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Abstrat

Kaluza-Klein theories are an elegant and highly preditive framework for uni�ed theories.

We relate the singularities appearing in the internal spaes of these models to braneworld

senarios, �nding interesting onnetions between the two points of view. We disuss

hiral fermion modes whih are determined by the struture of the singularities.

In order to approah the Cosmologial Constant Problem and the related dark energy dis-

ussion in this ontext, we study the osmology of a toy model, six-dimensional Einstein-

Maxwell theory. The time independene of the de�it angle branes is proven. Some speial

ases are solved, but for a solution of the most general ase, many diÆulties have still to

be overome. These diÆulties are explained and a strategy for their possible solution is

developed.

Zusammenfassung

Kaluza-Klein Theorien bilden einen eleganten und sehr vorhersagekr�aftigen Rahmen f�ur

vereinheitlihte Theorien. Wir bringen die Singularit�aten, die in den internen R�aumen

dieser Modelle auftreten, mit Braneworld Szenarien in Verbindung und �nden interes-

sante Zusammenh�ange zwishen den beiden Sihtweisen. Wir diskutieren hirale Fermion-

moden, die durh die Struktur der Singularit�aten bestimmt sind.

Um in diesem Zusammenhang das Problem der kosmologishen Konstante und die damit

verkn�upfte Diskussion um die dunkle Energie anzugehen, untersuhen wir die Kosmolo-

gie eines "Spielzeugmodells", sehsdimensionaler Einstein-Maxwell Theorie. Die Zeitun-

abh�angigkeit der De�zitwinkel-Branes wird bewiesen. Einige Spezialf�alle werden gel�ost,

aber f�ur eine L�osung des allgemeinsten Falls m�ussen noh viele Shwierigkeiten �uberwunden

werden. Diese Shwierigkeiten werden erkl�art und eine Strategie zu ihrer m�oglihen

�

Uberwindung wird entwikelt.
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1 Introdution

The present SU(3)� SU(2)� U(1) Standard Model of partile physis ontains at least 19

parameters (3 gauge ouplings, 10 parameters in the quark mass matrix, 3 lepton masses,

2 parameters in the Higgs setor and the � parameter in QCD), whih is surely not a

satisfying situation. The fermions of one generation belong to �ve di�erent representations

of the gauge group. The situation gets muh better when one embeds the gauge group

into a larger and simple uni�ation group. Promising andidates are SU(5), SO(10) and

E

6

. Then there is only one gauge oupling, and some of the entries in the mass matrix

get related. The fermions of one generation �t into one or two representations of the

uni�ation group. In SO(10) for example, they are ontained in a 16-dimensional spinor

representation. The 16th omponent is an additional right-handed neutrino whih is a

singlet with respet to SU(3)� SU(2)� U(1). It gets a large Majorana mass and explains

in that way the smallness of the left-handed neutrino masses.

But still there are many open questions. What is the origin of the gauge group? Why

does nature repeat itself in three generations with equivalent quantum numbers? What is

the origin of the Higgs salars? How are the Yukawa ouplings, being responsible for the

mass matries, determined? Then there are questions of unexpeted sales: Why is the

sale of eletroweak symmetry breaking so muh smaller than the Plank mass and the

uni�ation sale? This is the gauge hierarhy problem. Why is the osmologial onstant

so muh smaller than expeted from the ompliated vauum struture of Quantum Field

Theories? This is the osmologial onstant problem. Finally there are questions raised

by osmologial observations. What is the nature of the non-baryoni dark matter? What

is the "dark energy" whih leads to an aelerated expansion of the universe?

Theories with extra dimensions are a very attrative framework to study many of

these questions. A partiularly simple and eonomi ansatz is Kaluza-Klein theory. The

higher dimensional Lagrangian may ontain only the urvature salar, the kineti term of

a fermion and a osmologial onstant. Integrating out the extra dimensions, whih are

thought to be muh too small to be resolved by measurement, one obtains an e�etive

four-dimensional Lagrangian whih may ontain all the strutures that are neessary for

a realisti phenomenology: Gauge symmetries arise from isometries of the internal spae,

gauge �elds and salars are omponents of the higher dimensional metri and the observed

fermions are omponents of one and the same higher dimensional spinor. Symmetry

breaking is desribed by small deformations of the internal spae. All e�etive four-

dimensional ouplings are related to the very few parameters of the original Lagrangian.

This fat gives these theories a very high preditivity.

Kaluza-Klein theory is not intended as a fundamental theory. It does not tell us how

to quantize gravity. The idea is rather that a "�nal theory" should be reahed in two

steps: At �rst one reahes uni�ation a la Kaluza-Klein. Then one has to searh for a

quantum theory of gravity, of whih the Kaluza-Klein theory is the lassial limit.

From the mid 1980's on String theory absorbed most of the e�orts in searh for a

"�nal theory". Reently the disovery of the D-brane solitons and other ahievements
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within String theory lead to another development: The idea that we may live on a brane

in a higher dimensional spae. To be preise, this idea is not so new, but it found a

new justi�ation within the ontext of String theory. Anyway the new phenomenologial

brane models do not really make use of String theory. They are desribed purely in

the language of General Relativity and are onstruted with the intention to solve ertain

phenomenologial problems, suh as the gauge hierarhy problem. This development leads

bak to the idea of internal spaes with singularities (the branes) and a "warping" of the

four-dimensional metri, a possibility whih was earlier disussed in the Kaluza-Klein

ontext:

If the internal spae is ompat, all the fermions in the e�etive four-dimensional the-

ory are vetor-like. Cusps or singularities in the internal spae are therefore neessary to

obtain hiral fermions. The reently disussed branes are suh singularities, oming from

a di�erent theoretial bakground, onentrating on di�erent aspets and using a slightly

di�erent language. The onnetion between these new models and the older Kaluza-Klein

theories has not been desribed so far. This onnetion will be one of the main topis of

this thesis.

A solution to the Cosmologial Constant Problem and the Gauge Hierarhy Problem

within the Kaluza-Klein framework remains to be found. But there are hints that these

two problems may in fat be tightly related to eah other. Furthermore, it was shown that

with a "warping" of the four-dimensional metri, lassial solutions exist with arbitrary

�

4

(the e�etive 4D osmologial onstant). It remains the question why a solution with

�

4

so lose to zero is seleted. An answer may involve an understanding of the dynamis

of the underlying quantum theory. Here we try instead to approah the problem within

the lassial theory. We imagine the possibility that, by some dynamial mehanism in

the very early universe, the four-dimensional urvature is "driven away"; transferred into

the warping for example. To investigate this possibility, we need to solve the lassial

�eld equations with relatively general initial onditions.

As a toy model for these studies, we hoose six-dimensional Einstein-Maxwell theory

[1℄. This is not a pure Kaluza-Klein theory, beause it ontains already an abelian gauge

�eld in the higher dimensional Lagrangian. It may be onsidered as an intermediate step

of ompati�ation, obtained from an even higher dimensional pure Kaluza-Klein theory

whih ontains only gravity (and possibly a spinor), but this origin of the model in unim-

portant for our onerns. It has the advantage that it is relatively simple, but arries

already all the features we need for our researh: aeptable ground states, a urved in-

ternal spae with appropriate singularities, and warped solutions with arbitrary �

4

.

Altogether, we have several goals in this investigation:

� The features, history and status of pure Kaluza-Klein theories are reviewed, prob-

lems and perspetives are disussed.

� The link between these theories and the modern brane models is explained in de-

tail. An equivalene between the two points of view is shown, leading to a kind of

holographi priniple and the notion of "holographi branes".
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� The main goal of the researh presented here is to �nd osmologial solutions of

warped Kaluza-Klein theories in whih the shape and size of the internal dimen-

sions are time-dependent. Does internal spae approah a stable shape whih may

lead to a realisti phenomenology? We study this question in our toy model, six-

dimensional Einstein-Maxwell theory. The e�etive four-dimensional osmologial

"onstant" beomes a dynamial quantity. This may shed new light on the osmo-

logial onstant problem and the reent "dark energy" disussion.

� As a byprodut of the disussion of "warping" and branes, the general struture

of maximally symmetri singularities in arbitrary dimensions is investigated and

onneted to the Kasner solutions.

The struture of the thesis is as follows: In hapter 2, the Kaluza-Klein ansatz for the

uni�ation of gravity and Yang-Mills theories is explained. The history of this ansatz is

reviewed and some of its problems and suesses are disussed. Furthermore the most

popular brane models are introdued. The prinipal di�erene between odimension-one

and higher odimension branes is worked out.

In hapter 3, our partiular toy model is introdued: six-dimensional Einstein-Maxwell

theory. The solutions are presented and the onnetion between geometrial quantities

and the brane tensions is given. This links the old Kaluza-Klein or "bulk point of view"

to the modern "brane point of view".

In hapter 4, fermions are disussed. The algebrai properties of spinor representaions

in arbitrary dimensions and their dimensional redution are reviewed. This raises the

problem how to obtain hiral four-dimensional fermions, whih �nds a possible solution in

the use of internal spaes with singularities, suh as those disussed in our six-dimensional

ase. The wave funtions of the hiral fermions are omputed for this model and their

number is related to the properties of the singularities. These fermions are shown to be

on�ned to the "branes", and again the relation between bulk and brane point of view is

given. Furthermore we introdue "holographi branes", for whih both points of view are

equivalent.

In hapter 5, the osmology of six-dimensional Einstein-Maxwell theory is investi-

gated. The most general metri onsistent with the symmetries and the orresponding

�eld equations are derived. Several hoies of gauge are given, and the related diÆulties

are explained. Some speial ases are solved, with and without the inlusion of fermions.

In partiular, late time osmologies are disussed, in whih the geometry of internal spae

is almost time-independent. We �nd that there are still many obstales to overome in

order to solve for the early universe osmology, whih was our main motivation. In setion

5.6, we summarize the open questions and develop a plan how they may be solved step

by step in future researh.

Chapter 6 is an outlook on the possibility to obtain a realisti phenomenology from

18-dimensional gravity with a Majorana-Weyl spinor. The struture of the mass matries

obtained from a slight deformation of internal spae is outlined

In hapter 7, we summarize our results.

Finally an appendix disusses the general approximate behavior of the metri around

highly symmetri singularities in arbitrary dimensions and links the result to the Kasner
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solutions known from anisotropi osmologies.

1.1 Conventions

We use the metri signature (� +++). The sign onvention for the Riemann tensor is

R

A

BCD

= ��

A

BC;D

+ ::: (1)

The sign onvention for the osmologial onstant is suh that a de Sitter spaetime has

positive �. The Einstein equations are

G

AB

� R

AB

�

1

2

Rg

AB

= �� g

AB

+ 8�GT

AB

: (2)

Sine we are dealing with fermions, we have to distinguish between generally ovariant

and Lorentz indies.

Generally ovariant indies:

�, �, � are running over the four large dimensions,

i, j, k over the three large spatial dimensions,

�, �,  over the internal dimensions,

A, B, C over all dimensions.

As Lorentz indies we use latin letters like a, b, m, n.

Indies in usual brakets denote that there is no summation. For instane, G

(i)

(i)

means

one spatial diagonal omponent, not a sum over all three. In all other ases we use the

Einstein sum onvention.

To prevent onfusion with spae indies, we denote by � the "

5

" matrix of the higher

dimensional spae, whih antiommutes with all 's of the Cli�ord algebra.

A tilde always denotes a orresponding quantity in the e�etive four-dimensional theory.

For example,

~

� is the four-dimensional "

5

" matrix. Exeptions are the 4D osmologial

onstant and the 4D Newton onstant, whih are denoted �

4

and G

4

, respetively.

We often use 2D, 3D, ... as abbreviation for two-dimensional, three-dimensional, ...
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2 Extra Dimensions

2.1 5D Kaluza-Klein Theory

The idea that eletromagnetism and gravity an be uni�ed by introduing a �fth dimen-

sions is even older than General Relativity: In 1914 Gunnar Nordstroem [2℄ found that

the equations of his salar gravity theory were just an extension of Maxwell's equations

when a �fth dimension was added to the four usual ones. Of ourse his theory was not

generally ovariant.

In 1919 Theodor Kaluza [3℄ disovered his famous �ve-dimensional theory, whih is a

pure Einstein gravity theory in 5D, but redues to Einstein plus Maxwell in the e�etive

four-dimensional world. This theory was re-invented by Oskar Klein in 1926 [4℄.

In this model, the �fth dimension is thought to be a small irle of radius r. We label

the four usual oordinates x

�

and the �fth one y (ranging from 0 to 2�r), and start with

a line element

ds

2

5

= ds

2

4

+ (dy + �A

�

(x)dx

�

)

2

; (3)

with

ds

2

4

= ~g

��

(x)dx

�

dx

�

(4)

and � is a onstant. The line element (3) is invariant under the transformations

y ! y + ��(x); (5)

A

�

! A

�

� �

�

�(x): (6)

Note that all funtions depend only on the x-oordinates, not on y. This is Kaluza's

"ylindriity" ondition. The ation is the Einstein-Hilbert ation,

S

5

=

1

16�G

5

Z

d

4

x dy

p

�g R; (7)

where g is the determinant of the metri g

AB

. Inserting the metri (3) and integrating

over y, we get a four-dimensional ation whih is invariant under both four-dimensional

general oordinate transformations and abelian gauge transformations,

S

4

=

Z

d

4

x

q

�~g

 

1

16�G

4

~

R +

�

2

64�G

4

~g

��

~g

��

F

��

F

��

!

(8)

with

G

4

=

G

5

2�r

; ~g = det(~g

��

); F

��

= �

�

A

�

� �

�

A

�

; (9)

and

~

R the urvature salar alulated from ~g

��

. The abelian gauge symmetry in four

dimensions originates in the isometries of the �fth dimension. The standard Maxwell

term is given for �

2

= 16�G

4

. We see that � is essentially the Plank length.

How does the smallness of the �fth dimension enter the piture? It turns out that the

size an be determined from the eletri harge [5℄. The reason is that harge is linked to
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the "winding number" of �elds with respet to the �fth dimension. Consider for example

a omplex salar �eld �. The kineti term of � is

L

kin

= g

AB

�

A

�(�

B

�)

�

: (10)

The inverse of our metri is

g

��

= ~g

��

; (11)

g

�5

= g

5�

= ��~g

��

A

�

; (12)

g

55

= 1 + �

2

~g

��

A

�

A

�

: (13)

If the �eld has the form � = �(x) exp(

in

r

y) the kineti term redues to

L

kin

= ~g

��

(�

�

�

in�

r

A

�

)�

 

(�

�

�

in�

r

A

�

)�

!

�

+

n

2

r

2

�

�

�: (14)

So � orresponds to a four-dimensional �eld � that ouples to A

�

with oupling n�=r.

Charge is quantized, and the elementary harge is e = �=r. As we saw, � is just the

Plank length, so for a realisti e, r has to be only one order of magnitude smaller than

the Plank length. The mass of � an be inferred from the kineti term of �. It ism = n=r

and has to be therefore only slightly smaller than the Plank mass (if n 6= 0). This is

a general feature of Kaluza-Klein theories: Masses are either zero by some symmetry

requirement, or of almost the order of the Plank mass and do therefore not appear in

partile experiments.

How general was the metri ansatz we started with? The most general metri in �ve

dimensions an be written in the form

g

��

= ~g

��

(x; y) + �

2

�(x; y)A

�

(x; y)A

�

(x; y); (15)

g

�5

= g

5�

= ��(x; y)A

�

(x; y); (16)

g

55

= �(x; y); (17)

where � is essentially the size of the �fth dimension. In the Kaluza-Klein ansatz we had

� = 1 and everything depended only on x. Sine every �eld quantity F (x; y) is a periodi

funtion of y, it admits a Fourier expansion

F (x; y) =

X

F

(n)

(x)e

iny=r

: (18)

Kaluza's "ylindriity" ondition means that only the zero modes (n = 0) appear. But

this is automatially justi�ed at energies well below the Plank sale, sine all modes with

n 6= 0 have e�etive four-dimensional masses of Plank order. At very high energies lose

to the Plank sale, the higher modes would have to be inluded in the ation, of ourse.

But the Kaluza-Klein pioneers heated in another way: They ignored the salar �eld

oming from g

55

. It was always set onstant in the early years, and the ation was not

varied with respet to it. If we take the �fth dimension serious [6℄, we have to inlude the

�eld � [7℄. The determinant of the �ve-dimensional metri is then det(g

AB

) = det(~g

��

)�.
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When we plug this into the ation, we get a fator of �

1=2

multiplying the 4D Rii

salar, leading to a Brans-Dike type tensor-salar gravity theory plus gauge �eld in four

dimensions. The

~

R-term an be brought into standard form by a Weyl transformation of

the metri: g

AB

! �

�1=3

g

AB

. Our zero mode metri is now

�g

AB

= �

�1=3

(x)

 

~g

��

(x) + �

2

A

�

(x)A

�

(x)�(x) �A

�

(x)�(x)

�A

�

(x)�(x) �(x)

!

: (19)

When we insert this into the ation (7) and integrate over y, we end up with the four-

dimensional ation

S

4

=

1

16�G

4

Z

d

4

x

q

�~g

 

~

R +

1

4

�

2

F

��

F

��

+

1

6

�

�

��

�

�

�

2

!

: (20)

By rede�ning the salar �eld by its logarithm, its kineti term an also be brought into a

standard form. The orresponding �eld equations admit the vauum solution

g

��

= �

��

; A

�

= 0; � = 1: (21)

The salar �eld is massless in this ase, sine the one-dimensional internal spae is not

urved. In higher dimensions this will hange, and the salar �elds will generally have

masses of the order of the ompati�ation sale, like the non-zero modes of the other

�elds.

2.2 Kaluza-Klein Theories in more than �ve Dimensions

There was no need to extend the Kaluza-Klein idea beyond �ve dimensions until the

importane of non-Abelian gauge theories was disovered. In 1963 B. DeWitt [8℄ suggested

that a uni�ation of Yang-Mills theories and gravitation ould be ahieved in a higher-

dimensional Kaluza-Klein framework. A detailed disussion of this idea in the language

of �bre bundles appears in the work of Ryszard Kerner [9℄. The �rst omplete derivation

of the four-dimensional gravitational plus Yang-Mills plus salar theory from a (4 +D)-

dimensional Einstein-Hilbert ation was �nally given by Cho and Freund in 1975 [10℄.

The vauum spaetime is assumed to be a diret produt M

4

�K of four-dimensional

Minkowski spae and a ompat internal spae K. In order to get the Yang-Mills term

with gauge group G from dimensional redution of a (4+D) dimensional Einstein-Hilbert

term, it is neessary to have Killing vetors �

�

a

on the internal spae (in the ground state)

whih represent this symmetry. (The index a is running over the dimension of G, labeling

the �-vetors, and � is the oordinate index in internal spae). This means

[�

a

; �

b

℄

�

� �

�

a

�

�

b;�

� �

�

b

�

�

a;�

= f



ab

�

�



; (22)

�

a�;�

+ �

a�;�

= 0: (23)

Here [�

a

; �

b

℄ is the standard Lie braket and f



ab

are the struture onstants of G. The

isometries of the internal spae orrespond now to the gauge transformations. The metri

an, in zero-mode approximation, be written as follows :

g

AB

(x; y) =

 

~g

��

(x) + �

��

(y)�

�

a

(y)�

�

b

(y)A

a

�

(x)A

b

�

(x) �

��

(y)�

�

a

(y)A

a

�

(x)

�

��

(y)�

�

b

(y)A

b

�

(x) �

��

(y)

!

: (24)

9



We insert this metri into the 4 +D dimensional Einstein ation

S

4+D

=

1

16�G

4+D

Z

d

4

xd

D

y

p

�g(R

(4+D)

+ �); (25)

where � is a osmologial onstant. The resulting four-dimensional Lagrangian is

L

4

=

1

16�G

4+D

Z

d

D

y

q

�~g(�

(D)

)

1=2

(

~

R(x) +R

(D)

(y) + � (26)

+

1

4

�

��

(y)�

�

a

(y)�

�

b

(y)F

a

��

(x)F

b

��

(x)~g

��

(x)~g

��

(x));

where �

(D)

is the determinant of the internal metri �

��

, R

(D)

is the orresponding ur-

vature salar and

F

a

��

= �

�

A

a

�

� �

�

A

a

�

+ f

a

b

A

b

�

A



�

: (27)

The four-dimensional Newton's onstant is then

G

4

= G

4+D

=

Z

d

D

y (�

(D)

(y))

1=2

= G

4+D

=V

int

(28)

with V

int

the volume of the internal spae. With a Weyl transformation one an again

ahieve a standard

~

R-term. The zero mode ansatz does not ontain any salar �elds

desribing x-dependent utuations of the internal metri �

��

. One an show that these

salars have in general, as already mentioned, masses of the order of the ompati�ation

sale, beause their exitation would lead to a hange of the internal urvature, whih is

seen as a large energy shift in four dimensions.

In the �ve-dimensional ase it was easy to �nd a vauum solution that satis�es the

�eld equations. This is not the ase in the higher-dimensional models. In vauum, with

gauge �elds and salar utuations set to zero, the Einstein equations are

R

AB

�

1

2

g

AB

(R + �) = 0: (29)

If four-spae is to be at R

��

= 0, it follows that R + � = 0. But then R

��

must vanish

as well to ful�ll eq.(29). This is possible only for an abelian gauge group, where internal

spae is a torus. For any non-abelian group, internal spae has to be urved, R

��

6= 0.

And so it is proven that there is no appropriate vauum solution in this framework.

In the late 1970's and the early 1980's several possibilities were explored to surround

this diÆulty. Cremmer and Sherk [11℄ showed how the inlusion of additional Yang-

Mills and salar matter �elds in the higher-dimensional theory would allow for a desired

ground state, and Luiani [12℄ generalized their work. This of ourse destroys somehow

the beauty of the Kaluza-Klein idea, whih was essentially that Yang-Mills �elds are

explained by dimensional redution and are not present in the fundamental ation.

Wetterih [13℄ suggested a ompati�ation due to higher derivative terms of form R

2

whih may beome important when one approahes the Plank sale and may be relevant

already at the ompati�ation sale (whih is not muh smaller than the Plank sale).

Another possibility is the inlusion of a "warp fator" [29℄ (a sale fator a

2

(y) multiplying

the 4D metri), whih makes the 4D metri dependent on the internal oordinates.
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2.3 Branes

In the last few years, the emphasis in the development of theories with extra dimensions

has shifted towards the "brane world" piture, whih assumes that the Standard Model

matter is on�ned to a four-dimensional submanifold - our observable spaetime - embed-

ded in a higher-dimensional spae. The idea is not really new [14, 15℄, but it was given

a new motivation from the D-brane solitons in String Theory (for a review see [16℄), and

in partiular by the work of Horava and Witten [17, 18℄. Nevertheless, the usual brane

models are purely phenomenologial and make no real use of String theory.

There are three basi models, alled ADD [19, 20℄, RS1 [21℄ and RS2 [22℄ by the names

of their inventors (Arkani-Hamed, Dimopoulos and Dvali in the �rst ase, Randall and

Sundrum in the other two ases). These three models orrespond to "large", "small" and

in�nite extra dimensions, respetively. ADD and RS1 were invoked with the intention to

solve the gauge hierarhy problem, while RS2 shows how gravity an be "loalized" at a

brane, ontraditing the usual assumption that the 4D Newton onstant goes to zero when

the size of an extra dimension goes to in�nity. In all ases the Standard Model matter

and gauge interations are on�ned to the brane, while gravity - being the dynamis of

spaetime itself - propagates through the entire spae. The strength of gravity itself is

given by the overlap of the massless graviton wave funtion with the brane.

