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Abstra
t

Kaluza-Klein theories are an elegant and highly predi
tive framework for uni�ed theories.

We relate the singularities appearing in the internal spa
es of these models to braneworld

s
enarios, �nding interesting 
onne
tions between the two points of view. We dis
uss


hiral fermion modes whi
h are determined by the stru
ture of the singularities.

In order to approa
h the Cosmologi
al Constant Problem and the related dark energy dis-


ussion in this 
ontext, we study the 
osmology of a toy model, six-dimensional Einstein-

Maxwell theory. The time independen
e of the de�
it angle branes is proven. Some spe
ial


ases are solved, but for a solution of the most general 
ase, many diÆ
ulties have still to

be over
ome. These diÆ
ulties are explained and a strategy for their possible solution is

developed.

Zusammenfassung

Kaluza-Klein Theorien bilden einen eleganten und sehr vorhersagekr�aftigen Rahmen f�ur

vereinheitli
hte Theorien. Wir bringen die Singularit�aten, die in den internen R�aumen

dieser Modelle auftreten, mit Braneworld Szenarien in Verbindung und �nden interes-

sante Zusammenh�ange zwis
hen den beiden Si
htweisen. Wir diskutieren 
hirale Fermion-

moden, die dur
h die Struktur der Singularit�aten bestimmt sind.

Um in diesem Zusammenhang das Problem der kosmologis
hen Konstante und die damit

verkn�upfte Diskussion um die dunkle Energie anzugehen, untersu
hen wir die Kosmolo-

gie eines "Spielzeugmodells", se
hsdimensionaler Einstein-Maxwell Theorie. Die Zeitun-

abh�angigkeit der De�zitwinkel-Branes wird bewiesen. Einige Spezialf�alle werden gel�ost,

aber f�ur eine L�osung des allgemeinsten Falls m�ussen no
h viele S
hwierigkeiten �uberwunden

werden. Diese S
hwierigkeiten werden erkl�art und eine Strategie zu ihrer m�ogli
hen

�

Uberwindung wird entwi
kelt.
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1 Introdu
tion

The present SU(3)� SU(2)� U(1) Standard Model of parti
le physi
s 
ontains at least 19

parameters (3 gauge 
ouplings, 10 parameters in the quark mass matrix, 3 lepton masses,

2 parameters in the Higgs se
tor and the � parameter in QCD), whi
h is surely not a

satisfying situation. The fermions of one generation belong to �ve di�erent representations

of the gauge group. The situation gets mu
h better when one embeds the gauge group

into a larger and simple uni�
ation group. Promising 
andidates are SU(5), SO(10) and

E

6

. Then there is only one gauge 
oupling, and some of the entries in the mass matrix

get related. The fermions of one generation �t into one or two representations of the

uni�
ation group. In SO(10) for example, they are 
ontained in a 16-dimensional spinor

representation. The 16th 
omponent is an additional right-handed neutrino whi
h is a

singlet with respe
t to SU(3)� SU(2)� U(1). It gets a large Majorana mass and explains

in that way the smallness of the left-handed neutrino masses.

But still there are many open questions. What is the origin of the gauge group? Why

does nature repeat itself in three generations with equivalent quantum numbers? What is

the origin of the Higgs s
alars? How are the Yukawa 
ouplings, being responsible for the

mass matri
es, determined? Then there are questions of unexpe
ted s
ales: Why is the

s
ale of ele
troweak symmetry breaking so mu
h smaller than the Plan
k mass and the

uni�
ation s
ale? This is the gauge hierar
hy problem. Why is the 
osmologi
al 
onstant

so mu
h smaller than expe
ted from the 
ompli
ated va
uum stru
ture of Quantum Field

Theories? This is the 
osmologi
al 
onstant problem. Finally there are questions raised

by 
osmologi
al observations. What is the nature of the non-baryoni
 dark matter? What

is the "dark energy" whi
h leads to an a

elerated expansion of the universe?

Theories with extra dimensions are a very attra
tive framework to study many of

these questions. A parti
ularly simple and e
onomi
 ansatz is Kaluza-Klein theory. The

higher dimensional Lagrangian may 
ontain only the 
urvature s
alar, the kineti
 term of

a fermion and a 
osmologi
al 
onstant. Integrating out the extra dimensions, whi
h are

thought to be mu
h too small to be resolved by measurement, one obtains an e�e
tive

four-dimensional Lagrangian whi
h may 
ontain all the stru
tures that are ne
essary for

a realisti
 phenomenology: Gauge symmetries arise from isometries of the internal spa
e,

gauge �elds and s
alars are 
omponents of the higher dimensional metri
 and the observed

fermions are 
omponents of one and the same higher dimensional spinor. Symmetry

breaking is des
ribed by small deformations of the internal spa
e. All e�e
tive four-

dimensional 
ouplings are related to the very few parameters of the original Lagrangian.

This fa
t gives these theories a very high predi
tivity.

Kaluza-Klein theory is not intended as a fundamental theory. It does not tell us how

to quantize gravity. The idea is rather that a "�nal theory" should be rea
hed in two

steps: At �rst one rea
hes uni�
ation a la Kaluza-Klein. Then one has to sear
h for a

quantum theory of gravity, of whi
h the Kaluza-Klein theory is the 
lassi
al limit.

From the mid 1980's on String theory absorbed most of the e�orts in sear
h for a

"�nal theory". Re
ently the dis
overy of the D-brane solitons and other a
hievements
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within String theory lead to another development: The idea that we may live on a brane

in a higher dimensional spa
e. To be pre
ise, this idea is not so new, but it found a

new justi�
ation within the 
ontext of String theory. Anyway the new phenomenologi
al

brane models do not really make use of String theory. They are des
ribed purely in

the language of General Relativity and are 
onstru
ted with the intention to solve 
ertain

phenomenologi
al problems, su
h as the gauge hierar
hy problem. This development leads

ba
k to the idea of internal spa
es with singularities (the branes) and a "warping" of the

four-dimensional metri
, a possibility whi
h was earlier dis
ussed in the Kaluza-Klein


ontext:

If the internal spa
e is 
ompa
t, all the fermions in the e�e
tive four-dimensional the-

ory are ve
tor-like. Cusps or singularities in the internal spa
e are therefore ne
essary to

obtain 
hiral fermions. The re
ently dis
ussed branes are su
h singularities, 
oming from

a di�erent theoreti
al ba
kground, 
on
entrating on di�erent aspe
ts and using a slightly

di�erent language. The 
onne
tion between these new models and the older Kaluza-Klein

theories has not been des
ribed so far. This 
onne
tion will be one of the main topi
s of

this thesis.

A solution to the Cosmologi
al Constant Problem and the Gauge Hierar
hy Problem

within the Kaluza-Klein framework remains to be found. But there are hints that these

two problems may in fa
t be tightly related to ea
h other. Furthermore, it was shown that

with a "warping" of the four-dimensional metri
, 
lassi
al solutions exist with arbitrary

�

4

(the e�e
tive 4D 
osmologi
al 
onstant). It remains the question why a solution with

�

4

so 
lose to zero is sele
ted. An answer may involve an understanding of the dynami
s

of the underlying quantum theory. Here we try instead to approa
h the problem within

the 
lassi
al theory. We imagine the possibility that, by some dynami
al me
hanism in

the very early universe, the four-dimensional 
urvature is "driven away"; transferred into

the warping for example. To investigate this possibility, we need to solve the 
lassi
al

�eld equations with relatively general initial 
onditions.

As a toy model for these studies, we 
hoose six-dimensional Einstein-Maxwell theory

[1℄. This is not a pure Kaluza-Klein theory, be
ause it 
ontains already an abelian gauge

�eld in the higher dimensional Lagrangian. It may be 
onsidered as an intermediate step

of 
ompa
ti�
ation, obtained from an even higher dimensional pure Kaluza-Klein theory

whi
h 
ontains only gravity (and possibly a spinor), but this origin of the model in unim-

portant for our 
on
erns. It has the advantage that it is relatively simple, but 
arries

already all the features we need for our resear
h: a

eptable ground states, a 
urved in-

ternal spa
e with appropriate singularities, and warped solutions with arbitrary �

4

.

Altogether, we have several goals in this investigation:

� The features, history and status of pure Kaluza-Klein theories are reviewed, prob-

lems and perspe
tives are dis
ussed.

� The link between these theories and the modern brane models is explained in de-

tail. An equivalen
e between the two points of view is shown, leading to a kind of

holographi
 prin
iple and the notion of "holographi
 branes".
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� The main goal of the resear
h presented here is to �nd 
osmologi
al solutions of

warped Kaluza-Klein theories in whi
h the shape and size of the internal dimen-

sions are time-dependent. Does internal spa
e approa
h a stable shape whi
h may

lead to a realisti
 phenomenology? We study this question in our toy model, six-

dimensional Einstein-Maxwell theory. The e�e
tive four-dimensional 
osmologi
al

"
onstant" be
omes a dynami
al quantity. This may shed new light on the 
osmo-

logi
al 
onstant problem and the re
ent "dark energy" dis
ussion.

� As a byprodu
t of the dis
ussion of "warping" and branes, the general stru
ture

of maximally symmetri
 singularities in arbitrary dimensions is investigated and


onne
ted to the Kasner solutions.

The stru
ture of the thesis is as follows: In 
hapter 2, the Kaluza-Klein ansatz for the

uni�
ation of gravity and Yang-Mills theories is explained. The history of this ansatz is

reviewed and some of its problems and su

esses are dis
ussed. Furthermore the most

popular brane models are introdu
ed. The prin
ipal di�eren
e between 
odimension-one

and higher 
odimension branes is worked out.

In 
hapter 3, our parti
ular toy model is introdu
ed: six-dimensional Einstein-Maxwell

theory. The solutions are presented and the 
onne
tion between geometri
al quantities

and the brane tensions is given. This links the old Kaluza-Klein or "bulk point of view"

to the modern "brane point of view".

In 
hapter 4, fermions are dis
ussed. The algebrai
 properties of spinor representaions

in arbitrary dimensions and their dimensional redu
tion are reviewed. This raises the

problem how to obtain 
hiral four-dimensional fermions, whi
h �nds a possible solution in

the use of internal spa
es with singularities, su
h as those dis
ussed in our six-dimensional


ase. The wave fun
tions of the 
hiral fermions are 
omputed for this model and their

number is related to the properties of the singularities. These fermions are shown to be


on�ned to the "branes", and again the relation between bulk and brane point of view is

given. Furthermore we introdu
e "holographi
 branes", for whi
h both points of view are

equivalent.

In 
hapter 5, the 
osmology of six-dimensional Einstein-Maxwell theory is investi-

gated. The most general metri
 
onsistent with the symmetries and the 
orresponding

�eld equations are derived. Several 
hoi
es of gauge are given, and the related diÆ
ulties

are explained. Some spe
ial 
ases are solved, with and without the in
lusion of fermions.

In parti
ular, late time 
osmologies are dis
ussed, in whi
h the geometry of internal spa
e

is almost time-independent. We �nd that there are still many obsta
les to over
ome in

order to solve for the early universe 
osmology, whi
h was our main motivation. In se
tion

5.6, we summarize the open questions and develop a plan how they may be solved step

by step in future resear
h.

Chapter 6 is an outlook on the possibility to obtain a realisti
 phenomenology from

18-dimensional gravity with a Majorana-Weyl spinor. The stru
ture of the mass matri
es

obtained from a slight deformation of internal spa
e is outlined

In 
hapter 7, we summarize our results.

Finally an appendix dis
usses the general approximate behavior of the metri
 around

highly symmetri
 singularities in arbitrary dimensions and links the result to the Kasner
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solutions known from anisotropi
 
osmologies.

1.1 Conventions

We use the metri
 signature (� +++). The sign 
onvention for the Riemann tensor is

R

A

BCD

= ��

A

BC;D

+ ::: (1)

The sign 
onvention for the 
osmologi
al 
onstant is su
h that a de Sitter spa
etime has

positive �. The Einstein equations are

G

AB

� R

AB

�

1

2

Rg

AB

= �� g

AB

+ 8�GT

AB

: (2)

Sin
e we are dealing with fermions, we have to distinguish between generally 
ovariant

and Lorentz indi
es.

Generally 
ovariant indi
es:

�, �, � are running over the four large dimensions,

i, j, k over the three large spatial dimensions,

�, �, 
 over the internal dimensions,

A, B, C over all dimensions.

As Lorentz indi
es we use latin letters like a, b, m, n.

Indi
es in usual bra
kets denote that there is no summation. For instan
e, G

(i)

(i)

means

one spatial diagonal 
omponent, not a sum over all three. In all other 
ases we use the

Einstein sum 
onvention.

To prevent 
onfusion with spa
e indi
es, we denote by � the "


5

" matrix of the higher

dimensional spa
e, whi
h anti
ommutes with all 
's of the Cli�ord algebra.

A tilde always denotes a 
orresponding quantity in the e�e
tive four-dimensional theory.

For example,

~

� is the four-dimensional "


5

" matrix. Ex
eptions are the 4D 
osmologi
al


onstant and the 4D Newton 
onstant, whi
h are denoted �

4

and G

4

, respe
tively.

We often use 2D, 3D, ... as abbreviation for two-dimensional, three-dimensional, ...
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2 Extra Dimensions

2.1 5D Kaluza-Klein Theory

The idea that ele
tromagnetism and gravity 
an be uni�ed by introdu
ing a �fth dimen-

sions is even older than General Relativity: In 1914 Gunnar Nordstroem [2℄ found that

the equations of his s
alar gravity theory were just an extension of Maxwell's equations

when a �fth dimension was added to the four usual ones. Of 
ourse his theory was not

generally 
ovariant.

In 1919 Theodor Kaluza [3℄ dis
overed his famous �ve-dimensional theory, whi
h is a

pure Einstein gravity theory in 5D, but redu
es to Einstein plus Maxwell in the e�e
tive

four-dimensional world. This theory was re-invented by Oskar Klein in 1926 [4℄.

In this model, the �fth dimension is thought to be a small 
ir
le of radius r. We label

the four usual 
oordinates x

�

and the �fth one y (ranging from 0 to 2�r), and start with

a line element

ds

2

5

= ds

2

4

+ (dy + �A

�

(x)dx

�

)

2

; (3)

with

ds

2

4

= ~g

��

(x)dx

�

dx

�

(4)

and � is a 
onstant. The line element (3) is invariant under the transformations

y ! y + ��(x); (5)

A

�

! A

�

� �

�

�(x): (6)

Note that all fun
tions depend only on the x-
oordinates, not on y. This is Kaluza's

"
ylindri
ity" 
ondition. The a
tion is the Einstein-Hilbert a
tion,

S

5

=

1

16�G

5

Z

d

4

x dy

p

�g R; (7)

where g is the determinant of the metri
 g

AB

. Inserting the metri
 (3) and integrating

over y, we get a four-dimensional a
tion whi
h is invariant under both four-dimensional

general 
oordinate transformations and abelian gauge transformations,

S

4

=

Z

d

4

x

q

�~g

 

1

16�G

4

~

R +

�

2

64�G

4

~g

��

~g

��

F

��

F

��

!

(8)

with

G

4

=

G

5

2�r

; ~g = det(~g

��

); F

��

= �

�

A

�

� �

�

A

�

; (9)

and

~

R the 
urvature s
alar 
al
ulated from ~g

��

. The abelian gauge symmetry in four

dimensions originates in the isometries of the �fth dimension. The standard Maxwell

term is given for �

2

= 16�G

4

. We see that � is essentially the Plan
k length.

How does the smallness of the �fth dimension enter the pi
ture? It turns out that the

size 
an be determined from the ele
tri
 
harge [5℄. The reason is that 
harge is linked to
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the "winding number" of �elds with respe
t to the �fth dimension. Consider for example

a 
omplex s
alar �eld �. The kineti
 term of � is

L

kin

= g

AB

�

A

�(�

B

�)

�

: (10)

The inverse of our metri
 is

g

��

= ~g

��

; (11)

g

�5

= g

5�

= ��~g

��

A

�

; (12)

g

55

= 1 + �

2

~g

��

A

�

A

�

: (13)

If the �eld has the form � = �(x) exp(

in

r

y) the kineti
 term redu
es to

L

kin

= ~g

��

(�

�

�

in�

r

A

�

)�

 

(�

�

�

in�

r

A

�

)�

!

�

+

n

2

r

2

�

�

�: (14)

So � 
orresponds to a four-dimensional �eld � that 
ouples to A

�

with 
oupling n�=r.

Charge is quantized, and the elementary 
harge is e = �=r. As we saw, � is just the

Plan
k length, so for a realisti
 e, r has to be only one order of magnitude smaller than

the Plan
k length. The mass of � 
an be inferred from the kineti
 term of �. It ism = n=r

and has to be therefore only slightly smaller than the Plan
k mass (if n 6= 0). This is

a general feature of Kaluza-Klein theories: Masses are either zero by some symmetry

requirement, or of almost the order of the Plan
k mass and do therefore not appear in

parti
le experiments.

How general was the metri
 ansatz we started with? The most general metri
 in �ve

dimensions 
an be written in the form

g

��

= ~g

��

(x; y) + �

2

�(x; y)A

�

(x; y)A

�

(x; y); (15)

g

�5

= g

5�

= ��(x; y)A

�

(x; y); (16)

g

55

= �(x; y); (17)

where � is essentially the size of the �fth dimension. In the Kaluza-Klein ansatz we had

� = 1 and everything depended only on x. Sin
e every �eld quantity F (x; y) is a periodi


fun
tion of y, it admits a Fourier expansion

F (x; y) =

X

F

(n)

(x)e

iny=r

: (18)

Kaluza's "
ylindri
ity" 
ondition means that only the zero modes (n = 0) appear. But

this is automati
ally justi�ed at energies well below the Plan
k s
ale, sin
e all modes with

n 6= 0 have e�e
tive four-dimensional masses of Plan
k order. At very high energies 
lose

to the Plan
k s
ale, the higher modes would have to be in
luded in the a
tion, of 
ourse.

But the Kaluza-Klein pioneers 
heated in another way: They ignored the s
alar �eld


oming from g

55

. It was always set 
onstant in the early years, and the a
tion was not

varied with respe
t to it. If we take the �fth dimension serious [6℄, we have to in
lude the

�eld � [7℄. The determinant of the �ve-dimensional metri
 is then det(g

AB

) = det(~g

��

)�.
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When we plug this into the a
tion, we get a fa
tor of �

1=2

multiplying the 4D Ri

i

s
alar, leading to a Brans-Di
ke type tensor-s
alar gravity theory plus gauge �eld in four

dimensions. The

~

R-term 
an be brought into standard form by a Weyl transformation of

the metri
: g

AB

! �

�1=3

g

AB

. Our zero mode metri
 is now

�g

AB

= �

�1=3

(x)

 

~g

��

(x) + �

2

A

�

(x)A

�

(x)�(x) �A

�

(x)�(x)

�A

�

(x)�(x) �(x)

!

: (19)

When we insert this into the a
tion (7) and integrate over y, we end up with the four-

dimensional a
tion

S

4

=

1

16�G

4

Z

d

4

x

q

�~g

 

~

R +

1

4

�

2

F

��

F

��

+

1

6

�

�

��

�

�

�

2

!

: (20)

By rede�ning the s
alar �eld by its logarithm, its kineti
 term 
an also be brought into a

standard form. The 
orresponding �eld equations admit the va
uum solution

g

��

= �

��

; A

�

= 0; � = 1: (21)

The s
alar �eld is massless in this 
ase, sin
e the one-dimensional internal spa
e is not


urved. In higher dimensions this will 
hange, and the s
alar �elds will generally have

masses of the order of the 
ompa
ti�
ation s
ale, like the non-zero modes of the other

�elds.

2.2 Kaluza-Klein Theories in more than �ve Dimensions

There was no need to extend the Kaluza-Klein idea beyond �ve dimensions until the

importan
e of non-Abelian gauge theories was dis
overed. In 1963 B. DeWitt [8℄ suggested

that a uni�
ation of Yang-Mills theories and gravitation 
ould be a
hieved in a higher-

dimensional Kaluza-Klein framework. A detailed dis
ussion of this idea in the language

of �bre bundles appears in the work of Ryszard Kerner [9℄. The �rst 
omplete derivation

of the four-dimensional gravitational plus Yang-Mills plus s
alar theory from a (4 +D)-

dimensional Einstein-Hilbert a
tion was �nally given by Cho and Freund in 1975 [10℄.

The va
uum spa
etime is assumed to be a dire
t produ
t M

4

�K of four-dimensional

Minkowski spa
e and a 
ompa
t internal spa
e K. In order to get the Yang-Mills term

with gauge group G from dimensional redu
tion of a (4+D) dimensional Einstein-Hilbert

term, it is ne
essary to have Killing ve
tors �

�

a

on the internal spa
e (in the ground state)

whi
h represent this symmetry. (The index a is running over the dimension of G, labeling

the �-ve
tors, and � is the 
oordinate index in internal spa
e). This means

[�

a

; �

b

℄

�

� �

�

a

�

�

b;�

� �

�

b

�

�

a;�

= f




ab

�

�




; (22)

�

a�;�

+ �

a�;�

= 0: (23)

Here [�

a

; �

b

℄ is the standard Lie bra
ket and f




ab

are the stru
ture 
onstants of G. The

isometries of the internal spa
e 
orrespond now to the gauge transformations. The metri



an, in zero-mode approximation, be written as follows :

g

AB

(x; y) =

 

~g

��

(x) + �

��

(y)�

�

a

(y)�

�

b

(y)A

a

�

(x)A

b

�

(x) �

��

(y)�

�

a

(y)A

a

�

(x)

�

��

(y)�

�

b

(y)A

b

�

(x) �

��

(y)

!

: (24)
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We insert this metri
 into the 4 +D dimensional Einstein a
tion

S

4+D

=

1

16�G

4+D

Z

d

4

xd

D

y

p

�g(R

(4+D)

+ �); (25)

where � is a 
osmologi
al 
onstant. The resulting four-dimensional Lagrangian is

L

4

=

1

16�G

4+D

Z

d

D

y

q

�~g(�

(D)

)

1=2

(

~

R(x) +R

(D)

(y) + � (26)

+

1

4

�

��

(y)�

�

a

(y)�

�

b

(y)F

a

��

(x)F

b

��

(x)~g

��

(x)~g

��

(x));

where �

(D)

is the determinant of the internal metri
 �

��

, R

(D)

is the 
orresponding 
ur-

vature s
alar and

F

a

��

= �

�

A

a

�

� �

�

A

a

�

+ f

a

b


A

b

�

A




�

: (27)

The four-dimensional Newton's 
onstant is then

G

4

= G

4+D

=

Z

d

D

y (�

(D)

(y))

1=2

= G

4+D

=V

int

(28)

with V

int

the volume of the internal spa
e. With a Weyl transformation one 
an again

a
hieve a standard

~

R-term. The zero mode ansatz does not 
ontain any s
alar �elds

des
ribing x-dependent 
u
tuations of the internal metri
 �

��

. One 
an show that these

s
alars have in general, as already mentioned, masses of the order of the 
ompa
ti�
ation

s
ale, be
ause their ex
itation would lead to a 
hange of the internal 
urvature, whi
h is

seen as a large energy shift in four dimensions.

In the �ve-dimensional 
ase it was easy to �nd a va
uum solution that satis�es the

�eld equations. This is not the 
ase in the higher-dimensional models. In va
uum, with

gauge �elds and s
alar 
u
tuations set to zero, the Einstein equations are

R

AB

�

1

2

g

AB

(R + �) = 0: (29)

If four-spa
e is to be 
at R

��

= 0, it follows that R + � = 0. But then R

��

must vanish

as well to ful�ll eq.(29). This is possible only for an abelian gauge group, where internal

spa
e is a torus. For any non-abelian group, internal spa
e has to be 
urved, R

��

6= 0.

And so it is proven that there is no appropriate va
uum solution in this framework.

In the late 1970's and the early 1980's several possibilities were explored to surround

this diÆ
ulty. Cremmer and S
herk [11℄ showed how the in
lusion of additional Yang-

Mills and s
alar matter �elds in the higher-dimensional theory would allow for a desired

ground state, and Lu
iani [12℄ generalized their work. This of 
ourse destroys somehow

the beauty of the Kaluza-Klein idea, whi
h was essentially that Yang-Mills �elds are

explained by dimensional redu
tion and are not present in the fundamental a
tion.

Wetteri
h [13℄ suggested a 
ompa
ti�
ation due to higher derivative terms of form R

2

whi
h may be
ome important when one approa
hes the Plan
k s
ale and may be relevant

already at the 
ompa
ti�
ation s
ale (whi
h is not mu
h smaller than the Plan
k s
ale).

Another possibility is the in
lusion of a "warp fa
tor" [29℄ (a s
ale fa
tor a

2

(y) multiplying

the 4D metri
), whi
h makes the 4D metri
 dependent on the internal 
oordinates.
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2.3 Branes

In the last few years, the emphasis in the development of theories with extra dimensions

has shifted towards the "brane world" pi
ture, whi
h assumes that the Standard Model

matter is 
on�ned to a four-dimensional submanifold - our observable spa
etime - embed-

ded in a higher-dimensional spa
e. The idea is not really new [14, 15℄, but it was given

a new motivation from the D-brane solitons in String Theory (for a review see [16℄), and

in parti
ular by the work of Horava and Witten [17, 18℄. Nevertheless, the usual brane

models are purely phenomenologi
al and make no real use of String theory.

