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Tag der mündlichen Prüfung: 21. September 2004





Contributions to Multiple Postmen Problems

Gutachter: Prof. Dr. Gerhard Reinelt

Prof. Dr. Klaus Ambos-Spies





To Angela and Linus.





Abstract
In this dissertation we contribute to the optimal solution of multiple postmen problems,
where the aim is to find a set of postman tours (each starting and ending at a post office) for
k ≥ 2 postmen. We consider the Min-Max k-Chinese Postman Problem (MM k-CPP) where,
given a street network, the objective is to cover each street by at least one postman tour
while minimizing the length of the longest tour, and the Capacitated Arc Routing Problem
(CARP) where the aim is to traverse a set of streets each having a certain service demand such
that the total tour length is minimized and the sum of demands serviced by each postman
does not exceed a given capacity. The CARP and the MM k-CPP are NP-hard. Therefore,
the development of effective methods and algorithms for finding lower and upper bounds of
high quality is essential for solving these problems to optimality (up to a certain order of
magnitude).

Based on a detailed review on existing lower bounding procedures for the CARP we
develop an improved algorithm and confirm its effectiveness by computational experiments.
We also reveal a new dominance relation between two existing lower bounding procedures
formerly claimed to yield the same results.

After a comprehensive discussion of IP formulations for the CARP and existing exact
solution methods based on these formulations we contribute to these methods by devising an
exact separation method for the aggregated capacity constraints, an important class of valid
inequalities, which could formerly only be separated heuristically. We achieve new best lower
bounds with a cutting plane algorithm incorporating this new separation method.

For the MM k-CPP we present the only existing heuristic found in the literature. Then we
develop two new heuristics, several new improvement procedures, and a tabu search algorithm
incorporating these new methods. Computational experiments show that the tabu search
algorithm achieves upper bounds of high quality which in many cases could be proven to be
optimal.

With respect to lower bounds for the MM k-CPP we develop a counterpart concept for the
capacity restriction of the CARP, namely a distance restriction for each single tour imposed
by an upper bound value. Using this distance restriction we devise a procedure to determine
the minimum number of postmen required to traverse a given node set and the depot, which
enables us to adapt the lower bounding procedures of the CARP to the MM k-CPP.

Finally, we develop a branch-and-cut algorithm for the MM k-CPP based on an IP for-
mulation for the CARP. In addition to the utilization of standard valid inequalities and
corresponding separation routines adapted from the CARP we devise a new class of valid
inequalities for the MM k-CPP, called the aggregated L-tour constraints, as well as effective
procedures to separate them. Computational experiments on an extensive set of test instances
as well as comparisons with results achieved by commercial optimization tools confirm the
effectiveness of our approach.



Zusammenfassung
In der vorliegenden Arbeit leisten wir Beiträge zur optimalen Lösung von Postboten Proble-
men. Dabei konzentrieren wir uns auf Postboten Probleme, bei denen für mehrere (k ≥ 2)
Postboten Touren bestimmt werden sollen, wobei alle Touren beim Postamt starten und enden
müssen. Wir betrachten das Min-Max k-Chinese Postman Problem (MM k-CPP), bei dem
für ein gegebenes Straßennetzwerk k Touren derart bestimmt werden sollen, dass jede Straße
mindestens einmal durchlaufen wird und die längste der k Touren von minimaler Länge ist.
Weiterhin betrachten wir das Capacitated Arc Routing Problem (CARP), bei dem für jede
Straße eine gewisser Bedarf zu decken ist (übertragen auf das Problem von Müllfahrzeugen,
würde das z.B. bedeuten, dass eine gewisse Menge von Müll abzutransportieren ist). Hier
ist nun die Zielsetzung, die Touren so zu bestimmen, dass die Gesamtlänge minimiert wird
und zusätzlich bei keinem der Postboten eine Kapazitätsbeschränkung verletzt wird (bei den
Müllfahrzeugen dürfte also kein Fahrzeug mehr Müll abtransportieren, als es Ladekapazität
hat). Beide Probleme sind NP-hart. Daher ist die Entwicklung effektiver Methoden zur
Bestimmung guter unterer und oberer Schranken von grundlegender Bedeutung, um diese
Probleme (bis zu einer gewissen Größenordnung) optimal lösen zu können.

Basierend auf einem detaillierten Überblick über existierende Algorithmen zur Bestim-
mung unterer Schranken für das CARP entwickeln wir einen verbesserten Algorithmus und
demonstrieren seine Güte mit Hilfe von Rechenexperimenten. Ferner zeigen wir für zwei exis-
tierende Algorithmen, die bisher in der Literatur als gleichwertig betrachtet worden sind, dass
der eine Algorithmus den anderen dominiert.

Nach einer ausführlichen Besprechung von IP Formulierungen für das CARP und der
Vorstellung existierender exakter Verfahren, die auf diesen Formulierungen basieren, stellen
wir eine neue Methode vor, mit der eine wichtige Klasse von Ungleichungen, die sogenannten
Aggregated Capacity Constraints, erstmals exakt separiert werden kann. Mittels eines Cut-
ting Plane Algorithmus, der diese neue Separierung verwendet, bestimmen wir verbesserte
untere Schranken für einige Instanzen aus der Literatur.

Für das MM k-CPP präsentieren wir zunächst die einzige existierende Heuristik, die man
in der Literatur findet. Dann entwickeln wir zwei neue Heuristiken, verschiedene Verbes-
serungsverfahren und einen Tabu Search Algorithmus, der alle diese Verfahren kombiniert.
Rechenexperimente zeigen, dass der Tabu Search Algorithmus sehr gute Lösungen berechnet,
die in vielen Fällen sogar optimal sind.

Zur Bestimmung unterer Schranken für das MM k-CPP entwickeln wir zunächst ein ana-
loges Konzept zu den Kapazitätsbeschränkungen beim CARP. Eine Distanzbeschränkung für
eine einzelne Postboten Tour beim MM k-CPP ist natürlicherweise durch eine obere Schranke
gegeben. Mit Hilfe dieser Distanzbeschränkung entwickeln wir ein Verfahren zur Berechnung
der minimalen Anzahl von Postboten, die benötigt wird, um einen Teilbereich des Straßen-
netzwerkes zu durchlaufen. Dieses Verfahren erlaubt es uns, die für das CARP entwickelten
Algorithmen zur Bestimmung unterer Schranken auf das MM k-CPP zu übertragen.

Schließlich entwickeln wir, basierend auf einer IP Formulierung für das CARP, einen
Branch-and-Cut Algorithmus für das MM k-CPP. Zusätzlich zu den gängigen gültigen Unglei-
chungen und dazugehörigen Separierungsverfahren erarbeiten wir eine neue Klasse gültiger
Ungleichungen für das MM k-CPP, die sogenannten Aggregated L-Tour Constraints, sowie ef-
fektive Separierungsalgorithmen. Umfangreiche Rechenexperimente auf einer großen Menge
von Testinstanzen sowie Vergleiche mit Ergebnissen kommerzieller Optimierungswerkzeuge
bestätigen die Leistungsfähigkeit unseres Verfahrens.
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Chapter 1

Introduction

In almost all private and public organizations some kinds of distributed services have to be
performed. For example, a company producing a certain product has to pick up raw materials
at different locations and then has to distribute final products to the customers. Similarly, a
municipal council of a city has to manage the waste collection and the street cleaning activities
of the city. The management of such a distributed service consists of several tasks and an
important one of them is the effective management of transportation resources, in other
words, to design the routes of vehicles and the assignments of crews. Organizations often
expend a large amount of labor and money for the transport activities and these transport
activities are to be carried out not only a few times but repeatedly (every day, every week
etc.). It is obvious that a system of well-designed vehicle routes can reduce the expenses
of an organization significantly. For these reasons the study of routing problems has been
an important area of operations research for the last fifty years, and its significance is still
growing with the increasing numbers of companies and organizations that have to deal with
transport activities. One of the most famous routing problems is the Traveling Salesman
Problem which asks for a shortest circular trip through a given number of cities.

In the mathematical study of routing problems it is convenient to represent the underlying
transportation network by a graph, a mathematical construct consisting of nodes which may —
in our context — represent cities, locations or street crossings, and arcs which may represent
street connections between cities or locations. Then a routing problem can be formulated as
an optimization problem on a graph. If, under this formulation, services are to be performed
at the nodes or on the arcs, then it is called a node routing problem or an arc routing problem,
respectively. Arc routing problems are sometimes known as postmen problems since they
reflect the real world situations of postal service. In practice one encounters a huge variety
of different routing problems, e.g., only one or several vehicles may be used, there may be
capacity restrictions for the vehicles, there may be restrictions on the departure and arrival
times for locations, etc.

Most of these problems are computationally difficult to solve. In the language of compu-
tational complexity, they are NP-hard. Therefore, an intensive study during the last three
decades has concentrated on the development of exact algorithms which can handle problem
instances of moderate sizes, on the design and analysis of effective heuristics which can handle
large problem instances, and on exploring solvable special cases. Considerable success has
been achieved in these directions of research, especially in the area of node routing prob-
lems. However, arc routing problems have been far less intensively studied than node routing
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problems and there are also several arc routing problems about which we know very little.

It is the purpose of this dissertation to present investigations on two NP-hard variants
of postmen problems, on the Min-Max k-Chinese Postman Problem (MM k-CPP) and on
the Capacitated Arc Routing Problem (CARP), and to offer some new contributions to the
subject of routing problems. For both problems the aim is to find a set of postman tours
(each starting and ending at a post office) for k ≥ 2 postmen. Therefore we refer to these
problems as multiple postmen problems. In detail, for the MM k-CPP, given a street network,
the objective is to cover each street by at least one postman tour while minimizing the length
of the longest tour, and for the CARP the aim is to traverse a set of streets each having a
certain service demand such that the total tour length is minimized and the sum of demands
serviced by each postman does not exceed a given capacity.

1.1 Outline and Contributions

This thesis is structured as follows. In chapter 2 we give basic definitions from the field of
linear algebra, polyhedral theory, graph theory, and complexity theory which are required for
the later chapters. Furthermore, we introduce the cutting plane method and the branch-and-
cut method which are essential for the development of exact algorithms. Finally, we introduce
problems which frequently occur as subproblems in the scope of this thesis.

In chapter 3 we present an up-to-date survey on routing problems. The main focus is on
arc routing problems but we also consider the most important node routing problems. Each
problem is precisely defined and all important results concerning its computational complexity,
solvable cases, polyhedral investigations, exact and heuristic solution strategies, and latest
computational results are given. We also aim at revealing the numerous relationships which
exist between the considered routing problems. The chapter closes with a brief discussion of
practical applications.

Chapter 4 is devoted to heuristic methods for the CARP and the MM k-CPP. For the
CARP we survey the most important and recent heuristic approaches. Then we turn to the
MM k-CPP and present the only existing heuristic found in the literature. We devise two
new heuristics based on different paradigms and compare the effectiveness of all heuristics
for the MM k-CPP by computational experiments. We continue with the development of
improvement procedures which can be used on top of the heuristics. Finally, we incorporate
these methods into a tabu search algorithm for the MM k-CPP and perform computational
studies in order to assess its quality.

A dual point of view is taken in chapter 5 where algorithms for determining lower bounds
of an optimal solution value are discussed. We start with a detailed review of such algorithms
for the CARP. Thereby we reveal a domination relation of two algorithms formerly claimed
to yield the same results. Furthermore, we apply an improvement idea to the currently best
known algorithm and obtain improved lower bounds this way. The second part of this chapter
deals with the MM k-CPP and starts with presenting two existing lower bounds. Then based
on the ideas of the CARP algorithms we develop new lower bounding procedures for the
MM k-CPP and evaluate their effectiveness by computational experiments.

In chapter 6 we discuss complexity results, solvable cases, and approximation algorithms
for the CARP and the MM k-CPP. We generalize two solvable cases for the Capacitated
Chinese Postman Problem, which is a special case of the CARP, to the general CARP and for
the MM k-CPP we contribute three solvable cases. For the existing approximation algorithm
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for the MM k-CPP we devise a tight example and discuss further improvement possibilities.
Chapter 7 deals with methods for obtaining optimal solutions based on the cutting plane

and the branch-and-cut method. We start with an overview of IP formulations for the CARP
and discuss existing solution methods based on these formulations. We contribute to these
methods by devising an exact separation method for the aggregated capacity constraints, an
important class of valid inequalities, which could formerly only be separated heuristically.
We achieve improved lower bounds with a cutting plane algorithm incorporating this new
separation method. In the second part of this chapter the focus is on the development of
a branch-and-cut algorithm for the MM k-CPP. We devise a new class of valid inequalities,
called the L-tour constraints, and develop effective heuristics to separate these inequalities.
Computational experiments on an extensive set of test instances as well as comparisons with
results achieved by commercial optimization tools confirm the effectiveness of our approach.

Finally, in chapter 8 we summarize the results of this thesis, give conclusions and point
to future research directions.

The appendix A gives an overview of our test instances and detailed results of our com-
putational experiments for the CARP and the MM k-CPP.
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Chapter 2

Mathematical Preliminaries and

Terminology

This chapter introduces basic mathematical concepts and general terminology used through-
out this thesis. More specific terminology will be provided at the appropriate places in
subsequent chapters. Some elementary definitions are given to make the presentation more
self-contained.

2.1 Linear Algebra and Polyhedral Theory

A set is a collection of distinct elements. A multiset is a collection in which some elements
may be equal.

By R, Z, N we denote the set of real, integral and natural numbers. The set N of
natural numbers does not contain zero. The set of nonnegative integral numbers is denoted
as Z

+
0 . The set R

+
0 denotes the set of nonnegative real numbers.

For a real number α, the symbol bαc denotes the largest integer not larger than α (the
floor of α), dαe denotes the smallest integer not smaller than α (the ceiling of α).

A tuple or vector is an ordered collection of not necessarily distinct elements. For n ∈ N,
the symbol R

n (Zn, N
n) denotes the set of vectors with n components with entries in R (Z,

N). If E and R are sets, then RE is the set of mappings of E to R. If E is finite, it is
very convenient to consider the elements of RE as vectors with |E| components. Each vector
x ∈ RE is indexed by an element of E, i.e., x = (xe)e∈E . For F ⊆ E, the vector χF ∈ R

E

defined by χF
e = 1 if e ∈ F and χF

e = 0 if e ∈ E \ F is called the incidence vector of F .
A vector is always considered as a column vector, unless otherwise stated. The superscript
“T” denotes transposition. So for x ∈ R

n, xT is a row vector, unless otherwise stated.
The standard scalar product of vectors x, y ∈ R

n is xT y =
∑n

i=1 xiyi.

For two sets A and B, the expression A ⊆ B means that A is a subset of B. We write
A \B for the set-theoretical difference {x ∈ A | x /∈ B} and 2A for the set of all subsets of A,
the so-called power set of A.

For any set R, Rm×n denotes the set of m × n-matrices with entries in R. For a matrix
A ∈ Rm×n, we usually assume that the row index set of A is {1, . . . , m} and that the column
index set is {1, . . . , n}. Unless specified otherwise, the elements or entries of A ∈ Rm×n are
denoted by aij , 1 ≤ i ≤ m, 1 ≤ j ≤ n.

A vector x ∈ R
n is called a linear combination of the vectors x1, x2, . . . , xk ∈ R

n if,

5
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for some λ ∈ R
k, x =

∑k
i=1 λixi. If, in addition, λ ≥ 0 and

∑k
i=1 λi = 1 we call x a

convex combination of the vectors x1, x2, . . . , xk. If only
∑k

i=1 λi = 1 we call x an affine
combination of the vectors x1, x2, . . . , xk. If only λ ≥ 0 we call x a conic combination
of the vectors x1, x2, . . . , xk. These combinations are called proper if neither λ = 0 nor λ
is a unit vector, i.e., a vector having exactly one component set to 1 and the others set to
0. For a nonempty subset S ⊆ R

n, we denote by conv(S) (aff(S), cone(S)) the convex hull
(affine hull, conic hull) of the elements of S, that is, the set of all vectors that are convex
(affine, conic) combinations of finitely many vectors of S. A subset S ⊆ R

n is called linearly
(affinely) independent if none of its members is a proper linear (affine) combination of
elements of S; otherwise S is called linearly (affinely) dependent. For any set S ⊆ R

n

the rank of S (affine rank of S) denoted by rank(S) (arank(S)), is the cardinality of the
largest linearly (affinely) independent subset of S. For any subset S ⊆ R

n the dimension of
S, denoted by dim(S), is the cardinality of a largest affinely independent subset of S minus
1, i.e., dim(S) = arank(S) − 1. A set S ⊆ R

n with dim(S) = n is called full-dimensional.

If A is a real m × n-matrix and b ∈ R, then Ax ≤ b is called a system of inequalities,
and Ax = b a system of equations. The solution set {x ∈ R

n | Ax ≤ b} of a system of
inequalities is called a polyhedron. A polyhedron P that is bounded is called a polytope.
A description of a polyhedron by means of linear inequalities is also called outer description
or linear description. Due to a classical result in polyhedral theory by Weyl [Wey35] and
Minkowski [Min96] each polyhedron P ⊆ R

n can be decomposed into a convex set and a
cone, i.e., there exist finite sets X ⊂ R

n and Y ⊂ R
n such that P = conv(X)+ cone(Y ). This

type of description is called inner description of P .

If a ∈ R
n \ {0} and a0 ∈ R, then the polyhedron {x ∈ R

n | aT x ≤ a0} is called a
halfspace, and the polyhedron {x ∈ R

n | aT x = a0} a hyperplane. Every polyhedron is
the intersection of finitely many halfspaces.

An inequality aT x ≤ a0 is called valid with respect to a polyhedron P if P ⊆ {x | aT x ≤
a0}. A set F ⊆ P is called face of P if there exists a valid inequality aT x ≤ a0 for P such
that F = {x ∈ P | aT x = a0}. We say that F is the face defined (or induced) by aT x ≤ a0.
If v is a point in a polyhedron P such that {v} is a face of P , then v is called a vertex of P .
A facet of P is an inclusionwise maximal face F with ∅ 6= F 6= P . Equivalently, a facet is a
nonempty face of P of dimension dim(P ) − 1.

2.2 Graph Theory

An undirected graph G = (V, E) consists of a finite nonempty set V of nodes and a
finite set E of edges. With every edge, an unordered pair of nodes, called its endnodes,
is associated and we say that an edge is incident to its endnodes. A multigraph allows
E to be a multiset. If a node is an endnode of an edge we say that the node is incident
with the edge. We denote an edge e with endnodes u and v by {u, v} or uv. Two edges are
called parallel if they have the same endnodes. An edge is called a loop if the endnodes
are identical. A graph without parallel edges and loops is called simple. A node without
incident edges is called isolated.

Two nodes that are joined by an edge are called adjacent or neighbors. For a node
set W , Γ(W ) denotes the set of neighbors of nodes in W . For a single node v we write Γ(v)
for Γ({v}). The set of edges having a node v ∈ V as one of their endnodes is denoted by
δ(v). The number |δ(v)| is the degree of node v ∈ V . More generally, if W ⊆ V , then δ(W )
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denotes the set of edges with one endnode in W and the other endnode in V \W . Any edge
set of the form δ(W ), where ∅ 6= W 6= V , is called cut. We also use the notation (W, V \W )
for the cut δ(W ). If s and t are two different nodes of G, then an edge set F ⊆ E is called
an [s, t]-cut if there exists a node set W ⊆ V with s ∈ W, t /∈ W such that F = δ(W ). For
an edge set F and a node set W we denote by F (W ) the subset of edges of F having both
endnodes in W . Similarly, for a node set W and an edge set F we denote by W (F ) the nodes
from W being incident to any edge from F .

If W is a node set in G = (V, E), then G−W denotes the graph obtained by removing W ,
i.e., the node set of G−W is V \W and G−W contains all edges of G which are not incident
to a node in W . By G[W ] we denote the subgraph of G induced by a node set W ⊆ V , i.e.,
G[W ] = G− (V \W ). For F ⊆ E, the graph G−F = (V, E \F ) is called the graph obtained
from G by removing F . For v ∈ V and e ∈ E, we write G − v and G − e instead of G − {v}
and G − {e}.

A matching (or 1-matching) M in a graph G = (V, E) is a set of edges such that no
two edges of M have a common endnode. A matching M is called perfect if every node is
contained in one edge of M .

A simple graph is called complete if every two of its nodes are joined by an edge. The
complete graph on n nodes is denoted by Kn.

A graph is called planar if it can be drawn in the plane in such a way that no two edges
(i.e., the lines representing edges) intersect, except possibly in their endpoints.

A directed graph (or digraph) D = (V, A) consists of a finite nonempty set V of
nodes and a finite set A of arcs. With every arc a, an ordered pair (u, v) of nodes, called its
endnodes, is associated; u is the initial endnode (or tail) and v the terminal endnode
(or head) of a.

If D = (V, A) is a digraph, then the graph G = (V, E) having an edge {u, v} whenever
(u, v) ∈ A or (v, u) ∈ A is called the underlying graph of D. A digraph has an “undirected
property” whenever its underlying graph has this property.

If v ∈ V then the set of arcs having v as initial (terminal) node is denoted δ+(v) (δ−(v)).
We set δ(v) = δ+(v) ∪ δ−(v). The numbers |δ+(v)|, |δ−(v)|, and |δ(v)| are called the outde-
gree, indegree, and degree of v, respectively.

In a graph or digraph, a walk is a finite sequence W = (v0, e1, v1, e2, v2, . . . , ek, vk), k ≥ 0,
beginning and ending with a node, in which nodes vi and edges (arcs) appear alternately, such
that for i = 1, 2, . . . , k the endnodes of every edge (arc) ei are the nodes vi−1 and vi. The
nodes v0 and vk are called the origin and the terminus, respectively, or the endnodes of
W . The nodes v1, . . . , vk−1 are called the internal nodes of W . The number k is the length
of the walk which equals the number of edges in W . We will also denote W as [v0,vk]-walk.
If in a digraph all arcs ei are of the form (vi−1, vi) then W is called a directed walk, diwalk
or (v0,vk)-walk. If we deal with simple graphs, i.e., there are no parallel edges or arcs, a
walk is uniquely identified by the ordering of the contained nodes and we will simply write
W = (v0, v1, . . . , vk). In the same way, we will sometimes consider a walk as a sequence of its
traversed edges, i.e., W = (e1, e2, . . . , ek).

A walk in which all nodes are distinct is called a path. A walk in which all edges (or arcs)
are distinct is called a trail. A path (trail) in a digraph that is a diwalk is called a directed
path (directed trail) or dipath (ditrail). As for walks we will use the notions [v0, vk]-path
and (v0, vk)-path for paths and dipaths, respectively, with origin v0 and terminus vk.

Two nodes s and t of a graph G are said to be connected if G contains an [s, t]-path. G
is called connected if every two nodes of G are connected. A digraph D is called strongly
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connected if for every two nodes s and t of D there is an (s, t)-dipath and a (t, s)-dipath in
D.

A graph G (digraph D) is called k-connected (k-diconnected) if every pair s, t of nodes
is connected by at least k [s, t]-paths ((s, t)-dipaths) whose sets of internal nodes are mutually
disjoint. The components of a graph are the maximal connected subgraphs of the graph.
An edge e of G is called a bridge if G − e has more components than G.

A walk is called closed if it has nonzero length and its origin and terminus are identical.
We will also use the notion tour for a closed walk. A closed walk in which the origin and all
internal nodes are different and all edges are different is called a circuit or cycle. A closed
diwalk in which the origin and all internal nodes are different and all arcs are different is
called a dicycle or directed cycle. A circuit or dicycle of odd (even) length is called odd
(even). A graph (digraph) which contains no cycle (dicycle) is called acyclic. An acyclic
digraph is sometimes abbreviated as DAG.

A walk (diwalk) that traverses every edge (arc) of a graph (digraph) exactly once is called
an Eulerian trail (Eulerian ditrail). We refer to a closed Eulerian trail (ditrail) as an
Eulerian tour. An Eulerian graph (Eulerian digraph) is a graph (digraph) containing
an Eulerian tour.

A cycle of length n in a graph G = (V, E) with |V | = n is called a Hamiltonian cycle.
A graph G that contains a Hamiltonian cycle is called Hamiltonian. Similarly, a digraph D
is called Hamiltonian if it contains a Hamiltonian dicycle. Hamiltonian cycles or dicycles
are often called (Hamiltonian) tours.

A forest is an edge set in a graph which does not contain a cycle. A connected forest is
called a tree. A spanning tree of a graph is a tree containing all nodes of the graph.

2.3 Complexity Theory

In the scope of this thesis we will often talk about the “difficulty” of problems and “efficiency”
of algorithms. Clearly these discussions are meaningful only when we have a reasonable theo-
retical framework to measure the above quantities. The theory of computational complexity,
initiated by the works of Cook [Coo71] and Karp [Kar72] and developed in the 1970s provides
us with such a framework. In this section we present the basic notations of computational
complexity theory which are required for out later discussions. For the sake of simplicity we
will cover this area in a rather informal and intuitive way. Formal, rigorous and extensive
presentation of these and further concepts can be found in the classical books of Garey and
Johnson [GJ79] and Aho et al. [AHU74].

Let us begin with the notion of a problem. For our purposes, a problem will be a
general question to be answered, usually processing several parameters, or variables, whose
values are left unspecified. A problem is described by giving a general description of all
its parameters and a statement of what properties the answer, or solution, is required to
satisfy. An instance of a problem is obtained by specifying particular values for all the
problem parameters.

For our informal discussion, it is sufficient to understand an algorithm as a step-by-step
procedure used to solve a problem. We say that an algorithm solves a problem, if it finds out
a solution for each instance of the problem. In general, we are interested in finding the most
“efficient” algorithm for solving a problem. In its broadest sense, the notion of efficiency
involves all the various computing resources needed for executing an algorithm. However,
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“running time” is usually the most dominating one of computing resources and the fastest
algorithm is generally recognized as the most efficient. Therefore, in the following we will
concentrate on the time complexity measure.

The time requirements of an algorithm are conveniently expressed in terms of a single
variable, the “size” of a problem instance, which is intended to reflect the amount of input data
needed to describe the instance. In order to define the size of a problem instance for arbitrary
problems, we view the description of a problem instance that we provide as input to the
computer as a single finite string of symbols chosen from a finite input alphabet. Clearly, there
are many ways to transform an instance description into a finite string. Therefore, we have
to associate with each problem a fixed encoding scheme which states this transformation.
Then, the input length |I| for an instance I of a problem Π is defined to be the number
of symbols in the description of I obtained from the encoding scheme for Π. After having a
reasonable encoding scheme, we have to choose a “computer model” with which our run-time
analysis is to be performed. Usually, in a formal discussion one uses the Turing machine,
but for our discussion here we can consider any ordinary real word computer. Then, for a
problem Π, an algorithm A which solves Π, and I an instance of Π, the running time of A
for solving I is the number of elementary steps of our computer required to get a solution
of I. (For a real world computer one may consider the elementary arithmetic operations and
read/write operations as elementary steps.) The time complexity function of an algorithm
A is a mapping fA which maps each n ∈ N to the maximum running time required for the
solution of an instance I with input length less or equal to n. Let us say that a function
f(n) is O(g(n)) whenever there exists a constant c such that |f(n)| ≤ c|g(n)| for all values
of n ≥ 0. Then algorithm A is said to be a polynomial time algorithm if there exists a
polynomial p : N → N such that fA(n) = O(p(n)); otherwise A is said to be an exponential
time algorithm.

Considering the growth rates of polynomial time complexity functions, e.g., n, n2, n3,
and those of exponential time complexity functions, e.g., 2n, 3n, it becomes clear that only
polynomial time algorithms can be of practical relevance. For example, assuming an exe-
cution time of one microsecond for an elementary operation, and an input length of 60, an
algorithm with time complexity n5 would need approximately 13 minutes while an algorithm
with time complexity 2n would require approximately 366 centuries to finish. Even speeding
up computations by a factor of 100 or 1000 cannot help to solve substantially larger instances
with exponential time algorithms. Edmonds [Edm65a] already distinguished between those
two classes of algorithms and denoted polynomial time algorithms as “good” algorithms. This
reflects the viewpoint that exponential time algorithms should not be considered “good” al-
gorithms, and indeed this usually is the case. Most exponential time algorithms are merely
variations on exhaustive search, whereas polynomial time algorithms generally are made pos-
sible only through the gain of some deeper insight into the structure of a problem. There is a
wide agreement that a problem has not been “well-solved” until a polynomial time algorithm
is known for it. Informally, we say that a problem is easy if it can be solved with a polynomial
time algorithm and difficult otherwise. To obtain a more systematic and concise classification
of problems according to their computational complexity, we need some further notions.

Complexity classes will be defined precisely on a set of special problems, namely deci-
sion problems, i.e., problems whose instances have only two possible solutions: “yes” or
“no”. The reason for the restriction to decision problems is that all notions can be naturally
mapped to exact mathematical objects: the solutions of a decision problem can be naturally
characterized by a formal language, the exact computational model is given by the Turing
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machine, an algorithm is represented by a Turing program and instances by input strings
processed by the Turing program. Now, the Turing program is said to “solve” the decision
problem if it halts for all possible input strings and the language accepted by the Turing pro-
gram coincides with the set of all “yes”-solutions. The class P (polynomial) is defined as the
class of decision problems which can be solved by a polynomial time algorithm. The class NP
(nondeterministic polynomial) contains all decision problems with the following property: if
the solution is “yes” for an instance, then there exists a proof for this “yes” answer which can
be checked with a polynomial time algorithm. Note that it is not required that the proof itself
can be found in polynomial time. Informally such a nondeterministic algorithm for solving
a problem in NP consists of a “guessing” step which produces somehow a proof for a given
instance and a “checking” step which checks in polynomial time whether the proof yields a
“yes” answer to the decision problem. Note that if checking the proof does not lead to a “yes”
answer, this does not imply that we could give a “no” answer. From this discussion it should
be clear that a polynomial time nondeterministic algorithm is basically a definitional device
for capturing the notion of polynomial time verifiability, rather than a realistic method for
solving decision problems. Obviously P ⊆ NP holds. Although it is widely believed that this
inclusion is strict, the question “P = NP?” is still one of the most famous open questions
in mathematics. We have already mentioned that the class NP lacks symmetry concerning
“yes” and “no” answers. Therefore we define the class co-NP to contain all decision prob-
lems such that every “no” answer has a proof which can be checked in polynomial time. It is
commonly conjectured that NP 6= co-NP though not proved.

Under the assumption that P 6= NP we are interested in the “difficult” problems contained
in NP \ P. In order to characterize these problems we need the following concept. Let Π1

and Π2 be two decision problems. A polynomial transformation from Π1 into Π2 is a
polynomial time algorithm which produces for each given instance I1 of Π1 an instance I2 of
Π2 such that the solution for I1 is “yes” if and only if the solution for I2 is “yes”. Clearly, if
Π2 ∈ P then so is Π1. A decision problem is said to be NP-complete if it is in NP and every
problem in NP can be polynomially transformed to it. An NP-complete problem Π, therefore
has the property mentioned at the beginning of this paragraph: If P 6= NP, then Π ∈ NP\P.
More precisely, as soon as we can solve a single NP-complete problem in polynomial time,
we can solve all problems in NP in polynomial time and hence P = NP. In this sense the
NP-complete problems are the hardest problems in NP. The first NP-completeness proof
was given by Cook [Coo71] for the satisfiability problem.

Let us consider a complexity class for more general problems, namely search problems.
For each instance of a search problem, there is an arbitrary (but finite) number of solutions.
Hence one can see a decision problem as a special kind of search problem with only two
solutions. The more general concept of a polynomial transformation for search problems is
as follows. A search problem Π1 is Turing reducible to another search problem Π2 if there
exists an algorithm A1 which solves Π1 by using an algorithm A2 for Π2 as a subroutine
and A1 is a polynomial time algorithm for Π1 if A2 is a polynomial time algorithm for Π2.
A search problem Π is said to be NP-hard if an NP-complete decision problem is Turing
reducible to Π, and Π is NP-easy if it can be Turing reduced to a problem in NP. Finally,
Π is NP-equivalent if it is both, NP-hard and NP-easy. These definitions imply that if a
search problem Π is NP-hard and it is solvable in polynomial time, then P = NP (in other
words an NP-hard problem is at least as hard as the problems in NP). On the other hand
if Π is NP-easy and P = NP, then we can solve Π in polynomial time (in other words an
NP-easy problem is at least as easy as the problems in NP). Consequently an NP-equivalent
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problem is polynomially solvable if and only if P = NP.
Most problem formulations aim at picking the “best” solution from a finite set of feasible

solutions. Such problems are called combinatorial optimization problems. More formally a
combinatorial optimization problem Π consists of the following.

• A set of valid instances DΠ, recognizable in polynomial time.

• Each instance I ∈ DΠ has a finite set of feasible solutions SΠ(I). We require to have
at least one solution, i.e., SΠ(I) 6= ∅, and that every solution s ∈ SΠ(I) is of length
polynomially bounded in |I|. Furthermore, we must have a polynomial feasibility
check, i.e., a polynomial time algorithm that, given a pair (I, s), decides whether
s ∈ SΠ(I).

• There is a polynomial time computable objective function cΠ, that assigns a nonneg-
ative real number to each pair (I, s), where I is an instance and s is a feasible solution
for I.

• Finally, Π is specified to be either a minimization problem or a maximization
problem.

An optimal solution for an instance of a minimization (maximization) problem is a feasible
solution that achieves the smallest (largest) objective function value, denoted by OPTΠ(I)
for an instance I of the problem Π. A minimization problem can be transformed into a
maximization problem by replacing cΠ with −cΠ and vice versa.

With every combinatorial optimization problem, one can naturally associate a decision
problem by giving a bound on the optimal solution. Thus, the decision version of a combina-
torial optimization problem Π consists of pairs (I, B), where I is an instance of Π and B is
a rational number. If Π is a minimization problem, then the answer to the decision version
is “yes” if and only if there is a feasible solution s to I of cost equal or less than B, i.e.,
cΠ(I, s) ≤ B (analogous for a maximization problem). Clearly, a polynomial time algorithm
for Π can help solve the decision version by computing the cost of an optimal solution and
comparing it with B. Conversely, hardness established for the decision version carries over to
Π. Indeed hardness for a combinatorial optimization problem is established by showing that
its decision version is NP-hard.

Many combinatorial optimization problems encountered in practice (and almost all prob-
lems encountered in this thesis) were shown to be NP-hard and hence, under the assumption
P 6= NP, we cannot expect to find a polynomial time algorithm for them. However, as we
will see in this thesis, by using intelligent methods which exploit the problem characteristic
exact algorithms with satisfactory running time for moderate instance sizes can be developed.

A polynomial time algorithm for a combinatorial optimization problem that produces a
feasible solution which is “close” to the optimal solution is usually denoted as heuristic. If
we can even give a guarantee for the solution quality of our heuristic we call this algorithm an
approximation algorithm. More formally, given a minimization problem Π and α ≥ 1, an
algorithm is said to be an α-factor approximation algorithm for Π, if it produces a feasible
solution s for each instance I of Π such that cΠ(I, s) ≤ αOPTΠ(I) and the running time is
polynomially bounded in |I|. For maximization problems we use the analogous definition
with α ≤ 1 and cΠ(I, s) ≥ αOPTΠ(I).

An even stronger concept is that of an approximation scheme for a problem Π which,
informally speaking, comprises a family of approximation algorithms approaching the factor
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1 arbitrarily good while paying with increased running time. Such approximation schemes
can be considered the best we can hope for when faced with an NP-hard combinatorial
optimization problem.

2.4 Linear Programming and the Cutting Plane Method

One of the most important problems in the field of mathematical optimization is the Linear
Programming Problem (also abbreviated as Linear Program (LP)) which can be stated
as follows. Given an m × n-matrix A, a vector b ∈ R

m, and a vector c ∈ R
n, find a vector

x∗ ∈ P = {x ∈ R
n | Ax ≤ b} by maximizing the linear function cT x over P . An LP will

often be written in the short form max{cT x | Ax ≤ b}. A vector x̃ satisfying Ax̃ ≤ b is
called a feasible solution of the LP, and a feasible solution x̃ is called an optimal solution
if cT x̃ ≥ cT x for all feasible solutions x. The linear function cT x is called the objective
function of the linear program. If we replace “maximizing” by “minimizing”, the resulting
problem is also called a linear program and the same terminology applies. Note that the set
of feasible solutions P = {x ∈ R

n | Ax ≤ b} is a polyhedron.

Basically, algorithmic research on the Linear Programming Problem started in 1947 with
the invention of the simplex method by Dantzig [Dan51]. The great significance of linear
programming became soon clear because many problems in production management could
be stated in linear programming terms and, most importantly, solved algorithmically by the
simplex method. From the practical point of view the simplex method is quite efficient and
still the basic building block of todays fastest computer implementations for solving LPs,
so-called LP solvers. However, from the theoretical point of view the simplex method is not
satisfactory because one can construct instances leading to an exponential running time, as
has been done for the first time by Klee and Minty [KM72]. The first polynomial algorithm
for LPs has been devised by Khachiyan [Kha79]. It is based on the so called ellipsoid
method originally invented for nonlinear optimization. However, this algorithm turned out
to be quite inefficient in practice. The first polynomial algorithm which proved also to be
efficient in practice was given by Karmarkar [Kar84]. It belongs to the class of so-called
interior point methods. These algorithms are also part of todays commercial LP solvers.

If we are interested in an integer optimal solution x̃ ∈ Z
n of an LP we will denote this prob-

lem as an Integer Linear Programming Problem (also abbreviated as Integer Program
(IP)). However, this additional constraint makes the problem NP-hard (see Karp [Kar72]).

For an in-depth treatment of the field of linear programming we recommend the excellent
book of Chvátal [Chv83]. Further classical references are Padberg [Pad99] and Dantzig
and Thapa [DT97, DT03]. For the field of integer programming we refer to Schrijver
[Sch86] and Nemhauser and Wolsey [NW88].

Let us now explain the use of linear programming for solving a combinatorial optimization
problem with linear objective function. The first step is to associate a polytope to the given
combinatorial optimization problem which can be done in a canonical way. For the sake of
clear and intuitive presentation let us assume that instances of the combinatorial optimization
problem are given by a finite set E, the set of feasible solutions of E is given by F ⊆ 2E

and the objective function by c : E → R. In the following we refer with (E,F , c) to this
combinatorial optimization problem. Then, any feasible solution F ∈ F can be represented
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by its incidence vector χF ∈ R
E which we have defined as

χF
e =

{

1 if e ∈ F
0 if e /∈ F.

Now, the polytope PF associated with (E,F , c) is defined as

PF = conv({χF | F ∈ F}).

Note that the vertices of PF correspond exactly to the feasible solutions F ∈ F . The combi-
natorial optimization problem (E,F , c) could now be solved by the linear program

max{cT x | x ∈ PF}.

Unfortunately, we do not know any efficient algorithm to solve a linear program if the solution
space is only defined as the convex hull of a set of points. The afore mentioned methods
for solving LPs, e.g., the simplex method, apply only to a polyhedron given by its outer
description. As already mentioned in section 2.1 we know that for any inner description there
exists an equivalent outer description, i.e., there exists an m × |E|-matrix A ∈ R

m×|E| and a
vector b ∈ R

m such that
PF = {x ∈ R

|E| | Ax ≤ b}.

Hence (E,F , c) could be solved by finding an optimal vertex solution of the linear program-
ming problem

max{cT x | Ax ≤ b}.

So far so good, but how do we get the outer description for our problem? In fact, there
are finite algorithms to transform the inner description of a polytope into an equivalent
outer description and vice versa but they can only be used for very small problem instances
(cf. Christof [Chr91, CL04] for a software, Christof et al. [CJR91] and Reinelt [Rei93]
for examples). In general, however, the number of inequalities m is simply too large to be
represented explicitly. In fact, for most combinatorial optimization problems only a very small
part of the linear description is known. Moreover, for no NP-hard combinatorial optimization
problem a complete linear description could be given so far and Karp and Papadimitriou
[KP82] showed that a tractable description cannot be found unless NP = co-NP.

In order to overcome this problem we proceed as follows. Instead of insisting on the
polytope PF we turn to a polytope Q which contains PF , i.e., PF ⊆ Q, and which can
be described by a reasonable number of inequalities. For example we could use the |E|-
dimensional unit cube Q = {x ∈ R|E| | 0 ≤ xi ≤ 1, i = 1, . . . , |E|}. Then we solve the
linear program max{cT x | x ∈ Q} and obtain an optimal vertex solution x∗. There are two
possibilities: if x∗ ∈ PF , then x∗ is the incidence vector of an optimal solution of (E,F , c)
and we are done. Otherwise, i.e., x∗ ∈ Q but x∗ /∈ PF , we search for an inequality aT x ≤ a0

such that PF is contained in the halfspace defined by this inequality, i.e., PF ⊆ {x ∈ R
|E| |

aT x ≤ a0}, but the point x∗ is not, i.e., aT x∗ > a0 holds. Visually speaking, the point x∗ is
cut off from the polytope Q. Therefore, inequality aT x ≤ a0 is called a cutting plane (we
also say x∗ violates aT x ≤ a0 and therefore aT x ≤ a0 is said to be a violated inequality for
x∗). The problem of finding such a cutting plane which cuts off a given point x∗ as described
above is referred to as separation problem for PF . Now we can add the cutting plane to the
linear program and repeat this procedure. Let us summarize this method, which is denoted
as cutting plane method.
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Algorithm: CuttingPlane

(1) Solve the LP max{cT x | x ∈ Q} and obtain an optimal vertex solution x∗.

(2) If x∗ is the incidence vector of some feasible solution F ∈ F then terminate.

(3) Otherwise, solve the separation problem, i.e., find an inequality aT x ≤ a0 with

PF ⊆ {x ∈ R
|E| | aT x ≤ a0}

and
aT x∗ > a0.

(4) Set Q = Q ∩ {x ∈ R
|E| | aT x ≤ a0} and go to step (1).

Does the cutting plane method always produce an optimal solution for our combinatorial
optimization problem (E,F , c)? Theoretically it should, because if the algorithm does not
terminate in step (2) there must exist a violated inequality for x∗ which should be identified in
step (3). However, a fundamental result in combinatorial optimization given by Grötschel
et al. [GLS93] states that a combinatorial optimization problem can be solved in polyno-
mial time if and only if the separation problem for the associated polytope can be solved in
polynomial time. This implies, that if we consider an NP-hard combinatorial optimization
problem we cannot hope for a polynomial algorithm which always finds a violated inequality
in step (3) (unless P = NP).

When using the cutting plane method, a good starting point for choosing Q for a specific
combinatorial optimization problem (E,F , c) is to find a subsystem Ãx ≤ b̃ of Ax ≤ b such
that every integer solution of Ãx ≤ b̃ represents an incidence vector corresponding to a feasible
solution F ∈ F , i.e.,

PF = conv({x | Ãx ≤ b̃, x integer}).

The system
max{cT x | Ãx ≤ b̃, x integer}

is called an integer programming formulation (IP formulation) of (E,F , c). If we
drop the integrality condition, we obtain a linear program which we refer to as linear pro-
gramming relaxation (LP relaxation). Usually we use the cutting plane method with Q
initialized to be the solution space of the LP relaxation, i.e.,

Q = {x | Ãx ≤ b̃}.

Note that the objective function value cT x∗ of the optimal solution x∗ found in step (1)
of the cutting plane method always represents an upper bound for the optimal solution value
of (E,F , c).

Let us summarize. The cutting plane method may fail in finding an optimal solution.
One reason, as already mentioned, is that for NP-hard problems we cannot expect to always
find a violated inequality in step (3), in fact, we can only solve the separation problem for a
partial description of P . More practical reasons might be that solving the separation problem
would be too time consuming or that too many violated inequalities would be added to Q in
step (4) such that the LP would become too large for our LP solver or our computer system.
Hence, we might end with a non-integer solution x∗, a so-called fractional solution, without
having solved our problem. The branch-and-cut method which will be introduced in the next
section represents one possibility how to proceed in this situation.
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2.5 The Branch-and-Cut Method

A branch-and-cut algorithm is a solution method for combinatorial optimization problems
which combines the branch-and-bound method and the cutting plane method.

The general idea of a branch-and-bound algorithm is to solve a problem by a divide-
and-conquer principle. That means that an original problem is successively split into smaller
problems, the so-called subproblems, for which upper and lower bounds of the optimal solu-
tion value are computed. Splitting a problem into subproblems is referred to as branching.
The hierarchy of the problems can be imagined as a tree, the so-called branch-and-bound
tree , where the original problem is associated with the root node of the branch-and-bound
tree.

Of course, one has to ensure that the union of the sets of feasible solutions of the subprob-
lems is equal to the set of feasible solutions of the original problem. In order to explain the
bounding part we assume to deal with a maximization problem. Clearly, all feasible solutions
of subproblems are also feasible for the original problem and therefore the value of such a
feasible solution represents a global lower bound for the value of an optimal solution. In the
course of the branch-and-bound algorithm for each subproblem we try to compute an optimal
solution or at least an upper bound for the value of an optimal solution. Since a subproblem
represents only some kind of “simplified” version of the original problem, the upper bounds
are only valid for this subproblem and are therefore called local upper bounds. A sub-
problem can be fathomed, i.e., it will not be considered anymore, if either it could be solved
to optimality (in that case the global lower bound will be updated if necessary) or it could
be proven to have no feasible solution or its local upper bound fell below the global lower
bound. If a subproblem cannot be fathomed it will again be splitted into subproblems. The
branch-and-bound method terminates if there are no more subproblems left to be splitted.
In that case the best feasible solution is optimal.

Minimization problems are treated analogously and terms change to global upper bound
and local lower bound.

Algorithm: BranchAndBound

(1) Initialize the list of active subproblems with the original problem.

(2) While the list of active subproblems is not empty do

(2.1) Choose some subproblem from the list of active subproblems and distinguish the
following cases:

- If the subproblem can be solved to optimality, update the current best feasible
solution and the global local bound if the new feasible solution is better and
fathom the subproblem.

- If it can be proven that there is no feasible solution for the subproblem it will
be fathomed.

- If the local upper bound of the subproblem falls below the global lower bound
it will be fathomed.

- If none of the above cases applies, split the subproblem into further subprob-
lems and add them to the list of active subproblems.

(3) The best feasible solution found is optimal.
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The success of a branch-and-bound algorithm strongly depends on the availability of good
upper and lower bounds. Since lower bounds can be obtained by any feasible solution one
usually uses primal heuristics for this purpose. For the computation of upper bounds one
usually uses some kind of relaxation. Generally speaking, a relaxation of a combinatorial
optimization problem (E,F , c) is a problem (E,F ′, c) which contains the feasible solutions of
the former, i.e., F ⊆ F ′.

For the branch-and-cut method we use the LP relaxations for computing upper bounds.
In each subproblem we apply the cutting plane method (cf. section 2.4) to find out which one
of the cases of step (2.1) applies. The value of the local upper bound is given by cT x∗. If
x∗ is not integer, i.e., it does not correspond to a feasible solution, we could accomplish the
splitting, e.g., by selecting a fractional component x∗

e of x∗, i.e., 0 < x∗
e < 1, and creating two

subproblems by fixing x∗
e to be 0 and 1, respectively. Of course, there are several other ways

to split a problem into subproblems.

One of the first branch-and-cut algorithms has been implemented by Grötschel et
al. [GJR84] for solving the linear ordering problem. The term “branch-and-cut” was intro-
duced by Padberg and Rinaldi [PR87, PR91]. A detailed introduction to the branch-and-
cut method is, e.g., given by Jünger et al. [JRT95].

2.6 Auxiliary Problems

Finally we discuss auxiliary problems required in the scope of this thesis. All these prob-
lems are polynomial solvable. We give a formal definition for each problem and point to
references for solution algorithms and their time complexity. Almost all of these algorithms
have been implemented in the scope of this thesis. For a few of them we used third party
implementations.

Given a connected undirected graph G = (V, E) with edge weights w : E → R
+
0 and

nodes vi, vj ∈ V the Shortest Path Problem is to find a [vi, vj ]-path P which minimizes
w(P ) among all [vi, vj ]-paths. A shortest [vi, vj ]-path is denoted as SPG(vi, vj) and its weight
is given by w(SP(vi, vj)). We omit the subscript if the associated graph is clear from the
context. We distinguish between the single source shortest path problem where shortest path
between a fixed node and all other nodes have to be determined and an all pairs shortest
path problem where shortest paths between all pairs of nodes have to be determined. For the
former we use a heap implementation of the Dijkstra algorithm [Dij59] with time complexity
O((|V |+ |E|) log |V |) (see, e.g., Cormen et al. [CLR94]). For the latter we use the dynamic
programming algorithm of Floyd and Warshall [Flo62] which requires O(|V |3).

Given a directed graph D = (V, A), edge weights c : A → R
+
0 which are usually referred

to as capacities, and a source node s ∈ V and a sink node t ∈ V . An (s, t)-flow in D is a
function f : V × V → R with properties f((u, v)) ≤ c((u, v)), for all u, v ∈ V , f((u, v)) =
−f((v, u)), for all u, v ∈ V and

∑

f((u, v)) = 0, for all u ∈ V \ {s, t}. The value of the
(s, t)-flow f is |f | :=

∑

v∈V f((s, v)). The Maximum (s, t)-Flow Problem (which will
be abbreviated Max-Flow problem) asks for the maximum value of an (s, t)-flow. Let
c(δ(S)) =

∑

u∈S

∑

v∈V \S c((u, v)) be the capacity of the cut δ(S). The Minimum (s, t)-
Cut Problem asks for an (s, t)-cut of minimum capacity. By virtue of the Max-Flow-
Min-Cut-Theorem [FF56] we know that the maximum value of an (s, t)-flow equals the
minimum capacity of an (s, t)-cut. Therefore we can use an arbitrary maximum (s, t)-flow
algorithm to determine a minimum (s, t)-cut. We use the Edmonds-Karp algorithm for the
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computation of a maximum (s, t)-flow which requires O(|V ||A|2).
If we want to compute the minimum (s, t)-cut for all pairs s, t ∈ V we could do this by

invoking a max-flow algorithm for each of the n(n − 1)/2 possible node pairs. However, the
Gomory-Hu algorithm [GH61] solves the problem faster (requiring only |V | − 1 max-flow
computations) and more elegant. It essentially builds up an edge-weighted tree consisting of
the |V | nodes. Each edge will be weighted with the maximum flow value between its endnodes.
Hence, the capacity of a minimum cut between two arbitrary nodes can be read off as the
minimum weight of an edge contained in the (unique) path connecting these two nodes in the
tree.

The (Global) Minimum Cut Problem asks for an arbitrary cut of minimum capacity.
Of course, we could solve the problem by using the Gomory-Hu algorithm, or more easily
(but with the same time complexity) we could compute minimum (s, t)-cuts for s fixed and
all t ∈ V \{s}. However, there are faster algorithms. We used an implementation of Wenger
[Wen99] of the Hao-Orlin algorithm [HO94] which requires O(|V |2

√

|E|). For the computa-
tion of all minimum cuts of a graph an appropriate data structure called cactus was used.
We used an implementation of Wenger [Wen99] of the algorithm of Fleischer [Fle99].

An α-minimum cut is a cut whose value is at most α times that of a global minimum cut.
The randomized contraction algorithm of Karger and Stein [KS96] successively contracts
edges having high edge weight with high probability until it arrives at 2α nodes. Executing
this algorithm several times a good guarantee of the result can be obtained. We used an
O(|V ||E|) implementation of Wenger [Wen03].

For the Minimum Odd Cut Problem each node is labeled odd or even and the number
of odd labeled nodes has to be ≥ 2 and even. A cut δ(S) is said to be odd if S contains an
odd number of odd labeled nodes (and consequently V \ S is odd, too). The task is now to
determine an odd cut of minimum capacity. We used an implementation of the algorithm of
Padberg and Rao [PR82] which solves the problem by a modified Gomory-Hu approach
at the same time complexity.

Given an undirected graph G = (V, E) with edge weights w : E → R
+
0 the Minimum

Weighted Perfect Matching Problem asks for a perfect matching M ⊆ E minimizing
w(M). We used the implementation contained in the LEDA package [LED, MN99] which
requires O(|V |3).
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Chapter 3

A Survey of Routing Problems

The main motivation of this chapter is to put the problems we are dealing with in this thesis,
namely the MM k-CPP and the CARP, into their scientific context. Both problems are
specific routing problems and therefore we will survey the class of routing problems. Each
problem considered will be precisely defined and furnished with its most important results
and references. Almost all problems we are going to discuss in this chapter are hard from the
complexity theoretical point of view. Nevertheless, thanks to extensive successful research
and sophisticated implementations it is possible to obtain optimal solutions up to a certain
order of magnitude of the input data. The order of magnitude to which a specific problem can
be solved exactly gives a flavor of its difficulty in practice on the one hand and the amount
of research which has gone into it on the other hand. Therefore, we will also briefly provide
information about the latest computational results for each problem.

Since there are many different routing problems, we will restrict this survey to problems
which are closely related to the MM k-CPP and the CARP and to problems to which we will
refer later on in this thesis. We will also incorporate the most important and famous routing
problems into this survey, mainly in order to compare their computational amenability with
that of the problems studied in this thesis.

The remainder of this chapter is structured as follows. First we will classify routing
problems into node routing problems and arc routing problems. Based on this classification
we continue with surveys of these two subclasses. For easier digestion we will then review
the inherent hierarchy and interrelations of the discussed routing problems. Further, we will
briefly deal with practical applications of routing problems and finally summarize the most
important aspects we have learned in this chapter.

3.1 A Classification of Routing Problems

Let us dive into the field of routing problems by informally describing two typical problems.

Routing Problem 1: A salesman has to visit several cities. Starting at a certain city he
wants to find a route of minimum length which traverses each of the destination cities exactly
once and leads him back to his starting point.

Routing Problem 2: A postman has to deliver mail for a network of streets. Starting at a
given point, e.g., the post office, he tries to find a route of minimum length allowing him to
traverse each street at least once and leading him back to the post office.

19
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Both problems can be precisely modeled by utilizing graphs (cf. section 2.2). Typically,
for problem 1 we would use a complete graph Kn = (V, E) with edge weights w : E → R

+
0 ,

where the n cities are represented by the node set V and each possible connection between
a pair of cities by the edge set E. Each edge is weighted with the distance between the
cities it connects. For problem 2 the street network is mapped to an edge-weighted graph
G = (V, E), w : E → R

+
0 , where the streets are represented by the edge set E and street

crossings are represented by the node set V. Each edge is usually weighted with the length of
the street or the amount of time needed to serve it.

In spite of the similarity of problem formulations 1 and 2 we can observe a substantial
difference between them. Namely, in the first we have to traverse fixed points and we can use
arbitrary connections for connecting the points to obtain a tour. In the second we have to
traverse a fixed network and we can only use the streets given by this network. Therefore,
problems of the first kind are referred to as Node Routing Problems and of the second
kind as Arc Routing Problems.

By imposing side constraints onto the problems, e.g., multiple salesmen or postmen, time
and capacity restrictions, etc., a variety of different problems can be obtained.

The MM k-CPP and the CARP belong to the class of arc routing problems. Therefore,
we will put the focus of this survey on arc routing problems.

3.2 Node Routing Problems

In the past node routing problems have been studied much more than arc routing problems.
The sheer amount of research and results is impressively demonstrated by the existence of
several books and survey articles which are solely dedicated to special node routing problems
such as the Traveling Salesman Problem or the Vehicle Routing Problem.

3.2.1 The Traveling Salesman Problem

The TSP is certainly the most important and most famous problem in the field of combina-
torial optimization. It can easily be stated as follows.

Problem: Traveling Salesman Problem (TSP)
Instance: An undirected complete graph Kn = (V, E) and edge weights w : E → R

+
0 .

Task: Find a Hamiltonian cycle with minimum weight in Kn.

Note that this definition implies that the edge weights are symmetric. Therefore, the
TSP as defined above is often called more specifically the Symmetric Traveling Sales-
man Problem (STSP). The TSP with asymmetric edge weights on a complete directed
graph, i.e., in general w((vi, vj)) 6= w((vj , vi)) for an edge {vi, vj}, is consequently called the
Asymmetric Traveling Salesman Problem (ATSP).

The TSP is NP-hard by reduction from the Hamiltonian Cycle Problem. The transfor-
mation and the NP-hardness of the latter is shown in [GJ79].

The most recent book dedicated to the TSP has been edited by Gutin and Punnen
[GP02]. It summarizes the state-of-the-art results for the STSP as well as for several variations
of the TSP. Further classical references are Jünger et al. [JRR95], the monograph Reinelt
[Rei94], where emphasis is put on computational aspects, and the book by Lawler et
al. [LLRKS85].
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The extensive research on the TSP has led to impressive computational results. In order
to provide a set of challenging TSP instances Reinelt compiled the TSPLIB [Rei91, TSPb].
At present, the biggest instance from the TSPLIB solved to optimality consists of 15,112
cities [ABCC01, ABCC03, TSPa]. However, note that not only the instance size but also its
structure indicates its difficulty.