ADD: Large Extra Dimensions: In the ADD senario, the fundamental sale in the

4 + D dimensional spaetime is the TeV sale, and the 4 +D dimensional Plank Mass

M is of that size. The large 4-dimensional Plank mass M

(4)

p

is due to the fat that the

extra dimensions are so large. The brane has no tension and does therefore not a�et the

geometry of the higher-dimensional spae, whih is assumed to be a diret produt of four-

dimensional and a ompat "internal" spae (whih would better be alled "external" in

this ase, beause it is orthogonal to our brane). The four-dimensional Newton onstant

is, as in the Kaluza-Klein theories, given by equation (28). In terms of Plank masses,

with G

4+D

=M

�(2+D)

, we get

M

(4)

p

=M(MR)

D=2

; (30)

where R is the average size of the extra dimensions. Assuming that M � 1 TeV, one

alulates the value of R,

R � 10

32=D

� 10

�17

m: (31)

On distanes below R, strong deviations from Newton's law of gravity are expeted. This

law has been tested down to distanes of about 0.1 mm, so d = 1 is exluded and d = 2

very improbable.

The ADD senario has several problems:

� The question of why the Plank mass is so muh larger than the weak sale is just

replaed by the question of why the extra dimensions are so muh larger than the

weak sale (10

�17

m).

� The large size of the extra dimensions leads to the existene of light non-zero graviton

Kaluza-Klein modes (alled KK gravitons). Interating with brane matter, these

11



may arry away a large amount of energy from the brane. The interation rates

an be omputed and lead, in ombination with astrophysial and osmologial

observations, to strong onstraints on ADD models and to a "possible but not very

appealing" [23℄ early universe osmology.

� The brane is assumed to arry no energy-momentum. But this hanges when osmo-

logial matter is added. This should lead to a breakdown of the higher-dimensional

geometry.

RS1: "A Large Mass Hierarhy from a Small Extra Dimension": The Randall-

Sundrum model is muh more elegant and surrounds all the problems of the ADD senario.

There is only one extra dimension, and the �ve-dimensional spae is a slie of an Anti de

Sitter spaetime with negative osmologial onstant �. The ground state line element is

ds

2

= e

�2kz

�

��

dx

�

dx

�

+ dz

2

; (32)

with k

2

= ��=6. The exponential fator in front of the � is alled "warp fator". The

z-oordinate is restrited to the interval [0; R℄. At these positions, z = 0 and z = R, two

branes are loated whih at as "mirrors", so that the point (x

�

;�z) an be identi�ed

with (x

�

;+z) and (x

�

; R�z) with (x

�

; R+z). This means that we an make the topology

of that "orbifold" spae visible by ontinuing the z-oordinate beyond 0 and R and get a

warp fator of e

2kz

in the interval [�R; 0℄ and e

2k(z�2R)

in the interval [R; 2R℄. There is

a jump of the �rst z-derivative of the warp fator at the brane positions, orresponding

to delta funtions in the seond derivatives of the warp fator. In the Einstein equations,

these delta funtions must be mathed by delta funtions in the energy momentum tensor,

the so-alled "brane tensions" � . These are given by ation terms of the form

S

brane

=

Z

d

4

xdz

p

�g �

brane

Æ(z � z

brane

) =

Z

d

4

x (�g(x

�

; z

brane

))

1=2

�

brane

(33)

These mathing onditions are a very simple speial ase of the Israel juntion onditions,

whih determine the jump of the metri derivatives for arbitrary odimension-one hyper-

surfaes. In the Randall-Sundrum ase one �nds �

1

= (�6�)

1=2

=(8�G

5

) for the brane at

z = 0 and �

2

= �(�6�)

1=2

=(8�G

5

) for the brane at z = R.

The massless gravitational utuations are of the form

ds

2

= e

�2kz

(�

��

+ h

��

)dx

�

dx

�

+ dz

2

: (34)

(We ignore the so-alled radion in this short disussion). Here h

��

represents tensor

utuations about Minkowski spae and is the physial graviton of the four-dimensional

e�etive theory. Massless vetor zero modes like the A

�

in Kaluza-Klein theories do not

exist here. Integrating the urvature term

S

grav

=

Z

d

4

xdz

1

16�G

5

e

�2kz

q

�~g

~

R; (35)

one �nds that the four-dimensional Newton onstant is given by

G

4

= 2G

5

k=(1� e

�2kR

); (36)
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whih depends only slightly on R for kR > 1.

RS1 o�ers an interesting possibility to solve the hierarhy problem. Assume that we

live on the negative tension brane at z = R. The physial masses an be determined

by properly normalizing the �elds. Consider for example a Higgs �eld on�ned to "our"

brane, with mass parameter v

0

:

S

H

=

Z

d

4

x (�g(x

�

; R))

�1=2

fg

��

D

�

H

y

D

�

H � �(jHj

2

� v

2

0

)

2

g (37)

=

Z

d

4

x (�~g)

1=2

e

�4kR

f~g

��

e

2kR

D

�

H

y

D

�

H � �(jHj

2

� v

2

0

)

2

g: (38)

After wave-funtion renormalization, H ! e

kR

H, we obtain

S

H;eff

=

Z

d

4

x (�~g)

1=2

f~g

��

D

�

H

y

D

�

H � �(jHj

2

� e

�2kR

v

2

0

)

2

g: (39)

We see that the physial mass sale, set by the symmetry-breaking sale, is

v = e

�kR

v

0

: (40)

This feature generalizes to arbitrary mass parameters on our brane. The physial mass

will always be smaller by a fator e

�kR

. If fundamental parameters like (G

5

)

�1=3

, k and

v

0

are of Plank sale order, the TeV sale is produed on the brane if e

kR

� 10

16

, i.e.

kR � 50. So, due to the exponential fator, even a small extra dimension an produe a

large hierarhy.

In this treatment it looked like the fundamental sale is the Plank sale, and the TeV

sale is a derived sale. But the opposite point of view is also possible. This an be seen

by an appropriate resaling of the metri, suh that the warp fator is 1 at z = R and

e

2kR

at z = 0.

RS2: Finite Gravity from an In�nite Extra Dimension: In the seond Randall-

Sundrum model, the setup is as before, but now there is only one brane, namely the

one at z = 0, and the oordinate z goes from 0 to in�nity. Thus we have an in�nite

extra dimension. The graviton zero mode, whih is as before, deays exponentially in the

z-diretion, hene it is "loalized" at the brane. The four-dimensional Newton onstant

is given by G

4

= 2G

5

k, f. eq. (36). There is no longer a mass gap for the KK gravitons.

Instead we now have a ontinuous spetrum, starting at m = 0. Randall and Sundrum

argue that these KK gravitons ouple only weakly to the brane matter, and hene produe

only a very small orretion to the Newton potential. So it was shown that one an have

the usual four-dimensional gravity even in the presene of an in�nite extra dimension.

Note that RS2 does not o�er a possibility to solve the hierarhy problem.

2.4 Higher Codimension Branes

The two Randall-Sundrum models ontain odimension-one branes. These have the prop-

erty that they annot be seen by an "observer" in the bulk. The postion z

b

of the brane

annot be determined by the bulk geometry. In other words, the bulk solution does not

13



"feel" the loseness of a brane. From the point of view of an "observer" in the bulk,

the brane ould be loated anywhere, at arbitrary z

b

. Its only e�et is a jump in the

�rst derivative of the warp fator whih an only be "seen" when z

b

is reahed. For that

reason, odimension-one branes an be put in "by hand". One an arbitrarily hoose the

position and tension in order to ful�ll ertain phenomenologial requirements, e.g. gauge

hierarhy, orbifold symmetry [21℄, without a�eting the bulk.

The situation is similar for osmologial solutions [24, 25, 26℄. It is possible to put

"by hand" arbitrary osmologial matter on a odimension-one brane. The only e�et

of the brane is a loal jump of the �rst metri derivatives, determined by the Israel

juntion onditions. In fat, the osmology of odimension-one branes an be seen in two

ways, depending on the oordinate system one uses. First, one an regard the position

of the brane as �xed. In this ase (the brane-based point of view), the bulk osmology

seems to depend on the brane properties (its tension, energy and pressure) suh that the

time dependene of the bulk metri is generated by the brane. Alternatively, one an

use oordinates in whih the bulk geometry depends only on bulk quantities (the bulk-

based point of view). Then the bulk is stati if there are no soure terms, or the bulk

osmology is driven by a bulk salar �eld or something else. In these oordinates, the

brane osmology is an e�et of the brane traveling through the bulk, showing that brane

and bulk solutions are independent of eah other (see [27℄ and referenes therein). So in

the odimension-one ase, we need two theories: one for the brane and one for the bulk.

An analogy for the di�erene between odimension one and two an be found in

ommon physis: A harged partile, loated between the plates of a apaitor, does

not "feel" how lose the plates are, sine the eletri �eld is onstant, independent of

the distane. A odimension one singularity (plate) is not deteted in the bulk. This is

di�erent from a partile traveling through the �eld of a harged wire (odimension two)

or of another point partile (odimension three). Here it feels the loseness of the soure

through the 1=r- or 1=r

2

-behavior of the �eld. Similar statements are true for branes in

higher dimensions.

In ontrast to odimension one we �nd that for odimension two or larger the properties

of the brane are determined by the bulk properties. If a similar situation holds for the

exitations, the brane point of view beomes an option - one ould equally well desribe

the physis by the properties of the bulk and its exitations. This situation has a familiar

analogon in our usual four dimensional world, namely the blak hole with metri given

by the line element

ds

2

= �

�

1�

2M

r

�

dt

2

+

�

1�

2M

r

�

�1

dr

2

+ r

2

�

d�

2

+ sin

2

�d�

2

�

: (41)

The parameter M an be seen as the mass of an objet sitting at r = 0 whih is intu-

itively orret if one onsiders a blak hole reated by a ollapsed star. This orresponds

to the brane point of view. However it ould equally well be taken as simply a free pa-

rameter of the isotropi vauum solution of the Einstein equations, without giving it a

physial meaning. We may all this the bulk point of view. Without a way of probing

the singularity diretly the two points of view annot be distinguished by observation.

Singular objets of odimension two or larger are muh more restrited than those of

14



odimension one. There is not muh freedom for ad ho adjustments of brane properties

and loalization of arbitrary �elds on the brane, independently of the properties of the

bulk. In that sense, models of odimension two or larger have more preditive power than

odimension one brane models.

Reently odimension-two branes were disussed by Cline et al [28℄. They laimed that

the restritions are so strong that it is not possible to have anything else than tension

on an in�nitely thin odim-2 brane. This point will be disussed later in this thesis. For

the moment we notie that odim-2 is the largest odimension in whih one an have an

in�nitely thin brane at all. The brane auses or is desribed by (depending on the point of

view) a onial singularity with �nite internal metri and without induing any urvature

in the bulk. But it an be observed from outside due to the de�it angle of the one.

For odimensions larger than two, the brane indues urvature in the bulk. If the brane

were in�nitely thin, this urvature would diverge at the brane, and the internal metri

g

��

would beome in�nite (see appendix A). Hene the brane has to be "regularized" in

one or another way, giving it some �nite size and some internal physis. Nevertheless it is

possible that all the relevant physis of these regularized branes an be determined from

the bulk point of view, as will be shown in hapter 4.
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3 6D Einstein-Maxwell Theory and De�it Angle Branes

Six-dimensional Einstein-Maxwell Theory has often been used as a toy model for "semi-

realisti" Kaluza-Klein theories. It is the simplest theory admitting a ground state whih

leads to a non-Abelian gauge theory in four dimensions [1℄. It also has less symmetri

ground states whih may be a hint to a possible solution of the Cosmologial Constant

Problem [29℄ and the Gauge Hierarhy Problem [30℄. It is a standard framework in whih

to study odimension-two branes [28℄, and it may lead to hiral fermions [1, 32℄.

In this hapter, we will study geometri aspets of 6D Einstein-Maxwell theory. Fermions

will be disussed in hapter 4. At �rst, pure gravity on a "warped" six-dimensional

manifold with ertain symmetries is analyzed and the onnetion to the Cosmologial

Constant Problem is explained. Then we turn to the e�et of a Maxwell �eld on the same

type of manifold. We show that it may lead to odimension-two branes with a magneti

monopole on�guration. The onnetion between the older bulk point of view and the

modern brane point of view is disussed in detail. Finally, we desribe the maximally

symmetri, unwarped solution found by Randjbar-Daemi, Salam and Strathdee.

3.1 6D Warped Geometry and the Cosmologial Constant

We onsider a six-dimensional manifold with line element

ds

2

= a

2

(�)~g

��

dx

�

dx

�

+ b

2

(�)d�

2

+ d�

2

: (42)

Here ~g

��

is the metri of a four-dimensional spaetime with onstant urvature. Internal

spae is labeled by the radial oordinate �, running from 0 to 1 or to a �nite value ��,

and by the angular oordinate �, running from 0 to 2�. The nonzero Christo�el symbols,

omponents of the Rii tensor and the Rii salar are

�

�

��

=

~

�

�

��

; �

�

��

= �a

0

a~g

��

; (43)

�

�

��

=

a

0

a

Æ

�

�

; �

�

��

= �b

0

b; (44)

�

�

��

=

b

0

b

; (45)

R

��

=

~

R

��

� ~g

��

(3a

0

2

+ a

0

a

b

0

b

+ a

00

a); (46)

R

��

= �4

a

0

b

0

b

a

� b

00

b; (47)

R

��

= �4

a

00

a

�

b

00

b

; (48)

R =

~

R

a

2

� 12

a

0

2

a

2

� 8

a

0

b

0

ab

� 8

a

00

a

� 2

b

00

b

: (49)

A prime denotes a derivative with respet to �, a tilde denotes a four-dimensional quantity

derived from the metri ~g

��

. Let � be the six-dimensional osmologial onstant and �

4

orrespond to the four-dimensional spaetime,

~

R

��

�

1

2

~

R~g

��

= ��

4

~g

��

: (50)
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The vauum Einstein equations are then

G

�

�

= R

�

�

�

1

2

RÆ

�

�

=

 

�

�

4

a

2

+ 3

a

00

a

+ 3

a

0

2

a

2

+

b

00

b

+ 3

a

0

b

0

ab

!

Æ

�

�

= ��Æ

�

�

; (51)

G

�

�

= R

�

�

�

1

2

R = �

2�

4

a

2

+ 4

a

00

a

+ 6

a

0

2

a

2

= ��; (52)

G

�

�

= R

�

�

�

1

2

R = �

2�

4

a

2

+ 4

a

0

b

0

ab

+ 6

a

0

2

a

2

= ��: (53)

These are three equations for two funtions, but due to the Bianhi identities, only two

of them are independent. From the di�erene between the seond and the third equation

we see that

b

0

b

=

a

00

a

0

(54)

and hene b = Aa

0

with an arbitrary integration onstant A. Plugging this into the �rst

equation we see that it is just a ombination of the seond and its derivative. De�ning a

new variable z via

a = z

2=5

(55)

we may rewrite eq (52) as

z

00

= �

5

8

� +

5

4

�

4

z

1=5

: (56)

This is the equation of motion of a "partile" in a "potential" V ,

z

00

= �

�V

�z

; V (z) =

5

16

� z

2

�

25

24

�

4

z

6=5

(57)

where � plays the role of time. The relation between z and b is then

b =

2

5

Az

0

z

�3=5

: (58)

The "partile" should start "at rest" at � = 0, whih means that we impose the boundary

onditions a

0

= 0 and b / � in the limit �! 0. If the manifold should be smooth at � = 0

we must have b! � there whih �xes the integration onstant A. Otherwise there would

be a onial singularity whih may be identi�ed as a brane. De�ne z

0

= z(� = 0). Now

there are four ases, depending on the signs of �, �

4

and V (z

0

):

1. If � > 0, �

4

� 0 arbitrary and V (z

0

) > 0, the "partile" reahes z = 0 at a �nite

� = ��, and spaetime terminates in a singularity there. From eqs. (55,57,58) one

an see that a ! (�� � �)

2=5

and b ! (�� � �)

�3=5

as � ! ��. In the simplest ase

�

4

= 0 and z

0

= 1 the solution is

a(�) = os

2=5

(!�); b(�) = �

2

5

A! sin(!�) os

�3=5

(!�); !

2

=

5

8

� (59)

and �� = �=(2!).

The singularity at �� orresponds to a type of higher dimensional blak hole, with
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time replaed by a spaelike oordinate. Indeed, the properties of the singularity at

�� an best be understood in another oordinate system. By an appropriate resaling

of four-dimensional spaetime and introduing the variable r = D(�� � �)

2=5

with

an appropriate onstant D, the metri around ��, i.e. around r = 0, an be brought

into the form

ds

2

!

M

r

3

d�

2

+

r

3

M

dr

2

+ r

2

g

��

dx

�

dx

�

: (60)

Up to the signature, this is just the r ! 0-limit of the six-dimensional analogue

of the Shwarzshild solution with mass parameter M , � playing the role of time.

Hene the singularity orresponds to a singular point in the �ve-dimensional spae

generated by the oordinates x

�

and �. We emphasize that in this ase � is the

internal oordinate of the singularity and x

�

are external, omplementary to the

brane situation.

This type of solution was generalized to an arbitrary odimension by Randjbar-

Daemi and Wetterih [31℄. There appear singularities with similar properties as in

the six-dimensional ase. General properties of suh singularities are disussed in

the appendix A of this thesis.

This �rst type of solution exists also if � < 0, �

4

< 0. In this ase the potential

V has a maximum at some z = z

max

. If z

0

< z

max

, we have a solution of type 1,

otherwise a solution of type 3.

2. If � > 0 and �

4

> 0, the potential V has a minimum at some z = z

min

with

V (z

min

) < 0. Now if also V (z

0

) < 0, the "partile" will osillate in the potential

well. This means that it omes to rest at some �nite � = ��, with behavior of a and

b at �� similar to � = 0: a

0

! 0 and b / (�� � �). Like at � = 0, there may be a

onial defet whih an be viewed as a brane. We will study this type of solution

extensively in setion 3.3.

3. If � < 0 and �

4

� 0, the slope of the potential is always negative. From eqs.

(55,57,58) we see that both a and b diverge exponentially as �!1, and spaetime

does not terminate at �nite � (exept when in�nity is shielded by a odimension-one

brane, a possibility whih was hosen in ref. [28℄, but whih we do not onsider).

4. An interesting borderline ase between type 1 and type 2 appears when � > 0,

�

4

> 0 and V (z

0

) = 0. This is given for z

0

= (10�

4

=3�)

5=4

. The solution for this

situation is

a(�) = a

0

os(!�); b(�) = Aa

0

! sin(!�); !

2

=

�

10

; a

0

= z

2=5

0

: (61)

As in the �rst type of solutions, spaetime terminates at �nite �� and the warp

fator a goes to zero there. But this time there is no singularity, all urvature

salars (inluding the square of the Riemann tensor) remain �nite as � ! ��. In

some sense, the roles of � and x

�

are interhanged at �� as ompared to � = 0, sine

� beomes a kind of radial oordinate for the x

�

there, a / (�� � �). One might

imagine that the fator a

0

k appearing in this proportionality leads to a de�it angle
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brane, but this time with odimension �ve. A loser look shows that this is not the

ase. De�it angle branes appear only in odimension two (see appendix A).

There are also "unwarped" solutions in whih the "partile" rests in a minimum or on a

maximum of the potential (depending on the signs of � and �

4

). These solutions, where

only b depends on �, annot be desribed with the potential method, and we will onsider

them later.

Whih of these solutions an serve as a basis for a realisti model? There are several

questions to study. At �rst we have to hek that integrating out the extra dimensions

gives a �nite result, i.e. that the e�etive four-dimensional Newton's onstant is �nite,

Z

d� d� a

2

b <1: (62)

This inequality holds in all ases exept the third one whih will be disarded from now

on. Another question is that of stability against small lassial utuations. Lavrelashvili

and Tinyakov [33℄ have expliitly shown that solutions of the �rst type are unstable. We

onjeture that the situation is not muh better in the other ases, and this is one of

the reasons why the inlusion of a Yang-Mills �eld is helpful. Furthermore the number

of hiral fermions is an important issue. Wetterih [32℄ showed that the addition of a

Weyl spinor to the six-dimensional ation leads to an in�nite number of four-dimensional

hiral fermions in the �rst ase, whih is due to the weird struture of the singularity at

��. In type 2 solutions the number of hiral fermions may be either zero or �nite, as will

be shown in hapter 4. This ase is partiularly interesting to us. The "borderline ase"

(type 4 solution) is not disussed here. But we already see that, after normalizing z

0

to

1 by a resaling of the 4D metri, �

4

is of the same size as �, whih is ertainly not very

promising.

Originally [29℄ the warped six-dimensional model was introdued in order to surround

the osmologial onstant problem. It was shown that solutions with �

4

= 0 exist for an

arbitrary "true vauum energy" �. The question remained why a solution with �

4

= 0

or very lose to zero should be favored ompared to those with larger �

4

. The authors of

ref. [29℄ expressed their hope that quantum orretions or additional interations would

single out the solution with �

4

= 0. Our ansatz will be di�erent. In hapter 5 we will

onsider osmologial solutions of the Einstein-Yang-Mills system. The arbitrariness of

the four-dimensional osmologial onstant ould be due to the "absorption" of urvature

by the warping along the internal spae, suh as the time evolution of the sale fator "ab-

sorbs" the urvature in ordinary osmology. Now if the warping beomes time-dependent,

the e�etive four-dimensional osmologial "onstant" beomes a dynamial variable, i.e.

e�etively some type of quintessene. Our hope is that it is this dynamis whih singles

out a very small �

4

.

3.2 6D Einstein-Maxwell Theory and Solutions

Now we turn to six-dimensional Einstein-Maxwell theory. The ation is

S =

Z

d

6

x

p

�g

�

�R + 2�

16�G

6

+

1

4

F

AB

F

AB

�

; (63)
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where G

6

is the six-dimensional gravitational onstant. The �eld equations are

G

B

A

= R

B

A

�

1

2

RÆ

B

A

= ��Æ

B

A

+ 8�G

6

T

B

A

; (64)

T

B

A

= (F

AC

F

BC

�

1

4

F

CD

F

CD

Æ

B

A

); (65)

�

A

(

p

gF

AB

) = 0: (66)

Here T

B

A

is the energy momentum tensor generated by the abelian gauge �eld strength

F

AB

. The spaetime symmetries require that F

��

is the only non-vanishing omponent of

the �eld strength tensor, sine F

BC

= �

B

A

C

� �

C

A

B

, A

�

= 0 (by symmetry), A

�

= 0 (by

a suitable gauge transformation) and A

�

= �(�). The Maxwell equations then imply

F

��

= Ca

�4

b; (67)

where C is a onstant of integration. Plugging the �eld strength (67) into our expression

(65) for the bulk energy momentum tensor T

B

A

one gets the non-vanishing omponents

T

�

�

= �

1

2

C

2

a

�8

Æ

�

�

; (68)

T

�

�

= T

�

�

=

1

2

C

2

a

�8

: (69)

When we insert this into the Einstein equations, we see that the relation between a and

b remains the same as before and that the potential V gets an additional term,

V (z) =

5

16

�z

2

�

25

24

�

4

z

6=5

+

25

12

�G

6

C

2

z

�6=5

: (70)

Now, for � > 0 and C 6= 0, the potential goes to in�nity for � ! 0 and � ! 1, so the

solution is of type 2, whatever V (z

0

) or the sign of �

4

is. In addition to the attrative

features of type 2 solutions already mentioned, we expet these solutions to be stable

against lassial perturbations, due to the presene of the Maxwell �eld.

