
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Similarly, the semicontinuity property
limsup (7 +2) (9t — b, G 5), Gu52) > @ +3) (I 7,5)), G7)
h10
of condition (6.) there (for all adequate ; € 131, U € El, Ty € 132, Yo € E, and
te 0, To(9, (T1,72))]) is easy to conclude from the corresponding feature of 0, 5.

Finally we have to prove the estimate Q- (5, 7) < @;H(gl, 1) + @?f’({%, T2)

forevery o := (U1,02), 7:= (7, %) € 0, (Ey, D1, (@1)ecqn) % O, (B, Dy, (§3)ere7)-
All 51651, ﬂleﬁl and iQGBQ, %EEQ (Wlth T Ty = T Lo < ngl = m gQ) fulfill

@+ (00, @5, 7 GuR) — @+ (@) GuR)

= (A, ARR) - @ (&, i) AR
+ ﬁﬁ(@z(h, T2), %(h,@)) _ 02 (72, o) aAON:
< qel(&/l(hail)a 771(%@1)) - . (z1, 71) e’ (01) -k
+ @2(hhm),  BOE) - 2 (72, ) ot )

So the definition of Q'™ (d, 7), E,H(@, Ty) guarantee the last claim immediately. O

O

Lemma 2.4.3
[fboth  (Br, (@)eeqis O (ErD1 (@) and (En @)oes 65 (Ez D, (@)
are timed transitionally compact, then so is

(El X EQ; ((751 + qe?)eejl, €Tz épH(El: 517 ((751)6671) X ép'—}(va‘% 527 ((};?)E'Ejz))‘

Proof results directly from Definition 2.3.4 (of timed transitional compactness)
because in short, the convergence in (El x Hy, ¢! + ¢?%) is always equivalent to

the convergence in both components (El, ), (Eg, 7). O

So Proposition 2.3.5 guarantees the existence of a timed right-hand forward solution
() = (@), T2()) : [0,T[ — E, x Ey of the generalized mutational equation

(with two components)

() 3 (A@EO, 20), ), BEO, 20, ).

in the following sense :
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Proposition 2.4.4 (Existence of timed right—hand forward solutions

with two components)
Assume that (Ev, (@)ccqis 05 (Br Du (@), (Bay @)oeas O7 Bz, D, (32)))

are timed transitionally compact.

Furthermore let fl c By x By x 0,7] — @;(El, 151, (@)eeq,)
fai By x By x [0,T] — ©.)(Ez, Da, (§3)ee)
fulfill for every e € Jh, €' € Ja
Lo Mo = swp o ar, (f1(21, %, t) X fa(Z1, %0, 1)) < o,
2 colh) = s B (11, %2, t) X f2(FL, 20, t)) () — 0 for h L0,
3. IRy - t;}llg Ve (F1(B1, 22, 1) X fo(F1, %2, 1)) < R.. < oo,
wz;h2 (e + g )ymatpr’} L R — 0 for e, 10,

4' = @E,E'('): @;H<fl(gbg27t1)7 f:(zlaz%t?)) + Nz"_) (fr;(glag%tl)a fz(zlaz%t?))
< Rew + Do (T00R) + BZ) + - t)

fOT all O§t1§t2§T and :yvl,?flEEh gZ,gZEEQ

with MY = MY < M2 = T 2,
Weer(-) > 0 nondecreasing, limsup & (s) = 0.
540
Then for every ° = (20, 1) € Ey x By (with m 3% = m 1Y), there exists a

timed right-hand forward solution ) = (@), 72() : [0,T]— B\ x By

of the generalized mutational equation (with two components)

e}

7() 2 (REO), B0), ), B@EE), B0), ) in [0,
with T(0) =2° in the following sense :

Firstly, (z,,72) € UC7([0,T], E, X Ey, & +q2) foreverye e Jy, &€ Jo.
Secondly, for each e € Ji, €' € Jo and t € [0,T], there exist parameters @, ¥, > 0
such that

b= (RGO B0, 0 F), BEh) - @G R0) - e
- B(REO. 20, 0 (T, Blt+h) — B T0) -
satisfies limsup + - Ap < Fewr, limsup (g +¢)max{r’t .5, = 0

hl0 g,el —0

fOT all gl Eﬁl, gZ 6.52 with 1 gl = 7 gZ S 1 ,fl\‘/l(t) = T gg(t) |
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So far it is not obvious that z;(-) and Zy(-) are always timed right-hand forward

solutions of the generalized mutational equations

CICRERVACTONOND

B2() 3 @), B(), )
respectively. Proposition 2.3.5 states the existence of timed right—hand forward solutions
due to timed transitional compactness and its proof is based on Euler approximations
and the Cantor diagonal construction for selecting an adequate subsequence. This idea

can be applied to
(El X E2> (551 + 652)6631, e'eJ2 @p'—}(Ela D17 (ael)EEJl) X @p'—}(E% D27 (682)6'6.72)) :
immediately. In addition, each component of the Euler approximations solves its own

approximated’ mutational equation in El and Ez respectively. So the key point now is to

adapt Convergence Theorem 2.3.2 to the components of limit function [0, 7[— Ey % Bs.

Proposition 2.4.5 (Convergence Theorem for Systems)

Suppose the following properties of

A™ fie BEix By x (0,7 — ©)(Ey, Dy, (@N)een)  (meIN)
™, for By x By x 0,7 — O (Ey, Dy, (¢.7)eres,)  (m € IN)
i'/gm), 51’/12 [O,T[ — El
im0 7y 0,T[ — E,
for each e € Ji, &€ Jy :
La) () s fMEMe), w0, ) in [0, 17,
) V() > AUEM), 7)) in [0,T],
2.0) M. = sup {aZ(fI™(G,%,1)} < oo,
m,t,gl,zg
Bz oswp {0 &" A @) A7) i)}
with limsup - R, = 0,
€0
) M. = sup {aZ (M3} < o,
mztaglyg2 ~ ~ .
Re o > swp {Fu(t 7 @ E ), e (G e (Falesy ) )
with limsup %) - R. = 0,

€10
8. a) limsup Q;H(Tm)(gbgbtl); Em)(glyzz,tz)) < R.
b) limsup @3/”@”@1,@2&1), f;(m)(gh%,h)) < Ro  for m — oo, to—t; |0,

Cl’lld agl(gl,gl)+qgg(g2,zg) — 0 ’LUZth 1 gl = T gg Sﬂ'l 51 = T 52
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4. a) ©:(h) = sup w, (igm),h) < oo (modulus of continuity w.r.t. q')
) Bu(h) = sup we (T, h) < 0o (modulus of continuity w.r.t. q7)

5. ¥V t1,t,€[0,T], t3€]0,7] 3 (mj)jew with m; /oo and

() tmswp Q1 (R@E M), Bt 0), F™Guln). Bolt). 1) < R

fimsup G2 (B0, Ble), ), 7 G0, ). 1) < B
(i) 553.\0; @;1(51(252), g§Mj>(t2+5;.)) — 0,
(), B (40)) — 0,

(i) 3600 (T (ts-05), Fi(ts))
2(H" (=), Balts) — 0,
m " (t3—0;) = m Ty (t—0;) < mIi(ts) = m Dalts).
Then, z:(-) s a timed right-hand forward solution of 501 () > AE(), T2(), -)
and  Zo(+) a timed right-hand forward solution of 502 () 3 L@, T2(), ).

Proof. We follow the same track as in Convergence Theorem 2.3.2. Here only z;(+)
is considered since all conclusions can be drawn for Zs(-) in the same way (due to
the symmetry of assumptions).

As an abbreviation, set Z(t) = (Z1(¢), Zo(t)) and z™(t) = F™ (1), T8 (1)).
The uniform continuity of Z;(-) with respect to each ¢! results from assumption (4.a):
Each ™ () satisfies ik (?ﬁgm)(s), Zm (t)) < Gt —s) for0<s<t<T.
Let e€Ji, 0 < s <t <T be arbitrary and choose (&")jen, (9;)jew for s, t

j
(according to cond. (5.ii), (5.iii)). For all j € IV large enough, s+ 07 <t —d; and so,

@ (#1(9), 21()
< @), A s+0)) + @ (T (s, H =0 ) + @ (T (-6), 7))
< Gu(t — 5) + o(1).

for j — oc.

Now let e € Ji, n€ Dy and t€[0,T], 0<h<To (ﬁ(%l(t), (1), 1), gl) be
chosen arbitrarily with m g3 < m 21(t) = m Z2(t). Condition (6.) of Def. 2.1.1
implies for all &k € ]0, h[ sufficiently small

P (AG@ED. 0 (), Bie+n) < @(AED. D k@), BE+h) + b
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According to cond. (5.i) — (5.iii), there exist sequences (m;)jemn,

satisfying m; oo, 0710, 6; 0, 6;+0; <k and

Q- (f@w.n,  J"@w.0)
"y (" rh—0y), F(t+h)
a (7). A" (t+))

\ @%(@(t), 7 (146

117

(65)jem

Thus, Proposition 2.2.3 implies for all j € IV large enough (depending on ¢, 9y, t, h, k),

@ (R@ED.0) (h ), Falt+ )

RGE®), ) (h—k, T0), 5§mf>(t+5;.+h—k))
+ GHF" (46, + h—F), ig’”j’(Hh—aj))

A GRUTEE Y #i(t-+h)) +

< (@@ nw) + @ (2w, @™ e+) )

(
(&

+ a;(:cgmﬂ(tm 5), %1(t+h)) Ty
(

h ~ ~
" / M (Q;H(fl(i(t“)a fi") (@ (mf’(),-)‘ + SRE) ds
0
+ (Dg(/{) + 2h2
< @, Tu(y) - oeMet + 3h% 4+ B.(k) + h-eMh 3R,

h
+ / 6ME-(hfs) (R5+h2 Ql»—)(A'(m] ( (t),t), N(m])( (m])(
0

< X (g1, 1(t)) - M=+ const- h (R.+h) + ©

+ h Mz h QIH(A(m]( (t),t), fl(ml ~

h
+ / e Me-(h—s) QIH(me])( (m])( 9),°) : f}m]‘) ~
0

)7 ) t+6’.+s)> ds

ds.
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Now due to assumption (3.) and the choice of (d7), the upper limits for j — oo and
then & — 0 provide the estimate

P (A@ED.0) (b §), Balt+h)
< @My, Ta(t) - eMP 4+ const- h(R.+h) + 0 + 0

+ h eMh. limsup sup Ql'_)(A(mJ (@™ (4, )
j—o0 0<s<h

“(m])( (m])( 9,0

1

t+ 6” t+5;.+s)'
Zm ), (7™ implies

@
lim sup % . (ﬁ;(ﬁ(f(t),t) (h, ), 51(t+h)) — ¢} (Y1, T(t)) - )

R0

So finally convergence assumption (3.) and the equi—continuity of

< lim sup (c-(RE—i-h) +limsup sup Q7 (f}mj)(i(mj),-) , Em] (F0ma) . ))
hl10 j—oo 0<s<h t+9] t+0+s
= c- R, + R.. O

For applying this modified Convergence Theorem, we now make the assumptions about

the components separately.

Proposition 2.4.6 (Existence of timed right—hand forward solutions

for systems of two generalized mutational equations)

Assume that (Ev, (@)eeqis 05 (B Du (@), (Boy @)oes, 7 (B, D, (a2)))
are timed transitionally compact.  Moreover for each € € Jp, €' € Jo, let

ﬁ : El X EQ X [O,T] — é;(ﬁla 517 ((};1)86.71)

fo: By x By x [0,T] — ©.)(Ey, Dy, (§%)-e7) Fulfill
1. a0 M. = tS}lE ar (f1(31, % 1)) < 00,
b M. = t;jg a7 (fa(31, 2, 1)) < o0,
P17
2@ c(h) = swp o B (A, 21) (h) — 0 for h 10,
A1
b colh) = suwp B (F2(Z1,%2,1)) () — 0 for h 10,
3.a) AR té;g Ve (f1(Z1, %2, 1)) < R, ¢ R —0 fore—D0,
b) I Ro tsjlpi Ver (ﬁ(?l,gz,t)) < R., PUCRINY - N for " — 0,

4. 3 moduli ©.(-), W (-) of continuity :
@i’_’<ﬁ(gbg2;tl), fl(zl,rzvg,tg)) S RE +&}E ((’]"El(ghgl) + qg(gbrzé) + tg—tl)
Q2 (R it), BGiuzt) £ Ro+00(0007) + B 2) + b-t)
forall 0<t <t,<T, §1,71 € By, o,2a € By and &' € T

with — my = m Yy < Tz = T 2,
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Then for every 0 € By and 3% € By (with m 3° = m 33), there exist timed
right—hand forward solutions x1(+) : — ~1 Ta(+) : — ~2 0
ght-hand f d soluti z1(-) = [0, 17 L, () (0,77 K f

the generalized mutational equations

[e]

() 3 [@(), T2(), )
B() 3 S@(), B(), )

Proof is based on the same combination of Euler method and Cantor diagonal

construction as for Proposition 2.3.5. Applying it to
(El X By, @1 + 652)6631, ALY @pH(Ela Dy, (ael)fejl) X @pH(E% D, (qeg)a’e.fz))'
we obtain a sequence ((i(‘j) (+), 5%” ())) of Euler approximations [0, 7[— E} x Ej,
ncIN

limit functions (%1(-), Z2(-)) : [0, 7] — E1 x Ey and a sequence h; 10 (j = oco0) with
sup @t (F—hy), @) — 0, s @ (@), He+n)) — o,
0<t<T 0<t<T
sup 2 (fé])(t— hj), iz(t)) — 0, sup  q2 (52(25), fé])(t—i-hj)) — 0
0<t<T 0<t<T

for j — oo and each ¢ € 7y, ¢’ € Js.

So Convergence Theorem 2.4.5 for systems of mutational equations implies that

71(-) and Zs(-) are timed right—-hand forward solutions of
() 3 AE(), Tl), -)

() 2 f@(), T(), )

respectively. O
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Chapter 3

Timed right—hand backward

solutions of mutational equations

Now a second generalization of mutational equations is presented. In comparison with

the concept of chapter 2, the main differences can be subsumed into two aspects :

Firstly, we consider the points of time ¢ — h, ¢ for first—order approximation (instead
of t and ¢t + h). This idea motivates the term “backward” and is symbolized by — .
Roughly speaking, detailed information might be lost while time is passing, e.g. in shape
evolution, components of the boundary can disappear. So now the aim is to use the
information of the past as long as possible. Then of course, another form of Gronwall’s

Lemma takes on a key role, namely Lemma 1.5.3 for ¢ assuming
(1) > limsup p(t+h),
hl0

liminf YO=YER < r) L limsup ¥(t—h) + g(t) < oo.

h10 h hi0
So when applying it to the generalized distance between two curves z,y : [0,7] — E ,
we have to guarantee the upper semicontinuity mentioned in the first condition.
Here this goal is not achieved by a global assumption (like condition (6.) of Def. 2.1.1),

but we consider the upper limit

ag(z(m, g(t++)) = lim sup E]E(E(t—l-k), g(m))
k,l]lO
k<l
instead of the distance ¢.(z(¢), y(t)). On the one hand, the upper semicontinuity is
guaranteed for Gronwall’s Lemma 1.5.3, but on the other hand these two versions of a

distance are not equal in general.

121
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Combining these modifications leads to the following condition on a timed backward
transition ¥ :[0,1] X E — (E, (¢.).cs) of order p (as a more general form of the

semigroup property)
3 7.(0)>0: limsup £*-7.(J) = 0 and forallte]0,1],

e—0

timsup ¢ (907, 0t —h,T), 9T)) < )
limsup £ -G (00,7, IR, Dt -h5)) < ().
hl0

As another consequence of the upper limits with respect to time, we need additional

conditions for the “forward” link with initial elements (in a figurative sense), i.e.

@ (I3 D), IeB) =0 g (IE,F), IO HF)) = o.

The second essential difference to the forward generalization of chapter 2 is that
we dispense with the basic idea of distributions, i.e. we prefer the direct (first—order)
comparison between transitions to their effect on a “test set” DCE.

So in this concept, a timed backward transition 9 : [0,1] x E — E (of order p)
represents the right-hand mutation of a curve #:[0,7] — E at time ¢ € |0, T if
lir}rllisglp - q~g<{§(h+, z(t —h)), 5(t++)) < 7.

with parameters 7. > 0 (¢ € J) satisfying limsup €’-4. = 0 and, the expression
e—0
“right-hand” again refers to the fact that z(¢) appears in the second argument of ¢..

The corresponding “left—hand” condition is

limsup & - @ (1), I, 3t -n) < A
h10
In comparison with the distributive notion of chapter 2, the direct comparison here has
two key advantages. Firstly, we obtain estimates for distance between “left-hand” and
“right-hand” primitives (in Prop. 3.2.3). Secondly, two—sided completeness provides an

alternative to transitional compactness for constructing solutions (in § 3.3.3).

Principally the order of this chapter provides many similarities to chapter 2.
In § 3.1, timed backward transitions of order p on (E 2 IR x E, (§.)ccys) are defined.
The generalized distance functions ¢. : E x E — [0,00] (¢ € J) are usually assumed
to fulfill the timed triangle inequality and to have the so—called property (BUC™),
ie. sup G.(Z(),7() < oo forall curves &,7 € UC([0,T],E,q) (T<o0), e € J.
This last condition is only introduced to make Gronwall’s Lemma 1.5.3 applicable.
In particular, the reflexivity of ¢. is usually not required since q.(z(t"),y(tt")) does

not compare curves Z(-), y(-) at the same point of time anyway.
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In § 3.2, timed right-hand backward primitives are specified — consisting in their def-
inition, the piecewise construction and the corresponding estimate. These results form
the basis for timed right-hand backward solutions of generalized mutational equations
in § 3.3. After the definition, we consider stability properties and prove existence in two
different ways, i.e. transitional compactness and two—sided completeness in combination
with standard hypotheses (R™), (R¥).

Finally § 3.4 consists in an essential advantage of the triangle inequality in comparison
with its timed counterpart. We consider an ostensible metric ¢ : E x E — [0, 00|

on a nonempty set E. Then standard hypothesis (R<) implies

a(=(), y(t) = q(w), y(0)
for all curves =z, y € UC7([0,T], E, q¢). Thus in short, the upper limits for
k,l — 0 (0 < k < I, denoted by “+”7, “++7) can be omitted. As a consequence,
Euler method leads to right-hand backward solution of generalized mutational equa-

tions — without restrictions on the time interval as in § 3.3.

General assumptions for chapter 3. Let E be a nonempty set, E := Rx E,

m:E— R, (t,z)—t and pe R. J C[0,1] abbreviates a countable index set

with k€ IN, 0¢€ J.

For each £ € J, the function ¢.: E x E — [0,00[ is always supposed to satisfy

1. timed triangle inequality,

2. time continuity, i.e. every sequence (3, = (tp,2zn))new in E and 3= (t,2) € E
with ¢(z,,2) — 0 (n — o0) fulfill ¢, — ¢ (n — 00) (due to Def. 1.2.1).

3. property (BUC™), ie. sup ¢.(Z(t),5(t)) < oo forall T, € UC™([0,T],E,q.).

te 0,7
Notation. 6(:75(5), g(ﬁ)) = lirilis(}lp Z]V<§(5), g(t+k')),
a(36h), 5eh) = i sup q(3(s+ k), G+ 8)),
Q(#6). 30) = tmsup G(Es k). G0+ D)

for any 7,7 :[0,7]— E and s,t € [0,1].
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3.1 Timed backward transitions

Definition 3.1.1 0 :[0,1] x E — E is called timed backward transition of order p

on (E,(g:)eey) if foralle € J,
1. 9(0,-) = Idg,

2. 3 9.(0)>0: limsup £”-7.(9) = 0 and
e —0
lmsup £ (9%, Dt —h@), WD) < @)V elo]
h10
limsup - (9(,7), IR, d(t-nE)) < @) Vel
h10
~ (73 ~ ~ - o - ~ +
3. ar(V) = I @ (D, 3(0)), I+, 5(00)) — (@), §6) —1e@) b
o:"(v) oi‘i‘{l ey < n (@0, §6) +7-)h)
Uc—*f]’tfl[, B, §e)
< 00 (with tp, :=1t—h)
4. 3 6.(9):]0,1] —[0,00[:  B.(9)(-) nondecreasing, limsup G.(9)(h) = 0,
h10
(009, 9(t,5) < BW)(E-s) VO<s<t Fek,
5, @(5(0*,5(7&,%)), 5(t++,5)) ~ 0 v telo1],
(9,3, J07,907)) =0 v telo,1]
6. mI(h,T) =h+mi V Z€E, helo,1].

Define for any timed backward transitions 9,7 : 0, 1] x E—F andce J,

0(9,7) = sup limsup %@(5(/#, 7(t— h, 7)), %(t++,§)).
sE M

é;”(ﬁ, (Gc)ees) degotes a~set Sf timed backwarflv transitions of order p on (E,(q.)ecr)
supposing for all 9,7 € ©,"(E,(¢-)ces), T € E, ¢ € J in addition
Q' (9,7) < o0,

A\
(00%,3), 70H,5) = timswp ¢ (Ik7), 7(,5)) = 0.
kLL0 (k<)

Def.

Remark. 1. FE 2 IR x E supplied with only one function ¢ : ExE — [0, oo
provides an easy example by setting J := {0}, ¢ := ¢ as mentioned after Def. 2.1.1.
For each timed backward transitions ¥ : 0,1] x E —s E of order 0, the condition

~ ~ ~ 0 Def.

limsup €”-7.(¥) =0 means 0=0°-(¥) =v(J) — just by definition of 0° = 1.

e—0
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So ¥ is demanded to fulfill for all 7 € E, t €]0,1]

limsup 1 a(ﬁ(fﬁ, It — h, 7)), 5(#*,55)) =0
R10

A ~ ~ ~
msup & g(00+,3), I, It - 7)) = 0
)

Then the following results do not take the dependency on £ or 7.(-) into consideration
(see e.g. the existence of solutions due to completeness in § 3.3.3). So we do not mention
e there and abbreviate the set of backward transitions of order 0 as ©3"(E, q).

2. The definitions ensures only Q="(d,9) < ~.(d) for all ¥ € @);”(E, (G:))-
So the continuity assumption of a function J(-) : [0,T] — ép_”(E, (Gc)ees) is often

replaced by a condition similar to

limsup sup @j(&(t), 5(t+h)) < const(9(-), ).

h—0 te (0,1
h>0

3. Condition (4.) on a timed backward transition 9 :[0,1] x E —» E states its
uniform continuity (in positive time direction) with respect to g. for every € € J, i.e.
9(-,7) € UC~([0,1], E, ¢.) for any 7 € E.

Sufficient conditions for Lipschitz continuity in positive time direction are not difficult

to find. Gronwall’s Lemma 1.5.3 leads to the answer that for every € € J, we suppose

For(d) = sup limsup EOCRDICD)
0<t<L1 hl/()
A TEE _ B N
lim sup 56(19(15,%), 19(t—|—h,5)) = 0 Vitelo,l, e FE
hi0

as concluded from the next lemma.

Lemma 3.1.2  For every timed backward transition 9 on (E,(q.)) and T € E with

qf (5(t_ha§)7 g(tzi))

b, := sup limsup 5 < 00, VeeJd
A 0<t<1l  hl0
lim sup qg(ﬁ(t,f), 0(t+h,5)) =0 Veed, telo]]
h10

the map 5(,5) belongs to Lip~ (][0, 1],5,2}6), ie. forany 0<s<t<1 and € € J,

56(5(3,5), 5(15,%)) < b (t—s).

Proof.  For ¢.:]s,1] — R, t —> (}}(19(5,5), 19(15,5)) (with ¢.(s) :=0) and t > s,

pelt+h) < @ (06,9, 967) + @ (9t.7), It +h7) — e()+0  (hL0).
pels+h) = @(9(s,8), U(s+h, 7)) — 02 p(s) (hL0)
and o () —p.(t—h) < 68(5(75—}1,55), 5(15,5)) < b.-h+o(h).

So the assertion is a consequence of Gronwall’s Lemma 1.5.3. O
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As a next step, we consider now the semicontinuity properties of the generalized distance
between uniformly continuous z, y : [0,7] — E. In particular, the upper limits
qz(t), y(t)), q(z(th), yth)), q@(t), y(ttt)) are compared with each other and

the last one proves to fulfill the assumptions of Gronwall’s Lemma 1.5.3.

Proposition 3.1.3 Suppose the timed triangle inequality for q : ExE — [0, oo
and let the functions T,y : [0,T] — E satisfy for any t € 10,T[, hel0,T—t
Q(30), #t+h) < wh), a(30), g+ m) < wih),
m Z(-), m y(-) nondecreasing, 1z(-) < my()

with the modulus w(-) of continuity (w(-) is nondecreasing, w(h) — 0 for h{0).

Then @(t) := ((t+), y(t++)> = limsup q( (t+ k), (t-i—l)) fulfills

k110 (k<)
a( t+h) < liminf ot +k) + 2w(h) < o(t) + 2w(h)
p(t) < timsup G(E(t+ k), e+ k) = (30, G),
k10
p(t) = 1ir21¢soup p(t+k) = p(th),

for every t € [0,T[, h€]0,T —t[. In particular,

i(30, 7)) < (76, q¢) < a(@3e), 7).

Proof.  The timed triangle inequality guarantees for any 0 < k) < ko < ly <l < T —t

q( (t+ k), Gt + zl))

< Zj(i(tJrkl), 55(t+k-2)) + (7t + k), g(t+12)) + a(g(t+z2), g(t+zl))
< wiky— k) + g(F k), G+ R) 4wl —b)
< wiky) + G(F k), B ) + wl)

and this implies the first two assertions.

Moreover for every ¢ € [0,7] and n > 0, there exists p = p(t,n) > 0 such that
q( (t+ k), (t+l)) < o(t) +n for any 0 < k <1 < p.

For this reason, et+k) < ot) +n for any 0 < k < p.

Finally we obtain an upper estimate of the generalized distance between two points
T,y € E evolving along timed backward transitions 5, 7. Similarly to the forward
generalization of chapter 2, it forms the basis for later results about existence and unique-

ness of primitives and solutions.
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Proposition 3.1.4 Every timed backward transitions 9,7 € é;”(E, (¢:)ees) and
initial points T,y € E (with mx <m y), t€]0,1], € € J satisfy

Z(06,5), 7)) < @00%,5),707,5) e+
+ (@0 +20:00) it

Proof. The auxiliary function ¢, :[0,1] — [0,00[, ¢+ @(&tﬂf),’f(ﬁﬂ@)
is bounded due to assumption (BUC™) and Prop. 3.1.3.
Moreover it has the following property for any time ¢ € ]0, 1|

limsup 20— < 02(9) - limsup ¢ (th) + Q7'(V,7) +27:(V).
h10 hl0

Indeed, for every 0 <k <k’ <!' <l (and t,:=t—h >0)

(0 +h3), 7E+10) — welts)

< @(dt+k @), I+ K, It 7))
+ @ (DR, O, 7)), Ih+T, F (7))
+ @ (D, A ), T+l P).

Let > 0 be arbitrarily small. Then there exists hg = ho(n, t,€) € ]0, 1—¢[ such that

o @ (0B, I, IE)) < (@) )k

o @(Iht, Fnd), FEHD) £ (@Q7WF) +m) -k

o (I, It 7)), VW FWLG)) — @ (90D, FELD) — @) b
< (oﬁ'w) 0) b (2(0003), 76N D) + ) h)
= (7@ +n) - h - (welt) + 7:(0) 1)

for all h €10, hy).
Now for each h €]0, hy], there is p = p(h,n,t,€) €]0,n[ satistying for every 0 < k <[ < p,

- @ (9.3, 7 D)

o G (d(t+k D), Ih+1 0, 7)) < (R()  +20) - b,

o @ (Ih+k, Fn ), FE+1D) < (Q@.7) +2m) - b,

o G(Uh+k Ut 7), Wh+L 7 T)  — @(5), FED)
< (@) +n) b (o) + =@ R) + (@) +m) b

As a consequence, we get for all h €0, ho] and 0 < k <1 < p(h,n,t,¢)
(0 + k), 7 +1D) - wults)
< (@ +n) b (pet) + %@ k) + (G0,7) +27.09) +5n) h.
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So finally for all h € )0, ho(n,t,¢)],
el < (a2 (@) +1) - pelt) + Q7 (0,7) +7.(0) 2+’ (D) h+mh) + 5.
Furthermore, Prop. 3.1.3 guarantees ¢.(t) > limsup ¢.(t + h).

hi0

Thus the claim results from Gronwall’s Lemma 1.5.3.

Remark. 1. If a"(9) = 0, then the corresponding inequality is

& (007,2), 7 D) < ROO7DF09) + (@007 + 29:0)) -t

2. In particular for the same initial points =y, we obtain

eas ()t _q

(0D, 76, 5) < (@07 + 29.00)) i
This estimate is the essential conclusion of the additional condition on timed backward
transitions in é;”(E, (Q)ecs), ie. (}}(5(0*,5), ?(0++,§)) =0 forall 9,7 7, c.
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3.2 Timed right—hand backward primitives

Now the term of timed backward primitive is specified. For the first time we distinguish
between “left-hand” and “right-hand” (with respect to the arguments of ¢.). It is
mainly relevant for estimating the distance between two primitives in Prop. 3.2.3 and

it has already appeared in Prop. 2.3.8 of chapter 2 (but there we did not use again).

Backward transitions provide an important example inducing both of their own
primitives. For constructing right—hand solutions by means of Euler method in § 3.3, we
primarily need the comparison between a backward transition and a right—hand primitive
given in Cor. 3.2.4. That is the only important application of left—hand primitives and
we are going to restrict ourselves to right-hand solutions in § 3.3  because the
corresponding results about left-hand solutions can be concluded from symmetrically

adapted arguments. So the expression “left—hand” will not be relevant in later sections.

Definition 3.2.1 7 : [0,7] — (E,(¢:)ccs) is called timed right-hand backward
primitive of a map U : [0, 1] — é;“(E, (¢:)) if for each ¢ € J,

1. Vie ]OaT[ 3 /’?E(t) = /’?a(ta i‘/()aﬁ()) : 75(19(15)) < /’?a(t) < 00,
lim sup (1) (h+’i(t7h))’ H) < (), limsup &% -7.(t) = 0,
hl0 €10

2. #() € UC([0,T[E,q.), e thereis w.(T,-):]0,7]— [0,00] such that

(75(5(5), f(t)) < we(z, t—s) for 0<s<t<T, limsup w.(z,h) = 0,
hi0

3. @(5(1&) (0F, #(1)), §(t++)) ~ 0 VY telo,T],
4. ma(t) =t + m z(0) V telo,T].

7:00,T[—> (E, (§.)ecs) is called timed left—hand backward primitive of J(-)
if it satisfies conditions (2.), (3.), (4.) and

1. ¥V tel0,1] 3 7.(t) =7:(t, z(), V(")) : 1 (D(t) < 7(t) < oo,
lim sup (7)., 9 (h+ Fe-m)) < (1) limsup ”-75.(t) = 0
h10 h - e10
Remark. Let Z(-) be a timed right-hand backward primitive of the function

9:[0,T[— ép—”(ﬁ, (@.)). Forany ¢ €]0,T[, the shifted map F(t+-):[0,7 —t[— E
is a timed right—hand backward primitive of 9(t+-). (The corresponding statements are

also obvious for timed left-hand backward primitives.)
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Lemma 3.2.2 For every V1,05 € é;”(ﬁ, (@2)ecs) and ty €]0,1], Z € E, the

Junction z :[0,1] — (E, (¢c)cer)
~ gl (ta z) fOT 0 S
z(t) = ~ ~
192(t—t0, 191(250,’2\;)) fOT ty <
is both timed left-hand and timed right-hand backward primitive ofg [0, 1[— ©,(E, (¢-)),

- V- 0<t<t
gy = 0 Jr 0= o
Vs for to <t <1

Proof.  (-) € UC™([0,1], E,q.) is an immediate consequence of the timed triangle

inequality. Moreover conditions (3.), (4.) results from properties (5.), (6.) of timed

backward transitions (in Def. 3.1.1). Conditions (1.), (1’.) on backward primitives are

trivial for all ¢ # .

At time t = ty, we obtain for any h € ]0,ty[ and 0 < k < k' <l' <[ (with t; ==ty — h)
T (3t + k), lto—n) (h+1, Flts — 1)) )

- 21;(52(/@ I(te,2), Ou(h+1, 51(t0—h,z)))
(@(k, Di(te, 7)), (K, 51@0,2)))
(51(k', 01(t0, ), Oulto + 1, z))

+ (Dt +0, D), Dbl Dilts— b)),
The additional condition on timed backward transitions in ép_”(ﬁ, (G:)ees) (Def. 3.1.1)
states that the first term converges to 0 for k., k' — 0 (0 <k < k').

<

G
+ ¢

Moreover, conditions (2.), (5.) on timed backward transitions (in Definition 3.1.1) state
limsup - limsup ag(z%(to +1,3), Db+l Dt — h,%))) < 2e(th)
hi0 LILO (I <)

timsup G (Di(K, Dt 7)), Dalto+1, 7)) = 0.
kL0 (K <)

So z(-) fulfills condition (1.) on left—-hand backward primitives at t = t;, i.e.

limsup 7 limsup @(f(to +k), U(to—h) (h +1, T(ty — h)) ) < ().
hi0 LI L0 (U <)

The same reasons ensure also cond. (1.) on right-hand backward primitives at t = ¢y. O

Remark. 1. As a consequence of the proof, the parameter 7.(t) = 7.(¢, ¥,J) can
be chosen as maximum of 7.(0;) and ~.(J;).

2. Supposing the moduli S.(91)(-), Fe(¥2)(-) of continuity to be also convex,
their pointwise maximum h —— max{f.(V1)(h), B:(J2)(h)} is also convex and
provides a modulus of continuity for z(-) due to the timed triangle inequality.

Condition (5.) on backward transitions (Def. 3.1.1) is used only in this proof explicitly.



3.2. TIMED RIGHT-HAND BACKWARD PRIMITIVES 131

Proposition 3.2.3

Let %:[0,T[— E be a timed left-hand primitive of g 0,7 — O;"(E, (q-))
and §:[0,T[— E a timed right-hand primitive of 7T : [0,T] — O,"(E, (¢:))
such that for each ¢ € J,

N a(@() < M.() € C([0,T] 0,00,
LE0), 30,07 £ R() € C0,T] 0,00,
?(79()7?()) < Ce(') < CO([O,T[, [0,00D,
1 5(0) = M g(O)
Moreover, set pi.(t / M. (s) ds.

Then, for every e € J and t € ]0 T|, these backward primitives fulfill the estimate
(7)., 5e)) < @ (3(07), o)) e +
t
+ / et=(Dpe=(s) (ce(s) + 5 RE(5)> ds.
0
Proof.  Correspondingly to the proof of Prop. 3.1.4, we consider the bounded auxiliary
function . :[0,T[— R, t +—— q.(z(t*), y(tt")) and prove for any ¢t € |0, T

lim sup M < M.(tp) - limsup p.(tn) + c(t) + 5R:(t).
hi0 hi0

Since Proposition 3.1.3 guarantees . (t) > ¢.(t") for every ¢t € [0,T[, the claimed
estimate results from Gronwall’s Lemma 1.5.3.
For any 0 < ky < ko < k3 < ky < k5 (and t;, :=t — h > 0), we conclude from the
timed triangle inequality
( (t+ k), (t+k5)) < G (i(t+k1), O(ty) (h+ ks, i(th))
+ G (5(th (h+k2, ?ﬁ(th)>, ]

)
+ ae 5(th)
+ 55 7r:(th)

Let n > 0 be chosen arbitrarily. Then there exists hy = ho(n,t,€) € ]0,7 — t[ such that

o q(Fth), Ut (hH, EW)) < G6ED) +u) b

o (7w (nt, W), FE) < GTA) +) -k

o G (Ut (1, B 0)), D) ()~ @ (B, TE) — ) b
< (a@t) + 1) - - (@7, TH) + @) h)
= (@) +n) - b (pulta) + 2(0(t)) 1)

for all h €10, hy).



132 CHAPTER 3. TIMED RIGHT-HAND BACKWARD SOLUTIONS

Now for each h €]0,hg], we get some p = p(h,n,t,e) € ]0,n] satisfying for all

O<k<l<p

A G It (h+1 50)) ) < G(67,0) +20) - b
o @ () (hrk Ht). Gt+D) < G657 +21) - b
o @ (Tt (h+k FB)),  Olta) (R Gt

)
< (@) +n) b (paltn) +7-(0(t)
o @(19( h+k, yth) 7 )
< @ () (h, 5t), 7
As a consequence, all h €10,ho] and 0 < ky < ky < k3 < kg < ks < p(h,n,t,e) fulfill
T (0 + k), 5+ ks) )
< G39) +2m) h
+ (@) + m) b (peltn) + @) B) + ealtn) + ((I(8) +)
+ @ (0 (B ). o) (B ) + 0k
+ G5 +20) b

)
B) 4 eltn) + (e(D(tn)+n)
)

IN

2R ( ) +6n) h
+ (M:(tn)  + nm) howe(tn) + we(tn) + (Mc(th)+n)h+1) R(th) h
+ (Cg(th) +9 Rg(th)) m (eMs(t—h).h _ 1)

due to Proposition 3.1.4.  So finally the continuity of M.(:), R.(-), ¢.(-) implies

lim sup M < M(t) - limsup @.(tn) + c(t) + 5R(2). O
hi0 hi0

Corollary 3.2.4 Let y:[0,T] — E be a timed right-hand backward primitive of
0:[0,T) — ©;7(E,(3.)) and t,h,k >0 suchthat t,:=t-h>0, t+k<T,

Q:(I(t), 9()) < el € COltnst+ K],

Fe(+,3.9) < Re() € COltn,t + k).
Then,

@ () (h+ k5, ), T+ k) <

t+k (9
< / e (9(tn))-(t4k—=s) (05(5) + 5R5(5)) ds.
¢

—h

Proof  results from Prop. 3.2.3 and condition (3.) on right-hand primitives (Def. 3.2.1),
te. @ (F0)OF, (k). 5(67)) = timsup G (It (k. §(t). Fta D)) = 0 O

Ic<l
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3.3 Timed right—hand backward solutions

3.3.1 Definition and convergence theorem

Now we follow the same track as in chapter 2 about the timed forward generalization :
The definition of “right-hand primitive” specifies the notion of a “right-hand solution”.
We do not extend this concept to “left—hand solutions” explicitly because the following
conclusions can be repeated easily after permuting the arguments of ¢.. So for the sake

of simplicity, the expressions “right—hand”, “timed” are sometimes left out in this section.

Definition 3.3.1

For given f : E x [0,T] — ép_”(ﬁ, (@), amap T :[0,7[— E is a timed

[e]

right—hand backward solution of the generalized mutational equation = (1) > f(z(-),")
if () is timed right—hand backward primitive of f(f(), )0, T — é;“(E, (Ge)ecr),
i.e. for each e € J,

1. Vtelo,T[ 37:(): :(f(@(),1) < F:(t) < oo, limsup &% -Fu(t) = 0,

]
limsup & @ (F@(t—h), t=h) (b, Ft—h)), F)) < F0),
hi0

2. () € UC([0,T[,E,q.), i.e. thereis w.(%,):]0,T[— [0,00[ such that

(}}(5(5), f(t)) < we(z,t—s) for 0<s<t<T, limsup w.(z,h) = 0,

hi0

3. Z]}(f(:?:’(t),t) (0%, Z(t)), §(t++)) ~ 0 v te 0,11,
4. mz(t) = t+ m z(0) vV telo,T].

For constructing solutions by Euler method later, a form of convergence is required
that preserves the property of solving a mutational equation. The next proposition
shows that we can use the same notion as for timed right-hand forward solutions
(see Convergence Theorem 2.3.2in § 2.3). Here it is described in assumptions (5.ii), (5.iii)
and can be subsumed under the generic term “two-sided graphically convergent”.

As an essential advantage of this similarity, the same type of compactness is useful for

constructing backward solutions in § 3.3.2, namely timed transitional compactness of

(E, (@)ees ©,"(E,(@))).
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Proposition 3.3.2 (Convergence Theorem)

For each ¢ € J, suppose the following properties of
fm; f: EX[O,T[ — é?(ﬁa(a&)EEJ) (mEﬂV)

Tppy T 0,7 — E :
1. M. = Sglz{a?(fm(%t)), o (f(Z1)} < oo,
c.(h) == ZutH B-(fmZ.1)(h) < oo, for every h €)0,T],
R. > ;utpi{%(t, Fms fn(@ms )y Ye(Fm(Z1), % (F(Z1) }
with li;r’lsup e’ R, =0, limsup c.(h) = 0,
g0 hl0

2. limsup @?(}vm(zl;tl)a fm(%;@)) < R, for m— o0, ty—1t |0,

0:(Z1,72) >0 (m 721 < 20),

[e]

5 Fm() 3 ful@aml), ) in 0,77
4. We(h) == sup we(Tp, h) < oo  (moduli of continuity w.r.t. g-) Y he]0,T7,

limsup @.(h) = 0,
h10

5. Y ty,ta,t3 €0, 7] 3 (mj)jenw  with m; /oo and
0) lmswp Q7 (F@F0).t), fu, Et)0)) € R (G — o)
(@) 3 e n0L[: & (Fm (=), Ft)) —0, & —0,
T Ty (12— 0;) < 1 F(12),
(i) 3 () ;e in[0,1] : qg(i(tg), imj(t3+5;-)) —0, & —0,

1 %(tg) S st %mj (t3+63)

Then, z(-) is a timed right-hand backward solution of %() > f(z(-), ) nl[0,T].