In a variant of the TSP on a directed graph, named Generalized Traveling Salesman
Problem (GenTSP), to which we will refer later the node set is partitioned into several
disjoint subsets and the task is to find a least cost Hamiltonian cycle passing exactly once
through each of the subsets. A transformation of the GenTSP to the ATSP is given by Noon
and Bean [NB93].

3.2.2 The k-Traveling Salesman Problem

The k-TSP is a natural generalization of the TSP taking into account the more practical
aspect that multiple salesmen (or vehicles) can be used. In the literature the problem is
usually named m-TSP. We use the variable k for conformity reasons with the related arc
routing problems.

Problem: k-Traveling Salesman Problem (k-TSP)
Instance: An undirected complete graph Kn = (V, E), edge weights w : E → R

+
0 , a

distinguished depot node v1 ∈ V and the number of vehicles k ≥ 1.
Task: Find a collection of k cycles with minimum total weight such that each

cycle visits the depot node and each node v ∈ V \{v1} is visited by exactly
one cycle.

Clearly, the k-TSP is NP-hard since it contains the TSP as a special case for k = 1. By
introducing artificial nodes for the depot node, the k-TSP can be transformed into a TSP
[LRK75]. Laporte and Norbert [LN80] presented computational results for the k-TSP.

3.2.3 The Capacitated Vehicle Routing Problem

The CVRP extends the k-TSP by taking into account that goods have to be delivered to (or
collected from) different locations and that the capacity of a vehicle is of limited size.

Problem: Capacitated Vehicle Routing Problem (CVRP)
Instance: An undirected complete graph Kn = (V, E), edge weights w : E → R

+
0 ,

node demands d : V \ {v1} → R
+, a distinguished depot node v1 ∈ V with

d(v1) = 0, the number of vehicles K and a vehicle capacity Q ∈ N.
Task: Find a collection of K cycles with total minimum weight such that each

cycle visits the depot node, each node v ∈ V \ {v1} is visited by exactly
one cycle, and the sum of the demands of the vertices visited by a cycle
does not exceed the vehicle capacity Q.

Obviously, the CVRP is NP-hard since it contains the TSP as a special case for K = 1
and Q = ∞.

For an in-depth treatment of the CVRP we refer the reader to the recent book edited
by Toth and Vigo [TV02] and the one edited by Golden and Assad [GA88]. Shorter
overviews are given by Fisher [Fis95] and Laporte [Lap92, Lap97b] where the latter contains
an annotated bibliography for the CVRP and its variants. In Gendreau et al. [GLP97]
the focus is on heuristic methods.
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Computational experiments showed that the CVRP is much harder to solve than the TSP
[Bla99, LLE04, RKPT03, FPRU03, FLP+04, Wen03]. This is mainly due to the fact that the
CVRP comprises a packing aspect beneath the routing aspect. The biggest instance solved
so far consists of 135 nodes and 7 vehicles, but there are instances with fewer nodes which
are unsolved at present [CVR].

3.2.4 The Distance Constrained Vehicle Routing Problem

Instead of restricting the capacity of a vehicle as for the CVRP it could be necessary to impose
a distance (or time) limit on each tour. An example could be a truck driver which must not
drive more than 8 hours a day.

Problem: Distance Constrained Vehicle Routing Problem (DVRP)
Instance: An undirected complete graph Kn = (V, E), edge weights w : E → R

+
0 , a

distinguished depot node v1 ∈ V , the number of vehicles K, and a distance
limit L ∈ N.

Task: Find a collection of K cycles with minimum total weight such that each
cycle visits the depot node, each node v ∈ V \ {v1} is visited by exactly
one cycle, and the sum of the weights of the edges of each cycle does not
exceed the distance limit L.

Laporte et al. [LDN84] presented two exact algorithms for the DVRP. The first used
Gomory cuts to obtain an integral solution. The second used a branch-and-bound scheme.
Instances up to 60 nodes and up to 10 vehicles could be solved to optimality.

In [LND85] Laporte et al. considered the k-TSP with both capacity and distance
constraints. They presented an exact algorithm and solved instances up to 50 nodes.

3.2.5 The Min-Max k-Traveling Salesman Problem

In almost all problems in this chapter the aim is to minimize the total cost. There are,
however, contexts where an equity criterion is more appropriate. This occurs in situations
where the aim is to assign “fair” routes, i.e., routes of approximately the same length, to
salesmen or postmen.

The MM k-TSP is a k-TSP where the objective is to minimize the length of the longest
tour instead of the total length of all tours. It is the node routing counterpart problem to
the Min-Max k-Chinese Postman Problem (MM k-CPP) (cf. section 3.3.9) which is the main
topic of this thesis.

Problem: Min-Max k-Traveling Salesman Problem (MM k-TSP)
Instance: An undirected complete graph Kn = (V, E), edge weights w : E → R

+
0 , a

distinguished depot node v1 ∈ V , and the number of vehicles k ≥ 1.
Task: Find a collection of k cycles such that each cycle visits the depot node,

each node v ∈ V \ {v1} is visited by exactly one cycle, and the weight of
the tour having maximum weight among the k cycles is minimized.

For k = 1 the MM k-TSP reduces to the TSP and is therefore NP-hard.
The problem was first considered by Frederickson et al. [FHK78] with the additional

restriction that the weight function w satisfies the triangle inequality. The authors devised
(besides two other heuristics) a (5/2 − 1/k)-factor approximation algorithm by computing
a single tour with the well-known heuristic of Christofides [Chr76] and splitting it into k
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segments. For the case that the triangle inequality restriction is dropped no approximation
algorithm is known.

Almost 20 years later the MM k-TSP has been re-investigated by França et
al. [FGLM95]. They contributed a tabu search algorithm based on the GENI insertion
heuristic originally invented for the TSP [GHL92] as well as an exact method which is based
on the exact algorithm for the DVRP [LDN84] and solved instances with up to 50 nodes
exactly.

An interesting variation, called the Newspaper Routing Problem (NRP), was con-
sidered in the scope of a mathematical contest in 1996 [WHI]. For a special instance with
120 nodes and k = 4 the aim was to find four paths starting at the depot such that each
node is traversed exactly once and the length of the longest path is minimized. Applegate
et al. [ACDR02] could solve this special instance to optimality with a sophisticated dis-
tributed branch-and-cut based implementation, taking 10 days on a distributed network of
188 processors. This massive requirement of computational power impressively demonstrates
the inherent difficulty of problems subjected to a min-max objective.

3.2.6 The Min-Max Capacitated Vehicle Routing Problem

There is also a version of the CVRP with min-max objective.

Problem: Min-Max Capacitated Vehicle Routing Problem (MM CVRP)
Instance: An undirected complete graph Kn = (V, E), edge weights w : E → R

+
0 ,

node demands d : V \ {v1} → R
+, a distinguished depot node v1 ∈ V with

d(v1) = 0, the number of vehicles K, and a vehicle capacity Q ∈ N.
Task: Find a collection of K cycles such that each cycle visits the depot node, each

node v ∈ V \ {v1} is visited by exactly one cycle, the sum of the demands
of the nodes visited by a cycle does not exceed the vehicle capacity Q,
and the weight of the tour having maximum weight among the K cycles is
minimized.

The MM CVRP was considered for the first time by Golden et al. [GLT97] which
devised a tabu search algorithm. They also considered versions of the MM CVRP and MM k-
TSP where a vehicle can be used several times, i.e., it is allowed to pass the depot several
times. No effective exact algorithm for the MM CVRP has been devised up to now.

3.3 Arc Routing Problems

Let us now turn to arc routing problems which have been studied far less intensively than
node routing problems in the past. We will start with discussing recent general literature in
the field of arc routing and continue with introducing appropriate notation built upon the
basic terminology from section 2.2. The subsequent survey of arc routing problems will be
more detailed than the survey for node routing problems. The most important results on
aspects like complexity, solvable cases, polyhedral results, exact algorithms, primal and dual
heuristics, approximation algorithms as well as related problems will be discussed.

At present, the most recent overview of the field of arc routing is given by the book “Arc
Routing: Theory, Solutions and Applications” [Dro00] which has been compiled by Dror.
Each chapter of the book is dedicated to a different aspect of arc routing and written by
experts on the corresponding area.
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A slightly older survey is Assad and Golden [AG95]. In the first part results and
algorithms for the most important arc routing problems are presented. Several related prob-
lem variations are also mentioned. The second part is devoted to practical applications and
describes several case studies where arc routing methods have been applied to real world
problems.

At the same time a compact two part survey on arc routing problems from Eiselt et
al. appeared [EGL95a, EGL95b]. The first part deals with the Chinese Postman Problem,
the second part with the Rural Postman Problem and the Capacitated Arc Routing Problem.
Here, emphasis is put on the algorithmic point of view.

Only a scarce list of references for arc routing problems is given in the chapter “Vehicle
Routing” of the Annotated Bibliographies in Combinatorial Optimization [Lap97b].

Let us introduce some terminology. Given a connected undirected graph G = (V, E), edge
weights w : E → R

+
0 , and a fixed number k ≥ 2 of postmen. For a subset ER ⊆ E and

a distinguished depot node v∗, we define a k-postman tour on ER with depot v∗ as
a set C of k closed walks, C = {C1, . . . , Ck}, such that each closed walk Cp, p = 1, . . . , k,
contains the depot node v∗ and all edges e ∈ ER are covered by at least one closed walk Cp,
p = 1, . . . , k. Edges contained in ER are called required edges . Let VR ⊆ V be the set of
required nodes, i.e., the set of nodes incident to required edges e ∈ ER.

Given a connected undirected graph G = (V, E), edge weights w : E → R
+
0 , edge de-

mands d : E → R
+
0 , and a capacity Q ∈ N. For ER = {e ∈ E | d(e) > 0} and a distinguished

depot node v∗, we define a capacitated postman tour on ER with depot v∗ as a set C
of l closed walks, C = {C1, . . . , Cl}, such that each closed walk Cp, p = 1, . . . , l, contains the
depot node v∗, all edges e ∈ ER are serviced by exactly one closed walk Cp, p = 1, . . . , l, and
for each closed walk Cp, p = 1, . . . , l, the sum of the demands of the serviced edges does not
exceed the capacity Q. Let K∗ be the minimum number of postmen required for a capacitated
postman tour and K = d

∑

e∈E d(e)/Qe be a lower bound for the number of postmen required
for a capacitated postman tour.

For the sake of simplicity we will assume v∗ = v1 throughout this thesis. Furthermore, if
the set of required edges is clear from the context we say k-postman tour and capacitated
postman tour. As mentioned earlier we will often call a closed walk containing the depot
node a tour.

We are often interested in the parity of nodes. We say a node v is odd if it has odd
degree, i.e., |δ(v)| is odd, and even otherwise. Restricting our attention to required edges, we
call a node v R-odd (R-even) if the number of incident required edges |δR(v)| = |δ(v)∩ER|
is odd (even).

We extend the weight function w to walks F = (e1, . . . , en) by defining w(F ) =
∑n

i=1 w(ei).
Given a postman tour C = {C1, . . . , Cl}, let us denote by wsum(C) the total sum of all tours,
i.e.,

wsum(C) =

l
∑

p=1

w(Cp)

and let us denote by wmax(C) the maximum weight attained by a single tour, i.e.,

wmax(C) = max
p=1,...,l

w(Cp).
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3.3.1 The Chinese Postman Problem

The work of Euler [Eul36], dating back to 1736, in which he solved the Königsberg bridge
problem, is often referred to as the root of graph theory in general, and the root of arc
routing in particular. The Königsberg (now Kaliningrad) bridge problem posed the question of
whether there exists a closed walk traversing each of the seven bridges crossing the river Pregel
exactly once. Euler noticed that this special problem could be generalized and modeled with
edges representing the bridges and nodes representing the isles and shores. Having utilized the
graph as modeling tool, Euler not only showed that this problem is not solvable for the bridge
configuration of Königsberg (at this time), but he proved necessary and sufficient conditions
for the existence of a closed walk in an arbitrary graph, namely that all nodes have to have
even degree and the graph to be connected. Graphs having this property are therefore called
Eulerian (cf. section 2.2).

About 230 years later the Chinese mathematician Guan (or Mei-Ko) [Gua62] added the
optimization aspect to the question. Given an edge weighted graph he asked for an edge
augmentation of minimum total weight making the graph Eulerian. This problem arose when
he spent some time as a post office worker during the Chinese cultural revolution and sought
to minimize the walking distance for each postman of the office. Therefore the problem was
called the Chinese Postman Problem (CPP).

Problem: Chinese Postman Problem (CPP)
Instance: A connected undirected graph G = (V, E) and edge weights w : E → R

+
0 .

Task: Find a closed walk C∗ in G with minimum weight traversing each edge at
least once, i.e., find a 1-postman tour C∗ with

w(C∗) = min{w(C) | C is a 1-postman tour}.

Note that the connectivity of the graph and the non-negativity of the edge weights is
required to ensure the existence of a finite solution of minimum cost.

Guan observed that each connected graph has an even number of odd nodes and that an
Eulerian graph can be obtained by adding edges to connect odd vertices. Hence, an optimal
solution to the CPP could be obtained by finding a least cost augmentation making each
node even, which could be stated naturally as a minimum weighted perfect matching problem
(cf. section 2.6) . However, at this time no polynomial algorithm for solving the minimum
weighted perfect matching problem was known.

In his seminal work [Edm65a] Edmonds found a polynomial algorithm for the minimum
weighted perfect matching problem and together with Johnson he described a polynomial
time algorithm for solving the CPP [EJ73] by using an adapted version of his matching
algorithm working directly on the original graph. The natural solution algorithm for the
CPP can be described as follows [Edm65b, Chr73].

Algorithm: ChinesePostmanTour
Input: A connected undirected graph G = (V, E) and edge weights w : E → R

+
0 .

Output: An optimal 1-postman tour C∗ in G.

(1) Create a complete graph G′ with edge weights w′ consisting of the odd nodes of G. For
two nodes vi and vj of G′ set w′({vi, vj}) = w(SPG({vi, vj})), i.e., the distance of a
shortest path between vi and vj in G (cf. section 2.6).
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Figure 3.1: A connected weighted undirected graph G.

(2) Compute a minimum weighted perfect matching M on G′.

(3) Augment G by adding for each edge {vi, vj} ∈ M the edges of SPG(vi, vj). Note that
the augmented graph, which will be denoted by G̃, is a multigraph, i.e., it contains
parallel edges.

(4) Construct an Eulerian tour in G̃, i.e., a closed walk which contains each edge exactly
once.

The time complexity of the algorithm is dominated by the computation of the minimum
weighted perfect matching in step (2) which can be accomplished in O(|V |3) (cf. section 2.6).
The construction of the Eulerian tour in step (4) is discussed in section 4.4.2.

Example 3.1 Figure 3.1 shows a weighted graph G which will serve as our example graph
in the following. The nodes are labeled v1, . . . , v8 and each edge e is labeled with its edge
weight w(e). In step (1) graph G′ is constructed which consists of the odd nodes of G,
namely v1, v4, v6, v7. Edge weights are given by the shortest path distances in G which are
w(SP(v1, v4)) = 11, w(SP(v1, v6)) = 4, w(SP(v1, v7)) = 2, w(SP(v4, v6)) = 8, w(SP(v4, v7)) =
13 and w(SP(v6, v7)) = 6. The minimum weighted perfect matching M computed in step
(2) consists of the edges {v1, v7} and {v4, v6}. Figure 3.2 shows the Eulerian graph G̃ which
evolves from G by adding duplicates of the edges {v1, v7} and {v4, v6} (indicated with dashed
lines). Hence, one possible Eulerian walk is given by the node sequence v1, v7, v4, v6,
v5, v8, v4, v6, v8, v7, v1, v3, v2, v5, v3, v4, v2, v1. The weight of this optimal tour is
w(E) + w(M) = 175 + 10 = 185.

In [EJ73] a simple and elegant complete description of the CPP polyhedron, i.e., the
polyhedron defined by the convex hull of vectors which contain for each feasible CPP solution
the number of times the edge has to be traversed without being serviced, is given. It solely
consists of non-negativity inequalities and so-called blossom inequalities which ensure even
parity for each node. These kind of inequalities will be discussed in more detail in chapter 7.

A set of cycles C1, . . . , Cp is called a cycle packing of G if any two distinct cycles Ci and
Cj with i, j ∈ {1, . . . , p} are edge-disjoint. Guan [Gua84b] considered the problem of finding
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Figure 3.2: An Eulerian graph G̃.

a cycle packing with maximum total weight, the Maximum Weighted Cycle Packing
Problem (MWCPP), and showed that the MWCPP is equivalent to the CPP.

A kind of dual point of view with respect to the former problem is represented by the
Minimum Weighted Cycle Covering Problem (MWCCP), which asks for a set of
cycles C1, . . . , Cp in G with total minimum weight, that traverses each edge of E at least
once (obviously, the graph must be 2-connected to obtain a feasible solution). Despite the
similarity to the CPP at first sight the MWCCP is much harder. In fact, it is NP-hard which
was shown by Thomassen [Tho97]. Itai and Rodeh [IR78] were the first who considered
the problem with w(e) = 1 for all e ∈ E and gave an approximation algorithm which was
later improved in [ILPR81]. For a planar graph G Guan and Fleischner [GF85] showed
that the MWCCP is equivalent to the CPP. Furthermore, they discussed questions relating
the MWCCP to well-known conjectures in graph theory. Minoux [Min92] considered the
same problem with the additional restriction that each cycle has to traverse a distinguished
depot node (named the Optimal Link Test Pattern Problem (OLTPP)) but did not
recognize the relation to the MWCPP.

Dror et al. [DST87] considered the Hierarchical Chinese Postman Problem
(HCPP) where the edge set E is partitioned into several classes and a precedence rela-
tion is established between these classes. The additional restriction for a feasible tour is that
edges of an edge class preceding another edge class must be serviced before the edges of the
latter one while the objective is as usual to minimize the total length of the tour. It was shown
that this problem is NP-hard but polynomially solvable cases could be identified. Cabral
et al. [CGGL04] presented a transformation of the HCPP to the Rural Postman Problem
(RPP) (cf. section 3.3.5).

For the Generalized Chinese Postman Problem (GCPP) again the edge set E
is partitioned into classes. Now, the task is to find a closed walk of minimum weight which
traverses at least one edge of each class. Dror and Haouari [DH00] introduced this problem
and showed that it is NP-hard. They pointed out that it is even difficult to find good
heuristics for the GCPP.
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3.3.2 The Directed Chinese Postman Problem

For the CPP the postman was allowed to walk the streets in both directions. Let us now
assume that every street is a one-way street which leads us to the following problem.

Problem: Directed Chinese Postman Problem (DCPP)
Instance: A strongly connected directed graph G = (V, A) and edge weights w : A →

R
+
0 .

Task: Find a directed closed walk in G of minimum weight traversing each edge
at least once.

The DCPP was first stated by Edmonds and Johnson [EJ73] and it can be solved in
polynomial time. Clearly, in order to determine a directed closed walk, we must add edges to
the graph such that the number of entering edges equals the number of leaving edges for each
node. A cheapest augmentation has to be determined, which can, e.g., be accomplished by
transforming the problem into a minimum cost flow problem [EJ73]. Other approaches were
proposed by Liebling [Lie70], Orloff [Orl74], Beltrami and Bodin [BB74], and Lin and
Zhao [LZ88].

Edmonds and Johnson [EJ73] showed that the corresponding polytope is completely
described by non-negativity constraints and so-called balance equations.

3.3.3 The Mixed Chinese Postman Problem

The CPP allowed edges to be traversed in both directions and the DCPP allowed edges to be
traversed in only one direction. However, real world street networks comprise two-way streets
as well as one-way streets. Hence, it is reasonable to consider the Chinese Postman Problem
on mixed graphs G = (V, E ∪ A) with undirected edges E and directed edges A.

Problem: Mixed Chinese Postman Problem (MCPP)
Instance: A strongly connected mixed graph G = (V, E ∪ A) and edge weights w :

E ∪ A → R
+
0 .

Task: Find a mixed closed walk in G of minimum weight traversing each edge at
least once.

The MCPP was first stated by Edmonds and Johnson [EJ73]. Ford and Fulkerson
[FF62] gave necessary and sufficient conditions for a mixed graph to be Eulerian, namely
each node must have even degree (disregarding the direction of each edge) and the number of
incident undirected edges of each node must be greater than or equal to the unbalance of the
incident entering and leaving edges. Based on this characterization Edmonds and Johnson
developed a two-stage algorithm but recognized that it was not optimal except for the case
that G is even, i.e., it does not contain odd nodes. Papadimitriou [Pap76] showed that in
general the MCPP is NP-hard.

A first exact algorithm for the MCPP based on a branch-and-bound scheme with La-
grangean relaxation was proposed by Christofides et al. [CBC+84]. Polyhedral aspects
were discussed by Kappauf and Koehler [KK79] and Ralphs [Ral93]. Further polyhedral
investigations and branch-and-cut algorithms were devised by Win [Win87], Grötschel
and Win [GW92], and Norbert and Picard [NP96]. Laporte [Lap97a] proposed a trans-
formation of several arc routing problems including the MCPP to the ATSP. The largest
instances with up to 225 nodes and 6435 edges (undirected and directed) could be solved by
the implementation of Norbert and Picard [NP96].
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By improving upon the heuristic proposed in [EJ73] (which was shown to have an approx-
imation ratio of 2) Frederickson [Fre79] devised a (5/3)-factor approximation algorithm
for the general case and a (3/2)-factor approximation algorithm for planar graphs. The ratio
was further improved towards 3/2 for general graphs by Raghavachari and Veerasamy
[RV98].

Several heuristics have been proposed for the MCPP in [Gre95], [PL95, PC99], [CMS02],
and [YCC02].

Interestingly, the problem of finding a minimal Eulerian graph that contains a given
mixed graph is polynomially solvable [Pap76]. Stated more precisely, given a mixed graph
G = (V, E ∪ A), find a set of directed edges Ã (not necessarily copies of directed edges from
A) of minimum cardinality such that G̃ = (V, E ∪ A ∪ Ã) is Eulerian.

3.3.4 The Windy Postman Problem

Usually we deal with problems having a symmetric weight function, i.e., the cost of traversing
an undirected edge is assumed to be the same in both directions. Minieka [Min79] argued
that this assumption is not always realistic, for example in the case that the streets are uphill
and downhill or when one direction is with the wind and the other one against the wind.
Therefore, he proposed the name Windy Postman Problem for the following problem.

Problem: Windy Postman Problem (WPP)
Instance: A connected undirected graph G = (V, E), for each edge e = {u, v} an

edge weight w1((u, v)) for traversing e from u to v and a second edge
weight w2((v, u)) for traversing e from v to u.

Task: Find a closed walk in G of minimum weight traversing each edge at least
once.

Obviously, the WPP contains the CPP (by setting w1 ≡ w2) as well as the DCPP and
the MCPP by equipping each directed edge (u, v) with weights w1((u, v)) = w((u, v)) and
w2((v, u)) = ∞. Therefore the WPP is also NP-hard. The WPP is polynomially solvable if
the input graph G is Eulerian [Win87, Win89] or if each cycle contained in G is symmetric,
i.e., the two possible orientations of the cycle have the same weight [Gua84a].

In his Ph.D. thesis [Win87] Win investigated the polyhedron associated with the WPP
and devised a cutting plane algorithm (see also [GW92]). He was able to solve instances with
up to 264 nodes and 489 edges.

Also in [Win87] a 2-factor approximation algorithm for the WPP was given.

3.3.5 The Rural Postman Problem

In all problems discussed so far we have assumed that all edges have to be traversed. However,
for many real world problems we only need to service a subset of the given edges, which are
called the required edges and denoted by ER ⊆ E. The prefix “rural” stems from the
imagination that a postman in rural areas has to service several scattered villages (whose
street networks are represented by required edges) while using several streets connecting the
villages (which are represented as non-required edges). The RPP (as well as its directed and
mixed version) was introduced by Orloff [Orl74].
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Problem: Rural Postman Problem (RPP)
Instance: A connected undirected graph G = (V, E), edge weights w : E → R

+
0 , and

a subset of required edges ER ⊆ E.
Task: Find a closed walk in G of minimum weight traversing each required edge

in ER at least once.

Lenstra and Rinnoy Kan showed that the RPP (and also the directed and mixed
version) is NP-hard [LRK76]. The RPP can be solved in polynomial time if the graph
induced by the required edges is connected.

A first integer programming formulation for the RPP was given by Christofides et
al. [CCCM81]. Based on this formulation the authors devised a branch-and-bound algorithm
based on Lagrangean relaxation. Extensive polyhedral investigations of the RPP polytope
have been conducted by Corberán and Sanchis [CS94]. The detected valid inequalities were
incorporated into a cutting plane algorithm. Branch-and-cut algorithms based on a different
formulation have been proposed by Ghiani and Laporte [GL00] and Theis [The01]. In the
scope of the General Routing Problem (GRP) (cf. section 3.4), which includes the RPP as
a special case, a cutting plane algorithm has been devised by Corberán et al. [CLS01].
The largest instances that could be solved exactly have up to 350 nodes [GL00]. However,
the difficulty of the problem increases not only with the number of nodes but also with the
number of R-connected components, i.e., the components induced by the required edges.

Along the lines of the Christofides heuristic for the TSP [Chr76], Frederickson
[Fre79] proposed a heuristic for the RPP. In the case that the weight function w satisfies
the triangle inequality this heuristic has a worst-case performance ratio of 3/2. Later on
this result was generalized to the GRP by Jansen [Jan92]. Improved heuristics (in terms of
solution quality in the average case) were given by Pearn and Wu [PW95]. Hertz et al.
[HLNH99] presented a set of effective improvement procedures which can be used on top of
any RPP heuristic.

A related problem including the consideration of deadline classes (similar to the HCPP)
was considered by Letchford and Eglese [LE98].

The RPP and the TSP can be transformed into each other [JRR95]. See [JRR95] and
[The01] for related computational results.

3.3.6 The Directed Rural Postman Problem

Problem: Directed Rural Postman Problem (DRPP)
Instance: A strongly connected directed graph G = (V, A), edge weights w : A → R

+
0 ,

and a subset of required arcs AR ⊆ A.
Task: Find a directed closed walk in G of minimum weight traversing each re-

quired arc in AR at least once.

As already mentioned, the DRPP is also NP-hard [LRK76].
An exact algorithm was proposed by Christofides et al. [CCCM86], again a branch-

and-bound algorithm based on Lagrangean relaxation. Polyhedral investigations have been
performed in the context of the MGRP (cf. section 3.4).

Heuristics were proposed in [CCCM86] and [BM88].
An extension of the DRPP obtained by including turn penalties was considered by Be-

navent and Soler [BS99]. A further extension where the arcs are clustered and each cluster
has to be serviced completely before servicing the next was discussed by Dror and Langevin
[DL97].
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3.3.7 The Mixed Rural Postman Problem

Problem: Mixed Rural Postman Problem (MRPP)
Instance: A strongly connected mixed graph G = (V, E∪A), edge weights w : E∪A →

R
+
0 and a subset of required edges ER ∪ AR ⊆ E ∪ A.

Task: Find a mixed closed walk in G of minimum weight traversing each required
edge in ER ∪ AR at least once.

A detailed consideration of the MRPP was conducted in the dissertation of Romero
[Rom97]. Further polyhedral investigations were performed in the context of the Mixed
General Routing Problem [CRS03, CMS04] (cf. section 3.4) which generalizes the MRPP.
The already mentioned transformation of the MRPP to the ATSP proposed by Laporte
[Lap97a] proved very successful in solving larger instances. The biggest instances which could
be solved had up to 220 nodes and 660 edges and arcs.

A tabu search algorithm was presented in [CMR00].

An extension of the MRPP by including turn penalties was considered by Corberán et
al. [CMMS02].

The Stacker Crane Problem (SCP) is a special case of the MRPP where ER = ∅
and AR = A, i.e., exactly the directed edges are required. Frederickson et al. [FHK78]
described a (9/5)-factor approximation algorithm for the SCP.

3.3.8 The k-Chinese Postman Problem

Analogous to node routing problems real world problems require the deployment of several
postmen and not just one postman. We will define the problem on mixed graphs since it
contains the special cases on undirected and directed graphs.

Problem: k-Mixed Chinese Postman Problem (k-MCPP)
Instance: A strongly connected mixed graph G = (V, E∪A), edge weights w : E∪A →

R
+
0 , a distinguished depot node v1 ∈ V , and a fixed number k of postmen

where k > 1.
Task: Find a mixed k-postman tour C∗ which minimizes wsum, i.e.,

wsum(C∗) = min{wsum(C) | C is a mixed k-postman tour}.

Clearly, the k-MCPP is NP-hard since it contains the MCPP. If the input graph G is
fully undirected, i.e., A = ∅, we obtain the k-Chinese Postman Problem (k-CPP) and
if G is fully directed, i.e., E = ∅, we obtain the k-Directed Chinese Postman Problem
(k-DCPP). Interestingly, the polynomial solvability of the CPP and the DCPP carries over
to the k-CPP and the k-DCPP, respectively. For the k-CPP this was first observed by
Assad et al. [APG87] essentially as a by-product of their lower bound algorithm for the
Capacitated Arc Routing Problem (CARP) (cf. section 3.3.10) which will be discussed later
in section 5.1.2. Zhang [Zha92] presented polynomial algorithms for the k-CPP as well as
for the k-DCPP. In a survey article about multiple postmen problems Pearn [Pea94] gave
— among other results — a distinct polynomial algorithm for the k-DCPP. Furthermore, he
showed that the k-MCPP is polynomially solvable if the input graph G is even, i.e., if each
node has even degree (summing up undirected and directed incident edges), and symmetric,
i.e., if the number of incoming directed edges equals the number of outgoing directed edges.
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Finally, for the k-Windy Postman Problem (k-WPP), i.e., the k-CPP on an input graph
accompanied with two distinct weights for each edge depending on the direction it will be
traversed (cf. section 3.3.4), he showed polynomial solvability for the case that each cycle is
symmetric.

To the best of our knowledge no algorithms have been proposed for the k-MCPP in the
literature. Only recently heuristics for the CARP on mixed graphs (which includes the k-
MCPP) have been proposed (cf. section 3.3.10).

3.3.9 The Min-Max k-Chinese Postman Problem

As already mentioned in sections 3.2.5 and 3.2.6, sometimes it is important to determine
routes of similar length. This can be accomplished by a min-max objective, i.e., in the
context of arc routing we want to find a k-postman tour C∗ which minimizes wmax among all
feasible k-postman tours.

Problem: Min-Max k-Chinese Postman Problem (MM k-CPP)
Instance: A connected undirected graph G = (V, E), edge weights w : E → R

+
0 , a

distinguished depot node v1 ∈ V , and a fixed number k of postmen where
k ≥ 2.

Task: Find a k-postman tour C∗ on E which minimizes wmax, i.e.,

wmax(C
∗) = min{wmax(C) | C is a k-postman tour on E}.

The problem was first mentioned by Frederickson et al. [FHK78]. It was shown to be
NP-hard and a (2−1/k)-factor approximation algorithm was proposed. This is the only work
for the MM k-CPP we found in the literature. In general, routing problems with min-max
objective have been scarcely studied in the literature.

The main focus of this thesis is the in-depth investigation of the MM k-CPP. In chapter 4
we present new heuristics, improvement procedures, and a tabu search algorithm for the
MM k-CPP. In chapter 5 we devise new combinatorial lower bound algorithms based on
approaches for the CARP. In chapter 6 we show which restrictions for the MM k-CPP lead
to polynomially solvable cases and what worst case guarantees for primal heuristics can be
given. Finally, in chapter 7 we present an exact solution method for the MM k-CPP based
on a branch-and-cut approach.

3.3.10 The Capacitated Arc Routing Problem

The Capacitated Arc Routing Problem (CARP) is the arc routing counterpart to the Capac-
itated Vehicle Routing Problem (CVRP) (cf. section 3.2.3). It extends the k-CPP (cf. sec-
tion 3.3.8) by edge demands d(e) for all e ∈ E and a vehicle capacity Q ∈ N. All vehicles
have the same capacity Q. As with the Rural Postman Problem, only a subset of required
edges has to be serviced. The required edges are those edges with positive demand, i.e.,
ER = {e ∈ E | d(e) > 0}.
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Problem: Capacitated Arc Routing Problem (CARP)
Instance: A connected undirected graph G = (V, E), edge weights w : E → R

+
0 , a

distinguished depot node v1 ∈ V , edge demands d : E → R
+
0 , and a vehicle

capacity Q ∈ N (with maxe∈E d(e) ≤ Q) for each vehicle.
Task: Find a capacitated postman tour C∗ on ER = {e ∈ E | d(e) > 0} which

minimizes wsum, i.e.,

wsum(C∗) = min{wsum(C) | C is a capacitated postman tour on ER}.

The CARP was introduced by Golden and Wong [GW81]. Since a CVRP instance can
easily be transformed into a CARP instance by splitting each node into two nodes joined by
an edge of zero weight and with demand equal to the original node, the NP-hardness of the
CARP is evident. But the CARP is even harder, in fact Golden and Wong showed that
for any ε > 0 a (3/2 − ε)-factor approximation of the CCPP (a special case of the CARP
with ER = E (see below)), on a tree is NP-hard if w satisfies the triangle inequality. Win
achieved the same result even for the case that the underlying graph is a path [Win87]. If w
does not satisfy the triangle inequality an even more negative result holds. This is due to the
fact that the CARP contains the TSP, the CVRP and the GRP as special cases and for the
TSP we have the result that α-factor approximation is NP-hard for any α ≥ 1 [SG76]. More
details can be found in section 6.1.

In the usual definition of the CARP there are different costs for traversing and servicing
edges. For the sake of simplicity we assume that traversing and servicing an edge has the
same cost and mention at the appropriate places how to manage the two different costs. The
number of used vehicles K can be fixed or treated as a decision variable. In fact, to determine
the minimum number K∗ of postmen which suffice to serve all demands is a Bin Packing
Problem (BPP) (cf. section 6.1) which itself is NP-hard.

A special case of the CARP is the Capacitated Chinese Postman Problem (CCPP),
where each edge has a positive demand, i.e., d(e) > 0 for all e ∈ E. The CCPP was introduced
by Christofides [Chr73].

A second focus of this thesis is the investigation of the CARP because of its close rela-
tionship to the MM k-CPP. In chapter 4 we give a survey of heuristic methods for the CARP.
In chapter 5 we give a detailed description of combinatorial lower bound algorithms for the
CARP. Furthermore, we contribute improvements to the best known algorithms. Chapter 6
reviews complexity results, polynomially solvable cases of the CARP as well as approxima-
tion results. Finally, in chapter 7, we review the different existing IP formulations for the
CARP and existing exact solution methods. We contribute an exact separation routine for a
special class of valid inequalities and report on computational results achieved with this new
separation routine.

At this point we want to mention that the exact resolution of the CARP is very difficult
compared to the previously discussed problems. In the latest computational studies in [BB03]
and [BMCVO03] there are still open problems with only very few nodes and edges, e.g.,
instance gdb8 with 27 nodes and 46 edges and instance gdb13 with 10 nodes and 28 edges
(cf. section A.1.1.5).

Some variants of the CARP were considered in the literature. In the Capacitated Arc
Routing Problem with Intermediate Facilities (CARPIF) vehicles are allowed to
unload or replenish at certain nodes. Primal and dual heuristics for the CARPIF were de-



34 CHAPTER 3. A SURVEY OF ROUTING PROBLEMS

veloped by Ghiani et al. [GIL01]. Amberg et al. [ADV00] investigated the Multiple
Center Capacitated Arc Routing Problem (M-CARP) which includes several depots
and vehicles of different capacities. They developed different heuristics for the M-CARP. A
Multiobjective Capacitated Arc Routing Problem was considered by Lacomme et
al. [LPS03]. Besides minimizing the total length of the tour they considered also the ob-
jective to minimize the length of the longest tour at the same time. In [LPS03] the authors
presented a genetic algorithm for this problem which is based on the one developed for the
CARP [LPRC01a, LPRC01b] (see also section 4.1).

3.4 General Routing Problems

So far we have strictly separated node routing problems and arc routing problems. Of course,
it is also possible to consider problems which address both aspects.

The first one, consequently called the General Routing Problem, extends the RPP
by specifying a set of required nodes VR ⊆ V which has to be traversed in addition to the
required edges.

Problem: General Routing Problem (GRP)
Instance: A connected undirected graph G = (V, E), edge weights w : E → R

+
0 , a

subset of required edges ER ⊆ E, and a subset of required nodes VR ⊆ V .
Task: Find a closed walk in G of minimum weight passing through each required

node in VR and each required edge in ER at least once.

The GRP was introduced by Orloff [Orl74]. Several problems are included in the GRP
as special cases. Besides the mentioned RPP for VR = ∅, we have the so-called Steiner
Graphical Traveling Salesman Problem (SGTSP) [CFN85, Fle85] for ER = ∅, and the
so-called Graphical Traveling Salesman Problem (GraTSP) [CFN85] for ER = ∅ and
VR = V.

Polyhedral results were given by Letchford [Let97a, Let99] and Corberán and San-
chis [CS98]. Based on these results a cutting plane algorithm was implemented by Cor-
berán et al. [CLS01]. Based on a different IP formulation polyhedral results as well as
branch-and-cut implementations were devised by Ghiani and Laporte [GL00] and Theis
[The01].

A (3/2)-factor approximation algorithm was given by Jansen [Jan92]. A k-opt approach
was applied to the GRP by Muyldermans et al. [MBCVO01].

Recently, the GRP has been generalized further by considering mixed graphs yielding the
Mixed General Routing Problem (MGRP). Polyhedral investigations for the MGRP
were performed by Corberán et al. [CRS03, CMS04]. A cutting plane algorithm based on
these insights could solve instances of 214 nodes and 224 edges, and 196 nodes and 316 edges
[CMS04].

A different direction of generalization was undertaken by Jansen [Jan93] by adding de-
mands for edges and nodes as well as a vehicle capacity leading to the General Capacitated
Routing Problem (GCRP). He devised (7/2−3/Q)- and (7/2−5/(Q+1))-factor approx-
imation algorithms for Q even and odd, respectively, assuming that the triangle inequality
holds for the edge weights.
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3.5 Relationships between Routing Problems

We want to summarize (most of) the dependencies between the routing problems discussed
in the previous sections with the aid of the diagram depicted in figure 3.3. Problems are
referenced by their abbreviations and displayed as boxes. Two problems are connected by an
arrow in solid line style if one of the problems represents a specialized version of the other.
The arrow points to the more general problem and the label gives information about the
restriction for the specialized problem. For example, the RPP is a more general version of
the CPP and if ER = E the RPP reduces to the CPP. If one problem can be transformed
to another this is visualized by dashed arrows where the arrow points in the direction of the
transformation. Each transformation is labeled with a citation where the description of the
transformation can be found.

3.6 Practical Applications

One of the big challenges for public and private organizations is the efficient management of
their transport and servicing resources. Usually the work load of the resources is very high
and moreover very costly. Therefore, the design of good routes and the effective assignment
of vehicles is essential for saving money and time.

As we have mentioned in the beginning, routing problems can be divided into node routing
and arc routing problems. For example, problems arising in mail delivery, waste collection,
sanitation services, street inspection, snow removal, meter reading etc. represent arc routing
problems. Hence we could apply the problem formulations given in section 3.3 to these real
world problems and use the proposed solution strategies to solve them. However, at this point
we must admit that real world problems do not always fit into our theoretical framework.
This is mainly due to the fact that most problems occurring in practice are accompanied
by additional side constraints. In theory it is customary to simplify a problem by capturing
only its core features and hence facilitating its theoretical study. Effective solution methods
developed for these simplified problems can be in most cases extended afterwards to solve
real world problems.

Numerous contributions describing the successful transfer of theoretical knowledge to prac-
tical problems can be found in the literature. We refer the reader to the comprehensive
overview of Assad and Golden given in chapters 7 to 10 of [AG95]. Detailed descriptions
of real world projects involving arc routing problems can be found in Part III of the book of
Dror [Dro00] and the chapter by Sniezek et al. [SBLB02] contained in [TV02].

3.7 Summary and Conclusions

This chapter provided us with a survey of the most important routing problems in the context
of this thesis. Precise problem definitions and the most significant results for each problem
were given.

In particular, we gave the order of magnitude to which problems can be solved exactly
at present. A general observation based upon these quantities is that arc routing problems
seem to be more difficult than node routing problems. This is also confirmed by a closer
look at the transformations between arc routing problems and node routing problems. Most
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Figure 3.3: Relationships between routing problems. For the MGRP we have the input
G = (V, E ∪ A), w : E ∪ A → R

+
0 , VR ⊆ V, ER ⊆ E, AR ⊆ A. For the GCRP we have the

input G = (V, E), w : E → R
+
0 , d : E → R

+
0 , VR ⊆ V, ER ⊆ E, Q ∈ N. The objective is always

to minimize the weighted sum of all traversed edges.
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transformations of node routing problems to arc routing problems are straightforward and
do not increase the sizes of the problem instances whereas the opposite direction is more
complicated and often involves an increase in the instance sizes.

Putting the focus on the problems under attack we have learned that the exact resolution
of the CARP is very hard. Based on the results for the node routing problems with min-max
objective we can expect that the exact resolution of the MM k-CPP will also be hard in
theory as well as in practice.
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Chapter 4

Primal Heuristics

In the field of computer science a solution method which — based on common sense, intu-
ition, experience and empirical results — tries to find good solutions for a given problem is
referred to as a heuristic. In general, however, the quality of the achieved solution cannot be
guaranteed to be optimal or near-optimal. An important subclass are heuristics coming with
a worst-case solution guarantee. Such algorithms are called approximation algorithms
and are the subject of chapter 6.

In the context of discrete optimization we are concerned with the minimization or the
maximization of an objective function over a finite set of feasible solutions. For a minimization
problem a heuristic will compute a feasible solution having an objective function value f ′ ≥ f∗,
where f∗ is the objective function value of an optimal solution. Therefore, we also refer to
f ′ as an upper bound for the optimal solution. There are also heuristics which determine
lower bounds for a minimization problem, i.e., a value f ′′ ≤ f∗. Clearly, these kind of
heuristics do not compute feasible solutions if f ′′ < f∗. For maximization problems the above
notions interchange, i.e., a lower bound is usually associated with a feasible solution and an
upper bound is not.

In order to be independent of the optimization sense, i.e., minimization or maximization,
the notion primal is used when approaching an optimal solution from the shore of feasible
solutions whereas dual means the approach from the other side. This chapter is devoted
to primal heuristics for the CARP and the MM k-CPP. Dual heuristics are the subject of
chapter 5.

For NP-hard optimization problems we cannot expect to find polynomial time algorithms
unless P = NP (cf. section 2.3). Therefore, if we go for optimal solutions, we must resort to
approaches based on a more or less intelligent enumeration strategy. Since enumeration results
in running times exponentially growing with the instance sizes, only instances of moderate
sizes can be solved exactly within a reasonable time effort. Hence the practical requirement
for good solutions of larger sized problems as well as the fast computation of these solutions
make the development of efficient primal heuristics indispensable.

Heuristics for routing problems can be broadly classified into constructive methods and
meta heuristics.

Constructive methods are problem specific; they build up routes following specific
rules which seem to be reasonable for the problem under consideration. We can observe that
problems dealing with multiple vehicles combine two different aspects: a clustering aspect,
i.e., the assignment of a subgraph to a vehicle, and a routing aspect, i.e., the determination

39
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of a route for each vehicle. Methods addressing these aspects in separate phases are classified
as two-phase constructive methods. Depending on the order of the phases we distinguish
between route first – cluster second and cluster first – route second algorithms.

Meta heuristics are universal heuristic methods which can be adapted to (almost) any
problem. The books edited by Reeves [Ree93] and Aarts and Lenstra [AL97] demonstrate
the successful application of meta heuristics to many combinatorial optimization problems.
In particular, local search schemes have proven highly effective for the solution of routing
problems. A local search scheme starts with a feasible solution, explores the neighborhood of
this solution, moves towards a neighborhood solution according to some criteria and proceeds
until a given termination criterion is fulfilled. Simulated Annealing [KGJV83], Tabu
Search [Glo86] and Genetic Algorithms represent different kinds of local search strategies.
We can also subsume improvement procedures as a local search strategy since in most
cases local exchange steps are applied to an existing solution.

The remainder of this chapter is structured as follows. We start with an overview of
the most important heuristics devised for the CARP. The survey is structured according to
the above mentioned classification into simple constructive, two-phase constructive and meta
heuristic methods. Then we turn to the MM k-CPP. We start with presenting the algorithm
of Frederickson et al. [FHK78] which is the only existing heuristic for the MM k-CPP
found in the literature. Then we come up with two new heuristics, where the first represents
a simple constructive heuristic and the second follows a cluster first – route second strategy.
After discussing first computational results obtained by implementations of the MM k-CPP
heuristics we develop a set of procedures helping us to improve given solutions and assess their
effectiveness by further computational experiments. Finally, based upon these ingredients we
devise a tabu search algorithm to further improve the obtained solutions. After presenting
computational results for the tabu search algorithm we summarize the main contributions
and results made in this chapter.

4.1 Existing Heuristics for the CARP

Much effort was invested in the development of heuristics for the CARP. Overviews of heuris-
tics for the CARP are contained in the articles of Assad and Golden [AG95], Eiselt et
al. [EGL95b] and Hertz and Mittaz [HM00]. We give a brief overview of the most impor-
tant and most recent heuristics for the CARP.

Simple Constructive Methods. One of the earliest heuristics (originally proposed for the
CCPP) is the construct-strike algorithm by Christofides [Chr73]. Given a graph G = (V, E),
in a first step the algorithm tries to construct a capacity-feasible cycle C such that the graph
G − C remains connected (not counting isolated nodes). In the second step the cycle C is
removed from G and then the first step is repeated until no more cycles are found. If all
required edges have been removed from G, the algorithm terminates. Otherwise, G is made
Eulerian by adding (non-required) edges connecting the odd nodes (computed via a minimum
weighted perfect matching like for the CPP (cf. section 3.3.1)) and the algorithm proceeds
with the first step. Here the motivation for the requirement to keep G connected in step 1
becomes apparent. If G was disconnected we would have to solve a RPP to make G Eulerian.
The algorithm has time complexity O(|E||V |3). Pearn [Pea89] proposed an improved version
of this algorithm (called the modified construct-strike algorithm) but coming with higher time



4.1. EXISTING HEURISTICS FOR THE CARP 41

complexity of O(|E||V |4).
The path-scanning algorithm of Golden et al. [GDB83] proceeds as follows. In each

iteration a path P starting at the depot node will be constructed. Then — as long as the
capacity restriction permits — P is enlarged by edges selected using a specific criterion (the
authors proposed five different criteria). If P cannot be extended anymore it is completed
towards a cycle C by adding the (non-required) edges of a shortest path connection P ′ between
the endnode of P and the depot node. Finally, the cycle C = P + P ′ is removed and the
procedure starts again. If the depot node is isolated, (non-required) edges of a shortest
path connection between the depot node and the nearest non-isolated node are added. The
algorithm is performed with each of the five criteria and the best solution is chosen. The time
complexity is O(|V |3). Pearn [Pea89] has proposed a modified version choosing the edge
selection rule randomly.

The augment-merge algorithm proposed by Golden and Wong [GW81] which was im-
proved and modified by Golden et al. [GDB83] is an adaption of the well-known Clark
and Wright heuristic [CW64] for the CVRP. In a first step, for each required edge a feasible
tour will be constructed by connecting its endnodes by shortest paths to the depot node.
In the augment-phase non-serviced edges of each tour (starting with the longest tour) are
considered as serviced as long as vehicle capacity permits. Tours that served these edges are
discarded. Then pairs of tours are merged in descending order of the savings produced subject
to the capacity constraint. The algorithm terminates when no more merging is possible. The
complexity is O(|V |3).

The main feature of the parallel insert algorithm by Chapleau et al. [CFLR84] is the
use of two complementary insertion procedures. The basic version of the algorithm can be
outlined as follows. The first step consists of creating a tour servicing the edge farthest
away from the depot. Then the first insertion procedure is applied. In each iteration the
unserviced required edge e∗ farthest away from the depot is considered. It is inserted into the
tour causing the least insertion cost among all existing tours. If no such tour exists due to
capacity restrictions or because a specified distance limit L is exceeded, a new tour serving
only e∗ is created. This procedure is repeated until no required edges remain to be serviced
or the number of routes exceeds a given threshold M . In that case the second insertion
procedure starts. Here, the aim is to load balance tours. Therefore, in each iteration the
tour with the lowest load is considered and the edge e′ of the non-serviced required edges
incurring the least insertion costs (while regarding the capacity constraint) is added to that
tour. The second procedure continues as long as there are non-serviced required edges and
there still exists a tour which can pick up an edge. The algorithm terminates if all required
edges are serviced. Otherwise a new tour servicing the non-serviced required edge farthest
away from the depot is created (disregarding the limit M) and the algorithm proceeds with
the first insertion procedure. Several variants of the algorithm are discussed in [CFLR84], for
example the use of improvement procedures after the insertion steps in order to shorten the
tour lengths. Reducing the number of tours can be achieved by relaxing the distance limit L
in the insertion step and then applying the improvement procedure. A further strategy is the
deletion of the tour with lowest load in the last step, marking those edges being serviced by
this tour as non-serviced and starting again with the insertion procedures.

The augment-insert algorithm by Pearn [Pea91] combines the augment step from the
augment-merge algorithm [GW81, GDB83] and a procedure similar to the first insertion
strategy of the parallel insert algorithm [CFLR84].

First computational experiments evaluating the performance of the algorithms discussed
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so far were performed by Golden et al. [GDB83] and Pearn [Pea89, Pea91] (a summary
can also be found in [AG95]). The results showed that the modified construct-strike algorithm
by Pearn [Pea89] performed best, especially for dense graphs. For very sparse graphs the
augment-merge algorithm performed best.

Two-Phase Constructive Methods. Now, we will turn to two-phase methods. We will
start with two route first – cluster second methods.

A first heuristic following the route first – cluster second paradigm was proposed by
Ulusoy [Ulu85]. The first phase consequently consists of computing a single tour C covering
all required edges while disregarding vehicle capacity. Since computing a single tour represents
a Rural Postman Problem (RPP) any heuristic for the RPP (cf. section 3.3.5) can be applied.
In the second phase an auxiliary directed graph is constructed on the node set traversed by
C. Each pair of nodes u, v is connected by an edge (u, v) if the partial tour Cuv starting at u
and moving on to v on C is capacity-feasible. The edge is weighted with the length of the tour
which evolves from connecting Cuv by shortest path connections to the depot node. After
that a partitioning of C into subtours can be obtained by solving a shortest path problem on
the auxiliary graph. Then each edge of the shortest path route corresponds to a subtour.

In the scope of the tabu search algorithm Carpet (which will be discussed below), Hertz
et al. [HLM00] developed a submodule called CUT which works similarly. Again, in the
first phase a single tour C is computed. In the cluster phase the tour C is partitioned into
d
∑

e∈E d(e)/Qe tour segments and each tour segment is connected to the depot via shortest
path connections. The determination of the endnodes of the tour segments involves the
capacity restriction and the length of the shortest path connections from the endnodes to the
depot.

The cycle assignment algorithm of Benavent et al. [BCCM90] is a representative of
the class of cluster first – route second algorithms and works as follows. For a given graph G
and a fixed number of vehicles K in a first step a set of seed nodes s1, . . . , sK is determined
(the criterion is to maximize the distances between each pair of seed nodes and each seed
node and the depot node). Then a minimum spanning tree T on G[ER] is computed and
T is extended by edges of the minimum weighted perfect matching of the odd nodes of
T . Based on the resulting graph G̃, K subgraphs — each consisting of a seed node —
are created. Each subgraph (always considering the one with largest residual capacity) is
successively extended by cycles of minimum load until no subgraph can be extended further
due to capacity restrictions. Edges added to any subgraph are deleted from G̃. The next
step tries to reduce the number of unassigned required edges in G̃ by exchanging edges and
paths between any subgraph and G̃. The last step consists of the resolution of a generalized
assignment problem (cf. section 7.1.2) in order to determine the final assignment of edges
to vehicles. The costs for assignments are defined in such a way that the partial clustering
determined in the preceding steps is favored.

Meta Heuristics. Although the previous algorithms are rather sophisticated, the most
successful algorithms for the CARP belong to the class of meta heuristics. In the following
we will present the most important approaches.

Li [Li92] and Eglese [Egl94] developed tabu search resp. simulated annealing approaches
for a road gritting problem and a multi-depot gritting problem with several side constraints.
Both approaches work with so-called cyclenode networks which were proposed by Male and
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Liebman [ML78]. A cyclenode network evolves from the original graph by first adding edges
to make it Eulerian (like for the CPP) and then dividing the graph into preferably small cycles.
Each such cycle represents a node of the cyclenode network and edges are inserted according
to the adjacency of the cycles. Neighborhood solutions are constructed by exchanging leaf
cyclenodes between route trees, or by linking a cyclenode to the depot forming a new route,
or by merging two route trees and removing the connection to one of the depots.

Greistorfer [Gre94] developed a tabu search procedure for the CCPP. Neighborhood
solutions are constructed by exchanging service responsibility of certain edges between two
tours. The selection of the neighborhood solution to proceed with is performed according
to best improvement and first improvement rules. Only limited computational results were
presented.

The first of a series of very successful meta heuristics for the CARP is the tabu search
algorithm Carpet which was developed by Hertz et al. [HLM00]. The algorithm is based on
a set of basic operations which were partially developed in the context of the RPP [HLNH99]
as well as new ones, e.g., the procedure CUT mentioned above. These operations feature
the insertion and deletion of required edges, merging and partitioning of tours and post-
optimization. The main strategic ideas stem from the Taburoute algorithm [GHL94] which
was developed for the CVRP. For example, a broader spectrum of neighborhood solutions
is obtained by allowing infeasible solutions (according to capacity or maximum route length
restrictions) and using an extended objective function which penalizes infeasibility in an
appropriate way. Computational results demonstrated a clear dominance of Carpet over all
known heuristics for the CARP at that time.

Hertz and Mittaz [HM01] devised a variable neighborhood descent (VND) algorithm
based on the idea of variable neighborhood search (VNS) [MH97]. The VND approach extends
the descent local search method by considering different neighborhood structures in each
iteration. The neighborhood structures used in [HM01] operate on up to K routes, where K
is the number of available vehicles. For constructing new neighborhood solutions the same
basic procedures as used for the Carpet algorithm [HLM00] are utilized. Computational
results showed that the VND approach is competitive and for large instance even superior (in
terms of solution quality and speed) to Carpet.

Lacomme et al. [LPRC01a, LPRC01b] presented the first genetic resp. memetic algo-
rithms for the CARP which are also capable of tackling extensions like mixed graphs or turn
penalties. For the computation of initial solutions extended versions of the path-scanning
algorithm, the augment-merge algorithm and Ulusoy’s algorithm (see above) are used. Chro-
mosomes are formed by ordered lists of all required edges. Implicitly required edges are
connected by shortest paths thereby representing a single tour servicing all required edges.
The fitness of a chromosome is evaluated by splitting it into feasible tours (with the routine
used in the Ulusoy’s heuristic) and computing the objective function value for the CARP.
After crossing over chromosomes, the mutation step applied to the child is replaced with a
local search procedure which works on the single feasible tours. Computational experiments
showed that at present these line of algorithms are most successful and outperform all other
heuristics for the CARP.

A recent hybrid approach for the CCPP featuring a so-called scatter search was proposed
by Greistorfer [Gre03]. It is reported that this approach is competitive with Carpet.

Beullens et al. [BMCVO03] came up with a new algorithm which combines the idea
of their k-opt approach [MBCVO01] (originally developed for the General Routing Problem
(GRP) with a guided local search scheme (GLS). The key feature of GLS is the usage of
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a penalizing mechanism in order to direct the search into promising regions of the solution
space. Computational experiments demonstrated that the approach is as good as Carpet and
could even improve some upper bounds obtained in [HLM00]. Unfortunately, no comparisons
to the genetic algorithms of Lacomme et al. [LPRC01a, LPRC01b] have been performed
yet.

We can conclude that very much effort has been invested in the development of heuristics
for the CARP. Today most successful approaches are based on complex and sophisticated
implementations of meta heuristics. We do not intend to devise new heuristics for the CARP
in this thesis but we want to mention at this point that parallel approaches, which were
successfully applied to the CVRP [Tai93], could improve further on the solution quality and
the size of tractable instances.