There are three basi
 models, 
alled ADD [19, 20℄, RS1 [21℄ and RS2 [22℄ by the names

of their inventors (Arkani-Hamed, Dimopoulos and Dvali in the �rst 
ase, Randall and

Sundrum in the other two 
ases). These three models 
orrespond to "large", "small" and

in�nite extra dimensions, respe
tively. ADD and RS1 were invoked with the intention to

solve the gauge hierar
hy problem, while RS2 shows how gravity 
an be "lo
alized" at a

brane, 
ontradi
ting the usual assumption that the 4D Newton 
onstant goes to zero when

the size of an extra dimension goes to in�nity. In all 
ases the Standard Model matter

and gauge intera
tions are 
on�ned to the brane, while gravity - being the dynami
s of

spa
etime itself - propagates through the entire spa
e. The strength of gravity itself is

given by the overlap of the massless graviton wave fun
tion with the brane.

ADD: Large Extra Dimensions: In the ADD s
enario, the fundamental s
ale in the

4 + D dimensional spa
etime is the TeV s
ale, and the 4 +D dimensional Plan
k Mass

M is of that size. The large 4-dimensional Plan
k mass M

(4)

p

is due to the fa
t that the

extra dimensions are so large. The brane has no tension and does therefore not a�e
t the

geometry of the higher-dimensional spa
e, whi
h is assumed to be a dire
t produ
t of four-

dimensional and a 
ompa
t "internal" spa
e (whi
h would better be 
alled "external" in

this 
ase, be
ause it is orthogonal to our brane). The four-dimensional Newton 
onstant

is, as in the Kaluza-Klein theories, given by equation (28). In terms of Plan
k masses,

with G

4+D

=M

�(2+D)

, we get

M

(4)

p

=M(MR)

D=2

; (30)

where R is the average size of the extra dimensions. Assuming that M � 1 TeV, one


al
ulates the value of R,

R � 10

32=D

� 10

�17


m: (31)

On distan
es below R, strong deviations from Newton's law of gravity are expe
ted. This

law has been tested down to distan
es of about 0.1 mm, so d = 1 is ex
luded and d = 2

very improbable.

The ADD s
enario has several problems:

� The question of why the Plan
k mass is so mu
h larger than the weak s
ale is just

repla
ed by the question of why the extra dimensions are so mu
h larger than the

weak s
ale (10

�17


m).

� The large size of the extra dimensions leads to the existen
e of light non-zero graviton

Kaluza-Klein modes (
alled KK gravitons). Intera
ting with brane matter, these

11



may 
arry away a large amount of energy from the brane. The intera
tion rates


an be 
omputed and lead, in 
ombination with astrophysi
al and 
osmologi
al

observations, to strong 
onstraints on ADD models and to a "possible but not very

appealing" [23℄ early universe 
osmology.

� The brane is assumed to 
arry no energy-momentum. But this 
hanges when 
osmo-

logi
al matter is added. This should lead to a breakdown of the higher-dimensional

geometry.

RS1: "A Large Mass Hierar
hy from a Small Extra Dimension": The Randall-

Sundrum model is mu
h more elegant and surrounds all the problems of the ADD s
enario.

There is only one extra dimension, and the �ve-dimensional spa
e is a sli
e of an Anti de

Sitter spa
etime with negative 
osmologi
al 
onstant �. The ground state line element is

ds

2

= e

�2kz

�

��

dx

�

dx

�

+ dz

2

; (32)

with k

2

= ��=6. The exponential fa
tor in front of the � is 
alled "warp fa
tor". The

z-
oordinate is restri
ted to the interval [0; R℄. At these positions, z = 0 and z = R, two

branes are lo
ated whi
h a
t as "mirrors", so that the point (x

�

;�z) 
an be identi�ed

with (x

�

;+z) and (x

�

; R�z) with (x

�

; R+z). This means that we 
an make the topology

of that "orbifold" spa
e visible by 
ontinuing the z-
oordinate beyond 0 and R and get a

warp fa
tor of e

2kz

in the interval [�R; 0℄ and e

2k(z�2R)

in the interval [R; 2R℄. There is

a jump of the �rst z-derivative of the warp fa
tor at the brane positions, 
orresponding

to delta fun
tions in the se
ond derivatives of the warp fa
tor. In the Einstein equations,

these delta fun
tions must be mat
hed by delta fun
tions in the energy momentum tensor,

the so-
alled "brane tensions" � . These are given by a
tion terms of the form

S

brane

=

Z

d

4

xdz

p

�g �

brane

Æ(z � z

brane

) =

Z

d

4

x (�g(x

�

; z

brane

))

1=2

�

brane

(33)

These mat
hing 
onditions are a very simple spe
ial 
ase of the Israel jun
tion 
onditions,

whi
h determine the jump of the metri
 derivatives for arbitrary 
odimension-one hyper-

surfa
es. In the Randall-Sundrum 
ase one �nds �

1

= (�6�)

1=2

=(8�G

5

) for the brane at

z = 0 and �

2

= �(�6�)

1=2

=(8�G

5

) for the brane at z = R.

The massless gravitational 
u
tuations are of the form

ds

2

= e

�2kz

(�

��

+ h

��

)dx

�

dx

�

+ dz

2

: (34)

(We ignore the so-
alled radion in this short dis
ussion). Here h

��

represents tensor


u
tuations about Minkowski spa
e and is the physi
al graviton of the four-dimensional

e�e
tive theory. Massless ve
tor zero modes like the A

�

in Kaluza-Klein theories do not

exist here. Integrating the 
urvature term

S

grav

=

Z

d

4

xdz

1

16�G

5

e

�2kz

q

�~g

~

R; (35)

one �nds that the four-dimensional Newton 
onstant is given by

G

4

= 2G

5

k=(1� e

�2kR

); (36)
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whi
h depends only slightly on R for kR > 1.

RS1 o�ers an interesting possibility to solve the hierar
hy problem. Assume that we

live on the negative tension brane at z = R. The physi
al masses 
an be determined

by properly normalizing the �elds. Consider for example a Higgs �eld 
on�ned to "our"

brane, with mass parameter v

0

:

S

H

=

Z

d

4

x (�g(x

�

; R))

�1=2

fg

��

D

�

H

y

D

�

H � �(jHj

2

� v

2

0

)

2

g (37)

=

Z

d

4

x (�~g)

1=2

e

�4kR

f~g

��

e

2kR

D

�

H

y

D

�

H � �(jHj

2

� v

2

0

)

2

g: (38)

After wave-fun
tion renormalization, H ! e

kR

H, we obtain

S

H;eff

=

Z

d

4

x (�~g)

1=2

f~g

��

D

�

H

y

D

�

H � �(jHj

2

� e

�2kR

v

2

0

)

2

g: (39)

We see that the physi
al mass s
ale, set by the symmetry-breaking s
ale, is

v = e

�kR

v

0

: (40)

This feature generalizes to arbitrary mass parameters on our brane. The physi
al mass

will always be smaller by a fa
tor e

�kR

. If fundamental parameters like (G

5

)

�1=3

, k and

v

0

are of Plan
k s
ale order, the TeV s
ale is produ
ed on the brane if e

kR

� 10

16

, i.e.

kR � 50. So, due to the exponential fa
tor, even a small extra dimension 
an produ
e a

large hierar
hy.

In this treatment it looked like the fundamental s
ale is the Plan
k s
ale, and the TeV

s
ale is a derived s
ale. But the opposite point of view is also possible. This 
an be seen

by an appropriate res
aling of the metri
, su
h that the warp fa
tor is 1 at z = R and

e

2kR

at z = 0.

RS2: Finite Gravity from an In�nite Extra Dimension: In the se
ond Randall-

Sundrum model, the setup is as before, but now there is only one brane, namely the

one at z = 0, and the 
oordinate z goes from 0 to in�nity. Thus we have an in�nite

extra dimension. The graviton zero mode, whi
h is as before, de
ays exponentially in the

z-dire
tion, hen
e it is "lo
alized" at the brane. The four-dimensional Newton 
onstant

is given by G

4

= 2G

5

k, 
f. eq. (36). There is no longer a mass gap for the KK gravitons.

Instead we now have a 
ontinuous spe
trum, starting at m = 0. Randall and Sundrum

argue that these KK gravitons 
ouple only weakly to the brane matter, and hen
e produ
e

only a very small 
orre
tion to the Newton potential. So it was shown that one 
an have

the usual four-dimensional gravity even in the presen
e of an in�nite extra dimension.

Note that RS2 does not o�er a possibility to solve the hierar
hy problem.

2.4 Higher Codimension Branes

The two Randall-Sundrum models 
ontain 
odimension-one branes. These have the prop-

erty that they 
annot be seen by an "observer" in the bulk. The postion z

b

of the brane


annot be determined by the bulk geometry. In other words, the bulk solution does not

13



"feel" the 
loseness of a brane. From the point of view of an "observer" in the bulk,

the brane 
ould be lo
ated anywhere, at arbitrary z

b

. Its only e�e
t is a jump in the

�rst derivative of the warp fa
tor whi
h 
an only be "seen" when z

b

is rea
hed. For that

reason, 
odimension-one branes 
an be put in "by hand". One 
an arbitrarily 
hoose the

position and tension in order to ful�ll 
ertain phenomenologi
al requirements, e.g. gauge

hierar
hy, orbifold symmetry [21℄, without a�e
ting the bulk.

The situation is similar for 
osmologi
al solutions [24, 25, 26℄. It is possible to put

"by hand" arbitrary 
osmologi
al matter on a 
odimension-one brane. The only e�e
t

of the brane is a lo
al jump of the �rst metri
 derivatives, determined by the Israel

jun
tion 
onditions. In fa
t, the 
osmology of 
odimension-one branes 
an be seen in two

ways, depending on the 
oordinate system one uses. First, one 
an regard the position

of the brane as �xed. In this 
ase (the brane-based point of view), the bulk 
osmology

seems to depend on the brane properties (its tension, energy and pressure) su
h that the

time dependen
e of the bulk metri
 is generated by the brane. Alternatively, one 
an

use 
oordinates in whi
h the bulk geometry depends only on bulk quantities (the bulk-

based point of view). Then the bulk is stati
 if there are no sour
e terms, or the bulk


osmology is driven by a bulk s
alar �eld or something else. In these 
oordinates, the

brane 
osmology is an e�e
t of the brane traveling through the bulk, showing that brane

and bulk solutions are independent of ea
h other (see [27℄ and referen
es therein). So in

the 
odimension-one 
ase, we need two theories: one for the brane and one for the bulk.

An analogy for the di�eren
e between 
odimension one and two 
an be found in


ommon physi
s: A 
harged parti
le, lo
ated between the plates of a 
apa
itor, does

not "feel" how 
lose the plates are, sin
e the ele
tri
 �eld is 
onstant, independent of

the distan
e. A 
odimension one singularity (plate) is not dete
ted in the bulk. This is

di�erent from a parti
le traveling through the �eld of a 
harged wire (
odimension two)

or of another point parti
le (
odimension three). Here it feels the 
loseness of the sour
e

through the 1=r- or 1=r

2

-behavior of the �eld. Similar statements are true for branes in

higher dimensions.

In 
ontrast to 
odimension one we �nd that for 
odimension two or larger the properties

of the brane are determined by the bulk properties. If a similar situation holds for the

ex
itations, the brane point of view be
omes an option - one 
ould equally well des
ribe

the physi
s by the properties of the bulk and its ex
itations. This situation has a familiar

analogon in our usual four dimensional world, namely the bla
k hole with metri
 given

by the line element

ds

2

= �

�

1�

2M

r

�

dt

2

+

�

1�

2M

r

�

�1

dr

2

+ r

2

�

d�

2

+ sin

2

�d�

2

�

: (41)

The parameter M 
an be seen as the mass of an obje
t sitting at r = 0 whi
h is intu-

itively 
orre
t if one 
onsiders a bla
k hole 
reated by a 
ollapsed star. This 
orresponds

to the brane point of view. However it 
ould equally well be taken as simply a free pa-

rameter of the isotropi
 va
uum solution of the Einstein equations, without giving it a

physi
al meaning. We may 
all this the bulk point of view. Without a way of probing

the singularity dire
tly the two points of view 
annot be distinguished by observation.

Singular obje
ts of 
odimension two or larger are mu
h more restri
ted than those of
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odimension one. There is not mu
h freedom for ad ho
 adjustments of brane properties

and lo
alization of arbitrary �elds on the brane, independently of the properties of the

bulk. In that sense, models of 
odimension two or larger have more predi
tive power than


odimension one brane models.

Re
ently 
odimension-two branes were dis
ussed by Cline et al [28℄. They 
laimed that

the restri
tions are so strong that it is not possible to have anything else than tension

on an in�nitely thin 
odim-2 brane. This point will be dis
ussed later in this thesis. For

the moment we noti
e that 
odim-2 is the largest 
odimension in whi
h one 
an have an

in�nitely thin brane at all. The brane 
auses or is des
ribed by (depending on the point of

view) a 
oni
al singularity with �nite internal metri
 and without indu
ing any 
urvature

in the bulk. But it 
an be observed from outside due to the de�
it angle of the 
one.

For 
odimensions larger than two, the brane indu
es 
urvature in the bulk. If the brane

were in�nitely thin, this 
urvature would diverge at the brane, and the internal metri


g

��

would be
ome in�nite (see appendix A). Hen
e the brane has to be "regularized" in

one or another way, giving it some �nite size and some internal physi
s. Nevertheless it is

possible that all the relevant physi
s of these regularized branes 
an be determined from

the bulk point of view, as will be shown in 
hapter 4.
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3 6D Einstein-Maxwell Theory and De�
it Angle Branes

Six-dimensional Einstein-Maxwell Theory has often been used as a toy model for "semi-

realisti
" Kaluza-Klein theories. It is the simplest theory admitting a ground state whi
h

leads to a non-Abelian gauge theory in four dimensions [1℄. It also has less symmetri


ground states whi
h may be a hint to a possible solution of the Cosmologi
al Constant

Problem [29℄ and the Gauge Hierar
hy Problem [30℄. It is a standard framework in whi
h

to study 
odimension-two branes [28℄, and it may lead to 
hiral fermions [1, 32℄.

In this 
hapter, we will study geometri
 aspe
ts of 6D Einstein-Maxwell theory. Fermions

will be dis
ussed in 
hapter 4. At �rst, pure gravity on a "warped" six-dimensional

manifold with 
ertain symmetries is analyzed and the 
onne
tion to the Cosmologi
al

Constant Problem is explained. Then we turn to the e�e
t of a Maxwell �eld on the same

type of manifold. We show that it may lead to 
odimension-two branes with a magneti


monopole 
on�guration. The 
onne
tion between the older bulk point of view and the

modern brane point of view is dis
ussed in detail. Finally, we des
ribe the maximally

symmetri
, unwarped solution found by Randjbar-Daemi, Salam and Strathdee.

3.1 6D Warped Geometry and the Cosmologi
al Constant

We 
onsider a six-dimensional manifold with line element

ds

2

= a

2

(�)~g

��

dx

�

dx

�

+ b

2

(�)d�

2

+ d�

2

: (42)

Here ~g

��

is the metri
 of a four-dimensional spa
etime with 
onstant 
urvature. Internal

spa
e is labeled by the radial 
oordinate �, running from 0 to 1 or to a �nite value ��,

and by the angular 
oordinate �, running from 0 to 2�. The nonzero Christo�el symbols,


omponents of the Ri

i tensor and the Ri

i s
alar are

�

�

��

=

~

�

�

��

; �

�

��

= �a

0

a~g

��

; (43)

�

�

��

=

a

0

a

Æ

�

�

; �

�

��

= �b

0

b; (44)

�

�

��

=

b

0

b

; (45)

R

��

=

~

R

��

� ~g

��

(3a

0

2

+ a

0

a

b

0

b

+ a

00

a); (46)

R

��

= �4

a

0

b

0

b

a

� b

00

b; (47)

R

��

= �4

a

00

a

�

b

00

b

; (48)

R =

~

R

a

2

� 12

a

0

2

a

2

� 8

a

0

b

0

ab

� 8

a

00

a

� 2

b

00

b

: (49)

A prime denotes a derivative with respe
t to �, a tilde denotes a four-dimensional quantity

derived from the metri
 ~g

��

. Let � be the six-dimensional 
osmologi
al 
onstant and �

4


orrespond to the four-dimensional spa
etime,

~

R

��

�

1

2

~

R~g

��

= ��

4

~g

��

: (50)
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The va
uum Einstein equations are then

G

�

�

= R

�

�

�

1

2

RÆ

�

�

=

 

�

�

4

a

2

+ 3

a

00

a

+ 3

a

0

2

a

2

+

b

00

b

+ 3

a

0

b

0

ab

!

Æ

�

�

= ��Æ

�

�

; (51)

G

�

�

= R

�

�

�

1

2

R = �

2�

4

a

2

+ 4

a

00

a

+ 6

a

0

2

a

2

= ��; (52)

G

�

�

= R

�

�

�

1

2

R = �

2�

4

a

2

+ 4

a

0

b

0

ab

+ 6

a

0

2

a

2

= ��: (53)

These are three equations for two fun
tions, but due to the Bian
hi identities, only two

of them are independent. From the di�eren
e between the se
ond and the third equation

we see that

b

0

b

=

a

00

a

0

(54)

and hen
e b = Aa

0

with an arbitrary integration 
onstant A. Plugging this into the �rst

equation we see that it is just a 
ombination of the se
ond and its derivative. De�ning a

new variable z via

a = z

2=5

(55)

we may rewrite eq (52) as

z

00

= �

5

8

� +

5

4

�

4

z

1=5

: (56)

This is the equation of motion of a "parti
le" in a "potential" V ,

z

00

= �

�V

�z

; V (z) =

5

16

� z

2

�

25

24

�

4

z

6=5

(57)

where � plays the role of time. The relation between z and b is then

b =

2

5

Az

0

z

�3=5

: (58)

The "parti
le" should start "at rest" at � = 0, whi
h means that we impose the boundary


onditions a

0

= 0 and b / � in the limit �! 0. If the manifold should be smooth at � = 0

we must have b! � there whi
h �xes the integration 
onstant A. Otherwise there would

be a 
oni
al singularity whi
h may be identi�ed as a brane. De�ne z

0

= z(� = 0). Now

there are four 
ases, depending on the signs of �, �

4

and V (z

0

):

1. If � > 0, �

4

� 0 arbitrary and V (z

0

) > 0, the "parti
le" rea
hes z = 0 at a �nite

� = ��, and spa
etime terminates in a singularity there. From eqs. (55,57,58) one


an see that a ! (�� � �)

2=5

and b ! (�� � �)

�3=5

as � ! ��. In the simplest 
ase

�

4

= 0 and z

0

= 1 the solution is

a(�) = 
os

2=5

(!�); b(�) = �

2

5

A! sin(!�) 
os

�3=5

(!�); !

2

=

5

8

� (59)

and �� = �=(2!).

The singularity at �� 
orresponds to a type of higher dimensional bla
k hole, with
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time repla
ed by a spa
elike 
oordinate. Indeed, the properties of the singularity at

�� 
an best be understood in another 
oordinate system. By an appropriate res
aling

of four-dimensional spa
etime and introdu
ing the variable r = D(�� � �)

2=5

with

an appropriate 
onstant D, the metri
 around ��, i.e. around r = 0, 
an be brought

into the form

ds

2

!

M

r

3

d�

2

+

r

3

M

dr

2

+ r

2

g

��

dx

�

dx

�

: (60)

Up to the signature, this is just the r ! 0-limit of the six-dimensional analogue

of the S
hwarzs
hild solution with mass parameter M , � playing the role of time.

Hen
e the singularity 
orresponds to a singular point in the �ve-dimensional spa
e

generated by the 
oordinates x

�

and �. We emphasize that in this 
ase � is the

internal 
oordinate of the singularity and x

�

are external, 
omplementary to the

brane situation.

This type of solution was generalized to an arbitrary 
odimension by Randjbar-

Daemi and Wetteri
h [31℄. There appear singularities with similar properties as in

the six-dimensional 
ase. General properties of su
h singularities are dis
ussed in

the appendix A of this thesis.

This �rst type of solution exists also if � < 0, �

4

< 0. In this 
ase the potential

V has a maximum at some z = z

max

. If z

0

< z

max

, we have a solution of type 1,

otherwise a solution of type 3.

2. If � > 0 and �

4

> 0, the potential V has a minimum at some z = z

min

with

V (z

min

) < 0. Now if also V (z

0

) < 0, the "parti
le" will os
illate in the potential

well. This means that it 
omes to rest at some �nite � = ��, with behavior of a and

b at �� similar to � = 0: a

0

! 0 and b / (�� � �). Like at � = 0, there may be a


oni
al defe
t whi
h 
an be viewed as a brane. We will study this type of solution

extensively in se
tion 3.3.

3. If � < 0 and �

4

� 0, the slope of the potential is always negative. From eqs.

(55,57,58) we see that both a and b diverge exponentially as �!1, and spa
etime

does not terminate at �nite � (ex
ept when in�nity is shielded by a 
odimension-one

brane, a possibility whi
h was 
hosen in ref. [28℄, but whi
h we do not 
onsider).

4. An interesting borderline 
ase between type 1 and type 2 appears when � > 0,

�

4

> 0 and V (z

0

) = 0. This is given for z

0

= (10�

4

=3�)

5=4

. The solution for this

situation is

a(�) = a

0


os(!�); b(�) = Aa

0

! sin(!�); !

2

=

�

10

; a

0

= z

2=5

0

: (61)

As in the �rst type of solutions, spa
etime terminates at �nite �� and the warp

fa
tor a goes to zero there. But this time there is no singularity, all 
urvature

s
alars (in
luding the square of the Riemann tensor) remain �nite as � ! ��. In

some sense, the roles of � and x

�

are inter
hanged at �� as 
ompared to � = 0, sin
e

� be
omes a kind of radial 
oordinate for the x

�

there, a / (�� � �). One might

imagine that the fa
tor a

0

k appearing in this proportionality leads to a de�
it angle
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brane, but this time with 
odimension �ve. A 
loser look shows that this is not the


ase. De�
it angle branes appear only in 
odimension two (see appendix A).

There are also "unwarped" solutions in whi
h the "parti
le" rests in a minimum or on a

maximum of the potential (depending on the signs of � and �

4

). These solutions, where

only b depends on �, 
annot be des
ribed with the potential method, and we will 
onsider

them later.

Whi
h of these solutions 
an serve as a basis for a realisti
 model? There are several

questions to study. At �rst we have to 
he
k that integrating out the extra dimensions

gives a �nite result, i.e. that the e�e
tive four-dimensional Newton's 
onstant is �nite,

Z

d� d� a

2

b <1: (62)

This inequality holds in all 
ases ex
ept the third one whi
h will be dis
arded from now

on. Another question is that of stability against small 
lassi
al 
u
tuations. Lavrelashvili

and Tinyakov [33℄ have expli
itly shown that solutions of the �rst type are unstable. We


onje
ture that the situation is not mu
h better in the other 
ases, and this is one of

the reasons why the in
lusion of a Yang-Mills �eld is helpful. Furthermore the number

of 
hiral fermions is an important issue. Wetteri
h [32℄ showed that the addition of a

Weyl spinor to the six-dimensional a
tion leads to an in�nite number of four-dimensional


hiral fermions in the �rst 
ase, whi
h is due to the weird stru
ture of the singularity at

��. In type 2 solutions the number of 
hiral fermions may be either zero or �nite, as will

be shown in 
hapter 4. This 
ase is parti
ularly interesting to us. The "borderline 
ase"

(type 4 solution) is not dis
ussed here. But we already see that, after normalizing z

0

to

1 by a res
aling of the 4D metri
, �

4

is of the same size as �, whi
h is 
ertainly not very

promising.

Originally [29℄ the warped six-dimensional model was introdu
ed in order to surround

the 
osmologi
al 
onstant problem. It was shown that solutions with �

4

= 0 exist for an

arbitrary "true va
uum energy" �. The question remained why a solution with �

4

= 0

or very 
lose to zero should be favored 
ompared to those with larger �

4

. The authors of

ref. [29℄ expressed their hope that quantum 
orre
tions or additional intera
tions would

single out the solution with �

4

= 0. Our ansatz will be di�erent. In 
hapter 5 we will


onsider 
osmologi
al solutions of the Einstein-Yang-Mills system. The arbitrariness of

the four-dimensional 
osmologi
al 
onstant 
ould be due to the "absorption" of 
urvature

by the warping along the internal spa
e, su
h as the time evolution of the s
ale fa
tor "ab-

sorbs" the 
urvature in ordinary 
osmology. Now if the warping be
omes time-dependent,

the e�e
tive four-dimensional 
osmologi
al "
onstant" be
omes a dynami
al variable, i.e.

e�e
tively some type of quintessen
e. Our hope is that it is this dynami
s whi
h singles

out a very small �

4

.

3.2 6D Einstein-Maxwell Theory and Solutions

Now we turn to six-dimensional Einstein-Maxwell theory. The a
tion is

S =

Z

d

6

x

p

�g

�

�R + 2�

16�G

6

+

1

4

F

AB

F

AB

�

; (63)
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where G

6

is the six-dimensional gravitational 
onstant. The �eld equations are

G

B

A

= R

B

A

�

1

2

RÆ

B

A

= ��Æ

B

A

+ 8�G

6

T

B

A

; (64)

T

B

A

= (F

AC

F

BC

�

1

4

F

CD

F

CD

Æ

B

A

); (65)

�

A

(

p

gF

AB

) = 0: (66)

Here T

B

A

is the energy momentum tensor generated by the abelian gauge �eld strength

F

AB

. The spa
etime symmetries require that F

��

is the only non-vanishing 
omponent of

the �eld strength tensor, sin
e F

BC

= �

B

A

C

� �

C

A

B

, A

�

= 0 (by symmetry), A

�

= 0 (by

a suitable gauge transformation) and A

�

= �(�). The Maxwell equations then imply

F

��

= Ca

�4

b; (67)

where C is a 
onstant of integration. Plugging the �eld strength (67) into our expression

(65) for the bulk energy momentum tensor T

B

A

one gets the non-vanishing 
omponents

T

�

�

= �

1

2

C

2

a

�8

Æ

�

�

; (68)

T

�

�

= T

�

�

=

1

2

C

2

a

�8

: (69)

When we insert this into the Einstein equations, we see that the relation between a and

b remains the same as before and that the potential V gets an additional term,

V (z) =

5

16

�z

2

�

25

24

�

4

z

6=5

+

25

12

�G

6

C

2

z

�6=5

: (70)

Now, for � > 0 and C 6= 0, the potential goes to in�nity for � ! 0 and � ! 1, so the

solution is of type 2, whatever V (z

0

) or the sign of �

4

is. In addition to the attra
tive

features of type 2 solutions already mentioned, we expe
t these solutions to be stable

against 
lassi
al perturbations, due to the presen
e of the Maxwell �eld.