By solving the system, we obtained the onstants of integration �

4

, C, A and z

0

. The

Einstein equations are obviously invariant under a resaling with onstant fator l:

a! la; �

4

! l

2

�

4

; C ! l

4

C; (71)

whih orresponds to a hange of sale for the four-dimensional oordinates

x

�

! l

�1

x

�

: (72)

This freedom an be used to set z

0

= 1.

In the presene of harged �elds, the gauge �eld A

�

has to ful�ll ertain requirements.

Sine the � oordinate beomes singular at the two poles � = 0 and � = ��, onsistent loal

oordinate systems must have A

�

= 0 at these points (for a more detailed argument, see

ref. [30℄). Unless C = 0, at least two pathes with di�erent gauges are therefore needed
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to over the whole internal spae. If the gauge with A

�

(� = 0) = 0 has lim

�!��

A

�

= �m,

the other gauge is obtained by subtration of the onstant �m. The gauge transformation

A

�

! A

�

+

1

e

�

�

�: (73)

must be well-de�ned for the harged �elds, whih requires �m = m=e, with e the gauge

oupling and m an integer "monopole number". The parameter C an be expressed in

terms of m,

C =

m

e

R

��

0

d� a

4

b

: (74)

In this ase our general type 2 solution an be expressed in terms of the integration

onstants A and �

4

and the monopole number m.

3.3 Codimension-Two Branes

From now on we will almost only disuss type 2 solutions. But as long as only the loal

properties of a odimension-two brane are onerned, what we say is also true for the

possible singularity at � = 0 in the other types of solutions.

In the modern language the onial singularities that may appear in the solutions would

be alled branes. In this setion, the relation between the "old" and "modern" language

is disussed, and the tension of the branes is alulated. We show that, at least at a

geometrial level, the two points of view are equivalent.

At � ! 0, we saw that b vanishes linearly while a approahes a �nite onstant a

0

whih

an be resaled to 1. The de�it angle � an be de�ned via b ! (1 � �=2�)�. Here,

� = 0 orresponds to � = 0 being a regular point in the internal spae, whereas � 6= 0

orresponds to a "defet" situated at � = 0 with de�it angle �. This is what we all

a de�it angle brane (DAB). The irumferene of a irle in internal spae at radius �

is then (2� � �)� instead of 2��. A bulk test partile an measure the singularity by

surrounding it, although the brane does not indue any urvature in the bulk. For � > 0

the singularity is a familiar one, whereas a negative de�it angle � < 0 may be alled an

"antione". We will denote by "usps" all singular strutures with � 6= 0. The onial

defet (� > 0) is a straightforward generalization of a straight in�nitely extended string

in four dimensions, where the z-oordinate is now replaed by the ordinates ~x on the

three-brane. If the spae terminates at some �nite ��, another DAB may be loated at

� = ��. Depending on the appearane of de�it angles we have two, one or zero "true"

singularities, assoiated to a orresponding number of branes. The most generi solution

has two branes at � = 0 and � = ��.

The original paper [30℄ has taken the point of view that the point � = 0 or �� is not

inluded into the manifold if a nonzero de�it angle ours. The singularity was seen as

a property of the bulk geometry, ompletely determined by the integration onstants of

the bulk solution. The modern "brane point of view" [28℄ asserts that an objet alled

brane sits at � = 0 or �� and determines the geometry due to its tension via the Einstein

equations. These two desriptions desribe exatly the same solution and are therefore

equivalent. Di�erent impliations for physis for the two points of view ould only arise
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if objets would be loated on the brane whih annot be desribed from a bulk point of

view, as it is ertainly possible for odimension-one branes. Then a brane point of view

would be neessary in order to desribe these objets. But, as we will disuss below, it

seems unlikely to us that anything Æ-funtion-like exept pure tension an onsistently

be put on an in�nitely thin de�it angle brane. If this onjeture turns out to be true,

it would be unneessary to speak of a brane, while the brane point of view an still be

onsidered as being quite useful for intuition.

We �rst adopt the brane point of view where one or two usps are inluded into the

manifold as branes. We want to relate the properties of the branes to the free integration

onstants appearing in the "bulk point of view". The branes orrespond to a Æ-funtion

singularity of the urvature tensor whih may be seen as generated by a Æ-funtion-like

energy momentum tensor at that position, the brane tension. In order to alulate the

brane tension, we follow the lines of ref. [34℄. We �rst assume the brane to have a �nite

thikness � and then take the limit �! 0. The energy momentum tensor generated by the

gauge �eld remains �nite at � = 0 and ��, see eqs.(68), (69), so it annot aount for the

singularity. The branes need to have some additional internal energy momentum tensor

~

T

B

A

. The Einstein equations inside the brane, 0 � � < �, are then

G

�

�

=

 

�

�

4

a

2

+ 3

a

00

a

+ 3

a

0

2

a

2

+

b

00

b

+ 3

a

0

b

0

ab

!

Æ

�

�

= ��Æ

�

�

+ 8�G

6

(T

�

�

+

~

T

�

�

); (75)

G

�

�

= �

2�

4

a

2

+ 4

a

00

a

+ 6

a

0

2

a

2

= �� + 8�G

6

(T

�

�

+

~

T

�

�

); (76)

G

�

�

= �

2�

4

a

2

+ 4

a

0

b

0

ab

+ 6

a

0

2

a

2

= �� + 8�G

6

(T

�

�

+

~

T

�

�

): (77)

The brane tension omponents an be de�ned as the integral over the omponents of the

energy momentum tensor

�

(�)

i

= �

Z

�

0

d� a

4

b

~

T

(i)

(i)

(�); (78)

where i = �; �; � and the brakets mean that there is no summation. Using eqs.(75)-(77)

we an express the �-integrals over

~

T

(i)

(i)

in terms of integrals over geometri quantities.

Sine we wish to onsider the limit � ! 0, in whih

~

T

B

A

will diverge in order to give a

�nite tension, the ontribution from the �-, �

4

- and T

B

A

-terms may be negleted in these

integrals. As an example one obtains

�

(�)

�

= �

1

8�G

6

Z

�

0

d� a

4

b

 

4

a

00

a

+ 6

a

0

2

a

2

!

: (79)

For two partiular ombinations of brane tensions the �-integral an be performed expli-

itly:

�

a

3

a

0

b

�

j

�

0

= �2�G

6

(�

�

+ �

�

) (80)

and

�

a

4

b

0

�

j

�

0

= �8�G

6

�

�

�

�

3

4

�

�

+

1

4

�

�

�

; (81)
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Here j

�

0

means the di�erene between the expression evaluated at � = � and � = 0.

Up to this point we have only used the general form of the metri (42) and the higher

dimensional Einstein equation. We impliitly assume that our model and solution is valid

for � � �, whereas in the inner region � < � more ompliated physis may play a role,

modifying the �eld equations but not the symmetries of the metri. (In this sense we

de�ne the energy momentum tensor in the inner region to inlude all parts in the �eld

equations exept the Einstein tensor.)

In order to proeed we need some additional information about the inner region. Within

the brane point of view one assumes that there is no real singularity at � = 0. SuÆient

resolution and understanding of the physis at extremely short distanes should rather

turn the brane into an extended objet with �nite thikness �. In onsequene, a manifold

that is regular at � = 0 obeys

a

0

j

�=0

= 0; b

0

j

�=0

= 1; bj

�=0

= 0; (82)

and we hoose a saling of the four dimensional oordinates x

�

suh that aj

�=0

= 1. We

next turn to our solution for small �. Sine the "partile" starts at rest at z = 1 for � = 0

one �nds by linearization

z(�) = 1�

�

2

�

2

; � =

�V

�z

j

z=1

(83)

and therefore

a(�) = 1�

1

5

��

2

; a

0

(�) = �

2

5

��; b(�) = A��; b

0

(�) = A�: (84)

Here � is related to the de�it angle � by

b = (1�

�

2�

)� = A�� (85)

or

b

0

(z ! 1) = 1�

�

2�

= A

dV

dz

= A

�

5

8

��

5

4

�

4

�

5

2

�G

6

C

2

�

: (86)

Up to orretions of the order O(�) we infer

�

a

3

a

0

b

�

j

�

0

= 0;

�

a

4

b

0

�

j

�

0

= �

�

2�

: (87)

In the same approximation we note that the integrand in eq.(79) is of the order �. This

will not be hanged by "regularizing" the brane in the inner region and we onlude

�

(�)

5

= O(�

2

). Combining this with eq.(87) and taking the limit � ! 0 we arrive at the

�nal relation between the brane tensions and the de�it angle

�

�

=

�

16�

2

G

6

; �

�

= �

�

= 0: (88)

This equation onstitutes the link between brane and bulk points of view. Within the

brane point of view an objet with tension �

�

6= 0, �

�

= �

�

= 0 produes a de�it angle
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in the geometry aording to eq.(88). This in turn limits the allowed solutions of the

Einstein equations. From the bulk point of view the general solution has free integration

onstants whih are related to the de�it angle by virtue of eq.(86). One may onsider

� as one of the independent integration onstants. The disussion of the de�it angle at

�� proeeds in omplete analogy. The general solution an therefore be haraterized by

two ontinuous de�it angles �

0

and �

��

(at � = 0 and � = ��, respetively) and an integer

monopole number m.

We observe that a positive brane tension �

�

orresponds to a positive de�it angle.

(In our onventions �

�

> 0 means positive energy density and negative pressure.) We do

not restrit our disussion to �

�

� 0 and we will see in hapter 4 that a negative brane

tension with negative de�it angle is partiularly interesting.

3.4 The Spherially Symmetri Solution

Finally the "unwarped" solutions are to be disussed, whih orrespond to the situation

where the "partile" is situated on a minimum or maximum of the potential V , and

six-dimensional spaetime is a diret produt of four-dimensional spaetime and internal

spae. In this ase we have a(�) = 1 and the Einstein equations redue to

��

4

+

b

00

b

= ��� 4�G

6

C

2

(89)

�2�

4

= �� + 4�G

6

C

2

: (90)

The seond equation gives a relation between �

4

, � and C whih is just the ondition for

the minimum/maximum of the potential to be loated at z = 1. The �rst equation an

then be integrated to

b(�) = A sin(k�); k

2

=

�

2

+ 6�G

6

C

2

: (91)

For A = 1=k internal spae is a sphere S

2

with radius L = 1=k, and for di�erent A it has

two equal de�it angles at the endpoints. Four-dimensional Minkowski spae, i.e. �

4

= 0

is obtained when

� = 4�G

6

C

2

; k

2

= 2�: (92)

When we disuss osmologial solutions, C will beome a funtion of time. So it will be

better to lassify a solution in terms of monopole numbers, whih remain really onstant.

One obtains

F

��

= CA sin k� (93)

and we hoose A

�

to be

A

�

=

Z

�

0

d�

0

F

��

= �

CA

k

(os k�� 1) (94)

In the presene of �elds that ouple to the gauge �eld, the di�erene between A

�

at � = 0

and �� must again be an integer times 1=e, so we infer

�

CA

k

=

m

2e

(95)
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or in the spherial ase where A = 1=k

C = �

m

2e

k

2

: (96)

Plugging this into the expression for k

2

in equation (91), one obtains

k

2

=

1

3�G

6

e

2

m

2

0

�

1�

s

1� 3�G

6

�

m

2

e

2

1

A

; (97)

and from this one gets

�

4

=

2

3

��

1

9�G

6

e

2

m

2

0

�

1�

s

1� 3�G

6

�

m

2

e

2

1

A

: (98)

So if � < 0, for eah value of m there is one positive solution for k

2

. If � > 0, there are

two suh solutions, provided � and m are not too large. The Minkowski solution �

4

= 0

is obtained for

� =

1

4�G

6

e

2

m

2

(99)

and the radius of the internal sphere takes the value

L

2

= 2�G

6

m

2

e

2

: (100)

If, more generally, A =

~

A=k, all the previous relations hold with e substituted by

~

Ae.

Finally we remark that even if no harged �elds are present, this parametrization is still

useful for osmologial purposes, sine "m=e", whih is now an arbitrary parameter, will

still be onstant, whereas C beomes time-dependent.
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4 Chiral Fermions from Extra Dimensions

Obtaining hiral four-dimensional fermions from the dimensional redution of a higher-

dimensional theory is a nontrivial task. Witten [35℄ showed that it is in general impossible

to get them from a pure Einstein theory if spaetime is a diret produt of four-dimensional

spaetime and a ompat internal spae. Wetterih [36℄ showed how the problem may be

surrounded either by onsidering a generalized theory of gravity or by imposing a non-

ompat internal spae. The seond possibility is partiularly interesting for us, sine the

internal spaes with singularities whih were disussed in the previous setion are non-

ompat. It turns out that some of these indeed admit hiral four-dimensional fermions

[32, 37℄. Another possibility to get hiral fermions is to ouple them to a gauge �eld

present in the higher dimensional theory [1℄.

In order to disuss these matters, we �rst work out the algebrai struture of spinors

in more than four dimensions and show for whih dimensionalities Weyl and Majorana

onstraints may be imposed [38℄. Then the vielbein formalism and the spin onnetion

are introdued in order to desribe spinors on urved manifolds. The proedure of di-

mensional redution is worked out [39℄. The hirality index [40, 35℄ is introdued and

the orresponding No-go-theorems are skethed. We investigate the appearane of hiral

fermions in six-dimensional Einstein-Maxwell theory and show that their number and

properties depend on the de�it angles in the internal spae whih in turn are related to

integration onstants of the "bulk" solution. The fermions are shown to be attahed to

the branes. Again we disuss in detail the onnetion between the older bulk point of

view and the modern brane point of view and formulate a kind of holographi priniple,

leading us to the notion of "holographi branes".

4.1 Spinors in Arbitrary Dimensions

In this setion we onstrut the spinor representations of the Lorentz group in arbitrarily

many dimensions. The introdution presented here is based on a ombination of the

treatments given in ref.[38℄ and appendies of refs [41, 42℄.

We have to �nd gamma matries obeying the Cli�ord algebra

f

m

; 

m

g = 2�

mn

: (101)

Even Dimensions: d = 2k. Group the 

n

into k sets of antiommuting raising and

lowering operators,



0�

=

1

2

(�

0

+ 

1

); (102)



a�

=

1

2

(

2a

� i

2a+1

); a = 1; :::; k � 1: (103)

These satisfy

n



a+

; 

b�

o

= Æ

ab

; (104)

n



a+

; 

b+

o

=

n



a�

; 

b�

o

= 0: (105)
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In partiular, (

a+

)

2

= (

a�

)

2

= 0. It follows that by ating with the 

a�

we an �nd a

spinor that obeys



a�

� = 0 (106)

for all a. Starting from � one an derive a representation of dimension 2

k

by ating in all

possible ways with the 

a+

. The states obtained an be labeled by s � (s

0

; s

1

; :::; s

k�1

),

where eah s

a

is �1=2:

 

(s)

� (

(k�1)+

)

s

k�1

+1=2

:::(

0+

)

s

0

+1=2

�: (107)

Taking the  

(s)

as a basis, the matrix elements of 

n

an be derived from the de�nitions

and antiommutation relations. One �nds an iterative expression starting in d = 2, where



0

=

 

0 1

�1 0

!

; 

1

=

 

0 1

1 0

!

: (108)

Going from k to k + 1,



n

= ~

n




 

�1 0

0 1

!

; n = 0; :::; d� 3 ; (109)



d�2

= I 


 

0 1

1 0

!

; 

d�1

= I 


 

0 �i

i 0

!

; (110)

with ~

n

the 2

k

� 2

k

Dira matries in d � 2 dimensions and I the 2

k

� 2

k

identity. The

2� 2 matries at on the index s

k

, whih is added in going from 2k to 2k+2 dimensions.

This representation gives the s simple reality and symmetry properties: 

n�

= 

n

for n

even or n = 1, and 

n�

= �

n

otherwise; 

nT

= �

n�

for n = 0, and 

nT

= 

n�

otherwise.

The matries

�

mn

=

1

4i

[

m

; 

n

℄ (111)

satisfy the Lorentz algebra

i [�

mn

;�

pq

℄ = �

np

�

mq

+ �

mq

�

np

� �

nq

�

mp

� �

mp

�

nq

: (112)

The generators �

2a;2a+1

ommute and an be simultaneously diagonalized. In terms of

raising and lowering operators,

S

a

= i

Æ

a;0

�

2a;2a+1

= 

a+



a�

�

1

2

(113)

so  

(s)

is a simultaneous eigenstate of the S

a

with eigenvalues s

a

. The half-integer values

show that this is a spinor representation, alled the 2

k

-dimensional Dira representation.

The elements of the Lorentz group in the neighborhood of the identity are represented by

matries of the form 1 +

1

2

i�

mn

�

mn

.

The Dira representation is in even dimensions reduible as a representation of the

Lorentz algebra. Beause �

mn

is quadrati in the s, the  

(s)

with even and odd numbers

of +1=2 eigenvalues do not mix. De�ne

� = i

�k



0



1

:::

d�1

; (114)
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whih ful�lls

�

2

= 1; f�; 

n

g = 0; f�;�

mn

g = 0: (115)

Noting that

� = 2

k

S

0

S

1

:::S

k�1

; (116)

we see that � is diagonal in our basis, taking the value +1 when s

a

inlude an even number

of �1=2 and �1 for an odd number of �1=2 values. The 2

k�1

states with � eigenvalue +1

form a Weyl representation of the Lorentz algebra, and those with eigenvalue �1 form a

seond.

The matries 

n�

and �

n�

satisfy the same Cli�ord algebra as 

n

and so they must

be related to them by a basis transformation (beause of uniqueness). Indeed, we �nd in

our representation from the reality properties, that the produts

B

1

= 

3



5

:::

d�1

; B

2

= �B

1

(117)

obey

B

1



n

B

�1

1

= (�1)

k�1



n�

; B

2



n

B

�1

2

= (�1)

k



n�

: (118)

For both of these matries (and only for these or a linear ombination of them) we have

B�

mn

B

�1

= ��

mn�

: (119)

It follows that the spinors  and B

�1

 

�

transform in the same way under the Lorentz

group, so the Dira representation is its own onjugate. We an de�ne harge onjugation

by

 



= B

�1

 

�

=

^

C : (120)

A Majorana ondition demands  



=  . Ating twie with the harge onjugation oper-

ator, it follows  = B

�

B for those  s that ful�ll the ondition. From the reality and

antiommutation properties one �nds

B

�

1

B

1

= (�1)

k(k�1)=2

; B

�

2

B

2

= (�1)

(k�1)(k�2)=2

: (121)

A Majorana ondition is therefore only self-onsistent if k = 0 mod 4 (with B = B

1

),

k = 1 mod 4 (with B = B

1

or B = B

2

) or k = 2 mod 4 (with B = B

2

).

A Majorana-Weyl spinor is possible if B

�

B = 1 and harge onjugation ommutes

with hirality. Ating on �, one �nds

B

1

�B

�1

1

= B

2

�B

�1

2

= (�1)

k�1

�

�

; (122)

so for k odd eah Weyl representation is its own onjugate, and for k even the Weyl

representations are onjugate to eah other. A Majorana-Weyl ondition is therefore only

possible if k = 1 mod 4.

For k even,

^

C antiommutes with �. In a basis in whih � has the form

� =

 

1 0

0 �1

!

; (123)
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B

�1

has the form

B

�1

=

 

0

~

E

E 0

!

; (124)

where

^

C

2

= 1 requires

~

E = (E

�1

)

�

. In this basis, a Majorana spinor has the form

 

M

=

 

�

E�

�

!

: (125)

It is ompletely desribed by the omplex 2

d=2�1

omponent spinor �, whih shows the

equivalene of Weyl and Majorana spinors in these dimensions.

Odd dimensions: d=2k+1. One an just add 

2k

= � to the -matries from d = 2k

in order to satisfy the Cli�ord algebra in d = 2k + 1 dimensions. The �s derived from

these s now form an irreduible representation of the Lorentz algebra. The onjugation

of 

2k

(eq. (122)) is ompatible with the onjugation of the other s only for B = B

1

(eq. (118)). A Majorana ondition is therefore possible for k = 0 or 1 mod 4 by virtue of

eq.(121).

To summarize, we found for the several dimensions:

� If d = 0 or 4 mod 8, the Weyl representations are omplex onjugate to eah other.

Majorana spinors exist and there is a one-to-one mapping between Majorana spinors

and the spinors of eah Weyl representation.

� If d = 1 or 3 mod 8, Majorana spinors exist, but there is no Weyl ondition.

� If d = 2 mod 8, Majorana, Weyl and Majorana-Weyl spinors exist. The Weyl

representations are self-onjugate ("real").

� If d = 5 or 7 mod 8, neither Weyl nor Majorana spinors are possible.

� If d = 6 mod 8, Weyl representations exist and are self-onjugate, but only "pseudo-

real". Therefore Majorana spinors do not exist.

Gamma Produts: From the antiommutation relations it an be seen that only anti-

symmetri produts of -matries an be linearly independent. In fat, in even dimensions,

none of the produts



n

1

n

2

:::n

p

= 

[n

1



n

2

:::

n

p

℄

(126)

vanishes (the square is always proportional to the identity), and they are all linearly

independent, sine they all have di�erent Lorentz and/or parity transformation rules.

From their number (sum of binomial oeÆients) one �nds that they span the omplete

spae of 2

k

� 2

k

matries. In odd dimensions d = 2k+1 some of the produts are related

via



n

1

:::n

p



2k

� �

n

1

:::n

d



n

p+1

:::n

d

: (127)

So only produts with p � k are independent. These again span the omplete spae of

2

k

� 2

k

matries.
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Fermion bilinears and mass terms: The matries 

nT

and �

nT

also satisfy the

Cli�ord algebra. Indeed, for even d = 2k we �nd for

C

1

= B

1



0

; C

2

= B

2



0

; (128)

using the hermitiity property



ny

= �

0



n

(

0

)

�1

; (129)

that

C

1



n

C

�1

1

= (�1)

k



nT

; C

2



n

C

�1

2

= (�1)

k+1



nT

: (130)

In odd dimensions, only C

1

ats uniformly on all s. In all ases,

C�

mn

C

�1

= ��

mnT

: (131)

Now there are two ways to onstrut fermion bilinears. The �rst is the standard one

known from four dimensions:

�

 =  

y



0

, and from the hermitiity properties of the �

mn

one �nds that

�

  is a Lorentz salar. The other possibility is

~

 =  

T

C, and again

~

  is

a Lorentz salar. Tensors an be onstruted as

�

 

n

1

n

2

:::n

p

 or

~

 

n

1

n

2

:::n

p

 : (132)

In even dimensions, one �nds for a Weyl spinor  

+

=

1

2

(1 + �) :

�

 

+

=

�

 

1

2

(1� �);

~

 

+

=

~

 

1

2

(1 + (�1)

d=2

�): (133)

So the tensors onstruted from

�

 

+

vanish if the rank is even. For d = 0 mod 4 the

tensors onstruted from

~

 vanish if the rank is odd, for d = 2 mod 4 if the rank is even.