4.2 The FHK-Algorithm for the MM k-CPP

The only algorithm for the MM k-CPP found in the literature is the algorithm of Frederick-
son, Hecht and Kim [FHK78] (denoted as FHK-algorithm in the following) which follows
a route first – cluster second strategy. In a first step a single tour (a 1-postman tour) covering
all edges e ∈ E is computed. Computing an optimal 1-postman tour is the Chinese Postman
Problem (CPP) and hence can be accomplished by the algorithm ChinesePostmanTour
(cf. section 3.3.1) in polynomial time. Then the 1-postman tour C∗ will be subdivided in
the following way: First, k − 1 so-called splitting nodes on C∗ are determined in such a way
that they mark tour segments of C∗ approximately having the same length. Then k tours are
constructed by connecting these tour segments with shortest paths to the depot node.

Note that the CUT module of the Carpet algorithm [HLM00] (cf. section 4.1) works very
similar except that the partitioning must regard the capacity restrictions.

Algorithm: FredericksonHechtKim
Input: A connected undirected graph G = (V, E), edge weights w : E → R

+
0 , a distinguished

depot node v1 ∈ V , and a fixed number k of postmen where k ≥ 2.
Output: A k-postman tour C = {C1, . . . , Ck}.

(1) Compute an optimal 1-postman tour

C∗ = (v1, e
(1), v(2), e(2), . . . , v(m), e(m), v1)

with the algorithm ChinesePostmanTour (cf. section 3.3.1).

Let C∗
v(n) = (v1, e

(1), v(2), e(2), . . . , v(n)) denote the subtour of C∗ starting at the depot

node and ending at v(n).

(2) Compute the Shortest Path Tour Lower Bound (cf. section 5.5.1)

w(Ce∗) = max
e={u,v}∈E

{w(SP(v1, u)) + w(e) + w(SP(v, v1))}.

(3) Compute the partition lengths

Lj =

(

j

k

)

(w(C∗) − w(Ce∗)) +
1

2
w(Ce∗), 1 ≤ j < k.
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Figure 4.1: Illustration of the splitting point selection of the FHK-algorithm.

(4) For j = 1, . . . , k−1 determine the preliminary splitting node v(p′j) as being the last node
such that w(C∗

v
(p′

j
)
) ≤ Lj .

(5) For j = 1, . . . , k − 1 determine the final splitting node v(pj) which will be either the

preliminary splitting node v(p′j) or its successor v(p′j+1) on C∗ depending on which one
minimizes the distance to the depot node (from the point of view of the split marker
Lj , see figure 4.1).

In detail let
rj = Lj − w(C∗

v
(p′

j
))

be the difference between the partition length Lj and the tour going from the depot

node to the preliminary splitting node v(p′j). Then let v(pj) = v(p′j) if

rj + w(SP(v(p′j), v1)) ≤ w({v(p′j), v(p′j+1)}) − rj + w(SP(v(p′j+1), v1))

and let v(pj) = v(p′j+1) otherwise.

(6) Construct C = {C1, . . . , Ck} as follows:

C1 = (v1, e
(1), v(2), . . . , v(p1), SP(v(p1), v1)),

C2 = (SP(v1, v
(p1)), v(p1), . . . , v(p2), SP(v(p2), v1)),

. . .

Ck = (SP(v1, v
(pk−1)), v(pk−1), . . . , v1).

The time complexity of the algorithm is dominated by the computation of a 1-postman tour
in step (1) which can be accomplished in O(|V |3) (cf. section 3.3.1). In [FHK78] it is shown
that this algorithm yields a (2−1/k)-factor approximation for the MM k-CPP. We will review
this result in more detail in section 6.6.

Remark 4.1 The selection of the splitting points and therefore the construction of the tours
C1, . . . , Ck is very sensitive to the way C∗ is assumed to be traversed in step (1). We will
discuss this issue in more detail in section 6.6.
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Figure 4.2: A 2-postman tour on G computed by the FHK-algorithm.

Example 4.1 We will perform the FHK-algorithm for k = 2 postmen on the example graph
depicted in figure 3.1 in section 3.3.1. Step (1) has already been discussed in example 3.1.
Hence we assume our optimal 1-postman tour C∗ to be represented by the node sequence v1,
v7, v4, v6, v5, v8, v4, v6, v8, v7, v1, v3, v2, v5, v3, v4, v2, v1 with w(C∗) = 185. The edge
farthest away from the depot is e∗ = {v1, v2} (which is a rather pathological case) and hence
w(Ce∗) = 47. In step (2) we only have to compute L1 which amounts to 92.5. The preliminary
splitting node is (the first occurrence of) v3 since w(C∗

v3
) = 88 ≤ L1 but for its successor v2 we

have w(C∗
v2

) = 96 > L1. Now we have r1 = L1−w(C∗
v3

) = 92.5−88 = 4.5, w(SP(v3, v1)) = 1,
w({v3, v2}) = 8 and w(SP(v2, v1)) = 9. Hence v3 remains the final splitting node since
r1 + w(SP(v3, v1)) = 5.5 < w({v3, v2})− r1 + w(SP(v2, v1)) = 12.5. The final 2-postman tour
C (depicted in figure 4.2) consists of the tours C1 (red) and C2 (green) represented by the
node sequences v1, v7, v4, v6, v5, v8, v4, v6, v8, v7, v1, v3, v1 and v1, v3, v2, v5, v3, v4, v2,
v1, respectively. Since w(C1) = 89 and w(C2) = 98 we obtain w

max
(C) = 98.

4.3 New Constructive Heuristics for the MM k-CPP

In order to be able to assess the solution quality of the route first – cluster second strategy
realized by the FHK-algorithm compared to the remaining approaches we have devised two
new heuristics. The first heuristic augment-merge represents a constructive heuristic based
on a classical approach for the CARP and the CVRP. The second heuristic follows a cluster
first – route second strategy.

4.3.1 The Augment-Merge Algorithm

This new algorithm is based on the augment-merge algorithm for the CARP proposed by
Golden and Wong [GW81] (cf. section 4.1). The idea of the algorithm is roughly as follows.
We start with a closed walk Ce for each edge e = {vi, vj} ∈ E, which consists of the edges on
the shortest path between the depot node v1 and vi, the edge e itself, and the edges on the
shortest path between vj and v1, i.e., Ce = (SP(v1, vi), e, SP(vj , v1)). Then we successively
merge two closed walks — trying to keep the tour weights low and balanced — until we arrive
at k tours. In detail the algorithm works as follows.
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Algorithm: AugmentMerge
Input: A connected undirected graph G = (V, E), edge weights w : E → R

+
0 , a distinguished

depot node v1 ∈ V , and a fixed number k of postmen where k ≥ 2.
Output: A k-postman tour C = {C1, . . . , Ck}.

(1) In decreasing order according to w(Ce), for each e = {vi, vj} ∈ E, create the closed
walk Ce = (SP(v1, vi), e, SP(vj , v1)), if e is not already covered by an existing tour.

Let C = (C1, . . . , Cm) be the resulting set of tours. Note that the tours are sorted
according to their length, i.e., w(C1) ≥ w(C2) ≥ . . . ≥ w(Cm).

If m ≤ k we are done and have computed an optimal k-postman tour, since no tour is
longer than the Shortest Path Tour Lower Bound (cf. section 5.5.1). If m < k we add
k −m “dummy” tours to C, each consisting of two copies of the cheapest edge incident
to the depot node.

(2) While |C| > k we merge tour Ck+1 with a tour from C1, . . . , Ck such that the weight
of the merged tour is minimized. Merging of two tours will be treated in detail in the
next section.

Proposition 4.1 Algorithm AugmentMerge computes a feasible k-postman tour and has
a worst case running time of O(k|E|2 − k2|E|).

Proof: The running time of step (1) is dominated by sorting the edges according to w(Ce)
which costs O(|E| log |E|). In the second step we have to merge O(|E| − k) supernumerous
tours with the k largest tours. Since we determine a merge of minimum cost among the k
largest tours and merging can be done in O(|E|) we need O(k|E|2−k2|E|) for this step which
dominates the running time of the algorithm.

The correctness of the algorithm can be seen as follows. We start with m ≤ |E| feasible
tours containing the depot and covering all edges of E. At this time the constraint that we
require exactly k tours is relaxed. If m < k we add k − m feasible “dummy” tours. If m > k
we merge tours in step (2) until we arrive at exactly k tours. As we will see later merging does
not remove edges from the resulting tour (except for redundant copies of an edge). Hence in
the end all edges are covered and there are exactly k tours. ¤

Example 4.2 Now we will perform the algorithm AugmentMerge again for k = 2 postmen
on our example graph G. After step (1) has been executed we have the following order of tours:
w(C{v1,v2}) = 47, w(C{v7,v8}) = 39, w(C{v3,v4}) = 38, w(C{v4,v7}) = 37, w(C{v2,v4}) = 30,
w(C{v2,v5}) = 25, w(C{v4,v6}) = 23, w(C{v6,v8}) = 21. Note that all other edges are covered
by some shortest path. In step (2) we start with C1, . . . , C8. After six merging operations we
arrive at the tours C1 : v1, v2, v3, v5, v3, v2, v5, v8, v4, v7, v1, v3, v1 and C2 : v1, v7, v8,
v5, v6, v8, v4, v2, v3, v4, v6, v5, v3, v1 (depicted in figure 4.3 where C1 is painted red and C2

green). Since w(C1) = 101 and w(C2) = 107 we obtain w
max

(C) = 107.

4.3.2 The Cluster Algorithm

Our second new algorithm follows the cluster first – route second approach. In the first step
we divide the edge set E into k clusters and in the second step we compute a tour for each
cluster.
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Figure 4.3: A 2-postman tour on G computed by the algorithm AugmentMerge.

Going back to the first step of the augment-merge algorithm, we observe that for some
edges e we explicitly have to create a tour Ce and for other edges we do not, since they
are contained in an already existing tour. Let us denote the first kind of edges as critical
edges since we have to take care that they are serviced, whereas servicing edges classified as
non-critical is “for free”, since they are on some shortest path connecting a critical edge and
the depot node.

Motivated by this observation the cluster step of our algorithm first performs a k-clustering
of the critical edges into edge sets F1, . . . , Fk. After that, each cluster Fi is supplemented by
shortest path edges connecting the contained critical edges to the depot. The routing step
consists of computing an optimal 1-postman tour for each subgraph induced by Fi.

The k-clustering step is based on the farthest-point clustering algorithm of Gonzalez
[Gon85] and works as follows. Let F be the set of critical edges. First, we determine k
representative edges f1, . . . , fk ∈ F . Using a distance function dist: E×E → R

+
0 , let f1 ∈ F be

the edge having the maximum distance from the depot and f2 ∈ F the edge having maximum
distance from f1. Then the representatives fi ∈ F , i = 3, . . . , k, are successively determined
by maximizing the minimum distance to the already existing representatives f1, . . . , fi−1.
Edge sets Fi, i = 1, . . . , k, are initialized with fi, i = 1, . . . , k, i.e., Fi = {fi}, i = 1, . . . , k.
The remaining critical edges g of F will be assigned to the edge set Fi which minimizes the
distance between its representative fi and g.

Algorithm: Cluster
Input: A connected undirected graph G = (V, E), edge weights w : E → R

+
0 , a distinguished

depot node v1 ∈ V , and a fixed number k of postmen where k ≥ 2.
Output: A k-postman tour C = {C1, . . . , Ck}.

(1) Determine the set F of critical edges.

(2) Define the distance dist between two edges e = {u, v}, f = {w, x} ∈ F as

dist(e, f) = max{w(SP(u, w)), w(SP(u, x)), w(SP(v, w)), w(SP(v, x))}.

(3) Compute the k-clustering F1, . . . , Fk according to the distance function dist as described
above.
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(4) Extend edge sets Fi by adding all edges on shortest paths between the endnodes of
edges contained in Fi and the depot node.

(5) Compute an optimal 1-postman tour on G[Fi], i = 1, . . . , k, with algorithm Chinese-
PostmanTour (cf. section 3.3.1).

For determining the set of critical edges F we have to consider for each edge the shortest
paths connecting its endnodes to the depot node which requires O(|V ||E|). For determining
the distance function dist an all pairs shortest path computation is necessary which costs
O(|V |3). Then step (2) as well as the computation of the k-clustering needs O(|F |2). Step
(4) requires O(|F ||E|) and the last step O(|V |3). Since |F | = O(|E|) we obtain an overall
estimation of O(max{|V |3, |E|2}).

Proposition 4.2 Algorithm Cluster computes a feasible k-postman tour and has a worst
case running time of O(max{|V |3, |E|2}).

Proof: For determining the set of critical edges F we have to consider for each edge the
shortest paths connecting its endnodes to the depot node which requires O(|V ||E|). For
determining the distance function dist an all pairs shortest path computation is necessary
which costs O(|V |3). Then step (2) as well as the computation of the k-clustering needs
O(|F |2). Step (4) requires O(|F ||E|) and the last step O(|V |3). Since |F | = O(|E|) we obtain
an overall estimation of O(max{|V |3, |E|2}).

Let us now discuss the correctness of the algorithm. At the end of step (3) we have a
partition of the critical edges F into k disjoint sets F1, . . . , Fk. The remaining edges E \ F
to be covered reside on shortest paths connecting critical edges to the depot node. These
shortest paths are added to F1, . . . , Fk in step (4). Hence at the end of step (4) all edges are
covered and each edge set Fi, i = 1, . . . , k, is connected to the depot. In the last step each
subgraph G[Fi], i = 1, . . . , k, is augmented by edges making it Eulerian. Hence we end up
with k feasible tours covering all edges of E. ¤

Example 4.3 Let us consider now the algorithm Cluster for k = 2 postmen on our example
graph G. The set F of critical edges is computed as F = {{v1, v2}, {v2, v4}, {v2, v5}, {v3, v4},
{v4, v6}, {v4, v7}, {v6, v8}, {v7, v8}}.

Then the computation of the k-clustering starts with the representatives f1 = {v2, v4} and
f2 = {v4, v7}, since dist(v1, {v2, v4}) = 38 which is maximal among all critical edges ({v1, v2}
could have been also a candidate for f1) and dist({v2, v4}, {v4, v7}) = 11 is maximal among all
remaining critical edges. After assigning the remaining critical edges to F1 and F2 we obtain
F1 = {{v1, v2}, {v2, v4}, {v2, v5}, {v3, v4}, {v4, v7}, {v6, v8}, {v7, v8}} and F2 = {{v4, v6}}
which is rather unbalanced. In step (4) shortest path connections to the depot will be added for
F1 and F2 and we get F1 = {{v1, v2}, {v1, v3}, {v1, v7}, {v2, v3}, {v2, v4}, {v2, v5}, {v3, v4},
{v4, v6}, {v4, v8}, {v5, v3), {v5, v6}, {v5, v8}, {v6, v8}, {v7, v8}} and F2 = {{v1, v3}, {v1, v7},
{v4, v7}, {v4, v8}, {v5, v3}, {v5, v8}}.

Finally in step (5), graphs G[F1] and G[F2] are made Eulerian leading to the tours C1 : v1,
v3, v1, v7, v8, v5, v6, v8, v4, v2, v5, v3, v5, v6, v4, v3, v2, v1 and C2 : v1, v7, v4, v8, v5, v3,
v1 (depicted in figure 4.4 where C1 is painted red and C2 green). Since w(C1) = 155 and
w(C2) = 37 we obtain w

max
(C) = 155.
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Figure 4.4: A 2-postman tour on G computed by the algorithm Cluster.

Remark 4.2 Example 4.3 may give the impression that algorithm Cluster algorithm pro-
duces results of poor quality. Let us explain the reasons for this comparably bad result. Having
real-world street networks in mind (which are of sparse nature with weights fulfilling the tri-
angle inequality) the core idea of the algorithm is to partition the graph into k “geographic
regions” of similar size each to be serviced by a postman. Obviously, the example graph G is
not amenable for the clustering approach because of its rather dense nature and its inhomo-
geneous weight structure.

We also used a variant called ClusterWeighted where step (3) is modified as follows.
The determination of the representatives f1, . . . , fk works the same but the assignment of a
remaining critical edge g to an edge set Fi, i = 1, . . . , k, is guided by minimizing the weighted
distance between g and Fi. The weighted distance between g and Fi is computed as the
product of dist(g, fi) and w(Fi) which is determined as the sum of all edges contained in Fi

and the weight of the shortest path connections of the endnodes of fi with the depot node.
This modified weight takes into account how many edges already have been assigned to a
cluster and how far a cluster is from the depot node.

Example 4.4 Applying algorithm ClusterWeighted to graph G for k = 2 we also arrive
at the representatives f1 = {v2, v4} and f2 = {v4, v7}. However, using the weighted distance
when assigning the remaining critical edges to the representatives we obtain F1 = {{v1, v2},
{v2, v4), {v4, v6}, {v7, v8}} and F2 = {{v2, v5}, {v3, v4}, {v4, v7}} after performing step (3).
Now, after step (4) we obtain F1 = {{v1, v2}, {v1, v3}, {v1, v7}, {v2, v3}, {v2, v4}, {v4, v6},
{v4, v8}, {v5, v3), {v5, v6}, {v5, v8}, {v7, v8}} and F2 = {{v1, v3}, {v1, v7}, {v2, v3}, {v2, v5},
{v3, v4}, {v4, v7}, {v4, v8}, {v5, v3}, {v5, v6}, {v5, v8}, {v6, v8}}. Finally in step (5), graphs
G[F1] and G[F2] are made Eulerian leading to the tours C1 : v1, v3, v1, v7, v8, v4, v6, v5, v8,
v4, v2, v3, v5, v3, v2, v1 and C2 : v1, v7, v4, v8, v4, v3, v5, v6, v8, v5, v2, v34, v1 (depicted
in figure 4.5 where C1 is painted red and C2 green). Since w(C1) = 117 and w(C2) = 93 we
obtain w

max
(C) = 155.
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Figure 4.5: A 2-postman tour on G computed by the algorithm ClusterWeighted.

4.3.3 Computational Results

Let us come now to first computational results. We have compiled a set of 74 benchmark
instances from which the largest instances have sizes of |V | = 200 and |E| = 392. In the
scope of this thesis we will consider the range k = 2, . . . , 10 for the number of postmen. For
instance sets containing very small instances we confined ourselves to k ≤ 7 or k ≤ 9. In the
following we will call a combination of an instance and a fixed k as configuration. For our
benchmark set we obtained 571 different configurations. More details concerning the instances
can be found in appendix A.1. In order to avoid scattering tables of computational results
throughout this thesis we decided to put all the tables into appendix A.3. All discussions
concerning computational results are based on the results presented in these tables.

We have performed runs of the algorithms FredericksonHechtKim, AugmentMerge,
Cluster, and ClusterWeighted on our set of benchmark instances and counted how often
each algorithm obtained the best result compared to the others. The FHK-algorithm clearly
dominated this experiment by yielding the best result in 81% of all cases and obtaining an
average gap of 15% to the second best algorithm. In 14% of all cases one of the algorithms
AugmentMerge, Cluster, or ClusterWeighted was better than the FHK-algorithm
with an average gap of 9.5%. In the remaining 5% cases all algorithms got the same objective
function value. Among the 571 best solutions obtained by these algorithms 37 could be proven
to be optimal (cf. chapter 7). All running times are less than one second for our instances
and our computing platform.

Considering the 14% of all cases where the FHK-algorithm was inferior, 9.8% of the best
results account for the AugmentMerge algorithm, 3.3% for the Cluster algorithm, and
0.2% for the ClusterWeighted algorithm (in 0.7% of these cases the three algorithms
obtained the same results). This ranking also holds when neglecting the FHK-algorithm
and comparing the new algorithms on their own (AugmentMerge 60.4%, Cluster 22.6%,
ClusterWeighted 12.6%, and 4.4% same results).

The following conclusions can be drawn from this first computational experiment. Since
the FHK-algorithm is so predominant, the route first – cluster second paradigm seems to be
the most promising strategy for the MM k-CPP. Looking closer at the solutions produced by
the new heuristics we observed that in almost all cases they create tours containing redundant
edges, i.e., edges which are unnecessarily traversed several times by different tours (this is
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also apparent from examples 4.2, 4.3, and 4.4). Here, the advantage of the FHK-algorithm
becomes clear, because in its first step it only duplicates edges having small weight. The Aug-
mentMerge algorithm has also an advantage over the Cluster and ClusterWeighted
algorithm because the merging step of two tours in step (2) is accompanied by the procedure
RemoveReplicateEdgesKeepingParity which removes some redundant duplicate edges
(this procedure will be explained in section 4.4.2). Nevertheless, we observed that even the
solutions computed by the FHK-algorithm still leave potential for further improvements.

4.4 Tools and Improvement Procedures for the MM k-CPP

At the end of the previous section we stated that the solutions obtained by the heuristics
FredericksonHechtKim, AugmentMerge, Cluster and ClusterWeighted can still
be improved. This is mainly due to the fact that single tours contain too many redundant
edges. Another reason for poor quality of a solution can be a bad load balancing of the
single routes. These observations suggest the following two strategies (which of course can be
combined) for improving a given k-postman tour C = {C1, . . . , Ck}.

1. Try to improve a longest single tour Ci∗ , i∗ ∈ {1, . . . , k}, i.e., w(Ci∗) = wmax(C), by elim-
inating redundant edges (where the term redundant has to be defined more precisely).

2. Exchange edges or tour segments (walks) between two single tours Ci and Cj , i, j ∈
{1, . . . , k}, to obtain a k-postman tour C̃ with wmax(C̃) ≤ wmax(C).

The remainder of this section is structured as follows. First we discuss the necessary in-
gredients to realize the second strategy, namely routines for merging and separating edges
and walks, respectively, with/from a single tour. Then — following the first strategy — we
devise three improvement procedures of different time complexity. At the end of this sec-
tion we conduct a first evaluation of the effectiveness of these routines by presenting further
computational experiments.

4.4.1 Merging and Separating Edges

The main operations needed for modifying single tours are addition and removal of edges.
Of course we have to take care that when modifying a tour Ci by adding or removing edges
this tour remains a closed walk. Furthermore, when removing edges we must ensure that
the depot node is still contained in Ci afterward. This additional work is performed in the
procedures MergeWalkWithTour and SeparateWalkFromTour. Let us now consider
the procedure MergeWalkWithTour in detail.

Algorithm: MergeWalkWithTour
Input: A connected undirected graph G = (V, E), edge weights w : E → R

+
0 , all pairs

shortest path information, a tour Ci in G, and a walk H in G to be merged.
Output: The tour C̃i in G which represents a feasible tour formed from edges contained in
Ci and H and possibly additional edges.

(1) Remove those edges from the beginning and the end of H which also occur in Ci and
let Ĥ be the result.

(2) Let u and v be the endnodes of Ĥ. Determine the node t on Ci which minimizes
w(SP(u, t)) + w(SP(v, t)).
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(3) Let C̃i evolve from splicing SP(t, u), Ĥ, SP(v, t) into Ci at node t.

Step (1) costs O(|H|+ |Ci|). Step (2) needs O(|Ci|) since the required shortest path informa-
tion is given as input parameter. Step (3) requires traversing the walk SP(t, u), H, SP(v, t)
which needs at most O(|E|). Hence, the overall required time is O(|E|).

The procedure SeparateWalkFromTour is rather straightforward except that we have
to take care that the depot node remains in the tour.

Algorithm: SeparateWalkFromTour
Input: A connected undirected graph G = (V, E), edge weights w : E → R

+
0 , a distinguished

depot node v1 ∈ V , all pairs shortest path information, a tour Ci in G, and a walk H contained
in Ci to be separated.
Output: The tour C̃i which represents a feasible tour formed from edges of Ci which remain
after removing edges from H and (possibly) additional edges needed to re-establish feasibility.

(1) Let u and v be the endnodes of H (u = v is possible). Check whether the depot node
v1 is an internal node of H.

(2) Remove all edges of H from Ci and let Ĉi be the result. Check whether the depot node
v1 is contained in Ĉi.

(3) We have to consider two cases when connecting u and v:

– If v1 is an internal node of H and v1 is not contained in Ĉi, then let C̃i evolve from
Ĉi by connecting u and v with SP(u, v1), SP(v1, v).

– Otherwise, let C̃i evolve from Ĉi by connecting u and v with SP(u, v).

Step (1) costs O(|H|). Step (2) needs O(|Ci|). Step (3) needs at most O(|E|). Hence the
overall time is O(|E|).

Note that when applying the procedures MergeWalkWithTour and SeparateWalk-
FromTour to single tours of a k-postman C tour one has to pay attention that C remains
feasible. We will care about this issue in the end of this section when devising a simple ex-
change scheme as well as in the next section when creating neighborhoods for the tabu search
algorithm.

Example 4.5 Let us illustrate the above procedures by performing modifications of the 2-
postman tour depicted in figure 4.4 which has been computed by the algorithm Cluster.
Figure 4.6 shows the 2-postman tour after applying the operation SeparateWalkFromTour
on C1 (red) with H = {v4, v2}, {v2, v5}. The endnodes v4 and v5 have been connected by the
shortest path edges {v4, v8}, {v8, v5}. The weight of the tour C1 has decreased by 15 and now
amounts to w(C1) = 140, but the current 2-postman tour is not feasible since edges {v4, v2}
and {v2, v5} are not serviced.

Figure 4.7 shows the tour depicted in figure 4.6 after applying the operation MergeWalk-
WithTour on C2 (green) with H = {v4, v2}, {v2, v5}. Node t = v8 minimizes the sum of
shortest path distances to the endnodes v4 and v5 on C2 and therefore H and edges {v4, v8}
and {v8, v5} have been added to C2. The tour weight of C2 increases by 31. Hence we obtain
w(C1) = 140 and w(C2) = 68 and so w

max
(C) = 140.

The example shows that the insertion of shortest path edges in order to maintain feasibility
of the single tours can lead to many redundant edges. The elimination of redundancy is the
topic of the next section.
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Figure 4.6: A 2-postman tour on G computed by the algorithm Cluster after separation of
edges.
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Figure 4.7: A 2-postman tour on G computed by the algorithm Cluster after merging of
edges.
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4.4.2 Improving Single Tours

We will now turn to procedures which try to improve single tours by eliminating redun-
dant edges. Such improvement procedures have been proven very successful in producing
high quality solutions for routing problems (see, e.g., [HLNH99]). Hence it seems natural
to apply improvement procedures whenever possible, for example after each modification of
a single tour by MergeWalkWithTour and SeparateWalkFromTour in a simple ex-
change based algorithm or in the scope of a tabu search algorithm. However, we have to be
aware, that for algorithms frequently using MergeWalkWithTour and SeparateWalk-
FromTour the improvement procedure will be executed quite often. Therefore, the overall
computing time of the algorithm will depend heavily on the effort spent in the improvement
procedure. Keeping this in mind we have developed three improvement procedures of differ-
ent time complexity which allow us to investigate the trade-off between computational effort
and solution quality.

The main difficulty in modifying the single tours Ci, i = 1, . . . , k, of a k-postman tour
C lies in maintaining feasibility of C. Feasibility means that all tours remain closed walks
containing the depot node and that each edge of the given graph G = (V, E) is traversed by
at least one tour. For example, if we want to remove one or several edges from a tour Ci we
have to ensure that Ci remains a closed walk (by eventually adding new edges) and moreover
that those edges which have been deleted from Ci are traversed by at least one of the other
tours. This task is much more intricate than modification of tours in the node routing context
since for node routing problems we do not have to care about which edges are used to connect
nodes (apart from favoring cheap edges).

In order to facilitate discussions about performing admissible tour modifications we will
introduce the notions of required edges and redundant edges for the MM k-CPP. The notion
required edge is derived from the RPP and the CARP (cf. sections 3.3.5 and 3.3.10) where
only a subset of required edges ER ⊆ E has to be serviced. Although for the MM k-CPP
the whole edge set E has to be serviced, it is possible to classify edges to be required or not
in our context. Given a k-postman tour C = {C1, . . . , Ck} let us consider a single tour Ci,
i ∈ {1, . . . , k}. We say that an edge e ∈ E, which is traversed by Ci but not traversed by
any other tour Cj , j ∈ {1, . . . , k}, j 6= i, is required for Ci. Clearly, for classifying edges
as required one need to know how many times an edge is contained in C and in each single
tour Ci, i = 1, . . . , k. More formally, let us denote by edge frequencies the information how
often edges occur in tours. Now let φi(e) denote the tour frequency of e for Ci, i.e., the
frequency of e occurring in Ci, and φ(e) =

∑k
i=1 φi(e) the global frequency of e in C, i.e.,

the frequency of e occurring in all tours of C. Then an edge e is called redundant for Ci if
φi(e) ≥ 1 and φ(e) > φi(e). On the opposite, an edge e is called required for Ci if φi(e) ≥ 1
and φ(e) = φi(e). The time complexity for computing edge frequencies is O(k|E|) since we
have to traverse each of the k tours.

Now we can easily state what exactly we expect from an improvement procedure, namely,
given a single tour Ci from a k-postman tour C decrease the tour length w(Ci) as much as
possible while keeping the edges required for Ci (and a connection to the depot node). Is it
possible to find an optimal improvement of a single tour in polynomial time? The answer
is no, because this problem constitutes an RPP which is NP-hard (cf. section 3.3.5). Since
for the algorithms to be developed, improvement procedures are likely to be executed very
frequently it is clear that we will focus on developing particularly fast heuristic procedures.
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The Improvement Procedure RemoveReplicateEdgesKeepingParity. Let us start
with the first improvement procedure called RemoveReplicateEdgesKeepingParity
which tries to remove redundant edges in a given tour Ci. It is based on the simple ob-
servation that for edges e occurring n ≥ 3 times in Ci we can remove n−2 times (n−1 times)
copies of e if n is even (odd) because we keep the parity of the incident nodes and also the
connectivity of the tour.

Algorithm: RemoveReplicateEdgesKeepingParity
Input: A tour Ci.
Output: A possibly improved tour C̃i which contains the remaining edges of Ci after redun-
dant edges have been removed.

(1) Determine the tour frequencies φi(e) for each edge e contained in Ci.

(2) For each edge e contained in Ci do

– If φi(e) ≥ 3 and φi(e) odd, remove φi(e) − 1 copies of e from Ci.

– If φi(e) ≥ 4 and φi(e) even, remove φi(e) − 2 copies of e from Ci.

This procedure can be accomplished in O(|Ci|), however, in general the resulting set of edges
C̃i does not represent a closed walk anymore. Since reestablishing a closed walk can be
accomplished in linear time too (which will be explained next), RemoveReplicateEdges-
KeepingParity represents a simple and fast heuristic.

The procedure ReorderToClosedWalk reorders the edges of a given edge set Ci to
obtain a closed walk. Necessary and sufficient conditions for being able to do this are that
all nodes from V (Ci) have even degree (according to Ci) and the graph G[Ci] induced by Ci

is connected. The algorithm is based on the well-known end-pairing algorithm of Edmonds
and Johnson [EJ73] and basically constructs a series of closed walks which are successively
spliced together. In detail it works as follows.

Algorithm: ReorderToClosedWalk
Input: An edge set Ci.
Output: The reordered edge set Ci representing a closed walk.

(1) Initialize.

– Mark all edges from Ci as untraversed and let ρ(v) =
∑

e∈δ(v) φi(e) be the degree
of each node v ∈ V (Ci) according to edges from Ci.

– Maintain a queue Q of nodes to be used as starting nodes for constructing a closed
walk and insert an arbitrary node from V (Ci) into Q.

– Let H = ∅.

(2) While Q is not empty do

(2.1) Let s be the first node from Q. If ρ(s) ≤ 2 remove s from Q. If even ρ(s) = 0
continue with the while-loop (2), otherwise let vi = s.

(2.2) Choose an untraversed edge {vi, vj} and mark it as traversed. Decrement ρ(vi)
and ρ(vj). If vj 6= s, set vi = vj and proceed with step (2.2).

(2.3) Splice the constructed closed walk into the existing closed walk H at node s.
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(3) Let Ci = H.

Step (1) can be accomplished in time O(|Ci|). In step (2) each edge contained in Ci is
considered once. Splicing can be accomplished in constant time. Therefore the overall time
complexity is O(|Ci|).

The Improvement Procedure RemoveEvenRedundantEdges. The second improve-
ment procedure, called RemoveEvenRedundantEdges, basically works exactly like Re-
moveReplicateEdgesKeepingParity but it does a little bit more. Namely when con-
sidering a tour Ci and a redundant edge e, i.e., φ(e) > φi(e), with even frequency, i.e.,
φi(e) ≡ 0 mod 2, e will be removed completely from Ci if the remaining Ci remains connected
and still contains the depot node. Note that now we need the global edge frequencies φ(e).
The time complexity is O(max{|Ci|

2, k|E|}) because in the worst case for each edge e from
Ci we have to check whether Ci without e remains connected and still contains the depot
node which can be done in O(|Ci|) for each. Furthermore we have to compute the global edge
frequencies. Again ReorderToClosedWalk has to be applied afterward.

Algorithm: RemoveEvenRedundantEdges
Input: A connected undirected graph G = (V, E), edge weights w : E → R

+
0 , a distinguished

depot node v1 ∈ V , a k-postman tour C = {C1, . . . , Ck}, and a tour index i ∈ {1, . . . , k}.
Output: A possibly improved tour C̃ = {C1, . . . , Ci−1, C̃i, Ci+1, . . . , Ck}.

(1) Determine the global frequencies φ(e) and the tour frequencies φi(e) for each edge e
contained in Ci.

(2) For each edge e contained in Ci do

– If φi(e) ≥ 2 and φi(e) even and e redundant for Ci, i.e., φ(e) − φi(e) > 0, remove
φi(e) copies of e from Ci if Ci remains connected and still contains the depot node
v1.

– If φi(e) ≥ 3 and φi(e) odd, remove φi(e) − 1 copies of e from Ci.

– If φi(e) ≥ 4 and φi(e) even, remove φi(e) − 2 copies of e from Ci.

Example 4.6 Let us now apply RemoveEvenRedundantEdges to the 2-postman tour
depicted in figure 4.7 which we obtained after separating and merging operations. We choose
C1 to improve. We observe that for all edges e from {{v1, v3}, {v3, v5}, {v4, v8}, {v5, v8}}
we have φ1(e) = 2 and φ(e) − φ1(e) > 0 because all these edges are also covered by C2.
Furthermore, removing these edges and their duplicates does not destroy connectivity of C1

which can be seen in figure 4.8. Hence the first case of step (2) applies and the reduction
of the tour length of C1 amounts to 22. The new tour C has tour lengths w(C1) = 118 and
w(C2) = 68 and hence w

max
(C) = 118.

The Improvement Procedure ShortenRequiredEdgeConnections. The last im-
provement procedure is based on the routine Shorten which was developed as an improve-
ment procedure for the RPP [HLNH99] and used for the tabu search algorithm Carpet for
the CARP [HLM00]. The basic idea is to identify redundant walk segments P in the tour
Ci and replace them by a shortest path connecting the end nodes of P . We will call this
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Figure 4.8: Application of the algorithm RemoveEvenRedundantEdges to the 2-postman
tour depicted in figure 4.7.

procedure ShortenRequiredEdgeConnections. Note that again we need the global edge
frequencies in order to determine whether an edge is required for Ci or not.

Algorithm: ShortenRequiredEdgeConnections
Input: A connected undirected graph G = (V, E), edge weights w : E → R

+
0 , a distinguished

depot node v1 ∈ V , a k-postman tour C = {C1, . . . , Ck}, and a tour index i ∈ {1, . . . , k}.
Output: A possibly improved tour C̃ = {C1, . . . , Ci−1, C̃i, Ci+1, . . . , Ck}.

(1) Consider each possible starting edge and each of the two orientations of the tour Ci.

(1.1) Compute edge frequencies φ(e) and φi(e) for all e and i = 1, . . . , k.

(1.2) Traverse Ci.

(1.2.1) Construct the longest possible walk P (while traversing Ci) consisting of re-
dundant edges. Let vh be the origin and vj be the terminus of P .

(1.2.2) Try to enlarge P .
Traverse the tour Ci further on — building up walk Q — until a redundant
edge {vl, vj} entering vj is found. If such a closed walk Q = {vj , . . . , vl, vj} is
found, reverse the orientation of Q in Ci and continue with step (1.2.1) starting
again at vh.

(1.2.3) Replace P by the shortest path SP(vh, vj) if w(SP(vh, vj)) < w(P ). Continue
with step (1.2) with the edge following the last edge of P .

(2) If the depot node v1 is not contained in Ci anymore, choose the node vt on Ci which
has minimum distance to v1 and merge two times SP(v1, vt) with Ci in order to connect
the depot node with a closed walk to Ci.

In step (1.1) we always have to recompute the edge frequencies because we modify them in
step (1.2.1) to keep book of redundant and required edges. The loop of step (1) is executed
O(2|Ci|) times. Step (1.1) costs O(k|E|). Step (1.2) is difficult to analyze. In the worst case
it could happen that for each edge added to path P a required edge would follow but we could
find an appropriate walk Q and then we would start again at the beginning of P . Hence step
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Figure 4.9: The first iteration of the algorithm ShortenRequiredEdgeConnections.

(1.2) has worst case running time of O(|Ci|
2). Step (2) needs only O(|Ci|). Hence the overall

running time is O(|Ci|
3).

Example 4.7 Let us now illustrate the approach of ShortenRequiredEdgeConnections
by applying it to the tour C1 (red) of the 2-postman tour depicted in figure 4.7. We assume
the traversation of C1 to be v1, v3, v5, v8, v4, v6, v5, v8, v4, v3, v5, v6, v8, v7, v1, v3, v2,
v1. In step (1.2.1) we traverse C1 and try to construct the longest possible walk consisting of
redundant edges. As can be seen in figure 4.7 the first part of C1, until we arrive at v4, is
redundant since all these edges are also covered by C2 (green). Hence P is represented by the
walk v1, v3, v5, v8, v4 and vh = v1 and vj = v4. Now we proceed with step (1.2.2) where we
traverse C1 further until we arrive again at vj = v4. Hence Q is represented by v4, v6, v5,
v8, v4 and the last edge {v8, v4} is redundant. Therefore, we reverse the orientation of Q in
C1 and thus C1 is now v1, v3, v5, v8, v4, v8, v5, v6, v4, v3, . . .. Figure 4.9 highlights P (blue)
and Q (yellow).

In the next iteration of step (1.2) we start again at vh = v1 and construct P which is
now enlarged by the redundant edges {v4, v8} and {v8, v5}, hence vj = 5 since {v5, v6} is not
redundant. The construction of Q yields v5, v6, v4, v3, v5. Again the last edge {v3, v5} of Q
is redundant (see figure 4.10).

In the third iteration P is enlarged by {v5, v3}, vj = v3. The construction of Q gives the
closed walk v3, v4, v6, v5, v6, v8, v7, v1, v3 and again the last edge {v1, v3} is redundant (see
figure 4.11).

Finally, in the fourth iteration, P is enlarged by {v3, v1}, vj = v1, and Q is determined as
v1, v7, v8, v6, v5, v6, v4, v3, v2, v1 (see figure 4.12). The last edge {v2, v1} is not redundant
and hence step (1.2.3) is performed. Clearly, since the shortest path between vh = v1 and
vj = v1 is empty and thus of zero weight, we can remove P from C1 without adding any
edges. The resulting tour is identical with the tour obtained by applying RemoveEvenRe-
dundantEdges (cf. example 4.6) and depicted in figure 4.8.

4.4.3 Improvement Procedures

Based on the ideas and operations of the two previous subsections we devised two improvement
procedures to get a first feeling of the order of magnitude by which the solutions obtained by
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Figure 4.10: The second iteration of the algorithm ShortenRequiredEdgeConnections.

v7

v4

v2

38
8

10

13

1

7

2
27

24

v8

v6

26

1

7
2

8 1

P

v5

Q

v1

vh =

vj = v3

Figure 4.11: The third iteration of the algorithm ShortenRequiredEdgeConnections.
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Figure 4.12: The fourth iteration of the algorithm ShortenRequiredEdgeConnections.
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the heuristics FredericksonHechtKim, Cluster, ClusterWeighted, and Augement-
Merge could be improved.

Given a k-postman tour C = {C1, . . . , Ck}, the first improvement procedure always applies
the algorithm RemoveEvenRedundantEdges to the current longest tour Ci∗ . But instead
of removing all redundant edges from Ci∗ we select only one redundant edge to be removed,
namely one maximizing the improvement of Ci∗ when being removed. Why do we only remove
one redundant edge and not all of them from Ci∗? The reason is that removing all redundant
edges from Ci∗ could prevent removing redundant edges from the longest tour of the next
iteration which is obviously not our intention since our goal is to reduce the length of the
longest tour as much as possible. Of course, if Ci∗ stays the longest tour in the next iteration
we go on removing redundant edges from it. The detailed algorithm is as follows.

Algorithm: ImproveByRemovingEvenRedundantEdges
Input: A connected undirected graph G = (V, E), edge weights w : E → R

+
0 , a distinguished

depot node v1 ∈ V , and a k-postman tour C = {C1, . . . , Ck}.
Output: A possibly improved tour C̃.

(1) Determine the global frequencies φ(e) and the tour frequencies φi(e) for each edge e and
i = 1, . . . , k.

(2) As long as the current longest tour Ci∗ contains redundant edges do

(2.1) For each edge e contained in Ci∗ do

- If φi∗(e) ≥ 2, φi∗(e) even, e redundant for Ci∗ , and removing φi∗(e) copies
of edge e keeps connectivity of Ci∗ and containment of the depot node, set
n(e) = φi∗(e).

- If φi∗(e) ≥ 3 and φi∗(e) odd, set n(e) = φi∗(e) − 1.

- If φi∗(e) ≥ 4 and φi∗(e) even, set n(e) = φi∗(e) − 2.

(2.2) Now choose the edge e∗ which maximizes n(e)w(e). Remove n(e∗) copies of edge
e∗ from Ci∗ . Update frequencies φi∗(e

∗) and φ(e∗).

In contrast to the former approach the idea of the second improvement procedure is based
on exchanging edges between tours. In more detail we always traverse the longest tour
Ci∗ and select consecutive edges e∗ and f∗ which will achieve a maximum reduction of the
length of Ci∗ when being separated from Ci∗ (using algorithm SeparateWalkFromTour).
For the integration of e∗ and f∗ we choose a tour Cj , j 6= i∗, which yields a minimum tour
length after e∗ and f∗ have been integrated with the algorithm MergeWalkWithTour (see
figure 4.13). Each application of SeparateWalkFromTour and MergeWalkWithTour
is post-processed by an application of RemoveReplicateEdgesKeepingParity. If the
length of the resulting tour Cj∗ is shorter than the original length of Ci∗ the exchange of e∗

and f∗ between Ci∗ and Cj∗ will take place. Otherwise, we proceed with the next better pair
of consecutive edges of the longest tour Ci∗ . The algorithm terminates if the longest tour can
not be further improved.

Algorithm: ImproveByExchange
Input: A connected undirected graph G = (V, E), edge weights w : E → R

+
0 , a distinguished

depot node v1 ∈ V , and a k-postman tour C = {C1, . . . , Ck}.
Output: A possibly improved tour C̃.
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Figure 4.13: Illustration of the two edge exchange between two single tours.

(1) While tourImproved do

(1.1) Let Ci∗ be the current longest tour.

(1.2) Traverse Ci∗ and find consecutive edges e∗ and f∗ such that SeparateWalk-
FromTour applied to Ci∗ and e∗, f∗ yields a maximum reduction of the length
of Ci∗ .

(1.3) Apply MergeWalkWithTour with e∗, f∗ to each tour Cj , j 6= i∗, and choose
the resulting one Cj∗ having minimum tour length.

(1.4) If the tour Cj∗ is shorter than Ci∗ , perform the exchange of e∗ and f∗ between Ci∗

and Cj∗ . Set tourImproved = true.

Otherwise, set tourImproved = false. Go to step (1.2) and find the next better pair
of consecutive edges.

4.4.4 Computational Results

Now we want to find out how far we can improve the solutions obtained by the algorithms
FHK, Cluster, ClusterWeighted, and AugmentMerge in section 4.3.3. We applied
each of the two previously discussed algorithms ImproveByExchange and ImproveByRe-
movingEvenRedundantEdges to the solutions obtained by the heuristics. Furthermore,
we also applied both improvement procedures consecutively to each heuristic solution (first
ImproveByExchange, second ImproveByRemovingEvenRedundantEdges).

Let us first consider the improvements obtained for each single algorithm. The FHK-
algorithm could be improved in 501 of 571 cases and the average gap between the improved and
the heuristic solution was 8.9%. Expectedly, in almost all cases the best results were obtained
by the combination of the two improvement procedures, followed by the sole application
of ImproveByExchange. For the AugmentMerge algorithm an average improvement
of 11.7% could be achieved in 466 cases. Dramatic improvements could be attained for the
algorithms Cluster and ClusterWeighted where results were better in 552 and 554 cases
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by an average of 29.1% and 22.4%, respectively. However, this is unsurprising because — as
already indicated in section 4.3.3 — these algorithms suffer mostly from redundant edges.

More interesting now is the question of how much the best heuristic solution could be
improved by the best solution obtained by post-processing with the improvement procedures.
The best heuristic solutions could be improved in 488 out of 571 cases by an average of 8.5%.
This improvement led to 20 additional optimal solutions compared with the simple heuristics,
i.e., 57 out of 571 configurations could be proven to be optimal for the improvement heuristics
(cf. chapter 7). In most cases the FHK-algorithm with both improvement procedures yielded
the best results, followed by the Cluster algorithm with both improvement procedures.

Keeping in mind that the above improvement procedures are rather straightforward we
found the results very promising and felt encouraged to spent some more effort into the
development of a local search procedure. Therefore we developed a tabu search algorithm
based upon the tools developed in this section.

4.5 A Tabu Search Algorithm for the MM k-CPP

As already mentioned tabu search is a meta heuristic approach for solving combinatorial
optimization problems. Basically, tabu search follows a local search scheme, i.e., it starts with
a feasible solution, explores the neighborhood of this solution, moves towards one neighbor-
hood solution according to some criterion and proceeds until a fixed number of iterations has
been performed. The new feature of tabu search (compared to simply local search) is the use
of a memory in order to guide the search process in an intelligent way. One aspect of the
memory concerns the recency of a move between two adjacent solutions. In order to avoid
cycling or sticking in one region of the solution space, moves are declared tabu for a specified
number of iterations. This is the reason for naming this approach tabu search.

The modern form of tabu search derives from Glover [Glo86]. A good overview of
the principles and aspects of tabu search is given in [GL93]. In recent years, tabu search
was applied successfully to many combinatorial optimization problems. In particular, tabu
search approaches for routing problems like the CVRP [GHL94] and the CARP [HLM00]
(cf. section 4.1) could reach high quality solutions. Both our own experiences made with
improvement procedures in the last section and the results found in the literature motivated
us to apply a tabu search approach to the MM k-CPP.

In contrast to most tabu search implementations we put a special emphasis on investigating
the trade-off between running time effort and solution quality when applying the different
improvement procedures from section 4.4.2 in the course of the neighborhood construction.
This is due to the fact that we experienced long running times for complex improvement
procedures like ShortenRequiredEdgeConnections (cf. section 4.4.2).

In the remainder of this section we first explain the generic tabu search algorithm. After
that we present three different neighborhood construction algorithms which can be plugged
into the generic algorithm. In the end of this section we conduct extensive computational
experiments for our tabu search algorithm in which we finally compare the results to those
obtained for the improvement procedures in section 4.4.4.

4.5.1 The Generic Algorithm

The generic tabu search algorithm for the MM k-CPP works as follows. In each iteration we
consider a so-called currentSolution (which is initialized with an input solution C) and compute
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a set of neighborhood solutions N(currentSolution). A neighborhood solution is obtained by
performing slight modifications on the current solution (neighborhoods will be presented in
the next section). When going from one solution C to a neighborhood solution C̃ (which
will be called move) we want to maximize the improvement of the objective function value
wmax(C)−wmax(C̃) (which will be called move value). Hence the neighborhood solutions will
be considered in decreasing order of their move values and the non-tabu neighbor solution
with the best move value is chosen to be the next current solution. In the case that the
neighborhood solution is tabu but better than the current best solution, the tabu rule will
be ignored. A solution is declared tabu according to a recency criterion, namely in the case
when the move from the current solution to the neighbor solution has already appeared in
the tabuTenure last iterations (the exact tabu criterion depends on the neighborhood and
will be explained in the next section). The algorithm terminates if no improvement of the
best solution has been achieved in the last maxNOfItsWithoutImprovement iterations. More
formally the algorithm works as follows:

Algorithm: MmkcppGenericTabuSearch
Input: A connected undirected graph G = (V, E), edge weights w : E → R

+
0 , a distin-

guished depot node v1 ∈ V , a k-postman tour C, the maximum number of iterations without
improvement maxNOfItsWithoutImprovement, a tabu tenure tabuTenure, and a flag improve-
mentProcedure.
Output: A possibly improved k-postman tour C̃.

(1) Initialize.

– Set bestSolution = currentSolution = C.

– Set bestSolutionValue = currentSolutionValue = wmax(C).

– Set nOfItsWithoutImprovement = 0.

(2) While nOfItsWithoutImprovement < maxNOfItsWithoutImprovement do

(2.1) Increment nOfItsWithoutImprovement.

(2.2) Compute a list of neighborhood solutions N(currentSolution) (with parameter im-
provementProcedure) in decreasing order of their move values.

(2.3) Let neighborSolution be the first solution of the list which is either non-tabu or
tabu but neighborSolutionValue < bestSolutionValue. If no such solution exists the
algorithm terminates.

Set currentSolution = neighborSolution and currentSolutionValue = neighborSolu-
tionValue.

If currentSolutionValue < bestSolutionValue then bestSolution = currentSolution,
bestSolutionValue = currentSolutionValue and nOfItsWithoutImprovement = 0.

4.5.2 Neighborhoods

Given a current solution C there is a huge number of possibilities to construct neighborhood
solutions. It is clear that one has to consider specialized and promising neighborhoods with
restricted size. As a first restriction we will confine ourselves to neighborhood solutions where
only two tours, namely the longest tour Ci∗ and any other tour Cj , j 6= i∗, are modified. The
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three neighborhoods presented in the following, mainly differ in the way they exchange edges
between Ci∗ and Cj .

In the following when talking about merging and separating edges or walks we refer to the
application of the procedures MergeWalkWithTour and SeparateWalkFromTour,
respectively, introduced in section 4.4.1. As already mentioned we will apply improvement
procedures from section 4.4.2 after merging and separating edges or walks.

The TwoEdgeExchange neighborhood picks up the idea of the ImproveByExchange
improvement procedure (cf. section 4.4.3). It successively considers two consecutive edges e
and f in the longest tour Ci∗ . These edges are separated from Ci and merged with any other
tour Cj , j 6= i∗. Hence we obtain (k − 1)(|Ci∗ | − 1) neighborhood solutions. After separating
e and f the selected improvement procedure is applied to Ci∗ and after merging e and f with
Cj , j 6= i∗, the improvement procedure is applied to Cj .

Algorithm: TwoEdgeExchangeNeighborhood
Input: The current solution C = {C1, . . . , Ck} and a parameter indicating the selected
improvement procedure.
Output: A list of neighborhood solutions C̃ sorted in decreasing order of their move values
wmax(C) − wmax(C̃).

(1) Traverse the longest tour Ci∗ .

(1.1) Consider consecutive edges e and f in Ci∗ .

(1.2) Compute the tour C̃i∗ which is obtained by separating edges e and f from Ci∗ .
Apply the selected improvement procedure to C̃i∗ .

(1.3) Consider remaining tours Cj , j 6= i∗.

- Compute C̃j obtained by merging edges e and f with Cj . Apply the selected
improvement procedure to C̃j .

- Add C̃ = {C1, . . . , Ci∗−1, C̃i∗ , Ci∗+1, . . . , Cj−1, C̃j , Cj+1, . . . , Ck} to the list of
neighborhood solutions.

For the tabu criterion, two moves from C to C1 resp. C2 obtained by separating e1, f1 resp. e2, f2

from Ci1 resp. Ci2 and merging them with Cj1 resp. Cj2 , are considered to be identical if
i1 = i2, e1 = e2, f1 = f2, and j1 = j2.

The RequiredEdgeWalkExchange neighborhood successively considers walks H =
P1, e, P2 in the longest tour Ci∗ where e is required for Ci∗ and P1 and P2 contain as many
redundant edges for Ci∗ — preceding and following e, respectively — as possible. The walk
H is separated from Ci∗ and e is merged with any other tour Cj , j 6= i∗ (see figure 4.14).
Hence we obtain at most (k − 1)|Ci∗ | neighborhood solutions in the case that all edges are
required. Usually there will be much less neighborhood solutions. After separating H, the
selected improvement procedure is applied to Ci∗ and after merging e with Cj , j 6= i∗, the
improvement procedure is applied to Cj . Greistorfer [Gre94] used a similar neighborhood
structure for the CCPP.

Algorithm: RequiredEdgeWalkExchangeNeighborhood
Input: The current solution C = {C1, . . . , Ck} and a parameter indicating the selected
improvement procedure.
Output: A list of neighborhood solutions C̃ sorted in decreasing order of their move values
wmax(C) − wmax(C̃).
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Figure 4.14: Illustration of the required edge walk exchange between two single tours.

(1) Determine global edge frequencies φ(e) and tour edge frequencies φi∗(e) in order to
identify required and redundant edges of Ci∗ .

(2) Traverse the longest tour Ci∗ .

(2.1) Consider a walk H consisting of exactly one edge e being required for Ci∗ and as
many preceding and following redundant edges as possible.

(2.2) Compute the tour C̃i∗ which is obtained by separating the walk H from Ci∗ . Apply
the selected improvement procedure to C̃i∗ .

(2.3) Consider remaining tours Cj , j 6= i∗.

- Compute C̃j obtained by merging e with Cj . Apply the selected improvement
procedure to C̃j .

- Add C̃ = {C1, . . . , Ci∗−1, C̃i∗ , Ci∗+1, . . . , Cj−1, C̃j , Cj+1, . . . , Ck} to the list of
neighborhood solutions.

For the tabu criterion, two moves from C to C1 resp. C2 obtained by separating H1 = P 1
1 , e1, P

1
2

resp. H2 = P 2
1 , e2, P

2
2 from Ci1 resp. Ci2 and merging e1 resp. e2 with Cj1 resp. Cj2 , are

considered to be identical if i1 = i2, e1 = e2, and j1 = j2.
The SingleRequiredEdgeExchange neighborhood successively considers required edges

e in the longest tour Ci∗ . The edge e is separated from Ci∗ and merged with any other tour
Cj , j 6= i∗. Hence we obtain at most (k − 1)|Ci∗ | neighborhood solutions. After separating
e from Ci∗ and merging e with Cj , j 6= i∗, the improvement procedure is applied to Ci∗

and afterward to Cj . Note that without application of improvement procedures the longest
tour Ci∗ will not be improved for instances having all weights fulfilling the triangle inequal-
ity, since e will be reinserted as shortest connection between its endnodes by the routine
SeparateWalkFromTour.

Algorithm: SingleRequiredEdgeExchangeNeighborhood
Input: The current solution C = {C1, . . . , Ck} and a parameter indicating the selected
improvement procedure.
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Output: A list of neighborhood solutions C̃ sorted in decreasing order of their move values
wmax(C) − wmax(C̃).

(1) Determine global edge frequencies φ(e) and tour edge frequencies φi∗(e) in order to
identify required and redundant edges of Ci∗ .

(2) Traverse the longest tour Ci∗ .

(2.1) Identify an edge e being required for Ci∗ .

(2.2) Consider remaining tours Cj , j 6= i∗.

- Compute C̃i∗ obtained by separating e from Ci∗ .

- Compute C̃j obtained by merging e with Cj .

- Apply the selected improvement procedure to C̃i∗ .

- Apply the selected improvement procedure to C̃j .

- Add C̃ = {C1, . . . , Ci∗−1, C̃i∗ , Ci∗+1, . . . , Cj−1, C̃j , Cj+1, . . . , Ck} to the list of
neighborhood solutions.

For the tabu criterion, two moves from C to C1 resp. C2 obtained by merging e1 resp. e2 from
Ci1 resp. Ci2 with Cj1 resp. Cj2 , are considered to be identical if i1 = i2, e1 = e2, and j1 = j2.

The above neighborhood in connection with the improvement procedure ShortenRe-
quiredEdgeConnections was used in the Carpet tabu search algorithm for the CARP
[HLM00].

4.5.3 Computational Results

Fixing the Tabu Tenure. In a preliminary experiment the goal was to find an appropriate
setting for the parameter tabuTenure. We performed computations (for each combination of
initial heuristic, tabu search neighborhood and improvement procedure) on the five randomly
generated instances (cf. section A.1.2) while using the values {5, 10, 15, 20, 25} for tabuTenure.
We imposed a time limit of 600 seconds on each run. We found that for some instances the
tabu tenure did not have any impact on the solution, but for most instances the values 15
and 20 led to solutions of best quality. Therefore we decided to fix the parameter tabuTenure
to 20. The parameter maxNOfIterationsWithoutImprovement is set to 100.