By solving the system, we obtained the 
onstants of integration �

4

, C, A and z

0

. The

Einstein equations are obviously invariant under a res
aling with 
onstant fa
tor l:

a! la; �

4

! l

2

�

4

; C ! l

4

C; (71)

whi
h 
orresponds to a 
hange of s
ale for the four-dimensional 
oordinates

x

�

! l

�1

x

�

: (72)

This freedom 
an be used to set z

0

= 1.

In the presen
e of 
harged �elds, the gauge �eld A

�

has to ful�ll 
ertain requirements.

Sin
e the � 
oordinate be
omes singular at the two poles � = 0 and � = ��, 
onsistent lo
al


oordinate systems must have A

�

= 0 at these points (for a more detailed argument, see

ref. [30℄). Unless C = 0, at least two pat
hes with di�erent gauges are therefore needed
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to 
over the whole internal spa
e. If the gauge with A

�

(� = 0) = 0 has lim

�!��

A

�

= �m,

the other gauge is obtained by subtra
tion of the 
onstant �m. The gauge transformation

A

�

! A

�

+

1

e

�

�

�: (73)

must be well-de�ned for the 
harged �elds, whi
h requires �m = m=e, with e the gauge


oupling and m an integer "monopole number". The parameter C 
an be expressed in

terms of m,

C =

m

e

R

��

0

d� a

4

b

: (74)

In this 
ase our general type 2 solution 
an be expressed in terms of the integration


onstants A and �

4

and the monopole number m.

3.3 Codimension-Two Branes

From now on we will almost only dis
uss type 2 solutions. But as long as only the lo
al

properties of a 
odimension-two brane are 
on
erned, what we say is also true for the

possible singularity at � = 0 in the other types of solutions.

In the modern language the 
oni
al singularities that may appear in the solutions would

be 
alled branes. In this se
tion, the relation between the "old" and "modern" language

is dis
ussed, and the tension of the branes is 
al
ulated. We show that, at least at a

geometri
al level, the two points of view are equivalent.

At � ! 0, we saw that b vanishes linearly while a approa
hes a �nite 
onstant a

0

whi
h


an be res
aled to 1. The de�
it angle � 
an be de�ned via b ! (1 � �=2�)�. Here,

� = 0 
orresponds to � = 0 being a regular point in the internal spa
e, whereas � 6= 0


orresponds to a "defe
t" situated at � = 0 with de�
it angle �. This is what we 
all

a de�
it angle brane (DAB). The 
ir
umferen
e of a 
ir
le in internal spa
e at radius �

is then (2� � �)� instead of 2��. A bulk test parti
le 
an measure the singularity by

surrounding it, although the brane does not indu
e any 
urvature in the bulk. For � > 0

the singularity is a familiar 
one, whereas a negative de�
it angle � < 0 may be 
alled an

"anti
one". We will denote by "
usps" all singular stru
tures with � 6= 0. The 
oni
al

defe
t (� > 0) is a straightforward generalization of a straight in�nitely extended string

in four dimensions, where the z-
oordinate is now repla
ed by the 
ordinates ~x on the

three-brane. If the spa
e terminates at some �nite ��, another DAB may be lo
ated at

� = ��. Depending on the appearan
e of de�
it angles we have two, one or zero "true"

singularities, asso
iated to a 
orresponding number of branes. The most generi
 solution

has two branes at � = 0 and � = ��.

The original paper [30℄ has taken the point of view that the point � = 0 or �� is not

in
luded into the manifold if a nonzero de�
it angle o

urs. The singularity was seen as

a property of the bulk geometry, 
ompletely determined by the integration 
onstants of

the bulk solution. The modern "brane point of view" [28℄ asserts that an obje
t 
alled

brane sits at � = 0 or �� and determines the geometry due to its tension via the Einstein

equations. These two des
riptions des
ribe exa
tly the same solution and are therefore

equivalent. Di�erent impli
ations for physi
s for the two points of view 
ould only arise
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if obje
ts would be lo
ated on the brane whi
h 
annot be des
ribed from a bulk point of

view, as it is 
ertainly possible for 
odimension-one branes. Then a brane point of view

would be ne
essary in order to des
ribe these obje
ts. But, as we will dis
uss below, it

seems unlikely to us that anything Æ-fun
tion-like ex
ept pure tension 
an 
onsistently

be put on an in�nitely thin de�
it angle brane. If this 
onje
ture turns out to be true,

it would be unne
essary to speak of a brane, while the brane point of view 
an still be


onsidered as being quite useful for intuition.

We �rst adopt the brane point of view where one or two 
usps are in
luded into the

manifold as branes. We want to relate the properties of the branes to the free integration


onstants appearing in the "bulk point of view". The branes 
orrespond to a Æ-fun
tion

singularity of the 
urvature tensor whi
h may be seen as generated by a Æ-fun
tion-like

energy momentum tensor at that position, the brane tension. In order to 
al
ulate the

brane tension, we follow the lines of ref. [34℄. We �rst assume the brane to have a �nite

thi
kness � and then take the limit �! 0. The energy momentum tensor generated by the

gauge �eld remains �nite at � = 0 and ��, see eqs.(68), (69), so it 
annot a

ount for the

singularity. The branes need to have some additional internal energy momentum tensor

~

T

B

A

. The Einstein equations inside the brane, 0 � � < �, are then

G

�

�

=

 

�

�

4

a

2

+ 3

a

00

a

+ 3

a

0

2

a

2

+

b

00

b

+ 3

a

0

b

0

ab

!

Æ

�

�

= ��Æ

�

�

+ 8�G

6

(T

�

�

+

~

T

�

�

); (75)

G

�

�

= �

2�

4

a

2

+ 4

a

00

a

+ 6

a

0

2

a

2

= �� + 8�G

6

(T

�

�

+

~

T

�

�

); (76)

G

�

�

= �

2�

4

a

2

+ 4

a

0

b

0

ab

+ 6

a

0

2

a

2

= �� + 8�G

6

(T

�

�

+

~

T

�

�

): (77)

The brane tension 
omponents 
an be de�ned as the integral over the 
omponents of the

energy momentum tensor

�

(�)

i

= �

Z

�

0

d� a

4

b

~

T

(i)

(i)

(�); (78)

where i = �; �; � and the bra
kets mean that there is no summation. Using eqs.(75)-(77)

we 
an express the �-integrals over

~

T

(i)

(i)

in terms of integrals over geometri
 quantities.

Sin
e we wish to 
onsider the limit � ! 0, in whi
h

~

T

B

A

will diverge in order to give a

�nite tension, the 
ontribution from the �-, �

4

- and T

B

A

-terms may be negle
ted in these

integrals. As an example one obtains

�

(�)

�

= �

1

8�G

6

Z

�

0

d� a

4

b

 

4

a

00

a

+ 6

a

0

2

a

2

!

: (79)

For two parti
ular 
ombinations of brane tensions the �-integral 
an be performed expli
-

itly:

�

a

3

a

0

b

�

j

�

0

= �2�G

6

(�

�

+ �

�

) (80)

and

�

a

4

b

0

�

j

�

0

= �8�G

6

�

�

�

�

3

4

�

�

+

1

4

�

�

�

; (81)
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Here j

�

0

means the di�eren
e between the expression evaluated at � = � and � = 0.

Up to this point we have only used the general form of the metri
 (42) and the higher

dimensional Einstein equation. We impli
itly assume that our model and solution is valid

for � � �, whereas in the inner region � < � more 
ompli
ated physi
s may play a role,

modifying the �eld equations but not the symmetries of the metri
. (In this sense we

de�ne the energy momentum tensor in the inner region to in
lude all parts in the �eld

equations ex
ept the Einstein tensor.)

In order to pro
eed we need some additional information about the inner region. Within

the brane point of view one assumes that there is no real singularity at � = 0. SuÆ
ient

resolution and understanding of the physi
s at extremely short distan
es should rather

turn the brane into an extended obje
t with �nite thi
kness �. In 
onsequen
e, a manifold

that is regular at � = 0 obeys

a

0

j

�=0

= 0; b

0

j

�=0

= 1; bj

�=0

= 0; (82)

and we 
hoose a s
aling of the four dimensional 
oordinates x

�

su
h that aj

�=0

= 1. We

next turn to our solution for small �. Sin
e the "parti
le" starts at rest at z = 1 for � = 0

one �nds by linearization

z(�) = 1�

�

2

�

2

; � =

�V

�z

j

z=1

(83)

and therefore

a(�) = 1�

1

5

��

2

; a

0

(�) = �

2

5

��; b(�) = A��; b

0

(�) = A�: (84)

Here � is related to the de�
it angle � by

b = (1�

�

2�

)� = A�� (85)

or

b

0

(z ! 1) = 1�

�

2�

= A

dV

dz

= A

�

5

8

��

5

4

�

4

�

5

2

�G

6

C

2

�

: (86)

Up to 
orre
tions of the order O(�) we infer

�

a

3

a

0

b

�

j

�

0

= 0;

�

a

4

b

0

�

j

�

0

= �

�

2�

: (87)

In the same approximation we note that the integrand in eq.(79) is of the order �. This

will not be 
hanged by "regularizing" the brane in the inner region and we 
on
lude

�

(�)

5

= O(�

2

). Combining this with eq.(87) and taking the limit � ! 0 we arrive at the

�nal relation between the brane tensions and the de�
it angle

�

�

=

�

16�

2

G

6

; �

�

= �

�

= 0: (88)

This equation 
onstitutes the link between brane and bulk points of view. Within the

brane point of view an obje
t with tension �

�

6= 0, �

�

= �

�

= 0 produ
es a de�
it angle
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in the geometry a

ording to eq.(88). This in turn limits the allowed solutions of the

Einstein equations. From the bulk point of view the general solution has free integration


onstants whi
h are related to the de�
it angle by virtue of eq.(86). One may 
onsider

� as one of the independent integration 
onstants. The dis
ussion of the de�
it angle at

�� pro
eeds in 
omplete analogy. The general solution 
an therefore be 
hara
terized by

two 
ontinuous de�
it angles �

0

and �

��

(at � = 0 and � = ��, respe
tively) and an integer

monopole number m.

We observe that a positive brane tension �

�


orresponds to a positive de�
it angle.

(In our 
onventions �

�

> 0 means positive energy density and negative pressure.) We do

not restri
t our dis
ussion to �

�

� 0 and we will see in 
hapter 4 that a negative brane

tension with negative de�
it angle is parti
ularly interesting.

3.4 The Spheri
ally Symmetri
 Solution

Finally the "unwarped" solutions are to be dis
ussed, whi
h 
orrespond to the situation

where the "parti
le" is situated on a minimum or maximum of the potential V , and

six-dimensional spa
etime is a dire
t produ
t of four-dimensional spa
etime and internal

spa
e. In this 
ase we have a(�) = 1 and the Einstein equations redu
e to

��

4

+

b

00

b

= ��� 4�G

6

C

2

(89)

�2�

4

= �� + 4�G

6

C

2

: (90)

The se
ond equation gives a relation between �

4

, � and C whi
h is just the 
ondition for

the minimum/maximum of the potential to be lo
ated at z = 1. The �rst equation 
an

then be integrated to

b(�) = A sin(k�); k

2

=

�

2

+ 6�G

6

C

2

: (91)

For A = 1=k internal spa
e is a sphere S

2

with radius L = 1=k, and for di�erent A it has

two equal de�
it angles at the endpoints. Four-dimensional Minkowski spa
e, i.e. �

4

= 0

is obtained when

� = 4�G

6

C

2

; k

2

= 2�: (92)

When we dis
uss 
osmologi
al solutions, C will be
ome a fun
tion of time. So it will be

better to 
lassify a solution in terms of monopole numbers, whi
h remain really 
onstant.

One obtains

F

��

= CA sin k� (93)

and we 
hoose A

�

to be

A

�

=

Z

�

0

d�

0

F

��

= �

CA

k

(
os k�� 1) (94)

In the presen
e of �elds that 
ouple to the gauge �eld, the di�eren
e between A

�

at � = 0

and �� must again be an integer times 1=e, so we infer

�

CA

k

=

m

2e

(95)
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or in the spheri
al 
ase where A = 1=k

C = �

m

2e

k

2

: (96)

Plugging this into the expression for k

2

in equation (91), one obtains

k

2

=

1

3�G

6

e

2

m

2

0

�

1�

s

1� 3�G

6

�

m

2

e

2

1

A

; (97)

and from this one gets

�

4

=

2

3

��

1

9�G

6

e

2

m

2

0

�

1�

s

1� 3�G

6

�

m

2

e

2

1

A

: (98)

So if � < 0, for ea
h value of m there is one positive solution for k

2

. If � > 0, there are

two su
h solutions, provided � and m are not too large. The Minkowski solution �

4

= 0

is obtained for

� =

1

4�G

6

e

2

m

2

(99)

and the radius of the internal sphere takes the value

L

2

= 2�G

6

m

2

e

2

: (100)

If, more generally, A =

~

A=k, all the previous relations hold with e substituted by

~

Ae.

Finally we remark that even if no 
harged �elds are present, this parametrization is still

useful for 
osmologi
al purposes, sin
e "m=e", whi
h is now an arbitrary parameter, will

still be 
onstant, whereas C be
omes time-dependent.
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4 Chiral Fermions from Extra Dimensions

Obtaining 
hiral four-dimensional fermions from the dimensional redu
tion of a higher-

dimensional theory is a nontrivial task. Witten [35℄ showed that it is in general impossible

to get them from a pure Einstein theory if spa
etime is a dire
t produ
t of four-dimensional

spa
etime and a 
ompa
t internal spa
e. Wetteri
h [36℄ showed how the problem may be

surrounded either by 
onsidering a generalized theory of gravity or by imposing a non-


ompa
t internal spa
e. The se
ond possibility is parti
ularly interesting for us, sin
e the

internal spa
es with singularities whi
h were dis
ussed in the previous se
tion are non-


ompa
t. It turns out that some of these indeed admit 
hiral four-dimensional fermions

[32, 37℄. Another possibility to get 
hiral fermions is to 
ouple them to a gauge �eld

present in the higher dimensional theory [1℄.

In order to dis
uss these matters, we �rst work out the algebrai
 stru
ture of spinors

in more than four dimensions and show for whi
h dimensionalities Weyl and Majorana


onstraints may be imposed [38℄. Then the vielbein formalism and the spin 
onne
tion

are introdu
ed in order to des
ribe spinors on 
urved manifolds. The pro
edure of di-

mensional redu
tion is worked out [39℄. The 
hirality index [40, 35℄ is introdu
ed and

the 
orresponding No-go-theorems are sket
hed. We investigate the appearan
e of 
hiral

fermions in six-dimensional Einstein-Maxwell theory and show that their number and

properties depend on the de�
it angles in the internal spa
e whi
h in turn are related to

integration 
onstants of the "bulk" solution. The fermions are shown to be atta
hed to

the branes. Again we dis
uss in detail the 
onne
tion between the older bulk point of

view and the modern brane point of view and formulate a kind of holographi
 prin
iple,

leading us to the notion of "holographi
 branes".

4.1 Spinors in Arbitrary Dimensions

In this se
tion we 
onstru
t the spinor representations of the Lorentz group in arbitrarily

many dimensions. The introdu
tion presented here is based on a 
ombination of the

treatments given in ref.[38℄ and appendi
es of refs [41, 42℄.

We have to �nd gamma matri
es obeying the Cli�ord algebra

f


m

; 


m

g = 2�

mn

: (101)

Even Dimensions: d = 2k. Group the 


n

into k sets of anti
ommuting raising and

lowering operators,




0�

=

1

2

(�


0

+ 


1

); (102)




a�

=

1

2

(


2a

� i


2a+1

); a = 1; :::; k � 1: (103)

These satisfy

n




a+

; 


b�

o

= Æ

ab

; (104)

n




a+

; 


b+

o

=

n




a�

; 


b�

o

= 0: (105)
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In parti
ular, (


a+

)

2

= (


a�

)

2

= 0. It follows that by a
ting with the 


a�

we 
an �nd a

spinor that obeys




a�

� = 0 (106)

for all a. Starting from � one 
an derive a representation of dimension 2

k

by a
ting in all

possible ways with the 


a+

. The states obtained 
an be labeled by s � (s

0

; s

1

; :::; s

k�1

),

where ea
h s

a

is �1=2:

 

(s)

� (


(k�1)+

)

s

k�1

+1=2

:::(


0+

)

s

0

+1=2

�: (107)

Taking the  

(s)

as a basis, the matrix elements of 


n


an be derived from the de�nitions

and anti
ommutation relations. One �nds an iterative expression starting in d = 2, where




0

=

 

0 1

�1 0

!

; 


1

=

 

0 1

1 0

!

: (108)

Going from k to k + 1,




n

= ~


n




 

�1 0

0 1

!

; n = 0; :::; d� 3 ; (109)




d�2

= I 


 

0 1

1 0

!

; 


d�1

= I 


 

0 �i

i 0

!

; (110)

with ~


n

the 2

k

� 2

k

Dira
 matri
es in d � 2 dimensions and I the 2

k

� 2

k

identity. The

2� 2 matri
es a
t on the index s

k

, whi
h is added in going from 2k to 2k+2 dimensions.

This representation gives the 
s simple reality and symmetry properties: 


n�

= 


n

for n

even or n = 1, and 


n�

= �


n

otherwise; 


nT

= �


n�

for n = 0, and 


nT

= 


n�

otherwise.

The matri
es

�

mn

=

1

4i

[


m

; 


n

℄ (111)

satisfy the Lorentz algebra

i [�

mn

;�

pq

℄ = �

np

�

mq

+ �

mq

�

np

� �

nq

�

mp

� �

mp

�

nq

: (112)

The generators �

2a;2a+1


ommute and 
an be simultaneously diagonalized. In terms of

raising and lowering operators,

S

a

= i

Æ

a;0

�

2a;2a+1

= 


a+




a�

�

1

2

(113)

so  

(s)

is a simultaneous eigenstate of the S

a

with eigenvalues s

a

. The half-integer values

show that this is a spinor representation, 
alled the 2

k

-dimensional Dira
 representation.

The elements of the Lorentz group in the neighborhood of the identity are represented by

matri
es of the form 1 +

1

2

i�

mn

�

mn

.

The Dira
 representation is in even dimensions redu
ible as a representation of the

Lorentz algebra. Be
ause �

mn

is quadrati
 in the 
s, the  

(s)

with even and odd numbers

of +1=2 eigenvalues do not mix. De�ne

� = i

�k




0




1

:::


d�1

; (114)
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whi
h ful�lls

�

2

= 1; f�; 


n

g = 0; f�;�

mn

g = 0: (115)

Noting that

� = 2

k

S

0

S

1

:::S

k�1

; (116)

we see that � is diagonal in our basis, taking the value +1 when s

a

in
lude an even number

of �1=2 and �1 for an odd number of �1=2 values. The 2

k�1

states with � eigenvalue +1

form a Weyl representation of the Lorentz algebra, and those with eigenvalue �1 form a

se
ond.

The matri
es 


n�

and �


n�

satisfy the same Cli�ord algebra as 


n

and so they must

be related to them by a basis transformation (be
ause of uniqueness). Indeed, we �nd in

our representation from the reality properties, that the produ
ts

B

1

= 


3




5

:::


d�1

; B

2

= �B

1

(117)

obey

B

1




n

B

�1

1

= (�1)

k�1




n�

; B

2




n

B

�1

2

= (�1)

k




n�

: (118)

For both of these matri
es (and only for these or a linear 
ombination of them) we have

B�

mn

B

�1

= ��

mn�

: (119)

It follows that the spinors  and B

�1

 

�

transform in the same way under the Lorentz

group, so the Dira
 representation is its own 
onjugate. We 
an de�ne 
harge 
onjugation

by

 




= B

�1

 

�

=

^

C : (120)

A Majorana 
ondition demands  




=  . A
ting twi
e with the 
harge 
onjugation oper-

ator, it follows  = B

�

B for those  s that ful�ll the 
ondition. From the reality and

anti
ommutation properties one �nds

B

�

1

B

1

= (�1)

k(k�1)=2

; B

�

2

B

2

= (�1)

(k�1)(k�2)=2

: (121)

A Majorana 
ondition is therefore only self-
onsistent if k = 0 mod 4 (with B = B

1

),

k = 1 mod 4 (with B = B

1

or B = B

2

) or k = 2 mod 4 (with B = B

2

).

A Majorana-Weyl spinor is possible if B

�

B = 1 and 
harge 
onjugation 
ommutes

with 
hirality. A
ting on �, one �nds

B

1

�B

�1

1

= B

2

�B

�1

2

= (�1)

k�1

�

�

; (122)

so for k odd ea
h Weyl representation is its own 
onjugate, and for k even the Weyl

representations are 
onjugate to ea
h other. A Majorana-Weyl 
ondition is therefore only

possible if k = 1 mod 4.

For k even,

^

C anti
ommutes with �. In a basis in whi
h � has the form

� =

 

1 0

0 �1

!

; (123)
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B

�1

has the form

B

�1

=

 

0

~

E

E 0

!

; (124)

where

^

C

2

= 1 requires

~

E = (E

�1

)

�

. In this basis, a Majorana spinor has the form

 

M

=

 

�

E�

�

!

: (125)

It is 
ompletely des
ribed by the 
omplex 2

d=2�1


omponent spinor �, whi
h shows the

equivalen
e of Weyl and Majorana spinors in these dimensions.

Odd dimensions: d=2k+1. One 
an just add 


2k

= � to the 
-matri
es from d = 2k

in order to satisfy the Cli�ord algebra in d = 2k + 1 dimensions. The �s derived from

these 
s now form an irredu
ible representation of the Lorentz algebra. The 
onjugation

of 


2k

(eq. (122)) is 
ompatible with the 
onjugation of the other 
s only for B = B

1

(eq. (118)). A Majorana 
ondition is therefore possible for k = 0 or 1 mod 4 by virtue of

eq.(121).

To summarize, we found for the several dimensions:

� If d = 0 or 4 mod 8, the Weyl representations are 
omplex 
onjugate to ea
h other.

Majorana spinors exist and there is a one-to-one mapping between Majorana spinors

and the spinors of ea
h Weyl representation.

� If d = 1 or 3 mod 8, Majorana spinors exist, but there is no Weyl 
ondition.

� If d = 2 mod 8, Majorana, Weyl and Majorana-Weyl spinors exist. The Weyl

representations are self-
onjugate ("real").

� If d = 5 or 7 mod 8, neither Weyl nor Majorana spinors are possible.

� If d = 6 mod 8, Weyl representations exist and are self-
onjugate, but only "pseudo-

real". Therefore Majorana spinors do not exist.

Gamma Produ
ts: From the anti
ommutation relations it 
an be seen that only anti-

symmetri
 produ
ts of 
-matri
es 
an be linearly independent. In fa
t, in even dimensions,

none of the produ
ts




n

1

n

2

:::n

p

= 


[n

1




n

2

:::


n

p

℄

(126)

vanishes (the square is always proportional to the identity), and they are all linearly

independent, sin
e they all have di�erent Lorentz and/or parity transformation rules.

From their number (sum of binomial 
oeÆ
ients) one �nds that they span the 
omplete

spa
e of 2

k

� 2

k

matri
es. In odd dimensions d = 2k+1 some of the produ
ts are related

via




n

1

:::n

p




2k

� �

n

1

:::n

d




n

p+1

:::n

d

: (127)

So only produ
ts with p � k are independent. These again span the 
omplete spa
e of

2

k

� 2

k

matri
es.
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Fermion bilinears and mass terms: The matri
es 


nT

and �


nT

also satisfy the

Cli�ord algebra. Indeed, for even d = 2k we �nd for

C

1

= B

1




0

; C

2

= B

2




0

; (128)

using the hermiti
ity property




ny

= �


0




n

(


0

)

�1

; (129)

that

C

1




n

C

�1

1

= (�1)

k




nT

; C

2




n

C

�1

2

= (�1)

k+1




nT

: (130)

In odd dimensions, only C

1

a
ts uniformly on all 
s. In all 
ases,

C�

mn

C

�1

= ��

mnT

: (131)

Now there are two ways to 
onstru
t fermion bilinears. The �rst is the standard one

known from four dimensions:

�

 =  

y




0

, and from the hermiti
ity properties of the �

mn

one �nds that

�

  is a Lorentz s
alar. The other possibility is

~

 =  

T

C, and again

~

  is

a Lorentz s
alar. Tensors 
an be 
onstru
ted as

�

 


n

1

n

2

:::n

p

 or

~

 


n

1

n

2

:::n

p

 : (132)

In even dimensions, one �nds for a Weyl spinor  

+

=

1

2

(1 + �) :

�

 

+

=

�

 

1

2

(1� �);

~

 

+

=

~

 

1

2

(1 + (�1)

d=2

�): (133)

So the tensors 
onstru
ted from

�

 

+

vanish if the rank is even. For d = 0 mod 4 the

tensors 
onstru
ted from

~

 vanish if the rank is odd, for d = 2 mod 4 if the rank is even.

From this follows that a mass term is forbidden for Weyl spinors if the dimension is d = 2

mod 4.

Another 
onstraint 
omes from the Pauli prin
iple [38℄. It forbids a mass term for a

Weyl or Majorana spinor in d = 0 mod 8 dimensions and for a Majorana spinor if d = 1

mod 8.