From this follows that a mass term is forbidden for Weyl spinors if the dimension is d = 2

mod 4.

Another onstraint omes from the Pauli priniple [38℄. It forbids a mass term for a

Weyl or Majorana spinor in d = 0 mod 8 dimensions and for a Majorana spinor if d = 1

mod 8.

Spinors of SO(N) : For SO(N) the analysis is similar. The only di�erene lies es-

sentially in ignoring the pair 

0

, 

1

, so that SO(N) is analogous to SO(N+1,1). The

deompositions into Weyl and Majorana representations that were possible for d + 2 di-

mensions in the Minkowski ase are now possible in d dimensions. For the onstrution

of bilinears one has C = B, hene

~

 =  

T

B, and

�

 =  

y

. Now for Weyl spinors

�

 

+

=

�

 

1

2

(1 + �); (134)

and a mass term is always possible for them.
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4.2 Spinors on Curved Spaetimes

The familiar formulation of gravity in terms of a metri tensor g

��

is adequate for theories

with matter �elds restrited to salars, vetors and tensors, but spinors need a di�erent

treatment. Unlike vetors and tensors, spinors have a Lorentz transformation rule that

has no natural generalization to arbitrary oordinate systems. In order to deal with

spinors, we have to introdue oordinate systems �

a

X

(x) that are loally inertial at any

given point X. The transformation whih leads from general oordinates into this loally

inertial frame is desribed by the vielbein

e

a

�

(X) �

��

a

X

(x)

�x

�

j

x=X

: (135)

An ation will be invariant under general oordinate transformations x

�

! x

0

�

and loal

Lorentz transformations �

a

! �

0

a

= �

a

b

�

b

. Under a general oordinate transformation,

the vielbein transforms as

e

a

�

(x)! e

0

a

�

(x

0

) =

�x

�

�x

0

�

e

a

�

(x); (136)

and under a loal Lorentz transformation as

e

a

�

(x)! �

a

b

(x)e

b

�

(x): (137)

Vetors may be regarded either as quantities V

a

that transform as vetors under loal

Lorentz transformations, but as salars under general oordinate transformations, or as

quantities v

�

that transform as salars under loal Lorentz transformations but as vetors

under general oordinate transformations, the two being related by

V

a

= e

a

�

v

�

: (138)

Similar relations hold for tensors. In partiular one has

�

ab

= e

a

�

e

b

�

g

��

: (139)

Latin indies are raised and lowered with �

ab

, greek ones with g

��

.

Now we turn to spinors. These transform under loal Lorentz transformations aording

to

 (x)! D(�(x)) (x); (140)

where D(�) is the spinor representaion of the Lorentz group. The derivative transforms

under �(x) as

�

�

 ! D(�)

n

�

�

 +D

�1

(�) (�

�

D(�)) 

o

: (141)

In order to get a ovariant derivative, the seond term in the brakets has to be anelled

by introduing a onnetion matrix 


�

with transformation property




�

! D(�)


�

D

�1

(�)� (�

�

D(�))D

�1

(�): (142)
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The ovariant derivative an then be de�ned as

D

�

 � �

�

 + 


�

 ; (143)

whih transforms under loal Lorentz transformations like  itself. We an write 


�

in

the form




�

(x) =

1

2

i�

ab

!

ab

�

(x); (144)

where !

ab

�

is a representation-independent �eld known as the spin onnetion, whih

an be taken to be

!

ab

�

= g

��

e

a

�

e

b

�;�

: (145)

Here the semi-olon denotes an ordinary ovariant derivative, onstruted using the aÆne

onnetion �

�

��

. At �rst we observe that this is antisymmetri in a and b beause

g

��

e

a

�

e

b

�

= �

ab

has vanishing ovariant derivative. In order to prove that the so on-

struted 


�

has the orret transformation properties, it is suÆient to show it for in-

�nitesimal Lorentz transformations,

�

a

b

(x) = Æ

a

b

+ �

a

b

(x); �

ab

= ��

ba

; (146)

D(�) = 1 +

1

2

i�

ab

�

ab

: (147)

Now the transformation rule (142) beomes




�

! 


�

+

1

2

i�

ab

[�

ab

;


�

℄�

1

2

i�

ab

�

�

�

ab

: (148)

Using the ommutaion relations of the �

ab

and the transformation property

e

b�

�

�

e

a

�

! e

b�

�

�

e

a

�

+ �

b



e

�

�

�

e

a

�

+ �

a



e

b�

�

�

e



�

+ �

�

�

ab

; (149)

one �nds after some algebra that this rule indeed holds.

Ation of a symmetry group: How does an isometry group at on a spinor? Let the

group be geometrially generated by the Killing vetors K

z

. Then the de�nition of the Lie

derivative an be extended to inlude spinors. The ation of the group should leave the

vielbein invariant, so the general oordinate hange indued by K

z

has to be ombined

with some loal Lorentz transformation �

z

aounting for that invariane. One obtains

that the generators S

z

ating on a spinor an be expressed as

S

z

 = K

z

�

D

�

 +

1

2

i(D

�

K

z

�

)e

m

�

e

n�

�

mn

 : (150)
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4.3 Dimensional Redution of Fermions

In nature one observes that right-handed and left-handed fermions transform di�erently

under the gauge group SU(3)� SU(2)� U(1). (The quantum numbers are not "vetor-

like"). By gauge symmetry, a bare mass term is forbidden for suh fermions. Masses our

only in the ontext of spontaneous symmetry breaking (SSB) through a Yukawa oupling

to a salar �eld whih gets a nonzero vauum expetation value (vev). A suessful Kaluza-

Klein theory would have to explain all the fermion quantum numbers from dimensional

redution of a fundamental spinor. Suh attempts are desribed in hapter 6.

For the moment we are less ambitious and ask how we an get hiral four-dimensional

fermions from dimensional redution at all. We will see that there are strong onstraints

on suh hiral models, but that the situation hanges when we give up the restrition to

ompat internal spaes.

In the following we ignore SSB and regard hiral fermions as massless. On the other

hand we assume that no small masses our unless this is required by symmetry onsid-

erations. The reason for this is as follows: Without SSB, all natural masses that our

in Kaluza-Klein theories are almost of Plank mass order. (As we will show, the fermion

masses are linked to the eigenvalues of the "internal" Dira operator. The size of internal

spae is not far from the Plank sale, and this is the order at whih eigenvalues are

expeted.) If a fermion is light just by hane and not by symmetry requirements, we

expet that this will hange dramatially when the parameters of the model are slightly

shifted. Therefore a �ne-tuning of parameters would be needed for suh a non-required

lightness, and we assume that this does not our. To summarize this: We assume that

the massless fermions are preisely the hiral ones.

We start with the the original Kaluza-Klein idea and assume at �rst that d-dimensional

spaetime is a diret produt of four-dimensional Minkowski spae and a D-dimensional

ompat spae K with isometry group G whih appears as the gauge group in the e�etive

four-dimensional world. We restrit ourselves to the ase D = 2 mod 4. It was shown by

Wetterih [39℄ and Witten [35℄ that hiral fermions annot be obtained in any other ase

(this is still true for nonompat internal spaes). The spae of d-dimensional spinors is

the tensor produt of the spae of D-dimensional spinors and the spae of 4-dimensional

spinors. The Gamma matries an be written



�

= ~

�


 I

(D)

; 

�

=

~

�
 

�(D)

; (151)

where

~



�

are the 4D gamma matries and I

(D)

is the 2

D=2

dimensional unit matrix.

An arbitrary d-dimensional spinor 	(y; x) an always be "harmonially" expanded into

representations of the group G:

	(y; x) =

X

nHk

 

nHk

(y)�

nHk

(x): (152)

Here the index H labels all irreduible representations of G that are ontained in the in�-

nite dimensional spae of 2

D=2

-omponent spinor �elds  (y) orresponding to the internal

spae K. The index n runs over the omponents of H, and k ounts how many times H

is ontained in  (y). One an always normalize the  

nHk

aording to

Z

d

D

y

p

�g 

n

0

H

0

k

0

(y)

y

 

nHk

(y) = Æ

n

0

n

Æ

H

0

H

Æ

k

0

k

: (153)
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The Dira operator is assumed to be hermitian. The fermion Lagrangian is then

L

	

= i

�

	(

�

D

�

+ 

�

D

�

)	: (154)

For diret produt spaes, the spin onnetions have no omponents mixing Minkowski

spae with internal spae (this will hange when a warping is introdued), and we have

D

�

=

~

D

�

and D

�

= D

(D)

�

. Sine 

�

D

�

is a G singlet operator and hene ommutes with

the generators of G, one has



�

D

�

 

nHk

(y) =  

nHk

0

(y)M

(H)

k

0

k

(155)

with a hermitian onstant matrix M

(H)

k

0

k

for every representation H ontained in  (y).

Inserting the harmoni expansion into the Lagrangian (154) gives

L

	

= i 

nHk

y

 

n

0

H

0

k

00

�

�

nHk

~

�M

(H)

k

00

k

0

�

n

0

H

0

k

0

+ i 

nHk

y

 

n

0

H

0

k

0

�

�

nHk

~

�

~

D

�

�

n

0

H

0

k

0

: (156)

After arrying out the integration over the y oordinates, using the normalization (153)

one obtains the e�etive four-dimensional Lagrangian

L

(4)

	

= i

�

�

nHk

~

�M

(H)

kk

0

�

nHk

0

+ i

�

�

nHk

~

�

~

D

�

�

nHk

: (157)

The seond term is the usual kineti term, and the �rst one is a mass term, obtained

from the "mass operator" 

�

D

�

. In fat, the matriesM

(H)

an be diagonalized by using

unitary k

H

� k

H

matries (where k

H

is the number of H

0

s appearing in  (y)), without

a�eting the normalization (153).

We now turn to hirality. One has

� =

~

�
 �

(D)

: (158)

If we start with a d-dimensional Weyl spinor, i.e. with a �xed � eigenvalue, then the

eigenvalues of a �

(D)

eigenstate  (y) in the harmoni expansion and the

~

� eigenvalue

of the orresponding �(x) are orrelated. A �

(D)

= +1 state  

+

(y) would belong to a

left-handed four-dimensional fermion �(x) and a �

(D)

= �1 state  

�

(y) would belong to a

right-handed four-dimensional fermion, or vie versa. Chiral four-dimensional fermions are

therefore obtained if the  

+

and  

�

states belong to di�erent G-representations in the har-

moni expansion. For then also the orresponding left- and right-handed four-dimensional

fermions would transform di�erently. This an be seen as follows: The generators S

z

of

the symmetry group at on  

nHk

via

S

z

 

nHk

(y) =  

n

0

Hk

(y)(T

(H)

z

)

n

0

n

(159)

with a onstant omplex matrix T

(H)

z

for every representation H. The hange of a d-

dimensional spinor under an in�nitesimal symmetry transformation is then

Æ

G

	(y; x) = ��

z

S

z

 

nHk

(y)�

nHk

(x) (160)

=  

n

0

Hk

(y)(��

z

(T

(H)

z

)

n

0

n

�

nHk

(x)) (161)

=  

nHk

(y)Æ

G

�

nHk

(x): (162)
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In order to get hiral four-dimensional fermions it is ruial to start with a d-dimensional

Weyl (or Majorana-Weyl) spinor. A �xed � eigenvalue is neessary to get a orrelation

between D- and four-dimensional hirality. With a d-dimensional Dira spinor one would

get opposite orrelations for the � = 1 and � = �1 eigenstates, and there would be a

left-handed and a right-handed four-dimensional fermion for every  

nHk

.

Distinguishing between omplex, real and pseudoreal representations and using alge-

brai properties of the harge onjugation and heliity operators, one �nds [39℄ that if

there are hiral fermions at all, then they our in pairs (starting from a d-dimensional

Weyl spinor). There are either zero or at least two di�erent massless fermions for any rep-

resentation H. This unwanted degeneray disappears only for a Majorana-Weyl spinor,

whih exists only for d = 2 mod 8. Thus a realisti Kaluza-Klein theory (with pure gravity

and a massless spinor in the d-dimensional ation) should have 8k + 2 dimensions.

It remains the question whether hiral fermions an be obtained at all. This question

is linked to the so-alled hirality index N . Let n

+

C

be the number whih denotes how

many times a omplex representaion C of the symmetry group appears in the expansion

of  

+

(y), with orresponding numbers n

�

C

, n

+

�

C

, n

�

�

C

, where

�

C is the omplex onjugate to

C. The number jN

C

j,

N

C

= f

d

(n

+

C

� n

�

C

� n

+

�

C

+ n

�

�

C

) (163)

denotes the total number of unpaired hiral fermions transforming as a representation C

under the gauge group G. All other fermions an be paired to vetor-like representations.

These fermions will in general be massive, as explained in the beginning of this setion.

For d = 2 mod 4, D-dimensional harge onjugation implies

n

+

C

= n

�

�

C

; n

�

C

= n

+

�

C

: (164)

The fator f

d

is 1 for a Weyl spinor and

1

2

for a Majorana-Weyl spinor, where  

+

C

and  

�

�

C

are identi�ed. The total hirality index is

N =

X

C

d

C

jN

C

j; (165)

where d

C

is the dimension of the representation C.

It is easy to show [40℄ that N does not hange when the internal spae K is deformed

in aordane with the symmetry group G. If G is broken by the deformation to some

smaller group

~

G, the index N an only get smaller. So if

�

G is the maximal possible

symmetry group ompatible with the topology and di�erentiable struture of K, and K

an be obtained by deformation of suh a maximally symmetri spae

�

K, the index

�

N

orresponding to

�

K is an upper limit for the index N orresponding to K. The presene

and number of hiral fermions therefore depends essentially on the topology of the internal

spae K.

Unfortunately, a theorem by Atiyah and Hirzebruh (see ref. [35℄) states that N is

always zero for a ompat spae K. Possibilities to surround this no-go theorem are the

inlusion of elementary gauge �elds [35, 1℄ to whih the fermions ouple, or non-ompat

internal spaes [36℄. Both of these possibilities are realized in our six-dimensional toy

model.
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4.4 Chiral Fermions from De�it Angle Branes

We are now going to apply the tehniques developed in the previous subsetions to our

six-dimensional ase. The vielbein orresponding to the metri (42) an be hosen to be

e

m

�

= a(�)~e

m

�

; e

m

�

= e

a

�

= 0; (166)

e

4

�

= b(�) os �; e

5

�

= b(�) sin �; (167)

e

4

�

= sin �; e

5

�

= � os �: (168)

Here we use the following onventions: Greek indies denote general oordinates, Latin

indies orrespond to the loal inertial system. Indies �; �;m; n are running from 0

to 3, �; �; a; b from 4 to 5. For � and � we use the oordinates themselves as indies to

distinguish them from the Lorentz indies 4 and 5. A tilde again denotes the orresponding

quantity in four dimensions. The non-vanishing omponents of the spin onnetion derived

from this vielbein and the Christo�el symbols (43)-(45) are

!

mn

�

= ~!

mn

�

; (169)

!

m4

�

= �!

4m

�

= a

0

sin �~e

m

�

; (170)

!

m5

�

= �!

5m

�

= �a

0

os �~e

m

�

; (171)

!

45

�

= �!

54

�

= 1� b

0

(172)

The gamma matries an be hosen to be 

m

= ~

m

(hene 

�

= a

�1

~

�

), 

4(5)

=

~

�
 �

1(2)

,

where �

1(2)

are the �rst and seond Pauli matrix. In partiular, the Lorentz generator �

45

is

1

2

~

I 
 �

3

, where

~

I is the 4D unit matrix. The ovariant derivatives for a spinor are

D

�

 =

~

D

�

 + i(�

m4

sin � � �

m5

os �)a

0

~e

m

�

 ; (173)

D

�

 = �

�

 +

1

2

i�

3

(1� b

0

) ; (174)

D

�

 = �

�

 : (175)

From this follows the Dira operator



�

D

�

+ 

�

D

�

= a

�1

~

�

~

D

�

+ 

�

D

�

+ i

�

(�

m4

sin � � �

m5

os �)a

0

~e

m

(176)

= a

�1

~

�

~

D

�

+ 

�

D

�

+ 

m

1

2

(

m



4

sin � � 

m



5

os �)

a

0

a

(177)

= a

�1

~

�

~

D

�

+ 

�

D

�

+ 2(

4

sin � � 

5

os �)

a

0

a

(178)

= a

�1

~

�

~

D

�

+ 

�

D

�

+ 2

�

a

0

a

: (179)

The mass operator is therefore

M = a�

�

D

�

+ a

0

�

�

; (180)

with �

�

orresponding to the 2�2 gamma matries of internal spae. The harge operator

Q is given by the ation of the U(1) isometry group. Obviously a rotation � ! � + Æ�
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has to be ombined with a rotation of the "legs" e

4

and e

5

so that the vielbein remains

invariant. This happens via the Lorentz generator �

45

, and Q beomes

Q = �i�

�

+

1

2

�

3

(181)

with eigenvalues n� 1=2.

Consider now a six-dimensional Weyl spinor (unharged with respet to the elementary

gauge �eld A) and perform a harmoni expansion in eigenstates of Q:

	(�; �; x) =  

kn

(�; �)�

kn

(x); (182)

 

kn

(�; �) =

 

 

+

kn

 

�

kn

!

=

 

�

+

kn

(�) exp(in�)

�

�

kn

(�) exp(in�)

!

: (183)

Summation over k and n is implied and k labels the modes with given n. Sine M

ommutes with Q, k an be hosen to label the eigenstates of the mass operator. Here

�

+

kn

and �

�

kn

are eigenstates of the internal � matrix �

3

with opposite eigenvalues. Due

to the six-dimensional Weyl onstraint the positive eigenvalues of �

3

are assoiated to

left-handed four-dimensional Weyl spinors whereas the negative eigenvalues orrespond

to right-handed Weyl spinors,

	(�; �; x) = �

+

kn

(�) exp(in�)�

Lkn

(x) + �

�

kn

(�) exp(in�)�

Rkn

(x): (184)

Let N

�

(Q) be the number of zero mass modes of  

�

with harge Q = n � 1=2. In our

ase internal harge onjugation implies N

�

(Q) = N

+

(�Q) (sine d = 2 mod 4) and we

an therefore restrit the analysis to the zero mass eigenmodes in  

+

. Chiral fermions

are obtained only if N

+

(Q) 6= N

+

(�Q).

The zero mass modes are the solutions of

�

�

D

�

(a

2

 

0n

) = 0 (185)

and we ompute

�

�

D

�

=

 

0 D

�

D

+

0

!

; (186)

D

+

= �i exp(i�)

�

�

�

+ ib

�1

�

�

�

1

2

b

�1

(1� b

0

)

�

; (187)

D

�

= i exp(�i�)

�

�

�

� ib

�1

�

�

�

1

2

b

�1

(1� b

0

)

�

: (188)

The solutions for the zero modes �

+

0n

were found to be

�

+

0n

(�) = Ga

�2

(�)b

�1=2

(�) exp((n+

1

2

)I(�)); (189)

where

I(�) =

Z

�

�

0

d� b

�1

(�); (190)
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with �

0

an arbitrary point in the interval (0; ��) and G a normalization onstant. Not all

of these solutions make physially sense: The ation for a spinor reads

S =

Z

d

6

x

p

�g i

�

	(

�

D

�

+ 

�

D

�

)	 (191)

=

Z

d

4

x

�

�

kn

i~

�

D

�

�

kn

�

Z

d� d� a

3

b  

y

kn

 

kn

(192)

+

Z

d

4

x

�

�

kn

i

~

��

kn

�

Z

d� d� a

3

b  

y

kn

M

k

 

kn

:

The �rst term is the kineti term and the seond is the mass term. The spinors �

kn

(x)

orrespond to propagating fermions only if their kineti term is �nite after dimensional

redution. (This ondition is equivalent to the ondition that the ation remains �nite

for an exitation �

kn

(x) whih is loal in four-dimensional spae.) We therefore require

the integral

Z

d� a

3

bj�

+

0n

j

2

/

Z

d� a

�1

exp((2n+ 1)I) (193)

to be �nite. Our task is therefore the determination of the values of Q (or n), for whih

the normalizability ondition (193) is ful�lled.

Consider the type two solutions with de�it angles �

0

and �

1

. Possible problems with

normalizability an only ome from the "usps" at � = 0, � = �� where b vanishes linearly,

b = (1�

�

0

2�

)� and b = (1�

�

1

2�

)(��� �), respetively. Therefore the funtion I(�) diverges

logarithmially at the usps,

I(�)! (1�

�

0

2�

)

�1

ln� for �! 0; I(�)! �(1�

�

1

2�

)

�1

ln(����) for �! ��: (194)

Thus the normalizability ondition gives a onstraint on the harge from eah brane.

Finiteness around � = 0 holds for

Q > �

1

2

(1�

�

0

2�

) (195)

and �niteness around � = �� requires

Q <

1

2

(1�

�

1

2�

): (196)

For vanishing de�it angles �

0

= �

1

= 0 no massless spinors exist sine Q is half integer

and �

1

2

< Q <

1

2

therefore has no solution. This situation also holds for positive de�ite

angles �

0

� 0, �

1

� 0. For �

0

= 0 the massless spinors must have positive Q (f. eq.

195) and exist if a usp is present at �� with negative de�it angle �

1

< 0. In this ase the

hirality index depends on the de�it angle �

1

. Thus the massless spinors with positive Q

are onneted with the brane at �� (�

1

< 0). Inversely, the massless spinors with negative

Q are assoiated with a brane at � = 0 (�

0

< 0). In ase of branes at � = 0 and � = �� we

�nd massless spinors both with positive and negative Q. For equal de�it angles �

0

= �

1

their number is equal, N

+

(Q) = N

�

(Q). One onludes that a hiral imbalane (non-

vanishing hirality index) is only realized if the two branes are assoiated with di�erent

de�it angles.
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Holographi Branes [37℄: In the remainder of this setion the orrespondene between

the bulk and brane piture is disussed and "holographi branes" are introdued.

Starting from the bulk piture we have learned that the possible massless fermions are

assoiated with the singularities or branes. For a given harge Q the left-handed fermions

are linked to one brane and the right-handed ones to the other. A di�erene in the de�it

angles of the two branes an therefore lead to hirality. This �nds its orrespondene

within the brane point of view: in a ertain sense the left-handed partiles with Q > 0

"live" on the brane at �� and those with Q < 0 on the other brane at � = 0. Indeed, for

Q > 0 the probability density diverges for �! ��,

�

2



1=2

j�

+

0n

j

2

(��� �)

�

2Q

1��

1

=2�

; j�

+

0n

j

2

(��� �)

�(

2Q

1��

1

=2�

+1)

; (197)

with a orresponding behavior for Q < 0 and �! 0.

In ontrast to the behavior of the tension this onentration is, however, not of the Æ-

funtion type. It rather obeys an inverse power law singularity with a tail in the bulk.