Impact of Neighborhood Structure. In a second experiment we investigated the impact
of the three different neighborhood structures on the solution quality. This was accomplished
by comparing the results of the three neighborhoods for each of the four configurations of post-
processing by improvement procedures (one configuration is without using an improvement
procedure). Again we used the five randomly generated instances (cf. section A.1.2) and also
the two instances from the instance set rppCS94 (cf. section A.1.1.2). Again, the time limit
was set to 600 seconds on each run.

Roughly, we observed that the TwoEdgeExchange (TEE) neighborhood was supe-
rior to the RequiredEdgeWalkExchange (REWE) neighborhood for the cases of ap-
plying RemoveReplicateEdgesKeepingParity, RemoveEvenRedundantEdges, and
when no improvement procedure was used. The SingleRequiredEdgeExchange (SREE)
neighborhood could not achieve any best solution in these three cases. In the case of using
ShortenRequiredEdgeConnections the best solutions are almost equally distributed
among the three neighborhoods.
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Let us go into more detail and try to give reasons for the behavior we observed in the second
experiment. As already mentioned, in general the TEE neighborhood is superior (in the first
three cases) but for an increasing number of postmen k we found that solutions obtained for
the REWE neighborhood became better and then often outperformed the solutions of the TEE
neighborhood. This phenomenon can be explained by the following consideration. For k small
it is less likely that single tours overlap and hence almost all edges of a single tour are required.
For the REWE neighborhood this would result in H (the walk to be exchanged) consisting
only of one required edge. An exchange of only one required edge (which is exactly the case of
the SREE neighborhood) is not very effective which we have already observed for the SREE
neighborhood. But with increasing k it is more likely that single tours service the same edges
and hence the number of redundant edges grows. This, in turn, leads to larger walks H to
be exchanged in the REWE neighborhood and hence to probably more promising neighbor
solutions. The TEE neighborhood has a fixed exchange scheme and thus is independent of
the value of k. This is probably the reason for the TEE neighborhood being superior in most
cases. When using ShortenRequiredEdgeConnections as improvement procedure the
best solutions are almost equally distributed among the three neighborhoods. The reason is
that this improvement procedure performs substantial modifications on a solution and it seems
to be a matter of accident which solution is appropriate for achieving best improvements. So
probably ShortenRequiredEdgeConnections can often turn “bad solutions” in better
solutions rather than improving on a fairly good solution.

Effect of Improvement Procedures. The next experiment was concerned with investi-
gating the effect of the improvement procedures. Recall that in the tabu search algorithm
the selected improvement procedure will be applied whenever a neighborhood solution is con-
structed (cf. section 4.5.2). In order to put the running time in relation to the solution quality
we imposed two different time limits on each run, namely 60 seconds for rather short runs and
600 seconds for rather long runs. Furthermore, runs have been performed for all three neigh-
borhoods. We used the same instances as in the previous experiment. These seven instances
can be roughly divided into three small instances with 20 ≤ |V | ≤ 40 and 32 ≤ |E| ≤ 70 and
four larger instances with 90 ≤ |V | ≤ 102 and 144 ≤ |E| ≤ 199.

For all three neighborhoods we observed the same effects of the improvement procedures.
Namely, for the short runs the improvement procedure RemoveEvenRedundantEdges was
superior for all instances except for the smallest instance with |V | = 20 and |E| = 32. For the
long runs the improvement procedure ShortenRequiredEdgeConnections was superior
for the three small instances but for the large instances again RemoveEvenRedundant-
Edges was better. In only a few cases RemoveReplicateEdgesKeepingParity yielded
the best result. This experiment clearly shows that the improvement procedure Short-
enRequiredEdgeConnections (with its high time complexity) is not favorable if we have
time restrictions or deal with large graphs. The procedure RemoveEvenRedundantEdges
seems to make an excellent compromise between time complexity and quality and for large
instances there is no alternative in choosing this improvement procedure.

Comparison Tabu Algorithm vs. Heuristics. The last experiment compared the results
of the tabu search algorithm with the results of the heuristics from section 4.3.3 and the
improvement procedures from section 4.4.4. Computations were performed on the whole
instance set. We performed benchmarks of the tabu search algorithm with both a time limit



4.5. A TABU SEARCH ALGORITHM FOR THE MM K-CPP 69

set to 600 seconds on each run and with unlimited time. The explicit results can be found in
Appendix A.3.

Let us first consider the benchmark with a time limit of 600 seconds. The solutions
obtained by the heuristics could be improved by the tabu search algorithm in almost all cases.
The improvement is often considerable, in many cases about 10% for some configurations even
about 20–30%. The average improvement over all configurations is 8.3% and the maximum
improvement achieved for a configuration is 32.6%. A different behavior can be observed
for the instance sets carpLE96 (tables A.66 and A.67) and grpCLS01 (tables A.68 to A.75)
which contain the largest instances of the test set. Here the average improvement of 1.9%
and 2.1%, respectively, is rather low. This, however, is due to the limited amount of time
(600 seconds) which does not allow to create as many neighborhood solutions as required for
obtaining better solutions (see below). Interestingly, for a few configurations, e.g., egl-e4-A
and k = 6, 7 (cf. table A.66), the improvement of the tabu search algorithm was worse than
the improvement obtained by the improvement procedures. Nevertheless, 243 out of 571
solutions obtained by the tabu search algorithm with a time limit of 600 seconds could be
proven to be optimal (cf. chapter 7), which is a dramatic improvement over the improvement
procedures which yielded 57 optimal solutions.

A natural question now is how more running time pays off in terms of solution quality.
Therefore we performed the tabu search algorithm without time limit. For this experiment
we experienced very long running times when using the improvement procedure Shorten-
RequiredEdgeConnections and even for RemoveEvenRedundantEdges. In fact, the
longest running times experienced when running the tabu search algorithm without time limit
did amount to 2 days (per configuration) for the big instances from instance set carpLE96
and grpCLS01. Expectedly, for small instances up to 30 nodes and 40 edges (almost) no
improvements could be achieved, i.e., all possible neighborhood solutions could be already
considered for the 600 seconds runs. For larger instances, however, the results of the 600
seconds runs could be improved, i.e., the unlimited time allowed for constructing all possible
neighborhood solutions. In general, the larger the instance the better the obtained improve-
ment. The improvement ranges from 2% to 5%. For the largest instances egl-s4-A from
instance set carpLE96 (table A.67) and MADR 3 1 from grpCLS01 (table A.69), average im-
provements of even 8.1% and 7.2%, respectively, could be achieved. The average improvement
of the unlimited tabu search compared with the tabu search restricted to 600 seconds (over
all configurations) was 1.9% and the maximum improvement achieved for a configuration was
12.5% (instance GTSP4 for k = 10, cf. table A.73). In terms of optimal solutions the unlim-
ited tabu search algorithm could find 27 further optimal solutions. Furthermore, we have an
average improvement of 9.5% over the heuristics with improvement procedures.

Although in many cases the improvement is about 10% (compared to the improvement
procedures) we can also observe many configurations with only low improvement “on the first
sight”. But if we have a closer look we discover that in most of these cases the heuristic
solution is already very good, i.e., very close to the best lower bound. It is clear that a large
improvement is not possible in those cases. In spite of this, the tabu search algorithm often
determines a better solution which is even optimal in many cases, in fact it is optimal for 270
out of 571 configurations.

In chapters 5 and 7 we will discuss results for lower bounds. We will see that the best
lower bounds can be obtained for k = 2, 3 and (depending on the size of the graph) for bigger
k, e.g., k = 8, 9, 10. For k = 4, 5, 6, 7 often only rather bad lower bounds (in particular for
big instances) can be obtained. Therefore the sometimes big gaps between the upper bounds
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obtained by the tabu search algorithm and the best lower bounds are due to the bad lower
bounds.

4.6 Summary and Conclusions

In the beginning of this chapter we reviewed the most important and most recent heuris-
tics for the CARP. Several of these approaches are based on algorithmic ideas developed for
the CVRP. Computational experiments for the CARP showed that best solutions were ob-
tained by meta heuristic approaches. At present, the best results are achieved by the genetic
algorithm of Lacomme et al. [LPRC01a, LPRC01b].

For the MM k-CPP the only existing algorithm is the one proposed by Frederickson
et al. [FHK78] which follows a route first – cluster second strategy. We proposed two new
heuristics, AugmentMerge and Cluster, following a combined and a cluster first – route
second strategy, respectively. Computational experiments showed that the FHK-algorithm
dominated the new heuristics. This is due to the fact that the route first – cluster second
strategy of the FHK-algorithm produces least cost redundant edges. Nevertheless, in 14% of
all cases the results obtained by the FHK-algorithm could be improved by one of the new
heuristics with an average gap of 9.5%. Visual inspections of the solutions produced by all
heuristics exhibited much potential for further enhancements and therefore motivated the
development of improvement procedures.

For the clear exposition of the underlying ideas of the improvement procedures we intro-
duced the notions of required and redundant edges for the MM k-CPP. Then, after devising
basic procedures for integrating edges and walks into a tour resp. removing edges and walks
from a tour, we developed the three new procedures RemoveReplicateEdgesKeepingPar-
ity, RemoveEvenRedundantEdges and ShortenRequiredEdgeConnections (where
the latter is an adaption of the procedure Shorten developed in [HLNH99]) for improving
single tours. Theses procedures are (in that order) of increasing time complexity which
becomes noticeable when incorporating these procedures into local search schemes, e.g., as
post-processing tools for constructed neighborhood solutions. Based on these procedures we
developed the two improvement procedures ImproveByRemovingEvenRedundantEdges
and ImproveByExchange. Computational results showed that the simple heuristics could
be improved in 85% of all cases by an average of 8.5%.

Motivated by these results we developed a tabu search algorithm with three different neigh-
borhood structures and incorporated the developed improvement procedures for single tours.
Computational experiments showed that the procedure ShortenRequiredEdgeConnec-
tions with its cubic time complexity required too much time for large instances. Therefore
we had to resort to the faster procedures RemoveReplicateEdgesKeepingParity and
RemoveEvenRedundantEdges for large instances. The tabu search algorithm could fur-
ther improve the results of the heuristics with improvement procedures by an average of 9.5%.
Furthermore, when assessing the results with the aid of lower bounds we observed that for
270 from 571 configurations we obtained optimal solutions. Hence we can conclude that our
primal heuristics, in particular the tabu search algorithm, yield high quality solutions for the
MM k-CPP.

In chapters 5 and 7 we will see that for the MM k-CPP the availability of high quality
upper bounds is of eminent importance for the effectiveness of the lower bounding procedures
and the exact algorithms.
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Finally, we want to point out further research directions. The tabu search algorithm cer-
tainly leaves many possibilities for further experiments and extensions. We can imagine new
neighborhood structures, a sophisticated tabu search memory using a frequency criterion in
addition to the recency criterion as well as further parameter fine tuning. A step towards at-
tacking larger instances might be realized by a parallel approach using distributed processors.
Furthermore, it would be interesting to investigate the effectiveness of other meta heuristic
approaches like genetic algorithms or variable neighborhood search for the MM k-CPP.
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Chapter 5

Dual Heuristics

In this chapter we will discuss dual heuristics for the CARP and the MM k-CPP, i.e., al-
gorithms for obtaining good lower bounds for the value of an optimal solution. The most
important reasons for developing dual heuristics are that on the one hand we are able to
assess the quality of solutions obtained by primal heuristics. On the other hand lower bounds
are indispensable for devising a branch-and-bound scheme in order to solve problems exactly.

Here, we will restrict ourselves to combinatorial algorithms to obtain lower bounds. Other
ways to obtain lower bounds are, e.g., given by LP relaxations of IP formulations of the
corresponding problems. Lower bounds obtained that way will be considered in chapter 7.

This chapter is structured as follows. The first part is devoted to the CARP and starts
with a detailed overview of the existing dual heuristics for the CARP. After that we point
out possibilities to obtain improved lower bounds and summarize the existing dominance
relations between the dual heuristics as well as new relations contributed by this thesis. The
first part is completed by computational results. In the second part of this chapter we turn
to the MM k-CPP. After presenting existing lower bounds for the MM k-CPP we derive new
lower bounding procedures based on ideas from the CARP approaches. In the scope of these
adaptions we develop a key algorithm for computing a lower bound for the number of postmen
required to service a certain node set. This algorithm will also be an essential ingredient of
the exact approach developed in chapter 7. The second part is also closed by computational
results. Finally, we summarize the results of this chapter and give conclusions.

5.1 Existing Lower Bounds for the CARP

There has been active research on this topic for three decades now starting with the work of
Christofides [Chr73] dating back to 1973. The latest result has been published by Wøhlk
in 2004 [Wøh04]. Partial but not comprehensive overviews of combinatorial lower bounds are
given in [BCCM92], [EGL95b] and [AG95]. A nice and well motivated treatment of some
of the lower bound algorithms can be found in the masters thesis of Breslin and Keane
[BK97].

In this section we will review all combinatorial lower bounds results for the CARP known
at present. This detailed analysis will give us the foundation to suggest improvements on the
one hand. On the other hand it will enable us to make appropriate adaptions in order to
devise improved lower bounding approaches for the MM k-CPP.

For a given graph G = (V, E), edge demands d : E → R
+
0 , and a vehicle capacity Q ∈ N

73
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we will treat the number of vehicles K not as a decision variable but we will determine K as

K =

⌈

∑

e∈E

d(e)

Q

⌉

. (5.1)

Note that K represents a lower bound for the optimal number K∗ of postmen required for a
capacitated postman tour in G, i.e., it could happen that K vehicles are not enough. However,
for all instances we use in our computational experiments we have K∗ = K. Hence, in the
following K will be considered as an implicit input value.

5.1.1 The Christofides Lower Bound

The idea of the lower bound for the CCPP devised by Christofides [Chr73] is to start
from the optimal 1-postman tour C∗. Then, by counting the number of times I the depot
is traversed by C∗, we know that a feasible tour (and hence an optimal tour) must leave the
depot at least 2K−I more times. For leaving the depot the remaining 2K−I times a cheapest
edge e∗ incident to the depot is chosen. Although the reasoning seems to be intuitively right,
the algorithm is not correct which will be shown by example 5.1 after presenting the algorithm.

Algorithm: ChristofidesLowerBound
Input: A connected undirected graph G = (V, E), edge weights w : E → R

+
0 , a distinguished

depot node v1 ∈ V , edge demands d : E → R
+
0 , and a vehicle capacity Q ∈ N.

Output: A wrong lower bound CLB.

(1) Let C∗ be the optimal 1-postman tour on G, let I be the number of times the depot
v1 is traversed by C∗ and let e∗ be a cheapest edge incident to the depot node, i.e.,
w(e∗) = mine∈δv1 w(e).

(2) CLB = w(C∗) + (2K − I)w(e∗).

The time complexity is dominated by the computation of a 1-postman tour which costs
O(|V |3).

Example 5.1 The following counterexample for the correctness of the Christofides Lower
Bound is from [GW81]. Given the graph G depicted on the left hand side of figure 5.1 where
edge labels show edge weights, all demands are set to 1, the capacity is Q = 3, and K = 2.
The middle of figure 5.1 shows G with the edges added by the computation of the Christofides
Lower Bound, namely {v2, v4} from C∗ and {v1, v2}, {v1, v3} as cheapest edges. Hence CLB

= 22 + 6 = 28. However, on the right hand side of figure 5.1 we see an optimal solution with
weight 24 (the first tour is colored red, the second one green).

Example 5.1 shows clearly the reason why the Christofides lower bound is incorrect. Adding
edges to the depot node in order to obtain degree 2K leads to a change of parity of the other
nodes. This must be taken into account when adding edges to reach even parity of all nodes.

5.1.2 The Matching Lower Bound

The Matching Lower Bound (MLB) was devised by Golden and Wong [GW81]. In
contrast to the Christofides approach, they start from the sum of the edge weights w(ER)
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Figure 5.1: A counterexample for the Christofides Lower Bound.

of the required edges. This value can be improved since on the one hand we know that
for a feasible solution the R-odd nodes of G have to be even. An optimal solution cannot
do better than either connecting R-odd nodes directly (via matching over the shortest path
distances), or using shortest paths from the depot to an R-odd node. On the other hand
we know that the depot node must have at least 2K incident edges. Hence we can add
2K − |δR(v1)| further edges to the depot node. These edges could be edges starting the
shortest paths mentioned above (making R-odd nodes even) or the starting edges of shortest
paths SP(v1, ER) which connect (and also include) the nearest required edge to the depot,
denoted as e∗R (this improvement was first mentioned in [Pea88]).

In order to combine these ideas a graph G̃ consisting of the R-odd nodes of G and 2l
copies of the depot node is constructed, where l = 2K − |δR(v1)|, if |δR(v1)| is even, and
l = 2K − |δR(v1)| − 1 otherwise (we need an even number of copies of the depot node for
the correct construction). Then a minimum weighted perfect matching M is computed on G̃.
The lower bound is computed as w(ER) + w(M). In detail the algorithm works as follows.

Algorithm: MatchingLowerBound
Input: A connected undirected graph G = (V, E), edge weights w : E → R

+
0 , a distinguished

depot node v1 ∈ V , edge demands d : E → R
+
0 , and a vehicle capacity Q ∈ N.

Output: A lower bound MLB.

(1) Let S = {v ∈ V | v is R-odd} be the set of R-odd nodes of G. Let l = 2K − |δR(v1)|,
if |δR(v1)| is even, and l = 2K − |δR(v1)| − 1 otherwise. Let A = {a1, . . . , al} and
B = {b1, . . . , bl} be node sets each consisting of l (distinguishable) copies of the depot
node. Finally let SP(v1, ER) as defined above.

(2) Let G̃ be the graph with node set S ∪A ∪B and edges e = {u, v} with weights defined
by

w̃(e) =























w(SP(u, v)) for u, v ∈ S,
w(SP(v1, v)) for u ∈ A, v ∈ S,
w(SP(v1, u)) for u ∈ S, v ∈ A,

w(SP(v1, ER)) for u = ai and v = bi, i = 1, . . . , l,
0 for u, v ∈ B.

(3) Compute a minimum weighted perfect matching M on G̃.

(4) MLB = w(ER) + w̃(M).

The time complexity is dominated by the computation of the matching in step (3). Since G̃
contains O(|V |) nodes we have an overall time complexity of O(|V |3).

Assad et al. [APG87] showed that MLB is a nondecreasing function of the number of
postmen K, in detail MLB(K) ≤ MLB(K + 1), for K > |δ(v1)|.
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Note that adding paths SP(v1, ER) to the depot may result in making the end nodes of
the paths odd. This allows further improvements, namely by adding a cheapest incident edge
making this node again even.

5.1.3 The Node Scanning Lower Bound

The Node Scanning Lower Bound (NSLB) was devised by Assad et al. [APG87].
Again this approach focuses on adding further edges or paths to the depot but it does not
take the parity of the nodes into account. Considering a feasible solution, for each single tour
we can identify paths consisting of non-serviced edges starting at the depot. Each path is
extended maximally until a serviced edge is encountered on the tour (these paths are called
d-paths in [BCCM92]). It is clear that for each single tour we have either 0 or 1 or 2 such
maximal paths. If we consider the set of all such maximal paths obtained from the feasible
solution and a fixed node v 6= v1, then it is clear that the number of maximal paths having
v as endnode cannot exceed |δR(v)|. In order to obtain degree 2K at the depot node we add
2K − |δR(v1)| least cost paths while recognizing that no more than |δR(v)| paths from a node
v are available. In detail the algorithm works as follows.

Algorithm: NodeScanningLowerBound
Input: A connected undirected graph G = (V, E), edge weights w : E → R

+
0 , a distinguished

depot node v1 ∈ V , edge demands d : E → R
+
0 , and a vehicle capacity Q ∈ N.

Output: A lower bound NSLB.

(1) Renumber the nodes in nondecreasing order with respect to their shortest path distance
to the depot node v1, i.e., w(SP(v1, v2)) ≤ w(SP(v1, v3)) ≤ . . . ≤ w(SP(v1, vn)) holds
after renumbering (n = |V |).

(2) Determine the smallest integer i′ with |δR(v2)|+|δR(v3)|+. . .+|δR(vi′)| ≥ 2K−|δR(v1)|.

Let deg(i) = |δR(vi)| for i = 2, . . . , i′− 1, and deg(i′) = 2K − |δR(v1)| −
∑i′−1

i=2 deg(i) (in

order to let
∑i′

i=2 deg(i) sum up to 2K − |δR(v1)|).

(3) NSLB = w(E) +
∑i′

i=2 deg(i)w(SP(v1, vi)).

The time complexity is dominated by the shortest path computation required for performing
step (1). If all demands are greater than Q/2, then K can be set to |E| and all the shortest
paths added to the depot are needed since each tour can only serve one edge. Computational
results reported in [APG87] showed that NSLB only performs well (compared to MLB) on
sparse graphs with large edge demands.

5.1.4 The Pearn Lower Bound

The Pearn Lower Bound (PLB) was devised by Pearn [Pea88]. It combines the ideas of
the MLB (cf. section 5.1.2) and the NSLB (cf. section 5.1.3).

Again the idea is to add 2K − |δR(v1)| edges or paths to the depot node. Let S be
the node set containing the R-odd nodes of G, then the approach works iteratively (for
p = 0, 2, 4, . . . , |S|) through two stages.

In the first stage the aim is to obtain even parity of the R-odd nodes while also taking
into account that odd nodes could be connected to the depot. This is realized by computing
a minimum weighted perfect matching M(p) on the graph G̃(p) which consists of the R-odd
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nodes S and p copies a1, . . . , ap of the depot node. All nodes are connected by edges weighted
with shortest path distances. The only exception are the nodes a1, . . . , ap which are not
connected with each other, since the intention is to match each copy of the depot with a node
from S. By adding edges represented by the matching edges M(p) to ER the degree of the
depot node is increased by at least p, since each node ai, i = 1, . . . , p, is matched. Further
increase can occur if a shortest path connection represented by a matching edge passes the
depot node. A special case can happen if |δR(v1)| is odd, i.e., v1 ∈ S. Then it is likely that
one of the nodes ai, i = 1, . . . , p, is matched to the depot node v1. Clearly, in that case, this
edge will not be counted for increasing the degree of the depot node. Let us summarize the
increase of the degree of the depot node in a more formal manner. Let Ĝ(p) be the multigraph
with edges ER ∪ M(p). Then the new degree of the depot node is |δ

Ĝ(p)(v1)| and there are

L = 2K − |δ
Ĝ(p)(v1)| possibilities left to add further edges to the depot node.

In the second stage, essentially the NSLB is applied to add L further edges and paths,
respectively, to the depot node and finally arrive at the degree of 2K. The intermediate lower
bound PLB(p) is computed as the sum of the weights of the required edges w(ER), the weight
of the matching edges w(M(p)) and the weights of the edges added by the NSLB routine.

After iterating through all values of p the Pearn Lower Bound PLB is computed as the
minimum of the intermediate lower bounds PLB(p), p = 1, . . . , S. In detail the algorithm
works as follows.

Algorithm: PearnLowerBound
Input: Connected undirected graph G = (V, E), edge weights w : E → R

+
0 , a distinguished

depot node v1 ∈ V , edge demands d : E → R
+
0 , and a vehicle capacity Q ∈ N.

Output: A lower bound PLB.

(1) Renumber the nodes of G in nondecreasing order with respect to their shortest path
distance to the depot node v1, i.e., w(SP(v1, v2)) ≤ w(SP(v1, v3)) ≤ . . . ≤ w(SP(v1, vn))
holds after renumbering (n = |V |).

(2) For p = 0, 2, . . . , |S| do (S is the set of R-odd nodes of G)

(2.1) Let A(p) = {a1, . . . , ap} denote the set of p copies of the depot node. Let G̃(p)
be the graph with node set Ṽ (p) = S ∪ A(p) and edges e = {u, v} with weights
defined by

w̃(e) =







w(SP(u, v)) for u, v ∈ S,
w(SP(v1, v)) for u ∈ A(p), v ∈ S,
w(SP(v1, u)) for u ∈ S, v ∈ A(p).

Note that nodes in A(p) are not connected with each other.

(2.2) Compute a minimum weighted perfect matching M(p) on G̃(p).

(2.3) Let Ĝ(p) be the multigraph with edge set ER ∪ M(p) and let |δ
Ĝ(p)(v1)| be the

degree of the depot node according to Ĝ(p). Let L = 2K − |δ
Ĝ(p)(v1)|.

(2.4) Determine the smallest integer i′ with |δR(v2)|+ |δR(v3)|+ . . . + |δR(vi′)| ≥ L. Let

deg(i) = |δR(vi)| for i = 2, . . . i′ − 1 and deg(i′) = L−
∑i′−1

i=2 deg(i) (in order to let
∑i′

i=2 deg(i) sum up to L).

(2.5) Compute PLB(p) = w(ER) + w̃(M(p)) +
∑i′

i=2 deg(i)w(SP(v1, vi)).

(3) PLB = minp=0,2,...,|S| PLB(p).
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The loop of step (2) is dominated by the computation of the minimum weighted perfect
matching in step (2.2). Since G̃(p) contains O(|V |) nodes and |S| = O(|V |) we have an
overall time complexity of O(|V |4).

5.1.5 The Node Duplication Lower Bound

The Node Duplication Lower Bound (NDLB) was devised by Hirabayashi et al.
[SHN92, HSN92] in the context of a branch-and-bound scheme for solving the CARP exactly
(cf. section 7.2.1).

The basic idea is similar to the MLB (cf. section 5.1.2). A special graph G̃ is constructed
and a matching is computed on it in order to determine a least cost augmentation which
makes the original graph even and let the depot node have degree 2K. The enhancement of
NDLB compared to MLB is that the endnodes of edges or paths added to the depot node in
order to obtain degree 2K will be forced to have even degree.

A nice feature of NDLB is that we can easily exclude an edge from the augmentation
(by setting its cost to ∞ in G̃) when we know that this edge cannot be part of a feasible
resp. optimal solution or to fix a variable in the scope of a branch-and-bound algorithm. For
our implementation we use

∑

e∈E w(e) + 1 for ∞.

We call NDLB+ an improved version of NDLB where connections between two required
edges e and f with the sum of their demands exceeding the capacity of the vehicle, i.e.,
d(e)+d(f) > Q, are forbidden. The additional steps to be performed for NDLB+ are marked
by (+) in the algorithm. For the pure NDLB they are skipped. In detail the algorithm works
as follows.

Algorithm: NodeDuplicationLowerBound
Input: A connected undirected graph G = (V, E), edge weights w : E → R

+
0 , a distinguished

depot node v1 ∈ V , edge demands d : E → R
+
0 , and a vehicle capacity Q ∈ N.

Output: A lower bound NDLB.

(1) Create the complete graph G̃ = (Ṽ , Ẽ) with weights w̃ : Ẽ → R
+
0 as follows.

– For each node vi ∈ VR \ {v1} let Ṽi consist of |δR(vi)| copies of the node vi.

– Let l = max(2K − |δR(v1)|, 0) if |δR(v1)| is even and l = max(2K − |δR(v1)|, 1) if
|δR(v1)| is odd. Let Ṽ1 consist of l copies of the node v1.

(+) Augment the node set Ṽ1 with |δR(v1)| copies of the depot node.

– Let Ṽ be

Ṽ = Ṽ1 ∪
⋃

vi∈VR\{v1}

Ṽi.

– For each required edge e = {vi, vj} ∈ ER \ δR(v1), which is not incident to the
depot node, select nodes ṽip ∈ Ṽi and ṽjq ∈ Ṽj and insert ẽ = {ṽip , ṽjq} into Ẽ with
d(ẽ) = d(e). The selection of nodes should be in such a way that each node from
⋃

vi∈VR
Ṽi is only incident to exactly one required edge ẽ. We denote these new

edges (which are counterparts to the required edges of G) as ẼR ⊂ Ẽ.

(+) Do the same as in the previous step for all required edges e being incident to the
depot node, i.e., e ∈ δR(v1).

– Add remaining edges (with zero demand) to Ẽ to make G̃ complete.
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Figure 5.2: Illustration of the improvement step of the algorithm NDLB+.

– For ẽ = {ũ, ṽ} ∈ Ẽ assign weight

w̃(ẽ) =















∞ for ẽ required edge,

w(SP(vi, vj)) for ũ ∈ Ṽi, ṽ ∈ Ṽj , i 6= j,

0 for ũ, ṽ ∈ Ṽi, vi ∈ VR \ {v1},

∞ for ũ, ṽ ∈ Ṽ1.

(+) For every pair of required edges ẽ = {u, v}, f̃ = {w, x} ∈ ẼR do: if d(ẽ) + d(f̃) > Q set
w̃({u, w}) = w̃({u, x}) = w̃({v, w}) = w̃({v, x}) = ∞ (cf. figure 5.2).

(+) Remove those |δR(v1)| copies of the depot node from Ṽ which are incident to required
edges.

Note that the required edges have only been added in order to be able to take them
into account for the previous step.

(2) Compute minimum weighted perfect matching M on G̃.

(3) NDLB = w(ER) + w̃(M).

Again, the time complexity is dominated by the computation of the minimum weighted perfect
matching in step (2). But now G̃ contains two nodes for each edge e ∈ E. Hence, we obtain
a time complexity of O(|E|3).

5.1.6 The Win Lower Bounds

In his Ph.D. thesis Win [Win87] invented a successful new idea for improved lower bounds
which is used in almost all of the more recent approaches. The strategies of the approaches
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discussed so far are based on adding edges resp. paths to the depot node in order to reach
degree 2K and/or on adding edges to the graph in order to let the odd nodes have even
degree. The new idea of Win is to consider not only the cut δ(v1) for adding edges but also
cuts δ(U), v1 ∈ U ⊆ V , with U successively growing from v1 to V .

We will explain the idea informally. The details are included in the algorithms based on
this idea which will be discussed below. Let S = V \U . When considering a cut δ(U) (=δ(S))
we know that we need at least

K(S) =









∑

e∈ER(S)∪δR(S)

d(e)

Q









(5.2)

vehicles to service the subgraph induced by S and the cut edges δR(S). Let k(S) = 2K(S)−
|δR(S)|. If k(S) > 0 then we can clearly add k(S) copies of the cheapest edge to the cut δ(S).
Summing up these edge weights for each cut and adding them to w(ER) yields the lower
bound algorithm denoted by 8.2.5 in [Win87] which is denoted by ZAW1LB in [BCCM92].
Moreover Win applied the MLB idea (cf. section 5.1.2) to each cut by treating U as the depot
node and V \U as the remaining graph. This approach is summarized as algorithm 8.2.10 in
[Win87] and denoted by ZAW2LB in [BCCM92]. The BCCM2LB which will be discussed
in the next section represents a refinement of ZAW2LB.

5.1.7 The BCCM Lower Bounds

Benavent et. al. devised four different lower bounds named LB1, LB2, LB3, and LB4
[BCCM92]. We will call them BCCM1LB, BCCM2LB, BCCM3LB, and BCCM4LB,
respectively.

The idea of the first lower bound BCCM1LB is similar to PLB (cf. section 5.1.4), how-
ever, while the PLB considers the matching of the odd nodes separately from the augmenta-
tion by the shortest d-paths, the BCCM1LB takes the interaction between both aspects into
account.

Algorithm: BCCM1LowerBound
Input: A connected undirected graph G = (V, E), edge weights w : E → R

+
0 , a distinguished

depot node v1 ∈ V , edge demands d : E → R
+
0 , and a vehicle capacity Q ∈ N.

Output: A lower bound BCCM1LB.

(1) Renumber the nodes of G in nondecreasing order with respect to their shortest path
distance to the depot node v1, i.e., w(SP(v1, v2)) ≤ w(SP(v1, v3)) ≤ . . . ≤ w(SP(v1, vn))
holds after renumbering (n = |V |).

(2) Create node sets A, B and S ′ as follows.

– Let l = max(2K − |δR(v1)|, 0). Let A consist of l copies of the depot node.

– Determine the smallest integer i′ with |δR(v2)| + |δR(v3)| + . . . + |δR(vi′)| ≥ 2K −
|δR(v1)|. Let deg(i) = |δR(vi)| for i = 2, . . . , i′. Let B contain deg(i) copies of vi,
i = 2, . . . , i′. Note that we do not reset the value of deg(i′).

– Let S′ = {v ∈ V | v is R-odd} \ {B ∪ v1} be the set of R-odd nodes of G without
nodes already contained in B and without the depot node.



5.1. EXISTING LOWER BOUNDS FOR THE CARP 81

v5

7,7

v10

v8

v7v6

v2 v9

v4

v1

6,9

6,0

4,2

4,7 2,5
3,1

6,7

7,8 5,8

5,93,4
4,9

v3

Figure 5.3: The input graph G for the algorithms NDLB and BCCM1LB.

(3) Let G̃ be the complete graph with node set A∪B∪S ′ and edges e = {u, v} with weights
defined by

w̃(e) =

{

∞ for u, v ∈ A,
w(SP(u, v)) otherwise.

(3) Compute a minimum weighted perfect matching M on G̃.

(4) BCCM1LB = w(ER) + w̃(M).

It is difficult to estimate how many nodes will be contained in B. In the worst case B could
contain copies for each node v ∈ V hence leading to the same complexity as for the NDLB.
However, usually the size of B will be rather small and therefore BCCM1LB will be faster
than NDLB.

In [BCCM92] it is mentioned that the BCCM1LB is identical with NDLB. If we would
not set the weights of the required edges to ∞ in G̃ for NDLB, this would be true, though less
nodes are duplicated for BCCM1LB (essentially only those nodes are duplicated which could
be matched to the copies of the depot node). However, setting the weights of the required
edges to ∞ in G̃ leads to improved lower bounds for NDLB in some cases. The following
example 5.2 describes such a case.

Example 5.2 We consider the graph G depicted in figure 5.3. Each edge e is labeled with
w(e), d(e), i.e., its weight and its demand separated by a comma. Furthermore, we have K = 6
and Q = 13.

Let us first consider the computation of BCCM1LB on G. In step (1) we determine the
order v3, v10, v6, v7, . . .. Then in step (2) we determine l = 2 · 6 − 4 = 8. Hence A consists
of eight copies of the depot node. The set B comprises four copies of node v3, three copies
of node v10 and three copies of node v6. Finally, the set S ′ consists only of nodes v2 and
v9 since the other R-odd nodes are already contained in B. The resulting graph G̃ with the
matching edges M computed in step (3) is depicted in figure 5.4. Copies of the same node are
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Figure 5.4: The matching on G̃ computed by the algorithm BCCM1LB.

surrounded by a dashed circle and labeled with the corresponding node of G. Since w(ER) = 56
and w̃(M) = 35 we obtain the lower bound 91.

Now we will turn to the NDLB. In step (1) for each node vi from V \ {v1} we create node
sets Ṽi consisting of |δR(vi)| nodes. Thus we create one copy of v2 and v9, two copies of v4,
v5, v7 and v8, three copies of v6 and v10, and four copies of v3. As for the BCCM1LB we
create eight copies of the depot node. Inside each node set Ṽi nodes are connected with zero
weighted edges except for Ṽ1 where internal weights are set to ∞. Required edges are also
weighted with ∞. Figure 5.5 shows the resulting matching M on G̃ (matching edges are bold).
Note that the matching is identical to that computed for BCCM1LB except for the matching
of nodes v2 and v9. For the NDLB both nodes are matched each with a copy of v5 whereas
for BCCM1LB v2 and v9 are matched with each other. This slight difference of the matching
computed by NDLB increases its weight by 12 and hence we obtain the lower bound 103.

The second lower bound BCCM2LB generalizes the idea of BCCM1LB to successive cut
sets according to the ZAW2LB of Win [Win87] (cf. section 5.1.6).

Algorithm: BCCM2LowerBound
Input: A connected undirected graph G = (V, E), edge weights w : E → R

+
0 , a distinguished

depot node v1 ∈ V , edge demands d : E → R
+
0 , and a vehicle capacity Q ∈ N.

Output: A lower bound BCCM2LB.

(1) Let U = {v1} and L1 = 0, L2 = 0.

(2) While (U 6= V ) do

(2.1) Let G′
1 = (V ′

1 , E
′
1), . . . , G

′
t = (V ′

t , E′
t) be the connected components of the graph

induced by the node set V \ U .

(2.2) For j = 1, . . . , t do

(2.2.1) Determine the following parameters
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Figure 5.5: The matching on G̃ computed by the algorithm NDLB.

- kj = K(V ′
j ) = d

∑

e∈E′

j∪δ(V ′

j ) d(e)/Qe, the minimum number of vehicles

required to service edges in E ′
j and δ(V ′

j ),

- qj = |δR(V ′
j )|, the number of required edges in the cut δ(V ′

j ),

- rj = max{0, 2kj − qj}, the number of additional edges which must be
traversed to service edges in E ′

j and δ(V ′
j ), and

- e∗j , the cheapest edge in the cut δ(V ′
j ).

(2.2.2) Let S′
j = {v ∈ V | v is R-odd} ∩ V ′

j be the set of R-odd nodes of G contained
in V ′

j .

If S′
j 6= ∅ or rj > 0 construct the complete graph G̃j = (Ṽj , Ẽj) with weights

w̃ : Ẽj → R
+
0 as follows.

- Renumber the nodes in V ′
j in nondecreasing order with respect to their

shortest path distance to the node set U , i.e., the following holds after
renumbering: w(SP(U, vj1)) ≤ w(SP(U, vj2)) ≤ . . ..

- Let Aj consist of rj copies of a “supernode” representing the node set U .

- Determine the smallest integer ji′ with |δR(vj1)|+|δR(vj2)|+. . .+|δR(vji′
)| ≥

rj . Let dj(i) = |δR(vji
)| for i = 1, . . . , ji′ . Let Bj contain dj(i) copies of

vji
, i = 1, . . . , ji′ .

- Let S′′
j = S′

j \ Bj be the set of R-odd nodes of V ′
j without nodes already

contained in Bj .

- Let Cj be a set of max{0, |S ′
j |− rj} nodes representing potential matching

nodes in U .

- Let Ṽj = Aj ∪Bj ∪S′′
j ∪Cj and Ẽj consist of edges e = {u, v} with weights
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defined by

w̃j(e) =























w(SP(u, v)) for u, v ∈ S ′′
j ∪ Bj ,

w(SP(U, v)) for u ∈ Aj ∪ Cj , v ∈ S′′
j ∪ Bj ,

w(SP(u, U)) for u ∈ S ′′
j ∪ Bj , v ∈ Aj ∪ Cj ,

0 for u, v ∈ Cj ,
∞ for u, v ∈ Aj .

- Compute a minimum weighted perfect matching Mj on G̃j .

(2.3) Let L2 = max{L2, w(ER) +
∑t

j=1 w̃j(Mj) + L1}.

(2.4) Let L1 = L1 +
∑t

j=1 rjw(e∗j ).

(2.5) Let W = {v ∈ V \ U | v is adjacent to a node in U} and U = U ∪ W .

(3) BCCM2LB = L2

Step (2.2.2) represents the application of BCCM1LB to the component G′
j . In the worst

case the while-loop in step (2) is executed O(|V |) times and hence we have the overall time
complexity of O(|V |) times the BCCM1LB time complexity.

The idea of the third lower bound BCCM3LB is similar to that of the NDLB+ (cf. sec-
tion 5.1.5). A different idea (compared to the improvement step of NDLB+) is used to forbid
some of the connection edges in the constructed graph. The idea is as follows. We assume
that K vehicles will be used. Then we know that each vehicle must carry at least the load

Qmin = max{0,
∑

e∈E

d(e) − (K − 1)Q}

because this is the remaining demand when K−1 vehicles are fully loaded. When considering
the nodes of the graph in NSLB order, i.e., sorted in nondecreasing order according to their
distance to the depot node, then we know that a node u with d(SP(v1, u)) < Qmin will not be
matched with |δR(u)| edges but with |δR(u)| − 1 edges. Hence we can forbid one connection
between node u and the depot by setting the weights of the edges connecting one copy of u
with each of the depot node copies to ∞.

The idea of the fourth lower bound BCCM4LB is completely different from the ap-
proaches discussed so far. It is based on a dynamic programming approach for determin-
ing lower bounds for single routes by determining so-called q-routes. The idea stems from
Christofides et al. [CMT81b, CMT81a] and was used to devise a branch-and-bound al-
gorithm for the CVRP.

We did not implement BCCM3LB and BCCM4LB because computational experiments
carried out in the scope of [BCCM92] showed that BCCM2LB performed best.

5.1.8 The Multiple Cuts Node Duplication Lower Bound

The Multiple Cuts Node Duplication Lower Bound (MCNDLB) was devised by
Wøhlk [Wøh04]. It uses the framework of the BCCM2LB (cf. section 5.1.7) but uses a
different construction of G̃j in step (2.2.2). Namely G̃j is constructed according to the NDLB
or the NDLB+ scheme instead of the BCCM1LB scheme. Hence again we can distinguish
between the pure MCNDLB and the improved version MCNDLB+. The algorithm works
as follows.
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Algorithm: MultipleCutsNodeDuplicationLowerBound
Input: A connected undirected graph G = (V, E), edge weights w : E → R

+
0 , a distinguished

depot node v1 ∈ V , edge demands d : E → R
+
0 , and a vehicle capacity Q ∈ N.

Output: A lower bound MCNDLB.

(1)-(2.2.1) See algorithm BCCM2LowerBound.

(2.2.2) Create the complete graph G̃j = (Ṽj , Ẽj) with weights w̃ : Ẽj → R
+
0 as follows.

- For each node vi ∈ V ′
j ∩ VR let Ṽji

consist of |δR(vi)| copies of the node vi.

- Let Aj consist of rj copies of a “supernode” representing the node set U .

(+) Add further qj copies of a “supernode” representing the node set U to Aj .

- Let

Ṽj = Aj ∪
⋃

vi∈V ′

j ∩VR

Ṽji
.

- For each required edge e = {vi, vl} ∈ E′
j ∩ ER select nodes ṽip ∈ Ṽji

and ṽlq ∈ Ṽjl
and

insert ẽ = {ṽip , ṽlq} into Ẽj with d(ẽ) = d(e). The selection of nodes should be in such

a way that each node from
⋃

vi∈V ′

j ∩VR
Ṽji

is only incident to exactly one required edge

ẽ.

We denote these new edges (which are counterparts to the required edges of G′
j) by

ẼjR
⊂ Ẽj .

(+) In the same way as in the previous step for required edges e = {vi, vl} ∈ δ(V ′
j ) ∩ ER,

with say vi ∈ Aj , we select nodes ṽip ∈ Aji
and ṽlq ∈ Ṽjl

and insert ẽ = {ṽip , ṽlq} into

Ẽj with d(ẽ) = d(e).

- Add remaining edges (with zero demand) to Ẽj to make G̃j complete.

- For ẽ = {ũ, ṽ} ∈ Ẽj assign weight

w̃(ẽ) =



































∞ for ẽ required edge,

w(SP(vi, vl)) for ũ ∈ Ṽji
, ṽ ∈ Ṽjl

, i 6= l,

0 for ũ, ṽ ∈ Ṽji
, vi ∈ V ′

j ∩ VR,

w(SP(U, vl)) for ũ ∈ Aj , ṽ ∈ Ṽjl
,

w(SP(vi, U)) for ũ ∈ Ṽji
, ṽ ∈ Aj ,

∞ for ũ, ṽ ∈ Aj .

(+) For every pair of required edges ẽ = {u, v}, f̃ = {w, x} ∈ ẼjR
do: if d(ẽ) + d(f̃) > Q set

w̃({u, w}) = w̃({u, x}) = w̃({v, w}) = w̃({v, x}) = ∞.

(+) Remove those qj nodes from Aj which are incident to required edges from E ′
j ∩ ER.

- Finally, let Cj be a set of max{0, |Ṽj \ Aj | − |Aj |} nodes if |Ṽj \ Aj | − |Aj | is even and
max{1, |Ṽj \Aj |−|Aj |} otherwise. Let Ṽj = Ṽj ∪Cj and add remaining edges concerning
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Cj to Ẽj to make G̃j again complete. The new edges ẽ = {ũ, ṽ} have the weights

w̃(ẽ) =























0 for ũ, ṽ ∈ Cj ,
∞ for ũ ∈ Aj , ṽ ∈ Cj ,
∞ for ũ ∈ Cj , ṽ ∈ Aj ,

w(SP(U, vl)) for ũ ∈ Cj , ṽ ∈ Ṽjl
,

w(SP(vi, U)) for ũ ∈ Ṽji
, ṽ ∈ Cj .

Note that the node set Cj is added to G̃j in order to provide (together with Aj) enough
nodes, namely |Ṽj \Aj |, which simulate the case that a node from Ṽj \Aj will be matched
with a node from U .

- Compute a minimum weighted perfect matching Mj on G̃j .

(2.3)-(2.5) See algorithm BCCM2LowerBound.

(3) MCNDLB = L2

Analogous to the analysis of BCCM2LB we have an overall time complexity of O(|V |) times
NDLB time complexity.

5.1.9 The Hierarchical Relaxations Lower Bound

The Hierarchical Relaxations Lower Bound (HRLB) was devised by Amberg and
Voß [AV02]. Basically, this approach is based on an LP formulation with so-called aggregated
parity constraints and aggregated capacity constraints (these notions will be explained in detail
in chapter 7). In each iteration a cut δ(U) (starting with U = {v1}) is considered. For each
such cut two phases are performed. In the first phase the aim is to fulfill the corresponding
capacity constraint. This is done by adding enough copies of the cut edge of minimum weight
such that the constraint is satisfied. Then, this minimum weight is considered as shadow price
for the constraint and the other edges of the cut are assigned opportunity costs by subtracting
the shadow price from their weight. In the second phase a minimum cost perfect matching
on the odd nodes according to the opportunity costs is computed. For each iteration a lower
bound is computed as the sum of the edge weights added in order to fulfill the capacity
constraints and the weight of the matching edges. The overall lower bound is computed as
the maximum lower bound from the single iterations plus w(ER).

5.2 Improved Lower Bounds for the CARP

In this section we want to reflect on possible improvements for the lower bounding procedures
encountered so far. For this purpose we want to briefly review the main aspects and the
evolution of the lower bounding algorithms. Basically, the following three properties of a
capacitated postman tour are exploited for determining lower bounds.

1. The depot node must have degree 2K.

2. Each R-odd node must have even degree.

3. For successive cuts δ(S) we have to ensure that at least K(S) postmen cross the cut.
Note that the first property is the special case for the cut δ(v1), i.e., K = K({v1}).
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The first generation of approaches, comprising MLB, NSLB, PLB, NDLB(+) and BCCM1LB,
considers only the first and the second property. The second generation, comprising the
BCCM2LB, BCCM3LB, MCNDLB(+) and HRLB, takes all of the above properties into
account.

A general improvement for methods exploiting the third property can be made by com-
puting improved lower bounds or even optimal solutions K∗(S) for the number of vehicles
required for serving a given node set S instead of using the lower bound K(S) given by (5.2).
Since this problem represents a BPP, e.g., the widely known algorithms of Martello and
Toth [MT90a, MT90b] could be used to compute K∗(S). For example, this enhancement
was applied in [HLM00] and [HM01].

However, a more serious limitation of the existing procedures lies in the consideration of
only successive cuts. These successive cut sets represent only a small subset of all possible
cuts. Hence improved lower bounds can be expected if a larger set of cuts will be considered.

An improvement following that line has been suggested by Breslin and Keane [BK97]
for the BCCM2LB. The idea is as follows. Instead of adding all nodes of W at once to U in
step (2.5) we add only one node at a time to U . The order in which nodes of W are selected can
be arbitrary but Breslin and Keane [BK97] find out that it is most promising to add them
in increasing order of their node degree. Clearly, we must not update L1 until all nodes of W
have been added to U . Since all the cuts of the ordinary BCCM2LB computation are included,
this modification cannot obtain a worse result than BCCM2LB. It is clear that we can also
apply this approach to MCNDLB+ because it uses the framework of BCCM2LB. We denote
the procedures including this improvement by BCCM2LBMOD and MCNDLB+MOD.
Computational results show that these modified procedures obtain improved lower bounds
for some instances (cf. section 5.4).

Obviously, the above modification considers more cuts than before but we are still far
away from considering all possible cuts. Another deficiency of BCCM2LB and MCNDLB+
is that a potential matching of odd nodes in the node set U is not taken into account when
computing L2 in step (2.3). This is due to the fact that it is very complicated to keep book
of the right parities of nodes in U which are dependent on the edge copies which account
for L1 as well as the matching of the nodes chosen for the shortest path connections to the
supernode U .

As we will see in chapter 7 these problems can be elegantly solved by formulating the
three properties of a capacitated postman tour mentioned above as an Integer Program (IP)
with so-called parity constraints and capacity constraints. By considering the LP relaxation
of this IP and using separation routines for parity and capacity constraints which take all
possible cuts into account, lower bounds which are superior to the combinatorial lower bounds
discussed in this chapter can be obtained.

5.3 Relationships between Lower Bounds for the CARP

Figure 5.6 shows the relations between the CARP lower bounds. An arrow connecting two
bounds means that the bound to which the arrow points is dominated by the other bound.
Arrow labels denote the reference where the proof can be found. An arrow labeled with “∗”
denotes a new relation contributed by this thesis.

Wøhlk [Wøh04] showed by an example that the bounds BCCM2LB and NDLB+ are
incomparable. Furthermore Assad et al. [APG87] showed that NSLB and MLB are incom-
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Figure 5.6: Relationships between combinatorial lower bounds for the CARP.

parable. We found no proof where to put the HRLB in this hierarchy. The conjecture is that
it ranks on the same level as BCCM2LB and MCNDL because it also considers successive
cuts while establishing even parity of nodes and feasibility of capacity constraints.

5.4 Computational Results for the CARP

Let us now have a look at the computational results concerning the lower bounds for
the CARP. We have restricted ourselves to the results of the algorithms NDLB, NDLB+,
BCCM1LB, BCCM2LB, BCCM2LBMOD, MCNDLB, MCNDLB+ and MCNDLB+MOD
which are given in section A.2 in tables A.1, A.3, A.2, and A.4. The best lower bound
values are underlined.

For the instance set carpBCCM92 (table A.1) we observe that all algorithms yield the same
results except for instances 1C, 2B, 2C, 3B, 3C, 4D, 5B, and 7C. For each of these instances
NDLB, NDLB+ and BCCM1 obtain the same result and the same holds for BCCM2LB,
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BCCM2LBMOD, MCNDLB, MCNDLB+ and MCNDLB+MOD but the latter results are
better. A further exception is instance 4C where all algorithms obtain the bound 524, however
algorithms BCCM2LBMOD and MCNDLB+MOD achieve a better bound of 525.

For instances from instance sets carpKSHS95 and carpGDB83 (tables A.3 and A.2) all
algorithms are equal except for instance gdb8 from carpGDB83 where NDLB, NDLB+ and
BCCM1 are inferior.

The most interesting results have been obtained for the instance set carpLE96 (table A.4).
The fact that NDLB dominates BCCM1LB (as already demonstrated by example 5.2) is
confirmed by instances egl-e1-A, egl-e1-B, egl-e3-A, egl-e3-B, and egl-e3-C. Further-
more the domination of MCNDLB over BCCM2LB is confirmed by instances egl-e1-A,
egl-e2-A, egl-e3-A, egl-e3-B, and egl-e3-C. Finally, for instances egl-e1-A, egl-e2-A,
and egl-e3-A the improving modification discussed in section 5.2 achieved the best results.

We have to mention that for the instance set carpLE96 we have obtained worse results for
our implementation of BCCM2LB than those reported in [BB03]. The reason for this is not
clear, perhaps the implementation of BCCM2LB used in the scope of [BB03] applied an im-
proved bound K∗(S). Nevertheless, for instances egl-e1-A, egl-e2-A, egl-e3-A, egl-e3-B,
and egl-e3-C we obtained improved combinatorial lower bounds compared to [BB03].

Finally, we recognized that for all instances the cases that NDLB+ dominated NDLB
or MCNDLB+ dominated MCNDLB did not occur. Clearly, this case can only occur when
demands are large compared to the vehicle capacity which was not the case for our instance
sets.

5.5 Existing Lower Bounds for the MM k-CPP

The following two lower bounds are from [FHK78] and are used for proving the 2 − 1/k
approximation factor of the FHK-algorithm (cf. section 4.2 and section 6.6).

5.5.1 The Shortest Path Tour Lower Bound

The Shortest Path Tour Lower Bound (SPT-LB) is based on the observation that in
an optimal solution C∗ the length of the longest tour must have at least the length of a
shortest tour traversing the edge e∗ = {vi, vj} ∈ E farthest away from the depot, i.e., the
tour Ce∗ = (SP(v1, vi), e

∗, SP(vj , v1)). Since the number of postmen is not taken into account
this bound produces only good results for instances where the number of postmen is suitable
for the size of the graph. For k small the SPT-LB usually performs rather bad.

5.5.2 The CPP Tour Div k Lower Bound

The idea of the CPP Tour Div k Lower Bound (CPP/k-LB) is to compute a minimum
cost augmentation to make the given graph Eulerian and divide the weight of the resulting
graph by k and rounding up. The minimum cost augmentation is realized by computing a
1-postman tour (cf. section 3.3.1). This lower bound usually yields good results for small k
but becomes worse for growing k because it does not take overlappings of the single tours into
account. Obviously, this lower bound represents an ancestor of the sophisticated augmentation
ideas developed in the context of the CARP (cf. section 5.1).
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5.6 New Lower Bounds for the MM k-CPP

Given a CARP instance we can easily use it as an MM k-CPP instance by setting k = K,
ignoring required edges and neglecting edge demands and vehicle capacity. For such an
instance feasible solutions for the MM k-CPP and the CARP look the same. In fact, the set
of feasible solution for the MM k-CPP represents a superset of the set of feasible solutions
for the CARP, since the capacity restriction is relaxed. Thus we can immediately apply lower
bound algorithms devised for the CARP to the MM k-CPP by replacing K with k if edge
demands and vehicle capacity are not used in the course of the algorithm. This is the case for
the MLB (cf. section 5.1.2), the NSLB (cf. section 5.1.3), the PLB (cf. section 5.1.4), and the
BCCM1LB (cf. section 5.1.7). The adaption is simply accomplished by dividing the computed
lower bound value by k and rounding up. We call the adapted versions for the MM k-CPP as
follows: the Matching Div k Lower Bound (M/k-LB), Node Scanning Div k Lower
Bound (NS/k-LB), Pearn Div k Lower Bound (P/k-LB), and the BCCM1 Div k
Lower Bound (BCCM1/k-LB). Clearly, the dominance relations discussed in section 5.3
also hold for corresponding lower bounds of the MM k-CPP.

Let us now turn to those algorithms which use the information of demands and vehicle
capacity. This information is used in two ways.

1. For NDLB+ and MCNDLB+ pairs of required edges are considered and their connecting
edges will be forbidden in G̃ (by setting their weights to ∞) if the sum of their demands
exceeds the vehicle capacity.

2. For BCCM2LB and MCNDLB(+) in each iteration of step (2.2) a cut δ(V ′
j ) is considered

and in step (2.2.1) we compute a lower bound K(V ′
j ) for the number of vehicles required

to serve demand edges in E ′
j and δ(V ′

j ).

Considering the first aspect, we could clearly skip this step when adapting the algorithms
to the MM k-CPP, since it only represents an improvement option. The second aspect,
however, is essential for the operating mode of these algorithms. Nevertheless, we have found
appropriate concepts for the MM k-CPP such that these algorithms could be adapted. Let
us first consider how to forbid edges for the MM k-CPP.

Shortest Two Edge Tours. For the CARP a feasible single tour is restricted by the vehicle
capacity but for the MM k-CPP we do not have such a “hard” restriction. However, we know
that the length of a feasible single tour for an optimal solution must not be longer than the
length of any upper bound UB, which we have, e.g., determined by a primal heuristic from
chapter 4. But now, analogously to the improvement idea of NDLB+ and MCNDLB+, we
observe that if the length of a shortest single tour containing edges e and f and the depot node
exceeds UB, both edges cannot be in any single tour of an optimal solution at the same time.
Hence, we can forbid this situation by setting their connection edges to ∞ in the adapted
version of NDLB+ and MCNDLB+. Now, the only thing left to do is to determine a shortest
single tour containing two given edges e and f and the depot node. This can be accomplished
by the following algorithm.

Algorithm: ShortestTwoEdgeTours
Input: A connected undirected graph G = (V, E), E = {e1, . . . , em}, edge weights w : E →
R

+
0 , a distinguished depot node v1 ∈ V , and all pairs shortest paths SP.