Proof. The claimed uniform continuity of Z(-) results from assumption (4.)

Each z,,(-) satisfies (};(fm(tl), im(tQ)) < Wty — t) for 0 <t <ty <T.
Let c€J, 0<t; <ty <1 bearbitrary and choose ((5;-)]-61N, (0;)jew  for ty, to
according to cond. (5.ii), (5.iii). For all j € IN sufficiently large, t, +6; < ty —J;

and as a consequence,

Z (1), 3(t))

< G (70). Ty (146) + @ (T, (018)), Ty (02=8))) + (T, (22—0)), (1))
< e (te — ty) + o(1) for j — .
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Now for fixed € € J and any n > 0, we prove the existence of hy = ho(g,n) € ]0, 5[
such that for every t € |0,7[, 0 < k <l < h < hy (with ¢, :=t —h > 0)

@(f(i(th),th)(mk,5(th)), fé(t+z>) < 15 eM21 (n+R.) (h+1) +25.()+3¢.())

(F@w), ) (rt, B0), 7)) < 15 M2 (R b

Thus, Z(-) holds condition (1.) on backward solutions (in Def. 3.3.1), i.e.

i sup g (F@Ew)m) (ht, 3), 30)) < 15 R

Furthermore we conclude condition (3.) from the preceding estimates, i.e.

@ (F(@(s),9) (07, 3(s)), 3(57)) = 0
Indeed, hy does not depend on t. So we obtain for any s € [0,7], 0 < h' <h” < hy

@;(}V(f(s), s) (h’, 5(3)), 5(s+h”)) < const(M., R.) - (R + G.(W") + c.(W")).

For every n €10, 1], assumption (2.) provides hy = ho(g,n) € ]0,n[, No = No(e,n) €N
such that all elements 7z, 2z, € E, t1,to € [0, T, m e IN with

4-(Z1,72) < W(2 hy), m 2 < T 2o, 0 < ty—1t1 < 2hy, m > Ny

satisfy @?(fm(zlatl)a fm(%;@)) < R.+n.

Choose t€]0,7] and 0 <k <k’ <!' <l < h < hy arbitrarily with ¢, :=t—h > 0.
Considering subsequences (that depend on t—h, t, t+1 and ¢), assumptions (5.1)—(5.iii)

guarantee the existence of sequences m; /oo, ;1 0, 650 such that

ag(%mj(m—aj), 5(t+l)) 50, for j — oo,
A @ (@), Ty (0 +0}))  —> 0 for j — o0,
limsup Q7 (@) ), Fon,(B(t),t) < R

j—>r 00

So there is an index N; = Ny(g,n,t,h, k, k',1,I') > Ny such that all j > N; satisty

f

o; -+l < 1—=¢6; < I < hg,
qe(fmj(m—(sj), i(t+l)) < min{nh, G.(b)},
N z (%), Ty (th +0)) < min{yh, Go(h)},
| Q7 (F@t) 1), Fuy @) t0) < Ret
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Now Proposition 3.1.3 and Corollary 3.2.4 imply for m > Ny (with #,; :=t—h+d})
G (s Gyt + 8)), 1+ 03) (B K, Ty (00 +0))), F(E+1)

< zje(fmj(imj(thj) th) <h+k’, imj(th,j)), 5mj(t+5;.+z'))

+ ( (t+0+ 1), mj(t+l—6j)) + qg(xm(t+l—6) (t+l))
S qe (fm] xm] th] th ]) ((h + k,)+7 %m‘j (th;j))7§m‘j((t+ 6; + k,)++)) +a6(l,_k,)
RN (A P + qg(:vm (t+1—6;), fc'(t+z))
h+k' ,
< / Mz (k' =s) (Rg+n + 5R6> ds + 23.() + nh
0
< AR (77 + 6R5> + 2%.() + nh
< (h+1) e -6 (n+ R)  + 20.0).

In this situation we also obtain for any k; < ko (with 0 < k < ky < ky < k')

ﬁe(f(f(th); th) (h +k, i(th)), Fny G, (th5): th.s) (h + K, Iy, (th,j)) )

< @ J@w). ) (hrk, B0), T @), ) (hkLE) )
@ S @) ) (ke E 1)), Ty G ) tg) (B, B(0)) )
- qe(fm] (1) th,j>(h+kz, 7))y Fong T, (t19), ) (B K, T (01)))
< (@ (F@) ), Ty (Ft0), 1)) +2R) L (ke — K)
(Q:(fmj )s Fony oy (tn)st0)) +2 R ) & u + b~ k)
qg<:v , T, th+5’)) eMe (htk2) +3R. % + c. (k' — ky)
< <R5+77 +2R5) el 4 (b — k)
+ (Re+n +2Re) e 4 (ks — k)

Me (h+ko) 1

+ @(E(th), zc'mj(thw;)) Melhthe) 3R OO (1 py)
< (277+9R5) - (h+1) eM=2n + nh eMe2n +3c.(1)
< 9 (n+ RE) c(h+1) eMe2n +3¢.(1).

So the timed triangle inequality guarantees for any ¢ € 10,7 and 0 < k <[ < h < ho,

qg(f(.%“(th),th) (h+k, 5(th)), .%“(Hl)) < 15 eMe2n (n+R8> (h+1) + 20.()+3 ().
O
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3.3.2 Existence in (E, (§.).c;) due to compactness

As a consequence of the preceding Convergence Theorem 3.3.2, we can (again) suppose
timed transitional compactness of (E, (3.)ec, ép_”(E, (g=))) for proving the existence of
a backward solution. Moreover, exactly the same steps of Cantor diagonal construction
(as in Proposition 2.3.5 about forward solutions) lead from Euler approximations z,(+)
to the limit function z(-).

In contrast to forward solutions though, further assumptions about the right-hand side
now enable us to estimate the distance between an Euler solution z(-) and any other

timed right-hand backward solution directly — by means of Proposition 3.2.3.

Proposition 3.3.3 (Existence of timed right—hand backward solutions
due to timed transitional compactness)

Assume that the tuple (E, (§.)ecs, é;“(E, (¢))) is timed transitionally compact.
Moreover let the function f:E x 0,7] — é;“(E, (Ge)eer) satisfy for every e € J

1. M. = sup oa.'(f(Z1)) < 00,
1,7

2. c.(h) = sup B.(f(Z,1))(h) < oo, c:(h) — 0 for h 10,
1,7

3. AR : sup 7(f(Z,1)) < R, < o0, e’ Ry — 0 for 10,
tz

4o 30.0: @ (fGun), FGut) < R+ 0 (@Gu7) + -h)
fOT’ all 0 S tl S t2 S T and 31,22 € E with 1 31 S VN 32,

W:(+) > 0 nondecreasing, limisoup W.(s) = 0.
S

Then for every initial point Ty € E, there is a timed right-hand backward solution
7:[0,T[— E of the generalized mutational equation % (-) > f(Z(-),) in [0,T]
If assumption (4.) is replaced by

4030200 Qr(FEL), fEat) < R+ Lo-@(5) + Gu(b—h)
fOT’ all 0 S tl S t2 S T and 51722 € E with 1 51 S 1 32,

We(+) > 0 nondecreasing, limisoup We(s) = 0.
S

then any other timed right-hand backward solution Z(-) (with Z(0) = Ty) fulfills

qg(i(ﬁ), z(t++)) < GR.teM! (1 + L, elle erT+Ma>T-t) Vite[0,T] c€J.
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Proof. For each n € IN (with 2" > T') set
hy = o, th =7 hy for j=0...2",
z,(0) == =y, To(+) == o,
Talt) = FE(), ) (t—t, Ea#))  for te i, 4], j<om
As a consequence of timed transitional compactness and Convergence Theorem 3.3.2,
these Euler approximations (Z,(-)),eny provide a timed right-hand backward solution
Z(+) in exactly the same way as for timed right-hand forward solutions (see Prop. 2.3.5).
In particular, there are sequences k;,n; /* oo of indices (depending on € € J) with
Ge(x(t), Tp;(t+hy,)) — 0 (j —>o00) foralltel0,T7]
Now suppose that assumption (4.) is replaced by

4. aa(')aLa 2 0: @?(f(glatl)a f(g%tZ)) S Re + La'aa(zlagZ) + &-\)e(tQ _tl)
for all 0 S tl S tQ S T and 51,52 € E with 1 51 S VB 52,

W:(-) > 0 nondecreasing, limisoup U.(s) = 0.
S

Let Z(-): [0,7] — E be any other backward solution of the generalized mutational

[e]

equation z(-) > f(2(-), ) with Z(0) =Z¢ and its modulus w.(z,-) of continuity.
Then for every ¢ € J fixed and all t € [0,T[, n € IN, Prop. 3.2.3 leads to

@(@(ﬁ), E(t—f—h:ﬂ) — E/}(@(OJF), g(h:+)) oMt

< [ 00 (5. 0 (FEAE b, [ ha), TG+ B, s+ 1)) )ds

t
< / eM: (1-9) (GRE YL Z]}(in([i]hn), 'z“(s+hn)) 5.2 hn)) ds
0
¢
< / eMs (t=9) <6RE + L. sup qg(zn(m, z(r+h;+)) + on) ds
0 0<r<s
with a sequence o, — 0 for n — oc.
So . u(t) == sup @;(fn(s“L), E(s—l—h?f)) is nondecreasing and fulfills
0<s<t

t
Yen(t) < we(Z, hy) Mt + / eMe (t=5) (GR(E + Lg-gogyn(s)—l-on) ds
0

eMet_1

t
< we(ga hn) et + M. <6R6 +0n) + / eME(t_s) L. Soe,n(s) ds
0

t
< d, + eMM% 6 RR. + / Ml Lo n(s) ds
0

with o/, — 0 (for n — o00). Due to the integral version of Gronwall’s Lemma 1.5.4,

IN

t
Pen(?) CLEL6R + o, + / eleetett=s) | [ M1 (eMM——l 6R. + o;L) ds
0

6Rg (eM;/[tEfl + La e(LE eM5T+M5)T eMEtX/};MEt) + COHSt(g,T) -0

=

/
n
6 R t M=t (1 + L, elle e M) T, t) + const(s,T) - o,.

IN

IN
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Then we obtain for any 0 <[ <’

& (), 2(t+0))

< limsup (a(%(tﬂ), Ec“nj(t+l+2hkj)) +a(5nj(t+l+2hkj), Z(t+l’)))
J —> 00

< limsup q(fnj(t+l+2hkj), E(t—i-l’))
j—> 00

< limsup (g(zgnj(sﬂ, E((s+hnj)++)) w3 I = =2y — hnj))
j— 00 s=t+I+2 hkj

< limsup ey, (E+1+2hy)) +we(z, I' = 1)
j—>r 00

< GR. - (t+1) M) (1+Lg el 8M5T+ME)T-(t+l)) Yw.E - ),

i.e. @(%(ﬁ), E(t++)> < 6R.teMt (1 + L. elke CMETJ’ME)T-t) for all ¢, e.

|

As an immediate consequence of the preceding proposition, we obtain the existence of

timed right—-hand backward primitives under adequate assumptions :

Corollary 3.3.4 (Existence of timed backward primitives in (E, (¢.).c))

Assume that the tuple (E, (¢.)ecs, ép_”(E, (¢=))) s timed transitionally compact.
Furthermore suppose for 9 0, T — ép_”(E, (Gc)ecy) and everye € J

1. M. = sup o"(0(t)) < oo
2. c(h):= sép B(I(t)(h) < oo,  c.(h)—>0 for h ] 0
3. 3R € [O,too[: @) sup %(0(t) < R.,
@) limsup Q:(I(h), I(t2)) < R

(t3i) e” R — 0 for ¢ | 0.

Then for every initial point Ty € E, there exists a timed right-hand backward primitive

() [0,T[— E of 9(-) with T(0) =Ty such that any other timed right-hand backward
primitive y(-) (with y(0) = xy) fulfills

@(i(ﬁ), g(t++)) < 6R. - Mty Vtel0,1], c€J.

td
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3.3.3 Existence in (E,§) due to completeness

The preceding result of existence for (F, (g:).c7) is based on assuming timed transitional
compactness. Now it is replaced by weaker conditions corresponding to completeness.
Then in comparison with the Euler notion of Prop. 3.3.3, the approximation has to

provide even Cauchy sequences because uniform bounds are not enough any longer.

Proposition 3.2.3 represents the key tool for error estimates of approximations :

Z(7(), 5) < @ (70%), §0r) e+

+ / ehe(t)—pe(s) (cg(s) + 5R5(8)) ds
0

[0, T[— E of U:[0,7] — 6;(E,(q.))

for a timed left-hand primitive =z )
and a timed right-hand primitive 7: [0,7][— E of 7: [0,1] — é;“(ﬁ, (¢:))

such that for each ¢ € 7,

Ca?(@() < M) e (0T 10, 00]),

(.89, .57 < R() € (0,11 [0,00]),

Q7(0(), 7() < e() € C°(0.T] [0,00],
ng(o) = m g(o)

t
and setting as an abbreviation, p.(t) := / M. (s) ds.
0

For index € € J fixed, proving the Cauchy property requires the assumption R.(-) = 0.
Moreover if a sequence fulfills the Cauchy condition with respect to every ¢. (¢ € J)
then its limit has to be the same for each .

For this reason we consider now a nonempty set E'™ R x E with merely one function
q: ExE — [0,00[ and timed backward transitions of order 0, but the general
assumptions stay essentially the same. (The parameter ¢ € J is redundant as mentioned
in the remark after Def. 3.1.1.)

General assumptions for § 3.3.3. Let E be a nonempty set, E = Rx B,

™ E— R, (t,x) —> t. The function ¢ : ExE —s [0,00[ is supposed to satisty

1. the timed triangle inequality,

2. time continuity, i.e. every sequence (2, = (tn,%n))newy in B and 2= (t,2) € E
with ¢(2,,2) — 0 (n — o0) fulfill ¢, —t (n —> o0) (due to Def. 1.2.1).

3. property (BUC™), ie. sup ¢(Z(t),5(t)) < oo forall Z,§ e UC™([0,T], E,q).
te 0,7
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Proposition 3.3.5 (Existence of timed backward primitives in (E,{))

Suppose that (E,Ef) 1s two—sided complete, i.e. according to Def. 1.5.1, for any
sequences (Yn)news (Zn)nemw in E satisfying
(Ym, Yn) — 0
WG ) — 0 for my,n — oo (m < n),
qUn, Zn) —+ O for n — oo
there exists y € E such that
(g, y) —
i %) — 0 for n — oo.
Moreover assume for the function 9 :[0,T] — 05" (E, q)
1. Q7 (5(t1), 5(152)) — 0 for 0<ty—t; —>0,
2. M :=sup a(J()) < oo,
3. ¢(h) ;= sup BW())(h) < oo,  ¢(h)—0 for h | 0.

Then for every initial point Ty € E, there exists a timed right-hand backward primitive
() [0,T[— E of 9(:) with T(0) =Ty such that any other timed right-hand backward
primitive §(-) (with §(0) = Ty) fulfills a(%(ﬁ), g(t++)) =0 Vitelo,T].

Proof. Using the abbreviations h, = L, ) = jh, (j =0...2" n € IN)

n n

the piecewise constant maps Uy, : 0,7 — 6;"(E,(q.)) (ne N)

On() = O(t) on [t1, T (j=0...2"—1)
have the properties
a.) sup Q‘”(ﬂ n(t+ hy )) — 0 for n — oo,
0<t<T—hy,
b.) sup _”<19m ) — 0 for m,n — oo (m < n),
0<t<T
c.) sup Q‘”(z?n U (t + B, )) — 0 for m,n — o0 (m < n),
0<t<T—h,
d.) ( n(51), 19n(32)) for n — 00, s9— 5 10,
e) sup a(J,(t) < M,
t,n
f.) sup B0.1)(h) < c(h) for every h €10, 1].

Obviously each of them has a timed left-hand and timed right-hand backward primitive
Ty () defined as T (0) == To, To(t) = Ui(t—t], To(t;))  for t e, it

n)’n
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Now property (b.) and the estimate of Prop. 3.1.4 guarantee

sup a(im(ﬁ), in(t++)) — 0 for myn — o0 (m<n)
0<t<T

and due to Prop. 3.1.3, for every ¢ € |0, T,
Q(Fnlt = by Tult =) < ATl = b)), Fullt = b)) + el = ha)
— 0 for m,n — oo (m < n).
Correspondingly, property (c.) has the consequence

sup §<5n((t+hn)+), %m((t—l—hm)J’*)) — 0 for m,n — o0 (m <n)
0<t<T—hn,

and so we obtain for every ¢ € [0, T,
Q(Falt+hacr)s Tt +hn)) < ATl o+ B ) Tt + ) *))
+ C(hm,1 — (hn + hm))

— 0 for m,n — oo (m < n).
As (E, ) is assumed to be two-sided complete, there exists some Z(¢) € E such that
a( 70, Bt +ho 1)) — 0
e _ for n — oc.
G(Falt = ), (1)) — 0

Convergence Theorem 3.3.2 implies that z(-) is a timed right-hand backward primitive
of (). Its additional relation to other timed backward primitives is shown in exactly
the same way as in Prop. 3.3.3 (with L. =0, R. =0 in condition (4’.) there). O

Now Euler method and two-sided completeness of (E, q) lead to the existence of a
timed-backward solution on a bounded time interval. For checking the Cauchy property
of approximating sequences, more detailed estimates are required. So we restrict our-
selves to timed backward transitions ¢ € ©;”(E, ) that are even Lipschitz continuous

with respect to their time parameter, i.e.

pgUr(9) = sup limsup E a(ﬁ(t—h, x), V(t, 5)) < oo
0<t<l L0
TEE
(see Lemma 3.1.2). This assumption facilitates the comparison with geometric series.

In comparison with preceding results about existence, there is a new essential aspect.

Two-sided completeness considers two approximating sequences (Z,)n, (Un)n in E

whose elements hold the Cauchy condition in opposite order, i.e. £ Vo
(T, T,) — 0, 4(Yny Ym) — 0 for m,n — oo (m < n). p
Rou:e:;hly speaking, (7, ) represents the approximation by earlier elements %
of E'= IR x E whereas (J,)nerv denotes later approximating points. =
m

Corresponding to this notion, the Euler method has to take the time

direction into account.
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Proposition 3.3.6 (Short—time existence of timed backward solutions
in two—sided complete (E,q))
Let (E,Ef) be two-sided complete and fulfill standard hypotheses (R™), (R<), i.e.
right-hand spheres are both right— and left-sequentially closed (due to Def. 1.4.3, 1.4.6).
Moreover, | : E x [0,2T] — ©;"(E,q) satisfies

1. there exists L >0 such that for any xi,T5 € E, 0<t, <ty <2T

with w1 Ty < m Ty @ﬁ(f(fbtl); f(fzatz)) < L- ( q(71, T2) + t2_t1):
2. M := sup a7 (f(T,1) < oo,
5 ¢ = swp F(FGE0) < oo,

4. ALTeMT < 1,

For every point xo € E, there is a timed right-hand backward solution = : [0, T[— E
of the generalized mutational equation T (-) > f(Z(-), ) in[0,T] with F(0) = Ty
such that any other timed right-hand backward solution () € Lip~([0,T], E, q)

(with 3(0) = 7o) fulfills a(zg(ﬁ), z(t++)) =0 for all t € [0, T].

Proof is based on constructing approximations z,, y, : [0,7,,] — E with time shift :
Foreach ne {2,3,4...}, j=0...2" set f::2T,

hy = 21 th = jha,
T, = :F—nihj = T (1427"2),
j=2
go(') = 50, gn(o) = 50
and  To(t) == (7o, 0) (t, 50) for ¢t € [0, ],
Balt) = F@a 1), 67 (t- 1, Ta())  for te i, 6H]n]e2, 7],
G() = G167, 67 (6=, Gu))  for te J4, 1) N[0, T-3h,],
Gn(t) = JGur (D), T) (t =8, Ga(8) for ¢ € Jt], 1N 1T ~3hy, T
Then,
F@Ea 172, 672 € () for ¢ €]t 571],
F@acr (879, 649 € §,(0) for ¢ €1t 6+,
q(fn(sl), fn(52)> < e (s2— 1) for 0< s, <89 < T,
6(%(31), gn(sz)) < ¢ (s9—5) for 0< s, <8y < T,
M In(t) = mu(t) = mTo +1 for 0< t <T,
2] 4T =t
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According to the following Lemma 3.3.7,
sup  G(Fuer((t+ hus)®, Gul(t+ha)™)) < const(e, L, M, T) - h,
0<t< Ty,

sup a(%n((t—hn)+, §n+1((t—hn+1)++))) < const(c,L, M, T) - hy,
hn <t<T

sup 97(%(#), gn(t++)) < const(c, L, M,T) - h,

0<t<Ty

for every n € IN sufficiently large and thus,
E]v<§n(t - hn—l); in-‘—l(t - hn))

< A(El—hn— 1)), Fan((t—ha = b)) + € (=~ 5)
s=t—hp —hpt1
< const(¢, L, M,T) - hy + ¢ hp
< const(¢, L, M, T) - 2%,
ie. sup 5(5,”(15 — hm-1), ZTn(t— hn,l)) — 0  for my,n — o0 (m < n).

hm—1 <t<T

Correspondingly, we conclude for every ¢ € [0, 7]
Ej(?jn—f—l@ + hn); gn(t + hnfl))
S 5(§n+1((t+hn+1 + hn+1)+)7 gn((t+hn+1 + hn)_H—)) + c- (hn—l - hn+1 - hn)

< const(¢, L, M,T) - hy, + ¢ hy
< const(c, L, M,T) -
ie. sup Z]V(gn(thhn_l), gm(t+hm_1)) — 0 for m,n — oo (m < n).
0<t<T
Furthermore,

q<5n(t_ hnfl)a gn(t_'_hnfl))
< a(%n((t—hn,l)ﬂ, gn((t—hn,1)++)) + 2R,y < const(c,L,M,T) - L

ie. sup §<5n(t —hn1), Yn(t+ hn,1)> — 0 for n — oo.
By <t <T—hp_1

As (E, ) is two-sided complete, there exists Z(t) € E for each t €]0,7] such that

Q(Fu(t = har), 7)) — 0
) ~ for n — oo.
Q<x(t)a yn(t+hn—1)) — 0
The timed triangle inequality guarantees even the locally uniform convergence
sup §<§m(t — hm-1), T(t) ) — 0 for m — oo,
hm—1 <t<T
sup 6( z(t), Um(t+ hm_1)> — 0 for m — oo.

0<t<T
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The essential benefit of standard hypothesis (R™) for (E,q) (i.e. right—hand spheres
are right—sequentially closed) is put in a nutshell in the preceding Proposition 1.4.5
guaranteeing the Lipschitz continuity of z : [0,7] — E, ie.

6(&“(5), 5(25)) < c-(t—ys) for0<s<t<T.

Furthermore for every ¢t € |0,7[ and k € IN there exists an index m = m(k) > k

such that q(gm(t + hm-1— 7), 5(25)) <« Pm-1 < %

Indeed, the right-hand spheres of (E,q) are left-sequentially closed (due to standard
Gn(t+hn1 = 1), 350)) = G(7(t-1), 7)) < &
of the Convergence Theorem (Prop. 3.3.2) are sat-
4 1) [0,T = hy o[ — E (n € IN).

hypothesis (R<)) and thus, lim ¢
m — 00

So assumptions (1.), (4.), (5.ii), (5.iii

isfied by the translated functions y,

—~ =N

Now we prove that the functions f, : E x [0,7] — ©3"(E,q) (n>2),
FaGt) = fGuea (B + hyer), 67 4+ hysy) for ¢t € [t, 6+ N ]0,T]

= f(Gaa(t519), AR
fulfill the other conditions there.

For every 21,% € E, sy € [t, t1T1], sy € [th, t4F (with s, < s3),

Q* (faliss)s Fulleis2)) = Q7 (FGua(857), 657%) FGnmr (7). £59))
< L (TG (), G0 (859) 4+ 17— 1)
< L( c + 1)(1551—15{;)
< L (¢+1) (s —s1+2hy,).

Thus, QV_” (ﬁ(%’l, 1), ﬁ(%}, 32)) — 0 for q(Z1,22) = 0, so—s1 10, n— o0

Moreover we have for t € [t/ tJ1!]

o (Faw. v, L@, n) = @ (F@w, v, fG. @), 6))

< L (@), Gos(57)) + 4 —1)
< L (@, Goalt+4ha)) + Qs+ 2ha), Gur(B7) + )
< L (&(%(t), Tor(t+has)) + c-(H—1) + 5hn)

< L (@), fort+ b)) + (c+5) hy)

— 0 (n — 0).

Each translated function y,(- + h,1) @ [0,T — hy 1| — E s a timed right—hand
backward primitive of f,(7,(-), -). So the Convergence Theorem (Prop. 3.3.2) implies

that Z(-) is a timed right-hand backward solution of Z(-) > f(z(-), -) in [0,77.
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Finally any other timed right-hand backward solution Z(-) € Lip~ ([0, [, E,§) with
the initial value z(0) =z, fulfills ¢(z(¢t"),z(t™1)) =0 for any ¢. Indeed, for every n,
7(Fa((s = b 1)), 2(5) = (F(@,0) (0%,3), Z(hn 1))
< q(F@,0 (0%,7), 20%)) + Lz oy
= Lz hp

b

2

s=t3 =hp_1

with the Lipschitz constant Lz := Lip~(2(), q)-

We conclude from the mutational equation of 7, (+) and Prop. 3.2.3 that for ¢ € |2, 3]
q(Ful(t = ha)?), 3(E))

t

< a(%n(oﬂ, z(hn,1++)) eM (=3 4 / M=) [ (a(%, z(s)) —|—s) ds
3

< Lz hy_y eMhn + h, M [ (Lz+2) 2h,

S CO hn

with a constant Cy = Cy(c, L, Lz, M, T) > 0 and correspondingly for ¢ € |3 %],
q(Fu(t = huo)®), 3(E)

(t—£3) M)

< g N’n, t1+ , "'t3++ M (t—t;, / M (t—s L ~[ ~ tl , ot d
< q(@h), 2B) e A (@(70(@), 2(s)) +5) ds
< Cy h, eM2hn 4 p M [ (Cy+2) 2h,

S C11 hn

with C; = Ci(c, L, Lz, M, T) > 0. This forms the basis for estimating at time ¢ € |t} T'[

Q(Falt = hae)®), 26) = G(Fal(s = o)), 3(5H))

M (t—t2)

€
s=ti

< /tlt M) L (Gt (] = ot = 2h), 2()) + 5= (2] =4 ha) ds

4
n

< / M0 L (g0~ hasa)), Fe)

Ly + 5hn) ds
hn
< T eMT L(L:45)- hy + T - LeMT o sup q(in_l((s—hn_Q)J’), z(s++)),

s
hn

o=

hp—2<s<t
So b, ==  sup §<§n((s —ho1)h), E(s++)) satisfies the recursive inequality
hn_1 <s<T
n—1
by < Cohy,+LTeM" b,y < (LTeMT)" by + &L (2LT My

0

< (LTeMN)™ by + G- LT

<.
Il

— 0 (n — 00)

(with Cy = Cy(¢, L, Lz, M,T) >0) since 2LT M < 1.
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Due to the construction of z(-), the sequence q(Z,(s—h,—1), Z(s)) also converges to 0
for n — oo and each s. So standard hypothesis (R=) for (E,q) has the consequence
g(x(tt), Z(t*)) = 0 for every t €]0,T[ because for arbitrary 0 < k <1 < T —t,

q(F(+k), 2+ D)
—  lim g(fc“n(t+k— B 1), E(t+l))

n —r:- oo
< timsup (@(Fals = hor) 3(s) 7(Z(+ k)7, 2t +D)
n —> 00 s=t+k
< limsup (bn v L (I — k) )
n— o0
due to Proposition 3.1.3. O
Remark.

Currently it is not clear how to prove the second property (i.e. ¢(z(t7),z(tt") = 0)
by means of the approximations y,(- + h, 1) (n € IN) since these functions use the
translation of time.

Thus, for replacing standard hypothesis (R~) here we need additional properties of the
approximations Z,(-). They can be guaranteed, for example, by the assumption that

(E,q) is one-sided complete (see Corollary 3.3.8 later).

The essential step for the preceding proposition (about the existence of a timed back-
ward solution) is the Cauchy property of the approximating sequences (Z, (- — hy,))nem,
(Jn(+ + hn))new  because then the solution Z(-) results from assuming that (E,q) is
two—sided complete.

In the next lemma we collect the required statements about the Cauchy property.
Proving the three parts is based on one and the same notion : First for the index n
fixed, a recursive sequence provides an upper bound uniform with respect to time and
resulting from Gronwall’s Lemma (applied to the linear interpolation of the sequence).

Then we obtain an upper estimate for every large n by a further recursive sequence.

Lemma 3.3.7 Under the hypothesis of the preceding Prop. 3.5.6 (and its notation)

)  sup a(gn+1((t+hn+1)+, gn((t+hn)++))) < const(c, L, M,T) - hy,
0<t< Ty

b)  sup §<i’n((t—hn)+, %’n+1((t—hn+1)++))) < const(c, L, M,T) - hy,
hy <t<T

c.)  sup ﬁ(fn(ﬁ), gn(t++)) < const(c, L, M,T) - h,
0<t< Ty

for every n € IN sufficiently large.
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Proof. a.) Prop. 3.2.3 and 3.1.3 lead to the uniform estimate for # =7 <t < #/+!

Qo1 (¢ ) ), Gul(t+ha)™))

= (T (s b))y Talls+ha)*))| M
ti];:—ll M(t 2541 ~ . 2+4
< [ M @ (@b + ). G,
F@n 1 (8 4hyy + 3hy), Y ) ds
! _ _
+ eM(tiﬁl—s) Q—n(f(g ( 2J+1+hn+1 +3hn+1) ijj—lf))’
2t
F st +30), 81 ds
< hwaet L(G(RESD, ) + AT - ¥HT)
+ hppr Ml (q<yn &2, n— 1(”*4)) + AT gii?f>
= hpy Mt L (q(yn (It + hy,) gn,l(tzf%rhn,l)) + 4hn+1>
+ hpyq eMintr L ((1<yn 313:13 ), gn—l(t%+2+hn—1)) + 3hn+1>
< @ L (GGl + ), Gatl(sHha) ™) H2044) )
+ By Ml L <Q(yn s+ hy) gn—l((5+hn—1)++))‘ t2j+3+( +3) hn+1)
5= n+1
Using the abbreviations
a = AT (8 b))y Gl 4 1)) = (i) Galhi),
b= sup (Gt A ) Foal(t b))
0<t<Th_1

for n > 3 fixed, a monotone recursive sequence (a;)jey provides an upper bound of

Qs (¢ + ho) ), Bult+R)T) < g
for all t €]ttt (j=0...2") with #*' < 7% < T, ,, namely
Ajy1 = €Mh" a; + L BMh"'H hn+1 -2 bn + L €Mh"+1 (30"‘ 7) h?H—l

Def

In particular, this estimate holds forall 0 < ¢t < T, 1 —4h,y = T,.

The piecewise linear interpolation a : [0,7},] — IR with a(#},) = a; is continuous,
monotone increasing and fulfills for every ¢ € ¢/, ¢! N [0, T,,]

lim sup W = A < eM;:"_l a; + LeMhnn (bn + (3c+7) hn+2)
h10 n n

< M eMhnoq(t) + LeMhnn (bn + (3¢+7) hn+2).
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Now an upper bound of sup a; = sup a(-) results from Gronwall’s Lemma 1.5.3
J [0,T%.]

sup a; < ap eM (thn):F + j: eM (thn)f L thn+1 (bn + (3C+7) hn+2)
J
< ay eM (eXfn) T + T eME")T [ o Mhos b, + Co hpyo.

with a constant Cy = Cy(c, L, M, T) > 0.
For ay in particular, the definitions of ¥, (), ¥n+1(-) and Prop. 3.2.3 imply

a < @(Fanbin), Galih) S CACMREAED)
< by @M Q7 (FF(t0), B0, T (8), ) + e B
< hner e L (GG, T () + - 30) 4 ¢ b
< hpyy M L (q(yn(n+1+h) Goa(th+hat)) + Bhait) + ¢ hap
< s eMhnr [ (bn +oe(th —tL,)) + 3hn+1) + ¢ hup
< gy €M Loob, + Ci(e, L, M,T) hogs

and as a consequence,

sup, (G (¢4 ua) ), Gal(t+ha) 7))

< a eM (M) T T p oM (M Tthn) b, + Coy hpio
< (hn+1 Mt [ b, + C hn+1> eM (M) T L P p M (M Trhuen) b4 Oy by
< LMt Tthna) <hn+1 + T\) - by, + Cy - hyi

with a positive constant Cy = Cy(c, L, M, f)

~

So the sequence (by,)nenv that is defined recursively by

b= (@), m),

by = L eME" ) T+Mhy, (hn + T) b1 + Cahy
represents uniform upper estimates of q~(§n+1((t + huy1)T), a((t+ hn)++)), ie.
sup GG (¢ +ha)). Gul(t+h)*) < B
Due to assumption (4.) of Prop. 3.3.6 stating 2 L TeMT < 1, there exist 7 >0 and
No = Ny(c, L, M, f) € IN such that

I oM (e =1 Pihy) (hn + f) < n < for all n > Nj.

L
2

Thus, bngrm < Nbngrm—1 + C2 hngrm < 0™ by, + 21(\?;—3;; Z 27 17
Co T 1
S om bNO + 2N§+m 1-27
< const(c, L, M,T) hygim.
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b.) We follow exactly the same track as in the first part of this proof :

Considering the subinterval for j = 2, Prop. 3.2.3 and 3.1.3 imply for every > < ¢t < ¢3
Q(Fnl(t = 1)), Faa(t = hai) ™)
- a(fn«s ~ ) )y Fara((s = hast) ™)

€M hn

)
s=ts

th41
S / eM n+1 62_N ( f(l‘o, 0), f(i‘/n(t?l _hn-i—l - 2hn+1)7 trlz-l—l)) ds
t

3 ~
o [N E G (f@ 0 F@lt b~ ), ) ds
t

S hn+1 thn+1 L (C + 1) hn+1

+ hn+1 eM Pt L(C+1) 2hn+1

< eMhnti L (c+1) 3h2,,.

Correspondingly for j =3 ... 2" — 1, we obtain for all # =7, <t <#+!

Q@ (0 = b)), Fua((t = ) 1))

= G(Fals = b))y Faal(s = hos) )| M
2+l
ntl (21 .
S ) eM( ntl Q_N ( f(xn l(t _hn - 2hn); 75%73);
t,
@ —has = 2hasn),  93)) ds
it ,
+ eM (6 =) Q‘”( F@ur(t —hy —2h,), 79,
i
f(in(tij-:_ll_hn+l - 2hn+1)= tfzj-q-_f)) ds
< e L (§(Fa (), Tt +OPRT - T
L A ] AR () w0 ) + ERT-227)
By €Mhntt [ (zj(in_l(tg‘;l — b)), Ba(t5) hn)) + 3hn+1)
+ hn—f—l thn+l L (a(%nfl(t%_l - hnfl); In(tgz - hn) + 4 hn+1)
< hn+1 thn-‘rl L (E]/(%nfl((s - hn*1)+)7 i‘/n((s —h )++)) — -1 (C+3) h”'H)
4 hppr eMhbns L(@(%n,l((s—hn,l)ﬂ, Fol(s — h )++)) L H(2et4) hnH)
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Using now the abbreviations
dy = G(F (2= b)), Eal( = ) ™)) = G(Fa1(07), Fahfh)) < et b,
Vo= s (Feallt— ), Bl - ha)t)),

By <t<T

s !
for n fixed, the recursive sequence (a});>2,

aiy, = eMtal 4 LMt py, g 20 + LMy (3¢+7) B2,
is monotone and satisfies for all ¢ €]t/ /7] (j=2...2"—1)
Q(Fn((t = ha)?), Fun((t = hos)*)) < dp.
Its piecewise linear interpolation a : [t2,7] —» [0, 00[ with a(t]) = a; (j=2...2")

is continuous, monotone increasing and fulfills for every ¢ € |t/ #J!]

!

limsup “W-oh) Gty o ] aj + LM <b’ + (3¢+7) hn+2>
h10 n n

< MeMhnoq(t) + LeMhnn (b’ + (3¢ +7) hn+2>.

Gronwall’s Lemma 1.5.3 guarantees (with a constant C3 = C3(c, L, M, f) > 0)

sup a‘lj S C hn . eM (thn) j: —+ T eM (thn) f L €Mhn+1 (b, + (30 + 7) h/n+2)
J
< TLeME! Tt .y 4 Oy by,

This inequality forms the basis for the rest of the proof exactly as in part (a.).

c.) Prop.3.2.3 and 3.1.3 again guarantee for every tf | <t <t¢tl 2 << 2n-3
(70 t), G ) = G, Gunls™))| e
— Yn+1

tlc+1

ntl k+l_ oy X T~ _
< /k M i) Q™ ( f(xn(tfb-o-l — 2hy11), tlrcw—%):
tn+l

Finthn +3hsn), #31)) ds
P e L (G(7(5),  Gahi) + e T 52T
S hn+1 6Mhn+l L(E]/(%n(t];;?—'—): gn(tle?—H_)) + C'5hn+1 + 5hn+1)-

Defining the abbreviations (for fixed n)

IN

ay = Q(5n+1(t121+1+): gn+1(t12z+1++))

b= sup  (F7), Batt)),
0<t<T,

the increasing recursive sequence (aj)>2,
" — M h " Mh /" Mh 2
ap,, = e"ltray 4+ LeMtntihy b 4+ 5L et (e + 1) by,

fulfills §(§n+1(t+), gn+1(t++)) < al,, for all + €]tk 51N 182, Ty ).
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Its piecewise linear interpolation a : [t2,,T,41] — IR with a(t%) = a] is continuous,

monotone increasing and satisfies for every ¢ € Jt& | 5]
lim sup W = S < eM;:"_l af + LeMin (b” + 5(c+1) hn+2)
h10 n n

< MeMhnoq(t) + L eMhnm (b" + 5(c+1) hn+2).
Gronwall’s Lemma 1.5.3 provides the estimate

sup a = sup af(-)
k [t Tnt1]

_ T _

< alf MEIT / M (M) (T=s) [ eMbntr (B 45 (¢ + 1) hyyo) ds
~ 0,\ ~

<l eM (Mh)T 4 M (M)T L eMhntr (" +5 (¢ + 1) hpya).

So now we still need an adequate bound of af resulting again from Prop. 3.2.3

@ = G(FE0,0) (" 50), Taa (7))
hn 1
< * Mhbpt1 =i 7o 0 T~ 3 3 d
= 0 € Q f(l‘Oa )7 f(yn( n+1)7 n+1) s

tn+1 ~
4 /h eMhntt () (f(«TO, 0), f(n(thir), ti+1)) ds
n+1

< hoyr €Mintt L (5(50; gn(tiﬂ)) +3hnt1 + 5(%; gn(tiﬂ)) +4hn+1)
S hn+1 thn—H L 7 (C + 1) hn+1
and finally,

sup a(in-t-l(t—l—)a gn+1(t++)) < sup al < LT ME Tthar) g 4 Oy pyy

with a constant Cy = Cy(c, L, M, f) > 0.

Now the same steps as in part (a.) result in assertion (c.). O

There is no obvious way of dispensing with standard hypotheses (R™), (R<) in
the preceding proposition if (E,E]) is assumed to be two-sided complete. Roughly
speaking, these assumptions link the approximating sequences (Z,(+ — hyp_1))neny and
(Un(+ + hp_1)new for constructing one and the same solution Z(-).

As an alternative to this approach, we now use only one approximating sequence.
This requires the stronger assumption that (E ,q) is one-sided complete, i.e. according

to Def. 1.3.1, for any sequence (z,), with  ¢(Z,,2,) — 0  for m,n — oo (m < n),
there is an element z € E such that  ¢(Z, z,) — 0, ¢(Z,, 2) — 0  (n — 00).
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Corollary 3.3.8 (Short—time existence of timed backward solutions
in one—sided complete (E, 7))
Suppose that (E,Ef) is one—sided complete.
Furthermore suppose for any element § € E and all sequences (Un), (Zn) in E that
4y, yn) — 0, q(Yn, 2n) — 0 (n— 00), T Yy < T2y
always imply q(y,z,) — 0.