This type of brane fermions an be lassi�ed from the bulk geometry whih must obey

the orresponding �eld equations. More preisely, the number and harges of the hiral

fermions on the brane are not arbitrary any more but an be omputed as funtions of

the integration onstants of the bulk geometry. This is a type of "holographi priniple"

whih renders the model muh more preditive - the arbitrariness of "putting matter on

the brane" has disappeared. This preditive power extends to the more detailed prop-

erties of these fermions, like Yukawa ouplings to the salar modes of the model. These

ouplings an be omputed without any knowledge of the details of the brane. The in-

sensitivity with respet to the details of the brane is related to the dual nature of the

wave funtion �

+

0

. Even though �

+

0

(�) diverges for � ! ��, the relevant integrals for the

omputation of the properties of the four-dimensional fermions onverge for �! ��. They

are therefore dominated by the "tail" of the wave funtion in the bulk.

In analogy to the previous disussion we may imagine a "regularized brane" without sin-

gularity at ��. The existene of normalizable massless fermions then requires that also the

mass operator and therefore the funtional form (189) of the zero modes gets modi�ed

by the additional physis on the brane. (Otherwise the regular behavior of the metri

b! (����) would render the ontinuation of the zero mode for � > 0 into the inner region

unnormalizable.) We an then imagine that the regularized wave funtion �

+

0

reahes a

onstant, �

+

0

(� ! ��) = 

��

, where the proper de�nition of eq.(184) everywhere on the

manifold requires 

�

= 0 for n 6= 0.

This "regularized piture" also sets the stage for the question if additional massless

fermions ould live on the brane without being detetable from the bulk. In the most

general setting without further assumption the answer is positive. We still expet that

the wave funtions of suh "pure brane fermions" have a tail in the region �� � � > �.

In this bulk region the tail of suh a wave funtion has to obey eq.(189). Nevertheless,

we an now onsider a value Q whih violates the ondition (196). Suh a mode would

look unnormalizable if ontinued to � ! �� but may be rendered normalizable by the

physis on the brane. In ontrast to the modes obeying the ondition (196) the physial

properties of the orresponding four-dimensional fermion would be ompletely dominated

by the physis on the brane, with negligible inuene of the bulk geometry. Indeed, for
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regularized branes the usual dimensional redution by integration over the internal oor-

dinates an be performed without distintion between `pure brane fermions' and fermions

obeying the onditions (195),(196). For the pure brane fermions the relevant integrals

will be dominated by the brane region ��� � < �.

Unfortunately, without further knowledge of the physis on the brane the assumption of

suh pure brane fermions remains ompletely ad ho, without any preditive power exept

that the harge Q should be larger than the bound (196). (Pure brane fermions would be

needed for hirality in ase of a positive de�it angle.) Postulating the existene of pure

brane fermions without knowledge of the detailed physis on the brane amounts more or

less to postulating that the physis of the fermions is as it is observed - this is not very

helpful for an explanation of the properties of realisti quarks and leptons. This situation

is very di�erent for the hiral fermions obeying the bounds (195),(196) for whih all ob-

servable properties are onneted to the bulk geometry and therefore severely onstrained

for a given model.

As an interesting andidate for the omputation of harges and ouplings of quarks and

leptons we therefore propose the notion of "holographi branes". For holographi branes

all relevant exitations that are onneted to observable partiles in the e�etive four-

dimensional world at low energies are of the type of the massless fermions obeying the

onstraints (195),(196). In other words, all relevant properties of the brane, inluding the

exitations on the brane, are reeted by properties of the bulk geometry and bulk exi-

tations. The holographial priniple states that the observable properties an in priniple

be understood both from the brane and bulk point of view, with a one to one orrespon-

dene. In pratie, the detailed properties of the brane are often not known suh that

atual omputations of observable quantities an be performed in the bulk piture of a

nonompat internal spae with singularities.

4.5 Fermions that Couple to the Gauge Field

The previous analysis an be easily generalized to fermions that ouple to the gauge �eld

A, say with harge e. The only di�erene is that D

�

gets an extra term +ieA

�

. With the

harmoni expansion

	(�; �; x) =  

kn

(�; �)�

kn

(x); (198)

 

kn

(�; �) =

 

 

+

kn

 

�

kn

!

=

 

�

+

kn

(�) exp(in�)

�

�

kn

(�) exp(in�)

!

; (199)

the zero modes are

�

+

0n

(�) = Na

�2

(�)b

�1=2

(�) exp(I

+

(�)); (200)

�

+

0n

(�) = Na

�2

(�)b

�1=2

(�) exp(I

�

(�)); (201)

where N is a normalization onstant

I

+

(�) =

Z

�

�

0

d� b

�1

(n+

1

2

+ eA

�

); (202)

I

�

(�) =

Z

�

�

0

d� b

�1

(�n+

1

2

� eA

�

): (203)
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To eah "left-handed" mode with quantum number n and harge e orresponds a "right-

handed" mode with quantum number �n and harge �e. In order to generalize the

onditions (195,196), we hoose the gauge in whih A

�

! 0 at � ! 0 and A

�

! m=e at

� ! ��. In this gauge, the normalizability onditions for a "left-handed" zero mode �

+

0n

with harge e are

n+

1

2

> �

1

2

(1�

�

0

2�

); (204)

n+m +

1

2

<

1

2

(1�

�

1

2�

): (205)

For "right-handed" zero modes �

�

0n

with harge e one has to hange the signs of m and

n. For fermions with harge Ze one has to take Zm instead of m.

An important di�erene to the unharged fermions is that now hiral fermions exist

also if the de�it angles are zero. This is partiularly the ase in the relatively simple

unwarped toy model with spherial internal spae. The hiral zero modes of this model

an be easily omputed. For simpliity we take the radius of the sphere to unity, so that

we have

b = sin �; A

�

=

e

2m

(1� os �): (206)

We want to alulate the zero modes �

+

0n

with harge e. Suh zero modes exist only if m

is negative. If this is the ase, the onditions (204,205) beome

n � 0; n < jmj: (207)

So for any negative m, there are jmj hiral fermions. The integral I(�) an be performed

expliitly and one obtains

�

+

0n

(�) = N(sin �)

�1=2

exp

Z

�

�

0

d�

n+

1

2

+

m

2

(1� os �)

sin �

(208)

=

~

N (sin �)

jmj�1�n

(1� os �)

n�(jmj�1)=2

(209)

In ontrast to the fermions in the presene of branes, these modes are everywhere �nite

on the internal sphere. With an appropriate normalization one an show that

jmj�1

X

n=0

j�

+

0n

(�)j

2

= onst: (210)

This result is not surprising and shows one more the symmetry of the situation. In fat,

the zero modes form an m dimensional irreduible SU(2) representation, orresponding

to the internal "angular momentum" l =

m�1

2

.
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5 Cosmology of 6D Einstein-Maxwell Theory

The simplest Kaluza-Klein osmologies are desribed by two sale fators whih are fun-

tions of time only: one for the three large dimensions and one for a highly symmetri

internal spae. The osmology is then determined by two ordinary di�erential equations,

whih were explored more than twenty years ago [44, 45℄. Here we will onsider this as

a very speial ase of muh more general systems. We allow for a time-dependent warp-

ing and for deformed internal spaes, possibly with singularities. All quantities are now

funtions of time and an internal oordinate �. What are the features of suh a osmology?

In the stati solutions of 6D Einstein-Maxwell theory, the four-dimensional osmolog-

ial onstant was a free integration onstant. If we drop the requirement of maximal 4D

symmetry and allow for more general osmologies, only keeping 3D maximal symmetry

(i.e. spatial homogeneity and isotropy), the e�etive "dark energy" will beome a dynam-

ial quantity. The investigation of these dynamis was one of the main motivations for

this work. Unfortunately the problem turns out to be very diÆult in the most general

situation. It is desribed by a ompliated set of partial di�erential equations with many

degrees of freedom. The general framework and some of its diÆulties are desribed in

setion 5.1. At least we were able to �nd some qualitative features of the osmology, suh

as the time independene of de�it angles, whih is shown in setion 5.2. We were also

able to solve some speial ases of higher symmetry. In setion 5.3, the model in whih

internal spae has the geometry of a sphere - from now on referred to as the "spherial

model" - is disussed in the 6D piture and in the dimensionally redued e�etive 4D

piture. Some general features of Kaluza-Klein osmology are visible from this simple

example, in partiular the appearane of a salar �eld with an asymptotially exponential

potential, related to the size of internal spae. In setion 5.5, we ompute the 6D energy

momentum tensor of the zero mode fermions and inlude them into the spherial model.

General properties of possible late time osmologies and the diÆulties in their desrip-

tion are disussed in setion 5.4. There is again a speial ase whih is easily solved: If

the internal spae is exatly stati, the possible equations of state and the � dependene

of the energy momentum tensor an be strongly onstrained. These solutions provide a

new explanation of why the 4D osmologial onstant is a free parameter. Nevertheless, a

large number of questions remain unanswered. They are summarized in setion 5.6, and

the possible next steps towards a better understanding are outlined.

5.1 The Most General Metri

We have to �nd the most general metri onsistent with the required symmetries: three-

dimensional translation and rotation invariane, ating on the oordinates x

i

, and a U(1)

symmetry, ating on the oordinate � 2 [0; 2�℄. No real physial funtion should depend

on x

i

or � (i.e. these oordinates should appear only in phases), and no diretion in the

three-dimensional spae should be preferred. (For simpliity, we will take this spae to be

at, so that the metri omponents g

ij

are a

2

(t; �)Æ

ij

.) The latter ondition forbids metri

omponents g

ti

, g

�i

and g

�i

, sine these would selet preferred diretions in three-spae,
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e.g. by the three-vetor (g

t1

; g

t2

; g

t3

). The other o�-diagonal metri omponents g

t�

, g

t�

and g

��

are allowed, as long as they are funtions of t and � only.

This situation is unique to the six-dimensional ase in the following sense: If there

were D internal dimensions with D > 2, and D � 1 of these dimensions, represented by

oordinates �

�

, were symmetri under, say, SO(D), then the g

t�

and g

��

omponents would

be forbidden, beause they would selet preferred diretions in the D � 1-dimensional

spae. The di�erene is that a U(1) "rotation" is a translation rather than a rotation. In

this sense a odimension-two spaetime is more ompliated than a higher-dimensional

one.

For the gauge �eld the situation is slightly di�erent. For spei� solutions (solitons) a

omponent A

�

may be allowed even if the internal symmetry is larger than U(1). Think

of the monopole solution on S

2

. The �-diretion is then not preferred physially. A

oordinate transformation may be aompanied by a gauge transformation, so that the

transformed A-�eld lies in the new �-diretion. An analogous proedure does not work

for the metri tensor, sine the gauge transformations are the oordinate transformations

themselves.

Up to now we have identi�ed the most general metri onsistent with the symmetries

as

ds

2

= �

2

(t; �)dt

2

+ a

2

(t; �)(dx

i

)

2

+ b

2

(t; �)d�

2

+ n

2

(t; �)d�

2

(211)

+ 2w(t; �)dtd�+ 2u(t; �)dtd� + 2v(t; �)d�d�:

The next step is to look how far this line element an be simpli�ed by a oordinate

transformation. Therefore one has to �nd the possible transformations onsistent with

the symmetries, whih should still be represented by the new oordinates x

i

0

and �

0

.

Global translations of � and translations and rotations of x

i

are of ourse allowed (these

are just the isometries). Transformations an never depend on �, sine this would lead

to funtions depending on �

0

; for example t ! t

0

= t + Æt(�), � ! �

0

= � would imply

t = t

0

� Æt(�

0

), and so f(t)! f

0

(t

0

; �

0

) for any funtion f . Or if � ! �

0

(�), we would get

g

��

0

=

 

��

0

��

!

2

g

��

; (212)

and so one must have ��

0

=�� = onst = 1, sine we would like to have �

0

also in the

interval [0; 2�℄. Transformations of x

i

annot depend on t or �, sine this would lead to

forbidden omponents via

g

ti

0

=

�t

0

�t

�x

i

0

�t

g

tt

; (213)

and similarly for g

�i

. So we are left with the following possibilities:

x

i

! x

i

0

(x

j

); � ! � + Æ�(t; �); (214)

t ! t

0

(t; �); �! �

0

(t; �):

Obviously, the only e�et of the x

i

transformations ould be a resaling of three-

dimensional spae, so we an forget about them in this ontext. There are three o�-

diagonal metri omponents, g

t�

, g

t�

and g

��

, and one might think that these an be
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removed by the three remaining oordinate transformations. It turns out that this is in

general not true. The reason for that is essentially the U(1) symmetry. (In fat, the

metri an always be diagonalized, but then in general the new oordinate �

0

will not

reet the U(1) symmetry any more, and �elds will depend on �

0

.) To see this, onsider

the inverse of the metri. The omponents g

t�

and g

��

will be zero if and only if g

t�

and

g

��

are zero. The ondition that this happens after a oordinate transformation of the

type (214) is

g

t�

0

=

�t

0

�t

 

g

t�

+

��

0

�t

g

tt

+

��

0

��

g

t�

!

+

�t

0

��

 

g

��

+

��

0

�t

g

�t

+

��

0

��

g

��

!

= 0; (215)

g

��

0

=

��

0

�t

 

g

t�

+

��

0

�t

g

tt

+

��

0

��

g

t�

!

+

��

0

��

 

g

��

+

��

0

�t

g

�t

+

��

0

��

g

��

!

= 0: (216)

A solution of these di�erential equations implies either that the Jaobi determinant of the

(�; t) transformation vanishes,

det

0

�

�t

0

�t

�t

0

��

��

0

�t

��

0

��

1

A

= 0; (217)

whih is not possible, or that the brakets vanish. But the seond possibility onsists of

two onditions for the funtion �

0

, whih an in general not be ful�lled simultaneously.

One onludes that generally only one of the two omponents g

t�

and g

��

an be set

to zero. A proedure to simplify the metri (211) ould look as follows: Use the freedom

for t

0

and �

0

to annihilate g

t�

and for one further simpli�ation, e.g. to arrange that

g

tt

0

= �g

ii

0

, i.e. to make time onformal with respet to spae. Then use the freedom for

�

0

to annihilate either g

t�

or g

��

. The simpli�ed line element is then

ds

2

= a

2

(t; �)(�dt

2

+ (dx

i

)

2

) + b

2

(t; �)d�

2

+ n

2

(t; �)d�

2

+ 2u(t; �)dtd�; (218)

or similarly with 2v(t; �)d�d� instead of 2u(t; �)dtd�. We will refer to these two possi-

bilities as the "u-gauge" and the "v-gauge". In the e�etive four-dimensional piture u

orresponds to the time omponent of an abelian gauge �eld (hene some kind of eletri

potential), sine g

��

integrated over internal spae is the gauge �eld orresponding to the

U(1) isometry. On the other hand v orresponds to a salar �eld. The fat that a degree

of freedom an be shifted between a salar �eld and the omponent of a gauge �eld is a

familiar fat in ordinary partile physis.

A very similar hoie applies to the gauge �eld A. The three omponents A

t

, A

�

and

A

�

are allowed by the symmetries. One an hoose to set either A

t

or A

�

to zero by a

gauge transformation.

Comparing this osmologial system to the stati one from hapter 3, one �nds that the

ordinary di�erential equations are generalized to partial di�erential equations, ontaining

t- and �-derivatives, and that the three funtions a, b and A

�

are aompanied by three

more funtions: n, u or v, and A

t

or A

�

.

A full numerial analysis of this system would involve as initial onditions twelve fun-

tions of � (four metri and two gauge �eld omponents and their �rst time derivatives at
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some initial time t

0

) whih are subjet to three onstraint equations, namely the (tt)�,

(t�)� and (t�)� omponents of Einstein's equations, whih ontain no seond time deriva-

tives. The time evolution is determined by the (ii)�, (��)�, (��)� and (��)- omponents

of Einstein's equations and two equations for the gauge �eld. For ompleteness, the Ein-

stein tensor and the energy momentum tensor of the gauge �eld are given in Appendix

B.

We will not try to perform these numeris here. Instead we onentrate on two par-

tiular aspets of the subjet:

1. Properties of the Codimension-two branes at the two endpoints of internal spae;

2. Speial ases of higher symmetry: the spherial model and late time osmology.

Before we do so, some remarks on the diÆulties in hoosing a partiular gauge are in

order.

The Problem of �nding a "natural" oordinate system: The oordinate systems

with the properties de�ned above may be a bad hoie under some irumstanes. Prob-

lems may in partiular arise from the relation �g

tt

= g

ii

= a

2

. In usual 4D osmology,

time an be made onformal to spae by a transformation t ! �(t), whih involves only

a strething of the time axis. On our 6D ase, we need instead a more general trans-

formation t; � ! t

0

; �

0

(t; �). Thereby time and � oordinate are mixed to some extent.

This leads to the question: What is the "physial" time oordinate? The diÆulty an

be demonstrated in a four-dimensional example: the gravitational �eld of a wire.

Consider a wire in z-diretion. A solution of Einstein's equations whih desribes its

stati gravitational �eld will in general have di�erent funtions g

zz

(�) and g

tt

(�) (in ylin-

drial oordinates). This orresponds to di�erent funtions �g

tt

and g

ii

in the 6D ase.

One an now perform a oordinate transformation t; �! t

0

; �

0

(t; �) to make time onfor-

mal, i.e. to give �g

tt

everywhere the orret value to be equal to g

zz

. The transformed

metri still desribes the stati gravitational �eld of a wire, but now the "physial" time

independene is no longer visible in the metri funtions, sine now g

zz

(�)! g

zz

(�(�

0

; t

0

)),

so that the metri depends on "time" in its new form. The solution still has the same

timelike Killing vetor, but its diretion is no longer given by the new t-oordinate. The

new time oordinate is "unphysial". An exeption is the ase where the equation of

state of the wire is w = �1, i.e T

t

t

= T

z

z

. Then the symmetry between t and z would be

"physial", and �g

tt

and g

zz

would naturally have the same �-dependene. But in the

other ases, with general equation of state, this hoie of gauge would be unnatural.

The problem in six dimensions is similar. Indeed, there may be singularities at � = 0

di�erent from the de�it angle branes, i.e. singularities not of the delta funtion type, but

with divergent urvature and divergent metri omponents. These general singularities

are probably not well desribed in our oordinates. It would be interesting to see how

they evolve with time, but the question is: with whih time? In the ase of the wire there

was a timelike Killing vetor. Its diretion identi�es the natural time oordinate. But in

our osmologial ontext, we are mainly interested in solutions with only approximate

Killing vetors. It is neessary to �nd a oordinate system in whih the deviations from
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a symmetry do not arti�ially blow up. We will ome bak to that point at the end of

setion 5.4.

5.2 Properties of the Branes

We will onsider here a de�it angle brane at � = 0. (The disussion of a brane at

�� is ompletely analogous, of ourse.) To have a odimension-two brane at that plae

requires that the determinant of the metri vanishes there quadratially. (If det g would

not vanish, the subspae with � = 0 would be of odimension one, and if it would vanish

more than quadratially, it would be a di�erent type of singularity.) In the u-gauge, this

requirement reads

det g = �a

6

n

2

(a

2

b

2

+ u

2

)! 0 as �! 0: (219)

Sine a and n should be �nite (otherwise we would not have a brane but a di�erent type

of singularity) this means that both b and u must vanish at least linearly at � = 0. For b

this was already lear, beause b(t; �) measures the radius of a irle in internal spae at

radius �.

To have an in�nitely thin odimension-two brane means that the singularity at � = 0

is of the delta funtion type. Therefore urvature invariants and energy densities do

not diverge as one approahes the brane (if they did, we would again have a di�erent

type of singularity), but have a delta funtion ontribution preisely at � = 0. So the

omponents of the Einstein tensor G

A

B

should remain �nite outside the brane. To have a

well-de�ned time oordinate on the brane requires that the urvature ontributions to the

delta funtion are ontained in the �-derivative terms, not in the time derivative terms.

These requirements imply strong onstraints on the possible brane properties: The

equation of state must be preisely w = �1 and the de�it angle must be time indepen-

dent. To prove this, one shows at �rst that the o�-diagonal metri omponent vanishes

at least � �

2

at � = 0: In the u-gauge the (��) omponent of the Einstein tensor ontains

the term

u

0

2

4n

2

(a

2

b

2

+ u

2

)

; (220)

where the prime again denotes derivation with respet to �. If u

0

were �nite at the brane,

this term would diverge as �

�2

, whih is not allowed by our requirements (there is no

other term in G

�

�

whih ould anel this divergene). One onludes that u

0

vanishes at

least � � at � = 0, and so at least u � �

2

while b � �.

To prove that the equation of state is w = �1, onsider the di�erene G

t

t

� G

(i)

(i)

. In

the v-gauge, this di�erene does not ontain any �-derivatives at all, only time derivatives

whih annot ontribute to the delta funtion singularity. Note that the �-derivative terms

of refs. [28, 47℄ are absent here, sine we have hosen g

tt

= �g

ii

by hoie of oordinates.

In the u-gauge, the di�erene does ontain �-derivatives, but these terms are damped with

u

2

=b

2

and are not suÆient to ontribute to the singularity. Therefore the singular parts

of G

t

t

and G

(i)

(i)

are equal. The same is of ourse true for the orresponding omponents of

the energy momentum tensor T

t

t

= �" and T

(i)

(i)

= p, so w = "

(singular)

=p

(singular)

= �1.
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To have a pure tension brane does not automatially imply that this tension (and

hene the de�it angle) is a onstant. One might imagine that there is some energy ow

from the bulk onto the brane whih would enlarge its tension and therefore the de�it

angle. To show that this does not happen, onsider the omponent G

t

�

of the Einstein

tensor in u-gauge. The "dangerous", i.e. possibly divergent part of this omponent is

b

2

n(a

2

b

2

+ u

2

)

 

_

b

0

b

�

b

0

b

_n

n

!

; (221)

where a dot denotes derivation with respet to time. With the approximation

b = f(t)�+O(�

2

) (222)

one sees that the "dangerous" term remains �nite if and only if

_

f

f

=

_n

n

(223)

in the viinity of the brane. But this is just saying that if the extra dimensions are time

varying at all, then the radius and irumferene of a small irle around the brane grow

by the same fator. Hene the de�it angle does not hange with time.

This result is not surprising. Di�erent to other singularities, there is no attrative

fore towards the brane whih would ompress any "loud" of energy towards the enter at

� = 0. We saw that the urvature remains �nite outside the brane, whih is the geometri

analogue of having no divergent gravitational fores. Therefore only an in�nitesimal part

of the loud would reah the singularity, leading to no hange of the tension.

Things will be di�erent with other types of less symmetri odimension-two singular-

ities, whih an ertainly our in 6D osmology. They probably indue attrative fores

and will therefore be able to grow. But as was mentioned in the previous setion, we do

not yet know how to desribe the osmology of these other singularities in a meaningful

way.

Time Independene of Monopole Numbers: From the energy momentum tensor

given in Appendix B one an see that

_

A

�

always appears with a fator b

�1

. At a de�it

angle brane, this ombination has to remain �nite. Therefore

_

A

�

has to vanish at the

branes. As long as no other types of singularities appear, this implies that the monopole

number, whih is essentially the di�erene between A

�

(��) and A

�

(0), is time-independent.