Output: Distances stetDist : E × E → R
+
0 of shortest two edge tours, i.e., for each pair of
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v1

u

v

w

x

Figure 5.7: Illustration of the algorithm ShortestTwoEdgeTours.

edges e, f ∈ E the length stetDist(e, f) of the shortest tour containing the depot node and
edges e and f .

(1) For i = 1, . . . , m do

(1.1) For j = i + 1, . . . , m do

(1.1.1) Let ei = {u, v} and ej = {w, x} and
d1 = w(SP(v1, u)) + w({u, v}) + w(SP(v, w)) + w({w, x}) + w(SP(x, v1)),
d2 = w(SP(v1, u)) + w({u, v}) + w(SP(v, x)) + w({w, x}) + w(SP(w, v1)),
d3 = w(SP(v1, v)) + w({u, v}) + w(SP(u, w)) + w({w, x}) + w(SP(x, v1)),
d4 = w(SP(v1, v)) + w({u, v}) + w(SP(u, x)) + w({w, x}) + w(SP(w, v1)).

(1.1.2) Set stetDist(ei, ej) = min{d1, d2, d3, d4}.

Proposition 5.1 Algorithm ShortestTwoEdgeTours is correct and has a worst case
running time of O(|E|2).

Proof: The correctness of the algorithm can be seen as follows. For any tour containing
two given edges e = {u, v} and f = {w, x}, there are four different possibilities how e and
f will be traversed. When starting at the depot we assume w.l.o.g. that e is traversed first
and f second (the other case where f is traversed first and e second yields the same tours).
Then we have two possibilities for traversing e, from u to v or from v to u and after that,
analogously, we have two possibilities for traversing f (cf. figure 5.7, dashed lines indicate
shortest path connections). These four different tours are evaluated in step (1.1.1). Since we
always connect the endnodes of the edges e and f and the depot node v1 via shortest paths
we determine shortest tours for each traversing order. Hence the minimum length determined
in step (1.1.2) must be the minimum tour length of a single tour containing e and f .

Both for-loops (step (1) and step (1.1)) are passed through O(|E|) times. Hence the
overall running time is O(|E|2). ¤
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Lower Bound for the Number of Postmen Required for Traversing a Node Set.
Now let us turn to the second aspect. Given a node set S ⊆ V \ {v1}, we must find a way
to determine a lower bound (which we will denote L(S) in the following) for the number of
postmen needed to traverse E(S) and the depot node, in order to have a counterpart of the
value K(S) used in step (2.2.1) of BCCM2LB and MCNDLB(+).

How can this be accomplished? Since we know that we need at least L(S) = 1 postman
to traverse E(S), we start with computing a lower bound for the length of a tour starting at
the depot node, traversing E(S), and returning to the depot node. We know that each edge
of E(S) must be traversed, that the depot node v1 and E(S) have to be connected somehow
by two paths, and that odd nodes contained in E(S) have to become even. Hence the lower
bound can be computed similarly to the BCCM1LB (cf. section 5.1.7). We create a node
set A consisting of 2L(S) nodes representing the depot node, a node set B (with cardinality
≥ 2L(S)) consisting of |δ(vi) ∩ E(S)| copies of nodes vi ∈ S having the shortest distance to
the depot node, a set S ′′ containing the odd nodes of S which are not already contained in B,
and finally a set C of max{0, |B ∪ S ′′| − 2L(S)} nodes representing potential matching nodes
in V \ S. Adding up w(E(S)) and the weight of the matching M computed on the complete
graph G̃ on A, B, S′′ and C (and appropriate edge weights) we obtain a lower bound LB

for the length of a shortest tour traversing E(S) and the depot node and employing L(S)
postmen.

The key idea now is as follows. Given an upper bound value UB for the length of a
k-postman tour, we know that in an optimal solution the tour length cannot be greater than
UB. Thus if LB exceeds the upper bound UB we know that for an optimal solution we need
at least one additional postman to traverse E(S) and the depot node. In fact the ratio of LB

and UB rounded up gives us a lower bound l of the number of postmen we need. But now,
if l > L(S) we can start the computation again by initializing L(S) = l, and perhaps the
number of postmen can be further increased since the construction of A takes into account
that each postman has to leave and enter the depot node. The algorithm terminates if l does
not exceed L(S). In detail the algorithm works as follows.

Algorithm: NOfRequiredPostmenForTraversingNodeSet
Input: A connected undirected graph G = (V, E), edge weights w : E → R

+
0 , a distinguished

depot node v1 ∈ V , the number of postmen k > 1, a node set S ⊆ V \ {v1}, an upper bound
UB for the length of a k-postman tour on G, and all pairs shortest path information SP.
Output: A lower bound L(S) for the number of postmen needed to traverse E(S) and the
depot node in an optimal k-postman tour.

(1) Renumber the nodes of S in nondecreasing order with respect to their shortest path
distance to the depot node v1, i.e., w(SP(v1, v2)) ≤ w(SP(v1, v3)) ≤ . . . holds after
renumbering.

(2) Set L(S) = 1.

(3) Create G̃ = (Ṽ , Ẽ) with weights w̃ : Ẽ → R
+
0 as follows.

– Let A consist of 2L(S) copies of the depot node. Set Ṽ = Ṽ ∪ A.

– Determine the smallest integer i′ with |δ(v2)∩E(S)|+ |δ(v3)∩E(S)|+ . . .+ |δ(vi′)∩
E(S)| ≥ 2L(S). Let deg(i) = |δ(vi) ∩ E(S)| for i = 2, . . . , i′. Let B contain deg(i)
copies of vi, i = 2, . . . , i′. Set Ṽ = Ṽ ∪ B.
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– Let S′′ be the set of odd nodes according to E(S) which are not already contained
in B, i.e., S′′ = {vi ∈ S | |δ(vi) ∩ E(S)| is odd} \ B. Set Ṽ = Ṽ ∪ S′′.

– Let C consist of max{0, |B ∪ S ′′| − 2L(S)} nodes representing potential matching
nodes in V \ S. Set Ṽ = Ṽ ∪ C.

– Add edges ẽ = {ũ, ṽ} to Ẽ to make G̃ complete and assign weights

w̃(ẽ) =































∞ for ũ ∈ A, ṽ ∈ C or ũ ∈ C, ṽ ∈ A,
∞ for ũ, ṽ ∈ A,
0 for ũ, ṽ ∈ C,

w(SP(ũ, ṽ)) for ũ, ṽ ∈ A ∪ B ∪ S ′′,
w(SP(ũ, V \ S)) for ũ ∈ B ∪ S ′′, ṽ ∈ C,
w(SP(ṽ, V \ S)) for ṽ ∈ B ∪ S ′′, ũ ∈ C.

(4) Compute a minimum weighted perfect matching M on G̃.

(5) Let

l =

⌈

w̃(M) + w(E(S))

UB

⌉

.

If l > L(S) then set L(S) = l and if L(S) < k go to step (3).

Proposition 5.2 Algorithm NOfRequiredPostmenForTraversingNodeSet is correct
and has a worst case running time of O(k|E|3).

Proof: Obviously, L(S) = 1 is valid for any node set S ⊆ V \ {v1}. The correctness of the
construction of G̃ follows from the correctness of the construction of G̃ for the BCCM1LB
(cf. section 5.1.7). It is exactly the same construction except for the node sets B and S ′′

where we consider node degrees only according to E(S). The reason for this adaption is that
(in contrast to the CARP) we cannot be sure that the postmen have to traverse certain edges
of the cut δ(S). Therefore we exclude these edges from the consideration. It is clear that
w(E(S)) + w̃(M) is a lower bound for the length of a shortest tour traversing E(S) and the
depot node and employing L(S) postmen. The feasibility of the increase of L(S) is clear from
the reasoning in the beginning of this section.

In the worst case L(S) is increased by 1 in each iteration until k is reached. The running
time of each iteration is the same as for the BCCM1LB. Hence the overall running time is
O(k|E|3). ¤

Instead of using the BCCM1LB approach in step (3) we could also have used the NDLB
approach. However, the graph G̃ constructed in step (3) would be much larger for the NDLB
approach. This would result in increased computational effort in cubic order of magnitude
for computing the minimum weighted perfect matching M on G̃ in step (4).

The following example illustrates the algorithm NOfRequiredPostmenForTravers-
ingNodeSet.

Example 5.3 Let us consider as input the graph gdb19 from instance set carpGDB83 de-
picted in figure 5.8 with edge weights given by the edge labels, k = 2, the node set S =
{v2, v3, v4, v5, v7}, and UB = 28. Initially, we have L(S) = 1. Now G̃ is constructed as
follows. The set A consists of two copies of the depot node. Since v5 has the shortest path
distance to the depot node and has node degree 2 with respect to E(S), the node set B solely
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Figure 5.8: Input graph G for algorithm NOfRequiredPostmenForTraversingNode-
Set.
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Figure 5.9: The matching graph G̃ computed by algorithm NOfRequiredPostmenFor-
TraversingNodeSet.

consists of two copies of v5. Node set S′′ contains v4 and v7 and node set C consists of 4−2 = 2
nodes representing potential matching nodes in {v1, v6, v8}. The graph G̃ with (almost) all
edges is depicted in figure 5.9. The edges belonging to the matching M computed in step (4)
are printed bold. We obtain w(E(S)) + w̃(M) = 30 + 9 = 39 and hence l = d39/28e = 2 in
step (5). The algorithm terminates since the number of postmen k = 2 is reached.

Now we have all the ingredients for creating MM k-CPP counterparts for
NDLB(+), BCCM2LB(MOD) and MCNDLB(+)(MOD). For BCCM2LB(MOD) and MC-
NDLB(+)(MOD) we use the algorithm NOfRequiredPostmenForTraversingNodeSet
in step (2.2.1) and set kj to the computed value of L(S). Furthermore for NDLB(+) and
MCNDLB(+)(MOD) we use the result of algorithm ShortestTwoEdgeTours to forbid
the connection of edges if their shortest two edge tour exceeds the given upper bound. Hence
we obtain the algorithms Node Duplication(+) Div k Lower Bound (ND(+)/k-LB),
BCCM2(MOD) Div k Lower Bound (BCCM2(MOD)/k-LB), and Multiple Cuts
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Node Duplication(+)(MOD) Div k Lower Bound (MCND(+)(MOD)/k-LB).

Again, the dominance relations discussed for the CARP in section 5.3 also hold for corre-
sponding lower bounds of the MM k-CPP.

5.7 Computational Results for the MM k-CPP

We have already mentioned in the previous section that the dominance relations for the CARP
(cf. section 5.3) are carried forward to the corresponding lower bounds for the MM k-CPP.
This was confirmed by our computational experiments.

Since the CPP/k-LB is dominated even by the MLB/k-LB it is clear that MCND+MOD/k-
LB also dominates CPP/k-LB. But what about the SPT-LB? For all instances we have ob-
served the following behavior. For small k, i.e., k = 2, 3, 4, the MCND+MOD/k-LB yields
the best lower bound values. However, above a specific medium sized k′ (depending on the
instance) the SPT-LB becomes better and remains better when increasing k. For example,
consider instance 1A (cf. table A.9). Clearly, SPT-LB is always constant and yields the lower
bound value 40 for the instance 1A (column SPT). The MCND+MOD/k-LB yields lower
bound values 87, 58, 45, 37, 32 for k = 2, 3, 4, 5, 6, respectively (column MCN). Hence, for 1A
we have k′ = 4 since for k = 5 SPT-LB is better than MCND+MOD/k-LB.

In general, for values of k near to k′, e.g., k′−2 ≤ k ≤ k′ +2, we observed the largest gaps
between the best lower bounds and the best upper bounds. We will quantify the gap values in
more detail in section 7.6.8 where we will discuss computational results for a branch-and-cut
algorithm for the MM k-CPP. Nevertheless, we want to point out that for 150 out of 571
configurations the lower bounds obtained with MCND+MOD/k-LB were optimal, i.e., they
coincided with an upper bound, and for the SPT-LB that was the case for 110 configurations.

5.8 Summary and Conclusions

In the first part of this chapter we gave a detailed overview of the existing combinatorial lower
bounding procedures for the CARP. The evolution of the algorithms can be roughly divided
into two phases. Algorithms of the first phase, comprising MLB, NSLB, PLB, NDLB(+) and
BCCM1LB, add edges in order to let the depot node have degree 2K and to let all odd nodes
have even degree. The second phase algorithms, comprising the BCCM2LB, MCNDLB(+)
and HRLB, in addition consider successive cut sets and add further edges in order to fulfill
the condition that K(S) postmen have to cross the cut δ(S).

Considering the first phase algorithms, it was already proven in [BCCM92] and [SHN92]
that BCCM1LB and NDLB(+), respectively, dominate the algorithms MLB, NSLB and
PLB. However, in [BCCM92] it was claimed that NDLB (without improvement option) and
BCCM1LB yield the same result in spite of a different construction. We demonstrated by an
example that this is, in general, not true but NDLB dominates BCCM1LB. An immediate
consequence is that MCNDLB dominates BCCM2LB, too, since MCNDLB is based on NDLB
and BCCM2LB is based on BCCM1LB.

Furthermore, we applied an improvement idea developed in [BK97] for the BCCM2LB
to the MCNDLB+. This idea consists of considering larger sets of cuts for fulfilling the
capacity restrictions. Computational experiments confirmed that the improved versions of
BCCM2LB and MCNDLB+, called BCCM2LBMOD and MCNDLB+MOD always achieved
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the best results for our test instances and that for two instances MCNDLB+MOD indeed
achieved the best result solely.

The second part of this chapter dealt with the MM k-CPP. After we presented two existing
lower bounds we developed new lower bounding procedures which were based on appropriate
adapations of CARP lower bounding procedures. We roughly distinguished between adapting
CARP procedures which do not use demand information and vehicle capacity and those which
do. The first kind of procedures comprising MLB, NSLB, PLB and BCCM1LB could easily
be adapted by setting k = K and dividing the computed value by k and rounding up. For the
remaining algorithms we had to develop counterpart concepts for forbidding edges (NDLB+
and MCNDLB+) and determining a lower bound for the number of postmen required for a
given node set (BCCM2LB and MCNDLB). The key idea to accomplish this was to use upper
bounds as a restricting size of a single tour. In that spirit we developed the algorithms Short-
estTwoEdgeTours and NOfRequiredPostmenForTraversingNodeSet. These al-
gorithms will be also of importance in chapter 7. Computational experiments showed that
MCND+MOD/k-LB, the adapted version of MCNDLB+MOD, always yielded the best re-
sults but only up to a specific number of postmen k′ which was dependent on the instance.
Then for k > k′ the SPT-LB became superior. Moreover, for values of k near to k′ we observed
the largest gaps between the best lower bounds and the best upper bounds.

We have seen that the evolution of the lower bounding algorithms for the CARP has led
to sophisticated and successful approaches. We could even improve the best combinatorial
algorithms by considering a larger set of cuts. This is the crucial point but also the limiting
factor of the combinatorial algorithms. Since there are exponential many cuts not all of these
can be considered. As we will see in chapter 7, LP based methods will overcome this problem.



Chapter 6

Complexity, Solvable Cases and

Approximation

This chapter is devoted to the investigation of complexity theoretical questions for the CARP
and the MM k-CPP. For each problem we will first review the hardness results, then introduce
restrictions on the instances which will lead to polynomially solvable cases of the problem.
Finally, approximation algorithms will be discussed.

6.1 Complexity Results for the CARP

The CARP is NP-hard since it contains the CVRP as a special case (cf. section 3.3.10).
Golden and Wong [GW81] strengthened this result by showing that even approximation
of the CCPP (which is a special case of the CARP) is NP-hard. They distinguished the
cases that the triangle inequality holds for the edge weights, i.e., w({x, y}) + w({y, z}) ≥
w({x, z}), x, y, z ∈ V , {x, y}, {y, z}, {x, z} ∈ E, or not.

In the case that the triangle inequality does not hold we use the fact that the CARP
contains the TSP. An instance of the TSP can easily be transformed into a CARP instance by
splitting each node of the TSP instance and connecting them with an edge having zero weight
and positive demand (and furthermore allowing unlimited vehicle capacity, i.e., Q = ∞). Since
Sahni and Gonzalez [SG76] showed that there is no α-factor approximation algorithm for
the TSP for any α ≥ 1 (unless P = NP) this result also holds for the CARP. For proving the
result we need the Hamiltonian Cycle Problem.

Problem: Hamiltonian Cycle Problem
Instance: A graph G = (V, E).
Question: Does G contain a Hamiltonian cycle?

The Hamiltonian Cycle Problem was one of the first 21 problems which were shown to be
NP-complete by Karp [Kar72].

Theorem 6.1 ([SG76]) Unless P = NP there is no α-factor approximation algorithm for
the TSP for any α ≥ 1.

Proof: Let us assume that there is an α-factor approximation algorithm A for some α ≥ 1.
We will show that this implies that there is a polynomial time algorithm for the Hamiltonian

97
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Cycle Problem. Given a graph G = (V, E) we construct an instance of the TSP with n = |V |
nodes and edge weights w defined as

w({u, v}) =

{

1 if {u, v} ∈ E,
2 + (α − 1)n if {u, v} /∈ E.

Now we apply algorithm A to this instance. If the returned tour has weight n, then this tour
is a Hamiltonian cycle in G. Otherwise the returned tour has weight at least n+1+(α−1)n =
αn+1. If OPT is the weight of an optimal tour, then (αn+1)/OPT ≤ α since A is an α-factor
approximation algorithm. This implies that OPT > n, showing that G has no Hamiltonian
cycle. ¤

If the triangle inequality holds, Golden and Wong [GW81] showed that approximating
the CCPP with a factor smaller than 3/2 is NP-hard. This can be done by reducing the
Partition Problem to a special CARP on a tree.

Problem: Partition Problem
Instance: A multiset of positive integers A = {a1, . . . , an}.
Question: Is there a subset A′ ⊆ A such that

∑

ai∈A′

ai =
∑

aj∈A\A′

aj

is satisfied?

The Partition Problem was also shown to be NP-complete in the afore mentioned paper
of Karp [Kar72].

Theorem 6.2 ([GW81]) Approximating the CCPP with a factor of 3/2 − ε for ε > 0 is
NP-hard.

Proof: Let an instance {a1, . . . , an} of the Partition Problem be given. We construct a
CARP instance on a tree having n + 2 nodes as depicted in figure 6.1. Edges are labeled
with their weights and demands separated by commas. The vehicle capacity is set to Q =
1 + (1/2)

∑n
i=1 ai.

Now it is clear that if the Partition Problem for the instance {a1, . . . , an} can be answered
“yes”, an optimal CARP tour must have weight 4 because two postmen will suffice. If the
answer is “no”, three postmen are required and hence an optimal tour would have weight 6.
An approximation algorithm having factor 3/2 − ε, ε > 0, would give us the weight 4 if the
Partition Problem could be answered “yes” and would hence solve the Partition Problem. ¤

Pearn [Pea84] and Win [Win87] slightly strengthened this result by showing that even
on a path the (3/2 − ε)-factor approximation of the CARP for ε > 0 is NP-hard. The Bin
Packing Problem is required for proving this result.

Problem: Bin Packing Problem (BPP)
Instance: A bin size Q and a multiset of positive integers A = {a1, . . . , an}, ai ≤ Q,

i = 1, . . . , n.
Task: Find a partition of A into k pairwise disjoint sets A1, . . . , Ak such that the

sum of numbers in each Ai is at most Q and k is minimum.

Obviously the Partition Problem can be transformed to the Bin Packing Problem (by
setting Q = (1/2)

∑n
i=1 ai and answering “yes” if k = 2 and “no” otherwise) and hence BPP
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Figure 6.1: A special CARP on a tree.
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Figure 6.2: A special CARP on a path.

is NP-hard. This transformation immediately reveals that also (3/2−ε)-factor approximation
for ε > 0 is NP-hard for the BPP.

For a given BPP instance we construct a CARP on a path as depicted in figure 6.2.
Then it is clear that we can construct from an optimal BPP solution using k bins an optimal
solution for the special CARP on the path with weight k and vice versa.

6.2 Solvable Cases for the CCPP and the CARP

In the last section we saw that even the approximation of restricted versions of the CARP
is still NP-hard because of its inherent packing aspect. In order to encounter solvable cases
of the CARP the demand structure must be simplified. Following this strategy Assad et
al. [APG87] identified polynomial solvability for the CCPP (which is a special case of the
CARP) if the input graph G is a path or cycle and edge demands are equal or if G is complete
and edge demands are “small” (which will be stated more precisely below). We generalize
the first two results given by Assad et al. [APG87] for the CCPP to the CARP.

Proposition 6.1 A CARP instance where G is a path and all required edges have equal
demand can be solved in polynomial time.

Proof: Let G = (V, E) be a path, VR = {v ∈ V | v is incident to a required edge e ∈ ER},
and w.l.o.g. d(e) = 1 for all e ∈ ER. We assume |ER| > Q, otherwise the solution consists of
only one tour servicing all required edges. We distinguish two cases: the depot node v1 is a
terminal node of the path or the depot node is an internal node of the path.

In the first case we start at the node t ∈ VR farthest away from the depot node. Each
tour services Q consecutive required edges. After b(|ER| − 1)/Qc tours have been created the
remaining required edges, if any, are assigned to a last tour.
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In the second case we proceed with both subpaths as in the the first case. If the number of
remaining required edges on both subpaths exceeds Q we create two last tours, each servicing
the required edges on one subpath. Otherwise the remaining edges are serviced with one last
tour.

It is clear that this solution is optimal for arbitrary edge weights. ¤

Proposition 6.2 A CARP instance where G is a cycle and all required edges have equal
demand can be solved in polynomial time.

Proof: Let G = (V, E) be a cycle, ER = {e1, . . . , en}, and w.l.o.g. d(e) = 1 for all e ∈ ER.
Again we assume |ER| > Q.

We create Q different capacitated postman tours Ci, i = 1, . . . , Q, as follows. Starting with
edge ei, i = 1, . . . , Q, assign Q consecutive required edges to each tour. If Q does not divide
n, the remaining required edges are assigned to a last tour. The solution which minimizes
wsum(Ci) among i = 1, . . . , Q is an optimal solution because an arbitrary optimal solution can
be rearranged by pairwise exchange of serviced edges (without adding additional weight) such
that the required edges serviced by each single tour are consecutive with respect to the cycle.
Since we evaluate all possible postman tours with the required edges occurring consecutively
in the single tours we find an optimal solution.

The rearrangement is done as follows. Let C∗ = {C1, . . . , Cm} be an arbitrary optimal
solution and w.l.o.g. let C1 contain the first required edge e1. We will iteratively consider
tours Ci, i = 1, . . . , m, and rearrange Ci such that the required edges serviced by Ci are
consecutive with respect to the cycle.

Let eit be the last required edge serviced by Ci and let eis be the first required edge
serviced by Ci such that the next required edge eis+1 on the cycle is not serviced by Ci. Now
let Cj be the tour which services eis+1 and let ejt be the last required edge serviced by Cj .
We distinguish two cases:

1. The last required edge serviced by Ci occurs before the last required edge serviced by
Cj , i.e., it < jt. Then we will assign eis+1 to be serviced by Ci and eit by Cj . This
exchange will neither enlarge Ci nor Cj .

2. The last required edge serviced by Ci comes after the last required edge serviced by Cj ,
i.e., it > jt. Again we will exchange the service responsibility of eis+1 and eit between
Ci and Cj but now the weight of Cj increases because it must service eit which comes
after ejt . However, this increase will be compensated by at least the same amount of
decrease of Ci.

After these rearrangements for all single tours Ci, i = 1, . . . , m, we obtain a tour C̃∗ where
each single tour services consecutive edges with respect to the cycle and wsum(C) = wsum(C̃∗).
This optimal tour C̃∗ will also be detected by the construction given above. ¤

Proposition 6.3 ([APG87]) A CCPP instance where G = Kn, i.e., G is a complete graph
on n nodes, and d(e) ≤ Q/n for all e ∈ E can be solved in polynomial time.

Proof: The complete graph Kn contains n(n − 1)/2 edges. The idea of the algorithm is
to create d(n − 1)/2e edge disjoint tours, each passing through every node. Since each tour
consists of at most n edges and d(e) ≤ Q/n the capacity restriction is fulfilled. We have to
distinguish the cases n odd and n even.
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Figure 6.3: The first single CARP tour on the complete graph.

Let us first consider the case that n = 2l + 1, i.e., n is odd. Let vc denote the depot node
and v1, . . . , v2l the remaining nodes. The first tour is given by the Hamiltonian cycle (vc,
v1, v2, v2l, v3, v2l−1, v4, v2l−2, . . . , vl, vl+2, vl+1, vc) (see figure 6.3). The next tour can be
obtained from this tour by using node indices i + 1 modulo 2l for each index i (excluding vc).
This process can be repeated to generate l edge disjoint Hamiltonian cycles which completely
cover G. The total cost of all tours is w(E) and hence optimal.

For n = 2l each node of G has odd degree n − 1. In order to obtain even degree for each
node we compute a minimum weighted perfect matching M on the graph G̃ which is identical
with G except that we use edge weights w(SP(u, v)) for each edge {u, v} (clearly, G and G̃ are
identical if the triangle inequality holds). Based on the matching information we renumber
the nodes such that nodes vi and vl+i are matched for i = 1, . . . , l. Furthermore, we create
one artificial node vc. Now we can use the construction from the previous case to obtain l
Hamiltonian cycles C1, . . . , Cl on the complete graph on the node set V ∪ {vc}. In order to
get rid of vc we observe that in each cycle Ci, i = 1, . . . l, nodes i and l + i are adjacent to
node vc. Hence we will use the matching edges M to replace each pair of edges {vc, vi} and
{vl+i, vc} with a matching edge {vi, vl+i} ∈ M . The resulting cycles cover G completely and
also include all matching edges M and the total cost is w(E) + w(M). Since the matching
M is the cheapest possible way to make G Eulerian the solution is optimal. ¤

6.3 Approximation Algorithms for the CARP

In [Jan93] Jansen devised approximation algorithms for the General Capacitated Routing
Problem (which includes the CARP (cf. section 3.4)) for the case that the triangle inequality
holds for the edge weights. Two cases concerning the demands are distinguished: demands
are one or zero (equal demands) and demands are arbitrary (unequal demands).

For both, equal demands and unequal demands, Jansen generalized algorithms of Al-
tinkemer and Gavish [AG90] and [AG87], respectively, given for the CVRP. Basically, the
generalized algorithms start with an optimal GRP tour and split this tour into several tours
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such that the capacity restriction is fulfilled. Since the GRP is NP-hard (cf. section 3.4)
we cannot assume to start with an optimal GRP tour except for the case that the graph
induced by the required nodes and edges is connected. Using the result that the GRP can
be approximated with a factor of 3/2 [Jan92] Jansen proved his generalized algorithms to
have approximation ratio of 5/2 − 3/2Q for equal demands and 7/2 − 3/Q (Q even) and
7/2− 5/(Q + 1) (Q odd) for unequal demands. In the case that the GRP solution is optimal,
the ratios improve to 2− 1/Q for equal demands and 3− 2/Q (Q even) and 3− 4/(Q + 1) (Q
odd) for unequal demands

Win [Win87] devised approximation algorithms for the CARP on paths and trees. For
the CARP on paths he gives an (11/6)-factor approximation algorithm by showing that this
problem can be solved with algorithms for the Bin Packing Problem and using approximation
results for these algorithms. For the CARP on trees he also use algorithms of the Bin Packing
Problem to devise an approximation algorithm with ratio 2.

6.4 Complexity Results for the MM k-CPP

Frederickson et al. [FHK78] showed the NP-hardness of the MM k-CPP by a reduction
from the k-Partition Problem.

Problem: k-Partition Problem
Instance: A multiset of positive integers A = {a1, . . . , an}, k ≥ 2, and

∑n
i=1 ai divis-

ible by k.
Question: Is there a partition A1, . . . , Ak of A such that

∑

a∈Ai

a =
n
∑

i=1

ai/k for i = 1, . . . , k

is satisfied?

Clearly, the k-Partition Problem is in NP. It can be restricted to the Partition Problem
by allowing only instances with k = 2 and is therefore NP-complete.

Theorem 6.3 ([FHK78]) The MM k-CPP is NP-hard.

Proof: Given an instance A = {a1, . . . , an} of the k-Partition Problem and k ≥ 2 we create
a multigraph G with only the depot node v1 and n loop edges with weight ai, i = 1, . . . , n.
If the optimal MM k-CPP solution on G equals

∑n
i=1 ai/k the k-Partition Problem can be

answered “yes”, and “no” otherwise. ¤

Proposition 6.4 For an Eulerian graph G = (V, E) the MM k-CPP is still NP-hard.

Proof: Trivial, since the graph G constructed for reducing the k-Partition Problem to the
MM k-CPP is always Eulerian. ¤

In contrast to the CARP there are no results stating the NP-hardness of a certain ap-
proximation ratio for the MM k-CPP.
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6.5 Solvable Cases for the MM k-CPP

For the MM k-CPP we have no explicit packing aspect like for the CARP. However, the min-
max objective implicitly enforces a kind of packing because the better the edges are packed
into tours of approximately the same length the better is the objective function value. We
have found three solvable cases for the MM k-CPP which are similar to the solvable cases of
the CARP.

Proposition 6.5 For a graph G = (V, E) which is a path the MM k-CPP is solvable in
polynomial time.

Proof: Let the path be given as (u1, . . . , un), i.e., we have edges {ui, ui+1}, i = 1, . . . , n − 1.
We consider two cases.

In the case that the depot node is the origin or terminus of the path, i.e., u1 or un, the
longest tour must traverse the whole path two times in order to reach the opposite node un

and u1, respectively, and return to the depot node. Hence wmax =
∑n−1

i=1 w({u1, ui+1}). The
remaining k − 1 tours consist of two copies of edge {u1, u2} and {un−1, un}, respectively. We
will call such a tour that contains two copies of the cheapest edge incident to the depot node
a dummy tour.

If the depot node is an internal node of the path, say ui, i /∈ {1, n}, the longest tour
must traverse two times the longer of the two subpaths (u1, . . . , ui) and (ui, . . . , un). The
remaining subpath will be traversed two times by the second postman. The remaining k − 2
tours are dummy tours, i.e., they consist of two copies of the cheaper edge of {ui−1, ui} and
{ui, ui+1}. ¤

Proposition 6.6 For a graph G = (V, E) which is a cycle the MM k-CPP is solvable in
polynomial time and w

max
= w(E).

Proof: It can easily be seen that the longest tour traverses the whole cycle. In order to serve
the edge farthest away from the depot we have to walk at least the length w(E)/2 starting
at the depot. There are two cases: we stop on an edge between two nodes. In that case we
must walk further on (because edges have to be walked completely) and hence the remaining
walk length is less than w(E)/2 and should be chosen to return to the depot. In the second
case we exactly stop at a node after walking w(E)/2 units. Here we can also go further on
because in both directions the same length has to be traversed. The remaining k − 1 tours
are dummy tours. ¤

Proposition 6.7 For complete graphs Kn, n ≥ 4, with a constant weight function w ≡ c and
k = bn/2c the MM k-CPP is solvable in polynomial time and w

max
= nc.

Proof: We use the same construction as in the proof of proposition 6.3 for constructing
k = n/2 tours if n is even and k = (n− 1)/2 tours if n is odd. If n is odd each tour traverses
n(n − 1)/(2k) = n edges and hence wmax = nc. If n is even n/2 edges will be added and
by construction each tour traverses (n(n − 1)/2 + n/2)/k = n2/(2k) = n edges and again
wmax = nc. ¤
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6.6 Approximation Algorithms for the MM k-CPP

In section 4.2 we presented the FHK-algorithm for the MM k-CPP which was proposed by
Frederickson et al. [FHK78]. They also showed that the FHK-algorithm achieves an
approximation factor of 2 − 1/k. This is the only existing approximation algorithm for the
MM k-CPP. We review the proof of the approximation ratio and present a tight example for
the FHK-algorithm.

Theorem 6.4 ([FHK78]) The FHK-algorithm (cf. section 4.2) is a (2−1/k)-factor approx-
imation algorithm for the MM k-CPP.

Proof: For a given instance G = (V, E) and k ≥ 2 let C = {C1, . . . , Ck} be the k-postman tour
computed with the FHK-algorithm and C∗ be an optimal k-postman tour. Let us consider
the weight of tour Cj , j = 1, . . . , k. Using the Shortest Path Tour Lower Bound w(Ce∗)
(cf. section 5.5.1) computed in step (2) it is clear that

w(SP(v1, v
(p′j))) + w({v(p′j), v(p′j+1)}) + w(SP(v(p′j+1), v1)) ≤ w(Ce∗)

holds. Hence

min{w(SP(v1, v
(p′j))) + rj , w({v(p′j), v(p′j+1)}) − rj + w(SP(v(p′j+1), v1))} ≤

1

2
w(Ce∗)

and the same is true for the tour Cj−1, i.e.,

min{w(SP(v1, v
(p′j−1)))+rj−1, w({v(p′j−1), v(p′j−1+1)})−rj−1+w(SP(v(p′j−1+1), v1))} ≤

1

2
w(Ce∗).

The worst case for Cj is when it starts from v1, reaches v(p′j−1), continues to v(p′j+1) along C∗,
and finally goes back to v1 (cf. figure 4.1). But even for this worst case we have

w(SP(v1, v
(p′j−1))) + rj−1 ≤

1

2
w(Ce∗)

as well as

w({v(p′j), v(p′j+1)}) − rj + w(SP(v(p′j+1), v1))} ≤
1

2
w(Ce∗)

because for both cases the shorter tour segment has been chosen in step (5) and therefore
they comply with the min criteria stated above. We can give an upper bound of the weight
of Cj as follows:

w(Cj) ≤
1

2
w(Ce∗) +

1

k
(w(C∗) − w(Ce∗)) +

1

2
w(Ce∗). (6.1)

Now we use the Shortest Path Tour Lower Bound w(Ce∗) and the CPP Tour Div k Lower
Bound (cf. section 5.5.2) w(C∗)/k to estimate the ratio between w(Cj) and wmax(C

∗):

w(Cj) ≤ w(Ce∗) +
1

k
(kwmax(C

∗) − w(Ce∗))

≤ wmax(C
∗) +

1

k
(kwmax(C

∗) − wmax(C
∗))

= wmax(C
∗) + wmax(C

∗) −
1

k
wmax(C

∗)

= (2 −
1

k
)wmax(C

∗).
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v2 v1 v4

Figure 6.4: A tight instance for the FHK-algorithm and k = 2.

This completes the proof since this ratio holds for every tour Cj , j = 1, . . . , k, and hence for
wmax(C). ¤

In the following we give a family of MM k-CPP instances showing that the approximation
factor of the FHK-algorithm is tight.

Example 6.1 Let us start with the case k = 2. Consider the graph G = (V, E) depicted in
figure 6.4. We assume that the optimal 1-postman tour C∗ traverses G as follows: v1, v2, v1,
v3, v1, v4, v1. The Shortest Path Tour Lower Bound is attained by e∗ = {v1, v3} and hence
w(Ce∗) = 1. Since G is Eulerian we have w(C∗) = w(E) = 2. Obviously, an optimal solution
has weight 1. The FHK-algorithm will compute L1 = (1/2)(2−1)+(1/2) = 1. Traversing C∗

we reach exactly node v3 after a distance of 1 and hence we have the preliminary splitting node
v(p′1) = v3. For the determination of the final splitting node we have r1 = 0 and v(p′1+1) = v1.
Since 0+w(SP(v3, v1)) = 1/2 equals w({v3, v1})−0+w(SP(v1, v1)) = 1/2 (step 5) it does not
matter whether v3 or v1 will be the final splitting node. In any case the weight of C1 is 3/2
and the weight of C2 is either 3/2 or 1/2 for v3 or v6, respectively, being the final splitting
node. Hence w

max
({C1, C2}) = 3/2 which is exactly the worst case ratio of the FHK-algorithm

for k = 2.
This instance can be generalized to arbitrary k ≥ 3 as depicted in figure 6.6. For the sake

of clarity figure 6.5 shows the instance for k = 3.
For the general case we assume the optimal 1-postman tour C∗ to be traversed as follows:

v1, v2, v1, v3, v1, . . . , v(k−1)k+2, v1. Furthermore, we have w(Ce∗) = 1 attained by e∗ =
{v1, vk+1} and w(C∗) = w(E) = k. Again an optimal solution has weight 1 because the tour
v1, vk+1, v1 with weight 1 can be serviced by one postman and the remaining (k−1)k segments
v1, vi, v1, i = 2, . . . , k, k+1, . . . , (k−1)k+2, can be packed into k−1 tours each having weight
1. The splitting length L1 is computed as L1 = (k−1)/k+1/2 which yields vk+1 as preliminary
splitting node v(p′1). It does not matter whether vk+1 or v1 will be chosen as final splitting
node, the weight of the first tour C1 will be (k − 1)/k + 1/2 + 1/2 = (2k − 1)/k = 2 − (1/k)
which is exactly the worst case ratio.

A natural question now is whether there exists an approximation algorithm for the MM k-
CPP with factor 2 − (1/k) − ε for ε > 0 or not. We could not answer this question in the
scope of this thesis but in the following we will give some directions for further research in
this respect.

Basically, there are two ways to improve an approximation factor, namely by an enhanced
or new algorithm or by a refined analysis of the estimation. For the FHK-algorithm we have
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Figure 6.5: A tight instance for the FHK-algorithm and k = 3.
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Figure 6.6: A family of tight instances for the FHK-algorithm and k ≥ 2.
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shown that there exist instances where the approximation factor is tight and therefore we
have to come up with a better algorithm in order to improve the approximation ratio.

Using the FHK-algorithm as starting point and reconsidering the tight instances discussed
in example 6.1 we observe that the crucial problem for these instances is the traversation order
of the optimal 1-postman tour C∗. In particular, if we would let vk+1 be the first node v2 of
C∗ the FHK-algorithm would compute the optimal solution for this family of instances. This
suggests the following improvement strategy for the FHK-algorithm: detect subcycles in C∗

and create modified tours C̃∗ by applying a cyclic permutation of the traversation order of
theses subcycles.

A different point of view could be to identify “pathological” instances which cause the
tightness of the approximation factor and to exclude them from considerations. Since both
the Shortest Path Tour Lower Bound w(Ce∗) and the CPP Tour Div k Lower Bound are
used in the analysis of the FHK-algorithm it is clear the approximation factor can only
be tight for instances for which both lower bounds are tight, i.e., w(Ce∗) = wmax(C

∗) and
w(C∗)/k = wmax(C

∗). The latter equation implies that all tours C1, . . . , Ck are edge disjoint
and have equal weight wmax(C

∗). We have observed that it is very unlikely that both lower
bounds are equal, in fact, roughly we observed that for small k the bound w(C∗)/k is better
and for larger k the bound w(Ce∗) is better (cf. section 5.7). Assuming that w(Ce∗) 6= w(C∗)/k
we can use the better of the both lower bounds for a refined analysis of the FHK-algorithm.
Let α be the ratio of the CPP Tour Div k Lower Bound and the Shortest Path Tour Lower
Bound, i.e.,

α =
w(C∗)

kw(Ce∗)
.

Then we distinguish two cases.

1. α > 1: We substitute w(Ce∗) with w(C∗)/αk in (6.1) and obtain

w(Cj) ≤
w(C∗)

αk
+

w(C∗)

k
−

w(C∗)

αk2

≤

(

1 +
1

α
−

1

αk

)

wmax(C
∗).

2. α < 1: We substitute w(C∗)/k with αw(Ce∗) in (6.1) and obtain

w(Cj) ≤ w(Ce∗) + αw(Ce∗) −
w(Ce∗)

k

≤

(

1 + α −
1

k

)

wmax(C
∗).

Proposition 6.8 In the case that

α =
w(C∗)

kw(Ce∗)
6= 1

holds for an MM k-CPP instance the FHK-algorithm yields an approximation factor of

1 +
1

α
−

1

αk
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for α > 1 and

1 + α −
1

k

for α < 1.

Unfortunately for the general case we could neither devise an algorithm with a better
approximation factor nor prove that no such algorithm exists.

6.7 Summary and Conclusions

In this chapter we have investigated the computational complexity, polynomially solvable
cases, and approximation algorithms for the CARP and the MM k-CPP.

Both problems are NP-hard and for the CARP even (3/2 − ε)-factor approximation for
ε > 0 is NP-hard. This negative result for the CARP is due to the inherent packing aspect to
be considered. For the MM k-CPP there are no results stating the NP-hardness of a certain
approximation ratio.

By simplifying the demand as well as the graph structure Assad et al. [APG87] showed
three polynomially solvable cases for the CCPP (a special case of the CARP), namely the
CCPP with equal edge demands on paths and cycles and the CCPP on complete graphs and
“small” demands. We generalized the first two cases to be also valid for the CARP. For the
MM k-CPP we derived similar polynomially solvable cases, namely the MM k-CPP on paths
and cycles and the MM k-CPP on complete graphs with constant edge weights and a specific
number of postmen k depending on the number of nodes of the graph.

Turning to approximation algorithms we briefly reviewed the results obtained by Jansen
[Jan93] for the CARP. For the MM k-CPP we reviewed the FHK-algorithm of Frederickson
et al. [FHK78] which yields an approximation factor of 2 − 1/k. We found that the bound
is tight by giving an appropriate family of instances for k ≥ 2. Based on these examples
we proposed an improvement of the FHK-algorithm which however could not be proven
to lead to an improved approximation ratio. For the case that the Shortest Path Tour
Lower Bound and the CPP Tour Div k Lower Bound differ (which is the case for almost
all configurations occurring for our set of test instances) an improved approximation factor
for the FHK-algorithm could be proven by virtue of a refined analysis.

Clearly, further work on these topics should investigate the uncertain zone between non-
approximability and approximability for the CARP. For the MM k-CPP an improved approx-
imation factor as well as some kind of non-approximability result would be of interest.



Chapter 7

Exact Algorithms

In this chapter we want to deal with exact algorithms for the CARP and the MM k-CPP.
Both problems are NP-hard and therefore we cannot hope for polynomial time algorithms to
solve these problems unless P = NP. Nevertheless, we will demonstrate in this chapter that
to a certain extent exact solutions can be computed with reasonable computational effort.
These exact algorithms are based on branch-and-bound and branch-and-cut approaches which
in the worst case perform a complete enumeration of all possible solutions. However, using
knowledge about upper and lower bounds gained in chapters 4 and 5, respectively, as well as
further insights and methods these enumeration trees can be effectively pruned.

This chapter is structured as follows. At first we present the different IP formulations
for the CARP which can be found in the literature. After that we review the existing exact
algorithms for the CARP. Subsequently we present an exact separation algorithm for the
aggregated capacity constraints and compare lower bounds obtained with this new separation
algorithm with the best lower bounds from the literature. We close this first part with a
summary and give conclusions for the CARP.

In the second part of this chapter we will focus on the MM k-CPP. First we discuss possible
IP formulations for the MM k-CPP. Then we present a branch-and-cut algorithm in detail
and discuss computational results obtained with an implementation of the algorithm. In
the subsequent section we compare the results of the branch-and-cut algorithm with results
obtained with the commercial high level modeling tool OPL Studio [OPL]. Again we will
summarize and give conclusions for the MM k-CPP.

7.1 IP Formulations for the CARP

The effectiveness of a branch-and-cut algorithm depends heavily on the underlying IP formu-
lation and the knowledge about the associated polyhedron. In this section we will give a brief
overview of the existing formulations and the corresponding polyhedral results for the CARP.
Excellent references in this respect are Eglese and Letchford [EL00] and Benavent et
al. [BCS00].

Many different IP formulations for the CARP were proposed in the literature. Except
for the dense formulation the number of postmen K is assumed to be fixed. Depending on
the number of variables used to model the CARP these are usually called the supersparse
formulation (|E| variables), the sparse formulation (2K|E| variables), the sparse directed
formulation (4K|E| variables), and the dense formulation (2|E|2 variables).

109



110 CHAPTER 7. EXACT ALGORITHMS

We will skip the (chronologically) first IP formulation given by Golden and Wong
[GW81] since it contains an exponential number of variables. Moreover Welz [Wel94] showed
that the lower bound obtained from the LP relaxation of this formulation is always zero.

7.1.1 The Sparse Directed Formulation

The formulation given by Welz [Wel94] improves on the Golden and Wong [GW81] formu-
lation by using a polynomial number of variables. The formulation is based on transforming
the given undirected graph into a directed one. That is, each edge {vi, vj} is regarded as two
arcs (vi, vj) and (vj , vi) with identical costs and demands. Then, if {vi, vj} ∈ ER, we require
that exactly one of the pairs (vi, vj) and (vj , vi) is serviced. The binary variables xp

ij , l
p
ij are

used, where xp
ij takes the value 1 if arc (vi, vj) is traversed by postman p, and 0 otherwise, and

lpij takes the value 1 if arc (vi, vj) is serviced by postman p, and 0 otherwise. The formulation
is as follows.

min
K
∑

p=1

∑

e={vi,vj}∈E

w(e)(xp
ij + xp

ji)

subject to

xp(δ+(vi)) = xp(δ−(vi)) for all vi ∈ V, p = 1, . . . , K (7.1)

K
∑

p=1

(lpij + lpji) = 1 for all e = {vi, vj} ∈ ER (7.2)

xp
ij ≥ lpij for all e = {vi, vj} ∈ ER, p = 1, . . . , K (7.3)

∑

e={vi,vj}∈ER

d(e)(lpij + lpji) ≤ Q for all p = 1, . . . , K (7.4)

xp(δ+(S)) ≥ xp
ij + xp

ji for all S ⊆ V \ {v1}, e = {vi, vj} ∈ E(S),

p = 1, . . . , K (7.5)

xp
ij , x

p
ji ∈ {0, 1} for all e = {vi, vj} ∈ E, p = 1, . . . , K

lpij , l
p
ji ∈ {0, 1} for all e = {vi, vj} ∈ ER, p = 1, . . . , K

The equations (7.1) ensure that each postman leaves a node as many times as he enters.
Equations (7.2) ensure that each required edge is serviced exactly once. The inequalities (7.3)
ensure that each postman traverses each edge which he services, (7.4) impose the capacity
restrictions and (7.5) ensure connectivity for each tour.

In order to tighten this basic formulation Welz proposed the following valid inequalities

K
∑

p=1

xp(δ(S)) ≥ |δR(S)| + 1 for all S ⊆ V \ {v1}, |δR(S)| odd. (7.6)

We call these inequalities aggregated parity constraints since we sum up over all postman
tours.

Furthermore, Welz mentioned that, since all K postman must be used, the inequalities

xp(δ+(v1)) ≥ 1 for all p = 1, . . . , K, (7.7)

are also valid.
We do not know about polyhedral investigations with respect to this formulation.
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7.1.2 The Sparse Formulation

The first undirected IP formulation for the CARP was proposed by Belenguer [Bel90] and
Belenguer and Benavent [BB98b]. This formulation uses two kinds of variables: binary
variables xp(e) ∈ {0, 1}, for e ∈ ER and p = 1, . . . , K, which indicate that postman p services
edge e or not, and integer variables yp(e), for e ∈ E and p = 1, . . . , K, which count how often
edge e is traversed by postman p without servicing it. The formulation is as follows.

min
K
∑

p=1

∑

e∈E

w(e)(xp(e) + yp(e))

subject to

K
∑

p=1

xp(e) = 1 for all e ∈ ER (7.8)

∑

e∈ER

d(e)xp(e) ≤ Q for all p = 1, . . . , K (7.9)

xp(δR(S)) + yp(δ(S)) ≡ 0 (mod 2) for all S ⊆ V \ {v1}, p = 1, . . . , K (7.10)

xp(δR(S)) + yp(δ(S)) ≥ 2xp(e) for all S ⊆ V \ {v1}, e ∈ ER(S),

p = 1, . . . , K (7.11)

xp(e) ∈ {0, 1} for all e ∈ ER, p = 1, . . . , K (7.12)

yp(e) ∈ Z
+
0 for all e ∈ E, p = 1, . . . , K (7.13)

Equations (7.8), called obligatory constraints, ensure that each required edge will be ser-
viced. Inequalities (7.9), called tour capacity constraints, ensure that for each vehicle
the capacity will not be exceed. Constraints (7.11), called tour connectivity constraints,
ensure connectivity of each tour. Constraints (7.10) ensure that each tour induces an even
graph.

For a given solution (x̃, ỹ) let G̃p(x̃, ỹ) be the support graph of tour p. It consists of
x̃p(e) + ỹp(e) copies of edge e for each e ∈ E. In other words, G̃p(x̃, ỹ) represents the tour of
postman p.

For the integer program IP (G, d, Q, K) given by (7.8), (7.9), (7.10), (7.11), (7.12) and
(7.13) one can easily construct solutions which do not correspond to feasible capacitated
postman tours, namely solutions (x̃, ỹ) where the support graph G̃p(x̃, ỹ) is not connected.
This is due to the fact that the tour connectivity constraints (7.11) only enforce serviced edges
to be connected to the tour. Hence there could be subtours consisting solely of unserviced
edges, which are not connected to the depot node. However, this is not a serious problem
because in an optimal solution such unserviced subtours will not occur.

A further blemish is that constraints (7.10) cannot be expressed as linear constraints for
this formulation. Therefore the following (slightly weaker) constraints, called tour parity
constraints, are used.

xp(δR(S) \ F ) + yp(δ(S)) ≥ xp(F ) − |F | + 1 for all S ⊆ V \ {v1}, F ⊆ δR(S), |F | odd,

p = 1, . . . , K (7.14)
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ỹp(e) = 1, x̃p(e) = 0

x̃p(e) = 1, ỹp(e) = 0

v1

u

v

Figure 7.1: An infeasible CARP solution of IP ′(G, d, Q, K).

Inequalities of that kind are also called blossom inequalities, a notion which stems from
Edmonds [Edm65a].

The tour parity constraints (7.14) can be shown to be valid as follows. If all edges in F
are serviced by postman p (that is, xp(F ) = |F |) then, given that |F | is odd, postman p must
cross δ(S) at least once more, so xp(δR(S) \F ) + yp(δ(S)) should be at least 1. On the other
hand, if xp(F ) < |F |, the inequality is trivial.

Now we will show by an example that the tour parity constraints (7.14) are really weaker
than constraints (7.10). Let IP ′(G, d, Q, K) be the integer program defined by (7.8), (7.9),
(7.11), (7.14), (7.12) and (7.13). Figure 7.1 shows a support graph G̃p(x̃, ỹ) for a tour p,
which obviously does not correspond to a feasible route since nodes u and v have odd degree.
Generally speaking, IP ′(G, d, Q, K) allows solutions (x̃, ỹ) where the support graph G̃p(x̃, ỹ)
is not necessarily even. Thus, such solutions can only be eliminated by branching. However,
computational experiments performed in the scope of [BB98b] showed that such integer solu-
tions which are feasible for IP ′(G, d, Q, K) but which do not correspond to a feasible postman
tour occur very seldom.

Let us now briefly review the most important polyhedral results found in [BB98b]. Let
P ′ be the convex hull of vectors (x, y) corresponding to feasible capacitated postman tours.
Interestingly, there exist CARP instances for which P ′ is not a polyhedron. However, extend-
ing P ′ to the convex hull of feasible solutions of IP (G, d, Q, K), i.e., subtours consisting of
unserviced edges which are not connected to the depot node are allowed, yields a polyhedron,
which will be denoted as PCARP. An important observation is that restricting the attention
to the x-variables (7.12), constraints (7.8) and (7.9) yields a so-called Generalized Assign-
ment Problem (GAP). It is shown that polyhedral results for the GAP, e.g., Gottlieb
and Rao [GR90b, GR90a], can easily be transferred to the CARP. Another source of valid
inequalities is made accessible by the observation that the tour capacity constraints (7.9) are
identical with the constraints of a Knapsack Problem.

Unfortunately, determining the dimension of PCARP is NP-hard, since this is true for a
polytope associated to a GAP instance. However, for proving valid inequalities to be facet
defining the dimension is required. Therefore a special case of the CARP was considered
where all the edges with positive demand have unit demand 1. This problem is called the
Capacitated Arc Routing Problem with Unit Demands (CARPUD). Many valid
inequalities of the CARP could be shown to define facets for the CARPUD. For more details
on the polyhedral results we refer to [BB98b] and [EL00].

In the scope of [BB98b] further valid inequalities were proposed. A characteristic of these
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new inequalities is that they are defined on so-called aggregated variables

z(e) =
K
∑

p=1

yp(e) for all e ∈ E, (7.15)

i.e., we sum up how many times an edge e is traversed without being serviced for all tours
p = 1, . . . , K. Note that we do not take the x-variables into account for aggregation because
we have always

∑K
p=1 xp(e) = 1 for all e ∈ ER by virtue of equations (7.8).

A first class of valid inequalities for the aggregated variables can now be obtained by
parity considerations. Clearly, for each node set S with an odd number of required edges
crossing δ(S) ⊆ V \ {v1} we must cross the cut once more to ensure even parity. This can be
enforced by the aggregated parity constraints

z(δ(S)) ≥ 1 for all S ⊆ V \ {v1} such that |δR(S)| is odd. (7.16)

A further class of valid inequalities evolves from considerations we have already made in
section 5.1.6 when we dealt with dual heuristics. There, for a node set S ⊆ V \ {v1} we
defined K(S) to be

K(S) =









∑

e∈ER(S)∪δR(S)

d(e)

Q









,

i.e., K(S) is a lower bound for the number of vehicles required to service edges in ER(S)
and δR(S). Clearly, if K(S) vehicles are required then the cut δ(S) has to be crossed 2K(S)
times. Since |δR(S)| times crossing the cut δ(S) accounts for the x-variables, we obtain the
following class of valid inequalities for the aggregated variables

z(δ(S)) ≥ 2K(S) − |δR(S)| for all S ⊆ V \ {v1}. (7.17)

Inequalities (7.17) will be called aggregated capacity constraints.
As mentioned in [BB98b] and confirmed by our own computational experiments the ag-

gregated parity constraints (7.16) and the aggregated capacity constraints (7.17) are very
effective for a cutting plane and a branch-and-cut approach.

Finally, the so-called aggregated obligatory cutset constraints were proposed. The
basic idea has already been discussed in section 5.1.7 for the combinatorial lower bound
BCCM3LB devised by Benavent et al. [BCCM92]. There we stated that each vehicle
must carry at least the load

Qmin = max{0,
∑

e∈E

d(e) − (K − 1)Q}

because this is the remaining demand when K − 1 vehicles are fully loaded. Then, given a
node set S ⊆ V \ {v1} such that

∑

e∈E(V \S)

d(e) < Qmin

we know that all K vehicles must cross δ(S). Hence the aggregated obligatory cutset con-
straints can be stated as follows

z(δ(S)) ≥ 2K for all S ⊆ V \ {v1},
∑

e∈E(V \S)

d(e) < Qmin. (7.18)
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7.1.3 The Supersparse Formulation

Because of the effectiveness of the aggregated parity constraints (7.16) and the aggregated
capacity constraints (7.17) (cf. section 7.1.2) Belenguer and Benavent [BB98a, BB03]
proposed a so-called supersparse formulation which is solely based on the |E| aggregated
variables given by (7.15). This formulation was also proposed independently by Letchford
[Let97b].

min
∑

e∈E

w(e)z(e)

subject to

z(δ(S)) ≥ 1 for all S ⊆ V \ {v1} such that |δR(S)| is odd

z(δ(S)) ≥ 2K(S) − |δR(S)| for all S ⊂ V \ {v1}

z(e) ∈ Z
+
0 for all e ∈ E

Note that the objective function includes only the cost for traversing edges and no cost for
servicing edges. In order to obtain the real cost of a solution one has to add the fixed servicing
costs of w(ER).

It can easily be shown that this formulation is not complete, i.e., it allows solutions which
do not correspond to a feasible capacitated postman tour (see [BB03]).

In order to tighten the supersparse formulation Belenguer and Benavent proposed new
classes of valid inequalities, called disjoint path inequalities. Given a solution z̃ the basic
idea is to improve the value K(S), i.e., the minimal number of vehicles needed for servicing
required edges in ER(S) and δR(S). This might be possible if the K(S) vehicles may have to
service some additional demand on their way from the depot to node set S and on the way
back. Servicing an additional required edge e ∈ ER \ (ER(S) ∪ δR(S)) might be necessary
if the solution z̃ does not allow e to be traversed without servicing it, i.e., z̃(e) = 0. Hence
either the value of z̃(e) or the number of vehicles K(S) has to be increased. The name of
the inequalities stems from the fact that edges e with z̃(e) = 0 can only be traversed (in fact
serviced) by one vehicle and by no other. Three different classes of disjoint path inequalities
were proposed in [BB03].