Assume for f: E x 0,7] — éO_H(E,ZD

1. there exists L >0 such that for any x,,29 € E, 0<t; <ty <27T

with m &1 < ™ Ty QV_N<}V(§1;751); f@zﬂh)) < L. <§(§1, T2) + to —tl);
2. M := sup a(f(T,1)) < oo,
#t
3. ¢ = sup B"°(f(z,t)) < oo,
#t

J. ALT M7 < 1.

For every point xy € E, there is a timed right—hand backward solution x :[0,T] — E

[e]

of the generalized mutational equation = (-) > f(z(-),-) n [0, with z(0) = o
such that any other timed right-hand backward solution Z(-) € Lip~([0,T], E, q) with
20) = 7y fulfills a(g(ﬁ), z(t++)) =0 for all t € [0, T].

Remark. This additional assumption about convergence in (E, ¢) does not result
from the timed triangle inequality immediately because there are no restrictions on 7y,

7 U (i.e. in particular, m 4, < m ¢ is also admitted).

Proof Following the same track of approximation as in the proof of Prop. 3.3.6,

we obtain the sequence (Z,(+)),eny such that

f(xo, 0) € z,(¢) for t € [0, 2],
F@Eamr (672, 672 € Tult) for t € 6, 6] (j > 2),
5(%}1(31), 511(32)) < e (s —s1) for 0 <51 <59 < T,
sup §<§m(t — hm_1), ZTn(t— hn_l)) — 0 for m,n — oo (m < n).

hm—1 <t<T
As (E,q) is one-sided complete, there exists Z(t) € E with
q(i(t), Tt — hn_1)> 0, Zj(%n(t — ), i(t)) 50 for 1 — oo.
The assumption about convergence in (E ,q) guarantees for n — oo
ACOREAC) — 0,
G(5(0), Fult+has)) — 0.
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For applying the Convergence Theorem (Prop. 3.3.2) later, we prove now that the
functions f, : B x [0,7]— ©5"(E,q) (n € IN) fulfill the assumptions there,

faGt) = f(@ (8, 15+2) for ¢ € [t], 1[N 10,7

= f(%nfl(tgz_2 + hn72); t%_Q + hn72)

For every 21,2 € B, sy € [th, t911], sy € [th, t5H] (with s < ),

Q7 (Fuliss)s Fulleis2)) = Q7 (F@a(F), 610),  F@(?), )
< L (@@ (), Faalt?) + -
< L ( c + 1) (L — )
< L (c+1) (s — 51+ hy).

Thus, Q <ﬁz(51781), ﬁ(?g,Sg)) — 0 for §(31,%) =0, sy—s1 40, n— oo
Moreover we have for t € [t/ /1]

Q(Faw. v, L@, n) = @(F@w, 0, F@ w2, 6)

< L (@E), Faat5) + 1)

< L (@@, Foa®) + §@al), FoaB?) + 2h)

< L (§@F0, Fa) + e (@2 -1 + 2h)

< L (@), Foalt) + (2e+2) hy )

— 0 (n — o0).

Each translated function Z,(- + by 2) : [0, — hy o] — E (n € IN) is a timed
right-hand backward primitive of f,(Z,(+ + hn_s), -). So the Convergence Theorem

(Proposition 3.3.2) ensures that z(-) is a timed right-hand backward solution of

o ~

z(:) 3 f(z(), ) 0,17

Finally any other timed right-hand backward solution z(-) € Lip~([0,T[, E, q)
(with Z(0) = zp) fulfills

q(@(t7),z(t*F)) =0 for any ¢.
Indeed, in the proof of Proposition 3.3.6 we concluded the convergence
sup G(%n((s —hn1)h), %'(s++)> — 0 (n — o0)
hp—1<s<T

from assumption (4.), ie. 4LTe2MT < 1.
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For every t € [0,7] and 0 < k < k' <1 < T —t, the timed triangle inequality leads to
a(i(t k), B(t+ z))

< limsup (Zj(i(tJrk),in(tJrk)) (Tt +E), Fult + K — hosy)
s

n— o0

< 0 4+ ¢k =k + limsup q(Zn(t+ k" — hyp—1), Z(t+1)
n— 00

< c(k'—Fk) + limsup q(Z,((s — h,1)"), Z(stt + Lz(I—K)
n —» 0o s=t+k'

< max{c, Lz} (I —k)

with Lz := Lip~” 2(-). Thus, q(z(t%), Z(tT1)) = 0. =
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3.4 The advantage of (not timed) triangle inequality

In this section we dispense with the time component of E ™ R x E because the
triangle inequality (instead of its timed counterpart) provides further simplifications.
For the first time both in chapter 2 and 3, we prefer this stronger condition explicitly.
Sonow ¢q: Ex E — [0,00[ foraset E # (0 is to fulfill the triangle inequality.
Then standard hypothesis (R<) extends the relations between the upper limits
a(3m, 5tH) < a(zen), weth) < a3, gen)
of Proposition 3.1.3 and ¢(z(¢), y(¢t)) for any curves z,y € UC([0,T], E, q).
In fact, an ostensible metric ¢ on E with standard hypothesis (R<) even satisfies
a(a®), y)) = a2, yt') = a(zth), yt")) = a(a), y0))
(Corollary 3.4.2) and so the upper limits abbreviated as “+”, “++” can be omitted.
This simplification serves as motivation for adapting the preceding Convergence Theorem
in Corollary 3.4.4. Finally Euler method provides a timed right-hand backward solution
of generalized mutational equations — without a restriction on the time interval

as in Proposition 3.3.6 and Corollary 3.3.8 of the preceding section.

Lemma 3.4.1 In addition to the triangle inequality and standard hypothesis (R¥)
for (E,q) suppose that x,y : [0,T] — E satisfy for any t € [0,T]
lim sup q(m(t), x(t—i—h)) =0, lim sup q(y(t), y(t+ h)) = 0.
h10 h10
Then, — a(2(t"), y(t")) < a(=(0), y®)).
Proof. Let (hyn)nemw be asequence in 0,7 —t] such that h, — 0 and
Tim (ot +h), gt +h)) = a((t), y(th))
Then,  q(a(t+ha) y(t+h) < afzlt+h), v®) + a(y@®), y(t+h)
and (():r(t hy,)) — 0 forn — oo
imply o(e%), y0)) < a(e@)u)  + 0 =

Corollary 3.4.2 Assume the triangle inequality and standard hypothesis (R<)
for (E,q). Then for every z,y € UC7([0,T], E, q) and t €]0,T],
a(a), y")) < a(o@h), vt*) < a(a@h), yt") < a0, y0).

If in addition, q s an ostensible metric then these terms are equal.

Proof. If (E,q) is an ostensible metric space then Lemma 1.4.7 (1.) implies

o(+0,0(0) < timsup (o(20), y+8) + a(pe+0),00) ) < a0, 909) +0,
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Lemma 3.4.3  Let q be an ostensible metric on E with standard hypothesis (R<).
Assume c:= sup ["P(J(t)) < oo for 9:[0,T[— ©,(E,q) andlet x:[0,1T[— E

te[0,T]
satisfy
( lim sup a(90-h) (h+’x,(lt_h))’ Gag) < R< o vV te]0,T],
hi0
/\{ q(x(t), x(t—i—h)) — 0 for h |0 vV tel0,T],
q(m(t— h), x(t)) — 0 for h | 0 vV te]0,T],
\
Then, q(a:(s), x(t)) < (¢+R) - (t—29) for every 0 <s<t<T.

In particular, x(-) is a right-hand backward primitive of ¥ :[0,T[ — ©,7(E, q).

Proof. is based on applying Gronwall’s Lemma 1.5.3 to ¢(t) = q(:r(s), x(t*))
To be more precise, we are going to conclude the Lipschitz continuity of ¢(-) from the
first two assumptions about x(-). Finally the third condition of x(-) leads to the claimed
Lipschitz continuity of x(-).

(We cannot apply Corollary 3.4.2 so far because x € UC([0,T], E, q) is not supposed).
Indeed, as an immediate consequence of the definition, ¢(-) is upper semicontinuous in

terms of ¢(t) > limsup p(t + h) for all ¢.
hi0

Besides, we obtain for every 0 < k < k' <l (with ¢, :=t—h>s and k <h)
q(a:(s), z(t + l)) — q(x(s), x(ty, + k))
< qfattatr), O (b b))
+ ¢ (h+k — h)
+ q(ﬁ(th) (h—l—k’, x(th)>, x(t—f—l))
as a consequence of Lemma 3.1.2. Let 7 > 0 be chosen arbitrarily. There exists

ho = ho(n,t) such that for every h € ]0, hy] and all positive k&' < [ sufficiently small
(depending on h, ), 1)

a(ﬁ(th) (h + K, x(th)), x(t + l)) < (R+mn) h.

Since the right-hand spheres of (E,q) are left—sequentially closed, the assumption
q(z(ty), z(th+k)) — 0 (k | 0) guarantees q(x(t,+k), z(ty)) — 0 (k | 0)
according to Lemma 1.4.7 (1.) and thus, for all £ > 0 small enough

a(wltn+8), O) (h2t)) < alzta), V@) (b ot)) + nh

< ch + nh.

So finally, e(t) < o(t—=h) + (¢c+R)h + 2nh for every h < hy(n,t)
and, Gronwall’s Lemma 1.5.3 implies the Lipschitz continuity of ¢(-).
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It is still to prove that x(-) is a right—-hand backward primitive of (-). Strictly
speaking, only condition (3.) on right-hand backward primitives (Def. 3.2.1) is missing
so far, i.e. q(ﬁ(t) (0%, z(t)), x(t++)) =0 for all ¢ € [0,T].
Obviously it results from Corollary 3.4.2. O

Now we adapt Convergence Theorem 3.3.2 to an ostensible metric space (F,q)
with standard hypothesis (R<) (i.e. right-hand spheres are left-sequentially closed)
so that we can omit the upper limits abbreviated as “4”, “4++7. In particular,
the assumption about the convergence of (2, ())nenv is simplified.

Considering just one ostensible metric ¢ on E is merely for the sake of simplicity
because this result is used for concluding long-time existence of a solution from

one-sided completeness in Proposition 3.4.5 afterwards.

Corollary 3.4.4 (of Convergence Theorem 3.3.2)
In addition to standard hypothesis (R<) for each ostensible metric space (F,q),
suppose the following properties of

fm, [ EX[0,T[ — ©,"(E,q) (m € IN)

T, T: 0,7] — E :
1. M = Sup {a7(f(2,0), a7 (f(2:1) } < oo,
¢ = sup [B"(fn(z,1)) < oo,
R Z rsnutg {:)/\(t, Lm, fm(xma'))v ’)’(fm(Z,t)), ’Y(f(zvt))}
with limsup ¢* R, = 0,
€10
2. limsup Qg_”(fm(zl,tl), fm(227t2)> < R for m—o0, ty—1t; |0,
q(z1,22) = 0,
3. limsup Q?(f(x(t),t), fm(x(t),t)> < R form—oo Vitel0T],
4o T () D fulmal(), ) in [0,T].

50 Y te0,T[ 3 (0. men in[0,1]: q(x(t), xm(t+6;n)) 50, & 0.

Then x(-) is a right-hand backward solution of z (-) > f(z(-), ) in [0,T],

i.e. equivalently
33() < oo : lir}?f(}lp a(f(@(t—h), t—h) (h;,:v(t—h)); (t)) < F(t) ¥ telo,T],

A{ q(x(t), x(t—l—h)) 50 for b L0 v te 0,1,

q(x(t— h), x(t)) — 0 for h | 0 vV te]0,T7.

\
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Proof.  Due to standard hypothesis (R<) for (E,¢), Lemma 3.4.3 and assumption (1.)
provide a uniform bound of the Lipschitz constants of xz,,(-) with respect to ¢, i.e.
Lip™ (zm(-),q) < c
As ¢ is an ostensible metric on F, condition (5.”) guarantees

q(a:m(t+ o), x(t)) — 0 for m — oo
due to Lemma 1.4.7 (1.) and thus, q(xm(t), :r(t)) — 0.
So Convergence Theorem 3.3.2 (for E = Rx E, ¢.((s,y), (t,2)) := |s—t|+q(y,z) and
Tm(t) == (t,x,(t)) ) has the consequence that x(-) is a right—hand backward solution.

Finally the equivalent description of the right-hand backward solution results from
Lemma 3.4.3. O

Proposition 3.4.5 (Long—-time existence of backward solutions
in ostensible metric spaces)
Let the ostensible metric space (E,q) be one-sided complete and fulfill standard
hypothesis (R<) (i.e. its right-hand spheres are left—sequentially closed).

Assume for f: E x [0,T] — ©,"(E,q)
1. there exists L >0 such that for any x1,20 € B, 0<1t; <ty <T,
Q™ <f(x1;t1)a f(x2,t2)> < L- <CI($1, Ta) + to —tl);
2. M = sup o "(f(z,t)) < o0,

z,t

3. ¢ = sup B"(f(z,t)) < oo,

x,t

For every point xog € E there exists a right—hand backward solution x :[0,T[— E
of the generalized mutational equation  (-) > f(z()), ) in [0,T] with z(0) =
such that any other right-hand backward solution z(-) (with z(0) = xy) fulfills

q(x(t), z(t)) =0 for all t€[0,T].

Proof is based on the same ideas of Euler approximation as in Proposition 3.3.6.
The preceding Corollary 3.4.4 then takes on the role of the Convergence Theorem 3.3.2.
Furthermore Corollary 3.4.2 admits omitting upper limits denoted by “+7 or “+-+7.
As a direct consequence, there are no time shifts required now for constructing Euler
approximations. So we can avoid additional upper bounds of T (like assumption (4.)
of Prop. 3.3.6) when proving the convergence or the comparison with other right—hand

backward solutions.
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Foreach n € IN and j=0...2"set h, = 5, t = j hn, 2,(0) := 2% := x0 and

o) = fad, 1) (t =1, o) for t et 5],
BT =, (1Y),

We suppose n to be so large that L h, < 1. Then,

flal ) e z,(t) for t € ti, t911],
q(:vn(sl), xn(sg)) < e (s —s1) for 0 < s; <89 <T,
tii—l = 2311 T = tgz'

The next aim is an upper estimate of q(z,,(¢), T,.1(t)) for 2 <t < #T1. 1In the

first part of this interval (i.e. for # =t < t < tifll) we conclude from Prop. 3.1.4

a(2n(), Tsa(1)) |
< q(:v n+1> M (t=th) /ttn M (t—th—s) Q‘”(f(x{l,t%) f(:viﬂl,tfl)) ds
0 .
(+%

t—th, ,
eMh M (t—t),—s i 25
) n+1) ntl 4 / eM ( )L q(af}%, xn+1) ds
0

= q(;pg” xiﬂl) Mt (14 L),

IN

q

Correspondingly, for ;7" < ¢ < 747 = ¢+
a(wa(t), i (1))
< gz, (0, 72Zy++11) oM (t—t33+h)
=3t

s [T M (e, S ) ds
0
and due to assumption (1.),

a(@a(t), 20 (1))

< q(xn(tQJH), xiﬁl) oM hni1

+ hypy eMbnr [ (q x{l, xifll) + tgffl —t{l)
< q(fvn(t%l)a wijﬁl) eM it

+ hpyy €M [ (q ), :rn(tgffl)) + q(xn(t23+1), 7213:11) +hn+1)
< (e, BB et

+ hypy eMhnir [ (chn+1 + q(xn(tgffl), :rifll) + hn+1)
< q(xn(t”“), xiﬁl) eMhet (L4 Lhyyr) 4 L(e+1)eMhin?
< q(a:{l, xijﬂ> e?Mhnit (14 Lhpy1)? + L(c+1) Mt p2
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Combining these results, we obtain for every # < ¢t < t/*1 (since Lh,,; <1)

a(@a(t), 2ana(®))

< g(ad, 27,,) M (14 Lhyiy)? + L(c+1) eMhwrr p2
< qla, x?z]—f—l e (L+2Lhyyr + L2 hyy) + L(c+1) et bl
< q(m%, xiﬂrl) eMhn (1+3Lh,) + L(c+1) eMhn p2

and using the abbreviations
a = MM (1+3Lh,), b == L(c+1) MM h2,

the induction principle provides the estimate for n > ny (with some ny = ny(L, M, T))

2n—1
a(wa(®), w0 ®) < b D dt < (-1
k=0
< b (M asLa)T —1) < gk (MT T 1)

eMhn
< n
< hy L(c+1) eMha (1+3Lhy,) — 1
< T L(c+1) QBLEM)T
2n 3L+ M '

Thus (x,)nen is a Cauchy sequence in terms of

sup q(:vm(t), xn(t)) —0 for m,n — oo (m < n).
¢

As (E, q) is one-sided complete, there is z(t) € E with q(m(t), xn(t)> — 0 forn — oo.

Now for applying Corollary 3.4.4 we prove that f, : E x [0,7] — ©,"(E,q)
(n € IN) satisty the assumptions there
fuly,t) = f(adt 4 for ¢ € [t], 7]
For every yi,ys € E, sy € [t2, /T, sy € [, tLF]  (with s; < s9),
Q7 (fulvnss): fulyys) = Q7 (Flanlt), 7). flaalti), 57)
< L (gloa@), () + )
< L c + 1) (s9 — s1+ hy).

Thus, Q™ (fn(yla 31); fn(y2> 32)) — 0 for Q(y1;y2) — 0, s3—510, n— oo

Moreover we have for t € [t/ tJ1!]

Q*(fe®), 0), fula®), 1) = @7 (f(®), 0, flaati™), 64
< L (qlat), wa(t5H) + 4t )
< L (), 2®) + a@al®), wH@N) + )
< L (q(t), z0) + @ —1) + h)
< L §q(x(t), zn(t)) + (c+1) hn) — 0.
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Finally, each translated function w,(-+h,) :[0,7—h,] — E (n € IN) is aright-hand
backward primitive of f,(z,(- + hy), - ), and

q(x(t), xn(t-i-hn)) < q(m(t), xn(t)) +ch, — 0 (n— ).
So Corollary 3.4.4 guarantees that x(-) is a right-hand backward solution of the
generalized mutational equation z(-) 3 f(z(-),-) in[0,77].

As a consequence of the integral version of Gronwall’s Lemma 1.5.4, any other backward
solution z(-) (with 2(0) = x¢) fulfills ¢(z(-),2(-)) =0 on |0,T].
Indeed, for every n € IN, q(z,(h),z(h)) = q(f(a;o,O) (h, xo), z(h)) — 0 (h 10
and we conclude from the generalized mutational equation of x,(-) and Prop. 3.2.3 that
for t €]0,T

a(wa(t), 2(0))

< /Ot e L (g R, =) + s [E]h) ds
< /Ot ec=9) L <q(mn([i] hay), xn(s)) + q(xn(s), z(s)) + hn) ds
< /0lt ect=9) [ ( ¢ hy + q(:rn(s), z(s)) + hn) ds

C

t
< Lernh 2w Lt [ () 5) ds
0

So correspondingly to the proof of Prop. 3.3.3, the function ¢, (t) := sup ¢ (xn(s), z(s))
0<s<t

is nondecreasing and fulfills
t
en(t) < L(1+Y)h, T + Let - / ©n(s) ds.
0

Due to the integral version 1.5.4 of Gronwall’s Lemma,

IN

t
L1+ h,e" + / LT et L (1Y) by, et ds
0

< C(L,e,T) hy

©n(t)

— 0 (n — 0)

(with adequate choice of C}).
According to the construction of z(-), the sequence ¢(x(t), x,(t)) (n € IN) also
converges to 0. Thus, ¢(z(t), 2(t)) = 0 for every ¢t €10,7]. O



Chapter 4

Examples: Bounded subsets of RN
and CY semigroups on reflexive

Banach spaces

Now the concepts of forward and backward solutions are applied to two main examples.

The first one belongs to the domain of shape evolution. Here we consider both the
set K(IRN) of nonempty compact subsets of IRY and the set Q([RY) containing all
nonempty bounded open subsets of IRY with several ostensible metrics. Some of them
use the topological boundary and even the limiting normal cones explicitly.

A significant difference between considering K(IRY) and Q(IRY) is shown by this very
easy example :
Let Koy := B\ ]1091 expand into all direction at a

P constant speed of 1. This leads to the compact sets
/// \\\ Bt+2\ Bi_; at time ¢t < 1,
/ \ K(t) = .
. ﬁ\i 2 B - at time ¢t > 1.
\ &y ! The same expansion makes the corresponding open
\ K, o °
AN ’/K(l) set Oy = Ko = 1By \IB; evolve into
\\\ ~ = .
N it B B, _ at time ¢ <1,
IR O(t) _ : t+2 \ 1—t <
By s at time ¢t > 1.

So at the compact sets, the “hole” at 0 appears for all times ¢ < 1 whereas the open
sets show this “hole” up to time 1 inclusive. Roughly speaking, this particular feature
of the boundary is preserved a moment longer. (We come back to this easy example in
Appendix A.)
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After defining the ostensible metrics ¢°, gey on K(RY) and ¢as, gan,

on Q(IRY) respectively, we consider some of their topological properties in § 4.1, 4.2 —
particularly with respect to the terms introduced in chapter 1.

Concerning the regularity of the boundary, the so—called sets of positive erosion play an
important role because roughly speaking, they represent the most regular sets to expect
if topological changes (like “disappearing holes”) are not excluded a priori. They are
defined by means of an interior sphere condition and can be characterized by a collection
of equivalent properties given in § 4.3.

For generalized mutational equations in K(RY) and Q(RY), we need transitions.
In § 4.4, their constructions are based on the deformation along smooth vector fields and
differential inclusions respectively using some technical results of Appendix A.

The second main example deals with evolution equations in reflexive Banach spaces
and is presented in § 4.5. Using the tools of C° semigroups, we consider semilinear equa-
tions whose mild solutions induce forward transitions. Demanding uniform continuity
with respect to time on them is an obstacle to C° semigroups that we overcome by means
of pseudo—metrics inducing the weak topology.

Finally § 4.6 deals with systems of these two main examples and thus provides

existence results for a general type of free boundary problems.

4.1 Nonempty compact subsets of IR : K(R")

4.1.1 Pompeiu—Hausdorff excess e~ and distance d

For any nonempty set M C IRV, we define the Pompeiu—Hausdorff distance of x € IRV as
dist(z, M) = inf{lx —y||y € M}.

It induces the so—called Pompeitu—Hausdorff excesses between nonempty bounded subsets

M, My C RN

e“(My, My) = sup dist(x, Ms)
x € My

e” (M, My) = sup dist(y, M)
y € M>

and furthermore the Pompeiu—Hausdorff distance between M;, My C IRY
d (M, M) := max{e“(My, M), e(My, M)}
(see [2, Aubin 99], § 3.2 and [55, Rockafellar, Wets 98], § 4.C, for example).
Moreover, set  B,.(K) := {x € R" |dist(z,K) <r} forany K € K(R"), r>0
and as abbreviations, B, := B,(0), B := B(0) C R", |K |00 = sg;l)( |].
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For the sake of completeness, the following lemma provides some well-known
properties of e, ¢, d. Most of them are obvious and their proofs are easy to find
in the literature, see e.g. [2, Aubin 99], § 3.2, § 5.2 and [55, Rockafellar, Wets 98|.

Proposition 4.1.1
1. €~ : K(RY) x K(IRN) — [0,00[ satisfies the triangle inequality and
e“ (K1, K3) < p s equivalent to Ky C IB,(K»).

2. € : K(RY) x K(IRY) — [0,00[ satisfies the triangle inequality and
e (K1, K3) < p s equivalent to Ko C IB,(K1).

3. d:K(R")x K(IRY) — [0,00[ is a metric on K(IRY) and
d(K,,Ky) = sup |dist(x, K;) — dist(z, K3) for all Ky, K, € K(IRY).

xRN
4. Forany M € K(IRYN), the nonempty compact subsets of M are sequentially
compact with respect to d, i.e. every sequence (Kp)nemw in K(RY) with
K,, C M has a subsequence (K, )jen and a set K € K(RY) such that
d(Ky,;, K) —0 (n — o00). o

As an easy consequence, we obtain

Corollary 4.1.2
1. (K(RN),d) is a complete metric space.

2. (K(IRN), ) is two-sided sequentially compact,
i.e. for every M € K(IRN), r >0 and any sequence (K,) in K(IRY) with
e” (M, K,) <7 for alln, there exist a subsequence (Ky,)jeny and K € K(IR")
such that ¢ (K,;,K) — 0, e (K,K,;) — 0 (j —> 00) (see Def. 0.6.8).

3. (K(IRN), ) is one-sided complete, i.e. according to Def. 1.5.1,
every (K,) in K(R™) with e (K, K,)) — 0 form,n — 0o (m < n)
has a set K € K(IRY) such that (K, K,) — 0, e (Ky, K) — 0.

Proof results easily from the compactness of (K(IRY),d) and the general inequality
@D(Kl,KQ) S d(Kl,KQ) for KI,KQ S K(RN) (|
Obviously the metric space (K(IRY),d) satisfies the standard hypotheses (L7),

(R7), (RT) (as an immediate consequence of symmetry and triangle inequality of d).
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(K(IRYN), ¢°) does not fulfill any of the standard hypotheses (L), (R™), (R¥) because
¢~ is an ostensible metric, but right—convergence does not imply left—convergence and not

vice versa. As an illustrative argument, we give the following simple counterexamples :

Example 4.1.3
1.  Define K, := [0,3]Y for each n € IN and

K = M = [0,1]".

Then, on the one hand, e (K,,K)=0= ¢’ (M, K),

but on the other hand we have e”(M, K,,) > 2 for all n.

So (K(IRY), ¢°) does not satisfy standard hypothe- !

sis (L7). K=M K,
- .

2. Correspondingly the compact sets K, := [0,3]", M

K = [0,1), M = [2,3]" satisfy '

e”(K,,K)=0, e(K,,M)=0, but e’(K,M)>2

— contradicting standard hypothesis (R7). . -
1

3. Finally setting K := [0,3]Y, K, := [0,1]¥

(ne IN) and M := [2,3]Y implies M

(K, K,) =0, e(K,M)=0, but (K., M)>2, |

ie. (K(RY), ¢) does not fulfill standard hypothe- 1

sis (R<). . .
1

4.1.2 Ostensible metric gx y considering normal cones

The Pompeiu-Hausdorff excess - (K, K3) does not distinguish between boundary
points and interior points of the compact sets K, Ky. In this subsection an ostensible
metric g x on K(RY) is defined that takes the boundaries into consideration explicitly.
Strictly speaking, we even use the first—order approximation of the boundary represented
by the limiting normal cones of a set. Following the well-known definitions like in

[63, Vinter 2000], for example, these cones are specified :



4.1. NONEMPTY COMPACT SUBSETS OF IRY : K(IRY) 167

Definition 4.1.4 Let C C IRN be a nonempty closed set.

A wvector n € IR is said to be a proximal normal vector to C at x € C if there exists
a > 0 with n-y—z) < aly—azf? for all y € C.
The cone of all proximal normal vectors to C' at x is called the proximal normal cone
to C at x and is abbreviated as NE(z).

The so—called limiting normal cone Ng(z) to C at x consists of all vectors n € RN

that can be approzimated by sequences (My)new, (Tn)nemw satisfying

Tp — T, x, € C,
M — 1, M € Ng(xn)a
i.e. Ne(z) = Limsupy—. NE(y).
Yy
As a further abbreviation, we set °N¢(z) := Ne(x) N IB. O

Convention. In the following we restrict ourselves to normal directions at boundary
points, i.e. strictly speaking, Graph Ng and Graph °Ng are the abbreviations of
Graph N¢lsc, Graph "Ng|ac, respectively.

Remark. 1 € NE(z), |n| =1, is equivalent to the existence of

p>0 with B,(x+pn) N C = {x} (seee.g. [63, Vinter 2000], «Q
Prop. 4.2.2).  The supremum of all p with this property is called

proximal radius of C' at z in direction 7 and fulfills

[¢]

B, (x+pn) N C =0

Definition 4.1.5 Set gy : K(RY) x K(IRN) — [0, 0],

ae,n (K1, K2) o= d(Kq, K») + e”(Graph "Ni,, Graph "Ni,).

Obviously, the function gy is a quasi-metric on the set IC(RY) of all nonempty
compact subsets of IRY, i.e. it is positive definite and satisfies the triangle inequality
(see remark after Def. 1.1.2).

The properties of gx n with respect to convergence depend on the relation between the
normal cones of compact sets K, (n € IN) and their limit K = Lim,, _, , K, (if it exists).
In general, they do not coincide of course, but each limiting normal vector of K can be
approximated by limiting normal vectors of a subsequence (Ky;);e .

This inclusion is regarded as well-known (see e.g. [6, Aubin 91], Theorem 8.4.6 or

[26, Cornet, Czarnecki 99|, Lemma 4.1) and it will be used quite often.
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Proposition 4.1.6
Let (My)re v be a sequence of closed subsets of RN and set M := Limsup, _, ., Mj.
Then, 1. Graph Nj; C Limsup,, ., Graph Nj; ,

2. Graph Ny C Limsup,_, ., Graph Ny, . O
Corollary 4.1.7 Let (My)rew be a sequence of closed subsets of IRN whose limit
M = Limyg_,o My exists.

Then Graph Nj; C  Liminfy,_, o, Graph Ny, .

In particular, OM C Liminf,_, , OM,.

Proof. Otherwise there is some (z,v) € Graph Ny, \ Liminfy, _, ., Graph Ny, .

So there exist 7 > 0 and a sequence (k) n of indices such that k, — oo (n — 00),
dist( (z,v), Graph Ny, ) > for all n.

However the preceding Proposition 4.1.6 concludes from M = Limsup,,_,., M}
lim inf dist((x,v), Graph NMkn> =0

n—oo
— a contradiction. O

n

Lemma 4.1.8  (K(IR"), qc.n) is one-sided sequentially compact and fulfills standard
hypothesis (R<), i.e. the right-hand spheres are left-sequentially closed.

Proof results from Corollary 4.1.7 :  For any sequence (K,),cn in K(R") and
K € K(IRY), the convergence d(K, K,,) — 0 implies

Graph bNI]g C Liminf, _, ., Graph bNKn
and thus liminf e (Graph Ng,, M') < e (Graph "Ng, M’)

n— oo

for all nonempty compact sets M’ C IRY x IR™. Then we obtain for every M € K(IR")
liminf gx n (Kn,M) = d(K,M) + liminf e° (Graph ’Ni., Graph bNM)
n— o0

n—7 00
S/ <K , M ) :
So (K(RY), qx,n) satisfies standard hypothesis (R<), and the triangle inequality even

guarantees lim g n(EKp, M) = gen(K, M) if gen(K,K,) — 0.
n—oo

Let us now consider any sequence (K,),cny in K(RY) with sup, [|[K,|w < oc.
Due to Prop. 4.1.1 (4), there exist a subsequence (K, );en and a set K € K(IRN)
such that d(K,;, K) — 0. Cor. 4.1.7 ensures ¢~ (Graph bNKnj, Graph bNIL() — 0
and so, gk n(Ky;, K) — 0 (j — 00). O
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For stronger properties like two—sided sequential compactness, we usually have to
restrict ourselves to a subset of (IRY) such that d(K,, K) — 0 always implies
Graph°Nx = Lim, _, o Graph bNKn
(for a subsequence at least). The convex compact subsets of IR" exemplify this feature

according to the following Lemma 4.1.9 and the well-known fact of Convex Analysis
Ni(z) = Ng(z) = {y—a|lk(y) =z}
for every conver subset K € K(IRY) and z € K.

Lemma 4.1.9 Let (Kp)new be a sequence in K(IRY) such that K := Lim,,_, K,
exists in K(RYN). 1lk,, Ugx : RN ~ IRY denote the projections on K,, K (n € IN)
respectively.  Then for every x € IRY,
Limsupy = llg, (y) C Tg(z),
lim dist(y, Kn) = dist(z, K).

Proof. The second claim is a simple consequence of the triangle inequality.

Let 7 >0 and n € IN be arbitrary. For y € IB,(z) given, choose any z € Ik, (y)
and ¢ € [Ig(z2). Then, |€—2| < d(K,,K) and

=&l < le—yl + ly — 2| + 2= ¢
< |lz—y| + |y—2af+dist(z, K) +d(K,K,) + d(K,, K)
< 27 + dist(z, K) + 2d(K,, K).

Thus, Hg,(y) C Bak, k) (K N By 4 dist(z,K) + 2 d(K,.,K) (x)) for any y € B, (z).

The set-valued map [0,00] ~ RY, r+—— KNIB,(x) isupper semicontinuous
(due to [7, Aubin,Frankowska 90], Cor. 1.4.10) and in the closed interval [dist(z, K'), oo,
it is strict with compact values.
So for every n > 0 there exists p = p(xz,n7) €]0,n[ such that

K N B,(z) C E%(HKCQ) for all 7 € Pmﬂ@lﬂ,dmﬂ@lﬂ—+p.
Due to d(K,,K) — 0 (n — o0), thereis an index m € IN with d(K,, K) < § for
all n > m. Thus we obtain for every y € IB,/4(x) and n > m
i, () © By(K 0 Bygiawienyi (@)

= B:(Kn Bdist(w,KHp(x))
C By (B,(1x(2))
c BMGMQD,
C

ie. Limsup v—= Ik, (y) k(). O

n— 00
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4.2 Nonempty bounded open subsets of IR : Q(RY)

4.2.1 Ostensible metric ¢gop considering topological boundary

Definition 4.2.1  The set of all nonempty bounded open subsets of IRY is abbreviated
as Q(RN). Moreover set qap: QURY) x Q(RY) — [0, ool
10,0(01,05) = d(0y, 03) + €(201, 90)

Obviously, gos is an ostensible metric on Q([RY) because d, e are ostensible
metrics on K(RY). Moreover (Q(IRY), go) is not one-sided sequentially compact
as the simple example O, = 11?31/,1 (n € IN) shows.

Roughly speaking, a significant difference between considering O € Q(IRY) and its
closure O € K(IRY) is determined by the information on the topological boundaries of
sequences. As mentioned in the section before, some features (like two-sided sequential
compactness) usually require additional assumptions.

An example for appropriate conditions is given by the sets of uniform positive erosion.
After introducing the criterion of definition now, we summarize their regularity properties
in section 4.3. As a first essential advantage, they are “closed” in Q(RY) in the
sense of Prop 4.2.3 and fulfill 00 = Lim; . 00,, for a subsequence of (O,)nemw-
A similar statement does not hold for sequences in K(IRY) (even with uniform positive
erosion according to Def. 4.3.1). Secondly sets of uniform positive erosion are two—sided

sequentially compact with respect to ¢qs (as stated in Cor. 4.2.5).

Definition 4.2.2  An nonempty open subset O C IRY is said to have
positive erosion of radius p > 0 if there exists a closed set M C IRY with
0 =B, (M). o
Moreover, a set Q of open subsets of IRY has uniform positive erosion
if each O € Q has positive erosion of some radius p independent of O.
Q?(IRN) denotes the set of bounded open subsets of IRN with positive erosion of radius p.
Q.(IRY) abbreviates the set of all O € Q(IRYN) with positive erosion.

Proposition 4.2.3 Let (Op)nemw be a sequence in Q2(IRN) with p > 0 such that
the limits C := Lim,_,o O, and A := Lim, ,o 00, ezist in K(IRY).
Then O := C\ A € Q(URY) also has positive erosion of radius p and 00 = A.

Proof. O is bounded and open because A, C' are compact and Corollary 4.1.7 leads to
JC < Liminf, ., 00, C Limsup,, ,,, 00, C A.
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Due to Def. 4.2.2, there exists M,, € K(IRY) for each n € IN such that O, :]i?p (M,,).
Since M,, is contained in the compact set IBy,(C) for all n sufficiently large, there are
a subsequence of (M,) (again denoted by (M,),ecn) and a compact set M C C' with
d(M,M,) — 0 (n — o0). The following Lemma 4.2.4 guarantees the convergence

d(Bp(M),O_n) = d(B,(M), B,(M,) < d(M, My) — 0 (n—> )
and thus C = IB,(M). Furthermore, the second statement of Lemma 4.1.9 implies
A = Liminf, ,  0B,(M,) = { lim dist(-,M,) = p}

n— 00
- {dist(-, M):p} = 9B,(M)
and so we obtain O = C\ A :ﬂO?p(M), 00 = A. O
Lemma 4.2.4 For any compact subsets K1, Ko C IRN and p > 0,

d(Bp(Kl), Bp(KQ)) < d(K,, Ks).

Proof. For any radius p > 0 and nonempty set M C IRY,
dist(+, IB,(M)) = max (o, dist(-,M)—p) = 1 (dist(-,M)—p + |dist(-,M)—p|).
So the claim results from Prop. 4.1.1 (3.) and

dist(-, B,(K;)) — dist(-, IB,(K,))

=1 (dist(-,Kl) —p— dist(+, Ko) +p + ‘dist(-,Kl) —p‘ - ‘dist(-,Kg) —p‘)

<! (dist( LKD) - dist(-,K) - ‘dist( LK) - dist(-, ) ‘ )

< ‘dist( LKD) dist(- K| < d(KL ). 0
Corollary 4.2.5 For arbitrary p > 0, (Q(RY), qaps) is two—sided sequentially
compact and one—sided complete.
Proof. Consider any sequence (O,),en in Q(RY) with positive erosion of radius
p and R := sup, ||Onlle < oo. Now we prove the existence of O € Q2(IRY)

satisfying  ¢a,0(On;, O) — 0,  qa(0, O,;) — 0 for a subsequence (O,;)jemw-
Indeed, due to the sequential compactness of (K(Bg(0)), d) (Prop. 4.1.1), there is a
subsequence (Op,)jenv such that C := Lim; O—n] and A := Lim; ,o, 00,, exist.
According to Prop. 4.2.3, O := C'\ A has positive erosion of radius p with 00 = A,
ie.  O0eRY), dO,O0,) —0, d0,d0,)—0 (j— o),

and thus, 42,6(0,0n;) — 0,  qos(0y;,0) — 0  (j — 00). O
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4.2.2 Ostensible metric gq y, considering interior normal cones

Definition 4.2.6 Let O := R\ O denote the complement of any O € Q(IRY)
and set  qon, : QRY) x Q(RY) — [0, 00|,
qa,N. <O1, 02) = d(0y, Oy) + € (Graph ’Neo,, Graph ch02)

Obviously ¢q . is an ostensible metric on Q(RY), but gq . is not a quasi-metric
since it does not fulfill gqn.(01,02) = 0 = O; =0, forall Oy,0, € Q(RY).
Moreover, (Q(IRY), qqn.) is not one-sided sequentially compact as the easy example
O, = i?l/n (n € IN) shows once more.

For guaranteeing stronger properties like two—sided sequential compactness, we again
use sets with uniform positive erosion, but now we have to take normal cones into con-
sideration. Every set O € Q¢(IRY) holds a relation between the interior normal cones

Neo(+) and the projection Ilep : O — IRY on the complement O quoted in § 4.3 :

Graph (Hco . — Graph (Id—f—(NcOﬂ]Bp))‘ao (%)
ie. Neo(z

= {y -z ‘ y € 0, dist(y,00) < p, Heo(y) = x}
for every x € 00.

—1
B (CO))
) N

Proposition 4.2.7 Assume (Op)nemn to be a sequence in QL(IRN) (p > 0) such
that C :=Lim, ,o, O, and A :=Lim, o 00, existin K(RY).
Then, O:=C\ AeQIRY) fulfills Lim, _, o, Graph’Ne,, = Graph Neo.

Proof.  Prop. 4.2.3 states O € Q?(IRY) and 00 = A. Now O = C = Lim,_, O,

and the convergence of

dist(+,0,) = dist(-,00,) — dist(-,0,)
dist( -, A) — dist(-,C) (n — o0)
imply O = Lim,,_,o O,. So Corollary 4.1.7 leads to

Graph Noo C Liminf,, , , Graph Ne, .
Moreover, for each n € IV, the closed set M,, := O,,\ 1B, (00,,) satisfies O,, =B,/ (M,),

Graph (Hcon )1 = Graph (Id—i—ngcon) )

On\ M,
due to the preceding remark (x). The corresponding relations hold for the sets O and

M := 0\ IB,(00)° = {z € O|dist(z,0) > £} € K(IRY).

n
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Furthermore, ‘O = Lim,_,o, O, and Lemma 4.1.9 (applied to ‘O, N Bx(0) € K(IRY)
with R > 0 sufficiently large) guarantee
A Lim, ,,c M, = M
Limsup,, _, ,, GraphIlo, C Graph Ilqp

and thus,

Limsup,, _, ., Graph I, C Graph Il

O\M
C Graph (1d+ 5 cho)‘
00

O\ M,
Limsup,, , ., Graph (Id + 5 chOn)

n

So finally we conclude from 00 = A = Lim,, , o, 00,
Limsup,, , ., Graph "Ny, C Graph "Neo. a

Corollary 4.2.8 For every p > 0, (QC(RY), qan,) 1is one-sided complete and

two—sided sequentially compact.