5.3 Cosmology of the Spherially Symmetri Model

The ompliated system of equations desribed above is enormously simpli�ed if internal

spae has the geometry of a sphere. We will use this simple system to present the e�ets

and impliations of dimensional redution, and show the equivalene of the six-dimensional

and the four-dimensional point of view. Furthermore we will �nd features of Kaluza-Klein

osmology whih will surely generalize to some extent to more ompliated systems.
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In this setion, we do not inlude any additional soures and desribe a osmology

indued just by urvature. The gauge �eld serves only to ompatify internal spae and

plays no role apart from that. The stati solutions for that system were derived at the

end of hapter 3, and we will make use of the relations derived there. The osmology is

given in terms of two sale funtions: the 4D sale fator a(t) (there is no warping in the

presene of spherial symmetry) and the sale fator of internal spae, n(t). In ontrast

to the stati ase, n is no longer required to be equal to 1, so we may de�ne the internal

oordinates suh that � goes from 0 to �, getting in this way rid of the quantity k used

in hapter 3. The o�-diagonal omponents of the metri have to vanish beause of the

higher symmetry, as was disussed in setion 5.1, and the omponent g

��

is given by

b(t; �) = n(t) sin �: (224)

It is straightforward to ompute the Einstein tensor to this metri. All the o�-diagonal

omponents vanish. The vanishing of G

t�

implies that the orresponding omponent of

the energy momentum tensor also vanishes:

T

t�

= F

t�

F

�

�

= 0: (225)

But F

�

�

� �

�

A

�

ertainly does not vanish for a monopole solution, so on onludes F

t�

= 0

and therefore

�

t

A

�

(t; �) = �

�

A

t

(t; �): (226)

This means that the time and �-omponents of A are a pure gauge and an be removed by

a gauge transformation. So we have, as in the stati ase, only to deal with the omponent

A

�

. The vanishing of G

t�

implies

T

t�

= F

t�

F

�

�

= 0; (227)

and it follows that

_

A

�

= 0. This means that the gauge �eld is stati and from the �eld

equation for F

AB

one again infers that A

0

�

is proportional to sin �, where the propor-

tionality fator an, for onveniene, again be expressed in terms of a monopole number

m:

A

0

5

=

m

2e

sin �; (228)

where e is a possible six-dimensional gauge oupling. The Einstein equations beome

�G

t

t

�

1

n

2

+

1

a

2

 

6

_a _n

an

+ 3

_a

2

a

2

+

_n

2

n

2

!

= �+ 8�G

6

m

2

8e

2

n

4

(229)

�G

(i)

(i)

�

1

n

2

+

1

a

2

 

2

�a

a

+ 2

�n

n

+ 2

_a _n

an

�

_a

2

a

2

+

_n

2

n

2

!

= �+ 8�G

6

m

2

8e

2

n

4
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�G

�

�

= �G

�

�

�

1

a

2

�

3

�a

a

+

�n

n

+ 2

_a _n

an

�

= �� 8�G

6

m

2

8e

2

n

4

(231)

Only two of these three equations are independent due to the Bianhi identities. The (tt)

omponent is a generalization of the Friedmann equation. The linear ombination

�R

�

�

� R

�

�

�

1

a

2

 

�n

n

+ 2

_a _n

an

+

_n

2

n

2

!

=

�

2

�

1

n

2

+ 8�G

6

3m

2

16e

2

n

4

(232)
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will be useful when we ompare the 6D and the e�etive 4D point of view. We will also

need the Rii salar whih is

R =

~

R

a

2

� 2

1

n

2

+

1

a

2

 

4

�n

n

+ 8

_a _n

an

+ 2

_n

2

n

2

!

: (233)

In order to �nd a four-dimensional interpretation of the osmologial equations, one

should perform a dimensional redution the ation.

S =

Z

d

4

xd�d�

p

�g

�

�R + 2�

16�G

6

+

1

4

F

AB

F

AB

�

(234)

=

Z

d

4

x 4�

q

�~gn

2

"

1

16�G
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�

~

R �
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n
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�

1

a
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4

�n

n

+ 8
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an
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n
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!
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!

+

m

2
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n

4

#

=

Z

d

4

x 4�

q

�~g

�

1

16�G

6

�

�n

2

~

R� 2�

�

n�

�

n+ 4(n

2

)

;�

;�

�

+

~

V (n)

�

;

where

~

V (n) =

�

8�G

6

n

2

�

1

8�G

6

+

m

2

8e

2

n

�2

: (235)

At this moment we are only interested in the e�et of the time-dependent size of the

internal dimensions on four-dimensional gravity. We therefore kept only the 4D urvature

term and terms involving n, leaving out 4D perturbations of the gauge �eld and salars

whih are non-singlets with respet to the isometry group of the sphere. One an see a

typial feature of Kaluza-Klein theories: The fator n

2

multiplying the four-dimensional

urvature salar leads to a kind of Brans-Dike theory. The strength of the gravitational

oupling depends on the internal radius. This dependene may be absorbed by a Weyl

saling of the metri. Therefore we de�ne the quantity l = n=n

0

and transform the metri

via

~g

��

! l

�2

~g

��

: (236)

Here n

0

is in priniple arbitrary, but it is onvenient to take it as the size of internal

spae in a "ground state", if suh a ground state exists. By ground state we mean a

stable solution with _n = 0. In hapter 3 we saw that for a large range of parameters two

solutions with _n = exist. In general we expet one of these to be stable and the other one

to be unstable (This property will be shown below). For a speial value of � (eq. 99),

one of these two solutions has �

4

= 0, whih is known to be lassially stable. In this

ase we would take n

0

= L with the L from eq.(100). Note that the seond solution with

the same � has internal radius and four-dimensional osmologial onstant

~

L =

p

3L; �

4

=

1

9�G

6

e

2

m

2

; (237)

see eqs (97) and (98).

In terms of the resaled metri the ation reads (and we omit the total divergene

term)

S =

Z

d

4

x

q

�~g

"

n

2

0

4G

6

�

�

~

R + 4l

�2

�

�

l�

�

l

�

+ V (l)

#

; (238)
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where

V (l) =

�n

2

0

2G

6

l

�2

�

1

2G

6

l

�4

+

�m

2

2e

2

n

2

0

l

�6

: (239)

One infers that the four-dimensional Newton onstant is

G

4

=

G

6

4�n

2

0

: (240)

In the ase where the stable ground state solution has �

4

= 0, the potential is

V

�

4

=0

(l) =

l

�2

4G

6

(1� l

�2

)

2

(241)

and the Newton onstant is independent of G

6

,

G

4;�

4

=0

=

e

2

8�

2

m

2

: (242)

Note that all dimensions ome out orret: The oordinates � and � are angles and

hene are dimensionless, in ontrast to x

�

. The lengths are therefore absorbed by the met-

ri omponents g

��

and g

��

, so that n has dimension (length) and still

R

d

4

xd�d�(�g)

1=2

=

(length)

6

. The 6D gauge oupling e has dimension (mass)

�1

. Now both A

�

(by eq.(228))

and F

��

have dimension (mass), although the seond quantity is a derivative of the �rst,

and anyway F

��

F

��

has dimension (mass)

6

, beause the indies are raised with g

��

and

g

��

. The 4D gravitational onstant has dimension (mass)

�2

, whereas G

6

has (mass)

�4

.

So everything �ts to make the ation dimensionless.

It is interesting that the strength of four-dimensional gravitation is determined by the

six-dimensional gauge oupling and not by the six-dimensional Newton onstant.

There is one �nal step to perform with the ation in order to bring it to a standard

form. We have to rede�ne the salar �eld so that it has a standard kineti term:

� =

ln l

p

2�G

4

: (243)

We �nally end up with the ation

S =

Z

d

4

x

q

�~g

"

�

~

R

16�G

4

+

1

2

�

�

��

�

�+ V (l(�))

#

: (244)

So one �nds that a four-dimensional observer sees a salar �eld whih is given by

the logarithm of the size of internal spae. The Friedmann equation and the salar �eld

equation of motion for the above system are:

3

_

~a

2

~a

2

= 8�G

4

�

1

2

_

�

2

+ V (�)

�

; (245)

�

�+ 3

_

~a

~a

_

�+

�V

��

= 0: (246)
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Here a dot denotes a derivative with respet to "usual" time

~

t. From these 4D e�etive

�eld equations one an easily get bak to the 6D equations: Go bak to onformal time

replaing �=�

~

t by �=(~a�t). Then one has to get bak from the Weyl saled to the original

metri. This happens via the substitution ~a! la. After these two modi�ations, eqs (245,

246) beome exatly eqs (229,233). In this way we have heked that the six-dimensional

and the four-dimensional point of view are equivalent.

What are the qualitative features of suh a osmology? At �rst look at the ase in

whih the ground state has �

4

= 0. The potential (241) reads in terms of �:

V

�

4

=0

(�) =

1

4G

6

exp(�

q

8�G

4

�)(1� exp(�

q

8�G

4

�))

2

: (247)

This is the result of ref. [45℄. The potential has a minimum at � = 0 and a maximum

at �

max

= (8�G)

�1=2

ln 3, orresponding to the stable solution with n = n

0

and the

unstable solution with n =

p

3n

0

, respetively. If the system starts with � < �

max

, �

and hene n will perform damped osillations around the ground state. This osillation

is aompanied by bouning epohs of four-dimensional expansion. The expansion omes

to rest asymptotially, and four-dimensional spaetime approahes Minkowski spae. If

the system starts instead with � > �

max

, internal spae will always grow. The salar �eld

potential dereases exponentially for large �.

In a �nite range of the parameter spae around the ombination leading to �

4

= 0,

the potential will have a very similar shape. The ground state has �

4

6= 0, but apart from

that, the system will behave qualitatively as desribed above.

Again (like at the end of hapter 3) one an generalize the above solutions by sub-

stituting b !

~

Ab. This orresponds to two equal de�it angle branes at the poles of the

former sphere. When at the same time e is substituted by

~

Ae, the osmologial solutions

are exatly the same.

The appearane of salar �elds with exponentially dereasing potential is a quite gen-

eral feature in Kaluza-Klein theories, sine the steps in performing the dimensional re-

dution (integration, Weyl saling, resaling of the salar �eld) always involve similar

strutures. In partiular, the Weyl saling brings the internal radius l into the denomi-

nator of its kineti term, so that the resaling to a standard kineti term requires taking

the logarithm of l. The potential will then naturally involve exponential funtions of

� � ln l. If the internal volume is large enough, orresponding to the region � > �

max

,

the tendeny to expand will in general dominate over the fores whih tend to shrink

the internal spae down to the ground state. The possible importane of quintessene

�elds with exponential potential for osmology has been thoroughly disussed [46℄. Note

however that the exponential potential region of Kaluza-Klein salar �elds does not lead

to a realisti osmology. The permanently growing size of internal spae would lead to

a strong time dependene of oupling onstants, far beyond the observational bounds.

For a realisti model it is neessary to start with � < �

max

, so that the ground state is

approahed.
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5.4 Late Time Cosmology with a Perfet Fluid

Now we drop the restrition to spherial symmetry and ask instead how a realisti late

time osmology with matter and radiation an be realized. The e�etive four-dimensional

ouplings and masses depend on the size and shape of the extra dimensions. Cosmologial

observations imply that these masses and ouplings have varied only very slightly sine Big

Bang Nuleosynthesis. At least we an say that the e�etive four-dimensional sale fator

hanges muh faster than the parameters of partile physis, suh as the �ne struture

onstant �. This leads to strong restritions on the time dependene of the internal

metri.

A zero hange of partile parameters is ertainly realized if the shape and size of

internal spae, and also the warping, do not hange at all. In terms of the metri this

means

a = a

0

(t)a

1

(�); b = b(�); n = 1 (248)

in an appropriate oordinate system. This an be seen as follows: Go to the v-gauge, i.e.

g

t�

= 0, and assume that the internal metri omponents g

��

, g

��

and g

��

all depend only

on �. The omponent g

��

an then be removed by a � transformation � ! �

0

= �+ Æ�(�).

In this speial ase the transformation does not indue a omponent g

t�

, sine Æ� does

not dependent on t. So the o�-diagonal omponents of the metri have been removed.

The ondition n = 1 an then be obtained from n = n(�) by a oordinate transformation

� ! �

0

(�). Finally the produt struture of a follows from the time independene of the

warping.

From this ansatz one an again ompute the Einstein tensor. The o�-diagonal om-

ponents are again identially zero, from whih one again dedues that A

t

and A

�

are a

pure gauge and that

_

A

�

= 0. The other omponents are

G

t

t

= 3

a

00

1

(�)

a

1

(�)

+ 3

a

0

1

2

(�)

a

2

1

(�)

+

b

00

(�)

b(�)

+ 3

a

0

1

(�)b

0

(�)

a

1

(�)b(�)

�

1

a

2

1

(�)

3

_a

2

0

(t)

a

4

0

(t)

(249)

G

(i)

(i)

= 3

a

00

1

(�)

a

1

(�)

+ 3

a

0

1

2

(�)

a

2

1

(�)

+

b

00

(�)

b(�)

+ 3

a

0

1

(�)b

0

(�)

a

1

(�)b(�)

�

1

a

2

1

(�)

 

2

�a

0

(t)

a

3

0

(t)

�

_a

2

0

(t)

a

4

0

(t)

!

(250)

G

�

�

= 4

a

00

1

(�)

a

1

(�)

+ 6

a

0

1

2

(�)

a

2

1

(�)

�

1

a

2

1

(�)

3

�a

0

(t)

a

3

0

(t)

(251)

G

�

�

= 6

a

0

1

2

(�)

a

2

1

(�)

+ 4

a

0

1

(�)b

0

(�)

a

1

(�)b(�)

�

1

a

2

1

(�)

3

�a

0

(t)

a

3

0

(t)

(252)

They ontain two types of terms: First there are terms ontaining �-derivatives. These

terms depend only on �. And then there are terms a

�2

1

_a

2

0

=a

4

0

and a

�2

1

�a

0

=a

3

0

. The �-

dependene of a and b, whih is desribed by the �rst type of terms, is therefore determined

by time-independent terms on the right hand side of Einstein's equations, suh as the six-

dimensional osmologial onstant � and the gauge �eld soure term A

0

�

2

=b

2

. On the

other hand, the time dependene of the sale fator a

0

is determined by - possibly time-

dependent - soure terms T

A

B

whih have to ful�ll several onditions: The �-dependene

of T

A

B

is �xed by the warping,

T

A

B

(�; t) =

~

T

A

B

(t)a

�2

1

(�): (253)
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The di�erene G

�

�

� G

�

�

is time-independent, from whih follows that T

�

�

= T

�

�

. (T

A

B

is de�ned to be only the part of the energy momentum tensor whih governs the time

evolution). We de�ne

~

T

t

t

= �";

~

T

(i)

(i)

= p

1

;

~

T

�

�

=

~

T

�

�

= p

2

: (254)

The ombination G

�

�

�G

�

�

�G

�

�

is also time-independent, implying

�"+ 3p

1

� 2p

2

= 0: (255)

This relates the two equations of state w

1

= p

1

=" and w

2

= p

2

=". Finally, if all these

onditions are ful�lled, the equations are onsistent and energy-momentum is onserved

provided that

"(t) � a

0

(t)

�3(1+w

1

)

: (256)

This is the same relation as in usual four-dimensional osmology. The solution for a

0

is

then

a

0

� t

2=(3w

1

+1)

: (257)

For a relativisti uid, p

1

= "=3, one would get

p

(r)

2

= 0; "

(r)

� a

�4

0

; a

(r)

0

� t: (258)

For a non-relativisti uid, p

1

= 0, one would get

p

(nr)

2

= �"=2; "

(nr)

� a

�3

0

; a

(nr)

0

� t

2

: (259)

How does a four-dimensional osmologial onstant �

4

appear in this piture? A �

4

-

term has p

1

= �" and eq. (255) therefore requires p

2

= �2", whih is a rather unusual

equation of state. One an add to the right hand side of eah (��)-omponent of Einstein's

equations a zero in the form of

0 =

�

4

a

2

1

�

�

4

a

2

1

; (260)

and to the (��) and (��) omponents twie these terms. The +�

4

term is used to hange

the �-dependene of a

1

, b and A

�

. The ��

4

term generates a time-dependene of a

0

. This

is exatly what was desribed in a slightly di�erent way in hapter 3, when 6D Einstein-

Maxwell theory was introdued: A part of the 6D urvature (the amount is arbitrary,

this is why �

4

is an integration onstant) is taken from the 2D internal urvature and the

warping and is transferred into 4D urvature. The reason we an do this is that the �

4

term (and only this term) �ts to both types of terms on the left hand side of Einstein's

equations: the time-independent �-derivative terms and the time-derivative terms with

�-dependene a

�2

1

.

Note that the time-dependene of the sale fator in de Sitter spae is in onformal

time not exponential as with "usual" time, but of the form

a

(�

4

)

0

� (t

0

� t)

�1

; (261)
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i.e. a

0

diverges at a �nite time t

0

.

To summarize, the late time osmology derived from 6D Einstein-Maxwell theory with

a perfet uid turned out to be very restrited, when one requires that internal spae is

absolutely stati. The �-dependene of the metri is the same as in the stati ase,

derived in hapter 3. The time evolution of the sale fator is desribed by the usual 4D

Friedmann-Robertson-Walker osmology, depending on w

1

. The requirement of a stati

internal spae �xes w

2

as a funtion of w

1

. The 4D osmologial onstant is still a free

parameter.

We will refer to the osmologies derived above as "perfet" late time osmologies.

This is ertainly not the most general realisti ase. In general, the � dependene of

the energy momentum tensor will be di�erent from a

�2

1

(�) and will therefore lead to a

time dependent perturbation of the shape of internal spae. In the dimensionally redued

e�etive theory this would appear as an interation of the uid with supermassive salar

�elds. In the six-dimensional piture, the perturbed shape will be expressed in time-

dependent perturbations of the �-dependent metri funtions, for example

b(�; t) = b

0

(�) + Æb(�; t); (262)

with Æb=b of the order ("=M

4



)

�

, where " is the 4D energy density of the uid, M



is

the ompati�ation sale and � is a positive and model-dependent parameter. Time

derivative terms suh as

_

b

2

=b

2

are suppressed with (Æb=b)

2

ompared to _a

2

=a

2

. The time

dependene of 4D oupling onstants will therefore still be very small, as required by

observational bounds. Nevertheless there will be additional �-derivative terms like Æb

00

=b

whih may be of the same order as the osmologial term _a

2

=a

2

. These additional terms

might anel the "wrong" �-dependene of the energy momentum tensor, restoring a

realisti Friedmann osmology.

Unfortunately it seems that suh a anellation does not take plae in the oordinate

system we have hosen. The di�erene between the (tt) and the (ii) omponent of the

Einstein tensor ontains only time derivatives (in the v-gauge; in the u-gauge there would

be additional �-derivative terms, but these are too strongly suppressed). This seems to

lead to a "wrong" osmologial behavior. We suspet that this is only a onsequene of

hoosing the "wrong" oordinate system, in whih the "true" osmologial situation is not

visible. If we had allowed for g

tt

6= �g

ii

, G

t

t

�G

(i)

(i)

would ontain terms like

g

00

tt

g

tt

�

g

00

ii

g

ii

whih

might indue the required anellation. The e�etive 4D piture strongly suggests that

a slight exitation of supermassive salar �elds does not prevent a realisti Friedmann

osmology. Nevertheless, the situation has to be lari�ed. This will be subjet to future

researh.

5.5 Cosmology with Relativisti Fermions

Now we want to inlude fermions into the model. Sine we are interested in possible late

time osmologies, we will assume the density of these fermions to be small ompared to the

other variables whih determine the struture of internal spae: the 6D osmologial on-

stant and the magneti ux. The fermions an therefore be onsidered as a perturbation,

and their wave funtions will be to a good approximation given by the stati solutions
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derived in hapter 4. Only the massless modes are exited in a late time osmology. We

have to ompute the energy momentum tensor of these modes. Sine they are massless,

we expet a relativisti equation of state, w

1

= 1=3. Consisteny with the onditions de-

rived in the previous setion requires then w

2

= 0 for a "perfet" osmology. (We expet

that the onstraints on the equations of state still hold, at least approximately, even when

the osmology is not "perfet", i.e. when salar �elds are exited. But this remains to be

proven). We will show that both relations are indeed ful�lled.

The energy momentum tensor of the fermions is given by the expetation value

T

A

B

=

�

1

2

i

�

	

A

D

B

	 + h::

�

; (263)

where 

A

= 

a

e

a

A

. Usually an energy momentum tensor ontains also a piee LÆ

A

B

, where

L is the Lagrangian density, but this vanishes here, sine L = 0 for solutions of the Dira

equation. The ovariant derivative D

B

ontains the spin onnetion and a possible ou-

pling to the gauge �eld. We assume that the distribution of the fermions is homogeneous

and isotropi in three-dimensional spae. This forbids any omponents ontaining 3D

spatial indies exept for diagonal ones, T

(i)

(i)

. The e�etive 4D Dira equation implies

�

 (x)~

�

~

D

�

 (x) = 0; (264)

where a tilde again denotes a four-dimensional operator. From isotropy then follows

�

 (x)~

(i)

~

D

(i)

 (x) = �

1

3

�

 (x)~

t

~

D

t

 (x): (265)

This does not automatially imply that w

1

= 1=3. It remains to be proven that the

e�etive 4D energy momentum tensor is really given by

~

T

(�)

(�)

=

D

�

 ~

(�)

~

D

(�)

 

E

: (266)

This is not yet lear, sine the ovariant derivative D

�

ontains terms additional to

~

D

�

,

ompare eq. (173). Hene a more detailed analysis is neessary, whih is needed anyway

to ompute the internal omponents of the energy momentum tensor.

We assume that the di�erent fermion modes do not mix and have arbitrary phases with

respet to eah other, so that all expetation values of the type

D

 

y

i

 

j

E

,

D

�

 

i

 

j

E

,

D

 

y

i

�

�

 

j

E

and

D

�

 

i

�

�

 

j

E

vanish for di�erent modes, i 6= j. Then we an ompute the energy momen-

tum tensor for eah mode separately. We therefore take 	(x; �; �) =  (x)�(�; �), where

� is one partiular zero mode and splits up into a �-dependent and a �-dependent part,

� = e

in�

�(�). Furthermore we assume that with eah mode also the orresponding an-

tipartile (with opposite handedness, opposite "winding number" n and opposite harge

q with respet to gauge �eld) is exited with the same density, so that no net harges

appear. Every operator 

A

D

A

is a tensor produt (or a sum of tensor produts) of an

operator ating on the 4D part  (x) and an operator ating on the internal part �(�; �)

of the fermions. We will refer to these as the 4D and the 2D part of the operator. Reall

some of the relations obtained in hapter 4:



m

= ~

m


 1; 

�

= a

�1

~

�


 1; 

4(5)

=

~

�
 �

1(2)

; (267)
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D

�

=

~

D

�

+ i(�

m4

sin � � �

m5

os �)a

0

~e

m

�

(268)

=

~

D

�

+

1

2

a

0

1

a

1



�



�

; (269)

D

�

= �

�

+

1

2

i�

3

(1� b

0

) + iqeA

�

; (270)

D

�

= �

�

: (271)

The ovariant derivatives D

�

and D

�

have only 2D parts. The �rst term of D

�

is purely

4D, whereas the seond has both a 4D and a 2D part.