7.1.4 The Dense Formulation

For this formulation, proposed by Letchford [Let97b], the given graph G = (V, E) is trans-
formed into a complete graph G′ = (V ′, E′) which is constructed as follows. Let the required
edges of G be numbered from 1 to |ER|. Then V ′ has 1 + 2|ER| nodes, node v1 representing
the depot node and nodes vi+1 and vi+|ER|+1, i = 1, . . . , |ER|, representing the endnodes of
each required edge ei. Let E′

R denote the set of edges of E ′ representing the required edges
ER, i.e., E′

R = {{vi+1, vi+|ER|+1} | i = 1, . . . , |ER|}. The remaining edges contained in E ′\E′
R

represent shortest paths between the two corresponding endnodes in G and are weighted with
the shortest path distance. For each edge e ∈ E ′ \ E′

R a variable x(e) ∈ {0, 1} is defined,
taking the value 1 if the corresponding path is traversed and 0 otherwise. The name of this
formulation stems from the fact that we have |E ′ \ E′

R| = 2|ER|
2 variables, i.e., a quadratic

number of variables.
Let S ⊆ V ′ \ {v1} be called unbroken if it has the property that, for i = 2, . . . , |ER| + 1,

S contains vi if and only if S contains vi+|ER|. That is, S corresponds to a set of required
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edges. Then the formulation is as follows.

min
∑

e∈E′\E′

R

w(e)x(e)

subject to

x(δ(vi)) = 1 for i = 2, . . . , 2|ER| + 1 (7.19)

x(δ(S)) ≥ 2K(S) for all S ⊆ V ′ \ {v1}, S unbroken (7.20)

x(e) ∈ {0, 1} for all e ∈ E ′ \ E′
R

Equations (7.19) ensure that required edges will be connected and inequalities (7.20) represent
a kind of capacity constraints.

This formulation is rather of theoretical than of practical interest because of the large
number of variables. Letchford [Let97b] investigated the structure of the associated poly-
hedron. Interestingly, he established a mapping between feasible solutions of this formulation
and feasible solutions of the CVRP (cf. section 3.2.3). Hence valid inequalities from the CVRP
formulation can be used to give new inequalities for the CARP. Further details can be found
in [Let97b].

7.2 Existing Algorithms for the CARP

Now we will review the exact methods developed and implemented for the CARP.

7.2.1 The Branch-and-Bound Algorithm of Hirabayashi et al.

The algorithm of Hirabayashi et al. [SHN92, HSN92] was the first exact algorithm proposed
for the CARP. It is based on a branch-and-bound scheme which applies the Node Duplication
Lower Bound (NDLB) (cf. section 5.1.5) for computing local lower bounds. An essential
characteristic of the NDLB is that one can construct a postman tour from the matching
edges determined in step (2). This postman tour might be not feasible because it may violate
the capacity restriction. But in the case it is feasible it represents a global upper bound.

Starting with an NDLB computation on the original problem as root node of the branch-
and-bound tree, the branching in each subproblem is performed in the following way. As
branching candidates we always consider the set of matching edges M computed in step (2)
of the NDLB computation for that subproblem. Then for each e ∈ M an NDLB computation
with e prohibited, i.e., w̃(e) is set to ∞, is performed. The edge e∗ yielding the maximal local
lower bound will be selected and two subproblems are created, where for the first subproblem
e∗ is prohibited and for the second subproblem e∗ is fixed to be part of the postman tour.
An edge e∗ will be fixed in a subproblem by merging it together with the two required edges
it connects.

Computational results for random instances were given in [HSN92] and it is reported
that instances with up to 50 required edges could be solved to optimality. In the scope of
[BMCVO03] Beullens et al. used an implementation of this branch-and-bound algorithm.
They mentioned that they could solve two previously unsolved instances, namely gdb12 from
carpGDB83 with |ER| = 23 (cf. section A.1.1.5) and kshs4 from carpKSHS95 with |ER| = 15
(cf. section A.1.1.6), but also mentioned that this method is not applicable to larger instances.
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7.2.2 The Branch-and-Bound Algorithm of Welz

The Branch-and-Bound Algorithm of Welz [Wel94] works as follows. At the root node,
a cutting plane algorithm was used to find violated tour connectivity constraints (7.5) and
aggregated parity constraints (7.6). These constraints were added to the LP until no more
violated inequalities could be detected. If the solution obtained was not feasible a branch-and-
bound procedure was invoked to enforce integrality. With this approach the largest instances
that could be solved were: K = 2, |V | = 27, |E| = 82; K = 3, |V | = 16, |E| = 48; K = 4,
|V | = 12, |E| = 50.

7.2.3 The Branch-and-Cut Algorithm of Belenguer and Benavent

The branch-and-cut algorithm of Belenguer and Benavent [BB98b] is based on the sparse
formulation presented in section 7.1.2. In the following we will describe in detail the separation
algorithms which were used for [BB98b].

In the scope of this thesis we have also implemented a cutting plane algorithm for the
CARP based on the sparse formulation. Therefore we will describe as well further separation
algorithms which we have used for our implementation. Moreover, all these separation algo-
rithms (after appropriate adaptions) have also been used for a branch-and-cut algorithm we
developed for the MM k-CPP (cf. section 7.6).

7.2.3.1 Separation of Connectivity Constraints

The tour connectivity constraints (7.11) can be separated exactly in polynomial time with
the following algorithm.

Algorithm: TourConnectivityConstraintSeparation
Input: The current LP solution (x̃, ỹ), the underlying undirected graph G = (V, E), and the
number of postmen K.
Output: Tour connectivity constraints (7.11) violated by the current LP solution (x̃, ỹ) if
one exists.

(1) For p = 1, . . . , K do

(1.1) Create the support graph G̃p(x̃, ỹ) = (Ṽ p, Ẽp) which contains the depot node
and all edges e from E satisfying x̃p(e) + ỹp(e) > 0. Edges e ∈ Ẽp have weight
x̃p(e) + ỹp(e).

(1.2) For vi ∈ Ṽ p \ {v1} do

(1.2.1) On G̃p compute a minimum [v1, vi]-cut (Si, Ti) with weight Wi which partitions
Ṽ p into Si ⊂ V containing the depot node v1 and Ti ⊂ V containing vi.

(1.3) For e = {vi, vj} ∈ Ẽp ∩ ER do

(1.3.1) If max{Wi, Wj} ≥ 2x̃p(e) then continue with step (1.3).

(1.3.2) Otherwise, if vi ∈ Tj then xp(δ(Tj)) + yp(δ(Tj)) ≥ 2xp(e) is violated for (x̃, ỹ)
else xp(δ(Ti)) + yp(δ(Ti)) ≥ 2xp(e) is violated for (x̃, ỹ).

The running time is dominated by the |V | − 1 maximum flow computations which will be
performed in step (1.2). This amounts to O(|V |2|E|2) for our implementation (cf. section 2.6).
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Hence we have an overall complexity of O(K|V |2|E|2) which is very high for practice. There-
fore we devised a simple but effective heuristic for detecting violated tour connectivity con-
straints.

Algorithm: TourConnectivityConstraintHeuristicSeparation
Input: The current LP solution (x̃, ỹ), the underlying undirected graph G = (V, E), the
number of postmen K, and 0 < ε < 2.
Output: Possibly tour connectivity constraints (7.11) violated by the current LP solution
(x̃, ỹ).

(1) For p = 1, . . . , K do

(1.1) Create the support graph G̃p(x̃, ỹ) = (Ṽ p, Ẽp) which contains the depot node
and all edges e from E satisfying x̃p(e) + ỹp(e) > 0. Edges e ∈ Ẽp have weight
x̃p(e) + ỹp(e).

(1.2) Create the support graph G̃p
ε(x̃, ỹ) = (Ṽ p, Ẽp

ε ) with

Ẽp
ε = {e ∈ Ẽp | x̃p(e) + ỹp(e) ≥ ε}.

(1.3) Compute the connected components (V1, E1), . . . , (Vl, El) of G̃p
ε.

(1.4) For i = 1, . . . , l do

(1.4.1) If v1 ∈ Vi then continue with step (1.4).

(1.4.2) For all edges e in Ei ∩ ER do
If x̃p(δ(Vi)) + ỹp(δ(Vi)) < 2x̃p(e) we have detected a violated constraint.

The worst case running time is O(K(|V | + |E|)) since computing the connected components
in step (1.3) is linear and each edge is considered once in step (1.4.2). The idea is to create
cuts δ(S) ⊆ V \ {v1} for the support graph with weight ≤ ε and to check each constraint
associated to an edge contained in ER(S) for violation.

7.2.3.2 Separation of Parity Constraints

Based on the idea of Padberg and Rao [PR82] the tour parity constraints (7.14) can be
separated exactly in polynomial time by computing minimum odd cuts (cf. section 2.6) on an
appropriate support graph. We will first describe how to construct the support graph.

Algorithm: CreateSupportGraphForTourParityConstraintSeparation
Input: The current LP solution (x̃, ỹ), the underlying undirected graph G = (V, E), and
p ∈ {1, . . . , K}.
Output: A support graph G̃p(x̃, ỹ) suited for separation of tour parity constraints.

(1) Add the depot node to G̃p(x̃, ỹ).

(2) For e = {u, v} ∈ E do

(2.1) If x̃p(e) > 0 or ỹp(e) > 0 then

- If not already contained, add nodes u and v to G̃p(x̃, ỹ) and label them even.

- If x̃p(e) > 0 then add an intermediate node ie and edges {u, ie} with weight
1 − x̃p(e) (flipped edge weight) and {ie, v} with weight x̃p(e) (normal edge
weight) to G̃p(x̃, ỹ). Label ie odd and invert labeling of u (i.e., set it to odd if
it is even and vice versa).
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- If ỹp(e) > 0 then add edge {u, v} with weight ỹp(e) to G̃p(x̃, ỹ).

Note that in the worst case the support graph G̃p(x̃, ỹ) will grow to |V |+ |E| nodes and 3|E|
edges.

Now we will give the standard separation algorithm for the tour parity constraints (7.14)
which will use the support graphs G̃p(x̃, ỹ), p = 1, . . . , K, created by the former algorithm.

Algorithm: TourParityConstraintSeparation
Input: The current LP solution (x̃, ỹ), the underlying undirected graph G = (V, E), and the
number of postmen K.
Output: Tour parity constraints (7.14) violated by the current LP solution (x̃, ỹ) if one
exists.

(1) For p = 1, . . . , K do

(1.1) Create support graph G̃p(x̃, ỹ) with the former algorithm.

(1.2) On G̃p(x̃, ỹ) compute a minimum odd cut (X, Y ) with value α. If α ≥ 1 then
continue with step (1).

(1.3) Otherwise, construct a violated constraint as follows.

- Let S′ = X if X contains the depot node and S ′ = Y otherwise. Let S = S ′∩V
be the set of original nodes (with respect to G) from S ′, i.e., intermediate nodes
are not considered.

- Let F ⊆ δ(S) be the set of edges from δ(S) whose corresponding flipping edges
(with respect to G̃p(x̃, ỹ)) are contained in δ(S ′).

- Create the tour parity constraint yp(δ(S)) + |F | − xp(F ) + xp(δ(S) \ F ) ≥ 1
which is violated for (x̃, ỹ) since ỹp(δ(S))+ |F |− x̃p(F )+ x̃p(δ(S)\F ) = α < 1.

The running time is dominated by the computation of a minimum odd cut in step (1.2),
hence we require (O(|V |2|E|2) for our implementation (cf. section 2.6). However, as al-
ready mentioned, the number of nodes of the support graph G̃p(x̃, ỹ) is of order O(E)
and hence we obtain O(E|4) for step (1.2) and O(K|E|4) as the overall running time.
Obviously, this running time is not practical for larger instances. Improved algorithms
for computing the minimum odd cut in this context were devised by Grötschel and
Holland [GH87] (O(|V ||E|2 log(|V |2/|E|))) and quite recently by Theis et al. [LRT04]
(O(|V |2|E| log(|V |2/|E|))).

Clearly, we need an efficient heuristic for detecting violated tour parity constraints. We use
the following approach which is based on a heuristic devised by Grötschel and Holland
[GH87].

Algorithm: TourParityConstraintHeuristicSeparation
Input: The current LP solution (x̃, ỹ), the underlying undirected graph G = (V, E), the
number of postmen K, and 0 < ε ≤ 1/2.
Output: Possibly tour parity constraints (7.14) violated by the current LP solution (x̃, ỹ).

(1) For p = 1, . . . , K do

(1.1) Create support graphs G̃p(x̃) and G̃p(ỹ) as follows. Both support graphs have the
same node set

Ṽ p = {v1} ∪ {v ∈ V | v is incident to an edge e with x̃p(e) + ỹp(e) > 0}
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and edge sets {e ∈ E | x̃p(e) > 0} and {e ∈ E | ỹp(e) > 0}, respectively.

(1.2) Construct the graph G̃p
ε(x̃) = (Ṽ p, Ẽp

ε ) with Ẽp
ε defined as

Ẽp
ε = {e ∈ E | ε ≤ x̃p(e) ≤ 1 − ε}.

(1.3) Compute the connected components (V1, E1), . . . , (Vl, El) of G̃p
ε.

(1.4) For i = 1, . . . , l do

(1.4.1) If ỹp(δ(Vi)) ≥ 1 continue with step (1.4).

(1.4.2) Otherwise, sort all edges e ∈ δ(Vi) and x̃(e) > 1 − ε in nonincreasing order to
obtain a sequence e1, . . . , eq.

(1.4.3) Set
xWeightOfF = x̃p(e1),
xWeightOfCutWithoutF = x̃p(δ(Vi)) − x̃p(e1),
j = 1.

(1.4.4) While j ≤ q do

- If xWeightOfCutWithoutF +ỹp(δ(Vi)) < −j+ xWeightOfF +1
then create violated constraint and continue with step (1).

- Otherwise, set
xWeightOfF = xWeightOfF +x̃p(ej+1) + x̃p(ej+2),
xWeightOfCutWithoutF = xWeightOfCutWithoutF −x̃p(ej+1) − x̃p(ej+2),
j = j + 2.

The worst case running time is O(|V |2) since we could have |V | components in step (1.3) and
|δ(Vi)| in step (1.4.2) is also of order O(|V |).

The idea is to create cuts containing edges with high as well as low weights. For example,
setting ε to 0.1 leads to cuts containing edges with weight ≤ 0.1 and edges with weight ≥ 0.9.
For these cuts it is likely to have a violation when constructing F in the way it is done in
step (1.4.4).

Let us now turn to the separation of the aggregated parity constraints (7.16). Since the
aggregated parity constraints represent a kind of simple blossom inequalities we can again
solve the separation problem exactly by the computation of a minimum odd cut. Fortunately,
we do not have to compute such a complicated support graph like for the tour parity con-
straints because we always have

∑K
p=1 xp(e) = 1 for all e ∈ ER. The algorithm works as

follows.

Algorithm: AggregatedParityConstraintSeparation
Input: The current LP solution (x̃, ỹ) and the underlying undirected graph G = (V, E).
Output: An aggregated parity constraint (7.16) violated by the current LP solution (x̃, ỹ) if
one exists.

(1) Create the support graph G̃ = (V, Ẽ) on the node set V with edges

Ẽ = {e ∈ E |
K
∑

p=1

yp(e) > 0}

and edge weights
∑K

p=1 yp(e) = z(e) for all e ∈ Ẽ. For all v ∈ V label v odd or even
according to its parity |δR(v)| in G.
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(2) Compute a minimum odd cut (S, T ) with value α on G̃.

(3) If α < 1 then z(δ(S)) ≥ 1 is violated for (x̃, ỹ).

The running time is dominated by step (2) and hence O(|V |2|E|2) for our implementation.
Clearly, we can also use a heuristic separation in the spirit of algorithm TourParityCon-
straintHeuristicSeparation.

7.2.3.3 Separation of Capacity Constraints

Let us now turn to the separation of the capacity constraints. For strengthening the tour
capacity constraints (7.9) Belenguer and Benavent [BB98b] considered two classes of
valid inequalities of the polytope of the associated Knapsack Problem. For separation of
these inequalities they used heuristics developed by Crowder et al. [CJP83].

We do not go into detail here since, as it will turn out when performing computational
experiments, the constraints related to single tours, i.e., constraints (7.11), (7.14), (7.9) are,
in general, not very effective for improving the lower bound during the branch-and-cut. The
most effective constraints are the aggregated ones.

For the aggregated capacity constraints (7.17) no exact separation algorithm was known,
therefore heuristic methods were used in [BB98b, BB03]. In section 7.3 we will devise an
exact separation procedure for the aggregated capacity constraints.

A first simple heuristic idea consists of computing the connected components of the graph
induced by edges e with z̃(e) > 0 and checking constraint (7.17) for the corresponding sets of
nodes.

A more elaborate heuristic is achieved by considering a relaxed version of the aggregated
capacity constraints, the so-called fractional aggregated capacity constraints

z(δ(S)) ≥ 2
∑

e∈ER(S)∪δR(S)

d(e)

Q
− |δR(S)| for all S ⊆ V \ {v1}. (7.21)

Clearly, the fractional aggregated capacity constraints (7.21) are dominated by the aggregated
capacity constraints (7.17). However, the interest in (7.21) lies in the fact that they can be
identified in polynomial time. These constraints (as well as the method to identify them) are
similar to the ones given by Harche and Rinaldi for the CVRP (see, e.g., [TV02]). The sep-
aration algorithm basically consists of solving a maximum flow problem on an appropriately
tailored graph and works as follows.

Algorithm: FractionalAggregatedCapacityConstraintSeparation
Input: The current LP solution (x̃, ỹ) and the underlying undirected graph G = (V, E).
Output: A fractional aggregated capacity constraint (7.21) violated by the current LP solu-
tion (x̃, ỹ) if one exists.

(1) Create the graph G̃ on the node set V and edge set E by adding a further node vs and
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edges {vi, vs}, vi ∈ V . The weight w̃(e) of each edge e = {vi, vj} is defined as follows

w̃(e) =











































K
∑

p=1

ỹp(e) if e ∈ E \ ER,

K
∑

p=1

ỹp(e) + 1 −
d(e)

Q
if e ∈ ER,

1

Q

∑

f∈δR(vi)

d(f) if vi ∈ V, vj = vs.

(2) Compute a minimum [v1, vs]-cut (T, S) with value α on G̃.

(3) If

α −
2

Q

∑

e∈ER

d(e) < 0

then (7.21) and also (7.17) is violated for S \ {vs} and (x̃, ỹ).

Clearly, there might be node sets S ′ ⊆ V \ {v1} for which (7.17) is violated but (7.21) is not.
In order to find such node sets the above algorithm is repeated on a graph with increased
demands. In particular the demand of each edge e is increased to d′(e) = (1 + β)d(e), where
0 < β < 1. For a node set S ′ detected by this procedure violation of (7.17) will be checked.
This procedure is applied using ten different values of β.

7.2.3.4 Results

The setup of the branch-and-cut algorithm of Belenguer and Benavent [BB98b] is reported
as follows. During the separation phase, at first the aggregated parity constraints (7.16)
and the aggregated capacity constraints (7.17) were separated. The separation of the other
inequalities was performed if no violated of the former constraints was detected. For the
branching among the fractional variables xp(e) the variable with highest demand was chosen.
Then a K-nary branching was performed, that is, for each subproblem p, p = 1, . . . , K, the
variable xp(e) is set to 1.

The algorithm was tested on those 24 instances from the instance set carpBCCM92 (cf. sec-
tion A.1.1.4) with K ≤ 5. From this set, 16 instances were solved to optimality with less than
53 nodes in the branch-and-cut tree. However, the optimum was reached for exactly those
instances for which the lower bound at the root node was already equal to the value of the
optimal solution. Furthermore it is mentioned that the constraints related to single tours, i.e.,
constraints (7.11), (7.14), (7.9), did not improve the lower bounds during the branch-and-cut.
They had the only effect to encourage integrality in the LP solutions.

7.2.4 The Cutting Plane Algorithm of Belenguer and Benavent

Belenguer and Benavent [BB03] implemented a cutting plane algorithm based on the
supersparse formulation (cf. section 7.1.3). This algorithm does not really represent an exact
algorithm since one cannot construct a capacitated postman tour from an optimal solution
z∗. However, the lower bound obtained by

∑

e∈E w(e)z∗(e) + w(ER) can be used to prove
optimality of a known solution produced by some heuristic.
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In each iteration of the cutting plane algorithm aggregated parity constraints (7.16), ag-
gregated capacity constraints (7.17) and the disjoint path inequalities are separated. The
algorithm stops when either no violated inequality is found, or the lower bound is equal to a
known upper bound provided by a heuristic algorithm.

The cutting plane algorithm was tested on the instance sets carpBCCM92 (cf. sec-
tion A.1.1.4), carpGDB83 (cf. section A.1.1.5), carpKSHS95 (cf. section A.1.1.6) and
carpLE96 (cf. section A.1.1.7). Two versions of the cutting plane algorithm were consid-
ered. The first version, called CPA1, involved only separation of aggregated parity constraints
(7.16) and aggregated capacity constraints (7.17). The second version, called CPA2, used all
the separation routines. Results are shown in tables A.5, A.6, A.7 and A.8 in columns CPA1
and CPA2, respectively.

The results show that the disjoint path inequalities could increase the lower bounds (some-
times considerably) for instance sets carpBCCM92 and carpLE96 but not for instance sets
carpGDB83 and carpKSHS95.

7.3 Exact Separation of Aggregated Capacity Constraints for

the CARP

In the previous section we saw that the disjoint path inequalities could improve upon the
lower bounds obtained by separating only aggregated parity constraints (7.16) and aggre-
gated capacity constraints (7.17). However, since constraints (7.17) could only be separated
heuristically, we wondered about the improvement of the disjoint path inequalities if there
would be an exact separation routine for constraints (7.17). Therefore we devised an exact
separation algorithm for constraints (7.17) which is realized by a Mixed Integer Program
(MIP). The MIP formulation is based on a similar idea of Fukasawa et al. [FPRU03] for
the CVRP.

Given a fractional solution (x̃, ỹ) the aim is now to determine a node set S ⊆ V \ {v1}
such that (7.17) is violated for S and (x̃, ỹ). For e ∈ E we use binary variables c(e) to indicate
whether an edge e belongs to the cut δ(S) or not and binary variables f(e) to indicate whether
an edge e belongs to the inner edges E(S) or not. Finally, for vi ∈ V we need variables s(i)
to indicate whether vi ∈ S or not. Now for each k = 1, . . . , K − 1 we solve the following MIP.

min
K
∑

p=1

∑

e∈E

c(e)(x̃p(e) + ỹp(e))

subject to

c(e) − s(i) + s(j) ≥ 0 for all e = {vi, vj} ∈ E (7.22)

c(e) + s(i) − s(j) ≥ 0 for all e = {vi, vj} ∈ E (7.23)

−c(e) + s(i) + s(j) ≥ 0 for all e = {vi, vj} ∈ E (7.24)

s(i) − f(e) ≥ 0 for all e = {vi, vj} ∈ E (7.25)

s(j) − f(e) ≥ 0 for all e = {vi, vj} ∈ E (7.26)

−f(e) + s(i) + s(j) ≤ 1 for all e = {vi, vj} ∈ E (7.27)
∑

e∈δ(vi)

c(e) + f(e) − s(i) ≥ 0 for all vi ∈ V (7.28)
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c(e) + f(e) ≤ 1 for all e ∈ E (7.29)
∑

e∈ER

d(e)(c(e) + f(e)) ≥ kQ + 1 (7.30)

s(1) = 0 (7.31)

c(e), f(e) ∈ {0, 1} for all e ∈ E

s(i) ∈ [0, 1] for all vi ∈ V \ {v1}

(7.32)

Inequalities (7.22) and (7.23) ensure that variable c(e) will be set to 1 if exactly one of s(i)
and s(j) is set to 1. On the opposite inequalities (7.24) ensure that one of the nodes s(i)
or s(j) is set to 1 if c(e) is set to 1. Inequalities (7.25) and (7.26) ensure that both node
variables s(i) and s(j) are set to 1 if f(e) is set to 1. On the opposite inequalities (7.27)
ensure that f(e) is set to 1 if both node variables s(i) and s(j) are set to 1. Inequalities
(7.28) ensure that if s(i) is set to 1 then at least one incident edge e must be a cut edge or an
inner edge. Inequalities (7.29) ensure that an edge is not an inner edge and a cut edge at the
same time. Inequality (7.30) ensures that the set S will be constructed such that its demand
requirements are at least kQ + 1. Finally, equation (7.31) ensures that the depot node will
not be contained in S. The integrality of variables s(i) for all vi ∈ V \ {v1} is always enforced
by the binary variables c(e) and f(e).

If the optimal solution value of this MIP is less than 2(k + 1) we can construct a node set
S (according to variables s(i)) which violates the aggregated capacity constraint (7.17) for
(x̃, ỹ).

7.3.1 Computational Results

We have implemented a cutting plane algorithm for the CARP based on the algorithm of Be-
lenguer and Benavent [BB98b] (cf. section 7.2.3). We used heuristic and exact separation
algorithms for the tour connectivity constraints (7.11), the tour parity constraints (7.14) and
the aggregated tour parity constraints (7.16). Furthermore we used the exact separation of
the aggregated capacity constraints (7.17) we just presented. For the resolution of the MIPs
we used the CPLEX MIP solver [CPL].

We tested our algorithm also on the instance sets carpBCCM92, carpGDB83, carpKSHS95
and carpLE96. Results are shown in tables A.5, A.6, A.7, and A.8 in the column EAC between
columns CPA1 and CPA2.

The question we wanted to investigate was whether the exact separation for the aggregated
capacity constraints would find violated inequalities which could not be detected by the
heuristic separation routines (column CPA1). For the instance sets carpBCCM92, carpGDB83
and carpKSHS95 we detected only one such case, namely instance 4D from carpBCCM92
(table A.5), where the lower bound value of 640 of CPA1 could be improved to 642 by
the exact separation. However, for the 12 instances egl-en-m with n = {1, . . . , 4} and
m ∈ {A, B, C} from the instance set carpLE96 (table A.8) we could improve the lower bound
value of CPA1 in 11 cases. Moreover, the lower bound value of CPA2 (including the separation
of the disjoint path inequalities) could be improved in 9 cases hence yielding new best lower
bounds for these instances.

Clearly, our exact separation algorithm, which is based on solving a MIP, is only practical
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for reasonable sized instances. For the smaller instances from instance sets carpBCCM92,
carpGDB83 and carpKSHS95 the running times are moderate, i.e., seconds for K ≤ 5 and
at most 10 minutes for the biggest instance 10D with K = 10. The cutting plane algorithm
would be much faster if we used heuristic separation routines first and the exact separation
only in the case where no violated inequality is found. For the largest instances egl-sn-m
with n = {1, . . . , 4} and m ∈ {A, B, C} from the instance set carpLE96 having 140 nodes and
190 edges we could not perform the exact separation in reasonable time. Therefore we filled
in zeros in the respective rows of column EAC.

Using this rather expensive exact separation algorithm seems to be reasonable for the
beginning of a branch-and-cut algorithm run in order to obtain good lower bounds as it was
proposed by Fukasawa et al. [FPRU03] for the CVRP. In deeper levels of the branch-and-
cut algorithm this separation should be disabled.

We have to note that Beullens et al. [BMCVO03] reported instance gdb12 from
carpGDB83 (table A.6) and instance kshs4 from carpKSHS95 (table A.7) to be solved ex-
actly. However, the solution values they computed differed from those given by Belenguer
and Benavent [BB03] for all instances from instance sets carpBCCM92, carpGDB83 and
carpKSHS95. It seems that they used some kind of scaled weight function in contrast to the
instances available from the Internet [CAR] which are used by Belenguer and Benavent
[BB98b, BB03] and ourselves.

7.4 Summary and Conclusions for the CARP

We have seen that several IP formulations for the CARP can be found in the literature.
The best IP formulation to be used for a branch-and-cut algorithm seems to be the sparse
formulation proposed by Belenguer and Benavent [BB98b] (cf. sections 7.1.2 and 7.2.3)
in connection with aggregated variables and separation routines developed for them as was
also done by Belenguer and Benavent [BB03] (cf. sections 7.1.3 and 7.2.4). The sparse
directed formulation proposed by Welz [Wel94] (cf. sections 7.1.1 and 7.2.2) has double the
number of variables than the sparse undirected formulation and bears an inherent symmetry.
The dense formulation proposed by Letchford (cf. section 7.1.4) is rather of theoretical
interest.

A previously open question concerned the exact separation of the aggregated capacity
constraints (7.17). We devised an exact separation algorithm by using a MIP formulation.
Computational results showed that, in particular for larger instances, the separation heuristics
could not detect all violated aggregated capacity constraints. We even found that we could
improve the best known lower bounds for 9 instances with the exact separation algorithm.

Nevertheless, the CARP is far from being well solvable as for example the TSP is for
moderate sized instance. The smallest unsolved CARP instance is gdb13 which has only
10 nodes and 28 edges with K = 6. The problem lies in the inherent symmetry. Each of
the K postman tours is exchangeable which gives us K! possibilities to represent the same
capacitated postman tour with only different tour indices. Moreover we need at least two
variables for each edge and each tour. It is clear that we quickly have a combinatorial
explosion even for small sized instances.

Another issue is the extremely difficult structure of the polyhedron associated to the
CARP which gives not much hope to find effective inequalities to strengthen the existing IP
formulations. Nevertheless further research on the polyhedral structure seems to be essential
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in order attack the CARP. A promising way could also be the utilization of general cuts which
has been proven very successful for the CVRP (cf. Wenger [Wen03]).

A further promising direction to strengthen the IP formulation could be based on a col-
umn generation approach. Very recently the column generation approach has been success-
fully applied to the CVRP by Fukasawa et al. [FPRU03, FLP+04]. For their approach
they used ideas of an early branch-and-bound algorithm for the CVRP of Christofides et
al. [CMT81b, CMT81a]. An analogous idea for the CARP was developed by Benavent et
al. [BCCM92], namely for the dual heuristic BCCM4LB (cf. section 5.1.7). It could be used
for solving the pricing problem in the scope of a column generation approach for the CARP.

Finally, a recent trend is to use distributed computing resources in order to attack larger
instances. Distributed computing was used very successfully for the TSP by Applegate et
al. [ABCC03].

7.5 IP Formulations for the MM k-CPP

Let us now turn to the MM k-CPP. So far there have been no IP formulations for the
MM k-CPP in the literature. However, we can easily adapt an IP formulation of the CARP
(cf. section 7.1) which can be seen as follows.

Considering CARP instances G = (V, E) with fixed K, ER = E and Q = ∞, i.e., demands
can be neglected, it is clear that feasible solutions of such instances are identical with feasible
solutions of MM k-CPP instances on G = (V, E) with k = K. Hence, any IP formulation for
the CARP describes as well the set of feasible solutions for the MM k-CPP if we treat ER to
be E and exclude inequalities concerned with capacities and demands.

The only thing which is still different now is the objective function. However, the min-max
objective of the MM k-CPP can be modeled by introducing an additional real variable T and
k additional constraints which ensure that the weight of each of the k tours is at most T .
Then, the objective is to minimize T .

In the next section we will deal with a branch-and-cut approach for the MM k-CPP which
is based on the sparse formulation for the CARP (cf. section 7.1.2).

7.6 A Branch-and-Cut Algorithm for the MM k-CPP

In this section we will describe in detail a branch-and-cut algorithm for the MM k-CPP
which is based on the sparse formulation for the CARP given by Belenguer and Benavent
(cf. section 7.1.2). We decided to use this formulation for several reasons. The supersparse
formulation (cf. section 7.1.2) is not suitable because it does not consider single tours (but
only aggregated ones) and hence it would be not possible to model the min-max objective.
The directed sparse formulation (cf. section 7.1.1) was not chosen because it is even more
symmetric than the the sparse formulation. Finally, the sparse formulation had already been
successfully implemented in the scope of [BB98b].

7.6.1 IP Formulation

By modeling the objective function in the way mentioned in the previous section we obtain
the following straightforward IP formulation for the MM k-CPP.
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min T (7.33)

subject to
∑

e∈E

w(e)(xp(e) + yp(e)) ≤ T for all p = 1, . . . , k (7.34)

k
∑

p=1

xp(e) = 1 for all e ∈ E (7.35)

xp(δ(S)) + yp(δ(S)) ≡ 0 (mod 2) for all S ⊂ V \ {v1}, p = 1, . . . , k (7.36)

xp(δ(S)) + yp(δ(S)) ≥ 2xp(e) for all S ⊆ V \ {v1}, e ∈ E(S), p = 1, . . . , k (7.37)

xp(e) ∈ {0, 1} for all e ∈ E, p = 1, . . . , k (7.38)

yp(e) ∈ Z
+
0 for all e ∈ E, p = 1, . . . , k (7.39)

T ∈ R
+
0 (7.40)

We use the same names for the constraints as we used for the underlying sparse formulation of
the CARP, i.e., equations (7.35) are called obligatory constraints and inequalities (7.37) are
called tour connectivity constraints. Constraints (7.34), called tour length constraints,
ensure that no single tour exceeds the maximum tour length which is measured by the real
variable T (7.40).

The same comments given for the sparse IP formulation of the CARP (cf. section 7.1.2)
apply also to this formulation. In particular constraints (7.36) must be replaced by the tour
parity constraints

xp(δ(S) \ F ) + yp(δ(S)) ≥ xp(F ) − |F | + 1 for all S ⊆ V \ {v1}, F ⊆ δ(S), |F | odd,

p = 1, . . . , k. (7.41)

At this point we might ask why we need both variable types, x-variables (7.38) and y-variables
(7.39). In the CARP context this was necessary to distinguish the cases that an edge is
serviced or simply traversed. One may think, that for the MM k-CPP we do not need this
distinction and we could only use one type of variable for counting the number of times an
edge is traversed and serviced. However, if we would have only one such type of variable
we could not formulate the tour parity constraints (7.41). For these constraints we require
binary variables which indicate that an edge is required to traverse and only in presence of
such binary variables we can enforce that an odd cut has to be traversed an additional time.

Clearly, we can also use aggregated variables

z(e) =
k
∑

p=1

yp(e) for all e ∈ E,

as well as the aggregated parity constraints

z(δ(S)) ≥ 1 for all S ⊆ V \ {v1} such that |δ(S)| is odd. (7.42)

The following proposition relates the aggregated parity constraints to the CPP Tour Div k
Lower Bound (cf. section 5.5.2).
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Proposition 7.1 The CPP Tour Div k Lower Bound and a cutting plane algorithm based
on (7.33), (7.34), (7.35) and (7.42) (assuming integer solution value) yield the same lower
bound values.

Proof: The obligatory constraints (7.35) yield a weight of w(E). The aggregated parity
constraints (7.42) enforce each node of G to be even. Clearly, in an LP solution the edges
chosen to achieve even parity will be of minimum weight and hence of the same weight as the
weight of a minimum perfect matching on the odd nodes of G. Since the minimum LP solution
value is obtained by distributing the values over variables xp(e) and yp(e), p = 1, . . . , n and
e ∈ E, such that

∑

e∈E

w(e)(x1(e) + y1(e)) =
∑

e∈E

w(e)(x2(e) + y2(e)) = . . . =
∑

e∈E

w(e)(xk(e) + yk(e))

we clearly obtain the same value as given by the CPP Tour Div k Lower Bound. ¤

Polyhedral results of the CARP (neglecting capacities and demands) apply as well to the
MM k-CPP. In fact, one can expect polyhedral investigations for the MM k-CPP to be easier.
However, in the scope of this thesis we did not investigate the polyhedron associated with the
sparse formulation of the MM k-CPP.

7.6.2 The L-Tour Constraints

Considering the valid inequalities collected so far there is still a lack of constraints like the
capacity constraints (7.9) and (7.17) for the CARP. Fortunately, when discussing new lower
bounds for the MM k-CPP in section 5.6, we devised the counterpart value L(S) to the value
K(S) which is used for the aggregated capacity constraints (7.17). The value L(S) is a lower
bound for the number of postmen required to traverse edges E(S) and the depot node for
any node set S ⊆ V \ {v1}. Clearly, in each optimal solution we need at least L(S) postman
for serving S and thus the cut δ(S) has to be crossed at least 2L(S) times.

Hence the so-called aggregated L-tour constraints

k
∑

p=1

xp(δ(S)) + yp(δ(S)) ≥ 2L(S) for all S ⊆ V \ {v1} (7.43)

are valid. Note that these constraints might cut off feasible solutions but no optimal solutions.
The quality of constraints (7.43) depends heavily on the quality of the upper bound UB used
for computing L(S). For L(S) = 1 these constraints are trivially satisfied by adding up the
tour connectivity constraints (7.37).

Since we know that all the k postmen have to leave and enter the depot node v1 we can
add

k
∑

p=1

xp(δ(v1)) + yp(δ(v1)) ≥ 2k (7.44)

as an initial aggregated L-tour constraint.
We want to note that similar ideas were used in the node routing context for the Distance

Constrained Vehicle Routing Problem (cf. section 3.2.4) by Laporte et al. [LDN84, LND85]
and for the Newspaper Routing Problem (cf. section 3.2.5) by Applegate et al. [ACDR02].
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7.6.3 Separation

Clearly, we can use the CARP related separation routines presented in section 7.2.3 for the
tour connectivity constraints (7.11), tour parity constraints (7.14), and the aggregated parity
constraints (7.16) after minor adaptions as well for the counterpart constraints (7.37), (7.41),
and (7.42), respectively, of the MM k-CPP.

Let us now turn to the separation of the aggregated L-tour constraints (7.43). Given an
LP solution (x̃, ỹ), for the exact separation of (7.43) we require an algorithm which determines
a node set S∗ ⊆ V \ {v1} which minimizes

k
∑

p=1

x̃p(δ(S)) + ỹp(δ(S)) − 2L(S).

In contrast to computing K(S) for the CARP, it is not possible to compute L(S) “on the fly”.
Therefore we did not find any exact separation algorithm, but we devised several separation
heuristics. The basic idea for these heuristics is to find candidate node sets S ⊆ V \{v1} such
that

∑k
p=1 x̃p(δ(S)) + ỹp(δ(S)) is as small as possible and L(S) is as large as possible.

Let us start with the all minimum cut heuristic. The idea is to compute all minimum
cuts (cf. section 2.6) on the support graph obtained from G by using edge weights

∑k
p=1 x̃p(e)+

ỹp(e) for all e ∈ E.

Algorithm: AllMinimumCutHeuristicForLTourSeparation
Input: The current LP solution (x̃, ỹ) and the underlying undirected graph G = (V, E).
Output: Possibly an aggregated L-tour constraint (7.43) violated by (x̃, ỹ).

(1) Create support graph G̃(x̃, ỹ) = (V, E) with edge weights
∑k

p=1 x̃p(e) + ỹp(e) for all
e ∈ E.

(2) Compute the set of all minimum cuts M(G̃(x̃, ỹ)) on G̃(x̃, ỹ).

(3) While M 6= ∅ and no violated constraint has been found do

(3.1) Pick minimum cut (S, V \S) from M and remove it from M. We assume w.l.o.g. that
v1 ∈ V \ S.

(3.2) Compute L(S).

(3.3) If
k
∑

p=1

x̃p(δ(S)) + ỹp(δ(S)) < 2L(S)

we have found a violated aggregated L-tour inequality for (x̃, ỹ).

Since computing L(S) is time consuming (cf. section 5.6), the separation will be stopped as
soon as a violated inequality has been found.

Obviously, the set of all minimum cuts M(G̃(x̃, ỹ)) on a support graph G̃ represents only
a small subset of possible candidate node sets S ⊆ V \ {v1}. Furthermore, computational
experiments showed that usually there are only very few such minimum cuts. This suggests to
consider so-called α-minimum cuts, i.e., cuts whose value is at most α times that of a global
minimum cut. The computation of α-minimum cuts can be accomplished by the randomized
algorithm of Karger and Stein [KS96] (cf. section 2.6). For each execution the algorithm
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produces one cut. Hence we must specify how many cuts we want to compute as well as a
value α ≥ 1. We call this algorithm alpha minimum cut heuristic.

Algorithm: AlphaMinimumCutHeuristicForLTourSeparation
Input: The current LP solution (x̃, ỹ), the underlying undirected graph G = (V, E), maxNOf-
Samples ∈ N, and α ≥ 1.
Output: Possibly an aggregated L-tour constraint (7.43) violated by (x̃, ỹ).

(1) Create support graph G̃(x̃, ỹ) = (V, E) with edge weights
∑k

p=1 x̃p(e) + ỹp(e) for all
e ∈ E. Set nOfSamples = 1.

(2) While nOfSamples ≤ maxNOfSamples and no violated constraint has been found do

(3.1) Compute α-minimum cut (S, V \ S) (w.l.o.g. v1 ∈ V \ S).
Set nOfSamples = nOfSamples +1.

(3.2) Compute L(S).

(3.3) If
k
∑

p=1

x̃p(δ(S)) + ỹp(δ(S)) < 2L(S)

we have found a violated aggregated L-tour inequality for (x̃, ỹ).

Let us now consider a separation heuristic which constructs node sets S ⊆ V \ {v1} by
augmentation in a greedy manner. In contrast to the former two heuristics this greedy
heuristic tries also to maximize w(E(S)) (in order to increase L(S)) while minimizing
∑k

p=1 x̃p(δ(S)) + ỹp(δ(S)).

Algorithm: GreedyHeuristicForLTourSeparation
Input: The current LP solution (x̃, ỹ) and the underlying undirected graph G = (V, E).
Output: Possibly an aggregated L-tour constraint (7.43) violated by (x̃, ỹ).

(1) Create support graph G̃(x̃, ỹ) = (V, E) with edge weights
∑k

p=1 x̃p(e) + ỹp(e) for all
e ∈ E.

(2) Initialize S = {v∗}, v∗ ∈ V \ {v1}.

(3) While |S| < |V | − 1 do

(3.1) Augment S.

- Select a node u ∈ V \({S}∪{v1}) adjacent to S, i.e., u ∈ Γ(S), which minimizes
∑k

p=1 x̃p(δ(S ∪ {u})) + ỹp(δ(S ∪ {u})).

- If there are several candidates for u break ties by selecting the one which
maximizes w(E(S ∪ {u})).

- S = S ∪ {u}.

(3.2) Compute L(S).

(3.3) If
k
∑

p=1

x̃p(δ(S)) + ỹp(δ(S)) < 2L(S)

we have found a violated aggregated L-tour inequality for (x̃, ỹ).
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In step (2) we always selected the node farthest away from the depot node as v∗ since trying
each possible node v∗ ∈ V \ {v1} turned out to be too time consuming.

We have also devised a separation heuristic based on the computation of connected compo-
nents on the support graph in the spirit of the heuristics used for separating tour connectivity
constraints (7.11) and tour parity constraints (7.14) (cf. section 7.2.3). However, it turned
out that the components, i.e., the candidate sets S, we obtained were too small and thus had
a small value L(S) (mostly L(S) = 1). Therefore we discarded this heuristic.

7.6.4 Branching

In the case that we encounter a fractional solution or a solution that is integer but not feasible
(which can be the case for our formulation) we have to decide on which variable we want to
branch in order to create subproblems (cf. section 2.5). The so-called branching strategy
can have a strong impact on the performance of the branch-and-cut algorithm.

In the context of the branch-and-cut algorithm we call a variable free if it has not already
been fixed to its lower or upper bound value, i.e., it is still a candidate for branching. If a
variable is fixed for a subproblem then it will keep its value for this subproblem and all child
subproblems of this subproblem with respect to the branch-and-cut tree. We have considered
the following branching strategies.

B1: Branch on the first free variable.

B2: Branch on the free variable with LP solution value closest to 0.5 resp. 1.5.

B3: Branch on the free variable with LP solution value close to 0.5 resp. 1.5 with high edge
weight.

B4: Branch on the fractional free variable with highest edge weight.

These strategies can be varied by specifying a further preference between the variables.

P1: No preference.

P2: Choose x-variables first.

P3: Choose variables corresponding to edges being incident to the depot node first.

P4: Choose variables corresponding to edges being incident to the depot node first and
x-variables second.

Finally, we can distinguish between binary branching and k-nary branching on x-variables.
For a k-nary branching we create k new subproblems by fixing xp(e) = 1, p = 1, . . . , k,
respectively. Note that for each subproblem with xp(e) = 1 all other variables xj(e), j 6= p,
will be implicitly set to 0 by the obligatory constraints (7.35).

On y-variables we perform a ternary branching, i.e., we create three subproblems by fixing
the variable to 0, 1, or 2, respectively. This is admissible since we know that it suffices to
traverse an edge at most two times for a single tour. Therefore we can even perform only a
binary branching on a y-variable if the corresponding x-variable is fixed to its upper bound
value 1.
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7.6.5 Fixing Variables

For creating new subproblems in the branching phase of the branch-and-cut algorithm vari-
ables will be fixed at their lower or upper bound. Hence the deeper the subproblem is located
in the branch-and-cut tree the more variables are fixed at a certain value. The information
that some variables are fixed may implicate that others can also be fixed. It is clear that
such a strategy depends on the problem and on the IP formulation. However, we have to
note that there are also generic ways for fixing binary variables which are implemented in the
framework we use (cf. [Thi95]). Let us consider two strategies for fixing variables by logical
implications for the MM k-CPP.

The first strategy works as follows. For each tour p = 1, . . . , k consider each variable
xp(e), e ∈ E, which is fixed to its upper bound 1. Now for each free variable xp(f), f ∈ E,
f 6= e, of the same tour p check whether the weight of the shortest tour including e, f and
the depot node exceeds the value of the current best upper bound UB. If this is the case then
variables xp(f) and yp(f) can be set to their lower bounds 0 because no optimal solution
can contain a tour p which traverses both edges e and f . This strategy has already been
used in section 5.6 for the improvement of dual heuristics. In fact, we can use algorithm
ShortestTwoEdgeTours which computes distances stetDist(e, f) of the shortest tours
containing edges e, f ∈ E and the depot node.

The second strategy extends the first strategy to three edges e, f , and g. We consider
the situation that for a tour p and edges e and f variables xp(e) and xp(f) are fixed to their
upper bounds 1. Then we check for each edge free variable xp(g) whether the weight of the
shortest tour containing the depot and edges e, f and g exceeds the current best upper bound
UB. If this is the case, we can set variables xp(g) and yp(g) to their lower bounds 0. There
are 6 possibilities for traversing edges e, f and g but for symmetry reasons only 3 possibilities
have to be checked, e.g., (e, f, g), (f, e, g) and (e, g, f).

7.6.6 Variations of the Objective Function

A weakness of the IP formulation given in section 7.6.1 is that the objective function (7.33)
consists only of one variable, namely T . This has the negative effect that there is a high
inherent symmetry for the LP relaxation, because all variables (except for T ) have coefficient
0 and are therefore treated equally. Moreover each of the k tours is equitable and hence for
one specific k-postman tour we have k! possibilities to obtain the same tour with only different
tour indices.

A first idea in order to destroy at least some of the symmetry is that we can assume
w.l.o.g. that for a k-postman tour C = {C1, . . . , Ck} the tour C1 is always the longest tour,
followed by C2, and so on, i.e., we assume

w(C1) ≥ w(C2) ≥ . . . ≥ w(Ck).

Hence the k tour length constraints (7.34) are replaced by the following k − 1 decreasing
tour length constraints

∑

e∈E

w(e)(xp(e) + yp(e) − xp+1(e) − yp+1(e)) ≥ 0 for all p = 1, . . . , k − 1. (7.45)

Moreover, the objective function (7.33) is replaced by

min
∑

e∈E

w(e)(x1(e) + y1(e)). (7.46)
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A second idea applied to the original objective function (7.33) is to arbitrarily assign
very small objective function coefficients to each x-variable (7.38) and y-variable (7.39). This
technique is called perturbation. Perturbation can, e.g., be done in a random manner

cp(e) = ε, e ∈ E, p = 1, . . . , k, for ε randomly chosen from [10−14, 10−9],

or in an increasing manner

cp(ei) = ((p − 1)|E| + i)10−9, i = 1, . . . , |E|, p = 1, . . . , k.

Using these coefficients we obtain the perturbed objective function

min T +
k
∑

p=1

∑

e∈E

cp(e)(xp(e) + yp(e)). (7.47)

7.6.7 The Setup for the Branch-and-Cut Code

For the implementation of the branch-and-cut code we used the C++ framework ABACUS
which was created by Thienel [Thi95, JT98]. The underlying LP solver was ILOG CPLEX
8.1 [CPL].

The LP of the root node was initialized with the tour length constraints (7.34), the
obligatory constraints (7.35) and the initial aggregated L-tour constraint (7.44) for the depot
node. Furthermore, for each odd node we added an aggregated parity constraint (7.42). The
global upper bound GUB was initialized with the best bound we obtained from heuristics of
chapter 4.

In a first phase we performed some preliminary experiments in order to fix parameters.
The first parameters which had to be fixed were ε for the heuristic tour connectivity sepa-
ration (cf. section 7.2.3.1) and the heuristic tour parity separation (cf. section 7.2.3.2). This
was accomplished as follows. For the separation of tour connectivity constraints (and anal-
ogously for the tour parity constraints) we set up a cutting plane algorithm (,i.e., we did
not perform branching) using the initial constraints and activated only the heuristic sepa-
ration and the exact separation of the tour connectivity constraints. The exact separation
was only used if the heuristic separation failed. Then we compared the running times for
setting ε ∈ {0.01, 0.25, 0.5, 0.75} (ε ∈ {0.01, 0.1, 0.2, 0.3, 0.4, 0.5} for tour parity constraints)
and identified the value ε∗ for which the best running times were obtained. For the tour
connectivity separation we obtained ε∗ = 0.01 and for the tour parity separation ε∗ = 0.4.

Then we evaluated the effectiveness of the separation heuristics devised for the aggregated
L-tour constraints (7.43) (cf. section 7.6.3). For computing L(S) (cf. section 5.6) which is
required for separating the L-tour constraints we always used the best upper bounds ob-
tained by heuristics presented in chapter 4. For the alpha minimum cut heuristic we used
α ∈ {1, 2, 3, 4} and maxNOfSamples ∈ {1000, 2000, 3000}. Again we set up a cutting plane
algorithm with the initial constraints and activated only the aggregated parity constraint sep-
aration and the respective heuristic for separating L-tour constraints. In order to find out the
most effective heuristic we compared the lower bounds we obtained by the LP solution. The
clear winner was the alpha minimum cut heuristic. For α ≥ 2 it was always better than the
all minimum cut heuristic and the greedy heuristic. However, we could not identify a specific
α ∈ {2, 3, 4} which performed best. As expected, the larger the number maxNOfSamples the
better the lower bounds obtained for the alpha minimum cut heuristic. However, in order
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to keep a reasonable running time, we confined ourselves to maxNOfSamples = 1000. The
greedy heuristic performed better than the all minimum cut heuristic in almost all cases but
it could not compete with the alpha minimum cut heuristic.

For the final branch-and-cut algorithm the separation routines were called in the follow-
ing order (note that a separation routine was only executed if the preceding ones did not
find any violated inequality). At first we separated the aggregated parity constraints (7.42)
exactly. Then we called the heuristics for separating tour parity constraints (7.41) and tour
connectivity constraints (7.37), and after that the corresponding exact separation routines.
Finally, the alpha minimum cut heuristic for maxNOfSamples = 1000 and α = 2, 3, 4 for
separating the aggregated L-tour constraints (7.43) was called. Since the last separation is
time consuming it was only performed up to a maximal level of 3 of the branch-and-cut tree.
We also incorporated the Shortest Path Tour Lower Bound (cf. section 5.5.1) as initial dual
bound in order to avoid unnecessary computations for larger values of k.

7.6.8 Computational Results

Lower Bounds. We started our computational experiments by using the branch-and-cut
algorithm as a cutting plane algorithm in order to asses the lower bounds we obtained.

In a first experiment we investigated the influence of the tour connectivity constraints
(7.37) and the tour parity constraints (7.41) on the lower bound value. This was accomplished
by comparing the lower bounds obtained by the aggregated parity constraints (7.42) alone
with the lower bounds obtained by the aggregated parity constraints (7.42) together with
(7.37) and (7.41). For all test instances we obtained identical lower bounds. That is, in spite
of their expensive separation, the tour constraints (7.41) and (7.37) did not improve upon
the lower bound obtained by the aggregated parity constraints (7.42). This behavior was also
observed by Belenguer and Benavent [BB98b]. The reason for the weakness of the tour
constraints (7.42) and (7.37) lies in the fact that their effectiveness depends on the values of
the x-variables involved. If these x-variables were set to 1 then the tour constraints would
be strong. However, when considering LP solutions during the cutting plane algorithm we
observed that x-variables were almost always fractional. This is due to the min-max objective
because in fact, the value of 1 enforced by the obligatory constraints (7.35) for a certain edge
e is distributed among the variables xp(e), p = 1, . . . , k. However, as soon as x-variables are
fixed to their upper bound value 1 by branching the tour constraints become effective.

Then we considered the lower bounds obtained for the aggregated parity constraints (7.42)
and the initial aggregated L-tour constraint (7.44) (which is included in the initial LP). The
results can be found in columns AP of the tables listed in section A.3. We observed that
these lower bounds are always inferior to those obtained by the combinatorial lower bound
MCND+MOD/k-LB (cf. section 5.6) which are given in columns MCN. However, this was
not surprising since we had already stated in proposition 7.1 that the CPP/k-LB yields the
same lower bounds as a cutting plane algorithm using only aggregated parity constraints
(7.42). Moreover, the MCND+MOD/k-LB dominates the CPP/k-LB (cf. section 5.6) and
also includes the initial aggregated L-tour constraint (7.44). In fact, 143 out of 571 configura-
tions could be solved to optimality with the lower bounds obtained by the aggregated parity
constraints (7.42) and even 150 for the lower bounds obtained by MCND+MOD/k-LB.

The next question of interest was how much the aggregated L-tour constraints (7.43) could
improve on top of the aggregated parity constraints (7.42). The lower bound values are given
in column APL (cf. section A.3). The results were impressive, we could solve 180 (,i.e., 37
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additional) configurations to optimality and the average improvement was 5.6%. Taking also
the SPT-LB into account this amounts to 289 configurations which could be solved without
branching.

Branch-and-Cut. Finally, we turned to the branch-and-cut algorithm. At first we per-
formed a run over all 571 configurations imposing a time limit of 1 hour of CPU time. Then,
in order to perform tests for assessing the different branching strategies (cf. section 7.6.4)
as well as the variable fixing (cf. section 7.6.5) and the modified objective functions (cf. sec-
tion 7.6.6) we confined our attention to those configurations where the branch-and-cut algo-
rithm achieved a gap smaller than 1%.

The utilization of the variable fixing strategies discussed in section 7.6.5 proved to be
very successful. Many configurations could not be solved to optimality (within the 1 hour
time limit) without variable fixing. For configurations which could be solved to optimality
without variable fixing the number of required subproblems could be reduced significantly,
mostly to the half, for some configurations by a factor of 1/5 or even 1/15. In particular,
the variable fixing strategy which considered three variables could improve strongly upon the
variable fixing strategy which considered only two variables.

With respect to the branching strategy we found that selecting the free variable with
LP solution value close to 0.5 resp. 1.5 and high edge weight (strategy B3) while preferring
x-variables (P2) performed best. The second and the third best strategies were (B4,P2) and
(B2,P2), respectively. It is clear that preferring x-variables for branching achieves the best
results since the corresponding tour connectivity inequalities and tour parity inequalities will
be strengthened. Finally, for strategy (B3,P2) we found that binary branching on x-variables
was superior to k-nary branching.

We used the so-called Best-First enumeration strategy where the node of the branch-and-
cut tree with the minimum local lower bound becomes the next node to be considered.

At last we investigated the effect of the alternative objective functions discussed in sec-
tion 7.6.6. Unexpectedly, these variations did not improve the solution process of the branch-
and-cut algorithm (in terms of a reduced number of required subproblems). An explanation
for this could be that the modified objective function coefficients which are more or less ar-
bitrarily assigned to variables prevent promising variables from being selected for branching.
Further investigations have to be performed in that direction.

For the final run we considered all configurations from the first run with a gap smaller
than 5% and allowed a time limit of 2 hours CPU time. The results are given in column BAC.
Again the results were very satisfying. Compared with the cutting plane algorithm we could
solve 22 additional configurations to optimality, i.e., finally 311 out of 571 configurations could
be solved to optimality.