Proof  results from Prop. 4.2.7 quite easily : For every sequence (Op)pen in
Q2(IRN) with sup,, ||Oplle < 00, we can consider a subsequence (Oy;);jen such that
C = Limj o On, and A :=Limj_ o 00, existin K(RY) (due to Prop. 4.1.1 (4.)).
Then O := C\ A € Q/RY) fulfills

d(0,O,,) — 0, d(Graph ’Neo, Graph chOnj ) — 0, (j — 00),
ie. go,n. (O, On;) — 0, qan,(On;, O) — 0 (j — 00).

This two-sided convergence and the triangle inequality imply that (Q2(RY), gon,) s

one-sided complete and two-sided sequentially compact. O

Example 4.2.9 (Q(IRY), qq,n.) does not satisty the standard hypotheses (L7)-
(R¥) and thus, (Q(RY), go,n,) does not either. This results from easy counterexamples :
1. O, := ]OBZ (0)\ {0}, O := ]2?2 (0) have uniform positive erosion of radius 1 and
fulfill go N, (O,,0) = 0, but g¢qn.(0,0,) > 1. That is inconsistent with standard
hypothesis (L7).

2. 0, =By (0)\{0}, O :=IB,(0), M :=IB,(0)\B,(0) belong to Q(IR") as well
and satisfy gon,(0y,0) =0, gon.(On, M) = 3, but gon, (0, M) > 1 — contradicting
standard hypothesis (R™).

3. Op:=1B(0)°, O :=1B(0)°\{0} satisty ¢on, (0,0,) =0, gon. (On,O) = 1.
So standard hypothesis (R<) does not hold, i.e. the right—hand spheres are not left—

sequentially closed.
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Seizing the suggestion of Prop. 1.4.8, we can bridge the third gap and “close” the
right-hand spheres of Q(R") (with respect to a new function go y, (r=)) — although

(QRN), ga.n,) is not one-sided sequentially compact as we assumed in Prop. 1.4.8.

Proposition 4.2.10 Setting

dQa,N.,(R=) (01, Oz) ‘= Ssup { g, (0,0,) | O € Q(]RN); qan.(01,0) =0 };

(QIRN), go,n.r=)) fulfills standard hypothesis (R<), i.e. the right-hand spheres are
left-sequentially closed.

Remark. Here the condition g¢o n,(01,0) =0 is equivalent to

N { 0 = 0
Graph Neo C  Graph Neo, .
and thus has the consequence 00 = 90 C 00, = 00;.
The set O := ]OBZ (0)\ 0B, (0) € QUR"N) is an easy example for go n, (r=)(0,0) >0
because O’ := 12?2 (0) satisfies both g n.(0,0') =0 and ¢qn,(O',0) > 1.

Proof of Prop. 4.2.10. qo,n.,(r=) fulfills the triangle inequality. Indeed, let
01, 0y, O3 be arbitrary elements of Q(/R") and n > 0. Then there is some O] € Q(RY)
such that
qa,n, (01, 01) =0, qa,n.(r=)(01,03) < qa N, (01,03) + 1
and we conclude from the triangle inequality of gq v,
go.n.(01,03) < qan. (07, 0z) + qo,n.(02,03)
< qon.,z=)(01,02) + qan.(r=)(02,03).

Now let (O,) be a sequence in Q(IRY) and M, O € Q(IR") with qq n,,r=)(0,0,) — 0.
There is a corresponding sequence (O!)uen in Q(IRY) such that

go,n, (On,Oy) = 0, do.Ne(r=)(On, M) < qaon (O, M) + +.
and consequently, go N, (r=)(0,0,) <  qan.(r=)(0,0,) + qon.(On, O;,) — 0
(n — 00).

Since 00! = 09! are compact subsets of IB;(O) (for all n large enough)
we can take a subsequence into consideration (again denoted by O)) such that the
limit A := Lim,_, 00!, exists.

Then, A C 00 as gon,.(0,0,) — 0 implies Limsup,_,, Graph Neor C Graph Neo.
Furthermore, 00 C A because O = Lim,_,o O_;L and Corollary 4.1.7 result in
00 C Liminf, ,,, 00! C A.
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So O := O\ A isopen, bounded and fulfills

1. OcO c O =0,
2.0 = RV\(0\4) = (R"\O)u4 = (0P U4
3. 00" = O N O = 0N(0ruUd) =0 nA = A
4. 0" = Lim, o O
because dist(-,M’) = dist(-,0M') —dist(-, M') for all M’ € Q(IRY) and
do’, 0,) =d0,0;) —0,
d(00’, 00;) = d(A, 00)) —0
lead to  d(O', O),) —0 (n — 0).

Corollary 4.1.7 and go n.,(z=)(0,0;,) — 0, respectively, guarantee
Graph Neor C  Liminf, o, Graph Neyy C Limsup,,_,, Graph Nepyy € Graph Neo,

i.e. quNc(0,0l) =0
and liminf dist (Graph "Neps, Graph bNCO’n) < dist (Graph "N.ps, Graph chO:).

n—00

So finally we obtain
ljlrgjgof qo,N.(r=)(On, M) < 1Tibfi>iglof gon, (05, M) < gon, (O, M) < gaon, r=)(O, M)
|

4.3 Sets of positive erosion in R"Y

A set C C IRV of positive erosion provides a counterpart of sets of positive reach that
were introduced by Federer ([35, Federer 59]). In terms of partial differential equation,
its topological boundary is characterized by a uniform interior sphere condition whereas
sets of positive reach are based on a uniform exterior sphere condition. For underlining
this analogy, we prefer the term “erosion” that is borrowed from morphology.

The definition of open sets with positive erosion has already been given in Def. 4.2.2.

Now we extend this concept to closed subsets of IR correspondingly :

Definition 4.3.1 A closed subset C C IRN is said to have positive erosion of radius
p > 0 if there exists a closed set M C IRYN such that C = IB,(M).
Moreover, a set F of closed subsets of IRN has uniform positive erosion if (and only if)
each C € F has positive erosion of some radius p independent of C.
KP(IRY) contains all nonempty compact subsets of IRYN with positive erosion of radius p.
Ko(IRYN) abbreviates the set of all K € K(IRYN) with positive erosion, i.e.

Ko(RY) = ] Ke(mY).

p>0
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Meanwhile sets of positive reach in IRY have been investigated extensively. In
particular, they were generalized to Hilbert spaces leading to so—called proxzimally smooth
sets. Now we summarize some of their characterizing properties :

Theorem 4.1 in [25, Clarke,Stern,Wolenski 95| states the following equivalence for a
closed set X of a Hilbert space H (Ily abbreviates the projection on X) :

1. X is proximally smooth of radius p > 0, i.e.
dx :=dist(-, X) is continuously differentiable on Ux (p) := {0 < dx(-) < p}.
2. TIx(u) #0 forallu e Ux(p) and the Gateaux derivative d'y(u) exists.
3. Ilx(u)# 0 forall ue Ux(p) and for every r €0, p[, one has
dx(:) + dy@y() = r in Ux(r)
with  Y(r):={u € H |dx(u) >r}, dyy :=dist(-, Y(r)).
4. TIx(u) #0 forallu € Ux(p) and for any v € X, every proximal normal

[e]

v € NE(z),|v] =1, can be realized by a p-ball, i.e. B,(z+pv) N X =0.
5. For every r €10, p[ and v € H such that dx(u) = r, one has ngr(x)(u) # {0}.
6. The proximal subdifferential of dx, Opdx(u), is nonempty for all u € Ux(p).
More equivalent properties are proven in [53, Poliquin,Rockafellar, Thibault 2000] :

7. dx is Fréchet differentiable on Ux (p).
8. di|ux(p € C', ie. differentiable with locally Lipschitz continuous derivative.
9. Whenever xy, 2y € X and v; € Nx(z;), |v;| <p (i =1,2), one has

(U1 — 9, T — XT3y > — |z — 32|

If ueUx(p) and & =1lx(u), then {z} = Iy (:v—l—[(),l[ “"’”).

lu—z|

10. IIy is single-valued and (strongly—weakly) continuous on Ux (p).
11.  Global Shapiro property : dist(z' — z, TE(z)) < i 2" —z|? V z,2’ € X.
Then Iy is (single-valued) monotone on Ux (p) and Lipschitz continuous on Ux (r) for

every radius r €0, p[, with
Graph (HX

U (X)
If X C H is weakly closed (which is always the case if H is finite-dimensional) then the

)1 = Graph (Id+ (Nx N L(jB,n)) ‘ax

preceding conditions are equivalent to

12. IIx is single-valued in Ux(p).

In case of H = IRY, a proximally smooth set X of radius p has positive reach p (in
the sense of Federer) and another equivalent property is ([24, Clarke,Ledyaev,Stern 97))
13. X = (B,(X)), forall r€]0,p|
(with Z, :={dpm\z(-) 27} = 2\ ]OBT (07) C 7 for any set Z C IRY).
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Moreover, Corollary 4.15 of [25, Clarke,Stern,Wolenski 95| guarantees the additional
consequences :
o Forevery v € X C RN, one has NE¥(z) = Nx(z) = N{(x).
o For each r €]0,p[ and u € RY such that dx(u) =r, one has
NE () = Nison () = NG, () = [0,00[ (a2
where x is the unique closest point to v in X.
o For each r €]0,p[, the boundary of IB,(X) is a C'-manifold.

The close relationship between sets of positive erosion and positive reach is stated in

Proposition 4.3.2 A nonempty open set O C IRN has positive erosion of radius

p>0 if and only if X := RN \ O has positive reach of radius p.

Proof results from the properties (3.) and (13.) respectively :

Assume first that the closed set X = IRM \ O has positive reach of radius p > 0.

Then we obtain (for any r € ]0, p[)
ueO <<= dx(u)>0 PLON dymy(u) <r <= u€ ]OBT (Y(r)).

Now suppose that O has positive erosion of radius p, i.e. O = LOBp (M) for some
closed set M. The triangle inequality implies O = ﬂog,n (B,—(M)) for any r €]0,pl.
Morphologically speaking,

Y(r) = {ue€ RN |dx(u) >r} = {u€O|dspolu) >r} = O\ ]OBT (00)
is the closing of IB,_,(M) with respect to the structuring element li?r and this implies
B, (M) CY(r). Soweobtain O = IE?T(ZBP,T(M)) C IE?T(Y(T)) C O forall r €]0, p],
ie. ]JOBT (Y(r)) = O. Considering the complements leads to property (13.) for X. O

Corollary 4.3.3 A nonempty closed set C C IRN has positive erosion of radius
p >0 if and only if X = RN\ C has positive reach of radius p and C = C°.

Proof results from Prop. 4.3.2 since C = C° implies RN\ C = RN\ C°. O



178 CHAPTER 4. EXAMPLES : SUBSETS OF RN & C° SEMIGROUPS

4.4 Transitions on K(RY) and Q(R")

4.4.1 Differential inclusions for (K(RY), ) and (K(IRY),d)

Filippov’s Theorem A.1.2 provides the key tool for estimating the Pompeiu—Hausdorff
excess between reachable sets of differential inclusions. For the sake of completeness,
we mention immediate consequences that have already been shown in [6, Aubin 91] and
[2, Aubin 99], § 3.7, for example.

Proposition 4.4.1 Let F, G : RN ~ RN be Lipschitz continuous maps with
nonempty compact conver values.
Then for every compact sets Ky, Ky € K(IRY) and time t > 0, the reachable sets fulfill

@D <19F(t, Kl), 19g(t, K2)> S @D(Kl,Kg) . 6/\F't + sup (ED <F(),G()) . &\F}\'%
' R(t) B
RE) = [Holla+ sp 60 o 25551, Ap = Lip F
2
Supposing A > max{Lip F, Lip G} and sup d(F(-),G(-)) <oo in addition,
IRN

the Pompeiu—Hausdorff distance between the reachable sets satisfies

A(Vp(t, ), Valt,15)) < d(EGLEG) -+ sup d(F(),G()) - 257

RN

Proof. For every point xy € Ug(t, K,), there is a trajectory z»(-) € AC([0,¢], RY)
of Z9(-) € G(xs(-)) (almost everywhere) with z5(0) € Ky, x2(t) = xo.

Now let z; € K; satisfy the condition |z; — 22(0)] < €°(K;, Ks). Then Filippov’s
Theorem A.1.2 provides a solution z(-) € AC([0,t], RN) of iy(-) € F(x1(-)) a.e. with

the properties z(0) = 2; and

dist(xq, Vp(t, K1) < |z1(t) — x2(t)]

t
< KKy - et 4 [ ) dist(x'2(s), F(a:Q(s))> ds
0
t

< (K Ky) - et 4 / eAr-(t=9) 63<F(aj2(5)), G(xg(s))) ds.

0

Furthermore, |xo(t) — 22(0)] < /0 |G (22(5))]|c ds

< [ (50 160w + Lip G- lrats) — 200)) ds

and the integral version of Gronwall’s Lemma 1.5.4 implies sup |z2(-)] < R(?).
[0,¢]
The consequence for the Pompeiu—Hausdorff distance is obvious. O
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These estimates provide sufficient conditions of both forward and backward transitions
(of order 0) on (K(IRY), ¢2) and (K(IRY),d) in the sense of Def. 2.1.1, 3.1.1, respec-
tively. Moreover (K(IRY), e?) and (K(IRY),d) are two-sided sequentially compact
according to Prop. 4.1.1 and Cor. 4.1.2. So we can apply the results about right—hand
forward and backward solutions of § 2.3 and § 3.3.

Definition 4.4.2 For any X > 0, the set of A-Lipschitz continuous maps

F : RN ~ RN with nonempty compact conver values and sup |[|F(2)|e < o0
x € IRN

is denoted by LIP,(RY, RY).

Corollary 4.4.3 For every X\ > 0, the reachable sets of LIPy\(IRY,R"™) induce
forward transitions (of order 0) on (K(IRN),K(IRN), €2) and on (K(RN), K(IRN),d).

Proof.  Def. A.1.1 of reachable sets implies for all F': RN ~» RN, M C RN, s5,t >0
Ip(t+s, M) = Op(t, I(s, M)).
So, d(ﬁp(t + s, K), Up(t, 19F(5,K))> = 0 for every map F € LIP,(R",R")
and initial set K € K(IRY), s,t> 0.
Furthermore Prop. 4.4.1 guarantees for each F,G € LIP,(IRY, IRY)

eD(ﬂF(h,Kl); 19F(h7K2)) _GD(KI’IQ) < lim
h - aD(Kl,K2) ~ hilo

eM—1

=\ = OZH(’&F),

sup lim sup
K1,K2eK(IRN) hl0

e . _ a7 (Wa)h\ T
Q7 (Ip,V¢) et sup lim sup (“D(ﬂF(h’K1)7 Va(hKs)) - 62 (K1, K») - e Oc )
Kl,KzeIC(RN) h¢0

o (9p(h,K1), Vg (hK2)) — e (K1, Ka) - ekh)+

= sup lim sup ( h

K1,K2eK(IRN) hl0

< sup e (F(), G()) < sup IEC) oo + sup 1G()lloos

sup 433<19F(5,K), Ip(t, K)) < sup |F()lw- (t—s) forall 0<s<t
K e K(IRN) RN

and obviously, To(Jp, K) =1. The same estimates hold for d correspondingly.

In particular, d(t?F(s,K), Ip(t, K)) < sup [|F()||le - [t —s| forall s,t >0, K
RN

and the triangle inequality bridge the last gap for (K(RY), K(IRY), ¢°) :

lirilis(}lp 63(19F(t—h,K1), KQ) = @D<19F(t,K1), Kg)

for every K, K, € K(IRY), t €]0,1]. O
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Remark. The estimate of Q7 (Jp,Jg) provides the motivation for assuming the
Lipschitz constant A uniformly : In the general Definition 2.1.1 of Q7 (Jp, V), we
take the parameter o7 (Jq) (related with the second transition) into consideration.
It serves the particular purpose that the triangle inequality of Q™ is a simple consequence
(see remark (5.) after Definition 2.1.1).

On the other hand. the estimate of - (Vp(t, K1), Ya(t, K2)) in Proposition 4.4.1 uses
the Lipschitz constant of F' (instead of G).  Thus, we restrict ourselves to the uniform

upper bound A.

Corollary 4.4.4 Consider the reachable sets of LIP\(IRYN, IR") as forward transi-

tions (of order 0) on (K(IRN),K(IRY), €2) and on (K(RN),K(IRN),d), respectively.

Let  f:K(R™) x[0,T] — LIP,(IRN,RN)  satisfy  sup | f(K,t)(z)]e < 00
K, t,x

and sup e (f(Ki,t)(), f(K2,t2)() < w(e”(Ki, Ky) + t2—t1)

for all K1, Ky € K(IRN) and 0 <t, <ty <T with the modulus w(:) of continuity.

Then for every initial set K, € K(IRY), there exists a right-hand forward solution
K :[0,T[ — (K(IRN), €2) of the generalized mutational equation IO(() > f(K(),")
in [0, 7] with K(0) = K,.

Suppose in addition that there exist L > 0 and a modulus w(-) of continuity with

Sﬂ‘;}y e (f(K1,t1)(-), f(Kyt2)(r) < L-e (K1, Ky) + w(ta—t)

forall K1, Ky € K(IRY) and 0 <t <ty <T. Let K(:):[0,T[— (K(IRY),e”) be an
FEuler solution (i.e. constructed by Euler method according to the proof of Prop. 2.3.5).
Then every other solution M(-) with M(0) = K(0) satisfies e>(K(t), M(t*)) = 0.

The corresponding statements hold for (K(IRM),d) instead of (K(IRY), €°).

Proof. The existence results from Cor. 2.3.6 in both cases since (K(R"),d) and
(K(IRY), €2) are two-sided sequentially compact (due to Prop. 4.1.1 and Cor. 4.1.2).
The comparison with an Euler solution is a consequence of Prop. 2.3.10 and Tg(+,-) = 1.
Indeed setting p:=d, ¢ := ¢, the triangle inequality implies for all K, K, € K(IRY)
ALK 2 inf o (p(GL M)+ g EG)) = (K, K)

M € K(IRN)
because on the one hand, A(K, Ky) < e” (K, K,) is obvious and on the other hand,
e” (K, Ky) < e(K,M) + ¢ (M,Ky) < d(K,M) + e (M, K>) for all M.

So Proposition 2.3.10 guarantees limsup €’ (K(t), M(t+4)) = 0. O
540
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Similarly, the set—valued maps of LIP,(IRY, IRY) induce backward transitions of order 0.

Corollary 4.4.5 For each parameter X > 0, the reachable sets of LIP,(IRY,RN)
also provide backward transitions (of order 0) on (K(IRYN), ¢2) and (K(IRY),d).

Proof. Like every metric space, (K(IRY),d) fulfills standard hypothesis (R<). So
Corollary 3.4.2 states for all continuous K, Ky : [0,7] — (K(IRY),d) and t € [0,T

d(Ky (1), Ka(t) = d(Ki(t7), K5(t7)) = d(Ky(t7), K(t7)).
For this reason we can omit the limit superior that is denoted by “+7, “4++4” when
checking the conditions of Definition 3.1.1 for (K(R"),d).
The corresponding simplification is valid for (K(IRY), ¢°). Indeed, for every map
F € LIP,(IR",R") and K € K(IR"), the reachable set Up(-, K) : [0,00[~ RN is
Lipschitz continuous with respect to d and thus,

e” (19F(8+7K1)7 "-9G(t++>K2)) D:e{. limsup e (19F(8+k7 Kl): "-9G(t+l7 KQ))
k10 (k<)

< limsup (d (19F(S+k, K1), Up(s, KQ)) +
k1O (k <)
e (19F(s, K), Valt, K2)) +
d (9ot K1), Valt+l, Ks)) )
_ e (Dp(s, K1), dolt, K))

for any F, G € LIP,(RY, RY), K, K, € K(IRY), s,t > 0.

In the same way, we get e~ (19F(5,K1), 19G(t,K2)> < e (19F(3 Ky), 9a(t™, Kz))
90(0,K) = K and dl<z9F(t, K), Op(h, 9p(t — h, K)) ) is trivial for all

F:RY~ RN, K e K(RY), 0<h<t Considering (K(RN),e ) first, Prop. 4.4.1

implies for all F, G € LIP,(R", R")

") = sup  limsup (eD(ﬂF(h,m(th)),ﬂF(h,Km)))eD(Kl(th>,Kz(th>)>+

0<t<1 h10 h ED(Ki@hL Kéﬁhﬂ
Ky, Ky €

vC— (10,1[,K(RN ), D)

eM—1

< lim sup 3 = A
h10

(with the abbreviation ¢, := t —h) and

Q7 (Wr V) = s timsup £ e (Vp(h, Valtn, K), Valt, K))

0<t<1 h10
K e K(RN)

= s limswp £ e (Vnlh, Voltn, K)), Va(h, do(tn, K)))
0<t<1 h10
K e K(RN)

< sup 63<F(-), G()) < 00.
IRN

The same estimates hold for d instead of e-. O
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Corollary 4.4.6 Consider the reachable sets of LIPy\(IRY, IRY) as backward tran-
sitions (of order 0) on (K(IRY), €°) and on (K(IRN),d), respectively.
Assume for f: K(RN) x [0,T] — LIP,(IRY,RY) both sup |[|f(K,t)(z)|e < o0
K, t,x
and sup e (f(Ki,t), f(Kata)) < w(e” (K, Ka) + 2 —t)
R
for all K, Ky, € K(IRN) and 0<t, <ty <T with the modulus w(-) of continuity.

Then for each initial set Ko € K(IRY), there is a right-hand backward solution
K :[0,T[ — (K(IRN), €2) of the generalized mutational equation IO(() > f(K(),")
in [0,T] with K(0)= K,.

If there are a constant L > 0 and a modulus w(-) > 0 of continuity in addition with
sup tED (f(Kl,tl), f(KQ,tQ)) S L. @D(Kl,KQ) + (.d(tQ —tl)
N

R

for all Ki,K, € K(IRY) and 0 <t, <ty <T, then K(-) can be chosen in such

a way that any other right-hand backward solution M(-) with M(0) = K, satisfies
e (K(), M()) =0.

The corresponding statements hold for (K(IRY),d) instead of (K(IRY), €°).

Proof results from Proposition 3.3.3 because (K(IRY),d) and (K(RY), ) are
two-sided sequentially compact (according to Prop. 4.1.1 and Cor. 4.1.2, respectively). O
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4.4.2 Smooth vector fields for (K(R"),qc n)

In Definition 4.1.5 we introduced the quasi-metric gy : K(IRY) x K(IRY) — [0, 00],
gen (K1, Ky) == d(Ky, Ky) + €(Graph "Ng,, Graph ’Ng,).

Roughly speaking, the Pompeiu-Hausdorff distance d(K, K,) takes all points of the
sets K, Ky symmetrically into account. The second term is nonsymmetric and can be
regarded as the graphical distance from the unit normal vectors in "Nk, to *Ng,.
According to Lemma 4.1.8, (K(IRY), g ) is one-sided sequentially compact and fulfills
standard hypothesis (R<), i.e. the right-hand spheres are left-sequentially closed.

Now autonomous vector fields of class C%! induce both forward transitions on
(K(RY), K(R"), qc ) and backward transitions on (K(R"), qcn) (of order 0)
by means of the ordinary differential equation : The reachable set of f € CVH(IRYN, RY)
and the initial set K € K(IRY) at time ¢ >0 is

96 K) = vt
zeK

with the unique solution y(-;z) € C'([0, t], IR"Y) of the initial value problem
& y(sie) = fly(s;o)
y(0;2) = =
Obviously ¥; has again the semigroup property  U;(t+h, K) = Us(h, Vs(t, K)).
Furthermore the evolution is always reversible in time because the solutions of these

initial value problems are unique.

The two following lemmas provide the key estimates for transitions : Considering one
vector field and one initial set first, we prove the Lipschitz continuity of the reachable
set. with respect to time. Afterwards the distance between reachable sets is estimated

after a given time, but for two vector fields and different initial sets.

Lemma 4.4.7 For every vector field f € CY(IRN,IRY) with |Df|lcc < A and
K e K(RY), T >0, the map 94(-,K) isin Lip~([0,T], K(R"), qe.n) :
q;C,N(ﬁf(s,K), 19f(t,K)) < C - (t—ys) forall 0 <s<t<T

with C = 1 + (A + sup |f|) e2AT,
K
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Proof.  Due to ||Df||lcc <A, Gronwall’s Lemma 1.5.1 provides the estimate for ¢ > 0

At_l

d(K, vt K)) < sup|f| - <5
K
Forany 0 <s <t <7, the semigroup property v;(t, K) = V;(t—s, U;(s, K)) leads to

e (t—s)
d(ﬁf(s,K), ﬁf(t,K)) < ﬂs(u%) £ e
7(s,
< sup  |f] et (t—s)
Br(K)
< ( sup | f] —|—AR) - eM (- 5)
K
< sup |f| et M (E—s)

K
with R = R(K,T,A) = % . sup|f| . (eAT_]_)‘
K

Moreover, according to Corollary A.3.3 (1.), every boundary point z € 09;(t, K)
and p € Ny,x)(x) is reached by the (unique) trajectory z(-) € C'([s,t],IR") and
the adjoint p(-) € C*([s,t], RY) satisfying

z(s) € V(s K), x(t) = =,
p(s) € Noyspo(z(s)), plt) = p,
i(-) = [f(z(), p(-) = —p() - Df(z(-)) inls, .

If 0<|p| <1 in addition, Gronwall’s Lemma guarantees p(s) #0 and
p(s) —pl < M -1
because for 7 € [s, t],
& (pit=7)=p) | = Ip(t=7)| A lp(t=7)|
< A (=) —pl+pl) < Alplt—r)—pl + A

Furthermore, |p| < 1 implies that the projection of p on the ray [0,00[- p(s) is also
contained in the unit ball 1B;(0). So,

diSt<P= bNﬂf(va)(x(S))> < dist<p, [O,w[-p(S)) < fp-ps)] < et -1
and finally we obtain

dist(Graph qu}f(t’K), Graph bNﬂf(s,K)) < M) 1 < A eAT (t—s). O

IN

The deformation along vector fields is reversible in time, i.e. K = J_f(t, 9;(t, K))
for every f € C'(IRY,IR") and initial set K € K(IR"). Thus, we obtain Lipschitz

continuity in negative time direction as well.

Corollary 4.4.8 For every vector field f € C*(RYN,RY) with ||Df]|ec <A and
K € K(RY), T >0, the map 94(-,K) : [0,T] — (K(R"),qx,y) is Lipschitz
continuous, i.e. q,C7N<19f(S,K), Vy(t, K)) < C-lt—s| foradll s,t€0, 7] O
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Lemma 4.4.9 Assume for f,g € CYYIRN,IRN) that |f — gll < oo and
[Dfllcor, [|1Dglloc < A
Then for any K, Ky, € K(IRY) and t >0, the following estimate holds

qIC,N(ﬁf(taKl)a ﬁg(taKZ)) S qlC,N(K].;KZ) e(L+A)t + 2 €(L+2A)t t“f_gHCl

with L = L(A,t) = A (2+ 2.

Proof.  Applying Prop. 4.4.1 to ordinary differential equations leads to

|

A0t 1), V(6 03)) < A ) - A 4 |1 = gl - £

Now choose z € 0V,(t, K;) and /
D € "Ny, uion (@) \ {0} arbitrarily. /K)

=

)
Correspondingly to the proof of K\’O/
L
Lemma 4.4.7, Corollary A.3.3 (1.) yo&j/
N

provides the trajectory
l‘() S Cl([oa t]a ]RN)

and its adjoint arc

) R

p() € C1(0,1, RY) = i ”
satistying

z(0) € Ko, z(t) = =,

p(0) € Ni,(x(0)), pt) = p,

#() = g(x()), p() = —p() - Dgla()).

Then Gronwall’s Lemma ensures || p(+) [0 < |p| et < et

Now let (yo, qo) € Graph N, be in the projection of (x(O), p(0) e’At) € Graph 'Ng,
on Graph "N, : ‘(yo,ffo) - (3}(0), p(0) e*At) < e (Graph "Ny,, Graph bNKZ).

Due to f,g € CH! and Corollary A.3.3 (2.), the initial value problem

/\{ o) = fly(), i() = —aq()-Df(y())
y(0) = o, q(0) = g
has the unique solution (y(-), ¢(+)) satisfying both
y(t) € 0v(t, Ky),
q(t) € Nyyry)(y(t)),
la() o < lg(O)] et < e
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and the estimate

< (#0.00)) ~ (0 eM)
+ S s |(Ja@), o) D) ~ (o), o) Dya(r))|
L (17 = gllse+ 24 1D — Dyl

L

elt 1
T =3

- (?Jo; qu 6“)

VAN
[}
~
/N
8
—
@)
~
i~
—~
@)
~
N——

with the (local) Lipschitz constant L of the Hamiltonian function
RN X Beae — RY x RN, (z,p) —> (f(2), —p- Df(z)).
This estimate results from the Theorem of Cauchy-Lipschitz (see e.g. [2, Aubin 99],
Theorem 1.4.1). As an upper bound of Z, we obtain
I < Lpf + (Lip IleN) IDflle + €At Lip Df
< A+ IDflloe + €22t Lip Df
< A2+ =L

Moreover, the initial assumption [p| < 1 implies that the projection of p on any

(nonempty) cone is contained in the closed unit ball B;(0) and thus,
dist( (x,p), Graph bNﬂf(t,Kl))

< dist((:c,p), {y()} x ([0,00[ - q(t) N Bl))
)

< dist((@.p), {y(®)}x 0.00l-a())

< |(a.00) - (v(0),a)]

< et |(=.00) = o.do )|+ =5 (1 = glloo +e2 DS~ Dylc)
< oL <() p(0) e ) (yo,qu)‘ + el t(||f glloo + A D f — D9||oo)
< e ¢ (Graph "Nic,, Graph'Nig,) + ¢4t (I = glloe + €A | Df = Dyl ).
So finally we get with L = L(A,t) 2= A (2+€22Y)

ax (958 10), 0, (8, 16))

= d(K,, K,) + eD(Graph "Noj(t.x1), Graph vag(t,Ka)

< d(Ky, Ky) Mt eM et ||f —glle + BTV 62 <Graph 'Nk,, Graph bNm)
+ ettt (I = glloo+ €A IDF = Dyllao)
e N (B, K) B0 (M 4 B2 || f — gl

IN

< g (K, Ky) eVt 4 2 eLH2NE | f—gller . O
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Proposition 4.4.10 For every A > 0, the reachable sets of the wvector fields
f e CY(RN,RN) with ||f|le < 00, ||Dfllcos < A induce forward transitions on
(K(RY), K(IRY), qcn) of order 0 with

OéH(ﬁf) D:ef' 4 A,
B ®) (14 fller - @IP71=) -1,
QW0 < 2 f ~ gl

Proof. The semigroup property 9¢(t+ h, K) = J¢(h, U;(t,K)) implies for the
quasi-metric gc y and all K € K(RY), t,h >0

QIC,N<7-9f(h, 7-9f(t7 K)): ﬁf(t"'ha K)) = 0,

aen (95t + 1K), 05, 95(8,K))) = 0.

Furthermore Lemma 4.4.9 has the consequences

_|_
sup lim sup (qK’N(ﬁf(h,Kl)yﬂf(h,Kﬂ) — qK’N(Kl’K2))
K1, Kz K(RN)  h10 h ax.v (K1, K2)
° 2A * - el.
S lifilf;lp exp(A (3+e; h) h)—1 — 4 A D:f OéH(ﬁf)
and
Q(07.0,) % sup  limsup ({200 00K C (R T
? Kp,Kp € hi0 h
K(RN)
= sup limsup (qK’N(ﬂf(h’Kl)’ﬂg(h’Kﬂ) _quN(Klsz)'e“.h)jL
Ki,K» hi0 h
1 xp(A b (3+e22h)) — exp(4 AR
< ;u[[; hrilis(}lp (q/c,N(K1, K,) @plh(te h)) exp(4 A h)
1,A2

2 = gllen - M)
- 2 | = gller.

Lemma 4.4.7 states  qic.n (19f(s,K), Vg (t, K)) < (1 + [ fller - 62||Df”°°) - (t—s)
forall K € K(RY), 0<s<t<1, ie.  Uy(-,K) € Lip7([0,1], K(R"), gc.n).
Furthermore the reversibility in time leads to
q,C,N(ﬁf(t, K), 19f(s,K)> = gew (19f(t, K), 0_4(t—s, 0;(t, K))
< const([|fllcr) - [t = s|

for every 0 < s <t <1, and so the triangle inequality ensures

hrilfoup q,cyN(ﬂf(t—h,Kl), K2> = q,cyN(ﬁf(t,Kl), K2>

for all Ky, K, € K(RY), t €]0,1]. O
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In respect of forward solutions of generalized mutational equations, we need some
compactness property for applying the results of § 2.3.2. For (K(RY), gcn) however,
two sided—sequential compactness does not hold in general as mentioned in the remark
after Lemma 4.1.8. Instead of restricting ourselves to conver compact subsets of IRY,

we prove now the following modification of transitional compactness :

Lemma 4.4.11 For any A >0 and each n€ N, let f,:[0,T] — CYY(IRYN, RY)
be piecewise constant with — sup || fo(£)() e < Ao Choosing K € K(IRY), set
0<t<T
Fu 2 [0,T] x RN ~ RN, (t,2) —> fu(t)(2),
Kn(h) = 95 (h, K) for h €10,T].
Then there is a sequence ny /* oo of indices such that for each h € [0, T], a compact set

K(h) fulfills q,c,N(Knk(h), K(h)) 50, qew (K(h), Knk(h)> 50 (k= o0).

Proof For each n € IN, the Hamiltonian system
\ { i(t) = Fult 2(t) 2(0) = w
p) = —p(t) - g; fult, 2(t)  p(O) = po

is piecewise autonomous and its right—hand side is locally Lipschitz continuous in each

(*)

subinterval of autonomy because f, : [0,7] — CH'(IRY, IRY) is piecewise constant.
So its flow @, : [0,7] x RN x RN — RN x RN, (t, xo, po) — (x(t), p(t)) has
the following properties for every ¢ € (0,7 :

L &, -, -): RN x RN — RN x RN is locally bi-Lipschitz homeomorphism
2. ®,(t,-,-) (Graph Ng) = Graph N, (due to Cor. A.3.3)
3. @,(t,-,-) (Graph "Ng) C Graph (N, (1) N ' B)
4. @u(t, -, ) *(Graph 'Ng,u) C Graph (Ng() N e*'B).

Due to sup || fu(t)(-)[|ci: < A, every reachable set K,(h) (n € IN, h € [0,7])
n,t
is contained in B, (K) and, in the compact product [0,77] x 1By a7 (K) X Be2ar,

the sequence (®,), is equi-continuous and uniformly bounded.
So the Theorem of Arzela—Ascoli provides a sequence nj, oo of indices and a function
® € C°0,7] x RN x IRY) such that for k — oo,

¢,, — ®  uniformly in [0, 7] x By a1y (K) X Bezar.
In particular, considering the flows @, (k € IN) has the technical advantage that
the sequence (ny) of indices does not depend on ¢ € [0, 7.
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Now for every t € [0,7], the limit
K(t) := Limg 00 V7 (t,K) = Limgo m Dy, (t,-, ) (K x IB)
= m ®(t,-,-) (K x By)
exists and Cor. 4.1.7 guarantees ~ Graph Ng() C Liminf,_, , Graph Nk, @)
ie. gen (Kp, (1), K(t)) — 0 (kK — 00).

A

We still have to prove the inclusion Limsupy_, ., Graph Nk, ) C Graph N,
or (equivalently) Limsup; _, o, @y, (¢, -, ) (Graph Ng) C  Graph Ng ).
For arbitrary = € 0K and p € NE(x) N 0IB,, there is some radius p €0, L[ satisfying

1
K N B,(x+pp) = {z}.  So setting as an abbreviation
Op = Ug, (t, By(x+pp)) = %k(t, Bp(l’erp)),
O = mat Betop). B = m ot B,(atpp). B).

Gk := TPy, (t, 2z, p) # 0is alimiting normal vector of both ‘O = R\ V7 (¢, B,(x+pp))
Tk

and K, (t) at yg = m Dy, (t,2,p) (due to Cor. A.3.3).

Furthermore Cor. A.6.4 provides a lower bound r = r(p, A,T) € |0,p[ such that each

Oy has positive erosion of radius r. Due to O = Limy_, oo Of, 00 = Limy_, o 0Oy,
Prop. 4.2.7 and § 4.3 imply O € Q7(IRY) and Limy_, o, Graph "Ny, = Graph "N
= Graph NI So now we conclude ®(t,z,p) € Graph N};(t) from

®(t,w,p) = lim (ye,qr) C Limsup,, oo {u} x Neoy(y) C Graph N
and from the fact that the first component 7 ®(¢,-,IB;) maps K N B,(x+pp) = {z}
to K(t)NO = {m @20}, ie K() C O.

As a consequence of continuity, ®(t,-,-) (Graph 'Ng) C Graph Ny,
and finally, Limy , o @y, (,,-) (Graph "Nyx) C ®(t,-,-) (Graph "Nx) C Graph Ni(.
(|

Corollary 4.4.12 Consider the reachable sets of vector fields g € CH (RN, RY),

llgllcra < A, as forward transitions (of order 0) on (K(RN), C(IRY), gxc.n)-

Let f:K(RY)x[0,T7] — CH(RN,RN) satisfy sup || (K, t)(7) [[crr <A
K.t

and sup Hf(Klatl) — [(Kyta)
RN c

for all K, Ky € K(IRN) and 0<t, <ty <T with the modulus w(-) of continuity.

< wlgen(Ky, Ky) + ty —t)

Then for every initial set Ko € K(IRY), there exists a right-hand forward solution
K :0,T[— (K(R™),qcn) of the generalized mutational equation IO(() > f(K(),)
in [0, T with K(0)= K,.
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Moreover, the solution is unique if there are L >0 and a modulus w(-) of continuity
with sup Hf(Kl,tl) — f(KQ,tQ) o S L'(]}C,N(Kl,Kg) —+ (.d(tQ —tl)

RN
for all K, Ky, € K(IRY) and 0<t, <ty <T in addition.

Proof. The existence results from Proposition 2.3.5 and remark (2.) after its proof.
Indeed, according to Lemma 4.4.11, the Euler approximations are contained in a subset
that is transitionally compact in (IC(]RN), ax,n, {9 € CHHIRYN,RY) | ||g|lcrr < A})
Under the additional Lipschitz assumption about f, any other solution M (-) satisfies
ge,n (K (t), M(tT)) =0 for all ¢ — as a consequence of Proposition 2.3.10 (applied to
p(Kq, Ko) = qen (K, Ka) + qen (K2, Ky), g = gen) since To(-,) =1 and
A(K) Ky) 2 infe e o) (p(Kl, K) + q(K, KQ)) = p(KL, Ka).
Finally Corollary 3.4.2 implies g n(K(t), M(t)) = qen(K(t), M(tT)) = 0 because
(K(IRM), g ) fulfills standard hypothesis (R<) (due to Lemma 4.1.8). O

Proposition 4.4.13 For any A > 0 fized, the reachable sets of all vector fields
f e CY (RN, RY) with ||fllec < 00, |[Df|lcon < A induce backward transitions on
(K(RY), qxc.n) of order 0 with
() < 4A,
BN @ 2 (14 Ifller - e21P71) 1,
Q7(Wrdg) < 2 [If —gller

Proof. (K(IRN), g v) fulfills standard hypothesis (R¥<) according to Lemma 4.1.8.
Thus Corollary 3.4.2 guarantees gen(IG (), Ka(tt)) = qen(Ki(t), Kat))
for all K,, K, € UC™([0,1], K(IRY), gcn) and t € [0,1].