We will now show that all omponents of the energy momentum tensor vanish or

anel eah other with exeption of the part obtained from 

(�)

~

D

(�)

. Most terms vanish

beause

�

 (x)

~

� (x) is zero for a hiral fermion. This term ours in T

�

�

, T

�

�

, T

�

�

and

T

�

�

, sine the 4D part of 

�

D

�

is just

~

�. Therefore these omponents all vanish. The

seond part in D

�

ontains 

�



�

. In T

(�)

(�)

, the 

�

is multiplied with 

�

to give 1, and

the 4D part of 

�

is again

~

�, and so

�

 

~

� ours again. The remaining part of T

(�)

(�)

is

T

(�)

(�)

=

D

�

 (x)~

(�)

~

D

(�)

 (x)

E

a

�1

1

(�)j�(�)j

2

: (272)

It has obviously w

1

= 1=3, as derived from the 4D Dira equation, and we also showed

that w

2

= 0. It remains to be proven that the remaining o�-diagonal omponents are also

zero. We have

T

t

�

=

�

1

2

i

�

	

t

D

�

	 + h::

�

=

�

1

2

i(

�

 ~

t

 )
 (a

�1

1

�

y

�

�

�) + h::

�

(273)
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This is purely imaginary and is therefore anelled by the hermitian onjugate.
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The �rst term ontains as 4D part

�

 

~

�

~

D

t

 whih is zero beause of hirality. The seond

term simpli�es to
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This is again purely imaginary and anels with the hermitian onjugate.
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This is real and does not vanish. A net harge would indeed lead to a nonvanishing

T

t

�

. Suh a omponent would ertainly, through Einstein's equations, fore one of the
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o�-diagonal metri omponents to beome nonzero, sine G

t

�

would identially vanish for

a diagonal metri. Hereby is demonstrated that the inlusion of the o�-diagonal metri

omponents in the general disussion was really neessary. But fortunately we assumed

here that the for eah partile the orresponding antipartile is also present. This has

opposite n, opposite �

3

eigenvalue and opposite q. Its T

t

�

omponent has therefore the

same value but the opposite sign, and the terms anel in the total energy momentum

tensor. Finally
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The �rst term ontains again

�
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 as 4D part and therefore vanishes. The seond term

simpli�es to
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whih is again in general nonzero and needs the antipartile for anellation (due to the

opposite �

3

eigenvalue). This ompletes our alulation of the energy momentum tensor

for relativisti fermions.

Consider now the spherial model. One ondition for a "perfet" late time osmology

was that the energy momentum tensor is "warped" with a

�2

1

(�). On the other hand

we omputed that the energy momentum tensor of a fermion mode is "warped" with

a

�1

1

(�)j�(�)j

2

. In the spherial model there is no warping at all, a

1

= 1, and

P

j�

i

j

2

is

also onstant (by symmetry) if all zero modes are exited with the same probability. In

this ase we would really get a "perfet" late time osmology, provided the sphere starts

with internal sale fator n < n

max

and therefore onverges to the ground state n = n

0

, as

disussed in setion 5.2. The osmology would be a Friedmann osmology with relativisti

matter and with possible inlusion of a osmologial onstant (the �

4

of the ground state).

If only some of the fermion zero modes on the sphere are exited, this would break

the spherial symmetry, and the osmology an no longer be "perfet". Non-singlet salar

�elds would be exited. This is the ase mentioned in the disussion at the end of setion

5.4 and is not yet fully understood. But sine the stability of the ground state of the

spherial model has been proven [1℄, all salars have huge masses and an ertainly not

disturb the e�etive 4D osmology too muh.

The situation is muh worse if there are de�it angle branes. Now the fermion distri-

bution j�(�)j

2

is singular at one of the branes. Even if the fermion density is very small,

it is not lear how far they an be onsidered as a small perturbation in the viinity of the

brane. They may alter the struture of the singularity, transforming it into a thik brane.

The e�ets on the e�etive 4D piture may be small, sine only a small part of internal

spae is involved, but this onlusion is not so obvious. Furthermore, if the deviation

from a sphere is large, we do not know very muh about the stability of the "ground

state". A perturbation of the warping or the internal metri (exitation of salars in the

4D piture) may have drasti onsequenes. The osmology of this general ase is still

ompletely unlear and requires a muh better understanding of the ground states with

non-ompat internal spae.
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5.6 Open Questions

We are still far away from a omplete understanding of the osmologial evolution of higher

dimensional theories, even in this relatively simple six-dimensional example. Our goal was

to explore if there is a hane to solve the Cosmologial Constant Problem (and maybe

similarly the Gauge Hierarhy Problem) in suh a dynamial ontext. Would a universe,

starting from arbitrary initial onditions, automatially evolve towards the universe we

observe today, with its small 4D urvature? This goal is at the moment ompletely out

of sight.

But we think that we ahieved a good basi piture of the situation. The two most

serious diÆulties were identi�ed and explored to some extent. They are

1. the omplexity of the dynamis and

2. the problem to �nd the 4D interpretation of a 6D solution, whih is mainly idential

with the problem to �nd a physially meaningful oordinate system.

A way to deal with these problems is to look for speial ases whih an be solved and

then to generalize step by step. The beginning of this long road has been taken, and we

believe that we have reahed a good starting position for future researh. The next steps

towards our �nal goal ould be:

� a better understanding of the qualitative features of the general ansatz, espeially of

the o�-diagonal metri omponents and the orrespondingly appearing gauge �eld

omponents A

t

or A

�

. Under whih irumstanes are these �elds exited? Maybe

there is a large lass of solutions in whih these omponents an be ignored. This

would open new prospets of numerial analysis, sine muh fewer funtions would

then be involved. We have seen that the o�-diagonal omponents are ertainly

involved if there are net harges (see setion 5.5, disussion of T

t

�

). Is this maybe

the only ase in whih these �elds are fored out of their ground state?

� an investigation of odimension-two singularities di�erent from the de�it angle

branes, or their 4D analogues: the gravitational �eld of a wire with arbitrary equa-

tion of state. A step into this diretion has reently been made by Vinet and Cline

[47℄ in the ontext of thik branes. One ould �rst look for stati solutions with

three independent funtions, g

tt

(�), g

ii

(�) and g

��

(�) and see what happens when

a solution is fored into a oordinate system with onformal time �g

tt

= g

ii

or a

frame onstrained in any other way. This would ertainly help a bit for a better

understanding of the oordinate problem.

Proeeding further, it will be interesting to see how bulk energy like the magneti

ux and fermions reat on suh more general singularities. Does a part of them fall

into the singularity like into a blak hole? How would this look like in the e�etive

four-dimensional theory? And would suh an e�et hange the "equation of state"

of the singularity?

� a better understanding of the late time osmology with fermions. One ould perform

the following omputation: Take the spherial ground state with monopole number

58



m = 2. The fermion zero modes will then form a doublet. Assume that for some

reasons only one of the two modes is exited. The exitation will bakreat on

the geometry and lead to a slight deformation of the sphere. In the e�etive 4D

piture the deformation would be expressed as the exitation of a omponent of a

salar SU(2) triplet. With some e�ort it should be possible to solve the osmology

of this partiular example in the 6D and the e�etive 4D piture and hek the

onsisteny of the two pitures. This will ertainly also shed new light on the

oordinate problem.

� To surround the oordinate problem, it may be useful to look for more mathematial,

oordinate free desriptions. Maybe "asymptoti Killing vetors" an be formulated

and looked for in a gauge invariant formalism.

When all these steps have been suessfully solved, one may fae the most interesting part

of the problem: the early universe osmology. Starting with arbitrary initial onditions,

are there dynamial reasons why three spatial dimensions beome large, with almost zero

e�etive osmologial onstant, while the other dimensions remain small?

To summarize: The major ahievement of this hapter is not a solution, but a detailed

desription of the Kaluza-Klein osmology problem. The diÆulties that have to be

faed were disussed, and a strategy how to overome these diÆulties was outlined.
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6 How to onstrut a Realisti Kaluza-Klein Theory

Our toy model, six-dimensional Einstein-Maxwell theory, was very useful for the inves-

tigation of many typial features of Kaluza-Klein theories. But it ontains by far not

enough symmetries to aount for the SU(3) � SU(2) � U(1) Standard Model and its

rather ompliated fermion spetrum. Going beyond our simple model, how far an one

get in onstruting a realisti theory? Is it possible to get the orret low energy symme-

tries and the orret partile spetrum? And if this an be ahieved, may we even hope

to explain the struture of the mass matries in this way (hierarhy, mixings)?

Edward Witten [48℄ showed that, if we want to get the gauge groups from pure higher

dimensional gravity, at least seven extra dimensions are needed. He onstruted expliitly

seven-dimensional internal spaes ontaining the Standard Model gauge group. Wetterih

[39℄ showed that, in order to get also a realisti fermion spetrum, the total dimension-

ality must be 2 mod 8. Combining the two requirements, one ends up with at least

18 dimensions. The orresponding 14-dimensional internal spae must be non-ompat,

sine otherwise the hirality index would vanish. A Majorana-Weyl spinor with 256 real

omponents ould then be suÆient to redue to all the observed fermions in the e�etive

four-dimensional theory. Indeed, if 11 of the extra dimensions form an S

11

and another

one is "radial" similar to the � oordinate in our toy model, a �rst step of ompati�ation

ould lead to the six-dimensional SO(12) model [49, 50, 51, 52℄, whih turns out to be

almost ompletely suessful in explaining the observed world and will be disussed in

setion 6.2. This gives us hope that our disussion of a spei� six-dimensional gauge

theory was a good hoie and may be very useful for the investigation of more realisti

theories.

It should be mentioned that the 18-dimensional model with a Majorana-Weyl fermion

ontains a gravitational anomaly [53℄. On the other hand, the six-dimensional SO(12)

theory is anomaly free.

6.1 Fermion Mass Matries

How an one reprodue the quantum numbers, hierarhies of masses and mixing angles

for quarks and leptons?

In ontrast to four-dimensional uni�ed gauge theories, higher dimensional theories have

typially only a few free parameters. If suh theories lead to a realisti four-dimensional

model after dimensional redution, the spetrum of fermion masses should be highly

preditable. Four-dimensional gauge �elds and salars often orrespond to di�erent om-

ponents of the same higher dimensional �eld. In this setion we outline in a general

framework the steps leading to preditions onerning the mass matries. An under-

standing of these matries is related to an understanding of the origin and ouplings of

the low-energy weak Higgs doublet. It is proposed that a �ne struture of sales at the

uni�ation sale is responsible for the observed strutures. In the next setion the ap-

pliation of these methods to a partiular example, the six-dimensional SO(12) model, is

skethed.

In Kaluza-Klein theories, massless fermions have a similar status as massless gauge
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bosons: the zero mass is guaranteed by symmetry (plus topology) and any mass term

involves the breaking of symmetry. A symmetry breaking pattern would look as follows:

Let

~

G be the symmetry of the underlying d = D + 4-dimensional Lagrangian and de�ne

~

H = SU(3)

C

� SU(2)

L

� U(1)

Y

; H = SU(3)

C

� U(1)

em

: (282)

We start with a "ompati�ed" �rst approximate ground state with symmetry G �

~

G

and ompati�ation sale M



. The term "ompati�ed" does not neessarily mean that

the D-dimensional internal spae has to be ompat, but it should have �nite volume.

The solution may be unstable and is just an approximation to the true ground state. The

symmetry groupG ontains higher dimensional gauge groups and the isometries of internal

spae. It should be of the form G = F �K, where F is either

~

H itself or ontains it as a

subgroup, like SU(5) or SO(10). The group K serves as a generalized generation group

and may ontain disrete subgroups. (We have omitted here additional four-dimensional

isometries like Poinare invariane or similar, whih are of ourse also ontained in G.)

This highly symmetri ground state is, possibly in several steps, spontaneously broken

to a seond approximate ground state with symmetry

~

H. The sales of this symmetry

breaking are M

1

, M

2

... somewhat below M



. This is what was already mentioned as a

"�ne struture" of sales. RatiosM

1

=M



�

1

4

may sometimes be suÆient. Small ratios of

quark and lepton masses are then indued by various powers ofM

i

=M



, as we will disuss.

The appearane of a �ne struture may either be diretly related to small quantities of

D-dimensional internal spae like 1=D, the ratio of "radius" to volume L

D

=V , inverse

monopole numbers 1=N et. or it may result from geometri properties of partiular

solutions. Finally, at the muh lower sale M

L

,

~

H is spontaneously broken to H, whih

is then the symmetry group of the true ground state. So we have the hain

~

G �! G = F �K �!

~

H �! H: (283)

The fermion mass problem an then be split into several piees:

1. Identify the hiral quarks and leptons in the �rst approximate ground state and �nd

all their quantum numbers with respet to G.

2. Identify the salar �elds with the appropriate quantum numbers in order to ouple

to some of the fermion bilinears.

3. Compute the Yukawa ouplings of these salars to the relevant fermions.

4. Analyze the mixing between the salars and see if the lowest salar mass eigenstate,

identi�ed as the Higgs �eld, may serve to generate the observed fermion mass ratios.

At eah step one has to hek if the result is still ompatible with observational bounds.

These bounds are very restritive, and it will not be easy to �nd a realisti model.
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Step 1: Fermion Quantum Numbers: At �rst one has to be aware of the possibility

that di�erent solutions, although having the same topology, may ontain a di�erent num-

ber of generations. This is beause these solutions may belong to di�erent "deformation

lasses" of

~

H, leading to a di�erent hirality index. In this way the number of generations

may hange in the ourse of symmetry breaking. We assume that suh a problem does not

our here in the breaking of G. Otherwise an analysis of the G-symmetri state would

be ompletely useless as an approximation.

For a realisti model, one has to identify three

~

H standard generations. The fermions

should have a rih struture with respet to the generation group K, so that even fermions

in the same generation have di�erent K quantum numbers in order to give the neessary

mass relations. All mass ratios of an order of magnitude or more should follow from sym-

metry onsiderations, sine all allowed Yukawa ouplings to the same salar are typially

of the same order.

Step 2: Salar Doublets: The various fermion bilinears appearing as entries in mass

matries ouple to olor singlet eletrially neutral SU(2)

L

doublet salar �elds with

di�erent K quantum numbers. Suh salar �elds appear in the harmoni expansion of

internal metri or gauge �eld omponents or of salars whih are already present in the d-

dimensional theory. The latter do our naturally if this theory was already obtained from

an even more fundamental theory. Step 2 involves the identi�ation of suh doublets and

of their possible ouplings to the fermion bilinears allowed by their K quantum numbers.

The low-energy Higgs doublet must be a linear ombination of these �elds. It should

mainly onsist of a leading doublet whih ouples to the top quark but is forbidden by K

symmetry to ouple to other quarks or harged leptons. (We do not talk about neutrinos

here, beause we expet that some salar VEVs indue large right-handed neutrino masses

and assure in this way small left-handed neutrino masses.) There should be a small

admixture of another doublet whih ouples only to bottom, tau and harm, and so on.

A realisti model requires that all entries in the mass matries with di�erent orders of

magnitude are oupled to di�erent doublets. This does not yet mean that these orders of

magnitudes will turn out orret, sine we do not yet know the struture of the low-energy

Higgs doublet. But it assures that IF the Higgs turns out to have the required admixtures,

then the observed ratios would be obtained. This requirement is already very restritive,

and a model whih survives step 2 has passed an important test.

Step 3: Yukawa Couplings: One has to �nd the internal wave funtions for the

relevant omponents in the harmoni expansions on the �rst approximate ground state.

(In the true ground state, symmetry breaking will indue small orretions to these wave

funtions and to the Yukawa ouplings.) Suh expansions exist for salars similar as for

spinors:

�(x; y) =

X

i

'

i

(y)�

i

(x): (284)

The �eld � ould for example be an internal gauge �eld omponent. The e�etive four-

dimensional Yukawa oupling would then arise from the higher dimensional gauge oupling

and would be determined by integrating the relevant wave funtions over internal spae. If
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a oupling between '

i

and the zero mode fermion bilinear

�

 

0j

 

0k

is allowed, the oupling

h

jki

would be of the form

h

jki

= �g

Z

d

D

y g

1=2

D

a

4

�

 

0j

(y)'

i

(y) 

0k

(y); (285)

where �g is the higher dimensional gauge oupling and a

2

(y) is a possible warp fator. If

� would instead be a higher dimensional salar �eld, there would be a higher dimensional

Yukawa oupling

�

f instead of �g in front of the integral. We see that the many e�etive

Yukawa ouplings are all related to the very few ouplings of the underlying theory, times

some integrals whih are either zero for symmetry reasons or expeted to be roughly of

the same magnitude.

Step 4: Mixing of Salars: How to identify the low-energy Higgs doublet? In the

limit of unbroken G, doublets with di�erent G quantum numbers annot mix. A breaking

of G involves salar �elds whih are singlets with respet to

~

H but not with respet to

G. These salars aquire vauum expetation values and indue mixings between the

doublets via their ouplings. These mixings are proportional to various powers ofM

i

=M



,

depending on the power of singlets needed to produe a G invariant by oupling to the

doublets.

If the low-energy Higgs doublet �

L

has only a small admixture 

i

of a given doublet

d

i

, the vauum expetation value of d

i

,

hd

i

i = 

i

h�

L

i (286)

will be small ompared to h�

L

i and this reets itself in a small entry to the fermion

mass matries. To ompute the 

i

's for a spei� model, one has to identify the salar

singlets and their possible ouplings to the doublets. From this one obtains the powers of

M

i

=M



appearing in the salar mass matries. If these powers lead to a realisti hierarhy

in the mixings to the "leading doublet" whih ouples to the top quark, step 4 has been

suessful. No model has passed this test so far, whih shows the very high preditivity

of Kaluza-Klein theories.

Even if a model passes this test, the problem is not solved ompletely. It remains

the question if the "leading doublet" in the lowest mass eigenstate �

L

is really the one

that ouples to the top quark. To investigate this, a more detailed analysis of the ground

state is needed. Furthermore, the question why a solution with suh a small Higgs mass

is seleted (the gauge hierarhy problem) has not even been touhed.

6.2 Six-Dimensional SO(12) Theory

The six-dimensional SO(12) gauge theory, whih we disuss here to illustrate the methods

desribed in the previous setion, ould be obtained from 18-dimensional pure gravity

oupled to a Majorana-Weyl spinor, or from another more fundamental theory. We will

not refer to suh a possible origin here. It is enouraging to see how far one an get with

this relatively simple and eonomi model. Solutions exist where almost the omplete
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struture of mass matries is reprodued. Only one detail turns out wrong in eah of

these possibilities while all the other ratios appear to be of the right size. Here we will

roughly explain the several steps and state the results without giving proofs.

The six-dimensional ation involves the Einstein term, an SO(12) gauge �eld, and a

Majorana-Weyl spinor in eah of the two pseudoreal 32-dimensional spinor representations

of SO(12), 	

1

and 	

2

. These spinors ontain 16-dimensional representations of an SO(10)

subgroup, whih are the standard fermion generations known from SO(10) uni�ation.

Six-dimensional salars should be also present and appear naturally if the model was

obtained from a more fundamental theory. Here we need only one salar in the �fth rank

antisymmetri tensor representation of SO(12) to generate some features of the required

mass relations. There are only two ouplings: The 6D gauge oupling �g and one 6D

Yukawa oupling

�

f .

In the �rst approximate ground state, two dimensions are ompati�ed on a sphere,

with the gauge �eld in a generalized monopole on�guration. The geometry is exatly

the same as in the Einstein-Maxwell solutions disussed throughout this thesis. The only

di�erene is the more ompliated struture of the gauge �eld. The gauge on�guration

an be brought into the form

A

�

=

1

2�g

^

N(�1� os �); A

�

= A

�

= 0; (287)

^

N = m(T

12

+ T

34

) + p(T

56

+ T

78

+ T

9;10

) + nT

11;12

: (288)

The T 's are the generators of a Cartan subalgebra of SO(12), andm, p and n are monopole

numbers. The symmetry of this approximate ground state is at least

G = SU(3)

C

� SU(2)

L

� U(1)

R

� U(1)

B�L

� U(1)

G

� SU(2)

G

: (289)

Here U(1)

G

orresponds to the generator T

11;12

, and SU(2)

G

orresponds to the isome-

tries on the S

2

, ombined with gauge transformations to preserve the form of the gauge

on�guration. The produt U(1)

G

� SU(2)

G

serves as generalized generation group K.

There are additional disrete symmetries, suh as parity reetions and the reetion of

one of the two spinors:

� : 	

1

! 	

1

; 	

2

! �	

2

: (290)

All these symmetries have to be taken into aount in the quantum number analysis.

Deriving the fermion quantum numbers with respet to K, one �nds that the number

of massless generations is given by n. In the ase of three generations, the possibility

n = 3, p = m = 1 is the only one whih survives step 2. In all the other ases the

assignment of required sales to ertain entries in the mass matries would fail for some

reasons based on symmetry. This is even before the mixing of the doublets has been

disussed at all! Even at this early stage, all possibilities exept one are exluded, whih

shows the high preditivity of the Kaluza-Klein framework.

For the ase n = 3, p = m = 1, one �nds six salar weak doublets whih an have

Yukawa ouplings to the zero mode fermions. Two of them, H

1

and H

2

, are ontained

in the internal omponents of the gauge �eld, whereas the four others, d

1

, d

2

, d

3

and
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d

4

, appear in the harmoni expansion of the six-dimensional salar �eld. The �eld H

1

an ouple only to one harge 2/3 quark, whih is thereby identi�ed as the top quark.

Furthermore, any salar ouples only to fermion bilinears whih have entries of similar

magnitude in the mass matries. Therefore, IF the VEVs of the salar doublets ful�ll

ertain relations, a realisti mass hierarhy may be obtained.

The harmoni expansion of the six-dimensional salar �eld ontains also

~

H singlets

whih may break G down to

~

H. Mixings between the doublets are indued by these �elds.

The ratios between these mixings an be estimated from group theoretial onsiderations.

Assuming that H

1

is the "leading doublet" (sine it ouples to the top quark), one �nds

that the mixing pattern omes out almost as required, but not ompletely (the Cabibbo

angle omes out wrong) [52℄. It remains to be seen if these diÆulties an be ured by

some modi�ations of the model, or if another model will be more suessful.

Similar to the 6D Einstein-Maxwell toy model, the 6D SO(12) model also shows how

the Cosmologial Constant Problem and the Gauge Hierarhy Problem may be onneted.

Again there exist solutions where the sphere is deformed in a way suh that (at least)

one pole beomes singular (a brane). In this large lass of solutions, the 4D osmologial

onstant as well as the weak symmetry breaking sale beome free integration onstant.

It beomes a dynamial problem why solutions are seleted in whih these two parameters

are so small.
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7 Conlusions

We have studied properties of theories with extra dimensions by exploring a partiular

example: six-dimensional Einstein-Maxwell theory with four "warped" large dimensions

and a two-dimensional, possibly non-ompat, internal spae. This toy model has not

enough symmetry to explain all the strutures in the world (Standard Model gauge group

et.) but arries already many of the features whih are believed to be important for a

more realisti model.

The work we have arried out an be divided into four parts.

� The ahievements made in Kaluza-Klein theories about twenty years ago were ar-

ried together and summarized.

� Kaluza-Klein Theories were ompared to the more modern brane models whih are

motivated by results of String Theory, and the two di�erent points of view were

ombined, leading to the notion of "holographi branes".

� The osmology of our six-dimensional toy model was explored, whih was the main

motivation for this work.