For the 226 unsolved configurations we observed that for small and large values of k
(depending on the instance) the gaps are in most cases moderate, i.e., < 3%. However, for
medium sized k the gaps can be very large, i.e., 20%-30%. This is due to the fact that the
lower bounds obtained by the LP relaxation are only good for k small and the SPT-LB is only
good for k large. In between both bounds are rather bad. These bad lower bounds cannot be
compensated by enumeration for larger sized instances.
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7.7 Solving the MM k-CPP with OPL Studio and CPLEX

Usually — when encountering an optimization problem which has to be solved — one consults
an appropriate tool to obtain solutions quickly and to get a feeling for the tractability of the
problem. Today there are very comfortable tools available which allow to model problems on
a high abstraction level and to trigger solution methods immediately. For this purpose we
used the ILOG OPL Studio [OPL] which is a GUI oriented software allowing to model prob-
lems in the Optimization Programming Language (OPL) [vH99], a high level modeling
language, which can be considered as an enhanced version of AMPL, a modeling language
for mathematical programming [FGK93]. Internally the ILOG OPL Studio triggers an ap-
propriate solver depending on the problem specification. In our case the MIP solving facility
of the ILOG CPLEX LP solver [CPL] was used to solve the problem.

In this section we want to present OPL formulations of the MM k-CPP as well as compu-
tational results for some exemplary instances taken from our test set. Finally we also want to
demonstrate the limits of solving the MM k-CPP with a completely generated IP formulation.

7.7.1 An OPL Model based on the Sparse Formulation

Based on the sparse IP formulation (cf. section 7.6.1) we have used the following OPL model.

int+ nOfNodes = ...;

int+ nOfEdges = ...;

int+ k = ...;

struct Edge {

int+ head;

int+ tail;

float+ weight;

};

range edgeRange 1..nOfEdges;

range nodeRange 0..nOfNodes-1;

Edge edges[edgeRange] = ...;

{edgeRange} incidentEdges[v in nodeRange] = {e | e in edgeRange :

edges[e].head = v \/ edges[e].tail = v};

var float+ T;

var int+ x[1..k,edgeRange] in 0..2;

var int+ b[1..k,nodeRange] in 0..10;

minimize T

subject to {

forall(p in [1..k])

sum(e in edgeRange) x[p,e] * edges[e].weight <= T;

forall(p in [1..k])

sum(e in incidentEdges[0]) x[p,e] >= 2;

forall(e in edgeRange)

sum(p in [1..k]) x[p,e] >= 1;

forall(p in [1..k]) {

forall(v in nodeRange) {

(sum(e in incidentEdges[v]) x[p,e]) = 2*b[p,v];



136 CHAPTER 7. EXACT ALGORITHMS

}

}

};

Note that we have only used the x-variables of the sparse IP formulation. This is due to the
fact that there are exponentially many tour connectivity constraints (7.37) and tour parity
constraints (7.41) which cannot be incorporated into the model and therefore we do not need
the y-variables. However, the tour parity constraints (7.41) can be modeled with the aid of
additional integer variables b for each node v ∈ V . In fact the last set of constraints of the
OPL model reads

∑

e∈δ(v)

xp(e) = 2bp(v) for all v ∈ V, p = 1, . . . , k.

Since the right hand side of the equation is always even the parity for each tour p is enforced.
However, due to the absence of tour connectivity constraints it is not clear whether the
solutions obtained by this model are feasible. Nevertheless this model can be used to compute
lower bounds.

For example, the instance gdb1 from the instance set carpGDB83 (cf. section A.1.1.5) in
compliance with the above model (and k set to 2) looks as follows.

nOfNodes = 12;

nOfEdges = 22;

k = 2;

edges = [

<0, 1, 13>,

<0, 3, 17>,

<0, 6, 19>,

<0, 9, 19>,

<0, 11, 4>,

<1, 2, 18>,

<1, 3, 9>,

<1, 8, 2>,

<2, 3, 20>,

<2, 4, 5>,

<4, 5, 7>,

<4, 10, 20>,

<4, 11, 11>,

<5, 6, 4>,

<5, 11, 3>,

<6, 7, 8>,

<6, 11, 18>,

<7, 9, 3>,

<7, 10, 10>,

<8, 9, 16>,

<8, 10, 14>,

<9, 10, 12>

];
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7.7.2 An OPL Model based on the Sparse Directed Formulation

We have also devised an OPL model for a sparse directed IP formulation based on the for-
mulation proposed for the CARP (cf. section 7.1.1).

int+ nOfNodes = ...;

int+ nOfEdges = ...;

int+ k = ...;

struct Edge {

int+ head;

int+ tail;

float+ weight;

};

range edgeRange 1..nOfEdges;

range nodeRange 0..nOfNodes-1;

Edge edges[edgeRange] = ...;

{edgeRange} incidentEdges[v in nodeRange] = {e | e in edgeRange :

edges[e].head = v \/ edges[e].tail = v};

{edgeRange} incidentInEdges[v in nodeRange] = {e | e in edgeRange :

edges[e].head = v};

{edgeRange} incidentOutEdges[v in nodeRange] = {e | e in edgeRange :

edges[e].tail = v};

var float+ T;

var int+ x_1[1..k,edgeRange] in 0..1;

var int+ x_2[1..k,edgeRange] in 0..1;

minimize T

subject to {

forall(p in [1..k])

sum(e in edgeRange) (x_1[p,e] + x_2[p,e]) * edges[e].weight <= T;

forall(p in [1..k])

sum(e in incidentEdges[0]) (x_1[p,e] + x_2[p,e]) >= 2;

forall(e in edgeRange)

sum(p in [1..k]) (x_1[p,e] + x_2[p,e]) >= 1;

forall(p in [1..k]) {

forall(v in nodeRange) {

sum(e in incidentInEdges[v]) (x_1[p,e] - x_2[p,e]) =

sum(e in incidentOutEdges[v]) (x_1[p,e] - x_2[p,e]);

}

}

};

For this model we used binary variables x1 and x2 for each edge e ∈ E and each tour p =
1, . . . , k, which indicate in which direction edge e is traversed in tour p. In the directed model
the tour parity constraints can be simply modeled with flow equations (7.1) (cf. section 7.1.1).
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Inst. Sparse Sparse Directed B&C

k #Sub Time (s) LB #Sub Time (s) LB #Sub Time (s) LB

gdb1 2 143791 24 147 893744 185 147 3 10 147

3 3430013 1139 98 5851065 2786 98 463 94 98

4 14468793 4814 76 > 12657750 > 7460 73 125 100 76

gdb2 2 695884 131 158 4773765 1330 158 91 44 158

3 14296929 5099 105 > 23750000 > 11130 100 51 63 105

gdb8 2 > 11800000 > 4340 111 > 12650000 > 4470 120 55 39 125

gdb9 2 > 14500000 > 4817 114 > 9900000 > 4800 111 3531 430 124

Table 7.1: Comparison between OPL Studio and the branch-and-cut algorithm.

7.7.3 Computational Results

For testing the capabilities of solving the MM k-CPP within the ILOG OPL Studio we
selected only a few small instances from the instance set carpGDB83 (cf. section A.1.1.5),
namely gdb1 (|V | = 12,|E| = 22), gdb2 (|V | = 12,|E| = 26), gdb8 (|V | = 27,|E| = 46), and
gdb9 (|V | = 27,|E| = 51).

Table 7.1 shows the results obtained with solving the two different OPL models within
the OPL Studio as well as with the branch-and-cut code presented in section 7.6. It contains
information concerning the number of required subproblems, the solution times, and the
lower bounds obtained (optimal solutions are printed bold). It is obvious that only very
small instances can be solved with the OPL models within the OPL Studio. Furthermore
the optimal lower bounds obtained with the OPL Studio cannot be guaranteed to represent
feasible solutions due to the absence of the tour connectivity constraints. The negative impact
of symmetry is impressively demonstrated by the results obtained with the sparse directed
formulation. Many more subproblems are required than for the undirected formulation.

7.7.4 Generating the Complete Sparse IP Formulation

In order to overcome the limitation imposed by the fact that the tour connectivity constraints
cannot be modeled in OPL, we implemented a routine for generating the complete sparse IP
formulation for a given graph G, a specified depot node v1 and a fixed k. The aim was to
feed such a complete description into the ILOG CPLEX MIP solver [CPL].

However, as expected, we could not even compute the complete IP formulation for the
instance gdb1. Already for the small instance gdb19 (|V | = 8, |E| = 11) the complete IP
formulation consisted of 448 tour connectivity constraints and 9800 tour parity constraints and
took approximately 1 MByte of disk space. For gdb4 (|V | = 11, |E| = 19) there were even 7168
tour connectivity constraints and 1936952 tour parity constraints which took approximately
328 MByte space. Mixed Integer Programs of this size cannot be solved by the CPLEX MIP
solver anymore.

It should be clear that this way of solving the MM k-CPP is only practical for very small
instances.

7.8 Summary and Conclusions for the MM k-CPP

In the beginning of the second part of this chapter we showed that IP formulations of the
CARP can easily be adapted to the MM k-CPP. Due to this insight we developed a branch-
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and-cut algorithm which was again based on a sparse IP formulation. In addition to the
utilization of standard valid inequalities and corresponding separation routines adapted from
the CARP we devised a new class of valid inequalities for the MM k-CPP, called the aggre-
gated L-tour constraints. These inequalities are based on the quantities L(S) (which were
introduced in section 5.6 when we dealt with dual heuristics) and enforce that the cut δ(S) is
crossed at least 2L(S) times. For the separation of these new constraints we devised several
heuristic procedures. The most effective procedure was based on computing α-minimum cuts
(α = 2, 3, 4) on the support graph to obtain sampling candidate node sets S. Computa-
tional results proved the L-tour constraints to be very effective. In fact, in a cutting plane
approach lower bounds could be improved by 5.6% on the average compared to the lower
bounds obtained by separation of standard inequalities and optimality of 37 additional con-
figurations could be proven. For the branch-and-cut algorithm we developed effective variable
fixing strategies as well as suitable branching rules. Furthermore, by integrating the results
obtained by the primal heuristics as well as the lower bound values obtained by the Shortest
Path Tour Lower Bound we got a very effective branch-and-cut algorithm which was capable
of solving 22 additional configurations to optimality (under a 2 hour CPU time limit) com-
pared to the cutting plane approach, i.e., finally 54% of all 571 configurations could be solved
exactly.

It turned out that especially configurations with “medium” sized k (what “medium”
exactly means depends on the graph, usually k = 4, 5, 6, 7) were hard to solve. This is due to
the fact that for small k the lower bounds obtained by the LP relaxation are very good but
they become worse for growing k. In contrast to this the Shortest Path Tour Lower Bound is
bad for small k and becomes better for growing k. Further research has to focus on finding
improved lower bounds for these medium sized k.

In order to compare our branch-and-cut algorithm with commercial optimization tools
we devised two OPL models for the MM k-CPP and tried to solve instances with the OPL
Studio. That was only possible for very small instances. With respect to the running times
and the number of subproblems our branch-and-cut algorithm was clearly superior.
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Chapter 8

Discussion and Conclusions

In this dissertation we have investigated the Min-Max k-Chinese Postman Problem (MM k-
CPP) and the Capacitated Arc Routing Problem (CARP) which both belong to the class
of arc routing problems. Arc routing problems have been far less intensively studied in the
literature than node routing problems and multiple postmen problems are far less understood
than single postmen problems. Moreover, routing problems with a min-max objective are,
due to its difficulty, only seldom considered although such an objective is of high practical
relevance. For the MM k-CPP the only work found in the literature is by Frederickson et
al. [FHK78] who devised a (2 − 1/k)-factor approximation algorithm (FHK-algorithm).

Our investigation started with heuristics. For the CARP we gave an overview of the
most important and recent heuristics. For the MM k-CPP we developed two new heuristics
based on a cluster first – route second and a combined strategy. It turned out that the
route first – cluster second strategy of the FHK-algorithm performed best. However, all
three heuristics left potential for further improvements and therefore we developed three new
improvement procedures which were used on top of the heuristics and which achieved an
average improvement of 8.5%. Based on the heuristics and the improvement procedures we
devised a tabu search algorithm using three different neighborhood structures. Computational
experiments showed that our tabu search algorithm produced high quality solutions which
yielded a further average improvement of 9.5%. Moreover, 47.2% (270 out of 571) of the
solutions computed by the tabu search algorithm could be proven to be optimal.

Then we turned to dual heuristics. We gave a detailed review of the different combinatorial
lower bounding procedures proposed for the CARP in the literature. Thereby we revealed
that, in general, the Node Duplication Lower Bound [HSN92] and the BCCM1 Lower Bound
[BCCM92] do not yield the same result as was claimed in the literature, but the former
dominates the latter. A crucial observation for all lower bounding procedures was that only
a limited number of cuts is taken into account for fulfilling the capacity restriction. We
could improve the best lower bounding algorithm for the CARP by a modification which
considers more cuts. Computational experiments confirmed the dominance relation we found
as well as superior results of the modified lower bounding procedure compared to the existing
procedures.

For the MM k-CPP we started by reviewing the two existing lower bounds which were
used to prove the approximation ratio of the FHK-algorithm. Then we developed concepts to
adapt the CARP lower bounding procedures to the MM k-CPP. A key idea was to introduce
a counterpart of the capacity restriction for the MM k-CPP, namely a distance restriction for
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each single tour of a k-postman tour which is clearly given by an upper bound. Using this
distance restriction we developed a procedure which determines a minimum number L(S) of
postmen required for traversing a given node set S and the depot node. This enabled us to
adapt all the lower bounding procedures of the CARP to the MM k-CPP. Computational
results showed that for small k these new lower bounds were always superior to the existing
ones. However, for larger k (depending on the graph) one of the existing lower bounds, the so-
called Shortest Path Tour Lower Bound, was always superior. This lower bound is determined
as the shortest tour passing through the edge farthest away from the depot node.

Before turning to exact solution methods we discussed complexity theoretical questions for
the CARP and the MM k-CPP. Both problems are NP-hard and for the CARP even achieving
a fixed approximation ratio is an NP-hard problem [GW81] (if the triangle inequality holds
for the edge weights, a less negative result holds, namely (3/2 − ε)-factor approximation for
ε > 0 is NP-hard [GW81]). Nevertheless, by imposing appropriate restrictions on the input
instances solvable cases could be obtained. In the literature we found three solvable cases for
the Capacitated Chinese Postman Problem [APG87], which is a special case of the CARP
where all edges are assumed to be required. We generalized two of these solvable cases to
the CARP, namely CARPs on paths and cycles with equal demands. For the MM k-CPP
we proved three solvable cases, namely the MM k-CPP on paths, the MM k-CPP on cycles,
and the MM k-CPP on complete graphs with equal edge weights and a specific number of
postmen. We briefly reviewed the existing approximation algorithms for the CARP. Then
we turned to the FHK-algorithm for the MM k-CPP and devised a tight example. Based
on this example we proposed an improvement of the FHK-algorithm but we could not prove
a better approximation ratio. Improving the approximation ratio as well as proving non-
approximability results for the MM k-CPP are interesting future research directions.

The last part of this thesis was concerned with the investigation of exact solution methods
for the CARP and the MM k-CPP. The method of choice for solving NP-hard optimization
problems to optimality is the branch-and-cut approach. Essential for the effectiveness of a
branch-and-cut algorithm is the underlying IP formulation. Therefore we started with an
overview of existing IP formulations for the CARP and continued with a presentation of the
existing solution methods based on these formulations. Then, we developed a cutting plane
algorithm based on a sparse IP formulation and devised an exact separation method for an
important class of valid inequalities, the aggregated capacity constraints, which could formerly
only be separated in a heuristic fashion. Computational experiments with this cutting plane
algorithm yielded improved lower bounds for the CARP compared to cutting plane algorithms
with only the heuristic separation. Moreover, we could even achieve new best lower bounds
for 9 instances from the literature.

For the MM k-CPP we showed that IP formulations of the CARP can easily be adapted.
Due to this insight we developed a branch-and-cut algorithm again based on a sparse IP
formulation. In addition to the utilization of standard valid inequalities and corresponding
separation routines adapted from the CARP we devised a new class of valid inequalities for
the MM k-CPP, called the aggregated L-tour constraints. These inequalities are based on the
quantities L(S) (which we have already discussed above for the dual heuristics) and enforce
that the cut δ(S) is crossed at least 2L(S) times. For the separation of these new constraints
we devised several heuristic procedures. The most effective procedure was based on computing
α-minimum cuts (for α = 2, 3, 4) on the support graph of an LP solution to obtain sampling
candidate node sets S which were checked for violation. Computational results proved the L-
tour constraints to be effective. In fact, a cutting plane approach incorporating the separation
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of the L-tour constraints could improve the lower bounds obtained by separation of standard
inequalities by an average of 5.6%.

For the branch-and-cut approach we developed effective variable fixing strategies as well
as suitable branching rules. Finally, by integrating the best upper bounds computed by our
heuristics as well as the lower bound values obtained by the Shortest Path Tour Lower Bound,
we composed a very effective branch-and-cut algorithm. Compared to the results obtained
with the cutting plane algorithm, 22 additional configurations, i.e., postman/instance combi-
nations, could be solved to optimality (within a 2 hour CPU time limit). In the end, 54% of
all 571 configurations could be solved exactly.

It turned out that especially configurations with “medium” sized k (usually k = 4, 5, 6, 7
depending on the graph) were hard to solve. This is due to the fact that for small k the lower
bounds obtained by the LP relaxation were very good but became worse for growing k. In
contrast to this the Shortest Path Tour Lower Bound yielded bad bounds for small k and
became better for growing k. Further research has to be invested in devising improved lower
bounds for these medium sized k.

In order to compare our branch-and-cut algorithm with commercial optimization tools
we devised two OPL models for the MM k-CPP and tried to solve a selection of instances
with the OPL Studio to optimality. That was only possible for very small instances. With
respect to the running times and the number of subproblems our branch-and-cut algorithm
was clearly superior.

Let us conclude. The CARP and the MM k-CPP can be considered to be among the
hardest arc routing problems. There are still small instances, e.g., gdb13 (|V | = 10, |E| = 28,
and K = 6) for the CARP and gdb1 (|V | = 12, |E| = 22, and k = 5) for the MM k-CPP,
which cannot to date be solved to optimality. The main difficulty for both problems is the
inherent symmetry caused by the fact that there are multiple postmen tours. That is, for k
postmen the same tour can occur k! times with only having different tour indices. For the
MM k-CPP matters are even worse since the min-max objective imposes additional symmetry.
Nevertheless, for the CARP we contributed deeper insights into lower bounding algorithms
and methods for obtaining improved lower bounds which are indispensable for attacking
larger instances. For the MM k-CPP we contributed sophisticated methods for obtaining high
quality upper bounds as well as concepts and algorithms for achieving strong lower bounds
which were finally incorporated into an effective branch-and-cut algorithm. Therefore, we
made a successful step towards the exact resolution of multiple postmen problems.
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Appendix A

Test Instances and Computational

Results

This chapter gives detailed information about the set of test instances we have used for our
computational experiments as well as detailed information about the results of our compu-
tational experiments. We have decided to put all computational results into one chapter in
order to have them at a glance.

All computations have been performed either on an Intel Pentium IV 2.80GHz, 2GB
memory, Linux Kernel 2.4.20-4GB system or on a Dual Intel Xeon 2.80GHz, 2GB memory,
Linux Kernel 2.4.20-64GB-SMP system.

A.1 Test Instances

Our benchmark set consists of a large number of instances from the literature as well as a set
of randomly generated instances.

While for the CARP there are common instance sets used in the literature and available
on the Internet [CAR], for the the MM k-CPP there are no such instance sets. In order to
work with “neutral” and common instances we have adapted widely known instance sets for
the RPP, the GRP, the CARP and even the TSP to the MM k-CPP.

All instances have the following properties: each instance represents a simple graph, edge
weights and edge demands are always integer and the depot node is always the first node of
the graph (in some instances labeled by 1 in others by 0).

A.1.1 Instances from the Literature

We used the RPP instance set from [CCCM81] (denoted by rppCCCM81) and the instance
set from [CS94] (denoted by rppCS94) for the MM k-CPP by simply ignoring the information
whether an edge is required or not. Analogously, we used the GRP instance set from [CLS01]
(denoted by grpCLS01) for the MM k-CPP. These instance sets were provided by courtesy of
A. Corberán.

For the CARP we used the instance sets from [BCCM92] (denoted by carpBCCM92),
from [GDB83, DeA81] (denoted by carpGDB83), from [Li92, LE96] (denoted by carpLE96),
and from [KSHS95] (denoted by carpKSHS95). These instances are available on the Internet
[CAR]. For the MM k-CPP we used the first three CARP instance sets by ignoring the
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number of vehicles, the vehicle capacity, edge demands and the information whether an edge
is required or not.

In the following we will give detailed information for each instance set and point to mod-
ifications we have eventually made.

A.1.1.1 The Instance Set rppCCCM81

This instance set contains 24 randomly generated RPP instances named P01 to P24 which
were generated in the scope of [CCCM81] and also used in [CS94]. For these instances we
have 7 ≤ |V | ≤ 50 and 10 ≤ |E| ≤ 184.

The following modifications on the original instances have been made. In instance P03

one of the two parallel edges {v15, v21} has been removed, in instance P18 the edge weight
of edge {v1, v2} has been set to 1 instead of 0, in instance P19 one of the two parallel edges
{v25, v26} has been removed.

A.1.1.2 The Instance Set rppCS94

This instance set contains the two instances ALBAIDAA (having 102 nodes and 160 edges)
and ALBAIDAB (having 90 nodes and 144 edges). They were created in the scope of [CS94]
by randomly selecting edges of the real world based graph of the city of Albaida (Valencia)
which has 116 nodes and 174 edges.

A.1.1.3 The Instance Set grpCLS01

This instance set contains 46 instances which can be divided into the following subsets. There
are 15 GRP instances named ALBA n m (n ∈ {3, 5, 7}, m = 1, . . . , 5) which contain always
the original Albaida graph mentioned in the previous Section A.1.1.2. They differ only in
the assignment of the edges to the set of required or non-required edges. Each edge of the
original graph has been set to be required with probability 0.3, 0.5, and 0.7. Hence for the
MM k-CPP we have chosen only one instance, namely ALBA 3 1.

There are also 10 instances GRP1 to GRP10 which were generated from the original Albaida
graph by visually selecting the required edges (e.g. streets oriented from north to south, east
to west, etc.). Since we already use the ALBA 3 1 instance we did not choose any instance for
the MM k-CPP from GRP1 to GRP10.

Furthermore there are 15 GRP instances named MADR n m (n ∈ {3, 5, 7}, m = 1, . . . , 5)
which contain always the same graph representing the street network of Madrigueras (Al-
bacete) with 196 nodes and 316 edges. As for the ALBA n m instances they differ only in the
assignment of the edges to the set of required or non-required edges. Each edge of the original
graph has been set to be required with probability 0.3, 0.5, and 0.7. Again we chose only one
instance for the MM k-CPP, namely MADR 3 1.

Finally the set contains six instances GTSP1 to GTSP6 which were formed by taking the pla-
nar Euclidean TSP instances kroA150g, kroB150g, pr152g, rat195g, kroA200g and kroB200g

from the TSPLIB [Rei91] and making the associated graph sparse by deleting all edges apart
from the edges in an optimal TSP tour and the edges connecting each node to its three nearest
neighbors. For these instances we have 150 ≤ |V | ≤ 200 and 296 ≤ |E| ≤ 392. All these
instances have been used for the MM k-CPP.
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A.1.1.4 The Instance Set carpBCCM92

This instance set contains 34 randomly generated CARP instances created in the scope of
[BCCM92]. The files are named nA, nB, nC for n = 1, . . . , 10 and additionally nD for n ∈
{4, 5, 9, 10}. For fixed n the files contain the same graph but different configurations of
available vehicles K and capacity Q. We have 24 ≤ |V | ≤ 50, 39 ≤ |E| ≤ 97, and 2 ≤ K ≤ 10.
For all instances the whole edge set E is required, i.e., E = ER.

In order to compare results obtained for these instances with results from [BCCM92] and
[BB03] one has to add fixed service costs SCI , I = 1, . . . , 10 to the results of instances IX,
X ∈ {A, B, C, D} where SC1 = 74, SC2 = 71, SC3 = 24, SC4 = 122, SC5 = 143, SC6 = 107,
SC7 = 103, SC8 = 136, SC9 = 127, SC10 = 209.

For the MM k-CPP we took the instances 1A, 2A, . . ., 10A.

A.1.1.5 The Instance Set carpGDB83

This classical instance set contains 23 CARP instances created in the scope of [DeA81,
GDB83]. The files are named gdb1 to gdb23. Note that the original instance set contains
25 instances but the 8th and the 9th instance are not used because of inconsistencies. Hence
gdb8 denotes the 10th instance of the original instance set and so on. We have 7 ≤ |V | ≤ 27,
19 ≤ |E| ≤ 55, and 3 ≤ K ≤ 10. Some of the instances are complete graphs, in particular
instances gdb14 and gdb15 are K7, instances gdb16 and gdb17 are K8, instance gdb18 is K9

and instance gdb23 is K11. Again for all instances the whole edge set is required.

A.1.1.6 The Instance Set carpKSHS95

This instance set contains 6 CARP instances created in the scope of [KSHS95]. The files are
named kshsn with n = 1, . . . , 6 (abbreviated k1, . . ., k6). These instances are very small with
only 15 edges and 6 ≤ |V | ≤ 10.

A.1.1.7 The Instance Set carpLE96

This instance set contains 24 CARP instances created in the scope of [Li92] and [LE96]. The
files are named egl-en-m and egl-sn-m with n = 1, . . . , 4 and m ∈ {A, B, C}. Instances
egl-en-m are based on a graph with 77 nodes and 98 edges. Instances egl-sn-m are based
on a graph with 140 nodes and 190 edges. They only differ in the partition of the edges into
required and non-required edges and the number of vehicles and the capacity. For the number
of vehicles we have 5 ≤ K ≤ 35. Only for the instances having prefix egl-e4 and egl-s4 the
whole edge set coincides with the set of required edges.

For the MM k-CPP we took the two instances egl-e4-A and egl-s4-A.

A.1.2 Randomly Generated Instances

The main motivation for generating instances on our own was to be able to generate graphs
of arbitrary size and with special properties, e.g., planarity, bounded node degree, restricted
set of neighbors, etc. as well as to be able to visualize the graphs and computations on them
by generating coordinate information for each node. In that respect we have created the
following five instances for the MM k-CPP which served always as our first test set: random1
(20 nodes, 33 edges), random2 (20 nodes, 32 edges), random3 (40 nodes, 70 edges), r2d4nb5
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(100 nodes, 160 edges), and r1d5nb5 (100 nodes, 199 edges). All graphs are planar and
have maximum node degree of 4 except for r1d5nb5 which has maximum node degree of 5.
Furthermore, except for random2, for all instances the neighbor of a node has been chosen
from the 5 nearest neighbors. Planarity, maximum node degree of 4 and nearest neighbor
selection have been used for obtaining graphs similar to real world street networks.

A.2 Computational Results for the CARP

The following tables contain computational results for the CARP on the instance sets carp-
BCCM92, carpGDB83, carpKSHS95, and carpLE96. The first set of tables A.1, A.3, A.2, and
A.4 contains computational results for combinatorial lower bounds discussed in section 5.4.
Here, the best lower bound values are underlined. The second set of tables A.5, A.6, A.7,
and A.8 includes all computational results, those concerning the combinatorial lower bounds
discussed in section 5.4 as well as results for the branch-and-cut based lower bounds discussed
in section 7.3.1. Here, optimal solution values are printed bold and best lower bound values
are underlined.

Each table contains the following information.

• The instance name.

• |V |, the number of nodes of the instance.

• |E|, the number of edges of the instance.

• |ER|, the number of required edges of the instance.

• Q, the vehicle capacity.

• K, the number of vehicles.

• N, the value obtained for the dual heuristic NDLB (cf. section 5.1.5).

• N+, the value obtained for the dual heuristic NDLB+, i.e., NDLB with improvement
option (cf. section 5.1.5).

• B1, the value obtained for the dual heuristic BCCM1LB (cf. section 5.1.7).

• B2, the value obtained for the dual heuristic BCCM2LB (cf. section 5.1.7).

• B2m, the value obtained for the dual heuristic BCCM2LBMOD, i.e., the improved
version of BCCM2LB (cf. section 5.2).

• M, the value obtained for the dual heuristic MCNDLB (cf. section 5.1.8).

• M+, the value obtained for the dual heuristic MCNDLB+, i.e., MCNDLB with im-
provement option (cf. section 5.1.8).

• M+m, the value obtained for the dual heuristic MCNDLB+MOD, i.e., the improved
version of MCNDLB+ (cf. section 5.2).

• CPA1, the value obtained by the cutting plane algorithm of Belenguer and Benavent
[BB03] (cf. section 7.2.4) without separating disjoint path inequalities.



A.2. COMPUTATIONAL RESULTS FOR THE CARP 149

• EAC, the value obtained with exact separation of aggregated capacity constraints (cf. sec-
tion 7.3).

• CPA2, the value obtained by the cutting plane algorithm of Belenguer and Benavent
[BB03] (cf. section 7.2.4) with separating disjoint path inequalities.

• UB, the best solution value obtained by a heuristic (taken from [BB03]).

The last four columns only occur in tables A.5, A.6, A.7, and A.8.

Inst. |V | |E| |ER| Q K N N+ B1 B2 B2m M M+ M+m

1A 24 39 39 200 2 247 247 247 247 247 247 247 247
1B 24 39 39 120 3 247 247 247 247 247 247 247 247
1C 24 39 39 45 8 279 279 279 280 280 280 280 280
2A 24 34 34 180 2 296 296 296 296 296 296 296 296
2B 24 34 34 120 3 305 305 305 318 318 318 318 318
2C 24 34 34 40 8 386 386 386 482 482 482 482 482
3A 24 35 35 80 2 103 103 103 103 103 103 103 103
3B 24 35 35 50 3 105 105 105 108 108 108 108 108
3C 24 35 35 20 7 123 123 123 140 140 140 140 140
4A 41 69 69 225 3 514 514 514 514 514 514 514 514
4B 41 69 69 170 4 518 518 518 518 518 518 518 518
4C 41 69 69 130 5 524 524 524 524 525 524 524 525
4D 41 69 69 75 9 558 558 558 565 565 565 565 565
5A 34 65 65 220 3 562 562 562 562 562 562 562 562
5B 34 65 65 165 4 566 566 566 567 567 567 567 567
5C 34 65 65 130 5 582 582 582 582 582 582 582 582
5D 34 65 65 75 9 656 656 656 656 656 656 656 656
6A 31 50 50 170 3 330 330 330 330 330 330 330 330
6B 31 50 50 120 4 334 334 334 334 334 334 334 334
6C 31 50 50 50 10 372 372 372 372 372 372 372 372
7A 40 66 66 200 3 382 382 382 382 382 382 382 382
7B 40 66 66 150 4 382 382 382 382 382 382 382 382
7C 40 66 66 65 9 402 402 402 403 403 403 403 403
8A 30 63 63 200 3 522 522 522 522 522 522 522 522
8B 30 63 63 150 4 528 528 528 528 528 528 528 528
8C 30 63 63 65 9 587 587 587 587 587 587 587 587
9A 50 92 92 235 3 450 450 450 450 450 450 450 450
9B 50 92 92 175 4 453 453 453 453 453 453 453 453
9C 50 92 92 140 5 459 459 459 459 459 459 459 459
9D 50 92 92 70 10 493 493 493 493 493 493 493 493
10A 50 97 97 250 3 637 637 637 637 637 637 637 637
10B 50 97 97 190 4 641 641 641 641 641 641 641 641
10C 50 97 97 150 5 649 649 649 649 649 649 649 649
10D 50 97 97 75 10 697 697 697 697 697 697 697 697

Table A.1: Combinatorial lower bounds for the CARP on instance set carpBCCM92.
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Inst. |V | |E| |ER| Q K N N+ B1 B2 B2m M M+ M+m

gdb1 12 22 22 5 5 310 310 310 310 310 310 310 310
gdb2 12 26 26 5 6 339 339 339 339 339 339 339 339
gdb3 12 22 22 5 5 275 275 275 275 275 275 275 275
gdb4 11 19 19 5 4 274 274 274 274 274 274 274 274
gdb5 13 26 26 5 6 376 376 376 376 376 376 376 376
gdb6 12 22 22 5 5 295 295 295 295 295 295 295 295
gdb7 12 22 22 5 5 312 312 312 312 312 312 312 312
gdb8 27 46 46 27 10 294 294 294 325 325 325 325 325
gdb9 27 51 51 27 10 277 277 277 277 277 277 277 277
gdb10 12 25 25 10 4 275 275 275 275 275 275 275 275
gdb11 22 45 45 50 5 395 395 395 395 395 395 395 395
gdb12 13 23 23 35 7 428 428 428 428 428 428 428 428
gdb13 10 28 28 41 6 536 536 536 536 536 536 536 536
gdb14 7 21 21 21 5 100 100 100 100 100 100 100 100
gdb15 7 21 21 37 4 58 58 58 58 58 58 58 58
gdb16 8 28 28 24 5 127 127 127 127 127 127 127 127
gdb17 8 28 28 41 5 91 91 91 91 91 91 91 91
gdb18 9 36 36 37 5 164 164 164 164 164 164 164 164
gdb19 8 11 11 27 3 55 55 55 55 55 55 55 55
gdb20 11 22 22 27 4 121 121 121 121 121 121 121 121
gdb21 11 33 33 27 6 156 156 156 156 156 156 156 156
gdb22 11 44 44 27 8 200 200 200 200 200 200 200 200
gdb23 11 55 55 27 10 233 233 233 233 233 233 233 233

Table A.2: Combinatorial lower bounds for the CARP on instance set carpGDB83.

Inst. |V | |E| |ER| Q K N N+ B1 B2 B2m M M+ M+m

k1 8 15 15 150 4 14039 14039 14039 14039 14039 14039 14039 14039
k2 10 15 15 150 4 9275 9275 9275 9275 9275 9275 9275 9275
k3 6 15 15 150 4 9320 9320 9320 9320 9320 9320 9320 9320
k4 8 15 15 150 4 10774 10774 10774 10774 10774 10774 10774 10774
k5 8 15 15 150 3 10957 10957 10957 10957 10957 10957 10957 10957
k6 9 15 15 150 3 10197 10197 10197 10197 10197 10197 10197 10197

Table A.3: Combinatorial lower bounds for the CARP on instance set carpKSHS95.
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Inst. |V | |E| |ER| Q K N N+ B1 B2 B2m M M+ M+m

egl-e1-A 77 98 51 305 5 2533 2533 2509 3057 3093 3081 3081 3093
egl-e1-B 77 98 51 220 7 3051 3051 3027 3670 3670 3670 3670 3670
egl-e1-C 77 98 51 160 10 3910 3910 3910 4372 4372 4372 4372 4372
egl-e2-A 77 98 72 280 7 3608 3608 3608 4150 4170 4151 4151 4179
egl-e2-B 77 98 72 200 10 4384 4384 4384 5036 5036 5036 5036 5036
egl-e2-C 77 98 72 140 14 5588 5588 5588 6098 6098 6098 6098 6098
egl-e3-A 77 98 87 280 8 4309 4309 4271 4863 4891 4915 4915 4943
egl-e3-B 77 98 87 190 12 5355 5355 5317 6043 6043 6095 6095 6095
egl-e3-C 77 98 87 135 17 6941 6941 6899 7441 7441 7493 7493 7493
egl-e4-A 77 98 98 280 9 4734 4734 4734 5387 5387 5387 5387 5387
egl-e4-B 77 98 98 180 14 6154 6154 6154 6913 6913 6913 6913 6913
egl-e4-C 77 98 98 130 19 7818 7818 7818 8670 8670 8670 8670 8670
egl-s1-A 140 190 75 210 7 2901 2901 2901 3248 3248 3248 3248 3248
egl-s1-B 140 190 75 150 10 3407 3407 3407 3833 3833 3833 3833 3833
egl-s1-C 140 190 75 103 14 4201 4201 4201 5033 5033 5033 5033 5033
egl-s2-A 140 190 147 235 14 6210 6210 6210 6627 6627 6627 6627 6627
egl-s2-B 140 190 147 160 20 7620 7620 7620 8098 8098 8098 8098 8098
egl-s2-C 140 190 147 120 27 9568 9568 9568 10030 10030 10030 10030 10030
egl-s3-A 140 190 159 240 15 6134 6134 6134 6774 6774 6774 6774 6774
egl-s3-B 140 190 159 160 22 7616 7616 7616 8544 8544 8544 8544 8544
egl-s3-C 140 190 159 120 29 9473 9473 9473 10342 10342 10342 10342 10342
egl-s4-A 140 190 190 230 19 7495 7495 7495 8171 8171 8171 8171 8171
egl-s4-B 140 190 190 160 27 9123 9123 9123 10208 10208 10208 10208 10208
egl-s4-C 140 190 190 120 35 11055 11055 11055 12374 12374 12374 12374 12374

Table A.4: Combinatorial lower bounds for the CARP on instance set carpLE96.
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Inst. |V | |E| |ER| Q K N N+ B1 B2 B2m M M+ M+m CPA1 EAC CPA2 UB

1A 24 39 39 200 2 247 247 247 247 247 247 247 247 247 247 247 247

1B 24 39 39 120 3 247 247 247 247 247 247 247 247 247 247 247 247

1C 24 39 39 45 8 279 279 279 280 280 280 280 280 309 309 309 319
2A 24 34 34 180 2 296 296 296 296 296 296 296 296 298 298 298 298

2B 24 34 34 120 3 305 305 305 318 318 318 318 318 328 328 330 330

2C 24 34 34 40 8 386 386 386 482 482 482 482 482 526 526 526 528
3A 24 35 35 80 2 103 103 103 103 103 103 103 103 105 105 105 105

3B 24 35 35 50 3 105 105 105 108 108 108 108 108 111 111 111 111

3C 24 35 35 20 7 123 123 123 140 140 140 140 140 159 159 161 162
4A 41 69 69 225 3 514 514 514 514 514 514 514 514 522 522 522 522

4B 41 69 69 170 4 518 518 518 518 518 518 518 518 534 534 534 534

4C 41 69 69 130 5 524 524 524 524 525 524 524 525 550 550 550 550

4D 41 69 69 75 9 558 558 558 565 565 565 565 565 640 642 644 652
5A 34 65 65 220 3 562 562 562 562 562 562 562 562 566 566 566 566

5B 34 65 65 165 4 566 566 566 567 567 567 567 567 586 586 589 589

5C 34 65 65 130 5 582 582 582 582 582 582 582 582 610 610 612 617
5D 34 65 65 75 9 656 656 656 656 656 656 656 656 714 714 714 724
6A 31 50 50 170 3 330 330 330 330 330 330 330 330 330 330 330 330

6B 31 50 50 120 4 334 334 334 334 334 334 334 334 336 336 338 340
6C 31 50 50 50 10 372 372 372 372 372 372 372 372 414 414 418 424
7A 40 66 66 200 3 382 382 382 382 382 382 382 382 382 382 382 382

7B 40 66 66 150 4 382 382 382 382 382 382 382 382 386 386 386 386

7C 40 66 66 65 9 402 402 402 403 403 403 403 403 430 430 436 437
8A 30 63 63 200 3 522 522 522 522 522 522 522 522 522 522 522 522

8B 30 63 63 150 4 528 528 528 528 528 528 528 528 531 531 531 531

8C 30 63 63 65 9 587 587 587 587 587 587 587 587 645 645 653 663
9A 50 92 92 235 3 450 450 450 450 450 450 450 450 450 450 450 450

9B 50 92 92 175 4 453 453 453 453 453 453 453 453 453 453 453 453

9C 50 92 92 140 5 459 459 459 459 459 459 459 459 459 459 459 459

9D 50 92 92 70 10 493 493 493 493 493 493 493 493 505 505 509 518
10A 50 97 97 250 3 637 637 637 637 637 637 637 637 637 637 637 637

10B 50 97 97 190 4 641 641 641 641 641 641 641 641 645 645 645 645

10C 50 97 97 150 5 649 649 649 649 649 649 649 649 655 655 655 655

10D 50 97 97 75 10 697 697 697 697 697 697 697 697 731 731 732 739

Table A.5: Results for the CARP on instance set carpBCCM92.
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Inst. |V | |E| |ER| Q K N N+ B1 B2 B2m M M+ M+m CPA1 EAC CPA2 UB

gdb1 12 22 22 5 5 310 310 310 310 310 310 310 310 316 316 316 316

gdb2 12 26 26 5 6 339 339 339 339 339 339 339 339 339 339 339 339

gdb3 12 22 22 5 5 275 275 275 275 275 275 275 275 275 275 275 275

gdb4 11 19 19 5 4 274 274 274 274 274 274 274 274 287 287 287 287

gdb5 13 26 26 5 6 376 376 376 376 376 376 376 376 377 377 377 377

gdb6 12 22 22 5 5 295 295 295 295 295 295 295 295 298 298 298 298

gdb7 12 22 22 5 5 312 312 312 312 312 312 312 312 325 325 325 325

gdb8 27 46 46 27 10 294 294 294 325 325 325 325 325 344 344 344 348
gdb9 27 51 51 27 10 277 277 277 277 277 277 277 277 303 303 303 303

gdb10 12 25 25 10 4 275 275 275 275 275 275 275 275 275 275 275 275

gdb11 22 45 45 50 5 395 395 395 395 395 395 395 395 395 395 395 395

gdb12 13 23 23 35 7 428 428 428 428 428 428 428 428 450 450 450 458
gdb13 10 28 28 41 6 536 536 536 536 536 536 536 536 536 536 536 538
gdb14 7 21 21 21 5 100 100 100 100 100 100 100 100 100 100 100 100

gdb15 7 21 21 37 4 58 58 58 58 58 58 58 58 58 58 58 58

gdb16 8 28 28 24 5 127 127 127 127 127 127 127 127 127 127 127 127

gdb17 8 28 28 41 5 91 91 91 91 91 91 91 91 91 91 91 91

gdb18 9 36 36 37 5 164 164 164 164 164 164 164 164 164 164 164 164

gdb19 8 11 11 27 3 55 55 55 55 55 55 55 55 55 55 55 55

gdb20 11 22 22 27 4 121 121 121 121 121 121 121 121 121 121 121 121

gdb21 11 33 33 27 6 156 156 156 156 156 156 156 156 156 156 156 156

gdb22 11 44 44 27 8 200 200 200 200 200 200 200 200 200 200 200 200

gdb23 11 55 55 27 10 233 233 233 233 233 233 233 233 233 233 233 233

Table A.6: Results for the CARP on instance set carpGDB83.

Inst. |V | |E| |ER| Q K N N+ B1 B2 B2m M M+ M+m CPA1 EAC CPA2 UB

k1 8 15 15 150 4 14039 14039 14039 14039 14039 14039 14039 14039 14661 14661 14661 14661

k2 10 15 15 150 4 9275 9275 9275 9275 9275 9275 9275 9275 9863 9863 9863 9863

k3 6 15 15 150 4 9320 9320 9320 9320 9320 9320 9320 9320 9320 9320 9320 9320

k4 8 15 15 150 4 10774 10774 10774 10774 10774 10774 10774 10774 11098 11098 11098 11498
k5 8 15 15 150 3 10957 10957 10957 10957 10957 10957 10957 10957 10957 10957 10957 10957

k6 9 15 15 150 3 10197 10197 10197 10197 10197 10197 10197 10197 10197 10197 10197 10197

Table A.7: Results for the CARP on instance set carpKSHS95.
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Inst. |V | |E| |ER| Q K N N+ B1 B2 B2m M M+ M+m CPA1 EAC CPA2 UB

egl-e1-A 77 98 51 305 5 2533 2533 2509 3057 3093 3081 3081 3093 3498 3516 3515 3548
egl-e1-B 77 98 51 220 7 3051 3051 3027 3670 3670 3670 3670 3670 4436 4436 4436 4498
egl-e1-C 77 98 51 160 10 3910 3910 3910 4372 4372 4372 4372 4372 5449 5481 5453 5595
egl-e2-A 77 98 72 280 7 3608 3608 3608 4150 4170 4151 4151 4179 4907 4963 4994 5018
egl-e2-B 77 98 72 200 10 4384 4384 4384 5036 5036 5036 5036 5036 6249 6271 6249 6340
egl-e2-C 77 98 72 140 14 5588 5588 5588 6098 6098 6098 6098 6098 8105 8155 8114 8415
egl-e3-A 77 98 87 280 8 4309 4309 4271 4863 4891 4915 4915 4943 5857 5866 5869 5898
egl-e3-B 77 98 87 190 12 5355 5355 5317 6043 6043 6095 6095 6095 7570 7649 7646 7822
egl-e3-C 77 98 87 135 17 6941 6941 6899 7441 7441 7493 7493 7493 10011 10119 10019 10433
egl-e4-A 77 98 98 280 9 4734 4734 4734 5387 5387 5387 5387 5387 6370 6378 6372 6461
egl-e4-B 77 98 98 180 14 6154 6154 6154 6913 6913 6913 6913 6913 8807 8839 8809 9021
egl-e4-C 77 98 98 130 19 7818 7818 7818 8670 8670 8670 8670 8670 11262 11376 11276 11779
egl-s1-A 140 190 75 210 7 2901 2901 2901 3248 3248 3248 3248 3248 4975 0 4992 5018
egl-s1-B 140 190 75 150 10 3407 3407 3407 3833 3833 3833 3833 3833 6180 0 6201 6435
egl-s1-C 140 190 75 103 14 4201 4201 4201 5033 5033 5033 5033 5033 8268 0 8310 8518
egl-s2-A 140 190 147 235 14 6210 6210 6210 6627 6627 6627 6627 6627 9718 0 9780 9995
egl-s2-B 140 190 147 160 20 7620 7620 7620 8098 8098 8098 8098 8098 12835 0 12886 13174
egl-s2-C 140 190 147 120 27 9568 9568 9568 10030 10030 10030 10030 10030 16216 0 16221 16795
egl-s3-A 140 190 159 240 15 6134 6134 6134 6774 6774 6774 6774 6774 9991 0 10025 10296
egl-s3-B 140 190 159 160 22 7616 7616 7616 8544 8544 8544 8544 8544 13520 0 13554 14053
egl-s3-C 140 190 159 120 29 9473 9473 9473 10342 10342 10342 10342 10342 16958 0 16969 17297
egl-s4-A 140 190 190 230 19 7495 7495 7495 8171 8171 8171 8171 8171 12007 0 12027 12442
egl-s4-B 140 190 190 160 27 9123 9123 9123 10208 10208 10208 10208 10208 15897 0 15933 16531
egl-s4-C 140 190 190 120 35 11055 11055 11055 12374 12374 12374 12374 12374 20176 0 20179 20832

Table A.8: Results for the CARP on instance set carpLE96.
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A.3 Computational Results for the MM k-CPP

The following tables contain computational results for the MM k-CPP on the instance sets
rppCCCM81, rppCS94, grpCLS01, carpBCCM92, carpGDB83, carpLE96, and randomly gen-
erated instances. For each instance we created a separate table. Each table contains the
following column information:

• k, the number of employed postmen (2 ≤ k ≤ 10).

• H, the best solution value wmax obtained for the heuristics from section 4.2 and 4.3.

• H+, the best solution value wmax obtained for the heuristics from section 4.2 and 4.3
followed by improvement procedures from section 4.4.3.

• I1, the improvement of H+ over H (in %) computed as (H − H+) ∗ 100/H.

• T10m, the best solution value wmax obtained for the tabu search algorithm (cf. sec-
tion 4.5) with a time limit of 600s = 10m.

• I2, the improvement of T10m over H+ (in %) computed as (H+ − T10m) ∗ 100/H+.

• T∞, the best solution value wmax obtained for the tabu search algorithm (cf. section 4.5)
with no time limit.

• I3, the improvement of T∞ over T10m (in %) computed as (T10m−T∞) ∗ 100/T10m.

• SPT, the value of the Shortest Path Tour Lower Bound (cf. section 5.5.1).

• MCN, the value of the Multiple Cuts Node Duplication+MOD Div k Lower Bound
(cf. section 5.6).

• AP, the lower bound value obtained by the cutting plane algorithm with aggregated
parity constraints (cf. section 7.6.8).

• APL, the lower bound value obtained by the cutting plane algorithm with aggregated
parity constraints and aggregated L-tour constraints (cf. section 7.6.8).

• I4, the improvement of APL over AP (in %) computed as (APL − AP) ∗ 100/APL.

• BAC, the result obtained by the branch-and-cut algorithm (cf. section 7.6).

• Gap, the gap between the best upper bound UB and the best lower bound LB computed
as (UB − LB) ∗ 100/UB.

Optimal solution values are printed in boldface.
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k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 95 95 0.0 87 8.4 87 0.0 40 87 87 87 0.0 87 0.0
3 67 63 6.0 59 6.3 59 0.0 40 58 58 58 0.0 58 0.0
4 63 56 11.1 47 16.1 47 0.0 40 45 45 45 0.0 45 4.3
5 61 53 13.1 42 20.8 42 0.0 40 37 37 39 5.1 40 4.8
6 53 46 13.2 40 13.0 40 0.0 40 32 32 33 3.0 40 0.0
7 53 41 22.6 40 2.4 40 0.0 40 29 29 29 0.0 40 0.0
8 50 44 12.0 40 9.1 40 0.0 40 26 26 27 3.7 40 0.0
9 45 40 11.1 40 0.0 40 0.0 40 24 24 24 0.0 40 0.0

10 41 40 2.4 40 0.0 40 0.0 40 23 22 23 4.3 40 0.0

Table A.9: Results for the MM k-CPP on instance 1A, |V | = 24, |E| = 39.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 130 127 2.3 114 10.2 114 0.0 71 113 113 114 0.9 114 0.0
3 110 100 9.1 91 9.0 91 0.0 71 83 78 89 12.4 89 2.2
4 99 85 14.1 80 5.9 80 0.0 71 67 61 76 19.7 78 0.0
5 82 80 2.4 75 6.2 75 0.0 71 57 50 63 20.6 71 5.3
6 82 76 7.3 71 6.6 71 0.0 71 51 43 59 27.1 71 0.0
7 81 71 12.3 71 0.0 71 0.0 71 44 38 51 25.5 71 0.0
8 71 71 0.0 71 0.0 71 0.0 71 40 35 46 23.9 71 0.0
9 71 71 0.0 71 0.0 71 0.0 71 39 32 42 23.8 71 0.0

10 71 71 0.0 71 0.0 71 0.0 71 38 29 39 25.6 71 0.0

Table A.10: Results for the MM k-CPP on instance 2A, |V | = 24, |E| = 34.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 50 42 16.0 41 2.4 41 0.0 27 40 40 41 2.4 41 0.0
3 40 34 15.0 31 8.8 31 0.0 27 28 27 29 6.9 29 6.5
4 37 30 18.9 27 10.0 27 0.0 27 23 21 25 16.0 27 0.0
5 31 28 9.7 27 3.6 27 0.0 27 19 17 20 15.0 27 0.0
6 30 27 10.0 27 0.0 27 0.0 27 16 15 17 11.8 27 0.0
7 27 27 0.0 27 0.0 27 0.0 27 15 13 15 13.3 27 0.0
8 27 27 0.0 27 0.0 27 0.0 27 14 12 14 14.3 27 0.0
9 27 27 0.0 27 0.0 27 0.0 27 13 11 12 8.3 27 0.0

10 27 27 0.0 27 0.0 27 0.0 27 13 10 11 9.1 27 0.0

Table A.11: Results for the MM k-CPP on instance 3A, |V | = 24, |E| = 35.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 218 196 10.1 195 0.5 195 0.0 80 195 195 195 0.0 195 0.0
3 171 151 11.7 137 9.3 134 2.2 80 131 131 134 2.2 134 0.0
4 143 125 12.6 109 12.8 105 3.7 80 99 99 103 3.9 103 0.0
5 130 111 14.6 95 14.4 89 6.3 80 81 80 86 7.0 86 3.4
6 120 95 20.8 86 9.5 82 4.7 80 68 67 75 10.7 80 2.4
7 107 95 11.2 82 13.7 80 2.4 80 60 58 66 12.1 80 0.0
8 101 87 13.9 80 8.0 80 0.0 80 54 51 58 12.1 80 0.0
9 98 87 11.2 80 8.0 80 0.0 80 49 45 52 13.5 80 0.0

10 96 82 14.6 80 2.4 80 0.0 80 45 41 47 12.8 80 0.0

Table A.12: Results for the MM k-CPP on instance 4A, |V | = 41, |E| = 69.
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k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 219 218 0.5 208 4.6 208 0.0 72 208 208 208 0.0 208 0.0
3 178 162 9.0 141 13.0 141 0.0 72 140 140 141 0.7 141 0.0
4 143 131 8.4 115 12.2 112 2.6 72 106 106 112 5.4 112 0.0
5 140 115 17.9 98 14.8 96 2.0 72 88 86 95 9.5 95 1.0
6 121 104 14.0 87 16.3 86 1.1 72 77 72 83 13.3 83 3.5
7 107 91 15.0 84 7.7 80 4.8 72 68 63 73 13.7 73 8.8
8 105 85 19.0 78 8.2 75 3.8 72 62 55 68 19.1 72 4.0
9 105 85 19.0 75 11.8 73 2.7 72 57 50 61 18.0 72 1.4

10 101 82 18.8 73 11.0 73 0.0 72 54 45 55 18.2 72 1.4

Table A.13: Results for the MM k-CPP on instance 5A, |V | = 34, |E| = 65.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 124 117 5.6 111 5.1 111 0.0 45 111 111 111 0.0 111 0.0
3 97 83 14.4 75 9.6 75 0.0 45 75 75 75 0.0 75 0.0
4 79 71 10.1 62 12.7 60 3.2 45 57 57 60 5.0 60 0.0
5 64 63 1.6 53 15.9 52 1.9 45 47 47 49 4.1 49 5.8
6 60 54 10.0 50 7.4 50 0.0 45 40 40 42 4.8 45 10.0
7 61 55 9.8 46 16.4 46 0.0 45 35 35 39 10.3 45 2.2
8 54 49 9.3 45 8.2 45 0.0 45 32 31 34 8.8 45 0.0
9 49 45 8.2 45 0.0 45 0.0 45 29 28 31 9.7 45 0.0

10 46 45 2.2 45 0.0 45 0.0 45 27 26 28 7.1 45 0.0

Table A.14: Results for the MM k-CPP on instance 6A, |V | = 31, |E| = 50.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 153 144 5.9 140 2.8 140 0.0 39 140 140 140 0.0 140 0.0
3 107 99 7.5 95 4.0 95 0.0 39 93 93 93 0.0 93 2.1
4 98 86 12.2 72 16.3 72 0.0 39 70 70 71 1.4 71 1.4
5 82 71 13.4 61 14.1 59 3.3 39 56 56 57 1.8 57 3.4
6 66 59 10.6 53 10.2 52 1.9 39 48 48 50 4.0 50 3.8
7 60 54 10.0 50 7.4 48 4.0 39 41 41 43 4.7 43 10.4
8 59 51 13.6 47 7.8 44 6.4 39 37 37 40 7.5 40 9.1
9 52 47 9.6 44 6.4 41 6.8 39 34 33 37 10.8 39 4.9

10 49 46 6.1 41 10.9 40 2.4 39 31 30 34 11.8 39 2.5

Table A.15: Results for the MM k-CPP on instance 7A, |V | = 40, |E| = 66.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 215 197 8.4 193 2.0 193 0.0 67 193 193 193 0.0 193 0.0
3 161 157 2.5 129 17.8 129 0.0 67 129 129 129 0.0 129 0.0
4 133 114 14.3 101 11.4 101 0.0 67 98 98 99 1.0 99 0.0
5 111 104 6.3 86 17.3 86 0.0 67 80 80 83 3.6 83 3.5
6 98 86 12.2 79 8.1 79 0.0 67 69 68 72 5.6 72 8.9
7 96 88 8.3 74 15.9 73 1.4 67 61 59 65 9.2 67 8.2
8 96 81 15.6 72 11.1 70 2.8 67 55 52 58 10.3 67 4.3
9 90 79 12.2 70 11.4 68 2.9 67 51 47 54 13.0 67 1.5

10 90 74 17.8 69 6.8 67 2.9 67 47 43 50 14.0 67 0.0

Table A.16: Results for the MM k-CPP on instance 8A, |V | = 30, |E| = 63.
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k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 173 171 1.2 162 5.3 162 0.0 44 162 162 162 0.0 162 0.0
3 127 119 6.3 111 6.7 109 1.8 44 108 108 108 0.0 108 0.0
4 102 90 11.8 86 4.4 83 3.5 44 82 82 82 0.0 82 1.2
5 94 77 18.1 72 6.5 70 2.8 44 67 67 67 0.0 67 4.3
6 84 70 16.7 64 8.6 60 6.2 44 57 57 57 0.0 57 5.0
7 78 67 14.1 59 11.9 53 10.2 44 50 50 50 0.0 50 5.7
8 73 61 16.4 54 11.5 49 9.3 44 44 44 44 0.0 44 10.2
9 63 55 12.7 51 7.3 47 7.8 44 40 40 40 0.0 44 6.4