Correspondingly to the preceding proof of forward transitions (Prop. 4.4.10), Lemma 4.4.9
implies for every K, Ky € UC(]0,1], K(R"), gcn), K € K(RY) and t€]0,1]

i <qm(0f(h+ KL (t), 95 (0 K() — s (), Kz(t,t+>)>+
m sup ¥ ++
h{0 h q}CN(Kl(th) Koa(ty ))
— limsup QK,N(ﬂf(h,Kl(th) ), Ur(h, K2(tp)) ) - qx N(Kl th), Kz(h)))+
R0 h g (K1(tn), Ka(tn))
< limsup % . (eAh(3+62Ah) — 1) = 4A with ¢, == t—h >0
h10
and lim sup % . q,C,N(ﬂf(lﬁ7 Uy(t — h, K)), 199(15++,K))
hi0
= limsup L - q,C,N(ﬂf(h, 9y(t — h, K)), 9y(h, 0,(t—h, K)))
h10
< limsup L2k ||f —gller AN = 2 || f — g[|en.

hi0
Finally 94(-,K) € Lip~([0,1], K(R"), gc.n) results from Lemma 4.4.7. O
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Corollary 4.4.14 Consider the reachable sets of vector fields g € CVLH(IRYN, IRYN),

lgllcrr < A, as backward transitions (of order 0) on (K(RY), qxc.n).

Let fK(RY) % [0,T) — CY(RY,RY) satisfy  sup | S, () ens < A
Kt

and su Hf(Klatl) — [, t2) o < w(gen (K, Ka) + to —t)

IRN
for all K1, Ky € K(IRN) and 0 <t; <ty <T with the modulus w(:) of continuity.

Then for each initial set Ko € K(IRY), there exists a right-hand backward solution
K :0,T[— (K(R™),qc,n) of the generalized mutational equation IO(() > f(K(),)
in [0, T with K(0)= K,.

Moreover,the solution is unique if there are L > 0 and a modulus w(-) of continuity
with sup ‘

f(Klatl) - f(K27t2)
RN C

for all K1, Ko € K(IRY) and 0<t, <ty <T in addition.

< Legen(Ky Ky) + w(ty —t)

Proof of existence results from Prop. 3.3.3 because according to Lemma 4.4.11,
the Euler approximations are contained in a transitionally compact subset of

(’(BY), gen, {g€ CHHIRY, RY) |llgllen < A} ).
Under the additional assumption of Lipschitz continuity, we also obtain that any other
solution M(-) : [0, T[— K(IRY) with M(0) = K, satisfies gcn(K(t"), M(tT)) =0
for all t € [0,77. Now (K(RY), qc,n) fulfills standard hypothesis (R<) (due to

Lemma 4.1.8) and thus Corollary 3.4.2 implies the uniqueness of solutions. O

4.4.3 Differential inclusions for (Q(RY),qq0)

In the two preceding sections, we presented examples of forward transitions on K(IRY)
with the additional property that we can choose K(IRY) also as “test set” (abbreviated
as D in chapter 2).

Difficulties in choosing D adequately are usually related to the estimates of o (Jp)
and Q7 (Y, Yq). Roughly speaking, they often use some version of reversibility in time :
When proving Lemma 4.4.9 about gx n (Vf(t, K1), Y4(t, K3)), for example, we follow
a trajectory z(-) (of the vector field ¢) in backward time direction and then look for a
suitable trajectory y(-) of f in positive time direction. Here the reversibility in time
is to guarantee that such a counterpart y(-) stays in the boundary of the reachable set

until the given time (at which we started).
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Now the next example is an ostensible metric that does not imply this property
in general and, we start with (Q(R"),qqs) because its subset (Q2(RY), ga)
(of sets with uniform positive erosion of radius p) is two-sided sequentially compact
(due to Corollary 4.2.5).

As a consequence of Appendix A.4 and Appendix A.5, standard hypothesis (7?[)
leads to Qc11(IRY) as a candidate for the “test set” (abbreviated as D in chapter 2).
Indeed, we prove in Corollary A.5.4 that smooth open initial sets stay in Q¢1,1 (IRY) for
a short time (at least) and their evolution is reversible in time within this period.
Adapting the approach of the preceding § 4.4.2, we now obtain a new class of set—valued
maps RN ~ IRY whose reachable sets induce forward transitions of positive order on
(QRY), Qcra(IRY), qap) as stated in Proposition 4.4.20.

Definition 4.4.15  The Hamiltonian Hp : RN x RN — IR of F : RN ~ IRY is

Hp(z,p) == sup p-y. LIP&H)(RN,RN) contains all maps F : IRY ~» RN with
yeF ()

1. F:IRYN ~ RN has compact convex values with nonempty interior,
2. Hp(,-) € CV(Bg x (Bg\ ZB%)) for every radius R > 1,
3. | Hellowmyxomy = |[Hellovmyx omy + Lip DHelryxom < A

Remark. 1. Condition (3.) and Lemma A.2.4 have the consequences that
F: RN ~ IRN is A-Lipschitz continuous and sup ||[F(-)]] < A.
IRN

e}

2. The derivative of Hp has linear growth as in standard hypotheses (H), (),

i.e. there exists a constant vp >0 with

“DHF(x’p)“C(RNxRN,R) = e (1 - |x| * |p|)

for all z,p € RY (Jp| > 1) according to Def. A.4.2.
Indeed, Lemma A.2.4 (1.) ensures for the partial derivative of Hp with respect to p # 0

2w p)| < IF@e < sup [FO) < A

For the partial derivative of Hp(x,p) with respect to x, we follow the same track as in

the proof of Prop. A.4.11 and apply Lemma A.4.15 of Ward to the marginal function
p(x) == nf{-p-yly e F)} = —Hp(z,p)
with p # 0 fixed. Setting y, := %HF(:r,p) = (Nr@)lop) * (p), Lemma A.4.15 (1.)
states for every direction v € RN
Digp(a) (u) < inf {—p-v| (u,0) € Téppn r(®, o) }
= irvlf {-p-v] v €DF(z,y,) (u) }.
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The A-Lipschitz continuity of F' implies the A-Lipschitz continuity of each D®F(x,y,)
according to the remark after Def. A.4.13. So we conclude from 0 € DF(xz,y,) (0)

— 5 Hre(e,p) u = Dip)(u) < |p| (0+A |u]) for any u
and thus, |2 Hp(z,p)] < Alpl-

Now for maps of LIP&H) (IRN, IRY), the properties of their reachable sets are checked
with respect to their role as forward transitions on (Q(RY), Qc1i(RY), gas). The

Lipschitz continuity in positive time direction is quite obvious.

Lemma 4.4.16 For every map F € LIPE\H)(RN,RN), initial set O € Q(IRN)
and time 0 <s<t<T,

00 (9r(5,0), e(t,0)) < 2 sup [FQlle - (1) < 24+ (=)

Proof. The Pompeiu—Hausdorff distance fulfills the estimate
d(0p(s, K), Op(t,K)) < sup [F()lle - (E=5) < A(t—s).
IRN

In respect to @D<819F(S,O), aﬁF(t,O)), each point = € 0V (t,0) C Ip(t,0) =
Vr(t,0) is attained by a trajectory x(-) € AC([0,t],RY) of F with z(0) € O.
As an indirect consequence of Filippov’s Theorem A.1.2, z(s) € 09p(s,0) for any s
and thus, dist(:r, 819F(s,0)> < el —a(s)] < sup IF Q) - (2= 5) 0

The parameter o7 (-) of forward transitions results from the comparison between the
reachable sets of different maps in LIPE\%) (RN, IRY) and different initial sets. Here we
need a new function for two bounded subsets M, My of IRN. m(M,, M,) abbreviates
the maximum distance between elements of M; and points of M,.

In particular, m(M,M) > 0 for every bounded set M C IR" with more than 1
element. So these forward transitions on (Q(RY), Qc1i(RY), gap) are not of order 0

as we conclude from Lemma 4.4.18 later.

Definition 4.4.17 For nonempty bounded subsets M, My C IRN define
m(M, My) = sup {|x—y| ‘x e My, y € Mz}

Remark. Obviously, m is symmetric and satisfies the triangle inequality for
all nonempty bounded subsets, but it is not an ostensible metric. Moreover it fulfills
d(K]_, Kg) S m(Kl,Kg) S [m(Kl,KQ) + d(KQ, Kg) for all KJ € IC(]RN)
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Lemma 4.4.18 Suppose for F, G € LIPE\%)(RN,RN), O1, Oy € Q(RYN) and
p, T >0 that the closure of each 9p(t,01) € QURYN) (t € [0,T]) has positive reach
of radius p.

Then, for every t € [0,T],

QQ,a(ﬁF(t, O1), Yalt, 02)) < ga(01,0,) - M+ 2'SUJIV3 m(F(-), G()) - eM,(l
R
Proof. Prop. 4.4.1 is already providing an estimate for the Pompeiu-Hausdorff

distance between the closures of reachable sets :

d(ﬁF(taal)a 19G(t762)) < d(01,0,) - e + sup d(F(),G()) ot

RN A

For any boundary point z of Jg(t,Oy) € Q(IRY), we need an upper bound of its
distance from 09 (t, Oy).
As a frequently used consequence of Filippov’s Theorem A.1.2, x is attained by a
trajectory xz(-) € AC([0,t], RY) of G with x(0) € d0,. Now choose y, € 00,
satisfying |yp — 2(0)] < €2(00y, 002).
Due to Cor. A.5.3, the evolution of O; along F' is reversible in time on [0,77, i.e.

RN\ O, = 19_F(t, RN\ 9 (t, 01)).

So there exists a trajectory 7(-) € AC([0,t], RY) of —F satisfying 7(t) = y and
7(0) € RN\ VYp(t,01). Since y belongs to d0; C Oy, we obtain 7(0) € Vp(t,0,) =

Up(t,01) and thus, %(0) € 0Up(t,0p). Finally, Gronwall’s Lemma provides an
upper bound of |z — y(0)] :

a(s) = Glt—s)| < |2(0) =G| + / é(r) — L9t —1)| dr
< k=701 + [ (66, #@e-) da
< Ja(0) = 5] + / " (w(GEw), Flaw))
+ Lip F - |x(r)—§}(t—r)|) dr

for all 0 < s <t implies

< O =G0+ sp m(F(Q), G) 2
< (00, 00,) M+ sup m(F(-), G(-) =5
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The estimate of the last lemma cannot be improved essentially with respect to F, G
since the trajectory z(-) and its counterpart y(t— -) might move in opposite directions

as the next example shows briefly.

Example 4.4.19 Roughly speaking, a small ball is contained in the unit ball close
to the boundary : B.((1-2r)e;) € Bi(0) ¢ RY

with r <1, ¢ := (1,0...0) € RN, RN-!

Set F'(-) := IB; and consider £ := z(0) = (1—3r)e
Then e; is the unique projection of & on 0IB; and the

boundary trajectories z(-), y(-) of F starting in £ and e, - R

respectively are also unique : z(t) = £ —+¢, y(t) = e +¢.

Furthermore they keep moving in opposite directions and
lz(t) —y(t)| = |E—e] + 2t = [€—ei] + 2m(IB, B)t.

In particular, the example shows that  gog (9r(t,01), Up(t,02))  depends on
m(F(-), F(-)) explicitly, i.e. it does not satisfy the inequality
g0 (Vr(t,01), Op(t,02)) < gas(01,0y) - e
in general. This dependence implies even Q7 (Jp,Jr) > 0 and then Lemma 2.1.4
excludes forward transitions of order 0. So we consider the countable family ¢. 1= ¢ns
(€ Q" :=@QNJ0,00[) of identical ostensible metrics on Q(/R") instead. The result
consists in forward transitions of positive order. Here the order is not specified in detail

because the scaling of ¢ does not provide any canonical criterion.

Proposition 4.4.20  For every X\ > 0, the reachable sets of maps in LIPE\H)(RN, IRY)
induce forward transitions (of positive order) on (QRY), Qcri(IRY), (go0).cqr) with

%(Vp) = 4N

o (9r) = 2\
B(Wr)(t) = 2\ -t
Q7 (Vr, V) < 2 sﬂgl}v) m(F(-), G(-) < 4\
Proof. The semigroup property of reachable sets has the immediate consequence
go0(Vr(h, 9p(t,0)), Je(t+h, O)) = 0,
goo|Vp(t+h, O), Vp(h, Vp(t,0))) = 0

O

for all F e LIPY(RYN,RY), O € Q(RN), h,t >0 since gop is an ostensible metric.
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Due to Cor. A.4.5, every map F € LIPUY (RN, IRY) and initial set O € Qe (RY)
lead to a time To(Jp,01) >0 and a radius p > 0 such that Jx(t,0;) € Qcui(RY)

and its closure has radius of curvature > p for any ¢ € [0, To(Ur, O1)].

Setting v.(Jr) :=4 )\, Lemma 4.4.18 implies for all O, € Qc11 (IRY), O, € Q(RY)

40.0(9r(h,01), 9p(h,05)) — 4q.5(01,02) — 7.(9p) h !
lim sup <Q‘6 Pm A T — -

hl0 h (QQ,B(OI:O2)+’)’E(0F) h)
< i 1 ( (M1
< Hilf(}lp h (409(01, 0) T 2e(0x) 1) 40,0(01, O2) - (e )

+
+ 2-sup m(F(), F() - £2=1 — 4)\h)
+

i A1 2:2)2-eMh — 4Ah _ Def. N

= hrilf()up ( i h (0+4Xn) ) = 2A = a7

and for every F,G € LIPE\H) (RN, IRN)

o+
. 40,0 (9 (1,01),96(h,02)) — 4q,9(01,0,) - e2 X
Q- (U, Vg) = sup hmsup( ( h)
016901,1(RN) hl0
0y € Q(RN)
. 1 Ah 2Ah\ T
< sup  limsup (qua(Ol, 0y) 3+ (M — e2*h)
Oleﬂcl,l(RN) hl0
0, € QRN)

erh—1

+ 2 - sup m(F(), G()) - T)
_ 2 - sup m(F(-), G(")).

Moreover Lemma 4.4.16 states 40,0 (ﬁF(s, 0), Vp(t, O)) < 20 - (t—s)
forany 0 <s<t<1 and O € Q(R").

The last part of the claim is to show

fimsup oo (0 (=1, 0), 02) 2 aaa(0r(1,00), 0,)

for all F € LIP(Y (RN, RY), O, € Qea (IRY), Oy € QURY) and 0 < ¢ < To(Ip, O1).
For every initial set O; € Qe (IRY), Cor. A.5.3 ensures the reversibility in time
in the interval [0, To(Vp,O1)[, ie. forall 0 <h <t < To(dp,Oy)

RN\ﬁF(t—h, 0) = 19_F<h, RN\ﬁF(t,Ol)) € Qoui(RV).
Thus, D9p(t —h, O)) C ﬁ,F(h, aﬁp(t,Ol))

and we get €2 (aﬁF(t, 01), 0t —h, 01)) 50 for h | 0.

So the last claim results from the triangle inequality for ¢q .
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On the one hand we now have forward transitions (of positive order) on the tuple
(QURY), Qcii(IRY), (go0).cqr), but on the other hand, only subsets of Q(IRY)
like (Q2(RY), gas) (for each p > 0) are two-sided sequentially compact.

For combining these results, we use Cor. A.6.5 stating that open sets of positive erosion

are preserving this property while evolving along differential inclusions (with maps in

LIPYY (RN, RY)) -

Corollary 4.4.21
Consider the forward transitions of positive order on (QW(RY), Qeri(RY), (40,0).cqt)

induced by the reachable sets of maps in LIP (]RN RY) (according to Prop. 4.4.20).
Moreover let  f: Q. (IRY) x [0,T] — LIPE\ )(RN,RN) fulfill
sup m(F( ), G()) S 4 )\ + w (qQ,a(Ol,OQ) —+ tg — tl)

for all Oy,04 E Q (RY) and 0 <t <ty <T with a modulus w(-) of continuity.

Then for every initial set Oy € Q. (IRYN), there exists a right-hand forward solution
O :[0,T[— Qo(IRN) of the generalized mutational equation 5() > f(O(+),-) in [0, T
with O(0) = Oy.

Proof. Let O € Q(IRYN) have positive erosion of radius py > 0. Then Cor. A.6.5
ensures that the values of all Euler approximations [0,7] — Q(R") have uniform
positive erosion (with a lower bound p of the radius depending only on A, py, T).

So we conclude the existence of a solution O(-) : [0, T[— Q2(IRY) from Corollary 2.3.6
since (Q(RY),qqap) is two-sided sequentially compact (due to Cor. 4.2.5). O

4.4.4 Differential inclusions for (K(IRY), g )

The reachable sets of maps in LIP{" (]RN RY) (A > 0) induce forward transitions
on (QRY), Qcri(RY), gaps) as just shown in § 4.4.3 and, we can benefit from the
two-sided sequential compactness of (Q2(RY),ga) for any p >0 (due to Cor. 4.2.5).
This topological advantage is asking a high price : In general, the transitions are not of
order 0 any longer. Roughly speaking, this consequence is due to dispensing with the
detailed information on normals in Lemma 4.4.18, i.e. we cannot know in which directions
related boundary trajectories move (and the “worst case” of opposite directions leads to
the dependence on m(F(-), G(-))).

So we want to take more information on normal cones at the boundary into consideration.
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Adjoint arcs of trajectories provide a powerful tool for describing the evolution of the

limiting normal cones — in the sense of Prop. A.3.2. Since they refer to exterior normals,
we consider K(IRY) supplied with the quasi-metric gi y-.
Moreover standard hypothesis (#) implies that the corresponding Hamiltonian system
(of each trajectory and its adjoint) is an ordinary differential equation with Lipschitz
continuous right—-hand side and thus, its solutions are unique. So we prove in Cor. A.5.2
that smooth compact initial sets stay in Kcii(IRY) for a short time (at least) and
that their evolution is reversible in time within this period.

This leads to another class LIP{ (RN, IRN) of set—valued maps F : RN ~» IRY as

candidates for forward transitions on (K(RY), Kcri(RY), qc,v). In comparison with

LIP{ (RN, IRY), we dispense with the condition that every value has nonempty interior.
So the remark after Def. 4.4.15 is also correct for LIP (]RN), i.e. every set—valued map
F e LIP (IRN) is A-Lipschitz continuous with sup I|IF(-)|]| < A and fulfills standard

hypothesis ().

Definition 4.4.22 LIP (]RN RY) contains all maps F : RN ~ RN satisfying

1. F:IRY ~ RN has compact convex values,

2. Hp(,-) € CV(Bg x (Bg\ ZoBl )) for every radius R > 1,

Def

3. || Hrellcrmy < omy) ||HF||01 RVx o) + Lip DHp|rygom, < A.
Lemma 4.4.23  For every F € LIPVY(IRN, RYN) and K € K(RN), 0<s<t<T,

ae (Vr(s ), Up(LK)) < AT+ 2) - (t—3),

Proof. Obviously, the Pompeiu—Hausdorff distance satisfies for every s,t > 0
d(0p(s, K), Op(t,K)) < sup [F()lle - (E=5) < A(t—s).
IRN
Furthermore Prop. A.3.2 guarantees that for every 0 < s <t, z € 0Vp(t,K) and

p € Nopr)(x), there exist a trajectory z(-) € AC([s,t],IRY) and its adjoint arc
p(-) € AC([s,t], IRY) satisfying

p(r) € ¢co {— q ‘ (q,(7)) € OF HF(x(T),p(T))} for almost every 7,

p(r) - @(r) = max p(7)- F(x(r)) for almost every T,

p(T)] < A |p(7)] for almost every 7,
p(s) € Nopso)(a(s)), pt) = p,
z(s) € 00p(s, K), z(t) = .
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Due to standard hypothesis (H), each O0F Hp(x(7),p(7)) is single-valued and the
Hamiltonian system  (—p(7), ©(7)) = DHp(x(r),p(r)) (for every 7 € [s,t]) has
Lipschitz continuous right-hand side.  Correspondingly to earlier conclusions, |p| <1

implies that the projection of p on any cone is also contained in /B; and thus,

dist((z,p), Graph "Ny, ) < o —a(s)| + dist(p, Nopis,i(2(5)))

= Jo—a(9)| + dist(p, Noioo(@(s))

< le—a(s)| + lp—p(s)]

=0, (1 el + 15 HFD‘ ey U

< sw o (Ap()] + G <T>>||oo) (t=9)

< o ()\e’\t ) (t—s). D

Lemma 4.4.24 For every F € LIPE\H) (RN, IRN) and radius R > 1, the product
9 R?\ s a Lipschitz constant of the derivative DHp restricted to IR™ x (IBg\ IB%).

Proof  results from the fact that Hp(z,p) is positively homogenous with respect to p :
For every (z,p) € IRY x (IBg\ ]B%), we conclude from  Hp(z,p) = |p| Hp(z, £)

N
OHp(zp) b2 i .0 e
0p; - apy pl - Hr(e ’Ipl) + [pl Z apk Hrle To7) op; 7l
k;l
— b P . . _ DPjpk Ojk
= Heleg) + Il kZ o Ml ) ( P T \2\)
=1
- . Py _ P, 9 0
= B (e ) b & Heleg) + o Rl
So the Lipschitz constant of p —— % Hp(z,p) has the upper bound
Lip (0= 2) - (IMeleowvcomy + 1 1% Helloomn wom,

+1-Lip (p— L) (Lip Helmvsom,  + Lip (0= ) - ll55 Helloogmy<om,)
+ 1 - Lip %Hﬂmfvxal&)
+ Lip (p— &) Lip 5 Hrelwvwos,
< R [Hrllevmyxomy) + R (1+R) [|[DHp||comn < om,) + 2 R Lip %HFWNX@I&

R>1 )
< 3R HHFHCURNxalBl)-

AV

and x> 5 ’HF(:U p) has the Lipschitz constant < 3 ||DHp||cormyxom,) < 3 M.

Furthermore, E%}?‘(l‘,p) = |p| - %Hﬂ(“f’ﬁ) has the consequence

R>1
Lip (:r — M) < R-)\ Lip (p|—> M) < RA+R-AR < 2R2)A O

Ox;j Ox;j
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Lemma 4.4.25 Assume for F,G € LIPY (RN, RY), Ky, Ky € K(IRY) and T > 0
that all the sets 9p(t, K1) € K (IRY) (0 <t <T) have uniform positive reach.
Then, for every t € [0,T],

qx,N (19F(t> Ky), 9q(t, Kz)) <

< eAFtN <QIC,N(K17 K;) + 4Nt HHF—HGHCl(lRNX(?Bl))

with Ap = 9 | Hpllerimaxomy < 9€M A < oo.
Proof. Prop. 4.4.1 and Lemma A.2.4 provide the first estimate
d(0p(t K0, Vot o)) < d(KyK) - N+ sup d(F(),G()) - 25
RN
< d(Ky, K)o e o+ sup [He —Hel - eu{l

IRN x 8131

So we need an upper bound of - (Graph bN,gF(t,Kl), Graph bNgG(t,[Q)) and follow the
same track of adjoint arcs as in the proof of Lemma 4.4.9.

Choose z € 0V¢(t, K2), p € Ny,u,k,)(x) N OB, and § > 0 arbitrarily. According
to Prop. A.3.2 and standard hypothesis (#), there exist a trajectory z(-) € C'([0, ¢], RY)
of G and its adjoint arc p(-) € C*([0,¢], RY) with

©(-) = g Halz(), p() € Gla(), p() = — 5 Halz(-), p(+))
2(0) € 0Ky, p(0) € Ni,(2(0)),
a(t) = w, p(t) = p,
) < X Ip()l.
| <

Gronwall’s Lemma 1.5.1 guarantees 0 <e *' < |p(:) At and thus,

p(0) e € "Ni, (2(0)) \ {0}-

Now let (yo,q) denote an element of Graph ’Ny, with G # 0 and

(o) — ((0), p(0) )

Assuming that all the sets Jg(s, K1) € K(IRY) (s € [0,¢]) have uniform positive reach

< e (Graph ’Ng,, Graph bNK2> + 0.

implies the reversibility in time according to Prop. A.5.1 :
RN \ K1 - 19_F(t, RN \ 19F(t, Kl))
So in particular, yo is a boundary point of RY\ K = U_p(t, RN\ Vp(t,K;)) and

— Qo belongs to its limiting normal cone at yy. As a consequence of Prop. A.3.2 again,

there exist a trajectory y(-) € AC([0,t], RY) of — F and its adjoint arc g(-) satisfying

L90) € ~F@L), 4@ € @ {~q|(@ $70) € O H (7))}
9(0) € 99p(t, K), 7(0) € Ngvgramy (400),
7 = v, a0 = —@ & # 0,
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Due to Up(t, K1) € Kerai(IRY), —q(0) is contained in the normal cone of ¥p(t, K;)
at 7(0) consisting of exactly one direction. Moreover, H_ p(z,v) = Hp(z, —v) for all z, v
and standard hypothesis (H) ensure H_p € CH(RY x (RN \ {0})).

So q(s) := —q(t—s) # 0 is the adjoint arc of the trajectory y(s) := y(t—s) of F and,
9() = EHry(), a(), i) = —5 MHry(), a())
y(0) = o, q(0) = q ',
y(t) € 09r(t, K1), q(t) € Nopr)(y(1))

According to Lemma 4.4.24, the derivative of H, is Ap—Lipschitz continuous on
RN x (B \ B.-xr). Thus. the Theorem of Cauchy—Lipschitz leads to

dist((a:,p), Graph bNﬂp(t,Kl))
dist((:v,p), Graph Nﬂp(t,Kl))
< @ - wo, «w)

et (@(0), p(0)) = (w0, @ )

VAN

+ eAi\% sup |DHp — DHg|
0<s<t

((s), p(s))

Hyr and H are positively homogenous with respect to the second argument and thus,

o (e = Hol . uen| < O] | e = Holl ), 20|
S €>‘t ||DHF —DHG||CO(RN><8B1)7

5 ol

@ (HF _ HG)|($(S),[)(S)) S ‘(HF - HG)|(1‘(S), 5%:3)‘ + 2 ‘% (HF - HG)|(13(S): |ZE§§|)
< 2 ||Hr —Hellormy xom,)-

So we obtain
dist((:r,p), Graph b.7\7751F(::,K1))
< BN (2(0), p(0) e — (yo, Go)

and, since 6 > 0 is arbitrarily small and |p| =1,

+ Ml AN M |Hp — Hallormy xom)

e (Graph b]\7191,1(1,1(1); Graph b]Vi%:(t,Kz))

< e L {@D (Graph 'Ny,, Graph bNKQ) + 4Nt - ||HF—HG||CI(RNX3131)}.
O

Remark. The extended Hamilton condition (in Prop. A.3.1) is our (only) tool for
identifying boundary trajectories in forward time direction and, the adjoint arc is an
essential part of that proposition. For this reason we cannot adapt the preceding notions
to the ostensible metric go . on Q(RY) directly since adjoint arcs describe the exterior

normals.
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Proposition 4.4.26 For every A > 0, the reachable sets of the set—valued maps in
LIPS\H) (RN, RN) induce forward transitions (of order 0) on (K(RY), Kcii(IRY), qc.n)
with a” (W) =10 A

B ) = A (H+2) -t
Q7 Wr, V) < 4N |[[Hr—Hellormy<om,) -

Proof. The semigroup property of reachable sets implies again
drc,N 19F(h7 19F(t7 K)), 79F(t+h’7 K) = 0,
q/C,N 19F(t+h7 K)J ﬁF(ha 19F(t7 K)) = 0

forall F ¢ LIP&H)(IRN,IRN), K € K(IRY), h,t >0 since gcn is a quasi-metric.
According to Prop. A.4.4, every set—valued map F € LIPE\H) (RN, R") and initial set
K, € Kcii(IRY) lead to a time To(Jp, K1) > 0 and a radius p > 0 such that
Ip(t, K1) € Keui(IRY) has radius of curvature > p for any t € [0, To (9, K1)].

So Lemma 4.4.25 guarantees for all K; € K¢ (IRY), K, € K(IRY)

+
lim sup axcn (9p(h, K1), 9p(h, K3)) — axcn (K1, K2)
h10 h QIC,N(Kl,Kz)

< limsup %<e(98””“)'h - 1) = 10N 2 a7 Wp)
hl0

and for every F,G € LIP&%) (RN, IRN)

10 AR\ T
Q7 (Wp,0q) = sup lim sup (q’C,N(”F(hyKl)’”G(th)]z ae,n (K1, K2) - e )
Ky €K1 (RN)  hl0
Ky € K(RN)
20h
< sup lim sup <QIC,N(K1;K2) % (6(96 )\+)\)-h B elOAh)
Ky elCCl,l(RN) hl0
Ko € K(RN)

+ AN - |[He — Hellormy xom,) - J9e A5 .h)
_ 4N - |[He — Hallermy x om,)-

Moreover Lemma 4.4.23 states q.N (19F(s, K), 9p(t, K)) < Aer+2) - (t—s)
forany 0 <s<t<1 and K € K(IRY).

Finally we have to show for all F € LIP(Y (RN, RY), K, € Keui (IRY), Ky € K(IRY)
and 0 <t < To(Vp, K1)

fimsup g (et = b, K2, Ka) 2 g (O0(t Ko, K).
0

Choosing K € K1 (IRY) arbitrarily, Prop. A.5.1 ensures the reversibility in time in
the interval [0, To(9p, K1)[, i.e. forevery 0 <h <t < To(Ip, K1)

RN\ﬁF(t—h,Kl) - ﬁ_F(h, ]RN\19F(t,K1)) € Qoui (RN).
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Due to standard hypothesis (#), the flow of the Hamiltonian system even induces a Lip-

schitz homeomorphism between Graph Ny.—nk,) and Graph Ny.qk,) since each

limiting normal cone contains exactly one direction and Ny (¢,x,)(-) = —Ngzg,mzyy (-
Thus, Graph Ny, k,) = Limp o Graph Ny,—pk,) and finally

. (19F(t, K1), Op(t—h, K1)> 0 for h 1 0.
So the last claim results from the triangle inequality. O

Finally we use standard hypothesis (H?) for guaranteeing the transitional compactness :

Definition 4.4.27 For any A >0 and p >0, the set LIPg\Hg)(IRN, IRN) consists
of all set-valued maps F : RN ~» IRN

1. F: RN~ RN has compact conver values in KP(IRN).

2. Hp(-,-) € C*(Bg x (Bg\ Ii?%)) for every radius R > 1,

8. | Helleramyx omy = | Hellormyx omy + LiD DHelgyxom, < A
Remark. LIP&%)(RN, RY) is a subset of LIP{™ (RN, RY) and its maps fulfill
standard hypothesis (H?) (see Definition A.7.1). In particular, they make points evolve

into sets of positive erosion according to Proposition A.7.2.

Proposition 4.4.28

For any X\, p >0, consider the maps F € LIP&HQ’)(RN, IRN) (i.e. their reachable sets,

strictly speaking) as forward transitions of order 0 on (K(IRY), Kcii(IRY), qc.n)-
Then Ko(IRYN) is transitionally compact in <IC(]RN), qi,N LIP&H/;)(]RN,]RN)>

in the following sense (see Definition 2.3.4) :

Let (Kp)new, (hj)jen be sequences in Ko(IRYN) and 10,1[, respectively with h; | 0,

sup, qcn(Bi,K,) < oo. Suppose each G, : [0,1] — LIPE\%/;)(]RN,]RN) to be

piecewise constant (n € IN) and set

Gy [0,1] x RN ~ RN (t,2) — G,(t)(x),
K, (h) = 9z (h, Ky) for h > 0.
Then there exist a sequence ny, /oo of indices and K € K(IRN) satisfying
limsup g v (K, (0), K) = 0,

k—

limsup  sup  gen(K, K, (hj) = 0.

j—>o00 k>j
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Proof. (K(IRN), gx.n) is one-sided sequentially compact according to Lemma 4.1.8.
So considering a subsequence (again denoted by) (K,),emn leads to the existence of
aset K€ K(RY) with g¢eny(K,,K)—0 (n— 00).

In particular, this convergence implies d(K,, K) — 0 and thus,
d(K,K,(h) < d(K,K,) +\Xh — Ah  for n — oo.
< K ()
Now we want to prove that K satisfies the claim by choosing subsequences of (k)
for countably many times (and applying the Cantor diagonal construction).
An important tool here is Prop. A.7.2. It ensures the existence of o = o(A, p, K) > 0
and = /l\z()\, p,K) €]0,1] such that ¢ g ,, . (h, 2) has positive erosion of radius
oh for every h €]0,h] and z € IB;(K). In the following, we assume without loss of
generality 0 < hj <h and K,(h) C By(K) forall jne€ N, he[0,h]

So the asymptotic properties of e~ (Graph "N, Graph b]\/'Kn(h)) (n — 00)
have to be investigated for each h € ]0,71].
Due to Def. 4.1.4, every limiting normal cone results from the neighboring proximal
normal cones, i.e. N¢(x) = Limsupyy?oz N[ (y) for all nonempty C C RN, x € 9C.

Thus, Graph N¢ = Graph NI and from now on, we confine our considerations to
2 (Graph "Ny, Graph bN;;n(h)) for any h E]O,Tl].

The intersection P,, = K, N 9U_ én(hf-,-)(l% 0 K,,(h))
is a subset of 0K,.

More precisely, it consists of all points x € K, such that a
trajectory of G,, starts in & and reaches 8 K, (h) at time h.
In addition, every boundary point y of K, (h) is attained

by such a trajectory.

Taking now adjoint arcs into account, the Hamiltonian
7 ») system in Prop. A.3.2 (1.) provides the following estimate
for every n € IN (similarly to Lemma 4.4.23)

e (Graph "N,

b Graph NE () < const(d) - h.

Furthermore, N;VT (x) # 0 forall x € 0K, due to K, € K,(IRY) and § 4.3.
In particular, Ng () # 0 forall x € P, because ¥ g , . (h, 9 K,(h))

has positive erosion of radius o h (due to Prop. A.7.2) and

Ko 0 (9 gy 2Ku(R)) = 0.
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So, NHI;NT (£) = —NE (x) contain exactly one direction for every point = € P,

according to [24, Clarke,Ledyaev,Stern 97|, Lemma 6.4.
The positive erosion of K, implies that RN \ K, has positive reach due to Cor. 4.3.3

and thus, N;’Ni\m (x) = Npwi, (x) = Nl?{Ni\Kn (x) are containing exactly one direction
(with N§,(z) denoting the Clarke normal cone of M C IRY at x). As a consequence
of a well-known result in [23, Clarke 83], we obtain that Nf (z) = — NHC{NT (z)

consist of exactly one direction for all « € P, andso, Ng (z) = Ng,(z) = N§ ().
In addition, the proximal radius of K, at each x € P, (in its unique proximal direction)

is > oh >0 because ¥ g, . (h, 0K,(h)) has positive erosion of radius o h.

-~

Now we conclude from the last property that for every h € )0, A,
e <Graph "Nk, Graph be;n‘ Pnh) — 0 (n — 00).
Indeed, assume that there exist § > 0 and sequences ny 00, (xy)ren satisfying
T € Pnk,h C aKnk,

dist({xk} x "N, (), Graph bNK) > .
Nk € N};nk () N OB, is unique for each k and, K,, N Byp(xg+oh-n) = {xg}.
Considering subsequences (again denoted by) (ng)remw, (Tk)ken, (Mk)rkemnw leads to
re K and ne RN with zp —x, n,—n (k— 00).
Then K,, C RN\ B,y(zy+0oh-ng) (foreach k) and K = Lim, ,o, K, imply

K C¢ RN\ Byn(z+0oh-n),

ie. ne€ NE(x) - contradicting the initial assumption with .

As a consequence, we obtain the estimate for every h € ]0,71],

limsup e” (Graph "Ny, Graph bN};n(h)> < const(\) - h.

n—s 00
For proving transitional compactness of Ko, (IRY) in (K(RY), gk, LIPE\%/;)(]RN,]RN)),
a monotone sequence (h;);en in 10, 2] with h; — 0 is given.

Applying the Cantor diagonal construction once more, we obtain a subsequence (again
denoted by) (K, )ren satistying for every j € IN, k> j

e (Graph "Ny, Graph be;nk(hj)) < const(A) - h; + L,

and thus, limsup sup gqxn(K, K, (hj)) = 0

Jj—>00 k>j
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Corollary 4.4.29 Let f:K(RN)x|[0,T] — LIPE\H/;)(]RN,]RN) satisfy

HHf(Kl,tl) - Hf(KZ’tZ)Hcl(RNX(?Bl) < w(q’C,N(KlaK2) + t _tl)
for all K\, Ky € K(RY) and 0 <t <ty <T with a modulus w(-) of continuity

and consider the reachable sets of maps in LIPg\Hg)(IRN, IRY) as forward transitions on
(K(RN), Kcra(IRY), gen)  according to Proposition 4.4.26.

Then for every initial set Ky, € K(IRN), there exists a right-hand forward solution
K :[0,T[— K(IRN) of the generalized mutational equation ]O(() > f(K(-),:) with

Proof  results from Prop. 4.4.28 along with Prop. 2.3.5 and the remark after its proof.

4.5 Mild solutions of semilinear equations

in reflexive Banach spaces

In the field of evolution equations, C° semigroups play a central role. Properly speaking,
a family (S(¢))¢>0 of bounded linear operators on a Banach space X is called a strongly
continuous (one-parameter) semigroup or C° semigroup if it satisfies
A{ S(ti+t) = S(t)oS(t)
S0) = Idyx

for all t;,to >0 andif [0,00]— X, t+—— S(¢t)z is continuous for each =z € X
(see e.g. [51, Pazy 83|, [34, Engel,Nagel 2000]).

This condition of continuity prevents us from applying mutational equations to
examples of C° semigroups directly. Indeed, they are not uniformly continuous with
respect to |- |y in general. So the weak topology is to overcome this obstacle, i.e.

we consider the pseudo-metrics (z,y) — [(z — y,v")| (v € X').

General assumptions for § 4.5.
1. X is a reflexive Banach space.
2. The linear operator A generates a C° semigroup (S(t));>o on X
with [|S(?)cx,x) < 7-€"t forall t>0.
3. The dual operator A" of A has a countable family of eigenvectors {/U;-}jej

(|U;-|X' = 1) spanning the dual space X', ie. X' = Z JRU;- .
jeTJ

Aj abbreviates the eigenvalue of A’ belonging to the eigenvector v’.
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Example 4.5.1 1. Consider a normal compact operator A : H — H on a
separable Hilbert space H generating a C” semigroup (S(t));>o.
Then there exists a countable orthonormal system (e;);ez of eigenvectors of A satisfying
H = kerAeam (see e.g. [66, Werner 2002, Th. VI.3.2). Since H is separable,
(€i)iez induces a countable orthonormal basis (e;); .7 of H with Ae;=0 for all i € I\T.
In fact, each e; (i € f) is also eigenvector of A’ corresponding to the complex conjugate
eigenvalue because A is normal (see [66, Werner 2002], Lemma VI.3.1, for example).
So the general assumptions of this section are satisfied.

Symmetric integral operators of Hilbert—Schmidt type provide typical examples of A:
H = L[*0) with O Cc RN open, nonempty,

k(--) € L*(O x0) with k(z,y) = k(y,z) for all z,y,
Au = / k(- y) u(y) dy for we L*0).
o
Then A :L*(O) — L*(O) is symmetric and compact (see [68, Yosida 78], chapter X,

§ 2, example 2). Furthermore it generates even a uniformly continuous semigroup
because A is bounded : ||A| < ||k(-,-)||l20x0)-

2. An example of more general interest is the generator A: Dy — H (D4 C H)
of a C° semigroup (S(¢));>0 on a Hilbert space H — assuming that the resolvent
R(X\o,A) == (M\o-Idyg — A)™': H — H is compact and normal for some .

For the same reasons as before, there exists a countable orthonormal system (e;);ez of
eigenvectors of R(Ag, A) satisfying H = ker R(\g, A) & >, ; IR e;. The resolvent
R(Xo, A) is injective (by definition) and so, H = m

R(XNo, A) e; = p;-e; implies p; # 0 and that e; is eigenvector of A corresponding
to the eigenvalue A\ — uL since  (Ag—A)e; = (Np—A)- ui RN\, A) e; = uL €.
This case opens the door for considering strongly elliptic differential operators in

divergence form with smooth (time-independent) coefficients, for example.

Definition 4.5.2
1. Forevery j € J, define the pseudo-metric — q;(v,y) = [(x —y, vj)| on X.

2. Foreach v € X, the function 7,:[0,1] x X — X is defined as

ro(hz) == S(h)z + /Oh S(h—s) v ds.
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Remark. In the literature about C° semigroups, 7,(-,z) : [0,1] — X is called
mild solution of the initial value problem Lou(t) = Au(t) + v, u(0) =z € X
(see [b1, Pazy 83|, Definition 4.2.3 and [34, Engel,Nagel 2000], for example). It is even

continuously differentiable since the inhomogeneous term v does not depend on ¢. O

Proposition 4.5.3  For v € X fized, the function 7, :[0,1] x X — X satisfies the
following conditions on forward transitions of order 0 on (X, X, (¢;)jes) (see Def. 2.1.1) :

1. TU(O, ) - Idx,

2 qi(nlh nlt o), nlt+ha) = 0 = gn+ha), nh nt)
forall € X, t,hel0,1] with t+h<1,

_I_
5 sup  limsup <qj(n(h,x),n(h,y>)—qj(a:,y>> <yl

oy € X h10 b qj(,y)
g; (z,y) #0

Moreover for every radius R > 0 and index j € J, there is a modulus w;(-) of continuity

(depending only on A and wvj) such that for all ty, ty € [0,1], z € X (Jz] < R),
0 (naltr,2), Tlts0)) < R - willts - ).
Finally, the functions 7,, T, :[0,1] x X — X related to v,w € X respectively fulfill

N
Q7 (1y,7w) = sup limsup (qi(Tv(h@)’Tw(h:y))‘Ij(x’y)'y]lh)
v w -

7 wy€X K]0 "

< gj(v,w).