Spinors of SO(N) : For SO(N) the analysis is similar. The only di�eren
e lies es-

sentially in ignoring the pair 


0

, 


1

, so that SO(N) is analogous to SO(N+1,1). The

de
ompositions into Weyl and Majorana representations that were possible for d + 2 di-

mensions in the Minkowski 
ase are now possible in d dimensions. For the 
onstru
tion

of bilinears one has C = B, hen
e

~

 =  

T

B, and

�

 =  

y

. Now for Weyl spinors

�

 

+

=

�

 

1

2

(1 + �); (134)

and a mass term is always possible for them.
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4.2 Spinors on Curved Spa
etimes

The familiar formulation of gravity in terms of a metri
 tensor g

��

is adequate for theories

with matter �elds restri
ted to s
alars, ve
tors and tensors, but spinors need a di�erent

treatment. Unlike ve
tors and tensors, spinors have a Lorentz transformation rule that

has no natural generalization to arbitrary 
oordinate systems. In order to deal with

spinors, we have to introdu
e 
oordinate systems �

a

X

(x) that are lo
ally inertial at any

given point X. The transformation whi
h leads from general 
oordinates into this lo
ally

inertial frame is des
ribed by the vielbein

e

a

�

(X) �

��

a

X

(x)

�x

�

j

x=X

: (135)

An a
tion will be invariant under general 
oordinate transformations x

�

! x

0

�

and lo
al

Lorentz transformations �

a

! �

0

a

= �

a

b

�

b

. Under a general 
oordinate transformation,

the vielbein transforms as

e

a

�

(x)! e

0

a

�

(x

0

) =

�x

�

�x

0

�

e

a

�

(x); (136)

and under a lo
al Lorentz transformation as

e

a

�

(x)! �

a

b

(x)e

b

�

(x): (137)

Ve
tors may be regarded either as quantities V

a

that transform as ve
tors under lo
al

Lorentz transformations, but as s
alars under general 
oordinate transformations, or as

quantities v

�

that transform as s
alars under lo
al Lorentz transformations but as ve
tors

under general 
oordinate transformations, the two being related by

V

a

= e

a

�

v

�

: (138)

Similar relations hold for tensors. In parti
ular one has

�

ab

= e

a

�

e

b

�

g

��

: (139)

Latin indi
es are raised and lowered with �

ab

, greek ones with g

��

.

Now we turn to spinors. These transform under lo
al Lorentz transformations a

ording

to

 (x)! D(�(x)) (x); (140)

where D(�) is the spinor representaion of the Lorentz group. The derivative transforms

under �(x) as

�

�

 ! D(�)

n

�

�

 +D

�1

(�) (�

�

D(�)) 

o

: (141)

In order to get a 
ovariant derivative, the se
ond term in the bra
kets has to be 
an
elled

by introdu
ing a 
onne
tion matrix 


�

with transformation property




�

! D(�)


�

D

�1

(�)� (�

�

D(�))D

�1

(�): (142)
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The 
ovariant derivative 
an then be de�ned as

D

�

 � �

�

 + 


�

 ; (143)

whi
h transforms under lo
al Lorentz transformations like  itself. We 
an write 


�

in

the form




�

(x) =

1

2

i�

ab

!

ab

�

(x); (144)

where !

ab

�

is a representation-independent �eld known as the spin 
onne
tion, whi
h


an be taken to be

!

ab

�

= g

��

e

a

�

e

b

�;�

: (145)

Here the semi-
olon denotes an ordinary 
ovariant derivative, 
onstru
ted using the aÆne


onne
tion �

�

��

. At �rst we observe that this is antisymmetri
 in a and b be
ause

g

��

e

a

�

e

b

�

= �

ab

has vanishing 
ovariant derivative. In order to prove that the so 
on-

stru
ted 


�

has the 
orre
t transformation properties, it is suÆ
ient to show it for in-

�nitesimal Lorentz transformations,

�

a

b

(x) = Æ

a

b

+ �

a

b

(x); �

ab

= ��

ba

; (146)

D(�) = 1 +

1

2

i�

ab

�

ab

: (147)

Now the transformation rule (142) be
omes




�

! 


�

+

1

2

i�

ab

[�

ab

;


�

℄�

1

2

i�

ab

�

�

�

ab

: (148)

Using the 
ommutaion relations of the �

ab

and the transformation property

e

b�

�

�

e

a

�

! e

b�

�

�

e

a

�

+ �

b




e


�

�

�

e

a

�

+ �

a




e

b�

�

�

e




�

+ �

�

�

ab

; (149)

one �nds after some algebra that this rule indeed holds.

A
tion of a symmetry group: How does an isometry group a
t on a spinor? Let the

group be geometri
ally generated by the Killing ve
tors K

z

. Then the de�nition of the Lie

derivative 
an be extended to in
lude spinors. The a
tion of the group should leave the

vielbein invariant, so the general 
oordinate 
hange indu
ed by K

z

has to be 
ombined

with some lo
al Lorentz transformation �

z

a

ounting for that invarian
e. One obtains

that the generators S

z

a
ting on a spinor 
an be expressed as

S

z

 = K

z

�

D

�

 +

1

2

i(D

�

K

z

�

)e

m

�

e

n�

�

mn

 : (150)
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4.3 Dimensional Redu
tion of Fermions

In nature one observes that right-handed and left-handed fermions transform di�erently

under the gauge group SU(3)� SU(2)� U(1). (The quantum numbers are not "ve
tor-

like"). By gauge symmetry, a bare mass term is forbidden for su
h fermions. Masses o

ur

only in the 
ontext of spontaneous symmetry breaking (SSB) through a Yukawa 
oupling

to a s
alar �eld whi
h gets a nonzero va
uum expe
tation value (vev). A su

essful Kaluza-

Klein theory would have to explain all the fermion quantum numbers from dimensional

redu
tion of a fundamental spinor. Su
h attempts are des
ribed in 
hapter 6.

For the moment we are less ambitious and ask how we 
an get 
hiral four-dimensional

fermions from dimensional redu
tion at all. We will see that there are strong 
onstraints

on su
h 
hiral models, but that the situation 
hanges when we give up the restri
tion to


ompa
t internal spa
es.

In the following we ignore SSB and regard 
hiral fermions as massless. On the other

hand we assume that no small masses o

ur unless this is required by symmetry 
onsid-

erations. The reason for this is as follows: Without SSB, all natural masses that o

ur

in Kaluza-Klein theories are almost of Plan
k mass order. (As we will show, the fermion

masses are linked to the eigenvalues of the "internal" Dira
 operator. The size of internal

spa
e is not far from the Plan
k s
ale, and this is the order at whi
h eigenvalues are

expe
ted.) If a fermion is light just by 
han
e and not by symmetry requirements, we

expe
t that this will 
hange dramati
ally when the parameters of the model are slightly

shifted. Therefore a �ne-tuning of parameters would be needed for su
h a non-required

lightness, and we assume that this does not o

ur. To summarize this: We assume that

the massless fermions are pre
isely the 
hiral ones.

We start with the the original Kaluza-Klein idea and assume at �rst that d-dimensional

spa
etime is a dire
t produ
t of four-dimensional Minkowski spa
e and a D-dimensional


ompa
t spa
e K with isometry group G whi
h appears as the gauge group in the e�e
tive

four-dimensional world. We restri
t ourselves to the 
ase D = 2 mod 4. It was shown by

Wetteri
h [39℄ and Witten [35℄ that 
hiral fermions 
annot be obtained in any other 
ase

(this is still true for non
ompa
t internal spa
es). The spa
e of d-dimensional spinors is

the tensor produ
t of the spa
e of D-dimensional spinors and the spa
e of 4-dimensional

spinors. The Gamma matri
es 
an be written




�

= ~


�


 I

(D)

; 


�

=

~

�
 


�(D)

; (151)

where

~




�

are the 4D gamma matri
es and I

(D)

is the 2

D=2

dimensional unit matrix.

An arbitrary d-dimensional spinor 	(y; x) 
an always be "harmoni
ally" expanded into

representations of the group G:

	(y; x) =

X

nHk

 

nHk

(y)�

nHk

(x): (152)

Here the index H labels all irredu
ible representations of G that are 
ontained in the in�-

nite dimensional spa
e of 2

D=2

-
omponent spinor �elds  (y) 
orresponding to the internal

spa
e K. The index n runs over the 
omponents of H, and k 
ounts how many times H

is 
ontained in  (y). One 
an always normalize the  

nHk

a

ording to

Z

d

D

y

p

�g 

n

0

H

0

k

0

(y)

y

 

nHk

(y) = Æ

n

0

n

Æ

H

0

H

Æ

k

0

k

: (153)
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The Dira
 operator is assumed to be hermitian. The fermion Lagrangian is then

L

	

= i

�

	(


�

D

�

+ 


�

D

�

)	: (154)

For dire
t produ
t spa
es, the spin 
onne
tions have no 
omponents mixing Minkowski

spa
e with internal spa
e (this will 
hange when a warping is introdu
ed), and we have

D

�

=

~

D

�

and D

�

= D

(D)

�

. Sin
e 


�

D

�

is a G singlet operator and hen
e 
ommutes with

the generators of G, one has




�

D

�

 

nHk

(y) =  

nHk

0

(y)M

(H)

k

0

k

(155)

with a hermitian 
onstant matrix M

(H)

k

0

k

for every representation H 
ontained in  (y).

Inserting the harmoni
 expansion into the Lagrangian (154) gives

L

	

= i 

nHk

y

 

n

0

H

0

k

00

�

�

nHk

~

�M

(H)

k

00

k

0

�

n

0

H

0

k

0

+ i 

nHk

y

 

n

0

H

0

k

0

�

�

nHk

~


�

~

D

�

�

n

0

H

0

k

0

: (156)

After 
arrying out the integration over the y 
oordinates, using the normalization (153)

one obtains the e�e
tive four-dimensional Lagrangian

L

(4)

	

= i

�

�

nHk

~

�M

(H)

kk

0

�

nHk

0

+ i

�

�

nHk

~


�

~

D

�

�

nHk

: (157)

The se
ond term is the usual kineti
 term, and the �rst one is a mass term, obtained

from the "mass operator" 


�

D

�

. In fa
t, the matri
esM

(H)


an be diagonalized by using

unitary k

H

� k

H

matri
es (where k

H

is the number of H

0

s appearing in  (y)), without

a�e
ting the normalization (153).

We now turn to 
hirality. One has

� =

~

�
 �

(D)

: (158)

If we start with a d-dimensional Weyl spinor, i.e. with a �xed � eigenvalue, then the

eigenvalues of a �

(D)

eigenstate  (y) in the harmoni
 expansion and the

~

� eigenvalue

of the 
orresponding �(x) are 
orrelated. A �

(D)

= +1 state  

+

(y) would belong to a

left-handed four-dimensional fermion �(x) and a �

(D)

= �1 state  

�

(y) would belong to a

right-handed four-dimensional fermion, or vi
e versa. Chiral four-dimensional fermions are

therefore obtained if the  

+

and  

�

states belong to di�erent G-representations in the har-

moni
 expansion. For then also the 
orresponding left- and right-handed four-dimensional

fermions would transform di�erently. This 
an be seen as follows: The generators S

z

of

the symmetry group a
t on  

nHk

via

S

z

 

nHk

(y) =  

n

0

Hk

(y)(T

(H)

z

)

n

0

n

(159)

with a 
onstant 
omplex matrix T

(H)

z

for every representation H. The 
hange of a d-

dimensional spinor under an in�nitesimal symmetry transformation is then

Æ

G

	(y; x) = ��

z

S

z

 

nHk

(y)�

nHk

(x) (160)

=  

n

0

Hk

(y)(��

z

(T

(H)

z

)

n

0

n

�

nHk

(x)) (161)

=  

nHk

(y)Æ

G

�

nHk

(x): (162)
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In order to get 
hiral four-dimensional fermions it is 
ru
ial to start with a d-dimensional

Weyl (or Majorana-Weyl) spinor. A �xed � eigenvalue is ne
essary to get a 
orrelation

between D- and four-dimensional 
hirality. With a d-dimensional Dira
 spinor one would

get opposite 
orrelations for the � = 1 and � = �1 eigenstates, and there would be a

left-handed and a right-handed four-dimensional fermion for every  

nHk

.

Distinguishing between 
omplex, real and pseudoreal representations and using alge-

brai
 properties of the 
harge 
onjugation and heli
ity operators, one �nds [39℄ that if

there are 
hiral fermions at all, then they o

ur in pairs (starting from a d-dimensional

Weyl spinor). There are either zero or at least two di�erent massless fermions for any rep-

resentation H. This unwanted degenera
y disappears only for a Majorana-Weyl spinor,

whi
h exists only for d = 2 mod 8. Thus a realisti
 Kaluza-Klein theory (with pure gravity

and a massless spinor in the d-dimensional a
tion) should have 8k + 2 dimensions.

It remains the question whether 
hiral fermions 
an be obtained at all. This question

is linked to the so-
alled 
hirality index N . Let n

+

C

be the number whi
h denotes how

many times a 
omplex representaion C of the symmetry group appears in the expansion

of  

+

(y), with 
orresponding numbers n

�

C

, n

+

�

C

, n

�

�

C

, where

�

C is the 
omplex 
onjugate to

C. The number jN

C

j,

N

C

= f

d

(n

+

C

� n

�

C

� n

+

�

C

+ n

�

�

C

) (163)

denotes the total number of unpaired 
hiral fermions transforming as a representation C

under the gauge group G. All other fermions 
an be paired to ve
tor-like representations.

These fermions will in general be massive, as explained in the beginning of this se
tion.

For d = 2 mod 4, D-dimensional 
harge 
onjugation implies

n

+

C

= n

�

�

C

; n

�

C

= n

+

�

C

: (164)

The fa
tor f

d

is 1 for a Weyl spinor and

1

2

for a Majorana-Weyl spinor, where  

+

C

and  

�

�

C

are identi�ed. The total 
hirality index is

N =

X

C

d

C

jN

C

j; (165)

where d

C

is the dimension of the representation C.

It is easy to show [40℄ that N does not 
hange when the internal spa
e K is deformed

in a

ordan
e with the symmetry group G. If G is broken by the deformation to some

smaller group

~

G, the index N 
an only get smaller. So if

�

G is the maximal possible

symmetry group 
ompatible with the topology and di�erentiable stru
ture of K, and K


an be obtained by deformation of su
h a maximally symmetri
 spa
e

�

K, the index

�

N


orresponding to

�

K is an upper limit for the index N 
orresponding to K. The presen
e

and number of 
hiral fermions therefore depends essentially on the topology of the internal

spa
e K.

Unfortunately, a theorem by Atiyah and Hirzebru
h (see ref. [35℄) states that N is

always zero for a 
ompa
t spa
e K. Possibilities to surround this no-go theorem are the

in
lusion of elementary gauge �elds [35, 1℄ to whi
h the fermions 
ouple, or non-
ompa
t

internal spa
es [36℄. Both of these possibilities are realized in our six-dimensional toy

model.
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4.4 Chiral Fermions from De�
it Angle Branes

We are now going to apply the te
hniques developed in the previous subse
tions to our

six-dimensional 
ase. The vielbein 
orresponding to the metri
 (42) 
an be 
hosen to be

e

m

�

= a(�)~e

m

�

; e

m

�

= e

a

�

= 0; (166)

e

4

�

= b(�) 
os �; e

5

�

= b(�) sin �; (167)

e

4

�

= sin �; e

5

�

= � 
os �: (168)

Here we use the following 
onventions: Greek indi
es denote general 
oordinates, Latin

indi
es 
orrespond to the lo
al inertial system. Indi
es �; �;m; n are running from 0

to 3, �; �; a; b from 4 to 5. For � and � we use the 
oordinates themselves as indi
es to

distinguish them from the Lorentz indi
es 4 and 5. A tilde again denotes the 
orresponding

quantity in four dimensions. The non-vanishing 
omponents of the spin 
onne
tion derived

from this vielbein and the Christo�el symbols (43)-(45) are

!

mn

�

= ~!

mn

�

; (169)

!

m4

�

= �!

4m

�

= a

0

sin �~e

m

�

; (170)

!

m5

�

= �!

5m

�

= �a

0


os �~e

m

�

; (171)

!

45

�

= �!

54

�

= 1� b

0

(172)

The gamma matri
es 
an be 
hosen to be 


m

= ~


m

(hen
e 


�

= a

�1

~


�

), 


4(5)

=

~

�
 �

1(2)

,

where �

1(2)

are the �rst and se
ond Pauli matrix. In parti
ular, the Lorentz generator �

45

is

1

2

~

I 
 �

3

, where

~

I is the 4D unit matrix. The 
ovariant derivatives for a spinor are

D

�

 =

~

D

�

 + i(�

m4

sin � � �

m5


os �)a

0

~e

m

�

 ; (173)

D

�

 = �

�

 +

1

2

i�

3

(1� b

0

) ; (174)

D

�

 = �

�

 : (175)

From this follows the Dira
 operator




�

D

�

+ 


�

D

�

= a

�1

~


�

~

D

�

+ 


�

D

�

+ i


�

(�

m4

sin � � �

m5


os �)a

0

~e

m

(176)

= a

�1

~


�

~

D

�

+ 


�

D

�

+ 


m

1

2

(


m




4

sin � � 


m




5


os �)

a

0

a

(177)

= a

�1

~


�

~

D

�

+ 


�

D

�

+ 2(


4

sin � � 


5


os �)

a

0

a

(178)

= a

�1

~


�

~

D

�

+ 


�

D

�

+ 2


�

a

0

a

: (179)

The mass operator is therefore

M = a�

�

D

�

+ a

0

�

�

; (180)

with �

�


orresponding to the 2�2 gamma matri
es of internal spa
e. The 
harge operator

Q is given by the a
tion of the U(1) isometry group. Obviously a rotation � ! � + Æ�
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has to be 
ombined with a rotation of the "legs" e

4

and e

5

so that the vielbein remains

invariant. This happens via the Lorentz generator �

45

, and Q be
omes

Q = �i�

�

+

1

2

�

3

(181)

with eigenvalues n� 1=2.

Consider now a six-dimensional Weyl spinor (un
harged with respe
t to the elementary

gauge �eld A) and perform a harmoni
 expansion in eigenstates of Q:

	(�; �; x) =  

kn

(�; �)�

kn

(x); (182)

 

kn

(�; �) =

 

 

+

kn

 

�

kn

!

=

 

�

+

kn

(�) exp(in�)

�

�

kn

(�) exp(in�)

!

: (183)

Summation over k and n is implied and k labels the modes with given n. Sin
e M


ommutes with Q, k 
an be 
hosen to label the eigenstates of the mass operator. Here

�

+

kn

and �

�

kn

are eigenstates of the internal � matrix �

3

with opposite eigenvalues. Due

to the six-dimensional Weyl 
onstraint the positive eigenvalues of �

3

are asso
iated to

left-handed four-dimensional Weyl spinors whereas the negative eigenvalues 
orrespond

to right-handed Weyl spinors,

	(�; �; x) = �

+

kn

(�) exp(in�)�

Lkn

(x) + �

�

kn

(�) exp(in�)�

Rkn

(x): (184)

Let N

�

(Q) be the number of zero mass modes of  

�

with 
harge Q = n � 1=2. In our


ase internal 
harge 
onjugation implies N

�

(Q) = N

+

(�Q) (sin
e d = 2 mod 4) and we


an therefore restri
t the analysis to the zero mass eigenmodes in  

+

. Chiral fermions

are obtained only if N

+

(Q) 6= N

+

(�Q).

The zero mass modes are the solutions of

�

�

D

�

(a

2

 

0n

) = 0 (185)

and we 
ompute

�

�

D

�

=

 

0 D

�

D

+

0

!

; (186)

D

+

= �i exp(i�)

�

�

�

+ ib

�1

�

�

�

1

2

b

�1

(1� b

0

)

�

; (187)

D

�

= i exp(�i�)

�

�

�

� ib

�1

�

�

�

1

2

b

�1

(1� b

0

)

�

: (188)

The solutions for the zero modes �

+

0n

were found to be

�

+

0n

(�) = Ga

�2

(�)b

�1=2

(�) exp((n+

1

2

)I(�)); (189)

where

I(�) =

Z

�

�

0

d� b

�1

(�); (190)
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with �

0

an arbitrary point in the interval (0; ��) and G a normalization 
onstant. Not all

of these solutions make physi
ally sense: The a
tion for a spinor reads

S =

Z

d

6

x

p

�g i

�

	(


�

D

�

+ 


�

D

�

)	 (191)

=

Z

d

4

x

�

�

kn

i~


�

D

�

�

kn

�

Z

d� d� a

3

b  

y

kn

 

kn

(192)

+

Z

d

4

x

�

�

kn

i

~

��

kn

�

Z

d� d� a

3

b  

y

kn

M

k

 

kn

:

The �rst term is the kineti
 term and the se
ond is the mass term. The spinors �

kn

(x)


orrespond to propagating fermions only if their kineti
 term is �nite after dimensional

redu
tion. (This 
ondition is equivalent to the 
ondition that the a
tion remains �nite

for an ex
itation �

kn

(x) whi
h is lo
al in four-dimensional spa
e.) We therefore require

the integral

Z

d� a

3

bj�

+

0n

j

2

/

Z

d� a

�1

exp((2n+ 1)I) (193)

to be �nite. Our task is therefore the determination of the values of Q (or n), for whi
h

the normalizability 
ondition (193) is ful�lled.

Consider the type two solutions with de�
it angles �

0

and �

1

. Possible problems with

normalizability 
an only 
ome from the "
usps" at � = 0, � = �� where b vanishes linearly,

b = (1�

�

0

2�

)� and b = (1�

�

1

2�

)(��� �), respe
tively. Therefore the fun
tion I(�) diverges

logarithmi
ally at the 
usps,

I(�)! (1�

�

0

2�

)

�1

ln� for �! 0; I(�)! �(1�

�

1

2�

)

�1

ln(����) for �! ��: (194)

Thus the normalizability 
ondition gives a 
onstraint on the 
harge from ea
h brane.

Finiteness around � = 0 holds for

Q > �

1

2

(1�

�

0

2�

) (195)

and �niteness around � = �� requires

Q <

1

2

(1�

�

1

2�

): (196)

For vanishing de�
it angles �

0

= �

1

= 0 no massless spinors exist sin
e Q is half integer

and �

1

2

< Q <

1

2

therefore has no solution. This situation also holds for positive de�
ite

angles �

0

� 0, �

1

� 0. For �

0

= 0 the massless spinors must have positive Q (
f. eq.

195) and exist if a 
usp is present at �� with negative de�
it angle �

1

< 0. In this 
ase the


hirality index depends on the de�
it angle �

1

. Thus the massless spinors with positive Q

are 
onne
ted with the brane at �� (�

1

< 0). Inversely, the massless spinors with negative

Q are asso
iated with a brane at � = 0 (�

0

< 0). In 
ase of branes at � = 0 and � = �� we

�nd massless spinors both with positive and negative Q. For equal de�
it angles �

0

= �

1

their number is equal, N

+

(Q) = N

�

(Q). One 
on
ludes that a 
hiral imbalan
e (non-

vanishing 
hirality index) is only realized if the two branes are asso
iated with di�erent

de�
it angles.
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Holographi
 Branes [37℄: In the remainder of this se
tion the 
orresponden
e between

the bulk and brane pi
ture is dis
ussed and "holographi
 branes" are introdu
ed.

Starting from the bulk pi
ture we have learned that the possible massless fermions are

asso
iated with the singularities or branes. For a given 
harge Q the left-handed fermions

are linked to one brane and the right-handed ones to the other. A di�eren
e in the de�
it

angles of the two branes 
an therefore lead to 
hirality. This �nds its 
orresponden
e

within the brane point of view: in a 
ertain sense the left-handed parti
les with Q > 0

"live" on the brane at �� and those with Q < 0 on the other brane at � = 0. Indeed, for

Q > 0 the probability density diverges for �! ��,

�

2




1=2

j�

+

0n

j

2

(��� �)

�

2Q

1��

1

=2�

; j�

+

0n

j

2

(��� �)

�(

2Q

1��

1

=2�

+1)

; (197)

with a 
orresponding behavior for Q < 0 and �! 0.

In 
ontrast to the behavior of the tension this 
on
entration is, however, not of the Æ-

fun
tion type. It rather obeys an inverse power law singularity with a tail in the bulk.

This type of brane fermions 
an be 
lassi�ed from the bulk geometry whi
h must obey

the 
orresponding �eld equations. More pre
isely, the number and 
harges of the 
hiral

fermions on the brane are not arbitrary any more but 
an be 
omputed as fun
tions of

the integration 
onstants of the bulk geometry. This is a type of "holographi
 prin
iple"

whi
h renders the model mu
h more predi
tive - the arbitrariness of "putting matter on

the brane" has disappeared. This predi
tive power extends to the more detailed prop-

erties of these fermions, like Yukawa 
ouplings to the s
alar modes of the model. These


ouplings 
an be 
omputed without any knowledge of the details of the brane. The in-

sensitivity with respe
t to the details of the brane is related to the dual nature of the

wave fun
tion �

+

0

. Even though �

+

0

(�) diverges for � ! ��, the relevant integrals for the


omputation of the properties of the four-dimensional fermions 
onverge for �! ��. They

are therefore dominated by the "tail" of the wave fun
tion in the bulk.

In analogy to the previous dis
ussion we may imagine a "regularized brane" without sin-

gularity at ��. The existen
e of normalizable massless fermions then requires that also the

mass operator and therefore the fun
tional form (189) of the zero modes gets modi�ed

by the additional physi
s on the brane. (Otherwise the regular behavior of the metri


b! (����) would render the 
ontinuation of the zero mode for � > 0 into the inner region

unnormalizable.) We 
an then imagine that the regularized wave fun
tion �

+

0

rea
hes a


onstant, �

+

0

(� ! ��) = 


��

, where the proper de�nition of eq.(184) everywhere on the

manifold requires 


�

= 0 for n 6= 0.