10 60 54 10.0 48 11.1 46 4.2 44 37 37 37 0.0 44 4.3

Table A.17: Results for the MM k-CPP on instance 9A, |V | = 50, |E| = 92.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 227 219 3.5 212 3.2 212 0.0 47 212 212 212 0.0 212 0.0
3 166 152 8.4 147 3.3 143 2.7 47 143 143 143 0.0 143 0.0
4 132 123 6.8 114 7.3 110 3.5 47 108 108 109 0.9 109 0.9
5 116 105 9.5 95 9.5 91 4.2 47 88 88 90 2.2 90 1.1
6 103 90 12.6 86 4.4 80 7.0 47 75 74 77 3.9 77 3.8
7 92 81 12.0 78 3.7 70 10.3 47 66 64 68 5.9 68 2.9
8 84 76 9.5 69 9.2 64 7.2 47 59 56 61 8.2 62 3.1
9 80 71 11.2 66 7.0 61 7.6 47 53 51 55 7.3 55 9.8

10 71 70 1.4 63 10.0 57 9.5 47 49 46 52 11.5 51 10.5

Table A.18: Results for the MM k-CPP on instance 10A, |V | = 50, |E| = 97.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 161 160 0.6 147 8.1 147 0.0 63 147 147 147 0.0 147 0.0
3 119 119 0.0 98 17.6 98 0.0 63 98 98 98 0.0 98 0.0
4 107 95 11.2 77 18.9 77 0.0 63 76 76 76 0.0 76 0.0
5 103 88 14.6 69 21.6 69 0.0 63 62 62 62 0.0 63 7.4
6 77 73 5.2 63 13.7 63 0.0 63 54 53 53 0.0 63 0.0
7 77 72 6.5 63 12.5 63 0.0 63 49 47 47 0.0 63 0.0
8 71 63 11.3 63 0.0 63 0.0 63 45 42 42 0.0 63 0.0
9 63 63 0.0 63 0.0 63 0.0 63 43 38 38 0.0 63 0.0

Table A.19: Results for the MM k-CPP on instance gdb1, |V | = 12, |E| = 22.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 184 177 3.8 158 10.7 158 0.0 59 158 158 158 0.0 158 0.0
3 129 112 13.2 105 6.2 105 0.0 59 105 105 105 0.0 105 0.0
4 102 101 1.0 81 19.8 81 0.0 59 81 81 81 0.0 81 0.0
5 100 87 13.0 68 21.8 68 0.0 59 67 67 67 0.0 67 1.5
6 100 89 11.0 60 32.6 60 0.0 59 57 57 57 0.0 59 1.7
7 89 76 14.6 60 21.1 60 0.0 59 51 50 50 0.0 59 0.0
8 69 66 4.3 59 10.6 59 0.0 59 49 45 45 0.0 59 0.0
9 66 65 1.5 59 9.2 59 0.0 59 45 41 41 0.0 59 0.0

Table A.20: Results for the MM k-CPP on instance gdb2, |V | = 12, |E| = 26.
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k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 147 147 0.0 130 11.6 130 0.0 59 130 130 130 0.0 130 0.0
3 108 105 2.8 87 17.1 87 0.0 59 87 87 87 0.0 87 0.0
4 95 93 2.1 68 26.9 68 0.0 59 67 67 67 0.0 68 0.0
5 87 78 10.3 60 23.1 60 0.0 59 55 55 55 0.0 60 0.0
6 82 66 19.5 60 9.1 60 0.0 59 48 48 48 0.0 59 0.0
7 72 66 8.3 59 10.6 59 0.0 59 46 42 42 0.0 59 0.0
8 65 61 6.2 59 3.3 59 0.0 59 42 38 38 0.0 59 0.0
9 59 59 0.0 59 0.0 59 0.0 59 40 35 35 0.0 59 0.0

Table A.21: Results for the MM k-CPP on instance gdb3, |V | = 12, |E| = 22.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 134 134 0.0 133 0.7 133 0.0 64 133 133 133 0.0 133 0.0
3 129 105 18.6 90 14.3 90 0.0 64 89 89 89 0.0 90 0.0
4 107 98 8.4 74 24.5 74 0.0 64 69 69 72 4.2 74 0.0
5 92 85 7.6 66 22.4 66 0.0 64 59 57 59 3.4 66 0.0
6 77 76 1.3 64 15.8 64 0.0 64 54 49 54 9.3 64 0.0
7 73 67 8.2 64 4.5 64 0.0 64 50 43 47 8.5 64 0.0
8 73 64 12.3 64 0.0 64 0.0 64 48 39 43 9.3 64 0.0
9 64 64 0.0 64 0.0 64 0.0 64 46 35 39 10.3 64 0.0

Table A.22: Results for the MM k-CPP on instance gdb4, |V | = 11, |E| = 19.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 193 179 7.3 173 3.4 173 0.0 64 173 173 173 0.0 173 0.0
3 149 137 8.1 116 15.3 116 0.0 64 116 116 116 0.0 116 0.0
4 119 105 11.8 90 14.3 90 0.0 64 89 89 89 0.0 90 0.0
5 98 98 0.0 77 21.4 77 0.0 64 73 73 73 0.0 73 5.2
6 80 80 0.0 72 10.0 72 0.0 64 63 62 63 1.6 64 11.1
7 80 68 15.0 66 2.9 66 0.0 64 58 54 55 1.8 64 3.0
8 86 77 10.5 64 16.9 64 0.0 64 52 49 51 3.9 64 0.0
9 69 67 2.9 64 4.5 64 0.0 64 49 44 47 6.4 64 0.0

Table A.23: Results for the MM k-CPP on instance gdb5, |V | = 13, |E| = 26.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 155 155 0.0 140 9.7 140 0.0 64 140 140 140 0.0 140 0.0
3 121 121 0.0 94 22.3 94 0.0 64 93 93 93 0.0 94 0.0
4 99 98 1.0 75 23.5 75 0.0 64 72 72 72 0.0 75 0.0
5 86 82 4.7 68 17.1 68 0.0 64 59 59 59 0.0 64 5.9
6 80 71 11.2 64 9.9 64 0.0 64 53 51 51 0.0 64 0.0
7 71 64 9.9 64 0.0 64 0.0 64 48 45 45 0.0 64 0.0
8 69 64 7.2 64 0.0 64 0.0 64 44 40 40 0.0 64 0.0
9 64 64 0.0 64 0.0 64 0.0 64 42 37 37 0.0 64 0.0

Table A.24: Results for the MM k-CPP on instance gdb6, |V | = 12, |E| = 22.
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k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 170 170 0.0 152 10.6 152 0.0 57 152 152 152 0.0 152 0.0
3 126 115 8.7 102 11.3 102 0.0 57 102 102 102 0.0 102 0.0
4 103 94 8.7 77 18.1 77 0.0 57 76 76 76 0.0 77 0.0
5 95 83 12.6 68 18.1 68 0.0 57 63 63 63 0.0 68 0.0
6 83 73 12.0 64 12.3 64 0.0 57 56 54 56 3.6 57 10.9
7 83 73 12.0 60 17.8 60 0.0 57 52 47 49 4.1 57 5.0
8 78 72 7.7 58 19.4 58 0.0 57 49 42 46 8.7 57 0.0
9 78 59 24.4 57 3.4 57 0.0 57 47 39 42 7.1 57 0.0

Table A.25: Results for the MM k-CPP on instance gdb7, |V | = 12, |E| = 22.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 136 132 2.9 125 5.3 125 0.0 38 125 125 125 0.0 125 0.0
3 96 91 5.2 89 2.2 88 1.1 38 88 84 88 4.5 88 0.0
4 88 72 18.2 68 5.6 67 1.5 38 66 63 66 4.5 66 1.5
5 72 64 11.1 53 17.2 53 0.0 38 53 50 53 5.7 53 0.0
6 71 57 19.7 50 12.3 50 0.0 38 47 42 48 12.5 47 6.0
7 61 53 13.1 44 17.0 44 0.0 38 41 37 43 14.0 43 2.3
8 61 49 19.7 44 10.2 44 0.0 38 36 32 38 15.8 38 13.6
9 58 48 17.2 40 16.7 40 0.0 38 34 29 36 19.4 38 5.0

Table A.26: Results for the MM k-CPP on instance gdb8, |V | = 27, |E| = 46.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 133 127 4.5 124 2.4 124 0.0 37 124 124 124 0.0 124 0.0
3 104 94 9.6 83 11.7 83 0.0 37 83 83 83 0.0 83 0.0
4 85 77 9.4 63 18.2 63 0.0 37 62 62 62 0.0 62 0.0
5 72 59 18.1 51 13.6 51 0.0 37 50 50 50 0.0 50 0.0
6 67 56 16.4 45 19.6 45 0.0 37 42 42 44 4.5 44 2.2
7 59 53 10.2 42 20.8 42 0.0 37 37 36 38 5.3 38 9.5
8 58 53 8.6 39 26.4 39 0.0 37 33 32 34 5.9 37 5.1
9 56 46 17.9 39 15.2 39 0.0 37 30 29 31 6.5 37 5.1

Table A.27: Results for the MM k-CPP on instance gdb9, |V | = 27, |E| = 51.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 149 145 2.7 138 4.8 138 0.0 39 138 138 138 0.0 138 0.0
3 116 109 6.0 92 15.6 92 0.0 39 92 92 92 0.0 92 0.0
4 94 94 0.0 71 24.5 71 0.0 39 69 69 69 0.0 70 0.0
5 66 66 0.0 59 10.6 59 0.0 39 57 57 57 0.0 58 1.7
6 64 64 0.0 54 15.6 54 0.0 39 49 49 49 0.0 49 9.3
7 59 59 0.0 49 16.9 49 0.0 39 44 43 43 0.0 44 10.2
8 59 59 0.0 44 25.4 44 0.0 39 40 39 40 2.5 40 9.1
9 59 54 8.5 44 18.5 44 0.0 39 37 35 36 2.8 39 11.4

Table A.28: Results for the MM k-CPP on instance gdb10, |V | = 12, |E| = 25.
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k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 206 202 1.9 194 4.0 194 0.0 43 194 194 194 0.0 194 0.0
3 140 132 5.7 129 2.3 129 0.0 43 129 129 129 0.0 129 0.0
4 125 113 9.6 98 13.3 98 0.0 43 97 97 97 0.0 97 0.0
5 106 96 9.4 82 14.6 81 1.2 43 79 79 79 0.0 79 1.2
6 90 82 8.9 71 13.4 70 1.4 43 68 68 68 0.0 68 2.9
7 86 75 12.8 62 17.3 62 0.0 43 59 59 59 0.0 59 4.8
8 74 73 1.4 58 20.5 57 1.7 43 53 53 54 1.9 54 5.3
9 74 70 5.4 54 22.9 53 1.9 43 49 48 49 2.0 49 7.5

Table A.29: Results for the MM k-CPP on instance gdb11, |V | = 22, |E| = 45.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 224 204 8.9 192 5.9 192 0.0 93 192 192 192 0.0 192 0.0
3 176 150 14.8 131 12.7 131 0.0 93 128 128 128 0.0 130 0.0
4 150 121 19.3 100 17.4 100 0.0 93 99 99 99 0.0 100 0.0
5 135 119 11.9 96 19.3 96 0.0 93 81 81 81 0.0 94 2.1
6 128 115 10.2 93 19.1 93 0.0 93 75 69 69 0.0 93 0.0
7 108 97 10.2 93 4.1 93 0.0 93 67 61 61 0.0 93 0.0
8 93 93 0.0 93 0.0 93 0.0 93 61 55 55 0.0 93 0.0
9 93 93 0.0 93 0.0 93 0.0 93 56 50 50 0.0 93 0.0

Table A.30: Results for the MM k-CPP on instance gdb12, |V | = 13, |E| = 23.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 267 267 0.0 260 2.6 260 0.0 128 260 260 260 0.0 260 0.0
3 208 195 6.2 174 10.8 174 0.0 128 174 174 174 0.0 174 0.0
4 176 157 10.8 131 16.6 131 0.0 128 130 130 130 0.0 130 0.0
5 151 138 8.6 128 7.2 128 0.0 128 106 106 106 0.0 128 0.0
6 128 128 0.0 128 0.0 128 0.0 128 90 90 90 0.0 128 0.0
7 128 128 0.0 128 0.0 128 0.0 128 78 78 78 0.0 128 0.0
8 128 128 0.0 128 0.0 128 0.0 128 69 69 69 0.0 128 0.0
9 128 128 0.0 128 0.0 128 0.0 128 63 63 63 0.0 128 0.0

Table A.31: Results for the MM k-CPP on instance gdb13, |V | = 10, |E| = 28.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 54 54 0.0 48 11.1 48 0.0 15 48 48 48 0.0 48 0.0
3 41 37 9.8 32 13.5 32 0.0 15 32 32 32 0.0 32 0.0
4 32 30 6.2 25 16.7 25 0.0 15 25 25 25 0.0 25 0.0
5 27 27 0.0 20 25.9 20 0.0 15 20 20 20 0.0 20 0.0
6 25 25 0.0 18 28.0 18 0.0 15 17 17 17 0.0 17 5.6
7 25 25 0.0 17 32.0 17 0.0 15 16 15 15 0.0 16 5.9
8 21 19 9.5 16 15.8 16 0.0 15 14 14 14 0.0 15 6.2
9 19 19 0.0 16 15.8 16 0.0 15 13 12 12 0.0 15 6.2

Table A.32: Results for the MM k-CPP on instance gdb14, |V | = 7, |E| = 21.
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k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 30 30 0.0 28 6.7 28 0.0 8 28 28 28 0.0 28 0.0
3 23 22 4.3 19 13.6 19 0.0 8 19 19 19 0.0 19 0.0
4 17 17 0.0 15 11.8 15 0.0 8 15 15 15 0.0 15 0.0
5 17 15 11.8 12 20.0 12 0.0 8 12 12 12 0.0 12 0.0
6 13 13 0.0 11 15.4 11 0.0 8 11 11 11 0.0 11 0.0
7 13 12 7.7 10 16.7 10 0.0 8 10 10 10 0.0 10 0.0
8 11 11 0.0 9 18.2 9 0.0 8 9 9 9 0.0 9 0.0
9 10 9 10.0 8 11.1 8 0.0 8 8 8 8 0.0 8 0.0

Table A.33: Results for the MM k-CPP on instance gdb15, |V | = 7, |E| = 21.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 68 66 2.9 63 4.5 63 0.0 14 63 63 63 0.0 63 0.0
3 44 44 0.0 42 4.5 42 0.0 14 42 42 42 0.0 42 0.0
4 36 36 0.0 32 11.1 32 0.0 14 32 32 32 0.0 32 0.0
5 32 31 3.1 26 16.1 26 0.0 14 26 26 26 0.0 26 0.0
6 31 29 6.5 22 24.1 22 0.0 14 22 22 22 0.0 22 0.0
7 27 25 7.4 19 24.0 19 0.0 14 19 19 19 0.0 19 0.0
8 25 22 12.0 18 18.2 18 0.0 14 17 17 17 0.0 17 5.6
9 23 20 13.0 16 20.0 16 0.0 14 15 15 15 0.0 15 6.2

Table A.34: Results for the MM k-CPP on instance gdb16, |V | = 8, |E| = 28.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 47 47 0.0 46 2.1 46 0.0 9 46 46 46 0.0 46 0.0
3 34 33 2.9 31 6.1 31 0.0 9 31 31 31 0.0 31 0.0
4 25 25 0.0 23 8.0 23 0.0 9 23 23 23 0.0 23 0.0
5 21 21 0.0 19 9.5 19 0.0 9 19 19 19 0.0 19 0.0
6 21 20 4.8 16 20.0 16 0.0 9 16 16 16 0.0 16 0.0
7 17 16 5.9 14 12.5 14 0.0 9 13 13 13 0.0 13 0.0
8 16 15 6.2 12 20.0 12 0.0 9 12 12 12 0.0 12 0.0
9 15 14 6.7 11 21.4 11 0.0 9 11 11 11 0.0 11 0.0

Table A.35: Results for the MM k-CPP on instance gdb17, |V | = 8, |E| = 28.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 82 79 3.7 79 0.0 79 0.0 19 79 79 79 0.0 79 0.0
3 64 61 4.7 53 13.1 53 0.0 19 53 53 53 0.0 53 0.0
4 48 47 2.1 40 14.9 40 0.0 19 40 40 40 0.0 40 0.0
5 42 40 4.8 33 17.5 33 0.0 19 33 33 33 0.0 33 0.0
6 36 34 5.6 29 14.7 29 0.0 19 29 29 29 0.0 29 0.0
7 36 32 11.1 26 18.8 26 0.0 19 26 26 26 0.0 26 0.0
8 34 30 11.8 24 20.0 24 0.0 19 23 23 23 0.0 23 4.2
9 31 27 12.9 23 14.8 23 0.0 19 22 21 21 0.0 22 4.3

Table A.36: Results for the MM k-CPP on instance gdb18, |V | = 9, |E| = 36.
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k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 33 33 0.0 28 15.2 28 0.0 17 28 28 28 0.0 28 0.0
3 24 22 8.3 21 4.5 21 0.0 17 19 19 19 0.0 21 0.0
4 19 19 0.0 17 10.5 17 0.0 17 15 15 15 0.0 17 0.0
5 17 17 0.0 17 0.0 17 0.0 17 13 12 12 0.0 17 0.0
6 17 17 0.0 17 0.0 17 0.0 17 12 11 11 0.0 17 0.0
7 17 17 0.0 17 0.0 17 0.0 17 11 9 9 0.0 17 0.0
8 17 17 0.0 17 0.0 17 0.0 17 11 9 9 0.0 17 0.0
9 17 17 0.0 17 0.0 17 0.0 17 11 8 8 0.0 17 0.0

Table A.37: Results for the MM k-CPP on instance gdb19, |V | = 8, |E| = 11.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 64 63 1.6 61 3.2 61 0.0 20 61 61 61 0.0 61 0.0
3 46 44 4.3 41 6.8 41 0.0 20 41 41 41 0.0 41 0.0
4 36 36 0.0 31 13.9 31 0.0 20 31 31 31 0.0 31 0.0
5 34 30 11.8 26 13.3 26 0.0 20 25 25 25 0.0 25 3.8
6 27 25 7.4 22 12.0 22 0.0 20 21 21 21 0.0 21 4.5
7 24 23 4.2 20 13.0 20 0.0 20 19 19 19 0.0 20 0.0
8 23 21 8.7 20 4.8 20 0.0 20 17 17 17 0.0 20 0.0
9 22 20 9.1 20 0.0 20 0.0 20 15 15 15 0.0 20 0.0

Table A.38: Results for the MM k-CPP on instance gdb20, |V | = 11, |E| = 22.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 80 80 0.0 77 3.8 77 0.0 15 77 77 77 0.0 77 0.0
3 56 56 0.0 52 7.1 52 0.0 15 52 52 52 0.0 52 0.0
4 43 43 0.0 39 9.3 39 0.0 15 39 39 39 0.0 39 0.0
5 38 38 0.0 31 18.4 31 0.0 15 31 31 31 0.0 31 0.0
6 36 31 13.9 27 12.9 27 0.0 15 26 26 26 0.0 26 0.0
7 33 28 15.2 24 14.3 24 0.0 15 23 23 23 0.0 23 0.0
8 27 27 0.0 22 18.5 22 0.0 15 20 20 20 0.0 20 9.1
9 27 25 7.4 20 20.0 20 0.0 15 19 18 18 0.0 19 5.0

Table A.39: Results for the MM k-CPP on instance gdb21, |V | = 11, |E| = 33.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 103 100 2.9 98 2.0 98 0.0 12 98 98 98 0.0 98 0.0
3 72 69 4.2 66 4.3 66 0.0 12 66 66 66 0.0 66 0.0
4 55 54 1.8 49 9.3 49 0.0 12 49 49 49 0.0 49 0.0
5 44 43 2.3 40 7.0 40 0.0 12 40 40 40 0.0 40 0.0
6 39 36 7.7 34 5.6 34 0.0 12 33 33 33 0.0 33 0.0
7 35 35 0.0 29 17.1 29 0.0 12 29 29 29 0.0 29 0.0
8 31 29 6.5 26 10.3 26 0.0 12 25 25 25 0.0 25 0.0
9 27 26 3.7 23 11.5 23 0.0 12 23 23 23 0.0 23 0.0

Table A.40: Results for the MM k-CPP on instance gdb22, |V | = 11, |E| = 44.
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k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 115 115 0.0 112 2.6 112 0.0 13 112 112 112 0.0 112 0.0
3 81 80 1.2 75 6.2 75 0.0 13 75 75 75 0.0 75 0.0
4 61 60 1.6 56 6.7 56 0.0 13 56 56 56 0.0 56 0.0
5 53 50 5.7 45 10.0 45 0.0 13 45 45 45 0.0 45 0.0
6 43 41 4.7 38 7.3 38 0.0 13 38 38 38 0.0 38 0.0
7 40 37 7.5 33 10.8 33 0.0 13 33 33 33 0.0 33 0.0
8 35 34 2.9 30 11.8 29 3.3 13 29 29 29 0.0 29 0.0
9 34 30 11.8 27 10.0 27 0.0 13 26 26 26 0.0 26 0.0

Table A.41: Results for the MM k-CPP on instance gdb23, |V | = 11, |E| = 55.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 55 53 3.6 53 0.0 53 0.0 52 46 43 53 18.9 53 0.0
3 52 52 0.0 52 0.0 52 0.0 52 32 31 37 16.2 52 0.0
4 52 52 0.0 52 0.0 52 0.0 52 27 25 30 16.7 52 0.0
5 52 52 0.0 52 0.0 52 0.0 52 25 21 25 16.0 52 0.0
6 52 52 0.0 52 0.0 52 0.0 52 25 19 22 13.6 52 0.0
7 52 52 0.0 52 0.0 52 0.0 52 25 17 20 15.0 52 0.0

Table A.42: Results for the MM k-CPP on instance P01, |V | = 11, |E| = 13.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 274 254 7.3 252 0.8 252 0.0 70 252 252 252 0.0 252 0.0
3 187 182 2.7 168 7.7 168 0.0 70 168 168 168 0.0 168 0.0
4 171 161 5.8 127 21.1 127 0.0 70 126 126 126 0.0 126 0.0
5 133 131 1.5 104 20.6 104 0.0 70 103 103 103 0.0 103 0.0
6 118 110 6.8 90 18.2 90 0.0 70 88 88 88 0.0 88 2.2
7 118 92 22.0 82 10.9 82 0.0 70 77 77 77 0.0 77 6.1

Table A.43: Results for the MM k-CPP on instance P02, |V | = 14, |E| = 33.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 133 129 3.0 118 8.5 118 0.0 52 118 118 118 0.0 118 0.0
3 108 92 14.8 84 8.7 83 1.2 52 81 80 83 3.6 83 0.0
4 81 75 7.4 70 6.7 69 1.4 52 64 61 66 7.6 66 4.3
5 79 72 8.9 62 13.9 61 1.6 52 54 50 58 13.8 58 4.9
6 71 65 8.5 57 12.3 57 0.0 52 45 42 50 16.0 52 8.8
7 71 62 12.7 55 11.3 54 1.8 52 39 37 45 17.8 52 3.7

Table A.44: Results for the MM k-CPP on instance P03, |V | = 28, |E| = 57.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 93 81 12.9 77 4.9 77 0.0 35 77 77 77 0.0 77 0.0
3 70 58 17.1 54 6.9 54 0.0 35 54 54 54 0.0 54 0.0
4 63 48 23.8 43 10.4 43 0.0 35 42 42 43 2.3 43 0.0
5 54 45 16.7 38 15.6 38 0.0 35 35 35 37 5.4 37 2.6
6 51 40 21.6 36 10.0 36 0.0 35 30 30 33 9.1 35 2.8
7 45 36 20.0 36 0.0 36 0.0 35 27 27 29 6.9 35 0.0

Table A.45: Results for the MM k-CPP on instance P04, |V | = 17, |E| = 35.
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k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 188 175 6.9 166 5.1 166 0.0 64 166 166 166 0.0 166 0.0
3 148 130 12.2 115 11.5 115 0.0 64 114 114 115 0.9 115 0.0
4 120 104 13.3 95 8.7 94 1.1 64 89 88 94 6.4 94 0.0
5 102 99 2.9 82 17.2 82 0.0 64 75 73 81 9.9 81 0.0
6 102 85 16.7 76 10.6 76 0.0 64 65 62 70 11.4 70 9.1
7 98 83 15.3 70 15.7 69 1.4 64 60 55 65 15.4 65 5.8

Table A.46: Results for the MM k-CPP on instance P05, |V | = 20, |E| = 35.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 115 111 3.5 104 6.3 104 0.0 45 104 104 104 0.0 104 0.0
3 94 82 12.8 73 11.0 73 0.0 45 71 71 73 2.7 73 0.0
4 82 71 13.4 60 15.5 59 1.7 45 56 55 59 6.8 59 0.0
5 75 59 21.3 54 8.5 53 1.9 45 47 45 51 11.8 51 3.8
6 70 58 17.1 49 15.5 49 0.0 45 41 39 44 11.4 45 8.2
7 60 51 15.0 48 5.9 48 0.0 45 37 34 40 15.0 45 6.2

Table A.47: Results for the MM k-CPP on instance P06, |V | = 24, |E| = 46.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 159 159 0.0 149 6.3 149 0.0 39 149 149 149 0.0 149 0.0
3 121 120 0.8 100 16.7 100 0.0 39 99 99 99 0.0 99 0.0
4 92 92 0.0 75 18.5 75 0.0 39 75 75 75 0.0 75 0.0
5 71 70 1.4 62 11.4 62 0.0 39 61 61 61 0.0 61 0.0
6 70 65 7.1 53 18.5 53 0.0 39 52 52 52 0.0 52 0.0
7 70 65 7.1 46 29.2 46 0.0 39 45 45 45 0.0 45 2.2

Table A.48: Results for the MM k-CPP on instance P07, |V | = 23, |E| = 47.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 141 134 5.0 125 6.7 125 0.0 39 125 125 125 0.0 125 0.0
3 106 95 10.4 84 11.6 84 0.0 39 84 84 84 0.0 84 0.0
4 86 79 8.1 65 17.7 65 0.0 39 64 64 65 1.5 65 0.0
5 77 70 9.1 54 22.9 54 0.0 39 52 52 53 1.9 53 1.9
6 72 63 12.5 48 23.8 48 0.0 39 44 43 46 6.5 46 4.2
7 65 52 20.0 44 15.4 44 0.0 39 39 38 41 7.3 41 6.8

Table A.49: Results for the MM k-CPP on instance P08, |V | = 17, |E| = 40.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 77 76 1.3 73 3.9 73 0.0 40 69 69 73 5.5 73 0.0
3 64 61 4.7 55 9.8 55 0.0 40 49 47 55 14.5 55 0.0
4 61 53 13.1 48 9.4 48 0.0 40 39 37 48 22.9 48 0.0
5 54 48 11.1 44 8.3 44 0.0 40 34 30 42 28.6 42 4.5
6 53 43 18.9 42 2.3 42 0.0 40 29 26 36 27.8 40 4.8
7 48 43 10.4 41 4.7 41 0.0 40 26 23 33 30.3 40 0.0

Table A.50: Results for the MM k-CPP on instance P09, |V | = 14, |E| = 26.
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k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 91 83 8.8 74 10.8 74 0.0 40 74 74 74 0.0 74 0.0
3 69 67 2.9 52 22.4 52 0.0 40 50 50 50 0.0 52 0.0
4 58 54 6.9 48 11.1 48 0.0 40 38 38 38 0.0 40 16.7
5 54 50 7.4 41 18.0 41 0.0 40 34 32 34 5.9 40 2.4
6 52 44 15.4 40 9.1 40 0.0 40 30 27 31 12.9 40 0.0
7 46 40 13.0 40 0.0 40 0.0 40 29 24 27 11.1 40 0.0

Table A.51: Results for the MM k-CPP on instance P10, |V | = 12, |E| = 20.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 26 24 7.7 21 12.5 21 0.0 18 21 21 21 0.0 21 0.0
3 21 18 14.3 18 0.0 18 0.0 18 16 16 16 0.0 18 0.0
4 18 18 0.0 18 0.0 18 0.0 18 13 13 13 0.0 18 0.0
5 18 18 0.0 18 0.0 18 0.0 18 12 11 12 8.3 18 0.0
6 18 18 0.0 18 0.0 18 0.0 18 11 10 10 0.0 18 0.0
7 18 18 0.0 18 0.0 18 0.0 18 10 9 10 10.0 18 0.0

Table A.52: Results for the MM k-CPP on instance P11, |V | = 9, |E| = 14.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 29 29 0.0 25 13.8 25 0.0 12 25 25 25 0.0 25 0.0
3 24 23 4.2 18 21.7 18 0.0 12 18 18 18 0.0 18 0.0
4 20 18 10.0 15 16.7 15 0.0 12 15 15 15 0.0 15 0.0
5 18 16 11.1 13 18.8 13 0.0 12 13 13 13 0.0 13 0.0
6 15 15 0.0 12 20.0 12 0.0 12 12 11 11 0.0 12 0.0
7 14 12 14.3 12 0.0 12 0.0 12 11 10 10 0.0 12 0.0

Table A.53: Results for the MM k-CPP on instance P12, |V | = 7, |E| = 18.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 44 41 6.8 34 17.1 34 0.0 24 34 34 34 0.0 34 0.0
3 36 32 11.1 29 9.4 29 0.0 24 25 25 26 3.8 29 0.0
4 24 24 0.0 24 0.0 24 0.0 24 24 21 22 4.5 24 0.0
5 24 24 0.0 24 0.0 24 0.0 24 21 19 19 0.0 24 0.0
6 24 24 0.0 24 0.0 24 0.0 24 19 17 18 5.6 24 0.0
7 24 24 0.0 24 0.0 24 0.0 24 18 16 16 0.0 24 0.0

Table A.54: Results for the MM k-CPP on instance P13, |V | = 7, |E| = 10.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 358 358 0.0 348 2.8 348 0.0 65 348 348 348 0.0 348 0.0
3 269 261 3.0 234 10.3 233 0.4 65 233 233 233 0.0 233 0.0
4 218 197 9.6 182 7.6 179 1.6 65 176 176 178 1.1 178 0.0
5 174 167 4.0 148 11.4 145 2.0 65 143 142 145 2.1 145 0.0
6 169 150 11.2 129 14.0 124 3.9 65 121 119 123 3.3 123 0.8
7 144 125 13.2 114 8.8 109 4.4 65 105 103 107 3.7 107 1.8

Table A.55: Results for the MM k-CPP on instance P14, |V | = 28, |E| = 79.
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k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 364 347 4.7 338 2.6 338 0.0 219 319 306 331 7.6 338 0.0
3 335 306 8.7 262 14.4 262 0.0 219 236 204 253 19.4 261 0.0
4 286 266 7.0 233 12.4 233 0.0 219 178 155 196 20.9 219 6.0
5 256 237 7.4 219 7.6 219 0.0 219 146 125 169 26.0 219 0.0
6 236 219 7.2 219 0.0 219 0.0 219 121 105 142 26.1 219 0.0
7 219 219 0.0 219 0.0 219 0.0 219 104 91 122 25.4 219 0.0

Table A.56: Results for the MM k-CPP on instance P15, |V | = 26, |E| = 37.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 403 387 4.0 386 0.3 386 0.0 66 386 386 386 0.0 386 0.0
3 294 282 4.1 258 8.5 257 0.4 66 257 257 257 0.0 257 0.0
4 234 203 13.2 199 2.0 194 2.5 66 194 194 194 0.0 194 0.0
5 193 177 8.3 160 9.6 157 1.9 66 155 155 157 1.3 157 0.0
6 176 164 6.8 139 15.2 134 3.6 66 131 130 133 2.3 133 0.7
7 163 138 15.3 120 13.0 119 0.8 66 113 112 117 4.3 117 1.7

Table A.57: Results for the MM k-CPP on instance P16, |V | = 31, |E| = 94.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 185 171 7.6 166 2.9 166 0.0 54 166 166 166 0.0 166 0.0
3 144 128 11.1 113 11.7 113 0.0 54 113 113 113 0.0 113 0.0
4 110 98 10.9 87 11.2 87 0.0 54 87 86 87 1.1 87 0.0
5 109 87 20.2 72 17.2 72 0.0 54 71 70 71 1.4 71 0.0
6 89 82 7.9 64 22.0 64 0.0 54 61 60 62 3.2 62 3.1
7 81 65 19.8 59 9.2 59 0.0 54 53 52 56 7.1 56 5.1

Table A.58: Results for the MM k-CPP on instance P17, |V | = 19, |E| = 44.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 178 154 13.5 150 2.6 150 0.0 82 150 150 150 0.0 150 0.0
3 134 118 11.9 102 13.6 102 0.0 82 102 101 102 1.0 102 0.0
4 128 102 20.3 92 9.8 92 0.0 82 79 76 84 9.5 84 8.7
5 116 97 16.4 85 12.4 85 0.0 82 63 61 68 10.3 82 3.5
6 111 91 18.0 82 9.9 82 0.0 82 54 52 57 8.8 82 0.0
7 94 82 12.8 82 0.0 82 0.0 82 47 45 49 8.2 82 0.0

Table A.59: Results for the MM k-CPP on instance P18, |V | = 23, |E| = 37.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 257 235 8.6 227 3.4 227 0.0 115 227 227 227 0.0 227 0.0
3 197 172 12.7 159 7.6 159 0.0 115 155 155 159 2.5 159 0.0
4 186 155 16.7 132 14.8 129 2.3 115 120 119 128 7.0 128 0.0
5 152 131 13.8 117 10.7 116 0.9 115 99 97 110 11.8 115 0.0
6 152 116 23.7 115 0.9 115 0.0 115 86 83 94 11.7 115 0.0
7 144 115 20.1 115 0.0 115 0.0 115 76 72 82 12.2 115 0.0

Table A.60: Results for the MM k-CPP on instance P19, |V | = 33, |E| = 54.
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k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 492 484 1.6 481 0.6 481 0.0 97 481 481 481 0.0 481 0.0
3 371 351 5.4 325 7.4 323 0.6 97 322 322 322 0.0 322 0.0
4 301 266 11.6 252 5.3 246 2.4 97 243 243 244 0.4 244 0.8
5 261 228 12.6 203 11.0 202 0.5 97 197 195 198 1.5 199 1.5
6 231 200 13.4 180 10.0 174 3.3 97 166 163 169 3.6 169 2.9
7 192 185 3.6 158 14.6 153 3.2 97 143 141 148 4.7 148 3.3

Table A.61: Results for the MM k-CPP on instance P20, |V | = 50, |E| = 98.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 443 422 4.7 415 1.7 415 0.0 74 415 415 415 0.0 415 0.0
3 309 285 7.8 277 2.8 277 0.0 74 277 277 277 0.0 277 0.0
4 236 230 2.5 216 6.1 211 2.3 74 209 209 209 0.0 209 0.9
5 212 189 10.8 179 5.3 170 5.0 74 169 169 170 0.6 170 0.0
6 186 173 7.0 154 11.0 145 5.8 74 142 142 143 0.7 143 1.4
7 168 147 12.5 136 7.5 128 5.9 74 123 122 124 1.6 124 3.1

Table A.62: Results for the MM k-CPP on instance P21, |V | = 49, |E| = 110.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 1429 1389 2.8 1387 0.1 1387 0.0 102 1387 1387 1387 0.0 1387 0.0
3 983 939 4.5 933 0.6 929 0.4 102 927 927 929 0.2 929 0.0
4 733 715 2.5 704 1.5 700 0.6 102 698 697 700 0.4 700 0.0
5 625 585 6.4 568 2.9 563 0.9 102 561 559 563 0.7 563 0.0
6 527 504 4.4 483 4.2 472 2.3 102 470 467 471 0.8 471 0.2
7 469 434 7.5 415 4.4 407 1.9 102 405 401 406 1.2 404 0.7

Table A.63: Results for the MM k-CPP on instance P22, |V | = 50, |E| = 184.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 745 721 3.2 716 0.7 716 0.0 95 716 716 716 0.0 716 0.0
3 520 507 2.5 482 4.9 479 0.6 95 478 478 478 0.0 478 0.2
4 416 395 5.0 375 5.1 360 4.0 95 358 358 358 0.0 358 0.6
5 342 327 4.4 299 8.6 290 3.0 95 288 288 288 0.0 288 0.7
6 300 282 6.0 257 8.9 242 5.8 95 241 241 241 0.0 241 0.4
7 267 245 8.2 223 9.0 212 4.9 95 208 208 210 1.0 210 0.9

Table A.64: Results for the MM k-CPP on instance P23, |V | = 50, |E| = 158.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 749 725 3.2 716 1.2 716 0.0 93 716 716 716 0.0 716 0.0
3 524 504 3.8 490 2.8 487 0.6 93 480 478 486 1.6 486 0.0
4 414 401 3.1 374 6.7 373 0.3 93 365 361 373 3.2 373 0.0
5 338 326 3.6 316 3.1 306 3.2 93 296 289 305 5.2 305 0.3
6 302 287 5.0 265 7.7 262 1.1 93 251 242 259 6.6 259 1.1
7 268 252 6.0 238 5.6 230 3.4 93 218 209 227 7.9 227 1.3

Table A.65: Results for the MM k-CPP on instance P24, |V | = 41, |E| = 125.
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k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 1981 1830 7.6 1827 0.2 1816 0.6 820 1783 1717 1809 5.1 1809 0.0
3 1570 1410 10.2 1352 4.1 1333 1.4 820 1260 1166 1301 10.4 1301 2.4
4 1263 1186 6.1 1151 3.0 1102 4.3 820 1009 891 1062 16.1 1062 3.6
5 1168 1104 5.5 1066 3.4 958 10.1 820 850 726 932 22.1 932 2.7
6 1079 945 12.4 954 -1.0 916 4.0 820 719 615 788 22.0 820 10.5
7 1086 890 18.0 906 -1.8 872 3.8 820 626 537 718 25.2 820 6.0
8 998 872 12.6 872 0.0 870 0.2 820 561 478 657 27.2 820 5.7
9 1028 872 15.2 872 0.0 826 5.3 820 543 432 615 29.8 820 0.7

10 964 872 9.5 836 4.1 820 1.9 820 516 395 568 30.5 820 0.0

Table A.66: Results for the MM k-CPP on instance egl-e4-A, |V | = 77, |E| = 98.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 2879 2699 6.3 2682 0.6 2651 1.2 1027 2635 2625 2635 0.4 2635 0.6
3 2315 2061 11.0 2053 0.4 1901 7.4 1027 1787 1762 1807 2.5 1807 4.9
4 1957 1723 12.0 1688 2.0 1552 8.1 1027 1372 1331 1437 7.4 1403 9.6
5 1779 1508 15.2 1470 2.5 1332 9.4 1027 1124 1072 1192 10.1 1123 15.7
6 1545 1440 6.8 1366 5.1 1241 9.2 1027 937 899 1023 12.1 1027 17.2
7 1439 1315 8.6 1255 4.6 1126 10.3 1027 814 776 920 15.7 1027 8.8
8 1382 1248 9.7 1208 3.2 1082 10.4 1027 719 684 846 19.1 1027 5.1
9 1337 1181 11.7 1158 1.9 1053 9.1 1027 649 612 769 20.4 1027 2.5

10 1240 1161 6.4 1141 1.7 1050 8.0 1027 599 554 703 21.2 1027 2.2

Table A.67: Results for the MM k-CPP on instance egl-s4-A, |V | = 140, |E| = 190.
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k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 8678 8328 4.0 8002 3.9 7956 0.6 3476 7955 7767 7955 2.4 7955 0.0
3 6898 6320 8.4 6097 3.5 5748 5.7 3476 5472 5221 5585 6.5 5585 2.8
4 5550 4886 12.0 4788 2.0 4672 2.4 3476 4230 3948 4484 12.0 4072 12.8
5 5290 4698 11.2 4416 6.0 4168 5.6 3476 3464 3184 3688 13.7 3476 16.6
6 4890 4096 16.2 3984 2.7 3776 5.2 3476 2908 2675 3242 17.5 3476 7.9
7 4458 3852 13.6 3846 0.2 3620 5.9 3476 2546 2311 2855 19.1 3476 4.0
8 4330 3708 14.4 3688 0.5 3564 3.4 3476 2297 2038 2618 22.2 3476 2.5
9 4210 3648 13.3 3620 0.8 3476 4.0 3476 2104 1826 2354 22.4 3476 0.0

10 4162 3564 14.4 3564 0.0 3476 2.5 3476 1949 1656 2159 23.3 3476 0.0

Table A.68: Results for the MM k-CPP on instance ALBA 3 1, |V | = 116, |E| = 174.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 15005 14215 5.3 14140 0.5 14140 0.0 2845 14133 14133 14133 0.0 14133 0.0
3 10955 10210 6.8 10060 1.5 9640 4.2 2845 9449 9449 9455 0.1 9449 2.0
4 8625 7930 8.1 7855 0.9 7340 6.6 2845 7128 7107 7137 0.4 7112 3.1
5 7065 6660 5.7 6580 1.2 6100 7.3 2845 5736 5701 5751 0.9 5709 6.4
6 6200 5695 8.1 5600 1.7 5210 7.0 2845 4810 4765 4873 2.2 4788 8.1
7 5800 5215 10.1 5010 3.9 4575 8.7 2845 4149 4095 4240 3.4 4130 9.7
8 5150 4690 8.9 4535 3.3 4070 10.3 2845 3662 3594 3782 5.0 3636 10.7
9 5175 4465 13.7 4355 2.5 3845 11.7 2845 3255 3203 3407 6.0 3252 15.4

10 4490 4070 9.4 4045 0.6 3680 9.0 2845 2947 2891 3108 7.0 2947 19.9

Table A.69: Results for the MM k-CPP on instance MADR 3 1, |V | = 196, |E| = 316.
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k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 35585 35173 1.2 34742 1.2 34445 0.9 7605 34442 34442 34442 0.0 34442 0.9
3 26381 24675 6.5 23792 3.6 23473 1.3 7605 23014 23014 23014 0.0 23014 3.3
4 22690 19348 14.7 18756 3.1 18756 0.0 7605 17299 17299 17453 0.9 17299 7.8
5 19337 15998 17.3 15851 0.9 15256 3.8 7605 13955 13871 14307 3.0 13955 12.0
6 17054 14371 15.7 13972 2.8 13630 2.4 7605 11725 11585 12105 4.3 11725 16.1
7 15390 12607 18.1 13016 -3.2 12023 7.6 7605 10137 9952 10526 5.5 10137 22.1
8 14451 12248 15.2 11753 4.0 10960 6.7 7605 8945 8728 9355 6.7 8945 23.9
9 13217 11394 13.8 10825 5.0 9895 8.6 7605 8037 7776 8440 7.9 8037 25.8

10 12376 10761 13.0 9967 7.4 9791 1.8 7605 7322 7014 7844 10.6 7605 23.7

Table A.70: Results for the MM k-CPP on instance GTSP1, |V | = 150, |E| = 297.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 36506 35087 3.9 34453 1.8 34374 0.2 7583 34249 34249 34249 0.0 34249 0.6
3 27157 25058 7.7 24712 1.4 24712 0.0 7583 22854 22854 22854 0.0 22854 7.5
4 22199 19580 11.8 19200 1.9 19200 0.0 7583 17223 17157 17442 1.6 17157 10.6
5 18633 16129 13.4 15706 2.6 15441 1.7 7583 13948 13738 14495 5.2 13812 12.1
6 17053 14531 14.8 13603 6.4 13603 0.0 7583 11796 11459 12408 7.6 11582 14.9
7 14885 13001 12.7 12734 2.1 12517 1.7 7583 10111 9831 10826 9.2 10036 21.2
8 13590 12171 10.4 12006 1.4 11294 5.9 7583 8903 8611 9557 9.9 8876 26.1
9 12212 11231 8.0 11209 0.2 10686 4.7 7583 7992 7661 8664 11.6 7976 28.8

10 11850 10758 9.2 10339 3.9 9908 4.2 7583 7301 6901 8159 15.4 7583 26.7

Table A.71: Results for the MM k-CPP on instance GTSP2, |V | = 150, |E| = 296.
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k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 90598 85877 5.2 82823 3.6 82823 0.0 48367 73575 73124 81320 10.1 81320 1.8
3 70046 69272 1.1 68130 1.6 68130 0.0 48367 50160 49142 58816 16.4 58816 13.7
4 69164 61472 11.1 60646 1.3 59242 2.3 48367 37620 37151 50445 26.4 49544 18.3
5 62265 55853 10.3 54849 1.8 54849 0.0 48367 30096 29957 40828 26.6 48367 11.8
6 58606 54849 6.4 54849 0.0 53278 2.9 48367 25170 25160 35711 29.5 48367 11.8
7 56413 51299 9.1 50510 1.5 50510 0.0 48367 21747 21734 33365 34.9 48367 4.2
8 54131 51136 5.5 50358 1.5 50114 0.5 48367 19180 19165 29872 35.8 48367 4.0
9 53392 51491 3.6 50273 2.4 49705 1.1 48367 17184 17166 26684 35.7 48367 3.8

10 53484 49779 6.9 49679 0.2 49084 1.2 48367 15625 15568 24304 35.9 48367 2.6

Table A.72: Results for the MM k-CPP on instance GTSP3, |V | = 152, |E| = 296.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 3165 2931 7.4 2924 0.2 2912 0.4 762 2833 2833 2833 0.0 2833 3.1
3 2306 2111 8.5 2043 3.2 1985 2.8 762 1897 1897 1916 1.0 1897 7.1
4 1759 1649 6.3 1602 2.9 1531 4.4 762 1430 1430 1460 2.1 1430 10.7
5 1606 1492 7.1 1456 2.4 1317 9.5 762 1152 1150 1182 2.7 1152 20.9
6 1443 1290 10.6 1285 0.4 1154 10.2 762 967 963 1008 4.5 967 24.7
7 1355 1177 13.1 1147 2.5 1021 11.0 762 842 829 899 7.8 835 27.2
8 1278 1140 10.8 1108 2.8 994 10.3 762 736 729 790 7.7 762 31.2
9 1218 1028 15.6 1048 -1.9 937 10.6 762 659 651 711 8.4 762 27.3

10 1182 1049 11.3 1001 4.6 876 12.5 762 598 589 652 9.7 762 23.9

Table A.73: Results for the MM k-CPP on instance GTSP4, |V | = 195, |E| = 348.
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k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 40829 39137 4.1 38557 1.5 38557 0.0 9276 37279 37279 37279 0.0 37279 3.3
3 30150 26589 11.8 26064 2.0 26064 0.0 9276 24934 24853 25632 3.0 25058 3.9
4 24117 21937 9.0 21363 2.6 21363 0.0 9276 18880 18656 19849 6.0 18656 12.7
5 20006 18981 5.1 18465 2.7 18465 0.0 9276 15327 14938 16343 8.6 14938 19.1
6 18329 16569 9.6 16238 2.0 16238 0.0 9276 12773 12459 13851 10.0 12472 23.2
7 17066 15475 9.3 14883 3.8 14883 0.0 9276 11147 10688 12387 13.7 10724 27.9
8 15809 14307 9.5 13980 2.3 13980 0.0 9276 9791 9360 10938 14.4 9413 32.7
9 15303 13375 12.6 13167 1.6 13167 0.0 9276 8801 8327 9837 15.4 9276 29.6

10 14789 12702 14.1 12292 3.2 12292 0.0 9276 8028 7501 9133 17.9 9276 24.5

Table A.74: Results for the MM k-CPP on instance GTSP5, |V | = 200, |E| = 392.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 38922 38156 2.0 37468 1.8 37468 0.0 9304 37062 37062 37062 0.0 37062 1.1
3 29990 27514 8.3 26628 3.2 26628 0.0 9304 24772 24772 24874 0.4 24874 6.6
4 24156 21447 11.2 20939 2.4 20939 0.0 9304 18649 18627 19044 2.2 18627 11.0
5 20811 18613 10.6 17758 4.6 17758 0.0 9304 14991 14940 15729 5.0 14962 15.7
6 18160 16374 9.8 15904 2.9 15904 0.0 9304 12528 12482 13233 5.7 12528 21.2
7 17455 15858 9.1 15459 2.5 15459 0.0 9304 10790 10727 11435 6.2 10790 30.2
8 16088 13955 13.3 14071 -0.8 14071 0.0 9304 9487 9410 10140 7.2 9487 32.6
9 14760 13342 9.6 13155 1.4 13155 0.0 9304 8489 8386 9243 9.3 9304 29.3

10 14593 12475 14.5 12448 0.2 12448 0.0 9304 7693 7566 8524 11.2 9304 25.3

Table A.75: Results for the MM k-CPP on instance GTSP6, |V | = 200, |E| = 386.
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k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 8655 8228 4.9 8006 2.7 7984 0.3 3436 7958 7830 7958 1.6 7958 0.3
3 6855 6359 7.2 5896 7.3 5642 4.3 3436 5473 5303 5540 4.3 5540 1.8
4 5924 5260 11.2 4884 7.1 4596 5.9 3436 4231 4039 4444 9.1 4428 3.7
5 5303 4772 10.0 4382 8.2 4100 6.4 3436 3494 3281 3705 11.4 3436 16.2
6 5023 4208 16.2 3928 6.7 3684 6.2 3436 2953 2776 3264 15.0 3436 6.7
7 4835 3848 20.4 3684 4.3 3536 4.0 3436 2610 2415 2903 16.8 3436 2.8
8 4463 3872 13.2 3684 4.9 3532 4.1 3436 2354 2144 2561 16.3 3436 2.7
9 3887 3564 8.3 3532 0.9 3532 0.0 3436 2155 1933 2296 15.8 3436 2.7

10 3887 3620 6.9 3532 2.4 3436 2.7 3436 2013 1765 2232 20.9 3436 0.0

Table A.76: Results for the MM k-CPP on instance ALBAIDAA, |V | = 102, |E| = 160.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 8230 8040 2.3 7460 7.2 7250 2.8 3124 7243 7243 7243 0.0 7243 0.0
3 5886 5450 7.4 5170 5.1 5005 3.2 3124 4858 4858 4920 1.3 4920 1.7
4 5450 4810 11.7 4375 9.0 3988 8.8 3124 3674 3666 3888 5.7 3896 2.3
5 5296 3964 25.2 3660 7.7 3512 4.0 3124 2970 2950 3281 10.1 3124 11.0
6 4444 3570 19.7 3452 3.3 3178 7.9 3124 2489 2473 2837 12.8 3124 1.7
7 4324 3422 20.9 3232 5.6 3124 3.3 3124 2155 2132 2457 13.2 3124 0.0
8 3948 3308 16.2 3124 5.6 3124 0.0 3124 1905 1877 2115 11.3 3124 0.0
9 3948 3308 16.2 3124 5.6 3124 0.0 3124 1710 1678 1922 12.7 3124 0.0

10 3640 3124 14.2 3124 0.0 3124 0.0 3124 1557 1519 1734 12.4 3124 0.0

Table A.77: Results for the MM k-CPP on instance ALBAIDAB, |V | = 90, |E| = 144.
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k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 4707 4520 4.0 4385 3.0 4385 0.0 2545 4375 4375 4375 0.0 4385 0.0
3 4100 3500 14.6 3389 3.2 3389 0.0 2545 3144 3051 3306 7.7 3389 0.0
4 3935 3191 18.9 2991 6.3 2991 0.0 2545 2617 2389 2735 12.7 2735 8.6
5 3231 2914 9.8 2763 5.2 2763 0.0 2545 2274 1991 2512 20.7 2545 7.9
6 3061 2820 7.9 2664 5.5 2664 0.0 2545 1950 1727 2215 22.0 2545 4.5
7 2687 2687 0.0 2546 5.2 2546 0.0 2545 1839 1537 2091 26.5 2545 0.0
8 2687 2668 0.7 2545 4.6 2545 0.0 2545 1609 1396 1880 25.7 2545 0.0
9 2687 2547 5.2 2545 0.1 2545 0.0 2545 1431 1285 1716 25.1 2545 0.0

10 2545 2545 0.0 2545 0.0 2545 0.0 2545 1369 1197 1584 24.4 2545 0.0

Table A.78: Results for the MM k-CPP on instance random1, |V | = 20, |E| = 33.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 8019 7529 6.1 7091 5.8 7091 0.0 3064 7091 7091 7091 0.0 7091 0.0
3 5874 5114 12.9 4827 5.6 4827 0.0 3064 4765 4765 4785 0.4 4792 0.0
4 4989 4786 4.1 3827 20.0 3827 0.0 3064 3661 3615 3758 3.8 3758 1.8
5 4372 3841 12.1 3363 12.4 3363 0.0 3064 2962 2926 3029 3.4 3064 8.9
6 4372 3502 19.9 3176 9.3 3176 0.0 3064 2468 2466 2712 9.1 3064 2.0
7 4372 3374 22.8 3072 9.0 3072 0.0 3064 2188 2137 2367 9.7 3064 0.0
8 4213 3086 26.8 3064 0.7 3064 0.0 3064 1943 1891 2092 9.6 3064 0.0
9 3970 3086 22.3 3064 0.7 3064 0.0 3064 1802 1699 1878 9.5 3064 0.0

10 3529 3086 12.6 3064 0.7 3064 0.0 3064 1690 1546 1707 9.4 3064 0.0

Table A.79: Results for the MM k-CPP on instance random2, |V | = 20, |E| = 32.
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k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 7818 7818 0.0 7311 6.5 7311 0.0 2211 7311 7311 7311 0.0 7311 0.0
3 5892 5693 3.4 5010 12.0 5002 0.2 2211 4974 4974 4974 0.0 4974 0.4
4 4859 4521 7.0 3973 12.1 3877 2.4 2211 3806 3806 3825 0.5 3825 1.3
5 4417 3811 13.7 3328 12.7 3271 1.7 2211 3120 3105 3192 2.7 3192 2.4
6 3935 3538 10.1 2943 16.8 2901 1.4 2211 2675 2637 2795 5.7 2795 3.7
7 3685 3195 13.3 2756 13.7 2717 1.4 2211 2357 2303 2439 5.6 2439 10.2
8 3573 3162 11.5 2566 18.8 2500 2.6 2211 2119 2053 2276 9.8 2264 9.4
9 3536 2912 17.6 2502 14.1 2339 6.5 2211 1939 1858 2102 11.6 2211 5.5

10 3184 2750 13.6 2411 12.3 2300 4.6 2211 1794 1703 1940 12.2 2211 3.9

Table A.80: Results for the MM k-CPP on instance random3, |V | = 40, |E| = 70.

k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 9669 9389 2.9 9364 0.3 9356 0.1 2054 9355 9355 9355 0.0 9355 0.0
3 7245 6871 5.2 6684 2.7 6434 3.7 2054 6237 6237 6237 0.0 6237 3.1
4 5734 5315 7.3 4868 8.4 4860 0.2 2054 4719 4706 4786 1.7 4786 1.5
5 4919 4614 6.2 4267 7.5 4052 5.0 2054 3836 3787 3974 4.7 3938 2.8
6 4550 4204 7.6 3769 10.3 3604 4.4 2054 3246 3175 3348 5.2 3270 9.3
7 4245 3634 14.4 3330 8.4 3309 0.6 2054 2811 2737 2947 7.1 2798 15.4
8 3707 3348 9.7 3135 6.4 2971 5.2 2054 2476 2409 2661 9.5 2474 16.7
9 3707 3081 16.9 3037 1.4 2794 8.0 2054 2246 2154 2425 11.2 2233 20.1

10 3457 2814 18.6 2661 5.4 2588 2.7 2054 2051 1950 2235 12.8 2054 20.6

Table A.81: Results for the MM k-CPP on instance r2d4nb5, |V | = 100, |E| = 160.
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k H H+ I1 T10m I2 T∞ I3 SPT MCN AP APL I4 BAC Gap

2 12294 11324 7.9 11156 1.5 11155 0.0 2900 11155 11155 11155 0.0 11155 0.0
3 8879 8151 8.2 7860 3.6 7815 0.6 2900 7437 7437 7553 1.5 7553 3.4
4 7448 6585 11.6 6267 4.8 6074 3.1 2900 5590 5589 5886 5.0 5602 7.8
5 6274 5762 8.2 5382 6.6 5164 4.1 2900 4559 4481 4942 9.3 4498 12.9
6 5898 5087 13.8 4746 6.7 4579 3.5 2900 3833 3742 4257 12.1 3781 17.4
7 5487 4521 17.6 4229 6.5 4106 2.9 2900 3321 3214 3741 14.1 3280 20.1
8 5124 4381 14.5 4091 6.6 3795 7.2 2900 2977 2818 3436 18.0 2903 23.5
9 4782 4053 15.2 3870 4.5 3544 8.4 2900 2683 2510 3110 19.3 2900 18.2

10 4680 3921 16.2 3587 8.5 3369 6.1 2900 2438 2264 2871 21.1 2900 13.9

Table A.82: Results for the MM k-CPP on instance r1d5nb5, |V | = 100, |E| = 199.
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