In preparation of the proof, we summarize the essential tools about C° semigroups.
The first lemma bridges the gap between the semigroup operators and their dual counter-

parts. It is the first of two reasons for assuming the Banach space X to be reflexive.

,.
J

operator S(t)" (¢ > 0) belonging to the eigenvalue e

(j € J) is eigenvector of every dual
Aj t.

Afterwards Lemma 4.5.5 implies that each wv

Lemma 4.5.4
Let (S(t))is0 be a C° semigroup on a reflexive Banach space with generator A.
Then the dual operators S(t)' (t > 0) provide a C° semigroup on the dual space and

its generator is the dual operator A'.

Proof is given in [51, Pazy 83], Cor. 1.10.6 and [34, Engel,Nagel 2000], Prop. 1.5.14. O

Lemma 4.5.5  The eigenspaces of the generator A and of the C° semigroup operators
S(t) (t>0), respectively, fulfill for every complex u
ker (u—A) = ﬂ ker (e’ —S(t)).
t>0

Proof  is presented in detail in [34, Engel,Nagel 2000], Corollary IV.3.8. O
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Proof of Prop. 4.5.3.  The first assertion results directly from the definition of 7, and,

the second claim is a consequence of the semigroup property 7,(h, 7,(t,z)) = 7,(t+h, x).

Furthermore we obtain for every x, y € X and h € [0,1] with g¢;(z,y) #0

o (n(he), nhy) = gl
< [(Sma=sty | — [w=y v
< [{e—y, SO - [(x-y o)
< Na-y,  (SB) =) o))

and thus,  limsup 200relo)) 206 < oy Ay | < N (=g, o))
R10

since v} is assumed to be eigenvector of A’. So the third claim is satisfied, i.e.

+
su lim su 6; (7o (hy2), 70 (h9)) — 4 () < Al
vy er h10 P < hoaoy) = Wl
4 () #0

The claimed continuity of 7,(-,z) : [0,1] — X (z € X,|z| < R) results from the
strong continuity of (S(¢)')i>0 (according to Lemma 4.5.4).
Indeed, for every ti, to € [0,1] and z € X with |z| < R,

qj(S(tl) z, S(ts) x) < [(S(ta) w — S(t) z, o))
< |z, (S(t2) =St
< R [(S(t) = St

Finally we prove Q7 (7,,7) < |[v—w| for arbitrary v, w € X,
Indeed, the definition of 7,, 7, and Lemma 4.5.5 provide for every x, y € X and h €]0, 1]

4 (n(ha), mulhw)) = |(S(h) (@~ y) / S(h w) ds, 25|

< -y SGrwl + /0 (v —w, Sh=s)'v))| ds
h
< |z —y, )| eNIP + (v —w, V)] - ol (h=9) g4
0
. elk'lh—
< gz,y) et gj(v, w) . JlAj\ 1
< (qj(x,y) + gj(v,w) h) . elAilh

and thus,

+

ef. . i\ 7o (hyx), Tw(h, —qi(z,y) - [Xjlh

Q?(Tv;Tw) D: SUEPX hrilis(}lp <‘I](7'( ), Tw y)h) gj(zy) -e ) S qJ(U,w)
T,y

|
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As a direct consequence of this proposition, we get ¢;(7,(t — h,z), y) — ¢;(7,(t, ), v)
for A |0 and all z,y,t. So there is only one reason why 7, is not a forward transition
on (X, X, (¢g)jers) in the strict sense of Definition 2.1.1 :

Considering 7,(-,z) : [0,1] — X, the modulus of continuity can be chosen uniformly
only for all z € By C X (with any finite radius R), but not for all z € X in general.
This gap does not really prevent us from applying the results of chapter 2. Indeed,
for concluding the existence of right-hand forward solutions from two-sided sequential
compactness, we only need the uniform continuity of Euler approximations in positive
time direction. (It has already been mentioned in remark (1.) after proving Prop. 2.3.5.)
This property results directly from the preceding Proposition 4.5.3 and the following

a priori estimate.

Lemma 4.5.6  For every g € L>([0,T],X) and xy € X with |zo| < R, the function
h
€:[0,T] — X, t+— S(h)zy + / S(h—s) g(s) ds
0

has the upper bound I€llze < R -7 €T + ||gllee - 7 e"Tn—1' 0

Assuming X to be reflexive has the second advantage that the compactness properties

of (X, (gj)jes) are quite obvious.

Lemma 4.5.7 (X, (gj)jes) 1is one-sided sequentially compact (uniformly with
respect to j), i.e. for every sequence (xy)nen tn X with sup, ¢;(0,z,) < oo (for all j),
there exist a subsequence (xpn, )rew oand v € X satisfying qj(an,,r) — 0 (kK — 00).

So (X, (gj)jeq) is also two—sided sequentially compact (uniformly with respect to j)

since each q; 1is symmetric.

Proof. The general assumption X' = Z Rv} of this section guarantees
JjeET
that (¢;)jes induces the weak topology of the Banach space X. Due to the well-known

theorem of uniform boundedness, sup,, ¢;(0,z,) < oo (for all j) implies that (x,)nen
is bounded in X.

So there exist a subsequence (xp, )geny converging weakly to some x € X for k — oo
because closed balls of reflexive Banach spaces are always weakly sequentially compact.

Thus, gj(zn,, ) = [(Tn, —2, V})| — 0 for k — 00 and all j € J. O
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Now we conclude the existence of right-hand forward solutions from the results of § 2.3.2.
In the next proposition, the assumptions about f might be regarded as unfavorable.
Indeed we suppose the continuity with respect to each linear form v} (j € J) separately

in a Banach space X of possibly infinite dimension.

Proposition 4.5.8 In addition to the general assumptions about X, A, S(-) of this
section 4.5, let f:X x[0,7] — X satisfy ||f|lo~ < oo and for each j € J,

q; (f(ﬂﬁhtl), f(x2,t2)> < wj <Qj($1,332) + |t2 — t1|> for all x1,x9, t1,ts

with a modulus w;(-) of continuity.

Then for every initial vector xy € X, there exists a right-hand forward solution
2(-) : [0,T[ — X of the generalized mutational equation () > Tia(y,) i [0,T]
with z(0) =x¢ e foreachje J, z(-) e UCT(]0,T], X, ¢;) and

lir}rzlisup %(Qj(Tf(a:(t),t) (h,y), x(t—l—h)) = 4y, z(?)) - eW'h) = 0
0

holds for all y € X, t €[0,17.
Supposing g; (f(wl,tl); f($2,t2)) < Ly qi(x, 20) + Wity — t1) for all w1, 29,11,1, ]
with L; > 0 and a modulus W;(-) of continuity, this solution is unique.

Proof  results directly from Corollary 2.3.6 since (X, (g;)jes) is two-sided sequentially
compact (according to Lemma 4.5.7). If in addition, f 1is Lipschitz continuous
with respect to the first argument, the uniqueness is a consequence of Prop. 2.3.8

because the “test set” is X and each ¢; is symmetric. O

For overcoming this obstacle (of continuity with respect to each v separately),
several pseudo-metrics ¢; (j € J) are considered simultaneously. To be more precise,

we replace the family ¢; (j € J = {j1,J2,J3 -..}) with the pseudo-metrics p, on X

n

L —k qjk(x7y) n
ooz, y) = ];1 2 T+ 6@ (n € IN).

Reflexivity and symmetry of p, are obvious and, the triangle inequality results from
the auxiliary function [0,00[ — [0,1], 7+ ;&= being increasing and concave.

The key advantage of (p,)nen is that we can take finitely many ¢; into consideration
and estimate the rest uniformly.  So in short, the existence results of § 2.3.2 hold

with the parameter R. > 0 arbitrarily small.
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Lemma 4.5.9 For v € X fized, the function T, :[0,1] x X — X satisfies the

following conditions on forward transitions of positive order on (X, X, (pn)nen)
1. Tv(o, ) = Idx,

2. pn(Tv(h, T,(t, z)), Tv(t+h,x)> = 0 = pn<7'v(t+h,x), 7, (h, Tv(t,l’)))
forall e X, t,hel0,1] with t+h<1,

+
3. sup lim sup <pn (Tv (haxlzy Ty (ha(g)))_ pn(%?J)) S L -
oy €X hi0 PnT,Y
pn(z,y) #0
with the abbreviation i, = Juax I\ |-

Moreover for every radius R > 0 and indexn € IN, there is a modulus wy(-) of continuity

(depending only on A and n) such that for all ti, to € [0,1], x € X (|z] < R),

pn(TU(tlal‘), Tu(tg,l‘)) S R - wn(|t2 _t1|)
Toy Tw : [0,1] X X — X related to v,w € X respectively satisfy
+
<pn (T’U(h;x)y Tw(h,y)) — pa(z,y) - ek h>
h

Def. .
P (7y,7w) = sup limsup
zyeX  hl0
n

< Z 27F 4jy, (an) < |U o w| :
k=1

Proof results from Proposition 4.5.3 about forward transitions on (X, X, (¢;)jer)

because the auxiliary function [0,00[ — [0,1], r — 5 is increasing and concave.

Indeed, assertions (1.), (2.) are obvious. Moreover we obtain for all x,y € X, h € [0,1]

pu(ro(hy2), (1)) ~ pula,y)
< —k ( 51 (TU (hrl‘)’ Tv (h’y)) _ 951 (737 y) )
- ];- 2 1+ qjk (T’U(h’x)y T’U(hay)) L+ q]k (I’y)
n N; | h
—k g, (2,y) eIk g (wy) )
S kz 2 ( 1+ ij(w,y) EIAjk\ h 1 +qjk(a:,y)
=1
n
—k gj, (x,y) ern g (=) )
S Z 2 ( I+ 4y, (z,y) ern h 1+ 95y (z,y)
k=1
= Z 2—k ‘Ijk(way) etn (1 +‘Ijk(737y)) -1- ‘Ijk(way) etn
1+ gj (2,9) 1+ gj, (z,y) ernh
k=1
—k ‘Ijk(xay) ebnh _ g
< Z 2 1+, (@y)  1+qj(zy) enh
k=1
< P, y) T

The claimed continuity results directly from the corresponding property with respect to

q; stated in Proposition 4.5.3.
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Finally, the triangle inequality of the concave function [0,00[ — [0,1], r —— &

implies for every v,w € X, z,y € X and h € [0, 1],

n

Pn (Tv (h; x)a Tw (h; y)) DZEL Z 2_k Gik (Tv(h’$)7 Tw(h,y))

1+ gj,, (TU (h,x), Tw (h,y))

kil
Z 9~k (434, (@9) + 435, (vsw) h) ern ™

S 1+(‘Zj (z,y) + q; (Uw)h) ekn h
k=1 LA A
n
—k gy, (z,y) ern” gj, (v,w) b ern
= Z 2 <1+qjk(x,y) ekn b T 1 + gj (vyw) b etn h
k=1
n
(s ent 3, (v0) bt
= Z 2 < 1+ gj, (@,9) 1+ gj, (v,w) h ernh
- - (v,w)
n h —k qj, \V, W nh
S pn(x7y) e - Z 2 1+ ijj(]z),w)h esn h h et
k=1
and thus,
+
> Def. . Pn (Tv(h,li), Tw(h,y)) — pu(myy) -etn
Py (1y,7w) = sup limsup -
T,yeX hl0
n
. —k G (v,w) i b
< hrilfoup 270 o Gy e €
k=1
n
—k
= > 27 g w)
k=1
< lv — wl.

Proposition 4.5.10  In addition to the general assumptions about X, A, S(-) of § 4.5,
let f:Xx[0,T] — X fulfill ||f|lLe <oo and

Z 27+ (]jk<f($1;t1); f($2;t2)> < @(limsup Pu(21,%2) + |t2—t1|)
k=1

n — 00
for all x1,29 € X and t1,t, € [0,T] with a modulus O(-) of continuity.
For each xy € X, there exists a mild solution x : [0, T[— X of the initial value problem

/\{ La(t) = Ax(t) + fla(t),t)
z(0) =

i.e. z(t) = S(t) xo +/0 S(t—s) f(z(s), s) ds.

Remark. Considering the continuity assumption about f, the series is finite due to

|fll= < oo and, it is an upper bound of  p,(f(x1,t1), f(z2,t2)) for every n € IN.



214 CHAPTER 4. EXAMPLES : SUBSETS OF RN & C° SEMIGROUPS

The main steps for proving this proposition are summarized in the following lemmas.
The existence results of chapter 2 provide a forward solution z(-) : [0,7] — (X, (pn)n)
of the generalized mutational equation = () 2 Tr@(), -
Restricting ourselves to the linear forms v} (j € J), x(-) can be regarded a weak solution
of the initial value problem. Then Lemma 4.5.12 of John M. Ball ensures the existence
of a unique weak solution (with respect to all linear forms of X’) and it is even a mild

solution.

Lemma 4.5.11 Suppose the assumptions of Proposition 4.5.10.

Then for every initial vector xy € X, there exists a right-hand forward solution
2(-) [0, T[— (X, (pn)n) of the generalized mutational equation () 3 T(a(),) @ [0, T
with x(0) =xy  in the sense that for each n € IN, x(-) € UCT([0,T], X, p,) and

limsup limsup %(pn<7—f(x(t),t) (h,y), :r(t—i—h)) — paly, z(t)) - eunh) < 0,

n —> 00 hlO

holds for all y € X, t € [0,T].

In particular, x(-) has the following properties :

1. limsup ; -pn<7'f(x(t),t) (h,x(t)), x(t+h)) = 0 forevery t€[0, 7], n€ IN.
hi0

2. x(-) is bounded in X.

g [0,T] — X, t=—(f(z(t), 1), v;) is continuous for every j € J.

4 fz(),-) € L=([0, T, X).

5 10,T[ — IR, t+—— (x(t), vj) is continuously differentiable for each j € J,
4 (a(t). ) = (alt), A'e}) + (f(al0)0), v)).

Proof is based on Corollary 2.3.6 (about existence due to sequential compactness).
Indeed, the sequence (p,)nenwy of pseudo-metrics induces the weak topology on the
reflexive Banach space X. So X is weakly sequentially compact and thus, (X, (pn)nen)

is two—sided sequentially compact (uniformly with respect to n).

Choosing ¢ > 0 arbitrarily small, there is M € IN with Z 2% >1-6 forall n > M.
k=1
So, pn(x1,72) < limsup pp(r1,22) < pu(a1,22) +6 forevery n> M, xy,0, € X

k— o0
and in particular, Dn (f(:rl,tl), [ (22, tg)) < &5(5 + pu(z1,29) + |to — t1|).
Now the steps of Corollary 2.3.6 provide a right-hand forward solution
xT: [OaT[ — (Xa (pn)nZM)
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in the sense that x(-) € UCT([0,1], X, p,) and forall ye X, t€[0,T], n> M,

limsup (pn<7'f(x(t),t) (h,y), x(t+h)) — puly, x(t)) - e“"h) < const - ©(9).
hi0

Since 0 > 0 is arbitrarily small, we conclude for every vector y € X, time ¢ € [0,7]

limsup limsup (Pn(Tf(w(t),t) (n,y), x(t+h)> — paly, z(t)) - e“"”) — 0

n—>00 hlO0

(In short, we have just applied Cor. 2.3.6 with its parameter R. > 0 arbitrarily small.)

1. Setting y := x(t), weget lim limsup +-p, (Tf(x(t)’t) (h,x(t)), :r(t—l—h)) = 0.

7L —> 00 h¢0
Obviously, the definition of p, implies p,_; < p, for allm € IN and so the claimed
property (1.) holds true for every ¢ € [0,7] and n € IN.

2. () isbounded in X, ie. [|z|L~ < oo.
Indeed, the proof of existence (in § 2.3.2) uses Euler approximations z,(-) that are
uniformly bounded according to Lemma 4.5.6. Moreover for each time t € ]0,7[, a
subsequence of (x,(t)),cn converges weakly to z(t) and thus, |z(¢)| < limsup |z,(t)].

n—-aoQ

3. The function [0,7[— X, t+—— (f(x(t),t), vj) is continuous for each j € J.

Indeed, for any 6 > 0, there exists an index M with Z 27F>1-6§ foralln> M.
k=1

So, > 2% g, (f(a(s),8), f@(®),0) < B(6+pala(s) x(t) + |t —s]) for all st
k=1
Fixing some n > M, xz(-) € UC7([0,T], X, p,) and the symmetry of p, provide
9 qjk<f(:r(5),5), f(x(t),t)) < ©(28)  for any small |t —s| and all k.

4. {f(z(-),-), vy € LY([0,T[, IR) for every linear form v' € X' results from the
general assumption that (v});es is spanning the dual space X',
Indeed, for every ¢ €]0,1], there is a finite linear combination w' of (v});ecs satisfying
||v/ — w'||x» < 6. As a consequence of the preceding property (3.), [0,7] — IR,
t— (f(z(-),-), w') is continuous. Furthermore it is bounded by (||v'||x + 1) ||.f]|z~-
Thus, the Convergence Theorem of Lebesgue guarantees (f(z(+),-), v') € L'([0,T], IR).
Now we conclude f(z(+),-) € L*([0,T[, X) from the Measurability Theorem of Pettis
and the assumption ||f||z~ < co. Indeed, f(z(-),:) is weakly Lebesgue-measurable.
Moreover, the Banach space X is separable since its dual space X' is supposed to be
separable (see e.g. [68, Yosida 78], Appendix of chapter V, § 4).
So  f(z(),) : [0,7] — X is (strongly) Lebesgue—measurable due to the Theorem
of Pettis (stated and proven in [68, Yosida 78], chapter V, § 4, for example).
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5. Defining p, by means of (g;);es leads to z(-) € UCT([0,T],X,¢;) and

hrilfoup % ‘<Tf($(t)7t) (h, x(t)) — z(t+h), v}>‘ =0
for every time t € [0,7] and index j € J. Thus,
lim sup ‘<Tf(w(t),t) (h,z(t) - a(®) _a(th) —z(t) U’->‘ —_—
B0 D h Y
.. T (x(t),t) (h,l‘(t)) — l‘(t) .
Due to Def. 4.5.2 of (1)) (h, ), the limit of - for h | 0 exists and,
: T () —at)
im h = Ad) o+ S
So we obtain }zii% <M, v3> = (Ax(t) +  fz(t),1), o)
= (z(t), A'v)) + (f(z(t).1), v5)
= A (z(t), vj) + (f(z(t),1), v5)
and, the right—hand side is continuous with respect to t — as a consequence of

property (3.) and () € UCT([0,T],X,q;). These two properties guarantee that
10,T[ — IR, t+—— (x(t), vj) is continuously differentiable for every j € J (see e.g.

[51, Pazy 83], Corollary 2.1.2). O

The following lemma provides existence and uniqueness of a weak solution z(-) of
W) @A) = Azl) £ fa0).0)
2(0) = m
because in this section, A has been supposed to be the infinitesimal generator of the
C? semigroup (S(t));>o. Furthermore this weak solution is even a mild solution. Then

the proof of Proposition 4.5.10 is based on the uniqueness of z(-).

Lemma 4.5.12 ([8, Ball 77)) Let A be a densely defined closed linear operator on
a real or complexr Banach space Y and g € L*([0,T],Y).

There exists for each y € Y a unique weak solution u(-) of

u(0) = =

i.e. for every v' € D(A") CY', (u(:),v) € AC([0,T]) and
L(u(t), vy = (ut), Av) + (g(t), V) for almost all t,
if and only if A is the generator of a strongly continuous semigroup (S(t))i>0, and

¢
in this case u(t) is given by u(t) = St)x + / S(t—s) g(s) ds. O
0
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Proof of Proposition 4.5.10 Let () : [0,7[ — X abbreviate the right-hand

forward solution considered in Lemma 4.5.11 and,

t
z(t) = S(t)zy + / S(t—s) f(x(s),s) ds
0
is the unique weak solution of the initial value problem
W4 @A) = A+ ) 0)
z2(0) =
according to Lemma 4.5.12. Then for every index j € J, the function [0,7] — IR,

t— (x(t) — z(t), v;) is continuous, bounded and satisfies

(a(t) — 2(1), v}) = /O(x(s)—z(s), AWy ds = Aj-/o (2(s) — 2(s), v}) ds.

So the integral version 1.5.4 of Gronwall’s Lemma (applied to [(z(-) — 2(-), v})])
leads to (x(-) —2(:), vj) = 0 forall j € J and thus,

2 = 2t 2 Sz +/0 S(t—s) f(x(s),s) ds. s
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4.6 Systems of evolution in (K(RR"),qcy) and

a reflexive Banach space

The forward generalization of mutational equations can be applied to systems in a
very easy way as presented in § 2.4. Now the last two sections § 4.4.4, § 4.5 provide
the starting point for an example in X x K(RY) (with a reflexive Banach space X).
To cut a long story short, we consider a curve [0,T[ — X x K(R"Y), t — (z(t), K(t))

whose first  component z(t) € X is a mild solution of a semilinear equation and

whose second component K (t) evolves along differential inclusions,
/\{ % ot) = Axt) + fle@), K@), 1), z(0) = o,
K() > g(a(t), K(1), 1), K(0) = Ko

A main point here is that both deformations (i.e. the semilinear equation and the differ-
ential inclusions induced by g) depend on x(¢) and K(t) (including its normal cones).

So this type of evolution belongs to a generalized class of free boundary problems.

General assumptions for § 4.6.
1. X is a reflexive Banach space.
2. The linear operator A generates a C° semigroup (S(t));>o on X
with  |[S(¢)]|cx,x) < 7-e’t forall ¢ > 0.
3. The dual operator A" of A has a countable family of eigenvectors {v}};es

(|U;'|X’ = 1) spanning the dual space X', ie. X' = Z ]RU; .
JjeTJ

Aj abbreviates the eigenvalue of A’ belonging to the eigenvector v} and,

fin 2= mAx 1A with 7 = {j1.Jo, j3 -- - }-
4. gj(z,y) = |<x—y, v3)| for z,ye X, jeJ,
pu(z,y) = Z 2~k % for z,y € X, ne INU {0},

Po(z,y) = Z 2% g (w,y).
k=1

5. 1 [0,1]x X — X, (h,x) »—>S(h)x+ /h S(h—s) v ds (veX).

6. For A,p>0 fixed, each F € LIP\* (]RN IRN) (see Def. 4.4.27) induces a
forward transition 9z (of order 0) on (K(RY), Kcra(RY), qi.n)

by means of reachable sets according to Proposition 4.4.26.
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Proposition 4.6.1
In addition to the general assumptions about X, A, S(-) of § 4.6, suppose for

[ X xK(R")x[0,T] — X
g: X x K(RN)x [0,T] — LIPV®) (RN, RY) :

1. || fllpe < o0
2. Poo(f(xhKhtl), f(«’r2;K2;t2)) < W<poo(x1;x2)+QIC,N(K1;K2)+t2_t1)

3. HHQ(Z'I,KI,tl) - Hg(IZ’K2’tZ)HCI(RNX(9B1) S w<poo($lal‘2) + QIC,N(Kla KZ) + tZ_tl)
for all zy,79€X, K|, Kbe C(RY), 0 <t; <ty <T with a modulus w(-) of continuity.

Then for every xy € X and Ky € K(IRY), there exists a right—hand forward solution
(z,K) : [0,T[ — X x K(IRN)  of the generalized mutational equations
/\{ () D Tra), k()
K() 3 Vg, k0),-)
with x(0) = xo, K(0) =Ky and, it fulfills

a) x:[0,T]— X is a mild solution of the initial value problem

7(0) =

i.e. z(t) = S(t)xy + /0 S(t—s) f(z(s), K(s), s) ds.
b) K(-) € Lip~([0,T[, K(RY), qcn), i
gen (K (s), K(t) < const(A,T) - (t — s) forall 0 <s<t<T,

¢) limsup %'(QK,N(ﬁgw(t), k@, v (h, M), K (t+h)) — e (M, K (t))-ew“) <0
hl0

for every M € Kera(RY), t€[0,T].

Proof results from Prop. 2.4.6 about timed right—hand forward solutions of systems.

To be more precise, Lemma 4.5.6 and the assumption ||f|/,~ < oo here provide
a uniform upper bound for all Euler approximations (with respect to the norm |- |x).
So Lemma 4.5.9 ensures that all transitions (of order 0) on (X, X, (pn)nerv) induced by f
fulfill the conditions of Proposition 2.4.6.
In regard to the forward transitions on (K(RY), Kcui(RY), qcn) induced by g,
the missing conditions (of Prop. 2.4.6) result directly from Propositions 4.4.26, 4.4.28.
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So we obtain a right-hand forward solution (z, K) : [0,7[ — X x K(IRY) of the
two generalized mutational equations mentioned above with z(0) = zo, K(0) = K.
In particular, claim (b), i.e. K(-) € Lip7([0,T[, K(R"), gcn), results from the
uniform Lipschitz continuity of its Euler approximations (according to Lemma 4.4.23)

and the details proving Convergence Theorem 2.4.5 for systems.

According to Lemma 4.5.12 (quoted from [8, Ball 77]), the initial value problem
g = Ak + S0, KO), 1)
2(0) = xm
has a unique mild solution z(-) and, we conclude z(-) = 2(-) from Lemma 4.5.11

in exactly the same way as we did for proving Proposition 4.5.10. O



Appendix A

Tools of differential inclusions

This appendix provides a collection of properties for the reachable sets of differential
inclusions giving a quite general example of shape evolution. In particular, we use
adjoint arcs for describing the time—dependent limiting normal cones and find sufficient
conditions for preserving smooth boundaries (for a short time at least).

These results mainly form the basis for constructing forward and backward transitions
on K(R"Y), Q(R") in § 4.4.

A.1 Filippov’s Theorem for differential inclusions

Following the well-known convention, we define the solutions of a differential inclusion
in the sense of Carathéodory as it is described e.g. in [7, Aubin,Frankowska 90]. The
Theorem of Filippov represents the counterpart for the Theorem of Cauchy-Lipschitz

about ordinary differential equations.

Definition A.1.1 Let F:[0,T] x RN ~ RN be a set-valued map.
A function x:[0,T] — IRY s called trajectory or solution of the differential inclusion
i() € F(,x()) ae if x(-) is absolutely continuous and its (weak) derivative i(-)
satisfies @(t) € F(t,x(t)) for almost every t € [0,T].

The reachable set of F and a nonempty initial set M C RN at time t € [0,T]

contains the points x(t) of all trajectories x(-) starting in M, i.e.
9a(t, M) = {x(t) e RN | z() e AC([0,4, RY), x(0) e M,

i(-) € F(,z(-) almost everywhere in [0, 1] }
(|

221
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Proposition A.1.2 (Generalized Theorem of Filippov)
Let O be a relatively open subset of [0,T] x IRYN. Take a set—valued map F:0~ RV,
an arc y(-) € AC([0,T], RY), a point n € RN and ¢ €10,00] such that

Ny, = | {t} xBs(y(t) c 0.

0<t<T
Assume that

(i) F(t,2) £ 0 is closed for every (t,2) € N(y,0) and
Graph F is £'x BY measurable,
(i)  there ewists k(-) € LY([0,T]) such that F(t,z) C F(t,2) + k(t) |21 — 2| - B
for all zy,2zy € Bs(y(t)) and almost every t € [0,T].
Suppose further

ekl . <|77—y(0)| + /T d1st< , y(1)) ) )

Then there exists a trajectory x(-) € AC([0,T], R") of x() € F(-, z(-)) a.e. satisfying
z(0)=n and

T _
o=yl <l y@ M [T RO ais (50, Fieye)

0

Now assume that (i) and (it) are replaced by the stronger hypotheses
(i") F(t,2) £0 is convez and compact for every (t,z) € N(y,d),
(¢7")  there exist w(-):[0,00[ — [0,00] and ks € ]0,00[ such that }zii% w(h) =0,
F(ti,z) C F(ty,z) + (koo 121 — 20| + w(|ty —t2|)) B,
for all (ty,z1), (t2,22) € N(y,9).
If y(-) s continuously differentiable, then the trajectory z(-) can be chosen as a

continuously differentiable function too.

Proof is given in [63, Vinter 2000], Theorem 2.4.3, for example. O
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A.2 The boundary of open reachable sets

Now we consider the relationship between the reachable sets of a bounded open set
O C IRY and its closure O € K(IRY) — with respect to their topological boundaries,
in particular.
If F: RN~ IRYN is Lipschitz continuous and its compact convex values have nonempty
interior, then roughly speaking, the differential inclusion #(-) € F(z(-)) (a.e.) has a
smoothing effect on its reachable sets. As a consequence, the boundary of ¥p(t,0) is
the upper limit of 99 (¢,0) in positive time direction, i.e.
dVUp(t,0) = Limsup,,, 09p(t,0)

according to the following Prop. A.2.8. The proof is based on a smooth selection of
RN ~ RN, z +—— F(z)° whose existence is shown by means of the Steiner point
in Prop. A.2.6. This relationship implies that in the product ]0,c0[xRY, the
boundary of Graph ¥p(-,0) is the graph of the boundary d9p(-,0) (Cor. A.2.9).

Finally we mention a similar result for compact initial sets K C IR : Assuming
that each Up(¢, K) (t > 0) has uniform positive reach of radius p, Prop. A.2.10 states

0 Graph 9 (¢, K) N (]0,00[ xRY) = Graph 9 Vp(t, K)|jo,00[

As a useful consequence, we obtain 9Up(t,0) = dUr(t,0) if the boundaries are
sufficiently smooth. This result provides a connection between smooth open and closed
reachable sets and will be used in § A.4 and § A.5 for extending results about compact
sets to their open counterparts.

As a well-known tool for selections of convex sets, we use the so—called Steiner point

that is already introduced and investigated e.g. in [7, Aubin,Frankowska 90], § 9.4.1.

Definition A.2.1  For a convex subset C € K(IRY), the point

SN(C) = £N+((WB1) / p UC(p) dwp
o3,
is called Steiner point or curvature centroid or Kriimmungsschwerpunkt of C.

The support function of C is defined as oc: RN — IR, p+— sup p-uv. O
yeC

Lemma A.2.2 For all convex sets C,Cy,Cy € K(IRN) and parameters \, u € IR,
SN(C) S CJ
SN()\Cl'f'/LCz) = )\SN(Cl) + /LSN(CQ)
SN(C) = % / m(aL Oc(p)) dp
1B

|SN(01) — SN(02)| S N - d(C’l,C'g).
with m(A) abbreviating the minimal selection of a nonempty closed set A C RYN. O
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Lemma A.2.3 For every convexr compact set C C IRY with nonempty interior,

the Steiner point sy(C) is contained in the interior of C.

Proof. Assume that s := sy (C') is contained in the topological boundary of C' and
choose a unit vector p € N¢(s). Then (C'—s)-p C |— o0, 0] implies oc(p) = s p.
The assumption C° # () leads to a closed ball B C IRY of radius 7 > 0 with B c C°.
So oc(=p) > s-(=p) + 2r and due to the continuity of oc(-) in RN \ {0}, there
is a neighborhood U of —p with oc(q) +r forall geU.
()
(q)

Now Lemma A.2.4 (1.) implies o
and thus, all ¢ close to —p satisfy  0%o¢(q
aL

oc

AVAR VALY,

s-q
- q s5-q +r forany q e U
(- s+ (—p

p) ) +5

IN

Finally, we get s-p = % / m(0” oc(q))-p dg < s-p — § — a contradiction. O
1B,

Lemma A.2.4
The support functions of any nonempty compact convex sets C,D C IRYN satisfies
1. z€dloc(p) <= peNc(z)=NE(z) < 2€C, p-z=o0c(p)

2. ¢“(C,D) = |s|u<p1 oc(p) —op(p) = |s|u:p1 oc(p) — op(p).

Proof in [55, Rockafellar, Wets 98], Example 11.4 and [2, Aubin 99|, Prop. 3.2.8. O

Lemma A.2.5 If F:RM~ RN s (locally) Lipschitz continuous with nonempty
compact convez values, then the topological boundary IRM ~ RN x — 0 F(z) is also
(locally) Lipschitz continuous.

Moreover F(-) and 0 F(-) have the (local) Lipschitz constants in common.

Proof. Lemma A.2.4 (2.) implies the local Lipschitz continuity of RY — IR,
& — op()(p) (with the same Lipschitz constant as F') for every p € dIB; C IR".
Choose R > 1, xy,15 € Bg C IRM and a boundary point y; € 0 F(x;) arbitrarily.
Furthermore set Ag := Lip F|gp and let p € RY satisfy p-y1 = op@,)(p) and |p| = 1.
Then op,)(p) < Op@)(P) + Ar |71 — 22| implies for every § > 0

yi+ (Ar o =22 +8) - p ¢ Fla).
Moreover the Lipschitz continuity of F|grp leads to an element y, € F(z,) satisfying
lys — 11| < Ag |v1 — @2|.  So the convex hull of y; + (Ag |x1 — 22|+ ) - p and y,
contains a boundary point yh € 0 F(x2) with |y, — 1] < Ag |x1 — z2| + 0. O
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Proposition A.2.6 Let F : RN ~» RN be a Lipschitz continuous map whose
values are compact and convex with nonempty interior.
Then there exists a selection f € C®(RN,RY) of RN~ RY, z+— F(x)°.

Proof. We show the existence only for the restriction to any set K € K(RY).

Then after covering IRY with compact sets, a locally finite smooth partition of unit
provides the extension to IRY because each open set F(z)°, z € IRY, is convex.

The Steiner point induces a Lipschitz selection of F(-)° due to Lemmas A.2.2, A.2.3.

So for every K € K(IRY), the infimum ¢ = ¢(F,K) = % JBilIg() dist(sn (F'(+)), O F(+))

is positive because Lemma A.2.5 guarantees the continuity of this distance function, i.e.

Bs. (sy(F(x))) C F(x) for all = € B (K).

Now convolving sy (F'(-)) with a smooth auxiliary function ¢ > 0 of sufficiently small

compact support (and ||p||zr = 1), we obtain a smooth selection of F(-)°|k.

[e]

After these technical preliminaries about a smooth selection of F'(+)°, the next lemma
provides the key conclusion from assuming that values of F' with nonempty interior.
It states that after arbitrarily short time, each interior point of the closure ¥p(t,0) =

Ur(t,0) evolves like the points of the open set Jp(t,O).

Lemma A.2.7 Suppose for the Lipschitz continuous map F : RN ~» RN  that
all its values are compact conver and have nonempty interior. Furthermore let y be an

interior point of the reachable set Vp(t,0) = Vp(t,0) for some t > 0 and O € QRYN).
Then, Op(h,y) C Op(t+h,0) forall h>0.

Proof. There is some p > 0 with By,(y) C Yp(t,0) and Prop. A.2.6 provides a
selection f € C®(IRN,IRN) of F(-)°. Now we can choose small hg, € > 0 such that

Ip(h, y) C B,(y) for all h € |0, hy),
0_¢(h, B,(y)) C By,(y) for all h € |0, hy),
Op(h, By,(y)) C IBs,(y) for all h € |0, hy),

B.(f(z)) C F(z) for all z € IBy,(y).

The last 2 inclusions imply J¢(h, 2) +eh-IB C Yp(h,2) forany z€ B, ,(y), h €]0, hyl.
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Due to 9p(t,0) = 9p(t,0), the open set Ip(t,0) N ]Ong(y) is dense in the ball
By ,(y) C 9r(t,0) and thus, we obtain

Ur(hy) C 19f<h» 0 s (h, Bp(y)))
iy (h B2y())

) (h, 9p(t,0)N i%p(y))

$(h 96(1,0)0 Bay(v)) + eh - BB

N
<

C Ok, 9p(5,0) N Bay (y))
C Op(t+h, O)

for all h €]0,hy]. For h > hgy, the semigroup property of reachable sets ensures

Ih,y) = 19F<h—h0, 19F(h0,y)) - ﬁF(h—ho, 19F(t+h0,0)> = Yp(t+h, 0). O

So now we have the tools for proving a main result of this section :

Proposition A.2.8 Assume for the Lipschitz continuous map F : IRY ~ IRY
that all its values are compact convexr and have nonempty interior.
For every initial set O € Q(IR™) and time t > 0, the topological boundary of the
reachable set fulfills

9Up(t,0) = Limsup,,, 99p(s,0).

Proof. The inclusion Limsup,,, 00r(s,0) C 99p(t,0) results from Filippov’s
Theorem A.1.2 : For any time ¢ >0 and element x € Limsup,,, 09x(s,0), consider
sequences (s,), (v,) with s, ¢, #, — 2 and z, € 0VUx(s,,0) for all n € IN.

Due to Filippov’s Theorem, each ¥p(s,,O) is closed and 9p(t,0) = 9p(t,O).

Thus, 2 € Limsup, . Ur(s,,0) C 9p(t,0) C Up(t,0).
Moreover for each n, thereis z, € Bi(x,) \Vr(sn, O). In particular, z, ¢ 9x(s,,0)
is equivalent to V_p(s,,2,) C RN\bn C RN\O. As RN\ O isclosed, n —s oo
leads to ¥ _p(t,z) € R¥\O, ie. z¢Ip(tO0).
So finally, = € Vp(t,0) \ Ip(t,0) = 0Up(t,0) since VUp(t,O) is open.

Now we prove the inclusion dUr(t,0) C Limsup,,, d9r(s,O).
Each z € 09p(t,0) C 9p(t,0) is attained by a trajectory x(-) € AC([0,t], RN) of F
with z(0) € O. If x(s) was an interior point of ¥.(s,O) for some time s € [0,1],
the preceding Lemma A.2.7 would imply z = z(t) € 9p(t — s, x(s)) C Ip(t,0)
— a contradiction.  So z(s) € 9Ur(s,0) for each s € [0,¢. O
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Corollary A.2.9 Suppose F : IRN ~s IRN to be a Lipschitz continuous map whose

values are compact conver and have nonempty interior.

Then for every O € Q(IRN), the graph of 9p(-,0) : [0,00[ ~ RN satisfies

L. (Graph vy (-, 0))° = U {t} x vr(t,0)
t>0
2. 0 Graph 9p(-, 0) = ({0} x 0) U (] ({t} x 99s(t,0))
t>0
Proof. 1. “D>” Filippov’s Theorem A.1.2 implies for every trajectory z(:) €

AC([0,t], RN) of F with x(0) € O that there is a radius p > 0 satisfying
U (s} x By(x(s))) C Graph9p(-, O) C Graphdp(-, O).

0<s<t
The Lipschitz continuity of F' and Gronwall’s Lemma guarantee that x(-) is Lipschitz

continuous. So setting A, := Lip z(-), r := lf/\w, we get for every 7 €0,¢|

B,(r,z(r)) n (0,f] x RY) < | {s}x B.(a(7))

e
¢ U 5% B o(als)
s €[0,t]
ls—r/<r B
c U () Blels)  C Graphi,(-, 0),
s€10,t]
ie. (7, (7)) is an interior point of Graph Jp(-, O).

“c” Let (t,2) be any interior point of Graph ¥z(-, O). Then, ¢t > 0 and
z ¢ Limsup,,, 0Up(s, O) because each set {s} x d9p(s, O) is contained in the
boundary of Graph ¥z(-, O). So we conclude from Prop. A.2.8

z € Up(t,0) \ Limsup,,, d9p(s, O)
= Vp(t,0) \ 99x(t0)
(t,O0

= Jp(t,0).
2. results from statement (1.) :
9 Graph 9p(-, 0) = Graph 9x(-, O) \ (Graph vp(-, 0))°
= U Wxo0) \ U dttxoet,0)
- tég}xo v U ({t} t;(;tO)\ﬁp(t 0)))
= ({0} x0) U U ({t} Ur(6,0) \ Ip(t, 0)))
= ({0} x0) U U ({t}x aﬁFtO)) .

t>0
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A relationship between boundaries similar to Cor. A.2.9 (2.) holds also for compact
initial sets K. The key assumption here is that the reachable sets (¢, K) (for every t)
are proximally smooth of a uniform radius p. Roughly speaking, it guarantees that no
converging sequence (,),cpn of boundary points (i.e. z, € 09p(t,, K) with ¢, T t)
can lead to an interior point of ¥ (¢, K). This statement is not correct in general

without supposing the radius p to be uniform as Example A.2.11 shows easily.

Proposition A.2.10  Suppose for F : RY ~ RN, K € K(R") and p > 0 that
the map [0,T) ~ RN, t — 9p(t,K) is A\-Lipschitz continuous (with respect to d)
and each set Op(t, K) (0 <t <T) has positive reach of radius p.