This "regularized pi
ture" also sets the stage for the question if additional massless

fermions 
ould live on the brane without being dete
table from the bulk. In the most

general setting without further assumption the answer is positive. We still expe
t that

the wave fun
tions of su
h "pure brane fermions" have a tail in the region �� � � > �.

In this bulk region the tail of su
h a wave fun
tion has to obey eq.(189). Nevertheless,

we 
an now 
onsider a value Q whi
h violates the 
ondition (196). Su
h a mode would

look unnormalizable if 
ontinued to � ! �� but may be rendered normalizable by the

physi
s on the brane. In 
ontrast to the modes obeying the 
ondition (196) the physi
al

properties of the 
orresponding four-dimensional fermion would be 
ompletely dominated

by the physi
s on the brane, with negligible in
uen
e of the bulk geometry. Indeed, for
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regularized branes the usual dimensional redu
tion by integration over the internal 
oor-

dinates 
an be performed without distin
tion between `pure brane fermions' and fermions

obeying the 
onditions (195),(196). For the pure brane fermions the relevant integrals

will be dominated by the brane region ��� � < �.

Unfortunately, without further knowledge of the physi
s on the brane the assumption of

su
h pure brane fermions remains 
ompletely ad ho
, without any predi
tive power ex
ept

that the 
harge Q should be larger than the bound (196). (Pure brane fermions would be

needed for 
hirality in 
ase of a positive de�
it angle.) Postulating the existen
e of pure

brane fermions without knowledge of the detailed physi
s on the brane amounts more or

less to postulating that the physi
s of the fermions is as it is observed - this is not very

helpful for an explanation of the properties of realisti
 quarks and leptons. This situation

is very di�erent for the 
hiral fermions obeying the bounds (195),(196) for whi
h all ob-

servable properties are 
onne
ted to the bulk geometry and therefore severely 
onstrained

for a given model.

As an interesting 
andidate for the 
omputation of 
harges and 
ouplings of quarks and

leptons we therefore propose the notion of "holographi
 branes". For holographi
 branes

all relevant ex
itations that are 
onne
ted to observable parti
les in the e�e
tive four-

dimensional world at low energies are of the type of the massless fermions obeying the


onstraints (195),(196). In other words, all relevant properties of the brane, in
luding the

ex
itations on the brane, are re
e
ted by properties of the bulk geometry and bulk ex
i-

tations. The holographi
al prin
iple states that the observable properties 
an in prin
iple

be understood both from the brane and bulk point of view, with a one to one 
orrespon-

den
e. In pra
ti
e, the detailed properties of the brane are often not known su
h that

a
tual 
omputations of observable quantities 
an be performed in the bulk pi
ture of a

non
ompa
t internal spa
e with singularities.

4.5 Fermions that Couple to the Gauge Field

The previous analysis 
an be easily generalized to fermions that 
ouple to the gauge �eld

A, say with 
harge e. The only di�eren
e is that D

�

gets an extra term +ieA

�

. With the

harmoni
 expansion

	(�; �; x) =  

kn

(�; �)�

kn

(x); (198)

 

kn

(�; �) =

 

 

+

kn

 

�

kn

!

=

 

�

+

kn

(�) exp(in�)

�

�

kn

(�) exp(in�)

!

; (199)

the zero modes are

�

+

0n

(�) = Na

�2

(�)b

�1=2

(�) exp(I

+

(�)); (200)

�

+

0n

(�) = Na

�2

(�)b

�1=2

(�) exp(I

�

(�)); (201)

where N is a normalization 
onstant

I

+

(�) =

Z

�

�

0

d� b

�1

(n+

1

2

+ eA

�

); (202)

I

�

(�) =

Z

�

�

0

d� b

�1

(�n+

1

2

� eA

�

): (203)
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To ea
h "left-handed" mode with quantum number n and 
harge e 
orresponds a "right-

handed" mode with quantum number �n and 
harge �e. In order to generalize the


onditions (195,196), we 
hoose the gauge in whi
h A

�

! 0 at � ! 0 and A

�

! m=e at

� ! ��. In this gauge, the normalizability 
onditions for a "left-handed" zero mode �

+

0n

with 
harge e are

n+

1

2

> �

1

2

(1�

�

0

2�

); (204)

n+m +

1

2

<

1

2

(1�

�

1

2�

): (205)

For "right-handed" zero modes �

�

0n

with 
harge e one has to 
hange the signs of m and

n. For fermions with 
harge Ze one has to take Zm instead of m.

An important di�eren
e to the un
harged fermions is that now 
hiral fermions exist

also if the de�
it angles are zero. This is parti
ularly the 
ase in the relatively simple

unwarped toy model with spheri
al internal spa
e. The 
hiral zero modes of this model


an be easily 
omputed. For simpli
ity we take the radius of the sphere to unity, so that

we have

b = sin �; A

�

=

e

2m

(1� 
os �): (206)

We want to 
al
ulate the zero modes �

+

0n

with 
harge e. Su
h zero modes exist only if m

is negative. If this is the 
ase, the 
onditions (204,205) be
ome

n � 0; n < jmj: (207)

So for any negative m, there are jmj 
hiral fermions. The integral I(�) 
an be performed

expli
itly and one obtains

�

+

0n

(�) = N(sin �)

�1=2

exp

Z

�

�

0

d�

n+

1

2

+

m

2

(1� 
os �)

sin �

(208)

=

~

N (sin �)

jmj�1�n

(1� 
os �)

n�(jmj�1)=2

(209)

In 
ontrast to the fermions in the presen
e of branes, these modes are everywhere �nite

on the internal sphere. With an appropriate normalization one 
an show that

jmj�1

X

n=0

j�

+

0n

(�)j

2

= 
onst: (210)

This result is not surprising and shows on
e more the symmetry of the situation. In fa
t,

the zero modes form an m dimensional irredu
ible SU(2) representation, 
orresponding

to the internal "angular momentum" l =

m�1

2

.
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5 Cosmology of 6D Einstein-Maxwell Theory

The simplest Kaluza-Klein 
osmologies are des
ribed by two s
ale fa
tors whi
h are fun
-

tions of time only: one for the three large dimensions and one for a highly symmetri


internal spa
e. The 
osmology is then determined by two ordinary di�erential equations,

whi
h were explored more than twenty years ago [44, 45℄. Here we will 
onsider this as

a very spe
ial 
ase of mu
h more general systems. We allow for a time-dependent warp-

ing and for deformed internal spa
es, possibly with singularities. All quantities are now

fun
tions of time and an internal 
oordinate �. What are the features of su
h a 
osmology?

In the stati
 solutions of 6D Einstein-Maxwell theory, the four-dimensional 
osmolog-

i
al 
onstant was a free integration 
onstant. If we drop the requirement of maximal 4D

symmetry and allow for more general 
osmologies, only keeping 3D maximal symmetry

(i.e. spatial homogeneity and isotropy), the e�e
tive "dark energy" will be
ome a dynam-

i
al quantity. The investigation of these dynami
s was one of the main motivations for

this work. Unfortunately the problem turns out to be very diÆ
ult in the most general

situation. It is des
ribed by a 
ompli
ated set of partial di�erential equations with many

degrees of freedom. The general framework and some of its diÆ
ulties are des
ribed in

se
tion 5.1. At least we were able to �nd some qualitative features of the 
osmology, su
h

as the time independen
e of de�
it angles, whi
h is shown in se
tion 5.2. We were also

able to solve some spe
ial 
ases of higher symmetry. In se
tion 5.3, the model in whi
h

internal spa
e has the geometry of a sphere - from now on referred to as the "spheri
al

model" - is dis
ussed in the 6D pi
ture and in the dimensionally redu
ed e�e
tive 4D

pi
ture. Some general features of Kaluza-Klein 
osmology are visible from this simple

example, in parti
ular the appearan
e of a s
alar �eld with an asymptoti
ally exponential

potential, related to the size of internal spa
e. In se
tion 5.5, we 
ompute the 6D energy

momentum tensor of the zero mode fermions and in
lude them into the spheri
al model.

General properties of possible late time 
osmologies and the diÆ
ulties in their des
rip-

tion are dis
ussed in se
tion 5.4. There is again a spe
ial 
ase whi
h is easily solved: If

the internal spa
e is exa
tly stati
, the possible equations of state and the � dependen
e

of the energy momentum tensor 
an be strongly 
onstrained. These solutions provide a

new explanation of why the 4D 
osmologi
al 
onstant is a free parameter. Nevertheless, a

large number of questions remain unanswered. They are summarized in se
tion 5.6, and

the possible next steps towards a better understanding are outlined.

5.1 The Most General Metri


We have to �nd the most general metri
 
onsistent with the required symmetries: three-

dimensional translation and rotation invarian
e, a
ting on the 
oordinates x

i

, and a U(1)

symmetry, a
ting on the 
oordinate � 2 [0; 2�℄. No real physi
al fun
tion should depend

on x

i

or � (i.e. these 
oordinates should appear only in phases), and no dire
tion in the

three-dimensional spa
e should be preferred. (For simpli
ity, we will take this spa
e to be


at, so that the metri
 
omponents g

ij

are a

2

(t; �)Æ

ij

.) The latter 
ondition forbids metri



omponents g

ti

, g

�i

and g

�i

, sin
e these would sele
t preferred dire
tions in three-spa
e,
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e.g. by the three-ve
tor (g

t1

; g

t2

; g

t3

). The other o�-diagonal metri
 
omponents g

t�

, g

t�

and g

��

are allowed, as long as they are fun
tions of t and � only.

This situation is unique to the six-dimensional 
ase in the following sense: If there

were D internal dimensions with D > 2, and D � 1 of these dimensions, represented by


oordinates �

�

, were symmetri
 under, say, SO(D), then the g

t�

and g

��


omponents would

be forbidden, be
ause they would sele
t preferred dire
tions in the D � 1-dimensional

spa
e. The di�eren
e is that a U(1) "rotation" is a translation rather than a rotation. In

this sense a 
odimension-two spa
etime is more 
ompli
ated than a higher-dimensional

one.

For the gauge �eld the situation is slightly di�erent. For spe
i�
 solutions (solitons) a


omponent A

�

may be allowed even if the internal symmetry is larger than U(1). Think

of the monopole solution on S

2

. The �-dire
tion is then not preferred physi
ally. A


oordinate transformation may be a

ompanied by a gauge transformation, so that the

transformed A-�eld lies in the new �-dire
tion. An analogous pro
edure does not work

for the metri
 tensor, sin
e the gauge transformations are the 
oordinate transformations

themselves.

Up to now we have identi�ed the most general metri
 
onsistent with the symmetries

as

ds

2

= �


2

(t; �)dt

2

+ a

2

(t; �)(dx

i

)

2

+ b

2

(t; �)d�

2

+ n

2

(t; �)d�

2

(211)

+ 2w(t; �)dtd�+ 2u(t; �)dtd� + 2v(t; �)d�d�:

The next step is to look how far this line element 
an be simpli�ed by a 
oordinate

transformation. Therefore one has to �nd the possible transformations 
onsistent with

the symmetries, whi
h should still be represented by the new 
oordinates x

i

0

and �

0

.

Global translations of � and translations and rotations of x

i

are of 
ourse allowed (these

are just the isometries). Transformations 
an never depend on �, sin
e this would lead

to fun
tions depending on �

0

; for example t ! t

0

= t + Æt(�), � ! �

0

= � would imply

t = t

0

� Æt(�

0

), and so f(t)! f

0

(t

0

; �

0

) for any fun
tion f . Or if � ! �

0

(�), we would get

g

��

0

=

 

��

0

��

!

2

g

��

; (212)

and so one must have ��

0

=�� = 
onst = 1, sin
e we would like to have �

0

also in the

interval [0; 2�℄. Transformations of x

i


annot depend on t or �, sin
e this would lead to

forbidden 
omponents via

g

ti

0

=

�t

0

�t

�x

i

0

�t

g

tt

; (213)

and similarly for g

�i

. So we are left with the following possibilities:

x

i

! x

i

0

(x

j

); � ! � + Æ�(t; �); (214)

t ! t

0

(t; �); �! �

0

(t; �):

Obviously, the only e�e
t of the x

i

transformations 
ould be a res
aling of three-

dimensional spa
e, so we 
an forget about them in this 
ontext. There are three o�-

diagonal metri
 
omponents, g

t�

, g

t�

and g

��

, and one might think that these 
an be
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removed by the three remaining 
oordinate transformations. It turns out that this is in

general not true. The reason for that is essentially the U(1) symmetry. (In fa
t, the

metri
 
an always be diagonalized, but then in general the new 
oordinate �

0

will not

re
e
t the U(1) symmetry any more, and �elds will depend on �

0

.) To see this, 
onsider

the inverse of the metri
. The 
omponents g

t�

and g

��

will be zero if and only if g

t�

and

g

��

are zero. The 
ondition that this happens after a 
oordinate transformation of the

type (214) is

g

t�

0

=

�t

0

�t

 

g

t�

+

��

0

�t

g

tt

+

��

0

��

g

t�

!

+

�t

0

��

 

g

��

+

��

0

�t

g

�t

+

��

0

��

g

��

!

= 0; (215)

g

��

0

=

��

0

�t

 

g

t�

+

��

0

�t

g

tt

+

��

0

��

g

t�

!

+

��

0

��

 

g

��

+

��

0

�t

g

�t

+

��

0

��

g

��

!

= 0: (216)

A solution of these di�erential equations implies either that the Ja
obi determinant of the

(�; t) transformation vanishes,

det

0

�

�t

0

�t

�t

0

��

��

0

�t

��

0

��

1

A

= 0; (217)

whi
h is not possible, or that the bra
kets vanish. But the se
ond possibility 
onsists of

two 
onditions for the fun
tion �

0

, whi
h 
an in general not be ful�lled simultaneously.

One 
on
ludes that generally only one of the two 
omponents g

t�

and g

��


an be set

to zero. A pro
edure to simplify the metri
 (211) 
ould look as follows: Use the freedom

for t

0

and �

0

to annihilate g

t�

and for one further simpli�
ation, e.g. to arrange that

g

tt

0

= �g

ii

0

, i.e. to make time 
onformal with respe
t to spa
e. Then use the freedom for

�

0

to annihilate either g

t�

or g

��

. The simpli�ed line element is then

ds

2

= a

2

(t; �)(�dt

2

+ (dx

i

)

2

) + b

2

(t; �)d�

2

+ n

2

(t; �)d�

2

+ 2u(t; �)dtd�; (218)

or similarly with 2v(t; �)d�d� instead of 2u(t; �)dtd�. We will refer to these two possi-

bilities as the "u-gauge" and the "v-gauge". In the e�e
tive four-dimensional pi
ture u


orresponds to the time 
omponent of an abelian gauge �eld (hen
e some kind of ele
tri


potential), sin
e g

��

integrated over internal spa
e is the gauge �eld 
orresponding to the

U(1) isometry. On the other hand v 
orresponds to a s
alar �eld. The fa
t that a degree

of freedom 
an be shifted between a s
alar �eld and the 
omponent of a gauge �eld is a

familiar fa
t in ordinary parti
le physi
s.

A very similar 
hoi
e applies to the gauge �eld A. The three 
omponents A

t

, A

�

and

A

�

are allowed by the symmetries. One 
an 
hoose to set either A

t

or A

�

to zero by a

gauge transformation.

Comparing this 
osmologi
al system to the stati
 one from 
hapter 3, one �nds that the

ordinary di�erential equations are generalized to partial di�erential equations, 
ontaining

t- and �-derivatives, and that the three fun
tions a, b and A

�

are a

ompanied by three

more fun
tions: n, u or v, and A

t

or A

�

.

A full numeri
al analysis of this system would involve as initial 
onditions twelve fun
-

tions of � (four metri
 and two gauge �eld 
omponents and their �rst time derivatives at
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some initial time t

0

) whi
h are subje
t to three 
onstraint equations, namely the (tt)�,

(t�)� and (t�)� 
omponents of Einstein's equations, whi
h 
ontain no se
ond time deriva-

tives. The time evolution is determined by the (ii)�, (��)�, (��)� and (��)- 
omponents

of Einstein's equations and two equations for the gauge �eld. For 
ompleteness, the Ein-

stein tensor and the energy momentum tensor of the gauge �eld are given in Appendix

B.

We will not try to perform these numeri
s here. Instead we 
on
entrate on two par-

ti
ular aspe
ts of the subje
t:

1. Properties of the Codimension-two branes at the two endpoints of internal spa
e;

2. Spe
ial 
ases of higher symmetry: the spheri
al model and late time 
osmology.

Before we do so, some remarks on the diÆ
ulties in 
hoosing a parti
ular gauge are in

order.

The Problem of �nding a "natural" 
oordinate system: The 
oordinate systems

with the properties de�ned above may be a bad 
hoi
e under some 
ir
umstan
es. Prob-

lems may in parti
ular arise from the relation �g

tt

= g

ii

= a

2

. In usual 4D 
osmology,

time 
an be made 
onformal to spa
e by a transformation t ! �(t), whi
h involves only

a stret
hing of the time axis. On our 6D 
ase, we need instead a more general trans-

formation t; � ! t

0

; �

0

(t; �). Thereby time and � 
oordinate are mixed to some extent.

This leads to the question: What is the "physi
al" time 
oordinate? The diÆ
ulty 
an

be demonstrated in a four-dimensional example: the gravitational �eld of a wire.

Consider a wire in z-dire
tion. A solution of Einstein's equations whi
h des
ribes its

stati
 gravitational �eld will in general have di�erent fun
tions g

zz

(�) and g

tt

(�) (in 
ylin-

dri
al 
oordinates). This 
orresponds to di�erent fun
tions �g

tt

and g

ii

in the 6D 
ase.

One 
an now perform a 
oordinate transformation t; �! t

0

; �

0

(t; �) to make time 
onfor-

mal, i.e. to give �g

tt

everywhere the 
orre
t value to be equal to g

zz

. The transformed

metri
 still des
ribes the stati
 gravitational �eld of a wire, but now the "physi
al" time

independen
e is no longer visible in the metri
 fun
tions, sin
e now g

zz

(�)! g

zz

(�(�

0

; t

0

)),

so that the metri
 depends on "time" in its new form. The solution still has the same

timelike Killing ve
tor, but its dire
tion is no longer given by the new t-
oordinate. The

new time 
oordinate is "unphysi
al". An ex
eption is the 
ase where the equation of

state of the wire is w = �1, i.e T

t

t

= T

z

z

. Then the symmetry between t and z would be

"physi
al", and �g

tt

and g

zz

would naturally have the same �-dependen
e. But in the

other 
ases, with general equation of state, this 
hoi
e of gauge would be unnatural.

The problem in six dimensions is similar. Indeed, there may be singularities at � = 0

di�erent from the de�
it angle branes, i.e. singularities not of the delta fun
tion type, but

with divergent 
urvature and divergent metri
 
omponents. These general singularities

are probably not well des
ribed in our 
oordinates. It would be interesting to see how

they evolve with time, but the question is: with whi
h time? In the 
ase of the wire there

was a timelike Killing ve
tor. Its dire
tion identi�es the natural time 
oordinate. But in

our 
osmologi
al 
ontext, we are mainly interested in solutions with only approximate

Killing ve
tors. It is ne
essary to �nd a 
oordinate system in whi
h the deviations from
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a symmetry do not arti�
ially blow up. We will 
ome ba
k to that point at the end of

se
tion 5.4.

5.2 Properties of the Branes

We will 
onsider here a de�
it angle brane at � = 0. (The dis
ussion of a brane at

�� is 
ompletely analogous, of 
ourse.) To have a 
odimension-two brane at that pla
e

requires that the determinant of the metri
 vanishes there quadrati
ally. (If det g would

not vanish, the subspa
e with � = 0 would be of 
odimension one, and if it would vanish

more than quadrati
ally, it would be a di�erent type of singularity.) In the u-gauge, this

requirement reads

det g = �a

6

n

2

(a

2

b

2

+ u

2

)! 0 as �! 0: (219)

Sin
e a and n should be �nite (otherwise we would not have a brane but a di�erent type

of singularity) this means that both b and u must vanish at least linearly at � = 0. For b

this was already 
lear, be
ause b(t; �) measures the radius of a 
ir
le in internal spa
e at

radius �.

To have an in�nitely thin 
odimension-two brane means that the singularity at � = 0

is of the delta fun
tion type. Therefore 
urvature invariants and energy densities do

not diverge as one approa
hes the brane (if they did, we would again have a di�erent

type of singularity), but have a delta fun
tion 
ontribution pre
isely at � = 0. So the


omponents of the Einstein tensor G

A

B

should remain �nite outside the brane. To have a

well-de�ned time 
oordinate on the brane requires that the 
urvature 
ontributions to the

delta fun
tion are 
ontained in the �-derivative terms, not in the time derivative terms.

These requirements imply strong 
onstraints on the possible brane properties: The

equation of state must be pre
isely w = �1 and the de�
it angle must be time indepen-

dent. To prove this, one shows at �rst that the o�-diagonal metri
 
omponent vanishes

at least � �

2

at � = 0: In the u-gauge the (��) 
omponent of the Einstein tensor 
ontains

the term

u

0

2

4n

2

(a

2

b

2

+ u

2

)

; (220)

where the prime again denotes derivation with respe
t to �. If u

0

were �nite at the brane,

this term would diverge as �

�2

, whi
h is not allowed by our requirements (there is no

other term in G

�

�

whi
h 
ould 
an
el this divergen
e). One 
on
ludes that u

0

vanishes at

least � � at � = 0, and so at least u � �

2

while b � �.

To prove that the equation of state is w = �1, 
onsider the di�eren
e G

t

t

� G

(i)

(i)

. In

the v-gauge, this di�eren
e does not 
ontain any �-derivatives at all, only time derivatives

whi
h 
annot 
ontribute to the delta fun
tion singularity. Note that the �-derivative terms

of refs. [28, 47℄ are absent here, sin
e we have 
hosen g

tt

= �g

ii

by 
hoi
e of 
oordinates.

In the u-gauge, the di�eren
e does 
ontain �-derivatives, but these terms are damped with

u

2

=b

2

and are not suÆ
ient to 
ontribute to the singularity. Therefore the singular parts

of G

t

t

and G

(i)

(i)

are equal. The same is of 
ourse true for the 
orresponding 
omponents of

the energy momentum tensor T

t

t

= �" and T

(i)

(i)

= p, so w = "

(singular)

=p

(singular)

= �1.
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To have a pure tension brane does not automati
ally imply that this tension (and

hen
e the de�
it angle) is a 
onstant. One might imagine that there is some energy 
ow

from the bulk onto the brane whi
h would enlarge its tension and therefore the de�
it

angle. To show that this does not happen, 
onsider the 
omponent G

t

�

of the Einstein

tensor in u-gauge. The "dangerous", i.e. possibly divergent part of this 
omponent is

b

2

n(a

2

b

2

+ u

2

)

 

_

b

0

b

�

b

0

b

_n

n

!

; (221)

where a dot denotes derivation with respe
t to time. With the approximation

b = f(t)�+O(�

2

) (222)

one sees that the "dangerous" term remains �nite if and only if

_

f

f

=

_n

n

(223)

in the vi
inity of the brane. But this is just saying that if the extra dimensions are time

varying at all, then the radius and 
ir
umferen
e of a small 
ir
le around the brane grow

by the same fa
tor. Hen
e the de�
it angle does not 
hange with time.

This result is not surprising. Di�erent to other singularities, there is no attra
tive

for
e towards the brane whi
h would 
ompress any "
loud" of energy towards the 
enter at

� = 0. We saw that the 
urvature remains �nite outside the brane, whi
h is the geometri


analogue of having no divergent gravitational for
es. Therefore only an in�nitesimal part

of the 
loud would rea
h the singularity, leading to no 
hange of the tension.

Things will be di�erent with other types of less symmetri
 
odimension-two singular-

ities, whi
h 
an 
ertainly o

ur in 6D 
osmology. They probably indu
e attra
tive for
es

and will therefore be able to grow. But as was mentioned in the previous se
tion, we do

not yet know how to des
ribe the 
osmology of these other singularities in a meaningful

way.

Time Independen
e of Monopole Numbers: From the energy momentum tensor

given in Appendix B one 
an see that

_

A

�

always appears with a fa
tor b

�1

. At a de�
it

angle brane, this 
ombination has to remain �nite. Therefore

_

A

�

has to vanish at the

branes. As long as no other types of singularities appear, this implies that the monopole

number, whi
h is essentially the di�eren
e between A

�

(��) and A

�

(0), is time-independent.