� As a generalization of the singularities appearing in the six-dimensional model,

properties of symmetri singularities in arbitrary dimensions were studied.

The last issue was rather a byprodut of our researh. We have therefore put it into an

appendix.

In the following, we summarize the results of all four issues separately.

Review of Kaluza-Klein Theories: Kaluza-Klein theories have the advantage that

they usually ontain only very few parameters. Several four-dimensional �elds orrespond

to di�erent omponents of the same higher dimensional �eld. This makes these theories

very preditive. Many di�erent Yukawa ouplings, for example, are related to the same

higher dimensional oupling. Relations in the fermion mass matries are therefore muh

riher than in four-dimensional uni�ation, leading to strong onstraints on suh models.

The number of hiral fermion generations is determined by an index of mainly topologial

nature. Gauge groups arise naturally from the isometries of internal spae. Gauge and

salar �elds are (mostly) omponents of the higher dimensional metri. Spontaneous

Symmetry Breaking is desribed as a slight deformation of the internal geometry.

The Gauge Hierarhy Problem and the Cosmologial Constant Problem are not yet

solved in this ontext, but there are hints that both problems may be linked [30℄, i.e. that

both "small numbers" are two faets of one and the same underlying feature of the model.

Kaluza-Klein theories provide a very beautiful and promising framework of uni�ation.

But they are not intended as a fundamental theory. Starting from a very simple and

eonomi higher dimensional Lagrangian, they are able to explain the matter ontent

of the universe and to relate all e�etive four-dimensional fores to higher dimensional

gravity. But they are lassial theories and do not tell us how to quantize suh a higher

dimensional gravity. A self-onsistent and preditive quantum theory of gravity does
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not exist at the moment, but there are interesting ideas towards that diretion. Suh a

theory may arise from String Theory [42℄, Loop Quantum Gravity [54℄, non-perturbative

methods [55℄, Spinor Gravity [56℄, or a ombination of them.

Kaluza-Klein Theories versus Branes: Chiral fermions annot be obtained from

pure higher dimensional gravity if the internal spae is ompat. Internal spaes with

usps or singularities are therefore a general feature of suessful Kaluza-Klein theories.

Suh singularities in a higher dimensional spae are also present in a very modern lass

of phenomenologial models motivated by String Theory: the so-alled braneworlds. In

priniple, these brane models have a very di�erent point of view ompared to Kaluza-Klein

theories. All partiles and gauge interations are loated on the brane. In ontrast, the

observable partiles in Kaluza-Klein theories are zero modes of the internal spae (alled

"bulk" in the brane models). In a maximally symmetri internal spae, the probability

density of these zero modes would be onstant over the entire "bulk", whih is just the

opposite of the delta-funtion-like distribution in the braneworlds. Our intention was to

see how these two types of models are linked.

We onsidered a onial singularity, whih appears naturally in the two-dimensional

internal spae of our six-dimensional toy model. In the modern point of view, this would

be alled a odimension-two brane. In the Kaluza-Klein point of view, it would be just a

subspae whih annot be inluded into the manifold. We showed how the brane tension

from the brane point of view an be translated into integration onstants appearing in

the solution of the �eld equations from the Kaluza-Klein point of view. Both desriptions

are therefore equivalent. This was easily generalized to a ase with two branes, one at

eah pole of internal spae.

We also investigated the wave funtions of the hiral fermions. They are peaked at the

brane, and their probability density beomes singular at that position. This �ts to the

brane point of view: The fermions are loated on the brane. But their "tail" into the bulk

is suh that all their physial properties (Yukawa ouplings et.) an be omputed from

bulk integrals, whih is a basi feature of the Kaluza-Klein point of view. In this way we

onneted the two types of models. We alled singular subspaes "holographi branes" if

suh a onnetion is possible. The term "holographi" is justi�ed, sine all properties of

the brane and of the partiles whih are loated there an be translated into geometri

properties of the "bulk" and parameters of the underlying Kaluza-Klein theory.

We notied that suh a onnetion is not possible for odimension-one branes. The

di�erene is that a onial singularity an be expressed as a property of the surrounding

spae, determined by the de�it angle, whih an be "measured" by surrounding the

singularity. In ontrast, a odimension-one brane annot be deteted by a "bulk observer",

and it is impossible to surround it.

Cosmology of six-dimensional Einstein-Maxwell Theory: A major question of

all theories with extra dimensions is why the e�etive four-dimensional spae is so muh

atter than the internal dimensions, or equivalently: why the 4D osmologial onstant

�

4

is so small. We wanted to look for a dynamial solution of this problem in the ontext
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of our relatively simple toy model. Solutions exist with arbitrary �

4

. Cosmologial obser-

vations are onsistent with �

4

=M

p

� 10

�121

(where M

p

is the Plank mass). Why would

a solution with suh a small �

4

be seleted? Starting from arbitrary initial onditions,

what kind of solutions would be asymptotially approahed? Is there some mehanism

that drives late time osmology towards a small �

4

? For generi initial onditions, the

shape of internal spae will be time-dependent, so that the time evolution is desribed by

a ompliated set of partial di�erential equations.

Our intention was to study the osmology of a six-dimensional model with the follow-

ing isometries: translation and rotation invariane of the three large spatial dimensions,

and a U(1) symmetry generated by translation invariane of the internal angle �. All

metri omponents are then funtions of t and � (the seond internal oordinate) only.

We derived the most general metri onsistent with the isometries and showed how far

it an be simpli�ed by oordinate transformations. Unfortunately, it is in general not

possible to bring the metri into a diagonal form and simultaneously keep the funtions

�-independent. The �eld equations for this metri turned out to be so ompliated that

it was impossible to attak the problem diretly. Another diÆulty, apart from the om-

plexity, onerns the four-dimensional interpretation of six-dimensional solutions. In order

to bring the metri into a spei� form, we had to perform oordinate transformations

t; �! t

0

; �

0

(t; �). By this proedure, the time and � dimensions are mixed to some extent.

It is not lear in whih ases the time parametrized by t

0

orresponds to the "physial"

time that we observe in our e�etive four-dimensional world. To overome these diÆul-

ties, a muh better understanding of the solutions will be neessary.

But we were able to solve some speial ases and to �nd some generi properties of

the system. It was shown that the odimension-two branes (onial singularities) annot

have an equation of state di�erent from w = �1 and that the de�it angle assoiated

with suh a brane is always time-independent. (However there may be odimension-two

singularities of a di�erent type, behaving more like blak holes.)

A rather simple ase is given when internal spae is a sphere and has therefore an

SU(2) isometry group, not only U(1). In this ase the metri depends only on t, not

on �, so that the �eld equations beome ordinary di�erential equations, whih an be

easily solved. The result is not new [45℄, but we repeated the alulations to illustrate

the proedure of dimensional redution and the method of Weyl saling, and to show how

salar �elds with asymptotially exponential potentials arise in Kaluza-Klein osmology.

These solutions are easily generalized to the ase with two equal branes, one at eah pole

of internal spae. As another new extension of these solutions, we omputed the energy

momentum tensor of the hiral fermion zero modes and showed that they indeed behave

like a relativisti uid in the e�etive four-dimensional piture, and that they indue

a standard Friedmann-Robertson-Walker osmology (at least as long as no salars are

exited).

"Late time osmologies" were also disussed in general. There are strong observational

bounds on the time-dependene of oupling onstants, whih implies that the geometry

of internal spae has to be almost time-independent. The speial ase in whih this time

independene is total was alled "perfet late time osmology". Suh a solution an be

only obtained if strong onstraints on the � dependene and the equations of state of
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the six-dimensional energy momentum tensor are ful�lled. We also disussed how the

onstraint on the � dependene is relaxed even if only a tiny time-dependent perturbation

appears in the internal spae.

Finally, we developed a plan for possible future researh in order to overome the many

remaining diÆulties and open questions. We are still far away from a full understanding

of the subjet, in partiular as far as the early universe is onerned. But at least we have

solved some speial ases and understood the nature of many of the ompliations to be

faed, whih we believe to be a onsiderable progress. We have reahed a good starting

position for further investigations.

Symmetri Singularities in Arbitrary Dimensions The onial odimension-two

singularity, whih was disussed throughout this thesis, has the very speial property that

it is of a delta funtion type. The urvature is entirely onentrated a � = 0, without a

"tail" in the bulk. It an be measured from outside only by surrounding it, reognizing

the de�it angle. The metri remains �nite on the singular subspae at � = 0. This is the

reason why it an be easily inluded into the manifold.

These properties are spei� to the odimension-two ase. A singularity with D

1

internal and D

2

+ 1 external dimensions is in the ase of highest symmetry desribed by

two sale funtions, a(�) and b(�), where � is the distane from the singularity. We show

that these funtions in general exhibit a generalized Kasner behavior in the viinity of

� = 0, whih means that a and b are proportional to powers p

1

and p

2

of �, obeying the

relation

D

1

p

1

+D

2

p

2

= D

1

p

2

1

+D

2

p

2

2

= 1: (291)

If D

2

= 1, one of the solutions is p

1

= 0, p

2

= 1. This orresponds to the onial

singularity. In all other ases, one of the exponents is negative, implying divergent metri

omponents and urvature. The odim-2 ase is therefore very speial.

The asymptoti Kasner behavior near singularities is a universal property and does

not depend on the topology or signature of the involved subspaes.

To summarize: We found that Kaluza-Klein theories provide a uni�ed and highly

preditive framework into whih most of the struture of this world an be embedded.

The modern braneworld senarios lead to a new point of view onerning the singularities

appearing in these theories. An understanding of the Cosmologial Constant Problem

and dark energy in this higher dimensional ontext requires a better understanding of

the orresponding early universe osmology. We think that we have pushed the frontier

a little bit forward into that diretion.
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Appendix A: Symmetri Vauum Singularities in

Arbitrary Dimensions

In order to understand the very speial properties of odimension-two branes, it is

neessary to onsider it in ontext with other highly symmetri singularities in higher

dimensions. That is the purpose of this Appendix. It is shown that all maximally sym-

metri vauum solutions are generalizations of the Kasner metri in the viinity of the

singularity. The Kasner solutions [57℄ of Einstein's equations desribe an anisotropi

vauum osmology and the metri is given by

ds

2

= �dt

2

+

X

t

2p

i

(dx

i

)

2

; (292)

X

p

i

=

X

p

2

i

= 1: (293)

This is valid in arbitrary dimensions, but it is not the most general anisotropi vauum

osmology. There are also the so-alled Mixmaster solutions [58℄ with haoti behavior in

the viinity of the singularity. For these solutions, an expansion of the metri in powers

of t is not possible. Mixmaster-type singularities exist only if the metri ontains at least

three independent funtions of time. Here we onsider metris whih ontain only two

independent funtions of one variable.

Our general ansatz is

ds

2

= �d�

2

+ a

2

(�)~g

��

(x)dx

�

dx

�

+ b

2

(�)~g

��

(y)dy

�

dy

�

: (294)

Here � is the generalization of the time oordinate in the Kasner solutions. If g

��

were

also a funtion of �, it ould be made equal to �1 by a transformation � ! �

0

(�). Let

s be the sign of g

��

, s = �1 for � timelike and s = +1 for � spaelike. The metris ~g

��

and ~g

��

desribe maximally symmetri spaes (or spaetimes) with dimensions D

1

and

D

2

and with Rii tensors

~

R

��

= �

1

~g

��

;

~

R

��

= �

2

~g

��

: (295)

As an example, our odimension-two branes would orrespond to D

1

= 4 and D

2

= 1.

The Shwarzshild solution would have D

1

= 1 (time) and D

2

= 2 (a sphere).

The full D

1

+D

2

+ 1-dimensional Rii tensor derived from the metri (294) is

R

��

= ~g

��

"

�

1

� a

2

s

 

(D

1

� 1)

a

0

2

a

2

+D

2

a

0

b

0

ab

+

a

00

a

!#

; (296)

R

��

= ~g

��

"

�

2

� b

2

s

 

(D

2

� 1)

b

0

2

b

2

+D

1

a

0

b

0

ab

+

b

00

b

!#

; (297)

R

��

= �D

1

a

00

a

�D

2

b

00

b

: (298)

In vauum, the Rii tensor vanishes. This gives three equations, of whih only two

are independent due to the Bianhi identities. We are interested in solutions whih are
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singular at � = 0. Furthermore we assume that a and b an be expanded in powers of �

in the viinity of the singularity,

a = 

1

�

p

1

+ ::: ; b = 

2

�

p

2

+ ::: (299)

The exponents p

1

and p

2

need not be integer.

At �rst we look for the ase �

1

= �

2

= 0. Plugging the ansatz (299) into the Rii

tensor, one obtains from R

��

= 0 the neessary ondition

D

1

p

2

1

+D

2

p

2

2

= D

1

p

1

+D

2

p

2

: (300)

From the equations R

��

= 0 and R

��

= 0 one gets either p

1

= p

2

= 0, in whih we are not

interested sine this would not be singular (exept for a possible odimension-one brane

at � = 0, whih annot be deteted from outside), or

D

1

p

1

+D

2

p

2

= 1: (301)

Together these two onditions for p

1

and p

2

are just the Kasner onditions. There are

always two solutions to (300) and (301), namely

p

(�)

1

=

1

D

1

(D

1

+D

2

)

(D

1

�

q

D

1

D

2

(D

1

+D

2

� 1)); (302)

p

(�)

2

=

1

D

2

(D

1

+D

2

)

(D

2

�

q

D

1

D

2

(D

1

+D

2

� 1)): (303)

These are the exponents whih were already derived by Randjbar-Daemi and Wetterih

[31℄ who onsidered generalizations to the Rubakov-Shaposhnikov solutions [29℄ in arbi-

trary dimensions. They appear also in Ruth Gregory's p-brane solutions [59℄ when one

expands the metri around the singularities.

One of the exponents is always positive, the other negative, and one has always 0 <

jp

1;2

j < 1. There is a single exeption: If one of the dimensions, say D

2

, is equal to one,

then one of the solutions is p

1

= 0, p

2

= 1. This is just our well-known de�it angle

solution, where a approahes a onstant and b vanishes linearly. The arbitrariness of the

de�it angle appears here due to the arbitrariness of the onstant 

2

in the ansatz (299).

It is the only solution whih has brane harater in the sense that there are �nite metri

omponents on the singularity. All the other solutions have only vanishing and divergent

metri omponents at � = 0.

As a onsisteny hek, one �nds that the other solution (apart from p

1

= 0, p

2

= 1)

with D

1

= 4 and D

2

= 1 is p

1

= 2=5, p

2

= �3=5, whih we reognize as the exponents of

the Rubakov-Shaposhnikov solutions.

We may all � and the dimensions orresponding to positive p "external" with respet

to the singularity. The latter have angular harater in the sense that they shrink to zero

size at � = 0. The other dimensions may be alled "internal" to the singularity.

As a next step, we inlude the urvature terms �

1

and �

2

. One easily shows that this

does not modify the harater of the singularities of the solutions we have found so far.
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Consider �

1

(the same applies to �

2

). That term has to be anelled by a onstant term

in the derivative part of the R

��

= 0 equation. Eah of the terms in the derivative part

diverges like �

2(p

1

�1)

(see eq.(296)). The Kasner onditions were neessary to indue a

anellation between these terms. The addition of a onstant is negligible ompared to

the divergent parts in the above solutions. It modi�es only non leading order terms in

the expansions of a and b. In the speial ase p

1

= 0, p

2

= 1, �

1

modi�es the term a

2

in

the expansion of a,

a

(DAB)

(�) = a

0

+ a

2

�

2

+ ::: (304)

(exponents between 0 and 2 do not appear in this ase, sine a

0

must vanish at least

linearly at � = 0 in order to prevent

a

0

b

0

ab

from diverging in (296)). The ase p

1

= 1, p

2

= 0

implies D

1

= 1 and therefore �

1

= 0, beause a one-dimensional spae has no urvature.

Hene the Kasner-type solutions still exist in the presene of the urvatures �

1

and

�

2

. Nevertheless there may be new additional solutions. One onvines oneself that the

only new possibility is p

1

= p

2

= 1. This follows from the struture of the Rii tensor.

The possibility requires D

1

; D

2

� 2 and has

�

1



2

1

=

�

2



2

2

= s(D

1

+D

2

� 1): (305)

The D-dimensional unit sphere S

D

has � = D� 1. The line element of the new solutions

is therefore

ds

2

= �d�

2

+

D

1

� 1

D

1

+D

2

� 1

�

2

d�

2

1

+

D

2

� 1

D

1

+D

2

� 1

�

2

d�

2

2

: (306)

Here d�

2

1

and d�

2

2

are the line elements of a D

1

- and a D

2

- dimensional unit sphere (or de

Sitter spaetime, or the orresponding hyperboli spae if � is timelike). How are these

solutions to be understood? Take, for simpliity, the ase s = +1. If there were just one

(D

1

+D

2

)-dimensional sphere, the line element for � = D

1

+D

2

� 1 would simply be

~

ds

2

= d�

2

+ �

2

d�

2

: (307)

This is the metri in spherial oordinates for a (D

1

+ D

2

+ 1)-dimensional Eulidean

spae, whih is of ourse a vauum solution. At � = 0, there is only a oordinate singu-

larity, not a physial one. In the solutions (306) there is instead a produt of two spheres

with the same radial oordinate �, but with a "wrong" radius to surfae ratio. The Rii

tensor does not "see" the di�erene between the two line elements (306) and (307). But

the full urvature tensor does, and there is a true singularity at the enter of (306), as we

will show now.

In order to distinguish between oordinate singularities and true singularities one has

to onsider the square of the Riemann tensor. For the metri (294) it is

R

ABCD

R

ABCD

= 2

D

1

D

1

�1

�

2

1

a

4

+ 2

D

2

D

2

�1

�

2

2

b

4

+ 2D

1

(D

1

� 1)

a

0

4

a

4

+ 2D

2

(D

2

� 1)

b

0

4

b

4

(308)

+4D

1

D

2

a

0

2

b

0

2

a

2

b

2

+ 4D

1

a

00

2

a

2

+ 4D

2

b

00

2

b

2

� 4s

�

D

1

�

1

a

0

2

a

4

+D

2

�

2

b

0

2

b

4

�

:

For the Kasner-type solutions the dominant terms in the viinity of � = 0 are those whih

do not ontain �

1

or �

2

. They all diverge with �

�4

and are all non-negative, so they annot
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anel eah other. So there is always a true singularity at � = 0. The only exeption

is again the ase p

1

= 0, p

2

= 1 (or vie versa), for whih there are no divergent terms

at all in the square of the Riemann tensor. In this ase there may be a pure oordinate

singularity at � = 0, or a singularity of the delta funtion type, whih an be deteted

from outside by surrounding it, but not from the urvature. This is what we alled de�it

angle branes.

For the non Kasner type p

1

= p

2

= 1 solutions, all terms, inluding those with �

1;2

,

diverge as �

�4

, and one omputes

R

ABCD

R

ABCD

=

2

�

4

D

1

D

2

(D

1

� 1)(D

2

� 1)

(D

1

+D

2

� 1)(D

1

+D

2

� 2): (309)

This always implies a true singularity at � = 0.

Inlusion of soures: How does the presene of soures like matter, radiation, magneti

ux or a osmologial onstant modify the struture of the Kasner-type singularities? A

soure whih remains �nite at � = 0, like a osmologial onstant, an of ourse only be

relevant at large �. For a given model it may determine the global struture of possible

solutions. But it does not generate any new types of singularities, and if a singularity is

given at � = 0, it obviously annot hange or modify the divergene of urvature. Suh

a modi�ation an only our if the energy momentum tensor on the right hand side of

Einstein's equations diverges as fast as the derivative terms on the left hand side. These

derivative terms, like (a

0

=a)

2

, diverge as �

�2

in the Kasner-type solutions. On the other

hand, the volume measure

p

g of the onstant � hypersurfaes is proportional to �, due to

the Kasner ondition D

1

p

1

+D

2

p

2

= 1. So one needs a soure whih diverges at least like

1/(volume)

2

. This happens for example in the Reissner-Nordstroem blak hole where an

eletri �eld hanges the struture of the singularity. A seond example is the magneti

ux in our six-dimensional model, whih forbids the Rubakov-Shaposhnikov singularity

(the energy would diverge too strong if a would go to zero) and hanges it to a de�it

angle brane or a pure oordinate singularity.

In many ases, the divergene of energy momentum is not strong enough to destroy the

Kasner behavior. In the osmologial Kasner model, matter and radiation are irrelevant

for the geometry at early times. But they are important at later times where they make

the anisotropy disappear and lead to the late-time universe we observe today, expanding

with the same rate in all diretions. In those ases the Kasner singularities still exist

as solutions, but new, additional types of singularities are also possible, suh as the Big

Bang singularity in Friedmann osmology.

The Shwarzshild Blak Hole from a Kasner point of view: The universality

of the Kasner exponents, independent of signature and topology, an be impressively

demonstrated in omparing our six-dimensional solutions to a Shwarzshild Blak Hole,

ds

2

(BH)

= �(1�

2M

r

)dt

2

+ (1�

2M

r

)

�1

dr

2

+ r

2

(d�

2

+ sin

2

�d�

2

): (310)
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In the 6D ase, D

1

= 4 orresponds to a four-dimensional onstant urvature spaetime,

while the Blak Hole has D

1

= 2, orresponding to a sphere, parametrized by oordinates

� and �. Both spaetimes have D

2

= 1. In the �rst ase, D

2

orresponds to the spaelike

oordinate �, with topology S

1

. In the seond ase, D

2

orresponds to the timelike

oordinate t, with topology R. One has to express the blak hole metri in terms of the

oordinate �(r) whih has g

��

= �1 (+1 outside, -1 inside the Shwarzshild horizon),

and expand it around the two ritial points r = 0 and r = 2M .

At r = 0, the t-dimension beomes in�nitely large with g

tt

� �

�1=3

, while the sphere

beomes in�nitely small with g

��

� �

2=3

. Therefore t is the internal oordinate of the

singularity and the other dimensions are external. This orresponds to the Rubakov-

Shaposhnikov singularity in six dimensions, where � is internal.

Now turn to r = 2M . Here the sphere has a �nite size, g

��

= (2M)

2

. The t-

dimension beomes in�nitely small, with g

tt

� (� � �(2M))

2

. We have therefore p

1

= 0

and p

2

= 1. The Shwarzshild horizon orresponds to the de�it angle brane! Notie

that the Shwarzshild horizon is really a odimension-two (and not one!) objet, sine

time beomes an external dimension due to g

tt

! 0, like the angle � in the orresponding

six-dimensional solution. Of ourse we annot speak of a de�it angle here, beause of

the di�erent topology of time. If there were a delta funtion singularity at r = 2M , it

ould not be deteted from outside, sine it is not possible to surround it along a losed

timelike (!) urve, whih would be the proedure equivalent to surrounding the brane in

the 6D model along the �-diretion.
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Appendix B: Einstein Equations in the u-gauge

In the following, the Einstein tensor derived from the metri (218) is given. We use

the abbreviation q

2
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For the gauge �eld we hoose the gauge A

�

= 0. The orresponding energy momentum

tensor
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Finally we give the �eld equations for the gauge �eld. They are
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The �rst of the three equations determines the time evolution of A

�

. The other two

equations relate A

t

to A

�

. They imply that
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in the entire six-dimensional spaetime.
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