Then the topological boundary of Graph Vp(-, K)|joz) in R x RN is

{0y xK U |J {8} xdet,K) U {T}x0p(T,K).

0<t<T
Proof. The inclusion
{0} xK U |J {t}x00p(t,K) U {T} x9p(T,K) C 0Graph Vp(-, K)|p
o<t<T

is obvious.  Due to the Lipschitz continuity of (-, K), we only have to show

0 Graph p(- K) n (0,T[x RY) ¢ |J {t} x 00p(t,K).

0<t<T
NC(t,z,pz) Every point z € 00p(t,K) (0 <t <7T) and any
e ,/ unit vector Pz & N’L{)DF(t,K)(Z) = N‘L()F(t,K) (Z) Satisfy

" ’ . Bp (Z + sz) N T9F(t, K) = and thus,

K t time .
' <{t}>< Bp(z—i—ppz)) N Graph vp(, K) = 0.
T —_ Graph Vp(, K) The A—Lipschitz continuity of ¥ (-, K) implies
\5 C(t;Z;pz) N Graph 19F(; K) == @ fOI'

C(t,z,p,) == {(s,y) € BX]RN“Z-Fppz -yl < p—)\|s—t|} € Q(R x RY).

Now choose (t,x) € 0Graph Up(-, K) with 0 <t < T arbitrarily. The continuity
of Up(-, K) guarantees that Graph Jp(-, K) is closed and thus, it contains (¢, x).
Moreover there are sequences (t,)nen, (Tn)new in 0, T[, IRY, respectively, satisfying
(tn,zn) ¢ Graph Jp(,K) forevery n€ IN and  (t,,z,) — (t,z) (n — oc0).
For each n€IN, let z, be an element of the projection Ily, (., x)(®,) C 0Up(tn, K).
Then, 0< |z, —z,| = dist(z,, Vp(t,, K)) < |z, — x|+ dist(z, Ip(t,, K)) — 0
and pp = T ¢ NfF(th)(zn) N 0B;.

|Zn—zn |
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As mentioned before, we obtain for each n € IV
C(tn; Zn;pn) N Graph 19F('7 K) = @
Considering adequate subsequences (again denoted by) (tn)new, (Tn)nenw, (Pn)nemw

leads to the additional convergence p, — p € 0IB; (n — o0).  So finally

C(t,z,p) N Graph Vp(-,K) = 0

because Jp (-, K) is continuous and ((t,z,p) = Lim, o ((tn, 20, Pn)-
In particular, B,(z+ pp) N Vp(t,K) = O implies = € 0Vp(t, K). a
Example A.2.11 shows that Prop. A.2.10 is not correct if we do not assume a

uniform radius p of proximal smoothness. This deformation has already been men-
tioned in the beginning of this chapter.
Set F(z) := IB; forall z € IR" and the compact

initial set Ky := IBy\ By . Then, P
Vp(t,Ky) = B\ B, for 0 <t <1, ,’/ ﬁ“\

{ / \\ 2,
Vp(t,Ky) = IDByo for t > 1. \ &y ,

A K— /
So all reachable sets are proximally smooth. NN ,’19 (LK)

\\ // F\35

and (1,0) is contained in the boundary of P et 20

Graph V5 (-, K), but 0¢ 00p(1, K).

A.3 Adjoint arcs for the evolution of

limiting normal cones

The following extended Hamilton condition (Prop. A.3.1) is the key tool for describ-
ing the evolution of limiting normal cones along differential inclusions. Strictly speaking,
it states a necessary condition for minimizers of an optimal control problem (with a dif-
ferential inclusion i(-) € F(-, z(-)) a.e.).  With respect to normal cones of reachable
sets, it guarantees the existence of an adjoint arc p(-) that, roughly speaking, follows the
normal direction along a trajectory z(:) (see Prop. A.3.2). The limiting subdifferential
of the Hamiltonian

Hp(t,2,p) = 0p,,(P) = sup p- F(tx)
provides a differential inclusion for (z(-), p(-)).
This result proves to be particularly useful if the Hamiltonian is continuously differen-
tiable — in the case of a vector field f € C'(IRY,R"), for example.
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Proposition A.3.1 (Extended Hamilton Condition)
Let z(-) € AC([S,T), IRY) be a local minimizer (with respect to perturbations in
AC([0,T], RN)) of the problem
9(y(S),y(T')) — min
over y(-) € AC([S,T], RY) satisfying
i(t) € F(t,y(t)) for almost everyt € [S,T],
(y(9), y(T)) € C C RN x RY.
Assume also that

(G1) g is locally Lipschitz continuous;
(G2 F(t,x) £ 0 is convex for each (t,z), F is £ x B measurable, and
Graph ﬁ(t, -) s closed for each t € [S,T].
Suppose, furthermore, that either of the following hypotheses is satisfied :
(@) There exist k € L'([S,T]) and &€ >0 such that for almost every t

F(t, 1) N (;'v(t) + e k(t) IB) C F(t,as) + k() |z, — zo| B
for all xy, x5 € B:(x(1)).

(b) There exist k € L'([S,T]), K >0, and € >0 such that the following two
conditions are satisfied for almost every t € [S,T] and all x1, x5 € B (x(t))

F(t, ) N (:’v(t) + ng) C Ft, ) + k(t) |21 — 2| B,
inf { |U—:t(t)|‘v € ﬁ(t,xl)} < K |z —2(t)].

Then there exist an arc p(-) € AC([S,T],IRY) and a constant A > 0 such that
() (0. 2) # (0.0)
(i7) p(t) € co {77 e RY ‘ (7,2(t)) € Nipapn Fr, -y (@(1), £(2)) } for almost every t
(i) (p(S), =p(T)) € N3 g(a(S), o(T)) + Ne(a(S), #(T)).
Condition (ii) implies
(iv) p(t)-i(t) = sup <p(t) L F(t, x(t))) for almost every t
(v) p(t) € co {— g€ RY ‘ (¢, 2(t) € " Hz(t, )@ pw) } for almost every t.

Proof  is presented in [63, Vinter 2000], Theorem 7.7.1, for example. O

Remark. This adjoint p(-) also satisfies [p(t)] < k(t) |p(t)| for almost every ¢
as an immediate consequence of statement (ii) and the so—called Mordukhovich criterion
(see e.g. [55, Rockafellar, Wets 98], Theorem 9.40). O
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Now we use the adjoint arcs for the evolution of proximal and limiting normal cones :

Proposition A.3.2 Let F: Rx RN ~ RN be measurable and strict with compact
convez values, K € KK(IRN) and ty > 0. Moreover assume that F(t,-) : RN ~ RN s
k(t)-Lipschitz continuous for almost every t with some k(-) € L'(IR).

1. Suppose for the trajectory z(-) € AC([0,t0], RY) of @(-) € F(-, z()) that
z(0) € K, wg:=x(ty) € 095(to, K).
Then for any v € Nfﬁ(toym(xo), there is an adjoint p(-) € AC([0,to], RY) satisfying

p(t) € co { q | (2:2) € N 7, (2 (0), a:(t))} for almost everyt,
p(t) € co {— q|(q,2(t)) € 0" Hp(t, ) lwwpwy } for almost everyt,
p(t) - &(t) = max p(t) - F(t,z(t)) for almost everyt,
Ip(t)] < k(t) |p(t)] for almost everyt,
p(0) € Ng(x(0)),
p(ty) = v

2. For every xy € 005(ty, K) and v € Nﬂﬁ(toyK)(frO), there exist a trajectory
z(-) € AC([0,to), RN) of @(-) € F(-, z(-)) and an adjoint p(-) € AC([0,t,], RN)
satisfying the preceding properties and x(0) € K, z(ty) = xo.

Proof 1.  For p > 0 small enough, we conclude B,(zo+ pv) N Vz(te, K) = {zo}

from the assumption v € Nﬁ(tO’K) (%9). Then z(-) is a minimizer of the problem

o(u(0),y(t0) =} [utto) = (w0 + pv)|

over y(- AC’([O, o], IRY) satisfying
g(t) € F(t,y(t)) for almost every t € [0, ¢y],
((0), y(to)) € K x RY.

So due to Prop. A.3.1, there are an adjoint ¢(-) € AC([0, %], IRY) and A > 0 such that

(1) (a(-), A) # (0,0),

(i) q(t) € o {ne B’ (1,4(1)) € Ngyups 7, (@(0), @(t)) } for almost every ¢
(i) (a(0). —alt) € A 0" 9(a(0), a(ta)  + Nicarew (2(0), a(t).

= A (0.2t —z0—pv) + Ni(2(0)) x {0}
) = sup (q(t) - F(t, x(t))) for almost every ¢

(v) ¢(t) € co {— Ee RN ‘ (& a(t) € 0" Hpt, -, )@, } for almost every ¢
(vi) [q(t)] < k(t) |q(t)] for almost every t.

— min

) €
) €
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Assuming A = 0 and property (iii) imply ¢(tp) = 0. So property (vi) and Gronwall’s
Lemma 1.5.4 lead to ¢(-) = 0 — contradicting property (i). Thus, A > 0.

Setting p(t) = /\ip q(t), the adjoint p(-) also fulfills the conditions (ii), (iv)—(vi) and
p(0) € Nk ((0),  p(to) = v.

2. is a consequence of the first part by means of approximation.
For every xg € 0Uz(to, K) and v € Ny_q,,x)(70) \ {0}, there exist sequences (vn)n e,
(xn())nelN satistying

in(:) € F(-, z,(")) ae. in [0,%], v, € Ngﬁ(to,K)(l‘n(to)) \ {0},
xp(to) — o Uy, —> UV (n — 0),
z,(0) € K.

For each n € IN, the first part provides an adjoint p,(-) € AC([0,t], RY) with
pu(to) = vy. Due to Gronwall’s Lemma 1.5.4 and the inequality [p,(¢)] < k(t) |p.(¢)],
the sequence (p,(+)) is equi-continuous. So the Theorems of Arzela—Ascoli and Dunford—
Pettis ensure the convergence of subsequences (again denoted by) (z,(-)), (pn(-))
such that z(-) := nli_r}rloo 2, (-) € AC([0,t], RY), p() := nli_r)noo pu(-) € AC([0, to], RY)
fulfill o () — x(+), pu() — p(*) uniformly,

n(-) — 2(), Pn(-) — () weakly in L'([0, to], IRY).
Finally, n — oo provides that p(-) satisfies the claimed properties of an adjoint arc

(see e.g. Convergence Theorem 7.2.1 in [7, Aubin,Frankowska 90]). O

Restricting to autonomous differential equations (instead of differential inclusions),
we benefit from the additional fact that time is reversible. So the limiting normal vectors

of the initial set can be described by the normals of a later reachable set.

Corollary A.3.3 Let f € CY(IRN, IRN) have linear growth, K € K(IRY), t > 0.
1. Then for every boundary point x € 09;(t, K) and p € Ny,,x)(x), there exist
the unique trajectory z(-) € C'([0,t], RY) and its adjoint p(-) € C*([0,t], RY) with

z(0) € K, z(t) = u,
p(0) € Ng(x(0)), pt) = p,
i(s) = f(z(s)), p(s) = —p(s) - Df(x(s)) for everys €]0, .

2. Moreover for every initial point x € 0 K and p € Nk (x), there exist the unique
trajectory x(-) € C([0,t], IRN) and its adjoint p(-) € C([0,t], IRN) satisfying
z(0) = uw, z(t) € 094(t, K),
p(0) = p, p(t) € Nog0(2(t),
w(s) = [fla(s)), p(s) = —p(s)- Df(x(s)) for every s €]0,t[.
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Proof. 1. The linear growth of f implies that M := {Jy.,o, Vs(s, K) is compact.
So f is Lipschitz continuous on M.  Prop. A.3.2 guarantees the existence of a trajec-
tory z(-) € AC([0,¢t], IR") and an adjoint p(-) € AC([0,t], IRY) fulfilling
z(0) € K, z(t) = =,
p(0) € Ng(x(0), pt) = p,
(=p(s), (s)) € co O H(x(s), p(s))  for almost every s € |0, .
Due to f € C*(IRY, RY), the Hamiltonian H; is in C*(IRY x IRY) and so,
O Hy(ep) = (& Hs(w.p), SHi(wp) = (peDF@), [(2)),
Thus, z(-), p(-) are continously differentiable satisfying
#(s) = flx(s)),  pls) = —p(s) - Df(x(s))  forevery s €]0,1[.

2. The solutions of initial value problems with @(-) = f(z(-)) are always unique
— as a well-known consequence of Gronwall’s Lemma. Thus, the evolution along this
ordinary differential equation is reversible in time, i.e. (s, K) = V_f(t—s, 0¢(t, K))
for every 0 < s <t. Now the claim results directly from the first part applied to —f(-),
x(t—-), p(t—"). O
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A.4 Differential inclusions preserving smooth sets

shortly : Standard hypotheses (H), (’;Z[), (H)

Now sufficient conditions on maps F : [0, T]x RN ~» RN, F : RN ~» RN are presented
such that their reachable sets preserve the smoothness of initial sets for a short time
(at least).

Here we consider compact N-dimensional C%!' submanifolds of JRY with boundary.
In comparison with class C!, it has the advantage that both the set K and its complement
RN \ K have positive reach. Due to Corollary 4.3.3, this is equivalent to the property
that both K and IRY \ K have positive erosion. Then proximal and limiting normal

cone coincide at every boundary point of A and contain exactly one direction.

After introducing the so—called standard hypotheses (), (%) in Def. A.4.2, their role
as sufficient conditions for C'*! submanifolds with boundary is ensured by Prop. A.4.4.
Due to § A.2, standard hypothesis (”;[) forms the basis for applying the results to open
sets (in Cor. A.4.5). Under slightly stricter assumptions of Hz, we even obtain a lower
bound of the time how long the reachable sets stay smooth (in Prop. A.4.10).
Finally some sufficient conditions on a map F : RN ~» IRY are given for satisfying
standard hypothesis (3{[) (in Prop. A.4.11), but these properties are not necessary

as Example A.4.16 shows.

Definition A.4.1 Ko (IRY) abbreviates the set of all nonempty compact
N ~dimensional CY' submanifolds of IRY with boundary.

Furthermore set Qi (IRY) = {K°| K € Keui(IRN)} € Q(IRY).

Definition A.4.2 A set—valued map F : [0,T] x RN ~» RN fulfills the so—called
standard hypothesis (7:2) if
1. F is measurable and has nonempty compact convez values,
Hi(t, ) - RN x (RN\{0}) — IR is continuously differentiable for all t € [0,T],
for every R > 1, there exists kgr(-) € L'([0,T]) such that the derivative of
Hi(t, -, ) restricted to IBr x (IBg\ ]OB%) is kg(t) —Lipschitz continuous
for almost every t € [0,T],
4. there exists vz € L*([0,T]) such that for all z,p € RN (]p| > 1),

|0 Hi (8, 2,) < D) (1 [a] + o).

L(IRN xRN IR)
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Correspondingly for a set-valued map F : RN ~» RN the standard hypothesis (H)

comprises the following conditions on Hp(x,p) := sup p- F(x)

1°.  F has nonempty compact convex values,
2°. for every R>1, Hp(,:) € CHY(Bg x (Bg\ ]B%)),
3’ the derivative of Hyg has linear growth, i.e. there is some vyp >0 with

| D3 (2p) < e (Utlal ) Joralle,p e RY (o] 2 1).

L(IRN x IRN ,IR)

F: RN ~ RN fulfills the so—called standard hypothesis (’}?L) if in addition to (H),

the values of F' have nonempty interior.

Obviously every vector field f € CH(IRY, IRY) (regarded as a set—valued map) fulfills
standard hypothesis (H), but not (7?[) Considering a map F : RN ~ IRY that
is not single—valued, sufficient conditions for standard hypothesis (7?[) are presented

in Prop. A.4.11. For the moment we mention just two easy consequences of (#)
for the set—valued map F :[0,7] x RN ~ RY :

Lemma A.4.3 Standard hypothesis (H) for F :[0,T] x RN ~» RN implies :
1. F(t,-): RN ~ RN s locally Lipschitz continuous for almost every t € [0, 7.
In particular, Lip F(t,)|p, < (24+R) i ().

2. F(t,x) C vp(t) 2+ ]z|)- B for all x € RY and almost every t € [0,T].

The values of F are strictly conver.

Proof. 1. According to the preceding Lemma A.2.4 (2.), the Hausdorff distance
between values of F (t,-) can be estimated by means of their support functions since
F has nonempty convex compact values, i.e. in terms of the Hamiltonian Hz, we get

for every R >0 and z,y € Br C RY
d(F(t,x), F(t,y)) < sup |Hzt z,p) — Hp(t, y,p)]

lp| =1
< sup sup |apHﬁ(t7'7p)| ' |x—y|
lp|=1 Br
< wt) 2+R) - oyl
2. As a consequence of Lemma A.2.4 (1), every y e F(t,z)\ {0} satisfies
yl = @y < Hplta ) < |& g Hplta )| < vpt) - (2+]a])

3. results from Lemma A.2.4 as well because the subdifferential of
RN\{O} — 07 p = Hﬁ(t,l’,p) - Uﬁ(t,x)(p)

is single—valued (by assumption). O
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The main benefit of these hypotheses (), (H) is to preserve the smooth boundary

of a compact initial set for a short time at least.

Proposition A.4.4  Assume standard hypothesis (H) for F :[0,7] x RN ~» IRV,
For every initial set K € K (IRY), there exist 7= 7(F,K) >0 and p = p(F,K) >0
such that 9;(t, K) s also a N-dimensional C*' submanifold of IR™ with boundary
for all t € [0,7] and its radius of curvature is > p (i.e. both Vz(t,K) and its

complement IRN \ 9z(t, K) have positive erosion of radius p).

Corollary A.4.5 Under standard hypothesis (7?[) for the map F : RN ~ IRY,
every initial set O € Qi (IRY) leads to p,7 > 0 satisfying 9p(t,0) € Qera (IRY)
for all t € [0,7] and the radius of curvature of each Vp(t,0) is > p.

Proof of Cor. A.4.5 results from Prop. A.4.4 and Cor. A.2.9, Prop. A.2.10 :

As a consequence of Filippov’s Theorem A.1.2, U(t,0) = Up(t,0) € K(R") and
according to Def. A.4.1, O € Kcii(IRY).  So Prop. A.4.4 provides p,7 > 0 such that
Ip(t,0) € Ko (IRYN) for all ¢t € [0,7] and each radius of curvature is > p.

Cor. A.2.9 (2.) and Prop. A.2.10 imply U ({t} x 00F(t,0)) = U ({t} x 09p(t,0)).

Thus, ¥x(t,0) = Vp(t,0)\09p(t,0) = (Vp(t,0))" € Qeui(RY). O

Proof of Prop. A.4.J is based on the following lemma :

Lemma A.4.6 Suppose for H :[0,T] x RN x RN — R, ¢ : RN — R" and

the Hamiltonian system

/\{ g(t) = g H(t y(t), q(t)), y(0) = wo
q(t) = —g; H(t, y(t), a(t)), q(0) = (yo)
the following properties :
1. H(t,-, ) is differentiable for every t € [0,T],
2. for every R > 0, there exists kr € L*([0,T]) such that the derivative of

H(t,-,-) is kr(t)-Lipschitz continuous on IBgr x IBr for almost every t,

()

v s locally Lipschitz continuous,

every solution (y(+),q(+)) of the Hamiltonian system (x) can be extended to [0, T]
and depends continuously on the initial data in the following sense :

Let each (yn(-),qn(-)) be a solution satisfying — yn(tn) — 20,  Gu(tn) — Qo
for some t, — to, 20,q0 € RY. Then (Yn(-),qn(:))ney converges uniformly to

a solution (y(-),q(:)) of the Hamiltonian system with — y(to) = 20,  q(to) = qo-
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For a compact set K C IRY and t € [0,T], define
M (K) = { (50, a(0) | W), a()) solves system (), yo € K | < RY x RY.

Then there exist 6 > 0 and X\ > 0 such that M;”(K) is the graph of a \-Lipschitz

continuous function for every t € [0,0].

Proof of Lemma A.4}.6 (indirect) (37, Frankowska 2002], Lemma 5.5 states the
corresponding result for the Hamiltonian system with y(7) = vy, ¢(T) = ¢ given
(without mentioning the uniform Lipschitz constant A explicitly). Now for pointing out
the indirect character of the proof there, we seize its notion and adapt it to the initial
conditions at ¢ = 0 explicitly :

Assumption (4.) and K € K(RY) imply U M;"(K) C Bg x By for some R > 0.
0<t<T
Suppose that the claim is false. Then there exists a sequence (¢,)pen in 0,7

with ¢, — 0 such that either M;’(K) is not the graph of a Lipschitz function or
the corresponding Lipschitz constants converge to co. In both cases, we can find distinct

solutions (y!(-), ¢:(-)), (¥2(-), ¢2(-)), n € IN, of the Hamiltonian system (x) with

. |y71l(tn) - y?z(tn)|
|an(tn) — an(tn) |
Assumption (2.) provides the estimate

A = 20] < lyh(ta) — y2(t)] + / Tonls) (I (s) = 62(5) + lab(s) — 2 (5)]) ds

< e lah(ta) — g2 (ta)| + / () (I () = 20 + laks) — g2(9)1) ds

for all ¢ € [0,t,], and the integral version of Gronwall’s Lemma 1.5.4 leads to a constant

Cy > 0 (independent of n) with

) =201 < s lai(t) = )] + [ as) lab(e) = ] ).

Due to sup &, < oo, we obtain a constant Cy > 0 such that for all n € IN, t € [0, 1,],

n

tn
) - 201 < lab(e) = )+ [ k(o) (luh) — I+ - )] )ds
t
tn
< G (lablta) ~ (el + [ Hnls) lah(s) — 2(6)] d).
t
As a consequence of Gronwall’s Lemma 1.5.4 again, there is another constant C3 > 0

(independent of n) with  |gl(¢) — 2(t)] < Cs |¢i(t,) — ¢2(t,)| for all n, ¢ € [0,t,].

So in particular,

— 0 for n — oo.

€n

tn
f%‘zé(t” < G <€n + 03/ kr(s) ds) — 0 for n—0.
" 0
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Similarly we get a constant Cy = Cy(||kg||r:) > 0 fulfilling
|an(tn) — @u(ta)l < Cilgy(0) = ¢(0)] = Ca [1h(yn(0)) — ¥(yz(0))]
for all n € IN sufficiently large. Indeed, for all ¢ € [0,%,], assumption (2.) ensures
gh(H) = (] < 1a3(0) = 2(0)] + / o) ( A(s) — 2206) | + lah(s) — (o)) ds
< Jg(0) — 2(0)] + / a(s) (2 labta) - 2(8)] + [aA(5) — 2(6)]) ds
and Gronwall’s Lemma 1.5.4 provides a constant Cy = Cy(||kg||z:) > 0 such that
0 (t) — aa(ta)l < G 102(0) — g2 (0)] + const(|[krllzr) &), lgn(tn) — 2 (ta)]

for every n € IN. Dueto ), — 0, we obtain |g}(t,) — ¢2(t,)] < Cylgl(0) — ¢2(0)]
for all n € IN large enough.

So finally,
Y1, (0) = PwaO) | 16(0) — @) [ la(tn) — ¢a(tn) ]
|92(0) = y2(0) | |45 (tn) — @(tn) | |92(0) = 42(0) |
N 00 for n — oo

— contradicting the local Lipschitz continuity of ¢ at each cluster point of (y.(0)),. O

Proof of Prop. A.4.J. Standard hypothesis (ﬁ) for F : [0, 7] x RN ~ IRN implies
conditions (1.), (4.) of the preceding Lemma A.4.6 for the Hamiltonian H .
Assuming that K € K(IR") is a N-dimensional C'"!' submanifold of IR" with boundary,
the unit ezterior normal vectors of K (restricted to 0K) can be extended to a Lipschitz
continuous function ¢ : IRY — IRY. Furthermore, choose ¢ € C*°(IR, R) with
p(s)=0 for s < %, p(s)=1 for s >
and set  H(t,x,p) := Hz(t,z,p) - ¢(p|) for (t,z,p) €[0,7] x RN x RN,
Then H satisfies condition (2.) of Lemma A.4.6 in addition.

N[

Consider now the differential equations
B(t) = 5 H(t, o(t), p(t)), z(0) = o

plt) = — g H(t, x(t), p(t)), p(0) = ¥(x0)
for arbitrary zy € K. Due to [¢(-)] =1 on K and H € Cb', there exists 7, > 0
such that |p(¢)] > 3 for all solutions (z(-),p(:)) of () with zy € K and every
t€[0,m].
In particular, H(t,z(t),p(t)) = Hp(t, x(t),p(t)), DH(t,x(t),p(t)) = DHz(t, z(t), p(t)).
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Setting
M (OK) = { (z(t), Ap(t)) ‘ (2(-), p(-)) solves system (+), zo € OK, A >0 }

Prop. A.3.2 states  Graph Ny_r)(-) C ]\ZH(GK) for all ¢t € [0, 7).
Furthermore Lemma A.4.6 yields 7 €]0,73[ and Ay > 0 such that

M (0K) = {(x(t), p(t)) ‘ (x(-), p(+)) solves system (x), z( € OK} Cc RY x RN
is the graph of a Ap/—Lipschitz continuous function for each ¢ € [0, 7].

Then for every point 2z € 9U;(t, K), the limiting normal cone Ny x)(2) contains
exactly one direction and, its unit vector depends on 2z in a Lipschitz continuous way.
(The Lipschitz constant is uniformly bounded by 2 \,; since the choice of 71 ensures
p(-)| > 5 on [0, 7] for each solution of (x).)

So the compact set ¥z(¢, K) is N-dimensional C*' submanifold of R" with boundary
for all ¢ € [0, 7] and its radius of curvature has a uniform lower bound.

O

However the indirect proof of Lemma A.4.6 does not enable us to find a lower bound
of the time T(ﬁ, K). For this purpose, stricter regularity conditions on the Hamiltonian
system permit taking the second variation into consideration. This notion leads to the

following equivalence in [21, Caroff, Frankowska 96] and [37, Frankowska 2002].

Lemma A.4.7 ([37, Frankowska 2002], Theorem 5.3)

Assume for H : [0, T]x RN x RN — IR, v : RN — IRY and the Hamiltonian system
g(t) = & H(, y(t), q(1), y(T) = yr

the following properties :

(%)

1. H(t,-,") is twice continuously differentiable for everyt € [0,T],

2. for every R > 0, there erists kg € L*([0,T]) such that the derivative of
H(t,-,-) is kgr(t)-Lipschitz continuous on IBr x IBBr for almost every t,
¥ is locally Lipschitz continuous,

4. every solution (y(-),q(-)) of the Hamiltonian system (xx) can be extended to [0,T]
and depends continuously on the initial data in the following sense :
Let each (yn(-),qn(:)) be a solution satisfying — yn(tn) — 20,  Gu(tn) — Qo
for some t, — to, z0,q0 € RY. Then (yn(*), qu(-))nenv converges uniformly to

a solution (y(-),q(+)) of the Hamiltonian system with — y(to) = 20,  q(to) = qo-
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For a compact set K C IRY and t € [0,T], define
M7 (K) = {(y(t), q(t)) ‘ (y(+), q(+)) solves system (xx), yp € K} C RN x RN,
Then the following statements are equivalent :
@) Forallt€[0,T], M;"(K) is the graph of a locally Lipschitz continuous function,
(@i1) For every solution (y(-),q(+)) : [0,7] — RN x RN of system (xx) and
each cluster point Qr € Limsup, , . {V¥(2)}, the following matriz Riccati

equation has a matriz—valued solution Q(-) on [0,T)
2Q + Tt y),q1) Q + Q LEL(t, y(t), qt))
A + Q ZHty), ) @ +  ZTH(t ), qt) = 0,
QT) = Qr.

If one of these equivalent properties is satisfied and if 1 is (continuously) differentiable,

then M,"(K) is even the graph of a (continuously) differentiable function. a

Corollary A.4.8 Consider the Hamiltonian system (%) of Lemma A.4.6 and
assume cond. (1.)—(4.) of Lemma A.4.7 for H : [0, T]x RNx RN — IR, ¢: RN — IRY.
Then for every K € K(IRY), the following statements are equivalent :
(@) Forallte|0,T],
M () = { (ut), a) | (), a()) solves system (+), o € K |
s the graph of a locally Lipschitz continuous function,
(1) For any solution (y(-),q(+)) : [0,T] — RN x IRN of the initial value problem (x)
and each cluster point Qo € Limsup, ,, {V¥(2)}, the following matriz

Riccati equation has a solution Q(-) on [0,T]

2Q + Tt y),qt) Q + Q Lt y(t), qt))
A + Q %21,5[ (ta y(t)a q(t)) Q + %2:55[ (ta y(t)a q(t)) = 0,
Q(O) = Q.

If one of these equivalent properties is satisfied and if 1 is (continuously) differentiable,

then M;?(K) is even the graph of a (continuously) differentiable function.

Proof is an immediate consequence of Lemma A.4.7 applied to —H(T — -, -, )
because for any solution (y(-),¢(-)) of the initial value problem (x), (y(T'— -), ¢(T'— -))

solves the corresponding system (s). O
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For preventing singularities of Q)(-), the following comparison principle provides a bridge
to solutions of a scalar Riccati equation. So it is the basis for a lower estimate of time 7
(i.e. how long the boundary of (¢, K) stays smooth at least).

Here our main aim is to present a short way to an explicit lower bound in Prop. A.4.10

and for this reason we accept the disadvantage that it might not be optimal.

Lemma A.4.9 (Comparison theorem for the matrix Riccati equation,
[56, Royden 88], Theorem 2)
Let A;,B;,C;:[0,T[— RN (j=0,1,2) be bounded matriz—valued functions
— [ Ait)  B;(t) ; ;
such that each — M;(t) := <Bj(t)T A ) is symmetric.
Assume that Uy, Uy : [0, T[— IR™N are solutions of the matriz Riccati equation
2U; = Aj + B;U; + U;BI' + U; C; U;
with  Ms(-) > Mo(-) (i.e. Ms(t) — My(t) is positive semi—definite for every t).

Then, given symmetric Uy(0) € RN with
Us(0) = U1(0) = To(0), My(-) =z My(-) = Mo(),
there exists a solution Uy : [0, T[— RN of the corresponding Riccati equation with
matriz M(-). Moreover, Us(t) > Uy(t) > Uy(t) for allt €[0,T]. O

Proposition A.4.10 In addition to standard hypothesis () for F : [0, T]x IRN ~» RN
suppose that Hz(t,-,-) : RY x (RN \ {0}) — IR is twice continuously differentiable
for each t € [0,T).

Let K € K(IRYN) be a N-dimensional CH' submanifold of IRY with boundary whose
radius of curvature is larger than p = p(0K) >0 and set

R#) = 1+ Kot (1Kl +2) (1 + [l el

VE > 1,
0

) -],
Rt) = max {1 + (RO+1) (1+ |y ||L1-e\hfllu) /7 . R },

T € ]0,7] small such that (R(T)+1) /’des—l—/ krerypr ds < 1— 2=
0

R(T)”
it x, x
H = H( ~t p; 3w3p E’ ’p;> < 00,
°s atv| i R(T) ap oz TLF( TP ap bLap LRV IR?N)
Ay Sl < R
— i ~ 1 1
T = min {T, . (3 —arctan ) }

Then the compact set Vi(t, K) also belongs to Keri(IRY) for every t € [0, 7].
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Proof.  Due to Lemma A.4.3, f(t, -) is locally Lipschitz continuous and has linear

growth, ie.  Lip F(t,)lm, < @+R) vpl),  Flta) € vplt) (2+]al)- B
for al R > 0, x € RN and almost every ¢t € [0,7]. So the integral version of

Gronwall’s Lemma 1.5.4 leads to the inclusion
t
Ip(t,2) C 2z + 2+]2]) (L+ lygllp - el7ler) / Vg(s) ds - B
0

for all t € [0,T], z € RN and thus, Vp(t,K) C (R(t)—1)- B.
Moreover, standard hypothesis (7?[) guarantees for all »r > 1, v € B, C RY, pe RN
and almost every ¢ € [0,T]

|0 He )|, oy € Al +B) i bl

0n Hilt:2.0) | gy S WO @D+ R i F <l <1

Firstly we consider the Hamiltonian system of Hz for initial points o € 0K

B(t) = g Mgt o), p(t),  w2(0) = w,
pt) = — g Hpt o), p(®), {p(0)} = Nk(w) N B

Gronwall’s Lemma 1.5.4 yields the upper bound of every solution (z(-),p(-))
¢
) < 1+ / () - (1+ R(s)) ds
0
t s
N /0 S () /0 (ve(r) - (14 RG) dr ds

t

L+ (RO +1) (14 gl el -/yﬁ(s) ds
0

< R(t)

for all t € [0,T]. Moreover for each t € [0,7] with |[p(-)| >

p(2)]

(%)

IN

wT on [0,4], it fulfills

|- /Ot (v6(s)- @ + Bs)=1) +  haryeals)) ds
>0 w6 s~ [ b

So in particular, |p(-)] > ﬁ > fz(lT) on [0,7].

v

Secondly we construct H : [0,7] x IRY x RN — IR easily such that it satisfies the

assumptions of Corollary A.4.8 and

H(t,-,-) =Hz(t,-,), Oy H(t, ) =0, His(t, ") in RN x (RN\IB_. )

(CL’,p) ( 2E(T)

for every t € [0,7], j = 1,2. Choose a smooth auxiliary function ¢ € C*(IR,R) with

¢(s) =0 forsgﬁ, p(s) =1 forszﬂgW

andset  H(t,a,p) = Hp(t.z,p) - o(lp]) for t € [0,7], z,p € R,
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Furthermore the exterior unit normal vector of K can be extended to a Lipschitz
continuous function ¢ : IRY — IRN. In respect of the limiting subdifferential of 1,
the curvature assumption of 0K guarantees

oty(z) C % B for all z close to 0K
and thus, Limsup, , . {V¢(z)} C % B for all z € OK.

Thirdly, the scalar Riccati equation
N Lu = a+au?
u(0) = up

has the bounded solution u(t) = tan (at + arctan ug) = —otanlel)

T—up - tan (at) in the interval

0,7[ C |0, %(g—arctan %)[ for UOZ%;CL:N and for uoz—%,a:—u.

Let us now apply these preparations to the Hamiltonian system of Corollary A.4.8

g(t) = 5 H(t, y(t), at)), y(0) = o "
() = —5, H(t, y(t), a(t)), 9(0) = ¥(w)
for yo € OK. Each solution (y(-),q()) satisfies |y(t)| < R(T), E(IT) < q(t)| < ]/%(T)

for all t € [0,7]. As a consequence, H(t,--) = Hp(t, -, ") close to (y(t),q(t)).

According to the comparison principle in Lemma A.4.9, the matrix Riccati equation
0Q + Sty dt) Q + Q@ 54t yt), at)
A + Q FH(t (), q(t) Q@ + oAt y(t), q(t) = 0,

Q(O) = Qo

has a solution Q(-) in the interval [0,7[ for every symmetric matrix @, € R™" with

— % ldpy < Qp < % -Idp~y  because the definition of p guarantees

0? 0?
O H(t (¢
—p - Ile2N S ( %522 HF(Jxap) 3;22817 HF(Jxap
Mﬁﬁ(taxap) op? ﬁ(taxap
forall 0 <t <7, |z < R(T) and % < |p| < R(T).
Finally Corollary A.4.8 implies that
M @K) = { t), a0) | (1), g()) solves system (), yo € 9K } € BN x R
is the graph of a locally Lipschitz continuous function for all t € [0, 7].
As in the proof of Prop. A.4.4, we obtain for every point z € 0Ux(t, K) that the
limiting normal cone Ny_q k)(2) contains exactly one direction and its unit vector

depends on z in a Lipschitz continuous way. ~ So ¥(t, K) is a compact N-dimensional
C*! submanifold of IRY with boundary for all ¢ € [0, 7]. O
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Finally we mention sufficient conditions of a set-valued map F : RN ~» IR for
satisfying standard hypothesis (3{[) However these three properties are not necessary

as Example A.4.16 shows.

Proposition A.4.11  Let F : RN ~ IRY have following properties :

1. F has conver compact values with a locally uniform enclosing sphere condition,
i.e. for any R>1, there exists a radius p = p(R) > 0 such that
for all z€B,, z€dF(x), a closed ball B,(w) C RN satisfies ‘
F(z) C B,(w), F(z) N 0B,(w) = {z}.
2. F s locally Lipschitz continuous (with respect to d), H)
3. Graph F is a 2N -dimensional C*' submanifold of IR*N with boundary.
Then, Hp € CUHIRYN x (IRN\ {0})).
If F is (globally) Lipschitz continuous in addition, F fulfills standard hypothesis (”;[)

Proving this proposition is based mainly on the relation between F' and the derivatives
of the Hamiltonian Hy. So first we consider the partial derivative of Hp (7, p) = 0p(2)(p)
with respect to p # 0. Roughly speaking, the enclosing sphere condition implies that

the inverse map of limiting normal cones (of a fixed convex set) is Lipschitz continuous.

Lemma A.4.12  Suppose the enclosing sphere condition for the conver set C €
K(IRY), i.e. there is a positive radius p such that for every boundary point z € 0C
there exists a closed ball B,(w) C RN with C C B,(w), CNOoB,(w) = {z}.

Then the subdifferential 0r oc(-)|om, of the support function o is single—valued

and Lipschitz continuous (with Lipschitz constant < 2 p).

Proof.  The enclosing sphere condition implies that C is strictly convex. So 9% o (p)
is single-valued for every p € 0IB; due to Lemma A.2.4 (2.).
For arbitrary p,q € RY with |[p|=|q| =1, set x,,z, € C' such that

0toc(p) ={z},  0"0c(q) = {xg}-
According to the enclosing sphere condition, there is a closed ball B,(w,) C RN with
C C By(wy), C' N 0B, (wp) = {wp}.
Spq = {z € By(wp)|q-x > q-x,} contains z, (since ¢-z, =0c(q) > q-x,) and
thus we obtain the estimate |z, — z,| < diamS,, < 2p.

Now we prove diam S,, < 2p|p—gq| if [p—¢| <1 (i.e. in an equivalent way, p-q > %)
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For every x € S, ,, the definitions ensure

0 < paqgp=q@-w < q¢g@-w) < p

and S,, C B,(w,) implies
dist(x, w,,—i—[O,oo[-q)2 < pro= g (@ —wy)?
< = plep)?
= - (1—((1-1))2)-
For the difference  —y of any points z,y € .5, 4, we distinguish between the component

in the direction of ¢ and its normal component and thus,

(diam $,,)* < (p—p (q-p))2 + (20 W)Q
=/ (1 —qr-p)2 + 4 (1—((1-1))2)
= (5-2q¢p - 3(q-p)2)

“ 3 ~3(qp)? + Ip—al)
3(+a-p) Q—q-p) + lp—df)

3- 2 - glp—af 4+ Ip—ql2> = 4p [p—q O

0

VAN

I
S
AN TN TN N

As a next step, sufficient conditions are to guarantee the Lipschitz continuity of the
partial derivative %”Hp(x,p) with respect to both x and p. Lemma A.2.4 (1.) has already
-1
8F(a:)> (p)-
So now we specify the link with the tangent cones of the graph of F according to
[7, Aubin,Frankowska 90].

For considering the partial derivative of Hp(x,p) with respect to z afterwards,

given the relation to the inverse of normal cones : 9 op)(p) = (NF(;,;)

the so—called graphical derivative are also introduced — in connection with tangent cones.

Definition A.4.13
Let S C RN be a nonempty closed subset and x € S.

Ti(x) = {uElRN ‘ lim inf %-dist(x—i—hu, 5) - o},
Té(x) = {UERN‘ }zii% %-dist(x—i—hu, S) = 0}

are called the contingent cone and the adjacent cone of M at x, respectively.
For a set-valued map F : RM ~ RN the contingent derivative D¢F(x,y) : RM ~ RN
and the adjacent derivative DF(xz,y) : IRM ~» RN at (x,y) € Graph F' are defined by

Graph DF(z,y) = T&.pn #(,9), Graph D*F(z,y) = Té.on #(2,9). O
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Remark. 1. According to [7, Aubin,Frankowska 90|, Prop. 5.1.4, the \-Lipschitz
continuity of a set-valued map F : IRM ~» IRY ensures that the contingent derivative

D¢F(z,y) is A-Lipschitz continuous with nonempty values for every (x,y) € Graph F.