5.3 Cosmology of the Spheri
ally Symmetri
 Model

The 
ompli
ated system of equations des
ribed above is enormously simpli�ed if internal

spa
e has the geometry of a sphere. We will use this simple system to present the e�e
ts

and impli
ations of dimensional redu
tion, and show the equivalen
e of the six-dimensional

and the four-dimensional point of view. Furthermore we will �nd features of Kaluza-Klein


osmology whi
h will surely generalize to some extent to more 
ompli
ated systems.
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In this se
tion, we do not in
lude any additional sour
es and des
ribe a 
osmology

indu
ed just by 
urvature. The gauge �eld serves only to 
ompa
tify internal spa
e and

plays no role apart from that. The stati
 solutions for that system were derived at the

end of 
hapter 3, and we will make use of the relations derived there. The 
osmology is

given in terms of two s
ale fun
tions: the 4D s
ale fa
tor a(t) (there is no warping in the

presen
e of spheri
al symmetry) and the s
ale fa
tor of internal spa
e, n(t). In 
ontrast

to the stati
 
ase, n is no longer required to be equal to 1, so we may de�ne the internal


oordinates su
h that � goes from 0 to �, getting in this way rid of the quantity k used

in 
hapter 3. The o�-diagonal 
omponents of the metri
 have to vanish be
ause of the

higher symmetry, as was dis
ussed in se
tion 5.1, and the 
omponent g

��

is given by

b(t; �) = n(t) sin �: (224)

It is straightforward to 
ompute the Einstein tensor to this metri
. All the o�-diagonal


omponents vanish. The vanishing of G

t�

implies that the 
orresponding 
omponent of

the energy momentum tensor also vanishes:

T

t�

= F

t�

F

�

�

= 0: (225)

But F

�

�

� �

�

A

�


ertainly does not vanish for a monopole solution, so on 
on
ludes F

t�

= 0

and therefore

�

t

A

�

(t; �) = �

�

A

t

(t; �): (226)

This means that the time and �-
omponents of A are a pure gauge and 
an be removed by

a gauge transformation. So we have, as in the stati
 
ase, only to deal with the 
omponent

A

�

. The vanishing of G

t�

implies

T

t�

= F

t�

F

�

�

= 0; (227)

and it follows that

_

A

�

= 0. This means that the gauge �eld is stati
 and from the �eld

equation for F

AB

one again infers that A

0

�

is proportional to sin �, where the propor-

tionality fa
tor 
an, for 
onvenien
e, again be expressed in terms of a monopole number

m:

A

0

5

=

m

2e

sin �; (228)

where e is a possible six-dimensional gauge 
oupling. The Einstein equations be
ome

�G

t

t

�

1

n

2

+

1

a

2

 

6

_a _n

an

+ 3

_a

2

a

2

+

_n

2

n

2

!

= �+ 8�G

6

m

2

8e

2

n

4

(229)

�G

(i)

(i)

�

1

n

2

+

1

a

2

 

2

�a

a

+ 2

�n

n

+ 2

_a _n

an

�

_a

2

a

2

+

_n

2

n

2

!

= �+ 8�G

6

m

2

8e

2

n

4

(230)

�G

�

�

= �G

�

�

�

1

a

2

�

3

�a

a

+

�n

n

+ 2

_a _n

an

�

= �� 8�G

6

m

2

8e

2

n

4

(231)

Only two of these three equations are independent due to the Bian
hi identities. The (tt)


omponent is a generalization of the Friedmann equation. The linear 
ombination

�R

�

�

� R

�

�

�

1

a

2

 

�n

n

+ 2

_a _n

an

+

_n

2

n

2

!

=

�

2

�

1

n

2

+ 8�G

6

3m

2

16e

2

n

4

(232)
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will be useful when we 
ompare the 6D and the e�e
tive 4D point of view. We will also

need the Ri

i s
alar whi
h is

R =

~

R

a

2

� 2

1

n

2

+

1

a

2

 

4

�n

n

+ 8

_a _n

an

+ 2

_n

2

n

2

!

: (233)

In order to �nd a four-dimensional interpretation of the 
osmologi
al equations, one

should perform a dimensional redu
tion the a
tion.

S =

Z

d

4

xd�d�

p

�g

�

�R + 2�

16�G

6

+

1

4

F

AB

F

AB

�

(234)

=

Z

d

4

x 4�

q

�~gn

2

"

1

16�G

6

 

�

~

R �

2

n

2

�

1

a

2

 

4

�n

n

+ 8

_a _n

an

+ 2

_n

2

n

2

!

+ 2�

!

+

m

2

8e

2

n

4

#

=

Z

d

4

x 4�

q

�~g

�

1

16�G

6

�

�n

2

~

R� 2�

�

n�

�

n+ 4(n

2

)

;�

;�

�

+

~

V (n)

�

;

where

~

V (n) =

�

8�G

6

n

2

�

1

8�G

6

+

m

2

8e

2

n

�2

: (235)

At this moment we are only interested in the e�e
t of the time-dependent size of the

internal dimensions on four-dimensional gravity. We therefore kept only the 4D 
urvature

term and terms involving n, leaving out 4D perturbations of the gauge �eld and s
alars

whi
h are non-singlets with respe
t to the isometry group of the sphere. One 
an see a

typi
al feature of Kaluza-Klein theories: The fa
tor n

2

multiplying the four-dimensional


urvature s
alar leads to a kind of Brans-Di
ke theory. The strength of the gravitational


oupling depends on the internal radius. This dependen
e may be absorbed by a Weyl

s
aling of the metri
. Therefore we de�ne the quantity l = n=n

0

and transform the metri


via

~g

��

! l

�2

~g

��

: (236)

Here n

0

is in prin
iple arbitrary, but it is 
onvenient to take it as the size of internal

spa
e in a "ground state", if su
h a ground state exists. By ground state we mean a

stable solution with _n = 0. In 
hapter 3 we saw that for a large range of parameters two

solutions with _n = exist. In general we expe
t one of these to be stable and the other one

to be unstable (This property will be shown below). For a spe
ial value of � (eq. 99),

one of these two solutions has �

4

= 0, whi
h is known to be 
lassi
ally stable. In this


ase we would take n

0

= L with the L from eq.(100). Note that the se
ond solution with

the same � has internal radius and four-dimensional 
osmologi
al 
onstant

~

L =

p

3L; �

4

=

1

9�G

6

e

2

m

2

; (237)

see eqs (97) and (98).

In terms of the res
aled metri
 the a
tion reads (and we omit the total divergen
e

term)

S =

Z

d

4

x

q

�~g

"

n

2

0

4G

6

�

�

~

R + 4l

�2

�

�

l�

�

l

�

+ V (l)

#

; (238)
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where

V (l) =

�n

2

0

2G

6

l

�2

�

1

2G

6

l

�4

+

�m

2

2e

2

n

2

0

l

�6

: (239)

One infers that the four-dimensional Newton 
onstant is

G

4

=

G

6

4�n

2

0

: (240)

In the 
ase where the stable ground state solution has �

4

= 0, the potential is

V

�

4

=0

(l) =

l

�2

4G

6

(1� l

�2

)

2

(241)

and the Newton 
onstant is independent of G

6

,

G

4;�

4

=0

=

e

2

8�

2

m

2

: (242)

Note that all dimensions 
ome out 
orre
t: The 
oordinates � and � are angles and

hen
e are dimensionless, in 
ontrast to x

�

. The lengths are therefore absorbed by the met-

ri
 
omponents g

��

and g

��

, so that n has dimension (length) and still

R

d

4

xd�d�(�g)

1=2

=

(length)

6

. The 6D gauge 
oupling e has dimension (mass)

�1

. Now both A

�

(by eq.(228))

and F

��

have dimension (mass), although the se
ond quantity is a derivative of the �rst,

and anyway F

��

F

��

has dimension (mass)

6

, be
ause the indi
es are raised with g

��

and

g

��

. The 4D gravitational 
onstant has dimension (mass)

�2

, whereas G

6

has (mass)

�4

.

So everything �ts to make the a
tion dimensionless.

It is interesting that the strength of four-dimensional gravitation is determined by the

six-dimensional gauge 
oupling and not by the six-dimensional Newton 
onstant.

There is one �nal step to perform with the a
tion in order to bring it to a standard

form. We have to rede�ne the s
alar �eld so that it has a standard kineti
 term:

� =

ln l

p

2�G

4

: (243)

We �nally end up with the a
tion

S =

Z

d

4

x

q

�~g

"

�

~

R

16�G

4

+

1

2

�

�

��

�

�+ V (l(�))

#

: (244)

So one �nds that a four-dimensional observer sees a s
alar �eld whi
h is given by

the logarithm of the size of internal spa
e. The Friedmann equation and the s
alar �eld

equation of motion for the above system are:

3

_

~a

2

~a

2

= 8�G

4

�

1

2

_

�

2

+ V (�)

�

; (245)

�

�+ 3

_

~a

~a

_

�+

�V

��

= 0: (246)
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Here a dot denotes a derivative with respe
t to "usual" time

~

t. From these 4D e�e
tive

�eld equations one 
an easily get ba
k to the 6D equations: Go ba
k to 
onformal time

repla
ing �=�

~

t by �=(~a�t). Then one has to get ba
k from the Weyl s
aled to the original

metri
. This happens via the substitution ~a! la. After these two modi�
ations, eqs (245,

246) be
ome exa
tly eqs (229,233). In this way we have 
he
ked that the six-dimensional

and the four-dimensional point of view are equivalent.

What are the qualitative features of su
h a 
osmology? At �rst look at the 
ase in

whi
h the ground state has �

4

= 0. The potential (241) reads in terms of �:

V

�

4

=0

(�) =

1

4G

6

exp(�

q

8�G

4

�)(1� exp(�

q

8�G

4

�))

2

: (247)

This is the result of ref. [45℄. The potential has a minimum at � = 0 and a maximum

at �

max

= (8�G)

�1=2

ln 3, 
orresponding to the stable solution with n = n

0

and the

unstable solution with n =

p

3n

0

, respe
tively. If the system starts with � < �

max

, �

and hen
e n will perform damped os
illations around the ground state. This os
illation

is a

ompanied by boun
ing epo
hs of four-dimensional expansion. The expansion 
omes

to rest asymptoti
ally, and four-dimensional spa
etime approa
hes Minkowski spa
e. If

the system starts instead with � > �

max

, internal spa
e will always grow. The s
alar �eld

potential de
reases exponentially for large �.

In a �nite range of the parameter spa
e around the 
ombination leading to �

4

= 0,

the potential will have a very similar shape. The ground state has �

4

6= 0, but apart from

that, the system will behave qualitatively as des
ribed above.

Again (like at the end of 
hapter 3) one 
an generalize the above solutions by sub-

stituting b !

~

Ab. This 
orresponds to two equal de�
it angle branes at the poles of the

former sphere. When at the same time e is substituted by

~

Ae, the 
osmologi
al solutions

are exa
tly the same.

The appearan
e of s
alar �elds with exponentially de
reasing potential is a quite gen-

eral feature in Kaluza-Klein theories, sin
e the steps in performing the dimensional re-

du
tion (integration, Weyl s
aling, res
aling of the s
alar �eld) always involve similar

stru
tures. In parti
ular, the Weyl s
aling brings the internal radius l into the denomi-

nator of its kineti
 term, so that the res
aling to a standard kineti
 term requires taking

the logarithm of l. The potential will then naturally involve exponential fun
tions of

� � ln l. If the internal volume is large enough, 
orresponding to the region � > �

max

,

the tenden
y to expand will in general dominate over the for
es whi
h tend to shrink

the internal spa
e down to the ground state. The possible importan
e of quintessen
e

�elds with exponential potential for 
osmology has been thoroughly dis
ussed [46℄. Note

however that the exponential potential region of Kaluza-Klein s
alar �elds does not lead

to a realisti
 
osmology. The permanently growing size of internal spa
e would lead to

a strong time dependen
e of 
oupling 
onstants, far beyond the observational bounds.

For a realisti
 model it is ne
essary to start with � < �

max

, so that the ground state is

approa
hed.
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5.4 Late Time Cosmology with a Perfe
t Fluid

Now we drop the restri
tion to spheri
al symmetry and ask instead how a realisti
 late

time 
osmology with matter and radiation 
an be realized. The e�e
tive four-dimensional


ouplings and masses depend on the size and shape of the extra dimensions. Cosmologi
al

observations imply that these masses and 
ouplings have varied only very slightly sin
e Big

Bang Nu
leosynthesis. At least we 
an say that the e�e
tive four-dimensional s
ale fa
tor


hanges mu
h faster than the parameters of parti
le physi
s, su
h as the �ne stru
ture


onstant �. This leads to strong restri
tions on the time dependen
e of the internal

metri
.

A zero 
hange of parti
le parameters is 
ertainly realized if the shape and size of

internal spa
e, and also the warping, do not 
hange at all. In terms of the metri
 this

means

a = a

0

(t)a

1

(�); b = b(�); n = 1 (248)

in an appropriate 
oordinate system. This 
an be seen as follows: Go to the v-gauge, i.e.

g

t�

= 0, and assume that the internal metri
 
omponents g

��

, g

��

and g

��

all depend only

on �. The 
omponent g

��


an then be removed by a � transformation � ! �

0

= �+ Æ�(�).

In this spe
ial 
ase the transformation does not indu
e a 
omponent g

t�

, sin
e Æ� does

not dependent on t. So the o�-diagonal 
omponents of the metri
 have been removed.

The 
ondition n = 1 
an then be obtained from n = n(�) by a 
oordinate transformation

� ! �

0

(�). Finally the produ
t stru
ture of a follows from the time independen
e of the

warping.

From this ansatz one 
an again 
ompute the Einstein tensor. The o�-diagonal 
om-

ponents are again identi
ally zero, from whi
h one again dedu
es that A

t

and A

�

are a

pure gauge and that

_

A

�

= 0. The other 
omponents are

G

t

t
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a
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(249)
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G
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�
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(251)

G

�

�

= 6

a
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1

2

(�)

a
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1

(�)
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a

0
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They 
ontain two types of terms: First there are terms 
ontaining �-derivatives. These

terms depend only on �. And then there are terms a

�2

1

_a

2

0

=a

4

0

and a

�2

1

�a

0

=a

3

0

. The �-

dependen
e of a and b, whi
h is des
ribed by the �rst type of terms, is therefore determined

by time-independent terms on the right hand side of Einstein's equations, su
h as the six-

dimensional 
osmologi
al 
onstant � and the gauge �eld sour
e term A

0

�

2

=b

2

. On the

other hand, the time dependen
e of the s
ale fa
tor a

0

is determined by - possibly time-

dependent - sour
e terms T

A

B

whi
h have to ful�ll several 
onditions: The �-dependen
e

of T

A

B

is �xed by the warping,

T

A

B

(�; t) =

~

T

A

B

(t)a

�2

1

(�): (253)
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The di�eren
e G

�

�

� G

�

�

is time-independent, from whi
h follows that T

�

�

= T

�

�

. (T

A

B

is de�ned to be only the part of the energy momentum tensor whi
h governs the time

evolution). We de�ne

~

T

t

t

= �";

~

T

(i)

(i)

= p

1

;

~

T

�

�

=

~

T

�

�

= p

2

: (254)

The 
ombination G

�

�

�G

�

�

�G

�

�

is also time-independent, implying

�"+ 3p

1

� 2p

2

= 0: (255)

This relates the two equations of state w

1

= p

1

=" and w

2

= p

2

=". Finally, if all these


onditions are ful�lled, the equations are 
onsistent and energy-momentum is 
onserved

provided that

"(t) � a

0

(t)

�3(1+w

1

)

: (256)

This is the same relation as in usual four-dimensional 
osmology. The solution for a

0

is

then

a

0

� t

2=(3w

1

+1)

: (257)

For a relativisti
 
uid, p

1

= "=3, one would get

p

(r)

2

= 0; "

(r)

� a

�4

0

; a

(r)

0

� t: (258)

For a non-relativisti
 
uid, p

1

= 0, one would get

p

(nr)

2

= �"=2; "

(nr)

� a

�3

0

; a

(nr)

0

� t

2

: (259)

How does a four-dimensional 
osmologi
al 
onstant �

4

appear in this pi
ture? A �

4

-

term has p

1

= �" and eq. (255) therefore requires p

2

= �2", whi
h is a rather unusual

equation of state. One 
an add to the right hand side of ea
h (��)-
omponent of Einstein's

equations a zero in the form of

0 =

�

4

a

2

1

�

�

4

a

2

1

; (260)

and to the (��) and (��) 
omponents twi
e these terms. The +�

4

term is used to 
hange

the �-dependen
e of a

1

, b and A

�

. The ��

4

term generates a time-dependen
e of a

0

. This

is exa
tly what was des
ribed in a slightly di�erent way in 
hapter 3, when 6D Einstein-

Maxwell theory was introdu
ed: A part of the 6D 
urvature (the amount is arbitrary,

this is why �

4

is an integration 
onstant) is taken from the 2D internal 
urvature and the

warping and is transferred into 4D 
urvature. The reason we 
an do this is that the �

4

term (and only this term) �ts to both types of terms on the left hand side of Einstein's

equations: the time-independent �-derivative terms and the time-derivative terms with

�-dependen
e a

�2

1

.

Note that the time-dependen
e of the s
ale fa
tor in de Sitter spa
e is in 
onformal

time not exponential as with "usual" time, but of the form

a

(�

4

)

0

� (t

0

� t)

�1

; (261)
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i.e. a

0

diverges at a �nite time t

0

.

To summarize, the late time 
osmology derived from 6D Einstein-Maxwell theory with

a perfe
t 
uid turned out to be very restri
ted, when one requires that internal spa
e is

absolutely stati
. The �-dependen
e of the metri
 is the same as in the stati
 
ase,

derived in 
hapter 3. The time evolution of the s
ale fa
tor is des
ribed by the usual 4D

Friedmann-Robertson-Walker 
osmology, depending on w

1

. The requirement of a stati


internal spa
e �xes w

2

as a fun
tion of w

1

. The 4D 
osmologi
al 
onstant is still a free

parameter.

We will refer to the 
osmologies derived above as "perfe
t" late time 
osmologies.

This is 
ertainly not the most general realisti
 
ase. In general, the � dependen
e of

the energy momentum tensor will be di�erent from a

�2

1

(�) and will therefore lead to a

time dependent perturbation of the shape of internal spa
e. In the dimensionally redu
ed

e�e
tive theory this would appear as an intera
tion of the 
uid with supermassive s
alar

�elds. In the six-dimensional pi
ture, the perturbed shape will be expressed in time-

dependent perturbations of the �-dependent metri
 fun
tions, for example

b(�; t) = b

0

(�) + Æb(�; t); (262)

with Æb=b of the order ("=M

4




)

�

, where " is the 4D energy density of the 
uid, M




is

the 
ompa
ti�
ation s
ale and � is a positive and model-dependent parameter. Time

derivative terms su
h as

_

b

2

=b

2

are suppressed with (Æb=b)

2


ompared to _a

2

=a

2

. The time

dependen
e of 4D 
oupling 
onstants will therefore still be very small, as required by

observational bounds. Nevertheless there will be additional �-derivative terms like Æb

00

=b

whi
h may be of the same order as the 
osmologi
al term _a

2

=a

2

. These additional terms

might 
an
el the "wrong" �-dependen
e of the energy momentum tensor, restoring a

realisti
 Friedmann 
osmology.

Unfortunately it seems that su
h a 
an
ellation does not take pla
e in the 
oordinate

system we have 
hosen. The di�eren
e between the (tt) and the (ii) 
omponent of the

Einstein tensor 
ontains only time derivatives (in the v-gauge; in the u-gauge there would

be additional �-derivative terms, but these are too strongly suppressed). This seems to

lead to a "wrong" 
osmologi
al behavior. We suspe
t that this is only a 
onsequen
e of


hoosing the "wrong" 
oordinate system, in whi
h the "true" 
osmologi
al situation is not

visible. If we had allowed for g

tt

6= �g

ii

, G

t

t

�G

(i)

(i)

would 
ontain terms like

g

00

tt

g

tt

�

g

00

ii

g

ii

whi
h

might indu
e the required 
an
ellation. The e�e
tive 4D pi
ture strongly suggests that

a slight ex
itation of supermassive s
alar �elds does not prevent a realisti
 Friedmann


osmology. Nevertheless, the situation has to be 
lari�ed. This will be subje
t to future

resear
h.

5.5 Cosmology with Relativisti
 Fermions

Now we want to in
lude fermions into the model. Sin
e we are interested in possible late

time 
osmologies, we will assume the density of these fermions to be small 
ompared to the

other variables whi
h determine the stru
ture of internal spa
e: the 6D 
osmologi
al 
on-

stant and the magneti
 
ux. The fermions 
an therefore be 
onsidered as a perturbation,

and their wave fun
tions will be to a good approximation given by the stati
 solutions
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derived in 
hapter 4. Only the massless modes are ex
ited in a late time 
osmology. We

have to 
ompute the energy momentum tensor of these modes. Sin
e they are massless,

we expe
t a relativisti
 equation of state, w

1

= 1=3. Consisten
y with the 
onditions de-

rived in the previous se
tion requires then w

2

= 0 for a "perfe
t" 
osmology. (We expe
t

that the 
onstraints on the equations of state still hold, at least approximately, even when

the 
osmology is not "perfe
t", i.e. when s
alar �elds are ex
ited. But this remains to be

proven). We will show that both relations are indeed ful�lled.

The energy momentum tensor of the fermions is given by the expe
tation value

T

A

B

=

�

1

2

i

�

	


A

D

B

	 + h:
:

�

; (263)

where 


A

= 


a

e

a

A

. Usually an energy momentum tensor 
ontains also a pie
e LÆ

A

B

, where

L is the Lagrangian density, but this vanishes here, sin
e L = 0 for solutions of the Dira


equation. The 
ovariant derivative D

B


ontains the spin 
onne
tion and a possible 
ou-

pling to the gauge �eld. We assume that the distribution of the fermions is homogeneous

and isotropi
 in three-dimensional spa
e. This forbids any 
omponents 
ontaining 3D

spatial indi
es ex
ept for diagonal ones, T

(i)

(i)

. The e�e
tive 4D Dira
 equation implies

�

 (x)~


�

~

D

�

 (x) = 0; (264)

where a tilde again denotes a four-dimensional operator. From isotropy then follows

�

 (x)~


(i)

~

D

(i)

 (x) = �

1

3

�

 (x)~


t

~

D

t

 (x): (265)

This does not automati
ally imply that w

1

= 1=3. It remains to be proven that the

e�e
tive 4D energy momentum tensor is really given by

~

T

(�)

(�)

=

D

�

 ~


(�)

~

D

(�)

 

E

: (266)

This is not yet 
lear, sin
e the 
ovariant derivative D

�


ontains terms additional to

~

D

�

,


ompare eq. (173). Hen
e a more detailed analysis is ne
essary, whi
h is needed anyway

to 
ompute the internal 
omponents of the energy momentum tensor.

We assume that the di�erent fermion modes do not mix and have arbitrary phases with

respe
t to ea
h other, so that all expe
tation values of the type

D

 

y

i

 

j

E

,

D

�

 

i

 

j

E

,

D

 

y

i

�

�

 

j

E

and

D

�

 

i

�

�

 

j

E

vanish for di�erent modes, i 6= j. Then we 
an 
ompute the energy momen-

tum tensor for ea
h mode separately. We therefore take 	(x; �; �) =  (x)�(�; �), where

� is one parti
ular zero mode and splits up into a �-dependent and a �-dependent part,

� = e

in�

�(�). Furthermore we assume that with ea
h mode also the 
orresponding an-

tiparti
le (with opposite handedness, opposite "winding number" n and opposite 
harge

q with respe
t to gauge �eld) is ex
ited with the same density, so that no net 
harges

appear. Every operator 


A

D

A

is a tensor produ
t (or a sum of tensor produ
ts) of an

operator a
ting on the 4D part  (x) and an operator a
ting on the internal part �(�; �)

of the fermions. We will refer to these as the 4D and the 2D part of the operator. Re
all

some of the relations obtained in 
hapter 4:




m

= ~


m


 1; 


�

= a

�1

~


�


 1; 


4(5)

=

~

�
 �

1(2)

; (267)
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D

�

=

~

D

�

+ i(�

m4

sin � � �

m5


os �)a

0

~e

m

�

(268)

=

~

D

�

+

1

2

a

0

1

a

1




�




�

; (269)

D

�

= �

�

+

1

2

i�

3

(1� b

0

) + iqeA

�

; (270)

D

�

= �

�

: (271)

The 
ovariant derivatives D

�

and D

�

have only 2D parts. The �rst term of D

�

is purely

4D, whereas the se
ond has both a 4D and a 2D part.

We will now show that all 
omponents of the energy momentum tensor vanish or


an
el ea
h other with ex
eption of the part obtained from 


(�)

~

D

(�)

. Most terms vanish

be
ause

�

 (x)

~

� (x) is zero for a 
hiral fermion. This term o

urs in T

�

�

, T

�

�

, T

�

�

and

T

�

�

, sin
e the 4D part of 


�

D

�

is just

~

�. Therefore these 
omponents all vanish. The

se
ond part in D

�


ontains 


�




�

. In T

(�)

(�)

, the 


�

is multiplied with 


�

to give 1, and

the 4D part of 


�

is again

~

�, and so

�

 

~

� o

urs again. The remaining part of T

(�)

(�)

is

T

(�)

(�)

=

D

�

 (x)~


(�)

~

D

(�)

 (x)

E

a

�1

1

(�)j�(�)j

2

: (272)

It has obviously w

1

= 1=3, as derived from the 4D Dira
 equation, and we also showed

that w

2

= 0. It remains to be proven that the remaining o�-diagonal 
omponents are also

zero. We have

T

t

�

=

�

1

2

i

�

	


t

D

�

	 + h:
:

�

=

�

1

2

i(

�

 ~


t

 )
 (a

�1

1

�

y

�

�

�) + h:
:

�

(273)

=

�

1

2

i( 

y

 )
 (a

�1

1

�

y

�

�

�) + h:
:

�

: (274)

This is purely imaginary and is therefore 
an
elled by the hermitian 
onjugate.

T

�

t

=

*

1

2

i

�

	


�

~

D

t

	+

1

4

i

�

	


�




t




�

a

0

1

a

1

	+ h:
:

+

(275)

The �rst term 
ontains as 4D part

�

 

~

�

~

D

t

 whi
h is zero be
ause of 
hirality. The se
ond

term simpli�es to

T

�

t

=

�

1

4

i( 

y

 )
 (a

0

1

�

y

�) + h:
:

�

(276)

This is again purely imaginary and 
an
els with the hermitian 
onjugate.

T

t

�

=

�

1

2

i

�

	


t

D

�

	 + h:
:

�

(277)

=

�

1

2

i( 

y

 )
 a

�1

1

�

y

(�

�

+

1

2

i�

3

(1� b

0

) + iqeA

�

)� + h:
:

�

(278)

=

�

�( 

y

 )
 a

�1

1

�

y

�(n�

1

2

(1� b

0

) + qeA

�

)

�

(279)

This is real and does not vanish. A net 
harge would indeed lead to a nonvanishing

T

t

�

. Su
h a 
omponent would 
ertainly, through Einstein's equations, for
e one of the
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o�-diagonal metri
 
omponents to be
ome nonzero, sin
e G

t

�

would identi
ally vanish for

a diagonal metri
. Hereby is demonstrated that the in
lusion of the o�-diagonal metri



omponents in the general dis
ussion was really ne
essary. But fortunately we assumed

here that the for ea
h parti
le the 
orresponding antiparti
le is also present. This has

opposite n, opposite �

3

eigenvalue and opposite q. Its T

t

�


omponent has therefore the

same value but the opposite sign, and the terms 
an
el in the total energy momentum

tensor. Finally

T

�

t

=

*

1

2

i

�

	


�

~

D

t

	+

1

4

i

�

	


�




t




�

a

0

1

a

1

	+ h:
:

+

(280)

The �rst term 
ontains again

�

 

~

�

~

D

t

 as 4D part and therefore vanishes. The se
ond term

simpli�es to

T

�

t

=

D

( 

y

 )
 (a

0

1

�

y

�

3

�)

E

; (281)

whi
h is again in general nonzero and needs the antiparti
le for 
an
ellation (due to the

opposite �

3

eigenvalue). This 
ompletes our 
al
ulation of the energy momentum tensor

for relativisti
 fermions.

Consider now the spheri
al model. One 
ondition for a "perfe
t" late time 
osmology

was that the energy momentum tensor is "warped" with a

�2

1

(�). On the other hand

we 
omputed that the energy momentum tensor of a fermion mode is "warped" with

a

�1

1

(�)j�(�)j

2

. In the spheri
al model there is no warping at all, a

1

= 1, and

P

j�

i

j

2

is

also 
onstant (by symmetry) if all zero modes are ex
ited with the same probability. In

this 
ase we would really get a "perfe
t" late time 
osmology, provided the sphere starts

with internal s
ale fa
tor n < n

max

and therefore 
onverges to the ground state n = n

0

, as

dis
ussed in se
tion 5.2. The 
osmology would be a Friedmann 
osmology with relativisti


matter and with possible in
lusion of a 
osmologi
al 
onstant (the �

4

of the ground state).

If only some of the fermion zero modes on the sphere are ex
ited, this would break

the spheri
al symmetry, and the 
osmology 
an no longer be "perfe
t". Non-singlet s
alar

�elds would be ex
ited. This is the 
ase mentioned in the dis
ussion at the end of se
tion

5.4 and is not yet fully understood. But sin
e the stability of the ground state of the

spheri
al model has been proven [1℄, all s
alars have huge masses and 
an 
ertainly not

disturb the e�e
tive 4D 
osmology too mu
h.

The situation is mu
h worse if there are de�
it angle branes. Now the fermion distri-

bution j�(�)j

2

is singular at one of the branes. Even if the fermion density is very small,

it is not 
lear how far they 
an be 
onsidered as a small perturbation in the vi
inity of the

brane. They may alter the stru
ture of the singularity, transforming it into a thi
k brane.

The e�e
ts on the e�e
tive 4D pi
ture may be small, sin
e only a small part of internal

spa
e is involved, but this 
on
lusion is not so obvious. Furthermore, if the deviation

from a sphere is large, we do not know very mu
h about the stability of the "ground

state". A perturbation of the warping or the internal metri
 (ex
itation of s
alars in the

4D pi
ture) may have drasti
 
onsequen
es. The 
osmology of this general 
ase is still


ompletely un
lear and requires a mu
h better understanding of the ground states with

non-
ompa
t internal spa
e.
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5.6 Open Questions

We are still far away from a 
omplete understanding of the 
osmologi
al evolution of higher

dimensional theories, even in this relatively simple six-dimensional example. Our goal was

to explore if there is a 
han
e to solve the Cosmologi
al Constant Problem (and maybe

similarly the Gauge Hierar
hy Problem) in su
h a dynami
al 
ontext. Would a universe,

starting from arbitrary initial 
onditions, automati
ally evolve towards the universe we

observe today, with its small 4D 
urvature? This goal is at the moment 
ompletely out

of sight.

But we think that we a
hieved a good basi
 pi
ture of the situation. The two most

serious diÆ
ulties were identi�ed and explored to some extent. They are

1. the 
omplexity of the dynami
s and

2. the problem to �nd the 4D interpretation of a 6D solution, whi
h is mainly identi
al

with the problem to �nd a physi
ally meaningful 
oordinate system.

A way to deal with these problems is to look for spe
ial 
ases whi
h 
an be solved and

then to generalize step by step. The beginning of this long road has been taken, and we

believe that we have rea
hed a good starting position for future resear
h. The next steps

towards our �nal goal 
ould be:

� a better understanding of the qualitative features of the general ansatz, espe
ially of

the o�-diagonal metri
 
omponents and the 
orrespondingly appearing gauge �eld


omponents A

t

or A

�

. Under whi
h 
ir
umstan
es are these �elds ex
ited? Maybe

there is a large 
lass of solutions in whi
h these 
omponents 
an be ignored. This

would open new prospe
ts of numeri
al analysis, sin
e mu
h fewer fun
tions would

then be involved. We have seen that the o�-diagonal 
omponents are 
ertainly

involved if there are net 
harges (see se
tion 5.5, dis
ussion of T

t

�

). Is this maybe

the only 
ase in whi
h these �elds are for
ed out of their ground state?

� an investigation of 
odimension-two singularities di�erent from the de�
it angle

branes, or their 4D analogues: the gravitational �eld of a wire with arbitrary equa-

tion of state. A step into this dire
tion has re
ently been made by Vinet and Cline

[47℄ in the 
ontext of thi
k branes. One 
ould �rst look for stati
 solutions with

three independent fun
tions, g

tt

(�), g

ii

(�) and g

��

(�) and see what happens when

a solution is for
ed into a 
oordinate system with 
onformal time �g

tt

= g

ii

or a

frame 
onstrained in any other way. This would 
ertainly help a bit for a better

understanding of the 
oordinate problem.

Pro
eeding further, it will be interesting to see how bulk energy like the magneti



ux and fermions rea
t on su
h more general singularities. Does a part of them fall

into the singularity like into a bla
k hole? How would this look like in the e�e
tive

four-dimensional theory? And would su
h an e�e
t 
hange the "equation of state"

of the singularity?

� a better understanding of the late time 
osmology with fermions. One 
ould perform

the following 
omputation: Take the spheri
al ground state with monopole number
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m = 2. The fermion zero modes will then form a doublet. Assume that for some

reasons only one of the two modes is ex
ited. The ex
itation will ba
krea
t on

the geometry and lead to a slight deformation of the sphere. In the e�e
tive 4D

pi
ture the deformation would be expressed as the ex
itation of a 
omponent of a

s
alar SU(2) triplet. With some e�ort it should be possible to solve the 
osmology

of this parti
ular example in the 6D and the e�e
tive 4D pi
ture and 
he
k the


onsisten
y of the two pi
tures. This will 
ertainly also shed new light on the


oordinate problem.

� To surround the 
oordinate problem, it may be useful to look for more mathemati
al,


oordinate free des
riptions. Maybe "asymptoti
 Killing ve
tors" 
an be formulated

and looked for in a gauge invariant formalism.

When all these steps have been su

essfully solved, one may fa
e the most interesting part

of the problem: the early universe 
osmology. Starting with arbitrary initial 
onditions,

are there dynami
al reasons why three spatial dimensions be
ome large, with almost zero

e�e
tive 
osmologi
al 
onstant, while the other dimensions remain small?

To summarize: The major a
hievement of this 
hapter is not a solution, but a detailed

des
ription of the Kaluza-Klein 
osmology problem. The diÆ
ulties that have to be

fa
ed were dis
ussed, and a strategy how to over
ome these diÆ
ulties was outlined.
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6 How to 
onstru
t a Realisti
 Kaluza-Klein Theory

Our toy model, six-dimensional Einstein-Maxwell theory, was very useful for the inves-

tigation of many typi
al features of Kaluza-Klein theories. But it 
ontains by far not

enough symmetries to a

ount for the SU(3) � SU(2) � U(1) Standard Model and its

rather 
ompli
ated fermion spe
trum. Going beyond our simple model, how far 
an one

get in 
onstru
ting a realisti
 theory? Is it possible to get the 
orre
t low energy symme-

tries and the 
orre
t parti
le spe
trum? And if this 
an be a
hieved, may we even hope

to explain the stru
ture of the mass matri
es in this way (hierar
hy, mixings)?

Edward Witten [48℄ showed that, if we want to get the gauge groups from pure higher

dimensional gravity, at least seven extra dimensions are needed. He 
onstru
ted expli
itly

seven-dimensional internal spa
es 
ontaining the Standard Model gauge group. Wetteri
h

[39℄ showed that, in order to get also a realisti
 fermion spe
trum, the total dimension-

ality must be 2 mod 8. Combining the two requirements, one ends up with at least

18 dimensions. The 
orresponding 14-dimensional internal spa
e must be non-
ompa
t,

sin
e otherwise the 
hirality index would vanish. A Majorana-Weyl spinor with 256 real


omponents 
ould then be suÆ
ient to redu
e to all the observed fermions in the e�e
tive

four-dimensional theory. Indeed, if 11 of the extra dimensions form an S

11

and another

one is "radial" similar to the � 
oordinate in our toy model, a �rst step of 
ompa
ti�
ation


ould lead to the six-dimensional SO(12) model [49, 50, 51, 52℄, whi
h turns out to be

almost 
ompletely su

essful in explaining the observed world and will be dis
ussed in

se
tion 6.2. This gives us hope that our dis
ussion of a spe
i�
 six-dimensional gauge

theory was a good 
hoi
e and may be very useful for the investigation of more realisti


theories.

It should be mentioned that the 18-dimensional model with a Majorana-Weyl fermion


ontains a gravitational anomaly [53℄. On the other hand, the six-dimensional SO(12)

theory is anomaly free.

6.1 Fermion Mass Matri
es

How 
an one reprodu
e the quantum numbers, hierar
hies of masses and mixing angles

for quarks and leptons?

In 
ontrast to four-dimensional uni�ed gauge theories, higher dimensional theories have

typi
ally only a few free parameters. If su
h theories lead to a realisti
 four-dimensional

model after dimensional redu
tion, the spe
trum of fermion masses should be highly

predi
table. Four-dimensional gauge �elds and s
alars often 
orrespond to di�erent 
om-

ponents of the same higher dimensional �eld. In this se
tion we outline in a general

framework the steps leading to predi
tions 
on
erning the mass matri
es. An under-

standing of these matri
es is related to an understanding of the origin and 
ouplings of

the low-energy weak Higgs doublet. It is proposed that a �ne stru
ture of s
ales at the

uni�
ation s
ale is responsible for the observed stru
tures. In the next se
tion the ap-

pli
ation of these methods to a parti
ular example, the six-dimensional SO(12) model, is

sket
hed.

In Kaluza-Klein theories, massless fermions have a similar status as massless gauge
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bosons: the zero mass is guaranteed by symmetry (plus topology) and any mass term

involves the breaking of symmetry. A symmetry breaking pattern would look as follows:

Let

~

G be the symmetry of the underlying d = D + 4-dimensional Lagrangian and de�ne

~

H = SU(3)

C

� SU(2)

L

� U(1)

Y

; H = SU(3)

C

� U(1)

em

: (282)

We start with a "
ompa
ti�ed" �rst approximate ground state with symmetry G �

~

G

and 
ompa
ti�
ation s
ale M




. The term "
ompa
ti�ed" does not ne
essarily mean that

the D-dimensional internal spa
e has to be 
ompa
t, but it should have �nite volume.

The solution may be unstable and is just an approximation to the true ground state. The

symmetry groupG 
ontains higher dimensional gauge groups and the isometries of internal

spa
e. It should be of the form G = F �K, where F is either

~

H itself or 
ontains it as a

subgroup, like SU(5) or SO(10). The group K serves as a generalized generation group

and may 
ontain dis
rete subgroups. (We have omitted here additional four-dimensional

isometries like Poin
are invarian
e or similar, whi
h are of 
ourse also 
ontained in G.)

This highly symmetri
 ground state is, possibly in several steps, spontaneously broken

to a se
ond approximate ground state with symmetry

~

H. The s
ales of this symmetry

breaking are M

1

, M

2

... somewhat below M




. This is what was already mentioned as a

"�ne stru
ture" of s
ales. RatiosM

1

=M




�

1

4

may sometimes be suÆ
ient. Small ratios of

quark and lepton masses are then indu
ed by various powers ofM

i

=M




, as we will dis
uss.

The appearan
e of a �ne stru
ture may either be dire
tly related to small quantities of

D-dimensional internal spa
e like 1=D, the ratio of "radius" to volume L

D

=V , inverse

monopole numbers 1=N et
. or it may result from geometri
 properties of parti
ular

solutions. Finally, at the mu
h lower s
ale M

L

,

~

H is spontaneously broken to H, whi
h

is then the symmetry group of the true ground state. So we have the 
hain

~

G �! G = F �K �!

~

H �! H: (283)

The fermion mass problem 
an then be split into several pie
es:

1. Identify the 
hiral quarks and leptons in the �rst approximate ground state and �nd

all their quantum numbers with respe
t to G.

2. Identify the s
alar �elds with the appropriate quantum numbers in order to 
ouple

to some of the fermion bilinears.

3. Compute the Yukawa 
ouplings of these s
alars to the relevant fermions.

4. Analyze the mixing between the s
alars and see if the lowest s
alar mass eigenstate,

identi�ed as the Higgs �eld, may serve to generate the observed fermion mass ratios.

At ea
h step one has to 
he
k if the result is still 
ompatible with observational bounds.

These bounds are very restri
tive, and it will not be easy to �nd a realisti
 model.
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Step 1: Fermion Quantum Numbers: At �rst one has to be aware of the possibility

that di�erent solutions, although having the same topology, may 
ontain a di�erent num-

ber of generations. This is be
ause these solutions may belong to di�erent "deformation


lasses" of

~

H, leading to a di�erent 
hirality index. In this way the number of generations

may 
hange in the 
ourse of symmetry breaking. We assume that su
h a problem does not

o

ur here in the breaking of G. Otherwise an analysis of the G-symmetri
 state would

be 
ompletely useless as an approximation.

For a realisti
 model, one has to identify three

~

H standard generations. The fermions

should have a ri
h stru
ture with respe
t to the generation group K, so that even fermions

in the same generation have di�erent K quantum numbers in order to give the ne
essary

mass relations. All mass ratios of an order of magnitude or more should follow from sym-

metry 
onsiderations, sin
e all allowed Yukawa 
ouplings to the same s
alar are typi
ally

of the same order.

Step 2: S
alar Doublets: The various fermion bilinears appearing as entries in mass

matri
es 
ouple to 
olor singlet ele
tri
ally neutral SU(2)

L

doublet s
alar �elds with

di�erent K quantum numbers. Su
h s
alar �elds appear in the harmoni
 expansion of

internal metri
 or gauge �eld 
omponents or of s
alars whi
h are already present in the d-

dimensional theory. The latter do o

ur naturally if this theory was already obtained from

an even more fundamental theory. Step 2 involves the identi�
ation of su
h doublets and

of their possible 
ouplings to the fermion bilinears allowed by their K quantum numbers.

The low-energy Higgs doublet must be a linear 
ombination of these �elds. It should

mainly 
onsist of a leading doublet whi
h 
ouples to the top quark but is forbidden by K

symmetry to 
ouple to other quarks or 
harged leptons. (We do not talk about neutrinos

here, be
ause we expe
t that some s
alar VEVs indu
e large right-handed neutrino masses

and assure in this way small left-handed neutrino masses.) There should be a small

admixture of another doublet whi
h 
ouples only to bottom, tau and 
harm, and so on.

A realisti
 model requires that all entries in the mass matri
es with di�erent orders of

magnitude are 
oupled to di�erent doublets. This does not yet mean that these orders of

magnitudes will turn out 
orre
t, sin
e we do not yet know the stru
ture of the low-energy

Higgs doublet. But it assures that IF the Higgs turns out to have the required admixtures,

then the observed ratios would be obtained. This requirement is already very restri
tive,

and a model whi
h survives step 2 has passed an important test.

Step 3: Yukawa Couplings: One has to �nd the internal wave fun
tions for the

relevant 
omponents in the harmoni
 expansions on the �rst approximate ground state.

(In the true ground state, symmetry breaking will indu
e small 
orre
tions to these wave

fun
tions and to the Yukawa 
ouplings.) Su
h expansions exist for s
alars similar as for

spinors:

�(x; y) =

X

i

'

i

(y)�

i

(x): (284)

The �eld � 
ould for example be an internal gauge �eld 
omponent. The e�e
tive four-

dimensional Yukawa 
oupling would then arise from the higher dimensional gauge 
oupling

and would be determined by integrating the relevant wave fun
tions over internal spa
e. If
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a 
oupling between '

i

and the zero mode fermion bilinear

�

 

0j

 

0k

is allowed, the 
oupling

h

jki

would be of the form

h

jki

= �g

Z

d

D

y g

1=2

D

a

4

�

 

0j

(y)'

i

(y) 

0k

(y); (285)

where �g is the higher dimensional gauge 
oupling and a

2

(y) is a possible warp fa
tor. If

� would instead be a higher dimensional s
alar �eld, there would be a higher dimensional

Yukawa 
oupling

�

f instead of �g in front of the integral. We see that the many e�e
tive

Yukawa 
ouplings are all related to the very few 
ouplings of the underlying theory, times

some integrals whi
h are either zero for symmetry reasons or expe
ted to be roughly of

the same magnitude.

Step 4: Mixing of S
alars: How to identify the low-energy Higgs doublet? In the

limit of unbroken G, doublets with di�erent G quantum numbers 
annot mix. A breaking

of G involves s
alar �elds whi
h are singlets with respe
t to

~

H but not with respe
t to

G. These s
alars a
quire va
uum expe
tation values and indu
e mixings between the

doublets via their 
ouplings. These mixings are proportional to various powers ofM

i

=M




,

depending on the power of singlets needed to produ
e a G invariant by 
oupling to the

doublets.

If the low-energy Higgs doublet �

L

has only a small admixture 


i

of a given doublet

d

i

, the va
uum expe
tation value of d

i

,

hd

i

i = 


i

h�

L

i (286)

will be small 
ompared to h�

L

i and this re
e
ts itself in a small entry to the fermion

mass matri
es. To 
ompute the 


i

's for a spe
i�
 model, one has to identify the s
alar

singlets and their possible 
ouplings to the doublets. From this one obtains the powers of

M

i

=M




appearing in the s
alar mass matri
es. If these powers lead to a realisti
 hierar
hy

in the mixings to the "leading doublet" whi
h 
ouples to the top quark, step 4 has been

su

essful. No model has passed this test so far, whi
h shows the very high predi
tivity

of Kaluza-Klein theories.

Even if a model passes this test, the problem is not solved 
ompletely. It remains

the question if the "leading doublet" in the lowest mass eigenstate �

L

is really the one

that 
ouples to the top quark. To investigate this, a more detailed analysis of the ground

state is needed. Furthermore, the question why a solution with su
h a small Higgs mass

is sele
ted (the gauge hierar
hy problem) has not even been tou
hed.

6.2 Six-Dimensional SO(12) Theory

The six-dimensional SO(12) gauge theory, whi
h we dis
uss here to illustrate the methods

des
ribed in the previous se
tion, 
ould be obtained from 18-dimensional pure gravity


oupled to a Majorana-Weyl spinor, or from another more fundamental theory. We will

not refer to su
h a possible origin here. It is en
ouraging to see how far one 
an get with

this relatively simple and e
onomi
 model. Solutions exist where almost the 
omplete
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stru
ture of mass matri
es is reprodu
ed. Only one detail turns out wrong in ea
h of

these possibilities while all the other ratios appear to be of the right size. Here we will

roughly explain the several steps and state the results without giving proofs.

The six-dimensional a
tion involves the Einstein term, an SO(12) gauge �eld, and a

Majorana-Weyl spinor in ea
h of the two pseudoreal 32-dimensional spinor representations

of SO(12), 	

1

and 	

2

. These spinors 
ontain 16-dimensional representations of an SO(10)

subgroup, whi
h are the standard fermion generations known from SO(10) uni�
ation.

Six-dimensional s
alars should be also present and appear naturally if the model was

obtained from a more fundamental theory. Here we need only one s
alar in the �fth rank

antisymmetri
 tensor representation of SO(12) to generate some features of the required

mass relations. There are only two 
ouplings: The 6D gauge 
oupling �g and one 6D

Yukawa 
oupling

�

f .

In the �rst approximate ground state, two dimensions are 
ompa
ti�ed on a sphere,

with the gauge �eld in a generalized monopole 
on�guration. The geometry is exa
tly

the same as in the Einstein-Maxwell solutions dis
ussed throughout this thesis. The only

di�eren
e is the more 
ompli
ated stru
ture of the gauge �eld. The gauge 
on�guration


an be brought into the form

A

�

=

1

2�g

^

N(�1� 
os �); A

�

= A

�

= 0; (287)

^

N = m(T

12

+ T

34

) + p(T

56

+ T

78

+ T

9;10

) + nT

11;12

: (288)

The T 's are the generators of a Cartan subalgebra of SO(12), andm, p and n are monopole

numbers. The symmetry of this approximate ground state is at least

G = SU(3)

C

� SU(2)

L

� U(1)

R

� U(1)

B�L

� U(1)

G

� SU(2)

G

: (289)

Here U(1)

G


orresponds to the generator T

11;12

, and SU(2)

G


orresponds to the isome-

tries on the S

2

, 
ombined with gauge transformations to preserve the form of the gauge


on�guration. The produ
t U(1)

G

� SU(2)

G

serves as generalized generation group K.

There are additional dis
rete symmetries, su
h as parity re
e
tions and the re
e
tion of

one of the two spinors:

� : 	

1

! 	

1

; 	

2

! �	

2

: (290)

All these symmetries have to be taken into a

ount in the quantum number analysis.

Deriving the fermion quantum numbers with respe
t to K, one �nds that the number

of massless generations is given by n. In the 
ase of three generations, the possibility

n = 3, p = m = 1 is the only one whi
h survives step 2. In all the other 
ases the

assignment of required s
ales to 
ertain entries in the mass matri
es would fail for some

reasons based on symmetry. This is even before the mixing of the doublets has been

dis
ussed at all! Even at this early stage, all possibilities ex
ept one are ex
luded, whi
h

shows the high predi
tivity of the Kaluza-Klein framework.

For the 
ase n = 3, p = m = 1, one �nds six s
alar weak doublets whi
h 
an have

Yukawa 
ouplings to the zero mode fermions. Two of them, H

1

and H

2

, are 
ontained

in the internal 
omponents of the gauge �eld, whereas the four others, d

1

, d

2

, d

3

and
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d

4

, appear in the harmoni
 expansion of the six-dimensional s
alar �eld. The �eld H

1


an 
ouple only to one 
harge 2/3 quark, whi
h is thereby identi�ed as the top quark.

Furthermore, any s
alar 
ouples only to fermion bilinears whi
h have entries of similar

magnitude in the mass matri
es. Therefore, IF the VEVs of the s
alar doublets ful�ll


ertain relations, a realisti
 mass hierar
hy may be obtained.

The harmoni
 expansion of the six-dimensional s
alar �eld 
ontains also

~

H singlets

whi
h may break G down to

~

H. Mixings between the doublets are indu
ed by these �elds.

The ratios between these mixings 
an be estimated from group theoreti
al 
onsiderations.

Assuming that H

1

is the "leading doublet" (sin
e it 
ouples to the top quark), one �nds

that the mixing pattern 
omes out almost as required, but not 
ompletely (the Cabibbo

angle 
omes out wrong) [52℄. It remains to be seen if these diÆ
ulties 
an be 
ured by

some modi�
ations of the model, or if another model will be more su

essful.

Similar to the 6D Einstein-Maxwell toy model, the 6D SO(12) model also shows how

the Cosmologi
al Constant Problem and the Gauge Hierar
hy Problem may be 
onne
ted.

Again there exist solutions where the sphere is deformed in a way su
h that (at least)

one pole be
omes singular (a brane). In this large 
lass of solutions, the 4D 
osmologi
al


onstant as well as the weak symmetry breaking s
ale be
ome free integration 
onstant.

It be
omes a dynami
al problem why solutions are sele
ted in whi
h these two parameters

are so small.
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7 Con
lusions

We have studied properties of theories with extra dimensions by exploring a parti
ular

example: six-dimensional Einstein-Maxwell theory with four "warped" large dimensions

and a two-dimensional, possibly non-
ompa
t, internal spa
e. This toy model has not

enough symmetry to explain all the stru
tures in the world (Standard Model gauge group

et
.) but 
arries already many of the features whi
h are believed to be important for a

more realisti
 model.

The work we have 
arried out 
an be divided into four parts.

� The a
hievements made in Kaluza-Klein theories about twenty years ago were 
ar-

ried together and summarized.

� Kaluza-Klein Theories were 
ompared to the more modern brane models whi
h are

motivated by results of String Theory, and the two di�erent points of view were


ombined, leading to the notion of "holographi
 branes".

� The 
osmology of our six-dimensional toy model was explored, whi
h was the main

motivation for this work.

� As a generalization of the singularities appearing in the six-dimensional model,

properties of symmetri
 singularities in arbitrary dimensions were studied.

The last issue was rather a byprodu
t of our resear
h. We have therefore put it into an

appendix.

In the following, we summarize the results of all four issues separately.