2. If F: RM ~ IRY has compact convex values in addition, then [7, Aubin,
Frankowska 90|, Prop. 5.2.6 states for every (x,y) € Graph F' that the images of the

adjacent derivative D®F(z,y) are convex and

DF(z,y) (0) = Tg,(y)
D°F(z,y) (u) + D*F(z,y) (0) = D*F(x,y) (u) for all . O

Lemma A.4.14 Assume for the set-valued map F : IRM ~» IRY :

1. F has convex compact values with a locally uniform enclosing sphere condition,

i.e. for any R > 1, there is p = p(R) > 0 such that for all x€IB,, z€0 F(x),
a closed ball B,(w) C RN satisfies F(x) C B,(w), F(z)NdB,(w)={z}.
2. F s locally Lipschitz continuous (with respect to d),

3. T¢apn p(*) N By : dGraph F ~ RM x RN is locally Lipschitz continuous
(with respect to d).

Set A = max {Lip Flgm, Lip (TéraphF(-) n Bl) 3Grapth(BRXmN)} for R> 1.
Then,

() OGraph F ~ RN (z,y) —> Ty (y) N IBy is locally Lipschitz continuous.

@) The limiting subdifferential of the support function —IRM x 0IB; ~ IRY,

(z,p) — OFopw(p) = (NF(:C) 8F(l,)) (p) s single—valued and locally

Lipschitz continuous (with constant < (142 p(R)) - (1+ 3 Ag)? on Br x 0IBy).

Proof of Lemma A.4.14.
(i)  The local Lipschitz continuity and the convex values of F' guarantee
Térapn w(,y) N ({0} x RY) = {0} x T}, (y)
for all x € RM according to the preceding remark (after Def. A.4.13).
Now choose R > 1, @1, 29 € By C IR™, y, € O F (1), yo € O F(x5) and vy € Tlﬂi(m)(yl)
with |v1| <1 arbitrarily.  Due to assumption (3.), the adjacent cone and the contingent

cone of Graph F' coincide at every boundary point.



A4 STANDARD HYPOTHESES (H), (%), (H) 247

Furthermore there is a vector (ug, v2) € TG pn p(T2,y2) N Br  with
|(u2,v2) = (0,v1)[ < Ag - (lor = 22| + |y1 — ).
As another consequence of the preceding remark, there exists vy, € DF(x3,y2)(0)
(ie. (0,05) € TGrapn (22, 42)) satisfying
0 —va] < Ar-[0— | < AR (o — @] + 1 — v2))-
So in particular, vj € Tf,\(y2) and
dist(v, Ti,,)(y2)) < vr—vy] < fvr = 2] 4 |va — )]

< Ar (Ar+1) - (Jor — 22| + |y — ¥2|)-

Finally |v1] <1 implies that the projection of v on the cone T%, \(y2) = T, (¥2)

Z2

is also contained in IB;. Thus,

diSt(U]_, T}c?(:m)(yg) N B]_) S )\R ()\R_'_]-) . (|.’I,‘]_ — .’I,'2| + |y]_ — y2|)

-1
(i) Lemma A.2.4 (1.) states 9 op)(p) = <NF(;,;) aF(a;)) (p) for all z,p #O0.
We have already mentioned in Lemma A.4.12 that the limiting subdifferential 0%op((+)

of the support function is single-valued on 0IB; due to the enclosing sphere condition.
Consider now any R > 1, x1,29 € Br C RM and py,p, € RY with |py| = |p2| =1
and set {y1} = 0"op@E)(p1) C OF(x1).  Set pgr = Ag (Ag+1).
Then Lemma A.2.5 provides an element y}, € 0 F(x2) with |y, — 1| < Ag- |z — 29,
and according to statement (i), the restriction

0Graph F' N (By x RY) ~ R, (z,y) — Tiwy(y) NBy =15, (y) N B
is pp—Lipschitz continuous. The so—called Theorem of Walkup—Wets ([55, Rockafellar,
Wets 98], Theorem 11.36) implies that the map of polar cones

0 Graph F' N (Bg x RY) ~ RY, (x,y) = Np)(y) N B = T, (y) N DB
is pr—Lipschitz continuous as well. So there is a unit vector ¢ € Np(.,)(y5) satisfying

@2 —p1| < 3 pr (1+AR) - |72 — 21
because for every d > 0, we get an element ¢y € Np(y,)(y5) N IB; \ {0} with
o —p1|l < pr-(loz =@+ —wnl) +0 < pr (1+AR) - 22 — 21+ 6

and then,
2

FAR 2 2-2%7 < 2-8¢p < Alg-—pP i ¢op>,
: 2 . .
\%_pl = 2—2%’2171 < 4 < 8¢y —pif? if qé-plﬁi-
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Finally the enclosing sphere condition (of assumption (1.)) and Lemma A.4.12 ensure

for the unique element y, € %0 p(y,) (p2)

ly2 =il < y2 — uhl + v —
< 2p(R) P2 — @a| +  Ar - v — 1|
< 2pR) - (Ipz—p1|+|p1—qzl) + gz — |
< (2 p(R) - (1+3pur (14+Ag)) + )\R) (|952—951|+|P2—P1|>
< (2oB) - (1430 0+ + Ar) - (le—wl+ I — il
< (20R) - (L4300t M)E 4 de) - (fee =] + |2 pal)
< (2 p(R)+1) (1+3\g)? (|xz—x1|+|pz—p1|>

The partial derivative of Hp(z,p) = sup p- F(x) with respect to z is closely related
to the graphical derivatives of F. Quite general results about this type of functions

with supremum or infimum (so—called marginal functions) are quoted in the next lemma.

Lemma A.4.15 ([65, Ward 94|, Theorem 3.1 and Prop. 3.5)

Let p: IRM — ]—o00,00| denote the marginal function of f: RM x RY — |—o00, 0]
and a set-valued map G : RM ~ RN, i.e.  ¢(z) = inf {f(z,y) |y € G(x)}.
Moreover set  R(z) := {y € G(z) | p(z) = f(z,y)} for every x € R™ and

c T p(atho) - p(x)
Dfp(x) (u) = hrhri %nf . :

a — T ; plathv) - p(x)
Dfo(x) (u) = lim ililg vlgfu .

abbreviate the lower and upper epiderivative of p, respectively.

1. Suppose that [ is lower semicontinuous, Graph G is closed and the asymptotic
limiting subdifferential 0®° f satisfies — Ngrapn ¢(z,y) N 0% f(x,y) = {0}.
Then, for every z,u € RM, y € R(x),

D p() (w) < inf {DFf(z,y) (u,0) | (u,v) € Téapno(2,9) }
Dip(x) (u) < inf {Dff(z,y)(u,v) | (u,0) € Toupn 6(,9) }
Dip(x) (u) < inf {D}f(z,y) (w,0) | (u,0) € Toupn (,9) }

2. Suppose the following condition : For every € >0, t; | 0 and u; — u,

<

there is a bounded sequence (vj)jemw such that for all j sufficiently large,
y+tiv, € Glr+tju), flr+tju;, y+tjv) < olr+1tu)) + t;e.
Then; D% 90(1‘) (U) 2 Hi}f {D1C* f(.'L', y) (U, U) | (u7 U) < Téraph G(l‘7 y) } U



A.4. STANDARD HYPOTHESES (H), (%), (H) 249

Proof of Prop. A.4.11 According to assumption (3.) for the map F : RN ~» IRV,
Graph F is a 2N-dimensional C'! submanifold of IR?" with boundary. So the
(exterior) unit normal vector of Graph F' is unique and depends on the boundary point
in a locally Lipschitz continuous way. Then for every (z,y) € 0 Graph F, the contingent

cone T&.,. p(7,y) is a half-space and
0 Graph F ~ IRY x R", (2,y) = Térapn #(,y) N 1By

is locally Lipschitz continuous, i.e. F : RN ~+ IRY satisfies the assumptions of the

preceding Lemma A.4.14.

In particular, we conclude from Lemma A.4.14 (ii) that the partial derivative 3% H
of the Hamiltonian Hp : (z,p) — 0p)(p) is locally Lipschitz continuous on RY x 91B;
Thus, a% Hr € C¥(Bgrx (Bg\ B1)) forevery radius R > 1 because the function

7
)
E)F(x)) (p)  depends only on .

P g5 He(n,p) = (Nm)

Now we have to prove that the partial derivative a% Hp(z,p) exists and is locally
Lipschitz continuous on R™ x (IRY \ {0}). Choosing any R > 1, p € RN with |p| =1,
we want to apply Lemma A.4.15 to the Lipschitz continuous function ¢ : ]JOBR — IR,

p(x) == inf{-p-yly e Flx)} = —Hp(z,p).
For every = € i?R C RY, the element y, € F(z) with —p-y, = p(z) = —opu)(p) is
3F(w)> _I(p) according to Lemma A.2.4.

unique and fulfills  y, € 0% op( (p) = (NF(;,;)

So y, depends on x, p in a locally Lipschitz continuous way due to Lemma A.4.14 (ii),

i.e. particularly, the assumptions of Lemma A.4.15 (2.) are fulfilled. Thus,
Dig(e) (u) = inf {—p-v | (4,0) € Toupm r(2,y2) }
= inf {—p-v| v €DF(x,y,) (u)}.
P € Nr@)(yz) is equivalent to —p-w >0 for all w € T}, (y) = D*F(z,y,) (0) (using

the remark after Def. A.4.13). Setting Ap := Lip F|gmp, the Agp—Lipschitz continuity
of D°F(x,y,) = D*F(x,y,) provides the following estimates for D p(z) (u)

inf (=p-DFe,y) @) > bl 0 = Alu) = =Aelul > —oo,
inf (—p-DF(e,u) (@) < lpl- 0+ Aelu) = Aelul
and thus, Dfp(x) (u) = inf {—p-v | (u,v) € 0T mpn (@, Y)s [v] < Arful }.

Since Tapn (7, Yz) is even a half-space, its topological boundary 0T¢, ., 1 (7, ys) is a

subspace of IR*Y and Dfp(x) : RN — IR is linear, uniformly bounded for all z € By, .
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Moreover Lemma A.4.15 implies  D{ ¢(z) = D{ p(x) : RN — IR because of
Dip(e) () < Diele)() (in general),
TCC}ra,ph F(‘T7 yl‘) = Tg}raph F(‘T7 yl‘) (lIl particular) :
This means for the Lipschitz continuous function ¢ :IBr — IR that its lower and upper

Dini derivatives coincide  (according to [7, Aubin, Frankowska 90], Prop. 6.1.7, 6.2.3).
So Hp(,p) = —¢:Br— IR has the (uniformly bounded) directional derivative

D, Hp(z,p): RN — IR,
u — sup{p-v | (4,v) € T rp(®,y:)} =

sup{p-v | v € D°F(z,y;) (u) N Ag |u|- B }.

Finally this directional derivative (restricted to u € IBy) depends on z € IBr and
p € 0IB; in a Lipschitz continuous way : As mentioned before, (x,p) — v, is Lipschitz

continuous on By X 0IB; and the set—valued map
0Graph F' N (By x RY) ~ RN x IRV, (x,y) — TéraphF(x,y) N B,
is Lipschitz continuous (with respect to d). This implies the Lipschitz continuity of the

following maps successively :

[e]

B ~ IRV, T — TéraphF(x,yw) N (B, x By,),

Bpx 0B, ~ R, (0,0) —  (0,0) - (T p(e.32) 0 (B x By,)),

Br x0B, ~ R, (xz,p) > sup (0,p) - (TéraphF(x,yx) N (B, XZBAR)) =
= Graph D, Hp(z,p) N (ByxB,, =

= h (D, )
Grap ( Hep(x p)) B
So Hp € CHLHRYN x (RN \ {0})).
For proving standard hypothesis (#), we still need the linear growth of DH (-, -).

1

So now we assume in addition that F is (globally) A-Lipschitz continuous.
Then 2 Hp(z,p) € F(z) implies ‘aﬁp ”Hp(x,p)‘ < NF@ e < NFO)]o + A lzl.
Furthermore the directional derivative D, Hp(x,p) satisfies (for every p # 0)

1Dz He (2, p)llemn my < A lpl- =

Example A.4.16 shows that the conditions of Prop. A.4.11 are not necessary.

Set e :=(1,0...0) € RN, C := B;(0)NBi(e;) and F: RN ~ RN, v — C.
Obviously, Hr does not depend on z explicitly. C'is compact, convex with nonempty
interior and satisfies the enclosing sphere condition of Lemma A.4.12. So % Hp(x,p) is
Lipschitz continuous with respect to p € dIB;. Thus, Hp € CHY (RN x (RN \ {0})).
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A.5 Proximally smooth reachable sets and standard
hypotheses (H), (’;[) imply reversibility in time

The extended Hamilton condition leads to a necessary condition on boundary points
x € 0Vp(t, K) and their limiting normal cones in Prop. A.3.2. If each set Vp(t, K)
(0 <t <T) has positive reach of radius p, then standard hypothesis (H) turns adjoint
arcs into sufficient conditions and, we conclude that the evolution of reachable sets is
reversible with respect to time — in the sense of Proposition A.5.1.

This last property is well-known for autonomous differential equations (with a Lipschitz
vector field), but obviously it is not correct for differential inclusions in general.
The reversibility in time makes the preceding results about adjoint arcs for normal cones
available in positive time direction. So it proves to be an essential step for estimating pa-
rameters like o7 (Jp), Q7 (Ip, V) when applying the right-hand forward generalization

to K(IRY), Q(RY) and autonomous differential inclusions in § 4.4.

Proposition A.5.1 Suppose standard hypothesis (H) for the map F : RN ~ IRV.
Assume for Ko € K(IRN) and p > 0 that each compact set K; := 9p(t,Ky) (0 <t <T)
has positive reach of radius p.

Then for every 0<s <t <T, K, = ]RN\ﬁ,F(t—s, RN\ K).

Before proving this proposition, we mention some consequences : Starting with a
CY! submanifold K € K1 (IRY), Prop. A.4.4 guarantees the existence of p, 7 > 0 such
that every Jp(t, K) (0 <t < 7) has positive reach of radius p. So we obtain directly

Corollary A.5.2 Suppose standard hypothesis (H) for the map F : RN ~ IRN.
For every compact N-dimensional CY' submanifold K of RN with boundary,

there exist a time 7 >0 and a radius p >0 such that for all t € [0, 7],

1. Yt K) € Keri(IRY)  with radius of curvature > p,

2. K = JRN\ﬁ,F(t, RN\ 0 (t, K)). .

This form of reversibility in time can be extended to open sets by means of § A.2.
According to Cor. A.2.9 and Prop. A.2.10 in particular, standard hypothesis (7?[) for
F: RN ~ IRN guarantees 0V (t,0) = 9V9p(t,0), Ii(t,0) = (Jp(t,0))
for O € Q(RY) and t, p > 0 if the closure ¥ (s,0) has positive reach of radius p

for all s € [0,¢]. (This link has already been used for Cor. A.4.5.) Now we conclude
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Corollary A.5.3 In addition to standard hypothesis (7(:[) for F: RY ~ IRV,
assume for O € Q(RN), p> 0 that each set 9p(t,0) (0 <t <T) has positive reach
of radius p.  Then, for every t € [0,T][, O = RN\ﬁ_F (t, ]RN\19F(t,O)). a

Corollary A.5.4 Suppose standard hypothesis (7(3[) for the map F : RN ~ IRY

and let O € Qe (RY). Then there exists p, 7 >0 such that for all t € [0, 7],
1. 9p(t,0) € Qeui(IRY) with radius of curvature > p,
2. 0 = JRN\ﬁ,F(t, RN\ 9p(t,0)). 0

In Prop. A.5.1, we even suppose a uniform radius p of positive reach for K, = 9, (t, Ky).

The essential advantage for the proof is the relation between the boundaries of K, C IRV

and Graph (t — K;) C IR x IRY stated in Prop. A.2.10 :

0 Graph Op (-, Ko)log) = ({0} x Ko) U | ({t}x00p(t, Ko)) U ({T} x0p(T, Ky)) -
0<t<T

Proof of Prop. A.5.1 Up(s,Ko) C RN\ _p(t—s, RV\K;) is an indirect

consequence of definitions : It is equivalent to ¥ (s, Ko) N Y_p(t—s, RN\K;) = 0.

For every point y € Up(s, Ko) N Y_p(t —s, IRV \K,), there exist two trajectories

z1(-) € AC(|0, 5], RY), xy(-) € AC([0,t—s], RY) of & € F(zy), &€ —F(x9),

respectively, with  x,(0) € Ky, x1(s) =y =x2(t —s), x2(0) ¢ K.

Then the function z(-) : [0,¢] — RY,

(o) = { x1(0) for 0 <o

S,

<
<t

zo(t — o) for s <o
is a solution of &(-) € F(z(-)) almost everywhere satisfying (0) € Ko, z(t) ¢ K; —

Def.

contradicting the definition of K; = 0p(t, Kp).

For proving the inverse inclusion indirectly at time s = 0, we assume the existence
of a time ¢ € [0,7] and a point yo € RY with yo ¢ Ko U 9_p(t, RN\ K,).
As an immediate consequence of yy ¢ U _p(t, RN\ K;), the reachable set Up(t, 1) is
contained in K; = 0p(t, Ky). Now set 7 := inf{s €[0,t] | 9p(s,50) C Or(s, Ko)}.
In particular, 7 >0 due to yo ¢ Ko.
and Up(T,y0) C Up(1,Ky)  due to the continuity of the reachable sets.
There are sequences 7, ' 7 and (z,(-))nenw in AC([0,T], RY) satisfying

n() € F(wa()) ace., 2n(0) = yo, () & Op(, Ko).
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Then for each n € IN, we obtain
zo(s) ¢ Op(s, Ky) for every s € [0, 7],
zo(s) € Op(s, Ky) for every s € [r, T].
Furthermore Lemma A.4.3 provides uniform bounds and the equicontinuity of all z,(+),
n € IN. So the Theorems of Arzela—Ascoli and Dunford—Pettis lead to subsequences
(again denoted by) (T,)new, (¥n(*))newn and a function z(-) € AC([0,T], IRY) with
() — () uniformly in [0, 77,
Ba) — 8() in L0, 7], RY).
x(+) is a solution of () € F(z(-)) (almost everywhere) according to the compactness
of trajectories (see e.g. [63, Vinter 2000], Theorem 2.5.3). In addition, it fulfills

ZL'(O) = Yo,
z(s) ¢ Up(s, Ky) for every s €0, 7],
z(s) € Vp(s, Ky) for every s € [r, T,

and thus, (7,2(7)) is a boundary point of Graph ¥p(-, Ky).
Prop. A.2.10 and 0 <7 <t <T ensure z, := z(1) € dK, = 00u(r, Ko).

Moreover, K, = Up (1, Ky) is supposed to have positive reach. So its limiting and

proximal normal cone coincide at each boundary point and thus,

0 # Noprio(z:) = ng(T,KO)(xr) C ng(T,yo)(%)-
For every unit vector v € Ny,(rk,)(4-), Proposition A.3.2 leads to a trajectory
z(-) € AC([0, 7], RYN) of F and its adjoint arc ¢(-) € AC([0, 7], IR") satisfying
At = 5 He(2(t), a(t)), (1) = a,
q(t) = — 3 He(2(1), q(t)), q(r) = v
and z(0) € Ky. Besides, the same Cauchy problem is solved by z(:) and its adjoint.
Hr € CH! implies the uniqueness of solutions and, its consequence z(0) = z(0) ¢ K,
leads to a contradiction.  Thus, RY \ 9 _p(t, RV\K;) C K.

Finally the corresponding inclusion for any 0 < s < ¢ < T results from the semigroup

property of reachable sets. O

Remark. 1. The map K(RY)~ RN, Ky v+— RN \ 9_p(t, RV \Vp(t, Ky))
generalizes the morphological operation of closing (of sets in K(/RY)) that was introduced

by Minkowski and is usually defined as
P(X)~ X, K+ (K-tB)o(-tB) ¥ {yeX|y—-tBCK-tB}
for a vector space X and fixed B C X, t >0 (see e.g. [2, Aubin 99|, Def. 3.3.1).
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2. In [11, Barron, Cannarsa, Jensen, Sinestrari 99|, the viscosity solutions of the
Hamilton—Jacobi equation 0; u+H (t,z, Du) = 0 are investigated and roughly speaking,
the continuous differentiability of u is concluded from the reversibility in time :

If u:[0,T] x RY — IR is a continuous viscosity solution of d;u + H(t, -, Du) =0
and v(t,x) = u(T —t, x) is a viscosity solution of 0,v — H(T'—t,-,Dv) =0
then adequate assumptions of H ensure u € C*(]0, 7 x IRY).

Referring to the relation between reachable sets and level sets of viscosity solutions, we

draw an inverse conclusion as we assume smoothness and obtain the reversibility in time.

3. Furthermore it is shown for some optimal control problems in [11] that the
continuous viscosity solution u of the Hamilton—Jacobi equation is even in C1([0, 7] x IRY)
if both u(0,-) and u(T,-) are of class C'.

In the geometric context here, we cannot restrict ourselves to regularity assumptions
about Ky and V(7T Ky) as the following Example A.5.5 shows.

4. The reversibility in time (in the sense of Prop. A.5.1) can also be regarded
as recovering the initial data. Further results about this problem have already been
published in [57, Rzezuchowski 97| and [58, Rzezuchowski 99|, for example, but they
usually assume other conditions. Either the initial set consists of only one point or

the Hamiltonian function Hy is of class C?.

Example A.5.5 is the same as Example A.2.11 and shows now two further aspects :
Firstly, we cannot restrict ourselves to regularity conditions at time t =0 and t = 7.

Secondly, the reversibility in time does not result directly from the positive reach of

every compact set Jp(t, Ky) (0 <t <T).

Set F'(z) := IB; for all @€ RN and the compact

initial set Ky := IBy\ By . Then, PR TN
’L9F(t, Ko) = BH-Z\ B_,; for 0 <t < 1, / AN

! \
Vp(t,Ko) = DB for t > L . ﬁ\ 2,

' ‘\ /‘ I
So all these sets have positive reach. \ Ko\/ //'
Obviously this evolution is not reversible in time \\\ // 9p (3, Ko)
because roughly speaking, the hole at 0 disap- RN T

pears at time ¢t = 1.
This example gives a hint how to 'realize’ this singularity. Starting with the interior of

Ky leads to the open reachable set ¥ (1, Kj) = B3 \{0} (as stated by Cor. A.2.9).
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A.6 Standard hypothesis (#) preserves sets of posi-

tive erosion

Sets of positive erosion have very useful features with regard to sequential compactness
and regularity at the boundary (as mentioned in § 4.2.1, § 4.2.2 and § 4.3). For this
reason we are interested in sufficient conditions on a map F : IRY ~» IRN guaranteeing
that initial sets of positive erosion preserve this property.

Prop. A.6.1 gives an answer for some control systems and has already been proven
in [44, Lorenz 2003]. Now we show (in Prop. A.6.2) that standard hypothesis (H) for
F : RN ~ IRY implies its assumptions. Strictly speaking, each map F : RN ~» RN
satisfying standard hypothesis () has a semiconcave parameterization as it is required
for Prop. A.6.1. Then the differential inclusion &(-) € F(x(-)) (a.e.) is regarded as
a control system with sufficiently smooth right-hand side.

In particular, this property has the advantage that results of optimal control theory

(e.g. in [37, Frankowska 2002]) can be applied to these differential inclusions.

Proposition A.6.1 ([44, Lorenz 2003], Theorem 2.1)
Assume for a complete separable metric space Z, a function f:[0,T]x RN x Z — RN
and a set-valued map U :[0,T]~ Z

f(,z,u):[0,T] — RY is measurable for any (z,u),
2. f(t,-,) :R"N x Z— RN s continuous for a.e. t €]0,T],
3 ke L'Y([0,7)): f(t,-,u) is k(t)-Lipschitz for a.e. t €]0,7]
and any u € U(t),
4. A p<oo: % (t,-,u) is p-Lipschitz for any t €10,T]
and any u € U(t),
5. 3 ye LY]0,1)) : SI;JIE) |f(£,0,u)] < ~(t) for a.e. t €]0,7],

wel(t

6. U(:) is measurable and has closed nonempty images.

Let K € K(IRY) have positive erosion of radius px > 0.
Then for every t € [0,T], the reachable set Vg..\(t, K) has positive erosion of radius

Ty

—4- [T k| ds
r(t) = const(p,y) -« 7 e Jolklds > 0, O
Proposition A.6.2 Under standard hypothesis (H) for F : RN ~ RN, there

exists a function ¢ € CYH (RN x RN, RYN) with F(z) = (x,B;) for every v € RN
and NUllcrrx xmyy < const([|[Hpllcrik <amys N) for every K € K(IRY).
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Proof. Due to standard hypothesis (), the Hamiltonian Hp : (z,p) — 0p()(p)
belongs to  CLL(IRY x (IRY \ {0})). So the function of Steiner points of F'(-)

SN(F()) BN — BN, r —— I.',N+(ENBl) / p HF(xap) dwp
0IB;

is differentiable with locally Lipschitz continuous derivative : sy(F(-)) € CUHY(RY)
and Isv (F()lleriy < N - |Hellorix xomy) — for every K e K(IRYN).
Now we define 1 : RN x RN — IRV,

sv(F@) + (Hel,g) = sv(F@) - Z) bF p for p£0,

v(x,p) =
(@) sy (F(x)) for p=0.

Then F(x) = v(x,IB;) is an obvious consequence of F'(z) € K(IRY) being convex.

Moreover 1 is continuously differentiable in RN x (RN \ {0}) and its derivative is
locally Lipschitz continuous. Finally the factor |p|® ensures that ¢ has these properties
even in RN x RN and in particular, ||¢]|crax xmy) < const(||Hpllcri xomy), N)

for every K € K(IRY). O

So Proposition A.6.1 in combination with Proposition A.6.2 leads to

Corollary A.6.3 Suppose standard hypothesis (H) for the map F : RN ~ IRY

and let K € K(IRY) have positive erosion of radius pg > 0.

Then for every T > 0, each reachable set Up(t,K) (t € [0,T]) has positive erosion

of radius  p(t) > Ci- 35— e~ ! with constants Cy, = Cyx(N, ||Hellcrimy o))

and R > 0 satisfying U Vp(s, K) C Bg. O
0<s<T

As a more general consequence of Prop. A.6.1, sets of positive erosion are also preserved
by some maps G: [0, T]x RN ~» IRY that are piecewise constant with respect to time.

In particular, the same estimate of the radius holds.

Corollary A.6.4 Assume standard hypothesis (H) for Fi, Fy...Fy, : RN ~ IRV,
For a partition 0 =179 <1 < ... <7, =T of [0,T], define G : [0, T] xRN ~» RN
as G(t,x) := ir1(z)  for T <t < T,
Moreover let K € K(IRY) have positive erosion of radius px > 0.

Then for every time t € [0,T], the reachable set V5(t, K) has positive erosion of

radius p(t) = C1- 15— e~ " with constants Cy, = Cp(N, max ||Hz ||crisy, x om,))
J

and R > 0 satisfying U Vg(s, K) C Brg. O
0<s<T
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In § A.2 we investigated the relation between the reachable set ¥, (t,0) of O € Q(IRY)
and its closure 9p(t,0) = Up(t,0) if the values of F have nonempty interior.
Now these results bridge the gap between the preceding Corollary A.6.4 and open sets

of positive erosion :

Corollary A.6.5 Assume standard hypothesis (’}c:[) for F\,Fy...F, : RN ~ IRN.
For a partition 0 =19 <1 < ...<7, =T of [0,T], define G : [0, T[ xRN ~» RN
as G(t,x) := ir1(z)  for T <t < T,
Let O € Q(IR™) have positive erosion of radius py.

Then for every time t € [0,1[, the reachable set V5(t,0) has positive erosion of

radius p(t) > Cy- 2 e ' with constants Cy, = C(N, max [|[Hp,||ctim, xom,))
j

and R > 0 satisfying U V5(s,0) C Brg.

0<s<T
Proof. According to Cor. A.6.4, the closed reachable set VJz(t,0) = 9z(t,O)
has positive erosion of radius > Cy - 22— e~ 2t = p(t). As an abbreviation,
define  M(t) = 95(t, O)\ IB n (005(t,0))  sothat  Bsyy(M(t)) = Vst 0).
Now we show  ¥5(t,0) = Bjy) (Limsup,,, M(t)) for every time ¢ € ]0, 7.

Since G is piecewise constant with respect to time, Prop. A.2.8 guarantees

90Ug(t,0) = Limsup,,, 095(s,0) for every t € |0,T]

e}

and Cor. A.2.9 implies (Graph ¥p(-, O)) = U ({t} x 9p(t,0)).

So for each x € ¥5(t,0), thereis € > 0 with ]t—t;,ot+6[>< B, () C Graphdg(-, O),
i.e. particularly B,.(x) C 95(s,0) = Bys)(M(s)) for all s e Jt—e, t].
As a consequence, B. (r) C Bjyys (Limsup,,, M(s)) for arbitrary 6 > 0
and thus, r € ]JOBﬁ(t) (Limsup,,, M(s)).

Furthermore every point y € ]JOBﬁ(t) (Limsup,,, M(t)) is contained in the ball
B4 (Limsup,,, M(t)) with some small & > 0. Due to the continuity of 7(-),
there exists a sequence s, 1t with y € Bp,)-3:(M(s,)), i.e. Bo(y) C I5(sn,O).
Now Lemma A.2.7 implies  J5(t — s, ﬂOBQE (y)) C Y5(t,0) forall n € IN and finally
we obtain B.(y) C Vst — sn, li?gg(y)) C Us(t,0) for all n large enough.

|
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A.7 Standard hypothesis (#?) makes points evolve

into sets of positive erosion

Our aim still consists in sufficient conditions for the positive erosion of Vx(t, K).
Weakening the assumption about the initial set K € Ko(RY) in Cor. A.6.3 usually
requires stronger properties of the map F : RN ~» IRY than standard hypothesis ()
(see Definition A.4.2).

Definition A.7.1 For any p >0, a set-valued map F : RN ~ IRN satisfies the
so—called standard hypothesis (H?) if it has the following properties :

1. F has conver values in Kf(IRYN),

2. forevery R>1, Hp(-,-) € C*(Bg x (Bgr\ 123%)),

3. the derwative of Hp has linear growth, i.e. there is some ~yp >0 with

|pH(.p) < e (Ltlal +lpl)  forall z.p € BY (jp| 2 1).

L(IRN xRN IR)

Remark. Standard hypothesis (#?) differs from its counterpart (H) in two respects :
The values of F have uniform positive erosion (additionally) and its Hamiltonian is
even twice continuously differentiable in RN x (IR \ {0}). This second restriction
has the advantage that we can apply the tools of matrix Riccati equation (mentioned in
Lemma A.4.7 — Lemma A.4.9).

Proposition A.7.2  Let F, ... Fy, : RN ~ RN hold standard hypothesis (H?) and

HHFJ‘HC]”I(RNX 8B1) DZE{. ||HF]‘||C]'(RN>< 8B1) + Llp DHF]‘|RN>< (9B1 < )\

for some X, p > 0. Moreover for a partition 0 <19 <7 < ... <7, =1 of [0,1],
define the map G : (0,1 xRN ~ RN as G(t,z) := Fi(z) for 71 <t <.
Furthermore choose K € K(IRYN) arbitrarily.

Then there exist 0 >0 and a time T € |0,1] (depending only on A, p, K) such that
the reachable set V5 (t, x0) has positive erosion of radius ot for any t € ]0,7[, xp € K.
As an immediate consequence, Vs (t, K1) has positive erosion of radius ot for all t €]0,7]
and each initial subset K, € K(IRY) of K.

The proof of this proposition uses matrix Riccati equations for Hamiltonian systems,
but these tools of § A.4 consider initial values induced by a Lipschitz function 1.
So roughly speaking, we exchange the two components (z(-),p(-)) (of a trajectory and

its adjoint) preserving the Hamiltonian structure of their differential equations :
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Lemma A.7.3 Assume the Hamiltonian system for x(-), p(-) € AC([0,T], IRY)
w(t) = g Hi(t, =(t), p(t))
with sufficiently smooth Hy : [0,T] x RN x RN — IR. Moreover set
y(t) = _p(t)a Q(t) = .Z'(t) HZ(ta 57 C) = Hl(ta C) _5)
Then the absolutely continuous functions (y(-),q(-)) satisfy the Hamiltonian system
a.e. in [0,7T].

p(t) = — g5 Ha(t, y(t), (1)) O

a.e. in [0,T]

Proof of Prop. A.7.2. The uniform bound A of [|[Hpg|lctimyxom) (J=1...m)

and Gronwall’s Lemma lead to a radius R = R(A, K) > 1 and a time T' = T'(\, K) €]0, 1]
such that 1. Jz(t,K) C By forall te|0,1],

2. for every trajectory z(-) of G starting in K, each adjoint p(-) with

3 <Ip(0) <2 fulfills & <[p()| <R, [|p(-) = p(0)| <75 on [0,T]

(as we have already shown for Prop. A.4.10). So a smooth cut—off function again provides
amap H,:[0,T] x RN x RY — IR that satisfies the assumptions of Corollary A.4.8
and Hl(t,',') :Hé(ta'a')a agx,p)Hl(tJ'J') = agx,p)Hé(t7'7') in RN x (RN\Bﬁ)
for every t € (0,71, j =1,2.

Now we use the transformation of the preceding Lemma A.7.3 and define
HZ: [OaT]X]RNX]RN — ]Ra (tafag) — Hl(ta Ca_f)
still holding the conditions of Corollary A.4.8. As a consequence, we obtain for any

initial point xy € K and time 7 € ]0,7] that the following statements are equivalent :
() Forallte[0,7], theset M} of all points (p(t), z(t)) with solutions
(z(-),p(-)) € AC([0, 1], IR x IRY) of
i(s) = g Hils, 2(s), p(s)), z(0) = o

pls) = — & H(s, (s), p(s)), p(0) € B,\ B,

2

A

is the graph of a continuously differentiable function f;.

(@¢7) Forallt e [0,7], the set M? of all points (y(t), ¢(t)) with solutions
(y(-),q() € AC([0,1], RY x IRY) of

is) = & Hals, y(s), a(s), y(0) € B\ B,

q(s) = — g, Ha(s, y(s), a(s)), q(0) = o
is the graph of a continuously differentiable function g¢; (and ¢;(§) = fi(—=¢)).
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(77) For any solution (y,q) : [0,t] — IRY x IR of the initial value problem (i)
(t < 7), there exists a solution @ : [0,t] — IRY*Y of the Riccati equation

Q + OI (s, y(s), a(s) Q@ + Q 552 (s, y(s), qls))

A + Q Th(tyls) a(s) @ +  Th(s,y(s),q(s) = 0
Q) = 0

(v) For any solution (z,p) : [0,¢] — IR x IRY of the initial value problem ()

(t < 7), there exists a solution @ : [0,t] — IRY*Y of the Riccati equation

Q —  TH(sa(s9). p(s) Q@ — Q PH(s, u(s), pls))
" + Q T (s, x(s),p(s) Q +  GH(s, 2(s), p(s) = 0,
QO) = 0.
Now we give a criterion for the choice of 7:  Setting
po=p\K) = sup ( % Ha(t, 2, p) _%}pﬂé(t;x,p) )
0< |9t0| ég ~ Bpor He(t, @, p) 50z Ha(t, @, p) J—
SIS R

the comparison theorem for the matrix Riccati equation (Lemma A.4.9) guarantees

existence and uniqueness of such a solution @ : [0,¢] — RY*Y for any ¢ < min{7T’, =

) 2“
because the scalar Riccati equation £ u = a+awu?,  w(0)=0 has the solution
u(t) = tan(at) on [0, 5[ (fora= iu). Furthermore we obtain [|Q(t)|| < tan(ut).

Standard hypothesis (H?) for Fy ... F,, leads to a constant o = o(A, p, K) >0 with
2 2
f'%?‘[(txp)§>4a‘§ |2p
forall # € [0,7], || <R, < |p| <R, & Using the abbreviation D(t,z,p) for
- 81:(9]) 5 (top) Q1) — Q) 3;031: <(ta,p) + Q) a;,;z < (t,x,p) Q) € RN*N,
I1D(t, z,p)|| < o

choose 7=T7(\, p, K) >0 small enough s.t. 7 < min{7
for every ¢ €[0,7], || <R, £ <|p|<R.

72u7 )\}

As a next step, we show that the solution @Q(¢) of (iv) (restricted to [0,7]) has
the upper bound —o ¢t in a (N —1)-dimensional subspace of IR". Indeed, let
(z(), p(+)) € AC([0,7], RYx IR") be a solution of the Hamiltonian system (¢) and
choose an arbitrary unit vector £ € RY with |€-p(0)| < {5

2
Then the auxiliary function ¢ : [0,7] — RN, t — &-Q(t) &+ ot ‘ §— ‘§p~(€)(|g) p(t) ‘

satisfies p(0) =0 and is absolutely continuous with
2
ot) = € QW€+ ole-] tﬂz p(t)t +ot (6- S0 p) - 4 (2 ()
- & Q)€ + o &= §Hdp0)| + ot (6= S2dpm) - SEE B
|2 L p(t) is perpendlcular to p(t).

as & —



A.7. EVOLVING INTO SETS OF POSITIVE EROSION 261

PO < (-a+1+ o] SEp0| + ot |e—GEp0] LEE o)
< -2 o e p0| + ot |- G p0) A
< ole- S| - (=2 [e- 58 p0) + 20)
< ole-gapew] - (-2 (-58)  + )
< ole-gEo] (-2 (- 1) e
< 0

because [p(t) —p(0)] < 7%, £ <Ip(®)] <R and [£-p(0)] < ;% imply % < 1
So we obtain ¢(t) <0 forall ¢ € [0,7] and as a consequence, Q(t) < —ot-Id is
fulfilled in the subspace of IRY perpendicular to p(t).

Finally we need the geometric interpretation for concluding the positive erosion of
V&(t, xo) (of radius ot) for each ¢ € ]0,7[ and zo € K.
As mentioned before, the existence of the solution Q(-) on [0,7] implies for all ¢ €
[0,7[ that the sets M}, M? are graphs of continuously differentiable functions f;, g,
respectively. Moreover Prop. A.3.2 guarantees
Graph Noge0) C { ((), Ap(t)) | (2(), p())solves (i), A >0} 2 [ Graph (A f;7),

A>0
So we obtain for every ¢ € ]0,7] that each p € IRV \ {0} belongs to the limiting normal

cone of a unique boundary point z € 095(t,79) (and z = z(p) is continuously diff.).
In particular, the projection on ¥5(¢,zo) is a single-valued function in R" and thus,
Vg(t, x9) is convex for all ¢ € |0,7] (see e.g. [25, Clarke,Stern, Wolenski 95], Cor. 4.12).
So it is sufficient to consider the limiting normal cones of ¥5(t,20) locally at every

boundary point.

For each solution (z(-),p(-)) of the Hamiltonian system (i), set (y(-),q(-)) :=
(—p(), z(-)) again and let (U(-),V () :[0,t] — R¥*N x R¥*N denote the solution

of the linearized system

Uls) = 325 Hals, y(s), a(s)) Uls) + £z Hals, y(s), a(s)) V(s),
A V(s) = — £ Hals, yls), a(s)) Uls) — 35 Hals, y(s), a(s)) V(s),
U(0) = Idgaxx, V() = 0.

Then for any s €0, ¢] and initial direction ug € IR™\ {0}, the tuple (U(s)ug, V(s) ug)
belongs to the contingent cone of M? C RN x RN at (y(s),q(s)) (due to well-known

properties of variational equations, see e.g. [37, Frankowska 2002]).
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Since M? is the graph of a continuously differentiable function gy, we conclude that
firstly, this cone 77, (y(s),¢(s)) is a N-dimensional subspace of R" x Y and
secondly, |V(s)ug| < const(A)-|U(s)up| (according to remark (1.) after Def. A.4.13).
The latter property and the uniqueness of the linearized system ensure U(s)uy # 0
for all up # 0 and thus, U(s) is invertible. ~Comparing now the dimensions leads to
Tip2(y(s),a(s)) = (U(s), V(s)) RN

and  V(s) U(s)™! is the derivative of the C' function g, at y(s).

So —V(s)U(s)™" is the derivative of the C! function f, = g,(—-) at p(s) = —y(s).
Moreover it is easy to check that V(s) U(s)™! satisfies the matrix Riccati equation (747)

and thus, its uniqueness implies V(s) U(s)™* = Q(s) for 0 <s <t < T,

Together with the preceding upper bound of Q(t), we obtain for every time ¢ € ]0, 7]
that the derivative of f; at p(t) is bounded by ot from below in a (N—1)-dimensional
subspace of RY.  Since 95(t, zg) is convex, it implies that ¥ (¢, z) has positive erosion

of radius ot. O

Meanwhile, Hélene Frankowska and Piermarco Cannarsa have investigated the same
question of regularity independently. Their direct geometric approach is differing
completely from Proposition A.7.2 and implies that the Hamiltonian Hz, need not be

even twice continuously differentiable (see [17, Cannarsa, Frankowska 2004]).
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