Review of Kaluza-Klein Theories: Kaluza-Klein theories have the advantage that

they usually 
ontain only very few parameters. Several four-dimensional �elds 
orrespond

to di�erent 
omponents of the same higher dimensional �eld. This makes these theories

very predi
tive. Many di�erent Yukawa 
ouplings, for example, are related to the same

higher dimensional 
oupling. Relations in the fermion mass matri
es are therefore mu
h

ri
her than in four-dimensional uni�
ation, leading to strong 
onstraints on su
h models.

The number of 
hiral fermion generations is determined by an index of mainly topologi
al

nature. Gauge groups arise naturally from the isometries of internal spa
e. Gauge and

s
alar �elds are (mostly) 
omponents of the higher dimensional metri
. Spontaneous

Symmetry Breaking is des
ribed as a slight deformation of the internal geometry.

The Gauge Hierar
hy Problem and the Cosmologi
al Constant Problem are not yet

solved in this 
ontext, but there are hints that both problems may be linked [30℄, i.e. that

both "small numbers" are two fa
ets of one and the same underlying feature of the model.

Kaluza-Klein theories provide a very beautiful and promising framework of uni�
ation.

But they are not intended as a fundamental theory. Starting from a very simple and

e
onomi
 higher dimensional Lagrangian, they are able to explain the matter 
ontent

of the universe and to relate all e�e
tive four-dimensional for
es to higher dimensional

gravity. But they are 
lassi
al theories and do not tell us how to quantize su
h a higher

dimensional gravity. A self-
onsistent and predi
tive quantum theory of gravity does
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not exist at the moment, but there are interesting ideas towards that dire
tion. Su
h a

theory may arise from String Theory [42℄, Loop Quantum Gravity [54℄, non-perturbative

methods [55℄, Spinor Gravity [56℄, or a 
ombination of them.

Kaluza-Klein Theories versus Branes: Chiral fermions 
annot be obtained from

pure higher dimensional gravity if the internal spa
e is 
ompa
t. Internal spa
es with


usps or singularities are therefore a general feature of su

essful Kaluza-Klein theories.

Su
h singularities in a higher dimensional spa
e are also present in a very modern 
lass

of phenomenologi
al models motivated by String Theory: the so-
alled braneworlds. In

prin
iple, these brane models have a very di�erent point of view 
ompared to Kaluza-Klein

theories. All parti
les and gauge intera
tions are lo
ated on the brane. In 
ontrast, the

observable parti
les in Kaluza-Klein theories are zero modes of the internal spa
e (
alled

"bulk" in the brane models). In a maximally symmetri
 internal spa
e, the probability

density of these zero modes would be 
onstant over the entire "bulk", whi
h is just the

opposite of the delta-fun
tion-like distribution in the braneworlds. Our intention was to

see how these two types of models are linked.

We 
onsidered a 
oni
al singularity, whi
h appears naturally in the two-dimensional

internal spa
e of our six-dimensional toy model. In the modern point of view, this would

be 
alled a 
odimension-two brane. In the Kaluza-Klein point of view, it would be just a

subspa
e whi
h 
annot be in
luded into the manifold. We showed how the brane tension

from the brane point of view 
an be translated into integration 
onstants appearing in

the solution of the �eld equations from the Kaluza-Klein point of view. Both des
riptions

are therefore equivalent. This was easily generalized to a 
ase with two branes, one at

ea
h pole of internal spa
e.

We also investigated the wave fun
tions of the 
hiral fermions. They are peaked at the

brane, and their probability density be
omes singular at that position. This �ts to the

brane point of view: The fermions are lo
ated on the brane. But their "tail" into the bulk

is su
h that all their physi
al properties (Yukawa 
ouplings et
.) 
an be 
omputed from

bulk integrals, whi
h is a basi
 feature of the Kaluza-Klein point of view. In this way we


onne
ted the two types of models. We 
alled singular subspa
es "holographi
 branes" if

su
h a 
onne
tion is possible. The term "holographi
" is justi�ed, sin
e all properties of

the brane and of the parti
les whi
h are lo
ated there 
an be translated into geometri


properties of the "bulk" and parameters of the underlying Kaluza-Klein theory.

We noti
ed that su
h a 
onne
tion is not possible for 
odimension-one branes. The

di�eren
e is that a 
oni
al singularity 
an be expressed as a property of the surrounding

spa
e, determined by the de�
it angle, whi
h 
an be "measured" by surrounding the

singularity. In 
ontrast, a 
odimension-one brane 
annot be dete
ted by a "bulk observer",

and it is impossible to surround it.

Cosmology of six-dimensional Einstein-Maxwell Theory: A major question of

all theories with extra dimensions is why the e�e
tive four-dimensional spa
e is so mu
h


atter than the internal dimensions, or equivalently: why the 4D 
osmologi
al 
onstant

�

4

is so small. We wanted to look for a dynami
al solution of this problem in the 
ontext
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of our relatively simple toy model. Solutions exist with arbitrary �

4

. Cosmologi
al obser-

vations are 
onsistent with �

4

=M

p

� 10

�121

(where M

p

is the Plan
k mass). Why would

a solution with su
h a small �

4

be sele
ted? Starting from arbitrary initial 
onditions,

what kind of solutions would be asymptoti
ally approa
hed? Is there some me
hanism

that drives late time 
osmology towards a small �

4

? For generi
 initial 
onditions, the

shape of internal spa
e will be time-dependent, so that the time evolution is des
ribed by

a 
ompli
ated set of partial di�erential equations.

Our intention was to study the 
osmology of a six-dimensional model with the follow-

ing isometries: translation and rotation invarian
e of the three large spatial dimensions,

and a U(1) symmetry generated by translation invarian
e of the internal angle �. All

metri
 
omponents are then fun
tions of t and � (the se
ond internal 
oordinate) only.

We derived the most general metri
 
onsistent with the isometries and showed how far

it 
an be simpli�ed by 
oordinate transformations. Unfortunately, it is in general not

possible to bring the metri
 into a diagonal form and simultaneously keep the fun
tions

�-independent. The �eld equations for this metri
 turned out to be so 
ompli
ated that

it was impossible to atta
k the problem dire
tly. Another diÆ
ulty, apart from the 
om-

plexity, 
on
erns the four-dimensional interpretation of six-dimensional solutions. In order

to bring the metri
 into a spe
i�
 form, we had to perform 
oordinate transformations

t; �! t

0

; �

0

(t; �). By this pro
edure, the time and � dimensions are mixed to some extent.

It is not 
lear in whi
h 
ases the time parametrized by t

0


orresponds to the "physi
al"

time that we observe in our e�e
tive four-dimensional world. To over
ome these diÆ
ul-

ties, a mu
h better understanding of the solutions will be ne
essary.

But we were able to solve some spe
ial 
ases and to �nd some generi
 properties of

the system. It was shown that the 
odimension-two branes (
oni
al singularities) 
annot

have an equation of state di�erent from w = �1 and that the de�
it angle asso
iated

with su
h a brane is always time-independent. (However there may be 
odimension-two

singularities of a di�erent type, behaving more like bla
k holes.)

A rather simple 
ase is given when internal spa
e is a sphere and has therefore an

SU(2) isometry group, not only U(1). In this 
ase the metri
 depends only on t, not

on �, so that the �eld equations be
ome ordinary di�erential equations, whi
h 
an be

easily solved. The result is not new [45℄, but we repeated the 
al
ulations to illustrate

the pro
edure of dimensional redu
tion and the method of Weyl s
aling, and to show how

s
alar �elds with asymptoti
ally exponential potentials arise in Kaluza-Klein 
osmology.

These solutions are easily generalized to the 
ase with two equal branes, one at ea
h pole

of internal spa
e. As another new extension of these solutions, we 
omputed the energy

momentum tensor of the 
hiral fermion zero modes and showed that they indeed behave

like a relativisti
 
uid in the e�e
tive four-dimensional pi
ture, and that they indu
e

a standard Friedmann-Robertson-Walker 
osmology (at least as long as no s
alars are

ex
ited).

"Late time 
osmologies" were also dis
ussed in general. There are strong observational

bounds on the time-dependen
e of 
oupling 
onstants, whi
h implies that the geometry

of internal spa
e has to be almost time-independent. The spe
ial 
ase in whi
h this time

independen
e is total was 
alled "perfe
t late time 
osmology". Su
h a solution 
an be

only obtained if strong 
onstraints on the � dependen
e and the equations of state of
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the six-dimensional energy momentum tensor are ful�lled. We also dis
ussed how the


onstraint on the � dependen
e is relaxed even if only a tiny time-dependent perturbation

appears in the internal spa
e.

Finally, we developed a plan for possible future resear
h in order to over
ome the many

remaining diÆ
ulties and open questions. We are still far away from a full understanding

of the subje
t, in parti
ular as far as the early universe is 
on
erned. But at least we have

solved some spe
ial 
ases and understood the nature of many of the 
ompli
ations to be

fa
ed, whi
h we believe to be a 
onsiderable progress. We have rea
hed a good starting

position for further investigations.

Symmetri
 Singularities in Arbitrary Dimensions The 
oni
al 
odimension-two

singularity, whi
h was dis
ussed throughout this thesis, has the very spe
ial property that

it is of a delta fun
tion type. The 
urvature is entirely 
on
entrated a � = 0, without a

"tail" in the bulk. It 
an be measured from outside only by surrounding it, re
ognizing

the de�
it angle. The metri
 remains �nite on the singular subspa
e at � = 0. This is the

reason why it 
an be easily in
luded into the manifold.

These properties are spe
i�
 to the 
odimension-two 
ase. A singularity with D

1

internal and D

2

+ 1 external dimensions is in the 
ase of highest symmetry des
ribed by

two s
ale fun
tions, a(�) and b(�), where � is the distan
e from the singularity. We show

that these fun
tions in general exhibit a generalized Kasner behavior in the vi
inity of

� = 0, whi
h means that a and b are proportional to powers p

1

and p

2

of �, obeying the

relation

D

1

p

1

+D

2

p

2

= D

1

p

2

1

+D

2

p

2

2

= 1: (291)

If D

2

= 1, one of the solutions is p

1

= 0, p

2

= 1. This 
orresponds to the 
oni
al

singularity. In all other 
ases, one of the exponents is negative, implying divergent metri



omponents and 
urvature. The 
odim-2 
ase is therefore very spe
ial.

The asymptoti
 Kasner behavior near singularities is a universal property and does

not depend on the topology or signature of the involved subspa
es.

To summarize: We found that Kaluza-Klein theories provide a uni�ed and highly

predi
tive framework into whi
h most of the stru
ture of this world 
an be embedded.

The modern braneworld s
enarios lead to a new point of view 
on
erning the singularities

appearing in these theories. An understanding of the Cosmologi
al Constant Problem

and dark energy in this higher dimensional 
ontext requires a better understanding of

the 
orresponding early universe 
osmology. We think that we have pushed the frontier

a little bit forward into that dire
tion.
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Appendix A: Symmetri
 Va
uum Singularities in

Arbitrary Dimensions

In order to understand the very spe
ial properties of 
odimension-two branes, it is

ne
essary to 
onsider it in 
ontext with other highly symmetri
 singularities in higher

dimensions. That is the purpose of this Appendix. It is shown that all maximally sym-

metri
 va
uum solutions are generalizations of the Kasner metri
 in the vi
inity of the

singularity. The Kasner solutions [57℄ of Einstein's equations des
ribe an anisotropi


va
uum 
osmology and the metri
 is given by

ds

2

= �dt

2

+

X

t

2p

i

(dx

i

)

2

; (292)

X

p

i

=

X

p

2

i

= 1: (293)

This is valid in arbitrary dimensions, but it is not the most general anisotropi
 va
uum


osmology. There are also the so-
alled Mixmaster solutions [58℄ with 
haoti
 behavior in

the vi
inity of the singularity. For these solutions, an expansion of the metri
 in powers

of t is not possible. Mixmaster-type singularities exist only if the metri
 
ontains at least

three independent fun
tions of time. Here we 
onsider metri
s whi
h 
ontain only two

independent fun
tions of one variable.

Our general ansatz is

ds

2

= �d�

2

+ a

2

(�)~g

��

(x)dx

�

dx

�

+ b

2

(�)~g

��

(y)dy

�

dy

�

: (294)

Here � is the generalization of the time 
oordinate in the Kasner solutions. If g

��

were

also a fun
tion of �, it 
ould be made equal to �1 by a transformation � ! �

0

(�). Let

s be the sign of g

��

, s = �1 for � timelike and s = +1 for � spa
elike. The metri
s ~g

��

and ~g

��

des
ribe maximally symmetri
 spa
es (or spa
etimes) with dimensions D

1

and

D

2

and with Ri

i tensors

~

R

��

= �

1

~g

��

;

~

R

��

= �

2

~g

��

: (295)

As an example, our 
odimension-two branes would 
orrespond to D

1

= 4 and D

2

= 1.

The S
hwarzs
hild solution would have D

1

= 1 (time) and D

2

= 2 (a sphere).

The full D

1

+D

2

+ 1-dimensional Ri

i tensor derived from the metri
 (294) is

R

��

= ~g

��

"

�

1

� a

2

s

 

(D

1

� 1)

a

0

2

a

2

+D

2

a

0

b

0

ab

+

a

00

a

!#

; (296)

R

��

= ~g

��

"

�

2

� b

2

s

 

(D

2

� 1)

b

0

2

b

2

+D

1

a

0

b

0

ab

+

b

00

b

!#

; (297)

R

��

= �D

1

a

00

a

�D

2

b

00

b

: (298)

In va
uum, the Ri

i tensor vanishes. This gives three equations, of whi
h only two

are independent due to the Bian
hi identities. We are interested in solutions whi
h are
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singular at � = 0. Furthermore we assume that a and b 
an be expanded in powers of �

in the vi
inity of the singularity,

a = 


1

�

p

1

+ ::: ; b = 


2

�

p

2

+ ::: (299)

The exponents p

1

and p

2

need not be integer.

At �rst we look for the 
ase �

1

= �

2

= 0. Plugging the ansatz (299) into the Ri

i

tensor, one obtains from R

��

= 0 the ne
essary 
ondition

D

1

p

2

1

+D

2

p

2

2

= D

1

p

1

+D

2

p

2

: (300)

From the equations R

��

= 0 and R

��

= 0 one gets either p

1

= p

2

= 0, in whi
h we are not

interested sin
e this would not be singular (ex
ept for a possible 
odimension-one brane

at � = 0, whi
h 
annot be dete
ted from outside), or

D

1

p

1

+D

2

p

2

= 1: (301)

Together these two 
onditions for p

1

and p

2

are just the Kasner 
onditions. There are

always two solutions to (300) and (301), namely

p

(�)

1

=

1

D

1

(D

1

+D

2

)

(D

1

�

q

D

1

D

2

(D

1

+D

2

� 1)); (302)

p

(�)

2

=

1

D

2

(D

1

+D

2

)

(D

2

�

q

D

1

D

2

(D

1

+D

2

� 1)): (303)

These are the exponents whi
h were already derived by Randjbar-Daemi and Wetteri
h

[31℄ who 
onsidered generalizations to the Rubakov-Shaposhnikov solutions [29℄ in arbi-

trary dimensions. They appear also in Ruth Gregory's p-brane solutions [59℄ when one

expands the metri
 around the singularities.

One of the exponents is always positive, the other negative, and one has always 0 <

jp

1;2

j < 1. There is a single ex
eption: If one of the dimensions, say D

2

, is equal to one,

then one of the solutions is p

1

= 0, p

2

= 1. This is just our well-known de�
it angle

solution, where a approa
hes a 
onstant and b vanishes linearly. The arbitrariness of the

de�
it angle appears here due to the arbitrariness of the 
onstant 


2

in the ansatz (299).

It is the only solution whi
h has brane 
hara
ter in the sense that there are �nite metri



omponents on the singularity. All the other solutions have only vanishing and divergent

metri
 
omponents at � = 0.

As a 
onsisten
y 
he
k, one �nds that the other solution (apart from p

1

= 0, p

2

= 1)

with D

1

= 4 and D

2

= 1 is p

1

= 2=5, p

2

= �3=5, whi
h we re
ognize as the exponents of

the Rubakov-Shaposhnikov solutions.

We may 
all � and the dimensions 
orresponding to positive p "external" with respe
t

to the singularity. The latter have angular 
hara
ter in the sense that they shrink to zero

size at � = 0. The other dimensions may be 
alled "internal" to the singularity.

As a next step, we in
lude the 
urvature terms �

1

and �

2

. One easily shows that this

does not modify the 
hara
ter of the singularities of the solutions we have found so far.
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Consider �

1

(the same applies to �

2

). That term has to be 
an
elled by a 
onstant term

in the derivative part of the R

��

= 0 equation. Ea
h of the terms in the derivative part

diverges like �

2(p

1

�1)

(see eq.(296)). The Kasner 
onditions were ne
essary to indu
e a


an
ellation between these terms. The addition of a 
onstant is negligible 
ompared to

the divergent parts in the above solutions. It modi�es only non leading order terms in

the expansions of a and b. In the spe
ial 
ase p

1

= 0, p

2

= 1, �

1

modi�es the term a

2

in

the expansion of a,

a

(DAB)

(�) = a

0

+ a

2

�

2

+ ::: (304)

(exponents between 0 and 2 do not appear in this 
ase, sin
e a

0

must vanish at least

linearly at � = 0 in order to prevent

a

0

b

0

ab

from diverging in (296)). The 
ase p

1

= 1, p

2

= 0

implies D

1

= 1 and therefore �

1

= 0, be
ause a one-dimensional spa
e has no 
urvature.

Hen
e the Kasner-type solutions still exist in the presen
e of the 
urvatures �

1

and

�

2

. Nevertheless there may be new additional solutions. One 
onvin
es oneself that the

only new possibility is p

1

= p

2

= 1. This follows from the stru
ture of the Ri

i tensor.

The possibility requires D

1

; D

2

� 2 and has

�

1




2

1

=

�

2




2

2

= s(D

1

+D

2

� 1): (305)

The D-dimensional unit sphere S

D

has � = D� 1. The line element of the new solutions

is therefore

ds

2

= �d�

2

+

D

1

� 1

D

1

+D

2

� 1

�

2

d�

2

1

+

D

2

� 1

D

1

+D

2

� 1

�

2

d�

2

2

: (306)

Here d�

2

1

and d�

2

2

are the line elements of a D

1

- and a D

2

- dimensional unit sphere (or de

Sitter spa
etime, or the 
orresponding hyperboli
 spa
e if � is timelike). How are these

solutions to be understood? Take, for simpli
ity, the 
ase s = +1. If there were just one

(D

1

+D

2

)-dimensional sphere, the line element for � = D

1

+D

2

� 1 would simply be

~

ds

2

= d�

2

+ �

2

d�

2

: (307)

This is the metri
 in spheri
al 
oordinates for a (D

1

+ D

2

+ 1)-dimensional Eu
lidean

spa
e, whi
h is of 
ourse a va
uum solution. At � = 0, there is only a 
oordinate singu-

larity, not a physi
al one. In the solutions (306) there is instead a produ
t of two spheres

with the same radial 
oordinate �, but with a "wrong" radius to surfa
e ratio. The Ri

i

tensor does not "see" the di�eren
e between the two line elements (306) and (307). But

the full 
urvature tensor does, and there is a true singularity at the 
enter of (306), as we

will show now.

In order to distinguish between 
oordinate singularities and true singularities one has

to 
onsider the square of the Riemann tensor. For the metri
 (294) it is

R

ABCD

R

ABCD

= 2

D

1

D

1

�1

�

2

1

a

4

+ 2

D

2

D

2

�1

�

2

2

b

4

+ 2D

1

(D

1

� 1)

a

0

4

a

4

+ 2D

2

(D

2

� 1)

b

0

4

b

4

(308)

+4D

1

D

2

a

0

2

b

0

2

a

2

b

2

+ 4D

1

a

00

2

a

2

+ 4D

2

b

00

2

b

2

� 4s

�

D

1

�

1

a

0

2

a

4

+D

2

�

2

b

0

2

b

4

�

:

For the Kasner-type solutions the dominant terms in the vi
inity of � = 0 are those whi
h

do not 
ontain �

1

or �

2

. They all diverge with �

�4

and are all non-negative, so they 
annot
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an
el ea
h other. So there is always a true singularity at � = 0. The only ex
eption

is again the 
ase p

1

= 0, p

2

= 1 (or vi
e versa), for whi
h there are no divergent terms

at all in the square of the Riemann tensor. In this 
ase there may be a pure 
oordinate

singularity at � = 0, or a singularity of the delta fun
tion type, whi
h 
an be dete
ted

from outside by surrounding it, but not from the 
urvature. This is what we 
alled de�
it

angle branes.

For the non Kasner type p

1

= p

2

= 1 solutions, all terms, in
luding those with �

1;2

,

diverge as �

�4

, and one 
omputes

R

ABCD

R

ABCD

=

2

�

4

D

1

D

2

(D

1

� 1)(D

2

� 1)

(D

1

+D

2

� 1)(D

1

+D

2

� 2): (309)

This always implies a true singularity at � = 0.

In
lusion of sour
es: How does the presen
e of sour
es like matter, radiation, magneti



ux or a 
osmologi
al 
onstant modify the stru
ture of the Kasner-type singularities? A

sour
e whi
h remains �nite at � = 0, like a 
osmologi
al 
onstant, 
an of 
ourse only be

relevant at large �. For a given model it may determine the global stru
ture of possible

solutions. But it does not generate any new types of singularities, and if a singularity is

given at � = 0, it obviously 
annot 
hange or modify the divergen
e of 
urvature. Su
h

a modi�
ation 
an only o

ur if the energy momentum tensor on the right hand side of

Einstein's equations diverges as fast as the derivative terms on the left hand side. These

derivative terms, like (a

0

=a)

2

, diverge as �

�2

in the Kasner-type solutions. On the other

hand, the volume measure

p

g of the 
onstant � hypersurfa
es is proportional to �, due to

the Kasner 
ondition D

1

p

1

+D

2

p

2

= 1. So one needs a sour
e whi
h diverges at least like

1/(volume)

2

. This happens for example in the Reissner-Nordstroem bla
k hole where an

ele
tri
 �eld 
hanges the stru
ture of the singularity. A se
ond example is the magneti



ux in our six-dimensional model, whi
h forbids the Rubakov-Shaposhnikov singularity

(the energy would diverge too strong if a would go to zero) and 
hanges it to a de�
it

angle brane or a pure 
oordinate singularity.

In many 
ases, the divergen
e of energy momentum is not strong enough to destroy the

Kasner behavior. In the 
osmologi
al Kasner model, matter and radiation are irrelevant

for the geometry at early times. But they are important at later times where they make

the anisotropy disappear and lead to the late-time universe we observe today, expanding

with the same rate in all dire
tions. In those 
ases the Kasner singularities still exist

as solutions, but new, additional types of singularities are also possible, su
h as the Big

Bang singularity in Friedmann 
osmology.

The S
hwarzs
hild Bla
k Hole from a Kasner point of view: The universality

of the Kasner exponents, independent of signature and topology, 
an be impressively

demonstrated in 
omparing our six-dimensional solutions to a S
hwarzs
hild Bla
k Hole,

ds

2

(BH)

= �(1�

2M

r

)dt

2

+ (1�

2M

r

)

�1

dr

2

+ r

2

(d�

2

+ sin

2

�d�

2

): (310)
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In the 6D 
ase, D

1

= 4 
orresponds to a four-dimensional 
onstant 
urvature spa
etime,

while the Bla
k Hole has D

1

= 2, 
orresponding to a sphere, parametrized by 
oordinates

� and �. Both spa
etimes have D

2

= 1. In the �rst 
ase, D

2


orresponds to the spa
elike


oordinate �, with topology S

1

. In the se
ond 
ase, D

2


orresponds to the timelike


oordinate t, with topology R. One has to express the bla
k hole metri
 in terms of the


oordinate �(r) whi
h has g

��

= �1 (+1 outside, -1 inside the S
hwarzs
hild horizon),

and expand it around the two 
riti
al points r = 0 and r = 2M .

At r = 0, the t-dimension be
omes in�nitely large with g

tt

� �

�1=3

, while the sphere

be
omes in�nitely small with g

��

� �

2=3

. Therefore t is the internal 
oordinate of the

singularity and the other dimensions are external. This 
orresponds to the Rubakov-

Shaposhnikov singularity in six dimensions, where � is internal.

Now turn to r = 2M . Here the sphere has a �nite size, g

��

= (2M)

2

. The t-

dimension be
omes in�nitely small, with g

tt

� (� � �(2M))

2

. We have therefore p

1

= 0

and p

2

= 1. The S
hwarzs
hild horizon 
orresponds to the de�
it angle brane! Noti
e

that the S
hwarzs
hild horizon is really a 
odimension-two (and not one!) obje
t, sin
e

time be
omes an external dimension due to g

tt

! 0, like the angle � in the 
orresponding

six-dimensional solution. Of 
ourse we 
annot speak of a de�
it angle here, be
ause of

the di�erent topology of time. If there were a delta fun
tion singularity at r = 2M , it


ould not be dete
ted from outside, sin
e it is not possible to surround it along a 
losed

timelike (!) 
urve, whi
h would be the pro
edure equivalent to surrounding the brane in

the 6D model along the �-dire
tion.
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Appendix B: Einstein Equations in the u-gauge

In the following, the Einstein tensor derived from the metri
 (218) is given. We use

the abbreviation q

2

� u

2

=(a

2

b

2

).

G

t

t

= �

1

a

2

(1 + q

2

)
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_a

2
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+ 3

_a _n
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+

_

b _n

bn

!

+

1

n

2

 

3

a

0

2

a

2

� 3

a

0

n

0

an

+ 3

a

00

a

!

(311)

+

1

n

2
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u
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q
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(i)
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1

a

2
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(1� q
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For the gauge �eld we 
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Finally we give the �eld equations for the gauge �eld. They are
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The �rst of the three equations determines the time evolution of A

�

. The other two

equations relate A

t

to A
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. They imply that
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in the entire six-dimensional spa
etime.
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